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Résumé 

La recherche de prédicteurs d’habilités langagières en aphasie post-accident vasculaire 

cérébral (AVC) basés sur la matière blanche a récemment vu un élan. Cela a été motivé par 

l’émergence du modèle à double-voie où des faisceaux de matière blanche dorsaux et ventraux 

jouent un rôle important dans le langage, ainsi que par l’avènement de la tractographie basée sur 

l’imagerie par résonance magnétique (IRM) de diffusion permettant l’étude in-vivo des faisceaux 

de matière blanche et de leurs propriétés structurelles. Les caractéristiques structurelles et la charge 

lésionnelle des faisceaux de matière blanche ont permis de prédire les troubles langagiers dans la 

phase chronique dans quelques études. Cependant, les prédicteurs aigus de matière blanche des 

habilités syntaxiques en aphasie post-AVC chronique sont méconnus. 

L’exploitation de la tractographie dans l’étude des faisceaux langagiers de matière blanche 

a été limitée par plusieurs défis méthodologiques, dont la difficulté de reconstruire des faisceaux 

ayant une architecture complexe. Des progrès méthodologiques ont été récemment introduits afin 

d’adresser ces limites, dont le plus important est la tractographie basée sur l’imagerie à haute 

résolution angulaire (« HARDI »). Cependant, la fiabilité test-retest de la reconstruction et des 

propriétés structurelles d’une approche de tractographie HARDI de pointe n’a pas encore été 

évaluée. 

Le premier article de cette thèse visait à évaluer la fiabilité test-retest de la reconstruction 

et des propriétés structurelles (anisotropie fractionnelle, FA; diffusivité moyenne, axiale et radiale, 

MD, AD, RD; nombre d’orientations de fibres, NuFO; volume du faisceau; longueur moyenne des 

« streamlines ») de faisceaux langagiers majeurs (arqué, inférieur fronto-occipital, inférieur 

longitudinal, unciné, AF, IFOF, ILF, UF) obtenus avec une approche de tractographie HARDI de 
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pointe. La majorité des mesures de propriétés structurelles ont montré une bonne ou excellente 

fiabilité. Ces résultats ont des implications importantes pour l’utilisation d’une telle approche pour 

l’étude des faisceaux langagiers de matière blanche, car ils renforcent la confiance dans la stabilité 

des reconstructions et les propriétés structurelles obtenus avec la tractographie HARDI. 

Le second article de cette thèse visait à déterminer si et quelles propriétés structurelles (FA, 

AD, volume du faisceau), et la charge lésionnelle, de l’AF et l’UF gauches dans la phase aigüe (£ 

3 jours), obtenus avec l’approche de tractographie HARDI utilisée dans le premier article, prédisent 

les habilités syntaxiques dans le discours spontané en aphasie post-AVC chronique (³ 6 mois). Des 

régressions multiples ascendantes ont révélé que le volume de l’AF prédit la production des verbes, 

la complexité des phrases et la complexité de la structure argumentale du verbe. Le volume de l’UF 

a amélioré la prédiction de cette dernière. Ces résultats indiquent que le volume semble être un bon 

prédicteur précoce des habilités syntaxiques dans le discours spontané en aphasie post-AVC 

chronique. 

Mis ensemble, les résultats de cette thèse soulignent l’utilité d’une approche de 

tractographie HARDI de pointe et son potentiel pour le développement futur de biomarqueurs 

précoces pouvant améliorer le pronostic de patients ayant une aphasie post-AVC chronique. Cela 

pourrait promouvoir l’optimisation des soins et le développement de thérapies pour le bienfait des 

patients et leurs familles. 

Mots-clés: IRM de diffusion, tractographie, HARDI, matière blanche, aphasie post-AVC, AVC, 

syntaxe, discours spontané. 



 

Abstract 

The search for white matter predictors of language abilities in post-stroke aphasia has 

gained momentum in recent years. This growing interest has been driven by the emergence of the 

dual-stream framework where dorsal and ventral white matter bundles play an important functional 

role in language, as well as the advent of diffusion magnetic resonance imaging (MRI)-based 

tractography which allows the in-vivo investigation of white matter bundles and their structural 

properties. Structural characteristics, as well as the lesion load, of white matter bundles have been 

previously found to predict language impairments in the chronic phase. However, little is known 

about acute white matter predictors of syntactic abilities in chronic post-stroke aphasia.  

Leveraging tractography to study white matter language bundles has been limited by several 

methodological challenges, such as the difficulty of reconstructing white matter bundles with a 

complex fiber architecture. A number of methodological advances have been introduced fairly 

recently to address these limitations, the most important of which is the advent of tractography 

based on High Angular Resolution Imaging (HARDI). However, the test-retest reliability of the 

reconstruction and structural properties of a state-of-the-art HARDI-based tractography pipeline 

has not been previously assessed.  

The first article of the present thesis aimed to assess the test-retest reliability of the 

reconstruction and structural properties (fractional anisotropy, FA; mean, axial, radial diffusivity, 

MD, AD, RD; number of fiber orientations, NuFO; bundle volume; mean length of streamlines) of 

major white matter language bundles (arcuate, inferior fronto-occipital, inferior longitudinal, and 

uncinate fasciculi, AF, IFOF, ILF, UF) obtained using a state-of-the-art HARDI-based 

tractography pipeline. Most measures of structural properties showed good to excellent test-retest 
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reliability. These findings have important implications for the use of such a pipeline for the study 

of white matter language bundles, as they increase our confidence that the reconstructions and 

structural properties obtained from the tractography pipeline are stable and not due to random 

variations in measurement. 

The second article of the thesis aimed to determine whether and which structural properties 

(FA, AD, bundle volume), as well as the lesion load, of the left AF and UF in the acute phase post-

stroke (£ 3 days), obtained with the same state-of-the-art HARDI-based tractography pipeline used 

in the first article, predict syntactic abilities in connected speech in chronic post-stroke aphasia (³ 

6 months). Forward multiple regressions revealed that the left AF’s volume predicted the 

percentage of verbs produced, the structural complexity of sentences, as well as verb-argument 

structure complexity. The left UF’s volume improved the prediction of verbs with a complex 

argument structure. These findings indicate that the bundle volume may be a good early predictor 

of syntactic ability in connected speech in chronic post-stroke aphasia. 

Overall, the findings of this thesis highlight the usefulness of a state-of-the-art HARDI-

based tractography approach and its potential for the future development of early biomarkers that 

could improve the prognosis and personalized care of patients with chronic post-stroke aphasia. 

This would promote the optimization of patient care and the development of therapies for the 

benefit of patients and their families. 

Keywords: diffusion MRI, tractography, HARDI, white matter, post-stroke aphasia, stroke, 

syntax, connected speech. 
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1. General introduction 
Aphasia (i.e., an impairment of language abilities) is one of the most common consequences 

of stroke. The search for white matter predictors of language impairment and recovery in post-

stroke aphasia has seen growing interest in recent years. The emergence of the dual-stream network 

where white matter pathways play an important functional role has motivated research into the 

contribution of white matter language bundles to language impairment and recovery in post-stroke 

aphasia. A few studies have reported that the structural characteristics of white matter bundles 

could predict language abilities such as naming, repetition, and comprehension (Hillis et al., 2018; 

Ivanova et al., 2016; Xing et al., 2017). However, not much is known about white matter predictors 

of syntactic abilities in post-stroke aphasia.  

Research into the role of white matter bundles in language was made possible by the advent 

of tractography, a neuroimaging technique based on diffusion weighted imaging (DWI), which 

allows the in-vivo reconstruction of white matter bundles and the assessment of their structural 

properties. However, tractography suffers from several challenges (such as a difficulty to 

reconstruct white matter bundles with a complex fiber architecture). Recent methodological 

advances have introduced new approaches to tractography that remedy, to a certain extent, some 

of the method’s chief limitations.  

In what follows, an introduction to the two articles of the present thesis will be presented. 

First, a definition of the cornerstones of this thesis will be presented, namely post-stroke aphasia, 

syntax in connected speech production, and tractography based on diffusion magnetic resonance 

imaging (MRI). We will then present the methodological challenges and advances of tractography 

and its reliability. This will be followed by an overview of the dorsal and ventral white matter 

language pathways in the dual-stream framework. A review of the studies that investigated the 



25 

white matter predictors of language impairments in post-stroke aphasia, then of those that looked 

into structural determinants of syntax production, will then be provided. Finally, the objectives and 

hypotheses of this thesis will be presented. 

2. Post-stroke aphasia 

2.1. Definition and clinical portrait 
Ischemic stroke is a major cerebrovascular disease (Grefkes & Ward, 2014). It is caused by 

an occlusion of a cerebral artery which results in cell death and dysfunction (Yang et al., 2013). 

One of the most common cognitive sequelae of an ischemic stroke is an impairment of language 

functions known as aphasia. About a third of people who survive a stroke will present with post-

stroke aphasia in the first few days (Heart and Stroke Foundation of Canada, 2017), and some will 

continue to live with it months or even years after the event (Johnson et al., 2019). Most often, 

post-stroke aphasia occurs following an occlusion of the left middle cerebral artery (MCA) which 

is one of the major arteries that supply blood to the brain and irrigates the left perisylvian language 

areas (Kemmerer, 2015). 

Thus, post-stroke aphasia is an acquired language disorder that manifests in a variety of 

symptoms at the level of one or more linguistic processes (phonology, morphology, syntax, or 

semantics) affecting language production and comprehension (Zumbansen & Thiel, 2014). People 

with post-stroke aphasia may be classified into two broad categories: fluent (i.e., their language 

impairments are mostly receptive, which means that they have difficulties with comprehension) or 

non-fluent (i.e., their language impairments are mostly expressive, which means that they show 

difficulties with production of speech sounds, words, or sentences). Some patients may present 

with both expressive and receptive language impairments (known as mixed aphasia). Additionally, 

language impairments may vary in severity across individuals, as well as over the course of 
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recovery. Language impairments in post-stroke aphasia include anomia (i.e., word finding 

difficulties, including noun and verb production in confrontation naming or connected speech), 

word, pseudoword and sentence repetition difficulties, word and sentence comprehension 

difficulties, sentence production difficulties, and speech production difficulties (e.g., slower speech 

rate, phonemic paraphasia, hesitations, and connected speech impairments).  

Post-stroke aphasia may sometimes, though not systematically, co-occur with verbal and 

non-verbal memory deficits (particularly short-term and working memory). For example, 

comprehension deficits in post-stroke aphasia have been found to be predicted by auditory short-

term memory (Leff et al., 2009). Aphasia severity has also been found to be related to memory 

(working, short-term, and spatial) impairments in some patients with post-stroke aphasia (Laures-

Gore et al., 2011; Potagas et al., 2011), which suggests that some common mechanism might 

underly language and memory impairments in some cases of post-stroke aphasia. Additionally, 

impairments in non-verbal tests of semantic memory are often observed in people with post-stroke 

aphasia (Fonseca et al. 2019), though it has been argued that such a deficit might be more one of 

semantic control than of storage (Jefferies & Lambon Ralph, 2006). However, not all post-stroke 

aphasia patients show such memory deficits and no cause-effect relationship between these two 

types of impairments has been identified.  

Stroke and the aphasia it induces are dynamic conditions whose evolution broadly 

progresses over three main phases: acute, subacute, and chronic (Saur et al., 2006). The acute phase 

is identified as being sometime between the first 24 hours and the first week. The subacute phase 

may span a period between two weeks to three months post-stroke. The chronic phase is usually 

considered to be around three (according to some studies) to six months post-stroke (chronic 

aphasia is more often studied around this later time-window) and later.   
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2.2. Syntax in post-stroke aphasia 
People with fluent and non-fluent post-stroke aphasia may also present with syntactic 

impairments that manifest in difficulties during the production or comprehension of complex 

sentences or verbs, particularly those with a complex verb-argument structure (Thompson et al., 

2012). People with post-stroke aphasia may also show a reduction of grammatically well-formed 

sentences in connected speech (Edwards, 2005; Thompson et al., 2013).  

Syntax can be defined as a hierarchical incremental structure building process of which the 

first building block is the verb. Sentence structure building starts with the selection of the verb 

lemma which encodes syntactic information, such as the verb-argument structure (Levelt et al., 

1999). Verb-argument structure refers to the number and types of thematic roles or arguments a 

verb requires. For example, the transitive verb put requires three arguments, an agent, a theme, and 

a location, as in (a), and therefore has a complex argument structure, while the intransitive verb 

sleep requires one argument, an experiencer, as in (b), which means that it has a simple argument 

structure. 

(a) JohnAGENT put the bookTHEME on the shelfLOCATION. 

(b) JohnEXPERIENCER sleeps. 

The integration of a verb with its arguments requires the specification of the thematic roles 

it assigns and their relationship to the verb, as well as their syntactic realization (also known as 

subcategorization frames). For example, the theme role for the verb see can have two syntactic 

expressions, either a noun phrase (NP), as in (c) or a clause, as in (d): 

(c) John saw [a movie]NP 

(d) John saw [that Mary was happy]CLAUSE 
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The retrieval of the verb lemma projects its syntactic tree (which includes the argument 

slots), then each argument (e.g., a noun lemma) is selected and projects its realization, a NP, which 

is then integrated in its appropriate slot in the argument structure (e.g., in the subject or object 

position) (Ferreira, 2000; Thompson et al., 2015). This incremental hierarchical structure building 

process is characterized by the speaker’s planning ahead of the sentence structure, resulting in the 

retrieval of multiple lemmas guided by their hierarchical structural relationships (Thompson et al., 

2015). This incremental hierarchical process applies to simple structures (e.g. phrases) and extends 

to more complex ones as well, including complex sentences constituted of two or more clauses. 

Clauses are syntactic structures comprised of a subject and a main verb. Sentences constituted of 

two or more clauses are considered complex.  

Syntactic impairments have received little attention in research, in comparison to other 

impairments in post-stroke aphasia. Syntactic impairments in production are also understudied in 

comparison to syntactic comprehension impairments. Additionally, adequate standardized clinical 

tests for the assessment of syntactic abilities in production are lacking. In English, the Northwestern 

Assessment of Verbs and Sentences (NAVS, Cho-Reyes & Thompson, 2012) has been developed 

and assesses verb and sentence production in terms of syntactic and verb-argument complexity. 

However, such a standardized clinical battery for syntax in language production does not exist in 

French. In this context, connected speech analysis can be a potent tool to assess the syntactic 

abilities of persons with aphasia.  

Connected speech broadly refers to language production in a discourse context. It has the 

advantage of being more ecologically valid than standardized tests. As previously mentioned, 

standardized tests allow the controlled assessment of specific aspects of syntax (e.g. sentences with 

specific syntactic structures that are not naturally elicited by people with aphasia, such as object-
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relatives and passives) in language production at the isolated verb and sentence levels. On the other 

hand, connected speech production allows for the study of these aspects in a discourse context that 

is more reflective of functional communication (Dipper et al., 2018). This has particularly 

important clinical implications. Indeed, the priority for patients with post-stroke aphasia and their 

relatives and the outcome they hope to achieve is better functional communication in their daily 

life (Boles, 1998; Edwards, 1998). In that context, measures of syntactic ability obtained from 

standardized test batteries like the NAVS, even if they provide valuable information about specific 

syntactic processes, might not reflect functional communication. Therefore, it is crucial to also 

assess syntactic ability in connected speech which provides better insight into functional 

communication than standardized tests, albeit an imperfect one. Additionally, connected speech 

may be sensitive to impairments that are not apparent in standardized tests, or may reveal 

compensatory strategies (Stark, 2019).  

The most commonly used structured method for the elicitation of connected speech in 

clinical contexts is complex picture description (e.g., the Picnic Scene from the Western Aphasia 

Battery) (Bryant et al., 2016). Picture description is a task in which participants are asked to 

describe in depth a complex scene depicted in a single picture. It provides structured speech 

samples and has the advantage of restricting the content of the discourse produced to the contents 

of the picture (Bryant et al., 2016). This reduces sources of uncontrolled variability. Additionally, 

picture description produces samples of a manageable length for research and clinical purposes. As 

a result, this task is usually the most preferred one for the elicitation of connected speech. While 

expositional discourse (i.e., picture description) may not be an exact reflection of functional 

communication given the limited length of samples and the type of discourse it elicits, it remains a 

type of assessment that may afford better insights into everyday communication abilities than 

standardized clinical tests. Connected speech has been used to assess different aspects of the 
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syntactic abilities of fluent and non-fluent aphasic speakers (Bastiaanse, 2011; Hsu & Thompson, 

2018; Mirman et al., 2019). The most commonly used measures obtained from connected speech 

to assess syntactic abilities are the number of free or embedded clauses (as a measure of syntactic 

complexity of sentences), the percentage of verbs in the sample, and the number of well-formed 

sentences. The verb-argument structure has also been investigated using connected speech 

(Bastiaanse & Jonkers, 1998; Hsu & Thompson, 2018; Thompson et al., 1995). 

Studies on syntactic impairments in post-stroke aphasia using connected speech have 

revealed that both fluent and non-fluent aphasic speakers may experience syntactic impairments. 

For example, patients with post-stroke aphasia have been found to show impaired production of 

free or embedded clauses (Edwards, 1995; Edwards & Bastiaanse, 1998; Edwards & Knott, 1994; 

Hsu & Thompson, 2018; Llinàs-Grau & Martínez-Ferreiro, 2014; Stark, 2019; Webster et al., 

2007), difficulties in the production of verbs in connected speech (Edwards, 1998; Edwards & 

Bastiaanse, 1998; Saffran et al., 1989; Thompson et al., 1995), fewer well-formed sentences 

(Edwards, 2005; Thompson et al., 2013), and difficulties with the production of verbs with a 

complex argument structure (Kim & Thompson, 2004; Thompson et al., 1995; Webster et al., 

2007). 

3. Diffusion MRI-tractography 
The specification of white matter connectivity in the language network, as well as the 

investigation of its contribution to post-stroke aphasia has been made possible by the advent of 

tractography. This technique leverages diffusion MRI data to virtually reconstruct white matter 

bundles in-vivo (Dell’Acqua & Catani, 2012).  

Diffusion MRI or diffusion weighted imaging (DWI) probes the diffusion of water 

molecules in biological tissues, thereby allowing us to recover information about the structural 
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properties of white matter (Descoteaux, 2015). In most parts of the brain, such as the cerebrospinal 

fluid or grey matter, the diffusion of water molecules is unrestricted (i.e., the molecules move 

randomly in different directions). In white matter, however, water molecules move along 

myelinated axons, making their movement restricted to one main direction perpendicular to axons 

(Catani & Forkel, 2019). This movement is called anisotropic (see Figure 1). Tractography 

emerged about 20 years ago and, as previously mentioned, has been crucial in advancing our 

understanding of the role of white matter pathways in the language network. Even more recently, 

tractometry was introduced. This technique is closely related to tractography in that it allows a 

detailed study of each reconstructed white matter bundle’s structural characteristics. Several 

metrics and measures that reflect the micro- and macro-structural properties of white matter can be 

extracted from the bundles reconstructed by means of tractography. The most common 

microstructural measures include fractional anisotropy (FA), mean diffusivity (MD), radial 

diffusivity (RD), and axial diffusivity (AD) (Yeatman et al., 2012). Macrostructural measures such 

as bundle volume or the mean length of streamlines (MLS; i.e., the length of the virtually 

reconstructed fibers) may also be obtained and provide information about the anatomy of the 

bundle (Catani & Forkel, 2019; Girard et al., 2014).  
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Figure 1.  Illustration of isotropic and anisotropic diffusion.  

On the left, a representation of isotropic (top of the illustration) vs. anisotropic (bottom of the 

illustration) diffusion of water molecules is shown. On the right, the shape of the diffusion tensor 

given isotropic vs. anisotropic diffusion is illustrated. Reprinted from Introduction to Diffusion 

Tensor Imaging and Higher Order Models, 2nd Edition, Mori, S. and Tournier, J.-D., Principle of 

Diffusion Tensor Imaging, Page  29, Copyright (2014), with permission from Elsevier. 

Measures of micro- and macro-structural properties provide different types of information. 

While microstructural measures provide information about the degree of diffusivity and anisotropy 

in white matter, macrostructural measures can be used to inform us about the morphology and 

anatomy of the white matter bundles. FA, MD, RD, and AD have been found to be particularly 

sensitive to microstructural abnormalities in white matter following a stroke (Alexander et al., 

2007; Tournier, Masterton, & Seitz, 2012). FA is a widely used metric that reflects the degree of 

tissue anisotropy (Beaulieu, 2014). It ranges from zero (i.e. perfectly isotropic diffusion) to 1 (i.e., 

highly anisotropic diffusion). A decrease in the mean FA along a white matter bundle reflects lower 

anisotropy (i.e., less restricted movement of water molecules) and is believed to be sensitive to 

axonal damage. In other words, damage at the level of white matter could cause axons to degrade, 

lose myelination, or become disorganized inside a bundle of fibers. This would in turn lead to freer, 

less restricted movement of water molecules. A drop in FA values has been reported in patients 

with white matter damage, such as demyelination or Wallerian degeneration (Beaulieu, 2002; 

Pierpaoli et al., 2001; Tournier, Masterton, & Seitz, 2012). MD is another metric that assesses 

white matter microstructure. It reflects the average movement of water molecules in a voxel (Salat, 

2014). An increase in MD values is thought to reflect decreased restriction of the diffusion of water 

molecules (Madhyastha et al., 2014). AD and RD indicate the diffusion of water molecules parallel 

and perpendicular, respectively, to the principal fiber direction. Studies have found that these 

different metrics (FA, MD, AD, RD) may be affected differently by different types of white matter 
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injury (Pierpaoli et al., 2001; Song et al., 2003, 2002; Wheeler-Kingshott & Cercignani, 2009). For 

example, AD would be affected by acute axonal damage, while RD would be affected by 

demyelination. This entails that these different metrics may be differentially affected in different 

neuropathologies or at different stages of a neurological condition such as stroke. At the 

macrostructural level, a reduction of the volume of bundles has been reported in the chronic phase 

post-stroke (e.g., Jang & Lee, 2014). 

Finally, tractography has also been leveraged in post-stroke aphasia studies to investigate 

the degree of overlap between a white matter bundle and the lesion (Geva et al., 2015; Hillis et al., 

2018; Marchina et al., 2011). This approach combines lesion information with the in-vivo 

reconstruction of white matter bundles to obtain a measure known as the lesion load. Thus, the 

lesion load combines information about lesion size and location specific to white matter and is 

considered an indirect measure of damage to specific white matter bundles. 

4. Methodological challenges and improvements of tractography 
Since its inception, tractography has faced several challenges that have limited its potential 

for the study of white matter bundles and their characteristics. The biggest challenge for 

tractography is that of complex fiber architectures (e.g., crossing, fanning, bending, or kissing 

fibers) which the diffusion tensor imaging (DTI) model fails to properly represent. Other 

limitations and challenges include false negatives (streamlines that stop in white matter and do not 

reach the grey matter), intra-rater variability in ROI approaches to tractography, and false positives 

(i.e., streamlines that are not anatomically plausible) (Rheault, Poulin, at al., 2020). Solutions have 

been developed to try and remedy these limitations and biases. In what follows, each limitation or 

challenge of tractography and the corresponding solution that has been developed by the field will 

be introduced. 
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4.1. Challenge 1: Complex fiber architectures 
DTI was the first approach to model the diffusion of water molecules in white matter. It has 

been tremendously influential (Reuter & Fischl, 2011), to the point that it is often used to refer to 

the diffusion MRI imaging modality as a whole. In this approach, the diffusion process is modeled 

using an object called the tensor with three eigenvectors and three eigenvalues describing its 

diffusion properties (Descoteaux, 2015). The FA, MD, RD, and AD metrics are derived from these 

eigenvalues. However, the tensor can only represent one fiber population per voxel, while up to 

90% of voxels in the white matter contain a complex fiber configuration, namely kissing, crossing, 

fanning, bending, or twisting fibers (see Figure 2) (Descoteaux & Deriche, 2008; Jeurissen et al., 

2014). Thus, DTI-based tractography is limited in white matter areas with a complex architecture 

which happen to represent a majority of white matter voxels.  Because it assumes a single main 

fiber orientation per voxel (when in fact there are many), DTI often yields invalid streamlines and 

fails to reconstruct anatomically valid streamlines or entire portions of white matter pathways 

(Farquharson & Tournier, 2016; Farquharson et al., 2013; Jeurissen et al., 2013; Pierpaoli et al., 

2001). This has come to be known as the crossing fiber problem which refers to any type of 

complex fiber configuration (Descoteaux, 2015).  
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Figure 2.  Illustration of the diffusion tensor’s (DT) and the fODF’s representations of different 

fiber configurations.  

The left column illustrates different fiber configurations in the white matter. The third column 

illustrates the DT’s representation of these configurations. As can be seen, the DT only models the 

principal direction and is not able to define it in a case of complete fiber crossing (last row). By 

contrast, the fODF is better able to model these complex configurations (Seunarine & Alexander, 

2014). Reprinted from Diffusion MRI: From Quantitative Measurement to In-vivo Neuroanatomy, 

2nd Edition, Seunarine, K. K. and Alexander, D. C., Multiple fibers: Beyond the diffusion tensor, 

Page 106, Copyright (2014), with permission from Elsevier. 

4.2. Solution 1: HARDI-based tractography 
High angular resolution diffusion imaging (HARDI) was introduced to remedy the crossing 

fiber problem. There exist a variety of HARDI-based approaches, known as higher-order models, 

that model the diffusion process (Mori & Tournier, 2014). These include q-ball imaging, 

Composite Hindred and restricted ModEl of Diffusion (CHARMED), and diffusion kurtosis 

imaging (DKI) (Descoteaux, 2015). However, such approaches require multi-shell DWI data (i.e., 

several b-values in the MRI acquisition), which involve a very time-consuming acquisition and are 
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therefore unsuitable for clinical contexts. The most commonly used HARDI-based approach is 

constrained spherical deconvolution (CSD) which is based on a single-shell acquisition and models 

the diffusion process by means of an object known as the fiber orientation density function (fODF). 

The fODF represents an estimation of the distribution of fiber orientations in a voxel (Tournier et 

al., 2004). Thus, CSD-tractography is able to better account for complex fiber configurations in 

white matter than DTI-tractography (see Figure 2), though it does not solve the crossing fiber 

problem completely (Côté et al., 2013; Descoteaux, 2015).  

CSD-tracking has been shown to yield more anatomically valid and plausible 

reconstructions of white matter bundles than DTI and to successfully reconstruct many pathways 

with complex fiber configurations (Behrens et al., 2007; Catani & Forkel, 2019; Dell’Acqua & 

Tournier, 2019; Farquharson & Tournier, 2016; Farquharson et al., 2013; Jeurissen et al., 2017; 

Jeurissen et al., 2011; Tournier, Calamante, & Connelly, 2012). For example, probabilistic CSD-

tractography has been found to successfully reconstruct the anatomically valid fan-shaped 

configuration of the sensorimotor white matter pathways, while DTI-tractography (both 

deterministic and probabilistic) failed to reconstruct the lateral projections of the same pathways 

(Farquharson et al., 2013). Others have shown that DTI fails to correctly reconstruct the lateral 

projections of the corpus callosum which cross more dense and dominant streamlines from the 

corticospinal tract, while CSD-tractography successfully reconstructed these projections 

(Dell’Acqua & Tournier, 2019).  

CSD-tractography can be leveraged to extract measures about the underlying fiber 

architecture, such as the number of fiber orientations (NuFO) which is a HARDI-specific measure 

based on the number of local maxima of the fiber orientation distribution (Dell’Acqua et al., 2013). 

The macrostructural measures of bundle volume and MLS are not specific to HARDI or DTI but 
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may be potentially affected by the approach used for tractography (for example, white matter 

bundles reconstructed by CSD-tractography have been shown to have a larger volume than when 

the reconstruction was done using DTI-tractography, Kristo et al., 2013).  

4.3. Challenge 2: False negatives 
One of the main challenges of tractography are false negatives, namely streamlines that are 

not reconstructed or stop abruptly in the white matter. False negatives are due to a variety of reasons 

which are sources of uncertainty, such as a complex fiber architecture (Behrens et al., 2007; 

Jeurissen et al., 2011), choice of tracking algorithm (i.e. probabilistic or deterministic) (Mori & 

Tournier, 2014; Tournier, Calamante, & Connelly, 2012), or even noise, which is inherent to 

diffusion imaging (Mori & Tournier, 2014). These sources of uncertainty can compound the 

difficulty of tracking bundles with a curved shape, such as the uncinate fasciculus (UF) (Girard et 

al., 2014). 

4.4. Solution 2: Probabilistic tractography 
Because HARDI-based tractography performs better than DTI tractography in areas with a 

complex fiber architecture, it helps to reduce the false negatives problem. However, as mentioned 

above, the choice of tracking algorithm (deterministic or probabilistic) also plays a role in this 

regard. Deterministic tractography uses the peak orientation of the ODF to carry out tracking, 

which does not take into account the uncertainty in fiber orientations, thereby leading to false 

negatives (Smith et al., 2012). Probabilistic tractography was introduced to reduce the rate of false 

negatives, as this approach accounts for the uncertainty in diffusion data by sampling different fiber 

orientations from the fODF (Mori & Tournier, 2014). CSD-based probabilistic tractography has 

been found to outperform CSD-based deterministic tracking (Descoteaux et al., 2009).  
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4.5. Challenge 3: False positives 
The combination of CSD-based tractography with probabilistic tracking has several 

advantages, as previously mentioned, but comes at the price of an increased number of false 

positives. These are invalid, not anatomically plausible connections. False positives are an inherent 

issue of tractography, but their rate increases with the use of HARDI-based models and 

probabilistic tracking (as compared to DTI-based models and deterministic tracking). 

4.6. Solution 3: Anatomically constrained tracking and tract-filtering 
A number of methodological advances have been made to help address the false positives 

problem. These include anatomically constrained tracking (ACT) (Smith et al., 2012), tract-

filtering, and the use of a-priori anatomical knowledge to guide the reconstruction process. ACT 

leverages the high resolution segmented T1-weighted image to guide the tractography. It does so 

by using anatomical priors, namely the classification of different tissue types (cortical, subcortical 

grey matter, white matter, and cerebrospinal fluid) to set criteria for the termination of streamlines 

and their inclusion or exclusion based on biological plausibility (Smith et al., 2012). These criteria 

include terminating and accepting a streamline that enters cortical grey matter or rejecting a 

streamline that terminates in white matter or the cerebrospinal fluid (Rheault, Poulin, et al., 2020). 

Tract-filtering algorithms remove streamlines that are considered to be outliers (i.e. implausible 

connections resulting from tractography biases) from the tractogram (i.e., the set of reconstructed 

white matter streamlines in the whole brain). These algorithms use different criteria, such as 

biological plausibility based on anatomical priors (as in ACT) or length of streamlines (Girard et 

al., 2014; Smith et al., 2013). Tract-filtering is carried out after the tractogram is constructed (i.e., 

after ACT has been applied) and therefore adds another level of tractography-bias reduction. While 

these approaches may not completely eliminate false positives, they significantly reduce them.  
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4.7. Challenge 4: Inter- and intra-rater variability of ROI approaches to 

tractography 
To reconstruct or extract bundles from the tractogram, manual approaches have for a long 

time been the method of choice. These approaches mainly consist in manually delineating one or 

two regions of interest (ROIs) to seed the bundles of interest. However, this approach is highly 

dependent on the expert neuroanatomical knowledge of the experimenter or rater and is inevitably 

biased by inter- and intra-rater variability (Rheault, Poulin, et al., 2020). Thus, the reconstruction 

of a given bundle may vary not only from one subject to another, but also from one testing timepoint 

to another, as well as between raters (so-called virtual dissections are often carried out by more 

than one single rater given their time-consuming nature) (Rheault, De Benedictis, et al., 2020). 

4.8. Solution 4: Semi-automatic approaches 
Automatic or semi-automatic approaches to bundle segmentation have been introduced in 

recent years. One of the most intuitive and user-friendly is the White Matter Query Language 

(WMQL) which can be implemented in the software package TractQuerier (Wassermann et al., 

2016). This approach eschews the inter- and intra-rater reliability issue of the manual ROI 

placement approach. Indeed, WMQL allows the extraction of bundles from the tractogram by using 

commands describing the bundle of interest in anatomical definitions based on existing atlases of 

white matter. This method is dependent on the quality of the grey and white matter parcellation 

carried out on the T1-weighted image, since it relies on it for the anatomical definitions. It also 

requires some fine-tuning of the definitions but once they are written up, the same queries will be 

used for all subjects. In other words, the by-default commands developed by Wasserman et al. 

(2016) may be modified by the user by following an Atlas of white matter pathways such as Catani 

& Thiebaut de Schotten's (2012) to ensure that the reconstruction is based on valid prior anatomical 

knowledge of the bundles. Using one subject as a reference, one may then add inclusion and 
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exclusion cortical and subcortical regions to the command or query, then checking the results on 

all subjects, and iterating until reaching a satisfactory result (i.e. that the bundle is reconstructed in 

all subjects and that it is biologically valid based on prior anatomical knowledge of the bundle). 

The final command can then be applied to all subjects across all timepoints to reconstruct their 

bundles in a fully automatic way. 

To summarise, using a HARDI-based higher-order model such as CSD for tractography 

helps to address (at least to some extent) the crossing-fiber problem and its ensuing issues (such as 

false negatives). Using probabilistic tractography helps with the false negatives issue as well. Using 

ACT and tract-filtering remedies to some extent the challenge of false positives. And finally, using 

automatic or semi-automatic reconstruction approaches such as WMQL reduces the biases entailed 

by the conventional manual ROI-based reconstruction approach. Thus, a combination of the 

abovementioned methodological advances in a tractography pipeline allows to limit several 

shortcomings and biases of conventional tractography. However, the reliability of the 

reconstructions and the diffusion measures yielded by such a pipeline has not been assessed. 

5. Reliability of tractography 
As mentioned above, diffusion MRI is an inherently noisy process and tractography comes 

with several biases. Before using tractography and tractometry to study white matter macro- and 

microstructure in healthy and pathological populations, it is crucial to assess the stability of these 

techniques. This is important to ensure that any variations observed in white matter anatomy and 

microstructure are due to biological phenomena rather than random variations in measurement or 

reconstructions (Cousineau et al., 2017). Test-retest reliability assesses the stability of 

measurement instruments to ensure that any variation is due to true differences rather than chance 

or random factors (Multon, 2012). In other words, test-retest reliability is essential to ensure that 
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any variations we would observe in reconstructions and structural characteristics between patients 

are due to true inter-individual differences rather than random variability caused by instability at 

one or several levels of the tractography pipeline.   

Good to excellent test-retest reliability of diffusion metrics has been previously reported 

using a variety of approaches such as tract-based spatial statistics (TBSS), atlas ROI-based 

approaches and voxel-based approaches (Cole et al., 2014; Duan et al., 2015; Jovicich et al., 2014; 

Madhyastha et al., 2014; Papinutoo et al., 2013). A few studies have assessed the test-retest 

reliability of diffusion measures extracted from white matter bundles reconstructed with DTI-based 

tractography among healthy subjects (Buchanan et al., 2014; Ciccarelli et al., 2003; Danielian et 

al., 2010; Heiervang et al., 2006; Vollmar et al., 2010; Wang et al., 2012). These studies showed 

good to excellent test-retest reliability of most diffusion measures, though some showed 

inconsistent results with poor reliability for some metrics or white matter bundles. For example, 

Danielian et al. (2010) found poor reliability of AD in all studied white matter bundles, while Wang 

et al. (2012) found that FA and MD had good reliability in some bundles but poor reliability in 

others. The test-retest reliability of CSD-tractography has been previously assessed in three studies 

(Besseling et al., 2012; Cousineau et al., 2017; Kristo et al., 2013). These studies also showed 

inconsistent results. For example, Besseling et al. (2012) found that microstructural measures of 

the arcuate fasciculus (AF) were stable while its volume showed poor reliability. Cousineau et al. 

(2017) found that the reconstruction of some white matter bundles showed good reliability while 

others did not. CSD addresses only one of tractography’s biases. Other sources of uncertainty or 

variability need to be addressed for tractography and tractometry to be stable by leveraging the 

aforementioned methodological advances (ACT, tract-filtering, probabilistic tracking, etc.). 

However, the test-retest reliability of the reconstructions and diffusion measures yielded by such a 
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tractography pipeline has not yet been assessed. Additionally, the only language bundle included 

in previous CSD-tractography reliability studies was the AF and the test-retest reliability of its 

reconstruction and characteristics was inconsistent.  

6. The dual-stream language network 

6.1. A brief history 
The Wernicke-Lichtheim-Geschwind classic model (illustrated in Figure 3), the first model 

of language organization in the brain, dates back to the late 19th century and emerged from the 

pioneering work of surgeon Paul Broca (1861), who identified the posterior two thirds of the 

inferior frontal gyrus (IFG) as the neural correlate of language production, and neurologist Carl 

Wernicke (1874), who identified the superior temporal gyrus (STG) as the region supporting 

language comprehension (Catani & Budisavljevic, 2014). The model was first described by 

Wernicke then later refined and illustrated by Lichtheim in the late 19th century, and finally revised 

in the late 20th century by the neurologist Geschwind with the inclusion of the AF which had been 

described and studied earlier by neuroanatomists such as Constantin von Monakow and Déjèrine 

(Dick & Tremblay, 2012; Tremblay & Dick, 2016). The classic model consisted of two main 

cortical areas, at the time referred to as Broca’s (IFG) and Wernicke’s (posterior STG) areas 

connected by a large bundle of fibers known as the AF (Tremblay & Dick, 2016). In this 

framework, the only role ascribed to the AF was that of verbal repetition. This came mainly from 

lesion studies with stroke patients who presented with conduction aphasia (i.e., repetition 

impairments) following a lesion to their AF (Dick & Tremblay, 2012).  
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Figure 3.  Illustration of the classic model of language organization in the brain.  

On the left, the original model by Wernicke in 1874 and on the left, Geschwind’s later version of 

the classic model with Broca and Wernicke’s areas and the AF connecting them (Tremblay & Dick, 

2016). Reprinted from Brain & Language, Vol. 162, Tremblay and Dick, Broca and Wernicke are 

dead, or moving past the classic model of language neurobiology, Page 62, Copyright (2016), with 

permission from Elsevier. 

Advances in neuroimaging have led to a departure from the classic model and the rise of 

the dual-stream framework for language (Dick et al., 2014; Hickok & Poeppel, 2007). Drawing on 

an analogy with the dual-stream model of visual processing (Ungerleider & Haxby, 1994), the dual 

stream model by Hickok and Poeppel (2000, 2004, 2007) identified a functionally-specified 

language network of speech perception. In this network, a dorsal stream maps speech sounds to 

articulation and a ventral stream maps sound to meaning. This model was mainly a proposal for a 

neurofunctional basis of speech perception (and, to a limited extent, speech production). It also did 

not include a specification of the structural connectivity supporting this network. In other words, 

there was no description of white matter connectivity in this model (since it was largely supported 

by evidence from the functional MRI literature).   

Shortly thereafter, a series of studies and theoretical proposals sought to determine the 

neuroanatomical basis of Hickok and Poeppel’s (2007) dual-stream model by identifying the 

association white matter pathways connecting the previously identified dorsal and ventral cortical 

areas. These proposals extended the dual-stream model of speech perception to other language 
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domains and functions, such as syntactic processing (Friederici et al., 2006), and object naming 

(Duffau et al., 2014). Most of this work converges on the following dual-stream architecture (see 

Figure 4 for an illustration): the AF is the direct white matter pathway anchoring the dorsal stream. 

It connects the left IFG (pars triangularis and pars opercularis) and the left posterior STG, as well 

as the middle and inferior temporal gyrus (Dick et al., 2014). The ventral stream is anchored by  

direct and indirect pathways (Duffau et al., 2014). The direct pathway is constituted by the inferior 

fronto-occipital fasciculus (IFOF), putatively connecting the occipital, parietal, temporal, and 

ventrolateral frontal cortex. The indirect pathway is constituted by the inferior longitudinal 

fasciculus (ILF) connecting the occipital and temporal lobes, and the uncinate fasciculus (UF) 

connecting the anterior temporal lobe to the orbitofrontal cortex. According to the dual-stream 

framework of language, the ventral stream is bilateral, while the dorsal stream is left-dominant 

(Hickok & Poeppel, 2007), though a role for the right AF in prosody has also been suggested 

(Glasser & Rilling, 2008).  

A few other white matter bundles have also been suggested to play a role in language. These 

include the three components of the superior longitudinal fasciculus (SLF I, II, III), the middle 

longitudinal fasciculus (MdlF) and the extreme capsule (EmC), as well as, more recently, the 

frontal aslant tract (FAT) (Catani et al., 2013). However, these white matter bundles are 

anatomically ill-defined and their existence in the human brain remains controversial. For example, 

the EmC is a large structure of white matter fibers which has been identified in non-human 

primates. In humans, the EmC has been found to correspond to the IFOF (which exists in humans 

but not in macaques), and to include fibers from the UF (Thiebaut de Schotten et al., 2012). 

Similarly, the MdlF has been identified in the macaque but its existence in the human brain is 

controversial (Dick et al., 2014). As for the FAT, it has mainly been identified in a few tractography 
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studies and its anatomical terminations and trajectory remain highly underspecified. Additionally, 

the functional role of these secondary bundles in language remains underspecified and 

controversial. Thus, to date, the major and most studied white matter bundles of language are the 

AF, IFOF, ILF, and UF. 

 

Figure 4.  An illustration of the major dorsal and ventral white matter bundles of the dual-stream 

framework of language organization in the brain.  

Purple: the AF; Red: the IFOF; Blue: the ILF; Green: the UF. 

Different roles have been ascribed to the major dorsal and ventral white matter language 

fiber bundles. The AF has been suggested to be involved in phonological processing (Duffau, 

2016), as well as in syntactic processing, more specifically in the production and comprehension 

of complex sentences (Catani & Bambini, 2014; Friederici & Gierhan, 2013). The IFOF is 

considered to be the main direct ventral pathway essential for semantic processing, as well as 

language comprehension (Duffau et al., 2014; Friederici & Gierhan, 2013). The ILF and the UF 

have also been suggested to play a role in semantic and lexical processing (Catani & Bambini, 

2014; Duffau et al., 2014). The ILF has also been suggested to play a role in visual-orthographic 

processing (Dick et al., 2014). In addition to its proposed role in lexical and semantic processing, 

the UF has also been suggested to play a role in syntactic processing (Friederici, 2011; Friederici 

et al., 2006). 
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6.2. The dual-stream framework of syntax 
The dual-stream framework of syntax has identified the left AF as the dorsal pathway which 

would play a role in global syntactic processes, such as processing complex sentences (Friederici 

et al., 2006; Zaccarella & Friederici, 2015).  In the ventral stream, the UF would be involved in 

local processes, such as basic structure building (i.e., the hierarchical ordering of words and phrases 

to build basic syntactic structures like phrases or simple sentences, such as the integration of a verb 

with its arguments), and combinatory processes (such as assigning thematic roles that the verb 

requires to each argument) (Friederici et al., 2006; Zaccarella & Friederici, 2015).  

7. The contribution of white matter to outcome in post-stroke aphasia 
The emergence of the dual-stream framework of language organization in the brain has led 

to a reconsideration of the role of the AF in language impairments, namely that its damage may 

contribute to a variety of language functions and not just to repetition impairments as previously 

believed in the context of the classic language model. Additionally, it has motivated the study of 

the contribution of other major white matter language bundles in language impairments post-stroke. 

Thus, the role of white matter language bundles’ damage and their structural characteristics to 

language outcomes in post-stroke aphasia has seen increasing interest in recent years. Previous 

studies have found that the lesion load of the AF (an indirect measure of damage that represents 

the degree of overlap between a lesion and a white matter bundle) in the chronic phase predicts 

chronic language abilities, such as naming, speech fluency, comprehension and repetition (Geva et 

al., 2015; Marchina et al., 2011). Others have found that diffusion measures (FA, AD, MD, RD, or 

bundle volume) of different dorsal and ventral language bundles in the chronic phase correlate with 

aphasia outcome or different language functions, such as word and sentence comprehension, 

naming, and sentence construction (Ivanova et al., 2016; Xing et al., 2017; Jang & Tak, 2014). 
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However, most of these studies focused on white matter damage or structural characteristics in the 

chronic phase.  

A few studies have investigated whether white matter characteristics of the left AF a few 

days after the stroke predict language outcome in the chronic phase. One study has reported that 

the AF’s lesion load in the acute phase predicted naming outcome in the chronic phase (Hillis et 

al., 2018). Another has shown that no diffusion measure in the left AF predicted general language 

outcome in the chronic phase (Forkel et al., 2014). However, none of these studies have looked 

into early predictors of syntactic abilities in connected speech.  

8. The dorsal and ventral structural basis of syntax during language 

production in aphasia 
Only a handful of studies in post-stroke aphasia have investigated the structural 

determinants of syntax in language production. These studies have shed some light on the dorsal 

and ventral structural determinants of syntax in language production. Using voxel-based lesion 

symptom mapping (VLSM), Henseler et al. (2014) investigated the structural correlates of several 

dimensions of connected speech (assessed using a semi-standardized interview), including 

syntactic structure in a group of chronic post-stroke aphasia patients. This study found that 

syntactic structure, assessed using a single general measure that encompassed correctness of 

grammar and syntactic complexity, was correlated with lesions to the posterior and middle STG. 

In another VLSM study, Faroqi-Shah et al. (2014) found that production of sentences of different 

levels of complexity (assessed by pictures that elicit different types of syntactic structures, such as 

passives, actives, and object-relatives which include embedded clauses) was related to dorsal 

cortical lesions primarily in the IFG, as well as in the STG and supramarginal gyrus. 
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A few VLSM studies investigating verb naming (the first building block of syntactic 

structure) in chronic post-stroke aphasia patients, found that verb naming (assessed using an 

experimental picture naming task where participants were asked to name actions or objects) was 

related to lesions in dorsal and ventral frontal cortical regions, such as the left IFG (Akinina et al., 

2019; Alyahya et al., 2018; Piras & Marangolo, 2007), orbitofrontal cortex (Alyahya et al., 2018; 

Piras & Marangolo, 2007), the precentral gyrus (Akinina et al., 2019; Alyahya et al., 2018), and 

other frontal regions. Verb naming was also related to dorsal and ventral temporal cortical regions, 

including the left posterior middle and inferior temporal gyri, the anterior middle temporal gyrus, 

the temporal fusiform cortex, planum polare, the temporal pole (Alyahya et al., 2018), as well as 

the left anterior temporal lobe and the STG (Marangolo & Piras, 2010). Akinina et al. (2019) found 

that their VLSM map for verb naming (assessed using an experimental picture naming task) in a 

group of patients with chronic post-stroke aphasia intersected with an out-of-sample probabilistic 

map of several dorsal and ventral association white matter bundles (left AF, UF, IFOF, SLF, FAT, 

frontal orbito-polar, frontal inferior longitudinal tracts, and fronto-insular tract 4). 

Little is known about the white matter correlates of syntax in language production in post-

stroke aphasia. Den Ouden et al. (2019) recently investigated the chronic structural (grey and white 

matter) predictors of syntactic impairments in language production in chronic post-stroke aphasia. 

This study used VLSM to assess grey matter damage and a connectome approach which assessed 

white matter connectivity between pairs of cortical regions of interest. The whole-brain 

connectome was reconstructed using DTI-based probabilistic tractography. Syntactic impairments 

were assessed using the NAVS battery (Cho-Reyes & Thompson, 2012). This study found that 

patients with low NAVS scores were characterized by damage to the medial posterior STG and by 

reduced connectivity in the dorsal in ventral streams. The verb-argument structure production test 
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scores were associated with damage to a middle to posterior region of the STG and to the angular 

gyrus (a grey matter region which lies at the intersection between the dorsal and ventral stream). 

Additionally, the production of verbs with a complex argument structure (i.e., verbs that require 

three arguments) was related to dorsoventral white matter connectivity between the middle 

temporal gyrus and the insula. The results of this study have indicated that syntax in language 

production, and particularly verb-argument structure, in chronic post-stroke aphasia relies on both 

dorsal and ventral grey and white matter regions. In a DTI-tractography study carried out in the 

chronic phase post-stroke, Ivanova et al. (2016) investigated the relationship between the 

microstructural characteristics (FA, MD, AD, RD) of several white matter bundles (AF, UF, ILF, 

IFOF, corticospinal tract, and corpus callosum) and language functions such as picture naming, 

word and sentence comprehension, and sentence complexity. The latter was assessed using a 

sentence construction test where participants had to produce sentences of increasing complexity 

elicited by pictures of actions. Only the FA of the left AF was related to scores on the sentence 

construction test. These findings highlighted the role of the left AF in structural sentence 

complexity.  

Some evidence regarding the structural correlates of syntax in language production also 

comes from a handful of studies in the primary progressive aphasia (PPA) literature. The 

production of syntactically complex sentences (i.e., sentences constituted of two or more clauses) 

in PPA patients has been found to be related to atrophy in the left IFG and prefrontal cortex, located 

in the dorsal stream (Gunawardena et al., 2010; Wilson et al., 2010). One study has also found that 

the left AF’s FA is related to impaired syntax in language production (rated on a 7-point scale by 

a speech-language pathologist) in a group of PPA patients (Wilson et al., 2011). However, the 

specific role of white matter language bundles in syntax remains, in large part, a pending question. 
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The handful of studies carried out on the subject have mainly focused on sentence complexity or a 

general assessment of syntax in production. Measures that reflect local structure building (e.g., 

verb-argument structure) have not been investigated in these studies (except for den Ouden et al., 

2019 who did not use bundle-specific analyses). As a result, the role of the left UF in local structure 

building proposed by Friederici et al. (2006) remains to be fully elucidated.  

9. Objectives and hypotheses 

9.1. Article 1 

9.1.1. Objective 

The aim of the first article is to assess the test-retest reliability of the reconstruction as well 

as the micro- and macrostructural characteristics (FA, MD, RD, AD which are tensor-based 

measures, NuFO which is a HARDI-based measure, as well as bundle volume and MLS) of the left 

and right AF, UF, IFOF, ILF reconstructed using a state-of-the-art probabilistic CSD-tractography 

pipeline in a sample of older healthy individuals. 

9.1.2. Hypotheses 

We expect the reconstruction of the left and right AF, UF, IFOF, and ILF to show good 

morphological overlap between the first and second scanning occasions (one week apart). We also 

expect micro- and macro-structural diffusion measures (i.e., FA, MD, RD, AD, NuFO, volume, 

and MLS) extracted from the four major white matter bundles (in the left and right hemispheres) 

to show good to excellent test-retest reliability. 
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9.2. Article 2 

9.2.1. Objective 

The aim of the second article is to determine whether and which  of the structural 

characteristics (FA, a widely used measure of anisotropy, Beaulieu, 2002; AD, the diffusivity 

measure which has been shown to be particularly sensitive to axonal damage in the acute phase 

post-stroke, Moulton et al., 2019; and bundle volume) of the left AF and UF reconstructed in the 

acute phase using our state-of-the-art probabilistic CSD-based tractography pipeline predict the 

production of verbs, sentences, as well as sentence and verb-argument structure complexity in the 

connected speech of chronic post-stroke aphasia patients. Additionally, given the fact that the 

lesion load of white matter bundles has been previously identified as a predictor of outcome in 

chronic post-stroke aphasia (Geva et al., 2015; Hillis et al., 2018; Marchina et al., 2011; Xing et 

al., 2017), we aimed to determine whether it would predict syntactic abilities in chronic post-stroke 

aphasia.  

9.2.2. Hypotheses 

We expect the structural characteristics of the left AF and the UF to predict the production 

of verbs and verb-argument structure complexity, since previous studies support the involvement 

of dorsal and ventral structures in verb production (e.g., Akinina et al., 2019; den Ouden et al., 

2019) and that a role for the UF in local syntactic processing, such as verb-argument structure, has 

been postulated (Friederici et al., 2006). We also expect the production of grammatically well-

formed sentences to be predicted by the structural characteristics of both the left AF and UF, since 

the production of sentences involves both global and local syntactic processes which have been 

postulated to be supported by the dorsal and ventral pathways, respectively (Friederici et al., 2006). 

Finally, we expect sentence complexity to be predicted by the left AF, since previous studies 
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indicate that the production of complex sentences is supported by the dorsal stream (Gunawardena 

et al., 2010; Wilson et al., 2010). 
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Abstract 

High angular resolution diffusion imaging (HARDI)-based tractography has been increasingly 

used in longitudinal studies on white matter macro- and micro-structural changes in the language 

network during language acquisition and in language impairments. However, test-retest reliability 

measurements are essential to ascertain that the longitudinal variations observed are not related to 

data processing. The aims of this study were to determine the reproducibility of the reconstruction 

of major white matter fiber bundles of the language network using anatomically-constrained 

probabilistic tractography with constrained spherical deconvolution based on HARDI data, as well 

as to assess the test-retest reliability of diffusion measures extracted along them. Eighteen right-

handed participants were scanned twice, one week apart. The arcuate, inferior longitudinal, inferior 

fronto-occipital, and uncinate fasciculi were reconstructed in the left and right hemispheres and the 

following diffusion measures were extracted along each tract: fractional anisotropy, mean, axial, 

and radial diffusivity, number of fiber orientations, mean length of streamlines, and volume. All 

fiber bundles showed good morphological overlap between the two scanning timepoints and the 

test-retest reliability of all diffusion measures in most fiber bundles was good to excellent. We thus 

propose a fairly simple, but robust, HARDI-based tractography pipeline reliable for the 

longitudinal study of white matter language fiber bundles, which increases its potential 

applicability to research on the neurobiological mechanisms supporting language. 
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1. Introduction 
The characterization of the brain and language network and its development, disruption, 

and changes over time represents one of the central themes of cognitive neuroscience. Diffusion 

magnetic resonance imaging (dMRI)-based tractography has been proven to be a valuable tool for 

the in vivo identification of white matter (WM) fiber bundles involved in language and the 

extraction of measures of their micro- and macro-structural characteristics. However, the ability of 

this tool to reproduce the same language fiber bundles’ morphology and micro- and macro-

structural characteristic measurements when dMRI data is acquired twice from the same participant 

under the same conditions (i.e. test-retest reliability), has yet to be clearly demonstrated. In fact, 

while test-retest reliability has already been reported for other neuroimaging techniques that are 

usually employed in evaluating longitudinal changes in the language brain network (such as resting 

state and task-based functional MRI, voxel-based morphometry, and cortical thickness; e.g. Birn 

et al., 2013; Braun et al., 2012; Jovicich et al., 2009; Lin et al., 2015; Madan & Kensinger, 2017; 

Powers et al., 2013; Seiger et al., 2015; Wang, Jin, Zhang, & Wang, 2016; Zhang et al., 2011; 

Zhang, Chen, Zhang, & Shen, 2017), test-retest reliability of dMRI-based tractography has 

received comparatively less attention. This represents a first necessary step to validate the use of 

this approach in longitudinal studies on language. 

It is increasingly accepted that WM associative fiber bundles play a crucial role in mediating 

the transfer of information among specialized language brain areas, distributed along two main 

processing streams, namely the dorsal and ventral streams (Dick et al., 2014; Hickok & Poeppel, 

2000, 2007; Poeppel, Emmorey, Hickok, & Pylkkänen, 2012; Saur et al., 2008). The central and 

most widely studied WM fiber bundle of the dorsal stream is the arcuate fasciculus (AF), putatively 

connecting Broca’s and Wernicke’s territories (Catani & Thiebaut de Schotten, 2012). The AF has 
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been suggested to play a central role in the processing of phonological information and complex 

syntax in both language production and comprehension (Brauer, Anwander, & Friederici, 2011; 

Brauer, Anwander, Perani, & Friederici, 2013; Duffau et al., 2002; Duffau, Gatignol, Denvil, 

Lopes, & Capelle, 2003; Friederici et al., 2006; Wilson et al., 2011). The major fiber bundles of 

the ventral stream are the inferior longitudinal fasciculus (ILF), the inferior fronto-occipital 

fasciculus (IFOF), and the uncinate fasciculus (UF). Their specific contribution to language 

processing is still a matter of debate. Both the ILF and IFOF are bundles of long association fibers 

originating in the occipital lobe (Dick et al., 2014). The ILF connects occipital and temporal lobes, 

while the IFOF connects the occipital and frontal lobes (Catani & Thiebaut de Schotten, 2008; Dick 

et al., 2014; Thiebaut de Schotten, Dell’Acqua, Valabregue, & Catani, 2012). Both of these bundles 

have been suggested to play a key role in semantic processing, more specifically in reading and 

naming (Duffau, 2008; Duffau et al., 2005, 2014; Gil-Robles et al., 2013; Han et al., 2013; Turken 

& Dronkers, 2011). The UF is a long-range association fiber bundle connecting the anterior 

temporal lobe with the orbital and polar frontal cortex (Thiebaut de Schotten et al., 2012). While 

the role of this bundle in language is still controversial, it has been suggested to support semantic 

retrieval (Catani & Mesulam, 2008; Grossman et al., 2004; Lu et al., 2002) and simple syntactic 

operations (e.g. processing of phrases) (Friederici et al., 2006).  

The use of advanced probabilistic fiber  tracking based on high angular resolution diffusion 

imaging (HARDI) has proven to be particularly suitable for the reconstruction of fiber bundles with 

complex configurations (i.e., crossing, kissing, or fanning fibers), such as language-related fiber 

bundles (Alexander, Barker, & Arridge, 2002; Descoteaux, 2015; Farquharson & Tournier, 2016; 

Jeurissen, Descoteaux, Mori, & Leemans, 2017; Maier-Hein et al., 2017; Tournier, Masterton, & 

Seitz, 2012; Tuch et al., 2002). Up until recently, diffusion tensor imaging (DTI) tractography 
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based on dMRI data has been considered a standard tool for the in vivo reconstruction of fiber 

bundles. However, it has been demonstrated that DTI fails to adequately represent the complex 

architecture of WM fibers in the brain (Alexander, Lee, Lazar, & Field, 2007; Behrens, Berg, 

Jbabdi, Rushworth, & Woolrich, 2007; Descoteaux, 2015; Descoteaux, Angelino, Fitzgibbons, & 

Deriche, 2007; Descoteaux, Deriche, Knösche, & Anwander, 2009; Frank, 2001; Jeurissen, 

Leemans, Tournier, Jones, & Sijbers, 2010; Prckovska, Descoteaux, Poupon, ter Haar Romeny, & 

Vilanova, 2012). Standard DTI analysis can represent only one fiber population per voxel, whereas 

about 66% to 90% of voxels contain a complex fiber configuration (Descoteaux & Deriche, 2008; 

Jeurissen et al., 2010, 2014). HARDI has been introduced to mitigate some of DTI’s limitations in 

WM areas with a complex geometry (Alexander et al., 2002; Descoteaux, 2015; Farquharson & 

Tournier, 2016; Tournier et al., 2012a; Tuch et al., 2002). HARDI measures the diffusion signal 

along 60 or more gradient directions taken on the sphere in q-space (Descoteaux, 2015). HARDI-

based reconstruction techniques such as constrained spherical deconvolution (CSD) aim to estimate 

the distribution of different fiber orientations within a voxel using a mathematical object known as 

the fiber orientation distribution function (fODF) (Seunarine & Alexander, 2014b). As opposed to 

the tensor, the fODF allows the estimation of more than one fiber population per voxel, which 

allows better characterization of WM in regions with a complex architecture (Côté et al., 2013; 

Descoteaux, 2015).  

The combination of micro- and macro-structural measures allows a more comprehensive 

analysis of WM fiber bundle characteristics. Microstructural properties of bundles reconstructed 

with tractography are usually inferred from the extraction of different scalar metrics, such as 

fractional anisotropy (FA), mean diffusivity (MD), radial diffusivity (RD), and axial diffusivity 

(AD). These measures are sensitive to different fiber properties such as axonal ordering, 
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myelinization, and density (Jones, Knösche, & Turner, 2013). Although the specific interpretation 

of these measures is still a matter of debate, they are routinely used in both fundamental and clinical 

neuroscience studies to provide insights into WM fiber bundles’ profile (Tournier et al., 2012b). 

The development of CSD based on HARDI data allows the estimation of the number of fiber 

orientations (NuFO) using the number of local maxima of the fiber orientation distribution (FOD) 

(Dell’Acqua, Simmons, Williams, & Catani, 2013). NuFO indicates the number of distinct fiber 

orientations in each voxel, thus providing valuable information on WM complexity. Interestingly, 

NuFO maps are highly consistent across individuals, which could represent a sensitive marker of 

age-related changes in WM complexity among healthy populations or changes observed in clinical 

populations (Dell’Acqua et al., 2013). Macrostructural measures provide complementary 

information regarding the morphology of the bundles, which includes the volume of the fiber 

bundles and the mean length of streamlines (MLS) (Girard, Whittingstall, Deriche, & Descoteaux, 

2014).  

While there is growing interest in the use of tractography and tractometry in longitudinal 

studies to investigate language-related fiber bundles’ changes over time (e.g., Forkel et al. 2014; 

Lam et al. 2014; Mandelli et al. 2016; Takeuchi et al. 2016; Asaridou et al. 2017; Chow and Chang 

2017), the test-retest reliability of HARDI-based tractography and tractometry for language-related 

fiber bundles has yet to be demonstrated. Test-retest reliability refers to the reproducibility of a 

measure repeated twice for the same participant (Berchtold, 2016). In order for an instrument to be 

used to detect a change, it has to be able to distinguish between a real change in individuals and a 

random variation due to the measurement instrument itself (Guyatt, Walter, & Norman, 1987). This 

entails that one of the most crucial aspects to look at when assessing the reliability of a method for 

longitudinal designs is the test-retest reliability of measurement instruments (Berchtold, 2016). To 
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date, most studies have not integrated reproducibility assessment of their diffusion measures and 

fiber bundles. This is a critical issue because different factors may affect intra-subject 

reproducibility such as imaging acquisition parameters (e.g.  Bisdas, Bohning, Besenski, Nicholas, 

& Rumboldt, 2008; Gao, Zhu, & Lin, 2009; Jones, 2004), tractography pipelines (Cousineau et al., 

2017; Kristo et al., 2013; Wang, Abdi, Bakhadirov, Diaz-arrastia, & Devous, 2012), and subject 

physiological noise (e.g. Farrell et al., 2007; Pfefferbaum, Adalsteinsson, & Sullivan, 2003). 

Previous studies have provided evidence of good to excellent test-retest reliability for other 

methods of analysis of dMRI data, such as tract-based spatial statistics (TBSS), region-of-interest 

(ROI)-based approaches, and DTI-tractography (Ciccarelli et al., 2003; Cole et al., 2014; Danielian, 

Iwata, Thomasson, & Kay, 2010; Heiervang, Behrens, Mackay, Robson, & Johansen-Berg, 2006; 

Magnotta et al., 2012; Vollmar et al., 2010; Wang et al., 2012). However, the test-retest reliability 

of HARDI-tractography and tractometry has received less attention. Promising evidence of test-

retest reliability of this approach comes from the work of Cousineau et al. (2017), Besseling et al. 

(2012), and Kristo et al. (2013). These studies have demonstrated the overlap of WM fiber bundles 

reconstructed by means of HARDI-based tractography and the reproducibility of their micro- and 

macro-structural measures, based on dMRI data obtained from healthy subjects in separate MRI 

acquisition sessions. Even though these studies were crucial in determining the potential of this 

approach in longitudinal studies, the only language-related bundle included in all of them is the AF 

which yielded conflicting results. Thus, the test-retest reliability of HARDI-tractography and 

tractometry in the main language-related fiber bundles remains to be validated.       

In order to fill this gap, the aim of the present study is to assess test-retest reliability of the 

reconstruction, as well as the micro- and macro-structural characteristics of the major WM fiber 

bundles associated with language processing reconstructed using probabilistic HARDI-
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tractography. To this aim, we have collected dMRI data from a sample of healthy individuals at 

two time-points, one week apart, and reconstructed major WM fiber bundles supporting language 

functions within the left and right hemispheres (AF, ILF, IFOF, and UF). We expect that no 

measurable changes in the micro- and macro-structural characteristics of the tracts under study 

would be observed in that short time period. The test-retest reliability of the fiber bundles’ 

morphology was obtained by calculating, for each subject, the spatial overlap between each tract’s 

reconstruction at the two time-points as proposed in Cousineau et al. (2017). Additionally, macro-

structural characteristics such as volume and MLS, as well as mean microstructural measures such 

as the tensor-based metrics FA, MD, RD, AD, and the FOD-based measure NuFO (Dell’Acqua et 

al., 2013) were extracted for each bundle and their reproducibility was assessed.   

2. Methods 

2.1. Participants 
Eighteen right-handed cognitively-unimpaired participants (age: M = 64.61 y.o. ± 7.99; 

education: M = 16.16, ± 3.42 years; 9 women, 9 men) with no history of psychiatric or neurological 

conditions were scanned at two time-points, one week apart. The study was approved by the 

research ethics committee of the Centre intégré universitaire de santé et de services sociaux du 

Nord-de-l’Ile-de Montréal (Project #MP-32-2018-1478) and written informed consent was 

obtained from all participants. 

2.2. Image acquisition 
The diffusion MRI protocol was acquired using a Skyra 3T MRI scanner (Siemens 

Healthcare, USA) at the radiology department of Hôpital du Sacré-Coeur of Montreal. At each of 

the two scanning occasions participants underwent the same acquisition sequence. One high 

resolution 3D T1-weighted (T1w) image (TR = 2200 ms, TE = 2.96 ms, TI = 900 ms, FOV = 250 
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mm, voxel size = 1x1x1 mm3, matrix = 256x256, 192 slices, flip-angle = 8°) was acquired using a 

Magnetization Prepared Rapid Gradient Echo (MP-RAGE) sequence. A diffusion weighted 

imaging (DWI) sequence was also acquired (TR = 8051 ms, TE = 86 ms, FOV= 230 mm, voxel 

size = 2x2x2 mm3, flip angle = 90°, bandwidth = 1698; EPI factor = 67; 68 slices in transverse 

orientation) with one image (b = 0 s/mm²) and 64 images with non-collinear diffusion gradients 

(b=1,000 s/mm²) in a posterior-anterior (PA) acquisition, as well as two additional images (b = 0 

s/mm²): one in a PA acquisition, namely in the same direction as the diffusion gradients, and the 

other in an anterior-posterior (AP) acquisition, namely in the opposite direction of the diffusion 

gradients.   

2.3. dMRI data analysis 
All analysis steps were conducted using the Toolkit for Analysis in Diffusion MRI (TOAD) 

pipeline (http://www.unf-montreal.ca/toad). 

2.3.1. Pre-processing 

Pre-processing steps included denoising, motion/eddy/distortion corrections, upsampling, 

registration, segmentation and parcellation, and masking. First, DWI was noise-corrected using 

overcomplete local principal component analysis (PCA) using the Matlab toolbox DWI Denoising 

Software (Manjo, Concha, Buades, & Collins, 2013). The FMRIB Diffusion toolbox EDDY of 

FSL 5.0.11 (publicly available neuroimaging software: http://www.fmrib.ox.ac.uk/fsl/) (Jenkinson, 

Beckmann, Behrens, Woolrich, & Smith, 2012) was used to correct all images for subject 

movement, eddy-currents, and susceptibility-induced distortions using AP-PA images. Gradient 

directions were corrected corresponding to motion correction parameters (motion for each subject 

at each timepoint is reported in the supplementary materials). T1w images were processed with 

Freesurfer’s pipeline 6.0.0 (Dale, Fischl, & Sereno, 1999; Desikan et al., 2006) for segmentation 
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and parcellation of grey and WM into anatomical regions. DWI was upsampled to 1mm isotropic 

resolution using a trilinear interpolation (Dyrby et al., 2014;  Girard & Descoteaux, 2012; Raffelt 

et al., 2012; Smith, Tournier, Calamante, & Connelly, 2012; Tournier, Calamante, & Connelly, 

2012) and the segmented and parcellated T1w was registered to the DWI using FMRIB’s linear 

registration tool (FLIRT) from FSL. This step allowed us to carry out anatomically-constrained 

tracking (ACT) (see next section for further details). Finally, a mask image was obtained from the 

segmented T1w image and served to seed streamlines on the grey matter-white matter interface 

(Tournier et al., 2012a). 

2.3.2. Tractography 

Fiber orientation distribution functions (fODFs) were estimated using CSD. A whole-brain 

tractogram was computed using MRtrix3’s probabilistic tractography algorithm with ACT 

(https://github.com/jdtournier/) (Tournier et al., 2012a). ACT uses the T1w (i.e. the segmented 

anatomical image obtained from Freesurfer) to limit potential false-negatives (i.e. no-connections) 

and improve WM coverage in general (Girard & Descoteaux, 2012; Girard et al., 2014; Guevara 

et al., 2011; Mori & Tournier, 2014; Smith et al., 2012). The AF, ILF, IFOF, and UF were 

reconstructed from the tractogram using the White Matter Query Language (WMQL) 

(Wassermann, Makris, Rathi, Shenton, et al., 2016). WMQL is a user-friendly method to carry out 

WM bundle extraction from tractography in a nearly automatic way. It allows us to consistently 

define bundles across subjects without manually specifying regions of interest. It consists in writing 

queries with the WMQ language describing the WM bundles to be reconstructed using anatomical 

definitions from Freesurfer’s Desikan/Killiany atlas. In order to be able to extract the fiber bundles 

using the written queries, Freesurfer’s grey and WM parcellation was overlaid on the tractogram. 

The queries were then automatically interpreted by tractography tools. The queries used to 
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reconstruct the fiber bundles are presented in the supplementary materials. Outlier streamlines were 

then removed from each tract using a tract-filtering algorithm (Côté, Garyfallidis, Larochelle, & 

Descoteaux, 2015). The following diffusion and bundle measures were extracted along each fiber 

bundle for each participant: FA, MD, AD, RD, NuFO (Dell’Acqua et al., 2013), volume, and MLS. 

All tractography steps were performed in native space since non-linear normalization with 

diffusion MRI data requires local reorientations and warping which affects the gradient table at 

every voxel (bval/bvec) (Vollmar et al., 2010). Bringing the T1-w image into native diffusion space 

with linear affine registration and using the Freesurfer parcellation in this space is more robust 

(Girard, Fick, Descoteaux, Deriche, & Wassermann, 2015; Girard et al., 2014).  

2.4.  Statistical analysis 
Test-retest analyses were carried out in two steps. First, we used the weighted dice similarity 

coefficient (wDSC) to determine the degree of overlap between the reconstructed fiber bundles at 

Times 1 and 2 as in Cousineau et al. (2017). DSC is a statistical metric that ranges between 0 and 

1 and is used to assess the degree of overlap between two volumes (Dice, 1945). The wDSC is a 

variation of this metric and gives more weight to voxels with more streamlines. This is important 

to take into account considering the fact that WM bundles have more streamlines in their middle 

than in the extreme portions (Cousineau et al., 2017). In the two previous studies which used this 

measure to assess the test-retest reliability of CSD-based reconstruction of WM tracts (Cousineau 

et al., 2017; Besseling et al., 2012), the minimum value of Dice was .70. Therefore, this value was 

used as the acceptable threshold for a good wDSC in our study. The wDSC was computed using 

the following formula from Cousineau et al. (2017): 

𝐷"𝑊!	,𝑊#% = 	
Σ$!	𝑊!,$! +	Σ$!𝑊#,$!

Σ$	𝑊!,$! +	Σ$𝑊#,$
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where Wi and Wj respectively represent the bundles at Time 1 and Time 2 and v’ represents the 

voxels from the two reconstructions of the bundles (Wi and Wj) that overlap.  

To do so, T1-weighted images in diffusion space taken at Time 1 were registered linearly 

to anatomical images taken at Time 2 (i.e., seven days later) for each subject with Advanced 

Normalization Tools (ANTs), version>=2.1 (Tustison et al., 2014) (http://stnava.github.io/ANTs/). 

Transformation matrices were applied to all Time 1 bundles using TractQuerier's tract_math tool 

(Wassermann, Makris, Rathi, Shenton, et al., 2016). Once the two fiber bundles of each subject 

were in the same space, wDSCs were computed with the tractometry pipeline from the Sherbrooke 

Connectivity Imaging Lab (SCIL) http://scil.dinf.usherbrooke.ca/?lang=fr. The right UF bundle 

could not be reconstructed in one participant. Analyses were therefore conducted with a sample of 

17 participants for that bundle. 

In a second step, we combined two complementary analyses, the intra-class correlation 

coefficient (ICC) and the Bland-Altman plots to assess the test-retest reliability of each of the 

measures extracted in each reconstructed fiber bundle. The intra-class correlation coefficient (ICC) 

(McGraw & Wong, 1996; Shrout & Fleiss, 1979) is a widely used statistical approach to assess 

agreement in test-retest reliability studies in different fields, including neuroimaging (e.g., Birn et 

al., 2013; Braun et al., 2012; Duan, Zhao, He, & Shu, 2015; Duda, Cook, & Gee, 2014; Zhang et 

al., 2011). The ICC is calculated from an analysis of variance and can be broadly defined as the 

ratio of between-subject variance to the total variance (including within-subject variance and 

residue) (Berchtold, 2016). ICC values range from 0 to 1 and can be categorized into four levels of 

test-retest reliability: excellent (ICC > .75), good (ICC = .60 to .74), fair (ICC = .40 to .59), and 

poor (ICC < .40) (Fleiss, 2003). ICC estimates and their 95% confidence intervals were calculated 
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using SPSS version 25 based on a single measurement, absolute-agreement, two-way mixed-effects 

model. The formula used for computing this ICC (McGraw & Wong, 1996) is as follows: 

𝑀𝑆& −	𝑀𝑆'

𝑀𝑆& + (𝑘 − 1)𝑀𝑆' +	
𝑘
𝑛 (𝑀𝑆( −	𝑀𝑆')

 

where MSR is the mean square for rows, MSC is the mean square of columns, MSE is the mean 

square for error, k is the number of measurements, and n is the number of subjects. 

We also created Bland & Altman plots which provide a visual assessment of the agreement 

of the two time-points (test and retest) of each measure in all four fiber bundles bilaterally (Bland 

& Altman, 1999). The created graphs are scatter plots with the Y axis representing the difference 

between the measurements at the two timepoints and the X axis representing the mean of these 

measures. Good agreement between measurements at two time-points exists if 95% of the data falls 

within ±2 standard-deviations of the mean of differences.  

3.  Results 
The degree of overlap was good for all four reconstructed fiber bundles (AF, ILF, IFOF, 

and UF, bilaterally) between Time 1 and Time 2, with wDSC values ranging between .71 and .87 

(values for each fiber bundle are reported in Table 1). Figure 1 illustrates the bundle overlap for a 

representative subject. One must note that the figure reflects the raw bundle overlap rather than the 

weighted overlap represented by the wDSC which gives more weight to voxels with more 

streamlines. 
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Figure 1.  Overlapped 3D volume representations of the reconstructed fiber bundles at the two 

scanning time-points in a representative subject.  

Please note that these do not reflect the wDSC values. Blue = time 1, red = time 2, purple indicates 

the overlap. AF = arcuate fasciculus; ILF = inferior longitudinal fasciculus, IFOF = inferior fronto-

occipital fasciculus; uncinate fasciculus; L = Left; R = Right. 

Table 1 shows the ICC estimates, their 95% confidence intervals, and p values of the 

diffusion measures of interest, namely FA, MD, RD, AD, NuFO, volume, and MLS. FA, AD, MD, 

RD, and MLS measures showed consistently good to excellent test-retest reliability (ICCs = .62 - 

.95) across all four WM fiber bundles, bilaterally. Volume showed fair reliability in the right IFOF 

and UF (ICC = .41 - .58), and good to excellent reliability in all other bundles. NuFO showed the  

lowest reliability; test-retest reliability was fair in the ILF bilaterally and good in all other bundles.  
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Table 1.  wDSC values, ICC estimates and their 95% confidence intervals for all measures and 

fiber bundles  

 
Note: AF = arcuate fasciculus; ILF = inferior longitudinal fasciculus; IFOF = inferior fronto-occipital fasciculus; UF 

= uncinate fasciculus; FA = fractional anisotropy; AD = axial diffusivity; MD = medial diffusivity; RD = radial 

diffusivity; NuFO = number of fiber orientations; MLS = mean length of streamlines; wDSC = weighted dice similarity 

coefficient; ICC = Intra-class correlation coefficient estimates; CI = 95% confidence intervals of the ICC.  

*p < .05; **p < .01; ***p < .001. 

In Figure 2, we only present the Bland & Altman plots created for the FA measure for the 

sake of brevity and clarity. Bland–Altman analysis showed high reproducibility (95% CI = .019 , 

-.01 for the left AF; .025, -.04 for the right AF; .03 , -.04 for the left ILF; .03 , -.03 for the right 
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ILF; .02, -.02 for the left IFOF; .03 , -.02 for the right IFOF;  .04 , -.04 for the left UF; and .2 , -.2 

for the right UF) with little difference (mean difference = .005 for the left AF, -.006 for the right 

AF, -.004 for the left ILF, -.003 for the right ILF, -.0008 for the left IFOF, .002 for the right IFOF, 

.001 for the left UF,  and .03 for the right UF). A total of 88% (right AF, left and right UF) to 94% 

(Left AF, left and right ILF, left and right IFOF) of data points were within these limits. The 6 

other plots are reported in the supplementary materials. All plots were consistent with the ICC 

analyses. 

 

Figure 2.  Bland-Altman Plots for the FA metric in all four fiber bundles, bilaterally.  

The Y axis represents the mean difference between the measurements at the two timepoints and 

the X axis represents the mean of these measures. The upper and lower dashed lines represent the 

two limits of agreements at ±2 standard-deviations of the mean of differences (i.e. the 95% 

confidence interval). The solid line represents the mean of the differences between the two 

timepoints. The dots represent the individual subjects. FA = fractional anisotropy; AF = arcuate 

fasciculus; ILF = inferior longitudinal fasciculus; IFOF = inferior fronto-occipital fasciculus; UF 

= uncinate fasciculus; T1 = time 1; T2 = time 2. 
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4. Discussion 
 The aim of this study was to demonstrate the test-retest reliability of the reconstruction and 

micro- and macro-structural characteristics of major WM language fiber bundles using 

probabilistic CSD-tractography based on HARDI data. The dMRI data were obtained on a group 

of healthy subjects at two timepoints, spanning one week. First, the results demonstrated that all 

the reconstructed fiber bundles have a good overlap between the two timepoints. Secondly, tract-

specific measures usually used in studying microstructural WM characteristics, such as FA, MD, 

RD, and AD, as well as the macrostructural measure MLS showed good to excellent test-retest 

reliability in the AF, ILF, IFOF and UF, bilaterally. Volume, another macrostructural property, 

showed good to excellent reproducibility for some fiber bundles (AF, ILF, as well as the IFOF and 

UF in the left hemisphere) but only fair reproducibility for others (IFOF and UF in the right 

hemisphere). NuFO showed good test-retest reliability for all fiber bundles, except the ILF which 

showed only fair test-retest reliability. Our results agree with and, at the same time, critically 

expand on previous studies that investigated the test-retest reliability of probabilistic CSD-

tractography (Cousineau et al., 2017; Besseling et al., 2012). These results represent a first 

necessary validation protocol for longitudinal studies in research in the cognitive neuroscience of 

language. Assessing test-retest reliability of the reconstruction of fiber bundles and of their micro- 

and macro-structural measures is of paramount importance for the use of this approach in 

longitudinal studies, as it allows to ascertain that the observed variations truly reflect the changes 

that may take place in WM over time and are not due to the variability inherent to dMRI data 

processing, instead (Cousineau et al., 2017).  

Diffusion MRI tractography is presently the only method that allows the reconstruction of 

WM fiber bundles in-vivo. For this reason, in the last decades it has gained tremendous popularity 
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in the field of neuroscience and its potential to map the human connectome is widely recognized. 

In the last years, an increasing number of big data initiatives has been developed in order to collect 

longitudinal dMRI data in healthy individuals with the ultimate goal to describe the changes of 

dMRI over the lifespan and to link these changes to cognitive performance (Howell et al., 2017). 

In order to fully benefit from the potential of longitudinal dMRI data, it is necessary to demonstrate 

the test-retest reliability of dMRI-based tractography. The present work provides critical 

information to investigate two important questions. When we obtain dMRI data in two separate 

acquisition sessions one week apart in the same subjects, using probabilistic CSD-tractography 

with ACT and tractometry based on HARDI data, can we 1) reconstruct overlapping WM language 

fiber bundles?  and 2) extract similar micro-and macro-structural measure values?  

Regarding the first question, our data seem to provide an affirmative response. The obtained 

wDSC values determining the degree of overlap of the bundles reconstructed at the two timepoints 

using probabilistic CSD-tractography ranged between 0.71 and 0.87. Based on the minimum value 

(.70) of Dice found in the two studies which used this metric to assess the test-retest reliability of 

CSD-based reconstruction of WM tracts (Cousineau et al., 2017; Besseling et al., 2012), our wDSC 

values indicate that all the fiber bundles investigated in the present study have good test-retest 

reliability. In addition, our wDSC values are consistent with the values obtained in previous studies 

aimed at validating test-retest reliability of probabilistic CSD-tractography in other fiber bundles, 

such as the cingulum, optic radiation, and the corpus callosum (Cousineau et al., 2017; Besseling 

et al., 2012). We also report excellent overlap for the AF and IFOF, which is consistent with 

Cousineau et al. (2017) who used a similar tractography pipeline. The overlap obtained in our study 

is greater than what has been reported by Besseling et al. (2012) in which, in order to reconstruct 

the AF, they only used seed and target ROIs. Considering the complex anatomy of the AF, a 
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tractography method allowing the use of more specific anatomical priors, as we did in the present 

study, might improve the reconstruction of this complex tract and thus allow for a better 

reproducibility of its morphology.  

Our study also confirms the reproducibility of tensor metrics and MLS. Test-retest 

reliability of tensor metrics (FA, MD, RD, and AD) has been previously studied using DTI-based 

tractography (Buchanan, Pernet, Gorgolewski, Storkey, & Bastin, 2014; Ciccarelli et al., 2003; 

Danielian et al., 2010; Heiervang et al., 2006; Vollmar et al., 2010; Wang et al., 2012). However, 

studies using this approach have not always reported satisfactory results.  For example, in one 

study, poor test-retest reliability was observed with AD across all studied fiber bundles (Danielian 

et al.,2010), whereas others reported tract-specific variability of the reproducibility of FA and MD 

(Wang et al., 2012). There are several sources of variability in diffusion MRI that can affect the 

test-retest reliability of tractography or the measures of WM structural characteristics (Danielian 

et al., 2010). These include, but are not limited to, partial volume effects introduced by the DTI 

model, bad anatomical priors, as well as potential inter- and intra-rater reliability of ROI placement 

in seed-based approaches for tractography (Wakana et al., 2007; Danielian et al., 2010; Cousineau 

et al., 2017). In the present study, we used an approach that attempts to reduce variability from 

these sources by using HARDI-based state-of-the-art tracking algorithms based on ACT and 

probabilistic tracking algorithms which have the potential to yield fuller, longer bundles that better 

reach the cortex (Mori and Tournier 2014; Maier-Hein et al., 2017), novel approaches to extract 

the bundles from the tractogram (i.e. WMQL), as well as good anatomical priors (Catani, Howard, 

Pajevic, & Jones, 2002; Conturo et al., 1999; Hagmann et al., 2003; Huang, Zhang, Van Zijl, & 

Mori, 2004; Wakana et al., 2007). Using this approach, we were able to demonstrate good to 

excellent reliability of all tensor-based metrics which are the microstructural measures most 
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commonly used in dMRI studies on language, and MLS, a macrostructural measure, in all language 

fiber bundles. This represents an important step towards the validation of this approach in the 

longitudinal study of language fiber bundles. On the other hand, the test-retest reliability of NuFO 

was less than good in some tracts. To the best of our knowledge, no previous study has investigated 

the test-retest reliability of this measure. Our results seem to encourage further longitudinal 

validation of this measure before adopting it in longitudinal studies. Additionally, our results for 

the volume, another macrostructural measure, were consistent with previous studies that reported 

inconsistent test-retest reliability for this measure across fiber bundles, using probabilistic CSD-

tractography (Besseling et al., 2012) or DTI-based tractography (Wang et al., 2012).  

Even though the present results are very promising, particularly for the tensor metrics and 

MLS, future studies should be designed in order to confirm our findings. First, these results should 

be reproduced in larger groups. Secondly, the use of CSD allows to resolve multiple fiber 

orientations at reasonable angles with a properly data-driven response function at lower b-values 

and 64 directions as in the present study (Descoteaux et al., 2009; Raffelt et al., 2012; Tournier, 

Calamante, & Connelly, 2007). Nevertheless, utilizing multi-b-value sequences, such as b = 1000 

s/mm², b = 2000 s/mm², b = 3000 s/mm², or b = 1000 s/mm² and b = 3000 s/mm², could help to 

interpret the differences obtained in the present study by considering other available measures, 

such as intracellular, extracellular, and isotropic volume (Raffelt et al., 2012).  

In conclusion, in an era where initiatives to collect dMRI longitudinal data are multiplying 

and fiber tracking is considered one of the most popular tools to follow changes in the language 

network over time, the question of test-retest reliability of dMRI tractography is of paramount 

importance. Our study provides critical evidence indicating the test-retest reliability of probabilistic 

CSD-tractography. As in previous studies which demonstrated test-retest reliability of TBSS or 



74 

DTI-tractography (e.g., Forkel et al., 2014; Kitamura, Kiuchi, & Taoka, 2013; Poudel et al., 2015), 

the present results support the use of probabilistic CSD-tractography to study language fiber 

bundles in longitudinal studies in healthy and clinical populations interested in language related 

fiber bundles. 
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Abstract 

Syntactic ability in connected speech production is central to communication but its white matter 

predictors have seldom been studied. The aim of this study was to determine whether and which 

structural characteristics of the left AF and UF as well as the lesion load of the left AF in the acute 

phase post-stroke predicted syntactic ability in the connected speech of people with chronic post-

stroke aphasia. Sixteen participants with post-stroke aphasia took part in this study. A magnetic 

resonance imaging scan was acquired within the first three days post-stroke and connected speech 

was assessed by means of the Picture Description test of the Western Aphasia Battery at least six 

months following the stroke. Four syntactic measures were extracted from the connected speech 

samples: the percentage of verbs produced, the number of grammatically well-formed sentences, 

the number of clauses per utterance (a measure reflecting sentences’ syntactic complexity), and the 

percentage of verbs with a complex argument structure. The left AF and UF were reconstructed 

using a state-of-the-art constrained spherical convolution (CSD)-tractography pipeline and their 

volume, axial diffusivity (AD), and fractional anisotropy (FA) were extracted. The lesion load of 

the AF was also computed. Forward multiple linear regressions revealed that the volume of the left 

AF in the acute phase predicted sentence complexity, verb production ability, as well as the 

production of verbs with a complex argument structure. The latter’s prediction was improved by 

the volume of the UF in the acute phase. Our study is the first to demonstrate that the volume of 

the left AF in the acute phase post-stroke is the sole predictor of the production of verbs and 

complex sentences and that the production of verbs with a complex argument structure relies on 

both the AF and UF.  

Keywords: syntax, post-stroke aphasia, tractography, white matter, stroke, connected speech 
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1. Introduction 
Post-stroke aphasia is an acquired language disorder most often caused by an ischemic 

stroke to the left middle cerebral artery. It is a heterogenous condition where one or several 

linguistic domains (phonology, morphology, syntax, and semantics) can be impaired, affecting 

language production and comprehension (Zumbansen & Thiel, 2014). One of the key challenges 

in the study of aphasia is the search for early neuroimaging predictors of outcome (i.e., language 

performance in the chronic phase post-stroke). Such an endeavour is critical for a better 

understanding of how brain structural alterations in the early phases define chronic language 

impairment following a stroke. The emergence of the dual-stream framework whereby language 

functions are supported by large-scale networks of grey matter regions connected via white matter 

pathways organized in dorsal and ventral streams (Hickok & Poeppel, 2004, 2007), as well as 

advances in neuroimaging over the past 20 years have placed white matter pathways at the forefront 

of research on the neural underpinnings of language and its breakdown in post-stroke aphasia and 

other neurological diseases (Dick et al., 2014; Poeppel et al., 2012; Wilson et al., 2012). It is 

therefore important to better understand how damage and the structural characteristics of key white 

matter fiber bundles in the early phase post-stroke contribute to language abilities in chronic 

aphasia.  

Verb and sentence production are two aspects of discourse that are central to 

communication in everyday life. Individuals with post-stroke aphasia (fluent and non-fluent) have 

been found to experience verb production deficits (Berndt et al., 1997; Cho-Reyes & Thompson, 

2012), as well as a reduced number of well-formed grammatical sentences in connected speech 

(Edwards, 2005; Thompson et al., 2013). Additionally, studies have shown that people with post-

stroke aphasia experience greater difficulty producing verbs with a complex argument structure 
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(i.e., transitive verbs with two or three arguments) than intransitive verbs (i.e. those with one 

argument) (Thompson et al., 2012), and produce less complex sentences in terms of the number of 

clauses produced per sentence in connected speech (Hsu & Thompson, 2018; Llinàs-Grau & 

Martínez-Ferreiro, 2014; Stark, 2019). Thus, the syntactic structural complexity at the level of the 

verb-argument structure and the sentence seems to be important for verb and sentence production 

abilities in post-stroke aphasia.  

Verb and sentence production in chronic post-stroke aphasia may be assessed by means of 

standardized clinical tests or connected speech analysis. While standardized clinical tests allow to 

investigate specific aspects of syntactic abilities, they lack ecological validity. Additionally, such 

tests do not exist for French-speaking populations. Connected speech production, which may be 

used as a surrogate assessment of functional communication, allows the simultaneous assessment 

of a range of measures and has been used to gain insight into syntactic performance during language 

production in post-stroke aphasia (e.g., Bastiaanse, 2011; Hsu & Thompson, 2018; Mirman et al., 

2019). Verb production ability may be investigated by analyzing the proportion of verbs produced, 

or the number of arguments produced with each verb. At the sentence level, connected speech 

analysis allows the extraction of variables such as the number of clauses which indicates the level 

of sentence complexity and the number of well-formed sentences (Edwards, 2005; MacWhinney 

& Fromm, 2016).  

Thus far, only a few studies have investigated syntactic abilities in language production and 

its structural brain substrates in aphasia (induced by a stroke or a neurodegenerative disease), with 

a particular focus on grey matter. For example, production of syntactically complex sentences in 

connected speech in primary progressive aphasia (PPA) has been found to be related to atrophy in 

left frontal and prefrontal regions (left posterior inferior frontal gyrus, IFG, superior frontal sulcus 
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and adjacent prefrontal areas, and the supplementary motor area) (Wilson et al., 2010). Studies on 

the structural correlates of verb retrieval deficits in post-stroke aphasia have also uncovered a 

relationship with damage to left frontal, temporal and parietal grey and white matter regions in the 

ventral as well as in the dorsal streams of the language network (Aggujaro et al., 2006; Alyahya et 

al., 2018; Piras & Marangolo, 2007). Impaired production of verbs with a complex argument 

structure in chronic post-stroke aphasia has been found to be predicted by damage to posterior 

superior temporal and angular gyrus (a structure at the intersection between the dorsal and ventral 

streams) and to dorsoventral white matter connections between the temporal and frontal lobes in 

the chronic phase post-stroke (den Ouden et al., 2019). The grey matter regions found in these 

studies are structurally connected via the arcuate fasciculus (AF) and the uncinate fasciculus (UF), 

respectively. Additionally, the dual-stream framework of the neural organization of syntax have 

proposed the AF and UF as the white matter pathways of the dorsal and ventral networks supporting 

syntactic processing (Friederici, 2012; Friederici & Gierhan, 2013; Zaccarella & Friederici, 2015). 

In this framework, the dorsal stream would support global syntactic operations such as complex 

sentence processing (Friederici & Gierhan, 2013; Zaccarella & Friederici, 2015). The ventral 

stream, on the other hand, is postulated to be involved in local syntactic operations, such as phrase 

structure building (e.g., verb-argument integration) and syntactic-semantic integration (Friederici 

et al., 2006; Friederici, 2018; Zaccarella & Friederici, 2015). The contribution of white matter fiber 

bundles’ structural characteristics, particularly in the early phase post-stroke, to long-term syntactic 

abilities remains a pending question.  

Growing evidence from studies on neuroimaging predictors of aphasia outcome has 

highlighted the left AF and UF as predictors of language performance in the chronic phase post-

stroke. The AF’s lesion load (i.e., the degree of overlap between a white matter fiber bundle and 
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the stroke-induced brain lesion) was found to predict speech fluency (Marchina et al., 2011), object 

naming (Geva et al., 2015; Marchina et al., 2011), repetition (Geva et al., 2015), and sentence 

comprehension (Geva et al., 2015; Xing et al., 2017) in chronic post-stroke aphasia. Microstructural 

properties of the AF have also been found to be related to chronic naming and sentence production 

(fractional anisotropy, FA in the chronic phase; Ivanova et al., 2016) and chronic global language 

outcome (axial diffusivity, AD in the acute phase; Moulton et al., 2019), while bundle volume (i.e., 

its macrostructure) has been related to overall aphasia severity in the chronic phase (Tak & Jang, 

2014). The microstructural characteristics of the UF have been found to be related to word 

comprehension (Xing et al., 2017). However, none of these studies have specifically determined 

whether the AF and UF’s structural characteristics in the early phase of post-stroke aphasia predict 

syntactic abilities in the chronic phase.  

The objective of this study is to determine whether and which structural characteristics of 

the left AF and UF, as indexed by the bundle volume, the FA and AD in the acute phase of post-

stroke aphasia (within three days post-stroke) predict the production of verbs and grammatically 

well-formed sentences and the syntactic structural complexity at the sentence and verb-argument 

structure levels in connected speech in the chronic phase (³ six months post-stroke). We expect the 

number of clauses per utterance (a measure of syntactic complexity at the sentence level) in the 

chronic phase to be predicted by structural characteristics of the left AF in the acute phase (Wilson 

et al., 2010), and the percentage of verbs and verb-argument structure complexity, as well as the 

number of well-formed sentences to be predicted by structural characteristics of the left AF and 

UF in the acute phase (Akinina et al., 2019; den Ouden et al., 2019; Friederici et al., 2006). 

Additionally, since the lesion load is a variable that has also been found by some studies to predict 

language functions (Geva et al., 2015; Hillis et al., 2018; Marchina et al., 2011), we aimed to 
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determine whether it would predict verb and sentence production abilities in chronic post-stroke 

aphasia. 

2. Methods 

2.1. Participants 
Sixteen participants were included in this study. They presented with aphasia due to a first 

single ischemic stroke in the left middle cerebral artery. No criteria concerning aphasia severity or 

lesion size were adopted. All participants were diagnosed by a neurologist at the Stroke Unit at 

Hôpital du Sacré-Coeur de Montréal and screened for eligibility. The chronic language assessments 

took place at least six months post-onset (chronic phase). Participants underwent a magnetic 

resonance imaging (MRI) scan within the first three days after stroke onset (acute phase). Exclusion 

criteria included presenting bi-hemispheric infarcts, previous head injury or intracranial surgery, 

history of major psychiatric illness, alcohol or drug abuse, learning difficulties before the accident, 

an uncorrected hearing or visual disturbance, contraindication to magnetic resonance (i.e. 

claustrophobia, metallic implant, etc.), and not being a French speaker. Additionally, twenty 

cognitively unimpaired controls matched with the patients on age and education served as a 

reference group for the behavioral analyses. 

Demographic data of the participants is presented in Table 1. The study was approved by 

the research ethics committee of the Centre intégré universitaire de santé et de services sociaux du 

Nord-de-l’Ile-de Montréal (Project #MP-32-2018-1478) and written informed consent was 

obtained from all participants. 
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Table 1.  Demographic, language, and neuropsychological data for the post-stroke aphasia 

(PSA) and control (CTRLs) groups 

 PSAs (n = 16)  CTRLs (n = 20)   

 

Mean SD 

 

Mean SD 

 Intergroup differences 

(independent t-test) 

Demographics        

Sex (% females) 50%   55%    

Age 72.0 13.08  67.55 9.01  t(34) = -1.21, p = .236 

Education 13.0 4.05  14.55 2.28  t(22.45)a = 1.37, p = .185 

Time post-stroke (acute; days) 2.38 1.15  NA NA  NA 

Time post-stroke (chronic; months) 8.6 2.13  NA NA  NA 

Language and neuropsychological assessment      

Namingb -3.79 7.07  .39 .60  t(15.17)a = 2.36, p < .05 

Repetition        

  Words 26.25 5.66  29.05 1.32  t(16.30)a = 1.94, p = .07 

  Sentences 1.88 1.09  2.6 .50  t(20.10)a = 2.46, p < .05 

Auditory comprehension        

  Word and sentence comprehension 40.19 7.46  46.5 1.19  t(15.61)a = 3.35, p < .01 

  Token Test 26.53 9.88  34.06 2.05  t(15.06)a = 2.90, p < .05 

Verbal fluency        

  Free 28.0 24.80  68.05 16.94  t(34) = 5.75, p < .001 

  Orthographic 11.13 12.16  28.85 7.30  t(34) = 5.42, p < .001 

  Semantic 13.13 7.40  29.5 6.12  t(29.06)a = 7.11, p < .001 

PPTT 41.81 9.30  50.4 1.23  t(15.42)a = 3.67, p < .01 

Bells Test 29.43 9.89  NA NA  NA 
aHomogeneity of variance assumption not met according to Levene’s test. Welch’s t-test with adjusted degrees of 

freedom is reported. 
bSince two patients were evaluated with the TDQ-60, while the rest were evaluated with the DO-80, we computed a z-

score for Naming by using each test’s normative data. 
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2.2. Behavioral data 

2.2.1. Language assessment 

A language battery in French was administered ³ six months post-stroke to the participants 

to assess the following language functions: confrontational naming (DO-80 and TDQ-60, Deloche 

& Hannequin, 1997; Macoir et al., 2018), repetition (the word and pseudo-word repetition subtests 

of the Protocole Montreal-Toulouse d’examen linguistique de l’aphasie, MT-86, Nespoulous et al., 

1992), and auditory comprehension (using the word and sentence comprehension subtests of the 

MT-86; Nespoulous et al., 1992, and the Token Test, short version; De Renzi & Faglioni, 1978). 

Connected speech was assessed using The Picnic Scene from the Western Aphasia Battery 

(Kertesz, 2006). Additionally, executive functions were assessed using the Verbal Fluency (free, 

phonemic, semantic) test from the Montréal Évaluation de la Communication (MEC) battery 

(Joanette et al., 2004), semantic memory was assessed using the Pyramids and Palm Trees test 

(Howard & Patterson, 1992), and visual neglect was assessed using the Bells Test (Gauthier et al., 

1989). Table 1 presents the test results of the post-stroke aphasia and control groups. Aphasia 

severity was determined using the Boston Denomination Aphasia Examination (BDAE) severity 

scale (Goodglass et al., 2001). Twelve patients had mild or mild to moderate aphasia, three were 

moderate, and one was moderate to severe. 

2.2.2. Connected speech analysis 

Speech samples were transcribed in the CHAT format by a speech-language pathologist (A.B.). 

Inter-rater reliability was carried out in a previously published study by our group (Brisebois et al., 

2020) and was found to be high (intra-class correlation coefficient >.80). The MOR program in the 

CLAN software was run to tag parts-of-speech (Forbes et al., 2012; MacWhinney et al., 2011). 

CLAN’s EVAL program was then used to extract the following measures: the percentage of verbs 
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produced (over the total number of words) as a measure of verb production ability; the number of 

verbs per utterance which corresponds to the number of clauses per utterance (Macwhinney, 2019) 

as a measure of syntactic complexity at the sentence level (Brisebois et al., 2020; Thorne & Faroqi-

Shah, 2016); and the number of grammatically well-formed sentences. Additionally, the percentage 

of verbs with a complex argument structure (i.e., verbs with two or three arguments) produced by 

each participant was extracted by a team member (M.B.). As previously mentioned, this variable 

reflects verb-argument structure complexity.  

2.3. Neuroimaging data 
2.3.1. Image acquisition 

The diffusion MRI protocol was acquired using a Skyra 3T MRI scanner (Siemens 

Healthcare, USA) at the radiology department of Hôpital du Sacré-Coeur of Montreal. One high 

resolution 3D T1-weighted (T1w) image (TR = 2200 ms, TE = 2.96 ms, TI = 900 ms, FOV = 250 

mm, voxel size = 1x1x1 mm3, matrix = 256x256, 192 slices, flip-angle = 8°) was acquired using a 

Magnetization Prepared Rapid Gradient Echo (MP-RAGE) sequence. A diffusion weighted 

imaging (DWI) sequence was also acquired (TR = 8051 ms, TE = 86 ms, FOV= 230 mm, voxel 

size = 2x2x2 mm3, flip angle = 90°, bandwidth = 1698; EPI factor = 67; 68 slices in transverse 

orientation) with one T2-weighted image (b = 0 s/mm²) and 64 images with non-collinear diffusion 

gradients (b=1,000 s/mm²) in a posterior-anterior (PA) acquisition, as well as two other T2-

weighted images (b = 0 s/mm²): one in a PA acquisition and the other in an anterior-posterior (AP) 

acquisition.   

2.3.2. dMRI data pre-processing and tractography 
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Pre-processing and tractography were carried out following the same procedure as in Boukadi 

et al. (2019). Noise-correction of all DWI images was carried out using overcomplete local 

principal component analysis (PCA) (Manjo et al., 2013) and AP-PA images (the two b0 images) 

were used to correct susceptibility distortion. DWI images were also corrected for subject 

movement, geometric distortions, and eddy-currents with the FMRIB Diffusion toolbox EDDY of 

FSL 5.0.11 (http://www.fmrib.ox.ac.uk/fsl/) (Jenkinson, Beckmann, Behrens, Woolrich, & Smith, 

2012) and gradient directions were aligned with motion correction parameters. DWI images were 

upsampled to 1mm isotropic resolution using a trilinear interpolation (Dyrby et al., 2014; Girard 

& Descoteaux, 2012; Raffelt et al., 2012; Smith et al., 2012; Tournier et al., 2012). T1 weighted 

(T1w) images were segmented and parcelled into grey and white matter anatomical regions using 

Freesurfer’s pipeline 6.0.0 (Dale et al., 1999; Desikan et al., 2006). Then, T1w-to-DWI registration 

was carried out with FMRIB’s linear registration tool (FLIRT) from FSL.  

Using constrained spherical deconvolution, fiber orientation distribution functions (fODFs) 

were estimated and a whole-brain tractogram was computed using MRtrix3’s probabilistic 

anatomically constrained tractography algorithm (https://github.com/jdtournier/) (Tournier et al., 

2012). The T1w parcellation was overlaid on the tractogram and the left AF and UF were then 

reconstructed with the White Matter Query Language (WMQL) (Wassermann et al., 2016). 

WMQL is a method that consists in writing anatomic definitions of the bundles of interest in the 

form of queries, using the anatomic regions from Freesurfer’s Desikan/Killiany atlas. Queries used 

to reconstruct the left AF and UF have been presented in Boukadi et al. (2019). Finally, we ran a 

tract-filtering algorithm (Côté et al., 2015) to remove outlier streamlines (i.e., false positives). The 

volume, FA, and AD of the AF and UF were then extracted. 

2.3.3. Lesion delineation 
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The stroke-induced lesion was delineated for each patient using a semi-automatic method 

and verified with a fully manual method. First, the Clusterize toolbox (De Haan et al., 2015) was 

used in SPM12 to semi-automatically delineate the lesion on the mean diffusivity (MD) map 

extracted from the DWI image acquired in the acute phase (an example of the lesion drawn on the 

MD image, as well as the MD and T1-w images for one participant can be viewed in the Appendix). 

Clusterize has been previously shown to have a good reliability for acute lesions’ delineation in 

stroke patients (De Haan et al., 2015), and the mean diffusivity map was suggested to be a good 

tool for lesion visualization in the acute phase (Schaefer et al., 2006). Clusterize automatically 

computed hypo-intense clusters of voxels on mean diffusivity maps (default parameters were used). 

Clusters of interest corresponding to the lesion in each slice were then manually selected and 

adjusted to accurately fit the lesion by a neuroscientist (B.H.) and the entire lesion was extracted 

for each patient. Secondly, each lesion image was counter-verified and adjusted (as needed) using 

the MI-brain software (Imeka Solutions Inc.) by a neuroscientist experienced in lesion delineation 

(S.M.B.). The mean diffusivity and b0 maps were used to support this visual verification. Both 

delineators were blind to behavioral scores. Finally, the lesion volume (in ml) in the DWI native 

space was computed for each patient using Clusterize. T1w images and lesions were then 

normalized to Rorden et al.’s (2012) age-matched template from 30 healthy controls (mean age: 

61.3 years; 17 men) using the enantiomorphic normalization method of the Clinical Toolbox 

(Rorden et al., 2012) in SPM12. The lesion overlap map of all patients is displayed in Figure 1 on 

the age-matched template in MNI space.  
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Figure 1.  Lesion overlap map. Lighter green on the color scale indicates the greatest number of 

patients with a lesion in the same location. 

2.3.4. Lesion load calculation 

Lesion loads of the AF and UF were obtained following the same methodology as in 

Marchina et al. (2011). The fiber bundles of eighteen cognitively unimpaired controls reconstructed 

in a previous study (Boukadi et al., 2019) were transformed into binary maps and normalized to 

the MNI152 space using SPM12. A study-specific atlas or map for each bundle was then created 

by calculating the probability that a voxel was part of the fiber bundle across all control subjects. 

The lesions were also normalized to the MNI152 space using SPM12. The lesion load, namely the 

overlap between the fiber bundle and the lesion, was calculated as the sum of the intensities of all 

shared voxels between the AF or UF’s fiber bundle map and the patient’s lesion. Figure 2 shows 

the lesion-fiber bundle overlap in one aphasic participant. 
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Figure 2.  Overlap between the white matter bundles and the lesion in one participant. 

3. Statistical analyses 
All statistical analyses were run on SPSS25. T-tests were carried out with the group 

(participants with post-stroke aphasia and controls) entered as an independent variable and each 

syntactic measure (percentage of verbs, number of grammatically well-formed sentences, number 

of clauses per utterance, and percentage of verbs with a complex argument structure) entered as a 

dependent variable. The homogeneity of variance assumption was assessed with Levene’s test and 

Welch’s t-test with adjusted degrees of freedom was reported whenever equality of variances was 

not met. In order to determine which of the structural characteristics of the left AF and UF (bundle 

volume, FA, AD) would best predict our syntactic variables, we ran forward multiple linear 

regressions with our group of patients with post-stroke aphasia. Only the lesion load of the AF (and 

not that of the UF) was included in the analyses, since all patients but one showed an overlap 

between their AF and the lesion while only four patients showed an overlap between their UF and 

the lesion. The percentage of verbs produced, the percentage of verbs with a complex argument 
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structure), the number of clauses per utterance, as well as the number of grammatically well-formed 

sentences were each separately entered as a dependent variable.  

4. Results 
The mean and standard deviation of the syntactic variables extracted from the connected 

speech analysis for the chronic post-stroke aphasia and control groups, as well as the results of the 

t-tests are presented in Table 2. No differences at the group level were identified for any of the 

syntactic measures. 

Table 2.  Mean and standard deviation (SD) for syntactic measures for PSAs and CTRLs 

 PSAs  CTRLs   

 

Mean SD  Mean SD 

 Intergroup differences 

(independent t-test)  

Number of clauses per utterance .37 .32  .427 .231  t(34) = .93, p = .357 

Number of well-formed sentences 19.81 12.28  20.75 8.87  t(34) = .27, p = .792 

% verbs 4.00 2.32  4.059 1.45  t(34) = .17, p = .863 

% verbs with a complex argument structure 68.87 37.97  77.62 16.17  t(19.35)a = .86, p = .399 
aHomogeneity of variance assumption not met according to Levene’s test. Welch’s t-test with adjusted degrees of 

freedom is reported. 

The forward multiple regression analysis we ran on our group of patients with post-stroke 

aphasia revealed that the volume of the left AF in the acute phase was selected as the only predictor 

of the number of clauses (R2 = .448, F(1,13) = 10.566, p < .01; b = .67, p < .01) and percentage of 

verbs produced (R2 = .579, F(1,13) = 17.866; b  = .761, p < .01). Additionally, the volume of both 

the left AF and UF in the acute phase emerged as significant predictors of the percentage of verbs 

with a complex argument structure. The AF was selected as the most important predictor and 

entered in the first step of the model, accounting for 53% (F(1, 13) = 14.561, p < .01) of the variance 

of verbs with a complex argument structure. The volume of the UF was added as a predictor in the 

second step of the model, significantly improving the prediction by 14% (F(1,12) = 4.98, p < .05). 



104 

Thus, the regression model with the volumes of the left AF and UF accounted for 67% of the 

variance of verbs with a complex argument structure (F(2, 12)= 11.999, p < .01; bAFvolume = .65, p 

< .01, bUFvolume = .38, p < .05). There was no multicollinearity among the two predictors included 

in the last model (variance inflation factor = 1.05, which indicates that there is no collinearity issue; 

Hair et al., 2014). No significant predictors were found for the number of well-formed sentences. 

5. Discussion 
In this study, we investigated whether the structural characteristics of the left AF and UF, 

as well as the lesion load of the left AF in the acute phase post-stroke predicted the production of 

verbs and grammatically well-formed sentences, as well as sentence and argument structure 

complexity, in the connected speech of people with chronic post-stroke aphasia. Our results 

revealed that the number of clauses per utterance (an index of syntactic complexity at the sentence 

level), the percentage of verbs produced, as well as the percentage of verbs with a complex 

argument structure produced in the chronic phase are predicted by the volume of the left AF in the 

acute phase. Additionally, the volume of the left UF in the acute phase significantly improved the 

prediction of the percentage of verbs with a complex argument structure. The number of 

grammatically well-formed sentences produced was not predicted by any diffusion measure. 

Neither the lesion load of the AF nor the FA or AD of the AF and UF emerged as predictors of the 

syntactic measures under study.  

Our group of participants showed impaired performance on all language functions (except 

word repetition) assessed using standardized clinical tests. However, comparisons with controls 

indicate that this group of patients was unimpaired on the syntactic measures extracted from 

connected speech (i.e. the Picnic Scene from the Western Aphasia Battery). This seemingly reflects 

normal syntactic ability in a discourse context in the chronic phase. It could also be due to the fact 
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that all participants presented with mild or moderate aphasia (with a majority of patients showing 

a mild language impairment). Previous studies also reported unimpaired performance, as compared 

to controls, on different connected speech measures in mild/moderate post-stroke aphasia. For 

example, Yorkston and Beukelman (1980) found no differences between mild/moderate aphasic 

speakers and healthy individuals on the number of content units (a measure of informativeness) 

produced in connected speech. In a sample of mostly mild aphasic speakers, Stark (2019) found no 

impairments (as compared to controls) on connected speech measures such as noun-verb, open-

closed class, and type-token ratios. Thus, it is possible that some connected speech measures may 

be less sensitive than others to impairments in mild/moderate aphasic speakers. Future work would 

have to assess this hypothesis by comparing mild/moderate and severe aphasic speakers on a wide 

range of connected speech measures. That being said, participants with mild/moderate post-stroke 

aphasia in the present study do appear to be unimpaired on the syntactic measures that we extracted 

from picture description. Additionally, the absence of a difference between controls and aphasic 

speakers does not discount the presence of inter-individual variability in syntactic ability among 

our participants with post-stroke aphasia.  

Our findings highlight the central role of the left AF in syntactic processing, as the volume 

of this bundle emerged as the sole acute predictor of chronic verb production and complex 

sentences, and as the most important predictor of chronic verb-argument structure complexity. This 

is in line with structural studies in chronic post-stroke aphasia (Ivanova et al., 2016) and primary 

progressive aphasia (Wilson et al., 2011) that found that damage to the left AF was related to 

syntactic production. While these studies reported correlations between syntactic impairments in 

production and microstructural variations (i.e., the FA) in the left AF, ours revealed that 
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macrostructural variation (i.e., the bundle volume) in this fiber bundle is a determinant of relatively 

preserved syntactic ability in connected speech.  

In addition to the volume of the left AF, we found that the volume of the left UF in the acute 

phase also predicted the production of verbs with a complex argument structure in the chronic 

phase. Friederici and Gierhan’s (2013) theoretical framework proposed a differential role for the 

left AF and UF in syntactic processing (i.e., that the AF would be involved in hierarchical structure 

building of complex sentences and the UF would be involved in local and simple syntactic 

operations). Instead, our finding highlights a potential synergistic relationship between the AF and 

the UF in the production of verbs with a complex argument structure. This is in line with previous 

work on language comprehension suggesting a synergy between the dorsal and ventral streams in 

syntactic comprehension in the chronic phase (Griffiths et al., 2013; Rolheiser et al., 2011). It is 

possible that the AF would be involved in building the hierarchical syntactic structure necessary 

for the realization of the argument structure. The more arguments a verb requires, the more 

complex the structure. This hypothesis would be in line with the role generally attributed to the AF 

in structural syntactic complexity (Catani & Bambini, 2014; Friederici & Gierhan, 2013; Zaccarella 

& Friederici, 2015). The UF on the other hand, would be involved in verb-argument integration 

(i.e. assigning thematic roles that the verb requires to each argument), which would be more in line 

with its proposed role in combinatory processes, as well as local structure (i.e. phrase structure) 

building (Friederici et al., 2006; Zaccarella & Friederici, 2015). 

Verb production in general (i.e., the percentage of verbs produced over the total number of 

words in the speech sample) in the chronic phase was predicted by the left AF’s volume and not 

the UF’s. This is somewhat inconsistent with voxel-based lesion symptom mapping studies in 

chronic post-stroke aphasia which found that grey and white matter structures in both the dorsal 
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and ventral streams correlated with verb production in confrontation naming tasks (Akinina et al., 

2019; Alyahya et al., 2018; Piras & Marangolo, 2007).  However, these studies were carried out in 

the chronic phase where damage is usually much more extensive in grey and white matter than in 

the acute phase and focused on correlating structural damage with verb production impairments, 

while our study reveals that inter-patient variability in the volume of the left AF in the acute phase 

predicts relatively preserved verb production in the chronic phase post-stroke.  

Additionally, in our study neither the AF’s nor the UF’s volume predicted the number of 

grammatically well-formed sentences produced by our participants. It is possible that since the 

production of well-formed sentences involves different processes (syntactic but also semantic and 

phonological), it would engage a widespread network of interacting grey and white matter 

structures rather than rely primarily on a specific white matter bundle or the limited set of cortical 

regions it connects. Further work using connectome-based analyses would be needed to assess this 

hypothesis. Another potential explanation could be that in such relatively short speech samples as 

the ones elicited by picture description, the raw number of sentences produced could be biased by 

the overall inter-subject variability in the length of output. In this context, the number of well-

formed sentences might reflect syntactic ability less specifically.  

Our study is, to the best of our knowledge, the first to reveal that bundle volume in the acute 

phase is a good predictor of connected speech measures in the chronic phase. There are only a 

handful of studies that investigated acute white matter predictors of language abilities in chronic 

post-stroke aphasia and only two which investigated the predictive value of the bundle volume 

(Forkel & Catani, 2018; Forkel et al., 2014) which did not emerge as a predictor of language ability 

in the chronic phase. However, in that study, a general measure of language impairment severity 

in the chronic phase was used (i.e. the Aphasia Quotient composite score), which may rely on a 
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network of bundles rather than on one specific bundle, as the authors themselves suggested (Forkel 

& Catani, 2018). By contrast, in the present study we measured specific linguistic features in 

connected speech that might be better related to the structural properties of specific white matter 

bundles. In other words, structural characteristics of white matter bundles are more likely to predict 

specific language abilities for which they are known to play a role, rather than a general language 

measure (i.e., the Aphasia Quotient composite score). Future research using bundle volume as an 

acute-phase predictor would have to be carried out with other specific language measures in the 

chronic phase in order to assess this hypothesis.  

Neither the lesion load, the AD, nor the FA were selected as predictors of any of our 

syntactic measures in the forward regression analyses. The lesion load of the AF (a surrogate 

measure of damage) in the acute phase has been found to predict the degree of language impairment 

in the subacute or chronic phases in previous studies (Hillis et al., 2018; Moulton et al., 2019; Osa 

García et al., 2020). In other words, a bigger lesion overlap to the AF in the acute phase predicts 

more severe aphasia in the chronic phase. By contrast, in our study, patients were unimpaired on 

the syntactic measures obtained from connected speech. Thus, the lesion load seems to serve more 

as a predictor of aphasia severity. As for the AD and FA, these measures have been previously 

found to undergo rapid dynamic changes in the early phase post-stroke and only stabilize in later 

stages (Fung et al., 2011; Green et al., 2002; Sorensen et al., 1999; Yang et al., 1999). These 

changes may vary rapidly in the first few hours and days post-stroke (Green et al., 2002; Yang et 

al., 1999). Since our measures were taken at different timepoints across patients within the three-

day window of the acute phase, this variability could have limited the predictive value of these 

tensor metrics.  
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The present study has a few limitations. First, our sample size is rather small and further 

research with a bigger sample size is required to confirm and generalize our findings. Additionally, 

a bigger sample size could potentially allow the investigation and identification of a larger number 

of predictors. Secondly, our language assessment did not include standardized clinical tests that 

specifically assess syntactic abilities, such as the Northwestern Assessment of Verbs and Sentences 

(Cho-Reyes & Thompson, 2012). This would have allowed us to confirm whether our group of 

participants had no syntactic impairments altogether or was simply unimpaired in a discourse 

context or on the specific measures extracted from the connected speech samples. Additionally, a 

connected speech task that elicits longer samples (e.g. the Cinderella story retelling) could help in 

the interpretation of these findings. Finally, the great majority of our participants had mild to 

moderate aphasia, which might have influenced our findings. It would be interesting for future 

studies to use a more varied sample with a wider range of mild to severe cases. Though this could 

represent an additional challenge at the level of patient recruitment. 

In conclusion, our findings have implications for the theoretical literature on the 

neurocognitive mechanisms supporting syntactic processes, as well as for the clinical literature on 

the neuroanatomical predictors of syntax production in chronic post-stroke aphasia. With regards 

to theoretical implications, our findings that the volume of the left AF (as well as the volume of the 

left UF for verbs with a complex argument structure) predicts syntactic measures in connected 

speech in chronic post-stroke aphasia suggest that the left AF is a fiber bundle that plays a major 

role in syntactic production, either independently or in synergy with the left UF for local syntactic 

operations such as verb-argument integration. With regards to clinical implications, our study 

suggests that the volume of white matter fiber bundles in the acute phase could potentially serve as 

a prognostic marker that would help identify patients that might show preserved or least impaired 
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syntactic function in connected speech in the chronic phase. This could potentially have important 

applications in personalized speech rehabilitation in the long-term. Future studies would have to 

first replicate our findings with a bigger, more diverse aphasic sample. 
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The objective of the present thesis was two-fold. The aim of the first article was to assess 

the test-retest reliability of the reconstructions and structural characteristics of major white matter 

language bundles using a state-of-the-art probabilistic CSD-tractography pipeline. The aim of the 

second article was to determine whether and which acute structural characteristics of the left AF 

and UF, reconstructed using the same tractography pipeline as in the first article, as well as the 

lesion load, predicted syntactic abilities in connected speech in chronic post-stroke aphasia. The 

main findings are 1) that the tractography pipeline we used yields stable reconstructions and 

structural characteristics of the bundles of interest, and 2) that the bundle volume of the left AF and 

UF assessed in the acute phase predict syntactic abilities (i.e., verb production and verb-argument 

structure and sentence complexity) in connected speech in the chronic phase of post-stroke aphasia. 

In this final chapter, a summary of the main findings of the two articles will first be 

presented, followed by a discussion of the methodological, clinical, and theoretical contributions 

and implications of this thesis. The limitations of the two articles and suggestions for future 

research directions will then be discussed. Finally, general conclusions for this thesis will be 

presented. 

1. Summary of the two articles 

1.1. Article 1 
In the first article of this thesis, we aimed to assess the test-retest reliability of the 

reconstruction and the diffusion measures extracted from major white matter language bundles 

using a state-of-the-art tractography pipeline. The tractography pipeline used included the main 

recent methodological advances in the field. Thus, we used probabilistic CSD-tractography with 

ACT, and a semi-automatic approach for the reconstruction of the white matter bundles (i.e. 

WMQL). To this aim, we scanned a group of older cognitively unimpaired participants at two 
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timepoints, one week apart. We reconstructed the four major white matter language bundles (the 

AF, IFOF, ILF, and UF) in both hemispheres. We then extracted the following average diffusion 

measures of the white matter structural properties from each bundle: FA, MD, AD, RD, NuFO, 

bundle volume, and MLS.  

First, we expected the reconstruction of the white matter bundles to show good 

morphological overlap between the two scanning sessions. This hypothesis was confirmed, since 

the degree of morphological overlap for the AF, IFOF, ILF, and UF in both hemispheres was good. 

Secondly, we expected the diffusion measures extracted from the white matter bundles to show 

good to excellent test-retest reliability. This hypothesis was partially confirmed, since the FA, MD, 

RD, AD, and MLS showed good to excellent test-retest reliability in the AF, IFOF, ILF, and UF, 

bilaterally. However, bundle volume showed good to excellent reliability in the AF and ILF 

bilaterally and the left IFOF and UF but only fair reliability in the right IFOF and UF. The NuFO 

measure also showed good reliability for all bundles but only fair reliability for the ILF, bilaterally. 

Overall, this study showed that using our state-of-the-art CSD-tractography pipeline, we can obtain 

stable reconstructions of major white matter language bundles and, for the most part, stable bundle-

specific diffusion measures. Thus, we ascertained the stability of the reconstruction and diffusion 

measures obtained with the tractography pipeline we used. 

1.2. Article 2 
The aim of the second article of this thesis was to determine whether and which structural 

characteristics of the left AF and UF, as well as the lesion load, assessed in the acute phase post-

stroke predict syntactic ability (as reflected by verb and sentence production and sentence and verb-

argument structure complexity) in the connected speech of people with chronic post-stroke aphasia. 

We used the tractography pipeline from the first article to reconstruct the left AF and UF and extract 
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their average FA and AD, as well as the bundle’s volume in our sample of patients with post-stroke 

aphasia. To assess syntactic ability in the connected speech of our participants with chronic post-

stroke aphasia, we extracted the following measures from speech samples elicited by the Western 

Aphasia Bank’s Picnic Scene picture description task: the percentage of verbs produced, the 

number of grammatically well-formed sentences produced, the percentage of verbs with a complex 

argument structure, and the number of clauses per utterance (an index of syntactic complexity at 

the sentence level). 

Since this is the first study of its kind, we had no specific hypotheses as to which measures 

of structural characteristics (FA, AD, or bundle volume) or lesion load (if any) would predict our 

syntactic measures. We expected verb and sentence production, as well as verb-argument structure 

complexity to be predicted by the structural characteristics of the left AF and UF, and sentence 

complexity to be predicted by the structural characteristics of the left AF. First, our findings 

revealed that, out of the three diffusion measures of structural characteristics included (i.e., the FA, 

AD, and bundle volume), only the bundle volume emerged as a predictor of syntactic ability in 

connected speech. The lesion load did not emerge as a predictor either. Secondly, our findings 

revealed that, unlike what was hypothesized, only verb-argument structure complexity was 

predicted by the volume of both the left AF and UF. The production of verbs was predicted by the 

volume of the left AF (but not the UF). Additionally, as expected, sentence complexity was 

predicted by the volume of the left AF. Finally, the production of grammatically well-formed 

sentences was not predicted by any of our measures. Taken together, these findings showed that 

the bundle volume in the acute phase is a good predictor of preserved syntactic abilities in 

connected speech in chronic post-stroke aphasia. They also indicate that some syntactic abilities, 

such as the production of verbs with a complex verb-argument structure, may call upon the synergy 
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of the left AF in the dorsal stream and the left UF in the ventral stream, as suggested by some 

studies on syntax comprehension (Griffiths et al., 2013; Rolheiser et al., 2011), while other 

syntactic abilities may only rely on the left AF. 

2. Contributions and implications of the two articles 

2.1. The reliability of the reconstructions and diffusion measures of major 

white matter language bundles using a state-of-the-art tractography 

pipeline 
The first article on the test-retest reliability allowed to show for the first time that a state-

of-the-art probabilistic CSD-based tractography pipeline that includes most of the recent 

methodological advances in the field (i.e., a higher-order HARDI-based probabilistic tracking 

algorithm, ACT, tract-filtering, and a semi-automatic approach for bundle segmentation) can 

achieve a stable reconstruction as well as stable diffusion measures of white matter language 

bundles. Good test-retest reliability of our tractography approach demonstrates that variability in 

the reconstructions and the diffusion measures extracted from them that could be observed between 

participants is closer to reflecting true inter-individual variability rather than measurement error. 

The first article of the present thesis also highlights the fact that for one given diffusion measure, 

reliability may vary from one bundle to the other, including bundles that represent similar 

anatomical structures but are located in different hemispheres (e.g. the bundle volume showed good 

reliability in the left IFOF and UF but only fair reliability in these bundles’ right hemisphere 

homologues). It is remarkable that these bundles showed good (in the left hemisphere) and fair (in 

the right) but not poor reliability, because they are bundles that are notoriously difficult to track 

due to their complex architecture (Hau et al., 2017; Rheault, Poulin, et al., 2020). This demonstrates 
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that the diffusion measures obtained using our tractography pipeline are stable, even for hard-to-

track bundles. 

The fact that no measure showed poor reliability indicates the stability of the pipeline used 

in this study for our bundles of interest compared to other test-retest reliability studies of 

tractography. For example, the reliability of average diffusion measures of one major language 

bundle, the AF, reconstructed using probabilistic CSD-tractography has been previously assessed 

in one study but yielded conflicting results (Besseling et al., 2012). In that study, the AF showed 

good reproducibility of microstructural measures, but the bundle’s volume showed poor 

reproducibility. However, the CSD-tractography pipeline used in that study suffered from most of 

the shortcomings mentioned in Chapter I (Section 4). No tract-filtering or ACT were used, and a 

manual ROI-based approach was employed for bundle segmentation, which, as we previously 

mentioned, results in bias and less accurate reconstruction of white matter bundles. Previous DTI 

tractography reliability studies also showed similar inconsistencies. Additionally, the reliability of 

diffusion measures derived from CSD-tractography has been previously found to be comparable 

(and not better) to that yielded by DTI-tractography (Kristo et al., 2013). This would seem to 

indicate that using CSD-tractography alone might not confer better reliability than DTI-

tractography. Our study is the first to show reproducibility of major white matter language bundles 

using a state-of-the-art probabilistic CSD-tractography pipeline leveraging the latest 

methodological advances in tractography.  

Cousineau et al. (2017) used a pipeline similar to ours, yet not all the bundles they 

reconstructed had good morphological overlap. Indeed, less established, harder-to-track white 

matter bundles in their study showed poor reproducibility (e.g. a bundle of streamlines connecting 

the sensorimotor cortex to the caudate which had been identified by Sharman et al., 2013 using 
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functional MRI-guided tractography). Larger and well-established bundles included in  Cousineau 

et al.'s (2017) study, such as the corticospinal tract (CST) showed good reproducibility (by 

established bundles, we mean bundles that correspond to anatomical structures that have been 

identified in post-mortem dissection atlases rather than white matter connections identified by in-

vivo tractography alone). In our study, we included only established major white matter language 

bundles. Even though some of them are considered difficult to track (the UF and IFOF), their 

reconstruction showed good reproducibility. This highlights the importance of using good prior 

anatomical knowledge to define the bundles of interest.  

Prior anatomical knowledge about established white matter language bundles is derived 

from white matter atlases based on post-mortem dissection studies that have identified these major 

white matter bundles in the human brain and were then further confirmed and refined by 

tractography (Martino et al., 2011). This knowledge can be leveraged to define the reconstruction 

of the bundles, either manually or with semi-automatic approaches such as the one we used in the 

present thesis (i.e., WMQL). The more extensive the existing knowledge on the anatomical 

definition of a white matter bundle is, the better its reconstruction can be. Such anatomical 

knowledge includes the specific cortical terminations of a white matter bundle, as well as the path 

of its fibers through and near other structures and bundles (e.g., the IFOF has terminations in the 

orbitofrontal cortex and the occipital cortex and crosses through the insula and the temporal stem). 

This is crucial to achieve as stable and anatomically accurate as possible reconstructions of the 

white matter bundles (Catani & Forkel, 2019; Maier-Hein et al., 2017; Rheault, Poulin, et al., 

2020). This is particularly crucial for harder-to-track bundles because of their complex architecture 

(such as the UF which is particularly tricky to reconstruct because of its sharply curved shape and 

its terminations in the orbitofrontal cortex that are difficult to track), and for bundles that converge 
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to bottlenecks. The latter are regions where the fibers of two bundles run parallel to each other 

before they diverge and pose challenges for the reconstruction that cannot be addressed without 

sound knowledge of the anatomy of the fiber bundles (Maier-Hein et al., 2017; Rheault, Poulin, et 

al., 2020). Accordingly, in the present thesis, we leveraged previously established anatomical 

knowledge to track major white matter language bundles, which we believe contributed to the good 

reproducibility we obtained for these bundles.  

In sum, the findings of the first article of the present thesis increase our confidence that the 

reconstructions and structural properties obtained from our tractography pipeline are stable and not 

due to random variations in measurement.  

2.2. Tractography-based predictors of syntactic ability in chronic post-stroke 

aphasia 
The second article of this thesis is the first study to ever show that the volume of white 

matter bundles in the acute phase predicts syntactic ability in the chronic phase of post-stroke 

aphasia. There are several levels of novelty to this study. First, very few studies have investigated 

acute structural predictors of chronic post-stroke aphasia, perhaps owing to the difficulty of data 

collection in the acute phase and the challenge of follow-up in the chronic phase. Thus, our study 

provides new data to this important line of research. Secondly, bundle volume has not been 

investigated as a potential predictor in previous studies as much as microstructural measures such 

as the FA or AD. This is possibly due to the fact that such an assessment was only made possible 

recently with the advent of tractography and, even more recently, tractometry which allows to 

obtain bundle-specific measures (by comparison, assessment of tensor metrics was possible by 

other means, such as TBSS, before tractography became more common in patient studies). The 

finding of bundle volume as a predictor in our study paves the way to further investigate this 
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measure as an acute predictor of other language functions and processes in the chronic phase. Third, 

no study has previously assessed acute predictors of syntactic ability. Finally, the second article of 

the present thesis is the first to combine several diffusion measures of micro- and macrostructural 

white matter characteristics to predict outcome in chronic post-stroke aphasia. 

The findings of the second article demonstrate that the bundle volume may be a good acute 

predictor of chronic syntactic ability in connected speech production. One previous study where 

the volume of the left AF was assessed in the acute phase failed to predict chronic general language 

outcome using this measure (Forkel et al., 2014). This could potentially be accounted for by the 

fact that the dependent variable in that study was a general measure of aphasia severity which 

would be related to a network of bundles rather than one specific structure (Forkel & Catani, 2018). 

By contrast, in our study we predict specific syntactic measures that might have a more direct 

relationship to measures of the structural properties of specific white matter bundles (i.e., the left 

AF and UF).  

With regards to other predictors that have been previously investigated, the second article 

of this thesis provides complementary information to the existing literature. Indeed, our study is 

the first to predict specific language measures extracted from connected speech in the chronic phase 

of recovery using a diffusion measure obtained in the acute phase. Previous studies have focused 

on a general measure of aphasia severity (Forkel et al., 2014; Moulton et al., 2019; Osa García et 

al., 2020) or naming impairment, the hallmark deficit of post-stroke aphasia, assessed by means of 

a standardized clinical test (Hillis et al., 2018). These studies have reported measures of white 

matter damage, lesion load or AD, as acute predictors of long-term language outcome (either in the 

chronic or subacute phases). By contrast, in our study, neither the lesion load nor AD (or FA) seem 
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to be determinants of measures of syntactic ability, such as verb or sentence production obtained 

from a test that approximates functional communication such as connected speech.  

First, based on previous studies, the lesion load in the acute phase seems to be more of a 

predictor of degree of severity of subacute or chronic general language outcome (Hillis et al., 2018; 

Moulton et al., 2019; Osa-Garcia et al., 2020). Secondly, anisotropy and diffusivity in white matter 

undergo dynamic and rapid changes throughout the different phases post-stroke. The acute phase 

is characterized by an increase in anisotropy and decrease in diffusivity (most noticeable along the 

long axis of white matter fibers, namely the AD), reflecting restricted diffusion. This is followed 

by a progressive decrease in anisotropy and decreased diffusivity in the subacute phase. Finally, a 

drop in anisotropy and increase in diffusivity is observed in the chronic phase, as diffusion of water 

molecules becomes less restricted (Fung et al., 2011; Yang et al., 1999). However, heterogeneity 

in the timeline of the post-stroke evolution of white matter anisotropy and diffusivity across stroke 

patients has been observed (Yang et al., 1999), as these dynamic changes depend on a number of 

factors that vary across patients, such as time and rate of reperfusion and heterogeneity in lesion 

size, as well as in imaging time and stroke onset (Fung et al., 2011). Since our patients were 

assessed at different timepoints within the first three days post-stroke, it is possible that this 

variability could have been reflected in different patterns of increases and decreases in anisotropy 

and diffusivity across patients. By contrast, the only previous study that identified the AD in the 

left AF as an acute predictor of language outcome in chronic phase has scanned patients within a 

24-hour window, which potentially could have reduced variability in anisotropy and diffusivity 

patterns in their sample (Moulton et al., 2019).  

In sum, different white matter predictors could have different predictive value depending 

on a number of factors, such as the time post-stroke, the types of language measures used, and 
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potentially degree of impairment or recovery. This has important clinical implications. Given the 

dynamic nature of ischemic stroke and of the aphasia it induces, it is likely that there is no one 

single white matter predictor of language abilities in chronic post-stroke aphasia. A more optimal 

approach could be to combine different tractography-based predictors to capture a more 

comprehensive picture of the white matter’s state post-stroke. 

2.3. Implications for the neurocognitive basis of syntax in language 

production 
The findings of the second article of this thesis also have theoretical implications for the 

neurocognitive basis of syntax in production. Indeed, this study is the first to shed light on the 

potential role of specific white matter language bundles in specific syntactic abilities in connected 

speech production in post-stroke aphasia. Other existing studies have either focused on syntactic 

abilities in comprehension (Griffiths et al., 2013), one aspect of syntactic function in production 

(e.g., sentence complexity, Ivanova et al., 2016), or by using standardized clinical tests (den Ouden 

et al., 2019). While informative, studies that report on the predictors of only one dimension of 

syntax in production are not sufficient to capture the full spectrum of syntactic abilities and the 

structural brain network that underpins them. Additionally, studying different dimensions of syntax 

during language production by using standardized tests (e.g., den Ouden et al., 2019) does not 

provide information about different dimensions of syntax and their white matter correlates in a 

discourse context. Indeed, syntactic abilities in a discourse context are bound to be different from 

those reflected by standardized clinical tests. Discourse is much closer to reflect the hierarchical 

structure building process that characterizes syntax at different levels (even though current 

approaches to discourse elicitation, such as picture description, limit our ability to fully gauge 

syntactic abilities of people with post-stroke aphasia in discourse). If the ultimate goal of this line 
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of research is to improve our ability to predict long-term functional language ability after stroke, 

we must assess these abilities using approaches that are closer to reflect functional communication 

(such as connected speech tasks).  

The fact that the volume of left AF emerged as the sole predictor (or main one in the case 

of verbs with a complex argument structure) of syntactic measures suggests that this white matter 

bundle plays an important role in different aspects of syntax production in a discourse context. A 

crucial role for the left AF in syntax comprehension has been previously demonstrated in the 

chronic phase of post-stroke aphasia (Griffiths et al., 2013). Additionally, the fact that the volume 

of the left UF emerged as an independent predictor of verb-argument structure complexity, along 

with the left AF, suggests that both of these white matter bundles play a role in local structure 

building in connected speech production. In sum, our findings suggest that different aspects of 

syntax might rely differently on the dorsal and ventral white matter pathways, with some relying 

solely on the dorsal pathway (left AF), and at least one aspect of syntax (i.e., verb-argument 

structure complexity) relying on both the dorsal and ventral pathways (i.e., left AF and UF). 

Previous studies on the structural determinants of syntactic ability in language production in 

chronic post-stroke aphasia have highlighted a dominant role for the dorsal stream (Faroqi-Shah et 

al., 2014; Henseler et al., 2014; Ivanova et al., 2016) while others found the involvement of both 

dorsal and ventral streams (Akinina et al., 2019; den Ouden et al., 2019). However, studies 

uncovering a role for the ventral stream in syntax in production (verb production or complex verb-

argument structure) have not revealed the involvement of one specific white matter bundle. By 

contrast, in our study we highlight the involvement of the left UF in one aspect of syntax in 

language production in post-stroke aphasia. 
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According to the dual-stream framework of syntax (Friederici, 2011; Friederici et al., 2006), 

the left AF and UF play differential roles in syntax structure building, with the left AF being 

involved in syntactic structural complexity at the sentence level (e.g. sentences with two or more 

clauses) and the UF being involved in basic local structure building (e.g. verb-argument structure 

integration) . However, the finding that verbs with a complex argument structure rely not only on 

the left UF but also the left AF is more in line with a view where the dorsal and ventral pathways 

may have a synergistic relationship when it comes to aspects of syntax in language production that 

require both complex hierarchical structure building and basic local structure building 

relationships. Such a synergistic relationship between dorsal and ventral white matter pathways in 

syntax has been previously suggested in language comprehension studies (Griffiths et al., 2013; 

Rolheiser et al., 2011).  

This reflects the hierarchical incremental nature of syntactic structure building which has 

been described in contemporary psycholinguistic frameworks of syntax in language production 

(Thompson et al., 2015). Indeed, complex structure building may happen at the local level, with 

the verb projecting argument structures of increasing complexity, or at a more global level with 

sentences of increasing complexity constituted of two or more clauses organized in a hierarchical 

relationship to one another. This incremental hierarchical structure building of increasing 

complexity may be where the left AF plays a functional role, which would explain its involvement 

in both syntactic complexity at the sentence and verb-argument structure levels. The left UF, on 

the other hand, may be potentially more involved in combinatory processes necessary for the 

assignment of thematic roles by the verb and their integration.   
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3. Limitations 
The main limitation of the first article of this thesis is that the reported test-retest reliability 

of the reconstructions and diffusion measures is specific to the tractography pipeline used. 

Changing one level of the pipeline could potentially change the degree of reliability. In other words, 

in order to be sure to achieve a similar degree of stability obtained in our study, the tractography 

pipeline used should follow similar steps (probabilistic algorithm for tracking, ACT, tract-filtering, 

etc.).  For example, using a deterministic algorithm instead of a probabilistic one or using another 

semi-automatic approach instead of WMQL could potentially result in less reproducible 

reconstructions or structural characteristics. Additionally, a different acquisition scheme than the 

one we used (i.e. b-value = 1000, 64 diffusion directions) could also result in differences at the 

level of reproducibility. However, as we demonstrate in the second article of the present thesis, the 

classical HARDI acquisition scheme we used is feasible in terms of acquisition time, even with 

acute stroke patients, and can be easily implemented in clinical as well as experimental settings. 

The acquisition scheme we used takes about 30 minutes and can be carried out easily in a clinical 

context since our acute stroke patients were able to endure it (except for those with severe 

comprehension deficits). Additionally, all of the tools and software we used in our tractography 

pipeline are open source and accessible to users of tractography. As we report in the introduction 

of this thesis, the tractography pipeline we used addresses most of the major challenges of 

tractography and we therefore recommend using a similar pipeline in future studies. 

The second article of this thesis has a few limitations. First, the fact that no standardized 

clinical tests of syntax were used somewhat limits our interpretation of the behavioral findings. 

Indeed, it is difficult to determine with certainty whether the preserved syntactic abilities in 

connected speech observed in our sample reflect complete absence of syntactic impairments or is 
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due to lack of sensitivity of connected speech to milder deficits. However, while a few standardized 

clinical tests for the assessment of syntax in language production exist in English, none have been 

developed for French-speaking populations, which prevented us from including such an 

assessment. At any rate, our findings reflect normal syntactic ability in connected speech elicited 

by a picture description task. Secondly, the nature and size of our sample somewhat limits the 

potential of generalization of our findings. First, since many patients presented mild/moderate 

aphasia in the chronic phase (though some had severe aphasia in the acute phase), it is possible that 

other measures (such as the lesion load) would predict severe impairments better than the bundle 

volume. Additionally, it is possible that other, secondary, independent predictors could be studied 

and identified with a bigger sample size. For example, it is possible that the volume of the left UF 

could have emerged as a potential secondary predictor of the percentage of verbs produced (over 

the total number of words) with a bigger sample size. 

4. Future research directions 
The work presented herein opens new perspectives for research in the field of tractography, 

the assessment of syntactic ability in language production, and the identification of acute white 

matter predictors of chronic language abilities in post-stroke aphasia. 

First, since we demonstrated the stability of the reconstructions and structural 

characteristics of four major white matter language bundles bilaterally using a state-of-the-art 

probabilistic CSD-tractography pipeline, future research should investigate whether these findings 

extend to other established white mater bundles. For example, the components of the SLF (i.e., 

SLF I, II, and III) are white matter bundles that have been suggested to contribute to different 

cognitive functions, including speech, emotion, attention, visuospatial processing, and motor 

function (Makris et al., 2005; Mesulam, 1998; Petrides & Pandya, 2002). Assessing the test-retest 
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reliability of the reconstruction and diffusion measures of the three major components of the SLF 

using probabilistic CSD-tractography would be useful to leverage this approach for the study of 

these white matter bundles.  

Another important avenue of research is the assessment of syntactic abilities in post-stroke 

aphasia. First, as previously mentioned, there is a need for the development of standardized clinical 

tests for the assessment of syntax production in French (Quebec French in our case). One approach 

could be to adapt the existing English tests (e.g. NAVS, Cho-Reyes & Thompson, 2012) to French. 

However, to the best of our knowledge, the sensitivity of these tests has not been assessed and there 

is therefore no guarantee that they would detect mild impairments in post-stroke aphasia. The 

development of standardized clinical tests sensitive to mild impairments in aphasia is a challenge 

in and of itself and is an important area of research on the assessment of language impairments 

(Ross & Wertz, 2004). Additionally, such tests have their own limitations. The sentence production 

priming subtest of the NAVS has important comprehension demands which can confound the 

results, since a patient may have comprehension but no production impairments. In this test, two 

pictures are presented to the patient; the examiner produces the sentence for the first picture, which 

is supposed to prime the production of a similar structure for the second picture by the patient. 

Therefore, new tests need to be developed. Another limitation of such tests is that they lack 

ecological validity. Thus, a more optimal approach to the assessment of syntax in language 

production could be to combine data from both standardized clinical tests and connected speech, 

elicited by different tasks, such as picture description and story retelling to be able to better reflect 

functional communication. Such an approach would provide a more complete clinical portrait of 

syntax deficits in language production. 
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The identification of early neuroimaging biomarkers of long-term post-stroke aphasia 

outcome has been deemed a priority (Boyd et al., 2017) but is a research avenue that is still in its 

infancy. Data collection in the acute phase is a particularly considerable challenge for this line of 

research. Initiatives to create an open-access database for stroke that include imaging and language 

data are therefore critical to the advancement of our knowledge on early prognostic markers of 

post-stroke aphasia. Such databases exist for other neurological conditions (e.g. the Alzheimer’s 

Disease Neuroimaging Initiative, ADNI) but pose a greater challenge in stroke. A global initiative 

focused on Predicting Language Outcome and Recovery After Stroke (PLORAS) is ongoing. 

However, this project does not collect diffusion MRI data and is open only to the research teams 

that are currently a part of it. Thus, future initiatives ought to collect diffusion MRI data and make 

them available to the global research community. Another post-stroke aphasia global database is 

the AphasiaBank which is an open-access database of connected speech samples elicited by 

different discourse types (expositional, narrative, procedural, interviews) in eight different 

languages. However, this database does not include or collect neuroimaging data. Additionally, 

more studies carried out in the acute phase are needed to identify early biomarkers of language 

abilities in post-stroke aphasia. In the second article of the present thesis, the data collection was 

carried out in a hospital setting, thereby demonstrating that this is feasible in the acute phase. 

The identification of biomarkers that allow for tailored rehabilitation and prognosis is the 

new frontier in stroke research (Simpkins et al., 2019). Both stroke and the aphasia it induces are 

highly complex and dynamic phenomena. Therefore, the identification of appropriate biomarkers 

is no small challenge. This research field still has some way to go before tractography-based 

predictors of post-stroke aphasia, such as the one identified in our study and others previously 

reported can be used as biomarkers in clinical practice. Future methodological studies need to focus 
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on ways to make tractography and tractometry easily implemented in clinical protocols. At this 

time, these analyses are time-consuming and are not accessible to clinicians.  

5. Conclusion 
The findings presented in this thesis pave the way for the development and use of early 

tractography-based biomarkers of language ability in the chronic phase post-stroke. Indeed, 

tractography has the potential to provide powerful early biomarkers that could improve prognosis 

of post-stroke aphasia outcome and better stratification of patients for rehabilitation. Leveraging 

the latest methodological advances in tractography, such as higher-order models based on HARDI 

data, ACT, probabilistic tracking, and semi-automatic tracking approaches, is crucial to attain this 

goal because they allow us to capture white matter architecture more accurately. The present thesis 

offers important methodological, clinical, and theoretical contributions that constitute a stepping 

stone towards a better understanding of the neural structural basis of language abilities post-stroke 

and the identification of sensitive and good predictors of long-term aphasia outcome. 
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Appendix 1 

Supplementary figures - Article 1 

 

 

Figure 1.  Bland-Altman Plots for the MD metric in all four fiber bundles, bilaterally.  

The Y axis represents the mean difference between the measurements at the two timepoints and 

the X axis represents the mean of these measures. The upper and lower dashed lines represent the 

two limits of agreements at ±2 standard-deviations of the mean of differences (i.e. the 95% 

confidence interval). The solid line represents the mean of the differences between the two 

timepoints. The dots represent the individual subjects. MD = mean diffusivity; AF = arcuate 

fasciculus; ILF = inferior longitudinal fasciculus; IFOF = inferior fronto-occipital fasciculus; UF 

= uncinate fasciculus; T1 = time 1; T2 = time 2. 
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Figure 2.  Bland-Altman Plots for the AD metric in all four fiber bundles, bilaterally.  

The Y axis represents the mean difference between the measurements at the two timepoints and 

the X axis represents the mean of these measures. The upper and lower dashed lines represent the 

two limits of agreements at ±2 standard-deviations of the mean of differences (i.e. the 95% 

confidence interval). The solid line represents the mean of the differences between the two 

timepoints. The dots represent the individual subjects. AD = axial diffusivity; AF = arcuate 

fasciculus; ILF = inferior longitudinal fasciculus; IFOF = inferior fronto-occipital fasciculus; UF 

= uncinate fasciculus; T1 = time 1; T2 = time 2. 

 

 

 

 

 



157 

 

Figure 3.  Bland-Altman Plots for the RD metric in all four fiber bundles, bilaterally.  

The Y axis represents the mean difference between the measurements at the two timepoints and 

the X axis represents the mean of these measures. The upper and lower dashed lines represent the 

two limits of agreements at ±2 standard-deviations of the mean of differences (i.e. the 95% 

confidence interval). The solid line represents the mean of the differences between the two 

timepoints. The dots represent the individual subjects. RD = radial diffusivity; AF = arcuate 

fasciculus; ILF = inferior longitudinal fasciculus; IFOF = inferior fronto-occipital fasciculus; UF 

= uncinate fasciculus; T1 = time 1; T2 = time 2. 
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Figure 4.  Bland-Altman Plots for the NuFO measure in all four fiber bundles, bilaterally.  

The Y axis represents the mean difference between the measurements at the two timepoints and 

the X axis represents the mean of these measures. The upper and lower dashed lines represent the 

two limits of agreements at ±2 standard-deviations of the mean of differences (i.e. the 95% 

confidence interval). The solid line represents the mean of the differences between the two 

timepoints. The dots represent the individual subjects. NuFO = Number of fiber orientations; AF 

= arcuate fasciculus; ILF = inferior longitudinal fasciculus; IFOF = inferior fronto-occipital 

fasciculus; UF = uncinate fasciculus; T1 = time 1; T2 = time 2. 
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Figure 5.  Bland-Altman Plots for the Volume measure in all four fiber bundles, bilaterally.  

The Y axis represents the mean difference between the measurements at the two timepoints and 

the X axis represents the mean of these measures. The upper and lower dashed lines represent the 

two limits of agreements at ±2 standard-deviations of the mean of differences (i.e. the 95% 

confidence interval). The solid line represents the mean of the differences between the two 

timepoints. The dots represent the individual subjects. AF = arcuate fasciculus; ILF = inferior 

longitudinal fasciculus; IFOF = inferior fronto-occipital fasciculus; UF = uncinate fasciculus; T1 

= time 1; T2 = time 2. 
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Figure 6.  Bland-Altman Plots for the MLS measure in all four fiber bundles, bilaterally.  

The Y axis represents the mean difference between the measurements at the two timepoints and 

the X axis represents the mean of these measures. The upper and lower dashed lines represent the 

two limits of agreements at ±2 standard-deviations of the mean of differences (i.e. the 95% 

confidence interval). The solid line represents the mean of the differences between the two 

timepoints. The dots represent the individual subjects. MLS = mean length of streamlines; AF = 

arcuate fasciculus; ILF = inferior longitudinal fasciculus; IFOF = inferior fronto-occipital 

fasciculus; UF = uncinate fasciculus; T1 = time 1; T2 = time 2. 
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Appendix 2 

Supplementary material – Article 1 

Modified White Matter Query Language Queries from Article 1 

#Arcuate Fasciculus (AF) 

AF.side = (inferior_frontal_gyrus.side or middle_frontal_gyrus.side or precentral.side) and 

(superiortemporal.side or middletemporal.side) not in hemisphere.opposite not in 

medial_of(supramarginal.side) not in ILF_final_1.side not in IFOF_final_1.side not in 

temporalpole.side not in frontalpole.side not in subcortical.side not in rostralmiddlefrontal.side not 

in lateralorbitofrontal.side  not in ec.side not in superiorfrontal.side not in 

ctx_superiortemporal.side not in ctx_insula.side 

#Inferior Longitudinal Faciculus (ILF) 

ILF.side= only(temporal.side and occipital.side) and anterior_of(hippocampus.side) not in 

parahippocampal.side not in ctx_lingual.side not in ctx_lateraloccipital.side not in ctx_cuneus.side 

not in ctx_pericalcarine.side  

#Inferior Fronto-Occipital Fasciculus (IFOF) 

IFOF.side= endpoints_in(orbitofrontalgyrus.side or inferior_frontal_gyrus.side) and 

endpoints_in(occipital.side) and temporal.side and insula.side not in inferiorparietal.side not in 

hemisphere.opposite 

#Uncinate Fasciculus (UF) 

UF.side= insula.side and endpoints_in(orbitofrontalgyrus.side) and 

endpoints_in(temporal_anterior_section.side) not in posterior_of(putamen.side) not in 

centrum_semiovale.side not in superiorfrontal.side not in postcentral.side not in precentral.side 
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Appendix 3 

Supplementary material – Article 1 

Motion of each participant at each timepoint 

Participant 

Time 1 Time 2 

Mean SD Mean SD 

1 0.06177309 0.04426779 0.0569417 0.03484703 

2 0.05257956 0.03107867 0.05408551 0.02999035 

3 0.0740012 0.04511743 0.07651165 0.04921323 

4 0.08372465 0.06744107 0.07903643 0.04782817 

5 0.07697474 0.03897778 0.04636438 0.02777494 

6 0.04968429 0.03638177 0.04530571 0.03038225 

7 0.06372794 0.03709305 0.05533408 0.02970052 

8 0.07719768 0.06353363 0.05609605 0.02513792 

9 0.06572525 0.03452804 0.06984521 0.04321858 

10 0.04871767 0.02983834 0.0477965 0.029187 

11 0.08445199 0.05201282 0.07557234 0.0489541 

12 0.04386039 0.02260433 0.04060202 0.02549169 

13 0.06665881 0.037032 0.07046448 0.04341005 

14 0.07411467 0.04105924 0.08721011 0.05380671 

15 0.0562165 0.02560989 0.06681639 0.03486903 

16 0.10179909 0.05675531 0.08396169 0.05246243 

17 0.06013741 0.03774356 0.05252436 0.03768069 

18 0.06618107 0.02970252 0.09723072 0.04166339 
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Appendix 4 

  

 

Lesion overlayed over the mean diffusivity (MD) image used to delineate it, the MD image, and 

the T1-weighted (T1-w) image (for comparison purposes) of one stroke participant. 



 

 

 


