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Résumé 

L'efficacité de la reproduction bovine a considérablement diminué dans les dernières 

décennies et cette diminution constitue un problème économique majeur. Pour mieux contrer ce 

problème, la physiologie des cellules stéroïdogéniques ovariennes dont les cellules de granulosa 

(CG) doit être mieux comprise au cours des dernières étapes de la croissance folliculaire, de 

l'ovulation et de la lutéinisation. En ce sens, nous avons précédemment identifié divers gènes 

induits dans les CG des follicules ovulatoires bovins par la LH/hCG incluant Ankyrin-repeat and 

SOCS-box protein 9 (ASB9). Cependant, les mécanismes d’action d’ASB9 dans les CG étaient 

encore indéfinis. Les objectifs de cette étude étaient d'élucider le rôle d'ASB9 dans les CG ainsi 

que ses effets sur ses partenaires spécifiques PAR1, TSG6 et TAOK1. Un modèle in vivo de CG 

provenant de follicules à différentes phases de développement: petits follicules (SF), follicules 

dominants (DF) et follicules ovulatoires (OF), et un modèle in vitro de CG en culture ont été 

utilisées. L'inhibition d’ASB9 dans les CG via CRISPR/Cas9 a montré une augmentation 

significative de PAR1, PCNA, CCND2 et CCNE2 et une diminution significative de TAOK1, TSG6 

et CASP3. Dans le modèle in vivo, PAR1 a été différentiellement exprimé dans DF et TSG6 et 

TAOK1 ont été induits dans OF. L'inhibition de l'ASB9 a aussi entraîné une diminution de 

l'apoptose des CG et de l'activité caspase3/7. Des analyses Western blot ont démontré que 

l'induction d'ASB9 dans OF, après l'injection d'hCG, était concomitante avec une diminution 

significative des niveaux de phosphorylation de MAPK3/1 tandis que pMAPK3/1 augmentait 

après l'inhibition d'ASB9. Ces résultats supportent qu'ASB9 pourrait être un régulateur de l'activité 

et de la fonction des CG en ciblant des protéines spécifiques qui affectent la signalisation MAPK, 

limitant la prolifération des CG. Ces résultats contribuent à une meilleure compréhension de 

l’activité ovarienne et de la reproduction bovine. 

Mots clés: ASB9, cellules de granulosa, prolifération, MAPK, ovaire, ovulation, bovin, 

reproduction, fertilité. 
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Abstract 

The efficiency of bovine reproduction has considerably decreased in recent decades and 

this decrease constitutes a major economic problem. To better counter this problem, the physiology 

of ovarian steroidogenic cells including granulosa (CG) cells needs to be better understood during 

the later stages of follicular growth, ovulation and luteinization. In this sense, we have previously 

identified various genes induced in the CGs of bovine ovulatory follicles by LH / hCG including 

Ankyrin-repeat and SOCS-box protein 9 (ASB9). However, ASB9 mechanisms of action in GC 

were still undefined. The objectives of this study were to elucidate the role of ASB9 in CG as well 

as its effects on target partners PAR1, TSG6 and TAOK1, and on MAPK signaling. An in vivo 

model of GC from follicles at different developmental stages: small follicles (SF), dominant 

follicles (DF), and ovulatory follicles (OF) and an in vitro model of cultured GC along with the 

CRISPR/Cas9 approach to inhibit ASB9 were used. Inhibition of ASB9 in GC resulted in 

significant increase in PAR1, PCNA, CCND2, and CCNE2 and significant decrease in TAOK1, 

TNFAIP6, and CASP3 expression. From in vivo samples, PAR1 was differentially expressed in DF 

as compared to OF while TSG6 and TAOK1 were induced in OF. Further analyses showed an 

increase in GC number and a decrease in apoptosis and caspase3/7 activity following ASB9 

inhibition. Western blot analyses demonstrated that ASB9 induction in OF by hCG was 

concomitant with a significant decrease in MAPK3/1 phosphorylation levels while pMAPK3/1 

increased following ASB9 inhibition. These results provide strong evidence that ASB9 is a 

regulator of GC activity and function by modulating MAPK signaling pathway likely through 

specific binding partners such as PAR1, therefore controlling GC proliferation. These results 

contribute to a better understanding of ovarian activity and bovine reproduction. 

Keywords: ASB9, granulosa cells, proliferation, MAPK, ovary, ovulation, bovine, 

reproduction, fertility. 
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1.1. Introduction 

The primary functions of the ovary are to produce the female gametes (oocytes) and steroid 

hormones, estrogen, and progesterone. Each oocyte is accommodated in a specialized structure 

called a follicle, which contains two types of somatic cells: granulosa and theca cells. These two 

somatic cells collaborate to produce the steroid hormone, estrogen. The follicles and the contained 

oocytes develop so that a species-specific number of follicles ovulate every reproductive cycle to 

release the fertilizable oocyte into the uterus. The remnant of the ovulated follicle transforms into 

a transient gland called the corpus luteum, which produces another steroid, progesterone, that is 

necessary for the maintenance of pregnancy.  

The ovary contains follicles and corpora lutea at different stages of development. 

Primordial follicles, which are the smallest and most immature follicles are stimulated to begin 

growth as primary follicles, wherein the oocyte is surrounded by a single layer of cuboidal 

epithelium. The secondary follicle has two or more layers of cells surrounding the oocyte grows 

and becomes an antral follicle that contains multiple layers of granulosa cells. At the antral stage, 

follicle-stimulating hormone (FSH) allows several small follicles (SF) to grow; following the 

follicular recruitment phase, a single follicle continues its development and becomes the dominant 

follicle (DF), When the antral follicle becomes the dominant preovulatory follicle, it ovulates in 

response to the preovulatory luteinizing hormone (LH) surge. However, the process of follicular 

development and ovulation involve an intricate system of signaling pathways and mechanisms that 

are not fully understood.  

Ovulation is the ultimate goal of follicular growth and is achieved by less than 0.1% of the 

follicles in the ovaries. This process allows the release of a mature oocyte from the follicle to the 

oviduct for fertilization. In cows, ovulation is triggered approximately 30 hours after the release 

of gonadotropic hormones [1]. The changes seen in the follicle and oocyte during the ovulation 

process are initially associated with the rapid increase in LH levels. LH binds to its membrane 

receptors, LHCGR, located on the granulosa cells and the internal theca cells, and leads to an 

increase in intracellular signaling followed by modifications in the spatio-temporal expression of 

specific genes and the activation of proteins in the various follicle compartments such as the cell 

layers of the theca, granulosa and cumulus-oocyte complex [2, 3]. Within these compartments of 

the ovulatory follicle, various paracrine and autocrine signals contribute to the events leading to 

the rupture of the follicular wall. These events include tissue remodeling and a controlled acute 
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inflammatory response as well as the expansion of cumulus cells, which marks the final maturation 

of the cumulus cell and oocyte complex. Finally, the differentiation of granulosa cells and internal 

theca into luteal cells, the angiogenesis and contraction of the cells of the follicular wall trigger 

the rupture of the follicle and the infiltration of immune cells [4]. 

Granulosa cells (GC) are a particularly important component of the follicle because they 

play an essential role in reproductive functions. They contribute to the synthesis of steroid 

hormones, the maturation of the oocyte and the formation of the corpus luteum following 

ovulation. Activation of the LH receptor in GC stimulates the production of cAMP, activates 

certain protein kinases, which lead to modifications in the expression of specific genes and the 

synthesis of proteins required for the ovulation and luteinization processes. 

Previous gene expression studies from our laboratory identified ankyrin-repeat and SOCS-

box protein 9 (ASB9) as a differentially expressed gene induced by LH/hCG in GC of bovine 

ovulatory follicles [5]. Ankyrin repeat and SOCS Box proteins interact with a wide variety of target 

substrates via ankyrin repeat domains [6]. In addition, members of ASB protein family can interact 

with the elongin B-C adapter complex via their SOCS box domain and further complex with the 

cullin and ring box proteins to form E3 ubiquitin ligase complexes and participate in protein 

degradation. Thus, SOCS proteins regulate protein turnover by targeting proteins for 

polyubiquitination and proteasome-mediated degradation. In our recent study, we showed high 

expression of ASB9 in ovulatory follicle (OF) compare to other stage of follicular development 

also we identified some binding partners of ASB9 in granulosa cells of bovine species. Because 

ASB9 expression in the OF is considerably induced, it is conceivable that ASB9 might play a role 

in the ovulatory process, granulosa cell differentiation, and extracellular matrix remodeling by 

targeting specific proteins for binding and degradation.  Using CRISPR/Cas9 technology in order 

to inhibit the expression of ASB9 in GC of bovine ovulatory follicles, we report novel data, which 

demonstrated the importance of ASB9 in the ovulatory follicle for regulating proteasomal 

degradation, modulating MAPK activity through binding partners and contributing to decreasing 

GC proliferation.  

This study contains results from studies using in vivo and in vitro model of granulosa cells. 

These findings provide new information on the ASB9 role in the ovary. The data obtained will 

significantly advance our understanding of follicle development and ovulation. Investigation of 
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these molecular mechanisms involved in follicular development will help to identify the possible 

causes associated with decreased fertility in dairy cows that often involves the ovary. 
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2.1. Folliculogenesis 

The ovary of the cattle is an endocrine gland responsible for the production of steroids and 

the release of the oocyte [7]. The ovary undergoes maturation through folliculogenesis and plays 

a primary role in support of the oocyte. In bovine, ovarian follicular development occurs in two or 

three consecutive follicular waves during each estrous cycle [8, 9]. Various endocrine, paracrine 

and autocrine factors regulate ovarian follicle development and then the selection of a single 

follicle for ovulation. The majority of follicles undergo the degenerative process called atresia and 

will not reach the preovulatory stage [10]. During follicular development, primordial follicles 

undergo a series of critical changes. First, they change into primary and later into secondary 

follicles. The follicles then transition to antral follicles. At the antral stage, several follicles are 

affected by the blood concentration of follicle-stimulating hormone (FSH); following the follicular 

recruitment phase, a single follicle continues its development and becomes the dominant follicle 

(DF) [11, 12]. According to the time of the estrus cycle, the DF continues its growth to become an 

ovulatory follicle (OF), from which the oocyte is released during ovulation. During follicular 

growth, granulosa cells of follicles beyond 5-6 mm in diameter acquire luteinizing 

hormone/chorionic gonadotropin receptors (LHCGR) [13, 14]. These receptors allow the follicle 

to grow amid low FSH concentrations and become more responsive to the luteinizing hormone 

(LH), which is critical for the growth of the follicle beyond 7 mm in diameter. Overall, follicular 

growth induces a series of changes, such as the growth of oocyte and proliferation of granulosa 

cells. 

 

Figure 1. Ovarian follicle classification modified from [15]. The primordial follicle contains a 

small oocyte surrounded by a single layer of pre-granulosa cells. The primary follicles have an 

enlarging oocyte surrounded by the zona pellucida and a layer of granulosa cells. The secondary 

follicles are large preantral follicles that gain two to six layers of granulosa cells around the 
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oocyte. As antral follicles form, the granulosa cells differentiate into two anatomically and 

functionally different groups: the mural granulosa cells and the cumulus cells. At puberty, FSH 

secreted by the pituitary promotes further granulosa cell proliferation and survival. Ovulation of 

the dominant follicle occurs in response to a rise in LH. 

2.2. Ovarian follicles 

In ruminants, folliculogenesis starts from the formation of primordial follicles that occur 

before birth and continues throughout fetal, neonatal and adult life [16]. Ovarian follicles are 

classified (Figure 1) in preantral (primordial, primary, secondary follicles) and antral (tertiary and 

preovulatory follicles). 

2.2.1. Primordial follicle 

Between days 91-144 of fetal life, the first follicles separate themselves by producing a 

basement membrane to form the primordial follicles. Each primordial follicle contains a small 

oocyte surrounded by a single layer of flattened pre-granulosa cells encapsulated by the follicular 

basal lamina [15, 17]. In these follicles, the oocyte and granulosa cells do not have the receptors 

for LH or FSH and do not require gonadotropins for their survival and continued development, but 

the oocyte and granulosa cells do have receptors for some growth factors [18]. These follicles 

express hundreds of genes, involved in signaling function, DNA repair, ribosomal function, 

mRNA processing and protein synthesis. Most of the expressed proteins in these follicles are 

associated with cell maintenance and growth preparation [19]. Examples of genes expressed in 

oocytes, granulosa cells and theca cells of primordial, primary and preantral follicles are listed in 

Table I. 

2.2.2. Primary Follicle 

After day 140 of fetal life, the first activated primary follicles appear in bovine fetal ovaries. 

These small follicles continue gonadotropin-independent growth, controlled by secreted factors 

from the oocyte. According to studies on the human ovary and animal models, several members 

of the TGFβ super-family, such as AMH, activins, BMP-4, BMP-7, and GDF-9, play critical roles 

in the regulation of primary follicle activation [20]. Once activated, the primary follicles have an 

enlarging oocyte surrounded by the zona pellucida, and a layer of granulosa cells that have become 

cuboidal in shape. The transformation of the flattened pre-granulosa cells into a single layer of 11-
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40 cuboidal granulosa cells around the oocyte is observed in this stage [19, 21]. The primary 

follicle is characterized by the development of the zona pellucida (ZP), which was absent in 

primordial follicles. Hundreds of genes, including those related to the synthesis of the ZP and 

involved in mitochondrial function, cell signaling and communication, which are not found in 

primordial follicles, are activated during this stage of growth [15]. 

Table I. The expression and location of selected genes* expressed during the primordial, primary 

and preantral folliculogenesis stages. 

 

*All genes were localized by in situ hybridization [22]. type 1 (primordial), type 2 (primary), 

type 3 (small preantral), type 4 (large preantral). O, oocyte; G, granulosa cells; T, theca cells 

[23]. 

2.2.3. Secondary follicle 

The secondary follicles are large preantral follicles that gain two to six layers of granulosa 

cells around the oocyte. They also present a well-delimited zona pellucida and a theca interna [21]. 
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The secondary follicles are considered gonadotropin-responsive because these follicles present not 

only FSH responsive granulosa cells but are also characterized by the development of LH 

responsive theca interna [24, 25]. The acquisition of the enzymes required for thecal androgen 

production is essentially complete before antrum formation. 

2.2.4. Antral follicle 

During the growth of secondary follicles and after day 210 of fetal life, granulosa cells 

perform an organization with several layers and a cavity filled with follicular fluid [26]; this 

organization is named tertiary or early antral follicles [27]. The antrum is a fluid-filled cavity that 

is formed in the follicles under the influence of FSH. As follicle development progresses, the 

follicles gradually become more and more reliant on gonadotropins, first as gonadotropin-

responsive follicles and then as gonadotropin-dependent follicles [28]. As antral follicles form, the 

granulosa cells differentiate into two anatomically and functionally different groups: the mural 

granulosa cells that have principally a steroidogenic role; and the cumulus cells that form a life-

support association with the oocyte [29]. In follicles 6–8 mm in size, granulosa cells begin to 

express CYP19A1 (aromatase), allowing theca-derived androgens to undergo aromatization to 

estrogens by FSH-stimulated granulosa cells [30]. The LH-stimulated theca cell production of 

androstenedione via CYP17A1 is enhanced by granulosa cell-derived paracrine factors [31]. These 

paracrine factors include inhibins, IGF-I, and IGF-II as well as retinoic acid, which stimulate theca 

cells androgen production; conversely, follistatin binds to activin to inhibit its androgen-

suppressing effect. 

2.3. Follicular dynamics in cow 

Cows are mono-ovulatory species, and generally ovulate one follicle per cycle. As a non-

seasonal polyestrous species, cows continually have estrous cycles all year round. The entire 

estrous cycle averages 21 days and studies using ultrasonic imaging shows there are two or three 

follicular waves in each estrous cycle of cattle. Two-wave cycles are shorter (19–21 days) than 

three-wave cycles (22–23 days) [32, 33]. These waves of follicular development appear as periods 

of growth and regression of a group of 5 to 10 follicles with diameters ≥ 2 mm. As shown in figure 

2, each follicular wave is characterized by a period of recruitment, selection and dominance. At 

the beginning of the estrous cycle (day 1-2), an increase in the level of FSH, stimulates the 
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recruitment of 5 to 10 follicles (2-4 mm in diameter) to grow [7, 9]. At the 4 mm diameter stage, 

the follicles become more dependent on gonadotropic hormones, initially FSH from 4 to 8 mm 

and LH around 8 mm, while the subordinate follicles degenerate through atresia. During this phase, 

a single follicle acquires the characteristics required to grow in an environment with a low 

concentration of FSH and will continue its development [34, 35]. Expression of LH receptors by 

granulosa cell in this stage (≥ 8 mm in diameter) supports the development of the follicle under 

the action of LH. Following the selection, the dominance phase begins when the dominant follicle 

continues to grow to reach 12 to 15 mm in diameter [35, 36]. A decrease in the synthesis of 

estradiol (E2) coupled with the presence of a CL secreting progesterone (P4), which has a negative 

effect on LH release from the pituitary, leads to the growth of the first dominant follicle of the 

cycle to slow down around day 7-8 of the estrous cycle [37]. The loss of dominance between days 

7 and 9 promotes a further transient increase in blood FSH, which stimulates the emergence of a 

new phase of follicle recruitment of small follicles. This recruitment is followed by the selection 

of a new dominant follicle. If luteal regression occurs during the period of development of the 

second dominant follicle, it will ovulate. If not, the second dominant follicle will become atretic 

and will be followed by a third follicular wave and ovulation [38]. 

 

Figure 2. Ovarian  follicular dynamics during the estrous cycle, modified from [34]. Selection, 

dominance, and loss of dominance phases occur during each developmental wave of follicles. 

Cohorts of follicles grow then one is selected to become dominant follicle; the other follicles 

degenerate through atresia. In the early and mid-luteal phases, the dominant follicle also 

atrophies, but in the cohort that develops in the late luteal phase, the dominant follicle ovulates. 

A number of studies based on gene expression analyses have shown differential gene 

expression in bovine follicles at different stages of development [39-42]. At the stage preceding 

selection, a number of additional genes have been identified (CYP19A1, INHBA, ApoER2, 
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MAPKK5, and CPD) that were stronger in granulosa cells of the largest compared to smaller 

follicles suggesting their relation with follicular dominance [43]. During the selection stage, there 

is a decrease in the expression of FSHR and other genes known to be induced by FSH in granulosa 

cells including: Association of estrogen receptor β (ESR2), Inhibin A Subunit Alpha (INHA), 

Activin A receptor, type I (ACVR1), and Cyclin-D2 (CCND2). Additionally, in granulosa cells, the 

selection stage is associated with an increased expression of LHCGR and two proapoptotic genes 

Siva and FADD, whereas in theca cells, expression levels of two antiapoptotic factors TIAF1 and 

LASS4 and one proapoptotic factor TNFSF8 were increased [44]. During the dominance stage, 

expression levels of CYP19A1 and TBC1D1 are stronger in dominant compared to subordinate 

follicles and these genes can be used as biomarkers of follicle differentiation in cattle [45, 46]. 

Likewise, growth of the dominant follicle was associated with increased mRNA expression of 

survival genes in granulosa cells (CYP19A1, LHCGR, DICE-1, and MCL-1) compared to 

subordinate follicles, whereas mRNA amounts of genes associated with apoptosis (TGFBRIII, 

COX-1, TNFa, CAD and DRAK-2 in granulosa cells and TGFBRIII, CASP13, P58(IPK), Apaf-1 

and BTG-3 in theca cells) were more significant in subordinate than in dominant follicles [47, 48]. 

2.4. Follicular atresia 

More than 99.9% of ovarian follicles do not ovulate but instead undergo atresia [49]. 

Atresia is a degenerative process that stops the growth of the follicle [8]. Atresia can occur at any 

time during the growth of the follicle. Still, the collective evidence suggests that the rate of 

follicular atresia in adult animals is lower in the preantral stages of growth as compared to the 

antral follicle [50]. It has been estimated that the rate of atresia in bovine follicles is higher just 

before the final stages of follicular development and after the formation of the antrum [49]. 

Follicular atresia is initially characterized by the appearance of picnotic bodies, which result from 

the fragmentation and condensation of chromatin in granulosa cells [51]. Following the appearance 

of picnotic bodies, the granulosa cells layer becomes detached, the basement membrane is 

separated, and the granulosa and theca layers become fragmented followed by loss of capillary 

vascularization [49]. Various factors are responsible for initiating the process of apoptosis. These 

signals can come from outside or inside the cell. The mitochondrion serves as a center for 

integration of signals for apoptosis vs. survival. The decline or lack of growth factors such as FSH, 

E2 or IGF1 or the activation of membrane receptors of cell death stimulates intracellular signaling 
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pathways, which result in activation of various caspases 3, 6 and 7 [52]. Caspases destroy proteins 

involved in cell division, cellular structure, and repair proteins, as well as transcription and 

translation factors. Interaction among proapoptotic and antiapoptotic members of the Bcl-2 family 

of proteins in the mitochondrion determines whether pathways for apoptosis are activated or 

suppressed. The members of the Bcl-2 family include proapoptotic proteins: Bax, Bad, Bim, Bid, 

Bok, and Bcl-x-short and anti-apoptotic proteins: Bcl-2, Bcl-x-long, and Bcl-w. Extracellular and 

internal signals initiate apoptosis by causing the release of cytochrome c from the mitochondria 

into the cytoplasm. Cytochrome c binds to apoptosis-activating factor (Apaf)-1 and then to 

procaspase-9, forming a complex known as the apoptosome. Active caspase-9 within the 

apoptosome activates downstream caspases, including caspase-3 [53]. Coordinated cleavage of 

important cellular substrates by caspases eventually kills the cell [52, 54]. Several mechanisms 

have been proposed to induce apoptosis in granulosa cells; these include binding of specific ligands 

to their respective receptors, such as tumor necrosis factor-alpha (TNF) [55], inhibition of cell-

cell contact [56], presence or absence of specific growth factors [57], and altered levels of 

hormones such as estrogens and androgens [58]. Some studies have shown that strong 

concentrations of progesterone may play an important role in initiating the regression of non-

ovulatory dominant follicles during the bovine estrous cycle [59].  

2.5. Granulosa and Theca cells 

The two primary somatic cell types in the ovarian follicle are the granulosa cells (GC) and 

theca cells (TC). These two somatic cell types are the site of action and synthesis of several 

hormones that promote a complex regulation of follicular development. The proliferation of these 

two cell types is in part responsible for the development of the antral ovarian follicle. As granulosa 

cells proliferate, they differentiate into three different types of cells: the cumulus cells that enclose 

and support the oocyte, antral granulosa cells that are adjacent to the follicular antrum, and basal 

or mural granulosa cells (MGC) that are adjacent to the basal lamina that separates the granulosa 

cells compartment from the theca cells compartment (Figure 3). MGC expresses the greatest 

steroidogenic activity and the strongest concentration of LH receptors. During the growth of the 

follicle, GC plays an important role in steroidogenesis [60], maturation and release of the oocyte 

[61], and formation of corpus luteum after ovulation [62]. Granulosa cells also produce growth 

factors such as Inhibin, Activin, BMP-2, BMP-5, BMP-6 and AMH (Anti-Mullerian hormone) 
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[63-65]. The control of GC proliferation and function is complex and depends on the precise 

regulation and activation of specific target genes. This regulation is essential for normal follicular 

development. FSH stimulates GC to convert androgens (from the thecal cells) into estradiol by 

aromatase. After ovulation, the luteinized granulosa cells will form large luteal cells and produce 

progesterone.  

The theca cells compartment contains an inner layer of steroidogenic cells called the theca 

interna, an outer layer of fibroblast-like theca externa, and a rich vascular network. Theca cells are 

vital components of the follicle, providing structural support and the production of ovarian 

androgens. Androgens are essential substrates for estradiol production in the neighboring 

granulosa cells.  

 

Figure 3. Preovulatory follicle prior to the LH surge [66]. The oocyte is surrounded by the zona 

pelucida and cumulus granulosa cells that connect to the mural granulosa cells. The granulosa 

cell compartment is separated from the theca cell compartment by a basal lamina. The theca cell 

compartment is composed of an inner theca interna and an outer theca externa. The theca 
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externa blends into a layer of connective tissue that by a basal lamina is separated from the 

ovarian surface epithelium. 

Theca cells are recruited by factors secreted in activated primary follicles from surrounding 

stromal tissue. Theca cells have some essential roles during folliculogenesis including synthesis 

of androgens and provide crosstalk with the oocyte and granulosa cells during follicular 

development [67]. Furthermore, theca cells play an important role in establishing a vascular system 

that creates communication with the pituitary gland. During atresia, the theca cells are often the 

last cell type to undergo apoptosis, and after ovulation, theca cells luteinize and form small cells 

of the corpus luteum [67]. Genes expressed in GC and theca cells contribute to follicular growth 

and the establishment of the dominant or preovulatory follicle.  

2.6. Ovulatory LH surge 

LH has an essential role in activating the preovulatory cascade to promote ovulation and 

release of a mature oocyte. Although LH directly stimulates theca and granulosa cells, its effects 

on cumulus cells and oocytes are probably indirect [68]. After the LH surge, several genes are 

rapidly upregulated, causing changes in the follicular cells and leading up to ovulation and 

luteinization. Observations from previous studies in regard with LH demonstrated the importance 

of functional gene studies during the final stages of follicular development and ovulation to better 

coordinate the ovarian activity [69, 70].  

2.6.1. Oocyte maturation and cumulus expansion 

Mammalian oocytes undergo first meiotic progression during embryonic development and 

are arrested in the stage of prophase I at the time of birth. This meiotic arrest of oocytes is 

maintained until ovulation. During each reproductive cycle, the pre-ovulatory LH surge triggers 

the resumption of meiosis and progression to metaphase II (MII), a process referred to as oocyte 

maturation [71]. Cumulus cell expansion and resumption of meiosis with germinal vesicle 

breakdown (GVBD) are major events in oocyte maturation. Because of the ovulatory LH surge, 

cumulus cells respond with a specific gene induction pattern that leads the cumulus cells to produce 

a hyaluronan rich matrix that surrounds the oocyte before ovulation. This process is known as 

cumulus expansion or modification [72]. Hyaluronan is formed by various hyaluronan binding 

proteins such as versican, inter-α trypsin inhibitor (IαI) and tumor necrosis factor-stimulated gene 
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6 (TSG-6). This structure allows the cumulus-oocyte complex (COC) to deform and easily pass 

through the ruptured follicle wall during ovulation by viscoelastic properties [4]. The maturing 

oocyte is the site for activating or deactivating the proteins involved in the progression of the cell 

cycle. Several kinases, including members of the mitogen activated protein kinase (MAPK) family, 

are activated by a kinase pathway during this period [73]. The binding of LH to its receptor, 

LHCGR, stimulates intracellular signaling cascades by activating adenylate cyclase, causing a 

significant increase in cAMP, which activates protein kinase A (PKA) as well as the Extracellular 

signal-regulated kinases pathway (ERK1/2 also known as MAPK3/1) and protein kinase C (PKC). 

In turn, the kinases PKA, ERK1/2, and PKC activate transcription factors, such as cAMP response 

element-binding protein1 (CREB), CCAAT enhancer-binding protein alpha and beta (C/EBPα/β), 

the progesterone receptor (PGR), and the family of transcription factor linked to the AP-1 subunit 

transcription factor such as JUN and FOS. The subsequent actions of these transcription factors in 

GC and theca cells induce the expression of several genes that contribute to the maturation of the 

COC, and luteinization of the GC and internal theca cells to form the corpus luteum [2, 3]. 

2.6.2. Follicular rupture 

The follicle wall rupture that characterizes ovulation is one of the most important processes 

in female reproduction. To be successful and allow the release of the oocyte, substantial structural 

changes at the apex of the follicle are needed to create a breach in the follicle wall. To weaken the 

follicle wall and eventually create an opening at the follicle apex, disruption of the extracellular 

matrix (ECM) within each cell layer and breakdown of the basal lamina are required. It is well 

documented in the study of rabbit preovulatory follicles that 1 to 2 hours before follicular rupture, 

the cells of the surface epithelium begin to detach from the ovarian surface in the follicle apex 

[74]. The connective tissue begins to fragment and undergo degradation. The follicle wall becomes 

thinner, while fibroblasts in the tunica albuginea and theca externa become elongated. There is 

also sloughing of some granulosa cells into the follicular antrum, and before ovulation, the surface 

epithelium is lost, and compaction of the layers of the tunica, theca, and granulosa cell 

compartments occurs. The ECM of the tunica albuginea and theca become dissociated, and it 

eventually disappears, forming an opening connecting the antral fluid and exterior of the ovary 

[74]. Concurrently, some other changes also occur elsewhere in the follicle. Granulosa and theca 

cells begin the process of luteinization. Granulosa cells stop proliferating, start to enlarge, and 
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accumulate lipids into droplets that contain cholesterol for steroid hormone synthesis [66]. 

Capillaries also at the same time branch from stromal vessels and form an intersecting network 

that will eventually contact every granulosa lutein cell. By expanding vasculature, an acute 

inflammatory response is induced by the secretion of chemokines and cytokines from granulosa 

cells, theca cells, and resident immune cells within the ovary. These changes, coupled with 

enhanced protease activity, likely weaken the follicular wall at the apex, leading to the rupture of 

the follicle [66]. 

2.6.3. LH signaling pathway activation (ERK1/2) 

In the preovulatory follicle, LH activates several cellular signaling cascades. The important 

pathways are activated by LH for the induction of essential genes for ovulation, including ERK1/2 

(MAPK3/1), phosphoinositide 3-kinase/AKT (PI3K/AKT), and mitogen-activated protein kinase 

14 (MAPK14 or p38MAPK) signaling pathways [75, 76]. The expression of ADAMs family 

members rapidly induced by LH, cleave and shed preformed EGF-like growth factors from the 

surface of mural granulosa cells. EGF-like growth factors (EREG, AREG and BTC) bind to EGF 

receptors on granulosa cells and induce the expression of genes related to cumulus expansion 

including HAS2, PTGS2 and TSG6/TNFAIP6 [66]. EGF receptor signaling is mediated mostly by 

activation of the ERK1/2 pathway in granulosa cells and cumulus cells. The phosphorylation and 

activation of EGFR by its ligands (AREG, EREG, BTG, NRG1) stimulate tyrosine kinase activity, 

which transduces the signal to downstream kinases, especially the RAS-mitogen-activated protein 

kinase kinase-/ERK1/2 pathway in granulosa and cumulus cells. Recent studies in mutant mouse 

models have demonstrated the important role of the activation of EGFR and their key downstream 

kinases, ERK1 and ERK2, in the ovulatory process, including COC expansion, follicular rupture, 

and luteinization [77]. Moreover, studies with porcine cumulus cells demonstrated that inhibition 

of MAPK14 or PKA activity resulted in significant inhibition of ERK1/2 phosphorylation, 

suggesting that these pathways may converge on ERK1/2 [78]. As shown in figure 4, ERK1/2 

controls a master switch that mediates the global reprogramming of granulosa cells downstream 

of EGF-like factor activation of the EGF receptor pathway [79]. Several transcriptional regulators 

are known to affect ovulation and appear to help mediate the effects started by ERK1/2. 
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Figure 4. LH-mediated pathways to ovulation and luteinization. LH induces ovulation, COC 

expansion, oocyte maturation, and luteinization in preovulatory follicles. LH-induced ERK1/2 

signaling pathway and activation of ERK1/2 is essential to turn off the FSH regulated gene 

expression program that controls genes essential for preovulatory follicle growth and 

differentiation. Taken from [79]. 

2.6.4. Ovulation and formation of corpus luteum (CL) 

Ovulation is a complex process characterized by changes leading to the rupture of the 

follicle at the surface of the ovary and release of the oocyte [13]. Ovulation is controlled by the 

hypothalamus and through the release of hormones secreted in the anterior lobe of the pituitary 

gland and initiated by the LH surge. Rapidly after ovulation, a program of terminal differentiation 

of the ovulated follicle into the corpus luteum is initiated through a process named luteinization. 
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Luteinization is one of the essential physiological events induced by the LH surge that granulosa 

and theca cells stop proliferating and undergo differentiation, leading to the formation and function 

of the CL. The most important function of the CL is the production of progesterone, which is 

required for attainment and maintenance of pregnancy. In cattle, after CL formation, plasma 

progesterone concentrations progressively increase [80]. Cells undergoing luteinization begin 

expressing some genes, including a significant increase in CYP11A1 expression and the transient 

expression of progesterone receptors, as well as significant decreases in mRNAs encoding 

CYP19A1 and CYP17A1 that allow luteal cells to survive in a different hormonal environment. 

These changes cause a transition from estrogen production in the preovulatory follicle to 

progesterone synthesis in the corpus luteum. In pregnancy, the corpus luteum becomes a 

metabolically highly active structure with a high progesterone production rate. If the oocyte is not 

fertilized, the CL regresses, and a new cycle begins. In the nonpregnant cow, prostaglandin F2 

alpha (PGF2 ) released on days 17-18 of the estrous cycle from the endometrium of the uterus 

induces luteolysis and regression of the CL [81]. Luteolytic PGF2 induces a severe decrease in 

progesterone secretion from the CL as well as CL size in the nonpregnant cow [82].  

2.7. Steroidogenesis 

The production of steroids is one of the most important functions of the follicle. Follicular 

steroidogenesis in the bovine, as in other species, usually starts with cholesterol and ends with the 

formation of several steroid metabolites [83]. In the cytoplasm of somatic cells, the free cholesterol 

is mobilized to the mitochondria, and then internalized. This internalization of cholesterol by the 

mitochondria is the rate-limiting step for the general steroidogenic pathway and is mediated by 

steroidogenic acute regulatory protein (StAR). In the mitochondria, as shown in figure 5, 

cholesterol is converted to pregnenolone by the cholesterol side-chain cleavage enzyme 

(CYP11A1) and then by the 3-beta-hydroxysteroid dehydrogenase (3-HSD) enzyme into 

progesterone. Progesterone is first converted into 17-hydroxyprogesterone by the 17-

hydroxylase enzyme (CYP17A1) then into androstenedione, which is converted into testosterone 

by 17HSD1 enzyme. Androstenedione and testosterone can be converted (aromatized) to 

estrogens by the aromatase enzyme (CYP19A1) in granulosa cells. The production of estradiol 

and progesterone is regulated within the follicle throughout follicular growth [84, 85]. 

Steroidogenic enzymes can be classified into two types according to their intracellular locations. 
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Enzymes that are inserted into the smooth endoplasmic reticulum with the majority of the protein 

in the cytoplasmic side such as 3-HSD, CYP17A1, CYP19A1, CYP21A2, 17HSD1 are 

microsomal enzymes. Other enzymes are in the inner mitochondrial membrane with the bulk of 

the protein facing the matrix, such as CYP11A1, CYP11B1, and CYP11B2, which are 

mitochondrial enzymes. 

 

Figure 5. Steroidogenic pathways [86]. All steroids are produced from cholesterol by a series of 

enzymes of cytochromes P450 (CYP) and hydroxysteroid dehydrogenases (HSD). Cholesterol is 

converted to pregnenolone by CYP11A1 and then by the 3-HSD enzyme into progesterone. 

Progesterone is first converted into 17-hydroxyprogesterone by CYP17A1 then into 

androstenedione, which is converted into testosterone by 17HSD1 enzyme. Androstenedione 

and testosterone can be converted to estrogens by CYP19A. 

All steroids are produced from cholesterol by a series of enzymes of cytochromes P450 

(CYP) and hydroxysteroid dehydrogenases (HSD) in nature. mRNA of CYP17A1 and StAR were 

localized into theca cells and mRNA of CYP19A1 were shown to be localized into granulosa cells. 

The amounts of mRNA expression of CYP11A1 and 3-HSD in GC and TC were differentially 

expressed at various stages of follicular development [87]. In preantral follicles following the 

formation of theca interna, mRNA of CYP11A1, CYP17A1, and 3-HSD are expressed in TC at 
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the time of antrum formation, and with the growth of early antral follicles, their expression 

generally increases. In preantral and early antral follicles (<4 mm), expression of CYP19A1 in 

granulosa cells was undetectable, which means these follicles are not able to convert androgens 

into estrogens; also these GC do not express CYP11A1 and 3-HSD mRNA, suggesting that GC 

of bovine follicles <4 mm in diameter are not able to convert cholesterol to pregnenolone and 

subsequently to progesterone [88]. Therefore, at this stage of follicular development (<4 mm), the 

primary source of follicular fluid steroid hormones (pregnenolone, progesterone, and androgen) is 

theca cells [88]. Following the recruitment phase, expression of CYP11A1 and CYP19A1 mRNA 

is detected concurrently in GC of the majority of recruited follicles of 4 to 6 mm in diameter. 

During the late stages of recruitment, in all recruited follicles 6 to 9 mm in diameter, expression 

of CYP11A1 and CYP19A1 mRNA in GC was observed [89]. During recruitment, follicles grow 

from 6 mm to 9 mm, and theca cells express CYP11A1, CYP17A1, 3-HSD, and StAR mRNA [89]. 

This suggests that granulosa cells of the recruited cohort of follicles <9 mm in diameter are not 

able to metabolize pregnenolone to progesterone because expression of 3-HSD mRNA is not 

detected in granulosa cells. 3-HSD mRNA expression is mainly detected in one healthy follicle 

>8 mm in diameter. Growth of dominant follicles is accompanied by an increase in expression of 

3-HSD mRNA in GC. During the selection of dominant follicles, while follicles produce amounts 

of estrogen and inhibin, theca and granulosa cells express the high mRNA level of CYP17A1, 

CYP19A1, 3-HSD, and StAR. [90]. In dominant follicles, expression of 3-HSD mRNA may have 

an important role to maintain dominance over other non-selected follicles. GC of dominant 

follicles is also able to convert androgen to estradiol-17 and cholesterol to pregnenolone and 

progesterone. Pregnenolone and progesterone produced by GC of dominant follicles may be 

utilized to produce androgen by theca cells. Therefore, progesterone of follicular fluid in dominant 

follicles could be secreted from both GC and TC [89]. Transport of cholesterol from the outer to 

inner mitochondrial membrane for conversion to pregnenolone by P450scc (side chain cleavage) 

is regulated by the StAR protein. The mRNA of StAR is expressed only in theca cells and the 

expression is stronger in dominant follicles [91]. Thus, high amounts of cholesterol are required 

in theca cells' mitochondria to synthesize androgen [92]. In GC during preovulatory follicular 

development, amounts of mRNA expression of all enzymes except P450arom are increased. 

Following the preovulatory LH surge, expression of CYP17A1 mRNA in theca cells, CYP19A1 

mRNA in granulosa cells, and CYP11A1 and 3-HSD mRNA in granulosa and theca cells 
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decreases dramatically. Overall, expression of CYP11A1, 3-HSD, and CYP17A1, but not 

CYP19A1 mRNA, in theca cells and GC is increased before the LH surge in preovulatory follicles 

and all decrease in preovulatory follicles after the LH surge [93, 94]. 

Under the effect of the ovulatory LH surge, the gene expression in the preovulatory follicle 

is modified. The expression of specific genes is downregulated or shut down while other genes are 

induced or increased [95, 96]. In cow, several research groups studied the variation of gene 

expression during the periovulatory period in the primary dominant or preovulatory follicle and 

following the release of LH [39, 70, 97]. A study carried out in our laboratory compared the gene 

expression profile of bovine GC harvested from ovulatory follicles stimulated with LH/hCG 

compared to dominant or preovulatory follicles. From this study, the Ankyrin-repeat and SOCS 

Box protein 9 (ASB9) gene was identified for the first time as an LH/hCG-induced gene in GC of 

all species [39]. 

2.8. Ankyrin-repeat and SOCS-box protein (ASB) family 

The ASB family is one of the members of the large SOCS box-containing proteins and E3 

ubiquitin ligases families. The ASB family has 18 members, each of them binds more than one 

protein but these binding proteins are generally specific to one member of ASB family. The SOCS 

box is a conserved domain present in more than 80 proteins of nine different families, described 

as a suppressor of cytokine signaling and play an important role in protein turn-over by 

proteasome-mediated degradation [6]. ANK is a 33 aa-residue motif in proteins consisting of two 

alpha-helices separated by loops; the first of the two alpha-helices, located in the center of the 

structure, is very hydrophobic in nature [105]. This feature allows the different ankyrin repeats to 

interact with each other and subsequently fold together to form a single, linear solenoid structure, 

which is one of the most common protein-protein interaction platforms in nature [104]. Domains 

consisting of ankyrin tandem repeats mediate protein-protein interaction and are among the most 

common structural motifs in known proteins. Because members interact with a wide variety of 

target substrates via ankyrin repeat domains, they have diverse functions such as regulation of 

proliferation, differentiation, carcinogenesis, and regulation of the cell cycle.  

Bovine genome sequencing has generated the amino acid sequences of the 18 members of 

the ASB family. Table II compares the number of ankyrin domains and the chromosomal location 
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of their corresponding genes. The phylogenetic tree of ASB family (Figure 6) indicates that the 

sequences of ASB proteins 5, 9, 11, and 13 form a subfamily among the 18 members of the ASB 

family. These four ASB proteins have six ankyrin domains. Also, ASB9 and ASB11 demonstrate 

the highest sequence homology for the entire ASB family of proteins. The ASB9 and 11 genes are 

located on chromosome X in the bovine species. 

Table II. Members of the ASB family in the bovine species. 

 

     *Sequence obtained from version 106 of the bovine genome [106]. 

ASB members have been involved in various biological processes; ASB2 is upregulated 

by retinoic acid in acute promyelocytic cells. It targets filaments A and B for proteasomal 

degradation, thereby regulating the differentiation of hematopoietic cells [107]. ASB2 and ASB15, 

showing very similar aa sequence similarity, have been reported to be involved in myogenesis 
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[108]. ASB3 negatively regulates the TNF-R2 pathway leading to the ablation of JNK activation 

[103]. ASB4 is transiently involved in the formation of the embryonic vascular system and in the 

vascular differentiation of the placenta in humans [109, 110]. ASB6 interacts with the adaptor 

protein APS (adaptor protein with SH2 domain), which couples the insulin receptor to components 

of a glucose transport pathway. Following prolonged insulin stimulation, when ASB6 was 

overexpressed, APS is degraded [111]. Transfection of human ASB8 cDNA without the SOCS 

box, suppressed the growth of lung adenocarcinoma cells in vitro, suggesting an association of 

ASB8 with the development of lung cancer [112]. ASB15 controls muscle growth by acting as a 

negative regulator of proliferating muscle cells and increasing the rate of protein synthesis in 

differentiated myoblasts [113, 114]. 

 

Figure 6. Phylogenetic tree of the ASB family. There is more similarity between the compositions 

of the closer proteins in the same branch. For example, the sequence of ASB proteins 5, 9, 11, 
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and 13 form a subfamily among the 18 members of the ASB family. ASB9 and ASB11 

demonstrate the highest sequence homology in the entire ASB protein family. 

http://www.phylogeny.fr/simple_phylogeny.cgi 

2.9. Ubiquitination 

Ubiquitination has emerged as a major post‐translational modification that is a critical 

regulator of numerous cellular processes such as proteasomal degradation, DNA repair and protein 

interactions within intracellular signaling pathways [98]. The ubiquitination process is performed 

in three stages using three different enzymes called E1, E2, and E3 [99]. As shown in Figure 7, the 

process of ubiquitination has a three‐step enzymatic cascade that adds the small ubiquitin molecule 

from an E1‐activating enzyme to an E2‐conjugating enzyme, then by the covalent bond of 

ubiquitin to the target protein by an E3 ubiquitin ligase [98]. Generally, the C-terminal of ubiquitin 

is bound to a lysine residue on the substrate [100]. The ubiquitin‐proteasome system is an 

important non‐lysosomal degradation pathway of various cellular proteins that are involved in cell 

cycle progression and signal transduction cascade [101, 102]. The entire ASB family co-purifies 

with Cullin 5, confirming that all 18 members of the ASB family are ubiquitin ligases [103]. 

The SOCS box is a conserved sequence of 40 amino acids located in the C-terminal portion 

of a protein, such as in ASB9. The SOCS box plays an important role in protein turn-over by 

proteasome-mediated degradation. The main role of the SOCS box is to serve as the basis for the 

formation of a ubiquitination enzyme complex and make it possible to target the substrate towards 

the 26S proteasome for its degradation. The SOCS box functions as an adaptor, recruiting SOCS 

box-containing proteins like the family of ASB proteins and their interacting partners to form a 

ubiquitination complex by interaction with elongins B and C and Cullin 5. ASB proteins recognize 

their specific substrate through the ankyrin repeat domain and using the SOCS box domain, they 

can associate with a complex that contains elongin B, C, cullin-5, and Rbx1; then form an elongin 

C-Cullin-SOCS box (ECS) protein complex. The ECS complex is an E3 ubiquitin ligase, and with 

a ubiquitin-activating enzyme (E1) and a ubiquitin-conjugating enzyme (E2), form a ubiquitination 

complex to target the substrate towards the 26S proteasome for its degradation [104]. 

http://www.phylogeny.fr/simple_phylogeny.cgi
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Figure 7. A Simplified Overview of Ubiquitination [100]. The ubiquitination process is 

performed in three stages using three different enzymes called E1, E2, and E3. Ubiquitin (Ub) is 

activated by E1 and transferred to the E2 enzyme and is, finally, conjugated to substrate proteins 

with a specific E3 ligase. Further polyubiquitination is required to target proteins for 

degradation. 

2.10. Proteins ASB5, ASB11 and ASB13 

Within the ASB family, the ASB members containing six-ankyrin repeat domains include 

ASB5, ASB9, ASB11, and ASB13, which form a distinct group because they show unusually high 

conservation [100]. ASB5, ASB11 and ASB13 have the highest sequence homology with ASB9. 

ASB5 has been implicated in regulating the size of the skeletal muscle and brain component [115]. 

There is an increase in ASB5 gene expression in satellite cells in pig's skeletal muscle during the 

recovery phase following intense physical activity [116]. Satellite cells are myoblast precursor 

cells that create muscle cells. In response to various stimuli, including exercise, stretching and 

injury, these events increase the expression of ASB5 in satellite cells, resulting in the proliferation 

and differentiation of myoblasts into new muscle cells [117].  

ASB11 may regulate the proliferation and differentiation of the developing nervous 

system. The first studies about the function of ASB11 were obtained from the development of the 
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central nervous system in zebrafish (Danio rerio) [118]. Knockdown of d-Asb11 expression has 

reduced the expression of neural precursor genes and decreased the number of neurons in the 

nervous system resulting in a smaller brain. On the other hand, overexpression of ASB11 

maintained the neural precursors in the proliferating undifferentiated state, which resulted in an 

enlarged brain [119]. These data suggest that inactivation of ASB11 causes premature 

differentiation of progenitor cells into a final neuronal phenotype, resulting in promoting 

neurogenesis. The zebra fish ASB11 (d-Asb11) is a positive regulator of Notch signaling in vivo. 

This effect is mediated by the degradation of the Notch ligand Delta A [118]. In the study of Tee, 

J.M., et al., they demonstrated that the expression of d-Asb11 in the muscular system of zebra-fish 

was localized into the satellite muscle cells, and increase in d-Asb11 expression has resulted in 

increased proliferation of satellite cells, meaning that ASB11 of Zebra-fish is a regulator of 

embryonic and adult regenerative myogenesis [120]. 

The function of ASB13 is unknown, but in breast cancer the expression level of ASB13 

shows a significant association with survival outcomes. The mutated CNA (copy number 

alteration) status in ASB13 was associated with a higher gene expression [121]. Patients with CNA 

mutations in ASB13 gene had a worse survival outcome; in other words, a higher copy number of 

ASB13 was associated with a higher concentration of the ASB13 protein, suggesting that ASB13 

promotes cell division and contributes to the development of cancer [121]. ASB13 is one of the 

genes when its expression is altered, could lead to a tightly connected regulatory network including 

cell cycle genes, apoptosis, and immune differentiation implicated in the aggressive behavior of 

activated B cell-like compared to the germinal center B cell-like subtype. [122].  

2.11. Ankyrin-repeats and SOCS box protein 9 

The bovine Ankyrin-repeat and SOCS-box protein 9 (ASB9) is one of the members of the 

ASB family. This protein is formed of 297 amino acids (aa) and translated from an mRNA with 

1593 base pairs (bp). The ASB9 mRNA is transcribed from a gene located on the chromosome X 

in bovine species and contains eight exons (Figure 8). The ASB9 protein is made of a SOCS box 

(suppressor of cytokine signaling box) located in the C-terminal and six ankyrin repeats (ANK), 

which are in the N-terminal portion of the protein. With these two domains, SOCS box and ANK, 

ASB9 could function as a specific substrate recognition component of the E3 ubiquitin ligases and 

interacts with proteins in the process of ubiquitination and proteasomal degradation. 
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Figure 8. Organization of the ASB9 mRNA. The ASB9 protein is translated from an mRNA with 

1593 base pairs. The ASB9 mRNA is transcribed from a gene that contains eight exons and 

located on the chromosome X in bovine species. 

https://www.ncbi.nlm.nih.gov/nuccore/NM_001191166.1 

With its SOCS box and ANK repeats domains, ASB9 acts as a specific substrate 

recognition component of E3 ubiquitin ligases and interacts with various proteins in the process 

of ubiquitination and proteasomal degradation. Of interest, CKB has been reported as a specific 

binding partner of human ASB9 with in vitro and in vivo confirmation of the interaction. ASB9 

targets CKB for degradation and acts as a specific ubiquitin ligase regulating the amounts of CKB 

[123]. Besides, ASB9 interacts with ubiquitous mitochondrial creatine kinase (uMtCK) and causes 

a malfunction of the mitochondria, leading to negative regulation of cell growth. Cooperative 

inhibition of CKB in cytosol and uMtCK in mitochondria may be an effective system that ASB9 

used for the regulation of the cellular energy state [124]. Moreover, ASB9 mRNA expression was 

identified to be stronger in colorectal cancer (CRC) tissues than in normal tissues. The ASB9 

expression level was an independent predictive factor for poor overall survival, so ASB9 is a useful 

prognostic marker for human CRC [125]. Knockdown of ASB9 significantly inhibited the invasion 

of colorectal cancer cells [125], while overexpression of ASB9 increased cell death and reduced 

https://www.ncbi.nlm.nih.gov/nuccore/NM_001191166.1


41 
 

proliferation, migration, and invasion in hepatocellular carcinoma cell lines [126]. In another 

study, ASB9 was isolated as a potential biomarker for breast cancer [127]. It was reported that 

ASB9 is expressed in murine testes and kidney with low expression in the heart and the liver [123]. 

In the study of Lee et al. [128], murine pachytene spermatocytes and spermatids expressed 

mASB9, but spermatogonia and generated spermatozoa did not. According to this study, mAsb9 

could be a specific marker of active spermatogenesis and would be useful for studies of male germ 

cell development [128].  

Our two previous studies using bovine ovarian follicles identified ASB9 as a differentially 

expressed gene in GC of bovine ovulatory follicles [5, 39]. We used CRISPR/Cas9 technology to 

inhibit the expression of ASB9. ASB9 inhibition led to the increase in GC proliferation, which 

demonstrated the importance of ASB9 in granulosa cells of the ovulatory follicle for instance, by 

regulating proteasomal degradation of target proteins and contributing to decreasing GC 

proliferation. That study also identified 10 potential ASB9 binding partners including TNFAIP6, 

TAOK1, PAR1 and HIF1A in GC of ovulatory follicles and found the strongest amounts of ASB9 

protein induced in ovulatory follicles 24 hours post-hCG injection [5]. Apart from this study, there 

are no other studies that show a link between ASB9 and the reproductive system in bovine or other 

species.  

Since ASB9 expression in the OF is significantly induced as compared to the DF, it is 

conceivable that ASB9 might play an important role in the ovulatory process. The previous 

observations indicate that ASB9 might be associated with controlling the activity of target genes 

involved in the ovulatory follicle immediately before ovulation and could also be involved in the 

differentiation of granulosa cells into luteal cells.  

Investigating the molecular mechanisms that are involved in the different stages of 

follicular development especially ovulatory follicle and the process of ovulation, will help identify 

possible causes of the declining fertility in the cattle. 
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3.1. Rationale, Hypothesis and Objectives 

3.1.1. Rationale 

The dairy industry is an important industry in Canada that produced over 92.2 million 

hectolitres of milk in 2019. One major concern in the dairy industry is the steadily declining 

fertility of cattle that often involved the ovary [129]. Although it is difficult to ascertain which 

molecular mechanisms within the ovary are involved in fertility decline, investigating these 

mechanisms will help identify and address possible causes with new molecular tools. Despite 

numerous studies about the physiology of the ovary, there are still several molecular mechanisms 

that are not well known.  

The functional unit of the ovary is the ovarian follicle; each follicle usually contains one 

oocyte. The oocyte is surrounded by somatic cells like granulosa and theca cells [7]. The 

maturation and differentiation of the oocyte and the ovulation process are dependent on the 

proliferation and differentiation of these steroidogenic cells [28, 130]. Many factors, such as FSH 

receptors in small and growing follicles, LH receptors in ovulatory follicles, and growth factors 

are produced by granulosa cells and affect follicular growth and ovulation. All these mechanisms 

are controlled by the activation/inhibition of specific genes. 

Understanding the mechanisms associated with the formation of the preovulatory follicle 

and the modifications it undergoes during ovulation and its luteinization is crucial, because they 

contribute to the quality of the oocyte produced and of early embryonic development as well as 

the formation of a functional corpus luteum to ensure gestation. These mechanisms associated with 

the reproduction of farm animals, including the bovine species, have significant economic impacts 

on the maintenance of the herd population and milk production. 

Decades of research, both in vivo and in vitro, into the mechanisms involved in follicular 

development and ovulation have revealed intricate pathways and various genes that are 

differentially regulated to ensure the successful release of a fertilizable and developmentally 

competent oocyte. It is well established that FSH primarily regulates follicular growth, and LH is 

the primary instigator of the ovulatory process. Both of these gonadotropins achieve these 

processes through specific gene expression programs in ovarian follicular cells. There are still 

large knowledge gaps regarding the pathways that regulate these gene modifications and how they 
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contribute to the regulation of ovarian functions. Investigating these processes will broaden our 

understanding of the mechanisms of ovulation and enable us to reverse fertility decline/infertility 

both in livestock and humans. 

3.1.2. Hypothesis 

Our previous gene expression studies identified ankyrin-repeat and SOCS-box protein 9 

(ASB9) as a differentially expressed, LH-induced gene in granulosa cell (GC) of bovine ovulatory 

follicles [5]. Because ASB9 expression in the OF is considerably induced as compared to the 

growing dominant follicle, it is conceivable that ASB9 might play a role in the ovulatory process, 

granulosa cell differentiation, and extracellular matrix remodeling by targeting specific proteins 

for binding and degradation. Therefore, we hypothesized that ASB9 plays an important role in 

ovulatory follicles likely through binding proteins, contributes to reduced GC proliferation. The 

specific hypotheses of this study are that ASB9 achieves its role in ovulatory follicles, likely 

through binding partners such as PAR1 and TAOK, and by modulating the ERK1/2 signaling 

pathway in GC in order to reduce GC proliferation. 

3.1.3. Objectives 

The objectives of this project were: 1) to study the function and mode of action of ASB9 

in granulosa cells of ovulatory follicles; 2) specifically analyze the effects of ASB9 on PAR1 and 

other binding partners expression; 3) analyze the overall effects of ASB9 inhibition in GC (cell 

proliferation, apoptosis and gene expression); and 4) analyze the effects of ASB9 on MAPK 

signaling. 
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Abstract 

Ankyrin-repeat and SOCS box-containing proteins (ASB) interact with the elongin B-C 

adapter via their SOCS box domain and with the cullin and ring box proteins to form E3 ubiquitin 

ligase complexes within the protein ubiquitination pathway. ASB9 is a differentially expressed 

gene in ovulatory follicles (OF) induced by the luteinizing hormone (LH) surge or hCG injection 

in ovarian granulosa cells (GC) while downregulated in growing dominant follicles. Although 

ASB9 has been involved in biological processes such as protein modification, the signaling 

network associated with ASB9 in GC is yet to be fully defined. We previously identified and 

reported ASB9 interactions and binding partners in GC including PAR1, TAOK1 and 

TNFAIP6/TSG6. Here, we further investigate ASB9 effects on target binding partners regulation 

and signaling in GC. CRISPR/Cas9-induced inhibition of ASB9 revealed that ASB9 regulates 

PAR1, TAOK1, TNFAIP6 as well as genes associated with proliferation and cell cycle progression 

such as PCNA, CCND2 and CCNE2 while CCNA2 was not affected. Inhibition of ASB9 was also 

associated with increased GC number and decreased caspase3/7 activity, CASP3 expression and 

BAX/BCL2 ratio. Furthermore, ASB9 induction in OF 12h through 24h post-hCG is concomitant 

with a significant decrease in phosphorylation levels of MAPK3/1 while pMAPK3/1 levels 

increased following ASB9 inhibition in GC in vitro. Together, these results provide strong 

evidence for ASB9 as a regulator of GC activity and function by modulating MAPK signaling 

likely through specific binding partners such as PAR1, therefore controlling GC proliferation and 

contributing to GC differentiation into luteal cells.  

Key words: ASB9, Granulosa cells, Proliferation, MAPK, Apoptosis, Ankyrin, SOCS, 

Cell cycle, p38MAPK, CRISPR/Cas9. 

 

Introduction 

The ovarian follicle is a dynamic structure that proceeds either towards ovulation or atresia. 

During the bovine normal estrous cycle, the last dominant follicle undergoes differentiation, which 

enables secretion of estradiol to trigger the preovulatory luteinizing hormone (LH) surge from the 

pituitary, followed by ovulation and differentiation of the follicle remnant into a corpus luteum 
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(Fortune, Rivera, Evans, & Turzillo, 2001; Ginther, Beg, Bergfelt, Donadeu, & Kot, 2001; Lucy, 

2007). The preovulatory surge of LH, which acts through its receptors (LHCGR), triggers multiple 

signaling pathways leading to the initiation of ovulation that involves multiple events including 

oocyte maturation, luteinization and follicular rupture (Richards, 2005; Richards, Russell, Robker, 

Dajee, & Alliston, 1998). Some of the early signaling pathways through which LH induces 

ovulatory events to include cAMP/PKA, MAPK3/1 (ERK1/2) and PI3K-Akt pathways (Ben-Ami 

et al., 2009; Fan et al., 2009). These signaling pathways initiate an intricate gene expression 

program that underpins ovulation and luteinization. These processes are controlled by the 

expression of many genes that are either up-or down-regulated in a temporally and spatially 

distinct fashion. Yet, the mechanisms ensuring the transition from a dominant follicle into an 

ovulatory follicle as well as the ovulation and luteinization processes and signaling pathways 

involved, are not fully understood (Richards, 2007).   

Many studies have established that the LH surge positively regulates genes involved in 

inflammation, cellular movement, tissue remodeling and angiogenesis, while switching off the 

expression of genes involved in metabolism and proliferation in multiple species (D. T. Liu, 

Brewer, Chen, Hong, & Zhu, 2017; Wissing et al., 2014). The transcription of specific genes that 

control the growth of a bovine dominant follicle is therefore rapidly downregulated or silenced in 

granulosa cells as a result of LH-mediated increases in intracellular signaling while LH/hCG 

upregulates or induces the expression of genes involved in ovulation and luteinization as shown in 

different species including rodents or in the bovine species (Benoit, Warma, Lussier, & Ndiaye, 

2019; Christenson et al., 2013; Espey & Richards, 2002; Gilbert, Robert, Dieleman, Blondin, & 

Sirard, 2011; Li, Jimenez-Krassel, Ireland, & Smith, 2009; Lussier, Diouf, Levesque, Sirois, & 

Ndiaye, 2017). We previously identified genes induced in granulosa cells of bovine ovulatory 

follicles following hCG and including Ankyrin-repeat and SOCS-box protein 9 (ASB9) (Lussier 

et al., 2017). ASB9 is one of the members of the ASB family and is differentially expressed in 

ovulatory follicles compared to other stages of follicular development. In our previous studies, we 

also identified binding partners for ASB9 in addition to reporting the regulation of ASB9 in 

granulosa cells during follicular development (Benoit et al., 2019; Lussier et al., 2017). 

The ASB family is one of the large SOCS box-containing proteins family and the family 

of E3 ubiquitin ligases. Each of the 18 members of the ASB family binds to more than one protein, 
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but these binding proteins are generally specific to one member of the ASB family (Andresen et 

al., 2014). Members of the ASB family have two domains, a SOCS box domain and a variable 

number of N-terminal ankyrin (ANK) repeats (Kile et al., 2001). Because ASB members interact 

with a wide variety of target substrates via ankyrin repeat and SOCS box domains, they have 

diverse functions such as regulation of proliferation, differentiation, carcinogenesis, and regulation 

of the cell cycle. In addition, members of the ASB protein family can interact with the elongin B-

C adapter complex via their SOCS box domain and further complex with the cullin and ring box 

proteins to form E3 ubiquitin ligase complexes and participate in protein degradation (Kohroki, 

Nishiyama, Nakamura, & Masuho, 2005; Linossi & Nicholson, 2012; Thomas, Matak-Vinkovic, 

Van Molle, & Ciulli, 2013). With its SOCS box and ANK repeats domains, ASB9 can therefore 

act as a specific substrate recognition component of E3 ubiquitin ligases and interacts with various 

proteins in the process of ubiquitination and proteasomal degradation. 

In this study, to better understand ASB9 function and mode of action in granulosa cells, 

we aimed to verify whether ASB9 regulates granulosa cells function through changes in target 

genes and MAPK signaling through binding partners such as PAR1 to block GC proliferation. 

More specifically, we used an in vitro model of cultured granulosa cells along with the 

CRISPR/Cas9 approach to inhibit ASB9 expression combined with an in vivo model to elucidate 

the function and mechanism of action of ASB9 in granulosa cells. 

 

Results 

ASB9 binding partners expression are differently regulated during follicular development 

We previously performed a yeast two-hybrid screening to identify ASB9 interactions in 

granulosa cells and identified partners, which included protease-activated receptor 1 (PAR1), 

thousands and one amino acid protein kinase 1 (TAOK1) and tumor necrosis factor-alpha-induced 

protein 6 (TNFAIP6, also known as TSG6) (Benoit et al., 2019). In the present study, we first 

sought to investigate the regulation of these ASB9 binding partners expression during follicular 

development. In this regard, we used an in vivo model of granulosa cells collected from follicles 

at different developmental stages. Total RNA was extracted from granulosa cells of small follicles 

(SF), growing dominant follicles (DF), ovulatory follicles 24 hours post-hCG injection (OF) and 
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from day 5 corpus luteum (CL) and were analyzed by RT-qPCR for PAR1, TAOK1 and TNFAIP6 

using specific primers. PAR1 mRNA expression was increased significantly in DF then decrease 

in OF and CL (Fig. 1A; P<0.05) while TAOK1 mRNA expression amounts were stronger in DF as 

compared to SF and CL and were strongest in OF before decreasing significantly in the CL (Fig. 

1B; P<0.05). These results showed significant induction of PAR1 and TAOK1 mRNA expression 

in the growing dominant follicle and the ovulatory follicle, respectively. We previously reported 

that TNFAIP6/TSG6 was induced by hCG/LH in OF (Sayasith, Doré, & Sirois, 2007) and 

confirmed this result in the current study with significant induction of TSG6 in the OF as compared 

to SF, DF and CL (Fig. 1C; P<0.05). The data also showed that TSG6 expression was stronger in 

the CL than in SF and DF. 

ASB9 silencing alters the expression of target binding partners 

For functional analysis of ASB9, CRISPR/Cas9-mediated knockdown of ASB9 was 

performed in granulosa cells. Six sgRNAs were designed and tested for efficiency. A sgRNA with 

97.6% efficiency at directing Cas9 was selected and used in subsequent experiments. ASB9 

knockdown in GC was confirmed by RT-qPCR (Fig. 1D; P<0.05). To verify the effects of ASB9 

silencing on target binding partners, we tested the expression of PAR1, TAOK1 and TSG6, which 

were analyzed by RT-qPCR. Expression of PAR1 was significantly increased following ASB9 

inhibition in GC (Fig. 1E; P<0.05), while TAOK1 and TSG6 expressions were significantly 

decreased when ASB9 was inhibited (Fig. 1F and 1G; P<0.05). These data are consistent with 

results presented in panels A, B and C showing stronger expression of PAR1 in DF as compared 

to the OF where ASB9 is induced, suggesting a negative effect of ASB9 on PAR1 in the OF. In 

contrast, TAOK1 and TSG6 were reduced following ASB9 inhibition while induced in the OF 

concomitantly with ASB9 induction.   

Inhibition of ASB9 increased number of GC and proliferation markers and decreased 

apoptosis 

We also analyzed the effects of ASB9 inhibition on GC in cell survival/death using cell 

proliferation assay and Caspase3/7 activity assay. MTS assay results showed that ASB9 silencing 

led to a significant increase in GC number (Fig. 2A; P<0.05). In contrast, there was a significant 

decrease in Caspase3/7 activity following ASB9 inhibition (Fig. 2B; P<0.05). RT-qPCR analyses 

showed that expression of CASP3 significantly decreased following ASB9 inhibition (Fig. 2C; 
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P<0.05), and the ratio of BAX/BCL2 decreased significantly as well (Fig. 2D; P<0.05). Besides, a 

proliferation marker, proliferating nuclear cell antigen (PCNA; Fig. 3A; P<0.05) and cell cycle 

progression genes cyclin D2 (CCND2; Fig. 3B; P<0.05) along with cyclin E2 (CCNE2; Fig. 3C; 

P<0.05) expression were significantly increased in GC when ASB9 was inhibited using 

CRISPR/Cas9 while there was no change in cyclin A2 (CCNA2) expression (Fig. 3D). These data 

suggest that ASB9 might be associated with some apoptotic activity in GC since ASB9 inhibition 

reduced caspase 3 activity. However, it is worth noting that the difference in caspase 3 activity 

between the control GC and GC with CRISPR/Cas9-induced inhibition of ASB9 was modest 

although statistically significant (Fig. 2B). In contrast, the effect of ASB9 inhibition on cell 

proliferation and cell cycle markers were very marked, specially in regard with CCND2 and 

CCNE2 expression. Cyclins D and E are important regulators of the G1 growth phase of the cell 

cycle and the upregulation of CCND2 and CCNE2 in the absence of ASB9 means that the induction 

of ASB9 in the ovulatory follicle could lead to cell cycle arrest and likely participate in initiating 

GC differentiation. These results also suggest that ASB9 could negatively affect the activation of 

cyclin-dependent kinases 4 (CDK4) and 2 (CDK2), dependent on CCND2 and CCNE2, leading to 

the subsequent lack of phosphorylation of critical substrates, therefore blocking GC proliferation 

during the G1 phase.  

ASB family members are differentially regulated during follicular development 

Within the ASB family of proteins, ASB9 shares the highest sequence homology with 

ASB5, ASB11 and ASB13. With this in mind, we aimed to verify the possibility of ASB5, ASB11 

or ASB13 compensating for the absence of ASB9 in CRISPR/Cas9 experiments in GC. First, in 

order to investigate their regulation during follicular development as compared to ASB9, we 

analyzed the expression of ASB5, ASB11 and ASB13 using in vivo samples (SF, DF, OF and CL). 

RT-qPCR analyses using these in vivo samples showed ASB5 mRNA expression was strongest in 

the CL as compared to the different stages of follicular development (Fig. 4A; P<0.05). ASB11 

mRNA expression was strongest in OF as compared to other groups (Fig. 4B; P<0.05), while 

ASB13 was predominantly observed in OF as compared to SF, DF, and CL (Fig. 4C; P<0.05). We 

previously reported ASB9 as differentially expressed with a strongest expression in OF following 

hCG injection (Benoit et al., 2019). These results are the first to be reported regarding the 

regulation of these ASB family members during follicular development. To further analyze 



52 
 

whether inhibition of ASB9 affects the expression of these members and whether they might 

compensate for the absence of ASB9 in granulosa cells, RT-qPCR analyses were performed using 

in vitro samples following ASB9 inhibition. The results showed there were no significant changes 

in ASB5, ASB11 and ASB13 expression following ASB9 inhibition (Fig. 4D, E and F), although 

ASB13 steady-state mRNA expression tended to increase following ASB9 inhibition (Fig. 4F). 

Similar to ASB9, ASB5, 11 and 13 are also involved in the protein ubiquitination pathway and 

play a role in the regulation of compartment size and modification of Notch signaling (P. Liu, 

Verhaar, & Peppelenbosch, 2019), but their function and mode of action in reproductive cells have 

not been elucidated. However, our data would suggest that ASB5, 11 and 13 might not compensate 

for ASB9 absence in granulosa cells during CRISPR/Cas9 inhibition experiments. 

ASB9 negatively modulates MAPK3/1 (ERK1/2) phosphorylation but not MAPK14 

(p38MAPK) 

To analyze the regulation of MAPK phosphorylation by ASB9 in GC, we first investigated 

ASB9 induction using an in vivo model from follicular wall samples containing granulosa cells 

(GC) at different times post-hCG (0, 12, 18 and 24 hours; n=2 for each time point). Total protein 

extracts were analyzed by western blot using anti-ASB9 antibodies. The results showed induction 

of ASB9 protein expression by hCG starting at 12h, then increasing at 18h and reaching a strongest 

induction in the OF at 24h post-hCG injection (Fig. 5A; P<0.05) as compared to 0 hour with beta-

actin used as control. This result confirms previously reported data from our laboratory (Benoit et 

al., 2019), which showed ASB9 induction by hCG/LH in GC, suggesting the involvement of ASB9 

in regulating the expression of various targets in the follicle before ovulation. The samples of 

ovulatory follicles 24h post-hCG were also analyzed for MAPK3/1 phosphorylation since this the 

stage when ASB9 induction is strongest; the results revealed a weak phosphorylation level of 

MAPK3/1 and a stronger presence of the total form (Fig. 5B and C (in vivo lanes); P<0.05). 

Additionally, in vitro experiments showed a relative increase in MAKP3/1 phosphorylation levels 

(1.7-fold change relative to control) following ASB9 inhibition in granulosa cells although this 

increase was not statistically significant due to notable variations among the replicates (Fig. 5C). 

This was concomitant with a decrease in total MAKP3/1 (t-MAPK3/1; Fig. 5C). These 

observations from in vitro experiments are comparable to the data in granulosa cells samples at 

24h post-hCG injection from the in vivo model, demonstrating a significant reduction of p-
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MAPK3/1 level compared to t-MAPK3/1 (Fig. 5B and C). These data are also consistent with 

previously published data using granulosa cells samples from in vivo experimental model post-

hCG (Warma & Ndiaye, 2020), which showed significant decrease in phosphorylation levels of 

MAPK3/1 in the OF where ASB9 induction was strongest. However, there was no change in the 

level of phosphorylation of MAPK14 (p38MAPK) following inhibition of ASB9 (Fig. 5D).  

Further, we analyzed MAPK phosphorylation in cultured granulosa cells in response to LH 

treatment at different times (15 min, 30 min, 12h and 12h with ASB9 inhibition). Western blot 

analyses showed p-MAPK3/1 significantly increased at 15 and 30 min, while total MAPK3/1 

significantly decreased at the same time post-LH treatment (Fig. 6A; P<0.05). These results 

demonstrated that MAPK3/1 responded to LH at an earlier time following stimulation with LH in 

cultured GC while ASB9 is induced by hCG at a later time (12 to 24 hours post-hCG) during which 

a likely negative effect on MAPK signaling is observed. Because the family of 90kDa ribosomal 

S6 kinases (RSK), which include isoforms RSK1, RSK2, and RSK3, are substrates of MAPK3/1 

(Alcorta et al., 1989; Jones, Erikson, Blenis, Maller, & Erikson, 1988; Sturgill, Ray, Erikson, & 

Maller, 1988; Zhao, Bjørbaek, Weremowicz, Morton, & Moller, 1995), we analyzed the total 

proteins from in vitro experiments for RSK1 and RSK2 in GC following CRISPR/Cas9 or 

treatment with LH. There was no significant change in the total level of RSK1 (t-RSK1) following 

ASB9 inhibition and treatment by LH (Fig. 6B, top panel); however, there was a relative decrease 

in t-RSK1 in ASB9-inhibited GC as compared to the control and a further decrease of t-RSK1 15 

minutes post-LH compared to control (Fig. 6B) suggesting that ASB9 inhibition might lead to 

increased phosphorylation of RSK1 in GC. In contrast, there was a slight gradual decrease in the 

total level of RSK2 (t-RSK2) following LH treatment and t-RSK2 was further decrease when 

ASB9 was inhibited in the 12h LH-treated sample (Fig. 6B, middle panel). These data could mean 

a different regulation of RSKs by ASB9 or that RSK1 is affected by LH treatment much earlier 

than RSK2 suggesting that different effectors in the MAPK cascade could be differently affected 

by ASB9.  

LH induces ovulatory events through early signaling pathways, including the MAPK3/1 

pathway, which is affected by the expression of many genes either up-or down-regulated 

depending on the time post-LH/hCG. ASB9 is induced several hours post-LH/hCG and seems to 

affect MAPK3/1 pathway. Among the binding partners of ASB9 previously reported, we focused 
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on PAR1 as a potential target of ASB9 and mediator whose downregulation would lead to a 

reduction in MAPK3/1 phosphorylation. Activation of PAR1 by thrombin has been shown to lead 

to the activation of MAPK3/1 signaling pathway resulting in increased proliferation (H. Wang, 

Ubl, Stricker, & Reiser, 2002), while inhibition of the activation of PAR1 and MAPK3/1 inhibits 

cell proliferation and migration (Q. Wang, Yang, Zhuo, Xu, & Zhang, 2018). Although the 

molecular mechanisms of the interaction between ASB9 and PAR1 need to be further investigated 

and detailed, we could nonetheless hypothesize that ASB9 could negatively affect MAPK3/1 

phosphorylation through binding to PAR1 followed by PAR1 degradation via the 

ubiquitination/proteasome pathway, which would lead to proliferation blockade and initiation of 

granulosa cells differentiation (Fig. 7).  

 

Discussion 

The ovulation process is induced by the preovulatory luteinizing hormone (LH) surge and 

involves multiple processes, including cumulus cell expansion, terminal differentiation of 

granulosa cells into luteal cells, oocyte meiotic resumption and follicle rupture (Duggavathi & 

Murphy, 2009; Fan et al., 2009; Richards et al., 2002; Robker et al., 2000). Consequently, LH 

stimulates the expression of genes involved in oocyte complex (COC) expansion such as PTGS2, 

TNFAIP6, HAS2, PTX3 and PGR (Fan et al., 2009; Lussier et al., 2017) as well as genes associated 

with the inflammatory response, which is mediated by progesterone and prostaglandins and 

luteinization. LH also induces angiogenesis and extensive tissue remodeling (Duffy, Ko, Jo, 

Brannstrom, & Curry, 2019) and several intracellular signaling pathways, including the MAPK3/1 

signaling pathway. Moreover, technological advancements have enabled a more accurate 

determination of the number and function of LH-regulated genes over the years (Espey & 

Richards, 2002; Robker et al., 2000). These observations demonstrate the importance of functional 

gene studies during the final stages of follicular development and ovulation to better coordinate 

the ovarian activity. Despite these reports, ovulation has been shown to be a more complex process. 

In this regard, our laboratory previously identified genes in granulosa cells of bovine ovulatory 

follicles following the preovulatory LH-surge including Ankyrin-repeat and SOCS-box protein 9 

(ASB9) (Lussier et al., 2017). In our previous studies, we have shown the induction of ASB9 in 

granulosa cells by LH/hCG and identified binding partners for ASB9 interactions in granulosa 
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cells (Benoit et al., 2019; Lussier et al., 2017). We hypothesized that LH-induced ASB9 could 

regulate granulosa cells' function by affecting MAPK3/1 signaling through binding partners such 

as PAR1 to block GC proliferation. The data reported here support this hypothesis since inhibition 

of ASB9 led to an increase in GC number and cell proliferation markers and an increase in PAR1 

abundance and MAPK3/1 phosphorylation. Moreover, the in vivo model showed a reduction in 

PAR1 expression in ovulatory follicles compared to dominant follicles, which correlates with the 

result showing ASB9 induction in ovulatory follicles.  

Protease-activated receptors (PAR) are receptors that could be directly stimulated by 

thrombin in the thrombin-THBD-APC (activated protein C)-PAR1/4 signaling system that is 

found in different tissues and mediates pleiotropic actions, including anticoagulant, anti-

inflammatory, cytoprotective, and anti-apoptotic activities (Cheng et al., 2012; Griffin et al., 2006). 

PAR proteins are activated when the extracellular NH2 terminus of the receptor is cleaved by 

specific proteases. Of interest, activation of PAR1 in astrocytes by thrombin leads to the activation 

of the MAPK3/1 signaling pathway resulting in increased proliferation (H. Wang et al., 2002). 

Thrombin can activate MAPK3/1 via PTX G proteins and activation of a tyrosine kinase-

dependent process (PI3-Kinase) (Lerner, Chen, Tram, & Coughlin, 1996). According to analyses 

of periovulatory DNA microarray, LH/hCG could stimulate the function of thrombin-THBD-

APC-PAR1/4 system in periovulatory follicles (Cheng et al., 2012). In the thrombin-THBD-APC-

PAR1/4 intraovarian signaling system, thrombin binds to THBD, which is expressed in the plasma 

membrane of granulosa cells in preovulatory follicles. Following the activation of protein C (PC), 

APC binds to endothelial protein C receptor (EPCR) expressed in the surface of the same cells and 

cleft the extracellular domain of PAR1 or PAR4 to stimulate the inhibition of cAMP and 

progesterone biosynthesis stimulated by LH/hCG (Cheng et al., 2012). Increased expression of 

THBD and EPCR following the LH preovulatory increase leads to increased PAR1 and PAR4 

receptors level by APC in granulosa cells (Cheng et al., 2012). The localization of prothrombin 

and PAR1 in granulosa cells suggests that these factors may be important mediators of cellular 

function in the ovarian follicle (Roach, Petrik, Plante, LaMarre, & Gentry, 2002). Similarly, it has 

been reported that in human gastric cancer cells, in vitro knockdown of EPCR inhibits cell 

proliferation and migration by inhibiting the activation of PAR1 and MAPK3/1 (Q. Wang et al., 

2018). Also, EPCR knockdown or treatment with PAR1 antibody significantly decreased 

MAPK3/1 phosphorylation (Q. Wang et al., 2018). In ovalbumin-allergic rats, thrombin promotes 
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airway remodeling via PAR1, while the MAPK3/1 signaling pathway plays an important role in 

this process since pMAPK3/1 inhibitors effectively inhibit the airway remodeling in these rats (Bi 

et al., 2015). These reports provide insight into the potential role of PAR1 activation in cell 

proliferation through the MAPK3/1 signaling pathway. In this sense, we analyzed MAPK3/1 

phosphorylation in our models. We showed a relative increase in the basal level of MAPK3/1 

phosphorylation following ASB9 inhibition, suggesting that ASB9 could affect GC proliferation 

through PAR1 and MAPK3/1 signaling pathway. MAPK3/1 pathway plays an important role in 

cell proliferation by controlling both cell growth and cell cycle progression. In normal cells, 

maintained activation of MAPK3/1 is necessary for G1- to S-phase progression and is associated 

with induction of positive regulators of the cell cycle and inactivation of antiproliferative genes.  

In the present study, we showed that ASB9 inhibition via CRISPR/Cas9 had a positive 

effect on cell cycle progression genes CCND2 and CCNE2 and granulosa cells number, while the 

expression of CCNA2 did not change following ASB9 inhibition. It is well documented that 

CCND2 plays an important role in the induction of early-to-mid G1 phase transition and is required 

for granulosa cell proliferation during ovarian folliculogenesis and CCNE2 has a critical role in 

the G1-S transition of the cell cycle (Han, Xia, & Tsang, 2013; Suryadinata, Sadowski, & Sarcevic, 

2010). These results demonstrated that, by altering the expression of CCND2 and CCNE2, ASB9 

could have an effect on the G1 phase and the G1-S checkpoint of the cell cycle and seems to be 

associated with a reduction in granulosa cells proliferation. Conversely, ASB9 inhibition resulted 

in decreased CASP3 and BAX expression as well as a decrease in Caspase3/7 activity, which is 

consistent with the role of ASB9 as a brake to granulosa cell proliferation/cell cycle progression 

for the initiation of granulosa cells differentiation or controlling granulosa cells apoptosis. Overall, 

the adverse effects of ASB9 on PAR1 expression and MAPK3/1 signaling pathway in ovulatory 

follicles support the hypothesis that ASB9 could affect the MAPK signaling pathway through 

PAR1 as its binding partner. However, whether ASB9 affects PAR1 activation directly through 

the protein degradation pathway is not yet well understood.  

Other results from this study showed a reduction in thousand and one kinase 1 (TAOK1) 

and TNFAIP6 abundance following ASB9 inhibition in vitro, while results from the in vivo model 

showed TAOK1 and TNFAIP6 were induced in ovulatory follicles as compared to other stages of 

follicular development, which is similar to ASB9 regulation during follicular development. These 
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results suggest that TAOK1 and TNFAIP6 expression may be regulated by or is associated with 

ASB9 in granulosa cells, although not as an early response to LH/hCG since ASB9 is induced only 

several hours after TAOK1 and TNFAIP6. This might further suggest an effect of ASB9 in the 

late process of ovulation, such as in follicle rupture or the process of luteinization, instead of in 

the early process of ovulation, such as in oocyte maturation. TAOK1, also known as prostate-

derived sterile 20 (Ste20)-like kinase 2, TAO1 (thousand and one amino-acid protein 1) or 

MARKK, is a member of the MAPK kinase kinases and belongs to the germinal-center kinase-

like class of sterile 20 (Ste20)-like kinases (Hutchison, Berman, & Cobb, 1998). TAOK1 has been 

shown as a regulator of microtubule dynamics through phosphorylation-dependent activation of 

microtubule-associated regulatory kinases (MARK) (Draviam et al., 2007). Previous studies have 

shown TAOK1 as a direct kinase for LATS1/2 of the Hippo pathway (Plouffe et al., 2016). TAOK1 

was also shown as a negative regulator of IL-17-mediated signaling and inflammation in HeLa 

cells. More specifically, TAOK1 could inhibit the IL-17-triggered activation of p38MAPK 

(MAPK14), JNK, MAPK3/1 and p65 (Zhang et al., 2018), act as a regulator of MAPK14-mediated 

responses to DNA damage and regulate different cytoskeletal processes (Raman, Earnest, Zhang, 

Zhao, & Cobb, 2007; Zihni, Mitsopoulos, Tavares, Ridley, & Morris, 2006). MAPK14 is an 

essential component of the MAPK family and is involved in the cellular response to pro-

inflammatory cytokines. Depending on the organ studied, it can act as a pro- or anti-apoptotic 

factor (Kim et al., 2008). In this sense, we analyzed the level of phosphorylated MAPK14 in 

granulosa cells following inhibition of ASB9, and the results show no significant change in the 

phosphorylation level of MAPK14 in basal levels suggesting that ASB9 might not affect 

MAPK14. 

In conclusion, the data from this study shows that the preovulatory LH surge regulates the 

ovulatory gene expression program, at least in part, through the regulation and induction of target 

genes. Most importantly, these findings implicate ASB9 in modulating the MAPK3/1 pathway 

likely through PAR1 on the LH-regulated ovulatory genes in granulosa cells. With the analyses 

used in this study, the mechanism by which ASB9 regulate PAR1 and MAPK3/1 was not 

elucidated. Nonetheless, this study serves as the basis for studies targeting granulosa cell regulation 

during the preovulatory stage and in ASB9-inhibited granulosa cells to identify pathways affected 

by LH-induced genes such as ASB9. 
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Experimental procedures 

Sample preparation 

In vivo samples 

In order to analyze the function of ASB9 in ovarian granulosa cells, in vivo and in vitro 

models were used. The in vivo model was prepared as described previously (Ndiaye, Castonguay, 

Benoit, Silversides, & Lussier, 2016; Ndiaye, Fayad, Silversides, Sirois, & Lussier, 2005). 

Following estrous synchronization with a single injection of PGF2α, normal cycling cows were 

assigned to a dominant follicle group (n=4) or an ovulatory follicle group (n=4). Dominant follicles 

(DF) were obtained by ovariectomy from four cows on day 5 of the estrous cycle (day 0 = day of 

estrus). The DF was defined as ≥ 8 mm in diameter and growing while subordinate follicles were 

either static or regressing. The ovulatory hCG-induced follicle group (OF) was obtained following 

injection of 25 mg of PGF2α on day 7 of the estrous cycle to induce luteolysis, thereby promoting 

the development of the DF of the first follicular wave into a preovulatory follicle. An ovulatory 

dose of hCG (3000 IU, iv) was injected 36 hours after the induction of luteolysis and ovaries were 

collected by ovariectomy 24 hours post-hCG (Ndiaye et al., 2005). Additional OF were collected 

at 0, 6, 12, 18, and 24 hours post-hCG injection for follicular wall (FW; theca interna with attached 

mural granulosa cells) preparation (n = 2 cows/time point) (Filion, Bouchard, Goff, Lussier, & 

Sirois, 2001). The sample at 0 hour was represented by day 7 dominant follicle. Immediately 

following ovariectomy, follicles were dissected into preparations of GC from DF and OF or into 

FW and stored at –70°C. Additionally, granulosa cells (GC) were collected from 2 to 4 mm small 

follicles (SF) obtained from slaughterhouse ovaries, and a total of three pools of twenty SF were 

prepared. Corpora lutea (CL) at day 5 of the estrous cycle were obtained by ovariectomy and were 

dissected from the ovarian stroma and stored at –70°C. The experimental protocol was reviewed 

and approved by the Animal Ethics Committee of the Faculty of Veterinary Medicine of the 

University of Montreal and the cows were cared for in accordance with the Canadian Council on 

Animal Care guidelines ("CCAC. Guidelines on the care and use of farm animals in research, 

teaching and testing. Ottawa, ON: CCAC. 2009.,"). 

In vitro samples 
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For the in vitro model, ovaries were obtained from the slaughterhouse and GC were 

collected from follicles (≥10 mm in diameter). GC were cultured either in 6-well plates (n=4 

independent experiments) to analyze gene and protein expression or in 96-well plates (n=4 

independent experiments with six-well repetition for each treatment) for proliferation assay and 

Caspase3/7 activity analyses. Cultures were performed in DMEM/F12 medium supplemented with 

L-glutamine (2 mM), sodium bicarbonate (0.084%), bovine serum albumin (BSA; 0.1%), HEPES 

(20mM), sodium selenite (4ng/ml), transferrin (5μg/ml), insulin (10ng/ml), non-essential amino 

acids (1mM), androstenedione (100nM), penicillin (100IU) and streptomycin (0.1mg/ml) (Benoit 

et al., 2019; Portela, Zamberlam, Goncalves, de Oliveira, & Price, 2011). Cells were seeded at the 

density of 0.5×106 and 0.1×105 cells for 6-well plates and 96-well plates, respectively. Cells were 

incubated at 37°C in a humidified 5% CO2 atmosphere with media changed every other day. 

Additionally, in order to analyze the LH-induced effects on granulosa cells, the exact amounts of 

LH (100ng) were added in separate experiments and for different times (15, 30 min, and 12h) 

followed by analyses of target proteins. 

CRISPR/Cas9 experiments 

The CRISPR/Cas9 technology was used through the Guide-it system (Takara Bio) for the 

cloning and expression of target single guide RNAs (sgRNAs) for ASB9 inhibition in GC. Six 

sgRNAs were designed and their efficiency was tested before transfection experiments using the 

Guide-it sgRNA in vitro transcription and Screening System (Takara Bio) as previously reported 

(Benoit et al., 2019). GC were collected from slaughterhouse ovaries and cultured in 6-well plates 

at the density of 0.5×106 cells in DMEM/F12 supplemented as described above (n = 4 independent 

experiments with duplicate wells for each treatment). Nanoparticle complexes from the Xfect 

transfection kit (Takara Bio) were applied to GC, 24 hours after cells were seeded, and incubated 

for 9 hours at 37°C then removed and replaced with a complete growth medium. Transfected GC 

along with control GC (transfection with an empty vector or no transfection control) remained in 

culture for six days with media replacement every other day. Cells were collected for total RNA 

and protein extraction to perform RT-qPCR and Western blot analyses. ASB9 inhibition was 

confirmed by RT-qPCR.  

The effects of CRISPR/Cas9-induced ASB9 inhibition were assessed by analyzing the 

expression of proliferation markers PCNA and cell cycle genes cyclins D2 (CCND2), E2 (CCNE2) 
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and A2 (CCNA2) as well as apoptosis/survival markers CASP3, BAX and BCL2. ASB9 binding 

partners, protease activate receptor 1 (PAR1), thousand and one (TAO) amino acid kinase 

(TAOK1) and Tumor Necrosis Factor-Inducible Gene 6 Protein (TNFAIP6) were analyzed. The 

effects of ASB9 inhibition on MAPK pathways were also verified by analyzing phosphorylation 

levels of MAPK3/1 (ERK1/2), p38MAPK (MAPK14) as well as RSK1 and RSK2. 

RNA preparation and RT-qPCR analysis 

For both in vivo and in vitro samples, gene expression was assessed by RT-qPCR. Total 

RNA was extracted from bovine GC of in vivo and in vitro samples using the TRIzol Plus RNA 

purification kit (Invitrogen) and quantified by absorbance at 260nm. Reverse transcription was 

performed using the SMART (Switching Mechanism At 5’-end of RNA Transcript) PCR cDNA 

synthesis technology (Takara Bio). mRNA amounts were analyzed by RT-qPCR using the 

SsoAdvanced Universal SYBR Green Supermix (Bio-Rad) following the manufacturer’s 

instruction manual. RT-qPCR data were analyzed using the Livak (2-Ct) method (Livak & 

Schmittgen, 2001) with RPL19 used as a reference gene (Crookenden et al., 2017). Specific PCR 

primers for ASB9, PAR1, TAOK1, TNFAIP6, PCNA, CCND2, CCNE2, CCNA2, BAX, BCL2, 

CASP3, ASB5, ASB11, and ASB13 were used as presented in Table1. 

Western blot analysis 

Granulosa cells from in vivo and in vitro samples were obtained as described above and 

homogenized in M-PER buffer (Thermo Fisher Scientific) supplemented with complete protease 

inhibitors (Sigma Aldrich) as described by the manufacturer’s protocol and centrifuged at 16,000 

x g for 10 min at 4°C. Protein concentrations were determined from the recovered supernatant 

according to Bradford method (Bradford, 1976). Western blot analyses were performed as 

previously described (Bedard, Brule, Price, Silversides, & Lussier, 2003). Samples (20μg protein 

for in vivo and 700ng protein for in vitro) were resolved by one-dimensional denaturing Novex 

Tris-glycine gels (Invitrogen, Burlington, ON, Canada) and transferred onto polyvinylidene 

difluoride membranes (PVDF; Novex Life technologies, Invitrogen). Membranes were incubated 

with anti-ASB9, anti-MAPK3/1, anti-p-MAPK3/1, anti-MAPK14, anti-p-MAPK14, anti-RSK1 

and anti-RSK2 antibodies. Immunoreactive proteins were visualized by incubation with 

horseradish peroxidase-linked anti-rabbit secondary antibody and the enhanced 

chemiluminescence system, ECL plus (Thermo Fisher Scientific) according to the manufacturer’s 
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protocol followed by revelation using the ChemiDoc XRS+ system (Bio-Rad). β-actin (ACTB) 

was used as reference protein with anti-β-actin antibodies. Primary antibodies were obtained from 

Cell Signaling. 

Proliferation and Caspase-3/7 activity assays 

Granulosa cells were plated in 96-well plates (10,000 cells per well) with medium 

described above, then GC were transfected using the Xfect transfection kit (Takara Bio). Cell 

number was measured using the CellTiter Proliferation and Viability Assays (Promega). A volume 

of 20μl of MTS assay reagent was added to each well, and the plates were incubated at 37°C for 2 

h. The absorbance at 490 nm was read with a 96-well plate reader. 

For caspase 3/7 activity, GC were also cultured in 96-well plates (10,000 cells per well) 

and transfected using the Xfect transfection kit. Caspase-3/7 activity was determined using a 

luminescent assay (Caspase-Glo 3/7 Assay; Promega Corp.). Caspase-Glo 3/7 reagent (100μl) was 

added to the culture plate, and cells in culture medium were incubated at room temperature for 1 

hour before measurement of luminescence of each well at 490 nm in a plate reader luminometer.  

Statistical analysis 

Data are presented as meanSEM from three or more independent experiments unless 

otherwise specified in the text. Different samples or treatments were compared using one-way 

analysis of variance (ANOVA). When ANOVA indicated a significant difference (P < 0.05), the 

Tukey-Kramer test was used for multiple comparison of individual means among SF, DF, OF and 

CL, and for in vitro experiments, whereas the Dunnett test (P<0.05) was used to compare different 

time points post-hCG injection with 0 hour as control. Statistical analyses were performed using 

PRISM software 9 for macOS (GraphPad). RT-qPCR Data are presented as normalized amounts 

of respective genes relative to 2-Ct. 
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Figure 1. A, B and C, PAR1, TAOK1 and TSG6 regulation in granulosa cells (GC) during 

follicular development using in vivo samples. RT-qPCR analyses using in vivo samples showed 

greater expression of PAR1 mRNA in DF as compared to OF (A; P<0.05), while greater expression 

of TAOK1 (B) and TSG6 (C) mRNA was observed in OF as compared to all stages of follicular 

development. D, E, F and G, Regulation of PAR1, TAOK1 and TSG6 in ASB9-inhibited GC. 

Inhibition of ASB9 via CRISPR/Cas9 using in vitro samples was confirmed by RT-qPCR, which 

showed a significant decrease of ASB9 in GC (D). Following ASB9 inhibition, there was a 

significant increase in PAR1 (E; P<0.05) and a decrease in TAOK1 (F) and TSG6 (G) mRNA 

amounts for in vitro samples. In vivo samples: SF, small follicles (n=3); DF, dominant follicles 

(n=4); OF, ovulatory follicles 24h post-hCG (n=4); CL, corpus luteum (n=3). In vitro samples: 
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CTRL, control (n=3); EV, empty vector (n=3); -ASB9, ASB9 knockdown via CRISPR/Cas9 

(n=3). *, P<0.05 (ANOVA, Tukey-Kramer multiple comparison); ns, not significant 
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Figure 2. Proliferation assay and Caspase 3/7 activity in cultured GC following CRISPR-

Cas9-induced ASB9 inhibition. A, GC number was increased following ASB9 inhibition. B, 

Conversely, ASB9 inhibition led to reduced caspase 3 activity in GC. C and D, Expression of 

CASP3 and the ratio of BAX/BCL2 were reduced following ASB9 inhibition. *, P<0.05 (ANOVA, 

Tukey-Kramer multiple comparison, n=3); ns, not significant. 
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Figure 3. Expression of PCNA, CCND2, CCNE2 and CCNA2 in ASB9-inhibited GC. ASB9 

inhibition resulted in a significant increase in proliferation marker PCNA (A) and cell cycle 

progression genes CCND2 (B) and CCNE2 (C). However, there was no significant difference in 

CCNA2 expression (D). *, P<0.05 (ANOVA, Tukey-Kramer multiple comparison, n=3); ns, not 

significant.  
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Figure 4. A, B, and C. Regulation of ASB5, ASB11 and ASB13 in ovarian granulosa cells during 

follicular development using in vivo samples. ASB5 expression was strongest in the CL (A); ASB11 

was strongly expressed in DF and OF with strongest expression in OF (B); ASB13 strongest 

expression was observed in OF compared to other stages of follicular development (C). D, E, and 

F. Expression of ASB5, ASB11 and ASB13 in ASB9-inhibited GC. There were no significant 

changes in ASB5 (D), ASB11 (E) and ASB13 (F) expression following ASB9 inhibition, although 

ASB13 expression tended to increase following the inhibition of ASB9 as compared to control. In 

vivo samples: SF, small follicles (n=3); DF, dominant follicles (n=4); OF, ovulatory follicles 24h 

post-hCG (n=4); CL, corpus luteum (n=3). In vitro samples: CTRL, control (n=3); EV, empty 

vector (n=3); -ASB9, ASB9 knockdown via CRISPR/Cas9 (n=3). *, P<0.05 (ANOVA, Tukey-

Kramer multiple comparison); ns, not significant. 
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Figure 5. A, ASB9 protein expression and regulation in bovine follicles post-hCG from in vivo 

samples. hCG injection induced ASB9 protein expression from 12h to 24h. The strongest 

induction was observed at 24h post-hCG. Beta-actin was used as control. B, MAPK3/1 

phosphorylation level in ovulatory follicles (OF). Maximum ASB9 induction in the ovulatory 

follicle at 24h post-hCG (OF) coincides with weak amounts of p-MAPK3/1, suggesting ASB9 

negative effect on MAPK3/1 phosphorylation. C, Phosphorylation analysis of MAPK3/1 using 

in vitro samples. Western blot analyses showed a relative increase in MAPK3/1 phosphorylation 

level following ASB9 inhibition. D, Phosphorylation analysis of MAPK14 (p38 MAPK) using 

in vitro samples. Western blot analysis results indicated there were no significant changes in 
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phosphorylation level of MAPK14 following ASB9 inhibition. OF1, ovulatory follicle 1; OF2, 

ovulatory follicle 2. *, P<0.05 (ANOVA, Dunnett test, n=2 for each time point); , P<0.05 

(Student’s t test comparing p-MAPK3/1 versus t-MAPK3/1 in OF, n=2); ns, not significant; 

ACTB, beta actin. 
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Figure 6. Phosphorylation analysis of MAPK3/1, RSK1 and RSK2 using in vitro samples 

following treatment with LH at different times (15 min, 30 min, 12h and 12h with ASB9 

inhibition). A, Western blot analyses of MAPK3/1 show a reduction in total MAPK3/1 at 15 min 

post-LH treatment, while a significant increase in phosphorylated MAPK3/1 (p-MAPK3/1) levels 

were observed 15 and 30 minutes post-LH compare to control. B, Results from Western blot 

analyses also showed there was no significant change in the total level of RSK1 protein (t-RSK1) 

in in vitro samples; however, there was a relative decrease in t-RSK1 in ASB9-inhibited GC as 

compared to the control and a further decrease of t-RSK1 15 minutes post-LH compared to control.  

In contrast, there was a gradual decrease in the total level of RSK2 (t-RSK1), which was further 

decreased when ASB9 was inhibited in the 12h LH-treated sample. *, P<0.05 (ANOVA, Tukey-

Kramer multiple comparison, n=3); ACTB, beta-actin. 
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Figure 7. Proposed mechanism of action for ASB9 in GC on PAR1-activated cell 

proliferation. Induction of PAR1, which couples to G proteins, activates different intracellular 

signaling pathways including MAPK3/1 pathway leading to cell proliferation. Following induction 

by LH/hCG, ASB9 would bind to and inhibit PAR1, likely through the ubiquitin proteasome 

pathway of protein degradation resulting in the inhibition of the PAR1-activated MAPK pathway 

and reduction/blockade of granulosa cells proliferation along with reduction of proliferation and 

cell cycle progression markers, PCNA, CCND2 and CCNE2. Granulosa cells expressing ASB9 

would then stop proliferating and instead move toward differentiation. ASB9 negative effect on 

MAPK3/1 could also affect RSKs in the MAPK signaling pathway. Additionally, based on data 

showing reduced caspase 3 activity, we suspect ASB9 might play a role in cell death as well by 

increasing pro-apoptotic markers such as CASP3 and BAX. PAR-1, protease-activated receptor-

1; MAPK3/1, mitogen-activated protein kinase 3/1 (ERK1/2); RSK, 90kDa ribosomal S6 kinases; 

JNK, c-Jun N-terminal kinase; JAK, Janus activated kinase; STAT, signal transducer and activator 

of transcription.
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5.1. Discussion 

The ovary is an important unit of the reproductive system as it harbors follicles that produce 

and release the oocyte. The events associated with the normal process of proliferation and 

differentiation of steroidogenic cells within the follicles, particularly granulosa cells, are critical 

for the growth of the follicle, ovulation and luteinization. These events are regulated by many 

factors including FSH and LH. In women, problems associated with ovulation account for 30 

percent of fertility problems (Health Canada). Polycystic ovary syndrome (PCOS), luteinized 

unruptured follicle syndrome and other ovulatory disorders show phenotypes that can be 

associated with improper development (signaling) and dysregulation of gene expression of the 

preovulatory follicle leading to ovulatory failure [66]. Furthermore, luteinization is essential for 

the maintenance of pregnancy and early embryonic losses occur as a result of defective 

luteinization. Similarly, in dairy cows, fertility has been declining steadily in past decades and this 

decrease leads to economic losses each year. It is therefore of high importance to improve our 

knowledge of the mechanisms that regulate the ovarian function in order to better understand and 

consequently provide a basis for the development of therapeutics tailored to addressing these 

challenges. Moreover, a better understanding of molecular mechanisms that control follicle 

development would lead to improvements in the fertility of dairy cows.  

The transcription of specific genes that control the growth of a bovine dominant follicle is 

rapidly downregulated or silenced in GC as a result of LH-mediated increases in intracellular 

signaling [70], while LH upregulates or induces the expression of genes involved in ovulation and 

luteinization [5, 39]. These observations demonstrate the importance of gene functional studies 

during the final stages of follicular development and ovulation to better coordinate the ovarian 

activity. In this regard, our laboratory previously identified genes in granulosa cells of bovine 

ovulatory follicles following the preovulatory LH-surge, including ankyrin-repeat and SOCS-box 

protein 9 (ASB9) [39]. ASB9 is one of the members of the ASB family, which is differentially 

expressed in ovulatory follicles compared to other stages of follicular development. In our previous 

studies, we have shown the induction of ASB9 in granulosa cells by LH/hCG and identified 

binding partners for ASB9 including TNFAIP6, HIF1A, TAOK1 and PAR1 [5].  
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In the present study, we aimed to investigate the role of ASB9 in GC, to determine the 

effect of inhibition of ASB9 on proliferation and apoptosis of bovine granulosa cells. An in vitro 

model of cultured granulosa cells was used along with the CRISPR/Cas9 approach to inhibit ASB9 

in GC combined with an in vivo model to determine the mechanism of action of ASB9 in granulosa 

cells. 

Many studies have established that the LH surge positively regulates genes involved in 

inflammation, cellular movement, tissue remodeling and angiogenesis while switching off the 

expression of genes involved in metabolism and proliferation in multiple species [131, 132]. The 

LH-induced ERK1/2 pathway has also been shown to be essential for ovulation. Inhibition of 

ERK1/2 in vivo leads to an anovulatory phenotype with trapped oocytes and defective follicular 

rupture [133]. The switch from estrogen to progesterone production is a key factor in LH regulation 

of ovulation. However, ERK1/2 inhibition interferes with this switch and the follicle continues to 

produce high levels of estradiol. Additionally, Cyp19a1 expression, which is usually repressed by 

LH, was not downregulated in the ERK1/2 inhibited granulosa cells, contributing to the increased 

estrogen levels. 

5.2. Summary and relevance of the results 

5.2.1. Analyze the expression of ASB9 binding partners  

RT-qPCR and Western blot analyzes showed that ASB9 is differentially expressed in GC 

of the ovulatory follicle from 12h post-hCG, with the maximum expression at 24h for mRNA and 

protein. In this study, we analyzed the expression of PAR1 as an ASB9 binding partner in our 

models and the results showed a negative effect of ASB9 on PAR1 expression. Following the 

inhibition of ASB9, there was an increase in PAR1 relative mRNA abundance. To confirm this 

result, in vivo model was used and showed a reduction in mRNA expression of PAR1 in ovulatory 

follicles compared to dominant follicles, which aligned with our result showing ASB9 induction 

in ovulatory follicles. These results demonstrated ASB9 would bind to and inhibit PAR1, likely 

through the ubiquitin-proteasome degradation pathway.  

In this study, we also analyzed the expression of TAOK1, another binding partner of ASB9 

with results showed a reduction in TAOK1 relative mRNA abundance following ASB9 inhibition 

in vitro. Results from the in vivo model showed TAOK1 was differentially expressed in ovulatory 
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follicles as compared to other stages of follicular development similar to ASB9 regulation during 

follicular development. These results suggest that TAOK1 expression may be directly regulated by 

ASB9 in granulosa cells. These results met objectives 1 and 2 (the function of ASB9 in GC and 

the effect of ASB9 on binding partners). 

5.2.1.1. PAR1 

Protease-activated receptors (PARs) are receptors that could be directly stimulated by 

thrombin in the thrombin-THBD-APC-PAR1/4 signaling system that is found in different tissues 

and mediates pleiotropic actions, including anticoagulant, anti-inflammatory, cytoprotective, and 

antiapoptotic activities [134, 135]. PARs are activated when the extracellular NH2 terminus of the 

receptor is cleaved by specific proteases. Activation of PAR1 in astrocytes by thrombin leads to 

the activation of the ERK1/2 signaling pathway resulting in increased proliferation [136]. 

Thrombin can activate ERK1/2 via PTX G proteins and activation of a tyrosine kinase-dependent 

process (PI3-Kinase) [137].  

According to analyses of periovulatory DNA microarray, LH/hCG could stimulate the 

function of thrombin-THBD-APC-PAR1/4 system in periovulatory follicles [134]. In the 

thrombin-THBD-APC-PAR1/4 intraovarian signaling system, thrombin binds to THBD, which is 

expressed in the plasma membrane of granulosa cells in preovulatory follicles. Following the 

activation of protein C, activated protein C (APC) binds to endothelial protein C receptor (EPCR) 

expressed in the surface of the same cells and cleaves the extracellular domain of PAR1 or PAR4 

to stimulate the inhibition of cAMP and progesterone biosynthesis stimulated by LH/hCG [134]. 

Increased expression of THBD and EPCR following the LH preovulatory increase leads to 

increased PAR1 and PAR4 receptors level by APC in granulosa cells [134]. The localization of 

prothrombin and PAR1 in granulosa cells suggests that these factors may be important mediators 

of cellular function in the ovarian follicle [138]. It has been reported that in human gastric cancer 

cells, in vitro knockdown of EPCR inhibits cell proliferation and migration by inhibiting the 

activation of PAR1 and ERK1/2 [139].  EPCR knockdown or treatment with PAR1 antibody 

significantly decreased ERK1/2 phosphorylation [139]. In ovalbumin-allergic rats, thrombin 

promotes airway remodeling via PAR1, while the ERK1/2 signaling pathway plays an important 

role in this process since pERK1/2 inhibitors effectively inhibit the airway remodeling in these 

rats [140].  
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These reports could show the potential role of PAR1 activation in cell proliferation through 

ERK1/2 signaling pathway. In this sense, we analyzed ERK1/2 phosphorylation in our models and 

showed a slight, though not significant, increase in the level of ERK1/2 phosphorylation following 

the inhibition of ASB9 in the basal level, suggesting that ASB9 could affect GC proliferation 

through PAR1 and ERK1/2 signaling pathway. The ERK1/2 signaling pathway plays an important 

role in cell proliferation by controlling both cell growth and cell cycle progression. In normal cells, 

maintained activation of ERK1/2 is necessary for G1- to S-phase progression and is associated 

with induction of positive regulators of the cell cycle and inactivation of antiproliferative genes. 

In the present study, the negative effects of ASB9 on PAR1 expression and ERK1/2 signaling 

pathway in ovulatory follicles support our hypothesis that indicated ASB9 could affect MAPK 

signaling pathway through PAR1 as its binding partner. However, whether PAR1 affects ERK1/2 

phosphorylation directly or indirectly is not yet well understood.  

5.2.1.2. TAOK1 

Thousand and one kinase 1 (TAOK1), also known as prostate-derived sterile 20 (Ste20)-

like kinase 2, TAO1 (thousand and one amino-acid protein 1) or MARKK, is a member of the 

MAPK kinase kinases and belongs to the germinal-center kinase-like class of sterile 20 (Ste20)-

like kinases. TAOK1 has been shown as a regulator of microtubule dynamics through 

phosphorylation-dependent activation of microtubule-associated regulatory kinases (MARK) 

[141]. Previous studies have shown TAOK1 as a direct kinase for LATS1/2 of the Hippo pathway 

[142]. In HeLa cells, the functions of TAOK1 is a negative regulator of IL-17-mediated signaling 

and inflammation. TAOK1 could inhibit the IL-17-triggered activation of p38MAPK (MAPK14), 

JNK, ERK1/2 and p65 [143], act as a regulator of MAPK14-mediated responses to DNA damage, 

and regulate different cytoskeletal processes [144, 145]. MAPK14 is an essential component of 

the MAPK family and is involved in the cellular response to pro-inflammatory cytokines. 

Depending on the organ studied, it can act as pro- or antiapoptotic factor [146]. In this sense, we 

analyzed the level of phosphorylation of MAPK14 following inhibition of ASB9 and the effect of 

LH on the phosphorylation of MAPK14.  
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5.2.2. Analyze the effect of ASB9 inhibition on proliferation and 

apoptosis 

MTS colorimetric assay (cell proliferation assay) and Caspase3/7 activity assay were used 

to analyze the effects of ASB9 inhibition on granulosa cell survival/death. The results showed a 

significant increase in GC proliferation following ASB9 inhibition supporting the role of ASB9 in 

regulating granulosa cells. Conversely, ASB9 inhibition resulted in a decreased CASP3 mRNA 

expression as well as a decrease in Caspase3/7 activity, which is consistent with a role of ASB9 

as a brake to granulosa cell proliferation for the initiation of GC differentiation or controlling GC 

apoptosis. 

The negative effect of ASB9 on cell proliferation was shown by two other studies that 

reported the role of ASB9 in cancer [125, 126]. The first paper concludes that patients expressing 

high levels of ASB9 have a higher overall survival rate in colorectal cancer. Additionally, it has 

shown a higher rate of cell invasion in which ASB9 expression is knocked down [125]. In the other 

study, ASB9 reduces the expression of uMtCK proteins in hepatic tumor cells, which leads to 

increased cell death and reduces the proliferation, migration, and invasion of these cells. 

Specifically, ASB9 interacts with uMtCK and induces dysfunction of mitochondria, leading to 

downregulation of cell proliferation [126]. In summary, this work on colorectal cancer and 

hepatocellular carcinoma in humans has shown that higher expression of ASB9 reduces the 

proliferative capacity of cells, a finding in line with our results in this study with regard to the 

effect of ASB9 on GC proliferation and apoptosis. 

Inhibition of ASB9 via CRISPR/Cas9, resulted in a significant increase in steady-state 

mRNA expression of CCND2 and CCNE2 and an increase in proliferation of GC. In contrast, the 

expression of CCNA2 mRNA did not change following ASB9 inhibition. It is well documented 

that CCND2 plays an important role in the induction of early-to-mid G1 phase transition and is 

required for granulosa cell proliferation during ovarian folliculogenesis and CCNE2 has a critical 

role in the G1-S transition of the cell cycle [147, 148]. These results demonstrated that, by altering 

the expression of CCND2 and CCNE2, ASB9 could have an effect on the G1 phase and the G1-S 

checkpoint of the cell cycle and seems to be associated with a reduction in GC proliferation. The 

reported data are consistent with the hypothesis of the present study that indicated ASB9 could 

reduce GC proliferation.  
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5.3. Limitations and perspectives 

We have demonstrated in a previous study that ASB9 interacts with PAR1, TAOK1, and 

TNFAIP6, as binding partners in GC [5]. In this study, we showed the effect of ASB9 in 

modulating the ERK1/2 pathway through PAR1 on the LH-regulated ovulatory genes in granulosa 

cells; however, the mechanisms by which ASB9 regulates PAR1 and ERK1/2 was not elucidated. 

In this sense, several additional experiments could be added to the present work, especially the 

verification of the protein expression of these ASB9 binding partners by western blot in GC and 

analysis of the ubiquitination rate of these partners following the inhibition of ASB9 by 

CRISPR/Cas9. In the absence of reliable antibodies against the binding partners of ASB9, mass 

spectrometry could be used. 

As previously mentioned, the main role of the SOCS box is to serve as the basis for the 

formation of a ubiquitination enzyme complex. Following the formation of the E3 complex, it is 

possible to label a specific protein in order to direct it to a final process of degradation. The SOCS 

box allows the binding of one or more ubiquitin units to the target protein in order to label the 

latter and subsequently allow it to be directed to 26S proteasomes for its degradation [104].  

SOCS proteins also play a role as a negative regulator of the JAK-STAT signaling pathway 

and can fulfill their functions mainly in three ways: SOCS proteins could either block the binding 

sites of STAT proteins to the transmembrane receptor, or inhibit the action of Janus kinase (JAK), 

or participate in the degradation of JAKs and the transmembrane receptor using ubiquitination, 

which leads the complex towards proteasomal degradation [98]. In connection with another work 

previously published [42], it would be relevant to determine whether ASB9 with its SOCS box can 

negatively affect the activity of members of the JAK family, specifically JAK3 in granulosa cells. 

5.4. Conclusion 

Although the knowledge about the molecular structure of ASB9 as an E3 ubiquitin ligase 

is becoming more and more precise [6, 149, 150], the biological roles of this protein are still poorly 

understood. Certain substrates of ASB9 have already been well described and validated including 

brain-type creatine kinase (CKB) [123] and ubiquitous mitochondrial creatine kinase (uMtCK) 

[124].  
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The data from the current study shows that the preovulatory LH surge regulates the 

ovulatory gene expression program, at least in part, through the regulation and induction of target 

genes.  

Most importantly, our findings implicate ASB9 in modulating the ERK1/2 pathway likely 

through PAR1 on the LH-regulated ovulatory genes in granulosa cells. With the analyses used in 

this study, the mechanisms by which ASB9 regulate PAR1 and ERK1/2 was not elucidated. 

Nonetheless, this study fills an important gap in our understanding of the physiology of granulosa 

cells and serves as the basis for additional studies targeting granulosa cells regulation during the 

preovulatory stage and using ASB9-inhibited granulosa cells to identify pathways affected by LH-

induced genes such as ASB9.  

A better understanding of the mechanisms responsible for the process of ovulation and 

luteinization is the basis for understanding the problems of reduced fertility in farm animals, 

especially in dairy cows. These problems have a major impact on the health and profitability of 

herds and the greater knowledge about these mechanisms give the possibility to identify markers 

of fertility. 
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