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Resumé 

Les canaux ioniques sont des complexes macromoléculaires clés exprimés dans tous les types 

de cellules et sont impliqués dans divers processus physiologiques, y compris la génération et la 

propagation de potentiels d'action. Des canaux défectueux conduisent à des maladies graves, 

notamment l'épilepsie, des arythmies et des syndromes douloureux, ce qui en fait une cible 

potentielle intéressante pour le développement de médicaments. Pour améliorer notre 

compréhension de ces assemblages biologiques et éventuellement trouver des traitements 

spécifiques pour les canalopathies, il est crucial d'étudier la structure et la fonction des canaux 

ioniques. L'objectif principal de cette thèse a été d'étudier ce type de détails structurels et 

fonctionnels pour trois canaux ioniques associés aux domaines des capteurs de douleur et des 

canaux potassiques voltage-dépendants en utilisant des techniques de fluorescence et 

d'électrophysiologie. 

Dans le premier projet, nous avons étudié la stœchiométrie des canaux hétéromères 

Kv2.1 / 6.4 (chapitre trois). La technique du décompte de sous-unités isolées (single subunit 

counting :ssc) permet de compter les sous-unités marquées par fluorescence d’un complexe isolé 

en déterminant le nombre d'événements de photoblanchiment, qui apparaissent en sauts 

irréversibles vers le bas sur les traces de fluorescence. Pour désigner la stœchiométrie la plus 

probable, nous avons utilisé des calculs de probabilités pondérées et avons constaté que les 

canaux Kv2.1 / 6.4 s'expriment dans un arrangement 2 : 2. Plus précisément, les études 

fonctionnelles des canaux concatémériques montrent que les sous-unités Kv6.4 et 2.1 doivent 

être disposées de manière alternée. 

Le deuxième projet était également basé sur des expériences de SSC et visait à déterminer 

l'état oligomérique du nouveau canal ionique TACAN (chapitre quatre). Nous avons trouvé une 

portion significative de canaux intracellulaires, ce qui a provoqué une fluorescence de fond dans 

les expériences de SSC traditionnelles réalisées avec les cellules mammifères. Pour améliorer le 

rapport du signal sur bruit de fond, nous avons effectué des expériences de SSC sur des canaux 

purifiés qui ont été immobilisés sur des lamelles de verre fonctionnalisées Ni-NTA. En utilisant la 

méthode de calcul décrite dans le premier projet, nous avons trouvé différents états 
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oligomériques et proposons que les canaux TACAN natifs s'assemblent en tétramères qui sont 

instables lorsqu'ils sont solubilisés dans un détergent. 

Dans le dernier projet, nous avons étudié la relation structure-fonction de la sous-unité 

auxiliaire DPP6 pour les canaux Kv4.2 (chapitre cinq). Ici, nous avons progressivement tronqué le 

grand domaine extracellulaire de 700 acides aminés de DPP6 et étudié son effet sur les courants 

macroscopiques en utilisant la technique du cut-open voltage clamp. Nous avons constaté que 

les sous-unités DPP6 avec un domaine extracellulaire court ne parviennent pas à moduler les 

propriétés du canal aussi efficacement que la DPP6 pleine longueur. Plus précisément, la seconde 

moitié du domaine extracellulaire b-propeller de DPP6 est responsable d'une inactivation du canal 

considérablement accélérée. Sur la base de la structure cristalline du domaine extracellulaire, 

nous avons proposé qu'un domaine b-propeller stable et possiblement la formation de dimères 

DPP6 sont responsables de la déstabilisation efficace de l'état du canal ouvert. 

 

 

Mots-clés : canaux ioniques, Kv2.1 / Kv6.4, TACAN, Kv4.2, DPP6, single subunit counting, cut-

open oocyte voltage clamp, fluorométrie en voltage imposé. 

  



 IV 

Abstract 

Ion channels are key macromolecular complexes expressed in all cell types and are involved 

in various physiological processes including the generation and propagation of action potentials. 

Defective channels lead to severe diseases including epilepsy, arrhythmias and pain syndromes 

making them an interesting potential drug target. To improve our understanding of these 

biological assemblies and eventually find specific treatments for channelopathies, it is crucial to 

study the structure and function of ion channels. The main purpose of this thesis has been to 

investigate such structural and functional details of three ion channel complexes from the field of 

pain sensors and voltage-gated potassium channels using fluorescence and electrophysiological 

techniques. 

In the first project, we studied the stoichiometry of heteromeric Kv2.1/6.4 channel complexes 

(chapter three). Single subunit counting (SSC) allows to directly count the number of fluorescently 

labeled subunits by determining the number of irreversible, step-wise photobleaching events. To 

determine the most probable stoichiometry, we used weighted likelihood calculations and found 

that Kv2.1/6.4 channels express in a 2:2 arrangement. More precisely, functional studies of 

concatemeric channels (performed by our collaborators) illustrate that Kv6.4 and 2.1 subunits 

need to be arranged in an alternating fashion. 

The second project was also based on SSC experiments and aimed at determining the 

oligomeric state of the novel ion channel TACAN (chapter four). We found a significant amount 

of channels in the intracellular which caused background fluorescence in traditional SSC 

experiments performed in cells. To improve the signal to background ratio, we performed SSC 

experiments on purified channels that were immobilized on Ni-NTA functionalized glass 

coverslips. Using the model selection method described in the first project, we found different 

oligomeric states and propose that native TACAN channels assemble as tetramers which are 

unstable when solubilized in detergent. 

In the last project, we investigated the structure-function relation of the auxiliary DPP6 

subunit in Kv4.2 channel complexes (chapter five). Here, we progressively truncated DPP6’s 700 
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amino acids long extracellular domain and studied its effect on macroscopic currents using the 

cut-open voltage clamp technique. We found that DPP6 subunits with a short extracellular 

domain fail to modulate the channel properties as efficiently as the full length DPP6. More 

precisely, the second half of the extracellular b-propeller domain of DPP6 is responsible for 

drastically accelerated channel inactivation. Based on the crystal structure of the extracellular 

domain, we proposed that a stable b-propeller domain and possibly DPP6 dimer formation is 

responsible for destabilizing the open channel state efficiently. 

 

 

Keywords : ion channels, Kv2.1/Kv6.4, TACAN, Kv4.2, DPP6, single subunit counting, cut-open 

oocyte voltage clamp, voltage-clamp fluorometry. 
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You must never think of the whole street at once, understand? 
You must only concentrate on the next step, 

the next breath, the next stroke of the broom, 
and the next, and the next. 

Nothing else. 
 

That way you enjoy your work, 
which is important, 

because then you make a good job of it. 
And that's how it ought to be. 

 
And all at once, 

before you know it, 
you find you've swept the whole street clean, 

bit by bit. 
What's more, you aren't out of breath. 

That's important, too. 
 

― Michael Ende, Momo  
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Chapter 1 – Introduction 

The brain is the most complex organ of the vertebrate’s body and therefore probably the most 

challenging to understand. 86 billion neurons with trillions of connections form the vast network of 

cells in the central nervous system that governs our body (1). While imaging and electrophysiological 

techniques uncovered the anatomical details and many of the molecular key players, the intricacies of 

countless processes remain unknown, ranging from broad questions such as, how does the brain work 

and what makes up our consciousness, to specific ones, such as which molecular structures are involved 

and how they influence each other. Naturally, these unsolved puzzles attract attention in many diverse 

scientific fields and studying the brain and nervous system has developed into an interdisciplinary 

research pursuit. 

The electrical signals in the nervous system are generated primarily by ion channels. Ion channels 

are estimated to make up more than 1 % of the human protein-coding genes (2-4), which can be 

grouped into four major groups according to their gating mechanism: mechanically-gated, voltage-

gated, ligand-gated, and constitutively open (figure 1.1). All ion channels are membrane proteins that 

have an ion conducting pore spanning from one side of the membrane to the other. Through this pore, 

ions flow selectively or non-selectively along the electrochemical gradient depending on the structural 

details of the pore. Each ion channel group can be subdivided into families of channels that have distinct 

structural and electrophysiological properties. Heteromerization of channel subunits and variable 

recruitment of auxiliary subunits further diversify the ion channel landscape. As such, the process of 

assembly of the ion channel complexes have come into the focus of biophysical and -chemical research. 

In this thesis, I will present my work on the structural details of the assembly of different ion channel 

complexes. 
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Figure 1.1 Ion channel groups 
Cartoon representation of mechanically-gated, voltage-gated, ligand-gated and constitutively open ion channels. 
Channels are differentiated by their structure and mode of activation, highlighted in red: pressure, change in the 
membrane potential, binding of ligands. 

Missing or insufficient structural data form a key obstacle researchers need to overcome to better 

interpret channel function and rationally design new therapeutics. Ion channels are a vital component 

of the nervous system and disturbed channel function can result in severe neurological diseases (5-7) 

making them an interesting potential drug target. However, some of these ion channels are 

ubiquitously expressed rendering the development of new treatments that do not cause severe side 

effects extremely difficult. This is why fundamental research that aims at elucidating structural details 

is not only integral for the advancement of knowledge in the respective field but also for the 

development of new treatments. Therefore, it is worthwhile to study the structure-function relation of 

channels with their tissue-specific modulatory subunits (chapter five), the stoichiometry of heteromeric 

channel complexes (chapter three) and particularly the structural basis of novel proteins (chapter four). 

This thesis presents the structural investigation of three different ion channel complexes from the field 

of pain sensors and voltage gated potassium channels. I will provide the background to each after 

introducing biological assemblies of ion channels. 
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1.1 Biological Assemblies of Ion Channels 

Determining the number of subunits within an ion channel complex is key for understanding 

structure-function relationship, especially for novel proteins that could serve as attractive drug targets. 

On the most basic level, homomeric channel structures dictate the intrinsic mechanisms before 

modulatory subunits alter the channel structure and function. Generally, distinct ion channels are 

assembled by up to eight subunits (figure 1.2). Mechanosensitive Piezo channels and ATP-gated P2X 

receptors ion channel family members form trimeric structures (8-10). Many ion channel families, 

including the large superfamily of voltage-gated ion channel members, but also the transient receptor 

potential (TRP) channel family (11) and ionotropic glutamate receptors (12, 13) feature four subunits. 

Pentameric arrangements have been demonstrated for the ligand-gated cys-loop receptor ion channel 

family (14, 15), while gap junction proteins (connexin) and the volume-regulated SWELL1 channel are 

composed of six subunits (16, 17). Channel arrangements with up to eight subunits are also possible 

and have been reported for other gap junction components and pore forming toxins like Anthrax and 

hemolysins (18-25). 

More specifically, channels can be either formed by separate subunits or form pseudo-multimers. 

For example, the voltage-gated potassium (Kv) channels are tetramers, comprising four separate 

subunits that form a single central ion conducting pore (26-29). We can call these “true” tetramers in 

comparison to the voltage-gated sodium (Nav) and calcium (Cav) channels that form pseudo-tetrameric 

structures from a single polypeptide chain but containing four analogous repeats (30-32). Two pore 

domain potassium (K2P) channels like the mechanosensitive TRAAK also form pseudo-tetrameric 

channels but contain two individual polypeptide chains (33, 34). 
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Figure 1.2 Examples of homomers with distinct subunit arrangements 
High resolution crystal or EM-structures, individual subunits are coloured in shades of blue. Structures were 
obtained from following pdb files 3UM7 (TRAAK (33)), 5Z10 (Piezo1 (35)), 2R9R (Kv1.2 (27)), 4TNV (glutamate-
gated chloride channel (GluCl) (36)), 6DJB (SWELL1 (16)), 7AHL (aHL (a-Hemolysin) (19)), 3B07 (gHL (g-Hemolysin) 
(37)). 

The structure and function of ion channels in the body are diversified by heteromerization. This 

enables cells to produce channels with modified properties by breaking the channel’s symmetry and 

regulating channel function by changing the subunit’s stoichiometric arrangement (38). Such a 

diversification has been demonstrated for many ion channels including K2P channels, voltage-gated 

potassium channels, the ligand-gated cys-loop receptor ion channel family and connexins (38-43). 

Additionally to heteromerization, channel functions are further finetuned by coassembly with 

auxiliary (b-) subunits. These b-subunits are diverse and can be localized in the plasma membrane or 

soluble in the cytoplasm. Their functions range from aiding trafficking and stabilizing channels in the 

membrane (44-46) to modulating channel gating (47-49). The underlying mechanisms of these 

modulating effects on channel gating often remain unclear. However, since ion channels cycle between 

ion permeable and non-permeable conformations and the relative stability of each state impacts the 

channel’s function, allosteric interactions with auxiliary subunits might bias the equilibrium by 
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stabilizing or destabilizing the different channel states (50, 51). Such allosteric interactions are of course 

not limited to auxiliary subunits but play a vital role within the channels themselves. Especially gated 

ion channels feature spatially distinct domains that are either covalently linked or interact through non-

covalent interactions. Conformational changes in one domain can then allosterically modulate the 

conformation of another domain over a long range (13, 52-55). This makes gating mechanisms complex 

and difficult to fully decipher. 

 

1.2 Pain 

One of the major research questions has always been how we interact with our surroundings. The 

transmission and reaction to external information is essential to our survival but also crucial for social 

interactions. Our five basic senses keep us informed about our immediate environment and the 

research of the last decades has provided some insights into how our basic senses function. However, 

many fundamental questions remain unanswered. 

The molecular determinants for sight, smell and taste were identified first and their workings have 

since been intensively studied (56-62). In all three of these senses, the external stimulus — a photon, 

odorous or taste molecule — activates specific photo- and chemoreceptors, respectively (63-65). These 

receptors belong to the G-protein coupled receptor (GPCR) family, the largest class of cell surface 

proteins. Receptor activation results in the cascade of signal transduction (66), which in sensory cells, 

ultimately triggers action potentials in nerve fibers that relay information to the brain (67). But not all 

senses rely on this mechanism. Indeed, the sensation of salty and sour tastes relies on ion channels (68-

71). Furthermore, GPCR activation and signal transduction via secondary messengers are too slow to 

explain the temporal resolution necessary for the two remaining basic senses, touch and hearing. Early 

on, researchers proposed that in this case, ion channels must be involved (figure  1.3) (72-74). 
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Figure 1.3 Molecular determinants of the five basic senses 
Sight, smell and taste (with the exception for salty and sour taste) receptors are GPCRs (left). Touch and sound 
transduction is mediated by ion channels (right). 

Despite the early discovery of sensory cells in the skin, the identity of mechanosensitive ion 

channels responsible for the sensation of touch remained elusive for a long time (75). In the meantime, 

researchers focused on identifying neuronal pathways from the periphery to the central nervous 

system. Generally, three neurons are involved in the transmission of sensory stimuli to the brain. The 

cell bodies of primary afferent neurons are located in the Dorsal Root Ganglia (DRG). Their axons 

innervate the skin and project to the dorsal horn of the spinal cord. Here, axons take different routes 

to the brain. The fast-conducting, heavily myelinated Ab nerve fibers of primary neurons involved in 

fine touch take the phylogenetically new route from the spinal cord to the brain (76). They immediately 

turn upwards in the dorsal horn to the brainstem, where they synapse with secondary neurons that 

decussate and relay information to the thalamus. A third neuron continues to the somatosensory 

cortex. On the other hand, neurons involved in mechanically induced pain sensing, also called 

nociceptors, do not ascend immediately, but synapse in the dorsal horn with second order neurons that 

decussate to the contralateral site of the spinal cord and ascend through the phylogenetically older 

(anterolateral spinothalamic) tract from the spine to the thalamus. Again, a third neuron relays the 

sensory information from the brainstem and thalamus to the limbic system and the somatosensory 

cortex, respectively (figure 1.4) (77-79). Nociceptive fibers are divided into thinly myelinated A∂- and 
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unmyelinated C-fibers, which conduct pain-induced impulses at medium and slow speed, respectively. 

This duality results in the perception of a first, well localized sharp and a second, dull and lasting pain 

sensation (80-84). Inhibitory neurons and nerve damage can further modify the propagation of 

impulses. 

 

Figure 1.4 Schematic diagram of ascending somatosensory pathway 
Non-noxious and noxious stimuli are transduced by specific molecules that activate different pathways, blue and 
red respectively. Three neurons are involved in the ascending pathways, coloured dark to light. Cell bodies of 
first order neurons are located in the dorsal root ganglia (DRG). Impulses of light touch are conducted along thick 
Ab-fibers (blue), which enter the dorsal horn and directly turn upwards in the spinal cord. In the brainstem, they 
synapse with the second order neuron, which decussates to the contralateral side (high decussation) and 
synapses with the third order neuron on the thalamus. Impulses of painful stimuli are conducted along thinner 
A∂ and C-fibers (red), which synapse with second order neurons in the dorsal horn. The second order neuron 
decussates to the contralateral side of the dorsal horn (low decussation) and ascend to the brainstem and 
thalamus. Third order neurons terminate in the structures of the limbic system and somatosensory cortex. 
Interneurons (not shown) can modulate the transmission of impulses between neurons. 

The search of molecular determinants responsible for the transduction of touch stimuli, led to the 

discovery of several potential mechanotransducers (85, 86) However, until recently, little was known 
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about the identity of the molecular determinants of touch and noxious touch transduction in humans. 

In 2010 the Patapoutian laboratory discovered the mechanically activated ion channels Piezo1 and 

Piezo2 (87). These channels are structurally distinct from other mechano-sensitive ion channels and 

form gigantic propeller-shaped trimers with a cation-conductive pore at the center. Each subunit 

consists of at least 26 transmembrane helices (8, 35, 88, 89) (figure 1.5). Functionally, Piezo2 has been 

identified as the key player for the transduction of non-noxious mechanical forces in the skin. However, 

Piezo2 is not involved in the transduction of painful mechanical forces (90). Piezo1 is also no candidate 

for such a pain-sensor, but is expressed in endothelial cells and required for vascular development (91). 

Efforts to identify the elusive molecular determinant for mechanically induced pain transduction 

led most recently to the discovery of a new mechano-sensitive ion channel called TACAN (92). This 

channel is expressed in a subgroup of nociceptors and a knockout of this channel reduces the response 

to noxious touch but not to gentle touch (92). Intensive investigation of TACAN’s functions validate its 

candidacy as mechanical pain transducer. Electrophysiological studies demonstrate the presence of a 

cation-conducting pore and opening of the channel results in the depolarization of somatosensory 

neuron, triggering action potential propagation along the nerve fibers to the brain (92). TACAN subunits 

are proposed to feature six transmembrane helices but no detailed structural information is yet 

available (figure 1.5). In chapter four, I will present research aimed at determining the number of 

subunits of this important new ion channel. 

 

Figure 1.5 Structures of different mechano-sensitive channels 
Cartoon representation of single subunits. Amino- and C-termini are marked by N and C, respectively. Piezo 
features at least 26 transmembrane helices (TMs) (black) arranged into six transmembrane helical units of four 
TMs plus two pore forming helices at the C-terminus, three more transmembrane helical units (grey) were 
unresolved in Piezo1 (35), but resolved for Piezo2 (89). TACAN is predicted to comprise six TMs. 
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1.3 Voltage-gated Potassium Channels 

The other class of ion channels whose assembly properties I have studied belong to the family of 

voltage-gated potassium (Kv) channels. Typical Kv channels have four subunits, each consisting of six 

transmembrane helices and a pore loop. The first four helices (S1-S4) of each subunit make up the 

peripheral voltage sensing domains, featuring a positively charged S4 helix that moves following the 

electric field. The transmembrane helices S5, S6 and a so-called “pore loop” between S5 and S6 of all 

four subunits form a single ion conducting pathway in the center of the ion channel (figure 1.6) (26, 93). 

The S4-S5 linker couples the VSD to the pore domain. In Kv1-7, the voltage-sensing domains are 

positioned adjacent to the pore helices from neighboring subunits resulting in a domain-swapped 

arrangement (figure 1.6) (26, 27, 94, 95). However, Kv10-12 and Slo1, a voltage-gated potassium 

channel that can also be activated by Ca2+, adopt non-domain-swapped channel architectures, where 

the VSD is positioned adjacent to the pore helices of the same rather than the neighboring subunit (96-

98). 

 

Figure 1.6 Representative structure of a voltage-gated channel 
Crystal structure (2R9R) of the tetrameric Kv1.2 channel arrangement viewed from the extracellular (left) and 
the single subunit viewed from the side (middle) (27). Each subunit comprises six transmembrane helices (S1-S6) 
and a pore loop. The voltage-sensing domains (S1-S4) are located in the periphery, the pore helices (S5-S6) form 
a central ion-conducting pore. Four potassium ions (red spheres) are stabilized by the pore loop. The long S4-S5 
linker helix is nearly parallel to the lipid bilayer and connects the VSD and pore helices. Cartoon representation 
(right) of the tetramer illustrates the domain swapped arrangement, where the VSD of one subunit is adjacent 
to the S5-S6 pore helices of the neighboring subunit. 
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Kv channels make up the most extensive group of voltage-gated channels, with 40 members 

belonging to 12 subgroups (Kv1-12). Members are renowned for shaping action potentials in the 

nervous system. However, they are ubiquitously expressed and are involved in various other tasks such 

as regulation of neuronal excitability and dendritic signal transduction, proliferation, apoptosis and 

determining the heart rate (99-106). It is obvious then, that altered functions of these channels can lead 

to a variety of diseases ranging from ataxia and epilepsy to heart diseases and pain syndromes (7, 107-

113). 

The electrical signal conduction in neurons depends on different voltage-gated ion channels, 

including Kv channels, that together generate action potentials. The initial discovery of action potentials 

by Bernstein and the subsequent model by Hodgkin and Huxley demonstrate the nerve cell’s selective 

permeability of potassium and sodium ions (114-116). The rising phase of the action potential is 

governed by fast-opening voltage-gated sodium channels. Their activation leads to sodium influx and 

depolarization of the membrane. At more depolarized potentials, sodium channels inactivate and more 

slowly activating voltage-gated potassium channels open, which leads to an outflux of potassium ions 

and the repolarization of the membrane (figure 1.7). 
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Figure 1.7 Basic steps of the action potential 
The action potential can be described by six steps (left to right). 1) Pre-stimulus, the membrane is at resting 
potential. 2) An incoming stimulus depolarises the membrane, 3) when the threshold is reached Nav channels 
open, further depolarizing the membrane. 4) At very positive membrane potentials, Kv channels activate and Nav 
channels inactivate, resulting in the repolarization and hyperpolarization of the membrane. 5) All voltage-gated 
channels are closed and 6) constitutively open K-channels re-establish the resting potential. 

The rich firing patterns of the human brain depend on the localized expression and finetuned 

activation of 145 voltage-gated ion channels as well as calcium-activated and constitutively open 

potassium channels (117-120). One important voltage-gated potassium channel family member is 

Kv2.1, studied in chapter three, which is dominantly expressed in the hippocampus and cortex (121, 

122) and renowned for its key role in learning and memory formation (123). Kv2.1 channels belong to 

the group of delayed rectifiers; they activate after significant depolarization and only slowly inactivate 

(124). The resulting potassium currents regulate action potential repolarization, influence neuronal 

excitability and prevent action potential back propagation due the channel’s localized expression at the 

axon initiation segment as well as on the soma and proximal dendrites of neurons (figure 1.8) (122, 

125). Kv4.2, studied in chapter five, is another voltage-gated potassium channel subunit that influences 

action potentials and prohibits backpropagation. In neurons of the central nervous system, Kv4.2 
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channels are, opposed to Kv2.1, expressed in more distal dendrites (figure 1.8) where they activate at 

small depolarizing voltages and feature fast inactivating A-type currents. Kv2.1 and 4.2 channels in the 

nervous system act as molecular “breaks”. Channel modifications that result in reduced potassium 

efflux are the molecular equivalent to taking the “foot of the break” and contribute to neuronal 

hyperexcitability, which has been linked to seizures, learning deficiencies and chronic neuropathic pain 

(121, 123, 126-128). 

 

Figure 1.8 Expression of voltage-gated channels in neurons of the CNS 
Cartoon of a neuron illustrating the localized expression of Kv4.2 (black) in distal dendrites, Kv2.1 (grey) at the 
axon initial segment (AIS) as well as on the soma and proximal dendrites, Kv1 (orange) at the AIS and Nav1 
(green). The localized expression and finetuned voltage-dependent opening of the different channels results in 
the conduction of impulses from dendrites to the synapses. Figure adapted from Dumenieu et al., 2017 (129). 

 

1.3.1 Biological Assemblies of Kv Channels 

Ion channels are expressed ubiquitously in the body, where their properties are further finetuned 

to the tissue specific requirements by alternative splicing (130-134), post-translational modifications 

(135-138), formation of heteromeric complexes (139-143) and co-expression with auxiliary subunits 

(48, 144-150). Below, I will further introduce the diversification and modulation of Kv channel 

assemblies, that are relevant to this body of work. 
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1.3.1.1 Silent Subunits 

Kv channel subunits are closely related and specific interactions between the subunits dictate their 

oligomerization compatibility. Members Kv1-6, -8 and -9 of the voltage gated potassium channel family 

feature an amino-terminal tetramerization (T1) domain that helps discriminating between different 

subunits (151-153). For Kv1-4, this domain mediates subunit interactions between members of the 

same subfamily that form functional homo- or heterotetrameric channels while prohibiting 

heteromerization between members of these four subfamilies (153-157). The interaction between two 

compatible T1 domains in the endoplasmic reticulum is thought to be the first step in Kv channel 

assembly, since these domains interact while the nascent protein is still attached to the ribosome (158). 

Dimerized Kv subunits subsequently form tetrameric channel structures and it has been shown, that 

the interaction sites of the monomer-monomer interface differ from the sites that later mediate 

tetramer formation (159).  

Not all members of the voltage-gated potassium channel superfamily form functional channels by 

themselves but act as channel modulators. Of the 12 Kv channel subfamilies, Kv5, -6, -8, and -9 

constitute the distinct group of such modulatory subunits. Despite their general sequence similarity to 

Kv1-4 subunits, these subunits fail to form functional homotetramers and are therefore referred to as 

electrically “silent” KvS subunits (160, 161). While their tetramerization (T1) domains are self-

incompatible, replacing the T1 domain of KvS subunits with T1 domains that otherwise mediate 

homotetrameric channel formation, does not result in KvS homotetramers in the plasma membrane, 

indicating that other sites are crucial for subunit interaction and trafficking (162-164). However, 

extensive mutational analysis did not yet succeed at producing a conductive homotetrameric KvS 

channel (162-164). KvS subunits act as channel modulators by forming heterotetramers with Kv2 

subunits, which further diversifies Kv channel functions (139). Compared to Kv2 tetramers, Kv2/KvS 

heterotetramers feature altered electrophysiological channel properties (figure 1.9) (161, 165-169). 

More specifically, heteromerization with Kv6.4 results in reduced current densities and a 

hyperpolarizing shift in the voltage-dependence of channel inactivation thereby making neurons more 

excitable when Kv6.4 is expressed (151, 162). 
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Figure 1.9 Effect of silent Kv subunits 
Cartoon illustrating the homotetrameric Kv2 (left) and heterotetrameric Kv2/KvS (right) channel arrangements 
mediated by the tetramerization domains T1 (left). KvS subunits (blue) modulate the voltage dependence of Kv2 
activation and inactivation as indicated by the GV and IV curve, respectively (right). Figure adapted from 
Bocksteins, 2016 (39). 

To comprehend the mechanistic basis underlying altered channel properties, electrophysiological 

and fluorescence based structural investigations have been conducted. Electrophysiological 

investigations on the voltage sensor movement in Kv2.1/6.4 heteromers demonstrated that the 

hyperpolarizing shift in inactivation is accompanied by a distinct movement of the voltage-sensing S4 

helix at hyperpolarized potentials, linking voltage sensor movement to channel inactivation (170). 

Understanding the channel complex architecture is vital and the first stoichiometric investigation was 

performed on Kv2.1/Kv9.3 channels which reported a single silent subunit per heterotetramer (171). 

Researchers tacitly assumed that distinct Kv2/KvS heteromers adopt identical subunit stoichiometries, 

but we (172) and others (173) observed a more flexible channel arrangement which will be presented 

in chapter 3. 

1.3.1.2 Auxiliary Subunits of Kv4 

Heterologous Kv4 channel expression does not result in macroscopic currents matching the 

neuronal Kv4 currents and co-expression with auxiliary proteins is necessary to modulate the gating 

kinetics and reconcile the observed currents (47, 48, 144, 174-179). Kv Channel Interacting Proteins 

(KChIPs) and Dipeptidyl Peptidase (DPP) like proteins are the two major auxiliary subunits modulating 

native Kv4 currents through distinct mechanisms (174, 178). 

Kv Channel Interacting Proteins (KChIP) are soluble proteins, that bind to the proximal N-terminus 

of Kv4 subunits and thereby impair fast inactivation (175). Sites in the tetramerization domain T1 and 
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C-terminus of the channel subunit further stabilize the clamp-like binding of the auxiliary subunit (180-

182). The degree of modulation of the channel’s properties is linked to the variable number of bound 

KChIP subunits (183). KChIP associates to the channel subunits early in the biosynthetic pathway and 

increases trafficking to the plasma membrane (178, 184-186). The binding of maximal four KChIP 

proteins to the Kv4 tetramer thus results in increased current densities, slowing of the early stage of 

macroscopic current inactivation and accelerated recovery from inactivation (47, 175). 

Dipeptidyl peptidase (DPP)-like proteins are large, enzymatically inactive single transmembrane 

proteins, that are integral to the native Kv4 channel complexes but are also found in the plasma 

membrane in the absence of Kv4 subunits (130, 131, 176, 177, 187-189). The exact structure of the 

Kv4/DPP complex is unknown, but the importance of the transmembrane and short cytoplasmic N-

terminal domain for the interaction with the channel and its modulation has been demonstrated (132, 

177, 179, 188, 190, 191). The stoichiometry of DPPs and Kv4 channels is flexible and, as for KChIPs, up 

to four auxiliary DPP subunits can bind (192, 193). Distinct interaction sites between DPPs, KChIPs and 

Kv4 subunits allow for simultaneous binding of the two auxiliary proteins to the channel complex (figure 

1.10) (188). DPP’s primarily interact through their transmembrane helix with the voltage sensing 

domain of the channel. This promotes the voltage dependent S4 movement, boosting the voltage 

sensing conformational change (194). As a result, DPPs cause a hyperpolarizing shift in the conductance-

voltage relationship and inactivation. Like KChIP, DPP expression increases trafficking to the plasma 

membrane leading to elevated macroscopic Kv4 currents. But contrary to the modulation by KChIPs, 

DPPs also increase the single channel conductance of Kv4 channels (48, 144, 195). Furthermore, DPP 

subunits accelerate not only recovery from inactivation like KChIPs, but also accelerate inactivation 

kinetics themselves (48, 195). 
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Figure 1.10 Model of Kv4/DPP6/KChIP channel complex 
Cartoon modelling the channel complex composed of Kv4 (black), DPP6 (blue) and KChIP (red). Two subunits of 
each component are shown. The transmembrane helix of DPP6 interacts with the VSD while KChIP sequesters 
the N-terminal ball of Kv4 in a clamp-like structure. 

The modulatory effect of the large extracellular domain of DPPs on Kv4 channels remains unclear. 

The crystal structure of the isolated domain demonstrates two distinct structural features; a non-

functional a/ß-hydrolase domain closer to the transmembrane helix and an eight-bladed ß-propeller 

structure (196). The extracellular domain mediates contacts with the extracellular matrix and is 

involved in cell adhesion and motility (45). It is also important for channel trafficking from the 

endoplasmic reticulum to the plasma membrane and stabilization of the channel complex at the cell 

surface, (197) but the role of the extracellular domain on channel gating remained unchallenged. As a 

first step in understanding the effect of the extracellular domain on channel complexes, we aimed at 

identifying which part of the approximately 700 amino acid long extracellular domain confers the gating 

modulation. This research is presented in chapter five and lays a foundation for finding specific 

interactions sites that could serve as drug targets. 
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1.3.1 Gating of Voltage-gated Potassium Channels 

In order to explain how coexpression of silent and auxiliary subunits might result in functional 

changes of the voltage-gated ion channels, it is important to understand the basic gating mechanism. 

Extensive studies focused on the structure-function relation of Kv channels, but various details remain 

unclear. Ion channels can adopt four main states: resting, partially activated, open and inactivated 

(figure 1.11). The kinetic properties of transitions between these states govern the open probability of 

the channel and thereby the shape of the macroscopic current. 

 

Figure 1.11 Simplified model of conformational states of Kv channels 
Kv2 and Kv4 channels can be in four main conformational states: resting, partially activated, open and 
inactivated. Kv2.1 and 4.2 channels preferentially inactivated from a pre-open, partially activated state. Vestigial 
inactivation from the open state can occur in Kv4.2 channels. Only the open state (blue) allows for ion conduction 
through the pore. 

1.3.2.1 Channel Activation and Selectivity 

Channel activation describes the transition from the closed to open state (figure 1.12). As 

mentioned above, each channel features four voltage sensing domains (VSDs) at the outer edge of the 

channel. They independently change their conformation according to the electric field. The S4 helix of 

KV channels is the key feature involved in voltage-sensing. Four to six positively charged side chains in 

the helix detect changes in the electric field. Upon depolarization of the membrane, the positive charges 

of the S4 are driven away from the now more positively charged intracellular and lead to a 

conformational change (198-200). Rather than displacing the gating charges across the entire bilayer, 

water-filled openings project the electric field into the lipid bilayer, so that the helices vertically and 

radially displace, rotate and tilt in the membrane to accommodate for the change in the electric field 

(201-207). 
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Once all four VSDs are in an activated conformation, they open the S6 channel gate cooperatively 

in two steps (29, 208, 209). The molecular mechanism through which the movement of the VSD results 

in pore opening is not fully understood. In the closed state, the C-terminal ends of the S6 segments 

adopt a crossed conformation on the intracellular side of the pore, blocking ions from passing through. 

The displacement of the S4 helix conveys force directly onto the intracellular S4-S5 linker, which 

covalently links the VSD to the outer pore helix and more importantly anneals with the C-terminal S6 

(53, 210, 211), alluding to the importance of this structural feature for coupling voltage sensing and 

pore opening. Indeed, the linker motion is complex and displaces in distinct steps during gating (212). 

Furthermore, numerous non-covalent intersubunit interactions between the VSD, S4-S5 linker and the 

pore helices are crucial for stabilizing both closed and open pore conformations (208, 213-215). 

 

Figure 1.12 Channel activation 
Cartoon illustrating the activation of voltage-gated ion channels. Two of four subunits are shown. In the resting 
state (left), the voltage-sensing S4 helix is deactivated and the S6 gate is closed. Upon depolarization of the 
membrane, the VSD is activated and the S6 gate is open. Red arrows highlight the main conformational changes 
leading to pore opening. 

Once the intracellular S6 gate is opened, K+ ions can pass from the intracellular side, through the 

selectivity filter of the pore to the extracellular side of the channel. The selectivity filter is the narrow 

part of the pore close to the extracellular side of the channel responsible for the efficient and selective 

K+ conductance along the electrochemical gradient. Key feature of this structure is the re-entrant loop 

between segments S5 and S6, which carries the signature GYG motif. The corresponding carbonyl 

oxygens of the peptide backbone are oriented towards the lumen of the pore, where they replace the 
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hydration shell of K+ ions (Figure 1.13) (216, 217). K+ ions are stabilized by the selectivity filter in a single 

file and at the same time are destabilized by repulsive forces of neighboring K+ ions, resulting in rapid 

ion conductance close to the diffusion limit (218). The specific structure of the selectivity filter disfavors 

the passage of anions, divalent cations and Na+. 

 

Figure 1.13 Ion channel pore 
Crystal structure (2R9R) of the Kv1.2 channel pore (27). Two of four subunits are shown. The re-entrant pore 
loops form the selectivity filter. The carbonyl oxygens (sticks) of the XXGYG motive stabilize the potassium ions 
(red spheres) in the pore. 

1.3.2.2 Channel Inactivation 

Independent of the conformational state of the internal gate, channels can inactivate, i.e. become 

non-conductive through multiple possible mechanisms (figure 1.14 and 1.15). These diverse 

inactivation mechanisms influence the threshold and waveform of action potentials as well as neuronal 

firing frequencies. According to the S6 conformation, inactivation can be divided into two main groups; 

open state and closed state inactivation. The former is a prevalent feature of many KV channels and 

describes the mechanism of inactivation after the channel pore opened. Closed state inactivation (CSI) 

on the other hand describes the mechanism of inactivation that takes place before the pore becomes 

conductive. Time courses of the different mechanism vary widely and macroscopic currents reflect a 

complicated combination of different inactivation mechanisms overlapping in time. According to the 

inactivation kinetics, Kv-channel-mediated currents can be divided into non- or slow-inactivating 
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“delayed rectifiers” (over seconds) like Kv2.1 and fast-inactivating “A-type” currents (over milliseconds) 

like Kv4.2. This variety in gating kinetics adds to the diversity of voltage-gated ion channel properties, 

thereby refining macroscopic currents and action potential characteristics to the tissue specific 

requirements. 

Open state inactivation can be, according to the molecular mechanism, further divided into N-type 

and C-type inactivation. N-type inactivation (NTI) is defined by the obstruction of the conducting pore 

typically by the N-terminal structure of the channel subunit (figure 1.14A). This cytoplasmic structure 

features a tethered ball-like conformation and hydrophobic interactions between this ball and the pore 

result in the obstruction of ion flow (219-221). The model KV Shaker channel from Drosophila, as well 

as Kv1.4, 3.4 and 4.2 feature such N-terminal ball and chain structures that enable them to undergo 

intrinsic NTI (222-225). However, in native Kv4.2 channel complexes, KChIP sequesters the N-terminal 

ball, suppressing NTI (175). 

The typically slower C-type inactivation (CTI) mechanism includes conformational changes at the 

selectivity filter that result in a non-conductive state (figure 1.14B). A series of crystal structures of the 

bacterial KcsA channel, which is structurally analogous to the pore domain of KV channels, demonstrate 

the flexibility of the selectivity filter during CTI (216, 226, 227). Steric clashes caused by the opening of 

the intracellular S6 gate result in the rearrangement of the selectivity filter, linking pore opening directly 

to the non-conductive state (228). The stable inactivated conformation of the selectivity filter 

destabilizes K+ ions inside the conductive pathway and is further characterized by the presence of water 

molecules trapped behind the filter, which need to be released in order for the channel to recover (228-

230). Besides the opening of the intracellular S6 gate, mutations around the selectivity filter as well as 

changes in the ionic composition of the extracellular solution and pore blockers further influence C-

type inactivation (231-234). 
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Figure 1.14 Open state inactivation 
Cartoon illustrating the inactivation of voltage-gated ion channels after opening. Two of four subunits are shown. 
A) The intracellular N-terminal ball enters the pore and blocks ion flux resulting in N-type inactivation. B) 
Conformational changes of the selectivity filter obstruct the extracellular part of the pore and block ion flux 
resulting in C-type inactivation. 

Rather than entering a non-conductive state from an open channel conformation, closed state 

inactivation (CSI) describes the state in which channels are partially activated but reluctant to open. As 

opposed to open state N- and C-type inactivation, the molecular details of CSI or U-type inactivation 

remained for a long time elusive. U-type inactivation refers to the characteristic voltage-dependence 

of inactivation that channels featuring CSI exhibit; they preferentially inactivate at sub-threshold 

depolarization (235). Channels featuring CSI include Shaker, KV1.5, KV2.1, KV3.1 and KV4 members (124, 

236-240). A recent study conducted on Kv2.1 and Kv3.1 demonstrates that an allosteric coupling 

between the S6 gate and the selectivity filter is not only involved in C-type inactivation but also in U-

type inactivation (241). However, the exact molecular mechanism remains poorly understood. 

KV4 channels are a useful model to study the underlying molecular basis for closed-state 

inactivation in KV channels (242). Opposed to other Kv-channels, KV4 channels undergo preferential CSI 

even at strong depolarization and although the N-terminal ball-and-chain structure can inactivate the 

channel through open state N-type inactivation, due to the binding of KChIP in native channel 

complexes, NTI only plays a minor role (222, 239). Moreover, KV4 open state inactivation is only 

transient and channels accumulate in a closed-inactivated state upon long depolarization (239, 243). 

Early on in the investigations studying the underlying mechanisms of CSI, it became clear that the 

voltage sensing domain adopts a dual role and is involved not only in channel activation but also in 
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inactivation (211, 244). Dougherty et al. demonstrated that CSI is accompanied by the immobilization 

of the positive gating charges in the voltage sensing S4 helix. This immobilization of gating charges is 

thought to be caused by a slow conformational change of the helix to a stable conformation that differs 

from the resting position. As a result, the voltage sensing domain becomes desensitized to depolarizing 

voltages and fails to reliably open the intracellular S6 gate (244). Mutations that affect the gating 

charges in the S4 helix influence CSI and further support the hypothesized involvement of the VSD in 

closed-state inactivation (245-247). In Shaker channel activation, the movement of the voltage sensor 

is directly coupled to the opening of the S6 gate meditated by non-covalent interactions between the 

S4-S5 linker and the pore helices of neighboring subunits (208, 213-215). In Kv4 channels, homologous 

binding sites interact dynamically and mediate transient activation as well as closed-state inactivation 

(248-250). These dynamic interactions occur within individual subunits and between neighboring 

subunits (248). Taken together, these findings paint a picture of a “slippery” S6 gate causing CSI. Upon 

weak depolarization the voltage-sensing S4 helix adopts a relaxed conformation, the S4-S5 linker 

subsequently does not interact strongly enough with the S6 gate failing to open it and thus uncoupling 

voltage sensor movement from pore opening (figure 1.15) (251). Strong depolarization on the other 

hand, increases the opening probability, but due to the preferential CSI, opened Kv4 channels end-up 

in closed-inactivated states after long depolarization. Despite the progress in understanding the 

molecular mechanism underlying CSI in individual Kv4 channels, we do not fully understand how 

modulations of the channel complex under physiological conditions alter the structure-function 

relation. 

 

Figure 1.15 Closed state inactivation 
Cartoon illustrating the inactivation of voltage-gated ion channels after opening. One of four subunits is shown. 
In the resting state (left), the voltage-sensing S4 helix is deactivated and the S6 gate is closed. Upon 
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depolarization of the membrane, the VSD is activated and the S6 gate is open (middle). Conformational changes 
of the VSD to a more stable position result in the uncoupling of the S6 pore helix and the VSD resulting in an 
closed-inactivated state (right). Red arrows highlight the main conformational changes involved in CSI. Figure 
adapted from Barghaan and Bähring, 2009 (250) 

 

1.4 Thesis Format 

Elucidating the structure-function relations of any protein complex in the body is fundamental for 

the advancement of our understanding of the healthy and pathological bodily functions. Many potential 

therapeutic drugs target these ubiquitously expressed channels but interact broadly and non-

specifically and are never approved due to undesirable side effects. It is therefore crucial to identify 

specific interaction sites that can serve as pharmaceutical drug targets. The research presented in this 

thesis lays a foundation for improving our comprehension about the structure and structure-function 

relation of three ion channel complexes. 

This thesis comprises one published article and two articles that are ready for submission. Chapter 

3 and 4 present the structural investigation of Kv2.1/6.4 and TACAN ion channels, respectively. Chapter 

3 will introduce a rigorous analysis of subunit counting data obtained from Kv2.1/6.4 expression in a 

heterologous expression system. This exhaustive analysis accompanied by a parallel 

electrophysiological evaluation by our collaborators aims at minimizing confirmation bias, a neglected 

issue often observed in studies presenting subunit counting data. Chapter 4 utilizes the same analysis 

approach on subunit counting data obtained from purified and immobilized TACAN channels. Chapter 

5 presents the work on Kv4 channel complexes. Here, data obtained from electrophysiological 

investigations helps comprehend the elusive modulatory effect of DPP6’s extracellular domain on the 

Kv4 channel. Before presenting the research, chapter two will introduce the relevant 

electrophysiological and fluorescence-based techniques used during this body of work. 
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Chapter 2 – Technical Basis 

2.1 Electrophysiology 

The third and fifth chapter present electrophysiological investigation of ion channels. Biological 

membranes form barriers between the cell intracellular and extracellular or compartments within the 

cell and exhibit specific permeabilities to ions through embedded ion channels. The asymmetric 

distribution of ions between the separated compartments results in a concentration gradient and an 

electrical potential difference, i.e. membrane potential (Vmembrane). The ion flux across the membrane is 

driven by this electrochemical gradient and changes the respective concentrations of the separated 

compartments. This, in turn, changes the membrane potential. Depending on the experiment, the ionic 

current or the change in the membrane potential can be measured. 

2.1.1 Classical Patch-clamp Method 

The patch clamp technique (1-3) enables researchers to record changes in the membrane potential 

or ionic currents from cells and isolated membranes. Changes in the membrane potential are recorded 

in the current-clamp mode, which is typically used when recording action potentials in excitable cells. 

The voltage-clamp mode, on the other hand, allows to record ionic currents and is used in the research 

presented in this thesis. The underlying principle is to seal off the plasma membrane with a “patch 

pipette” and record changes in the ionic conductance (figure 2.1A). In the voltage-clamp mode, the 

voltage is kept constant by injecting current into the system to compensate the ionic current across the 

membrane. The injected current is recorded. The patch pipette, used in these experiments to seal off 

the plasma membrane, is a narrow glass microelectrode, filled with electrolyte solution which is in 

contact with an Ag/AgCl-electrode. The tight seal between membrane and recording electrode results 

in a high resistance, which is necessary to minimize noise and any leakage between the solutions inside 

and outside the pipette and isolate ionic currents that flow directly through the membrane via ion 

channels. The recording electrode of the patch pipette connects to an amplifier to measure the current 

and to control the voltage. A second “reference” electrode is placed in the bath solution surrounding 

the cell, setting it to ground potential.  
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Three main configurations are commonly used to study either macroscopic or single channel 

currents: cell-attached, whole cell and excised patch (figure 2.1B). The cell-attached configuration 

leaves the membrane in the recording pipette intact and records ionic currents that originate from flux 

through this sealed-off area of the membrane, which is typically 1-3 µm in diameter. When the channel 

of interest is expressed at very low levels, currents obtained from cell-attached recordings are from 

single (or very few) ion channels. Another way to record single channel currents is from excised patches, 

where a small part of the plasma membrane is pulled out from the rest of the cell by pulling the pipette 

backwards. According to the orientation of the membrane, excised patches can be “inside-out” or 

“outside-out”. Furthermore, excised patches allow for a direct control of the composition of not only 

the extracellular, but also the intracellular solution. If more suction is applied in the cell-attached mode, 

the membrane breaks and the whole-cell configuration is obtained. Here, the patch pipette provides 

low-resistance access to the whole cell so that the transmembrane voltage of the entire plasma 

membrane can be controlled. All ion channels in the membrane thus contribute to the ion flux, resulting 

in macroscopic currents. 

 

Figure 2.1 Patch clamp method 
A) Illustration of the voltage-clamp technique. A patch pipette seals off a portion of the plasma membrane and 
the recording electrode measures the ionic current through the ion channel imbedded in the membrane. 
B) Different patch clamp modes. Cell-attached mode measures single channel currents through the membrane 
isolated by the patch pipette. Pulling the patch pipette away from the cell breaks the plasma membrane and 
results in an excised inside-out patch allowing for high signal to noise single channel recordings. Applying 
negative pressure (suck) through the patch pipette breaks the cell membrane open, resulting in the whole-cell 
mode, which allows for macroscopic currents to be recorded. Pulling the patch pipette away from the cell in 
whole cell mode breaks the plasma membrane and results in an excised outside-out patch allowing for high signal 
to noise single channel recordings. 
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To record large macroscopic currents from big cells like Xenopus oocytes, the two electrode voltage 

clamp (TEVC) technique is often used. As the name suggests, two electrodes, one for voltage sensing, 

the other for current injection, are used to impale the large cell and monitor the current. Due to the 

localized injection of current, the large membrane of a Xenopus oocytes might not be uniformly 

charged. This makes it impossible to resolve fast kinetics as channels are exposed to a heterogenous 

membrane voltage and currents therefore reflect the ensemble of differently clamped channels. To 

circumvent this problem, the cut open voltage clamp (COVC) technique was developed (4-7). 

2.1.2 Cut Open Oocyte Voltage Clamp 

The cut-open voltage clamp technique allows for high temporal resolution of electrophysiological 

recordings with fast kinetics. Rather than injecting current from a small localized position, as in the TEVC 

technique, this technique matches the size of the current injection site to the size of the clamped 

membrane, resulting in the quick and uniformly charged membrane (figure 2.2A). The oocyte is 

mounted onto a chamber dividing the membrane into three areas (figure 2.2B). The ionic current is 

recorded from the top region. The extracellular, i.e. the top and middle compartment, is clamped to 

0 mV. Clamping the chamber’s middle compartment to the same potential as the top chamber, guards 

against any leakage currents through the seals. The bottom chamber is continuous with the cell’s 

interior. This is accomplished by chemically permeabilizing or physically opening (cut open) of the 

membrane. The bottom chamber and the intracellular of the oocyte are clamped to the command 

voltage (Vmembrane) as differentially recorded between the impaling microelectrode V1 and the 

extracellular V2 electrode. The current is directly injected through the permeabilized membrane 

exposed to the bottom chamber, eliminating the high access resistance of a microelectrode. In this 

configuration, the membrane can be uniformly charged in sub-milliseconds and allows for high-

resolution recordings of fast charge movements. The physical access to the intracellular solution also 

allows for intracellular solution exchange. Mounting this setup on an upright fluorescence microscope 

make it possible to simultaneously record functional changes of the channel through ionic currents and 

conformational changes through site-directed fluorescence measurements. This specialized COVC 

technique is termed voltage clamp fluorometry (VCF), which will be introduced below (2.2.1 Voltage-

clamp Fluorometry). 
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Figure 2.2 Cut open voltage clamp technique 
A) Cartoon illustrating the current injection (red arrows) and clamped membrane (red line) in TEVC and COVC. 
B) The COVC setup is comprised of three chambers. The upper and guard chamber are clamped to 0 mV 
(measured by V2), while the bottom chamber is clamped at the command voltage (measured by V1). Current is 
injected into the permeabilized oocyte via the bottom chamber. 

In this thesis, electrophysiological measurements are used to study the properties of ion channel 

complexes. In chapter three, we study the effect of the modulatory subunit Kv6.4 on Kv2.1/6.4 

heteromeric channels. To this aim, our collaborators performed whole cell patch clamp recordings. In 

chapter five, we investigate the effect of the DPP6 auxiliary subunit on Kv4.2 channel complexes using 

the COVC technique. 

2.2 Basis of Fluorescence Techniques 

Research presented in the third, fourth and fifth chapter includes studies based on fluorescence 

measurements unveiling information about the structural details of protein complexes. This section 

introduces the underlying concepts of fluorescence. 

The Jablonski diagram illustrates the process of light absorption and emission (figure 2.3A) (8). 

Fluorophores can have different energies depending on their excitation and populate either the ground 

state S0 or when excited, a higher electronic state S1 or S2. Each of these states has distinct vibrational 

energy levels. Due to the large energetic difference between ground S0 and the excited S1 state, the 

higher state cannot be induced by heat but only by light. The absorption of a photon of the right energy 

thus results in the excitation of an electron to the higher energy level. From there, the fluorophore 

relaxes to the lowest vibrational energy level of S1 before it returns to a higher vibrational state of the 

ground state S0, followed by relaxation of the vibrational energy. This return can be non-radiative, when 

the energy is dissipated into the molecule or the surrounding, or result in the emission of a photon of 

lower energy compared to the photon that was initially absorbed. This energy difference of absorbed 
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and emitted photon is the basis for the Stokes shift from higher energy (shorter) absorption wavelength 

toward lower energy (longer) emission wavelengths in the spectra (figure 2.3B). 

 

Figure 2.3 Fluorescence spectroscopy 
A) Jablonski diagram illustrating the process of fluorescence. Electrons in the ground state S0 are excited by 
photons (hnex, green representing the wavelength) to a vibrational level of the S1 state from where it relaxes to 
the lowest S1 state before returning to the ground state. The return can be non-radiative (black, knr) or result in 
fluorescence (kf), i.e. the emittance of a lower energy photon (hnem, red representing the wavelength). B) 
Representative absorption (green) and emission (red) spectra highlighting the stokes shift between absorption 
and emission. 

Depending on the requirements, researchers can choose from a multitude of different 

fluorophores, which can be grouped into biological fluorophores, organic dyes and quantum dots. 

Quantum dots are nanoscale semiconductors, whereas biological fluorophores and organic dyes are 

organic molecules and feature a system of delocalized electrons through conjugated double bonds (8). 

Biological fluorophores such as the green fluorescent protein (GFP) and its derivatives can be directly 

conjugated to proteins of interest through genetic engineering (9). GFPs are valued for their 

autocatalytic chromophore formation eliminating the need of further manipulation. GFP’s 

chromophore is formed by the tripeptide S65, Y66 and G67, which is located at the center of a cylinder-

shaped ß-barrel structure and undergoes a process of chromophore formation that is referred to as 

maturation (figure 2.4A and B). This maturation process consists of protein folding, peptide cyclisation, 

oxidation and dehydration and depends on several factors, including temperature and aeration (10). 

Even in improved derivatives like the superfolder GFP (sfGFP) (11), a fraction of proteins fails to 

maturate and remain “dark”. Two major drawbacks of using GFP as a fluorescent marker are this 
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possibility of incomplete maturation and the size of the fluorescent protein. Opposed to fluorescent 

proteins, organic dyes like tetramethylrhodamine (TMR) are much smaller and therefore better suited 

for linking to proteins without interfering with their function (figure 2.4C). Moreover, optimized organic 

dyes are typically brighter and more stable which makes them ideal markers when exciting for extended 

times. Inaccessible regions, e.g. transmembrane segments and intracellular parts, can be specifically 

labeled by site-directed incorporation of fluorescent unnatural amino acids (12). 

 

Figure 2.4 Fluorescent molecules 
A) Maturation of GFP from the tripeptide to the chromophore, adapted from Craggs et al. (10). B) Crystal 
structure of GFP in cartoon representation featuring the matured chromophore in the center of the b-barrel 
structure (structure obtained from pdb 1EMB (13)). C) Chemical structure of TMR with a thiol-reactive 
maleimide-tag that allows covalent binding of the fluorophore to cysteines. 
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The brightness of the fluorophore depends on many factors. It is characterized by its molar 

extinction coefficient, i.e. the amount of light that can be absorbed at a specific wavelength, and its 

quantum yield (QY) (8). The QY is defined as the ratio of emitted to absorbed photons and can depend 

on the fluorophore’s interaction with its environment. When the fluorophore interacts with another 

molecule, its fluorescence can be decreased. Generally, the process of decreasing the fluorescence 

intensity is referred to as quenching, which can be static or dynamic. Static quenching is characterized 

by the formation of a nonfluorescent stable complex of fluorophore and quencher. During dynamic 

quenching, on the other hand, the fluorophore collides with the quencher and temporarily transfers its 

energy from the excited state to the quencher. Dynamic quenchers need to be within 2-3 Å of the 

fluorophore to absorb its energy. As a result of dynamic quenching, the fluorophore returns from its 

excited state to the ground state without emitting a photon. The presence of static or dynamic 

quenchers can be used to study protein-protein interactions and conformational changes. In these 

experiments, one can further distinguish between quenchers that are in solution, such as oxygen, and 

quenchers that are part of the protein (14). Aromatic amino acids, especially tryptophan and tyrosine, 

are strong quenchers and have been used to study protein structures (15-18). Apart from changing the 

fluorophore’s intensity temporarily, its fluorescence can be permanently lost. The photochemical 

destruction of the fluorophore is referred to as photobleaching. Upon prolonged and high intensity 

illumination, the chromophore is chemically destroyed rendering the molecule non-fluorescent. This 

photobleaching characteristic as well as the fluorophore’s sensitivity to the local environment make 

them a powerful tool in studying protein structures. 

Apart from electrophysiological investigations, the work presented in this thesis is based on 

fluorescence measurements. Single subunit counting experiments on Kv2.1/6.4 heterotetramers and 

TACAN channels, presented in chapter three and four, respectively, are based on the photobleaching 

properties of GFP. The technique is further introduced below (2.2.2 Single Subunit Counting). Chapter 

five presents quenching/unquenching fluorescence traces of TMR-labeled Kv4 channels obtained by 

voltage-clamp fluorometry, which will be introduced next. 

2.2.1 Voltage-clamp Fluorometry 

Voltage-clamp fluorometry (VCF) is a variation of the cut-open voltage clamp technique and 

requires labeling of the ion channel complex (19, 20). In addition to recording the current of the ion 
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channel to study their function, simultaneous fluorescence measurements from the clamped region of 

the oocyte provide structural data. In order to do so, the protein of interest needs to be fluorescently 

labeled prior to performing the experiment. An endogenous or engineered cysteine of the protein can 

be labeled with thiol-reactive maleimide dyes like TMR-maleimide (TMRM). This labeling is restricted 

to cysteines that are extracellular and accessible. Removal of other accessible cysteines of the 

heterologously expressed protein reduces unspecific labeling. Cysteines of endogenous membrane 

proteins are also labeled, resulting in low signal to background ratios (SBR) if the protein of interest is 

expressed at low levels. In addition, endogenous background fluorescence from the oocyte further 

decreases the SBR. This endogenous background is lower when fluorescence measurements are taken 

from the dark animal pole of the oocyte. This side of the oocyte is dark brown in appearance due to 

expressing melanin in the cortex. This pigmentation shields from fluorescence background that 

originates from the intracellular compartment. The opposite side of the oocyte, i.e. vegetal pole, is 

white, since it does not express melanin. Consequently, recordings made on the vegetal side suffer 

more from endogenous background fluorescence. Exposure to light prior to the experiment, especially 

in the range of the excitation wavelength of the fluorophore, results in photobleaching and decrease 

the fluorescence signal of the fluorophore. Taken together, high expression levels, protection from pre-

bleaching and recording from the dark animal pole of the oocytes are necessary to maximize the signal 

to background ratio. 

The fluorescently labeled oocyte is placed in a COVC setup, as described in 2.1.2 Cut Open Oocyte 

Voltage Clamp. To enable fluorescence recordings, an upright fluorescence microscope in conjunction 

with a photodiode detection system is added to the setup (figure 2.5). A halogen lamp serves as light 

source and an electronic shutter synchronizes the voltage pulse protocol with the excitation of the 

fluorophore. When the voltage pulse is applied to the oocyte, the shutter is opened and the light passes 

through an excitation filter that transmits light of the desired excitation wavelength. The light is then 

directed by a dichroic mirror through a 40x water-immersion objective (NA=0.8). The objective focuses 

the light onto the oocyte’s surface where it excites the fluorescent labels. The emitted light from the 

fluorophore is collected through the objective, passed through an emission filter and detected by the 

photodiode. 
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Figure 2.5 VCF setup 
The COVC setup is adjusted to allow the simultaneous recording of electrophysiological and fluorescence data. 
The excitation light (green) is directed towards the oocyte membrane via a dichroic mirror and the emitted light 
(yellow) is collected through the same objective and reflected towards the detector. 

The VCF technique is a powerful tool to study the structure-function relation of ion channels. As 

described above, ion channels undergo various conformational changes during gating. Due to the 

fluorophore’s sensitivity to its environment, fluorescent labels can detect conformational changes of 

the protein. However, this is only possible, if the conformational change results in quenching or 

unquenching of the fluorophore. Therefore, not all positions that are involved in the structural change 

are suitable labeling positions. While typically, VCF is applied to analyze the dynamics of structural 

rearrangements and correlate them with functional data, which is simultaneously recorded, we utilized 

the VCF technique to probe protein-protein interactions rather than exploring kinetics (presented in 

chapter 5). 
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2.2.2 Single Subunit Counting 

Single-subunit counting (SSC) is a powerful technique to determine the number of multimeric 

complex components. Although recent advancements in electron microscopy helped defining new 

protein structures at a rapid rate, membrane protein structures remain difficult to obtain and other 

techniques like SSC are employed to complement the available structural data. Chapter three and four 

present data on SSC experiments performed on heteromeric Kv2.1/Kv6.4 and homomeric TACAN ion 

channels, respectively. 

The SSC technique is based on single molecule fluorescence microscopy and photobleaching (21, 

22). The subunit of interest in the biological assembly studied is fluorescently labeled, typically using a 

genetically engineered N- or C-terminal GFP-tag. Usually, the tagged protein is expressed in Xenopus 

oocytes or in cultured immortalized mammalian cell lines, such as the human embryonic kidney (HEK) 

293T or Chinese hamster ovary (CHO) cell line (22-30). Independent of the expression system, the 

expression density has to be adjusted to resolve single channel complexes with optical microscopy (i.e. 

½ wavelength of visible light). Alternatively to expressing and counting the subunits of interest in 

heterologous expression systems, one can perform SSC on purified complexes that have been 

immobilized on a glass coverslip. Complexes can be directly tethered to the glass through different 

linkers, such as biotin (31, 32), antibodies (33, 34) or nickel nitrilotriacetic acid (Ni-NTA) (35). One of the 

advantages of using purified proteins, is the control over spot density, as it can be adjusted by altering 

the concentration and incubation time.  

In single subunit counting experiments, a single channel complex is observed as a single fluorescent 

spot. To observe fluorescently tagged complexes in the plasma membrane, cultured cell lines can be 

grown directly on glass coverslips, whereas oocytes need to be mechanically peeled prior to being 

placed onto the coverslip, as their plasma membrane is surrounded by a second membrane, i.e. the 

vitelline membrane. Once this second membrane is remove and the oocyte is placed onto the coverslip, 

the plasma membrane is in direct contact with the glass and single channel complexes can be observed. 

The camera’s resolution is not sufficient to resolve individual subunits of these complexes, so that the 

recorded fluorescence from one diffraction-limited spot originates from all labeled subunits within the 

complex. In SSC experiments, the fluorescent tags are excited at high intensities for a prolonged time, 
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which leads to photobleaching of the fluorophore. Opposed to observing exponential bleaching of the 

ensemble of all labeled complexes, the analysis is performed for each individual fluorescent spot, which 

can be detected automatically to reduce observer bias (28). In theory, each spot is composed of only 

one channel complex, so that the fluorescence time trace exhibits a distinct bleaching step every time 

one of the fluorescent tags is irreversibly destroyed (figure 2.6A). In an ideal setting, a labeled 

tetrameric complex would thus result in four bleaching steps for all observed spots (figure 2.6B, red). 

However, GFP maturation is not complete and pre-bleaching of the fluorophore prior to the experiment 

further reduces the number of observable fluorescent tags. This reduced probability of fluorescence 

(pf) results in the binomial distribution of step frequency histograms. The order of the binomial 

distribution corresponds to the maximum number of labeled subunits in the complex (figure 2.6B, grey). 

Colocalization of channel complexes within the diffraction limited spot, on the other hand, artificially 

increase the apparent subunit count (figure 2.6B, black), so that it can be difficult to distinguish between 

two colocalized dimers and a tetrameric complex for example. When interpreting the obtained 

frequency histograms, the probability of fluorescence (pf) and colocalization (pc) need to be considered. 

Rigorous and careful analysis is crucial for the interpretation of any SSC data, but unfortunately, 

confirmation bias can lead to the disregard of data. Chapter three will discuss a much needed, advanced 

analysis method of SSC data. 



Chapter 2 – Technical Basis 
 

 51 

 

Figure 2.6 Single subunit counting principle 
A) Representative photobleaching trace obtained from a single fluorescently labeled tetrameric complex. The 
cartoon on top represents the complex, fluorescent GFP tags (green) are permanently destroyed (black). Red 
arrows further highlight each bleaching step B) Bleaching traces of all fluorescent spots of a recorded bleaching 
movie (left) are analyzed and result in a step frequency histogram. If all tags of a tetrameric channel were 
fluorescent and no colocalization of labeled complexes is accounted for (red), all analyzed spots would feature 
four bleaching steps. If a fraction of the GFP tags are dark before the recording of the movie (grey), the step 
frequency histogram is binomially distributed. More than four bleaching steps are observed for tetrameric 
complexes, when complexes are colocalized in a diffraction limited spot (black). 

Background fluorescence originating from the intracellular can be reduced by using total internal 

reflection fluorescence (TIRF) microscopy (36). This background fluorescence often originates from 

untrafficked fluorescently tagged proteins (28). As the name suggests, TIRF microscopy is based on the 

total reflection inside the glass of the excitation light beam at the interface of the coverslip and the 

basolateral membrane or solution and is achieved by an increased angle of the incoming light 
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(figure 2.7). When the critical angle is reached, the excitation beam does not propagate into the sample 

chamber atop the coverslip but is to 100% reflected back into the glass. As a result, an evanescent wave 

illuminates the sample at the point of TIRF excitation. The intensity of this restricted electromagnetic 

field decreases exponentially with the distance from the interface (z-direction), illuminating 

approximately 200 nm (37). This drastically reduces background fluorescence from intracellular 

compartments and therefore increases the signal to background ratio. 

Background fluorescence can also be reduced by expressing the protein of interest in Xenopus 

oocytes, rather than smaller cells, because, here, the intracellular compartments are located further 

from the plasma membrane. Additionally, placing the dark melanin-expressing animal pole, opposed to 

the bright vegetal pole onto the coverslip further shields from disturbing background fluorescence 

(figure 2.7). Moreover, performing SSC experiments on purified and subsequently immobilized 

complexes practically eliminates fluorescence background. Here, background from unbound 

fluorescent complexes can be removed by washing these unbound complexes off prior to recording 

bleaching movies. 

In this thesis, SSC experiments are performed in oocytes, immortalized cell lines and on purified 

proteins. In chapter three, Kv2.1/6.4 heterotetramers are expressed in Xenopus oocytes. Chapter four 

presents SSC experiments on TACAN channels obtained from HEK293T and CHO cells. Here, we also 

show Kv2.1/6.4 channels expressed in HEK293T cells as a control. Due to high background fluorescence 

in cells, we investigate the oligomeric state of TACAN in purified form, tethered to glass coverslips via 

Ni-NTA. The experimental details are presented in the Method section of the corresponding chapters. 
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Figure 2.7 Single subunit counting setup  
The oocyte is placed onto a glass coverslip and excited in TIRF illumination. The excitation light (blue) is directed 
towards the oocyte membrane via a dichroic mirror and the emitted light (green) is collected through the same 
objective and reflected towards the camera. The inset to the right illustrates how the limited excitation in TIRF 
and the melanin containing pigmented cortex of the oocyte limit background fluorescence from labeled proteins 
in the intracellular. 
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3.1 Abstract 

The electrically silent (KvS) members of the voltage-gated potassium subfamilies Kv5, Kv6, 

Kv8 and Kv9 selectively modulate Kv2 subunits by forming heterotetrameric Kv2/KvS channels. 

Based on the reported 3:1 stoichiometry of Kv2.1/Kv9.3 channels, we tested the hypothesis that 

Kv2.1/Kv6.4 channels express, in contrast to the assumed 3:1, in a 2:2 stoichiometry. We 

investigate the Kv2.1/Kv6.4 stoichiometry using single subunit counting and functional 

characterization of tetrameric concatemers. For selecting the most probable stoichiometry, we 

introduce a model selection method that is applicable for any multimeric complex by investigating 

the stoichiometry of Kv2.1/Kv6.4 channels. Weighted likelihood calculations bring rigor to a 

powerful technique. Using the weighted-likelihood model selection method and analysis of 

electrophysiological data, we show that Kv2.1/Kv6.4 channels express, in contrast to the assumed 

3:1, in a 2:2 stoichiometry. Within this stoichiometry the Kv6.4 subunits have to be positioned 

alternating with Kv2.1 to express functional channels. The variability in Kv2/KvS assembly 

increases the diversity of heterotetrameric configurations and extends the regulatory possibilities 

of KvS by allowing presence of more than one silent subunit.  

3.2 Significance Statement 

Voltage-gated potassium (Kv) channels play a key role in cellular electrical excitability. While 

various Kv subunits assemble to homotetrameric functional channels, the silent subfamilies KvS 

exclusively form heterotetramers with Kv2 subunits and thus regulate their biophysical properties 

in a tissue-specific way. Despite the vast functional research, key aspects of the heterotetrameric 

architecture remain controversial, including the stoichiometry with which KvS and Kv2 can 

assemble. We used concatemers and single subunit counting in combination to show that 

Kv2/Kv6 assemble in a 2:2 stoichiometry following the general dimer of dimer mechanism for 

channel formation. We demonstrate how to objectively choose the most likely model for single 

subunit counting data, which is applicable for any multimeric complex and will help choosing 

models confidently.   
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3.3 Introduction 

Single subunit counting, the progressive stepwise photobleaching of fluorescently labeled 

monomers in a biological complex, has been the method of choice to determine stoichiometries 

in biological assemblies (1). This technique is based on the irreversible photobleaching of green 

fluorescent protein (GFP) tags, which are fused to the protein of interest (Fig. 3.1 A and F) (1). 

During prolonged excitation, each GFP progressively loses its ability to fluoresce by 

photochemical destruction, leading to stepwise bleaching events. Since only a fraction of the GFPs 

mature to become fluorescent, one obtains a binomial distribution of N-th order, where N is the 

number of monomers in the biological assembly. More rigorous evaluation revealed GFP-

maturation rates in the range between 0.4 and 0.9 (1-12). With increasing N, it becomes difficult 

to distinguish between the different orders of binomial distributions in this range. Often, one 

must rely on the highest step count; for instance, observation of a small number of five bleaching 

steps automatically leads to a pentamer and excludes a tetramer. While this logic is theoretically 

true, it can be misleading if more than one complex colocalize within one diffraction-limited spot. 

This situation is unavoidable even in fully stochastic distribution of the single complexes. What 

has been lacking to date is an objective manner of selecting the correct model based on a-

posteriori probabilities. Here, we show how to evaluate different models and use this method to 

determine the stoichiometry of Kv2.1/Kv6.4 complexes.  

Voltage-gated K+ (Kv) channels regulate the selective flux of K+ ions across the cell membrane 

by opening, closing, and/or inactivating in response to changes in membrane voltage (13). A fully 

assembled Kv channel consists of four α-subunits, with the NH2-terminus containing the T1-

domain as a key determinant in controlling tetramerization of compatible subunits (14, 15). To 

tune the native Kv currents to tissue-specific requirements, each tissue expresses a characteristic 

set of α-subunits, which are divided into several subfamilies based on sequence homology. In the 

case of the Shaker-related subunits, eight different subfamilies can be distinguished: Kv1-Kv6 and 

Kv8-Kv9 (16). Within each of the Kv1-Kv4 subfamilies, subunits cannot only oligomerize into 

homotetramers but also into heterotetramers, increasing the diversity of Kv channel complexes. 

Members of the Kv5, Kv6, Kv8 and Kv9 subfamilies, on the other hand, are unable to form 
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functional channels, even though they have the typical topology of a Kv α-subunit, and are 

therefore designated silent Kv (KvS) subunits (17). However, they do selectively interact with 

members of the Kv2 subfamily, forming functional Kv2/KvS heterotetramers that possess unique 

biophysical and pharmacological properties. Generally, they slow the activation and deactivation 

kinetics, shift the voltage dependency of activation and inactivation and reduce in heterologous 

expression systems the current density relative to Kv2 homotetramers. Therefore, these KvS 

subunits are considered modulatory α-subunits of the Kv2 subfamily.   

Oligomerization of Kv subunits into a functional channel is thought not to occur by the 

sequential addition of monomers to the channel complex, but by dimerization of dimers, in which 

the dimeric interaction sites differ from those mediating monomer-monomer interactions (18). 

Therefore, heterotetramers are expected to assemble with a 2:2 stoichiometry, which has been 

confirmed in the case of the Kv4 homolog jShal1 and jShalγ1 (19). In contrast, for Kv2.1/Kv9.3 

heterotetramers a stoichiometry of three Kv2.1 subunits and one Kv9.3 subunit has been 

reported (20), alluding that a similar 3:1 stoichiometry could be applicable to all Kv2/KvS channels. 

This would imply assembly of each one homodimer and one heterodimer, assuming the channels 

are assembled from dimers (21).  

On the other hand, several studies have shown subunit stoichiometry of heteromeric Kv 

channel complexes to vary dependent on the relative expression of the different subunits (22-

26). It is also important to study only the configuration of functionally expressed Kv2/KvS channel 

complexes excluding temporary aggregations that might be formed due to overexpression but 

that are retained in the endoplasmic reticulum (ER) in a physiological context. Therefore, KvS 

subunits might be more diverse than assumed leading to the idea that, in addition to a 3:1 ratio, 

Kv2/KvS channels assemble in a 2:2 ratio, i.e., as a dimer of dimers.  

We explored the distribution of stoichiometries with two experimentally independent 

approaches. To probe the internal arrangement of the different stoichiometries, we compared 

the biophysical properties of concatemers with corresponding monomeric constructs. With the 

latter approach, ion-channel stoichiometries have been successfully studied (27-29). Possible 

stoichiometries are 3:1, 2:2, or a population mixing both stoichiometries. In single subunit 
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counting experiments, we directly counted the number of Kv6.4 subunits in Kv2.1/Kv6.4 

heteromers expressed in Xenopus oocytes. Since maturation of GFP, whose photobleaching steps 

are detected, is not complete, each stoichiometry will lead to a characteristic bleaching-step 

distribution histogram. Choosing the most likely distribution is, therefore, a prominent problem 

for the analysis and interpretation of single subunit counting data. Here, we provide the 

framework for objectively choosing the most likely (mixture of) stoichiometry of a multimeric 

arrangement, applicable to any single subunit counting experiments of multimeric complexes.  

 

3.4 Results 

3.4.1 Heterotetramers Coexpress in a 2:2 Stoichiometry 

Kv6.4 is a representative member of the KvS family given its profound modulating effect on 

the Kv2 channel properties (30). The direct way to investigate the stoichiometry of Kv2.1/Kv6.4 

heterotetramers is by single subunit counting experiments, which provide directly the number of 

fluorescently labeled Kv6.4 subunits within a single channel assembly. For our studies, we chose 

the Xenopus oocyte expression system for the single subunit counting experiments because 

injection of RNA provides accurate control over expression level and expression-level ratios (31), 

not easily achieved by DNA transfection in mammalian cells. Furthermore, fluorescence 

originating from nontrafficked channel assemblies retained in the ER is efficiently blocked by the 

melanin pigmentation located between membrane and ER in Xenopus oocytes (Fig. 3.1F). We 

initially carried out the experiments in human embryonic kidney 293 (HEK293) cells and obtained 

high background fluorescence from Kv6.4–GFP-transfected cells trapped in the ER in the absence 

of Kv2.1 (9).  

Not every GFP-fusion protein is detected. While photobleaching before the measurement can 

be limited by protecting the samples from light, the chromophore matures (i.e., develops its 

fluorescent properties) only in a fraction of the GFP population after protein folding. The fraction 

of mature GFP depends on the experimental conditions but not on the protein, the GFP is fused 

to (9). Therefore, we initially determined the probability of GFP maturation for the experimental 
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conditions used here by studying the Kv2.1 homotetramer in the absence of any silent subunits. 

The expression level was adjusted such that individual channels were clearly distinguishable as 

single spots, which is a prerequisite for reliably determining the stoichiometry of single channels 

(Fig. 3.1 A–E; please refer to Methods for a detailed explanation of the exclusion criteria). As a 

homotetramer, each Kv2.1 contains four GFP proteins per channel. Accordingly, the homogenous 

tetrameric population showed a step-number distribution following a binomial distribution of 

fourth order, consistent with each GFP having a finite probability of fluorescence pf = 0.48 of being 

observed (Fig. 3.1C; n = 6,388 spots, 16 oocytes). 

The histogram showed some spots with more than four bleaching steps. Intuitively, this may 

seem unexpected, but it is a result of the stochastic distribution of the channels. In order to obtain 

sufficient spots for a meaningful analysis, there is a 10 to 20% probability of finding two channels 

within the same diffraction-limited spot (~300-nm diameter). This colocalization of more than one 

channel within a diffraction-limited spot was consistently found in all our experiments 

independent of the protein of interest. While one might be tempted to exclude spots with more 

than the theoretically possible number of steps per protein from analysis as an artifact, such a 

selective exclusion would distort the determination of the remaining distribution; e.g., two 

tetramers would lead to a binomial distribution of eighth order, which have a finite probability 

not only for five to eight but also for one to four steps. Excluding the five to eight as an artifact 

would misrepresent the one to four distribution. As a result, the fluorescence probability pf of the 

fluorophore would be overestimated. We will discuss below that colocalization is also essential 

to obtain reliable information if observing heterogenous populations.   

We next studied the stoichiometry of the Kv2.1/Kv6.4 heteromers. To exclude any 

background of Kv2.1 homotetramers from our analysis, a Kv6.4-GFP fusion protein was 

coexpressed with wild-type (WT) Kv2.1, rendering the latter monomers invisible. Xenopus laevis 

oocytes were injected with untagged Kv2.1 and Kv6.4-GFP RNA in a 1:8 ratio. The ratio was biased 

toward the Kv6.4 subunit to be consistent with the electrophysiological experiments, where 

higher Kv2.1 fractions would result in a majority of homotetrameric Kv2.1 channels that would 

superpose the electrical signal of the heteromers. The majority of the photobleaching time traces 

showed one or two bleaching events consistent with a 2:2 stoichiometry (Fig. 3.1D). This 
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observation was confirmed when fitting the step-distribution histogram to a binomial distribution 

(Fig. 3.1E). The histogram (n = 8,675 spots, 28 oocytes) was fitted to binomial distributions of 

second, third, and fourth order as well as a Poisson distribution, representing expression of two, 

three, four and one Kv6.4 subunit per tetramer, respectively (see Methods for details).  

With the colocalization of spots, we obtained typically up to four to eight bleaching steps 

per histogram. To evaluate the different stoichiometries against each other, we calculated 

weighted-likelihood ratios (for details, see Single Subunit Counting Analysis below). When the 

probability of fluorescence was fixed to the previously determined value pf = 0.48, we found 

that a 2:2 stoichiometry best fit our data (P > 0.9999). Despite the relatively stable maturation 

rate, we preferred not to rely on a fixed parameter but, rather, let the fit confirm the previous 

knowledge. For this reason, we also fit the data, leaving the probability of fluorescence pf free 

to vary. Under these conditions, the binomial distribution of second order was the best fit, and 

the 2:2 stoichiometry remained the most likely stoichiometry (P > 0.99; Fig. 3.1G). Although 

left free to vary, the pf of the 2:2 stoichiometry did not alter significantly (pf = 0.49), whereas 

it was inconsistent with the values for the other possible Kv2:Kv6 ratios: pf (3:1) = 1; 

pf (1:3) = 0.36; and pf (0:4) = 0.3). 
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Figure 3.1 Single-channel subunit counting 
A) Representative frames of a recorded movie of Kv6.4-GFP (Left), Kv2.1-GFP (Center) and Kv2.1/6.4-GFP 
(Right, 1:8 ratio) expressed in the Xenopus oocyte membrane recorded in TIRF configuration (scale bars: 
2 µm). B and D) Representative intensity-time traces from single Kv2.1-GFP homomeric (B) and 
Kv2.1/Kv6.4-GFP heteromeric (D) channels with four and two bleaching steps, respectively. Arb. u., 
arbitrary units. C and E) PIF automated analysis: Each spot is analyzed, and number of steps recorded. The 
resulting distribution histograms (grey bars) from Kv2.1-GFP (C) and Kv2.1/Kv6.4-GFP (E) were fitted to 
binomial distributions of fourth order (tetramer) and second order (dimer), respectively. The probability 
to detect fluorescence from GFP was P = 0.48 and the fraction of colocalization was 10% and 29%, 
respectively. The ratio of Kv2.1:Kv6.4-GFP was 1:8 (weight:weight). F) Oocytes are illuminated by (TIRF) 
and fluorescence was recorded using an EMCCD camera. The pigmented cortex in Xenopus oocytes is 
positioned between plasma membrane and ER such that fluorescence from the ER is efficiently blocked. 
G) Log-likelihoods for the distribution in E for 3:1, 2:2, 1:3 and 4:0 Kv2:Kv6 stoichiometries. Significance 
was determined by AIC with respect to 2:2 stoichiometry (**** p>0.9999; ** p>0.99). 



Chapter 3 – Kv2.1/6.4 
 

 66 

3.4.2 Kv2.1/Kv6.4 Heterotetramers Are Functional in a 2:2-Stoichiometrical 

Configuration 

While the single subunit counting experiments indicated a 2:2 stoichiometry, they cannot 

provide an answer as to how the subunits are arranged within the tetramer. Therefore, we 

investigated the functionality of Kv2.1/Kv6.4 heterotetramers with different stoichiometry using 

concatemeric constructs. Since Kv channels assemble by the dimerization of dimers (18), we 

started by analyzing the dimeric constructs Kv2.1-Kv2.1, Kv2.1-Kv6.4 and Kv6.4-Kv2.1 (Fig. 3.2A), 

and compared their electrophysiological properties with those of the corresponding channels 

assembled from the WT monomeric subunits (Fig. 3.3A). To avoid limitations on channel assembly 

and conformational flexibility due to the covalent linking of subunits, a 10 to 12 amino-acid linker 

was inserted between them (Fig. 3.2A). Such a linker has prevented this potential problem in 

previous studies (27, 29, 32, 33). Western blot analysis confirmed that all dimeric constructs were 

expressed as an intact polypeptide (Fig. 3.2B), indicating that the dimeric constructs were not 

cleaved, and no single subunits were expressed. We did not draw any conclusions from the band 

intensities about expression levels, as transfection efficiencies typically varied widely. 

 

Figure 3.2 Overview and Western blot analysis of dimeric Kv2.1 and Kv2.1/Kv6.4 constructs 
A) Design of Kv2.1-Kv2.1 (Left), Kv2.1-Kv6.4 (Center), and Kv6.4-Kv2.1 (Right) dimers. The Kv2.1 and Kv6.4 
subunits are shown in white and black, respectively. Neighboring subunits had a common, unique RE site 
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enabling the linkage of subunits using specific RE digests. Subunits were covalently joined by a peptide 
linker of which the nucleotide and amino acid sequences are shown below in lower and upper case, 
respectively. B) Expression of dimers as a single polypeptide was examined with Western blotting using 
Kv2.1 antibodies. As a positive control, lysates of HEK293 cells (co)transfected with Kv2.1 and Kv6.4 or with 
Kv2.1 alone were used. In all lysates containing the positive controls or the dimers, a single band was 
noticeable which corresponded to the predicted molecular mass, while no signal was detected in lysates 
of nontransfected HEK293 cells. All dimeric constructs yielded one dominant protein band when probed 
with Kv2.1 antibodies with a molecular mass that approached their estimated weight.  

To evaluate the effect of our concatemeric design, the Kv2.1 dimeric construct was studied 

first. The Kv2.1 dimer yielded functional channels with biophysical properties closely resembling 

those of Kv2.1 monomer-derived channels (Fig. 3.3 A and B). No significant differences were 

observed in the voltage dependencies of activation and inactivation or in the time constants of 

activation and deactivation (Fig. 3.3 C–E and Table 3.1), confirming that the covalent linker 

between the Kv2.1 subunits allowed enough conformational flexibility to yield functional 

channels without affecting their biophysical properties. 

 

Figure 3.3 Biophysical properties of Kv2.1 monomers and dimers 
A and B) Whole cell current recordings of Kv2.1 channels composed of Kv2.1 monomers (Left; 0.5 µg Kv2.1 
transfected) or Kv2.1 dimers (Right; 1 µg transfected) used to determine the activation (A) and inactivation 
(B) properties. Voltage protocols are shown on top. C) Voltage dependence of activation for Kv2.1 channels 
composed of monomers (filled circles) or Kv2.1 dimers (open circles) derived from plotting the normalized 
tail current amplitudes at -25 mV (from recordings as shown in A) as a function of the prepulse potential. 
D) Voltage dependence of inactivation obtained from plotting the normalized peak current amplitude at 
+60 mV (from recordings as shown in B) as a function of the prepulse potential. E) Time constants of 
activation and deactivation obtained as described in Methods. Note that the biophysical properties of 
Kv2.1 channels composed of dimers were similar to those assembled from Kv2.1 monomers. 
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It was demonstrated previously that the biophysical properties of dimers containing two 

different subunits can be affected by the position of these subunits within the dimeric construct 

(34). Therefore, two different dimeric constructs were designed to investigate the functionality 

of Kv2.1/Kv6.4 channels in a 2:2 configuration: Kv2.1-Kv6.4 and Kv6.4-Kv2.1. Coexpression of 

Kv2.1 and Kv6.4 monomers yielded Kv2.1/Kv6.4 heterotetramers with biophysical properties that 

differed clearly from those of Kv2.1 homotetramers and the obtained kinetics were comparable 

to what has been reported before (Table 1) (30, 35-40). The most significant difference with Kv2.1 

homotetramers is an approximately −40-mV shift in the voltage dependence of inactivation and 

an activation curve with a shallower slope factor k (Table 3.1). Both the Kv2.1-Kv6.4 and 

Kv6.4-Kv2.1 dimers each produced currents with characteristic Kv2.1/Kv6.4 heterotetrameric 

properties (Fig. 3.4 A and B and Table 3.1). Furthermore, also the activation and deactivation 

kinetics of both dimers were similar to those of Kv2.1/Kv6.4 heterotetramers assembled from 

coexpressing Kv2.1 and Kv6.4 monomers (Fig. 3.4C). The order of Kv2.1 and Kv6.4 within the 

dimer did not play a significant role consistent with our finding that the Kv2.1 concatemer 

behaves like the monomer (Fig. 3.4). 

 

Figure 3.4 Biophysical properties of Kv2.1-Kv6.4 and Kv6.4-Kv2.1 dimers 
A) Whole-cell current recordings after (co)transfection of Kv2.1 and Kv6.4 in 1:10 ratio (Top; black circles), 
5 µg Kv2.1-Kv6.4 (Middle; white squares in B and C), and 5 µg Kv6.4-Kv2.1 (Bottom; gray inverted triangles 
in B and C) used to determine the activation (Left) and inactivation (Right) properties. Voltage protocols 
are shown on top. B) Voltage dependence of activation (normalized conduction G/Gmax; right y axis) and 
inactivation (normalized current I/Imax; Left) for Kv2.1/Kv6.4 channels assembled from monomers (black 
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circles), Kv2.1-Kv6.4 dimer (white squares; V1/2 = -58.4±0.7 mV, k = 18.4±0.6  mV/e-fold), and Kv6.4-Kv2.1 
dimer (gray inverted triangles; V1/2 = -62.5±1.9 mV, k = 21.6±2.5  mV/e-fold). Voltage dependence of 
activation was derived from plotting the normalized tail current amplitudes at -35 mV as a function of the 
prepulse potential. Voltage dependence of inactivation was obtained from the normalized peak current 
amplitude at +60 mV in function of the prepulse potential. C) Time constants of activation and deactivation 
obtained as described in Methods. Note that the biophysical properties of the Kv2.1-Kv6.4 and Kv6.4-Kv2.1 
dimers were similar to those of the coexpressed Kv2.1 and Kv6.4 monomers.  
 

Table 3.1: Biophysical properties of homotetrameric Kv2.1 and heterotetrameric Kv2.1/Kv6.4 
channels composed of monomers, dimers or tetramers 

 Activation  Inactivation 

 V1/2 k n V1/2 k n 
Monomer       
 Kv2.1 6.1 ± 2.2 9.0 ± 0.4 7 -18.2 ± 2.3 6.4 ± 0.5 7 
 Kv2.1  +  Kv6.4 7.9 ± 0.7 20.2 ± 0.7 3 -59.2 ± 2.5 7.4 ± 1.2 3 
Dimer       
 Kv2.1-Kv2.1 5.6 ± 2.4 10.9 ± 1.5 7 -23.4 ± 2.2 5.6 ± 0.9 7 
 Kv2.1-Kv6.4 -4.6 ± 1.0 18.4 ± 0.6 3 -58.4 ± 0.7 7.3 ± 0.3 3 
 Kv6.4-Kv2.1 2.4 ± 2.7 21.6 ± 2.5 4 -62.5 ± 1.9 7.3 ± 0.2 4 
Tetramer       
 Kv2.1-Kv2.1-Kv2.1-Kv2.1 1.8 ± 2.8 9.4 ± 0.6 5 -21.0 ± 1.9 5.6 ± 0.4 6 
 Kv2.1-Kv6.4-Kv2.1-Kv2.1 (3:1) 1.7 ± 2.9 14.9 ± 1.8 4 -54.8 ± 2.4 8.6 ± 0.7 10 
 Kv2.1-Kv6.4-Kv2.1-Kv6.4 (2:2) 5.7 ± 3.1 21.9 ± 0.3 5 -62.8 ± 1.6 9.4 ± 0.9 9 
 Kv2.1-Kv6.4-Kv6.4-Kv2.1 (2:2) ND      
Values are given as mean ± SEM and n is the number of cells analyzed. The midpoints of activation and 
inactivation (V1/2), represented in millivolts, and the slope factor (k) were obtained from a single Boltzmann 
fit. ND, no data. 

3.4.3 Kv2.1/Kv6.4 Heterotetramers Are Functional in an Alternating Arrangement 

The results obtained from the dimer constructs indicated that Kv2.1/Kv6.4 channels are 

functional in a 2:2 configuration, consistent with the findings from the single subunit counting 

data. It remains unclear whether the arrangement of the silent subunits within the tetramer 

influences the function. Assuming that the channels are assembled as a dimer of dimers, the Kv2.1 

and Kv6.4 subunits are likely arranged alternately within the heterotetrameric channel. However, 
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the Kv6.4 subunits can be positioned side by side instead of being separated from each other by 

Kv2.1 subunits. We will refer to these configurations as adjacent (side by side) and alternating, 

respectively. To evaluate the functional effect of different geometrical arrangements of 

Kv2.1/Kv6.4 channels with a 2:2 stoichiometry, the following tetrameric constructs were created: 

Kv2.1 tetramer, Kv2.1-Kv6.4-Kv2.1-Kv6.4, and Kv2.1-Kv6.4-Kv6.4-Kv2.1 (Fig. 3.5A). Similar to the 

dimeric constructs, neighboring subunits were covalently coupled with a 10 to 12 amino-acid 

linker. As for the dimeric constructs, band intensities of the Western blot analysis using Kv2.1 

antibodies differed due to variation in transfection efficiencies, but revealed that all tetrameric 

constructs were expressed as a single polypeptide (Fig. 3.5B). 

 

Figure 3.5 Overview and Western blot analysis of tetrameric constructs 
A) Design of different tetrameric constructs composed of different unique rearrangements of Kv2.1 and 
Kv6.4 subunits which are shown in white and black, respectively. B) Expression of tetramers as a single 
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polypeptide was examined with Western blotting using Kv2.1 antibodies. The blot in B, Left was obtained 
after an exposure time of 1 minute. Because of an overload of Kv2.1 monomer and Kv2.1-Kv2.1 dimer 
protein compared to the different tetramers, the blot was cut, and the lanes with the different tetramer 
proteins were exposed for 10 minutes extra, yielding the blot in B, Right. In all lysates loaded (different 
lanes) a band was expected at the predicted molecular mass. 

The functionality of the tetramers that represented the adjacent (Kv2.1-Kv6.4-Kv6.4-Kv2.1) 

and alternating (Kv2.1-Kv6.4-Kv2.1-Kv6.4) configurations were assessed, and their biophysical 

properties were compared with those of the Kv2.1 tetrameric construct. Tetramers in the 

alternating configuration produced ionic currents that displayed the biophysical signature of 

Kv2.1/Kv6.4 heterotetramers (Fig. 3.6 A-C and Table 3.1). Moreover, the kinetics of activation and 

deactivation differed from those of the Kv2.1 tetramer (Fig. 3.3D). The current density decreased 

from 360 ± 76 pA/pF (n = 7) to 160 ± 57 pA/pF (n = 6) at +30 mV for the Kv2.1 tetramer and 

Kv2.1-Kv6.4-Kv2.1-Kv6.4 (Fig. 3.6E), respectively. In contrast, tetramers representing the adjacent 

configuration produced no ionic currents yielding a current density of only 9 ± 3 pA/pF (n = 9; 

Fig. 3.6E). The results demonstrate that Kv2.1/Kv6.4 heterotetramers in a 2:2 stoichiometry 

function only when the Kv2.1 and Kv6.4 subunits alternate and not when the Kv6.4 subunits are 

positioned side by side (i.e., adjacent). 

 

Figure 3.6 Biophysical Properties of Kv2.1/Kv6.4 tetrameric concatemers 
A) Lower, Whole-cell current recordings after transfection of 5 µg of Kv2.1 tetramer (Left) (filled circles in 
B-D), Kv2.1-Kv6.4-Kv2.1-Kv6.4 (Center) (open circles in B-D), and Kv2.1-Kv6.4-Kv6.4-Kv2.1 (Right) elicited 
by the voltage protocol shown A, Upper. B) Plot shows the voltage dependence of activation determined 
for the Kv2.1 tetramer (filled circles; V1/2 = -1.8±2.8 mV, k = 9.4±0.6  mV/e-fold) and Kv2.1-Kv6.4-Kv2.1-
Kv6.4 tetramer (open circles; V1/2 = -5.7±3.1 mV, k = 21.9±0.3  mV/e-fold). C) The voltage dependence of 
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inactivation is displayed for both the Kv2.1 (V1/2 = -21.8±2.5 mV, k = 5.1±0.4  mV/e-fold) and Kv2.1-Kv6.4-
Kv2.1-Kv6.4 tetramer (V1/2 = -62.2±1.7 mV, k = 9.3±1.3  mV/e-fold). D) Time constants of activation and 
deactivation obtained as described in Methods. E) Current density of tetramers determined by normalizing 
the steady-state current at the end of a 500-ms pulse at +30 mV to the cell capacitance. The number of 
cells analyzed is indicated above every bar plot.  

3.4.4 Kv2.1/Kv6.4 Channels Are Functional in a 3:1 Stoichiometrical Configuration 

Since the above results suggested that the Kv6.4 subunits have no compatible interaction 

sites, it seems very unlikely that functional Kv2.1/Kv6.4 channels containing more than two Kv6.4 

subunits can be formed under physiological conditions. However, it would leave the possibility to 

combine a homodimer with a heterodimer, leading to a 3:1 stoichiometry, as proposed for 

Kv2.1/Kv9.3. Although our single subunit counting data suggest a predominant 2:2 arrangement, 

we explored the functionality of Kv2.1/Kv6.4 channels in a 3:1 stoichiometry by constructing a 

Kv2.1-Kv6.4-Kv2.1-Kv2.1 tetramer. Under similar incubation conditions, this construct yielded 

ionic currents that displayed some hallmarks of Kv2.1/Kv6.4 heterotetrameric channels (Fig. 3.7). 

Compared to the Kv2.1 tetramer, the voltage dependence of inactivation was shifted into 

hyperpolarized direction and the voltage dependence of activation had a shallower slope factor 

k (Fig. 3.7 C and E and Table 3.1). Also, the time constants of activation displayed a fast and a slow 

component (Fig. 3.7D), typical for Kv2.1/Kv6.4 heterotetramers. However, comparing the 

properties to both the Kv2.1 homotetramer and the concatemers in 2:2 stoichiometry highlighted 

that the slope factor of activation and the shift of the inactivation of the concatemer in 3:1 

stoichiometry differed significantly (P ≤ 0.003; SI Appendix Fig. 3.S1) from the WT Kv2.1 tetramer 

and the Kv2.1-Kv6.4-Kv2.1-Kv6.4 tetramer (2:2 stoichiometry). The values of the 3:1 

stoichiometry fell between both (Table 3.1). Thus, both parameters progressively alter with 

incorporation of more Kv6.4 subunits.  

In comparison, the electrophysiological data of the Kv2.1/Kv6.4 heterotetramers assembled 

from monomeric subunits corresponded well to those of the 2:2 stoichiometry (Table 3.1 and 

Fig. 3.7 C and E). Statistical analysis indicated that the midpoint of inactivation of Kv2.1/Kv6.4 

heterotetramers assembled from monomers resembled that of the Kv2.1-Kv6.4-Kv2.1-Kv6.4 

tetramer (2:2 stoichiometry) and both differed significantly from that of the 

Kv2.1-Kv6.4-Kv2.1-Kv2.1 tetramer (3:1 stoichiometry, P < 0.005, Fig. 3.7F). This suggests that – 
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although a 3:1 stoichiometry is perfectly functional – coexpression of monomers prefers a 2:2 

stoichiometry, consistent with an assembly as a dimer of dimers. The vast majority of the 

population has two silent Kv6.4 subunits, and only few (if any) have one Kv6.4. 

 

Figure 3.7 Biophysical properties of Kv2.1-Kv6.4-Kv2.1-Kv2.1 (3:1 stoichiometry) 
A and B) Lower, representative whole-cell current recordings of Kv2.1-Kv6.4-Kv2.1-Kv2.1 used to 
determine the activation (A) and inactivation (B) properties. Voltage protocols are shown in A and B, 
Upper, and horizontal bar at the start of the recordings indicates the zero-current level. C) Plot displays 
the voltage dependence of activation for the Kv2.1-Kv6.4-Kv2.1-Kv2.1 (3:1) tetramer (grey circles; V½ = 
1.7±2.9, k = 14.9±1.8  mV/e-fold). As comparison the voltage dependence of activation for the Kv2.1+Kv6.4 
heterotetramers assembled from monomeric subunits (Kv2+Kv6) and that of the Kv2.1-Kv6.4-Kv2.1-Kv6.4 
(2:2) tetramer is retaken from Figs. 3.4 and 3.6 and represented with black and white circles respectively. 
D) Time constants of activation and deactivation of the Kv2.1-Kv6.4-Kv2.1-Kv2.1 tetramer are represented. 
E) Plot displays the voltage dependence of inactivation for the Kv2.1-Kv6.4-Kv2.1-Kv2.1 (3:1) tetramer 
(grey circles) compared to that of Kv2.1+Kv6.4 heterotetramers assembled from monomeric subunits 
(Kv2+Kv6; black circles) and that of the Kv2.1-Kv6.4-Kv2.1-Kv6.4 (2:2) tetramer (white circles). F) Box plot 
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represents the midpoint of channel inactivation values of Kv2.1+Kv6.4 heterotetramers assembled from 
monomers (Kv2+Kv6) and the Kv2.1-Kv6.4-Kv2.1-Kv6.4 (2:2) and Kv2.1-Kv6.4-Kv2.1-Kv2.1 (3:1) tetramers. 
One-way ANOVA with pairwise analysis between the three models was performed and the statistical 
significance was added to the figure. Values between parentheses indicate the number (n) of cells 
analyzed. 

3.4.5 Tetraethylammonium Sensitivity Confirms Proper Assembly of Concatemers 

Concatemers have been used successfully to investigate the stoichiometry of Kv channels (27, 

28). However, due to the occurrence of T1-T1 interactions while the proteins are still attached to 

the ribosomes (41), it may be possible that multiple concatemers associate with each other, 

excluding some of the covalently attached subunits to be incorporated in the channel complex. 

In this case, the phenotype of the subunit positioned first in the construct will predominate, as 

they are more likely to be incorporated into the channel complex (34). The dimers used in this 

study did not seem to encounter this problem, as the biophysical properties of both Kv2.1-Kv6.4 

and Kv6.4-Kv2.1 dimers were similar and comparable with those of coexpressed Kv2.1 and Kv6.4 

monomers (Fig. 3.4 and Table 3.1).  

Compared to the dimers, the tetrameric constructs might suffer more from this potential 

folding problem. However, two observations favor that the positional arrangement of the 

subunits were well constrained in our tetrameric constructs. First, the slope factor of the voltage 

dependence of activation becomes shallower and the midpoint of inactivation shifts towards 

more hyperpolarized potentials when more Kv6.4 subunits are included, and, second, the 

functionality of the tetrameric construct representing a 2:2 stoichiometry was abolished by 

changing the position of the Kv6.4 subunits from an alternating to an adjacent configuration. To 

unequivocally prove the proper folding of the tetramers, the sensitivity of the tetrameric 

constructs to extracellular applied tetraethylammonium (TEA) was determined. The binding site 

of extracellular TEA is well characterized in Kv channels, and a threonine residue in the pore loop 

of the Shaker-type Kv channel (residue T449, respectively) was identified as an important binding 

determinant (42). Kv2.1 and Kv6.4 have at the equivalent position a tyrosine and valine residue, 

respectively (Y384 in Kv2.1 and V425 in Kv6.4; Fig. 3.8A). Consequently, it was expected that Kv6.4 

subunits are less sensitive to TEA than Kv2.1 subunits, which will decrease TEA sensitivity of the 

Kv2.1/Kv6.4 heterotetramers compared to Kv2.1 tetramers. Indeed, the concentration response 
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curve of the Kv2.1-Kv6.4-Kv2.1-Kv2.1 and the Kv2.1-Kv6.4-Kv2.1-Kv6.4 tetramer shifted gradually 

toward higher TEA concentrations with more Kv6.4 subunits being included (Fig. 3.8). Plotting the 

normalized remaining current as a function of applied TEA concentration yielded concentration 

effect curves with a half-maximal inhibitory concentration value of 2.5 ± 0.5 mM (n = 5), 

5.4 ± 0.2 mM (n = 6), and 9.5 ± 1.3 mM (n = 5) for the Kv2.1, the Kv2.1-Kv6.4-Kv2.1-Kv2.1 (3:1), 

and the Kv2.1-Kv6.4-Kv2.1-Kv6.4 tetramer, respectively (SI Appendix, Fig. 3.S1). These data 

strengthen the argument that all four covalently coupled subunits of our tetrameric constructs 

were incorporated into the Kv2.1/Kv6.4 channels and that these heterotetrameric channels have, 

indeed, a different drug response compared to Kv2.1 homotetramers (40). 

 

Figure 3.8 TEA sensitivity of tetrameric constructs 
A) Upper, an alignment of a partial pore loop sequence of human Kv2.1 and hKv6.4 is shown. The 
corresponding residue identified to be important for TEA binding in Shaker-type Kv channels is highlighted 
in bold (Y385 and V425 in Kv2.1 and Kv6.4, respectively). A) Lower, representative steady-state current 
recordings are shown for the Kv2.1 (Left) and the Kv2.1-Kv6.4-Kv2.1-Kv6.4 tetramer (Right) in presence of 
different extracellular TEA drug concentrations. Whole-cell ionic currents were elicited by repetitively 
applying a +80 mV depolarizing step followed by a -35 mV repolarization before stepping to -80 mV holding 
potential (interpulse interval was 15 s). B) Concentration-effect curves for the Kv2.1 (white circles), the 
(3:1) Kv2.1-Kv6.4-Kv2.1-Kv2.1 (gray circles), and the (2:2) Kv2.1-Kv6.4-Kv2.1-Kv6.4 tetramer (black circles) 
obtained by normalizing the remaining steady-state currents from recordings shown in panel A as a 
function of applied TEA drug concentration. Note that the curve gradually shifts towards higher TEA 
concentrations when more Kv6.4 subunits are present in the tetramer.  

3.4.6 Kv2.1/Kv6.4 Channels Intrinsically Prefer a 2:2 Stoichiometry 

Considering that the concatemer containing a single silent subunit was functional, we should 

not exclude ad hoc the possibility of mixed populations. We demonstrated above that 

Kv2.1/Kv6.4 assemble predominantly in a 2:2 stoichiometry; however, it has been suggested 
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previously that the expression-level ratio between compatible Kv subunits can influence the 

stoichiometry of heterotetrameric channel complexes in heterologous expression systems (22-

26). Our results above may, thus, be a consequence of the ratio in which Kv2.1 and Kv6.4(-GFP) 

were expressed. A fixed 3:1 stoichiometry has been suggested for Kv2.1/Kv9.3, and, recently, a 

preference for a 3:1 stoichiometry was also suggested for Kv2.1/Kv6.4 (43).  

A pure or preferential 3:1 stoichiometry for Kv2.1/Kv6.4 would contradict our above results. 

However, if the assembly of the Kv2/KvS heteromers was concentration-dependent, then the 

distributions in the single subunit counting data should alter in a concentration-dependent 

manner, and we did not observe 3:1 stoichiometries because of an elevated Kv6.4 concentration. 

In this context, it is important to reflect upon the question of whether the single subunit counting 

data represent physiological conditions. To be able to observe single channels, we have to work 

at a relatively low expression level. However, the assembly of the channels into tetramers occurs 

already in the ER (41). It is, therefore, not the absolute number of channels expressed, but the 

Kv2.1/Kv6.4 ratio which are decisive for the biological assembly.  

To test whether 3:1 stoichiometries occurred if less Kv6.4 subunits were present, we carried 

out the single subunit counting experiments at different expression ratios, altering the ratio of 

Kv2.1:Kv6.4 from 1:8 to 1:1, effectively increasing the relative amount of Kv2.1 (Fig. 3.9). In 

contrast to electrophysiological experiments, excess of Kv2.1 is possible here since the 

homotetrameric Kv2.1 channels are not fluorescently labeled and are, hence, silent in the optical 

measurements. No fluorescent spots were observed at the plasma membrane upon further 

increase of the Kv2.1:Kv6.4 ratio above 1:1, suggesting that Kv2.1 homotetramers were the 

ubiquitous form under those conditions. 

To quantify the preference of a 2:2 over 3:1 stoichiometry, we calculated the weighted 

relative likelihoods at the different expression ratios. Under all conditions, including with 

probability of GFP fluorescence pf free to vary, the probability of a 2:2 stoichiometry was P > 0.9. 

While it increased to even P > 0.9999 for expression ratios Kv2.1:Kv6.4 = 1:2 and 1:4 (Fig. 3.9). At 

the 1:1 ratio, we only observed a low number of spots (n = 610), which led to the lower certainty, 

indicating that, at all concentrations, the 2:2 stoichiometry was predominant. 
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We then evaluated the possibility of a mixed population of 3:1 and 2:2 stoichiometry, as 

suggested in Pisupati et al. (43). We assumed that channels of both compositions were able to 

colocalize, as colocalization occurs stochastically, and not due to a specific interaction. We used 

a convoluted distribution (see Single Subunit Counting Analysis section for details). As we outline 

below (see Model Selection of Single Subunit Counting Data), it is essential to have a sufficiently 

high expression to observe colocalization. Without it, the number of free parameters supersedes 

the number of data points, allowing any apparent ratio between the stoichiometries. The 

convoluted distribution of colocalized channels prevents this artifact. Our experimental results 

were best fitted by the resulting distribution function if the fraction of 3:1 channels was zero, i.e., 

by a pure 2:2 stoichiometry for all Kv2.1:Kv6.4 expression ratios tested (Table 3.2). 
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Figure 3.9 Concentration dependence of Kv2.1/Kv6.4 stoichiometry 
Step distribution obtained from Kv2.1/Kv6.4-GFP heteromers expressed in Xenopus oocytes in 
weight:weight ratios 1:8 (A), 1:4 (B), 1:2 (C) and 1:1 (D) are shown. (Left) The grey bars indicate the 
observed distribution, the red trace the best fit for a 2:2 stoichiometry for fixed pf and variable pcol. (Right) 
the relative likelihoods for homogenous populations for the given stoichiometries for fixed (dark grey) and 
free (light grey) probability of fluorescence pf .** P > 0.99; ***P > 0.999; ****P >0.9999.n= 8,675 (A), 
3,301 (B), 2,759 (C), 610 (D). 
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Table 3.2: Distribution of heterogenous populations 

 stoichiometry    
Kv2.1/Kv6.4 

ratio 3:1 2:2 1:3 pcol pf significance 

1:8 0 1 - 0.30 0.49  
 0 0.669 0.331 0.14 0.46 >0.999 
       

1:4 0 1 - 0.30 0.57  
 0.01 0.741 0.252 0.18 0.55 >0.999 
       

1:2 0.001 0.999 - 0.32 0.45 0.731 
 0 1 0 0.32 0.45 0.269 
       

1:1 0 1 - 0.29 0.53 0.58 
 0.008 0.813 0.180 0.20 0.52 0.42 

The single subunit counting distributions were fitted to distributions accounting for heterogenous 
populations. Each ratio was evaluated as a combination of 3:1 and 2:2 in absence (-) and presence of 1:3 
stoichiometries. pf represents the probability of GFP fluorescence and pcol the colocalization probability. 
The different stoichiometries were assumed to colocalize (e.g., one spot could contain one 2:2 and one 
3:1 for a total of three potentially labelled Kv6.4). Significance was calculated as weighted likelihood ratios 
as previously. 

 

We previously rejected the possibility of having three Kv6.4 and a single Kv2.1 subunit (i.e., a 

1:3 Kv2.1:Kv6.4 stoichiometry) because T1 domains of Kv6.4 are not compatible, and it has been 

suggested that only heteromers with opposing silent subunits are functional (30, 37, 43-46). 

However, 1:3 channels might express as nonfunctional channels that are trafficked to the 

membrane as silent channels and, thus, appear in the single subunit counting data, leading to a 

heterogenous mixture of 3:1, 2:2, and 1:3 heteromers. We, therefore, also evaluated the 

possibility of a mixed population as above, now allowing 3:1, 2:2, and 1:3 stoichiometries 

(Table 3.2). While at expression ratios 1:1 and 1:2 the fit did not improve significantly compared 

to a pure 2:2 population, at high Kv6.4-GFP amounts (1:4 and 1:8), the fit improved when 

including a fraction up to 33% of Kv2.1/Kv6.4-GFP heteromers in the 1:3 stoichiometry. It should 

be noted that these distributions have an additional degree of freedom (the fraction of trimers), 

so it is not clear whether the improvement is owed to this. The results, thus, leave open the 

possibility, that at very high Kv6.4 expression levels nonfunctional heteromers in the 1:3 
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stoichiometry are trafficked to the plasma membrane. It is doubtful, however, that this has any 

physiological relevance. So, under physiological conditions, we propose that Kv2.1/Kv6.4 express 

in a preferred 2:2 stoichiometry consistent with both the single subunit counting and the 

electrophysiological data. 

3.4.7 Model Selection of Single Subunit Counting Data 

While our study suggests a fixed 2:2 Kv2.1/Kv6.4 stoichiometry, Pisupati et al. (43) reported 

a preferential 3:1 stoichiometry for the identical heteromer. Considering that the experimental 

data of both studies were quite similar, these contradicting interpretations raise the question 

how to objectively extract the correct stoichiometry (or mixture thereof) from the experimental 

data.  

Single subunit counting data have, in general, the disadvantage of a low number of 

experimental data points (typically one to eight bleaching steps) and a strong similarity between 

the resulting distributions. The statistics have been improved after introduction of automated 

detection and analysis algorithms, which allowed a large number of spots to be analyzed, and, 

incidentally, also removed unconscious user bias to the “bestlooking” spots. To find the true 

stoichiometry, it is essential to not only show that a chosen model (stoichiometry or mixture 

thereof) fits the data well, but also that an alternative model, i.e., a different stoichiometry, shows 

less agreement. Our considerations of the heterogenous populations above also demonstrate 

that hidden populations (like 1:3) may be overlooked if no further alternatives are explored.  

3.4.8 Model Selection in a Homogenous Population 

When choosing the most likely model in a homogenous population, the task is to determine 

the true number of subunits N contained in each macromolecule with the highest probable 

confidence. Due to the probability of fluorescence (pf), a single macromolecule can show 0 to N 

bleaching steps, which means that a dimeric protein would only show two nonzero data points. 

For a higher number of subunits, more nonzero data points would be observed, which prevents 

a direct comparison of different models. This problem is circumvented by allowing colocalization 

of two or more macromolecules within one diffraction-limited spot. Even if the colocalization 
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probability is close to zero, this allows an easier comparison among different models. All resulting 

distributions are described by three free parameters and contain an infinite number of nonzero 

points independent of the number of subunits per macromolecule N (Methods and Eq. 5). 

Accordingly, a-posteriori likelihoods can be directly compared, and we can determine the relative 

probabilities of the different models with weighted relative likelihoods, as described in Methods. 

3.4.9 Characterizing Heterogenous Populations 

The situation is different in heterogenous populations. Here, we do not decide which model 

is the most appropriate, but, rather, combine the different stoichiometries into a single function. 

The challenge for heterogenous populations is to determine the correct fractions of all three 

stoichiometries that best describe the heterogenous population (parameter fitting).  

A mixture between monomers and dimers (as is the case here) is particularly challenging 

because two colocalized monomers are equivalent to a single dimer, and, vice versa, a dimer with 

only one fluorescent fluorophore is equivalent to a monomer. Consequently, a superposition of 

one- and two-step distributions can analytically be converted into a pure two-step population. 

This leads to the situation that, in the absence of colocalization, the distribution is described by 

more free parameters than it contains data points. Therefore, an infinite number of exact 

solutions exist. In the presence of colocalization, on the other hand, a single solution exists for 

the correct distribution between stoichiometries as shown in the minimum of the error landscape 

of a simulated distribution (Fig. 3.10 A and B).  

But even in the presence of colocalization, the stochastic variations may be too large to obtain 

the correct parameters. Since the stochastic variations reduce with increasing sample size, we 

asked how many spots need to be analyzed to obtain a reliable result. We simulated 

heterogenous populations of a given ratio (0.7) between 3:1 and 2:2 stoichiometries comprising 

a variable number of channels, which were stochastically labeled (probability of fluorescence pf) 

and colocalized (pcol). If we leave all three parameters free to vary within realistic values 

(0 ≤ ratio ≤ 1, 0.4 ≤ pf ≤ 0.8 and 0 ≤ pcol ≤ 0.3), the ratios found were broadly distributed around 

the correct value with a 1-σ (68%) variation (or SD) of ±0.25 if 100 spots are analyzed (Fig. 3.10 C, 

black). This improves to only ±0.2 if 106 spots are analyzed.  
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Restricting pf improves the accuracy significantly, but only if at least 1,000 spots were 

analyzed. 100 spots would not improve better than ±0.18, even if we had exact knowledge of pf. 

If we allow pf to vary by 10% and 5% around its predetermined value and increase the number of 

spots to 1,000, the SD reduces to ±0.13 and ±0.08, respectively (Fig. 3.10 C, green and purple). 

For Dpf = ±5%, the value obtained for the ratio would lie between 0.62 and 0.78. 

Further improvement is only possible by increasing the number of spots to 106 or by fixing pf 

within 1% (Fig. 3.10 C, red; and Fig. 3.10 D, Left) and observing 10,000 spots (±0.02). However, 

this assumes that pf is known exactly, as we do in the simulations. Under experimental conditions, 

a 2 to 5% variation in pf is often observed due to variations in pre-bleaching or GFP maturation 

rate. If we fix pf to a value 5% too high, the result for the ratio would be consistently off by ∼10% 

(Fig. 3.10 D, Right, red). Here, it would be advisable to leave pf free to vary within ±5%, which 

would find the correct ratio in most cases (Fig. 3.10 D, Right, blue).  

To summarize, most accurate results would be obtained when 1) collecting sufficient data 

points (>1,000), 2) allowing for some colocalization (<30%), and 3) fitting the data both with a 

fixed pf and a variable pf that varies within a small range (±5% of the predetermined value), since 

it is unlikely that pf is constant in an experimental setting. 
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Figure 3.10 Model for channel assembly 
A and B) Error landscape for the step histogram from single subunit counting data obtained from simulated 
data (10,000 spots). The error is given in logarithmic scale and denotes the deviation of the correct from 
the calculated step histogram for any given set of parameters pf and the ratio between a 2:2 and 3:1 
stoichiometry in a heterogenic population. Colocalization allows for a single minimum in the error 
landscape. The red line in B indicates the correct pf. C) Accuracy of finding the correct parameters. Shown 
is the 1-σ width of the normal distribution of the found values (e.g., D) with a midpoint in the correct value 
for the 2:2/3:1-ratio. With a fixed (±0.005) pf, the ratio can be determined with 1% accuracy when 
analyzing 100,000 points. D) Ratios found by fitting the histograms of simulated 10,000 spots when 
restricting the pf to the correct (Left) and 5% too low (Right) value. Pf was allowed to vary 0.5% (red) or 5% 
(blue). 
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3.5 Discussion 

KvS subunits display, compared to the ubiquitously expressed Kv2 subunits, a more restricted 

expression pattern. It is, therefore, expected that the KvS subunits tune the expression and 

localization of Kv2 currents in order to meet the tissue-specific requirements, as has been 

confirmed by the involvement of different KvS subunits in several (patho-) physiological processes 

(for review, see ref. 47). This makes them potential therapeutic targets, especially since it was 

demonstrated that Kv2.1/Kv6.4 channels are modulated differently by the well-characterized 

drug 4-aminopyridine compared to Kv2.1 homotetramers and other Kv2/KvS heterotetramers 

(40). It has been shown and confirmed by our TEA experiments (Fig. 3.8) that the pharmacological 

characteristics of heteromeric Kv channel complexes are affected by the stoichiometry of the 

subunits involved (26, 48, 49). The differential pharmacological response underlines the 

importance to know the exact stoichiometries of these heterotetrameric Kv2/KvS channels. 

Furthermore, our data show that there is also a significant 8-mV hyperpolarizing shift in the 

voltage dependence of inactivation between a 2:2 or 3:1 stoichiometry (Table 3.1 and Figs. 3.6 

and 3.7). Although this shift seems on first sight small, the amount of inactivated channels at 

physiological relevant resting membrane potentials almost doubles. At −70 and −60 mV the 

amount of inactivated channels is in a 3:1 stoichiometry ∼10 and 20% (Fig. 3.7), whereas in the 

2:2 stoichiometry, it amounts to ∼20 and 35%, respectively (Fig. 3.6). A recent paper on Kv2.1-

related neurodevelopmental disorders documented a spectrum of Kv2.1 mutations (50). Among 

pathogenic mutations that did not affect current density, negative shifts in the voltage-

dependence of inactivation in the order of 10 to 20 mV were observed that would sufficiently 

reduce channel availability, resulting in a loss of function (50). 

Tetramerization of Kv channels is guided by the N-terminal T1-domain, which facilitates the 

assembly of compatible subunits and prevents the addition of incompatible subunits into the 

channel tetramer (51-54). For example, removal of the T1 domain from the incompatible subunits 

Kv2.1 and Kv1.4 resulted in the coassembly of these subunits into a functional channel (51). Yeast 

two-hybrid assays and Förster resonance energy transfer analysis have shown that the T1 domain 

of KvS subunits interacts with that of Kv2.1, but not with their own, suggesting that no functional 
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KvS homotetramers can be formed and that Kv2/KvS heterotetramers cannot contain more than 

two KvS subunits (30, 37, 44-46). This has been supported by the observation that Kv2.1/Kv9.3 

heterotetramers consist of three Kv2.1 subunits and one Kv9.3 subunit (20), proposing that a 

similar 3:1 stoichiometry applies to all Kv2/KvS heterotetramers. While our results confirmed that 

concatemeric Kv2.1/Kv6.4 channels with a 3:1 stoichiometry are functional (Fig. 3.7), they also 

showed that Kv2.1/Kv6.4 channels adopt a 2:2 configuration independent of the expression ratio 

when assembled from monomers (Figs. 3.1 and 3.9). The functionality of Kv2.1/Kv6.4 channels 

with a 2:2 configuration was further evidenced with dimeric and tetrameric constructs that 

indicated that the position of the silent Kv6.4 and Kv2.1 subunit have to alternate to yield 

functional channels. Although it was previously not reported that Kv2.1/KvS channels with a 2:2 

configuration are functional, it agrees with the general scheme that Kv channels assemble by 

dimerization of dimers in which the dimeric interaction sites differ from those mediating 

monomer–monomer interactions (18).  

Since Kv6.4 subunits do not interact directly, it is very unlikely that Kv6.4 dimers are formed, 

which implies that not more than two Kv6.4 subunits can be incorporated into a Kv2.1/Kv6.4 

heterotetramer, although the single subunit counting data did not explicitly exclude this 

possibility at high Kv6.4 levels. The subsequent assembly of two Kv2.1/Kv6.4 dimers into a 

functional channel can occur by at least two possible ways: The Kv2.1/Kv6.4 dimers assemble into 

a tetramer without any interaction between the two Kv6.4 subunits, or the dimerization of the 

Kv2.1 and Kv6.4 monomers induces conformational changes that allows the Kv6.4 subunits to 

interact with each other. However, in the latter case it might be expected that the Kv6.4 subunits 

can be positioned side by side in the Kv2.1/Kv6.4 heterotetramer. Our data indicate that such a 

positional arrangement does not produce functional Kv2.1/Kv6.4 heterotetramers (Fig. 3.6A) and 

disfavors this scenario. The adjacent position of two Kv6.4 subunits would also be difficult to 

reconcile with the specific interactions between N and C termini in the heteromeric complex (37) 

and it has been shown that parts of the S6 play a key role in stable heteromer formation (43). 

Other heterotetrameric Kv channels can assemble with a random subunit stoichiometry and 

arrangement, depending on the ratio between the involved subunits (22-26). For example, 

Kv7.2/Kv7.3 heterotetramers display a fixed 2:2 stoichiometry when cells express an equal 
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amount of both subunits, but varying this ratio results in Kv7.2/Kv7.3 heterotetramers with a 

variable stoichiometry (25). This raises the possibility that cells can modulate Kv currents through 

endogenous changes in subunit expression level. Our present study demonstrated that 

Kv2.1/Kv6.4 channels can functionally express in variable 3:1 or 2:2 stoichiometry when using 

concatemers, but predominantly expresses in 2:2 stoichiometry when coexpressed. The 

predominant 2:2 stoichiometry in the single subunit counting data are reflected in the 

electrophysiological properties of the Kv2.1-Kv6.4 dimer and Kv2.1-Kv6.4-Kv2.1-Kv6.4 tetramer 

constructs, which strongly resemble the properties of Kv2.1+Kv6.4 coexpression. A detailed 

analysis of the electrophysiological data (see SI Appendix) describes how the contribution of each 

subunit to the properties of the channel can be estimated. This analysis suggests that the behavior 

of Kv2.1 and Kv6.4 subunits in the coexpressions is consistent with the behavior observed in the 

concatemeric constructs in 2:2 stoichiometry.  

The analysis also shows that the voltage dependence of Kv6.4 subunits is far shifted toward 

more polarized potentials compared to Kv2.1, in agreement with previous findings (35). 

Consequently, Kv6.4 subunits control inactivation. Activation, on the other hand, is controlled by 

the Kv2.1 subunits, since all subunits need to be activated to open the channel.  

Interestingly, the Kv6.4 subunits seem to influence the apparent gating charge of the Kv2.1 

subunits associated with activation—cutting them in half—without changing the midpoint of 

activation. We should note here that the apparent gating charges were determined from channel 

opening, assuming a single voltage-dependent step for activation, and therefore does not directly 

reflect the actual gating charges found in the primary sequence of the voltage-gated ion channels. 

As the actual charges remain unaltered and allosteric influence of the electric field is highly 

unlikely, the reduced apparent charge suggests that the Kv6.4 subunits do not allow the gating 

charges responsible for the final pore opening to move through the entire electric field. This steric 

hindrance of the Kv2.1 subunits to reach their final state is consistent with the mismatch in the 

S6 of Kv2.1 and Kv6.4, as suggested by Pisupati et al. (43). 

The thorough analysis of the electrophysiological data thus confirmed the findings from the 

single subunit counting measurements. Our subunit counting analysis introduced a method to 



Chapter 3 – Kv2.1/6.4 
 

 87 

reliably interpret any single subunit counting data and thereby eliminated any ambiguity in model 

selection. In particular, the inclusion of colocalization—in addition to increasing the number of 

data points—allows direct evaluation of the likelihoods among different models and removes the 

ambiguity in the probability of fluorescence. We expect that the analysis algorithm provides clear 

criteria for model selection and will make single subunit counting useful in the interpretation of 

heteromeric macromolecules such as ion channels but also the large family of G-protein-coupled 

receptors. 

3.6 Methods 

3.6.1 Electrophysiology 

Ltk− cells (mouse fibroblasts; ATCC CCL 1.3), which showed low endogenous K+ currents, were 

cultured in Dulbecco’s modified Eagle medium supplemented with 10% horse serum and 1% 

penicillin/streptomycin under a 5% CO2 atmosphere. Cells were transiently transfected by using 

Lipofectamine 2000 (ThermoFisher) with the appropriate amount of channel complementary 

DNA (cDNA), as indicated in the figure legends. A total of 0.5 µg of enhanced GFP (eGFP) was 

cotransfected as transfection marker. Cells transfected with dimeric constructs were incubated 

at 37 °C for 16 to 24 h. Tetrameric constructs were incubated at 25 °C for 48 h to aid protein 

folding. Cells were subsequently enzymatically dissociated with trypsin and used for 

electrophysiological analysis.Whole-cell currents were recorded at ∼21 °C by using an Axopatch-

200B amplifier and digitized by using a Digidata-1440A acquisition system. Command voltages 

and data storage were controlled with the pClamp (Version 10.2) software (all Molecular 

Devices). Patch pipettes were pulled from 1.2-mm borosilicate glass (WPI) and subsequently heat 

polished. This yielded patch pipettes with a resistance of 1 to 3 MΩ in the solutions used. 

Extracellular bath solution contained (in mM): 145 NaCl, 4 KCl, 1 MgCl2, 1.8 CaCl2, 10 HEPES and 

10 glucose, with the pH adjusted to 7.35 with NaOH. The patch pipettes were filled with an 

intracellular solution containing (in mM): 110 KCl, 5 K2ATP, 2 MgCl2, 10 HEPES and 5 K4-BAPTA 

adjusted to pH 7.2 with KOH. Junction potentials were zeroed with the filled pipette in the bath 

solution. Cells were excluded from analysis if the voltage error exceeded 5mV after series 

resistance compensation. Cells were continuously superfused with extracellular solution. 
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3.6.2 Concatemer Design 

Human Kv2.1 and Kv6.4 were both cloned in the mammalian expression vector peGFP-N1 

(Clontech) as described previously (30). Concatemeric constructs were created by the sequential 

insertion of individual subunits into peGFP-N1. Adjacent subunits shared a unique restriction-

enzyme (RE) site and were segregated by a linker sequence of 30 to 36 bp, which was added to 

the individual subunits before they were inserted into the concatemer. Both the appropriate RE 

sites and the linker sequences were introduced by PCR amplification using the QuickChange site-

directed mutagenesis kit (Agilent) and mutant primers. The presence of the desired modifications 

and the accuracy of the final sequence were confirmed by DNA sequencing. 

3.6.3 Western Blot 

Concatemeric constructs (10 µg of cDNA per 75-cm2 culture dish) were transiently transfected 

into human embryonic kidney 293 (HEK293) cells by using Lipofectamine 2000 according to the 

manufacturer’s guidelines. Cells were cultured in minimal essential medium supplemented with 

10% fetal bovine serum, 1% penicillin/streptomycin, and 1% nonessential amino acids under a 5% 

CO2 atmosphere in a humidified 37 °C incubator. After harvesting, the cells were lysed by adding 

lysis buffer, consisting of phosphate-buffered saline (PBS) supplemented with 5 mM 

ethylendiaminetetraacetic acid, 1% Triton X-100, and a complete protease inhibitor mixture 

(Roche Diagnostics). The lysed cells were denatured in NuPAGE lithium dodecylsulfate sample 

buffer for 30 min at 37 °C. The samples were separated on a NuPAGE 3 to 8% Tris–acetate gel and 

then transferred to a poly(vinylidene fluoride) membrane, which was subsequently blocked with 

5% nonfat milk powder in PBS. Concatemers were detected by overnight incubation of mouse 

Kv2.1 antibodies (K89/34, University of California Davis/NIH NeuroMab Facility), followed by 

incubation with horseradish peroxidase-labeled anti-mouse immunoglobulin G (GE Healthcare) 

and enhanced chemiluminescence detection by using the WesternBright Sirius Chemiluminescent 

Detection kit (Advansta), according to the manufacturer’s guidelines. 
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3.6.4 Pulse Protocols and Data Analysis 

Voltage protocols were adjusted based on the biophysical properties of the channels, as 

shown in the figures. Holding potential was –80 mV, and the interpulse interval ranged from 15 

to 30 s to prevent channels from accumulating in the inactivated state. The voltage dependence 

of activation and inactivation was fitted to a Boltzmann equation: y = 1/1/[1 + exp(−(V−V1/2)/k)], 

in which V represents the applied voltage, V1/2 the voltage at which 50% of the channels are open 

or inactivated, and k the slope factor. Activation and deactivation time constants were 

determined by fitting the activating and deactivating currents with a single- or double-

exponential function. Results are presented as mean ± SEM with n the number of analyzed cells. 

One-way ANOVA with pairwise comparison between groups was used to find statistical 

significance in the midpoint of channel inactivation and in TEA sensitivity between WT Kv2.1 

tetramer, the Kv2.1-Kv6.4-Kv2.1-Kv2.1 tetramer (3:1 stoichiometry) and the 

Kv2.1-Kv6.4-Kv2.1-Kv6.4 tetramer (2:2 stoichiometry). P values lower than 0.05 were considered 

statistically significant. Data were analyzed by using pClamp10 and Sigmaplot (Version 11; Systat).  

3.6.5 Expression of Kv2/KvS in Xenopus oocytes 

Kv2.1 and Kv6.4-GFP were fused into the pBSta and pSP64 vector, respectively, as described 

previously (55) and cRNA was in vitro transcribed by using a T7 mMachine kit (Invitrogen), 

according to the manufacturer’s protocol. Oocytes from X. laevis were surgically obtained, 

according to protocols approved by the Comité de déontologie de l’expérimentation sur les 

animaux de l’Univeristé de Montréal. Follicular membrane was removed enzymatically with 

collagenase type 1A (1 mg/mL; catalog no. C9891, Sigma) in a Ca2+-free solution. Oocytes were 

injected with varying ratios of Kv2.1 and Kv6.4–GFP RNA (in ng: 23+0, 23+23, 3+6, 3+12 and 3+24) 

and incubated for 18 to 48 h at 18 °C. 

Oocytes were treated with neuraminidase (1 U/mlL and hyaluronidase (1 mg/mL) for 4 to 5 

minutes at room temperature to enzymatically remove the extracellular matrix. Subsequently, 

oocytes were transferred into a hyperosmotic solution (in mM: 250 KCl, 1 MgCl, 1 ethylen glycol 

tetraacetic acid, 50 sucrose and 10 HEPES, pH 7.4), and the vitelline membrane was manually 

removed.  
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No 1 glass coverslips were cleaned in the sequence: sonication (at 37 kHz and T = 60°C) in 

Alconox 1% in H2O and two times in anhydrous ethanol. Coverslips were rinsed with H2O after 

each sonication step and, finally, dried under a steady-filtered nitrogen stream. For imaging, the 

injected and pretreated oocytes were placed onto the cleaned coverslips with the animal pole 

facing down (in mM) 115 N-methyl glucamine, 50 sucrose, 10 HEPES and 2 Ca(OH)2, adjusted to 

pH 7.4 with methyl-sulfonic acid. 

3.6.6 Imaging Photobleaching Using Total Internal Reflection Fluorescence 

Fluorescence was recorded by using an Axiovert-200 microscope (Zeiss). Excitation was 

achieved in total internal reflection fluorescence (TIRF) configuration using a 488-nm laser 

(PhoXx, Omicron). For TIRF imaging, the laser light was reflected at an angle sufficient to achieve 

total reflection and only evanescent excitation in the region within ∼300 nm above the coverslip, 

thus eliminating background fluorescence emerging from the cytosol. Excitation intensity was 

3.7 mW/mm2. Emission was collected with a 60X numerical aperture-1.49 objective (Olympus) 

and filtered by a bandpass emission filter (ET525/50 nm) in combination with a laser line 

reflecting dichroic mirror (Z405/488/561/635, Chroma). Images were recorded with a backlit 

128x128 pixel electron-multiplying charge-coupled device (EMCCD) camera (iXon+ 860BV, Andor) 

at a sampling rate of 20 Hz. 

3.6.7 Single Subunit Counting Analysis 

Spot detection and trace analysis were carried out by using the automated algorithm PIF 

(Progressive Idealization and Filtering) (9) to achieve objective criteria for acceptance and 

rejection of movies and single spots and to avoid user bias. PIF, was specifically designed to 

automatically detect fluorescent spots; filter fluorescence traces to remove background, thus 

increasing signal-to-noise ratio; and, finally, count bleaching steps (9). The following parameters 

were used for spot detection: The selection of a spot was limited to one neighbor (3 x 3 pixels), 

and the minimum signal/noise ratio (dF/F) was set to 10%. Since noninjected oocytes did not add 

fluorescent spots beyond the background of the cleaned coverslips, the minimum fluorescence 

intensity amplitude was set to 0. The spot overlap limit was restricted to sigma = 1.25. The 
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following parameters were used for step detection: Changes in the minimal and maximal step 

amplitude did not influence the final histograms, so they were left at 0 and 1 x 106, respectively. 

The total fluorophore photobleach length was set to 100%. All other trace quality control 

parameters were kept at their default setting. 

The region of interest (ROI) function was used to remove out-of-focus areas. Once the initial 

analysis was completed, step frequency histograms were accepted according to the following 

criteria: 1) No spot movement was detected; 2) the global photobleaching decay displayed an 

exponential decay with three time constants; 3) spot density was below 0.04 spots/(total number 

of pixels) in ROI; and 4) not more than 70% of the traces were rejected. The final histogram was 

fitted to a binomial distribution of fourth order for Kv2.1-GFP, resulting in a probability of 

fluorescence (GFP maturation efficiency) of pf = 0.48. This parameter reflects the fact that the 

chromophore matures only in a fraction of all GFP proteins. The distribution histograms of 

Kv2.1/Kv6.4-GFP measurements were best fitted with a binomial distribution of second order 

while maintaining a fixed pf of 0.48. Results are presented with n as the number of accepted spots.  

 

The models for different stoichiometries were evaluated by weighted relative likelihoods (56, 

57) given by  

 𝑟! 𝐿" =
#$!

∑ #$""
 [1] 

with i indexing the stoichiometry, and the sum over k includes all possible stoichiometries and 

the relative likelihoods rLi 

 𝑟𝐿" = exp (&'(#!$)&'(!
*

) [2] 

Here, AIC defines the Akaike information criterion (58) 

 𝐴𝐼𝐶" = 2 ∙ 𝑓 − 2ln	(𝐿") [3] 

with f the number of free parameters in the model i, and Li the likelihood of the model i: 

 ln	(𝐿") = ∑ 𝑛+ ∙ 𝑙𝑛9𝑝+,";+-#/012/  [4] 
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nk represents the absolute number of experimentally observed events with k photobleaching steps, 

and pk,i describes the probability to find k photobleaching steps according to model 

(stoichiometry) i, 

 𝑝+," = ∑ 2%&'()*

(!)4)!
𝑒)2%&' (𝑤 ∙ 𝑖

𝑘 ) 𝑝7+ ∙ 91 − 𝑝7;
!∙")+

!9"!
 [5] 

representing a Poisson-weighted sum of binomials, with pcol the probability of finding two 

channels within a diffraction-limited spot and w the number of channels in the spot. pf is, again, 

the probability of fluorescence. 

We chose to use the weighted relative likelihoods and AIC instead of Bayesian-based 

estimators since the number of free parameters for all models remains constant. In this context, 

the penalty for additional free parameters in the Bayesian Information Criterion disappears. 

The distribution for heterogenous populations had to consider the colocalization of channels 

with different stoichiometry. Noncolocalized spots (i.e., single channels) were calculated as a 

linear superposition of the distributions respective for the three stoichiometries 3:1 (𝑀BB⃗ ), 2:2 (𝐷BB⃗ ) 

and 1:3 (𝑇B⃗ ). Colocalized spots with two or more channels were calculated by exponentiation of 

the original distribution weighted by a Poisson distribution representing the probability of finding 

more than one channel in one spot. The final distribution 𝑆 was thus 

 𝑆 = G∑ 2%&'!)*

(")4)!
𝑒)2%&' ∙ 9𝑝::4𝑀BB⃗ + 𝑝*:*𝐷BB⃗ + 𝑝4::𝑇B⃗ ;

"<
"-4 I ∙ 𝑥⃑ [6] 

where pj:k represent the fraction of the three populations with 

 𝑝::4 + 𝑝*:* + 𝑝4:: = 1. [7] 

𝑀BB⃗  signifies the monomer (3:1) stoichiometry. It is a square matrix with 

 𝑀BB⃑ ",= = L
𝑝7 𝑖𝑓	𝑖 = 𝑗							
1 − 𝑝7 𝑖𝑓	𝑖 = 𝑗 + 1
0 𝑒𝑙𝑠𝑒

 [8] 

𝐷BB⃗ 	𝑎𝑛𝑑	𝑇B⃗  signify the dimer (2:2) and trimer (3:1) stoichiometries with 𝐷BB⃗ = 𝑀BB⃗ * and 𝑇B⃗ = 𝑀BB⃗ :. 
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The matrices are converted into a vector containing the distributions via multiplication with 

the vector 𝑥 

with 𝑥" = R1 𝑖𝑓	𝑖 = 1
0 𝑒𝑙𝑠𝑒

. 

3.6.8 Simulations 

Simulated data were generated according to the above equations, assuming Poisson (shot) 

noise for each probability. We chose different conditions; shown here are pf = 0.55; pcol = 0.1, and 

dimer/monomer ratio = 0.7. We simulated 10,000 distributions each for 100, 1,000, 10,000, 

100,000 and 1,000,000 spots. For randomly picked distributions from each ensemble (>1,000), 

we determined the best-fitting parameters. Since the parameters were not normally distributed, 

we determined the interval within which 68% (1-σ) of the data were found. All simulations and 

analysis was done in Matlab (Mathworks) with in-house-written routines. 

3.7 Data Availability 

All data discussed in the paper will be available 
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3.9 Supplemental Material 

Analysis of Electrophysiology Kinetics 

In this section, we investigate how the electrophysiological kinetics of activation and 

inactivation inform us on the stoichiometry of the Kv2.1-Kv6.4 heteromers.  

3.9.1 Inactivation 

We will first examine inactivation as it is most effected by the Kv2.1:Kv6.4 co-expression in a 

1:8 ratio compared to the kinetics of WT Kv2.1 channels. Kv2.1 channels undergo U-type 

inactivation, which can be entered from the open but also directly from non-conductive states 

(S1, S2). In the polarized range that we investigated here, inactivation is predominated by 

inactivation from the activated pre-open state(s). In models describing U-type inactivation, the 

voltage dependence is governed by the activation of the voltage sensors (S1, S2, S3, S4). We 

assumed that the voltage sensors activate independently, and the inactivated state can be 

entered as soon at least one voltage sensor is in the activated state (S3, S4).  

If we now assume that the subunits inactivate independently, then the probability that a 

Kv2.1 monomer is inactivated pi,2 would follow a Boltzmann distribution proportional to 

activation of that subunit,  

 𝑝",* = G1 + exp S− >!,,	?
@A

(𝑉 − 𝑉B)UI
)4

   (eq. S1) 

with F the Faraday constant, R the gas constant, T the temperature in Kelvin (300 K) and zi,2 

the apparent charge on the monomer that is associated with inactivation (i.e. the gating charge 

that determines the slope of the inactivation curve). The probability of inactivation Pi of the 

tetrameric Kv2.1 channel would then be proportional to the probability that none of the subunits 

are activated: 

 𝑃" = 1 − (1 − 𝑝",*)C. (eq. S2) 

Under these assumptions, we obtained the voltage dependence of inactivation for the control 

experiments of Kv2.1-channels (inactivation curves) with the above equations and obtained a 
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zi,2 = 3.1 and V0 = -3.7. In the dimeric and tetrameric constructs (Kv2.1-Kv2.1 and Kv2.1-Kv2.1-

Kv2.1-Kv2.1) the midpoint V0 was shifted slightly towards hyperpolarization by 5-6 mV without 

significantly altering the slope of the inactivation curve and the gating charge. 

In the dimeric constructs Kv2.1-Kv6.4 and Kv6.4-Kv2.1 as well as the tetrameric Kv2.1-Kv6.4-

Kv2.1-Kv6.4 constructs, two monomers each of Kv2.1 and Kv6.4 are present. The probability 

would still be proportional to activation of the voltage sensors but with two different voltage 

dependencies. The inactivation probability becomes 

 𝑃" = 1 − (1 − 𝑝",*)* ∙ (1 − 𝑝",D)* (eq. S3) 

where pi,6 represents the probability of a single Kv6.4 to inactivate: 

 𝑝",D = G1 + exp S− >!,.	?
@A

(𝑉 − 𝑉B)UI
)4

 (eq. S4) 

Assuming that the Kv2.1 behavior did not alter by the presence of the Kv6.4 subunits, we can 

derive the behavior of a single Kv6.4 with zi,6 = 2.8 ± 0.4 and V0 = -52.0 ± 1.9 mV. [values of the 

three different constructs were: Kv2-Kv6 a zi,6 = 2.96 and V0 = -50.2 mV, for Kv6-Kv2 a zi,6 = 2.97  

and V0 = -54.0 mV,  for the Kv2-Kv6-Kv2-Kv6 tetramer a zi,6 = 2.32 and V0 = -51.8 mV]. 

In the Kv2.1-Kv6.4-Kv2.1-Kv2.1 construct with only a single Kv6.4, Pi becomes 

 𝑃" = 1 − (1 − 𝑝",*): ∙ (1 − 𝑝",D), (eq. S5) 

which produces zi,6 = 2.9 and V0 = -50.6 mV. The behavior (values) of the Kv6.4 monomer did 

not alter in the 3:1-tetramer compared to the 2:2-constructs, and we can therefore assume that 

the obtained zi,6 and V0  values are Kv6.4s intrinsic properties. The above results suggest that, 

under the assumption of independently inactivating subunits, both Kv2.1 and Kv6.4 monomers 

behave consistently in all stoichiometries, and only the number of subunits alters. 

Under these premises, the values obtained for Kv6.4 can now be compared with those 

obtained from co-expressing Kv2.1 and Kv6.4 in a 1:8 ratio. First, assuming a 2:2 stoichiometry, Pi 

is calculated according to eq. S3. With unaltered pi,2, we obtain for pi,6: zi,6 = 2.9 and V0 = -50.9 mV. 

These values are consistent with those found for all dimers and tetramers.  



Chapter 3 – Kv2.1/6.4 
 

 96 

In contrast, if we assume a 3:1 stoichiometry, Pi is calculated according to eq. S5, which results 

in a zi,6 = 3.5 and V0 = -59.1 mV. These values are significantly different than the intrinsic values of 

Kv6.4 determined above. Thus, while our model can be made consistent with a 3:1 stoichiometry, 

this is only possible by significantly shifting the values for Kv6.4 with respect to the concatemers. 

Considering the strong shift towards hyperpolarized potentials between Kv6.4 (-52.0 mV) and 

Kv2.1 (-3.7 mV), we can also deduce that inactivation is purely governed by the Kv6.4 subunits in 

the tetramers in physiologically relevant scenarios without influencing the intrinsic properties of 

the Kv2.1 monomers. 

3.9.2 Activation 

The effect on activation by co-expression seems more subtle. In fact, the midpoint of 

activation is only marginally altered, whereas the major effect is found to be on the apparent 

gating charge za. In contrast to inactivation, all four voltage sensors need to be activated for a 

homotetrameric Kv2.1 to open. The probability for activation Pa – equaling G/Gmax – becomes  

 𝑃E = 𝑝E,*C  (eq. S6) 

with the probability pa,2 of a Kv2.1 monomer to be activated 

 𝑝E,* = G1 + exp S− >/,,	?
@A

(𝑉 − 𝑉B)UI
)4

 (eq. S7) 

From the activation kinetics of the homotetrameric Kv2.1, we thus obtain za,2 = 2.2 and V0 = -

14.3 mV. In the dimeric and tetrameric homo-constructs, V0 alters to -19.4 mV with the same za,2.  

In the dimeric and tetrameric heteromers in a 2:2 stoichiometry, one would assume that Pa 

would be the geometric superposition of the independent probabilities according to 

 𝑃E = 𝑝E,** ∙ 𝑝E,D* , (eq. S8) 

where pa,6 is the probability of activation for a single Kv6.4 monomer. However, it was not 

possible to fit the data with this model using the above V0 and za,2 values for Kv2.1. This indicates 

that the probability of activation for Kv2.1 is altered by the presence of Kv6.4. Such a cross-

influence is perfectly feasible since we are monitoring pore opening following cooperative steps 
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instead of voltage sensor movement. Since the early closed state transitions of each voltage 

sensor occur independently, we can lump them into a single closed state. We then considered 

only the final 1-step transition to opening.  

We fitted the dimeric and tetrameric 2:2 heteromers according to equation S8, while, this 

time, leaving the parameters of Kv2.1 free to alter, too. We then find that the Kv6.4 monomers 

have to be continuously activated (far shifted to hyperpolarizing potentials), whereas the Kv2.1 

subunits keep their initial midpoint of activation V0 but alter their apparent gating charge to half 

the original value (za,2 = 1.0 ± 0.1, V0 = -22.0 mV ± 3.1 mV). 

The 3:1-tetramer (Kv2.1-Kv6.4-Kv2.1-Kv2.1) shows a similar pattern with three Kv2.1 subunits 

with an apparent gating charge reduced to za,2 = 1.4 and V0 = -25 mV, when fitted according to 

 𝑃E = 𝑝E,*: ∙ 𝑝E,D. (eq. S9) 

Alternatively, Kv6.4 might only affect the adjacent Kv2.1 subunits. In this case, the 3:1-

tetramer can also be described by one Kv2.1 behaving like wildtype and two with za,2 = 1.15 and 

Vo = -27.6 mV.  

Thus, for all constructs, with both the 2:2 stoichiometries (Kv2-Kv6, Kv6-Kv2, Kv2-Kv6-Kv2-

Kv6) and the 3:1 stoichiometry (Kv2-Kv6-Kv2-Kv2), we find a reduced apparent gating charge of 

za,2 = 1.1 ± 0.1 in the Kv2.1 adjacent to Kv6.4, assuming a single voltage-dependent activation 

step. 

If we now compare the values obtained from the heteromeric co-expression of Kv2.1 and 

Kv6.4, we find that it behaves like two Kv2.1 with the reduced za,2 = 1.1 and V0 = -14.9, as expected 

for a pure 2:2 stoichiometry. A 3:1 stoichiometry does not fit as well and would require a za,2 = 

0.77 with a shift of V0 = -32 mV, assuming that only the adjacent Kv2.1 are affected. Thus, while 

our model can fit both the homotetramer and concatemers, the experimental data of the co-

expressed heteromers is not compatible with a 3:1 stoichiometry while keeping Kv2.1’s midpoint 

of activation constant. 

To summarize: (i) assuming independently activating subunits both for activation and 

inactivation as described above, the electrophysiological data of Kv2.1:Kv6.4 channels assembled 
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from monomers are consistent with a pure 2:2 stoichiometry, excluding the presence of 

predominantly heteromeric Kv2.1:Kv6.4 channels with 3:1 stoichiometry. (ii) Kv6.4 voltage 

dependence is strongly shifted to more hyperpolarized potentials both for inactivation and 

activation. As a consequence, inactivation is governed by Kv6.4 and activation by Kv2.1. (iii) 

Presence of Kv6.4 lowers the gating charge of the neighboring Kv2.1 subunits for activation. While 

the 1-step gating model with independently acting subunits that we used here likely does not 

completely describe Kv2.1/Kv6.4 gating, we find consistent results for the homotetramer and 

concatemers. The parameters of the heteromers assembled from Kv2.1 and Kv6.4 monomers are 

consistent with a predominantly 2:2 stoichiometry.  
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Supplemental Table S3.1: Biophysical properties of homotetrameric Kv2.1 and heterotetrameric 
Kv2.1/Kv6.4 channels composed of monomers, dimers or tetramers 

 Activation     

 V1/2 k n V1/2 zapp  #  # V1/2 zapp  
monomer          

Kv2.1  6.1 ± 2.2  9.0 ± 0.4 7 -14.3 2.2 4    

Kv2.1  +  Kv6.4  7.9 ± 0.7 20.2 ± 0.7 3 -14.9 

-29.2 

1.1 

0.98 

2 

3 

   

dimer          

Kv2.1-Kv2.1  5.6 ± 2.4 10.9 ± 1.5 7 -19.2 1.8 4    

Kv2.1-Kv6.4 -4.6 ± 1.0 18.4 ± 0.6 3 -25.2 1.16 2    

Kv6.4-Kv2.1  2.4 ± 2.7 21.6 ± 2.5 4 -21.9 0.98 2    

tetramer          

Kv2.1-Kv2.1-Kv2.1-Kv2.1  1.8 ± 2.8 9.4 ± 0.6 5 -19.5 2.5 4    

Kv2.1-Kv6.4-Kv2.1-Kv2.1 (3:1)  1.7 ± 2.9 14.9 ± 1.8 4 -25.0 1.36 3    

Kv2.1-Kv6.4-Kv2.1-Kv6.4 (2:2)  5.7 ± 3.1 21.9 ± 0.3 5 -19.0 0.97 2    

 Inactivation  

 V1/2 k n V1/2 zapp  #  # V1/2 zapp  
monomer          

Kv2.1  -18.2 ± 2.3  6.4 ± 0.5 7 -3.7 3.1 4    

Kv2.1  +  Kv6.4  -59.2 ± 2.5 7.4 ± 1.2 3 -3.7 

-3.7 

3.1 

3.1 

2 

3 
2 

1 

-50.9 

-59.1 

2.9 

3.5 

dimer          

Kv2.1-Kv2.1  -23.4 ± 2.2 5.6 ± 0.9 7 -10.7 3.5 4    

Kv2.1-Kv6.4 -58.4 ± 0.7 7.3 ± 0.3 3 -10.7 3.5 2 2 -50.2 3.0 
Kv6.4-Kv2.1  -62.5 ± 1.9 7.3 ± 0.2 4 -10.7 3.5 2 2 -54.3 3.0 

tetramer          

Kv2.1-Kv2.1-Kv2.1-Kv2.1  -21.0 ± 1.9 5.6 ± 0.4 6 -10.2 3.4 4    

Kv2.1-Kv6.4-Kv2.1-Kv2.1 (3:1)  -54.8 ± 2.4 8.6 ± 0.7 10 -10.2 3.4 3 1 -50.6 2.9 
Kv2.1-Kv6.4-Kv2.1-Kv6.4 (2:2)  -62.8 ± 1.6 9.4 ± 0.9 9 -10.2 3.4 2 2 -51.8 2.3 

Values are given as mean ± SEM and n the number of cells analyzed. The midpoints of activation and 
inactivation (V1/2), represented in mV, and the slope factor k in mV/e-fold were obtained from a single 
Boltzmann fit. The columns on the right reflect the transitions of the single subunits resulting in the same 
voltage dependences as fitted on the left. The # indicates how many subunits were assumed to contribute. 
zapp represents the apparent gating charge, assuming an electric free energy difference 
zappF (V-V1/2). 
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Figure 3.S1 Supplementary Figure 
Single values and box plot for the tetrameric concatemers Kv2.1-Kv2.1-Kv2.1-Kv2.1 (WT), Kv2.1-Kv6.4--
Kv2.1-Kv2.1 (3:1) and Kv2.1-Kv6.4-Kv2.1-Kv6.4 (2:2) are shown of (a) the slope factor of activation, (b) the 
V½ of inactivation and (c) the IC50 value for TEA inhibition. One-way ANOVA with pairwise analysis between 
the three models was performed for each parameter (slope, V1/2 or TEA) and the statistical significance 
added to the figure. Values between parentheses indicate the number (n) of cells analyzed.  
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4.1 Abstract 

The body’s ability to perceive and react to stimuli from the environment is fundamental for 

survival. The molecular player forming the complex responsible for transducing noxious touch 

stimuli has remained elusive for a long time. The mechanosensitive cation channel TACAN was 

recently suggested to be part of the molecular machinery responsible for transducing these pain 

signals in vertebrates. It is predicted to comprise six transmembrane helices, but the channel 

structure remains unsolved. Here, we investigate TACAN’s oligomeric state using single subunit 

counting experiments by tethering purified channel complexes solubilized in detergent onto 

nickel-nitrilotriacetic acid functionalized coverslips, thereby increasing the signal to background 

ratio. We found that solubilizing the channels in n-Dodecyl β-D-maltoside allowed for more 

efficient tethering compared to Fos-Choline-14. Our subunit counting results showed that SEC-

purified TACAN exists in various oligomeric states. Depending on the SEC fraction, we observed 

tetramers, trimer and dimers, suggesting that native TACAN channels assemble as tetramers, 

which are unstable when solubilized and purified. 

4.2 Introduction 

The underlying molecular mechanisms of how the body perceives and reacts to stimuli are 

not fully understood. The field of sensory perception has received much attention and a multitude 

of studies investigate the underlying processes. These studies can be divided into two subfields. 

The first investigates the perception of taste, smell and sight which depend on various G-protein 

coupled receptors (GPCRs). Small tasty or odorant molecules and photons activate different 

members of this receptor family, respectively (1-3). Activation of the receptors lead to signal 

transduction via secondary messengers that ultimately transform the external stimuli into 

electrical signals in neurons (4, 5). 

The second field investigates the perception of sound and touch as well as proprioception 

which depend on mechanosensation. Unlike GPCR-mediated signal transduction, the molecular 

mechanisms underlying mechanosensation are less understood. Because of the rapid response 

time to mechanical stimuli, it has been postulated that the primary sensor is an ion channels (6, 
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7). Since these ion channels are less abundant than GPCRs that are highly expressed in sensory 

cells, possible candidates for mechanically activated channels remained for a long time unknown. 

Of all sensory perception, the mechanism of sensing pain is the least understood. Recently 

published work identified TACAN as a mechanosensitive non-selective cation channel that is 

involved in pain sensing in vertebrates (8). Currently, the protein structure or even the oligomeric 

state of TACAN remain elusive. In the absence of a high-resolution structure, single subunit 

counting has been successfully applied to determine the number of protein complex subunits (9, 

10). Single subunit counting is based on the stepwise photochemical destruction of fluorescent 

molecules linked to subunits of protein complexes and counting the photobleaching steps. Here, 

we investigate TACAN’s oligomeric state via two separate single subunit counting approaches. In 

the first approach, we performed experiments directly in cells. Due to some limitations of the 

technique, i.e. high background fluorescence, we then performed the experiments by tethering 

purified fluorescently labeled channel complexes onto nickel-nitrilotriacetic acid (Ni-NTA) 

functionalized coverslips. 

4.3 Results 

4.3.1 GFP Background Fluorescence and Clustering of TACAN in Cells 

Single subunit counting experiments are a direct method to study the number of subunits in 

unknown protein complexes and are typically performed in mammalian cells or Xenopus oocytes. 

TACAN was recently identified as a non-selective cation channel that generates mechanosensitive 

currents and is involved in pain sensing (11). The channel’s structure including topology or 

oligomeric state remain unknown. To determine the oligomeric state of TACAN, we first 

conducted subunit counting experiments in transiently transfected HEK cells, which have been 

shown to functionally express the channel in the plasma membrane (8). 

To resolve individual protein complexes, single subunit counting experiments rely on low 

protein expression and a good signal to noise ratio. We transfected HEK cells with super-folder 

monomeric GFP-tagged TACAN (TACAN-GFP) in varying conditions. Compared to control 

transfections of GluK2-GFP and Kv2.1-GFP which are both trafficked to the membrane (13, 14), 



Chapter 4 – TACAN 
 

 109 

TACAN-GFP expression led to high background fluorescence and to protein clusters beyond the 

diffraction limit (figure 4.1a). To reduce background fluorescence, single subunit counting 

experiments are performed in TIRF mode. The evanescent excitation illuminates fluorescently 

labeled proteins in the plasma membrane (PM) and dissipates within approximately 300 nm 

above the coverslip. Since the intensity of the excitation decreases exponentially with the 

distance to the coverslip and the speed of bleaching depends on the excitation intensity, the 

speed of bleaching will depend on the distance from the coverslip. Fluorophores attached to 

proteins inserted in the plasma membrane bleach fastest and those located further inside the cell 

– but still within the first 300 nm – bleach with a slower speed. Typically, we find the exponential 

bleaching trace of an entire cell illuminated in TIRF mode described by three time constants. The 

fastest time constant represents contamination directly on the coverslip, the intermediate 

represents fluorophores in the plasma membrane while the slowest represents the fluorophores 

further away from the coverslip, i.e. in the intracellular of the cell (13). Comparing TACAN’s 

exponential bleaching traces with those of the sfmGFP-tagged plasma membrane protein controls 

GluK2 and Kv2.1 shows that bleaching is slower and incomplete (figure 4.1b). This suggests that 

only a fraction of TACAN subunits traffics to the plasma membrane. We then investigated if this 

background fluorescence is comparable to background fluorescence originating from 

fluorescently tagged proteins located in the ER. To this aim, we compared the overall bleaching 

of TACAN-GFP to Kv6.4-GFP which gets trapped in the ER and to co-expressed Kv2.1/Kv6.4-GFP 

channels which traffic partially to the plasma membrane but also suffer from background 

fluorescence originating from untrafficked Kv6.4-GFP. In comparison, TACAN-GFP was slower and 

slightly less complete (figure 4.1b). While expressing Kv6.4-GFP resulted in diffuse background 

fluorescence and GluK2-GFP and Kv2.1-GFP in uniform expression of single channels in the plasma 

membrane observed as distinct spots, expression of TACAN-GFP resulted not only in diffuse 

background fluorescence but also in larger fluorescent spots (clusters) (figure 4.1a). 
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Figure 4.1 TACAN expression in cells compared to other GFP-tagged plasma membrane proteins 
(A) Representative frames of recorded movies of HEK cells expressing (from left to right) TACAN-GFP, 
GluK2-GFP, Kv2.1-GFP, Kv6.4-GFP, Kv2.1/Kv6.4-GFP recorded in TIRF configuration. (Scale bars 2 µm.) (B) 
Left, representative global bleaching traces of recorded movies from HEK cells expressing GluK2-GFP 
(grey), Kv2.1-GFP (red), Kv6.4-GFP (orange), Kv2.1/Kv6.4-GFP (magenta) and TACAN-GFP (cyan) and CHO 
cells expressing TACAN-GFP at lower densities (blue). Right, normalized remaining fluorescence after two 
minutes, n=5. (C) Representative frames of recorded movies of CHO cells expressing His6-TACAN-GFP at 
high densities (left) and lower densities (right). (Scale bars 2 µm.) (D) Bleaching time constants of clusters 
compared to areas of the cell that did not have clusters, n=10 (E) Fraction of accepted spots from SSC 
movies for membrane proteins GluK2 and Kv2.1 compared to TACAN expressed in CHO and HEK, n=5. 
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To further study these TACAN clusters we first wanted to rule out the possibility of artefacts 

originating from the transient transfection and expressed TACAN-GFP in stable CHO cells. The 

expression level of TACAN-GFP in the stable CHO cell line varied widely (figure 4.1c). We selected 

those CHO cells that expressed levels of TACAN-GFP appropriate for single molecule analysis 

(figure 4.1c, right). In the overall bleaching trace (figure 4.1b), the fluorescence not originating 

from the plasma membrane (slow bleaching time) was still dominating, and we still observed 

cluster formation. Comparing the bleaching time constants of the clusters to the regions of the 

cell devoid of clusters in both stably and transient transfected cells showed that the slow and 

intermediate time constants were significantly slowed (figure 4.1d). The distribution of the time 

constants suggested that, although a fraction of TACAN traffics to the plasma membrane, the 

majority is located in the intracellular space where it forms clusters. We previously found a similar 

behavior in Kv6.4-GFP (14) that are known to remain in the ER. We therefore propose that much 

of TACAN does not traffic to the membrane. We did not further investigate, however, in which 

intracellular membrane TACAN clusters are found. In addition to the ER, possible locations for the 

intracellular clusters are a pool of recycled TACAN located in endosomes or other organelle 

membranes. Since the clusters were observed throughout the entire cell, it is unlikely that TACAN 

expressed here exclusively in the nuclear envelope as has been previously reported in adipocytes 

(15). 

4.3.2 Subunit Counting of Immobilized Purified Protein 

As a result of high background fluorescence and clustering, a lot of detected fluorescent spots 

were rejected by the spot and bleaching step detection program (figure 4.1e), rendering the single 

subunit counting results unreliable. Therefore, we were unable to obtain reliable single subunit 

counting data from TACAN expressed in cells. Expressing the protein in Xenopus oocytes has been 

one way to circumvent the problem of background fluorescence from the ER, as the endogenous, 

overexpressed or injected melanin blocks fluorescence from the intracellular side (16). Here, we 

pursued a tethering approach as an alternative method. To this aim, we expressed TACAN in 

bacteria and studied the channel in purified form. Membrane bound proteins have been mostly 

studied in cells or lipid environments, but soluble complexes have been immobilized via biotin or 
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antibodies to perform subunit counting studies (Mini review (17, 18)). Rather than introducing a 

new tag, we decided to utilize the existing His6-tag for tethering the His6-TACAN-GFP onto a Ni-

NTA functionalized coverslip (supplemental figure S4.1) (12). 

First, we aimed at immobilizing His6-TACAN-GFP purified in FC14 onto Ni-NTA coverslips to 

record bleaching movies. We added protein in excess of available binding sites (11-68 nM) to 

facilitate binding and detect immobilized fluorescent spots on the coverslip. Observation in 

epifluorescence mode confirmed that the majority of the protein remains in solution and doesn’t 

bind to the Ni-NTA functionalized coverslips. This was further confirmed by precipitating the 

protein onto the coverslip. Adding the protein to buffer without detergent immediately resulted 

in the appearance of spots at a density beyond the camera’s resolution. However, even after 

incubating the protein for 20 minutes in the presence of FC14 detergent, we only observed an 

average of 69±37 spots per movie. We therefore investigated whether changing the detergent to 

DDM would allow to tether more complexes onto the coverslip and increase the number of 

detected spots. We isolated the protein in FC14 but exchanged the detergent to DDM in the final 

step of purification. Adding 7-30 times less DDM-solubilized protein (1.5-3 nM) compared to 

samples solubilized in FC14 resulted in an over 3-fold increase of immobilized channels. In average 

we detected 255±98 spots per movie of which 61.9 ± 6.3 % were accepted for step histograms 

(figure 4.2a representative movies). 
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Figure 4.2 Single subunit counting on NI-NTA coverslips in DDM 
(A) Representative frames of recorded movies of His6-TACAN-GFP purified and tethered in DDM buffer 
from three different fractions as indicated on top. (Scale bar 2 µm.) (B) Representative intensity time 
traces (black) of a single spot fitted by PIF (red) with one to four bleaching steps (red arrow). 

We analyzed each relevant fraction collected during the size-exclusion chromatography 

independently and found different oligomeric states for each fraction. Fractions that eluted closer 

to the column’s void volume had higher numbers of subunits per spots. The first fraction was 

collected 1 mL after the void volume to avoid potential protein aggregates and we observed 

primarily one to four photobleaching steps (figure 4.2b and 4.3a, first graph). For photobleaching 

recordings of the second fraction, we saw a drastic shift in the step frequency histograms to lower 

numbers of bleaching steps compared to the previous fraction (figure 4.3a, second graph). We 

collected the third peak of the size exclusion chromatography and again immobilized protein 

complexes onto the coverslips. Similar to the previous fraction, step frequency histograms 

showed primarily one to three bleaching steps (figure 4.3a, third graph). As a result of incomplete 

maturation of the GFP chromophore and pre-bleaching prior to recording bleaching movies, not 

all GFP molecules are visible, resulting in a binomial distribution of bleaching step frequencies. 
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In order to determine the oligomeric states of TACAN in these different fractions, we first 

determined the probability of GFP fluorescence (pf). The maturation of GFP depends on the 

protein expression conditions, while pre-bleaching depends on the experimental conditions. 

Given that the three fractions were purified from the same culture and handled identically 

following the purification, we reasonably assumed pf to be identical for all fractions. We 

determined the most likely probability of fluorescence for all three fractions simultaneously (see 

Methods). Very low (pf < 0.25) and higher (pf > 0.65) GFP probabilities were very unlikely, while 

two to three maxima were found between pf 0.3 and 0.6 (figure 4.3b). We fitted the step 

frequency histograms of all three fractions to binomial distributions of Nth order, where N 

corresponds to the number of subunits in the TACAN complex and kept pf fixed to the different 

maxima. Lower pf values then predicted higher oligomeric states, whereas higher pf values 

predicted lower oligomeric states (table 4.1). For example, fixing pf to 0.387 resulted in best 

binomial fits of fifth, fourth and third order for the three fractions, respectively, while overall 

lower oligomeric states were predicted when we increased pf to 0.461, which resulted in best 

binomial fits of fourth, third and third order for the three fractions, respectively. Independent of 

the pf value, we consistently found that the first fraction was predicted to contain channels of 

higher oligomeric states compared to later fractions. We propose that the channel complex of 

the highest oligomeric state represents the native channel and that lower oligomeric states found 

in later fractions are due to protein disintegration. However, we could not yet determine the most 

probable oligomeric state for the native channel complex, since the likelihoods for the different 

pf maxima were too similar. To determine the most likely number of subunits in the first fraction, 

which is likely to contain the native channel, we fitted the respective step frequency histogram 

to various binomial distributions and let pf free to vary between 0.3 and 1. The best fit was 

obtained for a binomial distribution of fourth order, suggesting that (native) TACAN channels in 

the first fraction are composed of four subunits (not shown). Knowing the oligomeric state of the 

first fraction, we were then able to identify the “best” pf value for all three fractions. To this end, 

we checked which pf maxima that we found earlier (figure 4.3b) predicts a tetrameric assembly 

for the first fraction and determined the “best” pf to be 0.461. Fixing pf to this value allowed us 

to identify the oligomeric states of channels contained in the second and third fraction. Assuming 
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that each fraction only composes one population of TACAN channels that don’t mix, we found 

that the second and third fraction both contain trimeric TACAN complexes (figure 4.3c). 

Table 4.1. Oligomeric states obtained by different pf values 

 Fraction 
pf 1 2 3 

0.323 hexamer pentamer tetramer 
0.387 pentamer tetramer trimer 
0.461 tetramer trimer trimer 
0.538 trimer trimer dimer 

Oligomeric states were determined by finding the best fitting binomial distribution of Nth order for each 
fraction keeping pf fixed to the different maxima shown in figure 4.2d. N corresponds to the number of 
subunits. 

 

 

Figure 4.3 Single subunit counting analysis  
(A) PIF automated analysis result showing step frequency distributions (grey bars) for the three 
independent fractions as indicated on top. For fits, the probability of fluorescence pf was fixed to 0.461 
and distributions were best fitted with binomial distributions of fourth (left) and third (center and right) 
order (red). (B) Likelihood for different pf values determined for all three fractions simultaneously. (C) Log 
likelihoods for the step frequency distributions in (A) for monomeric to hexameric oligomeric states with 
pf limited 0.461. Significance was determined with respect to the tetramer for the first fraction (left) and 
to trimer for the second and third fraction (center and right). ****P > 0.9999. 



Chapter 4 – TACAN 
 

 116 

Since our results suggested that the protein is not stable in isolated form, it was likely that we 

find mixtures of different oligomeric forms in the fractions. To test this, we fitted binomial 

distributions that would account for populations with heterogenous oligomeric state (table 4.2). 

For the first fraction, we found that the distribution was best fitted with a pure tetrameric 

distribution with no fraction of dimers or trimers. In contrast, the fit of the step frequency 

distribution of the second fraction was improved when a mixed population of 49.5% trimers and 

50.5% tetramers was allowed. Following this trend of degradation of the tetrameric TACAN 

complex, the fit of the third fraction was improved by accounting for a mixed population of 66.5% 

trimers and 33.5% dimers. Other mixed population fit less well (table 4.2). In summary, our data 

show that the highest oligomeric state of purified TACAN channels is tetrameric. We suggest that 

this represents the native channel as found in the plasma membrane. Our results also illustrate 

that DDM-solubilized TACAN is unstable and disintegrates into trimers and dimers. 

 

Table 4.2. Distribution of mixed populations in DDM 

Significance was determined for fits with fixed pf with respect to the best pure oligomeric state (grey). Bold 
numbers highlight the fit with the highest probability. 

  

 Stoichiometry    
 monomer dimer trimer tetramer pc pf Significance 

Fraction 1 
   1 0.151 0.461  
 0  1 0.151 0.461 1 
  0 1 0.151 0.461 1 

Fraction 2 
  1  0.272 0.461  
  0.495 0.505 0.077 0.461 0.0212 
 0.18  0.82 0.015 0.461 1 

Fraction 3 

  1  0.089 0.461  
 0.335 0.665  0.206 0.461 0.0084 
 0.492  0.508 0.037 0.461 0.0471 

0.08 0.165 0.755  0.182 0.461 0.0167 
 0.409 0.279 0.313 0.092 0.461 0.1184 
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4.4 Discussion 

Overall, our initial experiments in cells demonstrate that TACAN is primarily localized in 

intracellular compartments and only a fraction is trafficked to the plasma membrane. Previous 

biotinylation assays of stably transfected CHO cells also confirm this (11) and another study 

reported TACAN (also known as TMEM120A) in the nuclear envelope membrane of adipocytes 

(15). Our recordings resulted in a diffuse fluorescence signal and cluster formation throughout 

the cell. The diffuse background fluorescence is often observed when the membrane protein does 

not traffic to the plasma membrane but remains in the ER (as for Kv6.4). Since the outer 

membrane of the nuclear envelope is continuous with the ER membrane, TACAN might well be 

located in both membranes, resulting in diffuse background fluorescence. Without further 

experiments, it remains unknown whether TACAN localizes in one specific intracellular 

compartment. We analyzed the protein sequence for subcellular localization signals using the 

LocSigDB database (19). The search found, among other, less well defined, signals (supplementary 

table 4.1), a dilysine C-terminal ER-retention signal. A similar C-terminal dilysine KKXX motif has 

been shown to be involved in ER targeting (20), which also depends on the correct length between 

the last transmembrane helix and the C-terminus (21). Proteins with short 13aa C-termini traffic 

to the plasma membrane despite the presence of a retention motif, but proteins with 18aa and 

longer C-termini that carry this motif remain in the ER. According to the previously published 

sequence prediction of TACAN, the channel has a 14 amino acid long C-terminus (11), which might 

result in a mixed localization of protein complexes in the plasma membrane and complexes that 

remain in the ER. Additionally to the diffuse background fluorescence, we observed intracellular 

cluster formation. The identity of the organelles containing these TACAN clusters remains 

unknown, but it is possible that the mechanosensitive action of TACAN serves distinct purposes 

in the plasma membrane and in the intracellular space. 

Our subunit counting results suggest that SEC-purified TACAN solubilized in DDM is not 

homogenous and exists in various oligomeric states. Although we found the highest oligomeric 

state to be tetrameric, mixed populations of tetramers, trimers and dimers were more likely for 

later fractions. A plausible explanation for our results, is the possibility that the functional channel 
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complex is instable and falls apart as a result of the detergent extraction. This is crucial, especially 

for future attempts at solving the protein structure since heterogenous protein samples are 

difficult to crystalize and complicate the interpretation of electron microscopy images. We 

showed that the first fraction of the SEC purification features the largest channel complex with 

four subunits and no trimers or dimers. We suggest that this oligomeric state represents the 

native channel. Subsequent fractions might then contain non-native channel arrangements of 

lower oligomeric states. The observation of trimers suggests that the interactions at all four 

subunit interfaces are comparable. This raises the question if TACAN channels assemble by 

successively adding monomers to the complex. This would be untypical, since other tetrameric 

protein assemblies that form in the ER, and more specifically, voltage-gated potassium channels 

have been reported to assemble as dimers of dimers (22, 23).  

While we assume that the heterogeneity in the oligomeric states is caused by unstable 

proteins in detergent micelles, an alternative explanation for these different oligomeric states 

could be a physiologically relevant heterogeneity. A heterogeneity in TACAN localization was 

observed in cells and might be accompanied by distinct oligomeric arrangements. It is, for 

instance, unclear, whether the tetramer is required to form the ion conduction pathway as it is 

the case for most hexahelical cation channels, or whether the monomer is the pore-forming unit, 

and entire channels co-assemble to one complex. Such an oligomerization independent of 

function is for instance seen for voltage-gated proton channels (Hv (24-26)). The channels might 

thus assemble dependent on function or localization. 

In summary, we show that TACAN expresses not only in the plasma membrane where it has 

been previously shown to be mechanosensitive but also in the intracellular of the cell where it 

might serve a different purpose. Furthermore, we suggest that native TACAN channels comprise 

four subunits that might not be assembled as dimers of dimers. 
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4.5 Methods 

4.5.1 Cleaning of Coverslips 

To minimize background fluorescence on the single molecule level, coverslips underwent a 

thorough cleaning procedure. No. 1 glass coverslips were cleaned in a staining jar by sonication 

(at 37 kHz and T = 60°C) in Alconox 1% in MilliQ H2O and 2 times in anhydrous ethanol. Coverslips 

were rinsed with MilliQ H2O (deionized to >18 MOhm×cm) after each sonication step. These 

“ultra-clean” coverslips were stored in deionized, 0.2 µm-filtered H2O and dried under a steady 

stream of filtered nitrogen directly before use. For cell culture, the ultra-clean coverslips were 

glued using Sylgard 184 (Dow Corning) to the bottom of 35 mm culture dishes and sterilized by 

UV radiation overnight. 

4.5.2 Cell Culture 

HEK 293T cells were cultured in DMEM supplemented with 10% FBS and 1% 

penicillin/streptomycin in a 5% CO2-atmosphere. Cells were plated on ultra-clean N°1 glass 

coverslip petridishes coated with poly-D-lysine and transiently transfected with 50-150 ng 

superfolder monomeric (sfm) GFP-TACAN (referred to as TACAN-GFP) in pRK5 missing the SV40 

origin of replication using calcium phosphate and varying amount of cDNA. Removing the SV40 

origin of replication is important to better control the expression levels, since this feature would 

otherwise allow the replication of plasmid DNA in the cytoplasm in HEK 293T cells. All following 

steps were performed in the dark or under red light. 6His-GFP-TACAN was expressed at 37°C for 

8-18 hours. For comparison sfmGFP tagged Kv2.1, 6.4 and GluK2 were transfected under the same 

conditions. 

4.5.3 Stable CHO Cell Line Expressing TACAN-GFP 

CHO K1 cells were transfected with 2 µg of sfmGFP-TACAN (referred to as TACAN-GFP)in a 

pcDNA3.1 vector using lipofectamine. Expressing clones were selected with 600 µg/mL 

neomycine applied for 14 days. Stably transfected cells were plated onto ultra-clean N°1 glass 

coverslip petridishes and kept in the dark until fixation (1-6 days). HEK and CHO cells were fixed 
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in 4% EM-grade formaldehyde in PBS for 24 hours and washed three times with PBS before 

imaging. 

4.5.4 Protein Purification 

The protein has been expressed and purified as published previously (11) with minor 

modifications. 6His-sfmGFP-TACAN-pET27a (we refer to the protein as TACAN-GFP) was 

transformed into E. coli DE3-pLys (Rosetta) competent cells. 100mL of pre-culture was grown 

overnight in LB medium supplemented with 15 μg/mL kanamycin and 34 µg/ml chloramphenicol 

at 37°C. 1L of culture was inoculated with 10 mL of pre-culture. Once OD600 0.8 was reached, IPTG 

(final concentration of 0.5 mM) and glycerol 50 mL/L culture (∼5%) were added to induce 6His-

GFP-TACAN expression. From this point on, the protein was protected from light exposure and 

expressed at 20°C over night. Cells were collected and resuspended at a concentration of 

1 g/14 mL with resuspension buffer (0.5 M NaCl, 50 mM HEPES, 10% glycerol, pH adjusted to 7.50 

with KOH) containing 2 pellets of protease inhibitor (mini complete EDTA-free, Sigma) and 4-(2-

Aminoethyl)benzenesulfonyl fluoride hydrochloride (0.25 mM, Sigma). The suspension was kept 

on ice at all times. Cells were lyzed by passing through a cell disrupter (Emulsiflex C5, Avestin) 3 

times at 10,000 psi. Unbroken cells and debris were subsequently removed by centrifugation 

(18 000g, 15 min). The supernatant was ultracentrifuged at 100,000 g for 2h at 4°C and the pellet 

(membranes) was collected. Membranes were resuspended in 2 mL/g of pellet in buffer (0.5 M 

NaCl, 50 mM HEPES, 10% glycerol, pH adjusted to 7.5 with KOH) and mechanically homogenized. 

Fos-choline-14 (FC14, 2%, Avanti) was added and agitated for 2h at 4°C. Non-soluble debris was 

removed by centrifugation at 100,000 g for 30 min. Proteins were bound to Co-resin (Talon 

superflow) equilibrated in buffer (0.5 M NaCl, 20 mM HEPES, 10% glycerol,10 mM imidazole, 

0.02% Fos-choline-14, pH adjusted to 7.5 with KOH) and washed with 25 mM imidazole in a FPLC 

(Äkta purifier, GE Lifesciences). The protein was eluted at 400 mM imidazole and the appropriate 

fractions pooled and concentrated. TACAN was further purified by size-exclusion on a Superdex 

200 10/300GL column (GE Healthcare Life Sciences) in SEC buffer (0.5 M NaCl, 20 mM HEPES, 5 % 

glycerol, 0.02% n-Dodecyl β-D-maltoside (DDM), pH adjusted to 7.5 with KOH). 



Chapter 4 – TACAN 
 

 121 

4.5.5 Coverslips Functionalized with Ni-NTA 

N°1 glass coverslips were cleaned as described above. Coverslips and staining jar were dried 

under a steady stream of filtered nitrogen and subjected to a 24-hour treatment of aqua regia 

(nitric acid and hydrochloric acid at a molar ratio of 1:3). Coverslips were functionalized following 

published protocols (12). Coverslips were treated for 24h each with piranha solution and 1% 

(3-Glycidyloxypropyl)trimethoxysilane in toluene. Between the steps, they were washed with 

deionized, filtered H2O and dried under a steady stream of nitrogen. Access toluene and GPTMS 

were washed away with toluene and 4 rounds of anhydrous ethanol and dried under nitrogen. 

The coverslips were then glued onto 35mm bottomless petri dishes with Sygard 184 (Dow 

Corning). 10mM AB-NTA was added to the surface and incubated for 3 hours. Next, a 1-hour 

treatment of NaBH4 to reduce remaining epoxy-groups was followed by 4 rounds of washing with 

MilliQ H2O and a final 1-hour incubation with 10mM NiCl2. The coverslips were rinsed in SEC buffer 

before adding protein. 6His-GFP-TACAN was added, incubated for 5 minutes and washed with 

SEC buffer to remove unbound protein and reduce background fluorescence. 

4.5.6 Single Subunit Counting 

Fluorescence bleaching was recorded using an Axiovert-200 microscope (Zeiss). All samples 

were excited at an intensity of 3.7 mW/mm2 in TIRF configuration using a 488-nm laser (PhoXx, 

Omicron). For TIRF imaging, the laser light is reflected at an angle sufficient for total reflection of 

the light and only evanescent excitation in the region within ~300 nm above the coverslip, thus 

limiting background fluorescence emerging from internal cell compartments or the solution. 

Emission was collected with a 60X NA-1.49 objective (Olympus) and filtered by a bandpass 

emission filter (ET525/50 nm) in combination with a laser line reflecting dichroic mirror 

(Z405/488/561/635, Chroma). Images were recorded with a backlit 128x128 pixel EMCCD camera 

(iXon+ 860BV, Andor) at a sampling rate of 20 Hz. 
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4.5.7 Analysis of Bleaching Movies 

To avoid user bias, spot and step detection was carried out using the automated algorithm 

PIF (13). The following parameters were used for spot and step detection: The selection of a spot 

was limited to one neighbor (3 × 3 pixels), and the minimum signal/noise ratio (dF/F) was set to 

12%. The minimum fluorescence intensity amplitude was set to 0. Minimal and maximal step 

amplitude were left at 0 and 1 × 106, respectively. The total fluorophore photobleach length was 

set to 100%. All parameters were kept at their default setting. 

The obtained step distribution histograms were converted into oligomeric states using 

maximum relative weighted likelihoods as published previously (14). To determine the probability 

of fluorescence (pf) for purified TACAN-GFP, we fitted the step frequency distributions of the 

three fractions simultaneously with pf values ranging from 0 to 1. The pf for all three fractions had 

to be identical, while parameters for the oligomeric state and colocalization of spots were 

independent. The error was calculated as the sum of all errors, i.e. the log likelihood for all points 

of all distributions instead of just for one distribution. 
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4.7 Supplemental Material 

 

Figure S4.1 Schematic representation of Ni-NTA functionalized coverslip preparation 
The different steps of the chemical reaction are depicted in black. First the coverslip is treated with piranha 
solution to introduce silanol sites on the surface. Next GPTMS is added to link epoxy-terminated substrates 
to the glass surface. The epoxy group then cross-links with the amine group of aminobutyl-NTA. Epoxy 
sites that did not react with AB-NTA are then reduced by sodium borohydrate. In the final step, divalent 
nickel ions are chelated by the NTA. Protocol from Cheng et al., 2011 (12). 
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Supplemental table S4.1 Search Results for Subcellular Localization Signals 

signal amino acid position Subcellular localization 
Yxx[VILFWCM] 107-111, 132-136, 138-142, 171-175, 

215-219, 228-232 
Lysosome 

KxxxQ 54-59, 217-222, 331-336 Lysosome 
DxE 14-17, 95-98 Endoplasmic reticulum 
SKK 339-342 Endoplasmic reticulum 
[HK]xK 66-69, 134-137, 329-332 Endoplasmic reticulum 
LxxKN 100-105 Golgi 

Six different localization signals were found using the LocSigDB database (19). x - occurrence of any amino 
acid, [] - various amino acids at this position are possible. 
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5.1 Abstract 

Rapidly inactivating voltage-gated potassium currents in the brain and heart are governed by 

ternary channel complexes of pore-forming Kv4 a-subunits, cytosolic K(+) channel interacting 

proteins (KChIPs) and transmembrane dipeptidyl aminopeptidase-like proteins (DPPLs). 

Coexpression of DPPLs increases current amplitude and accelerates channel inactivation and 

recovery from inactivation. The underlying mechanism of altered channel gating is not well 

understood. DPPLs feature an approximately 700 amino acid long C-terminal extracellular 

domain, which comprises a proximal inactive a/b-hydrolase domain and a distal eight-bladed 

b-propeller. The extracellular domain is responsible for increased surface expression of the 

channel complex, but it remains unclear which parts of the extracellular domain are responsible 

for altering Kv4’s gating properties. Here, we investigate how different C-terminally truncated 

DPP6 variants affect macroscopic Kv4.2 channel behavior. Electrophysiological interrogation 

demonstrates a strong link between the length of DPP6’s extracellular domain, peak current and 

accelerated activation and inactivation kinetics. More specifically, our results show that the 

second half of the propeller domain of DPP6 is responsible for drastically accelerated inactivation 

in the presence and absence of KChIP revealing the importance of a stable b-propeller domain 

and possibly DPP6 dimer formation. We hypothesize that the formation of a multimeric DPP6 

extracellular domain leads to a positioning of DPP6’s extracellular domain directly on top of the 

ion channel whereas truncated DPP6 variants fail to multimerize and therefore establish a more 

flexible conformation that does not destabilize the open channel state as efficiently. The proximal 

a/b-hydrolase domain does not directly modify the biophysical channel properties but might aid 

proper positioning of the extracellular domain on top of the channel. 
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5.2 Introduction 

The voltage-gated potassium channel family member Kv4 is expressed in the brain and heart, 

where it is responsible for the rapidly activating and inactivating somatodendric subthreshold A-

type current (ISA) and the cardiac transient outward current (Ito), respectively (1-5). Heterologous 

expression of Kv4, however, does not result in currents matching the properties of the native 

currents. In the brain and heart, the biophysical properties of the channel are modulated to the 

tissue specific requirements by auxiliary subunits. Here, Kv4 channels form complexes with the 

cytosolic Kv channel interacting proteins (KChIP) and transmembrane dipeptidyl aminopeptidase-

like proteins (DPP6 and DPP10) (6-9).  

Due to its importance in the central nervous system and heart, alterations of functional DPP6 

levels have been linked to neurological and cardiac disorders. Mice knockout models demonstrate 

that DPP6-loss leads to impaired learning and memory formation (10). In line with this, mutations 

leading to decreased DPP6 expression in humans have been linked to microcephaly and mental 

retardation (11) as well as neurodegenerative dementia like Alzheimer’s disease (12). Autism 

spectrum disorder (13, 14), sporadic amyotrophic lateral sclerosis (15, 16), Gilles de la Tourette 

syndrome (17) and antipsychotics-induced involuntary body movements (tardive dyskinesia) in 

Schizophrenics (18) have also been associated with alterations in the DPP6 gene. In the heart, a 

gain of function variant and increased DPP6 mRNA levels in the myocardium are the likely 

underlying mechanism for idiopathic ventricular fibrillation which is an important factor in sudden 

cardiac death (19, 20). 

The dipeptidyl aminopeptidase-like proteins (DPPLs) are related to the CD26/DPPIV enzyme, 

but a substitution in the catalytic site of serine to aspartate in DPP6 and to glycine in DPP10 and 

altered conformation revealed by crystallography renders it enzymatically inactive (21-23). The 

enzymatically inactive a/b-hydrolase domain together with an eight-bladed b-propeller domain 

form the approximately 700 amino acid long extracellular part of the protein, which follows the 

short cytoplasmic N-terminal domain and single transmembrane helix. It was found that DPPL 

traffics to the plasma membrane in the absence of Kv4 a-subunits (24-26) and when coexpressed 

with the pore forming subunits, DPPL redistributes Kv4.2 to the plasma membrane (27, 28), 
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increase single channel conductance (29) and accelerate channel activation, inactivation and 

recovery from inactivation (7, 30). KChIP1-3 also increase Kv4 trafficking and stabilization in the 

membrane (28) but slow the early phase of inactivation (6, 31). The effects on Kv4 gating are 

further fine-tuned by different isoforms of the auxiliary subunits (32-35). 

The channel gating of Kv4 has been studied in detail (36, 37). The structure-function 

relationship for open state inactivation (OSI) in Kv4 is well understood and is very similar to N-

type inactivation (NTI) in Shaker channels, where the binding of the cytosolic N-terminus of Kv4 

in the ion-conducting pore blocks the channel in its open state (38-40). However, in native Kv4 

channel complexes, NTI is inhibited by KChIP, which sequesters the N-terminal inactivation 

domain of Kv4 (31, 38, 41, 42). The inhibition of NTI by KChIP manifests itself in macroscopic 

currents as slowed initial inactivation. Rather than inactivating via NTI, Kv4 channels preferentially 

undergo closed state inactivation (CSI) (37, 43). The involvement of the S4S5 linker and C-terminal 

part of the S6 helix in CSI has been revealed (36, 44, 45). Additionally, the structural determinants 

of gating modulation by auxiliary subunits have been studied. While KChIP interacts mainly with 

the cytoplasmic N-terminus of the channel, DPPL interacts with the channel in the membrane. 

Here, DPPL’s transmembrane helix and Kv4’s voltage sensing domain (VSD) are involved in 

protein-protein interaction (26, 27, 46, 47). This interaction between the transmembrane helices 

of DPPL and the VSD influences channel gating, but other parts of the about 100 kDa auxiliary 

subunit are also involved in the modulation of channel behavior. N-terminal splice variants DPP6a 

and DPP10a are suggested to confer NTI by blocking the ion-conducting pore when NTI is inhibited 

by KChIP or truncation of Kv4’s N-terminus. But the shorter N-terminal splice variant DPP6-S does 

not cause NTI (48). The large extracellular domain comprising the a/b-hydrolase and b-propeller 

was found to be vital for increased channel expression and interaction with the extracellular 

matrix (47, 49). Its effect on channel gating, however, remains elusive. 

 

Here, we investigated how different C-terminal domains of DPP6 affect macroscopic channel 

behavior. Electrophysiological interrogation of different C-terminally truncated DPP6 constructs 

revealed the importance of a stable b-propeller domain. 
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5.3 Results 

5.3.1 DPP6 Extracellular Domain Alters Gating Properties 

Previous studies have shown that Kv4.2 alone does not account for the native somatodendric 

subthreshold rapidly activating and inactivating, referred to as A-type, current characteristics 

found in neurons of the central nervous system, but that coexpression of DPP6 is necessary (7, 

54). The general role of DPP-like proteins in the brain is to accelerate channel inactivation and 

enhance preferential closed state inactivation (30). Until now, it is unknown which parts of the 

auxiliary subunit are responsible for these altered gating properties. Here, we investigate the 

functional role of the extracellular domain of DPP6. 

We deleted the extracellular domain (DPP6-T132X) and coexpressed the truncated construct 

with Kv4.2 in Xenopus oocytes. The obtained current traces displayed distinct properties 

(figure 5.1). In agreement with previous results (29, 33), full-length DPP6-WT significantly 

increased average peak current (Imax) about seven-fold from 3.2 ± 2.1 µA to 21.6 ± 12.3 µA 

(figure 5.1a). The truncated DPP6-T132X, in contrast, increased peak current only three-fold to 

9.83 ± 6.34 µA. Furthermore, DPP6-WT resulted in a significantly more complete inactivation with 

12.9 ± 3.7 % of peak current remaining in the steady state compared to 16.4 ± 6.4% for Kv4.2 in 

the absence of DPP6 (figure 5.1b). The more complete current inactivation of DPP6-WT is a result 

of a destabilized open state. The truncated DPP6-T132X inactivated to 16.7 ± 3.6 % of the 

maximum current, which was undistinguishable from Kv4.2 currents in the absence of DPP6. 

While the effect might not seem physiologically relevant, it shows that the effect of DPP6-WT on 

Kv4.2 inactivation is removed by truncation of the C-terminus beyond T132. 
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Figure 5.1 Electrophysiological properties of Kv4.2/DPP6-T132X compared to Kv4.2 alone and 
Kv4.2/DPP6-WT. 
A) Peak currents obtained at test pulse of +100 mV. B) Steady state current at the end of +100 mV test 
pulse normalized to peak current. C) Representative current traces and residual currents of 100 mV test 
pulse fitted to exponential of first, second or thirds order as indicated (r1-r3, respectively). D) Time 
constants of activation at + 100 mV test pulse. E) Time constants of inactivation at +100 mV test pulse. F) 
Relative amplitudes of inactivation time constants at +100 mV test pulse in the same order as in D (left 
slow, right fast). G) Time to peak at +100 mV test pulse. Kv4.2 n=40, Kv4.2/DPP6-T132X n=15, 
Kv4.2/DPP6-WT n=65. * P < 0.05, ** P < 0.005, *** P < 0.0005, **** P < 0.00005, additional significances 
can be found in the supplementary table S5.1. 

Not only peak and steady state current levels, but also DPP6’s effect on activation and 

inactivation kinetics largely depends on the extracellular domain (figure 5.1c-e). We fitted the 

activation time course with a single exponential (figure 5.1d). DPP6-WT significantly accelerated 

Kv4.2 activation (7, 55). While truncation of the extracellular domain at T132X also resulted in 

accelerated activation kinetics compared to Kv4.2, the effect was less pronounced compared to 

the full length DPP6. These results suggest that the extracellular domain is responsible for 

drastically accelerating activation kinetics. We also observed altered inactivation kinetics and 
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fitted the inactivation time course with a sum of exponential decays (figure 5.1c,e). These 

complex inactivation kinetics reflect a mixture of different populations within the ensemble of 

channels. Two exponentials were necessary to accurately describe the inactivation of Kv4.2 

(t1 = 88.5 ± 31.2 ms, t2 = 21.4 ± 4.3 ms) and Kv4.2/DPP6-T132X (t1 = 102.3 ± 19.6 ms, 

t2 = 25.8 ± 5.7 ms), reflecting at least two distinct channel populations in the open state. In the 

presence of DPP6-WT, a third exponential component became necessary to account for the fast, 

initial current decay of Kv4.2/DPP6-WT (t1 = 145.4 ± 62.8 ms, t2 = 25.4 ± 6.8 ms, 

t3 = 6.5 ± 2.3 ms), reflecting the presence of an additional channel population in the open state. 

Coexpression with the truncated DPP6 (T132X) disposed of the fast time constant observed in the 

presence of the full-length DPP6, illustrating that the drastic acceleration of inactivation by the 

presence of an additional open channel state depends on the extracellular domain. Although the 

inactivation kinetics of DPP6-T132X were more comparable to Kv4.2 in the absence of DPP6 than 

in the presence of full-length DPP6, the overall current decay remained faster than Kv4.2 alone. 

Compared to Kv4, it was not the time constants themselves that altered in the presence of DPP6-

T132X but the relative amplitudes between the two decay times (figure 5.1f). Such a shift in 

relative amplitudes is observed when the two distinct open channel populations redistribute due 

to the stabilization or destabilization of one open state compared to the other. The relative 

amplitudes of the time constants (A/Asum) significantly shifted towards the faster time constants 

with 0.71 ± 0.06 for DPP6-T132X compared to Kv4.2 alone (0.66 ± 0.05), illustrating that 

destabilization of the open state leads to a redistribution between the different populations 

within the ensemble of channel states. 

The differences in inactivation were also reflected in the time it took to reach peak amplitude 

(figure 5.1g). As expected for a superposition of an exponential increase for activation and 

exponential decay for inactivation, faster inactivation overcame the accelerated activation at an 

earlier time, leading to earlier peak amplitude. Full-length DPP6 reached peak current almost 

three times as quickly as Kv4 alone in 2.7 ± 0.8 ms as opposed to 6.8 ± 0.9 ms. DPP6-T132X 

reached the peak current in 5.9 ± 1.0 ms, which was slightly faster than Kv4 alone, but 

significantly slower than DPP6-WT. Overall the truncation of the extracellular domain of DPP6 led 
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to lower peak currents, slowed channel activation, the loss of fast inactivation and resulted in 

gating properties much more like Kv4.2 alone than full-length DPP6. 

5.3.2 The Extracellular Domain of DPP6 is Located in Proximity to the S4 Helix 

To better understand how the extracellular domain of DPP6 is arranged in respect to the Kv4 

a-subunit and to investigate whether truncations affect the interaction, we used voltage clamp 

fluorometry (VCF). The VCF technique is a powerful tool to simultaneously investigate the 

structure and function of ion channel complexes. This technique is based on site-directed 

fluorescent labeling of the complex. Voltage-dependent structural rearrangements can lead to an 

altered chemical environment of the fluorophore, resulting in a change in brightness (quenching 

or unquenching). Since this modulation of the fluorescent properties is based on the local 

environment (2-3 Å), this method is ideal to investigate the proximity of Kv4 to DPP6. We labeled 

the extracellular part of the voltage-sensing S4 helix with the cysteine-reactive 

tetramethylrhodamine-maleimide (TMRM) fluorophore (figure 5.2a) at position A288C and 

measured voltage-dependent fluorescence changes. In other Kv channels, the voltage-induced 

outward movement of the labeled S4 helix results in a change of the fluorescence signal (52, 56-

58), but the same movement did not result in a fluorescence change when labeling homologous 

position in Kv4.2. Coexpression of full-length DPP6, on the other hand, led to voltage-induced 

quenching of the fluorophore (figure 5.2b), illustrating a close proximity of DPP6 and the S4 helix 

of Kv4.2. 

 

Figure 5.2 Voltage-clamp fluorometry. 
A) Cartoon illustrating the TMR labeling position (yellow star) of Kv4.2 at position A288C. One subunit each 
of Kv4.2 in black and DPP6 in orange/grey are illustrated. B) Representative fluorescence traces of TMR 
labeled Kv4.2-A288C/KChIP in the presence of DPP6-T132X and DPP6-K140X compared to DPP6-WT. 
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We next verified whether the truncated DPP6-T132X still interacts with Kv4. When we 

coexpressed the truncated DPP6-T132X, we observed a fluorescence change smaller than the full-

length DPP6 induced signal (figure 5.2b), indicating that the truncated version is expressed in the 

plasma membrane and interacts with the channel but that the quenching efficiency is decreased 

compared to the full-length DPP6. A bigger change in fluorescence compared to DPP6-WT and 

DPP6-T132X caused by a slightly longer DPP6-K142X (figure  5.2b) is not surprising since the C-

terminus of DPP6-K140X extends out of the plasma membrane and is more flexible thereby 

increasing quenching efficiency. Although we have previously applied VCF to quantify channel 

properties (57-60), here we simply interpret a negative change in fluorescence as an indicator for 

a close proximity between the top of the S4 helix and the DPP6 b-subunit. The presented VCF 

data is in agreement with the observation by Lin et al. (47) reporting that a DPP6 truncation similar 

to our T132X still traffics to the plasma membrane. Moreover, our data illustrates that the 

extracellular domain is not necessary for trafficking to the membrane and DPP6’s interaction with 

the channel. More specifically, it demonstrates that DPP6’s transmembrane helix is in close 

proximity to the S4 helix of Kv4.2 and that the interaction between Kv4 and DPP6 is increased by 

the extracellular domain of DPP6.  

 

5.3.3 Majority of Propeller Domain Responsible for Channel Gating Properties 

The truncation of the extracellular domain at T132X significantly affected the 

electrophysiological properties of the channel complex, decreasing peak currents and slowing 

activation and inactivation kinetics, while maintaining a close proximity to the channel’s S4 helix. 

These results suggest that DPP6 interacts with the alpha subunit through the transmembrane 

helix and that additional interactions between the a-subunit and the extracellular domain are 

necessary to confer drastic gating modulations. We thus aimed at narrowing down which part of 

the extracellular domain of DPP6 is responsible for the increased peak currents and the 

accelerated activation and inactivation kinetics. We truncated DPP6 progressively from the C-

terminus (K241X, R322X, N351X, D484X, H581X, K711X) removing subdomains according to the 

crystal structure (figure 5.3a and table 5.1). To study their gating properties, we coexpressed the 
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resulting constructs with Kv4.2 in Xenopus oocytes. VCF experiments (figure 5.3b) confirmed 

trafficking of these truncations to the plasma membrane together with Kv4.2. 

 

 

Figure 5.3 Voltage-clamp fluorometry. 
A) Cartoon illustrating the different DPP6 truncations. Truncation sites indicated by one letter code and 
position corresponding to the crystal structure. White star highlights the site of disulfide bridge formation 
between residues C411 and C418. B) Representative fluorescence traces of TMR labeled 
Kv4.2-A288C/KChIP in the presence of DPP6-R322X, -N351X, -H581X and DPP6-WT. 

 

Table 5.1: Truncations of the extracellular domain of DPP6 and their structural properties 

truncation structure 
K241X beginning of a/b-hydrolase + ¼ of b-propeller intact 
R322X beginning of a/b-hydrolase + ½ of b-propeller intact (loop removed) 
N351X beginning of a/b-hydrolase + ½ of b-propeller intact (loop intact) 
D484X beginning of a/b-hydrolase + ¾ of b-propeller intact 
H581X beginning of a/b-hydrolase + b-propeller intact 
K711X last ½ of a/b-hydrolase removed 
ΔProp b-propeller removed, a/b-hydrolase intact 

 

When we compared the functional expression level based on the peak current amplitude to 

the expression of the progressive truncations (figure 5.4a), we found a sharp transition between 

N351X and D484X. Like DPP6-T132X, DPP6-K241X, -R322X and -N351X had similar peak currents 

to Kv4 whereas the longer DPP6 variants (D484X, H581X and K711X) reached higher peak currents 
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comparable to DPP6-WT. Interestingly, only D484X achieved comparable expression to DPP6-WT, 

while the two longer truncations had slightly lower currents. 

 

Figure 5.4 Electrophysiological properties of DPP6 truncations. 
Kv4.2/DPP6-K241X, Kv4.2/DPP6-R322X, Kv4.2/DPP6-N351X, Kv4.2/DPP6-D484X, Kv4.2/DPP6-H581X and 
Kv4.2/DPP6-K711X compared to Kv4.2 and Kv4.2/DPP6-WT. A) Peak currents obtained at test pulse of 
+100 mV. B) Steady state current at the end of +100 mV test pulse normalized to peak current. C) Time 
constants of activation at + 100 mV test pulse. D) Time constants of inactivation at +100 mV test pulse. 
E) Relative amplitudes of inactivation time constants at +100 mV test pulse. F) Time to peak at +100 mV 
test pulse. Kv4.2/DPP6-K241X n=10, Kv4.2/DPP6-R322X n=22, Kv4.2/DPP6-N351X n=12, 
Kv4.2/DPP6-D484X n=26, Kv4.2/DPP6-H581X n=25 and Kv4.2/DPP6-K711X n=27. * P < 0.05, ** P < 0.005, 
*** P < 0.0005, **** P < 0.00005, additional significances can be found in the supplementary table S5.2. 
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Although the fraction of inactivation of full-length DPP6 was significantly lower compared to 

Kv4.2 and DPP6-T132X (figure 5.1b), other DPP6 truncations were undistinguishable from Kv4.2 

(figure 5.4b). However, when we compared the steady state currents of truncated DPP6s to the 

full-length DPP6, we saw that longer DPP6 truncations (D484X and longer) were more comparable 

to full-length DPP6 steady state currents than shorter truncations. Like DPP6-T132X, DPP6-K241X 

and -R322X featured significantly higher steady state currents compared to the full-length DPP6. 

This transition in relative steady state current amplitudes was not as prominent as the transition 

in peak current amplitudes. As for peak current amplitudes, a more obvious transition between 

D484X and N351X, i.e. in the second half of the beta-propeller, was observed in the activation 

kinetics (figure 5.4c). Although shorter truncations featured accelerated activation kinetics 

compared to Kv4.2, they remained significantly slower compared to full-length DPP6. In contrast, 

truncations at D484 and longer were more comparable to DPP6-WT. This sharp transition was 

also observed in inactivation kinetics (figure 5.4d). The faster inactivation of full-length DPP6 with 

an additional fast initial component (described by a third time constant) was absent in T132X. The 

same is true for DPP6-K241X, -R322X and -N351X. The faster inactivation with the fast, initial 

component appeared in the longer DPP6-D484X, -H581X and -K711X. The time constants for 

these longer truncations were comparable to the ones of DPP6-WT mediated inactivation. The 

relative amplitudes of the shorter truncations were comparable to Kv4.2 alone (figure 5.4e). Here, 

approximately one-third of the decay is attributed to the slow time constant. For the longer 

constructs and DPP6-WT, the relative amplitudes of the slow time constant were clustered at 

around 10%. Relative amplitudes for the intermediate and fast time constants were scattered 

around 60% and 25%, respectively. Time constants and relative amplitudes for D484X, H581X and 

K711X were almost undistinguishable from DPP6-WT. 

The altered activation and inactivation kinetics were also reflected in the time to peak 

(figure 5.4f). Overall, the three longer truncations (D484X, H581X and K711X) had shorter time to 

peak around 3 ms, which were only marginally slower than DPP6-WT (2.7±0.77 ms). Time to peak 

averaged around 6 ms for shorter truncations (K241X, R322X, N351X) and were closer to Kv4 

alone (6.76 ± 0.9 ms). R322X and N351X were the closest to Kv4 alone, and K241X was slightly, 

but significantly faster. 
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Our data demonstrate a strong link between the length of DPP6’s extracellular domain, peak 

current and accelerated activation and inactivation kinetics. More specifically, the region 

between N351X and D484X plays an essential role in conferring DPP6’s effect on these channel 

characteristics. The crystal structure of DPP6’s extracellular domain suggests that the propeller 

loop (R322-N351) is important for dimer formation (23), and biochemical studies have suggested 

a 4:4 stoichiometry of Kv4.2 to DPP6 (dimer of dimers) (61). Truncating DPP6 directly after the b-

propeller loop (N351X) did not result in DPP6-WT-like properties, whereas truncating DPP6 at 

D484X resulted in comparable channel complex properties to complexes that comprise full-length 

DPP6. The longer D484X truncation leaves three-quarters of the propeller domain intact including 

the loop at the midpoint of the domain. Expressing three-quarters of the propeller domain allows 

for disulfide bridge formation at C411-C418 in propeller blade 5, which could stabilize the loop-

loop interaction between two DPP6 subunits, so that longer DPP6 subunits might interact with 

other DPP6 subunits more stable than shorter truncations that, in contrast, might fail to form 

dimers. Removing this cysteine bridge in blade 5 by alanine substitution mutation (which probably 

leads to misfolding) results in 40-50% reduced surface expression (47). We hypothesized that 

shorter truncations (T132X, K241X, R322X and N351X) and misfolded propeller domains as for the 

C411A-C418A mutation might then lead to altered stoichiometries between DPP6 and the 

channel. 

The DPP6 extracellular domain dependent increase in peak currents could have several 

reasons. First, the proper dimerization of DPP6’s extracellular domain could result in increased 

trafficking of Kv4.2 as well as anchoring of the channel complex in the plasma membrane. It has 

been shown that the full-length DPP6-WT increases Kv4.2 trafficking to the plasma membrane 9-

fold (62). A similar increase in trafficking might be also observed when the propeller domain is 

partially intact, as we hypothesize for the D484X truncation. This would increase the number of 

channel complexes in the plasma membrane and thereby the macroscopic currents. Another 

reason for increased peak currents could be an increase in the single channel conduction. 

Therefore, we should not exclude the possibility that longer DPP6 truncations exhibit increased 

single channel conductance like the almost 2-fold increase for the full-length DPP6 (29). Since 

both mechanisms have been reported to be responsible for increased currents when the full-
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length DPP6 subunit is coexpressed, it is possible that longer DPP6 truncations also increase the 

current amplitude through both mechanisms. 

Another reason that might play a role in the diminished DPP6 function when the extracellular 

domain is removed, is a change in the DPP6 expression level. If shorter truncations expressed less 

compared to longer ones, we would expect more Kv4.2 channel complexes without DPP6 subunits 

to be present in the plasma membrane, which would result in overall more Kv4-like properties. 

To test, if the altered properties of DPP6 truncations might be caused by lowered DPP6 

expression, we increased the relative amount of truncated DPP6-T132X cRNA 9-fold (1:1 cRNA 

weight ratio) and thereby the amount of available auxiliary subunits and checked if some of the 

channel modulation properties could be rescued. We found that peak and steady state currents 

nor the activation time constant were significantly changed (figure 5.5a-c). However, inactivation 

was accelerated when more DPP6-T132X was expressed. This was reflected in the fast time 

constant of inactivation, which was significantly accelerated by approximately 1.5-fold 

(figure 5.5d) as well as the relative amplitudes, which shifted towards the faster time constant 

(figure 5.5e). Although an acceleration in inactivation is expected to overtake activation at an 

earlier time and therefore shift the peak amplitude to earlier times, the acceleration of 

inactivation by higher expression levels of DPP6-T132X was not enough to significantly alter time 

to peak values (figure 5.5f). Given that we were able to change at least one of the current 

properties by increasing the relative amount of available DPP6-T132X subunits, we propose that 

shorter truncations might not express as well as longer truncations and that the diminished effect 

of DPP6 can be partly rescued by expressing more DPP6 subunits. Additionally, the fact that the 

inactivation kinetics can be accelerated by more available DPP6 subunits suggests that the DPP6 

stoichiometry is flexible at least for shorter truncations and that the effect on the biophysical 

properties of the channel complex gradually changes depending on the number of DPP6 subunits 

that bind to the channel complex. However, increasing the relative amount of shorter DPP6 

truncations did not increase peak currents nor decrease steady state currents, furthermore, it did 

not introduce a fast inactivation component described by a third time constant, suggesting that 

these properties are solely governed by the extracellular domain rather than the number of DPP6 

subunits bound to the channel. 
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Figure 5.5 Electrophysiological properties of DPP6-T132X coexpressed with Kv4.2 cRNA in molar 
ratios (m) compared to weight ratios (w). 
A) Time constants of inactivation at +100 mV test pulse. B) Relative amplitudes of inactivation time 
constants at +100 mV test pulse. Molar ratio n=15, weight ratio n=15. * P < 0.05, ** P < 0.005, 
*** P < 0.0005, **** P < 0.00005, additional significances can be found in the supplementary table S5.3. 

 

5.3.4 Effect of DPP6 Extracellular Domain on Gating Properties in the Presence of 

KChIP 

It has been previously demonstrated that Kv4.2 features a N-terminal autoinhibitory peptide, 

similar to the ball-and-chain inactivation particle in Shaker (63), that mediates a vestigial form of 

N-type inactivation from the open state (39). This fast open state inactivation has been shown to 

be impaired when auxiliary subunit KChIP is coexpressed as it is thought to bind to the proximal 

N-term of Kv4 and prevents it from blocking the pore (6, 31, 37, 41, 42). We coexpressed KChIP 

to verify that the DPP6 mediated channel inactivation mechanism is independent from the N-

term mediated fast OSI and investigate if the abrupt transition of DPP6’s influence dependent on 

the truncation is preserved in the absence of fast inactivation. To ensure the suppression of NTI, 

we used splice variant DPP6-S, that unlike DPP10a and DPP6a (DPP6-E) does not have the N-

terminal MNQTA motif that produces NTI in the presence of KChIP or deletion of the alpha 

subunit’s N-term (48). 

The drastic difference in gating properties of longer truncations (D484X and longer) in 

comparison to shorter C-termini was not obvious in the peak current when KChIP2 was 

coexpressed, indicating that, in the ternary complex, the peak current amplitude is governed by 
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KChIP rather than the length of the extracellular domain. Coexpression of KChIP2 with Kv4.2 

resulted in a more than 4-fold increase in peak current to 14.95 ± 6.01 µA (figure 5.6a). This effect 

was, however, smaller than the previously observed 7-fold increase mediated by coexpression of 

DPP6-WT (figure 5.1a). The individual peak current-increasing effects of DPP6 and KChIP were not 

additive and coexpressing KChIP in the presence of full-length DPP6 resulted in lower average 

peak currents of 10.9 ± 7.2 µA. These results are in agreement with other publications on the 

ternary Kv4/DPPL/KChIP complex (54, 64). Coexpressing the truncated DPP6-T132X with KChIP 

led to non-significant increase of peak current to 13.9 ± 5.7 µA, and the significant decrease in 

peak current amplitude in the presence of full-length DPP6 was lost. Since no significant change 

between the full-length DPP6 and DPP6-T132X was observed, we did not expect any changes for 

the other truncations. This was found to be true, with the exception of DPP6-D484X, which 

showed significantly reduced peak current amplitudes compared to Kv4.2 in the presence of 

KChIP. However, these peak currents did not significantly change compared to DPP6-WT currents. 

Generally peak current amplitudes varied around 5 to 10 µA around the mean value, while 

coexpression of KChIP/DPP6-D484X resulted in less deviation (8.1 ± 3.16 µA). Since, expression 

levels, and therefore peak current amplitudes, not only depend on the respective protein 

constructs but also on several external factors, such as oocyte and RNA quality as well as precise 

RNA injection, we propose that less variations are caused by more consistent external factors that 

influence the expression level. 
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Figure 5.6 Electrophysiological properties of DPP6 truncations in the presence of KChIP 
compared to Kv4.2/KChIP and Kv4.2/KChIP/DPP6-WT. 
A) Peak currents obtained at test pulse of +100 mV. B) Steady state current at the end of +100 mV test 
pulse normalized to peak current. C) Time constants of activation at + 100 mV test pulse. D) Time constants 
of inactivation at +100 mV test pulse. E) Relative amplitudes of inactivation time constants at +100 mV test 
pulse. F) Time to peak at +100 mV test pulse. Kv4.2/KChIP n=31, Kv4.2/KChIP/DPP6-T132X n=12, 
Kv4.2/KChIP/DPP6-K241X n=15, Kv4.2/KChIP/DPP6-R322X n=19, Kv4.2/KChIP/DPP6-D484X n=19, 
Kv4.2/KChIP/DPP6-H581X n=9 and Kv4.2/KChIP/DPP6-WT n=18. * P < 0.05, ** P < 0.005, *** P < 0.0005, 
**** P < 0.00005, additional significances can be found in the supplementary table S5.4. 

 

For all constructs, KChIP binding led to approximately 1.5-fold more complete inactivation 

(shown for Kv4.2 and DPP6-WT in figure 5.6b) and the degree of inactivation varied as a function 

of the length of DPP6’s extracellular domain (figure 5.6b). In the presence of KChIP, DPP6-N241X 

and -R322X featured steady state current levels comparable to Kv4.2/KChIP, while stronger 
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inactivation was observed for DPP6-D484X and longer DPP6 subunits. Interestingly, DPP6-T132X 

also resulted in stronger inactivation in the presence of KChIP, that was indiscernible from 

full-length DPP6 in the presence of KChIP. This result implies that the N-terminal part and 

transmembrane helix of DPP6 affect inactivation, although to a smaller degree than the full-

length DPP6. 

In the presence of KChIP, the drastic shift in activation time constants with longer DPP6 

truncations, as previously observed in the absence of KChIP (figure 5.4c), was no longer observed 

(figure 5.6c). The time constants of activation were around 1 ms and indistinguishable for all 

conditions, illustrating that KChIP binding governs channel activation kinetics. It is quite intriguing 

that KChIP alters the channel properties from the cytosol, whereas we are manipulating the 

extracellular domain of DPP6. Rather than a direct competition between KChIP and DPP6, we 

propose that KChIP allosterically interacts with the channel which results in conformational 

changes of the a-subunits. This proposed change in the Kv4 subunit then prevents DPP6 from 

conferring its extracellular domain dependent channel activation modulation. 

KChIP influenced the inactivation time constants distinctly for the different DPP6 constructs. 

The most drastic difference compared to the inactivation in the absence of KChIP, was the loss of 

the fast time constant for DPP6 truncations D484X and longer. The time constants of the shorter 

truncations also changed, albeit less drastically, and were overall slower than in the absence of 

KChIP (figure 5.6d). As a result, the fast and slow time constants of inactivation of differently 

truncated DPP6 subunits were undiscernible from one another. Although KChIP coexpression 

resulted in overall slowed inactivation kinetics, a distinct acceleration of inactivation kinetics was 

observed for longer truncations (D484X and H581X) and full-length DPP6. Rather than being 

observable in the time constants, the shift towards faster inactivation kinetics depended on the 

redistribution of the relative amplitudes of the exponential terms (figure 5.6e). The relative 

amplitude shifted significantly towards the faster time constant for truncations D484X and longer. 

This shift was most pronounced for the full-length DPP6 subunit (~16 % slow), but was also 

observed for longer truncations D484X (40 ± 18% slow) and H581X (44 ± 21 % slow). Although the 

fractional amplitudes were not as separated as for the full-length DPP6, the fractional amplitudes 
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of the longer DPP6-D484X and -H581X truncations clearly differed from the shorter truncations 

(T132X, K241X and R322X) in the presence of KChIP. In the presence of KChIP, DPP6-T132X 

inactivated faster than Kv4.2/KChIP. However, inactivation was still slower than the longer 

truncations DPP6-D484X and -H581X in the presence of KChIP. This indicates that, while the C-

terminus of DPP6 does play a role on the acceleration of inactivation by DPP6, even in the absence 

of the C-terminus inactivation is accelerated. However, this effect is much less pronounced 

compared to the effect conferred by the longer truncations (D484X and H581X) and full-length 

DPP6. 

We previously observed a shift in time to peak towards faster times with longer DPP6 in the 

absence of KChIP (figure 5.6f), however, this shift disappeared in the presence of KChIP, indicating 

that KChIP binding governs the activation kinetics and peak current is reached before channels 

start to inactivate significantly. This resulted in comparable time to peak values for Kv4.2 alone 

and all DPP6 truncations, while the full-length KChIP/DPP6-WT reached the peak slightly faster. 

We concluded earlier that the abrupt change in channel gating seen with longer truncations of 

DPP6 in the absence of KChIP (figure 5.4) was mediated by the beginning of the 2nd half of the b-

propeller (residues N351 to D484). The same region plays an important role for the accelerated 

inactivation kinetics in the absence of NTI. Instead of introducing another time constant to 

describe the current decay, a redistribution of relative amplitudes towards the faster phase 

caused the changes. The shift of fractional amplitudes is a result of a DPP6-dependent 

redistribution of channel populations, suggesting that DPP6 truncation results in a shift towards 

a more stable open channel state compared to the full-length DPP6-WT. This indicates that not 

only the cytosolic N-terminus of DPP6 is important for accelerated Kv4 inactivation (48) but also 

its extracellular C-terminal domain. More specifically, our results suggest that the stabilization of 

DPP6 dimer formation by the second part of the propeller (D484X) leads to redistribution of states 

and destabilization of open state independent of the presence of KChIP, while KChIP governs 

channel activation kinetics and shifts the equilibrium towards CSI. 
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5.3.5 Contribution of a/b-Hydrolase Domain on Channel Gating Properties 

Even the longest truncation DPP6-K711X, where we removed only the last half of the a/b-

hydrolase of DPP6 did not inactivate as rapidly as the full-length DPP6. This indicated that the 

peptidase domain has a modulatory effect on the alpha subunit. We therefore investigated the 

effect of the peptidase domain in the absence of the b-propeller domain. We tested this new 

construct (DPP6-ΔProp) in the presence and absence of KChIP and compared the effects on the 

channel gating properties. 

Coexpression of DPP6-ΔProp in the presence and absence of KChIP resulted in peak and 

steady state currents that were undistinguishable from Kv4 currents with and without KChIP 

(figure 5.7a,b). We also did not observe any noticeable changes in the activation and inactivation 

kinetics when we coexpressed DPP6-ΔProp. Instead, the activation kinetics for DPP6-ΔProp were 

undistinguishable from Kv4 (figure 5.7c). As seen for shorter truncations, DPP6-ΔProp’s 

inactivation was best fitted with two exponentials and the time constants of inactivation for 

DPP6-ΔProp without KChIP were comparable to the inactivation time constants of Kv4.2 alone 

(figure 5.7d, diamonds). Although not reflected in the inactivation time constants, DPP6-ΔProp 

inactivated, like DPP6-T132X, on average faster than Kv4.2. This was reflected in the fractional 

amplitudes. The loss of the fast time component, that we previously observed for longer 

truncations, resulted in fractional amplitudes of DPP6-ΔProp similar to Kv4.2 alone, where the 

majority of decay was attributed to the fast component (29.0 ± 4.0 % slow) (figure 5.7e, 

diamonds). Despite the similarity to Kv4.2 alone, for DPP6-ΔProp, the distribution was slightly 

shifted toward the faster time constant, explaining the overall accelerated inactivation kinetics 

compared to Kv4.2. 

As for other DPP6 truncations, binding of KChIP affected the inactivation kinetics independent 

of the DPP6 subunit and slowed the average time constants for DPP6-ΔProp. Additionally, in the 

presence of KChIP, the fractional amplitudes shifted towards the slow component (86.4 ± 5.9 % 

slow) as seen previously for shorter truncations and Kv4 alone. In accordance with the gating 

kinetics, time to peak of DPP6-ΔProp in the presence and absence of KChIP was comparable to 

Kv4.2 (figure 5.7f), mirroring the overall similarity to the channel properties without DPP6. 
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Figure 5.7 Electrophysiological properties of DPP6-ΔProp in the presence and absence of KChIP. 
Kv4.2/DPP6-ΔProp and Kv4.2/KChIP/DPP6-ΔProp compared to Kv4.2, Kv4.2/KChIP, Kv4.2/DPP6-WT and 
Kv4.2/KChIP/DPP6-WT. A) Peak currents obtained at test pulse of +100 mV. B) Steady state current at the 
end of +100 mV test pulse normalized to peak current. C) Time constants of activation at + 100 mV test 
pulse. D) Time constants of inactivation at +100 mV test pulse. E) Relative amplitudes of inactivation time 
constants at +100 mV test pulse. F) Time to peak at +100 mV test pulse. Kv4.2/DPP6-ΔProp n= 19 and 
Kv4.2/KChIP/DPP6-ΔProp n=29. * P < 0.05, ** P < 0.005, *** P < 0.0005, **** P < 0.00005, additional 
significances can be found in the supplementary table S5.5. 
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Overall, the a/b-hydrolase domain did not directly contribute to the acceleration of activation, 

inactivation and increased peak currents. Furthermore, removing the peptidase domain also does 

not affect DPP6 trafficking to nor Kv4.2 amounts in the plasma membrane (47). We suggest that 

this domain may help in the positioning of the propeller domain but is not crucial for its effect on 

Kv4.2 channel kinetics. It remains elusive, whether the a/b-hydrolase domain has a functional 

significance. 

 

5.4 Discussion 

Electrophysiological studies have demonstrated the effect of the N-termini of DPP10a, DPP6a 

and Kv4.2 on fast N-type like inactivation (39, 48, 65). But until now, no in-depth analysis of the 

biophysical property-rendering character of the about 700 amino acid long extracellular domains 

of DPP6 have been available. To understand in more detail the role of the extracellular domain of 

DPP6, we examined the effects of C-terminal deletions of auxiliary subunit DPP6-S on Kv4.2 

channel gating. Our data show that removal of the extracellular domain results in reduced peak 

currents and slower activation and inactivation kinetics. However, compared to Kv4.2/KChIP, the 

truncated DPP6-T132X featured accelerated inactivation kinetics in the absence of NTI, suggesting 

that the N-terminal part and transmembrane helix of DPP6 affects inactivation, albeit much less 

than the full-length DPP6. More specifically, our results show that the second half of the propeller 

domain of DPP6 is responsible for drastically accelerated inactivation in the presence and absence 

of KChIP. We demonstrate that in the absence of KChIP the propeller domain controls the rapid 

component of inactivation (addition of 3rd time constant). In the presence of KChIP, it controls 

the speed of inactivation by shifting the relative amplitudes of inactivation time constants 

towards the fast component. The same domain is responsible for accelerated activation kinetics 

in the absence of KChIP, lowering the energy barrier of channel opening. Interestingly, KChIP 

binding on the cytosolic side overshadows any activation-accelerating effect of DPP6’s 

extracellular domain and governs activation kinetics. Our results illustrate a destabilizing effect of 

DPP6 on transition and open channel states, which depends on the region between N351X and 

D484X. Considering DPP6’s crystal structure of the extracellular domain (23), we suggest that this 
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region at the midpoint of the propeller domain is crucial for the dimer formation of DPP6 and 

furthermore, that this multimerization is key for the increased peak currents and profound and 

accelerated inactivation conferred by the extracellular domain. 

Multimerization of the extracellular domain by longer truncations could increase peak currents 

by increasing the unitary conductance. Two negatively charged amino acids in the N-term have 

been shown to be responsible for DPP6’s effect on single channel conductance (29). In the same 

study, it was proposed that these amino acid side chains assemble as a ring of eight negative 

charges when four DPP6 subunits bind to the channel complex. This ring is hypothesized to be 

positioned in proximity to the intracellular opening of the ion channel pore, where it locally 

increases the K+ concentration by electrostatic interactions. If, as we propose, truncated DPP6 

subunits fail to multimerize as efficiently as full-length DPP6 subunits, less negative charges would 

be present at the intracellular mouth of the channel, so that K+ ions are less efficiently 

concentrated, which ultimately results in a decreased unitary conductance. 

Without further experiments, it remains unclear what mechanism causes the destabilization 

effect of the extracellular DPP6 domain on the open channel state. Increasing the relative amount 

of available truncated DPP6 subunits accelerated inactivation kinetics but left the other 

properties unchanged, suggesting that a truncated extracellular domain results in a decreased 

subunit expression and altered DPP6 stoichiometry that can be changed by overexpression of the 

shorter DPP6 subunit. However, only the longer DPP6 subunits, that proposedly form stable 

dimers (and dimer of dimers ) through the propeller domain, confer drastic changes in the channel 

properties. We further hypothesize that the longer extracellular domain affects the channel 

gating directly. It is possible that the formation of a multimeric DPP6 extracellular domain leads 

to a positioning of DPP6’s extracellular domain directly on top of the ion channel whereas 

truncated DPP6 variants fail to multimerize and therefore establish a more flexible conformation 

that does not interact with the top of the channel directly and ultimately failing at destabilizing 

the open state as efficiently. Coexpressed DPP6 subunits with properly folded propeller domains 

might then not only be in direct contact with the VSD (as illustrated by our VCF data) but also with 

the pore domain. This positioning might facilitate CSI by destabilizing the open channel state. 

Destabilizing the open state would shift the equilibrium towards the closed state from where the 
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channels accumulate in a closed inactivated state. The mechanism of CSI is not well understood, 

but it is characterized by a distinct desensitized conformation of the voltage sensor and 

uncoupled S6 gate (45). We proposed that the extracellular domain is positioned in proximity to 

the voltage sensing domain. There, it might be involved in interactions with the S4 helix that favor 

the desensitized conformation. 

Because Kv4.2 features open-state inactivation (OSI), i.e. N-type like inactivation (NTI), and 

closed-state inactivation (CSI), we examined the gating properties of Kv4.2 in the presence of 

KChIP to understand which gating pathway is affected by the extracellular domain of DPP6. It has 

been shown, that the KChIP auxiliary subunit inhibits fast NTI by sequestering the N-terminus of 

Kv4 (6, 31, 38, 41).Binding of KChIP in a 1:1 ratio to the channel’s N-terminal domain removes 

NTI. As a result, inactivation follows the slower kinetics of CSI and inactivation is more complete. 

Coexpression of full-length DPP6 destabilizes the open channel state (redistributing the channel 

population towards faster inactivation) in an extracellular domain-dependent manner, while the 

cytosolic KChIP subunits shift the equilibrium towards closed inactivated channels independently 

of the length of the extracellular DPP6 domain. 

Rather than being the pure result of channel gating modifications induced by properly 

positioned DPP6 subunits on top of the channel, the accelerated inactivation kinetics conferred 

by longer DPP6 subunits in the presence of KChIP could be a result of an altered ternary channel 

complex stoichiometry. Two scenarios could explain this. The first scenario involves a 

homogenous channel ensemble comprising a dynamic, DPP6-dependent amount of KChIP 

subunits per complex. A shift towards less KChIP subunits per channel complex in the presence of 

longer DPP6 subunits could then explain accelerated inactivation kinetics. In this case, a single 

unbound N-terminal of Kv4.2 could lead to NTI and thereby accelerate the macroscopic 

inactivation kinetics. We hypothesized, that coexpression of DPP6 with longer extracellular 

domains leads to multimerization of DPP6. A partial loss of KChIP subunits on the cytosolic site 

could be explained by a direct competition between an increased number of DPP6 subunits per 

channel complex and KChIP. Such a shared binding site has not been reported and, we propose, 

is unlikely, given that KChIP binds to the N-terminal Kv4 domain, while DPP6 interacts with Kv4’s 

S4 helix as our VCF data demonstrated (42). Alternatively, the proper positioning of the 
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multimeric DPP6 could induce a conformational change of the a-subunit that results in a weaker 

interaction with KChIP and ultimately a loss of KChIP subunits. However a DPP6 induced loss of 

KChIP subunits seems improbable, since biochemical experiments have led to believe that Kv4.2, 

KChIP and full-length DPP6 adopt a 1:1:1 arrangement, although the biochemical experiments 

actually resulted in a 1:2:1 stoichiometry which was interpreted as an experimental artifact (61). 

Another study conducted subunit counting experiments and demonstrated that DPP10 (another 

DDP-like auxiliary subunit) does not affect the Kv4.2/KChIP stoichiometry and that the number of 

KChIP subunits depends on the expression level of KChIP (66). Not only these biochemical studies 

suggest that coexpression with full-length DPP6 leave the number of KChIP subunits unchanged, 

but also our own data cannot be reconciled with the idea of DDP6-dependent KChIP stoichiometry 

changes. KChIP binding leads to more complete inactivation, so that a decreased number of KChIP 

in the channel complex would then, opposed to what we observed, increase steady state 

currents.  

The second scenario of altered ternary channel complex stoichiometries involves mixed 

populations of ternary channel complexes. Here, two distinct populations of channel complexes 

might exist in the presence of KChIP, one with and one without DPP6 (62). If DPP6 variants with 

a short extracellular domain fail to interact with Kv4.2 as efficiently as longer DPP6 variants and 

DPP6-WT or shorter DPP6 truncations are less well expressed, more complexes without DPP6 

could be present in the plasma membrane. Assuming that DPP6 subunits with shorter 

extracellular domains exhibit identical channel gating modification characteristics as the 

individual full-length DPP6 subunit, the observed change in gating kinetics would be solely a result 

of a reduced number of DPP6 containing channel complexes. Such a redistribution towards 

complexes without DPP6 in the presence of KChIP would result in overall slowed inactivation 

kinetics and lower maximum macroscopic currents. However, increasing the amount of available 

DPP6-T132X subunits 9-fold did not result in channel properties identical to the full-length 

subunit, strengthening the idea that the extracellular domain confers a distinct channel 

modulation and that differently truncated DPP6 subunits do not exhibit identical channel gating 

modification characteristics. However, the slowed inactivation kinetics in the presence of KChIP 

might be a mixed result of directly altered channel modification through the shorter extracellular 
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domain as well as a reduced number of DPP6 containing channel complex as a result of reduced 

expression of the shorter subunits. This scenario could be further tested by single subunit 

counting experiments (67-69), which could confirm if DPP6 truncations truly lead to mixed 

populations of channel complexes with and without DPP6 or if DPP6 stoichiometries are more 

variable within a channel complex (25) depending on the length of the extracellular domain as 

suggested by our results obtained from increased DPP6-T132X subunit amounts. 

 

In summary, the presented research revealed the importance of a stable b-propeller domain 

and possibly DPP6 dimer formation as key determinants for increased peak currents and 

accelerated Kv4.2 activation and inactivation kinetics. How the multimerization of DPP6 subunits 

confers its channel modulating action remains unanswered, but the close interaction between 

the DPP6 subunit and S4 voltage-sensing helix hints at a direct allosteric effect on channel gating 

properties. 

 

5.5 Methods 

5.5.1 Molecular Biology 

The DPP6 numbering is based on 1XFD crystal structure (23). All C-terminal DPP6-S truncations 

were generated by removing nucleotides from the 3’-end of the DPP6-S gene in a pRAT vector 

using the Gibson Assembly kit (NEB) and appropriate primers. Truncations are called after their 

last amino acid position, i.e. T132X has deleted positions V133-D865, K241X, N351X, R322X, 

D484X, H581X, K711X. The DPP6-ΔProp construct was generated by removing all residues 

between H144 and N579 by Gibson assembly. In this construct, residues H144 and N579 served 

as linkers between the two a/ß-hydrolase parts. The Kv4.2-A288C construct was generated in a 

pRAT vector by QuickChange site-directed mutagenesis (Stratagene) using appropriate primers 

(50). All cDNA clones were sequenced to verify mutations. All constructs were in vitro transcribed 

using mMachine T7 (Invitrogen) and cRNA was purified following the kit’s instruction for lithium 
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chloride precipitation. RNA for Kv4.2 and for auxiliary subunits were mixed in equal molar ratios 

before injection. 

5.5.2 Expression in Xenopus Oocytes  

Oocytes were surgically obtained from Xenopus laevis and the follicular membrane was 

removed by treatment with collagenase type 1A (Sigma-Aldrich) in Ca2+-free standard oocyte 

solution containing (in mM) 102 NaCl, 3 KCl, 1 MgCl2, 4.6 HEPES, pH 7.2 adjusted with NaOH 

(0.0024g/35ml per 3-5 bags of oocytes). Oocytes of stage V and VI were selected and kept in Barth 

medium supplemented with 5% horse serum. 24-72h after surgery, if not specified otherwise, 

oocytes were injected with 46 nL of 1.64 µM Kv4.2 cRNA and if applicable equal molar amounts 

of cRNA encoding auxiliary subunits. For simplicity, coexpressions are denoted by slashes, e.g. 

Kv4/DPP6-WT/KChIP. For weight ratios, 46 ng of each Kv4.2 and DPP6-T132X were injected, which 

equates to molar ratios of 1:8.98. 46 nl of pre-mixed cRNA were injected into each oocyte using 

a nano-injector (Drummond Scientific). After injection, oocytes were incubated at 18°C in Barth 

medium (without serum). Electrophysiological recordings were performed 18-33 hours after 

injection of cRNA and VCF measurements after 3 days. N states the number of oocytes recorded 

for each condition; data were obtained from at least 3 independent oocyte preparations. 

5.5.3 Electrophysiology and Voltage Clamp Fluorometry 

All electrophysiology and voltage clamp fluorometry recordings were performed as described 

at room temperature (~18°C) with a CA-1B amplifier (Dagan Corp.) and analyzed using GPatch 

software (Department of Anesthesiology, University of California, Los Angeles)(51-53). 

Capacitance currents were subtracted offline using scaled subtraction with a negative pulse of -

100 mV or maximally -140 mV as reference. 250-300 ms depolarizing test pulses ranging from -

140 to +100 mV were applied. The holding potential was -90 mV. External solution contained (in 

mM) 5 KOH, 110 N-methyl-D-glucamine (NMG), 10 HEPES and 2 Ca(OH)2, pH 7.1 adjusted with 

methane sulfonic acid. Internal solution contained (in mM) 115 KOH, 10 HEPES and 2 EDTA, pH 

7.1 adjusted with methane sulfonic acid.  
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In voltage clamp fluorometry (VCF) experiments, voltage-dependent fluorescence changes 

from fluorophores covalently bound to the extracellular end of the S4 (position A288C in Kv4.2) 

were measured simultaneously to the current. Oocytes were labeled with freshly prepared 5 µM 

TMRM in labeling solution containing (in mM) 115 KOH, 10 HEPES and 2 Ca(OH)2, pH 7.1 adjusted 

with methane sulfonic acid for 20 minutes at room temperature before recording. Currents were 

measured as described above and fluorescence was recorded using a Photomax 200 photodiode 

detection system (Dagan) attached to an upright microscope (Axioskop 2FS; Zeiss) with an ex-

545/25, dc-570, em-605/70 filter set.. Bleaching effects were removed by scaled subtraction using 

the first sweep as reference. 

5.5.4 Data Analysis 

To compare effects of DPP6 truncations on the Kv4.2 gating properties we analyzed the peak 

current at 100 mV (Imax). The current-voltage relationships of A-type currents activation at 100 mV 

were fitted with first order exponential increases. The inactivation at 100 mV was fitted to first-, 

second- or third-order exponential decays. Residual currents were obtained by subtracting the 

exponential fit from the current trace. To ensure the comparability of fractional amplitudes, all 

exponentials were extrapolated to 0.75 ms after the onset of test pulse -where Kv4.2 + DPP6 was 

half activated- and the end of the recording. We observed higher variations in the relative 

amplitudes for longer DPP6 truncations in the presence of KChIP. When time constants for 

KChIP/DPP6-H581X were fixed to mean, the relative amplitudes were more clustered suggesting 

that fractional amplitudes might compensate for some extremer time constants. Figure 6e 

presents the unrestricted relative amplitudes. Time to peak describes the time from the onset of 

test pulse to the peak current. Significance was determined by one-way ANOVA using Origin 

(OriginLabs). 
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5.7 Supplemental Material 

Supplemental Table S5.1 : One-way ANOVA analysis for figure 5.1 

Figure 5.1   Prop>F  
A Imax Kv4.2 DPP6-T132X <0.00005 **** 
  Kv4.2 DPP6-WT 0 **** 
  DPP6-WT DPP6-T132X 0.00060 ** 
B ss current/Imax Kv4.2 DPP6-T132X 0.86623 NS 
  Kv4.2 DPP6-WT 0.00069 ** 
  DPP6-WT DPP6-T132X 0.00062 ** 
D tau activation Kv4.2  DPP6-WT 0 **** 
  Kv4.2  DPP6-T132X 0.00009 *** 
  DPP6-WT DPP6-T132X 0 **** 
E tau slow Kv4.2 DPP6-T132X 0.11800 NS 
  Kv4.2 DPP6-WT <0.00005 **** 
  DPP6-WT DPP6-T132X 0.01053 * 
 tau fast Kv4.2 DPP6-T132X 0.00323 ** 
  Kv4.2 DPP6-WT 0.00124 ** 
  DPP6-WT DPP6-T132X 0.83505 NS 
F A slow Kv4.2 DPP6-T132X 0.01121 * 
  Kv4.2 DPP6-WT 0 **** 
  DPP6-WT DPP6-T132X 0 **** 
 A fast Kv4.2 DPP6-T132X 0.01121 * 
  Kv4.2 DPP6-WT 0.00200 ** 
  DPP6-WT DPP6-T132X <0.00005 **** 
G time to peak Kv4.2 DPP6-T132X 0.00288 ** 
  Kv4.2 DPP6-WT 0 **** 
  DPP6-WT DPP6-T132X 0 **** 

One-way ANOVA with pairwise analysis between the different conditions was performed and the statistical 
significance was denoted as asterisks for clarity. NS, not significant, * P < 0.05, ** P < 0.005, 
*** P < 0.0005, **** P < 0.00005 
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Supplemental Table S5.2 : One-way ANOVA analysis for figure 5.4 

Figure 5.4 
  

Prop>F 
 

A Imax Kv4.2 DPP6-K241X 0.08470 NS   
Kv4.2 DPP6-R322X 0.00000 ****   
Kv4.2 DPP6-N351X 0.27501 NS   
Kv4.2 DPP6-D484X <0.00005 ****   
Kv4.2 DPP6-H581X <0.00005 ****   
Kv4.2 DPP6-K711X <0.00005 ****   
DPP6-WT DPP6-K241X <0.00005 ****   
DPP6-WT DPP6-R322X <0.00005 ****   
DPP6-WT DPP6-N351X <0.00005 ****   
DPP6-WT DPP6-D484X 0.82053 NS   
DPP6-WT DPP6-H581X 0.00150 **   
DPP6-WT DPP6-K711X 0.00044 *** 

B ss current/Imax Kv4.2 DPP6-K241X 0.99846 NS   
Kv4.2 DPP6-R322X 0.26022 NS   
Kv4.2 DPP6-N351X 0.50748 NS   
Kv4.2 DPP6-D484X 0.09739 NS   
Kv4.2 DPP6-H581X 0.06347 NS   
Kv4.2 DPP6-K711X 0.15133 NS   
DPP6-WT DPP6-K241X 0.00604 *   
DPP6-WT DPP6-R322X <0.00005 ****   
DPP6-WT DPP6-N351X 0.07959 NS   
DPP6-WT DPP6-D484X 0.18734 NS   
DPP6-WT DPP6-H581X 0.27874 NS   
DPP6-WT DPP6-K711X 0.07930 NS 

C tau activation Kv4.2 DPP6-K241X 0.06621 NS   
Kv4.2 DPP6-R322X 0.04717 *   
Kv4.2 DPP6-N351X 0.11488 NS   
Kv4.2 DPP6-D484X <0.00005 ****   
Kv4.2 DPP6-H581X <0.00005 ****   
Kv4.2 DPP6-K711X <0.00005 ****   
DPP6-WT DPP6-K241X <0.00005 ****   
DPP6-WT DPP6-R322X <0.00005 ****   
DPP6-WT DPP6-N351X <0.00005 ****   
DPP6-WT DPP6-D484X 0.31407 NS   
DPP6-WT DPP6-H581X <0.00005 ****   
DPP6-WT DPP6-K711X <0.00005 **** 

D tau slow DPP6-WT DPP6-D484X 0.32125 NS   
DPP6-WT DPP6-H581X 0.09367 NS   
DPP6-WT DPP6-K711X 0.01051 *  

tau middle DPP6-WT DPP6-D484X 0.00315 **   
DPP6-WT DPP6-H581X 0.06976 NS   
DPP6-WT DPP6-K711X 0.01484 *  

tau fast DPP6-WT DPP6-D484X 0.80263 NS   
DPP6-WT DPP6-H581X 0.16387 NS   
DPP6-WT DPP6-K711X 0.04691 * 

E A slow Kv4.2 DPP6-K241X 0.22317 NS   
Kv4.2 DPP6-R322X 0.18151 NS   
Kv4.2 DPP6-N351X 0.05793 NS   
DPP6-WT DPP6-D484X 0.45220 NS   
DPP6-WT DPP6-H581X 0.76150 NS   
DPP6-WT DPP6-K711X 0.28602 NS  

A middle DPP6-WT DPP6-D484X 0.00599 *   
DPP6-WT DPP6-H581X 0.44323 NS   
DPP6-WT DPP6-K711X 0.68019 NS  

A fast Kv4.2 DPP6-K241X 0.22317 NS   
Kv4.2 DPP6-R322X 0.18151 NS   
Kv4.2 DPP6-N351X 0.05793 NS   
DPP6-WT DPP6-D484X 0.09328 NS   
DPP6-WT DPP6-H581X 0.45446 NS   
DPP6-WT DPP6-K711X 0.09328 NS 
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Figure 5.4 
  

Prop>F 
 

E time to peak DPP6-WT DPP6-D484X 0.84869 NS   
DPP6-WT DPP6-H581X 0.00025 ***   
DPP6-WT DPP6-K711X 0.01947 *   
DPP6-WT DPP6-K241X 0 ****   
DPP6-WT DPP6-R322X 0 ****   
DPP6-WT DPP6-N351X 0 ****   
Kv4.2 DPP6-D484X 0 ****   
Kv4.2 DPP6-H581X 0 ****   
Kv4.2 DPP6-K711X 0 ****   
Kv4.2 DPP6-K241X 0.04714 *   
Kv4.2 DPP6-R322X 0.57051 NS   
Kv4.2 DPP6-N351X 0.57051 NS 

One-way ANOVA with pairwise analysis between the different conditions was performed and the statistical 
significance was denoted as asterisks for clarity. NS, not significant, * P < 0.05, ** P < 0.005, 
*** P < 0.0005, **** P < 0.00005 

 

 

Supplemental Table S5.3 : One-way ANOVA analysis for figure 5.5 

Figure 5.5 Prop>F  
A Imax 0.18609 NS 
B ss current/Imax 0.32258 NS 
C tau activation 0.91459 NS 
D tau slow 0.44380 NS 
 tau fast 0.00032 *** 
E A slow <0.00005 **** 
 A fast <0.00005 **** 

One-way ANOVA with pairwise analysis between weight ratio and molar ratio injection conditions was 
performed and the statistical significance was denoted as asterisks for clarity. NS, not significant, * 
P < 0.05, ** P < 0.005, *** P < 0.0005, **** P < 0.00005 
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Supplemental Table S5.4 : One-way ANOVA analysis for figure 5.6 

Figure 5.6   Prop>F  
A Imax Kv4.2 Kv4.2 + KChIP 0 **** 
  DPP6-T132X DPP6-T132X KChIP 0.09692 NS 
  DPP6-K241X DPP6-K241X + KChIP 0.00743 * 
  DPP6-R322X DPP6-R322X + KChIP 0 NS 
  DPP6-D484X DPP6-D484X + KChIP 0.00006 *** 
  DPP6-H581X DPP6-H581X + KChIP 0.68258 NS 
  Kv4.2 + KChIP DPP6-T132X KChIP 0.60103 NS 
  Kv4.2 + KChIP DPP6-K241X + KChIP 0.08243 NS 
  Kv4.2 + KChIP DPP6-R322X + KChIP 0.69563 NS 
  Kv4.2 + KChIP DPP6-D484X + KChIP <0.00005 **** 
  Kv4.2 + KChIP DPP6-H581X + KChIP 0.72612 NS 
  DPP6-WT + KChIP DPP6-T132X KChIP 0.24444 NS 
  DPP6-WT + KChIP DPP6-K241X + KChIP 0.85425 NS 
  DPP6-WT + KChIP DPP6-R322X + KChIP 0.23293 NS 
  DPP6-WT + KChIP DPP6-D484X + KChIP 0.13245 NS 
  DPP6-WT + KChIP DPP6-H581X + KChIP 0.35629 NS 
  DPP6-WT + KChIP Kv4.2 + KChIP 0.04146 * 
B ss current/Imax Kv4.2 Kv4.2 + KChIP 0.00021 *** 
  DPP6-T132X DPP6-T132X + KChIP <0.00005 **** 
  Kv4.2 + KChIP DPP6-T132X + KChIP <0.00005 **** 
  Kv4.2 + KChIP DPP6-K241X + KChIP 0.86230 NS 
  Kv4.2 + KChIP DPP6-R322X + KChIP 0.11407 NS 
  Kv4.2 + KChIP DPP6-D484X + KChIP 0.00014 *** 
  Kv4.2 + KChIP DPP6-H581X + KChIP 0.04917 * 
  DPP6-WT + KChIP DPP6-T132X + KChIP 0.80484 NS 
  DPP6-WT + KChIP DPP6-K241X + KChIP 0.01544 * 
  DPP6-WT + KChIP DPP6-R322X + KChIP 0.00150 ** 
  DPP6-WT + KChIP DPP6-D484X + KChIP 0.77089 NS 
  DPP6-WT + KChIP DPP6-H581X + KChIP 0.65674 NS 
  DPP6-WT + KChIP DPP6-WT 0.00145 ** 
  DPP6-WT + KChIP Kv4.2 + KChIP 0.00145 ** 
C tau activation Kv4.2 Kv4.2 + KChIP <0.00005 **** 
  Kv4.2 + KChIP DPP6-T132X + KChIP 0.05139 NS 
  Kv4.2 + KChIP DPP6-K241X + KChIP 0.44295 NS 
  Kv4.2 + KChIP DPP6-R322X + KChIP 0.13569 NS 
  Kv4.2 + KChIP DPP6-D484X + KChIP 0.61861 NS 
  Kv4.2 + KChIP DPP6-H581X + KChIP 0.38369 NS 
  Kv4.2 + KChIP DPP6-WT + KChIP 0.05266 NS 
  DPP6-WT + KChIP DPP6-T132X + KChIP 0.85128 NS 
  DPP6-WT + KChIP DPP6-K241X + KChIP 0.33337 NS 
  DPP6-WT + KChIP DPP6-R322X + KChIP 0.62292 NS 
  DPP6-WT + KChIP DPP6-D484X + KChIP 0.06214 NS 
  DPP6-WT + KChIP DPP6-H581X + KChIP 0.61655 NS 
  DPP6-WT DPP6-WT + KChIP <0.00005 **** 
D tau slow Kv4.2 + KChIP Kv4.2 <0.00005 **** 
  Kv4.2 + KChIP DPP6-T132X + KChIP 0.48444 NS 
  Kv4.2 + KChIP DPP6-K241X + KChIP 0.01552 * 
  Kv4.2 + KChIP DPP6-R322X + KChIP 0.00784 * 
  Kv4.2 + KChIP DPP6-D484X + KChIP 0.06902 NS 
  Kv4.2 + KChIP DPP6-H581X + KChIP 0.38084 NS 
  Kv4.2 + KChIP DPP6-WT + KChIP 0.08627 NS 
  DPP6-WT + KChIP DPP6-T132X + KChIP 0.14349 NS 
  DPP6-WT + KChIP DPP6-K241X + KChIP 0.01886 * 
  DPP6-WT + KChIP DPP6-R322X + KChIP 0.00877 * 
  DPP6-WT + KChIP DPP6-D484X + KChIP 0.02326 * 
  DPP6-WT + KChIP DPP6-H581X + KChIP 0.16404 NS 
  DPP6-WT + KChIP DPP6-WT <0.00005 **** 
  DPP6-T132X + KChIP DPP6-T132X <0.00005 **** 
 tau fast DPP6-WT + KChIP DPP6-WT 0 **** 
  DPP6-T132X + KChIP DPP6-T132X <0.00005 **** 
  Kv4.2 + KChIP Kv4.2 <0.00005 **** 
  Kv4.2 + KChIP DPP6-T132X + KChIP 0,29458 NS 
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Figure 5.6   Prop>F  
D tau fast Kv4.2 + KChIP DPP6-K241X + KChIP 0,0018 ** 
 (continued) Kv4.2 + KChIP DPP6-R322X + KChIP 4,72132E-5 **** 
  Kv4.2 + KChIP DPP6-D484X + KChIP 6,83034E-5 *** 
  Kv4.2 + KChIP DPP6-H581X + KChIP 0.03386 * 
  Kv4.2 + KChIP DPP6-WT + KChIP 0.00001 **** 
  DPP6-WT + KChIP DPP6-T132X + KChIP 0 **** 
  DPP6-WT + KChIP DPP6-K241X + KChIP 0.11292 NS 
  DPP6-WT + KChIP DPP6-R322X + KChIP 0.06349 NS 
  DPP6-WT + KChIP DPP6-D484X + KChIP 0.00007 *** 
  DPP6-WT + KChIP DPP6-H581X + KChIP 0.00001 **** 
E A slow Kv4.2 + KChIP Kv4.2 <0.00005 **** 
  Kv4.2 + KChIP DPP6-T132X + KChIP 0.00063 ** 
  Kv4.2 + KChIP DPP6-K241X + KChIP 0.00237 *** 
  Kv4.2 + KChIP DPP6-R322X + KChIP 0.00032 *** 
  Kv4.2 + KChIP DPP6-D484X + KChIP 0.00002 **** 
  Kv4.2 + KChIP DPP6-H581X + KChIP 0.00503 * 
  Kv4.2 + KChIP DPP6-WT + KChIP 0.00002 **** 
  DPP6-WT + KChIP DPP6-WT 0.00042 *** 
  DPP6-WT + KChIP DPP6-T132X + KChIP <0.00005 **** 
  DPP6-WT + KChIP DPP6-K241X + KChIP <0.00005 **** 
  DPP6-WT + KChIP DPP6-R322X + KChIP <0.00005 **** 
  DPP6-WT + KChIP DPP6-D484X + KChIP <0.00006 **** 
  DPP6-WT + KChIP DPP6-H581X + KChIP 0.00002 **** 
 A fast Kv4.2 + KChIP Kv4.2 <0.00005 **** 
  Kv4.2 + KChIP DPP6-T132X + KChIP 0.00063 ** 
  Kv4.2 + KChIP DPP6-K241X + KChIP 0.00237 ** 
  Kv4.2 + KChIP DPP6-R322X + KChIP 0.00032 *** 
  Kv4.2 + KChIP DPP6-D484X + KChIP 0.00002 **** 
  Kv4.2 + KChIP DPP6-H581X + KChIP 0.00503 * 
  Kv4.2 + KChIP DPP6-WT + KChIP <0.00005 **** 
  DPP6-WT + KChIP DPP6-WT 0 **** 
  DPP6-WT + KChIP DPP6-T132X + KChIP <0.00005 **** 
  DPP6-WT + KChIP DPP6-K241X + KChIP <0.00005 **** 
  DPP6-WT + KChIP DPP6-R322X + KChIP <0.00005 **** 
  DPP6-WT + KChIP DPP6-D484X + KChIP <0.00005 **** 
  DPP6-WT + KChIP DPP6-H581X + KChIP 0.00002 **** 
F time to peak Kv4.2 Kv4.2 + KChIP 0 **** 
  Kv4.2 + KChIP DPP6-T132X + KChIP 0.33746 NS 
  Kv4.2 + KChIP DPP6-K241X + KChIP 0.01821 * 
  Kv4.2 + KChIP DPP6-R322X + KChIP 0.03452 * 
  Kv4.2 + KChIP DPP6-D484X + KChIP 0.05774 NS 
  Kv4.2 + KChIP DPP6-H581X + KChIP 0.29504 NS 
  Kv4.2 + KChIP DPP6-WT + KChIP 0.00049 *** 
  DPP6-WT + KChIP DPP6-T132X + KChIP 0.03459 * 
  DPP6-WT + KChIP DPP6-K241X + KChIP 0.16685 NS 
  DPP6-WT + KChIP DPP6-R322X + KChIP 0.06009 NS 
  DPP6-WT + KChIP DPP6-D484X + KChIP 0.04765 * 
  DPP6-WT + KChIP DPP6-H581X + KChIP 0.11442 NS 
  DPP6-WT + KChIP DPP6-WT 0 **** 

One-way ANOVA with pairwise analysis between the different conditions was performed and the statistical 
significance was denoted as asterisks for clarity. NS, not significant, * P < 0.05, ** P < 0.005, 
*** P < 0.0005, **** P < 0.00005 
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Supplemental Table S5.4 : One-way ANOVA analysis for figure 5.7 

Figure 5.7   Prop>F  
A Imax Kv4.2 DPP6-dProp 0.85281 NS 
  DPP6-WT DPP6-dProp <0.00005 **** 
  DPP6-WT DPP6-dProp + KChIP 0.00550 * 
  Kv4.2 + KChIP DPP6-dProp + KChIP 0.61595 NS 
  DPP6-WT + KChIP DPP6-dProp + KChIP 0.21388 NS 
  DPP6-dProp DPP6-dProp + KChIP <0.00005 **** 
B ss current/Imax Kv4.2 DPP6-dProp 0.47434 NS 
  DPP6-WT DPP6-dProp 0.00001 **** 
  DPP6-WT DPP6-dProp + KChIP 0.60934 NS 
  Kv4.2 + KChIP DPP6-dProp + KChIP 0.26314 NS 
  DPP6-WT + KChIP DPP6-dProp + KChIP 0.00067 ** 
  DPP6-dProp DPP6-dProp + KChIP 0.00045 *** 
C tau activation Kv4.2 DPP6-dProp 0.46562 NS 
  DPP6-WT DPP6-dProp 0.00000 **** 
  DPP6-WT DPP6-dProp + KChIP <0.00005 **** 
  Kv4.2 + KChIP DPP6-dProp + KChIP 0.53796 NS 
  DPP6-WT + KChIP DPP6-dProp + KChIP 0.05096 NS 
  DPP6-dProp DPP6-dProp + KChIP 0.00030 *** 
D tau slow Kv4.2 DPP6-dProp 0.62193 NS 
  DPP6-WT DPP6-dProp 0.00053 ** 
  DPP6-WT DPP6-dProp + KChIP 0.00050 ** 
  Kv4.2 + KChIP DPP6-dProp + KChIP 0.00069 ** 
  DPP6-WT + KChIP DPP6-dProp + KChIP 0.00164 ** 
  DPP6-dProp DPP6-dProp + KChIP 0.00000 **** 
 tau fast Kv4.2 DPP6-dProp 0.18029 NS 
  DPP6-WT DPP6-dProp <0.00005 **** 
  DPP6-WT DPP6-dProp + KChIP <0.00005 **** 
  Kv4.2 + KChIP DPP6-dProp + KChIP 0.00000 **** 
  DPP6-WT + KChIP DPP6-dProp + KChIP 0.12112 NS 
  DPP6-dProp DPP6-dProp + KChIP <0.00005 **** 
E A slow Kv4.2 DPP6-dProp 0.00194 ** 
  DPP6-WT DPP6-dProp <0.00005 **** 
  DPP6-WT DPP6-dProp + KChIP <0.00005 **** 
  Kv4.2 + KChIP DPP6-dProp + KChIP 0.00002 **** 
  DPP6-WT + KChIP DPP6-dProp + KChIP 0.00000 **** 
  DPP6-dProp DPP6-dProp + KChIP <0.00005 **** 
 A fast Kv4.2 DPP6-dProp 0.00194 ** 
  DPP6-WT DPP6-dProp <0.00005 **** 
  DPP6-WT DPP6-dProp + KChIP <0.00005 **** 
  Kv4.2 + KChIP DPP6-dProp + KChIP 0.00002 **** 
  DPP6-WT + KChIP DPP6-dProp + KChIP 0.00000 **** 
  DPP6-dProp DPP6-dProp + KChIP <0.00005 **** 
F time to peak Kv4.2 DPP6-dProp 0.17101 NS 
  DPP6-WT DPP6-dProp <0.00005 **** 
  DPP6-WT DPP6-dProp + KChIP <0.00005 **** 
  Kv4.2 + KChIP DPP6-dProp + KChIP 0.12696 NS 
  DPP6-WT + KChIP DPP6-dProp + KChIP 0.01530 * 
  DPP6-dProp DPP6-dProp + KChIP 0.00023 *** 

One-way ANOVA with pairwise analysis between the different conditions was performed and the statistical 
significance was denoted as asterisks for clarity. NS, not significant, * P < 0.05, ** P < 0.005, 
*** P < 0.0005, **** P < 0.00005 
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Chapter 6 – Discussion 

To better understand how specific ion channel complexes function, we investigated the 

structural details of three channel complexes using fluorescence and electrophysiological 

techniques. In chapter four, we used a direct structural technique to determine the oligomeric 

state of the novel ion channel TACAN. Here, we performed single subunit counting experiments 

on purified channel complexes tethered by the commonly utilized 6His-tag since the traditional 

single subunit counting technique performed in cells did not result in acceptable bleaching 

movies. This allowed us to investigate the oligomeric state of this channel, which otherwise would 

have been impossible due to a poor signal to background ratio in cells. In contrast to this direct 

structural technique, in the fifth chapter, we used functional measurements and deduced 

information about the complex formation from the effect of mutagenesis on the complex 

function. Rather than investigating the number and effect of a-subunits, we took a closer look at 

the auxiliary subunit DPP6 in Kv4.2 channel complexes and studied the effect of individual 

domains within the b-subunit on channel gating. Finally, in chapter three, we addressed a very 

complex problem with a dynamically changing complex assembly. Here, we had to combine both 

structural and functional techniques to elucidate the structural details of heteromeric Kv2.1/6.4 

channels. The effect of entire a-subunits in the heteromeric assemblies was electrophysiologically 

investigated by our collaborators. This work supported our single subunit counting experiments 

aimed at identifying the channel complex stoichiometry. To determine the most probable 

stoichiometric model, we used an analysis method aimed at reducing confirmation bias. 

6.1 Investigating the Structure of Kv2.1/6.4 Heteromers 

This study was designed to investigate the stoichiometry of Kv2.1/6.4 heterotetramers. Until 

then it was assumed that all Kv2/KvS heteromers adopt a 3:1 arrangement, like Kv2.1/9.3. While 

our manuscript was under review, Pisupati et al. published subunit counting data on Kv2.1/6.4 

that was undistinguishable from our own data but interestingly, they came to a different 

conclusion. This highlighted the need for a more rigorous subunit counting analysis method that 

would limit confirmation bias and distinguish which stoichiometry is the most probable. 
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Compared to typical publications presenting subunit counting data, we collected far more 

data points and applied the new relative weighted likelihood model selection method to 

confidently determine a stoichiometric model for Kv2.1/6.4 channels. Importantly, we also did 

not reject spots that featured more than the theoretically possible number of photobleaching 

steps. These spots originate from colocalized channels within a diffraction limited spot and are 

crucial for unbiased analysis of the step frequency histogram, since removing them would 

misrepresent the lower number of bleaching steps. The inclusion of colocalization makes it 

possible to directly compare the likelihoods of different models. This is key, since a thorough 

analysis should not only demonstrate that one model describes the data well, but that other 

models fit less well. As a result of this effort and opposed to previously published Kv2/KvS 

arrangements in a 3:1 stoichiometry, we showed that the stoichiometry of heteromeric Kv 

channels with silent subunits is more flexible and that under physiological conditions Kv2.1 and 

6.4 express in a 2:2 stoichiometry.  

The rigorous analysis of subunit counting data together with the complementary 

electrophysiological investigation on concatemeric channel complex resulted in a convincing 

architectural channel model where Kv2.1 and 6.4 subunits are arranged in an alternating fashion. 

The possibility of a 2:2 stoichiometric arrangement with alternating Kv2/KvS subunits was not 

entirely surprising considering that Kv channels are thought to assemble as dimers of dimers (1). 

While subunit counting experiments cannot distinguish between functional and electrically silent 

channels, concatemers elucidate the functionality of fixed arrangements of subunits. This showed 

that channels with more than three silent subunits are not functional. However, subunit counting 

data demonstrated that at higher Kv6.4 expression levels, these non-functional channels might 

still traffic to the plasma membrane. How these channels would form is not understood given 

that the tetramerization domains of Kv6.4 subunits are not self-compatible and don’t interact 

with each other in the ER. Indeed, expressing Kv6.4 in the absence of Kv2 subunits, leads to 

retention in the ER. An ER retention signal is not present in KvS subunits, suggesting that they 

might not traffic forward due to misfolding. Our observation of possible 1:3 Kv2.1/6.4 

heterotetramers in the plasma membrane at high Kv6.4 expression levels would then propose 

that a single Kv2.1 subunit rescues Kv6.4 misfolding and allows for channel arrangements with 
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three Kv6.4 subunits. However, allowing mixed population with one, two or three Kv6.4 subunits 

per channel complex added an additional variable to the analysis which might explain the better 

fit without being physiological relevant. 

Biasing the stoichiometry in the opposite direction towards Kv2.1 subunits showed that 

Kv2.1/6.4 channels with a 3:1 arrangement are functional but unlikely to form under physiological 

conditions. Using concatemers with a single silent subunit verified that these 3:1 arrangements 

are functional. These channels exhibited gating properties in between Kv2.1 homotetramers and 

heterotetramers comprising two Kv6.4 subunits, illustrating that incorporation of Kv6.4 subunits 

progressively alters channel activation and inactivation. In cells expressing individual subunits as 

opposed to concatemers, a 3:1 arrangement could not be observed because the cDNA ratio has 

to be biased towards Kv6.4 (which results in a 2:2 arrangement) since otherwise Kv2.1 

homotetramers overshadow the contribution of heteromers in the ensemble. However, subunit 

counting experiments at equal RNA ratios are possible when only the silent subunit is 

fluorescently labeled and homomeric Kv2.1 channels remain invisible. Under these conditions, 

our subunit counting data suggests that the number of Kv6.4 subunits is not decreased and that 

the 2:2 heteromeric channel stoichiometry remains unchanged. Comparing our results with 

Kv2.1/9.3 heteromers shows that KvS subunits feature distinct preferences for specific 

stoichiometries and that Kv2/KvS arrangements have variable stoichiometries depending on the 

KvS subunit. 

We consistently observed colocalized channels within a diffraction limited spot (~ 300 nm 

diameter). We argued that channels are stochastically distributed and that there is a 10 – 20 % 

probability of finding two channels in a diffraction limited spot. However, it would be possible 

that channels at this expression level start to interact with each other and therefore are observed 

more often as colocalized. To unequivocally reject the possibility of a direct interaction of 

channels that results in the observation of colocalized channels, one could perform Förster 

resonance energy transfer (FRET) experiments to determine the distance between two channels. 

If these Kv channels are found to interact directly, it would be worthwhile to further study their 

function. 
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Our work was limited to heterologous expression systems and might not represent the full 

picture. As for Kv4.2 channel complexes, native Kv2.1/6.4 channels in neurons are further 

influenced by auxiliary subunits which were not present in our study. The b-subunit KCNE5, which 

is also expressed in the brain, has been shown to modulate Kv2.1 homomers and 2.1/6.4 

heteromers in distinct ways (2). Since KCNE5 modulates the biophysical properties of Kv2.1/6.4, 

but not of Kv2.1 homomeric, channels significantly, it would be intriguing to investigate the effect 

of KCNE5 on the functionality of Kv2.1/6.4 arrangements in a 1:3 stoichiometry. Our results on 

concatemers showed, that these 1:3 stoichiometric arrangements are non-functional, while our 

subunit counting experiments did not exclude the possibility of expressing such channels in the 

plasma membrane. It could be yet another cellular mechanism to finetune channel function if a 

small population of Kv2.1/6.4 channels in a 1:3 arrangement becomes functional in the presence 

of an auxiliary subunit, making them physiologically relevant. David et al. also studied the 

interaction between the a- and b-subunits and performed FRET experiments between Kv2.1/6.4 

a-subunits and KCNE5 (2). Although FRET experiments can be used to study stoichiometries (3, 

4), David et al. did not investigate the Kv2.1:KCNE5 stoichiometry. To better understand by which 

mechanisms KCNE5 modulates Kv2.1 and Kv2.1/6.4 channels, it would be interesting to examine 

if coexpression of Kv6.4 alters the Kv2.1:KCNE5 stoichiometry. Furthermore, it remains unknown, 

if and how KCNE5 affects the Kv2.1/6.4 stoichiometry. Considering that KCNE5, like DPP6, traffics 

to the plasma membrane in the absence of Kv2.1 or Kv2.1/6.4 and does not rescue Kv6.4 

retention in the ER, its presence is more likely to affect channels that are not retained in the ER 

but expressed in the plasma membrane (2). In the plasma membrane, channels are already fully 

assembled, so that it is unlikely that KCNE could alter their stoichiometry by actively exchanging 

subunits. However, when mixed populations of heteromeric channels with different 

stoichiometries traffic to the plasma membrane, KCNE could distinctly affect the retrograde 

trafficking of one of the populations. As a result, one of the populations might be more (or less) 

likely to remain in the plasma membrane, so that it is more (or less) likely to observe this 

stoichiometry.  

Another limitation of the subunit counting technique in general is the requirement for very 

low expression so that single channels can be optically resolved. This, however, is not 
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representative of Kv2.1 expression in neurons. Here, Kv2.1 channels have been reported to largely 

localize in non-conducting clusters in the plasma membrane (5). These clusters are also observed 

when Kv6.4 (and KCNE5) is coexpressed in HEK cells (2) but it remains unknown if and how these 

clusters influence heteromeric channel functionality, stability and stoichiometry. SSC only studies 

what expresses regardless of the functionality whereas electrophysiology investigations are blind 

to electrically silent channels and non-conducting clusters. Obtaining single molecule structural 

and functional data simultaneously would be a major improvement, especially when channels 

exist in such a heterogenous ensemble. Ideally such studies should be performed in native cells 

that express possible auxiliary subunits. But due to being limited to low expression, traditional 

SSC cannot be performed successfully in neurons. 

SSC in Xenopus oocytes is accompanied by specific challenges. SSC in HEK cells have the 

advantage that they can be fixed in formaldehyde to eliminate movement of proteins which is a 

key factor for sufficient signal quality. However, when we expressed Kv2.1/6.4 in HEK cells, as 

shown in chapter four, the signal to background ratio was poor due to background fluorescence 

originating from untrafficked labeled subunits. This was also a major problem when expressing 

TACAN in HEK or CHO cells, where a significant amount of TACAN did not traffic to the plasma 

membrane but remained in the intracellular of the cell. In the case of TACAN, we hypothesized 

that the intracellular TACAN is located in the ER (discussed further in 6.2). To avoid high 

background fluorescence, we expressed Kv2.1/6.4 in oocytes. However, fixing them in 

formaldehyde similar to HEK cells was not successful. To access the plasma membrane, one needs 

to first mechanically remove the vitelline membrane that surrounds the oocyte and gives it its 

stability. Once this membrane is removed, oocytes become extremely fragile and difficult to 

handle making it impossible to fixate them at this stage. In addition to the lateral movement of 

fluorescent spots, unfixed proteins in oocytes also diffuse away from the focal plane. The oocyte’s 

plasma membrane is highly invaginated so that proteins observed in TIRF can diffuse laterally as 

well as in and out of the focal plane. These invaginations also result in a non-uniform focus across 

the field of observation so that entire areas that are out of focus have to be excluded from the 

analysis. In fact, a lot of bleaching movies recorded from oocytes have to be rejected due to poor 

focus or movement of fluorescent spots. 
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SSC experiments would benefit from an improved signal to background ratio (SBR) in 

fluorescent recordings. This can be achieved by using brighter fluorophores. Unfortunately, we 

did not explore the possibility of using mNeonGreen, a smaller and approximately three times 

brighter fluorescent protein (FP) compared to GFP, which is not a Aequorea Victoria GFP variant 

but is derived from Branchiostoma lanceolatum (6, 7). Improving the maturation rate of GFP 

would also improve SSC experiments, as it would increase the probability of fluorescence (pf). 

Apart from the super-folder monomeric GFP, the D’Avanzo laboratory tested other quickly 

maturing fluorescent proteins (FPs), of which none resulted in an significantly improved pf value 

compared to sfmGFP (Y. Lussier, personal communication, August 2020). Although other 

publication reported probabilities of fluorescence of up to 80 % (8-11), we repeatedly determined 

fluorescence probabilities around 50 % (12, 13). Rather than using brighter FPs or FPs with higher 

probabilities of fluorescence, optimized organic fluorophores could be used to label the protein 

of interest since these fluorophores are typically brighter than GFP. Several approaches could be 

employed to achieve protein labeling with these smaller dyes. A common method utilizes thiol 

reactive fluorophores, which we used previously with purified proteins (14) and in chapter five 

for ensemble fluorescence measurements of overexpressed Kv4 channels. The proper choice of 

thiol reactive fluorophores is crucial to reduce the risk of introducing additional background 

fluorescence. For example, tetramethylrhodamine maleimide (TMRM) easily passes the plasma 

membrane in mammalian cells leading to background fluorescence from the intracellular of the 

cell, whereas methanethiosulfonate sulforhodamine (MTSR) does not penetrate mammalian cells 

(15). Additionally, endogenous proteins with accessible cysteines can also be labeled, which leads 

to unspecific labeling. This can be reduced by blocking these cysteines with the non-fluorescent 

3-Mercaptopropionic acid (MPA) prior to expressing the protein of interest. The thiol (sulfhydryl) 

group of MPA forms a disulfide bond with the thiol group of the cysteine sidechain, thereby 

decreasing the number of endogenous cysteines that can be linked to a thiol-reactive fluorescent 

label. However, depending on the time between MPA blocking and the experiments, protein 

recycling and newly expressed endogenous membrane proteins still lead to unspecific labeling 

that could be too high for single molecule experiments. Alternatively to thiol-reactive fluorescent 
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labels, more specific labeling techniques, such as unnatural amino acid based click chemistry, 

could be used (16). 

A second approach to increase the SBR in fluorescent recordings, is to reduce background 

fluorescence. This can be achieved by expressing the membrane protein of interest in Xenopus 

oocytes rather than smaller cells. In oocytes, the ER is located further away from the plasma 

membrane compared to smaller cells, so that fluorescently tagged untrafficked proteins trapped 

in the ER are not excited in TIRF illumination. Additionally, the SBR in SSC experiments performed 

in Xenopus oocytes can be drastically improved when the plasma membrane of the dark animal 

pole, rather than the bright vegetal pole, is observed. Here, the pigmented cortex shields from 

background fluorescence. Alternatively, as presented in chapter four, ex vivo experiments can be 

performed on purified proteins to eliminate background fluorescence originating from 

untrafficked proteins. If, however, undisrupted native assemblies, e.g. in neurons, are to be 

investigated, zero-mode waveguides (ZMWs) could be used (17). These aluminum-based 

nanostructures are cylindrical holes of 30 to 300 nm diameter in a 50 to 200 nm tick metallic layer 

mounted onto a glass substrate (17). ZMWs with hole sizes d don’t propagate wavelengths above 

the critical wavelength lc = 1.7d. Instead, the light is confined to a very small volume (in the order 

of 0.03-100 x 10-21 L) as the intensity decreases exponentially at the glass surface (18, 19). 

Richards et al. used 150 nm diameter ZMWs for SSC experiments and were able to spatially isolate 

membrane complexes in wells even at high protein densities (19). Using 150 nm holes and 488 nm 

light as excitation, which is above the critical wavelength, allowed them to eliminate any 

background from the cell. Unfortunately, the use of ZMWs remains limited since nanofabrication 

techniques are expensive and not readily available. However, it is promising that brighter FPs and 

more specific labeling techniques for optimized organic fluorophores are developed alongside 

improvements on reducing background fluorescence in order to improve SSC data.  

Our rigorous analysis method of weighted maximum likelihoods is applicable to any subunit 

counting data as shown in chapters three and four and we anticipate that our work will serve as 

a guideline to researchers to solidify their analysis and stoichiometric model selection. Manual 

data analysis is heavily biased towards the “good looking” fluorescent spots and time traces, 

introducing significant observer bias. Using automated spot detection and bleaching step fitting 
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algorithms like PIF, the Progressive Idealization and Filtering software we used to analyze our 

bleaching movies, allows for bigger data sets to be analyzed and eliminates user bias. However, 

programs like PIF only produce bleaching step frequency histograms, which need to be analyzed 

and interpreted by the researcher. This subsequent step easily introduces confirmation bias, i.e. 

the tendency to favor a model that best fits with one’s prior believes, which can be avoided by 

rigorously analyzing data sets with standardized methods. Published subunit counting data are 

often limited to a few hundred spots, dismiss colocalized spots, overestimate the probability of 

fluorescence and don’t investigate other possible stoichiometries. Our SSC data analysis, 

presented in chapter three, offers a guideline to avoid these pitfalls and illustrates the need for 

sufficient data points and the inclusion of spots originating from colocalization. Under these 

conditions, the most probable stoichiometry can even be determined when the probability of 

fluorescence is allowed to vary. Importantly, the presented weighted likelihood method 

interrogates several possible stoichiometries and mixtures thereof and mathematically 

determines the confidence of each model. Furthermore, the addition of the presented model 

selection method to existing automated analysis programs would make the interpretation of SSC 

data much more reliable and objective. This could even include a feature that determines how 

many more data points need to be collected in order to confidently choose a stoichiometric 

model. 

6.2 Investigating the Oligomeric State of TACAN 

This study was designed to investigate the oligomeric state of the novel ion channel TACAN 

by single subunit counting. Because of the high background fluorescence observed in cells, these 

experiments were performed on purified proteins. We used a previously described 

functionalization technique to covalently link Ni-NTA to the surface of glass coverslips and 

extended its use to SSC experiments. 

Here, we present, for the first time, a structural investigation of TACAN. Until now, no 

structural data for this new ion channel was available. Based on hydrophobicity, it is predicted 

that each subunit features six transmembrane helices but no crystal or electron microscopy 

structure is available yet. Utilizing the 6His-tag that was used to purify the protein and Ni-NTA 
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functionalized coverslips, we performed SSC experiments ex vivo. Using the same analysis 

approach as described in chapter three, we reported variable oligomeric states that depended on 

the fraction of the size exclusion chromatography. According to our analysis, TACAN channels are 

tetramers but unstable when detergent-solubilized. This instability is not entirely surprising 

considering that mechanosensitive channels are often highly sensitive to specific hydrophobic 

interactions between the plasma membrane and the transmembrane helices. For example, 

phospholipid alkyl sidechains are located in distinct pockets formed by transmembrane helices of 

MscS, a mechanosensitive channel from E. coli (20), and between each MscS subunit, a 

phospholipid headgroup binds tightly to the extracellular T2-T3 loop (21). Detergent molecules 

interfere with these interactions and replace a majority of lipids surrounding the channel. At the 

same time, solubilizing the channel in detergent molecules changes the lateral pressure on the 

channel, which might be necessary to keep it stable (22). This drastic change in environment could 

then result in unstable channel complexes. 

The stability of an ion channel depends on noncovalent interactions between subunits. In 

addition to interactions between the transmembrane helices of different subunits, TACAN 

channels could be further stabilized by intra- or extracellular domains if these domains interact 

with each other. Interestingly, TACAN is predicted to feature a 135 amino acids long intracellular 

N-terminal which might help stabilizing the complex. Similarly, T1 domains that regulate Kv 

channel assembly also increase Kv channel stability by increasing the number of non-covalent 

inter-subunit interactions. It is currently unknown if the N-terminal domain of TACAN, similarly to 

the tetramerization T1 domain in Kv channels, is involved in channel stability and assembly. 

Although the T1 domain and the N-terminal sequence of TACAN show no sequence homology, 

and are therefore predicted to have distinct structures, the cytoplasmic N-terminal domain of 

TACAN could be long enough to assembles, like T1 domains, as a “hanging gondola” below the 

ion channel (23). It remains to be tested, if the N-terminal TACAN domains interact with each 

other and self-assemble. In addition to intersubunit interactions, auxiliary subunits potentially 

contribute to stabilizing ion channels. DPP6 subunits potentially stabilize Kv4 channel complexes 

by acting as brackets that interact with themselves as well as with the channel positioned at the 

center. It is currently unknown if native TACAN channels are stabilized by auxiliary subunits and 



Chapter 6 – Discussion 
 

 175 

which intersubunit interactions hold the complex together. Unfortunately, SSC experiments in 

physiologically more relevant environments, i.e., in cells, were not possible, so it remains 

uncertain if native TACAN channels form obligatory tetramers in the plasma membrane or if more 

flexible oligomeric states are possible too. However, considering that other ion channels, like 

potassium channels, have stable oligomerization states in the plasma membrane and misfolded 

proteins remain in the intracellular compartment of the cell, we propose that the highest 

oligomeric state purified and observed in out SSC experiments, i.e. the tetrameric state, is the 

native state found in the plasma membrane. 

The cause and purpose of the intracellularly localized TACAN remain uncertain. As for Kv6.4, 

when we expressed TACAN in cells, we observed a significant amount of channels in the 

intracellular compartment. TACAN seems to be retained in the ER. While Kv6.4’s retention is 

suggested to be caused by misfolding, we hypothesized that TACAN’s retention might be due to 

a dilysine motif at the C-terminus. However, our analysis does not exclude that channels are 

prohibited from anterograde trafficking due to misfolding or improper assembly, resulting in 

distinct localized populations in the PM and intracellular compartment with different oligomeric 

states. Additionally, we have seen, in the context of chapter three and five, that many ion 

channels show improved trafficking when coexpressed with other alpha or auxiliary subunits. 

Kv6.4 traffics to the plasma membrane in the presence of Kv2.1, while Kv4.2’s expression in the 

plasma membrane is enhanced by coexpression with KChIP and DPP6. In a similar fashion, 

TACAN’s trafficking could be affected by other subunits that have not been identified yet and that 

are missing in heterologous expression systems. Furthermore, we observed the formation of 

TACAN clusters. Opposed to non-conducting Kv2.1 clusters that are observed in the plasma 

membrane, we found TACAN clusters to be localized in the intracellular space. It remains 

unknown if these clusters originate from endosomes that recycle plasma membrane TACAN or if 

other organelles are involved and if TACAN localization in these clusters serves a distinct 

functional role. 

One important limitation of performing SSC of purified proteins from bacterial expression 

systems is the absence of post-translational modifications. These modifications could be 

important for protein stability, its conformation and interaction with other macromolecules, but 
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it is unclear how post-translational modifications influence TACANs assembly. Expression in 

mammalian cell lines mimics native protein processing more closely than recombinant expression 

in bacteria. When only small amounts of protein are required, i.e. for SSC, it could be 

advantageous to purify the protein from mammalian cell cultures, which might increase channel 

stability and represents the assembly in a more physiological way. 

Another important limitation of the presented work is the missing functional evaluation of 

the purified protein. As opposed to studying Kv2.1/6.4 heteromers with two complementary 

approaches, the presented research on TACAN solely depends on SSC data. However, TACANs 

functionality has been previously demonstrated and we only slightly modified the protocol that 

our laboratory developed to purify TACAN for functional studies in the original publication (24). 

This originally published purification was performed in FC14 and purified channels were 

reconstituted into small unilamellar lipid vesicles to be functionally tested in planar lipid bilayers. 

It is possible that the reconstitution into a lipid environment helps stabilizing the channel 

complex. For the SSC experiments, we followed the purification protocol in FC14, but TACAN 

solubilized in FC14 did not bind efficiently to Ni-NTA functionalized coverslips. Hence, we 

switched to DDM in the final size exclusion chromatography to improve tethering efficiencies. The 

protein did not precipitate, but it is unclear if the switch of detergents disrupts the integrity of 

the channel and if lipids are necessary to keep the channel assembly intact.  

The possibility of unstable channel complexes has important implications for researchers 

aiming at solving the channel structure. Since we only slightly modified the purification protocol 

described in the publication that first described TACAN, it is likely that other researchers follow 

the same instructions. Especially when the channels are purified from membrane fractions that 

include the plasma membrane as well as other organelle membranes and the channel is not 

subsequently reconstituted into lipid vesicles, but remains detergent-solubilized, heterogeneous 

and/or unstable channel assemblies could exist and lead to mixed oligomeric arrangements. 

Avoiding heterogeneous mixtures of different assemblies is a key in order to produce high quality 

EM structures. Reconstituting the mechanosensitive channel into lipid nanodiscs could help 

stabilize the protein complex in a more native environment, while still being able to determine 
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the structure (21, 25). Alternatively, amphipols, amphiphilic surfactants, can stabilize membrane 

proteins in a detergent free environment (26). 

A potential advantage of SSC experiments performed on purified proteins is the possibility to 

efficiently label the protein with brighter fluorophores. Since the protein of interest is isolated 

from the cell, it is easy to specifically label it with optimized organic fluorophores without 

introducing unspecific labeling. Thiol-reactive fluorophores, like Alexa-maleimides, can be used 

when the protein has not more than one, endogenous or engineered, accessible cysteine. 

Unfortunately, TACAN possesses eight cysteines of which only three are predicted to be 

inaccessible, i.e., positioned in the transmembrane helices. Having potentially five cysteines per 

subunit that are fluorescently labeled, would make it challenging to resolve bleaching events and 

accurately count steps even with an automated analysis software, especially when the subunits 

arrange as tetramers. 

The use of Ni-NTA functionalized coverslips is not limited to SSC experiments but rather lends 

itself for studying dynamic movements in purified proteins. I initially established this technique 

in our laboratory to study the subunit specific movements of the ionotropic glutamate receptor 

AMPA, which is responsible for the fast excitatory transmission in the central nervous system, 

and a soluble protein, the enzyme fructose-bisphosphate aldolase, involved in glycolysis. While 

we did not follow through with these projects, they show that Ni-NTA functionalized coverslips 

expand the toolkit to study structure function relations on a single molecule level. This is 

especially valuable when studying protein complexes that have asymmetric arrangements (like 

AMPA) and whose subunits might undergo distinct conformational changes that would average 

out in ensemble measurements. 

As an alternative to separate experiments, simultaneous SSC and electrophysiological 

experiments could study the functionality of specific stoichiometric arrangements. For Kv2.1/6.4, 

we performed these structural and functional experiments separately. Here, we observed 

potential 1:3 assemblies in the plasma membrane using the SSC technique and only 

electrophysiological investigation of the respective concatemer showed that these channels were 

electrically silent. While studies on concatemeric constructs are valuable to study the 
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functionality of specific internal subunit arrangements (e.g. adjacent or alternating), they don’t 

investigate native complexes assembled by individual subunits. When only the function and 

oligomeric state, but not the internal arrangement of subunits, is of interest, simultaneous 

structural and functional investigations could provide all the necessary data. In order to obtain 

structural and functional data of ion channels like TACAN and Kv2.1/6.4 simultaneously, one could 

record the single channel currents in planar lipid bilayers and perform SSC at the same time. 

However, to resolve single channel currents, only very few channels can be present in the 

membrane, drastically limiting the size of the data set. If at all possible, obtaining even just a few 

hundred fluorescent spots that can be analyzed for SSC would require months of experiments. 

Advances in automated high throughput bilayer formation, as for example developed by Ionera 

(Freiburg, Germany), would drastically accelerate such a project. Additionally, the analysis 

algorithm would have to be extended to include a powerful spot tracking feature since channels 

are expected to diffuse in the bilayer. Such tracking algorithms are already used for single 

molecule tracking (27-30). A simultaneous SSC and electrophysiology approach would be helpful 

for investigating TACAN, for which we hypothesized that functional channels are tetrameric, but 

also purified trimeric and dimeric channels that might be nonfunctional. Simultaneous 

experiments could then help solve if four subunits are necessary to form an ion channel with a 

central ion conducting pore (as it is the case for Kv channels) or if each subunit forms a distinct 

ion conducting pore (as has been reported for voltage gated proton channels  (31-33)), so that 

lower oligomeric arrangements might also be conducting.  

6.3 Investigating the Function of Distinct DPP6 Domains 

The research described in chapter five was designed to investigate the effect of distinct 

extracellular regions of the auxiliary subunit DPP6 on Kv4.2 channel gating. Deletion of the entire 

extracellular domain led to drastically altered channel properties, suggesting that the 

extracellular part is involved in channel modulation. We studied which part of the extracellular 

domain confers the modification by progressively truncating the DPP6 extracellular domain and 

recording macroscopic currents. 
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Until now, the effect of the approximately 700 amino acids long extracellular domain of DPP6 

on channel gating remained unknown. It was previously proposed that this part of the auxiliary 

subunit is involved in cell adhesion by interacting with the extracellular matrix (EM) (34). It is 

reasonable to assume, that the interaction of DPP6 with the EM as well as with the Kv4 subunits 

stabilizes Kv4 channels in the plasma membrane. Additionally, Lin et al. demonstrated that 

properly folded ß-propeller domains are important for DPP6 trafficking to the plasma membrane 

(35). Based on the research presented in chapter five, we propose, that the b-propeller 

additionally has an important modulatory effect on gating kinetics of the Kv4 channel complex. 

Our findings suggest that DPP6 interacts with and modulates Kv4 channels through several 

interaction sites. While all DPP6 isoforms are suggested to interact with Kv4’s VSD through the 

transmembrane helix (36), DPP6 isoforms with the N-terminal MNQTA motif also interact with 

the internal channel pore and confer NTI when Kv4’s N-termini are sequestered by KChIP (37). In 

addition to these studies, our results show that the extracellular domain interacts with the a-

subunit and destabilizes the open channel through a mechanism that has not been further 

investigated yet. Our electrophysiological interrogation of progressively C-terminally truncated 

DPP6 subunits demonstrated a strong link between the length of DPP6’s extracellular domain, 

peak current and accelerated activation and inactivation kinetics. More specifically, our results 

showed that the second half of DPP6’s propeller domain is responsible for drastically accelerated 

inactivation in the presence and absence of KChIP. Based on the crystal structure of the isolated 

extracellular domain, we proposed that a stable b-propeller domain and possibly DPP6 dimer 

formation are key determinants for altered channel properties. We hypothesized that the 

formation of a multimeric DPP6 extracellular domain leads to a positioning of DPP6’s extracellular 

domain directly on top of the ion channel whereas truncated DPP6 variants fail to multimerize 

and therefore establish a more flexible conformation that does not destabilize the open channel 

state as efficiently. How the multimerization of DPP6 subunits confers its channel modulating 

action remains unanswered, but the close interaction between the DPP6 subunit and S4 voltage-

sensing helix demonstrated by VCF experiments hints at an allosteric effect on channel gating 

properties. Our research lays a foundation to further identify interaction sites of DPP6’s 
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extracellular domain and Kv4 and the underlying structural determinants for DPP6 dependent 

channel gating modifications. 

Although we did not study the stoichiometry or subunit arrangement of Kv4/DPP6 channel 

complexes as we did for Kv2.1/6.4 heteromeric channels, we propose that only the proper 

positioning of DPP6 subunits in regard to Kv4.2 subunits elicits the maximal effect as a result of 

specific interactions that allosterically modulate the channel. Similarly, we saw in chapter three 

that the specific arrangement of distinct Kv2.1 and Kv6.4 subunits is of great importance for 

channel function. There, we showed that Kv6.4 subunits cannot be positioned adjacent to each 

other in order for the heteromeric channel to be functional. While concatemeric studies of 

Kv2.1/6.4 channels helped to identify the functional arrangement of the heteromeric channel, a 

comparable approach of concatemeric Kv4/DPP6 channels illustrated that Kv4/DPP6 channel 

complexes preferentially form 4:4 assemblies (38). Kv4/DPP10 channel complexes, on the other 

hand, are suggested to assemble in a 4:2 arrangement as investigated by SSC experiments (39). 

This is interesting, since both studies suggest that Kv4/DPPL arrangements form by adding DPPLs 

as multiples of dimers to the channel complex. 

To my knowledge, it has not been studied how dimeric or tetrameric DPPL subunits are 

arranged in respect to Kv4 subunits but several scenarios are possible. Since we and others 

showed that DPP6 is positioned in proximity to the voltage-sensing S4 helix (40), the extracellular 

domain is likely to be positioned over the voltage-sensing domain. As shown below, two DPPL 

subunits could interact with Kv4 tetramers in at least two ways. If each DPPL subunit interacts 

with Kv4 subunits in a symmetric way, the propeller loops would be positioned diagonally over 

the channel pore (figure 6.1, left bottom). This arrangement is further supported by studies on 

concatemers comprising two Kv4 and one DPP6 subunit resulting in a 4:2 channel arrangement 

where opposite Kv4 subunits are linked to DPP6. Similarly to Kv6.4 in Kv2.1 channel complexes as 

well as KChIP in Kv4 channel complexes (41), these 4:2 Kv4/DPP6 concatemeric channels have 

been shown to shift channel properties progressively compared to concatemers comprising one 

subunit of Kv4 and DPP6 each (resulting in a 4:4 channel arrangement) (38). The diagonal 

arrangement of 4:2 Kv4/DPP6 concatemeric channels is similar to the one we observed in chapter 

three for Kv2.1/6.4 channels. Alternatively to a symmetric diagonal arrangement, the two DPPL 
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subunits could have distinct orientations and interactions with Kv4, so that the propeller loops 

are positioned more towards the periphery of the ion conducting pore and the entire channel 

complex becomes asymmetric (figure 6.1, left top). 

Likewise, channels with four DPPL subunits could be arranged in two different ways. Since 

the soluble extracellular domain crystallized as dimers, it is plausible that four DPPLs interact in a 

dimer of dimer fashion so that the two pairs of propeller loops are positioned on either side over 

the channel pore (figure 6.1, right top). Alternatively, four pore loops could interact and be 

positioned directly on top of the ion conducting pore (figure 6.1, right bottom). This second 

scenario would feature additional inter-subunit propeller loop interactions that differ from the 

previously published interactions determined by x-ray crystallography (42). This however, would 

mean that the interaction sites between DPPL and Kv4 subunits are identical for all intersubunit 

interaction sites. Furthermore, this arrangement would make it more likely that 4:1 or 4:3 

Kv4/DPPL assemblies exist. Then, similarly to Kv6.2 subunits which progressively altered Kv2 

properties, DPPLs might alter channel properties gradually with every DPP6 subunit rather than 

with every DPP6 dimer added to the complex. However, it remains uncertain if these 4:1 and 4:3 

arrangements exist and modulate channel properties progressively. 
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Figure 6.1 Kv4/DPPL arrangements 
Cartoon representation of different Kv4/DPPL stoichiometries and symmetries viewed from the 
extracellular. Four Kv4 subunits represented in blue with two (left) and four (right) DPPL subunits with 
distinct (top) and identical (bottom) interaction sites between DPPL and Kv4 subunits. 

Identifying specific interaction sites between Kv4 subunits and the extracellular DPP6 domain 

would be of great value to better understand the relative position of DPP6 as well as the structural 

detail of the open-state channel destabilization mechanism. While we were working on the 

research presented in chapter five, we tried to identify possible interaction sites between DPP6’s 

extracellular domain and Kv4 subunits using VCF. As shown in chapter five, we observed that the 

presence of DPP6’s extracellular domain can be visualized by labeling the top of the voltage 

sensor domain at position A288C and following the voltage-pendent fluorescence changes that 

are only visible when DPP6 is present. We hypothesized that the reverse is possible too and that 

labeling of DPP6 at a position close to the S4 would report the voltage-induced movement of the 

S4 helix thereby identifying residues in the extracellular domain that are in proximity to the top 

of this helix. We tested four positions in the b-propeller loop, three positions in the a/b-hydrolase 

and one position in the first quarter of the b-propeller domain. Unfortunately, none of these 

positions resulted in a sizeable fluorescence change. The absence of a fluorescence change, 
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however, should not be interpreted as a lack of interaction. The fluorophore is sensitive to its 

chemical environment and the absence of a fluorescence change signal can have several reasons. 

First, the fluorophore might not encounter a quencher or move together with the quencher, so 

that the direct environment remains the same. Secondly, the fluorophore could move between 

different environments without resulting in a fluorescence change. It is important to only 

interpret the presence of a fluorescence change rather than basing conclusions on the absence 

of a signal. Obviously, there are many more positions to be tested in the approximately 700 amino 

acid long extracellular domain. In the future, this search for potential labeling and interaction 

sites could be aided by computational models of Kv4/DPP6 complexes (43). 

The presented study was limited to investigating an ensemble of channel complexes, but 

studying single channels could help solve some unanswered questions. First, we do not know if 

DPP6 truncations effect the channel complex stoichiometry. Although we hypothesized that 

truncated DPP6 subunits fail to dimerize, we did not perform any experiments that would test 

this idea. Förster resonance energy transfer (FRET) experiments are well-suited to study the 

distance between molecules. The FRET technique uses two different fluorophores as energy 

donor and acceptor. The basis for the energy transfer is the spectral overlap of the emission of 

the donor and the excitation of the acceptor and the donor-acceptor distance dependence of the 

energy transfer efficiency (44). Performing FRET experiments on truncated DPP6 subunits and 

comparing the obtained distances between each truncated DPP6 subunit to the ones of the full-

length DPP6, could help verify our hypothesis. We also do not know if the potentially altered DPP6 

stoichiometry caused by truncated extracellular domains might affect KChIP binding. This would 

be interesting to investigate as it would suggest a long-range allosteric effect since we manipulate 

the extracellular domain, whereas KChIP is located intracellularly and does not interact directly 

with DPP6. For now, we cannot exclude the possibility that DPP6 truncations result in 

conformational changes of the a-subunit that might alter KChIP binding. Therefore, SSC 

experiments on truncated DPP6 subunits in Kv4.2 as well as experiments on KChIP in truncated 

DPP6/Kv4 channel complexes could help to better understand the effect of shorter DPP6 

extracellular domains on the stoichiometry of the channel complex. Moreover, these experiments 
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could illustrate if DPP6 truncation results in mixed populations of Kv4 channels with and without 

DPP6 or KChIP. 

Another unanswered question concerns the increased macroscopic currents in the presence 

of longer DPP6 variants. At this point, it is worth discussing the effect of accelerated inactivation 

kinetics on the peak currents. Longer DPP6 truncations activated and inactivated faster than 

shorter truncations. As mentioned before, an acceleration in inactivation is expected to overtake 

activation at an earlier time and therefore shifts the peak amplitude to earlier times. Additionally, 

the maximum current might not fully develop, since a significant number of channels start to 

inactivate before all channels are opened. Therefore, the maximum currents are lower than 

theoretically possible for fast inactivating variants. This effect is diminished when KChIP is co-

expressed. Here, the inactivation is slowed and the majority of channels opens before a significant 

amount of channels closes. In addition to altered activation and inactivation kinetics, other factors 

influence the macroscopic current peak amplitude. We did not examine if larger peak currents in 

longer DPP6 variants (D484X and longer) are due to an increased number of channel complexes 

in the plasma membrane, an increased single channel conductance (g) or a combination of the 

two. It was shown that full-length DPP6 almost doubles Kv4.2’s unitary conduction from ~4 pS to 

~7.5 pS, which depends on two negatively charged amino acids at the N-terminus of the DPP6 

subunit (45). These residues have been hypothesized to form a ring of eight negatively charged 

amino acids when the channel complex comprises four DPP6 subunits. This negatively charged 

ring, in turn, is proposed to increase the local K+ concentration at the internal mouth of the 

channel pore. It would be worthwhile investigating if the increase in g, as hypothesized, depends 

on the number of DPP6 subunits in the complex. Such a dependence on the number of subunits 

would also support our hypothesis that C-terminally truncated DPP6 fail to multimerize as 

efficiently as full-length DPP6 subunits, which then manifests itself as reduced peak current 

amplitudes for shorter truncations. Single channel patch clamp recordings of concatemeric 

Kv4/DPP6 constructs and Kv4.2 in the presence of our progressively truncated DPP6 variants, 

could demonstrate if the increase in unitary conductance depends on the number of DPP6 

subunits bound to the channel complex and if the stoichiometry and single channel conduction 

depend on DPP6’s extracellular domain. 
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Future studies will have to identify the structural details of how the DPP6’s extracellular 

domain destabilizes the open channel state. While finding answers to this question is of great 

academic interest, rational drug design could also benefit from such an advancement of 

knowledge. For now, treating malfunctioning Kv4 channels is challenging, since they are 

ubiquitously expressed, so that many potential treatments would cause severe side effects. 

Identifying specific, and tissue specific, modulation mechanisms could then translate to 

developing very specific pharmaceuticals. To this aim, VCF experiments could be exploited to 

study dynamic structure function relations. While chapter five presented VCF experiments as a 

tool to examine the presence of DPP6, this technique allows to correlate functional and 

fluorescence kinetic data. Observing similar kinetics then suggests that the movement observed 

by the fluorescence change is associated to the functional event. However, interpreting such data 

remains difficult, as one cannot easily determine if the change in fluorescence is a cause or effect 

of the functional event. Nevertheless, this technique has been applied successfully to study 

structure function relations in ion channels (46-51). Employing such a strategy to study changes 

in the presence and absence of DPP6 could drastically advance our understanding on how exactly 

this auxiliary subunit affects the gating mechanism and potentially help identifying new 

therapeutic treatments for DPP6 related neurological and cardiac diseases (52-57). 

6.4 Concluding Remarks 

The work presented in this thesis portrays the fundamental structural investigation of diverse 

biological ion channel complexes. We investigated the oligomeric state of the novel TACAN 

channel (chapter four), the stoichiometry of heteromeric Kv2.1/6.4 channel complexes (chapter 

three) and the structure-function relation of Kv4.2 channels with their tissue-specific modulatory 

DPP6 subunits (chapter five). 

Through our research, we gained new insights into how these ion channel complexes 

assemble and how they are modulated by a- and b-subunits. To our knowledge, we are the first 

to report a structural investigation of the mechanosensitive channel TACAN. Here, we determined 

the oligomeric state of the homomeric channel. Understanding how many subunits are comprised 

in a biological assembly lays an important foundation to then investigate how these complexes 
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function in their most basic configuration, before potential modulatory a- and/or b-subunits alter 

the channel function. Such modulations of channels was studied in the third and fifth chapter. In 

the former, we investigated modulatory a-subunits that contribute to the pore-forming complex 

and showed that the architecture of heteromeric Kv2/KvS channels is more variable than 

previously believed. The ability of Kv2 to incorporate not only one (3), but also two modulatory 

subunits ultimately adds to a greater diversity of channel configurations and modulation. 

However, many ion channel complexes are not only modulated by pore-forming a-subunits, but 

also by binding to auxiliary b-subunits, which alter the channel function through distinct allosteric 

interactions. We investigated the modulatory effect of the b-subunit DPP6 in Kv4.2 channel 

complexes. To better understand the molecular mechanisms, we examined the function of 

distinct DPP6 subunit domains and showed that not only the N-terminal domain and 

transmembrane helix are important for the modulatory function (36, 37), but also the 

extracellular domain. These three projects were primarily of academic interest, but we hope that 

the deeper understanding of these ion channel assemblies will help future scientists to solve 

unanswered questions, especially in respect to ion channel related diseases.  

Although we studied distinct channel complexes from the two fields of mechanosensitive and 

voltage-gated ion channels, we observe some common themes. Finding tetrameric TACAN 

channels raised the question if these channels assemble via the same pathway as other tetrameric 

protein complexes, including Kv channels, that are formed as dimers of dimers (1). Our discussion 

on DPP6 assembly also lead to the question if, in the plasma membrane, DPPL auxiliary subunits 

are added to the tetrameric Kv4.2 channel as multiples of dimers. To determine why the dimer of 

dimer tetramerization pathway is dominant in homotetramer formation, Powers and Powers 

modeled the kinetics of tetramerization (58). They found that a tetramerization pathway that 

successively adds monomers to the complex results in the accumulation of non-tetrameric 

intermediates and argued that these intermediates could be harmful to the organism, so that the 

dimer of dimer pathway evolved as the dominant tetramerization pathway (58). Interestingly, we 

found a significant amount of TACAN subunits trapped in the intracellular compartment of the 

cell. It remains uncertain, if these subunits are trapped due to an ER-retention signal or due to 

misfolding. Maybe these untrafficked complexes are such non-tetrameric intermediates that 
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accumulate during the complex formation. Rather than being detrimental to the organism, such 

intracellular, possibly non-tetrameric, TACAN complexes might have adopted a second function 

which remains unknown. Likewise, DPP6 might serve several functions, as it is expressed in the 

plasma membrane even in the absence of Kv4 channels (39, 59, 60). 

Although the work presented in this thesis primarily investigates the structure of channel 

complexes, the discussion led to questions about channel stability. We reported that purified, 

solubilized TACAN channels disintegrate into lower oligomeric complexes and argued that the 

lateral pressure of the native lipid environment is important to keep the complex stable. 

Additionally, we raised the question whether not only the transmembrane helices but also the N-

terminal TACAN domains, similar to the T1 domains in potassium channels, are involved in 

intersubunit interactions. For now, the interaction interfaces between the subunits as well as the 

function of the N-terminal TACAN domain remain unidentified. If the N-terminal domain does not 

contribute to the channel stability by increasing the intersubunit interaction sites, it might still 

stabilize the channel in its native environment through interactions with other molecules. 

Similarly, DPP6 interacts with the extracellular matrix, which anchors the channel complex in the 

membrane stabilizing it further (34). Like Kv channels, TACAN might interact with auxiliary 

subunits that have not been identified yet. These potential auxiliary subunits might help 

stabilizing the complex under physiological conditions. Especially subunits that interact with the 

a-subunits as well as with themselves could increase channel complex stability. We proposed that 

DPP6 adopts such a bracket-like arrangement by interacting with the channel via the 

transmembrane helix and with other DPP6 subunits through the propeller domain. We 

hypothesized that truncated DPP6 subunits with short extracellular domains fail to oligomerize, 

which could result in less stable channel complexes compared to complexes that comprise full-

length DPP6 subunits. 

A feature that appears to be shared between distinct protein assemblies is the progressive 

alteration of their function by modulatory subunits. In chapter three, the research performed by 

our collaborators showed that the progressive incorporation of Kv6.4 subunits into Kv2.1 

channels shifts the gating properties stepwise. Similarly, DPP6 binding to Kv4.2 channels is 

proposed to alter the channel properties incrementally (38). This is interesting, as it suggest that 
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the modulatory effect could be fine-tuned depending on the expression level of the modulatory 

subunits. It remains unclear if this is a regulatory mechanism found under physiological 

conditions. One argument against this was presented by our SSC results obtained for Kv2.1/6.4 

heteromers which preferentially formed 2:2 arrangements independent of the relative cRNA 

amount injected. However, other factor might be important too, such as preferential retrograde 

trafficking of a distinct channel assembly or preferential trafficking to the plasma membrane for 

example aided by auxiliary subunits. Opposed to the progressive alteration of channel function 

by modulatory subunits, the potassium channel a-subunits act cooperatively during gating. Here 

all four voltage sensors need to be activated for the channel to open, rather than opening the 

channel step by step with the activation of each individual voltage sensor (61-63). A multitude of 

allosteric interactions govern channel gating and future research will need to elucidate the 

underlying molecular mechanisms. 

Fundamental research performed ex vivo or in heterologous expression systems, as 

presented in this thesis, remains crucial for better understanding biological assemblies and their 

modulation in a more controlled environment. Building on this foundation, future research can 

be designed to be more and more complex. Ultimately, studies performed in native 

environments, where channel assemblies are most stable and potential modulatory subunits are 

present, will contribute to better understanding complex interactions of macromolecular 

complexes. 
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