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Résumé

Dans cette thèse, j’exploite le cadre d’analyse de données fonctionnelles et développe
l’analyse d’inférence et de prédiction, avec une application à des sujets sur les marchés
financiers. Cette thèse est organisée en trois chapitres.

Le premier chapitre est un article co-écrit avec Marine Carrasco. Dans ce chapitre,
nous considérons un modèle de régression linéaire fonctionnelle avec une variable
prédictive fonctionnelle et une réponse scalaire. Nous effectuons une comparaison
théorique des techniques d’analyse des composantes principales fonctionnelles (FPCA)
et des moindres carrés partiels fonctionnels (FPLS). Nous déterminons la vitesse de
convergence de l’erreur quadratique moyen d’estimation (MSE) pour ces méthodes.
Aussi, nous montrons cette vitesse est sharp. Nous découvrons également que le biais
de régularisation de la méthode FPLS est plus petit que celui de FPCA, tandis que
son erreur d’estimation a tendance à être plus grande que celle de FPCA. De plus,
nous montrons que le FPLS surpasse le FPCA en termes de prédiction avec moins de
composantes.

Le deuxième chapitre considère un modèle autorégressif entièrement fonctionnel
(FAR) pour prèvoir toute la courbe de rendement du S&P 500 a la prochaine journée.
Je mène une analyse comparative de quatre techniques de Big Data, dont la méthode de
Tikhonov fonctionnelle (FT), la technique de Landweber-Fridman fonctionnelle (FLF), la
coupure spectrale fonctionnelle (FSC) et les moindres carrés partiels fonctionnels (FPLS).
La vitesse de convergence, la distribution asymptotique et une stratégie de test statistique
pour sélectionner le nombre de retard sont fournis. Les simulations et les données réelles
montrent que les méthode FPLS performe mieux les autres en terme d’estimation du
paramètre tandis que toutes ces méthodes affichent des performances similaires en termes
de prédiction.

Le troisième chapitre propose d’estimer la densité de neutralité au risque (RND) dans
le contexte de la tarification des options, à l’aide d’un modèle fonctionnel. L’avantage de
cette approche est qu’elle exploite la théorie d’absence d’arbitrage et qu’il est possible
d’éviter toute sorte de paramétrisation. L’estimation conduit à un problème d’inversibilité
et la technique fonctionnelle de Landweber-Fridman (FLF) est utilisée pour le surmonter.
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Abstract

In this thesis, I exploit the functional data analysis framework and develop inference,
prediction and forecasting analysis, with an application to topics in the financial market.
This thesis is organized in three chapters.

The first chapter is a paper co-authored with Marine Carrasco. In this chapter,
we consider a functional linear regression model with a functional predictor variable
and a scalar response. We develop a theoretical comparison of the Functional Principal
Component Analysis (FPCA) and Functional Partial Least Squares (FPLS) techniques.
We derive the convergence rate of the Mean Squared Error (MSE) for these methods. We
show that this rate of convergence is sharp. We also find that the regularization bias of
the FPLS method is smaller than the one of FPCA, while its estimation error tends to
be larger than that of FPCA. Additionally, we show that FPLS outperforms FPCA in
terms of prediction accuracy with a fewer number of components.

The second chapter considers a fully functional autoregressive model (FAR) to forecast
the next day’s return curve of the S&P 500. In contrast to the standard AR(1) model
where each observation is a scalar, in this research each daily return curve is a collection
of 390 points and is considered as one observation. I conduct a comparative analysis
of four big data techniques including Functional Tikhonov method (FT), Functional
Landweber-Fridman technique (FLF), Functional spectral-cut off (FSC), and Functional
Partial Least Squares (FPLS). The convergence rate, asymptotic distribution, and a
test-based strategy to select the lag number are provided. Simulations and real data
show that FPLS method tends to outperform the other in terms of estimation accuracy
while all the considered methods display almost the same predictive performance.

The third chapter proposes to estimate the risk neutral density (RND) for options
pricing with a functional linear model. The benefit of this approach is that it exploits
directly the fundamental arbitrage-free equation and it is possible to avoid any additional
density parametrization. The estimation problem leads to an inverse problem and the
functional Landweber-Fridman (FLF) technique is used to overcome this issue.
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Chapitre 1

Theoretical Comparison of the
Functional Principal Component
Analysis and Functional Partial Least
Squares ∗

1.1 Introduction

During the last decade, the world has experienced a huge evolution in technology,
which made possible the extraction of very new insights from large data sets. One of the
current goals in finance and economics is to find a way to take advantage of the availability
of such huge data. Nowadays, we can observe the development of new statistical and
econometric tools, such as the functional regression models. Those models have been
widely used in the field of chemometric, medicine, and meteorology.

In this paper, we consider a functional regression model with a scalar response Y and
a functional predictor variable X(t).

Y =

∫
S

β(t)X(t)dt+ ε

One of the main interests in such a model is the estimation of the slope function β(t) and
the prediction of the response variable. The main characteric of this model is that the
predictor variable X(t) belongs to a Hilbert space, which is an infinite-dimensional space,
thereby causing the problem of functional parameter estimation in an infinite-dimensional
space. The estimation of such functional parameter in a high-dimensional space leads to
an ill-posed problem. To tackle this issue, most of the research usually suggest the use of
some dimension reduction methods such as the Functional Principal Component Analysis

∗. This chapter is co-authored with Marine Carrasco. We thank René Garcia and Benoit Perron for
their helpful comments.
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(FPCA) (see Cai et al. (2006), Hall and Hosseini-Nasab (2006), Hall and Horowitz
(2007) and Cardot et al. (1999)). Basically, the main point of this method is to run
a regression of the response variable on a limited number of selected latent components.
Those components are constructed in such a way that they capture the most important
information related to the variation of the functional predictor variable.

On the other hand, a research by Jolliffe (1982) shows that one can sometimes
deal with situations where the selected components by this method do not necessarily
contribute well to the prediction or forecast of the response variable. This is why the
Functional Partial Least Squares (FPLS) was introduced by Preda and Saporta (2005)
and Reiss and Ogden (2007) in the functional regression context in order to extract
the components that capture not only the most important information concerning the
variations of the predictor variable, but also are the most able to predict or forecast the
response variable. This approach has recently gained some popularity in the economic
and financial fields ; then theoretical properties have remained elusive because of the
nonlinearity of the estimator.

The aim of this paper is to compare the FPLS and FPCA techniques in the context
of a functional linear regression with a scalar response. Both methods can be viewed as
regularization techniques. To study the properties of FPLS, we use orthogonal polynomial
theory. We derive the analytical formula of the slope function estimator in terms of a
sequence of residual polynomials, the eigenvalues, and the eigenfunctions of the covariance
operator of the predictor variable. We derive the convergence rate of the conditional
MSE for both the FPCA and FPLS approaches under some regularity conditions. The
rate of convergence of the conditional MSE with FPLS is the same as the one obtained
with FPCA, which is Op(n

−µ/(µ+2)). Also we show that this convergence rate is sharp.
Moreover, we can notice from the theoretical comparison that the squared bias of the
MSE obtained by using the FPLS is usually lower than the one obtained by the FPCA
approach, while the estimation error obtained using the FPLS method tends to be larger
than the one obtained by FPCA and may explode rapidly as the number of retained
components increases. This result is due to the fact that the estimation error depends on
the smallest root of the residual polynomial and this root has usually an exponential decay
rate as the number of selected components increases. Additionally, we show that FPLS
tends to outperform the FPCA method in terms of prediction and the optimal number
of factors extracted via FPLS is usually smaller than or equal to that obtained by the
FPCA. We derive Monte Carlo simulations and show that we replicate the theoretical
results. For the empirical application, we consider the prediction of the next day return of
the S&P 500 based on the previous day cumulative return and we confirm the estimation
and prediction performance of the concerned methods.

Our paper is related to the literature concerning the theoretical properties of the
estimated slope parameter in the functional linear regression context. More specifically,
this reseach is related to the papers by Preda and Saporta (2005), Reiss and Ogden (2007),
Delaigle and Hall (2012), Febrero-Bande et al. (2017). Indeed, concerning the study of the

2



consistency results with the FPLS methods, we can notice that only one paper attempted
to derive such results, that is Delaigle and Hall (2012). In fact, the authors derived the
rate of convergence of the mean squared prediction error (MSPE) by considering the
formulation that they called "the Alternative PLS (APLS)". Moreover, the approach
used by Delaigle and Hall (2012) is not useful when we wish to derive some comparisons
of such methods theoretically. The difference between our paper and the one of Delaigle
and Hall (2012) is that we adopt a different approach to observe the FPLS in such a way
that we can compare the FPCA and FPLS based on theoretical results. Moreover, we
derive the rate of convergence of the MSE for both methods under some conditions
of the predictor and slope functions and we express it in terms of the sample size.
Furthermore, Febrero-Bande et al. (2017) derived a comparison of the FPLS and FPCA
approaches based on a Monte Carlo simulations and observed that the FPLS technique
is more robust than the FPCA method most of the time and that the FPLS outperforms
the FPCA in terms of estimation and prediction. They also stated that "due to the
nonlinearity of the FPLS approach, its MSPE is theoretically intractable" (even after the
results by Delaigle and Hall (2012)). Lastly we contribute to the literature by comparing
theoretically both methods in terms of the number of retained components. This paper
is also related to inverse problem literature and especially the book by Engl et al. (1996).
The authors derived the theoretical results of the PLS also called conjugate gradient for
an ill-posed problem. The difference with their research is that they considered a fixed
design context where the covariance operator of predictor variables and the response
variable are observed and the error between the estimated and the true response variable
is bounded. This is not the case in our paper.

There is a large literature discussing the partial least squares (PLS) method on the
multivariate linear regression models. This method is usually introduced when the number
of predictor variables is larger than the number of observations and/or when there
is a multicolinearity issue in the regression model. We can identify the main authors
such as Wold et al. (1984), Höskuldsson (1988), Naes and Martens (1985), Helland
(1988), Helland (1990), Helland and Almøy (1994), De Jong (1993). Lingjaerde and
Christophersen (2000) derived some geometric and analytic properties of the filter factor
of the PLS method in the context of multivariate linear regression. Some of the authors
such as Helland (1990) and Rosipal and Krämer (2005) compared the PLS and the PCA
based on their filter factor structure and asserted that the filter factor obtained with PLS
is not a decreasing and convex function as we usually observe on other regularization
methods. For the consistency results analysis, we can identify the papers of Helland
(1990) and more recently, the works of Blazere et al. (2014a), Kelly and Pruitt (2015)
and Carrasco and Rossi (2016). Besides the FPCA and FPLS methods, there are other
regularization methods in the literature, such as the Functional Ridge Regression (FRR)
(see Benatia et al. (2017) and Hall and Horowitz (2007)) and the nonparametric method
for functional linear regression as was suggested by Ferraty and Vieu (2006), Cardot et
al. (2003), Cardot et al. (2007),Aguilera et al. (2010), and Park and Qian (2012) among
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others. For a review of the different models of functional data analysis and their empirical
applications, see Ferraty and Vieu (2006), and Ramsay and Silverman (2007).

The rest of the paper is organized as follows. In Section 1.2, we present the theoretical
model and the estimation methods. Section 1.3 is devoted to deriving the rate of
convergence of the conditional MSE for both methods and a comparison of the two
methods. Section 1.4 is dedicated to the evaluation of both techniques based on simulation
results. In Section 1.5 we provide an empirical analysis based on real data in the U.S.
stock market and evaluate the results in relation to what we obtained in the theoretical
analysis. Section 1.6 concludes. The proofs of the main results are given in Appendix.

1.2 The theoretical model and estimator

This section is devoted to the presentation of the model and the estimation methods
of the functional parameter. More precisely, we will first present the model setting and
then the estimation methods.

1.2.1 The basics of the functional linear model

Consider a square-integrable functional random variable X = (X(t))t∈S (Which
means that X ∈ H = L2(S) and

∫
S
E(X2) <∞, the space of square integrable functions

mapping from a compact interval S of R to the set of real numbers) and a real random
variable Y that is supposed to be zero mean (E(X(t)) = 0 for each t ∈ S and E(Y ) = 0).

We assume that the sample ((X1, Y1), ..., (Xn, Yn)) is a sequence of independent pairs
following the same distribution as (X,Y). We consider the functional linear model where
(Yi)i=1...n is the scalar response and (Xi)i=1...n is the functional predictor variable of the
regression for each observation i.

We defineH as a Hilbert-space endowed with an inner product< ., . > and a norm ||.||,

which are respectively defined as follows : < f, g >=
∫
S
f(t)g(t)dt and ||f || =

(∫
S
f 2

)1/2

.

Let us consider the inner product < ., . >n such that for each arbitrary element u and v
of Rn we have ||v||2n = v′v/n and < u, v >n= u′v/n. Then, the functional linear model is
presented as follows :

Yi =

∫
S

β(t)Xi(t)dt+ εi (1.1)

where (β(t))t∈S is a function that belongs to the space H and εi; i ∈ {1, ..., n}) is
independent and identically distributed such that E(εi|X) = 0 and E(ε2

i |X) = σ2 < ∞
for each i ∈ {1, ..., n}).

The covariance operator K of X is an operator mapping from H to H defined as
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follows :

K : H → H
f → K(f) = E[(Xi ⊗Xi)(f)] = E[< Xi, f > Xi]

where ⊗ is the tensor product operator defined from H to H. For all t ∈ S, we have

K(f)(t) =

∫
S

k(s, t)f(s)ds

and k(s, t) = E[Xi(s)Xi(t)] is the kernel of K. Let (λj, vj)j≥1 be the eigensystem of K
such that vj is the eigenfunction associated with the eigenvalue λj. A consistent estimator
of K is given by the sample covariance operator K̂ written as

K̂ =
1

n

n∑
i=1

Xi ⊗Xi (1.2)

Since (Xi)i=1,...n is square-integrable, K is a compact operator and its eigensystem
(λj, vj)j≥0 is such that λ1 ≥ λ2 ≥ ... > 0.

Let us define the operators Tn and T ∗n as follows

Tn : H → Rn

φ → Tn(φ) =

[
< X1, φ >, ..., < Xn, φ >

]′
and

T ∗n : Rn → H

g → T ∗n(g) =
1

n

n∑
i=1

Xigi.

It is easy to see that T ∗n is the adjoint of Tn, K̂ = T ∗n ◦ Tn and (
√
λ̂j, v̂j, ûj)j≥1

is the singular value decomposition of the operator Tn. We have Tn(v̂j) =[ ∫
S
X(t)v̂j(t)dt

]
i=1,...,n

=
√
λ̂jûj and T ∗(ûj) = X ′ûj/n =

√
λ̂j v̂j. (ûj)j≥1 are the

eigenfunctions associated with the eigenvalues (λ̂j)j≥1 for the operator Tn ◦ T ∗n . By the
same token, (v̂j)j≥1 are the eigenvectors associated with the eigenvalues (λ̂j)j≥1 for the
operator T ∗n ◦ Tn = K̂. Then, (λ̂j, v̂j)j≥1 can be seen as the empirical counterpart of the
system (λj, vj)j≥1.
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The cross-covariance function between X and Y is defined by :

Cxy : S → R
t → Cxy(t) = E[Xi(t)Yi]

Premultiplying each side of Equation (1.1) by Xi(s) and taking the expectation on
both sides leads to the following equation :

Cxy(s) = Kβ(s) (1.3)

for each s in S. The main interest is to estimate the functional slope β. If the operator K
were invertible, we could estimate β using β(s) = K−1Cxy(s) for each s in S, but this is
not possible because we deal with an ill-posed problem. Indeed, K is a bounded operator
mapping from an infinite dimensional space H to H . This means that it’s direct inverse
is not continuous and K is not invertible in all the space H but only on a subset of H.
Then, estimating β̂ by K̂−1Ĉxy would lead to an unstable estimator of the functional
parameter. Then, the main challenge is to get a stable estimator of the slope function
β(t). The next section is devoted to present the estimation of the functional slope using
the standard FPCA and FPLS methods.

1.2.2 The Functional Principal Component Analysis

The FPCA is a method that consists in regressing the response variable on a
finite number of uncorrelated latent components. Those latent components are linear
combinations of the predictor variables selected in such a way that the most important
information concerning the variation of the predictor variable is captured. This means
that the latent components are nothing else than the eigenfunctions of the covariance
operator K. Since the vj, j = 1, 2, ..., form an orthonormal basis in H, the functional
parameter β can be written in the space spanned by vj, j = 1, 2, ..., as follows

β(t) =
∞∑
j=1

βjvj(t) (1.4)

where

βj =

∫ 1

0

β(t)vj(t)dt (1.5)

are the Fourier coefficients.
Moreover, according to the fact that the predictor function X is square-integrable,

the Karhunen-Loeve expansion for the kernel operator k is given by
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k(s, t) =
∞∑
j=1

λjvj(s)vj(t) (1.6)

Let us assume that the number of retained latent components is m. Then, in
practice the FPCA method consists in projecting the response variable Y onto the
space spanned by the eigenfunctions related to the first m largest eigenvalues, that is,
Hm = sp{v1, ..., vm}. Therefore, by estimating the functional slope using such a method,
we truncate the infinite sum given by Equation (1.6) to obtain a sum of m terms.

Then, the estimator of β(t) is given by

βPCAm (t) =
m∑
j=1

βjvj(t) =
m∑
j=1

1

λj
< vj, Cxy > vj(t). (1.7)

Usually, the operator K and its eigensystem (λj, vj)j≥0 are not observed in practice.
Let λ̂j and v̂j be the eigenvalues and eigenfunctions of K̂, for j ≥ 1. K̂ can be written
as :

K̂ =
n∑
j=1

λ̂j < v̂j, . > v̂j (1.8)

and

k̂(s, t) =
n∑
j=1

λ̂j v̂j(s)v̂j(t). (1.9)

Assuming that m ≤ n is the number of functional components empirically selected,
the generalized inverse of K̂ by the FPCA method is given by

K̂−1
m =

m∑
j=1

λ̂−1
j < ., v̂j > v̂j. (1.10)

By the same notion, a consistent estimator of Cxy is given by Ĉxy, where

Ĉxy(t) =
1

n

n∑
i=1

Xi(t)Yi (1.11)

where t ∈ S is the mean function of the sample of predictor functions and Ȳ =
1
n

∑n
i=1 Yi is the mean of the response function. Therefore, β(t) can be estimated by

β̂PCAm (t) = K̂−1
m Ĉxy(t)

=
m∑
j=1

1

λ̂j
< Ĉxy, v̂j > v̂j(t).

(1.12)
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1.2.3 The FPCA and factor models

The difference between the FPCA and the factor models is that in the factor models
regressors Xi and the response Yi are assumed to depend on a small number of factors
whereas here no factor model is postulated. If the data are generated by a factor
model, the FPCA would estimate the underlying factors up to a rotation (see Bai and
Ng (2002)). In our model setting, the FPCA is considered as a dimension reduction
technique used to estimate the slope function β. In addition, the uniqueness of the
eigenfunctions is obtained by the orthonormalization such that

< vj, vl >=

{
1 if j = l

0 if j 6= l
.

1.2.4 The functional spectral cut-off

A close alternative technique to the FPCA method is the functional spectral cut-off
(FSC) technique. The idea is almost the same and the only difference is the approach used
to select the components. Indeed, the FPCAmethod retains the firstm components, while
the FSC technique selects the components that are related to the eigenvalues greater or
equal to a certain threshold α > 0. Empirically, when using either FPCA or FSC usually
leads to the same estimation result and therefore to the same prediction. We will use these
results in order to make the comparison between the FPCA and FPLS much easier. Then
the slope function β(t) can be estimated via FSC method by the following formula

β̂SCα (t) =
∑
λ̂j≥α

1

λ̂j
< Ĉxy, v̂j > v̂j(t). (1.13)

Usually, in the empirical economic research, we are much more interested in predicting
or forecasting variables. On the other hand, we can notice that when using the FPCA
method, the latent components are selected in such a way that they reflect the maximal
variance of the predictor variable X(t), but those latent components might not contribute
to a good prediction of the response variable. This problem was first documented by
Jolliffe (1982). Moreover, in the theoretical framework of the FPCA, it is usually assumed
that the Fourier coefficients of the slope function β are efficiently represented by the
functional principal components. In other words, it means that, as the eigenvalues of
the covariance operator K decrease, the Fourier coefficients of the slope function should
decrease at the same rate (see Nie et al. (2018)). This is a strong assumption and it cannot
be verified on real data as we do not observe the true slope function. Furthermore, in the
context of functional regression, the eigenvalues of the covariance operator K are usually
very small except for the first and second eigenvalue (see Kokoszka and Zhang (2010)).
Indeed, in the context where we estimate the slope function, it is possible to select latent
components that are irrelevant to get a good prediction of the target variable. The partial
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least squares method has been introduced as an alternative technique to solve this issue
by extracting factors that are closely related to the target variable.

1.2.5 The functional partial least squares regression

The partial least squares is a sequential procedure that consists of projecting the
response variable onto a set of uncorrelated latent components. Those latent components
are extracted in such a way that they capture not only the most important information
concerning the variation observed in the predictor variables X but also present the best
predicting performance of the response variable. This means that the selected latent
factors capture simultaneously the information on the variation of X and on the relation
between X and Y in the linear regression model. This dimension reduction method is
widely appreciated in the multivariate linear regression model.

The theoretical properties concerning this method have been developed for the
multivariate regression in statistics and chemometrics area by Wold et al. (1984), Naes
and Martens (1985), Höskuldsson (1988), Helland (1990); Helland and Almøy (1994),
De Jong (1993), Stoica and Söderström (1998), Naes and Martens (1985), Chun and
Keleş (2010), Blanchard and Krämer (2010), and Blazere et al. (2014a). This method is
quite new in the econometric literature, and we can identify some authors such as Kelly
and Pruitt (2015) and Carrasco and Rossi (2016), who focused mainly on the context
of prediction using the multivariate linear models. This method was recently adapted to
the case of a functional regression model by Preda and Saporta (2005). However, only
a few authors, such as Reiss and Ogden (2007), Aguilera et al. (2010) and Delaigle and
Hall (2012), have tried to develop some theoretical results when using such method on
a functional linear regression model with a scalar response. Delaigle and Hall (2012) are
the only ones that have introduced consistency analysis by using another formulation of
the PLS that they called the "Alternative PLS" (APLS).

Basically, the literature suggests two main algorithms that can be used in order
to extract the latent components for this method : the Nonlinear Iterative Partial
Least Squares (NIPALS) introduced by Wold et al. (1984) and the Statistically Inspired
Modification of PLS (SIMPLS) developed by De Jong (1993). The two algorithms give the
same results as was already proven by Ter Braak and de Jong (1998) for the multivariate
linear regression, but the SIMPLS is much faster in terms of computation, more adapted
to interpret the latent factors and the best way to go to develop theoretical results (see
Ter Braak and de Jong (1998); Chun and Keleş (2010)).

In the following subsections, we will present the SIMPLS algorithm. Then, we will
present the APLS formulation of the estimator as proposed by Delaigle and Hall (2012).
A new formulation will be proposed by introducing the link between the PLS and the
orthogonal polynomials, as suggested by Blazere et al. (2014a), for the case of a simple
linear model.
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The SIMPLS Algorithm

Let us denote by ωj the weight function related to the jth FPLS component ψj of the
regression of Y on X. Let us consider the jth FPLS latent component by

ψj =

∫
S

X(t)ωj(t)dt. (1.14)

Then ωj is the solution of a maximization problem of the covariance between the
response variable Y and the latent factor ψj at each step j. We assume also that for the
FPLS algorithm, we run m iterations.

The SIMPLS 1 adapted to the functional regression with scalar response is a sequential
optimization procedure formulated at each step j as follows :

wj = argmax
w∈L2(S)

cov2

(∫
S

X(s)w(s)ds, Y − Yi−1

)
subject to ||wj|| = 1, and∫

S

∫
S

wj(s)k(s, t)wl(t)dsdt = 0, 1 ≤ l ≤ j − 1

(1.15)

where Yi−1 =
∫
S
X(s)βj−1(s)ds and βj−1 =

∑j−1
l=1 qlωl(t). The first constraint of this

optimization scheme ensures that the weight functions wj is normalized to 1, while the
second constraint ensures that the FPLS factors ψj are mutually orthogonal for each step
j = 1, 2, ...m. βj−1 is the estimated slope function at the step j − 1, with β0 = 0.

Then, after m incrementations, the best predicted value of Y is given by

Y PLS
m = q1ψ1 + q2ψ2 + ...+ qmψm (1.16)

Then

Y PLS
m = q1

∫
S

X(t)ω1(t)dt+ q2

∫
S

X(t)ω2(t)dt+ ...+ qm

∫
S

X(t)ωm(t)dt

=

∫
S

X(t)βPLSm (t)dt

(1.17)

where

βPLSm (t) =
m∑
j=1

qjωj(t) (1.18)

where q1, ..., qm ∈ R are the factor loadings of the projection of Y on the FPLS factors.
Moreover, the (ωj(t))j≥0 is an orthogonal basis as was proven by Preda and Saporta

1. For some references concerning this algorithm, we refer the reader to Ter Braak and de Jong (1998),
Chun and Keleş (2010), and Delaigle and Hall (2012).
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(2005), then the true functional slope β from the regression model can be expressed as

β(t) =
∞∑
j=1

βjωj(t). (1.19)

Because wj and ψj are not observed, they are consistently estimated by ŵj and ψ̂j
using the empirical compensation of the sequential optimization scheme.

The Alternative PLS of Delaigle and Hall

The Theorem 3.1 of Delaigle and Hall (2012) shows that, since the number m is
finite, the estimated slope function can be expressed in the space spanned by the functions
K(β), K2(β), ..., Km(β) in the population model. This is what they called the Alternative
PLS (APLS) formula of the estimated slope function.

βPLSm (t) =
m∑
j=1

γjK
j(β)(t) (1.20)

where the vector γ is expressed as follows

γ = (γ1, ..., γm)T = H−1(a1, ..., am)T

with H = (hjl)1≤j,l≤m a m×m Hankel matrix such that

hjl =

∫
S

Kj+1(β)K l(β) (1.21)

aj =

∫
S

K(β)Kj(β).

According to the Theorem 3.2 of Delaigle and Hall (2012), under the condition that
X is a square-integrable function and that all of the eigenvalues of the operator K are
non-zero, the theoretical functional slope β(t) can be expressed as

β(t) =
∞∑
j=1

ajK
j(β)(t). (1.22)

FPLS representation based on the orthogonal polynomial theory

This section is devoted to the presentation of the FPLS estimator using the orthogonal
polynomial theory. This approach was recently introduced by Blazère et al. (2014b) for
a multivariate linear model with a fixed number of regressors in a fixed design context.

Let us define Rm[X] as the space of polynomials of degree at most m, mapping on
the space of real numbers, and Rm,1[X] as the space of polynomials of degree at most m
and a constant equal to 1.
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Following the results derived by Delaigle and Hall (2012), we notice that the FPLS
estimator can be written as a linear combination of the Krylov space, as presented
on Equation (1.20). This means that estimating the functional slope using the FPLS
approach is equivalent to running a constrained least squares model presented as follows

βPLSm (t) = argmin
β∈Km(Kβ,K)

E
[
Y −

∫
S

X(t)β(t)dt

]2

(1.23)

where β is constrained to belong to the Krylov basis Km(Kβ,K), and

Km(Kβ,K) = {Kβ,K ◦Kβ, ...,Km−1 ◦Kβ}

and m is the number of selected components. It is worth noting that the constraint
depends on the response variable, this means that we deal with stochastic constraints
and the method is nonlinear in Y .

Theorem 1 : Corollary 7.4 of Engl et al. (1996)
The minimization problem subject to the Krylov space constraints in Equation (1.23) is
identical to a minimization problem where one should find the optimal polynomial Pm in
the space Rm−1[X], such that

Pm = argmin
P∈Rm,1[X]

E
[
Y− < X,P (K)K(β) >

]2

and βPLSm = Pm(K)Cxy.

Indeed, as βPLSm is the solution of (23), then βPLSm ∈ Km(K,K(β)) and βPLSm =

Pm(K)K(β) = Pm(K)Cxy. Therefore,

Pm = argmin
P∈Rm−1[X]

E
[
Y −

∫
S

X(t)P (K)K(β)(t)dt

]2

= argmin
P∈Rm−1[X]

E
[
Y− < X,P (K)K(β) >

]2

= argmin
P∈Rm−1[X]

E
[
f(x)− < X,P (K)K(β) >

]2

where f(x) =
∫
β(s)x(s)ds.

Let us define the operators Tx, T ∗x , Wx, respectively by

Tx : H → R
φ → Tx(φ) =< X, φ >
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T ∗x : R → H
Z → T ∗x (Z) = E[XZ]

Wx : R → R

Z → Wx(Z) =

∫ 1

0

X(t)E[X(t)Z]dt =< X(.),E[X(.)Z] >H

where Z is an arbitrary real random variable and, φ is an arbitrary random function.
Moreover, T ∗x is the adjoint of Tx.Wx is called the Escoufier operator. It is straightforward
to see that K = T ∗x ◦ Tx, Wx = Tx ◦ T ∗x and

∫ 1

0
X(t)β(t)dt = Txβ. Note that Tx and T ∗x

are the population versions of Tn and T ∗n . Using X(t) =
∑∞

j=1

√
λjujvj, we have

Wx(Z) =
n∑
j=1

λjE[ujZ]uj

where uj = 1√
λj

∫ 1

0
X(t)vj(t)dt, E[ujuk] = 1 if j = k and 0 otherwise. Then, the

minimization problem (23) can be formalized in a different way as follows :

E
[
f(x)− < X;Pm(K)K(β) >

]2

= E
[
Tx(β)− Tx(Pm(K)K(β))

]2

= E
[
Txβ − TxPmT ∗xTx)T ∗xTxβ

]2

= E
[
Txβ − TxT ∗xPm(TxT

∗
x )Txβ

]2

= E
[
Txβ −WxPm(Wx)Txβ

]2

= E
[
{1−WxPm(Wx)}Txβ

]2

= E
[
Qm(Wx)f(x)

]2

= min
Q∈Rm,1[X]

E
[
Q(Wx)(f(x))

]2

where Qm(x) = 1−xPm(x) is called the "residual polynomial". Indeed, it is a polynomial
of degree at most m and with a constant equal to 1.

Let us define now the following measure on the space of real numbers :

dµ(λ) =
∞∑
j=1

λj

[
E
(
Y uj

)]2

δλj
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where δλj is the dirac measure that takes the value 1 if we are on the mass point related
to the eigenvalue λj and 0 elsewhere. For each arbitrary polynomial function F and G
that belongs to Rm[X], we introduce the inner product on the space Rm[X] associated
with the measure µ, that is

[F,G] =

∫ λ1

0

F (t)G(t)dµ(t)

=
∞∑
j=1

λjF (λj)G(λj)

[
E
(
Y uj

)]2

.

And the semi-norm associated with this inner product is given by

||F ||2 =

∫ λ1

0

F (t)2dµ(t)

=
∞∑
j=1

λjF (λj)
2

[
E
(
Y uj

)]2

.

According to the definition of Qm, we can directly observe that Qm is the unique
polynomial of degree at most m with a constant 1, which is orthogonal to the space
Tx(Rm−1[X]). Since, Qm ∈ Rm,1[X] ⊂ Rm[X], the polynomials (Qh)h≥1 are orthogonals
with respect to the scalar product [., .]. Also,Qm is interpreted as an orthogonal projection
of the origin onto the space Rm,1[X]. This shows the unicity of the polynomial Qm and
therefore of Pm and βPLSm .

The detailed mathematical features of the residual polynomials on the PLS approach
are developed by Engl et al. (1996) and for the multivariate linear regression in the
paper of Blazere et al. (2014a). Moreover, the Partial Least Squares is very close to the
Conjugate Gradient (CG) methods for the normal equation K(β) = Cxy with a starting
point β0 = 0 (see Blanchard and Krämer (2010), Bro and Elden (2009)). Phatak and
de Hoog (2002) have used the CG approach to derive some regularization properties of
the PLS estimator. For more details on the mathematical results concerning the residual
polynomials and the CG method in the context of ill-posed problems, see Engl et al.
(1996), Plato (1998), Blanchard and Krämer (2016), and Hanke (2017). We will use
some of these materials for the proofs of the results.

Proposition 1.
If m is the number of iterations of the FPLS, then the population version of the FPLS

estimator related to the functional linear regression is presented as follows :

βPLSm (t) =
∞∑
j=1

Qm,j√
λj

E[Y uj]vj(t) =
∞∑
j=1

Qm,j < β, vj > vj(t)
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where

Qm,j = 1−Qm(λj) =
∑

(j1,...,jm)∈I+m

wj1,...,jm

[
1−

m∏
l=1

(1− λj
λjl

)

]

wj1,...,jm =
g2
j1
, ..., g2

jmλ
2
j1
...λ2

jmV (λj1 ...λjm)2∑
(j1,...,jm)∈I+m g

2
j1
, ..., g2

jm
λ2
j1
...λ2

jm
V (λj1 ...λjm)2

g2
j = λ2

j < β, vj >
2

I+
m = {(j1, ..., jm) : j1 > ... > jm ≥ 1},

V (λj1 ...λjm) =

∣∣∣∣∣∣∣∣∣∣∣∣∣

1 λj1 ... λm−1
j1

1 λj2 ... λm−1
j2

. . . .

. . . .

. . . .

1 λjm ... λm−1
jm

∣∣∣∣∣∣∣∣∣∣∣∣∣
=

∏
1≤i<j≤m

(λj − λi)

and 0 ≤ wj1...jm ≤ 1 is a stochastic weight which satisfy
∑

I+ wj1...jm = 1.

We can observe that the FPLS estimator depends on the eigensystem (λj, vj)j≥1 of
the covariance operator K. It is worth noting that the main difference with the results
of Blazere et al. (2014a) is that βPLSm is expressed as an infinite sum for the functional
linear regression model, while in the multivariate linear regression βPLSm is a finite sum.
Additionally, the authors consider a fixed design model.

If we recall the expression of the APLS estimator given by Delaigle and Hall (2012)
and using the spectral decomposition of the covariance operator K, we have the following
expression

βPLSm (t) =
m∑
j=1

µjK
j(β)(t) =

m∑
j=1

µj

∞∑
l=1

< β, vl >H λ
j
l vl(t).

Then, we obtain the following equivalence

βPLSm (t) =
∞∑
l=1

( m∑
j=1

µjλ
j
l

)
< β, vl > vl(t) =

∞∑
l=1

Qm,l < β, vl > vl(t).

since Qm,l = 1 − Qm(λl) =
∑m

j=1 µjλ
j
l where µj are derived from the minimization

problem.
The values of (λj, vj)j≥1 are unknown and are consistently estimated by (λ̂j, v̂j)j≥1,

respectively. Similarly the empirical counterpart of the measure dµ is given by
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dµ̂ =
n∑
j=1

λ̂j < Y, ûj >
2
n δλ̂j .

Then, the feasible estimator of the slope function is given by

β̂PLSm (t) =
n∑
j=1

Q̂m,j√
λ̂j

< Y, ûj >n v̂j(t),

where Q̂m,j is the empirical counterpart of Qm,j.

Q̂m,j = 1− Q̂m(λ̂j) =
∑

(j1,...,jm)∈I+m

ŵj1,...,jm

[
1−

m∏
l=1

(1− λ̂j

λ̂jl
)

]

ŵj1,...,jm =
ĝ2
j1
, ..., ĝ2

jmλ̂
2
j1
...λ̂2

jmV (λ̂j1 ...λ̂jm)2∑
(j1,...,jm)∈I+m ĝ

2
j1
, ..., ĝ2

jm
λ̂2
j1
...λ̂2

jm
V (λ̂j1 ...λ̂jm)2

ĝj =< Y, ûj >n

Î+
m = {(j1, ..., jm) : n ≥ j1 > ... > jm ≥ 1},

V (λ̂j1 ...λ̂jm) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 λ̂j1 ... λ̂m−1
j1

1 λ̂j2 ... λ̂m−1
j2

. . . .

. . . .

. . . .

1 λ̂jm ... λ̂m−1
jm

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
=

∏
1≤i<j≤m

(λ̂j − λ̂i)

and 0 ≤ ŵj1...jm ≤ 1 is a stochastic weight that satisfies
∑

I+ ŵj1...jm = 1.
These new expressions of the FPLS slope estimator in population and sample are

useful in order to derive some consistency properties of the estimator and to theoretically
compare the FPLS and the FPCA. Those results are presented in the next section.

Remark 1.
An alternative setting of the estimation problem via FPLS in Equation (1.23) is

presented as follows

β̂PLSm = argmin
β∈Km(T ∗nY ,T

∗
nTn)

{‖T ∗nY − T ∗nTnβ‖}

where Km
(
Ĉxy, K̂

)
= span{Ĉxy, K̂Ĉxy, K̂2Ĉxy, ..., K̂

m−1Ĉxy}. The previous results are
also valid for this setting. The only difference is the norm and the scalar products used
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for the orthogonal polynomials. Indeed, we use the conjugate scalar product [., .]Wn where
the related matrix is Wn = TnT

∗
n . For the theoretical results we will use this alternative

setting. In other words,

The standard PLS is obtained via the following regression

min
β
‖Y − Tnβ‖2

n

s.t. to β ∈ K
(
Ĉxy, K̂

)
= span

{
Ĉxy, K̂Ĉxy, ..., K̂

m−1Ĉxy

}
.

The estimator is

β̂ =
m−1∑
j=0

γ̂jK̂
jĈxy

where γ̂ = H−1a with (H)ij = Y ′ (Wn)i+j Y and ai = Y ′ (Wn)i Y .

Our modified PLS is given by

min
β
‖T ∗nY − T ∗nTnβ‖

2

s.t. to β ∈ K
(
Ĉxy, K̂

)
= span

{
Ĉxy, K̂Ĉxy, ..., K̂

m−1Ĉxy

}
.

The estimator is

β̂ =
m−1∑
j=0

γ̂jK̂
jĈxy

where γ̂ = H−1a with (H)ij = Y ′ (Wn)i+j+1 Y and ai = Y ′ (Wn)i+1 Y .

1.3 Rate of convergence of the MSE

This section is dedicated to the analysis of the rate of convergence of the conditional
MSE for the FPCA and FPLS approach, respectively. For such purpose, we need to
set up some assumptions. At the first stage, we present the rate of convergence of the
conditional MSE for the FPCA. The second stage derives the rate of convergence for the
FPLS approach. The third part of this section is related to the comparison of the two
techniques in terms of their respective conditional MSE.

Let us first specify the following assumption that would be useful for the consistency
results.
Assumptions :

A1. (Xi, Yi) are i.i.d with the same distribution law as (X,Y) with E[||X||2] < +∞.
A2.

∫
S
β2(t)dt < +∞, E[εi|X] = 0, E[ε2

i |X] = σ2, E[ε4
i |X] < +∞ and E[||X||4] <

+∞.
A3. The eigenvalues of the covariance operator K and the estimated one K̂ are

distinct, i.e,
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λ1 > λ2 > ... > 0 and λ̂1 > λ̂2 > ... > λ̂n.
A4. We assume that for some µ ≥ 0, β satisfies

∞∑
j=1

< β, vj >
2

λµj
<∞.

Comments on the assumptions :
A1 is introduced to facilitate the consistency results of the sample covariance

estimator K̂. Moreover, E[||X||2] < +∞ guarantees that K is a nuclear operator, i.e∑
j≥1 λj < +∞.
In A2, the condition E[||X||4] < +∞ is satisfied if X is a Gaussian process. For

instance, A1 and A2 are sufficient conditions to ensure that ||K̂ − K||2HS = Op(
1
n
),

see Proposition 5 of Dauxois et al. (1982).The condition E[ε4
i |X] < +∞ simplifies the

proof of the consistency for the FPLS estimator. This assumption is not needed for the
consistency of the FPCA estimator.

A3 implies that the eigenvalues λj and the eigenvectors vj are consistently estimated
by λ̂j and v̂j respectively, for each j ≥ 1. This condition guarantees that the null space
of the covariance operator K, N (K) is such that N (K) = 0.

A4 is a source condition as discussed by Carrasco et al. (2007) in the context of
ill-posed problems. In fact, this condition represents a smoothness class of the functional
parameter β based on its Fourier coefficients. As K is a compact operator, the sequence
of eigenvalues (λj)j≥1 converges to zero as j goes to infinity. In other terms, this condition
imposes that the Fourier coefficients < β, vj > decline faster than the eigenvalues. This
condition also means that there exists a squared integrable function w such that β =

Kµ/2(w) and ||w|| < +∞. In the inverse problem literature, this parameter characterizes
the severity of the ill-posed problem. As µ becomes larger, the ill-posed problem becomes
more severe, i.e the eigenvalues λj decay more faster (see proposition 3.13 of Engl et al.
(1996)).

1.3.1 Rate of convergence of the MSE for the FPCA

The consistency results of the estimator β̂PCAm has been widely analysed in the
literature of functional linear regression model with a scalar response. The main papers
on this subject are the one of Cardot et al. (1999), Cardot et al. (2003), Hall and
Hosseini-Nasab (2006), Hall and Horowitz (2007), and Cai et al. (2006). The mean-square
prediction error of such a model in the case of finite sample is analyzed by Hall and
Hosseini-Nasab (2006). They also derived the main conditions under which the estimator
β̂PCAm converges to the theoretical value β. A particular condition considered by Hall
and Horowitz (2007) is that the predictor variables and the slope function are enough
smooth. They consider the following configuration : βj ≤ Dj−ζ and λj − λj+1 ≥ Dj−δ−1,
for j ≥ 1 with ζ > 1

2
δ+1, D a positive constant and δ > 1. An interpretation of this result
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is that the eigenvalues of K decrease at a polynomial rate. They proved that the rate
of convergence of the MSE and MSPE depend essentially on the decreasing rate of the
space between adjacent eigenvalues (λj)j≥1 of the covariance operator K (see Cardot et
al. (1999), Cai et al. (2006)). Also, they usually assume that the eigenvalues are distinct,
well spaced, and decrease very slowly to zero as j increases.

Actually, we do not impose conditions on the decay rate of successive eigenvalues but
introduced a source condition A4, which would make the results slightly different and
more general compared to the ones obtained by the other authors when deriving the rate
of convergence of the FPCA. Thus, we derive the convergence rate of

||β̂PCAm − β||2.

We have

β̂PCAm − β =

(
β̂PCAm − βPCAm

)
+

(
βPCAm − β

)
where

(
βPCAm − β

)
is the regularization bias and

(
β̂PCAm − βPCAm

)
is the estimation

error term.
Therefore, we have the following inequality.

||β̂PCAm − β|| ≤ ||β̂PCAm − βPCAm ||+ ||βPCAm − β||.

Similarly, for the FSC method, we have

||β̂SCα − β|| ≤ ||β̂SCα − βSCα ||+ ||βSCα − β||

Then, we have the following results.

Theorem 2.
Under the model conditions, if the assumptions A1 - A4 hold, the rate of convergence of
the conditional MSE is given by :

||β̂PCAm − β||2 = Op

(
λµm+1

)
+Op

(
m

nλm

)
(1.24)

||β̂SCα − β||2 = Op

(
αµ
)

+Op

(
1

nα2

)
. (1.25)

Remark 2.
— The rate of convergence with FPCA method depends on the number of selected

components m and the configuration of the eigenvalues of K, while for the FSC
method it depends on the threshold α.
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— The convergence rate for the conditional MSPE is the same for each method.
— It should be mentioned that the consistency results with FPCA method are

obtained without using an assumption on the decreasing rate of the eigenvalues
in contrast to the results presented by Cardot et al. (1999). Therefore, our results
are more general and are different from the one obtained by Hall and Horowitz
(2007), Cai et al. (2006), and Hall and Hosseini-Nasab (2006), since we have more
general assumptions and we consider a random design context.

— In contrast to Hall and Horowitz (2007), who considered a fixed design model,
Crambes et al. (2013) considered a random design model and derived their results
under the convexity assumptions of the eigenvalues of the covariance operator K,
which englobe a larger class of eigenvalues configurations than the one proposed by
Hall and Horowitz (2007) regarding the smoothness of the slope function combined
with the decreasing rate of the eigenvalues of K, but their assumptions are still
restrictive compared to the one considered in this paper.

— Concerning the FSC method, the optimal rate of convergence can be obtained by
equating the bias and estimation error terms. Then by taking α ∼ n−1/(µ+2), the
optimal rate of the conditional MSE is given by

||β̂SCα − β||2 = Op

(
n−µ/(µ+2)

)
. (1.26)

This result means that if we do not have any information about the configuration of
the eigenvalues of the covariance operatorK the convergence rate of the MSE is n−µ/(µ+2).

1.3.2 Rate of Convergence of the MSE for the FPLS

The rate of convergence of the conditional MSPE for the FPLS method has been
derived recently by Blazere et al. (2014a) and Carrasco and Rossi (2016) for a multivariate
linear regression. Blazere et al. (2014a) considered a fixed design model with a fixed
number of covariates and some multicolinearity, while Carrasco and Rossi (2016) assumed
that the number of predictor variables may increase with the number of observations.
Delaigle and Hall (2012) derived the consistency results of the MSPE for the case of a
functional linear regression with a scalar response by using an alternative formulation of
the FPLS.

This section is focused in deriving the rate of convergence of the conditional MSE for
the FPLS method. It should be mentioned that the FPLS is a nonlinear method since
the latent factors at each step depend on the response variable, which therefore makes
the derivation of the rate of convergence more difficult. In this section, we study the rate
of convergence of ∣∣∣∣∣∣∣∣β̂PLSm − β

∣∣∣∣∣∣∣∣2.
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We can decompose the prediction error
(
β̂PLSm − β

)
as a sum of two terms, those

are the estimation error for the first part and the regularization bias for the second part.
Then, we have

β̂PLSm − β =

(
β̂PLSm − βPLSm

)
+

(
βPLSm − β

)
.

Then, ∣∣∣∣∣∣∣∣βPLSm − β
∣∣∣∣∣∣∣∣ ≤ ∣∣∣∣∣∣∣∣β̂PLSm − βPLSm

∣∣∣∣∣∣∣∣+

∣∣∣∣∣∣∣∣βPLSm − β
∣∣∣∣∣∣∣∣.

The results are then mentioned in the next proposition and theorem.

Proposition 2.
Under the model condition, if the assumptions A1 - A4 hold, then for all m ≤ n we

obtain the following results : ∣∣∣∣∣∣∣∣βPLSm − β
∣∣∣∣∣∣∣∣2 ≤ ∣∣∣∣∣∣∣∣βPCAm − β

∣∣∣∣∣∣∣∣2 (1.27)

and ∣∣∣∣∣∣∣∣βPLSm − β
∣∣∣∣∣∣∣∣2 = Op

(
λµm+1

)
. (1.28)

Proposition 2 shows that the squared bias with FPLS is smaller than the one obtained
when using FPCA and the upper bound rate depends of the eigenvalue λm+1 of the
covariance operator K.
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Theorem 3.
Under the model condition, if the assumptions A1 - A4 hold, and given the stopping

rule

||T ∗n(Y − Tnβ̂PLSm )|| ≤ τ
√
A0√
n

< ||T ∗n(Y − Tnβ̂PLSm−1)|| (1.29)

where τ > 1 is a given constant and A0 = σ2
∫
S
E[X2

i (s)]ds, we obtain for m ≤ n

||β̂PLSm − β||2 = Op

(
λµm+1

)
+Op

(
m2

nθ2
m

)
. (1.30)

Moreover, the optimal rate of convergence of the MSE is

||β̂PLSm − β||2 = Op

(
n−µ/(µ+2)

)
. (1.31)

Remark 3.

— In Equation (1.30), the first term is the convergence rate of the squared bias while
the second one is the convergence rate of the variance. θm is the smallest root of
the residual polynomial Qm,j. θm is also known as the smallest eigenvalue of the
Hankel matrix H (see Equation (1.21)) defined by Delaigle and Hall (2012) or the
Ritz value as defined by Lingjaerde and Christophersen (2000). Therefore, if m

diverges in such a way that
(

m2

θ2mn

)
→ 0, the conditional MSE converges to zero

as n goes to infinity. It has been proven by Lingjaerde and Christophersen (2000)
that, for j fixed, as m increases, Q2

m,j converges to 1 and θm goes to 0 quickly ;
therefore, in such a situation, the estimation error can increase very rapidly as n
goes to infinity. So, in order to have the variance go to zero, we should control
the number m to increase at a very low rate compared to n. Furthermore, θm is
smaller than the eigenvalue λm of the covariance operator K (see Lingjaerde and
Christophersen (2000)).

— The convergence rate for the conditional MSPE is the same as that of MSE. The
MSPE is defined as follows

MSPE = E
[(∫

S

X(s)β̂(s)ds−
∫
S

X(s)β(s)ds

)2]
Furthermore, to obtain the convergence rate of the conditional MSPE we condition
on X = x such that ||x||2 = Op(1).

E
[(∫

S

X(t)(β̂PLSm − β)(t)dt

)2

|X
]
≤ ||x||2E

[∣∣∣∣∣∣∣∣β̂PLSm − β
∣∣∣∣∣∣∣∣2|X].
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This result holds also for the FPCA and FSC methods.

Theorem 4 : the number of selected components.
Under the model conditions, if assumptions A1 - A4 and the stopping criterion from

Equation (1.29) holds, the optimal number of selected components mpls is such that mpls ≤
cn1/(2µ+4) and this estimate is sharp in the sense that it cannot be replaced by a smaller
one, for some positive constant c > 0.

This result means that if we do not have any information about the configuration of
the eigenvalues of K, the best possible uniform bound for the optimal number of selected
components mpls is n1/(2µ+4). By considering a specific decay rate on the eigenvalues of
K, we are able to derive a better bound for both methods as described in the following
corollary.

Corollary 1.
Assume that the model conditions, assumptions A1 - A4 and the stopping criterion

hold.

— If λj = O(j−2γ) as j → +∞, with γ > 0, then

{
mpls ≤ cn1/(2µ+4)(γ+1)

mpca ≤ cn1/(2µ(γ+1)+1)

— If λj = O(dj) as j → +∞ with 0 < d < 1, then

{
mpls ≤ c(1 + log+(n))

mpca ≤ c(1 + log+(n))
,

where log+(t) = log(t) if t ≥ 1 and log+(t) = 0 otherwise and c > 0 is some positive
constant.

Corollary 1 shows that when the eigenvalues decrease at a polynomial rate, one can
expect the bound of the optimal number of components obtained with FPLS to be
smaller than the one obtained via FPCA, while when the eigenvalues decrease at an
exponential rate, both methods tend to display the same bound of number of retained
components. Additionally, the number of retained components is usually very small
when the eigenvalues decrease at an exponential rate compared to the case where their
decreasing rate is polynomial. Also, it is important to mention that for the FPLS method,
as the covariance operator of the predictor functionK is nuclear, the bound of the number
of selected components is improved compared to the one obtained in Theorem 4.

The next proposition shows that the convergence rate obtained in Theorem 2 and 3
are sharp.

Proposition 3.
Let B be the set of all measurable functions of (Xi, Yi) , i = 1, 2, ..., n. There exists a

positive constant c such that

lim inf
n→∞

inf
β̄∈B

sup
β∈R(Kµ/2)

n
µ
µ+2E

∥∥β̄ − β∥∥2 ≥ c.
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where R(Kµ/2) =

{
g ∈ H : g = Kµ/2(φ), ||φ|| < +∞

}
. This means that the rate of

convergence of the MSE obtained from both methods is sharp. In other words, it is the
best possible uniform rate in the set of estimators of β on the considered model.

1.3.3 Comparison of the FPCA and FPLS

This section is devoted to the comparison of the FPCA and FPLS approach.
Such analyses are operated by using the conditional MSPE. We first compare their
regularization bias and at the second stage, we compare their estimation error.

Comparison of the regularization bias of FPCA and FPLS

Following Proposition 2, we can observe that given the same number of components
m, the squared bias obtained with the FPLS method is in general lower than the one
obtained by the FPCA method. Furthermore, both methods display the same upper

bound rate for the squared bias, that is Op

(
λµm+1

)
.

Moreover, the regularization bias of FPLS does not necessarily decrease strictly as
m increases, while it is the case for FPCA . This is due to the fact that Qm,j oscillates
around the value 1 (while for the FPCA, Qm,j = 1 for 1 ≤ j ≤ m and 0 otherwise). To
observe this feature, we can consider a situation where we have λj = λ1. Then, we obtain

∏m
l=1

(
1− λj

λjl

)
≤ 0 if m is odd∏m

l=1

(
1− λj

λjl

)
≥ 0 if m is even

where jl ∈ I+
m = {(j1, ..., jm) : j1 > ... > jm ≥ 1}. Therefore, we obtain the following

result {
Qm,j ≥ 1 if m is odd

Qm,j ≤ 1 if m is even

Moreover, for m fixed, Qm,j goes to zero as j increases and j > m and for j fixed,
Qm,j goes to 1 as m diverges, see Theorem 3 of Lingjaerde and Christophersen (2000),
section 4.2 of Blazere et al. (2014a), and section 2.1 of Carrasco and Rossi (2016). But
this pattern of the filter factor induces the fact that the bias of the FPLS estimator is
not more than the one obtained by the FPCA.

Comparison of the estimation error of FPCA and FPLS

Concerning the comparison of the estimation error of these methods, we already know
that under the assumptions A1 − A4, the upper bound rate of the estimation error is
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given by the following results

||β̂PCAm − βPCAm ||2 = Op

(
m

nλm

)
and

||β̂PLSm − βPLSm ||2 = Op

(
m2

nθ2
m

)
.

Under the assumptions A1- A4, if m diverges at a slower rate than n such that(
m2

θ2mn

)
→ 0, then the estimation error converges in probability to zero. Another feature

is that the convergence rate of the estimation error for the FPCA method depends on
the decreasing rate of the smallest extracted eigenvalues λm of the operator K, while the
one obtained with the FPLS method depends on the decreasing rate of the smallest root
of the residual polynomial Qm,j, that is θm. Moreover, since θm < λm (see Lingjaerde
and Christophersen (2000)), the upper bound of the estimation error with FPCA is
asymptotically less than that of FPLS.

Furthermore, we can easily notice from the simulations in section 4 that the estimation
error obtained from FPLS can diverge very quickly and may explode as m increases. This
can present an overfitting issue if we intend to select a large number of components. In
addition, for the same number of retained components, the estimation error with FPLS
method tend to be larger than the one obtained with FPCA. A potential explanation is
that the FPLS method is an iterative method whereby at each step, we should handle
the residuals of predictor and the response variables obtained from the estimations of the
previous step.

For both methods, as the number m increases, the bias rate decreases and the
estimation error’s rate increases. Thus, it is important to make a tradeoff when choosing
the number for latent components m in order to obtain the minimal MSE. We use a
data driven method mentioned in the next section in order to choose such number. The
empirical simulation results will help us to highlight more results about it.

Optimal convergence rates

Concerning the optimal convergence rate for both methods, when there is no
information about the eigenvalues.

||β̂SCα − β||2 = Op

(
n−µ/(µ+2)

)
(1.32)

||β̂PLSm − β||2 = Op

(
n−µ/(µ+2)

)
(1.33)
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and the number of selected components mpls ≤ cn1/(2µ+4) for FPLS, when there is no
information about the eigenvalues ofK, with c > 0 and µ ≥ 0. Corollary 1 gives additional
results concerning the number of components when we have additional informations about
the eigenvalues of K. Based on these results, we can observe that FPLS method displays
the same rate than FPCA and the number of selected components via FPLS is fewer than
the one obtained by FPCA when the eigenvalues decrease at a polynomial rate, while
both methods display the same number of selected components when the eigenvalues
decrease at an exponential rate. Following Proposition 3, the convergence rate obtained
from both methods is sharp and therefore the best possible uniform rate.

Remark 4.
The intuition behind the configuration considered by Hall and Horowitz (2007) is that
the slope function is sufficiently smooth relative to the operator K (in terms of its
eigenvalues), which in turn means that the slope function is efficiently represented by
the m extracted eigenfunctions of K and therefore, this assumption is considered to
guarantee the FPCA method to estimate properly the slope function. This configuration
is very ambitious given that in the empirical analysis, we cannot verify such conditions.
Moreover, even if it is possible to verify this, to the best of our knowledge, we usually
do not obtain those patterns in economic or financial data in practice. If we consider a
model where the two first Fourier coefficients of the slope function (in the eigensystem
of K) vanish and the others are eventually different from zero, we will usually see that
the FPCA will fail to estimate the first two eigenfunctions (and sometimes the first
three eigenfunctions) that represent well the relation between the predictor variable and
the response variable. Thus, more effort is required to estimate the slope function by
considering more components (not the true ones that capture the relation between X

and Y ) according to the complexity of the linear relation between X and Y . Therefore,
the FPLS tend to outperform the FPCA in terms of estimation. More details about this
behavior are illustrated in the simulations.

Concerning the prediction error, given that after estimation, we have an additional
smoothing step with the integration operator in order to get the prediction of Y , the
difference between both methods is not very large in terms of prediction error.

1.3.4 Model selection

Since FPLS and FPCA methods involve a tuning parameter m, one of the main
challenges is the choice of the optimal number of functional components m to consider
in the model such that the MSPE is minimized. This question has been tackled by
Stock and Watson (1998) in the situation of a multivariate linear regression model.
They suggested to choose the number of latent components for which the mean squared
forecast error (MSFE) is minimized. On the other hand, the BIC and AIC criteria
have been proposed by Bai and Ng (2002) for the same type of model. We can also
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identify other strategies such as Leave-one-out Cross-validation, K-Folds cross-validation,
and Generalized Cross-validation. For this paper, the optimal number of components is
chosen by using the K-Folds Cross-validation. The K-Folds cross-validation is given by
the following formula. Let us split the initial sample in M subsamples denoted I1,...,IM .

mop = argmin
m∈I0

1

M

M∑
`=1

1

card(I`)

∑
j∈I`

(
Yj − Ŷj

)2

. (1.34)

For ` ∈ {I1,...,IM}, we estimate the parameter β in the sample I−` representing the
observations not in I`. Then, we predict the response variable in I` considered as the
hold-out sample. Ŷj is the prediction of the jth observation in I`. Hence, we calculate the
MSPE for each candidate m. I0 is the set of candidate m.

1.4 Simulation results

In this section, we run some simulations analysis of the estimator presented earlier.
We highlight the difference between the FPLS and the FPCA results for n = 1000.

We consider 8 different models

Y =

∫
S

X(s)β(s)ds+ ε,

where X and Y are both centered random variables. X maps on the space S = [0, 1]

and H is L2[0, 1]. We consider that the errors ε are gaussian process with mean 0 and
variance 1. We use the K-folds cross-validation in order to estimate the optimal number
of components to be considered
The functional predictor is given by

X(t) =
∞∑
j=1

√
λjujvj(t). (1.35)

where u1, u2, ... are i.i.d N (0, 1).
The following models are considered :
Model 1 : model considered by Cardot et al.(1999)

We have vj(t) =
√

2sin((j − 0.5)πt) and λj = 1
(j−0.5)2π2 , for j = 1, 2, ... and β(t) =

2sin(0.5πt) + 4sin(1.5πt) + 5sin(2.5πt). The slope function is a linear combination of
exactly three eigenfunctions.

Model 2 : modified version of the model 1
We have vj(t) =

√
2sin((j − 0.5)πt) and λj = 1

(j−0.5)2π2 , for j = 1, 2, ... and
β(t) = 6sin(3.5πt). The slope function is represented by the fourth eigenfunction of
the covariance operator K.

Model 3 : model considered by Hall and Hosseini-Nasab (2006)
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We have vj(t) =
√

2cos(jπt) and λj = j−2, or j = 1, 2, ... and β(t) = π2(t2 − 1/3). Here,
β is an infinite linear combination of the eigenfunctions with decreasing weights and the
eigenvalues decrease at a polynomial rate.

Model 4 : modified version of model 3
We have vj(t) =

√
2cos(jπt) and λj = (0.5)−2j, or j = 1, 2, ... and β(t) = π2(t2 − 1/3).

Here, β is an infinite linear combination of the eigenfunctions with decreasing weights
and the eigenvalues decrease at an exponential rate.

Model 5 : Model used by Hall and Horowitz (2007)
We have v1 = 1, λ1 = 1, vj(t) =

√
2cos((j − 1)πt), and

√
λj = j−1, for j = 2, 3, ...,

and β(t) =
∑∞

j=1 βjvj(t), with β1 = 0.3 and βj = 4(−1)j+1j−2, for j = 2, 3, ... . In this
case, the slope function β is an infinite linear combination of the eigenfunctions with
decreasing weights and the eigenvalues λ1, λ2, ... are well spaced.

Model 6 : modified version of the model 5
We have v1(t) = 1, λ1 = 1, vj =

√
2cos((j − 1)πt), and

√
λj = j−1, for j = 2, 3, ...,

and β(t) =
∑∞

j=1 βjvj(t), with β1 = 0, β2 = 0, β3 = 3, β4 = 5, and βj = 4(−1)j+1j−2,
for j = 5, 6, ... . In this case, the slope function β does not depend on the first two
eigenfunctions associated with the two largest eigenvalues of K.

Model 7 and 8 : smoothed and nonsmoothed predictor variables
We have Xi = π(Zi) +Ui where π(s, t) = 1−|s− t|2 is the kernel of an integral operator,
Zi(t) = Γ(ai+bi)

Γ(ai)+Γ(bi)
+ ηi, dU(t) = −U(t)dt + σudGu(t), Gu is a Wiener process, σu is the

standard deviation of its incrementations dGu, ai, bi ∼ iid U [2, 5], ηi ∼ iid N (0, 1) for
s, t ∈ [0, 1], and β(t) = π2(t2 − 1/3). Model 7 consider σu = 0.2, representing the case
of smoothed predictor variables while for model 8 σu = 2 representing the nonsmoothed
predictor variable.

To compute the integrals, we use the trapezoidal method in order to reduce the
discretization bias. The simulation results are performed with the following procedure :

1. Write down a discretization of the interval [0, 1] with 1000 equidistant points ;
2. Generate the true functional slope β(t) ;
3. Generate n random variables εi from the standard normal distribution with zero

mean and variance 1 ;
4. Generate n predictor function Xi(t) for each t in the pseudo-interval constructed,

with the infinite series truncated at J = 50 ;
5. Generate n response variables from the model Yi =

∫
S
Xi(s)β(s)ds + εi, i =

1, ..., 1000 ;
6. Estimate the slope function β from the FPCA and FPLS approaches for the same

number of latent factors selected and on a training sample representing 80% of the total
number of observations and predict on a test sample, that is 20% of n ;

7. Choose the optimal number of components with the K-folds cross-validation ;
8. Repeat the steps 3 to 7 with 1000 iterations and calculate the MSE and MSPE on

the test sample.
Model 1 and 2 consider the situation where the slope function is represented by a finite
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number of eigenfunctions of the covariance operator K. For model 1, the slope function is
well represented by the first three functional components (v1(t), v2(t) and v3(t)) that are
the FPCA components while for model 2, the slope function is only represented by the
fourth eigenfunction v4(t). We expect the FPCA method to estimate the slope function
with the optimal number of components equal to three in the case of model 1, while for
model 2 we expect to estimate the slope function with one component. We will see if
FPLS method is able to estimate the slope function with three components for model 1
and one for model 2.

Model 3 and 4 consider the case where the slope function is smooth and the same for
both models with the eigenvalues of the covariance operatorK decreasing at a polynomial
rate for model 3 and at an exponential rate for model 4. We compare the difference
between the estimation techniques for the two different configurations of eigenvalues.
These two models will contribute to analyse how well the considered methods behave in
terms of selecting the number of components compared to what we obtained in corollary
1.

Model 5 and 6 compare the situation where the slope function an infinite linear
combination of the eigenfunctions with decreasing weights and the eigenvalues λ1, λ2, ...

are distinct, to the one where slope function an infinite linear combination of the
eigenfunctions with first four components not representing well the slope function.

Model 7 and 8 are used to see the difference between the estimation methods when
the predictor variable is smooth and the case where the predictor variable is nonsmooth.

Figure 1.1 shows 10 observations of the functional predictor variables X(t) for the
8 different models. The comparison of the FPCA and the FPLS is presented using the
MSE and the MSPE. We will highlight how well the estimation results when the sample
size is large.

Figure 1.3 presents the comparison of the MSPE of both methods using the 8 models
for the different values with the number of observations n = 1000 and the standard
deviation of the regression error σ = 1. We can observe that in overall, the optimal
number of components selected via FPLS method tends to be less or equal to the one
obtained via FPCA. This is observed on Table 1.7. Moreover, the predictive performance
is almost the same for both methods.

Comparing model 1 and 2, we observe that the optimal number of selected components
is the same for both methods, that is three for model 1 and one for model 2. This
means that in the context where we know that the slope function is represented by a
certain factor model, both the methods will estimate well the true number of factors.
The point to highlight in this context is the fact that when the slope function is not
efficiently represented by the first components which is the case of model 2, the optimal
number of factor for the prediction purpose would be the optimal one while the number of
components needed to estimate well the slope function should be the number representing
the factor that efficiently present well the slope. For example in model 2, the slope function
is efficiently represented by only the fourth component of K, but the optimal number of
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components needed for a good prediction is one while the number of components for the
estimation purpose is four.

Comparing model 3 and 4, we can observe that the number of selected components in
model 3 is larger than in the case of model 4. This result means that in the context where
the eigenvalues decrease at polynomial rate, we may need more components compared
to case where the eigenvalues decrease at an exponential rate. This confirm the results
obtained in corollary 1.

Concerning model 5 and 6, we can observe that when the predictor variables are
smooth and the slope function is well represented by an infinite number of components,
the optimal number of components is the same and equal to 3 (that is the case of
model 5), while when the slope function is not well represented by the four first
eigenfunctions, FPCA method needs 6 components to for a good prediction while we need
only 3 components when using FPLS approach. This result hold since FPLS construct
only factors that are related to the response variable and usually we obtain around 3
components.

When analyzing model 7 and 8, we can easily observe that in the context of smoothed
predictor variables (model 7) we need more components for a good prediction compared
to the situation where the predictor variables display more variability (model 8). These
results are almost the same when looking at the median average prediction error (MAPE).
For more details see Table 1.1 and Table 1.9.

When comparing the squared bias of the MSPE, we can observe that for a fixed
number of components, the squared bias when using FPLS method is usually less or
equal to the one obtained with FPCA. Table 1.5 displays more details about this result.

The results concerning the squared bias of the MSE are displayed in Table 1.3. We can
observe that when m is less or equal to the optimal number of components, the squared
bias with FPLS is less or equal to the one obtained via FPCA and when m is greater
or equal to the optimal number of components, the squared bias with FPLS tends to be
greater or equal to the one obtained via FPCA. This result hold for model 1 to 5. For
model 7 and 8 we can observe that squared bias with FPLS is systematically less than
the one obtained via FPCA.

Concerning the comparison of the variance term of the MSPE, we can observe that
the one obtained when using FPLS is usually larger than the one obtained via FPCA
(see Table 1.6). The results are similar when looking at the MSE (see Table 1.3 and 1.4).
This confirms that the simulation results are in line with the theoretical one. The same
results are obtained when the sample size is smaller but the quality of the estimations is
not very good in this context. The results in the context of small sample are not reported.

Figure 1.2 presents the comparison of both estimation methods in terms of estimating
the slope function. The blue red and yellow lines represent the true slope, the FPCA and
FPLS estimates respectively. Concerning the comparison of the estimated slope functions
with both methods using the optimal number of components, we can observe that for
the 8 different models, both of the estimation methods are able to recover well the shape
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of the true slope function as the sample size becomes large. Furthermore, the FPLS
method seems to be generally closer to the true slope function than the FPCA estimation
approach. When the true slope function is smoother than the predictor function (Model
3), the estimated slope functions are almost similar.

Moreover, when the slope function and the predictor variables are smooth (model 7),
the slope function is well estimated, while when the slope function is smooth and the
predictor variables are not smooth (model 8), the slope function is not well estimated
and in particular at the beginning and the end of the interval of the function. Thus, if the
practitioners have some prior information about the smoothness of the slope function,
they can choose one of the methods accordingly. Moreover, if the practitioners do not
need much variability in the estimation of the slope function, they can use the FPCA
approach ; however, if they need a small bias, they should use the FPLS method. On the
other hand, as we expect, according to Table 1.1, both methods tend to reach the same
prediction error and this is due to the additional smoothing step with the integration
operation in order to predict Y =

∫ 1

0
X(t)β(t)dt.

1.5 Real data application : stock market return
prediction

A simple application of the functional linear regression model is presented in this
section. We compare the FPCA and the FPLS method based on real data. We consider
a problem of predicting the return of the S&P 500 in the New York Stock Exchange.

1.5.1 The literature

The New York Stock Exchange is endowed by a large set of stocks that represents the
shares of corporations. We consider a simple prediction model where we use the previous
day cumulative return to predict the next day instant return. The cumulative returns
are observed on the one-minute frequency. The idea is motivated by the fact that market
participants are likely to take advantage of the additional information coming from the
intraday price values in order to improve the next day return prediction. Furthermore, one
can consider price series as the discretization of a curve that contains enough information
to predict the next week instant return. This idea holds in the sense that one of the most
popular ways to analyze asset prices is to look at the price evolution during a certain
period for prediction and not at the price at a certain time point. This means that
market participants take the whole price structure in a given window as an information
to account in their price prediction procedure.
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1.5.2 The model

We assume that the whole price evolution of the S&P 500 within a day can contribute
to predict the next day instant return. We consider that we observe the whole price
evolution within a day on the one-minute frequency and we predict the next daily return.
Since the New York Stock Market session is opened between 09 :30 AM and 04 :00 PM,
every single trading day is represented by 390 minutes. If Pt(s) is the price of a stock
at the minute s of the day t (with s ∈ ( j−1

390
, j

390
] for j = 1, ..., 390), then the cumulative

return between the minute s and the first minute of the day t is given by

Xt(s) = 100 ∗
[
ln(Pt(s))− ln(Pt(1))

]
.

Therefore, the basic model is presented as follows

rt+1 =
390∑
s=1

Xt(s)βs + εt+1,

where rt+1 is the market return between two consecutive days and is given by

rt+1 = 100 ∗
[
ln(Pt+1(390))− ln(Pt(390))

]
,

and εt+1 is the error term. Then, at each day t one observes the whole price evolution
from 09 :30 AM to 04 :00 PM as a unique curve and predicts the return of the next day.

Since the cumulative intraday returns are assumed to be continuous functions
observed within a day, the model can be written as

rt+1 =

∫ 1

0

Xt(s)β(s)ds+ εt+1,

where we have normalized the integration interval to [0, 1]. The discretized cumulative
intraday returns are interpolated on a B-spline basis to ensure the continuity of the
functions and to complete the missing data within each day. The cumulative intraday
return curve X(s) is proportional to the price and will display the same pattern as the
original price curve. Figure 1.4 presents the price evolution of 100 selected days on the
discretized level (at the bottom) and the functional cumulative return curves (at the
top). The price evolution is presented on the one-minute timeframe for each day. We
shall specify here that the data are all centered and scaled. rt+1 represents the target
return for the next day to be predicted for the considered stock, that is, the one day
ahead return. Our purpose is to estimate the slope function based on the techniques
presented in this paper, predict the returns, and evaluate both the techniques based on
the predictive performance in-sample and out-of-sample.
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1.5.3 Data Preprocessing

The sample data of the S&P 500 are collected in the historical data of the website
www.backtestmarket.com. Due to the limited access, we will focus only on data from
1 January 2014 to 31th December 2017, which is 1007 daily price values. After the
pretreatment of the data to get the variables Xt(s) and rt, we obtain a sample of
1007 observations. For the construction of the cumulative intraday returns X(t), we
preliminarily group the 1-minute discrete observations obtained between 09 :30 AM to
04 :00 PM for the 1007 daily curves. To ensure each daily curve is of the same length, we
use interpolation to complete the missing data at the end of each day. This operation ends
up with N = 392730 minutes points that are divided into 1007 equal-spaced curves. We
split our sample into 3 sub-samples, that are training, validation, and test sample (70%,
15%, and 15% of the whole sample respectively). The training and validation sample
are used to train the model and select the optimal number of components, while the
test sample is used to track the out-of-sample performance of the methods. The 10-folds
cross-validation is used in the selection process of the tuning parameter and we compare
the results obtained based on the out-of-sample (oos) MSPE, R2

is and R2
oos, where R2

is

and R2
oos are respectively the in-sample and out-of-sample R-squared. The R2

oos belongs
to the interval (−∞, 1], where a negative value indicates a less accurate forecast than
the target’s historical mean and a value of R2

oos closer to 1 represents a better predictive
performance.

R2
is = 1−

∑N
i=1(rtri − r̂tri)2∑N
i=1(rtri − r̄tr)2

,

R2
oos = 1−

∑N
i=1(rosi − r̂osi)2∑N
i=1(rosi − r̄os)2

,

where rtri is the observation i of the returns in the training sample and rosi is the
observation i of the return out of sample.

1.5.4 Estimation results

Figure 1.6 shows the estimated slope function obtained by the FPCA and FPLS
methods, respectively. The estimated slope function β̂(t) presents almost the same shape
with slightly more variability observed when using the FPLS method. The estimated
values of the functional slope are read horizontally. For example, β̂(04 : 00PM) = β̂(390)

represents how the end of previous day’s cumulative return is correlated with the next
day’s return, and β̂(09 : 30AM) = β̂(0) represents the correlation between the beginning
of the previous day’s cumulative return and the next day’s instant return. We can observe
a positive value of the slope function from 03 :00 PM to 04 :00 PM with FPCA, while it
can be observed earlier when using FPLS, that is 01 :00 PM to 04 :00 PM. Additionally
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we have a less significant or negative correlation in the period 09 :30 AM to 10 :30
AM. The high correlation between the end of the previous day’s return and the next
day’s return can be explained by the fact that at the end of the previous day we have
more information about the market and market participants will react accordingly during
the next day. For example it could be the forced sales by hedge funds and also news
announcements. Furthermore, the FPLS approach seems to present larger magnitudes of
the slope function than the FPCA method.

We also address the question concerning the predictive power of the concerned
methods. To do so, we plot the predicted out-of-sample daily return for the FPCA and
the FPLS estimation methods. Figure 1.7 displays the predicted daily returns from May
2017 to December 2017. We can observe that both methods tend to capture well the
overall return variations on the hold-out-sample. Moreover, Figure 1.8 suggests that the
residuals are normally distributed.

Table 1.8 presents the MSPE, R2
is, R2

oos for both estimation methods. We can observe
that the root mean squared prediction error (RMSPE) for the FPLS approach is almost
similar to the one obtained by the FPCA approach. This was expected given that the
eigenvalues decrease very quickly as in model 8 of our simulations, which shows that, when
the predictor function presents more variability, the FPLS and FPCA tend to display the
same predictive performance. Furthermore, the FPLS method displays a slightly larger
R2
is than the FPCA, that is 23.1% (compared to 22.4% for FPCA). We observe the same

result for the out-of-sample R2. Indeed, it is evaluated at 2.2% for FPLS and 1.75%

for FPCA. The OLS model tends to present an overfitting problem and this result was
expected. In fact, it can be observed that it displays an R2

is of 77.8% while the R2
oos is

−127.7%. Thus, it is highly outperformed by the other methods.

1.6 Conclusion

This paper investigates and compares the theoretical features of two dimension
reduction techniques for a functional linear regression model with a scalar response. The
first one is the Functional Principal Component Analysis (FPCA) and the second one is
the Functional Partial Least Squares (FPLS). The theoretical results and the empirical
simulations suggest that the squared bias of the conditional MSE when using the FPLS
method is usually smaller than the one obtained with the FPCA approach when the
same number of latent components is considered. Moreover, the variance obtained when
using the FPLS method is usually larger than the one obtained by FPCA. Furthermore,
the estimation error obtained with FPLS could increase very quickly and may explode
as the number of retained components increases. A theoretical upper bound rate is
derived for both methods under a certain number of regularity conditions and we find
that both methods display the same convergence rate of the MSE. Also we show that
this convergence rate is sharp. Additionally, we show that FPLS tends to display the
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same convergence rate of the MSE as FPCA and it selects usually a fewer number of
components than FPCA.

We also find that when the slope function and the predictor variables are smooth,
FPCA and FPLS tend to display almost the same estimation and prediction performance,
while when the predictor variables are not smooth enough, both methods are not able
to estimate well the slope function and the results with FPCA are worse than the one
with FPLS. Those results are more observable in the context where the sample size is
large. Additionally, the convergence rate of the FPCA method depends essentially on
the decreasing rate of the eigenvalues, while the one of the FPLS method relies on the
smallest roots of the residual polynomial. Based on the real data application, we can
notice that the MSPE for the FPLS tends to be smaller than that of the FPCA.

Moreover, the MSE for the FPLS is usually smaller than the one obtained by the
FPCA and especially when the number of chosen latent components is lower or equal
to the optimal number of latent components (selected via cross-validation). Ultimately,
FPLS performs well when we choose the optimal number of latent components for each
method. This suggests to the practitioner that if they care more about the estimation,
they can use the FPLS method ; however, if the emphasis is on the prediction of the
response, they could choose either methods.

1.7 Appendix.

1.7.1 Mathematical tools on orthogonal polynomials theory

Let us define

X =

[
X1, X2, ..., Xn

]′
Y =

[
Y1, Y2, ..., Yn

]′
and

ε =

[
ε1, ε2, ..., εn

]′
Let us denote by Z : [a, b] → R a bounded and mesurable function with a and b as

positive numbers (a < b). Then,

Z(K) =
+∞∑
j=1

Z(λj)vj ⊗ vj,

Z(K̂) =
n∑
j=1

Z(λ̂j)v̂j ⊗ v̂j

and TZ(Wx) = Z(K)T ∗x since K = T ∗xTx and Wx = TxT
∗
x . For an integer ν, let us define

the empirical version measure
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dµνn :=
n∑
j=1

λ̂νj < T ∗nY , v̂j >
2 δλ̂j

where δλ̂j = 1 if t = λ̂j and 0 otherwise. Then, for each function Z, we have

||Z(K̂)T ∗nY ||2 =
n∑
j=1

λ̂jZ(λ̂j)
2 < T ∗nY , v̂j >

2 δλ̂j =

∫ λ̂1

0

Z2(t)dµ(0)
n (t).

Let us define by Rm−1, the vector space of polynomials of at most m − 1 degrees and
R0
m the space of real polynomials of at most m degrees with the constant term equal to

1. Then, β̂PLSm = P̂m(Wn)T ∗nY where Pm ∈ Rm−1 and the residual polynomial related to
the functional regression model is given by

Q̂m(t) = 1− tP̂m(t)

and Q̂m ∈ R0
m. Moreover, we have ||T ∗n(Y − Tn(β̂PLSm ))|| = ||Q̂(K̂)T ∗nY ||.

Let us define the scalar product related to the space Rn as

[φ, ψ](ν) =

∫ λ̂1

0

φ(t)ψ(t)dµ(ν)
n (t)

=

〈
φ(Wn)Y ,W ν

nψ(Wn)Y

〉
=

n∑
j=1

λ̂νjφ(λ̂j)ψ(λ̂j) < T ∗nY , v̂j >
2 .

See page 9 of Hanke (1995). Then, in our model [φ, ψ](1) = [φ, ψ] for the modified PLS.
Therefore, following Theorem 1, the estimation via FPLS method using the Krylov space
approach is equivalent to identifying the polynomial Q̂m(t) of degree at most m such that

Q̂m(t) = 1− tP̂m(t)

where

P̂m = argmin
φ∈Rm−1

∣∣∣∣∣∣∣∣(I − K̂φ(K̂))T ∗nY

∣∣∣∣∣∣∣∣2.
This means that Q̂m is the minimizer of

∣∣∣∣∣∣∣∣Q(K̂)T ∗nY

∣∣∣∣∣∣∣∣2 = [Q,Q] with Q ∈ R0
m. Moreover,

[Q̂m, T P ] = [Q̂m, P ](1) = 0 for each P ∈ Rm−1, where T P (t) = tP (t). Then, the sequence
Q̂0, ..., Q̂n−1 is orthogonal with respect to [., .] and we can have at most n orthogonal
polynomials for the FPLS empirically (reflecting the maximum possible number of
functional components).
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Proof of Proposition 1.
The proof of the Proposition 1 is similar to the proof of Proposition 7.1 of Blazère et al.
(2014b) and hence omitted.

Proof of Theorem 2.
Upper bound of the squared bias.
Under the model condition, if the assumptions A1 - A4 hold, then we obtain the

following result :

||βPCAm − β||2 = O

(
λµm+1

)
.

and

||βSCα − β||2 = O

(
αµ
)
.

Proof.
We have

||βPCAm − β||2 = ||
m∑
j=1

< β, vj > vj −
∞∑
j=1

< β, vj > vj||2

=
∞∑

j=m+1

< β, vj >
2

=
∞∑

j=m+1

λµj
< β, vj >

2

λµj

≤ sup
j≥m+1

{λµj }
∞∑

j=m+1

< β, vj >
2

λµj

≤ λµm+1

∞∑
j=m+1

< β, vj >
2

λµj
.

Since, assumption A4 holds, we obtain the result.
Following the same logic with FSC method, we have
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||βSCα − β||2 ≤ ||
∑
λj≥α

< β, vj > vj −
∞∑
j=1

< β, vj > vj||2

≤
∑
λj<α

< β, vj >
2

≤
∑
λj<α

λµj
< β, vj >

2

λµj

≤ sup
λj<α

{λµj }
∑
λj<α

< β, vj >
2

λµj

≤ αµ
∑
λj<α

< β, vj >
2

λµj
.

since, ||X||2 = Op(1) and assumption A4 hold, we obtain the result.
Upper bound of the estimation error.
Under the model condition, if assumptions A1 - A4 hold, we obtain the following

result :

E
[
||β̂PCAm − βPCAm ||2|X

]
= Op

(
m

nλm

)
(1.36)

and

E
[
||β̂SCα − βSCα ||2|X

]
= Op

(
1

nα2

)
(1.37)

Proof for FPCA.
Note that Ĉxy = 1

n

∑n
i=1Xi(t)Yi = K̂β + Ĉxε where, Ĉxε = 1

n

∑n
i=1Xi(t)εi and Cxy =

Kβ. Hence, we have

β̂PCAm − βPCAm =
m∑
j=1

1

λ̂j
< Ĉxy, v̂j > v̂j −

m∑
j=1

1

λj
< Cxy, vj > vj

=
m∑
j=1

1

λ̂j
< K̂(β), v̂j > v̂j −

m∑
j=1

1

λj
< K(β), vj > vj +

m∑
j=1

1

λ̂j
< Ĉxε, v̂j > v̂j

=
m∑
j=1

< β, v̂j > v̂j −
m∑
j=1

< β, vj > vj +
m∑
j=1

1

λ̂j
< Ĉxε, v̂j > v̂j.

Then, we have
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||β̂PCAm − βPCAm ||2 ≤ 2||
m∑
j=1

< β, v̂j > v̂j −
m∑
j=1

< β, vj > vj||2 + 2||
m∑
j=1

1

λ̂j
< Ĉxε, v̂j > v̂j||2

≤ 2||
m∑
j=1

< β, v̂j > v̂j −
m∑
j=1

< β, vj > vj||2 + 2
m∑
j=1

1

λ̂2
j

< Ĉxε, v̂j >
2

Let us defineB1 = ||
∑m

j=1 < β, v̂j > v̂j−
∑m

j=1 < β, vj > vj||2 and B2 = E
[∑m

j=1
1

λ̂2j
<

Ĉxε, v̂j >
2

]
. Then, under the conditions B1 and B2, we have

B1 = ||
m∑
j=1

< β, v̂j > v̂j −
m∑
j=1

< β, vj > vj||2 = Op

(
1

n

)
by Propositions 3 and 7 of Dauxois et al. (1982). Moreover, we have

E
[ m∑
j=1

1

λ̂2
j

< Ĉxε, v̂j >
2 |X

]
=

m∑
j=1

E
[

1

λ̂2
j

< Ĉxε, v̂j >
2 |X

]

=
m∑
j=1

1

λ̂2
j

E
[
< Ĉxε, v̂j >

2 |X
]
.

Furthermore,

E[< Ĉxε, v̂j >
2 |X] = E

[ ∫
S

(v̂j(t)
1

n

n∑
i=1

(Xi(t)− X̄(t))εi)dt

∫
S

(v̂j(s)
1

n

n∑
l=1

(Xl(s)− X̄(s))εl)ds|X
]

=

∫
S

∫
S

v̂j(t)E
[
(
1

n

n∑
i=1

(Xi(t)− X̄(t))εi)(
1

n

n∑
l=1

(Xl(s)− X̄(s))εl)

]
v̂j(s)dsdt

=

∫
S

∫
S

v̂j(t)

[
σ2

n

n∑
i=1

Xi(t)Xl(s)

]
v̂j(s)dsdt

=
σ2

n
< v̂j, K̂(v̂j) >

=
σ2λ̂j
n

.

(1.38)

Therefore,
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E
[ m∑
j=1

1

λ̂j
< Ĉxε, v̂j >

2 |X
]

=
m∑
j=1

1

λ̂j
E
[
< Ĉxε, v̂j >

2 |X
]

=
σ2

n

n∑
j=1

1

λ̂j

≤ σ2

n

m

λ̂m
.

In addition, λ̂m is a consistent estimator of λm, we have

mσ2

nλ̂m
= Op

(
mσ2

nλm

)
.

Then, the estimation error has the following rate of convergence.

||β̂PCAm − βPCAm ||2 = Op

(
mσ2

nλm

)
. (1.39)

Proof for FSC.
Using the same logic as with FPCA method, we have

β̂SCα − βSCα =
∑
λ̂j≥α

1

λ̂j
< Ĉxy, v̂j > v̂j −

∑
λj≥α

1

λj
< Cxy, vj > vj

=
∑
λ̂j≥α

< β, v̂j > v̂j −
∑
λj≥α

< β, vj > vj +
∑
λ̂j≥α

1

λ̂j
< Ĉxε, v̂j > v̂j.

Then, we have

||β̂SCα − βSCα ||2 ≤ 2||
∑
λ̂j≥α

< β, v̂j > v̂j −
∑
λj≥α

< β, vj > vj||2 + 2||
∑
λ̂j≥α

1

λ̂j
< Ĉxε, v̂j > v̂j||2

≤ 2||
∑
λ̂j≥α

< β, v̂j > v̂j −
∑
λj≥α

< β, vj > vj||2 + 2
∑
λ̂j≥α

1

λ̂2
j

< Ĉxε, v̂j >
2 .

Let us define D1 and D2 by D1 = ||
∑

λ̂j≥α < β, v̂j > v̂j −
∑

λj≥α < β, vj > vj||2 and

D2 = E
[∑

λ̂j≥α
1

λ̂2j
< Ĉxε, v̂j >

2 |X
]
.

Then,
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D2 = E
[ ∑
λ̂j≥α

1

λ̂2
j

< Ĉxε, v̂j >
2 |X

]

≤ 1

α2

∑
λ̂j≥α

E
[
< Ĉxε, v̂j >

2 |X
]

≤ σ2

nα2

n∑
j=1

λ̂j

≤ σ2

nα2

= Op

(
1

nα2

)
.

Then, D2 = Op

(
1
nα2

)
. The third line holds following Equation (1.38). The last line holds

since
∑n

j=1 λ̂j <∞.
Now we will prove that

D1 = ||
∑
λ̂j≥α

< β, v̂j > v̂j −
∑
λj≥α

< β, vj > vj||2 = Op

(
1

α2n

)
.

This term is treated using an approach similar to that of Proof of Proposition 2 by
Carrasco and Rossi (2016). Let us define Iα = {j : λj ≥ α} and Îα = {j : λ̂j ≥ α}.
Without loss of generality, let us assume that Iα ⊂ Îα. Let us define D3 = ||

∑
λ̂j≥α <

β, v̂j > v̂j −
∑

λj≥α < β, vj > vj||2. Then,

D3 =

∣∣∣∣∣∣∣∣∑
j∈Iα

< β, v̂j > v̂j +
∑

j∈Îα−Iα

< β, v̂j > v̂j −
∑
j∈Iα

< β, vj > vj

∣∣∣∣∣∣∣∣2

≤ 2

∣∣∣∣∣∣∣∣∑
j∈Iα

< β, v̂j > v̂j −
∑
j∈Iα

< β, vj > vj

∣∣∣∣∣∣∣∣2 + 2

∣∣∣∣∣∣∣∣ ∑
j∈Îα−Iα

< β, v̂j > v̂j

∣∣∣∣∣∣∣∣2.
According to Propositions 3 and 7 of Dauxois et al. (1982), the projection operator on
the eigenspace associated with the same eigenvalue λj,

∑
j∈Ii < φ̂j, . > φ̂j converges to∑

j∈Ii < φj, . > φj at the
√
n rate.

Furthermore,
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|Iα| =
∑
j

I(λj ≥ α)

=
∑
j

λj
λj
I(λj ≥ α)

≤ 1

α

∑
j

λjI(λj ≥ α)

≤ 1

α

∞∑
j=1

λj.

As
∑∞

j=1 λj <∞, we have |Iα| = O( 1
α

) and therefore

∣∣∣∣∣∣∣∣∑
j∈Iα

< ., v̂j > v̂j −
∑
j∈Iα

< ., vj > vj

∣∣∣∣∣∣∣∣2 = Op

(
|Iα|2

n

)
= Op

(
1

α2n

)
.

Remark. For this proof, the eigenvalues are not necessarily distinct.
Moreover,

∣∣∣∣∣∣∣∣ ∑
j∈Îα−Iα

< β, v̂j > v̂j

∣∣∣∣∣∣∣∣2 =
∑

j∈Îα−Iα

< β, v̂j >
2

≤ |Îα − Iα|Sup
j
{< β, v̂j >

2}

and |Îα − Iα| = Op

(
1√
n

)
since |λ̂j − λj| = Op

(
1√
n

)
. Then,

||
∑

j∈Îα−Iα

< β, v̂j > v̂j||2 = Op

(
1

n

)
.

and therefore D1 = Op

(
1
α2n

)
+Op

(
1
n

)
= Op

(
1
α2n

)
.

We conclude that ∣∣∣∣∣∣∣∣β̂SCα − βSCα ∣∣∣∣∣∣∣∣2 = Op

(
1

nα2

)
. (1.40)

By combining the upper bound of the squared bias and the estimation error, we obtain
the convergence rate of the conditional MSE for both methods.
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Proof of Proposition 2.
We have

∣∣∣∣∣∣∣∣βPLSm − β
∣∣∣∣∣∣∣∣2 =

∞∑
j=1

(1−Qm,j)
2 < β, vj >

2

≤
∞∑
j=1

Q2
m(λj) < β, vj >

2

≤
∞∑
j=1

[ ∑
(j1,...,jm)∈I+

wj1,...,jm

m∏
l=1

(1− λj
λjl

)

]2

< β, vj >
2

≤
∞∑
j=1

sup
(j1,...,jm)∈I+

m∏
l=1

(
1− λj

λjl

)2

< β, vj >
2

≤
∞∑
j=1

m∏
l=1

(
1− λj

λl

)2

< β, vj >
2

because for j = 1, ...,m,
∏m

l=1

(
1 − λj

λl

)2

= 0, while for j ≥ m + 1, we have 0 ≤

∏m
l=1

(
1− λj

λl

)2

≤ 1, because all of the eigenvalues are nonzero ordered in such a way that

λ1 > λ2 > .... > λm > λm+1 > ... > 0. We should also recall that 0 ≤ wj1,...,jm ≤ 1, with∑
(j1,...,jm)∈I+m wj1,...,jm = 1. The last inequality follow from the fact that the eigenvalues

are all distinct and

sup
(j1,...,jm)∈I+

m∏
l=1

(
1− λj

λjl

)2

=
m∏
l=1

(
1− λj

λl

)2

≤ 1.

Therefore, we have

∣∣∣∣∣∣∣∣βPLSm − β
∣∣∣∣∣∣∣∣2 =

∞∑
j=1

(1−Qm,j)
2 < β, vj >

2

≤
∞∑
j=1

m∏
l=1

(
1− λj

λl

)2

< β, vj >
2

≤
∞∑

j=m+1

< β, vj >
2

=

∣∣∣∣∣∣∣∣βPCAm − β
∣∣∣∣∣∣∣∣2.
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Then,
∣∣∣∣∣∣∣∣βPLSm − β

∣∣∣∣∣∣∣∣2 ≤ ∣∣∣∣∣∣∣∣βPCAm − β
∣∣∣∣∣∣∣∣2 and∣∣∣∣∣∣∣∣βPLSm − β

∣∣∣∣∣∣∣∣2 = Op

(
λµm+1

)
,

We should point out that this is an adaptation of the results of Carrasco and Rossi
(2016) for the functional regression model.

Lemma 1.
Let m (1 ≤ m ≤ n) be the number of selected components for the FPLS method.

Then, we have :
(i) The residual polynomial Q̂m has exactly m distinct roots denoted by (θ̂l)l=1,...m with
θ̂1 > θ̂2 > ... > θ̂m > 0.
(ii) Qm is positive, decreasing, and convex on the interval [0, θ̂m).
(iii) Let us define the function ϕm on the interval [0, θ̂m) as

ϕm(t) = Q̂m(t)

(
θ̂m

θ̂m − t

)1/2

.

Then, we have Q̂m(0) = 1,

||Qm(K̂)(T ∗n(Y ))|| ≤ ||(I − Π̂θ̂m
){ϕm(K̂)(T ∗n(Y ))}||,

and for any nonnegative real number γ ≥ 0, we have

Sup
t∈[0,θ̂m]

|tγϕ2
m(t)| ≤ γγ|Q̂′m(0)|−γ,

Sup
t∈[0,θ̂m]

|ϕm(t)| ≤ 1,

where Π̂θ̂m
φ =

∑n
j=1,λ̂j<θ̂m

< φ, v̂j > v̂j is the orthogonal projection on the eigenfunctions
v̂j of K̂ related to the eigenvalues 0 < λ̂j < θ̂m. Then (I − Π̂θ̂m

) is orthogonal projection
onto the space spanned by the eigenfunctions v̂j of K̂ related to the eigenvalues λ̂j > θ̂m.
(iv) λ̂1 > θ̂1 ≥ ... ≥ θ̂m > 0

(v) θ̂j < λ̂j, j = 1, ...,m

(vi) Each interval (θ̂j+1, θ̂j) contains at least one eigenvalue λ̂j+1, j = 1, ...,m.
(vii) Let us denote Q̂(2)

0 , Q̂(2)
1 , ..., Q̂(2)

n the unique sequence of orthogonal polynomials with
respect to the polynomial norm [., .](1) and with constant term equal to 1. This sequence
of polynomials satisfies properties (i) and (ii) above with (θ̂

(2)
j )1≤j≤m denoting the roots

of Q̂(2)
m such that θ̂(2)

1 > θ̂
(2)
2 > ... > θ̂

(1)
m . Then it holds that θ̂m ≤ θ̂

(2)
m and the Christoffel

- Darboux identity is given by
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0 ≤ Q̂
′

m−1(0)− Q̂′m(0) =
[Q̂m−1, Q̂m−1]− [Q̂m, Q̂m]

[Q̂
(2)
m−1, Q̂

(2)
m−1](1)

≤ [Q̂m−1, Q̂m−1]

[Q̂
(2)
m−1, Q̂

(2)
m−1](1)

. (1.41)

(viii) |Q̂′m(0)|−1 ≤ θ̂m, where θ̂m is the smallest root of Q̂m.

Proof of Lemma 1.
For the proofs of results (i), (ii), (iii), (vii), see (i), (ii), (iii) and (iv) in Lemma 5.2 of
Blanchard and Krämer (2016). For the proofs of (iv), (v), and (vi), see the Theorem 2 of
Lingjaerde and Christophersen (2000).

Proof of (viii) : Given Q̂m(0) = 1, we can write Q̂m(t) as

Q̂m(t) =
m∏
j=1

(
1− t

θ̂j,m

)
,

where t is an arbitrary constant and θ̂j,m are the roots of Q̂m(t) ordered in decreasing
order θ̂m,m < θ̂m−1,m < ... < θ̂1,m. Then, we can see that

|Q̂′m(0)| =
m∏
j=1

1

θ̂j,m
≥ 1

θ̂m,m
.

Hence Q̂
′
m(0)−1 ≤ θ̂m,m. The result follows by denoting θ̂m,m as θ̂m to simplify the

notations.

Lemma 2.
If (Xi, Yi)i=1...n are i.i.d with

∫ 1

0
E[X2(s)]ds < +∞ and (εi)i=1...n respect the

homoskedasticity and the exogeneity conditions, then

E

[
||T ∗n(ε)||2

]
=
A0

n
,

where A0 = σ2
∫
S
E[X2

i (t)]dt.

Proof of Lemma 2.
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E

[
||T ∗n(ε)||2

]
= E

[
|| 1
n

n∑
i=1

Xiεi||2
]

= E

[
1

n2

∫
S

( n∑
i=1

Xi(s)εi

)2

ds

]
= E

[
1

n2

∫
S

( n∑
i=1

n∑
j=1

Xi(s)Xj(s)εiεj

)
ds

]

=
1

n2

n∑
i=1

n∑
j=1

∫
S

E

[
Xi(s)Xj(s)εiεj

]
ds

=
1

n2

n∑
i=1

∫
S

E

[
X2
i (s)ε2

i

]
ds

=
1

n2

n∑
i=1

σ2

∫
S

E[X2
i (s)]ds

=
σ2

n2

n∑
i=1

∫
S

E[X2
i (s)]ds

=
A0

n
,

where A0 = σ2
∫
S
E[X2

i (s)]ds < +∞. Then,

E

[
||T ∗n(ε)||2

]
=
A0

n
.

Passing from the third to the fourth line is possible since we have
∫ 1

0
E[X2(s)]ds <

+∞. The fifth line is possible because of the exogeneity condition. The sixth line is true
following the homoskedasticity condition.

Lemma 3. For m > 0, we have∥∥∥T ∗nY − T ∗nTnβ̂PLSm

∥∥∥ ≤ √A0√
n

+ CQ̂′m (0)−
µ+2
2 .

Proof of Lemma 3.
We have

T ∗nY − T ∗nTnβ̂PLSm = T ∗nY − T ∗nTnPm (T ∗nTn)T ∗nY

= Q̂m (T ∗nTn)T ∗nY .

Following Lemma 1(iii) where the function ϕm has been defined (see also Blanchard and
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Krämer (2016), Lemma 5.2), we have∥∥∥Q̂m (T ∗nTn)T ∗nY
∥∥∥ ≤ ∥∥∥Πθ̂m

ϕm

(
K̂
)
T ∗nY

∥∥∥
≤

∥∥∥Πθ̂m
ϕm

(
K̂
)
T ∗nTnβ

∥∥∥+
∥∥∥Πθ̂m

ϕm

(
K̂
)
T ∗nε
∥∥∥ .

As 0 < ϕ (λ) ≤ 1 for 0 < λ < θ̂m, we have∥∥∥Πθ̂m
ϕm

(
K̂
)
T ∗nε
∥∥∥ ≤ ‖T ∗nε‖ =

√
A0√
n
.

On the other hand,∥∥∥Πθ̂m
ϕm

(
K̂
)
T ∗nTnβ

∥∥∥ =
∥∥∥Πθ̂m

ϕm

(
K̂
)
T ∗nTn (T ∗T )µ/2w

∥∥∥
=

∥∥∥Πθ̂m
ϕm

(
K̂
)
T ∗nTn (T ∗nTn)µ/2w

∥∥∥+

√
A0√
n
.

Moreover, by Lemma 1(iii), we have∥∥∥Πθ̂m
ϕm

(
K̂
)
T ∗nTn (T ∗nTn)µ/2w

∥∥∥ ≤ sup
t<θ̂m

t
µ
2

+1ϕm (t) ‖w‖

≤ CQ̂′m (0)−
µ+2
2 .

Where C is a positive constant. Therefore, the result follows.
Lemma 4.
Under the conditions A1-A4, if the stopping rule holds, then

|Q̂′m(0)| ≤ Cn1/(µ+2). (1.42)

Proof of lemma 4.
We can set without loss of generality, m ≥ 1, since Q̂′0(x) = 0. By the stopping rule

and Lemma 3, we have

τ
√
A0√
n

< ||T ∗n(Y − Tn(β̂m−1))|| ≤
√
A0√
n

+ C|Q̂′m−1(0)|−
µ+2
2 , (1.43)

where C is a positive constant. For m = 1, the inequality (1.42) always holds since the
right hand side of the previous equation is +∞.
For m > 1, Equation (1.43) implies

|Q̂′m−1(0)| ≤ Cn1/(µ+2)

for some positive constant C.
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We have

Q̂
′

m(0) = Q̂
′

m(0)− Q̂′m−1(0) + Q̂
′

m−1(0),

then

|Q̂′m(0)| ≤ |Q̂′m(0)− Q̂′m−1(0)|+ |Q̂′m−1(0)|.

Therefore, it is sufficient to prove that |Q̂′m(0) − Q̂
′
m−1(0)| ≤ Cn1/(µ+2) for some

positive constant C.
According to Equation (22) of Lemma 1 of Blanchard and Krämer (2016), we have

|Q̂′m(0)− Q̂′m−1(0)| ≤ [Q̂m−1, Q̂m−1]

[Q̂
(2)
m−1, Q̂

(2)
m−1](1)

Let a be such that 0 < a < θ̂m−1, then we have

[Q̂m−1, Q̂m−1] = ||Q̂m−1(K̂)T ∗nY ||2

≤ ||Q̂(2)
m−1(K̂)T ∗nY ||2

≤ 2||Π̂aQ̂
(2)
m−1(K̂)T ∗nY ||2 + 2||(I − Π̂a)K̂

−1/2K̂1/2Q̂
(2)
m−1(K̂)T ∗nY ||2

≤ 2 sup
t∈[0,a]

{Q̂(2)
m−1(t)}||Π̂aT

∗
nY ||2 + 2

1

a
||(I − Π̂a)K̂

1/2Q̂
(2)
m−1(K̂)T ∗nY ||2

≤ 2||Π̂aT
∗
nY ||2 +

1

a
[Q̂

(2)
m−1, Q̂

(2)
m−1](1).

The second line holds since that Q̂m−1 is the unique polynomial of at most m − 1

degrees with constant 1 that minimizes the residual in the class of all the polynomials of
the same degree. For the fourth and fifth lines, we have used the fact |Q̂(2)

m−1(t)| < 1 for
t ∈ [0, a] and a is such that 0 < a < θ̂m−1. The first term on the right hand side of the
last inequality can be bounded as follows
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||Π̂aT
∗
nY || ≤ ||Π̂aT

∗
n(Y − Tnβ)||+ ||Π̂aT

∗
nTnβ||

≤ ||Π̂aT
∗
nε||+ ||Π̂aK̂K

µ/2w||
≤ ||Π̂aT

∗
nε||+ ||Π̂aK̂K̂

µ/2w||+ ||Π̂aK̂(Kµ/2 − K̂µ/2)w||

≤
√
A0√
n

+

{
Sup
t∈[0,a]

{|t
µ
2

+1|}
}
||w||+

{
Sup
t∈[0,a]

{|t|}
}
||Kµ/2 − K̂µ/2||op||w||

≤
√
A0√
n

+ a
µ
2

+1||w||+ C3a√
n
||w||

≤
√
A0√
n

+ a
µ
2

+1||w||,

where C3 is some positive constant. Let us choose a such that a =

(
√
A0Ca
||w||
√
n

)2/(µ+2)

with

Ca sufficiently small such that 0 < Ca < τ−1 to ensure that 0 < a < |Q̂′m−1(0)|−1 < θ̂m−1.

By the stopping rule in Equation (1.29), we have
(
τ
√
A0√
n

)2

≤ [Q̂m−1, Q̂m−1]. Then we

obtain

||Π̂aT
∗
nY || ≤

√
A0√
n

+

(
Ca
√
A0

||w||
√
n

)
||w||

≤ 1

τ

(
1 + Ca

)
[Q̂m−1, Q̂m−1]1/2.

Therefore,

[Q̂m−1, Q̂m−1] ≤ 1

τ 2

(
1 + Ca

)2

[Q̂m−1, Q̂m−1] + a−1[Q̂
(2)
m−1, Q̂

(2)
m−1](1).

Then, (
1− (1 + Ca)

2

τ 2

)
[Q̂m−1, Q̂m−1] ≤ a−1[Q̂

(2)
m−1, Q̂

(2)
m−1](1).

This implies with our choice of a,

[Q̂m−1, Q̂m−1]

[Q̂
(2)
m−1, Q̂

(2)
m−1](1)

≤ C1a
−1.

≤ C0n
1/(µ+2).

where C0 > 0 is some constant. Then we obtain
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|Q̂′m(0)− Q̂′m−1(0)| ≤ C0n
1/(µ+2).

This concludes the proof.

Proof of Theorem 3.
Proof of the second result of Theorem 3.
Let us denote by

Πaφ =
∞∑

j=1,λj<a

< φ, vj > vj,

and

Π̂aφ =
∞∑

j=1,λ̂j<a

< φ, v̂j > v̂j

the orthogonal projection onto the eigenvectors of the covariance operatorK (respectively
K̂) for which the corresponding eigenvalues λj (λ̂j) are smaller than a, where a is a
positive number. In the sequel, we choose a such that 0 < a ≤ |Q̂′m(0)|−1. Let us consider
the following function β̃PLSm defined by

β̃PLSm = P̂m(K̂)K̂β

We have

||β̂PLSm − β|| ≤ ||Π̂a(β̂
PLS
m − β)||+ ||(I − Π̂a)(β̂

PLS
m − β)||

≤ ||Π̂a(β̂
PLS
m − β̃PLSm )||+ ||Π̂a(β̃

PLS
m − β)||+ ||(I − Π̂a)(β̂

PLS
m − β)||.

where (I − Π̂a) is the orthogonal projection on the space spanned by {v̂j; λ̂j > a}. Let
us define (I), (II) and (III) by (I) = ||Π̂a(β̂PLS − β̃PLS)||, (II) = ||Π̂a(β̃PLS − β)|| and
(III) = ||(I − Π̂a)(β̂PLS − β)|| respectively.

We will derive the upper bound rate of the three terms (I), (II), and (III).
Upper bound rate of (I) :
We have

(I) = ||Π̂a(β̂
PLS
m − β̃PLSm )||

= ||Π̂aP̂mK̂T
∗
nY − P̂m(K̂)K̂β||

= ||Π̂a{P̂m(K̂)T ∗nε}||

≤
∣∣∣∣∣∣∣∣Π̂aP̂m(K̂)

∣∣∣∣∣∣∣∣||T ∗nε||.
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with ‖T ∗nε‖ = Op

(√
A0√
n

)
and∥∥∥Π̂aP̂m(K̂)

∥∥∥ ≤ sup
t∈[0,a]

∣∣∣P̂m(t)
∣∣∣ .

Since |Q̂′m(0)|−1 ≤ θ̂m, we have a ≤ θ̂m. As Q̂m is convex on [0,a], we have

P̂m(t) =
1− Q̂m(t)

t
≤ −Q̂′m (0) .

On the other hand, we have

|Q̂′m(0)| = |Q′m(0)|+ op

(
1√
n

)
which follows from the mean-value theorem since Q̂′m is a continuously differentiable
function of K̂ and T ∗nY , which are consistent estimators of K and Kβ. Then,

(I) = Op

(
1√
n
|Q′m(0)|

)
.

Upper bound rate of (II) :
We have

(II) = ||Π̂a(β̃
PLS
m − β)||

= ||Π̂a{P̂m(K̂)K̂β − β}||
= ||Π̂aQ̂m(K̂)β||
= ||Π̂aQ̂m(K̂)Kµ/2w||
= ||Π̂aQ̂m(K̂)[Kµ/2 − K̂µ/2 + K̂µ/2](w)||
≤ ||Π̂aQ̂m(K̂)K̂µ/2w||+ ||Π̂aQ̂m(K̂)[Kµ/2 − K̂µ/2]w||

≤
{
Sup
t∈[0,a]

|tµ/2Q̂m(t)|
}
||w||+

{
Sup
t∈[0,a]

|Q̂m(t)|
}
||Kµ/2 − K̂µ/2||op||w||

= Op

(
aµ/2

)
+Op

(
1√
n

)
.

This is possible given that 0 ≤ Sup
t∈[0,a]

|tµ/2Q̂m(t)| ≤ aµ/2 see (ii) of Lemma 1. Moreover,

||w|| < +∞, and ||Kµ/2 − K̂µ/2||op = Op

(
1√
n

)
, then

(II) = Op

(
aµ/2

)
+Op

(
1√
n

)
.

Upper bound rate of (III) :
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We have

(III) = ||(I − Π̂a)(β̂
PLS
m − β)||

= ||(I − Π̂a)K̂
+K̂P̂m(K̂)(T ∗nY − β)||

≤ ||(I − Π̂a)K̂
+||||(I − Π̂a)K̂P̂m(K̂)(T ∗nY − β)||

≤ 1

a
||(I − Π̂a)K̂P̂m(K̂)(T ∗nY − K̂β)||

≤ 1

a
||T ∗nŴnP̂m(Wn)(Y − Tnβ)||

≤ 1

a
||T ∗nŴn(P̂m(Wn)Y − Tnβ)||

≤ 1

a
||T ∗n(ŴnP̂m(Wn)Y − Y + Y − Tnβ)||

≤ 1

a
||T ∗nQ̂m(Wn)Y ||+ 1

a
||T ∗n(Y − Tnβ)||

≤ 1

a

∣∣∣∣∣∣∣∣T ∗n(Y − Tnβ̂PLSm )

∣∣∣∣∣∣∣∣+
1

a
||T ∗nε||

≤ 2C

a
Λm.

where K̂+ is the generalized inverse of K̂ using the PCA regularization, Λm =

max{||T ∗n(Y − Tnβ̂m)||,
√
A0√
n
} and K̂ = T ∗nTn and Wn = TnT

∗
n . The fourth and fifth

line are possible given that K̂ = T ∗nTn and Wn = TnT
∗
n . The eighth line holds since

Q̂m(Wn)Y = ŴnP̂mWnY − Y and ε = Y − Tnβ. The last line comes from the fact that
||T ∗nε|| =

√
A0√
n
.

Combining the upper bound from (I), (II), and (III) leads to the following result

||β̂PLSm − β|| = Op

(
aµ/2

)
+Op

(
1√
n
|Q̂′m(0)|

)
+Op

(
2

a
Λm

)
.

Now, let us consider the function g defined as

g(a) = aµ/2 +
2

a
Λm +

1√
n
|Q̂′m(0)|

Then, g is differentiable and admit a minimum at a value a∗ such that g′(a∗) = 0. This

leads to a
µ+2
2
∗ = Λm

µ
. Then a∗ =

(
4Λm
µ

)2/(µ+2)

.

Since a ∈ (0, |Q̂′m(0)|−1], we need to consider 2 cases : a∗ < |Q̂
′
m(0)|−1 and a∗ >

|Q̂′m(0)|−1.
Case 1 : let a∗ < |Q̂

′
m(0)|−1

Then, the minimum is attained at a∗ and we have
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||β̂PLSm − β|| ≤ C

(
aµ/2∗ +

2Λm

a∗
+

1√
n
|Q̂′m(0)|

)
≤ C

(
Λµ/(µ+2)
m + Λm|Q̂

′

m(0)|
)
.

Case 2 : let a∗ > |Q̂
′
m(0)|−1

Then, the minimum is attained at |Q̂′m(0)|−1 and we have

||β̂PLSm − β|| ≤ C

[
|Q̂′m(0)|−µ/2 + 2|Q̂′m(0)|Λm +

1√
n
|Q̂′m(0)|

]
≤ C

[
aµ/2∗ + 2|Q̂′m(0)|Λm + Λm|Q̂

′

m(0)|
]

≤ C

[
aµ/2∗ + 3|Q̂′m(0)|Λm

]
≤ C

[
Λµ/(µ+2)
m + 3|Q̂′m(0)|Λm

]
.

Then, considering both cases, we obtain

||β̂PLSm − β|| ≤ C

[
Λµ/(µ+2)
m + 3|Q̂′m(0)|Λm

]
Till now, we have not used the stopping rule. Let us denote m (n) the value of m

corresponding to∥∥∥T ∗n (Y − Tnβ̂PLSm(n)

)∥∥∥ ≤ τ
√
A0√
n
≤
∥∥∥T ∗n (Y − Tnβ̂PLSm(n)−1

)∥∥∥ . By the definition of Λm, we

have Λm(n) ≤ τ
√
A0√
n
.

Moreover by Lemma 4, we have∣∣Q′m(n) (0)
∣∣ ≤ √n 2

µ+2 .

Then, we obtain the result

||β̂PLSm − β|| = Op

(√
n
− µ
µ+2

)
.

Proof of the first result of Theorem 3.
For each a such that 0 < a ≤ |Q′m(0)|−1 ≤ θm, and using the alternative upper bound of
(II) we obtain

||β̂PLSm − β||2 = Op

(
||Π̂a(β)||2

)
+Op

(
1

n
|Q′m(0)|2

)
+Op

(
1

a2
Λ2
m

)
.
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by taking a = |Q′m(0)|−1, we have

||β̂PLSm − β||2 = Op

(
||Π̂|Q′m(0)|−1(β)||2

)
+Op

(
1

n
|Q′m(0)|2

)
+Op

(
1

|Q′m(0)|−2
Λ2
m

)
= Op

(
||Π̂|Q′m(0)|−1(β)||2

)
+Op

(
1

n
|Q′m(0)|2

)
+Op

(
1

n
|Q′m(0)|2

)
= Op

( ∞∑
λj<θm

< β, vj >
2

)
+Op

(
1

n

( m∑
l=1

1

θl

)2)

= Op

( ∞∑
j=m+1

< β, vj >
2

)
+Op

(
m2

nθ2
m

)
= Op

(
λγm+1

)
+Op

(
m2

nθ2
m

)
.

The first term is the bias term and the second one is the variance. The second line
hold since 0 < a ≤ |Q′m(0)|−1 ≤ θm and |Q′m(0)| =

∑m
l=1

1
θl
. Also, the third term of the

second line holds since following the stopping rule, we have Λ2
m ≤ A0τ

n
. The third line

hold following that λ̂m+1 ≤ θ̂m. The last line is possible given that
∑∞

j=m+1 < β, vj >
2=

||βPCAm −β||2 = Op

(
λγm+1

)
, combined with the fact that λm+1 is the largest eigenvalue of

K that is smaller than θm (see (iii) of Lemma 1). Therefore, ||βPLSm − β||2 = Op

(
λγm+1

)
.

Proof of Theorem 4.
We have β = Kµ/2w with ||w|| <∞. Let us consider the Jacobi polynomial defined as

ψm(t) = Q
(µ
2

+1)
m

(
t

λ̂1

)
where Q(µ

2
+1)

m is the residual polynomial related to the considered functional linear model
with the norm [., .](µ

2
+1). Following theorem 6.12 of Engl et al. (1996), ψm is the m-th

residual polynomial with the norm [., .](µ
2

+1) and we have |ψm(t)| < 1 and |tµ2 +1ψm(t)| ≤
cm−µ−2.

For each t such that 0 < t < λ̂1,
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||T ∗n(Y − Tn(β̂m))|| = ||Q̂m(K̂)T ∗nY ||
≤ ||ψm(K̂)T ∗nY ||
≤ ||ψm(K̂)T ∗n(Y − T ∗nβ)||+ ||ψm(K̂)T ∗nTnβ||

≤
{
Sup
t
|ψm(t)|

}
||T ∗nε||+ ||ψm(K̂)K̂Kµ/2w||

≤
{
Sup
t
|ψm(t)|

}
||T ∗nε||+ ||ψm(K̂)K̂(K̂µ/2(w))||+ ||ψm(K̂)K̂[K̂µ/2 −Kµ/2]w||

≤
{
Sup
t
|ψm(t)|

}
||T ∗nε||+

{
Sup
t
|t
µ
2

+1ψm(t)|
}
||w||

+

{
Sup
t
|tψm(t)|

}
||K̂µ/2 −Kµ/2||op||w||.

We have ||T ∗nε|| =
√
A0√
n
, Sup

t
|tµ2 +1ψm(t)| < c1m

−µ−2, Sup
t
|tψm(t)| < c2m

−2 and |ψm(t)| < 1

with c1, c2 > 0. Then,

||T ∗n(Y − Tnβ̂m)|| ≤
[√

A0√
n

+ c1m
−µ−2 + c2

m−2

√
n

]
.

Then ||T ∗n(Y − Tnβ̂m)|| ≤ τ
√
A0√
n

if
[

1√
n

+ c1m
−µ−2 + c2

m−2
√
n

]
≤ τ

√
A0√
n
, which leads to

c1m
−µ−2 ≤ (τ−1)

√
A0√

n
and hence, mPLS ≤ cn1/(2µ+4) for some c > 0.

Now we want to show the inequality mPLS ≥ cn1/(2µ+4) with c > 0. Let us consider
ν > 0 be an arbitrary real value such that β = K(µ+ν)/2(w) for all ν > 0. Assume that
Y ν and X are chosen such that

||T ∗n(Y − Tnβ̂PLSm )||w = [Q̂m, Q̂m](µ
2

+ 1
2

+ ν
2

).

=

∫
S

Q̂2
m(t)wµ

2
+ 1

2
+ ν

2
(t)dt.

is minimized among all possible residual polynomials of degree m with wµ
2

+ 1
2

+ ν
2
(t) =

t2(µ
2

+ ν
2

)(1− t)−1/2. Then ||T ∗n(Y − Tn(β̂PLSm ))||2 is given by the m-th Christoffel function
associated with the Jacobi weight wµ

2
+ 1

2
+ ν

2
(t) (see Equation (A.20) by Engl et al. (1996)).

Following Equation (A.11) by Engl et al. (1996), we have

||T ∗n(Y − Tn(β̂PLSm ))||wµ
2 +1

2+ ν2

= Λm(0, wµ
2

+ 1
2

+ ν
2
) ∼ m−(µ+ν)−2.

Then, the stopping rule is satisfied if
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||T ∗n(Y − Tn(β̂PLSm ))||wµ
2 +1

2+ ν2

≤ τ
√
A0√
n
.

This implies that m−(µ+ν)−2 ∼ τ
√
A0√
n

and therefore m ∼ n1/(2(µ+ν)+4) for all ν > 0. Then,
for ν → 0 we obtain m ∼ Cn1/(2µ+4), with C > 0 being some constant. Hence, the best
possible uniform bound for m is n1/(2µ+4) if there is no extra information about the
configuration of the eigensystem of the covariance operator K.

Proof of Corollary 1.
Concerning FPCA :
We have

E
[(
f̂PCAm − f

)2

|X
]

= Op

(
λµm+1

)
+Op

(
m

nλm

)
.

If λj = O(j−2γ) with γ > 0 :
Then, when equating the squared bias and the variance term, we obtain

m−2µγ ≥ (m+ 1)−2µγ =
m

nm−2γ
.

This leads to

mpca ≤ n1/(2γ(µ+1)+1).

If λj = O(dj) with 0 < d < 1 :
Then, when equating the squared bias and the variance term, we obtain

d−µm ≤ d−µ(m+1) =
m

nd−m
.

By taking the log on both sides of the previous equation, we obtain

mpca ≤ c(1 + log(n)).

where c > 0 is an arbitrary positive number.
Concerning FPLS :
Q̂j≤m are the residual polynomial for the FPLS for the defined functional linear model.

Let us choose k ∈ N such that 0 ≤ k ≤ m and define

Ψk(λ) =
k∏
l=1

(
1− λ

λl

)
and take ψm−k to be the shifted Jacobi polynomial as
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ψm(λ) = G
µ
2

+1
m

(
λ

λ̂l

)
as

Gm(t) = Ψk(λ)ψm−k

(
λ̂1t

λ̂k+1

)
Gm is a polynomial of degree m and Gm(0) = 1. Then,

||T ∗n(Y − Tn(β̂PLSm ))|| = ||Q̂m(K̂)T ∗nY || ≤ ||Gm(K̂)T ∗nY ||.

As Gm(t) vanishes for all λ̂k+1 < t ≤ λ̂1 and Gm(t) ≤ ψm−k

(
λ̂1t

λ̂k+1

)
for 0 ≤ t ≤ λ̂k+1,

we have.

||T ∗n(Y − Tnβ̂PLSm )|| = ||Π̂λ̂m
Gm(K̂)T ∗nY ||

≤ ||Π̂λ̂k+1
Gm(K̂)T ∗nY ||

≤ ||Πλ̂k+1
Gm(K̂)T ∗n(Y − Tnβ)||+ ||Πλ̂k+1

Gm(K̂)(T ∗nTnβ)||

≤ ||Πλ̂k+1
Gm(K̂)T ∗nε||+ ||Πλ̂k+1

Gm(K̂)K̂Kµ/2w||

≤ ||Πλ̂k+1
Gm(K̂)T ∗nε||+ ||Πλ̂k+1

Gm(K̂)K̂Kµ/2w||

+

∣∣∣∣∣∣∣∣Πλ̂k+1
Gm(K̂)K̂

[
K̂µ/2 −Kµ/2

]
w

∣∣∣∣∣∣∣∣
≤
{
Sup|Gm(t)|

}
||T ∗nε||+

{
Sup|t

µ
2

+1Gm(t)|
}
||w||

+

{
Sup|t

µ
2

+1Gm(t)|
}∣∣∣∣∣∣∣∣K̂µ/2 −Kµ/2

∣∣∣∣∣∣∣∣
op

||w||

≤ ||T ∗n(ε)||+ Sup
t≤λ̂k+1

∣∣∣∣t (µ2 +1)ψm−k

(
λ̂1t

λ̂k+1

)∣∣∣∣
+ Sup

t≤λ̂k+1

∣∣∣∣tψm−k( λ̂1t

λ̂k+1

)∣∣∣∣∣∣∣∣∣∣∣∣K̂µ/2 −Kµ/2

∣∣∣∣∣∣∣∣
op

||w||

≤
√
A0√
n

+ C1λ̂
(µ+2

2
)

k+1 (m− k)−µ−2 + C2λ̂k+1(m− k)−2 1√
n
.

where C1, C2 > 0

If λj = O(j−2γ) :

We take k ∼ m
2
and obtain
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||T ∗n(Y − Tnβ̂PLSm )|| ≤
√
A0√
n

+ C1m
−(µ+2)(γ+1) + C2

m−2(γ+1)

√
n

.

Then, the stopping rule hold if C1m
−(2µ+1)(γ+1) ≤ τ

√
A0√
n

and therefore mpls ≤
cn1/(2µ+4)(γ+1), for some c > 0.

If λj = O(dj) with 0 < d < 1 :

We take k ∼ m and obtain

||T ∗n(Y − Tn(β̂PLSm ))|| ≤
√
A0√
n

+ C1d
(m+1)

(µ+2)
2 m−(µ+2) + C2d

(m+1)m−2 1√
n
.

Then, using the stopping rule, we obtain
√
A0√
n

+ C1d
(m+1)

(µ+2)
2 m−(µ+2) +

C2d
(m+1)m−2 1√

n
≤ τ

√
A0√
n
. Therefore, (m + 1)log(d) ≤ Clog(n) and we obtain the result.

C, C0 are arbitrary positive constant.

Proof of proposition 3.
We follow a similar approach to the proof of Theorem 1 in Cai et al. (2012). Remark

that any lower bound for a special case is also a lower bound for the general case.
Therefore, we consider the special case where εi|Xi is iid N (0, σ2) and the operator
K has eigenvalues λj = j−1. Note that as X is square integrable, the operator K is
necessarily trace-class which means that the eigenvalues λj = O(1/j) when j goes to
infinity. By taking λj = j−1, we are taking a limit-case where K is not nuclear any more.
It can be thought as the limit of the case λj = j−1−ε for ε > 0 arbitrarily small. LetM be
the smallest integer greater than c0n

1
(µ+2) where the constant c0 > 0 will be characterized

later on. Let γ be a positive constant to be specified below. We construct candidates for
β in the following manner. Let θ = (θM+1, ..., θ2M) ∈ Ω ≡ {0, 1}M and

βθ = γM−1/2

2M∑
j=M+1

θjK
µ/2vj

= γM−1/2

2M∑
j=M+1

θjλ
µ/2
j vj.

It is easy to see that βθ satisfies the source condition A4, indeed

∥∥K−µ/2βθ∥∥2
=

∥∥∥∥∥γM−1/2

2M∑
j=M+1

θjvj

∥∥∥∥∥
2

=
γ2

M

2M∑
j=M+1

θ2
j ≤ γ2 <∞
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because the eigenfunctions vj are orthonormal and θj are either 1 or 0.
For θ, ω ∈ RM , we denoteH (θ, ω) =

∑M
j=1 I {θj 6= ωj} the Hamming distance between

θ and ω. Note that when θ, ω ∈ Ω, then H (θ, ω) =
∑M

j=1 (θj − ωj)2 . An important
element of the proof is the application of Varshamov-Gilbert bound (see ?, Lemma 2.9).
This lemma states that for any M ≥ 8, there exists a subset Θ =

{
θ(0), ..., θ(N)

}
of

elements of Ω such that (a) θ(0) = (0, ...0) , (b) H
(
θ(j), θ(l)

)
≥ M

8
, for all 0 ≤ j < l ≤ N

and (c) N > 2M/8. In the sequel, we will consider only candidates βθ where θ ∈ Θ.

Now, we need to check Conditions (i) and (ii) of Theorem 2.5 of ?.
(i) The first condition we need to check is the following

‖βθ′ − βθ‖2 ≥ 4n−
µ
µ+2 (1.44)

for all couples (θ′, θ) ∈ Θ2 such that θ 6= θ′.

We have

‖βθ′ − βθ‖2 =

∥∥∥∥∥γM−1/2

2M∑
j=M+1

(
θ′j − θj

)
λ
µ/2
j vj

∥∥∥∥∥
2

=
γ2

M

2M∑
j=M+1

(
θ′j − θj

)2
λµj

≥ γ2λµ2M
1

M
H (θ′, θ)

≥ γ2

8
λµ2M

=
γ2 (2c0)−µ

8
n−

µ
µ+2 .

Theorefore, by taking c0 ≤ 1
2

(
γ2

32

) 1
µ , the inequality (1.44) is satisfied.

(ii) Let Pθ be the joint distribution of (Xi, Yi) , i = 1, 2, ..., n with β = βθ. Condition
(ii) of Theorem 2.5 of Tsybakov (2009) stipulates that Pθ(j) � Pθ(o) for all j = 1, ..., N

and
1

N

N∑
j=1

K (Pθ(j) , Pθ(0)) ≤ α lnN (1.45)

where 0 < α < 1/8 and K is the Kullback divergence.
For θ, θ′ ∈ Θ, we have

ln
Pθ
Pθ′

=
1

σ2

n∑
i=1

(Yi − 〈Xi, βθ〉) 〈Xi, βθ − βθ′〉 −
1

2σ2

n∑
i=1

〈Xi, βθ − βθ′〉2 .
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The Kullback divergence between Pθ and Pθ′ equals

K (Pθ, Pθ′) =
n

2σ2

∥∥K1/2 (βθ − βθ′)
∥∥2

=
n

2σ2

∥∥∥∥∥γM−1/2

2M∑
j=M+1

(
θ′j − θj

)
λ

(µ+1)/2
j vj

∥∥∥∥∥
2

=
n

2σ2

γ2

M

2M∑
j=M+1

(
θ′j − θj

)2
λ

(µ+1)
j

≤ n

2σ2
γ2λ

(µ+1)
M

1

M

2M∑
j=M+1

(
θ′j − θj

)2

≤ n

2σ2
γ2λ

(µ+1)
M

=
n

2σ2
γ2M−(µ+1)

≤ α ln
(
2M/8

)
where the last inequality is obtained by fixing α to an arbitrary value in

(
0, 1

8

)
and

choosing c0 ≥
(

4γ2

ασ2 ln 2

) 1
2+µ

. Indeed, we have

n

2σ2
γ2M−(µ+1) =

n

2σ2
γ2n−

µ+1
µ+2 c

−(µ+1)
0 =

γ2

2σ2
n

1
µ+2 c

−(µ+1)
0

and
α ln

(
2M/8

)
= α

M

8
ln 2 =

α ln 2

8
c0n

1
µ+2 .

Moreover, by Varshamov-Gilbert bound, ln
(
2M/8

)
≤ lnN.

We choose γ2 so that both bounds for c0 coincide, i.e.

1

2

(
γ2

32

) 1
µ

=

(
4γ2

ασ2 ln 2

) 1
2+µ

.

Hence, we set

γ2 = 2
µ(µ+2)

2 32
µ+2
2

(
4

ασ2 ln 2

)µ
2

,

c0 =
1

2

(
γ2

32

) 1
µ

=
8× 2

µ+1
2

(ασ2 ln 2)1/2
.

For this choice of c0, both inequalities (1.44) and (1.45) hold and therefore the convergence
result follows from Theorem 2.5 of ?.
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1.7.2 Algorithm of FPLS

Algorithm 1: algorithm for the estimation of β via FPLS with m iterations
Result: β̂PLSm (t) =

∑m
j=1 qjwj(t)

Initialisation : β̂PLS0 = 0, X(0) = X, Y (0) = Y − Tnβ̂PLS0 , S0 = T ∗nY ;
Ĉ

(1)
xy = 1

n

∑n
i=1X

(0)
i Y

(0)
i , Ŷ 0 = 0;

for j ← 1 to m do
1. Select the first eigenfunction rj;
rj ← Ĉ

(1)
xy ;

2. Calculate the score of X, called ψj;
ψj ← [

∫
S
X

(j)
1 (t)rj(t)dt, ...,

∫
S
X

(j)
n (t)rj(t)dt]

′;
3. Calculate the Fourier coefficient of β on the basis rj;
qj ← ||Sj−1||2

||ψj ||2 ;
4. Update the calculation of the estimated β;
β̂PLSj (t)← β̂PLSj−1 (t) + qjrj(t);
5. Update the new values of Y and the predicted Ŷ i;
Y (j) ← Y (j−1) − qjψj;
Ŷ i ← Ŷ i−1 + qjψj;
6. Update the new covariance Sj;
Sj ← T ∗nY

(j);
7. Update the new eigenfunctions;
ηj ← ||Sj ||2

||Sj−1||2 ;
rj+1 ← Sj + ηjrj;
j ← j + 1;

end
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1.8 Graphics and Tables
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Figure 1.1: Sample of 10 observations of the functional predictor variable X(t) for the
8 different models
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Figure 1.2: Estimation slope function for the 8 different models
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Figure 1.3: Comparison of the MSPE using FPCA and FPLS
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Figure 1.4: Daily price evolution of 100 observations of the return curves within a day
from January 2014 to December 2017
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Figure 1.6: Estimated slope functions
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Figure 1.9: True slope function for the 8 different models
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Table 1.1: Comparison of the MSPE using the 8 models, n = 1000, m = 1, ..., 10, σ = 1, J = 50 and M = 1000 simulations.

m Model 1 Model 2 Model 3 Model 4 Model 5 Model 6 Model 7 Model 8

FPCA FPLS FPCA FPLS FPCA FPLS FPCA FPLS FPCA FPLS FPCA FPLS FPCA FPLS FPCA FPLS

1 1.60 1.50 1.02 1.02 1.17 1.11 1.15 1.04 1.09 1.06 3.77 2.61 3.77 2.61 3.75 2.58
2 1.16 1.05 0.99 1.00 1.01 1.00 1.01 1.00 1.01 1.00 2.40 1.66 2.40 1.66 2.38 1.66
3 1.00 1.00 1.00 1.01 0.98 0.98 1.00 1.00 1.01 1.01 2.33 1.07 2.33 1.07 2.32 1.07
4 1.00 1.01 1.01 1.02 0.99 1.01 1.00 1.00 1.00 1.01 1.26 1.04 1.26 1.04 1.26 1.04
5 1.00 1.02 0.99 1.02 1.02 1.05 1.01 1.01 0.99 1.04 1.11 1.03 1.11 1.03 1.10 1.03
6 1.03 1.05 1.01 1.04 1.01 1.05 1.00 1.00 1.01 1.06 1.07 1.03 1.07 1.03 1.07 1.03
7 0.97 1.01 1.01 1.05 1.00 1.04 1.01 1.02 1.03 1.04 1.03 1.03 1.03 1.03 1.05 1.05
8 1.01 1.05 1.01 1.06 0.98 1.03 1.01 1.01 1.00 1.04 1.02 1.04 1.02 1.04 1.03 1.04
9 0.98 1.05 1.01 1.05 1.00 1.06 1.02 1.02 1.00 1.04 1.02 1.05 1.02 1.05 1.03 1.05
10 1.03 1.08 1.02 1.07 0.99 1.04 1.00 1.00 1.02 1.08 1.02 1.06 1.02 1.06 1.02 1.06
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Table 1.2: Comparison of the MSE using the 8 models, n = 1000, m = 1, ..., 10, σ = 1, J = 50 and M = 1000 simulations.

m Model 1 Model 2 Model 3 Model 4 Model 5 Model 6 Model 7 Model 8

FPCA FPLS FPCA FPLS FPCA FPLS FPCA FPLS FPCA FPLS FPCA FPLS FPCA FPLS FPCA FPLS

1 20.51 17.61 0.49 0.47 0.67 0.43 0.68 0.24 0.61 0.45 34.02 24.30 34.02 24.30 34.03 24.18
2 12.33 4.15 0.50 0.57 0.17 0.08 0.16 0.07 0.37 0.23 28.54 15.50 28.54 15.50 28.55 15.51
3 0.17 0.40 0.53 2.38 0.07 0.16 0.08 0.08 0.27 0.25 27.81 4.67 27.81 4.67 27.84 4.65
4 0.29 8.49 0.46 9.23 0.06 1.42 0.07 0.24 0.23 0.90 11.07 3.45 11.07 3.45 10.94 3.47
5 0.44 31.53 0.51 26.08 0.09 3.75 0.10 0.69 0.23 3.34 6.98 2.99 6.98 2.99 6.87 2.97
6 0.60 60.33 1.02 60.32 0.13 7.89 0.17 1.43 0.24 8.11 5.73 3.89 5.73 3.89 5.73 3.85
7 1.28 111.52 1.40 114.28 0.19 16.31 0.33 2.66 0.28 14.21 4.58 8.05 4.58 8.05 4.51 7.81
8 2.38 171.16 1.87 182.45 0.26 23.37 0.67 5.64 0.32 21.60 4.14 15.17 4.14 15.17 4.17 15.18
9 3.25 269.53 2.95 253.07 0.34 31.77 1.28 12.05 0.43 28.17 3.64 23.72 3.64 23.72 3.63 23.55
10 3.72 381.58 4.02 328.47 0.50 39.69 2.73 25.77 0.55 38.03 3.54 33.12 3.54 33.12 3.53 32.82



Table 1.3: Comparison of the squared bias for the MSE using the 8 models, n = 1000, m = 1, ..., 10, σ = 1, J = 50 and
M = 1000 simulations.

m Model 1 Model 2 Model 3 Model 4 Model 5 Model 6 Model 7 Model 8

FPCA FPLS FPCA FPLS FPCA FPLS FPCA FPLS FPCA FPLS FPCA FPLS FPCA FPLS FPCA FPLS

1 20.50 17.60 0.49 0.45 0.66 0.42 0.65 0.23 0.61 0.45 34.01 24.23 34.02 24.30 34.02 24.10
2 12.28 4.06 0.47 0.14 0.15 0.06 0.15 0.05 0.36 0.22 28.50 15.43 28.51 15.43 28.51 15.43
3 0.02 0.04 0.43 0.08 0.05 0.02 0.06 0.02 0.25 0.11 27.71 4.42 27.70 4.41 27.72 4.39
4 0.01 1.39 0.22 0.17 0.03 0.03 0.03 0.01 0.19 0.08 10.77 3.04 10.77 3.04 10.94 3.47
5 0.04 4.13 0.03 0.34 0.01 0.07 0.01 0.01 0.15 0.09 6.71 2.18 6.72 2.17 6.61 2.15
6 0.06 8.38 0.03 0.82 0.01 0.12 0.01 0.01 0.12 0.08 5.45 1.53 5.45 1.53 5.44 1.55
7 0.04 9.18 0.01 1.77 0.01 0.34 0.01 0.01 0.10 0.15 4.24 1.27 4.26 1.25 4.20 1.23
8 0.20 19.57 0.03 1.54 0.01 0.53 0.01 0.05 0.09 0.27 3.77 1.12 3.78 1.14 3.77 1.11
9 0.10 25.29 0.02 2.93 0.01 0.81 0.01 0.03 0.08 0.20 3.17 0.98 3.17 0.98 3.16 1.00
10 0.34 41.60 0.01 3.71 0.01 1.16 0.01 0.04 0.07 0.32 2.92 1.01 2.95 1.03 2.92 1.01



Table 1.4: Comparison of the variance term for the MSE using the 8 models, n = 1000, m = 1, ..., 10, σ = 1, J = 50 and
M = 1000 simulations.

m Model 1 Model 2 Model 3 Model 4 Model 5 Model 6 Model 7 Model 8

FPCA FPLS FPCA FPLS FPCA FPLS FPCA FPLS FPCA FPLS FPCA FPLS FPCA FPLS FPCA FPLS

1 0.01 0.01 0.01 0.01 0.01 0.01 0.03 0.01 0.01 0.01 0.01 0.07 0.01 0.08 0.01 0.08
2 0.05 0.09 0.03 0.43 0.01 0.02 0.02 0.02 0.01 0.02 0.04 0.07 0.05 0.08 0.04 0.07
3 0.15 0.36 0.10 2.31 0.02 0.14 0.02 0.06 0.02 0.14 0.09 0.25 0.09 0.25 0.11 0.26
4 0.28 7.10 0.24 9.07 0.04 1.39 0.04 0.23 0.04 0.82 0.30 0.41 0.33 0.42 0.28 0.40
5 0.40 27.41 0.48 25.74 0.08 3.68 0.08 0.68 0.08 3.25 0.27 0.81 0.27 0.85 0.26 0.82
6 0.54 51.95 0.99 59.50 0.12 7.77 0.16 1.42 0.12 8.03 0.28 2.35 0.26 2.38 0.29 2.30
7 1.24 102.34 1.39 112.51 0.18 15.97 0.33 2.65 0.18 14.06 0.34 6.78 0.36 6.68 0.32 6.58
8 2.19 151.59 1.84 180.91 0.25 22.83 0.66 5.59 0.23 21.34 0.37 14.05 0.33 14.07 0.41 14.07
9 3.14 244.24 2.92 250.14 0.32 30.96 1.28 12.02 0.35 27.97 0.48 22.75 0.43 22.71 0.48 22.55
10 3.38 339.98 4.01 324.76 0.49 38.53 2.71 25.73 0.48 37.71 0.62 32.12 0.58 32.17 0.60 31.81



Table 1.5: Comparison of the squared bias for the MSPE using the 8 models, n = 1000, m = 1, ..., 10, σ = 1, J = 50 and
M = 1000 simulations.

m Model 1 Model 2 Model 3 Model 4 Model 5 Model 6 Model 7 Model 8

FPCA FPLS FPCA FPLS FPCA FPLS FPCA FPLS FPCA FPLS FPCA FPLS FPCA FPLS FPCA FPLS

1 1.31 1.30 0.01 0.01 7.69 7.69 4.04 4.04 0.19 0.19 2.72 2.72 2.72 2.72 2.85 2.86
2 1.33 1.32 0.01 0.01 9.93 9.92 4.26 4.26 0.20 0.20 3.22 3.21 3.22 3.21 2.66 2.65
3 1.57 1.57 0.01 0.01 8.61 8.61 3.56 3.56 0.17 0.17 2.86 2.86 2.86 2.86 3.21 3.21
4 1.16 1.16 0.01 0.01 8.71 8.72 4.73 4.73 0.15 0.15 3.13 3.13 3.13 3.13 2.83 2.83
5 1.38 1.38 0.01 0.01 9.50 9.50 3.71 3.71 0.15 0.15 3.13 3.13 3.13 3.13 3.14 3.14
6 1.27 1.26 0.01 0.01 8.39 8.39 3.84 3.84 0.14 0.14 3.12 3.12 3.12 3.12 2.77 2.77
7 1.08 1.10 0.01 0.01 7.71 7.74 3.73 3.73 0.16 0.15 3.25 3.25 3.25 3.25 2.37 2.36
8 1.14 1.13 0.01 0.01 7.44 7.45 3.52 3.53 0.15 0.15 2.66 2.66 2.66 2.66 3.09 3.08
9 1.30 1.30 0.01 0.01 8.11 8.11 3.59 3.59 0.18 0.17 2.88 2.88 2.88 2.88 2.78 2.79
10 1.28 1.28 0.01 0.01 9.41 9.43 4.62 4.61 0.17 0.17 3.14 3.15 3.14 3.15 2.47 2.48



Table 1.6: Comparison of the variance term for the MSPE using the 8 models, n = 1000, m = 1, ..., 10, σ = 1, J = 50 and
M = 1000 simulations.

m Model 1 Model 2 Model 3 Model 4 Model 5 Model 6 Model 7 Model 8

FPCA FPLS FPCA FPLS FPCA FPLS FPCA FPLS FPCA FPLS FPCA FPLS FPCA FPLS FPCA FPLS

1 0.75 0.85 0.01 0.01 7.96 8.03 3.95 4.06 0.09 0.13 0.21 1.40 0.21 1.40 0.19 1.37
2 1.18 1.30 0.01 0.01 8.01 8.03 4.13 4.15 0.16 0.17 1.57 2.30 1.57 2.30 1.56 2.29
3 1.41 1.41 0.01 0.02 8.07 8.09 4.11 4.12 0.16 0.18 1.66 2.89 1.66 2.89 1.65 2.91
4 1.33 1.36 0.01 0.03 8.22 8.25 4.11 4.12 0.18 0.19 2.67 2.92 2.67 2.92 2.71 2.96
5 1.45 1.47 0.02 0.04 8.20 8.23 4.14 4.15 0.18 0.20 2.86 2.97 2.86 2.97 2.88 2.98
6 1.44 1.48 0.02 0.05 8.26 8.29 4.11 4.11 0.18 0.21 2.91 2.99 2.91 2.99 2.93 3.01
7 1.41 1.45 0.02 0.05 8.00 8.07 4.15 4.15 0.18 0.21 2.90 2.96 2.90 2.96 2.94 3.01
8 1.44 1.48 0.02 0.06 8.01 8.05 4.17 4.18 0.18 0.22 2.96 3.03 2.96 3.03 2.94 3.01
9 1.35 1.39 0.02 0.07 8.25 8.30 4.14 4.14 0.18 0.22 2.94 3.01 2.94 3.01 2.94 3.00
10 1.36 1.42 0.02 0.07 8.36 8.41 4.13 4.14 0.18 0.23 2.95 3.02 2.95 3.02 2.95 3.01



Table 1.7: Number of selected components via cross-validation for FPCA and FPLS.

Models Components
FPCA FPLS

1 3 3
2 1 1
3 4 3
4 2 2
5 3 3
6 6 3
7 3 3
8 2 2

Table 1.8: Comparison of the RMSPE and R-squared

FPCA FPLS OLS

m∗ 6 3 -
RMSPE 0.093 0.092 0.14
R2
is 22.4% 23.1% 77.8%

R2
oos 1.75% 2.2% −127.7%
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Table 1.9: Comparison of the MAPE using the 8 models, n = 1000, m = 1, ..., 10, σ = 1, J = 50 and M = 1000 simulations.

m Model 1 Model 2 Model 3 Model 4 Model 5 Model 6 Model 7 Model 8

FPCA FPLS FPCA FPLS FPCA FPLS FPCA FPLS FPCA FPLS FPCA FPLS FPCA FPLS FPCA FPLS

1 1.61 1.51 1.01 1.01 1.11 1.11 1.15 1.05 1.08 1.05 3.77 2.53 3.76 2.60 3.74 2.57
2 1.13 1.02 0.99 0.99 0.99 1.00 1.00 0.99 1.01 0.99 2.38 1.68 2.40 1.67 2.36 1.64
3 1.00 1.00 1.00 1.01 1.01 0.98 1.00 1.00 1.02 1.01 2.29 1.05 2.31 1.07 2.29 1.06
4 0.98 0.99 1.00 1.02 1.04 1.01 1.00 1.00 0.99 1.00 1.22 1.01 1.25 1.03 1.26 1.03
5 1.02 1.06 0.99 1.02 1.07 1.04 1.01 1.01 0.99 1.02 1.11 1.02 1.10 1.02 1.09 1.02
6 1.03 1.05 1.00 1.03 1.04 1.07 1.00 1.00 0.99 1.03 1.06 1.03 1.06 1.03 1.07 1.02
7 0.95 0.97 1.01 1.05 1.02 1.04 1.01 1.02 1.02 1.06 1.03 1.03 1.02 1.02 1.05 1.04
8 0.98 1.02 1.01 1.06 0.98 1.02 1.01 1.01 0.99 1.04 1.04 1.07 1.02 1.04 1.03 1.04
9 0.97 1.00 1.01 1.04 1.00 1.06 1.02 1.02 0.99 1.03 1.01 1.04 1.01 1.05 1.02 1.05
10 1.04 1.08 1.02 1.06 0.99 1.03 1.00 1.00 1.02 1.06 1.04 1.07 1.02 1.06 1.02 1.06



Chapitre 2

Intraday Stock Market Forecasting via
Functional Time Series ∗

2.1 Introduction

Times series models are commonly used in financial econometrics for return prediction,
asset pricing, sentiment analysis, and asset allocation. These models usually consider
each observation as a scalar observed sequentially ( for example the daily frequency)
and a standard autoregressive model is used for forecasting purpose. Alternatively,
lower frequency data is exploited in an extension of the Autoregressive Conditional
Heteroskedasticity (GARCH) model for prediction. However, when using this standard
approach, each daily observation is considered as a scalar and the information about the
dynamics between day t−1 and t is ignored. This leads to a potential loss of the additional
insights that could have been discovered (see Ramsay and Silverman (2007)). Moreover,
even if standard approaches have been proposed, the functional data analysis (FDA)
framework tends to provide a more natural description of the data with more accurate
inference and prediction (see Horváth et al. (2010)). However, the FDA is a less explored
approach to financial data in a context where high-frequency data become available and
high-frequency trading is gaining in popularity. In fact, functional time series (FTS)
usually arise when very dense data {X(t), t ∈ [0, T ]} in which t is a continuous real
variable can be naturally split into equal-length segments observed sequentially over
time. Then, Xn(t) = X(n− 1 + t), t ∈ [0, 1], n = 1, 2, ..., N .

Following the approach proposed by Bosq (2000), this paper attempts to forecast
the S&P 500 intraday return via functional time series. Thus, the S&P 500 price

∗. I am greatly indebted to Marine Carrasco for her invaluable guidance. I am grateful to Benoit
Perron, William McCausland, Lucienne Talba, Zerbo Souleymane, and the members of the atelier
de discussion des doctorants en économie de l’Université de Montréal, CIREQ PhD Students 2018 in
Montréal, the Marcel Dagenais Econometrics Seminar 2019, the SCSE 2019 and CEA conferences for
their helpful comments.
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values observed at the 1-minute frequency are used to construct the daily curves of
cumulative intraday returns (CIDRs) as suggested by Gabrys et al. (2010) to obtain daily
stationary return curves. Additionally, an autoregressive model of order 1 on functions,
called FAR(1) is used for estimation and forecasting. Since a usual trading day happens
between 09 :30 AM and 04 :00 PM, that is 390 minutes, each CIDR is considered as one
observation 1 containing 390 discretization points. I consider the fully functional model

Xn+1(t) =

∫ 1

0

ψ(t, s)Xn(s)ds+ εn+1(t) n ∈ Z (2.1)

where Xn(s) is the curve of the cumulative intraday return at the minute s of day n,
ψ(t, s) is the kernel of the autoregressive operator, and εn+1(t) is the innovation function
of day n + 1. This approach is practically important because market participants can
use the forecast results to tactically adjust their market timing or portfolio rebalancing
strategy within a trading day. Furthermore, from an econometric point of view, using
FDA is interesting since it makes it possible to exploit additional information on the
price dynamics within a day to improve the return forecast. Moreover, this approach
offers room for developing new tools to analyze the returns predictability, such as
the functional out-of-sample R2

oos(t) and others. This model is also considered as the
generalization of the simple AR(1) or VAR(1) model when there is a very large number
of parameters to estimate. In this context, one can exploit the additional information
and the interpretation of the results can be done in a convenient way.

One of the most important challenges of this model is to estimate the autoregressive
operator 2. Indeed, with the high dimensionality of the space, the estimation of this model
leads to an ill-posed inverse problem and there is a high probability of obtaining unstable
estimators of the autoregressive operator. To overcome that issue, the literature usually
suggest to use the FPCA to reduce the dimensionality and obtain the estimator via the
estimation of the scores (see Bosq (2000), Kokoszka and Zhang (2012), Crambes et al.
(2013), Aue et al. (2015),Shang (2017), Imaizumi and Kato (2018), Shang et al. (2019)).
The problem with this approach is the fact that the estimation is usually limited by
the decay rate of the eigenvalues of the covariance operator of the predictor function.
This means that one tends to overfit if the eigenvalues decay very rapidly. Moreover, the
factors extracted by the FPCA approach are not necessarily the ones that contribute
optimally to predicting the response variable and are not usually interpretable. There
is also a literature suggesting nonparametric methods in order to analyze the functional
data models (see Besse et al. (2000), Ramsay and Silverman (2007), Ferraty and Vieu
(2006), and Hörmann and Kokoszka (2012)), but using this approach assumes that one
project the data on some fixed basis that are not data related.

1. The 1 minute is considered here just for illustration purpose. It is possible to use other timeframes
such as the 5-minutes, or tick frequency.

2. The autoregressive operator is similar to the slope parameter in the context of a simple AR(1)
model.
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The contribution of this paper is to exploit the ill-posed problem literature and
develop a comparative analysis of 4 different regularization methods that endeavour to
avoid such drawbacks. The suggested methods are the functional Tikhonov (FT), the
functional Landweber-Fridman (FLF), the functional spectral cut-off (FSC) approach,
and the functional partial least squares (FPLS). The functional principal component
analysis (FPCA) is also considered for comparative purposes. These methods depend
on a tuning parameter. The convergence rate of the mean square error (MSE) and
asymptotic normality of the estimator are derived for a given tuning parameter for the
suggested methods. Additionally, a test based strategy is proposed to identify the number
of lag needed on a general context of functional autoregressive of order p (FAR(p)). The
advantage of the proposed test strategy is that the procedure is not necessarily PCA-based
as proposed in prior papers (see Kokoszka and Reimherr (2013), Aue et al. (2015), and
Liu et al. (2016)), but can be considered for different regularization methods that are
linear in terms of the response variable.

Some Monte Carlo simulations have been developed to support the relevance of the
theoretical results and compare the 4 methods. The comparison is based on the estimation
criteria, which are the Mean Squared Error (MSE) and the Mean Absolute Deviation
(AD), used to measure the quality of the estimation of the autoregressive operator.
Furthermore, the predictive performance of the different methods is also compared based
on the Mean Squared Prediction Error (MSPE), the Mean Absolute Prediction Error
(MAPE), and the out-of-sample R2 (R2

oos). Based on a majority of the model settings
considered, the simulation results show that the FPLS tends to outperform the other
methods in terms of estimation accuracy of the autoregressive operator. This estimation
performance of the FPLS is due to the fact that it is a supervised method in the sense
that the estimated parameter is a combination of factors that are relevant to predict
the response variable. In terms of prediction, all the estimation methods tend to present
almost the same predictive performance for most of the data generating processes.

An overview of the real data findings shows the evidence that the cumulative
intraday return curve of the current trading day contributes significantly to predicting
the next day’s cumulative return curve. All the considered estimation methods present
approximately the same estimation of the autoregressive operator. In terms of prediction,
all the methods display the same predictive performance when considering the MSPE and
MAPE as criteria. Additionally, when we consider the R2

oos, the FPLS method tends to
outperform the other methods with an R2

oos of 3.9%. Furthermore, the most predictable
period of the next day’s return based on current day’s return are the periods 11 :00 AM
- 11 :30 AM and 02 :00 PM - 4 :00 PM as they display maximum values of the functional
R2
oos(t), that is 3% for FPCA and FPLS and 2% for FT and FLF. On the other hand,

the less predictable period of the day is the period 09 :30 AM - 09 :45 AM as the R2
oos(t)

is closed to zero.
The literature on FDA is gaining more attention, but the theoretical concepts and

tools for functional times series are still nascent. The idea of using cumulative return
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is inspired by the paper of Gabrys et al. (2010) and have been used in some of the
preceding papers (Kokoszka and Zhang (2012) and Shang (2017)). Indeed, Kokoszka and
Zhang (2012) use individual assets and their main purpose is comparing simple functional
and fully functional model settings for a simple version of capital asset pricing model
(CAPM). Kargin and Onatski (2008) suggested a predictive factor method for predicting
the next day curve with FAR(1) model. The consistency results of the proposed estimation
methods are derived and a comparison of these methods is made based on simulation
and empirical analysis. This paper is also related to the paper by Benatia et al. (2017),
Imaizumi and Kato (2018), Crambes et al. (2013), and Shang (2017). This paper is
different from the one by Benatia et al. (2017) in the sense that I introduce a dynamics
in the functional observations. It is also different to the paper by Carrasco and Tsafack
(2020) as I consider a more general model where the response variable is a function.

The rest of the paper is organized as follows. Section 2.2 is dedicated to presenting
the related literature. Section 2.3 details the functional econometric model. In section
2.4, I explain how to estimate the model using the four aforementioned methods. Section
2.5 analyzes the convergence rate of the estimated autoregressive operator. Section 2.6
examines the asymptotic normality of the parameter. Section 2.7 address the selection of
the optimal number of lags for a generalized functional autoregressive model. Section 2.8
discusses on data driven approach to select the tuning parameter. Section 2.9 presents
the comparison of the four methods based on Monte Carlo simulations. Section 2.10
develops the real data application. Finally, Section 2.11 concludes. The proofs of the
main theoretical results are presented in the appendix.

2.2 Related literature

This paper is related to three key pieces of literature : the functional data analysis, the
functional autoregressive model, and the intraday return predictability in the financial
market.

The literature on FDA has attracted a lot of attention in the statistical field during
the last decade. Some of the pioneers are Ramsay and Silverman (2007), Kokoszka and
Zhang (2012), and Ferraty and Vieu (2006), all of which developed a general context. One
of the main challenges is to be able to estimate the slope function (in the context where
the response is a scalar and the predictor is a function) or the operator (if the predictor
and the response variable are both functions) due to the high dimensionality issue. More
recently, authors such as Benatia et al. (2017), Crambes et al. (2013), and Imaizumi and
Kato (2018) have analyzed the convergence rate and the asymptotic distribution of the
estimated parameter for the i.i.d model where the predictor and the response variables
are both functions. They respectively used the FT and FPCA estimation methods.

This paper is also related to the functional autoregressive model literature. Bosq
(2000) and Hörmann and Kokoszka (2012) (among others) considered a parametric model
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and used the Yule-Walker technique for estimation. On the same line, Kargin and Onatski
(2008) proposed a predictive factor approach to estimate the autoregressive operator and
developed the related consistency and convergence rate results. The idea of their approach
is to project the response variable on a set of factors that ensures the minimization of
the prediction error. Didericksen et al. (2012) compared the FPCA method proposed by
Bosq (2000) and the predictive factor technique of Kargin and Onatski (2008) based on
some simulation data ; they subsequently showed that, in an overview of the comparison,
the FPCA outperforms.

Authors such as Besse et al. (2000) and Hays et al. (2012) adopted a nonparametric
approach to estimating the autoregressive operator. Didericksen et al. (2012) compared
the method of Kargin and Onatski (2008) and the FPCA and show that the FPCA
outperforms the predictive factor in terms of estimation and both methods present the
same predictive performance. Hyndman and Shang (2009) and Aue et al. (2015) have
respectively proposed to use a univariate and multivariate time series forecasting method
since the FPCA scores of a function can display a temporal dependence as the original
function. Kokoszka and Young (2016) proposed a unit-root test for the functional time
series. More recently, Cerovecki et al. (2019) analyzed the GARCH model for functional
time series while Rice et al. (2019) proposed a test and goodness-of-fit for the FGARCH
models. So far, there is still a lot to discover in the functional time series models. These
approaches are limited by the configuration of the eigenvalues.

This paper is related to but different from the preceding one in the sense that
new estimation approaches are suggested. The proposed methods are not based on a
prior PCA projection step as is usually done in most of the papers (see Hyndman and
Shang (2009), Hays et al. (2012), Aue et al. (2015), and Shang (2017)). Furthermore,
a test-based strategy to select the optimal number of lags is proposed in a more
generalized estimation approach, including the FPCA. Moreover, this paper exploits the
regularization techniques and the estimated parameter for each approach are written
as the product of matrices and vectors. The consistency results are analyzed with
assumptions closed to the one by Benatia et al. (2017),albeit less restrictive.

To the best of our knowledge, the usage of functional time series is less observed in
the financial econometrics application. Only a few authors have started to investigate this
strain of literature. Kokoszka and Zhang (2012) proposed to predict an individual stock
by using a functional version of the capital asset pricing model (CAPM) and compare
a simple functional setting to a fully functional model in the autoregressive framework.
Shang (2017) suggested to forecast the U.S. stock market by combining the dynamic
update technique with the PCA-based approach proposed by Hyndman and Shang (2009)
and Aue et al. (2015). Sancetta (2019) used the FDA framework to predict the end of
the day volume in the currency market.

The exploration of the high-frequency data in developing functional time series models
is supported by the recent papers related to the intraday returns predictability. Gao et al.
(2018) documented the intraday momentum in the U.S. stock market at the 30 minutes
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frequency. They show that the first half-hour return contributes to predicting the last
half hour return and that the effect is stronger in more volatile days, on higher volume
days, recession days, and high impact news release days. Bogousslavsky (2016) identified
the infrequent rebalancing and the late-informed investors’ effect 3 as the main causes
of momentum in the stock market. In the same line, Zhang et al. (2019) documented
almost the same results by Gao et al. (2018) in the China stock market. Chu et al. (2019)
found that the last half hour is positively predicted by the first half-hour, but they also
identified a reversal effect in the second half-hour of the trading day in the Chinese
stock market. They also found that this momentum and reversal effect is robust when
including previous day return and day-of-week. Heston et al. (2010) discovered a striking
pattern of return continuation at half-hour intervals that are exact multiples of a trading
day on a 40-day time horizon. Following this intraday return predictability literature,
combined with the advantages of the functional time series in exploiting the availability
of high-frequency data, there is potential to improve return predictions, discover new
insights, and develop new tools.

2.3 The Model Setting

In this paper, for each day i, the shape of the cumulative intraday return of
the S&P 500 is observed at the 1-minute frequency. The cumulative intraday returns
(CIDRs) by Gabrys et al. (2010) are used to construct the curves. Let Pi(tj) be the price
of a financial asset at time tj, on a given day i. Since a trading session is opened from
09 :30 AM to 04 :00 PM, the total number of minutes within that period is 390 and
therefore, j ∈ {1, ..., 390} . The return is defined as

Ri(tj) = 100 ∗ [ln(Pi(tj))− ln(Pi(t1))] with j ∈ 1, ..., 390. (2.2)

and the CIDRs are defined by

X(t) = Ri(tj) with tj ∈
(

(j − 1)

390
,
j

390

]
. (2.3)

Figure 2.1 displays the constructed intraday cumulative returns of the S&P500 based
on the raw data for the period 2013 - 2017.

Let (Xi : i ∈ Z) be an arbitrary stationary functional time series of the S&P 500
CIDRs. It is assumed that each random function Xi is an element of H = L2([0, 1])

(the space of square integrable functions mapping from the compact interval [0,1] to
R) endowed with the inner product < f, g >=

∫ 1

0
f(t)g(t)dt and the norm ||f || =(∫ 1

0
f 2(t)dt

)1/2

such that E(||Xi||2) <∞).

3. This is similar to the slow diffusion, analysis, and acceptance of new information identified by
Chan (2013)
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Figure 2.1: Intraday cumulative returns of the S&P 500 index in 2013-2017

Therefore, a sequence {X1, X2, ...., XN} of the realizations of X is observed, where
Xi corresponds to the observed curve of S&P 500 of day i = 1, ..., N . In this paper, it is
assumed that the sequence of H-valued variables {X1, X2, ...., XN} follows a functional
autoregressive Hilbertian process of order 1 (FAR(1)) presented as follows :

Xn+1(t) =

∫ 1

0

ψ(t, s)Xn(s)ds+ εn+1(t) n ∈ Z (2.4)

where for each day n , Xn is a random curve of H. The operator

Ψ : H→ H

f → Ψ(f) =

∫ 1

0

ψ(s, t)f(s)ds

is a bounded linear operator and ε = (εn, n ∈ Z) is a H-valued stationary and
ergodic martingale difference with respect to {εn−1, εn−2, ..., Xn−1, Xn−2, ...}. In addition,
E(εn|Xn−1) = 0 and E(||εn||2|Fn−1) = σ2 <∞. Without loss of generality, it is assumed
that E(Xn) = 0.

Figure 2.2 represents how the predictor and the predicted functions are displayed.
According to what is observed, it can be deduced that if the few outliers are removed
from the sample, it is possible to say that each functional observation is generated from
the same data generation process. This idea has been argued by Kokoszka and Young
(2016) who developed a KPSS unit-root test for functional time series.

Let us denote by L the space of bounded linear operators on H equipped with the
norm

||Ψ||L = Sup{||Ψ(f)|| : ||f || ≤ 1}. (2.5)
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(b) Response functions (day n+1)

Figure 2.2: Functional predictor and functional response

Under the conditions that there exists an integer j0 ≥ 1 such that the linear operator
||Ψj0||L < 1, Equation (2.4) has a unique solution, which is a weakly stationary process
in H given by

Xn =
∞∑
k=0

Ψk(εn−k) (2.6)

and the series converges almost surely in H. If it is assumed that the Hilbert-Schmidt
norm of the operator Ψ is lower than 1, then the existence and the uniqueness of the
solution are satisfied (see Lemma 3.1 of Kokoszka and Zhang (2010)). In the next section,
various regularization techniques are presented.

2.4 Model estimation

The goal of this paper is to forecast the one day ahead S&P 500 shape
Xn+1. According to the data generating process, the best linear predictor of Xn+1

given X1, ..., Xn is given by Ψ(Xn). Typically, Ψ is unknown and should be estimated
consistently by an estimator Ψ̂. This section presents four different estimation strategies
of the autoregressive operator Ψ. Multiplying Equation (2.4) by Xn and taking the
expectation on both sides leads to the following equation :

E[< Xn+1, f > Xn] = E[< Ψ(Xn), f > Xn], f ∈ H.

Let us define the covariance operator by

K(f) = E[< Xn, f > Xn]

Since E[||Xn||2] < ∞, the covariance operator is symmetric, positive, nuclear and
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therefore, Hilbert-Schmidt and its spectral system (vj, λj)j≥1 is defined by

K(vj) = λjvj, j ≥ 1,

with the eigenfunctions vj forming an orthonormal basis of H and the eigenvalues are
such that λ1 ≥ λ2 ≥ ... ≥ 0. Let define the cross-covariance operator by

D(f) = E[< Xn+1, f > Xn].

Then, it is easy to see that

D(f) = KΨ∗(f). (2.7)

The operators K and D are unknown and can be estimated by K̂ and D̂, respectively,
where

D̂(f) =
1

N − 1

N−1∑
n=1

< Xn+1, f > Xn

and

K̂(f) =
1

N − 1

N−1∑
n=1

< Xn, f > Xn.

The empirical spectral system of K̂ is (λ̂j, v̂j)j≥1 with λ̂j ≥ λ̂j ≥ ... ≥ 0 and (v̂j)j≥1

form an orthonormal basis of H.
Given Equation (2.7), one would like to directly estimate the autoregressive operator

by writing Ψ∗ = K−1D, as is usually done in the finite-dimensional context. The problem
is that the covariance operator K is compact and is defined in an infinite-dimensional
space. Thus, K−1 is a noncontinuous operator in the considered space. This result leads
to an unstable and noncontinuous estimator of the autoregressive operator. In the inverse
problem literature, Equation (2.7) is called an ill-posed problem in the sense that K is
only invertible on a subset of H and its inverse is not continuous.

This paper exploits the functional Yule-Walker Equation (2.7) and estimates the
autoregressive operator by 4 different regularization techniques that are the Functional
Tikhonov (FT), the Functional Spectral Cut-off (FSC), the Functional Partial Least
Squares (FPLS), and the Functional Landweber-Fridman iteration method (FLF). Let
now present the considered methods.

2.4.1 The Functional Spectral Cut-off

This approach is almost similar to the FPCA method that is widely proposed in
the functional time series literature in order to estimate the autoregressive operator on a
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finite subspace of H. Since the operator K is symmetric and nuclear, it admits a spectral
decomposition, that is

k(s, t) =
∞∑
j=1

λjvj(s)vj(t),

where {vj}∞j=1 is an orthonormal basis of H. The Functional Spectral Cut-off method
consists of selecting the eigenfunctions associated with the eigenvalues greater than some
threshold α > 0. The inverse of the covariance operator K can be written as

K−1(f) =
∞∑
j=1

1

λj
< f, vj > vj

and the regularized inverse of K via FSC approach is given by

K−1
α (f) =

∑
λj>α

1

λj
< f, vj > vj.

Then, the estimated autoregressive operator is given by

Ψ∗α(f) = K−1
α D(f)

=
∑
λj>α

1

λj
< D(f), vj > vj

=
∑
λj>α

1

λj
E[< Xn+1, f >< Xn, vj >]vj

and its empirical counterpart is

Ψ̂∗α(f) =
1

N − 1

N−1∑
j=1

N−1∑
n=1

Q̂α,j

λ̂j
< Xn+1, f >< Xn, v̂j > v̂j, for each f ∈ H (2.8)

with Q̂α,j = I(λ̂j ≥ α) and α the tuning parameter.
Similar to FSC, the FPCA method consists in projecting the response variable onto

the principal components of the covariance operator. Those principal components are
nothing else than the eigenfunctions of the operator K associated with the largest
eigenvalues. Thus, ifm eigenfunctions are selected for the estimation, the FPCA estimator
is given by
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Ψ∗m(f) = K−1
m D(f)

=
m∑
j=1

1

λj
< D(f), vj > vj

=
m∑
j=1

1

λj
E[< Xn+1, f >< Xn, vj >]vj

and its empirical version is given by

Ψ̂∗m(f) =
1

N − 1

N−1∑
j=1

N−1∑
n=1

Q̂m,j

λ̂j
< Xn+1, f >< Xn, v̂j > v̂j, for each f ∈ H (2.9)

where Q̂m,j = I(j ≤ m). This procedure was also considered by Crambes et al. (2013)
for the i.i.d model. Another configuration of the FPCA is proposed by Imaizumi and
Kato (2018) and it consists in projecting the predictor and the response function onto
the first m principal components respectively, then uses the scores to estimate the
Fourier coefficients of the estimated autoregressive operator. The estimated autoregressive
operator is then obtained by writing the estimated operator on the basis of the m

eigenfunctions of the covariance operator. This configuration by Imaizumi and Kato
(2018) is not considered in this paper.

In addition, the eigenfunctions are unique as they are orthonormal. Also, for this
model setting, the data are not generated by a factor model. Then, the FPCA is
considered as a dimension reduction technique to estimate Ψ∗. If the data are generated
by a factor model, the FPCA would estimate the related factors up to a rotation (see
Bai and Ng (2002)).

2.4.2 Tikhonov Method

This technique is widely used in the inverse problem literature. It has been studied
recently by Benatia et al. (2017) in the context of a fully functional regression. This
technique is most widely justified to tackle the high dimensionality problem.

Let α be a positive tuning parameter. Then, the estimated autoregressive operator is
given by

Ψ∗α(f) =
(
αI +K

)−1

D(f), for each f ∈ H

where I is the identity operator. This estimator can also be characterized in terms of the
spectral system of the covariance operator K, as follows
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Ψ∗α(f) =
+∞∑
j=1

1

α + λj
E[< Xn+1, f >< Xn, vj >]vj, for each f ∈ H.

The empirical version is then given by

Ψ̂∗α(f) =
(
αI + K̂

)−1

D̂(f)

=
1

N − 1

N−1∑
j=1

N−1∑
n=1

Q̂(α, λ̂j)

λ̂j
< Xn+1, f >< Xn, v̂j > v̂j, for each f ∈ H

where Q̂(α, λ̂j) =
λ̂j

λ̂j+α
is called the filter factor. The truncation that is operated with

the FPCA method is replaced by the shrinkage effect of the parameter α.

2.4.3 Functional Landweber-Fridman(FLF)

The Landweber-Fridman method is basically an iterative method which consist to
transform the normal equation K(Ψ∗) = D into a fixed point problem. This method
is similar to the gradient descent method used to solve a minimization problem. This
method is also very popular in the literature of inverse problem. Let us consider a positive
parameter d such that 0 < ||K||L < 1/d. Then, the FLF technique can be computed
iteratively as follows. Take the initial value

Ψ∗0(f) = dD(f), for each f ∈ H.

For h = 1, ... , 1
α
− 1, we have

Ψ∗h(f) = (I − dK)(Ψ∗h−1(f)) + dD(f), for each f ∈ H

where m is the maximum number of iterations. We see that the estimated autoregressive
operator can be written as a polynomial function of the covariance operator K and we
have

Ψ∗α(f) = d

1/α∑
l=1

(I − dK)l−1D(f), for each f ∈ H. (2.10)

Since the operators K and D are not observed, they are consistently estimated by K̂ and
D̂, respectively. Then, Ψ̂∗α is given by

Ψ̂∗α(f) = d

1/α∑
l=1

(I − dK̂)l−1D̂(f), for each f ∈ H. (2.11)
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This estimator can be written in terms of the eigensystem of the covariance operator
K̂, as follows

Ψ̂∗α(f) =
1

N − 1

N−1∑
j=1

N−1∑
n=1

Q̂(α, λ̂j)

λ̂j
< Xn+1, f >< Xn, v̂j > v̂j, for each f ∈ H (2.12)

where Q̂(α, λ̂j) =

(
1− (1− dλ̂j)

1
α

)
is the filter factor.

2.4.4 Functional Partial Least Squares(FPLS)

One of the main drawbacks of FPCA is that Xn+1 is projected on the eigenfunctions
of K associated with its largest eigenvalues regardless of their ability to predict Xn+1.
Moreover, the selected principal components may not capture the most important
information relevant for the prediction of Xn+1 given Xn. The FPLS may be more
adapted in the sense that it extracts the most important factors that explain the relation
between the predictand and the predictor function. This method is very popular in
the chemometrics field and has been discussed by some prior authors such as Wold
et al. (1984) Helland (1988) and Höskuldsson (1988). It was recently introduced in the
econometric field by Groen and Kapetanios (2009), Kelly and Pruitt (2015), and Carrasco
and Rossi (2016). In the Functional regression context with a scalar response, there are
authors like Aguilera et al. (2010), Delaigle and Hall (2012), and, more recently, Zhou
(2019).

Practically, for the model setting of this paper, the idea is to identify a new factor
th =

∫ 1

0
Xn(s)φh(s)ds at each step h = 1, ...,m such that the covariance with the response

function is maximized.

max
vh,ch∈L2([0,1])

cov2

(∫ 1

0

Xn(s)φh(s)ds,

∫ 1

0

Xn+1(t)ch(t)dt

)
subject to ||φh|| = 1, ||ch|| = 1, and∫ 1

0

∫ 1

0

φ`(s)k(s, t)φh(t)dsdt = 0, ` = 1, ..., h− 1

(2.13)

where φ1, ..., φh−1, c1, ..., ch−1 are already obtained in the h− 1 previous step.
There are two main constraints in this optimization problem. The first one represents

normalization to one of the eigenfunctions, while the second is nothing else than the
orthogonality of the estimated factor with the one retained in the previous iterations.

Proposition 1
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For each t ∈ [0, 1], the estimated autoregressive operator is given by :

ψ̂∗m(s, t) =
m∑
l=1

γ̂t,lK̂
l−1(D̂)(s, t) (2.14)

where for each s, t ∈ [0, 1], where for each t, γ̂t = R̂−1
t µ̂t is a vector of size m. R̂t is an

(m×m) matrix with elements R̂t(j, l) = R̂t,j,l :

R̂t,j,l =

∫ 1

0

∫ 1

0

D̂(t, u)K̂j+l−1(u, s)D̂(s, t)duds (2.15)

and µ̂t = [µ̂t,1, ..., µ̂t,m]′ is a vector of length m :

µ̂t,l =

∫ 1

0

∫ 1

0

D̂(t, u)K̂ l−1(u, s)D̂(s, t)duds. (2.16)

Moreover, this estimator can be written in terms of the eigensystem of the empirical
covariance operator K̂ as

Ψ̂m(f) =
1

N − 1

N−1∑
j=1

N−1∑
n=1

Q(m, λ̂j)

λ̂j
< Xn+1, f >< Xn, v̂j > v̂j, for each f ∈ H.

(2.17)
with

Q(m, λ̂j) =

(
1−

m∏
l=1

(1− λ̂j

θ̂l
)

)
being the filter factor and θ̂2 > θ̂2 > ... > θ̂m > 0 are the eigenvalues of the matrix R̂.

The results of Proposition 1 rely on an extension of the Alternative Partial Least
Squares (APLS) approach proposed Delaigle and Hall (2012) combined with the results
of Proposition 1 by Carrasco and Tsafack (2020). It can also be noticed that if θ̂l = θ̂r = θ̂0

for each l, r = 1, ...m, then FPLS is similar to FLF with d = 1

θ̂0
.

Remark 1.
Considering the previous results, the estimated autoregressive operator Ψ̂∗m can be

summarized as

Ψ̂∗δ(f) =
1

N − 1

N−1∑
j=1

N−1∑
n=1

Q̂(δ, λ̂j)

λ̂j
< Xn+1, f >< Xn, v̂j > v̂j, for each f ∈ H. (2.18)

where the filter factor Q(δ, λ̂j) is such that
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Q(δ, λ̂j) =Q(m, λ̂j) = I(j ≤ m) for FPCA method

Q(α, λ̂j) = I(λ̂j ≥ α) for SC

Q(α, λ̂j) =
λ̂j

λ̂j + α
for FT

Q(α, λ̂j) =

(
1− (1− dλ̂j)

1
α

)
for FLF

Q(m, λ̂j) =

(
1−

m∏
l=1

(1− λ̂j

θ̂l
)

)
for FPLS.

(2.19)

with α > 0 and m < N .
Given the estimated autoregressive operator Ψ̂δ, the best prediction of the one day

ahead S&P 500 curve is given by

X̂n+1(t) =

∫ 1

0

ψ̂δ(s, t)Xn(s)ds for each t ∈ [0, 1]. (2.20)

2.5 Asymptotic Results

This section is dedicated to studying the convergence rate of the estimator Ψ̂δ in
the context that the eigenvalues of the covariance operator K are bounded and decline
gradually to zero. This situation is analyzed because as far as we are concerned, it
encompasses most of the practical case studied in the economic and financial field. For
this purpose, the following assumptions are required :

Assumption 1 (A1) : {X1, ..., XN} is a sequence of zero-mean and square integrable
functions following a functional autoregressive process with E[||Xn||4] < +∞ and there
exists an integer k0 ≥ 1 such that ||(Ψ∗)k0||L < 1.

Assumption 2 (A2) : εn is stationary and ergodic martingale difference sequence that
takes values in H with respect to {εn−1, εn−2, ..., Xn−1, Xn−2...} with E[||εn||2|Fn−1] =

σ2 < +∞, E[||εn||4|Fn−1] <∞ and E[||Xn||4] <∞.
Assumption 3 (A3) : The eigenvalues of the covariance operator K and the estimated

one K̂ are distinct, i.e. λ1 > λ2 > ... > 0 and λ̂1 > λ̂2 > ... > λ̂N > 0.
Assumption 4 (A4) : There is a Hilbert-Schmidt operator R and a positive constant

β such that
Ψ∗ = Kβ/2R.

This source condition can also be written as
∞∑
j=1

< Ψ∗(f), vj >
2

λβj
< +∞ for all f ∈ H.
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Assumption 1 ensures that the sequence {Xn;n ∈ H} is a stationary process and
admits a unique solution. Furthermore, since E[||Xn||4] < +∞, the operator K is
trace-class and thereby is Hilbert-Schmidt.

Assumption 2 imposes that the sequence of innovations εn is homoskedastic and
ensures that the operators K and D are consistently estimated by K̂ and D̂, respectively.
Moreover, it is assumed that the errors εn are martingale difference sequences, which is
less restrictive than what is usually observed in preceding papers.

Under assumption 3, the eigenvalues λj are distinct. Under A2 and A3, the λj are
consistently estimated by λ̂j (see Lemma 2 by Kokoszka and Reimherr (2013)). This
condition guarantees that the null space of the covariance operator K, N (K) is such
that N (K) = 0.

Assumption 4 is a source condition ensuring that the Fourier coefficients< Ψ∗(f), vj >

go to zero not faster than eigenvalues λβ/2j as j goes to infinity. β is also interpreted as
a parameter used to control the smoothness of Ψ∗. As β gets larger, Ψ∗(f) becomes
smoother (see Carrasco et al. (2007) and Benatia et al. (2017)). In the inverse problem
literature, this parameter characterizes the severity of the ill-posed problem. As β

becomes larger, the ill-posed problem becomes more severe, i.e the eigenvalues λj decay
more faster (see proposition 3.13 of Engl et al. (1996)). This assumption is necessary to
control the rate of convergence of the bias and variance term as a function of β. This
assumption is different to the one considered by Imaizumi and Kato (2018) or Crambes et
al. (2013), where they considered the fixed design model and their assumption is related
to the decreasing rate of the eigenvalues λj. This paper does not use such assumptions.
The source conditions considered in this paper are more general than the one considered
by Imaizumi and Kato (2018) or Crambes et al. (2013).

Let denote the regularized version of Ψ∗ by Ψ∗δ where δ is α for the FT, FLF, FSC
and m for FPCA, FPLS methods. Then, for each function f ∈ H, Ψ∗δ can be written as

Ψ∗δ(f) =
∞∑
j=1

Q(δ, λj)

λj
< D(f), vj > vj

=
∞∑
j=1

Q(δ, λj)

λj
< K(Ψ∗)(f), vj > vj

=
∞∑
j=1

Q(δ, λj) < Ψ∗(f), vj > vj.

Thus, for each function f ,

Ψ̂∗δ(f)−Ψ∗(f) = {Ψ̂∗δ(f)−Ψ∗δ(f)}+ {Ψ∗δ(f)−Ψ∗(f)}

where {Ψ∗δ(f) − Ψ∗(f)} represents the bias term that goes to zero as δ increases and
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{Ψ̂∗δ(f) − Ψ∗δ(f)} and the estimation error term which may increase as δ increases. The
conditional MSE is defined by

MSE = E

[
||Ψ̂∗δ −Ψ∗||2HS|FN−1

]
.

Proposition 2
Under assumptions A1 - A4, if α2N →∞, then

E
[∣∣∣∣∣∣∣∣Ψ̂∗δ −Ψ∗

∣∣∣∣∣∣∣∣2
HS

∣∣∣∣FN−1

]
=


Op

(
αβ
)

+Op

(
1

α2N

)
for FLF and FSC

Op

(
αmin{β,2}

)
+Op

(
1

α2N

)
for FT.

Remarks 2.
— Proposition 2 shows that as α goes to zero, the squared bias term decreases while

the variance increases. Then α should be optimally chosen such that bias is equal
to the variance. Thus, at the optimality,

— If α ∼ N−1/(2+β), then MSE ∼ N
−β
2+β for FLF and FSC.

— For β < 2, if α ∼ N−1/(2+β), then MSE ∼ N
−β
2+β for FT.

— For β > 2, if α2 ∼ N−1/2, then MSE ∼ N−1/2 for FT.

— These results lead to the conclusion that FT, FLF, and FSC display the same
convergence rate when the signal is difficult to recover (β < 2), while FT is slower
than FLF and FSC when the signal is easy to recover (β > 2).

— Due to the saturation property (see Carrasco et al. (2007) and chapter 6 of Engl
et al. (1996) concerning the saturation property of the Tikhonov regularization)
of the FT method, the FLF and FSC approaches should be preferred to FT (see
Carrasco et al. (2007)) in terms of estimation. This pattern should be checked in
the simulation.

Proposition 3
Under assumptions A1 - A4,

E
[∣∣∣∣∣∣∣∣Ψ̂∗,PLSm −Ψ∗

∣∣∣∣∣∣∣∣2
HS

∣∣∣∣FN−1

]
≤ E

[∣∣∣∣∣∣∣∣Ψ̂∗,PCAm −Ψ∗
∣∣∣∣∣∣∣∣2
HS

∣∣∣∣FN−1

]
Additionally, if m diverges much slower than N , such that m2

Nθ2m
→ 0, then

94



E
[∣∣∣∣∣∣∣∣Ψ̂∗δ −Ψ∗

∣∣∣∣∣∣∣∣2
HS

∣∣∣∣FN−1

]
=


Op

(
λβm+1

)
+Op

(
m

λmN

)
for FPCA

Op

(
λβm+1

)
+Op

(
m2

θ2mN

)
for FPLS

where θm is the smallest root of the residual polynomial Qm,j
4. The first Op term

represents the squared bias and the second one is the estimation error term.

Remarks 3.
— The first result of Proposition 3 shows that the squared bias term obtain with

FPLS is smaller than the one obtained with FPCA.

— Proposition 3 shows that as m increases, the squared bias term decreases while
the variance increases. Then, m should be optimally chosen i.e. such that bias
is equal to the variance. To get more information about the optimal number of
functional components m for the FPCA and FPLS, it is necessary to set some
additional assumptions on the eigenvalues and the smoothness condition of the
autoregressive operator.

— The rate of convergence of FPCA depends on the decreasing rate of the eigenvalues
(λj)j≥1 of the covariance operatorK and therefore depends on the smallest selected
eigenvalue λm. On the other hand, the FPLS approach depends on the smallest
root θm of the residual polynomial Qm,j. θm is also called the smallest eigenvalue
of a Hankel Matrix (see Delaigle and Hall (2012)).

— Since θm decreases at an exponential rate (see Berg and Szwarc (2011)),
it is most of the time expected that the FPLS method presents a larger
estimation error of the autoregressive operator estimation than the FPCA method.
Furthermore, under some smoothness conditions of the covariance operator and
the autoregressive operator, FPCA and FPLS may display the same rate of
convergence.

— In contrast to the FPCA and FPLS methods, the rate of convergence with the
FSC, FLF, and FT methods do not depend on the configuration of the eigenvalues.

— The convergence rate derived for FPCA and FPLS are more general bound. Both
methods display the same upper bound rate for the squared bias while the variance
term of FPLS tends to be larger than that of FPCA. The condition m2

Nθ2m
→ 0 is

sufficient for both FPCA and FPLS since θj < λj for j ≤ m ( see for instance
Lingjaerde and Christophersen (2000) and Carrasco and Tsafack (2020)).

— The rate obtained for the FPCA is different to the one obtained by Imaizumi
and Kato (2018). In fact, they considered an i.i.d fixed design model and imposed
more restrictive assumptions on the decreasing rate of the eigenvalues λj and on

4. For more discussions about θm, see Carrasco and Tsafack (2020)
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the smoothness of the kernel operator. The results of this paper are also different
to the one obtained by Crambes et al. (2013). They also considered an i.i.d model
and assumed that the eigenvalues belong to a class of nonnegative decreasing
convex functions of the incrementation index, which is still more restrictive than
the one proposed in this paper. Moreover, they proposed to estimate directly the
operator

∫ 1

0
ψ(s, .)X(s)ds instead of ψ(s, t). Furthermore, this paper considers an

autoregressive model with the error term that is a functional martingale difference
process, which is not considered by other papers.

— The assumptions of this paper are similar to the one suggested by Benatia et
al. (2017), who developed the convergence rate of the estimated operator in the
context of i.i.d data. The model considered in this paper is different to theirs since
there is dynamics between observations. In addition, I consider more methods for
comparison purposes.

2.6 Asymptotic normality for a fixed value of the
tuning parameter

In this section, the asymptotic normality is derived for the simple FAR(1) for
a fixed value of δ. The general asymptotic normality result has been presented for
the case of i.i.d model setting with a PCA-based estimation approach (see Crambes
et al. (2013), Cardot et al. (2007), and Bosq (2000)). More recently, Benatia et
al. (2017) derived this result by using the FT method for a fully functional linear
regression. They also considered an i.i.d observations. This paper considered that the
error term (εn)n=1,...,N is a sequence of functional martingale difference in H such
that E[εn|Fn−1] = 0 and E[||εn||2|Fn−1] = σ2. The asymptotic normality is only
considered for FPCA, FT, FLF, and FSC method. The FPLS is not considered since
Ψ̂δ is nonlinear in terms of the response function and therefore is more difficult to address.

Proposition 4
Assume that A1 to A4 hold. If E[||Xi||4] < ∞, E(||Xn||2||εn+1||2) < ∞ and δ is fixed,
then √

n(Ψ̂∗δ −Ψ∗δ)
d

=⇒ N (0,Ωδ) as N → ∞ (2.21)

where δ = m for FPCA and δ = α for FT, FLF, FSC and Ωδ is the covariance operator
with kernel :

Ωδ = K−1
δ E

[
(Xi⊗εi+1)⊗̃(εi+1⊗Xi)

]
K−1
δ +K−1

δ (Ψ∗)E
[
(Xi⊗Xi−K)⊗̃(Xi⊗Xi−K)

]
K−1
δ (Ψ∗)

with ⊗̃ being the tensor product of two operators. Then, for (A,B) ∈ HH×HH, A⊗̃B is
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an element of the Hilbert space of operators from HH to HH.
This result can be useful for testing hypotheses on the shape of the autoregressive

operator in one hand and construct the confidence set for the predicted functions
in another hand. This asymptotic covariance operator is estimated by replacing the
expectation with their empirical version.

Furthermore, this result is different to the one proposed by Crambes et al. (2013)
and Cardot et al. (2007), since they derived the asymptotic normality for the predicted
response function directly instead of the estimated operator. Also, it is a generalized
version to the one proposed by Benatia et al. (2017) for the case of FT estimation method
in the i.i.d context. This result is close to the i.i.d model. The main difference relies on
the usage of the functional central limit theorem for martingale difference sequences.
Moreover, the conditions E[||Xi||4] < ∞ and E(||Xi||2||εi+1||2) < ∞ ensure that the
asymptotic covariance operators display finite values.

Corollary 1
Assume that A1 to A4 hold. If E[||Xi||4] < ∞, E(||Xi||2||εi+1||2) < ∞ and δ is fixed,
then under the hypothesis that Ψ∗ = 0

√
N(Ψ̂∗δ − 0)

d
=⇒ N (0,Ωδ) as N → ∞ (2.22)

with

Ωδ = K−1
δ E

[
(Xi ⊗ εi+1)⊗̃(εi+1 ⊗Xi)

]
K−1
δ .

This result is obtained by replacing Ψ∗ = 0 in the result of Proposition 4. Indeed, we
have

Ψ∗δ = K−1
δ D = K−1

δ KΨ∗

Based on this result, one can develop a χ2 test in order to test the significance of the
estimated operator. Empirically, one can test the null hypothesis using Ĉxε = D̂− K̂Ψ∗.
Under H0, this operator should be close to zero and we obtain

√
NĈxε =

√
N(D̂ − K̂Ψ∗)

d
=⇒ N (0, Kxε) as N → ∞ (2.23)

where Kxε = E
[
(Xi ⊗ εi+1)⊗̃(εi+1 ⊗ Xi)

]
. Based on this result, it is easy to develop a

related chi-square test to check the significance of the estimated operator.

2.7 Determining the optimal order of a FAR(p) model

Determining the optimal order of an AR(p) model has been widely discussed in the
standard context of time series models. But so far, in the context of functional time series,
there is still a lot of work to be done. In fact, only three papers have been identified.
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Kokoszka and Reimherr (2013) are the first to propose a PCA-based multistage testing
procedure. They argued that there is no necessity of testing this procedure for a large
number of p, since each curveXi(t) already contains a large number of scalar observations.
Based on that statement, they considered a maximum lag of pmax = 2. Similarly, Aue et
al. (2015) proposed to project the data on a set of functional principal components and
used a standard VAR(1) model on the projection coefficients in order to derive a criterion
to optimally choose simultaneously the number of principal components and the order p.
They showed how standard multivariate models can be used in the context of functional
time series. On the same line, Liu et al. (2016) proposed an F-test by projecting the data
on sieve basis for a convolutional functional autoregressive model of order p (CFAR(p)).
This paper proposes a generalized approach based on the regularized estimated operator
and therefore is adaptable for different estimation methods that is linear in terms of the
response function.

Let us consider the FAR(p) model.

Xn+1 = Ψ1(Xn) + ...+ Ψp(Xn−p+1) + εn+1. (2.24)

This equation can be transformed into a FAR(1) model

Yn+1 = Φ(Yn) + Un+1 (2.25)

where,
Yn+1 = [Xn+1, Xn, ..., Xn−p+1]′, Yn = [Xn, Xn−1, ..., Xn−p]

′, Un+1 = [εn+1, 0, ..., 0]′.
and

Φ =


Ψ1 ... Ψp−1 Ψp

Id 0

... ...

Id 0


where Id and 0 are respectively the identity and the zero operators on H. Yn is

a p−vector of functions that belongs to the space Hp = (L2[0, 1])p. Φ is a matrix of
operators that belongs to (Hp×Hp). Hp is a Hilbert space endowed with the inner product
< x, y >p=

∑p
`=1 < x`, y` > and the norm ||x||p =

√
< x, x >2

p (where x, y ∈ Hp). For
the same reasons as in the previous section, the hypothesis testing is only considered for
FPCA, FT, FLF, and FSC method.

The hypothesis testing is a sequential procedure in which for h = 1, ..., p, one test if
the model has h lags. {

H0 : Ψh(.) = 0

H1 : Ψh(.) 6= 0.

The null hypothesis H0 means that only h − 1 lags are necessary while the alternative
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H1 means that there is h lags.
If at this stage H0 is rejected, we go to step h+ 1. In contrast, if there is not enough

evidence to reject H0, we stop the procedure and the number of lags is h− 1. At step h,
under H0, the operator Ĉxε = D̂−

∑h−1
`=0 K̂`(Ψ

∗
h) should be close to zero as Xi ⊗ εi+1 are

martingale difference functions, we obtain

√
N(Ĉxε)

d
=⇒ N (0, Kxε) as N → ∞ (2.26)

with

Kxε = E
[
(Xi ⊗ εi+1)⊗̃(Xi ⊗ εi+1)

]
= K⊗̃Vε,

K̂h =
1

N

N∑
i=1

Xi ⊗Xi−h

and

Vε = E[εi ⊗ εi]

Proposition 5
Assume that A1 to A4 hold. If E[||Xi||4] < ∞, E(||Xi||2||εi||2) < ∞ and δ is fixed (for
FPCA, FT, FLF, and FSC), then under H0, the statistics of the test is given by

WN = N ||Ĉxε||2HS
d

=⇒
∞∑
`=1

Q(δ, λ`)
2

λ`σ2
χ2
`(1) as N → +∞ (2.27)

where λ` is the eigenvalue of K. Under H1

WN
d

=⇒ +∞ as N → +∞ (2.28)

where χ2
`(1) are independent and identically distributed χ2(1) random variables.

The asymptotic distribution ofWN is nothing else than a weighted sum of independent
and identically distributed χ2(1) with the weights represented by the eigenvalues of
the covariance operators K̂h. Then, Proposition 5 shows that H0 is rejected if WN >∑∞

`=1
Q(δ,λ`)

2

λ`σ2 χ2
`(1), for a given significance level a. It is also possible to compute directly

the p-value associated with WN . Following Kokoszka and Reimherr (2013), I use only 2
steps in practice for the test procedure. Then, the maximum number of lag considered is
pmax = 2.
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2.8 Data driven selection of the tuning parameter

From the previous sections, it is observed that the different estimation methods
suggested in this paper depend on a tuning parameter that is m for FPCA and FPLS and
α for FSC, FT, and FLF. Those parameters should be selected properly. Usually, this
parameter is chosen in such a way that the prediction error is minimized. Because one
deals with functional time series, it is proposed to choose the regularization parameter
in such a way that the mean squared prediction error (MSPE) is minimized.

min
δ∈A(δ)

1

N

N−1∑
n=1

∫ 1

0

[
Xn+1(t)−

∫ 1

0

ψ̂δ(t, s)Xn(s)ds

]2

dt.

where A(δ) is a set of δ values in which the good one should be selected. δ equal to m
for FPCA and FPLS, while δ = α for FLF, FT, and SC.

An alternative criterion could be the usage of the mean absolute prediction error
(MAPE) defined as follows

min
δ∈A(δ)

1

N

N−1∑
n=1

∫ 1

0

∣∣∣∣Xn+1(t)−
∫ 1

0

ψ̂δ(t, s)Xn(s)ds

∣∣∣∣dt.
It is also possible to consider the average out-of-sample R2 (AR2

oos) defined as

max
δ∈A(δ)

1

N

N−1∑
n=1

∫ 1

0

R2
oos(t)dt.

where

R2
oos(t) = 1−

∑
(Xn+1(t)− Ψ̂δ(Xn)(t))2∑
(Xn+1(t)− X̄n+1(t))2

This statistic is usually considered to evaluate the return predictability of a considered
security based on a predefined prediction model. It takes its values in the interval (−∞, 1].
Then, if the value R2

oos(t) is close to 1, then the return of the considered security is more
predictable at the time t of the day, while if the value of R̃2

oos(t) is going to −∞, then the
return of the considered security is less predictable at the time t of the day. The idea is to
find the optimal tuning parameter such that the average R2

oos is maximized in this case.
The optimal tuning parameter is derived via a "rolling" scheme, in which the training
and validation sample shift progressively forward with the new data to be considered.
Then, for each rolling window, the related training and the validation sample are used
to choose the optimal regularization parameter and the predictive performance of the
model is tracked on the hold out sample. The advantage of this approach is to take into
account the most recent information.
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2.9 Simulation Results

This section is devoted to comparing the performance of the described estimation
methods in a finite sample context. The comparisons are made in terms of Monte Carlo
Simulations. The main comparisons are done on the mean-square error of the estimated
autoregressive operator and the mean-square prediction error of the model. The model
setting is the FAR(1)

Xn+1(t) =

∫ 1

0

ψ(t, s)Xn(s)ds+ εn+1(t) n = 1, ..., N. (2.29)

Three error processes are considered where the second and the third have been used
by Didericksen et al. (2012). Let ε(1)(t), ε(2)(t), and ε(3)(t) be as follows :

dε(1)(s) = −ε(1)(s)ds+ σdW (t)

where W is the standard Wiener process generated as and σ = 1.

W (
b

B
) =

1√
B

b∑
`=1

Z` b = 1, ..., B,

and Z` are independent standard normal variables and Z0 = 0.

ε(2)(t) = ξ1

√
2sin(2πt) + ξ2

√
2κcos(2πt). (2.30)

where ξ1 and ξ2 are two independent variables following a normal distribution and κ can
be a constant (for the simulations κ = 0.5).

The third error term configuration is a combination of the previous ones.

ε(3)(t) = aε(1)(t) + (1− a)ε(2)(t). (2.31)

where a ∈ [0, 1] is a real constant that represents the strength of the two components
ξ1 and ξ2. ε(1)(t) is an infinite series expansion , ε(2)(t) is a finite series expansion, and
ε(3)(t) is the combination of the previous one. In the simulations I use a = 0.5.

The theoretical autoregressive operator Ψ is an integral operator mapping from H to
H. Two configurations of Ψ are considered, which are :
Model 1 : Gaussian operator (see Didericksen et al. (2012))
Ψ(s, t) = Cexp

[
− t2+s2

2

]
,

Model 2 : Factor model operator (see Imaizumi and Kato (2018))
Ψ(s, t) =

∑3
k=1 Ψj,kvj(s)vj(t),

with v1 = 1, vj =
√

2cos(jπt), j ≥ 2 ; Ψ1,1 = 0.3 and Ψj,k = 4(−1)j+kj−γk−β for
(j, k) 6= (1, 1), and (β, γ) = (3, 3),
where (s, t) ∈ ([0, 1])2 and C a constant useful to normalize the autoregressive operator.

The norm of the operator is considered ||Ψ||HS = 0.8 and X0(t) = ε0(t).
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A continuous interval of [0, 1] is considered. This interval consists of 1000 equally-spaced
discretization. The sample size considered for the functional time series N = 1000. For
the numerical integration, the trapezoidal rule is used for all of the operations in the
simulation and real data applications. It has been noticed that a good estimation and
prediction of the model depend on the choice of the tuning parameter that is, the number
of principal components m for the FPCA and FPLS methods and the regularization
parameter α for the FT, FLF, and FSC techniques. These parameters are chosen with
cross-validation method.

To analyze the estimation error, two criteria are considered. These are the squared
error (SE) and the absolute deviation (AD). Those criteria are given by

SE =

∫ 1

0

∫ 1

0

(
Ψ̂(s, t)−Ψ(s, t)

)2

dsdt

AD =

∫ 1

0

∫ 1

0

∣∣∣Ψ̂(s, t)−Ψ(s, t)
∣∣∣dt

Indeed, we calculate these quantities for each simulation and report the mean, median
and standard deviation. To measure the prediction quality, two indicators are considered,
which are the integrated squared error (En) and the integrated absolute error (Rn). Those
criteria are given by

En =

∫ 1

0

(
X̂n(t)−Xn(t)

)2

dt

Rn =

∫ 1

0

∣∣∣X̂n(t)−Xn(t)
∣∣∣dt

The R2
oos is also considered as a prediction criterion. Similarly to the estimation

criteria, we calculate these quantities for each simulation and report the mean, median
and standard deviation.

Figure 2.3 shows the estimated kernel via the different estimation methods. It is
straightforward to observe that in terms of estimation purpose, the different estimation
methods tend to display a shape closed to the true kernel parameter. Moreover, it can be
noticed that it is difficult to recover the shape of the kernel representing the relationship
between the first tier on the left hand side of the kernels while relationship between the
last tier on the right hand side of the kernel is usually well recovered for each method.
This pattern is easily observed when looking at the estimation bias on Figures 2.10, 2.4,
2.9 and 2.8. Table 2.1 reports the mean, median, and standard deviation for the different
estimation and prediction criteria in the context where the autoregressive operator is the
gaussian kernel and the error term is ε(1). Based on the results of Table 2.1, FPCA tends to
outperform the other methods in terms of estimation of the autoregressive operator, while
in terms of MSPE and MAPE, it can be observed that all the estimation methods present

102



Estimated kernel - FPCA

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Xi(t)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

X
i+

1
(t

)

0.5

0.6

0.7

0.8

0.9

1

1.1

(a) FPCA

Estimated kernel - FPLS

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Xi(t)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

X
i+

1
(t

)

0.5

0.6

0.7

0.8

0.9

1

(b) FPLS

(c) FT

Estimated kernel - FSC

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Xi(t)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

X
i+

1
(t

)

0.5

0.6

0.7

0.8

0.9

1

1.1

(d) FSC

(e) FLF

0 0.2 0.4 0.6 0.8 1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0.4

0.5

0.6

0.7

0.8

0.9

1

(f) True

Figure 2.3: Estimated gaussian autoregressive operator on the optimal tuning parameter
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almost the same predictive performance. This is true for all the performance criteria
considered. Moreover, FPCA and FSC methods display similar results. Additionally, it
can be observed that the estimated autoregressive operator via these techniques is not
close to zero, as documented by Didericksen et al. (2012). Indeed, the approach suggested
by the authors is a nonparametric version of the FPCA approach in order to estimate the
autoregressive operator. This means that they tend to project the data on some principal
component, and do the forecast on the scores as they assume that the scores preserve
the stochastic dynamics on the sample of functions. These approaches work well when
the sample of functions used in the estimation procedure are smooth enough. They argue
that usually the eigenvalues of the covariance operator of the predictor functions drop
very quickly to zero. To reduce the quick drop of the eigenvalues, they suggested to add
an additional smoothing parameter ; however, the way that parameter is chosen is not
discussed. The approach considered in this paper suggests not to project the functions
on some orthogonal functions, but to work directly with the functions and operators.

When error terms are less smooth (ε(2) and ε(3)), the FPLS method tends to
outperform the other method when considering the autoregressive operator estimation.
The prediction performance is almost the same for all the methods (see Tables 2.6 and
2.7).

Also, when considering the factor-based kernel, the FPLS is still outperforming the
other methods when considering the MSE and AD (see Tables 2.8 and 2.9) and the
prediction performance is the same for all the methods. Another point to mention is
that the FPLS method depends on the decreasing rate of the smallest eigenvalue of the
Hankel matrix (θm), and its good performance is due to the fact that the eigenfunctions
are constructed by taking into account their contribution to predicting the target variable.
It would be interesting to see how these methods perform on real data. Then, in overall,
the FPLS method tends to outperform the other methods in terms of estimating the
autoregressive operator, while the prediction performance is almost the same for the
considered methods.

Furthermore, when comparing FT and FLF methods, it can be observed that FT
method tends to perform better than FLF method. This is true for estimation and
prediction performance almost all the data generating processes considered. This result
is in contrast to what was guessed by Benatia et al. (2017).
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(a) True kernel (Ψ) (b) Estimated kernel (Ψ̂δ)

(c) Bias (d) True and estimated

Figure 2.4: Comparison of the true gaussian and estimated kernels - FPCA

Concerning the selection of the optimal number of functional components, the FPLS
tends to select fewer number of components than FPCA, whether the object is estimation
or prediction. In fact, the FPCA usually select 10 components in general while FPLS tend
to select 1 to 3 components when the purpose is estimation. If the main purpose is to
predict, the number of components is 3 in major cases for both FPCA and FPLS (see
Table 2.3).

105



Table 2.1: Comparison of the different estimation techniques. Gaussian kernel, N =
1000, M = 1000 replications, and ε(1)

Moments FPCA FPLS FT FLF FSC

MSE Mean 0.111 0.355 0.219 0.119 0.111
Std 0.026 0.157 0.028 0.012 0.026
Median 0.110 0.322 0.215 0.118 0.110

AD Mean 0.294 0.504 0.412 0.306 0.294
Std 0.035 0.105 0.026 0.011 0.020
Median 0.293 0.476 0.409 0.303 0.293

MSPE Mean 0.020 0.028 0.020 0.020 0.020
Std 0.001 0.003 0.001 0.001 0.001
Median 0.020 0.028 0.020 0.020 0.020

MAPE Mean 0.023 0.034 0.023 0.023 0.023
Std 0.001 0.002 0.001 0.001 0.001
Median 0.023 0.034 0.023 0.023 0.023

R2
is Mean 0.49 0.49 0.47 0.49 0.49

Std 0.025 0.027 0.025 0.025 0.025
Median 0.49 0.49 0.47 0.49 0.49

R2
oos Mean 0.49 0.49 0.47 0.49 0.49

Std 0.025 0.027 0.025 0.025 0.025
Median 0.49 0.49 0.47 0.49 0.49

2.10 Application to the S&P 500 intraday data

2.10.1 Data

The S&P 500 Index data is used to analyze the intraday returns predictability. The
sample data considered is from 01/01/2010 to 12/31/2017. The data is collected from a
website called www.backtestmarket.com.

2.10.2 The Model

To start the empirical analysis, the simple functional autoregressive model is
considered where the current cumulative intraday market return is used to predict the
next day cumulative return. These results would be tested for the other years of our data
base. In the prediction sample, the regression model is given by

Xn+1(t) = Ψ0(t) +

∫ 1

0

ψ(s, t)Xn(s)ds+ εn+1(t), n = 1, ..., 2013. (2.32)

The sample size for this regression period is N = 2013. This sample is splitted in 3
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Table 2.2: Comparison of the different estimation techniques. factor kernel, N = 1000,
M = 1000 replications, and ε(1)

Moments FPCA FPLS FT FLF FSC

MSE Mean 0.327 0.741 0.240 0.254 0.327
Std 0.076 0.236 0.026 0.014 0.076
Median 0.305 0.720 0.235 0.251 0.305

AD Mean 0.504 0.735 0.431 0.445 0.504
Std 0.058 0.117 0.023 0.014 0.058
Median 0.488 0.730 0.426 0.442 0.488

MSPE Mean 0.020 0.020 0.020 0.020 0.020
Std 0.001 0.003 0.001 0.001 0.001
Median 0.020 0.020 0.020 0.020 0.020

MAPE Mean 0.023 0.023 0.023 0.023 0.023
Std 0.001 0.002 0.001 0.001 0.001
Median 0.023 0.023 0.023 0.023 0.023

R2
is Mean 0.350 0.352 0.323 0.334 0.35

Std 0.021 0.021 0.021 0.021 0.021
Median 0.347 0.350 0.321 0.332 0.347

R2
oos Mean 0.352 0.353 0.325 0.337 0.352

Std 0.025 0.022 0.024 0.025 0.025
Median 0.352 0.353 0.325 0.337 0.352
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Table 2.3: Comparison of the number of selected components, N = 1000, M = 1000
replications

Wiener Process Smoothed Combo

Gaussian Factor Gaussian Factor Gaussian Factor

PCA PLS PCA PLS PCA PLS PCA PLS PCA PLS PCA PLS

MSE 10 3 10 3 10 3 10 3 10 3 8 2
AD 9 2 8 2 9 1 9 2 1 9 9 3
MSPE 6 3 3 3 1 1 1 1 3 3 3 3
MAPE 5 3 3 3 1 1 1 1 3 3 3 3
R2oos 6 3 3 3 1 1 1 1 3 3 3 3

sub-samples using the rolling scheme as described in section 2.8. The training sample is
used for the in-sample estimation of the autoregressive operator. The validation sample
is used to select the optimal tuning parameter for the estimation and prediction. The
testing sample is used to observe the out-of-sample predictive performance of the different
estimation methods. Each day is represented by the 390 discretizations points of 1-minute
frequency for a trading day. Figure 2.5 displays a contour plot representing the correlation
shape between the current day’s cumulative return and the next whole day’s return on
the 1-minute frequency, that is the estimated autoregressive operator ψ̂δ(s, t). It can be
observed that all the four different methods display almost similar results in terms of
estimation. Table 2.4 shows the results of the test to select the optimal number of lag in
the model. The test is sequentially driven and Ψ1, Ψ2, Ψ3 correspond to the case where
the FAR(1), FAR(2), and FAR(3) are tested respectively. It can be noticed that only
one lag is necessary to fit the data and this result holds for the different regularization
methods. Moreover, it also indicates that the estimated autoregressive operator Ψ̂δ is
significantly different from the zero operator for a significant level a = 0.05, so I will
consider only one lag for estimation and prediction.

Table 2.4: The p-values for Ψ = 0 under H0 with a = 0.05

p-values FPCA FT FLF FSC

Ψ1 0.00001 0.00001 0.00001 0.00001
Ψ2 0.081 0.0734 0.0687 0.052
Ψ3 0.773 0.579 0.316 0.373

Based on the estimations using the different methods it can be noticed that the
cumulative return for the period 9 :30 AM - 10 :30 AM of the current day is negatively
correlated with the whole next day return. Moreover, the cumulative return in the period
11 :30 AM - 1 :00 PM of the current day is negatively correlated with the next day
cumulative return in the period 9 :30 AM - 10 :30 AM and positively correlated to the
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return for the whole remaining period of the day. This result holds for all the different
methods considered. Additionally, the cumulative return in the period 2 :00 PM - 4 :00
PM of the current day tends to be negatively correlated with the whole next day’s
cumulative return. This result is more pronounced when we take a look at the estimation
with FPCA, FPLS and FT methods. In fact, it means that, if investors usually rely only
on the first or last tier of the previous trading day (09 :30 AM - 10 :30 AM or 02 :00 PM
- 04 :00 PM respectively) to make their analysis and make trading decisions for the next
day, they should use a reversal strategy for the next day. Otherwise, if they only rely on
the second tier (11 :00 AM - 01 :00 PM) of the current trading day to make next day’s
decisions, they should use a reversal strategy only in the period 09 :30 AM - 10 :30 AM
and a momentum strategy for the remaining period of the the next day. Furthermore,
the estimation via FPCA and FSC displays the same results.

(a) FT (b) FLF

(c) FPCA and FSC (d) FPLS

Figure 2.5: Estimated autoregressive operator.
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2.10.3 Analyzing the functional out-of-sample R2

In this section, the predictive functional R2
oos is derived and analyzed. This variable

can be used to identify which period of the next day is the most or less predictable
periods in terms of returns analysis. From the Figure 2.6, it is easy to see that the most
predictable period of the next day based on current day’s return is the period 11 :00 AM
- 11 :30 AM. This is true for all the considered methods. Indeed, the different estimation
methods show a high R2

oos in that period of the day, which ensures that one can expect
an edge in that period of the day. The result is almost similar for all of the different
estimation methods. FPCA and FPLS tend to catch a remarkable value of 3% in that
period of the trading session, while FT and FLF tend to display a predictive R2

oos of 2%.
The period 2 :00 PM - 3 :00 PM is also a period to follow-up as a potential predictable
one as the different estimation methods tend to display an attractive R2

oos of 2%. This
valid only for FPLS, FLF and FT methods. On the other hand, the less predictable
period of the next day is the beginning and more specifically the period 09 :30 - 09 :45
as the related predictive R2

oos is closed to 0. This result holds for the different estimation
methods considered. This result can be explained by the fact that usually during the
pre-market periods, there are news release such as macroeconomic news on the monetary
policies or on the business environment that can have an impact on the market right at
the opening time. Based on that point, market participant are more uncertain on how
the market can react at the opening time. They maybe wait for a few minute at the
beginning of the trading session before taking any decision.

2.10.4 Forecast accuracy

In this section, the forecast performance of the considered estimation methods is
evaluated. The prediction criteria considered for the comparison are the mean squared
prediction error (MSPE), the mean absolute prediction error (MAPE), and the average
out-of-sample R-squared (AR2

oos). The performance is evaluated on the test sample with
the usage of the optimal tuning parameter obtained on the validation sample. The
functional autoregressive model is also compared to the usual AR(1) model on daily
frequency. The following table presents the result of the forecasts performance.

Generally, functional autoregressive model tends to produce more forecast accuracy
than standard AR(1) model. This suggests that the functional data analysis approach
is taking advantage of the additional news and improves the forecast performance. This
confirm also the results by Kargin and Onatski (2008). Indeed, they use an estimation
method called predictive factor method for their functional autoregressive model.
They demonstrate that using the FAR(1) model contribute to improve the forecasting
performance compared to the context where the model considered is an ARMA.
Furthermore, the different estimation methods tend to display the same predictive
performance when we consider the MSPE and MAPE criteria. Indeed, the MSPE is
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Figure 2.6: Estimated out-of-sample functional R-squared.

approximately 0.08, while the MAPE is almost 0.19 for all the considered methods. These
results are similar to the one obtained in the simulation results. Additionally, when the
prediction criterion considered is the AR2

oos, it is easy to observe that FPLS tends to
outperform the other methods. In fact, it displays an AR2

oos of 3.9% while the other
methods present an AR2

oos of approximately 1%. This supports the fact that FPLS is a
supervised methods with the goal to make a good prediction of the response variable.
Additionally, Figure 2.7 displays an example of the forecast of the next day return curve in
the test sample. It can be observed that when there is no high impact news or jumps, the
suggested approach can predict the trend of the curve of the cumulative return, but when
there are jumps or high impact announcements, it is difficult to make a good forecast.
It could be interesting to introduce variables capturing the news announcements and
develop a functional version of the Diebold and Mariano (1995) test in order to check the
stability of the forecast performance when the prediction time period changes. Additional
materials are required for such an exercise. This goes beyond the scope of this paper.

111



09:30 10:00 10:30 11:00 11:30 12:00 12:30 01:00 02:00 03:00 04:00

Time of day

-0.4

-0.2

0

0.2

0.4

0.6

0.8

c
u
m

u
la

ti
v
e
 r

e
tu

rn

True

Forecast FT

(a) FT

09:30 10:00 10:30 11:00 11:30 12:00 12:30 01:00 02:00

Time of day

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

c
u
m

u
la

ti
v
e
 r

e
tu

rn

True

Forecast FLF

(b) FLF

09:30 10:00 10:30 11:00 11:30 12:00 12:30 01:00 02:00 03:00 04:00

Time of day

-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

c
u
m

u
la

ti
v
e
 r

e
tu

rn
(%

)

True

Forecast FPCA

(c) FPCA and FSC

09:30 10:00 10:30 11:00 11:30 12:00 12:30 01:00 02:00 03:00 04:00

Time of day

-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

c
u
m

u
la

ti
v
e
 r

e
tu

rn
(%

)

True

Forecast FPLS

(d) FPLS

Figure 2.7: Forecast of the next day return curve.
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Table 2.5: Comparison of the forecasting performance of the different methods for
S&P500 CIDRs over the testing sample period

Moments FPCA FPLS FT FLF FSC AR(1)

MSPE Mean 0.081 0.084 0.081 0.081 0.081 8.551
Std 0.041 0.0134 0.0162 0.0087 0.042 0.0524

Median 0.081 0.082 0.081 0.081 0.081 8.532

MAPE Mean 0.192 0.190 0.191 0.191 0.191 4.328
Std 0.0543 0.0142 0.0252 0.0109 0.0533 0.0451

Median 0.192 0.190 0.191 0.191 0.191 4.223

AR2
oos Mean 0.007 0.039 0.013 0.015 0.007 0.003

Std 0.0011 0.0020 0.0034 0.0072 0.0011 0.0082
Median 0.007 0.038 0.013 0.015 0.007 0.003

2.11 Conclusion

This paper investigates the problem of forecasting the stock market intraday return
with a functional version of an autoregressive model. The 1-minute frequency data are
exploited to construct daily cumulative return curves and the functional data analysis
framework is used for estimation purpose. The considered estimation approach is revealed
to be interesting for market participants in optimizing their momentum and reversal
trading strategy, or in adjusting their portfolio rebalancing. This estimation problem leads
to a high dimensionality problem and a comparative analysis of 4 big data techniques
including FPLS, FT, FLF, and FSC is developed in order to overcome this issue. The
4 techniques depend on a regularization parameter that is chosen via a data-driven
cross-validation approach. I derived the convergence rate of the considered estimation
methods. The theoretical results show that the MSE of FT, FLF, and FSC methods
display the same convergence rate when the signal to noise is difficult to recover (the
parameter is less smooth), while FT is slower than FLF and FSC and can be saturated
when it is easy to recover the signal (the parameter is more smooth). On the other hand,
FPLS displays a smaller squared bias than the FPCA and the estimation error for the
FPLS seems to be much larger than that of FPCA. Also, a testing procedure is developed
to select the optimal number of lags in the model and the method is useful regardless of
the linear regularization approach.

Monte Carlo simulation results show that in most cases, FPLS methods tends to
outperform the others in terms of estimation criteria. On the other hand, the considered
methods tend to display the same predictive performance when we consider the MSPE
and the MAPE. In addition, when the prediction criterion is the R2

oos, then FPLS and
FPCA tend to present the same predictive performance and they usually outperform FT
and FLF methods. Moreover, FLF method does not usually outperform FT method, in
contrast to what was guessed by Benatia et al. (2017). In overall, the FPLS method tends
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slightly to outperform the other methods in most cases in terms of estimation criteria.
The empirical application focuses on the prediction of the next day’s cumulative

intraday return for the S&P 500. The results show that all the considered estimation
methods tend to display almost similar results in terms of the estimation of the
autoregressive operator. In terms of prediction, the considered methods present a similar
predictive performance when we consider MSPE and MAPE as criteria, while FPLS
method tends to outperform the other methods when we consider the R2

oos. Moreover,
concerning the functional R2

oos, the FPLS and FPCA methods tend to document an
attractive R2

oos of 3% in the period 11 :00 AM - 11 :30 AM and 2% 2 :00 PM - 3 :00 PM
within a trading day, which represent the best predictable period of the next day based
on the current day’s return and therefore can be considered as potential edge periods in
the stock market. Additionally, these periods can be considered as potential time of the
day to apply momentum or reversal strategy accordingly. Furthermore, after forecasting
the intraday return, it could be interesting to test the prediction accuracy of the different
approaches following the idea by Diebold and Mariano (1995). These potential extensions
are left for future research.

2.12 Appendix.

Proof of Proposition 1.
For each t ∈ [0, 1], Xn+1(t) is a scalar, then one can derive the results by Delaigle and
Hall (2012) for each t. The last result is obtained by exploiting the orthogonal polynomial
representation as developed by Carrasco and Tsafack (2020).

Lemmas 1 to 3 below will be needed in the proof of Proposition 2.
Lemma 1

Under assumptions A1, A2, and A3, Ψ∗δ is Hilbert-Schmidt for all δ.
Proof of Lemma 1.

||Ψ̂∗δ||2HS =

∣∣∣∣∣∣∣∣K̂−1
δ D̂

∣∣∣∣∣∣∣∣2
HS

≤ ||D̂||2HS||K̂−1
δ ||

2
op.

If A is Hilbert-Schmidt operator and B is a bounded operator, ||AB|||HS ≤ ||A||HS||B||op
with ||B||op = Sup

||f ||≤1

||B(f)|| the operator norm, it remains to prove that ||D̂||2HS < +∞

and ||K̂−1
δ ||2op = Op(1).

If the method is Functional Tikhonov,
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||K̂−1
δ ||

2
op = ||(αI + K̂)−1||2op

≤ 1

α2

= Op(1).

If the method is Functional Landweber-Fridman,

||K̂−1
δ ||

2
op = ||d

1/α∑
l=1

(I − dK̂)l−1||2op

≤ Sup
j≥1

∣∣∣∣(1− (1− dλ̂j)
1
α )

λ̂j

∣∣∣∣2
≤ C

1

α2

= Op(1).

with ||K̂||op < 1
d
and C > 0.

If the method is Functional Spectral Cut-off,

||K̂−1
δ ||

2
op ≤ Sup

j≥1

∣∣∣∣I(λ̂j ≥ α)

λ̂j

∣∣∣∣2
≤ 1

α2

= Op(1).

and we get the same result for the FPCA method, that is ||K̂−1
δ ||2op = Op(1)

If the method is Functional Partial Least Squares

||K̂−1
δ ||

2
op ≤ Sup

j≥1

∣∣∣∣
(

1−
∏m

l=1(1− λ̂j

θ̂l
)

)
λ̂j

∣∣∣∣2

≤ Sup
j≥m+1

∣∣∣∣
(

1−
∏m

l=1(1− λ̂j

θ̂l
)

)
λ̂j

∣∣∣∣2
= Op(1).

using the fact that λ̂j ≤ θ̂m.

115



Furthermore, D̂∗ is a Hilbert-Schmidt operator since it is an integral operator with a
degenerated kernel D̂∗(s, t) = 1

N−1

∑N−1
i=1 Xi(s)Xi+1(t) and Xn(t) belongs to H.

Lemma 2

Under assumptions A1− A4,
∣∣∣∣∣∣∣∣K−1

δ (K −Kδ)K
β/2R

∣∣∣∣∣∣∣∣2
HS

is
Op(α

β) for FLF and FSC

Op(α
min{β,2}) for FT

Op(λ
β
m+1) for FPCA and FPLS.

Proof of Lemma 2.

∣∣∣∣∣∣∣∣K−1
δ (K −Kδ)K

β/2R

∣∣∣∣∣∣∣∣2
HS

≤
∣∣∣∣∣∣∣∣K−1

δ

∣∣∣∣∣∣∣∣2
op

∣∣∣∣∣∣∣∣(K −Kδ)K
β/2R

∣∣∣∣∣∣∣∣2
HS

FT method
For the FT method, see Lemma 10 of Benatia et al. (2017).

FSC method

Kδ =
∑
λj≥α

λj < vj, . > vj

K −Kδ =
∑
λj<α

λj < vj, . > vj

K−1
δ =

∑
λj≥α

1

λj
< vj, . > vj

Then, ||K−1
δ ||2op = O( 1

α2 ) and

∣∣∣∣∣∣∣∣(K −Kδ)K
β/2R

∣∣∣∣∣∣∣∣2
HS

=
∑
λj<α

λβ+2
j < R(vj), R(vj) >

2

≤
[
Sup
λj<α

λβ+2
j

] ∑
λj<α

< R(vj), R(vj) >
2

≤ Cαβ.

where C > 0 is an arbitrary positive constant. Morevover,
∑

λj<α
< R(vj), R(vj) >

2=

||R||2HS < +∞ (because R is Hilbert-Schmidt), which leads to the result.

FLF method
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K−1
δ =

∞∑
j=1

Q(α, λj)

λj
< vj, . > vj

where Q(α, λj) = (1− (1− dλj)
1
α ).

∣∣∣∣∣∣∣∣(K −Kδ)K
β/2R

∣∣∣∣∣∣∣∣2
HS

=
+∞∑
j=1

λβ+2
j (1−Q(α, λj))

2 < R(vj), R(vj) >
2

≤
[
Sup
j
λβ+2
j (1−Q(α, λj))

2

] +∞∑
j=1

< R(vj), R(vj) >
2

≤ Cαβ+2.

Using Proposition 3.11 of Carrasco et al. (2007), Sup
j≥1

[
λβj (1−Q(α, λj))

2

]
≤ Cαβ+2 (where

C is a positive arbitrary constant) and the fact that R is Hilbert-Schmidt leads to the
result.

FPCA method

Kδ =
m∑
j=1

λj < vj, . > vj

K −Kδ =
∑

j≥m+1

λj < vj, . > vj

K−1
δ =

m∑
j=1

1

λj
< vj, . > vj

Then, ||K−1
δ ||2op = O( 1

λ2m+1
) and

∣∣∣∣∣∣∣∣(K −Kδ)K
β/2R

∣∣∣∣∣∣∣∣2
HS

=
∑

j≥m+1

λβ+2
j < R(vj), R(vj) >

2

≤
[
Sup
λj<α

λβ+2
j

] ∑
j≥m+1

< R(vj), R(vj) >
2

≤ Cλβ+2
m+1.

where C > 0 is an arbitrary positive constant. Morevover,
∑

j≥m+1 < R(vj), R(vj) >
2=

||R||2HS < +∞ (because R is Hilbert-Schmidt), which leads to the result.
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FPLS method

K−1
δ =

∞∑
j=1

Q(m,λj)

λj
< vj, . > vj

where Q(m,λj) =

(
1−

∏m
l=1(1− λj

θl
)

)
.

Then,

||K−1
δ ||

2
op = Sup

j≥1
Q(m,λj)

≤ Sup
j≥m+1

Q(m,λj)

= O(1).

The second line is true following proofs of Proposition 4 by Carrasco and Tsafack (2020)
and

∣∣∣∣∣∣∣∣(K −Kδ)K
β/2R

∣∣∣∣∣∣∣∣2
HS

=
+∞∑
j=1

λβj (1−Q(m,λj))
2 < R(vj), R(vj) >

2

≤
[
Sup
j
{λβj (1−Q(m,λj))

2}
] +∞∑
j=1

< R(vj), R(vj) >
2

≤
[
Sup
j≥m+1

{λβj (1−Q(m,λj))
2}
] +∞∑
j=1

< R(vj), R(vj) >
2

≤ Cλβm+1.

Using results of the proofs of Proposition 4 by Carrasco and Tsafack (2020), Sup
j≥1

[
λβj (1−

Q(α, λj))
2

]
≤ Cλβm+1 (where C is a positive arbitrary constant) and the fact that R is

Hilbert-Schmidt lead to the result. This concludes the proof of Lemma 2.
Lemma 3

Under assumptions A1− A4, for N →∞,
∣∣∣∣∣∣∣∣K̂−1

δ K̂(Ψ∗)−K−1
δ K(Ψ∗)

∣∣∣∣∣∣∣∣2
HS

is
Op(

αβ

α2N
) for FLF and FSC

Op(
αmin{β,1}

α2N
) for FT

Op(
1

λ2mN
) for FPCA.
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Proof of Lemma 3.

K̂−1
δ K̂(Ψ∗)−K−1

δ K(Ψ∗) = −K̂−1
δ (K̂δ −Kδ)K

−1
δ (Kδ −K)(Ψ∗)

− K̂−1
δ (K̂δ −Kδ)Ψ

∗

+ K̂−1
δ (K̂ −K)Ψ∗.

Then,

∣∣∣∣∣∣∣∣K̂−1
δ K̂(Ψ∗)−K−1

δ K(Ψ∗)

∣∣∣∣∣∣∣∣2
HS

≤ 3

∣∣∣∣∣∣∣∣K̂−1
δ (K̂δ −Kδ)K

−1
δ (Kδ −K)(Ψ∗)

∣∣∣∣∣∣∣∣2
HS

+ 3

∣∣∣∣∣∣∣∣K̂−1
δ (K̂δ −Kδ)Ψ

∗
∣∣∣∣∣∣∣∣2
HS

+ 3

∣∣∣∣∣∣∣∣K̂−1
δ (K̂ −K)Ψ∗

∣∣∣∣∣∣∣∣2
HS

= 3(I) + 3(II) + 3(III).

Moreover,

(I) =

∣∣∣∣∣∣∣∣K̂−1
δ (K̂δ −Kδ)K

−1
δ (Kδ −K)(Ψ∗)

∣∣∣∣∣∣∣∣2
HS

≤
∣∣∣∣∣∣∣∣K̂−1

δ

∣∣∣∣∣∣∣∣2
op

∣∣∣∣∣∣∣∣K̂δ −Kδ

∣∣∣∣∣∣∣∣2
op

∣∣∣∣∣∣∣∣K−1
δ (Kδ −K)(Ψ∗)

∣∣∣∣∣∣∣∣2
HS

.

(II) =

∣∣∣∣∣∣∣∣K̂−1
δ (K̂δ −Kδ)Ψ

∗
∣∣∣∣∣∣∣∣2
HS

≤
∣∣∣∣∣∣∣∣K̂−1

δ

∣∣∣∣∣∣∣∣2
op

∣∣∣∣∣∣∣∣K̂δ −Kδ

∣∣∣∣∣∣∣∣2
op

∣∣∣∣∣∣∣∣Kβ/2R

∣∣∣∣∣∣∣∣2
HS

.

(III) =

∣∣∣∣∣∣∣∣K̂−1
δ (K̂ −K)Ψ∗

∣∣∣∣∣∣∣∣2
HS

≤
∣∣∣∣∣∣∣∣K̂−1

δ

∣∣∣∣∣∣∣∣2
op

∣∣∣∣∣∣∣∣K̂ −K∣∣∣∣∣∣∣∣2
op

∣∣∣∣∣∣∣∣Kβ/2R

∣∣∣∣∣∣∣∣2
HS

.

For FT method :
See proof of Proposition 2 by Benatia et al. (2017).
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For FLF and FSC methods :

Furthermore, ||K̂−1
δ ||2op = Op(

1
α2 ), ||K−1

δ ||2op = Op(
1
α2 ), and from Lemma 2∣∣∣∣∣∣∣∣K−1

δ (Kδ −K)(Ψ∗)

∣∣∣∣∣∣∣∣2
HS

= Op

(
αβ
)
.

Then, (I) = Op(
αβ

α2N
). Moreover, ||K̂δ −Kδ||2op = Op(

1
N

), ||K̂ −K||2op = Op(
1
N

)

Then,
∣∣∣∣∣∣∣∣K̂−1

δ (K̂δ −Kδ)K
−1
δ (Kδ −K)(Ψ∗)

∣∣∣∣∣∣∣∣2
HS

= Op

(
αβ

α2N

)
.

Similarly, (II) = Op(
1

α2N
) and (III) = Op(

1
α2N

). Then, for FLF∣∣∣∣∣∣∣∣K̂−1
δ K̂(Ψ∗)−K−1

δ K(Ψ∗)

∣∣∣∣∣∣∣∣2
HS

= Op

(
αβ

α2N

)
.

For FPCA method :
δ = m for FPCA and FPLS

Furthermore, ||K̂−1
δ ||2op = Op(

1
λ2m+1

), ||K−1
δ ||2op = Op(

1
λ2m+1

), and from Lemma 2 we
have ∣∣∣∣∣∣∣∣K−1

δ (Kδ −K)(Ψ∗)

∣∣∣∣∣∣∣∣2
HS

= Op

(
λβm+1

)
.

Then, ∣∣∣∣∣∣∣∣K̂−1
δ (K̂δ −Kδ)K

−1
δ (Kδ −K)(Ψ∗)

∣∣∣∣∣∣∣∣2
HS

= Op

(
λβm+1

λ2
m+1N

)
.

Moreover, ||K̂δ − Kδ||2op = Op(
1
N

), ||K̂ − K||2op = Op(
1
N

), then, (I) = Op

(
1

λ2m+1N

)
,

(II) = Op(
1

λ2m+1N
) and (III) = Op(

1
λ2m+1N

). This leads to∣∣∣∣∣∣∣∣K̂−1
δ K̂(Ψ∗)−K−1

δ K(Ψ∗)

∣∣∣∣∣∣∣∣2
HS

= Op

(
λβm+1

λ2
m+1N

)
= Op

(
1

λ2
mN

)
.

Proof of Proposition 2.
We have δ = α for FT, FSC and FLF
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E
[∣∣∣∣∣∣∣∣Ψ̂∗δ −Ψ∗

∣∣∣∣∣∣∣∣2
HS

∣∣∣∣FN−1

]
= E

[∣∣∣∣∣∣∣∣K̂−1
δ D̂ −K−1

δ D +K−1
δ D −Ψ∗

∣∣∣∣∣∣∣∣2
HS

∣∣∣∣FN−1

]
= E

[∣∣∣∣∣∣∣∣K̂−1
δ K̂Ψ∗ + K̂−1

δ Ĉxε −K−1
δ D +K−1

δ D −Ψ∗
∣∣∣∣∣∣∣∣2
HS

∣∣∣∣FN−1

]
= E

[∣∣∣∣∣∣∣∣K̂−1
δ Ĉxε + K̂−1

δ K̂Ψ∗ −K−1
δ KΨ∗ +K−1

δ D −Ψ∗
∣∣∣∣∣∣∣∣2
HS

∣∣∣∣FN−1

]
= E

[
||A+B + C||2HS|FN−1

]
.

where A = K̂−1
δ Ĉxε, with Ĉxε = 1

N−1

∑N−1
i=1 Xi ⊗ εi+1, B = K̂−1

δ K̂Ψ∗ − K−1
δ KΨ∗ and

C = K−1
δ D −Ψ∗.

Using Lemma 8 by Benatia et al. (2017), the last line of this equation yields

E
[∣∣∣∣∣∣∣∣Ψ̂∗δ −Ψ∗

∣∣∣∣∣∣∣∣2
HS

∣∣∣∣FN−1

]
= E[||A||2HS|FN−1] + ||B + C||2HS

≤ E[||A||2HS|FN−1] + 2||B||2HS + 2||C||2HS.

Using Lemma 2 lead to ||C||2HS ={
Op(α

β) for FLF and FSC

Op(α
min{β,2}) for FT.

Following Lemma 3, lead ||B||2HS ={
Op(

αβ

α2N
) for FLF and FSC

Op(
αmin{β,1}

α2N
) for FT.

Then, it remains to derive the convergence rate of E[||A||2HS|FN−1].

E[||A||2HS|FN−1] = E[||K̂−1
δ Ĉxε||2HS|FN−1]

= E
[
tr[K̂−1

δ ĈxεĈ
∗
xεK̂

−1
δ ]

∣∣∣∣FN−1

]
= tr

[
E[K̂−1

δ ĈxεĈ
∗
xεK̂

−1
δ |FN−1]

]
= tr

[
K̂−1
δ E[ĈxεĈ

∗
xε|FN−1]K̂−1

δ

]
where tr(Z) is the trace of an arbitrary operator Z, that is ||Z||2HS = tr(ZZ∗). The third
line in this equation is true following Lemma 9 by Benatia et al. (2017). Furthermore,
since Ĉxε = 1

N−1

∑N−1
i=1 Xi ⊗ εi+1
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ĈxεĈ
∗
xε(f) =

1

(N − 1)2

N−1∑
i,j=1

Xi < Xj, f >< εi+1, εj+1 >

Therefore,

E[ĈxεĈ
∗
xε(f)|FN−1] =

1

(N − 1)2

N−1∑
i,j=1

Xi < f,Xj > E[< εi+1, εj+1 > |FN−1]

=
1

N − 1

N−1∑
i=1

< Xi, f > E[< εi+1, εi+1 > |FN−1]Xi

=
1

N − 1

N−1∑
i=1

< Xi, f > tr(Vε)Xi

=
1

N − 1
tr(Vε)

N−1∑
i=1

< Xi, f > Xi

=
1

N − 1
tr(Vε)K̂(f)

where Vε = E[εi ⊗ εi|FN−1]. Since εi are squared integrable functional martingale
difference sequences and vi are orthonormal, then εi =

∑+∞
j=1 < εi, vj > vj, which leads

to < εi, εi >=
∑+∞

j=1 < εi, vj >
2. Therefore,

E[< εi, εi > |FN−1] =
+∞∑
j=1

< Vε(vi), vi >

= tr(Vε).

Then,

E[||A||2HS|FN−1] ≤ 1

N − 1
tr

[
K̂−1
δ K̂K̂−1

δ

]
tr

[
Vε

]
.

For FT method :
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tr

[
K̂−1
δ K̂K̂−1

δ

]
=

+∞∑
j=1

λ̂j

(λ̂j + α)2

≤
∫ +∞

0

x

(x+ α)2
dx

=
1

α

[
−1

x+ α

]+∞

0

≤ C

α2
.

where C is an arbitrary positive number.
For FSC method :

tr

[
K̂−1
δ K̂K̂−1

δ

]
=
∑
λj≥α

λ̂j

λ̂2
j

=
1

α2

∑
λ̂j≥α

λ̂j

≤ C

α2
.

The last line holds since
∑

λj≥α λ̂j < +∞ (K̂ is nuclear).
For FLF method :

tr

[
K̂−1
δ K̂K̂−1

δ

]
=
∑
j≥1

(1− (1− dλ̂j)1/α)2

λ̂j

≤
(
d

α

)2 ∑
λj≥1

λ̂j

≤ C

α2

where C is an arbitrary positive number. The second line is true following Proposition

3.14 by Carrasco et al. (2007). These results lead to E[||A||2HS|FN−1] = Op

(
1

α2N

)
for FT,

FLF and FSC.
The convergence rate of ||C||2HS, ||B||2HS and E[||A||2HS|FN−1] leads to
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E
[∣∣∣∣∣∣∣∣Ψ̂∗δ −Ψ∗

∣∣∣∣∣∣∣∣2
HS

∣∣∣∣FN−1

]
=


Op

(
αβ
)

+Op

(
1

α2N

)
for the FLF and FSC

Op

(
αmin{β,2}

)
+Op

(
1

α2N

)
for the FT.

Proof of Proposition 3.
Following the same argument as in Proposition 1, we have

E
[∣∣∣∣∣∣∣∣Ψ̂∗δ −Ψ∗

∣∣∣∣∣∣∣∣2
HS

∣∣∣∣FN−1

]
= E

[∣∣∣∣∣∣∣∣K̂−1
δ D̂∗ −K−1

δ D∗ +K−1
δ D∗ −Ψ∗

∣∣∣∣∣∣∣∣2
HS

∣∣∣∣FN−1

]
≤ E

[
||A||2HS|FN−1

]
+ 2||B||2HS + 2||C||2HS

where A = K̂−1
δ Ĉxε, with Ĉxε = 1

N−1

∑N−1
i=1 Xi ⊗ εi+1, B = K̂−1

δ K̂Ψ∗ − K−1
δ KΨ∗ and

C = K−1
δ D∗ −Ψ∗.

For FPCA method :

Following Lemma 2, ||C||2HS = Op

(
λβm+1

)
and using Lemma 3, ||B||2HS = Op

(
1

λ2mN

)
.

Then, it remains to derive the convergence rate of E
[
||A||2HS|FN−1

]
Following the same arguments as in Proposition 2,

E[||A||2HS|FN−1] ≤ 1

N − 1
tr

[
K̂−1
δ K̂K̂−1

δ

]
tr

[
Vε

]
and

tr

[
K̂−1
δ K̂K̂−1

δ

]
=

m∑
j=1

λ̂j

λ̂2
j

=
m∑
j=1

1

λ̂j

≤ Cm

λm

where C > 0 is an arbitrary constant. Then, ||A||2HS = Op

(
m

λmN

)
. Combining the rate

of convergence for ||A||2HS, ||B||2HS, ||C||2HS leads to
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E
[∣∣∣∣∣∣∣∣Ψ̂∗δ −Ψ∗

∣∣∣∣∣∣∣∣2
HS

∣∣∣∣FN−1

]
= Op

(
λβm+1

)
+Op

(
m

λmN

)
.

For the FPLS method :

Let us define

X =

[
X1, X2, ..., XN−1

]′
Y =

[
X2, X3, ..., XN

]′
and

ε =

[
ε2, ε3, ..., εN

]′
Let us denote by

Πa = Span{vj : λj ≤ a}

and
Π̂a = Span{v̂j : λ̂j ≤ a}

the orthogonal projection onto the eigenvectors of the covariance operatorK (respectively
K̂) for which the corresponding eigenvalues λj (λ̂j) are lower than a, where a is a positive
number such that 0 < a ≤ |Q̂′m(0)|−1. Let us consider the following function β̃PLS defined
by

Ψ̃∗PLS = P̂m(K̂)(K̂(Ψ∗)).

We have

||Ψ̂∗PLS −Ψ∗||HS ≤ ||Π̂a(Ψ̂
∗
PLS −Ψ∗)||HS + ||(I − Π̂a)(Ψ̂

∗
PLS −Ψ∗)||HS

≤ ||Π̂a(Ψ̂
∗
PLS − Ψ̃∗PLS)||HS + ||Π̂a(Ψ̃

∗
PLS −Ψ∗)||HS + ||(I − Π̂a)(Ψ̂

∗
PLS −Ψ∗)||HS

≤ (F1) + (F2) + (F3).

where (I − Π̂a) is the orthogonal complement of the space Π̂a. Let us define (F1), (F2),
and (F3) by (F1) = ||Π̂a(Ψ̂

∗
PLS − Ψ̃∗PLS)||HS, (F2) = ||Π̂a(Ψ̃

∗
PLS − Ψ∗)||HS and (F3) =

||(I − Π̂a)(Ψ̂
∗
PLS −Ψ∗)|| respectively.

The next step is focused on deriving the upper bound rate of the three terms (F1),
(F2) and (F3).

Upper bound rate of (F1) :
We have

125



(F1) = ||Π̂a(Ψ̂
∗
PLS − Ψ̃∗PLS)||HS

= ||Π̂a{P̂m(K̂)(T ∗n(Y ))− P̂m(K̂)(K̂(Ψ∗))}||HS
= ||Π̂a{P̂m(K̂)(T ∗n(ε))||HS

≤
{
Sup
λ∈[0,a]

|P̂m(λ̂)|
}
||Π̂a(T

∗
n(ε))||HS

≤ C|Q̂′m(0)|||T ∗n(ε)||HS.

where C > 0 is an arbitrary constant, T ∗n(Y ) = 1
N−1

∑N−1
i=1 Xi ⊗Xi+1 = D̂∗ and T ∗n(ε) =

Ĉxε = 1
N−1

∑N−1
i=1 Xi ⊗ εi+1. The last line holds because for 0 < λ < a,

P̂m(λ) =
1− Q̂m(λ)

λ
≤ |Q̂′m(0)| =

m∑
l=1

1

θ̂l
.

(See Engl et al. (1996)). On the other hand, we have

|Q̂′m(0)| = |Q′m(0)|+ op

(
1√
n

)
which follows from the mean-value theorem since Q̂′m is a continuously differentiable
function of K̂ and D̂, which are consistent estimators of K and D. Also, |Q′m(0)| =∑m

l=1
1
θl
≤ m

θm
. Then,

|Q̂′m(0)| = Op

(
m

θm

)
.

Moreover,

E
[
||T ∗n(ε)||2HS|FN−1

]
= E

[
tr(ĈxεĈ

∗
xε)|FN−1

]
=

1

N − 1
tr(Vε)tr(K̂)

= Op

(
1

N

)
.

Therefore,

(F1)2 = Op

(
m

θmN

)
.

Upper bound rate of (F2) :
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(F2) = ||Π̂a(Ψ̃
∗
PLS −Ψ∗)||HS

= ||Π̂a{P̂m(K̂)(K̂(Ψ∗))−Ψ∗}||HS
= ||Π̂a{Q̂m(K̂)(Ψ∗)||HS

≤
{
Sup
λ∈[0,a]

|Q̂m(λ)|
}
||Π̂a(Ψ

∗)||HS

= Op

(
||Π̂a(Ψ

∗)||HS
)
.

where C is an arbitrary positive constant. This is possible given that { Sup
λ∈[0,a]

|Q̂m(λ)|} ≤

1 by definition of Q̂m (see Lemma 1 by Carrasco and Tsafack (2020)).
Then

(F2)2 = Op

(
Sup
λj<a
{λβj }

)
.

Upper bound rate of (F3) :
We have

(F3) = ||(I − Π̂a)(Ψ̂
∗
FPLS −Ψ∗)||HS

= ||(I − Π̂a)(K̂
−1
δ K̂)({P̂m(K̂)(T ∗n(Y ))−Ψ∗)||HS

≤ ||Π̂a(K̂
−1
δ )||||(I − Π̂a)(K̂)({P̂m(K̂)(T ∗n(Y ))−Ψ∗)||HS

≤ 1

a
||(I − Π̂a){K̂{P̂m(K̂)(T ∗n(Y ))− K̂(Ψ∗)}||HS

≤ 1

a
||(I − Π̂a){T ∗n{Ŵn{P̂m(Wn)(Y )− Tn(Ψ∗)}}||HS

≤ 1

a
||(I − Π̂a){T ∗n{Ŵn{P̂m(Wn)(Y )− Tn(Ψ∗)}}||HS

≤ 1

a
||(I − Π̂a){T ∗n{Ŵn{P̂m(Wn)(Y )− Y + Y − Tn(Ψ∗)}}||HS

≤ 1

a
||(I − Π̂a){T ∗n(Q̂m(Wn)(Y ))}||HS +

1

a
||(I − Π̂a){T ∗n(ε)}||HS

≤ 1

a
||(I − Π̂a){Q̂m(K̂)(T ∗n(Y ))}||HS +

1

a
||(I − Π̂a){T ∗n(ε)}||HS

≤ CΛm

a

where K̂−1
δ is the generalized inverse of K̂ using the FPCA regularization and Λm =

max{||{Q̂m(K̂)(T ∗n(Y ))}||HS, 1√
N
}. Given the stopping rule, Λm = O( 1√

N
). The fourth

and fifth lines are possible given that K̂ = T ∗nTn and Wn = TnT
∗
n . The seventh line is
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possible because Q̂m(Wn)(Y ) = Ŵn{P̂m(Wn)(Y )− Y and ε = Y − Tn(Ψ∗). The last line
comes from the fact that Q̂m(K̂)(T ∗n(Y )) = T ∗n(Q̂m(Wn)(Y )) and this is because we have
K̂ = T ∗nTn and Wn = TnT

∗
n .

When I combine results from (F1), (F2) and (F3), it yields

||Ψ̂∗FPLS −Ψ∗||2HS = Op

(
||Π̂a(Ψ

∗)||HS
)

+Op

(
1

aN

)
+Op

(
m2

Nθ2
m

)
.

Since 0 < a ≤ |Q′m(0)|−1 ≤ θm, by taking a = |Q′m(0)|−1 we obtain

||Ψ̂∗FPLS −Ψ∗||2HS = Op

(
||Π̂|Q′m(0)|−1(Ψ∗)||2HS

)
+Op

(
1

aN

)
+Op

(
m2

Nθ2
m

)
)

= Op

(
||Π̂θm(Ψ∗)||2HS

)
+Op

(
1

|Q′m(0)|−1N

)
+Op

(
m2

Nθ2
m

)
)

= Op

(
||Π̂λm(Ψ∗)||2HS

)
+Op

(
m

Nθm

)
+Op

(
m2

Nθ2
m

)
= Op

(
λβm+1

)
+Op

(
m2

Nθ2
m

)
.

The first term of the last line holds since,

||Πλm(Ψ∗)||2HS =
∑
λj<λm

< Ψ∗(vj),Ψ
∗(vj) >

2

=
∑
λj<λm

< Kβ/2R(vj), K
β/2R(vj) >

2

=
∑

λj≤λm+1

λβj < R(vj), R(vj) >
2

=

[
Sup

λj≤λm+1

{λβj }
]∑
j≥1

< R(vj), R(vj) >
2

= Op

(
Sup

λj≤λm+1

{λβj }
)

= Op

(
λβm+1

)
.

The first term is the bias term and the second one is the variance. The last line is
possible since we have

∑∞
j=m+1 Ψ∗2j = ||Ψ∗FPCA − Ψ∗||2HS = Op

(
λβm+1

)
, combined with

the fact that λm+1 is the highest eigenvalue of K that is lower than θm (see lemma 1 by
Carrasco and Tsafack (2020)). Therefore, the result follows.

Let prove that ||Ψ∗PLS −Ψ∗||2HS ≤ ||Ψ∗PCA −Ψ∗||2HS
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Following the same logic as in proof of Proposition 2 by Carrasco and Tsafack (2020)

∣∣∣∣∣∣∣∣Ψ∗PLS −Ψ∗
∣∣∣∣∣∣∣∣2
HS

=
∞∑
j=1

Q(m,λj)
2 < Ψ∗(vj),Ψ

∗(vj) >
2

≤
∞∑
j=1

[ ∑
(j1,...,jm)∈I+

wj1,...,jm

m∏
l=1

(1− λj
λjl

)

]2

< Ψ∗(vj),Ψ
∗(vj) >

2

≤
∞∑
j=1

sup
(j1,...,jm)∈I+

m∏
l=1

(
1− λj

λjl

)2

< Ψ∗(vj),Ψ
∗(vj) >

2

≤
∞∑
j=1

m∏
l=1

(
1− λj

λl

)2

< Ψ∗(vj),Ψ
∗(vj) >

2

because for j = 1, ...,m,
∏m

l=1

(
1 − λj

λl

)2

= 0, while for j ≥ m + 1, we have 0 ≤

∏m
l=1

(
1− λj

λl

)2

≤ 1, because all of the eigenvalues are nonzero ordered in such a way that

λ1 > λ2 > .... > λm > λm+1 > ... > 0. We should also recall that 0 ≤ wj1,...,jm ≤ 1, with∑
(j1,...,jm)∈I+m wj1,...,jm = 1. The last inequality follow from the fact that the eigenvalues

are all distinct and

sup
(j1,...,jm)∈I+

m∏
l=1

(
1− λj

λjl

)2

=
m∏
l=1

(
1− λj

λl

)2

≤ 1.

Therefore, we have

∣∣∣∣∣∣∣∣Ψ∗PLS −Ψ∗
∣∣∣∣∣∣∣∣2
HS

=
∞∑
j=1

Q(m,λj)
2 < Ψ∗(vj),Ψ

∗(vj) >
2

≤
∞∑
j=1

m∏
l=1

(
1− λj

λl

)2

< Ψ∗(vj),Ψ
∗(vj) >

2

≤
∞∑

j=m+1

< Ψ∗(vj),Ψ
∗(vj) >

2

=

∣∣∣∣∣∣∣∣Ψ∗PCA −Ψ∗
∣∣∣∣∣∣∣∣2
HS

.

Then,
∣∣∣∣∣∣∣∣Ψ∗PLS−Ψ∗

∣∣∣∣∣∣∣∣2
HS

≤
∣∣∣∣∣∣∣∣Ψ∗PCA−Ψ∗

∣∣∣∣∣∣∣∣2
HS

and E
[∣∣∣∣∣∣∣∣Ψ∗PLS−Ψ∗

∣∣∣∣∣∣∣∣2
HS

|Fn−1

]
≤ E

[∣∣∣∣∣∣∣∣Ψ∗PCA−
Ψ∗
∣∣∣∣∣∣∣∣2
HS

|Fn−1

]
. Therefore,
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E
[∣∣∣∣∣∣∣∣Ψ∗PLS −Ψ∗

∣∣∣∣∣∣∣∣2
HS

|Fn−1

]
= Op

(
λβm+1

)
.

2.12.1 Proof of Proposition 4.

For δ fixed ( α for FT, FSC and FLF)

Ψ̂∗δ = K̂−1
δ D̂∗

= K̂−1
δ K̂(Ψ∗) + K̂−1

δ Ĉx,ε.

and Ψ∗δ = K−1
δ K(Ψ∗). Then,

Ψ̂∗δ −Ψ∗δ = K̂−1
δ Ĉx,ε + K̂−1

δ K̂(Ψ∗)−K−1
δ K(Ψ∗)

= K−1
δ Ĉx,ε + (K̂−1

δ −K
−1
δ )Ĉx,ε + K̂−1

δ K̂(Ψ∗)−K−1
δ K̂(Ψ∗) +K−1

δ K̂(Ψ∗)−K−1
δ K(Ψ∗)

= K−1
δ Ĉx,ε + (K̂−1

δ −K
−1
δ )Ĉx,ε + (K̂−1

δ −K
−1
δ )K̂(Ψ∗) + K̂−1

δ (K̂δ −Kδ)(Ψ
∗)

= K−1
δ Ĉx,ε + K̂−1

δ (K̂δ −Kδ)(Ψ
∗) +Op

(
1

N

)
= K−1

δ

[
1

N

N−1∑
i=1

Xi ⊗ εi+1

]
+K−1

δ

[
1

N

N−1∑
i=1

(Xi ⊗Xi −K)Ψ∗
]

+Op

(
1

N

)
.

Let us consider X̃i = K−1
δ (Xi) and X̃ = K−1

δ (X). Then,

Ψ̂∗δ −Ψ∗δ =
1

N

N−1∑
i=1

X̃i ⊗ εi+1 +
1

N

N−1∑
i=1

X̃i ⊗Ψ(Xi)− E[X̃ ⊗Ψ(X)] +Op

(
1

N

)

=
1

N

N−1∑
i=1

X̃i ⊗ εi+1 +
1

N

N−1∑
i=1

[X̃i ⊗Xi − E[X̃ ⊗X]](Ψ∗) +Op

(
1

N

)
.

Under the assumptions that Xi⊗εi+1 are stationary and ergodic martingale difference
sequences, E[||Xi||4] < +∞ and E[||Xi||2||εi+1||2] < +∞,

1√
N

N−1∑
i=1

[
Xi ⊗ εi+1

Xi ⊗Xi −K

]
d

=⇒ N(0,Ω1)

where Ω1 =

(
G 0

0 K

)
is a (2× 2) matrix of covariance operators.

Let consider the following transformation
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[
A

B

]
→ K−1

δ A+ ΨK−1
δ (B −K)

where A and B are arbitrary operators. Then,

Ψ̂∗δ −Ψ∗δ =
1

N

N−1∑
i=1

X̃i ⊗ εi+1 +
1

N

N−1∑
i=1

[X̃i ⊗Xi − E[X̃ ⊗X]](Ψ∗)

= K−1
δ A+ ΨK−1

δ (B −K)(Ψ∗).

with A = 1
N

∑N−1
i=1 Xi ⊗ εi+1 and B = 1

N

∑N−1
i=1 [Xi ⊗Xi − E[X ⊗X]].

By the continuous mapping theorem, the asymptotic covariance operator of
√
N(Ψ̂∗δ−

Ψ∗δ) is given by

Ωδ = K−1
δ E

[
(Xi⊗εi+1)⊗̃(εi+1⊗Xi)

]
K−1
δ +K−1

δ (Ψ∗)E
[
(Xi⊗Xi−K)⊗̃(Xi⊗Xi−K)

]
K−1
δ (Ψ∗),

where ⊗̃ is the tensor product of two operators. Then, for (A,B) ∈ HH×HH, A⊗̃B is an
element of the Hilbert space of Hilbert-Schmidt operators from HH to HH.

2.12.2 Proof of Proposition 5.

For h = 1, ..., p. Assume that we are testing{
H0 : Ψh(.) = 0

H1 : Ψh(.) 6= 0.

Under H0, we have Ψh(.) = 0 and the model FAR(h-1) is estimated

X̂n+1 = Ψ̂1(Xn) + ...+ Ψ̂h−1(Xn−h+2) + ε̂n+1

and

D̂ = K̂(Ψ̂∗1) + ...+ K̂h−1(Ψ̂∗h−1) +
1

N

N−h+1∑
n=1

Xn ⊗ ε̂n+1

On the other hand, ε̂n+1, Xn⊗ ε̂n+1, ... , Xn−h+2⊗ ε̂n+1 are martingale difference functions
and we have 1

N

∑N−h+1
n=1 Xn ⊗ ε̂n+1. Additionally, E[||Xi||4] < ∞, E(||Xi||2||εi||2) < ∞.

Then, the functional central limit theorem for martingale difference sequence leads to

√
N(Ĉxε − 0) =

1√
N

N−h+1∑
n=1

Xn ⊗ ε̂n+1
d

=⇒ N (0, Kxε) as N → ∞.

with
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Kxε = E
[
(Xi ⊗ εi+1)⊗̃(Xi ⊗ εi+1)

]
= E

[
(Xi ⊗Xi)⊗̃E[(εi+1 ⊗ εi+1)|X1, ..., Xn]

]
= E

[
(Xi ⊗Xi)

]
⊗̃E
[
(εi+1 ⊗ εi+1)

]
= K⊗̃Vε.

Then, we have

√
NK̂1/2

xε (Ĉxε − 0)
d

=⇒ N (0, I) as N → ∞.

Furthermore, K̂xε = K̂⊗̃V̂ε, then the eigen-decomposition of K̂xε is given for each function
f0 by

K̂xε =
1

N

N−h−h+2∑
`=1

λ̂` < V̂ε(f0), v̂` > v̂`

=
1

N

N−h+2∑
`,n=1

λ̂` < ε̂n+1, ε̂`+1 >< ., v̂` > v̂n

=
1

N

N−h+2∑
`=1

λ̂` < ε̂`+1, ε̂`+1 >< ., v̂` > v̂`
P

=⇒
∞∑
`=1

λ`σ
2 < ., v` > v`.

Therefore

K̂−1
xε =

N−h+2∑
`=1

Q(δ, λ̂`)
2

λ̂`V̂ε,n
< ., v̂` > v̂n

where V̂ε,n = 1
N

∑N−h+2
`,n=1 < ε̂n+1, ε̂`+1 >= σ̂2

ε
P

=⇒ σ2

N ||K̂−1/2
xε Ĉxε||2HS = tr

[
[K̂−1/2

xε Ĉxε][K̂
−1/2
xε Ĉxε]

∗
]

=
N∑
`

Q(δ, λ̂`)

λ̂`V̂ε,n
<
√
NĈxε(v̂`), v̂` >

2

d
=⇒

∞∑
`=1

Q(δ, λ`)
2

λ`σ2
χ2
`(1) as N → +∞

where χ2
1(h, `) is a random variable that follows a χ2(1) distribution for each h and `.
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Under H1, Ψh 6= 0. Then, Ĉxε is not close to zero and I obtain

N ||K̂−1/2
xε Ĉxε||2HS

d
=⇒ +∞ as N → +∞.
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2.13 Graphics and Tables

2.13.1 Graphics

(a) True kernel (Ψ) (b) Estimated kernel (Ψ̂δ)

(c) Bias (d) True and estimated

Figure 2.8: Comparison of the true gaussian and estimated kernels - FPLS
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(a) True kernel (Ψ) (b) Estimated kernel (Ψ̂δ)

(c) Bias (d) True and estimated

Figure 2.9: Comparison of the true gaussian and estimated kernels - FT
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(a) True kernel (Ψ) (b) Estimated kernel (Ψ̂δ)

(c) Bias (d) True and estimated

Figure 2.10: Comparison of the true gaussian and estimated kernels - FLF
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2.13.2 Tables

Table 2.6: Comparison of the different estimation techniques. Gaussian kernel, N =
1000, M = 1000 replications, and ε(2)

Moments FPCA FPLS FT FLF FSC

MSE Mean 0.791 0.688 0.862 6.037 0.791
Std 0.055 0.044 0.003 0.008 0.055
Median 0.795 0.684 0.862 6.046 0.791

AD Mean 0.849 0.762 0.875 2.185 0.849
Std 0.035 0.026 0.002 0.014 0.035
Median 0.853 0.760 0.874 2.186 0.853

MSPE Mean 0.075 0.075 0.075 0.082 0.075
Std 0.0002 0.0003 0.0002 0.0004 0.0002
Median 0.075 0.075 0.075 0.082 0.075

MAPE Mean 0.049 0.049 0.049 0.051 0.049
Std 0.0001 0.0002 0.0001 0.104 0.001
Median 0.049 0.049 0.049 0.051 0.049

R2
is Mean 0.001 0.002 0.001 0.002 0.001

Std 0.0003 0.0002 0.0001 0.0022 0.0003
Median 0.001 0.002 0.001 0.002 0.001

R2
oos Mean 0.003 0.002 0.002 0.096 0.003

Std 0.0003 0.0002 0.0002 0.0022 0.0022
Median 0.003 0.002 0.002 0.096 0.003
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Table 2.7: Comparison of the different estimation techniques. Gaussian kernel, N =
1000, M = 1000 replications, and ε(3)

Moments FPCA FPLS FT FLF FSC

MSE Mean 0.895 0.788 0.862 7.297 0.895
Std 0.035 0.028 0.003 0.061 0.035
Median 0.893 0.787 0.862 7.307 0.895

AD Mean 0.870 0.761 0.875 2.404 0.870
Std 0.035 0.026 0.002 0.014 0.035
Median 0.872 0.760 0.874 2.406 0.872

MSPE Mean 0.075 0.075 0.075 0.085 0.075
Std 0.0002 0.0003 0.0002 0.0004 0.0002
Median 0.075 0.075 0.075 0.085 0.075

MAPE Mean 0.049 0.049 0.049 0.051 0.049
Std 0.0001 0.0002 0.0001 0.104 0.001
Median 0.049 0.049 0.049 0.051 0.049

R2
is Mean 0.002 0.002 0.001 0.002 0.001

Std 0.0002 0.0001 0.0001 0.0001 0.138
Median 0.002 0.006 0.001 0.002 0.139

R2
oos Mean 0.003 0.004 0.002 0.137 0.003

Std 0.0003 0.0002 0.0002 0.0022 0.0022
Median 0.003 0.002 0.002 0.137 0.003
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Table 2.8: Comparison of the different estimation techniques, factor based kernel, N =
1000, M = 1000 replications, and ε(2)

Moments FPCA FPLS FT FLF FSC

MSE Mean 0.858 0.768 0.799 6.110 0.858
Std 0.0060 0.0056 0.0002 0.050 0.0060
Median 0.859 0.767 0.799 6.116 0.858

AD Mean 0.827 0.856 0.797 2.199 0.870
Std 0.0029 0.0235 0.0001 0.014 0.0091
Median 0.827 0.856 0.797 2.199 0.870

MSPE Mean 0.075 0.075 0.075 0.082 0.075
Std 0.0003 0.0003 0.0003 0.0004 0.0003
Median 0.075 0.075 0.075 0.082 0.075

MAPE Mean 0.049 0.049 0.049 0.051 0.049
Std 0.0001 0.0002 0.0001 0.106 0.0002
Median 0.049 0.049 0.049 0.051 0.049

R2
is Mean 0.001 0.001 0.001 0.106 0.001

Std 0.0002 0.0001 0.0001 0.0001 0.0002
Median 0.001 0.006 0.001 0.106 0.001

R2
oos Mean 0.002 0.003 0.002 0.098 0.002

Std 0.0002 0.0003 0.0002 0.0002 0.0002
Median 0.002 0.003 0.002 0.098 0.002
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Table 2.9: Comparison of the different estimation techniques, factor based kernel, N =
1000, M = 1000 replications, and ε(3)

Moments FPCA FPLS FT FLF FSC

MSE Mean 0.00013 0.00012 0.00047 0.00023 0.00013
Std 0.0057 0.053 0.021 0.010 0.0057
Median 0.00013 0.00012 0.00047 0.00023 0.00013

AD Mean 0.0002 0.0007 0.0004 0.0003 0.0002
Std 0.0098 0.0294 0.0194 0.0136 0.0098
Median 0.0002 0.0007 0.0004 0.0003 0.0002

MSPE Mean 0.0001 0.0001 0.0001 0.0001 0.0001
Std 0.0005 0.0006 0.0005 0.0005 0.0005
Median 0.0001 0.0001 0.0001 0.0001 0.0001

MAPE Mean 0.0001 0.0001 0.0001 0.0001 0.0001
Std 0.0006 0.0006 0.0006 0.0006 0.0006
Median 0.0001 0.0001 0.0001 0.0001 0.0001

R2
is Mean 0.002 0.002 0.001 0.002 0.001

Std 0.0002 0.0001 0.0001 0.0001 0.138
Median 0.002 0.006 0.001 0.002 0.139

R2
oos Mean 0.0023 0.0027 0.0020 0.097 0.0023

Std 0.0021 0.0004 0.0016 0.0020 0.0022
Median 0.0023 0.0027 0.0020 0.097 0.0023
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Chapitre 3

Risk Neutral Density Estimation with
a Functional Linear Model ∗

3.1 Introduction

Estimating the risk neutral density (RND) has been an important topic for financial
market participants and monetary policymakers. Indeed, this tool is used for derivatives
pricing, hedging and market sentiment analysis. Additionally, it is used to analyze the
trader’s behavior to a potential shock in the financial market and predict the extreme
shocks probabilities. For the policymaker, this tool is used to estimate the effectiveness
of monetary policies through direct observation of changes in investor’s expectations and
beliefs to future maturities (see Souissi (2017)).

This concept is also fundamental in the arbitrage-free asset pricing theory. Indeed, the
RND is a density measure under which the price of each security in the market is equal
to expected value of its future payoff given a risk-free interest rate discounted back to the
present. This means that for most of the securities in the market, the number of states
of the economy could be very large, which in turns lead to situations where the number
of potential future payoffs is very dense. Then the future payoff can be considered as a
continuous function of the potential states of the economy. On the same line, since the
set of different state of the economy is very large, the RND is a continuous function of
the future payoff function and it’s form is unknown. Therefore, these properties should
be taken into account in the estimation procedure of the RND.

To address the estimation of the functional form of the RND, two main approaches
have been suggested in the literature. The first approach relies on parametric modelling
(see Black and Scholes (1973) , Bahra (1997), Figlewski (2008)). Most of the authors in
this range of the literature focus on considering a specific form of distribution to the RND
and then estimate the related parameter. The most used distribution in this context is

∗. This chapter is co-authored with Marine Carrasco.
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the log-normal density or a mixture of the log-normal distributions. Unfortunately, this
approach is limited to fully explain all types of data generating process (see p.89 by
Bondarenko (2003)).

The second approach is the nonparametric technique. In this part of the literature,
researchers try to extract the RND with more flexible considerations than in the
context of parametric models. Usually, the flexibility comes from not assuming a
certain distribution function of the concerned asset. Researchers, have suggested different
estimation techniques such as the kernel smoothing of the option prices (see Aıt-Sahalia
and Lo (2000), Garcia and Gençay (2000), Aıt-Sahalia and Duarte (2003), Souissi (2017)),
regularization of the observed implied volatility curves (see Bliss and Panigirtzoglou
(2004), Panigirtzoglou and Skiadopoulos (2004)). Furthermore, there is also another
part of the literature considering the nonparametric techniques combined with the
arbitrage-free hypothesis. In this context, some authors suggest to estimate the RND via
a polynomial approximation method (see Shimko et al. (1993), Rosenberg (1998), Vogt
(2014)), while others propose to use the smoothing spline technique (see Bondarenko
(2003)).

Based on the precedent literature, it can be noticed that most of the approaches
that attempt to estimate the RND end up by making a trade-off between the
goodness-of-fit of their model (by considering a form of the distribution or a latent
form for approximation) and the connection of their model with the arbitrage-free
theory. Whether or not, the methods proposed in the literature tend to exploit a
latent form for the density approximation (spline smoothing, polynomial approximation,
kernel smoothing, log-normal distribution, sieve) and do not necessarily guarantee the
arbitrage-free hypothesis. Recall that the common goal is to develop a model that is
consistent with the concept of risk neutral density posited by economic theory and is
of use for practical purpose. A naive attempt to connect these purposes is to model
RND as a predefined distribution function or a function projected on basis functions
for approximation. However, when considering such form for the density function, we
automatically make a sort of restriction to the type of assets that may hold with the
assumptions.

To fill this gap, this paper proposes to estimate the risk neutral density for European
option pricing by exploiting the functional data analysis framework. The advantage of
this approach is to connect the fundamental theory on arbitrage-free, the functional
feature of the RND and the capacity to realize a good fitting performance. Additionally,
the estimation do not rely on any latent form of the distribution for approximation. In
fact, we consider that the risk neutral density is a function observed on a very fine grid
and there is an infinite possible state of the economy at the maturity. This leads to the
fact that the payoff can be observed as a function of all possible states of the economy.
Then, we deal with a functional linear regression model where the predictor variables are
functions representing the future payoffs functions at the maturity and the response is a
scalar representing the call and put prices of the considered security. Then, the call and
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put prices are treated as a weighted sum of all the potential pay-offs of the considered
option at the time-to-maturity, with the weights represented by the density values.

The estimation of the density function in this context leads to an ill-posed problem.
To overcome this issue, we propose to use a regularization technique called the Functional
Landweber-Fridman (FLF) method, then apply a density correction procedure in order
to get the nonnegativity and the integration to one. The FLF technique is an iterative
method that relies on the normal equation related to the regression problem, in such
a way that the estimation is made without inverting any operator in the procedure.
The advantage of this method is that it relies on neither a basis projection nor a kernel
smoothing and it is capable to control the smoothness of the estimated density following
that the model is estimated on a fine grid. Further, this estimation approach helps to
stabilize the variability of the estimated density coming from the ill-posed problem.
Another advantage is the possibility to derive directly the asymptotic normality results
and confidence sets for the estimated density and the predictions of options prices.

The contribution of this paper is to use the functional data analysis framework in
order to provide the risk neutral density estimation. This alternative approach has not
been explored in the precedent literature. We derive consistency results of the estimated
RND and the asymptotic normality. Finally, we analyze the performance of considered
approach based on some Monte Carlo simulation and real data of S&P 500. Based on
empirical analysis, we find that the proposed estimation method yields some reasonable
results compared to the approach by Bondarenko (2003).

The rest of the paper is organized as follows. Section 3.2 introduces the theoretical
model and the estimation method. Section 3.3 gives a presentation of the consistency
results. Section 3.4 derives the asymptotic normality results of the estimations and
predictions. Section 3.5 presents the data-driven method to select the optimal tuning
parameter. Section 3.6 presents the results of the simulations. Section 3.7 is dedicated to
the empirical analysis. Section 3.8 concludes.

3.2 The Theoretical model and estimator

This section is devoted to the presentation of the linear regression model and
estimation method of the functional parameter.

3.2.1 The functional linear model

In the intertemporal equilibrium models, the current price of a security can be
expressed as the expected net value of its future payoffs discounted back to the present.
The present value Pt is calculated in terms of the risk-free interest rate and the
expectation is obtained with respect to the marginal rate of substitutions weighted density
of the payoffs (see Lucas Jr (1978), Rubinstein (1976), Cox and Ross (1976)) as follows
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Pt = δD(T − t)EQ
t [Z(ST )]

where EQ
t [Z(ST )] is the expectation of the marginal rate of substitution and δD(T − t)

is the discount factor for the maturity T − t. More specifically, in the derivative market,
an option is defined as a contract giving the right (and not the obligation) to buy or sell
a risky asset with price s at a predetermined value called strike price κ at (or within) a
given maturity date of the contract. There exist many kind of options in the market. The
main known are the American and the European options. In this paper we consider only
European options characterized by the fact that the exercise of the contract is possible
only at the given maturity date.

Then, in the context of a complete market the price of a European put option Pt with
a maturity T − t, an underlying price at maturity ST and a strike price κ, the price is
equal to the expected pay-offs Z(ST ) discounted back to the present. In other words, it
is given by :

Pt = e−rt,T ,(T−t)
∫ ∞

0

Z(ST )f(ST |(T − t))dST (3.1)

where f(ST |(T − t)) is the unobserved density conditional to the maturity T , rt,T is
the riskless interest rate between date t and T , Z(ST ) = max(κ − ST , 0) the pay-off.
For the reasons of simplification, we will note τ = T − t and rt,T = r. It is important
to precise that the data are presented as a cross-sectional configuration of options at a
single time t.

The previous equation holds when it is assumed that the market is complete, this
means that market participants have all the informations about the risky assets. Because
of illiquidity in the market, transaction cost, taxes, measurement errors, the market is
usually incomplete (see Gourieroux and Jasiak (2001)). Then it may exist an error term
capturing all those uncontrolled informations and this uncertainty may vary according
to the time to maturity of the option. The longer the time-to-maturity is, the bigger the
variability (see Ait-Sahalia et al. (2018), Driessen et al. (2009)). Then, for each option i
at a fixed time t and the same maturity τ , we have the following equation :

Yi =

∫ ∞
0

Zi(s)f(s|τ)ds+ εi (3.2)

where Yi = er,τPi, εi is a conditionally zero-mean, homoskedastic error term. For the sake
of this model we assume that there is an infinite possibility of pay-off at the maturity date,
which means that the set of potential payoff is very dense and the conditional density is
a function taking its values in a very fine grid. This leads to a functional linear regression
with the functional predictor represented by the future payoff Zi(s) = max(κi − s, 0)

and a scalar response (Yi). As the pay-off is uncertain, I define a large set (or a very
fine grid) of possible values for the underlying s, represented by the potential expiration
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prices of the option. Based on that, it is possible to consider the potential pay-offs as
independent functions mapping from the set of underlying to the real line R. The call
options are also considered in the population model by using the call-put parity, that is
Cit = Pit + Site

−rτ − κe−rτ .

3.2.2 The literature

This section presents an overview of the techniques suggested to estimate the
RND. For the estimation, the properties of the density should be respected. Indeed,
the properties of a density probability are the nonnegativity of the function and the
integration to one. To solve this issue, authors suggest different techniques that could be
either parametric, semi-parametric or nonparametric.

Parametric techniques rely usually on considering a specific distribution of the option
prices. The most popular distributions considered in this context are the lognormal
density (Jarrow and Rudd (1982)) and the lognormal mixture distribution (Bahra
(1997)).

Concerning the nonparametric techniques, Aıt-Sahalia and Lo (2000) suggest to
estimate the RND with a kernel smoothing approach based on the observed options prices.
Indeed, the authors use a predefined kernel which depends on the choice of the bandwidth.
On the same line, Aıt-Sahalia and Duarte (2003) proposed a two-step technique, where
in the first step they run a constrained regression in order to guarantee the arbitrage-free
condition and in the second step, they use a kernel smoothing technique to smooth the
predicted option prices. Additionally, we have the regularization technique suggested by
Jackwerth and Rubinstein (1996) to estimate the RND in such a way that the options
prices are well predicted. We can also identify the kernel smoothing techniques proposed
by Garcia and Gençay (2000), Panigirtzoglou and Skiadopoulos (2004) and Bliss and
Panigirtzoglou (2004).

Concerning the semi-parametric techniques, Bondarenko (2003) suggests to estimate
the density with a nonparametric method called the positive convolution approximation
(PosConv). The idea of this technique is to shrink the infinite-dimensional minimization
problem into a finite-dimensional one. In the model setting, the true density is considered
as a weighted sum of normal densities, in other words it is a mixture of normal densities.
One of the challenge in his paper is to select the number of normal densities to consider
in the mixture, and the bandwidth of the distributions in their estimation procedure. The
author uses a two-step data driven method to select the tuning parameters. The first step
consist in constructing a preliminary undersmoothed estimator for a small bandwidth.
The second step uses the preliminary estimator to estimate the optimal bandwidth. Then
the estimated density is the one selected in the finite set of candidate densities such that
it fits well the options prices. This approach has the advantage of being independent
of any data generating process, respecting the non-arbitrage condition and capable to
produce small sample results. Furthermore, we can identify the projection on quadratic
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polynomial basis. This idea has been suggested by Shimko et al. (1993) to estimate
the RND and predict the observed implied volatility. Rosenberg (1998) suggest to use
a sigma-shaped polynomial technique for the same problem. Also, Yatchew and Härdle
(2006) and Fengler (2009) use a smoothing spline technique. More recently, Vogt (2014)
propose to approximate the density with the squared Hermite polynomials to estimate
the RND for the prediction of observed implied volatility.

Our method can be considered as a nonparametric method as it does not rely on a
data generating process and we do not use either a basis projection or a kernel smoothing
technique for the density estimation. In the next section we show how to estimate the
density.

3.2.3 Model estimation

Let us define H = L2([0,+∞)) the space of square integrable functions mapping from
the interval [0,+∞) to the set of real numbers R. H is a Hilbert-space endowed with
an inner product < ., . > and a norm ||.||, which are respectively defined as follows :

< f, g >=
∫ +∞

0
f(t)g(t)dt and ||f || =

(∫ +∞
0

f 2

)1/2

.

Let us consider the sample ((κ1, Y1), ..., (κn, Yn)) of independent pairs following the
same distribution as well as in the population version (κ, Y ). We consider the functional
linear model where (Zi)i=1...n is the sample of functional predictor variables of the
regression representing the set of possible pay-offs at maturity for each option and
(Yi)i=1...n is the scalar response.

For each i ∈ {1, ..., n}, Zi(s) = max(κi − s, 0), then, Zi is random only through
κi. Additionally, the predictor function (Zi(s))i=1...n is such that Zi(s) ≥ 0, this means
that E(Zi(s)) ≥ 0 for each s ∈ [0,+∞) and E(Yi) > 0. We assume that E[κ3

i ] < +∞.
Indeed, this result guarantees that

∫ +∞
0

E(Z2(s))ds <∞, which means that the predictor
function is square integrable (see Lemma 1 in appendix). Then, for each time t the model
is a cross-sectional regression presented as follows :

Yi =

∫ +∞

0

Zi(s)f(s)ds+ εi (3.3)

where (f(s))s∈[0,+∞) is a function that belongs to the space H and εi; i ∈ {1, ..., n}) are
independent and homoskedastic 1 such that E(εi|κ1, ..., κn) = 0 and E(ε2

i |κ1, ..., κn) =

σ2 <∞ for each i ∈ {1, ..., n}).
By premultiplying both sides of Equation (3.3) by Zi(u) and take the expectation,

we obtain

1. Heteroskedasticity could be introduced if one considers options with different time-to-maturity and
the same estimation procedure will be applied after a rescalling procedure of the data in order to obtain
homoskedastic error.

146



E[Zi(u)Yi] =

∫ +∞

0

E[Zi(u)Zi(s)]f(s)ds+ E[Zi(u)εi].

Since E[Zi(u)εi] = 0, then

E[Zi(u)Yi] =

∫ +∞

0

E[Zi(u)Zi(s)]f(s)ds.

In a compact form we can write Czy = K(f), where Czy(u) = E[Zi(u)Yi] is the
cross-covariance function between the predictor variable Z and the response variable Y
and k(u, s) = E[Zi(u)Zi(s)], for s, u ∈ [0,+∞) is the kernel of the covariance operator K
of the predictor function. That equation is also known as the normal equation associated
with the regression model.

Our main goal is to estimate the function f . If the operatorK were invertible, we could
estimate f using f(s) = K−1Czy(s) for each s ∈ [0,+∞), which is a Fredholm equation
of the first kind. But this is not possible to use this equation because we deal with an
ill-posed problem as K is a bounded operator mapping from an infinite dimensional space
H toH. This means that the direct inverse ofK is not continuous andK is not invertible in
H but only on a subset of H. Estimating f by K̂−1Ĉzy would lead to an unstable estimator
of the functional parameter. Additionally, this estimator is not continuous. To overcome
this issue, we propose to use a regularization technique exploiting the functional data
analysis framework called the functional Landweber-Fridman (FLF) method, in order
to get a continuous inverse operator and therefore a continuous estimated function. This
will also guarantee to obtain a more stable estimator of the density f . In the next section,
we present the FLF method.

3.2.4 The functional Landweber-Fridman method

Recall that we have the normal equation related to the regression model

Czy = K(f).

The main idea of the the functional Landweber-Fridman method is to approach the
solution to this equation by an iterative algorithm similar to the fixed point procedure
with the goal of minimizing the objective function of the regression problem. The idea is
somewhat to the gradient descent technique commonly used for an optimization problem.
Instead of iterating all the way to convergence, the algorithm stops after a finite number
of iterations. Here, the early termination regularizes the solution of the iterations. The
algorithm is presented as follows

— At the first iteration, take f0(s) = dCzy(s), for each s ∈ [0,+∞).
— For h = 1, ..., 1

α
− 1, calculate

fh(s) = fh−1(s) + d(Czy(s)−Kfh−1(s)) (3.4)
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— where d is a positive parameter such that 0 < ||K||op ≤ 1/d. It is also called the
relaxation parameter.

— For convenience, the resulting estimator fh is denoted fα with fα(s) = K−1
α Czy(s),

for each s ∈ [0,+∞) and K−1
α denotes the regularized inverse of K.

The regularized inverse of K is given by

K−1
α (φ)(s) = d

1
α
−1∑
l=1

(I − dK)l(φ)(s)

where s ∈ [0,+∞). The parameter α is the regularization parameter and it will be chosen
via a data driven method. Let us denote (λj, vj)j≥1 as the eigensystem of the covariance
operator K, then we can also write K−1

α in terms of the eigensystem of K as follows

K−1
α (φ) =

∞∑
j=1

Q(α, λj)

λj
< vj, φ > vj

for each function φ and Q(α, λj) =

[
1− (1− dλj)1/α

]
.

K−1
α , K and Czy are unobservable since they are derived on the population version of

the model. Then, for the estimation they are replaced by their empirical versions. Then
the estimated density function is given by f̂α(s) = K̂−1

α Ĉzy(s). In other words, we have

f̂α(s) = d

1
α
−1∑
l=1

(I − dK̂)lĈzy(s) (3.5)

where

K̂ =
1

n

n∑
i=1

(Zi − Z)⊗ (Zi − Z)

k̂(u, s) =
1

n

n∑
i=1

(Zi(u)− Z(u))(Zi(s)− Z̃(s))

is the estimated kernel of the operator K̂, for s, u ∈ [0,+∞), and

Ĉzy =
1

n

n∑
i=1

(Zi − Z)⊗ (Yi − Y ).

Z(s) = 1
n

∑n
i=1 Zi(s) for each s ∈ [0,+∞) and Y = 1

n

∑n
i=1 Yi are sample mean of the

predictor functions and response variable respectively.

148



3.2.5 Density correction

Our estimator of f , f̂α, is not necessarily positive and does not integrate to one. As the
true function f is a density, we propose to transform our estimator f̂α into a density using
the methods proposed by Glad, Hjort, and Ushakov (2003). The correction is different
depending on whether

∫ +∞
0

max
{

0, f̂α (s)
}
ds ≥ 1 or

∫ +∞
0

max
{

0, f̂α (s)
}
ds < 1.

Case 1 : Case where
∫ +∞

0
max

{
0, f̂α (s)

}
ds ≥ 1.

The corrected estimator is given by

f̃α (s) = max
{

0, f̂α (s)− ξ
}

where ξ is a positive constant chosen so that
∫ +∞

0
f̃α (s) ds = 1.

Case 2 : Case where
∫ +∞

0
max

{
0, f̂α (s)

}
ds < 1.

The corrected estimator f̌α is computed as follows

f̌α =

 max
{

0, f̂α

}
+ ηM for |s| ≤M,

max
{

0, f̂α

}
for |s| > M,

where

ηM =
1

2M

[
1−

∫ +∞

0

max
{

0, f̂α (s)
}
ds

]
.

Remarks 1.
1. In Case 1, Glad, Hjort, and Ushakov (2003, Theorem 1) show that f̃α is always

better than f̂α (s) in the sense that
∥∥∥f̃α − f∥∥∥2

≤
∥∥∥f̂α − f∥∥∥2

so that the MISE of f̃α is

always smaller than that of f̂α.
2. In Case 2, Glad, Hjort, and Ushakov (2003, Theorem 2) show

E
∥∥f̌α − f∥∥2 ≤ E

∥∥∥f̂α − f∥∥∥2

+
3

2M
.

Hence, one can make the MSE of f̌α arbitrary close to that of f̂α by choosingM dependent
of n and large, for instance M = n.

3. An algorithm to select ξ in practice is presented in Appendix.
4. An alternative correction of f̂α could have relied on a normalization

max
{

0, f̂α

}
∫ +∞

0
max

{
0, f̂α (s)

}
ds
.

However, there is no garantee that this normalization improves the accuracy of the
estimator. The MSE of the normalized estimator may actually be worse than that of
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the original estimator as discussed in Glad et al. (2003).

3.2.6 Alternative estimator

The estimated conditional density presented in the previous section may not be twice
differentiable. Then, to control the smoothness of the conditional density, one can impose
a penality parameter δ on the squared norm of the differentiated density function. Let
us denote f ′′ the second derivative of the conditional density.

f̂α,δ = argmin
f∈L2([0,+∞)

{
1

n

n∑
i=1

[
(Yi − Y )−

∫ +∞

0

[Zi(s)− Z(s)]f(s)ds

]2

+ δ

∫ +∞

0

(f ′′(s))2ds

}
.

Then, using the Landweber-Fridman regularization approach for estimation, we
obtain for each s ∈ [0,+∞)

f̂α,δ(s) = V K̂−1
α,δĈzy(s)

with f̂α,δ ∈ L2([0,+∞) and for each function φ

K̂−1
α,δ(φ) = d

1
α
−1∑
l=1

(I − d(K̂ + δD))l(φ)(s)

where V is second integral operator defined as

V (φ)(s) =

∫ s

−∞

(∫ u

−∞
φ(t)dt

)
du.

Then, the density correction is applied in order to get a function respecting the density
properties. In the rest of the paper, we will not consider this estimator as differentiability
is not one of our concerns

3.3 Convergence rate of the risk neutral density

In this section, we analyze the convergence rate of the conditional mean square error
(MSE) of f̂α. For this purpose, I use the following assumptions :

A1. (κi, Yi) are i.i.d with the same distribution law as (κ, Y ) with E[κ3
i ] <∞.

A2.
∫ +∞

0
f 2(t)dt < +∞, E[εi|κ1, ..., κn] = 0, E[ε2

i |κ1, ..., κn] = σ2 < +∞,
E[ε4

i |κ1, ..., κn] < +∞, and E[κ4
i ] < +∞.

A3. The eigenvalues of the covariance operator K and the estimated one are distinct,
that is λ1 > λ2 > ... > 0 and λ̂1 > λ̂2 > ... > λ̂n.

A4. We assume that for µ ≥ 0, f satisfies
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∞∑
j=1

< f, vj >
2

λµj
<∞.

Assumption A1 imposes that (Zi, Yi)i=1,...n are independent, identically distributed as
(Z, Y ). It is useful in order to derive the consistency of the covariance operators K̂ and
Ĉzy, and to prove the central limit properties of the estimated functions. The fact that
E[κ3

i ] < +∞ guarantees that the predictor functions (Zi)i=1,...,n are square integrable.
Moreover, it also guarantees that the covariance operator K is nuclear, which in turn is
Hilbert-Schmidt (see Lemma 1 in Appendix). This condition is directly obtained if we
assume that the predictor variables κi follow a Gaussian process.

Assumption A2 imposes that the error term εi is homokedastic and Zi is exogenous.

A1 andA2 are sufficient conditions to ensure that ||K̂−K||2HS = Op

(
1
n

)
, see Proposition

5 of Dauxois et al. (1982). ||.||HS is the Hilbert-Schmidt norm of operators.
AssumptionA3 is used to simplify the conditions under which the estimated operators

K̂ and Ĉzy are consistent. Morevover, this assumption ensures that the null space of K,
N (K) = {0}. Hence, f is the unique solution of Cxy = K(f).

Assumption A4 is a source condition important to derive how the bias and estimation
error terms behave. µ is a parameter controlling the degree of smoothness of the true
density f . Therefore, as µ becomes more larger, f becomes smoother. It imposes that the
eigenvalues of K decline to zero not too fast relatively to the Fourier coefficients of f ,
< f, vj >. In the inverse problem literature, this parameter characterizes the severity of
the ill-posed problem. As µ becomes larger, the ill-posed problem becomes more severe,
i.e the eigenvalues λj decay more faster (see proposition 3.13 of Engl et al. (1996)).

Proposition 1
Under assumptions A1 - A4, if α2n→∞, then

E
[∣∣∣∣∣∣∣∣f̈α − f ∣∣∣∣∣∣∣∣2|κ1, ..., κn

]
= Op

(
αµ
)

+Op

(
1

α2n

)
(3.6)

and the conditional MSE converges to zero as the sample size increases. Where f̈α is the
estimated density function corrected either with Case 1 or 2.

Remarks 2.
— The first term of the conditional MSE is the squared bias and the second term is

the estimation error.
— The bias term vanishes when α→ 0.
— As α goes to zero, the squared bias term goes to zero, while the estimation

error term increases. Then, there is a trade-off to make in order to guarantee
the convergence of the MSE. The optimal parameter α is selected in such a way
that the squared bias is equal to the variance term.
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— If α ∼ n−1/(2+µ), then MSE ∼ n−
µ

2+µ .

3.4 Asymptotic normality

This section focuses on deriving the asymptotic distribution of the estimated density
f̃α, for a fixed value of the tuning parameter α. It follows from theorem 2.7 by Bosq
(2000) that under assumption A1,

1√
n

n∑
i=1

(Zi − Z)
d→ N (0, K).

Proposition 2
Let α be fixed. Under assumptions A1 - A4, if Γα < +∞ then

√
n(f̂α − fα)

d→ N (0,Γα), (3.7)

as n→ +∞, where Γα is defined as

Γα = σ2K−1
α KK−1

α + E
[
[K−1

α (Zi ⊗ Zi −K)]⊗̃[(Zi ⊗ Zi −K)K−1
α ]

]
(f ⊗ f)

with

K−1
α (φ) = d

1
α
−1∑
l=1

(I − dK)l(φ)(s)

and σ2 is the variance of the error term.

Corollary 1
Based on the asymptotic normality results, we can derive the confidence interval of

the estimated density for a fixed value of the tuning parameter α. Then, a 100(1 − θ)%
pointwise confidence interval of f(s), for any s ∈ [0,+∞), is given by

IC1−θ = f̂α(s)± φ−1(1− θ/2)[Γ̂α(s, s)]1/2.

where φ−1(1− θ/2) is the quantile of order θ in the standard normal distribution.
Moreover, a 100(1 − θ)% prediction interval for the average option price

E[Yi|κ1, ..., κn] =
∫∞

0
Zi(s)f̂α(s)ds is approximated by

IC1−θ(Yi) = Ŷi ± φ−1(1− θ/2)G1/2
α ,
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where
Gα = E

[ ∫ ∞
0

∫ ∞
0

Zi(s)Γ̂α(s, t)Zi(t)dsdt

]
.

The second result follows from the fact that our density estimator is linear in Y .
Indeed, as f̂α converges in probability to f , then Ŷi converges in probability to E[Yi|κi]
along with the asymptotic distribution under a linear transformation and using the
asymptotic distribution of f̂α.

3.5 Data-driven selection of the tuning parameter

According to the consistency results, it can be noticed that the estimation of the RND
depends on the tuning parameter α. Then, this parameter should be selected optimally.
Since the main goal is to estimate the RND and therefore predict the call and put prices,
we define a prediction criterion to select the optimal parameter α. Then, we choose the
regularization parameter in such a way that the mean squared prediction error (MSPE)
is minimized. We use the K-fold cross-validation for the selection procedure. Let us split
the initial sample in M subsamples denoted I1,...,IM .

αop = argmin
α∈Iα

1

M

M∑
`=1

1

card(I`)

∑
j∈I`

(
Yj − Ŷj

)2

. (3.8)

For ` ∈ {I1,...,IM}, we estimate the parameter β in the sample I−` representing the
observations not in I`. Then, we predict the response variable in I` considered as the
hold-out sample. Ŷj is the prediction of the jth observation in I`. Hence, we calculate the
MSPE for each candidate α. Iα is the set of candidate α. Indeed, it is a generalization
of the leave-one-out cross-validation.

An alternative approach suggested by Engl et al. (1996) is to choose the parameter
α such that the following objective function is minimized.

αop = argmin
α∈Iα

∣∣∣∣∣∣∣∣f̂α∣∣∣∣∣∣∣∣2∣∣∣∣∣∣∣∣Ĉzy − K̂(f̂α)

∣∣∣∣∣∣∣∣2. (3.9)

3.6 Simulations

This section presents simulation results based on the proposed estimation approach.
For this purpose, we consider different variety of data generating processes (DGP).
From the DGP, the true option prices and RND are observed and we use the proposed
estimation method to derive it and study the estimation and prediction performance. We
use the K-folds cross-validation to select the optimal α, withK = 10. The data generating
process considered in this section is the same as the one suggested by Bondarenko (2003).
We consider the functional regression model
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Yi =

∫ +∞

0

Zi(s)f(s)ds+ εi

where Z and Y are centred random variables. The RND f(s) is specified as a lognormal
mixture presented as follows

f(s) = π1LN (s|η1, σ1) + π2LN (s|η2, σ2) + π3LN (s|η3, σ3),

π1 + π2 + π3 = 1,

and LN (s|ηj, σj), j = 1, 2, 3 is a lognormal distribution

LN (s|ηj, σj) =
1√

2πσjs
e
−

(ln s
ηj
− 1

2σ
2
j )

2

2σ2
j .

Put options prices with 1-month maturity (21 business days) are generated. The set
of strike prices is defined as follows K = [430, 431, 432, ..., 540], which means that the
sample size is n = 111 and the underlying follows the aforementioned lognormal mixture
distribution. This parametrization is used to match a typical cross-section of the S&P

500 index options traded at the Chicago Board Options Exchange (CBOE) on March
21, 1995. The closing prices on March 21, 1995 of S&P 500 options with the maturity
date on April 21, 1995 are used to calibrate the RND. The parameters of the RND are
presented in Table 3.1.

Table 3.1: Parameters of the lognormal mixture density

lognormal π η σ

LN (s|η1, σ1) 0.1194 475.59 0.0550
LN (s|η2, σ2) 0.8505 498.17 0.0206
LN (s|η3, σ3) 0.0301 524.91 0.0146

The predictor functions are defined as Zi(s) = max(κi − s, 0), with i = 1, ...111,
κi ∈ K and s is the underlying. The response variable Yi = exp(rτ)Pi and Pi are the
generated put option prices. In the simulations we set exp(rτ) = 1. Each predictor
function Zi(s) is represented as a function of a very dense set of 1000 possible underlying
values s ∈ [493, 523] (493 and 523 representing the S&P 500 price at the end of March
March 21, 1995 and April 21, 1995 respectively).

To characterize the incompleteness of the market, the error term εi is added to
the regression model with E[εi] = 0. Additionally, the error term is generated to be

proportional to the bid-ask spread S as follows : εi ∼ U
(

[−0.5S,+0.5S]

)
, i = 1, ..., n.

Assuming that the prices and pay-offs are all centered, the put prices are calculated
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with the following equation

Yi =

∫ +∞

0

Zi(s)f(s)ds+ εi.

All the numerical integrations are performed with the trapezoidal rule. It is also possible
to use other integration rule such as the Newton-Cotes or adaptative quadrature.

We simulate 1000 copies of the datasets and evaluate the performance of the
estimation method with 2 criteria :

— The Root Mean Squared Prediction Error (RMSPE) between the estimated put
prices Ŷα and the theoretical one Y .

RMSPE =

√√√√ 1

n

n∑
i=1

(Ŷi,α − Yi)2.

— The Root Integrated Squared Error (RISE) between the estimated density f̂α,δ
and the theoretical one f .

RISE =
1

||f ||

√∫ +∞

0

(f̂α(s)− f(s))2ds.

We compare the proposed estimation method with the positive convolution approach
(PosConv) suggested by Bondarenko (2003) as it is widely used as a valuable benchmark.

Figure 3.1 shows that the results of the estimated RND and the related cumulative

distribution function, when the error term εi ∼ U
(

[−0.5S,+0.5S]

)
with S = 1. It can

be noticed that the estimated density tends to mimic the true one, but the magnitudes is
slightly different. The estimated RND is unimodal and displays a bell formation with tiny
tails and a rise around the strike 500. Table 3.2 shows a comparison of our method to the
one suggested by Bondarenko (2003). It can be observed that in terms of estimation of the
density (RISE) the PosConv outperforms our method, while in terms of prediction of the
option price (MSPE) our method tends to be more accurate mean squared prediction error
(MSPE). We observe almost the same result when a different variability of the error term
(S = 2) as shown in Figure 3.2 and Table 3.3. In addition, our Monte-Carlo experiments
show that for the 1000 simulations, approximately 99, 72% of the estimated density are

such that
∫∞

0
max

{
0, f̂α(s)

}
ds ≤ 1. Therefore we use the density correction of Case 2 in

order to get the integration to one. It is worth nothing that this density correction can
change from Case 2 to Case 1 according to what we obtain of the estimated density form
the sample data.

The performance level of the proposed method is maybe due to the fact that the
method is nonparametric, which means that it is data-demanding. In the considered
data generating process the sample size is relatively small and the PosConv method
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is semi-parametric and therefore adapted for the data generating process. The goal
of Bondarenko (2003) was to produce an alternative estimation method of the RND
regardless the interpretability of the results, and the evaluation of the method is only
made on the estimation performance and not in terms of prediction (see page 100 of
Bondarenko (2003)). In contrast, our main object is to develop a realistic estimator that
relies of the economic fundamental and can be used for prediction purpose. Furthermore,
Figure 3.3 shows the true smoothed and predicted put prices. It can be noticed that the
put prices are reasonably well predicted. This reinforces the argument about the good
prediction performance of the proposed method.

3.7 Real data application

This section focuses on a real data example. For this purpose, we consider the S&P
500 index (SPX) as the data of interest to derive the underlying and the strikes. The
S&P 500 option is one of the most liquid and tradable asset in the market. It represents
the aggregated capitalization of the 500 most important corporations in the U.S. It is
also used as a benchmark to see how well the most important companies are behaving. I
exploit the available public data by Barratt et al. (2020), extracted from OptionMetric
Ivy database via the Wharton Research Data Services.

From the database, the best bid and ask price of all S&P 500 European options are
collected for the date of June 3, 2019 with a maturity of 25 days. The price of the index
at the end of the same day is also collected. Indeed, it was evaluated at 2744.45 dollars.
The expiration price from 1500 to 3999.50 dollars is discretized in 50 cent increments
and it leads to a collection of 6000 price values representing the set of underlying. Puts
and calls options are both considered in the sample. Also opportunities to buy or sell the
puts and calls are allowed.

The price of each option investment is equal to the ask price if buying and the bid
price if selling, plus a transaction cost of 65 cent for each option in the sample. The
transaction cost when buying or selling the underlying as an investment is 0.3% of the
investment. These cost are the one used by TD Ameritrade brokerage at that time. The
sample size obtained is n = 316 (for more details, see Barratt et al. (2020)).

The results are presented in Figure 3.4. The estimated distribution from the 25-days
maturity options displays a bell-shaped formation centrered around the value 2744
dollars. The MSPE from the estimation is equal to 0.91. This density also presents a
long tail on the left hand side and a small hill around the strike value 2744.5. This shape
tends to be similar to a lognormal distribution shape. Figure 3.5 presents the predicted
call and put prices with their respective 95% confidence interval. It can be noticed that
the options prices are well predicted via the suggested estimation approach.
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3.8 Conclusion

This paper proposes to estimate the risk neutral density for options pricing models
with the functional data analysis framework. Indeed, we consider that a European option
price of an asset is evaluated as a weighted average of all possible payoffs of the asset,
where the weights represents here the risk neutral density of a market participant. To use
the functional data analysis framework, we assume that for each asset, one can have an
infinity of possible price values at the maturity. This means that at the maturity date,
a market participant is exposed to an infinite possibility of payoff. The set of potential
payoffs for each option price is then very dense and is considered as a function. On the
same line, the risk neutral density is also considered as a collection of values observed on a
very fine grid. Therefore, the model setting considered is a functional linear model where
the predictors functions are represented by the set of potential payoffs and the response
variable is the price of the option, which is a scalar. In contrast to the methods proposed
in prior papers, the estimation method proposed in this paper is free of any parametric
or semi-parametric configuration and it also takes into account the arbitrage-free theory
for options pricing in the model setting.

One of the main issue of this model is the high dimensionality problem as the inverse
of the covariance operator of the predictor variable is not continuous. This problem leads
to unstable estimated function. To overcome this issue we propose to use a regularization
technique called the Functional Landweber-Fridman. We also control for the positivity
and the integration to one of the density by applying a density correction. We derive the
consistency and asymptotic normality of the estimated density function. Additionally, we
provide simulations and an application to evaluate the quality of the estimation method.

Based on the simulations we obtained a reasonable bell-shaped formation of the
estimated risk neutral density. Comparing the results of this paper with the one obtained
by Bondarenko (2003), it is easy to observe that the approach proposed by Bondarenko
(2003) outperforms in terms of estimation of the density but underperforms in terms
of prediction of the options prices. The performance of their approach is due to the
parametrization considered in their model. The advantage of the approach proposed in
this paper is that it lets the data derive the results. The results from real data on S&P
500 options confirm the expected results from the simulations. The proposed approach
in this paper can be considered as a promising alternative to the existing ones.
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3.9 Appendix

Lemma 1.
If E[κ3

i ] < +∞, then K is a nuclear operator and (Zi(s))i=1,...,n are square integrable
functions.

Proof.
Note that

k (u, s) = E (Zi (u)Zi (s))

= E (max (κi − u, 0) max (κi − s, 0)) .

Given κi has a continuous density on R+, k (u, s) is continuous on R+ × R+. Moreover,
K is a positive definite operator. Hence to check whether K is nuclear, it is enough to
check that ∫

k (s, s) ds <∞.

See for instance, Ferreira, Menegatoo, and Oliveira (2009, Theorem 2.9).∫
k (s, s) ds = E

∫
max (κi − s, 0)2 ds

= E

∫ κi

0

(κi − s)2 ds

=
1

3
E
(
κ3
i

)
<∞.

Recall that nuclear implies Hilbert-Schmidt. This proves that K is a nuclear operator
and therefore is Hilbert-Schmidt.

* Similarly, one can show that

E
(
κ3
i

)
<∞⇒

∫
E
(
Z2
i (s)

)
ds <∞.

We can conclude that Zi is square integrable.

3.9.1 Algorithm for the correction of the estimator in Case 1

To determine ξ in Case 1, we follow the algorithm outlined by Luedicke and Bernacchia
(2014).

First compute
∫

max
{

0, f̂α (s)
}
ds using an equally spaced grid. Let N be the number

of grid points and ∆ the grid interval used in the numerical computation of the integral.
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Then, the starting point of the algorithm is

ξ0 =

∫
max

{
0, f̂α (s)

}
dx

N∆
.

Let δ be such as δ = 10τξ0 for some small τ (for instance τ = 10−4).

The search is iterated by adding δ to ξl at each iteration

ξl+1 = ξl + δ

until
1 ≤

∫
f̃α (s) ds ≤ 1 + τ.

This algorithm is fast but not guaranteed to converge. Luedicke and Bernacchia (2014)
proposed another algorithm which is sure to converge. In the simulations, we implemented
only the first one.

3.9.2 Proof of Proposition 1

We have

f̂α − f = (f̂α − fα) + (fα − f)

where the first term of the right hand side of the equation is the estimation error and
the second term is the regularization bias. From that equation, we have

||f̂α − f ||2 ≤ 2||f̂α − fα||2 + 2||fα − f ||2.

To derive the convergence rate of ||f̂α − f ||2, it is sufficient to derive the convergence
rate of the squared bias and the estimation error.

Convergence rate of ||fα − f ||2 :
We have

fα =
+∞∑
j=1

< vj, f > vj.

fα =
+∞∑
j=1

Q(α, λj) < vj, f > vj.

where Q(α, λj) = 1− (1− λj)1/α. Then,
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f − fα =
+∞∑
j=1

[1−Q(α, λj)] < vj, f > vj.

and

||f − fα||2 =
+∞∑
j=1

[1−Q(α, λj)]
2 < vj, f >

2

=
+∞∑
j=1

λµj [1−Q(α, λj)]
2< vj, f >

2

λµj

≤ Sup
j

[
λµj [1−Q(α, λj)]

2

] +∞∑
j=1

< vj, f >
2

λµj

≤ Sup
j

[
λ
µ/2
j [1−Q(α, λj)

]2

≤ Cαµ,

where C is an arbitrary positive constant. The third line of the equation holds since∑+∞
j=1

<vj ,f>
2

λµj
< +∞ according to assumption 3. Following Proposition 3.11 of Carrasco

et al. (2007) 2, Sup
j

[
λ
µ/2
j [1−Q(α, λj)

]2

≤ Cαµ, which yields the last line.

Convergence rate of ||f̂α − fα||2 :

f̂α − fα = K̂−1
α Ĉzy −K−1

α Czy

= K̂−1
α K̂(f)−K−1

α K(f) + K̂−1
α (V̂zε),

where V̂zε(s) = 1
n

∑n
i=1(Zi(s)− Z(s))(εi − ε). The last line holds since Ĉzy = K̂(f) + V̂zε

and Czy = K(f).

Following Lemma 3 of Tsafack (2020), ||K̂−1
α K̂(f) − K−1

α K(f)||2 = Op

(
αµ

α2n

)
.

Furthermore,

K̂−1
α (V̂zε) =

n∑
j=1

Q(α, λ̂j)

λ̂j
< v̂j, V̂zε > v̂j.

Then,

2. The eigenvalues of K are denoted λ2j in Carrasco et al. (2007) whereas they are denoted λj in the
present paper.
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||K̂−1
α (V̂zε)||2 =

n∑
j=1

[Q(α, λ̂j)]
2

λ̂2
j

< v̂j, V̂zε >
2

≤ Sup
j

[
[Q(α, λ̂j)]

2

λ̂2
j

] n∑
j=1

< v̂j, V̂zε >
2

≤
[
d

α

]2 n∑
j=1

< v̂j, V̂zε >
2 .

The last line follows from page 5678 of Carrasco et al. (2007). Furthermore,

E[< v̂j, V̂zε >
2 |Z] = E

[ ∫ ∞
0

(v̂j(t)
1

n

n∑
i=1

(Zi(t)− Z̄(t))εi)dt

∫ ∞
0

(v̂j(s)
1

n

n∑
l=1

(Zl(s)− Z̄(s))εl)ds|Z
]

=

∫ ∞
0

∫ ∞
0

v̂j(t)E
[
(
1

n

n∑
i=1

(Zi(t)− Z̄(t))εi)(
1

n

n∑
l=1

(Zl(s)− Z̄(s))εl)

]
v̂j(s)dsdt

=

∫ ∞
0

∫ ∞
0

v̂j(t)

[
σ2

n

n∑
i=1

(Zi(t)− Z̄(t))(Zl(s)− Z̄(s))

]
v̂j(s)dsdt

=
σ2

n
< v̂j, K̂(v̂j) >

=
σ2λ̂j
n

.

Therefore,

E[||K̂−1
α (V̂zε)||2|Z] =

n∑
j=1

q̂2
j

λ̂2
j

ˆσ2λj
n

=
σ2

n

n∑
j=1

q̂2
j

λ̂2
j

λj

≤ σ2

n
sup

(
q̂2
j

λ̂2
j

) n∑
j=1

λj

≤ σ2

nα2

Hence, ||f̂α − fα||2 = Op

(
αµ

α2n

)
+Op

(
1
α2n

)
and ||fα − f ||2 = Op

(
αµ
)
. These results

lead to
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||f̂α − f ||2 = Op

(
αµ
)

+Op

(
1

α2n

)
,

Furthermore, if the estimated density function is adjusted with Case 1, we have

||f̈α − f ||2 ≤ ||f̂α − f ||2

If we use the second approach for the correction, we obtain

E[||f̈α − f ||2|κ1, ..., κn] ≤ E[||f̂α − f ||2|κ1, ..., κn] +
1

n

= Op

(
αµ
)

+Op

(
1

α2n

)
+Op

(
1

n

)
.

Therefore, in both cases, we obtain

||f̈α − f ||2 = Op

(
αµ
)

+Op

(
1

α2n

)
,

This concludes the proof.

3.9.3 Proof of Proposition 2

For α fixed,

f̂α − fα = K̂−1
α K̂(f)−K−1

α K(f) + K̂−1
α (V̂zε).

Then,

f̂α − fα = K̂−1
α (V̂z,ε) + K̂−1

α K̂(f)−K−1
α K(f)

= K−1
α V̂z,ε + (K̂−1

α −K−1
α )V̂z,ε + K̂−1

α K̂(f)−K−1
α K̂(f) +K−1

α K̂(f)−K−1
α K(f)

= K−1
α V̂z,ε + (K̂−1

α −K−1
α )V̂z,ε + (K̂−1

α −K−1
α )K̂(f) + K̂−1

α (K̂α −Kα)(f)

= K−1
α V̂z,ε + K̂−1

α (K̂α −Kα)(f) +Op

(
1

n

)
= K−1

α

[
1

n

n∑
i=1

Zi ⊗ εi
]

+K−1
α

[
1

n

n∑
i=1

(Zi ⊗ Zi −K)(f)

]
+Op

(
1

n

)
.

Let us define Z̃i = K−1
α (Zi) and Z̃ = K−1

α (Z). Then,
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f̂α − fα =
1

n

n∑
i=1

Z̃i ⊗ εi +
1

n

n∑
i=1

[Z̃i ⊗ Zi − E[Z̃ ⊗ Z]](f) +Op

(
1

n

)
=

1

n

n∑
i=1

Z̃i ⊗ εi +
1

n

n∑
i=1

[Z̃i ⊗ Zi − E[Z̃ ⊗ Z]](f) +Op

(
1

n

)
.

Under the assumptions that Zi ⊗ εi are i.i.d, E[κ3
i ] < +∞ we obtain

1√
n

n∑
i=1

[
Zi ⊗ εi

Zi ⊗ Zi − E[Zi ⊗ Zi]

]
d

=⇒ N (0,Ω1)

where Ω1 =

(
G 0

0 K

)
is a (2 × 2) matrix of covariance operators. Let us define the

following transformation [
A

B

]
→ K−1

α A+K−1
α (B −K)

where A and B are two arbitrary operators. By the continuous mapping theorem with
the previous transformation with A = 1

n

∑n
i=1 Zi ⊗ εi and B = 1√

n

∑n
i=1 Zi ⊗ Zi, yields

the asymptotic covariance operator of
√
n(f̂α − fα), Γα given by

K−1
α (B −K) =

1

n

n∑
i=1

[Z̃i ⊗ Zi − E[Z̃ ⊗ Z]].

Therefore,

Γα = E
[
(K−1

α (Zi)⊗ εi)⊗̃(εi ⊗K−1
α (Zi))

]
+ E

[
[(K−1

α (Zi)⊗ Zi −K)]⊗̃[(K−1
α (Zi)⊗ Zi −K)]

]
(f ⊗ f)

= E
[
[K−1

α (Zi ⊗ εi)]⊗ [K−1
α (Zi ⊗ εi)]

]
+ E

[
[K−1

α (Zi ⊗ Zi −K)]⊗̃[(Zi ⊗ Zi −K)K−1
α ]

]
(f ⊗ f)

= E
[
[K−1

α (Zi ⊗ εi)]⊗ [K−1
α (Zi ⊗ εi)]

]
+ E

[
[K−1

α (Zi ⊗ Zi −K)]⊗̃[(Zi ⊗ Zi −K)K−1
α ]

]
(f ⊗ f)

= σ2K−1
α KK−1

α + E
[
[K−1

α (Zi ⊗ Zi −K)]⊗̃[(Zi ⊗ Zi −K)K−1
α ]

]
(f ⊗ f).

3.9.4 Graphics and tables

163



420 440 460 480 500 520 540

Price values

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04
Estimated Risk neutral density 

True

FLF

PosConv

(a) Estimated risk neutral density

420 440 460 480 500 520 540

Price values

0

0.2

0.4

0.6

0.8

1

1.2
Estimated Cumulative distribution function

True

FLF

PosConv

(b) Cumulative distribution function

Figure 3.1: Estimated risk neutral density and cumulative distribution function, S = 1
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Figure 3.2: Estimated risk neutral density and cumulative distribution function, S = 2
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Figure 3.5: SPX predicted call and put prices with 95% confidence bounds
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Table 3.2: Comparison of the estimation methods, model with S = 1

Criterion FLF PosConv

MSPE 27.26 42.23
RISE 0.264 0.035

Table 3.3: Comparison of the estimation methods, model with S = 2

Criterion FLF PosConv

MSPE 27.14 78.32
RISE 0.193 0.037
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Conclusion Générale

L’objectif de cette thèse était d’exploiter le cadre d’analyse de données fonctionnelles
afin de traiter des questions d’estimation et d’analyses d’inférencielle et de présenter des
cas d’application à des sujets sur les marchés financiers.

Au premier chapitre, nous avons effectué une comparaison théorique des techniques
d’analyse des composantes principales fonctionnelles (FPCA) et des moindres carrés
partiels fonctionnels (FPLS) dans le contexte d’un modele de regression fonctionnelle avec
comme variable réponse un scalaire. Nous avons déterminé la vitesse de convergence de
l’erreur quadratique moyen de prédiction conditionnelle (MSPE) pour les deux méthodes
d’estimation. Nous avons montré que le biais de régularisation de la méthode FPLS est
plus petit que celui déterminé via la méthode FPCA, tandis que son erreur d’estimation
a tendance à être plus grande que celle de FPCA. De plus, nous avons montré que la
méthode FPLS performe mieux que la méthode FPCA en termes de prédiction, ceci avec
moins de composantes.

Dans le deuxième chapitre j’ai considéré un modèle autorégressif fonctionnel (FAR)
afin d’effectuer la prévision de la courbe de rendement du S&P 500 à la prochaine journée.
Contrairement aux modèles AR(1) standard où chaque observation est un scalaire, dans
cette étude, chaque courbe de rendement journalière est une collection de 390 points et
est considérée comme une observation. L’estimation du paramètre du modèle conduit
a un problème d’inversibilité. Ainsi, pour résoudre ce problème, j’ai réalisé une analyse
comparative de quatre techniques de Big Data, dont la méthode de Tikhonov fonctionnelle
(FT), la technique de Landweber-Fridman fonctionnelle (FLF), la coupure spectrale
fonctionnelle (FSC) et les moindres carrés partiels fonctionnels (FPLS). J’ai également
déterminé la vitesse de convergence de ces , la distribution asymptotique du paramétre
estimé pour les differentes méthodes d’estimation. De plus, j’ai developpé une stratégie
de test statistique pour sélectionner le nombre de retard du modèle. Les simulations et les
données réelles montrent que les méthodes FPLS et FPCA performent mieux les autres
en termes d’estimation tandis que toutes les quatres méthodes affichent des performances
similaires en termes de prédiction. Aussi la méthode FPLS tend à présenter un R2

oos hors
échantillon assez remarquable, d’une valeur de 3.9% montrant ainsi le démarquage de
cette méthode en terme de prediction.

Le troisième chapitre a été consacré à l’estimation de la densité de neutralité au
risque (RND) dans le contexte de la tarification des options sur les marchés financiers,
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à l’aide d’un modèle fonctionnel. Cette approche repose sur l’idée que la RND peut
être considéré comme une fonction qui prend des valeurs sur une grille fine et que l’on
peut avoir un nombre infini de possibilités à l’échéance. L’avantage de cette approche est
qu’elle exploite la théorie d’absence d’arbitrage et qu’il est possible d’éviter toute sorte de
paramétrisation. L’estimation de cette densité se traduit par un problème d’inversibilité
et la technique fonctionnelle de Landweber-Fridman (FLF) a été utilisée pour controler
la stabilite du parametre estime. Après avoir developpé les résultats asymptotiques du
RND estimé, j’ai presenté une analyse empirique pour montrer les performances de la
méthode.

En fin de compte, les modèles d’analyse des données fonctionnelles attirent une
attention particulière dans le contexte des etudes économiques, mais l’analyses modèles
théorique y relatif reste encore un champ à explorer. Les analyses faites dans cette thèse
permettent d’ouvrir un champ d’exploration et de fixer un cadre d’analyse des propriétes
des estimateurs dans l’utilisation des modèles de prédiction connexes avec des applications
en économie et finance.
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