
Université de Montréal

Towards using intelligent techniques to assist software
specialists in their tasks

par

Oussama Ben Sghaier

Département d’informatique et de recherche opérationnelle
Faculté des arts et des sciences

Mémoire présenté en vue de l’obtention du grade de
Maîtrise sciences (M.Sc.)
en Intelligence Artificielle

November 30, 2020

© Oussama Ben Sghaier, 2020

Université de Montréal
Faculté des arts et des sciences

Ce mémoire intitulé

Towards using intelligent techniques to
assist software specialists in their tasks

présenté par

Oussama Ben Sghaier

a été évalué par un jury composé des personnes suivantes :

Eugene Syriani
(président-rapporteur)

Houari Sahraoui
(directeur de recherche)

Michalis Famelis
(membre du jury)

Sommaire

L’automatisation et l’intelligence constituent des préoccupations majeures dans le domaine
de l’Informatique. Avec l’évolution accrue de l’Intelligence Artificielle, les chercheurs et l’in-
dustrie se sont orientés vers l’utilisation des modèles d’apprentissage automatique et d’ap-
prentissage profond pour optimiser les tâches, automatiser les pipelines et construire des
systèmes intelligents. Les grandes capacités de l’Intelligence Artificielle ont rendu possible
d’imiter et même surpasser l’intelligence humaine dans certains cas aussi bien que d’automa-
tiser les tâches manuelles tout en augmentant la précision, la qualité et l’efficacité. En fait,
l’accomplissement de tâches informatiques nécessite des connaissances, une expertise et des
compétences bien spécifiques au domaine. Grâce aux puissantes capacités de l’intelligence ar-
tificielle, nous pouvons déduire ces connaissances en utilisant des techniques d’apprentissage
automatique et profond appliquées à des données historiques représentant des expériences
antérieures. Ceci permettra, éventuellement, d’alléger le fardeau des spécialistes logiciel et
de débrider toute la puissance de l’intelligence humaine. Par conséquent, libérer les spécia-
listes de la corvée et des tâches ordinaires leurs permettra, certainement, de consacrer plus
du temps à des activités plus précieuses.

En particulier, l’Ingénierie dirigée par les modèles est un sous-domaine de l’informatique
qui vise à élever le niveau d’abstraction des langages, d’automatiser la production des ap-
plications et de se concentrer davantage sur les spécificités du domaine. Ceci permet de
déplacer l’effort mis sur l’implémentation vers un niveau plus élevé axé sur la conception, la
prise de décision. Ainsi, ceci permet d’augmenter la qualité, l’efficacité et productivité de la
création des applications.

La conception des métamodèles est une tâche primordiale dans l’ingénierie dirigée par les
modèles. Par conséquent, il est important de maintenir une bonne qualité des métamodèles
étant donné qu’ils constituent un artéfact primaire et fondamental. Les mauvais choix de
conception, ainsi que les changements conceptuels répétitifs dus à l’évolution permanente des
exigences, pourraient dégrader la qualité du métamodèle. En effet, l’accumulation de mauvais
choix de conception et la dégradation de la qualité pourraient entraîner des résultats négatifs
sur le long terme. Ainsi, la restructuration des métamodèles est une tâche importante qui vise

v

à améliorer et à maintenir une bonne qualité des métamodèles en terme de maintenabilité,
réutilisabilité et extensibilité, etc.

De plus, la tâche de restructuration des métamodèles est délicate et compliquée, notam-
ment, lorsqu’il s’agit de grands modèles. De là, automatiser ou encore assister les architectes
dans cette tâche est très bénéfique et avantageux. Par conséquent, les architectes de métamo-
dèles pourraient se concentrer sur des tâches plus précieuses qui nécessitent de la créativité,
de l’intuition et de l’intelligence humaine.

Dans ce mémoire, nous proposons une cartographie des tâches qui pourraient être au-
tomatisées ou bien améliorées moyennant des techniques d’intelligence artificielle. Ensuite,
nous sélectionnons la tâche de métamodélisation et nous essayons d’automatiser le processus
de refactoring des métamodèles. A cet égard, nous proposons deux approches différentes:
une première approche qui consiste à utiliser un algorithme génétique pour optimiser des
critères de qualité et recommander des solutions de refactoring, et une seconde approche
qui consiste à définir une spécification d’un métamodèle en entrée, encoder les attributs de
qualité et l’absence des design smells comme un ensemble de contraintes et les satisfaire en
utilisant Alloy.

Mots clés: Intelligence Artificielle, Ingénierie dirigée par les modèles, Génie Logiciel,
Apprentissage Automatique, Optimisation Multi-objectif.

vi

Summary

Automation and intelligence constitute a major preoccupation in the field of software engi-
neering. With the great evolution of Artificial Intelligence, researchers and industry were
steered to the use of Machine Learning and Deep Learning models to optimize tasks, auto-
mate pipelines, and build intelligent systems. The big capabilities of Artificial Intelligence
make it possible to imitate and even outperform human intelligence in some cases as well as
to automate manual tasks while rising accuracy, quality, and efficiency.

In fact, accomplishing software-related tasks requires specific knowledge and skills.
Thanks to the powerful capabilities of Artificial Intelligence, we could infer that exper-
tise from historical experience using machine learning techniques. This would alleviate the
burden on software specialists and allow them to focus on valuable tasks.

In particular, Model-Driven Engineering is an evolving field that aims to raise the ab-
straction level of languages and to focus more on domain specificities. This allows shifting
the effort put on the implementation and low-level programming to a higher point of view fo-
cused on design, architecture, and decision making. Thereby, this will increase the efficiency
and productivity of creating applications.

For its part, the design of metamodels is a substantial task in Model-Driven Engineering.
Accordingly, it is important to maintain a high-level quality of metamodels because they
constitute a primary and fundamental artifact. However, the bad design choices as well as the
repetitive design modifications, due to the evolution of requirements, could deteriorate the
quality of the metamodel. The accumulation of bad design choices and quality degradation
could imply negative outcomes in the long term. Thus, refactoring metamodels is a very
important task. It aims to improve and maintain good quality characteristics of metamodels
such as maintainability, reusability, extendibility, etc.

Moreover, the refactoring task of metamodels is complex, especially, when dealing with
large designs. Therefore, automating and assisting architects in this task is advantageous
since they could focus on more valuable tasks that require human intuition.

In this thesis, we propose a cartography of the potential tasks that we could either auto-
mate or improve using Artificial Intelligence techniques. Then, we select the metamodeling

vii

task and we tackle the problem of metamodel refactoring. We suggest two different ap-
proaches: A first approach that consists of using a genetic algorithm to optimize set quality
attributes and recommend candidate metamodel refactoring solutions. A second approach
based on mathematical logic that consists of defining the specification of an input meta-
model, encoding the quality attributes and the absence of smells as a set of constraints and
finally satisfying these constraints using Alloy.

Keywords: Artificial Intelligence, Model-Driven Engineering, Software Engineering,
Machine Learning, Multi-Objective Optimization.

viii

Contents

Sommaire . v

Summary . vii

List of tables . xv

List of figures . xvii

Acronyms & Abbreviations . xix

Dedications . xxi

Acknowledgements . xxiii

Chapter 1. Introduction. 1

1.1. Research context . 1

1.2. Problem statement. 3
1.2.1. Problem 1: How can AI assist software specialists in their tasks? 4
1.2.2. Problem 2: How to recommend relevant metamodel refactoring solutions? . 4
Takeaways. 5

1.3. Main contributions. 5
1.3.1. Contribution 1: Cartography of potential AI-based improvements for

software-related tasks . 5
1.3.2. Contribution 2: Quality-driven multi-objective optimization approach for

metamodel refactoring . 6
1.3.3. Contribution 3: Recommending metamodel refactorings using constraint

solving. 6
Takeaways. 6

1.4. Thesis structure . 7

Chapter 2. State of the art . 9

ix

Introduction . 9

2.1. Background . 9
2.1.1. Model-driven engineering (MDE). 9

2.1.1.1. Domain-specific language . 10
2.1.1.2. Metamodeling . 12
2.1.1.3. Model transformation . 13
2.1.1.4. Metamodel quality assurance . 15
2.1.1.5. Metamodel quality evaluation . 15
2.1.1.6. Metamodel smells . 16
2.1.1.7. Metamodel refactoring . 16

2.1.2. Artificial intelligence . 17
2.1.2.1. Machine learning . 18
2.1.2.2. Artificial neural networks . 22
2.1.2.3. Deep learning . 23
2.1.2.4. Multi-objective optimization . 23
2.1.2.5. Genetic algorithms. 24
2.1.2.6. Non-dominated Sorting Genetic Algorithm II . 26
2.1.2.7. Constraint solving . 28

2.1.3. Scrum: an agile software development methodology . 28

2.2. Related work . 30
2.2.1. AI-based improvement for software-related tasks . 30

2.2.1.1. Improvement opportunities . 30
2.2.1.2. ML-based automation tools . 31

2.2.2. Metamodel smells detection and refactoring . 33

Conclusion . 34

Chapter 3. Automation and improvement of the software development
pipeline:
A cartography of ML-based opportunities 35

Introduction . 35

3.1. Context & Motivations. 35
3.1.1. Context. 35
3.1.2. Motivations and objectives . 36

x

3.2. Adopted methodology. 36
3.2.1. Documentation . 37
3.2.2. Questionnaires & Interviews . 37
3.2.3. Results analysis . 38
3.2.4. Improvement and automation opportunities . 40
3.2.5. Graphical cartography . 40

3.3. Processes and tasks description . 40
3.3.1. General presentation of the AI team of our industrial partner 41
3.3.2. AI platform . 42

3.3.2.1. Data engineering. 45
3.3.2.2. Development. 46
3.3.2.3. Training . 46
3.3.2.4. Validation & Evaluation . 46
3.3.2.5. Prediction . 47
3.3.2.6. Monitoring . 48
3.3.2.7. Continuous Integration / Continuous Delivery (CI/CD) 49
3.3.2.8. Security . 52

3.4. Identified problems and required expertise for software-related tasks 53

3.5. AI-based improvement opportunities . 58
3.5.1. Data engineering . 59

3.5.1.1. Intelligent data generator . 59
3.5.2. Implementation of ML models . 61
3.5.3. Machine learning pipeline . 61
3.5.4. Evaluation of ML models . 62
3.5.5. Monitoring. 62
3.5.6. Scrum: sprint planning . 63
3.5.7. Security . 63

Conclusion . 64

Chapter 4. Quality-driven multi-objective optimization approach for
metamodel refactoring . 65

Introduction . 65

4.1. Problem statement & Motivations. 65

xi

4.2. Proposed approach. 67
4.2.1. Quality metamodel . 68
4.2.2. Quality model . 70
4.2.3. Objectives generation . 71
4.2.4. Detection of metamodel smells . 73
4.2.5. Applying refactorings . 74
4.2.6. Metamodel quality evaluation . 74
4.2.7. Multi-objective optimization of quality attributes using NSGA-II 75

4.2.7.1. Problem formulation . 75
4.2.7.2. Genetic operators . 76
4.2.7.3. Solution evaluation . 77
4.2.7.4. Solution validity assurance . 77
4.2.7.5. Metamodel refactoring recommendation . 77

4.3. Illustrative case study. 77
4.3.1. Research questions . 78
4.3.2. Experimental setup . 79
4.3.3. Results . 79
4.3.4. Validity of the experiments. 82

4.4. Conclusion & Future work . 82

Chapter 5. Metamodel refactoring using constraint solving 85

Introduction . 85

5.1. Problem statement. 85

5.2. Proposed approach. 86

5.3. Implementation details . 87
5.3.1. Phase 1: Detection of design smells . 87

5.3.1.1. Translate metamodel class diagram to alloy specification using CD2Alloy 87
5.3.1.2. Encoding metamodel smells as constraints . 91
5.3.1.3. Metamodel smells detection . 93

5.3.2. Phase 2: Metamodel refactoring. 93

5.4. Illustrative case study. 95

Conclusion . 100

xii

Chapter 6. Conclusion and future work . 101

6.1. Summary . 101
6.1.1. Automation and improvement of the software development pipeline: A

cartography of ML-based opportunities. 101
6.1.2. Quality-driven multi-objective optimization approach for metamodel

refactoring . 101
6.1.3. Metamodel refactoring using constraint solving . 102

6.2. Future work . 102

Bibliography . 105

Appendix A. Cartography of AI-based improvement opportunities for
software-related tasks . 113

A.1. Graphical cartography: Overview. 113

A.2. Projection over the cartography sub-parts . 113
A.2.1. Data engineering . 115
A.2.2. Development of ML models. 116
A.2.3. Machine learning pipeline . 117
A.2.4. Evaluation of ML models . 118
A.2.5. Monitoring of ML models . 119
A.2.6. Scrum: sprint planning . 120
A.2.7. Security . 121

xiii

List of tables

3.1 Description of the different axes. 38
3.2 Information about the questionnaires and interviews . 38
3.3 An excerpt of the monitoring questionnaire . 39
3.4 Problems and required expertise to accomplish software-related tasks 58

4.1 Description of quality metrics [89] . 70
4.2 Mapping from quality metrics to quality parameters [89] . 70
4.3 Weights: influence of quality parameters on quality attributes [89] 71
4.4 List of considered bad smells [21] . 74
4.5 Description of the metamodels . 78

5.1 Information about the execution of our approach on the CRM metamodel 96

A.1 Data engineering: AI-based improvement opportunities . 115
A.2 Development of ML models: AI-based improvement opportunities 116
A.3 ML pipeline: AI-based improvement opportunities . 117
A.4 Evaluation of ML models: AI-based improvement opportunities 118
A.5 Monitoring of ML models: AI-based improvement opportunities 119
A.6 Scrum - sprint planning: AI-based improvement opportunities 120
A.7 Security: AI-based improvement opportunities . 121

xv

List of figures

2.1 An example of flowchart created with Automate
source: https://llamalab.com/automate/ . 11

2.2 Components of a modeling language source: Syriani et al. [125] 12
2.3 The MDA meta-layers . 13
2.4 Model transformation source: Syriani et al. [125] . 14
2.5 Types of machine learning . 19
2.6 Reinforcement learning . 21
2.7 Machine learning taxonomy . 21
2.8 Structure of artificial neural networks . 22
2.9 Sigmoid activation function . 23
2.10 Single-point crossover example . 25
2.11 Two-point crossover example . 25
2.12 Mutation example . 26
2.13 Crowding distance calculation source: Deb et al. [36] . 27
2.14 Scrum: an agile framework for development . 29
2.15 Data flow example built with KNIME workbench source: Berthold et al. [19] . 32

3.1 Adopted methodology . 36
3.2 Different axes related to the AI platform . 37
3.3 How to generate an AI software? . 42
3.4 AI platform: workflow and components . 43
3.5 The major components of an API template for a deployed ML model. 47
3.6 Sample of data health evaluation metrics . 49
3.7 Sample of model performance evaluation metrics . 49
3.8 Continuous Integration/Continuous Delivery (CI/CD) workflow 50
3.9 SonarQube: an excerpt from the report generated on an example. 51

xvii

https://llamalab.com/automate/

3.10 Tokenization VS Encryption . 52
3.11 Nexus-IQ: an excerpt from the report generated on AngularJS dependency 54
3.12 Generative Adversarial Networks (GANs) architecture . 59
3.13 Autoencoders architecture . 60

4.1 A metamodel example that contains some design smells . 67
4.2 Proposed approach . 68
4.3 Quality metamodel . 69
4.4 Quality model . 71
4.5 Code snippet of the Edelta library for computing quality metrics 75
4.6 Adapted single-point crossover operator . 76
4.7 Adapted mutation operator . 77
4.8 Metamodel example for Customer Relationship Management (CRM) 78
4.9 CRM metamodel - Comparison between our approach and classical approach. . . . 80
4.10 CRM metamodel - Comparison between our approach and RS 81
4.11 Refactored metamodel corresponding to solution-2 . 81

5.1 Constraint solving approach to detect design smells and refactor metamodels 87
5.2 Customer Relationship Management (CRM): class diagram . 88
5.3 Formulate the metamodel refactoring approach as an ordered Finite State Machine

(FSM) . 94
5.4 Metamodel refactoring: flattened approach . 94
5.5 Results of the execution of our approach on the CRM metamodel 97
5.6 Execution results: first state . 98
5.7 Execution results: intermediate state. 98
5.8 Execution results: final state . 99

A.1 Graphical cartography of AI-based improvement opportunities for software-related
tasks . 114

xviii

Acronyms & Abbreviations

1. AI Artificial Intelligence

2. ML Machine Learning

3. DL Deep Learning

4. NLP Natural Language Processing

5. MDE Model-Driven Engineering

6. GA Genetic Algorithm

7. MOO Multi-Objective Optimization

8. NSGA-II Non-Dominated Sorting Genetic Algorithm II

9. UML Unified Modeling Language

10. OCL Object Constraint Language

xix

11. API Application Programming Interface

12. DSL Domain-Specific language

13. DSM Domain-Specific Modeling

14. OMG Object Management Group

15. MOF Meta-Object Facility

16. RS Random Search

17. CI/CD Continuous Integration & Continuous Delivery

xx

Dedications

I am most thankful to my God,
the most beneficent and the most merciful.

I dedicate this work to my family and special friends.

In the memory of my grandmothers and grandfathers.

A special feeling of gratitude to my loving parents,
who waited patiently for the fruits of their good education,

and whose words of encouragement and pushes for tenacity ring in my ears.
This work is the fruit of the sacrifices you have made for my education and my well-being.

To my sweetheart brother and sister,
In testimony of my deep love,

and to whom I wish all success and happiness.
To the flower of my life,

the one that makes my heart beat,
I offer you all the beautiful expressions of the language.
May God unite our paths for a long serene common.

To my friends,
because there is no better capital than that of lasting and sincere friendship.

To all my family,
May God protect you and keep us always together and in solidarity

To everyone else who contributed to this humble work,
To all the people who are dear to me,

and all those who want to share my happiness,
I dedicate this modest work,

symbol of my deep gratitude and crowning of their assistance.

xxi

I am eternally grateful to all of you.
Thank you ..
For anything!

xxii

Acknowledgements

Develop an attitude of gratitude, and
give thanks for everything that
happens to you,
knowing that every step forward is a
step toward achieving something bigger
and better than your current situation.

Brian Tracy

It is a pleasant duty to perform the recognition accumulated throughout his curriculum.

I would like to express my greatest gratitude to both the Tunisian Ministry of Higher
Education and Scientific Research and the University of Montreal for co-funding this research
work through many excellent scholarships.

I also address myself to the members of the honorable jury, who I thank for agreeing to
consider this thesis and to kindly take the time to evaluate this humble work, hoping that
they will find in it the qualities of clarity and rigor as expected.

First and foremost, I would like to express my immense gratitude and respect to my
great and indescribable supervisor Professor. Houari Sahraoui for his unwavering guidance,
relentless support, and astute advice. I also would like to express my deepest appreciation
for his colossal kindness, tireless diplomacy, and his unblemished geniality. I am super proud
to be one of his students and glad to continue working with him during my Ph.D. One simply
could not wish for a better supervisor

Then, I would like to extend my heartiest thanks to all my colleagues in the GEODES
laboratory for sharing knowledge and a good work atmosphere.

Last but not least, I wish to thank the professors and the administrators of UdeM. Hats off
to you for your hard work, for keeping moving forward and for maintaining good conditions,

xxiii

and a nice environment for education, teaching, and research, even in the difficult situation
of COVID-19.

Finally, I would like to thank all those who, from far and near, contributed to the real-
ization of this work.

xxiv

Chapter 1

Introduction

1.1. Research context
The quality of software pipelines and tasks is very important for the sake of delivering

high software quality and in order to maintain an elevated level of software practitioner’s
efficiency [61, 78, 77, 62]. Currently, IT companies are granting prominent importance
towards the refinement and optimization of their IT pipelines and tasks to increase their
efficiency in producing deliverables (Machine Learning models, software, services, etc.) with
better quality [61, 18, 90]. Furthermore, many tools have been designed and implemented
to assist software specialists (data scientists, software developers, data engineers, etc.) in
their tasks [104, 112, 15, 122, 111]. These tools enable software specialists’ assistance
aiming to increase their efficiency and effectiveness, decrease error-proneness, and maintain
a lofty level of productivity.

In this regard, many researchers were oriented towards the improvement of software
pipelines and deliverables’ quality [121]. Most of the researches were software engineering-
oriented and focused mainly on development and testing enhancement [122, 42, 128, 104,
30, 41]. Accordingly, a lot of work, that has been done, was related to models and source code
refactoring (bad smells detection and correction), testing, IntelliSense or code completion,
etc. [15, 8, 109] Yet, few research contributions were related to the optimization of some
fields such as Model-Driven Engineering (MDE) or Artificial Intelligence tasks due to the
recent growth of these fields that are still not mature enough. Indeed, these fields are
witnessing an increased evolution in the last decade. Although there is still a lot to be done
in the mature fields, the growing fields should be tackled more intensively since there are
tremendous related research directions that could be addressed to contribute to the success
and achievements of these fields.

On the other side, the field of Artificial Intelligence (AI) has witnessed an outstanding
evolution recently. The incommensurable potential of AI, especially its sub-fields machine
learning and deep learning, made it one of the most successful fields nowadays. It provides

powerful capabilities to imitate human-intelligence and build smart systems; This exceptional
potential of AI made it an appealing target in high-demand and broadly used in other
domains. Thus, AI represents today, the backbone of many smart systems [91, 13, 83],
the key solution for many challenging problems, and the fuel of innovation and creativity
[31, 86].

Consequently, AI is being used to solve challenging and complex problems. Machine
learning and Deep learning models have a potent capacity to infer knowledge from raw data
and to learn complex and hidden patterns. This forms a major asset allowing to imitate
and even outperform human intelligence in some cases [56, 120]. If integrated wisely and
properly, AI could be a great asset to other fields by injecting intelligence, smoothing and
accelerating workflows, optimizing tasks, improving artifacts’ quality, assisting engineers,
and raising their effectiveness, etc.

One of the most interesting fields where we could use AI is Software Engineering [34].
So far, there are some AI-based tools have been designed and developed, some research work
has been done to benefit from AI to assist software specialists in their tasks, to optimize
pipelines, and improve software quality. However, there is still a lot to be done. As it is
aforesaid, the research field was narrow and limited to some specific tasks (development,
testing, security, etc.) and it has investigated less the opportunities of using AI to promote
other types of tasks such as modeling, monitoring of both resources and ML models, CI/CD,
designing and developing ML models, ML evaluation and security, etc.

Artificial Intelligence could be employed in different forms: automation, recommendation,
optimization, detection, analysis, prediction, forecast, etc. We should take advantage of these
benefits to carry up the fields of software engineering, MDE, etc. to an upper-level replete
with automation and intelligence. Along with putting efforts into improving AI techniques,
a new research direction should be adopted to investigate new improvement opportunities
within the software development process.

Indeed, integrating AI into the development processes can help to address several major
challenges that software specialists are facing for several years, including the difficulty of
automating many activities with a high propensity to introduce errors. Furthermore, the
capacity of Machine Learning to detect hidden patterns, to provide accurate predictions
and recommendations, to learn from past experiences, and to infer knowledge; constitutes
a considerable opportunity to alleviate the burden on the different software actors in the
accomplishment and optimization of their tasks.

In fact, one important task in the software generation workflow is the design phase in
which some metamodels are produced. Metamodels are a central and fundamental pillar in
Model-Driven Engineering (MDE), allowing to formalize domain concepts and build domain-
specific languages. The key idea behind this paradigm is that dealing with domain models is

2

significantly easier for stakeholders than directly dealing with low-level implementation arti-
facts as it allows to abstract and automates the mechanism of domain applications generation
and transformation. The major benefits of MDE are the increase in productivity, efficiency,
quality, and automation. Besides, MDE allows empowering domain experts, bridge the gap
between domain experts and IT and it allows them also to focus on business problems in-
stead of the technical details. On the other hand, MDE decreases cost, time-to-market, and
error-proneness. Hence, this paradigm has widely spread and became increasingly popular
and more used by dint of its enormous advantages.

Metamodels, the central artifact in MDE, are subject to changes, evolution, and mainte-
nance to adapt to the dynamic environment, the varying domain, and to the requirements’
evolution. Thus, these artifacts should be maintained carefully, and they should be of good
quality. Faced with the evolution and changes in the requirements, we should always en-
sure a good metamodels quality since the majority of the other artifacts depend on them.
Here, AI could be an interesting and appealing candidate for this task. We could use some
machine learning techniques to help model architects design and maintain robust and high-
quality metamodels. This could be through recommending quality improvement solutions
(e.g. refactoring) or by detecting potential defects or bad design decisions.

To sum up, the powerful capabilities of AI could be exploited to improve pipelines,
optimize tasks, assist, and help software specialists in their work. If used properly, AI could
provide great support for the Software Engineering and MDE industry.

1.2. Problem statement
AI is being used broadly in different fields to solve challenging and complex problems, to

inject a kind of intelligence to build smart systems, etc. The inherent idea behind this is the
capacity of AI to capture knowledge that is difficult to elicit by humans. Even though human
characters like intelligence, intuition, and creativity are unique, AI shows many capabilities
in imitating human intelligence in many cases or, at least, to exploit it more efficiently for
some applications.

In this thesis, we are interested in two problematics: A high-level problem where we
investigate AI-based opportunities to assist software specialists and optimize software-related
tasks; A low-level problem where we are interested in a specific task which is the design of
metamodels. Maintaining a high level of metamodels’ quality is a real challenge that should
be addressed by the research community while considering the modeler’s preferences to guide
the refactoring task.

3

1.2.1. Problem 1: How can AI assist software specialists in their
tasks?

As previously mentioned, AI has outstanding capabilities and could be used either to
assist humans or to optimize tasks. However, what matters most is knowing when and
where to use AI. Thus, it is very important to identify tasks or their parts in development
pipelines where we could use AI to improve the effectiveness and promote productivity and
quality.

In addition, Software specialists, including scientists and engineers need deep knowledge
and wide expertise to accomplish their tasks properly and perfectly. Nevertheless, they may
encounter problems and hurdles when facing difficult and complex tasks. AI allows to learn
from past experiences, detect hidden patterns and infer knowledge, thus, it could be used in
a way to assist the different software actors in their tasks using either automation, detection,
recommendation, or guidance, etc. To get the most out of AI, it is highly critical to detect
the proper manner of using it to promote the corresponding task. This should be done by
identifying the appropriate AI techniques to use, the right data to learn from, and correctly
employing the results to improve this task.

Furthermore, to generate software products (software, website, machine learning models,
etc.), companies set up pipelines that allow to automate the deployment of those artifacts
and to connect different tasks. For example, Continuous Integration/Continuous Delivery
(CI/CD) is a common pipeline in IT companies as it allows to automate building, testing,
and deployment of applications. Despite the high level of automation, there are still some
manual tasks in these pipelines (i.e. code review). AI could be a great opportunity to
increase the automation level of these pipelines, to refine„ automate and optimize them, and
to inject a kind of intelligence.

Despite a large number of improvement opportunities, it is important to identify the
right spots where AI could be useful to adduce profit and added value.

1.2.2. Problem 2: How to recommend relevant metamodel refac-
toring solutions?

One important task in the paradigm of model-driven engineering is the design of meta-
models. To maintain a good quality of metamodels, we should continuously identify bad
design choices and to refactor them. Many research axes related to metamodels refactoring
were investigated. Some of them were based on bad smells detection and correction. Never-
theless, removing all the bad smells blindly is not necessarily the best option since correcting
one bad smell can improve one quality attribute but it can also worsen another one [5].
Therefore, Bad smells should be removed with respect to some objective criteria which could

4

be the quality attributes. In fact, architects don’t refactor metamodels aimlessly. However,
they do it to improve some quality factors such as the understandability and reusability of the
metamodel. In this context, a real challenge consists of not only recommending refactoring
solutions but rather providing meaningful ones with respect to some relevant criteria.

Takeaways

We sum up the aforementioned problems in a form of short takeaways:
• Problem 1: It is very important to have a global overview of the potential AI-based
opportunities to improve software-related tasks and to assist software specialists in
their work. To the best of our knowledge, few research works have been done in this
context.
• Problem 2: Metamodel refactoring was previously tackled by the MDE research
community. However, none of those previous works has addressed the recommenda-
tion of refactoring based on the optimization of some quality criteria.

1.3. Main contributions
In this section, we present our solutions to address the aforementioned problems. These

solutions are organized into three main contributions: First, we present a macro-contribution
that depicts the AI-based opportunities to improve software-related tasks.

Then, we present our two other contributions focusing on a specific software-related task
which is the design of metamodels. In these contributions, we propose different approaches
to refactor metamodels. The refactoring is guided by some quality criteria. We use two
different AI techniques: constraint solving and multi-objective optimization.

1.3.1. Contribution 1: Cartography of potential AI-based improve-
ments for software-related tasks

In Chapter 3, we present our contribution that addresses the first problem. In this
contribution, we analyze the pipelines and tasks in an industrial setting. This will give us an
overview of the expertise and knowledge required to accomplish each task. Then, we depict
a cartography of the improvement opportunities of these tasks and pipelines where we could
infer this expertise from experience and historical data in order to automate parts of these
tasks and to assist software practitioners in their work. This contribution is divided into
several steps that consist of: (1) identify the tasks and pipelines done inside the AI team,
(2) link each task with the corresponding knowledge and expertise required to realize it, and
(3) recommend machine learning-based opportunities allowing to infer this knowledge from
past experience which will allow to optimize and automate parts of these tasks.

5

1.3.2. Contribution 2: Quality-driven multi-objective optimization
approach for metamodel refactoring

We address the second problem in two different ways. Our second contribution in chap-
ter 4 tackles the problem of improving the quality of metamodels that is the fundamental
piece in the paradigm of Model-Driven Engineering. Metamodels reside in a changing en-
vironment where requirements are evolvable. The goal of this contribution is to maintain
a high-quality of metamodels by detecting and correcting metamodels’ smells, not purpose-
lessly, but, rather improve some chosen quality factors. We use a search-based approach to
improve simultaneously some quality attributes in the input metamodel. Then, we recom-
mend the resulted solutions to the modeler to select the adequate candidate solution to be
automatically applied to generate the refactored metamodel.

1.3.3. Contribution 3: Recommending metamodel refactorings us-
ing constraint solving

We present our third contribution in Chapter 5 in which we try to address differently
the problem of improving metamodels quality. Rather than using a meta-heuristic with
multi-objective optimization, we rely on a constraint solving approach. Indeed, we use Alloy
as a specification language to express the quality criteria and the absence of metamodel
smells as constraints. Then, we try to satisfy these constraints using alloy as a constraint
solver. The solutions that satisfy the specified constraints are the refactoring solutions
that we recommend to improve the quality of the input metamodel. To sum up, in this
contribution we provide a novel, robust, and formally-sound approach to refactor metamodels
while satisfying quality constraints.

Takeaways

We summarize our main contributions as follows:
• Contribution 1: A cartography of tasks and pipelines that could be automated or
improved by inferring the required expertise and knowledge to accomplish them from
past experiences and historical data using AI techniques.
• Contribution 2: Recommend metamodel refactoring solutions using a multi-
objective optimization approach of quality attributes.
• Contribution 3: We use Alloy as a formal specification language to encode the
absence of smells and quality criteria as logical constraints. Then, we use Alloy to
satisfy these constraints and recommend candidate metamodel refactoring solutions
that correct bad smells while satisfying quality constraints.

6

1.4. Thesis structure
The remainder of this thesis is organized as follows. Chapter 2 provides a literature

review on previous related works that are relevant to the main contributions of this thesis.
In chapter 3, we portray a cartography of AI-based improvement opportunities identified in a
real-life study of pipelines and tasks of the AI team of an industrial organization. Chapter 4
reports our contribution for recommending refactoring solutions for a given metamodel using
a search-based multi-objective optimization approach with quality attributes. Chapter 5
presents another robust approach for quality-based metamodel refactoring recommendation
using constraints solving. Finally, we conclude our thesis in chapter 6 by summarizing our
contributions, underlining their limitations, and outlining future research directions.

7

Chapter 2

State of the art

Introduction
This chapter provides a thorough overview of the work related to the main contributions

stated in this thesis. First, we provide the essential background needed to understand the
key concepts. Then, we review the literature with regard to the main themes of this research
work: (1) Analysis of AI-based improvement opportunities (2) Metamodel refactoring rec-
ommendation and design smells detection. Afterward, we identify the limitations that are
addressed by our contributions.

2.1. Background
2.1.1. Model-driven engineering (MDE)

Models played a subordinate role in the software development process and were used for
simple documentation purposes [129]. The advent of MDE has given greater priority to
models by considering them as the main and most important artifact in the development
process. In fact, MDE is a software development approach that relies on the design, creation,
and exploitation of domain models. Moreover, MDE aims to substitute the task of writing
source code with the design of models. The abstraction of domain knowledge, problem
representation, and all activities that guide the development of domain applications is done
by shifting the main effort from the technical to the domain level, allowing stakeholders and
domain experts to become more involved in the development process without worrying about
the technical and IT aspects. Hence, MDE has made it easier for stakeholders to represent
domain problems and develop domain-specific applications [22] by encouraging the use of
domains, shifting the focus from the technical level to the domain level by using models
instead of source code and automating the generation of domain applications [102].

2.1.1.1. Domain-specific language.

A General-Purpose Language (GPL) is a computer language applicable to a large set of
problems and across domains as it allows a fine-grained development and specification of
applications.

In contrast to a GPL, a Domain-Specific Language (DSL) is a modeling language related
to a particular application domain. A domain refers either to an application context (e.g.
a web application, database, etc.) or to a business sector (e.g., banking, healthcare, man-
ufacturing, etc.). A DSL is specialized to a particular application domain. Nevertheless, it
can facilitate, abstract, and automate the generation of domain applications. MDE strongly
fosters the use of DSL to create high-quality domain applications quickly and easily. The
use of a DSL abstracts the technical and computational details and complexity such as the
programming language, memory management, pointers, threads, data structures, etc. Also,
it involves more stakeholders in the creation of domain-specific applications. As an example,
HTML is a domain-specific language dedicated to web pages, CSS is a DSL that describes
the presentation of an HTML document, and Latex is also a DSL used for document prepa-
ration. A DSL can be textual or graphical. For instance, SQL is a textual DSL that is used
to manage the data contained in a relational database (defining how to create, modify, read,
or delete data from a relational database). Automate1 is an example of a graphical DSL that
allows Android smartphone users to automate various tasks by building flowcharts (i.e. to
change settings such as Wi-Fi, Bluetooth, etc. or to perform actions such as sending emails
or SMS messages, etc. based on other event triggers such as location, time, etc.).

Listing 2.1 provides an example of an SQL query and figure 2.1 shows a flowchart created
with Automate.

SELECT *
FROM Students
WHERE grade >80

Listing 2.1. Example of SQL query

A DSL has many fruitful outcomes such as having a little language with minimal mainte-
nance effort [39]. Empirically, the use of a DSL increases performance, flexibility, reliability,
usability, maintainability, and productivity [4, 79, 14]. Besides, using a DSL remarkably
reduces costs and speeds up the software development process, which is attracting interest
in domain-specific languages [75, 33, 82].

As illustrated in figure 2.2, a modeling language is composed mainly of 3 parts:
• Syntax: It is composed of two parts:

1https://llamalab.com/automate/doc/index.html

10

https://llamalab.com/automate/doc/index.html

Fig. 2.1. An example of flowchart created with Automate
source: https://llamalab.com/automate/

– Abstract Syntax: defines the actual syntax of the language that represents the
underlying information and all the main concepts needed to build the language,
e.g. the concepts, the elements to be used in the language, and the relationship
between them.

– Concrete Syntax: defines what the user actually sees. It maps the elements and
relationships of the abstract syntax to the concrete notations the user should
use. The concrete syntax can be either graphical (i.e. shapes) or textual (i.e.
keywords).

• Semantics: defines the meaning of the modeling language. It represents the semantic
domain.
• Pragmatics: defines recommended guidelines and practices, patterns and anti-
patterns for the proper use of a DSML.

The syntax mapping plays a double role: a rendering engine (concrete to abstract syntax)
and an analyzer (abstract to concrete syntax). The syntactic mapping function assigns each

11

https://llamalab.com/automate/

Fig. 2.2. Components of a modeling language
source: Syriani et al. [125]

element of the abstract syntax to concrete notations (textual or graphical). The semantic
mapping function associates each element of the abstract syntax to elements of the semantic
domain [125]. The abstract syntax is defined by the metamodel and the static semantics.
We discuss the concept of meta-modeling in the next section.

2.1.1.2. Metamodeling.

In MDE, metamodels are the means to specify the abstract syntax of modeling languages
[24]. Metamodels delineate the permitted structure to which we must adhere to build a valid
model [127].

A Meta-model represents the structure of valid models by defining a tiny core of concepts,
elements, and relations in a particular domain. Therefore, it restrains the valid list of models
that form part of a DSML. Valid models are instances that conform to the meta-model
specification. Thus, a meta-model describes with a higher level of abstraction the list of
valid models.

The Object Management Group (OMG) has defined a standard for Model-Driven Ar-
chitecture (MDA) that consists of four levels of abstractions called: Meta-Object Facility
(MOF)2. As revealed by figure 2.3, MOF is composed of four multi-layers.

The metamodel layer at the top level is called the M3 layer. MOF is an M3-linguistic
model. It defines a language to specify metamodels belonging to the M2 layer such as UML.
The latter provides a language for specifying M1-models (i.e. the model of a problem domain)
which, in turn, describes a real-world system (M0 layer).

2https://www.omg.org/mof/

12

Fig. 2.3. The MDA meta-layers

2.1.1.3. Model transformation.

Model transformation is considered a key and fundamental concept in MDE. In [119],
Sendall et al. described model transformations as the heart and soul of MDE because of the
great role it plays.

Model Transformations are an automated way of creating and modifying models and are
used for many purposes: model refinement, synthesis such as code generation, simulation,
translation, model refactoring, etc. [87].

Figure 2.4 shows that a model transformation takes a source model as input and executes
a transformation to generate a target model. Both models conform to their respective meta-
models. The model transformation is defined at the metamodel level and is executed at the
model level. There are two types of model transformations: an endogenous transformation
if the source and the target have the same metamodel and an exogenous transformation if
the source metamodel is different from the target metamodel.

13

((a)) Meta-modeling of model transformations

((b)) Terminology of model transformation

Fig. 2.4. Model transformation
source: Syriani et al. [125]

14

As illustrated in figure 2.4, a model transformation is defined at the metamodel level to
be executed automatically on any input model that conforms to the source metamodel. We
notice here that a model transformation can have several source/target models.

2.1.1.4. Metamodel quality assurance.

In MDE, metamodels must have a good, precise, and well-structured design that holds
up and lasts against a dynamic and changing environment.

Metamodels are considered a central asset and an essential foundation in the field of MDE
as they allow the analysis and formal modeling of a domain to then generate domain-specific
languages, perform transformations that can be used for multiple purposes such as code
generation, simulation, refinement, etc. Obviously, in MDE, building a metamodel is the
outset for any application. Thus, this step should be performed attentively and accurately
since it is the foundation for any MDE application, and must therefore be very accurate and
of good quality.

2.1.1.5. Metamodel quality evaluation.

Metamodels are a fundamental pillar of MDE, as they are the foundation of any project.
Let’s take as an example, the construction of a domain-specific language that requires ab-
stract and concrete syntax and semantics to define this language. The definition of an
abstract syntax is done through the construction of a metamodel. Then, this metamodel
can be useful for many applications such as model-to-model transformations or code genera-
tion. Regarding this crucial impact and the significant importance of metamodels, we should
devote the required effort and time to build accurate and efficient metamodels in order to
reap the benefits later on. This is one of the fundamental concepts and aspects of MDE,
which costs in terms of resources at the beginning, but then becomes much more profitable
than the classical software development process. The quality of the metamodel could be
evaluated using different measures. Their composition can lead to the development of more
abstract measures that are not intuitive and easy to calculate but are easier to interpret and
understand. Metamodel quality assessment allows the modeler to evaluate the metamodel
based on defined measures and to compare it with an advanced version (e.g. refactored
version).

According to [11], model quality assurance processes are typically based on three main
steps: model analysis, identification of model smells and resolution of model smells.

Mohagheghi et al. [100] reviewed the literature on model quality and identified six classes
of model quality goals (6c model): correctness, completeness, consistency, comprehensibility,
containment, changeability, goals. This quality model [100] means that other quality goals
introduced in the literature can be met if the 6C goals are in place.

15

2.1.1.6. Metamodel smells.

Metamodel smells are indicators of potential problems with the metamodel [58]. The
introduction of bad smells in metamodels can affect its quality, which can have a negative
impact in the long term.

Bad smells are a symptom of a design or system code problem. Many bad smells are
defined in the literature, but detecting them is a challenging task that is far from being
trivial [46].

To resolve a bad smell, we can apply one or a set of refactorings and thus improve the
metamodel quality.

An example of bad smells in metamodels could be a dead metaclass, i.e. a metaclass that
is completely disconnected from the rest of the metamodel. This bad smell is similar to the
dead code [37] which is a common code smell that is easy to correct (by removing it). It is
a code that is never called or reached. As reported by Strittmatter, Misha, et al in [124],
this bad smell harms the comprehensibility of the metamodel.

Bad smells may have a negative impact on the artifacts defined within the metamodel,
including models, transformations, etc. Moreover, refactoring the metamodel to remove
these smells does not come without a cost, as explained in [21], because the evolution of
the metamodel will invalidate the artifact based on it. Here, arises the term co-evolution
of different artifacts. This problem has been tackled by numerous researches, even based
on the detection of differences between versions of the metamodel, as is the case for many
approaches(e.g. [60, 63, 97, 98, 130]), or as formulated by [76] where the problem of
metamodel/model co-evolution was tackled as an optimization process.

2.1.1.7. Metamodel refactoring.

Metamodel bad smells may be a trigger for refactorings. Refactorings are applied to
resolve these bad smells and thus improve the metamodel quality. Refactorings have been
created in the field of software development to improve the quality of the code to make it
more reusable, more understandable, easier to maintain, etc. It has been defined by Fowler
[47] as the process of improving the design structure of software while preserving its overall
behavior and functionality. And then, this concept of refactoring as well as for bad smells has
been elevated to the field of modeling. An example of refactoring could be extract super class
which allows factorizing common features between multiple meta-classes into a super-class
they inherit. In analogy to code refactoring, metamodel refactoring is defined as the process
of restructuring an existing metamodel while preserving its observable behavior [113]. The
process of metamodel refactoring can lead to the invalidity of the resulting models and this
problem is being addressed by research on the co-evolution of different artifacts. Hence, we

16

would be able to co-evolve metamodels, models, transformations that conform to them, and
the different artifacts that depend on them.

Thus, the MDE field is inspired by research done in the field of software engineering by
trying to adapt and evolve these approaches. The general and global concepts of quality,
bad smells, and rework are the same but require some adaptation.

There has been much work done on various techniques and tools for refactoring either
for software engineering [47, 106, 101, 103] or MDE [21, 114, 124, 10, 48]. According to
Alizadeh et al. [5], these approaches could be classified into three main categories: manual,
semi-automated and fully-automated approaches. For manual refactoring, the modeler refac-
tors without any tool support [5], for semi-automated approaches the modeler uses a tool
to perform the refactorings he deems necessary with the ability to make some customization
and modifications on the proposed solutions and to take his preferences into account. By
automated refactoring approach and by analogy to its definition in [5], this means that the
refactoring process is fully automated and that there is no interaction with the modeler.
It is important to keep in mind that the application of refactoring can improve quality on
the one hand but deteriorate it on the other. For example, the application of refactoring
to improve the maintainability and reusability of a metamodel can affect its complexity and
comprehensibility if, for example, many new metaclasses are introduced.

In the following sections, we provide an overview of the Evolutionary Multi-Objective Op-
timization (EMO) paradigm and focus on the Multi-objective Genetic Algorithm (MOGA),
in particular, the Non-dominated Sorting Genetic Algorithm II (NSGA-II).

2.1.2. Artificial intelligence

Artificial Intelligence (AI) is an interdisciplinary science which is a sub-field of computer
science. The aim is to build intelligent machines capable of performing tasks that generally
require human intelligence. The term AI is often used to describe machines that imitate
human intelligence and their ability to solve problems.

AI is an interdisciplinary science with multiple approaches, but advances in machine
learning and deep learning are creating a paradigm shift in virtually every sector of the
technology industry.

Among the most used techniques in AI are: Machine Learning, Evolutionary Computing,
Fuzzy logic.

• Unlike Boolean Logic which is based on two truth values (0 and 1, or, FALSE and
TRUE), Fuzzy logic is a many-valued logic concept where variables have many
degrees of truth. A degree of truth is a real number between 0 and 1 both inclusive
[105]. This approach is used to model partial truth. From a probabilistic point of
view, it represents the degree or probability of a statement to be true.

17

Many AI techniques rely on Fuzzy Logic, i.e. Fuzzy clustering, which is a soft cluster-
ing technique where each element has a probability of belonging to each cluster [131],
as opposed to classical clustering where each element belongs to a single cluster.
• Evolutionary computation is a sub-field of AI. It is a family of biologically in-
spired meta-heuristics that are used for optimization purposes. These problem-solvers
are based on a stochastic process (i.e. trial and error). Genetic algorithms are
the most eminent techniques among Evolutionary algorithms (See section 2.1.2.5)
[44, 43].
• Machine Learning is the most prominent and prosperous sub-field of AI. In the next
section, we discuss its definition, concepts, and techniques in more detail.

2.1.2.1. Machine learning.
Machine learning is a subset of Artificial Intelligence (AI) that provides systems with

the ability to auto-improve themselves through experience [53, 99]. In other terms, it is a
specific application of AI that gives systems the ability to automatically learn and improve
from experience without being explicitly programmed [50].

The learning process consists of automatically learning patterns from data and making
better decisions from experiences without human guidance or intervention. Machine learning
algorithms can adjust their actions, decisions, and predictions based on historical data to
improve performance and deliver accurate results.

Machine learning is widely used in a variety of applications such as computer vision,
prediction, recommendation, self-driving cars, speech recognition, machine translation for
natural language processing to translate text from one language to another, etc. It is used
to solve challenging and complex problems that are difficult or impossible to solve using
classical algorithms and techniques.

As reflected in figure 2.5, machine learning is categorized into three main sub-types:
Supervised Learning, Unsupervised Learning, and Reinforcement Learning.

(1) Supervised Learning: It is a subset of Machine Learning algorithms in which
the data set used is labeled. In other words, we have the input data and the desired
output. The goal is to learn from this data to generate the output according to
the input. This means the output variable is known for old examples and we use
other input features to learn and predict the value of this target variable for new
observations. In supervised learning, we apply the algorithm repeatedly to a data
set and compare the correct value with the predicted one to estimate the error, and
then refine our model accordingly to improve its performance. Here are some of the
most common techniques used in supervised learning include:
• Classification: It consists of predicting a class label for each input element. Data
labels are discrete. For instance, spam filtering is a classification problem where

18

Fig. 2.5. Types of machine learning

spam and not-spam are the two classes or labels. The goal is to learn a function
that associates the input email with one or the other of the classes. Figure
2.5 shows some of the best-known classification algorithms, e.g. Decision Trees,
Random Forest, Logistic Regression, etc.
• Regression: it is similar to classification with the difference the data labels are
continuous in regression problems. A regression model predicts a continuous
quantity output given an input. For instance, estimating the price of houses given
their features (e.g. area, number of rooms, location, number of floors, etc.) is a
regression problem. Linear Regression, Polynomial Regression, Support Vector
Machine and Artificial Neural Networks are among the most commonly used
algorithms in regression problems.

(2) Unsupervised Learning: In contrast to Supervised Learning, Unsupervised
Learning is another type of Machine learning where the used data set is not labeled.
Unsupervised Learning algorithms aim to automatically infer hidden structures from

19

unlabeled data. Otherwise stated, we have just the input data and we don’t know
in advance the expected output or labels. The Unsupervised learning algorithm ex-
plores the input data and tries to figure out hidden patterns and structures in this
unlabeled data. Some of the most common algorithms used in unsupervised learning
include:
• Clustering: The process of splitting the data set into groups to maximize simi-
larities inside the same group and maximize dissimilarities between groups. For
example, we could use clustering to segment clients based on many characteristics
(e.g. purchase history, interests, age, etc.), which would help the company tar-
get specific customers’ groups for specific campaigns. Among the most common
clustering techniques, we mention K-means, Agglomerative Clustering, Affinity
Propagation, etc.
• Dimensionality Reduction: It aims to reduce the dimensional space of data. It
transforms data from a high-dimensional space to a lower-dimensional represen-
tation while retaining the maximum amount of information and properties of
the original data. This technique can be used for visualization purposes or to
automatically reduce the number of features before the model training in or-
der to eliminate correlated features that could be expressed in terms of other
features. Principal Component Analysis (PCA), Non-negative Matrix Factoriza-
tion (NNMF), and Singular Value Decomposition are considered among the most
commonly used techniques for dimensionality reduction.

(3) Semi-supervised Learning: A hybrid category that mixes both Supervised and
Unsupervised Learning is called Semi-Supervised learning. A Semi-supervised Learn-
ing algorithm relies on the use of a large amount of unlabeled data and a small amount
of labeled data. It typically uses the labeled data to partially train a ML model and
then uses this model to label the unlabeled data: this process is called pseudo-
labeling. Once all the data labeled, we train the model on the whole resulting
labeled data set. These techniques are used to deal with the lack of huge labeled
data sets. It is quite difficult to always find large amounts of labeled data, sometimes
it is costly and challenging to adopt a fully labeling process of data. Semi-Supervised
Learning is useful if we are faced with these kinds of problems.

(4) Reinforcement Learning: Reinforcement learning is another sub-category of
machine learning that is often used for robotics, text mining, gaming, navigation,
and recommendation systems, etc. A Reinforcement Learning model interacts with
the environment by taking actions and discovering errors or rewards. This discovery
is made through trial and error while trying to maximize rewards and minimize
errors [73]. As shown in figure 2.6, a reinforcement learning system is characterized
by two primary components. The agent which is the decision maker or learner, the

20

Fig. 2.6. Reinforcement learning

environment that contains everything the agent interacts with [73]. The learning
process is agent-centered. The agent has a set of actions it can perform. In each
state, the agent performs an action Ai in the environment to move to another target
state. According to the selected action, the agent gets a reward. The goal of the
learning phase is to train the agent on selecting a good policy to reach its goal of
choosing the right actions to maximize the cumulative rewards.

Fig. 2.7. Machine learning taxonomy

Another perspective on the categorization of machine learning is illustrated in figure 2.7.
We detail it in the next sections.

21

e

2.1.2.2. Artificial neural networks.
Artificial Neural Networks (ANNs) are a sub-set of Machine learning that is inspired by

the biological brain [64]. As revealed by figure 2.8, an ANN is composed of a set of successive
and connected layers.

Fig. 2.8. Structure of artificial neural networks

Each layer consists of a collection of connected units or nodes called neurons. Each
neuron receives an input signal and processes it to produce an output signal.

An ANN consists of an input layer that represents our input data, a set of hidden layers,
and an output layer that contains our desired value. The layers are interconnected and each
layer transforms an input signal into an output signal readable by the next layer.

Each neural has some weights that represent the contribution of each input feature to
the output value. The node applies an activation function on the output value. Activation
functions allow to introduce a non-linearity behavior to detect complex patterns. For in-
stance, Sigmoid (Figure 2.9) is an activation function that has an output between 0 and 1.
It is often used in binary classification.

With the arrival of back-propagation [28], ANNs were able to adjust their hidden layers
so as to optimize an objective function [85]. Since then, ANNs have spread and evolved,
giving rise to deep learning.

22

Fig. 2.9. Sigmoid activation function

The ANN defines a cost function that allows to measure the performance of the network
on the training data. This cost function drives the learning process. With back-propagation,
the weights are updated according to a learning rate to improve the defined cost function.
The learning rate controls the learning process by defining the update amount of the weights.

ANNs were a revolution in the domain of AI and they led to the appearance of Deep
Learning.

2.1.2.3. Deep learning.
Deep Learning is Machine Learning based on ANNs. It is a more advanced technique

compared to classical Machine learning algorithms. It is a technique based on deep ANNs
that is formed of multiple hidden layers (typically more than two) and tries to mimic the
brain’s functioning in order to learn precise patterns and make accurate decisions [117].
Data, such as images, videos, text, etc., are transmitted to the deep ANN to automatically
learn the hidden patterns and structures and then perform accurate predictions [32]. Deep
Learning has shown powerful capabilities and has notably surpassed classical Machine Learn-
ing techniques [17] that allowed machines to solve complex problems even when using a very
diverse, unstructured, and interconnected set of data.

2.1.2.4. Multi-objective optimization.

The process of systematically and simultaneously optimizing a set of objective functions
is called multi-objective optimization (MOO) or vector optimization [93]. It refers to any
optimization problem that involves more than one conflicting objective than what needs to
be optimized simultaneously. Therefore, there is not a single solution that optimizes all the
objectives because of their divergence which prevents the simultaneous optimization of the
objectives. On the contrary, we can have a set of Pareto-optimal solutions (the number can
tend towards infinity).

A solution is called not-dominated or Pareto to optimal if none of the objective functions
can be improved in value without degrading some of the other objective values. All non-
dominated solutions are considered equally good and we cannot order them completely unless
we use additional information about subjective preferences.

Therefore, the goal of multi-objective optimization problems is to find a representative
set of Pareto to optimal solutions that constitute a trade-off between predefined objectives

23

and we then select the most appropriate solution according to the preferences of a human
decision-maker [45].

In [5], it is assumed that the goal of a preference-based EMO algorithm is to assign
different importance levels to the problem’s objectives to guide the search towards the Region
of Interest that is the portion of the Pareto Front that best matches the user preferences
because, usually, the user is not interested with the whole Pareto front and thus he/she is
searching only for his/her ROI from which the problem’s final solution will be selected. In [5],
it is assumed that the goal of a preference-based EMO algorithm is to assign different levels of
importance to the objectives of the problem. The goal is to guide the search to the region of
interest that is the portion of the Pareto Front best matching the user’s preferences. This is
because the user is usually not interested in the whole Pareto Front and therefore only looks
for its return on investment from which the final solution of the problem will be selected. This
is an a priori method [93] where the decision maker’s preferences are taken into account before
proceeding with the optimization, and then the Pareto to optimal solution that satisfies
these preferences is produced. Among these, one used method [69] consists of scalarizing a
multi-objective optimization problem, by transforming it into a single-objective optimization
problem such that optimal solutions to the single-objective optimization problem are Pareto
optimal solutions to the multi-objective optimization problem. In a posteriori methods [93],
the Pareto front constituted by the non-dominated solutions is first found and then the
decision-maker can choose the solution that best fits his preferences.

Evolutionary algorithms, such as Non-dominated Sorting Genetic Algorithm-II (NSGA-
II) [36], are considered as common and standard approaches to solve multi-objective opti-
mization problems.

2.1.2.5. Genetic algorithms.
Genetic algorithms are metaheuristics algorithms that are particularly well-suited for this

class of problems.
The concept of GA was developed by Holland et al. in the 1960s and 1970s [116]. Genetic

algorithms are biology-inspired.
In nature, weak species that are unsuited to their environment are faced with extinction

by natural selection. However, stronger species are more likely to pass on their genes to future
generations through reproduction. In the long term, species carrying the right combination
of genes become dominant in their population [81]. In genetic algorithms (GA) terminology,
several new specific terms are defined [81]:

• Chromosome/Individual: In GA, a solution is called chromosome or individual. A
chromosome corresponds to a unique solution.
• Gene: Chromosomes are composed of a set of genes. i.e. A solution vector is called
a chromosome and each element in that vector is called a gene.

24

• Population: GA works on a set of chromosomes called population. At first, it is
randomly initialized and then it evolves through the steps of the GA to include fitter
solutions.

To apply GA to a problem, we should formulate and adapt it by encoding it to make it
work.

To generate new solutions, GA use two operators which are crossover and mutation that
are defined as follows:

• Crossover [81]: It consists of combining two chromosomes, called parents, to form new
chromosomes, called offspring. The parents are selected from the existing population
with a preference for fitness, so the offspring are expected to inherit good genes that
make them more fit.
By applying the crossover operator iteratively, the genes of good chromosomes are
expected to appear more frequently in the population, implying more adapted child
chromosomes, which will eventually lead to convergence towards a good overall solu-
tion.
There are different types of crossover. Among them, we cite, one-point crossing
and two-point crossing. The single-point crossover consists of picking up a random
position and combining the left part of the first parent and the right part of the
second parent (relative to the selected point) to form the new offspring. A two-point
crossover consists of picking-up two positions randomly and forming a new child
chromosome composed of the left and right sides of the first parent and the central
part of the second parent. These two types of crossover are well-depicted in figure
2.10 and figure 2.11.

Fig. 2.10. Single-point crossover example

Fig. 2.11. Two-point crossover example

25

• Mutation [81]: It consists of introducing random changes in a single chromosome. It is
generally applied at the gene level. Each gene has a probability of being altered. The
new chromosome produced by the mutation is not very different from the original one.
Figure 2.12 shows an application example of the mutation operator. The mutation
plays a critical role in GA. Unlike crossover which leads the population to converge
by making the chromosomes of the population alike, mutation reintroduces genetic
diversity back to the population and assists the search escape from local optima.

Fig. 2.12. Mutation example

In addition to the genetic operators, population reproduction also involves the selection
of chromosomes for the next generation, which is determined according to the aptitude
of each individual. This selection differs from one genetic algorithm to another as well
as for tournament selection (consists of selecting two individuals for a crossover) and for
ranking (ranking the population into several fronts where the first front is composed of the
Pareto-optimal solutions, the second front contains the individuals that are not dominated
by any other solution than the first front, etc.). A GA has a set of hyperparameters (e.g.
population size, mutation rate, number of iterations, etc.) that are chosen manually before
the execution. The results depend on the values of hyperparameters that are often chosen
based on experience, using a trial and error approach, or using a search technique to find
the optimal set of hyperparameters that lead to the best solutions.

Listing 2.2 describes the generic steps of GA.

2.1.2.6. Non-dominated Sorting Genetic Algorithm II.
NSGA-II is a Multi-objective Optimization Evolutionary Algorithm (MOEA) that is

computationally fast and elitist. NSGA-II is based on a nondominated sorting approach
[36]. This genetic algorithm is based on sorting the population on multiple fronts using a
non-dominated rapid sorting approach. It also uses crowding distance to sort individuals
belonging to the same front to ensure diversity. As illustrated in figure 2.13, the crowding
distance value is defined as the perimeter of the cuboid formed by the nearest neighbors in
the objective space.

NSGA-II asserts diversity and selects diversified solutions (in the last front) using the
crowding distance. If we select members with high crowding distance, we ensure diversity
since we eliminate the crowded points and favor distant individuals to cover a large space
[36]. This is basically what characterizes the NSGA-II algorithm that is used in our approach
to find a compromise between our conflicting objectives.

26

1/ Initialization
t = 1
Generate N individuals to form the initial population , P1.
Evaluate the fitness of solutions (value of objectives) in P1.

2/ Crossover
Generate an offspring population Qt using crossover operator by repeating

↪→ these two steps:
- Tournament selection : choose two solutions x and y from Pt based on

↪→ the fitness values .
- Use a crossover operator to generate offspring and add them to Qt.

3/ Mutation
Mutate each solution x ∈ Qt with a predefined mutation probability .

4/ Fitness assignment
Evaluate each solution x ∈ Qt by assigning a fitness value (computing

↪→ objectives values for each solution).

5/ Selection
Select N solutions from Qt based on their fitness values to form Pt+1

6/ Termination
If (the termination criterion is satisfied)
then

Stop the algorithm and return the current population
else ,

t = t+1
go to 2/

Listing 2.2. Genetic algorithm structure

Fig. 2.13. Crowding distance calculation
source: Deb et al. [36]

27

2.1.2.7. Constraint solving.
Constraint solving is a sub-field of Artificial Intelligence that consists on declaratively

state constraints and use solvers to satisfy them. In constraint solving, we do not need to
specify the required steps to find a solution, however, we need to declare constraints and
properties of the solution. We use constraint solvers such as Alloy, Z3 or Prolog to look for
the solution that satisfies these constraints.

A constraint is a relation between multiple variables. It restricts the number of possible
values that it can take. Searching for a solution that satisfies a set of provided constraints
is called Constraint Satisfaction Problem (CSP). If the constraint solver does not find a
solution for a CSP, then, it is unsatisfiable. This means, there is no solution that satisfies
all the constraints. CSP on finite domains are solved using some search techniques such as
constraint propagation, backtracking and local search. Depending on the number of clauses
and variables, the CSP resolution could be very complex.

A technique that has been found very useful for verifying properties on a system is model-
checking. It consists of modeling the system as a structure, formulating the properties to
be checked as constraints, then, determining whether a constraint is true in the structure,
otherwise, it generates a counter-example. Composing linear number of structures could
yield to an exponential growth of the system, therefore the verification of certain properties
may become impossible for big structures. Some constraint solvers overcome this problem
using bounded verification. The solver performs a bounded scope analysis by checking the
encoded specification over a finite number of instances.

For instance, Alloy is a formal constraint specification language based on first-order
logic. It allows to formally express the structural properties and behavior of a system. Alloy
provides a lightweight modeling tool to express and check system properties [71]. It is
designed to perform a bounded scope analysis by checking the encoded specification over a
finite number of instances.

2.1.3. Scrum: an agile software development methodology

Scrum is a lightweight yet agile and powerful framework for productive software de-
velopment. It involves the development, delivery, and sustainment of complex products.
Moreover, it allows to smoothly manage a team and to promote effective collaboration on
complex projects [118]. It is an iterative method for project management that provides a
set of values, principles, and practices. This framework is characterized by the division of
tasks into short phases of work called Sprints and by frequent and early deliverables called
Increments. A Sprint is a short period where a scrum team works to complete a set of tasks
called Sprint Backlog taken from the product backlog. An increment is a sprint deliverable.

Figure 2.14 illustrates the team roles, artifacts, events, and their interactions in scrum.

28

Fig. 2.14. Scrum: an agile framework for development

Scrum is characterized by the following artifacts:
• Product Backlog: It contains the exhaustive list of features, bug fixes, updates that
a team is planning to deliver sooner or later.
• Sprint backlog: A set of tasks called user stories that should be done during the
sprint.

Scrum is also characterized by these events:
• Sprint Planning: An event that occurs at the beginning of a sprint where the team
agrees on the sprint backlog to be realized during that sprint. During this meeting,
the user stories (tickets that contain title + description + story points) are affected
by the different team members according to their capacity. Each member has some
story points that he can accomplish during a sprint (e.g. 1

2 day = 1 story point).
Each user story has a score (X story points) that reflects its complexity (effort and
time required to accomplish it).
• Daily scrum meeting: The development team meets for a short period (around 15
minutes) each sprint day to inspect the progress done the day before towards the
sprint goal. Each team member describes his progress, what he’s planning to do,
and the problems he is facing, etc. This meeting is an opportunity to track the
development team’s progress daily and to have a global view of the progress of others.
• Sprint review: This meeting occurs at the end of the sprint and focuses on the product
under development. The team evaluates and reviews the progress done during the last

29

sprint. During a sprint review, the scrum team presents and discusses the progress
with the stakeholders. Therefore, the product backlog could be adapted based on
feedback and discussion. The product owner has the opportunity to release one of
the accomplished features.
• Sprint retrospective: During the sprint retrospective, the Scrum team gives feedback
about the progress of the last sprint, highlights the issues, and suggests areas for
improvement to promote the team’s comfort, efficiency, and productivity.

Additionally, Scrum is characterized by the following roles:
• Product owner: He focuses on understanding the business, customer, and market
requirements. Then he works on prioritizing the work to be done. Besides, the
product owner ensures that the work is done in the right way and that it complies
with the requirements and customer expectations.
• Scrum master: He leads and manages the scrum team. The scrum master helps the
team to accomplish their tasks, collaborate, communicate, and to unblock them.
• Scrum development team: It’s composed of members who are responsible for exe-
cuting the work. The team could include scientists, developers, designers, etc. The
scrum team members collaborate and contribute to the development of the product.

2.2. Related work
2.2.1. AI-based improvement for software-related tasks

2.2.1.1. Improvement opportunities.

Given the powerful capabilities and rise of AI, it has been used by almost every other field
to leverage its potential to solve challenging and difficult problems. In the area of computer
science, it is very important to have a clear picture of the opportunities for improvement in
the AI-based software generation pipeline that could advance the field. Although this is a
very important area of research, it has not been much addressed by the research community.
Few works were either related or weakly linked to this area.

Breck et al. [25] provide a set of 28 specific tests and monitoring needs in Machine
Learning systems based on their teams’ experience. They conducted meetings with the
different AI teams within Google and established a roadmap to improve the production
readiness of Machine Learning systems, pay back the technical debt, and solve the quantified
issues. Zinkevich et al. [134] presented some best practices to build solid and robust AI
systems.

In [7], the authors conducted a study on Microsoft teams involved in the development
of AI-based solutions. They have identified the challenges and issues that the engineers face

30

when building large-scale AI applications and suggested some guidance and best practices
to tackle these challenges and build robust and high-quality large-scale AI solutions.

In [133], the authors discussed the evolution of machine learning applications in the
field of software engineering by indicating the actual use of machine learning techniques
to automate some software engineering tasks such as fault-proneness prediction, software
quality classification, apply genetic algorithms in testing, automatic code generation, etc.

2.2.1.2. ML-based automation tools.

Menzies discussed in [96] some applications of machine learning in the software engineer-
ing pipeline such as predicting faults in software modules, automating the maintenance task,
etc.

In [19], the authors present KNIME, a framework for information mining. It consists
of a graphical workbench to create and execute data flows. The data pipeline is composed
of a set of connected nodes where the first node is often responsible for reading data from
sources such as files, databases, etc. Then, the other nodes could perform several actions
such as modifications, transformations, visualization, building a ML model, etc. These
actions could include the following operations: handle missing values, column or row filtering,
sampling, normalization, partitioning into training and test data, etc. Then, some nodes
could apply some ML algorithms on the input data such as Naive Bayes, Support Vector
Machine(SVM), decision trees, etc. The final nodes are often responsible for inspecting the
results by visualizing the output data or writing it to databases or files. The platform is
extensible as it enables simple integration of new types of nodes such as new ML algorithms,
data actions, visualization methods.

Figure 2.15 shows a small data pipeline created with KNIME workbench. The pipeline
is composed of parallel data flows that are composed of preprocessing, visualization, and
modeling nodes.

KNIME is a general-purpose tool that could be used for any domain. It was extended in
[72] to be specifically applied for the DNA sequencing domain by integrating new function-
ality for next-generation sequencing analysis. Other types of nodes and reusable workflows
were introduced that allow to easily perform next-generation sequencing analysis.

Similarly, Orange is a general-purpose machine learning and data mining tool [38]. The
tool is suitable for all kinds of users: from novices to experts who prefer a scripting interface.
Orange offers an interface for graphical programming to build ML pipelines that allow to
preprocess data, apply ML models, visualize data, etc. The goal of Orange was to implement
the most useful and commonly used techniques in a user-friendly, flexible, and extensible way.

31

Fig. 2.15. Data flow example built with KNIME workbench
source: Berthold et al. [19]

In addition, RapidMiner [65] is an open-source tool that supports the machine learning
process including data preparation, ML algorithms, visualization, etc. It provides a graph-
ical user interface (GUI) called RapidMiner Studio to easily design and execute analytical
workflows. RapidMiner provides a platform for developers to create and share algorithms
with the community. This graphical workflow designer tool allows to increase the produc-
tivity of a data science team, speed up and automate the creation of ML models, ease the
ML process, and provides a variety of built-in algorithms and methods for data science.

There are other domain-specific data analysis tools. Mobyle [95] is a framework that
provides an efficient web-based solution to run and chain bioinformatics analyses. Galaxy
[52] is an open web-based platform for genomic research. Taverna [68] is a biology-specific
application that allows bioinformaticians to build data pipelines to perform different analyses
such as sequence analysis and genome annotation on a wide integrated database. Kepler [88]
is a free and open-source system for designing and executing scientific workflows. It provides
support for Web service-based workflows and Grid extensions. Kepler supports hierarchy in
workflows. It allows complex tasks to be decomposed into simpler components. Kepler differs
from the other bioinformatics tools by its computational model, It separates the structure of
the workflow from its model of computation. It enables also semantic annotation of workflow

32

components. Besides, Weka [66] is a popular machine learning workbench. It is a general-
purpose and interactive tool for data preprocessing, visualization, applying ML models,
validation, etc. Weka contains a collection of visualization methods and many algorithms
for predictive modeling and data analysis. Weka supports several ML tasks such as data
manipulation, feature selection, standardization, etc. Also, it provides a wide collection of
built-in algorithms for classification, regression, and clustering.

2.2.2. Metamodel smells detection and refactoring

In this section, we investigate the related work done in metamodel smells detection and
refactoring.

Many works have been done related to model refactoring. Bettini et al. [21] have sum-
marized existing approaches for managing metamodel quality and refactorings and identified
common parts which are: quality attribute specification and evaluation, bad smell specifica-
tion and detection and refactoring specification and application to be able to identify and
resolve bad smells.

Additionally, Bettini has proposed in [21] a quality-driven framework for the detection
and resolution of metamodel smells where a set of bad smells are first identified. Then, based
on the selection of what quality attributes we want to improve, all the bad smells affecting
these quality attributes are eliminated by applying the correspondent refactoring. In this
work, a domain-specific SDL language, called Edelta [20] is used to define bad smell finders
and refactorings.

In [11] and [10], an EMF Refactor tool was presented, that provides model refactorings
specification and application. Refactorings were defined using the model transformation
language Henshin.

In [114], the authors present an extensible generic refactoring framework based on EMF
for modeling refactorings for different modeling and meta-modeling languages. Generic refac-
torings can be reused for different languages only by providing a mapping. Furthermore, the
same generic refactoring can be repeatedly applied to one language. Role models have been
used to formalize the structural requirement for refactorings. Then, they used a mapping
specification to bound role models to specific modeling languages. This mapping defines
which elements of a language play which role in the context of refactoring. Then, generic
transformation specifications are executed to restructure the models based on these defined
mappings [114].

In addition, Gheyi used in [51] a constraint-based technique to refactor models. Indeed,
the semantics of the Unified Modeling Language (UML) was expressed as a set of well-
formedness rules. These rules control the refactoring operation of a model or a set of con-
nected models. After performing a refactoring, the rules are checked if they are still satisfied,

33

otherwise, the refactoring tentative is not valid and should be rejected. Using constraint-
based refactoring, the authors proposed to replace constraint checking with constraint solv-
ing by computing additional model changes required to have a valid and semantic-preserving
refactoring transformation.

In [123], some guidelines were provided on how to prove the soundness of model refactor-
ings with respect to the formal semantics of Alloy. First, the authors defined the grammar
of alloy and its semantics as a set of logical constraints (e.g. well-formedness of models and
signatures ... two signatures in the same module cannot have the same name, a signature
cannot extend itself, etc.). Then, they defined some essential laws to create valid and sound
Alloy transformations. Next, this approach was validated on two alloy refactoring operations.
This certainly allows us to build more reliable model refactoring tools.

Conclusion
Throughout this chapter, we introduced and detailed the necessary background related

to our thesis. Then, we presented a literature review on recent related works. In the next
chapter, we present our first contribution which consists of cartography of ML-based op-
portunities to improve machine learning pipelines and help software practitioners in their
tasks.

34

Chapter 3

Automation and improvement of the software
development pipeline:

A cartography of ML-based opportunities

Introduction
In this chapter, we present our first contribution in collaboration with an industrial

organization. It consists of designing a cartography that portrays the potential AI-based
improvement opportunities for software-related tasks. First, we outline the context of our
research contribution. Second, we analyze the tasks and pipelines inside the AI team of our
industrial partner. Third, we identify the improvement opportunities as well as the expertise
required to accomplish each task. Finally, we depict the potential AI-based improvement
opportunities that allow us to infer that knowledge from historical data.

3.1. Context & Motivations
3.1.1. Context

In light of the great research progress, the AI field is witnessing, the other fields are trying
to adapt to this fact by taking advantage of the potential of AI. Indeed, the industry and
the other research areas are trying to incorporate some kind of automation and intelligence
through using AI. This definitely opens up prospects to promote innovation, enhance the pro-
ductivity inside companies, assist teams and employees to be more efficient, and productive
and allows undoubtedly to solve challenging problems and to build smart systems.

Nevertheless, AI should be used properly to be able to generate an added value. So, we
should identify the right tracks where to employ AI.

In this project, we collaborated with an industrial partner that is considered among the
most prominent IT companies in Canada. The project was mainly dedicated to their AI
team and more generally to all the research community.

3.1.2. Motivations and objectives

AI is a rising and fast-growing field that has been used in multiple other areas to solve
complex problems and to inject a kind of intelligence into systems. It’s very important to
take advantage of the strong capabilities of AI. The research is already progressing ahead
in that direction. Nevertheless, we need sometimes to take a step back for a clearer view.
Accordingly, having a global view about the flaws, problems, improvement, and automation
opportunities that we can get by the mean of using AI is very important. This will help
software practitioners in their common tasks and raise their productivity and performance
towards delivering software with high quality.

The present project will help delineate some of the future research directions about using
AI to improve the software-related tasks, especially, the activities related to producing ma-
chine learning models. These improvements involve automating and optimizing pipelines as
well as assisting software practitioners in their common and complex tasks. Thus, software
practitioners could focus on more valuable tasks that require more human creativity, intel-
ligence, and intuition to solve complex problems. Furthermore, the present project will aid
our industrial partner to polish its processes and to promote the effectiveness in delivering
high-quality artifacts.

3.2. Adopted methodology
As previously mentioned, the goal of this project is to create a cartography that portrays

the activities inside the AI team of our industrial partner, depicts the required expertise
to accomplish them, and presents some AI-based improvement opportunities. These op-
portunities allow either to completely/partially automate these tasks or to assist software
practitioners in their activities. To reach this target, we define a systematic approach as
illustrated in figure 3.1.

Fig. 3.1. Adopted methodology

36

3.2.1. Documentation

The first step of our adopted methodology consists of understanding the different pipelines
and activities inside the AI team of our industrial partner. In fact, recommending improve-
ments should start by building a strong understanding of the corresponding tasks. To this
end, we looked through the documentation of the different solutions and pipelines.

3.2.2. Questionnaires & Interviews

Having understood the pipelines and activities, we interviewed different members of the
AI team. The goal of this step is to grasp the different tasks realized by the different
members, explain more in detail some processes, and to identify some challenges, issues, or
existing limitations, etc.

We started by identifying different axes from the first step as shown in figure 3.2.

Fig. 3.2. Different axes related to the AI platform

The AI team has a main platform for the development of predictive artificial intelligence
models, to accelerate the development, deployment, monitoring, and consumption of different
use cases.

As shown in figure 3.2, the AI platform involves many axes: Security, Infrastructure,
Data Flows, Development, CI/CD, Monitoring, etc. In Table 3.1, we detail these axes.

37

Table 3.1. Description of the different axes

Axis Description
Security It involves all the processes and activities related to the security and con-

fidentiality of data , resources, network, applications, etc.
Infrastructure It involves the management, monitoring and access to the different re-

sources.
Data Flows It includes the tasks related to data management, transfer, storage and

transformation, etc.
Development It includes the development, validation and evaluation of machine learning

models.
CI/CD It encloses everything related to the practices enforcing the automation

in building, testing and deployment of applications (including machine
learning models).

Monitoring It refers to the monitoring of machine learning models. It consists of
tracking and detecting the model performance deterioration. It involves
as well the resolution of this issue.

Table 3.2. Information about the questionnaires and interviews

Number of questionnaires 6
Average number of questions per questionnaire 32
Number of interviews 14
Number of interviewees 11

Based on the documentation of these activities, we prepared a questionnaire for each axis.
These questionnaires served as a support to conduct meetings with different people involved
in each axis and who have sufficient knowledge about the different related activities. Table
3.2 shows some information about the interviews and questionnaires.

The questions were given in advance to the interviewees, so, they could get prepared and
take enough time to think about some questions which are not simple but require both time
and deep thinking to get relevant responses. For each meeting, we had different rounds for
the sake of further details and clarifications. Table 3.3 shows an excerpt of questions from
the Monitoring questionnaire with the monitoring scientist. This questionnaire was used as
support to conduct the meeting by defining the main topics to be addressed.

3.2.3. Results analysis

After collecting information from the different meetings and having understood the dif-
ferent software-related tasks inside the AI team of our industrial partner, we documented the
description of each task and its related activities. Then, we analyzed each task and identified
3TensorBoard: https://www.tensorflow.org/tensorboard
TensorBoardX: https://github.com/lanpa/tensorboardX
Visdom: https://ai.facebook.com/tools/visdom/

38

https://www.tensorflow.org/tensorboard
https://github.com/lanpa/tensorboardX
https://ai.facebook.com/tools/visdom/

Table 3.3. An excerpt of the monitoring questionnaire

Question
1 Could you tell me about your regular tasks and your role inside the team?
2 Could you give me some details about the monitoring platform features?
3 What are the technologies used in the implementation of this tool?
4 Why didn’t you use existing solutions like TensorBoard1, TensorBoardX2or Vis-

dom3etc.
5 Is the monitoring dashboard highly integrated with the AI platform?

If yes, could you give me some details?
6 What metrics are you using to monitor the performance of deployed machine learning

models?
7 What metrics are you using to monitor data?
8 Are you using some real-time metrics?
9 Are you keeping track of the historical evolution of these metrics?
10 For the batch metrics that are computed periodically ..

What’s the frequency of computing these metrics? (daily, weekly or monthly, etc.)
11 How do you monitor these metrics?

Are you using thresholds, statistical methods, or predictive techniques?
12 In case you are using thresholds to monitor models and data,

How do you define those thresholds?
Is it dependent on the type of problem and application?
Are you considering adjusting these thresholds through time?

13 What actions are executed when an issue is detected by the monitoring tool?
14 Are those actions automated?

Is there a set of automated actions that would be executed if an issue is detected?
15 In what cases do you consider re-training a deployed machine learning model?
16 Do you train the model on new data or re-train it from the beginning?
17 How do you select the re-training data?
18 Does the monitoring task involve any manual intervention?

(Either to monitor models and data to detect potential issues or to resolve the iden-
tified problems)

19 Could you tell me about the automation and reusability level of the monitoring plat-
form?
Is it easy to monitor a new deployed model and import it to the platform?
Do you use configuration files or a graphical console for this?

20 What are the most challenging tasks for a monitoring scientist?
21 What’s the performance of the monitoring platform so far?
22 What are the limitations and problems of the monitoring platform?
23 To what extent this platform is re-usable for any kind of machine learning model and

in other applications (e.g. natural language processing)?
24 To what extent the monitoring platform is scalable for a large amount of data and a

big number of deployed models?
25 Could you show me a demo of the monitoring platform?

...

39

the required expertise and the necessary knowledge to accomplish it. Furthermore, we have
identified the problems and deficiencies related to each task. The identified issues could be
related to the lack of optimization, complexity, potential bugs, waste of effort and time in
some classical and typical activities, etc. Results are presented in section 3.2.4.

3.2.4. Improvement and automation opportunities

Once the results are analyzed by identifying the related problems and the expertise
required for the accomplishment of each task; we locate different automation and assistance
opportunities to improve these tasks. The suggested ideas could be categorized into 3 groups:

• Ideas that allow overcoming the identified problems.
• Ideas that allow to completely or partially automate some tasks by inferring the
required knowledge using historical data. This will allow to alleviate the burden on
software specialists regarding the typical and common tasks and let them focus on
more valuable and difficult activities that require more human intuition, creativity,
and intelligence.
• Ideas that allow improving some tasks by using more sophisticated and intelligent
techniques and by assisting software specialists in their tasks. This could yield better
performance, precision, and effectiveness while performing these tasks.

3.2.5. Graphical cartography

This step consists of delivering an artifact that encloses the results of the previous steps:
tasks description, required knowledge to perform each task, and the improvement opportu-
nities.

The deliverable of this step is a graphical cartography that encompasses all the afore-
mentioned details which will serve as a road map for the AI team of our industrial partner
to improve their internal processes in the short, medium, or long term. This cartography
has a broader scope as it could serve as a guide for researchers who are interested in tackling
real problems that software practitioners face in an industrial environment.

In the next section, we describe with details some software-related tasks based on the
information collected from the AI team of our industrial partner.

3.3. Processes and tasks description
We had access to the documentation of the different pipelines and applications. This was

consolidated with the conducted meetings which allowed us to build a strong understanding
of the different pipelines and tasks performed inside the AI team of our industrial partner.
This documentation step serves as a fundamental basis for the next steps.

40

3.3.1. General presentation of the AI team of our industrial partner

The AI team is responsible for the industrialization of AI models to support decision
making in the business processes of the company.

The AI team has many roles and responsibilities including:
– Manage technical assets for the industrialization of AI.
– Guide and manage research projects.
– Develop knowledge, expertise, and maturity of teams on the subject of AI-related
software development.

– Supervise development practices related to data engineering and software develop-
ment as part of the industrialization of AI solutions inside the company.

– Spread the expertise of development, maintenance, evolution, and management of AI
assets.

– Raise awareness among teams of the potential of using data to support innovation
and decision-making in the information technology sector.

– Support the other IT teams in the development of innovative solutions exploiting
data and AI techniques.

The AI team is managing the following assets:
• AI platform: it is a platform for deploying artificial intelligence solutions.
• Chatbot platform: it is a dialogue engine platform to deploy chatbots.
• Artificial intelligence operating environment (VM-AI): it’s a cloud environment that
includes all the tools and needs required to access different resources (network,
databases, etc.) and develop AI solutions.
• Deployed ML and NLP models.

To sum up, the AI team is a platform for artificial intelligence software deployment to
ease and automate decision-making from within the business processes of the company. The
platform is transversal and available to various clients.

Figure 3.3 shows the process of generating AI software.
Many actors are involved in the process of generating AI software: data engineers, scien-

tists, analysts, project managers, monitoring scientists, software engineers, line of business
subject matter experts (LoB SME), etc.

Our industrial collaborator has multiple data sources exposed via APIs to be used by the
IT teams after being tokenized 4.

Scientists could securely access data through the Data API from the AI development
Virtual Machines. From the Extraction VM, scientists could access data sources that are
not exposed yet via APIs. The extracted data is saved to Big Query (a data warehouse

4Tokenization is the process of transforming a sensitive piece of data into a random string called a token
that has no meaning if breached.

41

Fig. 3.3. How to generate an AI software?

in Google cloud) or to GCS (Google Cloud Storage is a file storage system in google cloud
used to store and access data. It is that is accessible online via restful API). Direct access
to data is controlled and supervised to ensure the confidentiality of sensitive pieces of data.
The AI development VMs serves for developing machine learning models. Scientists are
autonomous and free in setting up their work environment (IDE, programming language,
library, etc.) and they have access to data sources. Afterward, the ML model goes through
an industrialization plan to be deployed into production while being monitored to ensure its
performance. Finally, the deployed ML model is integrated into the business processes to
ease and automate decision making.

In the next section, we focus on the AI platform. We explore the different components
and technical details of the platform as well as the tasks of the different actors.

3.3.2. AI platform

The AI platform aims to set up a transversal platform for the development of predictive
artificial intelligence models, to ease and accelerate the development, deployment, monitor-
ing, and exploration of ML models. The platform serves for data ingestion, prediction and
results preparation for the production system.

Figure 3.4 highlights the different components of the AI platform.
The AI platform is mainly composed of two major parts:
(1) A machine learning workflow that contains steps representing compound tasks5, con-

nected by paths that define the flow to develop and deploy ML models. The ML
workflow adopted in the AI platform is respectively composed of the following steps:

5Compound task: It is a complex task composed of a set of primitive and compound tasks.

42

Fig. 3.4. AI platform: workflow and components

DataEngineering → Development → Training → V alidation&Evaluation →
Prediction&Monitoring

(2) A set of transversal activities that are the horizontal tasks involved in many steps
of the ML workflow. The transversal activities are the following: Agile, CI/CD,
Security, Infrastructure.

The AI platform is based on Google Cloud Platform and uses extensively the cloud
services. In fact, using a cloud infrastructure has some key benefits:

– Efficiency: By using cloud infrastructure, a company could reduce the cost of pur-
chasing and maintaining hardware and software equipment.

– Downtime6 reduction: Using the cloud infrastructure allows to reduce the downtime
of systems.

– Security: Cloud providers offer many security features. Some baseline protections
are implemented in the cloud platforms and a bunch of configurable features (access
control, authentication, encryption, network scans, and filtering, etc.) are offered.

– Scalability: Using a cloud infrastructure guarantee scalability by offering the option
of handling a growing amount of work and dynamically add resources to the system.
This level of flexibility and agility in infrastructure is very important for companies
since they can adapt the infrastructure size and capabilities according to their needs.

– Performance and availability: The cloud providers guarantee a high-performance level
for the resources and high availability of hardware, systems, and services.

– Mobility: The cloud infrastructure is always accessible from anywhere through con-
nected devices.

6Downtime: time during which a system is down and unavailable for use.

43

Our industrial partner uses Google Cloud Platform (GCP) as an infrastructure. It is a
suite of cloud computing services offered by Google including data storage, create and con-
figure and manage computing resources, data analytics, machine learning, security, resources
monitoring, etc. [1].

We present a subset of the services offered by GCP that are used in the AI platform [2]:
• Google Compute Engine (GCE): Google Compute Engine is an Infrastructure as a
Service (IaaS) component offered by Google Cloud Platform. It is a core component
built on top of the internal infrastructure that Google uses for its own products such
as Google’s search engine, Gmail, Youtube, etc. This service enables users to create
Virtual Machines (VMs) on demand. Users can configure these VMs by setting up
their computing power, memory size, disk size, etc. according to their needs. These
steps could be controlled and managed by the organization. h
• Google Cloud Storage (GCS): GCS is a storage service offered by Google Cloud
Platform. It is a web service that offers a restful file storage system to store and
access data on the GCP infrastructure with other features such as sharing, security,
backup, recovery, etc. GCS is an Infrastructure-as-a-Service (IaaS) component that’s
comparable to Amazon S3 online storage.
• Google Kubernetes Engine (GKE): It is a GCP service that enables cluster creation,
management, and orchestration to run docker containers. It has several assets such
as scalability and performance. GKE makes it easy to create a cluster that has a dy-
namic number of configured VMs instances based on containerization, then to easily
deploy applications. It presents several features as logging, cluster monitoring, ap-
plications management, cluster configuration (to ensure scalability and performance
in case of high traffic of requests). Besides, GKE offers several configuration options
including cluster size, number of replicas, CPU capacity, memory size, etc.
• Google Container Registry (GCR): GCR is a GCP service that allows to save and
manage Docker images. Docker images could be used to create instances of pre-
configured VMs on demand. This GCR is securely accessible and enables users to
pull, push, and manage images.
• BigQuery (BQ): BQ is a Platform-as-a-Service data warehouse offered by GCP that
supports saving and querying data. BQ is a highly scalable and cost-effective data
warehouse that stores heterogeneous and big amounts of data for further analysis. It
has also built-in machine learning capabilities.
• Data Flow: It’s a GCP service that offers features of batch and real-time data process-
ing. It enables users to set up pipelines for data transformation, transfer, preparation,
aggregation, and analysis, etc.

44

• PubSub: It’s a messaging middleware that allows to send and receive messages among
applications and services. This fully-managed real-time and asynchronous messaging
service.

In the following sections, we detail the activities of the AI platform involved in building
ML models.

3.3.2.1. Data engineering.
The data engineering step contains mainly two major categories of components: re-usable

modules that are developed once and used in all the ML projects (data APIs, data encryption
and tokenization modules, etc.) and tasks that are specific to each project (data cleaning,
feature engineering, etc.).

As illustrated in figure 3.3, many data sources are securely exposed through API. Sensi-
tive information (email, social security number, etc.) is tokenized and encrypted to ensure
confidentiality.

Our industrial collaborator has multiple and various data sources in the production envi-
ronment. It is not efficient to access the production data directly by the internal IT teams.
This has many drawbacks: network congestion, error-proneness, performance degradation,
etc. Therefore, the data is duplicated from these sources using secure APIs into the platform.
This phase is called Data Ingestion. The cloud is used as a storage system, more specifically,
BigQuery and GCS (Google Cloud Storage). During the ingestion phase, a process consumes
data from source systems and brings them to the platform to facilitate and accelerate the
subsequent phases. The duplicated raw data is mapped into domain data. In fact, using
domains allows to organize data, extract knowledge, and can make it easier to understand
the structure and content of a database.

On the other hand, the data engineering step includes tasks that are specific to each
machine learning project:

- Collect the model dataset by pulling data from multiple domain data sources to create
the ML model features.

- Pre-process the dataset which includes handing the missing features, pre-process
textual fields (tokenization, stemming, lemmatization, stop words, etc.), remove du-
plicated values, etc.

- Data transformation by encoding textual and categorical data as well as images.
- Feature scaling includes standardization and normalization of numerical data. This
allows to re-scale data to the same interval and eliminates the effect of having large
numbers that dominate the small numbers. Another reason is that machine learning
algorithms converge much faster with feature scaling and coefficients are penalized
appropriately [70].

45

- Feature Engineering consists of analyzing the features and modifying them to ensure
better performance and get better results. It includes features combination, reducing
features using dimensionality reduction techniques, features selection, etc.

- Split the dataset into 3 subsets: train, validation, and test. This could include
shuffling the dataset to ensure randomness and balance.

3.3.2.2. Development.
This part consists of designing and implementing machine learning models. The pro-

gramming languages used by the scientists and developers are mainly Python and Java.
Many frameworks could be used (e.g. TensorFlow, Pytorch, Keras, Scikit-learn, Theano,
etc.) based on scientist preferences and qualifications. During this phase, the scientists
choose and design appropriate models and this depends on many criteria such as the prob-
lem type (classification or clustering or regression), context (medicine, finance, automotive,
etc.), expected output, data structure, etc. Then, scientists implement these models us-
ing the appropriate language and framework. The development phase takes place in some
AI VMs in the cloud. These VMs are configured and created on-demand using the GCE
service. Some docker images are already set up in GCR with the necessary dependencies,
configurations, and security measures.

3.3.2.3. Training.
Training is an important step in the ML pipeline. It consists of training the developed

model on the prepared data using the infrastructure of the AI team to fit the models on the
data and learn the model parameters. The training process should be monitored to ensure
that the model keeps improving along with iterations and to detect potential issues such as
over-fitting. This step could be revisited after the model deployment in case of re-training
the model on new data. This occurs if the model performance degrades and gets worse in
the production environment.

3.3.2.4. Validation & Evaluation.
The validation step uses the validation dataset and aims to tune hyper-parameters and

choose the optimal configuration leading to the best performance. Unlike model parameters,
a hyper-parameter is an untrainable parameter that we cannot learn, however, we should set
it manually to control the learning process. The performance of a ML model is dependant
on the hyperparameters configuration. As examples of hyperparameters, we cite model type,
learning rate, number of layers, number of nodes in each layer, number of clusters, etc. We
cannot know in advance the best hyper-parameters’ values for a given problem. The val-
ues of hyperparameters can be decided by setting different values, training different models,
and choosing the values with the best performance. In the validation, we may also use a
search strategy to test a bunch of values for each hyper-parameter and converge rapidly to
the best hyper-parameters’ configuration that leads to the best performance. This process

46

of finding the optimal hyper-parameters is called hyper-parameters optimization. The com-
mon hyper-parameters optimization techniques are Grid Search, Random Search, Bayesian
Optimisation, Genetic Algorithms, etc. The validation process could also be done based on
scientist expertise by selecting the best hyper-parameters according to past experiences with
similar problems. The optimal hyper-parameters configuration that has the best accuracy in
the validation phase is selected. Finally, the model is evaluated on the test set to estimate
its final performance on a different dataset using a set of metrics such as precision, recall,
F1-score, etc.

3.3.2.5. Prediction.
The evaluated model is packaged in a docker container as illustrated in figure 3.5.

Fig. 3.5. The major components of an API template for a deployed ML model

The API template is composed of different components and is used to bring AI models
into production to be used by operational systems. As shown in figure 3.5, the API template
runs in a docker image which exposes several endpoints for model training, testing, individual
or batch predictions, etc. The container is configured to be able to connect to both the
BigQuery database to retrieve the raw data and GCS to save the results and the serialized
files of the model.

There exist two kinds of predictions: batch and real-time. A real-time prediction is
executed for an individual in quasi-real-time for online data. In contrast, batch prediction
consists of applying the model periodically on an existing dataset. Finally, the predictions

47

are saved back to the operational databases, so that they could be used by operational
systems or other employees to support decision making.

3.3.2.6. Monitoring.
Monitoring refers to tracking and supervising model performance in production. The

goal is to maintain a certain level of stability of accurate predictions. The detection of
performance degradation in the monitoring phase should be followed by a re-training phase
to adapt the ML model to the new data and to capture the new changes whether new
concepts or new statistical relations between features, etc.

The monitoring of ML models has two main components:
• Data health monitoring consists of tracking the data to detect potential anom-
alies to reflect the quality of data. As illustrated in figure 3.6, we could decom-
pose the data health evaluation into multiple components: Summary for prediction
gives information about the predictions such as the proportion of each class, his-
togram of predictions, Population Stability Index (PSI) for prediction output that
measures how much a population has shifted over time, etc. Verification of data
structure gives details regarding the data structure such as the number of features
and records. Distribution test consists of comparing the distribution of training data
to the distribution of production data. It includes measuring PSI for all the features,
Kolmogorov-Smirnov test (K-S test) to test if two data samples come from the same
distribution [94]. The K-S test allows detecting if the production data is unrepre-
sentative of the training data. In such cases, the model becomes invalid since it’s
trained on different data and its performance would deteriorate through time. Sum-
mary of variables’ statistics comprises counting the number of records with missing
data, computing some numerical metrics such as the number of records in each class,
minimum, maximum, median, mean, standard deviation, quartiles [6], etc. Metrics
and charts reflecting the Variables’ distribution such as frequency charts, histograms
with kernel density, etc. Special data health check contains other techniques of data
health evaluation such as computing the pairwise correlation of features and with the
output variable, etc.
• Model performance monitoring consists of monitoring the performance of the
machine learning model in production. Tracking the model performance depends
on the problem type (regression, classification, or clustering) and could be done
using evaluation metrics as shown in figure 3.7. For instance, some metrics that
could be used to measure a regression model’s performance are: Root Mean Square
Error (RMSE), Mean Absolute Error (MAE), R-Squared, Mean Absolute Percentage
Error (MAPE), etc. [23] As shown in figure 3.7 a classification model’s performance
could be evaluated using precision, recall, sensitivity, accuracy, F1-score, etc. [67]

48

In regards to a clustering model, it’s performance could be evaluated and tracked
using Silhouette score, Davies-Bouldin index, Calinski-Harabaz score, etc. [35, 115]
Further, more advanced ML techniques could be used to detect the performance
degradation of a ML model that could be caused by the change of concepts, change
of the statistical relation between the features, or the change of the user’s behavior
in the production environment.

Fig. 3.6. Sample of data health evaluation metrics

RMSE: Root Mean Square Error - MAE: Mean Absolute Error - MCC: Matthews
correlation coefficient - ROC: Receiver Operating Characteristic curve - AUC: Area Under
the roc Curve

Fig. 3.7. Sample of model performance evaluation metrics

3.3.2.7. Continuous Integration / Continuous Delivery (CI/CD).
The CI/CD pipeline is the backbone of the process of producing software artifacts. It

is a set of practices used in software engineering that aims to automate the integration,
building, testing, and deployment of source code. The main purpose of this paradigm is to

49

detect issues and conflicts in the early stages, minimize the cost and effort, and maximize
the automation level in software engineering. CI/CD promotes frequent code changes as
well as collaboration between the team members. Then, the source code of the different
collaborators is integrated and merged after resolving the detected conflicts. The purpose is
to reduce the probability of defects during the final phases of the project development where
bug fixing would be more expensive. Figure 3.8 illustrates the paradigm of CI/CD and its
impact on a software development pipeline.

Fig. 3.8. Continuous Integration/Continuous Delivery (CI/CD) workflow

The CI/CD paradigm integrates the following components:
– Source code versioning: It consists of keeping track of the history of changes made on
the source code. Some version control systems could be used in this context such as
Git, SVN, Mercurial, etc. Many tools integrate these systems and provide powerful
features for source code versioning, integration, and collaboration such as GitHub,
Bitbucket, GitLab, etc. Our industrial partner uses Bitbucket as a version control
repository for source code hosting and collaboration.

– Source Code integration (Pull request & Conflicts resolution): For each project, a
shared repository is created to contain the source code of the software and to keep
track of code changes history. The team members of our industrial partner work
in parallel and collaborate on the development of the same software. They commit
their changes frequently to their own branches. Then, the source code is merged
into a master branch that contains the stable and final version of the software. The
merging phase includes resolving the merging conflicts between collaborators. The
version control tools provide powerful and advanced features to detect conflicting
areas in the source code and gives assistance to resolve them.

– Source Code Testing and analysis: The CI/CD pipeline automates the testing phase.
After the integration and merging of source code, the developed tests are automati-
cally executed. If a test fails, the team is notified of the testing results to make the

50

appropriate corrections. The CI/CD pipeline involves an analysis phase to inspect
the source code quality, security, and bugs. SonarQube is an open-source platform
very commonly used for code review. Our industrial partner uses SonarQube to
generate reports on source code bugs, vulnerabilities, code smells, coding standards,
code complexity, code coverage, etc. [3] SonarQube could be easily integrated with
many other tools (e.g. Eclipse and JetBrains IDEs, Jenkins, Maven, Ant, Gradle,
MSBuild, etc.). It promotes continuous inspection of code quality to perform auto-
matic reviews with static analysis on many programming languages [29]. Figure 3.9
shows an excerpt from a SonarQube report.

Fig. 3.9. SonarQube: an excerpt from the report generated on an example

51

SonarQube can record metrics history and their evolution through time. Further-
more, it provides suggestions to resolve the detected issues.

– Source code Review (also called peer review): Consists of assigning a reviewer to check
the software quality and validate the new source code before its integration with the
master branch.

Jenkins7 is also used by our industrial partner to easily build CI/CD pipelines and that
supports many tools (e.g. Github, SonarQube, etc.)

3.3.2.8. Security.
Security is an important and critical component for our industrial partner in particular

and in software engineering in general. Indeed, developers and scientists do not have unlim-
ited and unconditioned access to confidential data. Our industrial partner categorizes data
into four levels according to their level of confidentiality:

- Level 1: Highly confidential data
- Level 2: Confidential data
- Level 3: Internal data
- Level 4: Public data

According to the confidentiality level, the data is encrypted and/or tokenized. Tokeniza-
tion is the process of substituting a sensitive data element with a non-sensitive and randomly
generated equivalent called a token. The token is a reference that maps back to the original
data. This process is handled by a tokenization system. The advantage of tokenization
is that it allows preserving the length and format of data. Encryption is the process of
transforming input data into another form that only people having access to a certain key
(decryption key) can read it. The encryption process relies on a mathematical relation be-
tween the original data, the secret key, and the ciphertext. It’s very hard to decrypt the
ciphertext and get the original data if we don’t possess the secret key.

Fig. 3.10. Tokenization VS Encryption

7https://www.jenkins.io/

52

Figure 3.10 shows the difference between tokenization and encryption. The encryption is
based on secret keys to encrypt and decrypt and the input data is related to the ciphertext
with a mathematical function. It’s almost impossible to reverse this process if we don’t
possess the keys due to its extremely high computational cost. On the other hand, the
tokenization is based on a mapping function. There is no explicit relation between the
original data and the token. In contrast to encryption, the tokenization is length and type
preserving. Also, encryption is costly in terms of computation in contrast to tokenization
which is a simple process that doesn’t need computations or to manage the secret keys.
However, encryption is more adapted for unstructured data such as text, files, etc. The
encryption is ideal for data exchange since the receiver should only possess the decryption
key to read the data. By contrast, it’s difficult to exchange a tokenized data since it required
direct access to the tokenization system.

Security covers also the source code. As stated before, our industrial partner uses Sonar-
Qube to detect vulnerabilities. In addition, it uses Nexus-IQ 8 tool to detect vulnerabilities
in the code source code dependencies.

Figure 3.11 shows an example of a report generated by Nexus-IQ. The main use case
for Nexus-IQ is to monitor the dependencies and track their vulnerabilities. The generated
report by Nexus-IQ gives a description of the vulnerability and its evolution throughout the
different releases. It recommends, as well, potential solutions or alternatives to solve the
detected vulnerability.

Other security measures are also set up by our industrial partner to assess the VMs secu-
rity: authentication, limiting admin permissions (restrict the actions that can be performed
as root), network scan, logging, monitoring, access control, alerting, etc. These measures
reduce the risk of data leakage and unauthorized access.

3.4. Identified problems and required expertise for
software-related tasks

Having identified and described the tasks involved in the software generation pipeline,
we analyzed these tasks to identify the problems as well as the expertise required in the
accomplishment of each task. We do believe that identifying the problems of software-
related tasks as well as the knowledge required to accomplish these tasks could lead to
the identification of improvement opportunities of these tasks. Some software-related tasks
are facing challenges and problems such as the lack of automation, difficulty, optimality,
etc. These problems represent opportunities for improvement that we should work on. The
improvement opportunities could be related to increasing the automation level, optimizing
these tasks, assisting developers and scientists, etc. Furthermore, another way towards
8https://www.sonatype.com/nexus/iqserver

53

Fig. 3.11. Nexus-IQ: an excerpt from the report generated on AngularJS dependency

finding improvement opportunities consists of identifying the knowledge and skills required
to accomplish each task. We formulate this knowledge and then suggest AI-based ideas that
can infer this knowledge from historical experience and then assist software specialists in
their tasks by the mean of automation (either full or partial automation), recommendation,
or refinement. We identified this information (problems and required expertise) from the
analysis of the different software-related tasks. Besides, in the meetings that we conducted
with different software practitioners, we dedicated a part of our questionnaire for that purpose
(e.g. Table 3.3).

We describe in Table 3.4 the problems and required knowledge towards the accomplish-
ment of some software-related tasks.

54

Task Required Expertise
1 Data Engineering

- Data confidentiality is a preoccupation and needs to be con-
stantly improved.

- The access and usage of some confidential data is limited →
waste of time and decreased team efficiency.

- Setting up advanced security measures reduces the risk but
doesn’t eliminate it. There is always a risk even with a low
probability. ⇒ A Naive solution to generate data is Random
generator → Data could be inconsistent and unrealistic.

- Software practitioners often need real data to simulate and
test real-life cases.

- Realistic data is useful for testing, visualization, development,
data engineering... → Data is the fuel of the software devel-
opment pipeline.

2 Development of
ML models - Implementing a Machine Learning algorithm is a recurrent

task.
- Depending on the problem type (regression, classification,
clustering), many algorithms are often used thanks to their
good performance.

- The development task requires:
• Language expertise: python, java, etc.
• Library expertise: TensorFlow, PyTorch, etc.
• Being able to re-use and adapt the old implementations to
the new problem and input data and do not re-implement
from scratch to gain time and effort.

- The choice of the right ML model to use requires deep and
diversified expertise in ML.

- Each ML algorithm has its own advantages and drawbacks.
The choice of the most appropriate ML algorithm to use de-
pends on many criteria:
• Problem description
• Data description (type, distribution, size, etc.)
• The desired output, etc.

55

3 The machine
learning pipeline - The machine learning pipeline is composed of the following

steps: Data pre-processing → Development → Training →
Validation → Evaluation.

- These steps are recurrent and costly in terms of time and
effort.

- Scientists usually use the same algorithms depending on the
problem type (classification: Logistic regression, SVM, Deci-
sion Tree, Random forest, etc.)

- The most performant model is selected in the validation step
and then evaluated.

- According to ‘2018 Kaggle ML and Data Science Survey’,
15–26% of the time of a typical data science project is devoted
to model building or model selection.

4 Evaluation of ML
models - Metrics are a static way to evaluate models and detect basic

behaviors.
- We need to understand better the strengths and weaknesses
of the model.

- We need to go deeper into the weaknesses of the model using
other techniques and to identify the limitations of the model
and correct them.

- A machine learning model could be unstable in the prediction
phase.
Unstable model = similar input→ considerably different out-
put.
⇒ This input is called an Adversarial example. Adversarial ex-
amples could be critical in some sensitive cases (e.g. medicine,
security, etc.) where we need a robust and performant model.

56

5 Monitoring
- Detect model performance degradation ¸and data drift is very
important.

- Thresholds are a static and classic way to detect model per-
formance degradation.

- Outliers are detected manually from the monitoring dashboard
(graphs, distributions, tables, metrics, etc.) which is tedious
and not accurate.

- When we detect that the new production data distribution
has changed (data drift) or the statistical relation between
the features and the output variable is no more valid (concept
drift); we should re-train and re-fit the ML model to the new
data so it can learn the new statistical properties.

- Data and concepts are changing, we should forecast the detec-
tion of these changes to act early and trigger the re-training
process.

6 Scrum
- Sprint planning is an essential meeting in Scrum that consists
of selecting a sub-set of stories from the product backlog and
assigning stories/issues (tasks) to team members.

- A user Story is characterized by: description – story points –
priority – assignee.

- Incorrect estimations of story points imply delays.
- In the sprint planning, we should:
• Prioritize the most important user stories.
• Take into account the capacity and expertise of each of
the team members.
• Assign tasks according to the above criteria.

57

7 Security
- Security is a concern in IT companies and it includes the fol-
lowing aspects:
• Ensure the security of the cloud environments.
• Control access to different resources.
• Assess the confidentiality of the data.

- Security involves many challenges:
• Receiving many security alerts. These alerts should be
monitored, analyzed, and resolved by executing the ap-
propriate actions.
• We should be able to analyze many log files to localize
security incidents (An intelligent log analyzer to analyze
security threats is very important).
• There could be new security risks that could not be de-
tected using common tools.
• After a security incident occurs, we should identify the
causes of this incident and the related event from the dif-
ferent log files.

Table 3.4. Problems and required expertise to accomplish software-related tasks

3.5. AI-based improvement opportunities
In section 3.4, we identified the problems and required expertise for software-related

tasks. Based on the collected information, we propose a set of improvement opportunities.
These opportunities are mostly based on Artificial Intelligence techniques to either overcome
the cited problems or to infer the required expertise to accomplish these tasks from past
experiences and using intelligent techniques. These opportunities allow to raise the automa-
tion level, optimize the accomplishment of these tasks, and assist software specialists by the
mean of recommendations or automation.

In the following sections, we detail some AI-based ideas that allow to automate, improve
activities, or assist software practitioners in realizing their tasks. Besides, we depict these
improvement opportunities in a graphical cartography (Appendix A) that could serve the
industry and research community as a road map for the most challenging and important
future research directions.

58

3.5.1. Data engineering

3.5.1.1. Intelligent data generator.
Generating fake data is very important and useful in software engineering. In fact, data is

the fuel for most software-related tasks. For instance, testing newly developed functionalities,
data pipelines, visualization modules, machine learning models, etc. require data. A naive
approach that is commonly used consists of randomly generating data. However, this data
could be unrealistic and inconsistent. Thus, it doesn’t reflect the production environment
and the real behavior of users. This might imply missing test cases that exist in the real
world which might lead to errors. In some cases, we need real data to test on real test cases,
to optimize the implementation and adjust it to the real world. On the other hand, there is
always a tendency to restrict access to some real data due to its confidentiality.

To overcome these problems, we propose an idea that consists of generating fake data
that’s indistinguishable from real data. This approach will allow for overcoming data confi-
dentiality restrictions. The idea allows generating coherent and real-like data that has the
same characteristics and statistical properties of the real data. For this purpose, we sug-
gest using Machine Learning techniques such as Auto-Encoders or Generative Adversarial
Networks (GANs) to build unbiased generative models. These generative techniques are
commonly used and have proved their high performance and the quality of their results.

• Generative Adversarial Networks (GANs): It’s a deep neural network architecture
proposed by Goodfellow et al. [54] in 2014. As shown in figure 3.12, this architecture
is mainly composed of two components: A generator model that generates fake data
from a random noise input. A discriminator model that differentiates between real
and fake data.

Fig. 3.12. Generative Adversarial Networks (GANs) architecture

The objective of the generator is to fool the discriminator by generating fake data
that the discriminator can’t distinguish from the real data. On the other side, the
discriminator tries to get better at discriminating between fake and real data. The

59

idea is to have two models playing against each other. The two models compete and
improve simultaneously over time. After some iterations, the generator is forced to
create data as realistic as possible to reach its objective in generating real-like data
and the discriminator improves his discrimination power.
After the training phase, we could use the generator model to produce high-quality
fake data that we cannot distinguish from the real data. This data could be used
for training, source code testing, testing data pipelines, visualizations, etc. Such
a generator model enables simulating real test cases and allows to overcome the
confidentiality restrictions.
• Autoencoders: It’s an artificial neural network structure composed of two components
as illustrated in figure 3.13.

Fig. 3.13. Autoencoders architecture

The first component called an encoder, is an unsupervised model that tries to learn
efficient data encoding [84]. The second component, called decoder, learns to recon-
struct the original data from the reduced encoding representation while minimizing
the reconstruction cost (the difference between original and reconstructed data).
After the training phase, we could use the decoder to generate real-like data. We
feed this model with random noise and it generates data that is indistinguishable
real data since the decoder has learned the statistical relationship between the latent
space and the real data.

60

These two techniques could be used to generate fake data that is similar to the real data.
This would promote the confidentiality of the real data by limiting access to real data since
all tasks could use the generated data. Also, this would promote efficiency and productivity
inside the team.

3.5.2. Implementation of ML models

In machine learning, some algorithms are often used (e.g. XGBoost and SVM are com-
monly used for regression problems) depending on some criteria: the problem type, the data
structure, the desired output, etc. The Machine learning field is witnessing an increasing
evolution. This great evolution gave access to a huge number of ML models. Each of which
has its own strengths and limitations. It’s quite difficult for a novice scientist to decide on
the most suitable model to use to solve a specific problem.

To assist these junior scientists in their choice, we suggest building a Domain-Specific
Language (DSL). We could use this DSL to describe the problem specifications and re-
quirements (problem description, data structure, desired output, other constraints, etc.).
Scientists would be able to use abstractions and notations from their own domains of exper-
tise. Then, based on the input specification, this DSL suggests the most suitable ML model
to be used in this specific use case.

A general and re-usable implementation of the most used algorithms in a company could
also be useful. This would allow re-using the general implementation instead of building the
model from scratch each time. The advantages of this are saving effort and time, ensuring
high source code quality, minimize bugs proneness, accelerate the development process, etc.

3.5.3. Machine learning pipeline

The machine learning pipeline is composed of some recurrent steps: Data pre-processing
→ Development → Training → Validation → Evaluation.

To accelerate the generation of machine learning models and rise its automation level, we
could use the Automated Machine Learning (Auto-ML) paradigm that consists of automating
the whole machine learning pipeline. This approach promotes the quick generation of ML
models which is very useful for generating prototypes in a short time. In fact, the standard
ML pipeline is recurrent, time-consuming, resource-intensive, etc. It requires experts in
several disciplines to generate high-quality deliverables. Automating the pipeline would ease
the process of building machine learning models. It would incorporate machine learning best
practices from experienced data scientists to make data science more accessible and simple.
This allows to save both time and effort and to generate high-quality solutions without the
need of having experienced and highly-skilled software practitioners.

61

Automated machine learning is a great change in the industry, the whole pipeline could be
fully or semi-automated. To build a machine learning model that solves a certain problem, we
should describe the problem specifications, then the pipeline automatically triggers the pre-
processing of the data, some ML models are trained on these data, then the most performant
model is selected, and finally evaluated. We don’t need to go over all the ML steps, we just
need to specify the problem specifications and then get the most performant ML model as
output. Using automated ML pipelines enables scientists to work on more valuable and
challenging tasks that require human intelligence, intuition, and creativity.

3.5.4. Evaluation of ML models

Metrics are a static way to evaluate models, however, they are commonly used to estimate
the model’s performance. Some dynamic behaviors might be detected using intelligent tech-
niques. For instance, the stability of machine learning is very important. A stable machine
learning model generates a similar output for similar input data.

We could evaluate the stability of ML models using adversarial learning. It consists of
detecting individuals and a range of values to which the model is sensitive and unstable.
These sensitive individuals are called adversarial examples. Adversarial training is a process
that consists of injecting a small random noise to the input data that is imperceptible but
the generated output is considerably different.

Therefore, there exist several adversarial defenses that allow making the ML more robust
against the adversarial examples [55, 108, 107, 12, 74, 110, 80]. For instance, it’s possible
to re-train the model on the adversarial examples, increase the size of the dataset, modify
the training features to eliminate the sensitive ones, use bagging by stacking several ML
models to enhance the robustness and accuracy of predictions, using extra machine learning
models to detect adversarial inputs, etc.

3.5.5. Monitoring

Monitoring ML models consists of detecting performance degradation and data drifts.
Classic methods consist of putting threshold constraints on evaluation metrics. For instance,
if the precision or recall metric falls below a certain value, an alert is raised, then scientists
should re-train and adapt the ML model. However, the detection of model performance
degradation could be anticipated. We could predict the model performance degradation
earlier based on the evolution of the performance metrics. On the other hand, we could
automate the detection of data drift rather than manually inspecting the data distribution
graphs and data statistics (quartiles, mean, maximum, minimum, etc.). In fact, the detection
of outliers could be automated by using some advanced ML techniques such as Isolation Trees,
One-Class SVM, Logistic Regression, Autoencoders, etc. Furthermore, data drifts could be

62

detected by automatically comparing data distributions of the training and production data.
If there is a considerable difference between the two distributions, then, we conclude that
the data has changed and we should handle this issue (e.g. re-train the ML model on the
new data). Another approach to avoid data and concept drifts is Continuous Learning: The
ML model is trained and adapted continuously and in real-time to new data. This allows us
to maintain a good performance of the ML model in production.

3.5.6. Scrum: sprint planning

Sprint planning is the main Scrum meeting in which the team decides on the tasks to
be realized during the next sprint. In this meeting, tasks are assigned to different team
members according to their availability, skills, task description, etc. We suggest to semi-
automate the sprint planning since it could be considered as an optimization problem of
resource allocation. We have a set of resources which are the team members. Each one has
a certain availability, skills, etc. On the other side, we have resources which are the tasks
that have some priority, complexity, and require certain qualifications.

We could use genetic algorithms, ant colony optimization algorithms [40], etc. to solve
this problem and get some good and efficient configurations. This will allow minimizing
delays in producing deliverables, non-completion of assigned tasks, affecting tasks to non-
qualified persons, etc. This could contribute to raising the team’s efficiency and productivity
in delivering software artifacts.

3.5.7. Security

Detecting anomalies is a very challenging task for IT companies. To this end, several
intelligent techniques could be used either supervised or unsupervised. For instance, we
could detect new and abnormal behavior in the log files that raise suspiciousness. Besides,
IT companies receive daily a high number of alerts where some of them could be false-positive
alerts. For this purpose, it is interesting to use filtering or classification techniques to either
eliminate the false positive and usual events or to classify these alerts according to their
severity. Additionally, artificial ignorance [26] is useful in this context. It allows to ignore
routine log messages such as regular system updates and for new or unusual messages to be
detected and flagged for investigation. Furthermore, there are usually multiple records of
related events in case of a security incident. It is challenging and difficult to locate this event
in the logs and to identify related events. To this end, there exist some intelligent techniques
called Correlation analysis techniques [126] that can discover connections between data in
multiple log files.

63

Conclusion
In this chapter, we proposed our first contribution that was realized in collaboration

with an industrial partner. We presented some software engineering tasks, in particular
the machine learning pipeline. Then, we identified some problems related to these tasks
as well as the expertise and knowledge required to accomplish these tasks. Afterward, we
suggested some improvement ideas to overcome the highlighted problems, to fully or partially
automate some of these tasks, and to assists software specialists in their tasks by inferring the
required expertise from historical experiences. Finally, we depicted these ideas in graphical
cartography (Appendix A) that could serve the industry and research community as a road
map for the most challenging and important future research directions.

64

Chapter 4

Quality-driven multi-objective optimization
approach for metamodel refactoring

Introduction
In this chapter, we present our second contribution on using AI for software development

and maintenance. This contribution targets the refactoring of metamodels based on quality
criteria using a multi-objective optimization approach. First of all, we state the problem.
Next, we introduce our proposed approach to address this problem. Then, we present the
implementation details. Finally, we present and discuss the validation results.

4.1. Problem statement & Motivations
In MDE, metamodels are considered as primary and fundamental artifacts. In fact,

metamodels are used to represent and abstract domain concepts to build domain-specific
languages. They also represent the backbone of transformations, models, domain-specific
applications, etc.

Given this high importance of metamodels, they should be designed carefully taking into
account many quality factors such as maintainability, reusability, extendibility, etc. How-
ever, considering the facts that the requirements continuously evolve, and that the domain
environment is variable and continuously changing, continuous changes to the metamodels
are necessary to maintain their consistency. These continuous changes may weaken the qual-
ity of the metamodel by making it unnecessarily less understandable and maintainable and
more complex leading to significantly reduce productivity, increase fault-proneness and make
the maintenance far more costly [132]. Thereby, metamodel quality should be maintained
regularly as it constitutes a fundamental and strong building block in MDE.

On another note, maintenance has always been a challenging task as it is tedious, ex-
pensive and effort consuming [57]. Thus, its full or partial automation could alleviate the

burden on modelers. Maintaining a metamodel consists, among others, of detecting bad
design choices (design smells) that are accumulated alongside the metamodel evolution and
correcting them using refactoring operations. The correction of design smells (i.e. refac-
toring) shouldn’t be applied haphazardly, though they should be performed with respect to
some criteria or objectives. Indeed, the ultimate goal of applying refactoring operations is
to improve the quality of the metamodel.

A smell-based refactoring approach is composed of two phases: an initial phase that
detects design smells, and a correction phase that applies the corresponding refactorings to
remove those smells [21]. Nevertheless, we do believe that removing all the design smells is
not necessarily the best solution, it might not lead to the best values of quality attributes. As
stated previously, the refactoring operation shouldn’t be performed haphazardly but rather
based on some well-defined objectives, such as improving some quality criteria. Quality
attributes are potentially conflicting [9, 59]. Improving one quality criterion could lead to
the degradation of another. Thus, a refactoring solution should find the best tradeoff with
respect to quality attributes.

Besides, after the detection phase of design smells, a solution that applies all the cor-
responding refactorings to remove all the metamodel smells could be problematic. Indeed,
refactoring a bad smell could remove another smell and thus invalid the application of its cor-
responding refactoring. Therefore, another objective, besides dealing with quality attributes,
is to propose valid solutions.

For instance, figure 4.1 shows an examples that illustrates the case of having conflicting
solution of refactorings: MetaClassC is a dead class and entityName is a duplicated fea-
ture. The order of applying refactorings matters; executing one refactoring operation could
invalidate another one. To resolve the dead metaclass bad smell, we should remove that
metaclass. To remove the duplicated features smell, we should apply the pull-up or create
super metaclass operation. In figure 4.1, if we remove the dead metaclass MetaclassC, we
will not be able to execute the pull up feature for entityName.

For instance, figure 4.1 shows an example that illustrates the case of having conflicting
refactorings for two smells, dead metaclass (MetaClassC) and duplicated feature (entity-
Name in MetaClassB and MetaClassC). If we resolve the dead metaclass smell by removing
MetaClassC, then, we cannot apply the pull-up refactoring for entityName to resolve the
duplicated feature smell.

In summary, an automated approach for smell-based metamodel refactoring should im-
prove the conflicting quality attributes while generating a valid sequence of refactoring op-
erations. In the next section, we propose an approach that allows satisfying both objectives.

66

Fig. 4.1. A metamodel example that contains some design smells

4.2. Proposed approach
In this section, we first give an overview of the adopted approach. Then, we go through

its different steps with more details.
our approach is based on the problem that in practice quality attributes are conflicting

and the order of applying refactorings is important to generate valid recommendations. Fig-
ure 4.2 gives an overview of our automated approach to recommend metamodel refactorings.
The process is based on bad smells detection and resolution. We first detect meta-model
smells that exist in our input metamodel. Then, we try to resolve these smells with refac-
torings in a way that maximizes the metamodel quality using a multi-objective optimization
approach. Afterward, we propose the Pareto-optimal solutions to the modeler. Once he
chooses the solution that fits his preferences, we automatically apply the refactoring.

Figure 4.2 gives an overview of our automated approach to recommend metamodel refac-
torings. Our approach is based on bad smells detection and resolution. The refactoring
process is driven by the optimization of many objectives: improve quality attributes and
maximize the correction of smells. Our approach is composed of several steps: 1 we define
a quality metamodel that defines the relation between quality attributes and more low-level
metrics. 2 We create a model that conforms to the defined metamodel. We used the
quality model presented in [89]. The model defines some quality attributes as a linear com-
bination of lower-level design metrics. 3 We developed a library that allows evaluating
low-level design metrics on an input metamodel. The library was implemented using Edelta,
a DSL for manipulating metamodels [20]. 4 Next, we used the previous components to

67

Fig. 4.2. Proposed approach

feed a source code generator implemented with Epsilon Generation Language (EGL). The
generator transforms any input model, that conforms to the metamodel defined in (1), to
Java source code that represents our 5 objective functions. The generated code includes
the classes, attributes that represent the quality model structure as well as the methods
responsible for automatically evaluating the quality attributes on an input metamodel. 6
We created a library for metamodel smells detection using Edelta. 8 We feed the previ-
ous components to NSGA-II, a search-based genetic algorithm, to optimize out objective
functions (improve quality attributes an maximize the correction of smells) for 7 an input
metamodel. We try to resolve the detected smells with refactorings in a way that maximizes
the metamodel quality using a multi-objective optimization approach. 9 Afterward, we
propose the Pareto-optimal solutions to the modeler. 10 Once he chooses the solution that
fits his preferences, we automatically apply the refactoring.

4.2.1. Quality metamodel

We aim to generalize and automate our proposed framework to any quality model con-
forming to a certain quality metamodel. This allows us to easily make changes on the
quality objectives (i.e. the way we evaluate the quality of an input metamodel). Therefore,

68

Fig. 4.3. Quality metamodel

we could modify the quality model, though, we don’t need to make any changes for the other
components of our approach.

To define a quality metamodel, we took inspiration from [16] and we augmented it based
on the work done in [89]. The latter proposed a measuring mechanism for effectively assessing
the quality of metamodels. This metamodel permits to define quality using three levels of
abstraction with mappings from high-level to low-level.

A quality model, as shown in Figure 4.3 is composed of a set of quality attributes that
have the highest level of abstraction (i.e understandability, maintainability, extendibility,
etc.). These attributes are easy to interpret but they are not trivial to measure. Thus,
they were considered by Ma et al. [89] as a combination of quality parameters (e.g., size,
coupling, and inheritance) which are measured employing quality metrics (e.g., number of
metaclasses, number of abstract metaclasses, and number of hierarchies) that have the lowest
level of abstraction. The quality metrics are computed directly on the input metamodel, but
their interpretation is far from trivial. Additionally, a quality attribute can be broken down
into other attributes, e.g., maintainability can be defined in terms of changeability and

69

Table 4.1. Description of quality metrics [89]

Metric Description
NOH This metric value is the number of metaclass inheritance hierarchies in a meta-

model
ADI This metric value signifies the average depth number of metaclass inheritance

hierarchies in a metamodel
ANA This metric value signifies the average number of metaclass from which a meta-

class directly inherits
ANDM This metric value signifies the average number of metaclass with which a meta-

class directly associates
ANM This metric value signifies the average number of metaattributes of a metaclass
ANMC This metric value signifies the average number of metacombinations of a meta-

class
ANR This metric value signifies the average number of well-formed rules of a metaclass
NAM This metric value is the number of abstract metaclasses in a metamodel
NCM This metric value is the number of concrete metaclasses in a metamodel

Table 4.2. Mapping from quality metrics to quality parameters [89]

Metric Description
Modeling concept size (MCS) NCM

Hierarchy NOH
Coupling ANDM+ANA
Intension ANM+ANR+ANMC
Inheritance ADI

Abstract metaclass size (AMS) NAM

modularity. In Figure 4.3, MetricProvider is responsible for going through the structure of
the metamodel to evaluate its quality attributes as a combination of lower metrics.

4.2.2. Quality model

Having defined our quality metamodel, we instantiated a quality model. Nevertheless,
our approach is general and works for any model conforming to the metamodel defined in
section 4.2.1. We have used the quality model proposed by Ma et al. [89] and expressed it
using the defined quality metamodel. Ma et al. [89] defined a set of quality metrics as shown
in Table 4.1. Next, they mapped them into quality parameters (Table 4.2) and, then, defined
the measure of each quality attribute as a linear combination of some quality parameters
(Table 4.3).

This linear combination was defined based on the negative or positive influence of each
quality parameter on each quality attribute and the weight of this influence. Our metamodel
was defined using ecore. We have created the quality model that conforms to this metamodel

70

Table 4.3. Weights: influence of quality parameters on quality attributes [89]

Quality attribute MCS Coupling Intension Inheritance AMS Hierarchy
Reusability 0.3 –0.3 0.8 0.3

Understandability –0.1 –0.2 0.7 –0.1 –0.1 –0.2
Functionality 0.2 0.4 0.4
Extendibility 0.3 –0.2 0.3

Well-structured –0.2 0.8 –0.1

Fig. 4.4. Quality model

and that contains the quality attributes definition, as shown in figure 4.4. These quality
attributes represent the objective functions that we tend to maximize when searching for a
refactoring solution.

4.2.3. Objectives generation

As shown in figure 4.2, the quality model serves to automatically generate the code of
the objective functions to evaluate the metamodel quality when searching for refactoring
solutions. For the code generation, we have used Epsilon Generation Language (EGL) to
implement the transformations that produce the Java code for our defined objectives.

71

To this end, we have defined four EGL transformations.
• With the first transformation, we generated a Java class for each quality metric.
• The second transformation was dedicated to generating a Java class for each quality
parameter.
• We wrote the third transformation to generate Java code classes for quality attributes.
• The last transformation was dedicated to the generation of a class that contains the
whole quality model and that defines the different linear combinations between the
quality units.

rule DesignMetrics2JavaCode
transform self : M! QualityModel {
template : " QualityModel2JavaCode .egl"
target : "../../ src/ QualityModel / QualityModel .java"

}

public class QualityModel
{

// path to the input metamodel
private String metamodel = "[%= self. metamodel %]";
// package of the metamodel
private String packageName = "[%= self. package %]";
// directory to save output metamodels
private String outputDir = "[%= self. outputDir %]";
private Map <String , QualityAttribute > qualityAttributes =

↪→ new HashMap <>();
private Map <String , QualityParameter > qualityParameters =

↪→ new HashMap <>();
private Map <String , QualityMetric > qualityMetrics = new

↪→ HashMap <>();

public QualityModel ()
{

// Instantiate Quality Metrics
[%for(qm in self. qualitymetrics){%]

qualityMetrics .put("[%= qm.name %]", new [%= qm.name
↪→ %]());

[%}%]

72

// Instantiate Quality Parameters
[%for(qp in self. qualityParameters){%]

qualityParameters .put("[%= qp.name %]",new [%= qp.name
↪→ %](

new ArrayList < QualityMetric >() {
{

[%for(f in qp. factors){%]
add(qualityMetrics .get("[%=f. cooresponds_To .

↪→ name %]"));
[%}%]

}},
new ArrayList <Double >() {
{

[%for(f in qp. factors){%]
add ([%=f.weight %]);
[%}%]

}}));
[%}%]

// Instantiate Quality Attributes
.
.
.

Listing 4.1. Quality model to Java code: EGL transformation - code snippet

Listing 4.1 shows a code snippet of the fourth EGL transformation where an instance
for each quality unit is created and the relations between them are defined. These trans-
formations allow saving time and effort to write the java code representing the objectives.
Whenever the model changes (weights and quality metrics are modified), we do not need to
rewrite everything, we need to just adapt the model and automatically regenerate all the
source code for objective functions.

4.2.4. Detection of metamodel smells

We implemented the detection of metamodel smells using a library that allows the search
for five types of metamodel bad smells (Table 4.4). This library is described by Bettini et
al. [21] and is implemented using Edelta, a domain-specific language [20].

73

Table 4.4. List of considered bad smells [21]

Bad smell Description
Duplicated
features in
metaclasses

A feature (attribute or reference) that is present in different metaclasses
(with the same type and properties) which may imply duplication of
information might be induced.

Dead metaclass A metaclass completely disconnected from the other elements of the
metamodel (similar situations are referred to as dead code or oxbow
code [37]). One of the possible refactoring operations that can be ap-
plied in these cases is the removal of the dead metaclass (even though
such an action should be confirmed by the modeler)

Redundant con-
tainer relation

Sometimes, it may be necessary to traverse containment relations from
the elements to the containing ones. In EMF, the general and implicit
eContainer reference is available. The presence of such a smell has
several negative implications. In particular, it introduces redundancy,
since the implicit eContainer reference is always present.

Classification by
enumeration or
by hierarchy

As discussed in [124] model elements can be classified using enumera-
tion or by hierarchies. i.e. if a subclass doesn’t add new features, it is
useless to make the design bigger without any additional information.
We can just an enumeration instead.

Concrete ab-
stract metaclass

Depending on the particular situation being modeled, it can happen to
have the superclass of a given class hierarchy being specified as concrete
instead of abstract. If such a smell occurs, it can have negative impacts
on the understandability of the considered metamodel and it may lead
to erroneous situations.

4.2.5. Applying refactorings

Bettini et al. defined a weaving model to match every bad smell to the refactoring that
allows to remove it [21]. Edelta was also used to define a library for refactorings to resolve
each of the bad smells We have adapted this library to our particular context to apply a
refactoring solution found and produce the refactored metamodel from the input metamodel.
The refactoring application consists of resolving the selected bad smells in the solution.

4.2.6. Metamodel quality evaluation

To evaluate the quality of a metamodel, we adopted the quality model introduced in
section 4.2.2 that has three levels of abstraction. First, we compute the quality metrics (Table
4.1) directly on the metamodel. Then, we use linear combinations to compute respectively
the quality parameters (Table 4.2) and the quality attributes (Table 4.3). To do so, we have
also used Edelta to build our own module to compute the quality metrics. A code snippet
of the module that we have developed to compute the quality metrics is shown in figure 4.5.

For the first metric, Number of Abstract Metaclasses (NAM), we iterate over all the
metaclasses and filter them to keep just the abstract metaclasses, then, we return the size

74

Fig. 4.5. Code snippet of the Edelta library for computing quality metrics

of the filtered list. We do the same for the Number of Concrete Metaclasses (NCM) metric
where we filter the metaclasses to just keep the concrete metaclasses.

4.2.7. Multi-objective optimization of quality attributes using
NSGA-II

Having prepared all the different pieces of detecting smells, applying refactorings, com-
puting quality, etc., we reach the core of our work which is the optimization part. Our
ultimate goal is to decide what smells to remove in order to maximize the conflicting quality
attributes. During this multi-objective optimization process, we make sure that the produced
refactoring solutions are valid and applicable.

If the search space is small, i.e., small metamodel with a few smells, we can just use
an exhaustive search that consists of exploring all the search space by testing all possible
combinations and select the best ones. In this case, we are sure that the Pareto front we get is
the globally optimal one. However, when it comes to large search spaces, it is difficult, if not
impossible, to perform an exhaustive search considering the very high number of solutions to
explore. In this case, a heuristic search allows reducing the search space by exploring fewer
solutions and can find near-optimal solutions.

A popular way to perform a heuristic search is to use meta-heuristic algorithms like
genetic algorithms that have proven to be efficient for many optimization problems. In our
case, we select the appropriate search method depending on the search space size. We first
evaluate the size of the search space depending on the problem parameters, i.e., the size
of the metamodel and the number of detected smells. If an exhaustive search is doable
in a reasonable timeframe, then, we use it. Otherwise, we use the multi-objective genetic
algorithm NSGA-II to intelligently explore the space of potential solutions.

4.2.7.1. Problem formulation.
In this section, we formalize our problem by defining the objectives and the solution

structure:

75

Fig. 4.6. Adapted single-point crossover operator

(a) Objectives definition: We have five objectives which are the quality attributes (Table
4.3) defined in our quality model as well as maximizing the number of corrected bad
smells. Our goal is to optimize these conflicting objectives.

(b) Solution representation: Our solution is a set of bad smells to be removed. Our
goal is to decide on the smells to be removed in order to optimize the objective
functions on the input metamodel. For each bad smell, we associate the corresponding
refactoring allowing us to remove it, therefore, we can also consider our solution as a
set of refactorings. The solutions have different sizes, each solution is a subset of the
complete list of smells initially detected.

4.2.7.2. Genetic operators.
(a) Crossover We have used single-point crossover and we adapted it to our context. A

single point crossover consists of taking two parents from the existing population,
choosing randomly a crossover point, and producing a new child that combines the
left side of the first parent and the right side of the second parent relatively to this
point. One problem that may occur is having a new child individual with duplicated
bad smell instances. This case occurs if the left side of the first parent contains the
same bad smell instance as the right side of the second parent. To overcome this
problem, we adapted the crossover operator by removing duplications in the new
individual. Figure 4.6 illustrates an example. The crossover operator is applied on
Parent1 and Parent2. The left side of the first parent and right side of the second
one, relatively to the crossover point, contain the same bad smell instance which is
smell-3. So, we apply the standard single-point crossover operator and we check for
duplication. Then, we just keep one instance in the produced children.

(b) Mutation (a) We defined our crossover operator as following: we go through the
parent individual elements, and for each element, we decide to keep it or not according
to the mutation rate (chosen in the initialization phase of the genetic algorithm).
This means, for every solution element (i.e. a bad smell instance) and according to
mutation rate, we decide to keep that element or to remove it. Figure 4.7 shows an

76

Fig. 4.7. Adapted mutation operator

example, where the application of the mutation operator on the parent individual led
to removing the element Smell-5 and keep others.

4.2.7.3. Solution evaluation.
A solution is a set of smells to be removed. To evaluate a solution, we translate it to a list

of refactorings. This is done by replacing each smell with its corresponding refactoring oper-
ation that allows to remove it. Then, we apply these refactorings on the input metamodel,
we produce the refactored metamodel the refactoring library (section 4.2.5). Afterward, we
evaluate the quality of the output metamodel by computing its quality attributes using our
evaluation module (section 4.2.6).

4.2.7.4. Solution validity assurance.
A solution is valid if their corresponding refactorings are not conflicting. This means the
smells of this solution could be resolved without any problem. Sometimes, applying one
refactoring by resolving one smell implies the vanishment of another smell. We try to resolve
this by using a trial and error approach. We apply the solution, if a problem occurs, we just
eliminate this invalid solution. We just keep the solutions that are valid to avoid misleading
the modeler when recommending solutions.

4.2.7.5. Metamodel refactoring recommendation.
The execution of the optimization process produces a Pareto front of non-dominated solu-
tions. These solutions are equally good, therefore, it is on the modeler to select the most
appropriate solution that suits his preferences. We give further assistance to the modeler
through some charts representing the solutions and their quality (Figure 4.9).

4.3. Illustrative case study
To validate our approach, we conducted a set of experiments using a dataset of 10 case

studies selected from an online Ecore metamodel dataset 1. Table 4.5 summarizes the eval-
uated metamodels.

Figure 4.8 shows a metamodel example for Customer Relationship Management (CRM),
in which we have manually introduced some bad smells:

• Dead metaclass LocatedElement.
1https://zenodo.org/record/2585456#.X4w0sNBKhnL

77

https://zenodo.org/record/2585456#.X4w0sNBKhnL

Table 4.5. Description of the metamodels

Name NMCi NMAii NAiii NHiv NDSv

1 CRM 11 6 8 5 6
2 DBLP 17 51 17 8 13
3 BibTex 29 55 4 48 17
4 Ant 51 95 28 40 25
5 Maven 8 28 6 2 3
6 jPQL 49 24 42 35 20
7 HTML 59 98 14 42 38
8 SQL 92 45 119 42 42
9 WikiML 29 10 22 24 12
10 MongoSQL 23 21 6 18 8

i Number of MetaClasses ii Number of MetaAttributes iii Number of Associations iv Number of
Hiearchies v Number of detected smells

• Dead metaclass Chart.
• Duplicated feature name in many metaclasses.
• Redundant container relation between CRM and Client.
• Concrete abstract metaclass Client.
• Concrete abstract metaclass Worker.

Fig. 4.8. Metamodel example for Customer Relationship Management (CRM)

In the next sections, we define research questions, describe the experimental setting and
we present the results to answer our research questions.

4.3.1. Research questions

To evaluate our proposed approach, we define the following research questions:

78

• RQ1: How does our approach perform compared to the classical approach? To
answer this research question, we compare the best solutions generated by our ap-
proach to those generated using the classical approach [21] that consists of removing
all the design smells.
• RQ2: How does our approach perform compared to the Random Search? We
answer this question by exploring the same number of solutions using random search
and using our approach and we compare the best solutions from both strategies.
This allows to know whether the results of our approach are attributable to the
search strategy or to the number of explored solutions.

4.3.2. Experimental setup

To answer both questions, we use a dataset of metamodels (as described in table 4.5).
For the first research question RQ1, we compare our approach to the classical approach

presented in [21] that consists of removing all the design smells.
In the second research question RQ2, we prove that the achieved results are attribut-

able to the search strategy; and not haphazardly. We implemented the random search(RS)
algorithm with a uniform distribution.

Random search is a direct optimization method that doesn’t require a search strategy to
generate solutions [27]. We use a uniform distribution to build our solution from the list of
detected design smells (the probability of a smell to be removed from an input metamodel is
0.5). We run a number of fixed iteration. For each iteration, we build a new random solution
and we only keep the top solution. An intelligent algorithm is usually compared to random
search to check if it performs better or worse than chance.

4.3.3. Results

We executed our approach on the 10 metamodels and compared the results to RS and
Classical approach outputs. We manually fixed the values of hyperparameters based on
previous runs:

• Number of iterations: 20
• Population size: 5
• Mutation rate: 0.1

Results for RQ1: Comparison between our approach and the classical approach.
For RQ1, our approach outperformed the classic approach proposed by Bettini et al. [21]

for all the metamodels dataset. The classic solution is generated with a two-step approach
that consists of detecting the design smells of a given metamodel and then removing all the
smells. On the contrary, our approach was based on the problem that in practice quality

79

attributes are conflicting and the order of applying refactorings is important to generate
valid recommendations.

In figure 4.9, we compare the non-dominated solutions generated by our search-based
approach with the best solution produced by a RS method for the CRM metamodel (Figure
4.8).

Fig. 4.9. CRM metamodel - Comparison between our approach and classical approach

As shown in figure 4.9, many non-dominated solutions outperform the classic solution.
For instance, Solution1 dominates the classic solution as it has better value for all the quality
attributes. This justifies the usefulness of using a search-based algorithm to find near-optimal
solutions. The results of RQ2 prove that our approach is better than the classical method
by generating solutions with better quality.
Results for RQ2: Comparison between our approach and Random Search (RS).

For RQ2, our approach outperformed RS for all the input metamodels. In figure 4.10, we
take the CRMmetamodel as an example and compare the non-dominated solutions generated
by our approach to the best solution produced by the RS algorithm.

For instance, Solution1 dominates the random solution in all the quality attributes. The
results of RQ2 confirm that our approach didn’t reach the final solutions by chance but
rather it is capable of generating good recommendations.

We have selected Solution-2, then, our framework generated the refactoring metamodel
corresponding to this solution. Figure 4.11 shows the refactored metamodel corresponding
to the second solution.

80

Fig. 4.10. CRM metamodel - Comparison between our approach and RS

Fig. 4.11. Refactored metamodel corresponding to solution-2

Solution-2 has the best value in terms of understandability, and this can justify why the
two dead metaclasses were removed. By examining the refactored metamodels corresponding
to the other solutions, we could explain that solution-2 has lower value Reusability and

81

Extendibility because unlike other solutions the bad smell duplicated feature (name) has
not been removed. This might justify why this solution has worse values for reusability and
extendibility.

4.3.4. Validity of the experiments

Our approach is general and could be applied to any input metamodel. We used meta-
models with different properties, and we got good results using our approach. Therefore,
our approach is probably able to generate good solutions for other DSLs.

We were able to provide relevant and diversified non-dominated refactoring solutions and
leave the final choice to the decision-maker.

However, some threats to validity concern the used quality model which is arguable
especially regarding the numeric weights. However, the used quality model was just a way
to prove the validity of the problem as well the realization, feasibility, and utility of our
approach. Our approach is generic and could use any kind of defined quality model.

Concerning the validation of our approach, we plan to expand it more by leading an
empirical study to evaluate modelers’ feedback (comprehension, ability to add new features,
simplicity to work with, etc.) regarding the refactored metamodels to prove the relevance of
the recommended solutions.

4.4. Conclusion & Future work
In this contribution, we have defined the improvement of metamodels’ quality as an opti-

mization problem. We proposed an automated approach to recommend metamodel refactor-
ings using a search-based optimization process of many objectives. The goal is to produce a
set of refactoring operations that are not conflicting, that improve a set of quality attributes,
and maximize the number of bad smells to remove. Our approach provides a variety of good
and valid refactoring solutions that let the modeler choose the most convenient solution
based on his preferences. The provided framework allows the modeler to give his metamodel
as input, then the optimization process is automatically executed to generate visualizations
that highlight the characteristics of the different solutions. Once the modeler selects a solu-
tion, the refactored metamodel is automatically generated. We validated our approach on a
set of 10 metamodels and we compared it to the classical approach and RS.

In future work, we plan to make the optimization process dynamic by taking into consid-
eration the fact that applying refactorings may introduce new bad smells. Also, we aim to
expand more our approach so it takes into consideration the predefined constraints (e.g. OCL
constraints) of the metamodel to produce a valid refactored metamodel that satisfies these
constraints. We plan to validate our approach with an empirical study to evaluate modelers’

82

feedback (comprehension, ability to add new features, simplicity to work with the initial and
refactored metamodel, etc.) to prove the relevance of the recommended refactoring solutions.

In the next chapter, we propose a formal method based on Alloy, a bounded constraint
solver, to refactor metamodels.

83

Chapter 5

Metamodel refactoring using constraint
solving

Introduction
In this chapter, we introduce our third contribution on using AI techniques for software

maintenance. We use constraint solving to recommend metamodel refactorings. First, we
state the problem related to the maintenance of metamodels. Second, we propose an ap-
proach to solve this problem. Third, we present the implementation details. Finally, we
conclude this chapter with an illustrative case study.

5.1. Problem statement
In MDE, metamodels represent the backbone of building domain-specific languages,

transformations, etc. As highlighted in chapter 4, we should maintain a good quality of
these metamodels.

In chapter 4, we used a multi-objective optimization approach to refactor metamodels
using NSGA-II. However, Evolutionary Algorithms (EAs) have some drawbacks:

- EAs might converge to a local extremum and not lead to a point close to the global
maximum.

- EAs are non-deterministic methods. Each execution on the same instance might lead
to different results.

- The quality of results depends on values of parameters (e.g. population size, gener-
ation count, selection size, crossover and mutation rates, etc.).

- EAs are sensitive to the initial population.
- The genetic operators (crossover, selection, mutation) might have an impact on the
final results.

- EAs involve a lot of computations, so, they might take a lot of time to converge to a
good solution.

- EAs do not guarantee optimality. They often lead to good results (i.e non-dominated
solutions).

- The solutions produced by EAs are not comprehensible. We cannot explain why EAs
led to these results or know if the obtained solutions are good.

To overcome some of the aforementioned limitations, we tackle the problem of metamodel
refactoring using another technique: Constraint Solving (CS). CS is an AI method that allows
solving logical constraints and that is being widely used in many applications [49]. Unlike
EAs, CS leads to an optimal solution that satisfies all the specified constraints. Furthermore,
CS allows focusing on the high-level modeling of the problem rather than on specifying how to
solve it. The results of CS are explainable, if a constraint solver fails to find a solution, we can
know which constraint is violated, otherwise, all the constraints are satisfied. Furthermore,
constraint solvers are efficient. They automatically make simplifications by pruning off all
branches that violate constraints.

We use Alloy, a constraint solver, to encode the problem and solve constraints. We detail
this approach in the next section (section 5.2).

5.2. Proposed approach
Alloy is a formal constraint specification language based on first-order logic. It allows

to formally express the structural properties and behavior of a system. Alloy provides a
lightweight modeling tool to express and check system properties [71]. It is designed to
perform a bounded scope analysis by checking the encoded specification over a finite number
of instances.

To tackle the problem presented in section 5.1, we propose a formal approach to refactor
metamodels using Alloy. Rather than using a meta-heuristic with multi-objective optimiza-
tion, we rely on a constraint solving method. We use Alloy as a specification language to
express the quality criteria and the absence of metamodel smells as constraints. Then, we
try to satisfy these constraints using Alloy as a constraint solver. The solutions that satisfy
the specified constraints are the refactoring solutions that we recommend to improve the
quality of the input metamodel.

Figure 5.1 depicts the proposed approach:
Our approach is composed of two parts: (1) a detection phase in which we check the

non-existence of design smells (2) a refactoring phase where we remove the bad smells while
satisfying some quality criteria.

In the first phase, we encode the non-existence of design smells as constraints. We run
CD2Alloy transformation to translate the input metamodel from a class diagram to an alloy

86

Fig. 5.1. Constraint solving approach to detect design smells and refactor metamodels

specification. Then, we use the Alloy analyzer to check the encoded constraints. If no design
smell is detected, then, the metamodel is consistent. Otherwise, alloy generates a counter-
example that consists of a model that contains some bad smells. After that, the refactoring
phase starts.

In the second phase, we encode the non-existence of smells and some quality criteria as
logical constraints. We execute the Alloy analyzer on the input metamodel to satisfy the
encoded constraints and generate the refactored metamodel.

5.3. Implementation details
In this section, we present the implementation details of our approach.

5.3.1. Phase 1: Detection of design smells

In this phase, the goal is to check if an input metamodel is consistent and does not
contain design smells. For this purpose, we use alloy as a modeling language to express the
specifications and constraints of the input metamodel. This first phase is composed of three
steps: (1) translate an input metamodel, represented as a class diagram, to alloy specification
(2) encode the non-existence of design smells as constraints in Alloy (3) use alloy analyzer
to check these constraints on the input metamodel.

5.3.1.1. Translate metamodel class diagram to alloy specification using CD2Alloy.
The input metamodel is a class diagram, so, the first step consists of translating it to

alloy. For that, we used CD2Alloy that was presented by Maoz et al. in [92]. CD2Alloy
is a translation from UML class diagrams to Alloy that is deeper than other suggested
translations [92]. The authors provide an eclipse plugin that implements this transformation.

Figure 5.2 shows an example of a metamodel for Customer Relationship Management
(CRM). This metamodel is a simplified version of the metamodel used in Chapter 4.

87

Fig. 5.2. Customer Relationship Management (CRM): class diagram

package CD2Alloy ;

classdiagram CRM_CD {

class CRM;
class Company { string name ;}
abstract class Worker ;
class InternalWorker extends Worker {int matricule ;}
class ExternalWorker extends Worker {int matricule ;}
abstract class Client { string name ;}
class Organization extends Client ;
class Private extends Client ;
class LocatedElement ;

association composition1 [1] CRM (crm) -> (company) Company [0..1];
association composition2 [1] CRM (crm) -> (client) Client [*];
association staff [1] Company (company) -- (worker) Worker [*];

}

Listing 5.1. CRM class diagram representation in CD2Alloy plugin

Listing 5.1 shows a textual representation of this class diagram in the CD2Alloy frame-
work.

A CRM represents the metamodel serves for managing the relationship between the
company, its employees, and its customers. A CRM could manage many companies. A
worker belongs to one and only one company while a company could have many workers

88

// Some markers not belonging to the model
one sig auxilary {}
// Names of fields / associations in classes of the model
abstract sig FName { is : one auxilary }
// Names of enum values in enums of the model
abstract sig EnumVal {}
//no enum values can exist on their own
fact enums {

all v : EnumVal | some f : FName | v in Obj.get[f]
}
// Parent of all classes relating fields and values
abstract sig Obj {

get : FName -> { Obj + Val + EnumVal }
}
// Values of fields
abstract sig Val {}
//no values can exist on their own
fact values {

all v : Val | some f : FName | v in Obj.get[f]
}
pred ObjFNames [objs : set Obj , fNames : set FName] {

no objs.get[FName - fNames]
}
pred ObjAttrib [objs : set Obj , fName : one FName , fType : set {Obj + Val + EnumVal }] {

objs.get[fName] in fType
all o : objs | one o.get[fName]

}
pred ObjMeth [objs : set Obj , fName : one FName , fType : set {Obj + Val + EnumVal }] {

objs.get[fName] in fType
all o : objs | one o.get[fName]

}
pred ObjLUAttrib [objs : set Obj , fName : one FName , fType : set Obj , low : Int , up : Int]

↪→ {
ObjLAttrib [objs , fName , fType , low] and ObjUAttrib [objs , fName , fType , up]

}
pred ObjLAttrib [objs : set Obj , fName : one FName , fType : set Obj , low : Int] {

objs.get[fName] in fType
all o : objs | (#o.get[fName] ≥ low)

}
pred ObjUAttrib [objs : set Obj , fName : one FName , fType : set Obj , up : Int] {

objs.get[fName] in fType
all o : objs | (#o.get[fName] =< up)

}
pred ObjLU[objs : set Obj , fName : one FName , fType : set Obj , low : Int , up : Int] {

ObjL[objs , fName , fType , low] and ObjU[objs , fName , fType , up]
}
pred ObjL[objs : set Obj , fName : one FName , fType : set Obj , low : Int] {

all r : objs | # { l : fType | r in l.get[fName]} ≥ low
}
pred ObjU[objs : set Obj , fName : one FName , fType : set Obj , up : Int] {

all r : objs | # { l : fType | r in l.get[fName]} =< up
}
pred BidiAssoc [left : set Obj , lFName : one FName , right : set Obj , rFName : one FName]

↪→ {
all l : left | all r : l.get[lFName] | l in r.get[rFName]
all r : right | all l : r.get[rFName] | r in l.get[lFName]

}
fact NonEmptyInstancesOnly {

some Obj
}

Listing 5.2. Common structure for class diagrams in Alloy

89

that could be either internal or external. A CRM manages many clients that could be either
private clients or organizations.

The translation of this metamodel to the alloy domain using a modified version of the
CD2Alloy framework. The CD2Alloy framework is designed to generate an alloy module
from an input class diagram. The generated alloy module allows generating models that
conform to that class diagram. Indeed, we are interested in manipulating the metamodel.
We do believe that the problem of smells detection and design refactoring could be shifted
to the metamodel level. This allows generalizing the problem by focusing on the metamodel
instead of handling particular model instances. Since we are interested in metamodels rather
than models generation, so, we modified the way associations and cardinalities are encoded
in the CD2Alloy transformation. The modifications are automated in a way to be reused for
any kind of application.

The generated alloy specification contains two parts: A general part that defines the
common elements and structure in a class diagram (e.g. class, attribute, association, cardi-
nality, etc.) as illustrated in 5.2 and a specific part that incorporates the constraints specific
to the input class diagram as shown in listing 5.3.

// Concrete names of fields in cd

one sig matricule extends FName {}

one sig name extends FName {}

one sig client extends FName {}

one sig company extends FName {}

one sig worker extends FName {}

one sig crm extends FName {}

// Concrete value types in model cd

lone sig type_string extends Val {}

lone sig type_int extends Val {}

// Classes in model cd

one sig InternalWorker extends Obj {}

one sig LocatedElement extends Obj {}

// one sig Business extends Obj {}

one sig Company extends Obj {}

one sig Organization extends Obj {}

one sig Worker extends Obj {}

one sig Private extends Obj {}

one sig ExternalWorker extends Obj {}

one sig Client extends Obj {}

one sig CRM extends Obj {} ...
// Values and relations in cd

pred generatedConstrtaints {

// Definition of class InternalWorker

90

ObjAttrib [InternalWorker , matricule , type_int]

ObjFNames [InternalWorker , matricule + company + none]

// Definition of class LocatedElement

ObjFNames [LocatedElement , none]

// Definition of class Company

ObjAttrib [Company , name , type_string]

ObjFNames [Company , name + worker + none]

// Definition of class Organization

ObjFNames [Organization , none]

// Definition of class Worker

ObjFNames [Worker , company + none]

// Definition of class Private

ObjFNames [Private , none]

// Definition of class ExternalWorker

ObjAttrib [ExternalWorker , matricule , type_int]

ObjFNames [ExternalWorker , matricule + company + none]

// Definition of class Client

ObjAttrib [Client , name , type_string]

ObjFNames [Client , name + none]

// Definition of class CRM

ObjFNames [CRM , client + company + none]

// Associations

ObjLAttrib [CRM , client , ClientSubsCD , 0]

ObjLU[Client , client , CRMSubsCD , 1, 1]

BidiAssoc [Company , worker , WorkerSubsCD , company]

ObjLUAttrib [Worker , company , CompanySubsCD , 1, 1]

ObjLAttrib [Company , worker , WorkerSubsCD , 0]

ObjLUAttrib [CRM , company , CompanySubsCD , 0, 1]

ObjLU[Company , company , CRMSubsCD , 1, 1]

}

// Run commands

run generatedConstrtaints for 5

Listing 5.3. Excerpt of the generated alloy specification for CRM metamodel

5.3.1.2. Encoding metamodel smells as constraints.
Alloy allows defining functions and predicates. Predicates are parametrized constraints.

Alloy can check assertions in a bounded scope. If the assertion is true in the defined scope,
then, the assertion might be valid. Otherwise, alloy gives a counterexample that contradicts
the defined assertion. Alloy can execute a predicate by finding a model conforming to the
defined specification and that satisfies the corresponding predicate (the predicate is true on
the generated model).

We defined the non-existence of smells as predicates as shown in listing 5.4.

91

// [1] Duplicated feature in all sub - metaclasses of a parent metaclass
pred duplicatedFeature [cd : CD] {

some fn : FName , v : Val | one op : cd. classes | isDuplicatedFeature [cd , fn , v,
↪→ op]

}

pred isDuplicatedFeature [cd : CD , fn : FName , v : Val , parent : Obj] {
#{ child : cd. classes | child -> parent in cd. extensions }>1
all child : cd. classes | child -> parent in cd. extensions implies child ->fn ->v

↪→ in cd. features
}

// [2] Duplicated feature in some meta - classes
pred duplicatedFeature2 [cd : CD] {

some fn : FName , v : Val | isDuplicatedFeature2 [cd , fn , v]
}

pred isDuplicatedFeature2 [cd : CD , fn : FName , v : Val] {
#{c : cd. classes | c->fn ->v in cd. features }>1
// === OR ===
// some c:cd. classes | c->fn ->v in cd. features

}

// [3] Dead class
pred deadClass [cd : CD] {

some c : cd. classes | isDeadClass [cd , c]
}

pred isDeadClass [cd : CD , o : Obj] {
//No associations
all x,y : associationEnd | (x->y in cd. associations) implies (not (o in x.

↪→ class) and not (o in y.class))
//No Extensions
all p : cd. classes | not o->p in cd. extensions and not p->o in cd. extensions

}

Listing 5.4. Excerpt of the alloy module for design smells detection

As defined in chapter 4, a duplicated feature is defined as a field that is present in many
metaclasses with the same name and type. Here, we differentiate two cases: (1) A feature
that is present in all the metaclasses of a specific metaclass. In this case, the corresponding
refactoring that allows to correct this metamodel smells is Pull-up field. It consists of pulling
up the feature to the parent meta-class and removing it from all the sub-metaclasses. (2)
A feature that is present in some meta-classes (not necessarily the sub-metaclasses of the
same metaclass). To remove this metamodel smell, we should apply the Extract Super
Class refactoring. It consists of creating a super-metaclass that incorporates this field. The
metaclasses inherit this meta-attribute from this metaclass [21]. The first two segments in
listing5.4 cover the cases of detecting duplicated features.

The third segment defines the predicates for ensuring the non-existence of dead meta-
classes. A dead metaclass is defined in [37] as a completely disconnected metaclass from other

92

assert NoMetamodelSmells {
all cd : CD | not (duplicatedFeature [cd] or duplicatedFeature [cd] or deadClass

↪→ [cd])
} check NoMetamodelSmells for 9 but 1 CD

Listing 5.5. Assert the non-existence of metamodel smells

elements of the metamodel (similar situations are referred to as dead code or oxbow code in
source code). In listing5.4, we detect dead metaclasses by searching for meta-classes that do
not have associations and extension relations with the other elements of the metamodel.

5.3.1.3. Metamodel smells detection.
To ensure that our metamodel is consistent and does not contain design smells, we define

an assertion to check the absence of metamodel smells.
Listing5.5 shows an example for checking the non-existence of metamodel smells on the

CRM metamodel.
In the defined assertion, we check the non-existence of metamodel smells instances. In

this example, we check the non-existence of two types of metamodel smells: duplicated
features and dead classes.

We could check this assertion with alloy on the encoded specification. If the assertion is
false, alloy gives a counterexample and thus the metamodel contains some metamodel smells
that should be corrected (see Section 5.3.2). Otherwise, alloy validates the assertion in the
defined scope and the metamodel might be consistent(i.e. probably, the metamodel does not
contain metamodel smells).

5.3.2. Phase 2: Metamodel refactoring

If some metamodel smells are detected in the first phase. Then, the metamodel should
be refactored to improve its quality. In our approach, we refactor metamodels with respect
to some quality criteria.

As depicted in figure 5.3, we formulate the refactoring problem as an ordered finite state
machine where:

• Each state represents a different version of the metamodel
• Each transition represents a single refactoring operation.

The figure 5.4 illustrates a flattened version of our approach.
• The initial state represents the input metamodel.
• The middle states represent the intermediate versions of the metamodel and that
allows keeping track of the refactoring traces (i.e. the intermediate refactoring ac-
tions).
• The final state contains the refactored metamodel.

We use alloy as a constraint solver where we specify:

93

Fig. 5.3. Formulate the metamodel refactoring approach as an ordered Finite State Machine
(FSM)

Fig. 5.4. Metamodel refactoring: flattened approach

• The initial version of the metamodel (i.e. the input metamodel).
• The transition types (i.e. the possible refactoring operations). For each refactoring,
we define the conditions on the input state to be able to apply it. A transition is
automatically determined based on the input state.
• The constraints on the final state: quality criteria and non-existence of smells.

The goal is to use a constraint solver to automatically search for a sequence of refactoring
operations that allows refactoring some of the metamodel smells while satisfying some quality
criteria.

Listing 5.6 shows an excerpt from the implementation of our approach in Alloy.
We used a built-in alloy module called util/ordering to force an ordering on the states. We

defined a state as a signal element containing a class diagram that represents a metamodel.
Every two states are connected by a transition which is the refactoring operation.

We define three refactoring operations (see listing 5.8):
• Remove dead metaclass: Removes the dead metaclass to resolve the corresponding
smell.
• Pull-up field: If a feature is duplicated in all the sub-metaclasses of a parent metaclass,
we apply the pull-up refactoring of this meta-attribute.

94

open util/ ordering [State]

// state
sig State {

cd : one CD
}

// types of transsitions OR possible refactoring operations
pred refactorOperation [cd , cd ’ : CD] {

refactor1 [cd , cd ’]
or
refactor2 [cd , cd ’]
or
refactor3 [cd , cd ’]

}

// relation between states
fact {

all s : State , s’ : s.next {
refactorOperation [s.cd , s’.cd]

}
// Each class diagram should belong to one state
all c : CD | one s : State | s.cd = c

}

Listing 5.6. Alloy code snippet: implementation of our refactoring approach

• Extract super metaclass: If a meta-attribute is duplicated in two or more metaclasses
and does not satisfy the previous case, then, we create a super-metaclass that contains
that meta-attribute.

Besides, we encoded with Alloy the quality model used in [21]. This quality model is com-
posed of quality attributes: Maintainability, Complexity, Understandability, and Reusability.
These quality attributes are defined in terms of some low-level design metrics (e.g. NC: Num-
ber of MetaClasses, NR: Number of References, NA: Number of metaAttributes, DITmax:
max generalization hierarchical level, etc.).

We execute Alloy analyzer to solve the encoded constraints on the input specification.
Alloy would find zero, one, or more configurations. For each configuration, the first state
contains the input metamodel, the medium states contains the intermediate refactoring op-
erations and allows to keep track of the execution traces and the final state contains the
refactored metamodel. Then, it’s on the modeler to choose the best configuration based on
his own preferences and expertise.

5.4. Illustrative case study
We executed our approach on the CRM metamodel(figure 5.2). Table 5.1 shows some

information about the problem size and the complexity of our approach.
This metamodel has three design smells:
• LocatedElement is dead metaclass.

95

// remove dead class
pred refactor1 [cd , cd ’ : CD]{

one x : cd. classes | {
isDeadClass [cd ,x]
cd ’. classes = cd. classes - x
cd ’. associations = cd. associations
cd ’. extensions = cd. extensions
all fn : FName , v : Val , c : Obj | c=x implies not c->fn ->v in cd ’. features

else c->fn ->v in cd. features implies c->fn ->v in cd ’. features
else not c->fn ->v in cd ’. features

}
}

//pull -up field
pred refactor2 [cd , cd ’ : CD]{

one fn : FName , v : Val | one op : cd. classes | {
isDuplicatedFeature [cd , fn , v, op]
all f : FName , vv : Val , c : Obj | c not in cd. classes implies not c->f->vv

↪→ in cd ’. features
else (fn=f and vv=v and c->op in cd. extensions) implies { not c->f->vv

↪→ in cd ’. features }
else c->f->vv in cd. features implies c->f->vv in cd ’. features

else (op=c and fn=f and vv=v) implies c->f->vv in cd ’. features
else not c->f->vv in cd ’. features

cd ’. classes = cd. classes
cd ’. associations = cd. associations
cd ’. extensions = cd. extensions

}
}

Listing 5.7. Alloy code snippet for refactoring operations

Table 5.1. Information about the execution of our approach on the CRM metamodel

Measure Value
Scope 9
Number of variables 201429
Number of clauses 1331127
Execution time 9637 ms

• matricule and name are duplicated features.
Alloy detects metamodel smells and then generates a set of different refactoring solutions.

The traces of the first solution are illustrated in figure 5.5. This solution is composed of three
states.

The first state contains the initial metamodel (figure 5.6).
The second state contains an intermediate metamodel as shown in figure 5.7. The refac-

toring applied on the first state is remove dead metaclass (LocatedElement).
The resulting metamodel is shown in figure 5.7 that represents the second state. The

dead metaclass LocatedElement is removed from the initial metamodel.

96

// Number of metaclasses
fun NC[cd : CD] : one Int {

ans : Int | ans = #cd. classes
}
// Number of references
fun NR[cd : CD] : one Int {

ans : Int | ans = #cd. associations
}
// Number of meta - attributes
fun NA[cd : CD] : one Int {

ans : Int | ans = #cd. features
}
// Number of generalization hierarchies
fun NGenH[cd : CD] : one Int{

ans : Int | ans = #cd. extensions
}
// Number of predecessors in hierarchy
fun PRED[cd : CD] : one Int{

ans : Int | ans = (sum e : cd. classes | DIT1[cd ,e])
}
// Number of inherited features
fun Ai[cd : CD] : one Int {

ans : Int | ans = (sum e : cd. classes | Ai[cd ,e])
}
fun Ai[cd : CD , c : Obj] : one Int {

ans : Int | ans = (mul[minus[(#c.*(~(cd. extensions))), 1] , #c.(cd. features)])
}

// ======= QA =======
fun Maintainability [cd : CD] : one Int{

ans : Int | ans = negate [sum{NC[cd]+NA[cd]+NR[cd]+ DITmax [cd]+ NGenH[cd]}]
}
fun Understandability [cd : CD] : one Int{

ans : Int | ans = div[PRED[cd]+1,NC[cd]]
}
fun Reusability [cd : CD] : one Int{

ans : Int | ans = div [Ai[cd],add[Ai[cd],Ad[cd]]]
}

Listing 5.8. Alloy code snippet for the implementation of the quality attributes

Fig. 5.5. Results of the execution of our approach on the CRM metamodel

97

Fig. 5.6. Execution results: first state

Fig. 5.7. Execution results: intermediate state

98

As shown in figure 5.8, in the third state the duplicated feature matricule was pulled
up from the sub-metaclasses InternalWorker and ExternalWorker to the super-metaclass
Worker.

Fig. 5.8. Execution results: final state

The final state contains the refactored metamodel. For this example, we specified
reusability, complexity, and maintainability as the three quality criteria that we want to
improve for our input metamodel. The constraint solver suggests this configuration as one
solution to refactor design smells while improving the quality attributes.

The final metamodel (figure 5.8) contains another bad smell which is duplicated feature
(name). To refactor this bad smell, we should extract a new super-metaclass that contains
that feature. This would increase the complexity of the metamodel which may explain why
the constraint solver didn’t apply that refactoring operation and has kept that smell to
satisfy the quality criteria.

Our constraint solving-based approach is capable of generating a set of refactorings that
satisfy certain quality criteria. This differs from the approach presented in chapter 4 in
several points:

• Constraint solving is a more robust approach since it is based on mathematics.
• Search-based methods do not always find the best solution. In contrast, constraint
solvers are capable of generating optimal solutions that satisfy the encoded con-
straints.

99

• The results generated by search-based methods depend on the initialization and on
many hyper-parameters (number of iterations, crossover rate, mutation rate, popu-
lation size, solution size) while our constraint solving approach depends only on the
scope.
• Our search-based approach is more complex and time consuming.

We aim to explore more the performance of the two approaches and to compare them in
terms of complexity, execution time and quality of generated solutions, etc.

Conclusion
In this chapter, we presented an approach for quality-driven metamodel refactoring. Our

approach is based on constraint solving. We translate the input metamodel to an alloy
specification. We encode the non-existence of smells and the quality criteria as constraints
in Alloy. Then, we use Alloy analyzer to satisfy the requirements and obtain a refactored
version of the metamodel that satisfies some quality criteria. The proposed approach allows
us to track the execution traces (the intermediate steps of the refactoring process) and to
translate back the refactored metamodel to a UML class diagram.

100

Chapter 6

Conclusion and future work

In this chapter, we summarize the contributions addressed in this thesis and discuss future
research directions.

6.1. Summary
The main objective of this thesis is to assist software specialists in their tasks using AI

techniques. We adopt a systematic approach to tackle the proposed problematics.

6.1.1. Automation and improvement of the software development
pipeline: A cartography of ML-based opportunities

In our first contribution (chapter 3), we investigated the potential improvement oppor-
tunities for software-related tasks. First, we identified some of these tasks in an industrial
setting. Second, we analyzed them to locate potential issues, improvement tracks, and the
required knowledge to accomplish these tasks. Third, we recommend some AI-based solu-
tions to overcome the identified problems, infer expertise from historical data, and increase
the automation level of some tasks. Finally, we depict a graphical and abstract cartography
that incorporates some of the suggested solutions.

6.1.2. Quality-driven multi-objective optimization approach for
metamodel refactoring

In this contribution (chapter 4), we are interested in the metamodelling task. We propose
an AI-based approach to refactor metamodels. This process is driven by the optimization of
the quality attributes and the number of removed smells. We proposed a tool that implements
our approach.

We defined a quality model that incorporates a set of quality attributes. We created
a module that allows us to automatically evaluate a defined quality metamodel. Also, we

implemented a library for metamodel smells detection. Then, we employed all these compo-
nents for our search-based approach to refactor metamodels. We used NSGA-II to improve
quality attributes and maximize the number of smells to be removed.

Our framework recommends a set of non-dominated refactoring solutions. Then, it is
on the modeler to select the most suitable solution based on his preferences. We validated
our approach on a set of metamodels. Our framework was able to recommend relevant
refactoring solutions that improve quality attributes.

6.1.3. Metamodel refactoring using constraint solving

In chapter 5, we propose a framework based on an AI-technique, constraint solving, to
refactor metamodels while satisfying quality criteria.

For an input metamodel represented as a class diagram, we translate it to an Alloy
specification. Then, we encoded the non-existence of smells as logical constraints. We used
Alloy analyzer to check the constraints on the encoded specification.

If some metamodel smells are detected, a second phase is triggered to start the refac-
toring process. We encoded some quality criteria in Alloy. Furthermore, we formulated the
refactoring approach as an ordered finite state machine where the initial state represents
the input metamodel, the medium states represent the intermediate steps in the refactoring
process allowing to keep track of the refactoring traces, and a final state that contains the
refactored metamodel satisfying the specified constraints. A transition between two states
represents a refactoring operation applied on the input state to refactor an existing bad
smell and outputs a state containing the refactored metamodel. We used Alloy to satisfy the
encoded constraints on the input specification.

We consolidated our framework with a visualization theme to keep track of all details of
the refactoring process. Besides, we propose a reverse transformation Alloy2CD to translate
back the refactored metamodel to the UML class diagram domain.

6.2. Future work
In this section, we discuss some future research directions.
First, we plan to enrich the cartography presented in chapter 3. We aim to investigate

more the tasks related to software development as well as to extend the list of suggestions
to improve these tasks.

Furthermore, we aim to tackle more software problematics from our proposed cartog-
raphy. This would help to improve and automate software-related activities, enhance the
quality of deliverables, and alleviate the burden on software specialists by assisting them in
their tasks.

102

In addition, we plan to extend our search-based approach for metamodel refactoring. It
might be challenging to select the most relevant solution among a large list of recommen-
dations. Having a large design would make the task more complex. We intend to refine
our approach by clustering the output solutions. This would assist modelers to choose the
most suitable cluster that fits his refactoring preferences. A further improvement might be
running a second optimization round to investigate more solutions in that cluster. Therefore,
this allows us to recommend more specific solutions, and that fit the modeler’s preferences.

We plan to compare the approaches presented in Chapters 4 and 5. We aim to conduct
an empirical study to evaluate and compare the performance of the two approaches on the
same use cases.

Besides, we aim to propose a tool that implements the Alloy2CD transformation.
Finally, we will address the problematics, tackled in this thesis, using different AI tech-

niques, and conduct experimental comparisons of performance.

103

Bibliography

[1] Google cloud platform | documentation: https://cloud.google.com/docs.
[2] Google cloud platform | products and services: https://cloud.google.com/products.
[3] Sonarqube documentation: https://docs.sonarqube.org/.
[4] Diego Albuquerque, Bruno Cafeo, Alessandro Garcia, Simone Barbosa, Silvia Abrahão et

António Ribeiro : Quantifying usability of domain-specific languages: An empirical study on software
maintenance. Journal of Systems and Software, 101:245–259, 2015.

[5] Vahid Alizadeh, Marouane Kessentini, Wiem Mkaouer, Mel Ocinneide, Ali Ouni et Yuanfang
Cai : An interactive and dynamic search-based approach to software refactoring recommendations.
IEEE Transactions on Software Engineering, 2018.

[6] Douglas G Altman et J Martin Bland : Statistics notes: quartiles, quintiles, centiles, and other
quantiles. Bmj, 309(6960):996–996, 1994.

[7] Saleema Amershi, Andrew Begel, Christian Bird, Robert DeLine, Harald Gall, Ece Kamar,
Nachiappan Nagappan, Besmira Nushi et Thomas Zimmermann : Software engineering for machine
learning: A case study. In 2019 IEEE/ACM 41st International Conference on Software Engineering:
Software Engineering in Practice (ICSE-SEIP), pages 291–300. IEEE, 2019.

[8] Saswat Anand, Edmund K Burke, Tsong Yueh Chen, John Clark, Myra B Cohen, Wolfgang
Grieskamp, Mark Harman, Mary Jean Harrold, Phil Mcminn, Antonia Bertolino et al. : An
orchestrated survey of methodologies for automated software test case generation. Journal of Systems
and Software, 86(8):1978–2001, 2013.

[9] Bill Andreopoulos : Satisficing the conflicting software qualities of maintainability and performance
at the source code level. In WER, pages 176–188. Citeseer, 2004.

[10] Thorsten Arendt et Gabriele Taentzer : Integration of smells and refactorings within the eclipse
modeling framework. In Proceedings of the Fifth Workshop on Refactoring Tools, pages 8–15. ACM,
2012.

[11] Thorsten Arendt et Gabriele Taentzer : A tool environment for quality assurance based on the
eclipse modeling framework. Automated Software Engineering, 20(2):141–184, 2013.

[12] Anish Athalye, Nicholas Carlini et David Wagner : Obfuscated gradients give a false sense of
security: Circumventing defenses to adversarial examples. arXiv preprint arXiv:1802.00420, 2018.

[13] Arash Bahrammirzaee : A comparative survey of artificial intelligence applications in finance: artifi-
cial neural networks, expert system and hybrid intelligent systems. Neural Computing and Applications,
19(8):1165–1195, 2010.

[14] Ankica Barišic : Usability evaluation of domain-specific languages. 2017.
[15] Earl T Barr, Mark Harman, Phil McMinn, Muzammil Shahbaz et Shin Yoo : The oracle problem

in software testing: A survey. IEEE transactions on software engineering, 41(5):507–525, 2014.

[16] Francesco Basciani, Juri Di Rocco, Davide Di Ruscio, Ludovico Iovino et Alfonso Pierantonio
: A customizable approach for the automated quality assessment of modelling artifacts. In 2016 10th
International Conference on the Quality of Information and Communications Technology (QUATIC),
pages 88–93. IEEE, 2016.

[17] Yoshua Bengio, Aaron Courville et Pascal Vincent : Representation learning: A review and new
perspectives. IEEE transactions on pattern analysis and machine intelligence, 35(8):1798–1828, 2013.

[18] Chris Benner : Work in the new economy: Flexible labor markets in Silicon Valley, volume 9. John
Wiley & Sons, 2008.

[19] Michael R Berthold, Nicolas Cebron, Fabian Dill, Thomas R Gabriel, Tobias Kötter, Thorsten
Meinl, Peter Ohl, Kilian Thiel et Bernd Wiswedel : Knime-the konstanz information miner:
version 2.0 and beyond. AcM SIGKDD explorations Newsletter, 11(1):26–31, 2009.

[20] Lorenzo Bettini, Davide Di Ruscio, Ludovico Iovino et Alfonso Pierantonio : Edelta: An ap-
proach for defining and applying reusable metamodel refactorings. In MODELS (Satellite Events),
pages 71–80, 2017.

[21] Lorenzo Bettini, Davide Di Ruscio, Ludovico Iovino et Alfonso Pierantonio : Quality-driven
detection and resolution of metamodel smells. IEEE Access, 7:16364–16376, 2019.

[22] Jean Bézivin : On the unification power of models. Software & Systems Modeling, 4(2):171–188, 2005.
[23] Alexei Botchkarev : Performance metrics (error measures) in machine learning regression, forecast-

ing and prognostics: Properties and typology. arXiv preprint arXiv:1809.03006, 2018.
[24] Marco Brambilla, Jordi Cabot et Manuel Wimmer : Model-driven software engineering in practice.

Synthesis lectures on software engineering, 3(1):1–207, 2017.
[25] Eric Breck, Shanqing Cai, Eric Nielsen, Michael Salib et D Sculley : The ml test score: A rubric

for ml production readiness and technical debt reduction. In 2017 IEEE International Conference on
Big Data (Big Data), pages 1123–1132. IEEE, 2017.

[26] Michael Brooks : Artificial ignorance. New Scientist, 236(3146):28–33, 2017.
[27] Jason Brownlee : Clever algorithms: nature-inspired programming recipes. Jason Brownlee, 2011.
[28] Massimo Buscema : Back propagation neural networks. Substance use & misuse, 33(2):233–270, 1998.
[29] G Campbell et Patroklos P Papapetrou : SonarQube in action. Manning Publications Co., 2013.
[30] Richard Chang, Sriram Sankaranarayanan, Guofei Jiang et Franjo Ivancic : Software testing

using machine learning, décembre 30 2014. US Patent 8,924,938.
[31] Kasper Christensen, Sladjana Nørskov, Lars Frederiksen et Joachim Scholderer : In search

of new product ideas: Identifying ideas in online communities by machine learning and text mining.
Creativity and Innovation Management, 26(1):17–30, 2017.

[32] Skin Imaging Collaboration et al. : Machine learning and health care disparities in dermatology.
2018.

[33] Steve Cook, Gareth Jones, Stuart Kent et Alan Cameron Wills : Domain-specific development
with visual studio dsl tools. Pearson Education, 2007.

[34] Hoa Khanh Dam : Artificial intelligence for software engineering. XRDS: Crossroads, The ACM Mag-
azine for Students, 25(3):34–37, 2019.

[35] David L Davies et Donald W Bouldin : A cluster separation measure. IEEE transactions on pattern
analysis and machine intelligence, (2):224–227, 1979.

[36] Kalyanmoy Deb, Amrit Pratap, Sameer Agarwal et TAMT Meyarivan : A fast and elitist mul-
tiobjective genetic algorithm: Nsga-ii. IEEE transactions on evolutionary computation, 6(2):182–197,
2002.

106

[37] Saumya K Debray, William Evans, Robert Muth et Bjorn De Sutter : Compiler techniques for
code compaction. ACM Transactions on Programming languages and Systems (TOPLAS), 22(2):378–
415, 2000.

[38] Janez Demšar et Blaž Zupan : Orange: Data mining fruitful and fun-a historical perspective. Infor-
matica, 37(1), 2013.

[39] Arie Van Deursen et Paul Klint : Little languages: little maintenance? Journal of Software Main-
tenance: Research and Practice, 10(2):75–92, 1998.

[40] Marco Dorigo et Christian Blum : Ant colony optimization theory: A survey. Theoretical computer
science, 344(2-3):243–278, 2005.

[41] Vinicius HS Durelli, Rafael S Durelli, Simone S Borges, Andre T Endo, Marcelo M Eler,
Diego RC Dias et Marcelo P Guimaraes : Machine learning applied to software testing: A systematic
mapping study. IEEE Transactions on Reliability, 68(3):1189–1212, 2019.

[42] Elfriede Dustin, Jeff Rashka et John Paul : Automated Software Testing: Introduction, Manage-
ment, and Performance: Introduction, Management, and Performance. Addison-Wesley Professional,
1999.

[43] Agoston E Eiben et Marc Schoenauer : Evolutionary computing. Information Processing Letters,
82(1):1–6, 2002.

[44] Agoston E Eiben et James E Smith : Introduction to evolutionary computing. Springer, 2015.
[45] Marco Farina, Kalyanmoy Deb et Paolo Amato : Dynamic multiobjective optimization problems:

test cases, approximations, and applications. IEEE Transactions on evolutionary computation, 8(5):
425–442, 2004.

[46] Eduardo Fernandes, Johnatan Oliveira, Gustavo Vale, Thanis Paiva et Eduardo Figueiredo : A
review-based comparative study of bad smell detection tools. In Proceedings of the 20th International
Conference on Evaluation and Assessment in Software Engineering, page 18. ACM, 2016.

[47] M Folwer : Refactoring: Improving the design of existing progrmas, 1999.
[48] Robert France, S Chosh, Eunjee Song et Dae-Kyoo Kim : A metamodeling approach to pattern-

based model refactoring. IEEE software, 20(5):52–58, 2003.
[49] Dov M Gabbay, Christopher John Hogger, CJ Hogger, JA Robinson et John Alan Robinson :

Handbook of Logic in Artificial Intelligence and Logic Programming: Volume 2: Deduction Methodolo-
gies, volume 2. Oxford University Press, 1993.

[50] John S Gero : Artificial Intelligence in design’92. Springer Science & Business Media, 2012.
[51] Rohit Gheyi, Tiago Massoni et Paulo Borba : A rigorous approach for proving model refactorings.

In Proceedings of the 20th IEEE/ACM international Conference on Automated software engineering,
pages 372–375, 2005.

[52] Jeremy Goecks, Anton Nekrutenko, James Taylor, Galaxy Team et al. : Galaxy: a comprehen-
sive approach for supporting accessible, reproducible, and transparent computational research in the
life sciences. Genome biology, 11(8):R86, 2010.

[53] Ian Goodfellow, Yoshua Bengio et Aaron Courville : Deep learning http://www. deeplearning-
book. org. MIT Press, Cambridge, MA, 2016.

[54] Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil
Ozair, Aaron Courville et Yoshua Bengio : Generative adversarial nets. In Advances in neural
information processing systems, pages 2672–2680, 2014.

[55] Ian J Goodfellow, Jonathon Shlens et Christian Szegedy : Explaining and harnessing adversarial
examples. arXiv preprint arXiv:1412.6572, 2014.

107

[56] Katja Grace, John Salvatier, Allan Dafoe, Baobao Zhang et Owain Evans : When will ai exceed
human performance? evidence from ai experts. Journal of Artificial Intelligence Research, 62:729–754,
2018.

[57] Aakriti Gupta et Shreta Sharma : Software maintenance: Challenges and issues. Issues, 1(1):23–25,
2015.

[58] Tracy Hall, Min Zhang, David Bowes et Yi Sun : Some code smells have a significant but small
effect on faults. ACM Transactions on Software Engineering and Methodology (TOSEM), 23(4):33,
2014.

[59] Neil B Harrison et Paris Avgeriou : Leveraging architecture patterns to satisfy quality attributes.
In European conference on software architecture, pages 263–270. Springer, 2007.

[60] Regina Hebig, Djamel Eddine Khelladi et Reda Bendraou : Approaches to co-evolution of meta-
models and models: A survey. IEEE Transactions on Software Engineering, 43(5):396–414, 2016.

[61] Adrián Hernández-López, Ricardo Colomo-Palacios et Ángel García-Crespo : Productivity
in software engineering: A study of its meanings for practitioners: Understanding the concept under
their standpoint. In 7th Iberian Conference on Information Systems and Technologies (CISTI 2012),
pages 1–6. IEEE, 2012.

[62] Adrián Hernández-López, Ricardo Colomo-Palacios, Ángel García-Crespo et Fernando
Cabezas-Isla : Software engineering productivity: Concepts, issues and challenges. International
Journal of Information Technology Project Management (IJITPM), 2(1):37–47, 2011.

[63] Markus Herrmannsdoerfer : Cope–a workbench for the coupled evolution of metamodels and
models. In International Conference on Software Language Engineering, pages 286–295. Springer, 2010.

[64] Bhadeshia HKDH : Neural networks in materials science. ISIJ international, 39(10):966–979, 1999.
[65] Markus Hofmann et Ralf Klinkenberg : RapidMiner: Data mining use cases and business analytics

applications. CRC Press, 2016.
[66] Geoffrey Holmes, Andrew Donkin et Ian H Witten : Weka: A machine learning workbench. In

Proceedings of ANZIIS’94-Australian New Zealnd Intelligent Information Systems Conference, pages
357–361. IEEE, 1994.

[67] Mohammad Hossin et MN Sulaiman : A review on evaluation metrics for data classification evalua-
tions. International Journal of Data Mining & Knowledge Management Process, 5(2):1, 2015.

[68] Duncan Hull, Katy Wolstencroft, Robert Stevens, Carole Goble, Mathew R Pocock, Peter Li
et Tom Oinn : Taverna: a tool for building and running workflows of services. Nucleic acids research,
34(suppl_2):W729–W732, 2006.

[69] C-L Hwang et Abu Syed Md Masud : Multiple objective decision making—methods and applications:
a state-of-the-art survey, volume 164. Springer Science & Business Media, 2012.

[70] Sergey Ioffe et Christian Szegedy : Batch normalization: Accelerating deep network training by
reducing internal covariate shift. arXiv preprint arXiv:1502.03167, 2015.

[71] Daniel Jackson : Alloy: a lightweight object modelling notation. ACM Transactions on Software
Engineering and Methodology (TOSEM), 11(2):256–290, 2002.

[72] Bernd Jagla, Bernd Wiswedel et Jean-Yves Coppée : Extending knime for next-generation se-
quencing data analysis. Bioinformatics, 27(20):2907–2909, 2011.

[73] Leslie Pack Kaelbling, Michael L Littman et Andrew W Moore : Reinforcement learning: A
survey. Journal of artificial intelligence research, 4:237–285, 1996.

[74] Harini Kannan, Alexey Kurakin et Ian Goodfellow : Adversarial logit pairing. arXiv preprint
arXiv:1803.06373, 2018.

108

[75] Steven Kelly et Juha-Pekka Tolvanen : Domain-specific modeling: enabling full code generation.
John Wiley & Sons, 2008.

[76] WaelKessentini, Houari Sahraoui et ManuelWimmer : Automated metamodel/model co-evolution
using a multi-objective optimization approach. In European Conference on Modelling Foundations and
Applications, pages 138–155. Springer, 2016.

[77] Ruth C King, Weidong Xia, James Campbell Quick et Vikram Sethi : Socialization and organiza-
tional outcomes of information technology professionals. Career Development International, 2005.

[78] Barbara Kitchenham et Emilia Mendes : Software productivity measurement using multiple size
measures. IEEE Transactions on Software Engineering, 30(12):1023–1035, 2004.

[79] PaulKlint, Tijs Van Der Storm et Jurgen Vinju : On the impact of dsl tools on the maintainability
of language implementations. In Proceedings of the Tenth Workshop on Language Descriptions, Tools
and Applications, pages 1–9, 2010.

[80] J Zico Kolter et Eric Wong : Provable defenses against adversarial examples via the convex outer
adversarial polytope. arXiv preprint arXiv:1711.00851, 1(2):3, 2017.

[81] Abdullah Konak, David W Coit et Alice E Smith : Multi-objective optimization using genetic
algorithms: A tutorial. Reliability Engineering & System Safety, 91(9):992–1007, 2006.

[82] TomažKosar, Pablo EMartı, Pablo A Barrientos, MarjanMernik et al. : A preliminary study on
various implementation approaches of domain-specific language. Information and software technology,
50(5):390–405, 2008.

[83] Konstantina Kourou, Themis P Exarchos, Konstantinos P Exarchos, Michalis V Karamouzis
et Dimitrios I Fotiadis : Machine learning applications in cancer prognosis and prediction. Compu-
tational and structural biotechnology journal, 13:8–17, 2015.

[84] Mark A Kramer : Nonlinear principal component analysis using autoassociative neural networks.
AIChE journal, 37(2):233–243, 1991.

[85] Anders Krogh : What are artificial neural networks? Nature biotechnology, 26(2):195–197, 2008.
[86] Hanjun Lee, Keunho Choi, Donghee Yoo, Yongmoo Suh, Soowon Lee et Guijia He : Recommending

valuable ideas in an open innovation community. Industrial Management & Data Systems, 2018.
[87] Levi Lúcio, MoussaAmrani, JürgenDingel, Leen Lambers, Rick Salay, Gehan MK Selim, Eugene

Syriani et Manuel Wimmer : Model transformation intents and their properties. Software & systems
modeling, 15(3):647–684, 2016.

[88] Bertram Ludäscher, Ilkay Altintas, Chad Berkley, Dan Higgins, Efrat Jaeger, Matthew
Jones, Edward A Lee, Jing Tao et Yang Zhao : Scientific workflow management and the kepler
system. Concurrency and computation: Practice and experience, 18(10):1039–1065, 2006.

[89] Zhiyi Ma, Xiao He et Chao Liu : Assessing the quality of metamodels. Frontiers of Computer Science,
7(4):558–570, 2013.

[90] Alan MacCormack, Chris F Kemerer, Michael Cusumano et Bill Crandall : Trade-offs between
productivity and quality in selecting software development practices. Ieee Software, 20(5):78–85, 2003.

[91] Mohammad SaeidMahdavinejad, Mohammadreza Rezvan, Mohammadamin Barekatain, Peyman
Adibi, Payam Barnaghi et Amit P Sheth : Machine learning for internet of things data analysis: A
survey. Digital Communications and Networks, 4(3):161–175, 2018.

[92] Shahar Maoz, Jan Oliver Ringert et Bernhard Rumpe : Cd2alloy: Class diagrams analysis using
alloy revisited. In International Conference on Model Driven Engineering Languages and Systems,
pages 592–607. Springer, 2011.

109

[93] R Timothy Marler et Jasbir S Arora : Survey of multi-objective optimization methods for engi-
neering. Structural and multidisciplinary optimization, 26(6):369–395, 2004.

[94] Frank J Massey Jr : The kolmogorov-smirnov test for goodness of fit. Journal of the American
statistical Association, 46(253):68–78, 1951.

[95] Hervé Ménager, Vivek Gopalan, Bertrand Néron, Sandrine Larroudé, Julien Maupetit, Adrien
Saladin, Pierre Tufféry, Yentram Huyen et Bernard Caudron : Bioinformatics applications dis-
covery and composition with the mobyle suite and mobylenet. In International Workshop on Resource
Discovery, pages 11–22. Springer, 2010.

[96] Tim Menzies : Practical machine learning for software engineering and knowledge engineering. In
Handbook of Software Engineering and Knowledge Engineering: Volume I: Fundamentals, pages 837–
862. World Scientific, 2001.

[97] Bart Meyers et Hans Vangheluwe : A framework for evolution of modelling languages. Science of
Computer Programming, 76(12):1223–1246, 2011.

[98] Bart Meyers, Manuel Wimmer, Antonio Cicchetti et Jonathan Sprinkle : A generic in-place
transformation-based approach to structured model co-evolution. Electronic Communications of the
EASST, 42, 2012.

[99] Tom M Mitchell et al. : Machine learning. 1997. Burr Ridge, IL: McGraw Hill, 45(37):870–877,
1997.

[100] Parastoo Mohagheghi, Vegard Dehlen et Tor Neple : Definitions and approaches to model qual-
ity in model-based software development–a review of literature. Information and software technology,
51(12):1646–1669, 2009.

[101] Emerson Murphy-Hill et Andrew P Black : Refactoring tools: Fitness for purpose. IEEE software,
25(5):38–44, 2008.

[102] Gunter Mussbacher, Daniel Amyot, Ruth Breu, Jean-Michel Bruel, Betty HC Cheng, Philippe
Collet, Benoit Combemale, Robert B France, Rogardt Heldal, James Hill et al. : The relevance
of model-driven engineering thirty years from now. In International Conference on Model Driven
Engineering Languages and Systems, pages 183–200. Springer, 2014.

[103] Stas Negara, Nicholas Chen, Mohsen Vakilian, Ralph E Johnson et Danny Dig : A comparative
study of manual and automated refactorings. In European Conference on Object-Oriented Program-
ming, pages 552–576. Springer, 2013.

[104] Bao N Nguyen, Bryan Robbins, Ishan Banerjee et Atif Memon : Guitar: an innovative tool for
automated testing of gui-driven software. Automated software engineering, 21(1):65–105, 2014.

[105] Vilém Novák, Irina Perfilieva et Jiri Mockor : Mathematical principles of fuzzy logic, volume 517.
Springer Science & Business Media, 2012.

[106] William F Opdyke : Refactoring: An aid in designing application frameworks and evolving object-
oriented systems. In Proc. SOOPPA’90: Symposium on Object-Oriented Programming Emphasizing
Practical Applications, 1990.

[107] Nicolas Papernot, Patrick McDaniel, Ian Goodfellow, Somesh Jha, Z Berkay Celik et Anan-
thram Swami : Practical black-box attacks against machine learning. In Proceedings of the 2017 ACM
on Asia conference on computer and communications security, pages 506–519, 2017.

[108] Nicolas Papernot, Patrick McDaniel, Xi Wu, Somesh Jha et Ananthram Swami : Distillation as
a defense to adversarial perturbations against deep neural networks. In 2016 IEEE Symposium on
Security and Privacy (SP), pages 582–597. IEEE, 2016.

110

[109] Dudekula Mohammad Rafi, Katam Reddy Kiran Moses, Kai Petersen et Mika V Mäntylä :
Benefits and limitations of automated software testing: Systematic literature review and practitioner
survey. In 2012 7th International Workshop on Automation of Software Test (AST), pages 36–42.
IEEE, 2012.

[110] Aditi Raghunathan, Jacob Steinhardt et Percy Liang : Certified defenses against adversarial
examples. arXiv preprint arXiv:1801.09344, 2018.

[111] Soumaya Rebai, Marouane Kessentini, Vahid Alizadeh, Oussama Ben Sghaier et Rick Kazman :
Recommending refactorings via commit message analysis. Information and Software Technology, page
106332, 2020.

[112] SoumayaRebai, Oussama Ben Sghaier, VahidAlizadeh, MarouaneKessentini et MeriemChater
: Interactive refactoring documentation bot. In 2019 19th International Working Conference on Source
Code Analysis and Manipulation (SCAM), pages 152–162. IEEE, 2019.

[113] Ganesh B Regulwar et RM Tugnayat : Detection of bad smell code for software refactoring. In
Innovations in Computer Science and Engineering, pages 143–152. Springer, 2019.

[114] Jan Reimann, Mirko Seifert et Uwe Aßmann : Role-based generic model refactoring. In Inter-
national Conference on Model Driven Engineering Languages and Systems, pages 78–92. Springer,
2010.

[115] Peter J Rousseeuw : Silhouettes: a graphical aid to the interpretation and validation of cluster
analysis. Journal of computational and applied mathematics, 20:53–65, 1987.

[116] Jeffrey R Sampson : Adaptation in natural and artificial systems (john h. holland), 1976.
[117] Jürgen Schmidhuber : Deep learning in neural networks: An overview. Neural networks, 61:85–117,

2015.
[118] Ken Schwaber et Mike Beedle : Agile software development with Scrum, volume 1. Prentice Hall

Upper Saddle River, 2002.
[119] Shane Sendall et Wojtek Kozaczynski : Model transformation: The heart and soul of model-driven

software development. IEEE software, 20(5):42–45, 2003.
[120] Jahanzaib Shabbir et TariqueAnwer : Artificial intelligence and its role in near future. arXiv preprint

arXiv:1804.01396, 2018.
[121] Mojtaba Shahin, Muhammad Ali Babar et Liming Zhu : Continuous integration, delivery and

deployment: a systematic review on approaches, tools, challenges and practices. IEEE Access, 5:3909–
3943, 2017.

[122] Jeffrey P Solloway, Jay W Yang et Ying He : Extensible automated testing software, mars 16 2004.
US Patent 6,708,324.

[123] Friedrich Steimann : Constraint-based model refactoring. In International Conference on Model
Driven Engineering Languages and Systems, pages 440–454. Springer, 2011.

[124] Misha Strittmatter, Georg Hinkel, Michael Langhammer, Reiner Jung et Robert Heinrich :
Challenges in the evolution of metamodels: Smells and anti-patterns of a historically-grown metamodel.
2016.

[125] Eugene Syriani, Jeff Gray et Hans Vangheluwe : Modeling a model transformation language. In
Domain Engineering, pages 211–237. Springer, 2013.

[126] Bruce Thompson : Canonical correlation analysis. Encyclopedia of statistics in behavioral science,
2005.

[127] Hans Vangheluwe et Juan De Lara : Meta-models are models too. In Proceedings of the Winter
Simulation Conference, volume 1, pages 597–605. IEEE, 2002.

111

[128] Ulrich HH Wild et Mohamed Iyad Jabri : System and method for automated testing and monitoring
of software applications, septembre 23 1997. US Patent 5,671,351.

[129] James R Williams : A novel representation for search-based model-driven engineering. Thèse de
doctorat, University of York, 2013.

[130] James RWilliams, Richard F Paige et Fiona AC Polack : Searching for model migration strategies.
In Proceedings of the 6th International Workshop on Models and Evolution, pages 39–44. ACM, 2012.

[131] M-S Yang : A survey of fuzzy clustering. Mathematical and Computer modelling, 18(11):1–16, 1993.
[132] Ehsan Zabardast, Javier Gonzalez-Huerta et Darja Šmite : Refactoring, bug fixing, and new

development effect on technical debt: An industrial case study. In 2020 46th Euromicro Conference
on Software Engineering and Advanced Applications (SEAA), pages 376–384. IEEE, 2020.

[133] Du Zhang : Advances in machine learning applications in software engineering. Igi Global, 2006.
[134] Martin Zinkevich : Rules of machine learning: Best practices for ml engineering. URL:

https://developers. google. com/machine-learning/guides/rules-of-ml, 2017.

112

Appendix A

Cartography of AI-based improvement
opportunities for software-related tasks

A.1. Graphical cartography: Overview
Here, we depict the ideas, presented in chapter 3 section 3.5, in a graphical format that

is more usable and readable.
Figure A.1 illustrates a graphical cartography that depicts the general pipelines of ma-

chine learning. The cartography projects the proposed ML-based improvement ideas to that
pipeline. It describes each step of the pipeline, highlights the problems and required expertise
to accomplish each step and also suggests improvement ideas to overcome those problems,
automate these tasks and infer the required expertise from historical experience to assist
software specialists in the accomplishment of their tasks.

A.2. Projection over the cartography sub-parts
In this section, we detail the different sub-parts of the cartography (figure A.1).

C
ar

to
gr

ap
h

y
of

 A
I-

b
as

ed

im
p

ro
ve

m
en

t
op

po
rt

u
ni

ti
es

Tr
ai

ni
ng

Industrialization

CI
/C

D

In
fr

as
tr

uc
tu

re

Re
so

ur
ce

s M
on

ito
rin

g

Pr
ed

ic
tio

n
&

M

on
ito

rin
g

Ta
sk

 D
es

cr
ip

tio
n

Pr
ob

le
m

s
&

 R
eq

ui
re

d
Ex

pe
rt

is
e

As
si

st
an

ce
 a

nd
 A

ut
om

at
io

n
Id

ea
s

M
on

ito
r

m
od

el
 p

er
fo

rm
an

ce
 (

us
in

g
th

re
sh

ol
ds

 a
nd

 a
le

rt
s)

M
on

ito
r

da
ta

 h
ea

lth

B
e

ab
le

 t
o

de
te

ct
 m

od
el

 p
er

fo
rm

an
ce

 d
eg

ra
da

tio
n

T
hr

es
ho

ld
s

ar
e

a
st

at
ic

 w
ay

 a
nd

 c
la

ss
ic

 w
ay

 to
 d

et
ec

t
m

od
el

pe

rf
or

m
an

ce
 d

eg
ra

da
tio

n
A

bi
lit

y
to

 d
et

ec
t

da
ta

 d
rif

t
an

d
an

om
al

ie
s

A
bi

lit
y

to
 d

et
ec

t
ou

tli
er

s
fr

om
 th

e
m

on
ito

ri
ng

 d
as

hb
oa

rd
 (g

ra
ph

s,

di
st

rib
ut

io
ns

,
ta

bl
es

, m
et

ri
cs

 e
tc

.)

T
he

 d
et

ec
tio

n
of

 m
od

el
 p

er
fo

rm
an

ce
 d

eg
ra

da
tio

n
co

ul
d

be
 a

nt
ic

ip
at

ed
P

re
di

ct
 m

od
el

 p
er

fo
rm

an
ce

 d
et

er
io

ra
tio

n
ea

rl
ie

r
(b

as
ed

 o
n

th
e

ev
ol

ut
io

n
of

 th
e

pe
rf

or
m

an
ce

 m
et

ri
cs

)
A

ut
om

at
ic

 d
et

ec
t o

f o
ut

lie
rs

 (
i.e

.
R

C
F,

 I
so

la
tio

n
tr

ee
s,

 O
ne

-c
la

ss

S
V

M
, L

R
, A

E
 e

tc
.)

A
ut

om
at

ic
 d

et
ec

tio
n

of
 d

at
a

dr
if

t
(i

.e
. a

ut
om

at
ic

 c
om

pa
ri

so
n

of

di
st

rib
ut

io
ns

,
A

ut
o-

E
nc

od
er

s
et

c.
)

fi
ne

-t
un

e
an

d
au

to
-a

da
pt

 to
 n

ew
 d

at
a

co
nt

in
uo

us
ly

 (r
ea

l-t
im

e
or

 b
at

ch
)

D
ev

el
op

m
en

t
Ta

sk
 D

es
cr

ip
tio

n

Pr
ob

le
m

s
&

 R
eq

ui
re

d
Ex

pe
rt

is
e

As
si

st
an

ce
 a

nd
 A

ut
om

at
io

n
Id

ea
s

D
es

ig
n

a
m

ac
hi

ne
 le

ar
ni

ng
 m

od
el

Im
pl

em
en

t
th

e
m

od
el

C
ho

ic
e

of
 th

e
rig

ht
 m

od
el

 t
o

us
e

ba
se

d
on

 th
e

ex
pe

rt
is

e
L

an
gu

ag
e

ex
pe

rt
is

e:
 p

yt
ho

n,
 ja

va
 e

tc
.

L
ib

ra
ry

 e
xp

er
tis

e:
 T

en
so

rF
lo

w
,

Py
To

rc
h

et
c.

B
e

ab
le

 t
o

re
-u

se
 a

nd
 a

da
pt

 o
ld

 im
pl

em
en

ta
tio

ns

tim
e

an
d

en
su

re
 h

ig
h

so
ur

ce
 c

od
e

qu
al

ity
T

he
 c

ho
ic

e
of

 th
e

ap
pr

op
ri

at
e

m
od

el
 t

o
us

e
de

pe
nd

s
on

 m
ul

tip
le

cr

ite
ria

:
pr

ob
le

m
, s

iz
e

of
 d

at
a,

 ty
pe

 o
f

da
ta

, o
ut

pu
t e

tc
.

B
ui

ld
 a

 D
om

ai
n

S
pe

ci
fic

 L
an

gu
ag

e
(D

SL
)

th
at

 r
ec

om
m

en
ds

 th
e

m
os

t a
pp

ro
pr

ia
te

 m
od

el
 to

 u
se

 b
as

ed
 o

n
an

 in
pu

t
sp

ec
ifi

ca
tio

n

O
th

er
s

Ta
sk

 D
es

cr
ip

tio
n

Pr
ob

le
m

s
&

 R
eq

ui
re

d
Ex

pe
rt

is
e

As
si

st
an

ce
 a

nd
 A

ut
om

at
io

n
Id

ea
s

T
he

 m
ac

hi
ne

 l
ea

rn
in

g
pi

pe
lin

e
is

 c
om

po
se

d
of

 th
e

fo
llo

w
in

g
st

ep
s:

D
at

a
pr

e-
E

va
lu

at
io

n

T
he

se
 s

te
ps

 a
re

 r
ec

ur
re

nt
S

ci
en

tis
ts

 u
su

al
ly

 u
se

 s
am

e
al

go
ri

th
m

s
fo

r e
ac

h
ty

pe
 o

f p
ro

bl
em

(c

la
ss

if
ic

at
io

n:
 L

og
is

tic
 r

eg
re

ss
io

n,
 S

V
M

, D
ec

is
io

n
T

re
e,

 R
an

do
m

 fo
re

st

et
c.

)
T

he
n,

 t
he

 m
os

t p
er

fo
rm

an
t

m
od

el
 is

 s
el

ec
te

d
(in

 t
he

 v
al

id
at

io
n

st
ep

) a
nd

 e
va

lu
at

ed
.

26
%

of

 t
he

 t
im

e
of

 a
 t

yp
ic

al
 d

at
a

sc
ie

n
ce

 p
ro

je
ct

,
ti

m
e

is
 d

ev
ot

ed
 t

o
m

od
el

A
ut

om
at

ed
-M

ac
hi

ne
 L

ea
rn

in
g

(A
ut

oM
L

):
 A

n
ap

pr
oa

ch
 th

at
 c

on
si

st
s

of
 a

ut
om

at
in

g
th

e
w

ho
le

 m
ac

hi
ne

 le
ar

ni
ng

 p
ip

el
in

e:

T
he

 m
ac

hi
ne

 l
ea

rn
in

g
pi

pe
lin

e
co

ul
d

be
 f

ul
ly

 o
r

pa
rt

ia
lly

 a
ut

om
at

ed

T
hi

s
al

lo
w

s
to

 s
av

e
tim

e
an

d
ef

fo
rt

,
ge

t f
as

t
re

su
lts

 (
of

te
n

us
ed

 to

ge
ne

ra
te

 f
as

t p
ro

to
ty

pe
s

an
d

th
en

 im
pr

ov
e

th
em

)
S

ci
en

tis
ts

 c
ou

ld
 w

or
k

on
 m

or
e

va
lu

ab
le

/im
po

rt
an

t
ta

sk
s

M
ac

hi
ne

 L
ea

rn
in

g
pi

pe
lin

e

Ag
ile

Ta
sk

 D
es

cr
ip

tio
n

(S
cr

um
: S

pr
in

t p
la

nn
in

g
&

 E
ffo

rt
 e

st
im

at
io

n)

S
pr

in
t

pl
an

ni
ng

:
se

le
ct

 a
 s

ub
-s

et
 o

f s
to

ri
es

 f
ro

m
 th

e
pr

od
uc

t b
ac

kl
og

 +

as
si

gn
 s

to
rie

s/
is

su
es

 to
 te

am
 m

em
be

rs

A
 u

se
r S

to
ry

 is
 c

ha
ra

ct
er

iz
ed

 b
y:

 d
es

cr
ip

tio
n

st
or

y
po

in
ts

pr

io
ri

ty

as
si

gn
ee

Pr

ob
le

m
s

&
 R

eq
ui

re
d

Ex
pe

rt
is

e
(S

cr
um

: S
pr

in
t

pl
an

ni
ng

 &
 E

ffo
rt

 e
st

im
at

io
n)

W
e

sh
ou

ld
:

-P
rio

rit
iz

e
th

e
m

os
t i

m
po

rt
an

t u
se

r
st

or
ie

s
-T

ak
e

in
to

 a
cc

ou
nt

 t
he

 c
ap

ac
ity

 a
nd

 e
xp

er
tis

e
of

 e
ac

h
of

 th
e

te
am

m

em
be

rs
-A

ss
ig

n
ta

sk
s

ac
co

rd
in

g
to

 th
e

ab
ov

e
cr

ite
ria

As
si

st
an

ce
 a

nd
 A

ut
om

at
io

n
Id

ea
s

(S
cr

um
: S

pr
in

t
pl

an
ni

ng
 &

 E
ffo

rt
 e

st
im

at
io

n)

S
to

ry
 p

oi
nt

s
es

tim
at

io
n

A
ss

ig
n

tic
ke

ts
 t

o
te

am
 m

em
be

rs
: C

ou
ld

 b
e

fo
rm

al
iz

ed
 a

s
an

op

tim
iz

at
io

n
pr

ob
le

m
 /

 R
es

ou
rc

es
 a

llo
ca

tio
n

pr
ob

le
m

 w
he

re
:

+
 T

ic
ke

ts
:

pr
io

rit
y

co
m

pl
ex

ity

sk
ill

s
+

 T
ea

m
 m

em
be

rs
: c

ap
ac

ity

ex
pe

rt
is

e
O

bj
ec

tiv
es

:
H

ig
he

r
pr

io
ri

ty
 f

ir
st

m

ax
 s

er
ve

d
tic

ke
ts

fi

ll
ca

pa
ci

ty

m
at

ch
 s

ki
lls

-
-o

pt
im

al

co
nf

ig
ur

at
io

ns
T

hi
s

pr
oc

es
s

co
ul

d
be

 s
em

i-
au

to
m

at
ed

 a
nd

 ta
ke

 i
nt

o
ac

co
un

t
th

e
us

er

pr
ef

er
en

ce
s.

D
at

a
En

gi
ne

er
in

g
Ta

sk
: D

at
a

ge
ne

ra
tio

n

Pr
ob

le
m

s
&

 R
eq

ui
re

d
Ex

pe
rt

is
e

As
si

st
an

ce
 a

nd
 A

ut
om

at
io

n
Id

ea
s

G
en

er
at

io
n

of
 m

oc
k

da
ta

 t
o

be
 u

se
d

by
 th

e
di

ff
er

en
t

te
am

m

em
be

rs
 in

st
ea

d
of

 r
ea

l
da

ta

D
at

a
co

nf
id

en
tia

lit
y

C
au

tio
n

be
fo

re
 g

iv
in

g
ac

ce
ss

 a
nd

 w
hi

le
 u

si
ng

 d
at

a
+

S
ec

ur
ity

 c
on

tr
ol

s

de
cr

ea
si

ng
 t

ea
m

 in
ef

fi
ci

en
cy

N
ai

ve
 s

ol
ut

io
n:

an

d
un

re
al

is
tic

P
eo

pl
e

of
te

n
ne

ed
 r

ea
l

da
ta

 to
 s

im
ul

at
e

re
al

-li
fe

 s
itu

at
io

ns
P

eo
pl

e
us

ua
lly

 n
ee

d
da

ta
 f

or
: t

es
tin

g,
 v

is
ua

liz
at

io
n,

 A
PI

s,
 a

lg
or

ith
m

s

G
en

er
at

e
re

al
is

tic
 d

at
a.

D
at

a
th

at
 is

 c
oh

er
en

t
an

d
th

at
 h

as
 th

e
sa

m
e

ch
ar

ac
te

ri
st

ic
s

of
 th

e
re

al

da
ta

.
U

se
 A

ut
o-

E
nc

od
er

s
or

 G
A

N
s

et
c.

 t
o

bu
ild

 u
nb

ia
se

d
m

od
el

s
to

ge

ne
ra

te
 f

ak
e

da
ta

 th
at

 is
 in

di
st

in
gu

is
ha

bl
e

fr
om

 r
ea

l
da

ta
 (s

am
e

st
at

is
tic

al
 p

ro
pe

rt
ie

s)
+

 P
ro

m
ot

e
re

al
 d

at
a

co
nf

id
en

tia
lit

y
an

d
se

cu
ri

ty
+

 L
im

ite
d

ac
ce

ss
 to

 r
ea

l
da

ta
 in

 t
he

 f
in

al
 p

ha
se

+
 U

nl
im

ite
d

ac
ce

ss
 to

 g
en

er
at

ed
 d

at
a

=
>

B
et

te
r

ef
fi

ci
en

cy

Va
lid

at
io

n
&

Ev

al
ua

tio
n

Ta
sk

 D
es

cr
ip

tio
n

Pr
ob

le
m

s
&

 R
eq

ui
re

d
Ex

pe
rt

is
e

As
si

st
an

ce
 a

nd
 A

ut
om

at
io

n
Id

ea
s

E
va

lu
at

io
n

of
 m

ac
hi

ne
 le

ar
ni

ng
 m

od
el

s
is

 d
on

e
th

ro
ug

h
m

et
ri

cs
:

P
re

ci
si

on
, r

ec
al

l,
F

1-
sc

or
e

et
c.

D
ep

en
ds

 o
n

th
e

m
od

el
 t

yp
e:

 c
la

ss
ifi

ca
ti

on
,

cl
us

te
ri

ng
,

re
gr

es
si

on

R
eq

ui
re

d
ex

pe
rt

is
e

&
 P

ro
bl

em
s

M
et

ri
cs

 is
 a

 s
ta

tic
 w

ay
 o

f e
va

lu
at

io
n

G
oo

d
un

de
rs

ta
nd

in
g

of
 th

e
ca

pa
ci

ty
 o

f
ou

r m
od

el
W

e
ne

ed
 to

 g
o

de
ep

er
 in

to
 t

he
 w

ea
kn

es
se

s
of

 th
e

m
od

el
 u

si
ng

 o
th

er

te
ch

ni
qu

es
K

no
w

 th
e

lim
ita

tio
ns

 o
f

th
e

m
od

el
U

ns
ta

bl
e

m
od

el
:

si
m

ila
r

in
pu

t =
>

 c
on

si
de

ra
bl

y
di

ff
er

en
t

ou
tp

ut
A

dv
er

sa
ri

al
 e

xa
m

pl
es

:
co

ul
d

 b
e

cr
iti

ca
l!

D
et

ec
t

in
di

vi
du

al
s

or
 v

al
ue

s
to

 w
hi

ch
 o

ur
 m

od
el

 is
 s

en
si

tiv
e

an
d

un
st

ab
le

G
en

er
at

e
an

d
de

te
ct

 a
dv

er
sa

ri
al

 e
xa

m
pl

es
M

ak
e

th
e

m
ac

hi
ne

 l
ea

rn
in

g
m

od
el

 m
or

e
ro

bu
st

 s
et

tin
g

up
 a

dv
er

sa
ria

l
de

fe
ns

es
 (i

.e
.

B
in

ar
y

cl
as

si
fie

r,
fe

at
ur

e
sq

ue
ez

in
g,

 a
dv

er
sa

ri
al

 r
e-

tr
ai

ni
ng

et

c.
)

Se
cu

rit
y

Ta
sk

 D
es

cr
ip

tio
n

E
ns

ur
e

th
e

se
cu

ri
ty

 o
f t

he
 c

lo
ud

 e
nv

ir
on

m
en

ts
C

on
tr

ol
 a

cc
es

se
s

to
 d

if
fe

re
nt

 b
an

k
re

so
ur

ce
s

A
ss

es
s t

he
 c

on
fi

de
nt

ia
lit

y
of

 th
e

da
ta

Pr
ob

le
m

s
&

 R
eq

ui
re

d
Ex

pe
rt

is
e

R
ec

ei
vi

ng
 m

an
y

se
cu

rit
y

al
er

ts
 =

>
 M

on
ito

r
-A

na
ly

ze
 -

T
ak

e
ac

tio
n

Id
en

tif
y

se
cu

ri
ty

 r
is

ks
 a

nd
 a

na
ly

ze
 m

an
y

lo
g

fi
le

s
to

 lo
ca

liz
e

th
e

is
su

e

H
ow

 to
 li

nk
 e

ve
nt

s
in

 d
if

fe
re

nt
 l

og
 f

ile
s

?

As
si

st
an

ce
 a

nd
 A

ut
om

at
io

n
Id

ea
s

L
ea

rn
 a

nd
 d

et
ec

t
an

om
al

ie
s

pa
tte

rn
s

R
an

k
se

cu
rit

y
al

er
ts

 a
cc

or
di

ng
 t

o
se

ve
rit

y
D

is
co

ve
r

co
nn

ec
tio

ns
 b

et
w

ee
n

da
ta

 in
 m

ul
tip

le
 l

og
 f

ile
s

(t
he

re
 a

re

us
ua

lly
 m

ul
tip

le
 r

ec
or

ds
 o

f a
 s

ec
ur

ity
 in

ci
de

nt
):

C
or

re
la

tio
n

an
al

ys
is

A
rt

if
ic

ia
l

ig
no

ra
nc

e
w

ill
 i

gn
or

e
ro

ut
in

e
lo

g
m

es
sa

ge
s

su
ch

 a
s

re
gu

la
r

sy
st

em
 u

pd
at

es
 b

ut
 a

llo
w

 f
or

 n
ew

 o
r

un
us

ua
l m

es
sa

ge
s

to
 b

e
de

te
ct

ed
 a

nd

fl
ag

ge
d

fo
r

in
ve

st
ig

at
io

n

Fig. A.1. Graphical cartography of AI-based improvement opportunities for software-
related tasks

114

A.2.1. Data engineering

Table A.1. Data engineering: AI-based improvement opportunities

Required Expertise Improvement opportunities

- Data confidentiality is a preoccu-
pation and needs to be constantly
improved.

- The access and usage of some con-
fidential data is limited → waste
of time and decreased team effi-
ciency.

- Setting up advanced security mea-
sures reduces the risk but doesn’t
eliminate it. There is always a risk
even with a low probability. ⇒ A
Naive solution to generate data is
Random generator → Data could
be inconsistent and unrealistic.

- Software practitioners often need
real data to simulate and test real-
life cases.

- Realistic data is useful for testing,
visualization, development, data
engineering... →Data is a require-
ment for most of the software de-
velopment tasks.

- Generate realistic data that is
indistinguishable from the real
data. This data is coherent and
has the same characteristics as
the real data.

- Use Machine Learning (Auto-
Encoders, GANs, etc.) to build
unbiased models to generate fake
data that is indistinguishable
from real data (same statistical
properties).

- This allows to:
• Promote the confidentiality
and security of the real data.
• Limit the access to real data
to the final phase (all the tasks
can be done using fake data.
The access to the real data is
required just in the final phase
to train the final model).
• Unlimited access to generated
data → Better efficiency and
productivity inside the team.

115

A.2.2. Development of ML models

Table A.2. Development of ML models: AI-based improvement opportunities

Required Expertise Improvement opportunities

- Implementing a Machine Learning
algorithm is a recurrent task.

- Depending on the problem type
(regression, classification, cluster-
ing), many algorithms are often
used thanks to their good perfor-
mance.

- The development task requires:
• Language expertise: python,
java etc.
• Library expertise: Tensor-
Flow, PyTorch, etc.
• Being able to re-use and adapt
the old implementations to
the new problem and input
data and do not re-implement
from scratch to gain time and
effort.

- The choice of the right ML model
to use requires deep and diversi-
fied expertise in ML.

- Each ML algorithm has its own
advantages and drawbacks. The
choice of the most appropriate ML
algorithm to use depends on many
criteria:
• Problem description
• Data description (type, distri-
bution, size, etc.)
• The desired output, etc.

- A General implementation of the
most used models is useful and im-
portant.
⇒ This allows to re-use the gen-
eral implementation and has the
following advantages:
+ Save effort and time.
+ Ensure high source code qual-

ity.
+ Accelerate the development

process.
- Build a Domain Specific Language
(DSL): a language that allows sci-
entists to describe their specifica-
tion needs (problem description,
data, output etc.) using abstrac-
tions and notations from their own
domains of expertise.

- Being executed, the DSL rec-
ommends the most appropriate
model to use based on the input
specification.

116

A.2.3. Machine learning pipeline

Table A.3. ML pipeline: AI-based improvement opportunities

Required Expertise Improvement opportunities

- The machine learning pipeline is
composed of the following steps:
Data pre-processing → Develop-
ment→ Training→ Validation→
Evaluation.

- These steps are recurrent and
costly in terms of time and effort.

- Scientists usually use the same al-
gorithms depending on the prob-
lem type (classification: Logistic
regression, SVM, Decision Tree,
Random Forest, etc.)

- The most performant model is se-
lected in the validation step and
then evaluated.

- According to ‘2018 Kaggle
ML and Data Science Survey’,
15–26% of the time of a typical
data science project is devoted to
model building or model selection.

- Automated-Machine Learning
(Auto-ML): An approach that
consists of automating the whole
machine learning pipeline.
Input = data → Output = evalu-
ated model

- The machine learning pipeline
could be fully or partially auto-
mated.

- This allows to save time and effort,
get fast results (it is often used to
generate fast prototypes, and then
improve them).

- Scientists could focus on more
valuable/important tasks that
require human intelligence and
intuition.

117

A.2.4. Evaluation of ML models

Table A.4. Evaluation of ML models: AI-based improvement opportunities

Required Expertise Improvement opportunities

- Metrics are a static way to eval-
uate models and detect basic be-
haviors.

- We need to understand better the
strengths and weaknesses of the
model.

- We need to go deeper into the
weaknesses of the model using
other techniques and to identify
the limitations of the model and
correct them.

- A machine learning model could
be unstable in the prediction
phase.
Unstable model = similar input→
considerably different output.
⇒ This input is called an Adver-
sarial example. Adversarial exam-
ples could be critical in some sensi-
tive cases (e.g. medicine, security,
etc.) where we need a robust and
performant model.

- Detect individuals or range of val-
ues to which the model is sensi-
tive and unstable using Adversar-
ial Learning.

- Adversarial learning consists of
training a model that modifies the
training input slightly with ran-
dom noise and tries to maximize
the difference of the output.

- Generate and detect adversarial
examples where the model per-
forms badly by generating wrong
results.

- Make the machine learning model
more robust by setting up adver-
sarial defenses (i.e. Binary classi-
fier, feature squeezing, adversarial
re-training, etc.).

118

A.2.5. Monitoring of ML models

Table A.5. Monitoring of ML models: AI-based improvement opportunities

Required Expertise Improvement opportunities

- Detect model performance degra-
dation ¸and data drift is very im-
portant.

- Thresholds are a static and classic
way to detect model performance
degradation.

- Outliers are detected manually
from the monitoring dashboard
(graphs, distributions, tables,
metrics, etc.) which is tedious
and not accurate.

- When we detect that the new
production data distribution
has changed (data drift) or the
statistical relation between the
features and the output variable
is no more valid (concept drift);
we should re-train and re-fit the
ML model to the new data so
it can learn the new statistical
properties.

- Data and concepts are changing,
we should forecast the detection
of these changes to act early and
trigger the re-training process.

- The detection of model per-
formance degradation could be
anticipated → Predict model
performance deterioration earlier
(based on the evolution of the
performance metrics).

- Automatic detect of outliers (i.e.
RCF, Isolation trees, One-class
SVM, LR, AE, etc.).

- Automatic detection of data drift
(i.e. automatic comparison of dis-
tributions, Auto-Encoders, etc.).

- Furthermore, We could avoid con-
cept and data drifts and perfor-
mance degradation by using a new
emergent concept which is: Con-
tinuous Learning.
⇒ Continuous learning (CL): fine-
tune and auto-adapt to new data
continuously (real-time or batch)
to maintain a good performance
and to be always up-to-date.

119

A.2.6. Scrum: sprint planning

Table A.6. Scrum - sprint planning: AI-based improvement opportunities

Required Expertise Improvement opportunities

- Sprint planning is an essential
meeting in Scrum that consists
of selecting a sub-set of stories
from the product backlog and
assigning stories/issues (tasks) to
team members.

- A user Story is characterized by:
description – story points – prior-
ity – assignee.

- Incorrect estimations of story
points imply delays.

- In the sprint planning, we should:
• Prioritize the most important
user stories.
• Take into account the capac-
ity and expertise of each of the
team members.
• Assign tasks according to the
above criteria.

- We could estimate the story points
from the previous tickets.

- Assigning tickets to team mem-
bers could be formalized as an
optimization problem / Resources
allocation problem where:
• Tickets are characterized by:
priority – complexity – skills
• Team members are character-
ized by: capacity – expertise
• Objectives: Higher priority
tickets are assigned first
– max served tickets – fill
members’ capacity – match
skills-expertise.

⇒ we could have many sub-
optimal configurations and
choose/modify the most appro-
priate one.

- This process could be semi-
automated and take into account
user preferences and interactions.

120

A.2.7. Security

Table A.7. Security: AI-based improvement opportunities

Required Expertise Improvement opportunities

- Security is a concern in IT compa-
nies and it includes the following
aspects:
• Ensure the security of the
cloud environments.
• Control access to different
bank resources.
• Assess the confidentiality of
the data.

- Security involves many challenges:
• Receiving many security
alerts. These alerts should
be monitored, analyzed, and
resolved by executing the
appropriate actions.
• We should be able to analyze
many log files to localize
security incidents (An in-
telligent log analyzer to
analyze security threats is
very important).
• There could be new secu-
rity risks that could not be
detected using the common
tools.
• After a security incident oc-
curs, we should identify the
causes of this incident and the
related event from the differ-
ent log files.

- Learn and detect anomalies pat-
terns in logs.

- Rank security alerts according to
severity to alleviate the burden on
the member responsible for this
difficult task.

- Discover connections between
data in multiple log files (there
are usually multiple records of a
security incident): This is called
Correlation analysis.

- Artificial ignorance is very impor-
tant as it allows to ignore routine
log messages such as regular sys-
tem updates but allow for new or
unusual messages to be detected
and flagged for investigation.

121

	Sommaire
	Summary
	Contents
	List of tables
	List of figures
	Acronyms & Abbreviations
	Dedications
	Acknowledgements
	Chapter 1. Introduction
	1.1. Research context
	1.2. Problem statement
	1.2.1. Problem 1: How can AI assist software specialists in their tasks?
	1.2.2. Problem 2: How to recommend relevant metamodel refactoring solutions?
	Takeaways

	1.3. Main contributions
	1.3.1. Contribution 1: Cartography of potential AI-based improvements for software-related tasks
	1.3.2. Contribution 2: Quality-driven multi-objective optimization approach for metamodel refactoring
	1.3.3. Contribution 3: Recommending metamodel refactorings using constraint solving
	Takeaways

	1.4. Thesis structure

	Chapter 2. State of the art
	Introduction
	2.1. Background
	2.1.1. Model-driven engineering (MDE)
	2.1.1.1. Domain-specific language
	2.1.1.2. Metamodeling
	2.1.1.3. Model transformation
	2.1.1.4. Metamodel quality assurance
	2.1.1.5. Metamodel quality evaluation
	2.1.1.6. Metamodel smells
	2.1.1.7. Metamodel refactoring

	2.1.2. Artificial intelligence
	2.1.2.1. Machine learning
	2.1.2.2. Artificial neural networks
	2.1.2.3. Deep learning
	2.1.2.4. Multi-objective optimization
	2.1.2.5. Genetic algorithms
	2.1.2.6. Non-dominated Sorting Genetic Algorithm II
	2.1.2.7. Constraint solving

	2.1.3. Scrum: an agile software development methodology

	2.2. Related work
	2.2.1. AI-based improvement for software-related tasks
	2.2.1.1. Improvement opportunities
	2.2.1.2. ML-based automation tools

	2.2.2. Metamodel smells detection and refactoring

	Conclusion

	Chapter 3. Automation and improvement of the software development pipeline: A cartography of ML-based opportunities
	Introduction
	3.1. Context & Motivations
	3.1.1. Context
	3.1.2. Motivations and objectives

	3.2. Adopted methodology
	3.2.1. Documentation
	3.2.2. Questionnaires & Interviews
	3.2.3. Results analysis
	3.2.4. Improvement and automation opportunities
	3.2.5. Graphical cartography

	3.3. Processes and tasks description
	3.3.1. General presentation of the AI team of our industrial partner
	3.3.2. AI platform
	3.3.2.1. Data engineering
	3.3.2.2. Development
	3.3.2.3. Training
	3.3.2.4. Validation & Evaluation
	3.3.2.5. Prediction
	3.3.2.6. Monitoring
	3.3.2.7. Continuous Integration / Continuous Delivery (CI/CD)
	3.3.2.8. Security

	3.4. Identified problems and required expertise for software-related tasks
	3.5. AI-based improvement opportunities
	3.5.1. Data engineering
	3.5.1.1. Intelligent data generator

	3.5.2. Implementation of ML models
	3.5.3. Machine learning pipeline
	3.5.4. Evaluation of ML models
	3.5.5. Monitoring
	3.5.6. Scrum: sprint planning
	3.5.7. Security

	Conclusion

	Chapter 4. Quality-driven multi-objective optimization approach for metamodel refactoring
	Introduction
	4.1. Problem statement & Motivations
	4.2. Proposed approach
	4.2.1. Quality metamodel
	4.2.2. Quality model
	4.2.3. Objectives generation
	4.2.4. Detection of metamodel smells
	4.2.5. Applying refactorings
	4.2.6. Metamodel quality evaluation
	4.2.7. Multi-objective optimization of quality attributes using NSGA-II
	4.2.7.1. Problem formulation
	4.2.7.2. Genetic operators
	4.2.7.3. Solution evaluation
	4.2.7.4. Solution validity assurance
	4.2.7.5. Metamodel refactoring recommendation

	4.3. Illustrative case study
	4.3.1. Research questions
	4.3.2. Experimental setup
	4.3.3. Results
	4.3.4. Validity of the experiments

	4.4. Conclusion & Future work

	Chapter 5. Metamodel refactoring using constraint solving
	Introduction
	5.1. Problem statement
	5.2. Proposed approach
	5.3. Implementation details
	5.3.1. Phase 1: Detection of design smells
	5.3.1.1. Translate metamodel class diagram to alloy specification using CD2Alloy
	5.3.1.2. Encoding metamodel smells as constraints
	5.3.1.3. Metamodel smells detection

	5.3.2. Phase 2: Metamodel refactoring

	5.4. Illustrative case study
	Conclusion

	Chapter 6. Conclusion and future work
	6.1. Summary
	6.1.1. Automation and improvement of the software development pipeline: A cartography of ML-based opportunities
	6.1.2. Quality-driven multi-objective optimization approach for metamodel refactoring
	6.1.3. Metamodel refactoring using constraint solving

	6.2. Future work

	Bibliography
	Appendix A. Cartography of AI-based improvement opportunities for software-related tasks
	A.1. Graphical cartography: Overview
	A.2. Projection over the cartography sub-parts
	A.2.1. Data engineering
	A.2.2. Development of ML models
	A.2.3. Machine learning pipeline
	A.2.4. Evaluation of ML models
	A.2.5. Monitoring of ML models
	A.2.6. Scrum: sprint planning
	A.2.7. Security

