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Abstract: The complexity and organization of the central nervous system (CNS) is widely modu-
lated by the presence of the blood-brain barrier (BBB) and the blood—cerebrospinal fluid barrier
(BCSFB), which both act as biochemical, dynamic obstacles impeding any type of undesirable ex-
ogenous exchanges. The disruption of these barriers is usually associated with the development of
neuropathologies which can be the consequence of genetic disorders, local antigenic invasions, or
autoimmune diseases. These disorders can take the shape of rare CNS-related diseases (other than
Alzheimer’s and Parkinson’s) which a exhibit relatively low or moderate prevalence and could be
part of a potential line of treatments from current nanotargeted therapies. Indeed, one of the most
promising therapeutical alternatives in that field comes from the development of nanotechnologies
which can be divided between drug delivery systems and diagnostic tools. Unfortunately, the num-
ber of studies dedicated to treating these rare diseases using nanotherapeutics is limited, which is
mostly due to a lack of interest from industrial pharmaceutical companies. In the present review, we
will provide an overview of some of these rare CNS diseases, discuss the physiopathology of these
disorders, shed light on how nanotherapies could be of interest as a credible line of treatment, and
finally address the major issues which can hinder the development of efficient therapies in that area.

Keywords: CNS disorders; rare pathologies; orphan diseases; nanotechnologies; nanomedicine; drug
delivery systems

1. Introduction

Early in the 1990s, the development of nanomedicine arose as a very promising novel
technique with several therapeutical benefits, and more specifically in cancer, neurodegen-
erative and infectious diseases [1-3]. This term includes a large range of “nano” objects
which are characterized by a nanometric scale, such as nanoparticles (NPs), nanocarriers,
or even nanodrugs [4,5]. The extremely small size of nanotherapies certainly make them
promising candidates for the treatment of any disorder related to the central nervous
system (CNS). Indeed, the blood-brain barrier (BBB) is a complex structure composed of
specialized endothelial cells (ECs) tightly anastomosed by specific tight adherens junctions.
The presence of these very tight, selective junctions is well known to restrict the passage
of the majority of pathogens, as well as large and hydrophilic molecules, while allowing
the entry of small non-polar and hydrophobic agents. This creates a huge obstacle when
targeting CNS disorders, as more than 98% of neurotherapeutic drugs are excluded from
the brain by the BBB [6]. Those ECs are surrounded and supported by pericytes and
astrocytes, which form an additional physical layer. Furthermore, this multicellular archi-
tecture is reinforced by a series of physical and biological obstacles, such as the presence
of elevated transelectrical resistance and an active efflux protein pump, contributing to
further restricting the access of drugs to the CNS and an effective immunological defense
based on microglia [7]. Therefore, the cellular complexities of the CNS and the spinal
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cord complicate even more the targeting of a specific cell population. As such, the use
of nanotherapies appeared as a primary tool in order to overcome these issues. First of
all, these agents can be designed in such a way that allows them to efficiently cross the
BBB (Table 1). Due to their versatility, nanocarriers can display tridimensional shapes and
suitable dimensions favoring translocation across the BBB [8-11]. Other nanoparticular fea-
tures, such as the ability to change their surface properties—i.e., tuning the surface charge
or decorating it with appropriate ligands/functionalized moieties (surfactants or polymers,
for example)—may also allow valuable interactions at the luminal plasma membrane of
endothelial cells, resulting in enhanced transcytosis across the BBB [12]. This can be the
case of a nanocarrier which undergoes receptor-mediated transcytosis, which is achieved
thanks to a genetically fused transporter protein or by promoting the passive diffusion
of small lipophilic molecules through endothelial cells [13]. Another interesting feature
comes from their ability to enhance or sustain drug release, which can be critical in order
to insure proper drug bioavailability to the brain. Finally, nanotherapies can be engineered
to target specific cells, tissues, biochemical pathways, or receptors. We listed in Table 1 the
current nanocarriers developed for the treatment of CNS diseases.

Nanotherapies can therefore be applied to the treatment of rare diseases, especially for
the CNS. A rare (or orphan) disease is usually caused by a very distinct genetic mutation
and is defined by a prevalence affecting under 200,000 people in the United States, while it
would be 1:2000 people in the European Union [14,15]. It is estimated that approximatively
30 million Americans, half of them children, currently suffer from a rare pathology [16]. A
large group of rare diseases are neurological disorders which can affect the nervous system,
including the brain, the spinal cord, and all the nerves running throughout the human body.
These pathologies can be divided between two categories: the ones targeting the CNS
(brain and spinal cord) and the ones targeting the peripheral nervous system. The National
Institute of Health (NIH) database lists more than 1000 nervous system pathologies (exactly
1248, as retrieved in November 2020), among which the majority is considered to be rare
diseases [17]. These neurological issues can originate from multiple causes, including
genetic disorders, congenital abnormalities, infections, and lifestyle and environmental
health problems (including malnutrition), or are caused by brain, spinal cord, or nerve
injuries. In addition, they can display several different symptoms, such as paralysis, muscle
weakness, poor coordination, loss of sensation, seizures, confusion, pain, and altered levels
of consciousness, all of which are usually chronically debilitating and life-threatening for
the patients. These symptoms, along with the scarce to non-existent effective curative
strategies, complicate even more the treatment of these rare pathologies. Drug delivery
methods, such as intravenous (iv.) injections, face other challenges, such as, for instance, the
clinical confirmation of a treatment and the measurement of its efficacy. Indeed, it is often
necessary to collect tissue samples in order to acknowledge diagnosis or disease progression
or monitor the potency of a given therapy. These are generally not easily manageable
when targeting the brain, except post-mortem. Even though Magnetic Resonance Imaging
(MRI) and Positron Emission Tomography (PET) imaging have undergone tremendous
improvement in performance in these past few years (especially for the diagnosis of
Alzheimer’s and Parkinson’s diseases), some limitations still remain, such as radiation
exposure, overall extremely high costs, and equipment accessibility [18].

Furthermore, the lack of relevant models for a specific disease, especially for under-
studied rare diseases, is often an issue and must be thoroughly addressed to enhance the
in vivo predictive validity and (pre)clinical trial efficiency [19]. This could also help us
to assess if the integrity of the BBB is maintained prior, during, and after administration
of a nanotherapeutic tool, which is of tremendous importance when dealing with CNS
disorders. Unfortunately, this feature is often absent from research data or improperly
examined with dyes for instance [20]. A relevant illustration of this latter point would
be the use of cationic nanoparticles which have long been demonstrated to disrupt the
BBB, hence inducing neurotoxicity; consequently, the effect on the BBB integrity should
be automatically assessed when dealing with this type of nanoformulation [21]. The same
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goes for certain classes of agents, such as psychostimulants or alcohol, which are known to
alter the BBB integrity, resulting in neuroinflammation and subsequent toxicity [22].

Above all, drug development for CNS disorders is confronted with an additional
major hurdle, regarding how to get therapies past the BBB. While this issue has been
widely studied and described in the literature, even with very small molecules drugs are
often blocked from entering the brain by the BBB. The use of nanovectors/nanocarriers
has long been reported as a promising approach to help macromolecules reach the brain
effectively; in that respect, Figure 1 presents a comparative evaluation of the overall curative
benefits of nanomedicine versus conventional therapeutics (Figure 1) [23]. Nanoengineered
materials can simultaneously sustain drug release, improve bioavailability, and safeguard
active compounds from degradation. Unfortunately, only a small number of studies
related to rare pathologies of the CNS and nanotherapeutics are presently described in
the literature. To illustrate this point, a rapid PubMed survey covering the terms ((brain
OR CNS) AND (rare disease) AND (treatment) AND (nanotherapy OR nanomedicine
OR nanoparticles) AND NOT (brain tumor OR Parkinson’s OR Alzheimer’s OR Multiple
Sclerosis)) only led to 25 publications, compared to 900 when applied to brain tumors or
519 with Parkinson’s disease (PubMed search motor, November 2020). Comparatively,
nanotherapy/nanomedicine represents only 0.07% of published treatment options for CNS
rare diseases, whereas it is 0.80% and 0.78% for brain tumors and Parkinson’s, respectively.
The substantial impact of big pharmaceutical companies and their lack of interest in these
diseases play a major part in that respect [24]. Indeed, the development of such technologies
requires high costs for R&D and subsequent production which would not be economically
beneficial, owing to the relatively small number of prospective patients.
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Figure 1. Comparative scheme representing the curative benefits of nanomedicine strategies vs. conventional therapeutics.

However, many incentives originating directly from the Food and Drug Administra-
tion (FDA) or the European Medicine Agency (EMA) have been launched in recent years,
which will hopefully help in stimulating this field and encourage efforts from the entire
scientific community [25]. A great example of nanotechnology oriented toward the treat-
ment of a rare disease (excluding the CNS field), would be the Lysodase agent, designed
as a specific treatment for Gaucher’s disease in the early 2000s [26,27]. This inherited
pathology results from a genetic deficiency of the glucocerebrosidase enzyme, which leads
to glucocerebroside abnormal accumulation and ultimately hepatosplenomegaly, along
with low blood and platelet counts. Gaucher’s disease can be classified into three different
types: (1) non-neuronopathic, the most common form which does not affect the CNS and
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can develop at any age; (2) the most severe acute neuronopathic form, which is usually
lethal and appears prenatally; (3) the subacute neuronopathic type. There is currently no
curative strategy for Gaucher’s disease, with most of the treatments being mainly support-
ive, such as, for instance, bone marrow transplant aimed at correcting glucocerebrosidase
deficiency. Enzyme replacement therapies (ERTs), or, more recently, oral substrate reduc-
tion therapies, are other strategies approved by the FDA with the poly(ethylene glycol)
(PEG)-Glucocerebrosidase/Lysodase drug being under clinical investigation and showing
significant promise, with a reduction in skeletal complications [27-29]. However, the costs
of such alternatives often exceed hundreds of thousands of USD per year when adminis-
tered iv. The use of nanotechnology can provide, in this case, specific nanocarriers which
will allow efficient transport through the BBB without alteration or loss of activity and with
sustained delivery [30].

Table 1. Nanocarriers currently developed for the treatment of CNS-related disorders.

Origin

Nanocarrier Size Range *
Designation (nm)

Benefits (+) and

Primary Material Disadvantages (—)

Ref.

Biological

(+) High transfection efficiency
Viral capsid (—) High immunogenicity, high
proteins production costs, important adverse
effect risks

Viral vectors <100 [31]

(+) Good safety profile, enhanced specific
Extracellular 50-500 Plasma membrane targeting, controlled pharmacokinetics
vesicles phospholipids (=) Very limited data, inadequate in vivo

targeting efficiency

[32]

Biologically
mimicking

(+) Drug protection, passive diffusion
across the BBB, adapted for both
hydrophilic and hydrophobic drugs,
Liposomes 20-250 Phospholipids possible specific targeting [33]
(—) Potential (neuro)toxicity,
physicochemical instability, clearance
issues

Chemical

(+) Absence of neurotoxicity, enhanced
drug bioavailability, physicochemical
. stability, ability to control drug release
Micelles 10-100 Surfactants (—) For lipophilic drugs only, poor drug
loading efficiency, physicochemical
instability

[34]

(+) Improved drug loading of genetic
Lipid material, stability
nanoparticles <100 Cationic lipids (=) Immunogenicity issues, do not
(LNPs) passively target BBB, rapidly cleared
from blood

(+) Biocompatibility and degradability,
Solid lipi d a'lbsence of neurotoxicity, drug prot.e.ct1on,
. s improved control drug release, ability to
nanoparticles 50-500 Solid lipids . . e
(SLNs) cross the BBB via passive diffusion
(—) Reduced loading efficiency for
hydrophilic drugs

[371]

(+) Adapted for both hydrophilic and
hydrophobic drugs, enhanced specific
Dendrimers <10 Organic dendrons targeting, physicochemical stability [38]
(—) Potential (neuro)toxicity, clearance
issues, potential organ accumulation
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Table 1. Cont.
. . Nanocarrier Size Range * . . Benefits (+) and
Origin Designation (nm) Primary Material Disadvantages (—) Ref.
(+) Biocompatibility, possible
biodegradability, drug protection, ability
Polymeric Synthetic or to control/sustained drug release,
. <500 o . [39]
nanoparticles natural polymers enhanced specific targeting
(—) Potential (neuro)toxicity
(neuroinflammation, neurodegeneration)
(+) Specific chemical, mechanical, and
Carbon . . L
nanoparticles electrical properties, accumulation in
<10 (QD) brain tissue, enhanced surface [40,
(nanotubes Carbon . .
<100 (CNT) functionalization 41]
CNT, quantum .
dots QD) (=) (Neuro)toxicity issues (absence of
degradation, accumulation)
Au, Ag, ZnO, Si, (+) Electrical, mechanical and optical
. ceramic NPs, su- properties, high surface area useful for
Inorganic . . . -
nanoparticles 2-100 perparamagnetic grafting targeting moieties [42]
p iron oxide NPs (—) Established (neuro)toxicity, requires
(SPIONSs) prior functionalization to cross the BBB

* most usual hydrodynamic diameters, as observed by Dynamic Light Scattering (DLS).

Although there are currently several articles and reviews highlighting the role and
scope of nanotherapies in modern medicine, to our knowledge none focus solely on the
impact of nanomedicine and rare diseases of the CNS. Therefore, the primary aim of
this article is to provide a non-exhaustive list of CNS-related rare diseases for which
nanotherapies could display potential avenues and describe the limitations and benefits
that nanotechnologies could offer in order to treat these pathologies. Finally, we will also
give an insight into their significance in treating these neurological disorders and discuss
opportunities for future research.

2. Nanocarriers Used for the Treatment of CNS Disorders and Strategies to Bypass
the BBB

One of the major obstacles in the development of effective CNS treatments is the
presence of the tightly selective BBB. As such, the use of different nanocarriers (listed
in Table 1) along with different administration routes can be of great interest in order to
bypass the BBB.

2.1. Parenteral Drug Delivery

As for many pathologies scattered elsewhere in the human body, the preferred route
of administration for drugs intended for CNS pathologies is intravenous administration
(iv.), which is minimally invasive and allows complete control over bioavailability, a
precise dosage of often-toxic drugs, and repeated administrations of several-hour infusions,
achieving a near-constant plasma concentration carefully located in the therapeutic range.
However, and in contrast with other organs or tissues, drugs administered intravenously
should present either an increased ability to passively diffuse throughout the BBB (such
as, for instance, carmustine and temozolomide, two very hydrophobic drugs) or use one
of the assisted transcytosis pathways, as schematically described in Figure 2. A recent
review by Griffith et al. lists the most common transporters and carriers overexpressed
at the BBB and which can be potentially used by exogenous molecules to reach the brain
parenchyma [43,44].
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Figure 2. Transport routes across the BBB.

Due to their very diverse physicochemical nature, nanotherapies may be involved in
a broad spectrum of transcytosis pathways (Figure 2). Furthermore, their tridimensional
features almost consistently require the presence of a specific targeting entity on their
surface to trigger an efficient brain translocation. A non-exhaustive list of these moieties
is presented in Table 2, with some examples of nanomedicines that have been proven to
effectively cross the BBB.

In addition to the widely used intravenous administration which requires a specific
design of nanoparticles to target and bypass the BBB, another possible yet quite invasive
route of administration is direct intracerebral drug infusion. This surgically assisted route
of administration can either be achieved via stereotactic injection in the pathological area
(i.e., the intraparenchymal route) in order to form local depots or via intraventricular
administration [44]. Due to the extremely risky nature of these invasive administration
methods, they are mainly restricted for life-threatening conditions and do not allow repeti-
tive injections [45].

2.2. Intranasal Drug Delivery

Intranasal or nose-to-brain drug delivery is a very interesting route of administration
for brain targeting, as it allows the formulation to bypass the BBB. This process can be
achieved through two different nasal regions: the respiratory and the olfactory areas. The
nasal epithelium harbors millions of olfactory neurons which enable the transport of agents
directly to the brain through the olfactory bulb via transcellular diffusion [46,47]. The
second pathway involves the respiratory epithelium which, through the trigeminal nerve,
will also allow agents to directly reach the brain tissue [47]. The intranasal route has been
examined with success in a variety of neuroinflammation-related diseases, as recently
thoroughly reviewed by Rhea et al. [48].

2.3. Intracarotid Infusion

Intracarotid infusion technique consists of the administration of a drug or a fluid
to the carotid artery, which is the main artery that carries blood from the heart to the
brain [49]. Intracarotid drug delivery can instantaneously generate exceedingly high local
concentrations of the novel pharmaceutical agent, thus assisting in regional delivery. This
process has long been ignored for the development of drugs targeting CNS disorders, and
the kinetics of such an administrative route is, to this day, poorly understood. However a
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few examples in the literature have shown that it can be a promising administration route,
especially for the treatment of brain tumors [50,51].

2.4. Transmucosal Drug Delivery

Transmucosal drug delivery is an innovative and popular method of direct CNS drug
delivery using heterotopic mucosal grafts which allows for the rapid uptake of a drug
into the systemic circulation by avoiding first-pass metabolism [52-54]. This method relies
on “mucoadhesion”, or adhesion to human mucosa, which presents extreme proximity to
the blood circulation and can even allow the delivery of high-molecular-weight and polar
agents to the CNS [55]. This technique can be adapted to products administered via nasal,
oral, or vaginal routes with the use of sprays, gels, tablets, or even suppositories.

2.5. Physical or Pharmacological Disruption of the BBB

The physical integrity of the BBB can be partially and temporarily disrupted in order to
enable the transient passage of therapeutic agents such as nanocarriers. These mechanical
disruptions can be successfully performed by “physically” widening and opening tight
junctions, with, for instance, the application of an external ultra-sound (US) source driving
microbubbles across the BBB, or by using a magnetic gradient driving nano-ferrofluids
across the BBB [56]. The use of pharmacological agents which can cause an osmotic imbal-
ance (mannitol, fructose, milk amide, urea, or glycerol) or vasoactive (such as bradykinin,
histamine, serotonin, glutamate) or inflammatory compounds, (namely, prostaglandins,
some interleukins or tumor necrosis factor-oc (TNF-«)) can also be an alternative to generate
a momentary BBB opening [56,57].

Table 2. Most common targeting moieties allowing agents to bypass the BBB.

Examples of ‘Nano’

Targeting Moiety Endothelial Target Applications Ref.
Lipid SPION nanovectors

Transferrin (Tf), lactoferrin loadec.l furTctlonal.lzed with [58]

(Lf), anti-TfR antibodies or Tf receptors (TfR) antlbo;:hes. against the

aptamers transterrin receptor
TfR-binding Fc polypeptide [59]
Insulin Insulin receptor Insulin PEjSoated gold [60]
particles
ApoE2 loaded brain-targeted
e [61]
functionalized-liposomes
. : Low density lipoprotein Angiopep-2 Peptide-Modified
ApoB, ApoE, Angiopep-2 receptors (LDLR) Bubble Liposomes [62]
PLGA-PEG-Ang-2
. [63]
nanoparticles

Cell surface . .

FC5 «(2,3)-sialoglycoprotein FCS}E‘I:;:IHIEICY df;ifi:ﬁh [64]
(namely TMEM-30A)

. . . RGD peptide-modified

Arginine-Glycine-Aspartic Integrin receptors ultrasmall Au-ICG [65]

(RGD) peptide

nanoparticles

Although very promising and efficient, these approaches are mostly based on the
destruction of tight junctions and may involve permanent CNS damage, since they are
not drug- or nanocarrier-specific. They might also allow the passage of a large variety of
endo/exogenous (macro)molecules with the molecule or carrier of interest [56].

From left to right: (i) Paracellular diffusion—i.e., diffusion in between cells, limited
by the presence of tight junctions formed between neighboring endothelial cells and
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used by a fraction of small hydrophilic molecules, as well as some viral and lipid-based
particles; (ii) Transcellular diffusion—i.e., diffusion through the apical and basolateral en-
dothelial membranes and across the intracellular space, mainly driven by favorable drug
physicochemical properties, such as with molecules exhibiting hydrophobic surfaces or
moieties (for instance, carmustine or temozolomide, and polymeric/lipid-based nanoparti-
cles); (iii) Receptor-mediated transcytosis (RMT), which relies on the recognition between
a ligand and an endothelial receptor at the luminal side of the BBB to mediate drug or
nanocarrier translocation—this is the preferential way of entrance for many proteins, as
well as most types of nanocarriers; (iv) Carrier-mediated diffusion (CMD), used to de-
liver small molecules (i.e., glucose, amino acids, and nucleotides) to the brain via protein
carriers expressed at both the apical and basolateral endothelial membrane surfaces; (v)
Adsorptive-mediated transport (AMT), based on the non-specific adsorption of cationic
serum proteins to negatively charged domains of apical endothelial membranes, followed
by translocation to the brain parenchyma—certain types of micelles and extracellular
vesicles have been demonstrated to use this pathway.

3. CNS Disorders and Nanotherapeutics
3.1. Niemann—Pick Type C Disease—Nanocapturing Cholesterol

Niemann-Pick is a rare autosomal genetic disorder which affects approximatively
1:120,000 children globally and impacts, physiologically, the ability to metabolize and trans-
port lipids and cholesterol within cells [66]. Consequently, an abnormal accumulation of
fatty substances occurs within several tissues of the body including the brain, liver, spleen,
bone marrow and, in more severe cases, the lungs. This usually translates into progressive
damages and loss of functions, which progress into life-threatening complications possibly
fatal [67]. Genetically, Niemann-Pick type C is caused by a mutation of the NPC1 or NPC2
gene (located on the long arm of chromosome 18 or 14, respectively), leading to NPC
type 1C or NPC type 2C phenotypes, respectively. This pathology can occur at any age,
whether it is during early childhood or in young adults (in mild cases, this pathology
can go undiagnosed until early adulthood). However, it was uncovered to mainly affect
children. As such, the symptoms will widely depend on the severity of the condition and
might include, for instance, neurological and psychiatric disorders, cognitive loss, ataxia,
cholestasis, hypotonia or hearing loss [67].

To this day, there is no cure available for Niemann-Pick type C disease, with the
agent Miglustat, a synthetic, N-alkylated imino analogue of D-glucose, being the only drug
approved as a first line of treatment of patients developing neurological disorders [68].
Nonetheless, several therapies are currently under massive investigation. One of the
most promising is the use of a preparation of 2-hydroxypropyl-B-cyclodextrin (HPFCD),
also known as VTS-270 (Mallinckrodt Pharmaceuticals) [69]. HPRCD is a FDA-approved
excipient, with the capacity to capture cholesterol and therefore reduce its storage level
in NPC1 cells in animal models. This formulation was found to significantly slow the
development of neurological symptoms in patients with NPC1 disorder and is currently
under clinical investigations in Phase IIb/III [70].

A major obstacle in the effective clinical translation of HPBCD is the huge amounts
required in order to adequately clear the excess cholesterol. A recent study from Brown
et al. showed that distearyl-phosphatidylethanolamine-polyethylene glycol-lipid micelles
(DSPE-PEG-lipid micelles) of HPCD could be a viable option in order to improve the
delivery of this drug [71]. Indeed, using filipin-based and amplex red cholesterol assays,
the authors showed that a 12 nm micelle formulation including DSPE-PEG significantly
increased the HPBCD-mediated cholesterol efflux. In addition, the formulations containing
the highest DSPE-PEG ratios were found to be the most potent, in spite of encapsulating
a smaller amount of HPBCD. Even more surprisingly, treatment with only DSPE-PEG
(without HPBCD) decreased cholesterol levels, showing potency on its own. As such, the
authors postulated on a synergetic effect from both DSPE-PEG and HPBCD. To go further,
they investigated autophagy flux by using TF.LC3 analysis and noticed an overall decrease
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number of autophagosomes and autolysosomes when exposed to the DSPE-PEG/HPCD
mixture in Npc1~/~ compared to Npcl*/* cells. This suggested that a treatment with these
agents facilitated cholesterol efflux while not impacting defects in autophagy.

3.2. Spinocerebellar Ataxia—Delivering VEGF-Mimicking Nanoconstructs

Ataxias are a subset of heterogenous neurological disorders which include both ge-
netic and non-genetic types of the disease [72]. More specifically, Spinocerebellar ataxias
(SCA) represent a large group of the pathological genetic form, with more than 40 different
subtypes of SCA reported in the literature and a global prevalence of 3 in 100,000 [72-74].
This “spinocerebellar” neurodegenerative disease mainly affects the cerebellum, the pe-
ripheral nerves, the brainstem, the basal ganglia, and, in rare cases, the spinal cord. SCAs
display a broad and complex genotype-phenotype spectrum, genetically caused by either
repeat- or non-repeat mutations. Repeat expansion mutations often occur on the CGA
nucleotide triplet, which encodes for polyglutamine. Consequently, pathogenic polyglu-
tamine expansions translate directly into an abnormal extended polyglutamine, namely
PolyQ, resulting in protein misfolding, PolyQ protein aggregation and ultimately cell
toxicity /neurodegeneration [73]. Others SCAs caused by non-repeat mutations can be due
to missense or nonsense mutations, insertions, or deletions.

Given the genetic heterogeneity of this pathology, many different symptoms and
neuropathological alterations have been described with common clinical hallmarks to all
SCAs being a loss of balance, altered coordination and slurred speech ability, while many
SCAs also lead to premature deaths [72]. The manifestation of this disorder usually occurs
in mid-adulthood but onset of SCA in early childhood or elderlies have also been reported,
thus making SCA a disease which can cover the entire lifespan [75]. To this day, there is no
cure available for SCAs, with medication focusing mostly on improving the quality of life
for patients suffering from SCA. However, tremendous scientific progress has been made
in both the understanding and diagnosis of this pathology.

As previously stated, SCA is a highly heterogeneous genetic disorder and the use of
whole-exome and genome sequencing as a diagnostic tool showed great promises. Most
notably, the use of nanotechnology can be of great interest in the case of SCA with for
instance the Oxford nanopore sequencing system [76]. Engineered through a protein
nanopore covalently attached to an adaptor molecule, this process enables identification of
unlabeled nucleoside 5" phosphate with an accuracy >99.8%, hence significantly facilitating
the sequencing of large DNA sequences.

More recently, a study from Hu et al. showed that a synthetic, amphiphilic VEGEF-
mimicking peptide (synthetic VEGF mimetic peptide in which a 15-amino acid VEGF
sequence (KLTWQELYQLKYKGI) is covalently linked to an amphiphilic peptide) able to
self-assemble into nanoparticles (=10 nm) could be a viable therapy to improve function in
SCA1 [77,78]. Indeed, prior work from the same group proved that the levels of Vascular
Endothelial Growth Factor (VEGF) are drastically diminished and practically abolished
in SCA1 mice, which could be reversed by VEGF brain injection [79]. However, in their
follow-up study, the authors admitted that the synthesis of recombinant VEGF is a very
costly process, and that this protein is prone to proteolysis with a short half-life t; ;, < 30
min in vivo [78]. Therefore, the discovery and synthesis of nano-VEGF whose functional
epitopes mimic the N-terminal domain of VEGF improved the SCA1 phenotype in several
distinct aspects. This VEGF nanoformulation showed significant stability compared to
recombinant VEGF, dramatically improved half-life (from 30 min to several days) and
sustained release in vivo. These latter points are of particular interest when dealing with
peptide therapy as they constitute major drawbacks to their direct clinical use [80,81]. In the
case of Nano-VEGEF, the in vivo release lasted more than 28 days, which is consistent with
clinical applications. Even more importantly, Nano-VEGF significantly improved motor
coordination, neuropathological measures and “firing” of Purkinje neurons (which func-
tions are diminished in SCA1 mice) in mice with advanced SCA1 phenotypes. Of note, this
agent was administered intracerebroventricularly (icv.) in order to avoid systemic effects,
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which could also explain the positive pharmacokinetic features of nano-VEGFs. Finally, the
authors believe that this therapeutic strategy could be applied to other neurodegenerative
diseases, such as amyotrophic lateral sclerosis (ALS), Parkinson’s and Alzheimer’s, which
also display altered levels of VEGF. This approach could be further improved by designing
VEGF-based nanocarriers displaying the capacity to effectively cross the BBB, as an iv.
administration would be easier and safer than an icv. one.

3.3. Creatine Transporter Deficiency (CTD)—A Nasal Nanoemulsion for Brain Creatine Shipping

Cerebral creatine deficiency syndromes (CCDS) are a group of inborn errors of creatine
metabolism which prevents the synthesis or transport of creatine in the human body [82].
Physiologically, creatine is required to insure normal levels of ATP both in the brain and
other organs. Studies with CK knockout mice demonstrated clear cognitive loss, especially
in the hippocampal region [83].

There are three distinct types of CCDS, including (i) creatine transporter deficiency
(CDT), (ii) guanidinoacetate methyltransferase deficiency (GAMT), and (iii) arginine:
glycine amidinotransferase deficiency (AGAT). The prevalence of these pathologies is
difficult to assess, due to either the absence of studies (such as for AGAT) or conflicting
reports; albeit, CCDS are known classified rare diseases [84]. Currently, it is estimated
that CDT accounts for 1-2% of all unexplained X-linked intellectual disabilities, GAMT
prevalence is estimated to be between 1 out of 2,640,00 and 1 out of 550,000 patients, while
the prevalence of AGAT is unknown due to the lack of studies on records. CDT, on which
we will mainly focus here, is an X-linked metabolic disorder caused by a defective creatine
transporter [85]. This pathology, which was first described in a study of 2001, showed
a complete absence of creatine signal in the brain but increased levels in both urine and
plasma [85]. The altered creatine transporter, namely SLC6A9 (also known as CRTR or
CT1), originates from a non-sense mutation which can affect both genders, with male
carrying the hemizygous nonsense mutation while female will present the heterozygous
form. Clinically, patients affected by CTD will suffer from severe language delay, cognitive
impairments, intellectual disability, and behavioral disorders, such as attention deficit or
hyperactivity, which can often be mistaken for autism. To date, there is no cure available
for CTD, emphasizing the critical need for therapeutic alternatives. Usually, individuals
who suffer from creatine deficiency are prescribed creatine supplementation as a first-line
treatment (such as, for instance, in the case of AGAT). This helps improving quality of
life and cognitive abilities. However, in the case of CTD, the BBB impedes the crossing
of creatine (which is a positively charged polar small molecule whose guanidine moiety
prevents from crossing the BBB) without the presence of a functional SLC6A9 transporter.

In 2019, a study from Ullio-Gamboa et al. addressed this challenge by synthesiz-
ing dodecyl creatine ester (DCE)-loaded nanoemulsion (with a size of 138-149 nm) [86].
This optimized formulation comprised 63% w/w Transcutol® HP and 25% w/w of wa-
ter, with an oil concentration which was maintained at 12% w/w, as well as DHA and
Maisine ® CC (2:1% w/w). This nanoemulsion was based on approved FDA excipients,
offered several benefits including the protection of the DCE from enzymatic and chemical
degradation. Interestingly, DCE nanoemulsions were also compatible with intranasal (in.)
administration.

In Ullio-Gamboa et al.’s study, DCE is biotransformed in creatine by esterases through
enzymatic route, a process which takes place in the brain tissue as esterases are normally
present in endothelial cells [87]. The nasal administration of DCE nanoemulsions signifi-
cantly enhanced cognitive impairments in vivo, improving novel object recognition (NOR)
memory in Slc6a8~" homozygous mice in comparison to the blank vehicle. Additionally,
increased concentrations of creatine in different regions of the brain were described by
the authors, while the ATP levels only increased in the mice striatum. These results sug-
gest that DCE-loaded nanovesicles could be directly transported through the olfactory
bulb/trigeminal nerve or indirectly via the lymphatic system, and subsequently to different
brain regions, either extra-, intra- or transneuronaly. However, further detailed studies
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are required to understand the exact mechanism of transportation of DCE nanoemulsions
in the brain. Of note, the authors announced that a follow-up study will include DCE-
radiolabeled agents into the nanoengineered vesicles, which will help shed light on these
unanswered questions.

3.4. Mucopolysaccharidosis Type I (MPS I)—A Nano Gene Therapy

Mucopolysaccharidosis type I (MPS I) is an autosomal recessive lysosomal disorder
which originates from a deficiency in «-L-iduronidase (IDUA), an enzyme required for the
proper degradation of two glycosaminoglycans (GAG)—namely, dermatan and heparan
sulfate (HS) [88]. Therefore, insufficient IDUA activity leads to GAG and HS accumulation,
ultimately resulting in severe neurological and musculoskeletal disorders [88].

Globally, the prevalence of this pathology is estimated to be 1 in 100,000 [89]. Scarpa
et al. recently summarized a comprehensive overview of all treatment options for MPS
pathologies, including hematopoietic stem cell transplantation, enzyme replacement ther-
apy in the cerebrospinal fluid, and gene therapy. Despite the wide range of considered
treatment options, the authors concluded that a significant, unmet medical need per-
sists [90]. Historically, MPS I has been classified under 3 different syndromes: Hurler,
Hurler-Scheie and Scheie [91]. Hurler syndrome, which accounts for 57% of cases, is
known to be the most severe type of the pathology with significant cognitive impairments,
joint stiffness, respiratory, heart and hepatic diseases, and most patients dying in early/late
childhood. On the other hand, Scheie syndrome (which represent approximatively 20%
of cases) usually affects patients through adulthood, show normal cognitive abilities but
develop disease-related morbidity. Hurler-Scheie (=223% of all cases) is an intermedi-
ate phenotype with patients experiencing mild or no cognitive impairments, while their
life-expectancy is shortened due to the development of somatic symptoms in the second
decade of their life [91]. Curative strategies are mostly palliative but current intervention
include enzyme replacement therapies (ERT) and allogeneic hematopoietic stem cell trans-
plantation (allo-HSCT), which have shown promise [92]. However, both also displayed
limited efficacy in addition to several limitations, such as, for instance, the inability to
cross the BBB and costly life-long infusions or transplant-associated mortality for ERT and
allo-HSCT respectively. In this respect, non-viral gene therapy is an interesting alternative
for patients suffering from MPS I, which can help overcome poor cell uptake and nucleic
acid enzymatic degradation [93-95].

A first study of 2015 tackled this challenge with the synthesis of cationic nanoemul-
sions (NE) with a mean size ~ 200 nm transfecting pIDUA (which is the plasmid carrying
the gene encoding for IDUA) [96]. The authors, through their work, investigated several
features, such as the physicochemical properties of the complexes and their transfec-
tion efficacy on a MPS I murine model. The cationic emulsions were composed of an
Medium Chain Triglyceride (MCT) oil core stabilized by positively charged Dioleoylphos-
phatidylethanolamine (DOPE), Dioleoyl-3-trimethylammonium propane (DOTAP) and
1,2-distearoyl-sn-glycero-3-phosphoethanolamine-N-[amino(polyethylene glycol) (DSPE-
PEG) complexing the negatively charged pIDUA. When the charge ratio was higher than
+2/—, the synthetized nanoemulsions showed excellent stability and protection against
nucleic acid enzymatic degradation. Additionally, the formulation with a charge ratio of
+4/— displayed significant transfection efficacy in vitro in fibroblasts from MPS I patients.
Furthermore, MPS I mice injected iv. with the NE-pIDUA complex showed an increase
in IDUA activity in both the lungs and liver, which further confirmed the therapeutical
interest of this method.

A follow up study from the same group investigated the formulation mechanism (ad-
sorption or encapsulation of preformed pIDUA-DOTAP complexes into NE) with different
charge ratios and proved a protective effect from deoxyribonuclease I degradation (DNAse
I) [97]. In vivo transfection in the organs of MPS I mice injected iv. with NEP/pIDUA 5
(associated with NE by adsorption) or NEP/pIDUAE (associated with NE by encapsula-
tion) showed increased IDUA activity in the lungs, liver, kidney and spleen; this activity
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was once again more potent for formulations with a higher charge ratio, thus confirming
previous results (mean size ~ 219-303 nm).

More recently, in 2018 the same group went further and explored the use of a liposomal
formulation (with a mean diameter comprised between 81 and 108 nm) as nonviral carriers
of the CRISPR/Cas9 system for both in vitro and in vivo gene therapy [98]. CRISPR/Cas9
technology, which relies on base pairing of nucleic acid, has revolutionized modern genome
editing and its use combined with viral or non-viral delivery has already stimulated several
research projects [99,100]. Overall, the authors showed that these complexes increased
IDUA activity in several different organs, promoted long-lasting IDUA activity, normalized
GAG levels, and effectively transfected mammalian cells. Therefore, gene editing using the
CRISPR/Cas9 system could be of great interest to treat MPS I, while the authors also state
that they will now be focusing on developing an approach which can be more relevant to
reach the brain, primarily [98].

3.5. Rare Brain Infectious Diseases—How Nanomedicine Can Repurpose Clinically
Approved Drugs

Free-living amoebas such as Acanthamoeba, Balamuthia, and Naegleria include species
which have been described as potentially lethal to humans [101,102]. More specifically,
amoebae pathogenic infections are classified as CNS-related rare diseases, causing two
different and deadly types of encephalitis, namely primary amoebic encephalitis (PAM)
or granulomatous amoebic encephalitis (GAE) [102-104]. GAE usually results from Acan-
thamoeba spp. and Balamuthia mandrillaris infections while Naegleria fowleri causes rapid
meningeal inflammation, which is more commonly known as “brain-eating” PAM or Nae-
gleriasis. In this last case, initial infection occurs when contaminated water is ingested by
the host, which enables the invasion of the CNS via the nasal route [105,106]. Subsequent
cerebral hemorrhage results in severe brain tissue damage within a matter of days only
(5-7 days), and symptoms consist of impulsive onset of frontal or temporal headaches,
fever, nausea, dizziness, hallucinations, and altered mental status, ultimately leading to
coma and death in most cases. The mortality rate of Naegleriasis is estimated to be over
95%, highlighting the virulent nature of this pathology, especially in developing coun-
tries [107]. Until 2012, approximatively 310 cases have been reported globally, with 138
cases in the US between 1965 and 2015, of which 135 have been fatal [108]. Of note, a very
recent study showed that even though the incidence of PAMs remains stable across the US,
global warming and increased temperature might contribute to a northward expansion
of Naegleria fowleri [109]. Moreover, the lack of awareness and diagnostic tools contribute
even more to the significant mortality reported in the literature, while a misdiagnosis often
worsen the chances of survival. The current therapeutic strategy consists of administering
a cocktail of multiple drugs—e.g., amphotericin B (the most commonly drug used for
PAM treatment), miltefosine, dexamethasone, ketoconazole, or sulfadiazine—which has
shown success in a few cases reported in the literature [110,111]. However, when high
concentrations of these drugs are administered intravenously (which is required due to
the ability of the BBB to partially hamper these drugs from reaching the brain), severe side
effects (such as, for instance, nephrotoxicity) can become a real threat to the patient’s life.
Additionally, prolonged treatments with any type of antifungals or antibiotics can lead to
resistance phenomena and drastically limit the potency of such agents. Therefore, there is
a critical need to enhance the potency and brain penetration of antiamoebic drugs or to
provide an alternative to the current treatments.

Between 2017 and 2018, two studies from Rajendran et al. and Anwar et al. explored
the use of a metallic nanoparticle conjugation (mean size ~ 20-100 nm) on the efficacy
of three different drugs (amphotericin B, nystatin, and fluconazole, respectively) against
Naegleria fowleri [112,113]. In order to do so, drugs conjugated with silver nanoparticle
(AgNPs) were synthesized and their antiamoebic effects were evaluated versus drugs or
NPs alone. The results revealed that conjugation with AgNPs significantly improved the
potency of both amphotericin B and nystatin (whether it was versus the drug or NP alone)
whereas fluconazole AgNPs showed only limited efficacy [112,113]. In addition, the au-
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thors studied host cell cytotoxicity by comparing host cell damage in presence of Naegleria
fowleri or pretreated Naegleria fowleri which revealed very limited negative effects from
AgNPs. Noteworthy, these results should be challenged and strengthened by a thorough
evaluation of the in vivo effect of the drug alone versus conjugated with AgNPs, in a PAM
phenotype, especially given the current concerns about AgNPs, related to the production of
radicals/reactive oxygen species (ROS) [114]. Repurposing clinically FDA-approved drugs
targeting CNS disorders can also be another effective drug discovery strategy. Therefore,
another study published in ACS Chemical Neuroscience looked at the effect of diazepam,
phenobarbital, and phenytoin alone or encapsulated in AgNPs against N. fowleri and other
amoebae [115]. Benzodiazepines (such as diazepam) and barbiturates (such as phenobarbi-
tal) are known to target gamma-aminobutyric acid-A (GABA ») receptors, subsequently
opening chloride ions channels and triggering hyperpolarization. which can lead to control
over seizures [116,117]. On the other hand, phenytoin is also an anti-seizure drug which
exerts its activity by blocking voltage-gated sodium ion channels [118]. Evaluation of
these CNS-targeting drugs along with their silver nanoconjugates revealed promising
amoebicidal potency against N. fowleri, with AgNPs conjugation significantly enhancing
the overall activities [115].

More recently, a follow-up study from the same group looked at the effect of oleic
acid-coated silver nanoparticles (OA-AgNDPs) with a mean diameter comprised between
45 and 90 nm against N. fowleri [119]. OA is a naturally occuring monounsaturated
omega-9 fatty acid, which has been associated with health benefits, such as hypotensive
or anti-inflammatory effects; it also exhibited potent antiacanthamoebic activity against
Acanthamoeba castellanii [120,121]. Thus, the use of OA against another amoebic strain
such as N. fowleri made perfect sense and confirmed its broad antimicrobial spectrum of
activity. Indeed, the authors noticed that OA-AgNPs significantly reduced amoebae activity
compared to OA or AgNPs alone, while also drastically inhibiting N. fowleri-mediated host
cell cytopathogenicity (65% decrease, approximatively). Furthermore, cytotoxicity assays
revealed that OA, alone or conjugated with AgNPs, displayed a very safe profile, with
a cytotoxic effect below 20%. Finally, the authors also postulated that OA might trigger
apoptotic events in amoebae responsible for its antiamoebic effect.

With the goal of repurposing drugs effective against other acanthamoebic infections,
future studies from the same group might include the use of metformin-coated silver
nanoparticles against N. fowleri which were also found very recently to be potent against
Acanthamoeba castellanii [122].

However, similarly to what was previously mentioned, in vivo testing in a relevant
animal model is urgently required in order to give further consideration of Ag-NPs as
viable alternatives to current PAM’s treatment.

3.6. Primary Central Nervous System Lymphoma (PCNSL)—Enhancing BBB Crossing

Primary central nervous system lymphoma is a highly aggressive, non-Hodgkin-type
cancer which develops inside the CNS, including the brain, spine, cerebrospinal fluid
(CSF) and the eyes [123]. This very rare type of tumor has an incidence of seven cases
per 1,000,000 people in the US, with an overall survival of 12-16 months when diagnosed
and treated (vs. 1.5-3 months when left untreated) [124]. Patients affected with PCNSL
develop multiple neurologic disorders and behavioral changes, with symptoms such as
focal neurologic deficits or headaches, nausea, papilledema, and seizures originating
from an increased intracranial pressure. The diagnosis usually relies on brain MRI, CSF
evaluation, stereotactic biopsy, and vitrectomy (in the presence of ocular involvement) in
order to reveal the location, extent, and severity of the disease [123]. Chemotherapy with
high-dose methotrexate (HD-MTX) is the first line of treatment and can be associated with
radiation therapy [125]. However, it has been reported than more than 50% of patients
suffering from PCNSL are subject to recurrence, and the use of systemic HD-MTX has long
been described to cause severe adverse effects such as kidney failure [125].
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There are currently 23 clinical trials investigating potential lines of treatments, with
the use of other chemotherapeutic drugs being the main source of research in the field [126].
The contemporary focus relies on the optimization of current treatments and, in order
to do so, clinicians looked closely at related tumors, such as, for instance, glioblastomas
multiform (GBMs) or diffuse large B-cell lymphomas (DLBCLs). DLBCLs display many
pathophysiological features resembling the ones of PCNSLs, and the standard treatment
for this pathology is doxorubicin (DOX) [127]. On the other hand, and in spite of decades
of massive investigations, GBMs remain one of the most deadly types of brain cancer,
and the use of nanoencapsulated drugs has been suggested as a potential promising
alternative [128,129].

As such, a study from 2019 tried to reconciliate these features by synthesizing conju-
gated nanoparticles loaded with DOX for the treatment of PCNSL [130]. In their study, the
authors used an approach previously reported in the literature which aimed to target low-
density lipoprotein receptor-related protein (LRP) [131]. These receptors were found to be
overexpressed on the BBB and to mediate directly the transcytosis of several ligands across
this barrier [132]. Angiopep-2, a specific ligand of LRPs, exhibiting strong brain penetration
and transport capability, was used as a targeted group in this work, with the design of
ANG-conjugated poly(ethylene glycol)-b-poly(e-caprolactone) (PEG-b-PCL) nanoparticles
(APP) loaded with the chemotherapeutic DOX agent (mean size ~ 42 nm). Flow cytometry
and confocal laser microscopy analysis showed that APP nanoparticles were efficiently
internalized in the bEnd.3 brain cell line and that this process was thoroughly mediated
by ANG. In addition, the authors performed MTT assays on the SU-DHL-2 lymphoma
cell line, which showed the potent cytotoxic effect of APP DOX NPs but to a lesser extent
compared with free DOX. Finally, and perhaps most interestingly, the in vivo effect of APP
DOX-loaded nanoparticles was evaluated and showed significantly better survival times
than PP DOX-loaded nanoparticles or free DOX, with a 26.1-day median survival vs. 19.2-
and 18.1- for DOX-loaded nanoparticles and free DOX, respectively. This assay, performed
on a PCNSL xenograft tumor model generated by intracranial injection of SU-DHL-2-Luc
cells, also proved that the tumor area was significantly smaller after APP DOX treatment,
suggesting that this formulation could be a viable therapeutic option for patients suffering
from PCNSL.

Table 3 hereafter briefly summarizes the rare CNS disorders related to the development
of nanotherapeutics within this work.

Table 3. Nanotherapeutic approaches currently reported for rare CNS disorders.
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Table 3. Cont.

Strate Summa Example(s) of Biological Model or References
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pathological conditions, while !
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receptors at the surface of brain Primary central
Enhance BBB Passage endothelial cells. Following nervous system In vivo (mice) [130]

ligand-receptor binding,
transcytosis is mediated and drugs
are delivered to the brain tissue in
an enhanced fashion.

lymphoma (PCNSL)

4. Future Directions and Conclusions

Thanks to novel better diagnostic tools and improved disease knowledge, a multitude
of rare CNS disorders can now be clearly characterized. As a consequence, this last decade
has seen a surge in the discovery of new and rare pathologies which have never before
been reported in the literature. This process, however, goes along with challenges for
the scientific community, which is left without relevant, conventional therapeutic tools.
Therefore, this area provides a whole new direction to research and development in this
field, with many notable advances achieved during these past few years. Targeted gene
therapy, such as CRISPR/Cas9, holds great promises and has emerged as a powerful tech-
nology, especially for rare diseases. However, many therapeutic targets cannot currently
be efficiently accessed. These limitations, in addition to the “hindering” BBB, prompt for
the development of non-viral carriers which can assume the transport, protection, and
delivery of a wide range of molecular or sub-molecular complexes. Therefore, the use
of nanotechnology, and more specifically nanocarriers, shows great versatility, and their
ability to cross or bypass the BBB is still of tremendous importance.

Nonetheless, a noteworthy setback impeding the development of nanomedicinal ap-
proaches is the almost complete lack of information on the cellular and tissular interactions
of such nanocarriers, other than those taking place with the targeted tissue. Despite enthu-
siastic reports on the efficiency of these nanovectors in crossing the BBB and reaching the
brain parenchyma in significant concentrations, to date very few studies include data on
the immunogenicity, inflammation potential, or genotoxicity of these nanoobjects. These
missing data not only affect nanocarriers designed to treat rare CNS pathologies but signifi-
cantly impact the potential clinical translation of all these brain-related nanotherapies. This
is why a marked and sustained effort from the scientific community must be undertaken to
overcome this “gap in knowledge” and ensure a viable future for these nanotherapeutic
alternatives.

Finally, the access to such technologies can also be a high-cost burden, despite renewed
efforts from worldwide health entities and patient associations to financially support drug
discovery and novel therapeutic strategies. This is especially true in developing countries,
where a non-negligeable number of orphan/rare diseases are reported. This highlights
even more the relevance of nanotherapeutics as diagnostic tools, with several CNS rare
diseases showing a much better outcome when identified and treated early.

As such, we hope that our review will help in stimulating efforts from the scientific
community to further identify specific probes, biomarkers, or nanocarriers which could
help in expanding our knowledge on rare neurological diseases and nanomedicine.
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