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Résumé 

Introduction: Il y a peu de données publiées sur les prédicteurs de saignement majeur (MB) 

dans une population d’utilisateurs d’anticoagulants oraux (OAC) qui inclue les OACs à action 

directe chez des patients ayant un diagnostic de fibrillation auriculaire (AF) en situation réelle.  

Objectif: Développer un modèle de prédiction de MB et de ses sous-types pour une 

population de nouveaux utilisateurs de OAC ayant un diagnostic de AF en situation réelle.  

Méthode : À l’aide de la base de données d’hospitalisation Med-Écho et des bases de données 

administratives de la RAMQ, nous avons identifié des patients ayant un diagnostic primaire ou 

secondaire de AF suite à une hospitalisation qui ont eu leur congé hospitalier de janvier 2011 à 

décembre 2017. Nous avons ensuite identifié ceux qui étaient des nouveaux utilisateurs de 

OAC et catégorisé ceux-ci selon le OAC utilisé ainsi que sa dose. L’entrée dans la cohorte 

était la première dispensation de OAC durant la période d’étude alors qu’un nouvel utilisateur 

a été défini par l’absence de dispensation de OAC un an avant cette date. Nous avons évalué 

l’incidence de MB, des saignements gastrointestinaux (GIB), extracrânien non-

gastrointestinaux (NGIB) et intracrâniens (ICH) dans l’année de suivi.  Nous avons utilisé la 

régression logistique-LASSO et logistique-LASSO adaptative pour la sélection des prédicteurs 

potentiels de MB dont l’âge, le sexe, les comorbidités (jusqu’à 3 ans avant l’entrée dans la 

cohorte) et l’utilisation concomitante de médicaments (jusqu’à 2 semaines avant l’entrée dans 

la cohorte). La discrimination et la calibration ont été évaluées afin de sélectionner le meilleur 

modèle. Des analyses de sous-groupe ont été effectuées pour le GIB et NGIB ainsi que les 

sous-catégories de OAC.  

Résultats. Notre cohorte comprenait 36,381 nouveaux utilisateurs de OAC entre 70 et 86 ans. 

Les prédicteurs importants, dont l’âge, l’historique de MB et l’insuffisance hépatique, avaient 

des rapports de cotes de 1.37 à 1.64 pour le modèle global. Celui-ci avait une statistique c de 

0.63 (95% CI 0.60-0.65), était calibré et performaient similairement pour le GIB et le NGIB. 

À l’exception de quelques prédicteurs importants, dont l’âge et l’historique de MB, la plupart 

des prédicteurs sélectionnées du GIB étaient distincts de ceux du NGIB dans la cohorte totale. 

Les prédicteurs de MB avaient des tendances similaires pour les DOACs et la warfarine.  



  
 

 ii 

 

Conclusion. Les prédicteurs de MB et de leurs sous-types étaient similaires parmi les 

utilisateurs de DOAC et de warfarine. Les prédicteurs sélectionnées par nos modèles et leur 

potentiel discriminatif concordaient avec la littérature publiée. 

Mots-clés : Anticoagulant oral, fibrillation auriculaire, prédiction, saignement, 

pharmacoépidémiologie 

Abstract 

Background: The real-world predictors of major bleeding (MB) and its subtypes has not been 

well-studied in a population of oral anticoagulant (OAC) users diagnosed with atrial 

fibrillation (AF) that includes direct oral anticoagulant (DOAC) users.   

Objectives: To derive prediction models for MB and its most prevalent subtypes from a 

dataset of new users of all approved OACs with AF.   

Methods: We identified patients who were hospitalized and discharged in the community 

from January 2011 to December 2017 with a primary and secondary diagnosis of AF using the 

Med-Echo hospitalization database and the RAMQ administrative databases. From this subset, 

we identified new users of OACs, after which we categorized patients according to OAC type 

and dose. Cohort entry was defined as the first claim of OAC in the study period, while new 

users were defined by the absence of any OAC claim one year before cohort entry. We 

identified incident MB, gastrointestinal (GIB), non-GI extracranial bleeding (NGIB) and 

intracranial hemorrhage (ICH) within 1 year of follow-up. We used logistic-LASSO and 

logistic-adaptive LASSO regressions to identify MB predictors in this population from the 

following candidate predictors: age, sex, comorbidities (within 3 years before cohort entry), 

concomitant medication (within 2 weeks before cohort entry). Discrimination and calibration 

were assessed so that the best model could be selected. Subgroup analyses were performed for 

MB subtypes and OAC types.  

Results: Our cohort consisted of 36,381 oral anticoagulant new users aged 70-86 years old. 

The important MB predictors were age, prior MB and liver disease with ORs ranging from 

1.37-1.64 for the model derived from the full cohort. It had a c-statistic of 0.63 (95% CI 0.60-

0.65) with adequate calibration and similar c-statistics for GIB and NGIB. Except for a few 

important predictors, such as age and prior MB, most selected GIB predictors were distinct 
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from those of NGIB in the full cohort. Lastly, MB predictors had similar trends for warfarin 

and DOACs. 

Conclusions: MB and MB subtype predictors were similar among DOAC and warfarin users. 

The predictors selected by our models and their discriminative potential are concordant with 

published data.  

Key words: Oral anticoagulant, atrial fibrillation, prediction, bleeding, 

pharmacoepidemiology 
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Introduction  

Atrial fibrillation is the most diagnosed cardiac arrhythmia. It has a worldwide prevalence of 

191.3 (182.1-200.1) per 100,000 people in 2013 (the equivalent of 10 million people), a North 

American prevalence between 700 and 775 per 100,000 people in 2010 and a U.S. incidence of 

approximately 350 cases per 100,000 person-years in 2007, all of which are growing numbers 

due to the aging population [4-7]. Moreover, in 2010, its prevalence in women (373 per 100,000) 

was significantly inferior to that of men (596 events per 100,000). This trend was most apparent 

in countries like the US, Brazil and Denmark [8]. 

In addition to its pervasiveness, atrial fibrillation is associated with a five-fold increase in 

ischemic stroke of which the cases are more severe relative to patients without atrial fibrillation 

[9, 10]. Similarly, there is an increased risk of thirty-day all-cause mortality in atrial fibrillation-

associated stroke relative to stroke that is not associated with atrial fibrillation (Hazard ratio 

[HR] 1.84 95% confidence interval [CI] 1.04-3.27). Other embolic events such as venous 

thromboembolism (deep vein thrombosis in the legs or pulmonary embolism) and systemic 

embolic events (embolism to the aorta, renal, mesenteric, pelvic regions as well as extremities) 

were found to be more likely in atrial fibrillation with a relative risk of 1.71 (95% CI 1.32-2.22) 

for venous thromboembolism, 4.0 (95% CI 3.5-4.6) for systemic embolism in men and 5.7 (95% 

CI 5.1-6.3) for systemic embolism in women [11-13].  

Given that they are each major risk factors for ischemic stroke, systemic thromboembolism, 

heart failure, myocardial infarct and all-cause mortality, atrial fibrillation places a significant 

burden on health care and is a major public health concern, thereby requiring a very involved 

treatment regimen [4, 5]. The risk of atrial fibrillation-exacerbated outcomes such as stroke, can 

be significantly reduced using antithrombotic agents. These antithrombotic agents can be 

subdivided in two categories: antiplatelet agents (most commonly, acetylsalicylic acid [ASA]) 

and anticoagulants. The optimal use of these drugs is defined by treatment guidelines that are 

regularly updated to implement novel research findings [14]. These guidelines recommend 

prophylactic oral anticoagulation with oral vitamin K antagonists or direct oral anticoagulants 

upon atrial fibrillation diagnosis in patients at moderate or high risk of stroke. This clinical 

decision is driven by the CHA2DS2-VASc (congestive heart failure, hypertension, age between 

65-74 years, diabetes mellitus, stroke/transient ischemic attack/thromboembolism history, 
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vascular disease, age≥65 years, female sex) stroke risk score or its variants (i.e. the CHADS2 

score)  [14-16]. In the Canadian and US guidelines, oral anticoagulant use is recommended if the 

patient has a CHA2DS2-VASc of 2 or greater (CHADS2 score of 1 or greater), while no 

antithrombotic agents are recommended for score values inferior to 2 with some exceptions [17]. 

In the presence of vascular disease (coronary, peripheral or aortic artery disease) and the absence 

of all other stroke risk factors (CHADS2<1), ASA monotherapy or no therapy will be prescribed. 

Dual antiplatelet and oral anticoagulant therapy is also recommended short-term among patients 

who underwent a percutaneous coronary intervention and have concomitant acute coronary 

syndrome or patients that have coronary or peripheral vascular disease at high risk of stroke [18, 

19]. Of note, the most recent European guidelines contradict the Canadian and US guidelines 

with regards to the risk-benefit trade-off of any antithrombotic therapy in an atrial fibrillation 

patient population at low risk of stroke [20]. Currently, the two oral anticoagulant categories 

indicated for stroke and thromboembolism prevention in patients with atrial fibrillation are 

warfarin and the direct oral anticoagulants. Although all antithrombotic agents reduce stroke risk, 

they also increase the risk of major bleeding, both of which need to be considered in the 

management of atrial fibrillation.  

For the greater part of the last 50 years, warfarin has presented greater effectiveness in stroke and 

mortality risk reduction relative to other therapeutic alternatives, such as ASA. However, since 

the advent of direct oral anticoagulants, warfarin was no longer the sole treatment choice for 

atrial fibrillation patients, nor the ideal one. According to a meta-analysis of randomized clinical 

trials, direct oral anticoagulants were not only associated with a greater reduction in stroke or 

systemic embolism (OR=0.76, 95% CI 0.68-0.84) relative to warfarin, but, also, a lower risk of 

major bleeding, the most common adverse event associated with oral anticoagulation, relative to 

warfarin (OR=0.85, 95% CI 0.74-0.97) [21]. Conversely, observational study findings suggest a 

similar reduction in stroke risk between warfarin and direct oral anticoagulant users, but there are 

varying conclusions with regards to major bleeding and its subtypes [22]. Just as is the case for 

stroke, the risk of major bleeding can be exacerbated by the presence of patient characteristics, 

which needed to be accounted for in the management of anticoagulation in patients with atrial 

fibrillation. 
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Currently, the monitoring of major bleeding is guided by the HAS-BLED, a clinical score used 

to flag at-risk patients [23]. Although the HAS-BLED cannot be used alone to inform the 

discontinuation of anticoagulation, it has been an indispensable tool to ensure that anticoagulated 

patients at high-risk of major bleeding receive proper follow-up [24]. With the exceptions of the 

2015 Canadian Cardiovascular Society, 2018 Cardiac Society of Australia and New Zealand and 

2019 AHA/ACC/HRS guidelines, the HAS-BLED is the explicitly recommended major bleeding 

risk score worldwide [17]. However, despite its utility, the score was derived from warfarin user 

data, exclusively, and potentially does not take into account the predictors of major bleeding that 

are associated with the use of direct oral anticoagulants [25]. Since then, major bleeding scores 

like the ORBIT-AF and ABS have been derived from more recent oral anticoagulant user 

populations. However, while the ORBIT-AF left out rivaroxaban and apixaban user data from its 

derivation cohort, the ABS score used validated codes to define its candidate predictors and did 

not specify a candidate predictor look-back period (e.g. it is unclear how far back bleeding 

history or antiplatelet use was assessed) which limits the applicability of the tool. Moreover, 

although the ABS score included warfarin, dabigatran, rivaroxaban and apixaban in its derivation 

and validation cohorts (2007 to 2015), it represented a population in which the uptake of direct 

oral anticoagulants in US healthcare was still ongoing. For instance, apixaban use was only 

shown to increase significantly and exceed the other direct oral anticoagulants in 2016 in the US 

and real-world prescription practices have changed since the latest oral anticoagulant approval 

[26]. Thus, their model may not perform as well in a current OAC user population, thereby 

highlighting the importance of deriving prediction models from current populations, especially, 

when newly approved drugs are involved. Finally, there exist no prediction models for any major 

bleeding subtypes, which include intracranial hemorrhage, gastrointestinal bleeding and non-

gastrointestinal extracranial bleeding, that were derived from current oral anticoagulant user 

data. For these reasons, we aim to establish a model to predict major bleeding and its common 

subtypes as well as provide insights on their potential risk factors for all oral anticoagulant users. 

Current state of the knowledge 

Oral anticoagulation among patients with atrial fibrillation at high 

stroke risk: their practical advantages and disadvantages 
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Since 1954, the vitamin K antagonist, warfarin, has been the most long-standing therapy for 

stroke prevention among individuals with atrial fibrillation. It minimizes the long-term risk of 

thromboembolism and stroke more significantly than other antithrombotic drugs such as ASA 

[27, 28]. However, as is the case for all antithrombotic therapies, warfarin use is also associated 

with a high risk of bleeding, of which the most fatal is intracranial hemorrhage and the most 

common is gastrointestinal bleeding. The rate of major bleeding (defined by the International 

Society of Thrombosis and Hemostasis as a clinically overt bleed leading to a decrease of at least 

2 g/dL in hemoglobin, to a transfusion of at least 2 units of red blood cells, or to death) stands 

high at 7.2 per 100 person-years among warfarin users [29, 30]. Moreover, the use of warfarin is 

also associated with a high number of drug-drug and drug-food interactions leading to 

unpredictable drug responses. Consequently, while the associated dietary restrictions are difficult 

to maintain, necessary concomitant medication use may occasionally need to be restricted [31]. 

Warfarin also requires many practical considerations that constrain its use in a clinical setting. Its 

narrow therapeutic window as well as the high inter- and intra-individual variability in drug 

responses among its users requires very tedious therapeutic management that negatively impacts 

self-reported quality of life and causes anxiety to patients [32]. Specifically, to ensure safe 

warfarin dosing, the international normalized ratio, an index of coagulation speed that needs to 

be followed up on at least weekly, must be maintained between 2 and 3 [33, 34]. Conversely, it is 

worth noting that, despite these difficulties in therapeutic management, there exist extensive 

monitoring options and reversal strategies adapted to warfarin users. Additionally, although 

inconvenient, the routine monitoring brings with it a relatively high adherence [35]. Finally, with 

the exception of a few sub-populations, warfarin use was also more cost-effective than other 

treatment options available at the time, although the resources involved in therapeutic 

management somewhat offsets this benefit [35, 36]. Despite having significantly improved over 

time, these management strategies are still built around the unpredictability of patient responses 

to warfarin, which is a consequence of the high variability of warfarin dosing and INR, thus 

welcoming the search for alternative therapeutic strategies. 

In 2010, the first direct oral anticoagulant, dabigatran (Pradaxa®; 110 mg and 150 mg), was 

approved on the US and Canadian markets for thromboprophylaxis in non-valvular atrial 

fibrillation patients, followed by rivaroxaban (Xarelto®; 15 mg and 20 mg), apixaban (Eliquis®; 
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2.5 mg and 5 mg) and edoxaban (Lixiana®; 30 mg and 60 mg). These medications constituted 

promising putative treatment alternatives due to their wider therapeutic window (shorter half-life 

and therapeutic effect onset) and their more manageable monitoring requirements relative to 

warfarin [37]. However, just like their predecessor, the direct oral anticoagulants’ most common 

side-effect constitutes major bleeding. Until 2019, the unavailability of approved reversal agents 

specific to each of the direct oral anticoagulants also constrained their use. 

According to meta-analyses of observational studies, as a class, direct oral anticoagulant 

effectiveness with respect to stroke risk reduction and safety with respect to major bleeding risk 

was, for the most part, equivalent to warfarin’s with very little differences between each 

individual direct oral anticoagulant [21, 38]. Conversely, when considering major bleeding 

subtypes, direct oral anticoagulants were associated with a greater risk of gastrointestinal 

bleeding and a lower risk of intracranial hemorrhage relative to warfarin. Of note, apixaban was 

the only direct oral anticoagulant to consistently present a lower risk of major bleeding and its 

subtypes relative to warfarin, dabigatran and rivaroxaban. However, for each direct oral 

anticoagulant, there was significant heterogeneity with regards to at least one of the major 

bleeding outcomes [21, 22, 38].  

Thus, to determine whether direct oral anticoagulant are the preferred choice for a given patients 

over warfarin, clinical decision-making needs to weigh in their advantages (a greater risk 

reduction of all-cause-mortality, a similar risk reduction of ischemic stroke and a lower risk of 

intracranial hemorrhage) and limitations (a greater risk of gastrointestinal bleeding and a higher 

risk of major bleeding in patients with severe renal impairment) to choose the optimal treatment 

tailored to the needs of individual patients [21, 38]. Likewise, to ensure patient safety, the risk-

benefit profile of each oral anticoagulant needs to be carefully assessed while taking into account 

factors associated with a predisposition to bleeding. These factors are largely determined by the 

pharmacokinetic and pharmacodynamic properties of each oral anticoagulant. 

The implications of the pharmacokinetics and pharmacodynamics 

oral anticoagulants 
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The theoretical benefits of direct oral anticoagulants can be explained, in large part, by their 

favorable pharmacokinetic and pharmacodynamic properties.  

Both direct oral anticoagulants and warfarin target the coagulation cascade, a protein pathway 

whose function is preventing blood loss in injured blood vessels, specifically, the maintenance of 

hemostasis. During blood vessel injury, a properly balanced and sequenced activation and 

inhibition of the cascade leads to the formation of platelet plugs stabilized by a protein called 

fibrinogen at the site of injury exclusively until the tissue is healed [39, 40]. Dysregulated 

hemostasis can lead to either uncontrolled clotting or bleeding.  Rapid and short-term healing via 

platelet aggregation at a site of injury (primary hemostasis) is regulated by the intrinsic pathway 

which includes factors I (fibrinogen), II (prothrombin), IX, X, XI, and XII. Long-term healing 

via the stabilization of the platelet aggregate with activated fibrin filaments is regulated by the 

intrinsic pathway in addition to the extrinsic pathway. It includes factors I, II, VII, and X [39]. 

Other supportive processes are necessary to the proper functioning of the coagulation cascade. 

For instance, following the production of inactive coagulation factors in the liver, Vitamin K 

regulates their post-translational activation, a necessary precursor to the coagulation cascade 

[40]. 

From a pharmacodynamic standpoint, while warfarin indirectly targets the coagulation pathway 

via Vitamin K antagonism, direct oral anticoagulants all target the coagulation pathway directly. 

Dabigatran inhibits thrombin directly while rivaroxaban, apixaban and edoxaban target factor 

Xa. Both targeting pathways decrease the formation of fibrin, thrombin and platelet aggregation. 

Consequently, they all decrease thrombus formation. Factor Xa inhibitors target factor Xa, 

thereby inhibiting both the extrinsic and intrinsic coagulation cascade. Similarly to dabigatran, 

these drugs induce a decrease in clot formation by limiting thrombin formation and platelet 

activation [41]. Please refer to figure 1 for a graphical representation of the effect of each oral 

anticoagulant on the pathway. 
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Figure 1. A graphical representation of the coagulation pathway and the targets of each oral 

anticoagulant. Adapted from [1]. 

From a pharmacodynamic standpoint, while the oral bioavailability (the fraction of the drug 

reaching systemic circulation) of warfarin is close to 100%, it is primarily metabolized in the 

liver, has a half-life of 32 hours or 42 hours, depending on its enantiomer, and has an onset of 

action ranging between 36 and 72 hours. Meanwhile, the direct oral anticoagulants have oral 

bioavailabilities ranging between 58.3% and 80% apart from dabigatran which is bioavailable at 

around 6-7%. Collectively, direct oral anticoagulants have half-lives from 5 to 15 hours and an 

onset of action between 0.5 and 4 hours. Finally, dabigatran and rivaroxaban have the highest 

percentage of renal clearance (75 to 80% of the drugs), while apixaban and edoxaban have the 

lowest (25 to 35%) [3, 34]. Being the direct oral anticoagulant that relies the most on renal 

excretion, dabigatran is the only dialyzable direct oral anticoagulant [42]. 

Finally, dabigatran, apixaban and edoxaban are primarily metabolized via P-glycoprotein 

transporters, while rivaroxaban is metabolized by CYP3A4. The concomitant use of drugs that 

modulate P-glycoprotein transporters, such as verapamil, dronedarone, and amiodarone may be 

problematic. The same goes for CYP3A4 modulators, such as erythromycin, ketoconazole, and 
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amiodarone [3]. Meanwhile, warfarin displays substantially more drug-drug and drug food 

interactions being impacted by modulators of CYP3A4, CYP1A2, CYP2C9, CYP2D6 and 

CYP2J [2]. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2. A graphical summary of oral anticoagulant pharmacokinetics. Adapted from [2, 3] 

using stock footage. 

The rapid onset of direct oral anticoagulants reduces the required duration of use of anticoagulant 

alternatives such as low molecular-weight heparin (LMWH) in acute stages of atrial fibrillation 

(the “initiation” stage of treatment) in which warfarin’s slow onset keeps it from being an 

effective therapeutic option. Their rapid clearance also minimizes the need for reversal agents 

although they are still necessary [35]. Their fewer drug-drug and drug-food interactions also 

contribute to more predictable therapeutic responses in terms of both effectiveness and safety [2]. 

Conversely, there are still pharmacokinetic disadvantages in that the reliance of direct oral 

anticoagulants on renal excretion limits their use in the growing number of patients suffering 
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from severe renal failure. Moreover, the comparatively higher predisposition to gastrointestinal 

bleeding observed in direct oral anticoagulant-treated patients is thought to be primarily due to 

the fecal excretion of their active agents [35].  

Lastly, unlike dabigatran, rivaroxaban and edoxaban, the drug concentration of apixaban does 

not seem to be associated with the most significant clinical outcomes, namely ischemic stroke 

and major bleeding [43-46]. Consequently, the superior risk-benefit profile of apixaban may be 

attributable to a lower interindividual variability in drug responses due to its more stable 

pharmacokinetic properties. 

 

The pharmacokinetic advantages and limitations of each oral anticoagulant underlie their 

respective effectiveness and safety profiles. For warfarin, despite having the best oral 

bioavailability out of the oral anticoagulants and being safer for patients with renal impairment, 

it has a slow onset, a very long-half life, many drug-drug interactions and, most notably, a 

narrow therapeutic window. Meanwhile, although direct oral anticoagulants have a rapid onset, 

shorter half-lives and a wider therapeutic window along with fewer drug-drug and drug-food 

interactions, they rely heavily on renal excretion and have lower oral bioavailabilities than 

warfarin. These advantages and disadvantages provided fairly complete explanations of the 

randomized clinical trial findings of each oral anticoagulant, but real-world data is needed to 

validate them. 

A timeline of randomized clinical trials for oral anticoagulation in 

atrial fibrillation 

Warfarin randomized clinical trials and meta-analyses  
 

The first pivotal randomized clinical trials pointing towards the effectiveness of warfarin for 

stroke prophylaxis in atrial fibrillation patients took place in 1990s. When compared to placebo, 

all warfarin users presented lower risk of cerebral infarction, a term analogous to ischemic 

stroke, with a risk reduction 0.79 (95% CI 0.52-0.90). In a subgroup of patients older than 75 

years old, the results remained unchanged with warfarin presenting a risk reduction of 0.79 

(p<0.05). However, to its detriment, the mortality rate was similar in both groups (p<0.05) and 



 
 

 18 

 

warfarin use displayed slightly more major bleeding (mainly, gastrointestinal), but the rates were 

too low for hypothesis testing to be possible [47]. A later meta-analysis of randomized clinical 

trials comparing warfarin to placebo in atrial fibrillation patients confirmed these findings by 

demonstrating that warfarin had superior effectiveness in the reduction of stroke and systemic 

embolism  (OR~0.2 95% CI 0.1-0.3) and no statistically significant difference in major bleeding 

across six trials that took place in the US, Europe and Canada [48].  

Meanwhile, the most recent and commonly referred to meta-analysis of randomized clinical 

trials comparing warfarin to antiplatelet use concluded a significant reduction in stroke risk for 

warfarin users relative to ASA users (risk reduction 39% CI 22%-52%). Conversely, it also 

increased the risk of major intracranial hemorrhage by 128% [49]. The last randomized clinical 

trials comparing warfarin to antiplatelet agents took place in the late 2000s and are still referred 

to in the most recent atrial fibrillation management guidelines [20]. For one, the ASPIRE-W trial 

concluded that ASA and clopidogrel dual treatment was less effective in reducing stroke (relative 

risk [RR] 1.44 95% CI 1.18-1.76) and presented a higher rate of any bleeding  (RR 1.21 95% CI 

1.08-1.35) than patients taking warfarin with no difference in major bleeding (RR 1.30 95% CI 

0.94-1.79) [50]. Subsequently, in the BAFTA trial, warfarin use presented significant risk 

reduction (RR 0.48 95% CI 0.28-0.80) relative to ASA in patients aged over 75 years [51]. With 

the exception of the placebo-controlled trials, the patients from the antiplatelet-controlled trials 

were considered at moderate or high risk of stroke.  

Thus, it is important to note that patients at moderate as well as high risk of stroke (CHADS2>1) 

and low risk of stroke (CHADS2<1) are different populations. In current North American 

guidelines, ASA is only recommended in low risk patients and under specific conditions (the 

presence of coronary or peripheral vascular disease), while warfarin was indisputably 

recommended over ASA for high risk patients [14, 19]. Rather than basing the decision to 

recommend ASA or no antithrombotic agents for patients at low stroke risk on clinical trial 

findings, it was most likely based primarily on clinical judgement. 

Direct oral anticoagulants randomized clinical trials and meta-analyses 

As of 2010, four pivotal randomized clinical trials led to the approval of the direct oral 

anticoagulants for the same indication in patient with non-valvular atrial fibrillation (RE-LY for 
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dabigatran, ROCKET-AF for rivaroxaban, ARISTOTLE for apixaban, and ENGAGE-AF for 

edoxaban). Of note, the non-valvular atrial fibrillation definitions were not uniformly defined 

across trials with the RE-LY trial only excluding patients with severe heart valve disorder and 

the ENGAGE-AF trial excluding moderate-severe mitral stenosis cases, while the ARISTOTLE 

trial defined the exclusions more broadly and the ROCKET-AF trial defined theirs via 

electrocardiography. Nonetheless, they each concluded that each direct oral anticoagulant 

presented a non-inferior efficacy in the reduction of the rates of stroke, systemic 

thromboembolism, myocardial infarct, and all-cause mortality relative to warfarin (with the 

exception of ARISTOTLE, which evaluated superiority), but varying results in terms of their 

safety with regards to major bleeding.  

Taken as a whole, the effectiveness of direct oral anticoagulants is variable, but tended to be non-

inferior to warfarin’s. While there was no statistically significant difference in the relative risk of 

ischemic stroke/systemic embolism as well as myocardial infarct between dabigatran 110 mg and 

warfarin, at 150 mg, dabigatran presented non-inferior (HR 0.66 95% CI 0.53-0.82) and higher 

(HR 1.38 95% CI 1.00-1.91) risk of stroke/systemic embolism and myocardial infarct, 

respectively [52]. Meanwhile, the per-protocol cohort of rivaroxaban users presented non-

inferiority in the risk of stroke and systemic embolism (HR 0.79 95% CI 0.66-0.96) with no 

difference in myocardial infarct [53]. The ARISTOTLE trial presented the same conclusions as 

rivaroxaban users with regards to stroke/systemic embolism and myocardial infarct [54]. 

Moreover, apixaban (HR 0.90 95% CI 0.81-1.00) and edoxaban (HR=0.90 95% CI 0.83-0.97) 

were the only direct oral anticoagulants with lower rates of all-cause mortality [55]. Please refer 

to table 1 for a summary of the important effectiveness outcomes. 

Pertaining to oral anticoagulant safety, these studies identified incidences of major bleeding of 

2.71% per year for dabigatran 110 mg, 3.11% per year for dabigatran 150 mg, 3.6% per year for 

rivaroxaban (all doses) and 2.13% per year for apixaban (all doses) according to the RE-LY, 

ROCKET-AF and ARISTOTLE trials, respectively. Intracranial hemorrhage incidence rates 

were significantly lower with incidence rates of 0.31% per year, 0.4% per year, 0.5% per year, 

0.33% per year, for each drug, respectively, whereas major gastrointestinal bleeding displayed 

more variability with incidence rates of 1.12% per year, 1.51% per year, 3.2% per year, 0.76% 

per year, respectively [21, 53, 56-58].  
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According to randomized clinical trial findings, although dabigatran 110 mg and apixaban 

displayed a lower risk of major bleeding relative to warfarin with HRs of 0.69 (95% CI 0.60-

0.80) and 0.80 (95% CI 0.69-0.93), respectively, dabigatran 150 mg and rivaroxaban displayed 

no significant difference relative to warfarin. Additionally, dabigatran, rivaroxaban, and 

apixaban displayed a lower risk of intracranial hemorrhage relative to warfarin with HRs of 0.31 

(95% CI 0.20-0.47), 0.40 (95% CI 0.27-0.60), 0.67 (95% CI 0.47-0.93), 0.42 (95% CI 0.30-

0.58), respectively. Dabigatran 150 mg and rivaroxaban displayed greater gastrointestinal 

bleeding risk than warfarin whereas dabigatran 110 mg and apixaban displayed no statistically 

significant difference with HRs of 1.50 (95% CI 1.20-1.89), 1.46 (95% CI 1.20-1.79), 1.11  (95% 

CI 0.87-1.42), and 0.88  (95% CI 0.68-1.14), respectively. Finally, the relative risk of non-

gastrointestinal extracranial bleeding has not been evaluated in any of the clinical trials [21, 53, 

56, 57]. Please refer to table 1 for a summary of the important safety outcomes. 

 Dabigatran vs warfarin 

(RE-LY) 

Rivaroxaban vs warfarin 

(ROCKET-AF) 

Apixaban vs warfarin 

(ARISTOTLE) 

Edoxaban vs warfarin 

(ENGAGE-AF) 

Efficacy     

HR (95% 

CI)  

110 mg : 

All stroke:  

0.92 (0.74-1.13) 

Stroke/systemic embolism: 

0.91 (0.74-1.11) 

All-cause mortality 

0.91 (0.80-1.03) 

150 mg : 

All Stroke:  

0.64 (0.51-0.81) 

Stroke/systemic embolism: 

0.66 (0.53-0.82) 

All-cause mortality: 

0.88 (0.77-1.00) 

 

All Stroke: 

0.85 (0.70-1.03) 

Stroke/systemic embolism: 

0.79 (0.66-0.96) 

All-cause mortality: 

0.85 (0.70, 1.02) 

 

All stroke: 

0.79 (0.65-0.95) 

Stroke/systemic embolism: 

0.79 (0.66-0.95) 

All-cause mortality: 

0.89 (0.80-1.00) 

 

30 mg: 

All stroke: 

1.13 (0.91-1.31) 

Systemic embolism: 

1.24 (0.72-2.15) 

All-cause mortality: 

0.87 (0.79-0.96) 

60 mg: 

All stroke: 

0.88 (0.75-1.03) 

Systemic embolism: 

0.65 (0.34-1.24) 

All-cause mortality: 

0.92 (0.83-1.01) 

Safety 

HR (95% 

CI) 

110 mg 

Major bleeding: 

0.80 (0.69-0.93) 

Intracranial hemorrhage: 

0.31 (0.20-0.47) 

Gastrointestinal bleeding: 

1.10 (0.86-1.41) 

150 mg 

Major bleeding: 

0.93 (0.81-1.07) 

Intracranial hemorrhage: 

0.40 (0.27-0.60) 

Gastrointestinal bleeding: 

1.50 (1.19-1.89) 

 

Major bleeding: 

1.04 (0.90-1.20) 

Intracranial hemorrhage: 

0.67 (0.47-0.93) 

Gastrointestinal bleeding: 

NA 

 

Major bleeding: 

0.69 (0.60-0.80) 

Intracranial hemorrhage: 

0.42 (0.30-0.58) 

Gastrointestinal bleeding: 

0.89 (0.70-1.15) 

30 mg: 

Major bleeding: 

0.47 (0.41-0.55) 

Intracranial hemorrhage: 

0.30 (0.21-0.43) 

Gastrointestinal bleeding: 

0.67 (0.53-0.83) 

60 mg: 

Major bleeding: 

0.80 (0.71-0.91) 

Intracranial hemorrhage: 

0.47 (0.34-0.63) 

Gastrointestinal bleeding: 

1.23 (1.02-1.50) 
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Table 1. Summary of direct oral anticoagulant efficacy and safety outcomes in randomized 

clinical trials. 

*Only the most comparable endpoints were selected in this table. 

Randomized clinical trial meta-analyses suggest that, when direct oral anticoagulant clinical trial 

findings are pooled together, they display greater effectiveness to warfarin in terms of 

stroke/systemic embolism (HR=0.76 95% CI 0.68-0.84), all-cause-mortality (HR=0.89 95% CI 

0.84-0.95) and vascular mortality (HR=0.86 95% CI 0.79-0.94), but not myocardial infarct 

(HR=0.94 95% CI 0.83-1.08). Pooled clinical trial findings also demonstrated a lower risk of 

major bleeding relative to warfarin (OR=0.85, 95% CI 0.74-0.97), a lower risk of intracranial 

hemorrhage (OR=0.48, 95% CI 0.40-0.57) and a higher risk of gastrointestinal bleeding 

(OR=1.26, 95% CI 1.06-1.48) relative to warfarin [21].  

There are inherent differences between real-world and randomized clinical trial findings. 

Namely, clinical trials estimate efficacy, possess significantly more exclusion criteria than real-

world studies due to their interventional nature and are therefore subjected to more stringent 

ethical criteria. For this reason, in the direct oral anticoagulant randomized clinical trials, many 

patients at a much higher bleeding risk than the eligible patients were excluded from the study. 

Furthermore, clinical trial direct oral anticoagulant users with atrial fibrillation were both 

younger and healthier (a lower rate of stroke and fewer co-morbidities) than real-world direct 

oral anticoagulant users with atrial fibrillation [59, 60]. Moreover, even if direct oral 

anticoagulant early discontinuation ranged between 21% and 25.3%, the controlled environment 

of a randomized clinical trial involves significantly better adherence relative to real-world oral 

anticoagulant users and prevents contraindicated oral anticoagulant use [31, 59, 61]. For these 

reasons, findings from these randomized clinical trials cannot be extrapolated to a real-world 

setting. Thus, using observational studies to evaluate real-world effectiveness and safety is 

essential to confirm clinical trial findings as well as to evaluate the impact of real-world 

practices. 

Oral anticoagulant real-world findings 
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Most recent findings on the comparative effectiveness and real-world 

safety of oral anticoagulants 

Warfarin observational studies 

 

Before direct oral anticoagulants were made available, the use of warfarin had to be well-

researched given how extensively it was (and still is) used. However, there were only a few 

observational studies comparing the risk of clinical outcomes associated with warfarin use 

relative to that of warfarin-era treatment alternatives and placebo. A US observational study 

evaluated warfarin use and effectiveness to non-use in warfarin-eligible patients with non-

valvular atrial fibrillation between 2000 and 2002. The study suggested that warfarin users 

showed a greater effectiveness in reducing ischemic stroke (HR 0.78 95% CI 0.65-0.93) and 

thromboembolism (HR 0.66 95% CI 0.59-0.75) relative to warfarin-eligible patients who were 

not yet using oral anticoagulants, with no significant increase in hemorrhage (p<0.05) [62]. A 

similar study that followed warfarin-naïve patients from 2009 to 2011 similarly concluded a 

lower risk of all-cause mortality (HR 0.72 99% CI 0.63-0.84) and ischemic stroke (HR 0.63 99% 

CI 0.48-0.83) relative to non-users, but no difference regarding intracranial hemorrhage (HR 

1.37 99% CI 0.61-3.06) [63]. However, to our knowledge, no real-world studies directly 

compared warfarin’s safety and effectiveness to antiplatelet agents. 

Recent direct oral anticoagulant observational studies 

 

Since the approval of direct oral anticoagulants, upwards of 26 observational studies comparing 

their use to warfarin or to each other emitted varying conclusions regarding comparative 

effectiveness and real-world safety [38, 59, 64]. Given the changing trends in oral anticoagulant 

use and the characteristics of their users, it is important to identify recent observational studies to 

truly understand and monitor their effectiveness and real-world safety. It is also important to 

keep in mind that these studies are thus, unlikely, to be representative of all direct oral 

anticoagulant observational studies. 

A recent US cohort study found that direct oral anticoagulant users with nonvalvular atrial 

fibrillation had a lower risk of ischemic stroke (HR 0.88 95% CI 0.79-0.98), hemorrhagic stroke 

(HR 0.65 CI 0.46-0.92), systemic embolism (HR 0.53 95% CI 0.43-0.65) relative to warfarin 
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users and a lower risk of bleeding. These pooled findings echoed many observational studies 

preceding it regarding the comparative effectiveness and safety of direct oral anticoagulants 

relative to warfarin [65]. However, adherence may have been overestimated and discontinuation 

rates, underestimated. Moreover, the authors also pointed a potential for confounding by a 

contraindication associated with patients with renal impairment. 

The recently published NAXOS observational study showed that apixaban had a lower risk of 

gastrointestinal bleeding (HR=0.44 95% CI 0.40-0.50), intracranial bleeding (HR=0.42 95% CI 

0.37-0.48) and non-gastrointestinal extracranial bleeding (0.43 95% CI 0.39-0.47) relative to 

vitamin K antagonist users with nonvalvular atrial fibrillation. It also showed approximately 

double the effectiveness relative to vitamin K antagonist use in terms of reduction of stroke and 

systemic embolism as well as all-cause mortality. Relative to rivaroxaban, the risk of major 

bleeding was lower, but the effectiveness was similar in terms of both outcomes. Finally, the 

effectiveness and real-world safety of apixaban was most comparable to dabigatran in which the 

only differences were a lower risk of gastrointestinal bleeding (HR=0.60 95% CI 0.48-0.76) and 

a higher risk of intracranial bleeding in apixaban users (HR=1.72 95% CI 1.20-2.48) [66]. The 

study may have been susceptible to selection bias due to the possible omission of non-severe AF 

patients and residual confounding from unmeasured variables. 

Like the NAXOS study, an US observational study made comparisons between the direct oral 

anticoagulants with nonvalvular atrial fibrillation that were approved at the time and presented 

optimistic results for apixaban. Apixaban presented a lower risk of stroke and systemic embolism 

as well as major bleeding relative to dabigatran and rivaroxaban. Meanwhile, dabigatran showed 

comparable effectiveness and a lower risk of major bleeding relative to rivaroxaban [67]. 

However, the authors reported potential biases from not being able to ascertain over-the-counter 

medication use, nor oral anticoagulant adherence as well as the use of non-validated diagnostic 

codes for certain covariates and certain cohort selection steps. 

Depending on the study, there is a tendency that, as real-world research on oral anticoagulants 

progresses over time, the perceived superiority of the risk-benefit profile of direct oral 

anticoagulants, while still present, is less significant as it was initially thought to be. This might 

have been due to the fact that real-world direct oral anticoagulant users were typically younger 

and healthier relative to warfarin users in observational studies preceding 2017 on account of 
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channeling bias as well as a potential indication bias due to differential severity of illnesses 

across treatment groups, thereby precluding the value of a new user study design [68]. The 

exception to the rule is apixaban, which has consistently superseded the risk-benefit profile of 

the other oral anticoagulants. However, as exemplified by the studies presented in this section, 

the heterogeneity of oral anticoagulant user populations makes it difficult to emit any 

conclusions on the basis of individual observational studies. Moreover, selection bias due to 

selection of previous oral anticoagulant users, informative censorship bias, confounding by 

indication, time-varying confounding, residual confounding and disproportionate non-adherence 

rates between treatment groups were commonly reported in observational studies [22, 64]. Most 

observational studies are also susceptible to misclassification bias as a consequence of using 

non-validated diagnosic coding and estimating medication use with dispensation data. 

Meta-analyses of oral anticoagulant observational studies 

 

Unlike randomized clinical trial populations, the heterogeneity of real-world patient populations, 

differing conclusions were emitted with regards to both effectiveness and real-world safety 

outcomes with widely varying relative risk measurements. This variability highlights the 

importance of pooling their findings, identifying which outcomes present more stable 

associations across studies and attempting to understand any pervasive biases (or risk thereof). 

Thus, observational study meta-analyses were required to adequately summarize the existing 

real-world findings. Of note, observational studies at high risk of bias should be excluded from 

such pooled analyses, while findings from significantly different populations should not be 

pooled together. Over 25 meta-analyses were performed in our population of interest or specific 

subgroups, with 4 main studies focusing on a general population of oral anticoagulant users with 

atrial fibrillation and 4 focusing on an older such population [22, 38, 59, 64, 69-72]. However, 

meta-analyses evaluating more recent observational studies display an older and frailer 

population of direct oral anticoagulant users relative to less recent ones [38, 59, 64]. This is most 

likely due to an under-prescribing of direct oral anticoagulants in older and frailer atrial 

fibrillation patients in the years immediately following the approval of direct oral anticoagulants 

(i.e. channeling bias). Because of the changing trends in oral anticoagulation prescription, it is 

important to continuously update our pooled findings about oral anticoagulants and consider only 

the meta-analyses that include the most recent studies for real-world insights about oral 
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anticoagulation in atrial fibrillation, while avoiding poor quality studies with potential 

conclusion-altering biases. Of note, is that only one of these meta-analyses singled out non-

valvular atrial fibrillation over atrial fibrillation as a whole in their search terms [59]. That being 

said, virtually none of the observational studies selected by the meta-analyses did not single out 

non-valvular atrial fibrillation patient populations [38, 59, 64]. 

In terms of effectiveness, a meta-analysis of observational studies concluded that dabigatran, 

rivaroxaban and apixaban did not display statistically significant differences in the relative risks 

of a composite risk of stroke and systemic embolism [38]. In terms of real-world safety, 

dabigatran displayed no difference in major bleeding risk relative to warfarin with a lower risk of 

intracranial hemorrhage (HR=0.42 95% CI 0.37-0.49), a greater risk of gastrointestinal bleeding 

(HR=1.2 95% CI 1.06-1.36) and lower risk of all-cause mortality (HR=0.63 95% CI 0.52-0.76). 

For rivaroxaban, the relative risk of intracranial hemorrhage is lower (HR=0.64 95% CI 0.47-

0.86), whereas the relative risk of gastrointestinal bleeding is greater (HR=1.24 95% CI 1.08-

1.41) and the relative risk of major bleeding and death, non-significant [38]. Finally, apixaban 

displays a lower relative risk for all safety outcomes with HRs of 0.45 (0.31-0.63), 0.63 (0.42-

0.95), 0.55 (0.48-0.63) and 0.65 (0.56-0.75) for intracranial hemorrhage, gastrointestinal 

bleeding, major bleeding and all-cause mortality, respectively [38]. These results were mostly 

confirmed by a meta-analysis of propensity score-matched observational studies of direct oral 

anticoagulant use among atrial fibrillation patients. Although they have found that pooled direct 

oral anticoagulants has a lower risk of ischemic stroke and systemic embolism (HR=0.88 95% CI 

0.83-0.94), there was no difference in risk of major bleeding and a lower risk of mortality 

(HR=0.71 95% CI 0.58-0.87) [59]. Conversely, a recent comparative review found that 

observational study findings confirmed randomized clinical trials by suggesting that direct oral 

anticoagulants are as effective in mitigating stroke risk as warfarin and a lower risk of major 

bleeding [73]. Despite consistent findings about the superior real-world safety of direct oral 

anticoagulants relative to warfarin regarding intracranial hemorrhage, there is a current lack of 

consensus on the impact of direct oral anticoagulants on gastrointestinal bleeding although the 

literature suggests a dose-associated increase in the risk of this outcome relative to warfarin [38, 

59, 64, 73].  
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Table 2.  Summary of direct oral anticoagulant effectiveness and real-world safety outcomes in 

observational study meta-analyses. [38] 

*Edoxaban findings were not presented due to lack of relevance to the ensuing study.  

 

Observational studies pertaining to oral anticoagulant users with atrial fibrillation presented 

statistically significant heterogeneity in various efficacy and safety outcomes [38, 59, 64]. 

Specifically, each direct oral anticoagulant showed significant heterogeneity in one or more of all 

efficacy and safety outcomes, stroke, all-cause mortality, major bleeding, intracranial 

hemorrhage and gastrointestinal bleeding [38]. In these meta-analyses, heterogeneity was 

reported to be due to dosage (given that observational studies with different distributions of 

prescribed direct oral anticoagulant dosages often pooled them together without controlling for 

them), safety outcome definition, oral anticoagulant-experienced vs naïve population, adherence, 

persistence, time-within-therapeutic range for vitamin K antagonist users, adherence to 

prescription recommendations by prescribing physicians and length of study follow-up [38, 59, 

64, 72]. Although more difficult to control for, populational differences may have played into the 

significant heterogeneity as well [74]. It will be important to consider all of these variables when 

designing further observational studies. In particular, the lack of consistency in real-world safety 

findings for different oral anticoagulant user populations makes it particularly important to find 

effective ways to monitor them. 

 Dabigatran vs warfarin Rivaroxaban vs warfarin Apixaban vs warfarin 

Effectiveness     

HR (95% CI)  

Ischemic Stroke:  

0.96 (0.80-1.16) 

Any stroke/systemic 

embolism: 

0.93 (0.77-1.14) 

All-cause mortality: 

0.63 (0.72-0.76) 

Ischemic stroke: 

0.89 (0.76-1.04) 

Any stroke/systemic 

embolism: 

0.87 (0.71-1.07) 

All-cause mortality: 

0.67 (0.35-1.30) 

Ischemic stroke: 

0.95 (0.75-1.19) 

Any stroke/systemic 

embolism: 

0.67 (0.46-0.98) 

All-cause mortality: 

0.65 (0.56-0.75) 

 

Safety 

HR (95% CI) 

Major bleeding: 

0.83 (0.65-1.05) 

Intracranial 

hemorrhage: 

0.42 (0.37-0.49) 

Gastrointestinal 

bleeding: 

1.20 (1.06-1.36) 

Major bleeding: 

1.00 (0.92-1.08) 

 

Intracranial  

hemorrhage: 

0.64 (0.47-0.86) 

Gastrointestinal  

bleeding: 

1.24 (1.08-1.21) 

Major bleeding: 

0.55 (0.48-0.63) 

Intracranial 

hemorrhage: 

0.45 (0.31-0.63) 

Gastrointestinal 

bleeding: 

0.63 (0.42-0.95) 
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Major bleeding risk factors 

There is a wide range of factors associated with bleeding. Bleeding can be a direct result of 

uncontrolled pharmacological action (i.e. drugs whose capsules have corrosive properties such as 

tartaric acid in dabigatran), underlying conditions (i.e. ulcers), or physical injury. However, 

bleeding risk can also be exacerbated by a variety of factors including age, underlying conditions 

(e.g. conditions that weaken the wall of blood vessels, weakened kidney and liver function) and 

drug use (i.e. drugs that impact that inhibit the coagulation pathway) [60, 75]. To properly 

monitor this outcome, it is important to identify their most important risk factors. 

Age 
Older patients are more likely to have a slower metabolism (including poorer renal function), 

lower body mass index, multiple comorbidities, polypharmacy and a high risk of falling. For 

these reasons, age was considered to be a bleeding risk factor of important clinical significance 

before and after direct oral anticoagulant approval as evidenced by both observational and 

randomized clinical trial findings. A systematic review of bleeding risk factors among 

anticoagulated atrial fibrillation patients identified age as a borderline significant (1 

observational study) and independent (3 observational studies; defined by the study as a 

significant association to major bleeding after control for multiple clinically plausible risk 

factors) major bleeding risk factor. While one study reported an aOR of 6.6 (95% CI 1.2-37) for 

the risk of major bleeding in patients older than 75 years relative to those younger, another 

identified an aOR of 2.45 (p=0.006; no available CIs). Two other studies found no significant 

association with bleeding when evaluating age as a continuous variable or comparing patients 

over 75 years to those between 60 and 69 [76]. Randomized clinical trial findings suggested that 

dabigatran 110 mg displayed a greater incidence of major bleeding relative to warfarin (1.89% 

versus 3.04%; p<0.001; no available CIs) at age<75, but not ≥75, while dabigatran 150 mg 

displayed greater incidence at both age groups [52]. Rivaroxaban users did not display a 

significant difference in major bleeding risk relative to warfarin users, but the major bleeding 

risk in the entire ROCKET-atrial fibrillation cohort increased with age 65-74 and age ≥75 

relative to age<65 (157). Finally, every 10-year increase in age resulted in an increase in major 

bleeding risk (HR=1.36 95%1.23-1.51) within the ARISTOTLE cohort [77].  Thus, although the 

risk varies somewhat depending on the definition of increased age, there is strong evidence that 
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older age constitutes a significant major bleeding risk factor among both warfarin and direct oral 

anticoagulant users. 

Sex 
A systematic review of bleeding risk factors among warfarin users with atrial fibrillation 

identified a marginal gender-difference in bleeding risk among the 10 relevant studies. Both 

favored female gender with ORs of 1.40 and 3.19 (p=0.05) [76]. Meanwhile, comparatively less 

studies have been completed among direct oral anticoagulant user. One Canadian population-

based study stated that female dabigatran users were at higher risk of bleeding than male users 

[78]. While sex was not independently associated with major bleeding among clinical trial 

rivaroxaban users, male apixaban and warfarin users with atrial fibrillation were shown to 

display a lower major bleeding risk relative to female users (HR=0.74 95% CI 0.63-0.87) [77, 

79]. Among oral anticoagulant users, female sex seems to exacerbate major bleeding risk, but 

this claim needs to be further validated given the paucity of observational studies evaluating sex-

differences among direct oral anticoagulant users (i.e. a single study per direct oral 

anticoagulant). 

Comorbidities 
The effectiveness and safety of all oral anticoagulants depends on many different organ systems.  

While drug absorption, metabolism and excretion depend on the GI lining, the liver and the 

kidneys, the proper functioning of the coagulation pathway relies on the cardiovascular system 

and the liver. Thus, renal, hepatic, cardiovascular, pulmonary and metabolic comorbidities were 

shown to significantly influence major bleeding risk.  

As a rule of thumb, the higher the degree of renal impairment, the higher the bleeding risk 

associated with direct oral anticoagulant use relative to warfarin and the less advantages they 

have over warfarin [80, 81]. This is attributable to the much greater percentage of direct oral 

anticoagulant renal metabolism compared to warfarin’s. Despite this, warfarin users with severe 

CKD still spent less time with an international normalized ratio in the target (safe) range 

(p<0.05) compared with patients with no, mild, or moderate CKD (p=0.05). Thus, warfarin users 

with severe CKD had around twice the risk of major bleeding of patients with no, mild, or 

moderate CKD (HR=2.4 95% CI 1.1-5.3) [82]. In a meta-analysis of observational studies, real-

world dabigatran and rivaroxaban users displayed no difference in major bleeding relative to 
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warfarin among patients with moderate renal impairment and atrial fibrillation. No studies 

encompassing atrial fibrillation patients were reported for apixaban users in this meta-analysis 

[81, 83]. However, in the meta-analysis, among patients with moderate renal impairment 

(defined by an eGFR anywhere between 25 and 60 mL/min depending on the study), apixaban 

and edoxaban both displayed a lower major bleeding risk relative to warfarin with HRs of 0.50 

(0.38-0.66) and 0.76 (0.58-0.98) , respectively [83]. Furthermore, severely impaired dabigatran 

and rivaroxaban users on dialysis displayed a greater major bleeding risk relative to warfarin 

(respectively, HR=1.76 95% CI 1.44-2.15 and HR=1.45 95% 1.09-1.93) with no difference 

among apixaban-users [81, 83]. The reliability of the apixaban findings in patients with severe 

renal failure was called into question since the study was underpowered.  

Given that warfarin relies purely on liver metabolism, hepatic disease has significant impact on 

quality of anticoagulation control. The complex relationship between the liver and the 

coagulation pathway stemming from the secretion endogenous procoagulants and anticoagulants 

further exacerbates the constraints placed on the effectiveness of anticoagulation by this 

condition. This ultimately leads to a higher predisposition to both bleeding and thrombosis. 

Bleeding predisposition occurs due to reduced platelet-blood vessel interaction, reduced 

thrombin generation and increased fibrinolysis [84]. Given that liver cirrhosis patients have a 

greater likelihood of both thrombosis and hemorrhage through systemic effects of the 

medication, it is important to consider the impact of chronic liver impairment on the safety of 

direct oral anticoagulant use [85]. However, clinical guidelines for the prescription of direct oral 

anticoagulants for atrial fibrillation patients concomitantly suffering from chronic liver disease 

are not as well informed as those with renal conditions. Ultimately, they recommend the use of 

direct oral anticoagulants for mild and moderate cases of liver disease, but not for severe cases 

[86]. A systematic review of liver disease among direct oral anticoagulant users has reported that 

most observational studies were founded on very limited data with sample sizes ranging from 36 

to 69 patients, thus calling into question their findings, while no prospective clinical trials were 

conducted in this population in any population of oral anticoagulant users [86, 87]. Moreover, a 

recent observational suggested a lower bleeding prevalence among direct oral anticoagulant 

users relative to warfarin users (4% vs 28%), while an observational study found that liver 

cirrhosis predisposed to intracranial hemorrhage (HR=1.20, p<0.05) in a population of warfarin 

and ASA users as well as non-users  [88, 89]. For most of these studies, the authors suggested 



 
 

 30 

 

that it was inadvisable to emit firm conclusions from the study findings on account of the limited 

data. 

Some metabolic conditions have been found to exacerbate the real-world risk of major bleeding 

among oral anticoagulant users. A systematic review identified no observational studies in which 

diabetes mellitus was identified as an independent risk factor among warfarin users, while 

randomized clinical trial findings suggests the opposite [76]. Among dabigatran and warfarin 

users, clinical trial findings suggest an increased risk of major bleeding among diabetic patients 

(HR=1.44 95% CI 1.27-1.63) [90]. Conversely, the relative risk of major bleeding in rivaroxaban 

versus warfarin regarding was not exacerbated by the presence of type 2 diabetes (HRs of 1.00 

and 1.12 for patients with and without diabetes, respectively, p>0.05) [91]. These findings were 

confirmed in observational studies in which the incidence of major bleeding was greater in 

diabetic rivaroxaban users relative to the non-diabetic ones. Ultimately, apixaban displayed 

similar findings [76]. Similarly, according to clinical trial findings, apixaban users with normal 

BMI observed that major bleeding risk reduction those with higher BMI with similar findings. 

Female edoxaban users also displayed a significantly higher risk of major bleeding as BMI 

increased [92]. While supplementing the lack of data on the effect of weight on bleeding risk 

informing treatment recommendation, in a meta-analysis of direct oral anticoagulant randomized 

clinical trials and observational studies, obesity is a major bleeding risk factor that is supported 

by conflicting evidence [92]. Pooled observational study data showed no difference in bleeding 

risk between overweight, obese and healthy weight individuals, while randomized clinical trials 

paradoxically suggested that obesity has a protective effect (0.84, 95% CI 0.72-0.98) as opposed 

to being overweight (NS) relative to normal weight individuals [93, 94]. Hyperlipidemia, a factor 

highly correlated to obesity, has also been explored as a risk factor for gastrointestinal bleeding 

and was shown to not influence the risk [95]. On the other hand, BMIs below the healthy range 

seem to be at an increased risk of bleeding for direct oral anticoagulants altogether, but the 

bleeding risk within this subpopulation has not been explored for individual direct oral 

anticoagulants, thereby needing to be explored further to account for this knowledge gap [96]. 

Many cardiovascular co-morbidities have been shown to exacerbate the risk of bleeding. In a 

review of warfarin-associated bleeding risk factors, hypertension and blood pressure were 

identified as weak risk factors (defined by a univariate association to at least one bleeding 
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outcome) in two separate studies [76]. The prevalence of hypertension was higher in warfarin 

users with bleeding relative to those without [76]. Conversely, among randomized clinical trial 

warfarin users, higher quartiles of blood pressure were not associated with an increased risk of 

bleeding [97]. Although warfarin users with the most severe heart failure have been shown to 

display a fourfold increase in major bleeding risk than users with less severe heart failure, the 

impact of heart failure on bleeding among anticoagulated patients requires further evaluation 

[98]. History of myocardial infarct and ischemic heart disease, which encompasses chronic heart 

failure, coronary artery disease and peripheral vascular disease were associated with an increased 

prevalence of bleeding in real-world warfarin users with atrial fibrillation [76]. Lastly, a history 

of cerebrovascular disease, a history of bleeding (mostly, gastrointestinal bleeding) and anemia 

were reported to predispose warfarin users to major bleeding in a review [30]. Meanwhile, a 

systematic review identified history of bleeding as well as stroke and VTE history as 

independent bleeding risk factors in two separate studies [76].  

Thus, putting aside major bleeding prediction studies, there are varying levels of evidence 

regarding the independent association between each co-morbidity and major bleeding, but most 

require further research to further these claims. 

Medication use 
Broadly, concomitant medication use can impact oral anticoagulant function synergistically or 

antagonistically and consequently act as major bleeding risk factors. This synergistic or 

antagonistic action can be a product of pharmacodynamics (i.e. more than one drug acting on the 

coagulation pathway) or, more commonly, pharmacokinetics, through which other drugs can 

modulate the absorption, distribution, metabolism and excretion of oral anticoagulants. 

A meta-analysis of 10 clinical trials found that concomitant warfarin and ASA use was highly 

predictive of bleeding (OR=2.5 95% CI, 1.7-3.7), compared to warfarin monotherapy [30, 34]. 

An observational study corroborated these findings in direct oral anticoagulant users showing an 

increase in major adverse cardiac events (defined by the presence of ischemic stroke, systemic 

embolism or acute coronary syndrome, HR=2.12, 95% CI 1.85-2.43) and bleeding (HR=1.31, 

95% CI 1.17-1.46) in patients taking ASA and direct oral anticoagulants relative to patients 

solely taking direct oral anticoagulants [99]. Moreover, concomitant warfarin and NSAID use 

showed a 15% elevation in international normalized ratio (used as a surrogate major bleeding 
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marker in this study) relative to warfarin alone. A multivariate analysis identified a high warfarin 

maintenance dose, concomitant use of medications with recorded interactions with warfarin, the 

use of the NSAID, meloxicam, and a low baseline international normalized ratio value as 

bleeding risk factors in an outpatient population of warfarin users [100]. Similarly, two 

randomized clinical trial post-hoc analyses showed that the concomitant use of dabigatran or 

apixaban and NSAIDs displayed higher risks of major bleeding (HR=1.68 95% CI 1.40 to 2.02 

and HR=1.61 95% CI 1.11-2.33, respectively) [101]. 

Other medications may theoretically exacerbate the risk of bleeding but have yet to display 

empirical clinical evidence for it. These include diuretics (loop and thiazide) which may be 

important to explore as they would influence renal function, thereby potentially influencing 

direct oral anticoagulant pharmacokinetics, although the timeline of this effect is unclear [102]. 

Angiotensin receptor blockers (ACEI/ARBs), antiarrhythmics and statins may increase the risk 

of bleeding systemically by modulating blood flow or by inhibiting CYP450 enzymes 

responsible for the breakdown of direct oral anticoagulants [103, 104]. Conversely, proton pump 

inhibitors and H2 Receptor antagonists are protective against gastrointestinal bleeding [105, 

106], whereas rate-control therapies (digoxin, beta-blockers and calcium-channel blockers) and 

statins present lower risks of direct oral anticoagulant-associated major bleeding [2]. Among 

warfarin users, the concomitant use of selective serotonin reuptake inhibitors and warfarin 

showed a greater major bleeding risk relative to the use of warfarin, alone (OR=2.6 95% CI 1.01-

6.40) [107]. Similarly, serotonin-modulating antidepressants are known to interact with direct 

oral anticoagulants by impacting their metabolism, thereby increasing the overall risk of bleeding 

[104]. However, the concomitant selective-serotonin reuptake inhibitors and rivaroxaban use was 

not shown to significantly impact on bleeding displayed in a randomized clinical trial meta-

analysis [108].  

Polypharmacy is a common occurrence in elderly patients. While most of these patients do not 

fully understand the possible side-effects of the medications prescribed to them, this practice 

often leads to poor health outcomes. A systematic review of warfarin users before 2007 

identified that the presence of polypharmacy (defined as either more than 3 medication or 

concomitant antiplatelet use) predisposed to bleeding in four separate studies [76]. Conversely, 

in the absence of concomitant antiplatelet or antibiotics, the use of NSAIDs or any other 
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medication was not shown to be associated with bleeding in one of the studies included in the 

systematic review [109]. When deprescription is not a possibility, the way to protect these 

vulnerable populations is to ensure that there be a comprehensive understanding of the drugs 

predisposing to major bleeding and that this information be concisely communicated to medical 

professionals. 

Without considering prediction models, some major bleeding risk factors have been better 

studied than others in a population of oral anticoagulant users. The most important demographic 

variable was old age with OR values exceeding 2.0 for age>75 relative to <75 years old [76]. 

Meanwhile, the most important co-morbidities included severe CKD (HR=2.4 95% CI 1.1-5.3) 

and diabetes (HR=1.44 95% CI 1.27-1.63) [79, 90]. Although hypertension and cardiovascular 

comorbidities are important risk factors, they are better studied in the context of prediction 

models. Lastly, the most important concomitant medication-associated risk factors are ASA and 

SSRIs with ORs exceeding 2.5. 

Management of major bleeding risk factors in clinical practice 
As described earlier, the great inter-individual variability in bleeding rates can be explained by 

various important pharmacokinetic and pharmacodynamic features that outline patient response 

to specific direct oral anticoagulant treatments. The identification of important major bleeding 

risk factors is crucial since it will help individualize anticoagulation to specific patient profiles. 

More importantly, it will inform how closely, and frequently specific anticoagulated patients 

should be monitored when one or multiple major bleeding risk factors are present. These 

practices would significantly improve oral anticoagulant safety, adherence and patient quality of 

life. Since direct oral anticoagulants have several indications, it is important to identify these risk 

factors in an atrial fibrillation patient population as this population may have different clinical 

features and a distinct treatment regimen impacting their risk of bleeding relative to other patient 

populations receiving direct oral anticoagulants for a different indication.  

Some of the ways in which these risk factors are concretely incorporated into care practices are 

through prescription guidelines, decisional algorithms and other decision-making tools. The 

current Quebec guidelines of thromboprophylactic anticoagulation in patients diagnosed with 

atrial fibrillation outlined by the “Institut national d’excellence en santé et en service sociaux” 

and Canadian guidelines focus on age, sex, renal function, hepatic function, body weight, recent 
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history of stroke and TIA, concomitant hypertension, heart failure, diabetes, P glycoprotein 

inhibitor use, surgical history, and the CHAD2-VASc2 score as factors that should be accounted 

for anticoagulant prescription with certain minor discrepancies and differences in cut-off values 

for individual factors [14, 15, 23]. However, the most practical way that risk factors are 

implemented into care practices is via the use of major bleeding risk scores to classify at-risk 

patients. Moreover, although nonmodifiable risk factors have great prognostic value, the 

monitoring of modifiable risk factors is often emphasized in clinical practice. A prospective 

cohort study derived from a registry of rivaroxaban users concluded that the presence of one 

modifiable risk factor such as uncontrolled hypertension (which can be controlled) or alcohol 

abuse (which can be treated) double the risk of bleeding as opposed to non-modifiable risk 

factors such as age (which cannot be changed) which did so to a significantly lesser extent [110]. 

For this reason, clinical scores that incorporate modifiable risk factors are given more weight 

than those that do not. 

The most common major bleeding prediction models  

HAS-BLED 

The most widely used score, the HAS-BLED has been created using candidate predictors 

(variables to be evaluated as predictors prior to any analyses) identified by a literature review of 

bleeding risk factors associated with the use of warfarin or antiplatelet agents. In the analyses 

from which the score was derived, a stepwise logistic regression was used to determine the 

predictors that would be incorporated in the score and the values to be attributed to each point 

estimate. The score incorporated uncontrolled hypertension (systolic blood pressure > 160 mm 

Hg; OR=0.60, 95% CI 0.21-1.72), abnormal kidney function (dialysis or Cr >2.26 mg/dL; 

OR=2.86, 95% CI 1.33-6.18), abnormal liver function (cirrhosis or bilirubin levels a greater than 

twice the normal level with standard liver function testing greater than three times the normal 

value; not included in the regression), prior stroke (OR=0.94, 95% CI 0.32-2.86), prior major 

bleeding (OR=7.51, 95% CI 3.00-18.78), labile international normalized ratio (time in 

therapeutic range < 60%; not included in the regression), age > 65 years (OR= 2.66, 95% CI 

1.33-5.32), antiplatelet use (0.81, 95% CI, 0.43-1.51) and alcohol abuse (more than 8 drinks per 

week; OR=0). Although they were forced in the final logistic regression model and were used in 
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the final score, there was no significant association between hypertension, stroke, antiplatelet use 

or alcohol abuse and the risk of bleeding. Thus, in addition to solely being derived from a 

population of warfarin and antiplatelet users as well as antithrombotic agent non-users, the HAS-

BLED relied heavily on literature review and clinical judgement in the selection of predictors for 

its final model at the expense of using effective prediction methods [25]. On the other hand, one 

of the most notable advantages of the selection of predictors for the HAS-BLED was the 

emphasis placed on modifiable risk factors. Thus, in addition to being used to ensure proper 

monitoring of patients at higher major bleeding risk, the HAS-BLED score can be used as a tool 

to incentivize patients to address conditions that may predispose them to major bleeding (i.e. 

discontinuing antiplatelet use or controlling hypertension) and clinicians to recommend these 

changes to significantly decrease the risk of bleeding. However, it should be noted that, although 

these factors are modifiable, they may not reflect a true causal relationship due to the constraints 

associated with the type of modelling used to derive the score. Therefore, the decrease in risk 

that may be predictive and not causal (i.e. an artifact of confounding). This point will be further 

discussed in the methods section.  

After the advent of the HAS-BLED, there have been attempts to derive models from more recent 

population of oral anticoagulant users to better predict major bleeding. Table 3 identifies the 

main major bleeding risk scores established after the HAS-BLED, while emphasizing differences 

and similarities of the predictors used in each existing score as well as the analyses used to 

derive them. 

 

 HAS-BLED ATRIA HEMMORR2-

HAGES 

ORBIT ABC ABS 

Outcome 

definition 

Major bleeding 

(any location) in 

year of follow-up 

Major bleeding 

(any location) in 

year of follow-up 

Major bleeding 

(any location) in 

year of follow-up 

Major bleeding 

(any location) in 

2 years of 

follow-up 

Major bleeding 

(any location) in 

year of follow-

up 

Major bleeding (any 

location) in year of 

follow-up 

Prediction 

method 

Logistic regression Cox proportional 

hazards regression 

Narrative review Cox 

proportional 

hazards 

regression 

Bootstrapped 

cox proportional 

hazards 

regression 

Bootstrapped cox 

proportional hazards 

regression 

Age (definition, 

RR value) 

Age>64:  

OR=2.66 (1.33-

5.32) 

Age>74: 

HR=1.99 

Age>74: NA Age>74: 

HR= 1.38 (1.17-

1.61) 

Age 

(continuous):  

HR~1.4 95% CI 

1.2-1.6 

Age (continuous): 

HR=1.02 (1.02,1.03) 

Sex (definition, 

RR value) 

NA NA NA NA NA Male: 

HR=0.95 (0.89,1.02) 
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Table 3. Major bleeding predictors in anticoagulant users with atrial fibrillation from existing 

risk scores. 

*NA means that the value was not evaluated. 

ATRIA and HEMORR2 HAGES 

Like for the HAS-BLED, the candidate predictors used to derive the ATRIA (Anticoagulation 

Risk Factors in Atrial Fibrillation) and HEMORR2 HAGES (Hepatic or Renal Disease, Ethanol 

Abuse, Malignancy, Older Age, Reduced Platelet Count or Function, Re-Bleeding, 

Hypertension, Anemia, Genetic Factors, Excessive Fall Risk and Stroke) were also created using 

pre-direct oral anticoagulant era bleeding risk factors [111, 112]. As its name suggests, the 

HEMORR2 HAGES incorporates hepatic or renal disease (Cr >2.5 mg/dL or end-stage renal 

failure; cirrhosis or end-stage liver failure), alcohol abuse (ICD-9 codes : 291.0-2, 303.x, 305.0x, 

571.0-3, 535.3), malignancy history (ICD-9 codes: 141-172, 174-208), age greater than 75, 

reduced platelet count or function (ASA use, thrombocytopenia or hemophilia; patient charts), 

Co-morbidities 

(definition, RR 

value and 95% 

Confidence 

intervals) 

Hypertension: 

OR=0.60 (0.21-

1.72) 

Renal disease:  

OR=2.86 (1.33-

6.18) 

Liver disease: 

NE** 

Prior stroke: 

OR=0.94 (0.32-

2.86) 

Prior major 

bleeding: 

OR=7.51 (3.00-

18.78) 

Labile INR: 

NE** 

Hypertension:  

HR=1.38 

Severe renal 

disease: 

HR=2.53 

Prior bleeding 

(excluding non-

gastrointestinal 

extracranial 

bleeding):  

HR=1.56 

Anemia: 

HR=3.27 

Hypertension: 

NA 

Hepatic or renal 

disease: NA 

Prior stroke: NA 

Prior major 

bleeding:  

NA 

Anemia:  

NA 

Reduced platelet 

count: NA 

Cancer history: 

NA 

Excessive fall 

risk:  

NA 

Genetic 

predisposition: 

NA 

Renal disease: 

HR=1.44 (1.21-

1.72) 

Prior major 

bleeding:  

HR=1.73 (1.34-

2.23) 

Anemia: 

HR= 2.07 (1.74-

2.47) 

Prior bleeding 

NA 

Troponin T 

concentration 

HR~1.4 95% CI 

1.2-1.6 

GDF-15 

concentration 

HR~1.2 95% CI 

1.1-1.3 

Hematocrit 

HR~1.3 95% CI 

1.1-1.6 

Renal disease: 

HR=1.35 (1.24-1.46) 

Prior stroke: 

HR=1.15 (1.07-1.23) 

Prior bleeding: 

HR=1.27 (1.18-1.36) 

Anemia: 

HR=1.38 (1.29-1.48) 

COPD 

HR=1.21 (1.13-1.30) 

CAD: 

HR=1.11 (1.03-1.19) 

Heart failure: 

HR=1.24 (1.16-1.33) 

Diabetes: 

HR=1.24 (1.16-1.32) 

Cancer history 

HR=1.19 (1.10-1.28) 

Medication use 

(definition, RR 

value) 

ASA: clopidogrel 

or NSAID use: 

OR=0.81 (0.43-

1.51)  

NA 
 

Antiplatelet 

agent use: 

HR=1.51 (1.30-

1.75) 

NA Antiplatelet agent 

use: 

HR=1.25 (1.16-1.35) 

Antiarrhythmic 

HR=0.75 (0.66-0.85) 

Diuretics: 

HR=1.17 (1.10-1.26) 

Lifestyle 

factors (RR 

value) 

Alcohol abuse: 

OR=0 

 Alcohol abuse: 

NA 

   

Reference Pisters et al., 2010 

Lip et al. 2011 

Singer et al., 2011 Gage et al., 2006 O’brien et al., 

2015 

Hijazi et al., 

2016 

J’Neka et al., 2018 
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prior major bleeding (patient charts), hypertension (401.0, 402.0x, 403.0x, 404.0x, 405.0x), 

anemia (Hgb <13 g/dL for men and <12 g/dL for women), genetic factors (CYP2C9 mutations), 

high risk of falling defined by the presence of dementia or a risk of falling (according to patient 

charts), and prior strokes (ICD-9 codes: 434-436) [111]. The score was created from three pre-

existing bleeding risk stratification schemes identified by literature review without using any 

prediction method [111]. Meanwhile, the ATRIA incorporated anemia (HR=3.27), severe renal 

disease (dialysis or GFR <30 mL/min; HR=2.53), age greater than 75 (HR=1.99), prior bleed 

(HR=1.56) and hypertension history (HR=1.38) [112]. The predictors were selected using 

bootstrapped cox regressions from a set of candidate predictors from 6 bleeding risk scores 

identified by literature review [112]. Despite its limitations, the ATRIA score has the advantage 

of being the most parsimoniousness one to date. 

ORBIT-AF 

Despite a few commonalities, there are clear distinctions between direct oral anticoagulant and 

warfarin-associated risk factors attributable to the pharmacokinetic and pharmacodynamic 

differences. The three previous scores did not account for bleeding risk factors relevant to direct 

oral anticoagulant users. For this reason, the ORBIT-AF score has been developed while 

accounting for both warfarin and dabigatran users from the RE-LY clinical trial. The score 

incorporates age > 75 years old (HR=1.38 95% CI 1.17-1.61), prior bleeding (HR=1.73 95% CI 

1.34-2.23), anemia (HR=2.07 95% CI 1.74-2.47), GFR <60 mL/min/1.73 m2 (HR=1.44 95% CI 

1.21-1.72) and antiplatelet agent use (HR=1.51 95% CI 1.30-1.75). The predictors were 

identified from a list of candidate predictors from the original ORBIT-AF registry. A Cox 

regression with a backward selection was used and the five values with the greatest chi-squared 

values were selected for the score [113].  

ABS 

Ultimately, the ABS (anticoagulation-specific bleeding score) has been recently developed using 

data from all currently available oral anticoagulants indicated for atrial fibrillation. From the 35 

candidate predictors used in the 4 aforementioned scores and identified in a literature review, 13 

demographic and clinical variables that were selected using bootstrapped Cox regressions to 

create the ABS score. The variables included age (continuous; HR=1.02 95% CI 1.02-1.03), 

kidney disease (HR=1.35 95% CI 1.24-1.46),  COPD (HR=1.21 95% CI 1.13-1.30), prior 
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bleeding event (HR=1.27 95% CI 1.18-1.36), anemia (1.38 95% CI 1.29-1.48), heart failure 

(1.24 95% CI 1.16-1.33), antiplatelet therapy (1.25 95% CI 1.16-1.35), diuretics (1.17 95% CI 

1.10-1.26), diabetes mellitus (1.24  95% CI 1.16-1.32), cancer history (1.19 95% CI 1.10-1.28),  

antiarrhythmic agents (0.75 95% CI 0.66-0.85), ischemic stroke (1.15 95% CI 1.07-1.23), CAD 

(1.11 95% CI 1.03-1.19), male sex (0.95 95% CI 0.89-1.02), dabigatran (0.74 95% CI 0.66-0.83; 

ref. warfarin), rivaroxaban (1.01 95% CI 0.90-1.15; ref. warfarin) and apixaban (0.59 95% CI 

0.45-0.78; ref. warfarin). Contrary to the previous score, the ABS has left its score in the form of 

the survival model from which it was derived, thus making the tool less user-friendly that its 

predecessors [114]. One advantage of this study is that it identifies major bleeding risk factors 

relevant to warfarin users and all direct oral anticoagulant users indicated for atrial fibrillation. 

ABC 

The ABC score (age, biomarkers, clinical) is a biomarker-based score that has been derived from 

the ARISTOTLE clinical trial cohort. It incorporates age (HR~1.4 95% CI 1.2-1.6), 3 biomarkers 

(growth differentiating factor-15, GDF-15, [HR~1.4 95% CI 1.2-1.6]), a marker of oxidative 

stress cardiac troponin, a marker of myocardial injury [HR~1.4 95% CI 1.2-1.6] and blood 

concentration of haemoglobin [HR~1.2 95% CI 1.1-1.3]) and prior bleeding via clinical chart 

review (HR~1.3 95% CI 1.1-1.6). These variables were selected from a bootstrapped Cox 

proportional hazard regression. They used the five predictors with the greatest HR values in a 

final model that was fit with 19 candidate predictors. The candidate predictors originated from 

the ABC stroke risk score and a post-hoc analysis from the ARISTOTLE trial [115].  

Although prediction models are not designed for causal inference, the consistent selection of 

specific major bleeding predictors across different models can be a useful indicator of risk 

factors that are important to consider clinically. For instance, age (albeit defined differently 

across models) is consistently selected with HR values ranging from 1.02 to 1.99. Hypertension, 

on the other hand, was not selected for all models, but still consistently used in many of the risk 

scores. Renal disease (moderate or severe) and prior bleeding, on the other hand, were consistent 

major bleeding predictors with HRs exceeding 1.35 and 1.27, respectively. Lastly, antiplatelet 

use was incorporated in the risk scores with relative consistency with HR values exceeding 1.25. 

Despite the limitations in the analyses used to derive the HAS-BLED, it seems that it is still the 
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model that incorporates the most important (consistently selected) predictors relative to the other 

risk scores.  

The performances of the most common major bleeding prediction 

models 

HAS-BLED 

Within its derivation cohort, which constituted users of all the oral antithrombotic agents 

available at the time of the study, the HAS-BLED performed moderately well in predicting 

major bleeding with a c-statistic of 0.72 (95% CI 0.65-0.79). In the warfarin group alone, the 

HAS-BLED performed similarly with a c-statistic of 0.69 (95% CI 0.59-0.80) [25]. The HAS-

BLED was then formally validated in a cohort of rivaroxaban users with a similar performance 

(c-statistic=0.68, p=0.07) [116]. A recent meta-analysis of the HAS-BLED identified a pooled c-

statistic of 0.65 (95% CI 0.61‐0.69) based on 7 studies. The same meta-analysis showed that the 

HAS-BLED underpredicted major bleeding risk among patients at moderate and high risk of the 

outcome [117]. However, the moderate risk subgroup displayed significant heterogeneity. 

Most of the other scores were compared to the HAS-BLED in a full population of oral 

anticoagulant users or a subgroup of this population in their corresponding derivation studies. 

Albeit less frequent, they have also been tested for their ability to detect MB in separate 

independent studies. Table 4 compares the derivation and validation cohort characteristics and 

performances of the HAS-BLED to that of the scores that followed it. 

 

 HAS-BLED ATRIA HEMMOR2HA

GES 

ORBIT ABC ABS 

Derivation cohort 

characteristics 

Warfarin, 

antiplatelet and non-

OAC users 

 

 

Warfarin users Warfarin and ASA 

users 

Warfarin, 

dabigatran and 

antiplatelet users 

Clinical trial 

warfarin, and 

apixaban users 

(ARISTOTLE 

cohort) 

Warfarin and 

DOAC users 

Validation cohort 

population 

Validation 1: 

7 warfarin user 

cohorts (from a 

meta-analysis) 

Validation 2: 

Clinical trial 

rivaroxaban users 

Validation: 

3 warfarin user 

cohorts (from a 

meta-analysis) 

 

Validation: 

5 warfarin user 

cohorts (from a 

meta-analysis) 

 

Validation 1: 

Clinical trial 

warfarin and 

rivaroxaban users 

Validation 2: 

Clinical trial 

warfarin users 

Clinical trial 

warfarin, and 

dabigatran users 

(RE-LY cohort) 

Warfarin, DOAC 

and antiplatelet 

users 
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Table 4. Studies evaluating the performance of existing major bleeding risk scores. 

*Adequate calibration implies a non-statistically significant Hosmer-Lemeshow test or no 

statistically significant difference from baseline in a calibration plot. **NA means that the value 

was not evaluated. 

ATRIA and HEMORR2 HAGES 

In its original study, the HEMORR2 HAGES had an adequate discrimination of major bleeding 

in different patient populations of antithrombotic agent users with a c-statistics of 0.67  (p<0.05) 

among warfarin users, 0.72 (p=0.05) among ASA users and 0.66 (p<0.05) among non-

antithrombotic agent users. Calibration was originally not assessed [111]. The score was 

validated in five separate study in a meta-analysis of studies in which the HAS-BLED was 

compared to other scores. It displayed a pooled c-statistic of 0.63 95% CI 0.56-0.72 [117]. Of 

note, each of the five studies used cohorts of warfarin users and, to our knowledge, the 

Model 

performance 

metric  

Derivation: C-

statistic 

Validation 1: 

C-statistic 

NRI (relative to 

ATRIA and 

HEMM.), 

IDI (relative to 

ATRIA and 

HEMM.) 

Validation 2: 

C-statistic  

 

Derivation: C-

statistic 

Validation: 

C-statistic, NRI 

(relative to 

HAS-BLED), 

IDI (relative to 

HAS-BLED) 

 

 

Derivation: 

Bootstrapped c-

statistic 

Validation: 

C-statistic, 

NRI (relative to 

HAS-BLED) 

 

 

Derivation: C-

statistic 

Validation 1: 

C-statistic 

Validation 2: 

C-statistic  

 

Derivation: 

Bootstrapped c-

statistic 

Validation: 

Bootstrapped c-

statistic  

Derivation: C-

statistic 

Validation: 

C-statistic 

Model 

performance with 

major bleeding 

Derivation : 

0.72 (p<0.05) 

Validation 1 : 

0.65 (0.61‐0.69) 

NRI : conflicting 

findings 

IDI: p<0.05 in favor 

of HAS-BLED 

Validation 2 : 

0.65 (p>0.05; NS) 

Derivation: 

0.69 (p<0.05) 

Validation 1:  

0.63 (0.56‐0.72) 

NRI/IDI: 

p<0.05 in favor 

of HAS-BLED 

 

Derivation: 0.67 

(p<0.05) 

Validation:  

0.63 (0.61‐0.66) 

NRI: conflicting 

findings 

 

 

 

 

Derivation: 0.67 

(0.64, 0.69) 

Validation 1: 

0.62 (0.60, 0.64)  

Validation 2: 

0.61 (0.51-0.70) 

Derivation: 

0.68 (0.66-0.70) 

Validation: 

0.71 (0.68-0.73) 

Derivation:  

0.68 (0.67-0.69) 

Validation: 

0.68 (0.67-0.69) 

Model 

performance 

major bleeding 

subtypes 

Validation 

(intracranial 

hemorrhage) : 

0.58 (0.54-0.61) 

Validation 

(intracranial 

hemorrhage): 

NS 

 

Validation 

(intracranial 

hemorrhage): NS 

 

Derivation 

(intracranial 

hemorrhage):  

0.69 (0.63, 0.74) 

 

Validation 

(intracranial 

hemorrhage): 

0.66 (0.62-0.69) 

NA 

Calibration* Inadequate Adequate NA Adequate Adequate Adequate 

References Pisters et al., 2010 

Zhu et al., 2015 

Gorman et al., 2016 

Hijazi et al., 2016 

Singer et al., 

2011 

Zhu et al., 2015 

Apostolakis, 

2012 

 

Gage et al., 2006 

Zhu et al., 2015 

Apostolakis, 2012 

O’brien et al., 

2015 

Senoo et al, 2016 

Hijazi et al., 

2016 

J’Neka et al., 

2018 
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HEMORR2 HAGES was never validated as a standalone (without being compared to other 

scores). 

Shortly after, the ATRIA score was derived from a cohort of warfarin users. It performed on a 

similar scale than the HAS-BLED with c-statistics of 0.69 (95% CI 0.66-0.71) and 0.74 (95% CI 

0.72-0.76) for the 3 category and continuous versions of the score, respectively. The score was 

also deemed well-calibrated [112]. Subsequently, a real-world study comparing the HAS-

BLED’s performance to that of the ATRIA suggested that the ATRIA score performed on a 

similar scale as it did in its derivation cohort (c-statistic=0.68 95% CI 0.65-0.71), but not as well 

when it was dichotomized as greater than or less than 5 (c-statistic=0.59 95% CI 0.55-0.62) 

[118]. Once more, the calibration of neither models was assessed. 

ORBIT-AF 

In its derivation cohort of randomized clinical trial dabigatran and warfarin users, the continuous 

model had a c-statistic of 0.69 (95% CI 0.67, 0.72), but performed less well in the validation 

cohort of randomized clinical trial rivaroxaban and warfarin users (c-statistic 0.63 95% CI 0.61, 

0.65). The categorical score displayed similar results with c-statistics of 0.67 (0.64, 0.69) and 

0.62 (0.60, 0.64) in its derivation and validation cohorts, respectively. However, the ORBIT-AF 

was shown to overpredict major bleeding risk among patients with moderate major bleeding risk 

[113]. A study aimed at externally validating the ORBIT and HAS-BLED scores in a real-world 

Asian population found that the score performed similarly to its original study with a c-statistic 

of 0.64 95% CI 0.59-0.70 and generally adequate calibration with a mild overprediction of risk 

among patients at moderate major bleeding risk [119]. 

ABS 

The ABS had the same discrimination values in its derivation and validation cohorts with a c-

statistic of 0.68 (95% CI 0.67, 0.69). It performed more poorly in a subpopulation of older 

patients (>75 years old) with c-statistic of 0.63 (95% CI 0.61-0.64) and 0.63 (95% CI 0.62-0.65) 

in the derivation and validation cohort, respectively. This subgroup analyses were performed 

since a categorical definition of age was not included in the model. The model was adequately 

calibrated in the full derivation and validation cohort as well as the older patient subgroup [119]. 

However, the score has yet to be validated in another study. 
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ABC 

The ABC score performed equally well in its full derivation and validation cohorts (from the 

ARISTOTLE and RE-LY trials respectively) with c-statistics of 0.68 (0.66-0.70) and 0.71 (95% 

CI 0.68-0.73), respectively [115]. In subpopulations of non-bleeders, warfarin users, direct oral 

anticoagulant users as well as antiplatelet or NSAID users, the score performed similarly to the 

full cohort with c-statistics of 0.68 (0.65-0.70), 0.68 (0.65-0.70), 0.68 (0.65-0.71) and 0.69 (0.66-

0.72). A second validation study among patients from the RE-LY trial reached a similar 

conclusion with the score displaying a c-statistic of 0.70 (p<0.05) and adequate calibration [120]. 

Comparative performances 

All original studies for major bleeding score indicated superior performance to previous scores. 

Therefore, a few external studies have been conducted to compare the performances of different 

scores using the HAS-BLED as benchmark given its widespread clinical use. A meta-analysis 

found little difference in discrimination between the HAS-BLED (c-statistic=0.65 95% CI 0.61-

0.69 across 7 studies), the HEMORR2 HAGES (c-statistic=0.63 95% CI 0.6-0.66 across 5 

studies) and ATRIA (c-statistic=0.63 95% CI 0.56-0.72 across 3 studies) [121]. However, the net 

reclassification improvement (NRI) and integrated discrimination improvement (IDI) values, 

metrics suggested to better represent the comparative performance of two models relative to the 

c-statistic, were also assessed. Assuming the existence of meaningful risk categories (a pre-

determined cut-off value within the models being compared), the NRI calculates how many 

individuals will be classified in each risk category for the two compared scores and compares 

these classifications to the real event rates. The IDI does so for every possible risk category 

cutoff value [121, 122]. Out of three studies, two identified a statistically significant NRI in favor 

of the HAS-BLED when comparing to the ATRIA (+31.0% and +19.6%, p<0.05 for both 

studies) and HEMORR2 HAGES (+26.0%, p<0.05 for one of the studies) [117]. Likewise, a 

single study identified a statistically significant IDI (+10.0%, p<0.05) in favor of the HAS-

BLED [117]. 

Subsequently, a study seeking to validate the superiority of the ORBIT-AF score to the HAS-

BLED found no statistically significant differences in discrimination with c-statistics of 0.63 

(95% CI 0.56-0.71) and 0.70 (95% CI 0.62-0.77), respectively [123]. A Spanish retrospective 

hospital-based study found little difference in discrimination between the HAS-BLED, (c-



 
 

 43 

 

statistic=0.62 95% CI 0.59-0.65), the ATRIA, (c-statistic=0.61 95% CI 0.58-0.64) and ORBIT 

(c-statistic=0.59 95%CI 0.56-0.62) (182). Ultimately, a comparative meta-analysis of the HAS-

BLED and ORBIT found that, across 7 studies, the HAS-BLED had similar discrimination 

relative to the ORBIT (c-statistics=0.63 95% CI 0.60-0.66 and 0.65 95% CI 0.60-0.69, 

respectively). However, unlike the HAS-BLED, the ORBIT seemed to underpredict bleeding 

across all major bleeding risk strata [124]. 

Ultimately, in a real-world atrial fibrillation patient population, the HAS-BLED outperformed 

the ABC score while both scores performed sub-optimally (c-statistics of 0.583 versus 0.518, 

respectively; p<0.05) [125]. Conversely, among patients from the ENGAGE-AF trial, the ABC 

outperformed the HAS-BLED in detecting major bleeding (c-statistics of 0.69, 95% CI, 0.66-

0.71 versus 0.62, 95% CI, 0.60-0.64, respectively; P<0.001) [126]. Finally, the ABS score, being 

the most recent score, only outperformed the other scores in an internal validation and requires 

further external validation. 

Taken altogether, these studies suggest that the HAS-BLED performs better or similarly to the 

other existing scores across different populations of oral anticoagulant users, while the ABS 

score showed the most promise in predicting major bleeding in a current population of direct oral 

anticoagulant and warfarin users in a single study. However, scores were not always compared 

using adequate prediction model comparison metrics (the NRI and IDI) [127]. Moreover, 

although major bleeding is the outcome of interest for most clinicians, it is still important to 

consider the risk factors of major bleeding subtypes. Intracranial hemorrhage, gastrointestinal 

bleeding and non-GI extracranial bleeds may differ in etiology, incidence, their impact on patient 

quality of life and post-bleed oral anticoagulant adherence.  

Major bleeding subtype prediction models 

While the identification of intracranial hemorrhage risk factors is very important due to their 

high associated fatality rate, other MB subtypes are also highly pertinent on account of their 

frequency. The identification of gastrointestinal bleeding risk factors and emphasizing them in 

prescription guidelines would help make practices, such as endoscopy, more routine. This would 

not only help mitigate the safety risks associated with oral anticoagulant use, but, as mentioned 

in earlier sections, also lessen the impact of these adverse events on patient quality of life and 
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lessen the impact on drug effectiveness by improving adherence. While the predictors of GIB are 

poorly researched in post-warfarin era oral anticoagulant user populations, non-GI extracranial 

bleeding such as hematuria and genitourinary bleeding have not been evaluated at all in this 

population. The predictors of major bleeding subtypes identified by the most comprehensive 

models specifically designed to detect them are summarized in Table 5. 

 Qbleed UGIB QBleed ICH Lauffenburger et al. 

Outcome definition Upper GIB (GI ulcer, melena, 

haematemesis, laceration, varices, 

haemorrhagic gastritis, and unspecified 

GIB) within 5 years 

Subarachnoid, intracerebral, subdural, 

extradural, or unspecified bleeding within 

5 years 

Upper, lower and 

unspecified GIB within 

the study period 

Prediction method Cox proportional hazard regression with 

backward selection 

Cox proportional hazard regression with 

backward selection 

Cox proportional hazard 

regression 

Sociodemographic 

variables 

Age/10^-1: evaluated, but not reported 

Ethnicity 

Townsend material deprivation score 

 

*Models are stratified by sex 

Age/10^-1: evaluated, but not reported 

Ethnicity 

Townsend material deprivation score 

 

*Models are stratified by sex 

Age<55: Ref 

Age 55-64: 1.54 (0.89-

2.68) 

Age 65-74: 2.72 (1.59-

4.65)  

Age>75: 4.52 (2.68-

7.64) 

*US region also 

evaluated 

Sex (definition) NA NA Male sex : 

0.78 (0.64-0.95) 

Co-morbidities 

(definition; HRs) 

Women  

Previous bleed 

2.26 (2.10 to 2.43) 

Esophageal 

varices 

3.35 (2.58 to 4.33) 

Chronic liver 

disease or 

pancreatitis 

2.81 (2.44 to 3.23) 

Atrial fibrillation 

1.24 (1.11 to 1.39) 

Venous 

thromboembolism 

1.16 (1.04 to 1.30) 

Congestive heart 

failure 

1.41 (1.25 to 1.59) 

Treated 

hypertension 

1.06 (1.01 to 1.12) 

Cancer 

1.22 (1.13 to 1.31) 

Anemia 

1.68 (1.52 to 1.85) 

Men 

Previous bleed 

2.11 (1.98 to 2.26) 

Esophageal 

varices 

2.07 (1.59 to 2.68) 

Chronic liver 

disease or 

pancreatitis 

3.08 (2.75 to 3.45) 

Atrial fibrillation 

1.21 (1.07 to 1.36) 

Venous 

thromboembolism 

1.12 (0.98 to 1.28) 

Congestive heart 

failure 

1.46 (1.30 to 1.64) 

Treated 

hypertension 

1.11 (1.05 to 1.16) 

Cancer 

1.39 (1.29 to 1.50) 

Anemia 

1.79 (1.64 to 1.96) 

Women 

Previous bleed 

1.33 (1.23 to 1.44) 

Esophageal 

varices 

3.22 (2.07 to 5.01) 

Chronic liver 

disease or 

pancreatitis 

1.92 (1.50 to 2.46) 

Atrial fibrillation 

1.17 (1.01 to 1.35) 

Treated 

hypertension 

1.06 (1.00 to 1.14) 

Anemia 

1.62 (1.41 to 1.88) 

 

Men 

Previous bleed 

1.32 (1.23 to 1.42) 

Esophageal 

varices 

1.72 (1.01 to 2.91) 

Chronic liver 

disease or 

pancreatitis 

2.21 (1.79 to 2.73) 

Atrial fibrillation 

1.36 (1.18 to 1.57) 

Treated 

hypertension 

1.18 (1.09 to 1.26) 

Anemia 

1.61 (1.41 to 1.83) 

Hypertension 

1.07 (0.85-1.35) 

Renal disease 

1.67 (1.24-2.25) 

Prior stroke 

0.96 (0.71-1.30) 

Prior bleeding 

1.32 (1.01-1.72) 

Anemia 

1.25 (0.97-1.62) 

Venous 

thromboembolism 

1.14 (0.72-1.80) 

Peripheral vascular dis. 

1.28 (0.94-1.73) 

Coronary artery dis. 

1.37 (1.10-1.69) 

Heart failure: 

1.24 (1.16-1.33) 

Hyperlipidemia: 

0.88 (0.72-1.07) 

Diabetes: 

1.21 (0.98-1.48) 

Peptic ulcer disease 

1.59 (0.59-4.28) 

H. Pylori infection 

4.75 (1.93-11.68) 
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Lifestyle factors 

(definition; HRs) 

Smoking status 

(cigarettes/day) 

Non-smoker: 

Ref 

Former smoker: 

1.09 (1.04 to 1.14) 

Light smoker (1-9): 

1.31 (1.23 to 1.40) 

Moderate smoker 

(10-20): 

1.30 (1.19 to 1.43) 

Heavy smoker 

(>=20): 

1.56 (1.39 to 1.74) 

Alcohol intake 

(units/day) 

None: 

Ref 

Trivial (<1): 

0.87 (0.83 to 0.92) 

Light (1-2): 

0.79 (0.74 to 0.85) 

Moderate (3-6): 

0.99 (0.92 to 1.07) 

Heavy (7-9): 

1.85 (1.47 to 2.32) 

Very heavy (>9): 

2.85 (2.27 to 3.59) 

 

Smoking status 

(cigarettes/day) 

Non-smoker: 

Ref 

Former smoker: 

1.12 (1.07 to 1.18) 

Light smoker (1-9): 

1.40 (1.33 to 1.49) 

Moderate smoker 

(10-20): 

1.39 (1.28 to 1.52) 

Heavy smoker 

(>=20): 

1.62 (1.48 to 1.76) 

Alcohol intake 

(units/day) 

None: 

Ref 

Trivial (<1): 

0.82 (0.78 to 0.86) 

Light (1-2): 

0.82 (0.77 to 0.87) 

Moderate (3-6): 

0.89 (0.85 to 0.95) 

Heavy (7-9): 

1.35 (1.21 to 1.50) 

Very heavy (>9): 

1.79 (1.57 to 2.04) 

 

Smoking status 

(cigarettes/day) 

Non-smoker: 

Ref 

Former smoker: 

1.12 (1.04 to 1.21) 

Light smoker (1-9): 

1.80 (1.63 to 1.99) 

Moderate smoker 

(10-20): 

2.12 (1.86 to 2.43) 

Heavy smoker 

(>=20): 

2.37 (2.01 to 2.81) 

Alcohol intake 

(units/day) 

None: 

Ref 

Trivial (<1): 

0.96 (0.89 to 1.03) 

Light (1-2): 

1.03 (0.92 to 1.16) 

Moderate (3-6): 

1.05 (0.93 to 1.18) 

Heavy (7-9): 

2.13 (1.49 to 3.03) 

Very heavy (>9): 

2.62 (1.73 to 3.97) 

 

Smoking status 

(cigarettes/day) 

Non-smoker: 

Ref 

Former smoker: 

1.04 (0.97 to 1.12) 

Light smoker (1-9): 

1.44 (1.31 to 1.58) 

Moderate smoker 

(10-20): 

1.72 (1.50 to 1.97) 

Heavy smoker 

(>=20): 

1.72 (1.47 to 2.00) 

Alcohol intake 

(units/day) 

None: 

Ref 

Trivial (<1): 

0.84 (0.77 to 0.92) 

Light (1-2): 

0.85 (0.77 to 0.93) 

Moderate (3-6): 

0.97 (0.88 to 1.06) 

Heavy (7-9): 

1.58 (1.34 to 1.86) 

Very heavy (>9): 

1.48 (1.14 to 1.92) 

 

 

Medication use 

(definition; HRs) 

Anticoagulant 

(warfarin or 

DOAC) 

3.89 (2.75 to 5.49) 

Antiplatelet drug  

1.26 (1.19 to 1.33) 

NSAIDs 

1.16 (1.11 to 1.21) 

Corticosteroid 

1.26 (1.18 to 1.34) 

Antidepressant 

1.57 (1.51 to 1.64) 

Phenytoin or 

carbamazepine 

1.40 (1.18 to 1.65) 

Anticoagulant 

(warfarin or 

DOAC) 

4.43 (3.32 to 5.92) 

Antiplatelet drug  

1.21 (1.15 to 1.28) 

NSAIDs 

1.09 (1.05 to 1.14) 

Corticosteroid 

1.26 (1.17 to 1.36) 

Antidepressant 

1.69 (1.60 to 1.78) 

Phenytoin or 

carbamazepine 

1.30 (1.10 to 1.55) 

Anticoagulant 

(warfarin or 

DOAC) 

3.62 (1.25 to 10.49) 

Antiplatelet drug  

1.31 (1.22 to 1.41) 

Antidepressant 

1.31 (1.22 to 1.40) 

Phenytoin or 

carbamazepine 

2.20 (1.79 to 2.70) 

Anticoagulant 

(warfarin or 

DOAC) 

3.99 (1.86 to 8.55) 

Antiplatelet drug  

1.27 (1.17 to 1.36) 

Antidepressant 

1.38 (1.27 to 1.50) 

Phenytoin or 

carbamazepine 

2.03 (1.64 to 2.53) 

Antiplatelet agent use: 

1.49 (1.19-1.88) 

Antiarrhythmic 

1.10 (0.89-1.37) 

Digoxin: 

1.33 (1.05-1.68) 

β-blocker: 

0.97 (0.78-1.19) 

Calcium channel 

blocker: 

0.97 (0.80-1.18) 

ACE inhibitors or 

angiotensin receptor 

blockers: 

1.23 (0.99-1.51) 

Statins: 

1.08 (0.87-1.34) 

Corticosteroid: 

1.17 (0.95-1.45) 

NSAID: 

1.04 (0.82-1.31) 

GI protective agent: 

1.02 (0.78-1.35) 

High dabigatran dose: 

1.14 (0.86-1.53) 

Reference Hippisley-Cox and Coupland, 2014 Hippisley-Cox and Coupland, 2014 Lauffenburger et al.,2015 
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Table 5. Major bleeding subtype predictors in the most relevant existing models. 

*NA means that the value was not evaluated. 

HAS-BLED 

Although it is the most commonly used major bleeding risk score, the HAS-BLED’s ability to 

predict intracranial hemorrhage is poorly researched. One real-world study found that, among 

warfarin users with atrial fibrillation, the score had a c-statistic of 0.527 (0.513-0.541) [126]. The 

HAS-BLED performed somewhat better in a cohort of Danish real-world warfarin, ASA, 

warfarin-ASA and non-users of either medication (c-statistic~0.6) [128].  

As the most frequent bleeding outcome impacting anticoagulated patients, an understanding of 

the mechanisms that lead to anticoagulant-associated gastrointestinal bleeding is essential to 

better characterize their risk factors. The proposed pathogenesis of gastrointestinal bleeding 

dictates that it can stem from systemic effects or topical effects triggered by incomplete drug 

absorption in the upper GI tract, the direct corrosive effect from certain components in the 

dabigatran pill formulation and the inhibition of mucosal healing [60]. Although these factors are 

not accounted for by the HAS-BLED, it has been shown to detect gastrointestinal bleeding fairly 

well with a c-statistic of 0.74 (95%CI, 0.71-0.76) in a Spanish-based hospital study [129]. 

However, a real-world study comparing its performance to the ABC score suggested the contrary 

with the HAS-BLED displaying a c-statistic of 0.596 [125]. An additional limitation of using the 

HAS-BLED to predict this outcome is that it has been shown to underpredict gastrointestinal 

bleeding in subpopulation with risk factors specific to gastrointestinal bleeding that are 

unaccounted for by the HAS-BLED such as H. Pylori infection [130]. Generally, with the 

exception of a few underpowered studies, the HAS-BLED’s discrimination with respect to 

gastrointestinal bleeding has been understudied and requires validation. With only a single study 

suggesting that the ORBIT-AF can detect risk of small bowel bleeding, the association between 

the ATRIA, ORBIT-AF and HEMORR2HAGES scores and gastrointestinal bleeding is even 

more dubious. 

ATRIA and HEMORR2 HAGES  

The HEMORR2 HAGES detected slightly better than random (c-statistic=0.525, 95% CI 0.510-

0.539), while the ATRIA could not effectively predict intracranial hemorrhage in a cohort of 

warfarin users with atrial fibrillation [126]. Similarly to the HAS-BLED, the 
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HEMORR2 HAGES displayed moderate discrimination (c-statistic~0.6) within a cohort of 

Danish warfarin, ASA, warfarin-ASA users and non-users of either medication [128]. Neither 

score has been tested for its ability to predict gastrointestinal bleeding or non-gastrointestinal 

extracranial bleeding. 

ORBIT-AF 

The original ORBIT-AF study evaluated its ability to detect intracranial hemorrhage within the 

derivation cohort. Here, the ORBIT had a c-statistic of 0.69 95% CI 0.63-0.74 [113]. However, 

with the exception of one study suggesting that it performed no better than chance, there have 

been very few validation studies for this outcome [128]. The score has also not been tested for its 

ability to predict gastrointestinal bleeding or non-gastrointestinal extracranial bleeding. 

ABC 

In its derivation cohort, the ABC bleeding score predicted intracranial hemorrhage moderately 

well with a c-statistic of 0.66 (95% CI 0.62-0.69) [115]. In a real-world validation study of the 

ABC score’s discriminatory potential, its c-statistic was inferior to that of the HAS-BLED for an 

intracranial hemorrhage-gastrointestinal bleeding composite outcome (0.593 and 0.527, 

respectively, p<0.05). Moreover, its statistically significant negative NRI relative to the HAS-

BLED further supported the findings about the inferiority of the score to the HAS-BLED [125]. 

A single validation study among showed the ABC score predicted gastrointestinal bleeding no 

better than random with a c-statistic of 0.519 [125]. However, it has been tested for its ability to 

predict non-gastrointestinal extracranial bleeding. 

QBleed 

Few models were designed solely for the detection of major bleeding subtypes as opposed to 

major bleeding. The Qbleed prediction models for the 5-year risk of intracranial hemorrhage are 

some of the few major bleeding (or major bleeding subtype) models for which the discriminatory 

potential exceeded a c-statistic of 0.70 (the proposed cut-off value for good prediction models) 

[131]. Two separate models were generated derived from British oral anticoagulant non-users 

and users for each sex using Cox proportional hazard models and backward selection. These 

methods selected the Townsend material deprivation score (5 unit increases), ethnicity (relative 

to Caucasian), smoking status (relative to non-smokers), magnitude of alcohol intake (relative to 
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non-drinkers), any previous bleeding (timeline undefined), esophageal varices, liver 

disease/pancreatitis, atrial fibrillation, treated hypertension, most recent platelet count, 

anticoagulant use, antiplatelet use, antidepressant use and anticonvulsant use. The female and 

male sex models had c-statistics of 0.847 (95% CI 0.838 to 0.856) and 0.812 (95% CI 0.80 to 

0.824), respectively. The performances of the models were confirmed in a subsequent validation 

study of UK scoring tools for different health outcomes in which the Qbleed for intracranial 

hemorrhage had c-statistics ranging between 0.79 and 0.85 depending on the validation cohort 

and sex [132]. Nonetheless, given that the prediction models mostly involved patients who have 

not used any anticoagulant (~99%), contains very little direct oral anticoagulant users (>0.05%) 

and did not it focus on an patients with atrial fibrillation, it is unlikely that they can adequately 

predict intracranial hemorrhage in our population of interest. 

One of the most comprehensive models for detecting the 5-year risk of upper gastrointestinal 

bleeding were the Qbleed models. Just like with the intracranial hemorrhage QBleed models, two 

separate models were generated derived from a British patient population for each sex using Cox 

proportional hazard models. The method selected the same variables as the intracranial 

hemorrhage QBleed with the addition of venous thromboembolism, congestive heart failure and 

cancer. The female and male sex models had c-statistics of 0.766 (95% CI 0.758-0.775) and 

0.747 (95% CI 0.738-0.756), respectively [131]. Validation study findings showed that the 

models performed similarly in other cohorts of British patients with c-statistics ranging between 

0.747 and 0.775 [132]. 

Lauffenburger et al. gastrointestinal bleeding prediction model 

Female sex (HR=1.28, 95% CI 1.05-1.56), age over 75 age between 65 and 75 and age between 

55 and 65 (relative to 55 and under; HR=4.52, 95% CI 2.68-7.64, HR=2.72, 95% CI 1.59-4.65, 

HR=1.54, 95% CI 0.89-2.68, respectively), renal impairment (HR=1.67, 95% CI 1.24-2.25), 

heart failure (HR=1.25, 95% CI 1.01-1.56), coronary artery disease (HR=95% CI 1.37 95% CI 

1.10-1.69), a history of bleeding, alcohol abuse (HR=2.57, 95% CI 1.52-4.35), prior Helicobacter 

Pylori infection (HR=4.75, 95% CI 1.93-11.68), concomitant antiplatelet use (HR=1.49, 95% CI 

1.19-1.88) and digoxin use (HR=1.33, 95% CI 1.05-1.68) were identified as the most 

gastrointestinal bleeding important predictors in a U.S. cohort of dabigatran-users [95]. 
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However, this study’s caveats are that the prediction method that was used to derive the model 

was not robust. Moreover, neither model performance, nor calibration was assessed. 

Female sex (HR=1.28, 95% CI 1.05-1.56), age over 75 age between 65 and 75 and age between 

55 and 65 (relative to 55 and under; HR=4.52, 95% CI 2.68-7.64, HR=2.72, 95% CI 1.59-4.65, 

HR=1.54, 95% CI 0.89-2.68, respectively), renal impairment (HR=1.67, 95% CI 1.24-2.25), 

heart failure (HR=1.25, 95% CI 1.01-1.56), coronary artery disease (HR=95% CI 1.37 95% CI 

1.10-1.69), a history of bleeding, alcohol abuse (HR=2.57, 95% CI 1.52-4.35), prior Helicobacter 

Pilori infection (HR=4.75, 95% CI 1.93-11.68), concomitant antiplatelet use (HR=1.49, 95% CI 

1.19-1.88) and digoxin use (HR=1.33, 95% CI 1.05-1.68) were identified as the most 

gastrointestinal bleeding important predictors in a U.S. cohort of dabigatran-users [95]. 

However, this study’s caveats are that the prediction method that was used to derive the model 

was not robust. Moreover, neither model performance, nor calibration was assessed. 

Comparative performance 

Among real-world warfarin users with atrial fibrillation, the HAS-BLED had a statistically 

significant NRI relative to the ATRIA (+0.060, 95% CI +0.026-+0.093) and ORBIT-AF (+0.048 

95% CI +0.013-+0.082), but not the HEMORR2HAGES (+0.030 95% CI -0.001-+0.060) [126]. 

Conversely, the HEMORR2HAGES and HAS-BLED were not shown to display any difference 

among warfarin, ASA and warfarin-ASA users in a Danish cohort (185). In a Chinese 

population, the HAS-BLED outperformed the ATRIA (NRI=+0.324, 95% CI +0.321-+0.327), 

ORBIT-AF (NRI=+0.375 95% CI +0.373-+0.378) and HEMORR2HAGES (NRI= +0.295 95% 

CI +0.292-+0.298) [133]. In its original study, the ABC-bleeding score outperformed the HAS-

BLED, but not the ORBIT in detecting intracranial hemorrhage with c-statistics of 0.66 (95% CI 

0.62-0.69), 0.58 (95% CI 0.54.0.61), and 0.60 (95% CI 0.56-0.64), respectively [115]. However, 

these findings have never been validated.  

Most recent prediction models for major bleeding subtypes have not been compared to others, 

but it is important to understand the extent to which they perform well in the populations they are 

each, respectively, derived from. Table 6 describes the performance of these models and their 

associated derivation and validation populations. 
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Table 6. Studies evaluating the performance of existing major bleeding subtype risk scores. 

*Adequate calibration implies a non-statistically significant Hosmer-Lemeshow test or no 

statistically significant difference from baseline in a calibration plot. **NA means that the value 

was not evaluated. 

 

Although, the intracranial hemorrhage QBleed models were never formally compared to the 

HAS-BLED or any other score and were only reported to outperform them on the basis of their 

c-statistics [54]. However, this will require further confirmation. Thus, the HAS-BLED is the 

only score validated to outperform other scores and models in detecting intracranial hemorrhage 

beyond their derivation studies in our population of interest. Yet, it only does so moderately well.  

Unlike with intracranial hemorrhage, the HAS-BLED performed similarly to the ATRIA and 

ORBIT in detecting gastrointestinal bleeding (c-statistics of 0.74, 95% CI 0.71-0.76, 0.71, 95% 

CI 0.68-0.74, and 0.69 95% CI 0.66-0.72, respectively) [129]. Conversely, the HAS-BLED was 

shown to outperform the ABC score (c-statistics of 0.596 and 0.519, respectively; p<0.05) in a 

validation study for the latter [125]. Meanwhile, the upper gastrointestinal bleeding QBleed was 

never formally compared to the HAS-BLED or any other score but seemed to outperform them 

all. However, it is important to consider that it has yet to be tested in our population of interest 

and unlikely to have a comparable discriminatory potential since it was not fully derived from 

our population of interest. Lastly, in addition only encompassing half of anticoagulant-associated 

gastrointestinal bleeding, upper gastrointestinal bleeding are proposed to be mechanistically 

different from them and thus associated with significantly different risk factors [60]. 

 Qbleed UGIB QBleed ICH Lauffenburger et al. 

Derivation cohort 

characteristics 

Warfarin, DOAC or OAC non-user 

*DOAC users (>0.05% of derivation 

cohort) 

Warfarin, DOAC or OAC non-user 

*DOAC users (>0.05% of derivation 

cohort) 

Dabigatran new users 

Validation cohort 

population 

Warfarin, DOAC or OAC non-user 

*DOAC (>0.05% of derivation cohort, 

likely) 

Warfarin, DOAC or OAC non-user 

*DOAC (>0.05% of derivation cohort, 

likely) 

NA 

Model performance  Internal Validation 

Women: c-statistic=0.77 (0.76-0.78) 

Men: c-statistic=0.75 (0.74-0.76) 

External validation  

Women: c-statistic=0.78 (0.77-0.78) 

Men: c-statistic= 0.76 (0.75-0.76) 

Internal validation 

Women: c-statistic= 0.85 (0.84-0.86) 

Men: c-statistic=0.81 (0.80-0.82) 

External validation  

Women: c-statistic=0.81 (0.80-0.82) 

Men: c-statistic=0.79 (0.78-0.80) 

NA 

Calibration Qualitatively adequate, but no formal 

quantitative evaluation 

Qualitatively adequate, but no formal 

quantitative evaluation 

NA 

References Hippisley-Cox and Coupland, 2014 

Hippisley-Cox et al., 2014 

Hippisley-Cox and Coupland, 2014 

Hippisley-Cox et al., 2014 

Lauffenburger et al., 

2015 
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Although there is little evidence, the HAS-BLED seems to be the best available validated tool to 

detect intracranial hemorrhage in our population of interest. However, the predictors of 

gastrointestinal bleeding within this population are poorly studied. Moreover, to our knowledge, 

there isn’t a single prediction model for non-GI extracranial bleeding. 

Bleeding risk scores in clinical practice: a lack of consensus 

The first major post-warfarin era consensus on the recommended use of the HAS-BLED was 

established in 2012. Both the European Society of Cardiology and the Canadian Cardiovascular 

Society recommended to use the score to identify patients at high risk of major bleeding (HAS-

BLED ≥ 3) that would need closer follow-up. Meanwhile, just as is the case now, the 

HEMORR2HAGES and ATRIA were not recommended due to their generally inferior prediction 

power relative to the HAS-BLED [134]. More recently, a study by the European Heart Rhythm 

Society reported many disparities between practices and monitoring guidelines in 2018, with 

60% of clinicians using the HAS-BLED, 26.8% using the society’s 2016 bleeding risk factors 

guidelines table, 13.3% using clinical judgment and none using the ABC score [135]. In 2019, an 

update of atrial fibrillation guidelines from the American College of Cardiology, American Heart 

Association, and Heart Rhythm Society recommended the HAS-BLED to monitor bleeding risk 

with no further details about other tools [19]. Conversely, a 2020 summary of American 

recommendations for atrial fibrillation management stipulated that the American College of 

Cardiology, American Heart Association, and Heart Rhythm Society questioned the clinical 

value of the HAS-BLED rather preferring direct comparisons of stroke and bleeding risks. 

Conversely, the American Academy of Family Physicians, the American College of Physicians 

and American College of Chest Physicians favored the use of the HAS-BLED in the estimation 

of bleeding risk [136]. Although the estimation and management of major bleeding risk lacks 

consensus, the atrial fibrillation guidelines from each of these groups consistently recommend 

using the CHA₂DS₂-VASc (≥ 2) or one of its variants to drive the decision to prescribe 

anticoagulation, rather than considering major bleeding risk  [18, 19, 135, 136]. 

The main knowledge gaps and their implications 
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Oral anticoagulant safety depends highly on the frequency of major bleeding monitoring in 

patients at high risk of this outcome. Adequate major bleeding monitoring hinges on the 

available knowledge on major bleeding risk factors in the most current population of oral 

anticoagulant users with atrial fibrillation. The advent of direct oral anticoagulants introduced the 

need to update our understanding of major bleeding risk factors and to potentially introduce new 

monitoring tools. Although some new tools are available and have been shown to test well in 

subpopulations of oral anticoagulant users, they still require improvement. For instance, Quebec 

and Canadian oral anticoagulant prescription guidelines, as outlined by the “Dialogue avec votre 

patient” and “Guide d’usage optimal - fibrillation auriculaire chez l’adulte” Quebec clinical 

diagnosis tools as well as the “Canadian Cardiovascular Society’s Atrial Fibrillation Guidelines” 

contain gaps in information with regards to certain risk factors. For one, there is insufficient data 

on the impact of severe renal impairment (CrCl<30ml/min) among edoxaban and dabigatran 

users [14, 15, 23, 137]. Moreover, the HAS-BLED, recommended by most atrial fibrillation 

guidelines, lacks external validation in large North American and European populations of 

specific oral anticoagulant users (i.e. dabigatran and apixaban users) as well as real-world direct 

oral anticoagulant users with atrial fibrillation, has performed sub-optimally (c-statistic<0.70) in 

current validation studies, and has been shown to underperform in predicting major bleeding 

subtypes. Thus, there is a need for newer scores derived from up-to-date oral anticoagulant user 

data [117]. Lastly, the lack of prediction models for intracranial hemorrhage, gastrointestinal 

bleeding and, most notably, non-gastrointestinal extracranial bleeding, among direct oral 

anticoagulant and warfarin users with atrial fibrillation makes it difficult to accurately monitor 

major bleeding and major bleeding subtypes to actively engage in their prevention. 

Research objectives 

The overarching goal of this study is to develop predictive models for major bleeding and for the 

most prevalent major bleeding subtypes (gastrointestinal bleeding and non-GI extracranial 

bleeding) based on data of patients with atrial fibrillation taking any type of oral anticoagulant. 

Thus, our primary objective is to establish a model to predict major bleeding in a population of 

all oral anticoagulant users with atrial fibrillation. Our secondary objective is to identify 

important predictors of the most prevalent major bleeding subtypes (gastrointestinal bleeding and 

non-gastrointestinal extracranial bleeding). Our tertiary objective is to compare the predictors of 
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major bleeding between warfarin and direct oral anticoagulant users as well as doing so with the 

major bleeding subtypes. Our final objective is to evaluate the discriminatory potential of the 

major bleeding model fit to all oral anticoagulant users for gastrointestinal bleeding and non-

gastrointestinal extracranial bleeding. 

Methods 

Data source 

The Régie de l’Assurance Maladie du Québec (RAMQ) possesses three databases. The first 

contains basic demographic data such as age, sex and timeline of healthcare coverage. The 

second contains information on medical services rendered and their associated medical 

diagnoses, which are identified via International Classification of Diseases (9th Revision) or 

ICD-9 codes and their updated analogs, ICD-10 codes. The final database contains extensive 

data on inpatient drug prescription and claims. In 1990, a study evaluated the missingness and 

precision of important data, such as Quebec healthcare insurance number, the name of dispensed 

medications, their quantity and the date and duration of dispensation, in these databases. It found 

that these variables were only missing or out of range in 0-0.4% of records. Moreover, up to 83% 

of these dispensations were filled by the patient during which both patient and drug were 

correctly identified by their relevant identifiers [138, 139]. Effectively, the data for this study 

was compiled from a dataset of the RAMQ drug and medical services database linked to the 

“Maintenance et exploitation des données pour l’étude de la clientèle hospitalière” (Med-Echo) 

hospitalization database using encrypted patient healthcare insurance numbers [140]. Meanwhile, 

the Med-Echo database contains precise inpatient data on patients admitted for surgery in any 

Quebec hospital center and includes non-primary diagnoses associated with a hospitalization. 

Thus, the linkage of these two databases is crucial since it greatly improves the detectability of 

co-morbidities in pharmacoepidemiologic studies. 

Study design 

To evaluate our research questions, we conducted a cohort study using a cohort that was 

previously put together by Dr. Perreault. As the outcomes had occurred prior to the study period, 
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the study could be done more rapidly and was less costly than if another study design was used 

with the exception of a nested case-control study. However, since the outcomes of interest (major 

bleeding and its subtypes) were common and it is methodologically difficult to derive prediction 

models using case-control data, the benefits of a cohort study outweighed the latter [141]. Since 

the dataset had a vast range of variables to select from, we could choose a set of clinically 

pertinent candidate predictors that was sufficiently large to establish a model with adequate 

predictive power. 

Selection criteria 

Inclusion criteria 

We first identified adult patients with a primary or secondary diagnosis of atrial fibrillation who 

had been hospitalized for all cause and discharged in the community between January 2010 and 

December 2017. We did so using atrial fibrillation ICD-9 and ICD-10 codes with median 

positive predictive values of 89% and 95.7% in two distinct validation studies [142, 143]. A 

systematic review of medical databases suggested that the ICD-9 codes had a 89% and 77% 

median positive predictive values for prevalent and incident atrial fibrillation, respectively [142]. 

Inpatient data from Med-Echo hospitalization records were crucial to calculate the HAS-BLED 

and CHA2DS2-VASc scores as well as to allow for the evaluation of important clinical candidate 

predictors.  

Patients that were included in the cohort had to be covered by the RAMQ for one year prior to 

hospitalization and have a filled prescription of at least one of the following oral anticoagulants 

during the study period: dabigatran, rivaroxaban, apixaban or warfarin. Cohort entry (study 

index) was defined as the first filled oral anticoagulant prescription after hospitalization 

discharge. Since they also had to be new users of oral anticoagulants, we only included patients 

who did not have an oral anticoagulant claim within a year from cohort entry.  

Exclusion criteria 

We excluded patients with all other indications for oral anticoagulation to ensure all 

cohort patients are solely anticoagulated for stroke prophylaxis due to atrial fibrillation. Other 

indications included recent post-orthopedic surgery within 6 weeks before hospitalization and a 

primary or secondary diagnosis of venous thromboembolism during the hospitalization period. 
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We also excluded patients with oral anticoagulant contraindications (end-stage chronic renal 

disease or dialysis for a minimum of 3 months) within 3 years preceding hospitalization. Finally, 

we excluded those having undergone cardiac catherization, stenting, bypasses, cerebrovascular 

procedures or defibrillator implantation within 3 months prior to hospitalization and those having 

underwent valve replacement within 5 years prior to hospitalization. Please refer to the following 

flowchart for the details about the selection process and the population size associated with each 

selection step. 
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Figure 3. Population-based cohort definition flowchart. 

*AF: atrial fibrillation; OAC: oral anticoagulant, DOAC: direct oral anticoagulant, RAMQ: 

Régie d’Assurance-Maladie du Quebec. 

Study variables 

Oral anticoagulant exposure 

We defined oral anticoagulant exposure as the first claim filed for any oral anticoagulant after 

hospital discharge (i.e. the cohort entry date) with no oral anticoagulant claim one year prior to 

cohort entry (see Fig 4 for the study timeline). Patients were classified in accordance to the oral 

anticoagulant type they were using at cohort entry (warfarin or direct oral anticoagulants). Oral 

anticoagulant exposure will be evaluated as candidate predictor. The approved doses of direct 

oral anticoagulant use in Canada are 110 mg and 150 mg for dabigatran, 15 mg and 20 mg for 

rivaroxaban, and 2.5 mg and 5 mg for apixaban. Warfarin was not categorized in accordance to 

dose. Given that the database had very few users of edoxaban, they were not included in our 

cohort. By only selecting new users for our cohort as opposed to prevalent users, we could avoid 

missing early adverse events (e.g. warfarin-associated bleeding typically happens in the first 90 

days) [30]. We could also establish a clearer temporal sequence between exposure and baseline 

or pre-exposure covariates [144]. Moreover, a prevalent user design would have led to a 

disproportionate selection of warfarin users and a survival bias given that patients who have been 

treated for a long time are more likely to be sicker. 

Primary and secondary outcomes 

The primary outcome of this study was major bleeding. These included major gastrointestinal 

bleeding, non-gastrointestinal extracranial bleeding and intracranial hemorrhage, which were 

defined using 6 observational studies [145-150]. The secondary outcomes were the aforementioned 

major bleeding subtypes. Both the primary and secondary outcomes were defined as the first of 

each respective bleeding outcome leading to a hospitalization, while the subsequent bleeds were 

not considered in our outcome definition. As such, if two or more bleeding events of the same 

type were to occur, competing risk is inconsequential as the only the first is considered. 

Similarly, if two or more bleeding events were to occur at separate locations during follow-up, 
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we do not suspect a competing risk due to the rarity of this scenario (24 or 2.4% of patients who 

bled).  

They were defined with ICD-9 and ICD-10 codes from inpatient claims on account of their high 

accuracy (see appendix, table S1). The definition of major bleeding included ICD-9 and ICD-10 

codes for traumatic hemorrhagic stroke, non-traumatic hemorrhagic stroke, upper gastrointestinal 

bleeding, lower gastrointestinal bleeding, hematuria, hemoptysis, vitreous bleeding, urogenital 

bleeding, hemarthrosis, hemopericardium, hemoperitoneal major bleeding, unspecified major 

bleeding, and post-bleed anemia.  These codes were highly valid with positive predictive value 

ranging from 85% to 95% [151-154].  

Patient follow-up started at cohort entry and ended at the earliest occurrence of one of the 

following events: a major bleeding event, the end of insurance coverage, death of any cause one 

year of follow-up in the absence of a bleeding outcome or the end of the study follow-up period 

(December 31st, 2018). As was the case in previous prediction studies, treatment discontinuation 

or switching did not act as censorship criteria [25, 113, 114]. Lastly, since follow-up started after 

the first oral anticoagulant claim, 85% of the first oral anticoagulant claims occurred within 2 

weeks from hospital discharge and oral anticoagulant effect peaks at most within 96 hours (in the 

case of warfarin), a major bleeding event can feasibly happen rapidly after this claim and an 

immortal time bias is unlikely (Fig 4). 

Covariates: baseline characteristics and candidate predictors 

While baseline characteristics are meant to summarize important attributes of patients enrolled in 

the beginning of a study and preliminarily assess associations to our study outcomes, the 

selection of candidate predictors hinges on maximizing the predictive power of the ensuing 

model. In the case of our study, while the overlap between the two sets of variables was 

significant, it was an important distinction to make. 

Our baseline characteristics were defined as follows. Sociodemographic variables (age, sex, and 

material and social deprivation indices) were defined at cohort entry. Material and social 

deprivation indices were measured using their respective Pampalon indices [155]. Associated co-

morbidities were assessed up to three years prior to cohort entry [156, 157]. They consisted of 

stroke/transient ischemic attack, hypertension, dyslipidemia, cardiomyopathy, coronary artery 

disease, myocardial infarct, peripheral vascular disease, venous thromboembolism, chronic heart 
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failure, anemia, chronic kidney disease, chronic kidney disease (< 30 ml/min), acute renal 

failure, liver disease, diabetes mellitus, asthma and chronic obstructive pulmonary disease, 

history of major (not minor) bleeding, and prior Helicobacter Pylori infection. It is important to 

note that chronic renal failure (< 30 ml/min) was estimated using Med-Echo hospitalization data 

with positive and negative predictive values ranging from 94.5% to 97.7% and 91.1% to 94.2%, 

respectively [158]. Hypertension, diabetes (with or without), prior acute myocardial infarction, 

COPD, chronic (30-60 ml/min) and acute renal failure, peripheral vascular disease all had 

positive predictive values exceeding 80% [156]. The CHA2DS2-VASc score, a modified HAS-

BLED excluding labile international normalized ratio, and the Charlson-Deyo comorbidity 

index, were assessed up to 3 years before cohort entry (see appendix, table S2) [128, 159]. 

Finally, we documented baseline concomitant medication use, which included antiplatelets, 

proton pump inhibitors, non-steroidal anti-inflammatory agents, digoxin, amiodarone, 

antidepressants, β-blockers, calcium channel blockers, inhibitors of renin-angiotensin system, 

diuretics, loop diuretics, and antidiabetics, within 2 weeks before cohort entry (see appendix, 

table S3).  

The variables that were to be evaluated as predictors of any major bleeding or major bleeding 

subtypes were selected on the basis of availability in our dataset and clinical relevance. Clinical 

relevance was defined as inclusion in bleeding scores, significant differences in baseline 

measurements, or a strong association with major bleeding based on narrative review [76, 95, 

110, 128]. These consisted of age >=75 vs <75 years old, sex, prior co-morbidities 

(stroke/transient ischemic attack, hypertension, dyslipidemia, cardiomyopathy, coronary artery 

disease, myocardial infarction, peripheral vascular disease, venous thromboembolism, chronic 

heart failure, chronic kidney disease, chronic kidney disease (< 30 ml /min), acute renal failure, 

liver disease, asthma and chronic obstructive pulmonary disease, history of major bleeding, and 

prior Helicobacter Pylori infection) and prior medication use (antiplatelets, proton pump 

inhibitors, non-steroidal anti-inflammatory agents, antidepressants, and antidiabetics), up to 2 

weeks prior to cohort entry (Fig 4).  
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Figure 4. Study timeline. 

*AF: atrial fibrillation; OAC: oral anticoagulant, RAMQ: Régie d’Assurance-Maladie du 

Quebec 

Sample size 

Since our cohort was previously established, it was only possible to determine the number of 

candidate predictors that it would be possible to evaluate in our models, rather than determining 

the sample size necessary to evaluate predetermined candidate predictors. As recommended by 

the TRIPOD guidelines for clinical prediction score derivation, the minimal sample size hinges 

on the total number of events, not the total number of patients [160]. While the 10 event per 

candidate predictor (EPP) is typically used in prediction studies, a review of the sample size 

requirements of penalty-based regression methods for the detection of rare outcomes suggested 

otherwise. In studies in which the outcomes are rare and there are noise predictors (predictors 

presenting possible redundant information), LASSO regression was shown to yield stable 

predictions (neither overfitted nor underfitted models) with an EPP of 5. Assuming a limit of 10, 

evaluating 28 candidate predictors would have required around 280 events which would have 

been sufficient to generate robust models for any bleeding outcome in our full cohort with events 

ranging from 438 to 1027. Assuming an EPP limit of 5, our study would have required a sample 

with at least 140 outcomes, in which case we had enough events to detect any major bleeding 

subtype in any treatment group (between 167 and 528 in our treatment groups). Another simple 

way of evaluating minimal sample size for a binary outcome is by making sure that the sample 

size is sufficient to estimate of the overall risk of the lest frequent outcome. With the exclusion 

of intracranial hemorrhage, we can consider the rarest outcome for which there is incidence data 

recorded in the literature to be major gastrointestinal bleeding. Thus, assuming a conservative 
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outcome proportion of 0.0082, a margin of error of 0.0021 and an alpha of 0.05, we would need 

at least 7099 patients to precisely detect major gastrointestinal bleeding in the smallest subgroup 

of oral anticoagulant users [161, 162]. Of note, no previous MB prediction studies provided any 

justification of their sample size. 

 

Table 7. Sample size justification for the evaluation of 28 candidate predictors in each subgroup.   

*The number of outcomes in these groups would be sufficient to yield robust prediction models. 

**In a simulation study, it was found that under the assumption that outcomes are rare and that 

noise predictors (predictors presenting redundant information) are present, LASSO regression 

was shown to yield stable predictions (neither overfitted, nor underfitted models) with an events 

per candidate predictor ratio of 5.

 

Analyses 

Cohort description 

We generated descriptive data for warfarin, direct oral anticoagulant and all oral anticoagulant users 

with and without gastrointestinal bleeding, non-gastrointestinal extracranial bleeding and any major 

bleeding.  We calculated percentages for categorical variables and means with standard deviations for 

the continuous ones. We did not include intracranial hemorrhage since there were too few events for the 

information to be meaningful.  

Incidence rate of major bleeding 

We  generated Kaplan-Meier curves to graphically represent the cumulative incidence of each bleeding 

outcome (major bleeding, gastrointestinal bleeding, non-gastrointestinal extracranial bleeding and 

intracranial hemorrhage) within the first year after cohort entry for warfarin and each direct oral 

anticoagulant at both dosages available in Quebec. We used the log rank test to compare the unadjusted 

major bleeding, gastrointestinal bleeding, non-gastrointestinal extracranial bleeding and intracranial 

hemorrhage cumulative incidences of each direct oral anticoagulant treatment group to those of warfarin 

 MB GIB NGIB MB GIB NGIB MB GIB NGIB 

All OAC Warfarin DOAC 

10 events per 

candidate predictor 

280* 280* 280* 280 280 280 280 280 280 

5 events per candidate 

predictor** 

140* 140* 140* 140* 140* 140* 140* 140* 140* 
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users, as defined by the very first oral anticoagulant use during the study period. Finally, we determined 

the incidence rate of major bleeding, gastrointestinal bleeding, non-gastrointestinal extracranial bleeding 

and intracranial hemorrhage (events per 100 person-years) along with associated 95% CIs. Of note, all 

the incidence measurements only referred to the first of each respective bleeding outcomes. 

Prediction modelling 

Explanatory and predictive modelling are often confused in risk factor epidemiology. If a study defines a 

risk factor etiologically, then its overarching goal should be the identification of factors to modify or 

intervene on in a care setting. In prediction, risk factors are defined as predictors, which are used to 

identify individuals most at-risk of a specific outcome. Predictors are not necessarily a direct cause of an 

outcome as there are instances in which a causally-unrelated factor predicts an outcome better than a 

causally-related factor [163, 164]. In either case, the methods involved also vary [163]. Despite their 

differences, the effectiveness of both types of modelling relies on the concept of model fitting (the 

“proximity” of each datapoint to the model), while its usability (i.e. a more user-friendly model) relies 

on the concept of variable selection (the parsimoniousness of the final model). 

The Least absolute shrinkage and selection operator (LASSO) is a method that has been designed to 

select the best set of predictors of an outcome from large datasets from high numbers of candidate 

predictors. It does so more robustly than other model fitting methods more commonly used in 

epidemiology [165]. It is a penalty-based method, meaning that it introduces a slight bias do the model 

to minimize the possibility of overfitting the model to the derivation data.  

 

 

 

 

 

 

Figure 5. A graphical representation of overfitting and penalty-based modelling. 

1A. An “overfit” model (blue curve) is one that is estimates the derivation data (blue dots) so well that it 

does not do so with the testing data (green dots). 1B. By using a model (blue line) that estimates the 
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derivation data (blue dots) slightly less well, we obtain a model that does so similarly well with the 

testing data (green dots). 

 

LASSO uses an L1 penalty whose properties lead to both a reduction in the model coefficient values and 

cuts down the number of selected predictors resulting in a more interpretable (parsimonious) model. 

This property underlies the method’s effectiveness in performing variable selection and adequate model 

fitting. LASSO assumes data sparsity (that the true model will have a small number of variables) and 

requires data completeness (no missing data) [165]. Adaptive LASSO (adaLASSO), a variant of the 

LASSO, attributes a larger penalty to smaller coefficients than larger coefficients. This property 

theoretically results in more consistent variable selection in a dataset with highly correlated variables 

and a more parsimonious model [165]. See figure 5 for the formulas associated with both methods.  

For both methods, the robustness of the ensuing models is attributable to a method called cross-

validation. The dataset in broken down into n equivalent groups (i.e. 10). A subset of the dataset is used 

to derive the model (ex. 9 groups) and the remainder is used to test how well the model fit to the 

derivation data is fitted to “non-derivation” or testing data. The process is repeated until all of n groups 

were used to test their corresponding subsets and the overall performance of the method used on each 

group is summarized using a sum of the 10 measurements of model fit (i.e. sum of squared residuals or 

likelihood). In our case, this process was repeated over one thousand distinct logistic-LASSO models 

with penalty different penalty values and the model with the best fit was selected. Due to the iterative 

testing process, the ensuing cross-validated models are significantly more robust. See figure 6 for a 

graphical representation of cross-validation.  

 

 

 

 

 

 

Figure 6. A graphical representation of cross-validation. 
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Cross-validation involves sequentially testing a given prediction method or model on different subsets of 

the full dataset (one full rectangle). A different subset (green section) of the full dataset (one large 

rectangle) is used to test the model that is derived from the training subset (blue section). Each testing 

subset will be associated with an index of predictive performance (likelihood, sum of squared residuals, 

prediction rate on dichotomous outcome, etc). Ultimately, the summary performance indices will be 

compared across the compared prediction methods or models to select the best one. 

 

As these mathematical penalties can be incorporated into logistic regression, logistic-LASSO and 

logistic-adaLASSO was used [165]. For each outcome, odds ratios (ORs) were calculated for warfarin, 

direct oral anticoagulant and oral anticoagulant treatment groups using logistic-LASSO and logistic-

adaLASSO regressions (R v3.6.2, package “glmnet”). The 95% confidence interval (CI) refers to a 

range of values that should contain the true value of a measurement 95% of the time. However, because 

they are difficult to interpret in penalty-based regression, 95% CIs were not presented for the OR 

estimates associated to each predictor. Moreover, confidence interval estimation for LASSO and 

adaLASSO regression have not yet been integrated to R for dichotomous outcomes.  

To evaluate how well a model can classify patients who had major bleeding during follow-up and those 

that did not, a property called “discrimination”, receiving operator curves were used. The associated 

cross-validated concordance (c-) statistics and their 95% CIs were reported (R v3.6.2, package cvAUC) 

[43]. Finally, the calibration of each model was quantitatively characterized using Hosmer-Lemeshow 

tests, a chi-squared test of mean squared differences of true and predicted outcome between quantiles of 

outcome measurements, and qualitatively characterized using calibration plots (R v3.6.2, packages 

“generalhoslem” and “PredictABEL”) [122].  

To meet our primary objective, the best model to predict major bleeding was identified. The “best” 

model was defined as having the best discrimination, adequate calibration and the most 

parsimoniousness within each oral anticoagulant subgroup (warfarin, direct oral anticoagulant and any 

oral anticoagulants). In accordance with our second objective, this process was repeated to build MB 

subtype models for each treatment group. For our third objective, it was determined whether the 

predictors of MB and their subtypes were similar across users of each oral anticoagulant category. 

Ultimately, the final major bleeding model’s ability to detect the most prevalent major bleeding subtypes 

(gastrointestinal bleeding and non-gastrointestinal extracranial bleeding) was evaluated via 

discrimination and calibration testing using the previously discussed methods. 
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Finally, sensitivity analyses were added to evaluate the consequence of omitting patients who were lost 

to follow up (mostly due to death), non-adherent or adherent patients and patients who switched oral 

anticoagulant during follow-up on the performance of our global model. These omissions made little 

difference to discrimination and will be discussed in the study limitations. 
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Abstract 

Aim: Real-world predictors of major bleeding (MB) have been well-studied among warfarin users, but not among 

all direct oral anticoagulant (DOAC) users diagnosed with atrial fibrillation (AF). Thus, our goal was to build a 

predictive model of MB for new users of all oral anticoagulants (OAC) with AF. 

 

Methods: We identified patients hospitalized for any cause and discharged from 2011 to 2017 with a primary or 

secondary diagnosis of AF in Quebec’s RAMQ and Med-Echo administrative databases. Cohort entry occurred at 

the first OAC claim. Patients were categorized according to OAC type. Outcomes were incident MB, 

gastrointestinal bleeding (GIB), non-GI extracranial bleeding (NGIB) and intracranial bleeding within 1 year of 

follow-up. Covariates included age, sex, co-morbidities (within 3 years before cohort entry) and medication use 

(within 2 weeks before cohort entry). We used logistic-LASSO and adaptive logistic-LASSO regressions to 

identify MB predictors among OAC users. Discrimination and calibration were assessed for each model and a 

global model was selected. Subgroup analyses were performed for MB subtypes and OAC types. 

 

Results: Our cohort consisted of 14,741 warfarin, 3,722 dabigatran, 6,722 rivaroxaban and 11,196 apixaban users 

aged 70-86 years old. The important MB predictors were age, prior MB and liver disease with ORs ranging from 

1.37-1.64. The final model had a c-statistic of 0.63 (95% CI 0.60-0.65) with adequate calibration. The GIB and 

NGIB models had similar c-statistics of 0.65 (95% CI 0.63-0.66) and 0.67 (95% CI 0.64-0.70), respectively. 

 

Conclusions: MB and MB subtype predictors were similar among DOAC and warfarin users. The predictors 

selected by our models and their discriminative potential are concordant with published data. Thus, these models 

can be useful tools for future pharmacoepidemiologic studies involving older oral anticoagulant users with AF. 

MESH key words: Anticoagulants, Atrial Fibrillation, Hemorrhage, Risk Factors, Pharmacoepidemiology 
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Key points 

 

• The goal of this study was to derive robust predictive models for major bleeding (MB) and its 

subtypes from a real-world population of oral anticoagulant (OAC) users with atrial fibrillation. 

 

• We derived predictive models for MB using data from a current OAC user population, and predictive 

models for key MB subtypes, such as gastrointestinal (GIB) and non-GI extracranial bleeding 

(NGIB). 

 

• The most important predictors of MB that were selected by our models were age greater than 75, 

prior MB and liver disease. With some differences, these predictors were echoed by the GIB 

prediction model, but not the NGIB prediction model. 

 

• The predictors of MB and GIB are similar between warfarin and direct oral anticoagulant users, while 

the opposite was true for NGIB. 

 

• The performance of our models and the associated predictors are comparable to published MB 

predictive models, thus confirming their real-world relevance for future pharmacoepidemiologic 

studies involving older OAC users with AF. 
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Introduction 

Atrial fibrillation (AF) is the most common cardiac arrhythmia worldwide with increasing incidence due 

to the aging population [1-3]. It is associated with 5-fold and 3-fold increases in the risk of stroke and 

systemic embolism, respectively, with AF-associated stroke showing twice the risk of thirty-day all-cause 

mortality relative to non-AF associated stroke [4-6]. Before 2010, the vitamin K antagonist, warfarin, was 

the only medication used for stroke and systemic embolism prevention for AF patients at moderate and 

high risk of these outcomes [7-9]. However, warfarin is associated with a high risk of major bleeding 

(MB; 7.2 per 100 person-years), of which the most common type is gastrointestinal bleeding (GIB) and 

the most lethal type, intracranial hemorrhage (ICH) [9, 10]. In 2010, the first of the direct oral 

anticoagulants (DOAC) received approval from the US Food and Drug Administration for stroke 

prevention in patients diagnosed with atrial fibrillation (AF). In addition to circumventing the need for 

INR, the DOACs (dabigatran, rivaroxaban, apixaban and edoxaban) presented pharmacokinetic, 

pharmacodynamic and safety advantages over warfarin [9]. 

The four DOAC clinical trials for AF, namely RE-LY, ROCKET-AF, ARISTOTLE and 

ENGAGE-AF, concluded non-inferior (or superior, in the case of ARISTOTLE) efficacy in reducing 

stroke, systemic embolism and all-cause mortality rates for each DOAC relative to warfarin and a lower 

risk of MB for all DOACs [11-16]. Given that randomized clinical trials (RCTs) do not account for real-

world patient characteristics, pharmacoepidemiologic studies were required to complement and confirm 

RCT findings. According to meta-analyses of observational studies, DOAC effectiveness and safety with 

respect to MB risk was equivalent to warfarin’s [17, 18]. Additionally, pooled DOAC analyses were 

associated with a greater GIB risk and lower ICH risk in patients over 75 years old [17, 18]. However, 

apixaban was the only DOAC with an associated lower risk of MB, GIB, and ICH relative to warfarin. It 

also had an associated lower risk of MB relative to the other DOACs [17, 19, 20]. Within each DOAC 
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subgroup, significant heterogeneity existed in at least one of the bleeding outcomes (MB, ICH or GIB) 

[17, 21, 22]. 

To ensure oral anticoagulant (OAC) safety, the risk-benefit profile needs to be carefully assessed while 

taking into account factors associated with a predisposition to bleeding [9]. The HAS-BLED, a scoring 

system used to identify patients at risk of bleeding, was developed based on warfarin user data and 

validated among rivaroxaban users [23, 24]. Since then, other MB prediction scores have been developed 

to improve bleeding prediction within this population. The HEMORR2AGES and ATRIA scores were 

derived from warfarin user data, while the ORBIT-AF also accounted for dabigatran user data. 

Ultimately, the ABS score was derived from DOAC and warfarin user data [9, 25-28]. However, given 

that the HAS-BLED is still the most commonly used score, a user-friendly MB prediction tool derived 

from a recent population of OAC users is essential. 

Moreover, the HAS-BLED and other prediction models were developed to predict any MB, but it 

is also of interest to establish risk factors for specific MB subtypes, GIB, non-GI extracranial bleeding 

(NGIB) and ICH [9, 25-28]. The lack of prediction models for MB subtypes, and the lack of studies 

identifying MB subtype-specific predictors makes it difficult to accurately monitor MB and actively 

engage in their prevention [29, 30]. Specifically, we aimed to develop predictive models for MB and for 

the most prevalent MB subtypes (GIB and NGIB) based on data from real-world patients with AF taking 

any type of OAC. Therefore, our primary objective is to establish a model to predict MB in a population 

of all OAC users with AF. Our second objective is to identify important predictors of the most prevalent 

MB subtypes (GIB and NGIB). Our third objective is to compare the predictors of MB between warfarin 

and DOAC users as well as doing so with the MB subtypes. Our final objective is to evaluate the 

discriminative potential of the MB model fit to all OAC users for GIB and NGIB. 

Methods 
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Data source 

Administrative databases have proven to be a widely available and useful tool for pharmacoepidemiologic 

studies [31, 32]. The data for our study were compiled from a subset of the Régie de l’Assurance Maladie 

du Québec (RAMQ) drug and medical services database linked to the Med-Echo hospitalization database 

using encrypted patient healthcare insurance numbers [31, 33-36]. Quebec prescription and 

hospitalization data have been shown to have a high degree of completeness (with only 0 to 0.4% of data 

that was missing) and accuracy [31]. Thus, our cohort did not have any missing data. 

Population-based cohort definition 

We conducted a cohort study using drug claims and diagnostic coding data from the Quebec RAMQ and 

Med-Echo administrative databases. We identified adult patients who were hospitalized for all cause and 

discharged alive in the community from January 1, 2011 to December 31, 2017 with a primary or a 

secondary diagnosis of AF. They were identified using ICD-9 (427.3, 427.31 or 427.32) or ICD-10 (I48) 

codes [37, 38]. For patients with more than one admission with an AF diagnosis, we used the first date of 

admission. The ICD-9 codes displayed median positive predictive values of 89% and 95.7% in two 

distinct validation studies [37, 38]. 

Patients included in the cohort had to have a filled prescription of at least one of the DOACs 

(dabigatran, rivaroxaban and apixaban) or warfarin in the year following hospitalization, but could not 

have used any OAC one year prior to this claim. For this reason, they also had to have continuous RAMQ 

drug plan coverage for at least one year prior to cohort entry (see Fig 1). The date of cohort entry (or 

study index) was defined as the first filled OAC prescription after hospital discharge. 
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Fig 1. Population-based cohort definition flowchart.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

AF: atrial fibrillation; OAC: oral anticoagulant, DOAC: direct oral anticoagulant, RAMQ: Régie 

d’Assurance-Maladie du Québec. 
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We excluded patients with OAC contraindications (end‐stage chronic renal disease [ESRD] or 

dialysis for a minimum of 3 months) followed by kidney transplantation within 3 years before cohort 

entry. We also excluded patients with a non-AF indication for DOAC anticoagulation such as post-

orthopedic surgery (hip or knee replacement 6 weeks before cohort entry) and a diagnosis of venous 

thromboembolism (defined as either deep vein thrombosis or pulmonary embolism) during the 

hospitalization period. Finally, we excluded those having undergone cardiac valve replacement up to 5 

years prior to cohort entry. 

Oral anticoagulant exposure 

OAC exposure was defined as filing a new claim for warfarin or a DOAC (all dosages approved in 

Canada included) after hospital discharge. Given that the database had very few users of edoxaban, these 

patients were not included in our cohort. Patient treatment initiation was determined using dispensation 

dates of the OAC prescriptions. All individuals were new users, i.e., individuals who had not been 

exposed to any OAC at least one year prior to cohort entry. 

Study Outcomes 

The primary outcomes were MB including GIB, NGIB and ICH. MB, GIB, NGIB and ICH were defined 

as the first instance of each respective bleeding event leading to a hospitalization during follow-up and 

identified using ICD-9 and ICD-10 codes from inpatient claims (S1 Table). These outcomes were defined 

using 6 distinct observational studies [39-45]. When multiple of either MB subtypes occurred, only the 

first of that respective MB subtype was evaluated as the primary outcome (e.g. GIB was defined as the 

first GIB during the follow-up period). These codes have been externally validated with positive 

predictive value ranging from 85% to 95% [46-48]. Patient follow-up began from the first OAC claim 

until the earliest occurrence of one of the following events: MB event, end of coverage of the RAMQ 

drug insurance, date of death, 1 year of follow-up or end of the study. 
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Baseline characteristics and predictor candidates 

Sociodemographic variables (age, sex, and material and social deprivation indices) were defined at cohort 

entry [49]. Associated morbidities were assessed up to 3 years prior to cohort entry. They included 

stroke/transient ischemic attack, hypertension, dyslipidemia, cardiomyopathy, coronary artery disease, 

acute myocardial infarction, peripheral vascular disease (PVD), chronic heart failure, anemia, chronic 

kidney disease (CKD), severe kidney disease (creatinine clearance < 30 ml /min), acute renal failure, liver 

disease, diabetes mellitus, asthma and chronic obstructive pulmonary disease (COPD), history of MB, and 

prior Helicobacter Pylori infection [40, 50, 51]. The CHA2DS2-VASc score (stroke risk), a modified 

HAS-BLED (bleeding risk) excluding labile INR, and the Charlson-Deyo comorbidity index, were 

assessed up to 3-years prior to cohort entry (S2 and S3 Tables for coding algorithms). Finally, we 

documented baseline medication use, which included antiplatelets, proton pump inhibitors (PPIs), non-

steroidal anti-inflammatory agents (NSAIDs), digoxin, amiodarone, antidepressants, β-blockers, calcium 

channel blockers, inhibitors of renin-angiotensin system, diuretics, loop diuretics, antidiabetics up to 2 

weeks prior to cohort entry. 

Statistical analyses 

First, we generated descriptive data for warfarin, DOAC and OAC new users with and without 

GIB, NGIB and MB. We calculated percentages for binary and categorical variables and means with 

standard deviations for continuous ones.  

We determined the cumulative incidence of MB, GIB, NGIB and ICH (events per 100 person-

years), respectively. We then generated Kaplan-Meier curves for each dose-stratified OAC treatment 

group to assess cumulative MB, GIB and NGIB incidences within the first year after cohort entry. We 

used the log rank test to compare each of the MB, GIB and NGIB cumulative incidences of each DOAC 

treatment group to those of warfarin users. 
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We selected candidate variables to be evaluated as predictors of any MB or MB subtypes based 

on availability in our dataset and clinical relevance, which was defined as inclusion in bleeding scores, 

significant differences in baseline measurements, or a strong association with MB based on narrative 

review [25, 29, 52]. We used the Least Absolute Shrinkage and Selection Operator (LASSO) method, 

which introduces a penalty/bias to each coefficient of a regression model to select relevant predictors and 

to minimize overfitting, and the adaptive LASSO (adaLASSO), which uses the same principle while 

applying a larger penalty to smaller coefficients than to larger ones [53, 54]. 

Both LASSO and adaLASSO penalties can be incorporated into logistic regression (logistic-

LASSO and logistic-adaLASSO, respectively), which perform well when the true model is sparse [53, 

54]. Given that the 10 events per predictor rule, proposed to be too conservative for penalty-based 

regression, was respected for each outcome in the OAC models, we deemed the sample size of this cohort 

to be sufficiently large to derive robust prediction models (S4 Table) [55]. Most notably, all available data 

were used to maximize the power and generalizability of the results. 

For each outcome, we calculated odds ratios (ORs) for each covariate for the warfarin, DOAC 

and OAC treatment groups using logistic-LASSO and logistic-adaLASSO regressions (R v3.6.2, package 

“glmnet”). We did not include 95% confidence intervals (CIs) as it is challenging to interpret them in log-

LASSO and log-adaLASSO modelling. We calculated cross-validated concordance statistics (c-statistics) 

and their 95% CIs using the area under Receiving Operator Curves (auROC) to determine model 

discrimination (R v3.6.2, package cvAUC) [56]. Finally, the calibration of each model was quantitatively 

and qualitatively characterized using Hosmer-Lemeshow tests, a chi-squared test of mean squared 

differences of true and predicted outcomes between quantiles of outcome measurements, and their 

corresponding calibration plots (R v3.6.2, packages “generalhoslem” and “PredictABEL”). 

We then identified the best model, defined as having the best discrimination value, adequate 

calibration and having selected the least variables within each OAC subgroup (warfarin, DOAC and 

OAC). Ultimately, we evaluated the final MB model’s performance and evaluated its ability to detect MB 
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subtypes (GIB and NGIB) via discrimination and calibration testing using the previously discussed 

methods. 

Ethics statement 

The protocol was approved by the University of Montreal Health Research Ethics Committee (cert. 17-

068-CERESD) and the Committee of Access to Personal Information (CAI). 

 

Results 

Demographic and clinical characteristics 

The cohort of OAC new users diagnosed with AF that have met all inclusion and exclusion criteria 

comprised of 36,381 patients. The two treatment subgroups consisted of warfarin users (n=14,741) and 

DOAC users (n=21,640). The mean age of patients who experienced bleeding during follow-up and those 

that did not ranged from 78.9 to 80.9 years old as shown in Table 1. Whether or not they experienced MB, 

OAC users were more likely to be over the age of 75 (68.3% to 77.4%), had numerous comorbidities 

(Charlson-Deyo co-morbidity scores from 4.5±3.4 to 5.9±3.9), had a high stroke risk (CHA2DS2-VASc 

scores from 3.7±1.4 to 4.0±1.3) and had a high bleeding risk (HAS-BLED scores from 3.1±1.3 to 

3.5±1.3), as shown in Table 1. Patients who experienced MB within the year of follow-up were more 

likely to be over 75 years old (76.1%), had over 5 comorbidities on average (Charlson-Deyo score: 5.3 ± 

3.6), a high bleeding risk (HAS-BLED: 3.4 ± 1.2) and a high stroke risk (CHA2DS2-VASc: 4.0 ± 1.3). 

Warfarin and DOAC users had a total of 499 and 528 MB events, respectively (Table 1; S5 and S6 

Tables). 
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Table 1. Baseline characteristics of OAC new user with and without major bleed in the year of follow-up 

from 2011 to 2018. 

 No major bleeding 

(n=35,354) 

GI bleeding  

(n=438) 

Non-GI extracranial 

bleeding a (n=363) 

All major bleeding b 

(n=1,027) 

Sociodemographics   

Age (mean ± SD) 

 

78.9 ± 9.4 80.6 ± 8.0 80.2 ± 8.2 80.9 ± 8.2 

Age (%) d      

  ≥ 75  68.3% 77.4% 72.7% 76.1% 

Male (%) 45.9 % 45.4 % 52.9 % 49.1 % 

Pampalon index elevated social 

deprivation (%) 

26.6% 26.6% 26.5% 26.6% 

Pampalon index elevated material 

deprivation (%) 

25.8% 25.8% 25.8% 25.8% 

CHA2DS2-VASc Score (mean ± SD) 3.7 ± 1.4 4.0 ± 1.3 4.0 ± 1.4 4.0 ± 1.3 

CHA2DS2-VASc Score (%) d     

  0 - 1 5.9% 2.3% 2.5% 2.3% 

  2 - 3 37.7% 31.7% 32.5% 32.3% 

  4 29.0% 33.8% 31.7% 32.6% 

  ≥ 5 27.4% 32.2% 33.3% 32.7% 

HAS-BLED score (mean ± SD) 3.1 ± 1.3 3.3 ± 1.2 3.5 ± 1.3 3.4 ± 1.2 

HAS-BLED score (%) d     

   < 3 34.5% 24.2% 22.0% 23.7% 

   ≥ 3 65.5% 75.8% 78.0% 77.3% 

Co-morbidities within 3 years before cohort entry    

Hypertension 81.6% 87.7 % 86.8 % 86.6 % 

Coronary artery disease (excl. MI) 56.0 % 51.4 % 58.4 % 53.9 % 

Acute myocardial infarction 12.9 % 16.0 % 23.4 % 17.8 % 

Chronic heart failure 37.4 % 47.5 % 45.6 % 45.9 % 

Cardiomyopathy 6.2 % 6.2 % 13.0 % 8.3 % 

Other dysrhythmias 19.8 % 17.8 % 20.7 % 20.1 % 

Valvular heart disease 18.7 % 24.0 % 26.5 % 23.4 % 

Stroke/TIA 19.0 % 16.2 % 19.3 % 20.0 % 

Peripheral vascular (arterial) disease 20.9 % 26.7 % 31.7 % 28.6 % 

Dyslipidemia 52.2 % 56.4 % 58.7 % 56.7 % 

Diabetes 34.7 % 40.2 % 48.5 % 42.5 % 

History of major bleeding c 

 

29.0 % 43.6 % 47.7 % 42.9 % 

     History of intracranial bleeding 

 

3.8 % 2.5 % 4.4 % 5.0 % 

     History of GI bleeding 7.4 % 19.0 % 11.9 % 13.8 % 

     History of other bleeding a 21.8 % 32.7 % 39.4 % 32.5 % 

Chronic renal failure 35.1 % 39.7 % 49.0 % 42.4 % 

Chronic renal failure ≤ 30 mL/min 0.5 % 0.7 % 1.1 % 0.8 % 
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a Non-GI extracranial major bleeding as an outcome or a predictor includes vitreous, urogenital, 

hemoperitoneal and unspecified major bleeding as well as hemoarthrosis, hemopericardium, hemoptysis, 

hematuria and post-bleeding anemia. b All major bleedings included GI, non-GI extracranial major 

bleeding and intracranial bleeding. c Represents a history of at least one of the bleeding subcategories OR 

at least one prescription of antiplatelet subcategory. Although each subcategory is mutually exclusive, the 

totals will not add up to the parent variable. d Each categorization is clinically justifiable. A HAS-

BLED≥3 implies high bleeding risk, a CHA₂DS₂-VASc≥2 implies high stroke risk and an age≥75 

guarantees oral anticoagulation in accordance to AF guidelines. Lastly, a Charlson score cut-off of 4 was 

chosen since it was close to the lowest average value for any of the subgroups. 

Acute renal failure 22.3 % 26.7 % 34.4 % 28.4 % 

Liver disease 2.1 % 5.7 % 3.6 % 4.0 % 

Chronic obstructive pulmonary 

disease/asthma 

36.5 % 47.0 % 49.0 % 43.1 % 

Infection par Helicobacter pylori 0.7 % 0.9 % 1.4 % 0.9 % 

Depression 11.3 % 10.3 % 12.7 % 13.4 % 

Concomitant medication use (within 2 weeks before cohort entry) (%) 
 

Statin 44.7 % 48.2 % 54.3 % 51.0 % 

All antiplatelets c 29.6 % 39.0 % 40.2 % 39.1 % 

     Low dose aspirin (ASA) 26.4 % 35.4 % 35.8 % 35.2 % 

     Oth. antiplatelets (without ASA) 4.8 % 6.9 % 7.2 % 6.3 % 

Proton pump inhibitors (PPIs) 45.8 % 48.2 % 56.2 % 50.1 % 

NSAIDs 1.4 % 1.1 % 0.6 % 1.2 % 

Digoxin 11.6 % 12.3 % 13.2 % 12.6 % 

Amiodarone 8.7 % 8.5 % 11.6 % 9.8 % 

Antidepressants 16.5 % 18.5 % 20.1 % 20.2 % 

B-Blockers 62.9 % 58.2 % 59.2 % 60.5 % 

Calcium channel blockers 37.3 % 39.5 % 36.4 % 38.6 % 

Inhibitors of renin-angiotensin system 36.8 % 36.5 % 42.4 % 39.8 % 

Diuretics 38.4 % 45.4 % 49.9 % 45.4 % 

Loop diuretics 31.2 % 38.6 % 41.6 % 37.8 % 

Antidiabetics 20.4 % 24.0 % 30.3 % 26.2 % 

OAC type at cohort entry     

Warfarin 40.3 % 46.6 % 46.0 % 48.6 % 

Dabigatran 110 mg 6.2 % 8.5 % 6.9 % 7.8 % 

Dabigatran 150 mg 4.1 % 3.4 % 2.5 % 2.9 % 

Rivaroxaban 15 mg 5.0 % 6.6 % 8.0 % 6.7 % 

Rivaroxaban 20 mg 13.5 % 12.6 % 14.3 % 11.6 % 

Apixaban 2.5 mg 11.4 % 8.9 % 7.7 % 8.9 % 

Apixaban 5 mg  19.6 % 13.5 % 14.6 % 13.5 % 

Charlson score (mean ± SD) 4.5 ± 3.4 5.2 ± 3.4 5.9 ± 3.9 5.3 ± 3.6 

Charlson score < 4 (%) d 45.7 % 36.1 % 29.2 % 34.5 % 

Charlson score ≥ 4 (%) d 54.3 % 63.9 % 70.8 % 65.5 % 
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Treatment-specific cumulative incidence measurements 

Including both approved dosages, DOAC users had cumulative ICH, GIB, NGIB, and MB incidences 

ranging from 0.35 to 0.92, 0.89 to 1.80, 0.64 to 1.77 and 2.11 to 4.27 events per 100 person-years, 

respectively (Table 2). Warfarin users had cumulative ICH, GIB, NGIB and MB incidences of 1.05, 1.57, 

1.28 and 2.84 events per 100 person-years, respectively (Table 2). As shown in Figs 2 and 3, apixaban 

users had lower incidences of all bleeding subtypes relative to warfarin users for both dosages (log rank 

p<0.05). 
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Fig 2. Gastrointestinal, non-gastrointestinal extracranial and all major bleeding cumulative incidence curves for each direct oral 

anticoagulant at low dose relative to warfarin.  

 
 
 
 
 
 
 
 
 
 
 
Warfarin, dabigatran, rivaroxaban and apixaban are shown in black, red, blue and purple, respectively. Gastrointestinal, non-gastrointestinal and 

all major bleeding are shown from left to right. * statistically significant difference relative to warfarin (p<0.05). 

 

Fig 3. Gastrointestinal, non-gastrointestinal extracranial and all major bleeding cumulative incidence curves for each direct oral 

anticoagulant at high dose relative to warfarin.  

 

 

 

 

 

Warfarin, dabigatran, rivaroxaban and apixaban are shown in black, red, blue and purple, respectively. Gastrointestinal, non-gastrointestinal and 

all major bleeding are shown from left to right. * statistically significant difference relative to warfarin (p<0.05). 

Table 2 

 

Warfarin, dabigatran, rivaroxaban and apixaban are shown in black, red, blue and purple, respectively. Gastrointestinal, non-gastrointestinal and 

all major bleeding are shown from left to right. * statistically significant difference relative to warfarin (p<0.05). 

 

Table 2. Crude cumulative incidence of all major bleeds among warfarin, low dose and high dose OAC users with each major bleeding subtype 

one year after cohort entry between 2011 and 2018. 

* * 
* 

* 
* 
* 

* 

* 
* 
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a Non-GI extracranial bleeding includes vitreous, urogenital, hemoperitoneal and unspecified bleeding as well as hemoarthrosis, hemopericardium, 

hemoptysis, hematuria and post-bleeding anemia. b Incidence rate estimates are followed by exact Poisson 95% confidence intervals.

 Warfarin 

DIE 

(n=14,741) 

Dabigatran 

110 mg BID 

(n=2,255) 

Dabigatran 

150 mg BID 

(n=1,467) 

Rivaroxaban 

15 mg DIE 

(n=1,846) 

Rivaroxaban 

20 mg DIE 

(n=4,876) 

Apixaban 

2.5 mg BID 

(n=4,127) 

Apixaban  

5 mg BID 

(n=7,069) 

Major gastrointestinal bleeding 

Number with bleeds 204 37 15 29 55 39 59 

Total person-years 13,021.8 2,049.9 1,404.6 1,618.8 4,565.5 3,566.4 6,606.5 

Rate of bleed (per 

100 person-years) b 

1.57 (1.36-

1.79) 

1.80 (1.28-

2.44) 

1.01 (0.61-

1.70) 

1.79 (1.22-

2.52) 

1.20 (0.91-

1.55) 

1.09 (0.78-

1.47) 

0.89 (0.68-

1.14) 

Major non-GI extracranial bleeding a 

Number with bleeds 167 25 9 29 52 28 53 

Total person-years 13,048.9 2,057.0 1,409.6 1,638.6 4,594.0 3,589.5 6,522.7 

Rate of bleed (per 

100 person-years) b 

1.28 (1.11-

1.49) 

1.21 (0.80-

1.18) 

0.64 (0.31-

1.15) 

1.77 (1.22-

2.52) 

1.11 (0.86-

1.48) 

0.78 (0.53-

1.11) 

0.81 (0.60-

1.04) 

Major intracranial bleeding       

Number with bleeds 138 19 6 11 16 27 33 

Total person-years 13156.4 2073.4 1414.6 1647.9 4621.8 3589.8 6649.1 

Rate of bleed (per 

100 person-years) b 

1.05 (0.88-

1.91) 

0.92 (0.55-

1.43) 

0.42 (0.16-

0.92) 

0.67 (0.33-

1.19) 

0.35 (0.20-

0.56) 

0.75 (0.50-

1.10) 

0.50 (0.34-

0.70) 

Any major bleeding (GIB, other extracranial and intracranial bleeding) 

Number with bleeds 499 80 30 69 119 91 139 

Total person-years 12978.1 2042.9 1402.1 1615.3 4560.0 3559.4 6591.7 

Rate of bleed (per 

100 person-years) b 

3.84 (3.51-

4.19) 

3.92 (3.12-

4.83) 

2.14 (1.46-

3.00) 

4.27 (3.33-

5.36) 

2.61 (2.17-

3.10) 

2.56 (2.07-

3.12) 

2.11 (1.78-

2.48) 
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Logistic-LASSO and logistic-adaLASSO prediction models 

The ORs of the selected predictors for the warfarin, DOAC and OAC models assessing GIB, NGIB 

and MB under the logistic-LASSO and logistic-adaLASSO regressions are presented in S7 and S8 

Tables, respectively. The models for GIB, NGIB and MB had concordance statistics ranging from 

0.60 (95% CI 0.58-0.62) to 0.66 (95% CI 0.63-0.70) with no statistically significant difference 

between logistic-LASSO and logistic-adaLASSO models (S7 and S8 Tables, S2 Fig). All models 

were adequately calibrated (Hosmer Lemeshow test: p>0.05) except for the logistic-LASSO selected 

OAC model for NGIB (S7 and S8 Tables, S1 Fig). There was little difference in discrimination or 

calibration between logistic-LASSO selected models and their logistic-adaLASSO counterparts. This 

was the case for all treatment groups and outcomes (S7 and S8 Tables, S1 and S2 Figs). 

With the exception of NGIB, the predictors of each bleeding outcome were similar between 

the DOAC and warfarin treatment groups. Since the logistic-LASSO MB model derived from OAC 

user data selected marginally less variables than the logistic-adaLASSO MB model and the 

performance of the models did not differ significantly across methods, we chose the former as the 

final model fit. The most important MB predictors in our final MB model were liver disease (OR = 

1.64), MB history (OR = 1.57), age ≥ 75 vs < 75 (OR = 1.37) antiplatelet use (OR = 1.28), 

cardiomyopathy (OR = 1.22), PVD (OR = 1.21) and COPD (OR = 1.21). 

The selected model had a c-statistic of 0.63 (95% CI 0.61-0.65) and was well-calibrated 

(Table 3). The formula representing this model can be seen in Table 3. The final MB model 

performed just as well in detecting GIB and NGIB as it did for MB (GIB c-statistic: 0.65, 95% CI 

0.63-0.66; NGIB c-statistic: 0.67, 95% CI 0.64-0.70; Table 3). However, with regards to calibration, 

the model underpredicted GIB and NGIB among patients at moderate and high risk of each respective 

MB subtype (see Fig S4). To understand how to apply and interpret the selected model, you may 
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refer to the formula for the risk of major bleeding in the year following OAC initiation derived for 

any OAC new user with AF (Table 3). 

 

Table 3. The predictors selected into the primary prediction model of major bleeding and its performance. 

 Model coefficients Model ORs 

Sociodemographic criteria at cohort entry   

Age ≥ 75 years (ref. <75 years) 0.31 1.37 

Female sex 0.08 1.09 

Co-morbidities within 3 years before cohort entry  

Liver disease 0.49 1.64 

History of major bleeding 0.45 1.57 

Cardiomyopathy 0.2 1.22 

Peripheral vascular (arterial) disease 0.2 1.21 

Hypertension 0.14 1.15 

Congestive heart failure 0.12 1.14 

Chronic obstructive pulmonary disease/asthma 0.12 1.13 

Valvular heart disease 0.10 1.10 

Acute myocardial infarction  0.09 1.09 

Coronary artery disease (excl. MI) 0 - 

Other dysrhythmias 0 - 

Stroke/TIA 0 - 

Dyslipidemia 0 - 

Chronic renal failure 0 - 

Chronic renal failure ≤ 30 mL/min 0 - 

Acute renal failure 0 - 

Infection by Helicobacter pylori 0 - 

Concomitant medication use within 2 weeks before cohort entry  

Antiplatelet 0.25 1.28 

Antidiabetics 0.17 1.19 

Antidepressants 0.10 1.10 

Statin 0 - 

NSAIDs 0 - 

Proton pump inhibitors 0 - 

OAC type at cohort entry (ref. warfarin)   

OAC type (apixaban) -0.37 0.69 

OAC type (rivaroxaban) 0 - 

OAC type (dabigatran) 0 - 

Model statistics (MB)   
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The risk of major bleeding in the year following oral anticoagulant initiation as defined by the prediction 

model derived from a population of all oral anticoagulant users with atrial fibrillation using logistic-

LASSO regression can be estimated with  
𝑒𝑥

1+𝑒𝑥
 where 𝑥 = -4.51 + 0.31*age_75_and_more + 

0.08*is_female + 0.49*liver_disease + 0.45*prior_major_bleeding + 0.2*cardiomyopathy + 

0.2*peripheral_vascular_disease + 0.14*hypertension + 0.12*heart_failure + 

0.12*chronic_obstructive_pulmonary_disorder_or_asthma + 0.10*valvular_heart_disease + 

0.09*myocardial_infarction + 0.25*antiplatelets + 0.17*antidiabetics  + 0.10*antidepressants - 

0.37*apixaban 

 

Discussion 

Our study is the first to derive prediction models for MB and MB subtypes from a cohort of DOAC and 

warfarin new users with AF. It did so using a robust statistical prediction tool. Our MB and MB subtype 

models were well-calibrated and performed similarly to previously published MB scores. Warfarin and 

DOAC users presented similar predictors of MB and GIB, not NGIB. This was likely due to the variable 

locations of bleeding included in the definition of NGIB. We then built a final MB model derived from 

data from all OAC users. Due to the marginally superior discrimination of the OAC model relative to the 

warfarin model, it was deemed that the OAC model was more useful than having separate models for 

DOAC and warfarin users. The most important MB predictors in our final MB model were liver disease, 

MB history, age≥75, antiplatelet use, cardiomyopathy, PVD and COPD with ORs ranging from 1.21 to 

1.64. Notably, the selection of apixaban as a protective factor (OR=0.69) relative to warfarin corroborates 

previous observational studies [57, 58]. These findings may be attributable to the superior bleeding profile 

of apixaban relative to warfarin. 

Cross-val. C-Statistic (95% CI) N/A 0.63 (0.60-0.65) 

Hosmer-Lemeshow test (p-value) N/A p>0.05 

Model sensitivity (GIB)   

Cross-val. C-Statistic (95% CI) N/A 0.65 (0.63-0.66) 

Hosmer-Lemeshow test (p-value) N/A p<0.001 

Model sensitivity (NGIB)   

Cross-val. C-Statistic (95% CI) N/A 0.67 (0.64-0.70) 

Hosmer-Lemeshow test (p-value) N/A 0.01<p<0.05 
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The OR values for the most important predictors of our final model were largely similar to those 

reported in the analyses used to derive existing MB scores. For the ABS, the population had a similar 

stroke risk, but was younger (mean age ranging from 68.1 to 73.7) and less at risk of bleeding (mean 

HAS-BLED ranging from 2.1 to 2.8). The ABS score, which, like us, was derived from OAC users, 

selected analogous predictors to our model, including prior MB (HR=1.27, 95% CI 1.18-1.36), 

antiplatelet therapy (HR=1.25, 95% CI 1.16-1.35), and COPD (HR=1.21, 95% CI 1.13-1.30). The most 

important difference between our model and the ABS score is their selection of CKD. This difference is 

most likely due to the continuous definition of age given the association between our age categories, 

kidney function as well as OAC prescription guidelines. 

Furthermore, the ORBIT-AF population had a similar age to ours, but a higher stroke risk (a 

median CHA2DS2-VASC ranging from 4.0 to 5.0) and lower bleeding risk (a median HAS-BLED of 2.0). 

The analyses used to create the ORBIT-AF score used warfarin and dabigatran user data, provided similar 

point estimates and predictors such as age≥75 (HR=1.38, 95% CI 1.17-1.61), any prior bleeding 

excluding NGIB (HR=1.73, 95% CI 1.34-2.23), and antiplatelet therapy (HR=1.51, 95% CI 1.30-1.75). 

Like with the ABS score, the selection of CKD is a major distinction to our model. This may be due to 

their prediction method, the omission of NGIB in the MB history definition or the lower bleeding risk of 

the derivation cohort. 

On the other hand, for each existing MB score, we found differences between some of their OR 

values and our own. Most notably, the HAS-BLED study presented a significantly different OR estimate 

for prior MB (OR=7.51, 95% CI 3.00- 18.78), while all other models selected CKD and omitted liver 

disease. The CKD discrepancy is most likely due to the contraindication of DOAC use among patients 

with renal dysfunction in our cohort. Moreover, the high prior MB point estimate may be attributable to 

the small sample size or selection bias attributable to the substantial missing data. However, despite these 

differences to our model, the HAS-BLED similarly incorporated age≥65 (OR=2.66, 95% CI 1.33-5.32). 

Given that the HAS-BLED was derived from warfarin data, it may exclude important MB predictors 
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among DOAC users, hence the need for a score that is derived from a cohort encompassing all types of 

OAC users. 

Our model performed similarly to other MB scores in the literature with a c-statistic of 0.63 

(0.60-0.65) and had adequate calibration. The HAS-BLED, (c-statistic: 0.65 [0.61‐0.69]) performed better 

than existing scores in a meta-analysis of observational studies (c-statistics of 0.63 (0.61‐0.66) and 0.63 

(0.56‐0.72) for HEMORR2AGES and ATRIA, respectively) with Net Reclassification and Integrated 

Discrimination Improvement values exceeding 7% (p<0.001) [24, 59-62]. However, unlike our model, 

few of the studies used cross-validation or bootstrapping to evaluate model performance, which may have 

led to overconfident assessments if the models were not independently validated [24, 59-63]. Although 

our model performed similarly to the HAS-BLED, we evaluated its discrimination more robustly and the 

HAS-BLED was inadequately calibrated [64]. MB prediction scores, such as the ORBIT score and the 

ABS, which included DOAC user data in their derivation cohort, have performed similarly or slightly 

better than our model with c-statistics of 0.65 (0.64-0.66) and 0.68 (0.67-0.69), respectively [27, 28]. 

Our study was one of the few to have tested the ability of its MB prediction model to detect MB 

subtypes. A real-world study compared the HAS-BLED’s ability to discriminate MB subtypes to that of 

the Age Biomarker Clinical history score and found that the HAS-BLED performed better in detecting 

MB (c-statistics: 0.583 and 0.518, respectively) and GIB (c-statistics: 0.596 and 0.519, respectively) [65]. 

However, these findings were neither cross-validated, nor externally validated [60, 65]. Our own MB risk 

score overperformed relative to the HAS-BLED in this study (c-statistic: 0.65 95% CI 0.63-0.66), but 

further research is needed for confirmation. Furthermore, while the HAS-BLED outperformed other 

scores in predicting ICH, we were unable to evaluate this outcome due to a paucity of events-per-

predictors [60, 65]. Finally, despite encompassing approximately half of MB cases, NGIB, which 

predominantly included genitourinary bleeding and gross hematuria, has been poorly studied [66-68]. Our 

model predicted NGIB as well as it did MB (c-statistic: 0.67 95% CI 0.64-0.70). Thus, one of the 
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advantages of our MB model is that it also had a good discrimination in terms of GIB and NGIB. 

Nonetheless, these findings need to be validated with inpatient data. 

Furthermore, no study has identified the predictors for the most prevalent MB subtypes among 

DOAC and warfarin users. Two prediction schemes (the Qbleed models) and one observational study 

evaluated predictors of upper GIB and ICH as well as all GIB, respectively. However, neither model 

accounted for all DOAC users [69, 70]. Our study is the first to identify predictors of GIB and NGIB 

using a derivation cohort of DOAC and warfarin users. Our final model identified similar predictors to 

existing MB scores, but may be more robust. Clinical scores that effectively predict common MB 

subtypes like GIB are essential as they can significantly impact patient quality of life, DOAC adherence, 

and mortality [29, 71]. 

Our study has several advantages. Firstly, it is the only study to have developed MB and MB 

subtype prediction models derived from DOAC and warfarin user data. Secondly, this is one of the few 

studies to calculate cumulative incidence of MB, GIB, ICH and NGIB stratified by dosage for all 

DOACs. Thirdly, we used a prediction method that minimized the likelihood of overfitting the regression 

to its derivation dataset, theoretically leading to a more robust model than existing ones [24, 27, 28, 60-

62, 64, 72]. Fourth, unlike previous studies, our model’s performance indices have been cross-validated to 

avoid inflated c-statistics [24, 27, 60-62, 64, 72]. Fifth, we used a dataset large enough to establish models 

in each treatment subgroup. Sixth, our predictor candidates were well-defined and clinically useful (non-

redundant) variables with externally validated coding algorithms. Moreover, we made sure that our 

outcome definitions were consistent with previous claims-based observational studies. Seventh, patient 

loss-to-follow-up (mainly death), OAC non-adherence and OAC switching during follow-up could limit 

model performance. However, our sensitivity analyses suggested that none of these factors have hindered 

model performance (S9 Table). Ultimately, the observational nature of our data allowed us to characterize 

real-world predictors of our outcomes. 
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Our findings presented some limitations. Firstly, prediction modelling is not designed for causal 

inference, thereby precluding conclusions regarding the impacts of hypothetical interventions on the risk 

factors. Secondly, due to the nature of our prediction models, these findings are not directly generalizable 

to any other common OAC indications or edoxaban users. Thirdly, important candidate predictors may 

not have been evaluated in our models. Specifically, our source data does not include information on 

alcohol use, tobacco use, ethnicity, over-the-counter aspirin use or labile INR (factors highly associated 

with bleeding) [24, 73, 74]. Despite the large populational data source, our sample size constrained our 

ability to identify ICH predictors. Fourth, some patients with prior cardiovascular diseases may not have 

been identified due to errors in diagnostic coding. Fifth, medication dispensation does not necessarily 

amount to medication use, resulting in a potential misclassification bias in our cumulative incidence 

findings and prediction error in our prediction model. Sixth, given our use of real-world data, our findings 

require external validation using inpatient data [28]. Seventh, our comparisons to published MB models 

were only speculative given the differences in MB and predictor definitions between models derived from 

administrative claims data and those derived from inpatient data. Lastly, given our selection of patients 

who were hospitalized, it is likely that our cohort was older, sicker and used more medications than the 

general population of anticoagulant users with AF. External validation will be required to ensure the 

generalizability of our findings to this population. 

Our findings have several implications. Due to the overall similarity of MB predictors across 

treatment groups, our findings suggest that it would be ideal to create an MB risk score that groups 

together all OAC users rather than generating separate scores for DOACs and warfarin. Moreover, the 

paucity of RCT and observational data pertaining to GIB and NGIB predictors within an AF population 

of OAC users makes it difficult to assess whether existing prediction models, such as the HAS-BLED 

takes into account risk factors for the most prevalent MB subtypes in a real-world population. Thus, 

although it requires further validation using clinical data and real-world data from other AF patient 

populations, this study may inform the development of a much-needed monitoring tool that encompasses 
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a more diverse range of MB risk factors adapted to the heterogeneity of OAC user and MB subtype 

characteristics. Ultimately, our derivation model is well-calibrated and has a similar discriminative 

potential relative to the other MB scores in the literature (most notably, the HAS-BLED, ABS, and 

ORBIT-AF), but will require further validation. Future studies will involve using inpatient data to 

compare our model to the HAS-BLED using adequate comparative performance metrics and seeing how 

well it stratifies the risk for each MB subtype relative to the HAS-BLED. 
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Supporting information 

S1 Fig. Calibration plots.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Calibration plots of LASSO (red) and adaptive LASSO (blue) logistic regression models for GIB among users of A) Warfarin, B) DOACs, C) all OACs; NGIB 

among users of D) Warfarin, E) DOACs, F) all OACs; and MB among users of G) Warfarin, H) DOACs, I) all OACs. 
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S2 Fig. Cross-validated ROC curves.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Cross-validated ROC curves of LASSO (red) and adaptive LASSO (blue) logistic regression models for GIB among users of A) Warfarin, B) DOACs, C) all 

OACs; NGIB among users of D) Warfarin, E) DOACs, F) all OACs; and MB among users of G) Warfarin, H) DOACs, I) all OACs. 
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S3 Fig. Calibration of plots of the global MB model tested for MB subtypes.  

 

 

 

 

 

 

 

 

 

Calibration plots of the global MB model tested for its ability to predict A. GIB and B. NGIB. 
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S1 Table. Major bleeding outcome definition. 

 ICD-9 codes ICD-10 codes 

Major Bleed (MB) 

Haemorrhagic stroke 

intracranial (non-traumatic; 

ICH) 

430, 431, 432.x I60, I61, I62 

Haemorrhagic stroke 

intracranial (traumatic; ICH) 

852x, 853x S063, S064, S065, S066 

Major GI bleeding (GIB) Upper GI: 456.1, 530.7, 531.0x, 

531.2x, 531.4x, 531.6x, 532.0x, 

532.2x, 532.4x. 532.6x, 533.0x. 

533.2x, 533.4x, 533.6x, 534.0x, 

534.2x, 534.4x, 534.6x, 535.01, 

537.83, 578.0  

Lower GI: 562.02, 562.03, 

562.12, 562.13, 569.3x, 569.85, 

578.1x, 578.9  

Upper GI: I850, K226, K250, K252, 

K254, K256, K260, K262, K264, 

K266, K270, K272, K274, K276, 

K280, K282, K284, K286, K2901, 

K290, K31811, K920  

Lower GI: K921, K922, K5711, 

K5713, K5731, K5733, K625, K5521 

Major Non-GI Extracranial 

Bleed (NGIB) 

Hematuria: 599.7 

Hemoptysis: 786.3x 

Vitreous bleeding: 379.23 

Urogenital bleeding: 

626.2x,280.0 285.1,285.9 

Hemarthrosis: 719.1x 

Hemopericardium: 423.0x 

Hemoperitoneal MB: 568.8 

Unspecified MB: 459.0x 

Post-bleed anemia: 285.1x 

Hematuria: R31 

Hemoptysis: R042, R0489, R049 

Vitreous bleeding: H43.13 

Urogenital bleeding: N92.0, D50.0, 

D62, D64.9 

Hemarthrosis: M250x 

Hemopericardium: I31.2 

Hemoperitoneal MB: K66.1 

Unspecified MB: R58.0 

 Post-bleed anemia: D62 

ICD-9 and ICD-10 codes for GIB, NGIB, ICH and MB. These outcomes were defined using 6 observational studies [1-6]. 

1. Villines TC,Schnee J,Fraeman K,Siu K,Reynolds MW,Collins J, Schwartzman E. A comparison of the safety and 

effectiveness of dabigatran and warfarin in non-valvular atrial fibrillation patients in a large healthcare system. Thromb 

Haemost. 2015; 114: 1290-1298.  

2. Yao X,Abraham NS,Sangaralingham LR,Bellolio MF,McBane RD,Shah ND, Noseworthy PA. Effectiveness and safety of 

dabigatran, rivaroxaban, and apixaban versus warfarin in nonvalvular atrial fibrillation. J Am Heart Assoc. 2016; 5. 

3. Lauffenburger JC,Farley JF,Gehi AK,Rhoney DH,Brookhart MA, Fang G. Effectiveness and safety of dabigatran and 

warfarin in real-world us patients with non-valvular atrial fibrillation: A retrospective cohort study. J Am Heart Assoc. 2015;  

4. Maura G,Blotière PO,Bouillon K,Billionnet C,Ricordeau P,Alla F, Zureik M. Comparison of the short-term risk of 

bleeding and arterial thromboembolic events in nonvalvular atrial fibrillation patients newly treated with dabigatran or 

rivaroxaban versus vitamin k antagonists: A french nationwide propensity-matched cohort study. Circulation. 2015; 132: 

1252-1260.  

5. Graham DJ,Reichman ME,Wernecke M,Zhang R,Southworth MR,Levenson M,Sheu TC,Mott K,Goulding MR,Houstoun 

M,MaCurdy TE,Worrall C, Kelman JA. Cardiovascular, bleeding, and mortality risks in elderly medicare patients treated 

with dabigatran or warfarin for nonvalvular atrial fibrillation. Circulation. 2015; 131: 157-164.  

6. Outcomes of dabigatran and warfarin for atrial fibrillation in contemporary practice. Annals of internal medicine. 2017; 

167: 845-854. 
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S2 Table. Definition of CHA2DS2-VASc2, modified HAS-BLED, ATRIA, HEMORR₂HAGES and ORBIT-AF risk scores 

along with their scoring algorithms. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Risk score definition Points, if present 

CHA2DS2-VASc stroke risk score  

     Congestive heart failure or left ventricular dysfunction 1 

     Hypertension 1 

     Age 1 

     Age ≥ 75 years 2 

     Diabetes Mellitus 1 

     Stroke (ischemic stroke, transient ischemic disease or systemic embolism 2 

     Vascular disease (myocardial infarction, peripheral arterial disease or aortic plaque 1 

     Sex category (female) 1 

HAS-BLED bleeding risk score  

     Hypertension 1 

     Abnormal renal function 1 

     Abnormal hepatic function  

     Abnormal Stroke (ischemic stroke, transient ischemic disease 1 

     Bleeding 1 

     Older than > 65 years 1 

     Labile 65 - 74 years international normalized ratio (not available) 1 

    Drugs (ASA, clopidogrel, prasugrel, ticagrelor, ticlopidine, or non-steroidal anti-         

inflammatory drugs) in the 1 month preceding the ICH hospitalization or 1month after     

discharge 

1 

Alcohol intake 1 

ATRIA bleeding risk score  

     Anemia (Male: Hemoglobin <13 g/dL; Female: Hemoglobin <12 g/dL) 3 

     Severe Renal Disease (Glomerular filtration rate <30 mL/min or dialysis) 3 

     Age ≥ 75 years 2 

     Any Prior Hemorrhage Diagnosis 1 

     Hypertension History 1 

HEMORR₂HAGES bleeding risk core 1 

     Hepatic or Renal Disease 1 

     Ethanol (Alcohol) Abuse 1 

     Malignancy History 1 

     Older (Age > 75) 1 

     Reduced Platelet Count or Function 1 

     Rebleeding Risk (bleeding history) 1 

     Hypertension (Uncontrolled) 1 

     Anemia (Male: Hemoglobin <13 g/dL; Female: Hemoglobin <12 g/dL) 1 

     Genetic Factors (CYP 2C9 single-nucleotide polymorphisms) 1 

     Excessive Fall Risk 1 

     Stroke History 1 

ORBIT-AF bleeding risk score  

    Anemia (Male: Hemoglobin <13 g/dL; Female: Hemoglobin <12 g/dL) 2 

    Age >74 years 1 

    Bleeding history 2 

    GFR <60 mL/min/1.73 m2 1 

    Antiplatelet agent use 1 
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S3 Table. Definition of co-morbidity and concomitant medication variables used for CHA2DS2-VASc and HAS-BLED risk 

score calculation according to ICD-9 and ICD-10 codes from the Med-Echo databases.  

 ICD-9 codes ICD-10 codes 

CHA2DS2VASc   

Congestive heart failure 402.01, 402.11, 402.91, 404.01, 

404.11, 404.91, 404.03, 404.13, 

404.93, 425.4, 428.0 

I11.0, I13.0, I13.2, I42.0, I50 

Left ventricular dysfunction 428.1, 428.9 I50.1, I50.9 

Hypertension 401 I10 

Diabetes 250.x E08, E10, E11, E13 

Ischemic stroke 433.xx, 434.xx, 436 I63 except 63.6, I67.89 

Systemic embolism 444.x, 557.0, 362.31, 362.32, 

598.31 

I74, K55.0, H34.1, H34.2, N28.0 

Transient ischemic stroke (TIA) 435.x G45 

Aortic plaque 440.0 I70.0 

Peripheral arterial disease 440 (except 440.0), 441, 443.0, 

443.89, 443.9 

I70.1 to I70.9, I71, I73.0, I73.89, 

I73.9 

Myocardial infarction 410.xx I21, I22, I23 

Modified HAS-BLEED   

Ischemic stroke 433.xx, 434.xx, 436 I63 except I63.6, I67.89 

Transient ischemic attack 435.x G45 

Moderate to severe renal disease 404.01, 404.03, 404.11, 404.13, 

404.91, 404.93, 580.0, 580.4, 

581.0, 581.1, 581.2, 581.3, 

581.89, 581.9, 582.0, 582.1, 

582.2, 582.89, 582.9, 583.0, 

583.1, 583.2, 583.4, 583.7, 

583.6, 583.89, 583.9, 584.5, 

584.6, 584.7, 584.8, 584.9, 

585.1, 585.2, 585.3, 585.4, 

585.5, 585.6, 586, 590.0, 590.01, 

590.80  

I12, I13, N00, N01, N02, N03, N04, 

N05, N07, N11, N12, N14, N17, 

N18, N19 

Moderate to severe liver disease 570, 572.3, 070.0, 070.21, 

070.20, 070.60 

K7200, K762, K766, B150, B160, 

B162, B190, K704, I85 

Haemorrhagic stroke intracranial 

(non-traumatic) 

430, 431, 432.x I60, I61, I62 

Extracranial major or 

unclassified major bleeding 

Upper GI: 456.1, 530.7, 531.0x, 

531.2x, 531.4x, 531.6x, 532.0x, 

532.2x, 532.4x. 532.6x, 533.0x. 

533.2x, 533.4x, 533.6x, 534.0x, 

534.2x, 534.4x, 534.6x, 535.01, 

537.83, 578.0 

Lower GI: 562.02, 562.03, 

562.12, 562.13, 569.3x, 569.85, 

578.1x, 578.9 

Other sites: 

Hematuria: 599.7 

Hemoptysis: 786.3x 

Vitreous bleeding: 379.23 

Urogenital bleeding: 

626.2x,280.0 285.1,285.9 

Hemarthrosis: 719.1x 

Hemopericardium: 423.0x 

Upper GI: I850, K226, K250, K252, 

K254, K256, K260, K262, K264, 

K266, K270, K272, K274, K276, 

K280, K282, K284, K286, K2901, 

K290, K31811, K920 

 

Lower GI: K921, K922, K5711, 

K5713, K5731, K5733, K625, 

K5521 

Other sites:  

Hematuria: R31 

Hemoptysis: R042, R0489, R049 

Vitreous bleeding: H43.13 

Urogenital bleeding: N92.0, D50.0, 

D62, D64.9 

Hemarthrosis: M250x 

Hemopericardium: I31.2 
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Hemoperitoneal MB: 568.8 

Unspecified MB: 459.0x 

Post-bleed anemia: 285.1x 

Hemoperitoneal MB: K66.1 

Unspecified MB: R58.0 

 Post-bleed anemia: 

D62 

Traumatic intracranial bleeding 852x, 853x S063, S064, S065, S066 

Clopidogrel, ticlopidine, 

prasugrel, ticagrelor 

46486, 47307, 45617, 47402, 

47834, 47866 

46486, 47307, 45617, 47402, 47834, 

47866 

Low dose ASA 00143, 46353 (daily dose < 100 

mg) 

00143, 46353 (daily dose < 100 mg) 

Non steroidal anti-inflammatory 

drugs (NSAIDs) 

46353, 38184, 47327, 47078, 

41694, 47059, 43150, 47122, 

33803, 44749, 04745, 46654, 

47506, 04810, 38691, 44359, 

47385, 47084, 19752, 47890, 

07462, 42019, 47346, 47107, 

40381, 45592, 45407, 03766 

46353, 38184, 47327, 47078, 41694, 

47059, 43150, 47122, 33803, 44749, 

04745, 46654, 47506, 04810, 38691, 

44359, 47385, 47084, 19752, 47890, 

07462, 42019, 47346, 47107, 40381, 

45592, 45407, 03766 

Alcohol 331.7, 359.4, 425.5, 577.1 

 

E224, E529A, F10, G312, G612, 

G721, I426, K292, K70, K860, 

L278A, O354, T51, Z714, Z721 
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S4 Table. Sample size justification. 

Assuming 28 candidate predictors, these are the event requirements for each subgroup. a The number of outcomes in these 

groups would be sufficient to yield robust prediction models. b In a simulation study, it was found that under the assumption 

that outcomes are rare and that noise predictors (predictors presenting redundant information) are present, LASSO regression 

was shown to yield stable predictions (neither overfitted, nor underfitted models) with an events per candidate predictor ratio 

of 5 [7]. 

 
7. Pavlou M,Ambler G,Seaman S,De Iorio M, Omar RZ. Review and evaluation of penalised regression methods for risk 
prediction in low-dimensional data with few events. Statistics in Medicine. 2016; 35: 1159-1177. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 MB GIB NGIB MB GIB NGIB MB GIB NGIB 

All OACs Warfarin DOACs 

10 events per 

candidate predictor 

280a 280a 280a 280 280 280 280 280 280 

5 events per candidate 

predictorb 

140a 140a 140a 140a 140a 140a 140a 140a 140a 
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S5 Table. Baseline characteristics of OAC new user with specific types of major bleeds in the year of follow-up from 2011 to 2018. 

 GI bleeding Non-GI extracranial bleeding a All major bleeding a 

 Warfarin 

(n=204) 

DOAC b 

(n=234) 

OAC c 

(n=438) 

Warfarin 

(n=167) 

DOAC b 

(n=196) 

OAC c 

(n=363) 

Warfarin 

(n=499) 

DOAC b 

(n=528) 

OAC c 

(n=1,027) 

Sociodemographics          

Age (mean ± SD) 

 

80.9 ± 8.5 80.3 ± 7.5 80.6 ± 8.0 80.4 ± 8.5 80.0 ± 8.0 80.2 ± 8.2 81.1 ± 8.5 80.7 ± 7.9 80.9 ± 8.2 

Age (%)           

  ≥ 75 years old 79.9% 75.2% 77.4% 71.9% 73.5% 72.7% 76.0% 76.1% 76.1% 

Male (%) 45.1 % 45.7 % 45.4 % 53.3 % 52.6 % 52.9 % 49.9 % 48.3 % 49.1 % 

Pampalon index elevated social 

deprivation (%) 

26.7% 26.5% 26.6% 26.5% 26.5% 26.5% 26.6% 26.5% 26.6% 

Pampalon index elevated material 

deprivation (%) 

25.7% 25.8% 25.8% 25.8% 25.7% 25.8% 25.8% 25.8% 25.8% 

CHA2DS2-VASc Score (mean ± 

SD) 

4.1 ± 1.3 3.8 ± 1.2 4.0 ± 1.3 4.1 ± 1.4 3.9 ± 1.4 4.0 ± 1.4 4.1 ± 1.3 3.9 ± 1.3 4.0 ± 1.3 

CHA2DS2-VASc Score (%)          

  0 - 1 2.9% 1.7% 2.3% 1.2% 3.6% 2.5% 2.0% 2.7% 2.3% 

  2 - 3 25.5% 37.2% 31.7% 31.1% 33.7% 32.5% 28.5% 36.0% 32.3% 

  4 32.8% 34.6% 33.8% 29.9% 33.2% 31.7% 32.7% 32.6% 32.6% 

  ≥ 5 38.7% 26.5% 32.2% 37.7% 29.6% 33.3% 36.9% 28.8% 32.7% 

HAS-BLED score (mean ± SD) 3.5 ± 1.2 3.1 ± 1.2 3.3 ± 1.2 3.7 ± 1.3 3.3 ± 1.3 3.5 ± 1.3 3.6 ± 1.2 3.2 ± 1.2 3.4 ± 1.2 

HAS-BLED score (%)          

   < 3 17.7% 29.9% 24.2% 16.2% 27.0% 22.0% 17.8% 29.2% 23.7% 

   ≥ 3 82.3% 70.1% 75.8% 83.8% 73.0% 78.0% 82.2% 70.8% 77.3% 

Co-morbidities within 3 years before cohort entry       

Hypertension 90.2 % 85.5 % 87.7 % 89.2 % 84.7 % 86.8 % 88.8 % 84.5% 86.6 % 

Coronary artery disease (excl. MI) 58.8 % 44.9 % 51.4 % 58.9 % 56.1 % 58.4 % 61.1 % 49.1 % 53.9 % 

Acute myocardial infarction 16.2 % 15.8 % 16.0 % 23.4 % 19.4 % 23.4 % 20.2 % 15.5 % 17.8 % 

Chronic heart failure 53.9 % 41.9 % 47.5 % 50.3 % 41.3 % 45.6 % 49.9 % 42.1 % 45.9 % 

Cardiomyopathy 5.9 % 6.4 % 6.2 % 11.4 % 14.3 % 13.0 % 8.0 % 8.5 % 8.3 % 

Other dysrhythmias 21.1 % 15.0 % 17.8 % 20.4 % 20.9 % 20.7 % 21.4 % 18.8 % 20.1 % 

Valvular heart disease 26.5 % 21.8 % 24.0 % 33.5 % 20.4 % 26.5 % 26.1 % 20.8 % 23.4 % 

Stroke/TIA 17.2 % 15.4 % 16.2 % 20.4 % 18.4 % 19.3 % 21.6 % 18.4 % 20.0 % 
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Peripheral vascular (arterial) 

disease 

30.9 % 23.1 % 26.7 % 35.9 % 28.1 % 31.7 % 31.9 % 25.6 % 28.6 % 

Dyslipidemia 56.4 % 56.4 % 56.4 % 62.3 % 55.6 % 58.7 % 58.9 % 54.6 % 56.7 % 

Diabetes 41.2 % 39.3 % 40.2 % 47.3 % 49.5 % 48.5 % 44.1 % 40.9 % 42.5 % 

History of major bleeding a, d 

(atleast2) 

 

48.0 % 39.7 % 43.6 % 51.5 % 44.4 % 47.7 % 45.7 %  40.3 % 42.9 % 

     History of intracranial bleeding 

 

1.5 % 3.4 % 2.5 % 4.2 % 4.6 % 4.4 % 4.0 % 5.9 % 5.0 % 

     History of GI bleeding 19.1 % 18.8 % 19.0 % 13.8 % 10.2 % 11.9 % 14.6 % 13.1 % 13.8 % 

     History of other bleeding a 39.7 % 26.5 % 32.7 % 41.9 % 37.2 % 39.4 % 35.7 % 29.6 % 32.5 % 

Chronic renal failure 52.5 % 28.6 % 39.7 % 57.5 % 41.8 % 49.0 % 51.9 % 33.3 % 42.4 % 

Chronic renal failure ≤ 30 mL/min 1.0 % 0.4 % 0.7 % 1.8 % 0.5 % 1.1 % 1.2 % 0.4 % 0.8 % 

Acute renal failure 36.3 % 18.4 % 26.7 % 42.5 % 27.6 % 34.4 % 35.3 % 22.0 % 28.4 % 

Liver disease 5.4 % 6.0 % 5.7 % 4.8 % 2.6 % 3.6 % 4.8 % 3.2 % 4.0 % 

Chronic obstructive pulmonary 

disease/asthma 

51.5 % 43.2 % 47.0 % 47.3 % 50.5 % 49.0 % 43.3 % 43.0 % 43.1 % 

Infection by Helicobacter pylori 1.5 % 0.4 % 0.9 % 1.2 % 1.5 % 1.4 % 1.0 % 0.8 % 0.9 % 

Depression 8.3 % 12.0 % 10.3 % 11.4 % 13.8 % 12.7 % 12.2 % 14.6 % 13.4 % 

Concomitant medication use (within 2 weeks before cohort entry) (%) 
       

Statin 48.0 % 48.3 % 48.2 % 56.9 % 52.0 % 54.3 % 53.1 % 49.1 % 51.0 % 

All antiplatelets d 46.1 % 32.9 % 39.0 % 47.9 % 33.7 % 40.2 % 46.3 % 32.2 % 39.1 % 

     Low dose aspirin (ASA) 41.7 % 29.9 % 35.4 % 41.3 % 31.6 % 35.8 % 40.7 % 29.4 % 35.2 % 

     Oth. antiplatelets (without ASA) 6.9 % 6.8 % 6.9 % 8.2 %  2.6 % 7.2 % 12.6 % 4.6 % 6.3 % 

Proton pump inhibitors (PPIs) 52.0 % 44.9 % 48.2 % 61.7 % 51.5 % 56.2 % 53.9 % 46.4 % 50.1 % 

NSAIDs 1.5 % 0.9 % 1.1 % 0 % 1.0 % 0.6 % 0.8 % 1.5 % 1.2 % 

Digoxin 13.7 % 11.1 % 12.3 % 15.0 % 11.7 % 13.2 % 13.4 % 11.7 % 12.6 % 

Amiodarone 7.8 % 9.0 % 8.5 % 10.9 % 12.2 % 11.6 % 9.6 % 10.0 % 9.8 % 

Antidepressants 20.1 % 17.1 % 18.5 % 19.8 % 20.4 % 20.1 % 21.6 % 18.8 % 20.2 % 

B-Blockers 58.3 % 58.1 % 58.2 % 63.5 % 55.6 % 59.2 % 62.9 % 58.2 % 60.5 % 

Calcium channel blockers 41.2 % 38.0 % 39.5 % 36.5 % 36.2 % 36.4 % 40.7 % 36.6 % 38.6 % 

Inhibitors of renin-angiotensin 

system 

37.3 % 35.9 % 36.5 % 46.7 % 38.8 % 42.4 % 42.3 % 37.5 % 39.8 % 

Diuretics 47.6 % 43.6 % 45.4 % 52.1 % 48.0 % 49.9 % 47.7 % 43.2 % 45.4 % 

Loop diuretics 44.6 % 33.3 % 38.6 % 46.1 % 37.8 % 41.6 % 42.1 % 33.7 % 37.8 % 

Antidiabetics 26.0 % 22.2 % 24.0 % 31.7 % 29.1 % 30.3 % 29.7 % 22.9 % 26.2 % 

OAC type at cohort entry          

Warfarin 100% NA 46.6 % 100% NA 46.0 % 100% NA 48.6 % 

Dabigatran 110 mg NA 15.9 % 8.5 % NA 12.8 % 6.9 % NA 26.3 % 7.8 % 



 
 

 106 

 

a Non-GI extracranial major bleeding as an outcome or a predictor includes vitreous, urogenital, hemoperitoneal and unspecified major bleeding as well as 

hemoarthrosis, hemopericardium, hemoptysis, hematuria and post-bleeding anemia. All major bleedings included GI, Non-GI extracranial major bleeding and 

intracranial bleeding. b DOAC users include all doses of dabigatran, rivaroxaban and apixaban. c OAC users include all doses of warfarin, dabigatran, rivaroxaban and 

apixaban. d Represents a history of at least one of the bleeding subcategories OR at least one prescription of antiplatelet subcategory. Although each subcategory is 

mutually exclusive, the totals will not add up to the parent variable. 

 

 

 

  

Rivaroxaban 150 mg NA 6.4 % 3.4 % NA 4.6 % 2.5 % NA 15.2 % 2.9 % 

Rivaroxaban 15 mg NA 12.3 % 6.6 % NA 14.8 % 8.0 % NA 5.6 % 6.7 % 

Rivaroxaban 20 mg NA 23.6 % 12.6 % NA 26.5 % 14.3 % NA 13.0 % 11.6 % 

Apixaban 2.5 mg NA 16.7 % 8.9 % NA 14.3 % 7.7 % NA 22.6 % 8.9 % 

Apixaban 5 mg NA 25.2 % 13.5 % NA 27.0 % 14.6 %    NA 17.3 %      13.5 %   

Charlson score (mean, ± SD) 5.9 ± 3.5 4.6 ± 3.2 5.2 ± 3.4 6.3 ± 3.8 5.5 ± 3.9 5.9 ± 3.9 5.8 ± 3.6 4.9 ± 3.5 5.3 ± 3.6 

Charlson score < 4 (%) 28.9 % 42.3 % 36.1 % 75.5 % 33.2 % 29.2 % 28.3 % 40.3 % 34.5 % 

Charlson score ≥ 4 (%) 62.1 % 57.7 % 63.9 % 24.5 % 66.8 % 70.8 % 71.7 % 59.7 % 65.5 % 
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S6 Table. Baseline characteristics of OAC new users without specific types of major bleeds in the year of follow-up from 2011 to 2018. 

 Non GI bleeders  Non GI extracranial bleeder a -Non major bleeders (all types) a 

 Warfarin 

(n=14,537) 

DOAC b 

(n=21,406) 

OAC c 

(n=35,943) 

Warfarin 

(n=14,574) 

DOAC b 

(n=21,444) 

OAC c 

(n=36,018) 

Warfarin 

(n=14,242) 

DOAC b 

(n=21,112) 

OAC c 

(n=35,354) 

Sociodemographics          

Age (mean ± SD) 

 

80.1 ± 9.2 78.2 ± 9.5 79.0 ± 9.4 80.1 ± 9.2 78.2 ± 9.5 79.0 ± 9.4 78.9 ± 9.4 78.2 ± 9.5 78.9 ± 9.4 

Age (%)         

  ≥ 75 73.5% 64.9% 68.4% 73.6% 64.9% 68.5% 68.3% 64.7% 68.3% 

Male (%) 44.6 % 46.9 % 46.0 % 44.5 % 46.9 % 45.9 % 45.9 % 46.9 % 45.9 % 

Pampalon index elevated social 

deprivation (%) 

26.6% 26.6% 26.6% 26.6% 26.6% 26.6% 26.6% 26.6% 26.6% 

Pampalon index elevated material 

deprivation (%) 

25.9% 25.8% 25.8% 25.9% 25.8% 25.8% 25.8% 25.8% 25.8% 

CHA2DS2-VASc Score (mean ± 

SD) 

4.0 ± 1.4 3.5 ± 1.4 3.7 ± 1.4 4.0 ± 1.4 3.5 ± 1.4 3.7 ± 1.4 3.7 ± 1.4 3.5 ± 1.4 3.7 ± 1.4 

CHA2DS2-VASc Score (%)          

  0 - 1 4.0% 7.1% 5.9% 4.0% 7.1% 5.8% 5.9% 7.2% 5.9% 

  2 - 3 31.8% 41.7% 37.6% 31.7% 41.6% 37.6% 37.7% 41.7% 37.7% 

  4 30.8% 27.9% 29.1% 30.8% 27.9% 29.1% 29.0% 27.9% 29.0% 

  ≥ 5 33.5% 23.4% 27.5% 33.5% 23.4% 27.5% 27.4% 23.3% 27.4% 

HAS-BLED score (mean ± SD) 3.3 ± 1.3 2.9 ± 1.3 3.1 ± 1.3 3.3 ± 1.3 2.9 ± 1.3 3.1 ± 1.3 3.1 ± 1.3 2.9 ± 1.3 3.1 ± 1.3 

HAS-BLED score (%)          

   < 3 26.7% 39.5% 34.3% 26.7% 39.5% 34.3% 34.5% 39.7% 34.5% 

   ≥ 3 73.3% 60.5% 65.7% 73.3% 60.5% 65.7% 65.5% 60.3% 65.5% 

Co-morbidities within 3 years before cohort entry        

Hypertension 84.7% 79.5% 81.7% 84.8% 79.6% 81.7% 81.6% 79.5% 81.6% 

Coronary artery disease (excl. MI) 52.5 % 48.2 % 56.2 % 52.3% 41.8% 46.1 % 52.5 % 41.8 % 56.0 % 

Acute myocardial infarction 15.6 % 11.2 % 13.0 % 12.9 % 11.2 % 12.9 % 12.9 % 11.1 % 12.9 % 

Chronic heart failure 43.9 % 33.2 % 37.5 % 44.0 % 33.2 % 37.6 % 37.4 % 33.1 % 37.4 % 

Cardiomyopathy 6.4 % 6.1 % 6.2 % 6.4 % 6.0 % 6.1 % 6.2 % 6.0 % 6.2 % 

Other dysrhythmias 20.4 % 19.4 % 19.8 % 20.5 % 19.4 % 19.8 % 19.8 % 19.4 % 19.8 % 

Valvular heart disease 22.8 % 16.1 % 18.8 % 22.8 % 16.1 % 18.8 % 18.7 % 16.0 % 18.7 % 

Stroke/TIA 21.0 % 17.7 % 19.1 % 20.9 % 17.7 % 19.0 % 19.0 % 17.7 % 19.0 % 
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Peripheral vascular (arterial) 

disease 

25.0 % 18.4 % 21.0 % 24.9 % 18.3 % 21.0 % 20.9 % 18.3 % 20.9 % 

Dyslipidemia 53.8 % 51.2 % 52.2 % 53.7 % 51.2 % 52.2 % 52.2 % 51.2 % 52.2 % 

Diabetes 38.8 % 32.2 % 34.9 % 38.7 % 32.2 % 34.8 % 34.7 % 32.1 % 34.7 % 

History of major bleeding a,d 

 

32.7 % 26.8 % 29.2 % 32.7 % 26.8 % 29.2 % 29.0 % 26.6 % 29.0 % 

     History of intracranial bleeding 

 

3.4 % 4.2 % 3.9 % 3.3 % 4.2 % 3.8 % 3.8 % 4.1 % 3.8 % 

     History of GI bleeding 8.0 % 7.1 % 7.5 % 8.1 % 7.2 % 7.6 % 7.4 % 7.0 % 7.4 % 

     History of other bleeding a 25.8 % 19.3 % 21.9 % 25.9 % 19.2 % 21.9 % 21.8 % 19.1 % 21.8 % 

Chronic renal failure 45.4 % 28.4 % 35.3 % 45.4 % 28.3 % 35.2 % 35.1 % 28.3 % 35.1 % 

Chronic renal failure ≤ 30 mL/min 0.9 % 0.3 % 0.5 % 0.9 % 0.3 % 0.5 % 0.5 % 0.3 % 0.5 % 

Acute renal failure 29.4 % 17.7 % 22.4 % 29.3 % 17.6 % 22.3 % 22.3 % 17.6 % 22.3 % 

Liver disease 2.2 % 2.0 % 2.1 % 2.2 % 2.0 % 2.1 % 2.1 % 2.0 % 2.1 % 

Chronic obstructive pulmonary 

disease/asthma 

38.7 % 35.2 % 36.6 % 38.8 % 35.1 % 36.6 % 36.5 % 35.0 % 36.5 % 

Infection by Helicobacter pylori 0.8 % 0.7 % 0.7 % 0.8 % 0.7 % 0.7 % 0.7 % 0.7 % 0.7 % 

Depression 11.3 % 11.4 % 11.3 % 11.3 % 11.3 % 11.3 % 11.3 % 11.3 % 11.3 % 

Concomitant medication use (within 2 weeks before cohort entry) (%) 
   

Statin 47.8 % 42.9 % 44.9 % 47.7 % 42.8 % 44.8 % 44.7 % 42.8 % 44.7 % 

All Antiplatelets d 35.7 % 25.7 % 29.7 % 35.7 % 25.7 % 29.7 % 29.6 % 25.6 % 29.6 % 

     Low dose aspirin (ASA) 31.8 % 23.0 % 26.5 % 31.6 % 23.0 % 26.6 % 31.8 % 22.9 % 26.4 % 

     Oth. antiplatelets (without ASA) 6.2 % 3.8 % 4.8 % 6.1 % 3.9 % 4.8 % 6.1 % 3.8 % 4.8 % 

Proton pump inhibitors (PPIs) 49.8 % 43.3 % 45.9 % 49.7 % 43.2 % 45.8 % 45.8 % 43.2 % 45.8 % 

NSAIDs 1.3 % 1.4 % 1.4 % 1.4 % 1.3 % 1.4 % 1.4 % 1.4 % 1.4 % 

Digoxin 13.4 % 10.4 % 11.6 % 13.4 % 10.4 % 11.6 % 11.6 % 10.4 % 11.6 % 

Amiodarone 9.3 % 8.5 % 8.8 % 9.2 % 8.4 % 8.7 % 8.7 % 8.4 % 8.7 % 

Antidepressants 16.6 % 16.5 % 16.6 % 16.6 % 16.5 % 16.5 % 16.5 % 16.5 % 16.5 % 

B-Blockers 62.3 % 63.4 % 62.9 % 62.2 % 63.4 % 62.9 % 62.9 % 63.4 % 62.9 % 

Calcium channel blockers 39.9 % 35.5 % 37.3 % 40.0 % 35.6 % 37.4 % 37.3 % 35.5 % 37.3 % 

Inhibitors of renin-angiotensin 

system 

37.8 % 36.2 % 36.9 % 37.7 % 36.2 % 36.8 % 36.8 % 36.2 % 36.8 % 

Diuretics 44.3 % 34.6 % 38.5 % 44.2 % 34.6 % 38.5 % 38.4 % 34.5 % 38.4 % 

Loop diuretics 37.1 % 27.4 % 31.3 % 37.1 % 27.4 % 31.3 % 31.2 % 27.3 % 31.2 % 

Antidiabetics 23.0 % 18.8 % 20.5 % 22.9 % 18.8 % 20.4 % 20.4 % 18.7 % 20.4 % 

OAC type at cohort entry          

Warfarin 100 % 0 % 40.4 % 100 % 0 % 40.5 % 100 % 0 % 40.3 % 

Dabigatran 110 mg NA 8.9 % 6.2 % NA 10.4 % 6.2 % NA 10.4 % 6.2 % 
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a Non-GI extracranial major bleeding as an outcome or a predictor includes vitreous, urogenital, hemoperitoneal and unspecified major bleeding as well as 

hemoarthrosis, hemopericardium, hemoptysis, hematuria and post-bleeding anemia. b DOAC users include all doses of dabigatran, rivaroxaban and apixaban. c OAC 

users include all doses of warfarin, dabigatran, rivaroxaban and apixaban. d Represents a history of at least one of the bleeding subcategories OR at least one 

prescription of antiplatelet subcategory. Although each subcategory is mutually exclusive, the totals will not add up to the parent variable. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Dabigatran 150 mg NA 5.7 % 4.0 % NA 6.9 % 4.1 % NA 6.9 % 4.1 % 

Rivaroxaban 15 mg NA 7.3 % 5.1 % NA 8.4 % 5.0 % NA 8.4 % 5.0 % 

Rivaroxaban 20 mg NA 19.2 % 13.4 % NA 22.5 % 13.4 % NA 22.6 % 13.5 % 

Apixaban 2.5 mg NA 16.3 % 11.4 % NA 19.1 % 11.4 % NA 19.1 % 11.4 % 

Apixaban 5 mg NA 27.9 % 19.5 % NA 32.7 % 19.5 % NA 32.8 % 19.6 % 

Charlson score (mean, ± SD) 5.0 ± 3.4 4.2 ± 3.4 4.5 ± 3.4 5.0 ± 3.4 4.2 ± 3.4 4.5 ± 3.4 4.5 ± 3.4 4.2 ± 3.4 4.5 ± 3.4 

Charlson score < 4 (%) 37.9 % 50.7 % 45.5 % 62.0 % 50.8 % 45.6 % 45.7 % 50.9 % 45.7 % 

Charlson score ≥ 4 (%) 71.1 % 49.3 % 54.5 % 38.0 % 49.2 % 54.4 % 54.3 % 49.1 % 54.3 % 
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S7 Table. Logistic Regression LASSO analyses of Major Bleeding Subtype Predictors among OAC new users from 2011 to 2018. 

 GI bleeding Non-GI extracranial bleeding  Major bleeding (all types)  

 Warfarin 

(n=14,741) 

DOAC b 

(n=21,640) 

OACs c 

(n=36,381) 

Warfarin 

(n=14,741) 

DOAC b 

(n=21,640) 

OACs c 

(n=36,381) 

Warfarin 

(n=14,741) 

DOAC b 

(n=21,640) 

OACs c 

(n=36,381) 

Age (%)          

≥75 1.13 1.42 1.39 - 1.32 1.13 1.05 1.60 1.37 

Female (%) - - - 1.20 - 1.14 1.14 - 1.09 

Co-morbidities within 3 years before cohort entry  

Hypertension 1.12 1.13 1.21 1.02 - 1.08 1.14 1.09 1.15 

Coronary artery disease (excl. 

MI) 

- - - - 1.22 1.06 - 1.02 - 

Acute myocardial infarction  - 1.10 - 1.43 1.25 1.41 1.04 1.11 1.09 

Chronic heart failure 1.12 1.14 1.17 - - - 1.04 1.18 1.14 

Cardiomyopathy - - - 1.36 2.15 1.86 1.04 1.26 1.22 

Other dysrhythmias - 0.85 0.93 - - - - 0.99 - 

Valvular heart disease - 1.15 1.09 1.36 - 1.24 1.05 1.12 1.10 

Stroke/TIA 0.96 0.97 0.87 - - - - - - 

Peripheral vascular (arterial) 

disease 

- 1.01 1.07 1.20 1.21 1.26 1.15 1.23 1.21 

Dyslipidemia - 1.02 - - - - - - - 

History of major bleeding 

 

1.53 1.49 1.58 1.65 1.65 1.72 1.51 1.59 1.57 

Chronic renal failure - 0.98 - - 1.21 1.12 - - - 

Chronic renal failure ≤ 30 

mL/min 

- - - 1.08 - 1.21 - - - 

Acute renal failure - - - 1.14 - 1.07 - - - 

Liver disease 1.78 2.53 2.38 1.39 - 1.12 1.81 1.28 1.64 

Chronic obstructive pulmonary 

disease/asthma 

1.33 1.15 1.29 1.08 1.49 1.34 1.02 1.21 1.13 

Infection by Helicobacter 

pylori 

- - - - 1.20 1.29 - - - 

Concomitant medication use (within 2 weeks before cohort entry) (%) 

Statin - - - - - 1.03 - 1.06 - 

Antiplatelet 1.27 1.16 1.29 1.23 1.02 1.16 1.37 1.12 1.28 

Proton pump inhibitors (PPIs) - - 0.95 1.12 - 1.07 - - - 

NSAIDs - - - 0.62 - 0.79 0.97 - - 

Antidepressants - - - - - - 1.16 - 1.10 
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All values are ORs. a In the DOAC group, the rivaroxaban and apixaban variables are compared to dabigatran. In the OAC group, dabigatran, rivaroxaban and 

apixaban are compared to warfarin. b DOAC users include all doses of dabigatran, rivaroxaban and apixaban. c OAC users include all doses of warfarin, dabigatran, 

rivaroxaban and apixaban.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Antidiabetics - - 1.05 1.17 1.39 1.33 1.17 1.10 1.19 

OAC used at cohort entry          

DOAC type (dabigatran) a NA 1.43 1.06 NA 1.05 - NA 1.47 - 

DOAC type (rivaroxaban) a NA - - NA 1.52 1.28 NA - - 

DOAC type (apixaban) a NA 1.0 (ref) 0.73 NA 1.0 (ref) 0.71 NA 1.0 (ref) 0.69 

 

Model statistics   
 

 

Cross-val. C-Statistic (95% CI) 

0.61 (0.57-

0.64) 

0.63 (0.60-

0.66) 

0.63 (0.61-

0.66) 

0.61 (0.57-

64) 

0.66(0.62-

0.70) 

0.64 (0.61-

0.67) 

0.60 (0.58- 

0.62) 

0.63 (0.61-

0.65) 

0.63 (0.60-

0.65) 

Hosmer-Lemeshow p-value p>0.05 p>0.05 p>0.05 p>0.05 p>0.05 0.01<p<0.0

5 

p>0.05 p>0.05 p>0.05 
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S8 Table. Logistic Regression Adaptive LASSO analyses of Major Bleeding Subtype Predictors among OAC new users from 2011 to 2018. 

 GI bleeding Non-GI extracranial bleeding Major bleeding (all types) 

 Warfarin 

(n=14,741) 

DOAC b 

(n=21,640) 

OACs c 

(n=36,381) 

Warfarin 

(n=14,741) 

DOAC b 

(n=21,640) 

OACs c 

(n=36,381) 

Warfarin 

(n=14,741) 

DOAC b 

(n=21,640) 

OACs c 

(n=36,381) 

Age (%)          

≥ 75 1.23 1.54 1.50 - 1.47 - - 1.71 1.44 

Female (%) - - - 1.16 - - 1.11 - 1.10 

Co-morbidities within 3 years before cohort entry  

Hypertension 1.24 1.13 1.30 - - - 1.13 1.08 1.18 

Coronary artery disease (excl. MI) - - - - 1.22 - - - - 

Acute myocardial infarction  - 1.11 - 1.52 1.33 1.51 - 1.10 1.10 

Chronic heart failure 1.13 1.13 1.19 - - - - 1.18 1.12 

Cardiomyopathy - - - 1.46 2.43 1.96 - 1.34 1.25 

Other dysrhythmias - 0.81 0.89 - - - - - - 

Valvular heart disease - 1.18 1.12 1.39 - 1.16 - 1.11 1.12 

Stroke/TIA 0.91 - 0.82 - - - - - - 

Peripheral vascular (arterial) 

disease 

- - 1.07 1.20 1.26 1.26 1.13 1.26 1.23 

Dyslipidemia - - - - - - - - - 

History of major bleeding 

 

1.65 1.58 1.67 1.76 1.76 1.83 1.58 1.66 1.61 

Chronic renal failure - - - - 1.22 1.02 - - - 

Chronic renal failure ≤ 30 mL/min - - - 1.32 1.02 1.21 - - 1.09 

Acute renal failure - - - 1.07 - - - - - 

Liver disease 2.21 2.98 2.65 1.57 - - 1.97 1.41 1.75 

Chronic obstructive pulmonary 

disease/asthma 

1.51 1.15 1.35 - 1.60 1.32 - 1.23 1.15 

Infection by Helicobacter pylori 1.42 - - - 1.65 1.26 - - - 

Concomitant medications (within 2 weeks before cohort entry) (%)  

Statin - - - - - - - 1.02 - 

Antiplatelet 1.37 1.15 1.35 1.23 - 1.06 1.41 1.11 1.30 

Proton pump inhibitors (PPIs) - - 0.91 1.07 - - - - 0.94 

NSAIDs - - - 0.22 - 0.83 0.87 - - 
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All values are ORs. a In the DOAC group, the rivaroxaban and apixaban variables are compared to dabigatran. In the OAC group, dabigatran, rivaroxaban and 

apixaban are compared to warfarin. b DOAC users include all doses of dabigatran, rivaroxaban and apixaban. c OAC users include all doses of warfarin, dabigatran, 

rivaroxaban and apixaban

Antidepressants - - - - - - 1.15 - 1.11 

Antidiabetics - - - 1.14 1.51 1.34 1.16 1.10 1.21 

OAC used at cohort entry          

DOAC_type (dabigatran) a NA 1.51 1.10 NA 1.37 - NA 1.50 - 

DOAC_type (rivaroxaban) a NA - - NA 1.75 1.15 NA - - 

DOAC_type (apixaban) a NA 1.0 (ref) 0.69 NA 1.0 (ref) 0.81 NA 1.0 (ref) 0.65 

          

Model statistics   
 

 

Cross-val. C-Statistic (95% CI) 0.61 (0.57-

0.64) 

0.62 (0.59-

0.65) 

0.63 (0.60-

0.66) 

0.61 (0.57-

0.65) 

0.65 (0.61-

0.69) 

0.65 (0.62-

0.68) 

0.60 (0.58-

0.62) 

0.62 (0.60- 

0.64) 

0.63 (0.61- 

0.65) 

Hosmer-Lemeshow p-value p>0.05 p>0.05 p>0.05 p>0.05 p>0.05 p>0.05 p>0.05 p>0.05 p>0.05 
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S9 Table. Sensitivity analyses of the global MB model for all OAC users. 

 

 

 

 

 

Discrimination values for the global score in patients who did not die during follow-up, adherent patients 

(PDC≥0.80), non-adherent patients (PDC<0.80), patients who switched OAC in the year of follow-up and patients 

who did not switch OAC in the year of follow-up. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 Discrimination (cross-validated c-statistics) 

Full cohort  0.63 (0.61-0.65) 

Patients excluding deaths during follow-up  0.65 (0.64-0.67) 

Adherent patients (PDC≥0.80)  0.62 (0.60-0.64) 

Non-adherent patients (PDC<0.80)  0.63 (0.61-0.65) 

OAC switchers during follow-up  0.61 (0.57-0.64) 

OAC non-switchers during follow-up  0.64 (0.62-0.66) 
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Discussion 

Summary of important findings  

There is a knowledge gap pertaining to the predictors of major bleeding for current populations of oral 

anticoagulant users with atrial fibrillation. This knowledge gap is even more significant with regards to 

major bleeding subtypes. Consequently, our study’s main purpose was to derive prediction models for 

major bleeding and major bleeding subtypes from a cohort of direct oral anticoagulant and warfarin new 

users with atrial fibrillation. Our global major bleeding model had moderate discrimination (c-statistic 

0.63 95% CI 0.60-0.65) and was adequately calibrated (Hosmer-Lemeshow p-value>0.05). The same 

model also had moderate discrimination for gastrointestinal bleeding and non-gastrointestinal 

extracranial bleeding. The selected predictors associated with the final model were liver disease 

(OR=1.64), major bleeding history (OR=1.57), age ≥ 75 (OR=1.37, relative to age < 75), antiplatelet use 

(OR=1.28), cardiomyopathy (OR=1.22), peripheral vascular disease (OR=1.21) and chronic obstructive 

pulmonary disease or asthma (OR=1.13).  

Like the global model, the gastrointestinal bleeding model derived from all oral anticoagulant users in 

our cohort had moderate discrimination (c-statistic 0.63 95% CI 0.61-0.66). The important predictors 

analogous to both treatment groups (warfarin and direct oral anticoagulants) were all selected in the 

model derived from all oral anticoagulants. The gastrointestinal predictors identified in all treatment 

groups consisted of old age (OR=1.39), hypertension (OR=1.21), congestive heart failure (OR=1.17), 

major bleeding history (OR=1.58), liver disease (OR=1.38), chronic obstructive pulmonary disease or 

asthma (OR=1.29), and antiplatelet use (OR=1.29), while apixaban use was protective relative to 

warfarin use (OR=0.73). Likewise, our non-gastrointestinal extracranial bleeding model had moderate 

discrimination (c-statistic 0.64 95% CI 0.61-0.67) but was the first of its kind to be derived from any 

population of anticoagulated patients. It also selected a broader range of predictors than the 

gastrointestinal bleeding model of which the most significant ones were myocardial infarction 

(OR=1.41), cardiomyopathy (OR=1.86), valvular heart disease (OR=1.24), peripheral vascular disease 

(OR=1.26), major bleeding history (OR=1.72), chronic obstructive pulmonary disease or asthma 

(OR=1.34), prior H. Pylori infection (OR=1.29), antidiabetics (OR=1.33), and rivaroxaban use 

(OR=1.28), while apixaban (OR=0.71) was protective. 
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Of note, despite some shared predictors of GIB and NGIB in the “all oral anticoagulant” treatment group 

(age, peripheral vascular disease, valvular heart disease, prior major bleeding, liver disease, COPD, 

antiplatelet use, antidiabetic use and apixaban use), there were more differences than similarities 

between the models as shown by the predictors that were selected for only one of either outcome. These 

included sex, coronary artery disease, prior myocardial infarction, congestive heart failure, 

cardiomyopathy, prior stroke/TIA, all definitions of renal failure, H. pylori infection, NSAID use and 

rivaroxaban use).  

This statistical prediction study was also one of the first to identify the predictors of major bleeding and 

major bleeding subtypes in warfarin and direct oral anticoagulant user populations from a single study. 

Our findings suggest that the predictors of any major bleeding presented similar trends between both 

treatment groups. Most of the important major bleeding predictors that were selected in both warfarin 

and direct oral anticoagulant users were those selected in the final model derived from a population of 

all oral anticoagulant users in the cohort. Likewise, the gastrointestinal bleeding predictors were similar 

between warfarin and direct oral anticoagulant users. The important predictors analogously selected in 

both treatment groups consisted of old age (OR=1.13 vs 1.42), hypertension (OR=1.12 vs 1.13), 

congestive heart failure (OR=1.12 vs 1.14), major bleeding history (OR=1.53 vs 1.49), liver disease 

(OR=1.78 vs 2.53), chronic obstructive pulmonary disease or asthma (OR=1.33 vs 1.15), and antiplatelet 

use (OR=1.27 vs 1.16) for warfarin and direct oral anticoagulant users, respectively. These models 

mirrored the important predictors selected in the gastrointestinal model derived from all oral 

anticoagulant users from the cohort. However, these results only pertain to observed trends as no 

conclusion can be made about how the variables compare to each other on account of the absence of 

confidence intervals and the nature of prediction modelling. 

On the other hand, the selected predictors of non-gastrointestinal extracranial bleeding were generally 

different between the treatment groups in large part due to the selection of distinct predictors. However, 

as mentioned previously, these comparisons can just be reported as trends as per the absence of 

confidence intervals. The main warfarin-associated predictors were female sex (OR=1.20), acute 

myocardial infarction (OR=1.43), cardiomyopathy (OR=1.36), valvular heart disease (OR=1.36), 

perivascular vascular disease (OR=1.20), major bleeding history (OR=1.65), liver disease (OR=1.39), 

antiplatelet use (OR=1.23), use of NSAIDs (OR=0.62, protective) and use of antidiabetics (OR=1.17), 

while direct oral anticoagulant-associated predictors were old age (OR=1.32), coronary artery disease 
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(OR=1.22), acute myocardial infarction (OR=1.25), cardiomyopathy (OR=2.15), peripheral vascular 

disease (OR=1.21), major bleeding history (OR=1.65), liver disease (OR=1.49), prior H. Pylori infection 

(OR=1.20), use of antidiabetics (OR=1.39) and use of rivaroxaban (OR=1.52, relative to apixaban). This 

was most probably due to the variable sources of bleeding included in the definition of non-

gastrointestinal extracranial bleeding, of which the most prevalent ones were genitourinary bleeding and 

hematuria.  

Comparison of model performance to published major bleeding models 

Our selected major bleeding prediction model performed similarly to other major bleeding scores. Most 

significantly, our model’s c-statistic of 0.63 (0.60-0.65) were concordant with meta-analysis findings for 

the HAS-BLED, (pooled c-statistic=0.65 95% CI 0.61-0.69), the HEMORR2HAGES (pooled c-

statistic=0.63 95% CI 0.61-0.66) and the ATRIA (pooled c-statistic=0.63 95% CI 0.56-0.72) [117]. 

However, it is important to note that the comparisons of our score’s performance to that of other risk 

scores are only hypothetical and require further testing. 

Furthermore, given that the HAS-BLED was derived from warfarin data, it may exclude important 

predictors of direct oral anticoagulant-associated major bleeding.  Consequently, there is a need for a 

score that is derived from a cohort which includes all types of oral anticoagulant users as opposed to 

only being validated for direct oral anticoagulant users. Two scores were derived from post-warfarin era 

anticoagulant user data, the ORBIT-AF and the ABS score. While the discriminatory potential of the 

ORBIT-AF score (c-statistic 95% CI 0.65 0.64-0.66) was similar to ours, the ABS score performed 

somewhat better (c-statistic 95% CI 0.67-0.69) [113, 114]. However, its ability to predict major bleeding 

subtypes has yet to be evaluated. 

Our study was also one of the few to have tested the ability of its major bleeding prediction model to 

detect major bleeding subtypes. The availability of scores that can accurately predict major bleeding 

subtypes is essential to patient care, since common ones like gastrointestinal bleeding can significantly 

impact patient quality of life, post-bleeding direct oral anticoagulant adherence, and mortality [166, 

167]. A study that used direct oral anticoagulant user data from three hospitals has compared the HAS-

BLED’s ability to detect bleeding subtypes to that of other scores. It concluded that the HAS-BLED 

performed best in detecting major gastrointestinal bleeding relative to ATRIA and ORBIT (c-statistics: 
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0.74 [95% CI 0.71-0.76] vs 0.71 [95% CI 0.68-0.74], and 0.69 [95% CI 0.66-0.72], respectively) [129]. 

When considering this major bleeding subtype, the model performance of the HAS-BLED and ATRIA 

superseded that of ours (c-statistic=0.65 95% CI 0.63-0.66). However, the interpretability of the study 

was severely constrained by its limited generalizability to a North American real-world oral 

anticoagulant user population, its limited generalizability to warfarin users, its small sample size and the 

low frequency of bleeding outcomes. Moreover, according to the ABC score’s derivation study, the 

HAS-BLED performed better than the ABC score in detecting gastrointestinal bleeding (c-statistics: 

0.596 and 0.519, respectively, p<0.05) [125]. In conflict with the findings from Caro-Martinez et al., our 

own major bleeding risk score (c-statistic 0.65, 95% CI 0.66-0.72) overperformed relative to both 

scores. 

Finally, no existing score has been tested for its ability to detect non-gastrointestinal extracranial 

bleeding, despite its prevalence rivaling that of gastrointestinal bleeding [129, 168, 169]. Our model 

predicted non-gastrointestinal extracranial bleeding as well as it did major bleeding and gastrointestinal 

bleeding (c-statistic 0.67 95% CI 0.64-0.70). Thus, one of the advantages of our major bleeding model is 

that, according to our preliminary findings, it predicted gastrointestinal bleeding and non-gastrointestinal 

extracranial bleeding as well as it does major bleeding. 

However, our study has two important advantages. First, although we did not yet have the opportunity to 

validate our findings with independent data, very few studies used cross-validation or bootstrapping on 

model performance indices as is recommended by the TRIPOD guidelines for clinical prediction studies 

despite incorporating bootstrapping in their regression methods [25, 112, 113, 160]. This could lead to 

an overestimation of the discriminatory potential of the model (a greater c-statistic relative to the true 

value) due the model being overfit to the derivation data. Secondly, our models are theoretically robust 

due to the nature of the methods used in this study. Lastly, our findings preliminarily suggest that our 

global model is well calibrated, although this will require further validation. Conversely, meta-analysis 

findings suggest that the HAS-BLED displayed inadequate calibration, and most significantly so, for 

patient at moderate risk of major bleeding [117]. Therefore, our model has the potential to predict MB 

more stably than existing ones. 

Similarities of predictors with published prediction models 
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The OR values for the most important predictors identified in our final model mirrored the relative risk 

of the predictors selected in the models used to derive existing major bleeding scores. Firstly, the ABS 

score selected analogous predictors to our own model. Analogously selected predictors included age, 

albeit defined continuously (HR=1.02, 95% CI 1.02-1.03), prior major bleeding (HR=1.27, 95% CI 

1.18-1.36), antiplatelet therapy (HR=1.25, 95% CI 1.16-1.35), and chronic obstructive pulmonary 

disorder (HR=1.21, 95% CI 1.13-1.30) [114]. Furthermore, the analyses used to derive the ORBIT-AF 

score, derived from a population of warfarin and dabigatran users, also selected comparable predictors. 

These included age ≥ 75 (HR=1.38, 95% CI 1.17-1.61), any prior bleeding (HR=1.73, 95% CI 1.34-

2.23), and antiplatelet therapy (HR=1.51, 95% CI 1.30-1.75) [113]. Similarly, the analyses used to 

derive the HAS-BLED selected age ≥ 65 (OR=2.66, 95% CI 1.33-5.32) as a predictor of major bleeding 

[25]. 

Lastly, a registry-based cohort study of rivaroxaban users with atrial fibrillation identified similar 

modifiable and non-modifiable major bleeding predictors. The former consisted of uncontrolled 

hypertension (HR=1.79, 95% CI 1.05-3.05) and use of antiplatelets, NSAIDs, or paracetamol (HR=1.80, 

95% CI 1.24-2.61), while heart failure and vascular disease were reported as important nonmodifiable 

risk factors (HR=1.97 95% CI 1.36-2.86 and 1.91, 95% CI, 1.32-2.77, respectively). Although increased 

age was defined differently than in our cohort (per 5-year increments), it was also selected (HR=1.25; 

95% CI 1.12-1.38) [110]. 

Although, in prediction studies, the predictors are not usually considered beyond the performance of the 

models they constitute, these similarities are worth mentioning as their consistent selection across 

studies speaks to their relevance to different populations of oral anticoagulant users with atrial 

fibrillation. Although this will need to be tested further, it also speaks to the potential generalizability of 

our models beyond a population of Quebec oral anticoagulant users diagnosed with atrial fibrillation.  

Differences with published prediction models 

Conversely, there were also differences in the predictors selected by the analyses used to derive existing 

major bleeding scores and our own model. The analyses used to derive the HAS-BLED score yielded an 

estimate for prior major bleeding (OR=7.51, 95% CI 3.00-18.78) that deviated significantly from ours 

[25]. The high prior major bleeding point estimate may be attributable to the small sample size, which 
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may have led to an unstable prediction model or the missing data (25%), which may have led to 

selection bias given that at-risk patients with multiple comorbidities were more likely to be lost to 

follow-up. However, it is not possible to attribute this difference to the characteristics of the HAS-

BLED’s derivation cohort population, since its patients were, on average, younger and at lower risk of 

major bleeding than ours. Moreover, the HAS-BLED models also selected renal failure (OR=2.86, 95% 

CI, 1.33-6.18), while this variable was not selected in ours. Since the use of warfarin was (and still is) 

indicated in patients with renal failure at any degree of severity, the analyses used to derive the HAS-

BLED are more likely to select it as a predictor in the HAS-BLED derivation cohort. The non-selection 

of this variable may be due to the contraindication of direct oral anticoagulant use for patients with renal 

failure in our cohort. Moreover, the approval of direct oral anticoagulants led to more stringent 

monitoring and dosing guidelines in patients with different degrees of renal failure [14, 15, 19]. This 

may explain that patients with this co-morbidity are less at risk of major bleeding in our derivation 

cohort, relative to the HAS-BLED’s. 

For the ABS score, renal failure was also selected as a predictor [114]. This may be due to the different 

variable selection processes between the logistic-LASSO regression and the bootstrapped Cox 

proportional hazard regression. However, unlike the HAS-BLED’s derivation model, in which age was 

categorical, the ABS score defined age continuously. Since oral anticoagulant prescription is associated 

with age categories and kidney function, the impact of renal failure on major bleeding is most likely 

masked by the association between age categories and major bleeding as well as its association to renal 

failure [15, 23].  

With regards to the ORBIT-AF, it could be due to the fact that there was a much greater proportion of 

warfarin users in their study (~90%) relative to ours (~40%). Therefore, like with the ABS score, given 

that age categories are not used in warfarin prescription and the association between age categories, 

renal failure and direct oral anticoagulant prescription practices, the association between renal failure 

and major bleeding was not masked in the analyses used to derive the ORBIT score, while it may have 

been in our study [113].  

Meanwhile, a study identifying percutaneous coronary intervention patients at high bleeding risk 

presented some conflicting findings to ours. Unlike our study, it identified severe kidney disease as a 

major bleeding risk factor (p<0.05), mild to moderate kidney disease, NSAID or steroids use and prior 
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stroke as minor bleeding risk factors (p<0.05), but did not identify liver disease as a major bleeding risk 

factor (p>0.05). In addition to differences in our study population and different bleeding outcome 

definitions, it was evaluating each risk factor only if it was present individually [170]. 

Finally, two potential reasons that can explain all of these differences that is common to all the existing 

major bleeding scores are the differences in candidate predictors that were considered and differences in 

the derivation cohort characteristics. For instance, almost all models omitted liver disease in their 

analyses. Additionally, the HAS-BLED’s derivation and validation cohorts had a much lower mean age 

relative to our patient population, a lower risk of stroke and a lower rate of prior major bleeding [25]. 

The ORBIT-AF’s derivation cohort had a slightly higher risk of stroke and a lower bleeding risk [113]. 

Meanwhile, for the ABS, the cohort was younger and less at risk of bleeding [114].  

Comparison to published major bleeding subtype models  

Meanwhile, no study has identified the predictors for the most prevalent major bleeding subtypes among 

direct oral anticoagulant and warfarin users, thereby making it difficult to know what variables may be 

important to consider when designing a major bleeding risk score. Although the sample size of our 

cohort constrained our ability to identify predictors of intracranial hemorrhage, our study is the first to 

identify predictors of gastrointestinal bleeding and non-gastrointestinal extracranial bleeding using a 

derivation cohort of direct oral anticoagulant and warfarin users as well as robust prediction methods. 

Although its generalizability to other direct oral anticoagulant users is limited, an observational study 

identified the predictors of gastrointestinal bleeding in a patient population of dabigatran users with 

atrial fibrillation. Like our model, theirs selected heart failure (HR=1.25, 95% CI 1.01-1.56) and 

antiplatelet therapy (HR=1.49, 95% CI 1.19-1.88). However, unlike ours, it selected renal impairment 

(HR=1.67, 95% CI 1.24-2.25) and previous Helicobacter pylori infection (HR=4.75, 95% CI 1.93-

11.68) as significant gastrointestinal bleeding predictors. Our model may not have selected H. Pylori 

infection on account of the low percentage of affected patients in our cohort, while renal impairment 

may have been selected because of their categorization of age which, unlike ours, did not mask the 

associations between direct oral anticoagulant prescription, CKD and major bleeding in the year of 

follow-up. Notably, it did not consider major bleeding history or liver disease as candidate predictors. 

However, neither calibration, nor discrimination were assessed, and robust prediction methods were not 

used [95]. Two other prediction schemes (the Qbleed prediction models) were designed to predict upper 
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gastrointestinal bleeding and intracranial hemorrhage. Despite performing well (c-statistic > 0.70), only 

1% of the derivation cohort were oral anticoagulant users and less than 0.04% were direct oral 

anticoagulant users. Thus, the generalizability of these findings to warfarin users and, most significantly, 

direct oral anticoagulant users is questionable [131]. However, despite this important difference, in 

concordance with the predictors of gastrointestinal bleeding of our models, their study still identified 

prior bleeding, congestive heart failure and hypertension as important predictors of upper 

gastrointestinal bleeding. The lack of understanding of the predictors of major bleeding subtypes both 

limits the quality of monitoring for at-risk patients and are associated with significant costs [36]. 

Internal validity 

In accordance with the “The Strengthening the Reporting of Observational Studies in Epidemiology” 

(STROBE) guidelines, we can address the quality of our study by considering the data source, the cohort 

definition, variable definitions, sources of bias, study size, missing data and statistical methods [171]. 

Firstly, as stated previously, while our data source is notorious for its accuracy and lack of missing data, 

none of our patient selection criteria were associated with both the study exposures and outcomes. Other 

types of selection biases were also unlikely. Immortal time bias, for instance, was likely negligeable, if 

present, since 85% of patients had their first oral anticoagulant claim two weeks after hospital discharge 

and follow-up only began after the first oral anticoagulant exposure. Likewise, competing risk bias was 

also improbable, since the only possible event that could have realistically modified the risk of our 

outcome of interest was bleeding, itself. While competing risk is inconsequential to major bleeding 

events at the same location since only the first event is under study, only 24 patients (2.4% of those with 

major bleeding) had 2 or more major bleeding events at different locations. However, as we used a 

method that did not account for survival time, loss-to-follow-up bias may have occurred since our cohort 

patents were generally older and had multiple co-morbidities, while those prone to major bleeding were 

even more so. Nevertheless, we do not expect this limitation to impact model performance. This will be 

further discussed in the next section.  

Information bias was likely minimal since both outcomes were evaluated using diagnostic codes with 

positive predictive values consistently exceeding 85% and exposures were clearly defined. However, our 

estimation of drug use using claims data may have led to a differential misclassification bias since 
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patients more prone to bleeding, who are older and sicker, are less likely to claim prescribed 

medications.  

However, since explanatory modelling was not the goal of our study, confounding was inevitably 

present in our models. As a result, variables which were reported to be highly and independantly 

associated with bleeding in multiple studies such as renal failure were not consistently included in our 

models [60, 114]. Unmeasured confounding may also be attributable to the absence of variables highly 

predictive of bleeding such as alcohol use, tobacco use and over-the-counter ASA use in our source data 

[42, 172, 173]. Lastly, due to the nature of penalty-based regression, our regression coefficients are 

inherently biased, thus speaking to why it is not advisable to interpret the individual estimates causally. 

Since the goals of prediction modelling are inherently different from those of explanatory modelling, it 

is important to separately discuss how the model derivation strategy used in this study maximized the 

performance of the associated predictive models.  

Strengths and limitations of our predictive model derivation strategy 

To evaluate the quality of a predictive model derivation or validation study, the “Transparent reporting 

of a multivariable prediction model for individual prognosis or diagnosis” (TRIPOD) guidelines are 

mainstay and, interestingly, still mirror the important methodological steps for dealing with selection, 

indication and confounding bias [160]. Generally, we can categorize these steps as such: an adequate 

cohort definition, adequate variable definitions, use of robust prediction tools and the use of adequate 

performance evaluation metrics. 

We specifically defined the derivation cohort in function of our population of interest by excluding other 

indications for oral anticoagulant use and contraindications for direct oral anticoagulant use. In doing so, 

we ensured that our prediction models would perform consistently with independent data that still 

originates from our population of interest. Furthermore, the size of our cohort was sufficiently large to 

establish robust prediction models and evaluate over 25 candidate predictors for each outcome in each 

subgroup. It is, however, important to note that, due to the observational nature of our data, our models 

are only applicable to a real-world setting.  

We also clearly defined our outcomes of interest using validated diagnostic codes and only evaluated 

well-defined and clinically useful variables as candidate predictors. This step was imperative since an 
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inaccurate or unclear variable definition would have hindered prediction model performance or limited 

the reproducibility of the study findings, respectively [174]. Conversely, the definitions of some of the 

candidate predictors may have led to suboptimal model performance since drug dispensation does not 

necessarily represent drug utilization and patients with prior cardiovascular diseases may not have been 

identified due to errors in diagnostic coding. Nonetheless, this limitation is unlikely to be significantly 

impactful in our population of interest as exemplified by a study suggesting that significant predictor 

misclassification only marginally hindered the performance of the CHA2DS2-VASc [175]. Lastly, given 

the nature of our cohort, we could not use adherence at baseline as a candidate predictor. Our outcome 

definition also did not consider oral anticoagulant switching and patient loss-to-follow-up. However 

sensitivity analyses, suggest that neither of oral anticoagulant non-adherence, oral anticoagulant 

switching, nor patient loss-to-follow-up impacted the performance of our global model (Table S4) 

Moreover, unlike our study, previous major bleeding prediction model derivation studies only relied on 

pre-existing risk scores in their selection of candidate predictors instead of fully reviewing major 

bleeding risk factors identified in the literature and did not consider candidate predictors of important 

clinical relevance (i.e. liver disease). However, while our source data did include a wide array of useful 

variables, we could not use detailed inpatient data such as weight, glomerular filtration rate, blood 

pressure, and labile INR to validate our models due to their absence in our source dataset.  

Most significantly, compared to the methods used to derive existing major bleeding prediction models, 

log-LASSO regression could theoretically select more robust models by reducing overfitting and make 

the model easier to interpret by removing redundant or uninformative variables [25, 111-114, 165]. 

Moreover, unlike previous studies, our model’s performance indices were cross-validated [25, 111-115]. 

This means that our model performance metrics are less likely to be overestimated than they would be in 

other studies that did not validate their findings using independent data. However, there may be 

theoretical limitations associated with the use of LASSO-logistic regression as a prediction method in 

our population of interest, since most relevant prediction studies used cox proportional hazard models 

and our cohort was inherently susceptible to loss-to-follow-up. However, as stated previously, our 

sensitivity analyses suggest that model performance was not limited by patient loss-to-follow-up (Table 

S4).  

External validity 
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It is important to identify the populations with which our prediction model may perform effectively. Our 

findings are not generalizable to any other common oral anticoagulant indication. The use of oral 

anticoagulants in orthopedic surgery, for instance, would be the most obvious example of an oral 

anticoagulant indication in which our models lack generalizability to. In addition to being significantly 

different to atrial fibrillation patients, orthopedic surgery patients present major differences in 

underlying conditions and a different set of potential major bleeding predictors associated with the 

operation itself. For this reason, the use of major bleeding risk scores like the HAS-BLED is 

categorically discouraged in this patient population and not even discussed in the literature. 

When used to treat venous thromboembolism, oral anticoagulant anticoagulation is typically used for 3 

months, but it can occur over different treatments phases which are each associated with a different risk 

of bleeding. Moreover, the use of low-molecular-weight-heparin also needs to be factored in the 

prediction models. Finally, although similar major bleeding predictors have been reported in a 

population of patient with venous thromboembolism, there are significant populational differences to 

oral anticoagulant users with atrial fibrillation that are attributable to demographics, underlying 

conditions, concomitant medication use, difference in oral anticoagulant initial dosing [176]. Typically, 

other models have been developed to predict major bleeding in this population [177]. 

It is more likely that our findings are generalizable to edoxaban users with atrial fibrillation to the 

populational similarities among all patient population of direct oral anticoagulant users, the similarities 

in prescription guidelines and the similar mechanism of action [14, 33].  

As our findings are derived from a Canadian patient population, it is possible that the models will 

perform well in an US patient population due to populational similarities (e.g. sex, age and prevalence of 

certain co-morbidities) [178]. However, the differences in healthcare access, poverty rates, and the 

approved direct oral anticoagulant dosages between the two countries could also limit the models’ 

performance in that population. Our findings may also be generalizable to European oral anticoagulant 

users with atrial fibrillation since Europe’s approved direct oral anticoagulant dosages are similar to 

Canada’s. However, there are significantly greater populational differences in many relevant 

comorbidities. For similar reasons, our findings are most likely not generalizable to an African or Asian 

population. To this effect, although antiplatelet use and prior major bleeding were selected as predictor 

in models derived from a US population (the ORBIT and ABS score studies), a European population 

(the HAS-BLED) and a Canadian population (our model), there is lack of consistency in the definition 
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of variables across models. This is due to a lack of standardization in clinical definitions across the 

countries from which the models were derived from. This is not a study limitation, per se, but speaks to 

the importance of harmonizing clinical diagnostic recording worldwide and the potential challenge in 

creating a prediction model that is generalizable to other countries. 

Furthermore, given that our cohort only included patients who were hospitalized, they are generally 

older and sicker than the general population of oral anticoagulant users with atrial fibrillation. Thus, 

although it is likely that our models are generalizable to it, our findings will need to be validated in a 

population of patients who were not hospitalized. 

Lastly and most importantly, to adequately compare our model to existing prediction scores or models, 

net reclassification improvement and integrated discrimination improvement analyses would need to be 

conducted with a dataset supplemented with clinical data. Thus, our interpretations about how our 

models compare to the existing scores and models are only hypothetical and need to be adequately 

validated. This is particularly true for the HAS-BLED, which has been extensively tested in different 

population of oral anticoagulant users and has the advantage of already being well-established clinically. 

Future work 

Future studies will predominantly involve model validation with independent data, risk stratification, 

and comparisons to other scores. Firstly, our models will need to be validated in a cohort of patient that 

was not hospitalized, one that includes edoxaban users and, potentially, one that is external to Quebec. 

Secondly, risk stratification, which involves assigning a predefined major bleeding risk status (low, 

moderate, high) to each individual on the basis of important predictors and thresholds of estimated risks, 

is especially important, because one of the key barriers to oral anticoagulant prescription was reported to 

be the overestimation of the risk of bleeding on the part of physicians [179]. Finally, it will be important 

to compare the discriminatory potential of the HAS-BLED and other pre-existing scores to our model fit 

using adequate comparative model performance metrics for both major bleeding and its subtypes. Since 

the HAS-BLED incorporates data that can only be determined in a clinical setting such as labile INR, it 

will be important to use a dataset that includes the relevant inpatient data. 



 
 

 127 

 

Of note, any causal interpretation of the association between our predictors and major bleeding or its 

subtypes are speculative due to the nature of prediction modelling. However, our findings could lead to 

future studies aimed at evaluating major bleeding risk factors individually to confirm our speculations.  

Conclusion 

This is the first study to have developed a major bleeding prediction model that was derived from all 

oral anticoagulants users that has been tested for non-gastrointestinal extracranial bleeding and 

gastrointestinal bleeding. It is also the only study to have identified predictors of non-gastrointestinal 

extracranial bleeding and gastrointestinal bleeding. In spite of minor differences, our analyses identified 

similar major bleeding, most notably, were liver disease, major bleeding history, old age ≥ 75, 

antiplatelet use, peripheral vascular disease and chronic obstructive pulmonary disease. The 

discriminative potential of our final model and its associated predictors are concordant with published 

data on the HAS-BLED, ORBIT-atrial fibrillation and ABS scores. Moreover, our final model was well-

calibrated and performed as reliably in predicting major bleeding as it did gastrointestinal bleeding and 

non-gastrointestinal extracranial bleeding. Finally, we have confirmed that the predictors of major 

bleeding are largely similar between direct oral anticoagulant and warfarin user. Significantly, our 

models were generated using a method that is more robust that any of the existing major bleeding scores. 

For this reason, we lay the groundwork for the development of a much-needed monitoring tool that 

encompasses a more diverse range of major bleeding risk factors which better represent the 

heterogeneity of oral anticoagulant user and major bleeding subtype characteristics. However, although 

our models can be used with administrative data pertaining to older oral anticoagulant users with atrial 

fibrillation who have been hospitalized (e.g. to measure confounding), our models will need to be 

validated in other atrial fibrillation populations, and compared to the HAS-BLED using clinical data. In 

doing so, we hope to develop a tool that can lessen the burden of bleeding for oral anticoagulant users 

with atrial fibrillation.  
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Appendix 
Tables  

Table S1. Outcome definition (ICD-9 and ICD-10 codes for GIB, NGIB, MB)  

 ICD-9 codes ICD-10 codes 

Major Bleed (MB) 

Haemorrhagic stroke intracranial 

(non-traumatic; ICH) 

430, 431, 432.x I60, I61, I62 

Haemorrhagic stroke intracranial 

(traumatic; ICH) 

852x, 853x S063, S064, S065, S066 

Major GI bleeding (GIB) Upper GI: 456.1, 530.7, 531.0x, 

531.2x, 531.4x, 531.6x, 532.0x, 

532.2x, 532.4x. 532.6x, 533.0x. 

533.2x, 533.4x, 533.6x, 534.0x, 

534.2x, 534.4x, 534.6x, 535.01, 

537.83, 578.0  

Lower GI: 562.02, 562.03, 562.12, 

562.13, 569.3x, 569.85, 578.1x, 

578.9  

Upper GI: I850, K226, K250, K252, 

K254, K256, K260, K262, K264, K266, 

K270, K272, K274, K276, K280, K282, 

K284, K286, K2901, K290, K31811, 

K920  

Lower GI: K921, K922, K5711, K5713, 

K5731, K5733, K625, K5521 

Major Non-GI Extracranial 

Bleed (NGIB) 

Hematuria: 599.7 

Hemoptysis: 786.3x 

Vitreous bleeding: 379.23 

Urogenital bleeding: 626.2x,280.0 

285.1,285.9 

Hemarthrosis: 719.1x 

Hemopericardium: 423.0x 

Hemoperitoneal MB: 568.8 

Unspecified MB: 459.0x 

Post-bleed anemia: 285.1x 

Hematuria: R31 

Hemoptysis: R042, R0489, R049 

Vitreous bleeding: H43.13 

Urogenital bleeding: N92.0, D50.0, D62, 

D64.9 

Hemarthrosis: M250x 

Hemopericardium: I31.2 

Hemoperitoneal MB: K66.1 

Unspecified MB: R58.0 

 Post-bleed anemia: D62 
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Table S2. Definition of CHADS2-VASc2, modified HAS-BLED, ATRIA, HEMORR₂HAGES and ORBIT-AF risk scores 

along with their scoring algorithms. 

 

Table S3. Definition of co-morbidity and concomitant medication variables used for CHA2DS2-VASc and HAS-BLED risk 

score calculation according to ICD-9 and ICD-10 codes from the Med-Echo databases.  

Risk score definition Points, if present 

CHA2DS2-VASc stroke risk score  

     Congestive heart failure or left ventricular dysfunction 1 

     Hypertension 1 

     Age 1 

     Age ≥ 75 years 2 

     Diabetes Mellitus 1 

     Stroke (ischemic stroke, transient ischemic disease or systemic embolism 2 

     Vascular disease (myocardial infarction, peripheral arterial disease or aortic plaque 1 

     Sex category (female) 1 

HAS-BLED bleeding risk score  

     Hypertension 1 

     Abnormal renal function 1 

     Abnormal hepatic function  

     Abnormal Stroke (ischemic stroke, transient ischemic disease 1 

     Bleeding 1 

     Older than > 65 years 1 

     Labile 65 – 74 years international normalized ratio (not available) 1 

    Drugs (ASA, clopidogrel, prasugrel, ticagrelor, ticlopidine, or non-steroidal anti-         

inflammatory drugs) in the 1 month preceding the ICH hospitalization or 1month after     

discharge 

1 

Alcohol intake 1 

ATRIA bleeding risk score  

     Anemia (Male: Hemoglobin <13 g/dL; Female: Hemoglobin <12 g/dL) 3 

     Severe Renal Disease (Glomerular filtration rate <30 mL/min or dialysis) 3 

     Age ≥ 75 years 2 

     Any Prior Hemorrhage Diagnosis 1 

     Hypertension History 1 

HEMORR₂HAGES bleeding risk core 1 

     Hepatic or Renal Disease 1 

     Ethanol (Alcohol) Abuse 1 

     Malignancy History 1 

     Older (Age > 75) 1 

     Reduced Platelet Count or Function 1 

     Rebleeding Risk (bleeding history) 1 

     Hypertension (Uncontrolled) 1 

     Anemia (Male: Hemoglobin <13 g/dL; Female: Hemoglobin <12 g/dL) 1 

     Genetic Factors (CYP 2C9 single-nucleotide polymorphisms) 1 

     Excessive Fall Risk 1 

     Stroke History 1 

ORBIT-AF bleeding risk score  

    Anemia (Male: Hemoglobin <13 g/dL; Female: Hemoglobin <12 g/dL) 2 

    Age >74 years 1 

    Bleeding history 2 

    GFR <60 mL/min/1.73 m2 1 

    Antiplatelet agent use 1 
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 ICD-9 codes ICD-10 codes 

CHA2DS2-VASc   

Congestive heart failure 402.01, 402.11, 402.91, 404.01, 

404.11, 404.91, 404.03, 404.13, 

404.93, 425.4, 428.0 

I11.0, I13.0, I13.2, I42.0, I50 

Left ventricular dysfunction 428.1, 428.9 I50.1, I50.9 

Hypertension 401 I10 

Diabetes 250.x E08, E10, E11, E13 

Ischemic stroke 433.xx, 434.xx, 436 I63 except 63.6, I67.89 

Systemic embolism 444.x, 557.0, 362.31, 362.32, 

598.31 

I74, K55.0, H34.1, H34.2, N28.0 

Transient ischemic stroke (TIA) 435.x G45 

Aortic plaque 440.0 I70.0 

Peripheral arterial disease 440 (except 440.0), 441, 443.0, 

443.89, 443.9 

I70.1 to I70.9, I71, I73.0, I73.89, I73.9 

Myocardial infarction 410.xx I21, I22, I23 

Modified HAS-BLEED   

Ischemic stroke 433.xx, 434.xx, 436 I63 except I63.6, I67.89 

Transient ischemic attack 435.x G45 

Moderate to severe renal disease 404.01, 404.03, 404.11, 404.13, 

404.91, 404.93, 580.0, 580.4, 581.0, 

581.1, 581.2, 581.3, 581.89, 581.9, 

582.0, 582.1, 582.2, 582.89, 582.9, 

583.0, 583.1, 583.2, 583.4, 583.7, 

583.6, 583.89, 583.9, 584.5, 584.6, 

584.7, 584.8, 584.9, 585.1, 585.2, 

585.3, 585.4, 585.5, 585.6, 586, 

590.0, 590.01, 590.80  

I12, I13, N00, N01, N02, N03, N04, 

N05, N07, N11, N12, N14, N17, N18, 

N19 

Moderate to severe liver disease 570, 572.3, 070.0, 070.21, 070.20, 

070.60 

K7200, K762, K766, B150, B160, 

B162, B190, K704, I85 

Haemorrhagic stroke intracranial 

(non-traumatic) 

430, 431, 432.x I60, I61, I62 

Extracranial major or unclassified 

major bleeding 

Upper GI: 456.1, 530.7, 531.0x, 

531.2x, 531.4x, 531.6x, 532.0x, 

532.2x, 532.4x. 532.6x, 533.0x. 

533.2x, 533.4x, 533.6x, 534.0x, 

534.2x, 534.4x, 534.6x, 535.01, 

537.83, 578.0 

Lower GI: 562.02, 562.03, 562.12, 

562.13, 569.3x, 569.85, 578.1x, 

578.9 

Other sites: 

Hematuria: 599.7 

Hemoptysis: 786.3x 

Vitreous bleeding: 379.23 

Urogenital bleeding: 626.2x,280.0 

285.1,285.9 

Hemarthrosis: 719.1x 

Hemopericardium: 423.0x 

Hemoperitoneal MB: 568.8 

Unspecified MB: 459.0x 

Post-bleed anemia: 285.1x 

Upper GI: I850, K226, K250, K252, 

K254, K256, K260, K262, K264, K266, 

K270, K272, K274, K276, K280, K282, 

K284, K286, K2901, K290, K31811, 

K920 

 

Lower GI: K921, K922, K5711, K5713, 

K5731, K5733, K625, K5521 

Other sites:  

Hematuria: R31 

Hemoptysis: R042, R0489, R049 

Vitreous bleeding: H43.13 

Urogenital bleeding: N92.0, D50.0, 

D62, D64.9 

Hemarthrosis: M250x 

Hemopericardium: I31.2 

Hemoperitoneal MB: K66.1 

Unspecified MB: R58.0 

 Post-bleed anemia: 

D62 

Traumatic intracranial bleeding 852x, 853x S063, S064, S065, S066 

Clopidogrel, ticlopidine, prasugrel, 

ticagrelor 

46486, 47307, 45617, 47402, 

47834, 47866 

46486, 47307, 45617, 47402, 47834, 

47866 
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Low dose ASA 00143, 46353 (daily dose < 100 mg) 00143, 46353 (daily dose < 100 mg) 

Non steroidal anti-inflammatory 

drugs (NSAIDs) 

46353, 38184, 47327, 47078, 

41694, 47059, 43150, 47122, 

33803, 44749, 04745, 46654, 

47506, 04810, 38691, 44359, 

47385, 47084, 19752, 47890, 

07462, 42019, 47346, 47107, 

40381, 45592, 45407, 03766 

46353, 38184, 47327, 47078, 41694, 

47059, 43150, 47122, 33803, 44749, 

04745, 46654, 47506, 04810, 38691, 

44359, 47385, 47084, 19752, 47890, 

07462, 42019, 47346, 47107, 40381, 

45592, 45407, 03766 

Alcohol 331.7, 359.4, 425.5, 577.1 

 

E224, E529A, F10, G312, G612, G721, 

I426, K292, K70, K860, L278A, O354, 

T51, Z714, Z721 
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Table S4. Sensitivity analyses of the global MB model for all OAC users. 

 

Discrimination values for the global score in patients who did not die during follow-up, adherent patients 

(PDC≥0.80), non-adherent patients (PDC<0.80), patients who switched OAC in the year of follow-up and patients 

who did not switch OAC in the year of follow-up. 

 

 Discrimination (cross-validated c-statistics) 

Full cohort  

(n=36,381) 

0.63 (0.61-0.65) 

Patients excluding deaths during follow-up  

(n=30,894) 

0.65 (0.64-0.67) 

Adherent patients (PDC≥0.80)  

(n=24,802) 

0.62 (0.60-0.64) 

Non-adherent patients (PDC<0.80)  

(n=11,579) 

0.63 (0.61-0.65) 

OAC switchers during follow-up  

(n=6,022) 

0.61 (0.57-0.64) 

OAC non-switchers during follow-up  

(n=30,359) 

0.64 (0.62-0.66) 


