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Sommaire

Malgré les larges écart-types estimés dans plusieurs études de pauvreté et d’inégalités
empiriques, la plupart des études dans ce domaine n’ont pas recours a l'inférence statis-
tique. Deux types d’inférence sont généralement utilisés pour les mesures de pauvreté et
d’inégalités: les distributions asymptotiques et le bootstrap. Bien que ces méthodes puis-
sent ne pas étre toujours fiables, aucune étude n’a encore proposé de méthode d’inférence
exacte valide pour de tels problémes. Nous proposons de telles méthodes.

Dans le premier article, nous construisons des bandes de confiance pour des fonctions de
distribution en inversant des tests d’adéquation basés sur des statistiques de Kolmogorov-
Smirnov (KS) standardisées et améliorées. Le test de KS, bien que populaire, ne per-
met pas de discriminer grandement entre les distributions qui différent le plus dans les
queues. Pour corriger ce probléme, des statistiques de KS pondérées basées sur les
principes de Wald, du multiplicateur de Lagrange et du ratio de vraisemblance ont été
proposées respectivement par Anderson et Darling (1952), Eicker (1979) et Berk et Jones
(1979). Toutefois, ces derniéres souffrent de problémes dus & leurs dénominateurs qui |
peuvent étre proches de zéro. Pour y remédier, nous proposons des statistiques de KS
améliorées obtenues en ajoutant un terme de régularisation au dénominateur des sta-
tistiques d’Anderson-Darling et d’Eicker. Nous en déduisons des bandes de confiance
exactes pour les fonctions de distribution et montrons que, dans le cas continu, ces ban-
des de conﬁance sont indépendantes de la distribution testée sous I’hypothése nulle et
qu’elles sont conservatrices dans le cas non continu tout en bénéficiant de propriétés de
monotonicité qui améliorent les bandes lde confiance sans altérer leur fiabilité.

Dans les deuxiéme et troisiémes articles, nous proposons des inter?alle,s de confiance
exacts pour les mesures de pauvreté de Foster, Greer et Thorbecke (FGT, 1984) et les
mesures d’inégalités les plus populaires, respectivement. Nous observons d’abord que ces
xﬂesures peuvent se réécrire comme des fonctions de moyennes de variables aléatoires, ces
derniéres étant elles-mémes des fonctionnelles de fonctions de distribution de variables
bornées et non bornées. Ensuite, nous utilisons des techniques de projection pour déduire

des intervalles de confiance a distance finie pour la moyenne d’une variable aléatoire
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bornée a partir de bandes de confiance de la fonction de distribution sous-jacente. Lorsque
la variable aléatoire n’est pas bornée, nous proposons un principe de projection généralisé
qui s’applique aux fonctions de distributions dont les queues sont bornées par des lois
de Pareto. Enfin, nous appliquons ces procédures aux mesures de pauvreté FGT et aux
mesures d’inégalités (les mesures d’entropie généralisée, de déviation logarithmique et
d’Atkinson et les indices de Theil, de Lorenz, de Gini et de variation logarithmique).
Dans les trois articles, des études Monte Carlo sont effectuées pour analyser la per-
forménce des méthodes d’inférence et illustrer le choix du paramétre de régularisation.
Elles montrent que les statistiques régularisées donnent des tests plus puissants que celles
existantes, lorsqu’elles sont appliquées a des distributioﬁs qui différent le plus dans les
queues. De méme, les bandes de confiance de fonctions de distribution et les intervalles
de confiance pour la moyenne basés sur ces statistiques produisent de meilleurs résultats.
Dans certains cas, les intervalles asymptotique et bootstrap ne produisent pas de résultats
fiables alors que les intervalles proposées sont robustes et plus courts. Pour illustration,
nous analysons dans les articles 2 et 3 les profils de pauvreté et 'd’inégalités des ménages
ruraux au Mexique en 1998 en utilisant des données du programmme PROGRESA. Les
résultats montrent que les intervalles asymptotiques sont souvent trop petits pour étre
réalistes alors que I'intervalle bootstrap peut exploser. L’analyse montre que le profil
de pauvreté des ménageé Mexicains dépend grapdement du type de chef de ménage: les
niveaux de pauvreté et d’'inégalités des ménages dont le chef est un homme ou est éduqué
sont moins élevés que ceux des autres ménages. De ce fait, les mesures destinées a ré-
duire le taux d’illettrisme et & sécuriser le revenu des ménages dont le chef est une femme

pourraient aider a réduire la pauvreté et les inégalités dans le Mexique rural.

Mots clés : inférence exacte ; Kolmogorov-Smirnov ; Anderson-Darling ; Eicker ; pauvreté
: inégalité ; moyenne ; régularisation; distribution de Pareto.

JEL codes: C01, C12, C14, O11.



Summary

Despite the growing interest in poverty and inequality studies and the large standard
errors found in many empirical studies, most of the work in this area neglects statistical
inference. Two types of inference procedures for poverty and inequality measures have
been considered: asymptotic distributions and bootstrapping. These methods can be
‘quite unreliable, even with fairly large samples, but no study has proposed pré)vably
valid exact inference procedures for such problems. We propose such ones.

In the first paper, we build nonparametric confidence bands for distribution functions by
inverting goodness-of-fit tests based on improved standardized Kolmogorov-Smirnov sta-
tistics (KS, henceforth). Despite its popularity, the KS test does not allow to discriminate
a lot between distributions that differ mostly through their tails. To correct this draw-
back, weighted KS statistics based on the three commmon principles in econometrics (the
Wald, Lagrange multiplier, and likelihood-ratio principles) are prbposed respectively by
Anderson and Darling (1952), Eicker (1979), and Berk and Jones (1979). However, they
also suffer from drawbacks because standard errors can be very close to zero. To correct
these, we propose improved weighted KS statistics obtained by adding a regularization
term in the denominator of the Anderson-Darling and the Eicker statistics and derive
from them exact nonparametric confidence bands for distribution functions. We show
that in the continuous case, these confidence bands are independent of the distribution
assumed under the null hypothesis and are conservative for noncontinuous distributions.
In the noncontinuous case, we derive monotonicity properties to narrow the confidence
bands without altering their reliability.

In the second and third papers, we develop such inference methods for the Foster, Greer
and Thorbecke (FGT, 1984) poverty measures (paper 2) and the most popular inequal-
ity measures (paper 3): the generalized entropy measures, the Thei] index, the Lorenz
curve, the Gini index, the Atkinson measures, the mean logarithmic deviation, and the
logarithmic variation. We first observe that these poverty and inequality indicators can
be interpreted as functions of the expectations of random variables which are themselves

functional of distribution functions, where the involved variables can be either bounded
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or unbounded. Using projection techniques, we thén derive finite-sample nonparametric
confidence intervals for the mean of a bounded random variable from confidence bands
for the distribution of the underlying variable. When the random variable is unbounded,
we propose a generalized projection principle for distribution functi‘ons which tails are
bounded by a Pareto distribution. Then, we apply these procedures to the FGT poverty
measures and to inequality measures.

Monte Carlo simulations are performed in the three papers to study the relative perfor-
mance of the inference methods and illustrate how to choose the regularization parame-
ter. The results show that the regularized statistics yield more powerful goodness-of-fit
tests than the existing ones when applied to distributions with more discrepancy in the
tails. Likewise, the CBs for distribution functions and the confidence intervals based
on these regularized statistics have a better performance. The simulations show that
asymptotic and bootstrap confidence intervals for the mean can fail to provide reliable
inference, while the proposed methods are robust and yield shorter confidence intervals.
As an illustration, we analyze the profile of poverty and inequality of Mexico in 1998
using households’ survey data (papers 2 and 3). The results show that the widths of
the asymptotic confidence intervals are often too small to be realistic while those of the
bootstrap can be 10 times larger than the widths delivered by exact methods. The study
shows that the poverty profile of Mexican households depends greatly on the typeiof
households’ head: poverty levels and inequality among households with a male head or
an educated head are much smaller than those among other households. Hence, policies
aimed at reducing illiteracy and at securing the income of households with a female head

could help reduce poverty and inequality in rural Mexico.

Keywords : nonparametric inference; Kolmogorov-Smirnov; Anderson-Darling; Eicker;
empirical distribution; mean; poverty; inequality; regularization; Paretian heavy tail.

JEL codes: C01, C12, C14, O11.
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Introduction Générale

Durant les derniéres décennies, il y euf un intérét croissant pour les études de pauvreté
et d’inégalités. Toutefois, en dépit des larges écart-types trouvés dans les études em-
piriques, la plupart des analyses dans ce domaine sont restées descriptives, ne procédant
pas a une inférence statistique rigoureuse. Deux types de procédures inférentielles ont ‘
été proposés: les distributions asymptotiques et le bootstrap; voir Beran (1988), Kakwani
(1993), Rongve (1997), Mills et Zandvakili (1997), Dardanoni et Forcina (1999), Biewen
(2002), Davidson et Duclos (2000), Zheng (2001) et Davidson et Flachaire (2007). La
plupart de ces études recommandent 'utilisation du bootstrap au lieu des approxima-
tions asymptotiques parce que ce dernier peut ne pas étre fiable quand il est appliqué
4 des échantillons de taille petite voire modérée. Ces études reconnaissent cependant
également les limites du bootstrap standard, en particulier que la procédure peine sou-
vent a performer en présence de distributions avec des queues épaisses ou des masses
de probabilité comme c’est le cas dans les études de pauvreté et d’inégalités. Dans ce
cadre, des procédures spécifiques doivent étre implémentées pour améliorer les résultats
du bootstrap mais le choix de la procédure adéquate requiert de connaitre la nature du
probléme a l’origine de 1’échec du bootstrap standard, ce qui n’est pas trivial quand la
distribution étudiée est inconnue. Des études montrent que les méthodes d’inférence as-
ymptotique et bootstrap' ne produisent pas de résultats satisfaisants lorsque appliquées
aux mesures d’inégalités. Entre autres, Davidson et Flachaire (2007) montrent que les
distributions asymptotiques donnent une pauvre approximation des véritables distribu-
tions des statistiques quand la taille de 1’échantillon est petite ou moyenne. Ils montrent
de plus que le bootstrap i.i.d. donne des tests de paﬁvre niveau lorsque appliqué a 'indice
d’inégalité de Theil avec une distribution de revenue Singh-Maddala. En dépit de toutes
ces problémes, aucune étude n’a, & notre connaissance, proposé de méthode d’inférence
nonparamétrique a distance finie valide pour les mesures de pauvreté et d’inégalités.

Dans cette thése, nous nous intéressons a ce probléme.

Dans le premier article, nous étudions plusieurs bandes de confiance basées sur des
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fonctions de distribution. La premiére est basée sur le test de KS (KS, ci-dessous) qui
est I'un des tests non paramétriques d’adéquation de lois le plus populaire. Ce dernier
est fondé sur la statistique de KS qui est le supremum sur toutes les observations de la
différence entre la fonction de distribution supposée sous I’hypothese nulle et la fonction
de distribution empirique de I’échantillon. Le test rejette la fonction de distribution testée
si eile est trop loin de celle empirique, le seuil de rejet étant défini par le point critique
de la statistique. Le test doit sa popularité & 'une de ses propriétés trés pratiques:
la distribution de la statistique de KS est indépendante de la fonction de distribution
supposée sous 'hypothese nulle lorsque celle-ci est continue et par conséquent, les points
critiques de la statistique ne dépendent pas de la distribution testée et le méme ensemble
de points critiques peut &tre utilisé pour tester toutes les distributions continues. En
inversant ce test, il est possible de construire une bande de confiance pour les fonctions
de distribution qui bénéficient des mémes propriétés que le test de KS.

Malgré le fait que le test de KS est pratique, il souffre d’'un inconvénient majeur: il
discrimine faiblement entre les distributions qui différent principalement au niveau de
leurs queues, ce qui altére les performances du test et des bandes de confiance. En
particulier, la bande de confiance de KS a souvent été critiquée en raison de son caractére
uniforme. Sa .largeur est constante pour toutes les observations; par conséquent, ses
bornes ne convergent pas vers 0 et 1 dans les queues de distributions, contrairement aux
fonctions de distribution qu’elles bornent. Pour corriger cette contreperformance, nous
utilisons des statistiques pondérées de KS basées sur les trois principes fondamentaux
en économétrie: les principes de Wald, du multiplicateur de Lagrange et du ratio de
vraisemblance. Ces statistiques ont été proposées par Anderson et Darling (1952), Eicker
(1979) et Berk et Jones (1979), respectivement.

Les statistiques d’ Anderson-Darling et d'Eicker sont des statistiques de KS standardisées
pour lesquelles la différence entre la distribution théorique et celle empirique est divisée
f)ar une sorte d’écart-type. Ces statistiques permettent une meilleure discrimination entre
les distributions qui différent principalement au niveau de leurs extrémités. En utilisant

ces statistiques, nous proposons des bandes de confiance exactes dont la largeur diminue



3

au fur et & mesure que les observations s’éloignent du centre de la distribution. Toutefois,
les statistiques d’Anderson-Darling et d’Eicker ont leurs propres inconvénients. Les poids
au niveau des dénominateurs de ces statistiques deviennent tres prbches de zéro poﬁr les
observations dans les queues, ce qui induit un comportement erratique des statistiques.
Pour y remédier, nous proposons des statistiques obtenues par ’ajout d’un terme de
régularisation au dénominateur des statistiques d’Anderson-Darling et d’Eicker. Ces
statistiques conservent les avantages des statistiques de KS pondérées, ‘mais ne souffrent
pas d’instabilité. En inversant les statistiques régularisées, nous proposons des bandes
de confiance exactes améliorées pour les fonctions de distribution.

La statistique de Berk-Jones est le supremum, sur toutes les observations, du ratio de log-
vraisemblance entre les fonctions de distribution empirique et théorique utilisée comme
distance entre ces deux fonctions. Il a été prouvé que cette statistique domine toutes les
statistiques pondérées de KS, au sens de Bahadur et constitue donc une bonne référence
de comparaison pour nos méthodes d’inférence. Cette statistique a été utilisée par Owen
(1995) pour construire une bande de confiance non paramétrique pour les fonctions de
distribution continues.

Nous montrons que dans le cas continu, les distributions des statistiques basées sur des
fonctions de distribution empiriques sont indépendantes de la fonction de distribution
testée sous l;hypothése nulle, ainsi que leurs points critiques. Par conséquent, les ban-
des de confiance qu’elles permettent de construire dépendent de la distribution testée
uniquement par ’échantillon. Ces bandes sont construites avec le méme ensemble de
points critiques pour toutes les fonctions de distribution continues, ce qui les rend facile
a calculer. Pour les fonctions de distribution discontinues, nous dérivons des propriétés
de monotonicité qui exploitent I’emboitement des ensembles images de différentes distri-

butions pour réduire la largeur des intervalles de confiance sans toutefois en altérer la

fiabilite.

Dans les deuxiéme et troisiéme articles de cette thése, nous proposons des inter-
valles de confiance pour la moyenne d’une variable aléatoire que nous appliquons aux

mesures de pauvreté de Foster, Greer et Thorbecke (1984, ci-dessous FGT) et aux mesures
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d’inégalités les plus populaires: la mesure d’entropie généralisée—qui inclut I’indice de
Theil, la courbe de Lorenz, I'indice de Gini, la mesure d’Atkinson, la mesure de déviation
logarithmique et !'indice de variation logarithmique. Pour ce faire, nous observons que
les mesures de pauvreté peuvent se réécrire comme la moyenne d’'une variable aléatoire
bornée—un mélange entre une variable aléatoire continue et une masse de pfobabilité au
seuil de pauvreté—et proposons que les méthodes d’inférence nonparamétrique exactes »
pour la moyenne d’une variable aléatoire bornée leur soient appliquées (article 2).

A premiére vue, ce probléme parait ne pas avoir de solution. En effet, d’aprés Bahadur et
Savage (1956), il est impossible d’établir une inférence nonparamétrique pour la moyenne
d’une variable aléatoire sur la base d’observations indépendantes et identiquement dis-
tribuées provenant d’une distribution i'ncoﬁnue dont la moyenne est finie (voir Dufour
(2003) pour de plus amples détails). Toutefois dans notre cas, la nature bornée de la
variable aléatoire étudiée donne une restriction suffisante pour permettre d’effectuer une
inférence nonparamétrique. De tels intervalles de confiance pour la moyenne d’une vari-
able aléatoire bornée sont.proposés par Anderson (1969), Hora et Hora (1990) et Fishman
(1991). Sutton et Young (1997) comparent les performances de ces méthodes a celles des
méthodes bootstrap et asymptotique a ’aide de lois Beta. Ils montrent que les intervalles
asymptotique et bootstrap ont une mauvaise probabilité de couverture en échantillon fini
alors que les méthodes exactes sont trés fiables mais produisent des intervalles plus larges
que les premiers.

Nous observons que les mesures FGT sont des moyennes de variables aléatoires bornées
qui sont elles-mémes des fonctionnelles de fonctions de distribution et utilisons des tech- '
niques de projection pour déduire des intervalles de confiance a distance finie pour la
moyenne d’une variable aléatoire bornée & partir de bandes de confiance de la fonction de
distribution sous-jacente. Enfin, nous appliquons ces intervalles de confiance aux mesures
de pauvreté FGT.

De fagbn similaire, nous montrons que la plupart des mesures d’inégalités peuvent se
réécrire comme une fonction de moyennes de deux variables aléatoires dont 'une ou

les deux peuvent ne pas &tre bornées (article 3). Dans ce cas, nous proposons une
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géneéralisation du principe de projection utilisé pour les variables bornées aux variables
non bornées, sous ’hypothése que les queues de distribution étudiées sont bornées par des
distributions de Pareto (voir Davidson et Flachaire, 2007 pour 'utilisation d’hypothéses
similaires dans des procédures bootstrap). D’abord, nous observons que la moyenne d’'une
variable peut s’interpréter comme la moyenne pondérée d’une variable bornée et d'une
variable non bornée, cette derniére étant la moyenne de la queue de distribution. En
utilisant les techniques de projection utilisées dans le deuxiéme article, nous développons
des intervalles de confiance pour la moyenne de la partie bornée de la variable aléatoire.
Ensuite, nous établissons des bornes inférieure et supérieure pour la partie non bornée de
la variable en utilisant I'hypothése que les queues de distribution de ladite variable sont
bornées par des lois de Pareto et appliquons les inégalités de Bonferroni pour calculer le
niveau de 'intervalle de confiance ainsi construit. Enfin, nous appliquons ces méthodes
d’inférence pour calculer des intervalles de confiance pour les mesures d’inégalités & partir
de bandes de confiances des distributions sous-jacentes.

Tous ces intervalles de confiance bénéficient des mémes propriétés pratiques que les

bandes de confiance dont ils sont issus: pivotalité, conservation, monotonicité, etc.

Dans les trois articles, des études Monte Carlo sont effectuées pour analyser la per-
formance des méthodes d’inférence et illustrer le choix du paramétre de régularisation.
Elles montrent que les statistiques régularisées donnent des tests plus puissants que celles
existantes, lorsqu’elles sont appliquées a des distributions qui différent le plus dans les
queues. De ﬁéme, les bandes de confiance de fonctions de distribution et les intervalles
de confiance pour la moyenne basés sur ces statistiques-produisent de meilleurs résul- -
tats. Dans certains cas, les intervalles asymptotique et bootstrap ne produisent pas de
résultats fiables alors qu’en revanche les intervalles exacts sont robustes a la distribution
sous-jacente et a la taille de ’échantillon. Les intervalles de confiance proposés offrent
une probabilité de couverture généralement plus grande que le niveau nominal tout en
restant informatifs. Pour illustration, nous analysons dans les articles 2 et 3 les profils de

pauvreté et d’inégalités des ménages ruraux au Mexique en 1998 en utilisant des données
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du programme PROGRESA.! Les résultats montrent que les intervalles asymptotiques
sont souvent trop petits pour &tre réalistes alors que l'intervalle bootstrap peuvent ex-
ploser, donnant des intervalles de largeur 10 fois supérieure a celles des méthodes exactes.
L’étude montre qu’en moyenne, les ménages ruraux ciblés par PROGRESA n’ont pas un
niveau de pauvreté trés élevé. Toutefois, le profil de la pauvreté dépend grandement du
sexe du chef de famille. Le niveau de pauvreté et d’inégalités des ménages avec a leur téte
un individu male est beaucoup plus faible que celui des ménages ayant une femme a leur
téte. En outre, les ménages avec un chef éduqué a leur téte semblent étre plus susceptibles
d’é‘chapper a la pauvreté et aux inégalités que les ménages avec un chef ﬁon—instruit. Ces
conclusions apportent des suggestions dans 1’élaboration des politiques visant & réduire
la pauvreté et les inégalités dans les régions rurales du Mexique. Les politiques visant a
réduire ’analphabétisme des membres des ménages dans ces communautés peuvent‘étre~
efficaces dans, la réduction de la pauvreté. Les programmes d’éducation devraient viser
les enfants et les adultes, en particulier les chefs de ménages afin de produire un effet im-
médiat. De méme, les politiques visant & assurer le revenu des ménéges ayant une femme
a leur téte pourrait aider a réduire la pauvreté et les inégalités dans les régions rurales du
Mexiqile. Un exeﬁple de telles politiques peuvent étre des réformes visant 4 garantir la
propriété fonciére pour les femmes ou a 'amélioration de la productivité du travail pour
les ménages avec une femme a leur téte, cette derniére étant moins productive dans des

activités demandant un effort physique intensif telles que 'agriculture.

"Voir les details sur ce programme en section 9, partie 2 (page 109).
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Abstract

Goodness-of-fit tests are of great inte:rest in econometrics. In many procedures, especially
in parametric ones, determining the distribution from which the sample comes from may
be an important step. The Kolmogorov-Smirnov (KS, henceforth) test is one of the most
popular nonparametric goodness-of-fit tests. However, it does not allow to discriminating
a lot between distributions that differ mostly through their tails. Weighted KS statistics
have been proposed by Anderson and Darling (1952) and Eicker (1979) to improve the
performance of the test in the tails but they suffer from important drawbacks.

We propose improved weighted KS statistics to correct these limits. These statistics are
obtained by adding a .regularization term in the denominator of the Anderson-Darling
and the Eicker statistics. They retain the advantages of the weighted KS statistics but
their denominators do not become close to 0 in the tails of distributions as it is the
case for the original statistics. We derive exact nonparametric confidence bands (CBs,
henceforth) for distribution functions using the weighted and regularized KS statistics.
We show that in the continuous case, these CBs are independent of the distribution
assumed under the null hypothesis and are conservative for noncontinuous distributions.
In the noncontinuous case, we derive monotonicity properties that exploit embeddedness
of the image sets of different distributions to narrow the CBs without altering their
reliability.

Monte Carlo simulations are performed to study the relative performé,nce of the inference
methods and illustrate how to choose the regularization parameter. The results show that
the regularized statistics yield more powerful goodness-of-fit tests than the existing ones
when applied to distributions with more discrepancy in the tails. Likewise, the CBs for

distribution functions based on these regularized statistics are of better performance.



1.1 Introduction

The problem of determining the distribution from which a sample comes from is of great
interest in statistics and econometrics. Instead of using an asymptotic law, it is often
desirable and even crucial to know the actual distribution of a sample before applying
further econometric procedures, in particular parametric ones. Several goodness-of-fit
tests have been proposed. They test the null hypothesis that a sample follows a given
distribution—which generally needs to be fully specified—against the alternative that the
sample does not follow this distribution. Parametric tests have been proposed by Shapiro
and Wilk (1965), Lilliefors (1967), Chambers (1983)-probability plots, etc. Likewise, non-
parametric procedures have been provided by Snedecor and Cochran (1989)-Khi square
test, Anderson and Darling (1952), Kolmogorov (1941), Smirnov (1944), Cramer (1928),
Von Mises (1931), etc.

The Kolmogorov-Smirnov (KS, henceforth) test is one of the most popular nonpara-
metric goodness-of-fit tests. It is based on the KS statistic which is the supremum over
all observations of the difference between the distribution function assumed under the
null hypothesis and the empirical distribution function of the sample. &T he test rejects the
distribution function assumed under the null hypothesis if it is too far from the empirical
distribution function, the threshold being defined by the critical point of the KS statistic.
The test owes its popularity to a convenient property: the distribution of the KS statistic
is independent of the distribution function being tested under the null hypotheses when
the latter is continuous. Hence, the critical points of the statistic are not contingent on
>the assumed distribution and can be .used to test any continuous distribution function.
These critical points have been tabulated by several authors and are widely published.
Inverting the test allows one to build confidence bands (CBs, henceforth) for distribution
functions which also benefit from the pivotality of the KS statistic.

Even though the KS statistic is convenient, it ha.é low power to discriminate a lot
between distributions that differ mainly through their tails. This property alters the
performance of the KS test and CB. In particular, the KS confidence band has often

been criticized because of ';ts uniform nature: its width is constant for all cbservations
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and thus, its bounds do not converge to 0 and 1 in the lower and the upper tails of the
distribution, as do the distribution functions they bracket. To correct this drawback,
we use weighted KS statistics based on the three common principles in econometrics:
the Wald, Lagrange multiplier, and likelihood-ratio principles. These statistics have
been proposed by Anderson and Darling (1952), Eicker (1979), and Berk and Jones
(1979). The Anderson-Darling and the Eicker statistics are standardized versions of the
KS statistic where the difference between the theoretical and the empirical distributions
is divided by a kind of standard deviation. These statistics allow one to discriminate
between distributions that differ mostly through their tails. Using them, we propose
finite-sample nonparametric CBs whose widths decrease with observations further from
the center of the distribution. "

The Anderson-Darling and the Eicker statistics have their own drawbacks. The power
,Of the goodness-of-fit test they yield is smaller than the power of the standard KS test
when testing distributions with low dispersion that differ more in the center of the dis-
tribution than in the tails. Moreover, the weights in the denominators of those statistics
become very close to zero for observations in the tails, leading to erratic behavior of the
statistics. We propose improved weighted KS statistics to correct fhese. These statistics
are obtained by adding a regularization term in the denominator of the Anderson-Darling
and the Eicker statistics. They retain the advantages of the weighted KS sfatistics but
do not suffer from instability, improving the performance of the inference. By inversion
of the regularized statistics, we build improved exact CBs for distribution functions.

The Berk-Jones statistics uses the supremufn, over all observations, of the log-likelihood
ratio of the empirical distribution function and the theoretical distribution function as
a distancé between these two functions. This statistic has been proved to dominate any
weighted KS statistic, in the sense of Bahadur and is thus a challenging referral for our
inference methods. It has been used by Owen (1995) to propose a CB for distribution
functions.

In the continuous case, we show that the distributions of the empirical distribution-

based statistics are pivotal and that their critical points do not depend on the distri-
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bution function being tested under the null hypothesis. Hence, the corresponding CBs
depend on the distribution only through the sample; they are built using the same critical
points for all continuous distribution functions, which make them easy to compute. For
noncontinudus distribution functions, we derive monotonicity properties which exploit
embeddedness of the image sets of different distributions to narrow the CBs without
altering their reliability.

We compare the relative performance of the nonparametric and parametric inference
methods. Monte Carlo simulations are performed to study the power of the goodness-
of-fit tests under various hypotheses. In both studies, we study carefully the choice of
the regularization parameter. The results show that regularized statistics yield more
powerful goodness-of-fit tests than the existing ones when applied to distributions with
more discrepancy in the tails.

The paper is organized as follows. Section 2 presents the Kolmogorov-Smirnov, the
Anderson-Darling and the Eicker statistics and derives the expressions to compute them.
It also shows how to invert these tests and build the CBs for distribution functions they
" yield. In section 3, we introduce the regularized statistics and derive explicit expressions
to compute them and to build CBs for distribution functions. Sections 4 presents the
Owen CB and Section 5 derives some convenient properties of these CBs for continuous
cases and monotonicity properties for noncontinuous distribution functions. Section 6

presents Monte Carlo results and Section 7 concludes.

1.2 Distributional properties of goodness-of-fit sta-
~tistics based on empirical distribution functions

Let’s define some notation for the remainder of the paper. Denote F, the set of all
distribution functions, i‘, the set of continuous distribution functions, ¥, the set of
distribution functions with support [a,b], and R = R U {~oc} U {+00}. Let X be a
random variable with distribution function F(z) € ¥. Denote X(;) < X(g) < -+ < X(n)

the order statistics of a sample of n i.i.d. observations on X and F,(z) the corresponding
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empirical distribution function defined as follows: Vk =10,...,n
k
Fn(:E) = -T; for X(k) <z« X(k+1) (]..].)

where (X(g), X(n+1)) is the support of F(z), which may be the real line (—oo, +00) and
Xy < Xo 2 X < < Xy € Xinrp)-

Let’s consider the following null hypothesis:

Hy(F) : Xi,..., X, are i.i.d. with distribution function P[X; < z] = F(z). (1.2)

A general statistic to test Ho(F) against its negation H,(F) is:

D(F,,F)= sup D, [Fn(z),F(z)]. , (L.3)

—oc << +00

where D, |F,(z), F(z)] is a functional of F,(z) and F(z), which measures the distance
between these two functions. In this section, we study interesting properties for statistics

of the form D (F,, F) when F(z) is continuous and when it is not.

1.2.1 Pivotality and conservativeness

ProposiTioN 2.1. [Distribution of statistics based on empirical distribution
functions when F(z) is continuous] Let X,,...,X, be n random variables. Let

D (F,, F) be a statistic of the form:

D(F,,F)= sup D |[F.(z),F(z)].
—oo<r<+00
If F(z) is a continuous monotonic function, then the following identity holds almost

surely:

D(FTNF) = sup Dl [H(Uly"'aUnau)au]
ueF(R)
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where U; = F(X,),i=1,...,n and
1 n
HUy,...,Unu] = EZ]I[U,C < 4,
k=1

If, furthermore, Xi,..., X, are n i.i.d. observations on X wnth continuous distribution

function F(z) € F, then

D(F,,F)¥ sup D, [H(Uy,...,Up,u),u]

0<u<1

where U; = F(X;),1=1,..., n are i.i.d. with uniform Uy distribution.

Proposition 2.1. states that when F'(z) is continuous, the distribution of D (F},, F')
is independent of F(z). D (F,, F) can be rewritten using only uniform statistics. All
statistics with general form D (F,, F') are pivotal for continuous distribution functions.
Hence, the critical points associated to those statistics are also independent of F(z).
This property simplifies a lot the implementation of the tests and CBs associated to such
statistics. A unique set of critical points is needed to compute these for all continuous
distribution functions. |

When F(z) is not continuous, the distribution of D (F,, F) is different for each F(z)
being tested. The associated critical points are also modified by the distribution of the
sample. Hence, a new set of critical values need to be computed to implement the tests for
each distribution, making the inference methods more difficult to implement. Moreover,
in this case, building CBs for F(z) loses all interest because these are usually built to
bracket unknown distribution functions using a sample of observations that comes from
the distribution under interest. To simplify the implementation of the inference methods
and restore the interest of CBs in the case of noncontinuous distribution functions, we

propose to exploit the following properties. -

PROPOSITION 2.2. [Conservative nature of continuous case critical points] Let
Xi1,...,Xn be n ii.d. observations on X and F,(x) the corresponding empirical distrib-

ution function. Let F(z) € F be a continuous distribution function and G(z) € F a non-
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continuous one. For any level a, 0 < a < 1, the critical value associated with D (F,, F)
for testing the null hypothesis Hy(F') as defined by equation (1.2) is larger than or equal
to the critical value associated with D (Fy,G) for testing the null hypothesis Ho(G):

Pg[D(F,,G) > x| < Pp[D(Fy, F) > 2], Vz
or equivalently

Pp[D(F,, F) > D] < a = Pg[D(F,,G) > D,] < a, VD,.

ProprosiTiON 2.3. [Conservative property of continuous vcase CBs for distribu-
tion functions] Let X,,..., X, be n i.i.d. observations on X and F,(z) the correspond-
ing empirical distribution function. Let F(z) € F be a continuous distribution function
and G(z) € F be a noncontinuous one. For any level a, 0 < o < 1, the confidence band
obtained by inverting the test of the null hypothesis Ho(F') as defined by equation (1.2)
using appropriate critical points with level o for D (F,, F) yields a confidence band for
G(z) with level larger than or equal to 1 — .. Equivalently, if C,, is defined as follows:

Cola)={HeF:D(F,, H)<ca}

where

Cazinf{Daa PF[D(FmF) ZDa] Sa}

then
Pe[GeCu(a)] 21— a.

Propositions 2.2. and 2.3. highlight some interesting properties of the empirical
distribution function-based statistics and CBs which simplify their implementation when
applied to noncontinuous distributions. Proposition 2.2. states that the critical values of
D (F,, Q) for continuous distribution functions F(z) are conservative for noncontinuous

functions G(y). Using the appropriate critical values of level « for F(z) provide a test
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of level less than or equal to a for G(y). Therefore, rejection of the null hypothesis with
such test leads to rejection for the nominal level a. In other words, the result of the
test based on D (F,,,G) remains valid and one can use the conservative critical values
to compute tests and CBs for noncontinuous distribution functions. Let’s remember
that those critical points-that applies to continuous distributions-are independent of the
function being tested and are thus, identical for all continuous distributions. Note that
these propositions hold for any continuous distribution function F(z).

Likewise, the CBs for G(y) built using apbropriate critical points for continuous dis-
tribution fuﬁctions will be of level larger than or equal to 1 — a. Using these properties,
critical points from continuous distribution functions can be applied to any sample from
a general distribution function. The resulting CBs will be of level at least equal to 1 — c.

Even though the conservative critical points provide valid inference for noncontinuous
distribution functions, using them alters the performance of the inference. The question
is how far the quality of the performed inference is affected? We assess this question
using the properties of tests and CBs. Concerning the tests, when the null hypothesis
is accepted with level a, the conclusion of the test remains valid for levels less than
or equal to a. Conversely, when the null hypothesis is rejected with level a, it will be
still rejected for levels larger than o but might be accepted for lower levels. Concerning
CBs, the impact of the using conservative critical points can be studied using the level
of confidence (accuracy) and the width (precision) of the CBs. Given that the CBs
using conservative critical points have a higher level than the targeted one, they will be
wider than the CBs with effective level 1 — a. To reduce the width, exact critical values
corresponding to the distribution function under interest can be computed. However, by
doing this, the CBs will loose one of their major advantages. To avoid this shortcoming,
we derive monotonicity properties that can be used to narrow CBs without altering their
reliability. These results are based on information about the set of discontinuities of the

distribution function.

PrOPOSITION 2.4. [Range monotonicity of critical points] Let X,,..., X, be n

i.i.d. observations on X and F,(z) the corresponding empirical distribution function.
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Let F(zx) and G(y) be two distribution functions such that G(R) C F(R). For any level
a, 0 < a < 1, the critical value associated with D (F,, F ) for testing the null hypothesis

Hy(F') as defined by equation (1.2) is larger than or equal to the critical value associated
with D (F,,G) for testing the null hypothesis Hyo(G):

Pr[D(F,,F) > D,]| <a= Pg[D(F,,G) > D,] <a, YD,.

PROPOSITION 2.5. [Range monotonicity of CBs for distribution functions] Let
Xi,...,X, be niid observations on X and F,(z) the corresponding empirical distrib-
ution function. Let F(z) and G(y) be two distribution functions such that G(R) C F(R).
For any level o, 0 < a < 1, the confidence band obtained by inverting the test of the null
hypothesis Ho(F) as defined by equation (1.2) using appropriate critical points with level
a for D (F,,G) yields a confidence band for G(z) with level larger than or equal \to 1—a.
Equivaléntly, if Cp is defined as follows:

Cn(a) ={G: D (F3,G) < ca}

where

ca =inf{D,, Pp[D(F,,F)> D,| < a},

then
Pel[GeCh(a)] =21~ a.

Propositions 2.4. and 2.5. generalize Propositions 2.2. and 2.3. to all distribution
functions. It suggests that CBs can be made narrower by exploiting embeddedness of the
image sets of different distributions. When studying a discontinuous distribution G(y),
we know that G(y) takes its values in a set V¢ which is included in [0,1]. Thus, the
conservative CB for a continuous distribution provides a CB for G(y) with level 1 -4,
greater than or equal to 1 — . If additional information about the image set of G(y) is

available—in particular, if we know there exists a distribution function with image V¥
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such that V¢ C VF—then the criticél points for testing F(z) can be used to derive a CB
for G(y) with level 1 — 42 such that 1 —a < 1—4; <1 —=4§,. The CB with level 1 — §,
is narrower than the CB with level 1 — §; while being reliable. Thus, using information
about the nature of the discontinuity of the random variable can be useful for providing
shorter CBs for G(y). The more is known about the set of discontinuity points of the
distribution, the better the inference will be. However, the improvement can be achieved
without knowing all discontinuity points of G(y) and their probability masses. Hence,
the main advantage of the KS confidence band, that is its independence of the assumed

distribution function, is somehow preserved.

Let’s consider a special case of embedded image sets. Let X be a random vériable
with distribution H(z) € Fpy) such that X is a mixture between a continuous variable
bounded on (0, 1] and a probability mass of H(0) = p at 0. H(z) is continuous on '(O, 1]
with H(0) = p and H(1) = 1.

COROLLARY 2.6. [Range monotonicity with a mass at the lower boundary]
Let X2,---,X2 be n i.i.d. observations on X, and F,(z) the corresponding empirical
distribution function. Let Fi(z) and Fy(z) be two distribution functions continuous on
(a, b] such that py = Fi(a) < Fy(a) = pa. For any level o, 0 < a < 1, the confidence band
obtained by inverting the test of the null hypothesis Ho(F)) as defined by equation (1.2)
using appropriate critical points with level o for D (F,, F1) yields a confidence band for
Fy(x) with level larger than or equal to 1 — a. Equivalently, if C,, is defined as follows:

Co(a) = {H € F: D(F,, H) < ca)

where

¢a =inf {D,, Pp, [D(Fn, F)) > D,] < a},

then
Pp [F € Ch(a)] 21—
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Corollary 2.6. describes the special case where the distribution function being studied

is continuous everywhere except at the lower bound of its support. This case is very
interesting because such distribution functions are quite frequent in financial studies,
and poverty and inequali'ty analysis. Moreover, this case can be easily extended to those
where the discontinuity point is at the upper bound of the support or those where both

the lower and the upper bounds are discontinuity points.

1.2.2 Special case: the Kolmogorov-Smirnov statistic and con-

fidence band

Let X be a random variable with distribution function F(z) € F. Denote X1y < X(g) <
-++ < X(n) the order statistics of a sample of n i.i.d. observations on X and F,(z) the
empirical distribution function of the sample. The Kolmogorov-Smirnov (KS, henceforth)
statistic is -

KS= sup +n|F(z)-F(z)| - (1.4)

—oo<Lzr<+00

Developing this expression allows to reexpress the KS statistic as follows:

i i—1
KS = maX{;giagg\/ﬁ [g - F(X(i))] , [ax/n [F(X(i)) - } ,0}

This explicit expression is more convenient and can be used to compute the test easily.

The KS is a special case of the statistic D (F,,, F') where
D, [Fy(z), F(x)] = \/E|Fn($) - F(z)|.

Hence, all properties derived for this general form of statistics appl'y to the KS statistic. In
particular, when applied to continuous distribution functions, the KS statistic is pivotal
and its distribution can be characterized as follows:

1

K §eomt = max{max [— — U(,-)] , Max [U(i) iz 1] ,0}
n

1<i<n | n 1<i<n
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where Ugyy < Ugg) < -+ < Uy are the order statistics of a sample of n i.i.d. observations
of an uniform Uy distribution. The critical values used to compute the KS tests are
the same for all F € F and thus, do not need to be éimulated for each distributi'on.

Moreover, appropriate KS critical values for testing continuous distribution functions
are conservative for noncontinuous distributions. To end, this consvervative, property
extends to the caseé of distribution functions with embedded image sets.

It follows that the KS critical point for a level & and a given sample size n is the
same for all continuous distribution functions and can be used to test the hypothesis
Hy : X; ~ F against the alternative one H; : X; = F for all F € F. Exact critical points

for KS¢™ can be computed by simulation using the following 3-steps procedure:
1. Generate a sample of n i.i.d. observations from an uniform law Ujg

2. Compute the Kolmogorov statistic K.S™ for this sample using the expression

K §m = max { max [1 — U], max [U — 5] ’D}

1<i<n " 1<i<n n
3. Repeat N times steps 1 and 2—XN is the number of replications—and compute the

critical value of level a, the (1 — a)®* fractile.

Tables of‘the Kolmogorov-Smirnov critical points have been computed and published,
for continuous distributions. Having them simplifies the test considerably and makes this
goodness-of-fit test more convenient to use than the other exact method§.

The conservative property of the KS statistic has been evoked by Kolmogorov (1941)
before being proved by other authors including Noether (1963) and Conover (1972). We
provide in Appendix 2, a more convenient proof of this property than those provided in

the literature.

The CB for F(z) with level greater than or equal to 1 — « built inverting the KS test

1s:

CES(a) = {Fo e¥: F,(x) - CK;%Q) < Fy(z) < Fox) + CK;%Q), ‘v’z} (1.5)

where cxg(a) satisfies Pr[KSp < cxs(a)] > 1 - a.
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When F(z) is continuous cks(a) does not depend on it. For a given sample size,
the same critical value is used to build CBs for all continuous distributions. Hence, the
KS confidence band depends on F'(z) only through the samplé. This simplifies a lot
its computation and makes its popularity. Moreover, owing to the monotonicity of the
KS critical points when applied to distributions with embedded image sets, if F(z) and
G(y) are two distribution functions such that G(R) € F(R) then the KS confidence band
using adequate critical values for F'(x) embeds the KS confidence for G(y). Hence, using
information about the image set of G (y) one can build narrower CB for the latter without

having to use the adequate critical values for it.

1.3 Implementation as a Monte Carlo test

In the preceding section, we studied interesting properties for statistics of the form
D(F, F)= sup D[F,(z),F(z)]. In this section, we show another important ad-
vantage of th(;;?t:{io;tics which make them even more attractive. We show that the test
of Hy(F) as defined by equation (1.2) based on these statistics can be implemented using
exact randomized test procedures such as Monte Carlo tests (see Dwass (1957), Dufour
(1995), Dufour and Kiviet (1998), and Dufour and Khalaf (2001)). Given that D (F,, F)
is pivotal under Hy(F'), the Monte Carlo test based on pivotal statistics can be applied.

Given that the distribution of D (F,, F) is noncontinuous, the standard Monte Carlo
test procedure cannot be applied. In this case, a randomized tie-breaking procedure
(Dufour, 1995) can be applied to test Hy(F'). This procedure is a modified Monte Carlo
test adapted for discrete distributions. It can be implemented as follows.

Let Dy denote the test statistic computed from data and Py the observed value of
Dy based on specific realized data. Dg is a random variable while Dy is fixed. The
critical region of the test is Dy > D, where « is the level of the test and G(Pg) =
P (D > Dy | Dy = Dy) is the realized p-value of the test statistic Dy. Suppose we can
generate N i.i.d. replications D;, j =1,...,N of D (F,, F) under Hy(F). The following

steps apply:
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e Draw N + 1 i.i.d. variates Wy, W), ..., Wy independently of D;.

e Order the pairs (D, W;) following the lexicographic criterion:
(Di,u/;') > (Dj,WJ‘) =4 {Dz > Dj or (Dz = Dj and W; > WJ)} .

e Compute an empirical p-value function:

NGy (z)+1

pn(e) = —§ 7

where

N N
~ 1 1
Gy(z)=1- Nz]llﬂm) (z—Dj)+ Nzﬂ{m (D; — ) Ljpoo) (W; — Wo).
7=1 7=1
P (z) is the empirical probability that a value as extreme or more extreme than z
is realized if Ho(F') is true. Note that N Gn (z) is the number of simulated statistics

which are greater or equal to z.

e Compute the associated Monte Carlo critical region-——which is a randomized critical
region—as:

PN(Dp) <@, 0<a< 1. (1.6)

where pn(Dp) may be interpreted as an estimate of G(Dg). Given Dy =Dyg, px (Do)
can be interpreted as a realized Monte Carlo p-value associated with Dg. Thus if
N is chosen such that a (N + 1) is an integer, the critical region (1.6) has the same
size as the critical region G(Dy) < a. Moreover,

Io (N +1)]

P[pn(Do) < o] = N1

, 0 <1

where I [z] is the integer part of z.

Thanks to the properties of the Monte Carlo test, the implementation of the studied
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goodness-of-fit tests along this procedure is convenient. First, if F(z) is free of nuisance
parameters and a(N + 1) is an integer then the properties of the critical region are irre-
spective of the number of replications used. Second: the Monte Carlo test does not need
to compute exact critical points for each sample size and each distribution function under
test. Besides, the number of replications needed to compute the test is not constraining
as its the umber of replications needed to simulate valid critical points or to get accurate
bootstrap results. Thi_rd, confidence intervals can be built from such tests using inversion

procedures (see Fieller (1940, 1954) for example).

1.4 Application to the Anderson-Darling, Eicker, and
Berk-Jones type statistics and confidence bands

Besides the popularity and the advantages of the Kolmogorov-Smirnov goodness-of-fit
test and CB, this inference method suffers from important drawbacks. In fact, the KS
statistic is the supremum over x of D [Fy(z), F(x)] = VI |Fn(z) — F(z)|. The latter is
often used to test hypotheses of type Hy : F(x) = p versus H, : F(z) # p. However,
D, [Fn(a:), F(z)] is not standardized and, hence, its distribution is not asymptotically
pivotal. Moreover, the KS confidence band for distribution functions is often criticized
for its uniform nature. The width of this CB is constant for all observations. Thus its
bounds do not converge to 0 and 1 in the lower and upper tails of the distribution, as do
the distribution functions they bracket. This property adversely affects the performance
of the method in the tails of distributions.

Other inference methods can be used to correct these drawbacks. In fact, D, [F,(z), F(z))
can be improved along three common principles in econometrics: the Lagrange multiplier,
Wald, and likelihood-ratio principles. The first one replaces D, [F,(x), F'(z)] by a score-
type statistic where D, [F,,(z), F(z)] is divided its standard deviation estimated under the
null hypothesis. The Wald principle standardizes D, [F,(z), F'(z)] using an estimation
of its standard deviation under H, and the last principle replaces D, [F,(z), F(z)] by an
evaluation of the ratio between the likelihood of F,(r) and F(z). Taking the supremum
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of the corresponding statistics yields three well-known statistics: the Anderson-Darling,
the Eicker and the Berk-Jones statistics. We hereinafter study these statistics and the
CBs they induce.

1.4.1 The Anderson-Darling and Eicker statistics and confi-

dence bands

One of the most popular weighted KS statistics has been proposed by Anderson and
Darling (1952) and Eicker (1979):

AD = sup Vu(z)

—oo<r <400
and '
E= sup ‘717.(3:)
—00<T<+00
where
e 0 if F(z) € {0,1},
Vi Rt G| othervise
and
) 0 if Fr(z) € {0,1},
Va(z) = Fo(z) - F(z) otherwise.

§ FY (z)[1 = F(z)]/2
These statistics are standardized versions of the KS statistic. The Anderson-Darling
(AD, henceforth) statistic weights each observation by a sort of standard deviation of
F.(z) — F(z), the difference between the empirical distribution function and the theoret-
ical distribution, while the Eicker statistic uses an estimation of this standard deviation.
Given that the function /y(1 — y) reaches its maximum at y = %, these statistics give
less weight to the observations in the center of the distribution than to the observations
in the tails. Hence, the tests they deliver discriminate more between distributions that

mostly differ through their tails than the KS test.
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Note that V,(z) and V,(z) are set to 0 to complete the definition of AD and E
but ?n(x) is not continuous in the tails. In fact, Vz, F(z) = 0 = F,(z) = 0 and
F(z) = 1= F,(z) = 1. Hence, F(ii)xioVn(x) = F(lmi)xian(x) = 0 while the reverse does
not hold: F,(z) =0+ F(z) =0and F,(z) =1+ F(z) =

Developing these statistics provides explicit expressions to compute these statistics

more easily in practice:

_ i F(X )
AD—ma,x{O,ma,x{\/—Fl/z(X()‘[l_ ('(i))]w 10 < F(X; )<11<z<n}
F(X(i))_%l

ma‘x{\/ﬁFl/Z(X(z))[]_ _ F(X(i))]l/z 10 < F(X(z)) <1,1< i < TL}}

and

. 1
. E = max 1<1,<'n. 1 \/ﬂ 2<z<n \/1){1(1[1—1711 }

The details of the computation are given in Appendix 2.

Inverting the tests, we propose nonparametric Anderson Darling-type and Eicker-type
CBs for distribution functions (see the details of computation in Appendix 2). To our
knowledge, expressions for these CBs are not provided in the literature. The Anderson

Darling-type CB for F(z) with level greater than or equal to 1 — « is:

CpP(a) = {F, € F: GE(z) < Fy < GY(x), Yz}

Gile) = 2F, () + mpg — VA7) OV (x) = 2F, () + mg + +/A(x)
B 2(1 + Sanled) N
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and cp(a) satisfies Pr(AD < cyp(a)) > 1—a.

The Eicker-type CB for F(x) with level greater than or equal to 1 — « is:

CPla)={F, e F: GL(z) < F < GY(2)}

where
Gimy = | @)~ @ - F@? Vo such that Fia) ¢ (0,1},
" 0 Y z such that F,(z) € {0,1},
| Fo(z) + 2L R/ (2)[1 - Fu(@)]V2 ¥ @ such that Fy(z) ¢ {01},

Gl(z) =
_ 1 Y x such that F.(z) € {0,1},
and cg(a) satisfies Pr(E < cg(a)) > 1 - a.
Owing to the structure of the weights used by the Anderson-Darling and the Eicker
statistics, the widths of the CBs decrease with observations further from the center of
the distribution. This property improves the performance of the inference methods in

" the tails of distributions.

The Anderson-Darling and the Eicker are special cases of the statistic D(F,, F).
Hence, they are pivotal for continuous distribution functions. Moreover, in such case,

the expression of these statistics simplifies to the following:

AD=max { 0, max \/ﬁl/z"—()2:0<U(i)<1,1§i§n ,
U(i) [1—U(i)]1/ '

Un—52

1/2
Uyl = U]

max{\,/ﬁ :O<U(i)<1,1§i§n}},

and

LUy Uy — 52
E =max<{ max /n—-= ——, max+y/n— L , 02
{19‘9—1\/—(%)1/2(1_%)1/2 2§i§n\/—(%)l/2(1_%)1/2 :
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where Ujyy < Uy € -+« £ Uy, are the order statistics of a sample of n i.i.d. observa-
tions from an uniform Ul distribution. The Anderson-Darling and the Eicker statistics
can be rewritten using uniform order statistics. Their distributions are independent of
the distribution assumed under the null hypothesis. Likewise, the critical values of the
Anderson-Darling and the Eicker statistics for continuous distributions are independent
of F(z) and the corresponding CBs uses a single set of these for all continuous distrib-
ution functions. Furthermore, these CBs benefit from the same monotonicity properties

as the KS confidence band.

1.4.2 The Berk-Jones type statistic and confidence band

The weighted statistics studied above propose improvements of the KS statistic based
on two common principles in econometrics: the Wald principle and the Lagrange mul-
tiplier one. A third principle is often used to improve procedures in econometrics: the
likelihood-ratio principle. Berk and Jones (1979) proposed a statistic based on the em-

pirical distribution function using the likelihood-ratio principle:

B~ sw KR, o) = e mex {k (o) k(5000 )}

—00<T< +00 1<i<n

where

. .

~ —~ ~ 1-
K (p,p) =plog (2) + (1-5) log (——).
- p —p

Berk and Jones proved that this statistic dominates all weighted KS statistics, in the
sense of Bahadur. This statistic is under the form of D [F,, F]. It is then pivotal when
applied to continuous distribution functions and its distribution may be characterized

using uniform order statistics as follows:

BJ®™=max max {K (ﬂ U(f)) K (i’ U‘i)) }
1<i<n n n

where Uy < Ug) < -+ < Ujy,y are the order statistics of a sample of n i.i.d. observations
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of an uniform Upp,; distribution. The critical values of BJm™ are also independent of
F(z) and monotonicity properties derived for D (F,, F) applies.
Using the Berk-Jones statistic, Owen (1995) proposed the following nonparametric

CB for continuous distributions functions with level 1 — o ;
C(a) = {Fp € F: GE(zx) < Fy(z) < GY(x), vz} (1.7

where

GE(x) =min {p: K[F,(x),p] < cas(a)},
Gy (z) = max {p: K[Fu(z),p] < cps(a)},
K(p,p) =plog (1’—:) + (1-p) loé (;—Zg), and cg,(a) satisfies P[BJ > cgs(@)] > 1 — o

The reasoning behind this CB is qﬁite intuitive. The statistic nF,(z) follows a bino-
mial law with parameters n and F(z). Thus, —nK (P, p) is the log-likelihood ratio of the
probability parameter p based on a binomial observation of np successes out of n trials.
It follows that the Owen’s confidence band is computed by performing a likelihood ratio
test on the distribution of F,(z). Only candidates F(z) with sufficiently large likelihood

for each observation = belong to the confidence band.

In practice, the Owen confidence band can be built by computing (n + 1) values of
L; and H, for i =0, ...,n where L; al}d H; are the respective values of F£(z) and FY(x)
on the open interval (X(i),X(Hl)) , and X(g) and X,y are the bounds of the support
of F(z). The following procedure can be used: A

1. Compute (for cg (a) > 0)
1—emens@ ifj=0

max {p: K[F.(z),p] < cpsa)} if2<i<n—1

»<p<l |

2. Deduce L; =1 — H,,_; for 0 < i < n (by symmetry)
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3. Compute the values of the confidence band for each observation X ;) using FF(X(;)) <
F(Xu) < FY(Xw) where FE(X) = min(Lioy, L;) = Ly and FY(Xy) =
ma.x(H-_l,Hi) = Hi

Equivalently, one can build the confidence band computing first L; and deducing

H; = 1- L, ; as a second stage. Owen (1995) proposed the following polynomial

approximation for cgy(a) :

173.0123 + 0.4835 log (n) — 0.00957log? (n) — 0.001488log® (n)] for 1 <n < 100,

CBJ(0-05) =
~ [3.0806 + 0.4894 log (n) — 0.02086 log® (n)] for 100 < n < 1000,
and
11-4.626 — 0.54110g (n) + 0.02421og” (n)]  for 1 < n < 100,
CBJ(0.0I) =

11-4.71 — 0.5121og (n) + 0.0219log” (n)] for 100 < n < 1000.

Studying the Owen’s confidence band, Jager and: Wellner (2004) found that this CB
has a coverage probébility lower than.the theoretical level of confidence. Their simulations
show that for a theoretical confidence level of 95%, the Owen’s CB provides a simulated
coverage probability from 90 to 93% for sample sizes n = 2 to 1000 and N = 100,000
replications. According to Jager and Wellner (2004), this shortcoming is due to the poly-
nomial approximations proposed for cps(c). These approximations yield values of cg ()
much lower than their simulated values. Jager and Wellner (2004) provide the following

approximation for the critical points:

1[3.6792 + 0.5720log n — 0.0567 log”(n) — 0.0027log*(n)] for 1 < n < 100,
CBJ(0.0S) =

113.7752 + 0.5062log n — 0.04171og*(n) + 0.0016log*(n)] for 100 < n < 1000,
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and

115.3318 + 0.5539log n —0.0370log?(n)]  for 1 < n < 100,
CBJ(0.0].) =

15.6392 + .04018log n — 0.0183log?(n)] for 100 < n < 1000.

They show that the new approximated values of cz s(a) are closer to the simulated values
than the Owen's approximated ones. Moreover, the CB based on the Jager-Wellner
critical values are of better coverage probability than those based on the Owen critical
points with, as a éonsequence, a larger width. Given that the simulated critical points
allow controlling the levels of the test and the CB, we recommend to use these instead
of the approximated values.

Owen (1995) shows that the Berk-Jones statistic yieldé a CB that is narrower in the
tails of distributions and wider in the middle than the Kolmogorov-Smirnov CB.

Another interesting property of the Owen’s CB is .that it can be computed using the
same critical points for all samples from continuous distribution functions. This feature
simplifies its computation but not as much as the pivotality of the weighted KS statistics
simplifies the computation of their corresponding CBs. In fact, the Berk Jones-based
CB suffers from an important computational cost. Computing this CB requires one to
perform as many optimizations as the number observations—n. Hence, the performance
of the inference depend greatly on those of the optimization procedure that’ is' used and
building the CB may be highly time consuming when using large samples, which is not
the case for the regularized Kolmogorov-Smirnov CBs.

Owing to the monotonicity properties of D (F,, F), the Owen CB can be extended
to noncontinuous distribution functions. When the sample comes from a noncontinuous
distribution function, critical values for distribution functions with embedded image sets
are ranked. Hence, the corresponding CBs for those distributions are embedded. First,
the Owen CB using adequate critical points of level « for continuous distribution functions
provides a CB with level greater than or equal to 1 — a. Second, using information on

the image set of F(z), narrower CBs can be built for this distribution without altering



30

the reliability of the inference.

There exist other statigtics based on the empirical distribution function that can yield
exact CBs for continuous distribution functions. Among them are the Anderson-Darling
(1952), the Cramer (1928) and Von Mises (1931) statistics. However, even though the
goodness-of-fit tests performed with these statistics are easy to compute, the correspond-
ing CBs for distribution functions generally do not have explicit expressions and must be

computed numerically.

1.5 Regularized Anderson-Darling and Eicker-type
statistics and confidence bands |

The CBs presented above perform better than those based on the non-weighted KS
statistic. However, the Anderson-Darling and the Eicker statistics suffer from important
drawbacks. For observations in the tails of distributions, both F(a:) and F,(z) converge
to 0 and 1. Hence, the denominators of thosé statistics become very close to 0, which
leads to an erratic behavior of the ratio. This feature alters the performance of the

Anderson Darling-type and the Eicker-type tests and CBs.

1.5.1 Regularization

To solve this problem, we propose improved weighted KS statistics. These statistics are
regularized versions of the previous ones where the variance of F,,(z) — F(z) is corrected

by adding a positive nonzero regularization term ¢, (F,(z), F(z)) :

b an e Fu(z) - F(@)
ADe = sup Vn VE@L - F@]+C, (Fu@), F(@))

(1.8)

o Fu(z) = F(z)
s 2 ROl R G ), P
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The regularization achieves the expected improvement. Shifting the denominator of the
statistics by an additional term modifies the wéights such that they don’t vanish in the
tails. This modification avoids the erratic behavior of the statistics and improves the
performance of the tests. However, the statistics retain the advantages of weighted KS
statistics. Observations in the center of the distribution are less weighted than those in
the tails, which enhances the performance of the tests when applied to distributions with
more difference through the tails. '

Let’s assume that {, (Fn(z), F(z)) = (,, > 0, Vz. Then, the regularized statistics can

be computed in practice using the following expression:

i F(X, F(Xg) — =2
AD¢=max { max/n 2 (X)) max Xe) = 5

2 R L= F(X )l £ 6, 25 (X)L = F(X )] + C,
(X o)l (Xl +¢a @)l (Xl +¢a

i F(Xq F(Xu) — &L
E; = max { max/n—= Xw) max/n Kw) = 5 0

1<4< : ; T 1<i< i - ’
Y T R B Y (RS P

Inverting the tests, we propose improved nonparametric CBs for distribution functions

where (,, > 0 Vz.

using the regularized statistics. The {-Regularized Anderson Darling-type CB for F(z)

with level greater than or equal to 1 — « is:

CAP () = {Fo e F: GE(z) < Ry < GY(3), Yz} (1.9)
where
C2 (a) C2 (a)
2Fn ﬂ—— A 2Fn AD, A
R e e CRCULE: o)
2(1+%52) 2 (122
| Gin(@)]” chp, (2 wCap, (@
A= |2F,(z) + AD;( )} _4[1+ AD;( ). <F3($)_C Asc( ))’
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cap, (@) satisfies Pr[AD, < cap.(a)] > 1 = a. The (-Regularized Eicker-type CB for

F(z) with level greater than or equal to 1 — « is:
Cg‘(a) = {Fo € F:GE(z) < Ry(z) € GY(x), V:c}

where

GE(w) = Fu() — F B @) (1 Fuf@)) + 12,

\/_

Gr(x) = Fa(z) + C‘i‘/(g) [Fa(@) (1 = Fa(2)) + ',

(1.10)

and cg, (o) satisfies Pr[E; < cg (a)] > 1 — a. Owing to the decreasing weights of the

underlying statistics, these CBs are nonuniform. Their widths decrease as observations

approach the tails of the distribution, even though they do not converge to 0 and 1 in the

tails of distributions. Moreover, the regularization resolves.the problem of discontinuity

of the Eicker CB.

As the initial statistics, the regularized ones are expressed under the general form

D (F,, F). Consequently, they are pivotal when applied to continuous distribution func-

tions and their distribution can be characterized using uniform order statistics as follows:

B = max { max vt o5
1<i<1 \/T 1<1<" \/T__I
and
- U Ui
ADca'n.t = max ¢ max \/_ (B , Mmax © —
1<i<1 \/U(,)[l - U] +¢a " 1<i<n \/U(,)[l — U(I)] + ¢,

e

where Uy) < Ugp) < -+ < Uy are the order statistics of a sample of n 1.i.d. observations

of an uniform Uy distribution (see Appendix 2 for computation details).

Likewise,

the critical points of AD™ and EZ™ are independent of F(z) being tested under the
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null hypothesis and the corresponding CBs depend on this distribution only through the
sample. Adapted critical values do not need to be computed for each distribution under

study.

1.5.2 Selection of the regularization parameter (,

In this section, we discuss the choice of the regularization term. Adding this term to the
weights used by the Anderson-Darling and the Eicker statistics prevents the denominator
of those statistics to become too close to 0 and thﬁs, stabilizes their behavior. However,
the regularization term must be specified to 'compute the regularized statistics and this
choice is not obvious. Two key issues need to be considered.

The first one concerns the properties of the statistics: when the regularization term
is chosen according to the sample, the pivotality of the tests for continuous distributions
might be lost. In this case, the distribution of this term may modify those of the statistics.
The properties derived so far may not hold anymore and new critical points may need
to be combuted for each distribution function. To avoid this problem, we have chosen
a regularization term of the form (, (F,(z), F(z)). In this case the studied statistics
can still be rewritten as D (F,,, F') and hence, they are pivotal for continuous distribution
functions. So far, we have assumed that ¢, (F,,(z), F(z)) = ¢,, > 0 is a constant function.
This choice allows to build CBs with friendly expressions. However, in this case, the
optimal value of {, must be estimated. This value depends on the sample but does not
have an explicit expression. Hence, the way to determine {,, must be chosen carefully in
order to preserve the statistics’ properties. We propose to estimate the parameter ¢,, and
the CBs independently each from the other using a split sample procedure (see Dufour
and Jasiak, 2001). The procedure decomposes as follows. First, the initial sample is
divided into two independent subsamples using i.i.d. drawings. Second, one sample-the
auxiliary sample-is used to estimate the optimal value of the parameter (. Third, the
remaining sample-the estimation sample-is used to perform the tests or to build CBs

with the formulas provided in the above sections. The out-of-sample procedure insures
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that the auxiliary sample and the estimation sample are independent. The statistics
are used conditionally to the value of (,, which held their distributions unchanged by
the estimation of the parameter and guarantees the validity of the inference. Usually, a
- small part of the initial sample is used as auxiliary sample-some theoretical studies (see
Dufour, 2001) recommends to use up to 10 percent of the sample. However, given that
the performance of our inference methods depends a lot on the value of {,, we propose
to use at least 20 percent of the initial sample to estimate (,,, if the sample size allows .
us to do so. A

Second, once the auxiliary sample is determined, the next step is to define a criterion
for chosing (,. The criterion will depend on the objective of the ongoing inference.
For example, if the objective is to build CBs for distribution functions with a quite
uniform shape, one can choose (,, so as to minimize the mean of the widths of tﬁe CB
over the sample. If, conversely, the distribution is ‘heavy tailed, the observations in the
tails are more important than the observations in the center of the distribution. Hence,
the criterion may be a weighted mean of the widths of the CB, with larger weights
for observations in the tails than those in the center of the distribution. In the case
where information about the distribution of the sample is known, one can also choose
the minimum value of ¢, that provides a “sufficiently” powerful test. In fact, given that
exact critical points are used, the levels of the tests and those of the corresponding CBs
are controlled. Thus, the value of ¢, that maximizes the power of the goodness of fit
tests also minimizes the width of the corresponding CBs (see Pratt, 1961). An example
of how to choose the optimal value of (,, using this approach is provided in section 6 using
Monte Carlo simulations. In a subsequent paper, we will illustrate how to choose ¢, to
perform inference on the mean of random variables. Using a split sample procedure, we
will choose (,, so as to minimize the width of the confidence intervals for the mean we
are interested in. Each procedure being different, the choice of criterion is likely to affect
the performénce of the inference. This gives room to further improvements.

For the sake of simplicity, we will name the regularization ¢ for the remainder of the

paper.
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1.6 Monte Carlo study

Adding the regularization parameter { to the weights used by the Anderson-Darling and
Eicker statistics prevents the denominator of those statistics to become too close to 0 and
thus, stabilizes their behavior. But, beside this improvement, another issue is of interest:
what is the impact of the regularization on the level and the power of the regularized
Anderson-Darling and Eicker goodness-of-fit tests? Using exact simulated critical points
allows us to control the level of the tests but does not affect the power. Does the
regularization improve the power of the tests? Does this effect differ when increasing
values of the parameter are used? How to choose the optimal value of {7 In this section,
we will use Monte Carlo simulations to study the effect of adding the regularization
parameter ( !to the Anderson-Darling and the Eicker statistics and illustrate how to
choose (. We will illustrate how the CBs derived from those statistics compare to each

other.

1.6.1 Effect of the regularization parameter (

, We test the null hypothesis Hy : X ~ N(0,1) vs. the alternative H; : X ~ N(0,1.2)
using the {—regularized Anderson-Darling and Eicker statistics. We compute the level
and the power of these tests by Monte Carlo simulations using values of ¢ from 0 to
1,000,000 and sample size n = 500. The tests use exact critical values simulated with
N, = .3,000,000 replications and the level and the power of the tests are simulated
using N, = 15,000 replications. Tables 1.1 and 1.2 show the results for the regularized

Anderson-Darling and Eicker tests, respectively.
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Table 1.1. Effect of the regularization parameter: Critical values, level, and power of
the (—regularized Anderson-Darling test for different values of {

n = 500, N; = 3,000, 000 replications for C'4p, and Ny = 15, 000 replications for the test

HO: X ~ N(0,1) VS. H1l:X ~ N(0,1.2)

¢ Cap Level (in %) Power (in %)
0 6.45343825318425 4.97 72.05
0.0001 4.18358963085057 4.83 97.62
0.0005 3.56948140935572 4.85 99.31
0.001 3.42358267535564 5.25 99.53
0.005 3.16539066782623 5.15 99.27
0.07 2.56835999326805 5.16 94.65
0.1 2.42578653035515 5.07 92.90
0.15 2.24054390190001 5.25 90.14
0.2 2.09507654002148 4.88 87.72
0.3 1.87596864573845 5.01 84.33
0.4 1.71567147669466 5.07 81.71
0.5 1.59135382254647 5.13 79.55
0.75 | 1.37021882434391 5.01 77.28
1 1.22108493720676 5.16 75.83
10 0.42233372755807 5.03 70.22
100 0.13484610150674 5.20 69.21
1000 0.04269341845902 5.05 69.81
1000000 0.00135081892087 4.92 68.45

Table 1.1 shows that the regularization has a major impact on the power of the
Anderson-Darling test. While the level of the test is gontrolled by using exact critical
points, the power is low for ( = 0 but rises quickly when ( increases before becoming
almost constant. However, when ( is foo large, it introduces too much distortion into the

distribution of the statistics, which reduces the power of the test and even cancels the
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improvement of the regularization. The results show that the improvement is achieved
as soon as ¢ is high enough to prevent the weight of the statistic from vanishing. The
power is 72.05 percent for ¢ = 0 and jump to 97.62 for ( = 10~ and 99.53 for ¢ = 1073,

Table 1.2 shows similar results for the Eicker test. The regularization achieves the
expected improvement for this test too, with an even stronger impact. The power of the
test is very low for small values of ¢ (6.21 percent for C = 0) while it increases sharply for
¢ high enough to reach 85.09 for { = 0.07 before stabilizing. Table 1.2. also illustrates
the noncontinuity of the Eicker statistic. While the power of the test is very low for the
non regularized statistic, it is even smaller when the regularization is introduced but ¢ is
not high enough (for { < 0.005).

In conclusion, it a/ppears that the regularization achieves the expected improvement. '
Moreover, while most of the improvement is achieved as soon as ( is high enough, using
too large values of { can hamper the performance of the inference. Hence, we propose
to choose the value of ¢ that increases "sufficiently” the power of the test. Tables 1.1
and 1.2 show that this value is not the same for the two statistics. The maximum of
power is achieved for {4, = 0.001 for the Anderson-Darling test and {5 = 0.07 for the
Eicker one. Moreover, simulations show that for each test, these optimal values depend
on the distribution being tested and on the size of the sample. However, as the results
show, even if the optimal value is not used, most of the improvement is achieved as
soon as reasonably high. We provide other illustrations of how to choose  in practice
in a subsequent paper on nonparametric confidence intervals for the mean of a bounded

random variable.
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Table 1.2. Effect of the regularization parameter: critical values, level, and power of
the {—regularized Eicker test for different values of ¢
n = 500, Ny = 3,000, 000 replications for Cg, and N, = 15,000 replications for the test
HO: X ~N(0,1) vs. H1:X~N(0,1.2)

¢ Cg Level (in %) Power (in %)
0 -4.79920250051836 5.07 6.21
0.0001 16.35442032904740 4.81 0.00
0.0005 7.34715907201899 4.85 0.00
0.001 5.35678751417434 4.89 0.84
0.005 3.50097616169556 4.95 70.51
0.070 2.58974686616846 5.25 85.09
0.1 2.44086016301592 5.13 84.09
0.15  2.24958797778716 5.19 81.90
0.2 2.10106534783129 4.89 80.62
0.3 1.87950819352882 5.03 78.46
0.4 1.71790568033589 497 76.47
0.5 1.59320398394615 ‘ 5.08 74.91
0.75 1.37101349713361 5.06 74.12
1 1.22177934463805 5.15 73.19
10 0.42234366084257 5.05 69.95
100 0.13484748513727 5.20 69.19
1,000 0.04269347073131 5.0 69.81
1,000,000 0.00135081895023 4.92 68.45

1.6.2 Relative performance of the EDF-based goodness-of-fit

tests

In this subsection, we compare the performance of the regularized-based tests to those

of the other tests we have presented. Two procedures are used.
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First, we test the null hypothesis Hy : X ~ N(0,1) vs. the alternative Hy : X ~
N(0,1.2) using the empirical distribution function-based statistics. We compute the
level and the powef of these tests by Monte Carlo simulations for sample size n = 500,
exact critical values simulated with N; = 3,000,000 replications, and {4, = 0.001 and
(g = 0.07. The levels and the powers of the tests are simulated using N, = 15,000

replications and Table 1.3. shows the results.

Table 1.3. Level and power of the EDF-based tests
n = 500, (4p = 0.001, {5 = 0.07,
N; = 3,000,000 replications for the critical values, and N, = 15, 000 replications for the
test Hp: X ~ N(0,1) Vs. Hy: X ~N(0,1.2)

C Level (in %) Power (in %)
Kolmogorov-Smirnov  0.06039953611469 4.60 68.44
Eicker 4.79617625286106 5.35 6.25
Eicker, 2.59103603317055 4.64 85.09
Anderson-Darling 6.45272451410767 4.83 71.81
Anderson-Darling, 3.42243384382137 4.83 99.46
Berk-Jones 0.01138040175450 4.57 98.63

Among all the tests, the (—regularized Anderson Darling test achieves the best
power (99.46 percent) followed by the likelihood-ratio based test (98.63 percent) and
the (—regularized Eicker type test (85.09 percent). The Eicker test achieves the less
power, which illustrate the erratic behavior of its statistic whereas the Anderson-Darling

test has more power than the unweighted Kolmogorov-Statistic.

Sécond, we test the null hypothesis Hy : X ~ N(0,1) vs. the alternative H; : X ~
N(0,0) for 0 = 0.5, 0.55, 0.6, ..., 1.5. We compute the level and the power of these tests
by Monte Carlo simulations for the same setting as earlier using the optimal values of
(C4p = 0.001 and {z = 0.07). Graphl.1 pictures the evolution of the power of tests as o

varies.
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Graph 1.1. Level and power of the EDF-based tests
Ho: X~N(©0,1) vs. H:X~N(0,0) -
for ¢ = 0.5, 0.55, 0.6,..., 1.5, n = 500, {4p = 0.001, {5 = 0.07, N, = 3,000, 000

replications for the critical values, and N, = 15,000 replications for the tests

---- Reg Eick zeta
Reg AD zeta

The results shows that tests perform differently when o is larger than 1 than when
o is smaller than 1. For values of o greater than 1—i.e., when the sample under study
actually comes from a distribution with heavier tails than the one assumed under the
null hypothesis, the {—regularized Anderson-Darling test yields the best power among
the EDF-based tests followed by the Berk-Jones tests and the (—regularized Eicker test.

The Kolmogorov-Smirnov and the Anderson-Darling tests perform quite similarly and



41

achieve a better power than the Eicker test, which performs the worst among the studied
inference methods.

Conversely, when the analyzed sample comes from a distribution with thinner tails
than the one assumed under the null hypothesis, i.e., when ¢ is sr_naller than 1, the
Eicker-type statistics perform. better than the other. The Eicker test achieves the best
performance, followed by the (—regularized Eicker and the Berk-Jones tests whereas the
Anderson-Darling one provides the poorest one. The ¢ —regularized Anderson—Darling
test performs better than the Kolmogorov-Smirnov one except when the two distributions

are very close one to the other.

Third, we test the null hypothesis Hy : X ~ N(0,1) vs. the alternative H; : X ~
N(0.1,0) for & = 0.5, 0.55, 0.6,..., 1.5. We compute the level and the power of these
tests by Monte Carlo simulations for the same setting as earlier using the optimal values
of ¢ ((4p = 0.001 and {g = 0.07). Graph 1.2 shows the evolution of the power of tests

as g varies.
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Graph 1.2. Level and power of the EDF-based tests
Ho: X~N(©,1) vs. H :X~N(0.10)fors=05 055086, .., 15
n = 500, (4p = 0.001, {5 = 0.07, N, = 3,000, 000 replications for the

critical values, and Ny = 15,000 replications for the tests

---- Reg Eick zeta
~=« Reg AD zeta

The results shows that for values of o greater than 1—-i.e., when the sample under
study actually comes from a distribution with heavier tails than the one assumed under
the null hypothesis, the {—regularized Anderson-Darling test yields the best power among
the EDF-based tests followed by the Berk-Jones tests and the { —regularized Eicker test.
The Kolmogorov-Smirnov test achieves a better power than the Eicker and the Anderson-

Darling one, which achieve the smallest power among the studied inference methods.
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When the analyzed sample comes from a distribution with thinner tails than the one
assumed under the null hypothesis, i.e., when ¢ is smaller than 1, the results are some-
what reversed. The ¢ —regul@rized Eicker test then achieves the best performance while
the Anderson-Darling statistic provides the poorest one. The other inference methods
pefform relatively similarly. However, when the two distributions are very close one to
the other the Kolmogorov-Smirnov tests performs the best among these methods while
the Berk-Jones test dominates when ¢ is smaller than 0.9.

Other interesting conclusions can be driven from Graph 1.1. First, in general, the
Eicker-type test allows more discrimination than the Anderson Darling-type tests when
the distribution under the alternative hypothesis has heavier tails than those over the
null one. Second, as expected, when the actual distribution of the sample is very" close to
the distribution being tested under the null hypothesis, the weighted statistics perform
worse than the uniform KS statistic. Third, the results show that the Anderson-Darling
and the Eicker tests are biased. In fact, the power of these tests do not feach their
minimum values when ¢ = 1 but when it is slightly different from 1.

Last, let’s highlight an important advantage of the procedure we use. Usually, reg-
ularized statistics are biased due to the distortion the regularization term introduces to
the distribution of the initial statistic. By computing the critical values by simulation,
we offset this shortcoming. In fact, using the exact critical points controls the level of
the tests and the CBs, avoiding the bias. Likewise, regularizing the statistics also offsets

suppresses the bias of the initial Eicker and Anderson-Darling statistics.

1.6.3 Performance of confidence bands for distribution func-

tions

As a last illustration, we compare the relative performance of the CBs based on the
tests wé derived. We build CBs for the Normal N(0, 1) distribution using a sample of
n = 100. While the small number of observations will probably hamper the performance
of the inference methods, it will insure to have a graph clear enough to compare CBs

easily. Graph 1.3 depicts the results.
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Graph 1.3. Empirical distribution function-based confidence bands for the
distribution function N (0, 1)
n = ].007 CAD == 0.00]., a.nd CE - 0.07

A
“',..n Ly
et

pmaasresTEEENRTXA NS RERCE

g

T

—F
— Fn
— IC unif
— IC unif
— - IC Eicker
— - IC Eicker
=== |C Eick Reg
--=e=« |C Eick Reg
— ICAD
— [C AD

— IC AD Reg
N PO —— IC AD Reg
— IC Owen Simul
—— IC Owen Simul

Graph 1.3 shows that for observations in the center of the distribution, the Kolmogorov-
Smirnov CB has the smallest width among )the KS-based CBs, closely followed by the
¢ —regularized Eicker-type CB. The Owen and the {—regularized Anderson Darling-type
CB achieve the best following performance. The Anderson Darling-type and the Eicker-

type CBs perform the worse among the studied inference methods.
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In the tails of the distribution, the ranking of the performance of the inference
methods changes a lot. The uniform CB performs worse than most of the weighted
CBs. The (—regularized Anderson Darling—type CB performs the best followed by the
(—regularized Eicker-type CB. The Eicker statistic provides a CB whose width tends
to zero as observations go further from the center of the distribution. However, the
Eicker CB suffers from discontinuity at the first and last observations of the sample.
~ For all values of z lower than the first observation (z < X()) or greater or equal to
the last observation (z > X()), the CB becomes the non informative [0, 1] interval. At
the opposite, the Anderson-Darling CB is always continuous. Its width converges to
Apla)/(n + Ap(a)) in the tail of the sample which is to compare to 2 cxs(a), the
constant width of the Kolmogorov-Smirnov CB. Adding the regularization term to the
Eicker statistic corrects the discontinuity problem of the Eicker CB. Nevertheless, for
(g different from zero, the width of the corresponding CB does not converge to zero
anymore but performs well, with a width—equal to 2¢%(a)¢ 12 1n1/2— around half the
width of the uniform CB for n = 100. Likewise, adding the regularization term to the
Anderson-Darling statistic improves a lot the performance of the CB, in particular in the
tails. We simulate the critical values of the statistics for sample sizes from 50 to 1000
using N = 1', 000, 000 replications. The results (see Table 1.4.) shows that for n smaller
than 150, the KS confidence band performs better than the Anderson-Darling CB in the
very end of the tails of continuous distributions but the Anderson-Darling CB becomes
bettver in the tails for n greater than 150. The statistics ﬁsing regularization parameters
yield CBs with smaller widths than those without regularization and than the uniform
CB.

In conclusion, we see that as expected, weighted KS statistics achieve better per-
formance than the unweighted one af some points of the distribution and for large and
moderately large samples but do not clearly dominate the latter. Conversely, the regu-
larized statistics dominates the other KS-based ones in the tails of distributions for all
sample sizes. Moreover, it appears that the C —regularized Anderson Darling-type CB is

the best CB among the KS-based one: its width in the center of the distribution is very



close to that of the uniform one while it achieves the best width in the tails.

Table 1.4. Simulated critical points of empirical distribution-based statistics and
width of the corresponding confidence bands in the tails of distributions

n = 50, 100,..., 1000 using N = 1,000, 000 replications

Table 1.4 a. Critical Points

n

50 -100 150

KS 0.188335597 0.134056205 0.109638527

E 4.522280174 4.666516217 4.70725121

E, 2.793607145 2.673939389 2.635861357

AD  6.43881938 6.457275098 6.474963046

AD, 4.14789771 3.780490269 3.681454542

BJ  0.104133743 0.053727502 0.036421672

n
200 250 500 1000

KS 0.095178969 0.085207603 0.060368076 0.042771814
E 4739536779 4.763956841 4.798134574 4.823671809
E; 2.619270234 2.610421227 2.587466879 2.580100277
AD  6.458800396 6.45095347 6.454634534 6.444683756
AD, 3.600576974 3.540729297 3.424467947 - 3.352876861
BJ  0.027593217 0.022293228 0.011369705 0.005804824
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Table 1.4b. Width of CBs in the tails of distributions

n K E E. AD AD, BJ

50 0.38 1.00 021 045 0.37 0.10

100 027 1.00 0.14 029 023  0.05

150 0.22 1.00 0.11 0.22 0.17 0.04

, 200 0.19 1.00 0.10 017 0.4 -  0.03
250 0.17 1.00 0.09 0.4 0.13 0.02

500 0.12 1.00 0.06 0.08 0.08 0.01

1000 0.09 1.00 0.04 0.04 0.06 0.01

When comparing the KS based CBs to the Owen one—using simulated critical points
which allow to'control the level of the test and CBs, it appears that in the center of the
distribution, the Owen CB perform worse than the uniform CB and the (—regularized An-
derson Darling-type CB but better than the {—regularized Eicker-type CB. Conversely,
in the tails of the distribution, the Owen CB overcomes all the other CBs. However, the
Owen critical has a major drawback: it is very computationally demanding. Building the
Owen CB requires to perfdrm as many optimizations as there are observations, which is
time demanding and condition the performance of the inference method to that of the

optimization method used.

1.7 Conclusion

The Kolmogorov-Smirnov test is one of the most popular nonparametric goodness-of-fit
tests. It allows to test the null hypothesis that a sample follows a given distribution
against the alternative that the sample does not follow this distribution, without any
hypothesis on the law of the studied sample. However, the Kolmogorov-Smirnov test
- does not allow to discrirﬁinate a lot between distributions that differ mostly through
their tails. The CB it allows to build is uniform: its width is constant for all observations

and do not converge to 0 and 1 as do the distribution functions it brackets. To correct
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this drawback, we study weighted KS statistics based on the three common principles in
econometrics: the Wald, likelihood-ratio, and Lagrange multiplier principles.

Weighted Kolmogorov-Smirnov statistics have been proposed by Anderson and Dar-
ling (1952), and Eicker (1979). However, these statistics suffer from important drawbacks
too. For observations in the tails of distributions, the weights in the denominators of those
statistics become very close to zero, leading to erratic behavior of the statistic.

We propose régula.rized weighted statistics to correct these limits. These statistics are
obtained by adding a regularization term in the denominator of the Anderson-Darling
and the Eicker statistics. They retain the advantages of the weighted KS statistics but
do not suffer from instability, improving the performance of the inference.

We show that in the continuous case, the distribution.s of the empirical distribution-
based statistics of the form of the Kolmogorov-Smirnov and the weighted Kolmogorov-
Smirnov statistics are pivotal and that their critical points do not depend on the dis-
tribution function being tested under the null hypothesis. Inverting these statistics, we
propose exact CBs for distribution functions, which inherit the properties of the statistics -
they are based on. We show that for all continuous distribution functions, these CBs
depend on the distribution only through the sample. A unique set of critical points is
needed to build CBs for all continuous distributions, which make them easy to compute.
For noncontinuous distribution functions, we derive monotonicity properties that exploit
embeddedness of the image sets of different distributions to narrow the CBs without
altering their reliability. We study a statistic based on the likelihood-ratio principle: the
Berk-Jones statistic and the Owen CB, which is derived from it. We show that these
statistics and CBs follow the same properties as the Kolmogorov-Smirnov based ones.

We study the performance of these inference methods using Monte Carlo simulations.
The results show that the regularized statistics deliver the best performance among the
studied inference methods. The regularization increases the power of the tests and the
corresponding CBs are thinner than the other ones. Compared to the weighted statis-
tics, the Owen’s band yields generally better results. Nevertheless, it suffers from an

important computational shortcoming. In fact, its computation requires to perform as
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many optimization as the number of observations of the sample we use. This leads to
~an important loss of time whereas the computation of the Kolmogorov Smirnov based

bands is-almost time free.
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1.8 Appendix 1: Proofs of propositions and corollar-

ies

PROOF OF PROPOSITION 2.1. For a continuous monotonic, the empirical distribution

function is
Fu(z) = %in[xk < 1]
= S UF(X) < F(@)

k=1

_ %Z]l[Uk < P(2)]

— H(U.,...,Un, F(z))
where U; = F(X;). Hence,

D[F,(z), F(z)] = sup D, [H(U,...,Us, F(z)), F(z)]

—oo<Lz<+00
= sup Dy [H(Un,...,Us u),u].
u€F(R)

If X,,...,X, are n i.i.d. observations on X with distribution function F(z) € F then
F(z) takes all values between 0 and 1 and F(X) follows a uniform distribution on [0, 1] :

F(X) ~ Up,)- Hence, we can rewrite

D[F,(z),F(z)] = _ws<1iI<)+ooD1 [H(Uy, ..., U, F(z)), F(z)]
= ogngl [H(Th,..., Un,_u), ul.

where U; = F(X;) ~ Upy) and Uy, k = 1,..,n are i.i.d. The distribution of the statistic

and its critical points do not depend on F(z).

PROOF OF PROPOSITION 2.2. Proposition 2.1. states that for continuous distribu-
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tion functions, the statistic D (F,,(z), F(z))

D (Fo(z), F(z)) = s Dy (Fu(z), F(2)) -

is pivotal and can be reexpressed as follows:

D (F.(z), F(z)) = 0s<111Lng1 [H(Un,...,Up,u),ul. |

If G(y) is a noncontinuous distribution function,

D(Gu(2),G(z)) = _ooilig+ooDl (H[G(X1),...,G(Xx),G(z)],G(2))
= sg%)Dl (H[G(X4),-..,G(Xyn),v],v)
< D(Fu(e), Flz))

because G(R) C F(R) = [0, 1]. The critical points associated with D (F,, F') are larger
than or equal to the corresponding one for Dg. Critical values associated with continuous

distribution functions are conservative for noncontinuous distributions.

PRrROOF OF PROPOSITION 2.3. Proposition 2.2. states that D [Fo(z), F(z)] is greater
than or equal to D [G,(z), G(z)]. Hence, for a given level a, the critical point associated
to D [F,(z), F(z)] is larger than those associated to D [Gn(z), G(z)] or equivalently, the
critical point with level a associated to D [F,,(z), F(z)] represents a critical point for
D |G, (z),G(z)] with 8 < a. Therefore, the CB for G(y) using the appropriate critical
point for D [F,(z), F(z)] will be of level 1 — § > 1 — a.

PRrROOF OF PROPOSITION 2.4. In the proof of Proposition 2.1., we showed that

D[F.(z),F(z)] = sup Dy [H(U,...,U,, F(z)), F(z)]

—oo<zr<+00 ]
= sup D, [H(Uy,...,Un,u),ul.
weF(R) .

Given that G(R) € F(R), when taking the supremum over G(R), the result will be



smaller than when taking the supremum over F(R). Hence,

D [Fu(z), F(z)] 2 .Sél%)Dl [H(Uy, ..., Unyu), u] = D[G(2),G(2)].

PROOF OF PROPOSITION 2.5. Proposition 2.4. states that for a given levelva', the
critical point associated to D [Fy,(z), F(z)] is larger than those associated to D [G,,(z), G(z)] .
In other words, the critical point with level a associated to D [F,(x), F(z)] represents a
critical point for D [G,(z), G(z)] with 8 < @. Hence, using the same reasoning as in the
proof of Proposition 2.3., it follows that the CB for G(y) using the appropriate critical
point for F(x) will be of level 1 — 3 > 1 — a.

ProOF oF COROLLARY 2.6. This proposition is a special case of Proposition 2 5.
In this case, p; = Fy(a) < Fy(a) = p,. This implies that F3(R) = [py, 1] C [p,1] = Fi(R)
and applying Proposition 2.5. yields the result.
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1.9 Appendix 2: Details of computation

1.A2.1. Explicit expression of the Kolmogorov-Smirnov statistic.

The Kolmogorov-Smirnov statistic for F(z) is:

KS = sup Vn| Fu.(z) — F(z) |

—oo<r<+0o0

= ma,x{ sup Vn[F.(z)— F(z)], sup +n[F(z)- Fn(z)]}

—oo<LrL+00 —00<LT<+00

_ ma.x{ma.x ap Vil r@).

0sisn Xy <a<X(iry

max  sup \/E{F(z)—i]}.

0STSR Xy <2<X(iga) n

F(z) is non decreasing and [;(p) = £ — p, 0 < p < 1 is non increasing in p. Hence ;(F(z))

is non increasing in z and

0<i<n

ks = max{ o[£ - POt v [t - 2]}
|

i ‘ 3 —1
- ma.x{ma.x\/r_z [5 ~ F(X(i)):l f?ag’i‘/ﬁ {F(X(i)) -

mex ,o} |
1.A2.2. Distribution of empirical distribution funcfion—based statistics for
" continuous distribution functions

Let F(z) € F. Then, the random variable F (X) takes all the values between 0 and
1 and follows a uniform distribution on [0,1] : F(X) ~ Upy. Hence, F(Xu) = Uy
where Uy;) is the ith ordered realization of an uniform U[0,1] distribution. KS can be
reexpressed in the form of D (F,(z), F(z)) and Proposition 2.3. applies to it. Moreover,

the expression of KS simplifies to:

cont __ _i__ . . —i_l
KS = ma.x{ma.x\/ﬁ[n F(X(l))},lfg%\/ﬁ [F(X(z)) n ],0}

1<i<n

. 1
= ma,x{ma,x [i—U(i)],max [U(i)—l ],0}.
1<i<n | 1 1<i<n n
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The distribution of K.S®™ is independent of F'(z) and so does its critical points, and the
CB for F(z) it implies.

1.A2.3. Kolmogorov-Smirnov CB for distribution functions

Let cxs(a) such that Pr[KSr < ckxs(a)] > 1—aie,

Pr[ sup +n|F.(z)— F(z)|<cks(@)] >1-a.

—oo<z<+00

Then, with probability greater than or equal to 1 — «

| Fo(z) — F(2) |< CKZ(") Vo

cks(a)

vn

Fo(z) — Kj(ﬁ“) < F(z) < Fo(z) + : yx.
1.A2.4. Explicit expression of the Anderson-Darling and the Eicker statistics
We develop the expressions of the statistics.

For the Anderson-Darling statistic:

AD = sup Vio(z)
= ma,x{sup {\/—}\/FF((;E - —Flg‘gzl)] —00 <z < +oost0< F(z) < 1} ,0}

— max dsu F.(z) — F(x)
{ p{‘r‘mx - F)

F(z) — Fo(z)
{‘F}mx T-ro|

:—oo<:v<+oost0<F(x)<1}

-—oo<:v<+oostO<F(:v)<1} 0}
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t—F(z
= max {Jggl sup {\/_\\/F(m 1_(;_‘( )]‘:X(i)S$<X(i+1)StO<F($)<1},.
F(z) - &
1--”(?)]

:X(i) S$<X(i+1) StO(F(.’L‘) < 1},0}

max sup
0<i<n

Define [;(p) = [p(i—p;]l - where 0 < p < 1.

—[p(1 =)' = 3(& =p)(1 - 2p)[p(1 — p)|

Li(p
() [p(1 - p)]
= - P~ = p(a = 1) =y hilp)
2n 2 n
where ¢g = [p(1 — p)]™¥% > 0 Vp and hi(p) = —5= — (3 — %).
1: . —p(g—;)SOforOSiSn/Z
We know that —32 < 0Vi >0 and . Thus, when

-p(z—:)>0forn/2<i<n
0<7.<n/2 h(p)<Oprhllewhenv,lssuchthatn/2<z<n hi(p) <0 if p < 5.

= Vi,n/2<i<n;h(p) <0Vp,

¢ and li(p) is always non increasing. As a consequence,

F(z
1) (]IE].EE( sup {\/ﬁ—m X(,,,) < T < X(H—l) st 0 < F(.T) < 1}

_ -F(X) . :
— max \/_\/F(X(,))[l = 0<i<nst0< F(X(i)) < 1}
2) Ol,gag( sup {\/—_%(_)] X(i)S$<X(i+1) StO<F(fU)<1}
= max { /At &)=y 0<i<nst0< F(Xy) <1
\/F(X(1+1))1 F(X(=+1))] - ©
e { VB 1 1 < L0 <P <1

The statistic AD can then be computed using

. __FXz . ,
AD:méx {max{ TEX [1(_(sz(i))] 0<i<nst0 < F(Xy) < 1}7

max{\/ﬁ F(X(i)) 1 ’0}

11<i<n+1st0< F(Xp) <1

VF(Xa) [1—F(Xi))]
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_ ax FXw) ..
= max {m {\/_\/F X(T))[l = (X(i))] 1 <i<nstl< F(X(,;)) < l},

F(Xu) — =2
max{\/ﬁ Xw) = 5 :1§i§nst0<F(X(i))<l},0}.

VEX@)1 - F(X)]
For the Eicker statistic:

E = sup

= {Sup { ‘ a:)[l— (‘:2I)]‘:—oo<a:<+oo st0<Fn(w)<1},0}
= max {sup { \/F :1:)[1— (jzx)] 1 —00 <z < +00 st0<Fn(w)<1},
sup {\/ﬁ\/ ((x)[l_ n(z zw)] —o<r<+oost0< F (a:)<1} 0}
=max { max su \/_;—[F(w)] X(l)<x<X(1+1),0<;<1 ;
F(x) —

i i
L IX(,j)S.’L‘<X(,;+1),0<—<1 ,0
n

Define I;(p) = [_TE____I;'TW where 0 < p < 1. I;(p) is always non increasing. Then,
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n

F(Xp) — &
max {\/ﬁﬂ—"ﬁg n,st0<ﬁ<1} 0}

i P(Xa :
E = max no (Q)ogigmo<i<1 :
- "

21— 7]

X(z)) (X(z)) — = }
1<z<n~ / 2<z<‘n. /z 1 [1
1.A2.5. Anderson Darling-type CB for distribution .functions
Let cap(a) be such that Pr[AD < cap(a)] = Pr[ sup Vi(z) < cap(a)] >21-«a

—00<T<+00
ie.,

Fo(z) — F(z) —00 < T oo st F(z capla
8 [Sup{o’sup{ﬂ'<F<x)[1_F<x)1)”2 oo oot )“0’1}}}5 ot )]

>l—a.

It is obvious that V,(z) > 0 Vz.Then, the above equality yields that with probability
greater than or equal to 1 — «

[Fu(@) = F@) _ ple)
FQI-F@] =~ n ' °

for z such that F(z) ¢ {0,1}, ie. V z,

F2(z) — 2F,(2)F(z) + FX(z) < ¢ip(®) (F(z) — F¥(z))

(1 + cf“;ﬂ) F(z) - <2Fn(a:) + cf“;(a)) F(z) + F(z) <0

This condition is satisfied if and only if V x

FH(z) < F(z) < FY(a)
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cAp(@ 212 FADie) 2
where F/(z) = el ) va ; Bl (z) = 2 r2“(a=)+\/K ,and A(z) = |2F,(z) + cap@ ] _
2 1+54%-—-) 2(1+_’mﬁ_) n

4F(z) [1 + Jwﬁ] .

1.A2.6. Eicker-type CB for distribution functions

Let cg(c) be such that Pr[E < cg(a]] = Pr] sup Vi(z) <ecs(a)] > 1—q, ie.,

—oodrd400

Fr(z) - Flz) -0 < T 00 S x cela
Pr {sup {U, sup {\/ﬁl Fo)[L - Fua)) |: <z <4oost F(z) ¢ {0’.1}}} < cg( )]
Z 1l-a.

It is obvious that 17,,,(:1:) > 0 Yz.Then, the above equality yields that with probability

greater than or equal to 1 — «

ValR@ - F@

—cgla) < 5 < CE
@)= F@i - F@)”

for z such that F,(z) ¢ {0, 1}, i.e.

Fu(e) — 9 (E (21 - Fa(@)])? < F() < Fale) + C“j}g) (Fu(@)[1 - Fa()])"?.

1.A2.7. Distribution of the Anderson-Darling and the Eicker statistics for
continuous distribution functions

Let F(z) € F. Then, the random variable F(X) takes all the values between 0 and 1
and follows a uniform distribution on [0,1] : F(X) ~ Upg,). Hence, F(X(;)) = Uy;) where
UGy is the it* ordered realization of an uniform Ujp,y) distribution

Hence the expression of AD in Theorem 2.5. is equivalent to the following:

L'_Ui
A = max {max{\/r—), Un [1 ()(] :1§z’§nst0<U(i)<l},
(Lt — YD)

Uy — =2
Ul — Ug)

max{\/'r—z :1§z’_<_nst0<U(i)<1},0}
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and those of the statistic E'is equivalent to:

1
cont __ T n
E°™ — max {Ll%\/ﬁ v , max /n—e—=2— 0

These statistics and their corresponding distributions do not depend on F(z). Neither’

does their critical points and the CBs using these critical points.

1.A2.8. Explicit expression of the (-Regularized Anderson-Darling and Eicker
statistics
We develop the expressions of the (-regularized statistics.

For the (-regularized Anderson-Darling statistic:

— su o Fa(z) - F(2)
ADC B —oo<zI<)+oo\/_ ‘ \/F($)[]. - F(l‘)] + C

= max su ( ) (I)
{—oo<:c2+oo\/_ \/F(CL‘) 1 - F(.’L)] + C

o Fla) - Fola)
—oo<x<+oo\/_ VF(x)[1 - F(z)] + C}

5 F(»’E)
= max{ max sup  Vn
0SSR Xy Se<Xipn) \/F F@)]+(

max sup F(z) _n }
0<i<n X( )<I<X(‘+1) '\/F(T ]. —_ :E)] +C

Define I;(p) = Lp(l—ip)_fd‘ s where 0 < p < 1.

~[p(1— ) + {2 = 32~ )1 = 2p)[p(1 — p) + ¢

he) = [p(1 = p) +(]

= -2+ 0| ¢~ 5] = cohte)
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where ¢p = [p(1 = p) + (7% > 0 Vp and hi(p) = —( — 3% — p(} - £)
. —pi - <0for0<i<n/2
We know that — *%%SOViZOand ;D(z ”)_ sisn/ .
' —p(3—L)>0forn/2<i<n
Thus, when 0 < i < n/2, hi(p) < 0V p while when ¢ is such that n/2 < i < n,

hi(p) <

Moreover

- i(p) <0V

p, i and [;(p) is always non increasing. As a consequence,

L_F(z) _ L-F(Xy)
1 n =
) e X ><T£r(.+n\/— F@I F@I  0gien \/—x/F X)=F(Xe)l+e
: F(z)—+ F(Xg+1) -3

2

) 012?351 X()<SmliI;{(1+l)\/—\/F(z)[l F(z)]+¢ 0<L<n \/—\/F(X(,+1))[1 —F{X@4)]+¢
—  max F(Xw)—5*

1<i<ntl VEX@)I-F(X )]+

The statistic AD; can then be computed using

~ - — F(X)
ADC = maﬂx{0<1<n \/F(X@ ]_—F(X(, )]+C1
F(X@m) -5
151?3%1 \/F(X(,) )L — F(Xh )+ C}
- L -F(Xp)
= max{maxvn VFX o) [1 — FIXu)T+ ¢’
F(Xw) -5

,0}.

fgfas}%\/—\/F (X)L - (X(i>)] +¢



61

For the (-regularized FEicker statistic:

o BT
EC - —oo<:cI<)+oo\/—‘\/F ) ()]—{—C

= max su‘ n Folz) — Flz)
{—oo<:cI<)+oo\/— \/F :17) 1 — (Qj)] + C’

—oco<r<+00 \/F n( I] * C
L_F
— max{ max sup Jﬁ—&,
0<i<n X1y Sz<X(ig1) %[1 - %] + C
F(z)— =1
- wp R (z) - 5

1sisntl Xy <e<X(y \/ﬂ(l — =4+ ¢
n n

Define [;(p) = ﬁ?ﬁiﬁ where 0 < p < 1. [;(p) is always non increasing. Then,

E; = max{max v/n

max /n 2—,0}

1.A2.9. (-Regularized Anderson Darling-type CB for distribution functions
Let cap, (c) such that Pr[AD; < cap.(a)] > 1—aie,

Fo(z) — (413) :
Pl sw, vl @l = Fagc - an@lz1-e.
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Then, with probability greater than or equal to 1 — a

»[Fn(-'f) - F(-THZ < CQADc(a)

F@l-F@) 1@ = n v

ie., Yz,

n 1

(1+920) £ 2k + 222 o+ i - B <

This condition is satisfied if and only if ¥ =

Fl(z) < F(z) < F ()

2

2

-2 (ex) <Ap,. (=) 2 2
2F, () + b — VA ; 2Fp &)+ /A ¢ p, (@)
where F7(z) = 2 T ; F(x) = bk . (a)+ yand A = [ZFn(x) + =% -
. 2 1+—§9§— 2(14—"—%—)

C2 a3 .2
4 [1 + —%’n(—)} (Fg(z) _ —4—) .

1.A2.10. (-Regularized Eicker-type CB for distribution functions
Let cg, () such that Pr(E; < cg(a)] 21— a, ie,

Pr[ sup \/E ’ Fn(x) — F(‘B)

< cp (o >-1_ .
Y 6 A E A

Then, with probability greater than or equal to 1 —

ey < YAE@ - FE@]

VE@L-FR@I+¢~

CE( (C!)

T (@) (1= Fa(@) + M.

PO [Fu(@) (1~ Fu(w)) + (' < F(2) < Fa(a)+

1.A2.11. Distribution of the (-Regularized Anderson-Darling and the Eicker

statistics for continuous distribution functions
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When F(z) is continuous, the random variable F(X) has its values between 0 and 1
and follows a uniform distribution on [0,1] : F(X) ~ Up,y)- Hence, F(X;y) = U, where
Uy is the i** ordered realization of an uniform Uy ] distribution

Hence the expression of AD; in Theorem 3.1. is equivalent to the following:

U, Uy — 5
ADcont = max maxx/— @ R maxx/— ©
{15151 \/Um [T- U]+ tsise” /UL - U(z)] 0"

Similarly, the expression of E; can be rewritten:

U,
EC"”t = max { max+y/n , max/n (1)

U(z ,




Chapter 2
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Abstract

Despite the growing interest in poverty and inequality studies and the large standard
errors found in many empirical studies, most of the work in this area remains descriptive
and neglects statistical inference. Two types of inference procedures for poverty measures
have been considered: asymptotic distributions and bootstrapping. These methods can
be quite unreliable, even with fairly large samples, but no study has proposed provably
valid finite-sample nonparametric inference methods for such problems.

In this paper, we develop such inference methods for the Foster, Greer and Thorbecke
(FGT, 1984) poverty measures. We first observe that the poverty indicators can be in-
terpreted as the expectation of a bounded random variable which is itself a functional
of a distribution function. Using projection techniques, we derive finite-sample non-
parametric confidence intervals for the mean from confidence bands for the distribution
of the underlying variable. We investigate methods based on improved standardized
Kolmogorov-Smirnov statistics and a likelihood-ratio criterion. “We then apply these
procedures to the FGT poverty measures.

Monte Carlo simulations show that asymptotic and bootstrap confidence intervals can
‘fail to provide reliable inference, while the proposed methods are robust and yield shorter
confidence intervals. As an illustration, we analyze the profile of boverty of Mexico in
1998. The results show that the widths of the asymptotic confidence intervals are often
too small to be realistic while those of the bootstrap can be ten times larger than the
widths delivered by exact methods. The study shows that the poverty profile of Mexi-
can households depends greatly on the type of households’ 'head: poverty levels among
households with a male head or an educated head is much smaller than poverty levels
among other households. Heﬁce, policies aimed at reducing illiteracy and at securing the

income of households with a female head could help reduce poverty in rural Mexico.
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2.1 Introdliction

In recent decades, there has been growing interest in poverty and inequality studies.
However, most of the work in this area is descriptive and does not use rigorous sta-
tistical inference methods, despite the large standard errors found in many empirical
analyses. Two types of inference procedures for poverty and inequality measures have
been considered: asymptotic distributions and bootstrap methods; see Beran (1988),
Kakwani (1993), Rongve (1997), Mills and Zandvakili (1997), Dardanoni and Forcina
(1999), Biewen (2002), Davidson and Duclos (2000), Zheng (2001), and Davidson and
Flachaire (2007). Most of these studies recommend the use of bootstrap inference rather
than asymptotic approximations, because the latter are quite unreliable in finite sam-
ples. Bootstrap ’inference has a better performance, but is still unsatisfactory. Despite
these problems, no study has proposed finite-sample nonparametric inference methods

for poverty and inequality measures.

In this paper, we develop such inference methods for the popular Foster, Greer and
Thorbecke (1984) (FGT, henceforth) poverty measures. On observing that poverty mea-
sures can be interpreted as the expectation of a bounded random variable—a mixture of
a continuous bounded variable and a probability mass at the poverty line—we propose
that exact nonparametric inference methods for the mean of a bounded random variable
be applied to them.

At first sight, this problem appears to have no solution. According to Bahadur and
Savage (1956), nonparametric inference cannot be performed for the mean of a random
variable when observations are independent and identically distributed (i.i.d.) from an
unknown distribution function with finite mean [see Dufour (2003) for more details|.
However, in our case, the bounded nature of the random variable provides a sufficient
restriétion to allow nonparametric inference. Such nonparametric confidence intervals
(Cls, henceforth) for the mean of a bounded random variable have been provided by
Anderson (1969), Hora and Hora (1990); and Fishman (1991). Sutton and Young (1997)

have compared these methods to asymptotic and bootstrap Cls using Beta distributions.
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They showed that asymptotic and bootstrap Cls have very bad coverage probability in
finite samples, while exact methods are strongly reliable but yield wider intervals than

the former.

This paper provides two types of contributions. The first—a purely statistical contribu- -
tion—consists é)f proposing finite-sample nonparametric Cls for the mean of a bounded
randorn variable. We show that Cls for the mean can be derived from confidence bands
(CBs, henceforth) for distribution functions using projection techniques. For general
discussions of projection-based inference, see Dufour (1990), Abdelkhalek and Dufour
(1998), and Dufour and Taamouti (2005). We then build improved CIs for the mean
using CBs for distribution functions based on regularized weighted Kolmogorov-Smirnov
statistics and likelihood-ratio type statistics proposed in Diouf and Dufour (2005). Our
study focuses on the question of building CIs for the mean of a bounded random variable
but our methodology is far frofn Being as restricting as it appears. Solving the problem
for the mean of Y allows to solve the problem for any moment of Y by replacing the orig-
inal data by a function of these data. For example, if we are interested in building CIs for
the moment of order 2, ‘we can transform the original data using the square function and
compute the empirical distribution function corresponding to those transformed data.
The Cls we propose in this paper then provide valid Cls for the mean of the new data
which are CIs for the second moment of the original data. All kinds of transformations
can be studied. Continuous ones are handled using the same Cls as those presented in
this paper while for noncontinuous ones, interesting .rnonotonicity properties are provided
to solve the problem. | |

The second contribution is econometric and consists of developing finite-sample non-
parametric Cls for FGT measures. We re-express the poverty measures as the mean of a
mixture of a continuous bounded random variable and a probability mass at the poverty
line, and show that inference methods for the mean of a bounded variable apply to these.
We build improved CIs with explicit expressions that are easy to compute. Monte Carlo
simulations show that asymptotic and bootstrap Cls can fail to provide reliable inference,

even with fairly large samples, e.g. when the distribution presents a high probability of
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assuming the value zero—which is quite frequent in practice. By contrast, exact inference
methods are robust to the underlying distribution and the sample size. The proposed
ClIs have coverage probability typically larger than the nominal level while remaining
informative. ]

Finally, the methods are illustrated using household survey data to analyze the profile
of poverty of Mexico in 1998. The reéults show that in addition to being unreliable, the
widths of the asymptotic CIs are often too small to be realistic while the bootstrap can
fail even in precision, delivering CIs whose widths can be ten times larger than those
of the exact methods. The study shows that on average, rural households targeted by
PROGRESA! do not have a very high level of poverty. However, the poverty proﬁle
depends greatly on the type of households’ head. The level of poverty among households
with a male head is much smaller than the level of poverty among households with a
female head. Moreover, households with an educated head appear to be more prone to
escape poverty than households with a non-educated head. These conclusions provide
hints for designing policies to reduce poverty in rural Mexico. Policies aimed at reduc-
ing illiteracy of households members in these communities can be effective in reducing
poverty. Education programs should target both children and adults, in particular house-
holds’ heads to have short-term effects. Likewise, policies aimed at securing the income of
households with a female head could help reduce poverty in rural Mexico. An example of
such policies can be reforms aimed at securing land ownership for female or at improving
labor productivity for households with a female head, the latter being less. productive for

physically intensive activities such as farming.

The paper is organized as follows. Section 2 summarizes the relevant literature on Cls
for the mean of a bounded random variable. Section 3 describes a projection principle
that allows CIs for the mean of a bounded random variable to be built from CBs for dis-
tribution functions. It also derives a general expression for such CIs. Section 4 proposes

CIs for the mean of a continuous bounded random variable using the projection princi-

!See details about this program in section 9, page 109.
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ple. CIs based on unweighted, weighted, and regularized weighted Kolmogorov-Smirnov
statistics are considered. A likelihood-ratio type statistic is also used. Extension of these
CIs to bounded noncontinuous variables are proposed in section 5. Section 6 proposes two
approaches to estimate the regularizatibn parameter of the proposed statistics. Section
7 applies the inference methods to the FGT poverty measures. Section 8 presents Monte
Carlo simulations of the CIs for poverty rneasures. using income from Singh-Maddala dis-
tribution. Section 9 illustrates the inference methods analyzing the profile of poverty of

Mexico in 1998 with data from PROGRESA. We conclude in section 10.

2.2 Confidence intervals for the mean of a bounded
‘random variable

Several inference methods for the mean of a bounded random variable have been pro-
posed. Asymptotic procedures such as asymptotic distributions and bootstrap methods
are popular and widely used. Some exact procedures have also been provided by An-
derson (1969), Hora and Hora (1990), and Fishman (1991). Other studies have also
proposed one-sided nonparametric inference methods for the mean of a censored variable
[see Breth (1976)] and the mean of a nonnegative random variable [see Breth, Maritz
and Williams (1978) and Kaplan (1987)]. In this section, we present the asymptotic and

exact inference methods for the mean of a bounded random variable.

2.2.1 Asymptotic methods

Let X be a random variable with distribution function F(z) and mean E(X) = p.
Assume that n i.i.d observations X),..., X, on X are available and let F,,(x) be the

corresponding empirical distribution function. Let W be the t-statistic:

W= Pk
V@)
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where Ji is an estimate of y that is often X (the sample mean) and V[fi] is the estimated

variance of the estimator.

Asymptotic inference

1

Assuming that W is asymptotically N(0, 1) as n — oo, an asymptotic CI for y with level
l—qis:
~ ~ 11/ . ~  71/2
H—21-2) [V (u)] Spup+ 2(1-%) [V (N)}
where 2, is the p™* percentile of the standard normal distribution.
This CI is easy to compute, but can perform poorly in finite samples, because of the
underlying asymptotic approximations [see Sutton and Young (1997) and Davidson and

Flachaire (2007)].

Bootstrap inference

The simplest and most popular bootstrap CI for the mean is based on the percentile-t

method:

i~ Dl g [P @] <u<i-o [P @]

2

where D} is the p™ percentile of the bootstrap distribution of W; see DiCiccio and
Efron (1996) and Horowitz (2001). |

This method performs better in finite samples than the asymptotic CI [Sutton and
Young (1997) and Davidson and Flachaire (2007)]. However, its performance is still
unsatisfactory and deteriorates when the distribution of the variable presents patterns
such as heavy tails, multiple outliers or probability masses. Improved bootstrap inference
methods have been provided but they are difficult to use. The causes of the bootstrap
failure must be known for an adequate correction method to be chosen. Moreover, the
bootstrap inference method involves a resampling procedure that is computationally de-

manding.
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2.2.2 Exact methods

Anderson (1969)

Let X be arandom variable with an unknown continuous cumulative distribution function
F(z) with finite support [a,b] (a < b, F(a) = 0 and F(b) = 1) and mean p = E (X).
Denote X1y < X2) < --- < X(n) the order statistics of a sample of n available i.i.d
observations on X and F,(z) the empirical distribution function of the sample such thaf
Vk=0,..,n |

F.(z) = % for Xxy <z < X(k41y (2.1)

where X(g) = a, and X(41) = b may be infinite. Note that this definition of F,.(z) holds
for non continuous distributions with observations X1y < Xy < --- < X5,y that might
be equal (X(1) = X(g) for some ¢, j). We will use frequently the empirical distribution
function throughout this paper.

Anderson (1969) proposes the following CI with level 1 — « for p :

3=

n—s—1
l > X+ (s+1) X(n—s)] —7 [Xtn-s)—a] <

J=1

1 n
<= [(T +1) Xeeny + D Xy | +8 [b— X4 (2.2)

J=r+2

where r = I[nf], s = |nv|, and I[k] is the integer part of k. 8 and y are such that:
P[Fu(z) = B < F(z) < Fo(z) +, Ya] 2 1 -0

The Anderson CI is nonparametric and robust to sample size. However, it is restricted to
continuous bounded random variables. Moreover, it is based on the Kolmogorov-Smirnov

CB for distribution functions and thus, inherits some drawbacks from the latter?.

2These properties will be studied in detail later in this paper.
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Hora and Hora (1990)

Hora and Hora (1990) propose the interval:
_X_n - CKS(a) < u < _X_n + CKS(a)

where cxs(a) is the (1 — @)™ percentile of the Kolmogorov-Smirnov statistic, X, is the
sample mean of X, and X is a continuous random variable bounded on [0, 1].

In practice, the Hora and Hora CI is easy to compute and nonparametric. However,
ow‘ing to its dependence on the mean, this CI is sensitive to outliers and may perform

badly when applied to atypical distributions with heavy tails or probability masses.

Fishman (1991)

Using Hoeffding’s (1963) inequality, Fishman (1991) derives the following CI for the mean
p = E(X;) of n i.i.d random variables X, ..., X, such that Pr[0 < X;<1l]=1:

PT[IU,L(Y.,“TL, a) S H S /J‘U(ynana a)] Z 1~ o

where

{t 0<t< X, <1 and e Xn-td) = a/2} if Xn >0,
Hp = _
0if X, =0,
{ 0< X, <t<1 and erft—Xnl1- lt)—a/2} if X <1,
Hy =
1if X

According to Hoeffding (1963),
Pr[yn —u>egl < enfEm)

for 0 < e < 1—pu, where f(e, ) = (e+p) In[u(e+u) Y+ (1—e—p) In[(1-p)(1—e—p)7Y].
The Fishman (1990) CI applies to bounded random variables with support [0, 1], but
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can be generalized to any domain [a, b]. It is more general than the Anderson (1969) and
Hora and Hora (1990) Cls, which do not apply to discontinuous bounded variables. How-
ever, the bounds of the F ishman\ interval are not defined explicitly. They are computed as
the zero of a function. Consequently, the accuracy of this inference method relies largely
on the accuracy of the iterative procedure used to derive y; and y;;. Furthermore, this
CI depends on the sample mean X, which is very sensitive to outliers. These properties

undermine the performance of the Fishman CI.

The relative performance of the asymptotic and exact procedures described in this
section is examined by Sutton and Young (1997). They investigate the accuracy (con-
fidence level) and the precision (width) of the ClIs using Beta distributions and Monte
Carlo simulations. Their results show that asymptotic and standard bootstrap proce-
dures are not reliable in small samples, yielding CIs with coverage probability lower than
the nominal confidence level 1 — . Moreover, the precision of both Cls is reduced when
the distribution presents a high probability of assuming the value zero. Conversely, exact
methods yield coverage probabilities g‘reatér than 1— a, but at the cost of wider CIs than
those from asymptdtic methods. The Anderson CI is shown to achieve the best width

among exact Cls.

2.3 Projection methods for building confidence in-

tervals for the mean of a bounded random vari-

able

In this section we propose a projection approach for building CIs for the mean of a
bqunded random variable from CBs for distribution functions. We define some notation
for the remainder of the paper. Denote:

R=RU{-o0}U {+0};

['(.) : a functional T'[F] : £ — R defined on a space £ of functions;

F : a space of distribution functions;
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F : a space of continuous distribution functions;
Flap) : a space of distribution functions with support [a, ] (for finite numbers a < b);
j-:[a,b] : a space of continuous distribution functions with support [a, b] (for finite num-

bers a < b);

Let X be a random variable with distribution function F(z) € F. Denote X 0 <
Xy < X £ -+ £ Xn) £ X(ng1) the order statistics of a sample of n available i.i.d
observations on X, where [X gy, X(11)] is the support of F(z). Denote Fy,(x) the empirical

distribution function of the sample such thatV k=0, ...,n

P .
Fn(:c) = R for X(k) <r< X(k+1)~

DEFINITION 3.1 A functional U'[F] : L — R is monotonic nondecreasing if and only if

FI(I) S FZ(I), YV = F[Fl} S F[FZL VF],:FZ c L.

PROPOSITION 3.2 [Projection principle] Let I'[G| be a monotonic nondecreasing func-
tional on L, let F be a space of distribution functions included in L, and let X be a

random variable with distribution function F(x) € F. If
Crla) ={Fy € L: GL(z) < Fy(z) < G¥(x), Vz}
is a confidence band with level 1 — « for F(z) such that GE € L and GY € L, then
Crym(@) = {To e R:T[GY < Ty < T(GY]}

is a confidence interval with level 1 — o far‘l"[F],

The proof of this proposition and all other proofs for this paper are provided in
Appendix 2.
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Two important conclusions arise from Proposition 3.2. First, this proposition allows
the derivation of CIs for any monotonic functional of a distribution function from CBs for
this distribution using projection techniques. In particular, this method can be applied
to any (centered and non-centered) moment of X , specifically, to the mean of a bounded
random variable I'[F] = faba: dF(x). Second, Proposition 3.2 states that any CB for a
distribution function can be used, including nonparametric CBs. Hence, all available
inference methods for distribution functions can yield CIs for the mean of a bounded
variable. To provide improved nonparametric finite-sample inference methods for the
mean, we can investigate such procedures for distribution functions.®

It is important to note that if F(z) has a non bounded support, the CI for T'[F],
Crirj(@), can be unbounded. This implies that, I'[FX] or I'[FY] can be infinite. In the
case of the mean of a random variable bounded on [a, b] for some finite a and b, Crir(a)
is bounded. The remainder of this paper studes this particular case. A generalization of
our inference methods to non bounded variables is provided in a next paper (Diouf and
Dufour, 2006).

The following corollary applies Proposition 3.2 to the mean of a bounded random

variable.

PROPOSITION 3.3. Let L be a space of functions such that the Stieltjes integral T'|G] =
faby dG(y) is finite, let Fi,p) be a space of distribution functions with support [a,b] for
finite numbers a < b included in L, and let X be a random variable with distribution

function F(x) € Fioy. If
Crla) = {Fy € L: Gr(z) < Fy(z) < GY(z), Yz}

is a confidence band with level 1 — o for F(z) such that G € L and GY € L, then

3Other versions of this principle can be found for specific functionals I'[F] in Dufour (1990, 1997),
Abdelkhalek and Dufour (1998), Dufour and Neifar (2004), and Dufour and Taamouti (2005, 2007).
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o) = {ine ®:0-ac(o)- [ 6t < o b= aGE(a) [ ctwas)

s a confidence interval with level 1 — a for p. Moreover
~ ~ b _ | ~ b
Cula) = {,uoe R:b-— aFg(a)—/ FY(z)dr < p,<b-— aF;f(a)—/ F;f(:r)d:r}

where FE(z) = max{GE(z),0}, and FY(z) = min{GY(z),1} defines a confidence inter-

val with level 1 — a for-p which is tighter than C.a).

In the case where F(z) is continuous (F(z) € Fiay), F£(a) —FY(a) =F(a) = 0 and
the CIs for u simplifies to

Cule) = {uoe R:b— /ab GY(z)dx < py< b- /ab Gﬁ(w)dw}

and
Cula) = {uo €R:b —/ FV(z)dz < pug < b —/ F,f(x)dx}.

Propositidn 3.3 justifies a general approach—which will be used throughout this
paper—for building CIs for the mean of a bounded random variable using CBs for dis-
tribution functions. Two ClIs can be derived from each CB: one using the whole bands
and one using their restricting parts. The latter accounts for the property of the distri-
bution functions which, by definition, always have values between 0 and 1 and is thus,
thinner (C,(a) € C ,(@)). Note that FL(z) and FY(z) have values between 0 and 1 but
are not necessarily distribution functions. In fact, they might never attain these values.
For better results, we will use the thinner CI: 6’u(a) for the remaining of the paper.
However, the CIs for the mean will retain the properties (in particular, the drawbacks) of
the underlying CBs for distribution functions, owing to the use of projection techniques.
This feature will be used to improve them. Finally, Proposition 3.3 can be used to derive

an explicit expression for Cls for the mean of a bounded random variable. Proposition
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3.4 does so.

PROPOSITION 3.4 [General expression for CIs for the mean of a bounded ran-
dom variable] Let £ be a space of functions such that the Stieltjes integral T'|G]| = fab Yy
dG(y) is finite, let Fio ) be a space of distribution functions with support [a,b] for finite
numbers a < b included in L, and let X be a random variable with distribution func-

tion F(z) € Flap)- Let Xy < -+ < X(n) be the order statistics of a sample of n i.i.d.

observations on X. If

Cr(a) = {Fo eL: GE(z) < Fylz) < GY (= V:U}

is a confidence band for F(z) with level 1 — a where GE € L, G € L, and GL(x) and
GY(z) are step functions with jumps only at Xy, X(n) then

Cula) = {uo € R : g < g < iy} (2.3)

is a conﬁdence interval for u with level 1 — o where

p, = [1-F (X(n))]X(n+1)+Z[ (Xw) — Fff(X(k—l))] Xk,
k=1
wy = |1-F, (X(n))] X(n+1)+2[ (Xw) = FnL(X(k—l))} Xy

Xo = a, Xpm=b, F(z) = max{G;':(:v),O},and FY(z) = min{G}/(), 1}, Va.

Proposition 3.4 states that if a CB for F(z) exists and if the lower and the upper
bounds this CB are constant between X and X1 for all k, then one can use the
Rieman integral to derive a general expression for CIs for the mean. This theorem is an
applicatipn of the projection principle to stepwise CBs. However, it is not as restrictive
as it seems. In fact, we know that all functions can be bounded by its closest lower and
upper stepwise correspondent functions, using a given set of observations. Then, if CBs

are not stepwise, we can use the estimation sample to derive a lower stepwise bound
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for FL(z) and an upper one for FY(z) These bounds will define a CB for F(x) of level
greater than or equal to 1 — o that can be projected to the space of mean to yield a CI

for the mean of level greater than or equal to 1 — .
Let k; and k, € {1,...,n} such that

GL(z), Yz > X(x) GY(x), Yz < X(k)

0, Vr < X(kl) 1, VI > X(’?“)'

k, and k. represent the thresholds from which FX(X()) > 0 and FV (X)) < 1,\and start
to be binding.

If these numbers exist, then the bounds of C,,() can be simplified to:

‘ ku+1
pp=[1—F X)) Xtniny + Y { (X)) = FY (Xh- 1))} Xk
k=1
and
g =1 = FE (X)) Xniny + Z [ (X)) — FE(Xpe- 1))} Xgy- (2.4)
k=k;

Moreover, if k, < n and k; < n then

pr =1 — GY( X)) Xnr1) + [1 — GY (X(ku))] X(hw)

ku
+ 3 [GY(Xw) — G (Xe-1))] Xoy
k=1

and

Ly = Gﬁ(X(kl))X(k;) +[1 - Gq-[;(X("))]X(ﬂ‘*‘l)

+ Y [GEXw) — GE (X)) ]X(k)

k=k;+1

We will use the approach developed in this section repeatedly throughout the paper.
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To derive ClIs for the mean, we will use the improved finite-sample nonparametric CBs
we proposed in Diouf and Dufour (2005). Those are obtained by inverting goodness-of-fit
tests based on weighted Kolmogorov-Smirnov statistics and regularized versions of these
statistics that provide better test power and narrower CBs for distributions. We will
also use a likelihood-ratio based CB proposed by Owen (1995) using the Berk and Jones
(1979) statistic.

2.4 Nonparametric confidence intervals for the mean
of a bounded random variable

In this section, we will propose ClIs based on empirical distribution functions (EDF,
henceforth). Our study focuses on the question of building CIs for the mean of a bounded
random variable using Proposition 3.3 and 3.4. However, our methodology is far from
being as restrictive as it appears. Solving the problem for the mean of ¥ allows one to
solve the problem for any moment of Y by replacing the original data by a function of
these data—ezp(Y), Y7, etc. For example, if we are interested in building Cls for the
moment of order 2, we can transform the original data using the square function and
compute the empirical distribution function corresponding to those transformed data.
The CIs we propose in this section then provide valide CIs for the mean of the new data
which are Cls for the second moment of the original data. All kinds of transformations
can be studied. Continuous ones will be handled using the same CIs as those presented
below while for noncontinuous ones, the next section provides interesting monotonicity

properties that allow to solve the problem.

2.4.1 Three principles for building confidence intervals

CIs for the mean of a bounded random variable we proposed earlier use CBs for distribu-
tion functions based on EDFs. Those CBs can be built inverting goodness-of-fit tests for

which the statistics of test involve EDFs. Several examples of those can be found in the
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literature, among which the most popular is the Kolmogorov-Smirnov (KS, henceforth)
statistic.

Let’s consider the test of Hy : F(z) = p versus H; : F(z) # p. A common statis-
tic for thié test is Dy [Fn(z), F(z)] = /n | F.(z) — F(z) | . Taking the supremum of
Dy [F,(z), F(z)] over all z yields the following KS statistic:

KSp= sw ai|Fale)—F@)].

—oo<z<+00

This statistic can be used to test hypotheses of type:
Ho(F): Xy,..., X, are ii.d. with distribution function P(X; < z] = F(x). (2.5)

versus the negative of Ho(F'). However, D, [F,,(z), F(z)] is not standardized and hence,
" its distribution is not asymptotically pivotal.

Other inference methods have used statistics where D [F, (m), F(z)] is improved along
three common principles in econometrics: the Lagrange multiplier, Wald, and likelihood-
ratio principles. The first one replaces D, [F,,(z), F(z)] by a score-type statistic where
D, [Fo(z), F(z)] is divided its standard deviation estimated under the null hypothesis.
This statistic had been proposed by Anderson and Darling (1952):

AD = sup Vp(z)

—00<z<+00

where

0 if F(z) € {0,1},
Fp(z)-F(x
VI | P =

The second one standardizes D, [F,(z), F(z)] using an estimation of its standard devi-

Valz) =
otherwise.

ation under H,. The corresponding Wald-type statistic had been proposed by Eicker
(1979): -
E= sup V,(z)

—oo<r<+00
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where . :
0 if F,(z) € {0,1},

Va(z) = —|__Fu(z) - F()
VU P = R

otherwise.

The last improvement replaces D;(z) by a likelihood ratio-type statistic. Such statistic

had been proposed by Berk and aneé(1979):

BJ = sup K[F,(z),F(z)]

—oo<z<+00
where ‘
SN - 1-p
K(p.p) =plog (1) + (1-5) log<l—j;>.

These statistics will be used to derive Cls for the mean as well as improvements of the

score-type and Wald-type statistics using regularized versions of these.

2.4.2 Confidence intervals based on the Kolmogorov-Smirnov

statistic

In the rest of the paper, we define X as a random variable with distribution F'(z) € ﬁ[a.w
and a finite mean p. We also let X(;) < --- < X(n) be the order statistics of a sample of
n iid observations available on X , X0) = @, X(nt1) = b, and Fy,(z) the corresponding

empirical distribution function. The Kolmogorov-Smirnov statistic is:

KSg = sup V7| Fn(m) — F(z) |

—oo<zr<+00
= E—Fm') F(X g
= max 1121?‘5351 n (k) ,1121)‘5125t ( (k)) - T s .

A symmetric CB for F(z) with level 1 — o can be obtained by inverting the KS
goodness-of-fit test:

KS(0) = . I _CKS(Ot) r . cks(a) -
Cy=(a) {FOE.F.Fn() n < Fy(z) < Fo(z) + /n ,V}



where cxs() satisfies Pr(KSr < cgs(a)) > 1— a.

Applying Proposition 3.3, we can derive from Cf5(a) the two following projection-

based ClIs for y :

J— C (8% C (8%
CKa) = {uo eR: X, - [X(n+1) — X(0)] rs(@) po £ X + [X(ni1) — X(0)] sl )}

vn vn
(2.6)
where X, is the sample mean of X, and
555(04) ={m € R:pyp < po < py} ' (2.7)
where i, -
1 s CKs(a)
= -~ |: Z X(J) +(s+1) X(n_s) — n [X(n_s) - a]
Ly = l (r+1) X41) + zn: Xy | + M [b — X(r+l)]
n j=r+2 : \/ﬁ
r= I[n%ﬂz], s = n%ﬂ , and I[k] is the integer part of k.

The CK S(a) CI for the mean of X—equation (2.6)—is a generalization of the Hora-
Hora CI to the mean of random variables bounded on [a,b]. Setting b = 1 andba = 0

provides the original Hora-Hora CI:

We provide in Appendix 2 a proof of the generalized Hora-Hora CI which, setting b = 1
and a = 0 also gives a proof the original CI which have not been clearly given by the
literature. Likewise, the second CI, 555 (), corresponds to the Anderson CI for the
mean of a continuous bounded random variable defined in equation (2.2). We prove in
Appendix 2 that the Anderson CI is a projection of the KS confidence band where all
constraints about distribution functions are exploited. Hence, the Hora-Hora and the

Anderson Cls are both some special cases of Proposition 3.3 using the projection of the
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KS CB for distributions onto the space of mean. However, the Hora-Hora CI is dominated
by the Anderson CI. The latter excludes the parts of the Kolmogorov-Smirnov CB that
are not effective i.e., the parts of the bands below 0 or above 1 and is then shorter than

the Hora-Hora CI.

Even if the KS statistic can be used to build a well-behaved CI for the mean-the An-
derson CI— it is not based on the three common principles in econometrics: the Wald,
likelihood-ratio, and Lagrange multiplier principles. By the properties of the projection
method, the Anderson CI inherits some characteristics from the KS confidence ba;ld.
Thus, using the properties of the latter, we.can determine the limits of the Anderson
method and improve it along these lines. In particular, the KS confidence band for dis-
tribution functions is often criticized for its uniform nature. The width bf this CB is
constant for all observations and thus its bounds do not converge to 0 and 1 in the lower
and upper tails of the distribution, as do the distribution functions they bracket. This
adversely affects its performance in the tails and can easily lead to a large projected
CI for the mean. Weighted KS statistics based on Wald, likelihood-ratio, and Lagrange
multiplier improvements have been proposed to allow more discrimination between dis-
tributions in the tails. We use these statistics to build CIs for the mean and show by

Monte Carlo simulations that those ClIs have better properties than the Anderson CI.

2.4.3 Confidence intervals based on weighted Kolmogorov-Smirnov
statistics
We will now propose improved CIs for the mean based on nonuniform Kolmogorov-

Smirnov CBs for distributions. Two weighted Kolmogorov-Smirnov statistics have been

proposed by Anderson and Darling (1952),

AD = sup V,(z)

—oco<T <400
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and Eicker (1979),
E= sup V,(z)

—oo<Lr <+
where
V() 0 if F(z) € {0,1},
w(T) =
NZD) yah /5(,;()1[?:?8]1 z| otherwise,
and
0 if F,(z) € {0,1},
Va(z) = F,(z) — F(z) |

otherwise.

F(@)[1 - Fa(a))/?
In practice, these statistics can be computed as follows [see Diouf and Dufour (2005a)]:

= F(X )
FY2(X )1 - F(X ;)"

: < ) < y 3

E — max max /n %_F(X(i)) max /7 F(X(i))“i_Tl 0
- 1<i<n—1 ”(1)1/2(1_1)1/2’ 2<i<n ”(%)1/2(1_%)1/2’ )

n

AD:max{O,ma.x{\/ﬁ 10 < P(X ) <1, ISiSn}

These two statistics can be used. to derive finite-sample nonparametric CBs for dis-
tribution functions whose widths decrease with observations further from the center of
the distribution. The. Eicker and Anderson-Darling statistics are better at discriminating
between distributions that essentially differ in their tails than the uniform (unweighted)
KS statistic and, in consequence, they provide narrower CBs in the tails.

However, the Anderson-Darling (AD) and Eicker statistics have their own drawbacks.
The power of the goodnéss—of—ﬁt tests they yield is less than the.power of the standard
KS goodness-of-fit test when testing distributions with low dispersion that differ more in
the center of the distribution than in the tails. Moreover, the weights in the denominator

of those statistics become very close to 0 for observations in the tails, leading to erratic
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behavior of the statistics. To solve this problem, we proposed regularized statistics where
the variance of F,,(z) — F'(z) in the denominator of the statistics is corrected by adding

a nonzero positive regularization term ¢ :

Fu(z) - F(z)
VE()[1 - Fo(2)] +¢

For a constant ¢ > 0, the regularized statistics can be computed using the following

expressions:

i _ P(Xg F(X) — =
AD;=max ¢ max+/n L Xew) n Kw) = 5 0

1<i<n \/F(X(i))[l _ F(X(i))] + C’ 151&5}51 ‘_\/F(X(i))[l — F(X(i))] + C;

i R(X, F(Xg) — =2
E; = max ma.x\/ﬁ"—(()) max+/n Xw)

1<i<n %[1—%]+C 1<i<n \/i_Tl(.]-_%)"'C

The regularization achieves the expected improvement. First, we showed by Monte

Carlo simulation that using a constant positive ¢ considerably improves the power of the
reg‘uiarized Anderson-Darling and Eicker goodness-of-fit tests. The test power is low for
small ¢ but rises quickly when ¢ increases before becoming almost constant. Even if the
value of ¢ that maximizes the power of the test is not known, most of the improvement
" is achieved as soon as ¢ is high enough. | An example of how to choose the optimal
value of ¢ in practice is provided for inference methods on poverty measures in section 7.
Second, computing the critical values of the statistics by simulation eliminates the bias
to which these kinds of (regularized) statistics are subject. Finally, regularizing prevents
the erratic behavior of the original Anderson-Darling and Eicker. statistics in the tails
of distributions and provides nonuniform CBs for distribution functions that decline in

width as observations approach the tail of the distributions. Monte Carlo simulations

show that the widths of these CBs are smaller than the widths of the Anderson-Darling
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and the .Eicker CBs. Hence, their projeétions are expected to provide better Cls for the
mean than the original CBs. Theorems 5.1 to 5.4 propose finite-sample nonparametric
CIs for the mean of a continuous bounded random variable using the standard and the
regularized Anderson-Darling and Eicker CBs for distributions. Analytic expressions are

derived, in which ¢ is assumed constant.

ProrosiTioN 4.1. [Anderson Darling—type CI for the mean of a bounded ran-
dom variable] Let X be a random variable with distribution function F(x) € Fiap and
a finite mean u. Assume that n ordered i.i.d. observations Xy < -+ < X(») on X are
available. Suppose that the following confidence band of type Anderson-Darling with level

1 — « is valid for the space of distributions Fla :
CiP(a) = {FheF: GE(z) < Fy < GY (), ‘v’a:}

where

Gie) - 2F,(z) + 42 _  /A(7)

T z - 2(1 + C%Qn(a)) ’

2P, () + A 4\ /A(7)
2(1 + %oy

Gn(z) =

i

2 A 2 2
Alx) = {2.&(.@-) + CA”T(“)] — 4F%(x) [1 + Ci‘—@?fi)]
and cap(e) satisfies Pr(AD < cap(e)) > 1 — a. Then the following confidence interval:

CAP (@) = {#o ER:[1— FY(Xu)]X(nsr) + Y {F,E’(X(k)) - Ff(X(k—u)] Xy < o

k=1

<[1 = FXXu) X sy + Y [ﬁf(X(k)) - ﬁﬁL(X(k—l)):] X(k)} (2.8)

© k=1

where X() = a, Xn+1) = b, and ¥z, FE(z) = max {GL(z),0} and FY(z) = min {GY(z), 1}

is a confidence interval for p with level 1 — a.
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COROLLARY 4.18B1S [Explicit expression for the Anderson Darling-type CI]
Under the hypothesis of Proposition 4.1., the effective part of the Anderson-Darling con-
fidence band for F(z) us:

ﬁf(X(k)) = Gﬁ(X(k)), Yk = 1,...,n+1

and

FV(Xpy) =GY(X@w), Yh=1,...,n+1

and an equivalent erpression of the Anderson-Darling confidence interval for the mean

of a bounded random variable is:

5{31)(&) ={po € R:pup <y < py}

where

2+ VAR) - /A - 1)} Xe

2(1 + Sa2(®)

!
py = (1 — (1 + CzAD(a))—l) ; F _ (\/A—(T) _ m)} X ()

plo)
2(1 + —a2=)

Ak) = [22 + Ci‘D(a)r - 4(%)2 [1 + é‘f;ﬁq ,

and cap(e) satisfies Pr[AD < cap(a)] 21— a.

PROPOSITION 4.2 [Eicker-type CI for the mean of a bounded random variable]
Let X be a random variable with distribution function F (z) € Fiap) and a finite mean p.
Assume that n ordered i.i.d. obéewations Xay £+ < X(ny on X are available. Suppose
that the following confidence band of type Eicker with level 1 — a is valid for the space of

distributions Flap) :

CE(a) = {F[] EF:GEHz)< R < Gg(:r)}
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where
_ Fu(z) - SRR (@)[1 — Fu@)2  for such that Fa(z) ¢ {0,1},

0 ' for x such that F,(z) € {0,1},

() = F.(z) + c—f%’lFﬁﬂ(x)[l — F(2)]'?  for x such that F,(z) ¢ {0,1},
1 for x such that F,(z) € {0, 1},

and cp(a) satisfies Pr(E < cp(a)) > 1 — a. Then the following confidence interval:

Clla) = {uo €R: [1— FY (X)X + 3 [FY (Xay) = BV (X)) | Xy < o
k=1

<1 = FE(X ()X sy + > [ﬁf(X(k)) - ﬁnL(X(k_n)] X(k)} (2.9)

k=1

where X(g) = a, X(ns1) = b,-and Vz, FL(z) = max {GL(z),0} and F¥(z) = min {GY(x),1}

is a confidence interval for p with level 1 — a.

COROLLARY 4.2BIS [explicit expression for the Eicker-type CI| Under the hy-
pothesis of Proposition 4.2., the effective part of the Eicker confidence bounds for F(z)

18:

b @R - A2 wh =k, n-]

Fi(Xgy) =
0 Vk=0,...,kk—-1,n n+1,
ko ce(@rk11/2[1 _ k112 g _ U
_ k@B K2 g =1,k

1Vk=0, k% +1,..., n, n+1.

where kk = T [nc%(a) (n+ c%(a))_l] +1, k) =1 [f#?z(a)j] , and I[K] is the integer

part of k; and an equivalent expression of the Eicker confidence interval for the mean of
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a bounded random variable is:
éf(a)={#oER3#LSMOSMU}

where
- L

Y cpla) kY kY
= [1 - 22 - ey Sy,

LR (0D

R (D05

and cg(a) satisfies Pr(E < cg(a)) > 1—q.

PROPOSITION 4.3. [(—Regularized Anderson Darling-type CI for the mean of
a bounded random variable] Let X be a random variable with distribution function
F(z) € Flap) ond a finite mean p. Assume that n ordered i.i.d. observations X1y < -+ <
X(ny on X are available. Suppose that the following confidence band of type (-regularized

Anderson-Darling with level 1 — o is valid for the space of distributions F,y :
Cp%(a) = {Fy € F: GL(z) < R < GY(a), vz}

where =
2F,(z) + %— — v A(z)

GL(:I;) = 2 (a) ?
2 (1+257)

n
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C2 (a3 :
6o < 2l0) + LN

2 (1 4 Ao (a))

Az) =

2 (a)]? A (a
o) i >] _4[1+ 5, (@)
n n n

(Fj(z) _ M) ,

and cap () satisfies Pr[AD; < cap.(a)] > 1 —a. Then, the following confidence

interval:

—~ D —~ n. —~ ° o~
Ci”(a) = {Mo €R: 1~ F/ (X)) Xurny + D [FE(X(k)) - F,E’(X(k_l))] Xy < Ho

k=1

(2.10)

<1 - B X)) Xy + Y [ﬁf(X(k)) - ﬁnL(X(k—l))] X(k)}
k=1

where X oy = a, X(n41) = b, and Vz, FE(z) = max{GL(z),0} and FY(z) = min{GY(z), 1}

is a confidence interval for p with level 1 — o

COROLLARY 4.3BIS [Explicit' expression for the (—Regularized Anderson
- Darling-type CI| Under the hypothesis of Proposition 4.3., the effective bounds of the

¢-regularized Anderson-Darling confidence band for F(z) are:

4

- GL(z) Vz > Xz
Fl(z) = { (o)
0Vzr < X(kﬁD )5
\ ¢
. GY(z) Vz < X
(g = | *p,)
1Vx > X(k%D )
¢

\
where kfch =1 n1/2C1/2cAD<(a) +1, kXDC =1 [n — cap (a)(n)'?], I[ro] =the integer
part of ko; and an equivalent expression of the (-reqularized Andersoh—Darling confidence

interval for the mean of a bounded random variable is:
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Cu™(@)={p €R:py <pg < py} (2.11)
where
2 U
_ 1 CADC(a)' kADC U
PTRETEN {(“ =2 = A | X
kADC
Z( +\/A \/A )X(k) ,
1 Qk/LxD ¢hp, (@)
py = [1 = Fy X<n>)]X<n+l>+( cf,D;<a>){( no T VAR | Xegs
2(1 +

+ zn: [%—\/A )+ VA }X(k),

k=kfwc+1
2 (a) A (@) -1

FE(X ) ( VA )( ”A_fo_)) ¥ Kip <

n n)) = .

0 otherunse,

2
k  Cchip (@) SGp (@) | (k2 Ccip (a)

A(k)=[2;;+ :L — 4|1+ :L E"TC :

and cap, (@) satisfies Pr[AD; < cap ()] > 1 -«

PROPOSITION 4.4. [(—Regularized Eicker-type CI for the mean of a bounded
random variable] Let X be a random variable with distribution function F(z) € Fiay
and a finite mean p. Suppose that a random sample of X z's‘ available and denote X ;) <
.. £ X(n) the ordered observations. Suppose that the following confidence band of type

¢-reqularized Eicker with level 1 — o is valid for the space of distributions Fiap

C?‘(a) ={F e F:Gk(z) < FK(z) < GU ), Va}
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where
CE(( )

7

Gr(z) = Fa(z) — [Fal) (1 = Fa(z)) + (M7,

ce (o)
vn

and cg (@) satisfies Pr[E¢ < cg/(a)] > 1 — a. Then the following confidence interval:

G (z) = Fa(z) + [Fa(z) (1 = Fa(2)) + (]2,

Ci¥(a) = {uo €R: 1= F(Xm)|Xnsn) + Z [ (Xe) = F (X s 1))} Xk = bo

k=1

(2.12)

< [1 = FE (X)X (ntr) +Z [ X(k)) ~ FY(X - 1))] X(k)}

where Xy = a, X(ny1) = b, and Yz, FE(z) = max{GL(z), D} and FU(.’L‘) min{GY(z), 1}

is a confidence interval for p with level 1 — a.

COROLLARY 4.4BIS [Expiicit expression for the (-Regularized Eicker-type
CI] Under the hypothesis of Proposition 4.4, the effective bounds of the (-regularized
Eicker confidence band for F(z) are:

Fi(z) = B and FY(z)=
0Vr < X(k[éc), 1Vr > X(kgq)

GY(z) vr < X(kgc)

-1

where k= I[ko] + 1, kg = I'lks], ky = [ncz&(a) + \/AL} [2 (n+c?5<(a))} ks =
21 ‘
[(271 + czEc(a)) n— vAU} [2 (n + cfgc(a))} , AL =n? - oyt (n + cEc(a)) n’c. (@),
2
AY = (2n + c?Ec(a)) n?—4 (n + ci-c(a)) (n - cEc(a)C) n?, and I |k is the integer part
of k; and an equivalent expression of the (-regularized Ficker confidence interval for the

mean of a bounded random variable is:

Cula) = {u € R 1y, < o < iy} (2.13)
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where

B ~ 1/2
by = [l—kg(nl—c,g((a)n'l/z [kg(n l(l—k%(n 1)+g] }X(kgcﬂ)

+2[ +eg(an (\/ﬁu—gm—\/k;lu—’“;11+c)}x(k>,

_ B B ._ 1/2
v = [kgcn ' —cg (a)n 172 (kg<n ! (1 - kécn 1) + () ] X(kréc)

+ Z [——CEC ‘”2(\/ [1——] ¢— \/ 1]+C)]X(k>,'

k= kL +1

~ 1 —cg ()¢V3n~1/2 if Kk <n,
Fi(Xm) = T . ¢
0 kg >n,

and cE((a) satisfies Pr(E; < CE, (@)]>1-a.

2.4.4 Confidence interval based on likelihood ratio-type statis-
tics
We propose an improved finite-samplé nonparametric CI for the mean by applying Theo-

rem 3.4 to the Owen (1995) CB for distribution functions. This CB is based on the Berk
and Jones (B-J, 1979) likelihood ratio-type statistic:

BJ= sup K[F.(x),F(z)].

—oo<gz<+00

where

K(p.) =plog () + 1= los (1)
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PrROPOSITION 4.5. [Berk Jones—fype CI for the mean of a bounded random
variable] Let X be a random variable with distribution function F(z) € Fy and a
finite mean p. Assume that n i.4i.d. observations on X are available and denote X1y <
o < Xy ihe ordered observations. ‘Sﬂppose that the following confidence band of type

Owen with level 1 — o is valid for the space of distributions Flay
C2(0) = { Ry € F: Fiz) < Rz) < FY(9)},

where FL(z) = min{p : K[F,(z),p] < c,éj(a)}, FU(z) = max{p : K[F.(z),p] <

cpr(®)}, and cps(a) satisfies P[BJ > cps(a)] > 1 — . Then the following confidence

interval

CBl(a) = {Mo ER:[1 - FY (X)) Xy + Y [FS(X(k)) - FS(X(k—l))} Xy < o
k=1

<1 = FA (X @) Xnan) + > [ﬁ#(X(k)) - ﬁr%(X(k—l))} X(k)} (2.14)
k=1

where Xy = a, and X(n41) = b, is a confidence interval for p with level 1 — o

It is important to highlight that the original CB proposed by Owen was derived
for continuous distribution functions. In the above theorem, we apply it to general
distributions. This generalization and other properties of the Berk-Jones statistic—such
as its pivotality—and its corresponding CB are discussed in Diouf and Dufour (2005a).
The procedure used to derive Owen’s CB also applies in noncontinuous cases. In the
next section we show that the results obtained in the continuous case remain valid in the
discrete case, using monotonicity properties. Note that the Owen’s CB for a continuous
distribution function is such that f’,f(X(U)) =0, ﬁ,f(X(n)) = e"v(®) < 1, ff(X(o)) =
1 - e /@ and FE(X(n) = 1. Hence, FX(z) and FU(z) are the effective parts of the
Owen CB for all z and are used directly to build the CI for the mean.

Comparing the Owen CB to the Kolmogorov-Smirnov based CBs showed that the
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Berk Jones-type CB performs similarly to the CBs based on the regularized statistics
(see Diouf and Dufour, 2005a). However, for each observation, the bounds of Owen’s CB
are defined as the extremum—minimum or maximum—of a function. Tts computation

therefore requires twice as many optimizations as the number of observations.

Owen (1995) proposed an analytic approximation for ¢5;(0.05) and cg;(0.01):

,

173.0123 + 0.4835log (n) — 0.00957 log® (n) — 0.0014881log” (n)] for 1 < n < 100,
cgs(0.05) = T
| x [3.0806 + 0.4894 log (n) — 0.02086 log® (n)] for 100 < n < 1000,
( 1[-4.626 — 0.541log (n) + 0.02421o0g? (n)] for 1 < n < 100,
cps(0.01) =
| 2[~4.71 - 0.5121og (n) +0.021910g” (n)] for 100 <.n < 1000.

Jager and Wellner (2004) found that computing the Owen approximations of cg ()
yield a CB with coverage probability lower than the nominal level. They propose the

following correction:

1[3.6792 4 0.57201log n — 0.0567 log®(n) — 0.002710g*(n)] for 1 <n < 100,
CBJ(O-OB) =

173.7752 + 0.5062 log n — 0.0417 log®(n) + 0.0016 log*(n)] for 100 < n < 1000,

1[5.3318 + 0.55391og n — 0.03701log*(n)]  for 1 < n < 100,
CBJ(0.0].) =

1[5.6392 + .04018 logn — 0.0183log*(n)] for 100 < n < 1000.

In our Monte Carlo investigations, we simulate the critical value of the distribution of

BJ to sidestep this discussion.
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2.5 Properties of confidence intervals in the contin-
uous and noncontinuous cases

We proposed in the last section several CIs for the mean of a bounded random variable.
In this section, we will study some interesting propertieé of those ClIs in the continuous
and the noncontinuous cases. For continuous F'(z), the distributions of the Kolmogorov
Smirnov, Anderson-Darling, Eicker, regularized Anderson-Darling and Eicker, and Berk-
Jomnes statistics are independent of the distribution being assumed under the null hypoth-
esis and so do their critical points. Hence, the CBs for distribution functions they yield
and the corresponding projected Cls for the mean depend on F'(z) only through the sam-
ple. The same critical points are used to build the CBs for all continuous distributions
which makes them easier to compute.

One may wonder what happens in the discrete case? For noncontinuous distributions,
the test distributions depend on F(z), so new critical values may need to be computed in
each case making Cls more difficult to compute. We will show that for those distributions,
the CIs we proposed remain valid in the sense that they provide conservative Cls for the

discrete variables. Moreover, we will propose important properties that can be exploited.

ProPosITION 5.1. [Conservative nature of continuous case critical points| Let
X1,..., X, be n iid observations on X and F,(z) be the corresponding empirical
distribution function. Let F(zx) € F be a continuous distribution function and G(z) e F
be a noncontinuous one. For any level a, 0 < a < 1, the critical valué associated with
K Sr for testing the null hypothesis Hy(F') as defined by the equation (2.5) is larger than
or equal to the critical value associated with KSg fo'r. tes‘ting the null hypothesis Hy(G)
and similarly for the statistics AD, E, AD;, E., and BJ.

PRroPosITION 5.2. [Conservative property of continuous case Cls for the mean
of a bounded random variable| Let X and Y be two bounded random variables with
respective distribution functions F(z) € .7?[%1,] and G(y) € Fiap whose means are finite.

Let Y1,...,Y, be n i.i.d. observations on Y and G,(z) be the corresponding empirical
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distribution function. For any level o, 0 < a < 1, the Anderson confidence interval
obtained using appropriate critical points for testing the null hypothesis Ho(F) as defined
by the equation (2.5) yields a confidence interval for the mean of Y with level larger than
or equal to 1 — «, and similarly for the confidence intervals based on AD, E, AD,, E,
and BJ. |

Proposition 5.1. shows that CBs for continuous distribution functions can be applied
to general distributions and CIs for the mean may also be derived in the case where the
random variable has bounded support [a,b]. We refer the ;eader to Diouf and Dufour
(2005a) for a detailed discussion of these properties of the statistics and the CBs for
continuous distributions. Using these properties, Proposition 5.2. states that the Cls
for the mean of a continuous bounded random variable—computed with the conservative
KS percentiles—can be applied to any sample from a distribution function with bounded.
support. The bounds so obtained will be a CI for the mean of the variable under exami-
nation with level at least equal to 1 — o. We derive a monotonicity property that can be
used to reduce the width of the intervals without altering their reliability. These results

are based on information about the set of discontinuities of the distribution function.

PROPOSITION 5.3. [Range monotonicity of critical points] Let X;,..., X, be n
i.i.d. observations on X and F,(z) be the corresponding empirical distribution function.
Let F(z) and G(y) be two distribution functions such that G(R) C F(R). For any level
a, 0 < a < 1, the critical value associated with K Sg for testing the null hypothesis Hy(F)
as defined by equation (2.5) is larger than or equal to the critical value associated with
K S¢ for testing the null hypothesis Ho(G) and similarly for the statistics AD, E, AD,
E¢, and BJ.

PROPOSITION 5.4. [Range monotonicity of CIs for the mean of a bounded ran-
dom variable] Let X and Y be two bounded random variables with respective distribution
functions F(z) € f[a,b] and G(y) € Fiay whose means are finite such that G(R) C F(R).
Let Yy,...,Y, be n i.i.d. observations on Y and G,(x) be the corresponding empirical

distribution function. For any level o, 0 < o < 1, the Anderson confidence interval
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- obtained using appropriate critical points for testing the null hypothesis Ho(F') as defined
by equation (2.5) yields a confidence interval for the mean of Y with level larger than or
equal to 1 — a, and similaﬂy for the confidence intervals based on AD, E, AD;, E¢, and
BJ.

Proposition 5.4. generalizes Proposition 5.2. to all distribution functions with ex-
isting mean. It suggests that CIs for the mean can be made narrower by exploiting
embeddedness of the image sets of different distributions. When studying a discontinu-
ous distribution G(y), we know that G(y) takes its values in a set V¢ which is included in
[0,1]. Thus, the conservative CI for a continuous bounded random variable provides a CI
for E(Y) = py with level 1 — §; greater than or equal to 1 — a. If additional information
about the image set of G(y) is available—in particular, if we know there exists a distri-
bution function with image V¥ such that V¢ C VF—then the critical points for testing
F(z) can be used to derive a CI for y, with level 1 — 45 such that 1 - a<l—0,<1-6.
The CI with level 1 — d2 is narrower than the CI with level 1 — §, while being reliable.
Thus, using information about the nature of the discontinuity of the random variable can

be useful for providing shorter Cls for py.

Consider a special case of Proposition 5.4. Let Y be a random variable with dis-

tribution G(y) € F and X be the variable X = (22X)® Jpcy<, with distribution

z

F(z) € .7-'[011],‘ where 2 is deterministic. X is a mixture between a continuous variable
bounded on (0,1] and a probability mass at x = 0. Hence, F(z) is continuous on (0, 1]
with F(0) = Prob(Y‘ > z) = p and F(1) = 1. Its corresponding Kolmogorov-Smirnov
statistic is (see Appendix 2 for the proof):®

VE|p,

1 n
KSp = m[%)lcl E;Il.[F(Xk) <] —v|.

COROLLARY 5.5. [Range monotonicity with a mass at the lower boundary]

4The interest of this special case will appear later when applying the inference methods to poverty
measures.
°In practice, the true value of p is generally unknown, but can be estimated.
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Let X, and X, be two random variables with respective distribution functions Fy(z) €
Flay and Fy(x) € Fayp), continuous on (a,b], whose means are finite such that p; =
Fi(a) < Fy(a) = py. Let X?,...,X2 be n ii.d. observations on X, and F,(z) be the
corresponding empirical distribution function. For any level a, 0 < o < 1, the Anderson
confidence interval obtained using appropriate critical points for testing the null hypothesis
Ho(F1) as defined by equation (2.5) yields a confidence interval for the mean of Xa with
level larger than or equal to 1 — a, and similarly for the confidence intervals based on

AD, E, ADC, EC’ and BJ.

2.6 Choosing the values of parameter (

In this section, we assess the choice of the regularization parameter (. Regularizing
the Anderson-Darling and the Eicker statistics improves the qualrity of the inference.
Positive values of { considerably increase the power of the regularized Anderson-Darling
and Eicker goodness-of-fit tests: the test power is low for small ¢ but rises quickly when
¢ increases before becoming almost constant. . »

In practice, if ¢ is not chosen independently of the sample that is used to est‘imate
the Cls, the distributions of the statistics may be modified and the properties we have
derived so far will have to be reinvestigated and new critical points simulated. To avoid
this, the optimal value of { may be chosen on an auxiliary sample independent from the
estimation sample of the CIs using a split-sample procedure or other approaches. We
illustrate two ways of choosing ¢ in sections 8 and 9.

In section 8, we investigate the performance of the CIs using Monte Carlo simulations.
In this case, we know the distribution from which the sample is. Then, we can choose
the minimum value of ¢ that provides a “sufficiently” powerful test. In fact, given that
we compute the critical points of the statistics by simulation, \l;ve control the level of the
test and the corresponding Cls. Thus, maximizing the power of the goodness of fit test
allows to minimize the width of the CIs (see Pratt, 1961). The optimal value of ¢ so

obtained depends on the sample size and, to a lesser extent, on the distribution function.
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However, even if the value of ( that maximizes the power of the test is not used, most
of the improvement is achieved as soon as ( is high enough. We use this procedure to
choose the optimal value of ¢ that will be used to perform inference on the Foster, Greer,
and Thorbecke poverty measures.

In section 9, we use PROGRESA data (from México) to analyze the profile of poverty
of Mexican households. In this case, no information about the distribution of the vari-
able is available and the total size of the sample is fixed. A split-sample procedure (seé
Dufour and Jasiak, 1993) can be used to estimate the parameter ¢ and the Cls indepen-
dently each from other. The procedure decomposes as follows. First, the initial sample
is split into two independent subsamples using i.i.d. drawings. Second, one sample—the
auxiliary sample-is used to estimate (by trial and error) the values of the parameter that
minimize the v;ridth of the Anderson-Darling and the Eicker Cls. Third, the remaining
sample-the estimation sample-is used to estimate CIs with the formulas provided in the
last two sections. This out of sample procedure guarantees that the auxiliary sample
and the estimation sample are independent and insures the validity of the inference, the
distribution of the statistics being held unchanged by the estimation of the parameters.
Ideally, one would use a small part of the initial sample as auxiliary sample-some the-
oretical studies (see Dufour and Jasiak, 1993) recommends to use up to 10 percent of
the sample. However, the width of the nonparametric Cls from the regularized statistics
depends critically” of the value of {. So does the performance of the inference methods.
We thus propose to use up to 20 percent of the initial sample to estimate (, whenever
the sample size allows us to do so. ‘

For both procedures, the optimal value of { for the Anderson-Darling statistic is very
likely to be different from those for the Eicker statistic. Moreover, the critical points of
both statistics need to be simulated at each step of the procedures, for the value of

being tested and the current choice of sample size and other involved parameters.
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2.7 Application to the Foster, Greer, and Thorbecke

poverty measures

Using the generalization of our inference methods to higher moments, we apply them to

the popular Foster, Greer and Thorbecke (1984) poverty measures. These are defined by

Ay = [ (Z;y)‘s aF(y)

where § > 0, Y is a welfare indicator (which is generally income or expenditures) with

continuous distribution function Fy(y) of support [0,+00), and z is the poverty line.

Rewriting them yields:

z

P5(Y,z) = /Dm (z - 9)5 Iy < z] dF(y) = E[X]

where

X = (ZQYY 10<Y < 2

is a random variable bounded on [0, 1] with cumulative distribution

0 if x <0,
Gx(z) =< 1- Fylz(1 — zV/)) if 0 <z <1,
1 ifxr>1,

and a probability mass Gx(0) = 1 — Fy(z) at 0.

The FGT poverty measure is the mean of a bounded random variable. Procedures
adapted to bounded random variables can then be applied to them. We perform infer-
ence on these measures using inference methods proposed in this paper. Monte Carlo
simulations are done to study the performance of the CIs.

Let
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be an unbiased estimator of P; with variance V(ﬁg) = %[ﬁgtg - 1862] The asymptotic
N(0,1) t-statistic W = (135 - Pg) /17 [ﬁg] can be used to test Hy : Ps = P against
the alternative H, : P5 # P? (see Kakwani, 1993). The corresponding asymptotic and

bootstrap ClIs with level 1 — « for Ps are, respectively:

A ~ Y q1/2 ~ : o q1)2
Ch(a) = {po ER: P20 o)+ [V(Pg)] < po < By +21_a) * [V(Pg)] } ,

(136)] 1/2} :

where 2z, and D(vz‘)’) are the p** percentiles of the standard normal distribution and the

o~ o~

~ 1/2 ~
CE(a) = ,{po €R: P~ DY o)+ [V(Pg)J <po < Bs— Dl [

<

bootstrap distribution of W, respectively.
—~ n
Similarly, rewriting P; = %ZXi where X; = (%/l)(S 1}y,<4}, Vi, the Hora and Hora
i=1 S

‘and Fishman ClIs for Ps are

Cg&H(a) = {Po eR: 135 —cis(a) <py < ﬁg + ch(a)} ,

Ch(@) = {po€R:pp(Xn,n,a) < po < py(Xn,n,0)},
where ckg(a) is the (1 — ) Kolmogorov-Smirnov percentile value,

{t :0<t<P;<1and ePott) = a/2} if Ps>0,

L = ~
0if Ps =0,
{t :0< By <t<1 and et-Po1-t) = a/2} if B <1,
Hu =

=14 B=1,

and f(s,u) = (s+u)Infu(s+u) |+ (1—-s—u)In[(1—-u)(1-s—u)for0 < s < 1—u.
Finally, Theorem 3.4 provides the following emipirical distribution-based CIs for P; :

Cry(a) = {po € R: py < po < py},
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where '
pr = 1= FY X[ Xensn + 3 [FY (X)) = FY (Xe) | Xeor
k=1
= [1 = B X Xy + Y | FE(Xq) - FE(X )] Xooy,
k=1
and Xy < --- < X(,) are the order statistics of a sample of n i.i.d. observations on X,

X0y =0, Xnpy = 1, FIl(z) = max{GE(z), 0}, and FY(z) = min{GY(z), 1}, Vz, where
GL and GY are the lower and the upper bounds of the CB with level 1 — a for Gx (z),
respectively. These CBs can be the Kolmogorov-Smirnov, Anderson-Darling, Eicker,
regularized Anderson-Darling and Eicker, or Owen CBs for distribution functions. We
demonstrated that the continuous conservative critical points of the underlying empirical
distribution-based statistics can be used to derive conservative Cls for P;. Moreover,
the property of range monotonicity with a mass at the lower boundary we derived in
Corollary 5.5 allows the construction of narrower Cls for Ps, adjusted for the pattern

that exhibits Gx(x).

2.8 Monte Carlo study

In this section, we use Monte Carlo simulations to study the performance of the Cls for
the poverty measure P, (Fj, for § = 2). We suppose that the income Y comes from a

mixture:

z with probability 1 — P,
SM (a,b,c) with probability Fp,

Y =

where SM(a,b, c) is the Singh-Maddala distribution with cumulative distribution func-
tion F(y) =1 — [1 + ay®)~°. This distribution has been proven by Brachman, Stich,
and Trede (1996) to mimic the income of several developed countries, such as Germany,
well. Following Davidson and Flachaire (2007), we set « = 100, b = 2.8, and ¢ = 1.7.
We assume that the poverty line, z, is half the median of the SM(a,b,c) distribution
and that Py = 0.1. The true value of P, is P} = 0.013017 P,, for our setup. ClIs
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with level 95% are simulated for sample sizes n = 50,100,200 and n = 500, 1000 using
N = 10,000 and N = 500 replications, respectively. For a SM(100,2.8,1.7), the proba-
bility of having obsefvations greater than z is n = 0.89. Thus, the probability that X =0
is p = (1 — By) + nPp. The results of the simulations are presented in Table 2.1 and 2.2.
Table 2.1 illustrates the choice of the regularization parameter { and Table 2.2 provides
the coverage probability and the average width of the simulated CIs for p = 0.989-which
corresponds to 7 = 0.89-and p = 0—which corresponds to the continuous conservat_ive

case.

2.8.1 Choice of {

We study the choice of the regularization term { adapted to the Singh-Maddala distri-
bution and the sample sizes of the simulations. We choose ( such as to maximize the
power of the test Hy : X ~ SM(100,2.8,1.7) versus H; : X ~ SM(100,2.89,1.7). We
compute the power of the test for n = 500 observations—the median sample size of our
simulations—using N = 10, 000 replications. The critical points of the statistics of E,
E¢, A, and A; are simulated for a levél a = 5% and values of ¢ from 0.005 to 1,000, 000.
Table 2.1 provides the level and the power of the corresponding goodness—of—ﬁt tests.
The results show that for ( = 0, the Anderson-Darling and Eicker tests have a very
low test power, less than 4.2% for AD and less than 19% for E. The powef increases
considerably when ( is different from zero: it is low for small { but increases quickly
when ( increases before becoming almost constant. We choose { = 0.07, the lowest value

of ¢ that increases the test power “sufficiently.”



Table 2.1 : Chéice of ¢ : simulated level and power of the
Kolmogorov-Smirnov based tests for different values of ¢
HO: X ~ SM[100,2.8,1.7] vs H1: X ~ SM[100,2.89, 1.7]
n = 500, and N = 10,000 replications

level (in %)

¢ E E. AD AD.
0.005 511 452 459 5.09
0.070 514 5.08 477 5.01
0.100  4.95 4.95 484 4.96
0.150 540 508 5.16 5.30
0200 4.75 458 498 4.71
0.300 511 524 529 5.04
0400 528 506 4.74 5.22
0.500 482 518 517 5.13
0.750 495 523 458 521
1.000 516 4.98 523 5.08
10.000  5.02 4.61 4.83 461
100.000 517 520 5.20 5.20
1,000.000 512 5.38 4.78 5.38
1,000,000.000  5.11 4.94 5.03 4.94

105
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Power (in %)
¢ E E. AD AD,
0.005 1832 4579 4.12 51.20
0070  17.96 62.838 3.56 61.16
0.100 18.29 62.89 3.89 61.80
0.150  18.41 63.37 3.90 63.42
0.200 17.86 62.69 4.00 61.88
0.300 18.81 6444 3.90 63.63
0400 17.78 61.94 3.72 62.00
0500 17.52 63.34 3.84 62.92
0750  18.31 63.36 3.96 63.28
1.000 1750 6291 3.87 62.74
10.000  18.04 61.73 4.03 61.69
100.000 18.22 62.57 3.73 62.57
1,000.000  17.37 63.40 3.93 63.40
1,000,000.000  17.92 62.32 3.57 62.32

2.8.2 Results

Table 2.2 provides the coverage probability and the average width of the CIs for Pé. The
first part of Table 2.1 shows that the asymptotic and bootstrap Cls are not reliable, even
for fairly large samples. The coverage probability of the asymptotic CI is 31.85 percent
for n = 50 and increases to 84.20 percent for n = 1000 while those of the bootstrap-t CI
goes from 25.03 percent for n = 50 to 92.10 percent for n = 500, reaching the nominal
level of confidence—95 percent—only at n = 1000. As n increases, the proportion of zero
values becomes lower and lower, improving the coverage probability of the bootstrap
CI. However, when the bootstrap fails, it yields bad precision in addition to its poor
coverage probability. By contrast, the exact nonparametric Cls are strongly. reliable.
Exact nonparametric CIs provide coverage probability typically larger than the nominal

level for all sample size, even when the adjusted (nonconservative) critical values are
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used. \ ‘

Amongst the exact Cls, the regularized Anderson Darling-type and Eicker-type Cls
perform the best. When continuous conservative critical points are used, Fishman’s
CI achieves the best width bécause it accounts for the noncontinuity of the distribution.
However, the computation of this CI is time consuming. When critical points are adjusted
to take into accouﬁt the discontinuity of X, the regularized Eicker-type CI achieves the
best width followed by the regularized Anderson Darling-type CI. The adjustment to the
discréte framework has a great impact on the width of CIs, reducing it by a factor of
approximately 3. The Anderson Darling-type and Eicker-type CIs are worse than the
regularized CIs, as expected. Anderson’s CI performs as well as the regularized Anderson
Darling-type one for n = 500 and n = 1000. Likewise, for these sample sizes, the Berk
Jones-type CI yields precision comparable to those based on the regularized statistics
but building it requires to compute 500 and 1000 optimizations, respectively. Then,
when considering the reliability, the constancy in the performance, and the easiness of
computation, the regularized Anderson Darling-type and Eicker-type Cls provides the
best CIs for P,, even though the optimal value for ¢ are not used.



Table 2.2: Simulated confidence intervals for the FGT poverty measure P(Y, 2)

z with probability 1 — Fy = 0.1

" withY = , ¢ =0.07,
SM(100,2.8,1.7) with probability Py, = 0.9
N = 10,000 replications for n = 50, 100, 200, and
N = 500 replications for n = 500, 1000
Coverage probability (in %)
n 30 100 200 500 1000
- Asymptotic p= 31.85 46.03 6187 77.00 84.20
p=0989 | - ] ] - -
Bootstrap-t p=20 25.03 39.13 6278 92.10 96.40
p = 0.989 - - - - -
Fishman p=0 94.07 93.76 9524 99.30 100.00
p=0989 | - - - - ;
Hora & Hora p=20 100.00 100.00 100.00 100.00 100.00
p =0.989 | 100.00 100.00 100.00 100.00 100.00
Anderson p=0 100.00 100.00 100.00 100.00 100.00
p=0989 | 99.89 99.88 99.98 99.90 100.00
Eicker p=20 100.00 100.00 100.00 100.00 100.00
p=0989 | 9991 99.82 99.86 100.00 100.00
E¢ p=0 100.00 100.00 100.00 100.00 100.00
p=0989 | 99.90 99.88 99.98 99.90 100.00
AD p=20 99.99 100.00 100.00 100.00 100.00
p=0989 | 99.84 .99.95 99.99 100.00 100.00
AD:¢ p=0 100.00 100.00:- 100.00 100.00 100.00
p=0.989 | 100.00 100.00 100.00 100.00 100.00
BJ . p=0 99.99 99.99 100.00 100.00 100.00
p=0989 | 9961 99.79 99.92 9990 99.80
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Width
n 50 100 200 500 1000
Asymptotic p=0 0.005 0.004 0.004 0.003 0.002
p = 0.989 - - - - -
Bootstrap-t -~ p=10 7.421 7.076 60.935 4.119 0.011
p = 0.989 - - S -
Fishman p=0 0.076 0.041 0.023 0.011 0.007
p=0989| - - . —
Hora & Hora p=20 0.377 0.268 0.190 0.121 0.086
p=0.989 | 0.098 0.058 0.038 0.022 0.015
Anderson p=20 0.190 0.135 0.096 0.062 0.044
p=0.989 | 0.050 0.030 0.020 0.012. 0.008
Eicker p=0 0.946 0.898 0.824 0.691 0.596
p=0.989 | 0942 0.895 0.821 0.690 0.595
E¢ p=0 0.107 0.073 0.051 0.032 0.023
p=0:989 | 0.038 0.025 0.017 0.011 0.008
AD p=0 0.455 0.296 0.175 0.079 0.042
p=0.98910.306 0.183 0.102 0.045 0.024
AD, p=0 0.167 0.105 0.067 0.039 0.026
p=0.989 | 0.047 0.029 0.019 0.012 0.008
BJ p=0 0.103 0.056 0.031 0.015 0.009
p=0.989 | 0.056 0.034¢ 0.020 0.011 0.007

2.9 Empirical illustration
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In this section, we analyze the profile of poverty of rural Mexican households using our

inference methods. We employ data that have been collected as part of the targeting

and evaluation program of PROGRESA.5 A census of households in a set of 506 rural

SPROGRESA is a health, education, and nutrition program of the Mexican government aimed to
reduce poverty in targeted rural communities. Details about this program and the data they collect can
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communities has been conducted in 1997, 1998, and 1999 and the data processed to insure
comparability. Data about households’ characteristics are extracted from the November
1997 survey and expenditure aggregate is constructed using the March 1998 survey.” The
poverty line is set to 159 pesos, the per capita expenditure of the median household in
the full set of households.

Interestingly, these data allow one to analyie poverty in Mexico both at the national
and regional levels. First, using the census as a whole, we build CIs for the levgl of
poverty P, of rural households in Mexico. Then, drawing samples randomly from the
census, we study the profile of poverty of PROGRESA targeted communities and compare
the performance of our improved nonparametric inference techniques to the existing
ones. Furthermore, we analyze the determinants of poverty in rural areas in Mexico for
the involved communities using vdrious household characteristics including the gender
and the level of education of the household’s head. We compare the poverty profile of
households with a female head to those of households which head is a male, and the
poverty profile of households with an educated head to those with a non-educated head.

A split-sample approach is chosen to estimate the regularization term (.

The results show that in addition to being unreliable, the widths of the asymptotic
CIs are often too small to be realistic while the bootstrap can fail even in precision,
delivering CIs which widths can be ten times larger than those of the exact methods.
The analysis of profile of poverty shows that on average, rural households targeted by
PROGRESA do not have a very high level of poverty. However, the poverty profile
depends greatly on the type of households’ head. The le‘vel of poverty among households
with a male head is much smaller than the level of poverty among households with a
female head. Moreover, households with an educated head appear to be more prone
to escape poverty than households wi.th a non-educated head. These conclusions raise

questions about the equity in the distribution of Mexican wealth and provide hints for

be obtained on the website of IFPRI (International Food Policy Research Institute): www.ifpri.org.

"The data set excludes households in the expenditure survey that had not been interviewed in No-
vember 1997 and 10 communities with fewer than 10 households with expenditure information, leaving
20544 households in 496 communities (see Demombynes, Elbers, Lanjouw and Lanjouw, 2007)
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designing policies to reduce poverty in rural Mexico. Policies aimed at reducing illiteracy
of households members in these cdmmunities can be effective in reducing poverty. Those
education programs should target both children and adults, in particular households’
heads to have short-term effects. Likewise, policies aimed at securing the income of
households with a female head could help reduce poverty in rural Mexico. An example of
such policies can be reforms aimed at >securing land ownership for female or at improving
labor productivity for households with a female head, the latter being less productive for

physically intensive activities such as farming.

2.9.1 Analysis of the poverty profile of rural households in Mex-
ico

We use the census data to build Cls for the level of poverty P, of rural households in
Mexico. The following split sample procedure is used to choose the value of (. First, we
draw randomly without replacement an auxiliary sample of 20 percent of the original data
set to estimate ( for the regularized Anderson-Darling and Eicker statistics. For different
values of {, we simulate the critical points of the statistics and cdmpute the corresponding
CI for P,. Then, we choose { so as to minimize the width of each CI. Second, we build
CIs for the FGT poverty measure P, using the rerﬁaining 80 percent of the sample-the
estimation sample. By construction, the built auxiliary and the estimation samples are
independent and our inference methods can be abplied.

Table 2.3 presents the critical point of the {—regularized Anderson-Darling and Eicker
ClIs and the width of the CIs using different values of { on the auxiliary sample. The
smallest widths are achieve by ¢, = 0.004 for the regularized Anderson Darling-type
CI and (g = 0.0062 for the regularized Eicker-type CI. We use these values for the rest

of this analysis.



Table 2.3: Choice of { and ¢ 4 based on an auxiliary sample of n; = 1000

¢ CE, width (in %) ¢ CAD, width (in %)

0.0001 - 9.4615631 3.299 0.0001 3.2947588 2.065
- 0.0004 4.9269052 2.110 0.0004 2.9433350 1.825
0.0008 3.8322506 1.832 0.0008 2.7829854 1.743
0.0010 3.5789932 1.769 0.0010 2.7307002 1.722
©0.0030 2.7472731 1.593 0.0020 2.5686677 1.678
0.0040 2.5956398 1.578 0.0030 2.4592033 1.662
0.0050 2.4723399 1.568 0.0035 2.4167582 1.661
0.0060 2.3799549 1.567 0.0039 2.3817260 1.658
0.00610 2.3709240 1.567 0.0040 2.3730547 1.657
0.00615 2.3674749 1.567 0.0045 2.3356472 1.657
0.0062 2.3615190 1.566 0.0050 2.3010155 1.658
0.0065 2.3356573 1.566 0.0055 2.2770130 1.666
0.0070 2.2972038 1.566 0.0060 2.2569682 1.677
0.0075 2.2704249 1.571 0.0070 2.2036625 1.684
0.0080 2.2361952 1.572 0.0100 2.0612441 1.696
0.0090 2.1752713 1.575 0.0300 1.5690714 1.756
0.0100 2.1205124 1.578 0.0500 1.3455539 1.802
0.0300 1.5741812 1.666 0.0700 1.1872093 1.815
0.0600 1.2460575 1.732 0.1000 1.0268528 1.822
0.07 1.1742951 1.743 0.5000 0.4938216 1.840
0.08 1.1116034 1.750 2 0.2510734 1.845
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Table 2.4 provides the estimation results. The lines Asymp, and Bootstrap, give the

asymptotic and bootstrap-t Cls estimated on the residual sample and the lines Asymp

and Bootstrap refer to Cls estimated with the whole sample. The regularized Anderson

Darling-type CI-based on AD.—achieves the best width among all CIs followed by the
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asymptotic and bootstrap Cls. However, we have shown that these asymptotic methods
can be unreliable when applied to distributions of the kind involved in poverty studies,
even with fairly large samples. The width of the regularized Eicker-type CI (based on
E;) is relatively close to those of the others: it is 0.201 for all households, 0.04 higher
than the width of the asymptotic CI and 0.059 more than the width of the bootstrap CI.
However, this CI performs far better than the other nonparametric CIs, including the
Berk Jones-type CI. |

According to the AD, CI, rural Mexican households have a level of poverty between
0.499 percent and 0.566 percent with a level of confidence of 95 percent. This range of
poverty level seems relatively low. However, it does not reflect the underlying situation
of the country. When we study the level of poverty of households taking in account some
characteristics of those households, it appears that poverty is unevenly distributed among
populations. Still according to the regularized Anderson Darling-type CI, households
with a male head are much less poor than households with a female head. Poverty
levels range from 0.405 percent to 0.469 percent for households with male head and
from 1.166 percent to 1.538 percent for households with female head, a difference of
0.761 percent and 1.069 percent for the lower and the upper bounds, respectively. This
difference may be due to the fact that Mexican households are in large part farmers.
Households with a male head are likely to raise more revenue from harvest than others
and thus, they are more prone to \escape from poverty. This feature might also be related
to the land successional law in rural areas which usually prioritize men against women.
Likewise, Tables 2.4.b and 2.4.c show thaf‘, the level of education of households’ head
has a dampening' effect on poverty. The level of poverty of households whose head has
no education ranges from 0.915 percent to 1.107 percent, which is respectively 0.624
percent and 0.757 percent larger than the bounds of the poverty level for households
with educated leader. Education appears to be determinant in improving the financial
situation of the households and allow them not to live in poverty. |

Comparing the performance of the various inference methods, we see that the asymp-

totic and the bootstrap Cls achieve the smaller width among all the methods. However,
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we have shown that this method can be unreliable when applied to distributions of the
kind involved in poverty and inequality studies, even with fairly large samples. Among
the nonparametric Cls, the regularized Anderson-Darling and Eicker statistics yield the

best inference, with widths very close to those of the asymptotic CI.

Table 2.4: Mexican households: Confidence intervals for the FGT poverty measure
Py(Y, z) for different types of households’ heads
n = 20485, (4p = 0.004, {5 = 0.0062

Table 2.4a: All households

Confidence Intervals (in %)

min max width
Asymp, 0.450 0.613 0.163
Asymp 0.462 0.624 0.161

Bootstrap, 0.445 0.627 0.182
Boofstrap 0.476 0.619 0.142
Fishman 0.415 0.695 0.279
Hora Hora -1.463 2.549 4.012
Anderson  0.003 2.549 2.546

Eicker 0.354 0.732 0.378
E¢ 0.432 0.632 0.201
AD 0.360 0.833 0.473
AD, 0.499 0.566 0.066

BJ 0.044 2.688 2.644




Table 2.4b: Households with

an educated head

Table 2.4c: Households with A

a non-educated head
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Confidence Intervals (in %)

Confidence [ntervals (in %)

Asymp,
Asymp
Bootstrap,
Bootstrap
Fishman
Hora-Hora
Anderson
Eicker

E¢

AD

AD,

BJ

min
0.244
0.254
0.256
0.266
0.215
-0.807
0.003
0.147
0.227
0.177
0.291
0.039

max

0.395
0.404
0.419
0.432
0.477
1.464
1.464
0.511
0.413
0.636
0.350
1.370

width
0.151
0.150
0.163
0.166
0.262
2.271
1.461
0.364
0.186
0.459
0.059
1.331

Asymp,
Asymp
Bootstrap,
Bootstrap
Fishman
Hora-Hora
Anderson
Eicker

E¢

AD

ADc

BJ

min
0.806
0.825

0.842
0.717
-1.639
0.031

0.753
0.602
0.915
0.163

max
1.210
1.224

11.230

1.292
1.408
3.689
3.689
1.507
1.262
1.794
1.107
3.639

width
0.405
0.399
0.388
0.451
0.691
5.328
3.658
0.964
0.509
1.192
0.192
3.476




Table 2.4d: Households with

a female head

Table 2.4e: Households with

a male head
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Confidence Intervals (in %)

" Confidence Intervals (in %)

Asymp:
Asymp
Bootstrap,
Bootstrap
Fishman
Hora Hora
Anderson
Eicker

E¢

- AD

AD,
BJ

min
0.919
0.971
0.941
1.014
0.812
-3.025
0.002
0.506
0.858
0.633
1.166
0.087

max
1.765
1.805
1.829
1.847
2.184
5.801
5.801
2.270
1.825
3.132
1.538
6.782

width
0.847
0.834
0.888
0.833
1.373
8.827
5.800
1.764
0.967
2.500
0.372
6.696

Asymp,
Asymp
Bootstrap,
Bootstrap

Fishman

- Hora Hora

Anderson
Eicker

ke

AD

AD,

BJ.

min
0.360
0.368
0.369
0.384
0.323
-0.701
0.022
0.256
0.338
0.276
0.405
0.091

max
0.512
0.518
0.529
0.531
0.590
1.587
1.587
0.630
0.535
0.731
0.469
1.420

width
0.152
0.151
0.160
0.147
0.267
2.288

1.565

0.374
0.197
0.454
0.064
1.329
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Comparing the performance of the various inference methods, we see that the asymp-
totic and the bootstrap Cls achieve the smaller width among all the methods. However,
we have shown that this method can be unreliable when applied to distributions of the
kind involved in poverty and inequality studies, even with fairly large samples. Among
the nonparametric Cls, the regularized Anderson-Darling and Eicker statistics yield the

best inference, with widths very close to those of the asymptotic CI.

2.9.2 Analysis of the profile of poverty of the Mexican house-
holds targeted by PROGRESA

We use subsamples of n = 500 and 1000 to perform inference for the level of poverty of
PROGRESA-targeted households and illustrate the relative performance of the improved
CIs compared to those of the other methods on samples of such sizes. We implement the
same procedure as previously. First, we draw randomly without replacement a sample
of n observations from the census. Second, we apply a split sample procedure to choose
¢ and estimate the Cls: we use an auxiliary sample of twenty percent (20%) of each
subsample to estimate ( and use the independent remaining sample to estimate the Cls.

Tables 2.5 and 2.7 present the critical points of the (—regularized Anderson-Darling
and Eicker statistics and the width of the corresponding CIs using different values of (
and the auxiliary samples. For n = 500, the smallest widths are achieved by (4p = 0.45
for the regularized Anderson Darling-type CI and (z = 0.039 for the regularized Eicker-
type CL. For n = 1000, the smallest widths are achieve by ¢, = 0.5 and (g = 0.05.

These values will be used to perform inference for P, in the remaining of this subsection.
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Table 2.5: Choice of (g and {4, based on an auxiliary sample of n, = 100

¢ CE, width (in %) ¢ CAD, width (in %)

0.0001 26.3000000 19.085 0.0001 4.40795891 17.391
0.0004 13.1500000 10.501 0.0010 3.15955927 10.366
0.0010 8.3167902 7.406 0.0030 2.71751268 8.346
0.0020 5.8808588 5.897 | 0.0070 2.42001073 7.307
0.0030 4.8017011 5.255 0.0100 2.31582510° 7.062
0.0040 4.1583951 4.886 0.0400 1.70609029 6.001
0.0070  3.1434512 4.337 0.070 1.36385347 3.463
0.0100 2.6300000 4.082 0.100 1.16889614 5.227
0.0200 1.8596908 3.745 0.20 0.84814868 4.92147
0.0300 1.5184312 3.620 0.25 | 0.75047690 4.78842
0.0350 1.4057941 3.582 0.30 0.68926165 4.75870
0.0370 1.3672719 3.570 040 0.60397513 4.73807
0.0380 1.3491615  3.564 0.45 0.56616351 4.69061
0.0390 1.3317523 3.559 0.50  0.54091567 4.70103
0.0400  1.3220528 3.569 0.55 0.51486184 4.67863
0.0410 1.3060056 3.564 0.60 0.49171955 = 4.65577
0.0420 1.3086985 3.600 1 0.38420230 4.63463
0.0440 1.2892718 3.615 10 0.12147042 4.558
0.0450 1.2823184 . 3.628 40 0.06140494 4.594

0.0500 1.2477436 3.683 100  0.03832555 4.542
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Table .2.6:' Mexican householdsin PROGRESA: Confidence intervals for P,(Y, z) for
different types of households’ heads
n = 500, (4p = 0.45, (= 0.039

Table 2.6a: All households

Confidence Intervals (in %)

“min max width
Asymp,  -0.132 1257  1.390
Asymp 20.017  1.200 1.217

Bootstrap, -0.009  9.908 9.917
Bootstrap 0.167 11.797 11.631
Fishman 0.071 2.055 1.985
Hora-Hora -0.995 2.178 3.172
Anderson  4.9E-05 2.178 2.173

Eicker 0 1.938 1.938
E; 7.7E-06 2.104 2.104
AD 0.069  5.333 5.264
AD, 49E-06 2.422 2.422

BJ 0.069  2.188 2.120




Table 2.6b: Households with

an educated head
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Table 2.6c: Households with

a non-educated head

Confidence Intervals (in %)

Conﬁdence Intervals (in %)

Asympy
Asymp
Bootstrap,
Bootstrap
Fishman
Hora-Hora
Anderson
Eickelr
Ficker,
AD

AD¢

BJ

min

-0.313
-0.166
-0.029
0.077
0.022
-1.133

0

0

0
0.036

0.026

max

1.079

1.125
4.838
7.265
2.229
2.092
2.092
1.800
1.855
6.721
2.208
2.303

width
1.392
1.291
4.866
7.188
2.207
3.225
2.092
1.800
1.855
6.685
2.208
2.278

Asympr
Asymp
Bootstrap,
Bootstrap
Fishman
Hora-Hora
Anderson
FEicker
Eicker;
AD

AD¢

BJ

min max

-0.674  2.657
0521 2.274

0  63.382
0.010 44.883
0.017  4.920
-3.064 4.817
0.005 4.817

0 3.680
0.001 4.626
0.055 15.092
0.002 5.708
0.036 5.106

width
3.331
2.795
63.634
44.893
4.903
7.882
4.812
3.680
4.625
15.037
5.706
5.070




Table 2.6d: Households with
a female head
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Table 2.6e: Households with

a male head

Confidence Intervals (in %)

Confidence Intervals (in %)

Asymp,
Asymp
Bootstrap,
Bootstrap
Fishman
Hora-Hora
Anderson
Eicker

E¢

AD

AD¢

BJ

min
-0.019
-0.948
0.014
-0.437

- 3.2E-05

-6.764
3.6E-05
0.017
0
0.075

0.053

max
0.165
3.696
0.555
56.411
10.682
9.511
9.511
40.349
5.179
31.291
10.033
9.471

width

0.185

4.644
0.541
56.848
10.679
16.275
9.508
40.332
5.179
31.216
10.033
9.418

Asymp,
Asymp
Bootstrap,
Bootstrap
Fishman
Hora-Hora
Anderson
Eicker

E;

AD

AD,

BJ

min

-0.156
-0.123
0.074
0.054
0.038
-1.142

0

0

0 -
0.044

0.035

max
1.392
1.121

11.075
47.155

2.007
2.140
2.140
1.808
2.182
5.690
2.459
2.136

width
1.548
1.244
11.001
47.102
1.969
3.283
2.140
1.808
2.182
5.646
2.459
2.101
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Tables 2.6 and 2.8 show the estimated Cls for P, corresponding to n = 500 and
n = 1000, respectively. The lines Asymp, and Bootstrap, give the asymptotic and
bootstrap CIs estimated on the residual sample and the lines Asymp and Bootstrap refer
to CIs estimated on the whole sample. We use QIS based on simulated critical points to
compare the Berk Jones-type CI to the other ones.

For both samples, the asymptotic CT achieves the best width among all CIs but given
the size of the samples, its validity is questionable. The performance of the bootstrap
method is not consistent throughout the subsamples: the bootstrap CI sometimes deliv-
ers the second best width but usually provides a very poor precision with a width over
50 times larger than those of the nonparametric CIs. Nonparametric methods provide
CIs with width very close to those of the asymptotic CI, while being strongly reliable as
proved by the Monte Carlo simulation. For n = 500, the performance of the regularized
methods is similar to that of the other nonparametric methods but it improves when
n = 1000. The regularized Eicker CI becomes the best nonparametric method or one of
the best, depending on the studied subsample. However, the performance of the regular-
ized statistic is not clearly above those of the other nonparametric approaches as was the
case when the census was used. 'On some subsamples, The Eicker and the Fishman Cls
provide results comparable those based on the regularized CIs. These results emphasize
two features: (1) the importance of estimating the regularization term with large enough
number ‘of observations and (2) the link between the magnitude of the improvement and
the underlying distribution of the observations. When chosen over an auxiliary sample
of 100 or 200 observations, the values of the parameters are higher than those chosen
when using an auxiliary sample of 1000 observations. Thus, though still improving signif-
icantly the initial methods—especially for the Anderson-Darling statistic-the magnitude
of this improvement is lowered. Of course, this improvement depends a lot on the un-
derlying distribution. The more the distribution exhibits heavy tails, the higher is the
improvement achieved by regularized statistics.

For n= 100, the CI based on E shows that 95 percent of rural households targeted by
PROGRESA have a level of poverty between 0 and 1.94 percent. However, the incidence
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of poverty differs depending on the characteristics of the head. Still according to the
Eicker-type CI, the incidence of poverty among households with a non-educated head is
more than twice those of the households with an educated head. A similar picture is
depicted by the regularized Eicker-type CI when the gender of the households’ head is
accounted for: households with a male head appear to have half less poor than households
with a female head. Similar conclusions arises for n = 1000. A male head with a minimum

level of education increases highly the likelihood of escaping from poverty.

2.10 Conclusion

In this paper, we propose finite-sample nonparametric ClIs based on empirical distribu-
tion functions for the mean of a bounded random variable. We develop an innovative
methodology to derive Cls for any monotonic functional of a distribution function from
CBs for this distribution using projection techniques. Two CIs can be derived from each
CB: one using the whole bands and one using their restricting parts. The latter accounts
for the property of the distribution functions which, by definition, always have values
between 0 and 1 and is thus, thinner. We apply this method to the mean of a bounded
random variable and provide explicit expressions that are easy to compute.

We prove that the Anderson’s (1969) CI for the mean a bounded random variable
is an application of our general methodology using the Kolmogorov-Smirnov CB. We
_ employ standardized Kolmogorov-Smirnov statistics improved along the three common

principles in econometrics: the Wald, likelihood-ratio, and Lagrange multiplier principles.
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Table 2.7: Choice of (g and (4p based on an auxiliary sample of n; = 200

¢ Ck, width (in %) ¢ Cap, width (in %)
0.0001 20.9925446 13.601 0.0001 4.1608955 9.274.
0.0010 6.6547755 5.085 0.0010 2.9710255 5.618
0.0050 3.0160473 3.155 0.0100 2.1509049 4.164
0.0070 2.7526871 3.116 0.0700 1.2028817 3.513
0.0100 2.4304286 3.048 0.1000 1.0494495 . 3.485
0.0300 1.6107040 . 2.981 - 0.3000 0.6431794 3.396
0.035 1.5066083 2.97118 0.4000 0.5642136 3.397
0.04 1.4203946 2.96373 0.4500 0.5325776 3.389
0.043 1.3752673 ‘ 2.95998 0.5000 0.5053236 3.380
0.045 1.3474672. 2.95772 0.5500 0.4832031 3.380
0.047  1.3212876 2.95564 0.6000 0.4636555 3.380
0.0500 1.2847303 2.953 0.6500 0.4463966 3.380
0.055  1.2409542 2.968 0.7000 0.4295599 3.372
0.060  1.2129317 3.003 0.7500 0.4157600 3.373
0.065 1.1867258 3.034 0.8000 0.4025083 3.369
0.070 1.1621481 3.062 0.9000 0.3802611 3.369
0.090 1.0771866 3.152 l‘ 1 013601782 3.360
1 0.3594028 3.323 2 0.2553817 3.347
2 0.2560654 3.338 10 0.1151254 3.351
3 0.2100206 3.348 - 100  0.0364016 3.347

100 0.0364098 3.347 1000 0.0115271 3.350
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Table 2.8: Mexican households in PROGRESA: Confidence intervals for P,(Y z) for
different types of households’ heads
n = 10007 CAD = 0.5, and CE = 005

Table 2.8a: All households

Confidence Intervals (in %)

min max width
Asymp, - 0.331 1.313 0.982
Asymp 0.364 1.261 0.897

Bootstrap, 0.447 2.428 1.981
Bootstrap  0.455 1.515 1.060
Fishman 0.263 1.840 1.577
Hora-Hora -1.194 2.818 4.012
Anderson  0.019 2.818 2.799

.Ficker ~  0.038 1.858 1.820
- E; 0.151 1.948 -1.796
AD 0.212 3.558 3.346
AD:; 0.149 2.071 1.922

BJ 0.106 3.185 3.080




Table 2.8b: Households with

‘an educated head

Table 2.8¢: Households with

a non-educated head
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Confidence Intervals (in %)

Confidence Intervals (in %)

Asymp,
Asymp
Bootstrap,
Bbotstrap
Fishman
Hora-Hora
Anderson
Eicker

E

AD

AD,

BJ

min

~-0.046

0.059
0.043
0.147
0.076
-0.629
0.005
0
0.001
0.072
0.001
0.083

max

0.758

0.953 -

2.441
1.753
1.616
1.641
1.641
1.545
1.457
4.005
1.594
1.693

width
0.804

- 0.894

2.398
1.606
1.539
2.271
1.637
1.545
1.456
3.933
1.593
1.610

Asymp,
Asymp
Bootstrap,

‘ Bootstrap

Fishman
Hora-Hora
Anderson
Eicker

E

AD

AD:;

BJ

min
0.574
0.457
0
0.628
0.308
-1.144
0.233
0
0.333
0.303
0.362
0.377

max
3.218
2.582
5.196
4.506
4.273
4.184
4.184
4.140
4.546
9.417
4.973
4.413

width
2.644
2.125
4.391
3.877
3.965
5.328
3.950
4.129
4.213
9.114
4.612
4.035




Table 2.8d: Households with
a female head

Table 2.8¢: Households with

a male head
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Confidence Intervals-(in %)

Confidence Intervals (in %)

Asymp:
Asymp
Bootstrap,
Bootstrap
Fishman
Hora-Hora
Anderson
Eicker

E¢

AD

AD,

BJ

min
0.274
0.193
1.288
0.907
0.353
-1.709
0.225
0
0.293
0.359
0.459
0.423

max
6.855
5.215
13.938
14.360
8.899
7.117
7.117
7.976
8.470
20.293
8.871
9.073

width
6.580
5.023
12.650
13.453
8.546
8.827
6.893

7.976

8.177
19.933
8.412
8.649

Asymp,
Asymp
Bootstrap,
Bootstrap
Fishman
Hora-Hora
Anderson
Eicker

E

AD

AD,

BJ

min
0.118
0.181
0.185
0.266
0.123
-0.580
0.040
0.004
0.031
0.115
0.028
0.143

max

0.848
0.947
1.316
1.349
1.545
1.708
1.708
1.519
1.608
3.457
1.757
1.612

width
0.730
0.765
1.131
1.083
1.421
2.288
1.668
1.515
1.577
3.342
1.730
1.469
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These statistics have been proposed by Anderson and Darling .(1952), Eicker (1979),
and Berk and Jones (1979). For further improvement, we use regularized Anderson-
Darling and Eicker statistics proposed in Diouf and Dufour (2005a) where the denomina-
tors of the statistics are corrected by adding a positive nonzero regularization term ((z).
This regularization prevents the denominator of these statistics to become too close to
0 in the tails of the distributions, which would lead to erratic behavior of the statistics.
The weighted Kolmogorov-Smirnov statistics yield CBs which width decréases with ob-
servations further from the center of the distribution and thus provide thinner CIs for
the mean than the Anderson’s CI.

Our study focuses on the question of building CIs for the mean of a bounded random
variable but our methodology is not as restricting as it appears. Solving the problem for
the mean of Y allows one to solve the problem for any moment of Y by replacing the
original data by a function of these data such as ezp(Y') and Y. The CIs we propose in
this paper then provide valid ones for the mean of the new data, which are CIs for the
corresponding moment of the original data. All kinds of transformations can be studied.
Continuous ones will be handled using the same intervals as those proposed while for
noncontinuous ones, interesting monotoriicity properties allow to solve the problem.

We apply these inference methods to the Foster, Greer and Thorbecke (1984) poverty
measures. On observing that poverty measures can be interpreted as the expectation of a
bounded random variable—a mixture of a continuous bounded variable and a probability
mass at the poverty line—we propose that exact nonparametric inference methods for
the mean of a bounded random variable be applied to them.

Monte Carlo simulations show that asymptotic and bootstrap ClIs can fail to provide
reliable inference, even with fairly large samples, e.g. when the distribution presents a
high probability of assuming the value zero—which is quite frequent in practice. By con-
trast, exact inference methods are robust to the underlying distribution and thé sample
size. The proposed CIs have coverage probability typically larger than the nominal level
while remaining informative. The CIs based on the regularized statistics provide the best

width among the exact methods.
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-An illustration using household survey data from Mexico confirms these results. While
the width of the asymptotic CI is often unrealistic, the standard bootstrap can fail even
in precision, delivering CIs of width ten times larger than those of the exact methods.
The study shows that on average, rural households targeted by PROGRESA do not have
a very high level of poverty. However, the poverty profile is uneven from a group of
households to another. Households with a male head and households with an educated
head appear to be more prone to escape poverty than households with a female head or
a non educated head. These conclusions provide hints for designing policies to redu-ce
poverty in rural Mexico. Policies aimed at reducing illiteracy, both for children and
adults, in these communities can be effective in reducing poverty. Likewise, policies aimed
at securing the income of households with a female head by for example (1) securing land
ownership for female or (2) improving labor productivity for households with a female

head, could help reduce poverty in rural Mexico.
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2.11 Appendix 1: Simulated critical points of the

statistics

Table Al. Simulated 95 percentile of the distribution of the Kolmogorov-Smirnov

based statistics

for n. = 500 and N = 1,000, 000 replications

Critical points

¢ E E; AD AD,
0.005  4.80102 3.52808 6.46743 3.18485
0.070 4.80040 2.58235 6.47020 2.57257
0.100 4.79360 2.44064 6.41938 2.42047
0.150 4.80039 2.24627 6.43338 2.22224
0.200 4.79787 2.10995 6.47507 2.10377
0.300 4.79652 1.86659 6.44419 1.86415
0.400 4.79972 1.72506 6.47749 1.71657
0.500 4.80187 1.57861 6.44769 1.57977
0.750  4.79959 1.36796 6.43938 1.36707
1.000 479817 1.22237 6.45349 1.22005
10.000  4.79646 0.42397 6.45115 0.42408
100.000  4.79009 0.13478 6.45162 0.13479
1,000.000 4.79356 0.04240 6.45573 0.04240
1,000,000.000  4.79652 0.00135 6.43729 0.00135




Table A2. Simulated 95 percentile of the distribution of the statistics

for ( =0.07 and N = 3,000,000 replications

Critical points of the statistics

n 50 -100 200 500 1000 -

p=0 0.18830 0.13403 0.09513 0.06038 0.04280

KS p=0.89 |0.10497 0.07000 0.05000 0.03186 0.02240
p =0.989 | 0.04900 0.02900 0.01900 0.01100 0.00726

p= 4.52172 4.65730 4.74005 4.79734 4.82078

E p=0.89 | 3.53697 3.89181 4.03122 4.09756 4.11948
p=0.989 145895 1.47990 1.57515 3.63403 3.96574

p=0 2.79486 2.67435 2.61896 2.59007 2.58192

E: p=0.89 |1.94266 1.87663 1.84708 1.84184 1.84028
p=0.989 | 0.97456 0.88081 0.85356 0.81307 0.81568

p=0 6.44400 6.46184 6.46283 6.44509 6.45195

AD p=0.89 |4.71387 4.72593 4.73024 4.72705 4.73197
p=0.989 | 4.67778 4.69788 4.71145 4.72273 4.72018

p=0 2.56615 2.56437 2.56485 2.56812 2.57179

"AD: p=0.89 | 1.89825 1.83230 1.83339 1.83460 1.83706 .

p=0.989 | 1.21833 1.01972 0.94482 0.86489 0.82060

p=0 0.10414 0.05374 0.02760 0.01138 0.00581

BJ p=20.89 |0.07945 0.04193 0.02194 0.00920 0.00474
p=0.989 | 0.05467 0.03157 0.01680 0.00783 0.00415
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Table A3. Simulated critical points of order 95 percent for the distribution of the

Table A8a: Critical points for the whole sample using {4, = 0.004 and {; = 0.0062

statistics with the optimal values of ¢ for the E; and AD,
N = 3,000, 000 replications

Characteristics of the households’ head

Female Male Educated  Non-educated All
n, 2054 17431 13479 6006 19485
n 2168 18317 14178 6307 20485
p 0.9493 0.9166 0.9827 0.9535 0.9737
KS, 0.493389384 0.338851519 0.291594774  0.473502205 0.358909643
E  4.124905337 4.145787028 4.145149225 4.139179162  4.14495824
Ec 2.501772599 2.212303346 2.104179478  2.439923824  2.252535994
AD 4.731275042 4.741005986 4.72736826  4.753315289  4.73462176
AD, 2.541923946 2.346763514 2.250207895  2.526654076  2.379458442
BJ 0.002181669 0.000271334 0.000343604  0.000778607  0.000244325
Table A3b: Critical points for the subsample of n=500 using (4, = 0.45 and {5 = 0.039
Characteristics of the households’ head
Female Male Educated  Non-educated All
n, 41 359 282 118 400
n 53 447 359 141 500
P | 0.9493 0.9166 0.9827 0.9535 0.9737
KS, 0.592422376 0.347008748 0.305547568 0.467941715 0.354681929
E  1.749763640 3.958754864 3.682018883  3.664690633  3.992906840
E. 1.643870433 1.395120081 1.194585231 1.788845505 1.460821026
AD  4.701031976 4.739227068 4.724159189 4.717678892  4.722350336
AD; 0.867694822 0.506517449 0.446277892 0.721830287  0.540496511
BJ 0.062177097 0.009300228 0.010994130 0.028165890 0.008466719




Table A3c: Critical points for the subsample of n=1000 using ( 4p = 0.5 and (g = 0.05

Characteristics of the households’ head

Female Male Educated® Non-educated All

Ny 88 712 558 - 242 800

n 116 884 698 302 1000

P 0.9493 0.9166 0.9827 0.9535 - 0.9737

K5, 0.475329978 0.340136976 0.299950534 0.462943395 0.348564201
E  3.626525226 4.059987327 4.001971001 4.005076739  3.880275064
E. 1.596639583 1.283268215 1.123470499 1.585207457 1.322617712
AD  4.720719420 4.733501949 4.723195428 4.727067310 4.721280048
AD; 0.653461255 0.472736968 0.407026067 0.647307799  0.489618262
BJ  0.034128232 0.004908066 0.005997227 0.014066270 0.013412891
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2.12 Appendix 2: Proofs of theorems and proposi-

tions

" PROOF OF PROPOSITION 3.2. The proof follows by projection. Considering the CBs of

F(z), Cr(a), and the property of the functional I :

GL(z) < Fy(z)Ve = [[GL] < TRy,

Fy(z) < GY(z) vr = T[Fy) <T[GY).

If Cr(c) exists then with probability 1 — o, ['[GL] < T[F] < T[GY], ¥V Fy € Cr(a).
Moreover, all I'[Fp] such that F € Cr(a) belong to the CI of I'[F].

PRrROOF OF PROPOSITION 3.3. This corollary is an application of Proposition 3.2 with
the functional T'[F'(z)] = f::c dF(z) = p. Computing I'[F(z)] using integration by parts
provides »

p=bF(b) — aF(a) — / F(z)dr = b— aF(a) — / F(z)dz

where the second equality follows because F'(b) = 1 for any distribution function F(z) €
Flapp» by definition. Then if Cr(a) exists, b — aGY(a) — f: GY(r)dr < p < b—aGL(a) -
f: GE(z)dzr with probability 1 — a, i.e.

b ' b
C.(a) = {,uoe R:b— aGf{(a)—/ GY(z)dr < py<b— a.G,LI(a)—/ G,’;(a:)da:}

is a CI with level 1 —a for p. Given that distribution.functions always have values between
0 and 1,
Cr(a) = {FO € £: FL(z) < Fy(z) < FY(x), V:E}

represents a CB with level 1 — a for F(z).Applying the same procedure as for Cr(a)
provide the follbwing CI with level 1 — o for p :

C,(a) = {,uoe R:b-— qﬁg(a)— Lbfg(r)dr < p< b— aFX(a)— /ab ﬁ,’f(z)dm]} .
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ép has the same level as C'r but is thinner for each observation, hence ay(a) is better

than C, (o).

PROOF OF PROPOSITION 3.4. Let F£(x) and FY(z) be such that

Ve  FE(z) = max{GL(z),0} and FY(z) = min{GY(z), 1}.

n

By definition, all distribution functions F'(x) satisfy the inequality 0 < F(z) < 1, Vz.
Then, F£(z) and FY(z) can be considered as the effective (or restrictive) part of the CB

Cr(a). Corollary 3.3 theh provides the following bounds for p :

a a

b _ - b _
pr =b—aFY(a) —/ FU(z)dr <y <b—aFki(a) - / Fi(z)dr = yy.  (2.15)

Using the lower bound:

n

b
pp = b—aF](a) - / FY(z) de =b—aFl(a) = ) [Xus) — Xl FY (Xay)

@ k=0
n n+l1
= b—aF (@) + Y XwFl (Xw) = Y _XwF (Xp-1)
k=0 k=1

= b—aFY(a) + X FY (X)) = Xensny FY (X)) + ) [ff(X(k)) - ﬁf(X(H))} Xk

k=1
= [1-FY (X)X + [FE(X(k)) - ﬁg(X(k—l))} Xk)-
k=1
Let k, € {1,--- ,n} such that
f‘U(I) _ Gg(x)a Vz < X(kn)

1, Vo > X(kn)~
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We can rewrite

ky+1
=1 = FY (X)) Xuary + > [FS(X(k)) - FS(X(k_n)] Xx)
k=1 )

Moreoaver, if k, < n then

By

pp = 1= GY( X)X ey + [1 = G (X k)] Xk
N :
+Z L (X)) — G (Xe-1)] Xw)

Similarly for the upper bound,

b n
= b—aFL(a) ~ / Fi(@)dz =b-aFE@) =) [N+ — Xl Fr (X))
a k=0
. n _ n+1 .
= b—aFl@) + ) XpFr(Xw) = Y XoFr (Xe-)
k=0 k=1

= b—aFp(a) + FY (X)X = Ff (Xw) * Xwn) +Z[ (Xwy) = FnL(Xw—l))] Xk
k=1

= [1 F(X(n))]X(n+1)+Z[ (Xew) = ﬁf(Xoe—l))}X(k)-
k=1 ‘

Let k; € {1,--- ,n} such that

GYLL($)1 Vz > X(k;);
0, Vz < X(kl)-

py simplifies to

=[1 = FA(Xem) X1 + D [fnL(X(k)) — FX(Xp- 1))] X(x)
k=k;
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Moreover, if k; < n then we can rewrite

. ,UU — Gﬁ(X(kl)) * X(kl) ‘l" [1 - Gﬁ(X(n))]X(n-Fl)

+ Y [GE(Xwy) = GE(X -] Xk

k=k;+1

PROOF OF THE EXPRESSIONS OF THE KOLMOGOROV-SMIRNOV PROJECTION-BASED
CONFIDENCE INTERVALS These two Cls are obtained by applying Propositions 3.3 and
3.4. on the KS confidence band for distribution functions. Let X be a random variable
with a continuous distribution function F(z) whose support is [a,b] . As-sume that n
i.i.d. observations Xy, -+, X, on X are available and let X(5) =a < X3) <-+- < X(n) <
X(n+1) = b be the corresponding order statistics.

First, let’s show that the generalization of the Hora-Hora CI for continuous random
variables bounded on a finite interval [a, b] is a projection of the KS confidence band

where the constraint that 0 < F(z) <1 is not accounted for. The mean y of X is:

uz/abxdF(x)zb—/abF(x) dz

where the last equality follows on integration by part. Let cxs(a) be the (1 — o)t
percentile of the Kolmogorov-Smirnov (KS) statistic. The KS confidence band for F(x)

with level 1 — ' is

ch(a)

< Flz) < Fulz) + 59y,

Fo(z) - n

where F,(z) is the empirical distribution function of the sample as defined by equation

(2.1). Taking the integral fab , we get

/Fn(x) dac—(b—a)cKS—\/(;)g/ F(@) dxg/ Fu(2) dx+(b—a?cK\j(ﬁa)
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b—/bFn(I) dI—,(b—a)CKj%a) SMSE—/bFn(I) d:r:—l—(b—a)CKj(ﬁa).

Further,

b 1., 2 n—1 .
/ Fa(z) de = —[X@ = Xpl+ X - Xol+ -+ ——X@ = Xa-p] + b~ Xew)

n—1
k
= ZE[X(HI) = Xw] +[b— Xm]
k=1
n—1 ‘
1 k—1 k n—1
= — X+ g[TX(") =Xl + ——Xw + [b = X
n—1 n
1 1 1 1
= =Xy —=Y Xpy— Xy +b=—=
~Xa) nfg 0 = —Xm + ngxocﬂrb

hence,

and

X - (- o)) <7+(b—a)CK\S/(Ea).

Setting b = 1 and a = 0 yields the Hora-Hora CI for the mean of a continuous random

variable X, bounded on [0, 1].

Second, let’s show that the Anderson CI is a projection of the KS confidence band
where all constraints about distribution functions are exploited. Let X be a random
variable with an unknown continuous cumulative distribution function F(z) with finite
support [a,b] {a < b, F(a) = 0 and F(b) = 1). Denote X3y < --- < X, the order

statistics of the sample, X() = a, and X ;1) = b. The mean of X is :

,uzfab:c dF(a:):b—j;bF(w) dr



139

and the Kolmogorov-Smirnov (KS) confidence band for distribution functions by:

P[F,(z) — CKj(ﬁa) < F(z) £ Fu(z) + CK\“;(HQ), Vzl=1-a

where 3 and +y are the adequate percentiles of the KS distribution. Then, projecting the
KS confidence band yields:

b— fb min{ Fy,(z) + CK\S/(;) e < p <b- /b max{F,(z) — CK\“;(EQ),O}d:v

Let r=1 [n%] and s = |n”‘5—\/éa)\ Computing the left-hand side:

X(n—s)
po> b_[/ Fn(g;)—{-cKS—(a)dlL‘-i-[b—X(n—s)]*l]

vn
Ckgsly ].n_L
> X-s) — K\/(ﬁ )[X(n—s) —a] - ;L-Z(k - D[ Xw — Xe-1)
CKS( ) 1‘!1—3 *3—
2 Koo = = Xy — 0] = = (k= 1)Xw+ Z kX(k)
k=1
n—s—1
Crxs o 1 1 1
2 Xns) — \/(ﬁ )[Xm—s) Z Xy + = Xins) = ~ (1 = 8) X(n-s)
k=1 '
> 1H+1X 1 X cxs(@)
e E[ Z (k)+(”+ - (n—s)) (n~s')] \/— [ (n—-s) — ]
k=1
> 1 H_IX )X cxs(0)y
2z — > X+ 5+ DXaog)] — T [Xn—s) — a]
k=1

which is the lower bound of of equation (2.7).
Similarly computing the right-hand side:

b
cxs(a)
g < b—O*[X(TH)—a]—/ F.(z) — dzx
Xerst) vn
c S(Q) 1 nl
K
_ _ = 2 : 1D X o —

b+ T (b X(r+1)] TLk=T+2(k 1)[ ) — X(k-1)

I
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n+l
c
< b+ xs(a )[b X(r41)] — Z (k=1DXw + = Z kX k)
\/— . —r+2 k=r+1
cxs(o b T+ 1) X, n+1
< b+ Kj(— sty _ X4 = Z Xk + 31 e —b
k=r+2
< Zfr+ DXy + i: Xwl+ cKS(a) (b~ Xrs1)]
- n

k=r+2 ﬁ
which corresponds to the upper bound of equation (2.7).

PrROOF OF PROPOSITION 4.1. Proposition 4.1 is a direct application of the general
expression of the CI for the mean of a continuous bounded random variable using the

Anderson-Darling CB for distribution functions.

PrOOF OF COROLLARY 4.1BIS. Developing the expression of the Anderson-Darling CI
for the mean of a bounded random variable yields Corollary 4.1bis. This CI is:
CoP (o) = {uo €R: py, < o < py where g1 = [1 — FY (X)) X ns)

+>° [Ff(X(k)) - Ff(Xw—l))] Xy,
k=1

py =1 = FA(Xe) ] Xman + D [Ff(X(k)) ~ ﬁf(X(k—l))] Xk, }
k=1

FI(z) = max{GL(z), 0}, F¥(z) = min{GY(z), 1},

GL( ) 2F, (l‘) + _A& \% A(l‘)
" 2(1 + Jﬂ,@) ’

2F,(z) + -*‘“(La + VA(z)

U
Gn(l‘) 2(1+ aQn(Ot))

2
Az) = [2Fn(x) + gﬁwn(_a)] —4F?%(x) [1 + 52&9#] , and cap () satisfies Pr(AD < cAD(a)) >

1 — a. It is easy to prove that GL(X(0)) =0, and FY(Xg)) = CAD(O‘) [1 + AD(O‘)] > 0.

Moreover,
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2 () AN ) 2 )
2+J%__ [2+_ADn_] _4[1+_A;I_]
(;L(X(n)) =

n

2(1 + ap))

2+éﬂﬂ_vg+égﬁ+éiﬂﬁ_4_£h@

2(1 + <zl

2 -1
= (1+ —CAD(a)) <1
n
and, similarly, GY(X(»)) = 1. Thus, the effective part of the Anderson-Darling CB
is FF(Xp) = max{GL(X),0} = Gi(Xw) and FY(X) = min{GY(Xw),1} =
G,l{(X(k)),Vk= 1,...,n+1 and

pp = [1-1]X@4) + +Z n (X)) — G (X ke-1))] Xwy
k=1 i .
i 25 + j‘ﬂ(—a) + /A X)) 2El+ é"# + VA(Xk-1)) x
- C (e} - C a (k)
S| 201+ Dl 2(1 + Ze(e))

-y %+\/A<k)—¢A(k—1)]X(k)

2(1 + “a2(®)

wy = [1-F- (X<n))]X(n+1)+Z[ (Xw) — FnL(X(k—l))] Xk)

= [1- (1 + @) ]X<n+1; +Z LX) — GE(Xe-1)] X
= [1- (1 + C"”Zl(a))— 1 X (n 1)

2 2
n ok 4 can® _  /ATX ok=1 4 €p(® _  /ATX,
+Z[ < T Xw) 2% : (X(e-1)) Xa

poet 2(1 + waia_)) 2(1 + Sﬁwﬂ)

2 (VAR - VAG-1))

Xk
2(1 + Sanl2)) ®

= [1-(1+@) X(n+1)+z
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PROOF oF PROPOSITION 4.2. Proposition 4.2 is a direct application of the general
expression of the CI for the mean of a continuous bounded random variable using the

Eicker CB for distributions functions.

PROOF oF COROLLARY 4.2B1S. Developing the expression of the Eicker CI for the mean

of a bounded random variable yields Corollary 4.2bis. The latter is:

Ci(a) = {uo €R:pp < pg < py where pp = [1 = FY (X ()| X (nr)

+Z [ (X) (X(k 1))} Xkys

py =[1- F (X(n))]X(n+1) +Z [ X(k)) FL(X(k—l))} Xy }
k=1

F}(x) = max{GL(x), 0}, FY(z) = min{GY(x), 1},

G Fu(w) — R R (2)[1 — Fu(@)]Y? ¥ & such that Fi(z) ¢ {0,1}
r\L) =

0 V  such that F,(z) € {0,1},
69 CFo(z) + B E(2)[1 - Fu(2)]Y? V z such that F,(x) ¢ {0,1}

1 V x such that F,(z) € {0,1},

and cg(a) satisfies Pr(E < cg(a)) 21 -a.



Using G%(z) :

n

GE( X)) >

i3

i3
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]
L

3|

_ Cf/(g) [E]lv/z[l _ 211/2 >0

k> epfa)val ]V~ ]2

k k
k2 > 2 2(1=-2
> cE(a)nn ( n)

K> E(ak — ()
= 2 cpla)k CE(a)n

[n+ ck(a)] K — neg(a)k 2 0
~ n+ (o) E

Thus, GL(X) > 0 Yk = k%,...,n — 1 where k% = ITnck(a) (n + c&(a)) '] + 1 where

I[«] is the integer part of . The effective lower bound of the Eicker CB is

Fr(Xu) =

’

0

5 - c_?/(_v%l[%]l/z[l - %]1/2 vk = ké‘?"’? n-1

Vk=0,..., ki—1 n, n+1

- where k% = I[nck () (n + c&(a)) '] + 1.

Similarly, for GY(z) :

GVI{(X(k)) <

S d

i3

i3

This is the case for all & < 1 and £ > 1; such that ¢; =

1
k
—+

cela)

n3/2

ci(a)k[n — k] € n(n® — 2nk + k?%)

M[E]I/z[l _ _]1/2 <1

k
N n
k

K2 — K2 < [1 - )

(n+ ch(a)) k* —n (2n + cg(@)) k+n® > 0.

n{2n+ci{a) ) —vA
2 n+c2E(a)) ’

vy =
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n(2n+c22(a))+\/1_\
2(n+c2E(a))
A = n?(2n+ (3":9(c>z))2 —4n® (n + cj(a))
= n?[4n® + dnck(a) + cg(a)] — 4n* — dnick(a)

= nici(a).

2 2n2+2nck(a)

Developing yields ¥ = 12y and ¥ = J7225EE) — 1. Then FU(Xg) < 1 for
i11+c ((1)) 2(n+c%(a) ' on
k < 19 . 1  _ 5 U U‘(_ E n? - .
< % or equivalently k = 1,..., kg where kg = I e ))] is the integer part of ¥;.
T CE [e 4

Hence, the effective upper bound of the Eicker CB is

k4 QIR B2k =1, kY

FI (X)) = i}
1Vk=0, k¥ +1,..., n, n+1.

where kY = I[(M:T:(a)j]. It follows that

kZ+1

pr = 11 = FY (X)X + D [FY (X) = FY (X X
k=1

= [1 - FS(X(n))]X(n+1) + [FnU(X(kg+l)) - FTLU(X(kg))} X(kg+1)

kg
+ 3[R (X)) = FY (Xeon)] X
k=1 .

Our former results show that ﬁnU(X(n)) = 1, F‘HU(X(,CEH)) = 1, F;U(X(kg)) = k& 4
7165((’ [%]1/2[1 — El[']l]l/z. Hence,

n

& kg 1/2 kE 11/
= [1 = 1]Xn4) + [1 T 7[;] [1- ?] / w Xky11)

[0TSR ) () e
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U
= 1B - e By B

kg
1 k k k-1 k-1
L (D)
£~ | n vn n n n n
Similarly for the upper bound:

=[1- FF (X ]X(7L+1)+E[ (X)) ﬁf(X(k—l))] Xy

k=kk

=[1- ﬁf(X(n))]X(nH) + [ﬁrf-(X(kg)) - FVT{‘(X(‘CIE‘,—I))} X(kg)

+ Y [GEXw) — GE(Xk-1)] X

k:ké +1

~

oL L L kE
Our former results show that F (X)) = 0, F(XuL_yy) = 0, Fy(Xuy) = £ -
r:E(:) [%]1/2 1- %]1/2_ Hence, .

1/2 1/2
kb _eolo) (kB (| UKEY o]y
n van \n n (kE)

Sl ()f (59059

KL enla) [ kE 1/2 KL 1/2

5 [ () (-8 e (5 (-5
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Kk cs(a) (KE)? kEY?
by = [;— 7n \n 1-- Xty + Xnt1)

B (TR )

PROOF OF PROPOSITION 4.3. Proposition 4.3 is a direct applicatibn of the general

expression of the CI for the mean of a continuous bounded random variable on the case

of the (-regularized Anderson-Darling CI.

PROOF OoF COROLLARY 4.3B1S. Developing the expression of the {-regularized Anderson-
Darling CI for the mean of a bounded random variable yields Corollary 4.3bis. The latter
is:
AD = '
Cu “(a) = {uo €R:py, < py < pyy where gy = [1— FYV (X)X ngn)

+ [ig(X(k)) - fg(x(kq))} Xk
k=1 ’

and pi; = [1 = FE (X )| Xy + Y [FE(X ) = FE(X )] X (k)}

k=1

for FL(z) = max{GL(z),0}, F¥(z) = min{GY(z), 1},

Cl(a) = 2F,(z) + ﬂé— VA(z) ’
9 (1 n qupn;( ))

2F,(z) + —Aﬂi— +VAR)

2 (1 + rAD;(”)) "

G (z) =

Ap (@)]? Ap. (@) ¢hp, (@) '
Alz) = |2F,(z) + _’%_] — 41+ _A_Dnc_a_} (Fj(x) - Lff—) and cyp, () satisfies

Pr[AD; < cap (@)] > 1 - ..
Using GL(z) :
Gr{Xp) 20
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2
@2S+CAD;(Q)—\/A'(1¢)20
o (oF L @Y | Lk dn @]
n n |l n n

o {1+ C?wc(a)} (k_z B Cc?wc(a)) >0

n n? n

K (chp, (@)

- >0
n2 n -

= k* > (cp (a)n
=k > n*(Y2cap (a) or k < —n'2c4p ().

Let x5 = nl/zgl/chDC (o). Given that k is always positive, FnL(X(k)) > 0for k > kg or
equivalently for k = kfp ,...,n where kip = Ilxo|+1 and I [ko] =the integer part of xq.

Hence,

~ Gr(x) Yz 2 Xy
Fi(z) = max{GE(x),0} = ¢ where kfwc = IlKko] + 1.
. 0Vr < X(k.finc)

Using GY(z) :

Gh (X)) <1

o 2& + CQADC(Q)%_ \/A—(k)' S 9 (1 + ciDc(a))

n n n

n

. 2
<l2f1+ Cim(a) N 25 B CZAD<(a)
- n n n

o [25 4 C2AD<(Q)} 4 [1 4 C2AD<(Q)] (k_z N CC%DF(Q))
n n n n
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k2 A « c a 4 c @). 4 ¢ @

n2 n? n2 n2

2o @)\’ 4 cA o (o A (a Ap (a A () Ay (a
S4(1+ ADC( )) LA el ADC( )_§ 1+ ADTCL( ) krd ADC( )k—4 14+ ap (@) cap, (a)
n n

n? n? n? n n

n2 n?

4 (1 + csz(a)) (i (@)1 (1 . i <a>)2_cfwc (@) _cho (o), (1 . ciD;L(a)) Ginele) _
n ¢ :

n? n? n -
n () A (a V
@—%(1—% ap( ))k2+§(1+ ap( ))k
n ©n n n

2 2 2 2 2 -
+% (1 n CADTCL(Q)) _Ccfwc(a) 4 (1 n CADTCL(Q)) 44 (1 n CADC(Q)) cADC(a) <0

n n

2 Ap (a An (a A (o A (a
A®4k__ik2_i (1+ ADC( )) K244 ADC( )k+§— (1+ ADC( )) 4 ADC( )k
nz n n n n n
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& (n + chDc(a)) k* — ‘Z'n (n + c?wc(a)) k

= (n+ (@) [¢chn (@) —n| > 0.
2n (‘n.+.':3‘DC (a)) -8

This is the case for all & < k; and k > K, where x; = and k; =
) 2(n+r:§w<(a)

4D, (@)

an{ntc? , (a))+V0 »
( “AD¢ ) where 6 = 4n( + —‘;——) Ccfwc (c). Developing these expressions

2 (n+cf‘D< (a))

yields k1 = n — cap (@)(n¢)!/? and ky = n + cap (@) (n{)"/? > n. Hence, GY (X)) < 1

Vk < k1 or equivalently Vk = 0,1,...,k3p, where ki{p = I[xi] and I[x:] is the integer
part of k1. Then,

<

FY(z) = min {GY(z),1} =
1Ve > X(kHD )
¢

where kf{Dc = I[x1] = I[n — cap,(@)(n¢)Y/?. Tt follows that

k‘;{DC+1 )

pr = 1= FY X Xonen + 3 [FY (Xow) = FY )] Xew
k=1

o~

= (1= EY (X)) Xy + [FE(X(kE(DCHJ) - Fg(X(kXDC))} Xk pe+1)
kADC ' .

+Z U(Xw) — GY(Xieen)] Xer-

We showed that ﬁf(X(n)) =1 (because K1 =n — cap, (@) (n¢)/? < n), f’,’{(X(;CKD +1)) =
¢

- -A—Di J—+,/A(sg )
1, and FY( Xy ) = 5 2% where A(k
2(1+AJDH—)

A p (a) kYo 2 ¢ty (a) Ap (a) 2 Ap.(a) ¢t (o)
4|14 P ) @) aAm) = |24 Ae@) gy @] () @)

2kY e p (a) z.
AD):'|:—T_€+ 5 ] -

T n
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Then,
2k%_D€_ + c’zq_DG(i) + A(kJU )
n n AD¢
=1-1Xpy+ [1— ' -
pr = | | Xnta) | 2(1_{_03“3 (a)) (K4p, +1)
C C2 a
+ Z bR A MR P VRETD) |
25 (@) c? a (k)
14 ADng ) 2(1+ ADn;( ))
or
by = I 9+ 20,24D<(a) _2kKDC _ C?ch(a) _ AR | X
L 21 wag(a)) n n n AD¢ (kap +D
o
(— +VA(K) \/A ) X
k=1
2 LU
1 Cap, (@) kap
NL=W{<2+ ;; -2 nc_ A(kADC) X(kp+1)
214+ ——

kY
AD;

Z( +VAK) - VAR )X(k)

Similarly, for the upper bound:

py = 1= FL(X )| X ) + Z [F (Xw) = Fff(X(k—l))] Xk

k=kL
AD,

=[1- (X(n) ]X(n+1) + [ﬁrf(X(ngc)) - ﬁrf(X(ngc—n)] X(kfwc)

+ Z [GE( X)) — GE(X - 1)]X(k)

k=k% pct!
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The precedent results show that

62 [ 2 02 (2 -1
(2+—}%2—«/A(n)) (2(1+£,1(L))) if kip, <n

FHX(ny) = , Fff(X(ng(-l)) =
0 otherwise
(@)
0, and Fx (Xt ( —ﬂ— kADC ) ( A—Dﬁ—))) whereA(kﬁDc):
2

[”‘ADg CAD;“"} [ ADc(a)} (kf‘:c) _ C”Al;c(“j and A(n) = [2+ —4—‘:3"’”(“)} _

2

A

(o
4 {1+~i‘%§—(~1} (1 - —4——)) Then,

L
2k

2
Pavg Sl AKED)

n

py =[1- ﬁf(Xm))]X(nﬂ) +

2 o (kL )
2(1 + 22 e

n 2__ AD (a) A(k 2(k—1) + C‘ZK‘D((Q) _ A(k _ 1)
+ Z n n n X
AD (a)

<4 p,.(a)
k=kfp, +1 2(1+—4—)V 2(1+ %)

T

(k)

or

~ 1 | 2k%p Chp (@) T
UU = [1 bt Frf(X(n))]X(n+l) + CAD (a) { ( - ¢ + ’:l, - A(kﬁD() X(k'ﬁD()

2(1+ ——)

+ Zn: [% + CE‘D;(Q) — VA(k) - (kn— D _ CADT‘L(Q) +VAk _,1)] Xy

. L n
k=kADc+l

- . 1 2kL Ao (o
py = [1 = FH (X)) Xns) + ey anc©) Alkip,) | Xt )
2(1 + CAD;(Q)) n n ¢

+ > E —VAK) + Ak - 1)} Xiky-

k:kﬁnc +1

PROOF OF PROPOSITION 4.4. Proposition 4.4 is a direct application of the general
expression of the CI for the mean of a continuous bounded random variable on the case

of the (-regularized Eicker CB for distribution functions.
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PROOF OF COROLLARY 4.4BIS. Corollary 4.4bis is obtained developing the expression

of the (-regularized Eicker CI for the mean of a bounded random variable. This CI is:

FE
Cu'(a) = {uo €R:py < py < py where pp = [1 = FY (X)) X(nt1)

+ Z PV (X)) = FY (X)) Xon

—

and Uy = [1 - Fv?f(X(n))]X(n+1) + Z

FE(X ) — FE(Xge) X(k)}
k=1

for FL(z) = max{GL(z),0}, F¥(z) = min{GY(2), 1},

CEC (a)

N

CE; (a) ‘

NG [Fa() (1 = Fa(2)) + ',

and cg, () satisfies Pr{E¢ < cg (@) 21 - o
Using GX(z) :

G (z) = Fulz) — [Fu(z) (1 = Fu(@)) +¢]"?,

GY(z) = Fu(z) +

Gr(Xw) 20
k cela) [k, &k
—_— —— 4/ =] - - >
® Jn n[l n]+(_0

2
&k —c%c(a)[k—-%—l—ng] >0

& (n +c, (a)) k? — ncg, (@)k —n’c (@) > 0.

L. nc (@)—vAT nc (a)+\/ﬁ
This is the case for all k < k; and k > ks where k; = and ky =
2 n+c§5<(a) 2 n+c§5<(a))
with AF = n’cf_, +4 (n + ¢k, (a)) n’ct, (a)C. However, it is easy to see that k is
always negative. So, G5 (X)) > 0 Vk > k; or equivalently Vk = ki ,...,n where k}LEC =
Iko] + 1 and we define I[k] =the integer— part of k.

Hence, FL(z) = max{G%(z),0} = 2 where kg, = Ika] + 1, ks =
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. l -1 , ‘
[nc‘},JC (@) + VAL] [2 (n + g, (a))} , and Ab = n’c} (@) +4 (n + %, (a)) ncg (a).
Similarly using GY () :

Gl(Xw) < 1

k¢ k. k '
adiis }i‘/(ﬁa) H[I_EHCSI
2
cg (@) [k k2 2% k2
- <124
n (n n2+C - n+n2
c2 (a
= c%c(a)k — #1& ‘*‘"C?Ec(a)c < n? = 2nk + k2

e (n + C2Ec (a)) k* - (2n2 + nc?,;C (a)) k+n®— nchgc(a)c >0

& (n +ck, (a)) k* — (2n + crgc(a)) nk + (n - c%c(a)C) n? > 0.

(27;4—4':?\3C (a)) n—vAU (2n+c%c (a)) n+vAU
y Kg = )
2(n+c%c(a)) 2(n+c2EC(a))
2
and AV = (2n+ c%c(a)) n? —4 (n+ ck, (a)) (n - c%c(a)c) n?. However, it can be
proved that k, is always greater than n. So, Gf{(X(k)) < 1 Vk < k, or equivalently
Vk=0,1,.., kg, where ki = I[ks] and I[k] is defined as above.

This is the case for all k < k3 and k > k; where k3 =

GE{(I) Vzr S X(kgg)

Hence, FV(z) = min{GY(z),1} = where ki = I[ks], ks =

1Vz > X(kgg)

[(271 + c%c(a)) n— \/F] [2 (n + c%c(a))} , and

AY = (Zn + c};c(a))2 n? —4 (n + ¢k, (a)) (n — g, (a)C) n?,

FL(z) and FY(z) represent the effective part of the (-regularized Eicker CB for dis-

tribution functions. It follows that
py = 1= FE X)) X@ + [ﬁf(X(k)) - ﬁf(X(k—l))} Xk
: k=1

= - FrXm)Xmy + D {ﬁf(X(k)) - ﬁf(X(k—l))} X

he=k
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= 1= B (Xl Xmen + | FY (Xgug ) = Ff(X@gc_l))] Xy
+ [GH( X)) — GE(Xe-1)] Xx)

k:kgC +1

= [1 — FX(X(n)] X(n41) + [F (X(kL ﬁnL(X(kg(-n)} X(k{;-c)

n

+ [Gr (X)) = Ga(Xpx-1))] Xew-
k=k,’§-<+1
Given our results, I:;,f(X(k}LE _y) = , FL (X(kL ) = GE(Xpe ) = ké(n‘l — cr (a)n V2
¢

1 — cp (@)¢M*n=1/2 if kg, <n Then

(1= ] s =

0if kg > n

o ‘ ) B ~ N A2
My = [1_F7f(x(n))]X(n+1)+ [ké(n L cEc(a)n 12 (k}lézn ' (1 - kllflcn 1) + C) ] X(kgc)

n cg. (o 12 — cg - - 1z
+ > E— E&%)(gh‘—shc) —kn1+ \‘/S)(k‘nl[l—knl]ﬂ) }Xm

or

~ B ~ i ~ 1/2
Hy = [I—Ff(X(n)]]X(n+1)+{kg<n 1_ ce (a)n 1/2 (k}{in 1 (1 _ k}lécn 1) +C) } X(kéc)

+ Z [——FEC wa(\/%[1—2]4-(—\/kgl[l‘kgl]-FC)]X(k)

k= kg +1

~ 1 —cg ()Y V2 if kL <n
where FX (X)) = ()¢ Be ="
0if kS, > n.

Similarly, for the lower bound:

pr =1 = FY (X)) Xnipy + D [ﬁf(x(k)) - Fvg(X(k—n)] Xk
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=1 = FY (X)X inr1) + ﬁg(X(kch)) - ﬁg(X(kgc))} Xwg +1

"
+ Y [GF(Xw) = G (Xee-1)] Xo-
k=1

Qur early results show that, ﬁg(x(kg ) = 1 ﬁ,{f(x(kg ) = G (Xgw ) = kg n™' +
: < < S

1/2 ~ :
cg, (a)n~1? [kgcn_l (1 — kgcn‘l) + §] ,and FY(X(n)) = 1 (because GY(X(n)) = 1+
(:Ec'(a)Cl/Qn_l/2 > 1). Then

' 1/2
pr = [1=1X@4n + {1 — kgcn“l - cg (@)n~1? [kgcn'l (1 - kgcn’:}) + C] ] X(kch)

kU
“ [k cela) (k. & 2 k-1 cgla) (k-1 k-1 1/2
+;|ﬁ;+ E\/ﬁ (E[l_ﬁ]+c) - —- E\/T_l ( n‘[l—-T]%-C) :|X(k)

or
_ 1 kU -1 —-1/2 kU -1 1 kU -1 1/2 X
Hr = — Rgn o — CEC(Q)ﬂ [ B ( — RN ) + C} (kG +1)
k k k—1 k—1
+Z +cEc(a -1/2 (\/ﬁ[;_ﬁ]ﬂ—\/ —1-— ]+c)]xm

1- c,gc(a)gl/grfl/2 if kéc <n

0if kg >n.

where ﬁ,f’(X(n)) =

PROOF OF PROPOSITION 4.5. -This theorem is an application of Proposition 3.4 to
the Owen (1995) CB for distribution functions where Vz, FL(z) = m:rxx{ﬁ,f‘(a‘), 0} and
FY(z) = min{FY(z),1} because FX(Xg) = 0, EV (X)) = 1 —e™ < 1, FE(Xn) =
g™ > 0, and FY(X(n) = 1.

PROOF OF PROPOSITION 5.1. We refer the reader to Diouf and Dufour (2005a) for a

complete proof.

PrOOF OF PROPOSITION 5.2. Proposition 5.1. implies that the Kolmogorov-Smirnov

CB obtained using appropriate critical points for F(z) yields a CB for G(y) with level



156

larger than or equal to 1 — «, and similarly for the Anderson-Darling, Eicker, regularized
Anderson-Darling and Eicker, and Owen CBs. By projection, so too are the correspond-

ing CIs for the mean, when the involved distributions have bounded support.

PROOF OF PROPOSITION 5.3. We refer the reader to Diouf and Dufour (2005a) for a

complete proof.

PROOF OF PROPOSITION 5.4. A similar proof to those of Proposition 5.2. applies
fbr Proposition 5.4. In fact, Proposition 5.3. implies that the Kolmogorov-Smirnov
‘CB obtained using appropriate critical points for F(z) yields a CB for G(y) with level
larger fha.n or equal to 1 — o, and similarly for the Anderson-Darling, Eicker, regular-
ized Anderson-Darling and Eicker, and Owen CBs[see Diouf and Dufour (2005a) for the
proof]. By projection, so too are the corresponding CIs for the mean, when the involved

distributions have bounded support.

PrROOF OF THE KOLMOGOROV-SMIRNOV STATISTIC FOR A DISTRIBUTION WiTH A
PROBABILITY MASS AT THE LOWER BOUND. Let Y be a random variable with contin-
uous distribution function G(y). Define X = (£X)* 1[0 < Y < 2], a mixture between a
bounded continuous variable and a probability mass F/(0) = 1 — G(z) at 0 with distrib-

ution function

0 ifz <0,
F(z) =1 1- Flz(1 — zV/?)] fo<z<l,
1 | ifz>1
or equivalently,
0 if x <0,
Flz)=4p : ifr=0,

p+ [y h(u) du ifx>0



157

where p = 1— F(2) and h(z) is an adequate density function. Hence, Fx(X) is a mixture:

with probability p, .

3

F(X)=
with probability 1 — p

where U ~ Uy, 1)- The corresponding Kolmogrov-Smirnov statistic is:

KSe = guas, | Folo) = F(&) |= max {15 =51, mae | Fo(e) = F(&) |}

O<z<
=max{|ﬁ—p| Oinc'gld—Z]l[X <$] F(z )‘}
:max{]ﬁ—p] Oing)ld-—z]] <F($)]_F(I)l}

=max{|p p, max|—Zn[F<X <v1—v|}

p<v<l

= max
p<v<l

Z]l[F(Xk) <v)]—-w

n

PROOF OF COROLLARY 5.5. This corollary is an application of Proposition 5.4. Let
V1 and V, be the sets of values of Fi(x) and Ga(x), respectively. Then V; = [p, 1] and
Vo = [pa,1] with V5 C Vj. Hence, the percentiles of the statistics KSr, ADf,, Er,
AD; g, E.r,, and BJp, are conservative for the percentile values of KSp,, ADF,, Ep,,
AD. r,, E¢ p,, and BJp,. Hence, the CBs for distribution functions and the corresponding
CIs for the mean—when the variable has a bounded support [a, b]-using the appropriate
critical points for F(x) yield CBs and Cls for G(y) with level larger than or equal to

1—-oa.



Chapter 3

Finite-sample nonparametric

inference for inequality measures
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Abstract

Inference studies for poverty and inequality measures show that asymptoltic and bootstrap
_inference methods can be quite unreliable when applied to those measures (see Davidson
and Flachaire, 2007). In a preceding paper, we proposed improved finite-sample nonpara-
metric confidence intervals for the Foster, Greer and Thorbecke (1984) poverty measures
using confidence bands for distribution functions and projection techniques. We showed
that these confidence intervals are robust and perform better than asymptotic ones.

In this paper, we propose improved finite-sample confidence intervals for inequality mea-
sures. We propose a generalized projection principle to derive confidence intervals for
the mean of a random variable from confidence bands for distribution functions which
tails are bounded by a Pareto distribution. Reexpressing the inequality measures as a
function of the means of a bounded random variable and a non bounded one, we apply
the inference methods to those. Monte Carlo simulations show that the corresponding
confidence intervals yield very reliable and good performance. We illustrate how to use
the inference methods analyzing inequalities among Mexican rural households in 1998
using PROGESA data sets. The results show that while the level of inequality among
households targeted by PROGRESA is fairly low, this level almost three times higher
for households with a female head and almost twice higher for households with a non

educated head.
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3.1 Introduction

Inference studies for inequality measures show that asymptotic and bootstrap methods do
not perform well when applied to these measures. Davidson and Flachaire (2007) showed
that asymptotic approximations provide a poor approximation to the real distributions
of statistics, for small and even fairly large samples. Using a Singh-Maddala distribution,
they show that the i.i.d. bootstrap confidence interval do not perform well for the Theil
inequality index. The heavy tail of the Singh-Maddala distribution alters the performance
of the standard bootstrap and a modified bootstrap procedure, which is more adapted
to heavy tails must be used to improve the results.

Other papers have studied the performance of asymptotic and bootstrap inference meth-
ods for poverty and inequality measures; see Beran (1988), Kakwani (1993), Dard-
anoni and Forcina (1999), Biewen (2002), Davidson and Duclos (2000), and Cowell and
Flachaire (2002). Most of these studies recommend using bootstrap procedures rather
than asymptotic ones but also acknowledge the limits of the i.i.d. bootstrap procedure.
Bootstrap often fails to provide reliable inference when applied to distributions with
heavy tails or probability masses. Hence, adequate bootstrap procedures must be used
to provide good performance. However, the origin of the failure of the bootstrap must
be identified to correct the drawback, which is not obvious when data come from an
unknown distribution function.

In this paper, we propose nonparametric inference methods for the mean of random vari-
ables and apply them to inequality measures. We show that inequality measures can
be reexpressed as a function of the mean of two random variables: a bounded random
variable and an unbounded one. Using projection techniques we proposed ir} a preceding
paper (Diouf and Dufour (2005b)), we build confidence intervals for the mean of the
bounded part of the inequality measures. Then, we propose a generalization of these
projection techniques to nonbounded random variables when the tails of the correspond-
ing distribution is bounded by a Pareto distribution. We apply these methods to derive
confidence intervals for inequality measures using confidence bands for the underlying

distributions. Empirical distribution function-based statistics using the three common
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principles in econometrics are used to build confidence bands: the Wald, the score and
the likelihood-ratio principles (see Diouf and Dufour (2005a)).

We propose finite-sample confidence intervals for the most popular inequality measures:
the generalized entropy class of indexes—which include the Theil index, the Lorenz curve,
the Gini index and the Atkinson class of indexes. According to Bahadur and Savage
(1956), nonparametric inference cannot be performed for the mean of a random variable
when observations are independent and identically distributed (i.i.d.) from an unknown
distribution function with finite mean (see Dufour (2003) for more details). To avoid
this impossibility theorem, we suppose that the tail of the distribution of the sample is
bounded by a Pareto distribution and consider two cases: the case where the parameters
of the Pareto distribution are known and the case where the parameters are unknown.
In this last case, we build a joint confidence region for the parameters of the Pareto
distribution using Chen(1996) and the Bonferroni inequality.

Monte Carlo simulations are performed to study the performance of fhese methods for
the Theil index. The results show that the standard bootstrap procedure and the al-
ternative proposed by Davidson and Flachaire (2007), as well as the asymptotic method
can fail in providing reliable confidence intervals for the Theil index while nonparametric
inference methods are strongly reliable and provide informative confidence intervals. The
regularized statistics deliver the best width among the latter.

At last, the profile of inequality of Mexican households involved in PROGRESA is as-
sessed using the Gini index. The results show that there are more inequalities among
households with a female head or a non-educated head. Hence, in addition to imple-
menting policies that would help reduce poverty among households with a female head
or a non-educated head, authorities plan policies targeted to the most vulnerable among
those households to help them catch up with other households and get insured against

negative shocks that would increase inequality further.

The remainder of the paper is organized as follows. Section 2 and 3 presents the desirable
properties for inequality measures and the most popular inequality measures. Section

4 provides asymptotic and bootstrap confidence intervals for the generalized entropy‘
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class of index. Section 5 proposes finite-sample nonparametric confidence intervals for
these inequality measures using proje(;tion techniques, when income is bounded. In
section 6, we propose a generalization of the projection techniques to nonbounded random
variables whose tails of distribution are bounded by a Pareto distribution. Section 7
proposes nonparametric confidence intervals for the most popular ihequality measures
(the Theil index, the Loreﬁz curve, the Gini index, the Mean Logarithmic Deviation, the
Logarithmic Variation index, and the Atkinson Class of index). Section 8 presents Monte
Carlo results. Section 9 analyzes the profile of inequality of rural Mexican households

targeted by PROGRESA using the studied inference methods. Section 10 concludes.

3.2 Desirable properties for inequality measures

Inequality studies have more and more been acknowledged to be complementary to
poverty analysis. Both studies are mostly performed simultaneously to better assess
the profile of poverty of households in a given community. Several inequality measures
can be used, depending on the notion of inequality the study is intended to be assessed.
These inequality measures must satisfy a set of suitable properties to be considered as
reliable measures of inequality. In this section, we present thé most important axioms
that need to be filled by inequality measures.

Let F be a space of distribution functions with support R. Let’s consider a community
which households’ income is a random variable Y with distribution function F(y) € F.
An inequali{;y measure is a functional 7 : 7 —— R defined on the space of distribution

functions F (see Cowell and Flachaire(2002) and Cowell (2003)). To be reliable, inequal-
ity measures may satisfy a set of desirable properties that ensure their coherence. Among

the most important of these properties are the following.

DEeFINITION 2.1. [Transfer Principle] Let Fy and F; be two distributions functions.
If
I(Fy) < I(Fy),
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then Fy is a mean-preserving spread of Fj,
i.e., if Y1 and Yy are two random variables with distribution functions Fy(y1) and

Fy(y2), respectively, then

Y2 = Yl + Z
where Z is a random variable with distribution function H(z) such that [ z dH(z) = 0.

Definition 2.1. characterizes a very important property for inequality measures. It
defines coherence in the ranking of the level of inequality of communities. Let’s consider
two communities: community 1 and community 2. Let ¥ and Y, be the income of these
communities, whose distributions of income Fy and F; are such that E(Y;) = E(Y,) and
V(Y)) < V(Y;). Hence, for inequality measures that satisfy the transfer principle, the

level of inequality in community 1 is larger than the inequality in'community 2.

DEFINITION 2.2. [T-Independence] Let 7 : R — R be a strictly monotonic contin-

uous function defined on R. Let X7 be the set

ROV = {7(y) : y € R} NN

and let F\") € F be the T—transformed distribution function such that
FN(z) = Fr ' (p)], y e

Let T be a set of transformation functions 7. The inequality measure I is T-independent
if and only if for all T € T, .
I(F™) = I(F)

Definition 2.2 .implies a very interesting property for inequality measures. For a
given set of admissible transformations 7, all communities whose income distribution is
a T—transformation of F(y) yield the same level of inequality. Let’s consider two special

cases of this property:
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e Scale independence: if T is the set of functions 7 such that 7(y) = ay, a > 0 then

the inequality measure I is homogeneous of degree 0.

o Translation independence: If T is the set of functions 7 such that 7(y) = y + b,

then the inequality measure [ is invariant by translation.

DEFINITION 2.3. [Additive separability] The inequality measure I is additively

separable if there are two functions

$:X —R and 7: RP R
such that : ,
1F) = ¥u(F), [ 2(0) dP()
where u(F) = [y dF(y).

The functions & and ¥ characterize inequality measures. ® is named the income-
evaluation function and ¥ the cardinalisation function. They can be used to define many

of the desirable properties of inequality measures such as the following decomposability.

DEFINITION 2.4. [Decomposability] The inequality measure I is decomposable if

and only if it can be rewritten as

1) = [ flo,u(P] dF ()
where f(y,z) : R?2 — R is a function monotonically increasing in its first argument y.

Cowell and Victoria-Feser (1996) showed that a decomposable inequality measure

satisfies the transfer principle, due to the monotonicity of f (y, z) with respect to y.
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3.3 The inequality measures

This section presents the most popular inequality measures. Let Y be a random vari-
able that represents the income of households in a given community and let F(y) the

distribution function of Y. Let 1 = [y dF(y) be the mean of Y.

e The Generalized Entropy class of index:

1= [ s - 1dr

where § € R\{0, 1}.

For 6 = 0 and § = 1, the Generalized Entropy becomes the mean logarithmic
deviation and the Theil index, respectively. The Mean Logarithmic Deviation cor-

responds to the Generalized Entropy class of index with § = 0. It is:

o= ]log( ) dF(y)
= log(u flog dF(y

The Theil index (Theil, 1967) corresponds to the generalized entropy class of

index with 8 = 1. It is one of the most popular inequality measures:

I = / Y 1og(Y) dF(y)

p p

_ % / y log(y) dF(y) — log(n)

e The Atkinson class of measures:

1-[f(2) = dF(y (y)] = ife>0ande #1

Ii= 10 .
1—e & fe=1
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e The Logarithmic variation indez:
_ Y2
v = [Bog(D)F aF ()

e The Gini indez: many expressions of this index are proposed in the literature. The

most useful of them is the following one
I =1-2R(F)

where R(F) = 1 [ C(F;q) dg, C(F;q) = [y dF(y), and Q(F;q) = inf{y |
F(y) > q} for q € [0,1]. C(F;q) is the cumulative income function and Q(F;q) is

the quantile function.
o The Lorenz curve:

E{Y Y < Fy'(p)}
E(Y)

1 Fylip)
= m/ﬂ y dFy (y)

where p € (0,1).

With the exception of the Gini index, all inequality measures defined above are ad-
ditively separable. Moreover, Cowell (2003) shows that a continuous inequality measure
I is scale invariant, decomposable and satiéﬁes the principle of transfer if and only if it
is ordinally equivalent to the generalized entropy class for some §. In other words, an
inequality measure that achieves the same ranking of communities as the generalized en-
tropy class satisfies three of the most important suitable axioms for inequality measures:

the scale invariance, the decomposability and the transfer principle.
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3.4 Asymptotic confidence intervals for the general-

ized entropy class of index

Let Y be a random variable that represents the income of a community’s households.

Let F(y) be the distribution function of Y and let’s consider the test of the hypothesis

Hy : I4 = I versus the alternative H; : 1§ # Ip. The t-statistic for this test is:

I I
I

7 ()"

W =

where ./T\‘j; is an estimation of 7% and 1% (T‘sE) is the estimated variance of ./T\‘j; Using this

statistic, asymptotic and bootstrap confidence intervals (Cls, henceforth) can be built

for the Generalized Entropy Index.

3.4.1 Confidence intervals when ¢ # 0,1
Let Y1,...,Y, be nii.d. observations on Y with distribution function F(y). Let f‘sE and

V[I2] be the statistics: ,

1 - yi6

R ni=zl ~1
ET6(0-1) n7°
%ZYI}
i=1
and

2 (#25 - #g)

73] —
Vilg] = (52 —8)2(n — l)ﬂl

where § # 0,1, 71, = 1 5"Y,? [see Cowell, 1989 for a general expression using a subgroup
o n 4 T g g g

=1

decomposition).
Assuming that W is asymptotically N(0,1) as n — oo, an asymptotic CI for I{ with

level 1 — v is:
B - z0-g) % [‘7 (?}s)] Y < I(y) <% + 20-9) * [‘7 (ﬁﬂ)} v (3.1)
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where 2, is the pth percentile of the standard normal distribution.

Similarly, a bootstrap CI for I with level 1 — « is:

1/2

-~

T3~ Dl o)+ [17 (fg)] <L <P - DY [V (fg)] e (3.2)

where D(% is the p** percentile of the bootstrap distribution of W.

3.4.2 Confidence interval for the Thelil index

The t-statistic corresponding the Theil index is:

-~

-1

where

L3-Y;log(¥,)
Yilogv) ¥ |n&g B
x, = Yilos(¥) _ l L +1| +1,
DR IN BEEINE
i=1 =1 =1

and T = 23" X; (see Biewen and Jenkins (2003) for more details when observations are
L=l
weighted).

An asymptotic CI for I} with level 1 — « is:

N 1/2 N 1/2
Ty —za-9) [V (—7}5)] STy <Tp+za-g)% [V (T}la)]

where z(,) is the p** percentile of the standard normal distribution.
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Likewise, a bootstrap CI for I with level 1 — « is:
~ 1/2 ~ 1/2
Bty [ (B <<%ty 7 3)

where Dg) is the p** percentile of the bootstrap distribution of the statistic W.

3.5 Nonparametric confidence intervals for general-
ized entropy class of index when income is bounded

Let Y be a random variable that represents the income of a community’s households.
Let’s suppose that Y is bounded over [0,%] with continuous distribution function F'(y)
where 7 can be as large as necessary (Y € [0,7]). Let Y;j < --- < Y, be the order sta-
tistics of a sample of n 1.i.d. observations on Y. Denote F,(y) the empirical distribution

function of the sample such that V £ =0,...,n
k
Fn(y) = - for Yiiy <y < Yty : (3.3)

Denote for the remainder of this section:

R =RU{—00} U {+00};

A(.) : a functional A[F]: L — E defined on a space L of functions;

F : a space of distribution functions;

F:a space of continuous distribution functions.

In this section, we propose nonparametric confidence intervals for inequality mea--
sures that belong to the generalized entropy class of index, when households’ income is
bounded. To do so we reexpress the generalized entropy inequality measures as a function
of the means of two bounded random variables. Then, we use nonparametric confidence
intervals for the meaﬁ of a bounded random variable that was proposed by Diouf and

Dufour (2005b) to build ClIs for the two means involved in the inequality measures. To

end, we derive Cls for inequality measures from those and use the Bonferroni inequality
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to compute its level of confidence based on the levels of confidence of the underlying Cls.

3.5.1 Nonparametric confidence intervals when § # 0,1

For & # 0, 1, the generalized entropy measure is
£0) = [ & - 1 dF ()
6(6—1)"p
where u = [y dF(y). It can be reformulated as:
) ¢ dF(y 1 As;(F
I?;('y)= 1 fy (y)o‘_l = — ( z( )_1)
66 -1\ [[y dF (y)] 9(6 — 1) \A(F)

where As(F) = [y® dF(y) is the non centered moment of order é of Y and A\ (F) = [y
dF(y) is the mean of Y.

Given that Y is bounded over [0, 7], Y? is also bounded over [0,3°]. In a former paper,
we showed that nonparametric Cls for the mean of a bounded random variable can be
derived from confidence bands for distribution functions using projections techniques. We
proposed confidence intervals based on Wald, Score and likelihood-ratio improvements of

the Kolmogorov-Smirnov statistic. We use these to build confidence intervals for As.

Let L be a space of functions such that the Stieltjes integrals As(G) = [3° dG(y),
8 # 0 are finite. Let GL(y) € £ and GY(y) € L be two step functions with jumps only
at Yq1),...,Y(n) that define the following confidence band for F(y) with level 1 — o :

Cr(e) = {Fo e L: GL(y) < Foly) < GY(y Vy}

Following Diouf and Dufour (2005b), a nonparametric CI for A,[F] with level 1 — a
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is:

Ca, (@) = {uo eER:[1-F (Y(n))]Y(,H_])'f'Z[ (Yoy) — Ff{’(Y(k—l))J Yiey < ko

k=1

<[1- ﬁnL(Y(n))]Y(n+l) + Z [ﬁnL(Y(k)) - ﬁf(“k—l))] Y(k)} (3.4)

k=1
where Y(g) = 0, Y(n11) = 7, and Vy, FL(y) = max {GL(y),0} and FY (y) = min {GY (),1}.
Likewise, a nonparametric CI for As[F] with level 1 — « is:

Chysla) = {,\0 ER:[1— FY (Y)Y + Z [F (Yi) — FY (Yo 1))] Yy < Ao

k=1

<1 = FE(Yu) Yy + Z [ (Yiy) — Fff(Y(k—l)ﬂ Y(i)} - (35)

k=1
where Y(g), Y(nt1), FL(y), and FY(y) are defined as before.

Using these confidence intervals, Result 5.1. proposes a nonparametric confidence
interval for I. The level of this latter can be computed using the following Bonferroni
inequality:

Pr(E, N Ey) > 1 — Pr(E;) — Pr(Ey)

where E, and F, are two given events.

REsuLT 5.1. [Nonparametric Cls for the generalized entropy Index with
bounded income distribution| Let Y represent the income of a community’s house-
holds. Let F(y) € L be the distribution function of Y with support [0,7] and let

Yoy < -+ £ Y be n ordered i.i.d. observations on Y. Suppose that the following
confidence band for F(y) with level 1 — « is valid for the space of distributions L :

Crla)={Fye L: GE(y) < Foly) < GY(y), Yy}

where GL(y) € £ and GY(y) € L are two step functions with jumps only at Y, ..., Yin)-
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Then the level of the following confidence interval for the Generalized Entropy Measure

I% is greater than or equal to 1'—

le;( ) - {IO S R I() min < IO < I&max}

where

;o1 in Ay
§,min = 5(5 _ 1)A5'minSnA1§§A6,max A{ )

I = L max E -1
T 8(8 — 1) AsminSAsAsmax | A ’

Aswrin = (1 = B (Vi) ¥Ey+ 30 [V (Vi) = B (Yiao)] Y,

k=1

Asmax = [1 = FE Y)Wl + 3 [FE Vi) - FE (V)] Vi,

k=1

Yoy =0, Yins1) = U, and Yy, FE(y) = max {GL(y), 0} and FY(y) = min {GY(y),1}.

Result 5.1. proposes a general methodology to build Cls for inequality measures that
belong to the class of generalized entropy indexes for § different from 0 and 1. These
ClIs are derived from CBs for the underlying distribution with step-function bounds. We
have proposed and studied interesting examples of such type of CBs in a former paper,

which can be used to perform inference for 7%. Those CBs for F(y) with level 1 — ¢ are:

o the Kolmogorov-Smirnov CB:

o) = {Rer: R - 22 <R < A+ 252w} @)

where cgg(a) satisfies Pr[KSr < ckg(@)] > 1 — @, and KS = sup +/n |
—oo<y<+o0 :
Fo(y) = Fy) |-

o the Anderson Darling-type CB:

CiP(a) = {FR e F: GL(y) < Fy < GY(y), vy}
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where

cry — 2o +%e® — JAG)

21 + ani?‘l)

oy — M)+ AR

2(1 + eld))

AW = |2F0) + DT(“)] -ar) |1+ 229

cap(a) satisfies Pr[AD < cap(a)] 2 1—a, AD= sup V,(y), and V,(y) =

—oo<y<+0o0
0 if F(y) € {0,1},
Vvn Fl/f‘(';)lg:i(z)]l 7| otherwise.
e the Ficker-type CB:
Cila)={Fo e F:GL(y) < I < GY(y)}
where
GEy) Fo(y) - C—f(f,%zFi/Q(y)[l — F,(y)]? V¥ y such that F,(y) ¢ {0,1},
n\Y) =
0 V y such that F,(y) € {0,1},

GY(y) = { Fa(y) + 2R ()1~ Fuy))/? ¥y such that Fu(y) ¢ {0,1},
' 1

v y such that F,(y) € {0,1},

ce(a) satisfies Pr [E < cE(a)]VZ 1-a,

E= sup Vn(y),

—oo<y<+od
and
o) { 0 if () € {0,1},
my) = Fuly)~F(»)
‘ vn T (o otherwise.
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o the (-Regularized Anderson Darling-type CB:
Cp%(a) = {Fy e F: GE(y) < Fo < GY(y), Wy} (3.7)

where

' (y) +
Gi(y) = ,

n

Guly) = 3
chp, (@) 2 hp (@ 2 ¢chp, (a) .
A= |2F,(y)+——| —4|1+ ——n‘f—— F2(y) — —*— ], cap (a) satisfies

P'A <c >1—¢q,and ADR= Fn(w)—Fu),
FADc < canc()] 2 o an ¢ —oos<1;l<)+60\/— ’ VFGI-Fi)C,

o the (-Regularized Ficker-type CB:
Ce(a) = {Fy e F: GX(y) < Fy(y) < GY(y), Wy} (3.8)

where

[Fu(y) (1 = Fu(y)) + (]2,

GY0) = Fuo) + 2 IR (1 Fuly) + 0,

ce, (o) satisfies Pr[E; < cp (a)] > 1—a, and El'= i1112+ Vn 7F (F;‘)([;’)_'FF((?)HC
—oo<y<+oo n n n

o the Berk Jones-type CB (Owen, 1995):

CP(a) ={FR e F:GL(y) < Foy) < GY(y), Yy} (3.9)
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where

GL(y) = min{p: K[F\(y),p] < cps(a)},
GY(y) = max {p: K[Fu(y),p] < css(e)},

K(p,p) =plog (2) + (1-p) log (1=£), cp.s(a) satisfies P[BJ > cps(@)] 21— o, and
BJ = sup K[F.(y), F(y)]. ‘

—oo<y<+o0

These CBs are convenient to use. A unique set of critical points is needed to build
CBs for all continuous distribution functions, and hence, to build Cls for I§. When
F(y) is not continuous, the critical points of the statistics are conservative: using critical
points adapted to continuous distributioﬁ functions provides CBs for F(y) with level
of confidence larger or equal to the theoretical level. Moreover, further information
about the nature of the discontinuity of ¥ may allow to improve the performance of
these inference methods. Using embeddness of image sets of distribution functions, less
conservative critical points can be computed, which reduces the width of Cls without
altering their reliability.

Other CIs for the mean of a bounded random variable have been proposed: asymp-
totic and bootstrap CIs—which can be quite reliable when applied to small, and even
large samples and to distribution functions with heavy tails or probability mass— and
finite-sample nonparametric CIs—which have been proposed by Hora and Hora (1990)
and Fishman (1991). We will compare the performance of these inference methods on

inequality measures using Monte Carlo simulations.

3.5.2 Nonparametric confidence intervals when ¢ =1

The Theil index can be reexpressed as follows:

I = ] L Los(2) dF(y)=ﬁ ] y log(y) dF(y) — log(u)

T(F)
Ay (F)

— log(Ay(F))
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where y = Ay(F) = [y dF(y) # 0 is the mean of Y and T(F) = [y log(y) dF (y) is the
mean of Y log(Y'). Given that Y is bounded between [0,7], Y log(Y') is also bounded. In
fact, the function y log(y) is strictly decreasing between 0 and 1/e and strictly increasing
between 1/e and +oo. If 7 < 2 then Ylog(Y') is bounded on [7log 7, 0]. If, on the contrary,
T > ¢ then Ylog(Y) is bounded on [—1,7log7]. In both cases, Ylog(Y) is bounded. We
assume‘ for the remainder of the paper that Ylog(Y) € [vi,vs] where v; < va. Hence,
the Theil index is a function of the means of two bounded random variables. Following -
Diouf and Dufour (2005b), we propose nonparametric CIs for these two means, which we
can be used to build CIs for the Theil index.

Let £ be a space of functions such that the Stieltjes integrals A;(G) = fo y dG(y)
and YT(F) = [y log(y) dG(y) are finite. Let G5 (y) € £ and G5(y) € L be two step |
functions with jumps only at Y{yy,...,Y(») that define the following confidence band for
F(y) with level 1 — « :

a)={F0€£:G£(y)§FO( ) < GY(y) ), Vy}.

A nonparametric CT for A;[F] with level 1 — « is:

Ci, (@) = {uoeR 1-F (Y(n))]Y(n+1)+Z[ (Yiey) = FY (Vi) Yooy < 1t

< (1= FX(Yi)]Yiney) +Z[ (Yo) = F (Yoo 1))] Y(k)}
k=1

where Y{g) = 0, Y(41) = ¥, and Vy, FL(y) = max {GE(y),0} and FY(y) = min {GY(y),1}.
When applying the same procedure to T[F], let Z = YiogY and H(z) be the distri-

bution function of Z. Let GL(y) € £ and (V}'Z(y) € L be two step functions with jumps

only at Zy, ..., Z() that define the follbwing confidence band for H(z) with level 1 —a :

Cg(a) = {HO € L:GE(2) < Ho(2) < GY(2), Vz} .

A nonparametric CI for T[F| with level 1 — o is:
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n

Cr(a) = {vo eER:[1- (Z(n))}Z(nH + [ 2 (Zuy) - (Z(k 1))} Zxy < vo

k=1

<[l- (Z(ﬂ))]Zn-H) +Z[ (Zwy) — HE(Z e 1))} Z(k)}

where Z(gy = v1, Z(n41) = V2, and Vz, HE(z) = max {é{;(z), 0} and HY(z) = min {C?H(z), 1}

Using these confidence intervals, Result 5.2 proposes finite-sample nonparametric con-

fidence intervals for I which level can be derived using the Bonferroni inequality.

RESULT 5.2. [Nonparametric CIs for the Theil index with bounded income
distribution] Let Y represent the income of a community’s households and F(y) € L
be the distribution function of Y with support [0,7]. Let Z = YlogY and H(z) be its
distribution function, which support is [vy,vq]. Let Yy < ... < Y(n) be n ordered i.i.d.
observations on Y and Zpy < -+ < Ziny be the corresponding ordered values of Z.
Suppose that the following confidence band for F(y) with level 1 — oy 15 valid for the

space of distributions L :
Cren) = {Fo € L: Grly) < Foly) < GL(y), Wy}

and that the following confidence band for H(z) with level 1 — oo is valid for the space

of distributions L :
Cr(as) = {Ho € L:GE2) < Ho2) < GY(2), v,z}.

where GE(y) € £ and GY(y) € L are two step fuﬁctions with jumps only at Yy),..., Yy
and é{;(y) € L and GY (y) € L are two step functions with jumps only at Zy, ..., Z(m).

Then a confidence interval for the Theil index I with level greater than or equal to
1—a is:

Cll (77) {IO S R Il min < IU < Il ma.x}
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where

1

T
Il,min = min {A_ - lOg(Al) . Tmin S T S Tmax, A1,min S Al S Al,max} ’

T .
Il,max = max {A_ - lOg(Al) : Tmin S T S Tmax; A1,min S Al S Al,max} 3
1

Avmin = [1 = FY (Vi) Yinsny + 3 [FY (Vo) = FY (Vo) Yoo,

k=1

Atmas = [1 = FE(Yio)Yininy) + ) [ﬁf(}f(k)) - ﬁf(y(k—l))] Yiky,

k=1

Tmin = [1 = H(Zm)| Znsy + D [f]f{(z(k)) - f]f{(Z(,c_l))} Z(ky,
k=1

Tmax = [1 = HE(Ziw))| Znar) + Z [f[,f(Z(k)) - flf(Z(k_n)] Z k),
k=1

Y'(O) = Oa Y'(n-!-l) = y? Z(O) = Y1, Z(n+1) = Vg, Vya erf(y) = max{Gﬁ(y),()} and
FU(y) = min {GY(y),1}, and Vz, HE(z) = max{éﬁ(z),ﬂ} and HY (y) = min {ég(z), 1} :

and o = o + a3.

Result 5.2. allows to build nonparametric CIs for the Theil index using CBs for
distribution functipns, in particular those that had been cited earlier. The ClIs so built

have the same properties as those noted for the generalized entropy index.

3.6 Finite-sample confidence intervals for the mean
of a random variable

We proposed finite-sample nonparametric CIs for inequality measures that belong to the
generalized entropy class of indexes, when households’ income is bounded. When Y is

not bounded, Bahadur and Savage (1956) show that nonparametric CIs cannot be built
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without further information about the distribution of Y. Hence the projection principle
used earlier provides CIs for the inequality measures that are too wide to convey any
information. To avoid this problem, we assume that the tails of the distribution of Y
satisfy some regularity conditions: the rate of decline of each tail is bounded by those
of a Pareto distribution. Under this hypothesis, we propose Cls for the mean of a lower
bounded random variable-which can be easily extended to an upper bounded random
variable— and for the mean of an unbounded random variable. Applying these Cls for

the mean, we build CIs for inequality measures with unbounded households’ income.

3.6.1 Confidence intervals for the mean of a lower bounded ran-

dom variable

Let W be a random variable that follows a Pareto distribution P(wyp,y) with density

function

awg
—+r for w > wy

g(w) = ,
0 otherwise

and cumulative distribution function

Gw)=1- (—0)7 for w > wy

w

where v > 0 is the shape parameter and wy > 0 is the scale parameter.

For k < ~, the moments of order k of W are:

k
EW*) = 120 .
(W?) po— (3.10)

and the mean of W is E(W) = 123 when v > 1.

Let Y be a random variable that is lower bounded: Y € [y, +-00) with continuous dis-
tribution function F'(y) and mean E(Y) = p. Let Y(1y < --- < Yj,,) be the order statistics
of a sample of n i.i.d. observations on Y. To insure that we can build nonparametric Cls

for u, we suppose that the rate of decrease of the right tail of F(y) is bounded by the
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rate of decrease of the tail of a Pareto distribution:

HyPOTHESIS (1) The right tail of F(y)—the distribution of Y — is bounded by a

Pareto P(wy,~y) distribution of type I with cumulative distribution function

w

a\7
Gw)=1- (—) for w > wy
w
where wy > 0 is the scale parameter and v > 1 is the shape parameter, i.e.

Gy)<Fly)Vy>7

for some threshold 5§ = wy.

The mean Qf Y is:

i = /+°°de<y>= [varey+ [y ar) (3.11)

where 7 € [y,+00), Ip = E[Y | y < Y < 7] is the mean of a bounded random and
Ip = E[Y | Y > g|. Hence, i is a weighted sum of the mean of a bounded random
variable, Ig, and the mean of an unbounded random variable, I; g, which contains the
exploding part of Y. To build CIs for u, we use CIs for Iz and I;p.

Following Diouf and Dufour (2005b), nonparametric Cls for Iz can be built using
CBs for the distribution function of Yz where Yz =Y | y <Y <y Let’s define some
notation for the remainder of the paper. Denote:

R=RU{-00}U{+c0};

I'(.): a functional T[F]: £L - R deﬁned on a space £ of functions;

F : a space of distribution functions;

F:a space of continuous distribution functions.

Let £ be a space of functions such that the Stieltjes integrals '|G] = fygy dG(y) is
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Yim)

where m = Z 1 [ k)<y:| . Let suppose that these functions define the following confidence.

. vy

finite. Let éL € £ and é,[{ (y) € L be two step functions with jumps only at Y}y), .

band for FYB( ) = Fyjy<y<p(y) with level 1 —ay :

Cryy (02) = {Fo € £: GE(y) < Ro(y) < GY(w), vy}

Following Diouf and Dufour (2005b), a nonparametric CI for Ig with level 1 — a» is:

515(052) = {#0 eR:[1- Y(m) )7 +Z [ (Y(k 1))] Yy < - 12)

< [1— Y(m)] i[ FE(Y- 1))] Yk)}

k=1
where Yoy = , Yint1) =9, FE(y) = max{GL(y), 0}, and FY(y) = min{G¥ (y), 1} Vy.

The methodology used before does not apply to Irg. The random variable Y. =
Y | Y > 7 is not bounded. Hence, following Bahadur and Savage (1956), informative
nonparametric CIs cannot be built for Ir g without further information about the distri-
bution of Yy 5. We provide this information by assuminé that Y satisfies the hypothesis
(1). Result 6.1. provides a bound for I;p under this hypothesis.

RESULT 6.1. Let Y be a lower bounded random variable with continuous distribution
function F(y) and p. Let Yog =Y | Y > 7 with distribution function Fy,,(yrg) and W
be a random variable which follows a Pareto distribution P(3,y) of type I with cumulative

distribution function

0] Y
Glw)=1- (5) forw>7y
where § >0 and v > 1. If '
G(U)) < FYLB(w)? Vw

then,

E(Yrg) < ﬂo
_ -1
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Confidence intervals when all parameters are known

Let’s define a set of assumptions:

.ASSUMPTION 1.1: Let £ be a space of functions such that the Stieltjes integral I[G] =
[ ; ®y dG(y) is finite, Fly,+0) @ space of distribution functions included in L with support
[y, +00) for finite numbery. Let Y be a random variable with distribution function F(y) €

Fly+o0) Such that

y Y
Fly) 21~ (5> Yy 27

where ¥ > 1 and § > 0 are known and Y1y < --- < Y,y the order statistics of a sample

of n i.1.d. observations on Y.

ASSUMPTION 2: Let

Cr(on) = {Fy € L: GL(y) < Ry(y) < GL(y), Yy}
be a confidence band for F(y) with level 1 — oy where GE € £, GY € L, and GE(y) and
GY(y) are step functions with jumps only at Yy, -+, Yny and

Cryy(az) = {Fo € £: L) < A) < CL), Wy}

a confidence band for Fyy<y<g(y) with level 1 — oy where Gker, GV e L, and GE(y)

and GY(y) are step functions with jumps only at Yy, ..o, Yim) where m = 31 [Y(k)gg] .
‘ k=1

~ We use hypothesis (i) and result 6.1. to propose a.general methodology to build

nonparametric confidence intervals for the mean of a lower bounded random variable..

PROPOSITION 6.2. [Nonparametric ClIs for the mean of a lower bounded

random variable with a Pareto-bounded tail of distribution when parameters
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are known] Let

uL=([ nmmwz[ (Y) = F¥ (Yie- n)]m)) [Fr@) - F )]

+3[1 - FY (@),

py = ([ Y(m))] + i [ (Yim) - (Y<k 1))] Y(k)) [ﬁf(?) - ﬁnL(?i)]
s |
vy

Y1 - Fr))

where Y(g) = v, FL(y) ='max{G,L;(y),0} and FY(y) = min{GY(y), 1} Vy, and FE(y) =
max{GE(y),0} and F\,Ef(y) = min{GY(y), 1} Vy. Under assumptions 1.1 and 2, the fol-

lowing confidence interval for

Cul(e) = {mo € R+ iy < ptg < iy} | (3.13)

has level greater than or equal to 1 — o where a = o + aa.

Proposition 6.2. proposes a procedure to build nonparametric Cls for the mean of
a lower bounded random variable whose right tail is bounded by a Pareto distribution.
These CIs are built using nonparametric CBs for F(y) and for the conditional distribution
function of Y | y <Y < 7, which can be derived from CBs for F(y). For that purpose,
the empirical distribution function-based CBs presented in section 5 can be applied.
Note that this procedure can be easily extended to upper bounded random variables by
considering the opposite variable —Y. Also note that the lower bound of any CI for the
mean of a bounded random variabie defines a one-sided—upper—CI for the mean of a
lower bounded random variable. Hence, nonparametric CIs we proposed for the mean of
a bounded random variable can be applied to lower bounded random variables for which

the mean exists.
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ClIs proposed by Proposition 6.2. are derived under the hypothesis that the right tail
of F(y) is bounded by a Pareto distribution, which provides a good upper bound for I3
but not for the lower bound of the CIs. To improve the performance of Cls, a stronger

hypothesis needs to be set:

HYPOTHESIS (11) The right tail of F(Y)—the distribution of Y — is a Pareto P(wy,7y)

distribution of type I with cumulative distribution function

U

-
Gw)=1- (—O) for w > wy
w
where wy > 0 is the scale parameter and v > 1 is the shape parameter, i.e.

Fly)=1- (3)7 Vy>73

for some threshold § = 'U;’(].

Let’s define the following assumption:

ASSUMPTION 1.2: Let £ be a space of functions such that the Stieltjes integral
I'G] = fy+°°y dG(y) is finite, Fiy 1o0) be a space of distribution functions included in
L with Su;)bort [y, +00) for finite number y, and Y be a random variable with distribu-
tion function F(y) € Fiy,+o0) such that

Fly)=1- (g)v,vyzy‘

where v > 1 and 7 > 0 are known and Y(;y < -+ < Y, the order statistics of a sample

of n i.i.d. observations on Y.

Under hypothesis (ii), the following proposition provides a general expression for

nonparametric CIs for the mean of a lower bounded random variable with a Pareto tail.

PROPOSITION 6.3. [Nonparametric ClIs for the mean of a lower bounded



185

random variable with a Pareto tail when parameters are known| Let

= (= R0+ 35 [FE 0 - B i) [P - P

k=1

+ - Rl

T

by = ({1 - ﬁ,’:‘(}"{m))} 7+ [ﬁf(y(k)) - Fn’.:(y(k—l))} Y(k)) [Ff('g) - }F,f(y)

k=1

+ 2 - Pl

where Yoy = y, FE(y) = max{GE(y),0} and ﬁ,f](y) = min{GY(y),1} Vy, and ﬁ,f’(y) =

max{GL(y),0} and FV(y) = min{GY(y),1} Vy. Under assumptions 1 and 2, the follow-

ing confidence interval for u

éu(a) ={uo € R pup S pp < py} (3.14)
has level greater than or equal to 1 — a; — as.

Confidence Intervals when 7 and v are unknown

Cls proposed in the last subsection are valid when the parameters % and v of the Pareto
distribution are fully known. If those parameters are unknown, CIs must be built for
them before considering Cls for . We first consider the benchmark case where both the
threshold 7 and the shape parameter  are unknown. Then, we consider the case where
7 is known but the shape pa.rametef ~ is unknown and tackle the choice of 7. We study

CIs under the hypothesis (ii).

Confidence intervals for 7 and v

Let W be a random variable that follows a Pareto distribution P(7,y) with density
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function g(w) such that

oY —
o(w) = s forw >y
0 otherwise

where 7 > 0 and ¥ > 1. Let Wy),..., W(,) be the order statistics of a sample of n i.i.d.
observations on W. Chen (1996) proposed the following joint confidence region for the 7
and v with level 1 — a:

Cyn(a) = {@0: “/0) e R?*: U, <7 <7, and ”/l(yo) <% < ”/u(?o)} (3-15)

. where for 3 < k < n,

— Vo
W Zln(W()>+(n k—}-lln(Wk))
= ex ,
Y= ep n(k = 1) Fury=s (2% - 2,2)
: Zln( )—i—(n—k—}-lln(%—)
7 =W
yu. (1)exp Tl(k‘—l)F_ 1 D((21{; ) >7
_le-f;gzl—a (2k)
7(To) = )

[n Ing, — Z InWg —(n—-k+1)ln W(k)]

—x"i_lgz — (2k)

A/u(?O) = k—l
2 l:n lnﬂo — Z In W(z) - (Tl —k+ l)ln W(k):|
i=1

where F,(n;,7,) is the p™ percentile of the Fisher distribution with 7, and 7, degrees of
freedom and x2(n) is the p* " percentile of the x? distribution with 7 degrees of freedom.

Using the Chen’s joint confidence region for 7, and v, we propose the following one-

sided and two-sided Cls for 7.

COROLLARY 6.4. [One-sided CI for the shape parameter 7] Let W be a random
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variable with a Pareto distribution P(T,,7y) with density function g(w) such that

_‘w_."_ for w>7

(](TU) — wyhl 2y
0 otherwise

where § > 0 is known and v > 0. Let Wyyy,..., Wy, be the order statistics of a sample

of n i.i.d. observations on W. For any k € [3,n], an upper one-sided confidence interval

for v with level 1 — v is

Cyla) = {vp e R: v, < v}

where
—x5(2k)

2 [kéln (7)) + (n—k+Din (W%)}

Y=

where x3(n) is the p™* percentile of the x* distribution with n degrees of freedom.

COROLLARY 6.5. [Two-sided CI for the shape parameter ] Let W be a random

variable with a Pareto distribution P(7,7) with density function g(w) such that

T forw>7
glw) =
0 otherwise

where § > 0 is known and v > 0. Let Wy, ..., W, be the order statistics of a sample
of n i.1.d. observations on W.

For any k € [3,n], a confidence interval for v with level 1 — o 1s

Colay={r €R: v <7 <7}

" where
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and )
_X1—% (Zk)

2 [kgln (Wy(—)) +(n—k+1)in (VV?@_})J

where Xf,(n) is the p'* percentile of the x? distribution with n dégrees of freedom.

Yu =

Confidence intervals when 7 and v are unknown _
In this subsection, we propose CIs for p when 7 and <y are unknown. These CIs are

benchmark. We discuss later the challenges of their implementation.

ProproSITION 6.6. [Nonparametric CI for the mean of a lower bounded

random variable with a Pareto tail when § and v are unknown] Let

Cor(as) = {(To,70) € R®: 5, < Fp < T, and 7, < 79 < 7, )

be a confidence region for § and vy with level 1 — a3 and

3

uL=([1— (VoI + 3 [F (Vi) = P2 (Vo )| Y(k)) P - F ()]

_\

+

1_ 1 []' ﬁflzj(yu)]a

Tu

m

Uy = ([1 - Y(m) ] Z [ (Yiy) — FE(Yyo 1))] Y(k)) [fflj@u) - ff(ﬂ)]

k=1

Yu =L —
+roTil - Fr (@),

]

where Yoy =y, Fi(y) = max{G}(y),0} and F(y) = min{G] (), 1} Yy, and F}(y) =
max{G%(y),0} and FY(y) = min{GY(y), 1} Vy. Under assumptions 1.2 and 2, the fol-

lowing confidence interval for u

Cula) = {0 € R: py, < pio < piy}
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has level greater than or equal to 1 — a where a = a; + o + o3.

To build this CI, the sample Y;),---,Y(,) must bq split into two parts: one—
Yy, ..., Yimy—on which the parameters will be inferred and another—Y{n 41y, -+, Y(n)—
on which CIs for I p will be built. The choice of m raises similar questions to the choice

of 7, in the case where 7 is predetermined.

Confidence intervals when < is unknown

A more realistic case than the benchmark one is the case where is where +y is unknown
but the threshold ¥ from which F(y) becomes a Pareto distribution is known. In such.
case, § must be chosen prior to the computation of the CIs for u. Let m = Z 1 [Y(k ,<y}
and ny = n— m. The m first observa.tlons of Y are used to build CIs for /g wh11e the n,
remaining observations are used to build the CI for . ¥ must be large enough to minimize
the distortion on the distribution of Y. But, if ¥ is too large, the mass of probability in
the tail of the distribution of Y is small. Hence, the number of observations larger than
7 (ny) may be too small to provide a CI for v which performance won’t alter that of the
CT for . Hence, the performance of the Cls for « is likely to deliver a poor performance,
which alters the performance of the Cls for . The more n is large, the more n; can be
chosen large without altering the performance of Ig too. Moreover, note that the choice
of 7 determines the relative weight of /g and I;g. Cls for Ig are built using CBs for
distribution functions and projection techniques while Cls for Ipp are built using Cls
for ~. Putting more weight on the part of 4 for which a more accurate CI is achieved
improves the performance of the overall inference.

In our Monte Carlo simulations, F(y) is known. In this case, a convenient idea is to
set 7 equal to a percentile of F(y), i.e. § = F~!(p) where p € (0,1). Doing so allows
to control the probability mass in the tail of the distribution. We recommend to choose
p > 0.95 so as to alter the least possible the real distribution of Y.

If F(y) is unknown, one can set § arbitrarily by choosing the subsample of Y that
will be used for the inference on +. In this subsection, we étudy CIs for 1 when the shape
parameter vy is larger than 1 and unknown but the threshold 7 from which F(y) becomes
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a Pareto distribution is fully known.
Proposition 6.7. proposes nonparametric CIs for 4 when 7 is predetermined and v is

unknown.

ProposITION 6.7. [Nonparametric CI for the mean of a lower bounded

random variable with a Pareto tail when v is unknov{m] Let

Cylaz) = {vp €R: v < v <}

be a confidence interval for v with level 1 — a3 and

m

uL:(u- (V)7 + 3 [F Vi) = B o) Y(k)) Fi@) - FYw)

+ 1= @)

NE

py = ([1 = BE(Yem)| 7+ [FE (Vi) = B (Vi) m)) (7o) - Frw)

£
1l

1

1_%[1_ﬁ7f(§)]7

where Yo, = y, F(y) = max{GE(y), 0} and F¥(4) = min{GY (), 1} ¥y, and FH(y) =
max{GE(y),0} and ﬁg(y) = min{GY(y),1} Vy. Under assumptions 1.2 and 2, the fol-

lowing confidence interval for p

Cula) = {mp €R: py <y <y}

has level greater than or equal to 1 — o where o = @y — ay — 3.
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3.6.2 Confidence interval for the mean of an unbounded ran-

dom variable

In this section, we propose a generalization of the CIs for the mean of a lower bounded
raﬁdom variable to all random variables. This procedure applies to the left tail of F'(y)
similar techniques as those applied to the right tail of F(y).

Let Y be a random variable with continuous distribution function F'(y) and mean
E(Y) = p. Let Y3y < -+ <Y, be the order statistics of a sample of  i.i.d. observations
on Y. Rewriting the mean of Y, we split it into three parts that involve the means of

~ three different random variables:

5v) = [ "y dF ()

= f_{:y dF(y)-;-ij dF(y)-}—/;m'y dF (y)

SEY)=EY |Y <y Pr(Y <y +E[Y |y<Y <7 Prly<Y <7

+EY |Y 27 Pr(Y 27

& E(Y) =IygPr(Y <y) +IgPr(y <Y <7) + I1pPr(Y > 7)

where Ip is the mean of a bounded random variable Y = Y | y <Y <7, Iyp is the
mean of an upper-bounded random variable Yy =Y | Y <7, and I 5 is the mean of a
lower-bounded random variable Y5 =Y | Y > y.

Following Bahadur and Savage (1956), additional information about the distribution
of Y, 5 and Yy is needed to build nonparametric Cls for Iyz and I 5. We provide this
information by assuming that the tails of F(y) are bounded by Pareto distributions as
stated by the following hypotheses. Hypotheses (i) and (ii) are the same as before; we
remind them here while hypotheses (iii) and (iv) relates to the left tail of F(y).

HYPOTHESIS (1) The right tail of F(y) is bounded by a Pareto P(y,v) distribution
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of type I: with cumulative distribution function
7\’
Fwz1- () w2y

where § > 0 is the scale parameter and v > 1 is the shape parameter

HYPOTHESIS (11) The right tail of F(y) is a Pareto P(7,) distribution of type I:

Fly)=1- (%)7 =S

where § > 0 is the scale parameter and v > 1 is the shape parameter.

~ Let W be a random variable with Pareto distribution of type I P(wy, p) where wy >
0 and p > 1. The random variable =W follows a negative Pareto distribution with

distribution ﬁ(—wo, p) and mean —E’(W) = —‘f—‘{.

HYPOTHESIS (111) The left tail of F(y) is bounded by a negative Pareto distribution
of type 1 ﬁ(—g, p) with distribution é(y) where —y >0 and p > 1, t.e.

o~

Gly) > Fly) Yy <y

HYPOTHESIS (1v) The left tail of F(y) is a negative Pareto distribution of type I
ﬁ(—y, p) with distribution é(y) where —y >0 and p > 1, i.e

F(y)=G(y) vy < y.

In the last section, we have proposed nonparametric Cls for Ig using nonparametric
CBs for distribution functions and projection techniques. We have also proposed non-
parametric CIs for I'rp in the case where F'(y) satisfies the hypothesis (i) or the hypothesis
(ii). To build CIs for u, we study Cls for fUB based on the same procedure as those used
to build CIs for I g, under the assumption that Y satisfies the hypothesis (iii) or the.
hypothesis (iv).
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Under hypothesis (iii), the mean of the random variable Yy =Y | Y < 7 is lower
bounded: ‘
~E(W) < E(Yyp).

~ —

Given that E(W) = £22 = p—f—%, then

PY

Let’s define the following assumptions:
ASSUMPTION 3.1: Let L be a space of functions such that the Stieltjes integral I'|G] =
fjo?y dG(y) is finite, F be a space of distribution functions included in L, and Y be a

random variable with distribution function F(y) € F such that

F(y)>1- (%)v\w >7

where v > 1 and § > 0 are known and F(y) < @_W(y) Yy <y where @_g,p(y) is the
cumulative distribution function of a negative Pareto ﬁ(—g, p) distribution where -y >0
is the scale parameter and p > 1 is the shape parameter. Let Yy < --- < Y, be the

order statistics of a sample of n i.i.d. observations on Y.

AssuMPTION 4: Let

1

Cr() = {Fy € L: GL(y) < Foly) < GL(y), Yy}
be a confidence band for F(y) with level 1 — oy where GE € £, GY € L, and GE(y) and
GY(y) are step functions with jumps only at Y1y, -+, Y and '

Cry, (02) = { Fo € £ GL(y) < Fo(y) < G(y), vy}

a confidence band for Fyj<y<y(y) with level 1 — oy where GL e, GY € L, and

GL(y) and GY(y) are step functions with jumps only at Yini)s - - Yimg) where my =
kZ 1 [Yin<y] and mo = 31 [Ying]
=1 k=1
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Using equation (3.16) and the former results on I and I; B, we can built Cls for y

in the following proposition, under the hypothesis that all parameters are known.

PROPOSITION 6.8. [Nonparametric ClIs for the mean of a random variable

with Pareto-bounded tails of distribution when parameters are known| Let

[P

Y = %F,f(g) + ([1 - Y(m) Y+ Z [ Y(k) F;?(Y(k—l))] Y(k)) [ﬁnL(y) - ﬁv?(y)}

k=m

+31 - F/@)],

py =yFr) + ([1— F7 (Ym) ]y+ Z [ (Yiw).— ﬁf(”(k—n)} Y(k)) [ﬁf@) - ﬁf(y)}

k=m,

Yy _ L=
+ 1 - Fr),

]

Yoo = y FL(y) = max{GL(y),0} and FY(y) = min{GY(y),1} Vy, and FL(y) =
max{G%(y),0} and FU(y) = min{GY (y), 1} Vy. Under assumptions 3.1 and 4, the fol-

lowing confidence interval for u

éu(a) = {to €R:pp < pig <y} (3.17)

has level greater than or equal to 1 — a where o = ay + ;.

Similar ClIs can be derived for 4 under hypothesis (iv). Under this hypothesis, the
mean of Yy g is:
- Py
B(Yps) = ~E(W) = "4
p—1
Let’s define the following assumption:

AsSUuMPTION 3.2: Let L be a space of functions such that the Stieltjes integral T'|G| =
fj;o y dG(y) is finite, F be a space of distribution functions included in L, and Y be a
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random variable with distribution function F(y) € F such that

Fly)=1- (%)W,Vyzy

where v > 1 and § > 0 are known and F(y) = é_g,p(y) Yy < y where é_g,p(y) is the
cumulative distribution function of a negative Pareto ﬁ( —y, p) distribution where —y > 0
and p > 1 are known. Let Y3y < --- < Y(n) be the order statistics of a sample of n i.i.d.

observations on Y.

PROPOSITION 6.9. [Nonparametric CIs for the mean of a random variable

with Pareto tails of distribution when parameters are known| Let

= L) + ([1 - Y )l + Y [FY Yiw) = P (¥ Yw) 7w - Flw]

k=m1

+ - F )

w =L FY ) + ([1 — B o) 7+ Y [FE () - FiYiecn)] Ym) () - Py

k=m1

+ 2 - Fi@)

Yoo = ¢ Fr(y) = max{GL(y),0} and FY(y) = min{GY(y),1} Vy, and El(y) =
max{GZL(y),0} and FY(y) = min{GY(y), 1} Vy. Under assumptions 3.2 and 4, the fol-

lowing confidence interval for u

Cula) = {po € R : iy, < pio < i} (3.18)

has level greater than or equal to 1 — a where a = a; + .

When the parameters of the Pareto distributions are known, Proposition 6.10 allows to
build nonparametric Cls for the mean of a random variable when the tails of the involved

_distribution are bounded by Pareto distributions or are Pareto distributions. When
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parameters are not fully known, Cls for these parameters can be built using Corollary
6.4. and Corollary 6.5. and used to build CIs for u. The following proposition provides
a CI for 1 under hypotheses (ii) and (iv) when 7 and y are known but vy and p are not.

PROPOSITION 6.10. [Nonparametric CIs for the mean of a random variable

with Pareto tails of distribution when the shape parameters are unknown]

Let

Colas) = {79 €ER: %, < 79 < 7}

be a confidence interval for v with level 1 — a3, and

Colas) ={po € R: p < py < pu}

a confidence interval for p with level 1 — ay. Let

p = 2Ry + ([1 Wl + Y [P Yi) = Y () m)) Fi@) - FU(y)|
+ L1 - F(g),
Y zugy AL N[5 oL Uy _ BL
wo= =B @)+ ([1 - B )] 7+ 3 [FE (Vi) = BE (V) m)) FY@) - Frw)

Y S
+ ol - E@)
il

Yoy = 3 FHy) = max{GL(y),0} and FY(y) = min{GL(y),1} ¥y, and Fl(y) =
max{GZL(y),0} and FY(y) = min{GY(y), 1} Vy. Under assumptions 3.2 and 4, the fol-

lowing confidence interval for u

5u(a) = {uo € R: pp < pg < pyr} (3.19)

has level greater than or equal to 1 — o where o = a3 — oy — a3 — Q.
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3.7 Application to inequality measures when income
is positive

Let Y be a positive random variable with distribution function F'(y) which represents the
income of a community’s households. Let Z = h(Y') with diétribution function H(z). Let
L be a space of functions such that the Sltielfjes integrals As(F) = [T y® dF(y), § # 0
and Y(F) = [*7° 2z dH(2) are finite, F be a space of distribution functions included in

L. Let’s assume that F'(y) satisfies one the two following hypotheses:

HYPOTHESIS (1.1) The right tail of F(y) is bounded by a Pareto P(y,~y) distribution
of type I:
y v
Fly)21- (—) Vy>7g
)

where § > 0 and v > 1 are known.

HYPOTHESIS (1.11) The right tail of F(y) is a Pareto P(g,~) distribution of type I:

7\"
Fly)=1- (—) Vy>7g
Y
where § > 0 and v > 1 are known.

Let Y(;) < -+ < Y¥{y) be the order statistics of a sample of n i.i.d. observations on Y

and
Cr(an) = {Fy € L: G(y) < Foly) < G (v), Yo}
be a confidence band for F(y) with level 1 — oy where GE € £, GV € L, and GE(y) and

GY(y) are step functions with jumps only at Yy, ..., Y. Let

Cryy(02) = { Fo € L: GL(y) < Fy(y) < G(w), vy}

be a confidence band for Fy|o<y<z(y) with level 1 —a, where GLe £,GY e £, and GE(y)

and éf{ (y) are step functions with jumps only at Y{y),..., Y, where m = > 1 [Y(k)g] )
4 k=1
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Given that Y is positive, Y? is also positive. Following Propositions 6.2. and 6.3., a
confidence interval for As(F) with level greater than or equal to 1 — a where @ = o) +a»
18:

61\5 (a) = {AO ER: AJ,min < AO < A5,mBJ(}

where
o under hypothesis (i.i):
Asmin = ([1 — FY(Yim))ly +Z{ (Yiy) — BV (Ve 1))} Y(k)) {FL@J) ﬁg(ga)

+7°1 - FY @)}

A‘svma" = ([1 - ﬁf(}f(m))} y& +

vy’

L@

¢ under hypothesis (i.ii):

3

Asimin = ([1 = FIYe)l7* + 3 [FY (Vo) = FY (Vi) Y&)) P - B @)

k=1

m

k=1

— ([1 - FE(m) | 7+ Y [FE(Yi) = FE (Vi) Ym) @) - B

+ﬁlt1—FL( 7);
Yoy = y = 0; and FE(y) = max{GL(y),0}, FY(y) = min{GY(y),1}, FE(y) =

max{G%(y), 0}, and F¥(y) = min{GY (y),1}.
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Setting § = 1 in the equations above provides expressions for Cls for A;. Using these
CIs and CIs for E(Z) = E[h(Y')] for adequate choice of h(Y’), we can propose ClIs for the

most popular inequality measures.

3.7.1 Confidence intervals for the class of generalized entropy

index when ¢ # 0,1

The generalized entropy measure is

150 = [ i’ -1 dF )

where § # 0,1, and p = [y dF(y). We previously showed that this measure can be

ey 1 As(F)
W) =557 (Agm‘l)

where As(F) = [ y® dF(y) is the non centered moment of order 6 of Y and A;(F) = [y

rewritten as follows:

dF(y) is the mean of Y. Using the previous results, if F(y) satisfies one hypothesis (i.i)

or (i.ii), a nonparametric CI for I is:

CIg(a) = {IO eR: IJ,min < IO < Ié,max}

" where

Lo = 1 - min A 1
&,min = (5(5 _ ])AdymjnSAgsAJ,mu A1

L= o max {24
PR 5(8 — 1) AsminSAsSAsmar | A

and Agmin and Ajsmax are defined above for hypotheses (i.i) and (i.ii). Cr, (a) is of level

greater than or equal to 1 — a where @ = a; + .

Let’s assume now that Y satisfies hypotheses (i.ii) where v is unknown. Let

Cylaz) = {10 €R: 7 < 75 <)
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be a confidence interval for v with level 1 — a3. Then, following Proposition 6.7.,.a

nonparametric CI for Ig with level greater than orequalto 1 —a=1—a; — oy — as is

CI'S ) {IO eR: Iﬁmm < IO < Iﬁmax}

where

) A ¢ min & -1
§,min = {5({5 _ 1) As min EA§ SAs max A‘{ )
1 As
TI5max = s -
P = 58 = 1) AsminSAs St ma {Aa‘ ‘1} ’

m

At min = ([1—F (VeI + 3 | FY (Vi) = FY (Vo) Y&)) FE@) - FY )]
k=1

-5
Y

_+_
1 -

k=1

A = ( P (Y ] £ 3 [FE (W) ~ Y] Y(ﬁ)) (@) - FEG)

Yoy =y = 0, and Vy FL(y) = max{GL(y),0}, FV(y) = min{GY(y),1}, FL(y) =
max{G%(y),0}, and FU(y) = min{GY(y), 1}.

3.7.2 Confidence intervals for the Theil index

The Theil index is:

where u = [y dF(y). We showed that rewriting the Theil index allows to express it as

a function of the means of two random wvariables:
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_ T(F)
— A(F)

where A1(F) = p = [y dF(y) # 0is the mean of Y —which is positive— and T(F) = [y
log(y) dF(y) is the mean of Z = Y log(Y')—which belongs to the interval [—1, +00) . We

Iy

— log(A1(F))

have proposed nonparametric CIs for A;(F') using inference techniques for lower bounded
random variables proposed in subsection 6.1. Using the same techniques, we can build CIs
for T(F) and derive from these nonparametric Cls for I}. The level of the corresponding

CI for I} is computed using the Bonferroni inequality.

Let H(2) be the distribution function of Z = Y'log Y. Let’s assume that H(z) satisfies
one of the following hypotheses:

RESULT 7.1. If F(y) satisfies hypothesis (i.i) then

— _ Yylogy Yy
EZ|Z>2)< +

where 7 = max {0,7log7} .

RESULT 7.2. If F(y) satisfies hypothesis (i.i1) then

- _ ylogy 7Y
E(Z|Z>72)= +

where Z = max {0,7log 7y} .
Let Z(y),. .., Zn) be the ordered values of Z corresponding to the sample from Y. Let
Ci(z) € L and CY(z) € L be two step functions with jumps enly at Z,..., Z(,. Let
Cu(B,) = {Ho € L: CE(2) < Ho(z) < CY(z), Vz}.

be a confidence band for H (2) with level 1 — 3.
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Let

Cry, (Ba) = {Fo € £: Cr(y) < Foly) < CL(y), Yy}

be a confidence band for Hz|,<z<(2) with level 1— 3, where CL € £, CY € £, and CL(y)

and CY(y) are step functions with jumps only at Zay, -+, Zm) wherem = > 1 [Z(k)g]
k=1 -

and 7 > 1.

Following Propositions 6.2. and 6.3., a confidence interval for T(F) with level greater

than or equal to 1 — 3, — 3, is:
éT(B) = {TO € ]R . Tmin S TO S Tmax}

where

e under hypothesis (1.i):

13

Msr

T min = ([1 — HY(Z@m))Z T(Zw) — E(Z(k_i))} Z(k)) F’ (z) — HU(Z)}

+z[1 - HY(z)],

Tinan = ([1 B S i (Zw) - BH(Zpm)| Z(k)) EACREHE]

'Yylogy 0] } ~
+ -
[ -1 (’7 —1)°

T i = (u — BY(Ze)z+ Y |HY(Z9) - BY (Ze-y)] zm) Hr2) - B )]




~ ~

Timax = ([1 — BEZam)z+ Y [BEZg) - AE(Zp)| Z(k)) 3 (z) - Bl2)|

Z) =z = —1, and ¥z HL(2) = max{CL(2),0}, HY(z) = min{CY(z),1}, H:(2) =
max{CL(z),0}, and HY(z) = min{CY(2),1}.

Using these CIs and equations, we can propose the following nonparametric CI for
I} ‘

01}5(77) = {IO eR: Il,min S IO S Il,ma.x}

where

Il,min = min {A_ - lOg(A1) : Tmin < T < Tma.x, Al,min < Al < A1,ma.x} )
1

. .

Il,ma.x = max {A_ - log(Al) . Tmin S T S Tmax» Al,min S A1 S A1,ma.x} 3
1

where A1 min ; Al max ; Tmin ; a0d Ty are defined above for hypotheses (i.i, i.ii, ii.i, and

ii.ii). The corresponding ClI is of level greater than or equal to 1 — 9 =1 — a — [ where

a=a;+aand 8 =6;+ 5,

Let’s assume now that Y satisfies hypotheses (i.ii) where the parameter v is not

known. Let

Cylag) = {1 €eR: v <7y <7}

be a confidence interval for v with level 1—aj3. Following Proposition 6.7., a nonparametric

CI for I with level 1 —n=1—-a; —az — a3 — B, — B is

CI};(”) = {IO eER: Il,min S IO S Il,ma.x}
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where

Il,min = min {Al - log(Al) . Tmin S T S Tmax; Al,min S A1 S Al,max} )
1

T
Il,max = max {7\— - log(Al) . Tmin S T S Tmaxa Al,min S Al S Al,max} )
1

At min = ({1—ﬁfmm> \ij[F (Yiey) = BY (Ye)| Y(k)) [Fr@ - F )

Y _
+ - B @),
Yu

= ([1 - B (V)] 7+ 3 [FHYie) - FE (Vo) Y(k)) (@) - Fry)]

k=1
ylogy 7] _
+ o+ 2| L - H ),
711, (1_%

Vz HL(z) = max{C%(z),0}, HY(z) = min{CY(z2),

HE(2) = max{C%(z),0}, an ﬁU(z) = min{CY(2),1}; and vy FL(y) = max{GE(y),

1},
0},
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FY(y) = min{GY(y), 1}, F¥(y) = max{GL(y),0}, and FY(y) = min{GY(y),1}.

3.7.3 Confidence intervals for the mean logarithmic deviation,
the logarithmic deviation, and the Atkinson inequality

measures

In this subsection we propose nonparametric Cls for the Mean Logarithmic Deviation, the
Logarithmic Deviation, and the Atkinson inequality measures using similar techniques
. as those for the generalized entropy class of measures.

The Mean Logarithmic Deviation index is:

Ig= - / log(%) dF (y) = log(p) — / log(y) dF (y)
where = [y dF(y). Rewriting it:
1% = log(Ay(F)) — O(F)

where Aj(F) = p = [y dF(y) is the mean of Y—which is positive— and Q(F) =
Jlog(y) dF(y) is the mean of Z = log(Y)—which belongs to (—oo,+00). In the last
subsection, we proposed nonparametric CIs for A;(F’) under hypotheses (i.i) and (i.ii).
Similar techniques can be used to build Cls for Q(F) using the same type of regularity

conditions for the distribution function of Z and Propositions 6.8., 6.9., and 6.10.

The Logarithrhic Variation index is:
Ly = / los(L)} dF(y) = E (fogY — log ((F))") = B(2)

) ,
where 4 = [y dF(y) and Z = [logY — log (A,(F))])? [log (%)] . Hence, Iy is the
mean of a positive random variable. By imposing regularity conditions to the tail of the
distribution function of Z of the same type as hypotheses (i.i) and (i.ii), nonparametric

CIs can be easily built using Propositions 6.2. and 6.3.
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The Atkinson class of inequality measures is:

1—[f(&)\* dF(y)]™= ife>0ande #1

]_—e_I?:'J fe=1

—
;;(')
I

When € # 1 and € > 0, the Atkinson inequality measure is:

S =1-[8(5+1)I5+ 1]

where d =1—¢ aﬁd I{ is the generalized entropy measure of order 4. Hence,‘ if
Crla)={lheR: I <Iy < I}
is a CI for I§ with level 1 — q, theﬁ
Cps(a) = {fore R:1—[6(6+ 1)+ 1] < Io < 1= [6(6+1)(I5y + 1)]1/6}

is a CI for I§ with level 1 — & too. Therefore, the nonparametric CIs we proposed in

the last subsection for I can be used to build Cls for I§ with the same level of confidence.

When ¢ = 1, the Atkinson measure is [} =1 — eIk, Hence, nonparametric Cls for
the mean logarithmic deviation can be used to build CIs for I with the same level of
confidence. Moreover, rewriting I} as follows:

exp[E(log(Y))]
E(Y)

Ii=1-

Propositions 6.2., 6.3., 6.7., 6.8., 6.9., and 6.10. can be used to build Cls under some

regularity conditions.
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3.7.4 Confidence intervals for the Lorenz curve

The Lorenz curve is:
L(p) = — / e (
pP) = =0~ ydF(y
® =z J, )

where p € (0,1). The Lorenz curve is an illustration of the distribution of resources in
a community. For each p, L(p) represents the proportion of the households’ community
which owns 100 p percent of the total income of the community. When there is perfect
equity, income is equally distributed among households. In this case, the Lorenz curve is

the straight line L(p) = p.

In this section, we propose nonparametric Cls for L(p) using CBs for F(y) and pro-
jection techniques. Rewriting the Lorenz curve, we can express the Lorenz curve as a

function of the means of two variables, as follows:

L(p) = E_(ly_)/o "y 1y < Fo(p)] dF(y) = 2 [Y n[};é;@; (@) _ E[Y| ;(;F—I(p)]

where Y is positive and Y | Y < F~!(p) is bounded over [0, F~1(p)]. Let A;(F) =
E(Y)#0and T(F) = E[Y | Y < F~}(p)]. Then,

_ X(F)
C A(F)

L(p)

We have proposed Cls for A;(F) under hypotheses (i.i) and (i.ii). Similarly, we can
build nonparametric Cls for T(F') using the general expression of Cls for the mean of a
bounded random variable. Let H(z) be the distribution function of Z =Y | Y < F~1(p)
and 7 = J;7113111[)’(@5%1@)]- Let

Cu(By) = {Ho € L: C3(2) < Hy(2) < CF(2), Vz}

be a confidence band for H(z) with level 1 — 8, where C£(z) € £ and CY(z) € L are

two step functions with jumps only at Y{y),..., Ym). A confidence interval for T(F) with
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level greater than or equal to 1 — 3, is:

51‘(51) = {TO eR: Tmin < TD < Tmax} .

where

R

Toin = [1 = HY (Vw2 + Y [HY (Vi) = BY (Vo) Yoo

and

Toax = [1 = HE V)7 + 3 [Hr (Vi) = HE (Vo) Yoo
k=1

where z = F~1(p) and Vz H%(z) = max{CE(z),0}, HY(z) = min{CY (z), 1}.

Hence, a nonparametric CI for L(p) is:

CL(p)(n) = {LO eR: Ll,min <Ly < Ll,max}

where

: T
Ll,min = min {A_ 2 Tmin €T < Tmaxa A1,min < A1 < Al,max} ;
1

T
Ll,max = max {A_ . Tmin < T < Tmam Al,min < A1 < Al,max} '
1

where Ai min ; Al max ; Tmin ; and Tpay are defined above under the adequate hypothesis

(i.1 and i.ii). The level of the corresponding CI is greater than or equal to 1 — o — 3,

where a = a; + s,

Let’s assume now that Y satisfies hypotheses (i.ii) where the parameter + is unknown.

Let

Cilaz) ={v eR:v, <y <7}

be a confidence interval for v with level 1 — a3. A nonparametric CI for L(p) with level
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greater than or equal to 1 — nn where n = a; + @y + a3 + 3 is:
Crpy(n) = {Lo € R: Ly min < Lo < L1 max}

where

Ll,min = IIliIl{ : Tmin S T S Tma.xa Al,min S A1 S Al,ma.x} )

=R 2=

Ll,max = ma.x{ : Tmin S T S Tma.x: Al,miﬂ S Al S Al,max} ’

Avymin = ([1 - B YT+ 3 [FY (Vi) = FY (Vo) Ym) Fr@) - F(y)]

At max = ([1 — F\f()/(m,))jl 7+ [l?,f(y(k)) - F\rf(y(kfl))} Y(k)) [Fg@) - Ff(y)}

y ~ro
+ =l - F @)
"

T = (1= YY)z + Y [HY (Vo) = BY (V)| Yoo
k=1 )

and

1

Tonax = [1 = HE(Yi)2+ > [ HE(Yiwy) = HE (Vo)

o
Il
-

3.7.5 Confidence intervals for the Gini index

The literature presents several expreséions for the Gini index. One of the most popular
of these is:

: IG'im' =1- 2R(F)



I 210

where VO < ¢ <1

R(F) =§ ] C(F;q) dg,

Q(F;q)
C(F;q) =/0 y dF(y),
Q(F;Q) =inf{y | F(y) > g},

and u = [y dF(y). C(F;q) is the cumulative income function and Q(F’; ¢) is the quantile
function of F(y).

The Gini index can be expressed as a function of the Lorenz curve:

Igini=1— 2/01 L(p) dp = 2[ [p— pr)] dp| (3.21)

For each F(y), the Gini index represents twice the area between the Lorenz curve and
the perfect equity line. It measures how far the distribution of income of a houéeholds’
community is from perfect equity. The values of the Gini index lie between 0 and 1.
Applying the projection techniques we have been using all along the paper, nonpara-
metric CIs for the Gini index can be derived from CIs for the Lorenz curve. In particular,
the CIs for the Lorenz curve we proposed earlier can be projected to build nonparametric

CIs for the Gini index when income is positive, under regularity conditions.

3.8 Monte Carlo study

In this section, we study the propérties of the asymptotic and exact CIs for the Theil
index I} using Monte Carlo techniques. We compare the performance of the proposed
nonparametric Cls for the Theil index with the performance of the asymptotic CI and the
bootstrap CI. Two bootstrap procedures are considered: the percentile-t (i.i.d.) boot-
strap and the semi-parametric bootstrap. The latter was proposed by Davidson and
Flachaire (2007). This bootstrap is like the standard bootstrap procedure for all but the
right-hand tail of the distribution. At each step of this procedure, each observation is

a drawing, with probability 1 — p,as, from the empirical distribution of the sample of
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the smallest n(1 — p;q;) order statistics and , with probability p;,;, a drawing from the

Pareto(yy, p) distribution function with cumulative distribution function

F(y)=1-(y/%)"", y> o

where ¥y = Y(n(1-puq). P and Piqs are estimated from the sample Y1,...,Y,, of observa-

tions as follows: ,
k—1 -1

p= k_lz log Y(n—i) — log Y(—k+1)
=0

and ,
hk
DPtail = o
where k = /n and h is to be chooselzn. In their simulations, Davidson and Flachaire
(2007) used several values of h: h = 0.3,0.4,0.6,0.8, 1. In our simulations, we set h = 0.4.
We suppose in our simulations that the distribution of the income of households is
the following mixture:

v Z with probability Py

7 with probability 1 — P,
where Z follows a Singh-Maddala distribution SM(a, b, ¢) with cumulative distribution
function F(y) = 1 — [1 + ay®]~° and ¥ is some positive number. The Singh-Maddala
distribution has been proven by Brachman, Stich, and Trede (1996) to mimic the income
of several developed countries, such as Germany, well. Davidson and Flachaire (2004)
used this distribution to explain the failure of the asymptotic and the bootstrap inference
methods to perform well when applied to the Theil index with small and fairly large
sample. Following Davidson and Flachaire (2007), we set a = 100, b = 2.8, ¢ = 1.7,
7 = F~1(0.99961) = 1.00078, and P, = 0.9. We suppose that the right-hand tail of the
distribution function of Y is bounded by a Pareto(7,§) where § = 2. Cls with level 95%
are simulated for sample sizes n = 50, 100,200, n = 500 and n = 1000 using N = 500,
N = 250 and N = 150 replications, respectively. For the Cls based on the regularized
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statistics, we use (g = (4p = 0.07. We showed in a former paper that these values deliver
CIs of minimal width for the poverty measure P, with a distribution of income slightly
different from the distribution proposed above. With our choice of parameters, the true
value of the Theil index is I, = 0.3907.

Table 3.1 shows the coverage probability and the average width of the simulated
CIs for I} using both continuous conservative critical poin'ts (corresponding to the case
By = 1) and adequate noncontinuous critical points.

The results confirm that asymptotic and bootstrap Cls for the Theil index are not
reliable. Like the asymptotic CI, both the standard bootstrap and the semiparametric
bootstrap proposed by Davidson and Flachaire (2007) deliver coverage probability far
below the theoretical level of 95%. With our setting, the estimation value of p is lower
than 2. Moreover, with our choice of k, 7 is infinite for some sample size and some

‘samples, in particular when all observations in the tail of the sample are equal to .
In this case, the mean of the Pareto law is yp = ¥. In small samples, both bootstrap
methods experience problems with the distribution functio;l under study. So does the
asymptotic CI. In contrast, nonparametric methods perform well. They are reliable and
conservative for all sample sizes. Among the nonparametric methods, the regularized
Eicker-type and Anderson Darling-type ClIs provide the smaller widths. The Berk-Jones
type CI performs better than the KS-type CI but less than the methods based on the
regularized statistics. The regularized Eicker-type method provides the shortest CI for
n = 50 while the regularized Anderson Darling-type CI'is the shortest: for larger sample

sizes.



Table 3.1: Simulated confidence intervals for the Theil index I%
7 with probability 1 — F = 0.1

with Y = , Cg = C4p = 0.07,
SM(100, 2.8, 1.7) with probability Py = 0.9
N = 500 replications for n = 50, 100, 200, and
N = 250 for n = 500, and N = 150 for 1000
Coverage probability (in %)
n 50 100 200 500 1000

Asymptotic PO=1 92.60 95.20 95.60 93.60 95.6

P0=0.9 - - - - -
t-Bootstrap PO=1 9340 95.80 9540 - 95.60 95.6

P0=09 - : - - :
Bootstrap DF PO =1 78.00 84.80 56.40 56.00 59.00

P0O=09 - - - - -
KS PO=1 100.00 100.00 100.00 100.00 100.00

P0=0.9 100.00 100.00 100.00 100.00 100.00
E. PO=1 100.00 100.00 100.00 100.00 100.00

P0O=09 100.00 100.00 100.00 100.00 100.00
AD, PO=1 100.00 100.00 100.00 100.00 100.00

PO =0.9 100.00 100.00 100.00 100.00 100.06
BJ P0O=1 100.00 100.00 100.00 100.00 100.00

P0O=0.9 100.00 100.00 100.00 100.00 100.00

213
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Width
n 50 100 200 500 1000
Asymptotic ~ PO=1 02234 0.1592 0.1130 0.0705 0.0503
P0O=09 - ; - ] ]
t-Bootstrap ~ PO=1  0.4086 0.1740 0.1185 0.0724 0.0516
P0O=09 - - - - -
Bootstrap DF PO=1  0.4508 0.2027 0.1429 0.0823 0.0564
P0O=09 - - - - -
KS PO=1 11461 0.7359 0.4666 0.2535 0.1573
PO=09 11481 0.7364 0.4668 0.2539 0.1574
E; PO=1 06918 0.4352 0.2765 0.1499 0.0940
PO=0.9 06945 0.4353 0.2766 0.1501 0.0939
AD, . P0O=1 0.6995 0.4304 0.2710 0.1461 0.0912
PO=0.9 06997 0.4305 02711 0.1461 0.0913
BJ PO=1 0.7105 0.4459 0.2940 0.1858 0.1331

P0=09 0.7327 0.4460 0.2941 0.1864 0.1336

3.9 Empirical illustration

In this section, we analyze the level of inequality of rural Mexican households using the
proposed inference methods for the Gini inequality index. We employ data that have been
collected as part of the targeting and evaluation program: PROGRESA.! A census of
households in a set of 506 rural communities has been conducted in 1997, 1998, and 1999
and the data processed to insure comparability. Data about households’ characteristics
are extracted ‘from the November 1997 survey and expenditure aggregate is constructed

using the March 1998 survey.?

I'PROGRESA is a health, education, and nutrition program of the Mexican government aimed to
reduce poverty in targeted rural communities. -

2The data set excludes households in the expenditure survey that had not been interviewed in No-
vember 1997 and 10 communities with fewer than 10 households with expenditure information, leaving
20544 households in 496 communities (see Demombynes, Elbers, Lanjouw and Lanjouw, 2007)
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In a former paper, we used these data to analyze poverty in Mexico both at the
national and regional levels. First, we used the census as a whole to build CIs for the level
of poverty P, of rural households in Mexico. Then, drawing samples randomly from the
census, we studied the poverty profile of PROGRESA-targeted communities and analyzed
the detellminants of poverty in rural areas in Mexico for the involved communities using
two characteristics of the heads of households: the gender and the level of education.

In this section, we study the profile of ineduality of PROGRESA targeted communities
using samples of size n = 500 and 1000 drawn from the census. We employ the same
samples as those used in our former paper and the same values for the regularization
parameters—the latter were derived by applying a split sample procedure. For n = 500,
we found that the smallest widths for the Cls for the poverty measure P, were achieved
by (4p = 0.45 and (5 = 0.039 while those values were (4, = 0.5 and (5 = 0.05 for
n = 1000. We compare the inequality profile of households with a female head to those
of households which head is a male, and the profile of households with an educated head
to those with a non-educated head.

Tables 3.2 and 3.3 show the estimated Cls for the Gini index corresponding to n = 500
and n = 1000, respectively. Asyfnptotic and bootstrap ClIs are estimated using the whole
sample, including the auxiliairy sample on which the optimal value of the regularization

parameters are computed. The Berk Jones-type CI uses simulated critical points.

Results obtained with a relatively small sample of n = 500 are consistent with those
obtained with n = 1000. As someone would-expect, results delivered by the smaller
sample are less accurate than those obtained for n = 1000 but do not contradict the
latter.

According to Cls-using the regularized statistics—which we proved were the best
performing Cls, the level of inequality among rural households targeted by PROGRESA
is relatively low. For n = 1000, these CIs show that the highest levei of inequality among
those households, as provided by the Gini index, is about 22%. This results is in line
with the objectives of the program which targets fairly homogenous rural households and

provide them help to improve their standards of living. Against this bright global picture,
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inequality seems to be unevenly spread among types of households. In fact, inequality
among households with a female head can be as high as 67% while inequality among
households with a male head still lies in the average 22%. This reflects atypical problems
faced by female households’ heads in providing resources to their dependants compared
to uniform shocks faced by male heads. Likewise, households with a non-educated head
register more inequality (44%) than households with an educated head (24%), even if the
level of inequality among the latter is slightly higher than the total average.

This picture of the distribution of inequality among rural households targeted by
PROGRESA completes the poverty profile we derived in our former paper. In addition
to implementing policies that would help reduce poverty among households with a female
head or a non-educated head, authorities policies targeted to the most vulnerable among
those households to help them catch up with other households and get insured against

negative shocks would decrease inequality further.
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Table 3.2: Mexican households in PROGRESA: Confidence intervals for Ign; for -
. different types of households’ heads
n = 500, (4p = 0.45, {x = 0.039

Table 3.2a: All households

Confidence Intervals

min  max width
Asymp -0.337 0.895 1.232
Bootstrap -0.121 0.842 0.963

KS -0.660 0.216 0.877
E¢ -0.511 0.286 0.797
AD:; -0.674 0.231 0.906
BJ -0.650 0.240 0.890
Table 3.2b: Households with " Table 3.2¢: Households with
a female head a male head |
Confidence Intervals (in %) Confidence Intervals (in %)
min  max width min  max width
Asymp  -0.289 0.864  1.153 Asymp  -0.336 0.898  1.234
Bootétrap -0.079 0.856 0.934 ~ Bootstrap -0.124 0.842 0.965
KS -0.900 0.625 1.525 KS -0.685 0.224 0.909
B, -0.900 0.760  1.660 B -0.544 0.290  0.835
AD, -0.900 0.653 1.553 AD:, -0.700 0.244 0.944

BJ -0.881 0.678 1.560 BJ -0.676 0.254 0.930




Table 3.2d: Households with

a non educated head

Table 3.2e: Households with

an educated head
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Confidence Intervals (in %)

Confidence Intervals (in %)

min
Asymp -0.266
Bootstfap -0.109
KS -0.877
E, -0.851
ADq -0.861
BJ » -0.826

max

0.783
0.870
0.444
0.529
0.463
0.500

width
1.050
0.980
1.321
1.380

1.323

1.326

Asymp
Bootstrap
KS

E¢

AD:;

BJ

min
-0.346
-0.125
-0.734
-0.613
-0.747
-0.723

max

0.900
0.836
0.248
0.323
0.270
0.296

width
1.246
0.962
0.982
0.935
1.016
1.019

3.10 Conclusion

Inference studies for inequality measures show that asymptotic and bootstrap methods do

not perform well when applied to these measures. Davidson and Flachaire (2007) showed

that asymptotic approximations provide a poor approximation to the real distributions of

statistics, for small and even fairly large samples while the standard bootstrap deliver a

poor performance when applied to distributions with heavy tails, as it is often the case for

income distributions. They proposed a semiparametric bootstrap procedure for the Theil

inequality index to improve the performance of the bootstrap when distribution functions

have heavy tails. However, the performance of bootstrap inference is also known to be

sensitive to distribution functions with probability masses. In each case, the origin of the

failure of the bootstrap must be identified-to correct the drawback, which is not obvious

when data comes from an unknown distribution function. .
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Table 3.3: Mexican households in PROGRESA: Confidence intervals for Ig;,; for
different types of households’ heads
n = 1000, { ., = 0.5, and (5 = 0.05

Table 3.3a: All households

Confidence Intervals (in %)

min  max width
Asymp -0.342 0.897 1.238
Bootstrap -0.093 0.839 0.932

KS -0.455 0.152 0.606
E¢ -0.275 0.218 0.494
AD:; -0.462 0.166 0.628
BJ -0.501 0.177 0.678
Table 3.3b: Households with Table 3.3c: Households with
a female head ‘ a male head
Confidence Intervals (in %) Confidence Intervals (in %)
min  max width min  max width
Asymp -0.320 0.900 1.220 Asymp -0.344 0.897 . 1.240
Bootstrap 0.007 0.836 0.829 Bootstrap -0.106 0.839 0.946
KS -0.879 0.566 1.445 KS -0.518 0.161 0.680
E¢ -0.851 0.675 1.527 E; -0.356 0.219 0.575
AD, -0.838 0.622 1.461 AD; -0.532 0.172 0.703

BJ -0.820 0.607 1.427 BJ -0.561 0.187 0.748
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Table 3.3d: Households with ‘ Table 3.3e: Households with
a non educated head an educated head
Confidence Intervals (in %) Confidence Intervals (in %)

min  max ~ width min  max | width
Asymp  -0.329 0.900 1.229 Asymp  -0.340 0.899 1.239
Bootstrap -0.053 0.839 0.892 Bootstrap -0.111 0.840 0.951
KS 0668 0.369 1.037 KS -0.565 0.180 0.745
E; -0.567 0.438  1.005 - E; -0.397 0.239 0.636
AD, -0.660 0.405 1.065 AD, -0.580 0.187 0.767
BJ -0.662 0.423 1.085 BJ -0.608 0.220 0.827

In this paper, we propose nonparametric CIs for the most popular inequality measures
in the literature. We show that inequality measures can be reexpressed as a function of
the mean of two random variables. When the involved random variables are bounded,
we employ inference methods for the mean of a bounded random variable we derived in
a former paper (Diouf and Dufour (2005b) to build CIs from confidence bands for the
underlying distribution using projection techniques. When the involved variables are un-
bounded, we generalize these projection techniques to random variables with distribution
functions which tails are bounded by a Pareto distribution or follow a Pareto distribu-
tion. Under these regularity conditions, we propose nonparametric Cls for the mean of
a lower bounded random variable and for the mean of an unbounded random variable
using confidence bands for the distribution functions.

We apply these Cls to build Cls for the means involved in the inequality measures
and derive CIs for the latter. The levels of the corresponding CIs are computed using
the Bonferroni inequality.

Owing to the CBs for distribution functions they are derived from, the CIs for inequal-
ity measures need a single set of critical points to be built, when applied to continuous
distribution functions. This property makes them convenient to implement. When the

income distribution function is noncontinuous, adequate critical points for continuous dis-
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tribution functions provide CIs for inequality measures with level greater than or equal
to the nominal level. Moreover, exploiting embeddedness of the image sets of distribution
functions allows to improve the performance of the inference methods. -

Monte Carlo simulations are performed to study the performance of these methods
for the Theil index. The results show that the standard bootstrap procedure and the
alternative proposed by Davidson and Flachaire (2007), as well as the asymptotic method
can fail in providing reliable CIs for the Theil index while nonparametric inference meth-
ods are strongly reliable and provide informative Cls. The regularized statistics deliver
the best width among the latter.

Last, the profile of inequality of Mexican households involved in PROGRESA as
assessed by the Gini index is analyzed. Results show that there are more inequalities
among households with a female head or a non-educated head. Hence, in addition to
implementing policies that would help reduce poverty among households with a female
head or a non-educated head, authorities plan policies targeted to the most vulnerable
among those households to help them catch up with other households and get insured

against negative shocks that would increase inequality further.
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3.11 Appendix: Proof of theorems and propositions

PrROOF OF RESULT 5.1. The Generalized Entropy measure is

s 1 (AE)
1) = 55 (A‘{(F) - 1)

where As(F) = [y® dF(y) is the mean of Y?, which is bounded over [0,%°] when Y is
bounded over [0,7]. Following Diouf and Dufour (2005b), we can build CIs for As(F )

using confidence bands for the distribution functions of Y¢. Let
Cr(a) = {Fo € L: G(y) < Foly) < GH(y), Yy}

define a confidence band for F(y) with level 1 — & where GE(y) € £ and GY(y) € L are
two step functions with jumps only at Y{;y,-- -, ¥(n). A nonparametric CI for A{[F] with

level 1 — v is:

61\1 (O!) = {lu’[] € R: A1,min S ;u'[] S Al,ma.x }

and a nonparametric CI for A;[F| with level 1 — « is:

CAG(CZ) = {/\0 E R: Aﬁmm < /\\0 < Aéma.x }

where

Asmin = 1= B () ¥y + 3 [P (Vi) = F¥(¥iumry)] Yi,

k=1

Ao = 1 = FEY) ¥y + 3 [FE(Y) - FE(Voe )] Yl
k=1

Yoy =0, Yins1) = 3, and Vy, FE(y) = max {GE(y),0} and FV(y) = min {GY(y),1}.
Hence, the corresponding CI for IL(y) is:

1 A51mjn 1 A6max ‘
CIg(a)z{IoeR:(s(d_l)[rfn 1S b < g _1]}.
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The level of Cys () can be computed using the levels of 5A5 and 5,\1 and the Bonferroni

inequality. The latter states that for two events E, and Es:
Pr(E, N E;) > 1 — Pr(E)) — Pr(E,).
The CIs of A (F) and As(F) are such that
Pr[Ap E Ch (@)l =1—a and _Pr[AO € Ca, ()] ‘= 1-a.
Then, the inequality of Bonferroni .yields that
| Pr[lg € Cr(a),Ap € Cry(a)] 2 1—a—a

The level of the simultaneous confidence set of (I'[F], As[F]) is also the level of the CI of
any function of the vector (A;[F], As[F]). Thus, the level of Cps (@) is 1 — 2a.

ProoF oF RESULT 5.2. The tail index is

T(F)

Ik =
FTAMF)

—log(Ay(F))

where Ay (F) = p = [y dF(y) # 0 is the mean of Y and Y(F) = [y log(y) dF(y) is the
mean of Y log(Y'). When Y is bounded over [0,7], YlogY is also bounded. Let v, and

Vg be respectively the lower and the upper bounds of YiogY where vy < vq. If
Crer) = {Fo € L: GL(y) < Foly) < G(v), Yy}

define a confidence band for F(y) with level 1 — oy whereGL(y) € £ and GY(y) € L are
two step functions with jumps only at Yy, - - - ,Y{n) then a nonparametric CI for A;[F]

with level 1 — o is:

51\1(&1) = {IU“O eR: Al,min < Ho < Al,max }
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where

Atmin = [1 — E} (Y(n))]Y<n+1)+Z[ (Yiwy) - Fé’(mn)] Yy,
k=1

Aimaz = [1 — B (Yi)[Yinsn) + Z [ Yir) — Ff(y(k—l))] Y,
k=1

}/(0) = 0: }/(n+1) =Y, and Vyl F,f(y) = max{G{;(y),O} and ﬁg(y) = min {Gg(y)71} .
Likewise, if

Cr(az) = {HD € L:GE(2) < Hy(2) < GY(2), Vz} :

is a confidence band for H(z) with level 1 — oy where Z = YlogY and H(z) is the
distribution function of Z, G:(y) € £ and GY(y) € L are two step functions with jumps

only at Z(y),- - , Z(») then a nonparametric CI for Y[F] with level 1 — o is
Cr(oz) ={To €R: Trin < To < Trax }

where

Yo = [1 — H, (Z(n))]Z(n+1)+Z[ (Zwy) - H,[;’(Z(k—n)] Zky

k=1
Tmax = [1 - (Z(n))]Z(n+1) + Z [ Z(‘ﬂ)) - & (Z(k 1))} Z(k)’
k=1

Zoy = V1, Z(ns1) = Vg, and Vz, HE(2) = max {éﬁ(z),ﬂ} and HY(y) = min {‘GUE:(Z), 1}.
The corresponding CI for the Theil index is:

Cn(a) = {IO eR: ATmm —10g(A 1 max) < Ip <

1,max 1,min

- log(Al,min) } .

Following the Bonferroni inequality, the level of C7; () is greater than or equal to 1 —

ay—op—ar=1—-2a;—ay=1—a.



ProOF OF RESULT 6.1. Given that v > 1, the mean of W exists and is:

E(W) = /_ " w dG(w) < oo

where lim f;m w dG(w) = 0. Developing d [wG(w)] :

d [wG(w)| = (dvw) G(w) + wdG(w)
=dw(l - Gw))] = (dw) [1 - Gw)]+ w d [l — G(w]]
> dw (1= Cw))] = (dw) [1 - C(w)] — w dG(w)
Hence, ,
[ awa-cw) = [ @w)i-cw)- [ wdow)
where
tim [ alw (- Gw)l = tim 2(1-G() =0
and
[wdcw) = [ @wi-cwi- [ dhw-cw)
— [ @)= Gy -2 (1 - GG2)
E(W) = /_ " w dG(w) = [ "1 - Gw)] dw.
Likewise,
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By assumption:
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1.e.

where the last equality follows from equation (3.10).

PROOF OF PROPOSITION 6.2. Following equation (3.11), the mean of Y is
p=1Ip Pr(y <Y <7)+1Is Pr(Y > 7).

Tf
Crlan) = {Fy € L: G(y) < Foly) < G (y), Yy}

is a CB for F(y) with level 1 — ay then ,
Cortrap() = {Fo € L:1- FY(9) < Foly) <1~ FE@), W}
and -
Y@ - Fr), vy

Crrycy <p () = {Fo €L:Fig) - FY(y) < Faly) <

are respectively Cls for Pr(Y > ) and Crriycy<p)(a) with level 1 — ay.
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Moreover, equation (3.12) provides the following CI for Iz with level 1 — a5 :
Cry(aa). = {ﬂo eR:[1 - FY(Yem)lT + > [BY (Vi) — BY (Vi) Yooy < 1t

k=1
m

5[1— Y(m)] Z[ (Yw) — (Y<k 1))] Y@}-

k=1

To end,

Inp = EYis)=EY |Y >7) (3.22)
> g |
and result 6.1 shows that under hypothesis (i)
Itp = E(YLp) < 7_7—7;_1 ' (3.23)

The CI for p which corresponds to these CIs is:

Cuule) = {po € R : iy, < ptg < piyy}

where

3

uL=([1- (Vom 7+ 3 [FY (Yiw) = FY (V)] m)) i@ - FY ()| +9l-FE @)

k=1

and

py = ([1— Y(m)]

Following the Bonferroni inequality, the level of this CI is greatef than or equal to 1 —

TTMS

[FL Yi) = i (V)| Y(k)) [Fo@ - Fr]+ 25 - Fral

201 — (g,
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PrROOF OF PROPOSITION 6.3. Under under hypothesis (ii),

Yy
E(Yrp) = ——
(Yip) po—
Hence, following the proof of Proposition 6.2. and replacing the lower bound of E(Y.g)

in equation (3.22) by f—_y; yields the corresponding CI for u.

PROOF OF COROLLARY 6.4. Let W be a random variable with a Pareto(wo,d)

distribution. The density function of W is

wi;"—ﬁr for w > wg >0
g(w) = -
0 otherwise

and its cumulaLtive distribution function

5 .
G(w)zl—(%) for w > wp >0

where § > 0 and wg > 0 are respectively the shape and the scale parameters.

| If a n-sample from G(w) is available, then the random variables T; = —In (vﬂv%)&
with ¢ = 1,...,n are i.i.d with each, exponential distribution of parameter § = 1. Let
Way, .., Wy be the increasingly orderéd sample corresponding to the n-sample from
G(w). As the function —In (%‘1)5 is increasing in X, the increasingly ordered sample
which corresponds to W), .., W(n) is T(yy, .., T{n) such that T(;y = —in (Ww(%)d . Following
Lawless (1982, pp101-103), if we define the random variable T = iT(,-) +(n—r)T{;y then
L~ x22r)V3<r<n. =
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As a consequence, fixing r = ke[3, n| yields that
k k-1

5 = 2[Y Ty + (n = k)T = 20D T + (n — k+ 1Tk
i=1 i=1

2[k§—zn (é‘;{"))a —(n—k+1)in (Wlf(i))a]

=1

, : _25[§ln (ﬁ((:)) +(n—k+1)in (le(i))]

i=1

follows a x2(2k). If wp is known, then

) : (k)

Pr(x2(2k) < —26 (Em (Vl‘ﬁ" ) +(n—k+1)n (u‘/"" ))] =l-a

where x2(2k) is the a!* quantile of a x? distribution with 2k degrees of freedom. As

W(Di_) S 1 Vl,
2
Pr[—— Xa (2K) <2%]=1-a
~Xin (#2) - (n—& + 1 (7e)
and
2
Pr — Xa(2k) <d)l=1-a
wg ) - _wo_
2 Lzzlln (W(i)) +(n—k+1)in (W(’c))]
or
2 :
Pr — Xa(2F) <d)l=1-a
2 |:’I’L ln(’LUo) — Z ln(W(i)) - (’I’L —k+ 1) ln(W(k))]
=1

PROOF OF PROPOSITION 6.5. The proof of this corollary is similar to the proof of
the previous one.

Given that 2T ~ x?(2k)
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k—1
9 < -9 Wo _ Wo <42 —1_
Pr(x; »(2k) < 26 (Zln (W(-i)) + (n—k+1)in (W <X1lapa(2k)]=1-a

i=1 (k)

where x2(2k) is the " quantile of the chi2 distribution of 2k degrees of freedom. The

bounds of the CI can be re-expressed as follows:

b= _Xi/z(%)
r k=1
2 |nln(wy) — Y in (W) - (n—k+ L)in (W(k))}
L i=1
6U — _Xf—a/2(2k)
i k=1
2 nln(wg) - Zln (W(i)) — (n —k+ l)ln (W(k))]
L i=1

PROOF OF PROPOSITION 6.6. Under hypothesis (ii), the mean of Yz p is

. _
E(Yes) = ,ny =

Hence, if

Cyy(as) = {(F, ) ER* 15, < Ty < Gy and 7, < 79 < 74}

is a confidence region for 7 and v with level 1 — a3, then

g Uu
CILB(O’S)={MOER‘ _tL S Ho S 1—L}

1
Tu Tt

is a CI for I5 with level 1 — as.
Using Cr,p(as), Cr(en), Cry,(a2), and the CI for I that has been proposed in
equation (3.12) provide the result. The Bonferroni inequality gives that the level of this

CI is greater than or equal to 1 — 2a; — as — aj3.
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PROOF OF PROPOSITION 6.7. Under hypothesis (ii), the mean of Y5 is

E(Yis) = -1 =

Hence, if

Cylaz) ={v €R:v <7 <7}

is a confidence interval for v with level 1 — a3, then

y ]
Crp(as) = {No eR: 1- L < g < 1——i}

Yu "

is a CI for Ip with level 1 — as. Using Cr, ,(a3) and setting 7, = %, = ¥ in Proposition
6.6. yields the result in Proposition 6.6. The Bonferroni inequality gives that the level

of this CI is greater than or equal to 1 — 2a; — ap — as.

PROOF OF PROPOSITION 6.8. Proposition 6.2 proposes nonparametric Cls for
IgPr(y <Y < %)+ IrgPr(Y > %) under hypotheses similar to those assumed in
Proposition 7.1. Moreover, under hypothesis (iii):

Py
—=— < E(Yyp) <y
p—1 =
P <Iyg<y.
p—1 =
Hence using these bounds and Proposition 6.2. provides the result. The Bonferroni

inequality provides that the level of this CI is greater than or equal to 1 — 2a; — as.

PROOF OF PROPOSITION 6.9. Under hypothesis (iv), Iyg = %. Hence, using the

proof -of Proposition 6.8. and the expression of I;yg provide the result.

PrOOF OF PROPOSITION 6.10. Proposition 6.7. provides nonparametric Cls for

IgPr(y <Y < %) + IrpPr(Y > %) under hypotheses similar to those assumed in
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Proposition 7.3. Moreover, under hypothesis (iv) Iyg = -[% and, hence, if
Cylas) ={r € R: 7 <7 <7}

is a confidence interval for v with level 1 — a3, then

Y
_Sﬂoﬁl:i}

1
12} Py

Y
Cryplas) = {ﬂo €R: 1—

is a CI for Iyp with level 1 — a3. Using CYy, B‘(ag) and Proposition 6.7. yields the result
in Proposition 6.10. The Bonferroni inequality gives that the level of this CI is greater

than or equal to 1 — 207 — s — as.

PROOF OF RESULT 7.1. If Y ~ Pareto(y,0) | Y > 7,6 >1and 7 > 0 then

+o00

E(YlogY |Y >7) = / ylog(y)dFyy>5(y)

«|

where for y > 7

wagy(y) - 1—(%)7

= b=+ (553 () ()

and
+o00
— 7\ (1
E(YlogY |Y 27) = /ylog(y)v (5) (;) dy
g
+OC>l
0O
= 7@”/#@
y
¥
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where the last equality is derived by integration by parts. Then,

_ 1 . logy log7 1
, — A7 d
BiogY ¥ 23) = o7 { -yl 2+ e+

Vylogy Y
+ -
vy=1 (v-1

Under hypothesis (i.i)

7\"
Fyysgly) > 1~ (5) :

It follows that, .
_y . Yylogy Y
EXlogY | Y>7) < + .
( gY | Y 27) < y—1 (v - 1)2

'~ PROOF OF RESULT 7.2. Following the proof of result 7.1, if

Fyyog(y) =1- (3)7

then
vylogy i Y
y=1  (y-1%¥

E(YlgY |Y 27) =
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Conclusion générale

" Cette these offre deux types de contributions & la littérature. La premiére contribu-
tion est purement statistique. Elle consiste & proposer des intervalles de confiance non
paramétriques exacts pour la moyenne d’une variable aléatoire bornée, que la variable
étudiée soit bornée ou pas. Dans le cas ou la variable est bornée, nous montrons que
ces intervalles de confiance peuvent étre déduites de bandes de confiance pour la fonc-
tion de distribution sous-jacente en utilisant des techniques de projection. Lorsque la
variable aléatoire n’est pas bornée, nous proposons un principe de projection généralisé
qui s’applique aux fonctions de distributions dont les queues sont bornées par des lois de
Pareto. A premiere vue, les méthodes d’inférence proposées concernent uniquément la
construction d’intervalles de confiance pour la moyenne. Toutefois, 'approche utilisée est -
loin d’étre aussi restrictive qu’elle parait. Résoudre le probléme pour la moyenne d’une
variable Y permet de le résoudre pour tous les moments de Y. Pour cela, il suffit de
remplacer la sérié de données de Y par une fonction de cette derniére. Par exemple, si
on s’intéresse & construire des intervalles de confiance pour le moment d’ordre 2 de Y,
il suffit de remplacer les observations de Y par le carré de ces observations, de constru-
ire la fonction de répartition empirique qui correspond a la nouvelle série de données et
d’appliquer les méthodes d’inférence proposées sur cette derniére. Les intervalles de con-
fiance ainsi obtenus pour la moyenne des données transformées constituent des intervalles
de confiance pour le moment d’ordre 2 de Y. Utilisant ce schéma, toutes les transfor-
mations de variables aléatoires peuvent étre envisagées. Les transformations continues
sont construites en utilisant les méthodes présentées dans cette thése alors que pour les
transformations non continues, d’intéressantes propriétés de monotonicité fournies dans
chacun des trois articles permettent de les étudier.

Le deuxiéme type de contribution est économétrique. Il consiste & proposer des iﬁ— _
tervalles de confiance exacts pour les mesures de pauvreté de Foster, Greer et Thorbecke
(1984) et les mesures d’inégalités les plus populaires: les mesures d’entropie généralisée,
de déviation logarithmique et d’Atkinson et les indices de Theil, de Lorenz, de Gini et de

variation logarithmique. Nous proposons des expressions explicites et faciles a calculer
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pour ces intervalles et montrons par une étude Monte Carlo que ces intervalles sont fi-
ables et robustes, a I'inverse de_s intervalles asymptotique et bootstrap. P01:1r illustration,
nous analysons dans les articles 2 et 3 les profils de pauvreté et d’inégalités des ménages
ruraux au Mexique en 1998 en utilisant des données du programme PROGRESA. Les
résultats montrent que les intervalles asymptotiques sont souvent trop petits pour étre
réalistes alors que l'intervalle bootstrap peut exploser. L’analyse montre que le profil
de pauvreté des ménages Mexicains dépend grandement du type de chef de ménage: les
niveaux de pauvreté et d’inégalités des ménages dont le chef est un homme ou est éduqué
sont moins élévés que ceux des autres ménages. Par conséquent, les mesures destinées
4 réduire le taux d’illettrisme et & sécuriser le revenu des ménages dont le chef est une

femme pourraient aider a réduire la pauvreté et les inégalités dans le Mexique rural.
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