
Université de Montréal 

 

 

 

Endophytes of commercial Cranberry cultivars that control  

fungal pathogens 

 

 

Par 

  Karima Essid Elazreg 

 

 

 

Département de Biochimie et Médecine Moléculaire, Faculté de Médecine 

 

Mémoire présenté à la Faculté de Médecine en vue de l’obtention du grade de Maîtrise en 

Biochimie, option Génomique Humaine 

November 2020 

© Karima Elazreg, 2020 

 

 

 

 



ii 
 

Université de Montréal 

Département de Biochimie et Médecine Moléculaire, Faculté de Médecine 

 

 

Ce mémoire intitulé(e) 

 

Endophytes of commercial Cranberry cultivars that control fungal pathogens 

 

Présenté par 

Karima Essid Elazreg 

 

 

A été évalué(e) par un jury composé des personnes suivantes 

Gerardo Ferbeyre 

Président-rapporteur 

 

B. Franz Lang 

Directeur de recherche 

 

Jesse Shapiro 

Membre du jury 

 

 

 



i 
 

Résumé 

Les endophytes sont des microorganismes (généralement des bactéries et des champignons) qui 

vivent dans les tissus végétaux mais n'activent pas le système immunitaire/défense des plantes, 

contrairement aux pathogènes végétaux qui activent généralement les réponses immunitaires des 

plantes. Des recherches récentes ont montré que pratiquement toutes les plantes cultivées en plein 

champ contiennent un certain nombre d'endophytes, et que certains endophytes stimulent la 

croissance des plantes et renforcent la résistance contre les agents pathogènes. Les endophytes 

sécrètent des composés chimiques (métabolites secondaires) qui suppriment la croissance des 

agents pathogènes, un processus connu sous le nom de biocontrôle. En raison de ces propriétés de 

biocontrôle, les endophytes sont une alternative potentielle aux pesticides chimiques pour lutter 

contre les maladies des plantes. En conséquence, le biocontrôle est devenu un domaine de 

recherche important. 

Mon projet de recherche comportait les objectifs spécifiques suivants : (i) isoler les endophytes des 

plants de canneberges acquis auprès de deux producteurs commerciaux de canneberges de la 

variété Stevens situés au Québec, Canada (Bieler Cranberries Inc, et Gillivert Inc.) ; (ii) tester 

l'activité de biocontrôle des endophytes contre une collection de champignons pathogènes et 

ensuite inoculer les endophytes les plus actifs dans des plants de canneberges obtenus par 

germination de la variété Stevens (Bieler Cranberries Inc. ) et Scarlet Knight (Daniele Landreville) 

; et (iii) identifier des groupes de gènes de métabolites secondaires en séquençant, assemblant et 

annotant le génome d'un endophyte qui présentait de fortes caractéristiques de biocontrôle.  

Dans le cadre de ce projet de recherche, des tests antagonistes in vitro ont été réalisés avec des 

endophytes de la canneberge et un champignon pathogène, qui ont montré que Pseudomonas sp. 

CSWB3, Pseudomonas sp. CLWB12 et la souche fongique Lachnum sp. EFK28 étaient les plus 

actifs et ces souches ont donc été sélectionnées pour des études plus approfondies. Des expériences 

de germination de semis in vitro et d'inoculation d'endophytes ont montré que les souches 

bactériennes Pseudomonas sp. CSWB3 et Pseudomonas sp. CLWB12 amélioraient la croissance 

des semis de canneberges de la variété Stevens.  

Comme les Pseudomonas sp. CSWB3 et Pseudomonas sp. CLWB12 ont tous deux un effet 

antagoniste élevé sur les champignons pathogènes, un seul (Pseudomonas sp. CSWB3) a été 
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soumis à une analyse du génome. Le séquençage, l'assemblage, l'annotation et l'analyse du génome 

de Pseudomonas sp. CSWB3 a révélé que cette souche possède cinq groupes de gènes 

biosynthétiques de métabolites secondaires qui codent pour les protéines responsables de la 

biosynthèse des composés antifongiques/antimicrobiens : pyrrolnitrine, pyoluteorine, putisolvine, 

2,4-diacétylephloroglucinol, bicornutine A1 et bicornutine A2. 

Sur la base des résultats de ces travaux, nous concluons que certains endophytes de la canneberge 

qui possèdent des groupes de gènes codant pour des métabolites secondaires antifongiques peuvent 

supprimer les pathogènes fongiques et améliorer la croissance des plantes.  

Mots-clés: endophyte, bactéries, champignons, pathogène, biocontrôle, activité antifongique, 

métabolites secondaires, canneberge, Pseudomonas sp., analyse du génome, groupes de gènes, 

génomique comparative. 
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Abstract 

Endophytes are microorganisms (typically bacteria and fungi) that live within plant tissue but do 

not activate the plant defense/immune system, unlike plant pathogens that typically do activate 

plant immune responses. Recent research has shown that virtually all plants grown under field 

conditions contain a number of endophytes, and that certain endophytes stimulate plant growth and 

enhance resistance against pathogens. Endophytes secrete chemical compounds (secondary 

metabolites) that suppress pathogen growth, a process known as biocontrol. Because of these 

biocontrol properties, endophytes are a potential alternative to chemical pesticides for combatting 

plant disease. Accordingly, biocontrol has become an important field of research. 

My research project was comprised of the following specific aims: (i) isolate endophytes from 

cranberry plants that were acquired from two commercial producers of cranberries of the Stevens 

variety located in Quebec, Canada (Bieler Cranberries Inc, and Gillivert Inc.); (ii) test the 

biocontrol activity of endophytes against a collection of fungal pathogens and then inoculate the 

most active endophytes into cranberry seedlings that were obtained by germinating Stevens (Bieler 

Cranberries Inc.) and Scarlet Knight (Daniele Landreville) seeds; and (iii) identify secondary 

metabolite gene clusters by sequencing, assembling, and annotating the genome of one endophyte 

that exhibited strong biocontrol characteristics.  

As part of this research project, in vitro antagonistic tests were conducted with cranberry 

endophytes and fungal pathogen, which showed that Pseudomonas sp. CSWB3, Pseudomonas sp. 

CLWB12, and the fungal strain Lachnum sp. EFK28 were the most active and therefore these 

strains were selected for further studies. In vitro seedling germination and endophyte inoculation 

experiments showed that the bacterial strains Pseudomonas sp. CSWB3 and Pseudomonas sp. 

CLWB12 enhanced the growth of cranberry seedlings of the Stevens variety.  

Since Pseudomonas sp. CSWB3 and Pseudomonas sp. CLWB12 both had a high antagonistic 

effect on fungal pathogens, only one (Pseudomonas sp. CSWB3) was subjected to genome 

analysis. Sequencing, assembly, annotation, and analysis of the Pseudomonas sp. CSWB3 genome 

revealed that this strain possesses five secondary metabolite biosynthetic gene clusters that encode 

proteins responsible for the biosynthesis of the antifungal/antimicrobial compounds pyrrolnitrin, 

pyoluteorin, putisolvin, 2,4-diacetylephloroglucinol, bicornutin A1, and bicornutin A2. 



iv 
 

Based on the results of this work, we conclude that certain cranberry endophytes that possess gene 

clusters encoding antifungal secondary metabolites can suppress fungal pathogens and enhance 

plant growth.  

Keywords: endophyte, bacteria, fungi, pathogen, biocontrol, antifungal activity, secondary 

metabolites, cranberry, Pseudomonas sp., genome analysis, gene clusters, comparative genomics. 
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CHAPTER.1 – LITERATURE REVIEW 

1. Literature Review  

1.1. Endophytes  

Plant endophytes are microorganisms that live within plant tissue, at least for part of their life cycle. 

Endophytes were first identified in 1809 by the German botanist Heinrich Friedrich (Dey, Datta, 

Saha, Parida, & Panda1, 2019), who defined endophytes as a specific group of parasitic fungi that 

live in plants. Later, in 1991, the description of endophytes became more factual and practical, 

defined by Orlando Petrini as “all organisms inhabiting plant organs that at some time in their life 

cycle can colonize internal plant tissues without causing apparent harm to their host” (Hardoim et 

al., 2015).  

In an agronomical sense (i.e., practical, non-scientific sense), endophytes may have beneficial 

effects by stimulating plant growth as well as by inhibiting plant pathogens (Gupta et al., 2016). 

However, the qualifications ‘beneficial’ or ‘without causing apparent harm to their host’ are 

problematic and need to be defined for a specific, given context, as some endophytes are pathogenic 

to certain plants but enhance the growth of other plants. This may be caused by many factors, 

including the environment, the precise genotype of the endophyte isolate, and other similar types 

of factors. We therefore use the term ‘endophyte’ in a more general sense, as ‘microbes (bacteria 

or fungi) that colonize internal plant tissues’, without referring to pathogenicity or agronomic 

benefits. 

1.2. Diversity of Endophytes  

Endophytes encompass a wide variety of microorganisms, in particular bacteria and fungi. More 

than 200 plant-associated species of bacteria have been identified, the majority of which belong to 

the phyla Actinobacteria, Proteobacteria, and Firmicutes (Golinska et al., 2015). The phylum 

Actinobacteria is comprised of Gram-positive bacteria that includes Streptomyces, whereas the 

phylum Proteobacteria is comprised of Gram-negative bacteria, including Pseudomonas, 

Escherichia, and Salmonella. The majority of the phylum Firmicutes is comprised of Gram-

positive bacteria, such as Bacillus and Clostridium (Golinska et al., 2015; Hui, Yan, Qing, 

Renyuan, & Yongqiang, 2013). Many of these bacterial endophytes secrete secondary metabolites 
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that possess antibiotic, antifungal, and antitumor activity; secondary metabolites produced by 

Streptomyces species have been investigated in great detail (Berdy, 2012).  

Fungal endophytes are found within the tissue of a wide variety of plants. The relationship between 

fungal endophytes and plants may be mutualistic and asymptomatic (i.e., no signs of disease 

throughout the fungus life cycle), in which plants provide food and energy sources to endophytes 

while in return endophytes enhance the resistance of plants against pathogens (Saikkonen, Faeth, 

Helander, & Sullivan, 1998). However, as noted above, fungal endophytes may also exhibit 

pathogenic traits. Fungal endophytes have been widely studied because of their relationship with 

plants and their association with plants, which started approximately 400 million years ago (Krings 

et al., 2007).  

Based on taxonomy, host and tissue specificity, and function, endophytic fungi are classified into 

two main groups (Bamisile, Dash, Akutse, Keppanan, & Wang, 2018), which are clavicipitaceous 

endophytes (C-endophytes) and non-clavicipitaceous endophytes (NC-endophytes; for instance the 

wide-spread zygomycete AMF, see below). C-endophytes are associated with different grasses and 

produce bioactive metabolites that enhance the resistance of plants to insects, nematodes, and 

fungal pathogens. C-endophytes also produce alkaloids that are toxic to humans and animals but 

are tolerated by the plant host. C-endophytes include Hypocreales and other Ascomycota. NC-

endophytes contribute to several functions in the host plant, including avoidance of abiotic stress, 

inducing synthesis of plant hormones, and protecting the plant from pathogenic fungi (Rodriguez, 

White, Arnold, & Redman, 2009). 

Endophytic bacteria and fungi have been isolated from the Vaccinium genus within the family 

Ericaceae, which includes cranberries, blueberries, and strawberries. Ericoid mycorrhizal fungal 

endophytes have been isolated in China from blueberries; these fungal endophytes colonize the 

roots of blueberry plants and help increase the supply of nutrients to the plant under harsh 

environmental conditions. The ericoid mycorrhizal fungi isolated from blueberry belong to the 

genera Clavaria, Oidiodendron, Lachnum, Acephala, and Phialocephala (Yang et al., 2018). 

Additionally, a diverse range of endophytic bacteria has been found to be associated with blueberry 

plants. These endophytic bacteria produce indole acetic acid and other bioactive compounds 

involved in biological control activities that stimulate plant growth. In a study conducted by Ortiz-

Galeana et al., the most common bacterial endophytes found to be associated with blueberry plants 
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belong to the genera Pantoea, Pseudomonas, Burkholderia, and Bacillus. The majority of the 

species belonging to these genera perform activities that are advantageous to the blueberry plant 

(Ortiz-Galeana et al., 2018). 

1.3. Symbiotic Interactions  

Plants and endophytes communicate through biological mechanisms that lead to changes at the 

genetic, signaling, and metabolic levels. Two types of symbiotic communication between plants 

and either fungi or bacteria have been vigorously studied. The first and most common type are 

arbuscular mycorrhizal fungi (AMF) (Kawaguchi & Minamisawa, 2010) and zygomycete fungi (a 

paraphyletic taxon) that interact with a large variety of plants. Interactions between these fungi and 

plants initiate with the entry of fungal hyphae into the root epidermis, followed by an expansion of 

hyphae to reach the inner cortex where arbuscules are formed. These branched hyphae enhance 

absorbance of phosphate and other nutrients by the fungus from the soil (Lee, Eo, Ka, & Eom, 

2013). The second type of bacterial symbiotic interaction is called root nodule (RN), which consists 

of a nitrogen-fixing symbiotic interaction that is formed between rhizobacteria and the roots of 

leguminous plants. With RN, chemicals are produced that mediate highly specific signaling and 

communication between the host plant and the rhizobacteria (Clua, Roda, Zanetti, & Blanco, 2018). 

The process of nodulation initiates by the secretion of flavonoids by the plant root, which 

subsequently stimulate the expression of genes responsible for nodulation. This leads to production 

of lipochito-oligosaccharide, which is a nodulation factor that stimulates the growth of cells in the 

root cortex that ultimately leads to the formation of root nodules (Q. Wang, Liu, & Zhu, 2018). 

Symbiotic interactions between roots and nodules may also be a mechanism that allows bacterial 

pathogens to enter plant tissue, including certain non-nitrogen-fixing species that harbor antibiotic 

resistance genes specific to cefoxitin, ampicillin, and cefuroxime-axetil (Muresu, Maddau, Delogu, 

Cappuccinelli, & Squartini, 2010).  

1.4. Plant Pathogens 

1.4.1. Overview of Pathogenicity  

Plant pathogenicity is defined as the potential of microorganisms to cause damage to crops. The 

majority of plant pathogens are fungi. Fungal pathogens are classified according to their pattern of 

nutrition into necrotrophic, hemibiotrophic, and biotrophic. Necrotrophics include bacteria and 

fungi that secrete lytic enzymes (e.g., cell wall-degrading enzymes) that weaken plant defenses, 
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which ultimately can lead to destruction of plant tissue (necrosis). The fungus Botrytis cinerea that 

causes grey mold disease is an example of a necrotrophic pathogen. Botrytis cinerea forms an 

infectious structure on the outer surface of the leaf that mediates penetration of plant leaves, which 

is followed by secretion of lytic enzymes that dissolve cutin (Laluk & Mengiste, 2010).  

Unlike necrotrophic pathogens, biotrophic pathogens establish a mutualistic relationship with host 

plants. Biotrophic pathogens avoid host recognition and detection by secreting lytic enzymes that 

suppress the immunity of the host plant, which allows these pathogens to live within the plant tissue 

and benefit from plant-derived nutrients that gradually weakens and damages the host plant (Laluk 

& Mengiste, 2010). Biotrophic pathogens can also penetrate plant tissue and produce protein-based 

inhibitors of β-1,3-glucanases, which are enzymes produced by plants that are capable of dissolving 

fungal cell walls (Gebrie, 2016). An example of a biotrophic pathogen is Hyaloperonospora 

arabidosidis, which causes downy mildew disease in Arabidopsis. Sequencing of the H. 

arabidosidis genome revealed 134 RXLR genes that encode for RXLR effectors. The function of 

most of these RXLR effectors is not known, and only 13 of the RXLR effectors were shown to 

have a small effect on the host immune response, which suggests that inhibition of the host plant 

immune response by H. arabidosidis pathogen is possibly caused by the combined action of all 

134 RXLR effectors (Coates & Beynon, 2010; Pel et al., 2014). 

Nutrient acquisition by hemibiotrophic pathogens requires a living host plant. Hemibiotrophic 

pathogens go through a biotrophic phase during the primary stages of pathogenicity then switch to 

the necrotrophic phase. An example of a hemibiotrophic pathogen is the fungus Zymoseptoria 

tritici that is the causal agent of septoria leaf blotch, which affects the leaves of wheat. 

Zymoseptoria tritici infections start with the growth of hyphae on the outer surface of leaves, 

followed by pathogen penetration. The fungus grows slowly inside plant tissue. The infected plant 

does not display any pathogenic symptoms for 8–11 days, and then the fungus switches to its 

necrotic phase, which results in plant death. Following one month of infection, the pathogen starts 

to form sexual structures (Garcia-Sanchez, Bernales, & Cristobal, 2015). 

1.4.2. Plant Defense against Pathogens 

Several morphological, biochemical, and molecular mechanisms are involved in the response of 

plants to pathogenic infections. Following infection, a plant attempts to kill or weaken the 
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pathogen. Disease symptoms manifest after the plant’s defense mechanisms are sufficiently 

weakened by a pathogen. There are two types of plant defense mechanisms, described below.  

1) Constitutive defense mechanisms 

Structural defense mechanisms: This type of plant defense mechanism is considered to be the first 

line of defense against invading pathogens. Structural defense mechanisms include the wax layer 

and cuticle found on the surface of the plant, which give support and rigidity to plant tissue. Other 

plant structures act as physical barriers to prevent pathogen penetration, including the epidermal 

layer, actin cytoskeleton, guard cells, and trichomes (Doughari, 2015). 

Biochemical defense: Various chemicals are produced by plants in response to invading pathogens. 

Toxic or lytic reactions mediated by these chemicals may directly affect the pathogen or may 

indirectly affect the pathogen by stimulating microflora on the plant surface to produce toxic 

chemicals. These types of biochemical compounds that are secreted by plant tissues include 

antimicrobial organic substances such as saponins and alkaloids that act as inhibitors of 

microorganism growth. Another biochemical defense mechanism is mediated by toxic inhibitors, 

which are metabolites found in plant tissue that degrade toxins secreted by pathogens, which 

contributes to the plant’s resistance against the invading pathogen (Doughari, 2015). 

2) Induced defense mechanisms  

As previously described, pathogens have the ability to suppress the immune system of host plants 

and produce inhibitors of cell wall-degrading enzymes produced by the host plant. However, if a 

pathogen overcomes the plant’s pre-existing defenses, additional structural, cellular, or 

biochemical response mechanisms may be induced in order to kill the pathogen (van Baarlen, van 

Belkum, Summerbell, Crous, & Thomma, 2007).  

Structural defense: Structural defenses include lignification of the cell wall that increases its 

rigidity, which prevents penetration of fungal pathogen hyphae (Jones & Dangl, 2006). Another 

structural defense is suberization that includes conversion of the cell wall into cork tissue by 

suberin formation, which helps to isolate infected cells away from healthy tissue, which ultimately 

helps to minimize the spread of the infection (van Baarlen et al., 2007). Another important 

structural defense mechanism is gum deposition within infected cells (Doughari, 2015), and 

formation of a secondary wall and papillae. Papillae are polysaccharide polymers that are secreted 
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in response to an infection, especially in cereals, to increase their resistance   (Anderson et al., 

2010; Freeman & Beattie, 2008). 

Biochemical defenses: Biochemical defenses are the last line of host defense against penetrating 

pathogens (Jan, Azam, Ali, & Haq, 2011). Biochemical immunity consists of two main layers: 

microbial-associated molecular pattern (MAMP)-triggered immunity (MTI) and effector-triggered 

immunity (ETI). Protection against an invading pathogen initiates with pathogen recognition, 

which stimulates a defensive response (termed a hypersensitive response) that induces infected cell 

death, which helps to protect neighboring uninfected cells. A group of proteins called pathogen-

recognition receptors (PRRs) are localized to the plant cell membrane and the cytoplasm and 

recognize MAMPs that subsequently activates MTI. Pathogens secrete effectors that bind PRRs, 

which inhibits plant MTI (Swarupa, Ravishankar, & Rekha, 2014).  

ETI is stimulated by a plant’s intracellular resistance gene in response to the detection of 

pathogenic type III secreted effectors (T3SEs); ETI is linked to the programmed cell death of 

infected cells (Doughari, 2015). Plants produce various other biochemical molecules in response 

to infection, including toxic substances such as phenolic compounds and phytoalexins. 

Additionally, plants produce proteins such as lectins, ricin, protease inhibitors, and hydrolytic 

enzymes such as chitinases and glucanases that play important roles in inhibiting pathogens 

(Doughari, 2015).  

The innate immune system of plants can discern between endophytes and pathogens, which allows 

endophytes to enter the host plant without triggering the immune system. This lack of immune 

response helps to maximize the benefits received from this interaction, which ultimately boosts the 

immune reaction of plant-endophytes against invading pathogens (Khare, Mishra, & Arora, 2018). 

As mentioned previously, the first line of plant defense is the recognition of MAMPs by PRRs 

located on the surface of plant tissue (Swarupa et al., 2014). Fungal endophytes can avoid host 

immune recognition by producing chitin deacetylases that deacetylate chitosan oligomers that are 

part of the plant cell wall. Certain endophytic bacteria possess MAMPs that inhibit recognition by 

the PRRs found on the surface of the plant cell wall (Khare et al., 2018).  

In conclusion, the entry of endophytes into host plants is facilitated by the ability of endophytes to 

avoid the plant immune system. Additionally, endophytes help plants to defend themselves against 

pathogens by secreting biochemical substances that suppress pathogen growth.  
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1.5. Mechanisms of Enhancing Plant Growth  

1.5.1. Endophytes and Plant Nutrition 

Bacterial and fungal endophytes in the soil (termed the rhizosphere) can enhance plant growth by 

increasing the availability and uptake of nutrients by plants; hence, they are often referred to as 

biofertilizers. The number of plant-growth-promoting rhizobacteria (PGPR) in the soil depends on 

the environmental conditions and the soil type. PGPR are found near the roots of a plant and induce 

plant growth via direct and indirect mechanisms. Direct mechanisms include bacterial secretions, 

nitrogen fixation, and solubilization of phosphorus (Olanrewaju, Glick, & Babalola, 2017). 

Nitrogen and phosphorus are essential nutrients for plant growth. However, these nutrients are 

often only available in limited quantities in the soil, due to the loss of nitrogen by leaching and the 

low bioavailability of phosphorus (due to it predominant insoluble form as aluminum and iron 

phosphates). Collectively, PGPR are important for plant growth because of their nitrogen fixation 

and phosphorous solubilization functions (Martinez-Viveros, Jorquera, Crowley, Gajardo, & Mora, 

2010). In addition, PGPR can increase the absorbent surface of plant roots by stimulating root 

growth and branching as well as stimulating other non-pathogenic symbionts (endophytes) of the 

host (Saia et al., 2015; Vessey, 2003). Certain PGPR known as endophytic plant growth-

promoting bacteria employ unknown mechanisms to enter plant tissue. The various functions 

performed by endophytic plant growth-promoting bacteria are similar to those performed by non-

endophytic PGPR, including facilitating the acquisition of nutrients such as nitrogen, phosphorus, 

and iron from the rhizosphere and the direct transfer of these nutrients into plant roots (Santoyo, 

Moreno-Hagelsieb, Orozco-Mosqueda Mdel, & Glick, 2016). With fungal endophytes, nutrients 

can be transferred via mycelia that extend from mycorrhizal fungi living in plant root tissue (White 

et al., 2019). Endophytes such as Bacillus spp. that colonize plant roots have high affinity for 

organic acid-metal complexes and facilitate the transfer of these complexes from the soil into plants 

(White et al., 2019). 

1.5.2. Phytohormone production and regulation of ethylene levels 

Phytohormones are bioactive molecules that act as messengers in signaling pathways, which 

contributes to plant growth and developmental regulation. The biological, morphological, and 

physiological processes of a plant can be affected by very low concentrations of phytohormones 



8 
 

(Martinez-Viveros et al., 2010). Several endophyte species (both bacteria and fungi) can produce 

phytohormones (Tsavkelova, Klimova, Cherdyntseva, & Netrusov, 2006), including gibberellins 

(GAs), indole acetic acid (IAA), abscisic acid (ABA), and jasmonic acid (JA). JA and ABA play 

crucial roles in the regulatory processes that control the heat-stress response, while GAs and IAA 

enhance plant growth and development (Waqas et al., 2015). Interactions between plants and 

microorganisms such as endophytes, rhizobacteria, free-living bacteria, and some pathogens results 

in conversion of tryptophan to IAA, which is one of the auxins produced from tryptophan. IAA 

may also be produced via tryptophan-independent pathways. The main function of IAA is to 

stimulate the division, expansion, and differentiation of plant cells, which enhances plant growth 

(Martinez-Viveros et al., 2010). (Swain, Naskar, & Ray, 2007) showed that the length of the stem 

and root of the white yam plant (Dioscorea rotundata) increased following inoculation of IAA-

producing Bacillus subtilis as compared to non-inoculated plants. 

GA is another phytohormone that regulates plant growth and plays an important role in seed 

germination, leaf elongation, and flowering, and works with auxins to increase root length. GA 

levels are regulated by various factors, such as light, temperature, and auxin concentrations (Stamm 

& Kumar, 2010). A recent study by (Hamayun et al., 2017) showed that treatment of soybean plants 

with GA-producing Porostereum spadiceum (an endophytic fungus) resulted in enhanced growth 

as compared to untreated plants.  

Ethylene (ET) is a gaseous phytohormone produced from the precursor methionine via S-adenosyl-

L-methionine and cyclic non-protein amino acid (ACC). ET is involved in many stages of plant 

growth, including the ripening of fruit (Wani, Kumar, Shriram, & Sah, 2016). High concentrations 

of ET may inhibit plant growth by affecting cellular processes and stimulating defoliation. 

Rhizobacteria have the capacity to regulate ET levels in the soil by producing ACC deaminase, 

which degrades ACC into alpha-ketobutyrate and ammonium (Martinez-Viveros et al., 2010).  

1.5.3. Biocontrol of pathogens 

Microbial pathogens can cause various diseases in plants that ultimately leads to decreased crop 

yields. Chemical pesticides have been widely used to reduce or eliminate pathogenic infections, 

but these compounds negatively impact human health and the environment. In addition, with 

prolonged use, pathogens may become resistant to chemical pesticides, and consequently new 

pesticides must be developed. Based on previous research, biological methods may be suitable 
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alternatives to chemical pesticides, which would reduce the harmful impact of chemicals. These 

biological methods are based on using soil microorganisms and plant-associated endophytes as bio-

pesticides, since they exhibit biocontrol activity against pathogens. Biocontrol is the term used to 

describe the secretion of bioactive compounds (e.g., antibiotics, hydrogen cyanide, and many other 

secondary metabolites) that suppress pathogen growth and consequently promote plant growth 

(Martinez-Viveros et al., 2010). The biocontrol properties of endophytes are the core subject of 

this research and are discussed in more detail in the following section.  

1.6. Biocontrol Mechanisms 

Biocontrol, an abbreviation for “biological control”, describes the use of microorganisms to 

suppress the growth of pathogens that ultimately reduces or eliminates disease symptoms. An 

antagonistic microbe with bioactive properties that suppress the growth of a pathogen is known as 

a biocontrol agent (BCA). BCAs produce compounds that influence the plant host as well as the 

pathogen. These compounds are secreted in response to specific and non-specific interactions 

between the plant, endophytes, and pathogens. BCAs have been widely used in the field of plant 

pathology (Pal & Gardener, 2006).  

It is well known that various microorganisms, including bacteria and fungi, secrete bioactive 

compounds, some of which have been used as therapeutic drugs. Penicillin, obtained from 

Penicillium glaucoma in 1896, was the first such fungal bioactive substance identified, and has 

been widely used as an antibiotic for treating a wide range of bacterial infections (Suryanarayanana 

et al., 2009). 

Various mechanisms of biocontrol have been described that enhance plant growth by suppressing 

or killing pathogens, including induction of host resistance (which was explained in the section on 

plant defense) and secretion of antibiotics and lytic enzymes. 

1. Antibiotics 

The production and secretion of antibiotics is one of the most powerful biocontrol mechanisms. 

Our research is focused on secondary metabolites secreted by endophytes that function as 

biocontrol agents, which include antibiotics. Antibiotics are low molecular weight organic 

substances that are secreted by various microbes. Previous studies showed that the antibiotics 

produced by PGPR have an impact on the growth of pathogens; i.e., production of sufficient levels 
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of an antibiotic by endophytes suppresses pathogens in close proximity. A single antibiotic can 

control one or more pathogens (Pal & Gardener, 2006). 

Recent studies have shown that certain bacteria, such as Bacillus spp. and Pseudomonas spp., 

function as biocontrol agents by producing bioactive compounds with antimicrobial activity that 

suppress the growth of fungal pathogens. Certain Bacillus spp. and Pseudomonas spp. harbor gene 

clusters that are responsible for the secretion of secondary metabolites such as non-ribosomal 

peptide synthetases (NRPSs) and polyketide synthases (PKSs) (Palazzini, Dunlap, Bowman, & 

Chulze, 2016; Strano, Bella, Licciardello, Caruso, & Catara, 2017). 

 

NRPSs and PKSs are large enzymes or enzyme complexes involved in the biosynthesis of various 

natural bioactive compounds known as non-ribosomal peptides and polyketides, which are 

compounds that possess remarkable bioactivity, including antifungal and antimicrobial activity. 

Non-ribosomal peptides are synthesized by sequential condensation of amino acids, whereas 

polyketides are synthesized by repetitive insertion of two carbon ketide units obtained from 

thioester of acetate (Ansari, Yadav, Gokhale, & Mohanty, 2004). The biosynthetic gene clusters 

(BGCs) that encode NRPSs and PKSs are commonly found in the phyla Proteobacteria, 

Actinobacteria, Firmicutes, and Cyanobacteria (H. Wang, Fewer, Holm, Rouhiainen, & Sivonen, 

2014). NRPS often have three catalytic domains: the adenylation (A) domain that recognizes and 

activates amino acids, the peptidyl-carrier (thiolation) domain that transfers the activated amino 

acids, and the condensation (C) domain that is responsible for peptide bond formation and peptide 

chain elongation. Certain NRPS contain additional domains, such as the epimerization domain (E) 

that convert L-amino acids into D-amino acids, the dual/epimerization domains (E/C) that are 

responsible for epimerization and condensation, cyclization domains (Cy) that can functionally 

replace C domains, the oxidation domain (Ox) that is responsible for the oxidation of the thiazoline 

ring that leads to the formation of an aromatic thiazol, and thioesterase domains (TE) that are 

responsible for cyclization or hydrolysis of the final peptide in the NRPS module that releases it 

(Amoutzias, Chaliotis, & Mossialos, 2016). The resulting NRPS molecules may be further 

modified by subsequent biochemical reactions, leading to an even broader spectrum of bioactive 

substances. 
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Type I PKSs typically have three main domains: the acyl-transferase (AT) domain that incorporates 

malonyl or methylmalonyl-CoA, the KS domain that is responsible for C-C bond formation, and 

the acyl-carrier (thiolation) domain, which is similar to the peptidyl-carrier domain of NRPSs. 

PKSs have additional domains, such as the ketoreduction (KR) domain, the dehydration (DH) 

domain, and the enoylreductase (ER) domain (Amoutzias et al., 2016). 

NRPSs and PKSs are structurally and functionally similar and therefore often form hybrid gene 

clusters (hybrid NRPS/PKS) (Muller et al., 2015). BGCs that encode both an NRPS and a PKS can 

produce complex NRPS/PKS-derived hybrid bioactive compounds called peptide-polyketide 

secondary metabolites, which can be produced directly by the NRPS/PKS hybrid enzyme or 

indirectly as non-ribosomal peptides and polyketides that bind together (Amoutzias et al., 2016).  

 

Pseudomonas spp. harbor gene clusters that encode various NRPs. NRP compounds include 

pyoverdines, pyochelin, pseudomonine, paerucumarin, pseudoverdine, lipopeptides, safracin, 

tabtoxin, phaseolotoxin, pyrrolnitrin, and indole-3-acetic acid (IAA) (Gross & Loper, 2009). 

Bacillus velezensis produces NRPs such as fengycin, surfactin, bacilysin, iturin and corynebactin 

(Palazzini et al., 2016). 

PKSs produce several different natural products that possess antibiotic, chemotherapeutic, and 

phytotoxic activities. Polyketides secreted by Pseudomonas spp. include mupirocin (pseudomonic 

acid A), 2,4-diacetylphloroglucinol (DAPG), and 2,5-dialkylresorcinols (Gross & Loper, 2009), 

while polyketides secreted by Bacillus velezensis include bacillaene, difficidin and macrolactin 

(Palazzini et al., 2016). 

A previous study found that the biocontrol isolate Bacillus velezensis RC 218 produces non-

ribosomal peptides and polyketides that can suppress the fungal pathogen Fusarium, which can be 

used in agricultural applications. This same study also analyzed the genome of B. velezensis RC218 

and identified the BGCs responsible for the biocontrol activity of this strain (Table 1) (Palazzini et 

al., 2016). 
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Table 1.-  NRPS and PKS gene clusters and bioactive secondary metabolites produced by 

B. velezensis RC218. Adapted from (Palazzini et al., 2016) 

 

Compound  Synthetase 

type 

Genes Size 

(kb) 

Bioactivity  

Fengycin NRPS fenA, B, C, D, E 37.7 Antifungal 

Surfactin NRPS srfAA, AB, AC, AD 26.2 Surfactant, 

antibiotic 

Bacilysin 

(Chlorotetaine) 

NRPS bacA, B, C, D, E, F, ywfH 6.7 Antibacterial  

Iturin  NRPS ituD, A, B, C 37.2 Antifungal 

Bacillaene PKS baeB, C, D, E, acpK, baeG, 

H, I, J, L, M, N, R, S 

72.5 Antibacterial 

Difficidin PKS dfnA, Y, X, B, C, D, E, F, 

G, H, I, J, K, M, L 

69.5 Antibacterial  

Macrolactin PKS mlnA, B, C, D, E, F, G, H, 

I 

53.2 Antibacterial  

 

2. Lytic enzymes 

Endophytes can directly suppress the activity and growth of pathogens by secreting lytic enzymes, 

which prevent the growth of plant pathogens by destroying their cell walls. Lytic enzymes include 

β-1,3 glucanases, chitinases, and cellulases. β-1,3 glucanases are involved in the biocontrol activity 

of Lysobacter enzymogenes strain C3 and have been found to suppress fungal pathogens of plants 

(Pal & Gardener, 2006). In fact, mutations in the β-1,3 glucanase genes of L. enzymogenes strain 

C3 lead to a reduction in the biocontrol effects against Pythium and Bipolaris, which causes 

damping-off of sugar beets and leaf spot in fescue, respectively (Gao, Dai, & Liu, 2010). 

1.7. Cranberry Plants and Endophytes  

American cranberries (Vaccinium macrocarpon) are a member of the evergreen species of 

Ericaceae. American cranberries are prostrate and relatively short plants and grow mainly in North 
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America (i.e., Canada and USA) (Hisano, Bruschini, Nicodemo, & Srougi, 2012; Polashock et al., 

2014). North America is the main producer of cranberries worldwide (Diaz-Garcia et al., 2019).  

1.7.1. Cranberry Endophytes 

A large number (several hundreds) of endophytes were previously isolated from cranberry plant 

tissue in B. F. Lang’s laboratory over a period of approximately five years. In this research more 

endophytes were isolated to increase the chance of isolating strains with stronger biocontrol, 

suppression of the largest possible spectrum of fungal pathogens, and potentially, the future 

identification of novel antifungal antibiotics of medical interest.  

The most common endophytes that showed biocontrol properties when tested against various 

cranberry fungal pathogens include the following: 

Bacillus velezensis: B. velezensis is a Gram-positive bacterium that forms endospores. 

B. velezensis produces enzymes, antibiotics, insecticides, and other bioactive compounds that 

inhibit pathogens and promote plant growth (Ruiz-Garcia, Bejar, Martinez-Checa, Llamas, & 

Quesada, 2005). The B. velezensis genome contains several gene clusters that encode secondary 

metabolites that function as fungicides; thus, B. velezensis may potentially be a powerful biocontrol 

agent that inhibits pathogens and enhances plant growth (Liu et al., 2017).  

Lachnum sp.: Lachnum is a genus of fungi in the family Hyaloscyphaceae that produces abundant 

amounts of bioactive compounds such as antimicrobial substances that have been used for 

medicinal and agricultural purposes (Rukachaisirikul, Chantaruk, Pongcharoen, Isaka, & Lapanun, 

2006). An L. abnorme strain was previously isolated from stems of the Ardisia cornudentata Mez 

plant; additionally, it was shown that this fungus and three other Lachnum species can produce at 

least 35 secondary metabolites, such as benzenoids and coumarins. Subsequent investigation of 

these metabolites revealed that they possess biocontrol activity (Chang et al., 2016). 

1.7.2. Cranberry Pathogens 

A variety of fungal pathogens are capable of infecting cranberry plants and can cause losses in total 

fruit production of up to 33% if fungicides are not used (Conti, Cinget, Vivancos, Oudemans, & 

Belanger, 2019). Fruit rot is the most common disease that affects cranberry plants, which is caused 

by approximately 12 different fungal pathogens. Identification of the fungus responsible for fruit 

rot can be accomplished by culturing rotten cranberry fruit on culture medium followed by analysis 
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of growth characteristics. Different fungal pathogens cause different symptoms in cranberry plants 

(Wells & McManus, 2013).  

Coleophoma empetri: This fungal species causes Ripe Rot disease. During growth on culture 

medium, the mycelia initially have a white color then turn dark brown or black. 

Colletotrichum acutatum: This fast-growing fungal species causes a disease called Bitter Rot. 

During growth on culture medium, the color of this fungus is initially white then turns pinkish-

orange because of the red pigments produced by this fungus.  

Colletotrichum gloeosporioides: Similar to C. acutatum, C. gloeosporioides is fast-growing and 

causes Bitter Rot. C. gloeosporioides is white in color during the early stages of growth on culture 

medium, then becomes dark gray as the colonies mature.  

Phomopsis vaccinii: This fungal species causes Viscid Rot/Upright Dieback disease. During the 

early stages of growth on culture medium, this fungus is white in color then turns dark gray.  

Phyllosticta vaccinii: This fungal pathogen causes Early Rot disease and has a very slow growth 

rate as compared to other cranberry fungal pathogens. It produces mycelia that are olive to black 

in color with irregular edges during growth on culture medium. 

Phyllosticta elongata: This fungal pathogen causes Berry Speckle/Botryosphaeria fruit rot. The 

mycelia of this fungus are greenish-gray in color and has a very similar appearance to P. vaccinii 

during the early stages of growth on culture medium, then becomes recognizable by its morphology 

and fast growth rate.  

Physalospora vaccinii: This fungal pathogen causes Blotch Rot. Two different strains were 

previously isolated from rotten fruit: a dark strain that produces brown-gray mycelia and a light 

strain that produces white mycelia.  
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1.8. Hypothesis  

Bacterial and fungal endophytes have the potential to enhance cranberry growth and yield because 

of their ability to inhibit the growth of fungal pathogens via secretion of bio-pesticides (secondary 

metabolites). 

1.9. Objectives  

The objectives of this research are to: 

1- Isolate endophytes from cranberry plants obtained from two commercial sources and 

then classify the isolated endophytes into three groups based on fruit yield: very good 

yield, good yield, and weak yield. 

2- Identify which isolates are the most potent in terms of suppressing cranberry 

pathogens. 

3- Use young plants obtained by seed germination to evaluate the biocontrol activity of 

the most potent isolates identified in Aim 2. 

4- Classify the most active biocontrol isolates by ribotyping, and then sequence, 

assemble, and annotate the genome of one isolate, followed by the identification of 

the genes potentially involved in biocontrol.  
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CHAPTER 2 – MATERIALS AND METHODS 

2.  Materials and Methods  

2.1. Endophytes and growth medium  

Endophytes were isolated from cranberry plants obtained from two commercial sources: Gillivert 

Inc. and Bieler Cranberries Inc. Endophytes were cultured on potato dextrose agar (PDA), which 

is a commonly used general purpose medium for culturing fungi. PDA was prepared by adding 12 

grams of potato dextrose broth and 7.5 grams of potato agar to 500 ml of distilled water in a one-

liter glass bottle. The bottle was placed on a stirrer to mix and dissolve the contents. The pH of the 

PDA was adjusted to 7.0 by the gradual addition of NaOH. The PDA medium was then sterilized 

at 121°C in an autoclave, and once sufficiently cooled, the medium was poured into Petri plates.  

2.2. Sample collection and handling  

Professor Lang’s laboratory team collected cranberry plants from two cranberry fields of the 

Stevens variety: one field owned by Bieler Cranberries Inc. and the other owned by Gillivert Inc., 

both located in Quebec. Plants were classified into three groups based on fruit yield: very good 

yield, good yield, and weak yield. Similarly, plants from the Gillivert field were classified into two 

groups: good yield and weak yield. Plants were labelled and placed in a cold room for long-term 

preservation.  

2.2. Surface sterilization 

Cranberry plants were selected randomly and washed for 15 minutes with tap water. Roots were 

placed in tap water overnight to eliminate soil particles. The surface disinfection procedure was 

performed under laminar air flow as follows: cranberry plants from very good yield, good yield, 

and weak yield of Bieler Cranberries and Gillivert fields were cut into three parts: roots, stems, and 

leaves. Each group was separately sterilized. Plant parts were immersed for 2 minutes in a 2% mild 

liquid detergent solution (Neutrad, Decon Lab Inc,) and were then immersed for 3 minutes in a 

solution of 0.79% sodium hypochlorite (bleach) and 0.1% Tween 80. Plant parts were then dipped 

into 70% ethanol for 30 seconds and were then rinsed three times with sterilized distilled water. 

Disinfected plant parts were placed in sterilized petri plates to dry.  
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2.3. Isolation of endophytes 

Surface-sterilized plant parts (leaves, stems, and roots) were cut into small segments using a 

sterilized scalpel blade that were then transferred onto fresh PDA medium petri plates. Inoculated 

plates were incubated at 25°C. After 4-7 days of incubation, endophyte growth was visually 

noticeable. Each endophyte was transferred from a small section of growth to a fresh PDA plate 

(purification step) that was then incubated at 25°C. Several rounds of endophytes re-isolation were 

performed to obtain pure isolates. 

2.4. Biocontrol of fungal pathogens by endophytes  

The antagonistic activity of isolated endophytes were tested on 19 fungal pathogens. For this, four 

endophytes were grown at the edge of a fresh PDA plate for 4 days, and then one of the 19 fungal 

plant pathogens was placed in the center of the PDA plate. Control PDA plates contained pathogens 

only in the center. Three replicates of each plate were prepared. The plates were incubated at 25°C. 

Endophyte and pathogen growth was evaluated every 3 days and measurements of pathogen growth 

were taken after 3, 6, 15 and 30 days of growth.  

The 19 fungal pathogens that were tested included Rhizopus sp., Trichoderma sp., Cadophora 

luteo-olivacea, Botrytis cinerea, Alternaria alternata, Physalospora vaccinii, Fusarium 

graminearum, Verticilium dahlia, Diaporthe vaccinii, Cytospora sp., Godronia cassandrae, 

Peniophora sp., Diaporthe sp., Penicillium sp., Colletotrichum sp., Physalospora sp., and three 

uncharacterized fungal pathogens. 

2.6. Compatibility test 

Confrontation tests were performed to determine which combinations of endophytes have the 

potential to enhance the biocontrol effect when inoculated together in plant tissue. A combination 

consisting of two endophytes was tested by placing the combination on a fresh PDA plate at short 

distance 5-10 mm. Controls containing only the tested endophytes were done. The plates were 

incubated at 25°C and were observed each day. Incompatible endophytes were identified via 

inhibition zone formation. Experiments were repeated three times to generate statistically relevant 

results.  
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2.7. Molecular characterization of endophytes  

An SDS-based laboratory protocol was used to extract genomic DNA from endophytic fungus. A 

small piece of the fungus was placed in an Eppendorf tube containing glass beads and then 50 µl 

of TE (2 ml Tris 100mM + 5 µl EDTA 5mM) were added. The fungal piece was crushed and mixed 

vigorously with a sterile plastic pestle to lyse the cells. Next, 150 µl of TE, 4 µl of 20% SDS, and 

4 µl of proteinase K were added, followed by incubation at 37 ͦC for 30 min. Next, the tube was 

centrifuged for 20 min at 11,000 rpm (maximum speed). The supernatant was transferred to a new 

Eppendorf tube and then a ¼ volume of 5 M NaCl was added. The tube was vortexed, placed on 

ice for 1 hour, then centrifuged for 10 min. Using a pipette, the supernatant was transferred to a 

new Eppendorf tube and then EtOH/AMC (95% ethanol/0.5 M ammonium acetate) (2.5-times the 

volume) mixed with 2.5 of the volume of, the tube was placed on ice for 20 min and centrifuged 

for 15 min at maximum speed. The supernatant was carefully discarded making sure DNA pellet 

is still in the tube, 175 µl of 70% ethanol were added, the sample was mixed gently and was then 

centrifuged for 5 min at 11,000 rpm (maximum speed). Next, the ethanol was carefully discarded 

using a pipette and then 21 µl of TE were added, followed by gentle mixing. Extracted DNA was 

stored at 4 ͦC or -20 ͦC.  

The fungus isolate was identified by ribotyping in which the ITS (internal transcribed spacer) 

regions of the rDNA were PCR amplified using primers BMB-CR-fwd: 5'-

GTACACACCGCCCGTCG-3’ (forward primer) and ITS4 5'-TTCCTCCGCTTATTGATATGC-

3' (reverse primer) (Ihrmark et al., 2012). 

Endophytic bacteria were identified by PCR amplifying 16S rDNA using the universal primers 

27F 5'-AGAGTTTGATCCTGGCTCAG-3' (forward primer) and LPW58 5′-

AGGCCCGGGAACGTATTCAC-3 (reverse primer) (Sabat et al., 2017). Rapid PCR on a single 

colony was performed.  

The final volume of each PCR was 50 µl and contained 5 µl of 10x Taq polymerase buffer, 1 µl of 

10 mM dNTPs, 0.8 µl of (50ng/ml) RNase, 5 µl of 20 mM MgSO4, 2 µl of 10 pM forward primer, 

2 µl of 10 pM reverse primer, 33.8 µl of PCR-grade water, and a bacterial colony. Fungal ITS 

amplification reactions  contained 5 µl of 10x Taq polymerase buffer, 1 µl of 10 mM dNTPs, 0.8 

µl of (50ng/ml) RNase, 5 µl of 20 mM MgSO4, 2 µl 10 pM of forward primer, 2 µl of 10 pM 

reverse primer, 28.8 µl of PCR-grade water, and 5 µl of fungal genomic DNA. PCR was performed 
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on a Bio-Rad thermal cycler using the following cycling parameters: for bacteria, 96°C for 5 min, 

followed by 31 cycles of denaturation at 95°C for 15 s, primer annealing at 56°C for 15 s, and 

primer extension at 72°C for 50 s. For fungi, 96°C for 5 min, followed by 31 cycles of denaturation 

at 95°C for 15 s, primer annealing at 58°C for 15 s, and primer extension at 72°C for 1 min.  

Agarose gel was prepared by adding 1 g of agarose to 100 ml of TAE (40 mM Tris-acetate, 1mM 

EDTA) buffer. The solution was heated until agarose was completely dissolved. The 1% agarose 

gel was placed on the bench to cool down to about 50°C. 30 ml of 1% agarose gel was poured into 

a plastic beaker, and 2.5 µl of Ethidium bromide was added to the agarose gel and mixed well. 

Agarose gel with Ethidium bromide was poured into an agarose tray with a comb in the appropriate 

place to create the wells and then placed on the benchtop to cool down. The gel tray was then 

placed into the electrophoresis apparatus with TAE (40 mM Tris-acetate, 1mM EDTA) buffer. 

Gel electrophoresis was used to visualize the PCR products. A 2 µl aliquot of each sample was 

mixed with 1 µl of loading dye and 2 µl of nano-pure water. A 1µl aliquot of the 1 kb ladder was 

loaded into a well as a size reference and 5 µl of each sample mixture were added to each respective 

well. Agarose gel electrophoresis was conducted at 100 V for 50 minutes.  

DNA fragments in the agarose gel were visualized using a UV trans-illuminator with an attached 

camera. The size of the amplified DNA fragments was estimated based on the 1 kb ladder. To 

identify the species corresponding to the most active isolates, PCR products were extracted from 

the gel and were sent to IRIC | Université de Montréal for Sanger sequencing. Sequencing results 

were analyzed by BLAST searches of nucleotide data collections on the NCBI website, and species 

were identified based on similarity matches.  

2.8. Seed germination  

Mature seeds were collected from cranberry fruits obtained from two varieties, the Stevens variety 

from Bieler Cranberries Inc and the Scarlet Knight variety from Groupe Landreville Nadeau. Seeds 

were sterilized using the surface sterilization protocol described above. Seeds were dried under 

laminar air flow on sterilized petri plates.  

Minimal medium was used to germinate and grow cranberry seeds. Minimal medium per liter was 

prepared by combining 800 ml of Nanopure distilled water, 1 g of sucrose, 4 g Gel Gro (Gelzan, 

0.4% agar), 10 ml macroelement solution (100x), 10 ml Ca(NO3)2∙4H2O solution (100x), 5 ml of 
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NaFe EDTA (200x), 1 ml microelements solution (1000x), and 1 ml of potassium iodide (KI) 

(1000x) in a sterilized 1L glass bottle . The bottle was placed on a heated stirrer to mix and dissolve 

the contents and then Nanopure distilled water was added to bring the volume to 1 L. The pH of 

the solution was adjusted to 5.5 with KOH. The solution was then autoclaved at 121°C. After 

cooling, 1 ml of vitamin solution (1000x) was added under sterile conditions under laminar air 

flow. Minimal medium was poured into sterilized plastic boxes (with lids) that were used for seed 

germination.  

Ten cranberry seeds were placed into each box (25 boxes per field) that were then incubated in the 

dark at 25 ͦC for one month. Boxes were checked every week and contaminated boxes were 

eliminated. The study contained three treatments (Pseudomonas sp. CSWB3, Pseudomonas sp. 

CLWB12, Lachnum sp. EFK28) and two controls (negative and positive). The positive control was 

Lachnum sp. EC5; a biocontrol fungus that was previously isolated in the laboratory by Lila Salhi; 

this strain was obtained from the Stevens variety cranberries of a Pierre Fortier field (Notre-Dame-

de-Lourdes, Quebec). Each treatment was repeated four times (separate boxes).  

2.9. Endophyte inoculation 

One month after seed germination, the small cranberry plants were inoculated with four 

endophytes: (i) Lachnum sp. EC5; (ii) Lachnum sp. EFK28 (Bieler Cranberries); and (iii) and (iv) 

two Pseudomonas spp. (CSWB3 and CLWB12) (Gillivert). Fresh bacterial liquid cultures were 

prepared in potato dextrose broth one day before inoculation and were incubated at 25 ͦC. The next 

day, the optical density (OD) of the bacterial culture was measured at 600 nm using a 

spectrophotometer. The OD of the bacterial culture was adjusted to 0.1 prior to inoculation of 

plants.  

For Lachnum sp. EC5, 10-15 days prior inoculation of the plants, fresh potato dextrose broth 

containing a small piece of the fungus was incubated at 25 ͦC. Two days prior to inoculation, the 

fungus was removed from the liquid culture and ground in a sterilized blender to break up the 

septate hyphae. A 20 µl aliquot of the fungal suspension was grown on a PDA plate in order to 

estimate fungal viability and to exclude potential bacterial contamination that would interfere with 

the plant growth assay described below.  

Twenty boxes containing small seedlings (Steven’s cultivar) were inoculated as follows: four boxes 

were inoculated with 20 µl (in each hole) of sterilized potato dextrose broth as negative controls, 
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four boxes with inoculated with 20 µl of Lachnum sp. EC5 as positive controls, four boxes were 

inoculated with 20 µl of Lachnum sp. EFK28, four boxes were inoculated with 20 µl of 

Pseudomonas sp. CSWB3, and four boxes were inoculated with 20 µl of Pseudomonas sp. 

CLWB12.  

The same procedure was repeated using another 20 boxes with small seedlings obtained from 

Scarlet Knight seeds. The inoculated boxes were incubated at 25 ͦC for two months and 

observations were made one a week.  

2.10. Seedling measurement 

Two months following endophyte inoculation, the seedlings were harvested, washed carefully with 

tap water to remove remaining agar and endophytes, and measured and weighed. Next, stem 

lengths were measured, and each small plant was separated into two stems and roots that were 

transferred into petri plates and dried at 55°C for 24 hours. Dry weights of stems and roots were 

measured and recorded using a micro balance. 

2.11. Isolation of genomic DNA from Pseudomonas sp. CSWB3 

The bacterial isolate Pseudomonas sp. CSWB3 was selected for whole genome sequencing, 

because it had the strongest biocontrol effect on fungal pathogens. An overnight culture (10 mL) 

of Pseudomonas sp. CSWB3 was grown in potato dextrose broth and the optical density was 

measured at 600 nm using a spectrophotometer. The ideal OD for bacterial DNA extraction is 0.3 

at 600 nm (Genomic-tip 20/G manual from QIAGEN, preparation Gram-negative and some Gram-

positive bacterial samples). A 1 mL aliquot of the overnight culture was subjected to genomic DNA 

purification. Sample preparation and processing followed the protocol supplied with the QIAGEN 

DNA purification columns (Genomic-tip 20/G manual from QIAGEN, preparation of buffers B1, 

B2, QBT, QC and QF). The 1 ml aliquot of the bacterial culture was centrifuged at 5000 x ɡ for 10 

min to pellet the bacterial cells, from which the supernatant was removed and discarded. The 

bacterial pellet was resuspended in 1 ml of buffer B1 (containing 2 µl of RNase A solution) by 

vortexing at top speed. Next, 20 µl of lysozyme solution (100 mg/ml) and 45 µl of QIAGEN 

proteinase K stock solution were added, and the tube was incubated at 37 ͦC for 30 min. Following 

incubation, 0.35 ml of buffer B2 were added and the tube was inverted several times to mix, 

followed by incubation at 50 ͦC for 30 min. A Genomic-tip 20/G was equilibrated with 1ml of buffer 

QBT and was allowed to empty by gravity flow. The DNA sample was then transferred to the 
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equilibrated QIAGEN genomic-tip and entered the resin by gravity flow. The column was then 

washed with 3 x 1 ml of buffer QC. The genomic DNA was eluted with 2 x 1 ml of buffer QF, 

precipitated with ethanol, and centrifuged at 5000 x g for 15 min at 4 ͦC. The DNA pellet was 

washed with 1 ml of cold 70% ethanol, air-dried, resuspended in 50 µl of TE buffer, and dissolved 

at 55 ͦC for 2 hours. The quantity and quality of the extracted genomic DNA was estimated using 

gel electrophoresis and NanoDrop spectrometry.  

2.12. Genome sequencing using Illumina MiSeq  

The Pseudomonas sp. CSWB3 DNA was sequenced by Le Centre d'Expertise et de Services 

Génome Québec (Montréal, Québec, Canada), using an Illumina MiSeq instrument and the 

NEBNext Ultra II DNA Library Preparation Kit for Illumina (New England Biolabs). Sequencing 

was conducted as paired-end reads with a maximum read length of ~300 bp. The resulting FASTQ 

read files were downloaded from the genome center’s website for further processing. 

2.13. Genome assembly and annotation of Pseudomonas sp. CSWB3 

2.13.1. Genome assembly  

Paired-end FASTQ files encompassing both forward and reverse reads were cleaned and corrected 

using Trimmomatic and Rcorrector (using the clean-MISEQ script developed by our research 

group). Trimmomatic performs quality control of the paired-end reads (i.e., suppression of reads 

below a given read call probability and removal of primer sequences). Read errors are corrected by 

Rcorrector, which uses an approach based on k-mer counts. 

Corrected reads were assembled using SPAdes (St. Petersburg genome assembler), a de novo 

genome assembler based on Paths P and Q algorithms that can assemble paired and unpaired reads 

in either FASTA or FASTQ formats (Bankevich et al., 2012). SPAdes assembles genomes based 

on four principal steps: (i) construction of a de Bruijn assembly graph based on k-mers of a given 

length followed by graph simplification, (ii) k-bimer adjustment, (iii) construction of a paired 

assembly graph, and (iv) inference of large contigs (Bankevich et al., 2012). 

2.13.2. Genome annotation  

Genome annotation was performed using Prokka (Seemann, 2014), which is a tool used for rapid 

bacterial genome annotation. The assembled contigs in FASTA format served as the input data for 

Prokka. The following external prediction tools are used by Prokka: Prodigal (for prediction of 
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coding sequences), RNAmmer (for rRNA genes), Aragorn (for tRNA genes) and Infernal (for non-

coding RNAs). Annotation of the protein coding genes was performed in two steps: (1) 

identification of precise gene locations and (2) functional annotation using BLAST to comparisons 

with known sequences in large databases (Seemann, 2014). Preliminary identification of genes 

involved in secondary metabolite biosynthesis was done by Prokka. antiSMASH was used to make 

more precise gene identifications, as described below.  

2.14. Genome analysis of Pseudomonas sp. CSWB3 and comparative genomics  

2.14.1. Core genome of Pseudomonas sp. CSWB3  

The core genome of Pseudomonas sp. CSWB3 was analyzed using Prokka 1.13 and a genome 

analysis tool provided by Pathosystems Resource Integration Center (PATRIC) version 3.6.2, 

which is a bacterial bioinformatic database and analysis resource (Wattam et al., 2017) that can be 

found at (https://www.patricbrc.org/). 

2.14.2. Taxonomy and phylogenetic analysis  

PATRIC version 3.6.2 was used to generate a classification and phylogenetic tree of Pseudomonas 

sp. CSWB3. PARTIC uses Codon Tree to infer a phylogenetic tree, based on all shared proteins of 

the bacterial genomes included in the analysis. Bacterial data available at PATRIC are linked to 

the NCBI taxonomy database.  

2.14.3. Secondary metabolite analysis 

The secondary metabolite gene clusters of Pseudomonas sp. CSWB3 were identified and analyzed 

using antiSMASH version 5.1.0 (Blin et al., 2019) (https://antismash.secondarymetabolites.org/) 

and the gene bank file (gbk) obtained from Prokka annotation. AntiSMASH-characterized gene 

clusters with 100% match to the reference in the AntiSMASH database were selected for further 

analysis. For each gene cluster along with the potential compound produced by it, the number of 

genes involved in each secondary metabolite biosynthesis was identified by referring to previous 

studies listed on the antiSMASH website. Additional information on potential secondary 

metabolites were obtained from the antiSMASH-MIBiG database (Kautsar et al., 2020) 

(https://mibig.secondarymetabolites.org/).  

https://www.patricbrc.org/
https://mibig.secondarymetabolites.org/
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2.14.4. Comparative analysis of the Pseudomonas sp. CSWB3 genome with the genomes of 

Pseudomonas sp. EB42, Bacillus velezensis EB37, Bacillus velezensis EBFV, and 

Pseudomonas protegens Pf-5  

The Pseudomonas sp. CSWB3 genome was compared to the genomes of Pseudomonas sp. EB42, 

Bacillus velezensis EB37, Bacillus velezensis EBFV (these biocontrol strains were previously 

isolated in Lang’s Laboratory by a PhD student, Lila Salhi), and Pseudomonas protegens Pf-5, a 

biocontrol bacteria used in previous studies (Jing et al., 2020). 

Pairwise alignments between the Pseudomonas sp. CSWB3 genome in gbk format and the four 

bacterial isolates were performed using a genomic visualization tool called progressiveMauve 

(Darling, Mau, & Perna, 2010) (http://darlinglab.org/mauve/). Homologous sequences of aligned 

genomes were analyzed. Mauve results were visualized via an extended multi-Fasta (xmfa) file and 

(backbone) file that contains conserved regions within the aligned genomes. 

The web server Orthovenn2 (Xu et al., 2019) (https://orthovenn2.bioinfotoolkits.net/home) was 

used to compare orthologous gene clusters between the five bacterial strains. The input files for 

Orthovenn2 were the protein sequence (.faa) format obtained from the Prokka annotation. 

Secondary metabolite gene clusters of Pseudomonas sp. CSWB3 were individually compared to 

the four bacterial isolates (Pseudomonas sp. EB42, Bacillus velezensis EB37, Bacillus velezensis 

EBFV and Pseudomonas protegens Pf-5) to determine if there is similarity between their secondary 

metabolite biosynthesis gene clusters. Sequence alignments were performed with the 

progressiveMauve software by searching each secondary metabolite gene or protein ID. The 

BLAST tool in Orthovenn2 was used to compare the amino acid sequences corresponding to the 

genes of each gene cluster in the five bacterial strains.  

NCBI BLAST was also used to compare Pseudomonas sp. CSWB3 secondary metabolite gene 

clusters to the entire NCBI database. 

2.15. Statistical analysis 

Seed germination data variance were analyzed by ANOVA using RStudio (version 1.2.1335© 

2009-2019 RStudio, Inc); statistical significance was established as p ≤ 0.05. One-way ANOVA 

was used to establish the significance between the mean values of stem length, stem dry weight, 

and root dry weight per treatment. Two-way ANOVA was used to evaluate the statistical 

https://orthovenn2.bioinfotoolkits.net/home
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significance of each treatment on two cranberry varieties: Stevens from the Bieler Cranberries field 

and Scarlet Knight from Landreville Nadeau. Bar charts were created using GraphPad Prism 8 

software (version 8.4.3). 
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CHAPTER 3 – RESULTS 

3. Results 

3.1. Previous results 

Results from Lang’s laboratory at the University of Montreal generated by the PhD student Lila 

Salhi showed that six Bacillus velezensis isolates (EB4, EB5, EB33, EB36, EB37 and EB55) can 

suppress the growth of the fungal pathogen Colletotrichum gloeosporioides, a common cranberry 

fungal pathogen (Figure 1). Bacillus velezensis EB5 inhibited the growth of Colletotrichum 

gloeosporioides more significantly as compared to the other isolates, but could not suppress the 

growth of the fungal pathogens Phomopsis vaccinii, Cytospora chrysosperma, and Godronia 

cassandrae. Bacillus velezensis EB37 was the only isolate that inhibited all of the pathogens that 

were tested. Therefore, Bacillus velezensis EB37 has become an important isolate for further 

analysis to reveal genes responsible for biocontrol activity. 

 

Figure 1. –  Inhibition of Colletotrichum gloeosporioides by six Bacillus velezensis isolates. Bacillus 

velezensis EB5, EB55, and EB37 generated the largest inhibition zone against Colletotrichum 

gloeosporioides (10.5 mm, 10 mm, and 9 mm, respectively) 
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3.2. Results 

3.2.1. Endophytes isolated from cranberry plants  

Morphologically different endophytes were isolated from the tissue of cranberry plants obtained 

from two Stevens cranberry producers: Bieler Cranberries and Gillivert. A total of 124 endophytes 

were isolated, of which 34 were bacteria and 90 were fungi. The majority of endophytes were 

isolated from leaves of low yield cranberry plants from the Gillivert field (Table 2).  

Table 2.-  Total number of endophytes isolated from cranberry plants. Bacteria and fungi were 

isolated from surface-sterilized cranberry plant tissue corresponding to very good yield, good 

yield, and weak yield plants from two Stevens variety producers: Bieler Cranberries and Gillivert. 

The majority of endophytes were isolated from low yield plants. 

Field Plant Group Plant Part Bacterial 

Endophytes 

Fungal 

Endophytes 

Total Number of 

Endophytes 

Bieler 

Cranberries 

(Stevens 

variety) 

Very Good-

Yield 

Leaves - 1 1 

Stems - 5 5 

Roots - - - 

Good-Yield Leaves - - - 

Stems - 3 3 

Roots 1 11 12 

Weak-Yield Leaves - 1 1 

Stems - 10 10 

Roots 1 - 1 

Gillivert 

(Stevens 

variety) 

Good-Yield Leaves 2 7 9 

Stems 2 12 14 

Roots 2 4 6 

Weak-Yield Leaves 14 14 28 

Stems 5 16 21 

Roots 7 6 13 

Total   34 90 124 
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3.2.2. Biocontrol activity of cranberry endophytes on pathogens 

Confrontation tests showed that 25 of 34 bacterial isolates displayed biocontrol effects on at least 

one of the 19 fungal pathogens, whereas only 22 of 90 fungi showed a biocontrol effect. Among 

the tested isolates, the bacterial isolates CSWB3 and CLWB12 and the fungal isolate EFK28 

showed antagonistic activity against most of the fungal pathogens. Based on bacterial 16S rDNA 

and fungal ITS rDNA ribotyping, the bacterial isolates CSWB3 and CLWB12 are 99.69% identical 

to Pseudomonas sp. and the fungus isolate EFK28 is 95% identical to Lachnum sp. (Table 3). ITS 

rDNA of Lachnum sp. EFK28 is 100% identical to Lachnum sp. EC5, which is a biocontrol agent 

that was previously isolated from the roots of the Stevens variety field “Pierre Fortier” by the PhD 

student Lila Salhi. It is possible that these two Lachnum isolates are identical, transferred by 

planting material (stolons obtained by mowing of a field) that was supplied by the Pierre Fortier 

farm, and implying that root endophytes may be transferred this way. 

Table 3.-  Origin and the closest match of CSWB3, CLWB12, and EFK28 isolates based on 

BLAST analysis of 16S and ITS sequences 

Isolate 

code 

Isolate origin Closest match in 

NCBI database 

(Accession 

number)  

Identity (%) 

Producer Yield  Plant part 

CSWB3 Gillivert 

(Stevens 

variety) 

Weak yield Stems Pseudomonas sp. 

(KC920926.1) 

 

99.69% 

CLWB12 Gillivert 

(Stevens 

variety) 

Weak yield Leaves Pseudomonas sp. 

(KC920926.1) 

99.69% 

EFK28 Bieler 

Cranberries 

(Stevens 

variety) 

Good yield Stems Lachnum sp. 

(EU794910.1) 

95.70%  

100% 

identical to 

Lachnum sp. 

EC5 
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Performance of Pseudomonas sp. CSWB3 and Pseudomonas sp. CLWB12 was similar and these 

two isolates suppressed the same fungal pathogens (Table 4). Both Pseudomonas sp. CSWB3 and 

Pseudomonas sp. CLWB12 inhibited the growth of the fungal pathogens Colletotrichum sp. and 

Diaporthe sp., which are common causal agents of cranberry fruit rot (Figure 2).  

 

Table 4.- Inhibition of fungal pathogens by the most active endophytes (Pseudomonas sp. 

CSWB3, Pseudomonas sp. CLWB12, and Lachnum sp. EFK28). Bacterial isolates CSWB3 and 

CLWB12 suppressed the same pathogens and showed similar inhibition zone values. 

Pathogens Inhibition zone (mm) of pathogens induced by Pseudomonas sp. 

CSWB3 and CLWB12 and Lachnum sp. EFK28 

Pseudomonas sp. 

CSWB3  

Pseudomonas sp. 

CLWB12 

Lachnum sp. EFK28  

Peniophora sp 29 34 12.5 

Diaporthe sp 40.5 42.5 - 

Penicillium sp - - - 

Colletotrichum sp 33.5 30.5 - 

Physalospora sp 11.5 7.5 33.75 

Rhizopus sp - - - 

Trichoderma sp - - 33 

Cadophora luteo-

olivacea 

- - - 

Botrytis cinerea - - - 

Alternaria alternate 25 27.5 30 

Physalospora 

vaccinia 

4 10 - 

Fusarium 

graminearum 

- - - 

Verticillium dahlia 12.5 12 12 

Diaporthe vaccinia 24 24.5 - 
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Cytospora sp 27 27 26 

Godronia 

cassandrae  

7 6 - 

Uncharacterized 

Strain PatT3 

- - - 

Uncharacterized 

Strain PatB2 

- - - 

Uncharacterized 

Strain PatB3 

- - - 

 

 

 

 

 

 

 

 

  

 

Figure 2. –  Growth inhibition of the fungal pathogens Diaporthe sp. and Colletotrichum sp. by 

cranberry endophytic bacteria Pseudomonas sp. CSWB3 and Pseudomonas sp. CLWB12 at 

day 30  

3.2.3. Compatibility between endophytes 

The mutual compatibility of the three most promising endophytes (Pseudomonas sp. CSWB3, 

Pseudomonas sp. CLWB12, and Lachnum sp. EFK28) was tested in vitro. Mutual compatibility is 

an interesting feature because it enhances the synergistic effect that compatible endophytes have 

on fungal pathogens and hence improves biocontrol of plant diseases. An antagonistic assay that 
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evaluated combinations of Pseudomonas sp. CSWB3, Pseudomonas sp. CLWB12, and Lachnum 

sp. EFK28 showed that these isolates are not compatible (Figure 3). Confirmatory antagonistic 

tests with these same bacterial species were conducted that showed a narrow inhibition zone, which 

potentially indicates that the two bacterial species may be from different species. According to 

(Riley & Gordon, 1999), Escherichia coli produces bacteriocin called colicins. This compound can 

mediate population dynamics within species under specific conditions, such as stress and lack of 

nutrients. Therefore, in the same bacterial population, there are bacteriocin sensitive and 

bacteriocin resistant bacteria. Whole genome sequencing of both isolates would be needed to 

confirm this.  

 

 

 

 

 

 

 

 

 

 

Figure 3. –  Compatibility tests between Pseudomonas sp. CSWB3, Pseudomonas sp. CLWB12, and 

Lachnum sp. EFK28 
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3.2.4. Effect of Pseudomonas sp. CSWB3, Pseudomonas sp. CLWB12 and Lachnum sp. 

EFK28 on the growth of Scarlet Knight and Stevens cranberry seedlings  

3.2.4.1. Stem length  
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Figure 4. –  The effect of endophyte inoculation on the stem length (cm) of cranberry seedlings 

obtained from two varieties (Stevens and Scarlet Knight). Young plants were inoculated with 

the negative control, Lachnum sp. EC5 fungus as a positive control, Lachnum sp EFK28, and 

Pseudomonas sp. CSWB3 and CLWB12. Standard error was calculated from three 

independent replicates.  

The average stem length of Scarlet Knight seedlings inoculated with Lachnum sp. EC5 (3.7 cm) 

was significantly higher as compared to seedlings inoculated with Pseudomonas sp. CSWB3 and 
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Pseudomonas sp. CLWB12 (~ 2 cm) (p-values of 0.00075 and 0.004, respectively) (Figure 4). In 

contrast, the mean stem length of Stevens seedlings inoculated with Pseudomonas sp. CSWB3 (2.3 

cm) was significantly higher as compared to seedlings inoculated with the negative control (1.9 

cm) and Lachnum sp. EC5 (1.7 cm) (p-values of 0.04 and 0.01, respectively) (Figure 4). 

Additionally, seedlings inoculated with Pseudomonas sp. CLWB12 had taller stems (2.4 cm) as 

compared to Lachnum sp. EC5 (1.7 cm) (p-value of 0.02). The mean stem length of seedlings 

treated with Lachnum sp. EFK28 (2.1 cm) was significantly higher as compared to seedlings treated 

with Lachnum sp. EC5 (1.7 cm) (p-value 0.02) (Figure 4).  

Two-way analysis of variance showed that the same treatments (negative control, Lachnum sp. 

EC5, Lachnum sp. EFK28, Pseudomonas sp. CSWB3, and Pseudomonas sp. CLWB12) applied to 

both cranberry varieties (Scarlet Knight (Landreville Nadeau) and Stevens (Bieler Cranberries)) 

were statistically not different (p ≥ 0.05).  

3.2.4.2. Stem and leaf dry weight  
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Figure 5. –  The effect of endophytes on cranberry seedling stem and leaf dry biomass (mg). 

Cranberry seedlings of two cranberry varieties (Stevens and Scarlet Knight) were inoculated 

with the negative control, Lachnum sp. EC5 fungus as a positive control, Lachnum sp. 

EFK28, and Pseudomonas sp. CSWB3 and CLWB12. Standard error was calculated from 

four independent replicates. 

The stem and leaf dry biomass (mg) of Scarlet Knight seedlings inoculated with Lachnum sp. EC5 

(2 mg) was significantly higher as compared to seedlings inoculated with Pseudomonas sp. 

CLWB12 (1 mg) and Pseudomonas sp. CSWB3 (1.2 mg) (p-values of 0.0001 and 0.001, 

respectively) (Figure 5). The above-ground biomass of negative control seedlings (1.7 mg) was 

significantly higher as compared to Pseudomonas sp. CLWB12 (p value of 0.005) and 

Pseudomonas sp. CSWB3 (p value of 0.02) (Figure 5).  

Seedling stem and leaf biomass of Stevens was significantly higher in those inoculated with 

Pseudomonas sp. CLWB12 (0.47 mg) as compared to Lachnum sp. EC5 (0.2 mg), control (0.3 mg), 

Pseudomonas sp. CSWB3 (0.3 mg), and Lachnum sp. EFK28 (0.3 mg) (p-values of 0.0003, 0.02, 

0.02, and 0.03, respectively) (Figure 5). 

Based on two-way ANOVA analysis, the same treatments (negative control, Lachnum sp. EC5, 

Lachnum sp. EFK28, Pseudomonas sp. CSWB3, and Pseudomonas sp. CLWB12) that were 

applied to both varieties (Scarlet Knight and Stevens) were not significantly different (p ≥ 0.05). 
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3.2.4.3. Root dry weight 
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Figure 6. –  The average dry root biomass (mg) of cranberry seedlings of two varieties (Stevens and 

Scarlet Knight) were inoculated with the negative control, Lachnum sp. EC5 fungus as a 

positive control, Lachnum sp. EFK28, and Pseudomonas sp. CSWB3 and CLWB12. Standard 

error was calculated from four independent replicates.  

The root dry weight (mg) of Scarlet Knight seedlings was larger than the root dry weight of Stevens 

seedlings. The root dry weight of Scarlet Knight seedlings was significantly higher for the control 

seedlings (0.72 mg) as compared to the seedlings inoculated with Pseudomonas sp. CLWB12 (0.46 

mg) (p-value of 0.02), whereas for the Stevens variety, the root dry biomass was larger for seedlings 

inoculated with Lachnum sp. EC5 (0.1 mg) as compared to seedlings inoculated with Pseudomonas 

sp. CSWB3 (0.07 mg) (p-value 0.03) (Figure 6).  
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Based on two-way ANOVA analysis, the same treatments (negative control, EC5, EFK28, 

CSWB3, and CLWB12) applied to both varieties (Scarlet Knight and Stevens) were not 

significantly different (p ≥ 0.05). 

3.2.4.4. Root: Stem dry weight ratio 

Statistical analysis showed that endophyte inoculation did not significantly influence the ratio of 

root dry biomass to stem dry biomass of Scarlet Knight seedlings, whereas this ratio was 

significantly higher for Stevens seedlings inoculated with Lachnum sp. EC5 (0.64) as compared to 

seedlings inoculated with Pseudomonas sp. CSWB3 (0.33) or Pseudomonas sp. CLWB12 (0.28) 

(p-values of 0.01 and 0.03, respectively) (Table 5). 

Two-way ANOVA showed that there was an interaction between treatments (C, EC5, EFK28, 

CSWB3 and CLWB12) for both fields (Scarlet Knight and Stevens); however, these same 

treatments were not significantly different in both fields and showed a consistent effect on 

root:stem ratio. 

 

Table 5.- The average root:stem dry weight ratio ± standard error of cranberry seedlings of two 

varieties (Stevens and Scarlet Knight) that were inoculated with the negative control, Lachnum 

sp. EC5 fungus as a positive control, Lachnum sp. EFK28 fungus, and Pseudomonas sp. CSWB3 

and CLWB12 

Seedlings Control Lachnum sp. 

EC5 

Lachnum sp. 

EFK28 

Pseudomonas 

sp. CSWB3 

Pseudomonas 

sp. CLWB12 

Scarlet 

Knight 

0.47 ± 0.04 0.34 ± 0.03 0.46 ± 0.07 0.47 ± 0.05 0.67 ± 0.22 

Stevens 0.43 ± 0.09 0.64 ± 0.07* 0.51 ± 0.10 0.34 ± 0.06* 0.28 ± 0.03* 

 

3.2.5. Genome analysis of Pseudomonas sp. CSWB3 

3.2.5.1. General features of the Pseudomonas sp. CSWB3 genome  
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The Pseudomonas sp. CSWB3 genome was sequenced using Illumina MiSeq. A total of 7,239,103 

sequencing reads were obtained that were assembled into 25 contigs using SPAdes. The assembled 

genome size of Pseudomonas sp. CSWB3 is 6,902,922 bp, with a G+C content of 63.4%. A total 

of 6,328 genes were predicted by Prokka version 1.13 (Seemann, 2014), including 6,180 coding 

sequences (CDS) (Table 6).  

Table 6.-  General features of the Pseudomonas sp. CSWB3 genome generated by Prokka 

version 1.13 

Feature  Pseudomonas sp. CSWB3 

Contigs  25 

Genomic size (bp) 6,902,922 

GC% 63.4% 

Genes  6,328 

Plasmids  0 

Chromosomes 0 

CDS  6,180 

rRNA 6 

tRNA 68 

tmRNA 1 

misc_RNA 73 

 

The distribution of the annotated Pseudomonas sp. CSWB3 genome including CDS and RNA 

genes on 25 contigs obtained from the PATRIC genome analysis tools is shown in Figure 7. 
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Figure 7. –  Circular distribution display of the annotated genes of Pseudomonas sp. CSWB3. Starting 

with the outer ring, the display is organized as follows: contigs, forward strand CDS, reverse 

strand CDS, RNA genes, CDS associated with antimicrobial resistance, CDS with homology 

to known virulence factors, GC content, and GC skew. The color of each CDS on the forward 

and reverse strands indicate the subsystem that these genes belong to (see the subsystems 

graph below). PATRIC 3.6.2 (Wattam et al., 2017) 
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3.2.5.2. Pseudomonas sp. CSWB3 taxonomy and phylogenetic analysis 

Based on molecular phylogenetic analysis, the Pseudomonas sp. CSWB3 genome is highly similar 

to the genome of Pseudomonas protegens, with 100% sequence coverage (Table 7 and Figure 8).  

Table 7.-  Taxonomy of Pseudomonas sp. CSWB3 generated by PATRIC 3.6.2 (Wattam et al., 

2017) 

Percent 

Coverage 

Rank NCBI Taxon ID Scientific Name 

100 Root 1  

100 Root 1 131567 cellular organisms 

100 Domain 2  Bacteria 

100 Phylum 1224     Proteobacteria 

100 Class 1236       Gammaproteobacteria 

100 Order 72274          Pseudomonadales 

100 Family 135621             Pseudomonadaceae 

100 Genus 286               Pseudomonas 

100 Genus 1 136843                 Pseudomonas fluorescens 

group 

100 Species 380021 Pseudomonas protegens 

64 Species 

1 

1124983                    Pseudomonas protegens 

CHA0 

16 Species 

1 

1420599                   Pseudomonas protegens 

Cab57 

 

 

 

 

 

https://www.patricbrc.org/view/Taxonomy/131567
https://www.patricbrc.org/view/Taxonomy/2
https://www.patricbrc.org/view/Taxonomy/1224
https://www.patricbrc.org/view/Taxonomy/1236
https://www.patricbrc.org/view/Taxonomy/72274
https://www.patricbrc.org/view/Taxonomy/135621
https://www.patricbrc.org/view/Taxonomy/286
https://www.patricbrc.org/view/Taxonomy/136843
https://www.patricbrc.org/view/Taxonomy/136843
https://www.patricbrc.org/view/Taxonomy/380021
https://www.patricbrc.org/view/Taxonomy/1124983
https://www.patricbrc.org/view/Taxonomy/1124983
https://www.patricbrc.org/view/Taxonomy/1420599
https://www.patricbrc.org/view/Taxonomy/1420599
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Figure 8. –  Phylogenetic tree of Pseudomonas sp. CSWB3. Using PATRIC tools (Wattam et al., 

2017) and based on the whole genome sequence, Pseudomonas sp. CSWB3 shows high 

affinity to the Pseudomonas protegens genome 

3.2.5.3. Secondary metabolite clusters within the Pseudomonas sp. CSWB3 genome 

A total of 17 characterized and unknown secondary metabolites gene clusters were predicted by an 

analysis of the Pseudomonas sp. CSWB3 genome using gene bank file format (gbk) in antiSMASH 

version 5.1.0. We focused only on BGCs that perfectly matched the reference in antiSMASH (i.e., 

100% match), because these BGCs encode proteins that have been previously studied and are 

known to synthesize specific secondary metabolites. Five BGCs predicted by antiSMASH were 

identified in the Pseudomonas sp. CSWB3 genome, including Type I Polyketide Synthase 

(T1PKS), Type III Polyketide Synthase (T3PKS), NRPS, Others, and NRPS-like clusters. These 

BGCs encode proteins that are involved in the synthesis of the following antimicrobial secondary 

metabolites: pyoluteorin, 2,4-diacetylphloronglucinol, putisolvin, pyrrolnitrin, bicornutin A1, and 
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bicornutin A2, respectively (Table 8).  

 

Table 8.-  BGCs identified in the Pseudomonas sp. CSWB3 by AntiSMASH with 100% 

similarity to the reference and secondary metabolites produced 

Compound  Synthetase 

type 

Genes Size 

(kb) 

Bioactivity Reference 

Pyoluteorin T1PKS 

(polyketide) 

bltB, 

bltC 

12.7 Antibiotic, 

antifungal  

Pseudomonas 

protegens Pf-5 

Pyrrolnitrin Others PmA, B, 

C, D 

5.8 Strong 

antifungal  

Pseudomonas 

chlororaphis 

Putisolvin 

 

NRPS psoA, B, 

C; 

macA, B 

43.7 Antimicrobial, 

cytotoxicity, 

and surfactant 

Pseudomonas 

putida 

2,4-

diacetylphloroglucinol 

T3PKS 

(polyketide) 

phlA, C, 

B, D, E, 

F 

7.2 Antifungal Pseudomonas 

fluorescens 

Bicornutin 

A1/Bicornutin A2 

NRPS-like bicA 0.855 Antimicrobial  Xenorhabdus 

budapestensis 

 

3.2.6. Comparative analysis of Pseudomonas sp. CSWB3 with four biocontrol bacterial 

strains 

Major findings of the comparative analysis of the Pseudomonas sp. CSWB3 genome with the 

genomes of Pseudomonas sp. EB42, Pseudomonas protegens Pf-5, Bacillus velezensis EB37, and 

Bacillus velezensis EBFV are described below. 

3.2.6.1. Orthologous average nucleotide identity between the genomes of Pseudomonas 

sp. CSWB3, Pseudomonas sp. EB42, Pseudomonas protegens PF-5, Bacillus 

velezensis EB37, and Bacillus velezensis EBFV 

Percent similarity between the genomes of the isolates listed above was determined using the 

orthologous average nucleotide identity (OrthoANI) tool. This analysis showed that the 

https://mibig.secondarymetabolites.org/go/BGC0000127/1
https://docs.antismash.secondarymetabolites.org/glossary/#t1pks
https://mibig.secondarymetabolites.org/go/BGC0000924/1
https://docs.antismash.secondarymetabolites.org/glossary/#nrps
https://mibig.secondarymetabolites.org/go/BGC0000281/1
https://mibig.secondarymetabolites.org/go/BGC0000281/1
https://docs.antismash.secondarymetabolites.org/glossary/#t3pks
https://mibig.secondarymetabolites.org/go/BGC0001135/1
https://mibig.secondarymetabolites.org/go/BGC0001135/1
https://docs.antismash.secondarymetabolites.org/glossary/#nrps-like
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Pseudomonas sp. CSWB3 genome is most similar to the genome of Pseudomonas protegens Pf-5 

(98.64% identity) (Figure 9).  

 

Figure 9. –  Comparison of OrthoANI values between the genomes of Pseudomonas sp. CSWB3, 

Pseudomonas sp. EB42, Pseudomonas protegens Pf-5, Bacillus velezensis EB37, and 

Bacillus velezensis EBFV  

3.2.6.2. Core genomes of Pseudomonas sp. CSWB3, Pseudomonas sp. EB42, 

Pseudomonas protegens PF-5, Bacillus velezensis EB37, and Bacillus velezensis 

EBFV 

Orthovenn2 analysis showed that the genome of Pseudomonas sp. CSWB3 contains 5,886 gene 

clusters that encode 6,180 proteins. Five of these clusters are unique to Pseudomonas sp. CSWB3 

(i.e., they are not found in the other four strains). These five unique clusters encode seven proteins 

of unknown function and four proteins of known function. Of these known proteins, two are 

involved in bacteriocin immunity that makes the bacterial cells resistant to bacteriocin produced 

by other bacteria. Another two of the known proteins are involved in capsule production that 

protects 2 proteins responsible for encapsulation and external protection of this strain.  

Orthovenn2 analysis showed that 817 orthologous clusters are common in the five strains, 16% of 

the common genome is dedicated to the biological process, and among these clusters, 16% are 
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involved in metabolic processes that include secondary metabolite biosynthesis. No specific 

orthologous clusters were identified in the genomes of Bacillus velezensis EB37 and Bacillus 

velezensis EBFV, whereas Pseudomonas sp. EB42 contains 90 unique clusters and shares 78 

clusters with Pseudomonas sp. CSWB3. Among these shared clusters, 8% are involved in 

metabolic processes. Pseudomonas sp. CSWB3 shares 1328 common clusters with Pseudomonas 

protegens Pf-5, of which 18% are involved in metabolic processes. The three Pseudomonas sp. 

strains (CSWB3, EB42, and protegens pf5) share 3,587 common gene clusters; among these 

clusters, 17% are involved in metabolic processes (Figure 10). 

 

Pseudomonas sp CSWB3 

Bacillus velezensis EBFV 

 

Pseudomonas protegens Pf-5 

Bacillus velezensis EB37 

Pseudomonas sp EB42 
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Figure 10. –  Venn diagram generated by Orthovenn2 showing orthologous gene clusters for 

Pseudomonas sp. CSWB3, Pseudomonas sp. EB42, Pseudomonas protegens Pf-5, Bacillus 

velezensis EB37, and Bacillus velezensis EBFV 

3.2.6.3. Comparative genomic insight into secondary metabolite biosynthesis 

The Pseudomonas sp. CSWB3 genome contains five BGCs identified by antiSMASH with 100% 

similarity to the reference (Table 9). These BGCs consist of genes that encode large PKS or NRPS 

proteins that may produce the antimicrobial secondary metabolites pyoluteorin, pyrrolnitrin, 

putisolvin, 2,4-diacetylphloronglucinol, bicornutin A1, and bicornutin A2. 

Orthovenn2 BLAST was used to compare the amino acids sequence of each secondary metabolite 

secreted by Pseudomonas sp. CSWB3 to the secondary metabolites secreted by the other four 

bacteria (Pseudomonas sp. EB42, Pseudomonas protegens Pf-5, Bacillus velezensis EB37, and 

Bacillus velezensis EBFV). Only Pseudomonas protegens Pf-5 has 100% sequence coverage and 

99% identity for pyoluteorin, pyrrolnitrin, putisolvin, and 2,4-diacetylphloronglucinol secondary 

metabolites gene clusters with an E-value of 0.0, whereas the gene cluster responsible for the 

biosynthesis of bicornutin A1 and bicornutin A2 secondary metabolites was unique to 

Pseudomonas sp. CSWB3. Other strains showed low sequence coverage and identity for these gene 

clusters. Orthologous secondary metabolite gene clusters were also visualized using 

progressiveMauve in which each gene code or protein ID was searched for individually and the 

same results were obtained. 

To find the difference in secondary metabolite identity between Pseudomonas sp. CSWB3 and 

Pseudomonas protegens Pf-5, another antiSMASH search was performed for the Pseudomonas 

protegens Pf-5 genome. The Pseudomonas protegens Pf-5 genome contains 15 BGCs of which 

four are 100% antiSMASH-characterized and are similar to BGCs found in the Pseudomonas sp. 

CSWB3 genome and synthesize the same secondary metabolites: pyoluteorin, pyrrolnitrin, 

putisolvin, and 2,4-diacetylphloronglucinol. To identify the differences in each secondary 

metabolite-synthesizing enzyme in both strains, BLASTp at NCBI sequence alignment was 

performed. This analysis showed that the T1PKS that produces pyoluteorin differed in 23 amino 

acids between the two strains. This analysis also found a three amino acids difference in the T3PKS 

that produces 2,4-diacetylphloronglucinol, a four amino acid difference in the protein that produces 

pyrrolnitrin, and a 22 amino acid difference in the protein that produces putisolvin between the two 
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strains (Pseudomonas sp. CSWB3 and Pseudomonas protegens Pf-5). All of the amino acid 

changes and substitutions in each protein did not affect the production of the same secondary 

metabolite, per antiSMASH predictions.  

Bicornutin A1 and bicornutin A2 secondary metabolites are produced only by Pseudomonas sp. 

CSWB3 because the NRPS-like gene cluster responsible for their biosynthesis exists only in 

Pseudomonas sp. CSWB3 and not in Pseudomonas sp. EB42, Pseudomonas protegens PF-5, 

Bacillus velezensis EB37 or Bacillus velezensis EBFV.  

3.2.6.3.1. Comparison of secondary metabolite gene clusters of Pseudomonas sp. 

CSWB3 with the NCBI database 

The five BGCs of Pseudomonas sp. CSWB3 were compared to entries in the NCBI database using 

BLAST. We found that T1PKS that potentially synthesizes pyoluteorin matched the Pseudomonas 

protegens T1PKS, with 74% coverage and 100% identity. The gene cluster classified as (Others) 

that is responsible for pyrrolnitrin biosynthesis matched the DUF1864 family protein of 

Pseudomonas protegens, with 100% coverage and 99% identity. The NRPS gene cluster 

responsible for putisolvin biosynthesis matched orfamide A non-ribosomal peptide synthetase 

(OfaC) of Pseudomonas protegens. The T3PKS gene cluster that synthesizes 2, 4-

diacetylphloronglucinol matched T3PKS of Pseudomonas protegens, with 100% coverage and 

identity. The NRPS-like gene cluster responsible for bicornutin A1 and bicornutin A2 biosynthesis 

matched NRPS of Pseudomonas protegens, with 100% coverage and 99.65% identity.  

 

https://blast.ncbi.nlm.nih.gov/Blast.cgi#alnHdr_WP_041118838
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CHAPTER 4 – DISCUSSION, CONCLUSIONS, AND 

PROSPECTIVE FUTURE WORK 

4.1. Discussion 

It has been reported that certain endophytes secrete compounds that control the growth of plant 

pathogens and enhance plant growth and yield via a process known as a biocontrol reaction; thus, 

these endophytes are known as biocontrol agents (Gupta et al., 2016). The present study focused 

on cranberry endophytes that may be capable of controlling fungal pathogens of cranberries and 

enhancing cranberry production. Cranberry plants are of particular interest because North America 

is the leading producer of cranberries around the world.  

4.1.1. Isolated endophytes  

In this study, we investigated the endophytes of commercial cranberry cultivars from two fields of 

the Stevens variety: Bieler Cranberries and Gillivert. Among the 124 isolated endophytes, 34 were 

bacteria and 90 were fungi and most of these were isolated from the leaves of Gillivert weak 

yielding plants. This result correlates with previous studies that showed that  endosymbionts are 

found in almost all plants, irrespective of high or weak yield (Bragina et al., 2012). In addition, a 

wide diversity of endophytic bacteria and fungi have been previously studied. More than 200 

species of bacteria have been isolated from plant tissue, with the majority corresponding to the 

phyla Actinobacteria, Proteobacteria, and Firmicutes (Golinska et al., 2015). Fungi have been 

associated with plants for millions of years (Krings et al., 2007). It is notable that endophytes are 

widely spread in all plant parts with weak and good yield. Furthermore, crop yield depends on 

multiple interactions and factors such as the environment and soil. In other words, the outcome of 

plant yield is a cumulative and integrated effect.  

4.1.2. Biocontrol activity  

Our results demonstrate that Pseudomonas sp. CSWB3 and CLWB12 and the fungus Lachnum sp. 

EFK28 are the most active of the isolates, showing antagonistic functions against the majority of 

fungal pathogens. Pseudomonas sp. CSWB3 and CLWB12 suppressed Diaporthe vaccinii, 

Cytospora sp., Physalospora vaccinii, Alternaria alternata, Verticillium dahliae, peniophora sp., 

Diaporthe sp., Colletotrichum sp., Physalospora sp., and Godronia cassandrae fungal pathogens. 
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Most importantly, Pseudomonas sp. CSWB3 and CLWB12 inhibited the growth of Diaporthe sp. 

and Colletotrichum sp. (large inhibition zones > 30 mm), which are common culprits of cranberry 

fruit rot. The fungal isolate Lachnum sp. EFK28 showed antagonistic activity against Peniophora 

sp., Cytospora sp., Verticillium dahliae, Trichoderma sp., Alternaria alternate, and Physalospora 

sp. Consistent with previous studies conducted by our laboratory and other studies identified 

Pseudomonas spp. as biocontrol agents because they produce secondary metabolites that act as 

antimicrobial compounds (Gross & Loper, 2009). The fungus Lachnum sp. EFK28 has been 

previously used in medicine and agriculture because it produces various bioactive compounds with 

antimicrobial activity (Rukachaisirikul et al., 2006). This suggests that Pseudomonas sp. CSWB3 

and CLWB12 and Lachnum sp. EFK28 are associated with the biocontrol of fungal pathogens, 

and most importantly with the control of pathogens that cause damage to cranberry plants. We 

suggest that this biocontrol activity may be due to antifungal secondary metabolites produced by 

these strains, which would explain why they may inhibit the growth of fungal pathogens. 

4.1.3. Seedling inoculation with endophytes 

The results of seedling inoculation experiments showed that Pseudomonas sp. CSWB3, 

Pseudomonas sp. CLWB12, and Lachnum sp. EFK28 enhanced the stem length and weight of 

Stevens seedlings but not Scarlet Knight seedlings. However, these same strains did not affect the 

root biomass of both cranberry varieties. These observations are consistent with previous studies 

that showed that various endophytes produce phytohormones that enhance plant growth including 

gibberellins (GAs), indole acetic acid (IAA) (Tsavkelova et al., 2006), and IAA that stimulate cell 

division stimulation, which enhances plant growth (Martinez-Viveros et al., 2010). The stem 

length of yam plants (Dioscorea rotundata) was increased following inoculation with IAA-

producing bacteria (Swain et al., 2007). GA plays important roles in seed germination, leaf 

elongation, and flowering (Stamm & Kumar, 2010). The enhancement of plant growth of Stevens 

variety seedlings mediated by Pseudomonas sp. CSWB3 and CLWB12 and Lachnum sp. EFK28 

may have resulted from the production of phytohormones by these bacteria. However, it is unclear 

why these isolates did not enhance the growth of Scarlet Knight seedlings. 

4.1.4. Pseudomonas sp. CSWB3: secondary metabolites and their mechanism of action  

The Pseudomonas sp. CSWB3 genome contains five characterized BGCs that matched 100% with 

references in antiSMASH. These BGCs encode large proteins such as NRPSs, PKSs and hybrid 
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NRPSs-PKSs that synthesize antimicrobial secondary metabolites, namely pyoluteorin, 

pyrrolnitrin, putisolvin, 2, 4-diacetylphloroglucinol, bicornutin A1 and biocomutin A2. Among 

these, pyoluteorin, pyrrolnitrin, and 2, 4-diacetylphloroglucinol have strong antifungal activity. 

Our findings are consistent with previous findings that showed that Pseudomonas spp. such as P. 

fluorescens express NRPSs, PKSs, and hybrid NRPSs-PKSs that are involved in the synthesis of 

secondary metabolites such as pseudomonine, safracin, mupirocin, 2,4-diacetylphloroglucinol, 

and 2,5-dialkylresorcinols. These metabolites are well known for their antimicrobial effects (Gross 

& Loper, 2009). It is notable that Pseudomonas sp. CSWB3 may control fungal pathogens because 

it has the potential to produce antifungal compounds that target and inhibit fungal pathogen 

growth. The antifungal secondary metabolites produced by Pseudomonas sp. CSWB3 

(pyoluteorin, pyrrolnitrin, and 2, 4-diacetylphloroglucinol) target the main cellular processes of 

pathogenic fungi. The main target of the antifungal pyrrolnitrin is the cellular respiration of the 

pathogenic fungi (Tripathi & Gottlieb, 1969). The antifungal compound 2, 4-

diacetylphloroglucinol exhibits antifungal activity by causing wrinkling and severe damage to 

hyphae (Gong et al., 2016). The secondary metabolite pyoluteorin is toxic to plant fungal 

pathogens such as Pythium ultimum and can suppress symptoms caused by this fungus (Nowak-

Thompson, Chaney, Wing, Gould, & Loper, 1999). Not all Pseudomonas spp. secrete both 2, 4-

diacetylphloroglucinol and pyoluteorin; to date, only a few Pseudomonas protegens strains have 

been shown to produce both compounds (Yan, Philmus, Chang, & Loper, 2017). It is interesting 

to note that Pseudomonas sp. CSWB3 has the potential to secrete both 2, 4-diacetylphloroglucinol 

and pyoluteorin, which suggests that this strain is a very effective antifungal agent.  

4.1.5. Comparison of the Pseudomonas sp. CSWB3 genome with the genomes of 

Pseudomonas sp. EB42, Pseudomonas protegens Pf-5, Bacillus velezensis EB37, and 

Bacillus velezensis EBFV 

Of the strains tested in this work, the genome of Pseudomonas sp. CSWB3 is most closely related 

to Pseudomonas protegens Pf-5, with 98.64% sequence identity. These two strains have 3,587 

gene clusters in common, of which 17% are involved in metabolic processes that include secondary 

metabolite production.  

Comparison of the amino acid sequences of each secondary metabolite produced by Pseudomonas 

sp. CSWB3 with those produced by the other four bacteria revealed that they have 100% sequence 
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coverage with Pseudomonas protegens Pf-5 and 99% identities for secondary metabolites, namely 

pyoluteorin, pyrrolnitrin, 2,4-diacetylphloroglucinol, and putisolvin. This suggests that secretion 

of bicornutin A1 and A2 is unique to Pseudomonas sp. CSWB3. These metabolites are produced 

only by Pseudomonas sp. CSWB3, as NRPS-like gene clusters exist only in this strain. Bicornutin 

is a strong antimicrobial compound that was previously found to be produced by Xenorhabdus 

budapestenis. Bicornutin is active against zoospores by suppressing mycelial growth of 

Phytophthora nicotianae (Boszormenyi et al., 2009). Hence, Pseudomonas sp. CSWB3 produces 

antimicrobial compound that targets mycelial growth, which makes this strain more effective at 

inhibiting fungal pathogens as compared to Pseudomonas protegens Pf-5. 

4.1.6. Limitations of this study  

The cranberry endophytes and cranberry seedlings used in the current study were grown in growth 

medium rather than in soil, which is a limitation of the current research. Although the use of a 

growth medium has advantages regarding the use of space, nutrients, temperature, better control, 

and optimal pH, it also has limitations. Plants growing in soil are influenced by the combined 

conditions of the soil and its contents, the temperature, and numerous external factors, which are 

not precisely simulated by growth media. This limits the generalizability of the results obtained in 

the current study, and therefore, the experiments need to be verified in the field or in a greenhouse.  

Despite the many advantages of endophytic organisms, they also produce secondary chemicals 

that cause irreversible damage to host plants, which may ultimately leads to losses of livestock. 

Thus, we think that the selection of endophytes for agricultural applications should be made 

carefully in order to reduce the impact of secondary metabolites produced by endophytes on all 

organisms across a broad spectrum. The exploitation of plant-endophyte interactions results in 

enhanced plant growth as well as sustainable agricultural practices for all crops. Genome 

sequencing of endophytes sheds light on the genes responsible for endophytic properties. The 

obtained information can be used for transcriptome as well as proteome analysis in studies of other 

plant-endophyte interactions. 
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4.2. Conclusions and prospective future work 

In conclusion, the results of our study show that certain endophytes have the potential to control 

fungal pathogens and enhance plant growth. The bacterial strain Pseudomonas sp. CSWB3 

suppressed the growth of the majority of fungal pathogens that were tested and was able to enhance 

the growth of cranberry seedlings (Stevens variety). The genomic structure of endophytes 

influences their behavior and mechanisms of pathogen growth inhibition. Analysis of the 

Pseudomonas sp. CSWB3 genome showed that it possesses five gene clusters that encode large 

enzymes that are responsible for the biosynthesis of six antimicrobial secondary metabolites. This 

may be the reason why this strain has the potential to enhance cranberry plant growth and suppress 

fungal pathogens. Development of this endophyte will greatly enhance cranberry production and 

protect the environment from the effects of using chemical fungicides. Our findings support our 

hypothesis that certain endophytes that possess secondary metabolite biosynthetic gene clusters, 

such as Pseudomonas sp. CSWB3, have the potential to enhance the growth of cranberry plants as 

well as to inhibit cranberry fungal pathogens. 

Endophytes are a crucial biological resource that require additional studies to gain a greater 

understanding of their roles in protecting plants from pathogenic microorganisms. Future work 

could investigate the antagonistic ability of Pseudomonas sp. CSWB3 in greenhouse and field 

experiments to confirm the findings of the current research. Genetic engineering of the 

Pseudomonas sp. CSWB3 genome could transform this strain into a more effective biocontrol 

agent by the introduction of genes that encode strong antifungal effects or enhance secondary 

metabolite production via gene mutations (insertion/duplication) or a gain-of-function mutation 

that could make the mutant Pseudomonas sp. CSWB3 more effective than the wild-type strain at 

controlling fungal pathogens. B.subtilis strain ATCC 6633 is a biocontrol bacteria that produce the 

lipopeptide mycosubtilin, which is effective in suppressing Pythium infection. A recombinant 

strain was designated by the replacement of the promoter of mycosubtilin operon in the wild-type 

with promoter originated from the replication gene of Staphylococcus aureus plasmid pUB110. 

Results showed that the recombinant strain can produce 15-fold more mycosubtilin compared to 

the wild-type, and showed dramatically effective inhibition of Pythium infection in tomato 

seedlings (Wu, Wu, Qiao, Gao, & Borriss, 2015). Antimicrobial secondary metabolites produced 

by endophytes could also be extracted and used as fungicides. 
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