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Résumé 
 

Environ 25% de la population mondiale est atteinte de troubles psychiatriques qui sont 

typiquement associés à des problèmes comportementaux, fonctionnels et/ou cognitifs et dont les 

corrélats neurophysiologiques sont encore très mal compris. Non seulement ces 

dysfonctionnements réduisent la qualité de vie des individus touchés, mais ils peuvent aussi 

devenir un fardeau pour les proches et peser lourd dans l’économie d’une société. Cibler les 

mécanismes responsables du fonctionnement atypique du cerveau en identifiant des biomarqueurs 

plus robustes permettrait le développement de traitements plus efficaces. Ainsi, le premier objectif 

de cette thèse est de contribuer à une meilleure caractérisation des changements dynamiques 

cérébraux impliqués dans les troubles mentaux, plus précisément dans la schizophrénie et les 

troubles d’humeur. Pour ce faire, les premiers chapitres de cette thèse présentent, en intégral, deux 

revues de littératures systématiques que nous avons menées sur les altérations de connectivité 

cérébrale, au repos, chez les patients schizophrènes, dépressifs et bipolaires.  Ces revues révèlent 

que, malgré des avancées scientifiques considérables dans l’étude de l’altération de la connectivité 

cérébrale fonctionnelle, la dimension temporelle des mécanismes cérébraux à l’origine de l’atteinte 

de l’intégration de l’information dans ces maladies, particulièrement de la schizophrénie, est 

encore mal comprise. Par conséquent, le deuxième objectif de cette thèse est de caractériser les 

changements cérébraux associés à la schizophrénie dans le domaine temporel. Nous présentons 

deux études dans lesquelles nous testons l’hypothèse que la « disconnectivité temporelle » serait 

un biomarqueur important en schizophrénie. Ces études explorent les déficits d’intégration 

temporelle en schizophrénie, en quantifiant les changements de la dynamique neuronale dite 

invariante d’échelle à partir des données magnétoencéphalographiques (MEG) enregistrés au repos 

chez des patients et des sujets contrôles. En particulier, nous utilisons (1) la LRTCs (long-range 

temporal correlation, ou corrélation temporelle à longue-distance) calculée à partir des oscillations 

neuronales et (2) des analyses multifractales pour caractériser des modifications de l’activité 

cérébrale arythmique. Par ailleurs, nous développons des modèles de classification (en 

apprentissage-machine supervisé) pour mieux cerner les attributs corticaux et sous-corticaux 

permettant une distinction robuste entre les patients et les sujets sains. Vu que ces études se basent 

sur des données MEG spontanées enregistrées au repos soit avec les yeux ouvert, ou les yeux 

fermées, nous nous sommes par la suite intéressés à la possibilité de trouver un marqueur qui 
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combinerait ces enregistrements. La troisième étude originale explore donc l’utilité des 

modulations de l’amplitude spectrale entre yeux ouverts et fermées comme prédicteur de 

schizophrénie. Les résultats de ces études démontrent des changements cérébraux importants chez 

les patients schizophrènes au niveau de la dynamique d’invariance d’échelle. Elles suggèrent une 

dégradation du traitement temporel de l’information chez les patients, qui pourrait être liée à leurs 

symptômes cognitifs et comportementaux. L’approche multimodale de cette thèse, combinant la 

magétoencéphalographie, analyses non-linéaires et apprentissage machine, permet de mieux 

caractériser l’organisation spatio-temporelle du signal cérébrale au repos chez les patients atteints 

de schizophrénie et chez des individus sains. Les résultats fournissent de nouvelles preuves 

supportant l’hypothèse d’une « disconnectivité temporelle » en schizophrénie, et étendent les 

recherches antérieures, en explorant la contribution des structures cérébrales profondes et en 

employant des mesures non-linéaires avancées encore sous-exploitées dans ce domaine. 

L’ensemble des résultats de cette thèse apporte une contribution significative à la quête de 

nouveaux biomarqueurs de la schizophrénie et démontre l’importance d’élucider les altérations 

des propriétés temporelles de l’activité cérébrales intrinsèque en psychiatrie. Les études présentées 

offrent également un cadre méthodologique pouvant être étendu à d’autres psychopathologie, 

telles que la dépression. 

 

Mots clés : Schizophrénie, Dépression, État-de-repos, Magnétoencéphalographie, Apprentissage-
machine, Criticalité, Invariance d’échelle, Psychiatrie, Connectivité, Multifractalité 
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Abstract 
 

Psychiatric disorders affect nearly a quarter of the world’s population. These typically bring about 

debilitating behavioural, functional and/or cognitive problems, for which the underlying neural 

mechanisms are poorly understood. These symptoms can significantly reduce the quality of life of 

affected individuals, impact those close to them, and bring on an economic burden on society. 

Hence, targeting the baseline neurophysiology associated with psychopathologies, by identifying 

more robust biomarkers, would improve the development of effective treatments. The first goal of 

this thesis is thus to contribute to a better characterization of neural dynamic alterations in mental 

health illnesses, specifically in schizophrenia and mood disorders. Accordingly, the first chapter 

of this thesis presents two systematic literature reviews, which investigate the resting-state changes 

in brain connectivity in schizophrenia, depression and bipolar disorder patients. Great strides have 

been made in neuroimaging research in identifying alterations in functional connectivity. 

However, these two reviews reveal a gap in the knowledge about the temporal basis of the neural 

mechanisms involved in the disruption of information integration in these pathologies,  particularly 

in schizophrenia. Therefore, the second goal of this thesis is to characterize the baseline temporal 

neural alterations of schizophrenia. We present two studies for which we hypothesize that the 

resting temporal dysconnectivity could serve as a key biomarker in schizophrenia. These studies 

explore temporal integration deficits in schizophrenia by quantifying neural alterations of scale-

free dynamics using resting-state magnetoencephalography (MEG) data. Specifically, we use (1) 

long-range temporal correlation (LRTC) analysis on oscillatory activity and (2) multifractal 

analysis on arrhythmic brain activity. In addition, we develop classification models (based on 

supervised machine-learning) to detect the cortical and sub-cortical features that allow for a robust 

division of patients and healthy controls. Given that these studies are based on MEG spontaneous 

brain activity, recorded at rest with either eyes-open or eyes-closed, we then explored the 

possibility of finding a distinctive feature that would combine both types of resting-state 

recordings. Thus, the third study investigates whether alterations in spectral amplitude between 

eyes-open and eyes-closed conditions can be used as a possible marker for schizophrenia. Overall, 

the three studies show changes in the scale-free dynamics of schizophrenia patients at rest that 

suggest a deterioration of the temporal processing of information in patients, which might relate 

to their cognitive and behavioural symptoms. The multimodal approach of this thesis, combining 
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MEG, non-linear analyses and machine-learning, improves the characterization of the resting 

spatiotemporal neural organization of schizophrenia patients and healthy controls. Our findings 

provide new evidence for the temporal dysconnectivity hypothesis in schizophrenia. The results 

extend on previous studies by characterizing scale-free properties of deep brain structures and 

applying advanced non-linear metrics that are underused in the field of psychiatry. The results of 

this thesis contribute significantly to the identification of novel biomarkers in schizophrenia and 

show the importance of clarifying the temporal properties of altered intrinsic neural dynamics. 

Moreover, the presented studies offer a methodological framework that can be extended to other 

psychopathologies, such as depression. 

 

Keywords: Schizophrenia, Depression, Resting-state, Magnetoencephalography, Machine-
Learning, Criticality, Scale-free, Psychiatry, Connectivity, Multifractality   
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Chapter 1 - Introduction 
 

1.1 Background 
 

Schizophrenia is a debilitating disorder with severe cognitive impairments. For over 20 years, it 

has been suggested that dysconnectivity within the brain, at both the anatomical and functional 

levels, underlines clinical symptoms of schizophrenia (Friston et al., 2016). The theory of 

dysconnectivity claims that patients symptoms are underlined by an overall failure of functional 

integration (Weinberger et al., 1992; Friston and Frith, 1995). This notion can even be seen within 

the origins of the term, schizophrenia (from the Greek, split mind), attributed to Eugen Bleuler in 

the 20th century (Kuhn, 2004), with the intention to move away from the misleading terminology 

of dementia praecox (i.e. early dementia).  

 

The most influential classification system of the past decades has been the Diagnostic and 

Statistical Manual of Mental Disorders (DSM) (American Psychiatric Association, 2013a). The 

DSM first popularized the Kraepelinian diagnostic approach (Kraepelin, 1921), which 

conceptualized psychotic and major mood disorders as two distinct and categorically exclusive 

disorders. This taxonomic system continues to affect the way patients are treated and how research 

is conducted (Weber and Engstrom, 1997; Craddock and Owen, 2005). The DSM defines 

Schizophrenia (SZ) as the diagnosis for a patient who presents with two or more of the following 

symptoms for one month, unless treated successfully: delusions, hallucinations, disorganized 

speech, disorganized/catatonic behavior, negative symptoms. Individuals must also present social 

and/or occupational dysfunction for a substantial amount of time, as well as continuous signs of 

disturbances for at least six months. Other diagnostic categories that have similar profiles (e.g., 

schizoaffective disorder and bipolar disorder) must be ruled-out (American Psychiatric 

Association, 2013a). Conversely, the DSM defines Major Depressive Disorder (MDD) as the 

diagnosis for a person who presents with five or more of the following symptoms: depressed mood, 

loss of interest or pleasure in most activities, significant weight gain/loss or appetite change, sleep 

disturbances, severe psychomotor change, tiredness/fatigue or low energy, sense of worthlessness 

or delusional guilt, impaired ability to think or make decisions, recurrent thoughts of death/suicidal 

ideation. Again, individuals must present with social and/or occupational dysfunction for a 
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substantial amount of time, and side-effects of drugs must be ruled out (American Psychiatric 

Association, 2013a). 

 

The concept of dysconnectivity has been linked to the complex symptomology of SZ. Given this, 

the diagnostic criteria and subtyping of SZ and other psychopathologies have experienced many 

changes since the first edition of the DSM in 1952 (Pilecki et al., 2011). In particular, the poor 

validity, subjective and timing-based system of the DSM have been criticized by those in the field 

of psychiatry (Hyman, 2011; Nemeroff et al., 2013; Blashfield et al., 2014). Some clinicians and 

researchers have mentioned that it fails to take into account the heterogenous symptoms and co-

morbidities present within patient groups (e.g. Hankin et al. 2005; Walton et al. 2011; Hengartner 

and Lehmann 2017). This has led to a lack of advancements and precision in the treatment for this 

disorder, as shown by the minimal level of innovation in psychotropics since the early 1990s 

(Miyamoto et al., 2012). Since then, pharmacological treatments have been slow to develop and 

are donned on patients through trial and error. The sluggish progress might be due to a lack of 

incentive, difficulty in translation of animal studies to human trials, brain complexity, and drug 

approval thresholds (O’Brien et al., 2014; van der Doef et al., 2018). This could also be due to the 

societal undervaluation of mental health compared to physical health (MacEwan et al., 2016), and 

oversight of the ramifications of mental health illnesses on the affected individual and their 

families.  

 

Given the heterogeneity and complex prognosis of SZ, early diagnosis, prior to the accumulation 

of psychotic episodes and the confounding effects of medications, is the best way to equip at-risk 

individuals. Although the work of this thesis relies on DSM diagnoses, one way to improve on the 

current classification system is by opting for a dimensional or domain-based approach to patients’ 

symptoms. Alternative strategies for the categorization of mental health disorders have been 

proposed, such as the Research Domain Criteria (RDoC) (Insel et al., 2010; Insel, 2014) and the 

Hierarchical Taxonomy of Psychopathology (HiToP)(Kotov et al., 2017), and will covered in the 

Discussion of this thesis in Chapter 6. Another way to improve on early detection of psychosis is 

to identify reliable and accessible biomarkers. Neuroimaging techniques have made great strides 

towards this effort and have helped untangle the neurophysiological underpinnings of 

psychopathologies (reviews: Van Den Heuvel and Fornito, 2014; Alamian et al., 2017b; Penadés 



 20 

et al., 2019; Keshavan et al., 2020). However, given the lack of new drugs, personalized treatment 

options, specific biomarkers and the vague diagnostic criteria, it is clear that more work is needed 

to improve our understanding of the neurophysiology of schizophrenia. Novel approaches in 

characterizing the dysconnectivity that underlines patients’ symptomatology might be the key to 

unlocking facets of this illness that have gone unnoticed until now.  

 

1.2 Rationale 
 

The overarching aim of this thesis is to use the alterations in the spatiotemporal structures of neural 

signal measured at rest, as a potential marker for psychopathologies. Abnormalities in local 

synchrony and long-range connectivity patterns seem to underline patients’ symptomologies, and 

most studies have examined and characterized anatomical and functional changes in inter-regional 

brain connectivity using magnetic resonance imaging techniques (MRI) (reviews: Zhou et al., 

2015; Giraldo-Chica and Woodward, 2016; Sheffield and Barch, 2016) but, fewer have 

investigated the changes in the temporal dynamics that take place in patients’ intrinsic 

electrophysiological brain signals. 

 

1.2.1 Resting-state 
 
Studies in psychiatry that have examined alterations in the brain’s electrophysiological signal have 

largely focused on event-related changes during cognitive tasks or emotional responses (e.g., task-

based activity). What has been missing, is a clear and detailed characterization of what happens in 

terms of the intrinsic, temporal organization and neural functioning of psychiatric patients. In other 

words, what are their defining characteristics, over time, at rest, and how do they differ compared 

to healthy controls? This task-free baseline functioning can be tapped into with resting-state 

paradigms, during which participants lay still in a neuroimaging machine, with either their eyes 

closed (EC) or open (EO), and without executing any task. In such states, the neural signal 

measured is thought to speak of the fundamental organization – or disorganization – of the brain 

(Brookes et al., 2011; Buckner et al., 2008; Deco et al., 2011; Shehzad et al., 2009). While age is 

a factor known to alter resting-state networks’ stability and organization in healthy brains (Song 

et al., 2012; Lacombe et al., 2015; Petti et al., 2016; Tsvetanov et al., 2016), these intrinsic 
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dynamics are also altered by psychiatric disorders and can reveal unique features of their 

pathophysiology (Broyd et al., 2009; Greicius, 2008; Fox and Greicius, 2010; Raichle et al., 2001). 

For instance, both neural structural and functional abnormalities have been found at rest among 

psychiatric patients, which correlate significantly with their symptomology (Dutta et al., 2014; 

Hanford et al., 2016; Northoff, 2016; Alamian et al., 2017b, 2017a). However, several questions 

about the neurophysiological bases of these alterations, particularly in terms of arrhythmic brain 

activity, still remains unanswered  

 

Electrophysiological studies, and especially magnetoencephalography (MEG) studies, use EC and 

EO resting-state paradigms interchangeably but, the differences that can emerge between these 

conditions, and their potential relationship with disease, are still unclear. Some studies suggest that 

the relative difference between EO and EC could be a potential marker for pathology (Nikulin and 

Brismar, 2004; Bosboom et al., 2006; Ikeda et al., 2020). This is of particular interest in the 

schizophrenia population, where neural dysconnectivity is present independently of any specific 

task (Ma et al., 2012; Orban et al., 2018).   

 

1.2.2 Rhythmic vs arrhythmic  
 

Electrophysiological brain activity can be categorized as either rhythmic or arrhythmic. Rhythmic 

brain activity (also known as oscillations) arises from the synchronization of small neural 

populations and expands across multiple temporal and spatial scales. It involves the local 

integration of information within brain areas specializing in the same functions and long-range 

connections that join different modalities (Varela et al., 2001). Rhythmic brain activity can be 

assessed by characterizing the spatiotemporal features of neural oscillations. Spectral power 

analyses capture local brain activity by informing on the magnitude of synchronization in each 

frequency band (Ward, 2003). This type of analysis can be carried out using the Fast Fourier 

Transform (FFT) for frequency domain decomposition, and the Wavelet and the Hilbert-Huang 

transforms for time-frequency decompositions (Tallon-Baudry and Bertrand, 1999; Puliafito et al., 

2017; Abry et al., 2019). On the other hand, coupling estimations of time-series have been used to 

tap into long-range synchronizations (or connectivity). This can be done through a number of 
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metrics, such as imaginary coherence (Nolte et al., 2004) and weighted phase lag index (Vinck et 

al. 2011). 

 

Although non-rhythmic (or arrhythmic) brain activity accounts for an important part of the electric 

brain signal (Bullock et al., 2003; He et al., 2010), very little is known about it. While at first 

considered only as background noise, which was typically removed from the signal, arrhythmic 

the community has come to appreciate that the brain activity in fact contains arrhythmic structure 

that can be characterized using non-linear signal processing  (He et al., 2010; He, 2014). This type 

of neural activity is easily recognizable as its temporal power spectrum typically follows a straight 

negative slope, which can be described as 1/fb power-law, when viewed in a log/log plot. As can 

be seen in Figure 1, local rhythmic activities (oscillations), which are often the focus of 

neuroimaging studies, appear as peaks in this 1/fb distribution. The presence of arrhythmic brain 

activity has been reported across the neuroimaging literature, and is thought to arise from non-

linear dynamical processes (e.g., Tononi et al. 1994; Friston 1996, 1998; Takahashi 2013). 

Interestingly, these dynamics are characteristic of systems in a state of dynamical criticality (Beggs 

and Plenz, 2003; Stam and De Bruin, 2004; Kitzbichler et al., 2009; Fraiman and Chialvo, 2012; 

Blythe and Nikulin, 2017; Palva and Palva, 2018).  

 

 

 

 

FIGURE 1: SKETCH OF A LOG-LOG POWER SPECTRUM PLOT 
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Sketch illustrating the arrhythmic and rhythmic (oscillations, bumps) parts of brain activity, by plotting 
the logarithmic transformation of frequency against power. It also highlights the prominent presence of 
1/f, scale-invariant, activity throughout the signal.  
 

When the brain is in a state of criticality, it is thought to be at a transitional phase, between order 

and disorder (Beggs and Timme, 2012; Cocchi et al., 2017; Souza França et al., 2018). The brain 

requires this balance between regularity (structure) to maintain consistent behaviour, and 

flexibility (local variability) to adapt to incoming information and environmental changes (R. 

Chialvo, 2004; Beggs and Timme, 2012). Critical dynamics have been found to be necessary for 

optimal information integration and maximal propagation in the brain (Socolar and Kauffman, 

2003; Haldeman and Beggs, 2005; Fraiman and Chialvo, 2012). This state is also important for 

producing proper and efficient responses to internal or external stimuli (Beggs and Plenz, 2003; 

Shew et al., 2011; Beggs and Timme, 2012; Haimovici et al., 2013; Samek et al., 2016), and is 

thought to affect the functioning of oscillations and local synchronizations (Palva and Palva, 2018). 

 

The emerging neural signal from the state of criticality is said to be scale-free, such that its 

properties are preserved across spatiotemporal scales (like in Figure 1). More specifically, the 

dynamical features of criticality show fractal geometry (i.e., patterns within the signal look the 

same regardless of magnification scales and statistically equivalent), 1/f power-law correlations, 

and fast transitions in (inhibitory or excitatory) metastates (Plenz and Chialvo, 2009; Cocchi et al., 

2017; Chialvo, 2018; Palva and Palva, 2018). Scale-free dynamics can be found in both rhythmic 

and arrhythmic neural activity (Lin et al., 2016), and are best captured through the combined 

measures of self-similarity and multifractality (more in Chapter 4). Disease and psychopathologies 

can affect the physical and temporal structures of resting brain signals (e.g., Beggs and Timme, 

2012; Nikulin et al., 2012; Takahashi, 2013). 

 

Different analytical approaches have been proposed to evaluate the properties of arrhythmic brain 

activity. For this thesis, I focused on the Wavelet p-Leader and Bootstrap based MultiFractal 

(WLBMF) analysis (Wendt and Abry, 2007; Wendt et al., 2007) to evaluate the features of self-

similarity and multifractality on the low-frequency arrhythmic part of the brain signal. 

Additionally, Detrended Fluctuation Analysis (DFA) was used to measure long-range-temporal-

correlations (LRTCs) in the amplitude dynamics of oscillatory bands (Linkenkaer-Hansen et al., 
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2001b; Hardstone et al., 2012; Nikulin et al., 2012). The presence of LRTCs are thought to reflect 

the integrity and memory of information, which slowly decays over time, following a 1/f power-

law distribution (Linkenkaer-Hansen et al., 2001b).   

 
1.2.2.1 Application of scale-free dynamics in psychiatry  

 

Together, these metrics can inform on the changes in scaling properties and criticality in rhythmic 

and arrhythmic brain activity in psychiatric patients compared to healthy controls (Beggs and 

Timme, 2012; Nikulin et al., 2012; Takahashi, 2013; Zimmern, 2020). In the schizophrenia 

literature, a number of studies have reported altered scale-free dynamics based on fractal analysis 

of the 1/f EEG rhythm  (Slezin et al., 2007a), LRTCs of EEG oscillation amplitudes (Nikulin et 

al., 2012; Junfeng Sun et al., 2014; Moran et al., 2019) and power-law distributions on fMRI data 

(Radulescu et al., 2012). These studies show that schizophrenia patients show smaller power-law 

exponents and less autocorrelation over time in the anterior prefrontal cortex, which are indicative 

of a shift towards white noise (randomness). These changes in scale invariant properties may be 

linked to reduced responsiveness in patients (Zimmern, 2020).  In the depression literature, 

opposing findings about the LRTCs of broadband EEG oscillations have been observed, with one 

study reporting larger (Lee et al., 2007) and another smaller (Wang et al., 2016a) DFA exponents 

compared to controls. A review of EEG complexity findings in depression reported that fractal 

dimension (D) and entropy metrics were typically larger in patients than controls in frontal and 

parietal brain regions, during both resting-states and emotional-induction tasks (Akdemir Akar et 

al., 2015). Given the prominence of 1/fb distribution in brain activity, it is possible that it is in fact 

this activity that dictates the structure of brain patterns and underline temporal disruptions in 

information processing in psychiatric patients. Thus, it is clear that an understanding of scale-free 

neural dynamics is needed to fully grasp how the brain operates in health and disease (Zimmern, 

2020). 

 

1.2.3 Using MEG to study the fundamental organization of the brain 
 

Given that the scope of this thesis was to investigate intrinsic neural changes in temporal dynamics 

in psychiatric populations, it was important to select a neuroimaging technique with high temporal 
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resolutions. MEG has emerged as a valuable, non-invasive, functional imaging tool for clinical 

and translational research in psychiatry (Cohen, 1972; Siekmeier and Stufflebeam, 2010; Williams 

and Sachdev, 2010). Its sub-millisecond temporal resolution allows to confidently examine 

alterations of scale-free dynamics in the temporal domain. Moreover, MEG extends beyond 

previously used EEG-based methods and reliably estimates data from cortical and, possibly, sub-

cortical regions. The main generators of MEG signals are thought to be the agglomeration of 

postsynaptic potentials, resulting from the synchrony of microcolumns of tens of thousands of 

pyramidal neurons (Hamalainen et al., 1993; Nunez and Silberstein, 2000; Baillet, 2017). The 

electric currents associated with the PSPs produced among dendrites are believed to be at the 

source of most detectable MEG/EEG signals, as they last longer than action potentials (Nunez, 

1981). Figure 2 below, borrowed with permission from Baillet (2017), illustrates the sources of 

MEG signals.  

 

The recording of the electrical signals is fairly straight forward in contrast to the magnetic brain 

signals, which require more complex recording and analytical techniques due to their low field 

strength (Stam, 2010). These include cooling of conductive coils using helium, the use of 

superconducting quantum interference devices (SQUIDs) and gradiometers to improve signal-to-

noise ratio. In addition, while EEG and MEG are closely related, the magnetic field is less sensitive 

to signal distortions caused by head tissues than the electrical potential. While MEG’s spatial 

resolution cannot match that of f(MRI), available co-registration techniques allow for cm-level 

spatial localization of neural activity (e.g., Gramfort et al., 2013). Of note, recent MEG studies 

have reported successful source estimation in deep structures (Krishnaswamy et al., 2017; 

Recasens et al., 2018; Andersen et al., 2020), and have opened a novel path for the identification 

and characterization of scale-free changes in the neural signal of cortical and subcortical brain 

regions. The advantages of MEG and its’ application on clinical research are further discussed in 

Chapter 2. 
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FIGURE 2: ILLUSTRATION OF MEG SIGNAL GENERATORS 
Figure from Baillet, 2017, reproduced with permission from the author. (a) For simplicity, we take the 
cortical pyramidal neuron to epitomize the elementary cellular generator of MEG signals. All physiological 
currents from all cell types generate a magnetic induction; the elongated morphology of the pyramidal 
neuron constrains the net primary current circulation along the cell, which is a factor in creating greater 
signal strength in comparison to those from more stellate cellular morphologies. The primary current 
results from an imbalance in electrical potentials between the apical dendritic arborescence of the cell and 
its soma and more basal dendrites. The magnetic induction isolines in purple are perpendicular to the 
primary current flow and can be picked up outside the head. The sources are twofold: the postsynaptic 
potentials (PSPs), including fast, large-amplitude sodium spikes, and axonal discharges (action potentials, 
AP). The slower components of the PSPs are substantially smaller in amplitude than the APs. (b) At the 
scale of cell assemblies, the mass effect of slower PSPs is stronger than that of APs owing to their greater 
overlap in time without requiring rigorous synchronization. Computational models and empirical evidence 
show that a minimum of 10,000 to 50,000 cells are required to produce a signal detectable with MEG. It is 
possible, in principle, that fast PSP spiking activity, and possibly shadows of APs, are detectable in MEG.  
 

1.2.4 Machine-learning  
 

Over the past decade, supervised machine-learning has emerged as an important extension to 

conventional statistical methods to help classify groups of individuals (e.g. patients and healthy 

controls) based on a single metric or combination of variables. Its application in neuroscience and 

psychiatry-related data (Mumtaz et al., 2015; Zheng et al., 2015; Huys et al., 2016) is on the rise 

given that it is a practical way to data-mine neuroimaging, genetic, neurocognitive, and 
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behavioural features, to improve patient classification and the ability to predict prognosis, among 

other things (Librenza-Garcia et al., 2017). 	
 

Conventional statistics (i.e., T-tests, ANOVA, etc.) and machine-learning are complementary, but 

conceptually different, analytical techniques; the former allows for population-level inferences, 

while the latter allows for generalizable predictions (Bzdok et al., 2018). Specifically, classical 

statistics require the choice of a model based on apriori knowledge about the system, while 

statistical learning requires the choice of a predictive algorithm based on its capabilities in 

classifying groups in similar past scenarios (data-driven). Furthermore, while the function of 

conventional statistics is to reject the null-hypothesis and provide estimates for the sample itself 

(Wasserstein and Lazar, 2016), the core function of machine-learning is to produce accuracy 

predictions in “new” datasets. Indeed, the added bonus of cross-validation in machine-learning is 

its estimate of the generalizability of a classification pattern based on one dataset, extrapolated 

onto a new (out-of-sample) dataset. 	
 

Figure 3 summarizes the global steps involved in supervised machine-learning. This approach 

consists of ‘training’ a statistical model using an already labeled dataset in order to find a 

classification function that can separate two or more classes.  Briefly, the procedure begins with 

transforming continuous MEG data into matrices of features (N*M; N:number of samples/subjects 

M: the number of computed features) that can later be used by a statistical learning model. Here, 

feature extraction is used to compute attributes of interest (e.g., power, scale-free metrics, genetic 

information).The model is then trained on a sub-portion of the data, called a training-set, using 

their correct labels (e.g., patient or control in a 2-class analysis), and assessed on the other portion 

of the dataset, called test-set. Next, the performance of the classifier is computed using a decoding 

accuracy (DA), which calculates the percentage of examples that were correctly classified overall 

(e.g., how many patients were correctly classified as being patients across the total number of 

subjects). In order to prevent the model from overfitting to the training-set and thus fail to 

generalize onto new samples,  this process is repeated iteratively with different random splits, until 

all samples have been used as test-sets (i.e. cross-validation). The averaged DA is then used as the 

performance metric of the classification of the two groups. Lastly, given that clinical studies are 
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typically constrained to small sample sizes, statistical tests are needed to assess the significance of 

the obtained DA (e.g., we the use of permutations tests (Combrisson and Jerbi, 2015)).	
	

 
FIGURE 3: ILLUSTRATION OF MACHINE-LEARNING PIPELINE USING MEG DATA 
Summary of the machine-learning framework for MEG data analysis. DA = decoding accuracy, LRTCs = 
long-range temporal correlations, MEG = magnetoencephalography. 
	
In the field of psychiatry, machine-learning can help clinically-relevant information surface from 

the complex profile of patients (Iniesta et al., 2016; Bzdok and Meyer-Linderberg, 2018; Dwyer 

et al., 2018). This is particularly useful when dealing with the challenge of large datasets (“Big 

Data”, e.g., multisite EEG data or combinations of behavioural, genetic and cognitive data), which 

involve heterogenous and uneven measurements across participants (e.g., missing data). The 

decoded pattern could reveal critical mechanistic properties of an illness that would have gone 

otherwise ignored if the analysis was to be solely based on apriori knowledge. A number of studies 

have applied machine-learning algorithms to brain data in the context of schizophrenia research 

(Veronese et al., 2013; Orban et al., 2018; De Filippis et al., 2019; Schnack, 2019; Tai et al., 2019), 

and have highlighted the potential benefits for precision medicine, for progress in the search of 

biomarkers and for the general improvement of our understanding of this illness. However, to date, 

few studies have used a machine-learning approach to study the resting- neuromagnetic signal of 

psychiatric patients. Specifically, one study used Support Vector Machine (SVM) to classify SZ 

patients and controls (Zhang et al., 2015), one used Bayesian Linear Regression to predict 



 29 

depression based on resting-state power and a new study used resting-state MEG features to 

differentiate MDD and Bipolar Disorder (BD) patients.  

 
1.3 Aim and hypotheses 
 

The overarching aim of this thesis was to examine and measure the intrinsic neural dynamics of 

psychiatric disorders, with a focus on schizophrenia. Specifically, the first goal of this thesis was 

to understand how local and long-range synchrony are altered in rhythmic brain activity in 

schizophrenia and mood disorder patients during resting-state (Chapter 2). Moreover, given that 

the main focus of previous research studies has been on the spatial and functional changes in 

oscillatory synchrony, the second goal of this thesis was to characterize temporal alterations of 

resting-state MEG signal in schizophrenia in both rhythmic and arrhythmic activity using non-

linear analyses (Chapters 3 and 4). Based on the current theory of dysconnectivity, we 

hypothesized that the temporal and structural organization of the resting neural signal of 

schizophrenia patients would be different from those of healthy controls. Specifically, we 

predicted reduced autocorrelation, more variability (Chapter 3), and less complexity in the neural 

signal of patients compared to controls (Chapter 4), within frontotemporal brain areas. We also 

predicted that machine-learning algorithms would successfully differentiate patients and controls 

using scale-free metrics, with a strong decoding accuracy. Lastly, given that resting-state 

paradigms (EO and EC) are currently used interchangeably in electrophysiological studies, and 

that differences in the two conditions has been shown to correlate with information receptivity, the 

third goal of this thesis was to examine whether EC, EO (or the ratio of the two) resting-sate MEG 

paradigms could reveal differential alterations in schizophrenia patients (Chapter 5). We 

hypothesized that new alterations in reactivity, as measured by differences in amplitude between 

EC and EO resting-state conditions, would emerge in schizophrenia. 

 

1.3.1 Structure of the thesis 
 
In the next chapter of this thesis, I present two literature reviews: (1) a systematic review on 

alterations in resting-state connectivity patterns in schizophrenia titled Measuring alterations in 

oscillatory brain networks in schizophrenia with resting-state MEG: State-of-the-art and 
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methodological challenges, published in Clinical Neurophysiology (2017), and (2) a critical 

review on alterations in resting-state connectivity in mood disorders, titled Alterations of intrinsic 

brain connectivity patterns in depression and bipolar disorders: A critical assessment of 

magnetoencephalography-based evidence, published in Frontiers in Psychiatry (2017). These 

reviews also highlight the utility and challenges of the application of MEG in clinical research. 

The third chapter of this thesis presents an original study titled Patient, interrupted: MEG 

oscillation dynamics reveal temporal dysconnectivity in schizophrenia, published in NeuroImage: 

Clinical (2020). In this article, I present our findings on how long-range-temporal-correlations 

(LRTCs) are altered in chronic schizophrenia patients at the cortical and subcortical levels and 

show how this metric could be a strong marker for schizophrenia. In the fourth chapter of this 

thesis, I present a study titled Altered brain criticality in Schizophrenia: New insights from MEG, 

under review in Frontiers in Neural Circuit. In this article, I present our findings on how measures 

of criticality (i.e. self-similarity and multifractality) are altered in chronic schizophrenia patients 

at the cortical level, and their significant correlations with patient’s symptoms severity scores and 

medication dosage. The fifth chapter presents our findings about the predictive power of resting-

state paradigms in classifying schizophrenia patients and controls. Spectral amplitudes in EO, EC, 

and the relative amplitude differences in EO and EC, were used as features in a supervised 

classification algorithm to determine which resting-state paradigm would reveal the most 

predictive markers of schizophrenia. The related article work entitled, Unraveling spectral 

changes with resting-state MEG in Schizophrenia: eyes open, closed or both ?, is in preparation 

and will be soon submitted to bioRxiv. In the final chapter of this thesis, I discuss our overall 

results in schizophrenia, the contributions of our studies to the field of psychiatry, their limitations 

and future applications to new clinical cohorts of depressive patients. 
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Chapter 2: Reviews of the literature 
 

2.1 Measuring alterations in oscillatory brain networks in 
Schizophrenia with resting-state MEG: State-of-the-art and 
methodological challenges 
 

 

Abstract 

 

Neuroimaging studies provide evidence of disturbed resting-state brain networks in Schizophrenia 

(SZ). However, untangling the neuronal mechanisms that subserve these baseline alterations 

requires measurement of their electrophysiological underpinnings. This systematic review 

specifically investigates the contributions of resting-state Magnetoencephalography (MEG) in 

elucidating abnormal neural organization in SZ patients. A systematic literature review of resting-

state MEG studies in SZ was conducted. This literature is discussed in relation to findings from 

resting-state fMRI and EEG, as well as to task-based MEG research in SZ population. Importantly, 

methodological limitations are considered and recommendations to overcome current limitations 

are proposed. Resting-state MEG literature in SZ points towards altered local and long-range 

oscillatory network dynamics in various frequency bands. Critical methodological challenges with 

respect to experiment design, and data collection and analysis need to be taken into consideration. 

Spontaneous MEG data show that local and global neural organization is altered in SZ patients. 

MEG is a highly promising tool to fill in knowledge gaps about the neurophysiology of SZ. 

However, to reach its fullest potential, basic methodological challenges need to be overcome. 

MEG-based resting-state power and connectivity findings could be great assets to clinical and 

translational research in psychiatry, and SZ in particular. 

 

2.1.1 Introduction 
 

Schizophrenia (SZ) is a severe psychotic disorder with important cognitive impairments. It is one 

of the most debilitating psychiatric illnesses. Worldwide, an estimated 21 million individuals 

suffer from schizophrenia and other psychotic illnesses (World Health Organization, 2016). SZ 
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patients display psychotic symptoms (e.g., hallucination, delusion, etc.) and often mood symptoms 

such as depression (American Psychiatric Association, 2013). Despite a thriving body of research, 

progress in understanding the pathophysiological mechanisms that underlie the symptoms of the 

disorder, and its heterogeneous nature, is relatively slow. Indeed,  since its neural underpinnings 

are still up for debate (Tandon et al., 2013), the diagnosis of SZ mainly relies on clinical 

examination. Moreover, given that SZ patients often demonstrate treatment resistance (Elkis, 

2007), a better understanding of this pathology could also help define new targets for treatment. 

 

Important achievements over the years have come in part through advances in brain imaging 

techniques and methodological frameworks to study brain signal analyses. Over the last fifteen 

years, the exploration of brain function has moved away from solely studying local mechanisms, 

and towards adopting a large-scale network perspective, where both local activity and inter-

regional interactions are examined (Varela et al., 2001; Alamian et al., 2017a). The recognition 

that the brain is more than the sum of its parts has naturally found its way into clinical research 

(Linden, 2012). For instance, functional alterations in intrinsic brain network organization 

observed with functional magnetic resonance imaging (fMRI) are thought to speak of the nature 

of the illness (Fox and Raichle, 2007; Greicius, 2008; Broyd et al., 2009; Fox and Greicius, 2010; 

Woodward and Cascio, 2015). In psychiatric patients, alterations in resting-state connectivity 

patterns have been shown to correlate with clinical symptoms (e.g., psychosis, depression). In SZ, 

aberrant brain network patterns have been observed using fMRI data that were acquired both 

during the performance of cognitive tasks, as well as during resting-state paradigms (Abel and 

Nickl-Jockschat, 2016). More globally, a steady flow of studies, showing altered functional 

connectivity patterns in SZ patients compared to matched healthy controls, have fueled the notion 

that impaired long-range neuronal communication plays a critical role in this clinical population. 

 

Interestingly, alterations in connectivity observed through neuroimaging modalities have provided 

support to theoretical models that link certain neurophysiological circuits to pathological 

symptoms, such as the disconnection syndrome (Friston and Frith, 1995; Friston, 1996; Stephan et 

al., 2009) and cognitive dysmetria (Andreasen et al., 1998, 1999).  Indeed, disconnectivity as a 

core dysfunction in SZ was proposed 20 years ago as a theoretical link between recent knowledge 

involving brain networks in cognition and former psychopathological theories of SZ. This theory 
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relies on the assumption that disorganization is a key node in SZ (Friston et al., 2016). Indeed, SZ 

is marked by patterns of symptoms involving errors in predictive coding (leading to delusion and 

hallucinations), lack of language and thought organization, and even, in some cases, motor 

disorganization. The disconnectivity hypothesis is thought to arise from aberrant synaptic 

plasticity, which has been attributed to abnormal modulation of N-methyl-D-aspartate (NMDA) 

receptors by neurotransmitters such as serotonin, dopamine and acetylcholine (Stephan et al., 

2009). It has been proposed that these abnormal neural connections, occurring in distinct brain 

regions (cortical, subcortical, including the cerebellum, Yeganeh-Doost et al. 2011), thereby lead 

to clusters of symptoms in different domains (e.g., cognitive, affective and motor). This gives 

support to the cognitive dysmetria hypothesis (Andreasen et al., 1998, 1999). 

 

Taken together, given the theoretical importance attributed to connectivity in the field of SZ, 

further investigations are needed to characterize the underlying altered mechanisms from a 

network perspective. Models such as the cognitive dysmetria and the disconnection syndrome can 

be probed, confirmed and extended using electrophysiological measures of neural network 

dynamics (Smart et al., 2015). 

 

Indeed, while fMRI and MRI-based techniques such as diffusion tensor imaging (DTI) provide 

important functional and structural information to our understanding of pathological neural 

function, there is much to gain from techniques that provide direct access to neurophysiological 

brain signals. This is particularly true when aiming to assess alterations of neural synchronization 

patterns (i.e.  local and long-range rhythmic fluctuations of brain activity) that operate at time 

scales that cannot be captured with fMRI. Consequently, electroencephalography (EEG) and 

magnetoencephalography (MEG), which have millisecond-range temporal resolution have been 

increasingly used to capture the missing pieces of information about how local and long-range 

oscillatory patterns change across brain regions in healthy and pathological populations (Brookes 

et al., 2011b). Fine-grained temporal resolution is critical as synchronized neuronal populations 

give rise to fast rhythmic fluctuations of activity with periodicities in multiple frequency bands, 

ranging in some cases from frequencies below 1 Hz up to well above 100 Hz.  
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Synchronization of neural populations is thought to reach far across numerous temporal and spatial 

scales, from local integration to long-range communication between distant neuronal assemblies 

(Varela et al., 2001). Generally speaking, in EEG and MEG, local synchrony is thought to be 

captured by the power estimation of data from one channel or cortical source. In contrast, long-

distance synchrony is captured by estimating the connectivity between two brain signals. 

Functional connectivity is useful to describe the statistical dependency of time-series’ activity 

arising from two brain areas (Schoffelen and Gross, 2009; Friston, 2011; Hillebrand et al., 2012), 

which may or may not be anatomically linked. It can be measured using linear and non-linear tools 

such as correlations, coherence, phase-lag index and mutual information (Stam et al., 2007; 

Knösche and Tittgemeyer, 2011; Sakkalis, 2011; Wang et al., 2014). Throughout this review, 

measures of distant neuronal interactions are described using the terms connectivity, coupling and 

long-range synchrony/synchronization, interchangeably. 

 

It is now well-established that alterations in local and long-range oscillatory behavior could disrupt 

communication and lead to aberrant information processing and pathological symptoms in SZ  

(Rotarska-Jagiela et al., 2010; Pettersson-Yeo et al., 2011; Yu et al., 2012, 2013; Karbasforoushan 

and Woodward, 2012; Uhlhaas and Singer, 2013; Uhlhaas, 2013; Alderson-Day et al., 2015; Narr 

and Leaver, 2015; Ramani, 2015; Ćurčić-Blake et al., 2016; Giraldo-Chica and Woodward, 2016; 

Northoff and Duncan, 2016). Thus, in order to elucidate the neuronal underpinnings of SZ from a 

neural circuit perspective, the ability to examine local and long-range synchronization is critical. 

As explained above, such oscillatory brain mechanisms are best captured using 

electrophysiological measurement techniques such as MEG or EEG. Furthermore, a better 

understanding of the electrophysiological properties of spontaneous large-scale brain dynamics in 

SZ will also benefit and complement neuromodulation studies, such as transcranial direct-current 

stimulation (TDCS) or transcranial magnetic stimulation (TMS) (Neuling et al., 2015), which have 

been used as potential treatment for hallucinations (Brunelin et al., 2012; Mondino et al., 2016). 

 

While for many reasons, including accessibility and clinical routine, numerous EEG studies have 

been conducted in SZ patients, the use of MEG to elucidate the intrinsic network anomalies 

associated with the illness is still in its early days. In addition, while the importance of examining 
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the intrinsic organization of brain networks within multiple frequency bands has gained scientific 

recognition, it is still a blooming tool in the field of psychiatry (e.g. Schmidt et al., 2014).  

 

Hence, the goal of this review is to present an up-to-date survey of MEG resting-state spectral 

power and connectivity literature in the SZ population, and discuss it in relation to findings from 

fMRI and EEG, as well as to task-based MEG findings in the same population. Most importantly, 

we discuss methodological considerations and provide recommendations to overcome current 

limitations.  

 

To date, two reviews dedicated to MEG resting-state findings in SZ can be found (Hinkley et al., 

2010; Siekmeier and Stufflebeam, 2010). These have largely focused on power alterations. More 

recently, a paper summarizing the most prominent EEG and MEG findings of connectivity (and a 

few power) changes in SZ  has been published (Maran et al., 2016). Finally, the benefits and 

challenges of MEG-based exploration in SZ have also been discussed as part of a wider review on 

the utility of MEG in psychiatric research (Uhlhaas et al., 2017). The scope and focus of the present 

review is different from the previously mentioned papers. Here, we provide – to the best of our 

knowledge – the most exhaustive and up-to-date account of all MEG evidence of inter-areal 

connectivity and power alterations in resting-state brain data in SZ. Additionally, by comparing 

MEG resting-state findings to those of fMRI and EEG, we draw a multimodal picture of the 

neurophysiological network-level mechanisms underlying SZ. Finally, our discussion of 

methodological pitfalls and practical recommendations provides a critical but constructive account 

of the field, hence, highlighting its future potential. 

 

This paper is organized as follows. Sections 2.1.2 and 2.1.3, provide a brief overview of altered 

resting-state neural connectivity patterns in SZ that have been reported with fMRI and EEG 

resting-state studies, respectively. Section 2.1.4 provides a systematic account of resting-state 

MEG findings in schizophrenia population published to date, including alterations in local 

oscillatory power (subsection 2.1.4.1) and changes in long-range inter-areal coupling (subsection 

2.1.4.2). The strengths and limitations of the reviewed resting-state MEG studies are then 

discussed in subsection 2.1.4.3, which is followed by a discussion on the link between task-based 

and task-free findings in SZ with MEG (subsection 2.1.4.4). Section 2.1.5 presents a critical 
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account of methodological considerations, pitfalls and recommendations for future research. 

Finally, sections 2.1.6 and 2.1.7 provide a general discussion and concluding remarks. 

 

2.1.2 Resting-state fMRI findings in SZ patients: A brief overview 
 

Given that the primary focus of the current review is centered on pathological changes of 

spontaneous (i.e. task-free) brain activity in SZ measured by MEG, we will first overview evidence 

on altered intrinsic neural communication in this population coming from resting-state studies with 

fMRI (this section) and EEG (Section 2.1.3).  

 

There is a growing literature of fMRI-based connectivity studies, as well as extensive reviews, 

which report abnormal resting-state (RS) connectivity in SZ population (Rotarska-Jagiela et al., 

2010; Pettersson-Yeo et al., 2011; Karbasforoushan and Woodward, 2012; Uhlhaas, 2013; Yu et 

al., 2013; Alderson-Day et al., 2015; Narr and Leaver, 2015; Ramani, 2015; Ćurčić-Blake et al., 

2016; Northoff and Duncan, 2016). These reports largely converge by concluding that alterations 

in functional connectivity are observed across numerous key brain regions in SZ, even in the 

absence of a task. 

 

Of note, enhanced connectivity between the thalamus and sensory and motor areas has been 

reported and replicated numerous times in SZ (Karbasforoushan and Woodward, 2012; Woodward 

et al., 2012; Klingner et al., 2014; Cheng et al., 2015; Wang et al., 2015a; Giraldo-Chica and 

Woodward, 2016). A recent study by Cheng et al (2015) analyzed the network connectivity of a 

large cohort of patients and controls (n > 400 for each group) and observed hyperconnectivity over 

the somato-motor areas in SZ (Cheng et al., 2015). Furthermore, compared to controls, patients 

show an enhanced RS long-range synchronization between temporal/parietal and sensory brain 

regions (Jafri et al., 2008; Karbasforoushan and Woodward, 2012; Woodward et al., 2012; Tu et 

al., 2013), as well as between PFC and posterior middle temporal cortex (Friston and Frith, 1995; 

Friston, 1996). Moreover, SZ patients appear to display increased connectivity between DMN and 

PFC regions (Whitfield-Gabrieli et al., 2009; Ongür et al., 2010). Some researchers have suggested 

that hyperconnectivity within RS networks is indicative of increased distraction due to psychotic 

experiences (Jafri et al., 2008; Broyd et al., 2009). Hypoconnectivity is also observed in SZ 
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patients, particularly within the PFC, and between subcortical regions (e.g., thalamus, caudate) 

and the PFC (Karbasforoushan and Woodward, 2012; Woodward et al., 2012; Tu et al., 2013; 

Cheng et al., 2015; Giraldo-Chica and Woodward, 2016). Decreased RS connectivity has been 

found between DMN and CEN in individuals with SZ or at high risk of developing SZ (Zhou et 

al., 2007; Whitfield-Gabrieli et al., 2009). Some researchers have suggested that this 

hypoconnectivity, specifically disrupted effective connectivity, could be a trademark of the SZ 

pathology (Friston and Frith, 1995; Friston, 1996, 1998; Weinberger et al., 1996; Riehemann et 

al., 2001) 

 

In addition, connections relating to the thalamus are recurrently discussed with respect to the DMN 

and the CEN in SZ patients (Zaytseva et al., 2015). Specifically, there have been reports of 

decreased long-range connectivity between subcortical regions (e.g. amygdala) and frontal brain 

regions that are either part of the DMN, CEN or saliency network, such as the dorsolateral PFC, 

medial PFC and ACC (Welsh et al., 2010; Woodward et al., 2012; Liu et al., 2014; Cheng et al., 

2015; Wang et al., 2015a; Sheffield and Barch, 2016). 

 

Finally, several studies indicate that the saliency network, particularly one of its components, the 

anterior insula, is critically involved in the sense of interoception (e.g. Craig 2009). The SZ 

literature reports decreased connectivity between saliency network components (dorsal ACC, 

anterior insula) and CEN (dorsolateral PFC), and between saliency network (insula) and visual 

cortices (Northoff and Duncan, 2016). Alterations in this area could be linked to patients’ 

difficulties in making sense of certain internal functions that are mistakenly attributed to external 

factors (e.g., hallucinations). 

 

2.1.3 EEG resting-state connectivity findings in SZ: A brief overview 
 

Alterations in RS networks have been noted across many EEG studies in psychiatric populations. 

Two recent reviews by Hasey and Kiang (2013) and Maran et al. (2016) have thoroughly 

overviewed EEG findings on local and long-range oscillatory synchronization in SZ patients 

during rest. In the following, we briefly summarize the main RS EEG findings in SZ patients, in 
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terms of alterations in spectral power (i.e. local synchrony) and changes in connectivity (i.e. long-

range synchrony). 

2.1.3.1 EEG Power modulations (local synchrony) 
 
Among other alterations, enhanced gamma activity has been found with EEG over various brain 

regions in SZ (Venables et al., 2009; Gandal et al., 2012; Andreou et al., 2015; Di Lorenzo et al., 

2015; White and Siegel, 2016), such as the auditory cortex (Northoff and Duncan, 2016), and the 

left parietal and fronto-temporal areas (Andreou et al., 2014; Mitra et al., 2015). However,  

decreased high gamma power (> 70 Hz) has also been noted over the right temporo-parietal brain 

areas and midline region (Umesh et al., 2016). With respect to lower frequency bands, a number 

of meta-analyses have noted increased activity in theta and delta frequency bands (Boutros et al., 

2008; Venables et al., 2009; Kam et al., 2013; Narayanan et al., 2014; Di Lorenzo et al., 2015), as 

well as in beta-band over fronto-central areas (Narayanan et al., 2014). Moreover, while a few 

EEG studies show decreased RS alpha activity in SZ (e.g., in frontal lobe, Sponheim et al. 1994), 

a recent review found several publications revealing an increase in power in alpha-band in patients 

compared to controls in frontal regions (Northoff and Duncan, 2016). As mentioned by Maran et 

al (2016), the discrepancy between these findings could relate to differential spatial distribution of 

power changes. 

2.1.3.2 EEG Connectivity (long-range synchrony) 
 

A growing number of EEG studies are also investigating how connectivity patterns between 

different brain regions are altered in SZ during RS. One research group compared SZ patients with 

positive symptoms to those with predominantly negative symptoms, as well as healthy controls 

(Strelets et al., 2002). The RS portion of the EEG study showed both subgroups of SZ patients to 

lack interhemispheric connections. Patients with positive symptoms had an additional connection 

between right temporal and parietal lobes that was not present among control subjects in the 20-

40 Hz frequency range (Strelets et al., 2002). Using coherence, a study found enhanced 

connectivity between centro-occipital brain regions within delta-band (2.0-3.5 Hz) in SZ (Wada et 

al., 1998), while another observed increased coherence in lower alpha frequency range (8–10 Hz) 

in centro-temporal, and upper alpha frequency  (10–12 Hz) in centro-parietal and parietal-temporal 

regions (Kam et al., 2013). A recent study by Ford et al (2016) used simultaneous resting fMRI 
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and EEG on subjects and observed increased connectivity patterns within the DMN (< 30 Hz) in 

SZ compared to controls (Ford et al., 2016). Moreover, within the beta frequency band (13-20Hz), 

a longitudinal study found an initially diminished coherence between the left frontal and temporal 

electrodes to increase with treatment and improvement in positive symptoms (Higashima et al., 

2007). Similar to what is often reported in RS fMRI, increased connectivity in the right frontal 

lobe area has been observed among drug-naïve SZ patients in gamma (30-50 Hz) frequency-band 

(Kikuchi et al., 2011), as well as between inferior frontal, orbitofrontal, temporal and inferior 

parietal areas (Andreou et al., 2015). Interestingly, two studies reported connectivity patterns 

opposing the above findings. Specifically, drug naïve patients were observed to display diminished 

alpha power, enhanced delta power, and non-discriminating beta and gamma rhythms in patients 

compared to controls (between frontal lobe sensors: Tauscher et al. 1998; between frontal and 

posterior sensors: Lehmann et al. 2014).  

 

Taken together, findings from RS fMRI and EEG in SZ patients show a range of converging 

pathological alterations both in local activity and in inter-areal interactions between and within RS 

networks.  

 

2.1.4 Resting-state MEG findings in Schizophrenia 
 

A PubMed search of the key words “MEG + schizophrenia + resting” yielded 24 studies, 9 of 

which were relevant addition to this review. Nine additional MEG studies reporting on local 

rhythmic abnormalities were found through cross-referencing and the use of alternative search 

engines (Google Scholar).  

 

In this section, we review all MEG-based RS studies in SZ. We first present MEG results of local 

synchrony (power) and follow-up with alterations in long-range oscillatory coupling (connectivity) 

between different brain regions. 

2.1.4.1 Altered patterns of resting-state MEG oscillatory power in SZ 
 
A summary of local neural oscillatory changes in SZ based on resting-state MEG studies can be 

found in Table 1.  
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First, the paper by Rutter et al (2009) used synthetic-aperture magnetometry (SAM) to estimate 

power source distribution. They found that both patients and their unaffected siblings had reduced 

gamma power (30-70 Hz) in the posterior medial PFC compared to controls (Rutter et al., 2009). 

In a subsequent study, Rutter and colleagues noted similar oscillatory behavior in SZ patients, but 

this time in the posterior part of their medial parietal cortex (Rutter et al., 2013). Similarly, Kissler 

et al (2000) found an overall reduction in high-gamma (61-71 Hz) frequencies in the areas of the 

fronto-temporal, posterior temporal and occipital lobe compared to age-matched controls (Kissler 

et al., 2000). Moreover, high beta (21-29 Hz) power was observed to be overall far superior in 

patients than in controls, regardless of the brain region (Kissler et al., 2000).  

 

A more recent paper by Kim et al. 2014 found a significant increase in local synchronizations in 

theta (4-7 Hz), alpha (8-12 Hz), beta (13-30 Hz) and gamma (30-50 Hz) band frequencies in the 

posterior regions of the DMN (left posterior cingulate cortex) of patients compared to controls, as 

well in the left medial PFC in alpha and beta bands, during RS. Of note, power modulations in 

gamma in the medial PFC correlated with SZ patients’ positive symptoms (e.g., hallucination, 

delusions; Kim et al. 2014).  

 

Chen et al (2016) confirmed these findings about slow-wave patterns with a new source-modelling 

technique, vector-based spatio-temporal analysis using minimum norm on anatomical MRI. The 

authors observed enhanced activity in delta (1-4 Hz) and theta (4-7 Hz) frequency bands over right 

temporo-parietal and frontal brain regions (Chen et al., 2016). Frontal delta power correlated with 

patients’ negative symptoms.  

 

A number of older studies used a measure of dipole density to examine the distribution of different 

frequency bands. The article by Rockstroh and colleagues (2007) examined properties of delta-

band oscillations during RS in three groups of subjects: healthy controls, SZ/schizoaffective 

patients, and mood disorder patients (consisting mostly of depressed individuals). Compared to 

healthy controls, the SZ/schizoaffective group displayed abnormally high delta (0.5-4 Hz) activity 

in the central and frontal areas of the brain (Rockstroh et al., 2007). Interestingly, the mood 

disorder group had less slow-wave activity compared to those of controls in these brain areas. A 
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similar study was previously conducted by Wienbruch et al (2003), where SZ patients were 

compared to depressed patients and healthy controls. Yet again, increased delta dipole density was 

observed in SZ, and decreased density in affective patients compared to healthy controls, which 

correlated with positive clinical symptoms such as hallucination/delusion (Wienbruch et al., 2003). 

However, unlike Rockstroh et al (2007), this difference was more important over the temporal and 

parietal brain regions. These papers offer interesting insight on the type of electrophysiological 

distinctions that can be made between the two diagnostic groups using RS MEG. Fehr et al (2001, 

2003) and Sperling et al (2002, 2003) also found the density of dipoles generating delta (1.5-4 Hz) 

and theta (4-8 Hz) frequency bands to be superior in SZ patients compared to healthy controls over 

temporo-posterior (Sperling et al., 2002; Fehr et al., 2003), and frontal regions (Fehr et al., 2001). 

Moreover, changes in slow-wave density in these areas correlated with patients’ negative 

symptoms (Fehr et al., 2003) and positive symptoms (Fehr et al., 2001; Sperling et al., 2002, 2003).  

 

Three studies evaluated the effect of antipsychotics on local changes in RS synchronization 

patterns in SZ patients. Cañive et al (1996) found that both medicated and unmedicated patients 

displayed lower alpha-band power and peak frequency than controls (Cañive et al., 1996). In a 

follow-up study, delta, theta and alpha-band power and frequences were found to be diminished 

in patients at baseline (Cañive et al., 1998). After 8 weeks of ariprazole treatment, delta and theta 

levels were rescued, but alpha-band alterations remained unchanged. Next, in an all-male group of 

patients, Sperling et al (1999) observed differential changes in oscillatory patterns linked to typical 

and atypical antipsychotics. Specifically, beta-band power (12.5-30Hz) was increased in the 

temporoparietal region only by clozapine, while patients treated with haloperidol and healthy 

controls had dipole distribution concentrated centrally (Sperling et al., 1999).  

 

Lastly, a number of interesting papers have reported MEG RS findings during which subjects were 

experiencing hallucinations. Using a dipole approach, Reulbach et al (2007) observed an increased 

number of dipoles and a dipole density maxima in the 2-6 Hz frequency band at rest. During 

auditory hallucinations, specifically, patients exhibited enhanced beta-band (12.5-30 Hz) activity 

over frontal and temporal brain regions (Reulbach et al., 2007). Moreover, an older case study by 

Ropohl et al (2004) observed similar increases in beta-band activity (12.5-30 Hz) over the left 

auditory cortex; an oscillatory pattern that was not present in resting healthy controls (Ropohl et 
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al., 2004). Finally, an interesting MEG case report of a young SZ patient with newly emerged 

auditory hallucinations found that the subject had bursts of theta (4-8 Hz) activity in the left 

superior temporal lobe and auditory association cortex during auditory hallucinations (Ishii et al., 

2000). This pattern of theta oscillations differed from the steady behavior observed when the 

subject was not experiencing auditory hallucinations (as indicated by a button press). 

 

Taken together, RS findings from both MEG and EEG-based power analyses show that SZ patients 

exhibit local alterations in oscillatory patterns across the frontal lobe and DMN, temporo-parietal 

lobes, sensory networks, CEN, and hippocampus. In particular, altered modulations in gamma-

band and abnormally enhanced slow-wave oscillations are observed across modalities. These 

appear to be partially normalized with pharmacological treatment. Interestingly, auditory 

hallucinations seem to bring about a beta-band specific surge of power over temporal regions. 

Clinical correlations of these altered power levels are still up for debate, with some studies finding 

associations to positives (Fehr et al., 2001; Sperling et al., 2002; Wienbruch et al., 2003) and others 

to negative symptoms (Fehr et al., 2003; Chen et al., 2016) for different brain regions.  

 

It is noteworthy to mention that the enhanced presence of EEG or MEG delta-band oscillations in 

these brain regions have been associated with clinical symptoms and cognitive deficits in both 

neurological (Tanaka et al., 1998; de Jongh et al., 2003; Spironelli et al., 2011) and psychiatric 

populations (e.g. in SZ patient, on and off medications, Rockstroh et al. 2000; Fehr et al. 2001; 

Wienbruch et al. 2003). While these findings are correlational in nature, it has been proposed that 

slow-wave activity might be associated to the neurobiological disruption of neural network 

functioning in SZ (Wienbruch et al. 2003). Delta modulations have also been reported in the power 

spectrum of awake healthy controls (e.g., during cognitive tasks, Harmony 2013; Wang et al. 2016; 

or sensory processing, Schroeder and Lakatos 2009). Although the distinction between normal and 

pathological slow-wave activity is not entirely understood, it is possible that different generators 

are involved, and that the amplitude and/or peak frequency of delta oscillations differ between 

healthy and SZ populations (Rockstroch, 2000; Wienbruch et al., 2003). Recently, a study used a 

rat-model of SZ to propose that the altered functioning of NMDA receptors could be the underlying 

mechanism of atypical delta-wave activity in this population (Kiss  et al. 2011).
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TABLE 1: OVERVIEW OF MEG RESTING-STATE FINDINGS ON CHANGES IN LOCAL POWER IN SUBJECTS WITH SCHIZOPHRENIA. 

Paper Frequency 
Range (Hz) 

Methods Patients Controls Main findings 

(Cañive et 
al., 1996) 

n/a • Sensor-space 
Average power  

• 5min eyes-closed 

• 19 SZ  
• (11 

unmedicated) 

• 10 controls • ¯ a power and peak frequency in SZ compared to controls 
• Compared to medicated patients, one unmedicated showed 

epileptiform sharp waves, 4 showed abnormal slow waves.  
(Cañive et 
al., 1998) 

n/a • Sensor-space 
• Dipole modeling 

• 5 SZ • 10 controls 
• age-matched 

• ¯ δ, θ, a power and peak frequency in SZ compared to 
controls. 

•  8 weeks of ariprazole treatment ­ δ and θ levels, but a 
remained unchanged. 

• Dipoles were localized primarly to temporal and parietal brain 
areas. 

(Sperling et 
al., 1999) 

2-6 
a: 7.5-12 
β: 12.5-30 
 

• Dipole density 
• PCA 

• SZ • Controls • Treatment with clozapine ­ absolute dipole values in β-band 
in the temporoparietal region in SZ 

• SZ treated with haloperidol and un-treated healthy controls 
had dipoles concentrated centrally 

(Kissler et 
al., 2000) 

a: 8–12  
β1:13–20  
β2: 21–29  
γ1: 30–45  
γ2: 46–60  
γ3: 61–71 

• Power differences 
at sensor level 

• 5min eyes-open 

• 15 SZ 
• 11 males 
• mean age 

30.2 ± 6.5  

• 15 controls 
• 11 males 
• mean age  
35.8 ± 9.4  

• ¯ γ3 power in SZ over fronto-temporal areas, posterior 
temporal lobe and occipital lobe compared to controls 

• ­ β2 power in SZ compared controls across all brain regions 

(Ishii et al., 
2000) 

δ: 0.9–4 
θ: 4–8  
a: 8–13  
β: 13–25  
γ: 25–60  
 
all: 0.5-100  

• Sensor-space 
estimation using 
SAM 

• 10s prior to button 
press and 10 s 
after a button 
press. At least 8 

• 1 SZ 
• male 
• age: 28 yrs old 

• n/a • Burst of θ observed in left superior temporal lobe and 
auditory association cortex during AH 

• With reduction in AH vividness 7 months later, θ activity 
disappeared. 
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episodes of AH 
recorded each 
session 

(Fehr et al., 
2001) 

δ: 1.5–4 
θ: 4–8  
 

• Source-space 
power estimated 
with Dipole 
density, MNE 

• 5min eyes-open 

• 28 SZ 
• 22 males 
• mean age: 
30.9 ± 9.6 

• 20 controls 
• 15 males 
• mean age: 
34.4 ± 11.3 

• ­ density of dipoles generating δ and θ in SZ compared to 
healthy controls over temporo-posterior areas. 

• Patients’ positive symptoms appeared to be related to slow 
oscillations over frontal, parietal, and right hemispheric 
brain areas 

(Sperling et 
al., 2002) 

slow: 2-6 
fast :12.5–30 

• Dipole density 
plot 

• ECD 
• 10min eyes-

closed 

• 40 SZ 
• 23 male 
• mean age: 

36.5 ± 3.9 

• 30 controls 
• 15 males 
• mean age: 

37.7± 4.0 

• ­ density of dipoles generating both slow and fast oscillatory 
activity in SZ compared to healthy controls over temporo-
posterior areas.  

• Gender differences were observed in the spatial distribution 
of dipoles. 

(Fehr et al., 
2003) 

δ: 1.5–4 
θ: 4–8  
 

• Single ECD 
model 

• Dipole density 
• 5min eyes-open  

• 30 SZ 
• 18 males 
• mean age: 

31.6± 8.9  

• 17 controls 
• 15 males 
• mean age: 

32.4± 11.2 

• ­ density of dipoles generating δ and θ in SZ compared to 
healthy controls over temporal and parietal areas. 

(Sperling et 
al., 2003) 

slow:2–6  
fast: 12.5–30  

• Dipole density 
plot 

• ECD 
• 10min eyes-

closed 

• 20 SZ 
• 10 males 
• mean age: 

37.5 ± 3.4 

• 20 controls 
• mean age: 

34.6±3.4 

• β-band density in the left temporoparietal region correlated 
with positive and negative symptoms, particularly in female 
patients.  

• In males, β-band dipole density in right temporoparietal 
region correlated with delusion. 

(Wienbruch 
et al., 2003) 

δ: 1.5–4  
θ: 4–8 

• Single ECD 
model 

• Dipole density 
• 5min eyes-open 

• 29 SZ 
• 17 males 
• mean age: 
31.6±8.9 

• 18 controls 
• 16 males 
• mean age: 
33.1±13.1 

• ­ δ dipole density in SZ compared to healthy controls and 
mood disorder patients over temporal and parietal brain 
regions. 

• This correlated with positive clinical symptoms 
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(Ropohl et 
al., 2004) 

Slow: 2–6  
β:12.5–30 

• Dipole 
distribution plot, 
PCA 

• 10min 

• 1 SZ 
• male 
• age: 33 yrs  

• 13 controls 
• all male 
• mean age: 

31.3 ± 4.7 

• ­ β dipoles observed over the left superior temporal cortex 
in SZ but not in controls 

(Reulbach 
et al., 2007) 

Slow: 2–6  
β:12.5–30 

• Spatial 
distribution of 
dipoles estimated 
using 3-D 
convolution with 
a Gaussian 
envelope 

• Dipole density 
plot 

• 16 SZ 
• 9 male 
• 8 with AH 
• mean age: 
• 33 ± 2.8 year  

• 8 controls 
• 4 males 
• mean age: 

35 ± 8.2  

• ­ number of dipoles and dipole density maxima in 2-6 Hz  
• During AH, patients exhibited more ­ β  dipoles and dipole 

density maxima, then patients without AH 
• In SZ, all oscillations were mostly over the superior temporal 

gyri 
• Patients with AH had dipoles over left superior temporal 

gyrus, as well as dorsolateral PFC. 

(Rockstroh 
et al., 2007) 

δ: 1.5–4 
 

• Single ECD 
model 

• ASWA/dipole 
density 

• 5min eyes-open 

• 76 SZ or SA 
• 62 males 
• mean age:  

29.12 ± 8.0 

• 116 controls 
• 59 males 
• mean age: 
28.95 ± 10.16 

• ­ ASWA in SZ/SA group compared to controls over central 
and frontal areas.  

(Rutter et 
al., 2009) 

δ: 0.9–4 
θ: 4–8  
a: 8–14  
β: 14–30  
γ: 30–80 
super- γ: 80–
150 
 

• Source-space 
power estimated 
with SAM 

• Eyes-closed 

• 38 SZ 
• 27males 
• mean age:  

31.2 ± 9.8 
 

• 38 controls 
• 27 males 
• mean age:  
32.5 ± 10.8 
 
• 38 U.S.  
• 11 males 
• mean age: 
37.2 ± 11.3  

• ¯ γ power in the posterior medial PFC in SZ patients and 
their US compared to controls 

• SAM power was superior in controls across all frequency 
bands compared to US. 
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(Rutter et 
al., 2013) 

θ: 4–8  
a: 8–14  
β: 14–30  
γ: 30–80 

• Source-space 
power estimated 
with SAM 

• 4min eyes-closed 

• 20 SZ 
• 14 males 
• mean age:  

31.2 ± 10.9 

• 20 controls  
• 14 males 
• mean age:  
31.3 ± 10.8 

• ¯ SAM γ power in SZ in precuneus, cuneus and posterior 
medial parietal cortex compared to controls.   

• None of the frequency bands survived multiple comparisons 

(Kim et al., 
2014) 

θ: 4–7 
a: 8–12  
β: 13–30  
γ: 30–50 

• Source-space 
power estimated 
with sLORETA 

• 2.5 min eyes-open 

• 20 SZ 
• 16 males 
• mean age  

22.8 ± 3.9 

• 20 controls  
• 14 males 
• mean age  
22.1 ± 2.0  

• ­ θ, a, β power in SZ compared to controls in posterior 
cingulate cortex.   

(Chen et al., 
2016) 

δ: 1–4  
θ: 4–7 

• Source-space 
amplitude 
estimated with 
VESTAL  

• 5min eyes-closed 

• 41 SZ 
• 34 males 
• mean age: 

37.63 ± 12.09  

• 37 controls 
• 27 males 
• mean age: 

38.92 ± 11.13  

• ­ δ and θ activity over temporo-parietal and frontal brain 
regions in SZ compared to controls.  

• Frontal lobe δ power correlated with patients’ negative 
symptoms. 

 
Table 1 - caption: Overview of MEG resting-state findings on changes in local power in subjects with Schizophrenia.  Abbreviations: ASWA = 
Abnormal slow-wave activity, DICS = Dynamical Imaging of Coherent Sources, ECD = Equivalent current dipoles,  MNE = minimum-norm 
estimate, MSBF = multiple source beamformer, PCA = principal component analysis,  SA = schizoaffective, SAM = synthetic-aperture 
magnetometry, SZ = schizophrenia,  U.S. = unaffected sibling, VESTAL = vector-based spatio-temporal analysis. 
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2.1.4.2 Altered resting-state MEG connectivity patterns in SZ 
 

To date, six studies have used MEG RS paradigms to examine inter-areal synchronizations in SZ; 

these are summarized in Table 2.   

 

First, using imaginary coherence (IC; Notle, 2004) within alpha frequency bins (peak power 

density centered on » 10 Hz) in source-space, Hinkley et al (2011) observed that SZ subjects had 

altered local connectivity in several brain regions. Specifically, compared to the rest of the brain, 

patients displayed enhanced local connectivity in the right PFC and the occipital lobe (medial 

occipital gyrus, right inferior frontal gyrus), and reduced connectivity within the left dorsolateral 

PFC, the right superior temporal gyrus and the precentral gyrus compared to controls (Hinkley et 

al., 2011). Interestingly, medication dose was not a factor in global imaginary coherence 

connectivity in patients. 

 

Second, Bowyer and colleagues (2015) studied coherence, the linear correlation between the 

amplitude of two signals, within brain areas that have been thought to have unusual activity in SZ 

patients (i.e. seeds placed in the following regions: dorsolateral and anterior PFC, orbitofrontal 

cortex, anterior cingulate cortex, frontal gyrus) (Fornito et al., 2009; Butler et al., 2012). The results 

of their preliminary ICA-based research in source-space, within the frequency range of 3-50 Hz, 

demonstrated that patients had higher coherence scores than controls across all these regions of 

interest. The authors hypothesized that their findings might be reflective of SZ individuals’ over-

recruitment of frontal brain areas.  

 

Next, Zhang et al (2015) used phase-locking value (PLV) in sensor-space to investigate the inter-

dependency of signals within and between regions of interest. The overall pattern of findings 

indicated that SZ patients had reduced PLV values compared to controls, with the largest 

differences residing between the right parietal and right central areas (0.5-8Hz), and right occipital 

and right parietal area in 1-4 Hz (Zhang et al., 2015). 

 

Houck et al (2016) paired RS fMRI data with RS MEG. While different patterns of connectivity 

were observed between the two neuroimaging modalities, both revealed significant differences 
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between the SZ and control groups. Overall, the authors observed enhanced functional 

connectivity in visual networks during resting-fMRI, while frontal networks were enhanced in 

resting-MEG. Specifically, using pairwise correlations in network (ICA component) on time-series 

across all frequency bands, the RS MEG condition revealed enhanced connectivity between the 

regions of the dorsal ACC and superior frontal brain areas in SZ, as well as between frontal and 

perisylvian regions, while the connectivity between PCC and the precuneus were reduced, 

compared to controls. In beta-band (16-29 Hz) specifically, hyperconnectivity was observed in SZ 

compared to controls between the frontal lobe and cerebellum, the frontal lobe and the DMN, and 

the frontal and auditory resting networks. Interestingly, RS-fMRI showed control subjects to have 

overall increased connectivity compared to patients. This study underlines the importance of 

combining neuroimaging modalities to obtain maximal information.  

 

Robinson and colleagues (2015) used symbolic mutual information (SMI) in source-space to 

calculate the dependence between two signals. This non-parametric measure of signal complexity, 

measuring shared information between pairs of voxels, was computed from the probability of 

occurrence of their symbolic states (Kraskov et al., 2004). Using this tool, long-range 

hyperconnectivity was observed between the medial PFC (seed) and part of the saliency network 

(dorsal ACC). The authors also mention that SZ patients had local-range connectivity in the frontal 

part of their PFC that was superior to those of control subjects, as indexed by higher SMI scores 

(Robinson and Mandell, 2015). However, patients’ long-range connections to the lateral part of 

the PFC was weaker than those of control subjects. A follow-up on this study would be interesting 

in order to capture the details (e.g., frequency bands) of the altered long-range connections in SZ. 

 

Finally, Rutter et al (2013) evaluated RS functional connectivity in SZ using coherence in MEG 

source-space. Additionally, graph theory metrics (Bullmore and Bassett, 2011) characterized 

several global network properties, such as small-worldness and path length. However, group 

differences in region-to-region and global graph metrics failed to reach statistical significance, 

after multiple comparisons (Rutter et al., 2013). Nevertheless, compared to controls, SZ patients 

did show a trend towards enhanced coherence between frontal gyrus and the rest of the brain in 

theta (4–8 Hz) and alpha (8-14 Hz) frequency bands, along with diminished coherence between 

medial parietal regions and all other voxels of the brain in the gamma (30-80 Hz) band. 
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All in all, current RS MEG findings in the SZ population show deficient connectivity patterns 

between and within different resting state networks (DMN, CEN, Saliency) and sensory areas 

(visual, auditory). In turn, these appear to be reflective of patients’ positive and negative 

symptoms, possibly due to faulty information processing. Figure 4 illustrates the above RS MEG 

findings on connectivity alterations in SZ (specifically synchronizations between a brain region 

and the rest of the brain). 

 

 

 
FIGURE 4: SCHEMATIC OVERVIEW OF THE KEY BRAIN REGIONS THAT SHOW ABNORMAL 
CONNECTIVITY PATTERNS IN SUBJECTS WITH SCHIZOPHRENIA. 
Schematic overview of the key brain regions that show abnormal connectivity patterns in subjects with 
schizophrenia (SZ). Here, we show areas for which there is resting-state MEG evidence indicating that 
these areas have atypical long-range connections with the rest of the brain in patients compared to healthy 
controls. Brain regions colored in orange represents loci that have enhanced connections with the rest of 
the brain, and blue represents loci with decreased connections. Details of these findings can be found in 
Table 2. 
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TABLE 2: OVERVIEW OF MEG RESTING-STATE FINDINGS ON CHANGES IN LONG-RANGE OSCILLATORY CONNECTIVITY PATTERNS 
IN SUBJECTS WITH SCHIZOPHRENIA 

Paper Frequency 
Range (Hz) 

Methods Patients Controls Main findings 

(Hinkley et 
al., 2011) 

a: 8-12 • Imaginary coherence 
• Source-space estimation 

using Nutmeg software  
• 4min eyes-closed 

• 30 SZ 
• 23 males 
• mean age:  

       38.4 ± 
11.1  

• 15 controls 
• 11 males 
• mean age:  

43 ± 12.2  

• ­ connectivity compared to controls in medial occipital gyrus 
in the left hemisphere, and in the right IFG  

• ¯ connectivity within the left dorsolateral PFC and the 
precentral gyrus.  

• Alterations correlated with psychosis, depressed mood, and 
impaired cognition. 

(Rutter et 
al., 2013) 

θ: 4–8  
a: 8–14  
β: 14–30  
γ: 30–80 

• Coherence 
• Graph theory 
• Source-space estimation 

using SAM beamforming 
• 4min eyes-closed 

• 20 SZ 
• 14 males 
• mean age:  
• 31.2 ± 10.9 

• 20 controls  
• 14 males 
• mean age:  
• 31.3 ± 10.8 

• No significant differences found between SZ and controls 
using coherence or graph theory metrics 

• SZ showed trend towards ­ mean connectivity between 
frontal gyrus and the rest of the brain in θ and a bands, and 
¯ between PPC sand the rest of the brain in γ-band. 

(Bowyer et 
al., 2015) 

3-50 • Coherence  
• Source-space estimation 

using ICA, MR-FOCUSS  
• 10min eyes-open 

• 12 SZ 
• 10 males 
• mean age: 

32 ± 8.8  

• 12 controls 
• males 
• mean age: 
27 ± 6.5  

• ­ coherence levels compared to controls in frontal pole 
cortex, dorsolateral PFC, orbitofrontal cortex, and the ACC. 

(Robinson 
and 
Mandell, 
2015) 

n/a • Symbolic mutual 
information (SMI) 

• Source-space 

• 15 SZ 
• 10 mal

es 
• age 

range:  
20–45  

• 14 controls 
• 5 males, 
• age-range:  
19–36  

• ­ SMI values compared to controls in rostral PFC for short-
range connections.  

•  ¯ connectivity for long-range connections to lateral PFC. 
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(Zhang et 
al., 2015) 

δ: 1–4   
θ: 4–8  
a: 8–12 
β: 12–30  
γ: 30–50 

• Phase-lag value (PLV) 
• Sensor-space 
• 4min eyes-open 

• 14 SZ 
• mean age: 

27.6 years 
 

• 22 controls 
• mean age: 

27.6 years 
 

• ¯ PLV overall compared to controls.  
• The a  spectral band had the highest PL values. 
• The largest PLV difference was in the right frontal region.  

(Houck et 
al., 2016) 

δ: 1–4  
θ: 5-9 
a: 10-15 
β: 16–29 

• Zero-lag cross-
correlations  

• Source-space 
estimation using 
beamformer and 
group spatial ICA 

• 6min eyes-open 

• 44 SZ 
• 37 

males 
• mean 

age: 
37. 3 ± 13.9 
 

• 47 controls 
• 34 males 
• mean age: 
       35.2 ± 
11.8 

• ­ correlation within the dorsal ACC/superior frontal areas, ­ 
between frontal brain areas and perisylvian regions in SZ, ¯ 
correlation within the PCC/precuneus region, compared to 
controls, across all frequency bands.  

• In β, ­ between the frontal lobe and cerebellum, the frontal 
lobe and the DMN, and the frontal and auditory networks.   

Table 2 - caption: Overview of MEG resting-state findings on changes in long-range oscillatory connectivity patterns in subjects with 
Schizophrenia. Abbreviations: ACC = anterior cingulate cortex, IFG = inferior frontal gyrus, PCC = posterior cingulate cortex, PFC = prefrontal 
cortex, PPC =posterior parietal cortex, TG= temporal gyrus, SZ = schizophrenia. 
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2.1.4.3 Strengths and limitations of resting-state MEG studies in SZ population 
 

Although most of the reviewed SZ studies were conducted in source-space, one was analyzed at 

the sensor-level (Zhang et al. 2015). However, this paper had the strength of using an automatic 

classification algorithm (Support Vector Machine) to determine the connectivity features that best 

differentiate SZ patients from controls.  Exploring key connectivity features in source-space using 

machine-learning approaches could be a promising venue for future studies.  

 

Moreover, while Hinkley et al (2011) limited the frequency range that they investigated to the 

alpha-band, the paper’s strength lies in its use of imaginary coherence to measure functional 

connectivity. The other resting-state MEG studies discussed in section 2.1.4.2 used linear metrics 

potentially prone to field spread issues (Bowyer et al., 2015; Robinson and Mandell, 2015; Zhang 

et al., 2015; Houck et al., 2016). With respect to sample size, Zhang et al (2015), Robinson et al 

(2015) and Bowyer et al (2015) are limited by their relatively small cohorts. While, the authors 

mention that their source-space articles show preliminary results, it is clear that elaboration of their 

findings with larger patient and controls cohorts could help uphold the altered connectivity patterns 

observed. 

 

Rutter et al (2013) illustrated the promise of the use of graph theoretical metrics for the 

quantification of alteration in neural networks in SZ. While they did not find statistically 

significant group differences, global alterations in SZ patients have been observed in previous RS 

fMRI (Bassett et al., 2008; Liu et al., 2008; Bullmore and Sporns, 2009; Yu et al., 2012; Cheng et 

al., 2015; Su et al., 2015) and RS EEG studies (e.g. Micheloyannis et al. 2006; Rubinov and Sporns 

2010). Hence, future explorations of graph theory with RS MEG are needed to clarify these 

inconsistencies.  

 

The correlational findings between pathological symptoms and connectivity patterns observed in 

most of the reviewed literature (e.g. Fehr, 2001; Sperling 2002; Hinkley 2011) are not always 

consistent across studies. This variability could relate to either methodological issues in MEG 

measurement or to a nosographic (i.e. classification) problem. Indeed, each symptom could be 

considered as a heterogeneous set of more basic sub-processes, which could be addressed by 

assessing specific domains and constructs (e.g., cognition, arousal/inhibitory systems) as 
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suggested by the Research Domain Criteria framework. Although it is still in its early days, the 

application of this novel approach in psychiatry (e.g., hallucinations,  Ford et al. 2014) is 

promising. An in-depth discussion of the relevance of domain-oriented classification goes beyond 

the objective of the current review.  

 

Finally, it is important to note that the findings about how changes in intrinsic brain rhythms relate 

to positive and negative symptoms are correlational in nature. In the future, SZ models and 

stimulation paradigms (e.g. TMS) could be used to further elucidate the directional link between 

alterations in RS connectivity patterns and patients’ symptoms. These could confirm to which 

extent network changes give rise to clinical symptoms (Stephan et al., 2009) or to domain-specific 

deficits (Morris and Cuthbert, 2012). These questions will be central to future studies in the field 

of psychiatry.  

2.1.4.4 Bridging findings between resting state and task-based paradigms 
 

The literature on MEG connectivity in SZ patients contains studies that use sensory and cognitive 

tasks to explore connectivity patterns. Some of the results arising from these task-based 

investigations corroborate what is observed in resting-state studies.  

 

The finding of decreased connectivity between the right parietal and occipital lobes that was shown 

at rest (Zhang et al. 2015) has also been observed during a task-based study. Fujimoto et al. (2013) 

examined the correlation between SZ patients’ symptoms and imaginary coherence (IC) between 

different brain regions during an auditory oddball paradigm. Hallucinatory behavior correlated 

positively with decreased connectivity between left occipital and right fronto-parietal areas 

(Fujimoto et al., 2013). Another finding from the RS MEG study by Zhang et al. (2015) regarding 

the involvement of the occipital lobe was also observed in a task-based paradigm. Brookes et al 

(2016) conducted a visuo-motor task with SZ and control subjects, where participants were 

instructed to press a button whenever a visual stimulus of a grated square was presented. Using 

beamforming source localization, functional connectivity between various seeds and test brain 

regions were measured by examining the change in oscillatory envelope (i.e., amplitude) 

correlations. Of note, patients had reduced connectivity within certain nodes of the occipital lobe 

in alpha-band (8-13 Hz) frequencies. Furthermore, the strength of decreased synchrony correlated 
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with symptom severity. However, the decreased long-range synchronization between occipital and 

other brain regions occurred mostly in the theta-band frequency range.  

 

Other alterations in long-range synchronization have been observed in SZ patients during the 

performance of a task, which have not found a parallel in resting-state studies. For instance, 

Fujimoto et al. (2013) found patients to display decreased connectivity between right temporal 

pole and left prefrontal lobe areas, which correlated with delusion score and conceptual 

disorganization scores in low-gamma. Similar decreased connectivity between these brain regions 

have also been observed during RS EEG recordings in SZ (Winterer et al. 2003), but have yet to 

be replicated in MEG at rest. Decreased connectivity in low and high-gamma frequency bands 

between left occipital lobe and right anterior PFC were also noted by Fujimoto et al. (2013). 

Moreover, compared to controls, SZ patients had decreased connectivity between the right 

intraparietal sulcus and the temporo-parietal junction during an attention task. Disruption in this 

pattern correlated with lower IQ scores in patients. The authors suggested that this finding 

highlights the importance of the fronto-temporal network in cognitive processes. Decreased 

gamma-band power has also been noted in patients during a working memory task over fronto-

posterior brain areas (Popov and Popova, 2015). Lastly, using mutual information in source-space, 

SZ patients have been seen to have disrupted connectivity between the right amygdala and the 

primary and secondary visual cortices compared to healthy controls in a visual categorization task 

(Ioannides et al., 2004). However, most of the observed group differences were time-locked to 

different moments during task performance. Hence, it is possible that the above alterations in 

connectivity are specific to given tasks or, alternatively, to an intrinsic SZ biomarker that is only 

detectable via task-based paradigms. Future MEG studies will perhaps offer clarity on this issue.   

2.1.4.5 Summary of resting-state connectivity findings across 3 neuroimaging 
modalities 

 

Findings on the intrinsic connectivity patterns of SZ patients are heterogeneous. At this stage, it is 

thus difficult to obtain a consensus across fMRI, EEG and MEG on the neural connections that are 

consistently observed to be aberrant. Nevertheless, across the three neuroimaging modalities 

reviewed here, functional connectivity within the PFC is altered in SZ patients compared to 

controls. Moreover, cumulated RS fMRI and EEG studies have shown SZ patients to have 

decreased connectivity between frontal and temporal lobes, and enhanced connectivity between 
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central and occipital brain regions, while fMRI and MEG have observed hypoconnectivity between 

the parietal cortex and the occipital lobe. Electrophysiological studies also note altered 

connectivity between parietal and central brain regions, along with enhanced connections between 

temporal and parietal regions. Finally, a number of fMRI studies strongly show hypoconnectivity 

between the thalamus and the DMN, between the DMN and the CEN, and between the thalamus 

and the frontal lobe in general. Hyperconnectivity appears to take place in the thalamocortical 

pathway, particularly between the thalamus and sensorimotor areas. These loci could be linked to 

patients’ hallucinatory/delusional symptoms.  

 

While pharmacological treatment appears to be a modulating factor of the atypical local and long-

range rhythmic behaviors, the direction of the effect is still unclear. Interestingly, some researchers 

have used pharmacological models of SZ to explore connectivity changes.  For instance,  a recent 

MEG study examined the effect of a sub-anesthetic dose of ketamine in healthy individuals 

(Rivolta et al., 2015). This compound seems to invoke changes that resemble the neurobiological 

portrait, as well as the positive and negative symptoms, of SZ, in both healthy individuals and 

animal models (Becker et al., 2003; Frohlich and Van Horn, 2014). Rivolta et al (2015) used 

transfer entropy in RS source-space data to examine directed long-range interactions in beta (13-

30 Hz) and gamma (30-90 Hz) frequency bands in relation to ketamine administration. Transfer 

entropy (TE) quantifies the amount of information of a target that can only be predicted by 

knowing the past of the source (Schreiber, 2000). The TE analysis showed increased information 

transfer in a thalamo-cortical network after ketamine administration; after 2-4 weeks, subjects that 

were administered the active treatment displayed enhanced TE between the left medial temporal 

gyrus and the right inferior temporal gyrus (gamma to beta), the right inferior temporal gyrus and 

the left thalamus (beta to gamma),  the left thalamus and  the right visual cortex (gamma to beta), 

the right visual cortex and right precuneus (within beta band), right precuneus and left thalamus 

(beta to gamma), and left medial temporal gyrus and right thalamus (within gamma band). Beyond 

providing an interesting illustration of how ketamine may be used to model brain changes in SZ, 

the results of this study also highlight the potential of using directed and inter-frequency interaction 

measures to unravel oscillatory circuit dysregulations in SZ. 
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2.1.5 Methodological challenges and recommendations 
 

As portrayed in this review, more MEG studies are needed to corroborate and extend previous 

reports, and thus reduce the existing heterogeneity between results of neuroimaging studies and 

across modalities. Some of these discrepancies might arise from methodological constraints. 

Indeed, several pitfalls and methodological limitations need to be taken into account when setting 

out to assess alterations in RS connectivity patterns in SZ with MEG. In the following, we describe 

the main technical challenges and we provide recommendations for future research in the field.  

2.1.5.1 MEG connectivity estimation in SZ 
 

Achieving a reliable estimation of inter-areal functional connectivity with MEG is a non-trivial 

task (van Diessen et al., 2015a). Most of the commonly used interaction measures (e.g. coherence 

or phase-locking value) can lead to artefactual coupling due to field spread (linear mixing in sensor 

space analysis) or signal leakage (in source space) (Schoffelen and Gross, 2009). Numerous MEG 

coupling measures have been proposed (e.g. Colclough et al., 2015; Hillebrand et al., 2016, 2012; 

O’Neill et al., 2015; Sakkalis, 2011), yet there is no real consensus as to which one provides the 

most reliable estimate of true cortical interaction. Furthermore, some methods are particularly 

suited for particular types of interaction phenomena (i.e. amplitude-amplitude, phase-phase, or 

phase-amplitude coupling, etc.). Unfortunately, the mechanistic properties of the cerebral 

interactions that are altered in SZ are not entirely understood. So, although several methods have 

been applied to MEG or EEG data, it is still up for debate which coupling technique (if any) is best 

suited to capture the pathological communication in SZ. Using different metrics on the same MEG 

data set might ultimately turn out to be the most reliable approach to settling this question. We 

recommend, for instance, the combination of complementary metrics such as phase-lag index 

(Stam et al., 2007; Vinck et al., 2011) and band-limited envelope correlations (Brookes et al., 2012; 

Hipp et al., 2012; O’Neill et al., 2015). In the absence of a specific hypothesis about a distinct 

phase-based or amplitude-based connectivity alteration, exploring both types of measures with the 

same data set provides a broader picture, leads to a more specific interpretation and reduces bias 

caused by arbitrary methodological choices. Agreement between phase-based and amplitude based 

analyses would increase reliability and confidence in the observed interactions. But discrepancies 

between the two measures would fine-tune the conclusions in terms of the underlying mechanisms. 

Alternatively, combining such standard linear metrics with non-linear measures (e.g. transfer 
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entropy) is also recommended. Again, unless one has a specific hypothesis, examining both linear 

and non-linear metrics increases the chance of identifying the nature of putative interactions (if the 

results differ) and increases the confidence in the robustness of the findings (if the results are 

consistent across methods). Naturally, exploring effective connectivity measures that capture the 

directionality of the coupling is of high interest. Most importantly, the pitfalls and strengths of the 

various techniques used need to be understood and reported with the results obtained. 

2.1.5.2 From sensor to source-level analyses 
 

Source-space connectivity measurements are essential to determine the neuroanatomical 

underpinning and functional role of the involved networks and, thereby, help bridge the gap 

between MEG and fMRI findings in psychiatry (Alamian et al., 2017a). Many electrophysiological 

studies in SZ still conduct their analyses in sensor-space. Choosing the most appropriate source 

reconstruction method to be used prior to source-level connectivity analysis is a difficult decision. 

The effect of different methods (such as beamforming and minimum-norm) on subsequent source-

level coupling analyses is still poorly understood (Hincapié et al., 2016). Although we expect most 

families of source estimation methods (e.g. minimum-norm or spatial filters) to provide 

comparable results,  it is important to understand the hypothesis and limitations of a chosen method 

and its parameters, and their impact on source-space connectivity estimations (Hincapié et al., 

2016). However, the actual acquisition parameters and task-design might ultimately turn out to 

have a larger effect on the quality of connectivity estimation than the applied source estimation 

technique. 

2.1.5.3 Reliability of MEG-based resting-state networks estimations 
 

The stability and robustness of RS connectivity estimation, over time and across participants, are 

important factors that are often overlooked in MEG-based studies, both in healthy and clinical 

cohorts. Recent research has addressed the reliability of MEG RS connectivity metrics (Colclough 

et al., 2016) and its test-retest reliability (Garcés et al., 2016). Both inter- and intra-subject 

consistency of MEG RS network estimations have been investigated and it has been found that, 

while variability exists, seed-based and appropriate averaging techniques allow the comparison of 

subjects between and within groups (Wens et al., 2014).  Furthermore, the SZ MEG resting-state 

studies reviewed here used recording lengths that varied between 4 and 6 minutes. Recently, Liuzzi 

et al (2016) found that recording duration has a critical effect on reproducibility of MEG RS 
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connectivity findings. Interestingly, the authors report significant improvements in repeatability 

when using ten minute-long recordings, compared to five minutes. Moreover, although five 

minutes might be considered a reasonable length, more data could be necessary in the case of 

patient populations, as more data loss is expected (e.g. because of more movement artefacts). In 

addition, Liuzzi et al. (2016) also found that the use of a foam head-cast improved reproducibility 

of results between sessions, insuring reproducibility of the estimation of connectivity patterns, as 

well as the accuracy of source reconstruction (Liuzzi et al., 2016). Finally, at least half of the MEG 

RS studies reviewed here was carried out with eyes open. If acquiring data with both eyes open 

and closed is not feasible, we suggest using eyes open with a fixation cross to minimize eye 

movements. Eyes closed RS is associated with strong alpha power increases and can induce 

drowsiness, with participants potentially falling asleep during the recording (Tagliazucchi and 

Laufs, 2014). 

2.1.5.4 Contrasting controls and schizophrenia patients 
 

Pathological alterations in signal amplitude can adversely affect the estimation of inter-areal 

connectivity in patients, and thereby lead to spurious group differences. This can occur because 

lower signal amplitudes result in lower signal-to-noise ratio (SNR). A good rule of conduct is to 

systematically estimate spectral power for the areas or channels involved in connectivity 

estimation and, if needed, control for the effect of amplitude across the two groups (e.g. using 

stratification techniques). In addition, increased head and body movement artefacts, eye blinks and 

saccades are common in patients and lead to poorer data quality. The rejection of contaminated 

segments during the data cleaning process will thus yield lower SNR in patient data compared to 

controls. Differences in SNR across two conditions or two populations are detrimental to spectral 

connectivity estimates. Hence, minimizing data rejection through the use of artefact correction 

techniques, such as independent component analyses (ICA), can be an efficient way to avoid such 

effects. This said, the differential application of ICA to the two groups also lead to differences that 

may bias connectivity findings and data interpretation. One way to address artefact-related SNR 

discrepancies between patients and controls is to acquire more data in patients or, alternatively, to 

use a subsample of data from the controls to achieve comparable SNR across the two groups. 
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2.1.5.5 Effect of age and medication on connectivity patterns in SZ 
 

Schizophrenia patients are known to display heterogeneous symptomatic profiles. Thus, it can be 

difficult to untangle whether the source of connectivity differences are due to the illness itself or 

to other factors. Among a number of key variables, age and psychotropic medications are known 

to affect the synchronization of neural activity. 

 

Critical connections in the brain, particularly those of the PFC, continue to develop through late 

adolescence. Developmental (e.g., early brain damage) and environmental factors can affect these 

patterns and give rise to some of the aberrant neural wiring of intrinsic neurophysiological 

networks that are observed in the SZ population (Carrion and Wong, 2012; Kolb et al., 2012; 

Grossmann, 2013; Baker et al., 2015). For instance, gamma-band oscillations  appear to increase 

in the transition from adolescence to adulthood (Uhlhaas and Singer, 2010), thus disruptions of 

any type could affect high-frequency synchronizations. As discussed in the previous section, these 

rhythms are indeed affected in SZ. With increasing age, cognitive functions and the strength in 

connections across all populations decrease. However, it appears that it may affect SZ more 

aggressively, with patients showing steeper decline in some function than controls, such as abstract 

thought (Fucetola et al., 2000). Lastly, age of illness onset is also an important factor to take into 

consideration as early onset/pre-adolescence onset of psychopathologies typically correlate with 

worse prognosis and more severe clinical symptoms (Strober et al., 1988; Clemmensen et al., 

2012).   

 

The effect of pharmacological treatment on intrinsic neural circuitry has been under investigation 

for quite some time. Grey matter volume, anatomical connections and functional associations have 

all been found to be altered by antipsychotic treatment (Konradi and Heckers, 2001; Vita and De 

Peri, 2007; Nejad et al., 2012). Longitudinal MRI-based studies and reviews (Fusar-Poli et al., 

2013; Ho et al., 2011) show that increased length and amount of antipsychotic treatment correlate 

with decreases in both grey and white matter volumes in patients. Other studies suggest that this 

volume reduction is more reflective of older treatment choice, and it could be spared by choosing 

atypical over typical antipsychotics (Scherk and Falkai, 2006). As clinical symptoms improve, 

functional connectivity between a number of affected brain regions appears to be restored with 

medication intake (e.g., Guo et al., 2016). For instance, fMRI studies have shown atypical 



 60 

antipsychotics (e.g., aripiprazole, risperidol, olanzapine) to strengthen long-range connectivity 

between the striatum and the ACC, the dorsolateral PFC, hippocampus and anterior insula, as well 

as diminish connectivity between the striatum and parietal cortex (Sarpal et al., 2015). 

Connectivity between the DMN and the ventromedial PFC (Sambataro et al., 2010), as well as 

connectivity within a number of RS networks (e.g.,  CEN and salience network; Kraguljac et al. 

2015), have also been enhanced after treatment with antipsychotics. 

 

While some studies find no association between abnormal connections and the factors of age and 

medication (Nesvåg et al., 2008), it is important to untangle the differential effects of age, 

medication, as well as gender (e.g., Wienbruch et al. 2003), get to the basic neurophysiological 

nature of the illness and ensure that any differences observed between clinical and healthy 

populations are attributed to true alterations and not due to confounding variables (Bijanki et al., 

2015). One way to do so is by conducting studies in drug-naïve and/or first-episode psychosis 

patients that have yet to be exposed to antipsychotics. Many fMRI (e.g., Lui et al. 2010; Ho et al. 

2011; Sarpal et al. 2015; Guo et al. 2016), and EEG (e.g., Kikuchi et al. 2011; Andreou et al. 2014; 

Ramyead et al. 2016) studies have incorporated treatment-naïve patients in their protocols, but 

more MEG studies  are needed (Bachmann et al., 2010; Roiser et al., 2013; Sun et al., 2013). 

 

2.1.6 Discussion 
 

In this systematic review, we provide a critical overview of current progress and limitations of 

MEG studies exploring oscillatory connectivity patterns in SZ populations, with a focus on RS 

data. In the following we discuss a number of closely related issues and questions that arise from 

this body of research. 

2.1.6.1 Relevance of resting-state network analyses in psychiatric populations 
 

Traditionally, neuroimaging paradigms have used tasks to study healthy, psychiatric or 

neurological populations (e.g., in SZ : Hamm et al. 2011; Haesebaert et al. 2013; Sun et al. 2013; 

Popov et al. 2014, 2015; Popov and Popova 2015; Liddle et al. 2016; Thuné et al. 2016). This 

approach is useful to investigate how information of various nature (e.g., emotional, physical, 

sensory, visual, cognitive, etc.) is processed (e.g., Edgar et al., 2008). It has long been known that, 

even in the absence of a specific task, the brain continually generates neural activity often referred 



 61 

to as background, idling, ongoing or spontaneous activity. Yet, it is only in recent years that 

observing the brain during rest has become recognized as a useful way to study the fundamental 

organization of a person’s brain and even differentiate patient populations from psychologically 

and neurologically healthy individuals (Fox and Greicius, 2010). A limitation of task-based 

experiments is that they require a response (e.g., button press, mental arithmetic, language 

processing) that typically affects the physical state of subjects, for instance, by bringing about 

unwanted movements that can induce artifacts in the signal and, in some case, adversely impact 

the signal to noise ratio. Moreover, task paradigms typically entail repeated trials and averaging in 

order to reduce the noise in the evoked-signal (Dawson, 1951) and consistently study how the 

brain activity is modulated during a given task. Although it can provide useful information, this 

type of analysis across trials (i.e., computing event-related potentials) could lead to a reduction in 

the richness of the information that resides within electrophysiological signals. Time-frequency 

approaches can be applied to task-based studies and may overcome this limitation. This said, all 

such findings focus on healthy vs pathological brain responses in a given behavioral context. 

 

RS paradigms have the advantage of providing insight on the connectivity dysfunctions that are 

independent of context, and actually examine the core organization of psychiatric patients’ brains. 

Test-retest reliability of RS fMRI experiments (ROI and voxel-based analyses) have been shown 

to be robust over time and across subjects. However, negative inter-areal correlations in fMRI 

produced less reliable test-retest outcomes (Shehzad et al., 2009). This finding could explain some 

of the differences found between studies. 

 

RS is a baseline measure that provides the opportunity to dissociate neural correlates that are 

unique to psychopathologies (Fox and Greicius, 2010). Comparisons between the activation of 

task-based and rest-based networks have revealed a large amount of overlap (Di et al., 2013). A 

number of studies have even used RS data to predict task-based brain activity (e.g., Tavor et al. 

2016). However, task-based paradigms appear to have superior information transmission and 

system integration compared to rest, with the thalamus being affected the most when switching 

between the two conditions (Di et al., 2013). One example of connectivity difference between rest 

and task, is local power modulations in gamma that have been seen to be enhanced during RS in 

SZ patients, but decreased during an induced, steady-state, sensory – auditory or visual -  task 

(Uhlhaas et al., 2008; Wilson et al., 2008; Grent-‘t-Jong et al., 2016). 
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Complimentary use of rest and task based paradigms is critical to examine the functional 

significance of the altered networks on a person’s day-to-day life, in reaction to certain 

environments or stimuli (Bardouille and Boe, 2012). This is particularly true for psychopathologies 

that do not have distinct network organizations that are exceptionally different from healthy 

controls. 

2.1.6.2 Advantages of MEG over fMRI for examining resting-state dynamics 
 

A recent review investigated the relationship between MEG’s magnetic signal and fMRI’s BOLD 

signal, and found high frequency bands to positively correlate with BOLD, and low frequency 

bands to negatively correlate with BOLD (Hall et al., 2014). However, as mentioned in the 

introduction, there are a number of limitations in RS fMRI that are compensated by using MEG 

alone or in combination with MRI. The BOLD signal allows for an indirect observation of neural 

activity, while MEG directly measures neuronal magnetic primary currents and is reflective of a 

large population of neurons firing synchronously. The primary advantage of electrophysiological 

techniques such as MEG over fMRI is superior temporal precision, which allows the examination 

of oscillations that operate on short time scales. Indeed, due to the inverse relationship between 

temporal and spectral resolutions, higher temporal precision allows access to higher frequencies 

in the signal. Moreover, it has been suggested that proper information integration relies on cross-

frequency coupling of oscillations in different brain areas (Jirsa and Müller, 2013). Indeed, there 

is an increasing interest in measures of cross-frequency coupling in the field of psychiatry (e.g., 

Moran and Hong 2011; Uhlhaas 2013). A few MEG studies have explored cross-frequency 

coupling in SZ population, during task-based paradigms. For instance, Sun et al (2013) performed 

cross-frequency coupling analyses on MEG data recorded during a visual task (perception of 

Mooney faces) and, more recently, Hwang et al. (2016) did the same with an inhibitory control 

task. This connectivity analysis has however yet to be applied to RS MEG data in this pathology. 

Globally speaking, the correspondence between local high-frequency activity (e.g., beta, gamma) 

and long-range low-frequency activity (e.g., theta, alpha) is thought to be a marker for healthy 

brain functioning, and alterations in this measure during a task (e.g., oddball) has allowed to 

distinguish psychiatric groups from controls (e.g., Allen et al., 2011). Hence, electrophysiological 

data, such as MEG, allows the investigation of oscillatory behavior that affects the intrinsic 
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organization of neural networks, as well as information processing related to overall functioning 

(e.g., Allen et al. 2011; Palva and Palva 2011).   

 

However, any single neuroimaging modality is imperfect, and limited by a certain factor (e.g., 

spatial or temporal resolution). Hence, combining tools can enhance the richness of the collected 

information on both the signal of neural activity and brain structure, and allows for the uncovering 

of significant local or long-range networks that might go otherwise undetected (e.g., Patel et al. 

2016; Baenninger et al. 2017). An illustration of the benefits of multi-modality is provided in the 

study by Cousijn et al (2015) where RS MEG and fMRI scans were conducted in healthy 

individuals with genetic risks of SZ. The reported results showed that enhanced hippocampal/PFC 

co-activation correlated with changes in the theta frequency band within the hippocampus (Cousijn 

et al., 2015). Hence, the fusion of structural MRI with MEG can help bridge the gap between 

electrophysiological measures of coupling and structural measures, such as DTI. 

 

To date, there have been few attempts to characterize the electrophysiological counterparts of 

fMRI RS networks using MEG. Studies suggest that the apparent temporal stationarity of RS 

networks shows a rich structure both in the time- and frequency-domains. Indeed, MEG can not 

only replicate the RS networks seen with the BOLD signal, but also provide new information on 

the mechanisms underlying their interaction (De Pasquale et al., 2010; Brookes et al., 2011b, 

2011a; de Pasquale et al., 2012; Hipp et al., 2012). Interestingly, there have been several reports 

that the MEG correlate of fMRI RS networks might be the coupled fluctuation of band-limited 

power envelope correlations in the alpha or beta frequency bands at slow time scales (0.1 Hz), 

measured between different RSN nodes (De Pasquale et al., 2010; Brookes et al., 2011b; de 

Pasquale et al., 2012; Hipp et al., 2012; Betti et al., 2013). The precise link between slow BOLD 

fluctuations and brain-wide modulations of the electrophysiological signals is an important topic 

of current investigation, and more research is needed to bridge neuroimaging modalities (Foster et 

al., 2016). 

2.1.6.3 MEG vs EEG for resting-state studies in psychiatric populations 
 

EEG signals directly measure the electrical potential generated by neuronal currents, arising via 

volume conduction, from the brain’s gyri and sulcI (Lopes Da Silva, 2013). This signal is thought 

to be reflective of a large population of neurons firing synchronously to bring a measurable 
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postsynaptic potential, with contributions from both tangential and radial currents. Only the 

tangential component of the primary current contributes to the MEG signal (Lopes Da Silva, 2013). 

True radial sources with vanishing tangential components are however rare, in particular if one 

considers that active brain areas are generally spatially extended. MEG compensates for EEG 

signal’s pitfalls (e.g., distortion by skull and skin conductance) as it is not affected by conductance. 

Consequently, source reconstruction, with techniques such as the boundary element model (BEM), 

is easier to perform with MEG. Specifically, in the case of BEM, at least 3 layers should be 

considered to solve the EEG forward model, while a single layer can be sufficient to solve the 

MEG forward model (envelope of the brain).  

 

While on a practical basis, EEG might seem to be more appealing due to its low cost and 

portability, MEG’s preparation time for data acquisition is far shorter than EEG. Indeed, scalp 

EEG paradigms require participants to sit still for 20-40 minutes while the cap is properly 

positioned and fastened onto the scalp, and electrode impedances are individually checked, a 

procedure that could be difficult to perform on restless, psychiatric, populations. While no 

reference is required for MEG set up, the machine’s shielded room can however be distressing to 

individuals with psychotic/paranoid profiles. Furthermore, source localization (e.g. using MRI-

based T1 anatomical scan) is still needed for both modalities.  

 

It is important to note that is possible to combine MEG and EEG using simultaneous acquisition 

(e.g. Dale and Sereno 1993; Dubarry et al. 2014). A recent paper (Muthuraman et al., 2015) 

demonstrated that the combination of EEG and MEG signals is better than using either alone for 

source mean power, functional or effective connectivity measures.  

2.1.6.4 Current and up-coming clinical application for MEG in SZ 
 

As discussed in the Introduction, the core differences between SZ patients and healthy individuals 

are thought to involve alterations at multiple levels, including neural network dynamics, 

neurochemical changes, epigenetics (e.g., Lisman et al. 2012). Our understanding of the neural 

underpinnings of SZ could benefit from incorporating MEG techniques within clinical settings. 

Furthermore, MEG could assist in the improvement of parameter choices for neuromodulatory 

clinical interventions, such as TDCS and TMS. For instance, by identifying how key connectivity 

patterns are altered in this population, source-localized MEG findings could clue us in on the 
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frequency bands and brain regions that are optimal for successful treatment by transcranial 

stimulations (e.g., Thut et al. 2017).  

 

There is also a rise in the use of machine-learning algorithms in neuroscience, and more recently 

in psychiatry. One way to make use of this innovation is by applying unsupervised clustering 

techniques to RS MEG data to identify patient sub-groups of SZ (as discussed in the review by 

Uhlhaas et al., 2017; and conducted by Koutsouleris et al., 2009, and Clementz et al., 2016). This 

in turn could help untangle the heterogeneous nature of current functional connectivity results. In 

other words, distinct sub-types of SZ might underline the different connectivity alterations 

observed in the SZ literature. Finally, future longitudinal RS MEG studies could help identify 

biomarkers for individuals at risk (e.g., genetic predisposition for psychosis) by capturing how the 

intrinsic neural networks of SZ patients evolve differently than those of non-psychotic, or healthy, 

individuals. 

 

2.1.7 Conclusions 
 

Global and local alterations in information processing appear to be an intrinsic property of the 

neurophysiology of SZ. The most pervasive findings speak of diffuse 

discoordination/disorganization of neural networks across the whole brain. Specifically, disrupted 

oscillatory modulations have been reported within the DMN, along with enhanced long-range 

connectivity between the thalamus and sensorimotor areas, and diminished connectivity between 

the thalamus and PFC, and within the frontal cortex. With respect to local synchronizations, 

consistent findings across EEG and MEG report atypically enhanced slow oscillations and 

diminished fast (gamma) oscillations. Some of these alterations in rhythmic brain activity in SZ 

correlate with patients’ overt clinical symptoms, as well as their cognitive deficits. These results 

corroborate and extend previous studies that suggest that gamma activity is not simply aberrant in 

schizophrenia but reflects a specific neural integration/segregation imbalance. Likely occurring at 

the level of cellular communication, this segregation deficit affects the global functional 

connectivity architecture and hinders effective processing including cognitive performance.  

 

While still in its early days, RS MEG has led to important clinical insights in numerous brain 

disorders and has become a promising tool for clinical and translational research in psychiatry 
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(Siekmeier and Stufflebeam, 2010; Williams and Sachdev, 2010; Alamian et al., 2017a; Uhlhaas 

et al., 2017). More specifically, connectivity studies are a fast growing sub-portion of the SZ 

literature. This review in SZ population linked new RS MEG findings about the fundamental 

organization of neural networks in SZ to those obtained with other neuroimaging modalities in the 

same population.  The literature overview, as well as the methodological considerations and 

recommendations provided in the present article will hopefully provide useful insights to the 

scientific community and to newcomers to this promising research field. 
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2.2 Alterations of Intrinsic Brain Connectivity Patterns in 
Depression and Bipolar Disorders: A Critical Assessment of MEG-
based Evidence 
 

 
Abstract 

 

Despite being the object of a thriving field of clinical research, the investigation of intrinsic brain 

network alterations in psychiatric illnesses is still in its early days. Because the pathological 

alterations are predominantly probed using functional magnetic resonance imaging (fMRI), many 

questions about the electrophysiological bases of resting-state alterations in psychiatric disorders, 

particularly among mood disorder patients, remain unanswered. Alongside important research 

using electroencephalography (EEG), the specific recent contributions and future promise of 

magnetoencephalography (MEG) in this field are not fully recognized and valued. Here, we 

provide a critical review of recent findings from MEG resting-state connectivity within major 

depressive disorder (MDD) and bipolar disorder (BD). The clinical MEG resting-state results are 

compared to those previously reported with fMRI and EEG. Taken together, MEG appears to be a 

promising but still critically under-exploited technique to unravel the neurophysiological 

mechanisms that mediate abnormal (both hyper- and hypo-) connectivity patterns involved in 

MDD and BD. In particular, a major strength of MEG is its ability to provide source-space 

estimations of neuromagnetic long-range rhythmic synchronization at various frequencies (i.e. 

oscillatory coupling). The reviewed literature highlights the relevance of probing local and inter-

regional rhythmic synchronization in order to explore the pathophysiological underpinnings of 

each disorder. However, before we can fully take advantage of MEG connectivity analyses in 

psychiatry, several limitations inherent to MEG connectivity analyses need to be understood and 

taken into account. Thus, we also discuss current methodological challenges and outline paths for 

future research. MEG resting-state studies provide an important window onto perturbed 

spontaneous oscillatory brain networks and hence supply an important complement to fMRI-based 

resting-state measurements in psychiatric populations. 

 

 

 



 68 

2.2.1 Introduction  

2.2.1.1 Background 
 

Over the last decade, research on the human brain has experienced an important shift in paradigm; 

the functional investigation of neuronal activity has moved from studying local mechanisms 

towards large-scale network organization. Unavoidably, this change in the examination of neural 

connectivity has reached the field of psychiatry. Until recently, most connectivity studies in 

psychiatric patients were predominantly carried out using functional magnetic resonance imaging 

(fMRI). The findings from these studies generally indicate the presence of structural and/or 

functional abnormalities linked to the diseases (e.g., Dutta et al., 2014; Hanford et al., 2016; 

Northoff, 2016). Moreover, irregularities are not only observed during cognitive tasks, when 

subjects are engaged in a sensory, cognitive or emotional task, but also during rest, when subjects 

are asked to lay still in the scanner, and let their mind wander. The trend in the field of 

neuroimaging, towards the study of this so-called resting-state, has strongly contributed to 

unveiling intrinsic properties of brain disorders (Broyd et al., 2009; Greicius, 2008; Fox and 

Greicius, 2010; Raichle et al., 2001). Yet many questions about the neurophysiological bases of 

resting-state alterations remain unanswered. 

 

A parallel stream of research explores the physical connections between brain regions by assessing 

structural connectivity with magnetic resonance imaging (MRI) using diffusion tensor imaging 

(DTI) and fractional anisotropy. These techniques allow the examination of white matter integrity 

and fiber tract organization and are able thereby to reveal anatomical disruptions of long-range 

structural connections (White et al., 2013). However, DTI is principally useful for pathologies for 

which we know of pre-existing structural anomalies, and less so for illnesses without obvious 

disruptions in connectivity (Broyd et al., 2009; Friston, 2011). Furthermore, while fMRI is 

promising for the investigation of the spatial organization of the cortex, it is limited by its temporal 

resolution and by the fact that it is an indirect measure of neural activity. Moreover, because it 

measures the brain’s haemodynamic responses, fMRI is useful to study slow activity fluctuations 

(i.e. < 0.1 Hz), but is unable to capture brain activity patterns at higher frequencies. Consequently, 

neuroimaging methodological developments and studies of the past 10 years have been reflective 

of the scientific community’s appreciation of the importance of electrophysiology for our 

understanding of network connectivity (Varela et al., 2001; Luo et al., 2010). This change is 
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portrayed by the flux in research employing electroencephalography (EEG), intracranical 

electroencephalography (iEEG), and magnetoencephalography (MEG), three tools with excellent 

temporal resolution. Specifically, a spotlight has been shined on the behavior of local and long-

range synchronized brain oscillations in healthy cognition and, also, as potential markers for 

altered neural connectivity in (psychiatric) diseases (Hasey and Kiang, 2013; Başar et al., 2015; 

Siekmeier and Stufflebeam, 2010; Jesulola et al., 2015).  

 

When small neighbouring neuronal populations synchronize their oscillations, local assemblies are 

forged, and coupling among these small assemblies can bridge distant areas (creating long-range 

connections) (Varela et al., 2001). Disruptions in this mechanism could unravel a number of neuro- 

and psychopathologies. Neuronal synchronizations are thought to operate on short time scales, and 

changes in spectral power are optimally detectable by electrophysiological recordings. Thus, we 

can examine neural network connectivity patterns by measuring the electrophysiological activity 

of two or more brain regions of interest using EEG, iEEG or MEG (Robinson and Mandell, 2015). 

Of increasing interest, MEG (Cohen, 1972) has emerged as a valuable, non-invasive, tool to assess 

local and long-range modulations of synchronized neural activity in human subjects (e.g. Gross et 

al., 2013; Jerbi et al., 2007; Hamalainen et al., 1993; Hamandi et al., 2016; Pang and Snead III, 

2016; Siekmeier and Stufflebeam, 2010; Stam, 2010; Wilson et al., 2016).  

 

Although EEG permits the probing of large scale networks, with high temporal resolution, MEG 

has a number of advantages. For instance, the magnetic signal that is captured by MEG is less 

distorted by brain tissue and skull than the electrical field detected by EEG. Additionally, MEG 

source-reconstruction methods can provide valuable spatial information to better characterise 

neural network modulations. Finally, in the context of clinical research, and more specifically in 

psychiatry, the fast and easy set-up of the MEG system is likely to be less unnerving for patients 

than the lengthy procedure of EEG. Taken together, exploration of the potential of MEG in 

psychiatry is an important endeavor that could lead to better understanding of psychopathology. 

Further details about the technical aspects of MEG have been overviewed elsewhere (e.g. Stam, 

2010; Uhlhaas et al., 2017; Gross et al., 2013; Hamalainen et al., 1993). 
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2.2.1.2 Purpose of this review 
 
Despite being the object of a thriving field of clinical research, the investigation of intrinsic neural 

network alterations in psychiatric illnesses is in its early days and is predominantly conducted 

using fMRI or EEG. The recent contributions and future promise of MEG in this field are not fully 

recognized and valued. In the present paper, we review recent findings in MEG resting-state 

connectivity within two mood disorders: major depressive disorder (MDD) and bipolar disorder 

(BD). Most importantly, this review provides a critical assessment of currently employed methods 

and outlines important limitations that need to be considered in future resting-state MEG studies 

of mood disorders.  

2.2.1.3 Important concepts and terminology 
 

Resting-state networks: When subjects are asked to lay or sit still in an MRI, PET, EEG or MEG 

set-up, and to let their minds wander, the activity that arises is one that speaks of the fundamental 

organization – or disorganization – of the brain (e.g., Brookes et al., 2011; Buckner et al., 2008; 

Deco et al., 2011; Shehzad et al., 2009). Resting states can be categorized into several networks 

(on the order of 7 ± 1): the sensori-motor network, the primary and extra-striate visual network, 

the auditory network, lateralized fronto-parietal networks, the temporo-parietal network, the 

central executive network (CEN) and the, most extensively studied, Default Mode Network 

(DMN), (Beckmann et al., 2005; Van Den Heuvel et al., 2009; J S Damoiseaux et al., 2006; Biswal 

et al., 1995; Buckner et al., 2008; Mulders et al., 2015; Fox and Raichle, 2007). The DMN englobes 

primarily the medial prefrontal cortex (mPFC), the posterior cingulate cortex and the precuneus 

cortex, as well as the inferior parietal cortex, the lateral temporal cortex and the subgenual anterior 

cingulate cortex (Buckner et al., 2008; Mulders et al., 2015). A large amount of evidence shows 

the DMN to be deactivated when one is engaged in a cognitive or sensorimotor task, and active 

during rest or meditative tasks (Öngür et al., 2010; Raichle et al., 2001; Allen et al., 2014; van den 

Heuvel and Hulshoff Pol, 2010). Of particular interest, disruptions in this network have been linked 

to the occurrence of psychopathological symptoms (e.g., depressive, manic, or psychotic episodes) 

(Mulders et al., 2015; Buckner et al., 2008; Buckner, 2013; Karbasforoushan and Woodwardm, 

2012; Vargas et al., 2013).  

 

Anatomical, functional and effective connectivity: The literature on neural network connectivity, 

particularly graph theory, suggests that the purpose of a node is guided by how it is connected to 
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other nodes in a given network, and that its function is a consequence of the action of its integral 

network (Buzsáki and Draguhn, 2004). Hence, when resting-state activity is observed for a few 

minutes, the spontaneous oscillatory behaviors form consistent and reliable functional networks 

(e.g. Bullmore and Sporns, 2009). The efficiency of the connections within and between these 

networks appears to rely on at least two main factors: epigenetics and experience (Friston, 1998). 

The first factor pertains to the interaction between genes and the growth of brain structures, while 

the second pertains to intrinsic neural activity and activity-dependent changes in synaptic strength 

(e.g., learning) elicited by a person’s interaction with their environment. 

 

Three types of connectivity are generally examined: anatomical, functional and effective. First, 

anatomical connectivity pertains to the physical connection between brain regions. It is typically 

examined using MRI-based DTI analysis of white matter, axonal, tracts (Rubinov and Sporns, 

2010). Second, functional connectivity is used to describe the statistical dependency of time-series’ 

activity arising from two brain areas (Hillebrand et al., 2012; Friston, 2011; Schoffelen and Gross, 

2009). It can be measured using linear and non-linear tools such as correlations, coherence, phase-

lag index and mutual information (Wang et al., 2014; Knösche and Tittgemeyer, 2011; Sakkalis, 

2011; Stam et al., 2007). It is important to note that, while evidence from both human and animal 

work shows a close relationship between structural and functional connectivity (Greicius, 2008; 

Honey et al., 2007; Damoiseaux and Greicius, 2009; Greicius et al., 2009), direct anatomical 

linkage is not necessary for functional connections to take place (Honey et al., 2009; Damoiseaux 

and Greicius, 2009). Finally, effective connectivity speaks of the direct or indirect influence of one 

brain system on another based on neuronal coupling (Friston, 2011; Bullmore and Sporns, 2009), 

and can be measured using metrics such as Granger causality and direct transfer functions (Astolfi 

et al., 2004). In this review, we focus on functional connectivity abnormalities across major 

depressive disorder and bipolar disorder. 

 

Local power modulations vs long-range inter-areal connectivity in MEG and EEG: It has been 

proposed that local and long-range neural synchrony patterns speak of the inherent organization 

of the  brain (Mathalon and Sohal, 2015; Buzsáki and Draguhn, 2004) and, thus, an exploration of 

oscillatory rhythms could help us understand the fundamental neural functioning of different 

populations. However, confusion can emerge for investigators that are new to the discussion on 

neural network connectivity. This confusion is entangled in the lack of consistency in the 
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vocabulary employed to describe the two different processes of local and long-range synchrony. 

It has been argued that when neural populations synchronize, it is a phenomenon that expands 

across multiple temporal and spatial scales, from local integration of information within areas that 

specialize in the same functions to long-range connections that connect different modalities of an 

object (Varela et al., 2001). Generally speaking, local synchrony is what is captured by power 

estimation from a single brain signal (e.g. data from one channel or cortical source). By contrast, 

long-distance synchrony is captured by estimating the coupling between data from two brain 

signals. 

 

Specifically, local power modulations of a neural population reflect the activity of a small spatial 

area of neurons on the order of 1 cm (based on experiments in visual networks; e.g. Girard et al., 

2001). The measure of spectral power is taken as a reflection of the amplitude of oscillations at 

different frequencies (Uhlhaas and Singer, 2013). Neurophysiological studies have underlined the 

importance of examining local synchronization in order to observe the different types of 

information that are carried by different frequency bands (Varela et al., 2001; Uhlhaas et al., 2008). 

As for long-range connectivity, it reflects the functional coordination and synchronization of 

time-series from two brain regions that may or may not have direct structural linkage (e.g., through 

myelinated white matter tracts). This type of connectivity bridges brain areas between and within 

different neural networks (Mathalon and Sohal, 2015; Buzsáki and Draguhn, 2004; Spellman and 

Gordon, 2015; Uhlhaas and Singer, 2013).  

 

While local and long-range synchrony can both be measured at sensor and source levels during 

EEG and MEG studies, caution should be taken when measuring the statistical or coherence 

differences between two recording (sensor) sites. Indeed, what may first be thought to be 

coordinated time-series reflecting connectivity between two brain areas (Buzsáki and Watson, 

2012), may in fact be spurious coupling arising from volume conduction or field spread (e.g. 

Marzetti et al., 2008; Schoffelen and Gross, 2009). Different methods have been proposed to 

overcome this challenge. A solution that can be applied to reduce the impact of this linear mixing 

limitation is to use coupling measures that are not overly affected by field spread and perform the 

connectivity estimations in MEG source space (cf. Nolte et al., 2004; Stam et al., 2007; Schoffelen 

and Gross, 2009; Vinck et al,. 2011) (see section 2.2.4.4). 
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2.2.2 Abnormal connectivity in psychiatric disorders: where do we 
stand? 

 

The following section provides a brief and non-exhaustive multi-modal overview of the rapidly 

increasing body of neuroimaging research that links psychiatric disorders to pathological 

alterations in neuronal connectivity, in line with previous work that overviewed network 

connectivity in SZ (Uhlhaas, 2013; Uhlhaas and Singer, 2013) and depressed patients (Mulders et 

al., 2015) across different neuroimaging modalities. Because of the current effervescent nature of 

this field, an in-depth account of the neuronal network dysfunction in mental illness is beyond the 

scope of this review. Instead, we will focus on findings that are particularly relevant to past, 

current, and potentially future resting-state magnetoencephalographic investigations. With this in 

mind, we first describe recent resting-state EEG and fMRI evidence that suggests dysfunctional 

intrinsic neural communication in major depressive (MDD) and bipolar disorders (BD). 

2.2.2.1 Major depressive disorder (MDD) 
 

With over 100,000 scientific papers on PubMed, depression is the most common and the most 

studied psychiatric illness in humans. MDD is characterized by features such as low mood and/or 

a loss of interest in daily activities for an extended amount of time and, typically, involves 

ruminative, self-referential thoughts (American Psychiatric Association, 2013b). A lifetime 

prevalence of 11.3 % has been reported in Canada (Satistics Canada, 2012) and 16.2% in the US 

(Kessler et al., 2003), while across the world, it is estimated that 350 million individuals suffer 

from depression (World Health Organization, 2016). While a number of impactful task-based 

studies have explored alterations in oscillatory synchronizations (e.g.,  Anand et al., 2005a; 

Silbersweig, 2013; Vasic et al., 2009), the following subsections will focus on resting-state fMRI 

and EEG studies in MDD population. 

2.2.2.1.1 FMRI resting-state connectivity findings in MDD 
 

Given the DMN’s role in self-referential behaviors (Raichle, 2001; Buckner, 2008), this network, 

particularly the medial prefrontal cortex (medial PFC), is recurrently noted as a region important 

for the discrimination of depression from normal population (Iwabuchi et al., 2015; Kaiser et al., 

2015; Mulders et al., 2015; Gong and He, 2015). Specifically, fMRI studies show depressed 

patients to display increased connectivity between certain nodes of the DMN (for instance, 
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between the subgenual anterior cingulate cortex (ACC) and the posterior cingulate cortex (Berman 

et al., 2011)) that could be detrimental to cognitive processes (Broyd et al., 2009; Greicius et al., 

2007). These findings are supported by reviews that also highlight enhanced patterns of 

connectivity within these areas of the DMN (Whitfield-Gabrieli and Ford, 2012; Northoff, 2016). 

In addition, studies have observed altered connectivity between nodes of the DMN and the nodes 

of the CEN. For instance, one study found enhanced connectivity between the dorsolateral PFC 

and the subgenual ACC (Fox et al., 2012), while a review found decreased connectivity between 

the inferior/superior parietal DMN & dorsal CEN (Northoff, 2016). 

 

Moreover, a number of original studies and reviews have reported atypical functional connectivity 

within areas key to emotional processing. Indeed, limbic regions (amygdala, insula Veer et al., 

2010; Zeng et al., 2012), parts of the DMN (medial PFC, Gong and He, 2015; Zeng et al., 2012), 

and long-range connections between the DMN and the limbic system (e.g., thalamus and posterior 

cingulate cortex, Greicius et al., 2007), as well the CEN and the limbic system (e.g., dorsolateral 

PFC and amygdala, Dannlowski et al., 2009; He et al., 2016; Siegle et al., 2007) appear reduced 

in patients compared to controls. However, connectivity between the saliency network (i.e. anterior 

insula, dorsal anterior cingulate cortex) and the anterior DMN (Mulders et al., 2015), as well as 

between the insula and the amygdala (Avery et al., 2014) seems enhanced in depressed individuals 

when compared to controls. 

 

All in all, within and between network connectivity of the DMN and limbic system appear to be 

altered in MDD patients, particularly with respect to projections involving the subgenual ACC. 

The atypical resting-state organization of their brain appears to correlate with their cognitive and 

emotional symptoms (Drevets, 2007). 

2.2.2.1.2 EEG resting-state connectivity findings in MDD 
 

2.2.2.1.2.1 EEG power modulations (local synchronization) 
 

Examinations of local synchronizations in depressed populations have consistently found low-

frequency bands (< 20 Hz) to display enhanced power and coherence across most brain regions 

(Koo et al., 2015; Leuchter et al., 2015, 2012; Northoff, 2016; Olbrich et al., 2014; Schulman et 

al., 2011). However, power modulations in higher frequency band (> 30hz) do not seem to be a 
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discriminative factor to differentiate the resting-state of depressed and control subjects (e.g., 

Northoff, 2016).  

 

2.2.2.1.2.2 EEG connectivity (long-range synchronization) 
 

Similar to findings from fMRI, EEG studies have found disruptions and asymmetrical connectivity 

patterns within the frontal lobe of MDD patients in theta  (5-7 Hz) and alpha (8-13 Hz) frequency 

bands compared to healthy control subjects (Fingelkurts et al., 2007; Keeser et al., 2013). 

Treatment-based EEG studies established once more the importance of the subgenual ACC. 

Indeed, depressed patients appear to show enhanced connectivity within nodes of the DMN, and 

between nodes of the DMN and the CEN (Olbrich et al., 2014; Northoff, 2016). Specifically, 

enhanced connectivity in alpha-band (8-12 Hz) between the subgenual ACC and left medial PFC 

is observed before antidepressant treatment, which switched into enhanced connectivity in beta-

band (12.5-20 Hz) between the subgenual ACC  and right medial PFC after antidepressant 

treatment, thus underlying the recurrent asymmetrical connectivity patterns observed in MDD 

patients’ frontal lobe (Olbrich et al., 2014; Keeser et al., 2013). Moreover, it has been suggested 

that alterations in fronto-temporal connectivity in delta/theta (1-8 Hz) frequency range could be 

used a marker to predict responders and non-responders to antidepressant medication (i.e. selective 

serotonin reuptake inhibitor), with hyperconnectivity between these areas being associated to 

poorer response (Lee et al., 2011). 

 

The observations discussed above are consistent with insights achieved using deep brain 

stimulation (DBS) in MDD patients. Clinical trials with deep brain stimulation (DBS) have 

targeted the overactive subgenual anterior cingulate cortex (subgenual ACC) and the 

thalamocortical pathway, for the treatment of severe depression (Mayberg et al., 2005; Johansen-

Berg et al., 2008). While the success of such surgical procedure is still debated (Lozano et al., 

2012; Kennedy et al., 2009, 2011; Puigdemont et al., 2012; Morishita et al., 2014;), DBS involves 

the implantation of intracranial electrodes that allow a rare window into the circuitry of MDD. 

2.2.2.2 Bipolar disorder (BD) 
 

Bipolar disorder (BD) is a functionally debilitating disorder. The main categories of BD are BD-I 

and BD-II, which are characterized by either a combination of manic episodes and depression, or 
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by hypomania episode(s) and depressive symptoms, respectively (American Psychiatric 

Association, 2013b). A lifetime prevalence of 2.6 % has been reported in Canada (Satistics 

Canada, 2012) and around 4% (across all types of BD) in the US (Merikangas et al., 2007), while 

across the world, it is estimated that 60 million individuals suffer from BD (World Health 

Organization, 2016). 

 

Task-based fMRI/EEG studies that have explored connectivity patterns in BD population have 

found synchronization alterations that differentiates them from healthy individuals (Almeida et al., 

2009; Versace et al., 2010; Wang et al., 2009). However, in this section, we will explore the 

research that have studied BD patients during a resting-state condition. 

2.2.2.2.1 FMRI resting-state connectivity findings in BD 
 

Multiple fMRI studies have attempted to untangle the connectivity anomalies observed in these 

patients, with somewhat contradicting results. Indeed, depending on the analytical method used to 

extract connectivity, whether it be independent component analysis (ICA) or seed-based/regions 

of interests (ROIs), wavering conclusions have been made on BD patients’ cortico-limbic 

connectivity patterns (e.g. Chase and Phillips, 2016).  

 

While DMN activity has been closely linked to mind wandering and interoceptive thoughts 

(Raichle et al., 2001; Buckner, 2013), it has also been shown to be germane to social cognition, 

which is known to be impaired in psychiatric disorders (Piguet et al., 2015; Magioncalda et al., 

2015; Reinke et al., 2013). A number of fMRI studies have summarized that most bipolar patients 

and their unaffected relatives have decreased connectivity within the nodes of the DMN (Öngür et 

al., 2010; Martino et al., 2016), between the medial PFC and the insula compared to controls 

(Calhoun et al., 2012). Hyperconnectivity has been noted between the DMN and the CEN (Chai 

et al., 2011), the DMN and the temporo-parietal network (Öngür et al., 2010), and the DMN and 

the visual and the auditory networks  (Öngür et al., 2010; Rashid et al., 2014) compared to controls. 

Finally, the predominant result of this research in BD, based on reviews of fMRI and DTI studies, 

shows altered connectivity between parts of the DMN (e.g., medial PFC) and the limbic system 

(e.g., amygdala, Chai et al., 2011; Chase and Phillips, 2016; He et al., 2016; Houenou et al., 2012; 

Phillips and Swartz, 2014; Strakowski et al., 2012; Vargas et al., 2013).  
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With respect to the ventrolateral PFC, contradicting findings have been reported, with some 

estimating enhanced connectivity with the amygdala (Strakowski et al., 2012; Chase and Phillips, 

2016), while others diminished (Liu et al., 2014) compared to controls. In addition, a number of 

studies have investigated the influence of psychotic symptoms on network connectivity patterns 

during resting-state. For instance, one paper observed hypoconnectivity within the PFC, and 

between the dorsolateral PFC (CEN) and amygdala (Anticevic et al., 2013), that was 

predominantly present in BD patients who presented with a history of psychosis, and not in non-

psychotic BD or controls. 

 

All in all, models proposed by many researchers suggest that disruption between these keys areas, 

particularly connectivity involving the amygdala, underlie the occurrence of manic symptoms and 

inefficient emotional management (Strakowski et al., 2012; Chase and Phillips, 2016).   

2.2.2.2.2 EEG resting-state findings in BD 
 

2.2.2.2.2.1 EEG power modulations (local synchronization) 
 

EEG analyses of local synchronization have predominately reported group differences in the 

frontal region and the cingulate cortex. Examinations in modulations of local oscillatory behavior 

in the frontal cortex show enhanced power in alpha 8-13 Hz (Nusslock et al., 2012), beta and 

gamma (Howells et al., 2012; Kam et al., 2013) frequency bands compared to controls. In the 

cingulate cortex, low-frequencies, theta and alpha, had decreased power (Howells et al., 2012; Kim 

et al., 2013; Yener and Başar, 2013), while higher frequency bands, beta (15-30 Hz) and gamma 

(30-50 Hz), displayed increased power compared to controls (Howells et al., 2012; Kam et al., 

2013). 

 

2.2.2.2.2.2 EEG connectivity (long-range synchronization) 
 

With respect to long-range connectivity, an EEG investigation noted decreased connectivity in the 

alpha (8-12 Hz) frequency band within fronto-central and centro-parietal neural network 

connections of patients compared to healthy controls (Kim et al., 2013). However, more studies 

are needed to confirm this finding and increase the specificity of the affected regions. The 

accumulated evidence from multi-scale modalities (e.g., fMRI and EEG) indicates that individuals 
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affected by BD display atypical local and long-range connectivity patterns within the nodes of the 

DMN and between the PFC and the amygdala. 

 

Taken together, the fMRI and EEG findings in MDD and BD patients indicate that these 

populations may have difficulties processing and transferring information economically that can 

be detectable as connectivity anomalies between and within resting-state networks. Research into 

pathological alterations of resting-state activity provides critical insights into large-scale network 

dynamics which complement key findings that continue to emerge from task-based studies (Perry 

and Singh, 2014). In the next section, we will overview the results of MEG studies that examined 

resting-state connectivity and alterations in frequency-band modulations within the MDD and BD. 

We will also examine the overlap in connectivity findings that has been reported across different 

resting-state neuroimaging modalities. 

 

2.2.3 Resting-state MEG connectivity and mood disorders: What do we 
know?  

 

Although still in its early days, MEG has led to important clinical insights in numerous brain 

disorders and has become a promising tool for clinical and translational research in psychiatry 

(Williams and Sachdev, 2010; Siekmeier and Stufflebeam, 2010). In the following, we will focus 

specifically on MEG contributions to elucidate resting-state alterations in mood disorders.  

2.2.3.1 Major depressive disorder 
 

A hierarchical approach was taken in order to isolate the key-words that were most appropriate for 

this review. First, we began with “MEG + condition “, where condition was the general term for 

either MDD (i.e., depression), and BD (i.e., bipolar). We then refined this search by adding the 

term “resting” in order to capture studies that included a resting-state paradigm. Finally, we used 

the term “connectivity”, in order to capture publications that also evaluated long-range 

synchronization, as resting-state alone, could potentially refer to power analyses. Various 

combination of these terms, as well as cross-referencing, was employed to ensure that all studies 

investigating MEG resting-state local power and long-range synchrony in MDD and BD patients 

were considered.  
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Here, a PubMed search using the key words “MEG + connectivity + depression” resulted in 16 

hits, 12 of which were however unrelated to our topic of interest. Another search of the key words 

“MEG + depression + resting” yielded 12 studies, with only 2 studies being relevant additions to 

this review. Among the articles that were found, the final count of scientific articles included in 

this paper is of 5. 

2.2.3.1.1 Altered resting-state MEG power patterns in MDD 
 

The recent article by Jiang et al (2016) compared the oscillatory activity of major depressive 

disorder (MDD) patients to those of age- and education-matched control subjects. Depression 

correlated with power decrease in theta (4-8 Hz) and alpha (8-14 Hz) frequency bands in the frontal 

and parietal areas, respectively, as well as with enhanced power in beta-band (14-30 Hz) 

oscillations in the DMN. Similar to EEG findings, no significant difference was found between 

the two populations across higher frequency bands (>30 Hz, Jiang et al., 2016).  

 

Moreover, Li and colleagues (2013) examined MEG signals in treatment-resistant MDD 

individuals who received 10 daily repetitive transcranial magnetic stimulation (rTMS) in the 

region of the dorsolateral PFC for 2 consecutive weeks. The authors normalized the spectral 

amplitude of five frequency bands (delta, 2–4 Hz; theta, 4–8 Hz; alpha, 8-13 Hz; beta, 13–30 Hz; 

and gamma, 30–50 Hz) by the mean power across all bands to obtain a relative amplitude index 

for each oscillatory band. Moreover, they measured frontal alpha asymmetry (FAA) in all their 

subjects, as FAA had been previously associated with symptom severity in depression (Zotev et 

al., 2016). This paper however found no significant difference between patient and control subjects 

in terms of FAA, similar to the inconclusive results of previous electrophysiological studies on 

FAA e.g.: (Brzezicka et al., 2016; Jesulola et al., 2015). 

2.2.3.1.2 Altered resting-state MEG connectivity patterns in MDD 
 

Table 3 summarizes the details of the four studies on MEG resting-state connectivity in MDD 

patients. The article by Nugent and colleagues (2015) demonstrated that resting state networks are 

altered in MDD patients compared to controls in beta-band (14-30 Hz). Specifically, based on 

temporal ICA analyses and correlations in source-space, they found patients to have altered 

connectivity between nodes of the DMN and the limbic system. Specifically, long-range 

connectivity between the subgenual anterior cingulate cortex and the hippocampus was diminished 
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in patients (Nugent et al., 2015). Moreover, the authors observed MDD patients to show enhanced 

connectivity between the right insular-temporal region and parts of the limbic system (i.e., 

amygdala, thalamus), and the left insular-temporal region and the angular gyrus in the parietal lobe 

and the precentral gyrus, which is part of the posterior region of the frontal lobe (Nugent et al., 

2015).  

 

In a follow-up MEG study (Nugent et al., 2016), the same authors sought out to examine the effect 

of ketamine on long-range synchronizations in MDD patients. The source-space connectivity 

patterns that were uncovered were similar to the disrupted areas found in their earlier paper 

(Nugent et al., 2015). In the beta frequency band (14-30 Hz), 0.5 mg/kg of ketamine restored the 

abnormal hyper-connection between amygdala and insula-temporal regions to normal levels. 

Interestingly, the authors noted that ketamine appeared to decrease all connectivity patterns across 

all the regions of the brain, regardless of the subjects’ baseline activity.   

 

Pathak and colleagues (2016) recently used the magnitude-squared coherence to estimate long-

range connectivity in depressed individuals before and after rTMS in the dorsolateral PFC at 10Hz. 

Their source-space findings (via minimum norm estimate) reveal that symptom improvement after 

four weeks of treatment correlated with changes in the connectivity within the DMN. Post-TMS, 

MDD patients found increased coherence between the dorsolateral PFC and the amygdala and the 

pregenual cingulate cortex in the delta-band, as well as decreased coherence in the gamma band 

between the dorsolateral PFC and the subgenual ACC before treatment (Pathak et al., 2016). The 

findings of this paper could imply that baseline connectivity patterns in MDD involve diminished 

coherence between dorsolateral PFC-amygdala and dorsolateral PFC-pregenual cingulate cortex, 

along with enhanced coherence between dorsolateral PFC-subgenual ACC. Moreover, the 

outcome of this study underlines the importance of analyzing and reporting the type of treatment 

received by patients as it directly affects neural network organization.  

 

Finally, Li and colleagues’ longitudinal study (2013) explored connectivity in alpha-band 

oscillations in the prefrontal cortex (via MEG) and glucose-metabolism in the thalamus (via PET), 

which is typically underactive in MDD patients. For the analysis of PFC and thalamus 

connectivity, patients were divided into binary categories of responders and non-responders to 2-

week treatment of rTMS at 10 Hz. Patients were categorized based on their symptom ratings on 
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the Hamilton Depression Rating Scale in the 8th week of the study. This type of antidepressant 

treatment was able to rescue the disrupted functional connection in responders 14 weeks after the 

start of the study, while this did not succeed in non-responders. Thus, according to the authors, 

their sensor-space finding could be seen as additional evidence that the strength of prefronto-

thalamic connectivity could be an index of depressive symptoms, as previously observed in fMRI 

studies (Greicius et al., 2007).  

 

The main finding of these MEG papers speak of altered long-range connectivity between the DMN 

and the CEN. Particular, the resting-state MEG literature supports previous fMRI studies that have 

demonstrated the implication of the subgenual cingulate cortex, the dorsolateral PFC and the 

thalamus in illness severity and symptomatology in MDD (e.g. Greicius et al., 2007). Importantly, 

this brain region is typically targeted for deep brain stimulation and rTMS in treatment resistant 

depressed individuals, and is thus critical to the understanding of their resting neural networks 

(Drevets et al., 2008; Jaworska et al., 2016; Johansen-Berg et al., 2008; Mayberg et al., 2005). 

2.2.3.1.3 Relationship to task-based MEG findings 
 

This section explores task-based MEG studies that corroborate connectivity results from resting-

state MEG studies in MDD. 

 

A number of studies have investigated the long-range connectivity patterns that emerge during 

affective and cognitive tasks in psychiatric patients. Amongst their findings, the diminished long-

range synchronization between the dorsolateral PFC and the amygdala, observed recently in 

resting-state MEG by Pathak et al (2016), was also observed by Lu et al (2012). Indeed, the authors 

explored effective connectivity within the prefrontal-limbic system circuit using dynamic causal 

modeling analysis (Lu et al., 2012). During the affective task, subjects viewed 3-second clip of 

faces that were eating, neutral, happy or sad, and then indicated by button-press if the expression 

was sad or not. Under the most optimal model, patients had decreased connectivity from the 

dorsolateral PFC to the amygdala compared to controls. The authors hypothesized that this could 

explain part of the dysfunction observed in MDD patients with respect to the integration of both 

affective and cognitive information for overt behavior.  
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Other connectivity alteration in MDD patients have also been noted in task-based MEG studies. 

Specifically, a measure of wavelet coherence has shown enhanced connectivity between the 

anterior cingulate cortex (ACC) and the amygdala in the gamma (30-48 Hz) and in the delta (below 

4Hz) frequency bands (Lu et al., 2013 a). Moreover, enhanced connectivity between the amygdala 

and the inferior frontal gyrus, as well as between the amygdala and the anterior cingulate cortex, 

in patients, were found to be highly discriminative features during the aforementioned affective 

task to differentiate MDD and control subjects (Lu et al., 2013 b). These connectivity alterations 

have yet to be observed in resting-state MEG findings. It may be the case that these differences in 

long-range synchronizations are due to the nature of the task or, rather, that they are best detected 

by these emotion-based paradigms.  

 

Lastly, Salvadore et al (2010) used the widespread working-memory task, N-back, to investigate 

how the connectivity patterns of MDD patients change before and after a single ketamine infusion. 

During this task, subjects were asked to keep in mind a stimulus (number between 1 and 4) and to 

respond when it was matched to the observed stimulus either right away, or one or two trials 

previously.  Using source-coherence analysis, the authors observed that the connectivity strength 

between the pregenual ACC and the left amygdala correlated negatively with the effect of 

treatment. Indeed, stronger coherence between these two regions prior to ketamine infusion 

correlated with improvement in symptoms. Similar findings about altered long-range 

synchronization between the subgenual ACC and the amygdala have been observed in intracranial 

EEG/DBS studies (Mayberg et al., 2005; Johensan-Berg et al., 2008). Given the reoccurring report 

of involvement of these brain regions, future resting-state MEG studies could clarify whether this 

pattern of connectivity alteration pertains to the nature of the task or to the intrinsic neural 

organization in MDD. 

2.2.3.1.4 Strengths and limitations of resting-state MEG studies in MDD 
population 

 

An important limitation that connectivity studies might display is that of being conducted at 

sensor-level rather than source-level. While most of the reported MDD studies were conducted in 

source-space, the article by Li et al (2013) was in sensor-space, where only 26 gradiometers (out 

of a possible 306 channels) from the frontal region was used. However, the article had a major 

strength of employing a multimodal approach to studying connectivity (MEG, PET, TMS), which 



 83 

included an anatomical T1 from MRI to obtain anatomical precisions. This allowed access to a 

richer set of information than what is provided using a single neuroimaging tool. Next, exploring 

specific frequency bands can also be a limitation. Indeed, in the article by Nugent et al (2015) only 

the beta-band frequency range was explored, while Li et al (2013) reported only on alpha-band 

oscillatory behavior. A strength of the Nugent et al (2015) is that the authors took additional 

quality-control steps (to verify reliability of ICA estimates), as well as tested the reliability of their 

results by comparing it to a second data set (un-matched groups) and importantly had un-medicated 

SZ subjects. By doing so, the authors allowed to examine intrinsic connectivity prior to 

pharmaceutical effects. Furthermore, the metric of coherence and correlations can raise questions 

about the spatial accuracy of the long-range synchronizations observed due to potential field spread 

effect. Finally, small sample size can be problematic in the interpretation of findings. In their recent 

study, Nugent et al (2016) explored the effect of ketamine on long-range synchronization and on 

symptoms scores as assessed by the Mania and Depression Rating Scale (MADRS) in a subset of 

patients from their previous study (Nugent et al., 2015). However, this was performed in a small 

number of subjects. However, non-parametric statistical tests were applied to compensate for their 

cohort of patients. Similarly, while Pathak et al (2016)’s study was important to evaluate the 

longitudinal effect of repetitive TMS on neural network connectivity, the small sample of patients 

(n = 5) and lack of multiple comparisons put the findings of this paper at risks of Type I error, a 

fact acknowledged by the authors. While it is important to evaluate promising treatments, it would 

be interesting to evaluate its effect on connectivity patterns in a larger cohort of patients to increase 

reliability. 
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TABLE 3: MEG RESTING-STATE CONNECTIVITY STUDIES IN MAJOR DEPRESSIVE DISORDER 

Paper Frequency  

range (Hz) 

Methods Patients Controls Main findings 

(Li et al., 
2013) 

delta: 2-4  
theta: 4-8 
alpha 8–13  
beta: 13–30 
gamma: 30–50 

• Frontal alpha 
asymmetry and 
voxel-based 
partial 
correlation to 
examine 
connectivity in 
prefrontal-
thalamic circuit 
(based on PET) 

• Sensor-space 
analysis 

• 3min eyes-open. 

• 30 MDD 
received 
rTMS, 

• 6 males  
• 17 

Responders: 
mean age:  

51.9 ±10.5 
• 13 Non-

responders: 
mean age: 
50.1±6.2 

• 50 controls 
• 14 males 
mean age:  
49.1± 7.0 

MDD appeared to have impaired prefronto-thalamic 
functional connections compared to controls. rTMS 
resolved this pattern in those who responded to 
treatment after 2 weeks of treatment at 10 Hz in their 
dorsolateral PFC. 
  
 
 
 
 
 

(Nugent et 
al., 2015) 

14-30 • Correlation 
• Source-space 

analysis 
• 4.17min eyes-

closed. 

• 33 MDD  
• 22 males 
mean age: 
42.8±9.9 

• 19 controls 
• 11 males 
mean age: 
39.3±6.5 

Patients had reduced correlations between the 
subgenual ACC and hippocampus in a network with 
primary nodes in the precentral and middle frontal 
gyri. Patients showed increased correlations 
between insulo-temporal nodes and amygdala 
compared to controls. 

(Nugent et 
al., 2016) 

14-30 • Correlation 
• Source-space 
• 4.17min eyes-

closed. 

• 13 MDD 
• 11 males 
mean age:  
45.0±13.2 

• 18 controls 
• 12 males 
mean age: 
39.0±7.3 

Patients displayed enhanced connectivity between 
insulo-temporal areas and amygdala that were  
reduced to normal levels after ketamine treatment. 
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(Pathak et 
al., 2016) 

delta: 2–4  
theta: 5–7 
alpha: 8–12 
beta: 15–29 
gamma: 30–59 

• Magnitude-
squared 
coherence.  

• Seed: 
dorsolateral PFC. 

• Source-space 
• 6min eyes-

closed. 

• 5 MDD 
received 

• TMS, 1 non-
responder  

n/a Symptom improvement by 10 Hz rTMS increased 
connectivity between dorsolateral PFC and 
amygdala, and dorsolateral PFC and pregenual 
ACC in delta band. rTMS decreased connectivity 
between dorsolateral PFC and subgenual ACC. 
 

Table 3 - caption: Overview of MEG resting-state studies examining changes in long-range connectivity patterns in subjects with major depressive 
disorder.  Abbreviations, MDD: major depressive disorder, rTMS: repetitive transcranial magnetic stimulation, PFC: prefrontal cortex, ACC: anterior 
cingulate cortex
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2.2.3.2 Bipolar Disorder 

 

A PubMed search of the key words “MEG + connectivity + bipolar” resulted in no findings. 

However, a search of the key words “MEG + bipolar + resting” yielded 3 studies, 1 of which was 

an EEG study (already discussed in section 2.2.2.1.1).  

2.2.3.2.1 Altered resting-state MEG power patterns in BD  
 

Al-Timemy and colleagues (2014) were able to successfully classify BD and control populations 

using MEG resting-state spectral features within the delta (1.5-4 Hz), theta (4-8 Hz), alpha (8-13 

Hz), beta (13-30 Hz) and gamma frequency bands (30-40 Hz). Relative power modulations in delta 

and theta frequency bands in the posterior region of the brain were observed to be significantly 

different between patients and healthy controls (Al-Timemy et al., 2014). However, the direction 

in these differences were not specified. The authors of this study also explored median frequency, 

described as the frequency that divides the area under the curve of the power map (1.4-40 Hz) into 

two. Their analysis found median frequency (MF) of BD patients to range between 9.92-12.54 Hz 

depending on the examined brain region. Furthermore, unlike healthy control subjects that 

demonstrated a positive correlation between their MF and age, BD patients had a negative 

correlation between MF and age  (Al-Timemy et al., 2014). 

2.2.3.2.2 Altered resting-state MEG connectivity patterns in BD 
 

Table 4 summarizes the details of the relevant study that have been published on BD. Chen and 

colleagues (2008) had an interesting, although small, pool of euthymic (no overt depressive or 

manic symptoms) BD-I patients that was compared to matched healthy controls. The authors 

focused on the frontal cortex’ activity thus, oscillatory modulations in only 11 of their 306 MEG 

channels were reported. Their spectral analysis across pairs of channels was performed using a 

derivative of the Similarity Index (SI) framework used by Arnhold and colleagues (Arnhold et al., 

1999). Differences between patients and controls were noted based on global similarity index of 

channel pairs: patients displayed an increase in the synchronization of delta-band (2–4 Hz) 

frequencies and a decrease in beta-band (12–24 Hz) frequencies within nodes of the frontal cortex 

(Chen et al., 2008). While, there is a number of MEG studies that have examined alterations of 

spectral power in BD during tasks (e.g., Lee et al., 2010; Rich et al., 2010), as it stands and to our 
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knowledge, the paper by Chen et al (2008) is so far the only resting-state MEG study that has 

evaluated functional connectivity in BD population. 

2.2.3.2.3 Relationship to MEG task-based studies 
 

To the best of our knowledge, no MEG task-based study has explored long-range synchronizations 

in BD.  However, EEG resting-state studies, such as one by Kim et al (2013), have observed 

disrupted connections within the PFC of BD patients compared to controls. Future MEG studies, 

with and without tasks, could help elucidate more specific neural network patterns that are either 

specific to the neural organization of BD patients, or, alternatively, to altered patterns of 

information processing.  

2.2.3.2.4 Strengths and limitations of resting-state MEG studies in BD 
population 

 

Although of important value, the resting-state MEG study by Chen et al. (2008) exploring long-

range synchronization had a number of limitations. For instance, while significant information can 

be gathered by exploring euthymic patients (i.e., with no overt depressive or manic symptoms), 

the pool of subjects was relatively small (n=10). Moreover, in addition to being conducted in 

sensor-space, the authors focused on the frontal cortex’ activity, with oscillatory modulations of 

only 11 of their 306 MEG channels being reported. The investigation of the neural network 

connectivity pattern of BD using MEG is clearly still in its’ early days and more studies are needed 

to elucidate the key connectivity patterns that define this illness. 

 

 
TABLE 4: MEG RESTING-STATE CONNECTIVITY STUDIES IN BIPOLAR DISORDER 

Paper Frequency 

range (Hz) 

Methods Patients Controls Main findings 

(Chen et 
al., 2008) 

delta: 2-4  
theta: 4-8 
alpha:8-12  
beta: 12-24  

Similarity index 
(SI); using 11 
sensors from the 
frontal lobe 
 
Sensor-space 
2min eyes-closed 

10 euthymic 
BD-I 
5 males,  
mean age:  
32.5 ± 10.3 

10 controls: 
5 males, 
mean age: 
32.2 ± 11.6 

Increased synchronization of δ 
frequency oscillations and 
decreased synchronization of b 
frequency oscillations in the 
frontal lobe in BD compared to 
controls. 

 
Table 4 - caption: Overview of MEG resting-state studies examining changes in long-range connectivity patterns in 
subjects with Bipolar Disorder.  Abbreviations, BD-I: bipolar disorder type I. 



2.2.3.4 Summary of MEG findings 

 

The present overview shows that MDD individuals have enhanced connectivity patterns within 

nodes of the DMN (as evidenced by resting-state fMRI and EEG studies), altered connectivity 

between areas of the DMN and the limbic system (particularly between subgenual ACC and 

hippocampus, as evidenced by fMRI and MEG), hypoactivity between regions of the CEN and the 

limbic system (particularly dorsolateral PFC and amygdala, as observed through fMRI and MEG), 

between the nodes of the DMN and the CEN (particularly hyperconnectivity between the 

subgenual ACC and the dorsolateral PFC, as noted using fMRI, EEG and MEG), and 

hyperconnectivity between the insula and the limbic system (amygdala, as noted by fMRI and 

MEG studies). Overall, connections projections from and to the subgenual ACC, as well as the 

dorsolateral PFC, appears to be critical in the treatment and expression of depressive symptoms. 

Figure 5 illustrates the key patterns of altered long-range connectivity in MDD patients, observed 

both using MEG and fMRI (and in some cases also with EEG). 

 

Most of the work in BD arises from resting fMRI research, which has observed altered connectivity 

between areas of the DMN and the limbic system (notably between the medial prefrontal cortex 

and the amygdala), hyperconnectivity between nodes of the DMN and CEN (particularly between 

the medial PFC and dorsal/ventro-lateral PFC), and hyperconnectivity between the ventrolateral 

PFC and the amygdala. Across all three neuroimaging modalities of fMRI, EEG and MEG, altered 

(mainly decrease) connectivity in the PFC has been noted. This hypoactivity in the frontal lobe has 

been thought to be due to the presence of psychotic symptoms in a proportion of BD patients 

(Anticevic et al., 2013). Hence, overall, the amygdala appears to be a key region in BD.  Given the 

scarcity of resting-state connectivity studies in the BD population, we could not illustrate by a 

figure the intrinsic patterns affected in this pathology. This exemplifies the important need of 

conducting more resting-state MEG studies to support (and further characterize) the functional 

findings that are observed through MRI in BD. Such electrophysiological-based results, especially 

if conducted in source-space, could immensely improve our understanding of the fundamental 

network disorganization of this pathology.  
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FIGURE 5: SCHEMATIC OVERVIEW OF THE KEY BRAIN REGIONS THAT SHOW ABNORMAL 
LONG-RANGE CONNECTIVITY PATTERNS IN SUBJECTS WITH MAJOR DEPRESSIVE DISORDER  
Here, we only show areas for which evidence has been confirmed across at least MEG and fMRI modalities. 
Orange arrows represent altered connection between two brain regions that has been confirmed using both 
MEG and fMRI resting state paradigms. Red arrow represents altered resting-state connectivity between 
two regions that has been confirmed across MEG, EEG and fMRI.  Abbreviations, MEG: 
magnetoencephalography, EEG: electroencephalography, fMRI: functional magnetic resonance imaging, 
dlPFC: dorsolateral prefrontal cortex, mPFC: medial prefrontal cortex, sgACC: subgenual anterior 
cingulate cortex, PCC: posterior cingulate cortex. (green-blue striped area represents dlPFC shown here 
from a medial view perspective for convenience). 
 

2.2.4 Challenges, pitfalls and methodological recommendations for 
future studies  

 

The assessment of resting-state connectivity patterns in psychiatric populations with MEG is a 

fairly new field still faced with substantial technical challenges. This section addresses the most 

important methodological issues that need to be understood and taken into account. Most 

importantly, in addition to delineating current limitations, we provide suggestions and 

methodological recommendations to help the field move forward.   
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2.2.4.1 Choosing an appropriate connectivity metric: Lack of a gold standard 

 

In contrast to functional connectivity estimations in fMRI, where the primary measure is 

straightforward correlation between the BOLD time series in various voxels or ROIs, MEG 

connectivity estimation is a more complex endeavor (van Diessen et al., 2015). This complexity 

has two distinct causes: first, many common connectivity metrics come with important 

methodological pitfalls, and second, the richness and multi-faceted nature of neuromagnetic 

signals can allow the exploration of a wide variety of interactions (e.g., phase-amplitude coupling, 

phase-phase coupling, etc.). A question that is thus reoccurring is the following: which coupling 

method should one use? Choosing the right connectivity metric to assess long-range MEG 

coupling is a critical decision which can easily bias the results of the study.  

Generally speaking, most of the commonly used interaction measures (e.g. coherence or phase-

locking value) face, to various extents, limitations caused by linear mixing (source leakage), which 

is an inherent issue to field spread in MEG data (Schoffelen and Gross, 2009). Although several 

coupling measures have been proposed (e.g. Colclough et al., 2015; Hillebrand et al., 2016, 2012; 

O’Neill et al., 2015; Sakkalis, 2011), there is no consensus as to which one provides the best 

estimate of true cortical interaction. Ideally a reliable and robust measure would fulfill two criteria: 

it would be (a) minimally sensitive to linear mixing and (b) maximally sensitive to the specific 

physiological mechanisms that underlie the neural interaction. Indeed, there is not much use for a 

technique that is entirely immune to field spread effects if the quantity that it estimates does not 

capture the true physiological functional interaction. Without a clear hypothesis about the precise 

long-range physiological coupling mechanism, one compromise that may well be worth 

considering, is to examine connectivity through a combination of complementary metrics. This 

could be achieved, for instance, through joint exploration of phase-based and amplitude-based 

measures. In this context, we encourage the assessment of phase-lag index (Vinck et al., 2011; 

Stam et al., 2007) in parallel to band-limited envelope correlations (Hipp et al., 2012; Brookes et 

al., 2012; O’Neill et al., 2015).  

2.2.4.2 Sensor vs Source-level analyses   

 

While important information can be gained from combining sensor-level MEG data with advanced 

connectivity metrics, source-space network assessments are key to simultaneously identify the 
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neuroanatomical substrates and functional role of the involved networks. Moreover, source-level 

estimation is critical to help bridge the gap between MEG and fMRI findings in the field of 

psychiatry. While most of the studies reviewed here use source-space connectivity measurements 

(Nugent et al., 2016; Nugent et al., 2015; Pathak et al., 2016; Hinkley et al., 2011; Bowyer et al., 

2015; Robinson and Mandell, 2015), most electrophysiological studies still conduct their analyses 

in sensor-space. A question one might ask is which source estimation technique would be 

considered most efficient for the specific aim of measuring resting-state MEG source-level 

connectivity patterns. Most of the available techniques differ in their underlying assumptions about 

the properties of the sources (Gross et al., 2013; Baillet et al., 1999). Attempts to infer the most 

appropriate source reconstruction method based on real data are hard to evaluate given that the 

ground truth is unknown. Using simulations can help us appreciate the strengths and limitations of 

a coupling method, but the extent to which it is useful for its application to real data is difficult to 

assess. The lack of a reliable gold standard is a concern for MEG analyses in general, and for MEG 

resting-state network assessments in particular. One could argue that the discussion on identifying 

the best inverse method might be considered an ill-posed question in itself with no unique solution. 

Nevertheless, we expect most families of source estimation methods (e.g. minimum-norm or 

spatial filters) to provide similar results when applied properly. Above  all, what is most important 

is to understand the pitfalls and limitations of a chosen method, and their impact on source-space 

connectivity estimations (Hincapié et al., 2016). 

2.2.4.3 Stability of MEG-based resting-state networks estimations 

 

A challenge that is not yet entirely resolved is that of the robustness and consistency of MEG-

based resting-state estimation over time and across participants. Recent research has addressed the 

reliability of MEG resting-state connectivity metrics (Colclough et al., 2016) and its test-retest 

reliability (Garcés et al., 2016). Both inter- and intra-subject consistency of MEG resting-state 

network estimations have been investigated and it has been found that, while variability exists, 

seed-based and appropriate averaging techniques allow to compare subjects between and within 

groups (Wens et al., 2014). Epoch length is a potential source of variability that also needs to be 

considered when measuring resting-state connectivity (for an EEG study, see Fraschini et al., 

2016). Such parameters need to be carefully chosen prior to designing the resting-state MEG 

acquisition protocol. In addition, when it comes to clinical patients, it is recommended to acquire 
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longer resting-state data than for healthy subjects as there is a higher risk of artefacts (see next 

section 2.2.4.4). The psychiatry-focused studies that were reviewed here used recording lengths 

that varied between 2 and 6 minutes, although most of them used 3-4 minutes. A gold standard for 

data length in MEG resting-state protocols is lacking.  Three minutes seems to be an acceptable 

lower limit and 4-5 minutes can be considered a reasonable recommendation, and likely necessary 

in the case of patient populations (where subsequent data loss is expected because of more 

artefacts). Similarly, there is currently no consensus on whether resting-state protocols should be 

performed with eyes open or closed. About half of the MEG resting-state studies reviewed here 

were carried out with eyes open, and the other half with eyes closed. Because of the relatively low 

number of resting-state studies in MEG, and because of different methodological constraints in 

MEG and fMRI, it seems too early to make a final decision. Given this, we would recommend 

acquiring both eyes open and eyes closed if possible. If this is not feasible, we suggest using eyes 

open with a fixation cross to minimize eye movements. Eyes closed resting-state is associated with 

strong alpha power increases (which might in theory interfere with subsequent network analyses), 

and participants are at a higher risk of getting drowsy and potentially falling asleep during the 

recording. 

2.2.4.4 Contrasting controls and patients: Differences in artefacts and SNR 

 

Comparisons between MEG resting-state connectivity patterns obtained in controls and patients 

are faced with additional difficulties caused by the pathological conditions. Increased head and 

body movement artefacts, eye blinks and saccades in patient populations are not uncommon, and 

they all lead to poorer data quality compared to data acquired in healthy subjects. For equal MEG 

scanning durations, artefact rejection techniques will ultimately lead to less data being preserved 

for the patients, which may in turn yield lower signal-to-noise ratio (SNR) in patient data compared 

to controls. These differences in SNR must be avoided, or at least controlled for, since they will 

lead to differences in functional interaction patterns that may have nothing, or little, to do with the 

pathology at hand, and rather reflecting differences in data quality. Minimizing data rejection 

through the use of artefact correction techniques such as independent component analyses (ICA) 

could be of interest, although the differential application of ICA to the two groups (i.e. more 

extensive in the case of patient data) could also lead to differences that may bias connectivity 

findings and data interpretation. To address artefact-related SNR discrepancies between patients 
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and controls, we recommend planning to acquire more data in patients from the start of the project, 

or alternatively to use a subsample of data from the controls to achieve comparable SNR across 

the two groups. 

 

A second, often overlooked, issue is that pathological changes in local signal amplitude can affect 

the estimation of long-range connectivity in patients, and thereby lead to group differences that are 

in fact a reflection of inadequate or unreliable coupling estimation. This can occur because lower 

signal amplitudes (that equate noise levels) will de facto lead to lower SNR. A lower SNR within 

a given frequency band can affect, for instance, the estimation of phase. In such a case, the 

reduction or vanishing of a measure of inter-areal phase coupling, compared to controls, cannot be 

taken as an indication of connectivity break down, rather it is the result of poor phase estimation 

in patients due to lower local SNR. This phenomenon will also affect inter-areal cross-frequency 

phase-amplitude coupling. Overcoming such limitations is not trivial. A good rule of conduct is 

not to focus on inter-areal interaction measures alone, but to systematically calculate spectral 

power in the frequencies and nodes of interest. If the powers show statistically significant 

differences across the groups, one could attempt to randomly use subsamples of data in order to 

control for the effect of amplitude across the two groups (bootstrapping and stratification 

techniques could be useful here).  

2.2.4.5 Effect of age and medication on connectivity patterns in psychiatry 

 

In both healthy and pathological populations, age has been shown to be an important variable that 

can affect brain structure, cognitive functions and connectivity patterns (Fucetola et al., 2000; 

Tamm et al., 2002; Paus et al., 2010). At the anatomical-level, volumes of cortical grey and white 

matter change with age.  On one hand, among neuro-typically developed individuals, grey matter 

density of frontal and parietal lobes displays an inverted-U pattern, with volume increasing until 

adolescence, then declining. However, this may not be the case of other brain regions (Paus et al., 

2010; Giedd et al., 1999). On the other hand, white matter volume appears to steadily increase 

until around 30 years of age (Paus et al., 2010; Giedd et al., 1999). At the functional level, task-

based studies in fMRI have observed focal increases in activity with age, for instance, in the 

dorsolateral PFC, ventrolateral PFC and premotor cortex (Kwon et al., 2002). Changes in 

connectivity between certain brain regions also seem to take place with age. Of note, long-range 
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synchronizations that underline the processes of cognitive functioning (e.g., attention, working 

memory, inhibition) appear to grow in strength until the third decade of life (Tamm et al., 2002; 

Adleman et al., 2002). Compared to these findings in healthy cohorts, deficits observed in illnesses, 

such as schizophrenia, are found to be similar, albeit with steeper decline in some function, such 

as abstract thought (e.g., Fucetola et al., 2000).  

 

Age of illness onset is also an important factor to take into consideration as early/pre-adolescence 

onset of psychopathologies typically correlate with worse prognosis and more severe clinical 

symptoms (Clemmensen et al., 2012; Strober et al., 1988).  Moreover, in BD, early onset is seen 

to be linked to more comorbid disorders (e.g., anxiety, substance abuse), shorter euthymic periods 

and more attempts of suicide (Perlis et al., 2004; Carlson, 2000). Taken together, age is a critical 

to factor-in when conducting connectivity analyses or correlations between symptoms and 

connectivity patterns, particularly in psychiatric population, to ensure that statements made about 

group differences are in fact due to true discrepancies between the evaluated cohorts, and not due 

to an age effect (Bijanki et al., 2015). 

 

Medication is also a variable for that has substantial effects on the neural network of psychiatric 

patients, with different types of pharmacotherapies impacting connectivity in distinct ways (e.g., 

selective seratonergic vs noradregenic reuptake inhibitor, (McCabe and Mishor, 2011).  A review 

of longitudinal MRI-based studies noted that part of the grey matter volume decreases and 

ventricle enlargement in schizophrenia patients could be explained by cumulative exposure to 

antipsychotic treatment (Fusar-Poli et al., 2013). In MDD, antidepressant treatment seems to 

modify the connectivity between the nodes of the DMN, as well as cortico-limbic connectivity, 

both at rest and during affective tasks (e.g., Gudayol-Ferré et al., 2015; Anand et al., 2005b).  

However, other studies find the effect of psychotropics on functional connectivity to be 

inconclusive (Nejad et al., 2012). Part of the difficulty in untangling the influence of treatment lies 

in the complexity of conducting longitudinal studies, which ideally include drug naïve patients that 

are either individuals at risk of developing a psychiatry illness or first-episode psychosis or mania 

patients, as well as chronic patients to compare to. A number of studies that have investigated birth 

cohorts (e.g., Jääskeläinen et al., 2015) have enlightened the field the most as they take into account 
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maximal information regarding context, neurodevelopmental factors, environmental influences, 

longitudinal notes on symptoms and treatments effects. 

 

Finally, it is important to note that non-medication drugs, such as nicotine and caffeine, also appear 

to alter resting-state networks in healthy and clinical populations. Evidence of this effect have been 

reported using fMRI (Smucny et al., 2016; Weiland et al., 2015; Rack-Gomer et al., 2009; Zanchi 

et al., 2015; Jacobsen et al., 2004; Janes et al., 2012), and MEG (Tal et al., 2013). Future 

connectivity studies should incorporate these variables in their analyses. 

 

2.2.5 Conclusions and future directions 
 

This review is the first of its kind to examine the literature’s findings on resting neural network 

connectivity patterns of bipolar disorder and major depression disorder, based on 

magnetoencephalography studies. A global analysis of current scientific papers demonstrates that 

the two illnesses display functional abnormalities that affect the way information is integrated, 

locally, and transferred from one brain region to another through long-range connections. 

Moreover, this review illustrated that resting-state neuroimaging paradigms are a useful way to 

access the disorganized brains of individuals with psychopathologies. Finally, although still in its 

early days, MEG carries the potential to significantly advance our understanding of large-scale 

network alterations associated with psychiatric disorders (Reite et al., 1999). 

 

Overall, the PFC, in particular the medial PFC which is at the core of the DMN and of social 

cognition, is affected across both psychopathologies.  Given that this brain region is one of the last 

to develop during neurodevelopment (Casey et al., 2000; Taylor et al., 2014), it is not surprising 

that most mental health issues arise during adolescence and that any early brain-damage, 

detrimental environmental factor, or oxidative stress can affect a person’s personality, theory of 

mind, emotional maturity, empathy and healthy resting neural wiring (Kolb et al., 2012; Carrion 

and Wong, 2012; Grossmann, 2013). Of note, among depressed individuals, patterns of 

dysfunctional connectivity are repeatedly observed across the three major neuroimaging 

modalities reviewed (fMRI, EEG, MEG), particularly altered long-range connectivity between the 

DMN and the limbic system, as well as between the DMN and the CEN. In MDD population, the 
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recurrent dysfunctional connectivity patterns involved the subgenual ACC. As for the BD 

literature, the most consistent findings stemmed from resting fMRI studies, where functional 

connectivity was altered between regions of the DMN and the amygdala in BD.  

 

An explanation for the imbalance in the amount of scientific papers published in these two mood 

disorders could be that depression is the mental illness affecting the largest percentage of 

individual world-wide in its various forms (e.g., MDD, postpartum depression, seasonal onset 

depression, etc.), while BD is symptomatically more complex and heterogeneous. Thus, when 

interpreting neuroimaging results, researchers should consider the effect of additional 

psychological factors, such as manic/cyclic mood and history of psychosis (Anticevic et al., 2013), 

as well as medication when attempting to untangle the connectivity pattern affiliated with BD. 

 

Resting-state MEG is expected to continue gaining momentum in psychiatry.  One promising 

application is its ability to enhance the understanding of how neuromodulation (e.g., repetitive 

transcranial magnetic stimulation, rTSM) can change the neural circuitry of mood disorder 

patients. Indeed, given the promising evidence for the use of rTMS for symptom reduction in 

refractory MDD patients (Salomons et al., 2014; Downar et al., 2014; Berlim et al., 2014; Tortella 

et al., 2015), exploring the different ways this tool changes resting-state networks after stimulation 

could help further elucidate connectivity patterns in these patients, and possibly lead to new 

neuromodulation targets for MDD. 

 

Our recommendations for future studies are to further explore the potential of examining functional 

and effective neural network connectivity in psychiatric disorders using a combination of tools, 

multimodal imaging techniques, yet employ common terminology (Cetin et al., 2015). As far as 

MEG is concerned, performing the connectivity analysis in source-space is highly recommended 

to improve the interpretability of the findings. In addition, the informed choice of the connectivity 

framework and network metrics is critical to avoid misinterpretations. The use of advanced 

methods such as graph metrics or machine learning as a data-mining tool in this field is also a 

promising venue for future research. By doing so, a more complete picture of how mental illness 

affects information propagation can be acquired, thus allowing for the development of more 

efficient treatment for patients.  
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Chapter 3: Patient, interrupted: MEG oscillation dynamics 
reveal temporal dysconnectivity in schizophrenia  

 

 

Abstract 
 
Current theories of schizophrenia emphasize the role of altered information integration as the core 

dysfunction of this illness. While ample neuroimaging evidence for such accounts comes from 

investigations of spatial connectivity, understanding temporal disruptions is important to fully 

capture the essence of dysconnectivity in schizophrenia. Recent electrophysiology studies suggest 

that long-range temporal correlation (LRTC) in the amplitude dynamics of neural oscillations 

captures the integrity of transferred information in the healthy brain. Thus, in this study, 25 

schizophrenia patients and 25 controls (8 females/group) were recorded during two five-minutes 

of resting-state magnetoencephalography (once with eyes-open and once with eyes-closed). We 

used source-level analyses to investigate temporal dysconnectivity in patients by characterizing 

LRTCs across cortical and sub-cortical brain regions. In addition to standard statistical 

assessments, we applied a machine learning framework using support vector machine to evaluate 

the discriminative power of LRTCs in identifying patients from healthy controls. We found that 

neural oscillations in schizophrenia patients were characterized by reduced signal memory and 

higher variability across time, as evidenced by cortical and subcortical attenuations of LRTCs in 

the alpha and beta frequency bands. Support vector machine significantly classified participants 

using LRTCs in key limbic and paralimbic brain areas, with decoding accuracy reaching 82%. 

Importantly, these brain regions belong to networks that are highly relevant to the symptomology 

of schizophrenia. These findings thus posit temporal dysconnectivity as a hallmark of altered 

information processing in schizophrenia, and help advance our understanding of this pathology.  
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3.1. Introduction 
 

Schizophrenia is a debilitating disorder that is accompanied with severe cognitive, behavioral and 

functional impairments. Worldwide, ~21 million people suffer from psychotic illnesses (World 

Health Organization, 2016) yet, progress in understanding the pathophysiological mechanisms that 

underlie the symptoms of schizophrenia is relatively slow. For over 20 years, it has been suggested 

that dysconnectivity [disconnection syndrome (Weinberger et al., 1992; Friston and Frith, 1995) 

or cognitive dysmetria  (Andreasen et al., 1998)], at the anatomical and functional levels, is the 

core dysfunction that underlines schizophrenia clinical symptoms (Friston et al., 2016).  

 

The idea of neural dysconnectivity (i.e. the failure of functional integration in the brain) relies on 

the assumption that disorganization is a key characteristic of schizophrenia. According to this 

theory, schizophrenia is marked by patterns of symptoms involving errors in predictive coding 

(leading to delusions and hallucinations), lack of language and thought organization, and, in some 

cases, motor disorganization. Neural dysconnectivity is thought to arise from aberrant synaptic 

plasticity, which has been attributed in part to abnormal modulation of N-methyl-D-aspartate 

(NMDA) receptors by neurotransmitters such as serotonin, dopamine and acetylcholine (Stephan 

et al., 2009). A recent study (Shaw et al., 2019) has shown that this atypical functioning of NMDA 

receptors is linked to altered gamma-band oscillations in schizophrenia. Moreover, it has been 

proposed that these abnormal neural connections occur within (and in-between) distinct brain 

regions (Yeganeh-Doost et al. 2011), and thereby lead to clusters of cognitive, affective and motor 

symptoms.  

 

Functional magnetic resonance imaging (fMRI) (e.g., Alderson-Day et al., 2015; Karbasforoushan 

and Woodward, 2012; Narr and Leaver, 2015; Ramani, 2015; Rotarska-Jagiela et al., 2010; Yu et 

al., 2013) and electrophysiological studies (e.g., Ioannides et al., 2004; Sponheim et al., 1994; 

Uhlhaas and Singer, 2010) have probed structural and functional alterations among schizophrenia 

patients and have found significant and consistent differences in terms of the physical properties 

and connectivity patterns of their neural signal compared to controls (multimodal  reviews: 

Alamian et al., 2017; Ćurčić-Blake et al., 2016; Pettersson-Yeo et al., 2011). Among others, some 

of the most commonly reported differences occur within the frontal cortices, within the thalamo-
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cortical pathway and between dorso-lateral prefrontal areas and amygdala (Anticevic et al., 2013; 

Alamian et al., 2017b). While the input from fMRI has been crucial in understanding the 

anatomical (spatial) disruptions and task-related changes occurring in schizophrenia, the picture 

remains unclear about how neural dysconnectivity occurs at the fast temporal scale of neural 

communication. Specifically, while details on alterations of the anatomical connections between 

brain areas among schizophrenia patients have been reported (e.g., Cheung et al., 2008; Wagner 

et al., 2015) there remains an important gap in understanding how the integrity of the neural signal 

is changed over time, across multi-scaled windows. This type of evidence is key for understanding 

whether proper information integration has taken place (Houck et al., 2016; Hirvonen et al., 2017; 

Henry et al., 2019).  

 

In recent years, there has been an increasing interest in investigating the temporal dynamics of 

neural oscillation amplitudes (Brookes et al., 2015; Cetin et al., 2016; Sanfratello et al., 2019). An 

approach for quantifying the properties of rhythmic brain activity is by exploring long-range 

temporal correlation (LRTC) in the amplitude dynamics of different frequency bands (Linkenkaer-

Hansen et al., 2001b; Nikulin et al., 2012; Palva et al., 2013a). One way to measure LRTCs is by 

applying Detrended Fluctuation Analysis (DFA) on either the raw electrophysiological signal, or 

on the envelope (i.e. amplitude) of a given frequency band, using a sliding window of a given 

length (Peng et al., 1995; Kantelhardt et al., 2001). The LRTC metric quantifies the self-similarity 

of a signal across time. Its presence is an indication that electrophysiological signal decays slowly 

over time, and it is thought to speak of the temporal integrity of transferred information 

(Linkenkaer-Hansen et al., 2001b). Interestingly, the strength of oscillatory LRTCs have been 

found to be highly heritable (~60%, Linkenkaer-Hansen et al. 2007) and, importantly, to be altered 

by disease, such as psychosis (Fernández et al., 2013).  

 

To date, a few studies have evaluated LRTCs using DFA on resting-state EEG signal in 

schizophrenia. These papers showed that, while the overall temporal structure of the neural signal 

was maintained over time for both schizophrenia and healthy controls, it was more random in 

schizophrenia. Specifically, LRTCs were attenuated in the beta-band (Nikulin et al., 2012; Junfeng 

Sun et al., 2014; Moran et al., 2019) and alpha-band oscillatory envelopes (Nikulin et al., 2012).  

The present study is based on the premise that LRTCs provide an efficient marker of altered 
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information integration over time in schizophrenia. We propose that measuring LRTCs in cortical 

and subcortical brain areas, with the high temporal and spatial resolution of source-space 

magnetoencephalography (MEG), could provide evidence for the dysconnectivity theory of 

schizophrenia from a temporal point of view. 

 

The goals of this study were to investigate how intrinsic neuromagnetic LRTCs differ among 

schizophrenia patients compared to healthy controls across cortical and subcortical brain areas. 

Moreover, we measured the relevance of these alterations in their ability to discriminate 

schizophrenia patients from healthy controls using a machine-learning framework. We 

hypothesized that the temporal properties of neural dynamics are affected by the illness and that, 

consequently, LRTCs as measured by DFA would be significantly diminished among 

schizophrenia patients compared to controls in both cortical and subcortical brain regions. 

 

3.2 Materials and methods 
 

Data collection was conducted at the Cardiff University Brain Research Imaging Centre 

(CUBRIC) in Wales, U.K., while the following analyses were conducted at the University of 

Montreal (Q.C., Canada). Ethics approval for the collection of data was obtained according to the 

guidelines of the NHS ethics Board in the U.K, the Cardiff University School of Psychology Ethics 

Board (EC.12.07.03.3164), and the Ethics Research Committee of the University of Montréal 

(CERAS-2018-19-069-D).  

 

3.2.1 Participants 
 

Neuroimaging and behavioural data of 26 schizophrenia patients and 28 healthy controls were 

collected. Control participants were neurologically and psychology healthy, and matched patients 

on age and gender. Patients were recruited through the Cognition and Psychosis study (i.e., from 

the Schizophrenia Working Group of the Psychiatric Genomics Consortium; details of the case 

sample recruitment and procedures are provided in (Lynham et al., 2018)), while controls were 

primarily recruited through ads using the Cardiff University Noticeboard and opportunistically 

from CUBRIC, Cardiff University. One patient was excluded due to the quality of their recording, 
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and three controls were excluded due to the lack of a complete set of recording conditions. The 

final sample size included 25 schizophrenia patients and 25 controls.  

 

Diagnosis confirmation was obtained for patients through the Schedule for Clinical Assessment in 

Neuropsychiatry (SCAN) interview. For both groups, participants were included in the study if 

they were between the ages of 16-75, had English as their first language, and normal or corrected 

vision. Controls were excluded if they had any history of neuropsychiatric disorders as measured 

by the MINI International Neuropsychiatric Interview (Sheehan et al., 1998). Participants were 

excluded if they had a history of drug or alcohol abuse, a diagnosis of epilepsy, head injury or 

stroke, metal present in their bodies or the use of mood stabilizing drugs. All participants were 

asked to refrain from the use of alcohol and drugs two days prior to testing.  

 

Note that the sample size for this study was calculated taking into account the fact that we planned 

to use a machine learning framework. Based on the literature (i.e. multiple studies using machine 

learning to classify schizophrenia and controls), we expected classification decoding accuracies to 

roughly lie between 70 and 75%. Assuming a binomial cumulative distribution of the decoding 

error, and a p-value threshold of 0.001, the number of samples corresponding to a significant 

classification of 70 or 75% is 40 or 60 respectively (Combrisson and Jerbi, 2015). Our sample size 

of 50 participants fits within this interval. 

 

3.2.2 Demographic and clinical data 
 

Demographic information about each participant was collected, including their age, gender, 

depression score on the Beck Depression Inventory – II (BDI-II (Beck et al., 1996)), and mania 

score on the Altman Self-Rating Mania Scale (ASRM (Altman et al., 1997)). In addition, for the 

patient group, scores on the Scale of the Assessment of Positive Symptoms (SAPS) and the Scale 

of the Assessment of Negative Symptoms (SANS) (Kay et al., 1987) were derived from the 

psychosis-subsection of the MINI International Neuropsychiatric Interview. Finally, information 

on antipsychotic doses were obtained and standardized using olanzapine equivalents (Gardner et 

al., 2010). The data was anonymized such that no identifiable information of participants was 

associated with their data nor subsequent analyses. Table 5 summarizes the demographic 
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information of each subject group and average clinical scores on the BDI, ASRM, SANS, SAPS 

and medication dosage.  

 

Aside for BDI-II scores (independent t-test, t(46) = 4.94, p = 0.000011), no significant group 

differences were observed. According to their scores on the BDI-II, schizophrenia patients 

presented on average with mild-depression, compared to controls who showed negligible signs of 

depression. In terms of ASRM scores, neither group showed any symptom that could correlate 

with mania. Finally, in terms of scores on the SANS and SAPS, patients generally appeared 

asymptomatic.   

 
TABLE 5: AVERAGE DEMOGRAPHIC AND CLINICAL INFORMATION OF PARTICIPANTS 

 Age Gender Medication 

dose 

BDI-II ASRM  SANS  SAPS 

Controls 44.04 

(±9.20) 

17M; 8F n/a 4.50(±4.67) 3.25(±3.54) n/a n/a 

SZ 

Patients 

44.96 

(±8.55) 

17M; 8F 13.03(±13.80) 14.83(±9.11) 3.46(±2.40) 3.96(±2.92) 3.72(±4.00) 

 

Table 5 – caption: Average demographic and clinical information of participants. The ± symbol 
indicates the standard deviations. ASRM = Altman Self-Rating Mania Scale, BDI = Beck’s depression 
inventory, F =  females, M = males, SANS = Scale for the assessment of negative symptoms, SAPS = Scale 
for the assessment of positive symptoms, Schizophrenia = SZ 
 

3.2.3 MEG and MRI experimental designs  
 

Two five-minute resting-state MEG scans were recorded in each participant, once with eyes-closed 

and once with eyes-open, with a 275-channel (first-order gradiometers) CTF machine located at 

the CUBRIC in Wales, U.K. During the eyes-open recording, participants were instructed to fixate 

a red square projected in front of them. During both resting-state conditions, participants let their 

mind wander for the duration of the recordings. Reference channels were placed at fixed distances 

from the nasion, the left and right pre-auricular points. In addition, five electrodes were placed 

above and below the center of the left eye, under the left and the right temple and behind the left 

ear, to record eye movements/potential artifacts (Messaritaki et al., 2017). The raw MEG signal 

was recorded at a frequency sampling of 1200Hz. In addition to the MEG data acquisition, an 
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anatomical-T1 MRI scan was acquired for all participants to help with the MEG source 

reconstruction. 

 

3.2.4 Data preprocessing and MEG source reconstruction 
 

An in-house open-source python pipeline NeuroPycon (Meunier et al., 2020) was used for the 

preprocessing and source-reconstruction analysis. The continuous raw data was filtered with a 

zero-phase bandpass using a finite impulse response filtering (FIR 1, order =3) between 0.1 Hz 

and 150 Hz, and a Hamming window. The default values for lower and upper transition bandwidths 

and filter length were used. The data was down-sampled from 1200Hz to 600 Hz. Independent 

component analysis (ICA) was then used to remove blinks, eyes movements, heartbeat, and 

external artefacts from the MEG signal using the routine provided by the MNE-python package 

(Hyvarinen, 1999; Gramfort et al., 2013).  

 

The anatomical MRI information of each participant was segmented with the FreeSurfer software 

package (Fischl, 2012) to generate an anatomical source-space that included both the cortical 

surface and the subcortical regions modelled as volumes. Given that each participant had different 

source-space dimensions, we next morphed and projected individual source spaces onto fsaverage 

(standardized space) of FreeSurfer (Greve et al., 2013). The mixed source space obtained in this 

manner consisted of 8196 nodes on the cortical surface, where each voxel was 5mm apart from 

one another. For subcortical structures, we applied a region-of-interest (ROI) transformation and 

extracted the following volumes using FreeSurfer: Amygdala, Caudate, Hippocampus, Thalamus 

and Cerebellum. On average, these regions contained 27, 51, 73, 130 and 875 voxels, respectively. 

 

The lead field matrix was computed using the single layer model boundary element method 

implemented in MNE-python (Gramfort et al., 2013). Finally, the inverse solution was computed 

using the inverse pipeline provided by NeuroPycon (Meunier et al., 2020) where we chose the 

weighted Minimum Norm Estimate (Dale and Sereno, 1993; Hämäläinen and Ilmoniemi, 1994; 

Hincapié et al., 2016), implemented in the MNE-python package (Hyvarinen, 1999; Gramfort et 

al., 2013). The dipoles of the cortical source-space were constrained to have an orientation normal 

to the surface, while the dipoles of the subcortical volumes were left with free orientation. In total, 
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we extracted 8196 time-series at the cortical level, and 3 time-series per source in subcortical 

regions. 

 

3.2.5 Measuring LRTC using DFA 
 

To quantify LRTCs in the structure of the amplitudes of each frequency band, we used a standard 

procedure based on Detrended Fluctuation Analysis (DFA) (Peng et al., 1995; Kantelhardt et al., 

2001), in line with previous research (Linkenkaer-Hansen et al., 2001b; Nikulin and Brismar, 

2005; Nikulin et al., 2012).  

 

Briefly, DFA measures the fluctuation of linearly detrended signal as a function of a sliding time-

window. The DFA scaling exponent reflects the slope of this fluctuation function, and is often 

referred to as the self-similarity parameter (Lux and Marchesi, 1999). It can take on a value 

between 0 and 1, where a value between 0 and 0.5 represents negative temporal correlation (i.e. 

anti-persistence of the signal in time), 0.5 represents a random (uncorrelated) signal, and a value 

between 0.5 and 1 represents a positive temporal correlation (persistence of the signal in time) 

(Hardstone et al., 2012). Simply put, in a persistent signal, large fluctuations are likely to be 

followed by large fluctuations and small energy fluctuations are likely to be followed by small 

energy fluctuations. Conversely, in an anti-persistent signal (negative correlation) large 

fluctuations are likely to be followed by small fluctuations and small fluctuations are likely to be 

followed by large fluctuations. In other words, if the scaling (DFA) exponent decreases from a 

value close to 1 down to a value closer to 0.5, then the temporal correlations are considered to be 

less persistent in time (i.e. they decay faster in time). 

 

In order to obtain a measure of LRTCs in the MEG signal, instantaneous amplitude of the MEG 

signals was computed in the delta (1-4 Hz), theta (4-7), alpha (8-13 Hz), beta (15-25 Hz), and 

gamma (30-60 Hz) frequency bands. To this end, the raw MEG signal was first filtered using a 

finite impulse response filtering (FIR1, order = 3), and then we computed the Hilbert transform 

(Le Van Quyen et al., 2001; Foster et al., 2016). Next, DFA values were calculated for each of the 

8196 nodes of the cortex for the length of the recording as described in (Peng et al., 1995; 

Linkenkaer-Hansen et al., 2001b).  In terms of deep structures, DFA was computed for each of the 
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3 time-series of each source, and then averaged across the 3 in order to obtain a single time-series 

per deep source. For the present study, DFA was used to analyze the decay of temporal auto-

correlations, for each eyes-open and eyes-closed condition, in the time range of 5-33s (or 3000-

20000 samples) over consecutive windows for the full 5 minutes of MEG recording. 

 

3.2.6 Statistics and machine-learning analyses 

3.2.6.1 Conventional statistics and correlation analyses 

 

Group statistical analyses were conducted between schizophrenia patients and matched-controls 

to test for group-level differences in (a) LRTC scaling exponents (calculated on spectral 

amplitudes) (b) spectral amplitudes (amplitude envelope of band-passed signals), and (c) 

demographic and clinical data. To do so, we used non-parametric statistical tests (two-tailed, 

unpaired, pseudo t-tests), corrected with maximum statistics using permutations (n = 1000, p < 

0.001) (Nichols and Holmes, 2001; Pantazis et al., 2005). Two-tailed, paired, t-tests were also used 

(within each group) to test for changes between the eyes-open and eyes-closed conditions (both 

for spectral amplitude and LRTC exponents). Moreover, Pearson correlation with False Discovery 

Rate (FDR) correction (Genovese et al., 2002) were used to explore the relationship between 

cortex-level LRTCs and scores on the BDI, ASRM, SANS and SAPS, as well as to investigate the 

link between age, gender and medication dosage and values of LRTCs. This was also repeated for 

correlations between amplitude and clinical scores. FDR correction (Benjamini-Hochberg) was 

applied to each p-value (computed for each of the 8196 nodes), and Bonferroni correction was 

then applied to account for all the frequency bands (5) and correlational analyses (7) to achieve a 

significance threshold of p<0.05 corrected. 

3.2.6.2 Machine learning analyses  

 

MEG signal classification was conducted using a support vector machine model and a stratified 

10-fold cross-validation scheme to evaluate the discriminative power of LRTC in objectively 

classifying patients and controls. To do so, the DFA exponent features for each source were split 

into 10 folds while respecting the balance between the two classes (schizophrenia, controls). Then, 

the classifier was trained on the data from nine of the folds and tested on the remaining fold (test 

set). The classification performance was assessed using the decoding accuracy (DA) on the test set 
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(i.e., percentage of correctly classified participants across the total number of participants in the 

test set). This operation was iteratively repeated until all folds were used as test sets. The mean 

DA was used as the classification performance metric. In order to infer the statistical significance 

of the obtained DAs, permutations tests were applied to derive a statistical threshold as described 

in (Combrisson and Jerbi, 2015). This method consists of generating a null-distribution of DAs 

obtained by running multiple instances of the classification (n=1000), each time randomly 

shuffling class labels. Maximum statistics were applied across all sources in order to control for 

multiple comparisons (Nichols and Holmes, 2001; Pantazis et al., 2005). The same procedure was 

also applied to the comparison of spectral amplitudes between the groups. Finally, we used 

Visbrain for the visualizations of all cortical results (Combrisson et al., 2019).  

 

3.2.7 Data availability 
 

The code used throughout this study relies on open tools available to the community, including 

primarily the following python tools (NeuroPycon, MNE, visbrain) which can be downloaded 

from Github. The functions for DFA and the SVM classifiers trained in this study can be made 

available upon reasonable request. 

 

3.3. Results 
 

The following sections describe the results obtained with the eyes closed resting-state MEG 

protocol. The summary of the results obtained in the eyes open condition are provided in the 

supplementary material, and are summarized at the end of the Results section. 

 

3.3.1 Group comparisons of LRTCs 
 

 Figure 6 shows the results of group-averaged LRTCs in cortical source-space in the 

schizophrenia patient group and the control group, for each frequency band. Overall, LRTCs were 

attenuated in patients, compared to controls, across the cortex in the theta, alpha and beta frequency 

bands. Interestingly, in the delta and gamma frequency bands (1st and last row of Figure 6), certain 

areas showed LRTCs to be enhanced in patients compared to controls. These differences were 

however non-significant when using conventional t-tests and corrected for multiple-comparison 
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(p>0.05 for two-tailed tests). In Figure 6,  the t-values reflect both the magnitude of the effect and 

the direction of the group differences in terms of LRTC values, with the negative (blue) t-values 

showing brain areas where patients have reduced LRTC values compared to controls, and the 

positive (red) t-values showing brain areas where patients have increased LRTC values compared 

to controls. By contrast, when applying a machine-learning approach to test for out-of-sample 

generalization in the same data, we found that LRTCs in the alpha and beta bands in multiple brain 

regions led to statistically significant classification of the two subject groups with up to 82% 

decoding accuracy (Figure 7, max statistics correction, p<0.005). More specifically, using source-

space alpha-band LRTCs as a decoding feature led to statistically significant discrimination of 

schizophrenia and controls in the precentral, central and postcentral gyri and sulci, the right frontal 

gyrus, the left temporal gyrus, the bilateral temporal poles and sulci and the medical parts of 

parahippocampal gyri (Figure 7a). Meanwhile, using source-space beta-band LRTCs as a decoding 

feature let to statistically significant classification of schizophrenia patients and controls in the 

bilateral orbitofrontal cortices, the right parahippocampal gyrus, bilateral orbital gyri, bilateral 

anterior cingulate gyri and sulci and left insular sulcus (Figure 7b). To illustrate how the classifier 

was able to successfully separate patients from controls, we computed individual LRTC values, 

averaged in each subject across all brain sites that exhibited successful decoding. These were 

computed separately for alpha and beta-band LRTCs and are presented in a scatter plot (Figure 

8a). For comparison, Figure 8b shows individual alpha and beta amplitude values averaged over 

the same brain regions. As can be seen, amplitude values in the alpha and beta bands in the same 

nodes do not allow for a clear separation of the groups. This provides further qualitative 

confirmation that the LRTC-based classification results are not driven by changes in amplitude. 

Figure 9 shows the classification results of schizophrenia and controls using the estimated alpha-

band and beta-band LRTCs from the estimated time-series in deep structures. In terms of 

subcortical structures, statistically significant classification (max statistics correction, p<0.001) of 

schizophrenia versus controls was obtained with alpha-band LRTC features from the combination 

of the left and right amygdala, the left hippocampus, the left thalamus and the combination of the 

left and right cerebellum (Figure 9a). In the beta frequency band, the right amygdala, the 

combination of the left and right amygdala, the combination of the left and right caudate, and the 

combination of the left and right thalamus were able to statistically significantly (max statistics 
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correction, p<0.001) discriminate the two groups with a success rate of up to 74% (Figure 9b). No 

other frequency band’s LRTCs led to significant classification. 
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FIGURE 6: SOURCE-LEVEL RESULTS OF LRTCS OF SCHIZOPHRENIA PATIENTS AND CONTROLS 
Columns 1 and 2 show mean LRTC values for each group. Column 3 shows the T-values of the unpaired 
t-tests (non-significant). DFA = detrended fluctuation analysis, LRTCs = long-range temporal correlations 
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FIGURE 7: CLASSIFICATION OF SCHIZOPHRENIA PATIENTS AND HEALTHY CONTROLS IN THE 
CORTEX 

SVM used alpha (a) and beta (b) DFA exponents (LRTCs) as discriminant features at the cortical level. The 
images are thresholded at statistically significant decoding accuracy (p<0.005, permutation tests and max 
statistics correction). DA = decoding accuracy, DFA = detrended fluctuation analysis, LRTCs = long-range 
temporal correlations, SVM= support vector machine 
 

 

 

 

FIGURE 8: SCATTER PLOT VISUALIZATION OF INDIVIDUAL LRTC AND AMPLITUDE VALUES IN 
BRAIN REGIONS WITH STATISTICALLY SIGNIFICANT CLASSIFICATION 
 (A) illustrates individual LRTC values, averaged across all the nodes that showed statistically significant 
patient vs controls decoding in the alpha and beta frequency bands (n=50). (B) illustrates individual 
amplitude values (A-m*10-11) in the alpha and beta in the same brain regions (n=46, data from 4 outliers 
were excluded due to amplitude values > 5 std above the mean). 
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FIGURE 9: CLASSIFICATION OF SCHIZOPHRENIA PATIENTS AND HEALTHY CONTROLS AT THE 
SUB-CORTICAL LEVEL 
SVM used alpha (a) and beta (b) DFA exponents (LRTC) as discriminant features computed in deep 
structure ROIs. Statistically significant decoded ROIs are indicated with a star (p<0.001). The suffix “-lh” 
indicates left hemisphere, “-rh” indicates right hemisphere, and no suffix reflects classification using both 
left and right hemispheres. Amy = amygdala, Caud = caudate, Cereb = cerebellum, DA = decoding 
accuracy, DFA = detrended fluctuation analysis, Hipp = hippocampus, LRTCs = long-range temporal 
correlations, SVM= support vector machine, Thal = thalamus 
 

3.3.2 Group comparisons of spectral amplitude 
 

To appreciate the putative value of LRTC features, we also computed the same contrasts and 

classification using, the more standard, spectral amplitude as feature. Figure 10 shows both 

increased and decreased oscillatory amplitudes among schizophrenia patients compared to 

controls. Conventional t-tests of the amplitude did not yield any significant group differences after 

multiple comparison correction in any of the frequency bands (p>0.05 for two-tailed tests). 

Nevertheless, Figure 10 shows the t-values to indicate the direction of the group differences in 

terms of amplitude magnitude, with the negative (blue) t-values showing brain areas where patients 

have reduced amplitude compared to controls, and the positive (red) t-values showing brain areas 

where patients have increased amplitude compared to controls. This was also the case when using 

SVM classification in all frequency bands, except for the gamma-band oscillatory amplitude, 

which led to a statistically significant classification (Figure 11). In particular, gamma-band 

oscillations led to statistically significant discrimination in the orbital sulci and gyri, 
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parahippocampal gyri, temporal poles, left superior temporal sulcus, and left temporal gyrus, with 

patients showing higher spectral amplitude levels in these given brain structures. The highest 

discrimination occurred in the left temporal pole with a decoding accuracy of 84% (Figure 11, max 

statistics correction, p<0.005).  

 

Figure 12 shows the classification results of schizophrenia and controls using the alpha (Figure 

12a), beta (Figure 12b) and gamma (Figure 12c) bands oscillatory amplitude in the deep structures. 

In terms of subcortical structures, the gamma-band amplitude of the left caudate significantly 

decoded the two groups, as well as the amygdala (using the left, right, and both hemispheres), 

hippocampus (using the left and both hemispheres) and cerebellum (using both hemispheres) (72-

79%, max statistics correction, p<0.001, Figure 12c).  
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FIGURE 10: SOURCE-LEVEL RESULTS OF SPECTRAL AMPLITUDE OF PATIENTS AND CONTROLS 
Columns 1 and 2 show averaged amplitude values for each group at each node (A-m *10-12). Column 3 
shows T-values based on the unpaired t-tests (non-significant).  
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FIGURE 11: SIGNIFICANT CLASSIFICATION OF SCHIZOPHRENIA PATIENTS AND HEALTHY 
CONTROLS BASED ON AMPLITUDE 
SVM in the spectral amplitude of gamma at the cortical-level significantly classified groups. The images 
are thresholded at statistically significant decoding accuracy (p<0.005, permutation tests and max statistics 
correction). DA = decoding accuracy, SVM= support vector machine 
 

 

 

 

FIGURE 12: CLASSIFICATION OF SCHIZOPHRENIA PATIENTS AND CONTROLS BASED ON 
SPECTRAL AMPLITUDE AT THE SUB-CORTICAL LEVEL 
SVM, with a 10-fold cross validation, applied max statistics and 1000 permutations classified groups. 
Statistically significant decoded ROIs are indicated with a star (p<0.001). The suffix “-lh” indicates left 
hemisphere, “-rh” indicates right hemisphere, and no suffix reflects classification using both left and right 
hemispheres. Amy = amygdala, Caud = caudate, Cereb = cerebellum, DA = decoding accuracy, Hipp = 
hippocampus, LRTCs = long-range temporal correlations, ROI = region of interest, SVM= support vector 
machine, Thal = thalamus 
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3.3.3 Correlations with clinical and demographic information 
 

The investigation of the potential correlations between LRTCs and demographic and clinical 

information yielded no significant results across the five frequency bands. However, the analysis 

of correlation between amplitude of different frequency bands and schizophrenia patients’ negative 

symptom scores yielded a highly statistically significant result in the theta band (Figure 13). 

Specifically, spectral amplitude of the delta (Figure 13a) and theta band (Figure 13b) correlated 

positively with schizophrenia patients’ scores on the SANS clinical scale (max correlation r = 0.81, 

p<0.05, corrected for multiple comparisons). 

 

 

FIGURE 13: CORRELATION BETWEEN SPECTRAL AMPLITUDE AND PATIENTS’ SYMPTOMS 
Pearson correlation between (a) delta-band amplitude and patients’ scores on the scale for the assessment 
of negative symptoms (SANS), and (b) between theta-band amplitude and SANS scores. The maps are 
thresholded at a p-value of 0.05, corrected for multiple comparisons. 
 

3.3.4 Summary of eyes open resting-state condition results  
 

Similarly to the eyes closed resting-state condition, LRTCs appeared to be attenuated in 

schizophrenia patients in the theta, alpha and beta frequency bands, and slightly enhanced in the 

gamma band, compared to controls (Supplementary Figure 1). With our machine-learning 

approach, patients and controls were again significantly classified using LRTCs in the alpha and 

beta frequency bands with up to 79% decoding accuracy (max statistics correction, p<0.005, 

Figure 14a). Specifically, using source-space alpha-band LRTCs as a decoding feature led to 
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statistically significant discrimination of schizophrenia and controls in the postcentral gyri and 

sulci, and in the superior temporal gyri and sulci (bilaterally). Moreover, using source-space beta-

band LRTCs as a decoding feature let to statistically significant classification of schizophrenia 

patients and controls in the right precentral gyrus and sulcus, right central sulcus, right postcentral 

gyrus, right superior-frontal gyrus and paracentral lobules. In terms of subcortical structures, SVM 

significantly classified (max statistics correct, p<0.001) the two groups using alpha-band LRTCs 

in the left amygdala, left hippocampus and the combination of the left and right hippocampi (Figure 

14c and Supplementary Figure 2).  

 

The examination of spectral amplitude in the eyes open condition showed increased oscillatory 

amplitude in patients in the delta, theta and gamma bands, while a trend of decreased amplitude 

was seen in the alpha and beta bands (Supplementary Figure 3). Statistical analyses of the 

amplitude did not reveal any significant group differences in any of the frequency bands. However, 

machine-learning classification of schizophrenia patients and controls using spectral amplitude 

yielded significant discriminatory patterns in the delta, theta, beta and gamma bands (Figure 14b). 

In particular, statistically significant classification of groups were observed in delta-band 

oscillations in the left postcentral and parieto-occipital sulci and the right temporal pole; in theta-

band oscillations in the left parieto-occipital sulcus; in the beta-band in the right orbital and 

precuneus gyri and temporal pole; and the most significant decoding accuracies were observed in 

the gamma band, in the left rectus gyrus (88%, max statistics correction, p<0.005), along with the 

right orbital gyrus, orbital sulci and left parahippocampal gyrus. Supplementary Figure 4 shows 

the classification results of schizophrenia and controls using the alpha, beta and gamma bands 

oscillatory amplitude in the deep structures. Beta-band amplitude of the right hippocampus 

significantly decoded the two groups (74%, max statistics correction, p<0.001). In terms of gamma 

oscillations, significant classification (74-78%, max statistics correction, p<0.001, Figure 14d and 

Supplementary Figure 4) of patients and controls were observed in the amygdala (using the left 

and both hemispheres), the hippocampus (using the left, right, and both hemispheres) and the 

cerebellum (using the left, right, and both hemispheres).  

 

Finally, in terms of correlation analyses between LRTCs/spectral amplitude and patients’ clinical 

scores, significant correlational results between theta-amplitude and SANS scores were observed, 
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similar to those in the eye closed condition (max correlation r = 0.81, p<0.05, corrected for multiple 

comparison, Figure 14e). 

 

 

 
FIGURE 14: SUMMARY OF MAIN RESULTS OF THE EYES OPEN CONDITION 
 (A) and (c) illustrate statistically significant classification of schizophrenia patients and controls based on 
LRTCs and amplitude, respectively, at the cortical level (p<0.005, permutation tests and max statistics 
correction). (B) and (d) illustrate classification of patients and controls based on LRTCs and amplitude, 
respectively, at the subcortical level. Statistically significant decoded ROIs are indicated with a star 
(p<0.001). The suffix “-lh” indicates left hemisphere, “-rh” indicates right hemisphere, and no suffix 
reflects classification using both left and right hemispheres. (E) Pearson correlation between theta-band 
amplitude and patients’ scores on the SANS, p-values are corrected for multiple comparisons, p<0.05.” 
Amy = amygdala, Caud = caudate, Cereb = cerebellum, DA = decoding accuracy, Hipp = hippocampus, 
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LRTCs = long-range temporal correlations, ROI = region of interest, SANS = Scale for the assessment of 
negative symptoms, Thal = thalamus 
 

3.3.5 Comparison of eyes closed and eyes open resting-state conditions 
 

Within-group, statistical comparisons of the eyes open and eyes closed conditions revealed a 

cortex-wide attenuation of LRTC values in the alpha and beta band for controls in the eyes open 

condition, compared to eyes closed (paired t-tests, max stat correction, 1000 permutations,                  

p < 0.05). However, in the case of schizophrenia patients, this LRTC difference between eyes open 

and closed was not statistically significant, although it did appear that LRTC values were higher 

in the eyes closed than in the eyes open condition. 

 

In terms of amplitudes differences, paired t-tests showed that amplitude magnitudes of the alpha-

band were substantially higher in the eyes closed condition than the eyes open condition for both 

schizophrenia patients and healthy controls, particularly in the temporal and visual cortices, as 

expected. This difference was even bigger in schizophrenia patients, as the occipital lobe 

differences were statistically significant after multiple-comparison correction (p<0.05, max stat, 

1000 permutations).  

 

3.4. Discussion 
 

Although widely studied, the neural mechanisms underpinning the symptomology of 

schizophrenia are still somewhat elusive. Given that correct diagnosis and early treatment is crucial 

for medication adherence and good prognosis, the clinical research community has focused on 

identifying characteristics that are unique to this pathology. To address this, the leading theory of 

neural dysconnectivity has been explored extensively in the spatial domain, but very little has been 

discussed in terms of temporal dysconnectivity in schizophrenia. The aim of this study was to 

explore whether schizophrenia-specific differences exist within the temporal structure of neural 

oscillations, during resting-state, using MEG measurements to probe both cortical and subcortical 

brain regions. Our results show that this is indeed the case. This finding corroborates and extends 

previous studies that have observed both healthy and pathological brain-signals to exhibit DFA 

exponents that were between 0.5 and 1 (Linkenkaer-Hansen et al., 2001b, 2004; Nikulin and 
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Brismar, 2004, 2005; Berthouze et al., 2010; Fedele et al., 2016). While the resting neural system 

exhibited temporal persistence (scaling exponent above 0.5), indicating that the structure of the 

brain signal was maintained through time for both groups, the weaker exponents found in 

schizophrenia patients suggest a loss in persistence (or memory) in the signal. This drop from 

values close to 1 towards 0.5 is reflective of near-uncorrelated signals (Peng et al., 1995; 

Linkenkaer-Hansen et al., 2001b) and has often been thought to be indicative of diminished 

regularity (Beggs and Timme, 2012) and a change in the neuronal excitability-inhibitory balance 

(Poil et al., 2012; La Rocca et al., 2018). This might be due to changes in NMDA-receptor 

conductance, which in-turn would increase the variability of a signal, decrease the stability of the 

signal’s memory, and increase the chance for a change in state (e.g. order to disorder) (Loh et al., 

2007; Rolls et al., 2008). 

 

Furthermore, the attenuated temporal auto-correlations in schizophrenia were confined to the alpha 

and beta envelopes in distinct cortical and subcortical areas. Indeed, single-feature SVM 

classification was able to successfully differentiate the two groups with up to 82% decoding 

accuracy, solely based on the measure of LRTCs. In the alpha-band, the brain areas that 

significantly contributed to the classification of patients and controls included the pre and post 

central gyri and sulci, temporal poles, temporal gyrus and the parahippocampal gyri. In the beta-

band, these regions included the orbitofrontal cortices, the anterior cingulate gyri and sulci, the left 

insula and the right parahippocampal gyrus.  Structural (Ohi et al., 2016) and functional  (Wang et 

al., 2015b) alterations of the temporal lobe have been previously highlighted (e.g., reduced grey 

matter volume). Moreover, the paralimbic areas mentioned above seem to be involved in 

hallucinations (Silbersweig et al., 1995), as well as the cognitive hypofunctioning in schizophrenia 

that occurs due to early neurodevelopmental deficits  (Liao et al., 2015; Isomura et al., 2017; Xu 

et al., 2017). 

 

Importantly, the unpreceded analyses of LRTC alterations in subcortical substructures reported 

here provides the first evidence that LRTC values computed on alpha and beta band-limited 

envelopes in deep structures are altered in schizophrenia, to the extent that they allow for robust 

discrimination between patients and controls in an out-of-sample generalization context (cross-

validated machine learning framework). More specifically, statistically significant predictions 
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(schizophrenia patient vs healthy control) was possible using alpha-band LRTC in the amygdala, 

left hippocampus, left thalamus and cerebellum, and using beta-band LRTC in the amygdala, 

caudate and thalamus. Our control analyses of spectral amplitude showed that the observed LRTC 

alterations were not confounded by differences in oscillatory power. Moreover, the lack of 

statistical difference in age or gender suggests that the results were not mediated by these 

demographic information. Despite being a recognized challenge, MEG studies increasingly report 

activity in subcortical structure (Rivolta et al., 2015; Youssofzadeh et al., 2018) including the 

amygdala (Lu et al., 2012; Nugent et al., 2015). Alterations in subcortical structures in 

schizophrenia have been reported in the literature; It is well-known that schizophrenia is associated 

with pathological changes in thalamic activity (Woodward et al., 2012; Giraldo-Chica and 

Woodward, 2016). Specifically, the thalamo-cortical dysconnectivity has been pinned as a key 

player in the cognitive symptoms of patients (Uhlhaas et al., 2013; Chen et al., 2019).  In addition, 

a number of fMRI resting-studies studies have discussed the implication of the hippocampus, 

amygdala, caudate and cerebellum in the pathophysiology of schizophrenia.  Of particular interest, 

the observed beta-band LRTC alterations in the amygdala is consistent with previously reported 

amygdala changes at the structural (Rajarethinam et al., 2001; Velakoulis et al., 2006) and 

functional/connectivity levels (Mukherjee et al., 2013). This limbic area is implicated in social 

cognition (Adolphs, 2002) and damage to it can lead to aberrant social judgement, similar to what 

is seen in schizophrenia.   

 

With respect to spectral amplitude, our findings confirm previous studies that observed increased 

power in resting-state MEG gamma-band oscillations in schizophrenia patients (Venables et al., 

2009; Gandal et al., 2012; Andreou et al., 2014, 2015; Di Lorenzo et al., 2015; Mitra et al., 2015; 

Northoff and Duncan, 2016; White and Siegel, 2016). SVM was able to successfully classify the 

two participant groups based on gamma-band amplitude in the orbital cortex, parahippocampal 

gyri, temporal cortex, amygdala, hippocampus and cerebellum. However, no significant amplitude 

differences were observed in the alpha and beta frequency bands, where the prominent LRTC 

changes were found. This rules-out any speculations that the LRTC alterations in schizophrenia 

are driven by the effect or magnitude of spectral amplitude. It should be noted that, although ocular 

movement-related artefacts were removed using ICA, it is possible that some of the gamma-band 
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amplitude differences, and thereby the gamma amplitude decoding results, could in part be due to 

uncaptured eye motion in patients.  

 

Correlational analyses looking at LRTCs and patients’ clinical information yielded no significant 

results. In terms of amplitude however, we observed a strong positive correlation between the 

theta-band amplitude and SANS score. The brain regions involved in this finding were comprised 

of the parieto-temporal lobes, bilaterally. This result is in-line with previous studies that have 

observed enhanced resting low-frequency activity (Fehr et al., 2001, 2003; Sperling et al., 2002; 

Wienbruch et al., 2003; Chen et al., 2016), as well as positive correlations between low frequency 

oscillations and patients’ negative symptoms (Chen et al., 2016; Fehr et al., 2003; Jandl et al., 

2005; Venables et al., 2009; review: Boutros et al., 2014). Unlike the recent publication by (Zeev-

Wolf et al., 2018), however, correlations between alpha or beta-band power and patients’ 

symptoms scores were not significant. This could be due to the way the authors divided their 

patient group into high and low negative scores, and high and low positive scores, while we did 

not perform such separation of our participants, particularly since our patient group was fairly 

asymptomatic. It is also possible that this difference is due to our smaller sample size, or our 

statistical thresholds and the strict correction that we applied for our comparisons.  

 

Our robust and statistically significant machine-learning findings highlight the potential of 

using scaling dynamics as an early biomarker of schizophrenia. During typical development, 

LRTCs appear to increase and strengthen during the transition from childhood to adolescence 

(Smit et al., 2011). This phase is also a critical period during which psychopathologies typically 

arise (van den Heuvel and Kahn, 2011). Thus, we hypothesized that diminished LRTCs in patho-

relevant areas could potentially reflect neural alterations during brain maturation among 

schizophrenia patients that parallel those of excess synaptic-pruning, which lead to reduced gray 

matter volume (Uhlhaas, 2011). Indeed, both reduced gray matter volume (Witthaus et al., 2009) 

and white matter (Quan et al., 2013) have been reported in the same brain regions where we found 

diminished LRTCs (e.g., inferior frontal gyrus, which is thought to relate to core executive 

functions, such as inhibitory response) (Swick et al., 2008).  Future longitudinal research that 

includes MEG recordings in large cohorts of individuals at-risk of developing psychosis is 

recommended to further the findings of the present study. 



 

 

122 

 

Comparison of the eyes open and eyes closed conditions revealed that LRTC values were overall 

higher in the eyes closed than in the eyes open condition, particularly for healthy controls and less 

so for schizophrenia patients. This result is opposite to the one reported by (Sun et al., 2014), who 

did not find significant differences between eyes open and closed in healthy controls’ LRTCs. 

With respect to schizophrenia patients, their LRTCs values were more similar, perhaps because 

the reported LRTCs values were lower to begin with (and already close to the lower-bound value 

of 0.5) compared to controls. Interestingly, our LRTC findings in the beta-band (eyes open 

condition) were consistent with that of a recent EEG paper by (Moran et al., 2019). While it is 

unclear why substantial differences in LRTCs exist in the eyes open and eyes closed conditions, 

we hypothesize that differential neural mechanisms are at work, and thus bring about differences 

in the temporal structure of neural activity. It is tempting to hypothesize that when healthy 

participants close their eyes, they reach a more relaxed state, which in turn allows for better signal 

memory and autocorrelation in the system. Conversely, this state is perhaps harder to attain for 

schizophrenia patients who exhibit more neuronal excitability (scaling exponents closer to 0.5) 

with their eyes closed. This may partly be in line with the prevalence of sleep-related disorder 

among schizophrenia patients (Monti and Monti, 2005). It is also noteworthy that the type of 

instructions given to participants prior to resting-state recordings can influence their neural 

dynamics (Benjamin et al., 2010; Kawagoe et al., 2018). In the present study, participants let their 

mind wander during the eyes-open and eyes-closed recordings, thus allowing for a more natural 

baseline state of rest, compared to potentially more effortful instructions (e.g., “try not to think of 

anything”, Kawagoe et al., 2018). 

 

Taken together, the results of this study characterize, for the first time, temporal dysconnectivity 

in schizophrenia patients at both the cortical and subcortical levels using MEG. In addition, the 

machine-learning findings provide good evidence for the use of resting-state LRTCs in alpha and 

beta frequency bands to confidently discriminate patients from controls. 

 

3.5. Conclusion 
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In summary, this study shows that models such as the cognitive dysmetria and the disconnection 

syndrome can be probed, confirmed and extended using electrophysiological measures of resting 

neural dynamics (Smart et al., 2015). Indeed, the observed attenuation in temporal autocorrelation 

in the envelopes of the alpha and beta-band oscillations among schizophrenia patients supports the 

theory of dysconnectivity from a temporal angle. Taken together, this new approach for the 

quantification of (temporal) dysconnectivity could lead to new venues of research, early diagnosis 

and treatment for schizophrenia patients. 
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Chapter 4: Altered brain criticality in Schizophrenia: New 
insights from MEG 

 

 
 

Abstract 

 

Schizophrenia has a complex etiology and symptomatology that is difficult to untangle. After 

decades of research, important advancements towards a central biomarker are still lacking. One of 

the missing pieces is a better understanding of how non-linear neural dynamics are altered in this 

patient population. In this study, the resting-state neuromagnetic signals of schizophrenia patients 

and healthy controls were analyzed in the framework of criticality. When biological systems like 

the brain are in a state of criticality, they are thought to be functioning at maximum efficiency 

(e.g., optimal communication and storage of information) and with maximum adaptability to 

incoming information. Here, we assessed the self-similarity and multifractality of resting-state 

brain signals recorded with magnetoencephalography in patients with schizophrenia patients and 

in matched controls. Our analysis showed a clear ascending, rostral to caudal gradient of self-

similarity values in healthy controls, and an opposite gradient for multifractality (descending 

values, rostral to caudal). Schizophrenia patients had similar, although attenuated, gradients of 

self-similarity and multifractality values. Statistical tests showed that patients had higher values of 

self-similarity than controls in fronto-temporal regions, indicative of more regularity and memory 

in the signal. In contrast, patients had less multifractality than controls in the parietal and occipital 

regions, indicative of less diverse singularities and reduced variability in the signal. In addition, 

supervised machine-learning, based on logistic regression, successfully discriminated the two 

groups using measures of self-similarity and multifractality as features. Our results provide new 

insights into the baseline cognitive functioning of schizophrenia patients by identifying key 

alterations of criticality properties in their resting-state brain data.  
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4.1. Introduction 
 
The global prevalence of schizophrenia is reported to be close to 21 million individuals (Charlson 

et al., 2018). The symptoms and poor prognosis of those affected can deeply impact their daily 

functioning, and weigh on those close to them. Unfortunately, progress in therapeutic development 

is slow in the field of psychiatry due to the extreme complexity of the brain, the heterogeneity of 

patients’ symptoms and difficulties in translational research. More knowledge is needed to better 

understand what alterations occur in the neural activity of patients. Among the missing pieces, 

further characterization of the resting neural dynamics of schizophrenia, and their relationship to 

patients’ symptoms, is needed. Alterations in the rhythmic (oscillatory) neural activity of 

schizophrenia patients have been widely reported in the neuroimaging literature (reviews: Uhlhaas 

and Singer, 2010; Maran et al., 2016; Alamian et al., 2017). In addition, an emerging body of 

research has reported changes in the arrhythmic properties of brain dynamics in schizophrenia 

(Breakspear, 2006; Fernández et al., 2013). A powerful concept that has so far remained under-

exploited and poorly understood in neuropsychiatry is criticality. 

 

4.1.1 What is criticality? 
 

The dynamics of many complex systems, such as the human brain, appear to reside around the 

critical point of a phase transition (Beggs and Plenz, 2003; Stam and De Bruin, 2004; Fraiman and 

Chialvo, 2012; Palva and Palva, 2018). At this point of criticality, these systems are in a wavering 

state, at the cusp of a new phase, between the states of order and disorder (Beggs and Timme, 

2012; Cocchi et al., 2017; Souza França et al., 2018). The brain requires such a balance of 

regularity (i.e. structure) on the one hand, to maintain coherent behaviour, and flexibility (i.e. local 

variability) on the other hand, to adapt to ongoing changes in the environment (R. Chialvo, 2004; 

Beggs and Timme, 2012). Indeed, critical brain dynamics have been shown to be optimal for fast 

switching between metastable brain states, for maximizing information transfer and information 

storage within neural networks (Socolar and Kauffman, 2003; Haldeman and Beggs, 2005), and 

for optimizing phase synchrony (Yang et al., 2012). Importantly, it is within a critical state that 

neural communication can span the greatest distance and achieve maximal correlational length 

(Fraiman and Chialvo, 2012). Thus, the brain’s state of criticality is thought to affect the functional 
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properties of oscillations, local synchronization and signal processing (Palva and Palva, 2018). 

Changes to this state, due to psychiatric illness for instance, can alter this certain properties of this 

balance (e.g., in terms of strength and number of synaptic connections) (Beggs and Timme, 2012). 

Some of the tuning parameters of criticality appear to be embedded in the balance between neural 

excitation and inhibition (e.g. through NMDA receptors (Mazzoni et al., 2007; Shew et al., 2009; 

Hobbs et al., 2010; Poil et al., 2012)), in neural network connection strengths, and synaptic 

plasticity (Rubinov et al., 2011; Beggs and Timme, 2012). 

 

4.1.2 Measures of criticality    

4.1.2.1 Self-similarity and multifractality 

 

Within the framework of criticality, local and large-scale fluctuations arise from excitatory post-

synaptic potentials (EPSPs) and modulate brain states by facilitating or suppressing neuronal firing 

(Palva and Palva, 2018), with long-range spatial spread (He et al., 2010; Zilber, 2014). Systems in 

this state are characterized by power-law distributions, fractal geometry and fast metastable state 

transitions (Plenz and Chialvo, 2009; Cocchi et al., 2017; Chialvo, 2018; Palva and Palva, 2018). 

These features of a critical state are said to be scale-free or scale invariant.  Power-law distributions 

of a given signal can be recognized as a linear slope in the log-log plot of the feature distribution, 

and they imply that the signal‘s statistics and structural characteristics are preserved across 

spatiotemporal scales—in other words, that the signal has fractal properties (Beggs and Plenz, 

2003; Chialvo, 2018). Fractal architectures describe objects that contain identical, or statistically-

equivalent, repetitive patterns at different magnifying scales (Mandelbrot, 1983, 1985; Van Orden 

et al., 2012; Fetterhoff et al., 2015).   

 

Scale invariant dynamics of systems at criticality (i.e., power-law distributions and fractal 

architecture) have often been described using a 1/fb power law fitted to Fourier-based spectral 

estimations. On the other hand, self-similarity is a well-accepted model for scale-free dynamics 

and is richer than the sole measure of b, as it captures fractional Gaussian noise and fractional 

Brownian motion. Self-similarity can be measured by the Hurst exponent, H. In the brain, H is 

thought to index how well neural activity is temporally structured (via its autocorrelation). The 

smoother the signal, the higher the value of H (Zilber, 2014). However, self-similarity alone does 
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not fully account for scale-free dynamics or criticality, since it can only capture additive processes 

(La Rocca et al., 2018). Combining self-similarity with multifractality improves on this framework 

to better capture criticality in a system. Multifractality can account for the remaining non-additive, 

non-Gaussian processes. The multifractality parameter, M, quantifies the diversity of H’s 

(singularities) and the overarching geometry of spatiotemporal fluctuations (Leonarduzzi et al., 

2016; La Rocca et al., 2018). Generally, fractals are evaluated using the topological dimension, D, 

which describes the complexity and structure of an object by measuring the change in detail based 

on the change in scale (Di Ieva, 2016). In multifractal analysis, the local regularity of a signal is 

quantified using the Hölder exponent, D(h)  (Jaffard et al., 2016), allowing a more realistic 

characterization of phenomena that are too complex to be explained solely by Euclidian models. 

In sum, the brain’s degree of criticality is defined by its scale-free dynamics, which are best 

quantified by combining measures of self-similarity and multifractality.  

4.1.2.2 Common measures of criticality 

 

Numerous metrics have been developed to measure the scale-free properties that define criticality, 

such as Detrended Fluctuation Analysis (DFA) applied to oscillatory envelopes (Linkenkaer-

Hansen et al., 2001a; Hardstone et al., 2012) and neuronal avalanche detection (Beggs and Plenz, 

2003). Non-linear dynamics, and specifically multifractal analysis, has been used to address 

questions of self-similarity and multifractality. Multifractal analysis can characterize both the 

amount of global self-similarity in a system and the amount of local fluctuations (i.e. number of 

singularities) (Zilber et al., 2012). This approach allows for more in-depth interpretations of the 

electrophysiological data compared to more conventional analytical approaches. A number of 

mathematical frameworks have tapped into this, such as the Multifractal Detrended Fluctuation 

Analysis (MFDFA; (Kantelhardt et al., 2002; Ihlen, 2012)) and the Wavelet Leaders-based 

Multifractal Analysis (WLMA; (Wendt, 2007; Wendt and Abry, 2007; Serrano and Figliola, 

2009)). For reviews of scale-free and multifractal analytical approaches, see (Lopes and Betrouni, 

2009; Zilber, 2014).  

4.1.2.3 Application to psychiatry 

 

The application of criticality models to psychiatry, and in particular to the study of schizophrenia 

(SZ), is well in line with leading theories for this pathology, which are centered around 
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dysconnectivity and altered information processing and transfer (Weinberger et al., 1992; Friston 

and Frith, 1995; Fernández et al., 2013). So far, most of the empirical evidence for dysconnectivity 

theory in SZ has come from functional magnetic resonance imaging studies, which highlight 

several important alterations in anatomical and functional connectivity that exist in SZ patients, as 

well as from electroencephalography (EEG) and magnetoencephalography (MEG) connectivity 

studies (review: (Alamian et al., 2017b)). However, we still lack a complete, in-depth 

understanding of the brain alterations inherent to this pathology in the temporal domain.  

 

In terms of scale-free analyses in psychiatry, power spectral densities (PSD) of resting-state fMRI 

scans have shown SZ patients to have reduced complexity and disrupted scale invariant dynamics 

compared to controls in the precuneus, inferior frontal gyrus and temporal gyrus, and these changes 

correlated with their symptoms (Lee et al., 2020). Electrophysiological studies have found altered 

dimensional complexity and increased variability in SZ patients’ signal (Koukkou et al., 1993). A 

number of studies have applied different versions of multifractal analysis on electrophysiological 

(Slezin et al., 2007b; Racz et al., 2020) or white-matter MRI data in SZ (Takahashi et al., 2009). 

One of these used the multifractal analysis on resting-state EEG data, and found increased long-

range autocorrelation and multifractality in patients compared to controls (Racz et al., 2020).  

 

In addition, two insightful reviews have examined how non-linear methods could improve our 

understanding of SZ (Breakspear, 2006; Fernández et al., 2013). They highlighted conflicting 

results among studies reporting on complexity changes in SZ, which they proposed were 

attributable to participants’ symptomatic state, the method of imaging or medication. Complexity 

as measured by Lempel–Ziv complexity (LZC) or correlation dimension (D2) was typically found 

to be increased in SZ in studies that recruited younger, first-episode patients who were drug-naïve 

and symptomatic, while studies reporting SZ-related reductions in complexity tended to recruit 

older, chronic, patients who were on medication and hence less symptomatic (Lee et al., 2008; 

Fernández et al., 2013). Although these measures have been widely applied to neuroscientific data, 

they each come with caveats that affect their precision or generalizability.  Moreover, these reviews 

highlight the importance of controlling for factors such as age and medication when studying 

complex pathologies, such as SZ. 
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4.1.3 Goals of the study 
 

The brain is functionally optimal when in a state of criticality—in other words, when neural 

activity can spread equally well at long and short distances in time and space and information is 

processed and stored efficiently (Shew et al., 2009)—and multifractality analysis is among the 

most reliable indicators of criticality. Meanwhile, leading neural theories of SZ emphasize a 

pathological spatiotemporal dysconnectivity. It follows that the potential insights to be gained from 

multifractal analysis in SZ is extensive.  

 

Therefore, the aim of the present study is to examine how criticality is altered in the neural activity 

of chronic SZ patients using the high temporal resolution of resting-state MEG data, the spatial 

resolution of structural MRI and wavelet-based estimations of multifractality and self-similarity. 

We also assessed the predicative power of criticality features in classifying patients and controls 

using supervised machine-learning. We hypothesize that, compared to healthy controls, chronic 

SZ patients will exhibit reduced self-similarity in the prefrontal cortex and increased self-similarity 

in sensory brain regions, along with reduced multifractality overall. We also predict significant 

correlations between measures of criticality and patients’ clinical symptom scores.   

 

4.2. Materials and methods 
 

4.2.1 Participants 
 

Participant data collection was conducted at the Cardiff University Brain Research Imaging Centre 

in Wales, U.K., and the data analyses were conducted at the University of Montreal, QC, Canada. 

Ethical approval was obtained for the data collection according to the guidelines of the United 

Kingdom National Health Service ethics board, and the Cardiff University School of Psychology 

ethics board (EC.12.07.03.3164). Ethical approval was also obtained for these analyses from the 

research committee of the University of Montréal (CERAS-2018-19-069-D).  

 

Behavioural and neuroimaging data from 25 chronic SZ patients (average age = 44.96 ± 8.55, 8 

females) and 25 healthy controls (average age = 44.04 ± 9.20, 8 females) were included in this 
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study. Healthy controls had no history of psychiatric or neurological disorders. The collected 

demographic information from all participants included: age, gender, depression score on the Beck 

Depression Inventory – II (BDI-II (Beck et al., 1996)), and mania score on the Altman Self-Rating 

Mania Scale (ASRM (Altman et al., 1997)). For the SZ patient group, additional information was 

collected: scores on the Scale of the Assessment of Positive Symptoms (SAPS) and the Scale of 

the Assessment of Negative Symptoms (SANS) (Kay et al., 1987), and information on 

antipsychotic doses standardized using olanzapine equivalents (Gardner et al., 2010). All of these 

data were anonymized, such that no identifiable information of participants was associated with 

their data nor with data from subsequent analyses. Patients were overall fairly asymptomatic on 

the testing day. No statistically significant group differences were observed across these 

demographic and clinical metrics, except for BDI-II scores, where SZ patients had on average mild 

depression (14.83 ± 9.11), compared to controls (4.50 ± 4.67). Additional details on participant 

information (i.e., recruitment procedure, exclusions, inclusions, and sample size calculation) can 

be found in Chapter 3 (Alamian et al., 2020). 

 

4.2.2 MEG and MRI experimental designs  
 

For this study, the brain imaging data consisted of five-minutes of resting-state MEG signal, 

recorded during an eyes-closed condition, with a 275-channel CTF machine. Reference electrodes 

were placed on each participant to account for cardiac, ocular and other potential artefacts 

(Messaritaki et al., 2017). The MEG signal was initially recorded at a sampling frequency of 

1200Hz. To conduct the MEG source reconstruction analysis, individual anatomical-T1 MRI scans 

were also recorded for each participant.  

 

4.2.3 Data preprocessing and MEG source reconstruction 
 

NeuroPycon (Meunier et al., 2019), an open-source python pipeline, was used for the 

preprocessing and source-reconstruction analyses. First, the continuous raw data was down-

sampled from 1200Hz to 600 Hz, and band-pass filtered between 0.1-150 Hz. Next, independent 

component analysis (ICA) was used to remove artefacts from the MEG signal using MNE-python 

(Hyvarinen, 1999; Gramfort et al., 2013).  
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Since it has been reported that the values of the Hurst exponent, H, are unusually low in sensor-

space, and tend to increase when moving from sensor to source space (based on simulations and 

real data: (Blythe et al., 2014)), source-reconstruction steps were taken to present cortical-level 

results in multifractal analysis. To generate individual anatomical source-spaces, the anatomical 

T1-MRI information of each subject was segmented with FreeSurfer (Fischl, 2012). However, 

given that this process would produce different source-space dimensions for each participant, 

individual source spaces were morphed and projected onto a standardized space from FreeSurfer 

(fsaverage) (Greve et al., 2013). The resulting source-space comprised 8196 nodes on the cortical 

surface, where dipoles were 5mm apart. The single layer model boundary element method 

implemented in MNE-python  was used to compute the lead field matrix (Gramfort et al., 2013). 

Weighted Minimum Norm Estimate (Dale and Sereno, 1993; Hämäläinen and Ilmoniemi, 1994; 

Hincapié et al., 2016), implemented in the MNE-python package (Hyvarinen, 1999; Gramfort et 

al., 2013), was used to compute the inverse solution with a Tikhonov regularization parameter of 

lambda = 1.0 (Hincapié et al., 2016). Dipoles of the source-space were constrained to have an 

orientation perpendicular to the cortical surface. Thus, for this study, 8196 time series were 

extracted at the cortical level.  

  

4.2.4 Characterization of criticality through self-similarity and 
multifractality 

 

4.2.4.1 Measuring self-similarity and multifractality 

 

The singularity spectrum is a concise way to summarize information about scale-free dynamics. It 

allows the plotting of the Hölder exponents (h) about local variability in a time series, against the 

Fractional (Hausdorff) Dimensions, D(h), as can be seen in Figure 15.  
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FIGURE 15: SKETCH OF A SINGULARITY SPECTRUM 
These sketches illustrate the multifractal scaling function, which depicts a singularity spectrum. Local 
variability in the signal is represented by Hölder exponents, h, on the x-axis, while the amount of 
singularities is represented by the Fractal Dimension, D(h), on the y-axis. The apex of the curve reveals the 
most common h exponent, while the width of the curve reveals the multifractal spectrum. Using log-
cumulants from the WLBMF (described in 2.4.2) to describe the singularity spectrum, C1 informs on the 
apex, while C2 informs on the width of the function. Panel (A) shows a monofractal function, where C1=H 
and C2 = 0, and panel (B) shows a multifractal function, where the concavity shows the distribution of h 
singularities. 
 

Multifractal analysis builds on measures of self-similarity (e.g., slope of the PSD, DFA) to provide 

information about local fluctuations (singularities) in time. The multifractality spectrum and the 

scaling function ζ(q) (in terms of statistical moments q) are related, and can be described using the 

Legendre transformation: 

!(ℎ) =	!"#$%&(1 + )ℎ − 	+())). 
 

When a signal is monofractal, this becomes a linear function, where ζ(q) = qH, as it would only 

have a single singularity (one unique property, Figure15a). Here, the self-similarity parameter 

would be equal to H, the Hurst exponent (Wendt et al., 2007).  When a signal is multifractal, the 

function ζ(q) has a curvature, as in Figure 15b, which shows the global spectrum of singularities. 

The Hölder exponent (h) with the largest Fractal dimension, D, (apex of the curve) is said to be 

the most common singularity in the time-series. The width of the curve can be described with the 

multifractality parameter, M (Wendt et al., 2007). 
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In this study, to meaningfully estimate self-similarity and multifractality, we used the Wavelet p-

Leader and Bootstrap based MultiFractal analysis (WLBMF). This approach builds on the Wavelet 

leaders-based multifractal analysis (WLMA) method that has been thoroughly described elsewhere 

(Wendt, 2007; Wendt et al., 2007; Serrano and Figliola, 2009; Ciuciu et al., 2012; Fetterhoff et al., 

2015). Briefly, this WLMA method of estimating the singularity spectrum was shown to be 

efficient in untangling the scaling properties of neuronal signal, and more robust than other 

algorithms in addressing non-stationarity issues (Wendt, 2008). The curved shape of the scaling 

function ζ(q) can be written in its polynomial expansion around its maximum to allow the 

evaluation of Cp, log-cumulants:  

ζ(q) =∑ -'(!
!

'!)
)
'*+ . 

The singularity spectrum can be thus derived from the series-expansion of Cp. The first two log-

cumulants are the most informative, with C1, the first log-cumulant, reflecting self-similarity (and 

the location of the maximum of D(h), similar to H). Its values approximate those of the H; values 

above 0.5 indicate positive correlation (signal has memory), values below 0.5 indicate negative 

correlation, and a value of 0.5 indicates lack of correlation (random signal). Meanwhile, C2, the 

second log-cumulant, reflects multifractality (and the width of the singularity spectrum, like M) 

(Wendt, 2007; Wendt et al., 2009; Zilber, 2014; Diallo and Mendy, 2019). Given the concavity of 

the scaling function, C2 is always negative, and when C2 equals 0, it is said to indicate 

monofractality. 

 

Hölder exponents cannot take on negative values. Thus, most multifractal analyses are constrained 

to scaling functions that have only positive local regularities, implying that there is a continuous 

temporal positive correlation in the signal (i.e., locally bound everywhere in the function). 

However, this is not true of all brain signals, which can present with discontinuities in the signal 

and can thus take on negative regularities. Thus, p-leaders have been proposed as a way to 

circumvent this limitation (full description in : Jaffard et al., 2016).  

4.2.4.2 Defining parameters of log-cumulants 

 

One method to detect criticality in the brain is through the Wavelet p-Leader and Bootstrap based 

MultiFractal (WLBMF) analysis and, more specifically, through the evaluation of log-cumulants 



 

 

134 

(Wendt and Abry, 2007; Wendt et al., 2007). This MATLAB-implemented technique uses the 

discrete wavelet domain for the analysis of self-similarity and multifractality in signals. In order 

to compute C1 and C2 in our study, we first plotted the PSD of each participant group (SZ patients, 

controls) in log-log space and identified the portion of the PSD function exhibiting a log-linear 

relationship. In our data, the log-linear portion of the PSD belonged to j1=7 and j2=10, which 

correspond to 3.5 Hz and 0.4 Hz, respectively, as deduced by the following equation: Scale = ,	×	/01	×	2" , 

where Sf represents the sampling frequency, j1 and j2 represent the start and end points of the log-

linear portion, respectively, and the scale represents the frequency bin to which it corresponds. 

This frequency range is similar to those of other researchers who have used the same multifractal 

analysis (Zilber, 2014). The PSD was calculated at the overall cortical level and also at the ROI 

level, using the Destrieux Atlas (Destrieux et al., 2010), to ensure that the linear part of the 

spectrum remained the same across brain regions. For the purposes of this study, we used second 

order statistics in the evaluation of the log-cumulants (i.e., p-leader of p=2), corresponding to long-

range temporal correlations computed with DFA (Leonarduzzi et al., 2016). For the ROI-based 

investigations, the C1 and C2 log-cumulants were first computed for each node (n=8196 sources) 

in cortical source-space, and then averaged across ROIs (n=148 ROIs based on the Destrieux atlas, 

(Destrieux et al., 2010)). 

 

4.2.5 Statistics and machine-learning analyses 
 

4.2.5.1 Conventional statistics and correlation analyses 

 

Group statistical analyses were conducted between SZ patients and matched-controls to test for 

group-level differences in C1, C2, and demographic and clinical data. This was done at the ROI 

and source levels. To do so, we used non-parametric statistical tests (two-tailed, unpaired, pseudo 

t-tests), corrected with maximum statistics using permutations (n = 1000, p < 0.001) (Nichols and 

Holmes, 2001; Pantazis et al., 2005).  

 

Moreover, Pearson correlations with False Discovery Rate (FDR) correction (Genovese et al., 

2002) were used to explore the relationship between cortex-level C1/C2 values and scores on the 

SANS, SAPS and medication-dosage, in patients. FDR correction (Benjamini-Hochberg) was 
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applied to each p-value (computed for each of the 8196 nodes) to account for the multiple 

comparisons in order to achieve a significance threshold of p<0.05, corrected 

4.2.5.2 Machine learning analyses 

  

MEG signal classification was conducted using a logistic regression model and a stratified 10-fold 

cross-validation scheme to evaluate the discriminative power of the log-cumulants C1 and C2 in 

classifying SZ patients and controls. First, at each of the 8196 nodes, the feature vector (either C1 

or C2 values), computed for each participant, was split into 10 folds, while maintaining a balance 

between the two classes (SZ and controls). Next, the classifier was trained on the data from nine 

of the ten folds and tested on the remaining fold (test set). The classification performance was 

assessed using the decoding accuracy (DA) on the test set (i.e., percentage of correctly classified 

participants across the total number of participants in the test set). This operation was repeated 

iteratively until all the folds were used as test sets. The mean DA was used as the classification 

performance metric. In order to infer the statistical significance of the obtained DAs, permutation 

tests were applied to derive a statistical threshold as described in (Combrisson and Jerbi, 2015). 

This method consists of generating a null-distribution of DAs obtained by running multiple 

instances of the classification (n=1000), and randomly shuffling class labels each time. Maximum 

statistics were applied in order to control for multiple comparisons across all the nodes (Nichols 

and Holmes, 2001; Pantazis et al., 2005). Visbrain was used for all the ROI and cortical-level 

visualizations (Combrisson et al., 2019). 

 

4.3. Results 
 

4.3.1 Alterations in self-similarity and multifractality 
 

The group averages of C1 and C2 values for schizophrenia patients and healthy controls can be 

seen in Figure 16. Across both participant groups, a clear gradient in C1 values is observed, which 

increases from the frontal lobe to the occipital lobe. Interestingly, a similar gradient, but in the 

opposite direction, is observed in terms of C2 values in both groups, with C2 values gradually 

increasing from the occipital lobes to the frontal lobes. Moreover, these gradients appear less 

pronounced in patients than in controls.  
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Conventional unpaired t-tests between the two subject groups did not yield any statistically 

significant differences in terms of C1 or C2 values (p<0.05, two-tailed t-test). Nevertheless, in 

Figure 17a, the t-values show the direction and magnitude of group differences in term of C1 and 

C2 values, with the positive (red) t-values showing brain areas where patients have smaller C1 or 

C2 values compared to controls, and the negative (blue) t-values showing brain areas where 

patients have larger C1 or C2 values compared to controls. 

 

By contrast, when using a machine-learning approach to test for out-of-sample generalization in 

the same data, we found that C1 and C2 in multiple brain regions led to statistically significant 

classification of the two subject groups, with up to 77% decoding accuracy (Figure 17d, max 

statistics correction, p<0.05). More specifically, using source-space C1 values as a decoding 

feature led to statistically significant discrimination of SZ and controls in the subcallosal gyrus, 

middle fontal gyrus and anterior part of the cingulate gyrus, bilaterally. The left superior frontal 

gyrus, the left inferior frontal gyrus and sulci, and the right orbital, straight and frontomarginal 

gyri were also significant. The maximum decoding occurred in the left superior frontal gyrus (77%, 

compared to the chance level of 70%). Meanwhile, using source-space C2 values as a decoding 

feature led to statistically significant classification of SZ patients and controls in the superior 

parietal lobule, precuneus and posterior-ventral part of the cingulate gyrus in the right hemisphere. 

The left post-central gyrus, and superior temporal gyrus and occipital gyrus, bilaterally, were also 

significant. The maximum decoding accuracy took place in the right temporal gyrus (76%, 

compared to the chance level of 70%). Figures 17b-d show the unthresholded DA values for C1 

and C2, as well as the uncorrected results at p<0.05, and the corrected classification results at 

p<0.05, with multiple comparisons correction using max statistics. 

 

Figure 18 shows the classification results based on C1 and C2 values computed at the ROI-level 

(p<0.05, corrected for multiple comparisons). The ROIs involved in the significant discrimination 

of patients and controls were the left straight gyrus, the triangular part of the inferior frontal gyrus 

and the medial transverse frontopolar gyrus and sulcus for C1, and the superior occipital gyrus, 

the right cuneus and the left angular gyrus for C2. To illustrate how the classifier was able to 

successfully separate SZ patients from healthy controls, individual C1 and C2 values were 

computed and averaged across all brain sites that had shown significant decoding at the source-
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level.  These values are presented in a scatter plot in Figure 19. The distribution of the individual 

C1 and C2 values (averaged over all sources with significant decoding accuracy) shows that C1 

values are higher in patients than in controls (i.e. a trend towards more self-similarity) and C2 

values also shift upwards in patients (i.e. a trend towards less multifractality). 

 

It is noteworthy that this scatter plot reveals the presence of positive C2 values in the dataset, 

primarily in patients. Although mathematically ill-defined, the observation of positive C2 is not 

unprecedented. Positive C2 values in some individuals can be attributed to numerical instabilities 

(and might be statistically undistinguishable from 0) or to the fact that the data in these participants 

cannot be modeled using the multifractal formalism. The safest interpretation for the positive C2 

values observed in Figure 19 (primarily in patients), is that data in these individuals were neither 

multifractal (C2 < 0) nor monofractal (C2 = 0). Given that this specific type of multifractal analysis 

has never been conducted on clinical data before, we explored how the results would change when 

using a p-leader of p=4 (as opposed to the p=2 we have used up to now). This analysis found fewer 

participants to have positive C2 values compared to p=2, and generally allowed for a better 

modeling of multifractality in the resting neuromagnetic signal of participants. Figures of C1/C2 

group averages and classification patterns based on p=4 can be found in the Supplementary 

material 5. In summary, we observed a similar albeit stronger decoding of patients and controls 

based on C2 values in p=4 than p=2. Interestingly, C1 values were smaller (Supplementary Figure 

5), and the strong frontal lobe classification results based on C1 values at p=2 diminished at p=4 

(Supplementary Figure 6 c-d). Taken together, the results of C1 estimation (self-similarity) were 

more reliable in our data when using a p-leader of p=2, while C2 estimation (multifractality) 

provided more robust results with p=4. Most importantly, the trends in terms of increasing C1 and 

C2 values in patients compared to controls was present irrespective of the choice of p. 
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FIGURE 16: GROUP AVERAGES OF C1 AND C2 VALUES IN SZ PATIENTS AND CONTROLS 
Averaged C1 and C2 values were computed for each of the 8196 nodes, within each group. P-leader p=2 
was used. SZ= schizophrenia 
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FIGURE 17: GROUP DIFFERENCES AND MACHINE-LEARNING RESULTS 
(A) shows t-values from the unpaired t-tests (non-significant), showing (controls – patients). (B) shows 
unthresholded DA values based on logistic regression, using C1/C2 as a single feature. (C) shows the same 
DA values, thresholded at p<0.05. (D) shows the DA values corrected for multiple comparisons using 
maximum statistics (p<0.05), thresholded at the chance level of 70%. P-leader p=2 was used. DA= decoding 
accuracy.  
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FIGURE 18:  ROI-BASED CLASSIFICATION OF SZ AND CONTROLS USING C1 AND C2 
Machine-learning classification of SZ patients and healthy controls using logistic regression and the 
features of C1 or C2 at the ROI-level. The ROI analysis was based on the Destrieux Atlas, p<0.05, corrected 
for multiple comparisons. DA=decoding accuracy, SZ=schizophrenia. 
 
 

 

FIGURE 19:  SCATTER PLOT VISUALIZATION OF INDIVIDUAL C1 AND C2 VALUES 
This figure shows individual C1 and C2 values, averaged across all the nodes that showed statistically 
significant patient vs controls decoding (n=50). This scatter plot illustrates that patients exhibit overall 
higher self-similarity (higher C1) and less multifractality (higher, less negative, C2). 



 

 

141 

 

4.3.2 Correlations between scale-free properties and clinical information 
 
The investigation of potential correlations between C1/C2 and clinical information resulted in a 

number of interesting results. Specifically, the correlations between C1 values and patients’ SANS 

scores (maximum r=0.78, p<0.05) in the left inferior frontal gyrus and sulcus (Figure 20a), and 

between C2 values and patients’ SAPS scores (maximum r=0.78, p<0.05) in the circular sulcus of 

the insula (Figure 20b) were statistically significant. In addition, the relationship between C1 and 

medication dosage yielded a statistically significant positive correlation (maximum r=0.79, 

p<0.05, after correcting across all nodes). Figures 20c and 21c illustrate that patients with higher 

medication dosage exhibited higher C1 values. This was especially significant in the superior 

frontal gyri, the right middle temporal gyrus, left mid-anterior cingulate gyrus and left inferior 

temporal sulcus (see Figure 20c). The positive correlations in these analyses are shown in the 

scatter plots in Figures 21a-c. These plots depict the relationship between individually-averaged 

C1 and C2 values (based on the significant nodes), and patients’ symptom severity and medication 

dosages. To further clarify the C1 x SANS correlational results, a Pearson correlation was 

conducted between SANS scores and medication dosage, revealing a low-to-moderate correlation 

coefficient. The r2 of the regression model suggested that this relationship explained 27-40% of 

the data, meaning that the correlation of C1 x SANS was only partially mediated by medication. 
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FIGURE 20: CORRELATIONAL RESULTS BETWEEN C1 AND C2 VALUES AND PATIENTS’ 
CLINICAL INFORMATION 

Pearson correlation results between patients’ (A) C1 values and negative symptom scores on the SANS 
(p<0.05), (B) C2 values and positive symptom scores on the SAPS (p<0.05), and (C) C1 values and 
medication dosages (olanzapine equivalent in mg), p<0.05. 
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FIGURE 21: SCATTER PLOTS SHOWING THE POSITIVE CORRELATIONS BETWEEN C1/C2 
VALUES AND CLINICAL INFORMATION 
These scatter plots depict correlations (p<0.05) between individually averaged C1 and C2 values and 
subjects’ clinical information. The averaging of C1 and C2 values was over significant nodes. (A) Shows 
the correlation between C1 values and patients’ SANS scores, (B) shows the correlation between C2 values 
and SAPS scores, and (C) shows the correlation between C1 values and patients medication dosage 
(olanzapine equivalent in mg). 
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4.4. Discussion 
 

The central goal of this study was to examine and characterize criticality features in the baseline 

neural dynamics of schizophrenia. To do so, we evaluated the first two log-cumulants of the 

Wavelet p-Leader and Bootstrap based MultiFractal (WLBMF) analysis on the resting-state 

neuromagnetic signals of chronic SZ patients and healthy controls. This allowed us to determine 

the values of C1 (reflective of self-similarity) and C2 (reflective of multifractality) on the linear, 

scale-free portion of participants’ arrhythmic MEG signal in source-space. In brief, our findings 

partially supported our initial hypotheses about self-similarity and multifractality changes in SZ, 

whilst also revealing unexpected alterations in criticality. 

 

Specifically, the findings of this study show that there are clear opposite gradients in the values of 

C1 and C2, along the rostro-caudal axis. A progression from low to high values of C1 were 

observed from anterior to posterior poles (i.e., frontal to occipital lobes), while C2 values showed 

the reverse progression. For both of these metrics, the gradient was less clear in SZ patients than 

in healthy controls. The t-values of the unpaired t-tests showed that patients had higher C1 values 

in the fronto-temporal area, and lower C1 values in the parieto-occipital areas compared to 

controls. In contrast, patients appeared to have higher C2 values in the temporal, parietal and 

occipital areas than controls. Conventional t-test statistics failed to reach significance after multiple 

comparisons correction. However, a machine-learning approach based on logistic regression 

yielded statistically significant decoding (up to 77%) of patients and controls in a number of brain 

regions. Indeed, SZ patients and controls were categorized using C1 values in the anterior part of 

the cingulate gyrus (ACC), the left inferior gyrus, and the mid and superior frontal gyri, among 

other brain regions. Meanwhile, using C2 as a feature, we were able to statistically significantly 

classify patients and controls in the right temporal gyrus, precuneus, and occipital gyrus, among 

other brain regions. 

 

In terms of the first log-cumulant, patients had a range of C1 values of [0.07,1.44] in significant 

regions. In controls, this range was of [0.18,1.16]. Typically C1 (and thus H) values would be 

expected to be between 0 and 1 (where 0 < C1 < 0.5 implies negatively autocorrelated signal, C1 
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= 0.5 implies uncorrelated signal, and 0.5 < C1 < 1 implies positively autocorrelated signal), 

although values above 1 have been observed within the theory of generalized processes and 

tempered distributions (Samoradnitsky and Taqqu, 1994). In terms of the second log-cumulant, 

patients had a range of C2 values of [-0.01,0.015] in significant brain regions, while controls had 

a range of [-0.02, 0.011]. These values fall within the same ranges reported by previous researchers 

(e.g., (Zilber, 2014). As a reminder, higher C1 values are indicative of more self-similarity and 

memory in the signal, while lower (more negative) C2 values are indicative of more complexity 

in the form of multifractality. From our results, we infer that SZ patients exhibited more self-

similar neural dynamics than healthy controls, and thus more regularity in the frontal and temporal 

brain areas. In addition, patients had fewer singularities (less diverse h ) in the parietal and occipital 

brain regions, compared to healthy controls whose neural signals were more multifractal.  

 

Further investigation of this analysis revealed that a subportion of participants (predominantly 

patients) had some positive C2 values. Theoretically, only [C2 < 0] (multifractal signals) or [C2 = 

0] (monofractal signals) are expected. Observing positive C2 values implies that the multifractal 

formalism could not properly model the neuromagnetic data recorded in these patients. So, what 

does this tell us about the success of the classifier in using C2 to distinguish between patients and 

controls? The simplest explanation is that individuals with more negative C2 (stronger multifractal 

properties) were identified as healthy, whereas individuals with C2 values closer to zero 

(monofractal), or even higher than zero (neither multifractal no monfractal), were classified as 

patients. As a side note, we found that using an alternate p-leader of p=4 improved C2 values, and 

the classifier reaffirmed the diminished multifractality characteristics of patients’ resting 

neuromagnetic signal. Taken together, we observe clear rostro-caudal gradients of ascending self-

similarity and multifractality across both participant groups, albeit more clearly in controls. The 

reduced multifractality and increased self-similarity might reflect a certain rigidity in the temporal 

dynamics of SZ patients’ neural activity. 

 

Our findings are consistent with recent publications that have characterized complexity in SZ in 

the same regions in which we observed alteration in the log-cumulants C1 and C2 (i.e., precuneus, 

inferior frontal gyrus and temporal gyrus, (e.g., Lee et al., 2020)). Interestingly, a recent resting-

state MEG-based study of SZ patients by La Rocca et al. (2018) also found a gradient in C1 values 
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along the longitudinal axis; however, in contrast to our own finding of an ascending anterior-

posterior gradient, they instead found an opposite, descending anterior-posterior gradient (La 

Rocca et al., 2018). Of note, there are some methodological differences between our studies, such 

as the choice of scale (j1 and j2) for the linear portion of the PSD. Differences could also be due 

to age differences. Indeed, the authors reported the mean age of their participants to be 22 years 

old, while our group’s mean age was of 44 years old. In the complexity literature, it has been often 

reported that the properties of scale-free dynamics change with age (e.g., Fernández et al., 2011; 

Churchill et al., 2016), and so it is possible that there is a reversal of the self-similarity gradient 

with age. More work is needed to elucidate this. 

 

Positive correlations were observed between the metrics of self-similarity and multifractality and 

patients’ clinical information. In particular, we observed an increase in C1 values in patients with 

increasing severity of scores on the negative symptoms scale (SANS) in the inferior frontal gyrus, 

as well as with patient’s medication dosage, the latter of which was especially strong (r=0.79). The 

left frontal gyrus plays an important role in cognitive functioning (Swick et al., 2008) and language 

(Klaus and Hartwigsen, 2019). At the structural level, cortical thinning has been observed in the 

inferior frontal gyrus in SZ patients compared to healthy controls, which correlated with cognitive 

dysfunction  (Kuperberg et al., 2003; Oertel-Knöchel et al., 2013). Correlation between inferior 

frontal gyrus volume and negative symptoms in SZ patients have been previously observed, but 

not in their non-affected siblings (Harms et al., 2010). At the functional level, higher cluster 

coefficients have been observed in the left inferior frontal compared to bipolar patients or controls 

(Kim et al., 2020), as well as weaker connectivity within the language network (Jeong et al., 2009). 

In addition to the reported structural alterations in this language processing center, the reduction 

in the temporal flexibility and enhanced regularity in the signal might explain why patients’ have 

poorer speech understanding, such as difficulty detecting metaphors, sarcasm or jokes (Rossetti et 

al., 2018).  A correlational trend was also observed between multifractality and patients’ scores on 

the positive symptom scale (SAPS) in the circular sulcus of the insula. In past studies, negative 

correlations have been observed between reduced grey matter volume of the insula and SZ 

patients’ positive symptoms (Wylie and Tregellas, 2010; Cascella et al., 2011). It is interesting to 

note that self-similarity and multifractality were oppositely (and perhaps complementarily) 

correlated with symptom severity scores.  
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Taking into account the correlational findings, it is not surprising that, in our dataset of chronic 

and medicated patients, antipsychotic medication dosage was related to symptom severity, which 

itself was related to scale-free neural properties. Psychiatrists typically increase pharmaceutical 

dosage, gradually and as needed, to help manage symptoms. Sometimes, certain drug 

combinations that help manage positive symptoms (hallucinations, delusions) can worsen negative 

symptoms (Schooler, 1994; Goff et al., 1996). Evidence from other studies (Koukkou et al., 1993; 

Saito et al., 1998; Raghavendra et al., 2009) suggests that drug-naïve and first-episode patients 

may display a different pattern of criticality, thus the generalizability of our results is limited to 

other medicated, chronic SZ patients. 

 

Another parallel can be drawn between this study’s results and findings from DFA analyses. The 

log-cumulants (C1 and C2) derived from WLBMF analysis using a p-leader of p=2, as was used 

in the present study, are similar to scaling exponents obtained using DFA (Leonarduzzi et al., 

2016), in that they both reflect temporal autocorrelations. In one of our recent publications, we 

computed DFA exponents on oscillatory envelopes in this same dataset of SZ patients and healthy 

controls (Alamian et al., 2020). The scale used for the computation of the log-cumulants (j1,2: 0.4-

3.5 Hz) overlaps with the delta oscillatory band (0.5-3.5Hz). Comparing delta DFA exponents and 

C1 between the studies reveals a good agreement: DFA exponents were reduced in patients 

compared to controls in the occipital and parietal lobes and increased values in the prefrontal and 

temporal lobes, similar to the C1 topology. The overlap was remarkably good considering that 

DFA was computed on band-limited rhythmic brain signal, while the log-cumulants of the 

singularity spectrum were computed on the arrhythmic raw brain signal. This comparison shows 

that while DFA is an adequate measure of the self-similarity aspect of criticality, it does not 

however provide any information on the multifractality of a signal, as does the second log-

cumulant, C2. In this respect, they capture different properties of the neural signal, and should be 

treated as such.   

 

Criticality in the brain likely informs on the spatiotemporal organization and functioning of neural 

networks at the micro- and macroscopic levels (Hesse and Gross, 2014; Cocchi et al., 2017). While 

the origins of criticality are still debated, many agree that scale-free neural fluctuations are the 
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signature of a brain in a state of criticality. A right balance of scale invariant properties (self-

similarity, multifractality) is thought to be needed to adapt and respond to ever changing 

environments (Linkenkaer-Hansen et al., 2001b; Plenz and Chialvo, 2009; Beggs and Timme, 

2012; Palva et al., 2013b; Shew and Plenz, 2013). Consequently, we propose that a change in this 

equilibrium could disrupt optimal brain functioning. When self-similarity is strong in a signal, as 

in the brain signals of our SZ cohort, the signal’s temporal autocorrelation decays slowly, such 

that signal memory lasts a long time. While still the subject of debate, it has been proposed that 

this enhanced temporal persistence (or redundancy) may make the brain less efficient in 

information processing (Zilber et al., 2013). Lower levels of self-similarity in signals, as in those 

of our healthy controls, are thought to reflect enhanced neural excitability and more efficient 

processing (He, 2011, 2014; Zilber et al., 2013). Interpretations of multifractality are still unclear, 

but it appears that a richer repertoire of singularities (multifractality > monofractality) suggests 

more variability and flexibility in the neural signal (Beggs and Timme, 2012), and thus in 

behaviour. In our dataset, patients exhibited reduced multifractality in certain areas, thus 

suggesting a decrease in complexity and flexibility in their resting neuromagnetic signal. The 

observed alterations in these criticality metrics in SZ could explain the long, sustained nature of 

patients’ positive symptoms (delusions, hallucinations) and their difficulty in breaking away from 

them.  

 

4.5 Conclusion 
 

The overarching scale invariance of brain activity is thought to be a useful indicator of its 

organization across both temporal and anatomical scales (Werner, 2007; Zilber, 2014). Indeed, 

many have suggested that biological systems optimally process, adapt to and communicate 

information over long neural distances when in a state of criticality. This critical state involves a 

balance between regularity (structure) and flexibility (variability, local fluctuations). Disruption of 

this equilibrium may reduce the efficiency with which the system responds to changes in the 

environment. In this study, we applied WLBMF analysis to resting MEG signals and observed 

clear deviations in both the self-similarity and multifractality of these signals in chronic SZ patients 

compared to healthy controls. These changes in the state of criticality of patients lend further 

support to the theory of dysconnectivity in SZ from the perspective of temporal dynamics, as it 
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characterizes a different way in which information interruption occurs in patients. This study also 

demonstrated that alterations in neural criticality can be used to accurately differentiate between 

chronic SZ patients and controls. We expect that these findings will fuel the search for strong 

biomarkers in SZ, borrowing a new, largely uncharted path. 
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Chapter 5: Unraveling spectral changes with resting-state 
MEG in Schizophrenia: eyes open, closed or both ? 

 

 

Abstract 

 

Resting-state neuroimaging studies have been on the rise over the past couple of decades. These 

paradigms have unveiled important information about the intrinsic neural organization – and 

disorganization - of the brain in both healthy and clinical populations. In schizophrenia, 

magnetoencephalography (MEG) resting-studies have revealed key neural alterations that 

correlate with patients’ symptoms. While two types of resting-state conditions, eyes-open (EO) 

and eyes-closed (EC), are used interchangeably in MEG resting-state experiments, EO and EC 

conditions are in fact associated with different electrophysiological patterns. Some evidence 

suggests that the relative difference in spectral amplitude between EO and EC resting-state data 

may provide insights into the ability of the brain to reorganize and readily adapt to incoming, 

internal or external, stimuli. Interestingly, schizophrenia patients show abnormalities in their 

interaction with the environment and ability to adapt to changing states. The aim of this study was 

to examine which resting-state feature, EO, EC or their relative difference (EO-EC/EO), would 

best serve as a marker for schizophrenia. We hypothesized that the relative difference in spectral 

amplitude between EO and EC might capture unique properties of resting neural dynamics that 

cannot be measured through EC or EO only. To do so, EO and EC resting-state MEG conditions 

were recorded in chronic schizophrenia patients and matching controls, and instantaneous 

amplitude was computed in source-space in the delta, theta, alpha, beta and gamma frequency 

bands. In each frequency band, we computed spectral amplitude for EC and EO, as well as the 

Relative difference in amplitude between Eyes Closed and Open (RECO) in MEG source space. 

Support-vector machine was used to classify schizophrenia patients and controls, with a 10-fold 

cross-validation scheme to determine the predictive power of these three features. Supervised 

machine-learning algorithms successfully categorized patients and controls with a decoding 

accuracy of 88% based on EO gamma-band amplitude, and a decoding accuracy of 84% based on 

differences in RECO in the alpha and beta-band. These results confirm the prominent role of 

gamma-band alterations in the neurophysiology of schizophrenia, and show that alpha and beta-
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band RECO could provide a more robust marker of pathology than EC or EO in certain cases. 

Future studies should consider systematically acquiring both EC and EO resting-state conditions, 

and using multifeature classification techniques to improve the search of a biomarker in 

schizophrenia.	
 

5.1 Introduction 
 

Over the past two decades, it has become clear that improving our understanding of the intrinsic 

neural organization of the brain is an important step in better grasping the intricacies of the healthy, 

aging and diseased brains (Greicius, 2008; Lowe, 2010). With that, interests in resting-state 

neuroimaging studies have been on the rise, both in healthy (Beckmann et al., 2005; Damoiseaux 

et al., 2006; Mantini et al., 2007; van den Heuvel and Hulshoff Pol, 2010b; Snyder and Raichle, 

2012) and psychiatric populations (Mulders et al., 2015; Alamian et al., 2017b, 2017a; Newson 

and Thiagarajan, 2019). Indeed, resting-state studies have revealed key insights into the 

pathophysiology of psychiatric illnesses. Specifically, the complex field of schizophrenia has 

benefited greatly from the characterization of the baseline neural properties of patients. For 

instance, increases in slow oscillations (delta, theta) (Boutros et al., 2008; Venables et al., 2009; 

Kam et al., 2013; Narayanan et al., 2014; Di Lorenzo et al., 2015), and increases in fast oscillations 

(gamma) have been reported in patients (Venables et al., 2009; Gandal et al., 2012; Andreou et al., 

2015; Di Lorenzo et al., 2015; White and Siegel, 2016), which appear to correlate with their 

symptom severity (Sperling et al., 2002; Fehr et al., 2003). Graph theory studies have revealed 

resting-state changes in the efficiency of patients’ neural networks that correlate with their clinical 

profiles (e.g., illness duration, symptom severity) (Liu et al., 2008; Guye et al., 2010). Functional 

magnetic resonance imaging (fMRI) studies and electrophysiological studies have also provided 

evidence for the leading theory of spatiotemporal dysconnectivity in schizophrenia: altered 

connectivity patterns within the prefrontal cortex (Hinkley et al., 2011; Karbasforoushan and 

Woodward, 2012; Woodward et al., 2012; Robinson and Mandell, 2015; Giraldo-Chica and 

Woodward, 2016), decreased connectivity between temporal and frontal lobes (Friston, 1996; 

Higashima et al., 2007), and increased connectivity between occipital and central brain regions  

(Wada et al., 1998; Karbasforoushan and Woodward, 2012), and between thalamus and 

sensorimotor regions (Karbasforoushan and Woodward, 2012; Wang et al., 2015b; Giraldo-Chica 
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and Woodward, 2016). Overall, it is evident that resting states studies have improved our 

understanding of the neurophysiological mechanisms of this pathology. A comprehensive review 

of resting electrophysiological alterations in schizophrenia can be found in our recent publication 

(Alamian et al., 2017b).   	
 

5.1.1 Resting state studies across neuroimaging methods	
 	

Three resting-state paradigms are typically used in neuroimaging studies: recordings with 

participants having their (1) eyes-closed, (2) eyes-open or (3) eyes open and fixating cross-hairs. 

In fMRI studies, the most commonly used method to tap into this baseline neuronal state is with 

an eyes-open condition, where participants are asked to fixate on cross-hairs (or “+” sign), while 

they let their mind wander (Patriat et al., 2013). In electrophysiological resting-state studies, eyes-

open (EO) and eyes-closed (EC) paradigms are used fairly evenly. However, there is no gold 

standard for the parameters of these resting-state recordings (van Diessen et al., 2015b; Alamian 

et al., 2017b), and variable durations have been used (e.g., 3 min to 10 min); recording duration 

can severely affect the reproducibility of magnetoencephalography (MEG) findings (Liuzzi et al., 

2016). Other factors that can  substantially impact test-retest reliability of resting-state data is the 

level of compliance of patient populations during recordings (e.g., head movement, 

sleepiness/drowsiness), and age (Song et al., 2012). Despite these limitations, EO and EC 

conditions have proven to be useful in the search of novel biomarkers in psychopathologies.	
	

5.1.2  Relative difference in eyes-open and eyes-closed conditions	
 	
Instead of focusing on either EO or EC resting-state data, a number of studies have examined what 

the change between EO and EC paradigms can reveal about brain dynamics in healthy and clinical 

populations. A substantial body of evidence suggests that the dynamics of neural networks change 

when switching between EO and EC resting states (Bosboom et al., 2006; Barry et al., 2007; 

Bianciardi et al., 2009; Tan et al., 2013; Jin et al., 2014; Wong et al., 2016; Alamian et al., 2017b, 

2017a; Gómez-Ramírez et al., 2017; Wei et al., 2018; Agcaoglu et al., 2019; Candelaria-Cook et 

al., 2020; Ikeda et al., 2020). More specifically, absolute MEG (electrophysiological) power across 

various frequency bands has been shown to be higher during EC condition than EO conditions in 
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both healthy controls (Heister et al., 2013) and patient groups including Alzheimer disease (Ikeda 

et al., 2020) and Parkinson’s disease (Bosboom et al., 2006). Comparable results are seen in EEG 

data (Barry et al., 2007), with the switch between EC and EO bringing about topological changes 

in delta, theta and beta power in healthy controls, as well as an overall magnitude reduction in the 

alpha-band. Interestingly, the relative amplitude difference between resting conditions has been 

found to be bigger in certain clinical populations than in controls, such as in Alzheimer patients 

(Ikeda et al., 2020) for the theta, alpha and beta bands, across different brain regions. Conversely, 

MEG alpha-band reactivity (change from EC to EO) appears to be reduced in  schizophrenia 

patients compared to controls (Candelaria-Cook et al., 2020). 

	
5.1.3 Rational	

 	
The modulation of neural dynamics between conditions of EO and EC might reveal something 

more informative about brain functioning than the simple characterization of ongoing spontaneous 

brain activity (Ikeda et al., 2020). In fact, it has been suggested that the switch from EC to EO 

allows neural networks to reorganize and readily adapt to incoming stimuli from the surrounding 

environment (Jin et al., 2014). Thus, the comparison of brain activity recorded in these two resting-

state paradigms, using the Relative difference in spectral amplitude between Eyes Closed and 

Open (RECO), could provide new insights on the “reactivity” of resting neural dynamics. This 

might be particularly relevant in schizophrenia patients, who exhibit atypical interactions with 

their environment (Jin et al., 2014).	
	

5.1.4  Goal of the study	
 	

The objective of this study was to examine how resting MEG amplitudes differ between EC and 

EO conditions in healthy controls and schizophrenia patients, and compare the predictive power 

of (a) spectral amplitude during EO, (b) spectral amplitude during EC and (c) the relative 

difference between the two (RECO) in discriminating between these two groups. We hypothesized 

that the feature of RECO might capture properties of the resting neural functioning of patients that 

would otherwise go unnoticed if we used EO or EC conditions alone.	
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5.2 Materials and methods  
 

Data collection took place at Cardiff University, Wales, U.K., while analyses were conducted 

at the University of Montreal, Q.C., Canada. Ethical approvals were obtained from the U.K.’s 

National Health Service and the Cardiff University School of Psychology ethics 

boards (EC.12.07.03.3164). Approval was also obtained from the ethics committee at the 

University of Montréal (CERAS-2018-19-069-D).  

 

5.2.1 Participants  
 

Behavioural, demographic and neuroimaging data was collected from 50 participants: 25 chronic 

schizophrenia patients (mean age = 44.96 ± 8.55, 8 females) and 25 healthy controls (mean age = 

44.04 ± 9.20, 8 females). The aims of this study rested on incorporating EO and EC resting-state 

signals of each participant simultaneously, thus we had to exclude data from two control 

participants, for whom we were missing one of their two resting-state conditions. Therefore, the 

following analyses included data from a total of 48 participants: 23 healthy controls and 25 chronic 

schizophrenia patients.   

 

Age, gender, depression score on the Beck Depression Inventory – II (BDI-II (Beck et al., 1996)) 

and mania score on the Altman Self-Rating Mania Scale (Altman et al., 1997) were collected for 

each participant. Moreover, schizophrenia patients’ symptoms severity score on the Scale of the 

Assessment of Positive Symptoms (SAPS) and the Scale of the Assessment of Negative Symptoms 

(SANS) (Kay et al., 1987), as well as information on their medication dosages (standardized using 

olanzapine equivalents (Gardner et al., 2010)), were obtained. Patients and controls did not differ 

on any of the reported information, except for BDI-II scores, where patients showed mild 

depressive symptoms, while controls did not. Overall, patients were fairly asymptomatic during 

data collection. Full description of participants’ recruitment, inclusion/exclusion criteria, and 

demographic and clinical information can be found in Chapter 3 (Alamian et al., 2020). 
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5.2.2 MEG experimental design, data preprocessing and source-
reconstruction  

 

An anatomical T1-MRI as well as two resting-state MEG scans (lasting five-minutes in each EO 

and EC conditions) were recorded for each participant. The MEG scanner was a 275-channel CTF 

machine, located in Cardiff, U.K. This multimodal approach allowed for proper source-

reconstruction and source-estimation of each subjects’ MEG time-series. Reference electrodes 

were used to record ocular movements and other potential artifacts (Messaritaki et al., 2017).  

 

The preprocessing and source-reconstruction analyses were conducted with the open-source 

python pipeline, NeuroPycon (Meunier et al., 2020). The raw MEG time-series were first recorded 

at a sampling frequency of 1200 Hz, then downsampled offline to 600Hz, and filtered between 

0.1-150 Hz. Ocular, muscle and cardiac artefacts were removed using independent component 

analysis (Hyvarinen, 1999; Gramfort et al., 2013). Each participants’ anatomical T1 was 

segmented with FreeSurfer (Fischl, 2012), implemented in NeuroPycon. Individual source spaces 

were then morphed and projected onto the standardized fsaverage (Greve et al., 2013), resulting 

in a source-space consisting of 8196 dipoles for each subject. Next, the lead field matrix and the 

inverse solution were computed with the MNE-python single layer model boundary element 

method (Gramfort et al., 2013) and weighted minimum norm estimate (Dale and Sereno, 1993; 

Hamalainen et al., 1993; Hämäläinen and Ilmoniemi, 1994; Hincapié et al., 2016), respectively 

(Hyvarinen, 1999; Gramfort et al., 2013). 

  

5.2.3 Measuring spectral amplitude and reactivity  
 

Instantaneous amplitude of the MEG signal was computed at each of the 8196 nodes, for each 

participant, in the delta (0.5-3 Hz), theta (4-7 Hz), alpha (8-12 Hz), beta (13-29 Hz), and gamma 

(30-60 Hz) frequency bands, by filtering the raw signal using a finite impulse response filter and 

computing the Hilbert transform (Le Van Quyen et al., 2001; Foster et al., 2016). This was done 

in both the EO and EC conditions. Next, in each frequency band, relative difference in amplitude 

(RECO), was computed for each node : RECO(f) = [(EO(f) – EC(f))/EO(f)], where f  is the 

frequency band.	
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5.2.4 Machine-learning analyses  
 
MEG signal classification was conducted using a support vector machine model and a stratified 

10-fold cross-validation scheme to evaluate the discriminative power of relative spectral amplitude 

differences (i.e., RECO, in each frequency band) in classifying schizophrenia patients and controls, 

in comparison to EO or EC. The feature of RECO at each of the 8196 nodes was first split into ten 

folds, respecting the balance between patients and controls. Next, SVM was trained on data from 

nine of the ten folds, and tested on the remaining fold. Then, the performance of the classifier was 

assessed using a decoding accuracy (DA), by evaluating the percentage of participants that were 

correctly classified across the total number of participants in the test set. This procedure was 

repeated iteratively, such that all ten folds were used as test sets. The average DA at each node 

was then used as the performance metric of the classification of the two groups. Lastly, 

permutation tests (Combrisson and Jerbi, 2015) and maximum statistics were used to evaluate the 

statistical significance of the reported DA (Nichols and Holmes, 2001; Pantazis et al., 2005), and 

to control for the multiple comparisons across the 8196 nodes. This classification procedure was 

repeated using EO and EC as features in order to compare their ability to discriminate between 

patients and controls, with respect to RECO.	
 

5.3 Results 
  

5.3.1 Relative amplitude difference between EC and EO in 
schizophrenia and controls  

  

Figure 22 shows that both, topological and magnitude, differences in RECO can be observed 

within and between the two subject groups. Large reductions in delta-band amplitude were found 

in controls in the inferior frontal gyri, temporal, parietal and occipital lobes. Patients showed 

comparable reductions in delta-band reactivity in the occipital lobes, as well as an increase in 

RECO  in the frontal lobes. Similar reductions were seen in the theta-band amplitudes of controls, 

along with important increases in RECO in the left frontal lobe. The theta-band changes in patients 

were more bilateral and subdued in magnitude compared to controls: moderate amplitude 

reductions in the parietal and occipital lobes and slight increases in the frontal lobes. Both subject 

groups displayed similar reductions in alpha-band RECO across most of the cortex, and beta-band 
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reductions of RECO in the occipital lobe and increases in the  frontal lobe, with varying 

intensities. Topological differences in RECO were observed in the gamma-band, with patients 

showing an overall increase in amplitude, particularly in the frontal and temporal lobes. 

Meanwhile, controls showed an increase in gamma-band amplitude in fronto-temporal regions, 

and a decrease in the inferior frontal and cingulate gyri.	
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FIGURE 22: RELATIVE DIFFERENCE IN AMPLITUDE BETWEEN EO AND EC 
This figure shows RECO in each subject group, for each frequency band. Blues indicate a drop in 
amplitude magnitude in the EO condition, while reds indicate an increase in amplitude magnitude in the 
EO condition. EO= eyes-open, EC=eyes-closed, RECO = Relative amplitude difference between Eyes 
Closed and Open.	
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5.3.2 Comparison between predictive power of EO, EC and RECO 
amplitude	

	
Machine-learning classification of schizophrenia patients and healthy controls were conducted in 

three conditions: EO, EC and RECO. Using supervised machine-learning, group differences in 

RECO statistically significantly classified patients and controls with up to 84% 

accuracy  (p<0.05). The strongest decoding took place in the alpha and beta frequency bands. 

Specifically, in the alpha-band, SVM categorized patients and controls successfully in the left 

superior temporal gyrus and postcentral gyrus, and in the right parahippocampal gyrus (Figure 23). 

In the beta-band,  groups were significantly classified in the left middle occipital gyrus, angular 

gyrus and precuneus, and in the right posterior-central cingulate gyrus and superior frontal 

gyrus. No significant classification was found in the theta band. 	
	
Figure 23 also shows the classification results obtained when using spectral amplitude in EO and 

EC resting-state conditions. Spectral amplitudes of all frequency bands yielded significant 

categorization of patients and controls using EO as a feature, the most prominent of which was in 

the gamma-band. In fact, gamma-amplitude in the left straight gyrus allowed for an 88% decoding 

accuracy (p<0.05) of controls and patients (Table 6). Gamma-amplitude yielded significant DA in 

the left temporal pole, right precuneus and parahippocampal and subcallosal gyri. Additionally, 

groups were significantly classified based on EO theta and delta amplitudes in the left parieto-

occipital sulcus and right temporal pole. Successful categorization was also observed in the left 

postcentral gyrus and sulcus and marginal branch of the cingulate sulcus based on alpha-band 

amplitude, and in the left angular and supramarginal gyri, right superior parietal lobule and 

precuneus and parahippocampal gyri based on EO beta-band amplitude. Using EC as a feature of 

the classification model, peak DA was observed in the gamma-band amplitude in the left temporal 

pole (84%, p<0.05, maximum statistics correction). Significant classification of patients and 

control was also seen in the subcallosal gyri, bilaterally. DA values in the EC condition were 

otherwise not as high in the other frequency bands, as they were in EO (Table 6). 	
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FIGURE 23: CLASSIFICATION RESULTS OF THE MACHINE-LEARNING CLASSIFICATION BASED 
ON RECO 
Summary of statistically significant support-vector-machine results, in each frequency band, using RECO 
at each node as a feature (p<0.05, corrected). RECO= Relative difference in Eyes-Closed and eyes-Open. 
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TABLE 6: MAXIMUM DECODING ACCURACY VALUES ACROSS RESTING STATE CONDITIONS 

Frequency-band 
Max DA for 

EO (%) 
Max DA for 

EC (%) 
Max DA for 

RECO (%) 

delta 84 79 77 

theta 78 74 76 

alpha 77 82 84 

beta 83 77 84 

gamma 88 84 78 

 
Table 6 - caption: Peak DA value (%) are summarized in each condition and each frequency band. DA = 
decoding accuracy, EC = eyes-closed, EO = eyes-open, RECO = relative difference in amplitude between 
eyes-closed and open.	
 

5.4 Discussion 
  

Studies of the relative difference in spectral amplitude between EC and EO resting-state conditions 

(RECO) in psychiatry are scarce. This study was the first to investigate the predictive power of 

amplitude across resting-state conditions in schizophrenia. Specifically, we examined how EO, EC 

and RECO differed in their classification capabilities of chronic schizophrenia patients and healthy 

controls. To assess their predictive power, we used a supervised machine-learning framework.	
 

Our findings echo those of previous studies, who have found neural changes between the EO and 

EC resting state paradigms in pathologies (Bosboom et al., 2006; Alamian et al., 2017a, 2017b; 

Candelaria-Cook et al., 2020; Ikeda et al., 2020), and healthy controls (Barry et al., 2007; 

Bianciardi et al., 2009; Jin et al., 2011, 2014; Tan et al., 2013; Wong et al., 2016; Gómez-Ramírez 

et al., 2017; Wei et al., 2018; Agcaoglu et al., 2019). Relative MEG amplitude 

was drastically reduced in EO compared to EC in the occipital and temporoparietal lobes and the 

cingulate gyri in healthy controls. Similar findings were observed in patients, albeit to a lesser 

extent in the theta and delta frequency bands. Topological differences in RECO were also found 
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in patients in the theta, delta and gamma frequency bands. Meanwhile, in the alpha and beta bands, 

the observed group differences in RECO were mainly of magnitude in nature (i.e. size of RECO) 

and not topographic distribution of RECO across the brain.  Unlike the MEG findings reported in 

(Candelaria-Cook et al., 2020), we found a slightly bigger alpha RECO in schizophrenia patients 

than in controls. These opposing results are surprising, but might be due to the small sample size 

(13 patients and 13 controls) or methodological differences in the acquisition of the data in the 

aforementioned study (e.g.,  length of resting-state recordings), all of which can substantially affect 

replicability of results. 	
 

The machine-learning classification results revealed that gamma-band amplitude in the EO 

condition was the best predictor of schizophrenia. Indeed, the enhanced resting gamma-band 

amplitude in the left straight gyrus, temporal pole, right precuneus and subcallosal gyri were able 

to significantly categorize patients and controls with a maximum DA of 88%. This finding is in 

accordance with previous research which has highlighted the importance of gamma-band activity 

alterations in the pathophysiology of schizophrenia (Gandal et al., 2012; Uhlhaas and Singer, 

2013).	
 

Schizophrenia patients and healthy controls were successfully classified based on alpha-band and 

beta-band RECO with a decoding accuracy reaching 84%. This classification was higher than the 

decoding accuracies that were achieved with either alpha- or beta-band amplitudes in EO or EC. 

Indeed, the two groups were successfully categorized based on alpha-band RECO in the left 

superior temporal and post- central gyri, among other regions, and based on beta-band RECO in 

the left occipital gyrus and precuneus and the right frontal gyrus. These results showed that 

patients’ alpha and beta-band reactivities were larger than those of controls in 

the aforementioned brain regions. 	
 

In keeping with previous research, the present findings support that alpha-band global reduction 

in power is thought to reflect changes in arousal (Wong et al., 2016), while topological changes 

are thought to reflect situation-based activation processes (Barry et al., 2007). In addition, changes 

observed in RECO are thought to relate to information processing in the brain (Tan et al., 2013), 

and to correlate with working memory functioning (Heister et al., 2013). These two cognitive 
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aspects are often deficient in chronic schizophrenia patients (Hinkley et al., 2010; Sheffield and 

Barch, 2016). Our results could thus suggest that schizophrenia patients are less aroused than 

healthy controls during EO conditions, and that their resting neural organization is less apt to adapt 

to incoming environmental stimuli compared to healthy controls. Although, a link between RECO 

and symptoms might seem obvious, additional correlational analyses (not reported here) did not 

yield any significant result. A larger sample size, and additional symptoms scores on cognitive 

functions (i.e., inhibitory functioning), might help elucidate this hypothesis. Nevertheless, more 

work is needed to better expand on the involvement of resting-state conditions on the intrinsic 

neural dynamics of psychopathologies. It would be of particular interest to evaluate the predictive 

power of EO and RECO paradigms in youth that might be at-risk of developing psychosis, as this 

could potentially serve as an easy and accessible way to detect neural abnormalities.	
 

It should also be noted that the two, EO and EC, resting-state 

conditions might offer complementary, but different, baselines for psychiatry-based research 

studies (Agcaoglu et al., 2019). It has been proposed that EC paradigms might be best suited as a 

general baseline level of arousal, while EO paradigms might serve best as a baseline for occipital-

lobe activity for visual tasks (Barry et al., 2005, 2007).  Future resting-studies interested solely in 

the characterization of intrinsic neural dynamics should consider acquiring both EO and EC data, 

and potentially using a multifeature classification approach, combining EO, EC and RECO.	
  

 5.5 Conclusion 
 
This study reports for the first time how brain activity in eyes-open and eyes-closed resting-state 

conditions, across a wide range of frequency bands, differ between chronic schizophrenia patients 

and healthy controls, and highlights how EO gamma-amplitude and RECO alpha/beta-amplitudes 

can be used to successfully categorize patients from controls.  This study could provide new 

insights with possible implications in the future of early diagnostic measures for schizophrenia. A 

longitudinal study could help reveal if RECO is observed in those at-risk of developing psychosis, 

and measure whether it can be used as a tool to assess psychopathologies, such as schizophrenia, 

in a large cohort. Our findings also support previous studies that underline that different 

neuroimaging paradigms (i.e., EO vs EC) can reveal different patterns of resting neural dynamics. 
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Future studies in psychiatry might want to consider systematically acquiring both EO and EC 

resting-state data to improve their understanding of the baseline neural functioning of illnesses. 	
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Chapter 6: Discussion 
 

6.1 Summary of the objectives and findings 
 

Despite a growing body of research, progress in understanding the neurophysiological mechanisms 

that underlie the symptoms of schizophrenia is relatively slow. The overall aim of this thesis was 

to evaluate whether the spatiotemporal structure of the resting neural signal can reveal new features 

of brain organization in psychiatric illnesses. Throughout the presented studies, this was achieved 

by combining state-of-the-art metrics of criticality, machine-learning and MEG. 

 

Overall, we revealed alterations in the neural dynamic of schizophrenia patients at rest, in terms 

of self-similarity and multifractality. A general attenuation in cortical and subcortical levels of 

LRTCs was observed in the alpha and beta oscillatory amplitudes of patients, compared to healthy 

controls. Moreover, an increase in self-similarity (C1) in the frontal and temporal brain regions 

and a decrease in multifractality (C2) was shown in patients’ parieto-occipital regions in the 

arrhythmic part of the neuronal signal. These findings suggest that, compared to controls, chronic 

schizophrenia patients had overall decreased memory (and increased variability) in alpha and beta 

neural oscillations. Additionally, patients had increased memory and regularity in arrhythmic, low-

frequencies (0.5-3.5 Hz), in the frontotemporal brain regions, and more monofractal (fewer 

singularities) in parietal-occipital regions. Meanwhile, healthy controls exhibited higher overall 

LRTC values in the alpha and beta bands, as well as more multifractality in those same brain 

regions. The increased regularity in the arrhythmic signal of patients is indicative of temporal 

redundancy/persistence and, perhaps, of less efficient information processing. Meanwhile, the 

decreased fractality and complexity observed in patients could suggest less flexibility in their 

parietal-occipital brain areas. We propose that these findings could explain the sustained (i.e. 

persistent) nature of symptoms (e.g., long-lasting  auditory hallucinations), and the difficulty many 

patients have in breaking away from them. Meanwhile, the reduced regularity and memory 

observed in the rhythmic part of patient’s brain signal might reflect a break in communication, and 

difficulties for the propagation of information through oscillations, and lends support to the 

spatiotemporal dysconnectivity theory in schizophrenia.  
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We also examined whether alterations in scale-free dynamics are related to patients’ symptoms. 

We found that there was indeed a positive correlation between self-similarity (C1) and patients’ 

SANS (negative) scores, and between multifractality (C2) and patients’ SAPS (positive) scores. 

The most significant correlations were between theta and delta amplitudes and SANS scores, as 

well as between C1 and medication dosage, replicating findings from previous researchers [low 

oscillatory amplitudes x SANS: (Chen et al., 2016; Fehr et al., 2003; Jandl et al., 2005; Venables 

et al., 2009); self-similarity x medication: (Takahashi et al., 2010; Fernández et al., 2013)]. 

Moreover, while (SANS x medication) showed a moderate correlation, indicating that medication 

was associated to symptom scores, it did not fully account for the variance observed in the 

correlation between C1 and SANS. The involvement of medication in alterations of neural 

dynamics is not surprising and has been explicitly reported in the psychiatry literature (Navari and 

Dazzan, n.d.; Kirsch et al., 2007; Schmidt et al., 2013; Alegre et al., 2017). 

 

Finally, we examined whether local amplitude alterations measured across different resting-state 

paradigms (EO, EC or RECO – the relative difference in amplitude between EC and EO 

conditions) could be used as a marker for schizophrenia. The results of the classification revealed 

that gamma-band amplitude in the EO conditions was the best predictor of schizophrenia (88% 

DA), replicating previous findings that have highlighted the important role of gamma alterations 

in the pathophysiology of schizophrenia (Wilson et al., 2009; Uhlhaas and Singer, 2013).  The 

study also showed that RECO was larger in the alpha and beta bands in patients than in healthy 

controls, such that SVM categorized patients and controls based on this feature with a significant 

decoding accuracy of 84%. Differences between EC and EO have been linked to changes in arousal 

(Wong et al., 2016), information processing (Tan et al., 2013) and cognitive functioning (Heister 

et al., 2013), all of which is often deficient in schizophrenia patients. Thus, alterations in RECO 

could be part of the aberrant neural mechanisms in this pathology.  

 

6.2 Contribution to the field of psychiatry 
 

The first two reviews were important from a number of perspectives. First, they clarified the 

terminology around connectivity analyses (ie.g., local vs long-range synchrony), which is needed 

to harmonize the scientific discussions across the field. Second, they updated the literature on 
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findings related to electrophysiological-based connectivity changes in mood disorders and 

schizophrenia. Third, they discussed the utility of growing MEG studies in psychiatry, as well as 

the methodological challenges involved in clinical research. The reviews also recommended 

important analytical and design considerations for future MEG studies. 

 

Chapters 3 and 4 tapped into the underexplored field of criticality in psychiatry (Linkenkaer-

Hansen et al., 2005; Nikulin et al., 2012; Moran et al., 2019; Zimmern, 2020).  The first study 

characterized how scale-free properties of MEG oscillatory amplitude are changed in 

schizophrenia. It revealed that patients could be successfully classified using solely the features of 

alpha or beta LRTC values at the cortical and subcortical levels. Importantly, group differences in 

LRTCs were not confounded by factors of age, gender or amplitude magnitude. This study was 

the first to examine scale-free dynamics of resting neural networks in schizophrenia in deep 

structures, and the first to utilize machine-learning on DFA data. The second study applied the 

WLBMF analysis on arrhythmic schizophrenia data for the first-time. Interesting patterns of group 

differences in the measures of self-similarity and multifractality were observed, with a clear 

imbalance in these two parameters in schizophrenia patients. We also drew the first parallels 

between LRTCs in the delta-band and the C1 log-cumulant values. We found commonalities in 

the results, with enhanced values of self-similarity in the frontal and temporal brain regions and 

decreased values of self-similarity in the occipital lobe, compared to controls. Together, these two 

chapters allowed us to determine which scale-free metric is most informative on the 

neuropathology of schizophrenia. We found that, across scale invariant properties, DFA was the 

best at classifying patients and controls (84% decoding accuracy). Nevertheless, the C1 and C2 

log-cumulants revealed new information on how multifractality was altered in patients. Although 

the domain of fractal analysis is still underdeveloped in clinical neuroscience, it has immense 

potential to further the scientific community’s knowledge of the temporal structure and geometry 

of brain signals in healthy and diseased brains (He, 2014; Palva and Palva, 2018). 

 

The final chapter addressed the question of which resting-state feature (spectral amplitude in EO, 

EC or the relative difference in amplitude between EC and EO) would best serve to identify 

biomarkers in schizophrenia.  Until now, most of the literature has focused on task-based 

approaches to see how brain function is different during specific tasks, but this study underlined 
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the importance of defining and characterizing the neural functioning of patients at baseline (i.e. 

resting-state). Moreover, given that electrophysiological studies use EO and EC conditions 

interchangeably, it is important to clarify the different contributions that each resting-state 

paradigm can provide to the discussion of schizophrenia. Our findings highlight the need for more 

resting-state research in psychopathologies that incorporate both EO and EC conditions, as they 

each reveal unique alterations in  neural dynamics that could be used as a simple and non-invasive 

way to identify patients in the future. Future studies should consider combining gamma-band EO 

and alpha/beta-band RECO changes in a multifeatured machine-learning framework to improve 

classification results. 

 

Together, the studies included in this thesis identify candidate diagnostic markers that should be 

explored in future longitudinal studies for their potential prognostic values. Indeed, alterations in 

scale-free dynamics could help predict the prognosis of individuals at-risk of developing 

psychosis, thus becoming a powerful clinical tool. More work is needed to validate these 

hypotheses. 

 

In addition to the contributions made to the clinical research community, this work has a potential 

impact on our understanding of the biological mechanisms of schizophrenia. When looking to 

identify and evaluate potential biomarkers, it is critical to assess its validity at all micro- and 

macroscopic levels of the pathology: from a genetic perspective to a neuroimaging and behavioural 

perspective. Today, over 100 genetic loci have been associated with schizophrenia, such as genes 

including but not limited to: glutaminergic transmission, calcium signaling and dopaminergic 

transmission (Ripke et al., 2014). More specifically, genes involved in the N-methyl-D-aspartate 

receptor (NMDAR) (Coyle, 2012; Balu, 2016),  catechol-O-methyltransferase (COMT) (Egan et 

al., 2001; Shifman et al., 2002; Wonodi et al., 2003) and the D2 dopamine receptor (Glatt et al., 

2003; Seeman, 2006) are some of the most commonly discussed genes. COMT is involved in 

prefrontal cortex dopamine metabolism, and COMT Val/Val polymorphism has been linked to an 

increased risk of psychosis, especially when combined with early-onset use of cannabis (Caspi et 

al., 2005). Relating this to the results of Chapter 3, it has been suggested that alterations in NMDA-

receptor conductance prompts increases in the variability of the brain signal , as well as long-term 

decreases in the stability/correlation of the signal (Loh et al., 2007; Rolls et al., 2008), similar to 
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our  LRTC findings (Chapter 3). However, this interpretation is limited given that the state of 

criticality also affect gene expression (reverse causality). A great review on the neurobiology of 

criticality in the brain can be found in (Cocchi et al., 2017).  

 

6.3 Utility of machine-learning framework in psychiatry  
 

As described in the introduction of this thesis, compared to conventional statistics, machine-

learning algorithms (using single or multiple features) allow for better classification of subject 

groups, and for generalizability of the findings in new cohorts of patients and controls with similar 

characteristics. In our studies, the machine-learning framework led to significant findings in key 

brain regions that exhibited altered spectral amplitude or scale-free features. Interestingly, across 

all three original studies of this thesis, the peak magnitudes of group differences (i.e., t-value 

peaks) corresponded to the decoding accuracy peaks obtained with the machine-learning analyses. 

For both studies, the areas with the largest group differences in terms of t-values (very red or very 

blue) were the ones that best decoded the two subject groups with significant accuracy. Although 

there are different way to apply machine-learning approaches, our studies adopted a single-feature 

machine-learning strategy, given that the focus was on maximizing the interpretability of the 

results, improving the pathophysiological understanding of SZ, and benefiting from out-of-sample 

generalizations. The predictive models that are generated by machine-learning frameworks also 

permit the extrapolation of conclusions from one dataset to another. This is increasingly important 

given the shift towards more collaborative work, which calls for data-sharing and the leveraging 

of multiple data sets to increase overall sample sizes (“Big data”). Furthermore, given the 

heterogeneity in the clinical presentations of schizophrenia, and that symptoms arise from a mix 

of genetic, environmental and epigenetic factors (Van Os et al., 2008; Akbarian, 2014; Nestler et 

al., 2016), machine-learning approaches have immense potential in helping improve the sub-

classifications of patients, and shift towards personalized treatments. This type of multifeature 

machine-learning strategy would however require dimensionality reduction of the feature space 

(e.g., through the use of Principal Component Analysis). Dimensionality reduction reduces the 

complexity of the data, improves computational efficiency and prevents the over-fitting of the 

multifeature model to the data (Kherif and Latypova, 2019; Reddy et al., 2020). While this 
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approach could lead to numerically higher decoding accuracies, it would also be increasingly 

challenging to interpret the results from an electrophysiological perspective.  

Lastly, although conventional statistics and machine-learning provide complimentary information, 

in clinical practice, the emphasis is put on prediction abilities, rather than on hypothesis testing as 

is typical in conventional statistics. Indeed, the main objectives are to obtain models that minimize 

error when predicting the outcomes of new data (patients) based on a previously learned (or 

trained) relationships (Koppe et al., 2021), rather than testing hypotheses based on a apriori model. 

One way to achieve this, while leveraging the multimodal data of psychiatric patients, is through 

the use of unsupervised clustering techniques on resting-state data (Koutsouleris et al., 2009; 

Clementz et al., 2016; Uhlhaas et al., 2017), and future work is need to fully optimize these 

techniques (further discussed in section 6.5).  

 

6.4 Limitations  

Similar to most clinical research studies, one of the drawbacks of this thesis is that the 

generalizability of the findings are limited to similar clinical cohorts. Across the three studies, our 

sample consisted of chronic schizophrenia patients, with an average age of 44 years. Age, duration 

of the illness, accumulation of therapeutic drugs, and number of psychotic episodes all impact the 

symptomatology and neural functioning in their own ways (Lieberman et al., 1996). That said, 

another limitation is that information about illness duration and number of total psychotic episodes 

was not acquired during data collection. In retrospect, it would have been interesting to see how 

these two factors would affect measures of scale-invariance. Future studies should take into 

account these key factors when designing experiments by including them as co-variables, or by 

recruiting other types of control groups (e.g., a group of similarly aged patients with a shorter 

illness duration, or fewer episodes). 

Another possible limitation is the confounding effects of residual symptoms on the interpretation 

of our results. Although the schizophrenia cohort had a fairly asymptomatic clinical presentation, 

all participants were medicated with antipsychotics, which typically manage patients’ positive 

symptoms, but not negative or cognitive symptoms to the same extent. Indeed, our analyses show 

that patients had residual negative and depressive symptoms, as shown by their SANS and BDI-II 



 

 

171 

scores. These symptoms could have been heterogenous in nature and affected the findings. Failure 

to take into account the sub-types of negative symptoms in future studies might hinder the 

cumulative progress we make in the field.  

Sample size was another limitation of our studies. While, our cohort of 50 subjects (25 

schizophrenia patients, 25 controls) was reasonable for a neuroimaging study examining resting-

state neural organizations, a larger sample size, or a different out-of-sample test group, might have 

improved the accuracy of our machine-learning classification results and led to more robust 

correlations between scale-free features and patients’ symptom scores.  

A drawback of the DFA study was that it did not include the striatum as one of the deep structures 

in its analyses. Recent findings have shown that dopamine in associative striatum pathways is 

perhaps more involved in the pathophysiology of schizophrenia and needs to be considered 

(McCutcheon et al., 2019). Future studies should thus include this brain structure in their source-

reconstruction estimation for a more comprehensive understanding of this psychopathology. 

A further limitation of our studies is that the recruitment of patients, like most - if not all - previous 

studies, was based on the DSM’s classification system. In research, the use of DSM labels can lead 

to the artificial grouping of patients which might not reflect the actual symptomatic profile of 

patients. Nevertheless, the use of DSM categories has clear advantages and disadvantages. The 

application of DSM labels has allowed for significant scientific progress toward understanding the 

neural mechanism of psychopathologies, and towards the development of treatment targets. 

Moreover, while the DSM has standardized diagnoses and treatment in clinical practice, its’ poor 

validity has hindered progress in clinical research. A substantial risk of misdiagnosis exists when 

using the DSM as it does not account for the heterogeneity and comorbidity of symptoms observed 

across and within patient populations (e.g. Hankin et al. 2005; Walton et al. 2011; Hengartner and 

Lehmann 2017). One contributing factor is that diagnostic titles can change as the symptoms of 

patients’ evolve, particularly when mood and psychotic symptoms are intertwined. This might be 

in part due to the fact that many of the genes involved in the neurodevelopmental changes of SZ 

overlap with those of MDD and BD (Pain et al., 2018; Barkhuizen et al., 2020), with the true 

differences residing in the expression or mutation of those genes. Therefore, the DSM’s symptom-

based and timing-based approach not only affects treatment options for patients (low response rate 
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to medication), but also the research that guides clinical decisions (Kessler et al., 2003). As a 

consequence of the unclear boundaries between diagnostic entities, residual categories (not 

otherwise specified, NOS) are often used by clinicians to classify patients. One of the major 

concerns of the DSM systems of classification is that it relies primarily on the subjective opinion 

of the mental health practitioners; professionals depend on a mental template to which they match 

patients’ clinical profiles (Maj, 2011). Finally, the diagnostic labels are problematic as they can be 

stigmatizing, with the affected individual internalizing those labels as their identity (e.g., using the 

term “schizophrenic” vs “individual who has schizophrenia”). The main reason DSM 

terminologies are still used in clinical practice is to allow mental health specialists to bill patients’ 

treatment to their insurance companies easily. Indeed, the diagnostic label is needed for individuals 

to get reimbursed for their costly pharmaceutical and behavioural treatments. To some extent, 

although mental health professionals might prefer domain-based classification systems (see next 

section), they resort back to DSM diagnoses for insurance formalities, as proper treatment is 

prioritized above anything else. 

In our studies, specifically, it is possible that using DSM-labels led to lower decoding accuracies 

in our machine-learning analyses, or to diminished correlational findings. Future work should lean 

on domain or dimensional-based classification systems for the diagnosis of mental health 

disorders, as it could help untangle the heterogenous findings in the neuroimaging literature and 

improve on group-level analyses and findings. 

 

6.5 Future work 
 

On way to circumvent the above-mentioned issues of the DSM classification system would be to 

employ a domain or dimensional approach to the categorization of disease. Thus, an interesting 

follow-up study would be to apply unsupervised machine-learning to a pool of psychopathologies 

with overlapping clinical symptoms (e.g., schizophrenia, schizoaffective, depression, bipolar 

disorders). The aim would be to see whether any emerging clusters of profile, based on 

dimensional features, would better characterize patients than the strict DSM diagnostic boxes, and 

help the movement of psychiatry towards precision medicine. This framework resembles the 

concept of two classification methods that have recently emerged to address the DSM’s 
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limitations: the Research Domain Criteria (RDoC) (Insel et al., 2010; Insel, 2014) and the 

Hierarchical Taxonomy of Psychopathology (HiToP) (Kotov et al., 2017). The RDoC aims to 

integrate different levels of objective and subjective information (from genetics to self-report) to 

improve diagnoses. It uses five core domains (negative valence, positive valence, cognition, social 

processes, arousal and regulation) to quantify behaviour along a spectrum based on a deficit in a 

mechanism (e.g., cognition or arousal) instead of rigid categories, such as those found in the DSM. 

The HiToP is based on hierarchical dimensions that are empirically founded, and is said to address 

the DSM’s limitations of heterogeneity, co-morbidity, diagnostic instability and variability, and 

arbitrary temporal boundaries (Kotov et al., 2017). This approach uses a spectrum (from 

internalizing symptoms, to thought disorder, detachment, etc.) to categorize symptoms. Moreover, 

this system relies on scientific data rather than expert opinion to make decisions. Consequently, it 

has been suggested that domain or dimensional classifications of individuals could provide 

stronger correlations between symptoms and neurobiological markers than DSM criteria. 

Unsupervised data-mining could thus help untangle the heterogenous findings in the literature in 

terms of connectivity analyses, by revealing distinct sub-groups of schizophrenia patients, and 

improving our understanding of the neural mechanisms involved in psychopathologies. 

Coincidently, a number of researchers have recommended this approach (Bzdok and Meyer- 

Linderberg, 2018), and a few have implemented it in schizophrenia (Kanchanatawan et al., 2018), 

depression (Yang et al., 2020), ASD (Urchs et al., 2020) and Alzheimer’s disorder (Tam et al., 

2019).  

 

An extension to the last paper (Chapter 5), would be to test how differences in resting-state 

dynamics present themselves in autism spectrum disorder (ASD). Similar to schizophrenia, ASD 

patients show difficulties in adapting to- and assimilating information from their environment, and 

are particularly sensitive to eye-contact (Park et al 2016). Given the simplicity of EO and EC 

resting-state paradigms, this imaging approach could be an elegant way to reveal new 

neuromechanistic underpinnings in a cohort that is typically difficult to test in research settings. A 

third extension of our findings would be to include siblings or twins (i.e. to look at unaffected 

siblings vs. affected siblings) and examine whether similar markers of scale-free dynamics can be 

observed in those with the same genetic makeup, or if they are unique to individuals who have a 

full-blown onset of psychosis. The purpose of this work would be to investigate the effect of 
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genetic expression on scale-free dynamics. A forth extension of this thesis would be to measure 

the resting scale-free parameters of the MEG signal within a longitudinal study, following a large 

cohort of at-risk youths who have a genetic or behavioural predisposition for psychotic disorders. 

Longitudinal studies are an important step in the development and evaluation of the sensitivity and 

specificity of biomarkers. A fifth extension of this work could be the use of multifeature machine-

learning approaches. Through the combination of non-linear measures of dysconnectivity, 

anatomical patterns of dysconnectivity and gene-candidates (e.g., COMT Val/Met polymorphism), 

we could measure whether the classification accuracy of patients and healthy controls could be 

improved, and help narrow-in on a practical set of biomarkers for schizophrenia.  

 

6.6 Summary of MEG-depression study and challenges 
 

A final projection for this thesis would be to transition the study of self-similarity and 

multifractality in other psychiatric diseases, such as depression. Such a study was in fact designed 

as part of this PhD thesis, and resting-state and task-based MEG data were meant to be acquired 

and analyzed in major depressive disorder (MDD) patients. While important progress was made 

in terms of the theoretical background, task design, ethics approvals, stimuli validation and piloting 

(see Appendix C), we were not able to acquire the MEG data within the timeframe of this PhD 

thesis. 

 

Specifically, I designed and set-up an experiment to address the questions about a) how scale-free 

dynamics are altered in major depressive disorder (MDD) patients, and b) which scale-free metric 

best discriminate between MDD patients and healthy controls, using resting-state MEG, 

anatomical MRI and machine-learning algorithms. I also sought out to evaluate the potential 

beneficial effects of visualizing humorous videos on the resting-state MEG patterns of MDD 

patients, and to measure the effect of humorous video clips on subjective mood ratings (e.g., 

happiness, nervousness, alertness), objective physiological measures (e.g. heart rate), and memory 

(e.g., face recall). The rational, explicit hypotheses and protocol are included in the Appendix. 

Briefly, the rational for the second portion of the study is rooted in positive psychology. According 

to this field, interventions such as humour can help depressive patients break away from their deep-

rooted cognitive biases, and is thought to improve depressive and anxiolytic symptoms, as well as 
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memory and immune system, across all type of populations (Bennett et al., 2003; Ko and Youn, 

2011; Konradt et al., 2012). It has been suggested that this type of therapy helps patient by not 

only reducing negative emotions but, also, by building positivity and resilience towards future 

adverse events. 

 

Important progress was made over the past few years towards achieving our goals for this study. 

For instance, we have completed a validation study based on a database of humorous videos that 

we created; this online study was completed by hundreds of volunteers, from varying cultural 

backgrounds. The study aimed to better understand what made people laugh and to see how age 

and gender affected preferences n humorous content. This step was important in order to compile 

the best possible stimuli set for the neuroimaging portion of the study. A preliminary EEG study 

provided quantified validation for the videos, and  also showed that the extent of amusement during 

video viewing can be decoded from resting state brain activity using supervised machine-learning 

(Toupin et al., in prep). In parallel, the MEG paradigm was fully coded with Psychopy, and 

successfully implemented in a handful of test-pilots. However, our progress was met with 

important challenges, which prevented us from collecting the core MEG and MRI data from 

patients and controls in the scheduled timeframe. First, the multimodal and multisite nature of the 

study involved the acquisition of three levels of ethics to conduct the study (i.e. at the clinical site,  

the MRI centre and MEG centre). This resulted in unavoidable administrative delays in obtaining 

ethics (>10 months). Additionally, this project faced headwinds of  technical issues with the MEG 

projector (down for >8 months), which prevented scanning availability and drastically restricted 

recruitment, all of which occurred before the COVID-19 pandemic put all research work on hold 

for the foreseeable future. For once data collection can resume, the full ethics, protocol and 

experimental paradigm (e.g., coding of the MEG task) has been tested and completed, and is ready 

to be implemented by a future graduate student. 

 

6.7 Implications of the findings for research and society  

The findings of our studies have extensive impact on future research studies. First, considerations 

should be taken when choosing between EO and EC resting-state MEG paradigms, based on 

networks of interest. Second, these studies encourage the study of arrhythmic brain activity in 
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psychopathologies. They underlined the importance of examining multifractality in addition to 

self-similarity, when interested in characterizing scale-free dynamics in the neural signal. Until 

recently, there has been a hyper focus on task-based changes in neural dynamics, particularly 

looking at the rhythmic oscillatory part of the signal. However, as many researchers have unveiled, 

the “1/f background noise” that makes up most of the brain signal is not actually “noise”, as first 

presumed. This arrhythmic activity is thought to carry key information on brain organization, 

information processing, storage and communication, all of which are often altered in 

psychopathologies. Thus, we propose that perturbation in the arrhythmic neural signal actually 

underlines the cognitive symptoms observed in mental disorders. The results of this study could 

potentially open-up to, both, a new pathway of biomarkers for the early detection of those at-risk 

of developing schizophrenia, and for new therapeutical targets. 

From a societal perspective, the findings of this PhD highlight the potential utility of using MEG 

for diagnostic and prognostic purposes. One way to improve on early detection of psychosis is to 

improve on reliable and easily accessible biomarkers. In the future, it is possible that EEG and 

MEG would be seamlessly integrated in hospital settings for the potential purpose of identifying 

at-risk individuals who might develop mental health or cognitive challenges. One of the barriers 

of routine clinical use of MEG, is cost. Thus, before expensive imaging techniques are 

implemented, the emphasis should be on identifying accurate biomarkers, which could justify the 

costs. 

 

Age is also an important factor to take into account. Schizophrenia typically arises during a critical 

period, during the transition of childhood to adolescence (van den Heuvel and Kahn, 2011). During 

typical neurodevelopment, neural connectivity patterns change as the brain matures, and LRTCs 

have been found to increase during this transitional period (Smit et al., 2011). It would be impactful 

to have predictors in young children/adolescence who are at risk of developing psychopathologies. 

Early diagnosis would allow, for better management of symptoms, and for the empowerment of 

patients. Indeed, giving back autonomy to individuals who have schizophrenia is vital to their well-

being and future success in society. The routine emergency care that is currently in place for 

patients experiencing psychotic episodes are typically forced-onto them and, while this approach 

might be needed at times, better management of care centers are needed. Improving on early 
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diagnoses and providing patients with tools to manage their symptoms can also prevent long-term 

trauma from these types of experiences. For instance, if early diagnosis is feasible, more efforts 

could be made to prevent those at-risk from experimenting with drugs and alcohol, especially at a 

young age. Research has shown that that early cannabis users, with behavioural dispositions, are 

at a higher risk of developing psychosis than other adolescence (Henquet et al., 2005). Cannabis, 

which is linked to the dopaminergic reward system, increases dopamine in cortex and mesolimbic 

pathway, and might be the psychosis-trigger in pre-disposed adolescents. Thus, it is important to 

equip those at genetic and behaviour risk in the best way we can in order to give them a chance at 

a healthy and fulfilling life.  

 

Chapter 7: Conclusion 
 

In the psychiatry literature, there is substantial knowledge of the abnormal behavioural, cognitive 

and neural properties of patients. The present PhD work sheds light onto a perspective that is often 

ignored in the study of the neural mechanisms of psychopathologies: the relationship between 

resting-state scale-free dynamics and altered information integration and communication. The 

baseline activation and spatiotemporal organization of the brain is complementary to task-based 

neural alterations, and both should be conduct in parallel in clinical research. Finally, this doctoral 

thesis lays the groundwork for future studies by strongly contributing to an emerging new body of 

evidence that has shifted the discussion of dysconnectivity in schizophrenia towards the temporal 

dimension, and by highlighting important methodological considerations for prospective research 

endeavours. 
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Appendix A: Supplementary material for Chapter 2 
 

 
SUPPLEMENTARY FIGURE 1 : LONG-RANGE TEMPORAL CORRELATIONS IN SCHIZOPHRENIA 
PATIENTS AND CONTROLS. 
Columns 1 and 2 show mean LRTC values for each group. Column 3 shows the decoding accuracy of 
DFA exponent/LRTCs using SVM, 10-fold cross validation, with applied max statistics and 1000 
permutations. Only statistically significant decoded regions are shown (p<0.005). DA = decoding 
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accuracy, DFA = detrended fluctuation analysis, LRTCs = long-range temporal correlations, SVM= 
support vector machine 

 
 

 
SUPPLEMENTARY FIGURE 2: CLASSIFICATION OF SCHIZOPHRENIA PATIENTS AND HEALTHY 
CONTROLS BASED ON LRTCS AT THE SUBCORTICAL LEVEL 
SVM classification of groups, using alpha DFA exponents (LRTC) as discriminant features computed in 
deep structure ROIs. Statistically significant decoded ROIs are indicated with a star (p<0.001). The suffix 
“-lh” indicates left hemisphere, “-rh” indicates right hemisphere, and no suffix reflects classification using 
both left and right hemispheres. Amy = amygdala, Caud = caudate, Cereb = cerebellum, DA = decoding 
accuracy, DFA = detrended fluctuation analysis, Hipp = hippocampus, LRTCs = long-range temporal 
correlations, SVM= support vector machine, Thal = thalamus 
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SUPPLEMENTARY FIGURE 3: SOURCE-LEVEL RESULTS OF SPECTRAL AMPLITUDE OF 
SCHIZOPHRENIA PATIENTS AND THE CONTROL GROUP 
Columns 1 and 2 show averaged amplitude values ( A-m * 10^12)  for each group at each node. Column 
3 shows the decoding accuracy of spectral amplitude using SVM, 10-fold cross validation, with applied 
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max statistics and 1000 permutations. Statistically significant decoded regions are shown (p<0.005). Amp 
= spectral amplitude, DA = decoding accuracy, SVM= support vector machine 
 
 
 
 

 
SUPPLEMENTARY FIGURE 4: CLASSIFICATION OF SCHIZOPHRENIA PATIENTS AND HEALTHY 
CONTROLS BASED ON SPECTRAL AMPLITUDE AT THE SUBCORTICAL-LEVEL 
SVM classification of groups, using 10-fold cross validation, with applied max statistics and 1000 
permutations. Statistically significant decoded ROIs are indicated with a star (p<0.001). The suffix “-lh” 
indicates left hemisphere, “-rh” indicates right hemisphere, and no suffix reflects classification using both 
left and right hemispheres. Amy = amygdala, Caud = caudate, Cereb = cerebellum, DA = decoding 
accuracy, Hipp = hippocampus, LRTCs = long-range temporal correlations, ROI = region of interest, 
SVM= support vector machine, Thal = thalamus 
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Appendix B: Supplementary Material for Chapter 4 

 

 
 
SUPPLEMENTARY FIGURE 5: GROUP AVERAGES OF C1 AND C2 VALUES IN SZ PATIENTS AND 
CONTROLS USING P=4 
Averaged C1 and C2 values were computed for each of the 8196 nodes, within each group, using p=4. 
SZ= schizophrenia 
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SUPPLEMENTARY FIGURE 6: GROUP DIFFERENCES AND MACHINE-LEARNING RESULTS 
USING P=4 
(A) shows t-values from the unpaired t-tests (non-significant), showing (controls – patients). (B) shows 
unthresholded DA values based on logistic regression, using C1/C2 as a single feature. (C) shows the 
same DA values, thresholded at p<0.05. Finally, (D) shows the DA values corrected for multiple 
comparisons using maximum statistics (p<0.05), thresholded at the chance level of 70%. P-leader p=4 
was used here. DA= decoding accuracy.  
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Appendix C: Groundwork for an MEG resting-state study 
in Major Depressive Disorder 

 

 

A part of my PhD time was invested in the design and implementation of an MDD MEG 

experiment. Despite great progress in the design, ethics approvals, validation of stimuli, coding of 

MEG scripts and  pilot testing, I was not able to acquire the MEG data within my doctoral studies, 

due to extenuating circumstances outside of my control (e.g., technical difficulties with the MEG, 

global pandemic). Nevertheless, for the sake of completeness and documentation of the work that 

has gone into this study, I provide below the details as an appendix. 

 

B.1 Rationale 
 

Depression is the most common and most studied psychiatric illness in humans. Major Depressive 

Disorder (MDD) is characterized by features such as low mood and/or a loss of interest in daily 

activities for an extended amount of time and, typically, involves ruminative, self-referential 

thoughts (American Psychiatric Association, 2013b).  

 

B.1.1 Alterations in local and global networks in MDD across 
neuroimaging modalities 

 
We recently published an exhaustive review of local and long-range synchrony findings in MDD 

and bipolar disorder across fMRI, EEG and MEG (Alamian et al., 2017a). Briefly, in terms of 

EEG-based local synchronizations, enhanced power in slow (<20Hz) oscillations have been 

observed among MDD patients across the brain (Koo et al., 2015; Northoff, 2016; Olbrich et al., 

2014). A MEG study has however found different results, with decreased power in theta and alpha 

frequency bands, but enhanced power in beta band (Jiang et al., 2016). In terms of long-range 

synchronizations, across neuroimaging modalities, it is observed that MDD individuals have 

enhanced connectivity pattern within nodes of the DMN (Whitfield-Gabrieli and Ford 2012; 

Northoff 2016), altered connectivity between areas of the DMN and the limbic system (particularly 

between the subgenual anterior cingulate cortex, ACC, and hippocampus, Greicius et al. 2007; 

Nugent et al. 2015), hypoactivity between dlPFC and amygdala (Dannlowski et al. 2009; He et al. 
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2016; Pathak et al. 2016), hyperconnectivity between the subgenual ACC and dlPFC ( Olbrich et 

al. 2014; Pathak et al. 2016), and hyperconnectivity between the insula and the amygdala (Avery 

et al. 2014; Nugent et al. 2016). Overall, connections projections from and to the subgenual ACC 

and the dlPFC, appear to be critical in the treatment and expression of depressive symptoms.  

 

B.1.2 Alterations in scale-free dynamics in MDD 
 

Within rhythmic brain activity, broadband EEG-based LRTCs were found to be normal, albeit 

higher than average, in MDD patients over frontal, central, temporal and occipital sensors, 

compared to controls, with their clinical symptoms correlating positively with the scaling exponent 

(Lee et al., 2007). More recently, an EEG study found the opposite patterns, where LRTCs were 

attenuated in patients compared to controls in the DMN (Wang et al., 2016a). These contradictory 

findings can be attributed, like in SZ, to age, medication and illness duration. 

 

Within arrhythmic brain activity, Wei and colleagues led two fMRI studies (Wei et al., 2013, 

2015), where they measured broadband scale-invariance using the measure of General Hurst 

Exponent, GHE. Increased GHE values were observed in the ventromedial prefrontal cortex and 

in the salience network, while decreased values were observed within the DMN. Akar and 

colleagues’ review of EEG complexity findings in MDD (Akdemir Akar et al., 2015) partly 

supports these findings.  They found fractal dimension and entropy metrics to be typically 

increased among patients compared to controls during both resting-state and emotional induction, 

particularly over clinically relevant brain areas, such as the frontal and parietal brain regions. In 

RS-MEG, antidepressants appeared to normalize complexity in patients, which was observed to 

be higher than controls prior to pharmacological treatment (Mendez et al., 2012).  

 

Taken together, it is obvious that more work is needed in the study of scale-free properties in 

MDD, along with comparison between these metrics and classical connectivity methods using 

MEG data in sensor and source space (Lee et al., 2007).  

 

B.1.3 Investigation of Humour on the brain and on mood 
 

B.1.3.1 Negative bias theory in depression 
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One of the leading theories for mood disorders is that depressive and anxious symptoms might 

emerge due to a negative interpretation of external events (Abramson et al., 1989). Over time, this 

would reinforce a biased integration of information arising from their surroundings, or from within 

themselves. Thus, during a stressful moment, a person might have the tendency to wrongfully 

attribute the cause of an incident to global and stable reasons that highlight their own personal 

inadequacies. This cycle would result in self-derogatory affect that could lead to maladaptive 

beliefs about themselves (e.g., worthlessness, hopelessness; Malhi et al. 2015). While MDD 

patients typically experience anhedonia during their episodes (Malhi et al., 2015), and pay less 

attention to positive stimuli (Bianchi and Laurent, 2015) it is known that neural response to 

emotional stimuli can be altered by pharmacological interventions, such as escitalopram (Malhi et 

al., 2015), as well as psychotherapy. Interestingly, it is thought that this shift in emotional 

processing occurs through the move towards a similar positive bias (Outhred et al., 2014), as the 

ones healthy individuals generally exhibit. 

B.1.3.2 Benefits of humour and how it can alter brain patterns 

 

According to recent studies, positive psychology, and specifically humour, can also help depressed 

individuals break free from their cognitive bias cycle. Indeed, significant and lasting improvements 

in depressive symptoms, anxiety, memory, and immune system in both clinical and healthy 

populations take place after such interventions (e.g., Bennett, 2003; Kim et al., 2015; Konrad et 

al., 2012; Ko & Youn, 2011). Frietas and colleagues (2016) argued that positive therapy might 

treat depression by not only reducing negative affect, but also by building positive emotions, 

resilience towards adverse events and future depressive episodes, and by giving meaning to 

patients’ lives. The beneficial effects of humour can be observed across the brain’s fronto-limbic 

pathway, and are thought to occur even if an individual’s personal ratings of funniness is wavering 

(Vrticka et al., 2013). This is particularly relevant among depressed populations who might not 

overtly laugh at humorous stimuli.  

B.1.3.3 Current limitations in the field of humour studies 

 

While a few fMRI studies have explored how humour is processed in healthy and pathological 

populations, to date no study has explored the effect of humour on the neural circuitry or 

complexity of MDD patients using MEG. One EEG study that explored the induction of positive 
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emotion through musical stimulation found healthy subjects’ brain signal complexity, as measured 

by different metrics (e.g., fractal dimension, entropy, Lempel-Ziv complexity), to decrease after 

listening to music compared to listening to noise (Akdemir Akar et al., 2015). We could thus 

predict that a similar effect could be brought on by humorous videos. Given the substantial body 

of work on negative emotions, empirical evidence for the benefits of positive emotions on the 

neural organization of patients should be investigated.  

 

B.2 Objective 
 

The goals of his study are three-fold: (1) to understand how scale-free properties  are altered in 

MDD patients using RS-MEG and, identify which among them can best discriminate between 

MDD patients and controls using machine-learning algorithms; (2) determine the potential 

correlations between all these measures with MDD patients’ clinical symptoms scores on 

depression, anxiety and stress scales; (3) understand the potential beneficial effect of humorous 

video clips on RS-MEG patterns of MDD patients and, characterize the effect of humorous video 

clips on subjective mood ratings (e.g., happiness, nervousness, alertness) and objective 

physiological measures (e.g. heart rate) among MDD patients.  

 

Based on the cognitive bias theory, I hypothesize that the properties of rhythmic and arrhythmic 

brain activity will be altered in MDD patients compared to controls. Thus, I predict atypical scale-

free dynamics in MDD patients compared to controls, which significantly correlate with patient’s 

clinical scores. Based on the literature on positive psychology, and given that RS organization 

appears to correlate with MDD patients’ cognitive and emotional symptoms (Drevets et al., 2008; 

Mulders et al., 2015), I hypothesize that viewing humorous videos will somewhat normalize the 

intrinsic neural networks of MDD patients and improve their subjective mood. Thus, I predict that 

viewing humorous videos will, at least, temporarily normalize RS-MEG patterns among MDD 

patients, such that they resemble those of healthy individuals, as measured by classical 

connectivity measures and graph theoretical model. In addition, I predict participants to show an 

increase in levels of happiness, alertness, and relaxation, as well as better memory performance, 

after viewing humorous videos compared to baseline.  
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B.3 Method 

Ethics certificates for all parts have been granted from the Comité d’éthique de la recherche en 

arts et en sciences (CERAS-2017-18-100-D), the CIUSSS du Centre-Sud-de-l'Île-de-Montréal 

and the CÉR-CEMTL. 

B.3.1 Participants  
 

For the beta-testing of the videos, >150 subjects will be recruited online. Subjects will consist of 

male and female subjects from North America and Europe recruited through word of mouth, and 

online advertisement on social media outlets (e.g., Facebook, Twitter and Linked-In). The MEG 

study will recruit 60 participants and take place in Montreal, at the Université de Montréal (UdeM). 

This sample size is based on the power-analysis for a moderate-strong effect size in group 

differences (0.70), a significance level of a = 0.05, and statistical power of 80%. Thirty individuals 

recently diagnosed with MDD by a licenced psychiatrist will be included and 30 healthy controls 

matched for age and gender. Patients will be recruited through our clinical collaborator at the 

Centre de recherche de l'Institut universitaire en santé mentale de Montréal. Healthy controls will 

be recruited through advertisements posted online and throughout universities in the Montreal area.  

 

Across both parts, subjects will consist of adults, between the ages of 18 and 50 years old. 

Participants with bad or uncorrected vision, and/or inability to commit to the full-length of the 

testing period will be excluded. For part ii, healthy individuals will be excluded for any of the 

following: past or present neurological or psychological illness, history or active substance 

dependence/abuse, memory impairments, or first degree relatives with mental disorders. For the 

MDD group, individuals will be excluded for any of the following reasons: inability to complete 

the first half of the MEG study, more than two major depressive episodes, severe score on the 

Beck’s Depression Inventory. Finally, for part ii, individuals will be excluded if they present with 

any contraindications that does not allow them to complete the MEG and/or MRI scan.  
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B.3.2 Experimental paradigm  
 

B.3.2.1 Behavioural , video testing, stimuli evaluation (completed) 
 

Beta-testing of the videos will be conducted online through the website humouresearch.com 

created with Dr. Anne-Lise Saive, post-doctoral student, and volunteers in the CoCo Lab. The 

experiment will be available in French, English and Spanish, and will last around 15 minutes. 

Before starting the experiment, participants will be asked to give their electronic consent after 

reading the details of the experiment. Each subject will then view and rate a series of video clips 

of humorous and neutral (but interesting) content, each lasting between 8-12 seconds. Given that 

this part of the study will help guide parts of the MEG study, special attention will be given to the 

selection of the stimuli to ensure that they are matched in length and resolution. Moreover, given 

that verbal fluency is known to be diminished among MDD patients (Fossati et al. 2003; 

Uekermann et al. 2008), the chosen humorous stimuli will consist of non-verbal, video clips, 

depicting “slap-stick” jokes, easy to understand by any individual from any background or 

ethnicity.  

B.3.2.2 MEG experiment 

 

Subjects that show interest in the study will have read the consent form and safety information for 

both the MRI and MEG scans prior to their arrival to the UdeM. Participants will be called one 

week prior to the start of this experiment to ensure that they are compatible with both imaging 

machines.  

The day will start with participants giving their written consent, and completing a written screening 

form to ensure their safe entry into the MEG scanner, a 275 channels CTF machine located in the 

Marie-Victorin pavilion, in the department of Psychology at the UdeM. They will then be asked 

to answer demographic questions (age, gender, education level, ethnicity, and handedness), and 

complete questionnaires about their humor style (Martin et al. 2003). Moreover, all participants 

will complete the following scales: Beck’s Depression Inventory-II (BDI-II), Beck’s Anxiety 

Inventory (BAI), Cognitive Distortion Scale (CDS), Perceived Stress Scale (PSS), the Sense of 

Humor Questionnaire (Svebak, 1996, 2010), and a brief questionnaire (Likert 7-point scale) on 

current levels of happiness, nervousness, alertness. In addition, MDD patients will be asked to 
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provide information regarding medication and treatment history and current pharmacological 

dosage, age of illness onset and number of previous depressive episodes.  

During the preparation phase of the experiment, reference electrodes will be placed on the 

participant to capture muscle, cardiac and ocular artefacts. Participants’ heart rate and 

electrodermal responses will also be monitored in order to evaluate the different physiological 

effects of viewing the videos. The MEG paradigm is made of two parts. The first part consists of 

three resting-state blocks lasting five-minutes each, which are interspersed with two five minute-

long videos (humour and neutral). The videos will be chosen based on the databsase created in the 

first part of this study, and humourous and neutral video blocks will be counterbalanced. During 

the videos, participants will be asked to simply watch and pay attention to the videos. The second 

part of the experiment consists of three blocks of two-minute-long emotion-recognition tasks, 

interspersed with  two blocks of humourous and neutral videos. During the task, participants will 

be asked to identify the facial emotion presented (happy, sad, angry, surprise, neutral). The stimuli 

are sourced from a database called FACES from the Max Planck Institute for Human development 

in Germany. Full description and validation of this database has been previously published (Ebner 

et al., 2010). The last emotion recognition block will be followed by a short memory test, where 

participant will be asked whether they recognize the presented faces (yes, no). This test will 

primarily allow us to assess alertness levels and quality of the memories they formed. The 40-min 

experiment will end with brief questions about their current mood levels 

 

Either on the same day, or within a week of the MEG experiment, a T1-anatomical scan will be 

acquired for each participant using the 3T Siemens MRI machine, located at the Unité de 

neuroimagerie fonctionnelle, located in the Centre de recherche de l’institut universitaire de 

gériatrie de Montréal.  

 

B.3.3 Analyses 

To identify the atypical neural network patterns of MDD patients, the first (baseline) RS-MEG 

data of each group will be extracted. Next, to evaluate the effect of humour on RS networks and 

mood, the first (baseline) and third (after viewing humorous video) RS-MEG data of subjects will 
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be used. Once again, all analyses will be conducted both at the sensor and the source level. Source 

and scale-free analyses will be the same as for the SZ study.  

B.3.3.1 Connectivity analyses  

Functional connectivity will be computed throughout the brain of each subject group. Local 

synchrony will be quantified through spectral power estimation and time-frequency analysis. 

Long-range, inter-areal, connectivity of the RS-MEG signal will be explored using a number of 

neuronal coupling measures, such as imaginary coherence (Nolte et al. 2004) and weighted phase-

lag index (wPLI, Vinck et al. 2011). In addition to classical connectivity measures, graph 

theoretical metrics will be assessed. Among others, small-worldness, modularity and rich clubs 

will be computed for both cohorts. Graphs will be built following standard methods such as the 

ones reviewed by Bullmore and Sporns (2009).  

B.3.3.2 Statistical Analyses  

Similar to Chapter 3, group analyses will be conducted between MDD patients and their controls 

to see how they differ in terms of connectivity metrics, graph theoretical features and scale-free 

dynamics, using their RS-MEG data. Two-tailed, un-paired, non- parametric tests will be used, 

corrected with maximum statistics using exhaustive permutations (number of permutations = 

1000) (Pantazis et al. 2005). A number of correlational analyses will also be conducted between 

connectivity and graph theory metrics and scale free dynamic measures, as well as age, age of 

onset, number of depressive episodes, gender, BDI/BAI/PSS scores, and medication information.  

Using the MEG data, within group statistical analyses will be conducted to see if and how 

humorous video-clips changed RS-MEG patterns in MDD patients, and controls in terms of 

connectivity metrics and graph theoretical features. To address these questions, repeated measures 

analysis of variance will be applied, using age, gender, ethnicity, education level, and humour style 

scores as covariates. Correlational analyses will also be conducted between all the metrics and 

demographic variables. Finally, we will look at the correlations between videos (humorous and 

neutral) and mood levels (happiness, nervousness) measured before and after viewing the videos. 

Correlation between the videos and the physiological measures (heart-rate, electrodermal 

response) will also be explored.  
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B.3.3.3 Machine-learning 

Similar to the SZ studies, I will first apply machine learning to subjects’ scale-free values, as well 

as connectivity findings, to evaluate the discriminative power of the various electrophysiological 

features in objectively classifying patients and controls. Then, for the humor portion, the feature 

space will also include behavioral/physiological measures (as well as ratings of the videos and the 

evaluation of mood) in addition to the connectivity and scale-free metrics. The behavioral and/or 

neuronal features that provide the best prediction accuracy will unravel the most prominent 

correlates/markers of humor on physical and cognitive aspects of participants.  

 

 

 

 

  



 

 

193 

REFERENCES 
 

Abel T, Nickl-Jockschat T (2016) The neurobiology of schizophrenia. Academic Press. 
Abramson L, Metalsky G, Alloy L (1989) Hopelessness depression: A theory-based subtype of 

depression. Psychol Rev 96:358 Available at: 
http://doi.apa.org/index.cfm?doi=10.1037/0033-295X.96.2.358 [Accessed August 30, 
2017]. 

Abry P, Wendt H, Jaffard S, Didier G (2019) Multivariate scale-free temporal dynamics: From 
spectral (Fourier) to fractal (wavelet) analysis. Comptes Rendus Phys 20:489–501. 

Adleman NE, Menon V, Blasey CM, White CD, Warsofsky IS, Glover GH, Reiss AL (2002) A 
Developmental fMRI Study of the Stroop Color-Word Task. Neuroimage 16:61–75. 

Adolphs R (2002) Neural systems for recognizing emotion. Curr Opin Neurobiol 12:169–177 
Available at: https://www.sciencedirect.com/science/article/pii/S095943880200301X 
[Accessed February 4, 2019]. 

Agcaoglu O, Wilson TW, Wang YP, Stephen J, Calhoun VD (2019) Resting state connectivity 
differences in eyes open versus eyes closed conditions. Hum Brain Mapp 40:2488–2498 
Available at: https://pubmed.ncbi.nlm.nih.gov/30720907/ [Accessed August 23, 2020]. 

Akbarian S (2014) Epigenetic mechanisms in schizophrenia. Dialogues Clin Neurosci 16:405–
417 Available at: www.dialogues-cns.org [Accessed August 27, 2020]. 

Akdemir Akar S, Kara S, Agambayev S, Bilgiç V (2015) Nonlinear analysis of EEGs of patients 
with major depression during different emotional states. Comput Biol Med 67:49–60 
Available at: http://linkinghub.elsevier.com/retrieve/pii/S0010482515003297 [Accessed 
July 30, 2017]. 

Al-Timemy AH, Fernandez A, Escudero J (2014) Spectral analysis of resting state 
magnetoencephalogram activity in patients with bipolar disorder. In: 2014 36th Annual 
International Conference of the IEEE Engineering in Medicine and Biology Society, pp 
2197–2200. IEEE. Available at: 
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6944054 [Accessed June 9, 
2016]. 

Alamian G, Hincapié A-S, Combrisson E, Thiery T, Martel V, Althukov D, Jerbi K (2017a) 
Alterations of intrinsic brain connectivity patterns in depression and bipolar disorders: A 
critical assessment of magnetoencephalography-based evidence. Front Psychiatry 8. 

Alamian G, Hincapié A-S, Pascarella A, Thiery T, Combrisson E, Saive A-L, Martel V, 
Althukov D, Haesebaert F, Jerbi K (2017b) Measuring alterations in oscillatory brain 
networks in schizophrenia with resting-state MEG: State-of-the-art and methodological 
challenges. Clin Neurophysiol 128:1719–1736 Available at: 
http://dx.doi.org/10.1016/j.clinph.2017.06.246 [Accessed July 27, 2017]. 

Alamian G, Pascarella A, Lajnef T, Knight L, Walters J, Singh KD, Jerbi K (2020) Patient, 
interrupted: MEG oscillation dynamics reveal temporal dysconnectivity in schizophrenia. 
NeuroImage Clin:102485 Available at: 
https://linkinghub.elsevier.com/retrieve/pii/S2213158220303223 [Accessed November 9, 
2020]. 

Alderson-Day B, McCarthy-Jones S, Fernyhough C (2015) Hearing voices in the resting brain: A 
review of intrinsic functional connectivity research on auditory verbal hallucinations. 
Neurosci Biobehav Rev 55:78–87. 

Alegre M, Molero P, Valencia M, Mayner G, Ortuño F, Artieda J (2017) A typical antipsychotics 



 

 

194 

normalize low-gamma evoked oscillations in patients with schizophrenia. Psychiatry Res 
247:214–221. 

Allen EA, Damaraju E, Plis SM, Erhardt EB, Eichele T, Calhoun VD (2014) Tracking whole-
brain connectivity dynamics in the resting state. Cereb Cortex 24:663–676 Available at: 
http://www.ncbi.nlm.nih.gov/pubmed/23146964 [Accessed July 25, 2016]. 

Allen EA, Liu J, Kiehl KA, Gelernter J, Pearlson GD, Perrone-Bizzozero NI, Calhoun VD 
(2011) Components of Cross-Frequency Modulation in Health and Disease. Front Syst 
Neurosci 5:59 Available at: 
http://journal.frontiersin.org/article/10.3389/fnsys.2011.00059/abstract [Accessed 
November 6, 2016]. 

Almeida JRC, Mechelli A, Hassel S, Versace A, Kupfer DJ, Phillips ML (2009) Abnormally 
increased effective connectivity between parahippocampal gyrus and ventromedial 
prefrontal regions during emotion labeling in bipolar disorder. Psychiatry Res 174:195–201 
Available at: http://www.ncbi.nlm.nih.gov/pubmed/19910166 [Accessed November 4, 
2016]. 

Altman EG, Hedeker D, Peterson JL, Davis JM (1997) The Altman Self-Rating Mania Scale. 
Biol Psychiatry 42:948–955 Available at: 
https://www.sciencedirect.com/science/article/pii/S0006322396005483?via%3Dihub 
[Accessed November 7, 2018]. 

American Psychiatric Association (2013a) Diagnostic and statistical manual of mental disorders 
(DSM-5®). American Psychiatric Publishing. 

American Psychiatric Association (2013b) Diagnostic and statistical manual of mental disorders, 
5th ed. Washington, DC. 

Anand A, Li Y, Wang Y, Wu J, Gao S, Bukhari L, Mathews VP, Kalnin A, Lowe MJ (2005a) 
Activity and Connectivity of Brain Mood Regulating Circuit in Depression: A Functional 
Magnetic Resonance Study. Biol Psychiatry 57:1079–1088. 

Anand A, Li Y, Wang Y, Wu J, Gao S, Bukhari L, Mathews VP, Kalnin A, Lowe MJ (2005b) 
Antidepressant Effect on Connectivity of the Mood-Regulating Circuit: An fMRI Study. 
Neuropsychopharmacology 30:1334 Available at: 
http://www.nature.com/doifinder/10.1038/sj.npp.1300725 [Accessed October 28, 2016]. 

Andersen LM, Jerbi K, Dalal SS (2020) Can EEG and MEG detect signals from the human 
cerebellum? Neuroimage 215 Available at: https://pubmed.ncbi.nlm.nih.gov/32278092/ 
[Accessed September 18, 2020]. 

Andreasen NC, Nopoulos P, O’Leary DS, Miller DD, Wassink T, Flaum M (1999) Defining the 
phenotype of schizophrenia: cognitive dysmetria and its neural mechanisms. Biol 
Psychiatry 46:908–920. 

Andreasen NC, Paradiso S, O’Leary DS (1998) Cognitive dysmetria as an integrative theory of 
schizophrenia: a dysfunction in cortical-subcortical-cerebellar circuitry? Schizophr Bull 
24:203–218 Available at: http://www.ncbi.nlm.nih.gov/pubmed/9613621 [Accessed 
October 20, 2016]. 

Andreou C, Faber PL, Leicht G, Schoettle D, Polomac N, Hanganu-Opatz IL, Lehmann D, 
Mulert C (2014) Resting-state connectivity in the prodromal phase of schizophrenia: 
Insights from EEG microstates. Schizophr Res 152:513–520. 

Andreou C, Nolte G, Leicht G, Polomac N, Hanganu-Opatz IL, Lambert M, Engel AK, Mulert C 
(2015) Increased Resting-State Gamma-Band Connectivity in First-Episode Schizophrenia. 
Schizophr Bull 41:930–939 Available at: http://www.ncbi.nlm.nih.gov/pubmed/25170031 



 

 

195 

[Accessed October 26, 2016]. 
Anticevic A, Brumbaugh MS, Winkler AM, Lombardo LE, Barrett J, Corlett PR, Kober H, 

Gruber J, Repovs G, Cole MW, Krystal JH, Pearlson GD, Glahn DC (2013) Global 
prefrontal and fronto-amygdala dysconnectivity in bipolar I disorder with psychosis history. 
Biol Psychiatry 73:565–573 Available at: http://www.ncbi.nlm.nih.gov/pubmed/22980587 
[Accessed June 20, 2016]. 

Arnhold J, Grassberger P, Lehnertz K, Elger CE (1999) A robust method for detecting 
interdependences: application to intracranially recorded EEG. Phys D 134:419–430. 

Astolfi L, Cincotti F, Mattia D, Salinari S, Babiloni C, Basilisco A, Rossini PM, Ding L, Ni Y, 
He B, Marciani MG, Babiloni F (2004) Estimation of the effective and functional human 
cortical connectivity with structural equation modeling and directed transfer function 
applied to high-resolution EEG. Magn Reson Imaging 22:1457–1470. 

Avery JA, Drevets WC, Moseman SE, Bodurka J, Barcalow JC, Simmons WK (2014) Major 
Depressive Disorder Is Associated With Abnormal Interoceptive Activity and Functional 
Connectivity in the Insula. Biol Psychiatry 76:258–266. 

Bachmann S, Weisbrod M, Röhrig M, Schröder J, Thomas C, Scherg M, Rupp A (2010) MEG 
does not reveal impaired sensory gating in first-episode schizophrenia. Schizophr Res 
121:131–138. 

Baenninger A, Palzes VA, Roach BJ, Mathalon DH, Ford JM, Koenig T (2017) Abnormal 
Coupling Between Default Mode Network and Delta and Beta Band Brain Electric Activity 
in Psychotic Patients. Brain Connect 7:34–44 Available at: 
http://online.liebertpub.com/doi/10.1089/brain.2016.0456 [Accessed May 1, 2017]. 

Baillet S (2017) Magnetoencephalography for brain electrophysiology and imaging. Nat 
Neurosci 20 Available at: https://www.nature.com/neuro/journal/v20/n3/pdf/nn.4504.pdf 
[Accessed April 23, 2017]. 

Baillet S, Garnero L, Marin G, Hugonin JP (1999) Combined MEG and EEG source imaging by 
minimization of mutual information. IEEE Trans Biomed Eng 46:522–534 Available at: 
http://www.ncbi.nlm.nih.gov/pubmed/10230131 [Accessed November 5, 2016]. 

Baker STE, Lubman DI, Yücel M, Allen NB, Whittle S, Fulcher BD, Zalesky A, Fornito A 
(2015) Developmental Changes in Brain Network Hub Connectivity in Late Adolescence. J 
Neurosci 35. 

Balu DT (2016) The NMDA Receptor and Schizophrenia. From Pathophysiology to Treatment. 
In: Advances in Pharmacology, pp 351–382. Academic Press Inc. Available at: 
/pmc/articles/PMC5518924/?report=abstract [Accessed August 28, 2020]. 

Bardouille T, Boe S (2012) State-related changes in MEG functional connectivity reveal the 
task-positive sensorimotor network. PLoS One 7:e48682 Available at: 
http://www.ncbi.nlm.nih.gov/pubmed/23119088 [Accessed September 7, 2016]. 

Barkhuizen W, Pain O, Dudbridge F, Ronald A (2020) Genetic overlap between psychotic 
experiences in the community across age and with psychiatric disorders. Transl Psychiatry 
10:1–12 Available at: https://doi.org/10.1038/s41398-020-0765-2 [Accessed January 10, 
2021]. 

Barry RJ, Clarke AR, Johnstone SJ, Magee CA, Rushby JA (2007) EEG differences between 
eyes-closed and eyes-open resting conditions. Clin Neurophysiol 118:2765–2773. 

Barry RJ, Clarke AR, McCarthy R, Selikowitz M, Rushby JA (2005) Arousal and activation in a 
continuous performance task: An exploration of state effects in normal children. J 
Psychophysiol 19:91–99 Available at: https://psycnet.apa.org/journals/jop/19/2/91 



 

 

196 

[Accessed August 23, 2020]. 
Başar E, Gölbaşı BT, Tülay E, Aydın S, Başar-Eroğlu C (2015) Best method for analysis of brain 

oscillations in healthy subjects and neuropsychiatric diseases. Int J Psychophysiol Available 
at: http://www.ncbi.nlm.nih.gov/pubmed/25689625. 

Bassett DS, Bullmore E, Verchinski BA, Mattay VS, Weinberger DR, Meyer-Lindenberg A 
(2008) Hierarchical Organization of Human Cortical Networks in Health and 
Schizophrenia. J Neurosci 28:9239–9248 Available at: 
http://www.jneurosci.org/cgi/doi/10.1523/JNEUROSCI.1929-08.2008 [Accessed June 23, 
2016]. 

Beck AT, Steer RA, Brown GK (1996) Manual for the Beck Depression Inventory-II. San 
Antonio, TX, USA: Psychological Corporation. 

Becker A, Peters B, Schroeder H, Mann T, Huether G, Grecksch G (2003) Ketamine-induced 
changes in rat behaviour: A possible animal model of schizophrenia. Prog Neuro-
Psychopharmacology Biol Psychiatry 27:687–700. 

Beckmann CF, DeLuca M, Devlin JT, Smith SM (2005) Investigations into resting-state 
connectivity using independent component analysis. Philos Trans R Soc Lond B Biol Sci 
360:1001–1013 Available at: http://www.ncbi.nlm.nih.gov/pubmed/16087444 [Accessed 
July 25, 2016]. 

Beggs JM, Plenz D (2003) Neuronal avalanches in neocortical circuits. J Neurosci 23:11167–
11177 Available at: http://www.ncbi.nlm.nih.gov/pubmed/14657176 [Accessed August 6, 
2017]. 

Beggs JM, Timme N (2012) Being critical of criticality in the brain. Front Physiol Available at: 
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3369250/pdf/fphys-03-00163.pdf 
[Accessed August 28, 2017]. 

Benjamin C, Lieberman DA, Changl M, Ofen N, Whitfield-Gabrieli S, Gabrieli JDE, Gaab N 
(2010) The influence of rest period instructions on the default mode network. Front Hum 
Neurosci 4 Available at: https://pubmed.ncbi.nlm.nih.gov/21151779/ [Accessed October 21, 
2020]. 

Bennett MP, Zeller JM, Rosenberg L, McCann J (2003) The effect of mirthful laughter on stress 
and natural killer cell activity. Altern Ther Health Med 9:38–45 Available at: 
http://www.ncbi.nlm.nih.gov/pubmed/12652882 [Accessed March 21, 2017]. 

Berlim MT, van den Eynde F, Tovar-Perdomo S, Daskalakis ZJ (2014) Response, remission and 
drop-out rates following high-frequency repetitive transcranial magnetic stimulation (rTMS) 
for treating major depression: a systematic review and meta-analysis of randomized, 
double-blind and sham-controlled trials. Psychol Med 44:225–239 Available at: 
http://www.journals.cambridge.org/abstract_S0033291713000512 [Accessed February 24, 
2017]. 

Berman MG, Peltier S, Nee DE, Kross E, Deldin PJ, Jonides J (2011) Depression, rumination 
and the default network. Soc Cogn Affect Neurosci 6:548–555 Available at: 
http://www.ncbi.nlm.nih.gov/pubmed/20855296 [Accessed September 6, 2016]. 

Berthouze L, James LM, Farmer SF (2010) Human EEG shows long-range temporal correlations 
of oscillation amplitude in Theta, Alpha and Beta bands across a wide age range. Clin 
Neurophysiol Off J Int Fed Clin Neurophysiol 121:1187–1197. 

Betti V, Della Penna S, de Pasquale F, Mantini D, Marzetti L, Romani GL, Corbetta M (2013) 
Natural scenes viewing alters the dynamics of functional connectivity in the human brain. 
Neuron 79:782–797 Available at: http://www.ncbi.nlm.nih.gov/pubmed/23891400 



 

 

197 

[Accessed April 25, 2017]. 
Bianchi R, Laurent E (2015) Emotional information processing in depression and burnout: an 

eye-tracking study. Eur Arch Psychiatry Clin Neurosci 265:27–34 Available at: 
http://link.springer.com/10.1007/s00406-014-0549-x [Accessed August 4, 2017]. 

Bianciardi M, Fukunaga M, van Gelderen P, Horovitz SG, de Zwart JA, Duyn JH (2009) 
Modulation of spontaneous fMRI activity in human visual cortex by behavioral state. 
Neuroimage 45:160–168 Available at: /pmc/articles/PMC2704889/?report=abstract 
[Accessed August 23, 2020]. 

Bijanki KR, Hodis B, Magnotta VA, Zeien E, Andreasen NC (2015) Effects of age on white 
matter integrity and negative symptoms in schizophrenia. Schizophr Res 161:29–35 
Available at: http://www.ncbi.nlm.nih.gov/pubmed/24957354 [Accessed October 26, 2016]. 

Biswal B, Zerrin Yetkin F, Haughton VM, Hyde JS (1995) Functional Connectivity in the Motor 
Cortex of Resting Human Brain Using Echo-Planar MRI. Magn Reson Med 34:537–541. 

Blashfield RK, Keeley JW, Flanagan EH, Miles SR (2014) The cycle of classification: DSM-I 
through DSM-5. Annu Rev Clin Psychol 10:25–51 Available at: www.annualreviews.org 
[Accessed January 10, 2021]. 

Blythe DAJ, Haufe S, Müller KR, Nikulin V V. (2014) The effect of linear mixing in the EEG on 
Hurst exponent estimation. Neuroimage 99:377–387. 

Blythe DAJ, Nikulin V V. (2017) Long-range temporal correlations in neural narrowband time-
series arise due to critical dynamics. PLoS One 12:e0175628 Available at: 
https://doi.org/10.1371/journal.pone.0175628 [Accessed September 11, 2020]. 

Bosboom JLW, Stoffers D, Stam CJ, van Dijk BW, Verbunt J, Berendse HW, Wolters EC 
(2006) Resting state oscillatory brain dynamics in Parkinson’s disease: An MEG study. Clin 
Neurophysiol 117:2521–2531. 

Boutros NN, Arfken C, Galderisi S, Warrick J, Pratt G, Iacono W (2008) The status of spectral 
EEG abnormality as a diagnostic test for schizophrenia. Schizophr Res 99:225–237. 

Boutros NN, Mucci A, Diwadkar V, Tandon R (2014) Negative Symptoms in Schizophrenia: A 
Comprehensive Review of Electrophysiological Investigations. Clin Schizophr Relat 
Psychoses:28–35. 

Bowyer SM, Gjini K, Zhu X, Kim L, Moran JE, Rizvi SU, Gumenyuk V, Tepley N, Boutros NN, 
Poletaeva I, Bowyer SM (2015) Potential Biomarkers of Schizophrenia from MEG Resting-
State Functional Connectivity Networks: Preliminary Data. J Behav Brain Sci 5:1–11 
Available at: http://www.scirp.org/journal/jbbs [Accessed July 8, 2016]. 

Breakspear M (2006) The nonlinear theory of schizophrenia. Aust N Z J Psychiatry 40:20–35 
Available at: http://www.ncbi.nlm.nih.gov/pubmed/16403034 [Accessed October 19, 2016]. 

Brookes MJ, Hale JR, Zumer JM, Stevenson CM, Francis ST, Barnes GR, Owen JP, Morris PG, 
Nagarajan SS (2011a) Measuring functional connectivity using MEG: methodology and 
comparison with fcMRI. Neuroimage 56:1082–1104 Available at: 
http://www.ncbi.nlm.nih.gov/pubmed/21352925 [Accessed July 25, 2016]. 

Brookes MJ, Hall EL, Robson SE, Price D, Palaniyappan L, Liddle EB, Liddle PF, Robinson SE, 
Morris PG (2015) Complexity measures in magnetoencephalography: measuring 
&quot;disorder&quot; in schizophrenia. PLoS One 10:e0120991 Available at: 
http://www.ncbi.nlm.nih.gov/pubmed/25886553 [Accessed August 1, 2016]. 

Brookes MJ, Woolrich M, Luckhoo H, Price D, Hale JR, Stephenson MC, Barnes GR, Smith 
SM, Morris PG (2011b) Investigating the electrophysiological basis of resting state 
networks using magnetoencephalography. Proc Natl Acad Sci U S A 108:16783–16788 



 

 

198 

Available at: 
http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=3189080&tool=pmcentrez&ren
dertype=abstract [Accessed February 18, 2016]. 

Brookes MJ, Woolrich MW, Barnes GR (2012) Measuring functional connectivity in MEG: a 
multivariate approach insensitive to linear source leakage. Neuroimage 63:910–920 
Available at: http://www.ncbi.nlm.nih.gov/pubmed/22484306 [Accessed November 5, 
2016]. 

Broyd SJ, Demanuele C, Debener S, Helps SK, James CJ, Sonuga-Barke EJS (2009) Default-
mode brain dysfunction in mental disorders: a systematic review. Neurosci Biobehav Rev 
33:279–296 Available at: http://www.ncbi.nlm.nih.gov/pubmed/18824195 [Accessed July 
10, 2014]. 

Brunelin J, Mondino M, Gassab L, Haesebaert F, Gaha L, Suaud-Chagny M-F, Saoud M, Mechri 
A, Poulet E (2012) Examining Transcranial Direct-Current Stimulation (tDCS) as a 
Treatment for Hallucinations in Schizophrenia. Am J Psychiatry 169:719–724 Available at: 
http://psychiatryonline.org/doi/abs/10.1176/appi.ajp.2012.11071091 [Accessed January 23, 
2017]. 

Brzezicka A, Kamiński J, Kamińska OK, Wołyńczyk-Gmaj D, Sedek G (2016) Frontal EEG 
alpha band asymmetry as a predictor of reasoning deficiency in depressed people. 
http://dx.doi.org/101080/0269993120161170669. 

Buckner RL (2013) The brain’s default network: origins and implications for the study of 
psychosis. Dialogues Clin Neurosci 15:351–358 Available at: 
http://www.ncbi.nlm.nih.gov/pubmed/24174906 [Accessed July 25, 2016]. 

Buckner RL, Andrews-Hanna JR, Schacter DL (2008) The Brain’s Default Network Anatomy, 
Function, and Relevance to Disease. 

Bullmore E, Sporns O (2009) Complex brain networks: graph theoretical analysis of structural 
and functional systems. Nat Rev Neurosci Neurosci 10:186–198 Available at: 
http://www.nature.com/doifinder/10.1038/nrn2575 [Accessed June 15, 2016]. 

Bullmore ET, Bassett DS (2011) Brain Graphs: Graphical Models of the Human Brain 
Connectome. Annu Rev Clin Psychol 7:113–140 Available at: www.annualreviews.org 
[Accessed September 7, 2016]. 

Bullock TH, McClune MC, Enright JT (2003) Are the electroencephalograms mainly rhythmic? 
Assessment of periodicity in wide-band time series. Neuroscience 121:233–252. 

Butler T, Weisholtz D, Isenberg N, Harding E, Epstein J, Stern E, Silbersweig D (2012) 
Neuroimaging of frontal-limbic dysfunction in schizophrenia and epilepsy-related 
psychosis: toward a convergent neurobiology. Epilepsy Behav 23:113–122 Available at: 
http://www.ncbi.nlm.nih.gov/pubmed/22209327 [Accessed July 27, 2016]. 

Buzsáki G, Draguhn A (2004) Neuronal Oscillations in Cortical Networks. Science (80- ) 
304:527–1929. 

Buzsáki G, Watson BO (2012) Brain rhythms and neural syntax: implications for efficient 
coding of cognitive content and neuropsychiatric disease. Dialogues Clin Neurosci 14:345–
367 Available at: http://www.ncbi.nlm.nih.gov/pubmed/23393413 [Accessed August 26, 
2016]. 

Bzdok D, Altman N, Krzywinski M (2018) Statistics versus machine learning. 
Bzdok D, Meyer-Linderberg A (2018) Machine learning for precision psychiatry: Opportunites 

and challenges. Biol Psychiatry Cogn Neurosci Neuroimaging Available at: 
https://arxiv.org/pdf/1705.10553.pdf. 



 

 

199 

Calhoun VD, Sui J, Kiehl K, Turner J, Allen E, Pearlson G (2012) Exploring the Psychosis 
Functional Connectome: Aberrant Intrinsic Networks in Schizophrenia and Bipolar 
Disorder. Front Psychiatry 2:75 Available at: 
http://journal.frontiersin.org/article/10.3389/fpsyt.2011.00075/abstract [Accessed 
September 24, 2016]. 

Candelaria-Cook FT, Schendel ME, Ojeda CJ, Bustillo JR, Stephen JM (2020) Reduced parietal 
alpha power and psychotic symptoms: Test-retest reliability of resting-state 
magnetoencephalography in schizophrenia and healthy controls. Schizophr Res 215:229–
240 Available at: https://pubmed.ncbi.nlm.nih.gov/31706785/ [Accessed August 16, 2020]. 

Cañive JM, Lewine JD, Edgar JC, Davis JT, Miller GA, Torres F, Tuason VB (1998) 
Spontaneous brain magnetic activity in schizophrenia patients treated with aripiprazole. 
Psychopharmacol Bull 34:101–105 Available at: 
http://www.ncbi.nlm.nih.gov/pubmed/9580382 [Accessed December 9, 2016]. 

Cañive JM, Lewine JD, Edgar JC, Davis JT, Torres F, Roberts B, Graeber D, Orrison WW, 
Tuason VB (1996) Magnetoencephalographic assessment of spontaneous brain activity in 
schizophrenia. Psychopharmacol Bull 32:741–750 Available at: 
http://www.ncbi.nlm.nih.gov/pubmed/8993097 [Accessed December 9, 2016]. 

Carlson GA (2000) Phenomenology and Outcome of Subjects With Early- and Adult-Onset 
Psychotic Mania. Am J Psychiatry 157:213–219 Available at: 
http://ajp.psychiatryonline.org/article.aspx?articleID=173948 [Accessed October 27, 2016]. 

Carrion VG, Wong SS (2012) Can Traumatic Stress Alter the Brain? Understanding the 
Implications of Early Trauma on Brain Development and Learning. J Adolesc Heal 51:S23–
S28. 

Cascella NG, Gerner GJ, Fieldstone SC, Sawa A, Schretlen DJ (2011) The insula-claustrum 
region and delusions in schizophrenia. Schizophr Res 133:77–81. 

Casey BJ, Giedd JN, Thomas KM (2000) Structural and functional brain development and its 
relation to cognitive development. Biol Psychol 54:241–257. 

Caspi A, Moffitt TE, Cannon M, McClay J, Murray R, Harrington HL, Taylor A, Arseneault L, 
Williams B, Braithwaite A, Poulton R, Craig IW (2005) Moderation of the effect of 
adolescent-onset cannabis use on adult psychosis by a functional polymorphism in the 
catechol-O-methyltransferase gene: Longitudinal evidence of a gene X environment 
interaction. Biol Psychiatry 57:1117–1127 Available at: 
https://pubmed.ncbi.nlm.nih.gov/15866551/ [Accessed August 28, 2020]. 

Cetin MS, Houck JM, Rashid B, Agacoglu O, Stephen JM, Sui J, Canive J, Mayer A, Aine C, 
Bustillo JR, Calhoun VD (2016) Multimodal Classification of Schizophrenia Patients with 
MEG and fMRI Data Using Static and Dynamic Connectivity Measures. Front Neurosci 
10:466 Available at: http://www.ncbi.nlm.nih.gov/pubmed/27807403 [Accessed November 
9, 2016]. 

Cetin MS, Houck JM, Vergara VM, Miller RL, Calhoun V (2015) Multimodal based 
classification of schizophrenia patients. Conf Proc  . Annu Int Conf IEEE Eng Med Biol 
Soc IEEE Eng Med Biol Soc Annu Conf 2015:2629–2632 Available at: 
http://www.ncbi.nlm.nih.gov/pubmed/26736831 [Accessed February 10, 2016]. 

Chai XJ, Whitfield-Gabrieli S, Shinn AK, Gabrieli JDE, Nieto Castañón A, McCarthy JM, 
Cohen BM, Ongür D (2011) Abnormal medial prefrontal cortex resting-state connectivity in 
bipolar disorder and schizophrenia. Neuropsychopharmacology 36:2009–2017 Available at: 
http://www.ncbi.nlm.nih.gov/pubmed/21654735 [Accessed September 1, 2016]. 



 

 

200 

Charlson FJ, Ferrari AJ, Santomauro DF, Diminic S, Stockings E, Scott JG, McGrath JJ, 
Whiteford HA (2018) Global epidemiology and burden of schizophrenia: Findings from the 
global burden of disease study 2016. Schizophr Bull 44:1195–1203 Available at: 
http://www.healthdata.org/gbd/data-visualizations [Accessed September 1, 2020]. 

Chase HW, Phillips ML (2016) Elucidating Neural Network Functional Connectivity 
Abnormalities in Bipolar Disorder: Toward a Harmonized Methodological Approach. Biol 
Psychiatry Cogn Neurosci Neuroimaging 1:288–298 Available at: 
http://linkinghub.elsevier.com/retrieve/pii/S2451902216000604 [Accessed June 28, 2016]. 

Chen P, Ye E, Jin X, Zhu Y, Wang L (2019) Association between Thalamocortical Functional 
Connectivity Abnormalities and Cognitive Deficits in Schizophrenia. Sci Rep 9. 

Chen S-S, Tu P-C, Su T-P, Hsieh J-C, Lin Y-C, Chen L-F (2008) Impaired frontal 
synchronization of spontaneous magnetoencephalographic activity in patients with bipolar 
disorder. Neurosci Lett 445:174–178 Available at: 
http://linkinghub.elsevier.com/retrieve/pii/S0304394008011932 [Accessed June 9, 2016]. 

Chen Y-H, Stone-Howell B, Edgar JC, Huang M, Wootton C, Hunter MA, Lu BY, Sadek JR, 
Miller GA, Cañive JM (2016) Frontal slow-wave activity as a predictor of negative 
symptoms, cognition and functional capacity in schizophrenia. Br J Psychiatry 208. 

Cheng W, Palaniyappan L, Li M, Kendrick KM, Zhang J, Luo Q, Liu Z, Yu R, Deng W, Wang 
Q, Ma X, Guo W, Francis S, Liddle P, Mayer AR, Schumann G, Li T, Feng J (2015) Voxel-
based, brain-wide association study of aberrant functional connectivity in schizophrenia 
implicates thalamocortical circuitry. NPJ Schizophr 1:15016 Available at: 
http://www.ncbi.nlm.nih.gov/pubmed/27336032 [Accessed September 3, 2016]. 

Cheung V, Cheung C, McAlonan GM, Deng Y, Wong JG, Yip L, Tai KS, Khong PL, Sham P, 
Chua SE (2008) A diffusion tensor imaging study of structural dysconnectivity in never-
medicated, first-episode schizophrenia. Psychol Med 38:877–885. 

Chialvo DR (2018) Life at the edge: complexity and criticality in biological function. Acta Phys 
Pol B 49:1955–1979 Available at: http://arxiv.org/abs/1810.11737 [Accessed August 20, 
2020]. 

Churchill NW, Spring R, Grady C, Cimprich B, Askren MK, Reuter-Lorenz PA, Jung MS, 
Peltier S, Strother SC, Berman MG (2016) The suppression of scale-free fMRI brain 
dynamics across three different sources of effort: Aging, task novelty and task difficulty. 
Sci Rep 6:1–16 Available at: www.nature.com/scientificreports [Accessed August 21, 
2020]. 

Ciuciu P, Varoquaux G, Abry P, Sadaghiani S, Kleinschmidt A (2012) Scale-Free and 
Multifractal Time Dynamics of fMRI Signals during Rest and Task. Front Physiol 3:186 
Available at: http://www.ncbi.nlm.nih.gov/pubmed/22715328 [Accessed August 6, 2017]. 

Clemmensen L et al. (2012) A systematic review of the long-term outcome of early onset 
schizophrenia. BMC Psychiatry 12:150 Available at: 
http://bmcpsychiatry.biomedcentral.com/articles/10.1186/1471-244X-12-150 [Accessed 
October 27, 2016]. 

Cocchi L, Gollo LL, Zalesky A, Breakspear M (2017) Criticality in the brain: A synthesis of 
neurobiology, models and cognition. Prog Neurobiol 158:132–152. 

Cohen D (1972) Magnetoencephalography: Detection of the Brain’s Electrical Activity with a 
Superconducting Magnetometer. Science (80- ) 175. 

Colclough GL, Brookes MJ, Smith SM, Woolrich MW (2015) A symmetric multivariate leakage 
correction for MEG connectomes. Neuroimage 117:439–448 Available at: 



 

 

201 

http://www.ncbi.nlm.nih.gov/pubmed/25862259 [Accessed September 29, 2016]. 
Colclough GL, Woolrich MW, Tewarie PK, Brookes MJ, Quinn AJ, Smith SM (2016) How 

reliable are MEG resting-state connectivity metrics? 
Combrisson E, Jerbi K (2015) Exceeding chance level by chance: The caveat of theoretical 

chance levels in brain signal classification and statistical assessment of decoding accuracy. J 
Neurosci Methods 250:126–136 Available at: 
https://www.sciencedirect.com/science/article/pii/S0165027015000114?via%3Dihub 
[Accessed November 5, 2018]. 

Combrisson E, Vallat R, O’Reilly C, Jas M, Pascarella A, Saive A, Thiery T, Meunier D, 
Altukhov D, Lajnef T, Ruby P, Guillot A, Jerbi K (2019) Visbrain: A Multi-Purpose GPU-
Accelerated Open-Source Suite for Multimodal Brain Data Visualization. Front 
Neuroinform 13 Available at: 
https://www.frontiersin.org/article/10.3389/fninf.2019.00014/full [Accessed November 7, 
2019]. 

Cousijn H, Tunbridge EM, Rolinski M, Wallis G, Colclough GL, Woolrich MW, Nobre AC, 
Harrison PJ (2015) Modulation of hippocampal theta and hippocampal-prefrontal cortex 
function by a schizophrenia risk gene. Hum Brain Mapp 36:2387–2395 Available at: 
http://www.ncbi.nlm.nih.gov/pubmed/25757652 [Accessed June 13, 2016]. 

Coyle JT (2012) NMDA receptor and schizophrenia: A brief history. Schizophr Bull 38:920–926 
Available at: https://academic.oup.com/schizophreniabulletin/article/38/5/920/1902055 
[Accessed August 28, 2020]. 

Craddock N, Owen MJ (2005) The beginning of the end for the Kraepelinian dichotomy. Br J 
Psychiatry 186 Available at: 
http://bjp.rcpsych.org/content/186/5/364?ijkey=7a7f7c3dd324bbdcaf0aaca0e281a3f50c0d4
873&keytype2=tf_ipsecsha [Accessed August 6, 2017]. 

Craig AD (2009) How do you feel — now? The anterior insula and human awareness. Nat Rev 
Neurosci 10:59–70 Available at: http://www.nature.com/doifinder/10.1038/nrn2555 
[Accessed September 12, 2016]. 

Ćurčić-Blake B, Ford J, Hubl D, Orlov ND, Sommer IE, Waters F, Allen P, Jardri R, Woodruff 
PW, Olivier D, Mulert C, Woodward TS, Aleman A (2016) Interaction of language, 
auditory and memory brain networks in auditory verbal hallucinations. Prog Neurobiol. 

Dale AM, Sereno MI (1993) Improved Localization of Cortical Activity by Combining EEG and 
MEG with MRI Cortical Surfarce Reconstruction: A Linear Approach. J Cogn 
Neurosicence 5:162–176. 

Damoiseaux JS, Greicius MD (2009) Greater than the sum of its parts: a review of studies 
combining structural connectivity and resting-state functional connectivity. Brain Struct 
Funct 213:525–533 Available at: http://link.springer.com/10.1007/s00429-009-0208-6 
[Accessed September 21, 2016]. 

Damoiseaux JS, Rombouts SARB, Barkhof F, Scheltens P, Stam CJ, Smith SM, Beckmann CF 
(2006) Consistent resting-state networks across healthy subjects. Proc Natl Acad Sci U S A 
103:13848–13853 Available at: http://www.ncbi.nlm.nih.gov/pubmed/16945915 [Accessed 
July 25, 2016]. 

Dannlowski U, Ohrmann P, Konrad C, Domschke K, Bauer J, Kugel H, Hohoff C, Schöning S, 
Kersting A, Baune BT, Mortensen LS, Arolt V, Zwitserlood P, Deckert J, Heindel W, 
Suslow T (2009) Reduced amygdala-prefrontal coupling in major depression: association 
with MAOA genotype and illness severity. Int J Neuropsychopharmacol 12:11–22 



 

 

202 

Available at: http://www.ncbi.nlm.nih.gov/pubmed/18544183 [Accessed September 24, 
2016]. 

De Filippis R, Carbone EA, Gaetano R, Bruni A, Pugliese V, Segura-Garcia C, De Fazio P 
(2019) Machine learning techniques in a structural and functional MRI diagnostic approach 
in schizophrenia: A systematic review. Neuropsychiatr Dis Treat 15:1605–1627 Available 
at: https://pubmed.ncbi.nlm.nih.gov/31354276/ [Accessed September 11, 2020]. 

de Jongh A, Baayen JC, de Munck JC, Heethaar RM, Vandertop WP, Stam CJ (2003) The 
influence of brain tumor treatment on pathological delta activity in MEG. Neuroimage 
20:2291–2301 Available at: 
http://www.sciencedirect.com/science/article/pii/S1053811903004373 [Accessed April 1, 
2017]. 

de Pasquale F, Della Penna S, Snyder AZ, Marzetti L, Pizzella V, Romani GL, Corbetta M 
(2012) A cortical core for dynamic integration of functional networks in the resting human 
brain. Neuron 74:753–764 Available at: http://www.ncbi.nlm.nih.gov/pubmed/22632732 
[Accessed April 25, 2017]. 

De Pasquale F, Penna S Della, Snyder AZ, Lewis C, Mantini D, Marzetti L, Belardinelli P, 
Ciancetta L, Pizzella V, Romani GL, Corbetta M (2010) Temporal dynamics of 
spontaneous MEG activity in brain networks. PNAS 107:6040–6045 Available at: 
http://www.pnas.org/content/107/13/6040.full.pdf [Accessed March 16, 2017]. 

Deco G, Jirsa VK, McIntosh AR (2011) Emerging concepts for the dynamical organization of 
resting-state activity in the brain. Nat Rev Neurosci 12:43–56 Available at: 
http://www.nature.com/doifinder/10.1038/nrn2961 [Accessed August 23, 2016]. 

Destrieux C, Fischl B, Dale A, Halgren E (2010) Automatic parcellation of human cortical gyri 
and sulci using standard anatomical nomenclature. Neuroimage 53:1–15 Available at: 
/pmc/articles/PMC2937159/?report=abstract [Accessed July 9, 2020]. 

Di Ieva A (2016) The Fractal Geometry of the Brain. New York: Springer Series in 
Computational Neuroscience. Available at: http://www.springer.com/series/8164 [Accessed 
April 14, 2020]. 

Di Lorenzo G, Daverio A, Ferrentino F, Santarnecchi E, Ciabattini F, Monaco L, Lisi G, Barone 
Y, Di Lorenzo C, Niolu C, Seri S, Siracusano A (2015) Altered resting-state EEG source 
functional connectivity in schizophrenia: the effect of illness duration. Front Hum Neurosci 
9:234 Available at: http://journal.frontiersin.org/Article/10.3389/fnhum.2015.00234/abstract 
[Accessed December 6, 2016]. 

Di X, Gohel S, Kim EH, Biswal BB (2013) Task vs. rest-different network configurations 
between the coactivation and the resting-state brain networks. Front Hum Neurosci 7:493 
Available at: http://www.ncbi.nlm.nih.gov/pubmed/24062654 [Accessed September 7, 
2016]. 

Diallo OK, Mendy P (2019) Wavelet Leader and Multifractal Detrended Fluctuation Analysis of 
Market Efficiency: Evidence from the WAEMU Market Index. World J Appl Econ 5:1–23. 

Downar J, Geraci J, Salomons T V., Dunlop K, Wheeler S, McAndrews MP, Bakker N, 
Blumberger DM, Daskalakis ZJ, Kennedy SH, Flint AJ, Giacobbe P (2014) Anhedonia and 
Reward-Circuit Connectivity Distinguish Nonresponders from Responders to Dorsomedial 
Prefrontal Repetitive Transcranial Magnetic Stimulation in Major Depression. Biol 
Psychiatry 76:176–185. 

Drevets WC (2007) Orbitofrontal cortex function and structure in depression. In: Annals of the 
New York Academy of Sciences. 



 

 

203 

Drevets WC, Savitz J, Trimble M (2008) The subgenual anterior cingulate cortex in mood 
disorders. CNS Spectr 13:663–681 Available at: 
http://www.ncbi.nlm.nih.gov/pubmed/18704022 [Accessed June 27, 2016]. 

Dubarry A-S, Badier J-M, Trébuchon-Da Fonseca A, Gavaret M, Carron R, Bartolomei F, 
Liégeois-Chauvel C, Régis J, Chauvel P, Alario F-X, Bénar C-G (2014) Simultaneous 
recording of MEG, EEG and intracerebral EEG during visual stimulation: From feasibility 
to single-trial analysis. Neuroimage 99:548–558 Available at: 
http://www.ncbi.nlm.nih.gov/pubmed/24862073 [Accessed February 5, 2017]. 

Dutta A, McKie S, Deakin JFW (2014) Resting state networks in major depressive disorder. 
Psychiatry Res 224:139–151 Available at: http://www.ncbi.nlm.nih.gov/pubmed/25456520 
[Accessed January 15, 2016]. 

Dwyer DB, Falkai P, Koutsouleris N (2018) Machine Learning Approaches for Clinical 
Psychology and Psychiatry. Annu Rev Clin Psychol 14:91–118 Available at: 
http://www.annualreviews.org/doi/10.1146/annurev-clinpsy-032816-045037 [Accessed 
September 12, 2020]. 

Ebner NC, Riediger M, Lindenberger U (2010) FACES-a database of facial expressions in 
young, middle-aged, and older women and men: Development and validation. Behav Res 
Methods 42:351–362. 

Edgar JC, Hanlon FM, Huang M-X, Weisend MP, Thoma RJ, Carpenter B, Hoechstetter K, 
Cañive JM, Miller GA (2008) Superior temporal gyrus spectral abnormalities in 
schizophrenia. Psychophysiology 45:812–824 Available at: 
http://www.ncbi.nlm.nih.gov/pubmed/18665866 [Accessed September 30, 2016]. 

Egan MF, Goldberg TE, Kolachana BS, Callicott JH, Mazzanti CM, Straub RE, Goldman D, 
Weinberger DR (2001) Effect of COMT Val108/158 Met genotype on frontal lobe function 
and risk for schizophrenia. Proc Natl Acad Sci U S A 98:6917–6922 Available at: 
www.pnas.orgcgidoi10.1073pnas.111134598 [Accessed August 28, 2020]. 

Elkis H (2007) Treatment-Resistant Schizophrenia. Psychiatr Clin North Am 30:511–533. 
Fedele T, Blagovechtchenski E, Nazarova M, Iscan Z, Moiseeva V, Nikulin V V. (2016) Long-

Range Temporal Correlations in the amplitude of alpha oscillations predict and reflect 
strength of intracortical facilitation: Combined TMS and EEG study. Neuroscience 
331:109–119. 

Fehr T, Kissler J, Moratti S, Wienbruch C, Rockstroh B, Elbert T (2001) Source distribution of 
neuromagnetic slow waves and MEG-delta activity in schizophrenic patients. Biol 
Psychiatry 50:108–116. 

Fehr T, Kissler J, Wienbruch C, Moratti S, Elbert T, Watzl H, Rockstroh B (2003) Source 
distribution of neuromagnetic slow-wave activity in schizophrenic patients—effects of 
activation. Schizophr Res 63:63–71. 

Fernández A, Gómez C, Hornero R, López-Ibor JJ (2013) Complexity and schizophrenia. Prog 
Neuro-Psychopharmacology Biol Psychiatry 45:267–276. 

Fernández A, López-Ibor M-I, Turrero A, Santos J-M, Morón M-D, Hornero R, Gómez C, 
Méndez MA, Ortiz T, López-Ibor JJ (2011) Lempel–Ziv complexity in schizophrenia: A 
MEG study. Clin Neurophysiol 122:2227–2235. 

Fetterhoff D, Opris I, Simpson SL, Deadwyler SA, Hampson RE, Kraft RA (2015) Multifractal 
analysis of information processing in hippocampal neural ensembles during working 
memory under δ9-tetrahydrocannabinol administration. J Neurosci Methods 244:136–153 
Available at: /pmc/articles/PMC4312266/?report=abstract [Accessed August 19, 2020]. 



 

 

204 

Fingelkurts AA, Fingelkurts AA, Rytsälä H, Suominen K, Isometsä E, Kähkönen S (2007) 
Impaired functional connectivity at EEG alpha and theta frequency bands in major 
depression. Hum Brain Mapp 28:247–261 Available at: 
http://doi.wiley.com/10.1002/hbm.20275 [Accessed September 21, 2016]. 

Fischl B (2012) FreeSurfer. Neuroimage 62:774–781. 
Ford JM, Morris SE, Hoffman RE, Sommer I, Waters F, McCarthy-Jones S, Thoma RJ, Turner 

JA, Keedy SK, Badcock JC, Cuthbert BN (2014) Studying hallucinations within the NIMH 
RDoC framework. Schizophr Bull 40 Suppl 4:S295-304 Available at: 
http://www.ncbi.nlm.nih.gov/pubmed/24847862 [Accessed April 24, 2017]. 

Ford JM, Roach BJ, Palzes VA, Mathalon DH (2016) Using concurrent EEG and fMRI to probe 
the state of the brain in schizophrenia. NeuroImage Clin 12:429–441 Available at: 
http://www.ncbi.nlm.nih.gov/pubmed/27622140 [Accessed September 25, 2016]. 

Fornito A, Yücel M, Dean B, Wood SJ, Pantelis C (2009) Anatomical abnormalities of the 
anterior cingulate cortex in schizophrenia: bridging the gap between neuroimaging and 
neuropathology. Schizophr Bull 35:973–993 Available at: 
http://www.ncbi.nlm.nih.gov/pubmed/18436528 [Accessed July 27, 2016]. 

Foster BL, He BJ, Honey CJ, Jerbi K, Maier A, Saalmann YB (2016) Spontaneous Neural 
Dynamics and Multi-scale Network Organization. Front Syst Neurosci 10:7 Available at: 
http://journal.frontiersin.org/Article/10.3389/fnsys.2016.00007/abstract [Accessed April 25, 
2017]. 

Fox MD, Buckner RL, White MP, Greicius MD, Pascual-Leone A (2012) Efficacy of 
transcranial magnetic stimulation targets for depression is related to intrinsic functional 
connectivity with the subgenual cingulate. Biol Psychiatry 72:595–603 Available at: 
http://www.ncbi.nlm.nih.gov/pubmed/22658708 [Accessed September 23, 2016]. 

Fox MD, Greicius M (2010) Clinical applications of resting state functional connectivity. Front 
Syst Neurosci 4:19 Available at: 
http://journal.frontiersin.org/article/10.3389/fnsys.2010.00019/abstract [Accessed July 6, 
2016]. 

Fox MD, Raichle ME (2007) Spontaneous fluctuations in brain activity observed with functional 
magnetic resonance imaging. Nat Rev Neurosci 8:700–711 Available at: 
http://www.nature.com/doifinder/10.1038/nrn2201 [Accessed September 15, 2016]. 

Fraiman D, Chialvo DR (2012) What kind of noise is brain noise: Anomalous scaling behavior 
of the resting brain activity fluctuations. Front Physiol 3 JUL. 

Fraschini M, Demuru M, Crobe A, Marrosu F, Stam CJ, Hillebrand A (2016) The effect of epoch 
length on estimated EEG functional connectivity and brain network organisation. J Neural 
Eng 13:036015 Available at: http://stacks.iop.org/1741-
2552/13/i=3/a=036015?key=crossref.9f1dc2af7d6dd9138c149a9daa70e8f4 [Accessed 
September 29, 2016]. 

Friston K, Brown HR, Siemerkus J, Stephan KE (2016) The dysconnection hypothesis (2016). 
Schizophr Res 176:83–94 Available at: http://www.ncbi.nlm.nih.gov/pubmed/27450778 
[Accessed April 24, 2017]. 

Friston KJ (1996) Theoretical neurobiology and schizophrenia. Br Med Bull 52:644–655 
Available at: http://www.ncbi.nlm.nih.gov/pubmed/8949263 [Accessed September 12, 
2016]. 

Friston KJ (1998) The disconnection hypothesis. ELSEVIER Schizophr Res 30:115–125. 
Friston KJ (2011) Functional and Effective Connectivity: A Review. Brain Connect 1:13–36. 



 

 

205 

Friston KJ, Frith CD (1995) Schizophrenia: A disconnection syndrome? Clin Neurosci 3:89–97. 
Frohlich J, Van Horn JD (2014) Reviewing the ketamine model for schizophrenia. J 

Psychopharmacol 28:287–302 Available at: 
http://www.ncbi.nlm.nih.gov/pubmed/24257811 [Accessed January 31, 2017]. 

Fucetola R, Seidman LJ, Kremen WS, Faraone S V, Goldstein JM, Tsuang MT (2000) Age and 
neuropsychologic function in schizophrenia: a decline in executive abilities beyond that 
observed in healthy volunteers. Biol Psychiatry 48:137–146. 

Fujimoto T, Okumura E, Takeuchi K, Kodabashi A, Otsubo T, Nakamura K, Kamiya S, Higashi 
Y, Yuji T, Honda K, Shimooki S, Tamura T (2013) Dysfunctional cortical connectivity 
during the auditory oddball task in patients with schizophrenia. Open Neuroimag J 7:15–26 
Available at: http://www.ncbi.nlm.nih.gov/pubmed/23750187 [Accessed October 23, 2016]. 

Fusar-Poli P, Smieskova R, Kempton MJ, Ho BC, Andreasen NC, Borgwardt S (2013) 
Progressive brain changes in schizophrenia related to antipsychotic treatment? A meta-
analysis of longitudinal MRI studies. Neurosci Biobehav Rev 37:1680–1691 Available at: 
http://www.ncbi.nlm.nih.gov/pubmed/23769814 [Accessed October 26, 2016]. 

Gandal MJ, Edgar JC, Klook K, Siegel SJ (2012) Gamma synchrony: towards a translational 
biomarker for the treatment-resistant symptoms of schizophrenia. Neuropharmacology 
62:1504–1518 Available at: http://www.ncbi.nlm.nih.gov/pubmed/21349276 [Accessed 
October 20, 2016]. 

Garcés P, Martín-Buro MC, Maestú F (2016) Quantifying the Test-Retest Reliability of 
Magnetoencephalography Resting-State Functional Connectivity. Brain Connect 6:448–460 
Available at: http://online.liebertpub.com/doi/10.1089/brain.2015.0416 [Accessed 
September 29, 2016]. 

Gardner D, Murphy A, O’Donnell H, Centorrino F, Baldessarini R (2010) International 
Consensus Study of Antipsychotic Dosing. Am J Psychiatry 167:686–693 Available at: 
https://ajp.psychiatryonline.org/doi/pdf/10.1176/appi.ajp.2009.09060802 [Accessed 
November 7, 2018]. 

Genovese CR, Lazar NA, Nichols T (2002) Thresholding of Statistical Maps in Functional 
Neuroimaging Using the False Discovery Rate. Neuroimage 15:870–878 Available at: 
https://www.sciencedirect.com/science/article/pii/S1053811901910377?via%3Dihub 
[Accessed January 10, 2019]. 

Giedd JN, Blumenthal J, Jeffries NO, Castellanos FX, Liu H, Zijdenbos A, Paus T, Evans AC, 
Rapoport JL (1999) Brain development during childhood and adolescence: a longitudinal 
MRI study. Nat Neurosci 2:861–863 Available at: 
http://www.nature.com/doifinder/10.1038/13158 [Accessed October 27, 2016]. 

Giraldo-Chica M, Woodward ND (2016) Review of thalamocortical resting-state fMRI studies in 
schizophrenia. Schizophr Res. 

Glatt SJ, Faraone S V., Tsuang MT (2003) Meta-analysis identifies an association between the 
dopamine D2 receptor gene and schizophrenia. Mol Psychiatry 8:911–915 Available at: 
www.nature.com/mp [Accessed August 28, 2020]. 

Goff DC, Tsai G, Manoach DS, Flood J, Darby DG, Coyle JT (1996) D-cycloserine added to 
clozapine for patients with schizophrenia. Am J Psychiatry 153:1628–1630 Available at: 
https://pubmed.ncbi.nlm.nih.gov/8942463/ [Accessed August 21, 2020]. 

Gómez-Ramírez J, Freedman S, Mateos D, Pérez Velázquez JL, Valiante T (2017) Exploring the 
alpha desynchronization hypothesis in resting state networks with intracranial 
electroencephalography and wiring cost estimates. Sci Rep 7:1–11 Available at: 



 

 

206 

www.nature.com/scientificreports [Accessed August 23, 2020]. 
Gong Q, He Y (2015) Depression, Neuroimaging and Connectomics: A Selective Overview. 

Biol Psychiatry 77:223–235. 
Gramfort A, Luessi M, Larson E, Engemann DA, Strohmeier D, Brodbeck C, Goj R, Jas M, 

Brooks T, Parkkonen L, Hämäläinen M (2013) MEG and EEG data analysis with MNE-
Python. Front Neurosci 7:267 Available at: 
http://journal.frontiersin.org/article/10.3389/fnins.2013.00267/abstract [Accessed August 6, 
2017]. 

Greicius MD (2008) Resting-state functional connectivity in neuropsychiatric disorders. Curr 
Opin Neurol 24:424–430 Available at: http://www.ncbi.nlm.nih.gov/pubmed/18607202 
[Accessed January 10, 2016]. 

Greicius MD, Flores BH, Menon V, Glover GH, Solvason HB, Kenna H, Reiss AL, Schatzberg 
AF (2007) Resting-state functional connectivity in major depression: abnormally increased 
contributions from subgenual cingulate cortex and thalamus. Biol Psychiatry 62:429–437 
Available at: 
http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=2001244&tool=pmcentrez&ren
dertype=abstract [Accessed November 5, 2015]. 

Greicius MD, Supekar K, Menon V, Dougherty RF (2009) Resting-state functional connectivity 
reflects structural connectivity in the default mode network. Cereb Cortex. 

Grent-‘t-Jong T, Rivolta D, Sauer A, Grube M, Singer W, Wibral M, Uhlhaas PJ (2016) MEG-
measured visually induced gamma-band oscillations in chronic schizophrenia: Evidence for 
impaired generation of rhythmic activity in ventral stream regions. Schizophr Res. 

Greve DN, Van der Haegen L, Cai Q, Stufflebeam S, Sabuncu MR, Fischl B, Brysbaert M 
(2013) A surface-based analysis of language lateralization and cortical asymmetry. J Cogn 
Neurosci 25:1477–1492 Available at: http://www.ncbi.nlm.nih.gov/pubmed/23701459 
[Accessed September 30, 2019]. 

Gross J, Baillet S, Barnes GR, Henson RN, Hillebrand A, Jensen O, Jerbi K, Litvak V, Maess B, 
Oostenveld R, Parkkonen L, Taylor JR, van Wassenhove V, Wibral M, Schoffelen J-M 
(2013) Good practice for conducting and reporting MEG research. Neuroimage 65:349–363 
Available at: http://www.ncbi.nlm.nih.gov/pubmed/23046981 [Accessed August 23, 2016]. 

Grossmann T (2013) The role of medial prefrontal cortex in early social cognition. Front Hum 
Neurosci 7. 

Gudayol-Ferré E, Peró-Cebollero M, González-Garrido AA, Guàrdia-Olmos J (2015) Changes in 
brain connectivity related to the treatment of depression measured through fMRI: a 
systematic review. Front Hum Neurosci 9:582 Available at: 
http://journal.frontiersin.org/Article/10.3389/fnhum.2015.00582/abstract [Accessed October 
28, 2016]. 

Guo W, Liu F, Chen J, Wu R, Li L, Zhang Z, Zhao J (2016) Olanzapine modulation of long- and 
short-range functional connectivity in the resting brain in a sample of patients with 
schizophrenia. Eur Neuropsychopharmacol. 

Guye M, Bettus G, Bartolomei F, Cozzone PJ (2010) Graph theoretical analysis of structural and 
functional connectivity MRI in normal and pathological brain networks. Magn Reson Mater 
Phy 23:409–421. 

Haesebaert F, Lecaignard F, Suaud-Chagny M-F, d’Amato T, Saoud M, Poulet E, Bertrand O, 
Brunelin J (2013) Left auditory cortex dysfunction in hallucinating patients with 
schizophrenia: An MEG study. Clin Neurophysiol 124:823–824. 



 

 

207 

Haimovici A, Tagliazucchi E, Balenzuela P, Chialvo DR (2013) Brain Organization into Resting 
State Networks Emerges at Criticality on a Model of the Human Connectome. Phys Rev 
Lett 110:178101 Available at: https://link.aps.org/doi/10.1103/PhysRevLett.110.178101 
[Accessed August 28, 2017]. 

Haldeman C, Beggs JM (2005) Critical branching captures activity in living neural networks and 
maximizes the number of metastable states. Phys Rev Lett 94:058101 Available at: 
https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.94.058101 [Accessed September 
1, 2020]. 

Hall EL, Robson SE, Morris PG, Brookes MJ (2014) The relationship between MEG and fMRI. 
Neuroimage 102:80–91. 

Hamalainen M, Hari R, Ilmoniemi RJ, Knuutila J, Lounasmaa O V (1993) 
Magnetoencephalography - theory, instrumentation, and applications to noninvasive studies 
of the working human brain. Rev Mod Phys 65:413–505. 

Hämäläinen MS, Ilmoniemi RJ (1994) Interpreting magnetic fields of the brain: minimum norm 
estimates. Med Biol Eng Comput 32:35–42 Available at: 
http://link.springer.com/10.1007/BF02512476 [Accessed November 5, 2018]. 

Hamandi K, Routley BC, Koelewijn L, Singh KD (2016) Non-invasive brain mapping in 
epilepsy: Applications from magnetoencephalography. J Neurosci Methods 260:283–291. 

Hamm JP, Gilmore CS, Picchetti NAM, Sponheim SR, Clementz BA (2011) Abnormalities of 
neuronal oscillations and temporal integration to low- and high-frequency auditory 
stimulation in schizophrenia. Biol Psychiatry 69:989–996 Available at: 
http://www.ncbi.nlm.nih.gov/pubmed/21216392 [Accessed February 5, 2017]. 

Hanford LC, Nazarov A, Hall GB, Sassi RB (2016) Cortical thickness in bipolar disorder: a 
systematic review. Bipolar Disord 18:4–18 Available at: 
http://doi.wiley.com/10.1111/bdi.12362 [Accessed July 25, 2016]. 

Hankin BL, Fraley RC, Lahey BB, Waldman ID (2005) Is Depression Best Viewed as a 
Continuum or Discrete Category? A Taxometric Analysis of Childhood and Adolescent 
Depression in a Population-Based Sample. J Abnorm Psychol 114:96–110 Available at: 
http://www.ncbi.nlm.nih.gov/pubmed/15709816 [Accessed August 30, 2017]. 

Hardstone R, Poil S-S, Schiavone G, Jansen R, Nikulin V V, Mansvelder HD, Linkenkaer-
Hansen K (2012) Detrended fluctuation analysis: a scale-free view on neuronal oscillations. 
Front Physiol 3:450 Available at: http://www.ncbi.nlm.nih.gov/pubmed/23226132 
[Accessed August 4, 2017]. 

Harmony T (2013) The functional significance of delta oscillations in cognitive processing. 
Front Integr Neurosci 7:83 Available at: http://www.ncbi.nlm.nih.gov/pubmed/24367301 
[Accessed April 25, 2017]. 

Harms MP, Wang L, Campanella C, Aldridge K, Moffitt AJ, Kuelper J, Ratnanather JT, Miller 
ML, Barch DM, Csernansky JG (2010) Structural abnormalities in gyri of the prefrontal 
cortex in individuals with schizophrenia and their unaffected siblings. Br J Psychiatry 
196:150–157 Available at: /pmc/articles/PMC2815937/?report=abstract [Accessed July 20, 
2020]. 

Hasey GM, Kiang M (2013) A Review of Recent Literature Employing Electroencephalographic 
Techniques to Study the Pathophysiology, Phenomenology, and Treatment Response of 
Schizophrenia. Curr Psychiatry Rep 15:388 Available at: 
http://www.ncbi.nlm.nih.gov/pubmed/23933976 [Accessed October 15, 2015]. 

He BJ (2011) Scale-free properties of the functional magnetic resonance imaging signal during 



 

 

208 

rest and task. J Neurosci 31:13786–13795. 
He BJ (2014) Scale-free brain activity: past, present, and future. Trends Cogn Sci 18:480–487 

Available at: 
http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=4149861&tool=pmcentrez&ren
dertype=abstract [Accessed October 14, 2015]. 

He BJ, Zempel JM, Snyder AZ, Raichle ME (2010) The Temporal Structures and Functional 
Significance of Scale-free Brain Activity. Available at: 
http://www.sciencedirect.com/science/article/pii/S0896627310002916. 

He H, Yu Q, Du Y, Vergara V, Victor TA, Drevets WC, Savitz JB, Jiang T, Sui J, Calhoun VD 
(2016) Resting-state functional network connectivity in prefrontal regions differs between 
unmedicated patients with bipolar and major depressive disorders. J Affect Disord 190:483–
493. 

Heister D, Diwakar M, Nichols S, Robb A, Angeles AM, Tal O, Harrington DL, Song T, Lee 
RR, Huang M (2013) Resting-State Neuronal Oscillatory Correlates of Working Memory 
Performance Maurits NM, ed. PLoS One 8:e66820 Available at: 
https://dx.plos.org/10.1371/journal.pone.0066820 [Accessed June 29, 2020]. 

Hengartner MP, Lehmann SN (2017) Why Psychiatric Research Must Abandon Traditional 
Diagnostic Classification and Adopt a Fully Dimensional Scope: Two Solutions to a 
Persistent Problem. Front Psychiatry 8:101 Available at: 
http://journal.frontiersin.org/article/10.3389/fpsyt.2017.00101/full [Accessed June 7, 2017]. 

Henquet C, Krabbendam L, Spauwen J, Kaplan C, Lieb R, Wittchen HU, Van Os J (2005) 
Prospective cohort study of cannabis use, predisposition for psychosis, and psychotic 
symptoms in young people. Br Med J 330:11–14 Available at: 
https://pubmed.ncbi.nlm.nih.gov/15574485/ [Accessed August 27, 2020]. 

Henry P, Coffman BA, Ghuman AS, Sejdic E, Salisbury DF (2019) Non-negative matrix 
factorization reveals resting-state cortical alpha network abnormalities in the first-episode 
schizophrenia spectrum. Biol Psychiatry Cogn Neurosci Neuroimaging. 

Hesse J, Gross T (2014) Self-organized criticality as a fundamental property of neural systems. 
Front Syst Neurosci 8:166 Available at: www.frontiersin.org [Accessed September 7, 
2020]. 

Higashima M, Takeda T, Kikuchi M, Nagasawa T, Hirao N, Oka T, Nakamura M, Koshino Y 
(2007) State-dependent changes in intrahemispheric EEG coherence for patients with acute 
exacerbation of schizophrenia. Psychiatry Res 149:41–47. 

Hillebrand A, Barnes GR, Bosboom JL, Berendse HW, Stam CJ (2012) Frequency-dependent 
functional connectivity within resting-state networks: An atlas-based MEG beamformer 
solution. Neuroimage 59:3909–3921. 

Hillebrand A, Tewarie P, van Dellen E, Yu M, Carbo EWS, Douw L, Gouw AA, van Straaten 
ECW, Stam CJ (2016) Direction of information flow in large-scale resting-state networks is 
frequency-dependent. Proc Natl Acad Sci U S A 113:3867–3872 Available at: 
http://www.ncbi.nlm.nih.gov/pubmed/27001844 [Accessed September 29, 2016]. 

Hincapié A-S et al. (2016) MEG Connectivity and Power Detections with Minimum Norm 
Estimates Require Different Regularization Parameters. Comput Intell Neurosci 2016:1–11 
Available at: http://www.hindawi.com/journals/cin/2016/3979547/ [Accessed November 6, 
2016]. 

Hincapié A-S, Kujala J, Mattout J, Pascarella A, Daligault S, Delpuech C, Mery D, Cosmelli D, 
Jerbi K (n.d.) The impact of MEG source reconstruction method on source-space 



 

 

209 

connectivity estimation: A comparison between minimum-norm solution and beamforming. 
NeuroImage:in press. 

Hinkley LBN, Owen JP, Fisher M, Findlay AM, Vinogradov S, Nagarajan SS (2010) Cognitive 
Impairments in Schizophrenia as Assessed Through Activation and Connectivity Measures 
of Magnetoencephalography (MEG) Data. Front Hum Neurosci 3:73 Available at: 
http://www.ncbi.nlm.nih.gov/pubmed/21160543 [Accessed June 28, 2016]. 

Hinkley LBN, Vinogradov S, Guggisberg AG, Fisher M, Findlay AM, Nagarajan SS (2011) 
Clinical Symptoms and Alpha Band Resting-State Functional Connectivity Imaging in 
Patients With Schizophrenia: Implications for Novel Approaches to Treatment. Biol 
Psychiatry 70:1134–1142. 

Hipp JF, Hawellek DJ, Corbetta M, Siegel M, Engel AK (2012) Large-scale cortical correlation 
structure of spontaneous oscillatory activity. Nat Neurosci 15:884–890 Available at: 
http://www.nature.com/doifinder/10.1038/nn.3101 [Accessed November 5, 2016]. 

Hirvonen J, Wibral M, Palva JM, Singer W, Uhlhaas P, Palva S (2017) Whole-Brain Source-
Reconstructed MEG-Data Reveal Reduced Long-Range Synchronization in Chronic 
Schizophrenia. eNeuro 4 Available at: http://www.ncbi.nlm.nih.gov/pubmed/29085902. 

Ho B-C, Andreasen NC, Ziebell S, Pierson R, Magnotta V (2011) Long-term antipsychotic 
treatment and brain volumes: a longitudinal study of first-episode schizophrenia. Arch Gen 
Psychiatry 68:128–137 Available at: http://www.ncbi.nlm.nih.gov/pubmed/21300943 
[Accessed October 28, 2016]. 

Hobbs JP, Smith JL, Beggs JM (2010) Aberrant Neuronal Avalanches in Cortical Tissue 
Removed From Juvenile Epilepsy Patients. 

Honey CJ, Kötter R, Breakspear M, Sporns O (2007) Network structure of cerebral cortex shapes 
functional connectivity on multiple time scales. Proc Natl Acad Sci U S A 104:10240–
10245 Available at: http://www.ncbi.nlm.nih.gov/pubmed/17548818 [Accessed September 
20, 2016]. 

Honey CJ, Sporns O, Cammoun L, Gigandet X, Thiran JP, Meuli R, Hagmann P (2009) 
Predicting human resting-state functional connectivity from structural connectivity. Proc 
Natl Acad Sci U S A 106:2035–2040 Available at: 
http://www.ncbi.nlm.nih.gov/pubmed/19188601 [Accessed September 21, 2016]. 

Houck JM, Çetin MS, Mayer AR, Bustillo JR, Stephen J, Aine C, Cañive J, Perrone-Bizzozero 
N, Thoma RJ, Brookes MJ, Calhoun VD (2016) Magnetoencephalographic and functional 
MRI connectomics in schizophrenia via intra- and inter-network connectivity. Neuroimage. 

Houenou J, d’Albis M-A, Vederine F-E, Henry C, Leboyer M, Wessa M (2012) Neuroimaging 
biomarkers in bipolar disorder. Front Biosci (Elite Ed) 4:593–606 Available at: 
http://www.ncbi.nlm.nih.gov/pubmed/22201897 [Accessed August 30, 2016]. 

Howells FM, Ives-Deliperi VL, Horn NR, Stein DJ (2012) Mindfulness based cognitive therapy 
improves frontal control in bipolar disorder: a pilot EEG study. BMC Psychiatry 12:15 
Available at: http://bmcpsychiatry.biomedcentral.com/articles/10.1186/1471-244X-12-15 
[Accessed June 20, 2016]. 

Huys QJM, Maia T V, Frank MJ (2016) Computational psychiatry as a bridge from neuroscience 
to clinical applications. Nat Neurosci 19:404–413 Available at: 
http://www.ncbi.nlm.nih.gov/pubmed/26906507 [Accessed August 29, 2017]. 

Hwang K, Ghuman AS, Manoach DS, Jones SR, Luna B (2016) Frontal preparatory neural 
oscillations associated with cognitive control: A developmental study comparing young 
adults and adolescents. Neuroimage 136:139–148 Available at: 



 

 

210 

http://www.sciencedirect.com/science/article/pii/S1053811916301379 [Accessed April 25, 
2017]. 

Hyman SE (2011) Diagnosing the DSM: Diagnostic Classification Needs Fundamental Reform. 
Dana Foundation. Available at: http://dana.org/news/cerebrum/detail.aspx?id=32066 
[Accessed January 10, 2021]. 

Hyvarinen A (1999) Fast and robust fixed-point algorithms for independent component analysis. 
IEEE Trans Neural Networks 10:626–634 Available at: 
http://ieeexplore.ieee.org/document/761722/ [Accessed October 30, 2018]. 

Ihlen EAF (2012) Introduction to Multifractal Detrended Fluctuation Analysis in Matlab. Front 
Physiol 3:141 Available at: 
http://journal.frontiersin.org/article/10.3389/fphys.2012.00141/abstract [Accessed August 
19, 2020]. 

Ikeda Y, Kikuchi M, Noguchi-Shinohara M, Iwasa K, Kameya M, Hirosawa T, Yoshita M, Ono 
K, Samuraki-Yokohama M, Yamada M (2020) Spontaneous MEG activity of the cerebral 
cortex during eyes closed and open discriminates Alzheimer’s disease from cognitively 
normal older adults. Sci Rep 10:1–9 Available at: www.nature.com/scientificreports 
[Accessed August 15, 2020]. 

Iniesta R, Stahl D, McGuffin P (2016) Machine learning, statistical learning and the future of 
biological research in psychiatry. Psychol Med 46:2455–2465 Available at: 
https://doi.org/10.1017/S0033291716001367 [Accessed September 12, 2020]. 

Insel T, Cuthbert B, Garvey M, Heinssen R, Pine DS, Quinn K, Sanislow C, Wang P (2010) 
Research Domain Criteria (RDoC): Toward a new classification framework for research on 
mental disorders. Am J Psychiatry 167:748–751 Available at: 
https://ajp.psychiatryonline.org/doi/abs/10.1176/appi.ajp.2010.09091379 [Accessed January 
10, 2021]. 

Insel TR (2014) The nimh research domain criteria (rdoc) project: Precision medicine for 
psychiatry. Am J Psychiatry 171:395–397 Available at: www.nimh.nih.gov/research-
priorities/rdoc/index.shtml [Accessed January 10, 2021]. 

Ioannides AA, Poghosyan V, Dammers J, Streit M (2004) Real-time neural activity and 
connectivity in healthy individuals and schizophrenia patients. Neuroimage 23:473–482. 

Ishii R, Shinosaki K, Ikejiri Y, Ukai S, Yamashita K, Iwase M, Mizuno-Matsumoto Y, Inouye T, 
Yoshimine T, Hirabuki N, Robinson SE, Takeda M (2000) Theta rhythm increases in left 
superior temporal cortex during auditory hallucinations in schizophrenia: a case report. 
Neuroreport 11:3283–3287 Available at: http://www.ncbi.nlm.nih.gov/pubmed/11043565 
[Accessed December 21, 2016]. 

Isomura S, Hashimoto R, Nakamura M, Hirano Y, Yamashita F, Jimbo S, Yamamori H, 
Fujimoto M, Yasuda Y, Mears RP, Onitsuka T (2017) Altered sulcogyral patterns of 
orbitofrontal cortex in a large cohort of patients with schizophrenia. npj Schizophr 3. 

Iwabuchi SJ, Krishnadas R, Li C, Auer DP, Radua J, Palaniyappan L (2015) Localized 
connectivity in depression: a meta-analysis of resting state functional imaging studies. 
Neurosci Biobehav Rev 51:77–86 Available at: 
http://www.ncbi.nlm.nih.gov/pubmed/25597656 [Accessed February 18, 2016]. 

Jääskeläinen E et al. (2015) Twenty Years of Schizophrenia Research in the Northern Finland 
Birth Cohort 1966: A Systematic Review. Schizophr Res Treatment 2015:524875 Available 
at: http://www.ncbi.nlm.nih.gov/pubmed/26090224 [Accessed November 29, 2016]. 

Jacobsen LK, D’Souza DC, Mencl WE, Pugh KR, Skudlarski P, Krystal JH (2004) Nicotine 



 

 

211 

effects on brain function and functional connectivity in schizophrenia. Biol Psychiatry 
55:850–858. 

Jaffard S, Melot C, Leonarduzzi R, Wendt H, Abry P, Roux SG, Torres ME (2016) P-exponent 
and p-leaders, Part I: Negative pointwise regularity. Phys A Stat Mech its Appl 448:300–
318. 

Jafri MJ, Pearlson GD, Stevens M, Calhoun VD (2008) A method for functional network 
connectivity among spatially independent resting-state components in schizophrenia. 
Neuroimage 39:1666–1681 Available at: http://www.ncbi.nlm.nih.gov/pubmed/18082428 
[Accessed September 6, 2016]. 

Jandl M, Bittner R, Sack A, Weber B, Gü Nther T, Pieschl D, Kaschka W-P, Maurer K (2005) 
Changes in negative symptoms and EEG in schizophrenic patients after repetitive 
Transcranial Magnetic Stimulation (rTMS): an open-label pilot study. J Neural Transm 
112:955–967 Available at: https://link.springer.com/content/pdf/10.1007%2Fs00702-004-
0229-5.pdf [Accessed January 15, 2019]. 

Janes AC, Nickerson LD, Frederick B deB., Kaufman MJ (2012) Prefrontal and limbic resting 
state brain network functional connectivity differs between nicotine-dependent smokers and 
non-smoking controls. Drug Alcohol Depend 125:252–259. 

Jaworska N, Yücel K, Courtright A, MacMaster FP, Sembo M, MacQueen G (2016) Subgenual 
anterior cingulate cortex and hippocampal volumes in depressed youth: The role of 
comorbidity and age. J Affect Disord 190:726–732. 

Jeong B, Wible CG, Hashimoto RI, Kubicki M (2009) Functional and anatomical connectivity 
abnormalities in left inferior frontal gyrus in schizophrenia. Hum Brain Mapp 30:4138–
4151 Available at: https://pubmed.ncbi.nlm.nih.gov/19569073/ [Accessed July 20, 2020]. 

Jesulola E, Sharpley CF, Bitsika V, Agnew LL, Wilson P (2015) Frontal alpha asymmetry as a 
pathway to behavioural withdrawal in depression: Research findings and issues. Behav 
Brain Res 292:56–67. 

Jiang H, Popov T, Jylänki P, Bi K, Yao Z, Lu Q, Jensen O, van Gerven MAJ (2016) 
Predictability of depression severity based on posterior alpha oscillations. Clin 
Neurophysiol Available at: http://www.ncbi.nlm.nih.gov/pubmed/26821982 [Accessed 
January 17, 2016]. 

Jin S-H, Jeong W, Lee D-S, Jeon BS, Chung CK (2014) Preserved high-centrality hubs but 
efficient network reorganization during eyes-open state compared with eyes-closed resting 
state: an MEG study. J Neurophysiol 111:1455–1465 Available at: 
https://www.physiology.org/doi/10.1152/jn.00585.2013 [Accessed August 16, 2020]. 

Jin S-H, Seol J, Kim JS, Chung CK (2011) How reliable are the functional connectivity networks 
of MEG in resting states? J Neurophysiol 106:2888–2895 Available at: 
https://www.physiology.org/doi/10.1152/jn.00335.2011 [Accessed August 23, 2020]. 

Jirsa V, Müller V (2013) Cross-frequency coupling in real and virtual brain networks. Front 
Comput Neurosci 7:78 Available at: 
http://journal.frontiersin.org/article/10.3389/fncom.2013.00078/abstract [Accessed 
November 6, 2016]. 

Johansen-Berg H, Gutman DA, Behrens TEJ, Matthews PM, Rushworth MFS, Katz E, Lozano 
AM, Mayberg HS (2008) Anatomical connectivity of the subgenual cingulate region 
targeted with deep brain stimulation for treatment-resistant depression. Cereb Cortex 
18:1374–1383 Available at: http://www.ncbi.nlm.nih.gov/pubmed/17928332 [Accessed 
June 27, 2016]. 



 

 

212 

Junfeng Sun, Yingying Tang, Lim KO, Jijun Wang, Shanbao Tong, Hui Li, Bin He (2014) 
Abnormal Dynamics of EEG Oscillations in Schizophrenia Patients on Multiple Time 
Scales. IEEE Trans Biomed Eng 61:1756–1764 Available at: 
http://ieeexplore.ieee.org/document/6740836/ [Accessed July 28, 2017]. 

Kaiser RH, Andrews-Hanna JR, Wager TD, Pizzagalli DA (2015) Large-Scale Network 
Dysfunction in Major Depressive Disorder A Meta-analysis of Resting-State Functional 
Connectivity. JAMA psychiatry 72:603–611. 

Kam JWY, Bolbecker AR, O’Donnell BF, Hetrick WP, Brenner CA (2013) Resting state EEG 
power and coherence abnormalities in bipolar disorder and schizophrenia. J Psychiatr Res 
47:1893–1901 Available at: http://www.ncbi.nlm.nih.gov/pubmed/24090715 [Accessed 
August 24, 2016]. 

Kantelhardt JW, Koscielny-Bunde E, Rego HHA, Havlin S, Bunde A (2001) Detecting Long-
range Correlations with Detrended Fluctuation Analysis. Phys A Stat Mech its Appl 
295:441–454. 

Kantelhardt JW, Zschiegner SA, Koscielny-Bunde E, Havlin S, Bunde A, Stanley HE (2002) 
Multifractal detrended fluctuation analysis of nonstationary time series. Phys A Stat Mech 
its Appl 316:87–114. 

Karbasforoushan H, Woodward ND (2012) Resting-state networks in schizophrenia. Curr Top 
Med Chem 12:2404–2414 Available at: http://www.ncbi.nlm.nih.gov/pubmed/23279179 
[Accessed February 18, 2016]. 

Kawagoe T, Onoda K, Yamaguchi S (2018) Different pre-scanning instructions induce distinct 
psychological and resting brain states during functional magnetic resonance imaging. Eur J 
Neurosci 47:77–82 Available at: https://pubmed.ncbi.nlm.nih.gov/29205574/ [Accessed 
October 21, 2020]. 

Kay SR, Fiszbein A, Opler LA (1987) The Positive and Negative Syndrome Scale (PANSS) for 
Schizophrenia. Schizophr Bull 13:261–276 Available at: 
https://academic.oup.com/schizophreniabulletin/article-lookup/doi/10.1093/schbul/13.2.261 
[Accessed November 7, 2018]. 

Keeser D, Karch S, Davis J, Surmeli T, Engelbregt H, Länger A, Chrobok A, Loy F, Minton B, 
Thatcher R, Pogarell O (2013) Changes of resting-state EEG and functional connectivity in 
the sensor and source space of patients with major depression. Klin Neurophysiol 44:P142 
Available at: http://www.thieme-connect.de/DOI/DOI?10.1055/s-0033-1337283 [Accessed 
September 9, 2016]. 

Keshavan MS, Collin G, Guimond S, Kelly S, Prasad KM, Lizano P (2020) Neuroimaging in 
Schizophrenia. Neuroimaging Clin N Am 30:73–83 Available at: 
https://pubmed.ncbi.nlm.nih.gov/31759574/ [Accessed September 11, 2020]. 

Kessler RC, Berglund P, Demler O, Jin R, Koretz D, Merikangas KR, Rush AJ, Walters EE, 
Wang PS (2003) The epidemiology of major depressive disorder: results from the National 
Comorbidity Survey Replication (NCS-R). JAMA 289:3095 Available at: 
http://jama.jamanetwork.com/article.aspx?doi=10.1001/jama.289.23.3095 [Accessed July 
26, 2016]. 

Kherif F, Latypova A (2019) Principal component analysis. In: Machine Learning: Methods and 
Applications to Brain Disorders, pp 209–225. Elsevier. 

Kikuchi M, Hashimoto T, Nagasawa T, Hirosawa T, Minabe Y, Yoshimura M, Strik W, Dierks 
T, Koenig T (2011) Frontal areas contribute to reduced global coordination of resting-state 
gamma activities in drug-naïve patients with schizophrenia. Schizophr Res 130:187–194. 



 

 

213 

Kim DJ, Bolbecker AR, Howell J, Rass O, Sporns O, Hetrick WP, Breier A, O’Donnell BF 
(2013) Disturbed resting state EEG synchronization in bipolar disorder: A graph-theoretic 
analysis. NeuroImage Clin 2:414–423 Available at: 
http://dx.doi.org/10.1016/j.nicl.2013.03.007. 

Kim JS, Shin KS, Jung WH, Kim SN, Kwon JS, Chung CK (2014) Power spectral aspects of the 
default mode network in schizophrenia: an MEG study. BMC Neurosci 15:104 Available at: 
http://www.ncbi.nlm.nih.gov/pubmed/25189680 [Accessed June 13, 2016]. 

Kim S, Kim Y-W, Shim M, Jin MJ, Im C-H, Lee S-H (2020) Altered Cortical Functional 
Networks in Patients With Schizophrenia and Bipolar Disorder: A Resting-State 
Electroencephalographic Study. Front Psychiatry 11:1 Available at: 
https://www.frontiersin.org/article/10.3389/fpsyt.2020.00661/full [Accessed July 20, 2020]. 

Kirsch P, Ronshausen S, Mier D, Gallhofer B (2007) The influence of antipsychotic treatment on 
brain reward system reactivity in schizophrenia patients. Pharmacopsychiatry 40:196–198 
Available at: http://www.thieme-connect.de/DOI/DOI?10.1055/s-2007-984463 [Accessed 
August 28, 2020]. 

Kiss T, Hoffmann WE, Hajós M (2011) Delta oscillation and short-term plasticity in the rat 
medial prefrontal cortex: modelling NMDA hypofunction of schizophrenia. Int J 
Neuropsychopharmacol 14:29–42 Available at: https://academic.oup.com/ijnp/article-
lookup/doi/10.1017/S1461145710000271 [Accessed April 25, 2017]. 

Kissler J, Müller MM, Fehr T, Rockstroh B, Elbert T (2000) MEG gamma band activity in 
schizophrenia patients and healthy subjects in a mental arithmetic task and at rest. Clin 
Neurophysiol 111:2079–2087. 

Kitzbichler MG, Smith ML, Christensen SR, Bullmore E, Kauffman S (2009) Broadband 
Criticality of Human Brain Network Synchronization Behrens T, ed. PLoS Comput Biol 
5:e1000314 Available at: http://dx.plos.org/10.1371/journal.pcbi.1000314 [Accessed 
August 4, 2017]. 

Klaus J, Hartwigsen G (2019) Dissociating semantic and phonological contributions of the left 
inferior frontal gyrus to language production. Hum Brain Mapp 40:3279–3287 Available at: 
https://onlinelibrary.wiley.com/doi/abs/10.1002/hbm.24597 [Accessed July 22, 2020]. 

Klingner CM, Langbein K, Dietzek M, Smesny S, Witte OW, Sauer H, Nenadic I (2014) 
Thalamocortical connectivity during resting state in schizophrenia. Eur Arch Psychiatry 
Clin Neurosci 264:111–119 Available at: http://link.springer.com/10.1007/s00406-013-
0417-0 [Accessed September 10, 2016]. 

Knösche TR, Tittgemeyer M (2011) The Role of Long-Range Connectivity for the 
Characterization of the Functional–Anatomical Organization of the Cortex. Front Syst 
Neurosci 5:58 Available at: 
http://journal.frontiersin.org/article/10.3389/fnsys.2011.00058/abstract [Accessed August 
26, 2016]. 

Knyazev GG (2007) Motivation, emotion, and their inhibitory control mirrored in brain 
oscillations. Neurosci Biobehav Rev 31:377–395. 

Ko H-J, Youn C-H (2011) Effects of laughter therapy on depression, cognition and sleep among 
the community-dwelling elderly. Geriatr Gerontol Int 11:267–274 Available at: 
http://doi.wiley.com/10.1111/j.1447-0594.2010.00680.x [Accessed February 3, 2017]. 

Kolb B, Mychasiuk R, Muhammad A, Li Y, Frost DO, Gibb R (2012) Experience and the 
developing prefrontal cortex. Proc Natl Acad Sci U S A:17186–17193 Available at: 
http://www.ncbi.nlm.nih.gov/pubmed/23045653 [Accessed September 13, 2016]. 



 

 

214 

Konradi C, Heckers S (2001) Antipsychotic drugs and neuroplasticity: insights into the treatment 
and neurobiology of schizophrenia. Biol Psychiatry 50:729–742. 

Konradt B, Hirsch RD, Jonitz MF, Junglas K (2012) Evaluation of a standardized humor group 
in a clinical setting: a feasibility study for older patients with depression. Int J Geriatr 
Psychiatry 28:850–857 Available at: 
http://onlinelibrary.wiley.com/store/10.1002/gps.3893/asset/gps3893.pdf?v=1&t=j0jwl0yz
&s=46844e17135aa3b02c2dfb492a1cd170e36ce8b1&systemMessage=Wiley+Online+Libr
ary+will+be+unavailable+on+Saturday+25th+March+from+07%3A00+GMT+%2F+03%3
A00+EDT+%2F+15%3A00+SG [Accessed March 21, 2017]. 

Koo PC, Thome J, Berger C, Foley P, Hoeppner J (2015) Current source density analysis of 
resting state EEG in depression: a review. J Neural Transm Available at: 
http://www.ncbi.nlm.nih.gov/pubmed/26233563 [Accessed February 16, 2016]. 

Koppe G, Meyer-Lindenberg A, Durstewitz D (2021) Deep learning for small and big data in 
psychiatry. Neuropsychopharmacology 46. 

Kotov R et al. (2017) The Hierarchical Taxonomy of Psychopathology (HiTOP): A Dimensional 
Alternative to Traditional Nosologies. J Abnorm Psychol 126:454–477 Available at: 
http://dx.doi.org/10.1037/abn0000258 [Accessed June 7, 2017]. 

Koukkou M, Lehmann D, Wackermann J, Dvorak I, Henggeler B (1993) Dimensional 
complexity of EEG brain mechanisms in untreated schizophrenia. Biol Psychiatry 33:397–
407. 

Kraepelin E (1921) Manic-depressive insanity and paranoia. Edinburgh: E. & S. Livingstone. 
Available at: https://archive.org/details/manicdepressivei00krae [Accessed August 6, 2017]. 

Kraguljac NV, White DM, Hadley JA, Visscher K, Knight D, Ver Hoef L, Falola B, Lahti AC 
(2015) Abnormalities in large scale functional networks in unmedicated patients with 
schizophrenia and effects of risperidone. 

Kraskov A, Stögbauer H, Grassberger P (2004) Estimating mutual information. Phys Rev 69. 
Krishnaswamy P, Obregon-Henao G, Ahveninen J, Khan S, Babadi B, Iglesias JE, Hämäläinen 

MS, Purdon PL (2017) Sparsity enables estimation of both subcortical and cortical activity 
from MEG and EEG. Proc Natl Acad Sci U S A 114:E10465–E10474 Available at: 
www.pnas.org/cgi/doi/10.1073/pnas.1705414114 [Accessed September 18, 2020]. 

Kuhn R (2004) Eugen Bleuler’s concept of psychopathology. Hyistory of psychiatry 15:361–
366. 

Kuperberg GR, Broome MR, McGuire PK, David AS, Eddy M, Ozawa F, Goff D, West WC, 
Williams SCR, Van der Kouwe AJW, Salat DH, Dale AM, Fischl B (2003) Regionally 
localized thinning of the cerebral cortex in schizophrenia. Arch Gen Psychiatry 60:878–888 
Available at: https://jamanetwork.com/journals/jamapsychiatry/fullarticle/207852 
[Accessed July 20, 2020]. 

Kwon H, Reiss AL, Menon V (2002) Neural basis of protracted developmental changes in visuo-
spatial working memory. Proc Natl Acad Sci U S A 99:13336–13341 Available at: 
http://www.ncbi.nlm.nih.gov/pubmed/12244209 [Accessed October 27, 2016]. 

La Rocca D, Zilber N, Abry P, van Wassenhove V, Ciuciu P (2018) Self-similarity and 
multifractality in human brain activity: a wavelet-based analysis of scale-free brain 
dynamics☆. Self-similarity multifractality Hum brain Act A wavelet-based Anal scale-free 
brain Dyn:315853. 

Lacombe J, Jolicoeur P, Grimault S, Pineault J, Joubert S (2015) Neural changes associated with 
semantic processing in healthy aging despite intact behavioral performance. Brain Lang 



 

 

215 

149:118–127 Available at: http://linkinghub.elsevier.com/retrieve/pii/S0093934X15001431 
[Accessed August 31, 2017]. 

Le Van Quyen M, Foucher J, Lachaux J-P, Rodriguez E, Lutz A, Martinerie J, Varela FJ (2001) 
Comparison of Hilbert transform and wavelet methods for the analysis of neuronal 
synchrony. J Neurosci Methods 111:83–98 Available at: 
https://www.sciencedirect.com/science/article/pii/S0165027001003727 [Accessed 
November 1, 2018]. 

Lee J-S, Yang B-H, Lee J-H, Choi J-H, Choi I-G, Kim S-B (2007) Detrended fluctuation 
analysis of resting EEG in depressed outpatients and healthy controls. Clin Neurophysiol 
118:2489–2496 Available at: 
http://linkinghub.elsevier.com/retrieve/pii/S1388245707004051 [Accessed July 29, 2017]. 

Lee P-S, Chen Y-S, Hsieh J-C, Su T-P, Chen L-F (2010) Distinct neuronal oscillatory responses 
between patients with bipolar and unipolar disorders: A magnetoencephalographic study. J 
Affect Disord 123:270–275. 

Lee SH, Choo JS, Im WY, Chae JH (2008) Nonlinear analysis of electroencephalogram in 
schizophrenia patients with persistent auditory hallucination. Psychiatry Investig 5:115–120 
Available at: /pmc/articles/PMC2796017/?report=abstract [Accessed September 7, 2020]. 

Lee T-W, Wu Y-T, Yu YW-Y, Chen M-C, Chen T-J (2011) The implication of functional 
connectivity strength in predicting treatment response of major depressive disorder: A 
resting EEG study. Psychiatry Res Neuroimaging 194:372–377. 

Lee Y-J, Huang S-Y, Lin C-P, Tsai S-J, Yang AC (2020) Alteration of Power Law Scaling of 
Spontaneous Brain Activity in Schizophrenia. bioRxiv:2020.02.13.946657. 

Lehmann D, Faber PL, Pascual-Marqui RD, Milz P, Herrmann WM, Koukkou M, Saito N, 
Winterer G, Kochi K (2014) Functionally aberrant electrophysiological cortical 
connectivities in first episode medication-naive schizophrenics from three psychiatry 
centers. Front Hum Neurosci 8:635 Available at: 
http://www.ncbi.nlm.nih.gov/pubmed/25191252 [Accessed December 22, 2016]. 

Leonarduzzi R, Wendt H, Abry P, Jaffard S, Melot C, Roux SG, Torres ME (2016) P-exponent 
and p-leaders, Part II: Multifractal analysis. Relations to detrended fluctuation analysis. 
Phys A Stat Mech its Appl 448:319–339. 

Leuchter AF, Cook IA, Hunter AM, Cai C, Horvath S (2012) Resting-state quantitative 
electroencephalography reveals increased neurophysiologic connectivity in depression. 
PLoS One 7:e32508 Available at: 
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0032508 [Accessed 
February 17, 2016]. 

Leuchter AF, Hunter AM, Krantz DE, Cook IA (2015) Rhythms and blues: modulation of 
oscillatory synchrony and the mechanism of action of antidepressant treatments. Ann N Y 
Acad Sci 1344:78–91 Available at: http://www.ncbi.nlm.nih.gov/pubmed/25809789 
[Accessed February 17, 2016]. 

Li CT, Chen LF, Tu PC, Wang SJ, Chen MH, Su TP, Hsieh JC (2013) Impaired Prefronto-
Thalamic Functional Connectivity as a Key Feature of Treatment-Resistant Depression: A 
Combined MEG, PET and rTMS Study. PLoS One 8. 

Liao J, Yan H, Liu Q, Yan J, Zhang L, Jiang S, Zhang X, Dong Z, Yang W, Cai L, Guo H, Wang 
Y, Li Z, Tian L, Zhang D, Wang F (2015) Reduced paralimbic system gray matter volume 
in schizophrenia: Correlations with clinical variables, symptomatology and cognitive 
function. J Psychiatr Res 65:80–86. 



 

 

216 

Librenza-Garcia D, Kotzian BJ, Yang J, Mwangi B, Cao B, Pereira Lima LN, Bermudez MB, 
Boeira MV, Kapczinski F, Passos IC (2017) The impact of machine learning techniques in 
the study of bipolar disorder: A systematic review. Neurosci Biobehav Rev 80:538–554 
Available at: http://linkinghub.elsevier.com/retrieve/pii/S0149763417300337 [Accessed 
August 4, 2017]. 

Liddle EB, Price D, Palaniyappan L, Brookes MJ, Robson SE, Hall EL, Morris PG, Liddle PF 
(2016) Abnormal salience signaling in schizophrenia: The role of integrative beta 
oscillations. Hum Brain Mapp 37:1361–1374 Available at: 
http://www.ncbi.nlm.nih.gov/pubmed/26853904 [Accessed February 5, 2017]. 

Lieberman J, Koreen A, Chakos M, Sheitman B, Woerner M, Alvir J, Bilder R (1996) Factors 
influencing treatment response and outcome of first-episode schizophrenia: implications for 
understanding the pathophysiology of schizophrenia - PubMed. J Clin Psychiatry 57:5–9 
Available at: https://pubmed.ncbi.nlm.nih.gov/8823344/ [Accessed September 17, 2020]. 

Lin A, Maniscalco B, He BJ (2016) Scale-Free Neural and Physiological Dynamics in 
Naturalistic Stimuli Processing. eneuro 3:ENEURO.0191-16.2016 Available at: 
http://eneuro.org/lookup/doi/10.1523/ENEURO.0191-16.2016 [Accessed September 13, 
2020]. 

Linden DEJ (2012) The Challenges and Promise of Neuroimaging in Psychiatry. Neuron 73:8–
22. 

Linkenkaer-Hansen K, Monto S, Rytsälä H, Suominen K, Isometsä E, Kähkönen S (2005) 
Breakdown of long-range temporal correlations in theta oscillations in patients with major 
depressive disorder. J Neurosci 25:10131–10137 Available at: 
http://www.jneurosci.org/content/25/44/10131.short [Accessed February 26, 2016]. 

Linkenkaer-Hansen K, Nikouline V V., Palva JM, Ilmoniemi RJ (2001a) Long-Range Temporal 
Correlations and Scaling Behavior in Human Brain Oscillations. J Neurosci 21 Available at: 
http://www.jneurosci.org/content/21/4/1370 [Accessed August 4, 2017]. 

Linkenkaer-Hansen K, Nikouline V V, Palva JM, Ilmoniemi RJ (2001b) Long-range temporal 
correlations and scaling behavior in human brain oscillations. J Neurosci 21:1370–1377 
Available at: http://www.ncbi.nlm.nih.gov/pubmed/11160408 [Accessed September 4, 
2018]. 

Linkenkaer-Hansen K, Nikulin V V., Palva S, Ilmoniemi RJ, Palva JM (2004) Prestimulus 
Oscillations Enhance Psychophysical Performance in Humans. J Neurosci 24:10186–10190. 

Linkenkaer-Hansen K, Smit DJA, Barkil A, Beijsterveldt TEM van, Brussaard AB, Boomsma 
DI, Ooyen A van, Geus EJC de (2007) Genetic Contributions to Long-Range Temporal 
Correlations in Ongoing Oscillations. J Neurosci 27:13882–13889. 

Liu H, Tang Y, Womer F, Fan G, Lu T, Driesen N, Ren L, Wang Y, He Y, Blumberg HP, Xu K, 
Wang F (2014) Differentiating patterns of amygdala-frontal functional connectivity in 
schizophrenia and bipolar disorder. Schizophr Bull 40:469–477 Available at: 
http://www.ncbi.nlm.nih.gov/pubmed/23599250 [Accessed September 24, 2016]. 

Liu Y, Liang M, Zhou Y, He Y, Hao Y, Song M, Yu C, Liu H, Liu Z, Jiang T (2008) Disrupted 
small-world networks in schizophrenia. Brain 131:945–961 Available at: 
http://www.ncbi.nlm.nih.gov/pubmed/18299296 [Accessed June 16, 2016]. 

Liuzzi L, Gascoyne LE, Tewarie PK, Barratt EL, Boto E, Brookes MJ (2016) Optimising 
experimental design for MEG resting state functional connectivity measurement. 

Loh M, Rolls E, Deco G (2007) A Dynamical Systems Hypothesis of Schizophrenia. PLOS 
Comput Biol 3:e228. 



 

 

217 

Lopes Da Silva F (2013) Neuron Primer EEG and MEG: Relevance to Neuroscience. Neuron 
80:1112–1128 Available at: http://dx.doi.org/10.1016/j.neuron.2013.10.017 [Accessed 
February 5, 2017]. 

Lopes R, Betrouni N (2009) Fractal and multifractal analysis: A review. Med Image Anal 
13:634–649 Available at: https://pubmed.ncbi.nlm.nih.gov/19535282/ [Accessed August 
19, 2020]. 

Lowe MJ (2010) A historical perspective on the evolution of resting-state functional connectivity 
with MRI. Magn Reson Mater Physics, Biol Med 23:279–288 Available at: 
https://link.springer.com/article/10.1007/s10334-010-0230-y [Accessed August 23, 2020]. 

Lu Q, Li H, Luo G, Wang Y, Tang H, Han L, Yao Z (2012) Impaired prefrontal-amygdala 
effective connectivity is responsible for the dysfunction of emotion process in major 
depressive disorder: A dynamic causal modeling study on MEG. Neurosci Lett 523:125–
130 Available at: http://dx.doi.org/10.1016/j.neulet.2012.06.058. 

Lui S et al. (2010) Short-term Effects of Antipsychotic Treatment on Cerebral Function in Drug-
Naive First-Episode Schizophrenia Revealed by “Resting State” Functional Magnetic 
Resonance Imaging. Arch Gen Psychiatry 67:783 Available at: 
http://archpsyc.jamanetwork.com/article.aspx?doi=10.1001/archgenpsychiatry.2010.84 
[Accessed December 7, 2016]. 

Luo L, Rodriguez E, Jerbi K, Lachaux J-P, Martinerie J, Shulman GL, Piomelli D, Turrigiano 
GG, Nelson SB, Joëls M, Ronald De Kloet E, Holsboer F, Amodio DM, Frith CD, Block 
ML, Zecca L, Dantzer R, Kelley KW, Craig AD (2010) Ten years of Nature Reviews 
Neuroscience: insights from the highly cited. Nat Rev Neurosci 11:718–726. 

Lux T, Marchesi M (1999) Scaling and criticality in a stochastic multi-agent model of a financial 
market. Nature 397:498–500. 

Lynham A, Hubbard L, Tansey K, Marian L, Legge S, Owen M, Jones I, Walters J (2018) 
Examining cognition across the bipolar/schizophrenia diagnostic spectrum. J Psychiatry 
Neurosci 43:245–253. 

Ma S, Calhoun VD, Eichele T, Du W, Adali T (2012) Modulations of functional connectivity in 
the healthy and schizophrenia groups during task and rest. Neuroimage 62:1694–1704. 

MacEwan JP, Seabury S, Aigbogun MS, Kamat S, van Eijndhoven E, Francois C, Henderson C, 
Citrome L (2016) Pharmaceutical innovation in the treatment of schizophrenia and mental 
disorders compared with other diseases. Innov Clin Neurosci 13:17–25 Available at: 
/pmc/articles/PMC5022985/?report=abstract [Accessed August 11, 2020]. 

Magioncalda P, Martino M, Conio B, Escelsior A, Piaggio N, Presta A, Marozzi V, Rocchi G, 
Anastasio L, Vassallo L, Ferri F, Huang Z, Roccatagliata L, Pardini M, Northoff G, Amore 
M (2015) Functional connectivity and neuronal variability of resting state activity in bipolar 
disorder-reduction and decoupling in anterior cortical midline structures. Hum Brain Mapp 
36:666–682 Available at: http://doi.wiley.com/10.1002/hbm.22655 [Accessed June 28, 
2016]. 

Maj M (2011) Psychiatric diagnosis: Pros and cons of prototypes vs. operational criteria. World 
Psychiatry 10:81–82 Available at: 
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3104873/ [Accessed January 11, 2021]. 

Malhi GS, Byrow Y, Fritz K, Das P, Baune BT, Porter RJ, Outhred T (2015) Mood disorders: 
neurocognitive models. Bipolar Disord 17:3–20 Available at: 
http://doi.wiley.com/10.1111/bdi.12353 [Accessed August 4, 2017]. 

Mandelbrot BB (1983) Fractals and the Geometry of Nature. New York: WH freeman. 



 

 

218 

Mandelbrot BB (1985) Self-Aff ine Fractals and Fractal Dimension. 
Mantini D, Perrucci MG, Del Gratta C, Romani GL, Corbetta M (2007) Electrophysiological 

signatures of resting state networks in the human brain. Proc Natl Acad Sci U S A 
104:13170–13175 Available at: https://pubmed.ncbi.nlm.nih.gov/17670949/ [Accessed 
August 23, 2020]. 

Maran M, Grent-‘t-Jong T, Uhlhaas PJ (2016) Electrophysiological insights into connectivity 
anomalies in schizophrenia: a systematic review. Neuropsychiatr Electrophysiol 2. 

Martino M, Magioncalda P, Saiote C, Conio B, Escelsior A, Rocchi G, Piaggio N, Marozzi V, 
Huang Z, Ferri F, Amore M, Inglese M, Northoff G (2016) Abnormal functional-structural 
cingulum connectivity in mania: combined functional magnetic resonance imaging-
diffusion tensor imaging investigation in different phases of bipolar disorder. Acta Psychiatr 
Scand 134:339–349 Available at: http://doi.wiley.com/10.1111/acps.12596 [Accessed 
September 12, 2016]. 

Marzetti L, Del Gratta C, Nolte G (2008) Understanding brain connectivity from EEG data by 
identifying systems composed of interacting sources. Neuroimage 42:87–98. 

Mathalon DH, Sohal VS (2015) Neural Oscillations and Synchrony in Brain Dysfunction and 
Neuropsychiatric Disorders: It’s About Time. JAMA psychiatry 72:840–844 Available at: 
http://archpsyc.jamanetwork.com/article.aspx?articleid=2300495 [Accessed February 10, 
2016]. 

Mayberg HS, Lozano AM, Voon V, McNeely HE, Seminowicz D, Hamani C, Schwalb JM, 
Kennedy SH (2005) Deep Brain Stimulation for Treatment-Resistant Depression. 

Mazzoni A, Broccard FD, Garcia-Perez E, Bonifazi P, Ruaro ME, Torre V (2007) On the 
Dynamics of the Spontaneous Activity in Neuronal Networks Sporns O, ed. PLoS One 
2:e439 Available at: https://dx.plos.org/10.1371/journal.pone.0000439 [Accessed 
September 1, 2020]. 

McCabe C, Mishor Z (2011) Antidepressant medications reduce subcortical–cortical resting-state 
functional connectivity in healthy volunteers. Neuroimage 57:1317–1323. 

McCutcheon RA, Abi-Dargham A, Howes OD (2019) Schizophrenia, Dopamine and the 
Striatum: From Biology to Symptoms. Trends Neurosci 42:205–220 Available at: 
https://pubmed.ncbi.nlm.nih.gov/30621912/ [Accessed June 28, 2020]. 

Mendez MA, Zuluaga P, Hornero R, Gomez C, Escudero J, Rodriguez-Palancas A, Ortiz T, 
Fernandez A (2012) Complexity analysis of spontaneous brain activity: effects of 
depression and antidepressant treatment. J Psychopharmacol 26:636–643 Available at: 
http://jop.sagepub.com/cgi/doi/10.1177/0269881111408966 [Accessed June 9, 2016]. 

Merikangas KR, Akiskal HS, Angst J, Greenberg PE, Hirschfeld RMA, Petukhova M, Kessler 
RC (2007) Lifetime and 12-month prevalence of bipolar spectrum disorder in the National 
Comorbidity Survey replication. Arch Gen Psychiatry 64:543–552 Available at: 
http://www.ncbi.nlm.nih.gov/pubmed/17485606 [Accessed September 30, 2016]. 

Messaritaki E, Koelewijn L, Dima DC, Williams GM, Perry G, Singh KD (2017) Assessment 
and elimination of the effects of head movement on MEG resting-state measures of 
oscillatory brain activity. Neuroimage 159:302–324 Available at: 
http://orca.cf.ac.uk/102647/7/1-s2.0-S1053811917306067-main. 

Meunier D, Pascarella A, Altukhov D, Jas M, Combrisson E, Lajnef T, Bertrand-Dubois D, 
Hadid V, Alamian G, Alves J, Barlaam F, Saive A-L, Dehgan A, Jerbi K (2019) 
NeuroPycon: A free Python toolbox for fast multi-modal and reproducible brain 
connectivity pipelines. bioRxiv:789842. 



 

 

219 

Meunier D, Pascarella A, Altukhov D, Jas M, Combrisson E, Lajnef T, Bertrand-Dubois D, 
Hadid V, Alamian G, Alves J, Barlaam F, Saive A-L, Dehgan A, Jerbi K (2020) 
NeuroPycon: An open-source Python toolbox for fast multi-modal and reproducible brain 
connectivity pipelines. Neuroimage 219:117020 Available at: 
https://linkinghub.elsevier.com/retrieve/pii/S1053811920305061 [Accessed June 9, 2020]. 

Micheloyannis S, Pachou E, Stam CJ, Breakspear M, Bitsios P, Vourkas M, Erimaki S, Zervakis 
M (2006) Small-world networks and disturbed functional connectivity in schizophrenia. 
Schizophr Res 87:60–66. 

Mitra S, Nizamie SH, Goyal N, Tikka SK (2015) Evaluation of resting state gamma power as a 
response marker in schizophrenia. Psychiatry Clin Neurosci 69:630–639 Available at: 
http://doi.wiley.com/10.1111/pcn.12301 [Accessed October 26, 2016]. 

Miyamoto S, Miyake N, Jarskog LF, Fleischhacker WW, Lieberman JA (2012) Pharmacological 
treatment of schizophrenia: A critical review of the pharmacology and clinical effects of 
current and future therapeutic agents. Mol Psychiatry 17:1206–1227 Available at: 
www.nature.com/mp [Accessed August 28, 2020]. 

Mondino M, Jardri R, Suaud-Chagny M-F, Saoud M, Poulet E, Brunelin J (2016) Effects of 
Fronto-Temporal Transcranial Direct Current Stimulation on Auditory Verbal 
Hallucinations and Resting-State Functional Connectivity of the Left Temporo-Parietal 
Junction in Patients With Schizophrenia. Schizophr Bull 42:318–326 Available at: 
http://www.ncbi.nlm.nih.gov/pubmed/26303936 [Accessed January 23, 2017]. 

Monti JM, Monti D (2005) Sleep disturbance in schizophrenia. Int Rev Psychiatry 17:247–253 
Available at: http://www.tandfonline.com/doi/full/10.1080/09540260500104516 [Accessed 
October 1, 2019]. 

Moran JK, Michail G, Heinz A, Keil J, Senkowski D (2019) Long-Range Temporal Correlations 
in Resting State Beta Oscillations are Reduced in Schizophrenia. Front Psychiatry 10. 

Moran L V, Hong LE (2011) High vs low frequency neural oscillations in schizophrenia. 
Schizophr Bull 37:659–663 Available at: http://www.ncbi.nlm.nih.gov/pubmed/21653278 
[Accessed July 27, 2016]. 

Morris SE, Cuthbert BN (2012) Research Domain Criteria: cognitive systems, neural circuits, 
and dimensions of behavior. Dialogues Clin Neurosci 14:29–37 Available at: 
http://www.ncbi.nlm.nih.gov/pubmed/22577302 [Accessed April 24, 2017]. 

Mukherjee P, Whalley HC, McKirdy JW, Sprengelmeyer R, Young AW, McIntosh AM, Lawrie 
SM, Hall J (2013) Altered Amygdala Connectivity Within the Social Brain in 
Schizophrenia. Schizophr Bull 40:152–160 Available at: 
https://doi.org/10.1093/schbul/sbt086. 

Mulders PC, van Eijndhoven PF, Schene AH, Beckmann CF, Tendolkar I (2015) Resting-state 
functional connectivity in major depressive disorder: A review. Neurosci Biobehav Rev 
56:330–344. 

Mumtaz W, Malik AS, Ali SSA, Yasin MAM, Amin H (2015) Detrended fluctuation analysis for 
major depressive disorder. Conf Proc  . Annu Int Conf IEEE Eng Med Biol Soc IEEE Eng 
Med Biol Soc Annu Conf 2015:4162–4165 Available at: 
http://ieeexplore.ieee.org/document/7319311/ [Accessed August 29, 2017]. 

Muthuraman M, Moliadze V, Mideksa KG, Anwar AR, Stephani U, Deuschl G, Freitag CM, 
Siniatchkin M (2015) EEG-MEG Integration Enhances the Characterization of Functional 
and Effective Connectivity in the Resting State Network. PLoS One 10:e0140832 Available 
at: 



 

 

220 

http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=4624977&tool=pmcentrez&ren
dertype=abstract [Accessed March 21, 2016]. 

Narayanan B, O’Neil K, Berwise C, Stevens MC, Calhoun VD, Clementz BA, Tamminga CA, 
Sweeney JA, Keshavan MS, Pearlson GD (2014) Resting state electroencephalogram 
oscillatory abnormalities in schizophrenia and psychotic bipolar patients and their relatives 
from the bipolar and schizophrenia network on intermediate phenotypes study. Biol 
Psychiatry 76:456–465 Available at: http://www.ncbi.nlm.nih.gov/pubmed/24439302 
[Accessed December 6, 2016]. 

Narr KL, Leaver AM (2015) Connectome and schizophrenia. Curr Opin Psychiatry 28:229–235 
Available at: 
http://content.wkhealth.com/linkback/openurl?sid=WKPTLP:landingpage&an=00001504-
201505000-00007 [Accessed September 7, 2016]. 

Navari S, Dazzan P (n.d.) Do antipsychotic drugs affect brain structure? A systematic and critical 
review of MRI findings. 2009 Available at: 
https://www.researchgate.net/publication/24250405 [Accessed August 28, 2020]. 

Nejad AB, Ebdrup BH, Glenthøj BY, Siebner HR (2012) Brain connectivity studies in 
schizophrenia: unravelling the effects of antipsychotics. Curr Neuropharmacol 10:219–230 
Available at: http://www.ncbi.nlm.nih.gov/pubmed/23449679 [Accessed October 28, 2016]. 

Nemeroff CB, Weinberger D, Rutter M, MacMillan HL, Bryant RA, Wessely S, Stein DJ, 
Pariante CM, Seemüller F, Berk M, Malhi GS, Preisig M, Brüne M, Lysaker P (2013) 
DSM-5: A collection of psychiatrist views on the changes, controversies, and future 
directions. BMC Med 11:1–19 Available at: 
https://link.springer.com/articles/10.1186/1741-7015-11-202 [Accessed January 10, 2021]. 

Nestler EJ, Peña CJ, Kundakovic M, Mitchell A, Akbarian S (2016) Epigenetic Basis of Mental 
Illness. Neuroscientist 22:447–463 Available at: 
https://pubmed.ncbi.nlm.nih.gov/26450593/ [Accessed August 27, 2020]. 

Nesvåg R, Lawyer G, Varnäs K, Fjell AM, Walhovd KB, Frigessi A, Jönsson EG, Agartz I 
(2008) Regional thinning of the cerebral cortex in schizophrenia: Effects of diagnosis, age 
and antipsychotic medication. Schizophr Res 98:16–28. 

Neuling T, Ruhnau P, Fuscà M, Demarchi G, Herrmann CS, Weisz N (2015) Friends, not foes: 
Magnetoencephalography as a tool to uncover brain dynamics during transcranial 
alternating current stimulation. Neuroimage 118:406–413 Available at: 
http://www.ncbi.nlm.nih.gov/pubmed/26080310 [Accessed February 5, 2017]. 

Newson JJ, Thiagarajan TC (2019) EEG Frequency Bands in Psychiatric Disorders: A Review of 
Resting State Studies. Front Hum Neurosci 12:521 Available at: 
http://www.who.int/en/news-room/fact-sheets/detail/mental-disorders [Accessed August 23, 
2020]. 

Nichols TE, Holmes AP (2001) Nonparametric Permutation Tests For Functional Neuroimaging: 
A Primer with Examples. Available at: 
https://deepblue.lib.umich.edu/bitstream/handle/2027.42/35194/1058_ftp.pdf?sequence=1&
isAllowed=y [Accessed November 5, 2018]. 

Nikulin V V., Brismar T (2004) Long-range temporal correlations in alpha and beta oscillations: 
effect of arousal level and test-retest reliability. Clin Neurophysiol Off J Int Fed Clin 
Neurophysiol 115:1896–1908. 

Nikulin V V., Brismar T (2005) Long-range temporal correlations in electroencephalographic 
oscillations: Relation to topography, frequency band, age and gender. Neuroscience 



 

 

221 

130:549–558. 
Nikulin V V., Jönsson EG, Brismar T (2012) Attenuation of long-range temporal correlations in 

the amplitude dynamics of alpha and beta neuronal oscillations in patients with 
schizophrenia. Neuroimage 61:162–169. 

Nolte G, Bai O, Wheaton L, Mari Z, Vorbach S, Hallett M (2004) Identifying true brain 
interaction from EEG data using the imaginary part of coherency. 

Northoff G (2016) How do resting state changes in depression translate into psychopathological 
symptoms? From ‘Spatiotemporal correspondence’ to ‘Spatiotemporal Psychopathology.’ 
Curr Opin Psychiatry 29:18–24 Available at: 
http://content.wkhealth.com/linkback/openurl?sid=WKPTLP:landingpage&an=00001504-
201601000-00005 [Accessed July 25, 2016]. 

Northoff G, Duncan NW (2016) How do abnormalities in the brain’s spontaneous activity 
translate into symptoms in schizophrenia? From an overview of resting state activity 
findings to a proposed spatiotemporal psychopathology. Prog Neurobiol Available at: 
http://linkinghub.elsevier.com/retrieve/pii/S0301008215300320 [Accessed September 12, 
2016]. 

Nugent AC, Robinson SE, Coppola R, Furey ML, Zarate CA (2015) Group differences in MEG-
ICA derived resting state networks: Application to major depressive disorder. Neuroimage 
118:1–12 Available at: 
http://www.sciencedirect.com/science/article/pii/S1053811915004334 [Accessed February 
10, 2016]. 

Nugent AC, Robinson SE, Coppola R, Zarate CA (2016) Preliminary differences in resting state 
MEG functional connectivity pre- and post-ketamine in major depressive disorder. 
Psychiatry Res Neuroimaging 254:56–66. 

Nunez P (1981) The Neurophysics of EEG, 1st ed. New York: Oxford University Press. 
Nunez PL, Silberstein RB (2000) On the relationship of synaptic activity to macroscopic 

measurements: Does co-registration of EEG with fMRI make sense? Brain Topogr 13:79–
96 Available at: https://link.springer.com/article/10.1023/A:1026683200895 [Accessed 
September 18, 2020]. 

Nusslock R, Harmon-Jones E, Alloy LB, Urosevic S, Goldstein K, Abramson LY (2012) 
Elevated left mid-frontal cortical activity prospectively predicts conversion to bipolar I 
disorder. J Abnorm Psychol 121:592–601 Available at: 
http://www.ncbi.nlm.nih.gov/pubmed/22775582 [Accessed June 20, 2016]. 

O’Brien PL, Thomas CP, Hodgkin D, Levit KR, Mark TL (2014) The diminished pipeline for 
medications to treat mental health and substance use disorders. Psychiatr Serv 65:1433–
1438 Available at: /pmc/articles/PMC4788407/?report=abstract [Accessed August 11, 
2020]. 

O’Neill GC, Barratt EL, Hunt BAE, Tewarie PK, Brookes MJ (2015) Measuring 
electrophysiological connectivity by power envelope correlation: a technical review on 
MEG methods. Phys Med Biol 60 Available at: http://iopscience.iop.org/0031-
9155/60/21/R271 [Accessed September 29, 2016]. 

Oertel-Knöchel V, Knöchel C, Rotarska-Jagiela A, Reinke B, Prvulovic D, Haenschel C, Hampel 
H, Linden DEJ (2013) Association between Psychotic Symptoms and Cortical Thickness 
Reduction across the Schizophrenia Spectrum | Cerebral Cortex | Oxford Academic. Cereb 
Cortex 23:61–70 Available at: https://academic.oup.com/cercor/article/23/1/61/329831 
[Accessed July 20, 2020]. 



 

 

222 

Ohi K, Matsuda Y, Shimada T, Yasuyama T, Oshima K, Sawai K, Kihara H, Nitta Y, Okubo H, 
Uehara T, Kawasaki Y (2016) Structural alterations of the superior temporal gyrus in 
schizophrenia: Detailed subregional differences. Eur Psychiatry 35:25–31. 

Olbrich S, Tränkner A, Chittka T, Hegerl U, Schönknecht P (2014) Functional connectivity in 
major depression: Increased phase synchronization between frontal cortical EEG-source 
estimates. Psychiatry Res Neuroimaging 222:91–99. 

Ongür D, Lundy M, Greenhouse I, Shinn AK, Menon V, Cohen BM, Renshaw PF (2010) 
Default mode network abnormalities in bipolar disorder and schizophrenia. Psychiatry Res 
183:59–68 Available at: http://www.ncbi.nlm.nih.gov/pubmed/20553873 [Accessed June 
28, 2016]. 

Öngür D, Prescot AP, Jensen JE, Rouse ED, Cohen BM, Renshaw PF, Olson DP (2010) T 2 
relaxation time abnormalities in bipolar disorder and schizophrenia. Magn Reson Med 
63:1–8 Available at: http://doi.wiley.com/10.1002/mrm.22148 [Accessed June 20, 2016]. 

Orban P, Dansereau C, Desbois L, Mongeau-Pérusse V, Giguère CÉ, Nguyen H, Mendrek A, 
Stip E, Bellec P (2018) Multisite generalizability of schizophrenia diagnosis classification 
based on functional brain connectivity. Schizophr Res 192:167–171 Available at: 
https://pubmed.ncbi.nlm.nih.gov/28601499/ [Accessed September 11, 2020]. 

Outhred T, Das P, Felmingham KL, Bryant RA, Nathan PJ, Malhi GS, Kemp AH (2014) Impact 
of acute administration of escitalopram on the processing of emotional and neutral images: 
a randomized crossover fMRI study of healthy women. J Psychiatry Neurosci 39:267–275 
Available at: http://www.ncbi.nlm.nih.gov/pubmed/24690370 [Accessed August 6, 2017]. 

Pain O, Dudbridge F, Cardno AG, Freeman D, Lu Y, Lundstrom S, Lichtenstein P, Ronald A 
(2018) Genome-wide analysis of adolescent psychotic-like experiences shows genetic 
overlap with psychiatric disorders. Am J Med Genet Part B Neuropsychiatr Genet 177:416–
425 Available at: https://pubmed.ncbi.nlm.nih.gov/29603866/ [Accessed January 10, 2021]. 

Palva JM, Zhigalov A, Hirvonen J, Korhonen O, Linkenkaer-Hansen K, Palva S (2013a) 
Neuronal long-range temporal correlations and avalanche dynamics are correlated with 
behavioral scaling laws. Proc Natl Acad Sci U S A 110:3585–3590. 

Palva JM, Zhigalov A, Hirvonen J, Korhonen O, Linkenkaer-Hansen K, Palva S (2013b) 
Neuronal long-range temporal correlations and avalanche dynamics are correlated with 
behavioral scaling laws. Proc Natl Acad Sci U S A 110:3585–3590 Available at: 
http://www.ncbi.nlm.nih.gov/pubmed/23401536 [Accessed September 4, 2018]. 

Palva S, Palva JM (2011) Functional Roles of Alpha-Band Phase Synchronization in Local and 
Large-Scale Cortical Networks. Front Psychol 2:204 Available at: 
http://journal.frontiersin.org/article/10.3389/fpsyg.2011.00204/abstract [Accessed 
November 6, 2016]. 

Palva S, Palva JM (2018) Roles of Brain Criticality and Multiscale Oscillations in Temporal 
Predictions for Sensorimotor Processing. Trends Neurosci 41:729–743. 

Pang EW, Snead III OC (2016) From Structure to Circuits: The Contribution of MEG 
Connectivity Studies to Functional Neurosurgery. Front Neuroanat 10:67 Available at: 
http://journal.frontiersin.org/Article/10.3389/fnana.2016.00067/abstract [Accessed August 
23, 2016]. 

Pantazis D, Nichols TE, Baillet S, Leahy RM (2005) A comparison of random field theory and 
permutation methods for the statistical analysis of MEG data. Neuroimage 25:383–394 
Available at: http://linkinghub.elsevier.com/retrieve/pii/S1053811904005671 [Accessed 
August 29, 2017]. 



 

 

223 

Patel MJ, Khalaf A, Aizenstein HJ (2016) Studying depression using imaging and machine 
learning methods. NeuroImage Clin 10:115–123 Available at: 
http://www.ncbi.nlm.nih.gov/pubmed/26759786 [Accessed August 21, 2016]. 

Pathak Y, Salami O, Baillet S, Li Z, Butson CR (2016) Longitudinal Changes in Depressive 
Circuitry in Response to Neuromodulation Therapy. Front Neural Circuits 10:50 Available 
at: http://journal.frontiersin.org/Article/10.3389/fncir.2016.00050/abstract [Accessed 
August 23, 2016]. 

Patriat R, Molloy EK, Meier TB, Kirk GR, Nair VA, Meyerand ME, Prabhakaran V, Birn RM 
(2013) The effect of resting condition on resting-state fMRI reliability and consistency: A 
comparison between resting with eyes open, closed, and fixated. Neuroimage 78:463–473 
Available at: https://pubmed.ncbi.nlm.nih.gov/23597935/ [Accessed August 23, 2020]. 

Paus T, Keshavan M, Giedd JN (2010) Why do many psychiatric disorders emerge during 
adolescence? Nat Rev Neurosci 9:947 Available at: 
http://www.nature.com/doifinder/10.1038/nrn2513 [Accessed October 27, 2016]. 

Penadés R, Franck N, González-Vallespí L, Dekerle M (2019) Neuroimaging Studies of 
Cognitive Function in Schizophrenia. In: Advances in Experimental Medicine and Biology, 
pp 117–134. Springer New York LLC. Available at: 
https://pubmed.ncbi.nlm.nih.gov/30747420/ [Accessed September 11, 2020]. 

Peng CK, Havlin S, Stanley HE, Goldberger AL (1995) Quantification of scaling exponents and 
crossover phenomena in nonstationary heartbeat time series. Chaos 5:82–87. 

Perlis RH, Miyahara S, Marangell LB, Wisniewski SR, Ostacher M, DelBello MP, Bowden CL, 
Sachs GS, Nierenberg AA (2004) Long-Term implications of early onset in bipolar 
disorder: data from the first 1000 participants in the systematic treatment enhancement 
program for bipolar disorder (STEP-BD). Biol Psychiatry 55:875–881. 

Perry G, Singh KD (2014) Localizing evoked and induced responses to faces using 
magnetoencephalography. Eur J Neurosci 39:1517–1527 Available at: 
http://doi.wiley.com/10.1111/ejn.12520 [Accessed September 30, 2016]. 

Pettersson-Yeo W, Allen P, Benetti S, McGuire P, Mechelli A (2011) Dysconnectivity in 
schizophrenia: Where are we now? Neurosci Biobehav Rev. 

Petti M, Toppi J, Babiloni F, Cincotti F, Mattia D, Astolfi L (2016) EEG Resting-State Brain 
Topological Reorganization as a Function of Age. Comput Intell Neurosci 2016:6243694 
Available at: http://www.ncbi.nlm.nih.gov/pubmed/27006652 [Accessed August 27, 2017]. 

Phillips ML, Swartz HA (2014) A critical appraisal of neuroimaging studies of bipolar disorder: 
toward a new conceptualization of underlying neural circuitry and a road map for future 
research. Am J Psychiatry 171:829–843 Available at: 
http://www.ncbi.nlm.nih.gov/pubmed/24626773 [Accessed September 6, 2016]. 

Piguet C, Fodoulian L, Aubry J-M, Vuilleumier P, Houenou J (2015) Bipolar disorder: 
Functional neuroimaging markers in relatives. Neurosci Biobehav Rev 57:284–296 
Available at: http://www.ncbi.nlm.nih.gov/pubmed/26321590 [Accessed February 1, 2016]. 

Pilecki BC, Clegg JW, McKay D (2011) The influence of corporate and political interests on 
models of illness in the evolution of the DSM. Eur Psychiatry 26:194–200. 

Plenz D, Chialvo DR (2009) Scaling properties of neuronal avalanches are consistent with 
critical dynamics. 

Poil S-S, Hardstone R, Mansvelder HD, Linkenkaer-Hansen K (2012) Critical-state dynamics of 
avalanches and oscillations jointly emerge from balanced excitation/inhibition in neuronal 
networks. J Neurosci 32:9817–9823 Available at: 



 

 

224 

http://www.ncbi.nlm.nih.gov/pubmed/22815496 [Accessed September 5, 2017]. 
Popov T, Popova P (2015) Same clock, different time read-out: Spontaneous brain oscillations 

and their relationship to deficient coding of cognitive content. Neuroimage 119:316–324. 
Popov T, Wienbruch C, Meissner S, Miller GA, Rockstroh B (2015) A mechanism of deficient 

interregional neural communication in schizophrenia. Psychophysiology 52:648–656 
Available at: http://doi.wiley.com/10.1111/psyp.12393 [Accessed September 30, 2016]. 

Popov TG, Rockstroh BS, Popova P, Carolus AM, Miller GA (2014) Dynamics of alpha 
oscillations elucidate facial affect recognition in schizophrenia. Cogn Affect Behav 
Neurosci 14:364–377 Available at: http://link.springer.com/10.3758/s13415-013-0194-2 
[Accessed December 22, 2016]. 

Puliafito V, Vergura S, Carpentieri M (2017) Fourier, wavelet, and Hilbert-Huang transforms for 
studying electrical users in the time and frequency domain. Energies 10. 

Quan M, Lee S-H, Kubicki M, Kikinis Z, Rathi Y, Seidman LJ, Mesholam-Gately RI, Goldstein 
JM, McCarley RW, Shenton ME, Levitt JJ (2013) White matter tract abnormalities between 
rostral middle frontal gyrus, inferior frontal gyrus and striatum in first-episode 
schizophrenia. Schizophr Res 145:1–10 Available at: 
https://www.sciencedirect.com/science/article/pii/S0920996412006652 [Accessed January 
14, 2019]. 

R. Chialvo D (2004) Critical brain networks. Phys A Stat Mech its Appl 340:756–765 Available 
at: http://linkinghub.elsevier.com/retrieve/pii/S0378437104005734 [Accessed August 28, 
2017]. 

Rack-Gomer AL, Liau J, Liu TT (2009) Caffeine reduces resting-state BOLD functional 
connectivity in the motor cortex. Neuroimage 46:56–63. 

Racz FS, Stylianou O, Mukli P, Eke A (2020) Multifractal and Entropy-Based Analysis of Delta 
Band Neural Activity Reveals Altered Functional Connectivity Dynamics in Schizophrenia. 
Front Syst Neurosci 14 Available at: /pmc/articles/PMC7394222/?report=abstract 
[Accessed August 19, 2020]. 

Radulescu AR, Rubin D, Strey HH, Mujica-Parodi LR (2012) Power spectrum scale invariance 
identifies prefrontal dysregulation in paranoid schizophrenia. Hum Brain Mapp 33:1582–
1593 Available at: http://doi.wiley.com/10.1002/hbm.21309 [Accessed September 18, 
2020]. 

Raghavendra BS et al. (2009) Complexity analysis of EEG in patients with schizophrenia using 
fractal dimension. Physiol Meas 30:795–808 Available at: http://stacks.iop.org/0967-
3334/30/i=8/a=005?key=crossref.3c0fc68f0c1dbaeca506d5ab62249b86 [Accessed October 
19, 2016]. 

Raichle ME, MacLeod AM, Snyder AZ, Powers WJ, Gusnard DA, Shulman GL (2001) A 
default mode of brain function. Proc Natl Acad Sci U S A 98:676–682 Available at: 
http://www.ncbi.nlm.nih.gov/pubmed/11209064 [Accessed July 25, 2016]. 

Rajarethinam R, DeQuardo JR, Miedler J, Arndt S, Kirbat R, A. Brunberg J, Tandon R (2001) 
Hippocampus and amygdala in schizophrenia: Assessment of the relationship of 
neuroanatomy to psychopathology. Psychiatry Res - Neuroimaging 108:79–87. 

Ramani R (2015) Connectivity. Curr Opin Anaesthesiol 28:498–504 Available at: 
http://content.wkhealth.com/linkback/openurl?sid=WKPTLP:landingpage&an=00001503-
201510000-00004 [Accessed August 30, 2016]. 

Ramyead A, Studerus E, Kometer M, Heitz U, Gschwandtner U, Fuhr P, Riecher-Rössler A 
(2016) Neural oscillations in antipsychotic-naïve patients with a first psychotic episode. 



 

 

225 

World J Biol Psychiatry 17:296–307 Available at: 
http://www.tandfonline.com/doi/full/10.3109/15622975.2016.1156742 [Accessed 
December 6, 2016]. 

Rashid B, Damaraju E, Pearlson GD, Calhoun VD (2014) Dynamic connectivity states estimated 
from resting fMRI Identify differences among Schizophrenia, bipolar disorder, and healthy 
control subjects. Front Hum Neurosci 8:897 Available at: 
http://www.ncbi.nlm.nih.gov/pubmed/25426048 [Accessed September 6, 2016]. 

Recasens M, Gross J, Uhlhaas PJ (2018) Low-Frequency Oscillatory Correlates of Auditory 
Predictive Processing in Cortical-Subcortical Networks: A MEG-Study. Sci Rep 8:14007 
Available at: www.nature.com/scientificreports/ [Accessed September 18, 2020]. 

Reddy GT, Reddy MPK, Lakshmanna K, Kaluri R, Rajput DS, Srivastava G, Baker T (2020) 
Analysis of Dimensionality Reduction Techniques on Big Data. IEEE Access 8:54776–
54788. 

Reinke B, Ven V van de, Matura S, Linden DEJ, Oertel-Knöchel V (2013) Altered intrinsic 
functional connectivity in language-related brain regions in association with verbal memory 
performance in euthymic bipolar patients. Brain Sci 3:1357–1373 Available at: 
http://www.ncbi.nlm.nih.gov/pubmed/24961532 [Accessed August 23, 2016]. 

Reite M, Teale P, Rojas DC (1999) Magnetoencephalography: applications in psychiatry. Biol 
Psychiatry 45:1553–1563. 

Reulbach U, Bleich S, Maihofner C, Kornhuber J, Sperling W (2007) Specific and unspecific 
auditory hallucinations in patients with schizophrenia: a magnetoencephalographic study. 
Neuropsychobiology 55:89–95 Available at: 
http://www.ncbi.nlm.nih.gov/pubmed/17570952 [Accessed December 9, 2016]. 

Rich BA, Holroyd T, Carver FW, Onelio LM, Mendoza JK, Cornwell BR, Fox NA, Pine DS, 
Coppola R, Leibenluft E (2010) A preliminary study of the neural mechanisms of 
frustration in pediatric bipolar disorder using magnetoencephalography. Depress Anxiety 
27:276–286 Available at: http://doi.wiley.com/10.1002/da.20649 [Accessed August 23, 
2016]. 

Riehemann S, Volz HP, Stützer P, Smesny S, Gaser C, Sauer H (2001) Hypofrontality in 
neuroleptic-naive schizophrenic patients during the Wisconsin Card Sorting Test--a fMRI 
study. Eur Arch Psychiatry Clin Neurosci 251:66–71 Available at: 
http://www.ncbi.nlm.nih.gov/pubmed/11407441 [Accessed September 22, 2016]. 

Ripke S et al. (2014) Biological insights from 108 schizophrenia-associated genetic loci. Nature 
511:421–427 Available at: http://www.roadmapepigenomics.org [Accessed August 28, 
2020]. 

Rivolta D, Heidegger T, Scheller B, Sauer A, Schaum M, Birkner K, Singer W, Wibral M, 
Uhlhaas PJ (2015) Ketamine Dysregulates the Amplitude and Connectivity of High-
Frequency Oscillations in Cortical-Subcortical Networks in Humans: Evidence From 
Resting-State Magnetoencephalography-Recordings. Schizophr Bull 41:1105–1114 
Available at: http://www.ncbi.nlm.nih.gov/pubmed/25987642 [Accessed June 22, 2016]. 

Robinson SE, Mandell AJ (2015) Mutual Information in a MEG complexity measure suggests 
regional hyper-connectivity in schizophrenic probands. Neuropsychopharmacology 40:251–
252 Available at: http://www.ncbi.nlm.nih.gov/pubmed/25482179 [Accessed June 13, 
2016]. 

Rockstroh B, Wienbruch C, Moratti S, Kissler J, Fehr T, Elbert T (2000) Magnetic source 
imaging of slow wave activity in psychiatric samples. In: Biomag2000 - Proceedings of the 



 

 

226 

12th International Conference on Biomagnetism. Espoo, Finland. Available at: 
http://kops.uni-
konstanz.de/bitstream/handle/123456789/10359/Magnetic_source_imaging_of_slow_wave
_activity_in_psychiatric_samples.pdf;sequence=1 [Accessed March 26, 2017]. 

Rockstroh BS, Wienbruch C, Ray WJ, Elbert T (2007) Abnormal oscillatory brain dynamics in 
schizophrenia: a sign of deviant communication in neural network? BMC Psychiatry 7:44 
Available at: http://bmcpsychiatry.biomedcentral.com/articles/10.1186/1471-244X-7-44 
[Accessed June 14, 2016]. 

Roiser JP, Wigton R, Kilner JM, Mendez MA, Hon N, Friston KJ, Joyce EM (2013) 
Dysconnectivity in the frontoparietal attention network in schizophrenia. Front Psychiatry. 

Rolls E, Loh M, Deco G, Winterer G (2008) Computational models of schizophrenia and 
dopamine modulation in the prefrontal cortex. Nat Rev Neurosci 9:696–709. 

Ropohl A, Sperling W, Elstner S, Tomandl B, Reulbach U, Kaltenhäuser M, Kornhuber J, 
Maihöfner C (2004) Cortical activity associated with auditory hallucinations. Neuroreport 
15:523–526 Available at: http://www.ncbi.nlm.nih.gov/pubmed/15094516 [Accessed 
December 21, 2016]. 

Rossetti I, Brambilla P, Papagno C (2018) Metaphor comprehension in schizophrenic patients. 
Front Psychol 9 Available at: /pmc/articles/PMC5954116/?report=abstract [Accessed July 
22, 2020]. 

Rotarska-Jagiela A, van de Ven V, Oertel-Knöchel V, Uhlhaas PJ, Vogeley K, Linden DEJ 
(2010) Resting-state functional network correlates of psychotic symptoms in schizophrenia. 
Schizophr Res 117:21–30 Available at: http://www.ncbi.nlm.nih.gov/pubmed/20097544 
[Accessed February 6, 2016]. 

Rubinov M, Sporns O (2010) Complex network measures of brain connectivity: Uses and 
interpretations. Neuroimage 52:1059–1069. 

Rubinov M, Sporns O, Thivierge JP, Breakspear M (2011) Neurobiologically realistic 
determinants of Self-Organized criticality in networks of spiking neurons. PLoS Comput 
Biol 7. 

Rutter L, Carver FW, Holroyd T, Nadar SR, Mitchell-Francis J, Apud J, Weinberger DR, 
Coppola R (2009) Magnetoencephalographic gamma power reduction in patients with 
schizophrenia during resting condition. Hum Brain Mapp 30:3254–3264 Available at: 
http://doi.wiley.com/10.1002/hbm.20746 [Accessed June 14, 2016]. 

Rutter L, Nadar SR, Holroyd T, Carver FW, Apud J, Weinberger DR, Coppola R (2013) Graph 
theoretical analysis of resting magnetoencephalographic functional connectivity networks. 
Front Comput Neurosci 7:93 Available at: http://www.ncbi.nlm.nih.gov/pubmed/23874288 
[Accessed June 13, 2016]. 

Saito N, Kuginuki T, Yagyu T, Kinoshita T, Koenig T, Pascual-Marqui RD, Kochi K, 
Wackermann J, Lehmann D (1998) Global, Regional, and Local Measures of Complexity of 
Multichannel Electroencephalography in Acute, Neuroleptic-Naive, First-Break 
Schizophrenics. Biol Psychiatry 43:794–802. 

Sakkalis V (2011) Review of advanced techniques for the estimation of brain connectivity 
measured with EEG/MEG. Comput Biol Med 41:1110–1117. 

Salomons T V, Dunlop K, Kennedy SH, Flint A, Geraci J, Giacobbe P, Downar J (2014) 
Resting-State Cortico-Thalamic-Striatal Connectivity Predicts Response to Dorsomedial 
Prefrontal rTMS in Major Depressive Disorder. Neuropsychopharmacology 39:488–498 
Available at: http://www.nature.com/doifinder/10.1038/npp.2013.222 [Accessed February 



 

 

227 

24, 2017]. 
Sambataro F, Blasi G, Fazio L, Caforio G, Taurisano P, Romano R, Di Giorgio A, Gelao B, Lo 

Bianco L, Papazacharias A, Popolizio T, Nardini M, Bertolino A (2010) Treatment with 
Olanzapine is Associated with Modulation of the Default Mode Network in Patients with 
Schizophrenia. Neuropsychopharmacology 35:904–912 Available at: 
http://www.nature.com/doifinder/10.1038/npp.2009.192 [Accessed December 7, 2016]. 

Samek W, Blythe DAJ, Curio G, Müller KR, Blankertz B, Nikulin V V. (2016) Multiscale 
temporal neural dynamics predict performance in a complex sensorimotor task. Neuroimage 
141:291–303. 

Samoradnitsky G, Taqqu MS (1994) Stable Non-Gaussian Random Processes: Stochastic 
Models with Infinite, 1st ed. Chapman and Hall/CRC. Available at: 
https://www.routledge.com/Stable-Non-Gaussian-Random-Processes-Stochastic-Models-
with-Infinite-Variance/Samoradnitsky-Taqqu/p/book/9780412051715 [Accessed September 
1, 2020]. 

Sanfratello L, Houck JM, Calhoun V (2019) Dynamic functional network connectivity in 
schizophrenia with magnetoencephalography and functional magnetic resonance imaging: 
do different timescales tell a different story? Brain Connect 9:251–262. 

Sarpal DK et al. (2015) Antipsychotic Treatment and Functional Connectivity of the Striatum in 
First-Episode Schizophrenia. JAMA Psychiatry 72:5 Available at: 
http://archpsyc.jamanetwork.com/article.aspx?doi=10.1001/jamapsychiatry.2014.1734 
[Accessed December 8, 2016]. 

Satistics Canada (2012) Canadian Community Health Survey - Mental Health. 
Scherk H, Falkai P (2006) Effects of antipsychotics on brain structure. Curr Opin Psychiatry 

19:145–150 Available at: 
http://content.wkhealth.com/linkback/openurl?sid=WKPTLP:landingpage&an=00001504-
200603000-00006 [Accessed October 28, 2016]. 

Schmidt A, Diwadkar VA, Smieskova R, Harrisberger F, Lang UE, McGuire P, Fusar-Poli P, 
Borgwardt S (2014) Approaching a network connectivity-driven classification of the 
psychosis continuum: a selective review and suggestions for future research. Front Hum 
Neurosci 8:1047 Available at: 
http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=4292722&tool=pmcentrez&ren
dertype=abstract [Accessed February 18, 2016]. 

Schmidt A, Smieskova R, Aston J, Simon A, Allen P, Fusar-Poli P, McGuire PK, Riecher-
Rössler A, Stephan KE, Borgwardt S (2013) Brain connectivity abnormalities predating the 
onset of psychosis: Correlation with the effect of medication. JAMA Psychiatry 70:903–912 
Available at: https://jamanetwork.com/ [Accessed August 28, 2020]. 

Schnack HG (2019) Improving individual predictions: Machine learning approaches for 
detecting and attacking heterogeneity in schizophrenia (and other psychiatric diseases). 
Schizophr Res 214:34–42 Available at: https://pubmed.ncbi.nlm.nih.gov/29074332/ 
[Accessed September 11, 2020]. 

Schoffelen J-M, Gross J (2009) Source connectivity analysis with MEG and EEG. Hum Brain 
Mapp 30:1857–1865 Available at: http://doi.wiley.com/10.1002/hbm.20745 [Accessed 
September 22, 2016]. 

Schooler NR (1994) Deficit symptoms in schizophrenia: negative symptoms versus neuroleptic-
induced deficits. Acta Psychiatr Scand 89:21–26 Available at: 
http://doi.wiley.com/10.1111/j.1600-0447.1994.tb05827.x [Accessed August 21, 2020]. 



 

 

228 

Schreiber T (2000) Measuring Information Transfer. Phys Rev Lett 85:461–464 Available at: 
http://link.aps.org/doi/10.1103/PhysRevLett.85.461 [Accessed December 8, 2016]. 

Schroeder CE, Lakatos P (2009) Low-frequency neuronal oscillations as instruments of sensory 
selection. Trends Neurosci 32:9–18 Available at: 
http://www.sciencedirect.com/science/article/pii/S0166223608002506 [Accessed April 25, 
2017]. 

Schulman JJ, Cancro R, Lowe S, Lu F, Walton KD, Llinás RR (2011) Imaging of 
Thalamocortical Dysrhythmia in Neuropsychiatry. Front Hum Neurosci 5:69 Available at: 
http://journal.frontiersin.org/article/10.3389/fnhum.2011.00069/abstract [Accessed June 8, 
2016]. 

Seeman P (2006) Targeting the dopamine D2 receptor in schizophrenia. Expert Opin Ther 
Targets 10:515–531 Available at: 
https://www.tandfonline.com/doi/abs/10.1517/14728222.10.4.515 [Accessed August 28, 
2020]. 

Serrano E, Figliola A (2009) Wavelet Leaders: A new method to estimate the multifractal 
singularity spectra. Phys A Stat Mech its Appl 388:2793–2805. 

Shaw A, Knight L, Freeman T, Williams G, Moran R, Friston KJ, Walters J, Singh KD (2019) 
Oscillatory, computational, and behavioral evidence for impaired GABAergic inhibition in 
schizophrenia. Schizophr Bull sbz066. 

Sheehan D V., Lecrubier Y, Sheehan KH, Amorim P, Janavs J, Weiller E, Hergueta T, Baker R, 
Dunbar GC (1998) The Journal of clinical psychiatry. [Physicians Postgraduate Press]. 
Available at: https://www.psychiatrist.com/jcp/article/Pages/1998/v59s20/v59s2005.aspx 
[Accessed November 7, 2018]. 

Sheffield JM, Barch DM (2016) Cognition and resting-state functional connectivity in 
schizophrenia. Neurosci Biobehav Rev 61:108–120. 

Shehzad Z, Kelly AMC, Reiss PT, Gee DG, Gotimer K, Uddin LQ, Lee SH, Margulies DS, Roy 
AK, Biswal BB, Petkova E, Castellanos FX, Milham MP (2009) The resting brain: 
unconstrained yet reliable. Cereb Cortex 19:2209–2229 Available at: 
http://www.ncbi.nlm.nih.gov/pubmed/19221144 [Accessed July 25, 2016]. 

Shew WL, Plenz D (2013) The functional benefits of criticality in the cortex. Neuroscientist 
19:88–100 Available at: http://journals.sagepub.com/doi/10.1177/1073858412445487 
[Accessed August 21, 2020]. 

Shew WL, Yang H, Petermann T, Roy R, Plenz D (2009) Neuronal Avalanches Imply Maximum 
Dynamic Range in Cortical Networks at Criticality. J Neurosci 29:15595–15600 Available 
at: http://www.ncbi.nlm.nih.gov/pubmed/20007483 [Accessed August 28, 2017]. 

Shew WL, Yang H, Yu S, Roy R, Plenz D (2011) Information capacity and transmission are 
maximized in balanced cortical networks with neuronal avalanches. J Neurosci 31:55–63 
Available at: http://www.ncbi.nlm.nih.gov/pubmed/21209189 [Accessed August 28, 2017]. 

Shifman S et al. (2002) A highly significant association between a COMT haplotype and 
schizophrenia. Am J Hum Genet 71:1296–1302. 

Siebenhühner F et al. (2013) Intra- and Inter-Frequency Brain Network Structure in Health and 
Schizophrenia Hayasaka S, ed. PLoS One 8:e72351 Available at: 
http://dx.plos.org/10.1371/journal.pone.0072351 [Accessed June 13, 2016]. 

Siegle GJ, Thompson W, Carter CS, Steinhauer SR, Thase ME (2007) Increased Amygdala and 
Decreased Dorsolateral Prefrontal BOLD Responses in Unipolar Depression: Related and 
Independent Features. Biol Psychiatry 61:198–209. 



 

 

229 

Siekmeier PJ, Stufflebeam SM (2010) Patterns of spontaneous magnetoencephalographic activity 
in patients with schizophrenia. J Clin Neurophysiol 27:179–190 Available at: 
http://www.ncbi.nlm.nih.gov/pubmed/20461010 [Accessed August 22, 2016]. 

Silbersweig D (2013) Default Mode Subnetworks, Connectivity, Depression and Its Treatment: 
Toward Brain-Based Biomarker Development. Biol Psychiatry 74:5–6. 

Silbersweig DA, Stern E, Frith C, Cahill C, Holmes A, Grootoonk S, Seaward J, Mc Kenna P, 
Chua SE, Schnorr L, Jones T, Frackowiak RSJ (1995) A functional neuroanatomy of 
hallucinations in schizophrenia. Nature 378:176–179. 

Slezin V., Korsakova EA, Dytjatkovsky MA, Schultz EA, Arystova TA, Siivola JR (2007a) 
Multifractal analysis as an aid in the diagnostics of mental disorders. Nord J Psychiatry 
61:339–342 Available at: 
http://www.tandfonline.com/doi/full/10.1080/08039480701643175 [Accessed October 31, 
2016]. 

Slezin VB, Korsakova EA, Dytjatkovsky MA, Schultz EA, Arystova TA, Siivola JR (2007b) 
Multifractal analysis as an aid in the diagnostics of mental disorders. Nord J Psychiatry 
61:339–342 Available at: 
https://www.tandfonline.com/doi/abs/10.1080/08039480701643175 [Accessed August 19, 
2020]. 

Smart OL, Tiruvadi VR, Mayberg HS (2015) Multimodal approaches to define network 
oscillations in depression. Biol Psychiatry 77:1061–1070 Available at: 
http://www.sciencedirect.com/science/article/pii/S000632231500044X [Accessed February 
10, 2016]. 

Smit DJA, de Geus EJC, van de Nieuwenhuijzen ME, van Beijsterveldt CEM, van Baal GCM, 
Mansvelder HD, Boomsma DI, Linkenkaer-Hansen K (2011) Scale-free modulation of 
resting-state neuronal oscillations reflects prolonged brain maturation in humans. J Neurosci 
31:13128–13136. 

Smucny J, Olincy A, Tregellas JR (2016) Nicotine restores functional connectivity of the ventral 
attention network in schizophrenia. Neuropharmacology 108:144–151. 

Snyder AZ, Raichle ME (2012) A brief history of the resting state: The Washington University 
perspective. Neuroimage 62:902–910 Available at: 
/pmc/articles/PMC3342417/?report=abstract [Accessed August 23, 2020]. 

Socolar JES, Kauffman SA (2003) Scaling in ordered and critical random Boolean networks. 
Phys Rev Lett 90:068702/1-068702/4 Available at: 
https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.90.068702 [Accessed September 
1, 2020]. 

Song J, Desphande AS, Meier TB, Tudorascu DL, Vergun S, Nair VA, Biswal BB, Meyerand 
ME, Birn RM, Bellec P, Prabhakaran V (2012) Age-Related Differences in Test-Retest 
Reliability in Resting-State Brain Functional Connectivity Hampson M, ed. PLoS One 
7:e49847 Available at: https://dx.plos.org/10.1371/journal.pone.0049847 [Accessed 
September 11, 2020]. 

Souza França LG, Vivas Miranda JG, Leite M, Sharma NK, Walker MC, Lemieux L, Wang Y 
(2018) Fractal and multifractal properties of electrographic recordings of human brain 
activity: Toward its use as a signal feature for machine learning in clinical applications. 
Front Physiol 9. 

Spellman TJ, Gordon JA (2015) Synchrony in schizophrenia: a window into circuit-level 
pathophysiology. Curr Opin Neurobiol 30:17–23. 



 

 

230 

Sperling W, Kornhuber J, Bleich S (2003) Dipole elevations over the temporoparietal brain area 
are associated with negative symptoms in schizophrenia. A magnetoencephalographic 
study. Schizophr Res 64:187–188. 

Sperling W, Martus P, Kober H, Bleich S, Kornhuber J (2002) Spontaneous, slow and fast 
magnetoencephalographic activity in patients with schizophrenia. Schizophr Res 58:189–
199. 

Sperling W, Vieth J, Martus M, Demling J, Barocka A (1999) Spontaneous slow and fast MEG 
activity in male schizophrenics treated with clozapine. Psychopharmacology (Berl) 
142:375–382 Available at: http://www.ncbi.nlm.nih.gov/pubmed/10229062 [Accessed 
December 21, 2016]. 

Spironelli C, Angrilli A, Calogero A, Stegagno L (2011) Delta EEG Band as a Marker of Left 
Hypofrontality for Language in Schizophrenia Patients. Schizophr Bull 37:757–767 
Available at: https://academic.oup.com/schizophreniabulletin/article-
lookup/doi/10.1093/schbul/sbp145 [Accessed April 24, 2017]. 

Sponheim SR, Clementz BA, Iacono WG, Beiser M (1994) Resting EEG in first-episode and 
chronic schizophrenia. Psychophysiology 31:37–43 Available at: 
http://doi.wiley.com/10.1111/j.1469-8986.1994.tb01023.x [Accessed October 26, 2016]. 

Stam CJ (2010) Use of magnetoencephalography (MEG) to study functional brain networks in 
neurodegenerative disorders. J Neurol Sci 289:128–134. 

Stam CJ, De Bruin EA (2004) Scale-free dynamics of global functional connectivity in the 
human brain. Hum Brain Mapp 22:97–109 Available at: 
https://pubmed.ncbi.nlm.nih.gov/15108297/ [Accessed July 22, 2020]. 

Stam CJ, Nolte G, Daffertshofer A (2007) Phase lag index: Assessment of functional 
connectivity from multi channel EEG and MEG with diminished bias from common 
sources. Hum Brain Mapp 28:1178–1193 Available at: 
http://doi.wiley.com/10.1002/hbm.20346 [Accessed September 22, 2016]. 

Stephan KE, Friston KJ, Frith CD (2009) Dysconnection in schizophrenia: from abnormal 
synaptic plasticity to failures of self-monitoring. Schizophr Bull 35:509–527 Available at: 
http://www.ncbi.nlm.nih.gov/pubmed/19155345 [Accessed January 23, 2017]. 

Strakowski SM, Adler CM, Almeida J, Altshuler LL, Blumberg HP, Chang KD, DelBello MP, 
Frangou S, McIntosh A, Phillips ML, Sussman JE, Townsend JD (2012) The functional 
neuroanatomy of bipolar disorder: a consensus model. Bipolar Disord 14:313–325 
Available at: http://www.ncbi.nlm.nih.gov/pubmed/22631617 [Accessed September 3, 
2016]. 

Strelets V., Novototsky-Vlasov V., Golikova J. (2002) Cortical connectivity in high frequency 
beta-rhythm in schizophrenics with positive and negative symptoms. Int J Psychophysiol 
44:101–115. 

Strober M, Morrell W, Burroughs J, Lampert C, Danforth H, Freeman R (1988) A family study 
of bipolar I disorder in adolescence: Early onset of symptoms linked to increased familial 
loading and lithium resistance. J Affect Disord 15:255–268. 

Su T-W, Hsu T-W, Lin Y-C, Lin C-P (2015) Schizophrenia symptoms and brain network 
efficiency: A resting-state fMRI study. Psychiatry Res Neuroimaging 234:208–218. 

Sun J, Tang Y, Lim KO, Wang J, Tong S, Li H, He B (2014) Abnormal dynamics of EEG 
oscillations in schizophrenia patients on multiple time scales. IEEE Trans Biomed Eng. 

Sun L, Castellanos N, Grützner C, Koethe D, Rivolta D, Wibral M, Kranaster L, Singer W, 
Leweke MF, Uhlhaas PJ (2013) Evidence for dysregulated high-frequency oscillations 



 

 

231 

during sensory processing in medication-naïve, first episode schizophrenia. Schizophr Res 
150:519–525. 

Swick D, Ashley V, Turken AU (2008) Left inferior frontal gyrus is critical for response 
inhibition. BMC Neurosci 9:102 Available at: 
http://bmcneurosci.biomedcentral.com/articles/10.1186/1471-2202-9-102 [Accessed 
January 14, 2019]. 

Tagliazucchi E, Laufs H (2014) Decoding Wakefulness Levels from Typical fMRI Resting-State 
Data Reveals Reliable Drifts between Wakefulness and Sleep. Neuron 82:695–708 
Available at: http://linkinghub.elsevier.com/retrieve/pii/S0896627314002505 [Accessed 
March 16, 2017]. 

Tai AMY, Albuquerque A, Carmona NE, Subramanieapillai M, Cha DS, Sheko M, Lee Y, 
Mansur R, McIntyre RS (2019) Machine learning and big data: Implications for disease 
modeling and therapeutic discovery in psychiatry. Artif Intell Med 99 Available at: 
https://pubmed.ncbi.nlm.nih.gov/31606109/ [Accessed September 11, 2020]. 

Takahashi T (2013) Complexity of spontaneous brain activity in mental disorders. Prog Neuro-
Psychopharmacology Biol Psychiatry 45:258–266. 

Takahashi T, Cho RY, Mizuno T, Kikuchi M, Murata T, Takahashi K, Wada Y (2010) 
Antipsychotics reverse abnormal EEG complexity in drug-naive schizophrenia: A 
multiscale entropy analysis. Neuroimage 51:173–182. 

Takahashi T, Kosaka H, Murata T, Omori M, Narita K, Mitsuya H, Takahashi K, Kimura H, 
Wada Y (2009) Application of a multifractal analysis to study brain white matter 
abnormalities of schizophrenia on T2-weighted magnetic resonance imaging. Psychiatry 
Res - Neuroimaging 171:177–188. 

Tal O, Diwakar M, Wong C-W, Olafsson V, Lee R, Huang M-X, Liu TT (2013) Caffeine-
Induced Global Reductions in Resting-State BOLD Connectivity Reflect Widespread 
Decreases in MEG Connectivity. Front Hum Neurosci 7:63 Available at: 
http://journal.frontiersin.org/article/10.3389/fnhum.2013.00063/abstract [Accessed 
February 24, 2017]. 

Tallon-Baudry C, Bertrand O (1999) Oscillatory gamma activity in humans and its role in object 
representation. Trends Cogn Sci 3:151–162 Available at: 
https://pubmed.ncbi.nlm.nih.gov/10322469/ [Accessed September 18, 2020]. 

Tamm L, Menon V, Reiss AL (2002) Maturation of Brain Function Associated With Response 
Inhibition. J Am Acad Child Adolesc Psychiatry 41:1231–1238. 

Tan B, Kong X, Yang P, Jin Z, Li L (2013) The difference of brain functional connectivity 
between eyes-closed and eyes-open using graph theoretical analysis. Comput Math Methods 
Med 2013 Available at: https://pubmed.ncbi.nlm.nih.gov/23690886/ [Accessed August 23, 
2020]. 

Tanaka A, Kimura M, Yoshinaga S, Tomonaga M, Mizoguchi T (1998) Quantitative 
electroencephalographic correlates of cerebral blood flow in patients with chronic subdural 
hematomas. Surg Neurol 50:235–240 Available at: 
http://www.sciencedirect.com/science/article/pii/S009030199790063X [Accessed April 1, 
2017]. 

Tandon R, Gaebel W, Barch DM, Bustillo J, Gur RE, Heckers S, Malaspina D, Owen MJ, 
Schultz S, Tsuang M, Van Os J, Carpenter W (2013) Definition and description of 
schizophrenia in the DSM-5. Schizophr Res 150:3–10. 

Tauscher J, Fischer P, Neumeister A, Rappelsberger P, Kasper S (1998) Low frontal 



 

 

232 

electroencephalographic coherence in neuroleptic-free schizophrenic patients. Biol 
Psychiatry 44:438–447. 

Tavor I, Jones OP, Mars RB, Smith SM, Behrens TE, Jbabdi S (2016) Task-free MRI predicts 
individual differences in brain activity during task performance. Science (80- ) 352 
Available at: http://science.sciencemag.org/content/352/6282/216.long [Accessed April 25, 
2017]. 

Taylor MJ, Doesburg SM, Pang EW (2014) Neuromagnetic vistas into typical and atypical 
development of frontal lobe functions. Front Hum Neurosci 8:453 Available at: 
http://www.ncbi.nlm.nih.gov/pubmed/24994980 [Accessed September 30, 2016]. 

Thuné H et al. (2016) The 40-Hz Auditory Steady-State Response in Patients With 
Schizophrenia. JAMA Psychiatry 73:1145 Available at: 
http://archpsyc.jamanetwork.com/article.aspx?doi=10.1001/jamapsychiatry.2016.2619 
[Accessed February 5, 2017]. 

Tononi G, Sporns O, Edelman GM (1994) A measure for brain complexity: Relating functional 
segregation and integration in the nervous system. Neurobiology 91:5033–5037 Available 
at: http://www.pnas.org/content/91/11/5033.full.pdf [Accessed August 6, 2017]. 

Tortella G, Selingardi P, Moreno M, Veronezi B, Brunoni A (2015) Does Non-Invasive Brain 
Stimulation Improve Cognition in Major Depressive Disorder? A Systematic Review. CNS 
Neurol Disord - Drug Targets 13:1759–1769 Available at: 
http://www.eurekaselect.com/openurl/content.php?genre=article&issn=1871-
5273&volume=13&issue=10&spage=1759 [Accessed February 24, 2017]. 

Tsvetanov KA, Henson RNA, Tyler LK, Razi A, Geerligs L, Ham TE, Rowe JB, Cambridge 
Centre for Ageing and Neuroscience CC for A and (2016) Extrinsic and Intrinsic Brain 
Network Connectivity Maintains Cognition across the Lifespan Despite Accelerated Decay 
of Regional Brain Activation. J Neurosci 36:3115–3126 Available at: 
http://www.ncbi.nlm.nih.gov/pubmed/26985024 [Accessed August 27, 2017]. 

Tu P-C, Lee Y-C, Chen Y-S, Li C-T, Su T-P (2013) Schizophrenia and the brain’s control 
network: Aberrant within- and between-network connectivity of the frontoparietal network 
in schizophrenia. Schizophr Res 147:339–347. 

Uhlhaas PJ (2011) The adolescent brain: implications for the understanding, pathophysiology, 
and treatment of schizophrenia. Schizophr Bull 37:480–483 Available at: 
http://www.ncbi.nlm.nih.gov/pubmed/21505114 [Accessed November 4, 2018]. 

Uhlhaas PJ (2013) Dysconnectivity, large-scale networks and neuronal dynamics in 
schizophrenia. Curr Opin Neurobiol 23:283–290 Available at: 
http://www.sciencedirect.com/science/article/pii/S0959438812001663 [Accessed January 4, 
2016]. 

Uhlhaas PJ, Haenschel C, Nikolić D, Singer W (2008) The role of oscillations and synchrony in 
cortical networks and their putative relevance for the pathophysiology of schizophrenia. 
Schizophr Bull 34:927–943 Available at: http://www.ncbi.nlm.nih.gov/pubmed/18562344 
[Accessed August 23, 2016]. 

Uhlhaas PJ, Liddle P, Linden D, Nobre AC, Singh KD, Gross J (2017) Magnetoencephalography 
as a Tool in Psychiatric Research: Current Status and Perspective. Biol Psychiatry Cogn 
Neurosci Neuroimaging. 

Uhlhaas PJ, Roux F, Singer W (2013) Thalamocortical Synchronization and Cognition: 
Implications for Schizophrenia? Neuron 77:997–999. 

Uhlhaas PJ, Singer W (2010) Abnormal neural oscillations and synchrony in schizophrenia. Nat 



 

 

233 

Rev Neurosci 11:100–113 Available at: http://www.nature.com/doifinder/10.1038/nrn2774 
[Accessed August 23, 2016]. 

Uhlhaas PJ, Singer W (2013) High-frequency oscillations and the neurobiology of schizophrenia. 
Dialogues Clin Neurosci 15:301–313 Available at: 
http://www.ncbi.nlm.nih.gov/pubmed/24174902 [Accessed August 23, 2016]. 

Umesh S, Nizamie SH, Goyal N, Tikka S, Bose S (2016) Social anhedonia and gamma band 
abnormalities as a composite/multivariate endophenotype for schizophrenia: a dense array 
EEG study. Early Interv Psychiatry:n/a-n/a Available at: 
http://doi.wiley.com/10.1111/eip.12327 [Accessed December 6, 2016]. 

Van Den Heuvel MP, Fornito A (2014) Brain networks in schizophrenia. Neuropsychol Rev 
24:32–48 Available at: https://pubmed.ncbi.nlm.nih.gov/24500505/ [Accessed September 
11, 2020]. 

van den Heuvel MP, Hulshoff Pol HE (2010a) Exploring the brain network: a review on resting-
state fMRI functional connectivity. Eur Neuropsychopharmacol 20:519–534 Available at: 
http://www.ncbi.nlm.nih.gov/pubmed/20471808 [Accessed July 12, 2014]. 

van den Heuvel MP, Hulshoff Pol HE (2010b) Exploring the brain network: A review on resting-
state fMRI functional connectivity. Eur Neuropsychopharmacol 20:519–534. 

van den Heuvel MP, Kahn RS (2011) Abnormal Brain Wiring as a Pathogenetic Mechanism in 
Schizophrenia. Biol Psychiatry 70:1107–1108 Available at: 
http://linkinghub.elsevier.com/retrieve/pii/S0006322311010195 [Accessed August 30, 
2017]. 

Van Den Heuvel MP, Mandl RCW, Kahn RS, Hulshoff Pol HE (2009) Functionally Linked 
Resting-State Networks Reflect the Underlying Structural Connectivity Architecture of the 
Human Brain. Hum Brain Mapp. 

van der Doef TF, Domingo SZ, Jacobs GE, Drevets WC, Marston HM, Nathan PJ, Tome MB, 
Tamminga CA, van Gerven JMA, Kas MJH (2018) New approaches in psychiatric drug 
development. Eur Neuropsychopharmacol 28:983–993. 

van Diessen E, Numan T, van Dellen E, van der Kooi AW, Boersma M, Hofman D, van 
Lutterveld R, van Dijk BW, van Straaten ECW, Hillebrand A, Stam CJ (2015a) 
Opportunities and methodological challenges in EEG and MEG resting state functional 
brain network research. Clin Neurophysiol 126:1468–1481. 

van Diessen E, Numan T, van Dellen E, van der Kooi AW, Boersma M, Hofman D, van 
Lutterveld R, van Dijk BW, van Straaten ECW, Hillebrand A, Stam CJ (2015b) 
Opportunities and methodological challenges in EEG and MEG resting state functional 
brain network research. Clin Neurophysiol 126:1468–1481. 

Van Orden G, Hollis G, Wallot S (2012) The Blue-Collar Brain. Front Physiol 3:207 Available 
at: http://journal.frontiersin.org/article/10.3389/fphys.2012.00207/abstract [Accessed April 
17, 2020]. 

Van Os J, Rutten BPF, Poulton R (2008) Gene-environment interactions in schizophrenia: 
Review of epidemiological findings and future directions. Schizophr Bull 34:1066–1082 
Available at: https://academic.oup.com/schizophreniabulletin/article/34/6/1066/1942715 
[Accessed August 27, 2020]. 

Varela F, Lachaux J-P, Rodriguez E, Martinerie J (2001) The brainweb: phase synchronisation 
and large-scale integration. Nat Rev 2:229–239. 

Vargas C, López-Jaramillo C, Vieta E (2013) A systematic literature review of resting state 
network--functional MRI in bipolar disorder. J Affect Disord 150:727–735 Available at: 



 

 

234 

http://www.ncbi.nlm.nih.gov/pubmed/23830141 [Accessed February 17, 2016]. 
Vasic N et al. (2009) Aberrant functional connectivity of dorsolateral prefrontal and cingulate 

networks in patients with major depression during working memory processing. Psychol 
Med 39:977 Available at: 
http://www.journals.cambridge.org/abstract_S0033291708004443 [Accessed November 4, 
2016]. 

Veer IM, Beckmann C, Van Tol M-J, Ferrarini L, Milles J, Veltman D, Aleman A, Van Buchem 
MA, Van Der Wee NJA, Rombouts SAR (2010) Whole brain resting-state analysis reveals 
decreased functional connectivity in major depression. Front Syst Neurosci 4:41 Available 
at: http://journal.frontiersin.org/article/10.3389/fnsys.2010.00041/abstract [Accessed June 
16, 2016]. 

Velakoulis D, Wood SJ, Wong MTH, McGorry PD, Yung A, Phillips L, Smith D, Brewer W, 
Proffitt T, Desmond P, Pantelis C (2006) Hippocampal and amygdala volumes according to 
psychosis stage and diagnosis: A magnetic resonance imaging study of chronic 
schizophrenia, first-episode psychosis, and ultra-high-risk individuals. Arch Gen Psychiatry 
63:139–149. 

Venables NC, Bernat EM, Sponheim SR (2009) Genetic and disorder-specific aspects of resting 
state EEG abnormalities in schizophrenia. Schizophr Bull 35:826–839 Available at: 
http://www.ncbi.nlm.nih.gov/pubmed/18381357 [Accessed October 26, 2016]. 

Veronese E, Castellani U, Peruzzo D, Bellani M, Brambilla P (2013) Machine learning 
approaches: From theory to application in schizophrenia. Comput Math Methods Med 2013 
Available at: https://pubmed.ncbi.nlm.nih.gov/24489603/ [Accessed September 11, 2020]. 

Versace A, Thompson WK, Zhou D, Almeida JRC, Hassel S, Klein CR, Kupfer DJ, Phillips ML 
(2010) Abnormal left and right amygdala-orbitofrontal cortical functional connectivity to 
emotional faces: state versus trait vulnerability markers of depression in bipolar disorder. 
Biol Psychiatry 67:422–431 Available at: http://www.ncbi.nlm.nih.gov/pubmed/20159144 
[Accessed November 4, 2016]. 

Vinck M, Oostenveld R, van Wingerden M, Battaglia F, Pennartz CMA (2011) An improved 
index of phase-synchronization for electrophysiological data in the presence of volume-
conduction, noise and sample-size bias. Neuroimage 55:1548–1565. 

Vita A, De Peri L (2007) The effects of antipsychotic treatment on cerebral structure and 
function in schizophrenia. Int Rev Psychiatry 19:431–438. 

Vrticka P, Black JM, Reiss AL (2013) The neural basis of humour processing. Nat Rev Neurosci 
14:860–868 Available at: http://www.ncbi.nlm.nih.gov/pubmed/24169937 [Accessed 
August 30, 2017]. 

Wada Y, Nanbu Y, Kikuchi M, Koshino Y, Hashimoto T (1998) Aberrant Functional 
Organization in Schizophrenia: Analysis of EEG Coherence during Rest and Photic 
Stimulation in Drug-Naive Patients. Biol Psychiatry Orig Pap Neuropsychobiology 38:63–
69 Available at: www.karger.com [Accessed August 24, 2016]. 

Wagner G, De la Cruz F, Schachtzabel C, Güllmar D, Schultz CC, Schlösser RG, Bär KJ, Koch 
K (2015) Structural and functional dysconnectivity of thefronto-thalamic system in 
schizophrenia: ADCM-DTI study. Cortex 66:35–45. 

Walton KE, Ormel J, Krueger RF (2011) The Dimensional Nature of Externalizing Behaviors in 
Adolescence: Evidence from a Direct Comparison of Categorical, Dimensional, and Hybrid 
Models. J Abnorm Child Psychol 39:553–561 Available at: 
http://www.ncbi.nlm.nih.gov/pubmed/21210204 [Accessed August 30, 2017]. 



 

 

235 

Wang C, Du J, Zhang Y, Zhou P, Ming D (2016a) The long-range temporal correlations of 
broadband EEG oscillations in poststroke depression subjects with basal ganglia infarction. 
In: 2016 38th Annual International Conference of the IEEE Engineering in Medicine and 
Biology Society (EMBC), pp 1830–1833. IEEE. Available at: 
http://ieeexplore.ieee.org/document/7591075/ [Accessed July 28, 2017]. 

Wang F, Kalmar JH, He Y, Jackowski M, Chepenik LG, Edmiston EE, Tie K, Gong G, Shah 
MP, Jones M, Uderman J, Constable RT, Blumberg HP (2009) Functional and structural 
connectivity between the perigenual anterior cingulate and amygdala in bipolar disorder. 
Biol Psychiatry 66:516–521 Available at: http://www.ncbi.nlm.nih.gov/pubmed/19427632 
[Accessed November 4, 2016]. 

Wang H-LS, Rau C-L, Li Y-M, Chen Y-P, Yu R (2015a) Disrupted thalamic resting-state 
functional networks in schizophrenia. Front Behav Neurosci 9:45 Available at: 
http://journal.frontiersin.org/Article/10.3389/fnbeh.2015.00045/abstract [Accessed 
September 22, 2016]. 

Wang HE, Benar CG, Quilichini PP, Friston KJ, Jirsa VK, Bernard C (2014) A systematic 
framework for functional connectivity measures. Front Neurosci 8:405 Available at: 
http://journal.frontiersin.org/article/10.3389/fnins.2014.00405/abstract [Accessed June 20, 
2016]. 

Wang J, Chen Z, Peng X, Yang T, Li P, Cong F, Li H (2016b) To Know or Not to Know? Theta 
and Delta Reflect Complementary Information about an Advanced Cue before Feedback in 
Decision-Making. Front Psychol 7:1556 Available at: 
http://www.ncbi.nlm.nih.gov/pubmed/27766090 [Accessed April 25, 2017]. 

Wang Z, Meda SA, Keshavan MS, Tamminga CA, Sweeney JA, Clementz BA, Schretlen DJ, 
Calhoun VD, Lui S, Pearlson GD (2015b) Large-scale fusion of gray matter and resting-
state functional MRI reveals common and distinct biological markers across the psychosis 
spectrum in the B-SNIP cohort. Front Psychiatry 6. 

Ward LM (2003) Synchronous neural oscillations and cognitive processes. Trends Cogn Sci 
7:553–559 Available at: http://linkinghub.elsevier.com/retrieve/pii/S1364661303002894 
[Accessed August 27, 2017]. 

Wasserstein RL, Lazar NA (2016) The ASA’s Statement on p-Values: Context, Process, and 
Purpose. Am Stat 70:129–133 Available at: 
https://www.tandfonline.com/doi/abs/10.1080/00031305.2016.1154108 [Accessed 
September 17, 2020]. 

Weber MM, Engstrom EJ (1997) Kraepelin’s “diagnostic cards”: The confluence of clinical 
research and preconceived categories. Hist Psychiatry 8:375–385 Available at: 
https://pubmed.ncbi.nlm.nih.gov/11619584/ [Accessed January 10, 2021]. 

Wei J, Chen T, Li C, Liu G, Qiu J, Wei D (2018) Eyes-Open and Eyes-Closed Resting States 
With Opposite Brain Activity in Sensorimotor and Occipital Regions: Multidimensional 
Evidences From Machine Learning Perspective. Front Hum Neurosci 12:422 Available at: 
https://www.frontiersin.org/article/10.3389/fnhum.2018.00422/full [Accessed August 23, 
2020]. 

Wei M, Qin J, Yan R, Bi K, Liu C, Yao Z, Lu Q (2015) Association of resting-state network 
dysfunction with their dynamics of inter-network interactions in depression. J Affect Disord 
174:527–534 Available at: http://linkinghub.elsevier.com/retrieve/pii/S0165032714008064 
[Accessed August 6, 2017]. 

Wei M, Qin J, Yan R, Li H, Yao Z, Lu Q (2013) Identifying major depressive disorder using 



 

 

236 

Hurst exponent of resting-state brain networks. Psychiatry Res Neuroimaging 214:306–312 
Available at: http://linkinghub.elsevier.com/retrieve/pii/S0925492713002643 [Accessed 
August 6, 2017]. 

Weiland BJ, Sabbineni A, Calhoun VD, Welsh RC, Hutchison KE (2015) Reduced executive 
and default network functional connectivity in cigarette smokers. Hum Brain Mapp 36:872–
882 Available at: http://www.ncbi.nlm.nih.gov/pubmed/25346448 [Accessed February 24, 
2017]. 

Weinberger DR, Berman KF, Frith C (1996) Prefrontal Function in Schizophrenia: Confounds 
and Controversies [and Discussion]. Philos Trans R Soc London B Biol Sci 351. 

Weinberger DR, Berman KF, Suddath R, Fuller Torrey E (1992) Evidence of Dysfunction of a 
Prefrontal-Limbic Network in Schizophrenia: A Magnetic Resonance Imaging and Regional 
Cerebral Blood Flow Study of Discordant Monozygotic Twins. Available at: 
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.452.2015&rep=rep1&type=pdf 
[Accessed January 15, 2019]. 

Welsh RC, Chen AC, Taylor SF (2010) Low-Frequency BOLD Fluctuations Demonstrate 
Altered Thalamocortical Connectivity in Schizophrenia. Schizophr Bull 36:713–722 
Available at: http://schizophreniabulletin.oxfordjournals.org/cgi/doi/10.1093/schbul/sbn145 
[Accessed September 6, 2016]. 

Wendt H (2007) Multifractality Tests Using Bootstrapped Wavelet Leaders. IEEE Trans Signal 
Process 55 Available at: https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=4305467 
[Accessed April 7, 2020]. 

Wendt H (2008) Contributions of Wavelet Leaders and Bootstrap to Multifractal Analysis: 
Images, Estimation Performance, Dependence Structure and Vanishing Moments. 
Confidence Intervals and Hypothesis Tests. Available at: 
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.372.8718&rep=rep1&type=pdf 
[Accessed September 1, 2020]. 

Wendt H, Abry P (2007) Multifractality Tests Using Bootstrapped Wavelet Leaders. IEEE Trans 
Signal Process 55:4811–4820 Available at: http://ieeexplore.ieee.org/document/4305467/ 
[Accessed August 4, 2017]. 

Wendt H, Abry P, Jaffard S (2007) Bootstrap for empirical multifractal analysis. IEEE Signal 
Process Mag 24:38–48. 

Wendt H, Abry P, Jaffard S, Ji H, Shen Z (2009) Wavelet leader multifractal analysis for texture 
classification. In: Proceedings - International Conference on Image Processing, ICIP, pp 
3829–3832. IEEE Computer Society. 

Wens V, Bourguignon M, Goldman S, Marty B, Op de Beeck M, Clumeck C, Mary A, Peigneux 
P, Van Bogaert P, Brookes MJ, De Tiège X (2014) Inter- and Intra-Subject Variability of 
Neuromagnetic Resting State Networks. Brain Topogr 27:620–634 Available at: 
http://link.springer.com/10.1007/s10548-014-0364-8 [Accessed November 6, 2016]. 

Werner G (2007) Brain dynamics across levels of organization. J Physiol Paris 101:273–279. 
White RS, Siegel SJ (2016) Cellular and circuit models of increased resting-state network 

gamma activity in schizophrenia. Neuroscience 321:66–76. 
White T, Ehrlich S, Ho B-C, Manoach DS, Caprihan A, Schulz SC, Andreasen NC, Gollub RL, 

Calhoun VD, Magnotta VA (2013) Spatial characteristics of white matter abnormalities in 
schizophrenia. Schizophr Bull 39:1077–1086 Available at: 
http://www.ncbi.nlm.nih.gov/pubmed/22987296 [Accessed October 26, 2016]. 

Whitfield-Gabrieli S, Ford JM (2012) Default Mode Network Activity and Connectivity in 



 

 

237 

Psychopathology. Annu Rev Clin Psychol 8:49–76 Available at: 
http://www.annualreviews.org/doi/10.1146/annurev-clinpsy-032511-143049 [Accessed 
August 30, 2016]. 

Whitfield-Gabrieli S, Thermenos HW, Milanovic S, Tsuang MT, Faraone S V, McCarley RW, 
Shenton ME, Green AI, Nieto-Castanon A, LaViolette P, Wojcik J, Gabrieli JDE, Seidman 
LJ (2009) Hyperactivity and hyperconnectivity of the default network in schizophrenia and 
in first-degree relatives of persons with schizophrenia. Proc Natl Acad Sci U S A 106:1279–
1284 Available at: http://www.ncbi.nlm.nih.gov/pubmed/19164577 [Accessed September 
26, 2016]. 

Wienbruch C, Moratti S, Elbert T, Vogel U, Fehr T, Kissler J, Schiller A, Rockstroh B (2003) 
Source distribution of neuromagnetic slow wave activity in schizophrenic and depressive 
patients. Clin Neurophysiol 114:2052–2060. 

Williams MA, Sachdev PS (2010) Magnetoencephalography in neuropsychiatry: ready for 
application? Curr Opin Psychiatry 23:273–277 Available at: 
http://content.wkhealth.com/linkback/openurl?sid=WKPTLP:landingpage&an=00001504-
201005000-00015 [Accessed August 23, 2016]. 

Wilson TW, Heinrichs-Graham E, Proskovec AL, McDermott TJ (2016) Neuroimaging with 
magnetoencephalography: A dynamic view of brain pathophysiology. Transl Res. 

Wilson TW, Hernandez OO, Asherin RM, Teale PD, Reite ML, Rojas DC (2008) Cortical 
gamma generators suggest abnormal auditory circuitry in early-onset psychosis. Cereb 
Cortex 18:371–378 Available at: http://www.ncbi.nlm.nih.gov/pubmed/17557901 
[Accessed September 30, 2016]. 

Wilson TW, Slason E, Hernandez OO, Asherin R, Reite ML, Teale PD, Rojas DC (2009) 
Aberrant high-frequency desynchronization of cerebellar cortices in early-onset psychosis. 
Psychiatry Res 174:47–56 Available at: http://www.ncbi.nlm.nih.gov/pubmed/19783411 
[Accessed October 23, 2016]. 

Witthaus H, Kaufmann C, Bohner G, Özgürdal S, Gudlowski Y, Gallinat J, Ruhrmann S, Brüne 
M, Heinz A, Klingebiel R, Juckel G (2009) Gray matter abnormalities in subjects at ultra-
high risk for schizophrenia and first-episode schizophrenic patients compared to healthy 
controls. Psychiatry Res Neuroimaging 173:163–169 Available at: 
https://www.sciencedirect.com/science/article/pii/S092549270800125X [Accessed January 
14, 2019]. 

Wong CW, DeYoung PN, Liu TT (2016) Differences in the resting-state fMRI global signal 
amplitude between the eyes open and eyes closed states are related to changes in EEG 
vigilance. Neuroimage 124:24–31 Available at: https://pubmed.ncbi.nlm.nih.gov/26327245/ 
[Accessed August 23, 2020]. 

Wonodi I, Stine OC, Mitchell BD, Buchanan RW, Thaker GK (2003) Association between 
Val108/158 met polymorphism of theCOMT gene and schizophrenia. Am J Med Genet 
120B:47–50 Available at: http://doi.wiley.com/10.1002/ajmg.b.20037 [Accessed August 28, 
2020]. 

Woodward ND, Cascio CJ (2015) Resting-State Functional Connectivity in Psychiatric 
Disorders. JAMA psychiatry 72:743–744 Available at: 
http://www.ncbi.nlm.nih.gov/pubmed/26061674 [Accessed February 4, 2017]. 

Woodward ND, Karbasforoushan H, Heckers S (2012) Thalamocortical dysconnectivity in 
schizophrenia. Am J Psychiatry 169:1092–1099 Available at: 
http://www.ncbi.nlm.nih.gov/pubmed/23032387 [Accessed September 3, 2016]. 



 

 

238 

World Health Organization (2016) Fact sheet: Mental disorders. 
Wylie KP, Tregellas JR (2010) The role of the insula in schizophrenia. Schizophr Res 123:93–

104 Available at: /pmc/articles/PMC2957503/?report=abstract [Accessed July 20, 2020]. 
Xu Y, Qin W, Zhuo C, Xu L, Zhu J, Liu X, Yu C (2017) Selective functional disconnection of 

the orbitofrontal subregions in schizophrenia. Psychol Med 47:1637–1646. 
Yang H, Shew WL, Roy R, Plenz D (2012) Maximal variability of phase synchrony in cortical 

networks with neuronal avalanches. J Neurosci 32:1061–1072 Available at: 
https://www.jneurosci.org/content/32/3/1061 [Accessed September 1, 2020]. 

Yeganeh-Doost P, Gruber O, Falkai P, Schmitt A (2011) The role of the cerebellum in 
schizophrenia: from cognition to molecular pathways. Clinics (Sao Paulo) 66 Suppl 1:71–77 
Available at: http://www.ncbi.nlm.nih.gov/pubmed/21779725 [Accessed April 24, 2017]. 

Yener GG, Başar E (2013) Brain oscillations as biomarkers in neuropsychiatric disorders: 
following an interactive panel discussion and synopsis. Suppl Clin Neurophysiol 62:343–
363 Available at: http://www.ncbi.nlm.nih.gov/pubmed/24053048 [Accessed September 1, 
2016]. 

Youssofzadeh V, Agler W, Tenney JR, Kadis DS (2018) Whole-brain MEG connectivity-based 
analyses reveals critical hubs in childhood absence epilepsy. Epilepsy Res 145:102–109. 

Yu Q, Allen EA, Sui J, Arbabshirani MR, Pearlson G, Calhoun VD (2012) Brain connectivity 
networks in schizophrenia underlying resting state functional magnetic resonance imaging. 
Curr Top Med Chem 12:2415–2425 Available at: 
http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=4429862&tool=pmcentrez&ren
dertype=abstract [Accessed February 18, 2016]. 

Yu Y, Shen H, Zhang H, Zeng L-L, Xue Z, Hu D (2013) Functional connectivity-based 
signatures of schizophrenia revealed by multiclass pattern analysis of resting-state fMRI 
from schizophrenic patients and their healthy siblings. Biomed Eng Online 12:10 Available 
at: http://www.ncbi.nlm.nih.gov/pubmed/23390976 [Accessed August 29, 2016]. 

Zanchi D, Brody AL, Montandon M-L, Kopel R, Emmert K, Preti MG, Van De Ville D, Haller S 
(2015) Cigarette smoking leads to persistent and dose-dependent alterations of brain activity 
and connectivity in anterior insula and anterior cingulate. Addict Biol 20:1033–1041 
Available at: http://doi.wiley.com/10.1111/adb.12292 [Accessed February 24, 2017]. 

Zaytseva Y, Bendova M, Garakh Z, Tintera J, Rydlo J, Spaniel F, Horacek J (2015) In search of 
neural mechanism of mirror neuron dysfunction in schizophrenia: resting state functional 
connectivity approach. Psychiatr Danub 27:269–272. 

Zeev-Wolf M, Levy J, Jahshan C, Peled A, Levkovitz Y, Grinshpoon A, Goldstein A (2018) 
MEG resting-state oscillations and their relationship to clinical symptoms in schizophrenia. 
NeuroImage Clin. 

Zeng L-L, Shen H, Liu L, Wang L, Li B, Fang P, Zhou Z, Li Y, Hu D (2012) Identifying major 
depression using whole-brain functional connectivity: a multivariate pattern analysis. Brain 
135:1498–1507 Available at: http://brain.oxfordjournals.org/content/135/5/1498.short 
[Accessed February 26, 2016]. 

Zhang X, Wang Y-T, Wang Y, Jung TP, Huang M, Cheng CK, Mandell AJ (2015) Ultra-slow 
frequency bands reflecting potential coherence between neocortical brain regions. 
Neuroscience 289:71–84. 

Zheng H, Xu L, Xie F, Guo X, Zhang J, Yao L, Wu X (2015) The Altered Triple Networks 
Interaction in Depression under Resting State Based on Graph Theory. Biomed Res Int 
2015:386326 Available at: http://www.ncbi.nlm.nih.gov/pubmed/26180798 [Accessed July 



 

 

239 

27, 2017]. 
Zhou Y, Fan L, Qiu C, Jiang T (2015) Prefrontal cortex and the dysconnectivity hypothesis of 

schizophrenia. Neurosci Bull 31:207–219 Available at: 
https://pubmed.ncbi.nlm.nih.gov/25761914/ [Accessed September 11, 2020]. 

Zhou Y, Liang M, Tian L, Wang K, Hao Y, Liu H, Liu Z, Jiang T (2007) Functional 
disintegration in paranoid schizophrenia using resting-state fMRI. Schizophr Res 97:194–
205. 

Zilber N (2014) ERF and scale-free analyses of source-reconstructed MEG brain signals during a 
multisensory learning paradigm. Available at: https://tel.archives-ouvertes.fr/tel-00984990 
[Accessed July 6, 2020]. 

Zilber N, Ciuciu P, Abry P, Van Wassenhove V (2012) Modulation of scale-free properties of 
brain activity in MEG. In: Proceedings - International Symposium on Biomedical Imaging, 
pp 1531–1534. 

Zilber N, Ciuciu P, Abry P, Van Wassenhove V (2013) Learning-induced modulation of scale-
free properties of brain activity measured with MEG. Proc - Int Symp Biomed 
Imaging:998–1001. 

Zimmern V (2020) Why Brain Criticality Is Clinically Relevant: A Scoping Review. Front 
Neural Circuits 14:54 Available at: 
https://www.frontiersin.org/article/10.3389/fncir.2020.00054/full [Accessed September 18, 
2020]. 

Zotev V, Yuan H, Misaki M, Phillips R, Young KD, Feldner MT, Bodurka J (2016) Correlation 
between amygdala BOLD activity and frontal EEG asymmetry during real-time fMRI 
neurofeedback training in patients with depression. NeuroImage Clin 11:224–238 Available 
at: http://www.ncbi.nlm.nih.gov/pubmed/26958462 [Accessed June 27, 2016]. 

 


