Supporting Information

Synthesis and characterization of azobenzene molecular glasses with different glass transition temperatures

Austin Diggins^a, Eoin Dawson^a, Mahnaz Kamaliardakani^b, Christian Pellerin^b, Ribal Georges Sabat^a

and Olivier Lebel $^{\rm c}$

^a Department of Physics and Space Science, Royal Military College of Canada, PO Box 17000, Station

Forces Kingston, Ontario CANADA, K7K 7B4

^b Département de chimie, Université de Montréal, C.P. 6128, succursale Centre-ville, Montréal,

Québec, CANADA, H3C 3J7

^c Department of Chemistry and Chemical Engineering, Royal Military College of Canada, PO Box

17000, Station Forces Kingston, Ontario CANADA, K7K 7B4

*Corresponding author: <u>c.pellerin@umontreal.ca</u>, <u>sabat@rmc.ca</u>, <u>Olivier.Lebel@rmc.ca</u>

Figure S1. DSC thermograms of precursors **2a-c**. The thermograms were recorded at a heating rate of 5 °C/min after a preliminary heating run to erase the thermal history. Exotherms are facing up.

Figure S2. DSC thermograms of **gDR1**₉, **gDR1**₃₅ and **gDR1**₆₅. The thermograms were recorded at a heating rate of 5 °C/min after a preliminary heating run to erase the thermal history. Exotherms are facing up.

Figure S3. Normalized UV-Visible spectra of the different $gDR1_{Tg}$ analogues used in the present study. Spectra were recorded in 0.01 mM solution in CH_2Cl_2 .

Figure S4. Atomic Force Microscopy (AFM) scans of thin films of **gDR1**_{Tg} after irradiation with a 488 nm laser at an irradiance of 100 mW/cm². (a) **gDR1**₉ after 200 s irradiation; (b) **gDR1**₃₅ after 200 s irradiation; (c) **gDR1**₅₁ after 600 s irradiation; (d) **gDR1**₆₅ after 600 s irradiation; (e) **gDR1**₇₁ after 800 s irradiation; (f) **gDR1**₆₅ after 60 irradiation (at 300 mW/cm²); (g) **gDR1**₇₁ after 150 s irradiation. The AFM scan for **gDR1**₉ was recorded 2 h after irradiation was stopped. A cropped image where the surface defect is not shown is also included for (a). The images in (b)-(e) likely show a distortion of the gratings due to the longer irradiation times, as the gratings shown in images (f)-(g), which had not yet reached saturation, do not show such defects.

Compound	Irradiance (mW/cm ²)	Inscription rate (DE %/s)	
gDR1 ₉	100	0.01226	\pm 8 × 10 ⁻⁵
	200	0.0248	$\pm 2 \times 10^{-4}$
	300	0.0338	\pm 8 × 10 ⁻⁴
gDR1 ₃₅	100	0.01514	$\pm 5 \times 10^{-5}$
	200	0.0405	$\pm 2 \times 10^{-4}$
	300	0.044	$\pm 1 \times 10^{-3}$
$gDR1_{51}$	100	0.0680	$\pm 1 \times 10^{-4}$
	200	0.1417	$\pm 6 \times 10^{-4}$
	300	0.0752	\pm 7 × 10 ⁻⁴
$gDR1_{65}$	100	0.0666	$\pm 1 \times 10^{-4}$
	200	0.1395	$\pm 5 \times 10^{-4}$
	300	0.151	$\pm 1 \times 10^{-3}$
gDR1 ₇₁	100	0.0575	$\pm 1 \times 10^{-4}$
-	200	0.1149	$\pm 3 \times 10^{-4}$
	300	0.202	$\pm 1 \times 10^{-3}$

Table S1. Initial SRG inscription rates for $gDR1_{Tg}$ with a 488-nm laser, obtained from the linear regression of the DE plots in Figure 1, before they plateaued.

Table S2. Initial SRG inscription rates for $gDR1_{Tg}$ with a 532-nm laser, obtained from the linear regression of the DE plots in Figure 1, before they plateaued.

Compound	Irradiance (mW/cm ²)	Inscription rate (DE %/s)	
gDR1 ₉	100	0.00272	$\pm 2 \times 10^{-5}$
	200	0.00175	$\pm 5 \times 10^{-5}$
	300	0.0112	$\pm 1 \times 10^{-4}$
gDR1 ₃₅	100	0.01279	$\pm 3 \times 10^{-5}$
	200	0.0298	$\pm 2 \times 10^{-4}$
	300	0.02655	$\pm 9 \times 10^{-5}$
gDR1 ₅₁	100	0.0532	$\pm 1 \times 10^{-4}$
	200	0.0748	$\pm 3 \times 10^{-4}$
	300	0.0708	$\pm 2 \times 10^{-4}$
gDR1 ₆₅	100	0.05366	$\pm 6 \times 10^{-5}$
	200	0.0926	$\pm 3 \times 10^{-4}$
	300	0.092	$\pm 3 \times 10^{-3}$
gDR1 ₇₁	100	0.05014	\pm 7 × 10 ⁻⁵
	200	0.0846	$\pm 2 \times 10^{-4}$
	300	0.0762	$\pm 2 \times 10^{-4}$

Figure S5. Effect of the glass transition temperature (T_g) on the residual orientation parameter ($<P_2>_{res}$) for pure gDR1_{Tg} azo glasses (black) and for mixtures of azo glass gDR1₇₁ with photopassive glasses (blue). Similar trends are found for both cases. The mixtures results are reproduced from Ref. 24.

NMR Spectra of Compounds 1a-c, 2a-c, gDR19, gDR135 and gDR165

8.0

			- 0
		_	25
\$9£`0t 266`tt t7\$`\$t 002`8t			 50
9£0.13			75
924.111	NO2		100
828.951 124.878 124.878 124.878 124.9788 124.97888 124.9788 124.9788 124.97888 124.9788 124.9788 124.9			125
£09'0†I Z0L'Z†I 81L'9†I £E\$'1\$I 960'9\$I †91'£91 199'£91 L7E'\$91 275'\$91 \$75'\$91	gDR1-65		150 - 1
202 271			1 1 1 1
	τ \		200 -

