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Sommaire 
Malgré les larges écart-types estimés dans plusieurs études de pauvreté et d'inégalités 

empiriques, la plupart des études dans ce domaine n'ont pas recours à l'inférence statis­

tique. Deux types d'inférence sont généralement utilisés pour les mesures de pauvreté et 

d'inégalités: les distributions asymptotiques et le bootstrap. Bien que ces méthodes puis­

sent ne pas être toujours fiables, aucune étude n'a encore proposé de méthode d'inférence 

exacte valide pour de tels problèmes. Nous proposons de telles méthodes. 

Dans le premier article, nous construisons des bandes de confiance pour des fonctions de 

distribution en inversant des tests d'adéquation basés sur des statistiques de Kolmogorov­

Smirnov (KS) standardisées et améliorées. Le test de KS, bien que populaire, ne per­

met pas de discriminer grandement entre les distributions qui diffèrent le plus dans les 

queues. Pour corriger ce problème, des statistiques de KS pondérées basées sur les 

principes de Wald, du multiplicateur de Lagrange et du ratio de vraisemblance ont été 

proposées respectivement par' Anderson et Darling (1952), Eicker (1979) et Berk et Jones 

(1979). Toutefois, ces dernières souffrent de problèmes dus à leurs dénominateurs qui 

peuvent être proches de zéro. Pour y remédier, nous proposons des statistiques de KS 

améliorées obtenues en ajoutant un terme de régularisation au dénominateur des sta­

tistiques d'Anderson-Darling et d'Eicker. Nous en déduisons des bandes de confiance 

exactes pour les fonctions de distribution et montrons que, dans le cas continu, ces ban­

des de confiance sont indépendantes de la distribution testée sous l'hypothèse nulle et 

qu'elles sont conservatrices dans le cas non continu tout en bénéficiant de propriétés de 

monotonicité qui améliorent les bandes de confiance sans altérer leur fiabilité. 

Dans les deuxième et troisièmes articles, nous proposons des intervalles de confiance 

exacts pour les mesures de pauvreté de Foster, Greer et Thorbecke (FGT, 1984) et les 

mesures d'inégalités les plus populaires, respectivement. Nous observons d'abord que ces 

mesures peuvent se réécrire comme des fonctions de moyennes de variables aléatoir~s, ces 

dernières étant elles-mêmes des fonctionnelles de fonctions de distribution de variables 

bornées et non bornées. Ensuite, nous utilisons des techniques de projection pour déduire 

des intervalles de confiance à distance finie pour la moyenne d'une variable aléatoire 
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bornée à partir de bandes de confiance de la fonction de distribution sous-jacente. Lorsque 

la variable aléatoire n'est pas bornée, nous proposons un principe de projection généralisé 

qui s'applique aux fonctions de distributions dont les queues sont bornées par des lois 

de Pareto. Enfin, nous appliquons ces procédures aux mesures de pauvreté FGT et aux 

mesures d'inégalités (les mesures d'entropie généralisée, de déviation logarithmique et 

d'Atkinson et les indices de Theil, de Lorenz, de Gini et de variation logarithmique). 

Dans les trois articles, des études Monte Carlo sont effectuées pour analyser la per­

formance des méthodes d'inférence et illustrer le choix du paramètre de régularisation. 

Elles montrent que les statistiques régularisées donnent des tests plus puissants que celles 

existantes, lorsqu'elles sont appliquées à des distributions qui diffèrent le plus dans les 

queues. De même, les bandes de confiance de fonctions de distribution et les intervalles 

de confiance pour la moyenne basés sur ces statistiques produisent de meilleurs résultats. 

Dans certains cas, les intervalles asymptotique et bootstrap ne produisent pas de résultats 

fiables alors que les intervalles proposées sont robustes et plus courts. Pour illustration, 

nous analysons dans les articles 2 et 3 les profils de pauvreté et 'd'inégalités des ménages 

ruraux au Mexique en 1998 en utilisant des données du programme PROGRESA. Les 

résultats montrent que les intervalles asymptotiques sont souvent trop petits pour être 

réalistes alors que l'intervalle bootstrap r>eut exploser. L'analyse montre que le profil 

de pauvreté des ménages Mexicains dépend grandement du type de chef de ménage: les 

niveaux de pauvreté et d'inégalités des ménages dont le chef est un homme ou est éduqué 

sont moins élevés que ceux des autres ménages. De ce fait, les mesures destinées à ré­

duire le taux d'illettrisme et à sécuriser le revenu des ménages dont le chef est une femme 

pourraient aider à réduire la pauvreté et les inégalités dans le Mexique rural. 

Mots clés: inférence exacte; Kolmogorov-Smirnov ; Anderson-Darling; Eicker ; pauvreté 

; inégalité ; moyenne ; régularisation; distribution de Pareto. 

JEL codes: COI, C12, C14, 011. 
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Summary 
Despite the growing interest in poverty and inequality studies and the large standard 

errors found in many empirical studies, most of the work in this area neglects statistical 

inference. Two types of inference procedures for poverty and inequality measures have 

been considered: asymptotic distributions and bootstrapping. These methods can be 

. quite unreliable, even with fairly large samples, but no study has proposed provably 

valid exact inference procedures for such problems. We propose such ones. 

In the first paper, we build nonparametric confidence bands for distribution functions by 

inverting goodness-of-fit tests based on improved standardized Kolmogorov-Smirnov sta­

tistics (KS, henceforth). Despite its popularity, the KS test do es not allow to discriminate 

a lot between distributions that differ mostly through their tails. To correct this draw-, 

back, weighted KS statistics based on the three common principles in econometrics (the 

Wald, Lagrange multiplier, and likelihood-ratioprinciples) are proposed respectively by 

Anderson and Darling (1952), Eicker (1979), and Berk and Jones (1979). However, they 

also suffer from drawbacks because standard errors can be very close to zero. To correct 

these, we propose improved weighted KS statistics obtained by adding a regularization 

term in the denominator of the Anderson-Darling and the Eicker statistics and derive 

from them exact nonparametric confidence bands for distribution functions. We show 

that in the continuous case, these confidence bands are independent of the distribution 

assumed under the null hypothesis and are conservative for noncontinuous distributions. 

In the noncontinuous case, we derive monotonicity properties to narrow the confidence 

bands without altering their reliability. 

In the second and third papers, we develop such inference methods for the Foster, Greer 

and Thorbecke (FGT, 1984) poverty measures (paper 2) and the most popular inequal­

ity measures (paper 3): the generalized entropy measures, the Theil index, the Lorenz 

curve, the Gini index, the Atkinson measures, the mean logarithmic deviation, and the 

logarithmic variation. We first observe that these poverty and inequality indicators can 

be interpreted as functions of the expectations of random variables which are themselves 

functional of distribution functions, where the involved variables can be either bounded 
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or unbounded. Using projection techniques, we then derive finite-sample nonparametric 

confidence intervals for the mean of a bounded random variable from confidence bands 

for the distribution of the underlying variable. When the random variable is unbounded, 

we propose a generalized projection principle for distribution functions which tails are 

bounded by a Pareto distribution. Then, we apply these procedures to the FGT poverty 

measures and to inequality measures. 

Monte Carlo simulations are performed in the three papers to study the relative perfor­

mance of the inference methods and illustrate how to choose the regularization parame­

ter. The results show that the regularized statistics yield more powerful goodness-of-fit 

tests than the existing ones when applied to distributions with more discrepancy in the 

tails. Likewise, the CBs for distribution functions and the confidence intervals based 

on these regularized statistics have a better performance. The simulations show that 

asymptotic and bootstrap confidence intervals for the mean can fail to provide reliable 

inference, while the proposed methods are robust and yield shorter confidence intervals. 

As an illustration, we analyze the profile of poverty and inequality of Mexico in 1998 

using households' survey data (papers 2 and 3). The results show that the widths of 

the asymptotic confidence intervals are often too small to be realistic while those of the 

bootstrap can be 10 times larger than the widths delivered by exact methods. The study 

shows that the poverty profile of Mexican households depends greatly on the type of 

households' head: poverty levels and inequality among households with a male head or 

an educated head are much smaller than those among other households. Hence, policies 

aimed at reducing illiteracy and at securing the income of households with a female head 

could help reduce poverty and inequality in rural Mexico. 

Keywords : nonparametric inference; Kolmogorov-Smirnov; Andérson-Darling; Eicker; 

empirical distribution; mean; poverty; in~quality; regularization; Paretian heavy tail. 

JEL codes: COI, C12, C14, 011. 
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Introduction Générale 

Durant les dernières décennies, il y eut un intérêt croissant pour les études de pauvreté 

et d'inégalités. Toutefois, en dépit des larges écart-types trouvés dans les études em­

piriques, la plupart des analyses dans ce domaine sont restées descriptives, ne procédant 

p~ à une inférence statistique rigoureuse. Deux types de procédures inférentielles ont 

été proposés: les distributions asymptotiques et le bootstrapj voir Beran (1988), Kakwani 

(1993), Rongve (1997), Mills et Zandvakili (1997), Dardanoni et Forcina (1999), Biewen 

(2002), Davidson et Duclos (2000), Zheng (2001) et Davidson et Flachaire (2007). La 

plupart de ces études recommandent l'utilisation du bootstrap au lieu des approxima­

tions asymptotiques parce que ce dernier peut ne pas être fiable quand il est appliqué 

à des échantillons de taille petite voire modérée. Ces études reconnaissent cependant 

également les limites du bootstrap standard, en particulier que la procédure peine sou­

vent à performer en présence de distributions avec des queues épaisses qu des masses 

de probabilité comme c'est le cas dans les études de pauvreté et d'inégalités. Dans ce 

cadre, des procédures spécifiques doivent être implémentées pour améliorer les résultats 

du bootstrap mais le choix de la procédure adéquate requiert de connaître la nature du 

problème à l'origine de l'échec du bootstrap standard, ce qui n'est pas trivial quand la 

distribution étudiée est inconnue. Des études montrent que les méthodes d'inférence as­

ymptotique et bootstrap ne produisent pas de résultats satisfaisants lorsque appliquées 

aux mesures d'inégalités. Entre autres, Davidson et Flachaire (2007) montrent que les 

distributions asymptotiques donnent une pauvre approximation des véritables distribu­

tions des statistiques quand la taille de l'échantillon est petite ou moyenne. Ils montrent 

de plus que le bootstrap Li.d. donne des tests de pauvre niveau lorsque appliqué à l'indice 

d'inégalité de Theil avec une distribution de revenue Singh-Maddala. En dépit de toutes 

ces problèmes, aucune étude n'a, à notre connaissance, proposé de méthode d'inférence 

non paramétrique à distance finie valide pour les mesures de pauvreté et d'inégalités. 

Dans cette thèse, nous nous intéressons à ce problème. 

Dans le premier article, nous étudions plusieurs bandes de confiance basées sur des 
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fonctions de distribution. La première est basée sur le test de KS (KS, ci-dessous) qui 

est l'un des tests non paramétriques d'adéquation de lois le plus populaire. Ce dernier 

est fondé sur la statistique de KS qui est le supremum sur toutes les observations de la 

différence entre la fonction de distribution supposée sous l'hypothèse nulle et la fonction 

de distribution empirique de l'échantillon. Le test rejette la fonction de distribution testée 

si elle est trop loin de celle empirique, le seuil de rejet étant défini par le point critique 

de la statistique. Le test doit sa popularité ~ l'une de ses propriétés très pratiques: 

la distribution de la statistique de KS est indépendante de la fonction de distribution 

supposée sous l'hypothèse nulle lorsque celle-ci est continue et par conséquent, les points 

critiques de la statistique ne dépendent pas de la distribution testée et le même ensemble 

de points critiques peut être utilisé pour tester toutes les distributions continues. En 

inversant ce test, il est possible de construire une bande de confiance pour les fonctions 

de distribution qui bénéficient des mêmes propriétés que le test de KS. 

Malgré le fait que le test de KS est pratique, il souffre d'un inconvénient majeur: il 

discrimine faiblement entre les distributions qui diffèrent principalement au niveau de 

leurs queues, ce qui altère les performances du test et des bandes de confiance. En 

particulier, la bande de confiance de KS a souvent été critiquée en raison de son caractère 

uniforme. Sa largeur est constante pour toutes les observations; par conséquent, ses 

bornes ne convergent pas vers 0 et 1 dans les queues de distributions, contrairement aux 

fonctions de distribution qu'elles bornent. Pour corriger cette contreperformance, nous 

utilisons des statistiques pondérées de KS basées sur les trois principes fondamentaux 

en économétrie:. les principes de Wald, du multiplicateur de Lagrange et du ratio de 

vraisemblance. Ces statistiques ont été proposées par Anderson et Darling (1952), Eicker 

(1979) et Berk et Jones (1979), respectivement. 

Les statistiques d'Anderson-Darling et d'Eicker sont des statistiques de KS standardisées 

pour lesquelles la différence entre la distribution théorique et celle empirique est divisée 

par une sorte d'écart-type. ,Ces statistiques permettent une meilleure discrimination entre 

les distributions qui diffèrent principalement au niveau de leurs extrémités. En utilisant 

ces statistiques, nous proposons des bandes de confiance exactes dont la largeur diminue 
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au fur et à mesure que les observations s'éloignent du centre de la distribution. Toutefois, 

les statistiques d'Anderson-Darling et d'Eicker ont leurs propres inconvénients. Les poids 

au niveau des dénominateurs de ces statistiques deviennent très proches de zéro pour les 

observations dans les queues, ce qui induit un comportement erratique des statistiques. 

Pour y remédier, nous proposons des statistiques obtenues par l'ajout d'un terme de 

régularisation au dénominateur "des, statistiques d'Anderson-Darling et d'Eicker. Ces 

statistiques conservent les avantages des statistiques de KS pondérées, mais ne souffrent 

pas d'instabilité. En inversant les statistiques régularisées, nous proposons des bandes 

de confiance exactes améliorées pour les fonctions de distribution. 

La statistique de Berk-Jones est le supremum, sur toutes les observations, du ratio de log­

vraisemblance entre les fonctions de distribution empirique et théorique utilisée comme 

distance entre ces deux fonctions. Il a été prouvé que cette statistique domine toutes les 

statistiques pondérées de KS, au sens de Bahadur et constitue donc une bonne référence 

de comparaison pour nos méthodes d'inférence. Cette statistique a été utilisée par Owen 

(1995) pour construire une bande de confiance non paramétrique pour les fonctions de 

distribution continues. 

Nous montrons que dans le cas continu, les distributions des statistiques basées sur des 

fonctions de distribution empiriques sont indépendantes de la fonction de distribution 

testée sous l'hypothèse nulle, ainsi que leurs points critiques. Par conséquent, les ban­

des de confiance qu'elles permettent de construire dépendent de la distribution testée 

uniquement par l'échantillon. Ces bandes sont construites avec le même ensemble de 

points critiques pour toutes les fonctions de distribution continues, ce qui les rend facile 

à calculer. Pour les fonctions de distribution discontinues, nous dérivons des propriétés 

de monotonicité qui exploitent l'emboîtement des ensembles images de différentes distri­

butions pour réduire la largeur des intervalles de confiance sans toutefois en altérer la 

fiabilité. 

Dans les deuxième' et troisième articles de cette thèse, nous proposons des inter­

valles de confiance pour la moyenne d'une variable aléatoire que nous appliquons aux 

mesures de pauvreté de Foster, Greer et Thorbecke (1984, ci-dessous FGT) et aux mesures 
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d'inégalités les plus populaires: la mesure d'entropie généralisée--qui inclut l'indice de 

Theil, la courbe de Lorenz, l'indice de Gini, la mesure d'Atkinson, la mesure de déviation 

logarithmique et l'indice de variation logarithmique. Pour ce faire, nous observons que 

les mesures de pauvreté peuvent se réécrire comme la moyenne d'une variable aléatoire 

bornée--un mélange entre une variable aléatoire continue et une masse de probabilité au 

seuil de pauvreté--et proposons que les méthodes d'inférence nonparamétrique exactes 

pour la moyenne d'une variable aléatoire bornée leur soient appliquées (article 2). 

A première vue, ce problème paraît ne pas avoir de solution. En effet, d'après Bahadur et 

Savage (1956), il est impossible d'établir une inférence nonparamétrique pour la moyenne 

d'une variable aléatoire sur la base d'observations indépendantes et identiquement dis­

tribuées provenant d'une distribution inconnue dont la moyenne est finie (voir Dufour 

(2003) pour de plus amples détails). Toutefois dans notre cas, la nature bornée de la 

variable aléatoire étudiée donne une restriction suffisante pour permettre d'effectuer une 

inférence nonparamétrique. De tels intervalles de confiance pour la moyenne d'une vari­

able aléatoire bornée sont.proposés par Anderson (1969), Hora et Hora (1990) et Fishman 

(1991). Sutton et Young (1997) comparent les performances de ces méthodes à celles des 

méthodes bootstrap et asymptotique à l'aide de lois Beta. Ils montrent que les intervallès 

asymptotique et bootstrap ont une mauvaise probabilité de couverture en échantillon fini 

alors que les méthodes exactes sont très fiables mais produisent des intervalles plus larges 

que les premiers. 

Nous observons que les mesures FGT sont des moyennes de variables aléatoires bornées 

qui sont elles-mêmes des fonctionnelles de fonctions de distribution et utilisons des tech­

niques de projection pour déduire des intervalles de confiance à distance finie pour la 

moyenne d'une variable aléatoire bornée à partir de bandes de confiance de la fonction de 

distribution sous-jacente. Enfin, nous appliquons ces intervalles de confiance aux mesures 

de pauvreté FGT. 

De façon similaire, nous montrons que la plupart des mesures d'inégalités peuvent se 

réécrire comme une fonction de moyennes de deux variables aléatoires dont l'une ou 

les deux peuvent ne pas être bornées (article 3). Dans ce cas, nous proposons une 
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généralisation du principe de projection utilisé pour les variables bornées aux vari~bles 

non bornées, sous l'hypothèse que les queues de distribution étudiées sont bornées par des 

distributions de Pareto (voir Davidson et Flachaire, 2007 pour l'utilisation d'hypothèses 

similaires dans des procédures bootstrap). D'abord, nous observons que la moyenne d'une 

variable peut s'interpréter comme la moyenne pondérée d'une variable bornée et d'une 

variable non bornée, cette dernière étant la moyenne de la queue de distribution. En 

utilisant les techniques de projection utilisées dans le deuxième article, nous développons 

des intervalles de confiance pour la moyenne de la partie bornée de la variable aléatoire. 

Ensuite, nous établissons des bornes inférieure et supérieure pour la partie non bornée de 

la variable en utilisant l'hypothèse que les queues de distribution de ladite variable sont 

bornées par des lois de Pareto et appliquons les inégalités de Bonferroni pour calculer le 

niveau de l'intervalle de confiance ainsi construit. Enfin, nous appliquons ces méthodes 

d'inférence pour calculer des intervalles de confiance pour les mesures d'inégalités à partir 

de bandes de confiances des distributions sous-jacentes. 

Tous ces intervalles de confiance bénéficient des mêmes propriétés pratiques que les 

bandes de confiance dont ils sont issus: pivotalité, conservation, monotonicité, etc. 

Dans les trois articles, des études Monte Carlo sont effectuées pour analyser la per­

formance des méthodes d'inférence et illustrer le choix du paramètre de régularisation. 

Elles montrent que les statistiques régularisées donnent des tests plus puissants que celles 

existantes, lorsqu'elles sont appliquées à des distributions qui diffèrent le plus dans les 

queues. De même, les bandes de confiance de fonctions de distribution et les intervalles 

de confiance pour la moyenne basés sur ces statistiques 'produisent de meilleurs résul- . 

tats. Dans certains cas, les intervalles asymptotique et bootstrap ne produisent pas de 

résultats fiables alors qu'en revanche les intervalles exacts sont robustes à la distribution 

sous-jacente et à la taille de l'échantillon. Les intervalles de confiance proposés offrent 

une probabilité de couverture généralement plus grande que le niveau nominal tout en 

restant informatifs. Pour illustration, nous analysons dans les articles 2 et 3 les profils de 

pauvreté et d'inégalités des ménages ruraux au Mexique en 1998 en utilisant des données 
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du programme PROGRESA.l Les résultats montrent que les intervalles asymptotiques 

sont souvent trop petits pour être réalistes alors que l'intervalle bootstrap peuvent ex­

ploser, donnant des intervalles de largeur 10 fois supérieure à celles des méthodes exactes. 

L'étude montre qu'en moyenne, les ménages ruraux ciblés par PROGRESA n'ont pas un 

niveau de pauvreté très élevé. Toutefois, le profil de la pauvreté dépend grandement du 

sexe du chef de famille. Le niveau de pauvreté et d'inégalités des ménages avec à leur tête 

un individu male est beaucoup plus faible que celui des ménages ayant une femme à leur 

tête. En outre, les ménages avec un chef éduqué à leur tête semblent être plus susceptibles 

d'échapper à la pauvreté et aux inégalités que les ménages avec un chef non-instruit. Ces 

conclusions apportent des suggestions dans l'élaboration des politiques visant à réduire 

la pauvreté et les inégalités dans les régions rurales du Mexique. Les politiques visant à 

réduire l'analphabétisme des membres des ménages dans ces communautés peuvent être 

efficaces dans la réduction de la pauvreté. Les programmes d'éducation devraient viser 

les enfants et les adultes, en particulier les chefs de ménages afin de produire un effet im­

médiat. De même, les politiques visant à assurer le revenu des ménages ayant une femme 

à leur tête pourrait aider à réduire la pauvreté et les inégalités dans les régions rurales du 

Mexique. Un exemple de telles politiques peuvent être des réformes visant à garantir la 

propriété foncière pour les femmes ou à l'amélioration de la productivité du travail pour 

les ménages avec une femme à leur tête, cette dernière étant moins productive dans des 

activités demandant un effort physique intensif telles que l'agriculture. 

1 Voir les détails sur ce programme en section 9, partie 2 (page 109). 
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Abstract 

Goodness-of-fit tests àre of great interest in econometrics. In many procedures, especially 

in parametric ones, determining the distribution from which the sample cornes from may 

be an important step. The Kolmogorov-Smirnov (KS, henceforth) test is one of the most 

popular nonparametric goodness-of-fit tests. However, it does not allow to discriminating 

a lot between distributions that differ mostly through their tails. Weighted KS statistics 

have been proposed by Anderson and Darling (1952) and Eicker (1979) to improve the 

performance of the test in the tails but they suffer from important drawbacks. 

We propose improved weighted KS statistics to correct these limits. These statistics are 

obtained by adding a regularization term in the denominator of the Anderson-Darling 

and the Eicker statistics. They retain the advantages of the weighted KS statistics but 

their denominators do not become close to 0 in the tails of distributions as it is the 

case for the original statistics. We derive exact nonparametric confidence bands (CBs, 

henceforth) for distribution functions using the weighted and regularized KS statistics. 

We show that in the continuous case, these CBs are independent of the distribution 

assumed under the null hypothesis and are conservative for noncontinuous distributions. 

In the noncontinuous case, we derive monotonicity properties that exploit embeddedness 

of the image sets of different distributions to narrow the CBs without altering their 

reliability. 

Monte Carlo simulations are performed to study the relative performance of the inference 

methods and illustrate how to choose the regularization parameter. The results S;tlOw that 

the regularized statistics yield more powerful goodness-of-fit tests than the existing ones 

when applied to distributions with more discrepancy in the tails. Likewise, the CBs for 

distribution functions based on these regularized statistics are of better performance. 
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1.1 Introduction 

The problem of determining the distribution from which a sample comes from is of great 

interest in statistics and econometrics. Instead of using an asymptotic law, it is often 

desirable and even crucial to ~ow the actual distribution of a sam pIe before applying 

further econometric procedures, in particular parametric ones. Several goodness-of-fit 

tests have been proposed. They test the null hypothesis that a sample follows a given 

distribution-which generally needs to be fully specified-against the alternative that the 

sample does not follow this distribution. Parametric tests have been proposed by Shapiro 

and Wilk (1965), Lilliefors (1967), Chambers (1983)-probability plots, etc. Likewise, non­

parametric procedures have been provided by Snedecor and Cochran (1989)-Khi square 

test, Anderson and Darling (1952), Kolmogorov (1941), Smirnov (1944), Cramer (1928), 

Von Mises (1931), etc. 

The Kolmogorov-Sniirnov (KS, henceforth) test is one of the most popular nonpara­

metric goodness-of-fit tests. It is based on the KS statistic which is the supremum over 

all observations of the difference between the distribution function assumed under the 

null hypothesis and the empirical distribution function of the sample. The test rejects the 

distribution function assumed under the null hypothesis if it is too far from the empirical 

distribution function, the threshold being defined by the critical point of the KS statistic. 

The test owes its popularity to a convenient property: the distribution of the KS statistic 

is independent of the distribution function being tested under the null hypotheses when 

the latter is continuous. Hence, the critical points of the statistic are· not contingent bn 

the assumed distribution and can be used to test any continuous distribution function. 

These critical points have been tabulated by several authors and are widely published. 

Inverting the test allows one to build confidence bands (CBs, henceforth) for distribution 

functions which also benefit from the pivotality of the KS statistic. 

Even though the KS statistic is convenient, it has low power to discriminate a lot 

between distributions that differ mainly through their tails. This property alters the 

performance of the KS test and CB. In particular, the KS confidence band has often 

been criticized because of its uniform nature: its width is constant for all observations 
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and thus, its bounds do not converge to 0 and 1 in the lower and· the upper tails of the 

distribution, as do the distribution functions they bracket. To correct this drawback, 

we use weighted KS statistics based on the three common principles in econometrics: 

the Wald, Lagrange multiplier, and likelihood-ratio principles. These statistics have 

been proposed by Anderson and Darling (1952), Eicker (1979), and Berk and Jones 

(1979). The Anderson-Darling and the Eicker statistics are standardized versions of the 

KS statistic where the difference between the theoretical and the empirical distributions 

is divided by a kind of standard deviation. These statistics allow one to discriminate 

between distributions that differ mostly through their tails. Using them, we propose 

finite-sample nonparametric CBs whose widths decrease with observations further from 

the center of the distribution. 

The Anderson-Darling and the Eicker statistics have their own drawbacks. The power 

of the goodness-of-fit test they yield is smaller than the power of the standard KS test 

when testing distributions with low dispersion that differ more in the center of the dis­

tribution than in the tails. Moreover, the weights in the denominators of those statistics 

become very close to zero for observations in the tails, leading to erratic behavior of the 

statistics. We propose improved weighted KS statistics to correct these. These statistics 

are obtained by adding a regularization term in the denominator of the Anderson-Darling 

and the Eicker statistics. They retain the advantages of the weighted KS statistics but 

do not suffer from instability, improving the performance of the in.ference. By inversion 

of the regularized statistics, we build improved exact CBs for distribution functions. 

The Berk-Jones statistics uses the supremum, over aIl observations, ofthe log-likelihood 

ratio of the empirical distribution function and the theoretical distribution function as 

a distance between these two functions. This statistic has been proved to dominate any 

weighted KS statistic, in the sense of Bahadur and is thus a challenging referral for our 

inference methods. It has been used by Owen (1995) to propose a CB for distribution 

functions. 

In the continuous case, we show that the distributions of the empirical distribution­

based statistics are pivotaI and that their critical points do not depend on the distri-
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but ion function being tested under the nuIl hypothesis. Hence, the corresponding CBs 

depend on the distribution only through the sample; they are built using the same critical 

points for aIl continuous distribution functions, which make them easy to compute. For 

noncontinuous distribution functions, we derive monotonicity properties which exploit 

embeddedness of the image sets of different distributions to narrow the CBs without 

altering their reliability. 

We compare the relative performance of the nonparametric and parametric inference 

methods. Monte Carlo simulations are performed to study the. power of the goodness­

of-fit tests under various hypotheses. In both studies, we study carefuIly the choice of 

the regularization parameter. The results show that regularized statistics yield more 

powerful goodness-of-fit tests than the existing ones when applied to distributions with 

more discrepancy in the tails. 

The paper is organized as foIlows. Section 2 presents the Kolmogorov-Smirnov, the 

Anderson-Darling and the Eicker statistics and derives the expressions to compute them. 

It also shows how to invert these tests and build the CBs for distribution functions they 

yield. In section 3, we introduce the regularized statistics and derive explicit expressions· 

to compute them and to build CBs for distribution functions. Sections 4 presents the 

Owen CB and Section 5 derives sorne convenient properties of these CBs for continuous 

cases and monotonicity properties for noncontinuous distribution functions. Section 6 

presents Monte Carlo results and Section 7 concludes. 

1.2 Distributional properties of goodness-of-fit sta­

tistics based on empirical distribution functions 

Let's define sorne notation for the remainder of the paper. Denote F, the set of aIl 

distribution f~nctions, F, the set of continuous distribution functions, F[a,b] the set of 

distribution functions with support [a, b] , and IR = IR U, { -oo} U {+oo}. Let X be a 

random variable with distribution function F(x) E F. Denote X(l) :S X(2) :S ... :S X(n) . 

the order statistics of a sample of n Li.d. observations on X and Fn(x) the corresponding 
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empirical distribution function defined as follows: V k = 0, ... , n 

(1.1) 

where (X(O),X(n+l») is the support of F(x), which may be the realline (-00,+00) and 

X(O) ::; X(l) :S X(2) ::; ... ::; X(n) ::; X(n+l)' 

Let's consider the following null hypothesis: 

Ho(F) : Xl,"" X n are i.i.d. with distribution function P[Xi ::; x] F(x). (1.2) 

A general statistic to test Ho(F) against its negation HI(F) is: 

D (F~, F) = sup Dl [Fn(x), F(x)]. (1.3) 
-oc<x<+oc 

where Dl [Fn(x), F(x)] is a functional of Fn(x) and F(x), which measures the distance 

between these two functions. In this section, we study interesting properties for statistics 

of the form D (Fn, F) when F(x) is continuous and when it is not. 

1.2.1 Pivotality and conservativeness 

PROPOSI!ION 2.1. [Distribution of statistics based on empirical distribution 

functions when F(x) is continuous] Let XI, ... , X n be n random variables. Let 

D (Fm F) be a statistie of the form: 

D (Fn, F) = sup DdFn(x) , F(x)]. 
-oo<x<+oo. 

If F (x) is a continuous monotonie funetion, then the following identity holds almost 

surely: 

D (Fn, F) = sup Dl [H(U}, ... , Un, U), U] 
nEF(lR) 
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where Ui = F(Xi ), i = 1, ... ,n and 

If, furthermore, Xl, . .. ,Xn are n i.i.d. observations on X with continuous distribution 

function F (x) E F, then 

D (Fn, F) ~ sup Dl [H(UI , ... , Un, u), u] 
o:s:uS) 

where Ui = F(Xi ), i = 1, ... , n are i.i.d. with uniform U[O,I] distribution. 

Proposition 2.1. states that when F(x) is continuous, the distribution of D (Fn , F) 

is independent of F(x). D (Fn , F) can be rewritten using only uniform statistics. All 

statistics withgeneral form D (Fn , F) are pivotaI for continuous distribution functions. 

Re'nce, the critical points associated to those statistics are also independent of F(x). 

This property simplifies a lot the implementation of the tests and CBs associated to such 

statistics. A unique set of critical points is needed to compute these for all continuous 

distribution functions. 

When F(x) is not continuous, the distribution of D (Fn , F) is different for each F(x) 

being tested. The associated critical points are also modified by the distribution of the 

sample. Renee, a new set of critical values need to be computed to implement the tests for 

each distribution, making the inference methods more difficult to implement. Moreover, 

in this case, building CBs for F(x) loses all interest because these are usually built to 

bracket unknown distribution functions using a sample of observations that cornes from 

the distribution under interest. To simplify the implementation of the inferen~e methods 

and restore the interest of CBs in the case of noncontinuous distribution functions, we 

propose to exploit the following properties .. 

PROPOSITION 2.2. [Conservative nature of continuous case critical points] Let 

Xl,' .. ,Xn be n i.i.d. observations on X and Fn(x) the corresponding empirical distrib­

ution junction. Let F (x) E F be a continuous distribution function and G (x) E F a non-
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continuous one. For any level a, 0 ::; a ::; 1, the critical value associated with D (Fn , F) 

for testing the null hypothesis Ho(F) as defined by equation (1.2) is larger than or equal 

to the critical value associated with D (Fn , G) for testing the null hypothesis Ho(G): 

or equivalently 

PROPOSITION 2.3. [Conservative property of continuous case CBs for distribu­

tion functions] Let Xl,' .. ,Xn be n i.i.d. observations on X and Fn(x) the correspond­

ing empirical distribution function. Let F(x) E F be a continuo us distribution function 

and G(x) E F be a noncontinuous one. For any level a, 0 ::; a ::; 1, the confidence band 

obtained by inverling the test of the null hypothesis Ho(F) as defined by equation (1.2) 

using appropriate critical points with level a for D (Fn, F) yields a confidence band for 

G(x) with levellarger th an or equal to 1 - a. Equivalently, if en is defined as follows: 

where 

then 

Propositions 2.2. and 2.3. highlight sorne interesting properties of the ernpirical 

distribution function-based statistics and CBs which sirnplify their irnplernentation when 

applied to noncontinuous distributions. Proposition 2.2. states that the critical values of 

D (Fn, G) for continuous distribution functions F(x) are conservative for noncontinuous 

functions G(y). Using the appropriate critical values of level a for F(x) provide a test 
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of levelless than or equal to a for G(y). Therefore, rejection of the null hypothesis with 

such test leads to rejection for the nominal level a. In other words, the result of the 

test based on D (Fn, G) remains Valid and one can use the conservative critical values 

to compute tests and CBs for noncontinuous distribution functions. Let's remember 

that those critical points-that applies to continuous distributions-are independent of the 

function being tested and are thus, identical for aIl continuous distributions. Note that 

these propositions hold for any continuous distribution function F(x). 

Likewise, the CBs for G(y) built using appropriate critical points for continuous dis­

tribution functions will be of levellarger than or equal to 1 - a. Using these properties, 

critical points from continuous distribution functions can be applied to any sample from 

a general distribution function. The resulting CBs will be of level at least equal to 1- a. 

Even though the conservative critical points provide valid inference for noncontinuous 

distribution functions, using them alters the performance of the inference. The question 

is how far the quality of the performed inference is affected? We assess this question 

using the properties of tests and CBs. Concerning the tests, when the null hypothesis 

is accepted with level a, the conclusion of the test remains valid for levels less than 

or equal to a. Conversely, when the null hypothesis is rejected with level a, it will be 

still rejected for levels larger than a but might be accepted for lower levels. Concerning 

CBs, the impact of the using conservative critical points can be studied using the level 

of confidence (accuracy) and the width (precision) of the CBs. Given that the CBs 

using conservative critical points have a higher level than the targeted one, they will be 

wider than the CBs with effective leve11 a. To reduce the width, exact critical values 

corresponding to the distribution function under interest can be computed. However, by 

doing this, the CBs willloose one of their major advantages. To avoid this shortcoming, 

we derive monotonicity properties that can be used to narrow CBs without altering their 

reliability. These results are based on information about the set of discontinuities of the 

distribution function. 

PROPOSITION 2.4. [Range monotonicity of critical points] Let X}, ... , X n be n 

i. i. d. observations on X and Fn (x) the corresponding empirical distribution junction. 
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Let F(x) and G(y) be two distribution functions such that G(IR) ç F(IR). For any level 

a, 0 ::; a ::; 1, the critical value associated with D (Fn, F) for testing the null hypothesis 

Ho(F) as defined by equation (1.2) is larger than or equal to the critical value associated 

with D (Fn, G) for testing the null hypothesis Ho(G): 

PROPOSITION 2.5. [Range monotonicity of CBs for distribution functions] Let 

Xl,' .. ,Xn be n i.i.d. observations on X and Fn(x) the corresponding empirical distrib­

utionfunction. Let F(x) and G(y) be two distributionfunctions such that G(IR) ç F(IR). 

For any level a, 0 ::; a ::; 1, the confidence band obtained by inverting the test of the null 

hypothesis Ho(F) as defined by equation (1.2) using appropriate critical points with level 

a for D (Fn, G) yields a confidence band for G (x) with level larger th an or equal to 1 - a. 

Equivalently, if en is defined as follows: 

where 

then 

Propositions 2.4. and 2.5. generalize Propositions 2.2. and 2.3. to aIl distribution 

functions. It suggests that CBs can be made narrower by exploiting embeddedness of the 

image sets of different distributions. When studying a discontinuous distribution G (y ), . 

we know that G(y) takes its values in a set VG which is included in [0,1]. Thus, the 

conservative CB for a continuous distribution I?rovides a CB for G(y) with level 1 - 151 

greater than or equal to 1 - a. If additional information about the image set of G(y) is 

available-in particular, if we know there exists a distribution function with image V F 
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such that V G ç V F -then the critical points for testing F(x) can be used to derive a CB 

for G(y) with level 1 62 such that 1 a:5 1 - 62 :5 1 ....:.. 61 , The CB with level 1 - 62 

is narrower than the CB with level 1 61 while being reliable. Thus) using information 

ab,out the nature of the discontinuity of the random variable can be useful for providing 

shorter CBs for G(y). The more is known about the set of discontinuity points of the 

distribution) the better the inference will be. However, the improvement can be achieved 

without knowing an discontinuity points of G(y) and their probability masses. Hence, 

the main advantage of the KS confidence band, that is its independence of the assumed 

distribution function, is somehow preserved. 

Let's consider a special case of embedded image sets. Let X be a random variable 

with distribution H(x) E FrO,l] snch that X is a mixture between a continuous variable 

bounded on (0,1] and a probability mass of H(O) == pat O. H(x) is continuous on (0,1] 

with H(O) = p and H(l) 1. 

COROLLARY 2.6. [Range monotonicity with a mass at the lower boùndary] 

Let Xr,'" ,X~ be n i.i.d. observations on X 2 and Fn(x) the corresponding empirical 

distribution function. Let FI (x) and F2 (x) be two distribution functions continuo us on 

(a, b] such that Pl Fl(a):5 F2(a) = P2. For any level a, 0:5 a :5 l, the confidence band 

obtained by inverting the test of the null hypothesis Ho(Fl) as defined by equation (1.2) 

using appropriate critical points with level a for D (Fn, FI) yields a confidence band for 

F2(X) with levellarger than or equal to 1 - a. Equivalently, if en is defined as follows: 

where 

then 
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Corollary 2.6. describes the special case where the distribution function being studied 

is continuous everywhere exeept at the lower bound of its support. This case is very 

interesting because such distribution functions are quite frequent in financial studies, 

and poverty and inequality analysis. Moreover, this case can be easily extended to those 

where the discontinuity point is at the upper bound of the support or those where both 

the lower and the upper bounds are discontinuity points. 

1.2.2 Special case: the Kolmogorov-Smirnov statistic and con­

fidence ba,nd 

Let X be a random variable with distribution function F(x) E F. Denote X(l) :s; X(2) :s; 

... :s; X(n) the order statistics of a sample of n Li.d. observations on X and Fn(x) the 

empirical distribution function of the sample. The Kolmogorov-Smirnov (KS, heneeforth) 

statistic is 

KS = sup vnIFn(x) - F(x)1 (1.4) 
-oo::;x::;+oo 

Developing this expression allows to reexpress the KS statistic as follows: 

This explicit expression is more convenient and can be used to compute the test easily. 

The KS is a special case of the statistic D (Fn, F) where 

Henee, all properties derived for this general form of statistics apply to the KS statistic. In 

part icular , when applied to continuous distribution functions, the KS statistic is pivotaI 

and its distribution can be characterized as follows: 

S eant {' [ i TT] [TT i - 1] } K = max max - - U(i) ,max U(i) - -- ,0 
l::;t::;n n l::;t::;n n 
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where U(l) :S U(2) :S ... :S U(n) are the order statistics of a sample of n LLd. observations 

of an uniform U[O,I] distribution. The critical values used to compute the KS tests are 

the same for aIl F E F and thus, do not need to be simulated for each distribution. 

Moreover, appropriate KS critical values for testing continuous distribution functions 

are conservative for noncontinuous distributions. To end, this conservative. property 

extends to the cases of distribution functions with embedded image ·sets. 

It foIlows that the KS critical point for a level Ct and a given sample size n is the 

same for aIl continuous distribution functions and can be used to test the hypothesis 

Ho : Xi '" F against the alternative one Hl : Xi "" F for aIl F E F. Exact critical points 

for K seant can be computed by simulation using the foIlowing 3-steps procedure: 

1. Generate a sample of n i.i.d. observations from an uniform law U[O,I] 

2. Compute the Kolmogorov statistic K seant for this sample using the expression 

Kseant = max {max [i - U(i)] , max [U(i) - i-l] ,o} 
l::St::Sn n l::St::Sn n 

3. Repeat N times steps 1 and 2-N is the number of replications-and compute the 

critical value of level a, the (1 - a)th fractile. 

Tables of the Kolmogorov-Smirnov critical points have been computed and published, 

for continuous distributions. Having them simplifies the test considerably and makes this 

goodness-of-fit test more convenient to use than the other exact methods. 

The conservative property of the KS statistic has been evoked by Kolmogorov (1941) 

before being proved by other authors including Noether (1963) and Conover (1972). We 

provide in Appendix 2, a more convenient proof of this property than those provided in 

the literature. 

The CB for F(x) with level greater than or equal to 1- a built inverting the KS test 

is: 

(1.5) 

where cKs(a) satisfies Pr[KSF :S cKS(a)] 2: 1- a. 
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When F(x) is continuous CKS(a) does not depend on if For a given sample size, 

the same critical value is used to build CBs for aIl continuous distributions. Hence, the 

KS confidence band depends on F(x) only through the sample. This simplifies a lot 

its computation and makes its popularity. Moreover, owing to the monotonicity of the 

KS critical points when applied to distributions with embedded image sets, if F(x) and 

G(y) are two distribution functions such that G(IR) ç F(IR) then the KS confidence band 

using adequate critical values for F(x) embeds the KS confidence for G(y). Hence,using 

information about the image set of G(y) one can build narrower CB for the latter without 

having to use the adequate critical values for it. 

1.3 Implementation as a Monte Carlo test 

In the preceding section, we studied interesting properties for statistics of the form 

D (Fn, F) = sup Dl [Fn(x), F(x)] . In this section, we show another important ad-
-oo<x<+oo 

vantage of these statistics which make them even more attractive. We show that the test 

of Ho(F) as defined by equation (1.2) based on these statistics can be implemented using 

exact randomized test procedures such as Monte Carlo tests (see Dwass (1957), Dufour 

(1995), Dufour and Kiviet (1998), and Dufour and Khalaf (2001)). Given that D (Fn , F) 

is pivotaI under Ho(F), the Monte Carlo test based on pivotaI statistics can be applied. 

Given that the distribution of D (Fn, F) is noncontinuous, the standard Monte Carlo 

test procedure cannot be applied. In this case, a randomized tie-breaking procedure 

(Dufour, 1995) can be applied to test Ho(F). This procedure is a modified Monte Carlo 

test ad~pted for discrete distributions. It can be implemented as foIlows. 

Let Do denote the test statistic computed from data and Do the observed value of 

Do based on specifie realized data. Do is a random variable while Do is fixed. The 

critical region of the test is Do 2: Da where a is the level of the test and G(Do) = 

P (D 2: Do 1 Do = Do) is the realized p-value of the test statistic Do. Suppose we can 

generate N Li.d. replications Dj, j = 1, ... ,N of D (Fn, F) under Ho(F). The foIlowing 

steps apply: 



• Draw N + 1 Li.d. variates Wo, W1 , •.• , WN independently of Dj. 

• Order the pairs (D j, Wj ) following the lexicographic criterion: 

• Compute an empirical p-value function: 

where 

1 N 

N 2::)1[0,00) (x 
j=l 

1 N 

Dj) + N 2::)'101 (Dj - x) 11[0,00) (Wj - Wo) . 
j=l 

. 
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PN(X) is the empirical probability that a value as extreme or more extreme than x 

is realized if Ho(F) is true. Note that NON (x) is the number of simulated statistics 

which are greater or equal to x. 

• Compute the associated Monte Carlo critical region-which is a randomized critical 

region-as: 

(1.6) 

where PN(Do) may be interpreted as an estimate of C(Do). Given Do =Do, ~v(Do) 

can be interpreted as a realized Monte Carlo p-value associated with Do. Thus if 

N is chosen such that a (N + 1) is an integer, the critical region (1.6) has the same 

size as the critical region C(Do) ::; a. Moreover, 

p r;:; (D ) < a] = 1 [a (N + 1)1 0 _< a _< 1 
IYN 0 - N + 1 ' 

where 1 [x] is the integer part of x. 

Thanks to the properties of the Monte Carlo test, the implementation of the studied 
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goodness-of-fit tests along this procedure is convenient. First, if F(x) is free of nuisance 

parameters and ex (N + 1) is an integer then the properties of the critical region are irre-, 
spective of the humber.of replications used. Second, the Monte Carlo test does not need 

to compute exact critical points for each sample size and each distribution function under 

test. Besides, the number of replications needed to compute the test is not constraining 

as its the immber of replications needed to simulate valid critical points or to get accurate 

bootstrap results. Third, confidence intervals can be built from such tests using inversion 

procedures (see Fieller (1940, 1954) for example). 

1.4 Application to the Anderson-Darling, Eicker, and 

Berk-Jones type statistics and confidence bands 

Besides the popularity and the advantages of the Kolmogorov-Smirnov goodness-of-fit 

test and CB, this inference method suffers from important drawbacks. In fact, the KS 

statistic is the supremum over x of Dl [Fn(x) , F{x)] = Vn IFn(x) - F(x)l. The latter is 

often used to test hypotheses of type Ho : F(x) = p versus Hl : F(x) f= p. However, 

Dl [Fn(x), F(x)] is not standardized and, hence, its distribution is not asymptotically 

pivotaI. Moreover, the KS confidence band for distribution functions is often criticized 

for its uniform nature. The width of this CB is constant for all observations. Thus its 

bounds do not converge tp 0 and 1 in the lower and upper tails of the distribution, as do 

the distribution functions they bracket. This property adversely affects the performance 

of the method in the tails of distributions. 

Other inference methods can be used to correct these drawbacks. In fact, Dl [Fn(x), F(x)] 

can be improved along three common principles in econometrics: the Lagrange multiplier, 

Wald, and likelihood-ratio principles. The first one replaces Dl [Fn(x), F(x)] by a score­

type statistic where Dl [Fn(x) , F(x)] is divided its standard deviation estimated under the 

null hypothesis. The Wald principle standardizes Dl [Fn(x), F(x)] using an estimation 

of its standard deviation under Hl and the last principle replaces Dl [Fn(x), F(x)] byan 

evaluation of the ratio between the likelihood of Fn(x) and F(x). Taking the supremum 



23 

of the corresponding statistics yields three well-known statistics: the Anderson-Darling, 

the Eicker and the Berk-Jones statistics. We hereinafter study these statistics and the 

CBs they induce. 

1.4~1 The Anderson-Darling and Eicker statistics and confi­

dence bands 

One of the most popular weighted KS statistics has been proposed by Anderson and 

Darling (1952) and Eicker (1979): 

AD = sup Vn(x) 
-oo<x<+oo 

and 

E = sup Vn(x) 
-oo<x<+oo 

where 

V.(x) = { 
o if F(x) E {O,l}, 

r,;; 1 Fn(x)-F(x) 1 th . v n Fl/2(x)[F-F(x)Jl/2 0 erWIse, 

and 

Vn(X) = { 

o if Fn(x) E {O,l}, 

r,;;n Fn(x) - F(x) 
v lb otherwise. 

F~/2(X)[1 - Fn(x)p/2 

These statistics are standardized versions of the KS statistic. The Anderson-Darling 

(AD, henceforth) statistic weights each observation by a sort of standard deviation of 

Fn(x) - F(x), the difference between the empirical distribution function and the theoret­

ical distribution, while the Eicker statistic uses an estimation of this standard deviation. 

Given that the function vi y(1 - y) reaches its maximum at y = !' these statistics give 

less weight to the observations in the center of the distribution than to the observations 

in the tails. Hence, the tests they deliver discriminate more between distributions that 

mostly differ through their tails than the KS test. 
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Note that Vn(x) and Vn(x) are set to 0 to complete the definition of AD and E 

but Vn(x) is not continuous in the tails. In fact, Vx, F(x) = 0 =} Fn(x) = 0 and 

F(x) = 1 =} Fn(x) = 1. Renee, lim Vn(x) = lim Vn(x) = 0 while the reverse does 
F(x)~O F(x)~l 

not hold: Fn(x) = 0 =#> F(x) = 0 and Fn(x) = 1 =#> F(x) = 1. 

Developing these statistics provides explicit expressions to compute these statistics 

more easily in practice: 

{ { 
~-F(X(i)) .. } 

AD= max 0, max ..fii 1/2( )[ _ ( )r /2 : 0 < F(X(i)) < 1,1 :::; z :::; n , 
F X(i)' 1 F X(i) . 

{ 
F(X.)_i-l }} 

max ..fii 1/2 )[ (t)_ ( )]1 /2: 0 < F(X(i)) < 1,1 :::; i :::; n 
F (X(i) 1 F X(i) 

and 

E = max max ..fiin , max..fii n ,0 . 
{ 

i - F(X(i)) . F(X(i)) _ i-l } 

l~t~n-l J ~ [1 -~] 2~t~n J i~l [1 - i~l] 

The details of the computation are given in Appendix 2. 

Inverting the tests, we propose nonparametric Anderson Darling-type and Eicker-type 

CBs for distribution functions (see the clet ails of computation in Appendix 2). To our 

knowledge, expressions for these CBs are not provided in the literature. The Anderson 

Darling-type CB for F(x) with level greater than or equal to 1 - ais: 

where 

G~(x) 

C:D(a) = {Fo E F : G~(x) :::; Fo :::; G~ (x), Vx} 

2Fn(x)+~-~ 
2(1 + c~~(a)) 
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and CAD(O:) satisfies Pr(AD ~ CAD(O:)) 2: 1 - 0:. 

The Eicker-type CB for F(x) with level greater than or equal to 1 - 0: is: 

where 

v x such that Fn(x) rt. {a,l}, 

V x such that Fn (x) E {a, 1 }, 

V x such that Fn(x) rt. {a;I}, 

V x such that Fn(x) E {a, 1}, 

and CE(O:) satisfies Pr(E ~ ce(o:)) 2: 1 - 0:. 

Owing to the structure of the weights used by the Anderson-Darling and the Eicker 

statistics, the widths of the CBs decrease with observations further from the center of 

the distribution. This property improves the performance of the inference methods in 

. the tails of distributions. 

The Anderson-Darling and the Eicker are special cases of the statistic D (Fn , F) . 

Hence, they are pivotaI for continuous distribution functions. Moreover, in such case, 

the expression of these statistics simplifies to the following: 

AD= max {a, max {Vn 1/2~-u'(i) 1/2 : a < u'(i) < 1, 1 ~ i ~ n} , 
U(i) [1-U(i)] 

{

TT i-1 }} uC)--
max Vn 1/2 z n 1/2: a < u'(i) < 1, 1 ~ i ~ n , 

u'(i) [1 - u'(i)] 

and 
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where U(1) ~ U(2) ~ ••. ~ U(n) are the order statistics of a sample of n i.i.d. observa­

tions from an uniform U[Q,l] distribution. The Anderson-Darling and the Eicker statistics 

can be rewritten using uniform order statistics. Their distributions are inde pendent of 

the distribution assumed under the nun hypothesis. Likewise, the critical values of the 

Anderson-Darling and the Eicker statistics for continuous distributions are independent 

of F( x) and the corresponding CBs uses a single set of these for an continuous distrib­

ution functions. Furthermore, these CBs benefit from the same monotonicity properties 

as the KS confidence band. 

1.4.2 The Berk-Jones type statistic and confidence band 

The weighted statistics studied above propose improvements of the KS statistic based 

on hvo common principles in econometrics: the Wald principle and the Lagrange mul­

tiplier one. A third principle is often used to improve procedures in econometrics: the 

likelihood-ratio principle. Berk and Jones (1979) proposed a statistic based on the em­

pirical distribution function using the likelihood-ratio principlè: 

BJ sup K[Fn(x), F(x)] = m~ max {K (i - 1, F(X(i»)) ,K (~, F(X(i»)) } 
-oosxs+oo lStsn n n 

where 
/'-. 

K(p,p) =plog (E) + (1-p) log 
p 

Berk and Jones proved that this statistic dominates aIl w:eighted KS statistics, in the 

sense of Bahadur. This statistic is under the form of D [Fn, F]. It is then pivotaI when 

applied ta continuous distribution functions and its distribution may be characterized 

using uniform arder statistics as follows: 

, BJcont= max max {K 1, n 1, U(i») ,K (-ni, U(i») } 
lSisn 

where U(1) :::; U(2) :::; ••• ~ U(n) are the order statistics ofa sample of n Li.d. observations 
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of an uniform U[O, 1] distribution. The critical values of BJcont are also independent of 

F(x) and monotonicity properties derived for D (Fn, F) applies. 

Using the Berk-Jones statistic, Owen (1995) proposed the following nonparametric 

CB for continuous distributions functions with level 1 - a : 

C~(a) = {Fo E F : Çi~(x) :::; Fo(x) :::; G~ (x), Vx} (1.7) 

where 

G~(x) min {p : K[Fn(x),p] :::; CBJ(a)} , 

K(ji,p) =plog (~) + (1-p) log , and cBJ(a) satisfies P[BJ > cBJ(a)] ~ 1- a. 

The reasoning behind this CB is quite intuitive. The statistic nFn(x) follows a bina­

miallaw with parameters n and F(x). Thus, -nK(p,p) is the log-likelihood ratio of the 

probability parameter p based on a binomial observation of np successes out of n trials. 

It follows t~at the Owen's confidence band is computed by performing a likelihood ratio 

test on the distribution of Fn(x). Only candidates F(x) with sufficiently large likelihood 

for each observation x belong to the confidence band. 

In practice, the Owen confidence band can be built by computing (n + 1) values of 

Li and Hi for i = 0, ... , n where Li and Hi are the respective values of F,f(x) and F:! (x) 

on the open interval (X(i) , X(i+l») , and X(O) and X{n+l) are the bounds of the support 

of F(x). The following procedure can be used: 

1. Compute (for cBJ(a) > 0) 

1ifi=n 

2. Deduce Li 1 - Hn-i for 0 :::; i :::; n (by symmetry) 
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3. Compute the values of the confidence band for each observation XCi) using F!:(X(i)) ~ 

F(X(i») ~ F; (X(i») where F;(X(i») = min(Li-b Li) = Li- l and F; (X(i)) 

max(Hi-b Hi) = Hi 

Equivalently, one can bui!d the confidence band computing first Li and deducin~ 

Hi = 1 - Ln-i as a second stage. Owen (1995) proposed the following polynomial 

approximation for cBJ(a) : 

~ [3.0123 + 0.4835 log (n) - 0.009571og2 (n) - 0.0014881og3 (n)] for 1 < n ~ 100, 

~ [3.0806 + 0.4894 log (n) - 0.020861og2 (n)] for 100 < n ~ 1000, 

and 

~["":'4.626 0.541 log (n) + 0.02421og2 (n)] for 1 < n ~ 100, 

~[-4.71 0.5121og (n) + 0.02191og2 (n)] for 100 < n ~ 1000. 

Studying the Owen's confidence band, Jager and Wellner (2004) found that this CB 

has a coverage probability lower than the theoreticallevel of confidence. Their simulations 

show that for a theoretical confidence level of 95%, the Owen's CB provides a simulated 

coverage probability from 90 to 93% for sample sizes n = 2 to 1000 and N = 100,000 

replications. According to Jager and Wellner (2004), this shortcoming is due to the poly­

nomial approximations proposed for c~J(a). These approximations yield values of cBAa) 

much lower than their simulated values. Jager and Wellner (2004) provide the following 

approximation for the critical points: 

~[3.6792 + 0.57201ogn - 0.05671og2(n) 0.0027Iog3 (n)] for 1 < n ~ 100, 

~[3.7752 + 0.5062 log n - 0.04171og2(n) + 0.00161og3(n)] for 100 < n ~ 1000, 



29 

and 

~ [5.3318 + 0.5539 log n --0.0370 log2(n)] for 1 < n ~ 100, 

~[5.6392 + .04018 log n - 0.0183Iog2(n)] for 100 < n ~ 1000. 

They show that the new approximated values of cBJ(a) are doser to the simulated values 

than the Owen's approximated ones. Moreover, the CB based on the Jager-Wellner 

critical values are of better coverage probability than those based on the Owen critical 

points with, as a consequence, a larger width. Given that the simulated critical points 

allow controlling the levels of the test and the CB, we recommend to use these instead 

of the approximated values. 

Owen (1995) shows that the Berk-Jones statistic yields a CB that is narrower in the 

tails of distributions and wider in the middle than the Kolmogorov-Smirnov CB. 

Another interesting property of the Owen's CB is that it can be computed using the 

same critical points for aIl samples from continuous distribution functions. This feature 

simplifies its computation but not as much as the pivotality of the weighted KS statistics 

simplifies the computation of their corresponding CBs. In fact, the Berk Jones-based 

CB suffers from an important computational cost. Computing this CB requires one to 

perform as many optimizations as the number observations-n. Hence, the performance 

of the inference depend greatly on those of the optimization procedure that' is used and 

building the CB may be highly time consuming when using large samples, which is not 

the case for the regularized Kolmogorov-Smirnov CBs. 

Owing to the monotonicity properties of D (Fn1 F) 1 the Owen CB can be extended 

to noncontinuous distribution functions. ~en the sam pIe comes from a noncontinuous 

distribution function, critical values for distribution functions with embedded image sets 

are ranked. Hence, the corresponding CBs for those distributions are embedded. First, 

the Owen CB using adequate critical points of level a for continuous distribution functions 

provides a CB with level greater than or equal to 1 a. Second, using information on 

the image set of F(x), narrower CBs can be built for this distribution without altering 
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the reliability of the inference. 

There exist other statistics based on the empirical distribution function that can yield 

exact CBs for continuous distribution functions. Among them are the Anderson-Darling 

(1952), the Cramer (1928) and Von Mises (1931) statistics. However, even though the 

goodness-of-fit tests performed with these statistics are easy to compute, the correspond­

ing CBs for distribution functions generally do not have explicit expressions and must be 

computed numerically. 

1.5 Regularized Anderson-Darling and Eicker-type 

statistics and confidence bands 

T~e CBs presented above perform better than those based on the non-weighted KS 

statistic. However, the Anderson-Darling and the Eicker statistics suifer from important 

drawbacks. For observations in the tails of distributions, both F(x) and Fn(x) converge 

to 0 and 1. Hence, the denominators of those statistics become very close to 0, which 

leads to an erratic behavior of the ratio. This feature alters the performance of the 

Anderson Darling-type and the Eicker-type tests and CBs. 

1.5.1 Regularization 

To solve this problem, we propose improved weighted KS statistics. These statistics are 

regularized versions of the previous ones where the variance of Fn(x) - F(x) is corrected 

by adding a positive nonzero regularization term (n (Fn(x) , F(x)) : 

C
n 

Fn(x) - F(x) 
sup yn 

-oo<x<+oo vi F(x)[l - F(x)] + (n (Fn(x) , F(x)) 
(1.8) 
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The regularization achieves the expected improvement. Shifting the denominator of the 

statistics by an additional term modifies the weights such that they don't vanish in the 

tails. This modification avoids the erratic behavior of the statistics and improves the 

performance of the tests. However, the statistics retain the advantages of weighted KS 

statistics. Observations in the center of the distribution are less weighted than those in 

the tails, which enhances the performance of the tests when applied to distributions with 

more difference through the tails. 

Let's assume that (n (Fn(x), F(x)) = (n > 0, \Ix. Then, the regularized statistics can 

be computed in practice using the following expression: 

where (n > 0 \Ix. 

Inverting the tests, we propose improved nonparametric CBs for distribution functions 

using the regularized statistics. The (-Regularized Anderson Darling-type CB for F(x) 

with level greater than or equal to 1 - 0: is: 

(1.9) 

where 
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CAD«(a) satisfies Pr[ADç :::; C.4D«(a)] ~ 1 - a. The (-Regularized Eicker-type CB for 

F(x) with level greater than or ec;lual to 1 - ais: 

C:( (a) = {Fo E F : G~(x) :::; Fo(x) :::; G~ (x), 'ix} (1.10) 

where 

and cE«(a) satisfies Pr[Eç :::; cE«(a)] ~ 1 a. Owing ta the decreasing weights of the 

underlying statistics, these CBs are nonuniform. Their widths decrease as observations 

approach the tails of the distribution, even though they do not converge to 0 and 1 in the 

tails of distributions. Moreover, the regularization resolves,the problem of discontinuity 

of the Eicker CB. 

As the initial statistics, the regularized ones are expressed under the general form 

D (Fn , F). Consequently, they are pivotaI when applied to continuous distribution func­

tions and their distribution can be characterized using uniform order statistics as follows: 

and 

AD"n. = max { 

where U(1) :::; U(2) :::; ... :::; U(n) are the order statistics of a sample of n i.i.d. observations 

of an uniform U[O,l] distribution (see Appendi?c 2 for computation'details). Likewise, 

the critical points of AD(ont and E<ont are independent of F(x) being tested under the 
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nun hypothesis and the corresponding CBs depend on this distribution only through the 

sample. Adapted critical values do not need to be comlmted for each distribution under 

study. 

1.5.2 Selection of the regularization parameter (n 

In this section, we discuss the choice of the regularization term. Adding this term to the 

weights used by the Anderson-Darling and the Eicker statistics prevents the denominator 

of those statistics to become too close to 0 and thus, stabilizes their behavior. However, 

the regularization term must be specified to compute the regularized statistics and this 

choice is not obvious. Two key issues need to be considered. 

The first one concerns the properties of the statistics: when the regularization term 

is chosen according to the sample, the pivotality of the tests for continuous distributions 

might be lost. In this case, the distribution of this term may modify those of the statistics. 

The properties derived so far may not hold anymore and new critical points may need 

to be computed for each distribution function. To avoid this problem, we have chosen 

a regularization term of the form (n (Fn(x), F(x)). In this case the studied statistics 

can still be rewritten as D (Fn , F) and hence, they are pivotal for continuous distribution 

functions. So far, we have assumed that (n (Fn(x), F(x)) = (n > 0 is a constant function. 

This choice allows to build CBs with friendly expressions. However, in this case, the 

optimal value of (n must be estimated. This value depends on the sample but do es not 

have an explicit expression. Hence, the way to determine (n must be chosen carefully in 

order to preserve the statistics' properties. We propose to estimate the parameter (n and 

the CBs independently each from the other using a split sample procedure (see Dufour 

and Jasiak, 2001). The procedure decomposes as follows. First, the initial sample is 

divided into two independent subsamples using i.i.d. drawings. Second, one sample-the 

auxiliary sample-is used to estimate the optimal value of the parameter (n. Third, the 

remaining sample-the estimation sample-is used to perform the tests or to build CBs 

with the formulas provided in the ab ove sections. The out-of-sample procedure insures 
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that the auxiliary sample and the estimation sample are independent. The statistics 

are used conditionally to the value of (n which held their distributions unchanged by 

the estimation of the parameter and guarantees the validity of the inference. Usually, a 

. small part of the initial sample is used as auxiliary sample-some theoretical studies (see 

Dufour, 2001) recommends to use up to 10 percent of the sample. Howevet, given that 

the performance of our inference methods depends a lot on the value of (n, we propose 

to use at least 20 percent of the initial sample to estimate (n, if the sample size allows 

us to do so. 

Second, once the auxiliary sample is determined, the next step is to define a criterion 

for chosing (n' The criterion will depend on the objective of the ongoing inference. 

For example, if the objective is to build CBs for distribution functions with a quite 

uniform shape, one can choose (n so as to minimize the mean of the widths of the CB 

over the sample. If, conversely, the distribution is heavy tailed, the observations in the 

tails are more important than the observations in the center of the distribution. Hence, 

the criterion may be a weighted mean of the widths of the CB, with larger weights 

for observations in the tails than those in the center of the distribution. In the case 

where information about the distribution of the sample is known, one can also choose 

the minimum value of (n that provides a "sufficiently" powerful test. In fact, given that 

exact critical points are used, the levels of the tests and those of the corresponding CBs 

are controlled. Thus, the value of (n that maximizes the power of the goodness of fit 

tests also minimizes the width of the corresponding CBs (see Pratt, 1961). An example 

of how to choose the optimal value of (n using this approach is provided in section 6 using 

Monte Carlo simulations. In a subsequent paper, we will illustrate how to choose (n to 

perform inference on the mean of random variables. Using a split sample procedure, we 

will choose (n so as to minimize the width of the confidence intervals for the mean we 

are interested in. Each procedure being different, the choice of criterion is likely to affect 

the performance of the inference. This gives room to further improvements. 

For the sake of simplicity, we will name the regularization ( for the remainder of the 

paper. 
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1.6 Monte Carlo study 

Adding the regularization parameter ( to the weights used by the Anderson-Darling and 

Eicker statistics prevents the denominator of those statistics to become too close to 0 and 

thus, stabilizes their behavior. But, beside this improvement, another issue is of interest: 

what is the impact of the regularization on the level and the power of the regularized 

Anderson-Darling and Eicker goodness-of-fit tests? Using exact simulated critical points 

allows us to control the level of the tests but does not affect the power. Does the 

regularization improve the power of the tests? Does this effect differ when increasing 

values of the parameter are used? How to choose the optimal value of (? In this section, 

we will use Monte Carlo simulations to study the effect of adding the regularization 

parameter ( to the Anderson-Darling and the Eicker statistics and i1l ustrate how to 

choose (. We will illustrate how the CBs derived from those statistics compare to each 

other. 

1.6.1 Effect of the regularization parameter ( 

, We test the null hypothesis Ho : X rv N(O, 1) vs. the alternative Hl : X '" N(O, 1.2) 

using the (-regularized Anderson-Darling and Eicker statistics. We compute the level 

and the power of these tests by Monte Carlo simulations using values of ( from 0 to 

1,000,000 and sample size n = 500. The tests use exact critical values simulated with 

NI = 3,000,000 replications and the level and the power of the tests are simulated 

using N2 15,000 replications. Tables 1.1 and 1.2 show the results for the regularized 

Anderson-Darling and Eicker tests, respectively. 
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Table 1.1. Effect of the regularization parameter: Critical values, level, and power of 

the (-regularized Anderson-Darling test for different values of ( 

n = 500, NI = 3,000,000 replications for GAD, and N2 = 15,000 replications for the test 

HO: X '" N(O, 1) vs. Hl : X '" N(O, 1.2) 

( GAD Level (in %) Power (in %) 

0 6.45343825318425 4.97 72.05 

0.0001 4.18358963085057 4.83 97.62 

0.0005 3.56948140935572 4.85 99.31 

0.001 3.42358267535564 5.25 99.53 

0.005 3.16539066782623 5.15 99.27 

0.07 2.56835999326805 5.16 94.65 

0.1 2.42578653035515 5.07 92.90 

0.15 2.24054390190001 5.25 90.14 

0.2 2.09507654002148 4.88 87.72 

0.3 1.87596864573845 5.01 84.33 

0.4 1.71567147669466 5.07 81.71 

0.5 1.59135382254647 5.13 79.55 

0.75 1.37021882434391 5.01 77.28 

1 1.22108493720676 5.16 75.83 

10 0.42233372755807 5.03 70.22 

100 0.13484610150674 5.20 69.21 

1000 0.04269341845902 5.05 69.81 

1000000 0.00135081892087 4.92 68.45 

Table 1.1 shows that the regularization has a major impact on the power of the 

Anderson-Darling test. While the level of the te~t is controlled by using' exact critical 

points, the power is low for ( = 0 but rises quickly when ( increases before becoming 

almost constant. However, when ( is too large, it introduces too much distortion into the 

distribution of the statistics, which reduces the power of the test and even cancels the 
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improvement of the regularization. The results show that the improvement is achieved 

as soon as ( is high enough to prevent the weight of the statistic from vanishing. The 

power is 72.05 percent for ( = 0 and jump to 97.62 for ( = 10-4 and 99.53 for ( = 10-3 . 

Table 1.2 shows similar results for the Eicker test. The regularization achieves the 

expected improvement for this test too, with an even stronger impact. The power of the 

test is very low for small values of ( (6.21 percent for ( = 0) while it increases sharply for 

( high enough to reach 85.09 for ( = 0.07 before stabilizing. Table 1.2. also illustrates 

the noncontinuity of the Eicker statistic. While the power of the test is very low for the 

non regularized statistic, it is even smaller when the regularization is introduced but ( is 

not high enough (for ( < 0.005). 

In conclusion, it appears that the regularization achieves the expected improvement. 

Moreover, while most of the improvement is achieved as soon as ( is high enough, using 

too large values of ( can hamper the performance of the inference. Rence, we propose 

to choose the value of ( that increases "sufficiently" the power of the test. Tables 1.1 

and 1.2 show that this value is not the same for the two statistics. The maximum of 

power is achieved for (AD = 0.001 for the Anderson-Darling test and (E = 0.07 for the 

Eicker one. Moreover, simulations show that for each test, these optimal values depend 

on the distribution being tested :;md on the size of the sample. Rowever, as the results 

show, even if the optimal value is not used, most of the improvement is achieved as 

soon as reasonably high. We provide other illustrations of how to· choose ( in practice 

in a subsequent paper on nonparametric confidence intervals for the mean of a bounded 

random variable. 



38 

Tàble 1.2. Effect of the regularization parameter: critical values, level, and power of 

the ç -regularized Eicker test ·for different values of ç 
n = 500, NI = 3,000,000 replications for CE, and N2 = 15,000 replications for the test 

HO: X", N(O, 1) vs. Hl : X '" N(O, 1.2) 

ç CE Level (in %) Power (in %) 

0 ·4.79920250051836 5.07 6.21 

0.0001 16.35442032904740 4.81 0.00 

0.0005 7.34715907201899 4.85 0.00 

0.001 5.35678751417434 4.89 0.84 

0.005 3.50097616169556 4.95 70.51 

0.070 2.58974686616846 5.25 85.09 

0.1 2.44086016301592 5.13 84.09 

0.15 2.24958797778716 5.19 81.90 

0.2 2.10106534783129 4.89 80.62 

0.3 1.87950819352882 5.03 78.46 

0.4 1.71790568033589 4.97 76.47 

0.5 1.59320398394615 5.08 74.91 

0.75 1.37101349713361 5.06 74.12 

1 1. 22177934463805 5.15 73.19 

10 0.42234366084257 5.05 69.95 

100 0.13484748513727 5.20 69.19 

1,000 0.04269347073131 5.05 69.81 

1,000,000 0.00135081895023 4.92 68.45 

1.6.2 Relative performance of the EDF-based goodness-of-fit. 

tests 

In this subsection, we compare the performance of the regularized-based tests to those 

of the other tests we have presented. Two procedures are used. 
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First, we test the null hypothesis Ho : X '" N(O,l) vs. the alternative Hl : X '" 

N(0,1.2) using the empirical distribution function-based statistics. We compute the 

level and the power of these tests by Monte Carlo simulations for sample size n = 500, 

exact critical values simulated with NI = 3,000,000 replications, and (AD = 0.001 and 

(E = 0.07. The levels and the powers of the tests are simulated using N 2 = 15,000 

replications and Table 1.3. shows the results. 

Table 1.3. Level and power of the EDF-based tests 

n = 500, (AD = 0.001, (E = 0.07, 

NI = 3,000,000 replications for the critical values, and N 2 = 15,000 replications for the 

test Ho : X '" N(O, 1) vs. Hl : X '" N(O, 1.2) 

C Level (in %) Power (in %) 

Kolmogorov-Smirnov 0.06039953611469 4.60 68.44 

Eicker 4.79617625286106 5.35 6.25 

Eicker( 2.59103603317055 4.64 85.09 

Anderson-Darling 6.45272451410767 4.83 71.81 

Anderson-Darling( 3.42243384382137 4.83 99.46 

Berk-Jones 0.01138040175450 4.57 98.63 

Among aIl the tests, the (-regularized Anderson Darling test achieves the best 

power (99.46 percent) followed by the likelihood-ratio based test (98.63 percent) and 

the (-regularized Eicker type test (85.09 percent). The Eicker test achieves the less 

power, which illustrate the erratic behavior of its statistic whereas the Anderson-Darling 

test has more power than the unweighted Kolmogorov-Statistic. 

Second, we test the mill hypothesis Ho : X '" N(O,l) vs. the alternative Hl : X '" 

N(O, 0-) for 0- = 0.5, 0.55, 0.6, ... , 1.5. We compute the level and the power of these tests 

by Monte Carlo simulations for the same setting as earlier using the optimal values of ( 

((AD = 0.001 and (E = 0.07). Graph1.1 pictures the evolution of the power of tests as 0-

varies. 



Graph 1.1. Level and power of the EDF-baSed tests 

Ho: X r-..J N(O, 1) vs. Hl : X r-..J N(O, 0") 

for 0" = 0.5, 0.55, 0.6, ... , 1.5, n = 500, (AD = 0.001, (E = 0.07, NI = 3,000,000 

replications for the critical values, and N2 = 15,000 replications for the tests 
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The results shows that tests perform differently when 0" is larger than 1 than when 

0" is smaller than 1. For values of 0" greater than 1-Le., when the sample under study 

actually cornes from a distribution with heavier tails than the one assumed under the 

null hypothesis, the (-regularized Anderson-Darling test yields the best power among 

the EDF-based tests followed by the Berk-Jones tests and the (-regularized Eicker test. 

The Kolmogorov-Smirnov and the Anderson-Darling tests perform quite similarly and 
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achieve a better power than the Eicker test, which performs the worst among the studied 

inference methods. 

Conversely, when the analyzed sample cornes from a distribution with thinner tails 

than the one assumed under the null hypothesis, Le., when (j is sm aller than 1, the . 
Eicker-type statistics perform better than the other. The Eicker test achieves the best 

performance, followed by the (-regularized Eicker and the Berk-Jones tests whereas the 

Anderson-Darling one provides the poorest one. The' (-regularized Anderson-Darling 

test performs better than the Kolmogorov-Smirnov one except when the two distributions 

are very close one to the other. 

Third, we test the null hypothesis Ho : X rv N(O, 1) vs. the alternative Hl : X rv 

N(O.l, (j) for (j = 0.5, 0.55, 0.6, ... , 1.5. We compute the level and the power of these 

tests by Monte Carlo simulations for the same setting as earlier using the optimal values 

of ( ((AD = 0.001 and (E 0.07). Graph 1.2 shows the evolution of the power of tests 

as (j varies. 



Graph 1.2. Level and power of the EDF-based tests. 

Ho: X '" N(O, 1) vs. Hl : X '" N(O.l, 0') for 0' = 0.5, 0.55, 0.6, ... , 1.5, 

n = 5001 (AD 0.001, (E = 0.07, NI 3,000,000 replications for the 

critical values, and N2 15,000 replications for the tests 
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The results shows that for values of 0' greater than 1-i.e., when the sample under 

study actually cornes from a distribution with heavier tails than the one assumed under 

the null hypothesis, the (-regularized Anderson-Darling test yields the best power among 

the EDF-based tests followed by the Berk-Jones tests and the (-regularized Eicker test. 

The Kolmogorov-Smirhov test achieves a better power than the Eicker and the Anderson­

Darling one, which achieve the smallest power among the studied inference methods. 
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When the analyzed sample cornes from a distribution with thinner tails than the one 

assumed under the null hypothesis, i.e., when ()' is smaller than 1, the results are sorne­

what reversed. The (-regularized Eicker test then achieves the best performance while 

the Anderson-Darling statistic provides the poorest one. The other inference methods 

perform relatively similarly. However, when the two distributions are very close one to 

the other the Kolmogorov-Smirnov tests performs the best among these methods while 

the Berk-Jones test dominates when ()' is smaller than 0.9. 

Other interesting conclusions can be driven from Graph 1.1. First, in general, the 

Eicker-type test allows. more discrimination than the Anderson Darling-type tests when 

the distribution under the alternative hypothesis has heavier tails than those over the 

null one. Second, as expected, when the actual distribution of the sam pie is very close to 

the distribution being tested under the null hypothesis, the weighted statistics perform 

worse than the uniform KS statistic. Third, the results show that the Anderson-Darling 

and the Eicker tests are biased. In fact, the power of these tests do not reach ,their 

minimum values when ()' 1 but when it is slightly different from 1. 

Last, let's highlight an important advantage of the procedure we use. Usually, reg­

ularized statistics are biased due to the distortion the regularization term introduces to 

the distribution of the initial statistic. By computing the critical values by simulation, 

we offset this shortcoming. In fact, using the exact critical points controls the level of 

the tests and the CBs, avoiding the bias. Likewise, regularizing the statistics also off sets 

suppresses the bias of the initial Eicker and Anderson-Darling statistics. 

1.6.3 Performance of confidence bands for distribution func­

tions 

As a last illustration, we compare the relative performance of the CBs based on the 

tests we derived. We build CBs for the Normal N(O,I) distribution using a sample of 

n = 100. While the small number of observations will probably hamper the performance 

of the inference methods, it will insure to have a graph clear enough to compare CBs 

easily. Graph 1.3 depicts the results. 



Graph 1.3. Empirical distribution function-based confidence bands for the 

distribution function N(O, 1) 

n = 100, (AD = 0.001, and 0.07 
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Graph 1.3 shows that for observations in the center of the distribution, the Kolmogorov­

Smirnov CB has the smallest width among the KS-based CBs, closely followed by the 

(-regularized Eicker-type CR The Owen and the (-regularized Anderson Darling-type 

CB achieve the best following performance. The Anderson Darling-type and the 'Eicker­

type CBs perform the worse among the studied inference methods. 
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In the tails of the distribution, the ranking of the performance of the inference 

methods changes a lot. The uniform CB performs worse than most of the weighted 

CBs. The (-regularized Anderson Darling-type CB performs the best followed by the 

(-regularized Eicker-type CB. The Eicker statistic provides a CB whose width tends 

to zero as observations go further from the center of the distribution. However, the 

Eicker CB suffers from discontinuity at the first and last observations of the sam pIe. 

For all values of x lower than the first observation (x < X(l)) orgreater or equal to 

the last observation (x ~ X(n)), the CB becomes the non informative [0,1] interval. At 

the opposite, the Anderson-Darling CB is always continuous. !ts width converges to 

c~D(a)/(n + c~D(a)) in the tail of the sample which is to compare to 2 cKS(a), the 

constant width of the Kolmogorov-Smirnov CB. Adding the regularization term to the 

Eicker stàtistic çorrects the discontinuity problem of the Eicker CB. Nevertheless, for 

(E different from zero, the width of the corresponding CB do es not converge to zero 

anymore but performs weB, with a width-equal to 2cHa)(1/2/nl/2- around half the 

width of the uniform CB for n = 100. Likewise, adding the regularization term to the 

Anderson-Darling statistic improves a lot the performance of the CB, in particular in the 

tails. We simulate the critical values of the statistics for sam pIe sizes from 50 to 1000 

using N = 1,000,000 replications. The results (see Table 1.4.) shows that for n smaller 

than 150, the KS confidence band performs better than the Anderson-Darling CB in the 

very end of the tails of continuous distributions but the Anderson-Darling CB becomes 

better in the tails for n greater than 150. The statistics using regularization parameters 

yield CBs with smaller widths than those without regularization and than the uniform 

CB. 

In conclusion, we see that as expected, weighted KS statistics achieve better per­

formance than the unweighted one at sorne points of the distribution and for large and 

moderately large samples but do not clearly dominate the latter. Conversely, the regu­

larized statistics dominates the other KS-based ones in the tails of distributions for all 

sample sizes. Moreover, it appears that the (" -regularized Anderson Darling-type CB is 

the best CB among the KS-based one: its width in the center of the distribution is very 



close to that of the uniform one while it achieves the best width in the tails. 

" 

Table 1.4. Simulated criticaJ points of empirical distribution-based statistics and 

width of the corresponding confidence bands in the tails of distributions 

'fi, = 50, 100, ... , 1000 using N = 1,000,000 replications 

Table 1.4 a. Critical Points 

n 

50 100 150 

KS 0.188335597 0.134056205 0.109638527 

E 4.522280174 4.666516217 4.70725121 

Eç 2.793607145 2.673939389 2.635861357 

AD 6.43881938 6.457275098 6.474963046 

ADç 4.14789771 3.780490269 3.681454542 

BJ 0.104133743 0.053727502 0.036421672 

n 

200 250 500 1000 

KS 0.095178969 0.085207603 0.060368076 . 0.042771814 

E 4.739536779 4.763956841 4.798134574 4.823671809 

Eç 2.619270234 2.610421227 2.587466879 2.580100277 

AD 6.458800396 6.45095347 6.454634534 6.444683756 

ADç 3.600576974 3.540729297 3.424467947 . 3.352876861 

BJ 0.027593217 0.022293228 0.011369705 0.005804824 

46 
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Table 1.4b. Width of CBs in the tails of distributions 

n KS E E( AD AD( BJ 

50 0.38 1.00 0.21 0.45 0.37 0.10 

100 0.27 1.00 0.14 0.29 0.23 0.05 

150 0.22 1.00 0.11 0.22 0.17 0.04 

200 0.19 1.00 0.10 0.17 0.14 0.03 

250 0.17 1.00 0.09 0.14 0.13 0.02 

500 0.12 1.00 0.06 0.08 0.08 0.01 

1000 0.09 1.00 0.04 0.04 0.06 0.01 

When comparing the KS based CBs to the Owen one-using simulated critical points 

which allow to control the level of the test and CBs, it appears that in the center of the 

distribution, the Owen CB perform worse than the uniform CB and the (-regularized An-

derson Darling-type CB but better than the (-regularized Eicker-type CB. Conversely, 

in the tails of the distribution, the Owen CB overcomes aIl the other CBs. However, the 

Owen critical has a major drawback: it is very computationally demanding. Building the 

Owen CB requires to perform as many optimizaÜons as there are observations, which is 

time demanding and condition the performance of the inference method to that of the 

optimization method used. 

1.7 Conel usion 

The Kolmogorov-Smirnov test is one of the most popular nonparametric goodness-of-fit 

tests. It allows to test the null hypothesis that a sample follows a given distribution 

against the alternative that the sam pIe does not follow this distribution, without any 

hypothesis on the law of the studied sample. However, the Kolmogorov-Smirnov test 

. do es not allow to discriminate a lot between distributions that differ mostly through 

their tails. The CB it allows to build is uniform: its width is constant for aIl observations 

and do not converge to 0 and 1 as do the distribution functions it brackets. To correct 
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this drawback, we study weighted KS statistics based on the three common principles in 

econometrics: the Wald, likelihood-ratio, . and Lagrange multiplier principles. 

Weighted Kolmogorov-Smirnov statistics have been proposed by Anderson and Dar­

ling (1952), and Eicker (1979). However, these statistics suifer from important drawbacks 

too. For observations in the tails of distributions, the weights in the denominators of those 

statistics become very close to zero, leading to erratic behavior of the statistic . . 
We propose regularized weighted statistics to correct these limits. These statistics are 

obtained by adding a regularization term in the denominator of the Anderson-Darling 

and the Eicker statistics. They retain the advantages of the weighted KS statistics but 

do not suifer from instability, improving the performance of the inference. 

We show that in the continuous case, the distributions of the empirical distribution­

based statistics of the form of the Kolmogorov-Smirnov and the weighted Kolrriogorov­

Smirnov statistics are pivotal and that their critical points do not depend on the dis­

tribution function being tested under the nuIl hypothesis. Inverting these statistics, we 

propose exact CBs for distribution functions, which inherit the properties of the statistics 

they are based on. We show that for aIl continuous distribution functions, these CBs 

depend on the distribution only through the sample. A unique set of critical points is 

needed to build CBs for aIl continuous distributions, which make them easy to compute. 

For noncontinuous distribution functions, we derive monotonicity properties that exploit 

embeddedness of the image sets of diiferent distributions to narrow the CBs without 

altering their reliability. We study a statistic based on the likelihood-ratio principle: the 

Berk-Jones statistic· and the Owen CB, which is derived from it. We show that these 

statistics and CBs follow the same properties as the Kolmogorov-Smirnov based ones. 

We study the performance of these inference methods using Monte Carlo simulations. 

The results show that the regularized statistics deliver the best performance among the 

studied inference methods. The regularization increases the power of the tests and the 

corresponding CBs are thinner than the other ones. Compared to the weighted statis­

tics, the Owen's band yields geIierally better results. Nevertheless, it suifers from an 

important computational shortcoming. In fact, its computation requires to perform as 
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many optimization as the number of observations of the samp1e we use. This leads to 

an important 10ss of time whereas the computation of the Kolmogorov Smirnov based 

bands is· almost time free. 
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1.8 Appendix 1: Proofs of propositions and corollar-

• les 

PROOF OF PROPOSITION 2.1. For a continuous monotonie, the empirical distribution 

function is 

where Ui = F(Xi ). Hence, 

D [Fn(x) , F(x)] 

1 n 

- - Ln[Xk ::; x] 
n 

k=l 

1 n 

- Ln[F(Xk) ::; F(x)] 
n 

k=l 

1 n 

- Ln[Uk ::; F(x)] 
n 

k=l 

H(UI , . .. ,Un, F(x)) 

sup Dl [H(UI , ... , Un, F(x)), F(x)] 
-oo<x<+oo 

sup Dl [H(UI , . .. ,Un, u), u]. 
uEF(IR) 

If Xl' ... ,Xn are n Li.d. observations on X with distribution function F(x) E F then 

F(x) takes aIl values between 0 and 1 and F(X) follows a uniform distribution on [0,1] : 

F(X) '" U[O,I]. Hence, we can rewrite 

D [Fn(x) , F(x)] = sup Dl [H(UI , ... ,Un, F(x)), F(x)] 
-oo<x<+oo 

sup Dl [H(UI, . .. , Un, u), u] . 
O:Su9 

where Ui = F(Xi ) '" U[O,I] and Uk , k = 1, .. , n are i.i.d. The distribution of the statistie 

and its critieal points do not depend on F(x). 

PROOF OF PROPOSITION 2.2. Proposition 2.1. states that for continuous distribu-



tion functions, the statistic D (Fn(x), F(x)) 

D (Fn(x), F(x)) = sup Dl (Fn(x), F(x)). 
-oo<x<+oo 

is pivotaI and can be reexpressed as follows: 

D (Fn(x), F(x)) = sup Dl [H(UI , ... , Un, u), u]. 
O::;u::;I 

If G(y) is a noncontinuous distribution function, 

D (Gn(x), G(x)) - sup Dl (H [G(XI ), ... , G(Xn), G(x)] , G(x)) 
-oo<x<+oo 

= sup Dl (H [G(XI ), . .. ,G(Xn), v] , v) 
vEG(i) 

< D (Fn(x), F(x)) 
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because G(IR) ç F(IR) = [0,1]. The critical points associated with D (Fn, F) are larger 

than or equal to the corresponding one for DG. Critical values associated with continuous 

distribution functions are conservative for noncontinuous distributions. 

PROOF OF PROPOSITION 2.3. Proposition 2.2. states that D [Fn(x), F(x)] is greate~ 

than or equal to D [Gn(x), G(x)]. Henee, for a given level a, the critical point associated 

to D [Fn(x) , F(x)] is larger than those associated to D [Gn(x), G(x)] or equivalently, the 

critical point with level a associated to D [Fn(x), F(x)] represents a critical point for 

D [Gn(x), G(x)] with f3 :S a. Therefore, the CB for G(y) using the appropriate critical 

point for D [Fn(x) , F(x)] will be of level 1 - f3 2: 1 - a. 

PROOF OF PROPOSITION 2.4. In the proof of Proposition 2.1., we showed that 

D [Fn(x), F(x)] sup Dl [H(UI , . .. ,Un, F(x)), F(x)] 
-oo<x<+oo 

= sup Dl [H(UI , . .. ,Un, u), u]" 
UEF(i) 

Given that G(IR) C F(IR) , when taking the supremum over· G(IR), the result will be 
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smaller than when taking the supremum over F(lR). Renee, 

D [Fn(x) , F(x)] 2 sup DdH(UI , ... , Un, u), u] D [Gn(x), G(x)] . 
VEG(iR) 

PROOF OF PROPOSITION 2.5. Proposition 2.4. states that for a given level a, the 

critical point associated to D [Fn(x), F(x)] is larger than those associated to D [Gn(x) , G(x)]. 

In other words, the critieal point with level a associated to D [Fn(x) , F(x)] represents a 

critical point for D [Gn(x), G(x)] with f3 $. a. Renee, using the same reasoning as in the 

proof of Proposition 2.3., it follows that the CB for G(y) using the appropriate critical 

point for F(x) will be of level 1 - f3 2 1 - a. 

PROOF OF COROLLARY 2.6. This proposition is a special case of Proposition 2 5. 

In this case, Pl = FI(a) ::; F2(a) P2' This implies that F2(lR) = [P2, 1] ç [Pl, 1] = F1(lR) 

and applying Proposition 2.5. yields the result. 
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1.9 Appendix 2: Details of computation 

l.A2.1. Explicit expression of the Kolmogorov-Smirnov statistic. 

The Kolmogorov-Smirnov statistic for F(x) is: 

KS sup vn 1 Fn(x) - F(x) 1 

-oo<x<+oo 

F (x) is non decreasing and li (p) = ~ - p, 0 :s; p :s; 1 is non increasing in p. Hence li (F( x )) 

is non increasing in x and 

l.A2.2. Distribution of empirical distribution function-based statistics for 

continuous distribùtion functions 

Let F(x) E F. Then, the. random vari.able F(X) tak~s aIl the values between 0 and 

1 and foIlows a unifo~m distribution on [0,1] : F(X) '" U[O,l]. Hence, F(X(i)) = U(i) 

where U(i) is the i th ordered realization of an uniform U[O,l] distribution. K Scan be 

reexpressed in the form of D (Fn(x), F(x)) and Proposition 2.3. applies to it. Moreover, 

the expression of KS simplifies to: 
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The distribution of K seant is independent of F (x) and so do es its critical points, and the 

CB for F(x) it implies. 

l.A2.3. Kolmogorov-Smirnov CB for distribution functions 

Let CKS(O:) such that Pr[KSp ~ CKS(O:)] ~ 1 - 0: i.e., 

Pr[ sup Vri 1 Fn(x) - F~x) I~ CKS(O:)] ~ 1 - 0:. 
-oo<x<+oo 

Then, with probability greater than or equal to 1 - 0: 

l.A2.4. Explicit expression of the Anderson-Darling and the Eicker statistics 

We develop the expressions of the statistics. 

For the Anderson-Darling statistic: 

AD = 
-oo<x<+oo 

Fn(x) - F(x) : -00 < x < +00 st a < F(x) < I} ,a} 
JF(x)[I- F(x)] 

Fn(x) - F(x) : -00 < x < +00 st a < F(x) < I} 
JF(x)[I - F(x)] 

sup {Vri F(x) - Fn(x) : -00 < x < +00 st a < F(x) < I} ,a} 
JF(x)[I- F(x)] . 
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= max max sup Vii : XCi) :::; x < X(i+l) st 0 < F(x) < 1 , { { 
~ - F(x) } 

O<;;i<;;n y'F(x)[l - F(x)] 

oTI't.. Sup {Vii --r:;;;;::=;==;=;:=:::::::.!.è' ~ : Xli) <; x < X(i+1) st 0 < F(x) < 1 } ,0 } 

Define li (p) = -;--;-:L'--7;-;-r;; w here 0 < P < 1. 

l~(p) 
-[P(l - p)]1/2 - ~(~ - p)(l - 2p)[P(1 p)]-1/2 

[P(l - p)] 

[P(l - p)t3/2 [-~ - p( ~ - i)] = Co * hi(p) 
2n 2 n 

where Co = [P(l p)]-3/2 ~ 0 Vp and hi(p) = - 2~ - p(~ - ~). 

{ 
-pG - i) < 0 for 0 < i < n/2 

We know that n :::; 0 Vi ~ 0 and n - - - . Thus, when 
-p(~ - *) ~ 0 for n/2 :::; i :::; n 

0:::; i:::; n/2, hi(p) :::; 0 V p while when i is such that n/2 < i:::; n, hi(p) :::; 0 if p < 2i~n' 

Moreover 2i~n ~ 1 when n/2 :::; i :::; n. Hence p < 2i~n Vi, n/2 :::; i :::; n ; hi(p) :::; 0 V p, 

i and li (p) is always non increasing. As a consequence, 

1) o~~ sup { : XCi) :::; x < X(i+l) st 0 < F(x) < 1 } 

= max {Vii V *-~[(X(;~ 1: a :::; i :::; n st 0 < F(X(i») < l} 
F(X(i) 1- X(i» 

2) max sup {Vii V F(x)-t : XCi) :::; x < X(i+l) st a < F(x) < l} 
O:::;i<;;n F(x)[l-F(x)] 

= max {Vii F(X(Hl»-* : a < i < n st a < F(XO) < l} 
VF(X(Hl»)[l-F(X(i+l»] - - t 

= max {Vii F(X(i»)[l-F(X(i : 1 :::; i :::; n + 1 st 0 < F(X(i») < 1 } 

The statistic AD can then be computed using 
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{ { 
i - F(X() } 

= max max vn J nt]: 1 :s; i :s; n st ° < F(X(i») < 1 , 
F(X(i»[l - F(X(i») 

max vn (t), n : 1 < i < n st ° < F(X(i» < 1 ,0 . 
{ 

F{X ' ) _ i-l } } 

JF(X(i»)[1 - F(X(i»)] --

For the Eicker statistic: 

-oo<x<+oo 

,{ { Fn(x) - F(x) } } 
max sup vn J Fn{x)[I- Fn(x)] : -00 < x < +00, st ° < Fn(x) < 1 ,0 

= max' {sup {vn,; Fn(x) - F(x) : -00 < x < +00 st 0 < Fn(x) < I}, 
Fn(x)[1 - Fn(x)] 

sup {vn F(x) - Fn(x) : 00 < x < +00 st ° < Fn(x) < I} ,a} J Fn(x)[1 - Fn(x)] • 

Define li(P) = [*(1~~11/2 where ° '< P < 1. li(P) is always non increasing. Then, 
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E max max Vn n ~: a :s i :s n, a < - < 1 , 
{ { 

i - F(XC)) i} 
, V~[l-~] n 

max Vn ~ n : a :s i :s n, st a < - < 1 , a 
{ 

F(XC+1)) - i i }} 

V*[l- *1 n 

l.A2.5. Anderson Darling-type CB for distribution functions 

Let CAD(O:) be such that Pr[AD :s CAD(O:)] = Pr[ sup Vn(x):s CAD(O:)] ~ 1 - 0: 
-oo<x<+oo 

Le., 

Pr [sup {a, sup {Vn 1 Fn(X) - F(x) 1/2 1: -00 < x < +00 st F(x) $ {a, l}}} :s CAD(O:)] 
(F(x)[l - F(x)]) 

~l-o:. 

It is obvious that Vn(x) ~ a \ix.Then, the above equ,ality yields that with probability 

greater than or equal to 1 - 0: 

[Fn(x) - F(X)]2 < c~D(O:) 
F(x)[l - F(x)] - n 

for x such that F(x) $ {a, l}, i.e. \i x, 

This condition is satisfied if and only if \i x 

\ix 
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1.A2.6. Eicker-type CB for distribution functions 

Let GE(a) be sueh that Pr[E ::; GE(a)] Pr[ sup Vn(x)::; GE(a)] ~ 1- a, Le., 
-oo<x<+oo 

Pr [sup{a,sup {JTi 1 - 1: -00 < x < +00 st Fn(x) t/:. {a' ,I}}}::; GE(a)] 
(Fn(x)[1 -

> l-a. 

It is obvious that Vn(x) ~ a 'ix.Then, the above equality yields that with probability 

greater than or equal to 1 a 

for x sueh that Fn(x) t/:. {O, 1}, Le. 

1.A2.7. Distribution of the Anderson-Darling and the Eicker statistics for 

continuous distribution functions 

Let F(x) E F. Then, the random variable F(X) takes aIl the values between ° and 1 

and follows a uniform distribution on [0,1] : F(X) rv U[O,Ij' Renee, F(X(i») = U(i) where 

U(i) is the ith ordered realization of an uniform U[O,l) distribution 

Benee the expression of AD in Theorem 2.5. is equivalent to the foIlowing: 

max 
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and those of the statistic E is equivalent to: 

These statistics and their corresponding distributions do not depend on F(x). Neither' 

does their critical points and the CBs using these critical points. 

1.A2.8. Explicit expression of the (-Regularized Anderson-Darling and Eicker 

statistics 

We develop the expressions of the (-regularized statistics. 

For the (-regularized Anderson-Darling statistic: 

r::::: 1 Fn(x) - F(x) 1 AD, = sup yn 
-oo<x<+oo JF(x) [1 - F(x)] +, 

Fn(x) - F(x) 
max { sup Vn---;::=;=::;i:;===:::;;:;:::;:::::;i:;== 

-oo<x<+oo JF(x)[1 - F(x)] + (' 
sup Vn F(x) - Fn(x) } 

-oo<x<+oo J F(x)[l - F(x)] + ( 

i - F(x) 
max{ max sup Vn n , 

O::Çi::Çn X(i)::ÇX<X(i+l) JF(x)[1 - F(x)] + ( 
F(x) i 

max sup Vn n} 
O::Çi::Çn X(i)::ÇX<X(Hl) J F(x)[l - F(x)] + ( 

f -[pel - p) + (]1/2 
li(P) = . ' 

~(~ - p)(l 2p)[P(1 - p) + (]-1/2 

[P(l p) + (] 

[pel - p) + (r3
/
2 
[-( 

i 1 i] - - p( - - - ) = cohi(p) 
2n 2 n 
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where Co [P(l - p) + (]-3/2 ~ 0 Vp and hi(p) = pn - *) 
We know that -( 1 i < 0 Vi > 0 and 2 

• { -p( l -ni):::; 0 for O.:::; i :::; n/2 

2n- - -p(4 *)~Oforn/2:::;i:::;n 
Thus, when 0 :::; i :::; n/2, hi(p) :::; 0 V p while when i is such that n/2 < i :::; n, 

hi(p) :::; 0 if p < 

Moreover ~ 1 when n/2 :::;i :::; n. Hence p < 

p, i and li(P) is always non increasing. As a consequence, 

) 
r;:; i.-F(x) 

1 max sup v n n = max 
O<i<n X <~<X VF(x) [l-F(x)]+t;; O<i<n - - (i)-~ (1+1) - -

) 
r;:; F(x)--"-

2 max sup v n n = max 
O~i~n X(i)~X<X(i+l) y'F(x)[l-F(x)]+( O~i~n 

vin F(X(i))-7 

VF(X(i)[l-F(X(i»)]H 

The statistic AD( can then be computed using 

A Dt;; = 
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For the (-regularized Eicker statistic: 

max{ 
c Fn(x) - F(x) 

SUp yn , 
-oo<x<+oo y'Fn(x)[l - Fn(x)] + ( 

SUp Vn F(x) - Fn(x) } 
-oo<x<+oo JFn(X) [1 - Fn(x)] + ( 

Define li(P) = l*(1-\):Ç]l/2 where 0 ::; P ::; 1. li(P) is always non increasing. Then, 

l.A2.9. (-Regularized Anderson Darling-type CB for distribution functions 

Let cADç(a) such that Pr[ADç ::; cADç(a)] 2:: 1 - a Le., 

P[ Vn 1 Fn(x) - F(x) 1< CAD (a)] > 1 - a . 
-oo~~~+oo JF(x)[l - F(x)] + (- ç -
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Then, with probability greater than or equal to 1 0:: 

[Fn(x) - F(X)]2 < C~D«O::) 
F(x)[l F(x)] + ((x) - n 

\::Ix 

i.e., \::1 x, 

This condition is satisfied if and only if \::1 x 

C~D (a) [2] 2 
- -,-,-;'--..,u--;-::-::- . pU( ) = 2Fn(x)+~+v'K d A = 2 D ( ) + CADç(O:) _ 

, n X (2 (») ,an U .L'n X cAD a n 
2l+~ 

where F/:(x) 

l.A2.10. (-Regularized Eicker-type CB for distribution functions 

Let CEç(O::) such that Pr[Eç :s; cEç(a)] ~ 1 - 0::, i.e., 

Then, with probability greater than or equal to 1 - 0:: 

(0::) < vn[Fn(x) - F(x)] < CE (0::) \::1 x 
- y'Fn(x)[l - Fn(x)] + (- ç 

and 

l.A2.11. Distribution of the (-Regularized Anderson-Darling and the Eicker 

statistics for continuous distribution functions 
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When F(x) is continuous, the random variable F(X) has its values between 0 and 1 

and follows a uniform distribution on [0,1] : F(X) '" U[O,l]. Hence, F(X(i)) = Uri) where 

Uri) is the i th ordered realization of an uniform U[O, 1] distribution 

Hence the expression of AD, in Theorem 3.1. is equivalent to the following: 

Similarly, the expression of E, can be rewritten: 
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Abstract 

Despite the growing interest in poverty and inequality studies and the large standard 

errors found in many empirical studies, most of the work in this area remains descriptive 

and neglects statistical inference. Two types of inference procedures for poverty measures 

have been considered: asymptotic distributions and bootstrapping. These methods can 

be quite unreliable, even with fairly large samples, but no study has proposed provably 

valid finite-sample nonparametric inference methods for such problems. 

In this paper, we develop such inference methods for the Foster, Greer and Thorbecke 

(FGT, 1984) poverty measures. We first observe that the poverty indicators can be in­

terpreted as the expectation of a bounded random variable which is itself a functional 

of a distribution function. Using projection techniques, we derive finite-sample non­

parametric confidence intervals for the mean from confidence bands for the distribution 

of the underlying variable. We irivestigate methods based on improved standardized 

Kolmogorov-Smirnov statistics and a likelihood-ratio criterion.We then apply these 

procedures to the FGT poverty measures. 

Monte Carlo simulations show that asymptotic and bootstrap confidence intervals can 

'tail to provide reliable inference, while the proposed methods are robust and yield shorter 

confidence intervals. As an illustration, we analyze the profile of poverty of Mexico in 

1998. The results show that the widths of the asymptotic confidence intervals are often 

too small to be realistic while those of the bootstrap can be ten times larger than the 

widths delivered by exact methods. The study shows that the poverty profile of Mexi­

can households depends greatly on the type of households' head: poverty levels among 

households with a male head or an educated head is much sm aller than poverty levels 

among other households. Hence, policies aimed at reducing illiteracy and at securing the 

income of households with a female head co.uld help reduce poverty in rural Mexico. 
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2.1 Introduction 

In recent decades, there has been growing interest in poverty and inequality studies. 

However, most of the work in this area is descriptive and does not use rigorous sta­

tistical inference methods, despite the large standard errors found in many empirical 

analyses. Two types of inference procedures for poverty and inequality measures have 

been considered: asymptotic distributions and bootstrap methods; see Beran (1988), 

Kakwani (1993), Rongve (1997), Mills and Zandvakili (1997), Dardanoni and Forcina 

(1999), Biewen (2002), Davidson and Duclos (2000), Zheng (2001), and Davidson and 

Flachaire (2007). Most of these studies recommend the use of bootstrap inference rather 

than asymptotic approximations, because the latter are quite unreliable in finite sam­

pIes. Bootstrap inference has a better performance, but is still unsatisfactory. Despite 

these problems, no study has proposed finite-sample nonparametric inference methods 

for poverty and inequality measures . 
• 

In this paper, we develop such inference methods for ~he popular Foster, Greer and 

Thorbecke (1984) (FGT, henceforth) poverty measures. On observing that poverty mea­

sures can be interpreted as the expectation of a bounded random variable-a mixture of 

a continuous bounded variable and a probability mass at the poverty line-we propose 

that exact nonparametric inference methods for the mean of a bounded random variable 

be applied to them. 

At first sight, this problem appears to have no solution. According to Bahadur and 

Savage (1956), nonparametric inference cannot be performed for the mean of a random 

variable when observations are independent and identically distributed (i.i.d.) from an 

unknown distribution function with finite mean [see Dufour (2003) for more details]. 

However, in our case, the bounded nature of the random variable provides a sufficient 

restriction to allow nonparametric inference. Such nonparametric confidence intervals 

(CIs, henceforth) for the mean of a bounded random variable have been provided by 

Anderson (1969), Hora and Hora (1990)~ and Fishman (1991). Sutton and Young (1997) 

have compared these methods to asymptotic and bootstrap CIs using Beta distributions. 
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They showed that asymptotic and bootstrap CIs have very bad coverage probability in 

finite samples, while exact methods are strongly reliable but yield wider intervals than 

the former. 

This paper provides two types of contributions. The first-a purely statistical contribu-
, 

tion-consists of proposing finite-sample nonparametric CIs for the mean of a bounded 

random variable. We show that CIs for the mean can be derived from confidence bands 

(CBs, henceforth) for distribution functions using projection techniques. For general 

discussions of projection-based inference, see Dufour (1990), Abdelkhalek and Dufour 

(1998), and Dufour and Taamouti (2005). We then build improved CIs for the mean 

using CBs for distribution functions based on regularized weighted Kolmogorov-Smirnov 

statistics and likelihood-ratio type statistics proposed in Diouf and Dufour (2005). Our 

study focuses on the question of building CIs for the mean of a bounded random variable 

but our methodology is far from being as restricting as it appears. Solving the problem 

for the mean of Y allows to solve the problem for any moment of Y by replacing the orig­

inal data by a function of these data. For example, if we are interested in building CIs for 

the moment of order 2, we can transform the original data using the square function and 

compute the empirical distribution function corresponding to those transformed data. 

The CIs we propose in this paper then provide valid CIs for the mean of the new data 

which are CIs for the second moment of the original data. All kinds of transformations 

can be studied. Continuous ones are handled using the same CIs as those presented in 

this paper while for noncontinuous ones, interesting monotonicity properties are provided 

to solve the problem. 

The second contribution is econometric and consists of developing finite-sample non­

parametric CIs for FGT measures. We re-express the poverty measures as the mean of a 

mixture of a continuous bounded random variable and a probability mass at the poverty 

line, and show that inference methods for the mean of a bounded variable apply to these. 

We build improved CIs with explicit expressions that are easy to compute. Monte Carlo 

simulations show that asymptotic and bootstrap CIs can fail to provide reliable inference, 

even with fairly large samples, e.g. when the distribution presents a high probability of 
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assuming the value zero-which is quite frequent in practice. By contrast, exact inference 

methods are robust ta the underlying distribution and the sample size. The proposed 

CIs have coverage probability typically larger than the nominal level while remaining 

informative. 

Finally, the methods are illustrated using household survey data ta analyze the profile 

of poverty of Mexico in 1998. The results show that in addition ta being unreliable, the 

widths of the asymptotic CIs are often tao small ta be realistic while the bootstrap can 

fail even in precision, delivering CIs whose widths can be ten times larger than those 

of the exact methods. The study shows that on average, rural households targeted by 

PROGRESA 1 do not have a very high level of poverty. However, the poverty profile 

depends greatly on the type of households' head. The level of poverty among households 

with a male head is much smaller than the level of poverty arnong households with a 

female head. Moreover, households with an educated head appear ta be more prone ta 

escape poverty than households with a non-educated head. These conclusions provide 

hints for designing policies ta reduce poverty in rural Mexico. Policies aimed at reduc­

ing illiteracy of households members in these communities can be effective in reducing 

poverty. Education prograrns should target bath children and adults, in particular house­

holds' heads ta have short-term effects. Likewise, policies aimed at securing the incarne of 

households with a female head could help reduce poverty in rural Mexico. An example of 

such policies can be reforms aimed at securing land ownership for female or at improving 

labor productivity for households with a female head, the latter being less productive for 

physically intensive activities such as farming. 

The paper is organized as follows. Section 2 summarizes the relevant literature on CIs 

for the mean of a bounded random variable. Section 3 describes a projection principle 

that allows CIs for the mean of a bounded random variable ta be built from CBs for dis­

tribution functions. It also derives a general expression for such CIs. Section 4 proposes 

CIs for the mean of a continuous bounded random variable using the projection princi-

lSee details about this program in section 9, page 109. 
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pIe. CIs based on unweighted, weighted, and regularized weighted Kolmogorov-Smirnov 

statistics are considered. A likelihood-ratio type statistic is also used. Extension of these 

CIs to bounded noncontinuous variables are proposed in section 5. Section 6 proposes two 

approaches to estimate the regularization parameter of the proposed statistics. Section 

7 applies the inference methods to the FGT poverty measures. Section 8 presents Monte 

Carlo simulations of the CIs for poverty measures using income from Singh-Maddala dis­

tribution. Section 9 illustrates the inference methods analyzing the profile of poverty of 

Mexico in 1998 with data from PROGRESA. We conclude in section 10. 

2.2 Confidence intervals for the mean of a bounded 

random variable 

Several inference methods for the mean of a bounded random variable have been pro­

posed. Asymptotic procedures such as asymptotic distributions and bootstrap methods 

are popular and widely used. Sorne exact procedures have also been provided by An­

derson (1969), Hora and Hora (1990), and Fishman (1991). Other studies have also 

proposed one-sided nonparametric inference methods for the mean of a censored variable 

[see Breth (1976)] and the mean of a nonnegative random variable [see Breth, Maritz 

and Williams (1978) and Kaplan (1987)]. In this section, we present the asymptotic and 

exact inference methods for the mean of a bo~nded random variable. 

2.2.1 Asymptotic methods 

Let X be a random variable with distribution function F(x) and mean E(X) = J-L. 

Assume that n i.i.d observations Xl,' .. , X n on X are available and let Fn(x) be the 

corresponding empirical distribution function. Let W be the t-statistic: 
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where ii is an estimate of J1 that is often X (the sample mean) and V[iiJ is the estimated . 

variance of the estimator. 

Asymptotic inference 

Assuming that W is asymptotically N(O, 1) as n -+ 00, an asymptoticCI for J1 with level 

1 - CY is: 

where z(p) is the pth percentile of the standard normal distribution. 

This CI is easy to compute, but can perform poorly in finite samples, because of the 

underlying asymptotic approximations [see Sutton and Young (1997) and Davidson and 

Flachaire (2007) J . 

Bootstrap inference 

The simplest and most popular bootstrap CI for the mean is based on the percentile-t 

method: 
w [~ ] 1/2 [~ ] 1/2 ii - D(1_!f) V (ii) ::; J1 ::; ii - D~) V (ii) 

where D~) is the pth percentile of the bootstrap distribution of W; see DiCiccio and 

Efron (1996) and Horowitz (2001). 

This method performs better in finite samples than the asymptotic CI [Sutton and 

Young (1997) and Davidson and Flachaire (2007)J. However, its performance is still 

unsatisfactory and deteriorates when the distribution of the variable presents patterns 

such as heavy tails, multiple outliers or probability masses. Improved bootstrap inference 

methods have been provided but they are difficult to use. The causes of the bootstrap 

failure must be known for an adequate correction method to be chosen. Moreover, the 

bootstrap inference method involves a resampling procedure that is computationally de­

manding. 
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2.2.2 Exact methods 

Anderson (1969) 

Let X be a random variable with an unlmown continuous cumulative distribution function 

F(x) with finite support [a, b] (a < b, F(a) = 0 and F(b) = 1) and mean 1-" = E (X). 

Denote X(l) < X(2) < ... < X(n) the order statistics of a sample of n available Li.d 

observations on X and Fn(x) the empirical distribution function of the sample such that 

tI k = 0, ... ,n 

(2.1) 

where X(O) = a, and X(n+l) = b may be infinite. Note that this definition of Fn(x) holds 

for non continuous distributions with observations X(l) ~ X(2) ~ ... ~ X(n) that might 

be equal (X(l) = X(2) for sorne i, j). We will use frequently the empirical distribution 

function throughout this paper. 

Anderson (1969) proposes the following CI with level 1 - Œ for 1-" : 

~ [nï:1X(j) + (8 + 1) X(n-s)]-, [X(n-s) - a] ~ 1-" 
J=1 

~ ~ [(r + 1) X(r+l) + .t X(j)] + f3 [b - X(r+.l)] 
J=r+2 

(2.2) 

where r = I[nf3], 8 = In,l, and I[k] is the integer part of k. f3 and , are such that: 

P[Fn(x) - f3 ~ F(x) ~ Fn(x) +" tlx] ~ 1 - Œ. 

The Anderson CI is nonparametric and robust to sample size. However, it is restricted to 

continuous bounded random variables. Moreover, it is based on the Kolmogorov-Smirnov 

CB for distribution functions and thus, inherits sorne drawbacks from the latter2
. 

2These properties will be studied in detaillater in this paper. 
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Hora and Hora (1990) 

Hora and Hora (1990) propose the interval: 

where cKs(a) is the (1 - a)th percentile of the Kolmogorov-Smirnov statistic, X n is the 

sample mean of X, and X is a continuous random variable boundèd on [0,1]. 

In practice, the Hora and Hora CI is easy to compute and nonparametric. However, 

owing to its dependence on the mean, this CI is sensitive to outliers and may perform 

badly when applied to atypical distributions with heavy tails or probability masses. 

Fishman (1991) 

Using Hoeffding's (1963) inequality, Fishman (1991) derives the following CI for the mean 

/-L = E(Xi) of n i.i.d random variables Xl, ... , X n such that Pr[O ~ Xi ~ 1] = 1 : 

where 

~L { 

~u = { 

{t : ° < t ~ X n ~ 1 and en!(Xn-t,t) = a/2} if X n > 0, 

OifXn=O, 

{t : ° ~ X n ~ t < 1 and en!(t-X'n,l-t) = a/2} if X n < 1, 

= 1 if X n = 1. 

According to Hoeffding (1963), 

for ° < E < 1-/-L, where f(E, /-L) = (E+ /-L) ln [/-L (E + /-L)-l] + (1- E -/-L) ln[(I-/-L )(I-E _/-L)-l]. 

The Fishman (1990) CI applies to bounded random variables with support [0, l] , but 
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can be generalized to any domain [a, b]. It is more general than the Anderson (1969) and 

Hora and Hora (1990) CIs, which do not apply to discontinuous bounded variables. How­

ever, the bounds of the Fishman interval are not defined explicitly. They are computed as 

the zero of a function. Consequently, the accuracy of this inference method relies largely 

on the accuracy of the iterative procedure used to derive /-LL and /-Lu. Furthermore, this 

CI depends on the sample mean X n , which is very sensitive to outliers. These properties 

undermine the performance of the Fishman CI. 

The relative performance of the asymptotic and exact procedurés described in this 

section is examined by Sutton and Young (1997). They investigate the accuracy (con­

fidence level) and the precision (width) of the CIs using Beta distributions and Monte 

Carlo simulations. Their results show that asymptotic and standard bootstrap proce­

dures are not reliable in small samples, yielding CIs with coverage probability lower than 

the nominal confidence level 1 - Œ. Moreover, the precision of both CIs is ,reduced when 

the distribution presents a high probability of assuming the value zero. Conversely, exact 

methods yield coverage probabilities greater than 1- Œ, but at the cost of wider CIs than 

those from asymptotic methods. The Anderson CI is shown to achieve the best width 

among exact CIs. 

2.3 Projection methods for building confidence in­

tervals for the mean of a bounded random vari-

able 

In this section we propose a projection approach for building CIs for the mean of a 

bounded random variable from CBs for distribution functions. We define sorne notation 

for the remainder of the paper. Denote: 

IR = IR U { -oo} U { +oo} ; 

r (.) : a functional r[ F] : L ----t IR defined on a space L of functions; 

F : a space of distribution functions; 
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F : a space of continuous distribution functions; 

F[a,bJ : a space of distribution functions with support [a, b] (fQr finite numbers a < b); 

F[a,bJ : a space of continuous distribution functions with support [a, b] (for finite num-

bers a < b); 

Let X be a random variable with distribution function F(x) E F. Denote X(O) ::; 

Xli) ::; X(2) ::; ... ::; X(n) ::; X(n+1) the order statistics of a sample of n available Li.d 

observations on X, where [X(O) , X(n+l)] is the support of F(x). Denote Fn(x) the empirical 

distribution function of the sample such that \;;1 k = 0, ... , n 

DEFINITION 3.1 A functional r[F] : L -+ IR is monotonie nondecreasing if and only if 

PROPOSITION 3.2 [Projection principle] Let r[G] be a mQnotonic nondecreasing func­

tional on L, l~t F be a space of distribution functions included in L, and let X be a 

random variable with distribution function F(x) E F. If 

Cp(a) = {Fo EL: G~(x) ::; Fo(x) ::; G~ (x), \;;Ix} 

is a confidence band with level 1 - a for F(x) such that G~ ELand G~ E L, then 

CrrPJ(a) = {ro E IR : r[G~] ::; ro ::; r[G~]} . 

is a confidence interval with level 1 - a for r[F]. 

The proof of this proposition and all other proofs for this paper are provided in 

Appendix 2. 
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Two important conclusions arise from Proposition 3.2. First, this proposition allows 

the derivation of CIs for any monotonic functional of a distribution function from CBs for 

this distribution using projection techniques. In particular, this method can be applied 

to any (centered and non-centered) moment of X, specificaIly, to the mean of a bounded 

random variable r[F] = J: x dF(x). Second, Proposition 3.2 states that any CB for a 

distribution function can be used, including nonparametric CBs. Rence, aIl available 

inference methods for distribution functions can yield CIs for the mean of a bounded 

variable. To provide improved nonparametric finite-sample inference methods for the 

mean, we can investigate such procedures for distribution functions. 3 

It is important to note that if F(x) has a non bounded support, the CI for r[F], 

Gr[F] (a:), can be unbounded. This implies that, r[F~] or r[F~] can be infinite. In the 

case of the mean of a random variable bounded on [a, b] for sorne finite a and b, Gr[FJ(a) 

is bounded. The remainder of this paper studes this particular case. A generalization of 

our inference methods to non bounded variables is provided in a next paper (Diouf and 

Dufour, 2006). 

The following corollary applies Proposition 3.2 to the mean of a bounded random 

variable. 

PROPOSITION 3.3. Let.c be a space of functions such that the Stieltjes integml r[G] = 

J: y dG(y) is fini te, let F[a,b] be a space of distribution functions with support [a, b] for 

finite numbers a < b included in .c, and let X be a mndom variable with distribution 

function F (x) E F[a,bl' If 

GF(a) = {Fo E.c : G~(x) :S Fo(x) :S G~ (x), \Ix} 

is a confidence band with level 1 - a for F(x) such that G* E.c and G~ E .c, then 

30ther versions of this princip le ean be found for specifie funetionals r[FJ in Dufour (1990, 1997), 
Abdelkhalek and Dufour (1998), Dufour and Neifar (2004), and Dufour and Taamouti (2005, 2007). 
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is a confidence interval with level 1 - a for J.l. Moreover 

{ 

b b } C~(a) = J.loE IR: b - aF:;(a)-l F:;(x)dx S J.loS b - aF!:(a)-l F!:(x)dx 

where F!: (x) = max { G* (x), O}, and F:; (x) = min { G~ (x), 1} defines a confidence inter­

val with level 1 - a for· J.l which is tighter th an C ~ ( a) . 

In the case where F(x) is continuous (F(x) E F[a,bl), F!:(a) =F:;(a) =F(a) = 0 and 

the Cls for J.l simplifies to 

and 

Proposition 3.3 justifies a general approach-which will be used throughout this 

paper-for building Cls for the mean of a bounded random variable using CBs for dis­

tribution functions. Two Cls can be derived from each CB: one using the who le bands 

and one using their restricting parts. The latter accounts for the property of the distri­

bution functions which, by definition, always have values between 0 and 1 and is thus, 

thinner (C~(a) ç C~(a)). Note that F!:(x) and F:;(x) have values between 0 and 1 but 

are not necessarily distribution functions. In fact, they might never attain these values. 

For better results, we will use the thinner CI: C~(a) for the remaining of the paper. 

However, the Cls for the mean will retain the properties (in particular, the drawbacks) of 

the underlying CBs for distribution functions, owing to the use of projection techniques. 

This feature will be used to improve them. Finally, Proposition 3.3 can be used to derive 

an explicit expression for Cls for the mean of a bounded random variable. Proposition 
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3.4 do es so. 

PROPOSITION 3.4 [General expression for CIs for the mean of a bounded ran­

dom variable] Let C be a space of functions such that the Stieltjes integral r[G] = J: y 

dG (y) is finite, let F[a,b]. be a space of distribution functions with support [a, b] for finite 

numbers a < b included in C, and let X be a random variable with distribution func­

tian F(x) E F[a,b]' Let X(1) ~ ... ~ X(n) be the arder statistics of a sample of n i.i.d. 

observations on X. If 

Gp(a) = {Fo E C : G~(x) ~ Fo(x) ~ G~ (x), \fx} 

is a confidence band for F(x) with level 1 - a where G* E C, G~ E C, and G~(x) and 

G~ (x) are step functions with jumps only at X(l)' ... ,X(n) then 

(2.3) 

is a confidence interval for 1-" with level 1 - a where 

n 

I-"L [1 - F~ (X(n))]X(n+l)' + L [F~ (X(k)) - F~ (X(k-l))] X(k), 
k=l 

n 

I-"u [1- F;(X(n))] X(n+l) + L [F;(X(k)) - F;(X(k_l))] X(k), 
k=l 

X(o) a, X(Ml) = b, F;(x) = max{G~(x),O}, and F;;(x) = min{G~(x), 1}, \fx. 

Proposition 3.4 states that if a CB for F(x) exists and if the lower and the upper 

bounds this CB are constant between X(k) and X(k+l) for aH k, then one can use the 

Rieman integral to derive a general expression for Cls for the mean. This theorem is an 

applicati,on of the projection principle to stepwise CBs. However, it is not as restrictive 

as it seems. In fact, we know that aIl functions can be bounded by its closest lower and 

upper stepwise correspondent functions, using a given set of observations. Then, if CBs 

are not stepwise, we can use the estimation sam pIe to derive a lower stepwise bound 
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for F; (x) and an upper one for F;( (x) These bounds will define a CB for F (x) of level 

greater than or equal to 1 - a that can be projected to the space of mean to yield a CI 

for the mean of level greater than or equal to 1 - a. 

Let k l and ku E {l, ... ,n} such that 

and 

k l and ku represent the thresholds from which F;(X(k») 2 0 and F;( (X(k») :::; 1, and st art 

to be binding. 

If these numbers exist, then the bounds of C,..(a) can be simplified to: 

ku+l 
/-tL [1 F;(X(n»)]X(n+l) + L [F;(X(k») F;(X(k-l»)] X(k) 

k=l 

and 
n 

/-tu' [1 F;(X(n»)]X(n+l) + L [F;(X(k») F;(X(k-l»)] X(k). '(2.4) 
k=kt 

Moreover, if ku < n and k l < n then 

k" 

+ L [G~(X(k») - G~(X(k-l»)] X(k) 
k=l 

and 

n 

+ L [G.~(X(k») - G*(X(k-l»)] X(k). 
k=k!+l 

We will use the approach developed in this section repeatedly throughout the paper. 
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To derive CIs for the mean, we will use the improved finite-sarnple nonparametric CBs 

we proposed in Diouf and Dufour (2005). Those are obtained by inverting goodness-of-fit 

tests based on weighted Kolmogorov-Smirnov statistics and regularized versions of these 

statistics that provide better test power and narrower CBs for distributions. We will 

also use a likèlihood-ratio based CB proposed by Owen (1995) using the Berk and Jones 

(1979) statistic. 

2.4 Nonparametric confidence intervals for the mean 

of a bounded random variable 

In this section, we will propose Cls based on empirical distribution functions (EDF, 

henceforth). Our study focuses on the question of building CIs for the mean of a bounded 

random variable using Proposition 3.3 and 3.4. However, our methodology is far from 

being as restrictive as it appears. Solving the problem for the mean of Y allows one to 

solve the problem for any moment of Y by replacing the original data by a function of 

these data-exp(Y), Y", etc. For example, if we are interested in building Cls for the 

moment of order 2, we can transform the original data using the square function and 

compute the empirical distribution function corresponding to those transformed data. 

The Cls we propose in this section then provide valide CIs for the mean of the new data 

which are Cls for the second moment of the original data. AIl kinds of transformations 

can be studied. Continuous ones will be handled using the sarne Cls as those presented 

below while for noncontinuous ones, the next section provides interesting monotonicity 

properties that allow to solve the problem. 

2.4.1 Three principles for building confidence intervals 

CIs for the mean of a bounded random variable we proposed earlier use CBs for distribu­

tion functions based on EDFs. Those CBs can be built inverting goodness-of-fit tests for 

which the statistics of test involve EDFs. Several examples of those can be found in the 
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literature, among which the most popular is the Kolmogorov-Smirnov (KS, henceforth) 

statistic. 

Let's consider the test of Ho : F(x) = p versus Hl : F(x) =1= p. A common statis-

tic for this test is Dl [Fn(X) , F(x)] = vin 1 Fn(x) - F(x) 1 . Taking the supremum of 

Dl [Fn(x), F(x)] over all x yields the following KS statistic: 

K8F = sup vin 1 Fn(x) - F(x) 1 . 

-oo~x~+oo 

This statistic can be used to test hypotheses of type: 

Ho(F) : Xl,' .. , Xn are 'u.d. with distribution function P[Xi :S x] = F(x). (2.5) 

versus the negative of Ho(F). However, Dl [Fn(x) , F(x)] is not standardized and hence, 

.. its distribution is not asymptotically pivotal. 

Other inference methods have used statistics where Dl [Fn(x) , F(x)] is improved along 

three common principles in econometrics: the Lagrange multiplier, Wald, and likelihood­

ratio principles. The first one replaces Dl [Fn(x), F(x)] by a score-type statistic where 

Dl [Fn(x), F(x)] is divided its standard deviation estimated under the null hypothesis. 

This statistic had been proposed by Anderson and Darling (1952): 

AD = sup Vn(x) 
-oo<x<+oo 

where 

a if F(x) E {a, 1}, 

r,;:; 1 Fn(x)-F(x) 1 h . v n Fl/2(x)[I-F(x)jl/2 ot erWISe. 

The second one standardizes Dl [Fn(x) , F(x)] using an estimation of its standard devi­

ation under Hl' The corresponding Wald-type statistic had been proposed by Eicker 

(1979): 

E = sup Vn(x) 
-oo<x<+oo 



where 

Vn(X) ~ { o 
Fn(x) 

vn F~/2(x)[1 
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if Fn(x) E {O,l}, 

otherwise. 

The last improvement replaces Dl (x) by a likelihood ratio-type statistic. Such statistic 

had been proposed by Bt;)rk and Jones(1979): 

BJ sup K[Fn(x), F(x)] 
-oo:Sx:S+oo 

where 

KW, p) =plog (Ê.) + (l-p) log (11-P ). 
p -p 

These statistics will be used to derive CIs for the mean as well as improvements of the 

score-type and Wald-type statistics using regularized versions of these. 

2.4.2 Confidence intervals based on the Kolmogorov-Smirnov 

statistic 

In the rest of the paper, we define X as a random variable with distribution F(x) E F[a,b] 

and a finite mean f.L. We also let X(l) ::; ... ::; X(n) be the order statistics of a sample of 

n i.i.d observations available on X, X(Q) = a, X(n+l) = b, and Fn(x) the corresponding 

empirical distribution function. The Kolmogorov~Smirnov statistic is: 

vn 1 Fn(x) F(x) 1 

max { max {!::. - F(X(k»)} , max {F(X(k») -~} ,o}. l:::;k:::;n n l:::;k:Sn n 

A symmetric CB for F(x) with level l - 0: can be obtained by inverting the KS 

goodness-of-fit test: 
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where CKS(a) satisfies Pr(KSF ~ CKS(a)) 2:: 1 - a. 

Applying Proposition '3.3, we can derive frorn Cff S (a) the two following projection­

based CIs for /-l : 

where X n is the sarnple rnean of X, and 

(2.7) 

where 

1 [ ~ 1 CKS(a) 
/-lu =;; (r + 1) X(r+l) + .~ X(j) + Vn 

J=r+2 

r = I[nC~a)], s = InC~a) l, and I[k] is the integer part of k. 

The C:;S(a) CI for the rnean of X-equation (2.6)-is a generalization of the Hora­

Hora CI to the rnean of randorn variables bounded on [a, b]. Setting b = 1 and\a = 0 

provides the original Hora-Hora CI: 

We provide in Appendix 2 a proof of the generalized Hora-Hora CI which, setting b = 1 

and a = 0 also gives a proof the original CI which have not been clearly given by the 

literature. Likewise, the second CI, C:;S(a) , corresponds to the Anderson CI for the 

rnean of a continuous bounded randorn variable defined in equation (2.2). We prove in 

Appendix 2 that the Anderson CI is a projection of the KS confidence band where aIl 

constraints about distribution functions are exploited. Henee, the Hora-Hora and the 

Anderson CIs are both sorne special cases of Proposition 3.3 using the projection of the 
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KS CB for distributions onto the space of mean. However, the Hora-Hora CI is domiI;lated 

by the Anderson CI. The latter excludes the parts of the Kolmogorov-Smirnov CB that 

are not effective Le., the parts of the bands below 0 or ab ove 1 and is then shorter than 

the Hora-Hora CI. 

Even if the KS statistic can be used to build a well-behaved CI for the mean-the An- . 

derson CI- it is not based on the three common principles in econometrics: the Wald, 

likelihood-ratio, and Lagrange multiplier principles. By the properties of the projection 

method, the Anderson CI inherits sorne. characteristics from the KS confidence band. 

Thus, using the properties of the latter, we .can determine the limits of the Anderson 

method and improve it along these lines. In particular, the KS confidence band for dis­

tribution functions is often criticized for its uniform nature. The width of this CB is 

constant for all observations and thus its boun<;ls do not converge to 0 and 1 in the lower 

and upper tails of the distribution, as do the distributi?n functions they brackèt. This 

adversely affects its performance in the tails and can easily lead to a large projected 

CI for the mean. Weighted KS statistics based on Wald, likelihood-ratio, and Lagrange 

multiplier improvements have been proposed to allow more discrimination between dis­

tributions in the tails. We use these statistics to build CIs for the mean and show by 

Monte Carlo simulations that those CIs have better properties than the Anderson CI. 

2.4.3 Confidence intervals based on weighted Kolmogorov-Smirnov 

statistics 

We will now propose improved CIs for the mean based on nonuniform Kolmogorov­

Smirnov CBs for distributions. Two weighted Kolmogorov-Smirnov statistics have been 

proposed by Anderson and Darling (1952), 

AD = sup Vn(x) 
-oo<x<+oo 



and Eicker (1979), 

where 

and 

E = sup Vn(x) 
-oo<x<+oo 

a if F (x) E {a, 1 }, 

r;;:; 1 Fn(x)-F(x) 1 th . v n Fl/2(x)[1-F(x)]1/2 0 erWlSe, 

a if Fn(x) E {a, 1}, 

Fn(x) - F(x) 
vin F~/2(x)[1 _ Fn(x)P/2 

otherwise. 
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In practice, these statistics can be computed as follows [see Diouf and Dufour (2aa5a)]: 

These two statistics can be used. tQ derive finite-sample nonparametric CBs for dis­

tribution functions whose widths decrease with observations further from the center of 

the distribution. The Eicker and Anderson-Darling statistics are better at discriminating 

between distributions that essentially differ in their tails than the uniform (unweighted) 

KS statistic and, in consequence, they provide narrower CBs in the tails. 

However, the Anderson-Darling (AD) and Eicker statistics have their own drawbacks. 

The power of the goodnèss-of-fit tests they yield is less than the· power of the standard 

KS goodness-of-fit test when testing distributions with low dispersion that differ more in 

the center of the distribution than in the tails. Moreover, the weights in the denominator 

of those statistics become very close to a for observaÙons in the tails, leading to erratic 
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behavior of the statistics. To solve this problem, we proposed regularized statistics where 

the variance of Fn(x) - F(x) in the denominator of the statistics is corrected by adding 

a nonzero positive regularization term ( : 

AD 
_ c Fn(x) - F(x) 

ç- sup yn , 
-oo<x<+oo y'F(x)[l - F(x)] + ( 

C
n 

Fn(x) - F(x) 
Eç = sup yn 

-oo<x<+oo y'Fn(x) [1 - Fn(x)] + ( 

For a constant ( > 0, the regularized statistics can be computed using the following 

expressions: 

The regularization achieves the expected improvement. First, we showed by Monte 

Carlo simulation that using a constant positive ( considerably improves the power of the 

regularized Anderson-Darling and Eicker goodness-of-fit tests. The test power is low for 

small ( but rises quickly when ( increases before becoming almost constant. Even if thè 

value of ( that maximizes the power of the test is not known, most of the improvement 

is achieved as soon as ( is high enough. An example of how to choose the optimal 

value of ( in practice is provided for inference methods on poverty measures in section 7. 

Second, computing the critical values of the statistics by simulation eliminates the bias 

to which these kinds of (regularized) stati~tics are subject. Finally, regularizing prevents 

the erratic behavior of the original Anderson-Darling and Eicker. statistics in the tails 

of distributions and provides nonuniform CBs for distribution functions that de cline in 

width as observations approach the tail of the distributions. Monte Carlo simulations 

show that the widths of these CBs are sm aller than the widths of the Anderson-Darling 
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and the Eicker CBs. Henee, their projections are expected to provide better Cls for the 

mean than the priginal CBs. Theorems 5.1 to 5.4 propose finite-sample nonparametric 

Cls for the mean of a continuous bounded random variable using the standard and the 

regularized Anderson-Darling and Eicker CBs for distributions. Analytic expressions are 

derived, in which '" is assumed constant. 

PROPOSITION 4.1. [Anderson Darling-type CI for the meali of a bounded ran­

dom variable] Let X be a random variable with distribution function F(x) E F[a,b] o,nd 

a finite mean f..L. Assume that n ordered i.i.d. observations X(1) S ... S X(n) on X are 

available. Suppose that the following confidence band of type Anderson-Darling with lev el 

1 - a is valid for the space of distributions F[a,b] : 

C;JP(a) {Fo E F: G~(x) S Fo S G~ (x), Vx} 

where 

G~(x) -

G~ (x) = 

and cAD(a) satisfies Pr(AD ::; cAD(a)) ~ 1 a. Then the following confidence interval; 

c:D 
(}) ~ {l'O E II!. : [1 - F!' (X{n) ]X{n+l) + ~ [F!' (X{.) F!' (X{'_l) 1 X{k) 5: 1'0 

5: [1 - F;(X{n)]X{n+l) + ~ [F;(X{k) F;(X{k-l)] X{k)} (2.8) 

where X(Q) = a, X(n+1) = b, and Vx, F!;(x) max {G~(x), o} and F;; (x) = min {G~ (x), 1} 

is a confidence interval for f..L with level 1 - a. 
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COROLLARY 4.1BIS [Explicit expression for the Anderson Darling-type CI] 

Under the hypothesis of Proposition 4.1., the effective part of the Anderson-Darling con- , 

fidence band for F(x) is: 

and 

and an equivalent expression of the Anderson-Darling confidence interval for the mean 

of a bounded random variable is: 

-AD 
Cp, (a) = {/lo E IR : /lL ~ /lo ~ /lu} 

where 
_ Ln [~+ .j!::J.(k) - .j!::J.(k -1)] 

IlL - ~ ( ) X(k) , 
_ 2(1+~) k-l n 

(' C~D(a))-l) n [~-(V!::J.(k) V!::J.(k-l))] 
1 + X(n+l) + L ~ () X(k), 

n k=l 2(1 +~) 

!::J.(k) = [2~ + c~:(a)r -4(~)2 [1 + ~:(a)] ) 
and cAD(a) satisfies Pr[AD ~ cAD(a)] ~ 1 - a. 

PROPOSITION 4.2 [Eicker-type CI for the mean of a bounded random variable] 

Let X be a random variable with distribution f11:nction F (x) E F[a,b) and a finite mean Il. 

Assume that n ordered i.i.d. observations X(l) ~ ... ~ X(n) on X are available. Suppose 

that the following confidence band of type Eicker with level 1- a is vaUd for the space of 

distributions F[a,b) : 

C; (a) = {Fo E F : G~ (x) ~ Fo ~ G~ (x) } 



. \ 

where 

G~(x) = { . ° 
for such that Fn(x) tf. {D, 1}, 

for x such that Fn(x) E {D, 1}, 

for x su ch that Fn(x) tf. {D, 1}, 

for x such that Fn(x) E {D, 1}, 
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and cE(a) satisfies Pr(E ~ cE(a)) 2:: 1 - a. Then the following confidence interval: 

c: ("') ~ {PoE III : [1 - F~ (X(n)) ]X(n+l) + t, [F~ (X(,)) - F~ (X('-'))] XC') :; 1"0 

:; [1 - F;(X(n))]X(n+l) + t, [F;(X(k)) - F;(X(k_l))] X(k)} (2.9) 

where X(O) = a, X(n+1) = b,.and 'ix, F;:(x) = max {G~(x), o} and F:!(x) = min {G~ (x), 1} 
" is a confidence interval for J-L with level 1 - a. 

GOROLLARY 4.2BIS [explicit expression for the Eicker-type CI] Under the hy­

pothesis of Proposition 4.2., the effective part of the Eicker confidence bounds for F(x) 

is: 

_ { k - CE(O) [k]1/2[1 _ k]1/2 'ik = kL ... n - 1 
F;:(X(k») = n Vn n _ n L E" ° 'ik - 0, ... , kE - 1, n, n + 1, 

_ { k + CE(O) [k]1/2[1 _ k]1/2 'ik = 1 ... kU 

F;: (X(k») = n Vn n un' 'E 
1 'ik = 0, kE + 1, ... , n, n + 1. 

where k~ = l [nc~(a)(n+c~(a))-l] + 1, k~ = l [(n+;~(o»)]' and 1[1\;] is the integer 

part of 1\;; and an equivalent expression of the Eicker confidence interval for the mean of 
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a bounded random variable is: 

where 

/-lu = [
kL ( ) (kL)1/2 ( kL )1/2] :, -C~:, 1- :, X(k~) +X(n+l) 

~ [1 cE(a) (fk7:-k\( k) Vk -1 ( k - 1))] 
+ k=~+l ; - yin y; \1-;) - -n- 1- -n- X(k), 

and cE(a) satisfies Pr(E :::; cE(a)) ~ 1 - a. 

PROPOSITION 4.3. [( -Regularized Anderson Darling-type CI for the mean of 

a bounded random variable] Let X be a random variable with distribution function 

F(x) E F[a,b] and afinite mean /-l. Assume that n ordered i.i.d. observations X(l) :::; ... :::; 

X(n) on X are available. Suppose that the following confidence band of type (-regularized 

Anderson-Darling with level 1 - a is valid for the space of distributions F[a,b] : 

C;Dç(a) = {Fo E F: G~(x) :::; Fo :::; G~(x), '<Ix} 

where 
C~D (0 ) Iï\f:::\ 

GL ( ) = 2Fn(x) + ,; - V ~(x) 
n X (c2 (0)) , 

2 1 + ADç 
. n 
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L'>(X) = [2Fn(X) + c;.D~ (a) r -+ + C~D~ (a) 1 (F';(X) _ (c;.~ (a)) , 

and cADç(a) satisfies Pr[AD( :S cADç(a)] ~ 1 -a. Then, the following confidence 

interval: 

c:D
, (a) = {l'O E ll!. : [1 - F~ (Xln)) [XlnH) + t, [F~ (Xlk)) - F~ (Xlk-l)) 1 Xlk) S 1'0 

(2.10) 

where X(O) = a, X(n+l) = b, and \Ix, F!:(x) = max{G*(x) , O} and F;:(x) = min{G~(x), 1} 

is a confidence interval for p, with level 1 - a. 

COROLLARY 4.3BIS [Explicit expression for the Ç-Regularized Anderson 

Darling-type CI] Under the hypothesis of Proposition 4.3., the effective bounds of the 

(-regularized Anderson-Darling confidence band for F(x) are: 

_ { G~(x) \Ix :S X(kU ) F;; (x) = ADç 

1 \Ix> X(kU ) 
ADç 

where k~Dç = l [nl/2(1/2cADç(a)] + 1, k~Dç = l [n - cADç(a)(n()1/2] ,1[K:o] =the integer 

part of K:o; and an equivalent expression of the (-regularized Anderson-Darling confidence 

interval for the mean of a bounded random variable is: 
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-AD 
C J1- '(a) = {fLo E IR : fL L :::; fLo :::; fLu} (2.11) 

where 

-L . _ { (2+ C~4D~(o) yi ~(n)) (2(1+ C~D~(O))) -1 if k~D, :::; n, 
Fn (X(n))-

o otherwise, 

~(k) = [2~ + c;.D~ (a) r -4 [1 + c;.D~(a) 1 (~: _ (C~, (a)) , 

and cAD,(a) satisfies Pr[AD( :::; cAD,(a)] 2:: t - a. 

PROPOSITION 4.4. [( - Regularized Eicker-type CI for the mean of a bounded 

random variable] Let X be a random variable with distribution function F(x) E F[a,b] 

and a finite mean fL. Suppose that a random sample of X is available and denote X(l) :::; 

... :::; X(n) the ordered observations. Suppose that the following confidence band of type 

(-regularized Eicker with level 1 - a is valid for the space of distributions F[a,b] : 

C;' (a) = {Fo E F: G~(x) :::; Fo(x) :::; G~ (x), Vx} 
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where 

G~(x) 

and cEç(a) satisfies Pr[E, ~ cE,'(a)] 2 1 a. Then the following confidence interval: 

::; [1 

.where X(O) = a, X(n+1) = b, andVx, F!:(x) = max{G*(x),O}and F:!(x) min{G~(x), 1} 

is a confidence interval for Il with level 1 - a. 

COROLLARY 4.4BIS [Explicit expression for the (-Regularized Eicker-type 

CI] Under the hypothesis of Proposition 4.4, the effective bounds of the (-regularized 

Eicker confidence band for F(x) are: 

where k~( I[k21+1, k~ç I[k3], k2 = [nc1ç(a)+~] [2(n+c~ç(a))]-1, k3 = 

[( 2n + (a)) n vi ~u] [2 (n + c1ç(a))] -1 , ~L = n2cf1_Q)+4 (n + c1ç(a)) n24ç{a)(, 

~ u ( 2n + c1ç (a) r n 2 4 ( n + c~ç (a)) (n - c1/ a)( ) n 2 , and I[K] is the integer part 

of Kj and an equivalent expression of the (-regularized Eicker confidence interval for the 

mean of a bounded random variable is: 

(2.13) 



where 

/-LL - [1 - k~<n-l -

+~ [~+ 

[kL -1 
/-Lu = E<n 

n [1 + I: -
k=kf; +1 n 

< 
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(v k k V k - 1 k - 1 ) 1 (a)n- 1/2 ;;:[1 - ;;:] + ( - -n-[1 - -n-] + ( X(k), 

2.4.4 Confidence interval based on likelihood ratio-type statis­

tics 

We propose an improved finite-samplè nonparametric CI for the mean by applying Theo­

rem 3.4 to the Owen (1995) CB for distribution functions. This CB is based on the Berk 

and Jones (B-J, 1979) likelihood ratio-type statistic: 

where 

BJ = sup K[Fn(x), F(x)] , 
-oo~x~+oo 

~ 

K(p, p) -plog (~) + (1-fj) log 
p 
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PROPOSITION 4.5. [Berk Jones-type CI for the mean of a bounded random 

variable] Let X be a random variable with distribution function F(x) E F[a,bj and a 

finite mean 1-". Assume that n i.i.d. observations on X are available and denote X(l) ::; 

... ::; X(n) the ordered observations. Suppose that the following confidence band of type 

Owen with level 1 a is valid for the spa ce of distributions F[a,bj : 

Cr;(a) = {Fo E F: F;(x) ::; Fo(x) ::; F:! (x) } , 

where F;(x) - min{p : K[Fn(x),p] ::; cBAa)} , Ff!(x) = max{p : K[Fn(x),p] ::; 

cBJ(a)}, and cBJ(a) satisfies P[BJ > CBJ(a)] :2:: 1 - a. Then the following confidence 

interval 

where X(o) a, and X(n+1) = b, is a confidence interval for 1-" with level 1 - a. 

It is important to highlight that the original CB proposed by Owen was derived 

for continuous distribution functions. In the ab ove theorem, we apply it to general 

distributions. This generalization and other properties of the Berk-Jones statistic-such 

as its pivot31ity-and its corresponding CB are discussed in Diouf and Dufour (2005a). 

The procedure used to derive Owen's CB 31so applies in noncontinuous cases. In the 

next section we show that the results obtained in the continuous case remain valid in the 

discrete case, using monotonicity properties. Note that the Owen's CB for a continuous 

distribution functian is such that F;(X(o») = 0, F;(X(n») = e-CBJ(et) < 1, F:! (X(o») = 

1 e-CBJ(et), and F;(X(n») = 1. Hence, Ff:(x) and Ff! (x) are the effective parts of the 

Owen CB for aH x and are used directly to build the CI for the mean. 

Comparing the Owen CB ta the Kolmogorov-Smirnov based CBs showed that the 



95 

Berk Jones-type CB performs similarly to the CBs based on the regularized statistics 

(see Diouf and Dufour, 2005a). However, for each observation, the bounds of Owen's CB 

are defined as the extremum-minimum or maximum--of a function. Its computation 

therefore requires twice as many optimizations as the number of observations. 

Owen (1995) proposed an analytic approximation for cBJ(0.05) and cB;(O.Ol): 

~ [3.0123 + 0.4835 log (n) - 0.009571og2 (n) 0.0014881og3 (n)] for 1 < n ~ 100, 

~ [3.0806 + 0.4894 log (n) - 0.02086log2 (n)] for 100 < n ~ 1000, 

~[-4.626 - 0.541 log (n) + 0.02421og2 (n)] for 1 < n ~ 100, 

~[-4.71- 0.512log(n) +0.0219log2 (n)] for 100 < n ~ 1000. 

Jager and Wellner (2004) found that computing the Owen approximations of cBJ(a) 

yield a CB with coverage probability lower than the nominal level. They propose the 

following correction: 

~[3.6792 + 0.57201ogn - 0.0567Iog2(n) 0.0027Iog3(n)] for 1 < n ~ 100, 

~[3.7752 + 0.50621ogn - 0.04171og2 (n) + 0.00161og3(n)] for 100 < n ~ 1000, 

~[5.3318 + 0.5539 log n 0.0370Iog2 (n)] for 1 < n ~ 100, 

~[5.6392 + .040181ogn 0.0183Iog2 (n)] for 100 < n ~ 1000. 

In our Monte Carlo investigations, we simulate the critical value of the distribution of 

B J to sidestep this discussion. 
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2.5 Properties of confidence intervals in the contin-

uous and noncontinuous cases 

We proposed in the last sectio~ sever al Cls for the· mean of a bounded random variable. 

In this section, we will study sorne interesting properties of those Cls in the continuous 

and the noncontinuous cases. For continuo us F(x), the distributions of the Kolmogorov 

Smirnov, Anderson-Darling, Eicker, regularized Anderson-Darling and Eicker, and Berk­

Jones statistics are independent of the distribution being assumed under the null hypoth­

esis and so do their critical points. Renee, the CBs for distribution functions they yield 

and the corresponding projected Cls for the mean depend on F(x) only through the sam­

pIe. The same critical points are used to build the CBs for all continuous distributions 

which makes them easier to compute. 

One may wonder what happens in the discrete case? For noncontinuous distributions, 

the test distributions de pend on F(x), so new critical values may need to be computed in 

each case making CIs more difficult to compute. We will show that for those distributions, 

the Cls we proposed remain valid in the sense that they provide conservative Cls for the 

discrete variables. Moreover, we will propose important properties that can be exploited. 

PnOPOSITION 5.1. [Conservative nature of continuous case critical points] Let 

Xl, ... ,Xn be n i.i.d. observations on X and Fn(x) be the corresponding empirical 

distribution junction. Let F(x) E F be a continuous distribution function and G(x) E F 

be a noncontinuous' one. For any level a, 0 ::; a ::; 1, the critical value associated with 

KSF for testing the null hypothesis Ho(F) as defined by the equation (2.5) is larger than 

or equal to the critical value associated with K Sc for testing the null hypothesis Ho( G) 

and similarly for the statistics AD, E, AD" E" and BJ. 

PnOPOSITION 5.2. [Conservative property of continuous case CIs for the mean 

of a bounded random variable] Let X and Y be two bounded random variables with 

respective distribution functions F(x) E F[a,b] and G(y) E F[a,b] whose means are fini te. 

Let YI," . ,Yn be n i.i.d. observations on Y and Gn(x) be the corresponding empirical 
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distribution function. For any level a, 0 ~ a ~ 1, the Anderson confidence intervai 

obtained using appropriate critical points for testing the null hypothesis Ho(F) as defined 

by thé equation (2.5) yields a confidence interval for the mean of Y with levellarger than 

or equai to 1 a, and similarly for the confidence intervais based on AD, E, AD" E" 

and BJ. 

Proposition 5.1. shows that CBs for continuous distribution functions can be applied 

to general distributions and Cls for the mean may also be derived in the case where the 

random variable has bounded support [a, b]. We refer the reader to Diouf and Dufour 

(2005a) for a detailed discussion of these properties of the statistics and the CBs for 

continuous distributions. Using these properties, Proposition 5.2. states that the CIs 

for the mean of a continuous bounded random variable--computed with the conservative 

KS percentiles-can be applied to any sample from a distribution function with bounded 

support. The bounds so obtained will be a CI for the mean of the variable under exami­

nation with level at least equal to 1 - a. We derive a monotonicity property that can be 

useq to reduce the width of the intervals without altering their reliability. These results 

are based on information about the set of discontinuities of the distribution function. 

PROPOSITION 5.3. [Range monotonicity of critical points] Let X}, ... , X n be n 

i.i.d. observations on X and Fn(x) be the corresponding empirical distribution function. 

Let F(x) and G(y) be two distribution functions such that G(lR) ç F(lR). For any level 

a, 0 ~ a :::; 1, the criticai value associated with K8F for testing the null hypothesis Ho(F) 

as defined by equation (2.5) is larger than or equal to the critical value associated with 

K8G for testing the null hypothesis Ho(G) and simiIarIy for the. statistics AD, E, AD" 

E" and BJ. 

PROPOSITION 5.4. [Range monotonicity of CIs for the mean of a bounded ran­

dom variable] Let X and Y be two bounded random variables with respective distribution 

functions F(x) E Fla,b] and G(y) E F[a,b] whose means arefinite such that G(lR) ç F(lR). 

Let YI,' .. ,Yn be n i.i.d. observations on Y and Gn(x) be the corresponding empirical 

distribution function. For any level a, 0 ~ a ~ 1, the Anderson confidence intervai 
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obtained using appropriate critical points for testing the null hypothesis Ho(F) as defined 

by equation (2.5) yields a confidence interval for the mean of Y with levellarger th an or 

equal to 1 - a, and similarly for the confidence intervals based on AD, E, AD" E" and 

BJ. 

Proposition 5.4. generalizes Proposition 5.2. to all distribution functions with ex­

isting mean. It sùggests that CIs for the mean can be made narrower by exploiting 

embeddedness of the image sets of different distributions. When studying a discontinu­

ous distribution G(y), we know that G(y) takes its values in a set V G which is included in 

[0, 1]. Thus, the conservative CI for a continuous bounded random variable provides a CI 

for E(Y) = /J'Y with level1 - 61 greater than or equal to 1 - a. If additional information 

about the image set of G(y) is available-in particular, if we know there exists a distri­

bution fun ct ion with image V F such that VG ç V F -then the critical points for testing 

F(x) can be used to derive a CI for /J'Y with level1- 62 such that 1- a ~ 1- 62 ~ 1- 61 , 

The CI with level 1 - 62 is narrower than the CI with level 1 - 61 while being reliable. 

Thus, using information about the nature of the discontinuity of the random variable can 

be useful for providing shorter CIs for /J'Y' 

Consider a special case of Proposition 5.4.4 Let Y be a random variable with dis­

tribution G(y) E J and X be the variable X = (Z~Y)Q I[o::;y::;z] with distribution 

F(x) E .r[O,l], where z is deterministic. X is a mixture between a continuous variable 

bounded on (0,1] and a probability mass at x = O. Hence, F(x) is continuous on (0,1] 

with F(O) = Prob(Y > z) == p and F(l) = 1. Its corresponding Kolmogorov-Smirnov 

statistic is (see Appendix 2 for the proof):5 

1 n 

K5F = max - L:n·[F(Xk ) ~ v]- v 
vE[P,l] n 

k=l 

COROLLARY 5.5. [Range monotonicity with a mass at the lower boundary] 

4The interest of this special case will appear later when applying the inference methods to poverty 
measures. 

5In practice, the true value of p is generally unknown, but can be estimated. 
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Let Xl and X 2 be two random variables with respective distribution functions FI(X) E 

F[a,b] and F2 (x) E F[a,b] , continuous on (a, b], whose means are finite su ch that Pl = 

FI(a) ::; F2(a) = P2. Let Xi, ... , X; be n i.i.d. observations on X2 and Fn(x) be the 

corresponding empirical distribution function. For any level a, 0 ::; a ::; 1, the Anderson 

confidence interval obtained using appropriate critical points for testing the null hypothesis 

Ho(FI) as defined by equation (2.5) yields a confidence interval for the mean of X 2 with 

level larger than or equal to 1 - a, and similarly for the confidence intervals based on 

AD, E, AD(, E(, and BJ. 

2.6 Choosing the values of parameter ( 

In this section, we assess the choice of the regularization parameter (. Regularizing 

the Anderson-Darling and the Eicker statistics improves the quality of the inference. 

Positive values of ( considerably increase the power of the regularized Anderson-Darling 

and Eicker goodness-of-fit tests: the test power is low for small ( but rises quickly when 

( increases before becoming almost constant. 

In practice, if ( is not chosen independently of the sam pIe that is used to estimate 

the CIs, the distributions of the statistics may be modified and the properties we have 

derived so far will have to be reinvestigated and new critical points simulated. To avoid 

this, the optimal value of ( may be chosen on an auxiliary sample independent from the 

estimation sam pIe of the CIs using a split-sample procedure or other approaches. We 

illustrate two ways of choosing ( in sections 8 and 9. 

In section 8, we investigate the performance of the CIs using Monte Carlo simulations. 

In this case, we know the distribution from which the sample is. Then, we can choose 

the minimum value of ( that provides a "sufficiently" powerful test. In fact, given that 

we compute the critical points of the statistics by simulation, we control the level of the 

test and the corresponding CIs. Thus, maximizing the power of the goodness of fit test 

allows to miniinize the width of the CIs (see Pratt, 1961). The optimal value of ( so 

obtained depends on the sample size and, to a lesser extent, on the distribution function. 
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However, even if the value of ( that maximizes the power of the test is not used, most 

of the improvement is achieved as soon as ( is high enough. We use this procedure to 

choose the optimal value of ( that will be used to perform inference on the Foster, Greer, 

an4 Thorbecke poverty measures .. 

ln section 9, we use PROGRESA data (from Mexico) to analyze the profile of poverty 

of Mexican households. In this case, no information about the distribution of the vari­

able is 'available and the total size of the sample is fixed. A split-sample procedure (see 

Dufour and Jasiak, 1993) can be ùsed to estimate the parameter ( and the CIs indepen­

dently each from other. The procedure decomposes as follows. First, the i:I;litial sample 

is split into two independent subsamples using Li.d. drawings. Second, one sample-the 

auxiliary sample-is used to estimate (by trial and error) the values of the parameter that 

minimize the width of the Anderson-Darling and the Eicker CIs. Third, the remaining 

sample-the estimation sample-is used to estimate CIs with the formulas provided in the 

last two sections. This out of sample procedure guarantees that the auxiliary sample 

and the estimation sam pIe are independent and insures the validity of the inference, the 

distribution of the statistics being held unchanged by the estimation of the parameters. 

Ideally, one would use a small part of the initial sample as auxiliary sample-some the­

oretical studies (see Dufour and Jasiak, 1993) recommends to use up to 10 percent of 

the sample. However, the width of the nonparametric CIs from the regularized statistics 

depends "critically" of the value of (. So does the performance of the inference methods. 

We thus propose to use up to 20 percent of the initial sample to estimate (, whenever 

the sample size allows us to do so. 

For both procedures, the optimal value of ( for the Anderson-Darling statistic is very 

likely to be different from those for the Eicker statistic. Moreover, the critical points of 

both statistics need to be simulated at each step of the procedures, for the value of ( 

being tested and the current choice of sample size and other involved parameters. 
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2.7 Application to the Foster, Greer, and Thorbecke 

poverty measures 

Using the generalization of our inference methods to higher moments, we apply them to 

the popular Foster, Greer and Thorbecke (1984) poverty measures. These are defined by 

where b > 0, y is a welfare indicator (which is generally income or expenditures) with 

continuous distribution function Fy(y) of support [0, +00), and z is the poverty line. 

Rewriting them yields: 

fo+OO (_z Z y)6 P6(Y, z) Jo Il[y ~ z] dF(y) = E[X] 

where 

x z- Y 
( )

6 

-z- Il[O~Y~zl 

is a random variable bounded on [0,1) with cumulative distribution 

Gx(x) 

if x < 0, 

if a ~ x ~ 1, 

if x ~ 1, 

and ~ probability mass Gx(O) = 1 - Fy(z) at O. 

The FGT poverty measure is the mean of a bounded random variable. Procedures 

adapted to bounded random variables can then be applied to them. We perform in fer­

ence on these measures using inference methods proposed in this paper. Monte Carlo 

simulations are done to study the performance of the CIs. 

Let 
~ 1 n (z _ y;)6 i n 
P6 -2: --~ Il[Yi~zl=-2:Xi 

n i=l z . n i=l 
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be an unbiased estimator of Pa with variance V(Pa) ~[P2a - Pl]. The asymptotic 

N(O, 1) t-statistic W = (Pa - Pa) /17 [Pa] can be used to test Ho : Pa = Pi against 

the alternative Hl : Pa =1= Pi (see Kakwani, 1993). The corresponding asymptotic and 

bootstrap GIs with level 1 - a for Pa are, respectively: 

where Z(p) and D~ are the pth percentiles of the standard normal distribution and the 

bootstrap distribution of W, respectively. 

Similarly, rewriting Pa = ~ fXi where Xi = (z~Yi) a ll[Yi~z], Vi, the Hora and Hora 

and Fishman GIs for Pa are 

C~&H(a) 

-F 
CpJ(a) 

i=l 

{po E IR : Pa - cKs(a) :S Po :S Pa + cKs(a) } , 

{po E IR : /-LL(Xn , n, a) :S Po :S /-Lu (Xn , n, a)} , 

where cKS(a) is the (1 - a)th Kolmogorov-Smirnov percentile value, 

_ { {t: 0 :S Pa :S t < 1 and en!(t-PJ,I-t) = a/2} if Pa < 1, 
/-Lu - ~ 

= 1 if Pa = 1, 

and f(8, u) = (8 + u) In[u(8 + utl] + (1- 8 - u) In[(I- u)(I- 8 - U)-l] for 0 < 8 < 1- u. 

Finally, Theorem 3.4 provides the following empirical distribution-based GIs for Pa : 
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where 
n 

j.tL = [1 F; (X(n»)]X(n+l) + L [F; (X(k») - F; (X(k-l»)] X(k), 
k=l 

and XCI) < ... < X(n) are the order statistics of a sample of n Li.d. observations on X, 

X(o) = 0, X(n+l) = 1, F/{(x) = max{G~(x),O}, an~ F;((x) = min{G~(x), 1}, \::Ix, where 

G~ and G~ are the lower and the upper bounds of the CB with level 1 Cl: for Gx(x), 

respectively. These CBs can be the Kolmogorov-Smirnov, Anderson-Darling, Eicker, 

regularized Anderson-Darling and Eicker, or Owen CBs for distribution functions. We 

demonstrated that the continuous conservative critical points of the underlying empirical 

distribution-based statistics can be used to derive conservative Cls for P,s. Moreover, 

the property of range monotonicity with a mass at the lower boundary we derived in 

Corollary 5.5 allows the construction of narrower CIs for P,s, adjusted for the pattern 

that exhibits Gx(x). 

2.8 Monte Carlo study 

In this section, we use Monte Carlo simulations to study the performance of the CIs for 

the poverty measure P2 (P,s, for (j = 2). We suppose that the income Y cornes from a 

mixture: 

y 
{ 

Z with probability 1 - Po, 

Slvl(a, b, c) with probability Po, 

where SM(a, b, c) is the Singh-Maddala distribution with cumulative distribution func-

tion F(y) 1- [1 + aybtc
• This distribution has been proven by Brachman, Stich, 

and Thede (1996) to mimic the income of several developed countries, such as Germany, 

weIl. Following Davidson and Flachaire (2007), we set a 100, b = 2.8, and c = 1.7. 

We assume that the poverty li ne , z, is half the median of the SM(a, b, c) distribution 

and that Po 0.1. The true value of P2 is Pf = 0.01301 i Po, for our setup. CIs 
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with level 95% are simulated for sample sizes n 50, 100,200 and n = 500, 1000 using 

N = 10,000 and N = 500 replications, respectively. For a 8.1\.1(100,2.8,1.7), the proba­

bility of having observations greater than z is 'T] 0.89. Thus, the probability that X = 0 

is p = (1 - Po) + 'T]Po. The results of the simulations are presented in Table 2.1 and 2.2. 

Table 2.1 illustrates the choice of the regularization parameter ( and Table 2.2 provides 

the coverage probability and the average width of the simulated CIs for p = 0.989-which 

corresponds to 'T] = 0.89-and p = O-which corresponds to the continuous conservative 

case. 

2.8.1 Choice of ( 

We study the choice of the regularization term ( adapted to the Singh-Maddala distri­

bution and the sam pIe sizes of the simulations. We choose ( such as to maximize the 

power of the test Ho : X ,......, 8M(100, 2.8,1.7) versus Hl : X ,......, 8M(100, 2.89,1.7). We 

compute the power of the test for n = 500 observations-the median sample size of our 

simulations-using N 10,000 replications. The critical points of the statistics of 

Eç, A, and Aç are simulated for a level a: = 5% and values of ( from 0.005 to 1,000,000. 

Table 2.1 provides the level and the power of the corresponding goodness-of-fit tests. 

The· results show that for ( 0, the Anderson-Darling and Eicker tests have a very 

low test power, less than 4.2% for AD and less than 19% for E. The power increases 

considerably when ( is different from zero: it is low for small ( but increases quickly 

when ( increases before becoming almost constant. We choose ( = 0.07, the lowest value 

of ( that increases the test power "sufficiently." 
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Table 2-.1 : Choice of ( : simulated level and power of the 

Kolmogorov-Smirnov based tests for different values of ( 

HO: X l''.J SM[100, 2.8,1.7] vs Hl : X l''.J SM[100, 2.89,1.7] 

n = 500, and N = 10,000 replications 

level (in %) 

( E E, AD AD, 

0.005 5.11 4.52 4.59 5.09 

0.070 5.14 5.08 4.77 5.01 

0.100 4.95 4.95 4.84 4.96 

0.150 5040 5.08 5.16 5.30 

0.200 4.75 4.58 4.98 4.71 

0.300 5.11 5.24 5.29 5.04 

00400 5.28 5.06 4.74 5.22 

0.500 4.82 5.18 5.17 5.13 

0.750 4.95 5.23 4.58 5.21 

1.000 5.16 4.98 5.23 5.08 

10.000 5.02 4.61 4.88 4.61 

100.000 5.17 5.20 5.20 5.20 

1,000.000 5.12 5.38 4.78 5.38 

1,000,000.000 5.11 4.94 5.03 4.94 
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Power (in %) 

( E E, AD AD, 

0.005 18.32 45.79 4.12 51.20 

0.070 17.96 62.88 3.56 61.16 

0.100 18.29 62.89 3.89 61.80 

0.150 18.41 63.37 3.90 63.42 

0.200 17.86 62.69 4.00 61.88 

0.300 18.81 64.44 3.90 63.63 

0.400 17.78 61.94 3.72 62.00 

0.500 17.52 63.34 3.84 62.92 

0.750 18.31 63.36 3.96 63.28 

1.000 17.50 62.91 3.87 62.74 

10.000 18.04 61.73 4.03 61.69 

100.000 ·18.22 62.57 3.73 62.57 

1,000.000 17.37 63.40 3.93 63.40 

1,000,000.000 17.92 62.32 3.57 62.32 

2.8.2 Results 

Table 2.2 provides the coverage probability and the average width of the CIs for P2. The 

first part of Table 2.1 shows that the asymptotic and bootstrap CIs are not reliable, even 

for fairly large samples. The coverage probability of the asymptotic CI is 31.85 percent 

for n = 50 and increases to 84.20 percent for n = 1000 while those ofthe bootstrap-t CI 

goes from 25.03 percent for n = 50 to 92.10 percent for n = 500, reaching the nominal 

level of confidence-95 percent-only at n = 1000. As n increases, the proportion of zero 

values becomes lower and lower, improving the coverage probability of the bootstrap 

CI. However, when the bootstrap fails, it yields bad precision in addition to its poor 

coverage probability. By contrast, the exact nonparametric CIs are strongly reliable. 

Exact nonparametric CIs provide coverage probability typically larger than the nominal 

level for aIl sample size, even when the adjusted (nonconservative) critical values are 



107 

used. 

Amongst the exaèt CIs, the regularized Anderson Darling-type and Eicker-type CIs 

perform the best. When continuous conservative critical points are used, Fishman's 

CI achieves the best width because it accounts for the noncontinuity of the distribution. 

However, the computation of this CI is time consuming. When critical points are adjusted 

to take into account the discontinuity of X, the regularized Eicker-type CI achieves the 

best width followed by the regularized Anderson Darling-type CI. The adjustment to the 

discrète framework has a great impact on the width of CIs, reducing it by a factor of 

approximately 3. The Anderson Darling-type and Eicker-type CIs are worse than the 

regularized CIs, as expected. Anderson's CI performs as well as the regularized Anderson 

Darling-type one for n 500 and n = 1000. Likewise, for these sample sizes, the Berk 

Jones-type CI yields precision comparable to those based on the regularized statistics 

but building it requires to compute 500 and 1000 optimizations, respectively. Then, 

when considering the reliability, the constancy in the performance, and the easiness of 

computation, the regularized Anderson Darling-type and Eicker-type CIs provides the 

best CIs for P2, even though the optimal value for ( are not used. 



Table 2.2: Simulated confidence intervals for the FGT poverty measure P2 (Y, z) 

_. { z with probability 1 - Po = 0.1 
wIth Y = , (= 0.07, 

SM(100, 2.8,1.7) with probability Po = 0.9 

N = 10,000 replications for n = 50,100,200, and 

N = 500 repli cations for n = 500,1000 

Coverage probability (in %) 

n 50 100 200 500 

- Asymptotic p=O 31.85 46.03 61.87 77.00 

p = 0.989 - - - -

Bootstrap-t p=O 25.03 39.13 62.78 92.10 

p = 0.989 - - - -

Fishman p=O 94.07 93.76 95.24 99.30 

P = 0.989 - - - -

Hora & Hora p=O 100.00 100.00 100.00 100.00 

p = 0.989 100.00 100.00 100.00 100.00 

Anderson p=O 100.00 100;00 100.00 100.00 

P = 0.989 99.89 99.88 99.98 99.90 

Eicker p=O 100.00 100.00 100.00 100.00 

p = 0.989 99.91 99.82 99.86 100.00 

E, p=O 100.00 100.00 100.00 100.00 

p = 0.989 99.90 99.88 99.98 99.90 

AD p=O 99.99 100.00 100.00 100.00 

p = 0.989 99.84 . 99.95 99.99 100.00 

AD, p=O 100.00 100.00 100.00 100.00 

P = 0.989 100.00 100.00 100.00 100.00 

BJ p=O 99.99 99.99 100.00 100.00 

p = 0.989 99.61 99.79 99.92 99.90 

1000 

84.20 

-

96.40 

-

100.00 

-

100.00 

100.00 

100.00 

100.00 

100.00 

100.00 

100.00 

100.00 

100.00 

100.00 

100.00 

100.00 

100.00 

99.80 
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Width 

n 50 100 200 500 1000 

Asymptotic p=o 0.005 0.004 0.004 0.003 0.002 

p = 0.989 - - - - -
Bootstrap-t p=o 7.421 7.076 60.935 4.119 0.011 

p = 0.989 - - - - -
Fishman p=o 0.076 0.041 0.023 0.011 0.007 

p = 0.989 - - - - -

Hora & Hora p=o 0.377 0.268 0.190 0.121 0.086 

p = 0.989 0.098 0.058 0.038 0.022 0.015 

Anderson p=o 0.190 0.135 0.096 0.062 0.044 

p = 0.989 0.050 0.030 0.020 0.012. 0.008 

Eicker p=o 0.946 0.898 0.824 0.691 0.596 

p = 0.989 0.942 0.895 0.821 0.690 0.595 

Ee, p=o 0.107 0.073 0.051 0.032 0.023 

p = 0:989 0.038 0.025 0.017 0.011 0.008 

AD p=o 0.455 0.296 0.175 0.079 0.042 

p = 0.989' 0.306 0.183 0.102 0.045 0.024 

ADe, p=o 0.167 0.105 0.067 0.039 0.026 

p = 0.989 0.047 0.029 0.019 0.012 0.008 

BJ p=o 0.103 0.056 0.031 0.015 0.009 

p = 0.989 0.056 0.034 0.020 0.011 0.007 

2.9 Empirical illustration 

In this section, we analyze the profile of poverty of rural Mexican households using our 

inference methods. We employ data that have been collected as part of the targeting 

and evaluation program of PROGRESA.6 A cens us of households in a set of 506 rural 

6PROGRESA is a health, education, and nutrition program of the Mexican government aimed to 
reduce poverty in targeted rural communities. Details about this program and the data they collect can 
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communities has been conducted in 1997, 1998, and 1999 and the data processed to insure 

comparability. Data about households' characteristics are extracted from the November 

1997 survey and expenditure aggregate is constructed using the March 1998 survey.7 The 

poverty line is set to 159 pesos, the per capita expenditure of the· median household in 

the full set of households. 

Interestingly, the se data allow one to analyze poverty in Mexico both at the national 

and regional levels. First, using the census as a whole, we build GIs for the level of 

poverty P2 of rural households in Mexico. Then, drawing samples randomly from the 

census, we study the profile of poverty of PROGRESA targeted communities and compare 

the performance of our improved nonparametric inference techniques to the existing 

ones. Furthermore, we analyze the determinants of poverty in rural areas in Mexico for 

the involved communities using various household characteristics including the gender 

and the level of education of the household's head. We compare the poverty profile of 

households with a female head to those of households which head is a male, and the 

poverty profile of households with an educated head to those with a non-educated head. 

A split-sample approach is chosen to estimate the regularization term (. 

The results show that in addition to being unreliable, the widths of the asymptotic 

GIs are often too small to be realistic while the bootstrap can fail even in precision, 

delivering GIs which widths can be ten times larger than those of the exact methods. 

The analysis of profile of poverty shows that on average, rural households targeted by 

PROGRESA do not have a very high level of poverty. However, the poverty profile 

depends greatly on the type of households' head. The level of poverty among households 

with a male head is much smaller than the level of poverty among households with a 

female head. Moreover, households with an educated head appear to be more prone 

to escape poverty than households with a non-educated head. These conclusions raise 

questions about the equity in the distribution of Mexican wealth and provide hints for 

be obtained on the website of IFPRI (International Food Policy Research Institute): www.ifpri.org. 
7The data set excludes households in the expenditure survey that had not been interviewed in No­

vember 1997 and 10 communities with fewer than 10 households with expenditure information, leaving 
20544 households in 496 communities (see Demombynes, Elbers, Lanjouw and Lanjouw, 2007) 
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designing policies to reduce poverty in rural Mexico. Policies aimed at reducing illiteracy 

of households members in these communities can be effective in reducing poverty. Those 

education programs should target both children and adults, in particular households' 

heads to have short-term effects. Likewise, policies aimed at securing the income of 

households with a female head could help reduce poverty in rural Mexico. An example of 

such policies can be reforms aimed at securing land ownership for female or at improving 

labor productivity for households with a female head, the latter being less productive for 

physically intensive activities such as farming. 

2.9.1 Analysis of the poverty profile of rural households in Mex­

ico 

We use the census data to build CIs for the level of poverty P2 of rural households in 

Mexico. The following split sample procedure is used to choose the value of (. First, we 

draw randomly without replacement an auxiliary sample of 20 percent of the original data 

set to estimate ( for the regularized Anderson-Darling and Eicker statistics. For different 

values of (, we simulate the critical points of the statistics and compute the corresponding 

CI for P2 • Then, we choose ( so as to minimize the width of each CI. Second, we build 

CIs for the FOT poverty measure P2 using the remaining 80 percent of the sample-the 

estimation sample. By construction, the built auxiliary and the estimation samples are 

inde pendent and our inference methods can be applied. 

Table 2.3 presents the critical point of the (-regularized Anderson-Darling and Eicker 

CIs and the width of the CIs using different values of ( on the auxiliary sample. The 

smallest widths are achieve by (AD = 0.004 for the regularized Anderson Darling-type 

CI and (E = 0.0062 for the regularized Eicker-type CI. We use these values for the rest 

of this analysis. 
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Table 2.3: Choice of (E and (AD based on an auxiliary sample of nI = 1000 

( CEç width (in %) ( CADç width (in %) 

0.0001 ·9.4615631 3.299 Q.OOO1 3.2947588 2.065 

0.0004 4.9269052 2.110 0.0004 2.9433350 1.825 

0.0008 3.8322506 1.832 0.0008 2.7829854 1.743 

0.0010 3.5789932 1.769 0.0010 2.7307002 1.722 

. 0.0030 2.7472731 1.593 0.0020 2.5686677 1.678 

0.0040 2.5956398 1.578 0.0030 2.4592033 1.662 

0.0050 2.4723399 1.568 0.0035 2.4167582 1.661 

0.0060 2.3799549 1.567 0.0039 2.3817260 1.658 

0.00610 2.3709240 1.567 0.0040 2.3730547 1.657 

0.00615 2.3674749 1.567 0.0045 2.3356472 1.657 

0.0062 2.3615190 1.566 0.0050 2.3010155 1.658 

0.0065 2.3356573 1.566 0.0055 2.2770130 1.666 

0.0070 2.2972038 1.566 0.0060 2.2569682 1.677 

0.0075 2.2704249 1.571 0.0070 2.2036625 1.684 

0.0080 2.2361952 1.572 0.0100 2.0612441 1.696 

0.009à 2.1752713 1.575 0.0300 1.5690714 1.756 

0.0100 2.1205124 1.578 0.0500 1.3455539 1.802 

0.0300 1.5741812 1.666 0.0700 1.1872093 1.815 

0.0600 1.2460575 1.732 0.1000 1.0268528 1.822 

0.07 1.1742951 1.743 0.5000 0.4938216 1.840 

0.08 1.1116034 1.750 2 0.2510734 1.845 

Table 2.4 provides the estimation results. The lines Asympr and Bootstrapr give the 

asymptotic and bootstrap-t CIs estimated on the residual sample and the lines Asymp 

and Bbotstrap refer to CIs estimated with the whole sample. The regularized Anderson 

Darling-type CI-based on ADç-achieves the best width among aU CIs followed by the 
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asymptotic and bootstrap CIs. However, we have shown that these asymptotic methods 

can be unreliable when applied to distributions of the kind involved in poverty studies, 

even with fairly large samples. The width of the regularized Eicker-type CI (based on 

Eç) is relatively close to those of the others: it is 0.201 for aIl households, 0.04 higher 

than the width of the asymptotic CI and 0.059 more than the width of the bootstrap CI. 

However, this CI performs far better than the other nonparametric CIs, including the 

Berk Jones-type CI. 

According to the AD, CI, rural Mexican households have a level of poverty between 

0.499 percent and 0.566 percent with a level of confidence of 95 percent. This range of 

poverty level seems relatively low. However, it does not reflect the underlying situation 

of the country. When we study the level of poverty of households taking in account sorne 

characteristics of those households, it appears that poverty is unevenly distributed among 

populations. Still according to the regularized Anderson Darling-type CI, households 

with a male head are much less poor than households with a female head. Poverty 

levels range from 0.405 percent to 0.469 percent for households with male head and 

from 1.166 percent to 1.538 percent for households with female head, a difference of 

0.761 percent and 1.069 percent for the lower and the upper bounds, respectively. This 

difference may be due to the fact that Mexican households are in large part farmers. 

Households with a male head are likely to raise more revenue from harvest than others 

and thus, they are more prone to escape from poverty. This feature might also be related 

to the land successional law in rural areas which usually prioritize men against women. 

Likewise, Tables 2.4.b and 2.4.c show that; the level of education of households' head 

has a dampening effect on poverty. The level of poverty of households whose head has 

no education ranges from 0.915 percent to 1.107 percent, which is respectively 0.624 

percent and 0.757 percent larger than the bounds of the poverty level for households 

with educated leader. Education appears to be determinant in improving the financial 

situation of the households and allow them not to live in poverty. 

Comparing the performance of the various inference methods, we see that the asymp­

totic and the bootstrap CIs achieve the smaller width among aIl the methods. However, 
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we have shown that this method can be unreliable when applied to distributions of the 

kind involved in poverty and inequality studies, even with fairly large samples. Among 

the nonparametric CIs, the regularized Anderson-Darling and Eicker statistics yield the 

best inference, with widths very close to those of the asymptotic CI. 

Table 2.4: Mexican households: Confidence intervals for the FGT poverty measure 

P2(Y, z) for different types of households' heads 

n = 20485, (AD = 0.004, (E = 0.0062 

Table 2.4a: AlI households 

Confidence Intervals (in %) 

min max width 

Asympr 0.450 0.613 0.163 

Asymp 0.462 0.624 0.161 

Bootstrapr 0.445 0.627 0.182 

Bootstrap 0.476 0.619 0.142 

Fishman 0.415 0.695 0.279 

Hora Hora -1.463 2.549 4.012 

Anderson 0.003 2.549 2.546 

Eicker 0.354 0.732 0.378 

E( 0.432 0.632 0.201 

AD 0.360 0.833 0.473 

AD( 0.499 0.566 0.066 

BJ 0.044 2.688 2.644 



Table 2.4b: Households with 

an educated head 

Confidence Intervals (in %) 

min max width 

Asympr 0.244 0.395 0.151 

Asymp 0.254 0.404 0.150 

Bootstrapr 0.256 0.419 0.163 

Bootstrap 0.266 0.432 0.166 

Fishman 0.215 0.477 0.262 

Hora-Hora -0.807 1.464 2.271 

Anderson 0.003 1.464 1.461 

Eicker 0.147 0.511 0.364 

Ee; 0.227 0.413 0.186 

AD 0.177 0.636 0.459 

ADe; 0.291 0.350 0.059 

BJ 0.039 1.370 1.331 

Table 2.4c: Households with 

a non-educated head 
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Confidence Intervals (in %) 

min max width 

Asympr 0.806 1.210 0.405 

Asymp 0.825 1.224 0.399 

Bootstrapr 0 1.2aO 0.388 

Bootstrap 0.842 1.292 0.451 

Fishman 0.717 1.408 0.691 

Hora-Hora -1.639 3.689 5.328 

Anderson 0.031 3.689 3.658 

Eicker 0 1.507 0.964 

Ee; 0.753 1.2()2 0.509 

AD 0.602 1.794 1.192 

ADe; 0.915 1.107 0.192 

BJ 0.163 3.689 3.476 



Table 2.4d: Households with 

a female head 

Confidence Intervals (in %) 

min max width 

AsymPr 0.919 1.765 0.847 

Asymp 0.971 1.805 0.834 

Bootstrapr 0.941 1.829 0.888 

Bootstrap 1.014 1.847 0.833 

Fishman 0.812 2.184 1.373 

Hora Hora -3.025 5.801 8.827 

Anderson 0.002 5.801 5.800 

Eicker 0.506 2.270 1.764 

E, 0.858 1.825 0.967 

AD 0.633 3.132 2.500 

AD, 1.166 1.538 0.372 

BJ 0.087 6.782 6.696 

Table 2.4e: Households with 

a male head 
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Confidence Intervals (in %) 

min max width 

Asympr 0.360 0.512 0.152 

Asymp 0.368 0.518 0.151 

Bootstrapr 0.369 0.529 0.160 

Bootstrap 0.384 0.531 0.147 

Fishman 0.323 0.590 0.267 

Hora Hora -0.701 1.587 2.288 

Anderson 0.022 1.587 1.565 

Eicker 0.256 0.630 0.374 

E, 0.338 0.535 0.197 

AD 0.276 0.731 0.454 

AD, 0.405 0.469 0.064 

BJ 0.091 1.420 1.329 
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Comparing the performance of the various inference methods, we see that the asymp­

totic and the bootstrap CIs achieve the smaller width among aIl the methods. However, 

we have shown that this method can be unreliable when applied to distributions of the 

kind involved in poverty and inequality studies, even with fairly large samples. Among 

the nonparametric CIs, the regularized Anderson-Darling and Eicker statistics yield the 

best inference, with widths very close to those of the asymptotic CI. 

2.9.2 Analysis of the profile of poverty of the Mexican house­

holds targeted by PROG RESA 

We use subsamples of n = 500 and 1000 to perform inference for the level of poverty of 

PROGRESA-targeted households and illustrate the relative performance of the improved 

CIs compared to those of the other methods on samples of such sizes. We implement the 

same procedure as previously. First, we draw randomly without replacement a sam pIe 

of n observations from the census. Second, we apply a split sam pIe procedure to choose 

( and estimate the CIs: we use an auxiliary sam pIe of twenty percent (20%) of each 

subsample to estimate ( and use the independent remaining sample to estimate the CIs. 

Tables 2.5 and 2.7 present the critical points of the (-regularized Anderson-Darling 

and Eicker statistics and the width of the corresponding CIs using different values of ( 

and the auxiliary samples. For n = 500, the smallest widths are achieved by (AD = 0.45 

for the regularized Anderson Darling-type CI and (E = 0.039 for the regularized Eicker­

type CI. For n = 1000, the smallest widths are achieve by (AD = 0.5 and (E = 0.05. 

These values will be used to perform inference for P2 in the remaining of this subsection. 
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Table 2.5: Choice of (E and (AD based on an auxiliary sample of nI = 100 

( CEç width (in %) ( CAD, width (in %) 

0.0001 26.3000000 19.085 0.0001 4.40795891 17.391 

0.0004 13.1500000 10.501 0.0010 3.15955927 10.366 

0.0010 8.3167902 7.406 0.0030 2.71751268 8.346 

0.0020 5.8808588 5.897 0.0070 2.42001073 7.307 

0.0030 4.8017011 5.255 0.0100 2.31582510 . 7.062 

0.0040 4.1583951 4.886 0.0400 1.70609029 6.001 

0.0070 3.1434512 4.337 0.070 1.36385347 5.463 

0.0100 2.6300000 4.082 0.100 1.16889614 5.227 

0.0200 1.8596908 3.745 0.20 0.84814868 4.92147 

0.0300 1.5184312 3.620 0.25 0.75047690 4.78842 

0.0350 1.4057941 3.582 0.30 0.68926165 4.75870 

0.0370 1.3672719 3.570 0.40 0.60397513 4.73807 

0.0380 1.3491615 3.564 0.45 0.56616351 4.69061 

0.0390 1.3317523 3.559 0.50 0.54091567 4.70103 

0.0400 1.3220528 3.569 0.55 0.51486184 4.67863 

0.0410 1.3060056 3.564 0.60 0.49171955 4.65577 

0.0420 1.3086985 3.600 1 0.38420230 4.63463 

0.0440 1.2892718 3.615 10 0.12147042 4.558 

0.0450 1.2823184 3.628 40 0.06140494 4.594 

0.0500 1.2477436 3.683 100 0.03832555 4.542 
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Table 2.6: Mexican householdsin PROGRESA: Confidence intervals for P2(Y, z) for 

different types of households' heads 

n = 500, (AD = 0.45, (E = 0.039 

Table 2.6a: AU households 

Confidence Intervals (in %) 

min max: width 

Asympr -0.132 1.257 1.390 

Asymp -0.017 1.200 1.217 

Bootstrapr -0.009 9.908 9.917 

Bootstrap 0.167 11.797 11.631 

Fishman 0.071 2.055 1.985 

Hora-Hora -0.995 2.178 3.172 

Anderson 4.9E-05 2.178 2.173 

Eicker 0 1.938 1.938 

E, 7.7E-06 2.104 2.104 

AD 0.069 5.333 5.264 

AD, 4.9E-06 2.422 2.422 

BJ 0.069 2.188 2.120 



Table 2.6b: Households with 

an educated head 

Confidence Intervals (in %) 

min max width 

AsymPr -0.313 1.079 1.392 

Asymp -0.166 1.125 1.291 

BootstraPr -0.029 4.838 4.866 

Bootstrap 0.077 7.265 7.188 

Fishman 0.022 2.229 2.207 

Hora-Hora -1.133 2.092 3.225 

Anderson 0 2.092 2.092 

Eicker 0 1.800 1.800 

Eicker, 0 1.855 1.855 

AD 0.036 6.721 6.685 

AP, 0 2.208 2.208 

BJ 0.026 2.303 2.278 
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Table 2.6c: Households with 

a non-educated head 

Confidence Intervals (in %) 

min max width 

Asympr -0.674 2:657 3.331 

Asymp -0.521 2.274 2.795 

Bootstrapr 0 63.382 63.634 

Bootstrap -0.010 44.883 44.893 

Fishman 0.017 4.920 4.903 

Hora-Hora -3.064 4.817 7.882 

Anderson 0.005 4.817 4.812 

Eicker 0 3.680 3.680 

Eicker, 0.001 4.626 4.625 

AD 0.055 15.092 15.037 

AD, 0.002 5.708 5.706 

BJ 0.036 5.106 5.070 



Table 2.6d: Households with 

a female head 

Confidence Intervals (in %) 

min max width 

AsymPr -0.019 0.165 0.185 

Asymp -0.948 3.696 4.644 

Bootstrapr 0.014 0.555 0.541 

Bootstrap -0.437 56.411 56.848 

Fishman 3.2E-05 10.682 10.679 

Hora-Hora -6.764 9.511 16.275 

Anderson 3.6E-05 9.511 9.508 

Eicker 0.017 40.349 40.332 

E, 0 5.179 5.179 

AD 0.075 31.291 31.216 

AD, 0 10.033 10.033 

BJ 0.053 9.471 9.418 

Table 2.6e: Households with 

a male head 
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Confidence Intervals (in %) 

min max width 

AsymPr -0.156 1.392 1.548 

Asymp -0.123 1.121 1.244 

Bootstrapr 0.074 Il.075 ll.OO1 

Bootstrap 0.054 47.155 47.102 

Fishman 0.038 2.007 1.969 

Hora-Hora -1.142 2.140 3.283 

Anderson 0 2.140 2.140 

Eicker 0 1.808 1.808 

E, 0 2.182 2.182 

AD 0.044 5.690 5.646 

AD, 0 2.459 2.459 

BJ 0.035 2.136 2.101 
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Tables 2.6 and 2.8 show the estimated CIs for P2 corresponding to n = 500 and 

n = 1000, respectively. The lines Asympr and BootstraPr give the asymptotic and 

bootstrap CIs estimated on the residual sample and the Hnes Asymp and Bootstrap refer 

to CIs estimated on the whole sample. We use CIs based on simulated critical points to 

compare the Berk Jones-type CI to the other ones. 

For both samples, the asymptotic CI achieves the best width among all CIs but given 

the size of the samples, its validity is questionable. The performance of the bootstrap 

method is not consistent throughout the subsamples: the bootstrap CI sometimes deliv­

ers the second best width but usually provides a very poor precision with a width over 

50 times larger than those of the nonparametric Cls. Nonparametric methods provide 

crs with width very close to those of the asymptotic CI, while being strongly reliable as 

proved by the Monte Carlo simulation. For n = 500, the performance of the regularized 

methods is similar to that of the other nonparametric methods but it improves when 

n = 1000. The regularized Eicker CI becomes the best nonparametric method or one of 

the best, depending on the studied subsample. However, the performance of the regular­

ized statistic is not dearly above those of the other nonparametric approaches as was the 

case when the census was used. 'On sorne subsamples, The Eicker and the Fishman CIs 

provide results comparable those based on. the regularized CIs. These results emphasize 

two features: (1) the importance of estimating the regularization term with large enough 

number 'of observations and (2) the link between the magnitude of the improvement and 

the underlying distribution of the observations. When chosen over an auxiliary sample 

of 100 or 200 observations, the values of the parameters are higher than those chosen 

when using an auxiliary samplfl of 1000 observations. Thus, though still improving signif­

icantly the initial methods:-especially lor the Anderson-Darling statistic~the magnitude 

of this improvement is lowered. Of course, this improvement depends a lot on the un­

derlying distribution. The more the distribution exhibits heavy tails, the higher is the 

improvement achieved by regularized statistics. 

For n = 100, the CI based on E shows that 95 percent of rural households targeted by 

PROGRESA have a level of poverty between 0 and 1.94 percent. However, the incidence 
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of poverty differs depending on the characteristics of the head. Stin according to the 

Eicker-type CI, the incidence of poverty among households with a non-educated head is 

more than twice those of the households with an educated head. A similar picture is 

depicted by the regularized Eicker-type CI when the gender of the households' head is 

accounted for: households with a male head appear to have half less poor than households 

with a female head. Similar conclusions arises for n = 1000. A male head with a minimum 

level of education increases highly the likelihood of escaping from poverty. 

2.10 Conclusion 

In this paper, we propose finite-sample nonparametric CIs based on empirical distribu­

tion functions for the mean of a bounded random variable. We develop an innovative 

methodology to derive CIs for any monotonie functional of a distribution function from 

CBs for this distribution using projection techniques. Two CIs can be derived from each 

CB: one using the whole bands and one using their restricting parts. The latter accounts 

for the property of the distribution functions which, by definition, always have values 

between 0 and 1 and is thus, thinner. We apply this method to the mean of a bounded 

random variable and provide explicit expressions that are easy to compute. 

We prove that the Anderson's (1969) CI for the mean a bounded random variable 

is an application of our general methodology using the Kolmogorov-Smirnov CE. We 

employ standardized Kolmogorov-Smirnov statistics improved along the three common 

principles in econometrics: the Wald, likelihood-ratio, and Lagrange multiplier principles. 
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Table 2.7: Choice of (E and (AD based on an auxiliary sample of nI = 200 

( GEç width (in %) ( GADç width (in %) 

0.0001 20.9925446 13.601 0.0001 4.1608955 9.274-

0.0010 6.6547755 5.085 0.0010 2.9710255 5.618 

0.0050 3.0160473 3.155 0.0100 2.1509049 4.164 

0.0070 2.7526871 3.116 0.0700 1.2028817 3.513 

0.0100 2.4304286 3.048 O.lOQO 1.0494495 3.485 

0.0300 1.6107040 2.981 0.3000 0.6431794 3.396 

0.035 1.5066083 2.97118 0.4000 0.5642136 3.397 

0.04 1.4203946 2.96373 0.4500 0.5325776 3.389 

0.043 1.3752673 2.95998 0.5000 0.5053236 3.380 

0.045 1.3474672 . 2.95772 0.5500 0.4832031 3.380 

0.047 1.3212876 2.95564 0.6000 0.4636555 3.380 

0.0500 1.2847303 2.953 0.6500 0.4463966 3.380 

0.055 1.2409542 2.968 0.7000 0.4295599 3.372 

0.060 1.2129317 3.003 0.7500 0.4157600 3.373 

0.065 1.1867258 3.034 0.8000 0.4025083 3.369 

0.070 i,1621481 3.062 0.9000 0.3802611 3.369 

0.090 1.0771866 3.152 1 0.3601782 3.360 

1 0.3594028 3.323 2 0.2553817 3.347 

2 0.2560654 3.338 10 0.1151254 3.351 

3 0.2100206 3.348 100 0.0364016 3.347 

100 0.0364098 3.347 1000 0.0115271 3.350 
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Table 2.8: Mexican households in PROGRESA: Confidence intervals for P2(Y, z) for 

different types of households' heads 

n = 1000, (AD = 0.5, and (E = 0.05 

Table 2.8a: AH households 

Confidence Intervals (in %) 

min max width 

Asympr 0.331 1.313 0.982 

Asymp 0.364 1.261 0.897 

BootstraPr 0.447 2.428 1.981 

Bootstrap 0.455 1.515 1.060 

Fishman 0.263 1.840 1.577 

Hora-Hora -1.194 2.818 4.012 

Anderson 0.019 2.818 2.799 

Eicker 0.038 1.858 1.820 

E, 0.151 1.948 ·1.796 

AD 0.212 3.558 3.346 

AD, 0.149 2.071 1.922 

BJ 0.106 3.185 3.080 



Table 2.8b: Households with 

an educated head 

Confidence Intervals (in %) 

min max width 

Asympr -0.046 0.758 0.804 

Asymp 0.059 0.953 . 0.894 

Bootstrapr 0.043 2.441 2.398 

Bootstrap 0.147 1.753 1.606 

Fishman 0.076 1.616 1.539 

Hora-Hora -0.629 1.641 2.271 

Anderson 0.005 1.641 1.637 

Eicker 0 1.545 1.545 

E, 0.001 1.457 1.456 

AQ 0.072 4.005 3.933 

AD, 0.001 1.594 1.593 

BJ 0.083 1.693 1.610 

Table 2. Be: Households with 

a non-educated head 
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Confidence Intervals (in %) 

min max width 

Asympr 0.574 3.218 2.644 

Asymp 0.457 2.582 2.125 

Bootstrapr 0 5.196 4.391 

Bootstrap 0.628 4.506 3.877 

Fishman 0.308 4.273 3.965 

Hora-Hora -1.144 4.184 5.328 

Anderson 0.233 4.184 3.950 

Eicker 0 4.140 4.129 

E, 0.333 4.546 4.213 

AD 0.303 9.417 9.114 

AD, 0.362 4.973 4.612 

BJ 0.377 4.413 4.035 



Table 2. Bd: Households with 

a female head 

Confidènce Intervals(in %) 

mm max width 

Asympr 0.274 6.855 6.580 

Asymp 0.193 5.215 5.023 

BootstraPr 1.288 13.938 12.650 

Bootstrap 0.907 14.360 13.453 

Fishman 0.353 8.899 8.546 

Hora-Hora -1.709 7.117 8.827 

Anderson 0.225 7.117 6.893 

Eicker 0 7.976 7.976 

Ee; 0.293 8.470 8.177 

AD 0.359 20.293 19.933 

ADe; 0.459 8.871 8.412 

BJ 0.423 9.073 8.649 

Table 2.Be: Households with 

a male head 
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Confidence Intervals (in %) 

min max width 

Asympr 0.118 0.848 0.730 

Asymp 0.181 0.947 0.765 

Bootstrapr 0.185 1.316 1.131 

Bootstrap 0.266 1.349 1.083 

Fishman 0.123 1.545 1.421 

Hora-Hora -0.580 1.708 2.288 

Anderson 0.040 1.708 1.668 

Eicker 0.004 1.519 1.515 

Eç 0.031 1.608 1.577 

AD 0.115 3.457 3.342 

ADç 0.028 1.757 1.730 

BJ 0.143 1.612 1.469 
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These statistics have been proposed by Anderson and Darling (1952), Eicker (1979), 

and Berk and Jones (1979). For further improvement, we use regularized Anderson­

Darling and Eicker statistics proposed in Diouf and Dufour (2005a) where the denomina­

tors of the statistics are corrected by adding a positive nonzero regularization term ((x). 

This regularization prevents the denominator of these statistics to become too close to 

o in the tails of the distributions, which would lead to erratic behavior of the statistics. 

The weighted Kolmogorov-Smirnov statistics yield CBs which width decrèases with ob­

servations further from the center of the distribution and thus provide thinner CIs for 

the mean than the AI;lderson's CI. 

Our study focuses on the question of building CIs for the mean of a bounded random 

variable but our rriethodology is not as restricting as it appears. Solving the problem for 

the mean of Y alIows one to solve the problem for any moment of Y by replacing the 

original data by a function of these data such as exp(Y) and yi3. The CIs we propose in 

this paper then provide valid ones for the mean of the new data, which are CIs for the 

corresponding moment of the original data. AlI kinds of transformations can be studied. 

Continuous ones will be handled using the same intervals as those proposed while for 

noncontinuous ones, interesting monotonicity properties allow to solve the problem. 

We apply these inference methods to the Foster, Greer and Thorbecke (1984) poverty 

measures: On observing that poverty measures can be interpreted as the expectation of a 

bounded random variable--a mixture of a continuous bounded variable and a probability 

mass at the poverty line--we propose that exact nonparametric inference methods for 

the mean of a bounded random variable be applied to them. 

Monte Carlo simulations show that asymptotic and bootstrap CIs can fail to provide 

reliable inference, even with fairly large samples, e.g. when the distribution presents a 

high probability of assuming the value zero-which is quite frequent in practice. By con­

trast, exact inference methods are robust to the underlying distribution and the sam pIe 

size. The proposed CIs have coverage probability typically larger than the nominal level 

while remaining informative.' The CIs based on the regularized statistics provide the best 

width among the exact methods. 
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. An illustration using household survey data from Mexico confirms these results. While 

the width of the asymptotic CI is often unrealistic, the standard bootstrap can fail even 

in precision, delivering CIs of width ten times larger than those of the exact methods. 

The study shows that on average, rural households targeted by PROGRESA do not have 

a very high level of poverty. However, the poverty profile is uneven from a group of 

households to another. Households with a male head and households with an educated 

head appear to be more prone to escape poverty than households with a female head or 

a non educated head. These conclusions provide hints for designing policies to reduce 

poverty in rural Mexico. Policies aimed at reducing illiteracy, both for children and 

adults, in these communities can be effective in redllcing poverty. Likewise, policies aimed 

at securing the income of households with a female head by for example (1) securing land 

ownership for female or (2) improving labor productivity for households with a female 

head, could help reduce poverty in rural Mexico. 
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2.11 Appendix 1: Sirnulated critical points of the 

statistics 

Table Al. Simulated 95th percentile of the distribution of the Kolmogorov-Smirnov 

based .statistics 

for n = 500 and N 1,000,000 replications 

Critical points 

( AD ADç 

0.005 4.80i02 3.52808 6.46743 3.18485 

0.070 4.80040 2.58235 6.47020 2.57257 

0.100 4.79360 2.44064 6.41938 2.42047 

0.150 4.80039 2.24627 6.43338 2.22224 

0.200 4.79787 2.10995 6,47507 2.10377 

0.300 4.79652 1.86659 6.44419 1.86415 

0.400 4.79972 1.72506 6.47749 1.71657 

0.500 4.80187 1.57861 6.44769 1.57977 

0.750 4.79959 1.36796 6.43938 1.36707 

1.000 4.79817 1.22237 6.45349 1.22005 

10.000 4.79646 0.42397 6.45115 0.42408 

100.000 4.79009 0.13478 6.45162 0.13479 

1,000.000 4.79356 0.04240 6.45573 0.04240 

1,000,000.000 4.79652 0.00135 6.43729 0.00135 



Table A2. Simulated 95th percentile of the distribution of the statistics 

for ( = 0.07 and N = 3,000,000 replications 

Critical points of the statistics 

n 50 100 200 500 1000 

p=o 0.18830 0.13403 0.09513 0.06038 0.04280 

KS p = 0.89 0.10497 0.07000 0.05000 0.03186 0.02240 

p = 0.989 0.04900 0.02900 0.01900 0.01100 0.00726 

p=o 4.52172 4.65730 4.74005 4.79734 4.82078 

E p = 0.89 3.53697 3.89181 4.03122 4.09756 4.11948 

p = 0.989 1.45895 1.47990 1.57515 3.63403 3.96574 

p=o 2.79486 2.67435 2.61896 2.59007 2.58192 

E, p = 0.89 1.94266 1.87663 1.84708 1.84184 1.84028 

p = 0.989 0.97456 0.88081 0.85356 0.81307 0.81568 

p=o 6.44400 6.46184 6.46283 6.44509 6.45195 

AD p = 0.89 4.71387 4.72593 4.73024 4.72705 4~73197 

p = 0.989 4.67778 4.69788 4.71145 4.72273 4.72018 

p=o 2.56615 2.56437 2.56485 2.56812 2.57179 

AD, p = 0.89 1.89825 1.83230 1.83339 1.83460 1.83706 

p = 0.989 1.21833 1.01972 0.94482 0.86489 0.82060 

p=o 0.10414 0.05374 0.02760 0.01138 0.00581 

Bl p = 0.89 0.07945 0.04193 0.02194 0.00920 0.00474 

p = 0.989 0.05467 0.03157 0.01680 0.00783 0.00415 

131 
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Table A3. Simulated cri tic al points of order 95 percent for the distribution of the 

statistics with the optimal values of ( for the Ee, and ADe, 

N = 3,000,000 replications 

Table A3a: Critical points for the whole sample using (AD = 0.004 and (E = 0.0062 

Characteristics of the households' head 

Female Male Educated N on-ed ucated AH 

nT 2054 17431 13479 6006 19485 

n 2168 18317 14178 6307 20485 

p 0.9493 0.9166 0.9827 0.9535 0.9737 

KSn 0.493389384 0.338851519 0.291594774 0.473502205 0.358909643 

E 4.124905337 4.145787028 4.145149225 4.139179162 4.14495824 

Ee, 2.501772599 2.212303346 2.104179478 2.439923824 2.252535994 

AD 4.731275042 4.741005986 4.72736826 4.753315289 4.73462176 

ADe, 2.541923946 2.346763514 2.250207895 2.526654076 2.379458442 

BJ 0.002181669 0.000271334 0.000343604 0.000778607 0.000244325 

Table A3b: Critical points for the subsample of n=500 using (AD = 0.45 and (E = 0.039 

Characteristics of the households' head 

Female Male Educated N on-ed ucated AH 

nT 41 359 282 118 400 

n 53 447 359 141 500 

p 0.9493 0.9166 0.9827 0.9535 0.9737 

KSn 0.592422376 0.347008748 0.305547568 0.467941715 0.354681929 

E 1.749763640 3.958754864 3.682018883 3.664690633 3.992906840 

Ee, 1.643870433 1.395120081 1.194585231 1.788845505 1.460821026 

AD 4.701031976 4.739227068 4.724159189 4.717678892 4.722350336 

ADe, 0.867694822 0.506517449 0.446277892 0.721830287 0.540496511 

BJ 0.062177097 0.009300228 0.010994130 0.028165890 0.008466719 
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Table A3c: Critical points for the subsample of n=1000 using (AD 0.5 and (E = 0.05 

Characteristics of the households' head 

Female Male Educated . Non-educated AlI 

nr 88 712 558 242 800 

n 116 884 698 302 1000 

p 0.9493 0.9166 0.9827 0.9535· 0.9737 

KSn 0.475329978 0.340136976 0.299950534 0.462943395 0.348564201 

E 3.626525226 4.059987327 4.001971001 4.005076739 3.880275064 

E( 1.596639583 1.283268215 1.123470499 1.585207457 1.322617712 

AD 4.720719420 4.733591949 4.723195428 4.727067310 4.721280048 

AD( 0.653461255 0.4 72736968 0.407026067 0.647307799 0.489618262 

BJ 0.034128232 0.004908066 0.005997227 0.014066270 0.013412891 
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2.12 Appendix 2: Proofs of theorems and proposi-

tions 

PROOF OF PROPOSITION 3.2. The proof follows by projection. Considering the CBs of 

F(x), CF(a), and the property of the functional r : 

G~(x) 

Fo(x) :::; G~ (x) Vx =} r[Fol :::; r[G~l. 

If CF(a) exists then with probability 1 a, r[G~] :::; r[Fol :::; r[G~], V Fo E CF(a). 

Moreover, all r[Fol such that Fo E CF(a) belong to the CI of f'[F]. 

PROOF OF PROPOSITION 3.3. This corollary is an application of Proposition 3.2 with 

the functional r[F(x)] J: x dF(x) == fl. Cornputing r[F(x)] using integration by parts 

provides 

fl bF(b) - aF(a) lb F(x)dx = b - aF(a) -lb F(x)dx 

where the second equality follows because F(b) = 1 for any distribution function F(x) E 

F[a,bJ, by definition. Then if CF(a) exists, b - aG~ (a) - J: G~ (x)dx :::; fl :::; b aG~(a) -

J: G~(x)dx with probability 1 a, Le. 

Cp, (a) {flOE IR : b - aG~ (a)-l
b 

G~ (x)dx < flo:::; b aG~(a)-lb G~(x)dx } 

is a CI with level1-a for fl. Given that distribution.functions always have values between 

o and 1, 

represents a CB with level 1 - a for F(x).Applying the sarne procedure as for CF(a) 

provide the following CI with level 1 - a for fl : 
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CF has the same level as CF but is thinner for each observation, hence C",(a) is better 

than C",(a). 

PROOF OF PROPOSITION 3.4. Let Ff:(x) and F;;(x) be such that 

vx F;(x) rilax{G~(x),O} and F:; (x) min { G~ (x), 1}. 

By definition, aU distribution runctions F(x) satisfy the inequality 0 F(x) ~ l, vx. 

Then, Ff: (x) and F;; (x) can be considered as the effective (or restrictive) part of the CB 

CF(a). Corollary 3.3 then provides the following bounds for J.t: ' 

J.tL = b aF!! (a) -lb F';! (x)dx ~ J.t ~ b - aF;(a) lb F;'(x)dx = J.tu' . (2.15) 

Using the lower bound: 

J.tL = b aF:; (a) lb F';! (x) dx = b - aF:; (a) 
n 

I)X(k+l) - X(k)]F; (X(k) 
k=O 

k=O k=l 
n 

= b aF';! (a) + X(o)F';! (X(O) - X(n+l)F';! (X(n) + L [F';! (X(k) - F;; (X(k-l)] X(k) 
k=l 

n 

- [1 F:; (X(n)]X(Ml) + L [F; (X(k) 
k=l 

Let ku E {l,· ., ,n} such that 



136 

We can rewrite 

Moreover, if ku < n then 

. I-LL - [1 - G~ (X(n»)]X(n+1) + [1 - G~ (X(k,,»)] X(k,,) 
k" 

+ L [G~(X(k») G~(X(k-l»)J X(k) 
k=l 

Similarly for the upper bound, 

b aF;;(a) -lb F;;(x) dx 
k=O 

n n+l 
b - aF;;(a) + LX(k)F;;(X(k») LX(k)F;;(X(k-l») 

k=O k=l 

Let kt E {1,··· ,n} such that 

J.lu simplifies to 
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Moreover, if k[ < n then we can rewrite 

n 

+ L [G~(X(k)) - G~(X(k-l))] X(k) 
k=kl+l 

PROOF OF THE EXPRESSIONS OF THE KOLMOGOROV-SMIRNOV PROJECTION-BASED 

CONFIDENCE INTERVALS These two CIs are obtained by applying Propositions 3.3 and 

3.4. on the KS confidence band for distribution functions. Let X be a random variable 

with a continuous distribution function F(x) whose support is [a, bl . Assume that n 

i.i.d. observations X n, ... ,Xn on X are available and let X(Q) = a :s; X(l) :s; ... :s; X(n) :s; 

X(n+l) = b be the corresponding order statistics. 

First, let's show that the generalization of the Hora-Hora CI for continuous random 

va.riables bounded on a finite interval [a, bl is a projection of the KS confidence band 

where the constraint that 0 :s; F(x) :s; 1 is not accounted for. The mean J-l of X is: 

J-l = lb x dF(x) = b - lb F(x) dx 

where the last equality follows on integration by part. Let CKS(O:) be the (1 - o:yh 

percentile of the Kolmogorov-Smirnov (KS) statistic. The KS confidence band for F(x) 

with level 1 - 0: is 

where Fn(x) is the empirical distribution function of .the sample as defined by equ~tion 

(2.1). Taking the integral J: ' we get 

lb () lb lb ( ) CKS 0: CKS 0: 
Fn(x) dx - (b - a) ..;n:S; F(x) dx :s; Fn(x) dx + (b - a) ..;n 

a n a a • n 
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CKS a ( ) . 1° a) Vn 5: IL 5: b - a Fn(x) dx + (b 

Further, 

hence, 

and 

x - (b - a) cKJn,a) 5: IL 5: X + (b - a) cKJn,a). 

Setting b 1 and a = 0 yields the Hora-Hora CI for the mean of a continuoUB random 

variable X, bounded on [0,1J. 

Second, let's show that the Anderson CI is a projection of the KS confidence band 

where aIl constraints about distribution functions are exploited. Let X be a random 

variable with an unknown continuous cumulative distribution·function F(x) with finite 

support [a, b] (a < b, F(a) = 0 and F(b) = 1) .. Denote X(l) 5: ... 5: X(n) the order 

statistics of the sample, X(Q) = a, and X(n+1) = b. The mean of X is : 

IL = 1° x dF(x) = b -lb F(x) dx 
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and the Kolmogorov-Smirnov (KS) confidence band for distribution functions by: 

where (3 and 1 are the adequate percentiles of the KS distribution. Then, projecting the 

KS confidence band yields: 

Let r = 1 [nCK~a)] ands = InCK~a)l. Computing the left-hand side: 

Jk > 

CKS(a) 1 n-s 1 n-s-l 

> X(n-s) - Vn [X(n-s) - al - - I:(k - l)X(k) + "'" kX(k) n n nL.....i 
k=l k=O. 

cKS(a) 1 n~l 1 1 
> X(n-s) - Vn [X(n-s) - aJ + - L.....i X(k) + -X(n-s) -(n - S)X(n-s) 

n n k=l ,n n 

1 n-s-l cKS(a) 
> :;;:[ I: X(k) + (n + 1- (n - s))X(n_s)] - Vn [X(n-s) a] 

k=l 

1 n-s-l cKs(a) 
> :;;:[ I: X(k) + (s + l)X(n-s)]- Vn [X(n-s) - a] 

k=l 

which is the lower bound of of equation (2.7). 

Similarly computing the right-hand side: 

Jk < 
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CKS(a) 1 n+l 1 n 
< b + Vii [b - X(r+l)] - - '" (k - l)X(k) + - L kX(k) n n~ n 

. k=r+2 k=r+l 

b cKS(a) [b' X ] 1 Ln X b (r + l)X(r+l) n + lb < + - (r+l) - - (k) + - - - --Vii n n n n k=r+2 . 

1 ~ . cKS(a) 
< -[(r + l)X(r+l) + ~ X(k)] + Vii [b - X(r+d 

n n k=r+2 

which corresponds to the upper bound of equation (2.7). 

PROOF OF PROPOSITION 4.1. Proposition 4.1 is a direct application of the general 

expression of the CI for the mean of a continuous bounded random variable using the 

Anderson-Darling CB for distribution functions. 

PROOF OF COROLLARY 4.1BIS. Developing the expression of the Anderson-Darling CI 

for the mean of a bounded random variable yields Corollary 4.1 bis. This CI is: 

AD { -u C/-, (a) = /-lo E lR : /-lL ::; /-lo ::; /-lu where /-lL = [1 - Fn (X(n))]X(n+l) 
n 

+ L [F~(X(k)) - F~(X(k-l))] X(k), 
k=l 

i"u = [1 - F~"(X(n))[X(~+l) + t, [F~"(X(k)) - F~"(X(k-l))l X(k), } 

F!:(x) = max{G*(x),O}, F:;(x) = min{G~(x), 1}, 

G~(x) = 2Fn(x) + ~+ JK(X),. 
2(1 + C Arn(C<)) 

~(x) = [2Fn(X) + c1 rn(c<) r -4F~(x) [1 + C1rn(c<)] , and cAD(a) satisfies Pr(AD ::; cAD(a)) ~ 
1- a. It is easy to prove that G*(X(O)) = 0, and F:;(X(o)) = c~~(C<) [1 + ~rn(c<)]-l > O. 

Moreover, 
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2+~- [2+~r -4[1+~] 
2(1 + c~~t~)) 

2(1 + c~~(o)) 

( 1 + C~: ( a)) -1 < 1 

and, similarly, G~(X(n)) = 1. Thus, the effectlve part of the Anderson-Darling CB 
-L L L -U . U } is Fn (X(k)) = max{Gn(X(k)),O} = Gn(X(k)) and Fn (X(k)) = min{Gn (X(k)), 1 = 

G~(X(k)), Vk = l, ... ,n+ 1 and 

n 

ML - [1 - 1] X(n+1) + + L [G~(X(k)) - G~(X(k-1))] X(k) 
k=1 . 

'" n n V (k) n n V (k 1) X n [2~ + c~D(o) + .) ~(X) 2k-1 + c~p(o) + . /~~""""'(X=-=---'~'-----,-)] 

~ 2(1 + c~~(o)) - 2(1 + c~~(o)) (k) 

~ [~ + foW - yi ~(k - 1)] 
= ~ 2(1 + C~D(O)) X(k) 

k-1 n . 
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PROOF OF PROPOSITION 4.2. Proposition 4.2 is a direct application of the general 

expression of the CI for the mean of a continuous bounded random variable using the 

Eicker CB for distributions functions. 

PROOF OF COROLLARY 4.2BIS. Developing the expression ofthe Eicker CI for the mean 

of a bounded random variable yields CoroUary 4.2bis. The latter is: 

{ 
-u 

C:(o:) = /10 E IR : /1L :s; /10 :s; /1u where /1L = [1 - Fn (X(n»]X(n+l) 

~ [-u -u ] + L..t Fn (X(k» - Fn (X(k-l» X(k)' 
k=l 

l'u ~ [1- F;(X(n))]X(n+l) + t [F,;(X(k)) - F~"(Xlk-l))l X lk), } 

F!:(x) == max{G*(x), a}, F;;(x) = min{G~(x), 1}, 

G~(x)~ { Fn(x) - c1n)F~!2(x)[1 

a 

G~ (x) ~ { ; Fn(x) + 0;);;) F~/2(x)[1 

and CE(O:) satisfies PreE :s; CE(O:» 2:: 1 - 0:. 

\;f x su ch that Fn(x) ~ {a, 1} 

\;f x such that Fn(x) E {a, l}, 

\;f x such that Fn(x) ~ {a, 1} 

\;f x su ch that Fn(x) E {a, 1}, 
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Using G~(x) : 

G~(X(k») > 0 

{::} ~ _ CE(a) [~P/2[1 _ ~F/2 ~ 0 
n Vn n n 

{::} k 2: cE(a)Vn[~p/2[1 _ ~P/2 
n n 

{::} 2 2( k( k) k 2: CE a)n;;: 1 - ;;: 

k2 
{::} k2 2: c~(a)k - c~(a)-

n 
{::} [n + c~(a)] k2 - nc~(a)k 2: 0 

{::} k > n~(a) = K L 

- n+cHa) E 

Thus, G~(X(k») 2: 0 Vk = k~, ... , n - 1 where k~ = I[nc~(a) (n + ~(a))-l] + 1 where 

I[~] is the integer part of ~. The effective lower bound of the Eicker CB is 

-L { !s. - CE~) [!s.]1/2[1 - !s.]1/2 Vk k E
L, . .. , n 

Fn (X(k») = n yn n n L 

. 0 Vk = 0, ... , kE 1, n, n + 1. 

1 

>, where k~ I[nc~(a) (n + cHa))-l] + 1. 

Sirnilarly, for G~ (x) : 

G~ (X(k») < 1 

{::} ~ + CE (a) [~]1/2[1 ~P/2::; 1 
n Vn n n 

{::} cE(a) [kF/2 [n - kj1/2 ::; [1 - ~l 
n3 / 2 n 

{::} c~(a)k[n - k] ::; n(n2 2nk + k2) 

{::} (n + c~(a)) k2 
- n (2n + c~(a)) k + n3 2: O. 

This is the case for aIl k < iJ l and k > iJ2 such that iJ l 



ne 2n+cj,(a} )+VA 
2(n+4(a») 

A - n2 (2n + cMa))2 - 4n3 (n + c~(a)) 

n2 [4n2 + 4nc~(a) + 4(a)] - 4n4 
- 4n3c~(a) 

n2cMa). 
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D . l Id .Q d .Q 2n2+2n4(a} Th pU(X) r eve oping yie s (Il = ..,.....-:.::,---,;- an (12 = ( 2 (») = n. en, n (k) ~ 1 Lor 
2 n+cE a 

k <ifl or equivalentIy k = 1, ... ) k~ where k~' = 1 [( n:( })] is the integer part of {Il. 
- ~~a 

Hence, the effective upper bound of the Eicker CB is 

[~P/2[1 - ~P/2 Vk = 1, ... , kk 
0, kk + 1, ... , n, n + 1. 

k~ 

+ I: [F;' (X(k}) - F;' (X(k-l»)] X(k). 
k=l 

Our former results show that F;( (X(n») 

kU kU 1 [~P/2[1 _ ~p 2. Hence, 

[ kk cE(a) [k~Jl/2[ k~ll/2] J.tL [1 - IJX(n+l} + 1 - - - -- - 1 - - X(kU 1} 
n Vn n n E+ 

+ I: [~+ cE(a) (~) 1/2 (1 _ ~) 1/2 k 1 cE(a) (~) 1/2 (1 _ ~) 1/2] X(k} 
k=l n Vn n n· n Vn n n 
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Similarly for the upper bound: 

n 

+ L [G*(X(k») G*(X(k-1»)] X(k)< 
k=k~+l 

[
kL ( ) (kL)1/2 ( kL)1/2 1 

J-lu = [1 - O]X(n+1) + : cfo : 1: - 0 X(k~) 

+ '"' - - -- - 1 - - - -- + -- 1 - -- X(k) 
n [k cda) (k)1/2 (. k)1/2 k-l (k_l)1/2 ( k 1)1/2] 

L...t n v'iî n n n n n 
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kL) 1/2] 
: X(k~) + X(n+l) 

~ [1 cE(a) (fk7:k\( k) Jk -1 ( k -1))] + k=:r+l -;; - yÏn y -;; \1- -;;) -n- 1 - -n- X(k). 

PROOF OF PROPOSITION 4.3. Proposition 4.3 is a direct application of the general 

expression of the CI for the mean of a continuous bounded random variable on the case 

of the (-regularized Anderson-Darling CI. 

PROOF OF COROLLARY 4.3BIS. Developing the expression of the (-regularized Anderson­

Darling CI for the mean of a bounded random variable yields Corollary 4.3bis. The latter 

is: 

min{G~(x), 1}, 

G~(x) 
2Fn(x)+ n -~ 

( 
c7tD (Ct») 2 1 + ç 

n 

G~(x) 

c2 (Ct) 
2Fn(x) + AD~ + ~ 

( 

c~D (Ct») J' 

2 1 + ç 
n 

~(x) = [2Fn(X) + --"'-_ 2 

Pr[ADç :::; CAD,(a)] 2:: 1 

Using G~(x) : 

[ 
c7tD (Ct)] ( ÇC~D (Ct») . 

4 1 + ~ F~(x) - ne , and cADç(a) satisfies 

a,. 
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{:} 213:. + c~Dç(a) - J !i.(k) ~ 0 
n n 

( 
k C~D (a»)2 {:} 2- + ç 

. n n 
[2~ + c;.D~ (a) r -4 [1+ c;.D~ (a) 1 

-- >0 (
k2 (~DÇ(a)) 
n2 n -

(~D (a) 
ç > 0 

n -

~ k2~ (C~Dç (a)n 

=> k ~ nI/2(1/2cADç(a) or k ~ -nI/2(1/2cADç(a). 

Let KO = nI/2(1/2cADç(a). Given that k is al ways positive, F;(X(k» ~ 0 for k ~ KO or 

equivalently for k = k~D,' ... , n where k~D = 1[KO] + 1 and 1[Ko1' =the integer part of KO' 
.' ç 

Hence, 

{ 

G~(x) \/x ~ X(k5tD,J 
F;;(x) = max{G~(x), O} , where k~Dç = 1[Ko] + L 

o \/x < X(kL ) 
ADç 

Using G~(x) : 

G~(X(k» ~ 1 

{:} 213:. + ~D«(a) + yi ~(k) ~ 2 (1 + ~D/a») 
n n n 

# [2~ + C~D~(a) r -+ + c;.D~(") 1 (~: _ (c;.:/a)) 

S HI+ c;.D~(")) -2~--n,--(a_) 2 
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:::;0 

~o 
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2n(n+C~D (0:»)-v'8 
This is the case for aB k :::; KI and k 2: K2 where KI ç and K2 = 

2 (n+c;wç (0:») 
2n(n+c~D (0:»)+v'8 ( c~D (0:»)2 . 

( 

; ç ) where 6 = 4n 1 + ~ (~Dç(O:). Developing these expressions 
2 n+cADç(o:) 

yields KI n - CADç (o)(n()1/2 and K2 = n + CADç(o)(n()I/2 2: n. Hence, G~(X(k») :::; 1 

'ik :::; KI or equivalently 'ik = 0,1, ... , k~Dç where k~Dç = I[Kl] and I[Kl] is the integer 

part of KI. Then, 

F;;(x) ~min{G~(x),l} ~ { 

k~D<+1 

ftL = [1 ft;; (X(n»)]X(n+l) + L [ft;; (X(k») - ft;; (X(k-l»)] X(k) 
k=1 

k3{D( 

+ L [G~ (X(k») - G~ (X(k-l») ] X(k). 
k=1 
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Then, 

[ 

kU c
2 

(a) 1 . 2~ ADç + V ~(kU ) . 
n + n ,ADç 

J1L = [1 - 1] X(n+l) + 1 - c2 (a) . X(k~D +1) 
. 2(1 + AD~ ) ç 

k
U 

[ c
2 

(a)· c
2 

(a) 1 + ADç ~ + AD~ + .J ~(k) 2(k:1) + AD~ + .J ~(k - 1) X 

L c2 (a) - c2 (a) (k) 
k=l 2(1 + AD~ ) 2(1 + AD~ ) 

or 

= 2 + ADç _ 2 ADç - ADç - J ~(kU ) X U 
1 

{ ( 

2C2 (a) kU c2 (a) ) 
J1L c2 (a) n n n ADç (k AD +1) 

2(1 + AD~ ) ç 

+~ (~+v'd(k)-v'd(k-I))X(,) . k

U 

} 

1 {( C~Dç(a) k){Dç VU) 
J1L = 2 () 2 + - 2-- - ~(kAD) X(k U +1) 

cAD a n n ç ADç 
2(1 + ~ ) 

k~D } 

+ ~ G + v'd(k) - v' d(k -1)) XI') . 

Similarly, for the upper bound: 

n 

J1u = [1 - F:(X(n))]X(n+1) + L [F:(X(k)) - F:(X(k-1))] X(k) 

k=k~Dç 

n 

+ L [G~(X(k)) - G~(X(k-1))] X(k). 

k=k~Dç+1 
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. Then, 

or 

[ j'Œ(X )]X 1 {(2k~D,+C~D,(a)_./6.(kL ))x L f-lu = 1 - n (n) (n+l) + ---:::-"""7"":- n n V AD, (kAD,) 

2( 1 + ----''--

\=J~ J ~ + _.---'n'--C
a
_) J t.(k) 2(k n 1) - C~D~ (a) + J t.(k - 1)] X(kl 

, 

[ pL(X )]X __ 1~-:-:- { (2k~D< + C~Dç (a) _ /6.(kL )) X L 
/-Lu = 1 - n (n) (n+l) + n n V AD, (kAD,) 

2(1+~-

PROOF OF PROPOSITION 4.4. Proposition 4.4 is a direct application of the general 

expression of the CI for the IDean of a continuous bounded randoID variable on the case 

of the (-regularized Eicker CB for distribution functions. 
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PROOF OF COROLLARY 4.4BI8. CoroIlary 4.4bis is obtained developing the expression 

of the (-regularized Eick~r CI for the mean of a bounded random variable. This CI is: 

n 

+ L [F~(X(k)) - F~(X(k-1))] X(k) 
k=1 

and l'u = [1 - F:(X(n»)]X(n+l) + t, [F:(X(k») - F:(X(H») 1 X(k)} 

for F!:(x) = max{G~(x),O}, F;;(x) = min{G~(x), 1}, 

L _ () CEç(a) [ ()( ()) ]1/2 Gn(x) - Fn x - Vn Fn x 1 - Fn x + ( , 

u CEç (a) . 1/2 
Gn (x) = Fn(x) + Vn [Fn(X) (1 - Fn(x)) + (] , 

and cEç(a) satisfies Pr[Eç ~ cEç(a)] ~ 1 - a. 

Using G~(x) : 

n4 (a)-VLlL n4 (a)+VLlL 
This is the case for aIl k ~ k1 and k ~ k2 where k1 = and k2 = ) 

2 n+4 (a) 2 n+4 (a) ç ç 

with b:.. L = n2cf1_a) + 4 (n + ch (a)) n2ckç (aK. However, it is easy to see that k 1 is 

always negative. So, G~(X(k)) ~ 0 \:Ik ~ k2 or equivalently \:Ik = k~ç' ... ,n where k~ç = 
I[k2 ] + 1 and we define I[k] =the integer part of k. 

_ { G~(x) \:Ix ~ X(k~ ) 
Hence, F!:(x) = max{G~(x), O}= ç where k~ç = I[k2 ] + 1, k2 = 

o \:Ix < X(kL ) iJ 
Eç 
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Similarly using G~ (x) : 

(2n+4 (a»)n-JXü (2n+4 (a»)n+JXü 
This is the case for all k ~ k3 and k ~ k4 where k3 = ( ç )' k4 = ( ç )' 

2 n+c1, (a) 2 n+4 (a) ç ç 

and!:l.u = (2n+ckç (a)r n2 
- 4 (n+ckç(a)) (n ckç (a)()n2

. Rowever, it can be 

proved that k4 is al ways greater than n. So, G~ (X(k») ~ 1 \/k ~ k3 or equivalently 

\/k 0,1, ... , k~ç where k~ç = I[k31 and I[k] is defined as above. 

~ {G~(X)\/X~X(kjf) 
Renee, F:!(x) = min{G~(x), 1} = ç where k~ç - I[k3], k3 = 

1 \/x > X(kU ) 
Eç 

[ ( 2n + Ckç (a) ) n - J !:l. u] [2 ( n + ck, (a) ) ] -1 , and 

!:l. u ( 2n + Ck, ( a) r n 2 -4 ( n + Ckç (a)) (n ck, (a)() n 2 • 

F!:(x) and F:!(x) represent the effective part of the (-regularized Eicker CB for dis­

tribution functions. It followsthat 

n 

. J.tu [1 - F!:(X(n»)]X(n+l) + L [F!:(X(k») - F!:(X(k-1»)] X(k) 
k=l 

n 

[1 - F!:(X(n»)]X(n+1) + L [F!:(X(k») 
k=k~ , 
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n 

+ L [G~(X(k») - G~(X(k-l»)] X(k) 

~L [-L -L ] = [1 - Fn (X(n»)]X(n+l) + Fn (X(k~ç») - Fn (X(k~< -1») X(k~<) 
n 

+ L [G~(X(k») - G~(X(k-l»)J X(k}' 

or 

where F;(X(n») = 
{ 

1 . (a)(1/2n- 1/2 if k~< ~ n 

o if k~, > n. 

Similarly, for the lower bound: 

n 

ML = [~ F;: (X(n»)]X(n+1) + L [F;: (X(k») - F;: (X(k-l»)] X(k) 
k=l 
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Our early results show that, F;((X(kU +1») = 1, F;((X(kU ») G~(X(~U ») = k~ n-1 + 
. Eç Eç E, ç 

cEç(a)n- 1
/

2 [k~çn-l (1- k~çn-l) + 'f/2

,and F;((X(n») 1 (because G~(X(n») = 1 + 
cE,(a)(1/2n -1/2 2: 1). Then 

[1 - I]X(n+1) + [1 - k~çn-l - cEç(a)n- 1
/

2 [k~çn-1 (1 

+ ~ [~ + ---!.=(a,.;-) (~[1 _ ~l + () 1/2 k - 1 cE,(a) (k -1 [1 k - 1] ,-) 1/2] X -- - -- - -- +." (k) 
n Vii n n 

., 

or 

[1 - kU n-1 - C (a)n- 1/2 [kU n-1 (1 Eç . Eç Eç 

k U 

+ t [~+ CE,(a)n-
1
/
2 

( J ~[1 - ~l + ( Jk-l k-l )] -n-[1 - -n-] + ( X(k) 

PROOF OF PROPOSITION 4.5. -This' theorem is an application of Proposition 3.4 to 

the Owen (1995) CB for distribution functions where \:Ix, F!:(x) = max{F!:(x),O} and 
[ 

F;((x) = min{F;((x), 1} because F!:(X(o») = 0, F;((X(o») = 1- e-Àn < 1, F!:(X(n») 

e7Àn > 0, and F;( (X(n») 1. 

PROOF OF PROPOSITION 5.1. We refer the reader to Diouf and Dufour (2005a) for a 

complete proof. 

PROOF OF PROPOSITION 5.2. Proposition 5.1. implies that the Kolmogorov-Smirnov 
l 

CB obtained using appropriate critical points for F( x) yields a CB fOr G(y) with level 
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larger than or equal to 1- a, and similarly for the Anderson-Darling, Eicker, regularized 

Anderson-Darling and Eicker, and Owen CBs. By projection, so too are the correspond­

ing Cls for the mean, when the involved distributions have bounded support. 

PROOF OF PROPOSITION 5.3. We refer the reader to Diouf and Dufour (2005a) for a 

complete pro of. 

PROOF OF PROPOSITION 5.4. A similar pro of to those of Proposition 5.2. applies 

for Proposition 5.4. In fact, Proposition 5.3. implies that the Kolmogorov-Smirnov 

CB obtained using appropriate critical points for F(x) yields a CB for G(y) with level 

larger than or equal to 1 - a, and similarly for the Anderson-Darling, Eicker, regular­

ized Anderson-Darling ànd Eicker, and Owen CBs[see Diouf and Dufour (2005a) for the 

proof]. By projection, so too are the corresponding Cls for the mean, when the involved 

distributions have bounded support. 

PROOF OF THE KOLMOGOROV-SMIRNOV STATISTIC FOR A DISTRIBUTION WITH A 

PROBABILITY MASS AT THE LOWER BOUND. Let Y be a random variable with contin­

uous distribution function G(y). Define X = (Z~Y/:t n[O ~ y ~ z], a mixture between a 

boui1.ded continuous variable and a probability mass F(O) = 1 - G(z) at 0 with distrib­

ution function 

or equivalently, 

o 
F(x) = 1 - F[z(1 - Xl/et)] 

o 
F(x) = p 

1 

p + fox h(u) du 

if x < 0, 

if 0 ~ x ~ 1, 

ifx2::1 

if x < 0, 

if x = 0, . 

if x> 0 
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where p = I-F(z) and h(x) is an adequate density function. Hence, Fx(X) is a mixture: 

with probability p, . 

with probability 1 - p 

where U '" U(p,l]' The corresponding Kolmogrov-Smirnov statistic is: 

KSF = max 1 Fn(x) - F(x) 1= max {Ip - pl, max 1 Fn(x) - F(x) I} 
O<x~l O<x~l 

= max {IP - pl, max 1 ~ ~ll[Xk ~. x] - F(x) I} 
O<x<l n~ 

- k=l 

= max{IP- pl, max 1 ~~ll[F(Xk) ~ F(x)J - F(X)I} 
O<x<l n~ 

- k=l 

= max {IP - pl, max 1 ~ tll[F(Xk) ~ v]- VI} 
p<v<l n 

- k=l 

PROOF OF CO,ROLLARY 5.5. This corollary is an application of Proposition 5.4. Let 

VI and V2 be the sets of values of FI(X) and G2(x), respectively. Then VI = [Pl, 1] and 

V2 = [P2, 1] with V2 ç VI. Hence, the percentiles of the statistics K S Fu AD Fu E Fu 

ADe"Fu Ee"Fu and BJF1 are conservative for the percentile values of KSF2 , ADF2, EF2, 

ADe"F2' Ee"F2' and BJF2 · Hence, the CBs for distribution functions and the corresponding 

CIs for the mean-when the variable has a bounded support [a, bJ-using the appropriate 

critical points for F(x) yield CBs and CIs for G(y) with level larger than or equal to 

1- Œ. 
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Abstract 

1 

Inference studies for poverty and inequality measures show that asymptotic and bootstrap 

inference methods can be quite unreliable when applied to those measures (see Davidson 

and Flachaire, 2007). In a preceding paper, we propûsed improved finite-sample nonpara­

metric confidence intervals for the Foster, Greer and Thorbecke (1984) poverty measures 

using confidence bands for distribution functions and projection techniques. We showed 

that these confidence intervals are robust and perform better than asymptotic ones. 

In this paper, we propose improved finite-sample confidence intervals for inequality mea­

sures. We propose a generalized projection principle to derive confidence intervals for 

the mean of a random variable from confidence bands for distribution functions which 

tails are bounded by a Pareto distribution. Reexpressing the inequality measures as a 

function of the means of a: bounded random variable and a non bounded one, we apply 

the inference methods to those. Monte Carlo simulations show that the corresponding 

confidence intervals yield very reliable and good performance. We illustrate how to use 

the inference methods analyzing inequalities among Mexican rural households in 1998 

using PROGESA data sets. The results show that while the level of inequality among 

households targeted by PROGRESA is fairly low, this level almost three times higher 

for households with a female head and almost twice higher for households with a lion 

educated head. 
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3.1 Introduction 

Inference studies for inequality measures show that asymptotic and bootstrap methods do 

not perform weIl when applied to these measures. Davidson and Flachaire (2007) showed 

that asymptotic approximations provide a poor approximation to the real distributions 

of statistics, for small and even fairly large samples. Using a Singh-Maddala distribution, 

they show that the Li.d. bootstrap confidence interval do not perform weIl for the Theil 

inequality index. The heavy tail of the Singh-Maddala distribution alters the performance 

of the standard bootstrap and a modified bootstrap procedure, which is more adapted 

to heavy tails must be used to improve the results. 

Other papers have studied the performance of asymptotic and bootstrap inference meth­

ods for poverty and inequality measures; see Beran (1988), Kakwani (1993), Dard­

anoni and Forcina (1999), Biewen (2002), Davidson and Duclos (2000), and Cowell and 

Flachaire (2002). Most of these studies recommend using bootstrap procedures rather 

than asymptotic ones but also acknowledge the limits of the i.i.d. bootstrap procedure. 

Bootstrap often fails to provide reliable inference when applied to distributions with 

heavy tails or probability masses. Hence, adequate bootstrap procedures must be used 

to provide good performance. However, the origin of the failure of the bootstrap must 

be identified to correct the drawback, which is not obvious when data come from an 

unknown distribution function. 

In this paper, we propose nonparametric inference methods for the mean of random vari­

ables and apply them to inequality measures. We show that inequality measures can 

be reexpressed as a function of the mean of two random variables: a bounded random 

variable and an unbounded one. Using projection techniques we proposed in a preceding 

paper (Diouf and Dufour (2005b)), we build confidence intervals for the mean of the 

bounded part of the inequality measures. Then, we propose a generalization of these 

projection techniques to nonbounded random variables when the tails of the correspond­

ing distribution is bounded by a Pareto distribution. We apply these methods to derive 

confidence intervals for inequality measures using confidence bands for the underlying 

distributions. Empirical distribution function-based statistics using the three common 
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princip les in econometrics are used to build confidence bands: the Wald, the score and 

the likelihood-ratio principles (see Diouf and Dufour (2005a)). 

We propose finite-sample confidence intervals for the most popular inequality measures: 

the generalized entropy class of indexes-which include the Theil index, the Lorenz curve, 

the Gini index and the Atkinson class of indexes. According to Bahadur and Savage 

(1956), nonparametric inference cannot be performed for the mean of a random variable 

when observations are independent and identically distributed (Li.d.) from an unknown 

distribution function with finite mean (see Dufour (2003) for more details). To avoid 

this impossibility theorem, we suppose that the tail of the distribution of the sample is 

bounded by a·Pareto distribution and consider two cases: the case where the parameters 

of the Pareto distribution are known and the case where the parameters are unknown. 

In this last case, we build a joint confidence region for the parameters of the Pareto 

distribution using Chen(1996) and the Bonferroni inequality. 

Monte Carlo simulations are performed to study the performance of these methods for 

the Theil index. The results show that the standard bootstrap procedure and the al­

ternative proposed by Davidson and Flachaire (2007), as weIl as the asymptotic method 

can fail in providing r~liable confidence intervals for the Theil index while nonparametric 

inference methods are strongly reliable and provide informative confidence intervals. The 

regularized statistics deliver the best width among the latter. 

At last, the profile of inequality of Mexican households involved in PROGRESA is as­

sessed using the Gini index. The results show that there are more inequalities among 

households with a female head or a non-educated head. Hence, in addition to impIe­

menting policies that would help reduce poverty among households with a female head 

or a non-educated head, authorities plan policies targeted to the most vulnerable among 

those households to help them catch up with other households and get insured against 

negative shocks that would increase ineq\lality further. 

The remainder of the papei is organized as follows. Section 2 and 3 presents the desirable 

properties for inequality measures and the most popular inequality measures. Section 

4 provides asymptotic and bootstrap confidence intervals for the generalized entropy 
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class of index. Section 5 proposes fini te-sam pie nonparametric confidence intervals for 

these inequality measures using projection techniques, when income is bounded .. In 

section 6, we propose a generalization of the projection techniques to nonbounded random 

variables whose tails of distribution are bounded by a Pareto distribution. Section 7 

proposes nonparametric confidence intervals for the most popular inequality measures 

(the Theil index, the Lorenz curve, the Gini index, the Mean Logarithmic Deviation, the 

Logarithmic Variation index, and the Atkinson Class of index). Section 8 presents Monte 

Carlo results. Section 9 analyzes the profile of inequality of rural Mexican households 

targeted by PROGRESA using the studied inference methods. Section 10 concludes. 

3.2 Desirable properties for inequality measures 

Inequality studies have more and more been acknowledged to be complementary to 

poverty analysis. Both studies are mostly performed simultaneously to better assess 

the profile of poverty of households in a given community. Several inequality measures 

can be used, depending on the notion of inequality the study is intended to be assessed. 

These inequality measures must satisfy a set of suitable properties to be considered as 

reliable measures of inequality. In this section, we present the most important axioms 

that need to be filled by inequality measures. 

Let F be a space of distribution functions with support N. Let's consider a community 

which households' income is a random variable Y with distribution function F(y) E F. 

An inequality measure is a functional J : F ~ IR defined on the space of distribution 

. functions F (see Cowell and Flachaire(2002) and Cowell (2003)). To be reliable, inequal­

ity measures may satisfy a set of desirable properties that ensure their coherence. Among 

the most important of these properties are the following. 

DEFINITION 2.1. [Thansfer Principle] Let FI and F2 be two distributions functions. 

Jf 
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then F2 is a mean-preserving spread of FI' 

i.e., if YI and Y2 are two random variables with distribution funetions H(YI) and 

F2(Y2), respeetively, then 

where Z is a random variable with distribution funetion H(z) sueh that l z dH(z) = O. 

Dt:finition 2.1. characterizes a very important property for inequality' measures. It 

defines coherence in the ranking of the level of inequality of communities. Let 's consider 

two communities: community 1 and community 2. Let YI and 1'2 be the income of these 

communities, whose distributions of income FI and P2 are such that E(YI ) = E(Y2 ) and 

V(YI ) ::; l7(Y2). Hence, for inequality measures that satisfy the transfer principle, the 

level of inequality in corn munit y 1 is larger than the inequality in 'community 2. 

DEFINITION 2.2. [T-Independence] Let T : IR ---+ IR be a strietly monotonie eontin­

uous funetion defined on IR. Let N(T) be the set 

N(T) = {T(Y): y E N}nN 

and let p,( T) E F be the T - transformed distribution funetion sueh that 

Let T be a set of transformation funetions T. The inequality measure l is T -independent 

if and only if for aU TET, 

Definition 2.2, implies a very interesting property for inequality measures. For a 

given set of admissible transformations T, aH communities whose income distribution is 

a T-transformation of F(y) yield the same level of inequality. Let's consider two special 

cases of this property: 
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• Beale independence: if T is the set of functions T such that T(Y) = ay, a > 0 then 

the inequality measure 1 is homogeneous of degree o . 

• Translation independence: If T is the set of functions T such that T(Y) = Y + b, 

then the inequality measure 1 is invariant by translation. 

DEFINITION 2.3. [Additive separability] The inequality measure 1 is additively 

separable if there are two funetions 

and 

sueh that 

I(F) = \II[~(F), J <I>(y) ~F(y)l 

where ~(F) = J y dF(y). 

The functions <I> and \II characterize inequality measures. <I> is named the income­

evaluation function and \II the cardinalisation function. They can be used to define many 

of the desirable properties of inequality measures such as the following decomposability. 

DEFINITION 2.4. [Decomposability] The inequality measure 1 is deeomposable if 

and only if it ean be rewritten as 

I(F) = J J[y, ~(F)l dF(y) 

where f(y,z) : 1R2 ----+ IR is a funetion monotonieally inereasing in its first argument y. 

Cowell and Victoria-Feser (1996) showed that a decomposable inequality measure 

satisfies the transfer principle, due to the monotonicity of f(y, z) with respect to y. 
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3.3 The inequality measures 

This section presents the most popular inequality measures. Let Y be a random vari­

able that represents the income of households in a given community and let F(y) the 

distribution function of Y. Let f.L J y dF(y) be the mean of Y. 

• The Generalized Entropy class of index: 

where 8 E lR\ {O, 1}. 

For 8 = 0 and 8 = 1, the Generalized Entropy becomes the mean logarithmic 

deviation and the Theil index, respectively. The Mean Logarithmic Deviation cor­

responds to the Generalized Entropy class of index with 6 = O. It is: 

1~ j log(;) dF(y) 

- log (1-") j log(y) dF(y) 

The Theil index (Theil, 1967) corresponds to the generalized entropy class of 

index with 6 = 1. It is one of the most popular inequality measures: 

11 - jJ!..log(J!..)dF(Y) 
f.L f.L 

= ~ j y log(y) dF(y) - log(f.L) 

• The Atkinson class of measures: 

JI' A 

if é > 0 and é =f. 1 

if é = 1 
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• The Logarithmic variation index: 

ILv = J[log(~W dF(y) 
. J1, 

• The Gini index: many expressions of this index are proposed in the literature. The 

most useful of them is the following one 

IG = 1 - 2R(F) 

where R(F) = t fol C(F; q) dq, C(F; q) = foQ(F;q) y dF(y), and Q(F; q) = inf{y 1 

F(y) ~ q} for q E [0,1]. C(F; q) is the cumulative income function and Q(F; q) is 

the quantile function. 

• The Lorenz curve: 

L(p) 

where p E (0,1). 

With the exception of the Gini index, aIl inequality measures defined ab ove are ad­

ditively separable. Moreover, Cowell (2003) shows that a continuous inequality measure 

l is scale invariant, decomposable and satisfies the principle of transfer if and only if it 

is ordinally equivalent to the generalized entropy class for sorne 6. In other words, art 

inequality measure that achieves the same ranking of communities as the generalized en­

tropy class satisfies three of the most important suit able axioms for inequality measures: 

the sc ale invariance, the decomposability and the transfer princip le. 
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3.4 Asymptotic confidence intervals for the general-

ized entropy class of index 

Let Y be a random variable that represents the income of a community's households. 

Let F(y) be the distribution function of Y and let's consider the test of the hypothesis 

Ho : I~ = la versus the alternative Hl : I~ # la. The t-statistic for this test is: 

where n is an estimation of I~ and V (n) is the estimated variance of n. Using this 

statistic, asymptotic and bootstrap confidence intervals (CIs, henceforth) can be built 

for the Generalized Entropy Index. 

3.4.1 Confidence intervals when <5 =1= 0,1 

Let YI, ... , Yn be n Li.d. observations on Y with distribution function F(y). Let n and 

V[nl be the statistics: 

and 

n 

n l"y,5 
n L..J t 

i=l _ 1 

[~ f=Yi],5 . 
t=l 

where 8 # 0, 1, Pe = ~2:Y/ (see Cowell, 1989 for a g~neral expression using,a subgroup 
i=l 

decomposition) . 

Assuming that W is asymptotically N(O, 1) as n -+ 00, an asymptotic CI for I~ with 

level 1 - 0: is: 

(3.1 ) 
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where Z(p) is the pth percentile of the standard normal distribution. 

Similarly, a bootstrap CI for lb with level 1 - ais: 

(3.2) 

where D (J;) is the pth percentile of the bootstrap distribution of W. 

3.4.2 Confidence interval for the Theil index 

The t-statistic corresponding the Theil index is: 

W= 
Îl- la 

[V (Îl) f/2 
where 

n 

~ L:Yi log(Yi) (1 n ) 
-;) ,=1 ~ 
lE = n - log - L Yi , 

~L:Yi n i=1 
i=1 

~ (-;)) 1 ~ _ 2 
V lE =n(n_l)-8(Xi -x) , 

1': log(1':) 1': [~tYi log(Yi) 1 x. =' '- --'- ,-1 + 1 , n n n 

1. '"' 1': 1. '"' 1': 1. '"' 1': nW t n W t n W t 

i=1 i=1 i=1 

+ 1, 

n 

and x = ~ 2: Xi (see Biewen and Jenkins (2003) for more details when observations are 
i=1 

weighted). 

An asymptotic CI for 11 with level 1 - ais: 

where Z(p) is the pth percentile of the standard normal distribution. 
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Likewise, a bootstrap CI for J1 with level 1 0: is: 

w [~ (Tl)] 1/2 
DUt) * V JE 

where D~) is the pth percentile of the bootstrap distribution of the statistic W. 

3.5 Nonparametric confidence intervals for general-

ized entropy class of index when income is bounded 

Let Y be a randorn variable that represents the incorne of a cornrnunity's households. 

Let's suppose that Y is bounded over [0, y] with continuous distribution function F(y) 

where y can be as large as necessary (Y E [0, y]). Let Y(1) :::; ... :::; Y(n) be the order sta­

tistics of a sample of n i.i.d. observations on Y. Denote Fn (y) the ernpirical distribution 

function of the sample such that 'if k = 0, ... , n 

k 
Fn(Y) = - for Y(k) :::; Y < Y(k+1). . n 

Denote for the rernainder of this section: 

IR = IR U {-oo} U {+oo}j 

A (.) : a functional A[F] : C -+ IR defined on a space C of functions; 

F : a space of distribution functions; 

F : a space of continuous distribution functions. 

(3.3) 

In this section, we propose nonparametric confidence intervals for inequality rnea-· 

sures that belong to the generalized entropy class of index, when households' incorne is 

bounded. To do so we reexpress the generalized entropy inequality rneasures as a function 

of the rneans of two bounded randoni variables. Then, we use nonpararnetric confidence 

intervals for the rnean of a bounded randorn variable that was proposed by Dioùf and 

Dufour (2005b) to build CIs for the two rneans involved in the inequality rneasures. To 

end, we derive CIs for inequality rneasures frorn those and use the Bonferroni inequality 
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to compute its level of confidence based on the levels of confidence of the underlying CIs. 

3.5.1 Nonparametric confidence intervals when 8 i= 0, 1 

For b =1- 0,1, the generalized entropy measure is 

IMy) = J 0(0 1 1) [C~t - 1] dF(y) 

where M = J y dF(y). It can be reformulated as: 

10 _ 1 ( J yo dF(y) _ 1) _ 1 (Ao(F) _ 1) 
E(y) - b(b 1) [J Y dF(y)]° - b(b - 1) Aî(F) 

where Ao(F) = J yo dF(y) is the non centered moment of order b of Y and Al(F) = J y 

dF(y) is the mean of Y. 

Given that Y is bounded over [0, y], yo is also bounded over [0, yo]. In a former pa~er, 

we showed that nonparametric CIs for the mean of a bounded random variable can be 

derived from confidence bands for distribution functions using projections techniques. We 

proposed confidence intervals based on Wald, Score and likelihood-ratio improvements of 

the Kolmogorov-Smirnov statistic. We use these to build confidence intervals for Ao. 

Let C be a space of functions such that the Stieltjes integrals Ao(G) = J yo dG(y), 

o =1- 0 are finite. Let G~(y) E C and G~(y) E C be two step functions with jumps only 

at 1(1)," ., 1(n) that define the following confidence band for F(y) with levell a: 

CF(a) {Fo E C : G~(y) :::; Fo(Y) :::; G~ (y), 'Vy}. 

Following Diouf and Dufour (2005b), a nonparametric CI for AdF] with level 1 a 
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is: 

CA, (,,) = {l'O E lll. : [1 F~ (Y(n) )[Y(n+l) + t, [F~ (Y(k)) F~ (y(k-l)) 1 Y(k) :S 1'0 

:S [1 - (Y(n))]Y(n+1) + t [F,f(Y(k)) - F,f(Y(k-l)) 1 Y(k)} (3.4) 

where 1(0) = 0, 1(n+l) fj, and Vy, F!:(y) = max {G~(y), a} and Fri' (y) min {G~ (y), 1}. 

Likewise, a nonparametric CI for Ao [F] with level 1 - a: is: 

(3.5) 

-L -
where 1(0)' 1(n+l) , Fn (y), and Fri' (y) are defined as before. 

Using these confidence intervals, Result 5.1. proposes a nonparametric confidence 

interval for I~. The level of this latter can be computed using the following Bonferroni 

inequality: 

where El and are two given events. 

RESULT 5.l. [Nonpararnetric Cls for the generalized entropy Index with 

bounded incorne distribution] Let Y represent the income of a community's house­

holds. Let F(y) ELbe the distribution function of Y with support [0, fj] and let 

1(1) ::; ... ::; 1(n) be n ordered i.i.d. observations on Y. Suppose that the following 

confidence band for F(y) with leveZ 1 - a: is valid for the space of distributions L : 

GF(a:) = {Fo EL: G~(y) ::; Fo(Y) ::; G~ (y), Vy} 

where G~ (y) ELand G~ (y) E Lare two step functions with jumps only at 1(1), ... , 1(n)' 
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Then the level of the following confidence interval for the Generalized Entropy Measure 

Ii is greater than or equal to 1,- a : 

where 

YcO) = 0, Ycn+l) = ]j, and Vy, F!:(Y) max {G~(y), o} and F;[ (y) min {G~ (y), 1}. 

Result 5.1. proposes a general methodology to build CIs for inequality measures that 

belong to the class of generalized entropy indexes for cS different from 0 and 1. These 

CIs are derived from CBs for the underlying distribution with step-function bounds. We 

hàve proposed and studied interesting examples of such type of CBs in a former paper, 

which can be used to perform inference for Ii. Those CBs for F(y) with levell - a are: 

• the Kolmogorov-Smirnov CB: 

(3.6) 

where cKs(a) satisfies Pr[KSF ~ cKs(a)] 2: 1 - a, and KS = sup Vn 1 
-oo:S;y:S;+oo 

• the Anderson Darling-type CB: 

C:D(a) {Fo E F : G~(y) ~ Fo < G~ (y), Vy} 



where 

G~(y) -

G~(y) = 

2Fn(Y) + ~ - J&[0 
2(1 + c~,;t;t») 

2Fn(Y) + ~ + J&[0 
2(1 + ~~(a») 

~(y) = [2Fn (Y) + c~:(a)r -:- 4F~(y) [1 + c~:(a)] , 
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cAD(a) satisfies Pr [~D :::; cAD(a)] 2: 1 - a, AD = sup Vn(y), and Vn(y) = 
-oo<y<+oo 

{ D if F(y) E {D,l}, 

r;;:; 1 Fn{y)-F(y) 1 th . v n Flj2(y)[1_F(y)P/2 0 erWlse .. 

• the Eicker-type CB: 

where 

cffi (a) {Fo E F : G~ (y) :::; Fo :::; G~ (y) } 

v y such that Fn(Y) tj {D, 1}, 

V y such that Fn(Y) E {D, 1}, 

V y such that Fn(Y) tj {D,l}, 

V y such that Fn(Y) E {D, 1}, 

cE(a) satisfies Pr [E :::; cE(a)] 2: 1 - a, 

E = sup Vn(y) , 
-oo<y<+oo 

and 

Vn(Y) = { 
D if Fn(Y) E {D, 1}, 

r;;:; 1 Fn(y)-F(y) 1 h' 
v n F~/2(yHI-Fn(y)pj2 ot erWlse. 
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• the (-Regularized Anderson Darling-type CB: 

C;D'(a) = {Fo E F: G~(y) ~ Fo ~ G~(y), Vy} (3.7) 

where 

G~(y) 
2Fn(Y) + n - JK 

2 ( 1 + c~D/a») 

C~D (a) rA 
2Fn(Y) + ~ + v~ 

( 

~D (a») 
2 1 + ' n 

G~(y) -

[ 
c~D (a)] 2 [ ( ÇC~D (a») 

~ 2Fn(Y) + ~ - 4 1 + F;(y) - n' , CADç(a) satisfies 

PrTADç ~ cAD,(a)} ;::: 1 - a, and ADf= sup Vn 1 vi Fn(~)-F(Yi 1· 
-oo<y<+oo F(y) I-F(y) +çn 

• the (-Regularized Eicker-type CB: 

C;, (a) = {Fo E F : G~(y) ~ Fo(y) ~ G~ (y), Vy} (3.8) 

where 

• the Berk Jones-type CB (Owen, 1995): 

C~(a) = {Fo E F : G~(y) ~ Fo(Y) ~ G~ (y), Vy} (3.9) 
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where 

G~(y) = min {p : K[Fn(Y),P] S cBJ(a)} , 

K(p,p) =plog (~) + (l-p) log (~), cBJ(a) satisfies P[BJ > cBJ(a)] 2 1 - a, and 

BJ = sup K[Fn(Y), F(y)]. 
-oo::Sy::S+oo 

These CBs are convenient to use. A unique set of critical points is needed to build 

CBs for all continuous distribution functions, and hence, to build CIs for I~. When 

F(y) is not continuous, the critical points of the statistics are conservative: using critical 

points adapted to continuous distribution functions provides CBs for F(y) with level 

of confidence larger or equal to the theoretical level. Moreover, further information 

about the nature of the discontinuity of Y may allow to improve the performance of 

these inference methods. Using embeddness of image sets of distribution functions, less 

conservative critical points can be computed, which reduces the width of CIs without 

altering their reliability. 

Other CIs for the mean of a bounded random variable havf:l been proposed: asymp­

totic and bootstrap CIs-which can be quite reliable when applied to small, and even 

large samples and to distribution functions with heavy tails or probability mass- and 

finite-sample nonparametric CIs-which have been proposed by Hora and Hora (1990) 

and Fishman (1991). We \\'ill compare the performance of these inference methods on 

inequality measures using Monte Carlo simulations. 

3.5.2 Nonparametric confidence intervals when J = 1 

The Theil index can be reexpressed as· follows: . , 

Jy y 1 J - log ( -) dF(y) = - y log(y) dF(y) -log(f.1) 
f.1 . f.1 f.1 

T(F) 
Al(F) -log(Al(F» 
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where I-L = Al(F) = J y dF(y) =1= 0 is the mean of Y and Y(F) = J y log(y) dF(y) is the 

mean of Y log(Y). Given that Y is bounded between [0, y], y log(Y) is also bounded. In 

fact, the function y log(y) is strictly decreasing between 0 and Ile and strictly increasing 

between Ile and +00. If y ~ ~ then Ylog(Y) is bounded on [y log y, Ol.lf, on the contrary, 

y 2: ~ then Ylog(Y) is bounded on [-~, YlogY]. In both cases, Ylog(Y) is bounded. We 

assume for the remainder of the paper that Ylog(Y) E [VI, V2l where VI < V2. Hence, 

the Theil index is a function of the means of two bounded random variables. Following· 

Diouf and Dufour (2005b),.we propose nonparametric CIs for these two means, which we 

can be used to build CIs for the Theil index. 

Let L be a space of functions such that the Stieltjes integrals Al(G) = J: y dG(y) 

and Y(F) = J~2 y log(y) dG (y) are finite. Let G~(y) ELand G~(y) ELbe two step 

functions with jumps only at Y(l)' ... , Y(n) that define the following confidence band for 

F(y) with level 1 - a : 

A nonparametric CI for Al [Fl with level 1 - ais: 

ê A, (,,) = {l'O E li!. : [1 - F,;' (1(n)) ]1(n+\) + t, [F,;' (1(k)) - F,;' (1(k-1))] 1(k) S 1'0 

S [1- F:(1(n))]1(n+\) + t, [F:(1(k)) - F:(1(k-l))] 1(k)} 

where 1(0) = 0, Y(n+l) = y, and Vy, F/:(Y) = max {G~(y), O} and F~(y) = min {G~ (y), 1}. 

When applying the same procedure to Y[F], let Z = YlogY and H(z) be the distri­

bution function of Z. Let G~(y) ELand G~(y) ELbe two step functions with jumps 

onlyat Z(l)' ... ' Z(n) that define the following confidence band for H(z) with level1-a : 

CH(a) = {Ho EL: G~(z) ~ Ho(z) ~ G~(z), Vz}. 

A nonparametric CI for Y[Fl with level 1 - ais: 
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ê\(a) ~ {vo E IR: [1- il~(z(n»)]Z(n+l) + t, [il~(Z(k») - il~(Z(k-l»)l Z(k) :0; Vo 

:0; [1 - il;(z(n»)]Z(n+l) + t, [il;(Z(k») - il;(Z(k_l») 1 Z(k) } 

where Z(O) = Vb Z(n+1) = V2, and Vz, H[;(z) = max {G~(z), o} and H;:(z) = min {G~(z), 1} 

Using these confidence intervals, Result 5.2 proposes finite-sample nonparametric con­

fidence intervals for 11 which level can be derived using the Bonferroni inequality. 

RESULT 5.2. [Nonparametric CIs for the Theil index with bounded income 

distribution] Let Y represent the income of a community's households and F(y) E L 

be the distribution function of Y with support [0, yj. Let Z = YlogY and H(z) be its 

distribution function, which support is [v!, V2]' Let Y(l) ::; ... ::; Y(n) be n ordered i. i.d. 

observations on Y and Z(l) ::; ... ::; Z(n) be the corresponding ordered values of Z. 

Suppose that the following confidence band for F(y) with level 1 - 0'1 is valid for the 

space of distributions L : 

CF (ad {Fo EL: G~(y) :::; Fo(Y) ::; G~ (y), Vy} 

and that the following confidence band for H (z) with level 1 - 0'2 is valid for the s'pace 

of distributions L : 

where G~(y) ELand G~(y) E Lare two step functions with jumps only at Y(l)"'" Y(n) 

and G~(y) ELand G~ (y) EL are two step functions with jumps only at Z(l)'" . ,Z(n}' 

Then a confidence interval for the Theil index 11 with level greater than or equal to 

lais: 
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where 

Y(o) = 0, Y(n+l) = ]j, Z(o) = Vl, Z(n+l) = V2, Vy, F/:(y) = max {G~(y), o} and 

P;((y) = min {G~(y), l} , and Vz, ii~(z) = max {G~(z), o} and ii;((y) = min {G~(z), l} , 
and a = al + a2. 

Result 5.2. allows to build nonparametric CIs for the Theil index using CBs for 

distribution functions, in particular those that had been cited earlier. The CIs so built 

have the same properties as those noted for the generalized entropy index. 

3.6 Finite-sample confidence intervals for the mean 

of a random variable 

We proposed finite-sample nonparametric CIs for inequa,lity measures that belong to the 

generalized entropy class of indexes, when households' income is bounded. When Y is 

not bounded, Bahadur and Savage (1956) show that nonparametric CIs cannot be built 
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without further information about the distribution of Y. Henee the projection principle 

used earlier provides CIs for the inequality measures that are too wide to convey any 

information. To avoid this problem, we assume that the tails of the distribution of Y 

satisfy sorne regularity conditions: the rate of decline of each tail is bounded by those 

of a Pareto distribution. Under this hypothesis, we propose CIs for the mean of a lower 

bounded random variable-which can be easily extended to an upper bounded random 

variable- and for the mean of an unbounded random variable. Applying these CIs for 

the mean, we build CIs for inequality measures with unbounded households' income. 

3.6.1 Confidence intervals for the me an of a lower bounded ran-

dom variable 

Let W be a random variable that follows a Pareto distribution P( Wo, 1) with density 

function 

g(w) ~ { 
"Iw'Y ?+r for w ~ Wo 

o otherwise 

and cumulative distribution function 

(
WO )"1 G(w) = 1 - -;;; for w ~ Wo 

where 1 > 0 is the shape parameter and Wo > 0 is the scale parameter. 

For k < l, the moments of order k of W are: 

(3.10) 

and the mean of W is E(W) = ~ when 1> 1. 

Let Y be a random variable that is lower bounded: Y E [!L.' +00) with continuous dis­

tribution function F(y) and mean E(Y) = M. Let Y(l) :S ... :S Y(n) be the order statistics 

of a sample of n LLd. observations on Y. To insure that we can build nonparametric CIs 

for M, we suppose that the rate of decrease of the right tail of F(y) is bounded by the 
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rate of decrease of the tail of a Pareto distribution: 

RYPOTHESIS (I) The right tail of F(y)-the distribution of Y - ~s bounded by a 

Pareto P(wo, ,) distribution of type 1 with cumulative distribution function 

G(w) 1 c:r for w 2: Wo 

where Wo > 0 is the scale parame ter and, > 1 is the shape parameter, i. e. 

Q(y) ::; F(y) Vy 2: fi 

for some threshold fi WO· 

The mean of Y is: 

{J - f+oo y dF(y) fU y dF(y) + 1+00 

y dF(y) (3.11) 
'!l '!ly 

= E[Y 11L ::; y ::; fil Pr(lL::; y ~ fi) + E[Y 1 y 2: fi] Pr(Y 2: fi) 

= lB Pr(lL::; y ::; fi) + hB Pr(Y 2: fi) 

where fi E [1L' +(0), .lB E[Y 11L ::; y ::; "fi] is the mean of a bounded random and 

hB = E[Y 1 y 2: "fi]. Renee, {J is a weighted sum of the mean of a bounded random 

variable, lB, and the mean of an unbounded randorn variable, hB, which contains the 

exploding part of Y. To build CIs for {J, we use CIs for lB and hB' 

Following Diouf and Dufour (2005b), nonparametric CIs for lB can be built using 

CBs for the distribution function of YB where YB = Y 11L ::; y::; "fi. Let's define sorne 

notation for the remainder of the paper. Denote: 

= lR U { -oo} U {+OO}i 

r (.) : a functional r[F] : C -* lR defined on a spaee C of functions; 

:F : a space of distribution functions; 

ft : a space of continuous distribution functions. 

Let C be a spaee of functions such that the Stieltjes integrals r[G] = J: y dG(y) is 
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finite. Let G~ E (, and G~ (y) E (, be two step functions with jumps only at Y(l), ... , Y(m) 
n 

where m L: n. [Y(k)SY] . Let suppose that these functions define the following confidence 
k=l 

band for FyB(y) = FYI'!!..S.YSY(Y) with level 1 - Œ2 : 

Following Diouf and Dufour (2005b), a nonparametric CI for lB with level 1 Œ2 is: 

C1B ( "'2) - {IlO E IR : [1 - F~ (l'im))[ii + t, [F~ (YI,)) - F~ (Ylk-l))] Yik) S i\ril.12) 

S [1 - F;(Yim))] ii + t, [F;(Ylk)) - F;(Yik-l))] Yik)} 

where Y(o) = '!L, Y(n+l) = y, F!:(y) = max{G~(y),O}, and F;;(y) = min{G~(y), 1} 'Vy. 

The methodology used before does not apply to hB. The random variable YLB = 

Y 1 y ;::: y is not bounded. Hence, following Bahadur and Savage (1956), informative 

nonparametric CIs cannot be built for hB without further information about the distri­

bution of YLB . We provide this information by assuming that Y satisfies the hypothesis 

(i). Result 6 .. 1. provides a bound for hB under this hypothesis. 

RESULT 6.1. Let Y be a lower bounded random variable with continuous distribution 

function F(y) and ft. Let YLB = Y 1 y;::: y with distribution function FYLB(YLB) and W 

be a random variable which follows a Pareto distribution P(y, 1) of type 1 with cumulative 

distribution function 

G( w) 1 - (!) 'Y for w ;::: y 

where y > 0 and 1 > 1. If 

then, 
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Confidence intervals when all parameters are known 

Let 's define a set of assumptions: 

,ASSUMPTION 1.1: Let L be a space offunctions such that the Stieltjes integral r[G] = 

J1!..+oo y dG(y) is fini te, F[1[,+oo) a space of distribution functions included in L with support 

[]t, +(0) for fini te number JI.: Let Y be a random variable with distribution function F(y) E 

F[It, +00) such that 

where 'Y > 1 and y > 0 are known and Y(l) ::; ... ::; Y(n) the order statistics of a sample 

of n i. i. d. observations on Y. 

ASSUMPTION 2: Let 

be a confidence band for F(y) with level 1 - Ql where G~ E L, G;[ E L, and G~(y) and 

C;[ (y) are step functions with jumps only at Y(l)" .. ,Yin) and 

a confidence band for FYI'J!.5cY-::;'Y(y) with level 1 - Q2 where a~ EL, a;[ E L, and a~(y) 
n 

and a;[ (y) are step functions with jumps only at Y(l)' ... ,Y(m) where m 1 [Y(k)5cY] . 

We use hypothesis (i) and result 6.1. to propose a.general methodology to build 

nonparametric confidence intervals for the mean of a lower bounded random variable .. 

PROPOSITION 6.2. [Nonparametric CIs for the mean of a lower bounded 

ran'dom variable with a Pareto-bounded tan of distribution when parameters 



are known 1 Let 

I"u = (lI -F; (Yim») 1 y + t, [1'; (Yik») - F;(Yik-l») 1 Yik») [F~ (y) - F;(11) 1 

+ 'YY 1 [1 - F:(y)], 
'Y-
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where YiO) =~, F:(y) =max{G~(y),O} and F:((y) = min{G~(y), 1} Vy, and F:(y) = 

max{G~(y), O} and F:((y) = min{G~(y), 1} Vy. Under assumptions 1.1 and 2, the fol­

lowing confidence interval for f-l 

(3.13) 

has level greater th an or equal to 1 - a where a = al + a2. 

Proposition 6.2. proposes a procedure to build nonparametric Cls for the mean of 

a lower bounded random variable whose right tail is bounded by a Pareto distribution. 

These Cls are built using nonparametric CEs for F(y) and for the conditional distribution 

function of Y 1 ~ :S Y :S y, which can be derived from CEs for F(y). For that purpose, 

the empirical distribution function-based CEs presented in section 5 can be applied. 

Note that this procedure can be easily extended to upper bounded random variables by 

considering the opposite variable - Y. AI~o note that the lower bound of any CI for the 

mean of a bounded random variable defines a one-sided-upper-CI for the mean of a 

lower bounded random variable. Hence, nonparametric Cls we proposed for the mean of 

a bounded random variable can be applied to lower bounded random variables for which 

the mean exists. 
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CIs proposed by Proposition 6.2. are derived under the hypothesis that the right tail 

of F(y) is bounded by a Pareto distribution, which provides a good upper bound for hE 

but not for the lower bound of the CIs. To improve the performance of CIs, a st ronger 

hypothesis needs to be set: 

HYPOTHESIS (II) The right tail of F(Y)-the distribution of Y - is a Pareto P(WO , .,) 

distribution of type l with cumulative distribution function 

(
WO)"I G(w) = 1 - -:;;; for W :2: Wo 

where Wo > 0 is the scale parame ter and ., > 1 is the shape parame ter, i. e. 

F(y) = 1 (~) "1 vy:2: fi 

for some threshold fi = WO· 

Let's define the following assumption: 

ASSUMPTION 1.2: Let C be a space of functions such that the Stieltjes integral 

r[G] .f
1L
+

00 
y dG(y) is finite, F[2:'+oo) be a space of distribution functions included in 

C with support [l{, +00) for finite number l{, and Y be a random variable with distribu­

tion function F(y) E F[2:'+oo) such that 

where ., > 1 and fi > 0 are known and Y(l), ~ ... ~ Y(n) the order statistics of a sample 

of n i.i.d. observations on Y. 

Under hypothesis (ii), the following proposition provides a general expression for 

nonparametric CIs for the mean of a lower bounded random variable with a Pareto tail. 

PROPOSITION 6.3. [Nonparametric CIs for the mean of a lower bounded 



random variable with a Pareto tail when parameters are known] Let 

i'u ~ ([1- É';(Ytmll] ii+ t, [É';(Y(kl) 

+ 'YI [1 - F;(y)], ,-
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where Y(O) = lb F;(y) = max{G*(y), D} and F;;(y) = min{G~(y), I} Vy, and F!:(y) = 

max{G*(y),D} and F::(y) min{G~(y), I} Vy. Under assumptions 1 and 2, the follow­

ing confidence interval for p 

(3.14) 

has level greater than or equal to 1 - 0:1 - 0:2. 

Confidence Intervals when Y and , are unknown 

CIs proposed in the last subsection are valid when the parameters Y and , of the Pareto 

distribution are fully known. If those parameters are unknown, CIs must be built for 

them before considering CIsfor p. We first consider the benchmark case where both the 

threshold Y and the shape parameter , are unknown. Then, we consider the case where 

Y is known but the shape parameter , is 'unknown and tackle the choice of y. We study 

CIs under the hypothesis (ii). 

Confidence intervals for y and , 

Let W be a random variable that follows a Pareto distribution P(y, ,) with density 
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function g( w) such that 

{ 

..:iif!...- r >-'"'1+1 lor w _ y 
g(w) = W 

o otherwise 

where y > 0 and 1 > 1. Let W(l)" .. , W(n) be the order statistics of a sample of n i.i.d. 

observations on W. Chen (1996) proposed the following joint confidence region for the y 

and 1 with level 1 - Œ: 

(3.15) 

. where for 3 ::; k ::; n, 

. [~ ln (~) + (n - k + 1) ln (~) 1 W W(i) W(k) 

YI = W(l) exp 2=2 , 
n(k - 1)Fl+y'I"="Œ(2k - 2,2) 

2 

I
~ln(~) +(n-k+1)ln(~) 1 ~ w(i) W(k) 

Yu = W(l) exp 2=2 , 
n(k - 1)F1-y'I"="Œ(2k - 2,2) 

2 

II(YO) = [ k-l 2 ] , 

2 n lnyo- ~lnW(i)-(n-k+1)lnW(k) 

-X~-y'I"="Œ (2k) 

lu(YO) = [ k-l 2 ] 

2 n lnyo- ~lnW(i)-(n-k+1)lnW(k) 

where Fp(T}l' T}2) is the pth percentile of the Fisher distribution with T}l and T}2 degrees of 

freedom and X;(T}) is the pth percentile of the X2 distribution with T} degrees of freedorn. 

Using the Chen's joint confidence region for Yo and " we propose the following one­

sided and tw(}-sided CIs for l' 

COROLLARY 6.4. [One-sided CI for the shape parameter!l Let W be a random 
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{ 
J!:l for w 2: y 

g(w) = W 

o othertpise 
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where y > 0 is known and 1 > O. Let W(l)"'" W(n) be the order statistics of a sample 

of n i.i.d. observations on W. For any k E [3,n], an upper one-sided confidence interval 

for 1 with level 1 0: is 

where 

II = 2 [kfln (~) + (n - k + l)ln (#-)] 
i=l (,) (.1:) 

where X;(Tl) is the pth percentile of the X2 distribu,tion with Tl degrees of freedom. 

COROLLARY 6.5. [Two-sided CI for the shape parameter "tl Let W be a random 

variable with a Pareto distribution P(y, '"y) with density function g( w) such that 

{ 
1!:1 for w 2: y 

g(w) = W 

o otherwise 

where y > 0 is known and 1 > O. Let W(l)" .. ,W(n) be the order statistics of a sample 

of n i.i.d. observations on W. 

For any k E [3, n], a confidence interval for 1 with level 1 0: is 

CJ(o:) = bo E lR : Il :::; 10 :::; lU} 

where 
-X~(2k) 

_ 2 

Il - 2 [~lln (~) + (n k + l)ln (-1--)] 
i=l w ~) 
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and 
-xL!! (2k) 

'Yu = 2 

2 [~ln (Tf:-) + (n - k + l)ln (~)] 
i=l (,) (k) 

where X;(7]) is the pth percentile of the X2 distribution with 7] degrees of freedom. 

Confidence intervals when y and 'Y are unknown 

In this subsection, we propose CIs for J1 when y and 'Y are unknown. These CIs are 

benchmark. We discuss later the challenges of their implementation. 

PROPOSITION 6.6. [Nonparametric CI for the mean of a lower bounded 

random variable with a Pareto tail when y and 'Y are unknown] Let 

be a confidence region for y and 'Y with level 1 - (t3 and 

I"L = ([1 - 1'~ (1(m») IYI + t, [1'~ (1(k») - 1'~ (1(k-1)) ]1(k») [1';(YI) - 1'~ (J!.) 1 

YI' -u-+ 1 _ ...!... [1 - Fn (Yu)], 
"Yu 

I"u = ([1- 1';(1(m»)] Yu + t, [1';(1(k») - 1';(1(k_1))]1(k)) [1'~(Yu) - 1';(1,)1 

+ 1 ~u l [1 - F:(YI)], 
"Yz 

where 1(0) =~, F:(y) = max{G~(y), O} and F;;(y) = min{G~(y), 1} Vy, and F:(y) = 

max{6~(y),O} and F;;(y) = min{6~(y), 1} Vy. Un der assumptions 1.2 and 2, the fol­

lowing confidence interval for J1 
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has leveZ greater than or equal to 1 a where a = al + a2 + a3· 

To build this CI, the sample Y(l),'" ,Y(n) must be split into two parts: one­

Y(l), ... , Y(m)-on which the parameters will be inferred and another-Y(m+l), ... , Y(n)­

on which CIs for lB will be built. The choice of m raises similar questions to the choice 

of y, in the case where y is predetermined. 

Confidence intervals when , is unknown 

A more realistic case than the benchmark one is the case where is where , is unknown 

but the threshold y from which F(y) becomes a Pareto distribution is known. In such 
n 

case, y must be chosen prior to the computation of the CIs for M· Let mEn [Y(k):::;Y] 
k=l 

and nI = n - m. The m first observations of Y are used to build CIs for lB while the nI 

remaining observations are used to build the CI for ,. y must be large enough to minimize 

the distortion on the distribution of Y. But, if y is too large, the mass of probability in 

the tail of the distribution of Y is smalL Hence, the number of observations larger than 

y (nI) may be too small to provide a CI for, which performance won't alter that of the 

CI for M. Hence, the performance of the CIs for, is likely to deliver a poor performance, 

which alters the performance of the CIs for M. The more n is large, the more nI can \::le 

chosen large without altering the performance of lB too. Moreover, note that the choice 

of y determines the relative weight of lB and hB. CIs for lB are built using CBs for 

distribution functions and projection techniques while CIs for hB are built using CIs 

for ,. Putting more weight on the part of /-L for which a more accurate CI is achieved 

improves the performance of the overall inference. 

In our Monte Carlo simulations, F(y) is known. In this case, a convenient idea is to 

set yequal to a percentile of F(y), Le. y = F-I(P) where p E (0,1). Doing so allows 

to control the probability mass in the taïl of the distribution. We recommend to choose 

p 2: 0.95 so as to alter the least possible the real distribution of Y. 

If F(y) is unknown, one can set y arbitrarily by choosing the subsample of Y that 

will be used for the inference on ,. In this subsection, we study CIs for M when the shape 

parameter, is larger than 1 and unknown but the threshold y from which F(y) becomes 
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a Pareto distribution is fully known. 

Proposition 6.7. proposes nonparametric CIs for J1 when fi i~ predetermined and 1 is 

unknown. 

PROPOSITION 6.7. [Nonparametric CI for the mean of a lower bounded 

random variable with a Pareto tail when 1 is unknown] Let 

be a confidence interval for 1 with level 1 - a3 and 

l'u = (lI -F;(\'(=») 1 Y+ t, [1';(\'('») - F;(\'('_1») 1 \'(,») [F~ (y) - F:'(1i.) 1 
fi -L-+ 1 _ 1- [1 - Fn (y)], 

,t 

where YiO) = y, F/:(y) =, max{G~(y), O} and F:f(y) = min{G~(y), 1} Vy, and F/:(y) = 

max{G~(y),O} and F:f(y) = min{G~(y), 1} Vy. Under assumptions 1.2 and 2, the fol­

lowing confidence interval for J1 

has level greater th an or equal to 1 - a where a = al - a2 - a3. 
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3.6.2 Confidence interval for the mean of an unbounded ran-

dom variable 

In this section, we propose a generalization of the CIs for the mean of a lower bounded 

random variable to aIl random variables. This procedure applies to the left tail of F(y) 

similar techniques as those applied to the right tail of F(y). 

Let Y be a random variable with continuons distribution function F(y) and mean 

E(Y) = J1.. Let Y(l) ~ ... ~ Y(n) be the order statistics of a sample of n i.i.d. observations 

on Y. Rewriting the mean of Y, we split it into three parts that involve the means of 

three different random variables: 

E(Y) - 1:00 

y dF(y) 

-1: y dF(y) + i'ii y dF(y) + l+oo y dF(y). 

{:} E(Y) = E[Y 1 Y ~ 1L] Prey ~ 1L) + E[Y 11L ~ Y ~ y] Pr(lL::; Y ~ 1]) 

+E[Y 1 Y ~ y] Prey ~1]) 

{:} E(Y) = IUB Prey ~ Ji) + lB Pr(1L ~ Y ~ 1]) + hB Prey ~ 1]) 

where lB is the mean of a bounded random variable YB = Y 11L ~ Y ~ y, IUB is the 

mean of an upper-bounded random variable YUB = Y 1 Y ::; y, and hB is the mean of a 

lower-bounded random variable YLB = Y 1 Y ~ 11..: 

Following Bahadur and Savage (1956), additional information about the distribution 

of YLB and YUB is needed to build nonparametric CIs for IUB and hB. We provide this 

information by assuming that the tails of F(y) are bounded by Pareto distributions as 

stated by the following hypotheses. Hypotheses (i) and (ii) are the same as before; we 

remind them here while hypotheses (iii) and (iv) relates to the left tail of F(y). 

HYPOTHESIS (I) The right tail of F(y) is bounded by a Pareto P(y, '"'/) distribution 
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of type l: with cumulative distribution function 

F(y) ~ 1 - (~) 'Y Vy? fi 

where fi > 0 is the scale parame ter and 'Y > 1 is the shape parameter 

HYPOTHESIS (II) The right tail of F(y) is a Pareto P(y, ,) distribution of type l: 

F(y) = 1 - (~) 'Y Vy ~ fi 

where fi > 0 is the scale parameter and , > 1 is the shape parameter . 

. Let W be a random variable with Pareto distribution of type 1 P(wo, p) where Wo > 

o and p > 1. The random variable-W follows a negative Pareto distribution with 

distribution P( -Wo, p) and mean - E(W) = - ~~~ . 

HYPOTHESIS (III) The left tail of F(y) is bounded by a negative Pareto distribution 

of type l P( -'lb p) with distribution G(y) where -!L> 0 and p> 1, i.e .. 

G(y) ? F(y) Vy ::; !L' 

HYPOTHESIS (IV) The left tail of F(y) is a negative Pareto distribution of type l 

P( -!L, p) with distribution G(y) where -!L> 0 and p> 1, i.e. 

F(y) = G(y) Vy ::; !L' 

In the last section, we have proposed nonparametric CIs for lB using nonparametric 

CBs for. distribution functions and projection techniques. We have also proposed non­

parametric CIs for hB in the case where F(y) satisfies the hypothesis (i) or the hypothesis 

(ii). To build CIs for J-L, we study CIs for lUB based on the same procedure as those used 

to build CIs for hB, under the assumption that Y satisfies the hypothesis (iii) or the. 

hypothesis (iv). 
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Under hypothesis (iii), the mean of the random variable YUB = y 1 y ~ fi is lower 

bounded: 

Given that E(W) = f!!E..Q = -fY!!.. then 
p-l p-l' 

PY --- ~ E(YUB ). 
p-1 

Let's define the following assumptions: 

(3.16) 

ASSUMPTION 3.1: Let.c be a space of functions such that the Stieltjes integral r[G] = 

J~: y dG (y) is finite, F be a space of distribution functions included in .c, and Y be a 

random variable with distribution function F(y) E F such that 

where r > 1 and fi > 0 are known and F(y) ~ ê_y",p(y) 'ïly ~ l!.. where ê_y",p(y) is the 

cumulative distribution function of a negative Pareto P( -l!.., p) distribution where -l!.. > 0 

is the scale parameter and p > 1 is the shape parameter. Let Y(l) ~ ... ~ Y(n) be the 

order statistics of a sample of n i. i. d. observations on Y. 

ASSUMPTION 4: Let 

be a confidence band for F(y) with level 1 - ŒI where G~ E .c, G~ E .c, and G~(y) and 

G~ (y) are step functions with jumps only at Y(l)' ... , Y(n) and 

a confidence band for FYIY..:SY:SY(y) with level 1 - Œ2 where G~ E.c, G~ E .c, and 

G~(y) and G~(y) are step functions with jumps only at y(ml) , ... , y(m 2) where ml = 
n n 

I: n [Y(k):S'J!..J and m2 = I: n [Y(k):SY] . 
k=l k=l 
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Using equation (3.16) and the former results on lB and hB, we can built CIs for p 

in the following proposition, under the hypothesis that all parameters are known. 

PROPOSITION 6.8. [Nonparametric CIs for the mean of a random variable 

with Paret~bounded tails of distribution when parameters are known] Let 

Mu ~ 1(F;(1() + (lI F;(Y(ml) 1 jj \~, [F;(Y(k)) - F;(y(k-l)) 1 Y(k)) [F,;' (ll) F;(1() 1 

+ 'YI [1 - F;(y)], ,-
Y(O) = 'M.' F/:(y) max{G~(y))O} and F::(y) = min{G;;(y), I} Vy, and F[:(y) 

max{G~(y),O} and F::(y) min{G;;(y), 1} Vy. Under assumptions 3.1 and 4, the fo1-

10wing confidence interva1 for p 

(3.17) 

has level greater than or equal to 1 - a where a = al + a2. 

Similar CIs can be derived for p under hypothesis (iv). Under this hypothesis, the 

mean of YUB is: 

E(YUB ) = -E(W) = . 
p-1 

Let's define the following assumption: 

ASSUMPTION 3.2: Let C be a space of functions such that the Stieltjes integral qG] = 

r~: y dG(y) is fini te, :F be a space of distribution functions incLuded in C, and Y be a 
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random variable with distribution function F(y) E F such that 

where , > 1 and fi > 0 are known and F(y) = ê_1/..>p(y) Vy :::; ~ where ê_1/..>p(y) is the 

cumulative distribution function of a negative Pareto P( -JI.., p) distribution where -JI.. > 0 

and p> 1 are known. Let 1(1) :::; ... :::; 1(n) be, the order statistics of a sample of n i.i.d. 

observations on Y. 

PROPOSITION 6.9. [Nonparametric CIs for the mean of a random variable 

with Pareto tails of distribution when parameters are known] Let 

1(0) = lb F!:(y) = max{G*(y),O} and F;;(y) = min{G~(y), 1} Vy, and F!:(y) = 

max{G*(y),O} and F;;(y) = min{G~(y), 1} Vy. Under assumptions 3.2 and 4, the fol­

lowing confidence interval for I-l 

(3.18) 

has level greater th an or equal to 1 - a where a = al + a2. 

When the parameters of the Pareto distributions are known, Proposition 6.10 allows to 

build nonparametric CIs for the mean of a random variable when the tails of the involved 

. distribution are bounded by Pareto distributions or are Pareto distributions. When 
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parameters are not fully known, CIs for these parameters can be built using Corollary 

6.4. and Corollary 6.5. and used to build CIs for I-l. The following proposition provides 

a CI for I-l under hypotheses (ii) and (iv) when y and Ji are knowIi but 1 and pare not. 

PROPOSITION 6.10. [Nonparametric CIs for the mean of a random variable 

with Pareto tails of distribution when the shape parameters are unknown] 

Let 

be a confidence interval for 1 with level 1 - a3, and 

a confidence interval for p with level 1 - a4. Let 

i'L = 1 ! l;(1L) + ([1- F~ (1'(m»)]ll + ,~, [F~ (1'('») - F~ (1'('-1») 1 1'(,») [F;(y) - F~ üd 
y -u-+ 1 _ .1... [1 - Fn (y)], 

"1" 

Y(o) = y, F!:(y) = max{G*(y),O} and F:!(y) = min{G~(y), 1} Vy, and F!:(y) 

max{G*(y),O} and F:!(y) = min{G~(y), 1} Vy. Under assumptions 3.2 and 4, the fol­

lowing confidence interval for I-l 

(3.19) 

has level greater th an or equal to 1 - a where a = al - a2 - a3 - a4. 
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3.7 Application to inequality measures wheIi incorne 

is positive 

Let Y be a positive random variable with distribution function F(y) which represents the 

income of a community's households. Let Z = h(Y) with distribution function H(z). Let 

L be a space of functions such that the Stieltjes integrals A8(F) = J~: y8 dF(y), 15 f 0 

and Y(F) = J~: z dH(z) are finite, :F be a space of distribution functions included in 

L. Let's assume that F(y) satisfies one the two following hypotheses: 

HYPOTHESIS (LI) The right ta il of F(y) is bounded by a Pareto P(fi, ,) distribution 

of type 1: 

F(y) ~ 1 _ (~) 'Y 't/y ~ fi 

where fi > 0 and , > 1 are known. 

HYPOTHESIS (LII) The right ta il of F(y) is a Pareto P(y, ,) distribution of type 1: 

where fi > 0 and , > 1 are known. 

Let Y(l) ~ ... ~ Y(n) be the orderstatistics of a sample of n Li.d. observations on Y 

and 

be a confidence band f~r F(y) with level 1 - al where G* E L, G~ E L, and G*(y) and 

G~ (y) are step functions with jumps only at Y(l)' ... , Y(n). Let 

be a confidence band fo~ FYIO~Y~y(Y) with leve11-a2 where 6* E L, 6~ E L, and 6*(y) 
n 

and 6~ (y) are step functions with jumps only at Y(l), ... , Y(m) where m = L: 11 [Y(k)~y] . 
k=l 
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Given that Y is positive, yo is also positive. Following Propositions 6.2. and 6.3., a 

confidence interval for Ao (F) with level greater than or equal to 1 - a where a = al + a2 

IS: 

where 

• under hypothesis (Li): 

( ~u d ~ [~u ~u ] 0) [~L d Ao,min = [1 Fn (Y(m»)]Y + '8 Fn (Y(k») - Fn (y(k-l») Y(k) Fn (y ) 

[1 - F;' (y6)]i 

( [ ~ L ] 0 ~ [~L ~ L ] 0) [-U d Ao,max = 1 Fn (Y(m») y + '8 Fn (Y(k») - Fn (y(k-l») Y(k) Fn (y ) 

-0 

+ ,'Y 1 [1 F;(y6)];" 

• under hypothesis (Lü): 

Y(o) 11. 0; and F;;(y) = max{G~(y), O}, F;' (y) = min{ G~(y), 1}, F;;(y) "= 

"L ~U· "u max{Gn(y),O}" and Fn (y) = mm{Gn(y), 1}. 
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Setting 8 = 1 in the equations ab ove provides expressions for CIs for Al' Using these 

CIs and CIs for E(Z) = E[h(Y)] for adequate choice of h(Y), we can propose CIs for the 

most popular inequality measures. 

3.7.1 Confidence intervals for the class of generalized entropy 

index when <5 =1- 0, 1 

The generalized entropy measure is 

where 8 =1= 0,1, and Il = J y dF(y). We previously showed that this measure can be 

rewritten as follows: 

° 1 (Ao(F) ) 
IE(y) = 8(8 _ 1) Af(F) - 1 

where Ao(F) J yO dF(y) is the non centered moment of order 8 of Y and Al(F) = J y 

dF(y) is themean of Y. Using the previous results, if F(y) satisfies one hypothesis (Li) 

or (i.ii), a nonparametric CI for I~ is: 

where 

1 {Ao } Io,max = max 8 - 1 , 
8( 8 1) Ao,min:SAo:SAo,m .. x Al 

and Ao,min and Ao,max are defined above for hypotheses (i.i) and (i.ii). CJ~(a) is of level 

greater than or equal to 1 - a where a = al + a2. 

Let's assume now that Y satisfies hypotheses (i.ii) where r is unknown. Let 
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be a confidence interva:l for Î with level 1 a3' Then, following Proposition 6.7., a 

nonparametric CI for 1~ with level greater than or equal to 1 a 1 - al - a2 - a3 is 

where 

( 
~u d 

Ao,min = [1 - Fn (Y(m))]y 

~ y -U d + 1 _ ..!JI - Fn (y)], 
"Yu ' 

Y(O) = 1!. = 0, and Vy F!;(y) = max{G*(y),O}, F:!(y) min{G~(y), 1}, F;(Y) = 

max{G*(y),O}, and F:!(y) min{G~(y), I}. 

3.7.2 Confidence intervals for the 'Theil index 

The Theil index is: 

11 = J JL log( JL) dF(y) 
I-L I-L 

where I-L = J y dF(y). We showed that rewriting the Theil index a1lows to express it as 

a function of the means of two random variables: 
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Il _ T(F) log(A
1
(F)) 

E- A1(F) 

where A1(F) = f-l = J y dF(y) ~ Dis the mean of Y -which is positive- and T(F) = J y 

log(y) dF(y) is the mean of Z = y log(Y)-which belongs to the interval [-~, +(0) . We 

have proposed nonparametric CIs for Ai(F) using inference techniques for lower bounded 

random variables proposed in subsection 6.1. Using the same techniques, we can build CIs 

for T(F) and derive from these nonparametric CIs for 11. The level of the corresponding 

CI for 11 is computed using the Bonferroni inequality. 

Let H (z) be the distribution function of Z = y log Y. Let' s assume that H (z) satisfies 

one of the following hypotheses: 

RESULT 7.1. If F(y) satisfies hypothesis (i.i) then 

where z = max {D, ylogy}. 

(z 1 Z > z) < 1Y log y + 1Y 
- - 1 1 b - 1)2 

RESULT 7.2. If F(y) satisfies hypothesis (i.ii) then 

(Z 1 Z > z) = 1ylogy + 1Y 
- 1- 1 b _1)2 

where z = max {D, y log y} . 

Let Z(l),' .. , Zen) be the ordered values of Z corresponding to the sample from Y. Let 

C~(z) ELand C;[ (z) ELbe two step functions with jumps only at Z(l)" .. , Zen)' Let 

be a confidence band for H(z) with level 1- {Ji' 
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Let 

be a confidence band for with level 1- /32 where 6~ E .c, 6;[ E .c, and 6~ (y) 
n 

and 6;[(y) arestep functions with jumps only at Z(l))"" Z(m) where in = L:n. [Z(kl:Sz] 
k=l 

and z > 1. 

Following Propositions 6.2. and 6.3., a confidence interval for T(F) with level greater 

than or equal to 1 /31 /32 is: 

where 

• under hypothesis (Li): 

Tmln = ([1- H%(Z(m»]H t, [H%(Z(k» 

+ z[1 - fI;[ (z)], 

• under hypothesis (Lii): 



I l . 
E· 
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Z(Q) = ~ = -~, and 't/z ii~(z) = max{C~(z), O}, ii;[(z) = min{C;[(z), l}, ii~(z) = 
- L ~u _ . -u max{Cn (z), O}, and Hn (z) - mm{Cn (z), l}. 

Using these CIs and equations, we can propose the following nonparametric CI for 

where 

where Al,min ; Al,max ; y min; and Y max are defined above for hypotheses (Li, Lii, iLi, and 

ii.ii). The corresponding CI is of level greater than or equal to 1 - TJ = 1 - a - (3 where 

a = al + a2 and (3 = (31 + (32· 

Let's assume now that Y satisfies hypotheses (Lii) where the parameter 1 is not 

known. Let 

be a confidence interval for 1 with levell-a3. Following Proposition 6.7., a nonparametric 

CI for 11 with levell - TJ = 1 - al - a2 - a3 -_(31 - (32 is 
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where 

Z(O) = ~ = -~, Y(O) = y. = 0, Vz il~(z) = max{C~(z), O}, il;; (z) = min{ C;; (z), I}, 

H~(z) = max{ C'~(z), O}, and H;; (z) = min{C';; (z), I}; and Vy i'/:(y) = max{G~(y), O}, 
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F;;(y) = min{G~(y), I}, F!:(y) = max{G~(y),O}, and F;;(y) = min{G~(y), I}. 

3.7.3 Confidence intervals for the mean logarithmic deviation, 

the logarithmic deviation, and the Atkinson inequality 

measures 

In this subsection we propose nonparametric CIs for the Mean Logarithmic Deviation, the 

Logarithmic Deviation, and the Atkinson inequality measures using similar techniques 

as those for the generalized entropy class of measures. 

The Mean Logarithmic Deviation index is: 

I~ = - J log(~) dF(y) = log(JL) - J log(y) dF(y) 

where JL = J y dF(y). Rewriting it: 

I~ = log(A1(F)) - O(F) 

where A1 (F) = JL = J y dF(y) is the mean of Y-which is positive- and O(F) 

J log(y) dF(y) is the mean of Z = log(Y)-which belongs to (-00, +00). In the last 

subsection, we proposed nonparametric CIs for A1(F) under hypotheses (Li) and (i.ii). 

Similar techniques can be used to build CIs for O( F) using the same typé of regularity 

conditions for the distribution function of Z and Propositions 6.8., 6.9., and 6.10. 

The Logarithmic Variation index is: 

hv = J[log(~W dF(y) = E ([log Y -log(A1(F))]2) = E(Z) 

where J.t = Jy dF(y) and Z = [logY-log(A1(F))]2 [lOg (ETy))f. Hence, hv is the 

mean of a positive random variable. By imposing regularity conditions to the taU of the 

distribution function of Z of the same type as hypotheses (Li) and (i.ii), nonparametric 

CIs can beeasily built using Propositions 6.2. and 6.3. 



The Atkinson class of inequality rneasures is: 

{ 

1 - [J(1L)l-e dF(y)ll~< 
l e - Ji, 
A-

l 

if c > 0 and coll 

if c = 1 

When coll and c > 0, the Atkinson inequality rneasure is: 

lA = 1 [6(6 + 1)(I~ + 1)] 1/8. 

where .5 = 1 - c and lb is the generalized entropy rneasure of order 6, Hence, if 

is a CI for I~ with level 1 0:, then 

CI~ (0:) = {Io E IR : 1 [6(6 + 1)(I8,u + 1)]1/8 :::; ID :::; 1 [6(6 + 1)(/0,/ + 1)]1/8} 
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is a CI for lA with level 1 - 0: too. Therefore, the nonparametric CIs we proposed in 

the last subsection for I~ can be used to build CIs for lA with the same level of confidence. 

When c = 1, the Atkinson rneasure is 11 = 1 - e-I~. Hence, nonpararnetric CIs for 

the rnean logarithrnic deviation can be used to build ÇIs for 11 with the sarne level of 

confidence. Moreover, reVvTiting 11 as follows: 

Il _ _ exp[E(log(Y))] 
A - 1 E(Y) 

Propositions 6.2., 6,3., 6.7., 6.8., 6.9., and 6.10. can be used to build CIs under sorne 

regularity conditions. 
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3.7.4 Confidence intervals for the Lorenz curve 

The Lorenz curve is: 
1 (Fy:l(p) 

L(p) = E(Y) Jo y dF(y) 

where p E (0,1). The Lorenz curve is an illustration of the distribution of resources in 

a cornrnunity. For each p, L(p) represents the proportion of the households' cornrnunity 

which owns 100 p percent of the total incorne of the cornrnunity. When there is perfect 

equity, incorne is equally distributed arnong households. In this case, the Lorenz curve is 

the straight Hne L(p) = p. 

In this section, we propose nonparametric CIs for L(p) using CBs for F(y) and pro­

jection techniques. Rewriting the Lorenz curve, we can express the Lorenz curve as a 

function of the rneans of two variables, as follows: 
, 

1 (+oo 
L(p) = E(Y) Jo y n[y S Fyl(p)] dF(y) = 

[y n[y S Fy1(p)J] 
E(Y) 

E [Y 1 Y S F-l(p)] 
E(Y) 

where Y is positive and Y 1 Y S (p) is bounded over rO,F-lep)]. Let Al(F) 

E(Y) =1 0 and T(F) = E [Y 1 Y S (p)]. Then, 

T(F) 
L(p) = AI(F)' 

We have proposed CIs for Al (F) under hypotheses (i.i) and (i.ii). Similarly, we can 

build nonpararnetric CIs for Y(F) using the general expression of CIs for the rnean of a 

bounded random variable. Let H(z) be the distribution function of Z = Y 1 Y S F-I(p) 
n 

and in = I: n[1(k)$F-l(p)]' Let 
k=l 

be a confidence band for H (z) with level 1 /31 where C~ (z) E C and CI{ (z) E C are 

two step fùnctions with jumps only at 1(1),' ", 1(m). A confidence interval for Y(F) with 



level greater than or equal to 1 - (31 is: 

where 

m 
y min = [1 - fI;: (Y(m»)]Z + L [fI;: (Y(k») 

k=l 

and 

where Z = F-1(p) and Vz fI~(z) = max{C~(z), O}, if;: (z) = min{ C;: (z), 1}. 

Hence, a nonparametric CI for L(p) is: 

where 

LI,min = min {~l :. y min::; y ::; y max, A 1,min ::; Al ::; A 1,max} , 

L1,max = max {~l : y min::; y ::; y max, A 1,min::; Al ::; AI ,max } , 
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where Al,min ; AI,max ; y min; and Y max are defined above under the adequate hypothesis 

(i.i and i.ii). The level of the corresponding CI is greater than or equal to 1 - a - (31 

Let's assume now that Y satisfies hypotheses (i.ii) where the parameter "( is unknown. 

Let 

be a confidence interval for r with level 1 a3. A nonparametric CI for L(p) with level 



greater than or equal to 1 TJ where TJ = Œl + Œ2 + Œ3 + f3 1 is: 

where 

LI,min = min {~l : y min ~ y ~ y mm" AI,min ~ Al ~ AI,max} , 

Ll,max = max {~ : Y min ~ y ~ y max, AI,min ~ Al ~ AI,max} , 

A l,m;" = ([ 1 - F~ (l( in 1) lli+ t, [î;;:' (l( k 1) F~ (l(k-l))] l(k 1) [F,f (jJ) - F~ (li) ] 
y -u-+ 1 _ .l.Jl - Fn (y)], 

lu 

A,,~ = ([1 -F,f(l(ml)]li+ t, [F,f (l(kl) - F,f(l(k-ll) hl) [F~ (jJ) F; (u)] 

+ 1! 1 [1 - F~(y)l; 
Il 

and 
in 

Y max = [1 - H~(Y(in))lz + L [H~(Y(k)) - H~(Y(k-l))] Y(k)' 
k""l 

3.7.5 Confidence intervals for the Gini index 
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The literature presents several expressions for the Gini index. One of the most popular 

of these is: 

. ICini = 1 - 2R(F) 



where VO ~ q ~ 1 

R(F) =.!. (C(F; q) dq, 
1-' Jo 

[Q(F;q) 

C(F; q) = Jo y dF(y), 

Q(F; Q) = inf{y 1 F(y) ~ q}, 
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and 1-' = l y dF(y). C(F; q) is the cumulative income function and Q(F; q) is the quantile 

function of F(y). 

The Gini index can be expressed as a function of the Lorenz curve: 

1Cini 1 - 211 

L(p) dp = 211 

[p - L(p)] dp] 
o 0, 

(3.21) 

For each F(y), the Gini index represents twice the area between the Lorenz curve and 

the perfect equity Hne. ,It measures how far the distribution of income of a households' 

community is from perfect equity. The values of the Gini index lie between 0 and 1. 

Applying the projection techniques we have been using aIl along the paper, nonpara­

metric CIs for the Gini index can be derived from CIs for the Lorenz curve. In particular, 

the CIs for the Lorenz curve we proposed earlier can be projected to build nonparametric 

CIs for the Gini index when income is positive, under regularity conditions. 

3.8 Monte Carlo study 

In this section, we study the properties of the asymptotic and exact CIs for the Theil 

index 11 using Monte Carlo techniques. We compare the performance of the proposed 

nonparametric CIs for the Theil index with the performance of the asymptotic CI and the 

bootstrap CL Two bootstrap procedures are considered: the percentile-t (i.i.d.) boot­

strap and the semi-parametric bootstrap. The latter was proposed by Davidson and 

Flachaire (2007). This bootstrap is like the standard bootstrap procedure for all but the 
. 1 

right-hand tail of the distribution. At each step of this pr~cedure, each observation is 

a drawing, with probability 1 - Ptail, from the empiricai distribution of the sample of 
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the smallest n(1 - Ptail) order statistics and, with probability Ptaib a drawing from the 

Pareto(yo, p) distribution function with cumulative distribution function 

F(y) = 1 - (y/yof P
, y > Yo 

where Yo =y(n(1-Ptail)' p and Ptail are estimated from the sample Y1 , ... , Yn , of observa­

tions as follows: 

and 

[ 
k-1 ]-1 

P = k-
1 ~ log y(n-i) - log Ycn-k+l) 

hk 
Ptail =­

n 

where k = Vn and h is to be choosen. In their simulations, Davidson and Flachaire 
1 

(2007) used several values of h: h = 0.3,0.4,0.6,0.8,1. In our simulations, we set h = 0.4. 

We suppose in our simulations that the distribution of the income of households is 

the following mixture: 

Z with p:obability Po 

y with probability 1 - Po 

where Z follows a Singh-Maddala distribution SM(a, b, c) with cumulative distribution 

function F(y) = 1 - [1 + ayb]-c and y is sorne positive number. The Singh-Maddala 

distribution has been proven by Brachman, Stich, and Trede (1996) to mimic the income 

of several developed countries, such as Germany, weIl. Davidson and Flachaire (2004) 

used this distribution to explain the failure of the asymptotic and the bootstrap inference 

methods to perform weIl when applied to the Theil index with small and fairly large 

sample. Following Davidson and Flachaire (2007), we set a = 100, b = 2.8, c = 1.7, 

Y = F- 1 (0.99961) = 1.00078, and Po = 0.9. We suppose that the right-hand tail of the 

distribution function of Y is bounded by a Pareto(y, 6) where 6 = 2. CIs with level 95% 

are simulated for sample sizes n = 50,100,200, n = 500 and n = 1000 using N = 500, 
, 

N = 250 and N = 150 replications, respectively. For the CIs based on the regularized 



212 

statistics, we use CE = CAD = 0.07. We showed in a former paper that these values deliver 

CIs of minimal width for the poverty measure P2 with a distribution of income slightly 

different from the distribution proposed above. With our choice of parameters, the true 

value of the Theil index is 10 = 0.3907. 

Table 3.1 shows the coverage probability and the average width of the simulated . 
CIs for 11 using both continuous conservative critical points (corresponding to the case 

Po = 1) and adequate noncontinuous critical points. 

The results confirm that asymptotic and .bootstrap CIs for the Theil index are not 

reliable. Like the asymptotic CI, both the standard bootstrap and the semiparametric 

bootstrap proposed by Davidson and Flachaire (2007) deliver coverage probability far 

below the theoreticallevel of 95%. With our setting, the estimation value of p is lower 

than 2. Moreover, with our choice of k, fi is infinite for sorne sample size and sorne 

. samples, in particular when aU observations in the tail of the sample are equal to y. 

In this case, the mean of the Pareto law is Yo = y. In smaU samples, both bootstrap 
J 

methods experience problems with the distribution function under study. So does the 

asymptotic CI. In contrast, nonparametric methods perform weIl. They are reliable and 

conservative for all sample sizes. Among the nonparametric methods, the regularized 

Eicker-type and Anderson Darling-type CIs provide the smaller widths. The Berk-Jones 

type CI performs better than the KS-type CI but less than the methods based o:p. the 

regularized statistics. The regularized Eicker-type method provides the shortest CI for 

n 50 while the regularized Anderson Darling-type Clîs the shortest· for larger sample 

sizes. 
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Table 3.1: Simulated confidence intervals for the Theil index l~ 

. { ii with probability 1 - Po = 0.1 
Wlth Y = , (E= (AD = 0.07, 

SM(100, 2.8, 1.7) with probability Po := 0.9 

N 500 replications for n = 50,100,200, and 

,N 250 for n 500, and N = 150 for 1000 

Coverage probability (in %) 

n 50 100 200 500 1000 

Asymptotic PO= 1 92.60 95.20 95.60 93.60 95.6 

PO = 0.9 

t-Bootstrap PO = 1 .93.40 95.80 95.40 95.60 95.6 

PO = 0.9 

Bootstrap DF PO = 1 78.00 84.80 56.40 56.00 59.00 

PO = 0.9 

KS PO = 1 100.00 100.00 100.00 100.00 100.00 

PO = 0.9 100.00 100.00 100.00 100.00 100.00 

E, PO= 1 100.00 100.00 100.00 100.00 100.00 

PO = 0.9 100.00 100.00 100.00 100.00 100.00 

AD, PO= 1 100.00 100.00 100.00 100.00 100.00 

PO = 0.9 100.00 100.00 100.00 100.00 100.00 

BJ PO= 1 100.00 100.00 100.00 100.00 100.00 

PO = 0.9' 100.00 100.00 100.00 100.00 100.00 
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Width 

n 50 100 . 200 500 1000 

Asymptotic PO = 1 0.2234 0.1592 0.1130 0.0705 0.0503 

PO = 0.9 -

t-Bootstrap PO = 1 0.4086 0.1740 0.1185 0.0724 0.0516 

PO = 0.9 

Bootstrap DF PO = 1 0.4508 0.2027 0.1429 0.0823 0.0564 

PO = 0.9 

KS PO = 1 1.1461 0.7359 0.4666 0.2535 0.1573 

PO = 0.9 1.1481 0.7364 0.4668 0.2539 0.1574 

Ee, PO = 1 0.6918 0.4352 0.2765 0.1499 0.0940 

PO = 0.9 0.6945 0.4353 0.2766 0.1501 0.0939 

ADe, PO = 1 0.6995 0.4304 0.2710 0.1461 0.0912 

PO = 0.9 0.6997 0.4305 0.2711 0.1461 0.0913 

BJ. PO = 1 0.7105 0.4459 0.2940 0.1858 0.1331 

PO = 0.9 0.7327 0.4460 0.2941 0.1864 0.1336 

3.9 Empirical illustration 

In this section, we analyze the level of inequality of rural Mexican households using the 

proposed inference methods for the Gini inequality index. We employ data that have been 

collected as part of the targeting and evaluatiori program: PROGRESA.l A cens us of 

households in a set of 506 rural communities has been conducted in 1997, 1998, and 1999 

and the data processed to insure comparability. Data about households' characteristics 

are extra:cted from the November 1997 survey and expenditure aggregate is constructed 

using the March 1998 survey.2 

1 PROGRESA is a health, education, and nutrition program of the Mexican government aimed to 
reduce poverty in targeted rural communities .. 

2The data set excludes households in the expenditure survey that had not been interviewed in No­
vember 1997 and 10 communities with fewer than 10 households with expenditure information, leaving 
20544 households in 496 communities (see Demombynes, Elbers, Lanjouw and Lanjouw, 2007) 
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In a former paper, we used these data to analyze poverty in Mexico both at the 

national and regionallevels. First, we used the census as a whole to build CIs for the level 

of poverty P2 of rural households in Mexico. Then, drawing samples randomly from the 

census, we studied the poverty profile of PROGRESA-targeted communities and analyzed 

the determinants of poverty in rural areas in Mexico for the involved communities using 

two characteristics of the heads of households: the gender and the level of education. 

In this section, we study the profile of inequality of PROGRESA targeted communities 

using samples of size n = 500 and 1000 drawn from the census. We employ the same 

samples as those used in our former paper and the sarrie values for the regularization 

parameters-the latter were derived by applying a split sample procedure. For n = 500, 

we found that the smallest widths for the CIs for the poverty measure P2 were achieved 

by (AD = 0.45 and (E = 0.039 while those values were (AD = 0.5 and (E = 0.05 for 

n = 1000. We compare the inequality profile of households with a female head to those 

of households which head is a male, and the profile ofhouseholds with an educated head 

to those with a non-educated head. 

Tables 3.2 and 3.3 show the estimated CIs for the Giniindex corresponding to n = 500 

and n = 1000, respectively. Asymptotic and bootstrap CIs are estimated using the whole 

sample, including the auxiliairy satnple on which the optimal value of the regularization 

parameters are computed. The Berk Jones-type CI uses simulated critical points. 

Results obtained with a relatively small sample of n = 500 are consistent with those 

~btained with n = 1000. As someone would-expect, results delivered by the smaller 

sample are less accurate than those obtained for n = 1000 but do not contradict the 

latter. 

According to CIs· using the regularized statistics-which we proved were the best 

performing CIs, the level of inequality among rural households targeted by PROGRESA 

is relatively low. For n = 1000, these CIs show that the highest level of inequality among 

those households, as provided by the· Gini index, is about 22%. This results is in line 

with the objectives of the program which targets fairly homogenous rural households and 

provide them help to improve their standards of living. Against this bright global picture, 
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inequality seems to be unevenly spread among types of households. In fact, inequality 

among households with a female head can be as high as 67% while inequality among 

households with a male head still lies in the average 22%. This reflects atypical problems 

faced by female households' heads in providing resources to their dependants compared 

to uniform shocks faced by male heads. Likewise, households with· a non-educated head 

regis~er more inequality (44%) than households with an educated head (24%), even if the 

level of inequality among the latter is slightly higher than the total average. 

This picture of the distribution of inequality among rural households targeted by 

PROGRESA completes the poverty profile we derived in our former paper. In addition 

to implementing policies that would help reduce poverty among households with a female 

head or a non-educated head, authorities policies targeted to the most vulnerable among 

those households to help them catch up with other households and get insured against 

negative shocks would decrease inequality further. 
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Table 3.2: Mexican households in PROGRESA: Confidence intervals for I Cini for 

different types of households' heads 

n = 500, (AD = 0.45, (E = 0.039 

Table 3.2a: AlI households 

Confidence Intervals 

min max width 

Asymp -0.337 0.895 1.232 

Bootstrap -0.121 0.842 0.963 

KS -0.660 0.216 0.877 

E( -0.511 0.286 0.797 

AD( -0.674 0.231 0.906 

BJ -0.650 0.240 0.890 

Table 3.2b: Households with 

a female head 

. Table 3.2c: Households with 

a male head 

Confidence Intervals (in %) Confidence Intervals (in %) 

mm max width mm max width 

Asymp -0.289 0.864 1.153 Asymp -0.336 0.898 1.234 

Bootstrap -0.079 0.856 0.934 Bootstrap -0.124 0.842 0.965 

KS -0.900 0.625 1.525 KS -0.685 0.224 0.909 

E( -0.900 0.760 1.660 E( -0.544 0.290 0.835 

AD( -0.900 0.653 1.553 AD( -0.700 0.244 0.944 

BJ -0.881 0.678 1.560 BJ -0.676 0.254 0.930 



Table 3.2d: Households with 

a non educated head 

Confidence Intervals (in %) 

mm max: width 

Asymp -0.266 0.783 1.050 

Bootstrap -0.109 0.870 0.980 

KS -0.877 0.444 1.321 

E( -0.851 0.529 1.380 

AD( -0.861 0.463 1.323 

BJ -0.826 0.500 1.326 

3.10 Conclusion 

Table 3.2e: Households with 

an educated head 
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Confidence Intervals (in %) 

mm max: width 

Asymp -0.346 0.900 1.246 

Bootstrap -0.125 0.836 0.962 

KS -0.734 0.248 0.982 

E( -0.613 0.323 0.935 

AD( -0.747 0.270 1.016 

BJ -0.723 0.296 1.019 

Inference studies for inequality measures show that asymptotic and bootstrap methods do 

not perform weIl when applied to these measures. Davidson and Flachaire (2007) showed 

that asymptotic approximations provide a poor approximation to the real distributions of 

statistics, for smaIl and even fairly large samples while the standard bootstrap deliver a 

poor performance when applied to distributions with heavy tails, as it is often the case for 

income distributions. They proposed a semiparametric bootstrap procedure for the Theil 

inequality index to improve the performance of the bootstrap when distribution functions 

have heavy tails. However, the performance of bootstrap inference is also known to be 

sensitive to' distribution functions with probability masses. In each case, the origin of the 

failure of the bootstrap must be identified ·to correct the drawback, which is not obvious 

when data cornes from an unknown distribution function. 
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Table 3.3: Mexican households in PROGRESA: Confidenée intervals for I Cini for 

different types of households' heads 

n = 1000, (AD = 0.5, and (E = 0.05 

Table 3.3a: AlI households 

Confidence Intervals (in %) 

min max width 

Asymp -0.342 0.897 1.238 

Bootstrap -0.093 0.839 0.932 

KS -0.455 0.152 0.606 

E( -0.275 0.218 0.494 

AD( -0.462 0.166 0.628 

BJ -0.501 0.177 0.678 

Table 3.3b: Households with 

a female head 

Table 3.3c: Households with 

a male head 

Confidence Intervals (in %) Confidence Intervals (in %) 

mm max width mm max width 

Asymp -0.320 0.900 1.220 Asymp -0.344 0.897 1.240 

Bootstrap 0.007 0.836 0.829 Bootstrap -0.106 0.839 0.946 

KS -0.879 0.566 1.445 KS -0.518 0.161 0.680 

E( -0.851 0.675 1.527 E( -0.356 0.219 0.575 

AD( -0.838 0.622 1.461 AD( -0.532 0.172 0.703 

BJ -0.820 0.607 1.427 BJ -0.561 0.187 0.748 



Table 3.3d: Households with 

a non educated head 

Confidence Intervals (in %) 

mm max width 

Asymp -0.329 0.900 1.229 

Bootstrap -0.053 0.839 0.892 

KS -0.668 0.369 1.037 

Eç -0.567 0.438 1.005 

ADç -0.660 0.405 1.065 

BJ -0.662 0.423 1.085 

Table 3.3e: Households with 

an educated head 
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Confidence Intervals (in %) 

mm max width 

Asymp -0.340 0.899 1.239 

Bootstrap -0.111 0.840 0.951 

KS -0.565 0.180 0.745 

Eç -0.397 0.239 0.636 

ADç ':0.580 0.187 0.767 

BJ -0.608 0.220 0.827 

In this paper, we propose nonparametric CIs for the most popular inequality measures 

in the literature. We show that inequality measures can be reexpressed as a function of 

the mean of two random variables. When the involved random variables are bounded, 

we employ inference methods for the mean of a bounded random variable we derived in 

a former paper (Diouf and Dufour (2005b) to build CIs from confidence bands for the 

underlying distribution using projection techniques. When the involved variables are un­

bounded, we generalize these projection techniques to random variables with distribution 

functions which tails are bounded by a Pareto distribution or follow a Pareto distribu­

tion. Under these regularity conditions, we propose nonparametric CIs for the mean of 

a lower bounded random variable and for the mean of an unbounded random variable 

using confidence bands for the distribution functions. 

We apply these CIs to build CIs for the means involved in the inequality measures 

and derive CIs for the latter. The levels of the corresponding CIs are computed using 

the Bonferroni inequality. 

Owing to the CBs for distribution functions they are derived from, the CIs for inequal­

ity measures need a single set of critical points to be built, when applied to continuous 

distribution functions. This property makes them convenient to implement. When the 

income distribution function is noncontinuous, adequate critical points for continuous dis-
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tribution functions provide CIs for inequality measures with level greater than or equal 

to the nominallevel. Moreover, exploiting embeddedness of the image sets of distribution 

functions allows to improve the performance of the inference methods. 

Monte Carlo simulations are performed to study the performance of these methods 

for the Theil index. The results show that the standard bootstrap procedure and the 

alternative proposed by Davidson and Flachaire (2007), as well as the asymptotkmethod 

can fail in providing reliable CIs for the Theil index while nonparametric inference meth­

ods are strongly reliable and provide informative CIs. The regularized statistics deliver 

the best width among the latter. 

Last, the profile of inequality of Mexican households involved in PROGRESA as 

assessed by the Gini index is analyzed. Results show that there are more inequalities 

among households with a female head or a non-educated head. Hence, in addition to 

implementing policies that would help reduce poverty among households with a female 

head or a non-educated head, authorities plan policies targeted to the most vulnerable 

among those households to help them catch up with other households and get insured 

against negative shocks that would increase inequality further. 



222 

3.11 Appendix: Proof of theorems and propositions 

PROOF OF RESULT 5.1. The Generalized Entropy measure is 

where Ao(F) = J yO dF(y) is the mean of y o, which is bounded over [O,1l'] when Y is 

bounded over [0, y]. Following Diouf and Dufour (2005b), we can build CIs for Ao(F) 

using confidence bands for the distribution functions of yo. Let 

CF(o:) = {Fa E .c : G~(y) :::; Fo(Y) :::; G~ (y), Vy}. 

define a confidence band for F(y) with level 1 0: where G~(y) E .c and G~(y) E .c are 

two step functions with jumps only at Y(l)"" ,Y(n)' A nonparametric CI for AdF] with 

level 1 - 0: is: 

and a nonparametric CI for Ao [F] with level 1 - 0: is: 

where 

Y(O) = 0, Y(n+l) = y, and Vy, F[:(y) = max {G~(y), o} and i'j( (y) = min {Gr:. (y), 1}. 

Hence, the corresponding CI for IMy) is: 

) { 
1 [Ao min] 1 [Ao~max 

CI~(O: = 10 E IR : t5(t5 1) r~ax - 1 :::; la :::; t5(t5 1) r::nin 
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The level of CIl; (a) can be computed using the levels of CAl; and CAl and the Bonferroni 
E 

inequality. The latter states that for two events El and E2 : 

The CIs of AlCP) and A(j(F) are such that 

Pr[Ao E CAl (a)] = 1 - a and Pr[Ao E CAI;(a)] = 1 - a. 

Then, the inequality of Bonferroni yields that 

The level of the simultaneous confidence set of (1' [F], A(j [Fl) is also the level of the CI of 

any function of the vector (AdF], A(j[Fl). Thus, the level of CIl; (a) is 1 - 2a. 
E . 

PROOF OF RESULT 5.2. The tail index is 

1 Y(F) 
JE = AI(F) -log(Al(F)) 

where Al (F) = J.L = J y dF(y) =1- 0 is the mean of Y and Y(F) = J y log(y) dF(y) is the 

mean of Y log(Y). When Y is bounded over [0, y], YlogY is also bounded. Let VI and 

V2 be respectively the lower and the upper bounds of Y log Y where VI < V2. If 

define a confidence band for F(y) with level 1 - al whereG~(y) E L:and G~(y) E L: are 

two step functions with jumps onlyat 1(1), ... ,1(n) then a nonparametric CI for AdF] 

with level 1 - al is: 
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where 

Y(O) = 0, Y(n+l) = fi, and Vy, F!:(y) = max {C*(y), o} and F;( (y) min {C;:(y), 1} . 

Likewise, if 

is . a confidence band for H (z) with level 1 0:2 where Z = y log Y and H (z) is the 

distribution function of Z, C~(y) E .c and C;:(y) E .c are two step functions with jumps 

onlyat Z(I),'" ,Z(n) then a nonparametric CI for Y[F] with level 1 - 0:2 is 

where 
n 

y min = [1 fi;: (Z(n»)]Z(n+l) + L [fi;: (Z(k») 

k=l 

Z(Q) = VI, Z(n+l) = V2, and Vz, fi;(z) max {C*(z), o} and fi;: (y) = min {C~ (z), 1} . 
The corresponding CI for the Theil index is: 

{
y min (A) Y max ( ) } ID E lR : -A-- - log l,max ~ ID ~ ~ - log Al,min . 
l,max l,mm 

Following the Bonferroni inequality, the level of CIl (0:) is greater than or equal to 1 
E 



PROOF OF RESULT 6.1. Given that 'Y > 1, the mean of W exists and is: 

1
+00 

E(W) = fi w dG(w) < 00 

where Jim ]',_+00 w dG(w) = O. Developing d [wG(w)] : 
y-++oo y 

Hence, 

where 

and 

Likewise, 

d [wG(w)] = (dw) G(w) + wdG(w) 

=> d [w (1 - G(w))] = (dw) [1 G(w)] + w d [1 G(w)] 

=> d [w (1 G(w))] (dw) [1 G(w)] w dG(w) 

tZ 

d [w (1 G(w))] = kZ 

(dw) [1 - G(w)] - kZ 

w dG(w), 

z.!l~oo kZ 

d [w (1 G(w))] Hm z (1 G(z)) = D, z-++oo 

kZ 

w dG(w) - kZ 

(dw) [1 - G(w)] kZ 

d [w (1- G(w))] 

kZ 

(dw) [1 G(w)] - z (1 - G(z)) , 

E(W) k+
oo 

w dG(w) = k+
oo 

[1 - G(w)] dw. 
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By assumption: 

G(w) < FyLB(W) 'r/in 

i.e. 

=? 1 FyLB(W)::; 1 - G(w) .' 

=? i+oo 

[1 - FyLB(W)] dw::; i+= [1 - G(w)] dw 

E(YLB ) :::; E(W) = ,y 
,-1 

where the last equality follows from equation (3.10). 

PROOF OF PROPOSITION 6.2. Following equation (3.11), the mean of Y is 

Il = lB Pr(J{:S; Y ::; y) + hB Prey ~ y). 

If 

is a CB for F(y) with level 1 - al then , 

and 

are respectively CIs for Prey ~ y) and CPr(1!.:::;Y:::;y) (a) with level 1 al' 
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Moreover, equation (3.12) provides the following CI for JB with level 1 - Œ2 : 

{l'O E llI. : [1 - F!' (Y(m»)]l1 + t, [F!' (Y(k») - F!' (Y(k-l)) 1 Y(k) S 1'0 

S [1 - F,f(Y(m») 1 11 + t, [F,f(Y(k») - F,f(Y(k-l)) 1 Y(k) } . 

To end, 

hB (3.22) 

> 'fJ 

and result 6.1 shows that under hypothesis (i) 

(3.23) 

The CI for J1 which corresponds to these CIs is: 

where 

and 

Following the Bonferroni inequality, the level of this CI is greater than or equal to 1 -
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PROOF OF PROPOSITION 6.3. Under under hypothesis (ii), 

Henee, following the proof of Proposition 6.2. and replacing the lower bound of E(YLB ) 

in equation (3.22) by ~ yields the corresponding CI for /1. 

PROOF OF COROLLARY 6.4. Let W be a random variable with a Pareto( wo, b) 

distribution. The density function of W is 

{ 

8wO 
wô-El for w 2 Wo > 0 

g(w) = . 
o otherwise 

and its cumulative distribution function 

(WO)8 G(w) = 1- -
, w 

for w 2 Wo > 0 

where b > 0 and Wo > 0 are respectively the shape and the scale parameters. 

If a n-sample from G( w) is available, then the random variables Ti = -ln ( ~ r 
with i = 1, 00" n are Li.d with each, exponential distribution of parameter fJ = 1. Let 

W(l), 00' W(n) be the increasingly ordered sample corresponding to the n-sample from 

G (w). As the function -ln (7) 8 is increasing in x, the increasingly ordered sample 

which corresponds to W(l)' 00' W(n) is T(l), 00' T(n) such that T(i) = -ln (;(~)) 8 . Following 
r 

Lawless (1982, pp101-103), if we define the random variable T = ET(i) + (n - r)T(r) then 
i=l 

2J '" x2(2r) \7'3 ~ r ~ n. 



As a consequence, fixing r = kE[3, n] yields that 

2T 
() 

k k-1 

= 2[I:T(i) + (n - k)T(k)] = 2[I:T(i) + (n - k + l)T(k)] 
i=1 i=1 

_ 2[~-ln( wo )8 _(n-k+1)ln(~)8] 
i=1 W(i) W(k) 

-25[~ln (Wwo 
) + (n - k + l)ln (~)] 

i=1 (i) W(k) 

follows a X2(2k). If Wo is known, then 

Pr[x~(2k) ::; -25 ('~ln ( Wo ) + (n - k + l)ln (~))] = 1 - 0: 
i=1 W(i) . W(k) 
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where X~(2k) is the o:th quantile ofax2 distribution with 2k degrees of freedom. As 

..:!!!IL < 1 Vi 
w(i) - , 

Pr[ X~(2k) ::; 25] = 1 - 0: 

_ k~ ln (..:!!!IL) _ (n _ k + l)ln (....:!!!Il...) 
L.J wC,) W(k) 
=1 . 

and 

Pr ----=-____ -_X~=--('___2k__'_) ____ __=_ ::; 5] 

2 [ki:ln (ïV-) + (n - k + l)ln (~)] 
i=1 (,) (k) 

=1-0: 

or 

Pr ----=-___ --,--__ -.;...:.X~:::...;('___2k....:..) _____ ____=_ ::; 5] 

2 [n In(wo) - :~ln(W(i») - (n- k+ l)ln(W(k»)] 

=1-0: 

PROOF OF PROPOSITION 6.5. The proof of this· corollary is similar to the proof of 

the previous one. 

Given that 2T rv X2(2k) 
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Pr[X~/2(2k) ~ -215 (fln (T;O ) + (n - k + l)ln (.;0 )) ~ Xî~a/2(2k)1 = 1 - a 
i=1 (~) (k) 

where X~(2k) is the v th quantile of the chi2 distribution of 2k degrees of freedom. The 

bounds of the CI can be re-expressed as follows: 

(2k) 

2 ln(wo) 

2 [nln(Wo) 

PROOF OF PROPOSITION 6.6. Under hypothesis (ü), the mean of YLB is 

"(fi fi 
E(YLB ) = 1 = --1 . 

"( 1-­
"( 

Henee, if 

is a confidence region for Ii and "( with level 1 - a3, then 

is a CI for hB with level 1 a3' 

Using ChB (a3), CF(al), CFYB (a2), and the CI for lB that has been proposed in 

equation (3.12) provide the result. The Bonferroni inequality gives that the level of this 

CI is greater than or equal to 1 2al a2 - a3' 



PROOF OF PROPOSITION 6.7. Under hypothesis (ii), the mean of YLB is 

Hence, if 

,y y 
E(YLB ) = -- = --1 . 

,-1 1-­
'"t 

is a confidence interval for, with level 1 - a3, then 

231 

is a CI for hB with level1 - a3· Using ChB (a3) and setting YI = Yu = fi in Proposition 

6.6. yields the result in Proposition 6.6. The Bonferroni inequality gives that the level 

of this CI is greater than or equal to 1 - 2a1 - (l'2 - (l'3. 

PROOF OF PROPOSITION 6.8. Proposition 6.2 proposes nonparametric CIs for 

lB Pr(JL :::; Y :::; y) + hB Pr(Y ~,y) under hypotheses similar to those assumed in 

Proposition 7.1. Moreover, under hypothesis (iii): 

p ~ 1 :::; E(YUB ) :::; JL 

py . 
{:} ---=-1 :::; I UB :::; y. 

p- -

Hence using these bounds and Proposition 6.2. provides the result. The Bonferroni 

inequality provides that the level of this CI is greater than or equal to 1 - 2a1 - a2. 

PROOF OF PROPOSITION 6.9. Under hypothesis (iv), I UB = ;31 . Hence, using the 

pro of of Proposition 6.8. and the expression of I UB provide the result. 

PROOF OF PROPOSITION 6.10. Proposition 6.7. provides nonparametric CIs for 

lB Pr(JL < Y :::; y) + hB Pr(Y ~ y) under hypotheses similar to those assumed in 
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Proposition 7.3. Moreover, under hypothesis (iv) JUB = ;'31 and, hence, if 

is a confidence interval for '"Y with level 1 - 0:3, then 

is a CI for JUB with level1 - 0:3. Using C1UB(0:3) and Proposition 6.7. yields the result 

in Proposition 6.10. The Bonferroni inequality gives that the level of this CI is greater 

than or equal to 1 - 20:1 - 0:2 - 0:3. 

PROOF OF RESULT 7.1. If y", Pareto(y,J) 1 y ~ y ,15 > 1 and y:> 0 then 

where for y ~ y 

and 

+00 

E (Y log Y 1 Y ~ y) = J y log(y )dFYIY~y(Y) 
y 

1 - (~) ~ 

=? dFYIY~y(Y) = -'"Y (~) ~-1 Y ( - :2 ) dy = ,'"Y (~) ~ (t) dy 

E (Y log Y 1 Y ~ y) 

+00 
-;;-;yJ logY d '"YY -- Y 

Y~ 
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where the làst equality is derived by integration by parts. Then, 

n;"f { 1 r log Y log y 1} 
E(YlogY 1 y 2:: y) = 'YY - b l)y-2~ooy'Y-l + b _l)y-r-l + b _1)2y-r-l 

'Yylogy 'YY 
'Y - 1 +b 1)2' 

Under hypothesis (Li) 

It follows that, 

E (Y 10 Y 1 Y > -) < 'YY log y + 'YY . 
g - y - 'Y - 1 b 1)2 

PROOF OF RESULT 7.2. Following the proof of result 7.1., if 

then 

E (Y log Y 1 Y 2:: y) = 'YY log y + -;--"-"'-= 

'Y- 1 



234 

Conclusion générale 
Cette thèse offre deux types de contributions à la littérature. La première contribu­

tion est purement statistique. Elle consiste à proposer des intervalles de confiance non 

paramétriques exacts pour la moyenne d'une variable aléatoire bornée, que la variable 

étudiée soit bornée ou pas. Dans le cas ou la variable est bornée, nous montrons que 

ces intervalles de confiance peuvent être déduites de bandes de confiance pour la fonc­

tion de distribution sous-jacente en utilisant des techniques de projection. Lorsque la 

variable aléatoire n'est pas bornée, nous proposons un principe de projection généralisé 

qui s'applique aux fonctions de distributions dont les queues sont bornées par des lois de 

Pareto. A première vue, les méthodes d'inférence proposées concernent uniquement la 

construction d'intervalles de confiance pour la moyenne. Toutefois, l'approche utilisée est 

loin d'être aussi restrictive qu'elle paraît. Résoudre le problème pour la moyenne d'une 

variable Y permet de le résoudre pour tous les moments de Y. Pour cela, il suffit de 

remplacer la série de données de Y par une fonction de cette dernière. Par exemple, si 

on s'intéresse à construire des intervalles de confiance pour le moment d'ordre 2 de Y, 

il suffit de remplacer les observations de Y par le carré de ces observations, de constru­

ire la fonction de répartition empirique qui correspond à la nouvelle série de données et 

d'appliquer les méthodes d'inférence proposées sur cette dernière. Les intervalles de con­

fiance ainsi obtenus pour la moyenne des données transformées constituent des intervalles 

de confiance pour le moment d'ordre 2 de Y. Utilisant ce schéma, toutes les transfor­

mations de variables aléatoires peuvent être envisagées. Les transformations continues 

sont construites en utilisant les méthodes présentées dans cette thèse alors que pour les 

transformations non continues, d'intéressantes propriétés de monotonicité fournies dans 

chacun des trois articles permettent de les étudier. 

Le deuxième type de contribution est économétrique. Il consiste à proposer des in­

tervalles de confiance exacts pour les mesures de pauvreté de Foster, Greer et Thorbecke 

(1984) et les mesures d'inégalités les plus populaires: les mesures d'entropie généralisée, 

de déviation logarithmique et d'Atkinson et les indices de Theil, de Lorenz, de Gini et de 

variation logarithmique. Nous proposons des expressions explicites et faciles à calculer 
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pour ces intervalles et montrons par une étude Monte Carlo que ces intervalles sont fi­

ables et robustes, à l'inverse des intervalles asymptotique et bootstrap. Pour illustration, 

nous analysons dans les articles 2 et 3 les profils de pauvreté et d'inégalités des ménages 

ruraux au Mexique en 1998 en utilisant des données du programme PROGRESA. Les 

résultats montrent que les intervalles asymptotiques sont souvent trop petits pour être 

réalistes alors que l'intervalle bootstrap peut exploser. L'analyse montre que le profil 

de pauvreté des ménages Mexicains dépend grandement du type de chef de ménage: les 

niveaux de pauvreté et d'inégalités des ménages dont le chef est un homme ou est éduqué 

sont moins élevés que ceux des autres ménages. Par conséquent, les mesures destinées 

à réduire le taux d'illettrisme et à sécuriser le revenu des ménages dont le chef est une 

femme pourraient aider à réduire la pauvreté et les inégalités dans le Mexique rural. 
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