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Résumé 

Le développement de mimes de tours peptidiques pose un intérêt particulier en chimie 

médicinale, en raison de leur importance dans la reconnaissance moléculaire.  Dans ce contexte, 

les résidus N-aminoimidazol-2-one (Nai) ont démontré une tendance à occuper la position 

centrale de repliements peptidiques.  De plus, la présence de l’unité imidazolone offre un 

potentiel de fonctionnalisation en position 4 et 5 pouvant jouer le rôle de chaînes latérales 

rigidifiées dans l’espace χ. 

Des méthodes ont été développées pour rendre possible l’utilisation de résidus Nai en 

chimie peptidique.  Par le passé, des esters de dipeptide Nai possédant un substituant à la 

position 4 de l’hétérocycle ont été synthétisés de manière racémique.  L’utilisation de 

groupement C-terminaux a permis de grandement réduire l’épimérisation due à l’utilisation de 

base forte utilisée durant l’étape de cyclisation.  La fonctionnalisation de la position 5 du cycle 

après la cyclisation a aussi été rendue possible par le développement de nouvelles conditions 

réactionnelles.  Par exemple, des conditions de formylation ont donné des résidus (4-Me, 5-

Aldéhyde)Nai.  La fonction aldéhyde a été réduite et oxydée, donnant accès a des fonctions alcool 

et acide carboxylique.  L’amination réductrice du squelette (4-Me, 5-Aldéhyde)Nai en utilisant 

des amines primaires et secondaires ainsi que l’amino-méthylation de résidus (4-Me)Nai ont 

donné accès à des résidus d’acide diaminobutyrique rigidifiés.  Dans le but de préparer des 

analogues Nai pouvant servir de mimes rigidifiés de résidus phénylalanine, la catalyse au 

palladium a rendu possible l’installation de groupements 5-aryle par couplage croisé avec 

différents iodoaryles.  Dans un modèle de peptide, le résidu (4-Me, 5-aryl)Nai a été soumis à une 

analyse par dynamique moléculaire qui a révélé le positionnement de la portion Nai à la position 

i+1 d’un tour β de type II’, avec la chaine latérale aryle adoptant une conformation gauche (-). 

Ayant en main des conditions de synthèse énantioenrichie ainsi que de diversification de 

la position 5, la construction de peptides Nai possédant un intérêt biologique a été entreprise.  

Des dérivés du peptide Growth hormone releasing peptide-6 (GHRP-6) ont été ciblés car les 

analogues semicarbazide correspondant ont précédemment démontré avoir à la fois de la 

sélectivité et une affinité relativement grande pour le Cluster of differentiation receptor (CD36).  
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Ils ont ainsi le potentiel de moduler l’inflammation attribuable aux macrophages dans des 

conditions menant à la dégénérescence maculaire liée à l’âge, l’athérosclérose et l’angiogenèse. 

Des études précédentes ont démontré que le remplacement du résidu Trp4 du GHRP-6 par un 

semicarbazide possédant une chaîne latérale aromatique favorisait l’adoption d’un repliement 

de la chaîne peptidique et une affinité sélective envers le récepteur CD36.  Une méthode de 

synthèse sur phase solide d’analogues [(4-Me, 5-Aryle)Nai4]-GHRP-6 a été développée et utilisée 

pour synthétiser quatre différents peptides Nai en utilisant la résine Rink amide.  Les quatre 

analogues se sont montrés efficaces à réduire la surproduction d’oxide nitrique (NO) dans les 

cellules macrophages traitées avec un agoniste du Toll-like receptor 2 (TLR2).  Malgré le fait que 

l’évaluation biologique des analogues [(4-Me, 5-Aryle)Nai4]-GHRP-6 soit toujours en cours, leur 

habilité à moduler la surproduction d’oxide nitrique montre qu’ils possèdent la bonne géométrie 

quant à la chaîne principale et la chaîne latérale aromatique pour interagir avec le récepteur. 

En somme, la présente thèse a fourni des méthodes efficaces de synthèse de nouveaux 

analogues de peptides rigidifiés pour mimer les chaînes principale et latérales de tours β. Les 

résidus Nai énantioenrichis ont été synthétisés, introduits dans des séquences peptidiques 

d’intérêt sur phase solide et fonctionnalisés à la 4ième et 5ième position.  L’utilisation de ces 

analogues Nai 4,5-disubstitués en chimie médicinale et peptidique offre un potentiel 

considérable dans l’exploration de la relation structure-activité de peptides d’intérêt biologique 

pour identifier et mimer les conformères bioactifs. 

 

Mots clef: N-Aminoimidazolone, azapeptides, GHRP-6, CD36, peptidomimétisme, tours-β, 

arylation catalysée au palladium, réaction de Vilsemeier, réaction de Mannich, semicarbazone 
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Abstract 

 In peptide-based medicinal chemistry, mimicry of turn conformations is important 

because of the significance of such secondary structures for molecular recognition.  In this 

context, N-aminoimidazol-2-one (Nai) residues have demonstrated ability to mimic the central 

residue of turn conformers. Moreover, potential to functionalize the 4- and 5-positions of the Nai 

heterocycle offer opportunities to add and orient side chain functionalities with constrained c-

geometry. 

 Methods have been developed to employ Nai residues for peptide mimicry.  Previously, 

Nai dipeptide esters with substituents at the imidazol-2-one 4-position were obtained as racemic 

mixtures. By employing alternative C-terminal groups, epimerization has now been minimized. 

Functionalization of the Nai 5-position after cyclization has also been achieved by novel 

chemistry. For example, (4-Me, 5-aldehyde)Nai residues were obtained by 5-position 

formylation. The aldehyde was then reduced and oxidized to provide alcohol and acid 

functionality.  Reductive aminations on (4-Me, 5-aldehyde)Nai residues using different primary 

and secondary amines and amino methylation of (4-Me)Nai residues were also used to prepare 

constrained diaminobutyric acid analogs. In the interest to prepare Nai analogs that can serve as 

constrained phenylalanine residues, palladium-catalyzed chemistry was developed to cross-

couple different aryl iodides at the 5-position.  In model peptides, the (4-Me, 5-aryl)Nai residues 

were predicted by molecular dynamic calculations to be located at the i+1 position of type II’ β-

turn conformations with the aryl side chain positioned in the gauche (–).   

 The synthesis of biologically relevant Nai peptides was next explored using methods for 

accessing enantioenriched residues and conditions for their 5-position arylation. Peptide 

derivatives of growth hormone releasing peptide-6 (GHRP-6) were targeted using the Nai 

residues because the corresponding semicarbazide analogs had exhibited selective and relatively 

high binding affinity for the cluster of differentiation receptor (CD36) receptor and potential to 

mediate macrophage-driven inflammation in conditions leading to age-related macular 

degeneration, atherosclerosis and angiogenesis.  Previous studies with GHRP-6 analogs 

demonstrated that replacement of Trp4 with a semicarbazide possessing an aromatic side chain 
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favored a turn conformation and selective CD36 binding affinity.  Solid-phase methodology was 

developed to synthesize [(4-Me, 5-Aryl)Nai4]-GHRP-6 analogs and used to prepare four different 

Nai peptides on Rink amide resin. All four analogs were effective at mediating nitric oxide (NO) 

overproduction in macrophages cells treated with a Toll-like receptor 2 (TLR2) agonist.  Although 

biological evaluation of the [(4-Me,5-Aryl)Nai4]-GHRP-6 analogs is still being performed, their 

ability to modulate NO overproduction strongly indicated backbone and side chain 

conformational requirements for biological activity.   

 In sum, this thesis has provided effective methods for preparing novel constrained 

peptide analogs for mimicry of the backbone and side chain geometry in β-turns. 

Enantiomerically enriched Nai residues were synthesized, introduced into peptide sequences, 

and functionalized at the 4- and 5-positions. Employment of the 4,5-disubstituted Nai analogs in 

the study of peptide medicinal chemistry offers powerful potential for exploring structure-

activity relationships to identify and replicate biologically active conformers. 

 

Keywords: N-Aminoimidazolone, azapeptides, GHRP-6, CD36, peptide mimicry, β-turns, 

palladium-catalyzed arylation, Vilsmeier formylation, Mannich reaction, semicarbazone 
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Note 

 This thesis describing synthesis, diversification and biomedical application of N-

aminoimidazolone residues is written by articles.  The individual contribution of each co-authors 

is specified before each article.  The Chapter one, Introduction and background, and unless 

otherwise specified below, the other chapters were all written by me and edited by Professor 

William D. Lubell. 

 The first article to appear (Chapter 2), entitled “Synthesis of steroenriched 4,5-

disubstituted N-aminoimidazol-2-one (Nai) peptide turn mimic” describes the conditions and C-

terminal groups that were used in order to achieve cyclization of aza-propargyl-glycine dipeptides 

with minimal epimerization.  Following ring synthesis, a variety of functional groups are 

introduced at the 5-position including aldehyde, alcohol, acid and aminomethyl functionalities.  

This article has been submitted to Can. J. Chem. to feature in a special edition dedicated to 

Professor James D. Wuest and is currently being reviewed. 

 The second article to appear (Chapter 3), entitled “Palladium-catalyzed Arylation of N-

aminoimidazol-2-ones Towards Synthesis of Constrained Phenylalanine Dipeptide Mimics” 

describes conditions to insert aryl groups at the 5-position of the Nai residue using palladium-

catalyzed cross coupling.  The solution phase approach tolerates a wide range of aryl moieties.  

Molecular dynamic analysis of model peptides showed that the (4-Me, 5-Aryl)Nai residues 

adopted the central position of β-turns conformation.  This article has been published in 

Heterocycles.  The third article entitled “4,5-Disubstituted N-aminoimidazol-2-one mimics of 

peptide turn backbone and side chain conformation” describes the synthesis of the first example 

of 5-aryl substituted Nai residue and has been published as a proceeding for the 24th American 

Peptide Symposium (APS). 

 The fourth article (Chapter 4), entitled “Application of N-aminoimidazol-2-one Turn 

Mimics to Study the Backbone and Side-chain Orientation of Peptide-based CD36 Modulators” 

describes methodology to synthetize [(4-Me, 5-Aryl)Nai4]-GHRP-6 analogs.  Four Nai-peptides 

were synthetized and evaluated for their ability to modulate macrophage-driven inflammation.  

The biological evaluation was done by Dr Mukadila Mulumba under the direction of Professor 
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Huy Ong at the Faculté de Pharmacie de l’Université de Montréal.  Other biological experiments 

are still being done; therefore, the article is presented as Manuscript in preparation. 

 Other work and perspective will be presented in chapter 5, followed by a conclusion. 
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s Singlet (in NMR)

SAR Structure-activity relationship

SEM Standard error of the mean

Ser Serine

SFC Supercritical-fluid chromatography

SPPS Solid-phase peptide synthesis

t Triplet (in NMR)

T Temperature

TEA Triethylamine

TES Triethylsilane

TFA Trifluoroacetic acid

Theor. Theoretical

THF Tetrahydrofuran

Thr Threonine

TLC Thin-layer chromatography
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TMS Tetramethylsilane

Tosyl para-toluenesulfonyl

Tr Triphenylmethyle (Trityl)

Tyr Tyrosine

UV Ultraviolet light

Val Valine
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Chapter 1 

Introduction and background 
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1. Introduction 

1.1 Peptides 
 

 Peptides are naturally occurring polyamides generally comprising less than 50 residues.  

In the animal kingdom, 21 amino acids are typically used to construct peptides.1  Other than 

selenocysteine, the other 20 amino acid residues are genetically encoded.2  The amino acids are 

typically of L-configuration;3 however, certain D-amino acids are produced due to the action of 

isomerase enzymes.4  

1.2     Peptides as therapeutic agents 

 

 Peptides have significant utility as therapeutic agents.5-7  For example,  the peptide drugs 

Sarenin®,  Fuzeon® and  Sermorelin® are respectively used to treat hypertension,8 to combat 

antiretroviral resistant HIV strains,9 and to diagnose growth hormone (GH) hypo-secretion.10, 11 

Atosiban® is used to delay preterm labor in industrialized countries.12, 13 Neospect® acts as a 

tumor contrast agent  and used to diagnose lung cancer by scintigraphy.14 Copaxone® reduces 

the incidence of immune attack in patients suffering from multiple sclerosis.15   

 These representative examples are peptides approved for clinical use by North American 

and European regulatory agencies. They benefit typically from high binding affinity and specificity 

which is often associated with natural peptides.16-18 In the pursuit of peptide therapeutics, solid-

phase peptide synthesis (SPPS) can also offer effective means to prepare large combinatorial 

libraries of analogs for studying structure-activity relationships.19  The pharmacodynamic, 

pharmacokinetic and physicochemical properties of peptides can however limit their use in 

clinical settings.   

 In many cases, peptides have poor metabolic stability due to rapid degradation by the 

plethora of proteases and peptidases present in the blood and other biological settings.18 With 

few exceptions,20-22 peptides are not suitable for oral administration and require parenteral 
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administration.  Aqueous solubility and chemical stability may also be problems with certain 

peptide sequences.18    Peptide-based drug discovery thus wield a double edge sword:  benefiting 

from potency and selectivity, yet encumbered by inherent issues related to the metabolism and 

bioavailability of these natural polyamide structures. 

1.3   Conformational properties of peptides 

 

 Peptides can adopt different secondary structures in solution,23 which are classified 

according to the values of their backbone dihedral angles, namely phi (φ), psy (ψ) and omega (ω, 

Figure 1.1).24  Side chain orientations are defined by the chi (χ) dihedral angles.25, 26 Amide bonds 

adopt usually the (Z)-trans conformation, in which the ω value is normally 180°.27, 28  The three 

most often encountered secondary structures in peptides and proteins are α-helices, β-sheets 

and β-turns.29, 30 

 

Figure 1.1: Peptide chain and relevant dihedral angles 

 Considering that the ω value is normally 180°, the relationship of φ and ψ dihedral angle 

values may be the plotted to portray the conformations adopted by the peptide backbone, which 

are often said to exist inside Ramachandran space.24, 25 The α-helical, β-sheet and poly-proline 

type II conformers, which feature repeating unites with similar dihedral angles, occupy specific 

locations in the Ramachandran plot.  The preference for a peptide to adopt a specific secondary 

structure is governed by many factors, including the sequence, presence of intramolecular 

hydrogen bonds and interactions between the different side chains. The geometry of the side 
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chain defined by their preferred dihedral angle values has been coined “Chi space”.24-26 The 

backbone secondary structure and side chain orientations are crucial for the activity and binding 

affinity of peptide analogs which interact with biological targets.31   

1.4   Beta (β)-turns 

 

 β-Turns are secondary structures composed of four consecutive amino acid residues, 

which reverse the direction of the peptide backbone (Figure 1.2).32 β-Turns position the α-

carbons of the residues at the i and i+3 positions within a distance inferior or equal to 7 Å. The 

different types of β-turns are classified using the values of the φ and ψ dihedral angles of the two 

central residues at the i+1 and i+2 positions.32-34  Type I, II, IV and VIII β-turns are most often 

encountered in natural peptide and protein structures;25, 35  type VI β-turns are less frequent.32 

Certain amino acids (e.g., glycine and proline) have strong potential to adopt the central residues 

of specific β-turns.32 An intramolecular hydrogen bond may be present between the amide 

carbonyl of the i residue and the amide nitrogen of residue i+3.36  Although the resulting ten-

membered ring formed by such a hydrogen bond may stabilize the turn conformation, this factor 

is not a major force governing turn formation.36   
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Figure 1.2: β-Turn and relevant dihedral angles 

 

Type of turn + + + + 

I -60 -30 -90 0 

II -60 120 80 0 

VIII -60 -30 -120 120 

I’ 60 30 90 0 

II’ 60 -120 -80 0 

VIa1 -60 120 -90 0 

VIa2 -120 120 -60 0 

VIb -135 135 -75 160 

IV -61 10 -53 -17 

Table 1.1: Ideal values (in degrees) for the different types of β-turns 

 β-Turns are often regions involved in molecular recognition and protein folding.32  β-Turns 

are therefore attractive targets for the rational design of therapeutic peptides and related 
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synthetic analogs, so called peptidomimetics.  In the interest of replicating β-turns by such 

synthetic analogs, many strategies have been examined (Figure 1.3).   

  

Figure 1.3: β-turns mimics 

 As mentioned, the natural amino acid proline has been known to favor β-turns in a wide 

array of different proteins with a preference to situate at the i+1 position.32  Scanning in which  

each amino acid in the peptide sequence is replaced by proline has been used to detect the 

location of β-turns responsible for biological activity.37-39   

 The first example of the use of a covalent modification of the peptide chain to favor a β-

turn conformation has been attributed to the laboratory of R. Freidinger and D. Veber at Merck.40, 

41  By introducing an α-amino-γ-lactam into the sequence of luteinizing hormone-releasing 
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hormone [gonadotropin releasing hormone (GnRH)], a rigid analog was produced that exhibited 

greater activity than the parent peptide, likely due to stabilization of an active β-turn 

conformation.  Following this example, efforts have been pursued to examine different lactam 

ring sizes and to introduce ring substituents.42-47 For the introduction of a variety of functional 

groups onto the lactam ring by way of a common intermediate, displacement of the alcohol of 

an α-amino-β-hydroxy-γ-lactam residue using Mitsunobu chemistry and cyclic sulfamidate ring 

opening has procured a wide range of stereocontrolled α-amino-γ-lactam analogs possessing 

heteroatomic β-substituents.47 

 Various other approaches have been used to induce the β-turn geometry.  For example, 

replacement of a dipeptide moiety by a trans-5-amino-3,4-dimethylpent-3-enoate unit has been 

used to induce β-turn and β-hairpin geometry by way of A1,2 and A1,3 allylic strain.48  Alternative 

covalent constraints in spirolactam,49-51 benzodiazepine, benzotriazepine,52, 53,54 as well as 

azabicyclo[X.Y.0]alkanone amino acids,55-59 all have been successfully used to induce β- and γ-

turn conformations within different peptide structures.  

1.5 Azapeptides 
 

 Azapeptides (Figure 1.4) are peptide analogs in which one or more of the amino acid α 

carbons has been replaced by a nitrogen atom.60-64  Aza-residues can induce β-turn secondary 

structure by stereo-electronic constraints from their semicarbazide components by implicating 

the planarity of the urea portion to control the ψ dihedral angle and the lone pair-lone pair 

repulsion between the neighboring nitrogen to restrict the rotational barrier around the φ 

dihedral angle.  The combination of these effects to stabilize β-turns has been observed in model 

azapeptides using x-ray diffraction and NMR spectroscopy,65, 66 and by computational analyses.67, 

68 Moreover, modeling of N,N’-diformylhydrazine by ab initio analysis has revealed that an energy 

minimum existed in which the two lone pairs were at an angle of 90°.69  Scanning by systematic 

replacement of each amino acid in a sequence with an aza-amino acid residue has been used to 

probe for evidence of a β-turn in a peptide of biological interest.70 
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Figure 1.4: Azapeptide residue in a β-turn 

 One example of a successful use of an azapeptide in medicinal chemistry is the drug 

Zoladex®, which features a C-terminal aza-glycine residue (Figure 1.5). Zoladex® acts as a 

gonadotropin releasing hormone (GnRH) agonist, is administered by subcutaneous injection, and 

is used clinically for sexual hormone suppression in treatments of prostate and breast cancer.71 

Incorporation of the aza-residue improves the pharmacokinetic profile of the peptide extending 

duration of action by reducing susceptibility to proteases-mediated degradation.72   
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Figure 1.5: Zoladex® structure 
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Figure 1.6: Different retrosynthetic strategies to azapeptides 

 Many strategies have been used to synthesize azapeptides (Figure 1.6).64, 73 The N-termini 

of protected amino acid and peptide structures have been activated with a carbonyl donor, such 
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as an activated carbamate 1.11 or isocyanate 1.12, and reacted with a protected hydrazide 1.10 

to give the azapeptide residue (Strategy a). In this strategy, the presence of a C-terminal 

secondary amide can lead to an intramolecular reaction on the carbonyl donor to yield hydantoin 

side-products 1.13.  Alternatively, hydrazides 1.10 can be activated with carbonyl donors, such 

as a phosgene equivalent or carbonyldiimidazole to yield activated carbazate equivalents 1.15 

that reacted with the amine of a protected amino acid or peptide (Strategy b).  In this strategy, 

an unsubstituted carbazate 1.15 (R2 = H) can react intramolecularly to form of oxadiozolone 1.14 

as a significant side-product.  Finally, hydrazones 1.17 can be converted to methylidene 

carbazates 1.19 upon reaction with carbonyl donors, such as a phosgene equivalent, 

disuccinimidyl carbonate or 4-nitrophenylchloroformate, and reacted with the amine of a 

protected amino acid or peptide to form semicarbazones 1.18 (Strategy c).  The latter can be 

selectively alkylated in presence of various bases (e.g., Et4NOH) owing to resonance stabilization 

of the anion intermediate 1.18b, without concomitant epimerization of chiral centers present in 

the peptide (Figure 1.7).74  The semicarbazone protection has been removed using both aqueous 

HCl and hydroxylamine hydrochloride in pyridine.75 

 

Figure 1.7: Semicarbazone alkylation 

 Aza-residues have been functionalized with a wide range of groups to mimic natural side 

chains and to incorporate reactive appendages onto the azapeptide.  For example, alkyl, benzyl 

and propargyl functionalities have been introduced onto semicarbazones 1.18 by alkylation 
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under basic conditions (Figure 1.8a).76, 77 A wide range of aryl and heteroaryl groups have been 

installed onto azapeptides 1.18 using copper catalysis (Figure 1.8b) to give aza-aryl glycines 

1.20.78  Alkylation using propargyl bromide has given aza-propargyl glycine (azaPra) residues 1.21 

which can be used to construct different aryl triazolo-aza-alanines 1.22 by copper-catalyzed 

Huisgen coupling (Figure 1.8c),79 and tertiary amino-alkynes 1.23 using copper-mediated triple A 

(A3) reactions using different secondary amines and formaldehyde as a carbon donor (Figure 

1.8d).59  The latter reaction will be discussed again in Chapter 5. 

 

Figure 1.8: Introduction and diversification of aza-glycine 1.18 
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1.6 Aid and Nai residues 
 

 Aza-aminoimidazolidine (Aid) residues 1.25 have been obtained by bisalkylation of 

semicarbazones 1.18, such as aza-Gly peptides 1.24, with ethylene bromide after treatment with 

Et4NOH. The Aid residues are covalently constrained aza residues and may be viewed as the aza 

counterpart of Freidinger-Veber lactams.  The heterocycle further restricts the accessible 

Ramachandran and Chi space that may be occupied by the amino acid residue in the peptide 

chain (Figure 1.9).80, 81  Systematic replacement of Aid residues for the amino acids in a peptide 

sequence (Aid-scanning) has been achieved using a solid-phase approach to study conformation-

biological activity relationships.80  The synthesis of substituted Aid residues merits further study, 

because the absence of side chain functionality on the heterocycle surrogate, like the α-amino-

γ-lactam counterpart, may have a detrimental consequence on biological activity. 

 

Figure 1.9: Synthesis of Aid residues 

 N-Aminoimidazolones (Nai) residues are unsaturated counterparts of Aid residues.75, 81, 82 

4-Substituted Nai residues have been obtained by base promoted cyclization of aza-Pra residues 

(Figure 1.10).  Contingent of the 4-position substituent, Nai residues have been shown to adopt 

the central residues of type II’ β- and inverse γ-turns in X-ray analyses of model peptides (e.g., 

1.31, Figure 1.11).  Although type II’ β-turns are relatively rare in peptides, they garner significant 

interest due to their role in the formation of β-hairpins.32 

 Relative to the saturated Aid counterpart, the unsaturated Nai residue possesses a flatter 

heterocycle with an alkene component that enables functionalization at both the ring 4- and 5-

positions. The addition of functional groups onto the imidazole-2-one ring especially at the 5 
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position is of particular interest for side chain mimicry.  As mentioned, β-turn secondary 

structures are often associated with peptide recognition events, 5-substituted Nai analogs may 

offer advantages for mimicry of both backbone and side chain geometry and function.  The 

absence of chirality at the Nai ring 4- and 5-positions may further simplify the synthesis of 

substituted analogs.  The rigidity brought by the imidazole-2-one core, and the steric interactions 

of a 4-position substituent make 4,5-disubstitued Nai residues promising candidates for probing 

χ-space, due to the relatively limited conformational freedom of the 5-position substituent.83   

 

 

Figure 1.10: 4-Substitued Nai synthesis75 
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Figure 1.11: Nai-peptide mimic 1.31 in a β-turn 

 

 The base promoted cyclisation of aza-Pra residues 1.27 and 1.28 using sodium hydride 

gave typically a mixture of exo and endo double bond isomers.  The former isomerized to the 

thermodynamically more stable latter in the presence of silica and acid to give a single structural 

isomer 1.30.  Esters 1.27 and 1.28 (X = OR) cyclized with concomitant epimerization to give a 

racemized Nai-dipeptide enantiomers, which could be separated using chiral supercritical fluid 

chromatography (SFC).84 

1.7 Enantioenriched Nai synthesis, 5-position functionalization 

and biomedical applications of 4,5-disubstutited Nai 

containing peptides 
 

 The Nai residue offers potential for inducing turn conformations in peptides and for 

modification with substituents at both the 4 and 5 positions. Insertion of substituted Nai residues 

into bioactive peptides merits study to examine effects on efficacy, selectivity and 

pharmacokinetic properties.  The rigidity induced by the imidazole-2-one ring and the steric 

interactions between the alkene substituents offers potential to probe the Chi space of different 

side chains.   

 This thesis presents the development of methods to obtain enantiomerically enriched Nai 

residues.  Subsequently, methods are described for introducing different substituents at the Nai 

5-position, to mimic the orientation and functional groups of natural amino acid side chains 
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(Figure 1.11). Finally, the introduction of (4-methyl,5-aryl)Nai residues into peptides has been 

achieved using a solid-phase approach. 

Different C-terminal groups and cyclization conditions were explored to enable synthesis 

of enantiomerically enriched Nai dipeptides in Chapter 2a. For example, Nai dipeptides having up 

to 98:2 er were obtained by employing aza-Pra dipeptide acids. Modification of (4-methyl)Nai by 

formylation and aminomethylation chemistry using Vilsmeier-Haack and Mannich conditions 

gave respectively give (4-methyl,5-formyl)Nai and (4-methyl,5-morpholinomethyl)Nai dipeptide 

analogs.  The aldehyde of the (4-methyl,5-formyl)Nai analog was respectively oxidized and 

reduced to provide carboxylic acid and hydroxymethyl Nai residues with potential to serve as 

constrained aspartate (Asp) and homo-serine (Hse) mimics .  Reductive amination reactions on 

the (4-methyl,5-formyl)Nai analog using different amines provided a set of Nai peptides with 4-

position N-alkylaminomethyl substituents (Chapter 2b).   

In Chapter 3, palladium-catalysis was explored to add a wide range of aryl groups to the 

4-position of (4-methyl)Nai analogs. Employing a set of aryl iodides, a series of Nai peptides cross-

couplings were performed using a palladium diacetate mediated reaction. The conformational 

impact of the 5-aryl group in both Ramachandran and Chi space was studied using molecular 

dynamics.  Finally, a dipeptide mimic featuring a (4-methyl,5-p-nitrophenyl)Nai unit was 

synthetized in solution.83 

In Chapter 4, the aryl addition chemistry has been adopted to solid-support to make [(5-

aryl)Nai4]-growth hormone releasing peptide-6 (GHRP-6) analogs. Based on results with 

azapeptide counterparts, the [(5-aryl)Nai4]-GHRP-6 analogs were targeted to modulate the 

cluster of differentiation receptor (CD36). The roles of this scavenger receptor in innate immunity 

and lipid metabolism have attracted attention for development of CD36 ligands as potential 

treatments of age-related macular degeneration (AMD) as well as atherosclerosis.85 Protected 

(4-methyl)Nai-D-Phe was coupled to H-Lys(Boc)-NH-Rink amide resin and the resulting Nai 

tripeptide resin was arylated using different aryl iodides, deprotected and elongated.86  After 

removal of the protecting groups, resin cleavage and purification by HPLC,  the [(5-aryl)Nai4]-
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GHRP-6 analogs were examined for ability to minimize nitric oxide production in RAW 

macrophages cells treated with a Toll-like receptor (TLR)-2 agonist.   

As concluded in Chapter 5, Nai residues can be effectively functionalized with different 

groups to mimic the side chain of amino acids present in turn conformations.  The N-

aminoimidazole ring causes covalent and electronic constraints to restrict movement about the 

φ, ψ and χ1 dihedral angles. Moreover, the 4-methyl substituent may cause steric interactions on 

a 5-position substituent that may rigidify the χ2 dihedral angle.  The combination of these 

constraints on the backbone and side chain of the Nai surrogate has been predicted by 

computational analysis to favor positioning at the i+1 residue of a type II’ β-turn with a gauche (–

) side chain orientation. The 4,5-disubstituted Nai residues offer thus interesting potential for 

biomedical applications, because of their ability to restrict the Ramachandran24 and Chi26 space 

of bioactive peptides.   
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Figure 1.12: Schematic representation of Chapters 2-4  
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Chapter 2 

Stereoenriched Nai residues synthesis, acylation and 

formyl group derivatization 
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2.1   Imidazolone relevance 

 

Imidazolones are present as pharmacophores in many natural products.87, 88  Imidazolone 

analogs display a wide range of biological activity, including antioxidant,89 anti-hypotensive,90 

pro-β-adrenergic,91 anti-inflammatory,92 anti-oncogenic,93 anti-Parkinsonian and 

immunomodulatory properties (Figure 2.1).94  Accessible from different starting materials, 

imidazolones are important tools in medicinal chemistry. 

 

Figure 2.1: Examples of natural and synthetic imidazolones87, 90, 91 

2.2   Synthesis of imidazolone subunit 

 

Driven by the interest for imidazole-2-ones (e.g., 2.4) as components of various active 

molecules, different methods for their synthesis have been explored.  For example, oxidation of 

imidazolium salts (e.g. 2.5) have provided direct access to the imidazole-2-one system (Figure 

2.1a).95, 96 Tetra-substituted imidazolones and iminoimidazoles have been prepared by treating 

imidazolium salts with aqueous sodium hydroxide followed by N-chlorosuccinimide.95  Tetra-

substituted imidazolium salts have been converted to imidazolones using aqueous potassium 
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hydroxide in toluene at reflux, likely by a mechanism proceeding through 2-hydroxylation, ring 

opening and closure via C-N coupling.96 

 

Figure 2.2: Different strategic disconnections for imidazol-2-one synthesis 

β-Keto and β-aldehyde urea (e.g., 2.6) have been cyclized under both acidic97 and basic98 

conditions to access functionalized imidazolone subunits (Figure 2.1b).  Oxidations of imidazol-2-

thiones (e.g., 2.7) to imidazolones have used nitrous oxide in a mechanism likely implicating a 

stabilized carbene intermediate (Figure 2.1c).99  Finally, propargyl urea (e.g., 2.8) have been 

cyclized under various conditions to yield 4- and 5-substituted imidazolones (Figure 2.1d).75, 100-

104  In the latter case, different reaction conditions that can effectively promote cyclization onto 

the alkyne may be divided into three distinct categories.  Transition metal (e.g., Ag+, Au+) catalysts  

may activate the triple bond and form a metal-alkyne intermediate that undergoes cyclization.100-

102  The triple bond may be activated as a π-cation type intermediate using reagents such as 

tetrabutylammonium fluoride (TBAF).103, 104  Finally, base promoted cyclisation may entail alkyne 
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isomerization to an allene intermediate which undergoes a 5-exo- or 5-endo-dig cyclisation, 

followed by alkene isomerization.105 

2.3   Synthesis of Nai residues 

 

 N-aminoimidazol-2-one (Nai) residues can be synthesized from aza-propargylglycine (aza-

Pra) residues by base-promoted cyclization using sodium hydride; however, Cα epimerization is 

observed in the case of C-terminal esters.75, 84  The epimerization can be limited significantly using 

C-terminal amides, likely due to the formation of an amide anion (e.g., 2.9) which resists 

epimerization (Figure 2.3).75  Amides are however difficult to hydrolyze for further 

functionalization and peptide elongation.   

 

Figure 2.3: Protective effect of negative charge on the amide group  

Enantiomerically enriched Nai dipeptides were pursued by cyclization of aza-Pra residues 

possessing C-terminal groups that could disfavor epimerization and serve for further 

derivatization. Initial evidence showed that O-methyl hydroxamate 2.11 could be cyclized with 

minimal epimerization to imidazolone 2.12 in presence of stoichiometric amounts of potassium 

tert-butoxide, likely due to the presence of the acidic hydroxamate N-H, but subsequent 

derivatization proved ineffective using tBuONO in H2O,106 and this approach was abandoned 

(Figure 2.4).  Alternatively, as described in Chapter 2 (submitted for publication to Can. J. Chem.), 

different N-terminal groups proved effective for avoiding epimerization and enabling further 

carboxylate functionalization. 
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Figure 2.4: O-Methyl hydroxamate as C-terminal protecting group 

2.4   Aldehydes in peptide motifs 

 

 Examples of biologically active peptides bearing C-terminal aldehydes include inhibitors 

of cysteine,107 HIV,108 and coronavirus proteases.109  In theses inhibitors, the aldehyde can mimic 

the natural substrate amide carbonyl and form a covalent linkage with a nucleophilic sulfur or 

oxygen side chain in the active site of the protease inactivating the enzyme.110  Such aldehydes 

may be considered suicide inhibitors, because of the slow off rate of the resulting tetrahedral 

intermediate in their mechanism of action.111 

 Masked aldehydes have been used during solid-phase synthesis (SPPS) to prepare 

peptides, which upon liberation of the carbonyl group form iminium ions with neighboring amide 

nitrogen and other side chain nucleophiles to form bi-, tri- and tetracyclic heterocyclic 

systems.112, 113  For example, protected amino acid residues featuring acetal groups have been 

introduced into peptides using standard SPPS, exposed to acidic conditions to liberate the 

aldehyde for the formation of different heterocycles.114 
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 Methods to prepare peptide aldehydes at both C- and N-terminal positions have also been 

used to install different functional groups, such as unsaturated bonds by olefination reactions.115, 

116 Capacity to add aldehyde functionality to peptide frameworks has thus significant utility.    

2.5   Context 

 

 As mentioned in the previous chapter (sections 1.5 and 1.6), 4,5-disubstitued Nai residues 

are of particular interest for mimicking β-turns while maintaining side chain diversity.  The 

importance of the 4-methyl group for control of χ2 dihedral angle will be discussed further in 

chapter 3.83  Methods for introducing a variety of 4-substituents on the imidazolone ring have 

been discussed in chapter 1.75 4-Position functionalization is thus pertinent; however, 5-position 

substituents may better mimic natural amino acid side chain orientations.  Ability to introduce 

functional groups at both ring positions is of general interest from a diversity-oriented 

standpoint. In this context, enantiomerically enriched material is desired for further 

incorporation in peptides.  This chapter, along with chapters 3 and 4 will address the above issues. 

 Chapter 2 has been submitted to a Can. J. Chem. special issue in honor of Professor James 

D. Wuest. The synthesis of enantiomerically enriched Nai dipeptides has been studied by 

cyclization routes featuring substrates with C-terminal groups that minimize α-carbon 

epimerization and enable carboxylate functionalization.  In the cyclization mechanism, 

isomerization of the propargyl urea to an allenyl urea intermediate proceeds likely by 

deprotonation of the more acidic propargylic methylene proton to give propargyl anion 2.14a.117 

Isomerization to allene anion 2.14b is likely followed by urea proton extraction to give anion 2.15 

prior to nucleophilic attack on the β-carbon of the alkene (Figure 2.4).118  In principle, substrate 

2.13 may isomerize unproductively to ynamide anion 2.14c,119 the protonated product of which 

was however not observed.118  To minimize epimerization during allene formation, the originally 

used sodium hydride (pKa ~35)120 was switched to the weaker base potassium tert-butoxide (pKa 

~17);121 moreover, the solvent was changed from MeCN to the less polar THF.  Product from 

cyclization using the new conditions exhibited only the endo double bond.  Since the exocyclic 

double bond was observed by crude 1 Although ester epimerization remained significant, 
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racemization was minimized by application of two C-terminal groups, namely the carboxylic acid 

and hydrazide.  Attempts using alternative cyclization conditions will be discussed further in 

Chapter 5. 

With the enantiomerically enriched material in hand, functionalization of the 5-position 

of the imidazolone ring was explored.  Considering the importance of aldehyde containing 

peptides as discussed above, the Vilsmeier reaction was pursued using POCl3 in DMF and 

provided the 5-formyl imidazolone. Modification of the aldehyde was subsequently pursued to 

provide constrained amino acid chimeras with side chains of different amino acids [(e.g., aspartic 

acid (Asp), homoserine (Hse) and diaminobutyric acid (Dab)].  Moreover, Mannich chemistry was 

also shown to provide a means to amino methylate the imidazalone to obtain Dab analogs.  

Finally, incorporation of 4,5-disubstituted Nai residues into peptides was subsequently pursed as 

described in Chapters 4 and 5. 
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Figure 2.4: Plausible mechanism for the prototropic rearrangement of propargyl urea and 

subsequent cyclization 
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Synthesis of enantiomerically enriched 4,5-disubstituted 

N-aminoimidazol-2-one (Nai) peptide turn mimics 

Julien Poupart, Yousra Hamdane and William D. Lubell*  

Département de Chimie, Université de Montréal, C.P. 6128, Succursale Centre-Ville, Montréal, 

Québec, H3C3J7, Canada 

 

Abstract 

N-Aminoimidazolone (Nai) peptide mimics were synthesized with minimal epimerization 

by base-promoted 5-endo-dig cyclisation of aza-propargylglycine dipeptide acids and hydrazides 

followed by olefin migration. 5-Position functionalization using Mannich amino methylation and 

Vilsmeier–Haack formylation has given access to a set of restrained side chain analogs of Asp, 

Dab and Hse residues for mimicry of turn form and function.  

Introduction 

 The therapeutic potential of peptides is well recognized, because of their ease of 

synthesis, minimal toxicity and efficacy against a wide variety of biological targets. Limited 

selectivity, metabolic stability and bioavailability are however drawbacks, which impede the 

development of peptides as therapeutics.122, 123 Strategies for peptide mimicry offer means to 

retain the advantages of natural peptides while improving selectivity and pharmacokinetic 

properties.37, 124 Among the different secondary structures implicated in biomolecular 

recognition,125, 126 peptide turns have received particular attention as targets for mimicry due to 

the abundance of these natural folded sequences.6 
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Figure 2.5. (a) Natural peptide, (b) Agl (X = H), Hgl (X = OH), (c) azapeptide, (d) Aid and (e) Nai 

residues, the latter depicted with relevant dihedral angles. 

 Among strategies to favor peptide turn geometry, the α-amino-β-lactam (Agl, Figure 2.5) 

residue, so-called Friedinger-Veber lactam, employs covalent restriction between the side chain 

and amine of the N- and C-terminal residues in a dipeptide to rigidify the geometry of the 

backbone ϕ- and ψ-dihedral angles.40, 127, 128 Although challenging, the introduction of side chain 

diversity onto Agl residues has been achieved by stereoselective synthesis,7 including alcohol 

alkylation and displacement from β-hydroxyl-Agl (Hgl, Figure 2.5b, X = OH) counterparts.46, 47,11 

Alternatively, stereo-electronic restriction using semicarbazide residues can favor turn geometry 

in azapeptides, due to the combination of urea planarity and adjacent nitrogen lone pair-lone pair 

repulsion (Figure 2.5c).12,13 Although relatively flexible, azapeptide residues can be effectively 

embellished with diverse side chains by alkylation and arylation chemistry.13 By merging the 

covalent and stereo-electronic strategies of Agl and azapeptide mimicry, the N-

aminoimidazolidin-2-one (Aid)14,15 and N-aminoimidazolone (Nai)16-18 residues were conceived 

and have shown potential to induce turn conformations in model peptides (Figures 2.5d and 

2.5e).7 The Nai residues offer accessible sites for effective ring functionalization to mimic both 

the backbone and side chain orientations of peptide turns. For example, 4-methyl and 4-benzyl 

N
H

H
N

N
H

O

RO

R'O

N
H

N
H
N

N
H

O

RO

R'O

N
H

N
H

O

R

O

N

O

X

N
H

N
H

O

R

O

N N

O

N
H

N
H

O

R

O

N N

O

R5 R4

f w

y

c1

c2

a) b)

c) d)

e)



 
30 

 

Nai residues have been previously synthesized and shown by X-ray crystallography to induce type 

II’ β- and inverse γ-turns in model dipeptides.16,17 

Previously, 4-substituted Nai peptides were synthesized by routes commencing with 

alkylation of an azaGly semicarbazone with propargyl bromide to prepare an aza-propargylglycine 

(azaPra) residue.19 Sonogashira cross-couplings on the azaPra analogs were used to install various 

aryl moieties.16 4-Substituted Nai peptides were prepared by base-promoted 5-endo-dig 

cyclisation of the azaPra analogs, presumably by way of an allene intermediate,20,21 followed by 

olefin isomerization.16 Epimerization was however observed in cases of C-terminal esters, 

necessitating purification of enantiomers by preparative supercritical fluid chromatography (SFC) 

on a chiral stationary phase.22 

Substituents at the 4-position of the Nai residue mimic the trans χ1 dihedral angle 

orientation, as observed in X-ray structures of model peptides in which they influence the χ-

dihedral angle of the neighboring C-terminal residue.17 The gauche (+) and (–) χ1 orientations may 

however be better mimicked by an appendage at the Nai 5-position. In combination with a 4-

position substituent, the 5-position substituent may experience additional steric interactions that 

restrict the χ2
 dihedral angle (Figure 2.5e). Previously, palladium-catalyzed Heck chemistry was 

employed to install aryl substituents at the 5 position of (4-methyl)Nai residues in solution.83 

Furthermore, computational analysis revealed that p-MeOBz-(4-methyl,5-aryl)Nai-D-Phe-NHi-Pr 

analogs (aryl = 5-phenyl and 5-p-hydroxphenyl) adopted type II’ β-turn geometry with the χ 

dihedral angles of the groups situated in the gauche (–) conformation. Side chain gauche (+) and 

(–) orientations have been suggested to be preferred by natural side chains particularly in 

molecular recognition events.23,24  

Aiming to broaden the utility and diversity of Nai peptide mimics, approaches are herein 

reported for minimizing epimerization during cyclization and for adding a variety of substituents 

to the heterocycle 5-position. Employing azaPra peptides with C-terminal carboxylic acid and 

hydrazide groups, cyclization with minimum epimerization was achieved. Moreover, 4,5-

disubstituted Nai analogs with various hetero-alkyl appendages at the 5-position have been 

prepared by routes commencing respectively with Vilsmeier–Haack formylation and Mannich 

amino methylation.   
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Results and Discussion  

Previously, attempts were unsuccessful to convert azaPra peptides into their Nai 

counterparts using various conditions featuring catalysis with transition metal (e.g., Au and Ag) 

complexes25,26 or with cation-π activation using tetra-n-butylammonium fluoride (TBAF).27,28 

Successful 5-endo-dig cyclization was promoted using relatively strong base (e.g., NaH), but 

plagued by C-terminal ester epimerization.16,22  

The employment of alternative carboxylate derivatives has been explored to provide Nai 

analogs suitable for peptide synthesis without epimerization (Table 2.1). Although potassium tert-

butoxide in THF was found to be an effective relatively less basic condition than NaH in MeCN for 

cyclization, C-terminal ester epimerization was observed even under conditions using catalytic 

amounts of base (entries 1 and 2). Switching the C-terminal residue to the corresponding 

carboxylic acid 2.16b and hydrazide 2.16c minimized epimerization under conditions featuring 

short reaction times and excess base (entries 5 and 6).  Removal of the acidic protons of the 

hydrazide and carboxylic acid groups by tBuOK may likely protect the chiral center from 

epimerization under the rapid cyclization conditions.  
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Scheme 2.1. Examination of AzaPra dipeptide carboxylate analogs for cyclisation to Nai residues 

without epimerization  

 

Entry X tBuOK 

equiv. 

time 

(h) 

% yield 

2.17a 

er 

2.18 

1 OtBu 0.3 12 21 1:1 

2 OtBu 1.1 12 45 1:1 

3 OH 0.3 18 0 N/A 

4 OH 1.5 12 69 1:1 

5 OH 3 0.25 60 98:2b 
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6 NHNHBoc 3 0.5 96 96:4b 

a: Isolated yield; b: Determined by chiral SFC of amide 2.18. 

Table 2.1. Influences of substrate 2.16 and cyclization conditions on enantiomeric purity 

The enantiomeric purities of Nai carboxylic acid 2.17b and hydrazide 2.17c were 

ascertained after conversion to iso-propyl amide 2.18 and analysis using SFC and a chiral column 

to measure the enantiomeric ratio (er). Acid 2.17b was coupled to iso-propyl amine by way of a 

mixed anhydride intermediate using iso-butyl chloroformate (IBC) and N-methylmorpholine in 

THF.29 Hydrazide 2.17c was converted to amide 2.18 by cleavage of the Boc protection, oxidation 

to the acyl azide using tert-butyl nitrite,30 and displacement using HOAt and iso-propyl amine in 

DMF. 

 With access to enantiomerically enriched Nai dipeptides 2.17, different methods were 

examined to add a variety of substituents to the 5-position of (4-methyl)Nai dipeptides 2.17a-c. 

the biological activity of 1,3-dihydro-2H-imidazol-2-one derivatives has inspired considerable 

effort to synthesize analogs of the parent heterocycle; however, few methods have been 

developed for adding functionality to the 4- and 5-positions under mild conditions.31,32 For 

example, Friedel-Crafts acylation using AlCl3 in nitrobenzene has been a common method for 

adding ketone substituents to 1,3-dihydroimidazolones;31 however, (4-methyl)Nai dipeptides 

2.17a-c may not tolerate such harsh conditions.    

The Vilsmeier–Haack formylation was explored to add a carbonyl function to the 5-

position of (4-methyl)Nai dipeptides 2.17a-c. Aldehydes 2.19a-d were synthesized in 66-81% 

using DMF and phosphoryl chloride (Scheme 2.2). Starting material was returned however after 

attempts to use similar conditions with N,N-dimethyl acetamide and benzamide. Acylation with 

trichloro- and trifluoroacetic anhydride gave products, which were observed to degrade rapidly 

by TLC and mass spectrometry and could not be isolated.  
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Scheme 2.2. Synthesis of aldehydes 2.19a-d by way of Vilsmeier-Haack formylation and 

conversion to constrained Hse and Asp dipeptides  

 

With (5-formyl)Nai 2.19c in hand, the aldehyde was converted to (5-hydroxmethyl)Nai and 

(5-carboxy)Nai peptides 2.20 and 2.21. Constrained homo-serine (Hse) dipeptide 2.20 was 

prepared in 87 % yield by hydride addition to aldehyde 2.19c using sodium borohydride in MeOH. 

Restrained aspartate dipeptide 2.21 was obtained in 77 % yield 2.19c by oxidation of aldehyde 

using sodium chlorite and potassium phosphate monobasic in presence of a 2 M solution of 2-

methyl-2-butene in THF in a 9:1 tBuOH:water mixture (Scheme 2.2).33 The reaction sequences to 

2.20 and 2.21 were scalable and performed on multiple gram scale (experimental section). 

A set of constrained diaminobutyric acid (Dba) analogs 2.22-2.25 was next synthesized by 

reductive amination of primary and secondary amines on (5-formyl)Nai 2.19c (Scheme 2.3). Imine 

was generated by reaction of aldehyde 2.19c with the amine and a catalytic amount of acetic acid 

in a 1:1 THF:MeOH mixture, and reduced in situ by the addition of sodium cyanoborohydride.  

Secondary and tertiary amines 2.22-2.25 were synthesized in 43-68 % yields employing allyl, 

methoxyethyl, and benzyl amines, and morpholine.   
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Scheme 2.3. Synthesis of constrained Dab analogs 2.22-2.25 by reductive amination 

Based on the successful Vilsmeier-Haack formylation of (4-methyl)Nai 2.17a, the Mannich 

reaction was explored using this ester substrate to provide an alternative one-step protocol to 

prepare the constrained Dba analogs. Amino methylation of imidazalone 2.17a was initially 

studied using different acids, morpholine and paraformaldehyde in THF (Table 2.2). The mineral 

acid, HCl gave low yields of product, probably due to a competing retro-Mannich reaction (Table 

2.2, entries 1 and 2). To support this hypothesis, morpholine 2.26 was treated with HCl in THF for 

4h at 60°C; afterwards, TLC analysis showed formation of (4-methyl)Nai 2.17a. Acetic acid gave 

relatively low yield. The Lewis acid, zinc chloride provided morpholine adduct 2.26 in 60% yield 

(entry 4). Subsequent attempts to employ alternative solvents (e.g., MeOH and dioxane) as well 

as aqueous formaldehyde under the ZnCl2 conditions, all gave lower yields. With Mannich 

conditions in hand, (4-methyl)Nai hydrazide 2.17c was reacted with morpholine to give 

constrained Dba analog 2.25 in 45% yield (Scheme 2.4).   
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Entry Acid 

(equiv.) 

Solvent % 2.26a 

1 HCl (1) THF traceb 

2 HCl (3) THF 19 

3 AcOH (3) THF 15 

4 ZnCl2 (3) THF 60 

5 ZnCl2 (3) MeOH 0c 

6 ZnCl2 (3) Dioxane 31 

7 ZnCl2 (3) THF 28d 

a: Isolated yield. b: Observed by TLC. c: Starting material was recovered. d: Reaction performed 

with 40% aq. H2C=O. 

Table 2.2. Influence of conditions on Mannich reaction 

 

Scheme 2.4. Synthesis of amine 2.25 by Mannich reaction 
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In conclusion, 4,5-disubstituted Nai residues were synthetized by a route featuring 5-endo-

dig cyclisation of azaPra dipeptide acid and hydrazide derivatives to provide enantiomerically 

enriched (4-methyl)Nai analogs 2.17b and 2.17c. Subsequently, different hetero-alkyl functional 

groups were introduced onto the 5- position of (4-methyl)Nai residue using Vilsmeier-Haak 

formylation and Mannich protocols to give respective access to (5-formy)Nai 2.19 and tertiary (5-

aminomethyl)Nai 2.25-2.26 analogs. Modification of (5-formy)Nai 2.19 by oxidation, reduction 

and reductive amination has given further entry into Nai residues bearing alcohol, acid and 

secondary and tertiary amine 5-position substituents to provide constrained Hse, Asp and Dab 

analogs 2.20-2.25. Efforts are currently being pursued towards the introduction of 4,5-

disubstituted Nai residues into biologically relevant peptides and will be reported in due time. 

Experimental Section 

General 

Unless specified, all reactions were performed under argon atmosphere.  All glassware 

was stored in the oven or flame-dried and let cool under inert atmosphere prior to use.  

Anhydrous solvents were obtained either by filtration through drying columns (DCM, THF, MeCN, 

DMF) in a GlassContour system (Irvine, CA) or by distillation over CaH2 (MeOH, CHCl3).  tert-Butyl 

2-(3-((diphenylmethylene)amino)-5-methyl-2-oxo-2,3-dihydro-1H-imidazol-1-yl)-3-

phenylpropanoate was synthesized according to the literature procedure.16 All other starting 

materials, reagents and chemicals were purchased from commercial suppliers and used without 

further purification.  Reaction progress was monitored by thin layer chromatography (TLC) on 

silica gel plates, which were visualized under UV light (254 nm) and by staining with KMnO4, 2,4-

dinitrophenylhydrazine (DNPH) and bromocresol green.  Flash chromatography34 was performed 

using either 230-400 mesh silica gel from SiliCycle Inc. or on a CombiFlash instrument from 

Teledyne using RediSep Gold columns.  Nuclear magnetic resonance spectra (1H, 13C and COSY 

NMR) were recorded either on Bruker AMX 300, AV 400, AVII 400 or AMX 500 spectrometers. 

Specific rotations were determined on a Perkin-Elmer 341 polarimeter at 589 nm sodium-D line 

using a 0.5 dm cell and are reported as follow [α]λ
temperature (°C), concentration (c in g/100 mL), and 

solvent.  High resolution mass spectrometry (HRMS) was performed by the Centre régional de 
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spectroscopie de masse de l’Université de Montréal.   Analytical supercritical fluid 

chromatography (SFC) was perfomed by the Laboratoire d’analyse et de separation chirale par 

SFC de l’Université de Montréal and reported as follow: temperature, backpressure and retention 

time (Rt). 

(2-(Diphenylmethylene)-1-(prop-2-yn-1-yl)hydrazine-1-carbonyl)-D-phenylalanine (2.16b)  

 tert-Butyl (2-(diphenylmethylene)-1-(prop-2-yn-1-yl)hydrazine-1-carbonyl)-D-

phenylalaninate (15.8 g, 32.8 mmol) was dissolved in DCM (164 mL), treated with TFA (164 mL), 

and stirred for 2h. The volatiles were evaporated. The residue was co-evaporated with DCM to 

remove residual TFA. Acid 2.16b was obtained as dark yellow oil (14.0g, 33.8mmol, 100%) and 

was used directly in the next step without further purifications: Rf = 0.16 (50 % EtOAc/hexanes 

revealed by bromocresol green). 

tert-Butyl 2-((2-(diphenylmethylene)-1-(prop-2-yn-1-yl)hydrazine-1-carbonyl)-D-

phenylalanyl)hydrazine-1-carboxylate (2.16c) 

 (2-(Diphenylmethylene)-1-(prop-2-yn-1-yl)hydrazine-1-carbonyl)-D-phenylalanine (14 g, 

32.9 mmol) was dissolved in THF (329 mL). The mixture was cooled to –15°C in a 1:4 MeOH:H2O 

dry ice bath. 4-Methylmorpholine (10.9 mL, 98.7 mmol) and isobutyl chloroformate (5.12 mL, 

39.5 mmol) were sequentially added to the mixture, which was stirred for 15 min, treated with 

tert-butyl carbazate (6.52 g, 49.4 mmol), and stirred for 1.5h at –15°C. The ice bath was removed, 

and the mixture warmed to room temperature with stirring overnight. The volatiles were 

evaporated. The residue was dissolved in EtOAc and washed twice with saturated NaHCO3, twice 

with saturated NH4Cl and once with brine. The organic layer was dried over MgSO4, filtered and 

evaporated. The residue was purified by column chromatography on silica gel using 0-100 % 

EtOAc in hexanes as eluent. Evaporation of the collected fractions gave hydrazide 2.16c as yellow 

oil (12.9 g, 32.9 mmol, 68%):  Rf = 0.48 (50 % EtOAc/hexanes). 1H NMR (500 MHz, CDCl3) δ 1.47 

(s, 9H), 2.03-2.05 (m, 1H), 3.16 (dd, J = 8.2, 6.0 Hz, 1H), 3.28 (dd, J = 8.1, 6.1 Hz, 1H), 3.82 (br. d, J 

= 16 H, 1H), 4.07 (br. d. J = 18 Hz, 1H), 4.67 (d, J = 6.3 Hz, 1H) 6.48 (br. s. 1H), 6.89 (d, J = 7.3 Hz, 

1H), 7.22-7.46 (m, 13H), 8.33 (br. s. 1H). 13C NMR (126 MHz, CDCl3) δ 28.3, 29.8, 35.5, 37.3, 54.6, 
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72.4, 78.2, 81.8, 127.1, 128.3, 128.8, 128.9, 129.2, 129.6, 130.1, 130.6, 135.3, 136.6, 138.3, 155.2, 

158.6, 160.3, 171.2. HRMS calc. for C31H34N5O4 [M+H+] 540.2605, found 540.2601. 

(R)-2-(3-((Diphenylmethylene)amino)-5-methyl-2-oxo-2,3-dihydro-1H-imidazol-1-yl)-3-

phenylpropanoic acid (2.17b) 

 Acid 2.16b (2.66 g, 6.25 mmol)  was dissolved in dry THF (40 mL) and treated with 

potassium tert-butoxide (1.12 g, 10.0 mmol), stirred for 15 min, and quenched carefully with 

saturated NH4Cl until the dark brown color disappeared. The mixture was transferred to a 

separatory funnel and extracted with DCM (3 x 50 mL). The aqueous layer was acidified with 1N 

HCl to pH = 3 and extracted with DCM (50 mL). The organic layers were combined, washed with 

brine (100 mL), dried over MgSO4, filtered and evaporated to a residue that was purified by 

column chromatography on silica gel eluting with 0-20 % MeOH in DCM. Evaporation of the 

collected fractions gave imidazolone 2.17b as yellow oil (1.60 g, 60 %): Rf = 0.29 (50 % 

EtOAc/hexanes); [α]D
23 45.7 (c 0.75, CHCl3),  1H NMR (500 MHz, CDCl3) δ 1.37 (s, 3H), 3.03 (dd, J = 

10.7, 2.9 Hz, 1H), 3.57 (t, J = 12.8 Hz, 1H), 4.44 (dd, J = 13.5, 6.3 Hz, 1H), 5.56 (s. 1H), 6.93-766 (m, 

15H). 13C NMR (126 MHz, CDCl3) δ 32.0, 37.1, 110.3, 126.2, 127.4, 128.4, 128.5, 128.9, 129.1, 

129.2, 129.5, 130.2, 132.6, 137.7, 163.4, 169.2. HRMS calc. for C26H24N3O3 [M+H+] 426.1812, 

found 426.1807. 

(R)-tert-Butyl 2-(2-(3-((diphenylmethylene)amino)-5-methyl-2-oxo-2,3-dihydro-1H-imidazol-

1-yl)-3-phenylpropanoyl)hydrazine-1-carboxylate (2.17c) 

 Hydrazide 2.16c (2.35 g, 4.35 mmol) was dissolved in THF (90 mL), treated with potassium 

tert-butoxide (976 mg, 8.70 mmol), stirred for 30 min, and treated with water (90 mL). The 

reaction mixture was stirred for 5 min and extracted with EtOAc (3 x 100 mL). The combined 

organic layer was washed with brine (1 x 100 mL), dried with MgSO4, filtered and evaporated to 

give a residue that was purified by column chromatography on silica gel using a gradient of 0-100 

% EtOAc in hexanes.  Evaporation of the collected fractions gave imidazolone 2.17c as yellow low-

melting solid (2.26 g, 96 %): [α]D
23 106.3 (c 0.70, CHCl3)  1H NMR (400 MHz, CDCl3) δ 1.46 (s, 9H), 

1.50 (s, 3H), 3.30 (br. s., 1H), 3.63-3.70 (m, 1H), 4.50 (m, 1H), 5.44 (s, 1H), 6.48 (br s, 1H), 7.03-

7.63 (m, 15H), 9.59 (br. s.,1H). 13C NMR (75 MHz, CDCl3) δ 10.4, 28.3, 35.1, 77.4, 81.5, 106.8, 

https://app.findmolecule.com/labBook/index?experienceId=56873#reagent-row0
https://app.findmolecule.com/labBook/index?experienceId=56873#solvent-row0
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119.2, 127.0, 128.3, 128.7, 128.8, 128.9, 129.1, 129.3, 131.1, 134.8, 137.1, 137.2 150.4, 155.0, 

166.3, 170.0. HRMS calc. for C31H34N5O4 [M+H+] 540.2605, found 540.2609. 

 (R)-2-(3-((Diphenylmethylene)amino)-5-methyl-2-oxo-2,3-dihydro-1H-imidazol-1-yl)-N-

isopropyl-3-phenylpropanamide (2.18) 

Acid 2.17b (60 mg, 0.14 mmol) was dissolved in THF (2 mL). The solution was cooled to –15 °C 

using a MeOH:water:dry ice bath. Iso-butyl chloroformate (28 µL, 0.14 mmol) was added 

dropwise to the cooled solution, which was stirred for 15 min, and treated with iso-propylamine 

(46 µL, 0.56 mmol).  The ice bath was removed. The reaction mixture warmed to room 

temperature with stirring over 2h.  The reaction mixture was partitioned between water (5 mL) 

and EtOAc (5 mL).  The layers were separated. The aqueous layer was extracted with EtOAc (3 x 

5 mL). The organic layers were combined, washed with saturated NaHCO3 (3 x 10 mL), saturated 

NH4Cl (3 x 10 mL) and brine (10 mL), dried with magnesium sulfate, filtered and evaporated to 

give a residue that was purified by column chromatography on silica gel eluting with 0-100 % 

EtOAc in hexanes. Evaporation of the collected fractions gave amide 2.18 as yellow low-melting 

solid (53 mg, 81 %). The characterisation of 2.18 was consistent with that previously reported.16 

The enantiomeric ratio of 98:2 was determined by chiral SFC analysis (OJ-H column, 5-90 % 

MeOH/H2O over 15 min. Rt major = 5.20 min, Rt minor = 7.40 min). 

 Hydrazide 2.17c (50.0 mg, 0.09 mmol) was dissolved in dry CH2Cl2 (1 mL), treated with 

trifluoroacetic acid (140 μL, 1.85 mmol), and stirred at room temperature for 2h. The volatiles 

were evaporated. The residue was dissolved in DCM (10 mL), washed with saturated NaHCO3 (3 

x 5 mL) and brine (1 x 5 mL), dried over MgSO4, filtered and evaporated. The residue was dissolved 

in DMF (1 mL), treated with tert-butyl nitrite (14 mL, 0.1 mmol) and HOAt (38 mg, 0. 3 mmol), 

stirred at room temperature for 30 min, treated with iso-propylamine (24 mL, 0. 3 mmol) and 

DIEA (48.4 µL, 0.3 mmol), and stirred for 18h.  Water (5 mL) was added to the mixture, which was 

extracted with DCM (3 x 10 mL). The organic layers were combined, washed with saturated 

NaHCO3 (3 x 10 mL), saturated NH4Cl (3 x 10 mL) and brine (10 mL), dried over magnesium sulfate 

and evaporated to a residue that was purified by column chromatography on silica gel eluting 

with 0-100 % EtOAc in hexanes.  Evaporation of the collected fractions gave amide 2.18 as yellow 

low-melting solid (30 mg, 69 %).  The characterisation of 2.18 was consistent with that previously 

https://app.findmolecule.com/labBook/index?experienceId=46989#reagent-row0
https://app.findmolecule.com/labBook/index?experienceId=46989#reagent-row2
https://app.findmolecule.com/labBook/index?experienceId=46989#reagent-row3
https://app.findmolecule.com/labBook/index?experienceId=46989#reagent-row5
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reported.16 The enantiomeric ratio of 96:4 was determined by chiral SFC analysis using the same 

conditions described above (Rt major = 5.15 min Rt minor = 7.51). 

tert-Butyl 2-(3-(benzhydrylidene)amino)-4-formyl-5-methyl-2-oxo-2,3-dihydro-1H-imidazol-

1-yl)-3-phenylpropanoate (2.19a) 

 A solution of Nai ester 2.17a (1 g, 2.08 mmol) in DMF (20 mL) was cooled to 0 °C, and 

treated dropwise with POCl3 (0.60 mL, 6 mmol) over 10 min. The cooling bath was removed. The 

reaction mixture warmed to room temperature. After stirring for 1h, the reaction mixture was 

treated with K2CO3 (1.39 g, 10.0 mmol), stirred for 1h, and poured into saturated ammonium 

chloride (40 mL). The phases were separated. The aqueous layer was extracted with EtOAc (3 x 

20 mL). The organic layers were combined, washed with saturated ammonium chloride (3 x 20 

mL) and brine (30 mL), dried over magnesium sulfate, filtered and evaporated to a residue, that 

was purified by column chromatography on silica gel eluting with 0-100% EtOAc in hexanes. 

Evaporation of the collected fractions afforded aldehyde 2.19a (826 mg, 81%) as orange oil; Rf = 

0.76 (50 % EtOAc/hexanes); 1H NMR (300 MHz, CDCl3) δ 1.47 (s, 9H), 1.78 (s, 3H), 3.23 (dd, J = 

11.0, 3.1 Hz, 1H), 3.34 (dd, J = 9.9, 4.1 Hz, 1H), 4.37 (dd, J = 6.8, 4.0 Hz, 1H), 6.67-7.72 (m, 15H), 

9.59 (s, 1H). 13C NMR (126 MHz, CDCl3) δ 8.9, 28.0, 34.8, 58.4, 83.2, 119.5, 127.0, 128.1, 128.3, 

128.7, 128.8, 129.1, 129.4, 129.6, 130.0, 131.8, 135.6, 136.6, 137.2, 146.0, 162.7, 167.0. HRMS 

calc. for C31H32N3O4 [M+H]+ 510.2393, found 570.2389. 

(R)-2-(3-((Diphenylmethylene)amino)-4-formyl-5-methyl-2-oxo-2,3-dihydro-1H-imidazol-1-

yl)-3-phenylpropanoic acid (2.19b) 

 Employing the protocol for the synthesis of (4-methyl,5-formyl)Nai 2.19a, acid 2.17b (1.00 

g, 2.21 mmol) in DMF (25 mL) was reacted with POCl3 (0.63 mL, 6.63 mmol). The residue was 

purified by column chromatography on silica gel eluting with 0-100 % EtOAc in hexanes. 

Evaporation of the collected fractions afforded aldehyde 2.19b as orange solid (236 mg, 66%): Rf 

0.21 (80 % EtOAc/hexanes); [α]D
23 229.1 (c 0.75, CHCl3); mp = 134-13.8 °C. 1H NMR (300 MHz, 

CDCl3) δ 1.46 (s, 3H), 3.21-3.35 (m, 2H), 4.52-4.55 (m, 1H), 6.66-765 (m, 15H), 9.15 (br. s., 1H), 

9.44-9.47 (m, 1H). 13C NMR (125 MHz, CDCl3) δ 27.6, 27.8, 29.7, 53.4, 87.2, 111.2, 113.5, 115.7, 

118.0, 127.9, 128.5, 128.6, 129.0, 129.1, 129.2, 129.3, 133.4, 136.9, 159.7, 160.0, 160.3, 199.9. 

HRMS calc. for C27H24N3O4 [M+H]+ 454.1767, found 454.1812. 

https://app.findmolecule.com/labBook/index?experienceId=45596#solvent-row0
https://app.findmolecule.com/labBook/index?experienceId=45596#reagent-row1
https://app.findmolecule.com/labBook/index?experienceId=45596#reagent-row2
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tert-Butyl (R)-2-(2-(3-((diphenylmethylene)amino)-4-formyl-5-methyl-2-oxo-2,3-dihydro-1H-

imidazol-1-yl)-3-phenylpropanoyl)hydrazine-1-carboxylate (2.19c) 

 Employing the protocol for the synthesis of (4-methyl,5-formyl)Nai 2.19a, hydrazide 2.17c 

(880 mg, 1.63 mmol) in DMF (8 mL) was reacted with POCl3 (0.49 mL, 4.89 mmol). The residue 

was purified by column chromatography on silica gel eluting with 0-100 % EtOAc in hexanes. 

Evaporation of the collected fractions afforded aldehyde 2.19c as orange oil (236 mg, 66%): Rf = 

0.41 (50 % EtOAc/hexanes); [α]D
23 173.2 (c 1.30, CHCl3);  1H NMR (500 MHz, CDCl3) δ 1.46 (s, 9H), 

1.82 (s, 3H), 3.34 (br s, 2H), 4.60 (br s, 1H) 6.69 (br. s, 2H), 7.12-7.69 (m, 14H) 9.17 (br. s, 1H) 9.40 

(s, 1H). 13C NMR (126 MHz, CDCl3) δ 8.9, 28.3, 34.9, 57.4, 81.94, 82.3, 119.9, 127.4, 127.7, 128.3, 

128.5, 129.0, 129.2, 129.3, 129.7, 130.0, 132.2, 135.4, 136.1, 146.8, 151.3, 154.3, 155.0, 168.4. 

HRMS calc. for C32H34N5O5 [M+H+] 568.2555, found 568.2550. 

(R)-2-(3-((Diphenylmethylene)amino)-4-formyl-5-methyl-2-oxo-2,3-dihydro-1H-imidazol-1-

yl)-N-isopropyl-3-phenylpropanamide (2.19d) 

 Employing the protocol for the synthesis of (4-methyl,5-formyl)Nai 2.19a, amide 2.18 (1g,  

0.50 mmol) in DMF (5 mL) was reacted with POCl3 (0.15mL, 1.50 mmol). The residue was purified 

by column chromatography on silica gel eluting with 0-100 % EtOAc in hexanes. Evaporation of 

the collected fractions afforded aldehyde 2.19d as orange oil (236 mg, 66%): Rf = 0.31 (35 % 

EtOAc/hexanes); [α]D
23 102 (c 0.51, CHCl3); 1H NMR (400 MHz, CDCl3) δ 1.41 (d, J = 6.6 Hz, 3H), 

1.47 (d, J = 6.5 Hz, 3H), 2.27 (s, 3H), 3.55 (dd, J = 13.7, 3.9 Hz, 1H), 3.77 dd, J = 13.4, 2.2 Hz, 1H), 

4.29. (sext, J = 6.7 Hz, 1H), 4.73 (dd, J = 6.6, 4.1 Hz, 1H), 7.1-8.0 (m, 15H), 9.81 (s, 1H). 13C NMR 

(100 MHz, CDCl3) δ 9.2, 22.5, 35.4, 40.1, 77.0, 119.9, 127.2, 128.3, 128.5, 128.6, 128.8, 129.0, 

129.7, 130.0, 132.1, 135.5, 136.4, 136.8, 167.9. HRMS calc. for C30H31N4O3 [M+H+] 495.2391, 

found 495.2401. 

tert-Butyl (R)-2-(2-(3-((diphenylmethylene)amino)-4-(hydroxymethyl)-5-methyl-2-oxo-2,3-

dihydro-1H-imidazol-1-yl)-3-phenylpropanoyl)hydrazine-1-carboxylate (2.20) 

 A round bottomed flask containing a solution of aldehyde 2.19c (12.00 g, 21.1 mmol) in 

MeOH (200 mL) was cooled to 0oC using an ice bath. The solution was treated portion-wise with 

sodium borohydride (800 mg, 21.1 mmol). The cooling bath was removed. The reaction mixture 

warmed to room temperature. After stirring over 1h, water (300 mL) was added to the mixture, 

https://app.findmolecule.com/labBook/index?experienceId=45596#reagent-row1
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which was extracted with EtOAc (3 x 200 mL). The organic layers were combined, washed with 

brine (300 mL), dried over MgSO4, filtered and evaporated to a residue, that was purified by 

column chromatography on silica gel eluting with 0-100 % EtOAc in hexanes. Evaporation of the 

collected fractions afforded alcohol 2.20 (10.0 g, 77%) as dark yellow oil: Rf = 0.20 (50% 

EtOAc/hexane); [α]D
23 45.9 (c 0.60, CHCl3);  1H NMR (300 MHz, CDCl3) δ 1.47 (s, 9H), 1.63 (s, 3H), 

2.43 (br. s, 1H), 3.14-3.18 (m, 1H), 3.37-3.45 (m, 1 H), 4.36 (m, 3H), 6.18 (br. s, 1H), 6.67-7.67 (m, 

15H) 9.08 (br. s, 1H). 13C NMR (75 MHz, CDCl3) δ 8.5, 28.1, 34.9, 81.5, 77.2 117.0, 118.5, 126.9, 

128.1, 128.3, 128.6, 128.7, 128.9, 129.4, 131.8, 135.7, 136.6, 137.0, 146.4, 154.8, 169.7, 174.9. 

HRMS calc. for C32H36N5O5 [M+H+] 570.2711, found 570.2683. 

(R)-3-(1-(2-(tert-Butoxycarbonyl)hydrazinyl)-1-oxo-3-phenylpropan-2-yl)-1-

((diphenylmethylene)amino)-4-methyl-2-oxo-2,3-dihydro-1H-imidazole-5-carboxylic acid 

(2.21) 

 A round bottomed flask containing a solution of aldehyde 2.19c (2.00 g, 3.52 mmol) in a 

mixture of tert-butanol (32.0 mL) and H2O (3.20 mL) was cooled to 0°C using an ice bath. The 

cooled solution was treated sequentially with potassium phosphate monobasic (1.03 mL, 17.60 

mmol), a 2 M solution of 2-methyl-2-butene in THF (8.81 mL, 17.60 mmol) and sodium chlorite 

(technical grade 80%, 1.27 g, 14.1 mmol). The reaction mixture was stirred for 4h, at which point 

disappearance of starting material was observed by TLC and a new more polar product was 

observed near the baseline and stained yellow with bromocresol green. Saturated NH4Cl (100 

mL) was added to the reaction mixture.  The phases were separated. The aqueous phase was 

extracted with EtOAc (3 x 10 mL). The organic layers were combined, washed with brine (100 

mL), dried over MgSO4, filtered, and evaporated to a residue, which was purified by column 

chromatography on silica gel eluting with 0-20 % MeOH in DCM. Evaporation of the collected 

fractions gave 2.21 as yellow solid (1.58 g, 77%): Rf = 0.29 (60%  EtOAc/hexanes); [α]D
23 215.0 (c 

0.60, CHCl3); mp 153.7-157.2 °C. 1H NMR (400 MHz, CDCl3) δ 1.44 (overlapping s, 3H and 9H), 

3.25-3.35 (m, 2H), 4.49-4.50 (m, 1H), 6.17 (br. s, 1H) 6.49-7.63 (m, 15H), 9.15 (br. s, 1H). 13C NMR 

(75 MHz, CDCl3) δ 9.9, 28.1, 29.7, 34.6, 77.2, 81.9, 113.3, 127.1, 128.1, 128.4, 128.6, 128.7, 128.8, 

129.0, 129.5, 129.8, 132.0, 123.8, 135.4, 136.1, 136.3, 155.1, 162.2, 168.6. HRMS calc. for 

C32H34N5O6 [M+H+] 584.2504, found 584.2504. 
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 tert-Butyl (R)-2-(2-(4-(allylaminomethyl)-3-((diphenylmethylene)amino)-5-methyl-2-oxo-

2,3-dihydro-1H-imidazol-1-yl)-3-phenylpropanoyl)hydrazine-1-carboxylate (2.22) 

 Aldehyde 2.19c (150 mg, 0.26 mmol) was reacted with allylamine (58 µL, 0.79 mmol), 

sodium cyanoborohydride (82 mg, 1.3 mmol) and acetic acid (1 µL, 0.02 mmol), in a 1:1 

THF/MeOH mixture (1 mL).  The mixture was heated to 65°C for 4 h and then quenched with 

water (1 mL). The reaction mixture was cooled to room temperature and extracted with EtOAc 

(3 x 5 mL). The combined organic layers were washed with saturated NaHCO3 (1 x 10 mL) and 

brine (1 x 10 mL). The organic layer was dried over magnesium sulfate and evaporated to a 

residue that was purified by column chromatography on silica gel eluting with a gradient of 0-

100 % EtOAc in hexanes. Evaporation of the collected fraction gave amine 2.22 as yellow oil (67 

mg, 43%).Rf = 0.22 (60% EtOAc/hexanes); [α]D
23 177.9 (c 0.95, CHCl3); 1H NMR (300 MHz, CDCl3) 

δ 1.48 (s, 9H), 1.55 (s, 3H), 2.96-3.17 (m, 3H), 3.41-3.63 (m, 3H), 4.32-4.35 (m, 1H), 5.05-5.11 (m, 

2H), 5.78-5.87 (m, 1H), 6.14 (br. s, 1H), 6.78-7.69 (m, 15H); 13C NMR (125 MHz, CDCl3) δ 8.6, 28.3, 

35.1, 40.9,  51.7, 81.5, 116.7, 117.2, 126.9, 127.0, 127.8, 128.1, 128.4, 128.7, 128.8, 129.1, 129.3, 

129.5, 129.8, 131.8, 135.8, 136.8, 137.4, 139.8, 146.6, 154.9, 170.0, 175.1. HRMS calc. for 

C35H40N6O4Na [M+Na+] 631.3003, found 631.3001.   

tert-Butyl (R)-2-(2-(4-(methoxyethylaminomethyl)-3-((diphenylmethylene)amino)-5-methyl-

2-oxo-2,3-dihydro-1H-imidazol-1-yl)-3-phenylpropanoyl)hydrazine-1-carboxylate (2.23) 

 Employing the protocol for the synthesis of amine 2.22, aldehyde 2.19c (50 mg, 0.10 

mmol) was reacted with methoxyethylamine (38 µL, 0.44 mmol), sodium cyanoborohydride (27 

mg, 0.44 mmol) and acetic acid (1 µL, 0.02 mmol) in a 1:1 THF/MeOH mixture (1 mL). The residue 

was purified by column chromatography on silica gel eluting with a gradient of 0-100 % EtOAc in 

hexanes. Evaporation of the collected fraction gave amine 2.23 as yellow oil (40 mg, 60%). Rf = 

0.16 (80 % EtOAc/hexanes); [α]D
23 173.4 (c 0.60, CHCl3); 1H NMR (300 MHz, CDCl3) δ 1.47 (s, 11H), 

1.56, 3H), 2.55 (t, J = 5.5 Hz, 2H), 3.08-3.18 (m, 1H), 3.32 (s, 3H), 3.38-3.66 (m, 5H), 4.31-4.34 (m, 

1H), 6.17 (br.s, 1H), 6.76-6.77 (m, 2H), 7.14-7.53 (m, 11H), 7.66-7.69 (m, 2H). 13C NMR (125 MHz, 

CDCl3) δ 1.9, 8.6, 28.1, 35.0, 40.7, 49.9, 77.3 (overlapping with the CDCl3 signal but confirmed by 

Dept), 81.5, 116.2, 116.4, 126.8, 128.0, 128.3, 128.6, 128.7, 129.0, 129.3, 129.7, 131.7, 135.7, 
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136.3, 136.6, 137.2, 146.7, 154.8, 169.9, 175.0. HRMS calc. for C35H42N6O5Na [M+Na+] 649.3109, 

found 649.3120. 

tert-Butyl (R)-2-(2-(4-(benzylaminomethyl)-3-((diphenylmethylene)amino)-5-methyl-2-oxo-

2,3-dihydro-1H-imidazol-1-yl)-3-phenylpropanoyl)hydrazine-1-carboxylate (2.24) 

 Employing the protocol for the synthesis of amine 2.22, aldehyde 2.19c (50 mg, 0.10 

mmol) was reacted with benzylamine (48 µL, 0.44 mmol), sodium cyanoborohydride (27 mg, 0.44 

mmol) and acetic acid (1 µL, 0.02 mmol) in a 1:1 THF/MeOH mixture (1 mL). The residue was 

purified by column chromatography on silica gel eluting with a gradient of 0-100 % EtOAc in 

hexanes. Evaporation of the collected fraction gave benzylamine 2.24 (43 mg, 68 % yield). Rf = 

0.11 (80 % EtOAc/hexanes); [α]D
23 181.5 (c 0.95, CHCl3); 1H NMR (500 MHz, CDCl3) δ 1.37 (s, 3H), 

1.45 (s. 9H), 3.165 (br. s. 1H)  3.45 (d, J 14.1 Hz) ), 3.14-3.58 )m, 2H), 6.03 (br. s, 1H). 6.29 (br. s, 

1H), 6.80-7.68 (m, 20H).  13C NMR (126 MHz, CDCl3) δ 8.5, 28.2, 30.0, 40.8, 58.6, 81.4, 116.06, 

117.1, 126.8, 127.7, 128.0, 128.03, 128.6, 128.7, 129.1, 1292, 109.4, 129.7, 135.8, 136.67, 138.67, 

146.5, 154.8, 169.9, 175.0  HRMS calc. for C39H42N6O4 [M+H+] 659.3340, found 659.3343.   

tert-Butyl (R)-2-(2-(4-(morpholinomethyl)-3-((diphenylmethylene)amino)-5-methyl-2-oxo-

2,3-dihydro-1H-imidazol-1-yl)-3-phenylpropanoate (2.26) 

 In a sealed vessel, a solution of paraformaldehyde (325 mg, 4.0 mmol) and morpholine 

(0.35 mL, 4.04 mmol) in THF (5 mL) was heated to 60 °C, and stirred for 15 min. The vessel was 

cooled to room temperature, the cap was exchanged for a rubber stopper under nitrogen, and 

the reaction mixture was treated with a solution of Nai ester 2.17a (241 mg, 0.5 mmol) in THF (2 

mL), that was transferred by syringe. The reaction mixture was treated with ZnCl2 (76 mg, 0.56 

mmol), heated to 60oC, stirred for 4 h, cooled to room temperature, and quenched with water (1 

mL). The reaction mixture was transferred to a separatory funnel and partitioned between EtOAc 

(50 mL) and water (25 mL). The layers were separated.  The organic layer was washed with 

saturated NaHCO3 (3 x 30 mL) and brine (30 mL), dried over magnesium sulfate, filtered, and 

evaporated to a residue, that was purified by column chromatography on silica gel eluting with 

30-100% EtOAc in hexane as eluent. Evaporation of the collected fractions gave morpholine 2.26 

as yellow oil (174 mg, 60 %) as yellow oil. Rf = 0.16 (80 % EtOAc/hexanes); [α]D
23 173.4 (c 0.60, 
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CHCl3); 1H NMR (300 MHz, CDCl3) δ 1.40 (s, 9H), 1.51 (s, 3H), 2.25-2.28 (m, 4H), 3.05-3.9 (m, 1H), 

3.19-3.22 (m, 2H), 3.38-3.43 (m, 1H), 3.65-3.69 (m, 4H), 4.27-4.4.33 (m, 1H), 6.69-7.66 (m, 15H);  

13C NMR (100 MHz, CDCl3) δ 8.7, 28.0, 34.9, 50.9, 53.0, 57.6, 67.0, 82.0, 114.3, 117.2, 126.2, 127.5, 

128.0, 128.2, 128.8, 129.2, 129.3, 129.6, 131.0, 136.4, 137.5, 138.1, 146.4, 168.4, 174.3. HRMS 

calc. for C35H40N6O5
107Ag [M+Ag+] 687.2095, found 687.2017; calc. for C35H40N6O5

109Ag [M+Ag+] 

689.2097, found 689.2119. 

 

tert-Butyl (R)-2-(2-(3-((diphenylmethylene)amino)-5-methyl-4-(morpholinomethyl)-2-oxo-

2,3-dihydro-1H-imidazol-1-yl)-3-phenylpropanoyl)hydrazine-1-carboxylate (2.25)   

 Employing the protocol described for the synthesis of amine 2.22, aldehyde 2.19c (60 mg, 

0.11 mmol) was reacted with morpholine (46 mL, 0.53 mmol), sodium cyanoborohydride (33 mg, 

0.53 mmol) and acetic acid (1 µL, 0.02 mmol) in a 1:1 THF/MeOH mixture (1 mL).  The residue 

was purified by column chromatography on silica gel eluting with a gradient of 0-100 % EtOAc in 

hexanes. Evaporation of the collected fraction gave amine 2.25 as yellow oil (38 mg, 54%). Rf = 

0.25 (60 % EtOAc/hexanes); [α]D
23 105.8 (c 0.75, CHCl3); 1H NMR (500 MHz, CDCl3) δ 1.46 (s, 9H), 

1.51 (s, 2H), 1.62 (s, 1H), 2.20 (br.s, 3H), 2.80-3.43 (m, 3H), 3.34-3.43 (m, 2H), 3.65-3.69 (m, 4H), 

3.90-3.92 (m, 1H), 4.33-4.38 (m, 1H), 6.61 (br.s, 1H), 6.77 (br.s, 1H), 7.07-7.17 (m, 3H), 7.37-7.51 

(m, 7H), 7.62-7.7 (m, 4H). 13C NMR (126 MHz, CDCl3) δ 8.8, 28.3, 29.8, 35.2, 50.8, 50.9, 53.0, 65.4, 

67.0, 81.6, 126.7, 127.9, 128.4, 128.6, 129.1, 129.3, 129.7, 129.9, 131.6, 136.2, 137.0, 137.4, 

147.0, 154.9, 170.1, 175.5. HRMS calc. for C36H42N6O5Na [M+Na+] 639.3289, found 639.3274. 

Employing the protocol for 2.26, paraformaldehyde (328 mg, 4.04 mmol), morpholine 

(0.35 mL, 4.04 mmol), Nai peptide 2.17c (243 mg, 0.51 mmol) and ZnCl2 (76 mg, 0.56 mmol) were 

reacted. After aqueous work up and purification by column chromatography on silica gel eluting 

with 30-100% EtOAc in hexane as eluent, evaporation of the collected fractions gave morpholine 

2.25 as yellow oil (147 mg, 45%), which exhibited identical characteristics as material made by 

the reductive amination protocol described above. 
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Chapter 3: 

Solution-phase synthesis of (4-Me, 5-Aryl)Nai residues 
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3.1   Importance of aromatic residues in turn structure 

 

 Aromatic residues (Phe, Tyr, His and Trp) are known to stabilize β-turn conformers, due to 

steric, hydrophobic and amide (n-π*) interactions.129-135  In the case of histidine, especially at the i 

and i+2 positions, turn conformation stabilization may result from intramolecular hydrogen bonds 

with the imidazole side chain.32, 136  Aromatic residues in β-turns are featured in the active 

conformations of many biologically relevant peptides.  For example, the opioid neuropeptides, Met- 

and Leu-enkephalin (H-Tyr-Gly-Gly-Phe-Met-OH and H-Tyr-Gly-Gly-Phe-Leu-OH) have been 

suggested to adopt β-turn conformers with tyrosine and phenylalanine residues at the i and i+3 

positions, respectively.137  Angiotensin II (H-Asp-Arg-Val-Tyr-Ile-His-Pro-Phe-OH) is a 

vasoconstrictive peptide hormone purported to feature a β-turn with the tyrosine residue at the i+1 

position.138  Somatostatin (H-Ala-Gly-Gly-Lys-Asn-Phe-Phe-Trp-Lys-Phe-Thr-Ser-Cys-OH) is a peptide 

hormone which inhibits insulin and glucagon secretion, and is rigidified by a disulfide bridge that 

favors a β-turn conformer with the Phe7 and Trp8 at the i and i+1 positions, respectively.139  

Bradykinin (H-Arg-Pro-Pro-Ser-Pro-Phe-Arg-OH) is another vasoconstrictive peptide hormone in 

which the Phe residue is predicted to sit at the i+3 position of a β-turn.140  β-Turn peptide mimics 

possessing suitably oriented aromatic moieties may offer utility as tools to study the backbone and 

side chains of such biologically active peptides in programs oriented towards peptide-based drug 

discovery.  

3.2   Chi Space 

 

  The orientations of backbone (ϕ, ω and ψ) and side chain (χ) dihedral angles are critical for 

peptide recognition by target receptors. The term “Chi space” was introduced by Professor Victor 

Hruby to describe the ensemble of side chain locations within a peptide (Figure 3.1).26 Notably, 

rotation about the χ1 dihedral angle provides three major energy minima: gauche (-), trans and 

gauche (+) (Figure 3.2). The energy differences between the three minima is relatively low. Most L 

amino acids adopt preferably the gauche (-) conformation.26  
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Figure 3.1: Different χ dihedral angles 

 

Figure 3.2: Different conformers around the χ1 dihedral angle for L (top) and D (bottom) amino 

acids 

 Introduction of a β-substituent onto the side chain and cyclisation, both have been used to 

increase rotational barriers giving rise to significant populations of certain conformers.25, 26  For 

mimicry of natural amino acid side chain orientations, the gauche (–) conformation is of particular 

interest.  Several phenylalanine mimics have been designed to prefer the gauche (–) conformation 

(Figure 3.3).141  For example, introduction of a (3S)-methyl group on the β-carbon of phenylalanine 
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3.1 rigidified the χ1 dihedral angle by steric constraint to yield the gauche (–) conformer.  Indanyl 

glycine (Ing) 3.2 locks χ1
 and χ2 dihedral angles by a covalent constraint to favors the gauche (–) 

conformer.141  Covalent constraint by cyclisation between the Cα and aromatic Cortho of Phe has 

provided carboxyl-aminotetraline (Atc) 3.3, which cannot adopt the gauche (+) and prefers the 

gauche (–) and trans conformations with equal energy levels.141  

 

Figure 3.3. Rigidified phenylalanine mimics with a preference for the gauche (–) conformation 

3.3   Aryl Imidazolones 

 

The imidazolone is a structural motif possessing a wide range of different biological 

properties, and utility in medicinal chemistry.89, 93, 94 Substitution onto the imidazolone heterocycle 

core is however challenging. Previously, 4-arylmethyl-N-aminoimidazol-2-ones (4-arylmethyl-Nai) 

analogs were synthesized by a route featuring Sonogashira cross-coupling onto an aza-

propargylglycine (aza-Pra) residue (e.g., 3.4) to give an aryl alkyne (e.g., 3.5) followed by base 

promoted cyclisation, and acid mediated ester solvolysis to yield the Nai dipeptide acid (e.g., 3.6, 

Figure 3.4).75, 82 Epimerization of the C-terminal ester was however caused by the relatively strong 

base (sodium hydride) which was needed to accomplish the cyclisation.  The arylmethyl substituent 

in the 4-position of the Nai product (e.g., 3.6) is oriented in trans χ-geometry. On the other hand, 



 
57 

 

an aryl group at the 5-position of the heterocycle may effectively mimic gauche χ-geometry 

characteristic of natural amino acid side chain orientations.   

 

Figure 3.4: 4-arylmethyl-Nai synthesis75 

 Aryl iodides have previously been reacted with ordinary imidazole-2-ones 3.7 using 

palladium catalysis (Figure 3.5).142 Experimental and computational analysis of the aryl addition 

reaction revealed that the mechanism was not a typical Heck cross-coupling.  Instead, C-H activation 

of the alkene proton of imidazole-2-one 3.7 was suggested to be assisted by sodium acetate 

followed by reductive elimination to give the arylated product 3.8.142  Although aryl bromides 

reacted with 3.7, longer reaction times were needed for the aryl addition and lower yields were 

obtained.142   

 

Figure 3.5: Arylation of imidazole-2-one 3.7 by palladium-catalyzed C-H activation 
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In the arylation, certain alkyl substituents were tolerated on the nitrogen of urea 3.7; 

however, imidazole-2-ones with alkene substituents were not studied by the authors.142  The utility 

of the method was demonstrated by the synthesis of dibromophakellstatin (3.9, Figure 3.6), an 

alkaloid isolated from the marine sponge Phakellia Mauritania.131  

 

Figure 3.6: Rac-dibromophakellstatin (3.9) 

3.4   Context 

 

This chapter has been published in the journal Heterocycles and in a Proceeding of the 24th 

American Peptide Symposium. Synthetic methods are presented for the preparation of (5-aryl)Nai 

residues.  Solution-phase chemistry has been developed employing a palladium-catalyzed arylation 

reaction on (4-methyl)Nai residues. A wide range of coupling partners has been introduced to 

prepare a diverse series of (4-methyl-5-aryl)Nai peptides.  To the best of our knowledge, the 

described process constitutes the first synthetic route to (5-aryl)Nai residues and the first example 

of imidazolone arylation in presence of a 4-position substituent.  Among the coupling conditions 

which were explored, best results were obtained using recrystallized palladium diacetate in the 

absence of a ligand with anhydrous sodium acetate as base in DMSO.  Employing structural data 

from the reported X-ray crystallographic analysis of a model Nai peptide which was shown to adopt 

a type II’ β-turn conformation, a computational analysis was performed on the 5-aryl counterpart.75 

The in silico molecular dynamic study revealed a type II’ β-turn in which the N-aminoimidazolone 

residue occupied the i+1 position and the 5-position aryl substituent adopted a gauche (–) side chain 
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conformation.  The computational analysis highlighted the potential of the (5-aryl)Nai residue to 

serve as aromatic β-turns mimics, both in Ramanchandran backbone and chi space.  The (5-aryl)Nai 

residue is rigidified by three different constraints: the backbone and side chain dihedral angles, both 

are rigidified by covalent and stereo-electronic forces from the imidazolone core, and the χ2
 torsion 

angle is restricted by steric interactions from the neighboring 4-methyl substituent. The effective 

means described herein for adding aryl groups to the 5-position of Nai residues have thus 

broadened the potential of this class of peptide analogs for mimicry of β-turn backbone and side 

chain geometry. 
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Poupart, J.; Doan N. D.; Bérubé D., Hamdane Y.; Medena, C; Lubell, W.D. Palladium-Catalyzed 
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Abstract     

N-Aminoimidazol-2-ones (e.g., 3.15) offer potential to serve as constrained amino amide 

components that can induce turn conformation in peptide sequences. To add side chain functionality 

onto this amino amide surrogate, mild conditions have now been developed for palladium-catalyzed 

arylation of N-aminoimidazol-2-ones. A diverse array of aryl iodides reacted at the 5-position of N-

aminoimidazol-2-one dipeptides 3.16 and 3.30 in a general approach for making constrained 

arylalanine dipeptide turn mimics (e.g., 3.17-3.28 and 3.31).
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Introduction 

 Imidazolones are valuable pharmacophores found in molecules exhibiting notable 

properties, including antioxidant,1 anti-inflammatory,2 anti-oncogenic,3 anti-Parkinsonian and 

immunomodulatory activities.4 For example, 4,5-diphenylimidazolone 3.10 displayed 

anticoagulant activity,5 4-butylimidazolone 3.11 exhibited activity as a potent angiotensin II 

receptor (AT2) antagonist,6 4-aminopyridine derivative 3.12 inhibited p38MAP kinase,7 N,N-

diacetyl-4-methylimidazol-2-one (3.13) inhibited TNF-α converting enzyme (TACE)8 and 4-p-

bromophenylimidazol-2-one 3.14 demonstrated antitumor activity.3,9 Related N-

aminoimidazolone analogs have also exhibited potential as immune-modulator, anti-

Parkinsonian and anti-inflammatory agents.10 Notably, imidazalones with 4- and 5-position aryl 

substituents (e.g., 3.10, 3.12 and 3.14) have displayed enhanced activity;9 however, such 

aromatic moieties have typically been introduced during heterocycle synthesis. Arylation of the 

imidazolone ring may thus offer advantages for combinatorial study of structure-activity 

relationships (SAR) in medicinal chemistry programs.9,11 
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Figure 3.1. Biologically relevant imidazolones 3.10-3.14 and N-aminoimidazolone 3.15 

 

 In the context of our program in peptide mimicry, N-aminoimidazolone (Nai)12 residues 

have been explored as constrained amino amide surrogates. In particular, Nai residues have 

exhibited potential to induce type II’ β-turn and inverse γ-turn geometry in model peptides (e.g., 

3.15).13 4-Substituted Nai analogs were prepared by 5-exo-dig cyclization of aza-propargylglycine 

derivatives.14 Moreover, in model Nai peptides, the 4-position substituent was shown to 

influence the turn conformation and the χ-dihedral angle geometry of the adjacent C-terminal 

residue.15 

 Considering the normal orientations of amino acid side chains, modification of the Nai 

ring system at the 5-position has been pursued to improve capacity for mimicry of natural peptide 

geometry and function. Inspired by a recent report on palladium-catalyzed C-H activation and 

arylation of simple imidazolones,16 we have pursued the application of similar conditions to add 
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aryl side chains at the 5-position of Nai residues. The success of this approach has now been 

validated by the preparation of a series of arylalanyl-phenylalanine dipeptides. 

Results and Discussion 

 Arylation of 1,3-dihydro-2H-imidazol-2-one has previously been reported using aryl 

iodides and bromides with palladium acetate as catalyst.16 To explore this method using N-

aminoimidazalones, Nai residue 3.16 was synthesized by a route featuring aza-glycine alkylation 

followed by base promoted 5-exo-dig cyclisation.13 Arylation was first examined with p-

tosyloxyphenyl iodide under different conditions to prepare tyrosine mimic 3.17 (Figure 3.2 and 

Table 3.1).17 Palladium acetate proved more effective than palladium chloride, and Pd(PPh3)2Cl2. 

Moreover, palladium acetate alone reacted more effectively than in the presence of additives 

such as silver nitrate, triphenylphosphine and BINAP. Highest yields were obtained using 10 mol% 

palladium acetate in the presence of sodium acetate in DMSO at 80 °C. Acetonitrile and dioxane 

were ineffective as solvent. 

 The scope of the Pd-catalyzed arylation was next studied using Nai residue 3.16 and 

electron rich and poor aryl iodides. A wide array of para and meta substituted aryl iodides reacted 

successfully on N-aminoimidazolone 3.16 (Figure 3.2). Both electron rich and electron deficient 

aryl iodides were tolerated in the Pd-catalysed arylation, including methoxy, fluoride, 

trifluoromethyl, nitro and pyrrolo groups. Compared to 1,3-dihydro-2H-imidazol-2-one,16 Nai 

residue 7 required longer reaction times (16 h vs 6 h) and higher catalyst loading (10 mol% vs 5 

mol%) to give similarly good yields. On the other hand, 5-aryl-N-aminoimidazolones 3.17-3.28 

were not produced using aryl bromides. The wide array of 5-aryl substituents that were 

introduced on Nai residue 3.16 offer potential for studying structure-activity relationships of a 

variety of relevant aromatic residues. Notably, phenylalanine Nai analogs 3.17-3.28 were 

effectively prepared; however, attempts failed to prepare histidine and tryptophan Nai analogs 

employing respectively 4-iodo-1-tritylimidazole and 3-iodo-N-(Boc)-indole as cross-coupling 

partners under similar conditions with N-aminoimidazalone 7, which was recovered unchanged. 

Attempts to couple p-iodophenol provide unprotected phenol 3.20 after a longer reaction time 
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(48 h) without complete conversion. Finally, an attempt to prepare 5-phenyl-Nai 3.18 using only 

1.2 equivalents of iodobenzene failed to go to completion after 72 h. 

 

 

 

Entry Catalytic system (mol%) Solvent Temperature (°C) Time (h)  Base Yield (%)b 

1 Pd(OAc)2 (10) MeCN 80 48 NaOAc Tracesc 

2  Pd(OAc)2 (10) DMSO 80 18 NaOAc 86 

3 Pd(OAc)2 (5) DMSO 80 18 NaOAc 49 

4 Pd(OAc)2 (10) DMSO 20 96 NaOAc -d 

5 Pd(OAc)2 (5) 

AgNO3 (20) 

DMSO 80 48 NaOAc 20 

6 Pd(OAc)2 (5) 

Rac-BINAP (10) 

DMSO 80 48 NaOAc 39 

7 Pd(OAc)2 (5) 

PPh3 (10) 

DMSO 80 48 NaOAc traces 

8 Pd(PPh3)2Cl2 (10) dioxane 100 72 KOAc -d 
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9 PdCl2 (10) DMSO 80 72 NaOAc -d 

a: Reagent and conditions: a mixture of 3.16, 4-tosyloxyphenyl iodide (3 equiv), base (3 

equiv), catalyst and degassed solvent [1 mM] was heated in a sealed tube under argon for 

the specified time. b: Isolated yield. c: Product detected on TLC but not isolated. d: No 

product observed. 

Table 3.1. Optimization of Nai 3.16 arylation to prepare constrained tyrosine analog 3.17a 

 

 

Figure 3.2. Arylation scope 

 The arylation conditions were also examined on a more peptide-like scaffold, dipeptide 

3.30, which was prepared by cleavage of the benzophenone protecting group under aqueous 

acidic conditions followed by semicarbazide acylation with p-methoxybenzoyl chloride. 

Treatment of Nai-peptide 3.30 with p-iodotoluene and palladium acetate (10 mol%) under the 

optimized conditions afford 5-arylated Nai-dipeptide 3.31 in modest yield.  
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Figure 3.3. Synthesis of 5-aryl-Nai peptide 3.31 

 To examine the potential of a 5-p-hydroxyphenyl Nai residue to serve as a constrained 

tyrosine residue, a geometry optimization of p-methoxybenzoyl-5-(p-hydroxyphenyl)-4-

(methyl)Nai-Phe-NHiPr 3.32 was performed using coordinates obtained from the crystal 

structure of the parent 4-(methyl)Nai peptide 3.30.13 Consistent with the parent structure, the 

backbone dihedral angles were coherent with a type II’ β-turn.14 Moreover, the side chain 

dihedral angles, χ1 and χ2, of the 5-position aryl substituent were in the gauche (–) conformation, 

due in part to steric interactions with the 4-position methyl group. Notably, the gauche (–) 

conformation is preferred for the aromatic side chain of L-amino acid residues.18 The 5-(aryl)Nai 

residue was thus predicted to mimic both the backbone and side chain geometry of aromatic 

residues situated at the i + 1 position of a type II’ β-turn. 
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Figure 3.4. Left: Tetrapeptide mimic 3.32 and relevant dihedral angles, Right: Minimized 

structure 

Conclusion 

 Mild and versatile palladium-catalyzed arylation of N-aminoimidazol-2-one (Nai) residues 

has been developed in an approach to synthesize mimics of peptide backbone turn conformation 

and side chain orientation. A wide variety of aryl iodides reacted successfully in the late-stage 

diversification of the Nai residues. Computational analysis of 5-aryl Nai peptide 3.32 predicted 

that the χ values of the side chain corresponded to a gauche (–) geometry within a type II’ β-turn 

conformation. Considering the effectiveness of the arylation chemistry and the ability of the 5-

aryl Nai residue to induce turn secondary structure, the described method offers strong potential 

for mimicry of natural peptide geometry.  
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Experimental 

General chemistry 

 Unless specified, all reactions were performed under argon atmosphere. All glassware 

was stored in the oven or flame-dried and let cool under inert atmosphere prior to use. 

Anhydrous solvents were obtained either by filtration trough drying columns (DCM, THF, MeCN) 

in a GlassContour system (Irvine, CA) or by distillation over CaH2 (dioxane). tert-Butyl 2-{3-

[(diphenylmethylidene)amino]-5-methyl-2-oxo- 2,3-dihydro-1H-imidazol-1-yl}-3-

phenylpropanoate,13 2-(3-((diphenylmethylene)amino)-5-methyl-2- oxo-2,3-dihydro-1H-

imidazol-1-yl)-N-isopropyl-3- phenylpropanamide,13 4-iodophenyl 4-methylbenzenesulfonate19 

and p-methoxybenzoyl chloride20 were synthesized using published procedures. All other starting 

materials, reagents and chemicals were purchased from commercial suppliers and used without 

further purification, except for silver nitrate which was recrystallised from boiling water. The 

progress of reaction was monitored by thin layer gel chromatography (TLC) plates, visualized 

under UV light (254 nm) or by staining with KMnO4. Flash chromatography 21 was performed using 

230-400 mesh silica gel from SiliCycle Inc. and distilled solvents. Nuclear magnetic resonance 

spectra (1H and 13C) were recorded either on a Bruker AMX 300, AV 400, AVII 400 or AMX 500 

spectrometer. Specific rotations were determined on a Perkin-Elmer 341 polarimeter at 589, and 

are reported as follows [α]λ
temp, concentration (c in g/100 mL), and solvent. High resolution mass 

spectrometry (HRMS) was performed by the Centre regional de spectroscopie de masse de 

l’Université de Montréal. Analytical and preparative supercritical fluid chromatography (SFC) was 

performed at the Laboratoire d’analyse et de séparation chirale par SFC de l’Université de 

Montréal and data are reported as follow: temperature, backpressure and retentions times (Rt). 

Computational chemistry 

The model of tetrapeptide mimic 3.32 was created using parameters from the published crystal 

structure of 4-(methyl)Nai peptide 3.30,13 and minimized using HyperChem 8TM (Molecular 

mechanics and a Polak-Ribiere conjugate gradient of 0.1 kcal/(Å*mol) in a 16.5 Å3 periodic box. 

Dihedral angles for ideal -turn, the crystal structure of 3.30 and computed values for 3.32: 
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Type of turn ϕi+1 ψi+1 ϕi+2 ψi+2 χ1 i+1 χ2 i+1 

Ideal β-II’14 60 -120 -80 0 - - 

3.3013 58.9 -153.3 -69.1 -4.6 - - 

3.32 48.6 -143.7 -62.4 33.6 -41.1 76.0 

 

tert-Butyl (R)-2-(3-((diphenylmethylene)amino)-4-methyl-2-oxo-5-(4-(tosyloxy)phenyl)- 2,3-

dihydro-1H-imidazol-1-yl)-3-phenylpropanoate (3.17) 

 tert-Butyl (2R)-2-{3-[(diphenylmethylidene)amino]-5-methyl-2-oxo-2,3-dihydro- 1H-

imidazol-1-yl}-3-phenylpropanoate (7, 67 mg, 0.14 mmol), 4-iodophenyl 4-methylbenzene-1-

sulfonate (156 mg, 0.42 mmol), sodium acetate (34 mg, 0.42 mmol) and palladium acetate (3 mg, 

0.014 mmol) were added to 1 mL of degassed DMSO in a pressure vessel. The vessel was purged 

with argon, sealed, heated to 80 °C and stirred overnight, when complete reaction was 

ascertained by TLC (disappearance of starting material, Rf = 0.45 (30% EtOAc/hexanes). The 

reaction mixture was cooled and partitioned between DCM (10 mL) and a mixture of brine (8 mL) 

and 5% citric acid (2 mL). The phases were separated, and the aqueous layer was extracted with 

DCM (10 mL). The combined organic layers were washed with brine (10 mL), dried over 

magnesium sulfate, filtered and evaporated to a residue that was purified by column 

chromatography using 15-30% EtOAc/hexanes as eluent. Evaporation of the collected fractions 

gave 5-aryl Nai 3.17 as a yellow oil (87 mg, 86%): Rf = 0.34 (30% EtOAc/hexanes); [α]D
25 –97.1 (c 

0.22, CHCl3). 1H NMR (400 MHz, CDCl3) δ 7.63 (d, J = 8.0 Hz, 2H), 7.54 (d, J = 8.0 Hz, 2H), 7.45-7.49 

(m, 1H), 7.34-7.39 (m, 3H), 7.18-7.22 (m, 5H), 7.13 (d, J = 8.0 Hz, 2H), 7.00-7.02 (m, 2H), 6.81-6.92 

(m, 6H), 4.64-4.68 (m, 1H), 3.39-3.43 (m, 2H), 2.40 (s, 3H), 1.49 (s, 9H); 13C NMR (75 MHz, CDCl3) 

δ 174.6, 168.4, 148.3, 148.1, 145.4, 137.8, 137.1, 135.0, 132.2, 131.2, 130.1, 129.7, 129.6, 129.2, 

128.7, 128.4, 128.0, 127.8, 126.6, 122.1, 117.8, 116.1, 82.4, 57.6, 35.4, 29.7, 28.0, 21.7, 9.5. HRMS 

calcd. for C43H42N3O6S, [MH+] = 728.2789, found = 728.2802. 
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tert-Butyl (S)-2-(3-((diphenylmethylene)amino)-4-methyl-2-oxo-5-phenyl-2,3-dihydro- 1H-

imidazol-1-yl)-3-phenylpropanoate (3.18) 

  Employing the protocol for the synthesis of 5-aryl-Nai 3.17, Nai 3.16 (158 mg, 0.33 mmol) 

was reacted with iodobenzene (112 µL, 1 mmol), and the residue was purified by flash 

chromatography using 15% EtOAc/hexanes as eluent to provide 5-phenyl-Nai 3.18 as yellow foam 

(128 mg, 69%): Rf = 0.48 (30% EtOAc in hexanes); [α]D
20 –191.7 (c 1.06, CHCl3). 1H NMR (400 MHz, 

CDCl3) δ 7.60-7.58 (m, 2H), 7.48-7.43 (m, 1H), 7.38-7.18 (m, 11H), 7.09-6.99 (m, 6H), 4.68-4.63 

(m, 1H), 3.48-3.59 (m, 2H), 1.64 (s, 3H), 1.50 (s, 9H); 13C NMR (101 MHz, CDCl3) δ174.9, 168.6, 

148.1, 138.0, 137.2, 135.3, 131.2, 129.82, 129.4, 129.2, 128.8, 128.5, 128.2, 128.1, 127.9, 127.2, 

126.7, 125.9, 119.3, 116.0, 116.0, 82.5, 57.9, 35.6, 28.1, 9.6. HRMS calcd. for C36H36N3O3, [MH+] 

= 558.2712, found = 558.2717. 

tert-Butyl (S)-2-(3-((diphenylmethylene)amino)-4-methyl-2-oxo-5-(p-tolyl)-2,3-dihydro- 1H-

imidazol-1-yl)-3-phenylpropanoate (3.19) 

 Employing the protocol for the synthesis of 5-aryl-Nai 3.17, Nai 3.16 (101 mg, 0.21 mmol) 

was reacted with iodotoluene (83 µL, 0.64 mmol), and the residue was purified by flash 

chromatography using 15% EtOAc/hexanes as eluent to provide 5-tolyl-Nai 3.19 as yellow foam 

(92.1 mg, 78%): Rf = 0.49 (30% EtOAc in hexanes); [α]D
20 –185.5 (c 1.06, CHCl3). 1H NMR (400 

MHz, CDCl3)  7.63 (dd, J = 1.0, 5.7 Hz, 2H), 7.46 (tt, J = 1.2, 6.0 Hz, 1H), 7.39-7.34 (m, 3H), 7.30-

7.23 (m, 5H), 7.10-7.01 (m, 4H), 7.01-7.00 (m, 4H), 4.64-4.16 (m, 1H), 3.45-3.35 (m, 2H), 2.33 (s, 

3H), 1.64 (s, 3H), 1.50 (s, 9H); 13C NMR (101 MHz, CDCl3) δ 174.6, 168.8, 147.9, 138.1, 137.4, 

136.9, 135.5, 131.1, 129.9, 129.4, 129.2, 129.1, 128.9, 128.9, 128.5, 128.1, 127.8, 126.6, 126.3, 

119.3, 115.3, 82.3, 57.8, 35.6, 28.1, 21.3, 9.6. HRMS calcd. for C37H38N3O3, [MH+] = 571.2837, 

found = 571.2835. An enantiomeric ratio of >99:1 S-3.19:R-3.19 was ascertained by SFC analysis 

on a chiral stationary phase [Chiralcel AD-H 25 cm, 5 µm, 20% i-PrOH, 3 mL/min, 35 °C, 150 bar, 

Rt = 9.5 min]. 

 



 
73 

 

 

 

Co-injection of S-3.19 and R-3.19 gave two peaks that eluted at 9 min and 15.5 min.  

 

 

tert-Butyl (S)-2-(3-((diphenylmethylene)amino)-5-(4-hydroxyphenyl)-4-methyl-2-oxo- 2,3-

dihydro-1H-imidazol-1-yl)-3-phenylpropanoate (3.20) 

 Employing the protocol for the synthesis of 5-aryl-Nai 3.17, Nai 3.16 (61 mg, 0.13 mmol) 

was reacted with p-iodophenol (84 mg, 0.36 mmol), and the residue was purified by flash 

chromatography using 20% EtOAc in hexanes as eluent to provide 5-p-hydroxyphenyl-Nai 3.20 as 

orange low melting solid (25 mg, 34%): Rf  = 0.62 (50% EtOAc in hexanes); [α]D
25 –29.4 (c 0.18, 

CHCl3). 1H NMR (400 MHz, CDCl3)  7.73 (t, J = 6 Hz, 1H), 7.54 (d, J = 7.7 Hz, 2H), 7.50-7.19 (m, 

9H), 7.00-6.96 (m, 3H), 6.87 (d, J = 8.3 Hz, 2H), 6.65 (d, J = 8.5 Hz, 1H), 6.31-6.26 (m, 1H), 4.60-

4.56 (m, 1H), 3.37-3.32 (m, 2H), 1.55 (s, 3H), 1.44 (s, 9H); 13C NMR (75 MHz, CDCl3) δ 155.2, 148.0, 

138.0, 137.2, 130.8, 130.1, 129.8, 129.4, 129.2, 128.8, 128.5, 128.4, 128.2, 128.1, 127.9, 115.2, 

115.0, 82.4, 57.8, 29.8, 28.1, 27.9, 22.8, 14.2, 9.5. HRMS calcd. for C36H35N3O4, [M+] = 574.2700, 

found = 574.2696. Starting Nai 3.16 was also recovered (27 mg, 45%). 

tert-Butyl 2-(5-(4-(1H-pyrrol-1-yl)phenyl)-3-((diphenylmethylene)amino)-4-methyl-2-oxo- 2,3-

dihydro-1H-imidazol-1-yl)-3-phenylpropanoate (3.21) 



 
74 

 

 Employing the protocol for the synthesis of 5-aryl-Nai 3.17, Nai 3.16 (67 mg, 0.14 mmol) 

was reacted with 1-(4-iodophenyl)-pyrrole (113 mg, 0.42 mmol), and the residue was purified by 

flash chromatography using 20% EtOAc in hexanes as eluent to provide 5-(4-(1H-pyrrol-1-

yl)phenyl-Nai 3.21 as yellow low melting solid (60 mg, 69%): Rf = 0.51 (40% EtOAc in hexanes). 1H 

NMR (300 MHz, CDCl3) δ 7.67-7.58 (m, 3H), 7.50-7.28 (m, 8H), 7.25-7.03 (m, 10H), 6.38 (t, J = 2.2 

Hz, 1H), 6.32 (t, J = 2.2 Hz, 1H), 4.69-4.58 (m, 1H), 3.49-3.29 (m, 2H), 1.63 (s, 1H), 1.54 (d, J = 1.3 

Hz, 2H), 1.46 (s, 9H); 13C NMR (75 MHz, CDCl3) δ 168.1, 138.5, 137.6, 136.7, 135.1, 131.4, 129.5, 

129.3, 129.1, 128.9, 128.4, 128.4, 128.2, 128.1, 128.1, 128.0, 127.0, 126.6, 126.4, 125.7, 119.0, 

118.8, 81.2, 53.9, 27.6, 22.0, 9.0. HRMS calcd. for C40H38N4O3, [M+] = 623.3017, found = 623.3024. 

(S)-2-(3-((Diphenylmethylene)amino)-4-methyl-5-phenylimidazolin-2-one-1-yl)-N-isopropyl-3- 

phenylpropanamide (3.22) 

 Employing the protocol for the synthesis of 5-aryl-Nai 3.17, (S)-2-(3-

((diphenylmethylene)amino)-5-methyl-2-oxo-2,3-dihydro-1H-imidazol-1-yl)-N-isopropyl-3-phe- 

nylpropanamide (54 mg, 0.12 mmol) was reacted with iodobenzene (70 mg, 0.35 mmol), and the 

residue was purified by flash chromatography using 20-30% EtOAc in hexanes as eluent to 

provide 5-phenyl-Nai amide 3.22 as yellow low melting solid (26 mg, 41 %): Rf = 0.51 (50% EtOAc 

in hexanes); [α]D
20 –126.3 (c 1.06, CHCl3). 1H NMR (500 MHz, CDCl3) δ 8.03 (br. s, 1H), 7.59 (dd, J 

= 1.2, 7.1 Hz, 2H), 7.48-7.44 (m, 1H), 7.38-7.33 (m, 4H), 7.26-7.20 (m, 8H), 7.05-6.97 (m, 6H), 4.48-

4.46 (m, 1H), 4.02 (2 overlapping q, J = 7.5 Hz, 1H), 3.60-3.55 (m, 1H), 3.29 (dd, J = 4.3, 9.4 Hz, 1H) 

1.64 (s, 3H), 1.17 (d, J = 6.6 Hz, 3H), 1.13 (d, J = 6.6 Hz, 3H); 13C NMR (126 MHz, CDCl3) δ 175.9, 

169.6, 148.7, 137.7, 137.0, 135.2, 131.5, 129.9, 129.5, 129.4, 129.2, 128.6, 128.6, 128.3, 128.2, 

128.0, 127.5, 126.9, 119.9, 116.4, 41.8, 35.8, 22.7, 22.6, 9.6. HRMS calcd. for C35H35N4O2, [MH+] 

= 543.2755, found = 543.2759. 

(S)-2-(3-((Diphenylmethylene)amino)-4-methyl-5-(p-methylphenyl)imidazolin-2-one-1-yl)-N- 

isopropyl-3-phenylpropanamide (3.23) 

 Employing the protocol for the synthesis of 5-aryl-Nai 3.17, (S)-2-(3-

((diphenylmethylene)amino)-5-methyl-2-oxo-2,3-dihydro-1H-imidazol-1-yl)-N-isopropyl-3-phe- 

nylpropanamide (310 mg, 0.67 mmol) was reacted with p-iodotoluene (259 µL, 2.00 mmol), and 
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the residue was purified by flash chromatography using 25% EtOAc in hexanes as eluent to 

provide 5-tolyl-Nai amide 3.23 as yellow low melting solid (251 mg, 65%): Rf = 0.55 (50% EtOAc 

in hexanes); [α]D
20 –65.9 (c 1.06, CHCl3). 1H NMR (500 MHz, CDCl3)  8.04 (br. s, 1H), 7.59 (dd, J = 

1.1, 7.1 Hz, 2H), 7.47-7.44 (m, 1H), 7.36-7.27 (m, 4H), 7.24-7.18 (m, 4H), 7.06-6.99 (m, 6H), 6.80 

(d, J = 8.2 Hz, 2H), 4.44-4.43 (m, 1H), 4.50 (2 overlapping q, J = 7.4 Hz, 1H), 3.55 (t, J = 11.4 Hz, 

1H), 3.27 (dd, J = 4.2, 9.5 Hz, 1H), 2.29 (s, 3H), 1.61 (s, 3H), 1.16 (d, J = 6.6 Hz, 3H), 1.12 (d, J = 6.6 

Hz, 3H); 13C NMR (126 MHz, CDCl3)  175.8, 169.7, 148.6, 137.8, 137.4, 137.0, 135.3, 131.4, 129.9, 

129.5, 129.3, 129.2, 128.2, 128.5, 128.6, 128.2, 128.0, 126.8, 125.7, 119.9, 116.0, 41.7, 35.8, 22.6, 

22.6, 21.3, 9.6. HRMS calcd. for C36H37N4O2, [MH+] = 557.2911, found = 557.2927. An 

enantiomeric ratio of >96:4 S- 3.23:R-3.23 was ascertained by SFC analysis on a chiral stationary 

phase [Chiralcel AD-H 25 cm, 5 µm, 15% i-PrOH, 3 mL/min, 35 °C, 150 bar, Rt (major) 10.6 min; 

Rt (trace) 15.1 min]. 

 

 

 

Injection of R-3.23 gave a major peak (99%) at 15.1 min. 
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(S)-2-(3-((Diphenylmethylene)amino)-4-methyl-5-(p-methoxylphenyl)imidazolin-2-one-1-yl)-

N- isopropyl-3-phenylpropanamide (3.24) 

 Employing the protocol for the synthesis of 5-aryl-Nai 3.17, (S)-2-(3-

((diphenylmethylene)amino)-5-methyl-2-oxo-2,3-dihydro-1H-imidazol-1-yl)-N-isopropyl-3-phe- 

nylpropanamide (54 mg, 0.12 mmol) was reacted with p-iodoanisole (81 mg, 0.35 mmol), and the 

residue was purified by flash chromatography using 20-35% EtOAc in hexanes as eluent to 

provide 5-p-methoxylphenyl-Nai amide 3.24 as yellow low melting solid (41 mg, 62%): Rf = 0.49 

(50% EtOAc in hexanes); [α]D
20 –93.9 (c 1.06, CHCl3). 1H NMR (500 MHz, CDCl3) δ 8.04 (br. s, 1H), 

7.58 (dd, J = 1.2, 7.2 Hz, 2H), 7.48-7.44 (m, 1H), 7.36-7.32 (m, 3H), 7.21-7.19 (m, 4H), 7.02-6.99 

(m, 4H), 6.95-6.63 (m, 2H), 7.27 (d, J = 8.9 Hz, 2H), 4.44-4.43 (m, 1H), 4.00 (2 overlapping q, J = 

6.7 Hz, 1H), 3.76 (s, 3H), 3.57-3.52 (m, 1H), 3.27 (dd, J = 4.3, 9.5 Hz, 1H), 1.59 (s, 3H), 1.16 (d, J = 

6.6 Hz, 3H), 1.12 (d, J = 6.6 Hz, 3H); 13C NMR (126 MHz, CDCl3) δ 176.1, 169.8, 159.1, 148.7, 137.8, 

137.0, 135.3, 132.6, 131.5, 130.8, 130.2, 129.9, 129.5, 129.2, 128.7, 128.6, 128.2, 128.0, 126.8, 

121.0, 119.6, 115.8, 113.8, 55.4, 41.8, 35.9, 22.6, 9.5. HRMS calcd. for C36H36N4O3, [M+] = 

573.2860, found = 573.2854. 

(S)-2-(3-((Diphenylmethylene)amino)-4-methyl-5-(p-nitro-phenyl)imidazolin-2-one-1-yl)-N- 

isopropyl-3-phenylpropanamide (3.25) 

 Employing the protocol for the synthesis of 5-aryl-Nai 3.17, (S)-2-(3-

((diphenylmethylene)amino)-5-methyl-2-oxo-2,3-dihydro-1H-imidazol-1-yl)-N-isopropyl-3-phe-

nylpropanamide (54 mg, 0.12 mmol) was reacted with p-nitroiodobenzene (84 mg, 0.35 mmol), 

and the residue was purified by flash chromatography using 20-35% EtOAc in hexanes as eluent 

to provide 5-p-nitrophenyl-Nai amide 3.25 as orange low melting solid (50 mg, 74%): Rf = 0.58 

(50% EtOAc in hexanes); [α]D
20 –124.2 (c 1.06, CHCl3). 1H NMR (500 MHz, CDCl3) δ 8.11 (d, J = 9.0 

Hz, 2H), 7.59 (dd, J = 1.2, 7.2 Hz, 2H), 7.49 (dt, J = 1.3, 7.4 Hz, 1H), 7.41-7.35 (m, 3H), 7.30-7.27 

(m, 2H), 7.24-7.20 (m, 5H), 7.04-7.01 (m, 4H), 4.50-48 (m, 1H), 3.88 (2 overlapping q, J = 7.5 Hz, 

1H), 3.54 (dd, J = 11.4, 2.4, Hz, 1H), 3.28 (dd, J = 4.5, 9.3 Hz, 1H), 1.17 (s, 3H), 1.15 (d, J = 6.6 Hz, 

3H), 1.11 (d, J = 6.6 Hz, 3H); 13C NMR (126 MHz, CDCl3) δ 175.5, 169.0, 148.4, 146.4, 137.3, 136.5, 
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135.2, 134.9 129.8, 129.2, 129.0, 128.6, 128.5, 128.3, 128.1, 127.0, 123.6, 119.0, 118.4, 41.8, 

35.5, 22.5, 22.4, 9.8. HRMS calcd. for C35H34N5O4, [MH+] = 588.2605, found = 588.2615. 

(S)-2-(3-((Diphenylmethylene)amino)-4-methyl-5-(p-fluoro-phenyl)imidazolin-2-one-1-yl)-N- 

isopropyl-3-phenylpropanamide (3.26) 

 Employing the protocol for the synthesis of 5-aryl-Nai 3.17, (S)-2-(3-

((diphenylmethylene)amino)-5-methyl-2-oxo-2,3-dihydro-1H-imidazol-1-yl)-N-isopropyl-3-phe-

nylpropanamide (54 mg, 0.12 mmol) was reacted with p-fluoroiodobenzene (77 mg, 0.35 mmol), 

and the residue was purified by flash chromatography using 20-35% EtOAc in hexanes as eluent 

to provide 5-p-fluorophenyl-Nai amide 3.26 as yellow low melting solid (26 mg, 41%): Rf = 0.43 

(50% EtOAc in hexanes); [α]D
20 –117.4 (c 1.06, CHCl3). 1H NMR (500 MHz, CDCl3) δ 8.01 (br. s, 1H), 

7.58 (dd J = 1.3, 7.2 Hz, 2H), 7.47 (dt, J = 1.3, 7.5 Hz, 1H), 7.39-7.30 (m, 3H), 7.29-7.27 (m, 1H), 

7.23-7.19 (m, 3H), 7.03-6.92 (m, 9H), 4.60-4.43 (m, 1H), 4.01 (2 overlapping q, J = 6.6 Hz, 1H), 

3.56 (dd, J = 11.3, 2.3 Hz, 1H), 3.28 (dd, J = 4.4, 9.4 Hz, 1H), 1.61 (s, 3H), 1.17 (d, J = 6.6 Hz, 3H), 

1.13 (d, J = 6.6 Hz, 3H); 13C NMR (126 MHz, CDCl3) δ 176.0, 169.6, 148.7, 137.7, 136.9, 135.2, 

131.7, 131.3, 131.2, 129.9, 129.7, 129.2, 128.7, 128.3, 128.1, 126.9, 124.8, 118.9, 116.5, 115.5, 

115.4, 41.8, 35.8, 22.7, 22.6, 9.5. HRMS calcd. for C35H34FN4O2, [MH+] = 561.2667, found = 

561.2660. 

tert-Butyl 2-(3-((diphenylmethylene)amino)-5-(2-methoxyphenyl)-4-methyl-2-oxo-2,3-

dihydro- 1H-imidazol-1-yl)-3-phenylpropanoate (3.27) 

 Employing the protocol for the synthesis of 5-aryl-Nai 3.17, Nai 3.16 (43 mg, 0.09 

mmol)was reacted with 2-iodoanisole (36 µL, 0.27 mmol), and the residue was purified by flash 

chromatography using 15% EtOAc in hexanes as eluent to provide 5-(p-methoxyphenyl-Nai 3.27 

as yellow oil (25 mg, 47%): Rf = 0.72 (50% EtOAc in hexanes). 1H NMR (400 MHz, CDCl3) δ 7.51 (d, 

J = 4 Hz, 2H), 7.42-7.17 (m, 10H), 7.17 (d, J = 1.2 Hz, 2H), 7.05 (d, J = 5.9 Hz, 2H), 6.92 (d, J = 7.5 

Hz, 1H), 6.82 (t, J = 7.6 Hz, 1H), 6.75 (d, J = 7.9 Hz, 1H), 4.65-4.62 (m, 1H), 3.63 (s, 3H), 3.40-3.30 

(m, 2H), 1.53 (s, 3H), 1.44 (s, 9H); 13C NMR (101 MHz, CDCl3) δ 168.8, 157.5, 147.9, 138.1, 135.5, 

132.5, 130.4, 129.7, 129.4, 129.3, 129.0, 128.8, 128.4, 127.8, 127.7, 126.4, 120.1, 116.2, 116.0, 
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110.9, 82.1, 57.5, 55.09, 35.5, 29.7, 28.0, 9.8. HRMS calcd. for C37H37N3O4, [M+] = 588.2857, found 

= 588.2864. 

(S)-2-(3-((Diphenylmethylene)amino)-4-methyl-5-(m-trifluoromethyl-phenyl)-imidazolin-2-

one-1- yl)-N-isopropyl-3-phenylpropanamide (3.28) 

 Employing the protocol for the synthesis of 5-aryl-Nai 3.17, (S)-2-(3-

((diphenylmethylene)amino)-5-methyl-2-oxo-2,3-dihydro-1H-imidazol-1-yl)-N-isopropyl-3-phe- 

nylpropanamide (54 mg, 0.12 mmol) was reacted with m-trifluoromethyl-iodobenzene (94 mg, 

0.35 mmol), and the residue was purified by flash chromatography using 20-35% EtOAc in 

hexanes as eluent to provide 5-m-trifluoromethylphenyl-Nai amide 3.28 as yellow low melting 

solid (48 mg, 68%): Rf = 0.52 (50% EtOAc in hexanes); [α]D
20 –121.8 (c 1.06, CHCl3). 1H NMR (500 

MHz, CDCl3) δ 7.96 (br. s, 1H), 7.57 (dd, J = 1.2, 7.1 Hz, 2H), 7.48-7.44 (m, 2H), 7.38-7.33 (m, 4H), 

7.24-7.17 (m, 7H), 7.08-7.06 (m, 2H), 6.90 (dd, J = 1.0, 7.1 Hz, 2H), 4.51-4.48 (m, 1H), 4.03 (2 

overlapping q, J = 6.6 Hz, 1H), 3.60 (dd, J = 11.4, 2.4 Hz, 1H), 3.31 (dd, J = 4.4, 9.5 Hz, 1H), 1.65 (s, 

3H), 1.18 (d, J = 6.6 Hz, 3H), 1.15 (d. J = 6.6 Hz, 3H); 13C NMR (126 MHz, CDCl3) δ 176.3, 169.4, 

149.1, 137.6, 136.7, 134.9, 132.3, 131.8, 129.9, 129.8, 129.5, 129.2, 128.8, 128.7, 128.6, 128.3, 

128.1, 127.0, 126.1, 122.7, 118.5, 117.4, 62.4, 41.9, 36.0, 22.7, 22.6, 9.6. HRMS calcd. for 

C36H34F3N4O2, [MH+] = 611.2628, found = 611.2635. 

N-(3-(1-(iso-Propylamino)-1-oxo-3-phenylpropan-2-yl)-4-methyl-2-oxo-2,3-dihydro-1H-

imidazol-1-yl)-4-methoxybenzamide (3.30) 

 2-(3-((Diphenylmethylene)amino)-5-methyl-2-oxo-2,3-dihydro-1H-imidazol-1-yl)-N-

isopropyl-3-phenyl-propanamide (3.29, 349 mg, 0.75 mmol) was dissolved in THF (8 mL) and 

treated with aqueous HCl (2M, 8 mL, 15 mmol). The mixture was stirred at room temperature for 

2 h until complete conversion was ascertained by TLC. The mixture was concentrated under 

vacuum, diluted with a 4:1 mixture of acetonitrile/water (25 mL). The aqueous layer was 

separated, washed with hexanes (3 x 15 mL), and freeze-dried. The residue was dissolved in DCM 

(8 mL), treated with freshly prepared 4-anisoyl chloride (0.20 mL, 1.5 mmol) and DIEA (0.37 mL, 

2.25 mmol) and stirred overnight. The reaction mixture was diluted with DCM (10 mL), washed 

with 5% citric acid (3 x 5 mL) and brine (10 mL), dried over magnesium sulfate and evaporated to 



 
79 

 

a residue that was purified by column chromatography using 20-70% EtOAc in hexanes to give 

amide 3.30 as yellow foam (164 mg, 50%): Rf = 0.41 (80% EtOAc in hexanes). 1H NMR (300 MHz, 

CDCl3) δ 10.87 (s, 1H), 7.79 (d, J = 8.9 Hz, 2H), 7.15-7.10 (m, 6H), 6.71 (d, J = 9.0 Hz, 2H), 6.03 (s, 

1H), 4.53 (dd, J = 4.5, 6.8 Hz, 1H), 4.10, (2 overlapping q, J = 1.0 Hz, 1H), 3.81 (s, 3H), 3.71 (dd, J = 

2.4, 11.5 Hz, 1H), 3.51 (dd, J = 4.5, 9.3 Hz, 1H), 1.75, (s, 3H), 1.21 (d, J = 6.6 Hz, 3H), 1.15 (d, J = 6.6 

Hz, 3H); 13C NMR (75 MHz, CDCl3) δ 168.5, 166.2, 162.8, 154.3, 137.7, 129.8, 129.1, 128.8, 127.0, 

122.9, 119.3, 113.6, 110.9, 61.2, 55.5, 42.0, 35.1, 22.6, 22.4, 10.5. HRMS calcd. for C24H29N4O4, 

[MH+] = 436.2183, found = 437.2188. 

N-(3-(1-(Isopropylamino)-1-oxo-3-phenylpropan-2-yl)-4-methyl-5-(4-nitrophenyl)-2-oxo-2,3- 

dihydro-1H-imidazol-1-yl)-4-methoxybenzamide (3.31) 

 Employing the protocol for the synthesis of 5-aryl-Nai 3.17, N-(3-(1-(isopropylamino)-1-

oxo-3-phenylpropan-2-yl)-4-methyl-2-oxo-2,3-dihydro-1H-imidazol-1-yl)-4-methoxybenzamide 

(3.30, 84 mg, 0.19 mmol ) was reacted with p-iodonitrobenzene (144 mg, 0.58 mmol) with stirring 

for 48 h, and purification by column chromatography using 30-70% EtOAc in hexanes gave 5-p-

nitrophenyl-Nai peptide 3.31 as orange low melting solid (28 mg, 26%): Rf = 0.11 (50% EtOAc in 

hexanes). 1H-NMR (400 MHz, MeOD-d4) δ 8.22 (d, J = 8.6 Hz, 2H), 7.79 (d, J = 8.2 Hz, 2H), 7.46 (d, 

J = 8.4 Hz, 2H), 7.32-7.22 (m, 5H), 6.98 (d, J = 8.7 Hz, 2H), 4.13- 4.07 (m, 1H), 3.84 (s, 3H), 3.54-

3.51 (m, 1H), 3.33-3.27 (m, 2H), 1.80 (s, 1H), 1.73 (s, 2H), 1.20-1.19 (m, 6H); 13C NMR (75 MHz, 

CDCl3) δ 169.8, 162.9, 148.3, 139.1, 138.7, 135.8, 130.8, 130.8, 130.6, 130.4, 129.7, 128.0, 124.7, 

115.0, 79.5, 56.0, 53.2, 43.2, 22.4, 22.4, 7.5. HRMS calcd. for C30H31N5O6, [M+] = 558.2347, found 

= 558.2355. 
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Introduction: N-aminoimdazol-2-one (Nai) residues 

 Nai residues have been shown by NMR spectroscopy and X-ray crystallography to adopt 

turn conformations, and have been incorporated into biologically active peptides to study 

structure-activity relationships (Figure 3.5).1,2  

Figure 3.5: 4,5-disubstituted Nai residue in a peptide 3.33 (A) and model Nai peptide 3.32 (B) 

 

 

A 

 

B 
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 The synthesis of Nai residues has entailed alkylation of aza-glycinyl dipeptides with 

propargyl bromide using tetraethyl ammonium hydroxide, followed by sodium hydride induced 

5-exo-dig cyclisation and exo- to endo-alkene epimerization.  By performing a Sonogashira 

reaction on the aza-propargylglycine residue prior to ring formation, various aromatic and 

heteroaromatic ring systems have been introduced at the 4-position of the aminoimdazol-2-one 

residue. Although the use of strong base led to epimerization of aza-glycinyl dipeptide C-terminal 

α-amino esters, the Nai dipeptide enantiomers were effectively separated by chiral supercritical 

fluid chromatography.3 After liberation of the carboxylic acid, the resulting Nai dipeptide building 

blocks have been inserted into longer peptide structures by standard coupling methods.1,2 

 The current method for Nai peptide construction offers effective means for introducing 

substituents at the 4-position to mimic different amino acid side chains.  Moreover, the 4-

position substituents have been observed by crystallographic analyses to influence the 

conformation of the C-terminal α-amino acid residue side chain in model Nai peptides.2 

Considering the natural orientation of amino acid side chains in chi-space,4 the Nai 5-position 

represents a promising location for the attachment of substituents for peptide mimicry.5 

Evidence that the backbone and side chain geometry of natural amino acids involved in β-turns 

may be mimicked by 5-aryl Nai residues was derived from molecular modelling using HyperChem 

8TM, which predicted that model Nai peptide 3.32 adopted a type II´ β-turn conformation in which 

the aromatic side chain χ1 torsion angle was oriented in a gauche (–) conformation (Figure 3.5).   

 Aromatic residues are abundant at the central positions of turn conformations of 

naturally occurring bioactive peptides, such as somatostatin.6 Constrained mimics of aryl amino 

acids that adopt turn conformations may thus offer interesting potential for studying structure-

activity relationships.7 Arylation of the Nai 5-position is thus being studied to provide rigidified 

aryl and heteroarylalanine residues for turn mimicry.  

Results and Discussion 

 Palladium catalyzed arylation was performed in solution on a protected Nai analog to 

functionalize the 5-position.  For example, employing Nai dipeptide S-3.16,1 the palladium-

catalyzed arylation with 4-iodophenyl-4-methylbenzenesulfonate gave 5-aryl Nai dipeptide 3.17 
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in 86% yield (Figure 3.6). In the interest of studying the conformation of the 5-aryl Nai residue, 

efforts are now being pursued to incorporate Nai dipeptide 3.17 into model peptides as a 

constrained aza-tyrosine surrogate. Moreover, the scope of the palladium-catalyzed arylation 

will be explored to assess its tolerance to different functionalities on both the alkene and aryl 

iodine.  

 

   

 

 

 

Figure 3.6: Synthesis of peptide 3.17 

 

Experimental 

(S)-tert-butyl 2-(3-((diphenylmethylene)amino)-5-methyl-2-oxo-4-(4-(tosyloxy)phenyl)-2,3-

dihydro-1H-imidazol-1-yl)-3-phenylpropanoate (3.17) 

 tert-Butyl (2R)-2-{3-[(diphenylmethylidene)amino]-5-methyl-2-oxo-2,3-dihydro-1H-

imidazol-1-yl}-3-phenylpropanoate (1 eq., 67 mg, 0.14 mmol, prepared according to reference 

8), 4-iodophenyl 4-methylbenzene-1-sulfonate (3 eq., 156 mg, 0.42 mmol, prepared according to 

reference 9), sodium acetate (3 eq., 34 mg, 0.42 mmol) and palladium acetate (10 mol%, 3 mg, 

0.014 mmol) were dissolved in degassed DMSO (1 mL) in a pressure vessel. The vessel was purged 

with argon, heated to 80°C, and stirred overnight, when complete reaction was observed by TLC 

(disappearance of starting material, Rf 0.45, 30% EtOAc/Hexanes). The reaction mixture was 

partitioned between DCM (10 mL) and a mixture of brine (8 mL) and 5% citric acid (2 mL).  The 

phases were separated, and the organic layer was washed with brine (3 x 5 mL).  The combined 

organic phases were dried over magnesium sulfate, filtered and evaporated to a residue that was 

purified by column chromatography on silica gel using 15-30% EtOAc in hexanes as eluent. 
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Evaporation of the collected fractions gave 5-aryl Nai 3 as a yellow oil (87 mg, 86%): Rf 0.34 (30 

% EtOAc / hexanes); 1H NMR (400 MHz, CDCl3) δ 1.49 (9H, s), 1.61 (3H, s), 2.40 (3H, s), 3.39-3.43 

(2H, m), 4.64-4.68 (1H, m), 6.81-6.92 (5H, m), 7.00-7.02 (2H, m), 7.13 (2H, d, J = 8 Hz), 7.18-7.22 

(5H, m), 7.34-7.39 (3H, m), 7.45-7.49 (2H, m), 7.54 (3H, d, J = 8 Hz), 7.63 (2H, d, J = 8 Hz). 13C NMR 

(75 MHz, CDCl3) δ 174.6, 168.4, 148.3, 148.1, 145.4, 137.8, 137.1, 135.0, 132.2, 131.2, 130.1, 

129.7, 129.6, 129,2, 128.7, 128.4, 128.0, 127.8, 126.6, 122.1, 117.8, 116.1, 82.4, 57.6, 35.4, 29.7, 

28.0, 21.7, 9.5. HRMS Calcd. C43H42N3O6S [M+H]+ = 728.2789, found = 728.2802. 

Acknowledgments 

 The authors would like to thank the Natural Sciences and Engineering Research Council 

of Canada (NSERC), the Canadian Institutes of Health Research (CIHR), the Ministère du 

développement économique de l’innovation et de l’exportation du Quebec (#878-2012, 

Traitement de la dégénerescence maculaire), Amorchem and the NSERC Collaborative Research 

and Training Experience Program (CREATE) in Continuous Flow Science.  

References 

[1].  Proulx, C.; Lubell, W. D., “Analysis of N-amino-imidazolin-2-one peptide turn mimic 4-

position substituent effects on conformation by X-ray crystallography.” Biopolymers, Pep. Sci., 

2014, 102(1):7-15. DOI: 10.1002/bip.22327 

[2].  Proulx, C.; Lubell, W. D., “N-Amino-imidazolin-2-one Peptide Mimic Synthesis and 

Conformational Analysis.” Org. Lett., 2012, 14 (17), 4552-55. DOI: 10.1021/ol302021n 

[3].     Yésica García-Ramos, Caroline Proulx, Christophe Camy, William D. Lubell “Synthesis and 

purification of enantiomerically pure N-aminoimidazolin- 2-one dipeptide” Proceedings of the 

32nd Europ. Peptide Symp. (2012) George Kokotos, Violetta Constantinou-Kokotou, John 

Matsoukas (Editors) European Peptide Society, 2012, pp. 366-67. 

[4].      Hruby, V. J., Li, G., Haskell-Luevano, C., Shenderovich, M. “Design of peptides, proteins, 

and peptidomimetics in chi space.” Peptide Science, 1997 43(3): 219-66. DOI: 10.1002/(SICI)1097-

0282(1997)43:3<219::AID-BIP3>3.0.CO;2-Y 



 
86 

 

[5].    Doan, N. D.; Hopewell, R.; Lubell, W. D., “N-aminoimidazolidin-2-one peptidomimetics.” 

Org. Lett., 2014, 16 (8), 2232-35. DOI: 10.1021/ol500739k  

[6].     Mattern, R.H., Tran, T.A., Goodman, M. “Conformational analyses of cyclic hexapeptide 

analogs of somatostatin containing arylalkyl peptoid and naphthylalanine residues.” J. Pept. Sci., 

1999, 5(4):161-75. DOI: 10.1002/(SICI)1099-1387(199904)5:4<161::AID-PSC177>3.0.CO;2-F 

[7].     Makwana, K. M.; Mahalakshmi, R., “Comparative analysis of cross strand aromatic-Phe 

interactions in designed peptide [small beta]-hairpins.” Org. Biomol. Chem., 2014, 12 (13), 2053-

61. DOI: 10.1039/C3OB42247J 

 

 

  

http://www.ncbi.nlm.nih.gov/pubmed/?term=Mattern%20RH%5BAuthor%5D&cauthor=true&cauthor_uid=10323196
http://www.ncbi.nlm.nih.gov/pubmed/?term=Tran%20TA%5BAuthor%5D&cauthor=true&cauthor_uid=10323196
http://www.ncbi.nlm.nih.gov/pubmed/?term=Goodman%20M%5BAuthor%5D&cauthor=true&cauthor_uid=10323196


 
87 

 

Chapter 4 

Biomedical application of (4-Me, 5-Aryl)Nai residues : 

[(4-Me, 5-Aryl)Nai4]-GHRP-6 
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4.1    GHRP-6: development and biochemistry 

 

 Growth hormone releasing hormone-6 (GHRP-6, 4.4, H-His-D-Trp-Ala-Trp-D-Phe-Lys-NH2) 

was reported in 1984.143 In studies of the opioid peptide Met-enkephalin (H-Tyr-Gly-Gly-Phe-

Met-OH, 4.1), Gly2 was replaced by D-Trp2 and the C-terminal acid group was changed to an 

amide (4.2) to provide a peptide devoid of opioid activity but able to cause growth hormone 

release.144 Further optimization featuring the removal of the Met residue and replacement of 

Gly3 with Ala gave peptide 4.3 that had a thousand fold ability to cause growth hormone 

release.145  Structure-activity relationship (SAR) studies revealed the importance of aromatic ring 

stacking and a favored alternation of L- and D-stereochemistry for activity.  Replacement of Tyr1 

by His and addition of a C-terminal lysine amide gave GHRP-6 (4.4) which performed better both 

in vitro and in vivo with an activity of about 30 times peptide 4.3.143 

 

 

Figure 4.1: Conception of GHRP-6 (4.4) from Met-enkaphalin (4.1) 

 The mechanism of action of GHRP-6 (4.4) remained unclear until the growth hormone 

secretagogue receptor-1a (GHS-R1a) was cloned.144  A G-coupled protein receptor (GPCR) that 

bound the natural peptide ghrelin as ligand, GHS-R1a was identified as a target of GHRP-6.146, 147 
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 Moreover, GHS-R1a was shown to stimulate production of growth hormone by a distinct 

pathway than that of the growth hormone secretion receptor (GHSR).  Both, GHS-R1a and GHSR 

receptors are mainly present in hypothalamic cells. 

 Subsequently, GHRP-6 was shown to exhibit cardioprotective properties, which were 

attributed to binding to a second receptor.148 The alternative receptor was identified as the 

cluster of differentiation-36 receptor (CD36). A type B scavenger receptor, CD36 features a large 

extracellular domain. Present on many cells, including macrophages, dendrites and cardiac cells, 

CD36 binds a variety of molecules including oxidized low-density lipoproteins (oxLDL). With roles 

in the internalization of oxLDL and plaque formation, CD36 has been pursued as a promising 

target for pharmaceutical intervention to treat artherosclerosis.149, 150 Furthermore, ligands 

targeting the scavenger receptor may find promise for the treatment of age-related macular 

degeneration (AMD), the major cause of irreversible central vision loss in the elderly, because of 

the importance of CD36 in neovascularization and in the accumulation of oxLDL in the cellular 

layers between the retina and choroid in the eye.151 

4.2    Development of aza4-GHRP-6 

 

 In search of a selective peptide ligand for CD36, GHRP-6 analogs without GHRS-R1a 

binding affinity were targeted. Azapeptide analogs of GHRP-6 were prepared by insertion of 

semicarbazide residues in place of the different amino amides in the GHRP-6 sequence.152  

Among a variety of analogs, [aza-Tyr4]- and [Ala1, aza-Phe4]-GHRP-6 (4.5 and 4.6) maintained 

CD36 binding affinity yet exhibited a considerable (>1000 fold) loss of ability to engage the GHS-

R1a receptor.85  The study shed light on the importance of aza-residues at the peptide 4-position. 

Moreover, circular dichroism (CD) spectroscopy revealed that azapeptides 4.5 and 4.6, which 

differentiated between GHS-R1a and CD36, exhibited curve shapes indicative of β-turn structure 

in contrast to GHRP-6 (4.4) which possessed a random coil spectrum in water.  The CD study led 

to the hypothesis that azapeptides 4.5 and 4.6 bound CD36 in an active β-turn conformation.  

Further optimization of the aza-GHRP-6 ligands concentrated on the 1- and 4-positions,  

examining angiogenic activity in a mouse choroidal explant model.85  Although [Ala1, aza-Phe4]-
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GHRP-6 (4.6) lacked angiogenic activity, [aza-Tyr4]- and [aza(4-F)Phe4]-GHRP-6 (4.5 and 4.7) 

exhibited significant antiangiogenic activity.85  The aromatic side chain of the aza-residue at the 

4-position was shown to be important for activity.  The results of the latter study correlated with 

those employing α- and β-amino-γ-lactam (Agl and Bgl) residues to constrain GHRP-6.45  Although 

certain analogs (e.g. [(3S)-Agl3]- and [(3R)-Bgl3]-GHRP-6) exhibited promising selective CD36 

binding affinity, peptides with lactam substitutions at the 4-position engaged neither GHS-R1a 

nor CD36, likely due in part to the absence of the aromatic side chain.  

4.3    [(4-Me,5-Ar)Nai4]-GHRP-6 

 

 A β-turn conformation and a 4-position residue with aryl (Ar) side chain, both seem 

essential for binding to CD36. Constraint of the aza-reside of GHRP-6 has been explored using [(4-

Me,5-Ar)Nai4]-GHRP-6 analogs 4.8a-d (Figure 2).  The Nai residue has already been shown to 

induce β- and γ-turn conformers in X-ray crystallographic and computational studies.75, 83 

Methods for adding aryl groups at the 5-position of the imidazole-2-one heterocycle of the Nai 

residue were described in Chapter 3. In the present chapter, such chemistry has been extended 

to introduce aryl groups to Nai residues linked to solid supports. Installation of the Nai residue 

on solid support was performed using the enantioenriched Nai dipeptide acid, which was 

synthesized from an aza-Pra dipeptide acid using the method described in Chapter 2.  Among 

challenges encountered in the synthesis of [(4-Me,5-Ar)Nai4]-GHRP-6 analogs on solid phase, 

novel chemistry was developed for the removal of the benzhydrylidene protection and the 

acylation of the resulting semicarbazide moiety.   

 The purified peptides were evaluated for their ability to reduce R-FSL-1 induced nitric 

oxide (NO) production in macrophages.  R-FSL-1 is a Toll-like receptor 2 (TLR-2) agonist, which 

initiates an inflammatory cascade.  CD36 is co-express with the heterodimeric receptor TLR-2/6 

complex.153  Previously, reduction of NO production in macrophages after treatment with a TLR-

2 agonist was correlated to peptide binding to CD36.85, 153 Modulators of CD36 that reduce the 

cascade to NO are attractive because of their potential to curb macrophage driven inflammation 

in diseases such as atherosclerosis and AMD.  For example, [aza-Tyr4]-GHRP-6 (4.5) has been 



 
91 

 

shown to induce dissociation of the CD36-TLR-2 oligomeric complex, decrease inflammasome 

activation, and reduce immune responses to alleviate subsequent inflammation-dependent 

neuronal injury characteristic of retinal disorders such as AMD.153 

 Aza-amino acid residues exhibit preferences to situate in the central regions of β-turns at 

either the i + 1 or i + 2 positions as demonstrated by computation, X-ray crystallography and 

spectroscopic methods (Figure 2).63 In the case of GHRP-6 analogs with aza-residues in the 4-

position, the aza-residue has been suggested to situate at the i + 2 position based on NMR 

spectroscopic analysis.154  Moreover, [(3S)-Agl3]- and [(3R)-Bgl3]-GHRP-6 have been suggested to 

adopt β-turn conformations in which the lactam occupies at the i + 1 position.45 In spite support 

for an active conformer with the third and fourth amino acid residues at the central positions of 

a β-turn, potential exists for an alternative conformation in which the aza-residue adopts the i + 

1 position and the fourth and fifth residues are in the middle of the turn.  Although [(3S)-Agl4]- 

and [(3R)-Bgl4]-GHRP-6 would adopt the latter conformer, their lack of binding affinity may be 

due to the absence of the aromatic side chain.  The Nai residue could similarly locate at the i + 1 

position of a β-turn due to the covalent constraints of the imidazole-2-one ring.  Moreover, the 

(5-Aryl)Nai residue enables placement of an aromatic residue at the i + 1 position with a gauche 

(-) side chain orientation.  Although their binding affinity remains to be evaluated, [(4-Me,5-

Ar)Nai4]-GHRP-6 analogs 4.9-4.12 tempered effectively NO overproduction in macrophages 

treated with a TLR-2 agonist indicates the potential for such an active conformation with the 

fourth and fifth amino acid residues in the center of the β-turn. 
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Figure 4.2: Two conformers of azapeptide 4.5.  It can form two different types of β-turns, while 

only one is accessible for Nai 4.8 

 Therefore, (4-Me,5-Ar)Nai residues have the potential to help probe receptors of 

bioactive peptides and help understanding the SAR.  In the case of [(4-Me,5-Ar)Nai4]-GHRP-6 

analogs, preliminary biological results indicate they effectively mimic the GHRP-6 active 

conformation for interacting with CD36.  As such, they represent a step forward in both 

understanding the structural properties needed for correct binding and developing CD36 

peptidomimetic modulators. 
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Abstract  

 N-Aminoimidazol-2-one (Nai) residues induce turn conformations in model peptides. Four 

[(4-methyl,5-aryl)Nai4]-growth hormone releasing peptide-6 (GHRP-6) analogs were synthesized 

using a solid-phase approach featuring insertion of a (4-Me)Nai residue into a resin-bound 

peptide followed by palladium-catalyzed 5-position C-H activation and coupling with different 

aryl iodides. Relative to the azapeptide cluster of differentiation receptor 36 (CD36) modulator 

[azaY4]-GHRP-6 (4.5), all four [(4-methyl,5-aryl)Nai4]-GHRP-6 (4.9-4.12) analogs exhibited similar 

and in one case better activity in mediating nitric oxide overproduction in macrophages treated 

with a Toll-like receptor-2 agonist. Considering the covalent, stereo-electronic and steric 

constraints induced by the amino acid surrogate, the biologically active conformer of the [(4-

methyl,5-aryl)Nai4]-GHRP-6 analogs features likely a β-turn with the Nai residue at the i + 1 

position and the 5-position aromatic ring in a gauche χ-space orientation. Their effective 

diversity-oriented solid-phase synthesis and preferred backbone and side chain orientations 
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designate (4-methyl,5-aryl)Nai residues as privileged go-to-scaffolds for exploring aromatic 

residues in biologically active peptides. 

Introduction

 The cluster of differentiation receptor 36 (CD36) is a promising target for the treatment 

of inflammatory and angiogenic diseases including atherosclerosis,1 cardiovascular disease2 and 

age-related macular degeneration (AMD).3  A glycoprotein, CD36 is present in the membranes of 

various tissues, as well as red blood cells and macrophages.4  A type B scavenger receptor,  CD36 

plays a key role in the internalization of oxidized low density lipoproteins (oxLDL).5-6  Co-

expressed with the Toll-like receptor (TLR)-2-TLR-6 complex, CD36 modulates the latter during 

inflammatory responses implicated in innate immunity.7-8   

 Growth hormone releasing peptide-6 (GHRP-6, H-His-D-Trp-Ala-Trp-D-Phe-Lys-NH2) has 

been shown to bind both CD36 and the growth hormone secretagogue receptor 1a (GHSR-1a). 

Analogs of GHRP-6 with GHSR-1a activity have been studied for the development of treatments 

of impaired growth hormone (GH) secretion,9 short stature and aging.10  Towards the conception 

of CD36 specific ligands without GHSR-1a receptor binding affinity, certain constrained analogs 

of GHRP-6 have shown notable selectivity likely due to a favored turn geometry about the central 

amino acid residues.11 For example, CD36-selective azapeptide analogs of GHRP-6 have been 

made by replacing specific amino amide residues by a semicarbazide which induced turn 

conformers due to stereo-electronic effects from urea planarity and lone pair-lone pair repulsion 

between neighboring hydrazine nitrogen.12 Notably, circular dichroism (CD) spectroscopy of [aza-

phenylalanine4]-GHRP-6 analogs displayed curve shapes indicative of turn geometry in contrast 

to the random coil spectrum exhibited by the parent peptide in water.  Moreover, relative to the 

parent peptide, the [Ala1, aza-Phe4]- and [aza-Tyr4]-GHRP-6 (4.7 and 4.5) retained binding affinity 

for CD36 but exhibited significantly diminished ability to interact with the GHSR-1a receptor.13 

The CD36 selective azapeptide ligand [aza-Tyr4]-GHRP-6 (4.5) exerted anti-inflammatory 

properties through the TLR2-inflammasome pathway and shifting the metabolic rate of 

mononuclear phagocytes to increase oxygen consumption by influencing the PPAR-γ pathway.14  



 
96 

 

 A combination of α- and β-amino-γ-lactam (Agl and Bgl) residues have also been 

employed in a positional scan that delivered [(S)-Agl3]- and [(R)-Bgl3]-GHRP-6, both of which 

retained significant binding affinity for CD36, but were a thousand-fold less capable of engaging 

the GHSR-1a receptor relative to the parent peptide.15 In contrast, the diasteromeric [(R)-Agl3]- 

and [(S)-Bgl3]-GHRP-6 analogs lost binding affinity to both receptors, likely due to their 

unfavorable conformations for receptor engagement.  Moreover, insertion of (R)- and (S)-α- and 

β-amino-γ-lactam residues at the 4-position of GHRP-6 resulted consistently in significant losses 

of binding affinity to both receptors possibly due to the removal of a key aromatic side chain.  

 Considering the relevance of the turn geometry and aromatic side chain for CD36 

selective azapeptide ligand binding affinity and activity, an investigation was launched to restrain 

the aryl group of the aza-residue.  N-Aminoimidazol-2-one (Nai) residues combine the stereo-

electronic effects of aza-residues with the covalent constraints of an α-amino-γ-lactam.16 In 

model peptides, Nai residues have been shown by X-ray crystallography and NMR spectroscopy 

to induce β- and γ-turn geometry.17-18  Moreover, various aryl iodides have been added to the 5-

position of the imidazole-2-one ring of a variety of (4-Me)Nai residues using palladium-catalysis 

in solution.19 Computational analysis has predicted that p-MeOBz-(4-Me,5-p-HOPh)Nai-D-Phe-

NHi-Pr (4.13) adopted a type II’ β-turn and positioned the aryl group in the gauche (–) 

conformation.19  Aryl (Ar) side chain χ dihedral angle rigidity resulted from a combination of steric 

interactions with the neighboring 4-methyl group and the covalent and stereo-electronic 

constraints of the imidazole-2-one heterocycle (Figure 4.3).19 
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Figure 4.3. Representations of (4-Me,5-Ar)Nai residue in model peptide 4.13 with relevant 

dihedral angles (left) and in minimum energy conformer from molecular dynamics simulations 

(right).   

 Employing palladium-catalyzed aryl addition chemistry on (4-Me)Nai analogs, (4-Me,5-

Ar)Nai building blocks have been prepared effectively in solution.19 Although such constrained 

phenylalanine building blocks may be used to synthesize sets of (4-Me,5-Ar)Nai peptides, a solid-

phase approach from a common late stage intermediate would enhance efficiency for their 

diversity-oriented construction. Installation of the aryl substituent onto the 5-position of a 

common (4-Me)Nai peptide linked to Rink amide resin has now been pursued using palladium-

catalysis.  Based on [aza-Phe4]-GHRP-6 analogs that have previously exhibited CD36 binding 

affinity and activity in reducing nitric oxide (NO) production in cells treated with a TLR-2 agonist, 

four [(4-Me,5-Ar)Nai4]-GHRP-6 analogs was pursued possessing phenyl (4.9), 4-methoxyphenyl 

(4.10), 4-hydroxyphenyl (4.11) and 4-fluorophenyl (4.12) 5-position aryl substituents.    

 The [(4-Me,5-Ar)Nai4]-GHRP-6 analogs (4.9-4.12) were evaluated for capacity to 

modulate CD36 mediated overproduction of nitric oxide (NO) in macrophage cells after 

treatment with the TLR-2-agonist fibroblast-stimulating lipopeptide (R-FSL-1). Measured as 

nitrite, NO is an inflammatory pathway modulation marker, which plays an important role as 

mediator of macrophage responses to defend against pathogens. Chronic NO production may 
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however lead to damage of host tissues.20 Reduction of nitrite production has been correlated 

with CD36 binding affinity and decreased production of pro-inflammatory cytokines and 

chemokines in macrophages.21 The CD36 binding affinity of the [(4-Me,5-Ar)Nai4]-GHRP-6 

analogs will be examined using a competitive binding assay against photoactivatable [125I]-Tyr-

Bpa-Ala-hexarelin (H-[125I]-Tyr-Bpa-Ala-His-D-2-methyl-Trp-Ala-Trp-D-Phe-Lys-NH2) as 

radiotracer.21  

  

Results and discussion 

Chemistry 

 Enantioenriched (4-Me)Nai-D-Phe-OH (4.15) was synthesized by base promoted 

cyclisation of aza-propargylglycinyl-D-phenylalanine (4.14) using potassium tert-butoxide in THF 

(Scheme 1).17  Imidazole-2-one 4.15 is most likely formed by a 5-endo-dig cyclization, followed 

by double bond isomerization.22  Initial carboxylic acid deprotonation under the basic conditions 

and short reaction times minimize racemization of the D-Phe residue such that the Nai dipeptide 

was obtained in a 98:2 enantiomeric ratio as determined by supercritical fluid chromatographic 

analysis on a chiral support.17 

 Dipeptide acid 4.15 was coupled onto H-Lys(Boc)-rink amide resin using O-

[(cyano(ethoxycarbonyl)-methyliden)amino]yloxytripyrrolidinophosphonium 

hexafluorophosphate (PyOxim) and DIEA in DMF to give Nai tripeptide resin 4.16.  Among 

different conditions investigated to install an aryl substituent at the 5-position of (4-Me)Nai 4.16, 

sonication of the resin at 60°C in the presence of aryl iodide, palladium acetate and sodium 

acetate in degassed DMSO for 18h gave full conversion to (4-Me,5-Ar)Nai resins 4.17-4.20 

(Scheme 1).19 Aryl iodides with both electron withdrawing (-F, -O2COt-Bu) and donating (-OCH3) 

groups reacted successfully. 4-Iodophenol was protected with an acid labile Boc group, because 

the unprotected phenol retarded the cross-coupling reaction in solution.19 For the installation of 

the aryl substituent, diphenyl ketamine protection was essential for high conversion. Rink amide 
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resins possessing Fmoc-Ala-(4-Me)Nai-D-Phe-Lys(Boc)- and Boc-Ala-(4-Me)Nai-D-Phe-Lys(Boc)-

peptides reacted with low conversion and degradation of starting material.  

 With (4-Me,5-Ar)Nai semicarbazone resins 4.17-4.20  in hand, conditions were 

investigated for the removal of the benzhydrylidene protection. Commonly employed methods 

for liberating semicarbazides from semicarbazones, such as hydroxylamine hydrochloride in 

pyridine,23 and acidic conditions,24 either returned starting material or gave concomitant resin 

cleavage. The additional steric hindrance imposed by the 5-position substituent retarded 

significantly transimination and solvolysis of the benzhydrylidene group. Successful removal of 

the benzhydrylidene protection without resin cleavage was achieved by using a modification of 

the transimination conditions. Semicarbazones 4.17-4.20  reacted with methoxyamine 

hydrochloride and citric acid in a mixture of dioxane and water using sonication at 60°C. 

Contingent on the aromatic substituent, (4-Me,5-Ar)Nai semicarbazide resins 4.21-4.24 were 

obtained after 18-72 h. Methoxyamine was chosen with the expectation of increasing 

nucleophilicity relative to hydroxyl amine.25 Citric acid, which had previously been employed in 

transamination reactions of benzhydrylidene protected amino esters,26 proved strong enough to 

facilitate the reaction of the semicarbazone with methoxyamine without causing resin 

cleavage.26-27  
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Scheme 4.1. [(4-Me,5-Ar)Nai4]-GHRP-6 analog  

 

 Acylation of the sterically hindered and electronically deficient (4-Me,5-Ar)Nai 

semicarbazide resins 4.21-4.24 was effectively achieved using Fmoc-Ala-Cl, which was prepared 

by treatment of Fmoc-Ala-OH with bis-(trichloromethyl)carbonate (BTC) in DCM.28-29 Elongation 

of Nai peptides 4.25-4.28 was performed using Fmoc group deprotections employing piperidine 

in DMF, and sequential peptide couplings with Fmoc-D-Trp(Boc)-OH and Fmoc-His(Tr)-OH using 

(2-(1H-benzotriazol-1-yl)-1,1,3,3-tetramethyluronium hexafluorophosphate (HBTU) and DIEA in 

DMF. The final [(4-Me,5-Ar)Nai4]-GHRP-6 analogs 4.9-4.12 were cleaved from the resin and 

deprotected using a TFA:TES:H2O (95:2.5:2.5 v/v/v) cocktail, and purified by RP-HPLC (Table 4.1). 

 Peptides 4.9-4.12 were isolated using RP-HPLC in sufficient yields for biological analyses.  

Overall yields were based on the measured resin loading. Yields were reduced in part due to H-

His-Trp-Ala-NH2 contaminant [m/z = 412.3 (M+H+)], which appears to arrive from liberation of 



 
101 

 

capped resin under the conditions to remove the semicarbazone and subsequent peptide 

synthesis.  

[(4-Me,5-

Ar)Nai4]-GHRP-6 

Ar = (4-X-Ph) 

Rt (Min) Purity HRMS [M+1] Overall 

yield 

(%)c 

MeCNa MeOHb Calc. Experimental 

4.9 (X = H) 7.49 7.32 >99 859.4662 859.4371 15 

4.10 (X = OCH3) 5.20 7.71 >90 889.4468 889.4468 3 

4.11 (X = OH) 4.63 6.62 >90 875.4311 875.3819 9 

4.12 (X = F) 5.17 7.47 >85 877.4278 977.4262 1 

a: 10-90 % MeCN/H2O; b: 10-90 % MeON/H2O; c: isolated yield based on resin loading 

Table 4.1. Retention times, purity and exact masses of [(4-Me,5-Ar)Nai4]-GHRP-6 analogs





 

 

Biology 

 Peptides 4.9-4.12 were evaluated for ability to attenuate overexpression of nitric oxide 

(NO) in RAW macrophage cells treated with the TLR-2 agonist R-FSL-1.30  The selective and 

relatively potent  CD36 ligand [azaY4]-GHRP-6 was also tested as positive control.13, 21 All four 

peptides 4.9-4.12 were able to modulate NO production in a statistically significant manner with 

similar potency as [azaY4]-GHRP-6 (Figure 4.5).  The [(4-Me,5-p-HOPh)Nai4]-GHRP-6 analog (4.11) 

featuring a para-hydroxyl group was the least potent among [(4-Me,5-Ar)Nai4]-GHRP-6 analogs 

4.9-4.12.  On the other hand, [(4-Me,5-p-H3COPh)Nai4]-GHRP-6 (4.10) exhibited significantly 

higher activity than [azaY4]-GHRP-6 in the nitric oxide assay (Figure 4.6). Moreover, [(4-Me,5-Ph 

and p-FPh)Nai4]-GHRP-6 analogs (4.9 and 4.12) exhibited trends suggesting better performance 

than [azaY4]-GHRP-6, but they were not statistically significant.  In all cases, conformational 

constraint by the (4-Me,5-Ar)Nai4 residue on the backbone and the χ-dihedral angles of the aza-

GHRP-6 peptides appeared to retain or optimize ability to attenuate overexpression of NO in 

RAW macrophage cells treated with the TLR-2 agonist R-FSL-1.    
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Fig. 4.5: Percentage of NO production reduction of peptides [aza-Tyr4]-GHRP-6 and 4.9-4.12. * p 

= 0.05; ** p = 0.01. n = 18. 

 

Figure 4.6: Activity of peptides 4.9-4.12 compared to [azaY4]-GHRP-6 (4.5, MPE-001). * p = 0.05. 
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 The CD36 binding affinity of [(4-Me,5-Ar)Nai4]-GHRP-6 analogs 4.9-4.12 is currently being 

evaluated. In a typical experiment,21 the [(4-Me,5-Ar)Nai4]-GHRP-6 analog will be examined in a 

competition displacement study with the photoactivable CD36 ligand [125I]-Bpa-Ala-hexarelin.  

The competitions curves will reflect the relative binding affinities of [(4-Me,5-Ar)Nai4]-GHRP-6 

analogs 4.9-4.12 against the high affinity binder hexarelin. 

Discussion  

 Four [(4-Me,5-Ar)Nai4]-GHRP-6 analogs (4.9-4.12) were synthesized by a sequence 

commencing with introduction of benzhydrylidene protected (4-Me)Nai-D-Phe-OH dipeptide 

4.15 into a peptide sequence bound to solid phase. Palladium catalysis proved effective for 

reacting both electron-rich and -deficient aryl iodides onto the 5-position of the imdazol-2-one 

residue on solid phase.  Subsequently, the application of methoxyamine hydrochloride and citric 

acid in the transimination reaction removed the diphenylketimine protection and revealed the 

amine of the Nai residue, which upon acylation, peptide elongation and resin cleavage delivered 

the [(4-Me,5-Ar)Nai4]-GHRP-6 analogs.   

 

Figure 4.7: Possible conformations of [azaPhe4]-GHRP-6 analogs in which the semicarbazide 

adopts either the i + 2 (left) or i + 1 (center) positions of the central residues of a β-turn, and 

preferred conformer of [(4-Me,5-Ar)Nai4]-GHRP-6 analogs 4.9-4.12 (right) with Nai residue at i + 

1 position. 

 Peptides 4.9-4.12, all exhibited ability to modulate NO production in RAW macrophages 

cells treated with TLR-2 agonist R-FSL-1.  Moreover peptide 4.10 featuring a 4-methoxyphenyl 

side chain was significantly more active than the reference compound [azaY4]-GHRP-6 (4.5).13, 21  
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Although their binding affinity is currently under investigation, the activity of peptides 4.9-4.12 

indicate an active β-turn in which the Nai residue adopts the i + 1 location and the aryl 5-position 

substituent is situated in the gauche (-) orientation.   

 Azapeptides are known to adopt β-turn conformations in which the aza-residue situates 

in one of two central positions (i + 1 or i + 2, Figure 4.7).31 Conformational analysis of [azaPhe4]-

GHRP-6 analogs by NMR spectroscopy has previously indicated amide temperature 

dependencies and long-range side chain interactions consistent with a turn geometry in which 

the D-Phe residue NH is engaged in an intramolecular hydrogen bond in aqueous solution.11 

Although such a conformation would situate the semicarbazide at the i + 2 position in a β-turn, 

its relevance for receptor binding has not been elucidated.11 Moreover, related conformers in 

which the lactam residue is situated at the i + 1 position of a β-turn may account for the selectivity 

and CD36 binding affinity of [(S)-Agl3]- and [(R)-Bgl3]-GHRP-6.15 In conflict with support for the 

semicarbazide at the i + 2 position in the active [azaPhe4]-GHRP-6 conformer, [(4-Me,5-Ar)Nai4]-

GHRP-6 analogs 4.9-4.12 are expected to adopt an alternative β-turn conformation in which the 

Nai residue is situate at the i + 1 position. The activity of [(4-Me,5-Ar)Nai4]-GHRP-6 analogs 4.9-

4.12 appear to support a conformational dynamic for the [azaPhe4]-GHRP-6 analogs in which the 

semicarbazide may toggle to the i + 1 position of a β-turn when receptor-bound.  

 

Conclusion 

 N-Aminoimidazol-2-one (Nai) residues unite the stereo-electronic constraints of 

azapeptides and the covalent restrictions of α-amino γ-lactams to favor β-turn geometry in 

peptides.11 Moreover, modification of the 4- and 5-positions of the Nai residue offers potential 

for adding substituents to mimic side chains with specific orientations.  In peptides, (4-Me,5-

Ar)Nai residue are predicted to adopt the i + 1 position of a β-turn with the aromatic substituent 

in the gauche (-) orientation.19 Palladium-catalyzed arylation of the Nai 5-position by the solid-

phase method presented herein offers an effective means to synthesize (4-Me,5-Ar)Nai peptides 

for studying the conformational preferences of aromatic amino acid residues.  The synthesis and 

study of [(4-Me,5-Ar)Nai]-GHRP-6 analogs 4.9-4.12 has provided insight into the biologically 

active conformer of CD36 ligands. Considering the wealth of peptides possessing aromatic amino 
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acid residues, this solid-phase method for (4-Me,5-Ar)Nai peptide synthesis should find 

significant application for studying their purported turn conformers.  

Experimental  

General 

 Unless otherwise specified, all non-aqueous reactions were run under argon atmosphere.  

Analytical thin-layer chromatography (TLC) was performed on glass-backed silica gel-plates 

(Merck 60 F254). Visualization of the developed plates was performed by UV absorbance or 

staining with potassium permanganate, 2,4-dinitrophenyl hydrazine or bromocresol green. High 

resolution mass spectrometry was performed at the Centre régional de spectrométrie de masse 

de l’Université de Montréal. Polystyrene Rink Amide resin was purchased form  Combi-Blocks, 

Inc. (San Diego, CA) and the extent of attachment of the first residue was ascertained by the Fmoc 

group loading test.32 Reagents including methoxyamine hydrochloride, citric acid, trifluoroacetic 

acid (TFA), PyOxim™,  sodium acetate, iodobenzene, 4-iodotoluene and 4-iodofluorobenzene, all 

were purchased from Sigma-Aldrich and used without further purification; Pd(OAc)2 was 

purchased from Sigma-Aldrich and recrystallized from benzene. 4-Iodophenol was purchased 

from Combi-Blocks, Inc. and used without further purification.  All solvents were obtained from 

VWR international except for dimethyl sulfoxide (Sigma-Aldrich). Anhydrous solvents (THF, 

MeCN, DCM and DMF) were obtained by passage through solvent filtration systems (Glass-

Contour, Irvine, CA).  Analytical LCMS analyses were performed on a C18 column using a gradient 

of 10-90%  MeCN (0.1% FA) in water (0.1% FA) over 15 min (System A) and 10-90% MeOH (0.1% 

FA) in water (0.1% FA) (System B) over 15 min. 

 

Solid-Phase Peptide Synthesis: Fmoc group deprotections and peptide couplings  

 Peptide syntheses were performed under standard conditions on polystyrene rink amide 

resin with agitation using an orbital shaker.32 Couplings of amino acids (Fmoc-D-Trp(Boc)-OH and 

Fmoc-His(Tr)-OH, 3 equiv) were performed in DMF using either HBTU (3 equiv) and DIEA (6 equiv) 

in DMF for 2 hours.  Following the first residue attachment, the resin was capped with a mixture 

of pyridine and acetyl anhydride (3:2) for 20 min.  The Fmoc group was removed by treating the 
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resin with a 20% piperidine solution in DMF for 30 min.  After each coupling and Fmoc-group 

removal step, the resin was washed sequentially with DMF (3 x 10 mL), iPrOH (3 x 10 mL) and 

DCM (3 x 10 mL). The purity of peptide fragments was ascertained by LCMS analyses after 

cleavage and deprotection of an aliquot (ca. 10 mg) of resin as described below. 

tert-Butyl (4-iodophenyl) carbonate 

 4-Iodophenol (2.00 g, 9.09 mmol) in DCM (18 mL) was treated with 4-

dimethylaminopyridine (222 mg, 1.82 mmol) and di-tert-butyl dicarbonate (5.95 g, 27.3 mmol). 

After stirring for 18 h, the reaction mixture was poured into water (30 mL) and agitated. The 

organic layer was separated. The aqueous layer was extracted with DCM (2x 20 mL). The organic 

layers were combined, washed with 1 N NaOH (30 mL), sat. NH4Cl (30 mL) and brine (40 mL), 

dried over magnesium sulfate, filtered and evaporated to a residue that was purified on silica gel 

using a Combiflash instrument and a gradient of 0-20% EtOAc in hexanes. Evaporation of the 

collected factions gave tert-butyl (4-iodophenyl) carbonate (contaminated with 50 % di-tert-butyl 

dicarbonate) as white low melting solid: Rf = 0.55 (10 % EtOAc in hexanes); 1H NMR (500 MHz, 

CDCl3) δ 1.58 (s, 9H), 6.95-6.98 (m, 2H), 7.69-7.71 (m, 2H); 13C[1H] NMR (125 MHz, CDCl3) δ 28.0, 

67.1, 84.0, 89.8, 123.6, 138.5, 151.0, HRMS calc. for C11H14IO3 [M+H+] = 320.9987 found = 

320.9893.   

Benzhydrylidene-(4-Me)Nai-D-Phe-Lys(Boc)-NH-Rink amide resin (4.16) 

 The Fmoc group was removed from Fmoc-Lys(Boc)-NH-Rink amide resin (1.0 g, 0.51 

mmol/g, prepared according to reference33) using the conditions described above. The resin was 

swollen in DMF and treated sequentially with (R)-2-(3-((diphenylmethylene)amino)-5-methyl-2-

oxo-2,3-dihydro-1H-imidazol-1-yl)-3-phenylpropanoic acid (4.15, 326 mg, 0.77 mmol, prepared 

according to reference34), PyOxim™ (405 mg, 0.77 mg) and DIEA (267 μL, 1.54 mmol). After 

agitation for 12h, the resin was filtered, washed as described above and freeze-dried. Complete 

coupling was indicated by examination of an aliquot of resin, which exhibited a negative Kaiser 

test.35 

Benzhydrylidene-(4-Me,5-Ph)Nai-D-Phe-Lys(Boc)-NH-Rink amide resin 4.17 



 
109 

 

 Resin 4.16 (0.1 mmol, 234 mg) was swollen in DMSO (2 mL) and treated successively with 

Pd(OAc)2 (5 mg, 0.02 mml), NaOAc (25 mg, 0.3 mmol) and iodobenzene (63 mg, 0.3 mmol). The 

reaction mixture was treated with argon bubbles for 1 minute. The reaction vessel was flushed 

with argon, capped and agitated with sonication in a bath at 60 °C for 12 h. The vessel was cooled 

to room temperature. The resin was filtered and washed as described above. An aliquot of resin 

was cleaved with agitation in a 95:5 TFA:TIS mixture for 30 min, filtered, and the filtrate was 

evaporated to a residue that was dissolved in acetonitrile and analyzed by LCMS, which indicated 

complete conversion to benzhydrylidene-(4-Me,5-Ph)Nai-D-Phe-Lys-NH2 (m/z = 729.7 (M+H+), RT 

= 6.76 (System A). Using the respective iodides, (4-Me,5-Ar)Nai resins 4.18-4.20 were prepared 

by the same protocol, which gave complete conversion. 

H-(4-Me,5-Ph)Nai-D-Phe-Lys(Boc)-NH-Rink amide resin 4.25 

 In a 7-mL vial, resin 4.17 (241 mg, 0.1 mmol) was swollen in dioxane (2 mL) and treated 

with 1 mL of a freshly prepared aqueous solution of citric acid (2M) and MeONH2
.HCl (2M). The 

vial was sealed, agitated with sonication and heated in a bath at 60 °C for 72 h. The vial was 

cooled to room temperature. The resin was filtered and washed as described above. An aliquot 

of resin was cleaved with agitation in a 95:5 TFA:TIS mixture for 30 min, filtered, and the filtrate 

was evaporated to a residue that was dissolved in MeCN and analyzed by LCMS, which indicated 

complete conversion to H-(4-Me,5-Ph)Nai-D-Phe-Lys-NH2 (m/z = 565.1 (M+H+)), RT = 4.36 min 

(System A). The corresponding (4-Me,5-Ar)Nai resins 4.22-4.24 were prepared using the same 

protocol which gave complete conversion after the respective times: 4.22: 72 h; 4.23: 24 h; 4.24: 

18 h. 

Fmoc-Ala-(4-Me,5-Ph)Nai-D-Phe-Lys(Boc)-NH-Rink amide resin 4.25 

 A solution of Fmoc-Ala-OH (94 mg, 0.3 mmol) in DCM (3 mL) was treated with BTC (33 mg, 

0.11 mmol), stirred for 30 minutes, treated with DIEA (89 μL, 0.5 mmol) and transferred to a 

syringe containing (4-Me,5-Ph)Nai peptide resin 4.21 (219 mg, 0.1 mmol). The syringe was 

capped and agitated for 6 h. The resin was filtered, washed with MeOH (3 x 10 mL) to destroy 

excess BTC, washed as described above and freeze-dried. An aliquot of resin was cleaved with 

agitation in a 95:5 TFA:TIS mixture for 30 min, filtered, and the filtrate was evaporated to a 

residue that was dissolved in MeCN and analyzed by LCMS, which indicated complete conversion 
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to Fmoc-Ala-(4-Me,5-Ph)Nai-D-Phe-Lys-NH2 [m/z = 859.3 (M+H+)], RT = 6.01 min (system A). The 

respective (4-Me,5-Ar)Nai resins 4.26-4.28 were prepared using the same protocol which gave 

complete conversions. 

H-His-D-Trp-Ala-(4-Me,5-Ph)Nai-D-Phe-Lys-NH2 (4.9) 

 Starting from resin 4.25 (248 mg, 0.1 mmol), sequential Fmoc group removals and peptide 

couplings with Fmoc-D-Trp(Boc)-OH and Fmoc-His(Tr)-OH using HBTU, DIEA and DMF as 

described above gave H-Ala-(4-Me,5-Ph)Nai-D-Phe-Lys(Boc)-NH-Rink amide resin, which was 

exposed to a solution of 90% TFA, 2.5 % H2O and 2.5% TIS (3 mL) for 2h.  The resin was filtered 

and washed twice with TFA.  The filtrate and washings were combined and concentrated under 

vacuum and the concentrate was added to 50 mL of cold (–20°C) ethyl ether. The precipitated 

peptide was recovered by filtration, washed with cold ether (2 x 10 mL) and dried under vacuum 

for 1 h.  Peptide 4.9 was purified by RP-HPLC using 5-90 % MeCN (0.1 % FA) in water (0.1 % FA). 

The collected fractions were concentrated under vacuum and freeze-dried to give peptide 4.9 as 

white solid.  

Associated content 
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5.1   Significance of the thesis 

 

 Having tools to mimic turn conformers is crucial to map receptors and help get an idea on 

SAR, and eventually for the development of peptide-based drugs.  Many approaches are now 

available.45, 59, 63, 80, 155-157  Among them, the Nai residue offers potential to promote the formation 

of both type II’ β-turns as well as inverse γ-turns.75, 82, 83  These particular heterocycles have many 

advantages over other methods, partly due to the high rigidity brought on by the N-

aminoimidazolone ring.  The other advantage is that substitution on both side of the alkene is 

possible.  In the case of the more interesting 5- position, where the side chain of a natural amino 

acid would be located, functionalization can be made after ring synthesis, and on solid support 

in many cases.  Finally, the steric interactions between the two substituents rigidify the side chain 

surrogate and offer the opportunity to explore χ-space.26       

 Among challenges for introducing Nai residue into peptides, the cyclization reaction of 

azaPra residues had previously given racemic material. Chiral SFC could be employed to obtain 

enantiomerically pure product.  The necessity for specialized equipment and the maximum 50% 

theoretical yield for a desired enantiomer are however limitations that restricted applications of 

Nai residues in studies of biologically active peptides.158   

 Another drawback of the pre-existing methods was lack of access to 5-position 

substituents. Cyclization of aza-propargyl residues had provided access to Nai residues with 4-

position substituents, which may mimic the trans side chain geometry. Ability to place side chain 

functionality at the 5-position of the heterocycle would offer access to gauche orientations 

commonly adopted by amino acids in natural peptides. 

 In the first part of this thesis, strategies have been pursued to obtain (4-Me)Nai residues 

without loss of enantiomeric purity.  Changes in reaction conditions and the use of different C-

terminal groups has increased the enantiomeric ratio (er) of product from 90:10,75 up to 98:2.159  

In cyclization of aza-Pra dipeptide esters, experiments using the relatively weaker base (KOtBu), 

shorter reaction times and THF as a less polar solvent, all had limited effects on minimizing 

racemization.  On the other hand, changing from a C-terminal ester to the corresponding aza-Pra 
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dipeptide acid and hydrazide reduced racemization and enabled potential for further 

functionalization. 

 For the functionalization of the 5-position of Nai residue imidazol-2-ones, three novel 

synthetic methods have been presented in the thesis.  As discussed in Chapter 2, formylation of 

the Nai 5-position was made possible using the Vilsmeier-Haack reaction conditions to afford the 

corresponding aldehyde.  The aldehyde offered a gateway to other substituents including 

alcohol, carboxylic acid and amine substituents.  Furthermore, amino alkylation of the Nai 5-

position under Mannich conditions was used to introduce amine substituents.  In addition, 

palladium-catalyzed chemistry has enabled aryl substituents to be added to the Nai 5-position.  

 With the ultimate goal of introducing sets of Nai resides possessing side chain functional 

groups into peptides, several challenges associated with sequence diversification and elongation 

were surmounted in Chapter 4.  Employing a solid-phase strategy, multiple aryl groups were 

added to a Nai peptide linked to resin; however, the diphenylketamine protection proved 

essential for obtaining high yields in the palladium-catalyzed aryl addition chemistry. Cleavage of 

the diphenylketamine protection was explored using a variety of conditions and achieved by 

treating the (5-aryl)Nai resin using a mixture of citric acid and MeONH2 in aqueous dioxane. 

Elongation of the resulting sterically hindered and electronically deficient semicarbazide was 

accomplished by employing N-(Fmoc)amino acid chlorides. Subsequent elongation using 

standard solid-phase peptide synthesis afforded a set of (5-aryl)Nai peptides.   

 The chemistry of imidazole-2-ones has been significantly advanced in the context of the 

thesis. Several paths of inquiry were explored during these studies.  The promise of certain 

directions merits some discussion in this chapter, which is designed to give an outlook onto other 

potential projects featuring the Nai residue.  

5.2   Earlier attempt at cyclization 

 

 As mentioned in chapter 2, other cyclisation strategies were attempted to avoid de the 

use of base and associated epimerization.  For example, TBAF was completely ineffective and 
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starting material was recovered quantitatively. A promising result occured from using a 

combination of silver and gold catalysis (figure 5.1).  Treatment of aza-Pra peptide 5.1 with silver 

nitrate caused cleavage of the diphenylketimine protection producing benzophenone which was 

identified by both TLC and LC-MS analyses.  On the contrary, aza-Pra peptide 5.1 failed to cyclize 

in the presence of 2-(di-tert-butylphosphino)biphenyl (JohnPhos) gold(I) chloride and starting 

material was recovered.  Employing both JohnPhos gold(I) chloride and silver nitrate in the 

reaction of 5.1 in THF at room temperature gave (4-Me)Nai dipeptide 5.3.  Best conditions were 

achieved using 300 mol% of both silver and gold salts relative to aza-Pra peptide 5.1 which 

provided (4-Me)Nai dipeptide 5.3 in 23% yield along with recovered alkyne 5.1 (30%). Use of 

lower amounts of both silver and gold salts decreased the yield of Nai dipeptide 5.3.  The 

conditions appear to support a mechanism featuring a Ag+/Au+ bimetallic catalyst.160   Notably, 

the specific rotation of Nai dipeptide 5.3 ([α]D
23 = 23.6, c 1.2, MeOH) prepared using the 

combination of gold and silver catalysis suggested that no epimerization occurred.  Although 

further optimization of the gold and silver catalysis conditions may be merited, the stoichiometry 

and high price of the metals involved in the reaction conditions restrict the current method’s 

practical utility. 
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Figure 5.1: Synthesis of (5-Me)Nai peptide 5.3 using a combination of gold and silver catalysis.   

5.3   Introduction of aminomethyl substituents at the 4-position 

 

 The copper catalyzed alkyne-aldehyde-amine (A3) reaction on aza-Pra substrate has 

provided a variety of aza-4-aminobut-2-ynylglycine residues.59, 161 Cyclization of the latter 

substrates would afford (4-aminomethyl)Nai residues to complement the (5-aminomethyl)Nai 

analogs prepared by reductive amination and Mannich reactions presented in Chapter 2.  

Towards this objective, Fmoc and benzhydrylidene protected aza-4-aminobut-2-ynylglycine 

residues 5.9 and 5.10 were respectively synthesized by A3 reactions using the respective aza-Pra 

substrates, diallylamine and paraformaldehyde in dioxane (Scheme 5.1).59 
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Scheme 5.1: Synthesis of (4-N,N-diallylaminoethyl)Nai peptides 5.11 and 5.12  

 Diphenylketimine protection has been used effectively in A3 reactions of aza-Pra 

residues.59, 161 Attempts to cyclize benzhydrylidene protected aza-4-aminobut-2-ynylglycine 5.10 

were however unsuccessful under basic conditions such as potassium tert-butoxide in THF, as 

well as sodium hydride in acetonitrile (Table 5.1).75  On the other hand, cyclization of 

benzhydrylidene and Fmoc protected aza-4-aminobut-2-ynylglycine residues 5.9 and 5.10 

occurred using transition metal catalysis.  The Fmoc protected aza-dipeptide 5.9 was prepared 

by alkylation of carbazate 5.4 using propargyl bromide in THF,162 activation of the resulting 

carbazate 5.5 as the corresponding aza-amino acid chloride 5.6 using bis-

(trichloromethyl)carbonate (BTC), and amino ester acylation (Scheme 5.2).   

 

Entry 5.19/10 N-

protection  

Conditions % yield 5.11/12 

1 (Ph)2C= KOtBu (3eq), THF, 18 h 0 
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2 (Ph)2C= NaH (3eq), MeCN, 18 h Traces 

3 (Ph)2C= Au(JohnPhos)Cl (3eq)/AgNO3 (3eq), THF, 

18 h 

23 % 

4 Fmoc Au(JohnPhos)Cl  (3eq)/AgNO3 (3eq), THF, 

18 h 

40 % 

6 Fmoc AgNO3 (3eq), THF, 50oC, 12h 30 % 

7 Fmoc AgO3SCF3 (3 eq), THF, 50oC, 12h  87 % 

Table 5.1: Synthesis of (4-aminomethyl)Nai peptides 5.11 and 5.12. 

 Gold catalysis alone had little effect on cyclization, but in the presence of silver nitrate, 

JohnPhos gold(I) chloride caused cyclization of both Fmoc and benzylhydrene protected aza-4-

aminobut-2-ynylglycine residues 5.9 and 5.10 in 40 % and 23 % (m/z = 613.3153, M+Na+) 

respective yields. Moreover, silver nitrate alone induced cyclization of Fmoc protected aza-4-

aminobut-2-ynylglycine residue 5.9 in 30 % yield.  Silver triflate had previously been used to 

promote cyclization to form furan,163 oxazole164 and isoquinoline products.165 Employment of 

silver triflate in the cyclization of aza-4-aminobut-2-ynylglycine 5.9 gave 87% isolated yield (entry 

7).  Attempts failed however to perform the reaction using catalytic amounts of silver triflate; 

instead, 3 equivalents were needed to complete the reaction in a timely fashion.   

 Although epimerization during cyclization was not examined, the silver promoted 

cyclization may likely afford enantiomerically enriched (4-aminoethyl)Nai residues for 

introduction into biologically interesting peptides.  The 4-(N,N-diallyl)aminobut-2-ynylglycine 

residue has exhibited interesting activity in GHRP-6 analogs.166 Cyclization of this residue may 

provide information regarding the conformer and structural requirements for biological activity.  

Moreover, the diallylamine protection may be removed using palladium catalysis to yield a 

primary amine.167   In principle, (4-(N,N-diallyl)aminoethyl)Nai 5.11 may be introduced into 

peptides after removal of the tert-butyl ester using trifluoroacetic acid in dichloromethane. The 

synthesis of (4-aminoethyl)Nai peptides would then proceed by coupling to peptide bound to 

resin, Fmoc group cleavage using piperidine in DMF, acylation of the Nai residue using conditions 

described in Chapter 4, elongation and resin cleavage.  
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5.4   Introduction of Nai subunits on resin. 

 

 As described in Chapter 4, (4-Me)Nai dipeptides have been introduced into peptides 

bound to resin using standard coupling conditions and solid-phase chemistry.  Many efforts were 

deployed to construct the Nai scaffold directly from aza-Pra residues in peptides attached to solid 

supports.  Various attempts using transition metal catalysis have given little cyclized product. On 

the other hand, treatment of aza-Pra-D-Phe-Lys(Boc)-Rink amide resin with potassium tert-

butoxide (3 eq.) in THF gave 20% conversion to the corresponding (4-Me)Nai peptide after 24 h; 

however, further treatment with alkoxide decreased purity without improving cyclisation yield. 

In addition, attempts to formylate (4-Me)Nai peptide bound to Rink amide resin were 

unsuccessful using various Vilsmeier-Haack reaction conditions. 

 As mentioned, the (4-Me,5-formyl)Nai residue has been used in reductive, oxidative and 

reductive amination chemistry. Aldehyde functions participate in a rich variety of chemistry.168, 

169 Several reactions may merit further investigation.  For example, the Baylis-Hillman reaction 

on the Nai aldehyde could provide a conjugated system and in a preliminary experiment provided 

a diastereomeric mixture that was characterized by crude NMR and HRMS.  The Henry reaction 

using nitromethane and sodium hydroxide gave mixtures of nitro olefin and 1,3-dinitro-2-propyl 

products, which were characterized by NMR.  Mild conditions for Friedel-Crafts type acylation of 

pyrroles may prove effective for adding acyl substituents to the Nai 5-position.170 The alcohol of 

(4-Me,5-hydroxymethyl)Nai dipeptide 2.20 was converted to the corresponding chloride 5.13 

using N-chloro succinimide (NCS), triphenylphosphine and imidazole in DCM.171  Chloride 

displacement with different nucleophiles merits further exploration.   

5.5   Conclusions 

 

 The N-aminoimidazol-2-one (Nai) residue is a promising system for introducing 

conformational constraint into peptide structures.  The combined roles of the imidazolone ring 
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and the azapeptide moiety gives an extremely rigid amino acid surrogate.  Moreover, the ability 

to functionalize the 5 position after ring synthesis is a considerable asset. 

 This thesis has developed three pertinent synthetic advances for the effective application 

of Nai residues in peptide mimicry.  First, methods for the synthesis of enantiomerically enriched 

Nai residues have been developed by employing aza-Pra dipeptide acids and hydrazides under 

base promoted cyclization conditions (Chapter 2).  The resulting Nai dipeptide acids have 

subsequently been used to make enantiomerically pure peptides for biological studies. 

 Second, a variety of 5-position substituents have been added to the imidazol-2-one to 

mimic different amino acid side chains with gauche orientations in χ-space. For example, the 

Vilsmeier-Haack formylation provided a 5-position aldehyde group that was converted into acid, 

alcohol and amine analogs by oxidation, reduction or reductive amination chemistry yielding 

constrained Asp, Hse and Dab residues. The Mannich reaction provided an alternative entry to 

Dab analogs.  Chemistry for aryl groups additions to Nai residues was demonstrated initially in 

solution and later on solid phase (Chapter 3).  Palladium catalysis enabled a wide range of aryl 

groups to be introduced at the Nai 5-position to prepare constrained Phe and Tyr analogs.   

 Finally, effective methods were conceived for the solid-supported synthesis of 5-position 

substituted Nai peptides (Chapter 4).  The palladium-catalyzed arylation conditions were adapted 

for solid-phase synthesis of (4-Me,5-Ar)Nai residues with high conversion.  Solid-phase methods 

were also developed for the removal of the diphenylketimine protecting groups and for acylation 

of sterically demanding and electronically deficient semicarbazides.  Four [(4-Me,5-Ar)Nai4]-

GHRP-6 analogs were prepared using these solid-phase protocols, which should be amenable to 

study a variety of other biologically active peptides. 

 Towards understanding the conformational preferences of 4,5-disubstituted Nai residues, 

this thesis has presented computational analyses of model (4-Me,5-Ar)Nai peptides. Employing 

coordinates from previously crystallized 4-Me-Nai dipeptide motifs, molecular modeling of the 

corresponding [4-Me,5-p-hydroxyphenyl)Nai dipeptide demonstrated that the aryl substituent 

had little impact on the backbone dihedral angles (ϕ and ψ) which maintained a β-turn 

geometry.75 A combination of the location of the aryl group at the heterocycle 5-position and 
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steric interactions with the neighboring methyl group oriented the hydroxyphenyl substituent in 

a gauche (–) conformation.26  The (4-Me,5-Ar)Nai residues employ covalent, stereo-electronic 

and steric constraints to predispose aromatic amino acids at the i + 1 position of β-turns with 

gauche (–) side chain geometry.  The combined effect of inducing a turn conformation while 

placing the aromatic side chain in the natural geometry has tremendous potential to mimic 

natural aromatic turn structure.  Moreover, since the arylation conditions can be employed with 

a wide range of aryl iodide coupling partner, Unnatural aromatic group can be introduced at the 

i + 1.  This can be exploited by synthetizing libraries of peptidomimetic compounds and help 

understanding the SAR of a bioactive peptide featuring an aromatic β-turn. 

 In the context of peptide-based medicinal chemistry, this thesis has presented the 

synthesis of four [4-Me,5-Ar)Nai4]-GHRP-6 analogs and preliminary study of their biological 

activity. Four different coupling partners featuring Phenyl, electron donating phenol (EDG) and 

4-Methoxy phenyl and electron withdrawing group (EWG) 4-Fluoro phenyl.  The choice of 4-

substitued aryl groups is based upon previous work where substitution at other position on the 

ring were detrimental to binding.85 In macrophages treated with the Toll-like receptor (TLR)-2 

agonist R-FSL-1, the Nai analogs reduced overexpression of induced nitric oxide (NO).  All four 

Nai peptides were active in this assay. Moreover, peptide 4.10 exhibited improved activity 

relative to [azaY4]-GHRP-6, which has previously demonstrated both low micromolar activity for 

CD36 and a significant antiangiogenic action in mouse choroidal explants.85  Combined with the 

conformational analysis described above, the activity of the [4-Me,5-Ar)Nai4]-GHRP-6 analogs on 

NO production demonstrate the presence of an aromatic turn at the 4-position in the biologically 

active conformer responsible for CD36 modulation to mediate TLR-2 induced inflammation.  

These results are significant in order to acquire a better understanding of the active conformation 

needed to strongly bind CD36 and move towards the development of peptide or peptidomimetic 

drugs that could be used to treat angiogenic diseases, AMD and protect against cardiopathies by 

modulating CD36. 

 In conclusion, methodologies were developed to minimize epimerization during azaPra 

cyclization by using KOtBu in THF, short reaction times and varying the C-terminal group. 

Vilsmeier formylation allowed to install an aldehyde functionality at the 5-position which was 
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later derivatized to an alcohol, a carboxylate group and different substituted amine group.  

Mannich conditions also allowed acylation at the 5 position.  Palladium-catalyzed arylation gave 

4-Me, 5-Aryl-Nai where the aryl group could be substituted in o,m or p and bear both EWG and 

EDG.  This methodology was then adapted to solid support and 4 different [4-Me, 5-Aryl-Nai4]-

GHRP-6.  Biological evaluation showed that they were all able to modulate CD36 by reducing Tlr2-

mediated inflammation.  These results demonstrate that Nai residues can be introduced in 

peptides whose active conformation feature a turn structure.  Different substitution on the 

heterocycle can help map out SAR in both Ramachandran and Chi space.  Considering this, the 

main objectives of the thesis, which were to develop Nai chemistry in order to have synthesis 

improved, introduce 5-substituents and put them in a biologically active peptide have been met.  

There is still work to be done to fully exploit some of the analogs made, as seen in this chapter, 

and possibly some other use to Nai residues.  Those different potential analogs would be built 

upon the work presented in this thesis.  

Experimental 

General 

 Unless specified, all reactions were performed under argon atmosphere.  All glassware 

was stored in the oven or flame-dried and let cool under inert atmosphere prior to use.  

Anhydrous solvents were obtained either by filtration through drying columns (DCM, THF, MeCN, 

DMF) in a GlassContour system (Irvine, CA) or by distillation over CaH2 (MeOH, CHCl3).  tert-Butyl 

2-(3-((diphenylmethylene)amino)-5-methyl-2-oxo-2,3-dihydro-1H-imidazol-1-yl)-3-

phenylpropanoate was synthesized according to the literature procedure.75 All other starting 

materials, reagents and chemicals were purchased from commercial suppliers and used without 

further purification.  Reaction progress was monitored by thin layer chromatography (TLC) on 

silica gel plates, which were visualized under UV light (254 nm) and by staining with KMnO4, 2,4-

dinitrophenylhydrazine (DNPH) and bromocresol green.  Flash chromatography172 was 

performed using either 230-400 mesh silica gel from SiliCycle Inc. or on a CombiFlash instrument 

from Teledyne using RediSep Gold columns.  Nuclear magnetic resonance spectra (1H, 13C and 

COSY NMR) were recorded either on Bruker AMX 300, AV 400, AVII 400 or AMX 500 
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spectrometers. Specific rotations were determined on a Perkin-Elmer 341 polarimeter at 589 nm 

sodium-D line using a 0.5 dm cell and are reported as follow [α]λ
temperature (°C), concentration (c in 

g/100 mL), and solvent.  High resolution mass spectrometry (HRMS) was performed by the Centre 

régional de spectroscopie de masse de l’Université de Montréal. 

(9H-fluoren-9-yl)methyl (R)2-((1-(tert-butoxy)-1-oxo-3-phenylpropan-2-yl)carbamoyl)-2-(4-

(diallylamino)but-2-yn-1-yl)hydrazine-1-carboxylate (5.9) 

 azaPra 5.7 (100 mg, 0.2 mmol) was dissolved in dioxane (2 mL) in a sealed vessel and 

treated sequentially with copper (I) iodine (4 mg, 0.02 mmol), paraformaldehyde (30 mg, 0.4 

mmol) and diallylamine (34 µL, 0.3 mmol).  The reaction mixture was heated for 6 h.  After cooling 

down, the reaction mixture was partitioned between water (10 mL) and EtOAc (10 mL).  Layers 

were separated and the aqueous phase was extracted with EtOAc (2*10 mL).  The combined 

organic layers were washed with sat. NH4Cl until the blue color disappeared (indicating removal 

of copper residues) then with water (1* 20 mL) and brine (1* 20 mL).  The organic layer was dried 

over magnesium sulfate and evaporated to a residue which was purified by column 

chromatography eluting with 0-100 % EtOAc/hexanes. Evaporation of collected fraction gave 5.9 

as a pale-yellow foam (95 mg, 79 %): Rf = 0.34 (5 % MeOH/DCM); [α]D
23 13.6  (c 0.64, CHCl3), 1H 

NMR (500 MHz, CDCl3) δ 1.41 (s, 9H), 3.05-3.09 (m, 6H), 3.32-3.3.35 (m, 2H), 4.21-4.22 (m, 1H), 

4.47-4.74 (m, 6H), 5.12-5.22 (m, 5H), 5.75-5.81 (m, 2H), 6.98 (br. s, 1H), 7.07-7.78 (m, 13 H). 13C 

NMR (125 MHz, CDCl3) δ 28.0, 38.1, 38.5, 41.6, 41.8., 46.9, 55.0, 56.4, 56.5, 82.2, 118.2, 120.1, 

126.9, 127.3, 128.0, 128.2, 128.3, 128.4, 129.2, 129.7, 135.2, 141.4, 143.2, 156.4. HRMS calc. for 

C39H45N4O5 [M+H+] 649.3385, found 649.3391. 

tert-butyl (1-(4-(diallylamino)but-1-yn-1-yl)-2-(diphenylmethylene)hydrazine-1-carbonyl)-D-

phenylalaninate (5.10) 

 Following the protocol for the synthesis of methylaminoalkyne 5.9, azaPra 5.8 (1.06 g, 2.2 

mmol) was reacted with copper (I) iodide (41.9 mg, 0.2 mmol), paraformaldehyde (132 mg, 4.4 

mmol) and dialylamine (0.4 mL, 3.3 mmol).  The residue was purified by column chromatography 

eluting with 0-100 % EtOAc/hexanes.  Evaporation of the collected fractions gave 5.10 as bright 

yellow oil: Rf = 0.26 (80 % EtOAc/hexanes); [α]D
23 47.4 (c 1.00, CHCl3), 1H NMR (500 MHz, CDCl3) 
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δ 1.44 (s, 9H), 3.09-3.10 (m, 3H), 3.17-3.20 (m, 2H), 3.37 (br. s, 1H), 3.40 (dd, J = 17.8, 5.6 Hz, 1H), 

4.26 (dd, J = 18.0, 4.4 Hz, 1H), 4.76-4.80 (m, 1H), 5.13-5.17 (m, 3H), 5.74-5.82 (m, 2H), 7.05-7.11 

(m, 1H), 7.22-7.51 (m, 15H). 13C NMR (125 MHz, CDCl3) δ 28.0, 35.3, 38.6, 41.4, 55.0 (two 

overlapping peaks), 56.1, 68.3, 73.1, 77.3, 81.8, 126.8, 128.2, 128.4, 128.6, 129.1, 129.2, 129.6, 

129.7 (two overlapping peak), 130.1, 135.5, 136.5, 138.4, 157.8, 170.8. HRMS calc. for 

C37H42N4O3Na [M+Na+] 613.3149, found 613.3160. 

tert-butyl (R)-2-(3-((((9H-fluoren-9-yl)methoxy)carbonyl)amino)-5-(2-(diallylamino)ethyl)-2-oxo-2,3-

dihydro-1H-imidazol-1-yl)-3-phenylpropanoate (5.11) 

 Diallylaminomethyl 5.9 (95 mg, 0.2 mmol) was dissolved in CHCl3 (2 mL) in a sealed vessel 

and treated with AgS(O)3CF3 (112 mg, 0.6 mmol).  The vessel was capped and heated at 50 oC for 

18 h.  After cooling down, the reaction mixture was transferred to a separatory funnel and diluted 

with DCM (10 mL).  The organic layer was extracted with sat. NaHCO3 (3* 10 mL), water (1* 10 

mL) and brine (1* 10 mL).  The organic layer was dried with magnesium sulfate and evaporated 

to a residue which was purified by column chromatography eluting with 0-100% EtOAc/hexanes.  

Evaporation of the collected fractions gave imidazolone 5.11 as pale-yellow oil (81 mg, 87 %): Rf 

= 0.56 (5 % MeOH/DCM); [α]D
23 28.5 (c 0.70, CHCl3), 1H NMR (500 MHz, CDCl3) δ 1.29 (s, 9H), 3.0-

3.15 (m, 6H), 3.42-3.59 (m, 2H), 4.03 (br. s, 1H), 4.16-4.28 (m, 1H), 4.36 (t, J = 9.9 Hz, 1H), 4.51-

4.56 (m, 1H), 4.68-4.69 (m, 1H), 4.87 (br. s, 1H), 5.15-5.19 (m, 4H), 5.56 (s, 1H), 5.76-5.87 (m, 2H), 

6.41 (d, J = 7.2 Hz, 1H), 7.16-7.79 (m, 13H). 13C NMR (125 MHz, CDCl3) δ 27.9, 28.0, 29.7, 46.8, 

51.2, 52.0, 54.8, 56.4, 68.7, 82.0, 117.6, 120.0, 125.3, 126.8, 127.3, 127.9, 128.3, 129.5, 135.4, 

136.4, 141.3, 141.8, 143.3, 157.0, 170.6. HRMS calc. for C39H45N4O5 [M+H+] 649.3385, found 

649.3379. 

tert-butyl (R)-2-(3-((diphenylmethylene)amino)-4-(hydroxymethyl)-5-methyl-2-oxo-2,3-dihydro-1H-

imidazol-1-yl)-3-phenylpropanoate (5.13) 

 Alcohol 2.20 (240 mg, 0.4 mmol) was diluted with DCM (4 mL) and cooled to 0 oC using an 

ice bath.  In a separate flask, triphenylphosphine (166 mg, 0.6 mmol) was diluted in DCM (4 mL) 

and treated with N-chlorosuccinimide (84 mg, 0.6 mmol) and imidazole (57 mg, 0.8 mmol).  This 

solution was stirred for 15 minutes and added to the first one.  The reaction mixture was allowed 



 
130 

 

to warm up to RT and stirred for 18 h.  Upon confirmation of consumption of starting material by 

TLC (Rf = 0.20, 50 % EtOAc/hexanes) water (10 mL) was added to the reaction mixture and stirred 

for 15 min.  Layers were separated and the aqueous layer was extracted with DCM (3* 10 mL).  

The combined organic layers were washed with sat. NaHCO3 (3* 20 mL), water (1* 20 mL) and 

brine (1* 20 mL).  The organic layer was dried with magnesium sulfate and evaporated to a 

residue that was purified by column chromatography eluting with 0-100 % EtOAc/hexanes.  

Evaporation of the collected fraction gave 5.13 as pale-yellow oil (85 mg, 34 %): Rf = 0.11 (75 % 

EtOAc, Hexanes); 1H NMR (300 MHz, CDCl3) δ 1.47 (s, 9H), 1.65 (s, 3H), 3.11-3.15 (m, 1H), 3.30-

3.38 (m, 1H), 4.33-4.37 (m, 1H), 4.78 (d, J = 15.2 Hz, 1H), 4.97 (d, J = 15.2 Hz, 1H), 6.24 (br. s, 1H), 

6.62-7.60 (m, 15 H); HRMS calc. for C32H35ClN5O4 [M+H+] 588.2372, found 588.2384. 
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Annexes 

Annex 1: NMR Spectra for chapter 2 
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Compound 2.16c 

1H-NMR, 500 MHz, CDCl3 
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13C-NMR, 75 MHz, CDCl3 
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Compound 2.17b 

1H-NMR, 500 MHz, CDCl3 

 



 
152 

 

13C-NMR, 125 MHz, CDCl3 
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Compound 2.17c 

1H-NMR, 400 MHz, CDCl3 
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13C-NMR, 75 MHz, CDCl3 
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Compound 2.19a 

1H-NMR, 500 MHz, CDCl3 
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13C-NMR, 125 MHz, CDCl3 
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Compound 2.19b 

1H-NMR, 300 MHz, CDCl3 
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13C-NMR, 125 MHz, CDCl3 
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Compound 2.19c 

1H-NMR, 500 MHz, CDCl3 
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13C-NMR, 125 MHz, CDCl3 

  



 
162 

 

Compound 2.19d 

1H-NMR, 400 MHz, CDCl3 
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13C-NMR, 125 MHz, CDCl3 
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Compound 2.20 

1H-NMR, 300 MHz, CDCl3 
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13C-NMR, 75 MHz, CDCl3 
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Compound 2.21 

1H-NMR, 400 MHz, CDCl3 
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13C-NMR, 75 MHz, CDCl3 
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Compound 2.22 

1H-NMR, 300 MHz, CDCl3 
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13C-NMR, 125 MHz, CDCl3 
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Compound 2.23 

1H-NMR, 300 MHz, CDCl3 
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13C-NMR, 100 MHz, CDCl3 
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Compound 2.24 

1H-NMR, 500 MHz, CDCl3 
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13C-NMR, 125 MHz, CDCl3 
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Compound 2.25 

1H-NMR, 500 MHz, CDCl3 
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13C-NMR, 125 MHz, CDCl3 
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Compound 2.26 

1H-NMR, 300 MHz, CDCl3 
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13C-NMR, 100 MHz, CDCl3 
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Annex 2: NMR Spectra for chapter 3 
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Compound 3.17 

1H-NMR, 400 MHz, CDCl3 

 



 
180 

 

13C-NMR, 75 MHz, CDCl3 
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Compound 3.18 

1H-NMR, 400 MHz, CDCl3  
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13C-NMR, 101 MHz, CDCl3 
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Compound 3.19 

1H-NMR, 400 MHz, CDCl3  
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13C-NMR, 101 MHz, CDCl3 
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Compound 3.20 

1H-NMR, 400 MHz, CDCl3  
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13C-NMR, 75 MHz, CDCl3 
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Compound 3.21 

1H-NMR, 300 MHz, CDCl3  
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13C-NMR, 176 MHz, DMSO-d6 
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Compound 3.22 

1H-NMR, 500 MHz, CDCl3  
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13C-NMR, 126 MHz, CDCl3  
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Compound 3.23 

1H-NMR, 500 MHz, CDCl3  
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13C-NMR, 126 MHz, CDCl3 
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Compound 3.24 

1H-NMR, 500 MHz, CDCl3 
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13C-NMR, 126 MHz, CDCl3 
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Compound 3.25 

1H-NMR, 500 MHz, CDCl3 

 



 
196 

 

13C-NMR, 126 MHz, CDCl3 
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Compound 3.26 

1H-NMR, 500 MHz, CDCl3 
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13C-NMR, 126 MHz, CDCl3 
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Compound 3.27 

1H-NMR, 400 MHz, CDCl3 
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13C-NMR, 75 MHz, CDCl3 
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Compound 3.28 

1H-NMR, 500 MHz, CDCl3 
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13C-NMR, 126 MHz, CDCl3 
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Compound 3.30 

1H-NMR, 300 MHz, CDCl3 
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13C-NMR, 75 MHz, CDCl3 

 



 
205 

 

Compound 3.31 

1H-NMR, 300 MHz, CDCl3 
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13C-NMR, 75 MHz, CDCl3 
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Annex 3: NMR Spectra for chapter 4 
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tert-Butyl (4-iodophenyl) carbonate 

1H-NMR, 500 MHz, CDCl3 
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13C-NMR, 125 MHz, CDCl3 
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Annex 4: NMR Spectra for chapter 5 
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Compound 5.9 

1H-NMR, 500 MHz, CDCl3 
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13C-NMR, 125 MHz, CDCl3 
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Compound 5.10 

1H-NMR, 500 MHz, CDCl3 
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13C-NMR, 125 MHz, CDCl3 
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Compound 5.11 

1H-NMR, 500 MHz, CDCl3 
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13C-NMR, 125 MHz, CDCl3 

 

  



 
217 

 

Compound 5.13 

1H-NMR, 300 MHz, CDCl3 
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Annex 5: LC-MS for chapter 4  

LC-MS data for peptides 4.9 to 4.12 

System A) 10%-90% MeCN (+0.1% FA) in H2O (+0.1% FA) over 15 min 

System B) 10%-90% MeOH (+0.1% FA) in H2O (+0.1% FA) over 15 min  

UV detection at 214 or 254 nm  
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Peptide 4.9 

System A)                                                                                      System B)                                                                                            
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HRMS 
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Peptide 4.10 

System A)                                                                                     System B) 
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HRMS 

 

 

 



 
223 

 

Peptide 4.11 

System A)                                                                                 System B) 
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HRMS 
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Peptide 4.12 

System A)                                                                                    System B) 

 

 



 
226 

 

HRMS 

 

 


