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Résumé 

La chimiothérapie cytotoxique reste une option de traitement de première intention pour la majorité 

des cancers. Un effet secondaire majeur dans les schémas chimio-thérapeutiques est la neutropénie. 

La thérapie prophylactique avec le facteur de stimulation des colonies de granulocytes (G-CSF), 

une cytokine endogène responsable de la régulation de la production de neutrophiles, est 

administrée en concomitance. Le moment et la dose exacts pour administrer la chimiothérapie et 

le G-CSF représentent des éléments cruciaux pour obtenir les résultats souhaités du traitement. En 

nous appuyant sur des travaux antérieurs qui optimisaient les schémas thérapeutiques du G-CSF, 

nous sommes basés sur une approche de pharmacologie quantitative des systèmes (QSP) pour 

étudier la fréquence et l’intensité de la dose dans le but  de maximiser les effets anti-tumoraux de 

la chimiothérapie tout en minimisant la neutropénie. Dans ce travail, nous avons effectué une 

optimisation sur une large gamme de longueurs de cycle et de valeurs des doses de chimiothérapie 

afin d’identifier les meilleurs schémas en combinaison avec le G-CSF. Nos résultats suggèrent que 

la doxorubicine 45mg/BSA tous les 14 jours a un impact positif sur le contrôle de la croissance 

tumorale, et qu’il est préfèrable de retarder l’administration du G-CSF au septième jour après la 

chimiothérapie et de donner moins de doses pour minimiser le risque de neutropénie et le fardeau 

de ce médicament. Cette étude suggère des pistes possibles pour des schémas optimaux de 

chimiothérapie, avec le soutien prophylactique du G-CSF spécifiquement dans le contexte du 

cancer du sein triple négatif. 

 

Mots-clés : Chimiothérapie cytotoxique, cancer du sein triple négatif, modélisation 

mathématique, G-CSF, neutropénie, croissance tumorale. 
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Abstract 

Cytotoxic chemotherapy continues to be a first-line treatment option for the majority of cancers. A 

major side effect in chemotherapy regimens is neutropenia. Prophylactic therapy with granulocyte 

colony stimulating factor (G-CSF), an endogenous cytokine responsible for regulating neutrophil 

production, is administered concomitantly; the exact timing of the combination chemotherapy and 

G-CSF is crucial for achieving treatment results. Leveraging on previous work that optimized 

treatment regimens based on G-CSF timing, we developed a quantitative systems pharmacology 

(QSP) framework to study dose frequency and intensity of chemotherapy in order to maximize 

anti-tumor effects while minimizing neutropenia. In this work, we performed an optimization 

across a wide range of cycle lengths and dose sizes to identify the best cytotoxic chemotherapy 

regimens with G-CSF support. Our results suggest that doxorubicin 45mg/BSA every 14 days, has 

a positive impact on tumour growth control, and that to minimize the risk of neutropenia and the 

burden to patients it is best to delay the administration of G-CSF to day seven after chemotherapy 

and give fewer doses . This study suggests possible avenues for optimal chemotherapy regimens 

with prophylactic support of G-CSF in the context of Triple Negative Breast Cancer.  

 

Keywords: Cytotoxic chemotherapy, TNBC, mathematical modeling, G-CSF, neutropenia, tumor 

growth. 
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Chapter 1 – Introduction 

1. The Mutational Component of Cancer Development 

Cancer is the leading cause of death in Canada and is responsible for 30% of all deaths. Nearly 1 

in 2 Canadians are expected to be diagnosed with cancer in their lifetime according to projected 

estimates of cancer in Canada in 2019 and 2020 (1,2). That said, the probability of developing 

cancer lies on many factors, and varies by cancer type and the intrinsic genetic factors (1). Any 

substance that causes cancer is known as a carcinogen. Several factors influence whether a person 

exposed to such carcinogens will develop cancer or not, including the amount and duration of the 

exposure and the individual’s genetic background (3). In normal cells, hundreds of genes in a 

complex fashion orchestrate the process of cell division. Cells divide and create an exact copy of 

their genetic material. Cancer is a disease driven by mutations, located in germline cells or somatic 

cells. When the nucleic acid sequence is damaged in the cells that produce the next generations of 

cells, the resulting cells will carry mutated genetic material. Mutations are changes to the nucleic 

acid sequence that codes for a gene (4). Such alterations  may accumulate over time and successive 

numbers of cells divisions. Mutations in germline cells are less frequent and are inherited, while 

the vast majority of cancers occur in somatic cells and cannot be inherited. Most cancer cells 

possess 60 or more mutations (5).  

Gene mutations in cancer cells interfere with the normal instructions in a cell and can cause 

it to grow out of control (5,6). Normally, monitoring systems and checkpoints regulate the cell 

cycle, including whether it is time to advance to the next phase, or whether  the cell is destined for 

apoptosis. A cancerous cell no longer responds to many of these signals, and divides without 

control (5–7).  Telomeres, the specific DNA-protein structures found at both ends of each 

chromosome, protect the end of the genome of the chromosome from degradation, unnecessary 

recombination, repair, and interchromosomal fusion (8,9). It maintains genomic integrity in normal 

cells, preventing attack by nucleases, and their progressive shortening during successive cell 

divisions induces chromosomal instability (8). In the large majority of cancer cells, telomere length 

is maintained by telomerase, which reverses the wearing down of chromosome ends that normally 

happens during each cell division. Thus, telomere length and telomerase activity are crucial for 

cancer initiation and the survival of tumours (10).  
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1.1 Types of Cancer and Tumours 

Cells with damaged checkpoints and uncontrol cell division are able to form masses of cells called 

tumours. Tumours grow and behave differently, depending on whether they are cancerous 

(malignant), non-cancerous (benign) or precancerous. Depending on the type of tissue in which the 

cancer originates and by primary site, tumours can be classified as solid or liquid tumours (i.e. 

blood cancers). Carcinoma and sarcoma are considered solid tumours, while lymphoma myeloma, 

leukemia and mix types are hematopoietic cancers. The most common types of cancers are solid 

tumours, such as breast cancer, colon and rectum cancer, prostate cancer, lung cancer, and 

melanoma of the skin (11). Cancer starts in a primary site, with the tumour being formed from 

epithelial tissue, connective tissue, and/or white blood cells.  Tumours are known to have hypoxic 

cores formed by non-diving cells, and dividing cells along the periphery. As the tumour increases 

in size, it also starts to develop its own blood supply by forming new vessels or relying on the pre-

existing vasculature. (12). Tumour cells can invade nearby tissues. Metastases are tumour cells that 

break away from the main tumour and travel through the blood or lymphatic system and spread to 

distant parts of the body to develop into new cancer cells. Metastatic cancers may be found at the 

same time as the primary tumour, or months, and years later and have different growth rates, 

depending on the type of tumour tissue (13).  

1.2 Diagnosis and Staging in Tumours 

The complete evaluation of a patient usually requires a thorough history and physical examination 

along with diagnostic testing. Many tests are needed before determining whether a person has 

cancer, or if another condition (such as an infection) is mimicking the symptoms of cancer (14). 

The diagnostic methods include laboratory tests, imaging tests, endoscopic exams, biopsies, and 

genetic tests. An early diagnose can save the life of a patient. Once this information is collected 

and analysed, and the oncologist confirms the presence of cancer, the next step would be to 

determine the staging.  

Staging refers to the extent of the cancer in the body and classifies a cancer based on the 

size of the main tumour, which parts of the organ(s) have cancer, whether the cancer has spread, 

and where it has spread at the time of the diagnosis (15). This stage does not change over time, 

even if the cancer might progress. Instead, the stage helps to estimate a prognosis, to assure the 

patient gets the best possible treatment and to help choose a clinical trial if the patient is eligible to 

participate in one (17). Tumour, Node and Metastasis (TNM) staging system is the most common 
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staging system used for many types of solid cancers; other systems are used for cancers of the 

blood and immune system. This system was developed by the American Joint Committee on 

Cancer (AJCC) (16).  

1.3 Treatments: Surgery, Radiation, Chemotherapy, and Biological Therapies 

Treatment planning is based on several key factors such as the type and stage of cancer, as well as 

the person’s age, health and lifestyle. The patient takes an important role asking questions, and 

expressing concerns about treatment can help make treatment a better experience. Common 

treatments involve surgery, chemotherapy, and radiation therapy, as well as, biological therapies. 

The newest treatments include immunotherapy. Treatment can be given for different reasons such 

as prevention, cure, control or palliative care (17–19). 

Surgery is the oldest form of cancer treatment and it is often used in combination with other 

types of treatment. It provides the best chance to stop many types of cancer, and it also plays a part 

in diagnosing, staging, and supportive treatment (17,18). Radiation is a form of high energy x-ray 

which can destroy or prevent the spread of cancer by damaging a cancer cell’s DNA. There are two 

primary types of radiation therapy: external and internal radiation. It is considered a local treatment, 

which may be used alone or with other treatments such as surgery or chemotherapy. In this vein, a 

combined modality therapy is when a treatment involves more than one therapy such as a 

combination of radiotherapy and chemotherapy (18).  

Conventional cytotoxic chemotherapy or cytostatic drugs are used to destroy cancer cells 

primarily by interfering at the interphase and during mitosis, thus inhibiting cell division (19). A 

downside of chemotherapy is that it does not differentiate between highly proliferative normal cells 

and malignant cells (19). Cytotoxic chemotherapy can be used before surgery to shrink a tumour 

or after surgery to destroy any metastases that remain and to prevent the cancer from coming back. 

It may also be used to relieve symptoms, improve quality of life and extend life for people with 

advanced cancer (called palliative chemotherapy) (20). There are many chemotherapy drugs that 

are grouped into classes depending on their mechanism of action. Often, a combination of different 

classes of chemotherapy drugs is needed to attack cancer cells at different points in their growth 

cycle. It may also prevent resistance and help lower the chance of cancer coming back, called 

recurrence (19,20). The drug classes of chemotherapy include: DNA-alkylating agents, 

antimitotics, antitumour antibiotics, DNA-repair enzyme inhibitors, and antimetabolites (21). 

Alkylating agents produce their effects by binding covalently with cell constituents, impairing 
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DNA synthesis or inhibiting DNA replication (22). Antimitotics block the process of cell division 

(mitosis) so cells cannot divide and multiply. Antineoplastic antibiotic affects DNA synthesis and 

replication by inserting into DNA strands or by producing superoxide that cause breakage in DNA 

strands and prevent the tumorous or cancerous cells to divide further. DNA-repair enzyme 

inhibitors attack the enzymes that normally repair damage to DNA since a cancer cell dies if it 

cannot repair damage to DNA (20,21). Antimetabolites induce depletion in nucleotides inducing 

in turn an inhibition of DNA replication (23). As well, there are several subgroups for each drug 

class (21). Chemotherapy is generally administered orally or intravenously. The length of treatment 

and type of chemotherapy drug are selected according to the type of cancer and the health condition 

of the patient. In most cases, the national treatment guidelines provide the context for the use of 

chemotherapy (20). The cell cycle is a key element to understand the action of cytotoxic 

chemotherapy on the cycle of cancer cells (6). Cell-cycle specific chemotherapy drugs act in one 

or two phases of the cell cycle as marked in red below. Cell-cycle nonspecific agents are active in 

all phases (17–21). 

 

  
Figure 1. The cell cycle  consists of interphase and cell division. Interphase can be further divided into G0, 
G1, S and G2. At the interphase phases cells grow in size and cellular components are duplicated including 
RNA, proteins and organelles, chromosomes are duplicated, and DNA damage checkpoints prevent 
damaged cells from entering mitosis. Mitosis is the division of one nucleus into two genetically identical 
nuclei and cytokinesis is the physical separation of the cell’s cytoplasm into two daughters (6) Reproduced 
with permission from Basis of Carcinogenesis. 1-17(2019). Copyright 2019 Springer Nature. 

 

G0 Stage: Out of the 
cell cycle. Cell cycle 
arrest.

G1 Phase: Growth: 
preparation for DNA 
replication.

S Phase: DNA replication, 
(chromosomes are 
duplicated by the cell.)  

G2 Phase: Cell double 
checks the duplicated
chromosomes.

M Phase: Cellular 
division. 
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Hormonal therapy is another type of therapy, which stops the cancer cells from using hormones 

they need for their growth, or prevents the body from producing the hormone that is causing cancer 

growth. Tumours that appear in the breast, prostate, endometrium (the inner lining of the uterus), 

and ovaries are often hormone sensitive. Hormone therapy can reduce in size or even eliminate 

these cancers by manipulating hormones that fuel them. It is often used following surgery, radiation 

therapy, or chemotherapy, but in many cases it can constitute in its own a stand-alone treatment 

(18). Targeted therapy use drugs to target specific molecules (such as genes or proteins) in cancer 

cells to stop them from growing and spreading. These drugs do not damage as many normal cells 

as cytotoxic chemotherapy. Immunotherapy helps to strengthen or restore the immune system’s 

ability to fight cancer (20,21). Adjuvant therapy or supportive drugs is a term used to describe 

therapy given in addition to the primary cancer treatment to improve the chance of cure, prevent, 

manage and relieve side effects. These drugs include allopurinol, amifostine, dexrazoxane, folinic 

acid, mesna, ondansetron and colony-stimulating factors (CSFs, growth factors) (20). Despite the 

growing utilization of targeted, immunotherapeutic, and personalized approaches in cancer, most 

patients receive conventional cytotoxic chemotherapy as first-line treatment (17–21,24).  

1.4 Cancer Treatment and Side Effects  

Minimizing side effects is one of the greatest challenges in the cancer treatment. Most of the 

therapies mentioned above have very painful or uneasy side effects that could prevent treatment 

completion. Common chemotherapy and radiotherapy side effects include fatigue, nausea or 

vomiting, diarrhea, trouble swallowing and skin changes in radiated areas (24). During treatment, 

one major side effect of cytotoxic chemotherapy is neutropenia. Neutropenia is a condition that 

occurs when the body does not have enough neutrophils, the most abundant type of white blood 

cell.  Neutrophils are key members of the innate immune system that protect the body against 

bacterial, viral, and fungal infections. Neutropenia is defined by an absolute neutrophil count 

(ANC) of less than 1500 cells per microliter, with severe neutropenia occurring below 500 cells 

per microliter (25). The production of neutrophils is regulated by endogenous colony-stimulating 

factors (CSFs), a class of molecules that stimulate the bone marrow hematopoietic progenitor cells 

to divide and generate colonies of differentiated progeny of white and red blood cells (26). 

Granulocyte colony-stimulating factor (G-CSF) stimulates the production of neutrophils (27). 

Administration of exogenous forms of G-CSF mimics the actions of endogenous G-CSF and 

further stimulates the production of neutrophils within the bone marrow. Some examples of 
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recombinant human G-CSF (rhG-CSF) include filgrastim and pegfilgrastim. However, they may 

also cause uneasy side effects such as thrombocytopenia, nausea, fever and bone pain (28). 

Therefore, a balance must be struck when administering exogenous G-CSF to patients undergoing 

chemotherapy to alleviate the physical and hematopoietic burden of treatment (29).  

2. Breast Cancer: Genetic Bases, Incidences, Types, and Treatment Strategies  

Breast cancer accounts for about 25% of all new cancer cases in women. New cases of breast cancer 

in 2020 estimates were 27, 700 of which 240 cases are in males and 27,400 in females according 

to the Canadian Cancer Statistics (2). By age, the most vulnerable group to breast cancer include 

women between 50 to 74 (1). Most cases of breast cancer are associated with somatic mutations in 

breast cells that are acquired during a person’s lifetime and are not inherited. A small percentage 

of all breast cancers cluster in families. These hereditary cancers are due to mutations inherited in 

the germ line cells. Not all people who inherit mutations in these genes will ultimately develop 

cancer. Hereditary breast cancers tend to develop earlier in life than non-inherited (sporadic) cases, 

and new (primary) tumours are more likely to develop in both breasts (30).  One famous example 

concerns the case where mutations in the BRCA1 and BRCA2 genes are inherited in an autosomal 

dominant pattern, which means one copy of the altered gene in each cell is sufficient to increase a 

person’s chance of developing cancer. Although breast cancer is more common in women than in 

men, the mutated gene can be inherited from either the mother or the father.  

The term invasive (or infiltrating) breast cancer is used to describe any type of breast cancer 

that has spread into surrounding breast tissue. Invasive ductal carcinoma makes up about 70-80% 

of all breast cancers (31). These cancers are less common but can be more serious than other types 

of breast cancer such as inflammatory breast cancer and triple-negative breast cancer (TNBC), an 

aggressive subtype accounting for about 15% of all breast cancers (32–35). TNBC refers to cancer 

cells lacking or having less expression of the well-known estrogen and progesterone hormonal 

receptors, and also do not make the protein HER/neu, a significant  therapeutic target in most breast 

cancers (31,33,36). TNBC is more likely to affect younger women, African Americans, Hispanics, 

and/or those with a BRCA1 gene mutation (31,32).  

2.1 Screening and Diagnosis in Breast Cancer 

Screening for breast cancer is recommended for asymptomatic and symptomatic women (37). 

Breast cancer is generally diagnosed after an individual or their doctor finds a lump in your breast 
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or during screening by mammography. The doctor may recommend a hormone receptor test to 

measure the amount of certain proteins (hormone receptors) in cancer tissue (38). Normal breast 

cells have estrogen and progesterone receptors as they depend on these hormones to grow (39). 

However, in certain breast cancers, these receptors are continuously fueled by hormones and 

stimulate cells to grow. If the hormone receptor test is positive, it indicates that breast cells may 

have one or both of these receptors: Estrogen receptor (ER+), which means that breast cells are 

sensitive to estrogen, progesterone receptor (PR+) which means that breast cells are sensitive to 

progesterone. HER2 status testing is done on a biopsy sample taken from the primary tumour at 

the time of the diagnosis, along with the hormone receptor test. There are two ways to test HER2 

status: by immunohistochemistry (IHC), which qualitatively measures the amount of HER2 protein 

in the cancer cells, and fluorescence in situ hybridization (FISH), which looks at the number of 

copies of the HER2 gene in the cancer cells. Understanding the chemical and genetic makeup of 

the breast cancer cells is necessary to guide treatment selection (39–42).  

2.2 Treating Breast Cancer  

The type of treatment depends on the TNM staging, grading of the tumour, expression or lack of 

expression of hormonal receptors and HER2, and overall health status at the time of diagnosis. To 

date, treatment of breast cancer include surgery, chemotherapy, hormonal therapy, monoclonal 

antibody therapy, and radiotherapy (33,37). Chemotherapy is given to shrink a large tumour before 

surgery (called neoadjuvant chemotherapy) when the cancer hasn’t spread outside the breast or 

lymph nodes, to destroy cancer cells left behind after surgery and reduce the risk that the cancer 

will recur (called adjuvant chemotherapy), to treat cancer that comes back, and to control the 

symptoms of advanced breast cancer (called palliative chemotherapy). Chemotherapy is generally 

given at 3 weeks or sometimes 2 weeks intervals (called dose-dense regimens). Studies have shown 

that dose-dense regimens may further lower the risk that breast cancer will come back and improve 

survival (43).  

The lack of hormone receptors in TNBC requires a different therapy strategy. For those with 

triple negative recurrent/stage IV breast cancer and germline BRCA1/2 mutations, the NCCN Panel 

recommends platinum agents (cisplatin and carboplatin) as preferred treatment options (37). 

Among preferred single agents, the NCCN Panel suggested taxanes (paclitaxel), anthracyclines 

(doxorubicin and liposomal doxorubicin), anti-metabolites (capecitabine and gemcitabine), 

microtubule inhibitors (eribulin and vinorelbine), and platinum agents (37). In this thesis, I focus 
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on doxorubicin (Adriamycin), an anthracycline antitumour antibiotic isolated from cultures of 

Streptomyces peucetius var.caesius that has antimitotic and cytotoxic activity against a wide 

spectrum of tumours (44,45). Although it is named antibiotic it is not used for this purpose.  

Doxorubicin’s primary mechanism of action is to intercalate within DNA base pairs, causing 

breakage of DNA strands and inhibition of both DNA and RNA synthesis. Doxorubicin inhibits 

the enzyme topoisomerase II, causing DNA damage and induction of apoptosis. When combined 

with iron doxorubicin also causes free radical-mediated oxidative damage to DNA, further limiting 

DNA synthesis (46). It is used in the treatment of a wide range of cancers including acute lymphoid 

leukemia, acute myeloid leukemia, Hodgkin’s disease, breast cancer, and metastatic breast cancer 

(47). When used as a single agent, doxorubicin is administered as 60 to 75mg/m2 IV doses over 3 

to 10 minutes, day 1, every 21 days until there is an observed effect (48). In the absence of disease 

progression or unacceptable toxicity, doxorubicin is administered in combination with other 

chemotherapy drugs, with doxorubicin as a 40 to 75mg/m2 IV dose every 21 days for 4 to 6 cycles 

(49,50). Lifetime cumulative doses above 550mg/m2 are associated with an increased risk of 

cardiomyopathy (47).  

Supportive drugs, including colony-stimulating factors, are usually administered during 

doxorubicin treatment to stimulate the production of white blood cells and prevent the risk of 

neutropenia. The initial adult dose is 5mcg/kg once a day via subcutaneous injection, short IV 

infusion (over 15 to 30 minutes), or continuous IV infusion. Doses may be escalated in units of 5 

mcg/kg doses in each chemotherapy cycle, and treatment is continued up to 2 weeks or until the 

absolute neutrophil count (ANC) nadir reaches 10, 000/mm3. Doses should be given at least 24 

hours after cytotoxic chemotherapy. Transient increases in neutrophil counts are usually observed 

1 or 2 days after starting treatment (28).  

3. Pharmacokinetics and Pharmacodynamics 

3.1 Pharmacokinetics 

Pharmacokinetics (PK) describes the liberation, absorption, distribution, metabolism, and excretion 

(LADME) of a compound (51,52). These are not independent events and all five processes may 

occur simultaneously.  

Liberation (L) is the process by which the drug is released from its pharmaceutical form 

(e.g., capsule, tablet, suppository, etc.). The most common routes of drug administration are: 
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injection, inhalation, sublingual, peroral, dermal, and rectal (52). Absorption (A) refers to the 

movement of the drug from the site of administration to the blood circulation. Bioavailability (F) 

is defined as the fraction (percentage) of an administered dose of unchanged medicine that reaches 

the blood stream (systemic circulation). The bioavailability of a drug is decreased by the first past 

effect: when the drug is affected by the liver before it enters to systemic circulation. Further, the 

ability of the compound to pass through lipid membranes also affects the bioavailability (52).  

Distribution (D) is the process by which drug diffuses from the intravascular space to the 

extravascular space and into tissues and organs. The amount of distribution of drug compounds is 

determined by their physicochemical properties. The drug binding to plasma proteins (albumin) 

does not have a pharmacological effect; only the unbound fraction of the drug will do so. 

Redistribution is the transfer of a drug between the different compartments within the human body. 

The volume of distribution (VD) is a parameter that reflects the extent to which a drug is distributed 

in the extravascular tissues rather than the plasma. A higher VD indicates a greater amount of tissue 

distribution (52).  

Metabolism (M), which mainly takes place in the liver, is the chemical transformation of 

drugs by enzymes into compounds that are easier to eliminate. There are two types of drug kinetics: 

zero order kinetics and first order kinetics. The zero order kinetics is when the rate of metabolism 

and/or elimination remains constant and is independent of the concentration of a drug (e.g., 

metabolism of alcohol). First order kinetics is when the rate of metabolism and/or elimination is 

directly proportional to the plasma concentration of the drug (applies to most drugs) (52).  

Excretion (E) is the elimination of unchanged drug or metabolite from the body via renal, 

biliary, or pulmonary processes. Clearance (CL) is defined as the volume of plasma cleared from 

the drug per unit time, expressed in units of volume/time (L/hr). An equation to calculate clearance 

is to divide the rate of drug elimination by the plasma concentration (53,54). The Half-life (t1/2) is 

the time required for the plasma concentration of a drug to be reduced by half from its initial value. 

After 4 half-lives, more than 90% of the drug will be eliminated. For most drugs at steady state, 

clearance remains constant so that drug output equals drug input. Drug clearance is influenced by 

age and disease (53,55).  

3.2 Pharmacodynamics 

Pharmacodynamics (PD) is the quantitative study of the relationship between drug exposure (dose 

or concentration) at the site of action and any resulting effect, namely the intensity and time course 
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of the effect, biochemical, physiological, toxicological responses and adverse effects (56). Every 

functioning molecule in an organism is a potential site of action for a drug. The drug may interact 

with cell membrane receptors such as G-protein coupled receptors, ion channels, and protein kinase 

receptors; or it may interact with intracellular receptors, enzymes, and DNA. Also the drug may 

not interact with receptors and only have a physical/chemical effect. There are different types of 

drug-receptor interactions. An agonist is a drug that has a similar effect to that of the endogenous 

receptor activator. An antagonist is a drug that binds to a receptor and prevents its activation. A 

partial agonist is a substance that has some agonistic action at a receptor but does not elicit the 

complete response of a true agonist. Inverse agonist binds to the same receptor as an agonist, but 

not to the same active site. It elicits a response that is opposite to the agonistic response and has a 

negative efficacy (57). 

Dose-response relationships are usually described by potency (ED50), maximum drug effect 

(Emax), and therapeutic range ED50 is the dose of a drug required to produce 50% of that drug’s 

maximal effect (58).  It is a property that is dependent on affinity but not related to efficacy. Emax 

is the maximum drug effect that can be achieved. The terms that are related to the efficacy and 

toxicity of cancer chemotherapy are important for the understanding of their pharmacological 

activity. The therapeutic range of serum drug concentrations is the range of concentrations 

associated with therapeutic response without side effects in the majority of patients.(52). In 

chemotherapy, the administered dose is based on the maximum tolerated dose (MTD) rather than 

dose-response. MTD represents the highest dose of a given drug that can be tolerated in absence 

of irreversible side effects by a population sample. Dose intensity (DI) in chemotherapy is a 

measure of drug dose delivered per unit of time and is expressed as (mg/m2) per week. (59,60).  

3.3 PK/PD Modelling and Quantitative Systems Pharmacology 

PK/PD modelling expresses pharmacokinetic and pharmacodynamic properties with a set of 

mathematical expressions that describe exposure-response relationships. PK/PD models can be 

described by simple equations such as linear, Emax or sigmoid Emax model (61,62). Quantitative 

Systems Pharmacology (QSP) can be viewed as a subdiscipline of pharmacometrics that 

characterizes biological systems, diseases processes and drug pharmacology through mathematical 

computer models. In pharmacology, QSP models are typically defined by systems of ordinary 

differential equations (ODEs) that describe the dynamical properties of the interaction between the 
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drug and the biological system. QSP can be used to generate hypothesis in silico to aid in the design 

of in vitro or in vivo non-clinical and clinical experiments (63,64). 

4. Tumour Growth Models 

The most common mathematical models of tumour growth are deterministic in nature, and can 

involve a whole spectrum of details from macroscopic (empirical) to microscopic (mechanistic) 

levels. In this work, we have chosen a deterministic approach to model the tumour dynamics using 

ordinary differential equations.  

4.1 Deterministic Approaches 

The simplest model is the exponential model which assumes infinite tumour growth without 

constraints, starting from an initial value N(0) and given by the following equation at time t: 

 
𝑑𝑁
𝑑𝑡 = 𝛼𝑁 

 

Where N =N(t) is the population of cancer cells (expressed as cell count, weight or tumour volume), 

dN/dt is the tumour growth rate, and the constant 𝛼 is the growth rate. The advantage of this model 

is that it has only one constant (𝛼) to estimate. Nevertheless, it is known that the availability of 

resources will limit tumour growth and therefore this model is not totally realistic. Typically, the 

individual growth rate of tumours slows over time. 

The logistic model incorporates a maximum size and reaches a stable equilibrium at that 

point, as expressed by the following logistic model:  

 

𝑑𝑁
𝑑𝑡 = 𝛼𝑁 −

𝛼𝑁2

𝐾  

 

Where K is the system’s carrying capacity, which is the capacity of the environment to support the 

population. We can put this equation in the extreme cases to understand its behaviour: when K 

tends to infinity, we get back to the exponential function; when K goes to 0, N tends to 0, so no 

further growth when the carrying capacity is limited. The advantage of this function is that it 

accounts for the limited resources to which the tumour has access. However, the logistic growth 

function has very peculiar features: for one the location of the point of inflection is exactly halfway 
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between the two asymptotes and secondly there is a radial symmetry in relation to that point.  The 

inflection point is the point of the curve where the curvature changes its sign while a tangent exists 

(65). According to some authors the logistic model is rigid because growth rates symmetric around 

the point of inflection are not realized in many growth processes (66,67). 

The Gompertz model is another widely used sigmoidal function originally developed to 

describe human mortality (61) and was eventually used to model the growth in size of entire 

organisms (68). This model has shown to provide the best fit for the growth of breast and lung 

cancer (69). It is given by the following equation: 

 

𝑑𝑁
𝑑𝑡

= 𝛼𝑁 − 𝛽𝑁𝑙𝑛𝑁 

 

Where 𝛼 is the maximal growth rate and 𝛽 is a parameter such that exp(𝛼/𝛽) provides the maximal 

tumour size. The exponential component is used to describe the beginning of the tumour growth, 

but over the time course, the time required to double the tumour mass increases, cancerous cell 

growth will become slower and limited, resulting in a sigmoidal curve that is asymmetrical with 

the point of inflection (68,70). In practice, it is the point at which the rate of growth gets maximum 

value, and after that point exhibits a progressively diminishing instead of increasing growth rate 

(67,71). 

 
Figure 2. The Gompertz and Logistic curves and their inflection points. 
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The logistic model also includes two constants (𝛼 and 𝐾), but the point of inflection of 

Gompertz is smaller than that of the logistic and there is no symmetry involved (66,71). As it is the 

case of all deterministic models, the limitation of the Gompertz model is that it only describes the 

average behaviour of tumour growth but not the variability. It has been reported that the exponential 

and logistic models have failed to describe the experimental data tumour growth whereas the 

Gompertz model generated very good fits (69).  For the purpose of our study, Gompertz growth 

model was considered to be the most appropriate.   

4.2 Probabilistic Approaches  

A stochastic process describes how a random variable (or set of random variables) changes over 

time and/or space (72). A stochastic process assigns a probability to each event and allows for the 

prediction of the probability of a certain outcome. A Markov process is a stochastic process 

(“memory-less”) for which predictions can be made regarding future outcomes based solely on the 

present state of the system, with its future and past states being independent (73). In cancer, Markov 

chains have been used to predict the probability of a tumour to develop into metastasis. For 

example, the primary tumour corresponds to the position 1, and 0s elsewhere (no initial 

metastases). The spread of the cancer to other sites is modeled as a directed random walk on the 

Markov network, moving from site to site with estimated transition probabilities (74,75).  

5. Models of Granulopoiesis and Myelosuppresion 

Hematopoietic Stem Cells (HSCs) are immature cells found in the peripheral blood and in the bone 

marrow and develop into all types of blood cells (76). Granulopoiesis involves a series of 

maturational steps leading to the formation of granulocytes, including neutrophils, eosinophils, and 

basophils (77). There are different models of granulopoiesis (78–80). One of the pioneering model 

consists of five pools or compartments (78). The proliferative pool is assumed to be composed of 

two compartments, with an active compartment A and a resting compartment G0. The maturation 

compartment M is where all cells mature for a fixed time, and then enter the marrow reserve 

compartment R. The latter compartment is like G0, because all cells are held equivalently and can 

leave at random to enter the blood B. The rates 𝛼, 𝛽, and 𝛾, particularly in this model control the 

release of cells along the indicated compartments and depend on the total number of cells in the 

system. The full representation of this neutrophil production model by S. I. Rubinow and J.L. 

Lebowitz, 1975 can be retrieved from reference (78).  
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5.1 The Friberg Model 

Friberg’s model consists of a semi-mechanistic PK/PD model describing the full time course of 

chemotherapy-induced myelosuppression through drug-specific parameters and system-related 

parameters, which are common to all drugs (79). The model mimics the myelopoiesis and consists 

of a compartment representing proliferative cells in the bone marrow, three maturation 

compartments with drug-insensitive cells and one compartment reflecting circulating neutrophils 

in the blood. The proliferative rate of the circulating neutrophils when the numbers are low is 

regulated with a feedback mechanism. The system-related parameters estimated are, baseline 

neutrophil count (ANC0), mean transit time (MTT), and feedback factor (𝛾) as well as the drug 

effect parameters (Slope for a linear model or Emax and EC50 for an Emax model). The model has the 

structure to explore how neutropenia is related to febril neutropenia (81). The drug affected the 

proliferation of sensitive cells by either an inhibitory linear model or an inhibitory Emax model 

(79,81). 

 

 
Figure 3. The semi-mechanistic model of myelosuppression with the estimated system-related  parameters 
(ANC0), mean transit time (MTT), feedback factor (𝛾) and the drug effects parameters (Emax and EC50), 
transit rate constant (Ktr), elimination rate constant for circulating neutrophils (Kcirc), and  (𝐴𝑁𝐶𝑂/𝐴𝑁𝐶)𝛾, 
feedback loop from the circulating neutrophils regulating the proliferative rate (81). Reproduced with 
permission from Cancer Chemotherapy and Pharmacology. 69, 881-890 (2012). Copyright 2011, Springer 
Nature.
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Chapitre 2 – Objective and Hypothesis 

 

Hypothesis 

The QSP framework developed represents a rational way to predict optimal doses of doxorubicin-

G-CSF in the context of triple negative breast cancer that can have an influence in the clinical 

practice. 

 

Objective 

The objective of this work is to develop a Quantitative Systems Pharmacology (QSP) framework 

to establish optimal cytotoxic chemotherapy regimens that maximize tumour shrinkage while 

minimizing the risk of neutropenia through mathematical modelling for the optimization of 

doxorubicin-G-CSF regimens in the context of triple negative breast cancer. 

 

To accomplish this goal, my specific objectives were to : 

• Investigate mathematical models that describe the behaviour of tumour growth using a 

deterministic mathematical approach. 

• Integrate PK models of both doxorubicin and endogenous and exogenous G-CSF. 

• Describe the PDs of tumour growth inhibition by cytotoxic chemotherapy, the 

myelosuppressive effects of doxorubicin on neutrophil production, and the 

myelostimulative effects of G-CSF on neutrophils using mechanistic mathematical models. 

• Estimate parameters for tumour growth inhibition from in vitro studies of the effects of 

doxorubicin on triple negative breast cancer  

• Interrogate on the optimal cycle length and dose size of doxorubicin with G-CSF support 

by simulating numerous scenarios using the full model. 

• Develop an algorithmic approach to balance the anti-cancer and the neutropenic effects of 

both drugs. 
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Abstract 

Cytotoxic chemotherapy continues to be the first line treatment option for the majority of 

cancers. A major side effect in chemotherapy regimens is neutropenia. Prophylactic therapy with 

granulocyte colony-stimulating factor (G-CSF), an endogenous cytokine responsible for neutrophil 

production regulation, is administered concomitant to chemotherapy. The proper timing of 

combined chemotherapy and G-CSF is crucial to treatment outcomes. Leveraging previous work 

that optimized regimens based on G-CSF timing, we developed a quantitative systems 

pharmacology (QSP) framework to investigate the modulation of chemotherapy dose intensity and 

frequency to maximize anti-tumour effects through mathematical modelling. We combined a 

model of tumour growth, with pharmacokinetics and pharmacodynamic models of doxorubicin and 

G-CSF, and a QSP model of neutrophil production to simulate prophylactic regimens against triple 

negative breast cancer (TNBC) with the aim of establishing schedules that best control tumour size 

while minimizing neutropenia. Our results suggest that cytotoxic chemotherapy with doxorubicin 

45mg/BSA every 14 days, has a positive impact on tumour growth control, and that the delayed 

timing of G-CSF within these intensive schedules mitigates the risk of neutropenia. Importantly, 

we also performed multi-objective optimization within a large range of dose sizes and cycle lengths 

and established an algorithmic approach for designing optimal combination cytotoxic 

chemotherapy with G-CSF, suggesting future avenues for optimal regimens of chemotherapy with 
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prophylactic G-CSF support. This work demonstrates how rational considerations can positively 

impact on clinical decision-making in TBNC. 

1. Introduction 

Breast cancer accounts for about 25% of all new cancer cases in women (1). Hormone receptors 

estrogen (ER) and progesterone (PR)  in breast cancer are both prognostic and predictive factors. 

Patients whose tumours are ER+PR+ are more likely to respond to antihormone therapy, and the 

higher the ER, the more likely the response. They have better short-term and long-term survival as 

a result of therapy, too. Therefore these receptors are crucial for the selection of appropriate and 

effective treatments with antihormone therapies such as tamoxifen, aromatase inhibitors, and 

selective estrogen degraders (39,40). Triple Negative Breast Cancer (TNBC), a particularly 

aggressive subtype, is characterized by a lack of expression in these hormonal receptors and 

amplification/overexpression of HER2. Only about 15% of diagnosed breast cancers are triple 

negative, which are more challenging to treat, and have overall worse outcomes (33–35,39). 

Anti-cancer regimens generally blend a combination of drugs, typically cytotoxic 

chemotherapies that act to disrupt the cell cycle (19,29,82). Doxorubicin is an anthracycline that 

intercalates within DNA base pairs, causing breakage of DNA strands and inhibition of both DNA 

and RNA that is used for the treatment of TNBC (46). However, as with all cytotoxic 

chemotherapies, a major side effect of doxorubicin is chemotherapy-induced neutropenia, or a lack 

of neutrophils, the most abundant white blood cell in the body. To mitigate the risk of neutropenia, 

supportive granulocyte colony-stimulating factor (G-CSF) therapy is generally administered 

concomitantly with cytotoxic chemotherapy (29,83), typically 24 to 72 hours after chemotherapy 

(28). Using a mechanistic mathematical model of neutrophil production, we have recently shown 

that G-CSF delayed to 7 days after the administration of chemotherapy improves or completely 

eliminates the neutropenic status in an average patient (29,84), a finding in line with other 

mechanistic modelling work (82,85). 

As standard-of-care protocols leveraging cytotoxic chemotherapies are not appropriate for 

every individual, mathematical modelling is particularly relevant in oncology as a mean to explore 

the treatment space with no harm to patients by allowing us to predict the impact of drug 

combinations (86), to delineate treatment outcomes before dosing to real humans (87), and to 

influence the pre-clinical decision-making process to choose the best dose and therapy schedules 
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(88). Leveraging our previous work in which we defined an optimized protocol for G-CSF 

concurrent to cytotoxic chemotherapy, here we focus on defining chemotherapy regimens that 

optimize the anti-cancer effect of doxorubicin and minimize the effect of neutropenia in TNBC. 

We combined a PK/PD model of both doxorubicin and G-CSF, our previous quantitative systems 

pharmacology (QSP) model of granulopoiesis (29), and a Gompertzian tumour growth model to 

rationalize the decision-making process with respect to defining dosing schedules that eliminate 

tumour bulk without exposing the patient to serious hematological side effects.   

 

2. Methods 

2.1 Tumour Growth Model 

To model tumour expansion over time for both the non-drug and treatment scenarios, we used a 

model of Gompertzian growth. The Gompertz model is a widely used sigmoidal function, 

originally developed to describe human mortality, frequently applied to model tumour growth (68), 

given by the following equation, 

 

 𝑑𝑁
𝑑𝑡

= α𝑁 − β𝑁 ln(N), (1) 

 

where 𝛼 is the growth rate and exp(𝛼/𝛽) represents the maximal tumour size. Gompertzian growth 

is frequently adopted to model tumour cell growth dynamics that are initially exponential but slow 

over time, eventually resulting in a sigmoidal curve that is asymmetrical with respect to the point 

of inflection (68,70). The Gompertz model has been shown to fit closely to experimental data where 

other simple tumour growth models (e.g. exponential and logistic) failed (69).   

 

2.2 Pharmacokinetic Models  

2.2.1 Doxorubicin 
Given its use for the treatment of TNBC, we selected doxorubicin as a representative cytotoxic 

chemotherapeutic agent (89). For this, we adapted a previously established three-compartment 

pharmacokinetic (PK) model based on previous population PK studies (90,91) given by 
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 𝑑𝐶1

𝑑𝑡 = 𝑘21𝐶2 + 𝑘31𝐶3 − (𝑘12 + 𝑘13 + 𝑘𝑒)𝐶1, (2) 

 𝑑𝐶2

𝑑𝑡 = 𝑘12𝐶1 − 𝑘21𝐶2, (3) 

 𝑑𝐶3

𝑑𝑡 = 𝑘13𝐶1 − 𝑘31𝐶3, (4) 

 

where C1, C2, C3 denote drug concentrations of the drug in the central (1) and two peripheral 

compartments (2, 3), 𝑘𝑖𝑗  (hours-1) represents the rate of transit between compartment 𝑖 and 𝑗, and 

𝑘𝑒 (hours-1) denotes the rate of elimination.  

 

2.2.2 Endogenous and Exogenous G-CSF 
The pharmacokinetics of G-CSF were described using our existing one-compartment model (29) 

(Fig. 1). This model delineates the dual routes of elimination of both endogenous and exogenous 

G-CSF from the plasma by internalization through the association to G-CSF receptors on the 

surface of neutrophils, and through linear renal elimination (84). The PKs of G-CSF is described 

by 

 

𝐺 =
𝑘𝑎𝐹(𝐷𝑜𝑠𝑒𝐺𝐶𝑆𝐹)

𝑉𝑑
𝑒−𝑘𝑎𝑡𝑖𝑛𝑗 + 𝐺𝑝𝑟𝑜𝑑 − 𝑘𝑟𝑒𝑛G(𝑡) − X𝑘𝑖𝑛𝑡

𝐺(𝑡)2

𝐺(𝑡)2 + 𝐾𝐷
2 N(𝑡), (5) 

 

which accounts for both exogenous and endogenous G-CSF pharmacokinetics. Here 𝑘𝑎  (hours-1) 

is the rate of subcutaneous absorption of exogenously administered G-CSF, 𝐹 denotes the 

bioavailable fraction of exogenous drug,  𝐷𝑜𝑠𝑒𝐺𝐶𝑆𝐹 (mg/BSA) denotes the exogenous dose, 𝑉𝑑 is 

the volume of distribution of exogenous G-CSF (L), and 𝑒−𝑘𝑎𝑡𝑖𝑛𝑗 quantifies the rate of diffusion 

from the subcutaneous pool into circulation.  G-CSF is produced endogenously and is the primary 

cytokine responsible for the production of neutrophils. Eq. (5) also accounts for the PKs of G-CSF 

in absence of exogenous administration (92), where 𝐺𝑝𝑟𝑜𝑑 represents the rate of G-CSF production 

(ng/ml/days), 𝑘𝑟𝑒𝑛  is the rate of G-CSF renal elimination (hours-1), 𝑘𝑖𝑛𝑡 is the rate of G-CSF 

receptor-internalization rate (hours-1), 𝐾𝐷 is the dissociation constant (ng/mL), and 𝑋 is a correction 

factor (𝑋 = 𝐺ℎ𝑜𝑚𝑒𝑜/𝑁ℎ𝑜𝑚𝑒𝑜), where 𝐺ℎ𝑜𝑚𝑒𝑜 and 𝑁ℎ𝑜𝑚𝑒𝑜  are the homeostatic concentrations of 

G-CSF and neutrophils.  
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2.3 Pharmacodynamics Models  
2.3.1 Tumour Growth Inhibition by Cytotoxic Chemotherapy 
The sigmoidal effects Emax model was integrated into the Gompertz model of tumour growth to 

represent the cytotoxic effects of the chemotherapeutic drug as  

 

 
𝑑𝑉
𝑑𝑡 = (𝛼𝑉 −  𝛽𝑉𝑙𝑛𝑉)(1 − 𝐸), (6) 

 𝐸 =  
𝐸𝑚𝑎𝑥𝐶𝑝

ℎ

𝐸𝐶50 + 𝐶𝑝
ℎ . (7) 

 

Here E represents the observed effect of doxorubicin, 𝐸𝑚𝑎𝑥 is the maximal effect (assumed to be 

100%), 𝐸𝐶50 is the plasma concentration inducing the half-maximal effect, 𝐶𝑝 is the plasma 

Figure 1. Schematic of the endogenous and exogenous G-CSF pharmacokinetic model. 
Exogenous G-CSF is modelled as a subcutaneous administration, which diffuses from the 
subcutaneous pool into the blood with a rate 𝑘𝑎𝐹(𝐷𝑜𝑠𝑒𝐺−𝐶𝑆𝐹)/𝑉𝑑. G-CSF elimination occurs 
through dual routes, primarily through neutrophil-mediated, non-linear elimination (from which 
the pharmacodynamic effect is exerted) 𝑘𝑖𝑛𝑡, and through renal, linear elimination 𝑘𝑒𝑙 . Full details 
provided in Craig et al. 2015. 
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concentration of doxorubicin, and ℎ is the Hill coefficient that determines the slope of the 

concentration-effects curve.  

2.3.2 Neutrophil Production Model 
We adopted our previously published QSP model from describing granulopoiesis the bone marrow 

beginning with the hematopoietic stem cells (HSCs) and ending with terminally differentiated 

circulating neutrophils (Fig. 2) (29). In this model, HSCs self-renew to maintain their population, 

die through apoptosis, or differentiate into the various blood lineages. Once committed to  the 

neutrophils lineage, HSCs differentiate into progenitor cells that proliferate exponentially until they 

begin maturation, at which point they cease to divide. During maturation, the cells grow larger and 

gain receptors. At the end of the maturation process, cells are then stored in the bone marrow 

reservoir from which they are released into circulation. Cells in circulation then disappear through 

margination or apoptosis. Complete details on this model are found in (29). 
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Figure 2. Schematic description of the neutrophil production model. This model describes the process of 
granulopoiesis beginning at  the top of the figure with the hematopoietic stem cells (HSCs) (red circle) in 
the bone marrow where they self-renew and die. GCSF modulates the differentiation of HSCs into 
neutrophils, increases their maturation velocity and proliferation. Chemotherapy inhibits differentiation of 
HSCs into the neutrophil lineage and inhibits neutrophil proliferation. Figure reproduced under CC BY 3.0 
from Craig 2017. 

 

2.3.2.1 Myelosuppressive Effects of Doxorubicin on Neutrophil Production 

During exposure to cytotoxic chemotherapy, granulopoiesis becomes significantly reduced 

because neutrophil progenitors are exposed to their antimitotic effects, ultimately causing 

myelosuppression. To model the myelosuppressive effects of doxorubicin, we again adopted the 

PD model from Craig, et al. 2015 (29). Briefly, the effects of doxorubicin on the bone marrow were 

modelled as a linear increase in the death rate of HSCs by, 
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 𝛾𝑠
𝑐ℎ𝑒𝑚𝑜 (𝐶𝑝(𝑡)) = 𝛾𝑠

ℎ𝑜𝑚𝑒𝑜 + ℎ𝑠𝐶𝑝 (𝑡),   (8) 

 

where 𝛾𝑠
𝑐ℎ𝑒𝑚𝑜 is the rate of apoptosis of HSCs (hours-1),  𝛾𝑠

ℎ𝑜𝑚𝑒𝑜 is the homeostatic rate of 

apoptosis in the proliferative HSCs pool (days-1), and ℎ𝑠 is the first-order effect of chemotherapy 

on HSC apoptosis. When no chemotherapy is given, 𝐶𝑝(𝑡) = 0, the expression in Eq. (8) reduces to 

the homeostatic rate of apoptosis. The cytotoxic effects of doxorubicin on neutrophil progenitors 

was modelled using a non-linear effects model given by 

 

𝜂𝑁𝑃(𝐺(𝑡), 𝐶𝑝(𝑡))  = 𝜂𝑁𝑃
𝑐ℎ𝑒𝑚𝑜 (𝐶𝑝(𝑡)) +

(𝜂𝑁𝑃
𝑚𝑎𝑥 − 𝜂𝑁𝑃

𝑐ℎ𝑒𝑚𝑜(𝐶𝑝(𝑡)))(𝐺(𝑡) − 𝐺ℎ𝑜𝑚𝑒𝑜) 
𝐺(𝑡) − 𝐺ℎ𝑜𝑚𝑒𝑜 + 𝑏𝑁𝑃

, (9) 

 

where 𝜂𝑁𝑃 is the rate of neutrophil proliferation (days-1),  𝜂𝑁𝑃
𝑚𝑎𝑥  is the maximal proliferation rate of 

neutrophils (days-1) and 𝜂𝑁𝑃
𝑐ℎ𝑒𝑚𝑜  is the minimal proliferation rate of neutrophil progenitors during 

chemotherapy (days-1). Here, 𝐺ℎ𝑜𝑚𝑒𝑜 is the concentration of G-CSF at homeostasis (ng/mL). Note 

that the proliferation of neutrophil progenitors is simultaneously affected by chemotherapy (when 

administered) and exogenous/endogenous G-CSF. 

 
2.3.2.2 Myelostimulative Effects of G-CSF on Neutrophils 
G-CSF regulates neutrophil production along the entire neutrophil lineage. The G-CSF effects on 

the differentiation of HSCs is modelled through 𝜅𝑁(𝑁) (days-1) given by  

 

 𝐾𝑁(𝑁) = 𝑓𝑁
θ1

𝑆1

θ1
𝑆1 + 𝑁𝑆1

, (10) 

 

where 𝑓𝑁 is the maximal rate of neutrophil differentiation (days-1), θ1 is the half-maximal 

concentration of neutrophil differentiation (109cells/kg), and 𝑠1 is the Hill coefficient regulating 

the slope of the sigmoidal curve. The simultaneous effects of the cytotoxic agent and G-CSF in the 

stem cell compartment were modelled by 
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 𝛾𝑆(𝐺(𝑡) , 𝐶𝑝(𝑡)) =  𝛾𝑆
𝑚𝑖𝑛 − 

(𝛾𝑆
𝑚𝑖𝑛 − 𝛾𝑆

𝑐ℎ𝑒𝑚𝑜)𝑏𝑆

𝐺(𝑡) − 𝐺ℎ𝑜𝑚𝑒𝑜 + 𝑏𝑆
, (11) 

 

where 𝛾𝑆 is the rate of HSC apoptosis (days-1), 𝛾𝑆
𝑚𝑖𝑛 is the minimal apoptosis rate in the HSCs 

proliferative phase (days-1), 𝛾𝑆
𝑐ℎ𝑒𝑚𝑜denotes the rate of HSC apoptosis during chemotherapy (days-

1), and 𝑏𝑆 is the HSC apoptosis half-effect parameter (ng/mL). The effects of G-CSF on the 

proliferative rate of the neutrophils were described by Eq. (9). The effects of G-CSF on the death 

rate during maturation were given by 

 𝛾𝑁𝑀(𝐺(𝑡)) =  𝛾𝑁𝑀
𝑚𝑖𝑛 − (𝛾𝑁𝑀

𝑚𝑖𝑛− 𝛾𝑁𝑀
ℎ𝑜𝑚𝑒𝑜)𝑏𝑁𝑀 

𝐺(𝑡)− 𝐺ℎ𝑜𝑚𝑒𝑜+ 𝑏𝑁𝑀
,  (12) 

 

where 𝛾𝑁𝑀 is the rate of apoptosis during maturation (days-1), 𝛾𝑁𝑀
𝑚𝑖𝑛 is the minimal rate of apoptosis 

during maturation (days-1),  𝛾𝑁𝑀
ℎ𝑜𝑚𝑒𝑜 is the homeostatic rate of apoptosis during maturation (days-

1), and 𝑏𝑁𝑀 is the half-effect parameter (ng/mL). G-CSF is known to modulate the speed of 

neutrophil maturation, as immature neutrophils can be observed in circulation after doses of 

exogenous G-CSF (93). This effect was modelled by 

 

 𝑉𝑁(𝐺(𝑡)) = 1 + (𝑉𝑚𝑎𝑥 − 1)
𝐺(𝑡) − 𝐺ℎ𝑜𝑚𝑒𝑜

𝐺(𝑡) − 𝐺ℎ𝑜𝑚𝑒𝑜 + 𝑏𝑉
, (13) 

 

where 𝑉𝑚𝑎𝑥 denotes the maximal maturation velocity (days-1) and 𝑏𝑉  is the Michaelis-Menten 

parameter of maturation speed. Lastly, G-CSF modulates the rate of exit of the mature neutrophils 

from the neutrophil bone marrow reservoir into circulation. This effect was modelled as 

 

 𝑓𝑡𝑟𝑎𝑛𝑠(𝐺(𝑡)) = 𝑡𝑟𝑎𝑛𝑠ℎ𝑜𝑚𝑒𝑜 𝑡𝑟𝑎𝑛𝑠𝑟𝑎𝑡𝑖𝑜(𝐺(𝑡) − 𝐺ℎ𝑜𝑚𝑒𝑜) + 𝑏𝐺

𝐺(𝑡) − 𝐺ℎ𝑜𝑚𝑒𝑜 + 𝑏𝐺
, (14) 

 

where 𝑡𝑟𝑎𝑛𝑠ℎ𝑜𝑚𝑒𝑜 relates the homeostatic rate of transit from the neutrophil reservoir into the 

circulation (days-1), 𝑡𝑟𝑎𝑛𝑠𝑟𝑎𝑡𝑖𝑜 = 𝑡𝑟𝑎𝑛𝑠𝑚𝑎𝑥 − 𝑡𝑟𝑎𝑛𝑠ℎ𝑜𝑚𝑒𝑜 represents the fold-difference in 

release from the bone marrow reservoir, and 𝑏𝐺  the half-effect parameter of transit from the mature 

pool to circulation (ng/mL). 
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2.4 Parameter Estimation and Calibration 
We performed a step-wise approach to parameter estimation by integrating various sources of data 

from existing literature. For the tumour growth model parameters, we digitized the data from the 

in vitro experimental study of McKenna et al., 2017 in which four different cancer cell lines from 

metastatic TNBC were treated with doxorubicin for 30 days to assess cell growth dynamics (89). 

We began by estimating the parameters in Eq. (1) from TNBC cell line MDA-MB-468 (derived 

from a pleural effusion metastatic site) (89).  We first fit Eq. (1) to the control case in absence of 

the drug to estimate the growth rate 𝛼. We then fixed α and estimated the asymptotic tumour growth 

parameter 𝛽 to data from observed in vitro growth after exposure to 625ng (maximum dose 

administered in the experiments). All parameter estimations were performed by minimizing the 

least squares difference between observed and predicted values using fmincon in MATLAB 

R2019a (94). 

 

2.5 Establishing Effective and Minimally Toxic Chemotherapy Regimens 
To  interrogate on the optimal cycle length and dose size of doxorubicin with G-CSF support, we 

used our calibrated tumour growth model, fixed the G-CSF regimen to the optimal schedule (4 

daily subcutaneous doses of 480mcg beginning 7 days after chemotherapy) determined by Craig et 

al., 2015, and simulated numerous scenarios using the full model described in Eqs. (1)-(16). To 

quantify the tumour fold increase (FI), we compared the initial tumour size to predictions of tumour 

growth volume 15 days after the last dose of chemotherapy by 

 

 𝐹𝐼 =
𝑇𝑜𝑡𝑎𝑙 𝑡𝑢𝑚𝑜𝑢𝑟 𝑠𝑖𝑧𝑒 𝑎𝑡 𝑡ℎ𝑒 𝑒𝑛𝑑 𝑜𝑓 𝑡ℎ𝑒 𝑙𝑎𝑠𝑡 𝑑𝑜𝑠𝑒 + 15 𝑑𝑎𝑦𝑠 (𝑉)

𝐼𝑛𝑖𝑡𝑖𝑎𝑙 𝑇𝑢𝑚𝑜𝑢𝑟 𝑆𝑖𝑧𝑒 (𝑉0)  . (15) 

 

To simultaneously quantify both the positive tumour shrinkage effects of chemotherapy and the 

neutropenic effects, we coupled the fold increase (FI) with the fold decrease (FD) of the neutrophils 

given by 

 FD = 𝑛𝑎𝑑𝑖𝑟
0.22

0.585⁄⁄ , (16) 

 

where 0.22/0.585 the total blood neutrophil pool (29). To select optimal cycle lengths and dose 

sizes, we then minimized the function 
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 𝑓𝑜𝑝𝑡 = 𝑎 ∗ 𝐹𝐷𝑖𝑛𝑣 + 𝑏 ∗ 𝑙𝑜𝑔10(𝐹𝐼), (17) 

   

where 𝐹𝐷𝑖𝑛𝑣  is 1/FD. The logarithmic fold increase was used to provide comparable scales 

between 𝐹𝐷𝑖𝑛𝑣  and 𝑙𝑜𝑔(𝐹𝐼). Here, 𝑎 and 𝑏 are weights that assign a relative importance to the 

reduction of neutropenic effects and the tumour reduction effects of each regimen. 

 

3. Results 

3.1 Biweekly Chemotherapy Cycles Reduce Neutropenia 

We fixed the G-CSF regimen as described in the methods and simulated chemotherapy cycle 

lengths between 7 and 28 days (Table 1). Doxorubicin dose sizes were set to be the standard 60 

mg. Our results show that chemotherapy cycles beyond 14 days allow more time for tumour 

regrowth, from a deterministic point of view and those shorter cycles keep tumour growth better 

controlled (Fig. 3A), whereas neutrophils benefitted from longer treatment cycles (Fig. 3B).   

 

 
Figure 3. Effect of cycle length on tumour growth and neutropenia.. A) Tumour dynamics for 
representative cycle length (7, 14, and 28 days). Doxorubicin doses were fixed to 60 mg and G-CSF was 
administered according to our previously determined optimal regimen (see Craig et al. 2015). B) 
Neutrophils response to the same representative cycle lengths. 
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By varying 𝑎 and 𝑏 in Eq. (19), we were able to weight the relative importance of minimizing 

neutropenia versus maximizing tumour shrinkage, thereby providing a rational decision-making 

tool for clinicians.  For all values of 𝑎 and 𝑏 that we explored, the optimal cycle lengths were 12, 

13, and 14 days: 13 days if both maximing shrinkage and minimizing neutropenia are equally 

important, 12 days is when minimizing neutropenia was less important (Table 2). 

 

Cycle Length a=1, b=1 a=1, b=0,5 a=0,5, b=1 

7 2181.2 2181.0 1090.7 

8 1199.53 1199.40 599.91 

9 522.11 521.94 261.23 

10 7.41 7.19 3.93 

11 2.58 2.31 1.55 

12 1.94 1.62 1.28 

13 1.92 1.56 1.33 

14 2.00 1.58 1.42 

15 2.15 1.66 1.55 

16 2.41 1.86 1.75 

17 2.63 2.01 1.93 

18 2.77 2.08 2.08 

19 2.86 2.08 2.20 

20 2.95 2.08 2.35 

21 3.08 2.10 2.51 

22 3.25 2.17 2.7 

23 3.44 2.25 2.91 

24 3.65 2.34 3.13 

25 3.88 2.46 3.36 

26 4.17 2.64 3.61 

27 4.43 2.80 3.85 

28 4.64 2.92 4.05 
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Table 1. Optimization (f_opt) by Cycle Length. Optimal schedules were explored by varying a and b, i.e. 
the relative weights of minimizing neutropenia or rapidly shrinking tumour size. As before, doxorubicin 
dose sizes were fixed the standard amount (60 mg) and G-CSF was administered in 480 mcg doses for 4 
days starting 7 days post-chemotherapy. Smaller numbers represent the best cycle lengths and are marked in 
yellow.  

 

3.2 Lower Doxorubicin Doses Eliminate Neutropenia, Intermediate Doses Provide a 

Balance between Antitumour Effects and Minimal Neutropenia 

Given that 14 day cycles are the most clinically-feasible and that there was little difference between 

the optimal 12/13 day and 14 day cycles in all scenarios we investigated (Table 1), we fixed the 

cycle length to 14 days and investigated the effects of varying doxorubicin dose sizes. We 

considered only clinically-relevant doxorubicin doses (30 mg, 45 mg, 60 mg, 75 mg, 100 mg, 125 

mg), and simulated 14-day cycles at each dosing level. As expected, the tumour shrinkage effects 

were maximized by the largest dose, but this also came at the cost of severe neutropenic effects. 

We found that 45 mg and 30 mg doses were optimal when balancing tumour shrinkage and 

neutropenic effects. However, as seen in Table 2, 60 mg doses were not predicted to be significantly 

toxic (e.g. 𝑓𝑜𝑝𝑡 values of 1.24 versus 1.42 when weighting towards tumour shrinking) and provided 

more benefit in terms of the tumour growth effects. This finding again underlines the importance 

of a quantitative approach to therapy rationalization. 

 

 
Figure 4. Effect of Dose Sizes (30, 45, and 60mg/BSA) with 14 days cycle. A) Tumour response to 
doxorubicin as single agent. B) Neutrophils response to Doxorubicin with G-CSF . 

 



40 

 
Dose Sizes a=1, b=1 a=1, b=0.5 a=0.5, b=1 

30 1.41 0.87 1.24 

40 1.55 1.08 1.24 

60 2.00 1.58 1.42 

75 3.12 2.73 1.95 

100 6.78 6.43 3.73 

125 12.97 12.65 6.80 

 
Table 2. Optimizing doxorubicin dose sizes. Optimal schedules were explored by varying a and b, i.e. the 
relative weights of minimizing neutropenia or rapidly shrinking tumour size. According to our results from 
the step above, we fixed the optimal cycle length to 14days cycle for doxorubicin and G-CSF was 
administered in 480 mcg doses for 4 days starting 7 days post-chemotherapy. Smaller numbers represent 
the best cycle lengths and are marked in yellow. 
  

4. Discussion 

Finding the right dose and regimen for each individual is the goal of precision medicine. In 

this work, we have leveraged a quantitative systems pharmacology approach to improve and guide 

therapeutic decision making for cytotoxic chemotherapy with prophylactic G-CSF support in the 

context of TNBC.  

To explore the central question of how to best balance the tumour shrinkage effects of 

cytotoxic chemotherapy while reducing the neutropenia it induces, we first calibrated the Gompertz 

model to describe tumour growth dynamics in TNBC and coupled it with PK/PD models of 

doxorubicin. We next leveraged a QSP model of granulopoiesis (29) to consider the main 

components of a standard regimen: cycle length and dose sizes. Considering clinical feasibility and 

relevancy, we found that 14 day cycle lengths with dose sizes of 30 mg/m2 and 45 mg/m2 (and up 

to 60 mg/m2) best mitigated the neutropenic risk while providing maximal tumour shrinkage 

benefits. Incorporating the QSP model of granulopoiesis to investigate the effects of both the 

chemotherapy and  G-CSF in the neutrophil production pipeline was essential for us to predict the 

effect of doxorubicin alone, G-CSF alone, and the simultaneous effects of both drugs. This 
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approach enabled us to propose doxorubicin-G-CSF regimens that simultaneously maximize 

tumour killing while minimizing neutropenia. By exploring how the weighting of the positive and 

negative effects of combination doxorubicin and G-CSF affect outcomes, our results provide a 

rational and clinically-relevant decision-making strategy that is easily translatable to the clinic. 

There are certain limitations to our work. The choice of the Gompertz model to describe 

tumour growth implies that cytotoxic chemotherapy effect controls tumour size but does not 

completely eliminate the tumour. Nonetheless, Gompertzian growth provides dose-variable 

carrying capacities, and initial exponential growth (therefore mimicking early tumour growth 

dynamics). Through model fitting, we successfully recapitulated in vitro growth dynamics and 

estimated the parameters for our PD model of tumour growth. The estimation of these constants is 

specific to the context of TNBC; using in vivo tumour growth observations would further 

strengthen our predictions of tumour growth dynamics. Future work should also consider other 

important doxorubicin side effects including cardiotoxicity. We could also explore other tumour 

growth models and include the development resistance to therapy to compare to the results 

presented here.  

Despite these limitations, our approach contributes a rational scheme for determining 

combination chemotherapy and G-CSF regimens using doxorubicin that is easily implemented into 

the clinic. TNBC is an aggressive form of breast cancer that is difficult to treat. Thus, new 

approaches are necessary to improve outcomes. We believe that the modeling approach we present 

here can be a useful tool for the clinical practice, where there is a need to strike a balance between 

treatment aggressivity and a patient’s tolerance to treatment. Ultimately, this work delineates a 

rational way to address prophylactic and supportive G-CSF treatment during cytotoxic 

chemotherapy. 
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Optimizing Cytotoxic Chemotherapy by Maximizing Solid Tumour Shrinkage and Minimizing 
Neutropenia in the Context of Triple Negative Breast Cancer 

Rosalba Vivian Paredes Bonilla, Fahima Nekka, Morgan Craig 
Correspondence to: morgan.craig@umontreal.ca  

 
Figure S1. Fitting TNBC Cell Culture Growth Dynamics. The effects of doxorubicin on TNBC cell line 
MDA-MD-468. Red circles: data digitized from McKenna, MT et al.  2017(89); blue solid line: model fit  
A) Estimating 𝛼 in absence of treatment (𝛼 = 0.02265 (hours-1)). B) Estimating  𝛽 after exposure to 625ng 
of doxorubicin (𝛽 = 0.0011713 (cells)). 

 

 
Figure S2. Neutropenic effects of doxorubicin. A) In Vainstein et al., 2006, neutrophil counts from patients 
undergoing doxorubicin alone were collected and quantified as the relative fold-difference with respect to 
baseline. Results digitized from (95). B) We calibrated the model from Craig et al. 2015 (29) to the results 
in A. 
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Sensitivity analysis 
We investigated the sensitivity of our predictions on parameters 𝛼 and 𝛽 in Eq. 19 by varying both 
by ± 20%. Results were then assessed by measuring the fold-difference with respect to α and β at 
their fixed values (see Figure S1).  
 

 
Figure S5. Sensitivity analysis of the tumour growth model. The sensitivity of the Gompertzian tumour 
growth model to its parameters were explored by varying both 𝛼 and 𝛽 by ±20% and comparing the 
resulting tumour growth to the control case (where 𝛼 and 𝛽 values were fixed as in the main analysis). 

Figure S3. A) Fold increase (FI) measurements obtained using Eq.15 in the main text for all cycle lengths 
(7 to 28 days), with dose sizes fixed to 60mg/BSA. B) FI measurements for all dose sizes (30, 45, 60, 75, 
100, 125mg/BSA). See complete description in the Methods in the main text. 
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Chapitre 4 – Discussion 

The first part of this work concerned the selection of a deterministic mathematical model of tumour 

growth, where determinism  refers to models that only consider the average behaviour but not the 

variability. Among the different mathematical models, Gompertz model was selected since it 

proved to provide the best fits for breast and lung cancer data (69) and has the advantage to only 

involve two constants to be estimated (96). Then, we combined this model with the Sigmoidal 

Emax Model to build a pharmacodynamics (PD) model and explain the effect of the drug on the 

tumour growth. With this PD model, we could formulate several hypothesis. When no 

chemotherapy is given,  the effect (E) is equal to 0, and there are tumoral cells dividing. But when 

chemotherapy is given and Emax is 1,  the tumour cells will be affected and we expect the tumor 

cells to stop growing.  

In the drug development process, dose-effect studies to confirm safety and efficacy of the 

drug are performed first on animal models and cancer cell lines. For the parameter estimation of 

the Gompertz model, we obtained them by digitizing the data from (89); the parameters  estimations 

were found by minimizing the least squares difference between observed and predicted values 

using fmincon in MATLAB R2019a (94). The resulting estimated  parameters are considered to be 

valid only for TNBC and for the context of this study. Therefore, these estimated constants should 

not be used to simulate dose-effect responses for other types of cancer since cancer tissue is specific 

to each cancer type, as well as the type of cytotoxic mechanism and potency of the drug. The 

parameters for the PK model of doxorubicin were obtained from (90).  

In our pursuit to find the best cytotoxic chemotherapy – G-CSF regimen, we have leveraged 

the PK model of G-CSF and a Quantitative Systems Pharmacology (QSP) model of neutrophil 

production that describes the effects of cytotoxic chemotherapy and G-CSF in the bone marrow 

and circulating neutrophils, previously developed by Craig et al., 2015 (29). We next used our 

parameters estimations and PK/PD models of doxorubicin and G-CSF to simulate several 

doxorubicin-G-CSF regimens possibilities in MATLAB R2019a (94). We have explored the 

frequency and dose intensity of doxorubicin. Throughout this study, the G-CSF regimen was fixed 

as previously determined: 4 doses of G-CSF 480mg/m2 starting on day 7 after chemotherapy (29). 

From our simulations, we concluded that 7 days cycle length of chemotherapy doses gave less time 

to the bone marrow to recover and the effect of G-CSF is lessened as well. Selection of a dosing 
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interval to sustain a desired level of effect has to take into account the time course of effect. Taking 

in consideration that half-life of doxorubicin is 20 – 48 hours (45,46), it would take almost 10 days 

to completely eliminate doxorubicin (5 half-life) in the extreme case. Therefore, cycles that are 

shorter than 10 days would not be good for the neutrophils, because the effects of the cytotoxic 

chemotherapy are still there. When we administer the biologic drug that mimics the action of 

endogenous G-CSF, the recovery of the neutrophils can become faster. Nevertheless, G-CSF and 

chemotherapy both affect the HSCs and neutrophils, but G-CSF can be dampened by high doses 

of chemotherapy. If dosed incorrectly this could also increase the risk of severe neutropenia.  

On the side of the tumour growth, the less frequently the dose of chemotherapy is delivered, 

the more time we are allowing the tumour to have the chance to regrow, and therefore,  spacing the 

doses for long time is not a choice neither. In respect to dose intensity, as could be expected, we 

confirmed that the highest dose in our simulations, 125mg, achieved the best anti-tumour effect, 

but this was disastrous for neutrophils. Our results suggest that cycle lengths of 7 days maintain 

the tumour within the smallest fold increase, with 14 days as the cycle that prioritizes the neutrophil 

counts. Neutrophil nadirs for cycles between 14 and 28 days are not significantly different, but 

severe neutropenic effects were observed for shorter cycles.  

With these results, we have shown that a mathematical-based approach was an adequate 

method to select the best drug regimen. To dose doxorubicin, the importance was given to both the 

tumour size and neutropenia. The optimization function (f_Opt) considered the maximisation of 

tumour inhibition (b) and minimisation of neutropenic effects (a). Thanks to this function, we 

selected the best cycle length and dose intensity. In the optimization, we applied the logarithm to 

the fold increase of the tumour to linearize our results, and to limit the tumour volumes to a 

logarithmic scale base 10. As expressed in Eq.(17), we quantified the tumour growth by dividing 

the tumour volume at 15 days after the last dose of chemotherapy by the initial tumour volume. 

We also obtained the fold decrease (FD) by dividing the neutrophil nadirs by the baseline 

neutrophil counts. With regards to neutropenia minimization, the inverse was applied to FD. To 

minimize neutropenia, we expect that FD gets closer to zero. When FD tends to infinity, 𝐹𝐷𝑖𝑛𝑣 =
1

𝐹𝐷
 tends to zero. This function allowed us to compare the different choices for determining the best 

one.  

By implementing the optimization function, we were able to balance the effects of the 

cytotoxic chemotherapy and its side effects (neutropenia) while including the effects of G-CSF. 
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We found that 14 days cycle was optimal according to the optimization scheme. Regimens that 

best balanced the anti-tumour effects and still minimized neutropenia was 45mg every 14 days.  

Lastly, we investigated the robustness of our estimations for the tumour growth parameters 

𝛼 and 𝛽 through sensitivity analysis. In this study, we confirm that Gompertz model was more 

sensitive to changes in the 𝛼 growth parameter but less so in the 𝛽 parameter. Due to the fact that 

𝛼𝑁 is an exponential, a fluctuation of ±20% is going to have a significant change on the number 

of cancer cells in the tumour. Nonetheless, because 𝛽𝑁𝑙𝑛(𝑁) describes an asymptotic behaviour, 

a  ±20% does not influence on the final size of the tumour size at all.   

This work has its limitations that should be mentioned. The first limitation concerns the 

deterministic nature of the tumour growth model. Stochastic models can indeed represent better 

the tumour cell behaviour. However, Gompertz model is more suitable for its simplicity and the 

possibility to estimate its parameters in a real setting. We indeed estimated these parameters from 

experimental data of the dose-effect of doxorubicin on a specific TNBC cell line. The estimation 

of these constants is specific to the context of TNBC; using in vivo tumour growth observations 

would further strengthen our predictions of tumour growth dynamics. 

Despite these limitations, our approach is relevant because we simulated numerous 

possibilities of cytotoxic chemotherapy regimens within the context of TNBC. Thanks to our 

previously optimized G-CSF regimen we were capable to balance together the anti-cancer effects 

of doxorubicin and the effects of G-CSF to prevent neutropenia. Finally, we achieved to select the 

best regimens through a numerical approach. Future work should also consider other important 

doxorubicin side effects including cardiotoxicity. We could also explore other tumour growth 

models and include the development resistance to therapy to compare to the results presented here. 

We believe that our modeling approach can have a real impact on the pharmaceutical industry in 

pre-clinical studies, where there is a necessity to translate experimental studies to drug regimens 

for cancer patients.  TNBC is an aggressive form of breast cancer that is difficult to treat. Thus, 

new approaches are necessary to improve outcomes. Ultimately, we believe that the modeling 

approach we present here can have a real impact on clinical practices, where there is a need to 

strike a balance between aggressive treatment and a patient’s tolerance to this treatment.  
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Chapitre 5 – Conclusion 

In this work, we delineated a rational way to address prophylactic and supportive G-CSF treatment 

during cytotoxic chemotherapy with doxorubicin as single agent. We have demonstrated that 

mathematical and statistical approaches are important in the drug development process, especially 

to translate in vitro studies to in vivo human studies and to make predictions of the exact doses of 

a drug, that are safe and effective for the patients. We concluded that this numerical approach had 

the power to predict a number of cases that would  have been risky to test in the clinical setting.  

Also, this study can guide clinicians to understand the importance of rational dosing in cytotoxic 

chemotherapy regimens for obtaining both positive outcomes and preventing side effects.  

Future work should also consider other important doxorubicin side effects including cardiotoxicity. 

This aspect can be further investigated by adapting a pharmacodynamic model that describes 

relevant features of the heart and couple it to the effect of the drug (97). For example, the electrical 

properties of the heart and the changes on the rate of the heartbeat. Anthracyclines drugs such as 

doxorubicin can prolong the QT interval, which can lead to severe cardiac arrhythmias (98). Some 

authors investigated the effect of an anti-cancer drug that prolongs the QT interval, by developing 

a PK-PD model for translational purposes. The time course of the QT interval was described using 

an ordinary nonlinear differential equation with the following components: the individual heart rate 

correction, the circadian rhythm, and the drug effect  (99,100). It has also been investigated a partial 

differential equation that describes the propagation of the electrical impulse of the heart to model 

conduction disturbances in the heart by coupling this model to the drug effect (101,102). 
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