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Résumé

Cette thèse est organisée en trois chapitres. Dans le premier chapitre, qui est co-écrit

avec Ilze Kalnina, nous proposons un test statistique pour évaluer l’adéquation de la volatilité

idiosyncratique comme mesure du risque idioyncratique. Nous proposons un test statistique

qui est basé sur l’idée qu’un bon proxy du risque idiosyncratique devrait être non correélé à

travers les actifs financiers. Nous démontrons que l’estimation de la volatililité est sujet à des

erreurs qui rendent le test non standard. Nous proposons un modèle à facteurs qui permet de

réduire sinon éliminer les corrélations dans la volatilité idiosyncratique, avec comme ultime

but d’ aboutir à un facteur qui satisfait mieux aux critères souhaités du risque idiosyncratique.

Dans le deuxième chapitre de ma thèse, qui est co-écrit avec Christian Dorion et Pierre

Chaigneau, nous proposons une méthodologie pour étudier l’importance des risques d’ordres

supérieurs dans la valorisation des actifs financiers. A la suite de Kraus and Litzenberger

(1976) et Harvey and Siddique (2000a), beaucoup d’études ont analysé l’aversion aux risques

de skewness et kurtosis de façon inconditionnelle. Dans ce chapitre, nous proposons une

méthodogie qui permet de faire une analyse conditionnelle assez précise de l’aversion au risques

d’ordres superieurs. Notre étude complémente la littérature dans la mesure ou nous étudions

aussi la valuation des risques d’ordre plus élevé que la kurtosis à savoir l’hyperskewness et

l’hyperkurtosis qui sont théoriquement valorisés dans certaines fonction d’utilité comme le

CRRA.

Dans le dernier chapitre de ma thése, j’étudie la structure à terme de la prime de risque

pour le risque de co-skewness, un risque qui mesure l’asymmétrie systématique dans les actions

individuelles. Nous y proposons une méthode assez générale qui permet de faire une analyze

mutli-horizon contrairement à la plupart des études existantes.
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Abstract

This thesis is organized in three chapters. In the first chapter (which is co-authored with

Ilze Kalnina), we propose a statistical test to assess the adequacy of the most popular measure

of idiosyncratic risk, which is the idiosyncratic volatility. Our test statistic exploits the idea

that a “good" measure of the idiosyncratic risk should be uncorrelated in the cross-section.

Using in-fill asymptotics, we study the theoretical properties of the test and find that it has

a non-standard behaviour due to various biases induced by the latency of the idiosyncratic

volatility. Moreover, we propose a regression model that can be used to reduce if not eliminate

the cross-sectional dependences in assets idiosyncratic volatilities.

The second chapter of my thesis is the fruit of a colaboration with Christian Dorion and

Pierre Chaigneau. In this chapter, we study the relevance of higher-order risk aversion in asset

pricing. The evidence in Kraus and Litzenberger (1976) and Harvey and Siddique (2000a)

has spurred the literature on the estimation of the risk premiums attached to skewness and

kurtosis risk in addition to the standard variance risk. However, most of these studies focus on

the estimation of unconditional premiums or average premiums. In this chapter, we propose

a methodology that allows to accurately estimate the time-varying higher-order risk aversions

using options prices. Our study complements the literature as we also study the higher-order

risks beyond the kurtosis such as hyperskewness and hyperkurtosis risks which are valued by

a CRRA investor. .

In my third chapter, I study the term-structure of price of co-skewness risk. Co-Skewness

risk captures the portion of the stock returns asymmetry that arises as a result of market

returns asymmetry. I propose a general methodology that allows to study the multi-horizon

pricing of this risk in contrast to many existing studies.
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Chapter 1

Cross-Sectional Dependence in
Idiosyncratic Volatility∗

1.1 Introduction

In a panel of assets, returns are generally cross-sectionally dependent. This dependence

is usually modelled using the exposure of assets to some common return factors, such as the

Fama-French factors. In this return factor model (R-FM), the total volatility of an asset

return can be decomposed into two parts: a component due to the exposure to the common

return factors (the systematic volatility), and a residual component termed the idiosyncratic

volatility (IdioVol). These two components of the volatility of returns are the most popular

measures of the systematic risk and idiosyncratic risk of an asset.

Idiosyncratic volatility is important in economics and finance for several reasons. For

example, when arbitrageurs exploit the mispricing of an individual asset, they are exposed

to the idiosyncratic risk of the asset and not the systematic risk (see, e.g., Campbell, Let-

tau, Malkiel, and Xu (2001)).1 Also, idiosyncratic volatility measures the exposure to the
∗This chapter is co-authored with Ilze Kalnina. We benefited from discussions with Marine Carrasco,

Yoosoon Chang, Valentina Corradi, Russell Davidson, Jean-Marie Dufour, Prosper Dovonon, Kirill Evdokimov,
Sílvia Gonçalves, Peter Hansen, Jean Jacod, Dennis Kristensen, Joon Park, Benoit Perron, and Dacheng Xiu.
We thank seminar participants at University of Amsterdam, Bank of Canada, Concordia, HEC Montreal,
Indiana, LSE, McGill, NC State, Pennsylvania, Surrey, Toulouse, UCL, Warwick, Western Ontario, as well as
participants of various conferences.

1A stock is said to be mispriced with respect to a given model if the expected value of the return on the
stock is not consistent with the model.

1



idiosyncratic risk in imperfectly diversified portfolios. A recent observation is that the Idio-

Vols seem to be strongly correlated in the cross-section of stocks.2 Herskovic, Kelly, Lustig,

and Nieuwerburgh (2016) argue this is due to a common IdioVol factor, which they relate

to household risk. Moreover, cross-sectional dependence in IdioVols is important for option

pricing, see Gourier (2016a).

This paper provides an econometric framework for studying the cross-sectional depen-

dence in the idiosyncratic volatilities using high frequency data. We show that naive esti-

mators, such as covariances and correlations of estimated IdioVols used by several empirical

studies, are substantially biased. The bias arises due to the use of error-laden estimates of

IdioVols. We provide the bias-corrected estimators.

To study idiosyncratic volatilities, we introduce the idiosyncratic volatility factor model

(IdioVol-FM). Just like a return factor model, R-FM, such as the Fama-French model, de-

composes returns into common and idiosyncratic returns, the IdioVol-FM decomposes the

IdioVols into systematic and residual (non-systematic) components. The IdioVol factors may

or may not be related to the return factors. The IdioVol factors can include the volatility

of the return factors, or, more generally, (possibly non-linear) transformations of the spot

covariance matrices of any observable variables, such as the average variance and average

correlation factors of Chen and Petkova (2012). We propose bias-corrected estimators of the

components of the IdioVol-FM model.

We provide the asymptotic theory for this model. For example, it allows us to test whether

the residual (non-systematic) components of the IdioVols exhibit cross-sectional dependence.

This allows us to identify the network of dependencies in the residual IdioVols across stocks.

Our bias-corrected estimators and inference results are an application of a new asymp-

totic theory that we develop for general estimators of quadratic covariation of vector-valued

transformations of spot covariance matrices. This theoretical contribution is of its own inter-

est. An example of alternative applications is the study of cross-sectional dependence of asset

betas. Two features make the development of this asymptotic theory difficult. First, prelimi-

nary estimation of volatility results in first-order biases even in the special case of quadratic

variation of the volatility one stock without any transformations, as in Vetter (2015). Sec-

ond, we consider general nonlinear functionals in multivariate settings, which substantially
2See Connor, Korajczyk, and Linton (2006), Duarte, Kamara, Siegel, and Sun (2014), Herskovic, Kelly,

Lustig, and Nieuwerburgh (2016), and Christoffersen, Fournier, and Jacobs (2018).
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complicates the analysis.

Throughout the paper, we use factors that are specified by the researcher. An example

of our Return Factor Model is the so-called Fama-French factor model, which has three ob-

servable factors, or the CAPM, which has one observable factor (the market portfolio return).

An example of our IdioVol factors is the market volatility, which can be estimated from the

market index. Thus, our setup is different from settings such as PCA where factors are iden-

tified from the cross-section of the assets studied. The treatment of the latter case adds an

additional layer of complexity to the model and is beyond the scope of the current paper.

We apply our methodology to high-frequency data on the 30 Dow Jones Industrial Average

components. We study the IdioVols with respect to two models for asset returns: the CAPM

and the three-factor Fama-French model.3 In both cases, the average pairwise correlation

between the IdioVols is high (0.55). We verify that this dependence cannot be explained

by the missing return factors. This confirms the recent findings of Herskovic, Kelly, Lustig,

and Nieuwerburgh (2016) who use low frequency (daily and monthly) return data. We then

consider the IdioVol-FM. We use two sets of IdioVol factors: the market volatility alone

and the market volatility together with volatilities of nine industry ETFs. With the market

volatility as the only IdioVol factor, the average pairwise correlation between residual (non-

systematic) IdioVols is substantially lower (0.25) than between the total IdioVols. With the

additional nine industry ETF volatilities as IdioVol factors, average correlation between the

residual IdioVols decreases further (to 0.18). However, neither of the two sets of the IdioVol

factors can fully explain the cross-sectional dependence in the IdioVols. We map out the

network of dependencies in residual IdioVols across all stocks.

This paper analyzes cross-sectional dependence in idiosyncratic volatilities. This should

not be confused with the analysis of cross-sectional dependence in total and idiosyncratic

returns. A growing number of papers study the latter question using high frequency data.

These date back to the analysis of realized covariances and their transformations, see, e.g.,

Barndorff-Nielsen and Shephard (2004) and Andersen, Bollerslev, Diebold, and Wu (2006). A

continuous-time factor model for asset returns with observable return factors was first studied

in Mykland and Zhang (2006). Various return factor models with observable factors have been

studied by, among others, Bollerslev and Todorov (2010), Fan, Furger, and Xiu (2016), Li,
3The high frequency Fama-French factors are provided by Aït-Sahalia, Kalnina, and Xiu (2019).
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Todorov, and Tauchen; Li, Todorov, and Tauchen (2017a; 2017b), and Aït-Sahalia, Kalnina,

and Xiu (2019). Emerging literature also studies the cross-sectional dependence in returns

using high-frequency data and latent return factors, see Ait-Sahalia and Xiu; Ait-Sahalia and

Xiu (2019; 2017) and Pelger; Pelger (2019a; 2019b). Importantly, the models in the above

papers are silent on the cross-sectional dependence structure in the IdioVols.

The Realized Beta GARCH model of Hansen, Lunde, and Voev (2014) imposes a struc-

ture on the cross-sectional dependence in IdioVols. This structure is tightly linked with the

return factor model parameters, whereas our stochastic volatility framework allows separate

specification of the return factors and the IdioVol factors.4

Our inference theory is related to several results in the existing literature. First, as

mentioned above, we generalize the result of Vetter (2015). Jacod and Rosenbaum; Jacod

and Rosenbaum (2013; 2015), Li, Todorov, and Tauchen (2016) and Li, Liu, and Xiu (2019)

estimate integrated functionals of volatilities, which includes idiosyncratic volatilities. The

latter problem is simpler than the problem of the current paper in the sense that
√
n-consistent

estimation is possible, and no first-order bias terms due to preliminary estimation of volatilities

arise. The need for a first-order bias correction due to preliminary estimation of volatility has

also been observed in the literature on the estimation of the leverage effect, see Aït-Sahalia,

Fan, and Li (2013), Aït-Sahalia, Fan, Laeven, Wang, and Yang (2017), Kalnina and Xiu (2017)

and Wang and Mykland (2014). The biases due to preliminary estimation of volatility can

be made theoretically negligible when an additional, long-span, asymptotic approximation

is used. This requires the assumption that the frequency of observations is high enough

compared to the time span, see, e.g., Corradi and Distaso (2006), Bandi and Renò (2012), Li

and Patton (2018), and Kanaya and Kristensen (2016).

In the empirical section, we define a network of dependencies using (functions of) quadratic

covariations of IdioVols. This approach can be compared with the network connectedness mea-

sures of Diebold and Yilmaz (2014). The latter measures are based on forecast error variance

decompositions from vector autoregressions. They capture co-movements in forecast errors.

In contrast, we assume a general semimartingale setting, and our framework captures realized

co-movements in idiosyncratic volatilities, while accounting for the measurement errors in

these volatilities.
4In the Beta GARCH model, the IdioVol of a stock is a product of its own (total) volatility, and one minus

the square of the correlation between the stock return and the market return.
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The remainder of the paper is organized as follows. Section 1.2 introduces the model and

the quantities of interest. Section 3.4 describes the identification and estimation. Section 1.4

presents the asymptotic properties of our estimators. Section 1.6 uses high-frequency stock

return data to study the cross-sectional dependence in IdioVols using our framework. Section

1.5 contains Monte Carlo simulations. The Appendix contains all proofs and additional figures.

1.2 Model and Quantities of Interest

We first describe a general factor model for the returns (R-FM), which allows us to de-

fine the idiosyncratic volatility. We then introduce the idiosyncratic volatility factor model

(IdioVol-FM). In this framework, we proceed to define the cross-sectional measures of depen-

dence between the total IdioVols, as well as the residual IdioVols, which take into account the

dependence induced by the IdioVol factors.

We start by introducing some notation. Suppose we have (log) prices on dS assets such

as stocks and on dF observable factors. We stack them into the d-dimensional process Yt =

(S1,t, . . . , SdS ,t, F1,t, . . . , FdF ,t)> where d = dS + dF . The observable factors F1, . . . FdF are

used in the R-FM model below. We assume that all observable variables jointly follow an Itô

semimartingale, i.e., Yt follows

Yt = Y0 +
∫ t

0
bsds+

∫ t

0
σsdWs + Jt, (1.1)

where W is a dW -dimensional Brownian motion (dW ≥ d), σs is a d×dW stochastic volatility

process, and Jt denotes a finite variation jump process. The reader can find the full list

of assumptions in Section 1.4.1. We also assume that the spot covariance matrix process

Ct = σtσ
>
t of Yt is a continuous Itô semimartingale,5

Ct = C0 +
∫ t

0
b̃sds+

∫ t

0
σ̃sdWs. (1.2)

We denote Ct = (Cab,t)1≤a,b≤d. For convenience, we also use the alternative notation CUV,t to

refer to the spot covariance between two elements U and V of Y , and CU,t to refer to CUU,t.

We assume a standard continuous-time factor model for the asset returns.
5Note that assuming that Y and C are driven by the same dW -dimensional Brownian motion W is without

loss of generality provided that d′ is large enough, see, e.g., equation (8.12) of Aït-Sahalia and Jacod (2014).
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Definition (Factor Model for Returns, R-FM). For all 0 ≤ t ≤ T and j = 1, . . . , dS,6

dSj,t = β>j,tdF
c
t + β̃>j,tdF

d
t + dZj,t with

[Zj , F ]t = 0.
(1.3)

In the above, dZj,t is the idiosyncratic return of stock j. The superscripts c and d indicate

the continuous and jump part of the processes, so that βj,t and β̃j,t are the continuous and

jump factor loadings. For example, the k-th component of βj,t corresponds to the time-varying

loading of the continuous part of the return on stock j to the continuous part of the return

on the k-th factor. We set βt = (β1,t, . . . , βdS ,t)> and Zt = (Z1,t, . . . , ZdS ,t)>.

We do not need the return factors Ft to be the same across assets to identify the model,

but without loss of generality, we keep this structure as it is standard in empirical finance.

These return factors are assumed to be observable, which is also standard. For example, in

the empirical application, we use two sets of return factors: the market portfolio and the three

Fama-French factors, which are constructed in Aït-Sahalia, Kalnina, and Xiu (2019).

A continuous-time factor model for returns with observable factors was originally studied

in Mykland and Zhang (2006) in the case of one factor and in the absence of jumps. A

burgeoning literature uses related models to study the cross-sectional dependence of total

and/or idiosyncratic returns, see Section 1.1 for details. This literature does not consider the

cross-sectional dependence in the IdioVols. Below, we use the R-FM to define the IdioVol, and

proceed to study the cross-sectional dependence of IdioVols using the IdioVol Factor Model.

We define the idiosyncratic Volatility (IdioVol) as the spot volatility of the Zj,t process

and denote it by CZj .Notice that the R-FM in (1.3) implies that the factor loadings βt as well

as IdioVol are functions of the total spot covariance matrix Ct. In particular, the vector of

factor loadings satisfies

βjt = (CF,t)−1CFSj ,t, (1.4)
6The quadratic covariation of two vector-valued Itô semimartingales X and Y , over the time span [0, T ], is

defined as

[X,Y ]T = p -lim
M→∞

M−1∑
s=0

(Xts+1 −Xts)(Yts+1 − Yts)
>,

for any sequence t0 < t1 < . . . < tM = T with sup
s

{ts+1 − ts} → 0 as M → ∞, where p-lim stands for the

probability limit.
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for j = 1, . . . , dS , where CF,t denotes the spot covariance matrix of the factors F , which is

the lower dF × dF sub-matrix of Ct; and CFSj,t denotes the covariance of the factors and the

jth stock, which is a vector consisting of the last dF elements of the jth column of Ct. The

IdioVol of stock j is also a function of the total spot covariance matrix Ct,

CZj,t︸ ︷︷ ︸
IdioVol of stock j

= CY j,t︸ ︷︷ ︸
total volatility of stock j

− (CFSj,t)>(CF,t)−1CFSj,t. (1.5)

By the Itô lemma, (1.4) and (1.5) imply that factor loadings and IdioVols are also Itô

semimartingales with their characteristics related to those of Ct.

We now introduce the Idiosyncratic Volatility Factor model (IdioVol-FM). In the IdioVol-

FM, the cross-sectional dependence in the IdioVol shocks can be potentially explained by

certain IdioVol factors. We assume the IdioVol factors are known functions of the matrix

Ct. In the empirical application, we use the market volatility as the IdioVol factor, which

has been used in Herskovic, Kelly, Lustig, and Nieuwerburgh (2016) and Gourier (2016a); we

discuss other possibilities below. We allow the IdioVol factors to be any known functions of

Ct as long as they satisfy a certain polynomial growth condition in the sense of being in the

class G(p) below,

G(p) = {H : H is three-times continuously differentiable and for some K > 0,

‖∂jH(x)‖ ≤ K(1 + ‖x‖)p−j , j = 0, 1, 2, 3}, for some p ≥ 3.
(1.6)

Definition (Idiosyncratic Volatility Factor Model, IdioVol-FM). For all 0 ≤ t ≤ T

and j = 1, . . . , dS, the idiosyncratic volatility CZj follows,

dCZj,t = γ>ZjdΠt + dCresidZj,t with (1.7)

[CresidZj ,Π]t = 0,

where Πt = (Π1t, . . . ,ΠdΠt) is a RdΠ-valued vector of IdioVol factors, which satisfy Πkt =

Πk(Ct) with the function Πk(·) belonging to G(p) for k = 1, . . . , dΠ.

We call the residual term CresidZj,t the residual IdioVol of asset j. Our assumptions imply

that the components of the IdioVol-FM, CZj,t,Πt and CresidZj,t , are continuous Itô semimartin-

gales. We remark that both the dependent variable and the regressors in our IdioVol-FM
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are not directly observable and have to be estimated, and our asymptotic theory takes that

into account. As will see in Section 3.4, this preliminary estimation implies that the naive

estimators of all the dependence measures defined below are biased. One of the contributions

of this paper is to quantify this bias and provide the bias-corrected estimators for all the

quantities of interest.

The class of IdioVol factors permitted by our theory is rather wide as it includes general

non-linear transforms of the spot covolatility process Ct. For example, IdioVol factors can be

linear combinations of the total volatilities of stocks, see, e.g., the average variance factor of

Chen and Petkova (2012). Other examples of IdioVol factors are linear combinations of the

IdioVols, such as the equally-weighted average of the IdioVols, which Herskovic, Kelly, Lustig,

and Nieuwerburgh (2016) denote by the “CIV”. The IdioVol factors can also be the volatilities

of any other observable processes.

Having specified our econometric framework, we now provide the definitions of some

natural measures of dependence for (residual) IdioVols. Their estimation is discussed in

Section 3.4.

Before considering the effect of IdioVol factors by using the IdioVol-FM decomposition,

one may be interested in quantifying the dependence between the IdioVols of two stocks j and

s. A natural measure of dependence is the quadratic-covariation based correlation between

the two IdioVol processes,

Corr (CZj , CZs) = [CZj , CZs]T√
[CZj , CZj ]T

√
[CZs, CZs]T

. (1.8)

Alternatively, one may consider the quadratic covariation [CZj , CZs]T without any normal-

ization. In Section 1.4.4, we use the estimator of the latter quantity to test for the presence

of cross-sectional dependence in IdioVols.

To measure the residual cross-sectional dependence between the IdioVols of two stocks

after accounting for the effect of the IdioVol factors, we use again the quadratic-covariation

based correlation,

Corr
(
CresidZj , CresidZs

)
=

[CresidZj , CresidZs ]T√
[CresidZj , CresidZj ]T

√
[CresidZs , CresidZs ]T

. (1.9)
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In Section 1.4.4, we use the quadratic covariation between the two residual IdioVol processes

[CresidZj , CresidZs ]T without normalization for testing purposes.

We want to capture how well the IdioVol factors explain the time variation of IdioVol of

the jth asset. For this purpose, we use the quadratic-covariation based analog of the coefficient

of determination. For j = 1, . . . , dS ,

R2,IdioV ol-FM
Zj =

γ>Zj [Π,Π]TγZj
[CZj , CZj ]T

. (1.10)

It is interesting to compare the correlation measure between IdioVols in equation (1.8)

with the correlation between the residual parts of IdioVols in (1.9). We consider their differ-

ence,

Corr (CZj , CZs)− Corr
(
CresidZj , CresidZs

)
(1.11)

to see how much of the dependence between IdioVols can be attributed to the IdioVol factors.

In practice, if we compare assets that are known to have positive covolatilities (typically, stocks

have that property), another useful measure of the common part in the overall covariation

between IdioVols is the following quantity,

QIdioV ol-FMZj,Zs =
γ>Zj [Π,Π]TγZs
[CZj , CZs]T

. (1.12)

This measure is bounded by 1 if the covariations between residual IdioVols are nonnegative

and smaller than the covariations between IdioVols, which is what we find for every pair in

our empirical application with high-frequency observations on stock returns.

We remark that our framework can be compared with the following null hypothesis studied

in Li, Todorov, and Tauchen (2016), H0 : CZj,t = aZj + γ>ZjΠt, 0 ≤ t ≤ T. This H0 implies

that the IdioVol is a deterministic function of the factors, which does not allow for an error

term. In particular, this null hypothesis implies R2,IdioV ol-FM
Zj = 1.

1.3 Estimation

We now discuss the problem of the identification and estimation of the quantities of

interest introduced in Section 1.2. We do so by showing that this problem is a special case of
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a more general problem, which is of its own interest, and solving the latter problem.

For the identification, the strategy is to show that each of the quantities of interest

introduced in Section 1.2,

[CZj , CZs]T , Corr (CZj , CZs) , γZj , [CresidZj , CresidZj ]T ,

Corr
(
CresidZj , CresidZs

)
, QIdioV ol-FMZj,Zs , and R2,IdioV ol-FM

Zj ,
(1.13)

for j, s = 1, . . . , dS , can be written as

ϕ ([H1(C), G1(C)]T , . . . , [Hκ(C), Gκ(C)]T ) , (1.14)

where ϕ as well as Hr and Gr, for r = 1, . . . , κ, are known real-valued functions. Each element

in (1.14) is of the form [H(C), G(C)]T , i.e., it is a quadratic covariation between functions

of Ct. [H(C), G(C)]T is observable from continuous-record observations on Y in (1.1), which

means it can be estimated from (discrete) high-frequency observations on Y .

While the identification is relatively simple, the estimation problem has to address the

biases due to preliminary estimation of (idiosyncratic) volatility. To this end, we introduce

two estimators of [H(C), G(C)]T . Section 1.4 derives the joint asymptotic distribution of

several objects of this type, [Hr(C), Gr(C)]T for r = 1, . . . , κ. The asymptotic distribution

of the general estimand in (1.14), and hence of every quantity of interest in equation (1.13),

follows by the Delta method.

We start by discussing the identification of the first estimand in (1.13), which is the

quadratic covariation between jth and sth IdioVol, [CZj , CZs]T . It can be written as [H(C), G(C)]T
if we choose H(Ct) = CZj,t and G(Ct) = CZs,t. By (1.5), both CZj,t and CZs,t are functions

of Ct. Next, consider Corr (CZj , CZs) defined in (1.8). By the same argument, its numerator

and each of the two components in the denominator can be written as [H(C), G(C)]T for

different functions H and G. Therefore, Corr (CZj , CZs) is itself a known function of three

objects of the form [H(C), G(C)]T .

To show that the remaining quantities in (1.13) can also be expressed in terms of objects

of the form [H(C), G(C)]T , note that the IdioVol-FM implies

γZj = ([Π,Π]T )−1 [Π, CZj ]T and [CresidZj , CresidZs ]T = [CZj , CZs]T − γ>Zj [Π,Π]TγZs,
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for j, s = 1, . . . , dS . Since CZj,t, CZs,t and every element in Πt are real-valued functions of Ct,

the above equalities imply that all quantities of interest in (1.13) can be written as real-valued,

known functions of a finite number of quantities of the form [H(C), G(C)]T .

We now turn to the estimation of [H(C), G(C)]T . Suppose we have discrete observations

on Yt over an interval [0, T ]. Denote by ∆n the distance between observations. It is well

known that we can estimate the spot covariance matrix Ct at time (i − 1)∆n with a local

truncated realized volatility estimator,

Ĉi∆n = 1
kn∆n

kn−1∑
m=0

(∆n
i+mY )(∆n

i+mY )>1{‖∆n
i+mY ‖≤χ∆$

n }, (1.15)

where ∆n
i Y = Yi∆n−Y(i−1)∆n

and where kn is the number of observations in a local window.7

Throughout the paper we set Ĉi∆n = (Ĉab,i∆n)1≤a,b≤d.

We propose two estimators for the general quantity [H(C), G(C)]T . The first is a bias-

corrected analog of the definition of quadratic covariation between two Itô processes,

̂[H(C), G(C)]
AN

T = 3
2kn

[T/∆n]−2kn+1∑
i=1

((
H(Ĉ(i+kn)∆n

)−H(Ĉi∆n)
)(
G(Ĉ(i+kn)∆n

)−G(Ĉi∆n)
)

− 2
kn

d∑
g,h,a,b=1

(∂ghH∂abG)(Ĉi∆n)
(
Ĉga,i∆nĈgb,i∆n + Ĉgb,i∆nĈha,i∆n

))
, (1.16)

where the factor 3/2 and the last term correct for the biases arising due to the preliminary

estimation of volatility Ct.

Our second estimator is based on the following equality, which follows by the Itô lemma,

[H(C), G(C)]T =
d∑

g,h,a,b=1

∫ T

0

(
∂ghH∂abG

)
(Ct)C

gh,ab
t dt, (1.17)

where Cgh,abt denotes the covariation between the volatility processes Cgh,t and Cab,t. The

quantity is thus a non-linear functional of the spot covariance and spot volatility of volatility

matrices. Our second estimator is a bias-corrected version of the sample counterpart of the
7It is also possible to define more flexible kernel-based estimators as in Kristensen (2010).
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“linearized” expression in (1.17),

̂[H(C), G(C)]
LIN

T = 3
2kn

d∑
g,h,a,b=1

[T/∆n]−2kn+1∑
i=1

(∂ghH∂abG)(Ĉi∆n)×

(
(Ĉgh,(i+kn)∆n

− Ĉgh,i∆n)(Ĉab,(i+kn)∆n
− Ĉab,i∆n)− 2

kn
(Ĉga,i∆nĈgb,i∆n + Ĉgb,i∆nĈha,i∆n)

)
.

(1.18)

Consistency for a similar estimator has been established by Jacod and Rosenbaum (2015).8

We go beyond their result by deriving the asymptotic distribution and proposing a consistent

estimator of its asymptotic variance.

If we had observations on Ci∆n , the estimators of [H(C), G(C)]T would not need any

bias-correction terms. However, due to the replacement of Ci∆n by its estimate Ĉi∆n , two

types of bias-correction terms arise: a multiplicative correction 3/2, as well as an additive

bias-correction term

− 3
k2
n

[T/∆n]−2kn+1∑
i=1

(
d∑

g,h,a,b=1
(∂ghH∂abG)(Ĉi∆n)

(
Ĉga,i∆nĈgb,i∆n + Ĉgb,i∆nĈha,i∆n

))
. (1.19)

We remark that this additive bias correction term is (up to a scale factor) an estimator of

the asymptotic covariance between the sampling errors embedded in estimators of
∫ T

0 H(Ct)dt

and
∫ T

0 G(Ct)dt defined in Jacod and Rosenbaum (2013).

The two estimators are identical when H and G are linear, for example, when estimating

the covariation between two volatility processes. In the univariate case d = 1, when H(C) =

G(C) = C, our estimator coincides with the volatility of volatility estimator of Vetter (2015),

which was extended to allow for jumps in Jacod and Rosenbaum (2015). Our contribution is

the extension of this theory to the multivariate d > 1 case with nonlinear functionals.
8Jacod and Rosenbaum (2015) derive the probability limit of the following estimator:

3
2kn

d∑
g,h,a,b=1

[T/∆n]−2kn+1∑
i=1

(∂2
gh,abH)(Ĉi∆n)

(
(Ĉ(i+kn)∆n − Ĉi∆n)(Ĉ(i+kn)∆n − Ĉi∆n)−

2
kn

(Ĉga,i∆n Ĉgb,i∆n + Ĉgb,i∆n Ĉha,i∆n)
)
.
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1.4 Asymptotic Properties

In this section, we first present the full list of assumptions for our asymptotic results. We

then state the asymptotic distribution for the general functionals introduced in the previous

section, and develop estimators for the asymptotic variance. Finally, to illustrate the appli-

cation of the general theory, we describe three statistical tests about the IdioVols, which we

later implement in the empirical and Monte Carlo analysis.

1.4.1 Assumptions

Recall that the d-dimensional process Yt represents the (log) prices of stocks, St, and

factors Ft.

Assumption 1. Suppose Y is an Itô semimartingale on a filtered space (Ω,F , (Ft)t≥0,P),

Yt = Y0 +
∫ t

0
bsds+

∫ t

0
σsdWs+

∫ t

0

∫
E
δ(s, z)µ(ds, dz),

whereW is a dW -dimensional Brownian motion (dW ≥ d) and µ is a Poisson random measure

on R+ × E, with E an auxiliary Polish space with intensity measure ν(dt, dz) = dt ⊗ λ(dz)

for some σ-finite measure λ on E. The process bt is Rd-valued optional, σt is Rd × RdW -

valued, and δ = δ(w, t, z) is a predictable Rd -valued function on Ω × R+ × E. Moreover,

‖δ(w, t∧τm(w), z)‖∧1 ≤ Γm(z), for all (w,t,z), where (τm) is a localizing sequence of stopping

times and, for some r ∈ [0, 1], the function Γm on E satisfies
∫
E Γm(z)rλ(dz) <∞. The spot

volatility matrix of Y is then defined as Ct = σtσ
>
t . We assume that Ct is a continuous Itô

semimartingale,9

Ct = C0 +
∫ t

0
b̃sds+

∫ t

0
σ̃sdWs. (1.20)

where b̃ is Rd × Rd-valued optional.

With the above notation, the elements of the spot volatility of volatility matrix and spot
9Note that σ̃s = (σ̃gh,ms ) is (d× d× dW )-dimensional and σ̃sdWs is (d× d)-dimensional with (σ̃sdWs)gh =∑dW

m=1 σ̃
gh,m
s dWm

s .
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covariation of the continuous martingale parts of X and c are defined as follows,

C
gh,ab
t =

dW∑
m=1

σ̃gh,mt σ̃ab,mt , C
′g,ab
t =

dW∑
m=1

σgmt σ̃ab,mt . (1.21)

We assume the following for the process σ̃t:

Assumption 2. σ̃t is a continuous Itô semimartingale with its characteristics satisfying the

same requirements as that of Ct.

Assumption 1 is very general and nests most of the multivariate continuous-time models

used in economics and finance. It allows for potential stochastic volatility and jumps in

returns. Assumption 2 is required to obtain the asymptotic distribution of estimators of the

quadratic covariation between functionals of the spot covariance matrix Ct. It is not needed

to prove consistency. This assumption also appears in Vetter (2015), Kalnina and Xiu (2017)

and Wang and Mykland (2014).

1.4.2 Asymptotic Distribution

We have seen in Section 3.4 that all quantities of interest in (1.13) are functions of multi-

ple objects of the form [H(C), G(C)]T . Therefore, if we can obtain a multivariate asymptotic

distribution for a vector with elements of the form [H(C), G(C)]T , the asymptotic distribu-

tions for all our estimators follow by the delta method. The current section presents this

asymptotic distribution.

Let H1, G1, . . . ,Hκ, Gκ be some arbitrary elements of G(p) defined in equation (1.6). We

are interested in the asymptotic behavior of vectors

(
̂[H1(C), G1(C)]

AN

T , . . . , ̂[Hκ(C), Gκ(C)]
AN

T

)>
and(

̂[H1(C), G1(C)]
LIN

T , . . . , ̂[Hκ(C), Gκ(C)]
LIN

T

)>
.

The following theorem summarizes the joint asymptotic behavior of the estimators.

Theorem 1. Let ̂[Hr(C), Gr(C)]T be either ̂[Hr(C), Gr(C)]
AN

T or ̂[Hr(C), Gr(C)]
LIN

T de-

fined in (1.16) and (1.18), respectively. Suppose Assumption 1 and Assumption 2 hold. Fix

kn = θ∆−1/2
n for some θ ∈ (0,∞) and set (8p− 1)/4(4p− r) ≤ $ < 1

2 . Then, as ∆n → 0,
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∆−1/4
n


̂[H1(C), G1(C)]T − [H1(C), G1(C)]T

. . .

̂[Hκ(C), Gκ(C)]T − [Hκ(C), Gκ(C)]T

 L-s−→MN(0,ΣT ), (1.22)

where ΣT =
(
Σr,s
T

)
1≤r,s≤κ

denotes the asymptotic covariance between the estimators ̂[Hr(C), Gr(C)]T

and ̂[Hs(C), Gs(C)]T . The elements of the matrix ΣT are

Σr,s
T = Σr,s,(1)

T + Σr,s,(2)
T + Σr,s,(3)

T ,

Σr,s,(1)
T = 6

θ3

d∑
g,h,a,b=1

d∑
j,k,l,m=1

∫ T

0

(
∂ghHr∂abGr∂jkHs∂lmGs(Cs)

)[
Ct(gh, jk)Ct(ab, lm)

+ Ct(ab, jk)Ct(gh, lm)
]
dt,

Σr,s,(2)
T = 151θ

140

d∑
g,h,a,b=1

d∑
j,k,l,m=1

∫ T

0

(
∂ghHr∂abGr∂jkHs∂lmGs(Ct)

)[
C
gh,jk
t C

ab,lm
t

+ C
ab,jk
t C

gh,lm
t

]
dt,

Σr,s,(3)
T = 3

2θ

d∑
g,h,a,b=1

d∑
j,k,l,m=1

∫ T

0

(
∂ghHr∂abGr∂jkHs∂lmGs(Ct)

)[
Ct(gh, jk)Cab,lmt

+ Ct(ab, lm)Cgh,jkt + Ct(gh, lm)Cab,jkt + Ct(ab, jk)Cgh,lmt

]
dt,

with

Ct(gh, jk) = Cgj,tChk,t + Cgk,tChj,t.

The convergence in Theorem 1 is stable in law (denoted L-s, see for example Aldous and

Eagleson (1978) and Jacod and Protter (2012)). The limit is mixed gaussian and the precision

of the estimators depends on the paths of the spot covariance and the volatility of volatility

process. The rate of convergence ∆−1/4
n has been shown to be the optimal for volatility of

volatility estimation (under the assumption of no volatility jumps).

The asymptotic variance of the estimators depends on the tuning parameter θ whose

choice may be crucial for the reliability of the inference. We document the sensitivity of the

inference theory to the choice of the parameter θ in a Monte Carlo experiment (see Section
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1.5).

1.4.3 Estimation of the Asymptotic Covariance Matrix

To provide a consistent estimator for the element Σr,s
T of the asymptotic covariance matrix

in Theorem 1, we introduce the following quantities:

Ω̂r,s,(1)
T = ∆n

d∑
g,h,a,b=1

d∑
j,k,l,m=1

[T/∆n]−4kn+1∑
i=1

(
∂ghHr∂abGr∂jkHs∂lmGs(Ĉi∆n)

)
×
[
C̃i∆n(gh, jk)C̃i∆n(ab, lm) + C̃i∆n(ab, jk)C̃i∆n(gh, lm)

]
,

Ω̂r,s,(2)
T =

d∑
g,h,a,b=1

d∑
j,k,l,m=1

[T/∆n]−4kn+1∑
i=1

(
∂ghHr∂abGr∂jkHs∂lmGs(Ĉi∆n)

)[1
2 λ̂

n,gh
i λ̂n,jki λ̂n,abi+2kn λ̂

n,lm
i+2kn

+ 1
2 λ̂

n,ab
i λ̂n,lmi λ̂n,ghi+2kn λ̂

n,jk
i+2kn + 1

2 λ̂
n,ab
i λ̂n,jki λ̂n,ghi+2kn λ̂

n,lm
i+2kn + 1

2 λ̂
n,gh
i λ̂n,lmi λ̂n,abi+2kn λ̂

n,jk
i+2kn

]
,

Ω̂r,s,(3)
T = 3

2kn

d∑
g,h,a,b=1

d∑
j,k,l,m=1

[T/∆n]−4kn+1∑
i=1

(
∂ghHr∂abGr∂jkHs∂lmGs(Ĉi∆n)

)
[
C̃i∆n(gh, jk)λ̂n,abi λ̂n,lmi + C̃i∆n(ab, lm)λ̂n,ghi λ̂n,jki

+ C̃i∆n(gh, lm)λ̂n,abi λ̂n,jki + (C̃i∆n(ab, jk)λ̂n,ghi λ̂n,lmi

]
,

with λ̂n,jki = Ĉn,jki+kn − Ĉ
n,jk
i and C̃i∆n(gh, jk) = (Ĉgj,i∆nĈhk,i∆n + Ĉgk,i∆nĈhj,i∆n).

The following result holds,

Theorem 2. Suppose the assumptions of Theorem 1 hold, then, as ∆n −→ 0

6
θ3 Ω̂r,s,(1)

T
P−→ Σr,s,(1)

T (1.23)
3
2θ [Ω̂r,s,(3)

T − 6
θ

Ω̂r,s,(1)
T ] P−→ Σr,s,(3)

T (1.24)

151θ
140

9
4θ2 [Ω̂r,s,(2)

T + 4
θ2 Ω̂r,s,(1)

T − 4
3Ω̂r,s,(3)

T ] P−→ Σr,s,(2)
T . (1.25)

The estimated matrix Σ̂T is symmetric but is not guaranteed to be positive semi-definite.

By Theorem 1, Σ̂T is positive semi-definite in large samples. An interesting question is the

estimation of the asymptotic variance using subsampling or bootstrap methods, and we leave

it for future research.

Remark 1: Results of Jacod and Rosenbaum (2015) and a straightforward extension of
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Theorem 1 can be used to show that the rate of convergence in equation (1.23) is ∆−1/2
n , and

the rate of convergence in (1.25) is ∆−1/4
n . The rate of convergence in (1.24) can be shown to

be ∆−1/4
n .

Remark 2: In the one-dimensional case (d = 1), much simpler estimators of Σr,s,(2)
T

can be constructed using the quantities λ̂n,jki λ̂n,lmi λ̂n,ghi+kn λ̂
n,xy
i+kn or λ̂n,jki λ̂n,lmi λ̂n,ghi λ̂n,xyi as in

Vetter (2015). However, in the multidimensional case, the latter quantities do not identify

separately the quantity Ct
jk,lm

Ct
gh,xy since the combination Ct

jk,lm
Ct

gh,xy +Ct
jk,gh

Ct
lm,xy +

Ct
jk,xy

Ct
gh,lm shows up in a non-trivial way in the limit of the estimator.

Corollary 3. For 1 ≤ r ≤ κ, let ̂[Hr(C), Gr(C)]T be either ̂[Hr(C), Gr(C)]
AN

T or ̂[Hr(C), Gr(C)]
LIN

T

defined in (1.18) and (1.16), respectively. Suppose the assumptions of theorem 1 hold. Then,

∆−1/4
n Σ̂−1/2

T


̂[H1(C), G1(C)]T − [H1(C), G1(C)]T

...
̂[Hκ(C), Gκ(C)]T − [Hκ(C), Gκ(C)]T

 L−→ N(0, Iκ). (1.26)

In the above, we use the notation L to denote the convergence in distribution and Iκ

the identity matrix of order κ. Corollary 3 states the standardized asymptotic distribution,

which follows directly from the properties of stable-in-law convergence. Similarly, by the delta

method, standardized asymptotic distribution can also be derived for the estimators of the

quantities in (1.13). These standardized distributions allow the construction of confidence in-

tervals for all the latent quantities of the form [Hr(C), Gr(C)]T and, more generally, functions

of these quantities.

1.4.4 Tests

As an illustration of application of the general theory, we provide three tests about the

dependence of idiosyncratic volatility. Our framework allows to test general hypotheses about

the joint dynamics of any subset of the available stocks. The three examples below are stated

for one pair of stocks, and correspond to the tests we implement in the empirical and Monte

Carlo studies.

First, one can test for the absence of dependence between the IdioVols of the returns on
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assets j and s,

H1
0 : [CZj , CZs]T = 0 vs H1

1 : [CZj , CZs]T 6= 0.

The null hypothesis H1
0 is rejected whenever the t-test exceeds the 1 − α/2-quantile of the

standard normal distribution, Z1−α/2,

∆−1/4
n

∣∣∣ ̂[CZj , CZs]T
∣∣∣√

ÂVAR
(
CZj , CZs

) > Z1−α/2.

Second, we can test for all the IdioVol factors Π being irrelevant to explain the dynamics of

IdioVol shocks of stock j,

H2
0 : [CZj ,Π]T = 0 vs H2

1 : [CZj ,Π]T 6= 0.

Under this null hypothesis, the vector of IdioVol factor loadings equals zero, γZj = 0. The

null hypothesis H2
0 is rejected when

∆−1/4
n

(
̂[CZj ,Π]T

)> (
ÂVAR

(
CZj ,Π

))−1 ̂[CZj ,Π]T > X
2
dΠ,1−α, (1.27)

where dΠ denotes the number of IdioVol factors, and where X 2
dΠ,1−α is the (1 − α) quantile

of the X 2
dΠ

distribution. One can of course also construct a t-test for irrelevance of any one

particular IdioVol factor. The final example is a test for absence of dependence between the

residual IdioVols,

H3
0 : [CresidZj , CresidZs ]T = 0 vs H3

1 : [CresidZj , CresidZs ]T 6= 0.

The null can be rejected when the following t-test exceeds the critical value,

∆−1/4
n

∣∣∣ ̂[CresidZj , CresidZs ]
T

∣∣∣√
ÂVAR

(
CresidZj , CresidZs

) > Zα/2. (1.28)
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Each of the above estimators

̂[CZj , CZs]T , ̂[CZj ,Π]T , and
̂[CresidZj , CresidZs ]

T

can be obtained by choosing appropriate pair(s) of transformations H and G in the general

estimator ̂[H(C), G(C)]T , see Section 3.4 for details. Any of the two types of the latter

estimator can be used,

̂[H(C), G(C)]
AN

T or ̂[H(C), G(C)]
LIN

T .

For the first two tests, the expression for the true asymptotic variance, AVAR, is obtained

using Theorem 1 and its estimation follows from Theorem 2. The asymptotic variance in

the third test is obtained by applying the delta method to the joint convergence result in

Theorem 1. The expression for the estimator of the asymptotic variance, ÂVAR, follows from

Theorem 2. Under R-FM and the assumptions of Theorem 1, Corollary 3 implies that the

asymptotic size of the two types of tests for the null hypotheses H1
0 and H2

0 is α, and their

power approaches 1. The same properties apply for the tests of the null hypotheses H3
0 with

our R-FM and IdioVol-FM representations.

Theoretically, it is possible to test for absence of dependence in the IdioVols at each

point in time. In this case the null hypothesis is H1′
0 : [CZj , CZs]t = 0 for all 0 ≤ t ≤ T ,

which is, in theory, stronger than our H1′
0 . In particular, Theorem 1 can be used to set up

Kolmogorov-Smirnov type of tests for H ′10 in the same spirit as Vetter (2015). However, we

do not pursue this direction in the current paper for two reasons. First, the testing procedure

would be more involved. Second, empirical evidence suggests nonnegative dependence between

IdioVols, which means that in practice, it is not too restrictive to assume [CZj , CZs]t ≥ 0 ∀t,

under which H1
0 and H1′

0 are equivalent.

1.5 Monte Carlo

This section investigates the finite sample properties of our estimators and tests. The

data generating process (DGP) is similar to that of Li, Todorov, and Tauchen (2013) and is

constructed as follows. Denote by Y1 and Y2 log-prices of two individual stocks, and by X the

log-price of the market portfolio. Recall that the superscript c indicates the continuous part
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of a process. We assume

dXt = dXc
t + dJ3,t, dXc

t =
√
CX,tdWt,

and, for j = 1, 2,

dYj,t = βtdX
c
t + dỸ c

j,t + dJj,t, dỸ c
j,t =

√
CZj,tdW̃j,t.

In the above, CX is the spot volatility of the market portfolio, W̃1, and W̃2 are Brownian

motions with Corr(dW̃1,t, dW̃2,t) = 0.4, and W is an independent Brownian motion; J1, J2,

and J3 are independent compound Poisson processes with intensity equal to 2 jumps per year

and jump size distribution N(0, 0.022). The beta process is time-varying and is specified as

βt = 0.5 + 0.1 sin(100t).

We next specify the volatility processes. As our building blocks, we first generate four

processes f1, . . . , f4 as mutually independent Cox-Ingersoll-Ross processes,

df1,t = 5(0.09− f1,t)dt+ 0.35
√
f1,t
(
− 0.8dWt +

√
1− 0.82dB1,t

)
,

dfj,t = 5(0.09− fj,t)dt+ 0.35
√
f1,tdBj,t , for j = 2, 3, 4,

where B1, . . . , B4 and independent standard Brownian Motions, which are also independent

from the Brownian Motions of the return Factor Model.10 We use the first process f1 as

the market volatility, i.e., CX,t = f1,t. We use the other three processes f2, f3, and f4 to

construct three different specifications for the IdioVol processes CZ1,t and CZ2,t, see Table 1.4

for details. The common Brownian Motion Wt in the market portfolio price process Xt and

its volatility process CX,t = f1,t generates a leverage effect for the market portfolio. The value

of the leverage effect is −0.8, which is standard in the literature, see Kalnina and Xiu (2017),

Aït-Sahalia, Fan, and Li (2013) and Aït-Sahalia, Fan, Laeven, Wang, and Yang (2017).

We set the time span T equal 1,260 or 2,520 days, which correspond approximately

to 5 and 10 business years. These values are standard in the nonparametric leverage effect

estimation literature (see Aït-Sahalia, Fan, and Li (2013) and Kalnina and Xiu (2017)), where

the rate of convergence is also ∆−1/4. Each day consists of 6.5 trading hours. We consider two

different values for the sampling frequency, ∆n = 1 minute and ∆n = 5 minutes. We follow
10The Feller property is satisfied implying the positiveness of the processes (fj,t)1≤j≤4.
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Li, Todorov, and Tauchen (2016) and set the truncation threshold un in day t at 3σ̂t∆0.49
n ,

where σ̂t is the squared root of the annualized bipower variation of Barndorff-Nielsen and

Shephard (2004). We use 10,000 Monte Carlo replications in all the experiments.

We first investigate the finite sample properties of the estimators under Model 3. The

considered estimands include:

• the IdioVol factor loading of the first stock, γZ1,

• the contribution of the market volatility to the variation of the IdioVol of the first stock

R2,IdioV ol-FM
Z1 ,

• the correlation between the idiosyncratic volatilities of stocks 1 and 2, Corr (CZj , CZs),

• the correlation between residual idiosyncratic volatilities, Corr
(
CresidZj , CresidZs

)
.

The interpretation of simulation results is much simpler when the quantities of interest do

not change across simulations. To achieve that, we generate once and keep fixed the paths of

the processes CX,t and (fj,t)0≤j≤27 and replicate several times the other parts of the DGP. In

Table 1.6, we report the bias and the interquartile range (IQR) of the two type of estimators

for each quantity using 5 minutes data sampled over 10 years. We choose four different values

for the width of the subsamples, which corresponds to θ = 1.5, 2, 2.5 and 3 (recall that the

number of observations in a window is kn = θ/
√

∆n). It seems that larger values of the

parameters produce better results. Next, we investigate how these results change when we

increase the sampling frequency. In Table 1.7, we report the results with ∆n = 1 minute

in the same setting. We note a reduction of the bias and IQR at all levels of significance.

However, the magnitude of the decrease of the IQR is very small. Finally, we conduct the same

experiment using data sampled at one minute over 5 years, see Table 1.8. Despite using more

than twice as many observations than in the first experiment, the precision is not as good. In

other words, increasing the time span is more effective for precision gain than increasing the

sampling frequency. This result is typical for ∆1/4
n -convergent estimators, see, e.g., Kalnina

and Xiu (2017).

Next, we study the empirical rejection probabilities of the three statistical tests as outlined

in Section 1.4.4. The first null hypothesis is the absence of dependence between the IdioVols

(for which we use Model 1), H1
0 : [CZ1, CZ2]T = 0. The second null hypothesis we test is the
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absence of dependence between the IdioVol of the first stock and the market volatility (for

which we use Model 1), H2
0 : [CZ1, CX ]T = 0. The third null hypothesis is the absence of

dependence in the two residual IdioVols (for which we use Model 2), H3
0 : [CresidZ1Z1, C

resid
Z2Z2]T = 0.

The three panels of Table 1.5 contain the empirical rejection probabilities for the three

null hypotheses. We present the results for two sampling frequencies (∆n = 1 minute and

∆n = 5 minutes) and the two type of estimators (AN and LIN). We see that the empirical

rejection probabilities are reasonably close to the nominal size of the test. Neither type of

estimator (AN or LIN) seems to dominate the other. Consistent with the asymptotic theory,

the empirical rejection probabilities of the three tests become closer to the nominal size of the

test when frequency is higher.

1.6 Empirical Analysis

We apply our methods to study the cross-sectional dependence in IdioVol using high

frequency data. One of our main findings is that stocks’ idiosyncratic volatilities co-move

strongly with the market volatility. This is a quite surprising finding. It is of course well

known that the total volatility of stocks moves with the market volatility. However, we stress

that we find that the strong effect is still present when considering the idiosyncratic volatilities.

We use full record transaction prices from NYSE TAQ database for 30 constituents of

the DJIA index over the time period 2003-2012, see Table 1.1. After removing the non-

trading days, our sample contains 2517 days. The selected stocks were the constituents of the

DJIA index in 2007. We also use the high-frequency data on nine industry Exchange-Traded

Funds, ETFs (Consumer Discretionary, Consumer Staples, Energy, Financial, Health Care,

Industrial, Materials, Technology, and Utilities), and the high-frequency size and value Fama-

French factors, see Aït-Sahalia, Kalnina, and Xiu (2019). For each day, we consider data from

the regular exchange opening hours from time stamped between 9:30 a.m. until 4 p.m. We

clean the data following the procedure suggested by Barndorff-Nielsen, Hansen, Lunde, and

Shephard (2008), remove the overnight returns and then sample at 5 minutes. This sparse

sampling has been widely used in the literature because the effect of the microstructure noise

and potential asynchronicity of the data is less important at this frequency, see also Liu,

Patton, and Sheppard (2015).

The parameter choices for the estimators are as follows. Guided by our Monte Carlo
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results, we set the length of window to be approximately one week for the estimators in

Section 3.4 (this corresponds to θ = 2.5 where kn = θ∆−1/2
n is the number of observations

in a window). The truncation threshold for all estimators is set as in the Monte Carlo study

(3σ̂t∆0.49
n where σ̂2

t is the bipower variation).

Figures ?? and ?? contain plots of the time series of the estimated R2
Y j of the return

factor model (R-FM) for each stock.11 Each plot contains monthly R2
Y j from two return

factor models, CAPM and the Fama-French regression with market, size, and value factors.

Figures ?? and ?? show that these time series of all stocks follow approximately the same

trend with a considerable increase in the contribution around the crisis year 2008. Higher R2
Y j

indicates that the systematic risk is relatively more important, which is typical during crises.

R2
Y j is consistently higher in the Fama-French regression model compared to the CAPM

regression model, albeit not by much. We proceed to investigate the dynamic properties of

the panel of idiosyncratic volatilities.

We first investigate the dependence in the (total) idiosyncratic volatilities. Our panel has

435 pairs of stocks. For each pair of stocks, we compute the correlation between the IdioVols,

Corr (CZi, CZj). All pairwise correlations are positive in our sample, and their average is

0.55. Figure 1.1 maps the network of dependency in the IdioVol. We simultaneously test

435 hypotheses of no correlation, and Figure 1.1 connects only the assets, for which the null

is rejected. We account for multiple testing by controlling the false discovery rate at 5%.

Overall, Figure 1.1 shows that the cross-sectional dependence between the IdioVols is very

strong.

Could missing factors in the R-FM provide an explanation? Omitted return factors in the

R-FM are captured by the idiosyncratic returns, and can therefore induce correlation between

the estimated IdioVols, provided these missing return factors have non-negligible volatility of

volatility. To investigate this possibility, we consider the correlations between idiosyncratic

11For the jth stock, our analog of the coefficient of determination in the R-FM is R2
Y j = 1 −

∫ T
0
CZj,tdt∫ T

0
CY j,tdt

.

We estimate R2
Y j using the general method of Jacod and Rosenbaum (2013). The resulting estimator of R2

Y j

requires a choice of a block size for the spot volatility estimation; we choose two hours in practice (the number
of observations in a block, say ln, has to satisfy l2n∆n → 0 and l3n∆n → ∞, so it is of smaller order than the
number of observations kn in our estimators of Section 3.4).
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returns, Corr(Zi, Zj).12 Table 1.2 presents a summary of how estimates Corr(Zi, Zj) are

related to the estimates of correlation in IdioVols, Corr (CZi, CZj). In particular, different

rows in Table 1.2 display average values of Ĉorr (CZi, CZj) among those pairs, for which

Ĉorr(Zi, Zj) is below some threshold. For example, the last-but-one row in Table 1.2 indicates

that there are 56 pairs of stocks with Ĉorr(Zi, Zj) < 0.01, and among those stocks, the

average correlation between IdioVols, Corr (CZi, CZj), is estimated to be 0.579. We observe

that Ĉorr (CZi, CZj) is virtually the same compared to pairs of stocks with high Corr(Zi, Zj).

These results suggest that missing return factors cannot explain dependence in IdioVols for

all considered stocks. This finding is in line with the empirical analysis of Herskovic, Kelly,

Lustig, and Nieuwerburgh (2016) with daily and monthly returns.

To understand the source of the strong cross-sectional dependence in the IdioVols, we

consider the Idiosyncratic Volatility Factor Model (IdioVol-FM) of Section 1.2. We first use

the market volatility as the only IdioVol factor.13 Table 1.3 reports the estimates of the

IdioVol loading (γ̂Zi) and the R2 of the IdioVol-FM (R2,IdioV ol-FM
Zi , see equation (1.10)).

Table 1.3 uses two different definitions of IdioVol, one defined with respect to CAPM, and

a second IdioVol defined with respect to Fama-French three factor model. For every stock,

the estimated IdioVol factor loading is positive, suggesting that the idiosyncratic volatility

co-moves with the market volatility. Next, Figure 1.2 shows the implications for the cross-

section of the one-factor IdioVol-FM when the IdioVol is defined with respect to CAPM.

The average pairwise correlations between the residual IdioVols, Ĉorr (CZi, CZj), decrease to

0.25. However, the market volatility cannot explain all cross-sectional dependence in residual

IdioVols, as evidenced by the remaining links in Figure 1.2.

Finally, we consider an IdioVol-FM with ten IdioVol factors, market volatility and the

volatilities of nine industry ETFs. Figure 1.3 shows the implications for the cross-section of

this ten-factor IdioVol-FM when the IdioVol is defined with respect to CAPM. The average
12Our measure of correlation between the idiosyncratic returns dZi and dZj is

Corr(Zi, Zj) =
∫ T

0 CZiZj,tdt√∫ T
0 CZi,tdt

√∫ T
0 CZj,tdt

, i, j = 1, . . . , dS , (1.29)

where CZiZj,t is the spot covariation between Zi and Zj . Similarly to R2
Y j , we estimate Corr(Zi, Zj) using the

method of Jacod and Rosenbaum (2013).
13We also considered the volatility of size and value Fama-French factors. However, both these factors turned

out to have very low volatility of volatility and therefore did not significantly change the results.

24



pairwise correlations between the residual IdioVols, Ĉorr (CZi, CZj), decrease further to 0.18.

However, significant dependence between the residual IdioVols remains, as evidenced by the

remaining links in Figure 1.2. Our results suggest that there is room for considering the

construction of additional IdioVol factors based on economic theory, for example, along the

lines of the heterogeneous agents model of Herskovic, Kelly, Lustig, and Nieuwerburgh (2016).

1.7 Conclusion

We introduce an econometric framework for analysis of cross-sectional dependence in

the IdioVols of assets using high frequency data. First, we provide bias-corrected estimators

of standard measures of dependence between IdioVols, as well as the associated asymptotic

theory. Second, we study an IdioVol factor model, in which we decompose the variation in

IdioVols into two parts: the variation related to the systematic factors such as the market

volatility, and the residual variation. We provide the asymptotic theory that allows us to

test, for example, whether the residual (non-systematic) components of the IdioVols exhibit

cross-sectional dependence.

To provide the bias-corrected estimators and inference results, we develop a new asymp-

totic theory for general estimators of quadratic covariation of vector-valued (possibly) non-

linear transformations of the spot covariance matrices. This theoretical contribution is of its

own interest, and can be applied in other contexts. For example, our results can be used to

conduct inference for the cross-sectional dependence in asset betas.

We apply our methodology to the 30 Dow Jones Industrial Average components, and

document strong cross-sectional dependence in their idiosyncratic volatilities. We consider

two different sets of idiosyncratic volatility factors, and find that neither can fully account

for the cross-sectional dependence in idiosyncratic volatilities. We map out the network of

dependencies in residual (non-systematic) idiosyncratic volatilities across the stocks.
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Figures and Tables of Chapter 1



Figure 1.1: The network of dependencies in total IdioVols.

The color and thickness of each line is proportional to the estimated value of Corr (CZi, CZj), the quadratic-
covariation based correlation between the IdioVols, defined in equation (1.8) (red and thick lines indicate high
correlation). We simultaneously test 435 null hypotheses of no correlation, and the lines are only plotted when
the null is rejected.
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Figure 1.2: The network of dependencies in residual IdioVols with a single IdioVol factor:
the market variance.

Figure 1.3: The network of dependencies in residual IdioVols with ten IdioVol factors: the
market variance and the variances of nine industry ETFs.

In both figures, the color and thickness of each line is proportional to the estimated value of
Corr

(
CresidZi , CresidZj

)
, the quadratic-covariation based correlation between the IdioVols, defined in (1.9), of

each pair of stocks (red and thick lines indicate high correlation). We simultaneously test 435 null hypotheses
of no correlation, and the lines are only plotted when the null is rejected.
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Figure 1.4: Monthly R2 of two return factor models.

We plot monthly R2 of two return factor models (R̂2
Y j): the CAPM (the blue dotted line) and the Fama-French

three factor model (the red solid line). Stocks are represented by tickers (see Table 1.1 for full stock names).
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Figure 1.5: Monthly R2 of two return factor models (continued).

We plot monthly R2 of two return factor models (R̂2
Y j): the CAPM (the blue dotted line) and the Fama-French

three factor model (the red solid line). Stocks are represented by tickers (see Table 1.1 for full stock names).
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Table 1.1: List of DJIA stocks

Sector Stock Ticker
Financial American International Group, Inc. AIG

American Express Company AXP
Citigroup Inc. C
JPMorgan Chase & Co. JPM

Energy Chevron Corp. CVX
Exxon Mobil Corp. XOM

Consumer Staples Coca Cola Company KO
Altria MO
The Procter & Gamble Company PG
Wal-Mart Stores WMT

Industrials Boeing Company BA
Caterpillar Inc. CAT
General Electric Company GE
Honeywell International Inc HON
3M Company MMM
United Technologies UTX

Technology Hewlett-Packard Company HPQ
International Bus. Machines IBM
Intel Corp. INTC
Microsoft Corporation MSFT

Health Care Johnson & Johnson JNJ
Merck & Co. MRK
Pfizer Inc. PFE

Consumer Discretionary The Walt Disney Company DIS
Home Depot Inc HD
McDonald’s Corporation MCD

Materials Alcoa Inc. AA
E.I. du Pont de Nemours & Company DD

Telecommunications Services AT&T Inc. T
Verizon Communications Inc. VZ

The table lists the stocks used in the empirical application (for the time period 2003-2012). They are the 30
constituents of DJIA in 2007. The first column provides the Global Industry Classification Standard (GICS)
sectors, the second the names of the companies and the third their tickers.
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Table 1.3: Idiosyncratic volatility factor model regression statistics

CAPM FF3 Model
Stock γ̂z R̂2,IdioV ol-FM

Z p-val γ̂z R̂2,IdioV ol-FM
Z p-val

AIG 1.49 0.02 0.093 1.53 0.02 0.085
AXP 3.02 0.27 0.146 2.98 0.27 0.149
C 3.46 0.108 0.007 3.48 0.11 0.007

JPM 2.44 0.20 0.007 2.46 0.21 0.006
CVX 1.08 0.51 0.030 1.07 0.51 0.030
XOM 0.60 0.48 0.044 0.61 0.49 0.043
KO 0.33 0.58 0.012 0.33 0.58 0.011
MO 0.44 0.35 0.001 0.44 0.35 0.001
PG 0.43 0.63 0.001 0.43 0.63 0.002

WMT 0.45 0.58 0.006 0.45 0.56 0.008
BA 0.47 0.42 0.003 0.48 0.44 0.003
CAT 0.69 0.49 0.009 0.69 0.48 0.009
GE 1.14 0.26 0.003 1.15 0.26 0.002
HON 0.53 0.44 0.014 0.53 0.43 0.014
MMM 0.39 0.55 0.000 0.38 0.54 0.000
UTX 0.50 0.52 0.003 0.50 0.53 0.004
HPQ 0.65 0.33 0.004 0.66 0.34 0.004
IBM 0.35 0.48 0.011 0.35 0.47 0.012
INTC 0.46 0.46 0.003 0.46 0.46 0.003
MSFT 0.68 0.52 0.008 0.67 0.51 0.010
JNJ 0.41 0.68 0.007 0.40 0.67 0.007
MRK 0.54 0.32 0.001 0.54 0.32 0.001
PFE 0.43 0.34 0.002 0.43 0.34 0.001
DIS 0.57 0.48 0.001 0.58 0.49 0.001
HD 0.66 0.45 0.010 0.66 0.45 0.010
MCD 0.29 0.29 0.003 0.29 0.29 0.003
AA 3.03 0.41 0.019 3.04 0.42 0.018
DD 0.61 0.59 0.001 0.61 0.59 0.001
T 0.76 0.45 0.003 0.76 0.44 0.003
VZ 0.54 0.55 0.000 0.54 0.54 0.001

Estimates of the IdioVol factor loading (γ̂Z , see equation (1.7)), and the contribution of the market volatility
to the variation in the IdioVols (R̂2,IdioV ol-FM

Z , see equation (1.10)). The table considers two R-FMs: the left
panel defines the IdioVol with respect to CAPM, and the right panel defines the IdioVol with respect to the
three-factor Fama-French model. In both cases, the market volatility is the only IdioVol factor. P-val is the
p-value of the test of the absence of dependence between the IdioVol and the market volatility for a given
individual stock, see equation (1.27).
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Table 1.4: Monte Carlo factors specification

CZ1,t CZ2,t

Model 1 0.1 + 1.5f2,t 0.1 + 1.5f3,t
Model 2 0.1 + 0.6cXX,t + 0.4f2,t 0.1 + 0.5cXX,t + 0.5f3,t
Model 3 0.1 + 0.45cXX,t + f2,t + 0.4f4,t 0.1 + 0.35cXX,t + 0.3f3,t + 0.6f4,t

floatfootDifferent specifications for the Idiosyncratic Volatility processes CZ1,t and CZ2,t.

Table 1.5: Size and power of the different tests.

∆n = 5 minutes ∆n = 1 minute
θ = 1.5 θ = 2.0 θ = 2.5 θ = 1.5 θ = 2.0 θ = 2.5

AN LIN AN LIN AN LIN AN LIN AN LIN AN LIN

Panel A : H1
0 : [CZ1, CZ2]T = 0, Model 1

α = 10% 9.7 10.6 10.6 12.6 9.7 10.3 10.2 9.7 10.0 10.2 9.8 10.2
α = 5% 4.7 5.1 4.5 5.3 4.8 5.6 5.3 5.3 5.2 5.3 4.9 5.1
α = 1% 0.9 1.1 0.9 1.2 0.9 1.1 1.1 1.1 1.2 1.1 1.0 1.0

Panel B : H2
0 : [CZ1, CX ]T = 0, Model 1

α = 10% 12.1 10.2 10.0 10.6 9.8 11.0 11.0 10.4 10.3 10.4 10.4 10.4
α = 5% 6.2 5.0 4.5 5.2 4.6 5.4 5.5 5.4 5.2 5.1 5.2 5.3
α = 1% 1.5 1.0 0.8 1.0 0.9 1.2 1.1 1.1 1.0 0.9 0.8 1.0

Panel C : H3
0 : [CresidZ1Z1, C

resid
Z2Z2]T = 0, Model 2

α = 10% 10.0 10.1 12.1 10.8 9.9 12.6 10.1 10.3 10.6 11.3 10.1 11.4
α = 5% 5.0 6.3 5.1 6.3 5.1 6.7 5.5 5.5 5.3 5.9 5.2 6.0
α = 1% 1.1 1.5 0.8 1.6 1.1 1.4 1.1 1.2 1.3 1.3 1.3 1.5

Panel A contains the empirical rejection probabilities of the test of absence of dependence between IdioVols.
Panel B contains the empirical rejection probabilities of the test of absence of dependence between the Id-
ioVol and the market volatility. Panel C contains the empirical rejection probabilities of the test absence of
dependence between residual IdioVols. T = 10 years. α denotes the nominal size of the test.
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Table 1.6: Finite sample properties of our estimators using 10 years of data sampled at 5
minutes

AN LIN
θ̂ 1.5 2 2.5 3 1.5 2 2.5 3

Median Bias
γ̂Z1 -0.047 -0.025 -0.011 -0.003 -0.006 0.001 0.009 0.015

R̂2,IdioV ol-FM
Z1 0.176 0.130 0.103 0.085 0.181 0.140 0.112 0.092

Ĉorr (CZ1, CZ2) -0.288 -0.212 -0.163 -0.133 -0.249 -0.190 -0.146 -0.120

Ĉorr
(
CresidZ1 , CresidZ2

)
-0.189 -0.113 -0.064 -0.034 -0.150 -0.091 -0.047 -0.021

IQR
γ̂Z1 0.222 0.166 0.138 0.121 0.226 0.168 0.139 0.122

R̂2,IdioV ol-FM
Z1 0.210 0.188 0.172 0.152 0.181 0.166 0.152 0.140

Ĉorr (CZ1, CZ2) 0.404 0.325 0.263 0.223 0.338 0.283 0.237 0.205

Ĉorr
(
CresidZ1 , CresidZ2

)
0.456 0.384 0.315 0.272 0.388 0.337 0.285 0.250

The true values are γZ1 = 0.450, R2,IdioV ol-FM
Z1 = 0.342, Corr (CZ1, CZ2) = 0.523, Corr

(
CresidZ1 , CresidZ2

)
=

0.424. Model 3.
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Table 1.7: Finite sample properties of our estimators using 10 years of data sampled at 1
minute.

AN LIN
θ̂ 1.5 2 2.5 3 1.5 2 2.5 3

Median Bias
γ̂Z1 -0.022 -0.012 -0.003 0.004 -0.003 -0.000 0.006 0.012

R̂IdioV ol-FMZ1 0.107 0.091 0.073 0.056 0.113 0.095 0.075 0.058

Ĉorr (CZ1, CZ2) -0.147 -0.104 -0.073 -0.048 -0.133 -0.097 -0.067 -0.042

Ĉorr
(
CresidZ1 , CresidZ2

)
-0.135 -0.086 -0.058 -0.039 -0.119 -0.078 -0.052 -0.032

IQR
γ̂Z1 0.156 0.112 0.088 0.075 0.157 0.112 0.088 0.075

R̂IdioV ol-FMZ1 0.201 0.146 0.118 0.100 0.184 0.138 0.113 0.096

Ĉorr (CZ1, CZ2) 0.340 0.238 0.184 0.150 0.309 0.226 0.177 0.145

Ĉorr
(
CresidZ1 , CresidZ2

)
0.417 0.291 0.228 0.184 0.378 0.274 0.217 0.177

The true values are γZ1 = 0.450, R2,IdioV ol-FM
Z1 = 0.336, Corr (CZ1, CZ2) = 0.514, Corr

(
CresidZ1 , CresidZ2

)
=

0.408. Model 3.
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Table 1.8: Finite sample properties of our estimators using 5 years of data sampled at 1
minute.

AN LIN
θ̂ 1.5 2 2.5 3 1.5 2 2.5 3

Median Bias
γ̂Z1 -0.019 -0.011 -0.007 0.000 -0.001 -0.001 0.002 0.008

R̂2,IdioV ol-FM
Z1 0.115 0.096 0.081 0.069 0.119 0.100 0.084 0.071

Ĉorr (CZ1, CZ2) -0.168 -0.101 -0.064 -0.038 -0.149 -0.092 -0.057 -0.033

Ĉorr
(
CresidZ1 , CresidZ2

)
-0.141 -0.079 -0.035 -0.007 -0.127 -0.067 -0.029 -0.001

IQR
γ̂Z1 0.215 0.159 0.128 0.110 0.216 0.158 0.129 0.110

R̂2,IdioV ol-FM
Z1 0.282 0.204 0.168 0.144 0.260 0.194 0.161 0.139

Ĉorr (CZ1, CZ2) 0.472 0.337 0.263 0.213 0.436 0.319 0.252 0.206

Ĉorr
(
CresidZ1 , CresidZ2

)
0.541 0.412 0.324 0.266 0.510 0.391 0.311 0.256

The true values are γZ1 = 0.450, R2,IdioV ol-FM
Z1 = 0.35, Corr (CZ1, CZ2) = 0.517, Corr (CZ1, CZ2) = 0.417.

Model 3.
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Appendix for Chapter 1 (A)

Sections A1, A2, and A3 contain all the proofs.

A1 Proof of Theorem 1

We start by introducing some notation. Our notation is similar to that of the proofs of Jacod and
Rosenbaum (2015) whenever possible.

A1.1 Notation

Throughout, we denote by K a generic constant, which may change from line to line. When it
depends on a parameter p, we use the notation Kp instead. We let by convention

∑a′

i=a = 0 when
a > a′.
By the usual localization argument, there exists a π-integrable function J on E and a constant such
that the stochastic processes in (1.20) and (1.21) satisfy

‖b‖, ‖b̃‖, ‖c‖, ‖c̃‖, J ≤ A, ‖δ(w, t, z)‖r ≤ J(z). (C.1)

For any càdlàg bounded process Z, we set

ηt,s(Z) =
√

E
(

sup
0<u≤s

‖Zt+u − Zt‖2|Fni
)
, and

ηni,j(Z) =
√
E
(

sup
0≤u≤j∆n

‖Z(i−1)∆n+u − Z(i−1)∆n
‖2|Fni

)
.

For convenience, we decompose Yt as

Yt = Y0 + Y ′t +
∑
s≤t

∆Ys.
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where Y ′t =
∫ t

0 b
′

sds+
∫ t

0 σsdWs and b′t = bt −
∫
δ(t, z)1{‖δ(t,z)‖≤1}π(dz).

Let Ĉ ′ni be the local estimator of the spot variance of the unobservable process Y ′, that is

Ĉ ′ni = 1
kn∆n

kn−1∑
u=0

(∆n
i+uY

′)(∆n
i+uY )′> = (Ĉ ′n,ghi )1≤g,h≤d. (C.2)

There is no jump truncation applied in the definition of Ĉ ′ni since the process Y ′ is continuous. Hence,
it is more convenient to work with Ĉ ′ni rather than Ĉni (defined in (1.15)). Let’s also define

αni = (∆n
i Y
′)(∆n

i Y
′)> − Cni ∆n, νni = Ĉ

′n
i − Cni , and λni = Ĉ

′n
i+kn − Ĉ

′n
i , (C.3)

which satisfy

νni = 1
kn∆n

kn−1∑
j=0

(αni+j + (Cni+j − Cni )∆n) and λni = νi+kn − νni + ∆n(Cni+kn − C
n
i ). (C.4)

The following multidimensional quantities will be used in the sequel

ζ(1)ni = 1
∆n

∆n
i Y
′(∆n

i Y
′)> − Cni−1, ζ(2)ni = ∆n

i c,

ζ ′(u)ni = E(ζ(u)ni |Fni−1), ζ ′′(u)ni = ζ(u)ni − ζ ′(u)ni ,with ζr(u)ni =
(
ζr(u)n,ghi

)
1≤g,h≤d

.

We also define, for m ∈ {0, . . . , 2kn − 1} and j, l ∈ Z,

ε(1)nm =

−1 if 0 ≤ m < kn

+1 if kn ≤ m < 2kn,
, ε(2)nm =

2kn−1∑
q=m+1

ε(1)nq = (m+ 1) ∧ (2kn −m− 1),

For any u, v,m, u′, v′, we set

znu,v =

1/∆n if u = v = 1

1 otherwise,

λ(u, v;m)nj,l = 3
2k3
n

(l−m−1)∨(2kn−m−1)∑
q=0∨(j−m)

ε(u)nq ε(u)nq+m, λ(u, v)nm = λ(u, v;m)n0,2kn ,

M(u, v;u′, v′)n = znu,vz
n
u′,v′

2kn−1∑
m=1

λ(u, v)nmλ(u′, v′)nm.
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Additionally, set

A11(H, gh, u;G, ab, v)nT = 3
2k3
n

[T/∆n]∑
i=2kn

( 2kn−1∑
j=0

ε(u)nj ε(v)nj
)

(∂ghH∂abG)(Cni−2kn)ζ(u)n,ghi ζ(v)n,abi

= λ(u, v)n0
[T/∆n]∑
i=2kn

(∂ghH∂abG)(Cni−2kn)ζ(u)n,ghi ζ(v)n,abi , (C.5)

and

A12(H, gh, u;G, ab, v)nT = 3
2k3
n

[T/∆n]∑
i=2kn

(∂ghH∂abG)(Cni−2kn)
(i−1)∧(2kn−1)∑

m=1

(2kn−m−1)∑
j=0

ε(u)nj ε(v)nj+m

× ζgh(u)ni−mζab(v)ni .

(C.6)

A1.2 Auxiliary Results

We provide some useful theorems and lemmas here, which are used to prove Theorem 1. These
theorems and lemmas are proved in Appendix A3 below.

Theorem 1. Let ̂[H(C), G(C)]
LIN ′

T and ̂[H(C), G(C)]
AN ′

T be the infeasible estimators obtained by
replacing Ĉni by Ĉ ′n

i in the definition of ̂[H(C), G(C)]
LIN

T and ̂[H(C), G(C)]
AN

T in (1.18) and (1.16).
As long as (8p− 1)/4(4p− r) ≤ $ < 1

2 , we have

∆−1/4
n

(
̂[H(C), G(C)]

LIN

T − ̂[H(C), G(C)]
LIN ′

T

)
P−→ 0

and ∆−1/4
n

(
̂[H(C), G(C)]

AN

T − ̂[H(C), G(C)]
AN ′

T

)
P−→ 0. (C.7)

Theorem 1 allows, in particular, to focus on the derivation of the asymptotic distributions of ̂[H(C), G(C)]
LIN ′

T

and ̂[H(C), G(C)]
AN ′

T . The next theorem connects the two estimators that we have introduced. To
state the theorem, define

̂[H(C), G(C)]
A

T = 3
2kn

d∑
g,h,a,b=1

[T/∆n]−2kn+1∑
i=1

((
∂ghH∂abG

)
(Cni )

[
(Ĉ

′n,gh
i+kn − Ĉ

′n,gh
i )(Ĉ

′n,ab
i+kn − Ĉ

′n,ab
i )

− 2
kn

(Ĉ
′n,ga
i Ĉ

′n,hb
i + Ĉ

′n,gb
i Ĉ

′n,ha
i )

])
.

with Cni = C(i−1)∆n
, and the superscript A stands for “approximated". For simplicity, we do not index

the above quantity by a prime although it depends on Ĉ ′n
i instead of Ĉni .
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Theorem 2. Under the assumptions of Theorem 1, we have

∆−1/4
n

(
̂[H(C), G(C)]

LIN ′

T − ̂[H(C), G(C)]
A

T

)
P−→ 0 and

∆−1/4
n

(
̂[H(C), G(C)]

AN ′

T − ̂[H(C), G(C)]
A

T

)
P−→ 0. (C.8)

Theorem 2 shows that the two estimators ̂[H(C), G(C)]
LIN ′

T and ̂[H(C), G(C)]
AN ′

T can be approximated
by a certain quantity with an error of approximation of order smaller than ∆−1/4

n .
Now, we decompose the approximated estimator as follows

̂[H(C), G(C)]
(A)
T = ̂[H(C), G(C)]

(A1)
T − ̂[H(C), G(C)]

(A2)
T , (C.9)

with

̂[H(C), G(C)]
(A1)
T = 3

2kn

d∑
g,h,a,b=1

[T/∆n]−2kn+1∑
i=1

(
∂ghH∂abG

)
(Cni−1)(Ĉ

′n,gh
i+kn − Ĉ

′n,gh
i )(Ĉ

′n,ab
i+kn − Ĉ

′n,ab
i ),

and

̂[H(C), G(C)]
(A2)
T = 3

k2
n

d∑
g,h,a,b=1

[T/∆n]−2kn+1∑
i=1

(
∂ghH∂abG

)
(Ĉ

′n
i )(Ĉ

′n,ga
i Ĉ

′n,hb
i + Ĉ

′n,gb
i Ĉ

′n,ha
i ).

The following theorem holds:

Theorem 3. Under the assumptions of Theorem 1, we have

1
∆1/4
n

(
̂[H(C), G(C)]

(A1)
T −

d∑
g,h,a,b=1

2∑
u,v=1

A11(H, gh, u;G, ab, v)nT +A12(H, gh, u;G, ab, v)nT

+A12(G, ab, v;H, gh, u)nT

)
P=⇒ 0.

Lemma 1. For any càdlàg bounded process Z, for all t, s > 0, j, k ≥ 0, set ηt,s = ηt,s(Z). Then,

∆nE

( [t/∆n]∑
i=1

ηi,kn

)
−→ 0, ∆nE

( [t/∆n]∑
i=1

ηi,2kn

)
−→ 0,

E

(
ηi+j,k|Fni

)
≤ ηi,j+k and ∆nE

( [t/∆n]∑
i=1

ηi,4kn

)
−→ 0.

Lemma 2. Let Z be a continuous Itô process with drift bZt and spot variance process CZt , and set
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ηt,s = ηt,s(bZ , cZ). Then, the following bounds hold:

∣∣∣E(Zt
∣∣∣F0)− tbZ0

∣∣∣ ≤ Ktη0,t∣∣∣E(ZjtZkt − tC
Z,jk
0

∣∣∣F0)
∣∣∣ ≤ Kt3/2(

√
∆n + η0,t)∣∣∣E((ZjtZkt − tCZ,jk0 )(CZ,lmt − CZ,lm0 )
∣∣∣F0
)∣∣∣ ≤ Kt2∣∣∣E(ZjtZkt ZltZmt

∣∣∣F0)−∆2
n(CZ,jk0 CZ,lm0 + CZ,jl0 CZ,km0 + CZ,jm0 CZ,kl0 )

∣∣∣ ≤ Kt5/2∣∣∣E(ZjtZkt Zlt
∣∣∣F0)

∣∣∣ ≤ Kt2∣∣∣E(
6∏
l=1

Zjlt

∣∣∣F0)− ∆3
n

6
∑
l<l′

∑
k<k′

∑
m<m′

C
Z,jljl′
0 C

Z,jkjk′
0 C

Z,jmjm′
0

∣∣∣ ≤ Kt7/2
E
(

sup
w∈[0,s]

∥∥∥Zt+w − Zt∥∥∥q∣∣∣Ft) ≤ Kqs
q/2, and

∥∥∥E(Zt+s − Zt)∣∣∣Ft∥∥∥ ≤ Ks. (C.10)

(C.11)

Lemma 3. Let ζni be a r-dimensional Fni -measurable process satisfying ‖E(ζni |Fni−1)‖ ≤ L′ and
E
(
‖ζni ‖q

∣∣∣Fni−1

)
≤ Lq. Also, let ϕni be a real-valued Fni -measurable process with E

(
‖ϕni+j−1‖q

∣∣∣Fni−1

)
≤

Lq for q ≥ 2 and 1 ≤ j ≤ 2kn − 1. Then,

E

(∥∥∥∥∥
2kn−1∑
j=1

ϕni+j−1ζ
n
i+j

∥∥∥∥∥
q∣∣∣∣∣Fni−1

)
≤ KqL

q
(
Lqk

q/2
n + L′qkqn

)
.

Lemma 4. Under the assumptions of Theorem 1, we have:∣∣∣∣∣E(λn,jki λn,lmi λn,ghi+2knλ
n,ab
i+2kn

∣∣∣∣∣Fni )− 4
k2
n

(
Cn,gai Cn,hbi + Cn,gbi Cn,hai )(Cn,jli Cn,kmi + Cn,jmi Cn,kli

)
− 4∆n

3

(
Cn,jli Cn,kmi + Cn,jmi Cn,kli

)
C
n,gh,ab

i − 4∆n

3

(
Cn,gai Cn,hbi − Cn,gbi Cn,hai

)
C
n,jk,lm

i

− 4(kn∆n)2

9 C
n,gh,ab

i C
n,jk,lm

i

∣∣∣∣∣ ≤ K∆n(∆1/8
n + ηni,4kn

)
.

Lemma 5. Under the assumptions of Theorem 1, we have:

∣∣∣E(νn,jki νn,lmi νn,ghi

∣∣∣∣∣Fni )∣∣∣ ≤ K∆3/4
n

(
∆1/4
n + ηni,kn

)
, (C.12)

∣∣∣E(νn,jki νn,lmi

(
cn,ghi+kn − c

n,gh
i

)∣∣∣∣∣Fni )∣∣∣ ≤ K∆3/4
n

(
∆1/4
n + ηni,kn

)
, (C.13)

∣∣∣E(νn,jki

(
cn,lmi+kn − c

n,lm
i

)(
cn,ghi+kn − c

n,gh
i

)∣∣∣∣∣Fni )∣∣∣ ≤ K∆3/4
n

(
∆1/4
n + ηni,kn

)
, (C.14)
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∣∣∣E(νn,jki λn,lmi λn,ghi

∣∣∣∣∣Fni )∣∣∣ ≤ K∆3/4
n

(
∆1/4
n + ηni,2kn

)
, (C.15)

∣∣∣E(λn,jki λn,lmi λn,ghi

∣∣∣∣∣Fni )∣∣∣ ≤ K∆3/4
n

(
∆1/4
n + ηni,2kn

)
. (C.16)

Lemma 6. Under the assumptions of Theorem 1, we have:

1
∆1/4
n

[T/∆n]∑
i=2kn

(∂ghH∂abG)(Cni−2kn)ρgh(u, v)ni ζ
′

ab(v)ni
P=⇒ 0, ∀ (u, v) (C.17)

1
∆1/4
n

(
A11(H, gh, u;G, ab, v)−

∫ T

0
(∂ghH∂abG)(Ct)C

gh,ab

t dt
)

P=⇒ 0 when (u, v) = (2, 2) (C.18)

1
∆1/4
n

(
A11(H, gh, u;G, ab, v)− 3

θ2

∫ T

0
(∂ghH∂abG)(Ct)(Cgat Chbt + Cgbt C

ha
t )dt

)
P=⇒ 0 (C.19)

when (u, v) = (1, 1),
1

∆1/4
n

A11(H, gh, u;G, ab, v) P=⇒ 0 when (u, v) = (1, 2), (2, 1) (C.20)

A1.3 Return to the Proof of Theorem 1

We now continue the proof of Theorem 1. By Theorem 3, we have

1
∆1/4
n

(
̂[H(C), G(C)]

(A1)
T −

d∑
g,h,a,b=1

2∑
u,v=1

A11(H, gh, u;G, ab, v)nT +A12(H, gh, u;G, ab, v)nT

+A12(G, ab, v;H, gh, u)nT

)
P=⇒ 0.

Recalling the definition of A12(H, gh, u;G, ab, v)nT from C.6, Lemma 6 implies that

1
∆1/4
n

(
̂[H(C), G(C)]

(A)
T − [H(C), G(C)]T −

3
2k3
n

d∑
g,h,a,b

2∑
u,v=1

[T/∆n]∑
i=2kn[

(∂ghH∂abG)(Cni−2kn)ρgh(u, v)ni ζ
′′

ab(v)ni + (∂abH∂ghG)(Cni−2kn)ρab(v, u)ni ζ
′′

gh(v)ni
])

P=⇒ 0. (C.21)

Next, define

ξ(H, gh, u;G, ab, v)ni = 1
∆1/4
n

(∂ghH∂abG)(Cni−2kn)ρgh(u, v)ni ζ ′′ab(v)ni ,

Z(H, gh, u;G, ab, v)nt = ∆1/4
n

[t/∆n]∑
i=2kn

ξ(H, gh, u;G, ab, v)ni .
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Notice that (C.21) implies

1
∆1/4
n

(
̂[H(C), G(C)]

(A)
T − [H(C), G(C)]T

)
L=

d∑
g,h,a,b=1

2∑
u,v=1

1
∆1/4
n

(
Z(H, gh, u;G, ab, v)nT

+ Z(H, ab, v;G, gh, u)nT

)
. (C.22)

Next, observe that to derive the asymptotic distribution of
(

̂[H1(C), G1(C)]
(A)
T , . . . , ̂[Hκ(C), Gκ(C)]

(A)
T

)
,

it suffices to study the joint asymptotic behavior of the family of processes 1
∆1/4
n

Z(H, gh, u;G, ab, v)nT .
Notice that ξ(H, gh, u;G, ab, v)ni are martingale increments relative to the discrete filtration (Fni ).
Therefore, to obtain the joint asymptotic distribution of 1

∆1/4
n

Z(H, gh, u;G, ab, v)nT , it is enough to
prove the following three properties:

A
(

(H, gh, u;G, ab, v), (H ′, g′h′, u′;G′, a′b′, v′)
)n
t

=
[t/∆n]∑
i=2kn

E(ξ(H, gh, u;G, ab, v)ni ξ(H ′, g′h′, u′;G′, a′b′, v′)ni |Fni−1)

P=⇒ A
(

(H, gh, u;G, ab, v), (H ′, g′h′, u′;G′, a′b′, v′)
)
t
, (C.23)

[t/∆n]∑
i=2kn

E
(∣∣∣ξ(H, gh, u;G, ab, v

)n
i

∣∣∣4∣∣∣Fni−1) P=⇒ 0, and (C.24)

B(N ;H, gh, u;G, ab, v)nt :=
[t/∆n]∑
i=2kn

E
(
ξ(H, gh, u;G, ab, v)ni ∆n

i N |Fni−1

)
P=⇒ 0, (C.25)

for all t > 0, all (H, gh, u;G, ab, v), (H ′, g′h′, u′;G′, a′b′, v′) and all martingales N which are either
bounded and orthogonal to W , or equal to one component W j .
Using the polynomial growth assumption imposed on Hr and Gr, (C.24) and (C.25) can be proved
by a simple extension of (B.105) and (B.106) in Aït-Sahalia and Jacod (2014) to handle multivariate
processes.
Next, define

V a
′b′

ab (v, v′)t =


(Caa′

t Cbb
′

t + Cab
′

t Cba
′

t ) if (v, v′) = (1, 1)

C
ab,a′b′

t if (v, v′) = (2, 2)

0 otherwise,

and

V
g′h′

gh (u, u′)t =


(Cgg

′

t Chh
′

t + Cgh
′

t Chg
′

t ) if (u, u′) = (1, 1)

C
gh,g′h′

t if (u, u′) = (2, 2)

0 otherwise.
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Using again the polynomial growth assumption on Hr and Gr, we can show that,

A
(

(H, gh, u;G, ab, v),(H ′, g′h′, u′;G′, a′b′, v′)
)
t

=

M(u, v;u′, v′)
∫ t

0
(∂ghH∂abG∂g′h′H∂a′b′G)(Cs)V a

′b′

ab (v, v′)sV
g′h′

gh (u, u′)sds,

with

M(u, v;u′, v′) =



3/θ3 if (u, v;u′, v′) = (1, 1; 1, 1)

3/4θ if (u, v;u′, v′) = (1, 2; 1, 2), (2, 1; 2, 1)

151θ/280 if (u, v;u′, v′) = (2, 2; 2, 2)

0 otherwise.

Therefore, we have
A
(

(H, gh, u;G, ab, v), (H ′, g′h′, u′;G′, a′b′, v′)
)
T
=



3
ν3

∫ T
0 (∂ghH∂abG∂g′h′H ′∂a′b′G′)(Ct)(Cgg

′

t Chh
′

t + Cgh
′

t Chg
′

t )(Caa′

t Cbb
′

t + Cab
′

t Cba
′

t )dt,

if (u, v;u′, v′) = (1, 1; 1, 1)
3
4ν
∫ T

0 (∂ghH∂abG∂g′h′H ′∂a′b′G′)(Ct)(Cgg
′

t Chh
′

t + Cgh
′

t Chg
′

t )Cab,a
′b′

t dt, if (u, v;u′, v′) = (1, 2; 1, 2)
3
4ν
∫ T

0 (∂ghH∂abG∂g′h′H ′∂a′b′G′)(Ct)(Caa
′

t Cbb
′

t + Cab
′

t Cba
′

s )tgh,g
′h′

s dt, if (u, v;u′, v′) = (2, 1; 2, 1)
151ν
280

∫ T
0 (∂ghH∂abG∂g′h′H ′∂a′b′G′)(Ct)C

ab,a′b′

s C
gh,g′h′

t dt, if (u, v;u′, v′) = (2, 2; 2, 2)

0 otherwise.

Using (C.22), we deduce that the asymptotic covariance between ̂[Hr(C), Gr(C)]
(A)
T and ̂[Hs(C), Gs(C)]

(A)
T

is given by

d∑
g,h,a,b=1

d∑
g′,h′,a′,b′=1

2∑
u,v,u′,v′=1

(
A
(

(Hr, gh, u;Gr, ab, v), (Hs, g
′h′, u′;Gs, a′b′, v′)

)
T

+A
(

(Hr, gh, u;Gr, ab, v), (Hs, a
′b′, v′;Gs, g′h′, u′)

)
T

+A
(

(Hr, ab, v;Gr, gh, u), (Hs, g
′h′, u′;Gs, a′b′, v′)

)
T

+A
(

(Hr, ab, v;Hr, gh, u), (Hs, a
′b′, v′;Gs, g′h′, u′)

)
T

)
.
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After some simple calculations, the above expression can be rewritten as

d∑
g,h,a,b=1

d∑
j,k,l,m=1

(
6
θ3

∫ T

0

(
∂ghHr∂abGr∂jkHs∂lmGs(Ct)

)[
(Cgjt Chkt + Cgkt Chjt )(Calt Cbmt + Camt Cblt )

+(Cajt Cbkt + Cakt Cbjt )(Cglt Chmt + Cgmt Chlt )
]
dt

+151θ
140

∫ t

0

(
∂ghHr∂abGr∂jkHs∂lmGs(Ct)

)[
C
gh,jk

C
ab,lm + C

ab,jk
C
gh,lm

]
dt

+ 3
2θ

∫ t

0

(
∂ghHr∂abGr∂jkHs∂lmGs(Ct)

)[
(Cgjt Chkt + Cgkt Chjt )Cab,lmt + (Calt Cbmt + Camt Cblt )Cgh,jkt

+(Cglt Chms + Cgmt Chls )Cab,jkt + (Cajt Cbkt + Cakt Cbjt )Cgh,lmt

]
dt

)
,

which completes the proof.

A2 Proof of Theorem 2

Using the polynomial growth assumption on Hr, Gr, Hs and Gs and Theorem 2.2 in Jacod and
Rosenbaum (2015), one can show that

6
θ3 Ω̂r,s,(1)

T
P−→ Σr,s,(1)

T .

Next, by equation (3.27) in Jacod and Rosenbaum (2015), we have

3
2θ [Ω̂r,s,(3)

T − 6
θ

Ω̂r,s,(1)
T ] P−→ Σr,s,(3)

T .

Finally, to show that

151θ
140

9
4θ2 [Ω̂r,s,(2)

T + 4
θ2 Ω̂r,s,(1)

T − 4
3Ω̂r,s,(3)

T ] P−→ Σr,s,(2)
T ,

we first observe that the approximation error induced by replacing Ĉni by Ĉ ′n
i in Theorem 2 is negligible.

For 1 ≤ g, h, a, b, j, k, l,m ≤ d and 1 ≤ r, s ≤ d, we define

Ŵn
T =

[T/∆n]−4kn+1∑
i=1

(∂ghHr∂abGr∂ghHs∂lmGs)(Ĉni )λn,ghi λn,jki λn,abi+2knλ
n,lm
i+2kn ,

ŵ(1)ni = (∂ghHr∂abGr∂jkHs∂lmGs)(Cni )E(λn,ghi λn,jki λn,abi+2knλ
n,lm
i+2kn |F

n
i ),

ŵ(2)ni = (∂ghHr∂abGr∂jkHs∂lmGs)(Cni )(λn,ghi λn,jki λn,abi+2knλ
n,lm
i+2kn − E(λn,ghi λn,jki λn,abi+2knλ

n,lm
i+2kn |F

n
i )),

ŵ(3)ni =
(

(∂ghHr∂abGr∂jkHs∂lmGs)(Ĉni )− (∂ghHr∂abGr∂jkHs∂lmGs)(Cni )
)
λn,ghi λn,jki λn,abi+2knλ

n,lm
i+2kn ,
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Ŵ (u)nt =
[T/∆n]−4kn+1∑

i=1
ŵi(u), u = 1, 2, 3.

Now, note that we also have Ŵn
t = Ŵ (1)nt +Ŵ (2)nt +Ŵ (3)nt . By Taylor expansion and using repeatedly

the boundedness of Ct, we obtain

|ŵ(3)ni | ≤ (1 + ‖νni ‖4(p−1))‖νni ‖‖λni ‖2‖λni+2kn‖
2,

which implies E(|ŵ(3)ni |) ≤ K∆5/4
n and hence Ŵ (3)nt

P−→ 0. Using Cauchy-Schwartz inequality and
the bound E(‖λni ‖q|Fni ) ≤ K∆q/4

n , we have E(|ŵ(2)ni |2) ≤ K∆2
n. Observing furthermore that ŵ(2)ni is

Fi+4kn−measurable, Lemma B.8 in Aït-Sahalia and Jacod (2014) implies Ŵ (2)nt
P−→ 0.

Next, define

wni = (∂ghHr∂abGr∂jkHs∂lmGs)(Cni )
[ 4
k2
n∆n

(Cn,gai Cn,hbi + Cn,gbi Cn,hai )(Cn,jli Cn,kmi + Cn,jmi Cn,kli )

+ 4
3(Cn,jli Cn,kmi + Cn,jmi Cn,kli )Cn,gh,abi + 4

3(Cn,gai Cn,hbi + Cn,gbi Cn,hai )Cn,jk,lmi

+ 4(k2
n∆n)
9 C

n,gh,ab

i C
n,jk,lm

i

]
,

Wn
T = ∆n

[T/∆n]−4kn+1∑
i=1

wni .

Using the cadlag property of c and C, kn
√

∆n −→ θ, and the Riemann integral convergence, we
conclude that Wn

T
P−→WT where

WT =
∫ T

0
(∂ghHr∂abGr∂jkHs∂lmGs)(Ct)

[ 4
θ2 (Cgat Chbt + Cgbt C

ha
t )(Cjlt Ckmt + Cjmt Cklt )

+ 4
3(Cjlt Ckmt + Cjmt Cklt )Cgh,abt + 4

3(Cgat Chbi + Cgbt C
ha
t )Cjk,lmt + 4θ2

9 C
gh,ab

t C
jk,lm

t

]
dt.

In addition, by Lemma 4, it holds that

E(|Ŵ (1)nT −Wn
T |) ≤ ∆nE

( [T/∆n]−4kn+1∑
i=1

(∆1/8
n + ηi,4kn)

)
.

Hence, by the third result of Lemma 1 we have Ŵn
T

P−→Wt, from which it follows that

9
4θ2

[
Ŵ (1)nT + 4

k2
n

[T/∆n]−4kn+1∑
i=1

(∂ghHr∂abGr∂jkHs∂lmGs)(Ĉni )[Cni (jk, lm)Cni (gh, ab)]

47



− 2
kn

[T/∆n]−4kn+1∑
i=1

(∂ghHr∂abGr∂jkHs∂lmGs)(Ĉni )Cni (gh, ab)λn,jki λn,lmi

− 2
kn

[T/∆n]−4kn+1∑
i=1

(∂ghHr∂abGr∂jkHs∂lmGs)(Ĉni )Cni (jk, lm)λn,ghi λn,abi

]
P−→
∫ T

0
(∂ghHr∂abGr∂jkHs∂lmGs)(Ct)C

gh,ab

t C
jk,lm

t dt.

The result follows from the above convergence, the already invoked symmetry argument, and straight-
forward calculations.

A3 Proofs of Auxiliary Results

This section is devoted to the proofs of the auxiliary theorems and lemmas (listed in Section A1.2)
that were used to prove Theorem 1 and Theorem 2.

A3.1 Proof of Theorem 1

To show this result, let us define the functions

R(x, y) =
d∑

g,h,a,b=1

(
∂ghH∂abG

)
(x)
(
ygh − xgh

)(
yab − xab

)
S(x, y) =

(
H(y)−H(x)

)(
G(y)−G(x)

)
U(x) =

d∑
g,h,a,b=1

(
∂ghH∂abG

)
(x)
(
xgaxhb + xgbxha

)
,

for any Rd × Rd matrices x and y. The following decompositions hold,

̂[H(C), G(C)]
AN

T − ̂[H(C), G(C)]
AN ′

T

= 3
2kn

[T/∆n]−2kn+1∑
i=1

[(
S(Ĉni , Ĉni+kn)− S(Ĉ

′n
i , Ĉ

′n
i+kn)

)
− 2
kn

(
U(Ĉni )− U(Ĉ

′n
i )
)]
,

̂[H(C), G(C)]
LIN

T − ̂[H(C), G(C)]
LIN ′

T

= 3
2kn

[T/∆n]−2kn+1∑
i=1

[(
R(Ĉni , Ĉni+kn)−R(Ĉ

′n
i , Ĉ

′n
i+kn)

)
− 2
kn

(
U(Ĉni )− U(Ĉ

′n
i )
)]
.

By (3.11) in Jacod and Rosenbaum (2015), there exists a sequence of real numbers an converging to
zero such that

E(‖Ĉni − Ĉ
′n
i ‖q) ≤ Kqan∆(2q−r)$+1−q

n , for any q > 0. (C.26)
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Since H and G ∈ G(p), the functions R and S are continuously differentiable and satisfy

‖∂J(x, y)‖ ≤ K(1 + ‖x‖+ ‖y‖)2p−1 for 1 ≤ g, h, a, b ≤ d and J ∈ {S,R}, (C.27)

‖∂U(x)‖ ≤ K(1 + ‖x‖)2p−1, (C.28)

where ∂J (respectively, ∂U ) is a vector that collects the first order partial derivatives of the function
J (respectively, U) with respect to all the elements of (x, y) (resp x). Using the Taylor expansion, the
Jensen’s inequality, (C.27) and (C.28), it holds that, for J ∈ {S,R},

|J(Ĉni , Ĉni+kn)− J(Ĉ
′n
i , Ĉ

′n
i+kn)| ≤ K(1 + ‖Ĉ

′n
i ‖2p−1 + ‖Ĉ

′n
i+kn‖

2p−1)

× (‖Ĉni − Ĉ
′n
i ‖+ ‖Ĉni+kn − Ĉ

′n
i+kn‖) +K‖Ĉni − Ĉ

′n
i ‖2p +K‖Ĉni+kn − Ĉ

′n
i+kn‖

2p and

|U(Ĉni )− U(Ĉ
′n
i )| ≤ K(1 + ‖Ĉ

′n
i ‖2p−1)(‖Ĉni − Ĉ

′n
i ‖) +K‖Ĉni − Ĉ

′n
i ‖2p.

By (3.20) in Jacod and Rosenbaum (2015), we have E(‖Ĉ ′ni ‖v) ≤ Kv, for any v ≥ 0. Hence by Hölder
inequality, for ε > 0 fixed,

E(‖Ĉ ′ni ‖2p−2‖Ĉni − Ĉ
′n
i ‖) ≤

(
E(‖Ĉni − Ĉ

′n
i ‖(1+ε))

)1/1+ε(
E(‖Ĉ

′n
i ‖(2p−2)(1+ε)/ε)

)ε/1+ε

≤ Kp

(
E(‖Ĉni − Ĉ

′n
i ‖(1+ε))

)1/1+ε

≤ Kpan∆(2− 1
1+ε )$+ 1

1+ε−1
n .

Using the above result and (C.26), the following conditions are sufficient for Theorem 1 to hold:

(2− r

1 + ε
)$ + 1

1 + ε
− 1− 3

4 ≥ 0, (4p− r)$ + 1− 2p− 3
4 ≥ 0, and (2− r)$ +−3

4 ≥ 0.

Using the fact that 0 < $ < 1
2 , and taking ε sufficiently close to zero, we can see that Theorem 1 holds

when (8p− 1)/4(4p− r) ≤ $ < 1
2 , which completes the proof.

A3.2 Proof of Theorem 2

Note that we have

̂[H(C), G(C)]
LIN ′

T − ̂[H(C), G(C)]
A

T = 3
2kn

d∑
g,h,a,b=1

[T/∆n]−2kn+1∑
i=1

ψni (g, h, a, b),

̂[H(C), G(C)]
AN ′

T − ̂[H(C), G(C)]
A

T = 3
2kn

[T/∆n]−2kn+1∑
i=1

(
χni −

d∑
g,h,a,b=1

(
∂ghH∂abG

)
(Cni )λn,ghi λn,abi

)
,
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with

ψni (g, h, a, b) =
((
∂ghH∂abG

)
(Ĉ

′n
i )−

(
∂ghH∂abG

)
(Cni )

)
λn,ghi λn,abi ,

χni =
(
H(Ĉ

′n
i+kn)−H(Ĉ

′n
i )
)(
G(Ĉ

′n
i+kn)−G(Ĉ

′n
i )
)
.

By Taylor expansion, we have

(
∂ghS∂abG

)
(Ĉ

′n
i )−

(
∂ghS∂abG

)
(Cni ) =

d∑
x,y=1

(
∂2
xy,ghS∂abG+ ∂2

xy,abG∂ghS
)

(Cni )νn,xyi

+ 1
2

d∑
j,k,x,y=1

(
∂3
jk,xy,ghS∂abG+ ∂2

xy,ghS∂
2
jk,abG+ ∂3

jk,xy,abG∂ghS + ∂2
xy,abG∂

2
jk,ghS

)
(c̃ni )νn,xyi νn,jki

and

S(Ĉ
′n
i+kn)− S(Ĉ

′n
i ) =

∑
gh

∂ghS(Cni )λn,ghi +
∑
j,k,g,h

∂2
jk,ghS(Cni )λn,ghi νn,jki

+1
2
∑
x,y,g,h

∂2
xy,ghS(Cni )λn,ghi λn,xyi + 1

2
∑

x,y,j,k,g,h

∂3
xy,jk,ghS(CCn,Si )λn,ghi νn,xyi νn,jki

+1
6

∑
j,k,x,y,g,h

∂3
jk,xy,ghS(Cn,Si )λn,jki λn,ghi λn,xyi ,

for S ∈ {H,G}, c̃ni = πCni + (1−π)Ĉ ′n
i , Cn,Si = πSĈ

′n
i + (1−πS)Ĉ ′n

i+kn , CC
n,S
i = µSC

n
i + (1−µS)Ĉ ′n

i

for π, πH , µH , πG, µG ∈ [0, 1]. Although c̃ni and π depend on g, h, a, and b, we do not emphasize this
in our notation to simplify the exposition.
Set Fni = F(i−1)∆n

. By (4.10) in Jacod and Rosenbaum (2013) we have

E
(∥∥∥αni ∥∥∥q∣∣∣Fni ) ≤ Kq∆q

n for all q ≥ 0 and E
(∣∣∣ kn−1∑

j=0
αni+j

∣∣∣q∣∣Fni ) ≤ Kq∆q
nk

q/2
n whenever q ≥ 2. (C.29)

Combining (C.29), (C.4), (C.10) with Z = c and the Hölder inequality yields for q ≥ 2,

E
(∥∥∥νni ∥∥∥q∣∣∣Fni ) ≤ Kq∆q/4, and E

(∥∥∥λni ∥∥∥q∣∣∣Fni ) ≤ Kq∆q/4. (C.30)

The bound in the first equation of (C.30) is tighter than that in (4.11) of Jacod and Rosenbaum
(2015) due to the absence of volatility jumps. This tighter bound will be useful later in deriving the
asymptotic distribution for the approximated estimator. By the boundedness of Ct and the polynomial

50



growth assumption, we have

∣∣∣(∂3
jk,xy,abG∂ghH + ∂2

xy,ghH∂
2
jk,abG

)
(c̃ni )νn,xyi νn,jki λn,ghi λn,abi

∣∣∣ ≤ K(1 + ‖c̃ni ‖)2(p−2)‖νni ‖2‖λni ‖2.

Recalling c̃ni = πCni + (1 − π)Ĉ ′n
i and using the convexity of the function x2(p−2), we can refine the

last inequality as follows:

∣∣∣(∂3
jk,xy,abG∂ghH + ∂2

xy,ghH∂
2
jk,abG

)
(c̃ni )νn,xyi νn,jki λn,ghi λn,abi

∣∣∣ ≤ K(1 + ‖νni ‖2(p−2))‖νni ‖2‖λni ‖2.
(C.31)

Using the Taylor expansion, the polynomial growth assumption and using similar idea as for (C.31),
we have

χni −
∑
g,h,a,b

(∂ghH∂abG)(Cni )λn,ghi λn,abi =

∑
g,h,a,b,j,k

(∂ghH∂2
jk,xyG+ ∂ghG∂

2
jk,xyH)(Cni )(λn,ghi + 1

2ν
n,gh
i )λn,abi λn,jki + ϕni , and

∑
g,h,a,b

(
∂ghH∂abG

)
(Ĉ

′n
i )−

(
∂ghH∂abG

)
(Cni ) =

∑
g,h,a,b,x,y

(∂ghH∂2
ab,xyG+ ∂abG∂

2
gh,xyG)(Cni )(νn,xyi )λn,ghi λn,abi + δni

with E(|ϕni |
∣∣Fni ) ≤ K∆n and E(|δni |

∣∣Fni ) ≤ K∆n which follow by the Cauchy-Schwartz inequality
together with (C.30). Given that kn = θ(∆n)−1/2, the previous inequalities imply

3∆−1/4
n

2kn

[T/∆n]−2kn+1∑
i=1

ϕni
P=⇒ 0 and 3∆−1/4

n

2kn

[T/∆n]−2kn+1∑
i=1

δni
P=⇒ 0.

Therefore, it suffices to show that

3∆−1/4
n

2kn

[T/∆n]−2kn+1∑
i=1

∑
g,h,a,b,j,k

(∂ghH∂2
jk,abG+ ∂ghH∂

2
jk,abG)(Cni )λn,ghi λn,abi λn,jki

P−→ 0, (C.32)

3∆−1/4
n

2kn

[T/∆n]−2kn+1∑
i=1

∑
g,h,a,b,j,k

(∂ghH∂2
jk,abG+ ∂ghH∂

2
jk,abG)(Cni )νn,ghi λn,abi λn,jki

P−→ 0. (C.33)

These results hold by the bounds in 5.
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A3.3 Proof of Theorem 3

First, we decompose the approximated estimator as

̂[H(C), G(C)]
(A)
T = ̂[H(C), G(C)]

(A1)
T − ̂[H(C), G(C)]

(A2)
T , (C.34)

with

̂[H(C), G(C)]
(A1)
T = 3

2kn

d∑
g,h,a,b=1

[T/∆n]−2kn+1∑
i=1

(
∂ghH∂abG

)
(Cni−1)(Ĉ

′n,gh
i+kn − Ĉ

′n,gh
i )(Ĉ

′n,ab
i+kn − Ĉ

′n,ab
i ),

and

̂[H(C), G(C)]
(A2)
T = 3

k2
n

d∑
g,h,a,b=1

[T/∆n]−2kn+1∑
i=1

(
∂ghH∂abG

)
(Ĉ

′n
i )(Ĉ

′n,ga
i Ĉ

′n,hb
i + Ĉ

′n,gb
i Ĉ

′n,ha
i ).

In this section, we use the notation Cni−1 = C(i−1)∆n
and Fi = F(i−1)∆n

to simplify the exposition.
Given the polynomial growth assumption satisfied by H and G and the fact that kn = θ(∆n)−1/2, by
Theorem 2.2 in Jacod and Rosenbaum (2015) we have

1√
∆n

(
̂[H(C), G(C)]

(A2)
T − 3

θ2

d∑
g,h,a,b=1

∫ T

0

(
∂ghH∂abG

)
(Ct)(cgat chbt + cgbi c

ha
t )dt

)
= Op(1),

which yields

1
∆1/4
n

(
̂[H(C), G(C)]

(A2)
T − 3

θ2

d∑
g,h,a,b=1

∫ T

0

(
∂ghH∂abG

)
(Ct)(cgat chbt + cgbi c

ha
t )dt

)
P−→ 0.

Using the multivariate quantities defined in Section A1.1, we can show that the following decomposi-
tions hold:

Ĉ
′n
i = Cni−1 + 1

kn

kn−1∑
j=0

2∑
u=1

ε(u)nj ζ(u)ni+j , Ĉ
′n
i+kn − Ĉ

′n
i = 1

kn

2kn−1∑
j=0

2∑
u=1

ε(u)nj ζ(u)ni+j ,

λn,ghi λn,abi = 1
k2
n

2∑
u=1

2∑
v=1

( 2kn−1∑
j=0

ε(u)nj ε(v)nj ζ(u)n,ghi+j ζ(v)n,abi+j

+
2kn−2∑
j=0

2kn−1∑
q=j+1

ε(u)nj ε(v)nq ζ(u)n,ghi+j ζ(v)n,abi+q +
2kn−1∑
j=1

j−1∑
q=0

ε(u)nj ε(v)nq ζ(u)n,ghi+j ζ(v)n,abi+q

)
.
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Changing the order of the summation in the last term yields

λn,ghi λn,abi = 1
k2
n

2∑
u=1

2∑
v=1

( 2kn−1∑
j=0

ε(u)nj ε(v)nj ζ(u)n,ghi+j ζ(v)n,abi+j

+
2kn−2∑
j=0

2kn−1∑
q=j+1

ε(u)nj ε(v)nq ζ(u)n,ghi+j ζ(v)n,abi+q +
2kn−2∑
j=0

2kn−1∑
q=j+1

ε(v)nj ε(u)nq ζ(v)n,abi+j ζ(u)n,ghi+q

)
.

Therefore, we can further rewrite ̂[H(C), G(C)]
(A1)
T as

̂[H(C), G(C)]
(A1)
T = ̂[H(C), G(C)]

(A11)
T + ̂[H(C), G(C)]

(A12)
T + ̂[H(C), G(C)]

(A13)
T ,with

̂[H(C), G(C)]
(A1w)
T =

d∑
g,h,a,b=1

2∑
u,v=1

Â1w(H, gh, u;G, ab, v)nT , w = 1, 2, 3,

and

Â11(H, gh, u;G, ab, v)nT = 3
2k3
n

[T/∆n]−2kn+1∑
i=1

2kn−1∑
j=0

(∂ghH∂abG)(Cni−1)ε(u)nj ε(v)nj ζ(u)n,ghi+j ζ(v)n,abi+j ,

Â12(H, gh, u;G, ab, v)nT = 3
2k3
n

[T/∆n]−2kn+1∑
i=1

2kn−2∑
j=0

2kn−1∑
q=j+1

(∂ghH∂abG)(Cni−1)ε(u)nj ε(v)nq ζ(u)n,ghi+j ζ(v)n,abi+q ,

Â13(H, gh, u;G, ab, v)nT = 3
2k3
n

[T/∆n]−2kn+1∑
i=1

2kn−2∑
j=0

2kn−1∑
q=j+1

(∂ghH∂abG)(Cni−1)ε(v)nj ε(u)nq ζ(v)n,abi+j ζ(u)n,ghi+q ,

where we clearly have Â13(H, gh, u;G, ab, v)nT = Â12(G, ab, v;H, gh, u)nT . By a change of the order of
the summation,

Â11(H, gh, u;G, ab, v)nT = 3
2k3
n

[T/∆n]∑
i=1

(2kn−1)∧(i−1)∑
j=0∨(i+2kn−1−[T/∆n])

(∂ghH∂abG)

× (Cni−j−1)ε(u)nj ε(v)nj ζ(u)n,ghi ζ(v)n,abi ,

Â12(H, gh, u;G, ab, v)nT = 3
2k3
n

[T/∆n]∑
i=2

(i−1)∧(2kn−1)∑
m=1

(2kn−m−1)∧(i−m−1)∑
j=0∨(i+2kn−1−m−[T/∆n])

(∂ghH∂abG)(Cni−1−j−m)

× ε(u)nj ε(v)nj+mζgh(u)ni−mζab(v)ni .
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Now, set

Ã11(H, gh, u;G, ab, v)nT = 3
2k3
n

[T/∆n]∑
i=2kn

2kn−1∑
j=0

(∂ghH∂abG)(Cni−j−1)ε(u)nj ε(v)nj ζ(u)n,ghi ζ(v)n,abi ,

Ã12(H, gh, u;G, ab, v)nT = 3
2k3
n

[T/∆n]∑
i=2kn

(i−1)∧(2kn−1)∑
m=1

(2kn−m−1)∑
j=0

(∂ghH∂abG)(Cni−j−1−m)ε(u)nj ε(v)nj+m

×ζgh(u)ni−mζab(v)ni ,

and

A11(H, gh, u;G, ab, v)nT = 3
2k3
n

[T/∆n]∑
i=2kn

( 2kn−1∑
j=0

ε(u)nj ε(v)nj
)

(∂ghH∂abG)(Cni−2kn)ζ(u)n,ghi ζ(v)n,abi

= λ(u, v)n0
[T/∆n]∑
i=2kn

(∂ghH∂abG)(Cni−2kn)ζ(u)n,ghi ζ(v)n,abi ,

A12(H, gh, u;G, ab, v)nT

= 3
2k3
n

[T/∆n]∑
i=2kn

(∂ghH∂abG)(Cni−2kn)
(i−1)∧(2kn−1)∑

m=1

(2kn−m−1)∑
j=0

ε(u)nj ε(v)nj+mζgh(u)ni−mζab(v)ni

=
[T/∆n]∑
i=2kn

(∂ghH∂abG)(Cni−2kn)ρgh(u, v)ni ζab(v)ni ,

with

ρgh(u, v)ni =
2kn−1∑
m=1

λ(u, v)nmζgh(u)ni−m.

We show below that the following results hold:

1
∆1/4
n

(
Â1w(H, gh, u;G, ab, v)nT − Ã1w(H, gh, u;G, ab, v)nT

)
P−→ 0 (C.35)

1
∆1/4
n

(
Ã1w(H, gh, u;G, ab, v)nT −A1w(H, gh, u;G, ab, v)nT

)
P−→ 0 (C.36)

for all (H, gh, u,G, ab, v) and w = 1, 2.
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Proof of (C.35) for w = 1

To prove this result, first, notice that the ζ(u)n,ghi ζ(v)n,abi are scaled by random variables rather
that constant real numbers. Next, observe that we can write

Â11− Ã11 = ˜̂
A11(1) + ˜̂

A11(2) + ˜̂
A11(3) with

˜̂
A11(1) =

(2kn−1)∧[T/∆n]∑
i=1

(
3

2k3
n

(2kn−1)∧(i−1)∑
j=0∨(i+2kn−1−[T/∆n])

(∂ghH∂abG)(Cni−j−1)ε(u)nj ε(v)nj

)
ζ(u)n,ghi ζ(v)n,abi ,

˜̂
A11(2) =

[T/∆n]∑
i=[T/∆n]−2kn+2

3
2k3
n

( (2kn−1)∧(i−1)∑
j=0∨(i+2kn−1−[T/∆n])

(∂ghH∂abG)(Cni−j−1)ε(u)nj ε(v)nj

−
(2kn−1)∑
j=0

(∂ghH∂abG)(Cni−j−1)ε(u)nj ε(v)nj

)
ζ(u)n,ghi ζ(v)n,abi ,

˜̂
A11(3) =

[T/∆n]−2kn+1∑
i=2kn

3
2k3
n

( (2kn−1)∧(i−1)∑
j=0∨(i+2kn−1−[T/∆n])

(∂ghH∂abG)(Cni−j−1)ε(u)nj ε(v)nj

−
(2kn−1)∑
j=0

(∂ghH∂abG)(Cni−j−1)ε(u)nj ε(v)nj

)
ζ(u)n,ghi ζ(v)n,abi .

It is easy to see that ˜̂A12(3) = 0. Using (C.10) with Z = c and (C.29), we obtain

E(‖ζ(1)ni ‖q|Fni−1) ≤ Kq, E(‖ζ(2)ni ‖q|Fni−1) ≤ Kq∆q/2
n . (C.37)

The polynomial growth assumption on H and G and the boundedness of Ct imply that
|(∂ghH∂abG)(Cni−j−1)| ≤ K.
Hence, the random quantities

(
3

2k3
n

∑(2kn−1)∧(i−1)
j=0∨(i+2kn−1−[T/∆n])(∂ghH∂abG)(Cni−j−1)ε(u)nj ε(v)nj

)
and

3
2k3
n

∑(2kn−1)
j=0 (∂ghH∂abG)(Cni−j−1)ε(u)nj ε(v)nj are Fni−1− measurable and are bounded by λ̃nu,v defined

as

λ̃nu,v =


K if (u, v) = (2, 2)

K/kn if (u, v) = (1, 2), (2, 1)

K/k2
n if (u, v) = (1, 1).

Similarly, the quantity

3
2k3
n

( (2kn−1)∧(i−1)∑
j=0∨(i+2kn−1−[T/∆n])

(∂ghH∂abG)(Cni−j−1)ε(u)nj ε(v)nj −
(2kn−1)∑
j=0

(∂ghH∂abG)(Cni−j−1)ε(u)nj ε(v)nj

)
,
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is Fni−1− measurable and bounded by 2λ̃nu,v. Note also that, by (C.37) and the Cauchy Schwartz
inequality, we have

E(|ζ(u)n,ghi ζ(v)n,abi |
∣∣Fni−1) ≤ E(‖ζ(u)ni ‖2|Fni−1)1/2E(‖ζ(v)ni ‖2|Fni−1)1/2

≤


K∆n if (u, v) = (2, 2)

K∆1/2
n if (u, v) = (1, 2), (2, 1)

K if (u, v) = (1, 1).

The above bounds, together with the fact that kn = θ∆−1/2
n , imply E(|˜̂A11(1)|) ≤ K∆1/2

n and
E(|˜̂A11(2)|) ≤ K∆1/2

n for all (u, v). These two results together imply ˜̂
A11(1) = o(∆−1/4

n ) and˜̂
A11(2) = o(∆−1/4

n ), which yields the result.

Proof of (C.35) for w = 2

First, observe that Â12− Ã12 = ˜̂
A12(1) + ˜̂

A12(2), with

˜̂
A12(1) =

(2kn−1)∧[T/∆n]∑
i=2

( (i−1)∑
m=1

3
2k3
n

( (2kn−m−1)∧(i−m−1)∑
j=0∨(i+2kn−1−m−[T/∆n])

(∂ghH∂abG)(Cni−1−j−m)ε(u)nj ε(v)nj+m
)

× ζgh(u)ni−m

)
ζab(v)ni ,

˜̂
A12(2) =

[T/∆n]∑
i=[T/∆n]−2kn+2

( (i−1)∧(2kn−1)∑
m=1

( 3
2k3
n

(2kn−m−1)∧(i−m−1)∑
j=0∨(i+2kn−1−m−[T/∆n])

(∂ghH∂abG)(Cni−1−j−m)ε(u)nj

× ε(v)nj+m
)
−

(2kn−m−1)∑
j=0

(∂ghH∂abG)(Cni−1−j−m)ε(u)nj ε(v)nj+m
)
ζgh(u)ni−m

)
ζab(v)ni .

Notice that the quantity

κm,ni = 3
2k3
n

( (2kn−m−1)∧(i−m−1)∑
j=0∨(i+2kn−1−m−[T/∆n])

(∂ghH∂abG)(Cni−1−j−m)ε(u)nj ε(v)nj+m
)

is Fni−m−1 measurable and bounded by λ̃nu,v. Let

κni =
(i−1)∑
m=1

3
2k3
n

( (2kn−m−1)∧(i−m−1)∑
j=0∨(i+2kn−1−m−[T/∆n])

(∂ghH∂abG)(Cni−1−j−m)ε(u)nj ε(v)nj+m
)
ζgh(u)ni−m.
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It follows that κni is Fni−1-measurable and we have

E(|κm,ni |z
∣∣F0) ≤ (λ̃nu,v)z,

|E(ζ(u)ni−m|Fi−m−1)| ≤

K
√

∆n if u = 1

K∆n if u = 2
,

E(‖ζ(u)ni−m‖z|Fi−m−1) ≤

Kz if u = 1

Kz∆z/2
n if u = 2

.

Using Lemma 3, we deduce that for z ≥ 2,

E(|κni |z) ≤

Kz(λ̃nu,v)zk
z/2
n if u = 1

Kz(λ̃nu,v)z/k
z/2
n if u = 2

≤

Kz/k
−3z/2
n if v = 1

Kzk
−z/2
n if v = 2

.

Using the above result, we obtain 1
∆1/4
n

˜̂
A12(1) P⇒ 0. A similar argument yields 1

∆1/4
n

˜̂
A12(2) P⇒ 0, which

completes the proof of (C.35) for w = 2.

Proof of (C.36) for w = 1

Define

Θ(u, v)(C),i,n
0 = 3

2k3
n

2kn−1∑
j=0

(
(∂ghH∂abG)(Cni−j−1)− (∂ghH∂abG)(Cni−2kn)

)
ε(u)nj ε(v)nj .

By Taylor expansion, the polynomial growth assumption on H and G and using (C.10) with Z = c,
we have

∣∣∣E((∂ghH∂abG)(Cni−j−1)− (∂ghH∂abG)(Cni−2kn)
∣∣Fni−2kn

)∣∣∣ ≤ K(kn∆n) ≤ K
√

∆n

E(|(∂ghH∂abG)(Cni−j−1)− (∂ghH∂abG)(Cni−2kn)|q|Fni−2kn)| ≤ K(kn∆n)q/2 ≤ K∆q/4
n ,

for q ≥ 2 and for j = 0, . . . , 2kn− 1. Next, observe that Θ(u, v)(C),i,n
0 is Fni−1 -measurable and satisfies

|Θ(u, v)(C),i,n
0 | ≤ λ̃nu,v, |E

(
Θ(u, v)(C),i,n

0 |Fni−2kn

)
| ≤ K∆1/2

n λ̃nu,v and E
(
|Θ(u, v)(C),i,n

0 |q
∣∣Fni−2kn

)
≤

Kq∆q/4
n (λ̃nu,v)q where the latter follows from the Hölder inequality. We aim to prove that

Ê = 1
∆1/4
n

[ [T/∆n]∑
i=2kn

Θ(u, v)(C),i,n
0 ζ(u)n,ghi ζ(v)n,abi

]
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converges to zero in probability for any H, G, g, h, a, and b with u, v = 1, 2.
To show this result, we first introduce the following quantities:

Ê(1) = 1
∆1/4
n

[ [T/∆n]∑
i=2kn

Θ(u, v)(C),i,n
0 E(ζ(u)n,ghi ζ(v)n,abi |Fni−1)

]

Ê(2) = 1
∆1/4
n

[ [T/∆n]∑
i=2kn

Θ(u, v)(C),i,n
0

(
ζ(u)n,ghi ζ(v)n,abi − E(ζ(u)n,ghi ζ(v)n,abi |Fni−1)

)]
,

with Ê = Ê(1) + Ê(2). By Cauchy-Schwartz inequality, we have

E(|ζ(u)n,ghi ζ(v)n,abi |q) ≤ (λ̂nu,v)q/2,where λ̂nu,v =


K if (u, v) = (1, 1)

K∆n if (u, v) = (1, 2), (2, 1)

K∆2
n if (u, v) = (2, 2)

Since ζ(u)n,ghi ζ(v)n,abi is Fni -measurable,
the martingale property of ζ(u)n,ghi ζ(v)n,abi − E(ζ(u)n,ghi ζ(v)n,abi |Fni−1) implies, for all (u, v),

E(|Ê(2)|2) ≤ K∆−3/2
n (∆1/4

n λ̃nu,v)2λ̂nu,v ≤ K∆n.

The latter inequality implies Ê(2) P⇒ 0 for all (u, v). It remains to show that Ê(1) P⇒ 0.
Here, we recall some bounds under Assumption 2,

|E(ζ(1)n,ghi ζ(2)n,abi |Fni−1)| ≤ K∆n, (C.38)

|E(ζ(1)n,ghi ζ(1)n,abi |Fni−1)−
(
Cn,gai−1 C

n,hb
i−1 + Cn,gbi−1 C

n,ha
i−1

)
| ≤ K∆1/2

n , (C.39)

|E(ζ(2)n,ghi ζ(2)n,abi |Fni−1 − C
n,gh,ab

i−1 ∆n)| ≤ K∆3/2
n (

√
∆n + ηni ). (C.40)

Case (u, v) ∈ {(1, 2), (2, 1)}. By (C.38) we have

E(|Ê(1)|) ≤ K T

∆n

1
∆1/4
n

(∆1/4
n λ̃nu,v∆n) ≤ K∆1/2

n so Ê(1) P⇒ 0.

Case (u, v) ∈ {(1, 1), (2, 2)}. Set

Ê′(1) = 1
∆1/4
n

[ [T/∆n]∑
i=2kn

Θ(u, v)(C),i,n
0 V ni−2kn

]

Ê′′(1) = 1
∆1/4
n

[ [T/∆n]∑
i=2kn

Θ(u, v)(C),i,n
0

(
V ni−1 − V ni−2kn

)]
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Ê′′′(1) = 1
∆1/4
n

[ [T/∆n]∑
i=2kn

Θ(u, v)(C),i,n
0

(
E(ζ(u)n,ghi ζ(v)n,abi |Fni−1)− V ni−1

)]

where

V ni−1 =


Cn,gai−1 C

n,hb
i−1 + Cn,gbi−1 C

n,ha
i−1 if (u, v) = (2, 2)

C
n,gh,ab

i−1 ∆n if (u, v) = (1, 1)

0 otherwise

Note that we have Ê(1) = Ê′(1) + Ê′′(1) + Ê′′′(1). Using (C.39) and (C.40), it can be shown that

E(|Ê′′′(1)|) ≤


K 1

∆5/4
n

(∆1/4
n λ̃nu,v)∆

1/2
n if (u, v) = (1, 1)

K 1
∆5/4
n

(∆1/4
n λ̃nu,v)∆

3/2
n if (u, v) = (2, 2)

≤ K∆1/2
n in all cases.

Next, we prove Ê′(1) P⇒ 0. To this end, write

Ê′(1) = 1
∆1/4
n

[ [T/∆n]−2kn+1∑
i=1

Θ(u, v)(C),i−1+2kn,n
0 V(i−1)∆n

]
.

Using the Fni+2kn−2-measurability of the last sum, we are able to show

1
∆1/4
n

[ [T/∆n]−2kn+1∑
i=1

|E(Θ(u, v)(C),i−1+2kn,n
0 V(i−1)∆n

|Fni−1)|
]

P⇒ 0 and

2kn − 2
∆1/2
n

[ [T/∆n]−2kn+1∑
i=1

E
(
|Θ(u, v)(C),i−1+2kn,n

0 V(i−1)∆n
)|2
)]
⇒ 0.

The first result readily follows from the inequality

|E(Θ(u, v)(C),i−1+2kn,n
0 V(i−1)∆n

|Fni−1)| ≤

K∆1/2
n λ̃nu,v if (u, v) = (1, 1)

K∆1/2
n λ̃nu,v∆n if (u, v) = (2, 2)

≤ K∆3/2
n in all cases,

while the second is a direct consequence of

E(|Θ(u, v)(C),i−1+2kn,n
0 V(i−1)∆n

|2) ≤

K∆1/2
n (λ̃nu,v)2 if (u, v) = (1, 1)

K∆1/2
n (λ̃nu,v)2∆2

n if (u, v) = (2, 2)
≤ K∆5/2

n in all cases.

59



Finally, to prove that Ê′′(1) P=⇒ 0, we use the fact that

E(|Θ(u, v)(C),i,n
0

(
V(i−1)∆n

− V(i−2kn)∆n

)
|) ≤ E(|Θ(u, v)(C),i,n

0 |2)1/2E(|V(i−1)∆n
− V(i−2kn)∆n

|2)1/2

≤

K∆1/2
n λ̃nu,v if (u, v) = (1, 1)

K∆1/4
n λ̃nu,v∆n∆1/4

n if (u, v) = (2, 2)
,

which follows from the Cauchy-Schwartz inequality and earlier bounds. In particular, successive con-
ditioning together with Assumption 2 imply that for (u, v) = (1, 1) and (2, 2),
E(|V(i−1)∆n

− V(i−2kn)∆n
|2) ≤ ∆1/2

n .

Proof of (C.36) for w = 2

Our aim here is to show that

Ê(2) = 1
∆1/4
n

[T/∆n]∑
i=2kn

( 2kn−1∑
m=1

( 3
2k3
n

2kn−m−1∑
j=0

[
(∂ghH∂abG)(cni−j−m−1)− (∂ghH∂abG)(cni−2kn)

]
ε(u)nj ε(v)nj+m

)
×

ζ(u)n,ghi−m

)
ζ(v)n,abi

P=⇒ 0.

For this purpose, we introduce some new notation. For any 0 ≤ m ≤ 2kn − 1, set

Θ(u, v)(C),i,n
m = 3

2k3
n

2kn−m−1∑
j=0

[
(∂ghH∂abG)(cni−j−m−1)− (∂ghH∂abG)(cni−2kn)

]
ε(u)nj ε(v)nj+m

ρ(u, v)(C),i,n,gh =
2kn−1∑
m=1

Θ(u, v)(C),i,n
m ζ(u)n,ghi−m.

It is easy to see that Θ(u, v)(C),i,n
m is Fni−m−1 measurable and satisfies, by Hölder inequality,

|Θ(u, v)(C),i,n
m | ≤ λ̃nu,v and E

(
|Θ(u, v)(C),i,n

m |q
∣∣Fni−2kn

)
≤ Kq∆q/4

n (λ̃nu,v)q.

Lemma 3 implies that for q ≥ 2,

E(|ρ(u, v)(C),i,n,gh|q) ≤

Kq(∆1/4
n λ̃nu,v)qk

q/2
n if u = 1

Kq(∆1/4
n λ̃nu,v)q/k

q/2
n if u = 2

≤

Kq/k
2q
n if v = 1

Kqk
q
n if v = 2

. (C.41)
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Set

Ê′(2) = 1
∆1/4
n

[T/∆n]∑
i=2kn

ρ(u, v)(C),i,n,ghE(ζ(v)n,abi |Fni−1),

Ê′′(2) = 1
∆1/4
n

[T/∆n]∑
i=2kn

ρ(u, v)(C),i,n,gh(ζ(v)n,abi − E(ζ(v)n,abi |Fni−1)).

The martingale increments property implies E(|Ê′′(2)|2) ≤ K∆1/2
n in all the cases, which in turn

implies Ê′′(2) P=⇒ 0. Next, using the bounds on ρ(u, v)(C),i,n,gh, we obtain that Ê′(2) P=⇒ 0.
We refer to Jacod and Rosenbaum (2015) for the proofs of Lemma 1 and Lemma 2.

A3.4 Proof of Lemma 3

Set

ξni = ϕni−1ζ
n
i , ξ

′n
i = E(ξi|Fni−1) = E(ϕni−1ζ

n
i |Fni−1) = ϕni−1E(ζni |Fni−1), and ξ

′′n
i = ξni − ξ

′n
i .

Given that ‖E(ζni |Fni−1)‖ ≤ L′, we have ‖ξ′n
i ‖ ≤ L′|ϕni−1|. By the convexity of the function xq, which

holds for q ≥ 2, we have

‖
2kn−1∑
j=1

ξni+j‖q ≤ K
(
‖

2kn−1∑
j=1

ξ
′n
i+j‖q + ‖

2kn−1∑
j=1

ξ
′′n
i+j‖q

)
.

Therefore, on the one hand we have

‖
2kn−1∑
j=1

ξ
′n
i+j‖q ≤ Kkq−1

n

2kn−1∑
j=1

‖ξ
′n
i+j‖q ≤ Kkq−1

n L′q
2kn−1∑
j=1

|ϕni+j−1|q,

which by E
(
‖ϕni+j−1‖q

∣∣∣Fni−1

)
≤ Lq, satisfies

E(‖
2kn−1∑
j=1

ξ
′n
i+j‖q|Fni−1) ≤ KL′qkq−1

n

2kn−1∑
j=1

E(|ϕni+j−1|q|Fni−1) ≤ KL′qkqnLq.

On the other hand, we have E(‖ξ′′n
i+j‖q|Fni−1) ≤ E(‖ξni+j‖q|Fni−1) ≤ LqLq and E(ξ′′n

i+j |Fni−1) = 0, where
the first inequality is a consequence of E(‖ξ′n

i+j‖q|Fni−1) ≤ E(‖ξni+j‖q|Fni−1) ≤ LqLq, which follows from
the Jensen’s inequality and the law of iterated expectation. Hence, by Lemma B.2 of Aït-Sahalia and
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Jacod (2014) we have

E(‖
2kn−1∑
j=1

ξ
′′n
i+j‖q|Fni−1) ≤ KqL

qLqk
q/2
n .

To see the latter, we first prove that the required condition E(‖ξni ‖q|Fni−1) ≤ LqLq) in the Lemma B.2
of Aït-Sahalia and Jacod (2014) can be replaced by E(‖ξni+j‖q|Fni−1) ≤ LqL

q) for 1 ≤ j ≤ 2kn − 1
without altering the result.

A3.5 Proof of Lemma 4

We use the terminology “successive conditioning" to refer to either of the following two equalities,

x1y1 − x0y0 = x0(y1 − y0) + y0(x1 − x0) + (x1 − x0)(y1 − y0),

x1y1z1 − x0y0z0 = x0y0(z1 − z0) + x0z0(y1 − y0) + y0z0(x1 − x0) + x0(y0 − y1)(z0 − z1)

+y0(x0 − x1)(z0 − z1) + z0(x0 − x1)(y0 − y1) + (x1 − x0)(y1 − y0)(z1 − z0),

which hold for any real numbers x0, y0, z0, x1, y1, and z1.
To prove Lemma 4, we first note that λn,jki λn,lmi is Fni+2kn -measurable. Therefore, by the law of
iterated expectations, we have

E
(
λn,jki λn,lmi λn,ghi+2knλ

n,ab
i+2kn |F

n
i

)
= E

(
λn,jki λn,lmi E

(
λn,ghi+2knλ

n,ab
i+2kn |F

n
i+2kn

)
|Fni

)
.

By equation (3.27) in Jacod and Rosenbaum (2015), we have

|E(λn,ghi+2knλ
n,ab
i+2kn |F

n
i+2kn)− 2

kn
(Cn,gai+2knC

n,hb
i+2kn + Cn,gbi+2knC

n,ha
i+2kn)− 2kn∆n

3 C
n,gh,ab

i+2kn |

≤ K
√

∆n(∆1/8
n + ηni+2kn,2kn), and

|E(λn,jki λn,lmi |Fni )− 2
kn

(Cn,jli Cn,kmi + Cn,jmi Cn,kli )− 2kn∆n

3 C
n,jk,lm

i | ≤ K
√

∆n(∆1/8
n + ηni,2kn).

From the above, it follows that

|E
(
λn,jki λn,lmi

[
E(λn,ghi+2knλ

n,ab
i+2kn

∣∣∣Fni+2kn)− 2
kn

(Cn,gai+2knC
n,hb
i+2kn + Cn,gbi+2knC

n,ha
i+2kn)− 2kn∆n

3 C
n,gh,ab

i+2kn

]∣∣∣∣∣Fni )|
≤
√

∆nE(|λn,jki ||λn,lmi |(∆1/8
n + ηni+2kn,2kn)|

∣∣∣Fni ) ≤ K
√

∆n∆1/8
n E(|λn,jki ||λn,lmi |

∣∣∣Fni )

+K
√

∆nE(|λn,jki ||λn,lmi |ηni+2kn,2kn |
∣∣∣Fni ) ≤ K∆n(∆1/8

n + ηni,4kn),
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where the last inequality follows from Lemma 1.
Now, using (C.10) successively with Z = c and Z = C (recall that the latter holds under Assumption
2), together with the successive conditioning, we also have

|E
(
λn,jki λn,lmi

[ 2
kn

(Cn,gai+2knC
n,hb
i+2kn + Cn,gbi+2knC

n,ha
i+2kn) + 2kn∆n

3 C
n,gh,ab

i+2kn −
2
kn

(Cn,gai Cn,hbi + Cn,gbi Cn,hai )

− 2kn∆n

3 C
n,gh,ab

i

]∣∣∣Fni )| ≤ K∆n∆1/4
n ,

|E
(
λn,jki λn,lmi

[ 2
kn

(Cn,gai Cn,hbi + Cn,gbi Cn,hai )

+ 2kn∆n

3 C
n,gh,ab

i

]
−
[ 2
kn

(Cn,jli Cn,kmi + Cn,jmi Cn,kli ) + 2kn∆n

3 C
n,jk,lm

i

]
×
[ 2
kn

(Cn,gai Cn,hbi + Cn,gbi Cn,hai ) + 2kn∆n

3 C
n,gh,ab

i

]∣∣∣Fni )| ≤ K∆n(∆1/8
n + ηni,2kn).

The result derives from the last inequality.

Proof of (C.12) in Lemma 5

We start by obtaining some useful bounds for some important quantities. First, using the second
statement in Lemma 2 applied to Z = Y ′, we have

|E(αn,jki |Fni )| ≤ K∆3/2
n (

√
∆n + ηni,1). (C.42)

Second, by repeated application of the Cauchy-Schwartz inequality and making use of the third and
last statements in Lemma 2 as well as (C.10) with Z = c, it can be shown that

∣∣∣E(αn,jki αn,lmi |Fni )−∆2
n

(
Cn,jli Cn,kmi + Cn,jmi Cn,kli

)∣∣∣ ≤ K∆5/2
n . (C.43)

Next, by successive conditioning and using the bound in (C.10) for Z = c as well as (C.42) and (C.43)
, we have for 0 ≤ u ≤ kn − 1,

∣∣∣E(αn,jki+u
∣∣Fni )

∣∣∣ ≤ K∆3/2
n (

√
∆n + ηni,u), (C.44)

∣∣∣E(αn,jki+u α
n,lm
i+u |F

n
i )−∆2

n

(
Cn,jli Cn,kmi + Cn,jmi Cn,kli

)∣∣∣ ≤ K∆5/2
n . (C.45)
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To show (C.12), we first observe that νn,jki νn,lmi νn,ghi can be decomposed as

νn,jki νn,lmi νn,ghi = 1
k3
n∆3

n

kn−1∑
u=0

ζn,jki,u ζn,lmi,u ζn,ghi,u + 1
k3
n∆3

n

kn−2∑
u=0

kn−1∑
v=u+1

[
ζn,jki,u ζn,lmi,v ζn,ghi,v + ζn,ghi,u ζn,jki,v ζn,lmi,v

+ ζn,lmi,u ζn,ghi,v ζn,jki,v

]
+ 1
k3
n∆3

n

kn−2∑
u=0

kn−1∑
v=u+1

[ζn,jki,u ζn,lmi,u ζn,ghi,v + ζn,ghi,u ζn,jki,u ζn,lmi,v + ζn,lmi,u ζn,ghi,u ζn,jki,v

]

+ 1
k3
n∆3

n

kn−3∑
u=0

kn−2∑
v=u+1

kn−1∑
w=v+1

[
ζn,jki,u ζn,lmi,v ζn,ghi,w + ζn,jki,u ζn,ghi,v ζn,lmi,w + ζn,lmi,u ζn,jki,v ζn,ghi,w + ζn,lmi,u ζn,ghi,v ζn,jki,w

+ ζn,ghi,u ζn,lmi,v ζn,jki,w + ζn,ghi,u ζn,jki,v ζn,lmi,w

]
,

with ζni,u = αni+u + (Cni+u − Cni )∆n, which satisfies E(‖ζni,u‖q|Fni ) ≤ K∆q
n for q ≥ 2.

Set

ξni (1) = 1
k3
n∆3

n

kn−1∑
u=0

ζn,jki,u ζn,lmi,u ζn,ghi,u , ξni (2) = 1
k3
n∆3

n

kn−2∑
u=0

kn−1∑
v=u+1

ζn,jki,u ζn,lmi,v ζn,ghi,v

ξni (3) = 1
k3
n∆3

n

kn−2∑
u=0

kn−1∑
v=u+1

ζn,jki,u ζn,lmi,u ζn,ghi,v and ξni (4) = 1
k3
n∆3

n

kn−3∑
u=0

kn−2∑
v=u+1

kn−1∑
w=v+1

ζn,jki,u ζn,lmi,v ζn,ghi,w .

The following bounds can be established,

|E(ξni (1)|Fni )| ≤ K∆n (C.46)

|E(ξni (2)|Fni )| ≤ K∆n (C.47)

|E(ξni (3)|Fni )| ≤ K∆n (C.48)

|E(ξni (4)|Fni )| ≤ K∆3/4
n (∆1/4

n + ηi,kn). (C.49)

Proof of (C.46)

The result readily follows from an application of the Cauchy Schwartz inequality coupled with the
bound E(‖ζni+u‖q|Fni ) ≤ Kq∆q

n for q ≥ 2.

Proof of (C.47)

Using the law of iterated expectation, we have, for u < v,

E(ζn,jki+u ζ
n,lm
i+v ζ

n,gh
i+v |F

n
i ) = E(ζn,jki+u E(ζn,lmi+v ζ

n,gh
i+v |F

n
i+u+1)

∣∣Fni ). (C.50)
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By successive conditioning, (C.43), and the Cauchy-Schwartz inequality, we also have

|E(ζn,lmi,v ζn,ghi,v |F
n
i+u+1)−∆2

n(Cn,lgi+u+1C
n,mh
i+u+1 + Cn,lhi+u+1C

n,mg
i+u+1)

−∆2
n(Cn,ghi+u+1 − C

n,gh
i )(Cn,lmi+u+1 − C

n,lm
i )| ≤ K∆5/2

n .

Given that E(|ζn,jki+u |q
∣∣Fni ) ≤ ∆q

n, the approximation error involved in replacing E(ζn,lmi+v ζ
n,gh
i+v |Fni+u+1)

by
∆2
n(Cn,lgi+u+1C

n,mh
i+u+1 +Cn,lhi+u+1C

n,mg
i+u+1) + ∆2

n(Cn,ghi+u+1−C
n,gh
i )(Cn,lmi+u+1−C

n,lm
i ) in (C.50) is smaller than

∆7/2
n .

We can also easily show that

|E(αn,jki+u (Cn,lmi+u+1 − C
n,lm
i+u )|Fni )| ≤ K∆3/2

n (
√

∆n + ηni,kn). (C.51)

Since (Cni+u − Cni ) is Fni+u-measurable, we use the successive conditioning, the Cauchy-Schwartz in-
equality, (C.42), (C.43), and the fifth statement in Lemma 2 applied to Z = c to obtain

|E(αn,ghi+u (Cn,lmi+u − C
n,lm
i )(Cn,jki+u − C

n,jk
i )|Fni )| ≤ K∆5/2

n

|E(αn,jki+u α
n,lm
i+u (Cn,ghi+u − C

n,gh
i )|Fni )| ≤ K∆5/2

n (C.52)

|E
(
(Cn,lmi+u − C

n,lm
i )(Cn,jki+u − C

n,jk
i )(Cn,ghi+u − C

n,gh
i )

)
|Fni )| ≤ K∆n.

The following inequalities can be established using (C.42), the successive conditioning together with
(C.10) for Z = c,

∣∣∣E(αn,jki+u (Cn,lgi+u+1C
n,mh
i+u+1 + Cn,lhi+u+1C

n,mg
i+u+1)|Fni )

∣∣∣ ≤ K∆3/2
n∣∣∣E((Cn,jki+u − C

n,jk
i )

(
Cn,lgi+u+1C

n,mh
i+u+1 + Cn,lhi+u+1C

n,mg
i+u+1

)
|Fni

)∣∣∣ ≤ K∆1/2
n∣∣∣E(αn,jki+u (Cn,ghi+u+1 − C

n,gh
i )(Cn,lmi+u+1 − C

n,lm
i )|Fni )

∣∣∣ ≤ K∆3/2
n (

√
∆n + ηni,kn).

The last three inequalities together yield |E(ξni (2)|Fni )| ≤ K∆n.

Proof of (C.48)

First, note that, for u < v, we have

E(ζn,jki+u ζ
n,lm
i+u ζ

n,gh
i+v |F

n
i ) = E(ζn,jki+u ζ

n,lm
i+u E(ζn,ghi+v |F

n
i+u+1)

∣∣Fni ). (C.53)
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By successive conditioning and (C.42), we have

|E(αn,ghi+w |F
n
i+v+1)| ≤ K∆3/2

n (
√

∆n + ηi+v+1,w−v). (C.54)

Using the first statement of Lemma applied to Z = c, it can be shown that

|E
(
(Cn,ghi+w − C

n,gh
i+v+1))|Fni

)
−∆n(w − v − 1)̃bn,ghi+v+1|

≤ K(w − v − 1)∆nηi+v+1,w−v ≤ K∆1/2
n ηi+v+1,w−v.

The last two inequalities together imply

∣∣∣E(ζn,ghi+w |F
n
i+v+1

)
− (Cn,ghi+v+1 − C

n,gh
i )∆n −∆2

n(w − v − 1)̃bn,ghi+v+1

∣∣∣ ≤ K∆3/2
n (

√
∆n + ηi+v+1,w−v).

(C.55)

Since E(|ζn,jki,u |q|Fni ) ≤ ∆q
n, the error induced by replacing E(ζn,ghi+v |Fni+u+1) by (Cn,ghi+v+1 − C

n,gh
i )∆n +

∆2
n(w − v − 1)̃bn,ghi+v+1 in (C.53) is smaller that ∆7/2

n .
Using Cauchy Schwartz inequality, successive conditioning, (C.52), (C.10) for Z = c and the bound-
edness of b̃t and Ct we obtain

∣∣∣E(αn,jki+u α
n,lm
i+u (Cn,jki+u+1 − C

n,gh
i )|Fni+u

)∣∣∣ ≤ K∆5/2
n∣∣∣E(αn,jki+u α

n,lm
i+u b̃

n,gh
i+u+1|F

n
i+u

)∣∣∣ ≤ K∆2
n∣∣∣E(αn,jki+u (Cn,lmi+u − C

n,lm
i )(Cn,ghi+u+1 − C

n,gh
i )|Fni

)∣∣∣ ≤ K∆1/4
n ∆3/2

n (
√

∆n + ηni,kn)∣∣∣E(αn,jki+u (Cn,lmi+u − C
n,lm
i )̃bn,ghi+u+1|F

n
i

)∣∣∣ ≤ ∆5/4
n∣∣∣E((Cn,jki+u − C

n,gh
i )(Cn,lmi+u − C

n,lm
i )̃bn,ghi+u+1|F

n
i

)∣∣∣ ≤ K∆1/2
n∣∣∣E((Cn,jki+u − C

n,jk
i )(Cn,lmi+u − C

n,lm
i )(Cn,ghi+u+1 − C

n,gh
i )|Fni

)∣∣∣ ≤ K∆n.

The above inequalities together yield |E(ξni (3)|Fni )| ≤ K∆n.

Proof of (C.49)

We first observe that ξni (4) can be rewritten as

ξni (4) = 1
(kn∆n)3

kn−1∑
w=2

w−1∑
v=0

v−1∑
u=0

ζn,jki+u ζ
n,lm
i+v ζ

n,gh
i+w ,
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where

ζn,jki+u ζ
n,lm
i+v ζ

n,gh
i+w =

[
αn,jki+u α

n,lm
i+v α

n,gh
i+w + αn,jki+u ∆nα

n,lm
i+v (Cn,ghi+w − C

n,gh
i ) + αn,jki+u ∆n(Cn,lmi+v − C

n,lm
i )αn,ghi+w

+ ∆2
nα

n,jk
i+u (Cn,lmi+v − C

n,lm
i )(Cn,ghi+w − C

n,gh
i ) + ∆n(Cn,jki+u − C

n,jk
i )αn,lmi+v α

n,gh
i+w

+ ∆2
n(Cn,jki+u − C

n,jk
i )αn,lmi+v (Cn,ghi+w − C

n,gh
i ) + ∆2

n(Cn,jki+u − C
n,jk
i )(Cn,lmi+v − C

n,lm
i )αn,ghi+w

+ ∆3
n(Cn,jki+u − C

n,jk
i )(Cn,lmi+v − C

n,lm
i )(Cn,ghi+w − C

n,gh
i )

]
.

Based on the above decomposition, we set

ξni (4) =
8∑
j=1

χ(j),

with χ(j) defined below. We aim to show that |E(χ(j)
∣∣Fni )| ≤ K∆3/4

n (∆1/4
n + ηni,kn), j = 1, . . . , 8.

First, set

χ(1) = 1
(kn∆n)3

kn−1∑
w=2

w−1∑
v=0

v−1∑
u=0

αn,jki+u α
n,lm
i+v α

n,gh
i+w .

Upon changing the order of the summation, we have

χ(1) = 1
(kn∆n)3

kn−1∑
w=2

w−1∑
v=0

( v−1∑
u=0

αn,jki+u

)
αn,lmi+v α

n,gh
i+w .

Define also

χ′(1) = 1
(kn∆n)3

kn−1∑
w=2

w−1∑
v=0

( v−1∑
u=0

αn,jki+u

)
αn,lmi+v E(αn,ghi+w |F

n
i+v+1).

Note that E(χ(1)|Fni ) = E(χ′(1)|Fni ).
By Lemma 3, we have for q ≥ 2,

E
(∥∥∥ v−1∑

u=0
αn,jki+u

∥∥∥q∣∣∣Fni ) ≤ Kq∆3q/4
n .

The Cauchy-Schwartz inequality yields

E

(∣∣∣ kn−1∑
w=2

w−1∑
v=0

( v−1∑
u=0

αn,jki+u

)
αn,lmi+v E(αn,ghi+w |F

n
i+v+1)

∣∣∣∣∣∣∣∣Fni
)
≤ Kk2

n

[
E
(∣∣∣ v−1∑

u=0
αn,jki+u

∣∣∣4∣∣∣Fni )]1/4
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×
[
E
(∣∣∣αn,lmi+v

∣∣∣4∣∣∣Fni )]1/4 × [E(∣∣∣E(αn,ghi+w |F
n
i+v+1)

∣∣∣2∣∣∣Fni )]1/2 ≤ K∆nk
2
n∆3/4

n ∆3/2
n (

√
∆n + ηni,kn),

where the last iteration is obtained using (C.54) as well as the inequality (a + b)1/2 ≤ a1/2 + b1/2,
which holds for positive real numbers a and b, and the third statement in Lemma 1. It follows that

|E
(
χ(1)

∣∣Fni )| ≤ K∆3/4
n (

√
∆n + ηni,kn).

Next, we introduce

χ(2) = 1
(kn∆n)3

kn−1∑
w=2

w−1∑
v=0

( v−1∑
u=0

∆n(Cn,jki+u − C
n,jk
i )

)
αn,lmi+v α

n,gh
i+w ,

χ(3) = 1
(kn∆n)3

kn−1∑
w=2

w−1∑
v=0

( v−1∑
u=0

αn,jki+v

)
∆n(Cn,lmi+u − C

n,lm
i )αn,ghi+w ,

χ(4) = 1
(kn∆n)3

kn−1∑
w=2

w−1∑
v=0

( v−1∑
u=0

∆n(Cn,jki+u − C
n,jk
i )

)
∆n(Cn,lmi+u − C

n,lm
i )αn,ghi+w .

Given that for q ≥ 2, we have

E
(∥∥∥ v−1∑

u=0
∆n(Cn,jki+u − C

n,jk
i )

∥∥∥q∣∣∣Fni ) ≤ Kq∆3q/4
n and E(‖Cn,jki+u − C

n,jk
i ‖q

∣∣Fni ) ≤ Kq∆q/4
n .

Similar steps to χ(1) lead to

|E(χ(2)
∣∣Fni )| ≤ K∆3/4

n (
√

∆n + ηni,kn) and |E(χ(j)
∣∣Fni )| ≤ K∆n(

√
∆n + ηni,kn) for j = 3, 4.

Define

χ(5) = 1
(kn∆n)3

kn−1∑
w=2

w−1∑
v=0

( v−1∑
u=0

αn,jki+u

)
αn,lmi+v ∆n(Cn,ghi+w − C

n,gh
i )

χ′(5) = 1
(kn∆n)3

kn−1∑
w=2

w−1∑
v=0

( v−1∑
u=0

αn,jki+u

)
αn,lmi+v ∆nE

(
(Cn,ghi+w − C

n,gh
i )

∣∣Fni+v+1)

χ(6) = 1
(kn∆n)3

kn−1∑
w=2

w−1∑
v=0

( v−1∑
u=0

∆n(Cn,jki+u − C
n,jk
i )

)
αn,lmi+v ∆n(Cn,ghi+w − C

n,gh
i )

χ(7) = 1
(kn∆n)3

kn−1∑
w=2

w−1∑
v=0

( v−1∑
u=0

αn,jki+u

)
∆n(Cn,lmi+v − C

n,lm
i )∆n(Cn,ghi+w − C

n,gh
i ),
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where we have E(χ(5)|Fni ) = E(χ′(5)|Fni ). Recalling (C.55), we further decompose χ′(5) as,

χ′(5) =
5∑
j=1

χ(5)[j],

with

χ′(5)[1] = 1
(kn∆n)3

kn−1∑
w=2

w−1∑
v=0

( v−1∑
u=0

αn,jki+u

)
αn,lmi+v

(
E
(
Cn,ghi+w − C

n,gh
i |Fni+v+1

)
− (Cn,ghi+v+1 − C

n,gh
i )∆n − b̃n,ghi+v+1∆2

n(w − v − 1)
)

χ′(5)[2] = 1
(kn∆n)3

kn−1∑
w=2

w−1∑
v=0

∆n(Cn,ghi+v − C
n,gh
i )

( v−1∑
u=0

αn,jki+u

)
αn,lmi+v

χ′(5)[3] = 1
(kn∆n)3

kn−1∑
w=2

w−1∑
v=0

( v−1∑
u=0

αn,jki+u

)
∆n(Cn,ghi+v+1 − C

n,gh
i+v )αn,lmi+v

χ′(5)[4] = 1
(kn∆n)3

kn−1∑
w=2

w−1∑
v=0

( v−1∑
u=0

αn,jki+u

)
∆2
n(w − v − 1)(̃bn,ghi+v+1 − b̃

n,gh
i+v )αn,lmi+v

χ′(5)[5] = 1
(kn∆n)3

kn−1∑
w=2

w−1∑
v=0

∆2
n(w − v − 1)̃bn,ghi+v

( v−1∑
u=0

αn,jki+u

)
αn,lmi+v .

Using (C.55), (C.54), (C.51) and following the same strategy proof as for χ(1), it can be shown that

|E
(
χ′(5)[j]

∣∣Fni )| ≤ K∆3/4
n (

√
∆n + ηni,kn), for j = 1, . . . , 5,

which in turn implies

|E
(
χ(5)

∣∣Fni )| ≤ K∆3/4
n (

√
∆n + ηni,kn), for j = 1, . . . , 5.

The term χ(6) can be handled similarly to χ(5), hence we conclude that

|E
(
χ(6)

∣∣Fni )| ≤ K∆3/4
n (

√
∆n + ηni,kn).

Next, we set

χ(7) = 1
(kn∆n)3

kn−1∑
w=2

(
w−1∑
v=0

( v−1∑
u=0

αn,jki+u

)
∆n(Cn,lmi+v − C

n,lm
i )∆n(Cn,ghi+w − C

n,gh
i )

)
.
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Define

χ(7)[1] = 1
(kn∆n)3

kn−1∑
w=2

(
w−1∑
v=0

( v−1∑
u=0

αn,jki+u

)
∆n(Cn,lmi+v − C

n,lm
i )∆n(Cn,ghi+v+1 − C

n,gh
i+v )

)

χ(7)[2] = 1
(kn∆n)3

kn−1∑
w=2

(
w−1∑
v=0

( v−1∑
u=0

αn,jki+u

)
∆n(Cn,lmi+v − C

n,lm
i )∆n(Cn,ghi+v − C

n,gh
i )

)

χ(7)[3] = 1
(kn∆n)3

kn−1∑
w=2

(
w−1∑
v=0

( v−1∑
u=0

αn,jki+u

)
∆n(Cn,lmi+v − C

n,lm
i )∆2

n(w − v − 1)(̃bn,ghi+v+1 − b̃
n,gh
i+v )

)

χ(7)[4] = 1
(kn∆n)3

kn−1∑
w=2

(
w−1∑
v=0

∆2
n(w − v − 1)̃bn,ghi+v

( v−1∑
u=0

αn,jki+u

)
∆n(Cn,lmi+v − C

n,lm
i )

)
.

It is easy to see that

χ(7) =
4∑
j=1

χ(7)[j].

Similarly to calculations used for χ(1), it can be shown that

|E(χ(7)[j]
∣∣Fni )| ≤ K∆1/4

n (∆1/4
n + ηi,kn), for j = 1, . . . , 3.

To handle the remaining term χ(7)[4], we decompose it χ(7)[4] =
∑9
j=1 χ(7)[4][j], where

χ(7)[4][1] = ∆2
n

(kn∆n)3

kn−1∑
w=2

w−1∑
v=0

v−1∑
u=0

αn,jki+u (Cn,lmi+u+1 − C
n,lm
i+u )(Cn,ghi+u+1 − C

n,gh
i+u )

χ(7)[4][2] = ∆2
n

(kn∆n)3

kn−1∑
w=2

w−1∑
v=0

v−1∑
u=0

(Cn,ghi+u − C
n,gh
i )αn,jki+u (Cn,lmi+u+1 − C

n,lm
i+u )

χ′(7)[4][2] = ∆2
n

(kn∆n)3

kn−1∑
w=2

w−1∑
v=0

v−1∑
u=0

(Cn,ghi+u − C
n,gh
i )E(αn,jki+u (Cn,lmi+u+1 − C

n,lm
i+u )|Fni+u)

χ(7)[4][3] = ∆2
n

(kn∆n)3

kn−1∑
w=2

w−1∑
v=0

v−1∑
u=0

(Cn,lmi+u − C
n,lm
i )αn,jki+u (Cn,ghi+u+1 − C

n,gh
i+u )

χ(7)[4][4] = ∆2
n

(kn∆n)3

kn−1∑
w=2

w−1∑
v=0

v−1∑
u=0

(Cn,lmi+u − C
n,lm
i )(Cn,ghi+u − C

n,gh
i )αn,jki+u

χ(7)[4][5] = ∆2
n

(kn∆n)3

kn−1∑
w=2

w−1∑
v=0

v−1∑
u=0

(Cn,lmi+u − C
n,lm
i )αn,jki+u (Cn,ghi+v − C

n,gh
i+u+1)

χ′(7)[2][5] = ∆2
n

(kn∆n)3

kn−1∑
w=2

w−1∑
v=0

v−1∑
u=0

(Cn,lmi+u − C
n,lm
i )αn,jki+u E((Cn,ghi+v − C

n,gh
i+u+1|F

n
i+u)
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χ(7)[4][6] = ∆2
n

(kn∆n)3

kn−1∑
w=2

w−1∑
v=0

v−1∑
u=0

αn,jki+u (Cn,lmi+u+1 − C
n,lm
i+u )(Cn,ghi+v − C

n,gh
i+u+1)

χ(7)[4][7] = ∆2
n

(kn∆n)3

kn−1∑
w=2

w−1∑
v=0

v−1∑
u=0

(Cn,ghi+u − C
n,gh
i )αn,jki+u (Cn,lmi+v − C

n,lm
i+u+1)

χ(7)[4][8] = ∆2
n

(kn∆n)3

kn−1∑
w=2

w−1∑
v=0

v−1∑
u=0

αn,jki+u (Cn,ghi+u+1 − C
n,gh
i+u )(Cn,lmi+v − C

n,lm
i+u+1)

χ(7)[4][9] = ∆2
n

(kn∆n)3

kn−1∑
w=2

w−1∑
v=0

v−1∑
u=0

αn,jki+u (Cn,lmi+v − C
n,lm
i+u+1)(Cn,ghi+v − C

n,gh
i+u+1).

Using arguments similar to those involved for the treatment of χ(1), it can be shown that

|E(χ(7)[4][j]
∣∣Fni )| ≤ K∆1/4

n (∆1/4
n + ηi,kn), for j = 1, . . . , 8,

which yields

|E(χ(7)
∣∣Fni )| ≤ K∆1/4

n (∆1/4
n + ηi,kn).

Next, define

χ(8) = 1
k3
n

kn−1∑
w=2

w−1∑
v=0

v−1∑
u=0

(Cn,jki+u − C
n,jk
i )(Cn,lmi+v − C

n,lm
i )(Cn,ghi+w − C

n,gh
i ).

This term can be further decomposed into six components. Successive conditioning and existing bounds
give

|E
(

(Cn,jki+u − C
n,jk
i )(Cn,lmi+v − C

n,lm
i+u )(Cn,ghi+w − C

n,gh
i+v )

∣∣Fni )| ≤ K∆n

|E
(

(Cn,jki+u − C
n,jk
i )(Cn,lmi+v − C

n,lm
i+u )(Cn,ghi+v − C

n,gh
i+u )

∣∣Fni )| ≤ K∆3/4
n (∆1/4

n + ηi,kn)

|E
(

(Cn,jki+u − C
n,jk
i )(Cn,lmi+v − C

n,lm
i+u )(Cn,ghi+u − C

n,gh
i )

∣∣Fni )| ≤ K∆n

|E
(

(Cn,jki+u − C
n,jk
i )(Cn,lmi+u − C

n,lm
i )(Cn,ghi+w − C

n,gh
i+v )

∣∣Fni )| ≤ K∆n

|E
(

(Cn,jki+u − C
n,jk
i )(Cn,lmi+u − C

n,lm
i )(Cn,ghi+v − C

n,gh
i+u )

∣∣Fni )| ≤ K∆n

|E
(

(Cn,jki+u − C
n,jk
i )(Cn,lmi+u − C

n,lm
i )(Cn,ghi+u − C

n,gh
i )

∣∣Fni )| ≤ K∆n
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These bounds can be used to deduce

|E(χ(8)
∣∣Fni )| ≤ K∆n.

This completes the proof.

Proof of (C.13) and (C.14) in Lemma 5

Observe that

νn,jki (Cn,lmi+kn − C
n,lm
i )(Cn,ghi+kn − C

n,gh
i ) = 1

kn∆n

kn−1∑
u=0

ζn,jki,u (Cn,lmi+kn − C
n,lm
i )(Cn,ghi+kn − C

n,gh
i ),

νn,jki νn,lmi (Cn,ghi+kn − C
n,gh
i ) = 1

k2
n∆2

n

kn−1∑
u=0

ζn,jki,u ζn,lmi,u (Cn,ghi+kn − C
n,gh
i )

+ 1
k2
n∆2

n

kn−2∑
u=0

kn−1∑
v=0

ζn,jki,u ζn,lmi,v (Cn,ghi+kn − C
n,gh
i ) + 1

k2
n∆2

n

kn−2∑
u=0

kn−1∑
v=0

ζn,lmi,u ζn,jki,v (Cn,ghi+kn − C
n,gh
i ).

Hence, (C.13) and (C.14) can be proved using the same strategy as for (C.12).

Proof of (C.15) and (C.16) in Lemma 5

Note that we have

λn,jki λn,lmi νn,ghi = νn,ghi νn,jki+knν
n,lm
i+kn + νn,ghi νn,jki νn,lmi − νn,ghi νn,lmi νn,jki+kn − ν

n,gh
i νn,lmi νn,jki+kn

+ νn,ghi νn,jki+kn(Cn,lmi+kn − C
n,lm
i )− νn,ghi νn,jki (Cn,lmi+kn − C

n,lm
i ) + νn,ghi νn,lmi+kn(Cn,jki+kn − C

n,jk
i )

− νn,ghi νn,lmi (Cn,jki+kn − C
n,jk
i ) + νn,ghi (Cn,jki+kn − C

n,jk
i )(Cn,lmi+kn − C

n,lm
i ),

and

λn,ghi λn,jki λn,lmi = νn,ghi+knν
n,jk
i+knν

n,lm
i+kn + νn,ghi+knν

n,jk
i νn,lmi − νn,ghi+knν

n,lm
i νn,jki+kn − ν

n,gh
i+knν

n,lm
i νn,jki+kn

+νn,ghi+knν
n,jk
i+kn(Cn,lmi+kn − C

n,lm
i )− νn,ghi+knν

n,jk
i (Cn,lmi+kn − C

n,lm
i ) + νn,ghi+knν

n,lm
i+kn(Cn,jki+kn − C

n,jk
i )

−νn,ghi+knν
n,lm
i (Cn,jki+kn − C

n,jk
i ) + νn,ghi+kn(Cn,jki+kn − C

n,jk
i )(Cn,lmi+kn − C

n,lm
i )

−νn,ghi νn,jki+knν
n,lm
i+kn − ν

n,gh
i νn,jki νn,lmi + νn,ghi νn,lmi νn,jki+kn + νn,ghi νn,lmi νn,jki+kn

−νn,ghi νn,jki+kn(Cn,lmi+kn − C
n,lm
i ) + νn,ghi νn,jki (Cn,lmi+kn − C

n,lm
i )− νn,ghi νn,lmi+kn(Cn,jki+kn − C

n,jk
i )

+νn,ghi νn,lmi (Cn,jki+kn − C
n,jk
i )− νn,ghi (Cn,jki+kn − C

n,jk
i )(Cn,lmi+kn − C

n,lm
i )

+νn,jki+knν
n,lm
i+kn(Cn,ghi+kn − C

n,gh
i ) + νn,jki νn,lmi (Cn,ghi+kn − C

n,gh
i )− νn,lmi νn,jki+kn(Cn,ghi+kn − C

n,gh
i )

−νn,lmi νn,jki+kn(Cn,ghi+kn − C
n,gh
i ) + νn,jki+kn(Cn,lmi+kn − C

n,lm
i )(Cn,ghi+kn − C

n,gh
i )

72



−νn,jki (Cn,lmi+kn − C
n,lm
i )(Cn,ghi+kn − C

n,gh
i ) + νn,lmi+kn(Cn,jki+kn − C

n,jk
i )(Cn,ghi+kn − C

n,gh
i )

−νn,lmi (Cn,jki+kn − C
n,jk
i )(Cn,ghi+kn − C

n,gh
i ) + (Cn,jki+kn − C

n,jk
i )(Cn,lmi+kn − C

n,lm
i )(Cn,ghi+kn − C

n,gh
i ).

From (C.4), notice that νni is Fni+kn -measurable and satisfies ‖E(νni |Fni )‖ ≤ K∆1/2
n .

The law of iterated expectations and existing bounds imply

|E(νn,lmi νn,jki+kn |F
n
i )| ≤ K∆3/4

n ,

|E(νn,lmi νn,ghi νn,jki+kn |F
n
i )| ≤ K∆n,

|E(νn,lmi (Cn,ghi+kn − C
n,gh
i )νn,jki+kn |F

n
i )| ≤ K∆n,

|E(νn,lmi+kn(Cn,jki+kn − C
n,jk
i )|Fni )| ≤ K∆3/4

n ,

|E((Cn,jki+kn − C
n,jk
i )(Cn,lmi+kn − C

n,lm
i )(Cn,ghi+kn − C

n,gh
i )|Fni )| ≤ K∆n. (C.56)

It can also be readily verified that

|E(νn,ghi+knν
n,ab
i+kn |F

n
i+kn)− 1

kn
(Cn,gai+knC

n,hb
i+kn + Cn,gbi+knC

n,ha
i+kn)− kn∆n

3 C
n,gh,ab

i+kn |

≤ K
√

∆n(∆1/8
n + ηni+kn,kn).

Hence, for ϕn,ghi ∈ {νn,ghi , Cn,ghi+kn−C
n,gh
i }, which satisfies E(|ϕn,ghi |q

∣∣∣Fni ) ≤ K∆q/4
n and E(ϕn,ghi |Fni ) ≤

K∆1/2
n . One can show that

|E(ϕn,ghi νn,jki+knν
n,lm
i+kn |F

n
i )− E

(
ϕn,ghi

[ 1
kn

(Cn,jli+knC
n,km
i+kn + Cn,jmi+knC

n,kl
i+kn)− kn∆n

3 C
n,jk,lm

i+kn

]
|Fni

)
|

≤ K∆3/4
n (∆1/4

n + ηni,2kn).

Next, by combining the successive conditioning together with existing bounds, we have

|E(ϕn,ghi C
n,jk,lm

i+kn )| ≤ K∆1/4
n (∆1/4

n + ηni,kn)

|E(ϕn,ghi Cn,jli+knC
n,km
i+kn )| ≤ K∆1/2

n ,

which together imply

|E(ϕn,ghi νn,jki+knν
n,lm
i+kn |F

n
i )| ≤ K∆3/4

n (∆1/4
n + ηni,2kn). (C.57)

It is easy to see that (C.12), (C.56) and (C.57) and the inequality ηni,kn ≤ η
n
i,2kn together yield (C.15)

and (C.16).
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A3.6 Proof of Lemma 6

(C.17) can be proved easily using the bounds of ρ(u, v)n,ghi in (C.41) . To show (C.18), (C.19)
and (C.20), we set

A11(H, gh, u;G, ab, v) = λ(u, v)n0
[T/∆n]∑
i=2kn

(∂ghH∂abG)(Ci−1)ζ(u)n,ghi ζ(v)n,abi .

Then it holds that

1
∆1/4
n

(
A11(H, gh, u;G, ab, v)−A11(H, gh, u;G, ab, v)

)
P⇒ 0.

The above result is proved following similar steps as for (C.35) in case w = 1 by replacing Θ(u, v)(C),i,n
0

by λ(u, v)n0 ((∂ghH∂abG)(Ci−1) − (∂ghH∂abG)(Ci−2kn)), which has the same bounds as the former.
Next, decompose A11 as follows,

A11(H, gh, u;G, ab, v) = λ(u, v)n0

[ [T/∆n]∑
i=2kn

(∂ghH∂abG)(Ci−1)V ni−1

+
[T/∆n]∑
i=2kn

(∂ghH∂abG)(Ci−1)
(
E(ζ(u)n,ghi ζ(v)n,abi |Fni−1)− V ni−1

)

+
[T/∆n]∑
i=2kn

(∂ghH∂abG)(Ci−1)
(
ζ(u)n,ghi ζ(v)n,abi − E(ζ(u)n,ghi ζ(v)n,abi |Fni−1)

)]
.

We follow the proof of (C.36) for w = 1, and we replace Θ(u, v)(C),i,n
0 by λ(u, v)n0 (∂ghH∂abG)(Ci−1),

which satisfies only the condition |λ(u, v)n0 (∂ghH∂abG)(Ci−1)| ≤ λ̃nu,v. This calculation shows that the
last two terms in the above decomposition vanish at a rate faster than ∆1/4

n . Therefore,

1
∆1/4
n

(
A11(H, gh, u;G, ab, v)− λ(u, v)n0

( [T/∆n]∑
i=2kn

(∂ghH∂abG)(Ci−1)V ni−1

))
⇒ 0.

As a consequence, for (u, v) = (1, 2) and (2, 1),

1
∆1/4
n

A11(H, gh, u;G, ab, v)⇒ 0.

The results follow from the following observation,

1
∆1/4
n

(
λ(u, v)n0

( d∑
g,h,a,b=1

[T/∆n]∑
i=2kn

(∂ghH∂abG)(Ci−1)V ni−1(u, v)
)
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− 3
θ2

∫ T

0
(∂ghH∂abG)(Ct)(Cgat Chbt + Cgbt C

ha
t )dt

)
⇒ 0, for (u, v) = (2, 2),

1
∆1/4
n

(
d∑

g,h,a,b=1
λ(u, v)n0

( [T/∆n]∑
i=2kn

(∂ghH∂abG)(Ci−1)V ni−1(u, v)
)
− [H(C), G(C)]T

)
⇒ 0,

for (u, v) = (1, 1).
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Chapter 2

Are Three Moments Enough?
What Options Tell Us about
Higher-Order Risk Aversion. ∗

2.1 Introduction

The Capital Asset Pricing Model (CAPM) of Sharpe (1964a) and Lintner (1965b) has been

at the forefront of the empirical financial literature for many decades. The model builds on the

assumption that investors are exclusively rewarded for the exposure to the variance risk, an

assumption that implies, in particular, that the pricing kernel is linear in the market returns.

As the literature expands, numerous papers have convincingly established the limitations of

this CAPM model pushing more recent models to incorporate other factors besides market

returns (Ross (1976), Fama and French (1992)).1 Even though many of these models per-

form well empirically, most of the newly introduced factors lack economic underpinnings. To

overcome this shortcoming, Kraus and Litzenberger (1976) and Harvey and Siddique (2000b)

derive preferences for the first moments of a distribution, based on preference theory. They

propose a nonlinear pricing kernel that assumes an aversion to the variance of the returns dis-

tribution, and an appetence for its skewness. Dittmar (2002a) follows the same approach and
∗This chapter is co-authored with Christian Dorion and Pierre Chaigneau.

1A CAPM anomaly appears when low-risk stocks outperform high-risk stocks.
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also considers an aversion to the kurtosis of the returns distribution. These papers show that

such pricing kernels derived from first principles can outperform other popular cross-sectional

asset pricing models, including the Fama and French (1993) three-factor model.

A limitation of most of the existing nonlinear pricing kernels, however, is that they do not

consider the effect of higher-order moments beyond the kurtosis risk. Yet, higher-order risk

preferences also imply preferences for higher-order moments of a distribution (Scott and Hor-

vath (1980a), Ekern (1980)).2 These higher-order risk preferences have been extensively stud-

ied in economic theory (e.g., Ekern (1980), Eeckhoudt and Schlesinger (2006), Liu and Meyer

(2013)) and more recently in experiments on risky choices (Deck and Schlesinger (2014)).3

For example, CARA and CRRA utility are averse to all even-order moments, and loving

toward all odd-order moments. A priori, it is unclear whether considering only a subset of

moments is adequate for asset pricing purposes, and, if so, which subset of moments should

be considered. Should the pricing kernel explicitly incorporate the effect of higher-order risk

preferences beyond the kurtosis preference?

To contribute to answering this question, we introduce a novel option-valuation approach

that allows us to exploit the richness of option data to better understand the extent to which

higher moments of the distribution of market returns matter in the pricing kernel. Options

constitute a suitable test asset for documenting the pricing of higher-order risks given the

nonlinear patterns in their payoffs. As in Harvey and Siddique (2000b)) and Dittmar (2002a)

, we use a Taylor series expansion of marginal utility, so that the pricing kernel is a polynomial

function of the market return. Whereas Harvey and Siddique (2000b)) and Dittmar (2002a)

consider a Taylor series expansion that only incorporates preferences for the first three and

four moments, respectively, we also consider higher-order expansions, thus allowing for the

effect of higher-order risk preferences.4 The first pricing kernel considered, denoted by SDF(2),

relies on a first order Taylor expansion of marginal utility, which implies that only variance
2They also have other implications for economic behavior, see Lajeri and Lajeri (2004) and Denuit and

Rey (2010) for the case of “edginess”, which is an appetence for fifth order risk, as implied by a positive fifth
derivative of the utility function in an expected utility framework.

3Deck and Schlesinger (2014) find that preferences for the fifth and sixth degree risks are weaker than
preferences for the first four degrees of risk.

4This type of approach still imposes constraints on the set of possible pricing kernels, which is restricted
by expected utility theory: a utility function without any preference for a given moment (in the sense that
its corresponding derivative is nil) does not have a preference for higher-order moments either. Harvey and
Siddique (2000b) and Dittmar (2002a) approaches implicitly assume u(4) = 0 and u(5) = 0, respectively.
Likewise, our SDF(k) approach described below implicitly assumes u(k+1) = 0.
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risk is priced. The second pricing kernel considered, SDF(3), relies on a second order Taylor

expansion of marginal utility, which implies that variance and skewness risks are priced, but

that higher-order risks are not. As k tends to infinity, SDF(k) incorporates the effect of all

risk preferences , and thus represents the “true” pricing kernel.

We formally prove that, using any one of the approximate SDF(k), European options

prices can be computed in closed-form as long as the physical dynamics is affine. In such

case, the risk-neutral dynamics implied by SDF(k) needs not to be affine. We combine each

approximate SDF with the nonnormal component GARCH model of Babaoglu, Christoffersen,

Heston, and Jacobs (2018) to obtain weekly estimates of the risk aversion parameters from

S&P 500 index option data. We then compare the ability of these pricing kernels to fit panels

of index option prices across time. By doing so, we assess the goodness of the fit of each

SDF(k) using the options root mean square of the relative implied volatility (RIVRMSE).

Our weekly in-sample analysis reveals the following. On virtually all weeks between

1996 and 2017, pricing kernels accounting for skewness (SDF(3)) and kurtosis (SDF(4)) fit

the data significantly better than SDF(2). The pricing errors of SDF(2) (SDF(3)) are, on

average, 2.18 (1.18) times larger than the pricing errors of SDF(4). Further accounting for

hyperskewness and hyperkurtosis, SDF(6) yields errors that are 0.95 times as large as those

of SDF(4), and that are statistically significant on only 12% of the weeks. Finally, whereas,

in sample, increasing the complexity of the SDF should always improve the fit, SDF(9) does

not improve over SDF(8).

Interestingly, the estimates of the aversion to variance, skewness and kurtosis have the sign

predicted by the expected utility theory in almost all the weeks and they evolve smoothly

over time. In contrast, the estimates of aversion to hyperskewness and hyperkurtosis are

characterized by large sign deviations from their expected signs. Additionally, these estimates

are noticeably more volatile than that of the first three moments. Together, sign deviations

and noisy estimates thus lend little support to hyperskewness and hyperkurtosis aversions

being economically relevant. It rather hints towards overfitting. Importantly, the out-of-

sample improvements of SDF(6) over SDF(4) have little economic significance.

Putting together these results, we conclude SDF(4) adequately describes the pricing kernel.

Hence, despite the fact that higher-order risks may theoretically matter in asset pricing, index

option prices suggest that only the first four moments matter. This result corroborates the
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approach of Dittmar (2002a), who proposed a pricing kernel which incorporates the asset

pricing effect of these four moments. Thus, our results can be viewed as providing empirical

support for an asset pricing model based on preferences for the first four moments of the

distribution of market returns – and for these moments only, which a priori cannot be taken for

granted. Further, this support is derived from index option data, which reflect risk preferences

and risk perceptions, regardless of the actual manifestation of such risks.

Our paper relates to a vast literature.5 Much of the existing literature either focuses

on estimating the physical and risk-neutral distributions, or on the premium implied by the

difference in moments. In the latter case, risk premia are informative about the interaction of

prices and quantities of risk. However, one typically cannot disentangle the two. In particular,

time-varying risk premiums do not necessarily rule out constant risk aversion; the quantity of

risk faced by a CRRA agent, or her risk aversion coefficient could be changing. Our results,

however, clearly reject the CRRA hypothesis at any given point in time. We show that the

the relative risk aversion parameters do not move in tandem as implied by CRRA preferences.

Indeed, our results show that the aversion to variance risk is low in high volatility periods while

aversion to skewness and kurtosis are high during these episodes. Given that risk aversion is

expected to be countercyclical, our results suggest that skewness and kurtosis aversions are

better proxies for the aggregate risk aversion than variance risk aversion.

Finally, our results demonstrate that a stochastic discount factor with priced variance,

skewness and kurtosis risks and maturity-independent risk aversion parameters compares

favourably to the discrete-time volatility-dependent pricing kernel of Christoffersen, Heston,

and Jacobs (2013). Indeed, we find that the volatility-dependent pricing kernel and SDF(4)

are almost indistinguishable in terms of options fit both in sample and out-of-sample. To

appraise the qualitative implication of each SDF, we compute the moments premium. Our

results show that the the volatility-dependent pricing kernel implies a systematically higher

premium than the SDF(4) for all the moments orders. For example, the normalized volatility

risk premium is 1.24 for the the volatility-dependent pricing kernel against 1.09 for SDF(4)on

average. Focusing on a single moment, volatility-dependent pricing kernel thus needs to
5Among many others, Bakshi, Kapadia, and Madan (2003), Harvey and Siddique (2000b), Dittmar (2002a),

Christoffersen, Fournier, Jacobs, and Karoui (2017), Ait-Sahalia and Lo (1998), Jackwerth (2000) Rosenberg
and Engle (2002), Bliss and Panigirtzoglou (2004), Chabi-Yo (2002), Christoffersen, Heston, and Jacobs (2013),
Babaoglu, Christoffersen, Heston, and Jacobs (2018).
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further inflate risk-neutral variance that SDF(4) to match option prices.

This paper is organized as follows. Section 2 presents our model, discusses the pricing

kernel specification. Section 3 outlines the estimation methodoloy. Section 4 presents the

data and presents the empirical results. Section 4 concludes.

2.2 Methodology

The time-t value of asset V with terminal payoff XT paid at time T is given by:

Vt = EP
t [Mt,TXT ] = EQ

t

[
e−rf (T−t)XT

]
, (2.1)

whereMt,T is the pricing kernel and rf is the instantaneous risk-free rate, and P and Q denote

respectively the physical and risk-neutral measures. Following Black and Scholes (1973b), the

bulk of the option-valuation literature relies on risk-neutral valuation. Outside the continuous-

time complete-market framework, however, the Radon-Nikodym that equates the P and Q

expectations in equation (2.1) crucially hinges on prices of risk that must be estimated if

one wants to relate the physical and risk-neutral measures.6 The prevalent paradigm in the

option-valuation literature is to specify a model under P and a Radon-Nikodym such that the

resulting dynamics under Q are affine, allowing for a closed-form solution (see e.g. Duffie,

Pan, and Singleton (2000) among others).

Whereas closed-form solutions are crucial for tractability, affine models have been demon-

strated to underperform their non-affine counterparts at fitting option prices, sometimes quite

significantly so.7 Our approach allows for closed-form prices without imposing affine restric-

tions on the Q model. Indeed, we depart from the standard risk-neutral valuation approach

and focus on EP
t [Mt,TXT ]. To disentangle between quantities and prices of risk, we use a para-

metric model to describe the distribution of payoffs, and a flexible nonparametric description

of the SDF.
6In a calibration exercise where one only cares about matching option prices, these prices of risk are “buried”

in the risk-neutral parameters. They become relevant only if one wants to relate option prices to the returns
of the underlying assets.

7See, for instance, Chernov, Gallant, Ghysels, and Tauchen (2003), Hsieh and Ritchken (2005), and Christof-
fersen, Dorion, Jacobs, and Wang (2010).
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2.2.1 Prices of risk: An arbitrarily precise approximation of the SDF

The Euler equation (see e.g. Hansen and Jagannathan (1991))

Vt = EP
t [Mt,TXT ]

relates prices (or returns) to the representative agent’s intertemporal marginal rate of substi-

tution, and the asset payoff XT , where U is the utility function of the representative agent.8

As discussed in Dittmar (2002a), under mild conditions, the pricing kernel can be reformu-

lated in terms of aggregate wealth,W , rather than consumption. In line with Dittmar (2002a)

and many others,9 we will work under the assumption that the evolution of market index, S,

is a good proxy for the wealth portfolio. Hence,

Mt,T = U′(ST )
U′(St)

.

In particular, the current value of the index portfolio is given by:10

St = EP
t

[
U′(ST )
U′(St)

ST

]
(2.2)

or equivalently

1 = EP
t

[
U′(ST )
U′(St)

(1 +Rt,T )
]

(2.3)

where Rt,T = (ST − St)/St is the total return on the index portfolio between t and T . Eqn.

(2.3) represents a no-arbitrage condition that should be fulfilled by any candidate SDF.

Our approach hinges on a simple Taylor series representation of the stochastic discount

factor (SDF). Indeed, U′(ST ) can be described by

U′(ST ) =
∞∑
i=0

1
i! U(i+1)

t (St) (ST − St)i = U′(St) +
∞∑
j=2

1
(j − 1)! U(j)

t (St) (ST − St)j−1 . (2.4)

8In this paper, we allow for time-variation in the representative consumer’s utility function. Such time-
variation could be driven by changing levels of risk aversion. To simplify the notation, we here abstract for the
time index.

9Virtually, all tests of the CAPM are implicitly making this assumption (Roll’s critique).
10To simplify the notation, we here abstract from dividends. Of course, in our empirical exercise, total

returns include dividends.
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Incidentally, each order of derivative in this representation can be related to the aversion to

a given moment of the returns distribution. Consequently, we set

RRA(j)
t = (−1)j−1S

j−1
t U(j)

t (St)
U′t(St)

, j ≥ 2,

which implies that

U′(ST )
U′(St)

= 1 +
∞∑
j=2

(−1)j−1

(j − 1)! RRA(j)
t Rj−1

t,T . (2.5)

For instance, RRA(2) is the familiar Arrow-Pratt measure of relative risk aversion. For j > 2,

RRA(j) generalizes relative risk aversion to skewness aversion (prudence, j = 3), aversion to

kurtosis (temperance, j = 4) and so on.11

The higher-order risk preferences have been extensively studied in economic theory (e.g.,

Ekern (1980), Eeckhoudt and Schlesinger (2006), Liu and Meyer (2013)) and more recently in

experiments on risky choices (Deck and Schlesinger (2014))). Scott and Horvath (1980b) show

that investors should have a negative preference for even moments and a positive preference for

odd ones.12 This implies in particular that the RRA(j)
t , defined above, should be non-negative

for j ≥ 0.

Note that SDF representation in equation (2.5) is not an approximation. In practice,

however, using this representation would involve truncating the series at some order k, which

would then yield an approximation of the SDF. This approximation is at the heart of our

analysis:

U′(ST )
U′(St)

' SDF(k)
t,T = κ

(k)
1,t,T +

k∑
j=2

κ
(k)
j,t,T RRA(j)

t Rj−1
t,T , (2.6)

where κ(k)
j,t,T are normalization constants whose expressions are available in Appendix B.2.

Actually, the SDF in equation (2.6) would not be an approximation under the hypothesis

that the representative agent is indifferent to the moments of the returns distribution beyond
11Prudence is necessary for decreasing absolute risk aversion (DARA). DARA implies that as an agent

becomes more wealthy she invests more (in dollars) in the risky asset (as opposed to the risk-free asset).
Temperance is necessary for decreasing absolute prudence, which is in turn necessary for “standard risk aver-
sion" Kimball (1993)). Under standard “risk aversion", the presence of an exogenous ’background risk" with
nonpositive mean (including a pure risk) increases the aversion to other independent risks (“risk vulnerability").

12This property is actually satisfied by CARA and CRRA utility functions.
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the kth moment. For instance, the pricing kernel studied by Harvey and Siddique (2000b)

sets k = 3, and that studied by Dittmar (2002a) considers k = 4. Our methodology allows

us to consider increasingly complex approximations of the SDF and assess to what extent the

increased complexity improves the fit to options prices both in-sample and out-of-sample.

2.2.2 Quantity of risk: Moments of the payoff’s distribution

The previous section presents the essence of our contribution. To disentangle prices

and quantities of risk, however, we unavoidably need a model for the physical distributions

of future returns.13 We here follow Babaoglu, Christoffersen, Heston, and Jacobs (2018,

hereafter BCHJ) and use their non-Gaussian GARCH model for the returns of asset S:14

rt+1 ≡ log
(
St+1
St

)
= rf + λht+1 − ξt+1 + νr,t+1, (2.7)

νr,t+1 ≡ ηyt+1 −
ht+1
η

, (2.8)

where yt+1 is an inverse Gaussian (IG) distribution with degree of freedom ht+1
η2 , such that

νr,t+1 has mean 0 and variance ht+1.15 The model has the key property that when η → 0, the

IG distribution converges to the normal distribution. The convexity adjustment ξt+1 is such

that

EP
t [ert+1 ] = erf+λht+1 .

13 Recent model-based recovery theorems study conditions on physical transition dynamics and pricing
kernels under which the physical belief can be determined from Arrow-Debreu prices alone. Broadly speaking,
this literature shows that recovery is possible whenever physical probabilities are induced by a family of
path-independent pricing kernels and satisfy further stability conditions (see e.g. Borovicka, Hansen, and
Scheinkman (2016)).

14Conditionally Gaussian models do not generate enough (negative) skewness and kurtosis at short horizon
to fit the market prices of short-dated options. A plethora of distributions have been studied to account
for conditional nonnormality, starting with the generalized error distribution (Duan (1999)), but the inverse
Gaussian distribution, popularized by Christoffersen, Heston, and Jacobs (2006a), has the notable advantage
of allowing for closed-form European prices. Although our notation differs significantly from the one used by
BCHJ, the two formulations of the model are observationally equivalent (cf. Appendix B.3). Our notation is
closer to that used in other recent papers, which allows for easier comparison with other models.

15 In particular, EP [y] = VarP (y) = ht+1
η2 ,EP [1/y] = η2

ht+1
+ η4

h2
t+1

. The conditional density of the future

stock price is given by ft−1(St) = ht/|η3|√
2πy3

t

St exp
(
− 1

2

[√
yt − ht/η

2
√
yt

]2
)
.
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That is, λ parametrizes the daily equity risk premium (ERP), λht+1. Given that the ERP is

inherently related to preferences, sequentially re-estimating risk aversion coefficients without

re-estimating λ would be theoretically inconsistent.

As in BCHJ, we assume the following component structure for volatility:16

ht+1 = qt+1 + ρh(ht − qt) + νh,t, (2.9)

qt+1 = σ2 + ρq(qt − σ2) + νq,t, (2.10)

where the innovations νh,t and νq,t are defined as

νh,t = ahhtνt + ch
η
vr,t, νq,t = aqhtνt + cq

η
vr,t, and νt =

(
ht
yt
− η2 − η4

ht

)
,

where νt has mean 0. Parameters ρh < ρq capture the persistence of the transient and per-

sistent processes, respectively. Parameters ah and aq control the variance of the variance

processes, and parameters ch and cq the negative correlation between variance processes and

returns, commonly referred to as the leverage effect (Black (1976)). By accounting for more

than one volatility component, the model is more flexible and its modelling of the term struc-

ture of volatility improves compared to a one-factor model.

We use returns to estimate the parameters of the physical variance processes, as well

as η, which parametrizes the physical conditional distribution of returns. We maximize the

(inverse-Gaussian) likelihood of the {yt} innovations filtered from the S&P 500 returns be-

tween January 1967 and December 2017.17 Table reports the MLE estimates of the physical

parameters.
16 At least two volatility components are required to adequately describe stock market volatility and option

prices. Indeed, two-factor volatility processes more effectively capture the time-series properties of volatility
by separately accounting for transient and highly persistent volatility shocks. See, among many others, Engle
and Lee (1999); Bates (2000); Andersen, Bollerslev, Diebold, and Ebens (2001); Alizadeh, Brandt, and Diebold
(2002); Christoffersen, Jacobs, Ornthanalai, and Wang (2008); and Dorion (2016).

17Note that returns between July 1962 and December 1966 are used to warm up the volatility processes;
however, the likelihood of these returns is disregarded.
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2.2.3 Benchmark BCHJ pricing kernel

Although our main goal is to disentangle the contribution of higher-order moments risks

to the variation in the index options prices, it is important to compare the performance of

our pricing kernels SDF(k)
t,T with that of a benchmark pricing kernel.

For this comparative analysis, we retain the volatility-dependent pricing kernel which has

been initially introduced in Christoffersen, Heston, and Jacobs (2013) and further used in

BCHJ. The BCHJ’s pricing kernel takes the form:

SDFt,t+1 =
(St+1
St

)φ
exp

(
δ0 + δ1ht+1 + ξht+2

)
,

where φ captures the first-order risk aversion and ξ denotes the volatility risk premium pa-

rameter. This pricing kernel was shown to be a discrete-time analogue of the Radon-Nikodym

change of measure used in continuous-time models. When ξ = 0, this pricing kernel becomes

the monotonic power utility pricing kernel used in Heston and Nandi (2000).

Christoffersen, Heston, and Jacobs (2013) shows that when ξ > 0, the pricing kernel is

U-shaped in the returns and there exists a divergence between the one-day ahead risk neu-

tral and physical volatilities. They additionally show that this pricing kernel substantially

outperforms the monotonic power utility pricing kernel, in terms of options fit, when the

returns are conditionally gaussian. BCHJ reinforces this evidence by documenting that the

over-performance of this pricing kernel over the power utility pricing kernel is even stronger

when one assumes that the returns follow an IG distribution. Finally, it is worth emphasizing

that the BCHJ pricing kernel does not belong to our sequence of pricing kernels SDF(k)
t,T .

2.3 Estimation

Given an affine returns dynamics under the physical measure P and the parameters gov-

erning this dynamics, we obtain closed-form European option prices using

Vt = EP
t

[
SDF(k)

t,T XT

]
, (2.11)
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where,

XT = max(ST −Kn, 0)

is the payoff of a call option with strike Kn expiring at time T .18 The solution, provided in

Appendix B.1, hinges on the fact that the characteristic function of the future price distri-

bution is available in closed-form at any T combined with the polynomial form of SDF(k)
t,T .

Interestingly, the dynamics under the pricing measure need not, and in all likelihood will not,

be affine. This approach is particularly appealing as we also show, in Appendix B.5, that

risk-neutral moments can also be computed in closed-form.19

Obviously, option prices also depend on the set of RRAs entering the SDF. Hence, in

our framework, RRAs can simply be estimated from options. Many studies suggest that risk

aversion is time-varying (Aït-Sahalia and Lo (1998), Rosenberg and Engle (2002), Bliss and

Panigirtzoglou (2004)). Iteratively estimating the RRAs from prices observed during a day,

a week or a month will allow us to investigate the matter. Our main analysis is based on

weekly estimates.

For each week t, and for each SDF approximation of order k, we maximize the options log-

likelihood following:

max
λ,RRA(2)

t , ...,RRA(k)
t

LOptions
(
λ, RRA(2)

t , . . . , RRA(k)
t

)
(2.12)

subject to (1 +Rf,t)−1 = EP
t

[
SDF(k)

t,T

]
1 = EP

t

[
SDF(k)

t,T (1 +Rt,t+1)
]
,

where λ, defined in Section 2.2.2, parametrizes the level of the equity risk premium, and
18Our study also uses information on puts prices.
19Bakshi, Kapadia, and Madan (2003) derive nonparametric estimates of higher-order risk-neutral moments.

In practice, using this methodology involves interpolating and extrapolating observed option prices to unob-
served strikes. This step is not necessary using our model since we have a physical model augmented of a
flexible SDF that delivers closed-form option prices and as a by-product closed-form risk neutral moments.
Interestingly, the closed-form formulas reveal how risk-neutral moments relate to physical moments and the
risk aversion parameters which could be useful in other applications.
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LOptions
(
λ, RRA(2)

t , . . . , RRA(k)
t

)
denotes the options log-likelihood which is obtained as

LOptions
(
λ, RRA(2)

t , . . . , RRA(k)
t

)
= −1

2

Nt∑
n=1

(
log(2πσ2

e) + e2
n

σ2
e

)
,

with Nt denoting the options data size and σ2
e is identified using the sample deviation of

{en}Ntn=1, and

en =
(
IV model

n − IV mkt
n

IV mkt
n

)
.

In the above expression IV mkt
n denotes the observed Black and Scholes (1973b) IV of option

n and IV model
n is the model predicted IV. We interpret en as the relative implied volatility

(IV). The likelihood is based on the assumption, that en is normally distributed, that is

en ∼ N(0, σ2
e), and uncorrelated in the cross-section (see e.g. Christoffersen, Heston, and

Jacobs (2006a)).

Concretely, the first constraint of (2.12) identifies the normalization constants, κ(k)
j,t,T , in equa-

tion (2.6). Besides, the second constraint links the ERP parameter and the RRAs together

such that the minimization is actually performed on k-dimensional vector (rather than k+1).

Appendix B.2 provides further details.

We find that the above log-likelihood maximization problem delivers quantitatively sim-

ilar results to the nonparametric alternative in which one minimizes the sum of the squared

relative implied volatility error without imposing the normality assumption on the implied

volatility errors. As we show in the sequel, maintaining a distributional assumption on the

errors is useful for testing purposes.

Finally, by re-estimating the RRAs weekly, one could argue that some of the time-variation

in the estimates is due to fitting noise in prices or compensating for misspecification of the

returns dynamics. To alleviate this concern, our focus is on the out-of-sample fit of the pricing

model, as illustrated in Figure 2.3.1.
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Figure 2.3.1: Sequential Out-of-sample Pricing

Week t-1: 
Estimate {RRAt-1}

Week t: 
Price options using {RRAt-1}

Week t: 
Estimate {RRAt}

Week t+1: 
Price options using {RRAt}

…

…

2.4 Empirical Results

2.4.1 Data

To estimate the model, we use the returns and prices of options on the S&P 500 index, as

a proxy for the market. We obtain the daily index returns from the Center for Research and

Security Prices (CRSP). To compute the corresponding excess returns, we use the one-month

Treasury bill rate (from Ibbotson Associates) as extracted from Kenneth French’s data library.

As in BCHJ, our estimation procedure fits the implied volatilities instead of the raw option

prices.20 The implied volatilities of options on the SPX, between January 1996 and December

2017, are obtained from OptionMetrics. We remove in-the-money options and options that

violate the usual no-arbitrage conditions. We additionally filter out options with less than

one week or more than one year to maturity to mitigate the effect of illiquidity. In the same

spirit, we select options with strictly positive volume and open interest. To ease the calcu-

lation and interpretation, out-of-money (OTM) put prices are converted into corresponding

in-the-money call values by exploiting the call-put parity relationship. This leaves us with

1,378,317 options on SPX. Since our analysis is performed at the weekly frequency, we further

group options traded within each week.21 Our full sample includes 1158 trading weeks. This

implies that, on average, each trading week has around 1190 options. We believe that this

number is sufficiently large to allow us to accurately pin down the RRA parameters in which

we are interested in.

Table 2.3 provides a crisp description of the options data. To highlight the main charac-

teristics of the S&P 500 index option, we sort the data by moneyness and maturity. This table
20The usefulness of relying on the implied volatilities in estimating option pricing models can be dated back

to Renault (1997).
21This choice is not to be confounded with that other papers using weekly observations on one particular

day (usually wednesdays) to estimate option pricing models.
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reports the percentage of contracts, the average option price, the average Black and Scholes

(1973b) implied volatility, the average bid-ask spread in dollars, and the average volume for

different maturity and moneyness buckets. Short-term options have between 6 and 45 days to

maturity (DTM), and long-term options have between 91 and 365 DTM. Following Israelovr

and Kelly (2017), our measure of the moneyness is

mi,τ = log (Ki/Si)
VIX
√
τ

,

where VIX is the CBOE VIX index and τ is the calendar days to maturity. OTM puts are

options with moneyness less than -1, ATM options are those options having their moneyness

between -1 and 0 and finally OTM calls have their moneyness greater than 0. Our dataset

includes around 51% of short-maturity options and 63% of OTM puts. We also observe that

OTM puts have a higher implied vol (average of 0.27) than ATM calls (average of 0.16),

confirming the well-known volatility smirk.

2.4.2 Returns Maximum Likelihood Estimation

Our estimation methodology is a modified version of the widely used sequential maxi-

mum likelihood (see e.g. Broadie, Chernov, and Johannes (2007)). In a typical sequential

maximum likelihood, physical parameters are typically estimated using returns data solely.

Subsequently, the pricing kernel parameters are estimated setting the physical parameters at

their maximum likelihood estimates.

While this approach has the great advantage of easing the interpretation of empirical

results, when it comes to comparing the fit of different pricing kernels, it is often limited by

the lack of identification of the equity risk premium. To highlight this feature, we plot in

Figure 2.1, the returns log-likelihood as a function of equity risk premium (ERP) parameter

λ. For 300 equally-spaced values of lambda between -3 and 3, we maximize the log-likelihood

over the remaining physical parameters. The red starred point on Figure 2.1 shows the global

maximum of the log-likelihood function. The two dotted horizontal lines form the 99% con-

fidence interval around the global maximum. The two dotted vertical lines show the range

of λ’s that are not rejected at a 1% confidence level by the likelihood ratio (LR) test. As

evident from this figure, the range of λ values that are rejected by the LR test is rather wide.

A standard solution, widely adopted in the literature, consists in calibrating the λ parameter

89



such that the convexity-adjusted ERP equals the average excess returns.22 This calibrated

value of λ is given by

λcal = log(E(ret )))
Var(ret )

,

where ret are the excess returns. The red squared point of Figure 2.1 shows the location of the

λcal and its corresponding log-likelihood. As it clearly appears on this graph, the calibrated

value is not rejected by the LR test.

Our estimation technique is a pseudo-sequential maximum likelihood in which the non-

ERP parameters are set to their estimated values consistent with λcal, and the ERP parameter

λ is dynamically estimated together with the RRA parameters using option prices as oulined

in Section 2.3.23 Proceeding this way allows to keep the consistency between time-varying

risk aversion and time-varying risk compensation (as captured by the equity risk premium).

Table 2.1 presents the Maximum likelihood estimates of the P parameters with λ set at

λcal. The long run variance parameter σ2 is calibrated using the sample returns variance,

which is close to 17% on an annual basis. As expected, the long-run volatility factor (qt) is

highly persistent with a persistence factor of 0.98. The total volatility factor ht appears to be

less persistent with a persistence factor of 0.74. Overall, our MLE estimates are close to the

ones obtained by BCHJ.

2.4.3 Analyzing the in-sample pricing results

We now turn to our paper’s main empirical contribution which is the study of the rele-

vance of higher-order risks in capturing the risk premia in the options market.

We estimate the weekly RRA parameters using the methodology outlined in Section 2.3.

For the safe of consistency, the RRAs are assumed to be maturity-independent. We set the

maximum order of the SDF’s Taylor expansion to 10.24 For each SDF order, we compute the
22This solution has been adopted by Christoffersen, Heston, and Jacobs (2013) and BCHJ among others.
23 We opted for this approach because it is tractable in addition to yielding time-consistent results. A

certainly more general approach will be to use a joint maximum likelihood in which all physical parameters
are estimated dynamically together with pricing kernel parameters. To the best of our knowledge, the joint
ML is usually applied to full sample datasets with time-invariant parameters.

24Chung, Johnson, and Schill (2006) include systematic co-moments of orders 3-10 in a standard Fama-
MacBeth regression and find that this almost always causes SMB and HML to become insignificant and always
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option prices implied by the estimated RRA parameters and compare them with the observed

option prices.

Before quantitatively assessing the fit of the different SDFs over the options panel, we

want to perform a simple analysis of detecting how often the SDFs appear to be useful in

the pricing. Using the in-sample results, we implement the Likelihood Ratio (LR) test of the

following two hypotheses: “Hn,10 : SDF(n) does not over-perform SDF(n−1) in terms of options

fit” and “H2,n
0 : SDF(n) does not over-perform SDF(n−2) in terms of options fit”. Figure 2.3

displays the outcomes of the testing procedures. The purple bars of this figure reports the

fraction of weeks for which Hn,10 is rejected at the 1% confidence level and the lighted blue

bars depicts the same information for Hn,20 . The dotted horizontal line refers to the 1% level.

A rejection of Hn,10 can be interpreted as the statistical significance of the RRA(n) implied

by SDF(n). Similarly, a rejection of Hn,20 echoes a joint statistical significance of RRA(n) and

RRA(n−1) implied by SDF(n).

Focusing on the blue bars, for almost all the weeks, SDF(3) outperforms SDF(2) in term

of options fit. This result confirms the usefulness of skewness risk in explaining asset prices,

a finding that can be traced back to Kraus and Litzenberger (1976) and Harvey and Siddique

(2000b). The kurtosis risk appears to be important in 92% of weeks, corroborating the central

finding of Dittmar (2002a). The hyperskewness risk appears to be less valued compared to

the skewness and the kurtosis risks. Indeed, there are only 23% of weeks in which, option

market participants seem to care about the hyperskewness risk. Surprisingly, the hyperkur-

tosis risk appears to be more often priced than the hyperskewness risk (hyperkurtosis risk is

priced in 50% of the weeks). Figure 2.3 also shows the economic relevance of higher-order

risks drastically decline beyond the hyperkurtosis risk, as these risks are valued in less than

12% of the weeks.

To confirm these in-sample results, we report in the first row of Table 2.4 the ratios of the

average root mean square of the relative errors in the implied volatility domain (RIVRMSE)

for different specifications of the SDFs. Following the forecasting literature, we report the

in-sample average RIVRMSE of each specification as a ratio with the average RIVRMSE of

the baseline specification, SDF(4) in our study.25 In parentheses below each ratio, we report

causes their t-statistics to drop dramatically.
25This choice of SDF(4) as benchmark is motivated by the current practice in the asset pricing literature,

where the first three co-moments are included in almost all Fama-MacBeth regressions.
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the Diebold and Mariano (1995) (DM) statistics, based on time-series of RIVRMSEs, com-

paring the forecast accuracy of the different specification with that of SDF(4) . This statistic

accounts for autocorrelation in errors and is normally distributed asymptotically. It is positive

(negative) whenever the SDF(4) outperforms (underperforms) the alternate specification. We

report the same ratios for the CRRA and the BCHJ pricing kernel.

As evident from Table 2.4, in-sample, compared to the benchmark SDF(4), using any SDF

beyond the sixth order leads to the same 4% reduction in the RIVRMSE yield by SDF(6).

This confirms our previously established evidence that, on average, higher-order SDFs beyond

the 6th order do not seem to be significantly valued by investors in the options market. It

is worth noting that the DM t-stats attached to these higher-order SDFs are fairly close to

that of SDF(6). Table 2.4 also shows that a pricing kernel that incorporates hyperskewness

risk in addition to the three standard risks (variance, skewness and kurtosis), helps capture

an additional 1% of options price anomalies. The improvement, although economically small,

appears to be statistically significant according to the DM test.

The top left panel of Figure 2.5 barplots the RIVRMSE for the estimated SDFs. The

blue (resp. red) line locates the RIVRMSE for the CRRA (resp. BCHJ) parametric pricing

kernels. As depicted on this figure, the RIVRMSE plot is almost flat beyond the sixth-order.

The skewness risk seems to be the most useful risk that helps captures the dynamics of option

prices. Indeed, adding the skewness risk to the traditional CAPM model (with the variance

risk only) decreases the RIVRMSE by 45.5% from 29.2% to 15.9%. The marginal contribution

of kurtosis risk is more moderate at a 15.7 %, as adding it to pricing kernel further reduces

the RIVRMSE to 13.4%. Figure 2.5 (resp Figure 2.6) dissects the pricing performance of the

different SDFs along the maturity (moneyness) dimension. The RIVRMSE bar plot looks

almost flat beyond the third order for OTM calls, dwarfing the value-added of the kurtosis

in-sample the prices of OTM calls. This evidence is consistent with the well-established intu-

ition that kurtosis risk captures tail risk, which is less valued in OTM calls. It also appears

that the non trivial contribution of the skewness risk, that we uncovered earlier, seems to be

driven by the OTM puts. This means that skewness risk helps explain the expensiveness of

OTM puts compared to OTM calls. This evidence suggests that options market participants’s

aversion to skewness risk might be partially responsible of the volatility smirk. The skewness

risk appears to be also crucial in matching the prices of long maturity-options.
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Now, relating these results to the performance of our two parametric pricing kernels, it

appears clearly that the CRRA benchmark, even with the time-varying RRA, is outperformed

by SDF(3), SDF(4) and the BCHJ pricing kernels. This suggests that the restrictions implied

by the CRRA pricing kernel are too strong and not supported by the options data. The

benchmark SDF(4) seems to slightly better capture the dynamics of option prices than the

BCHJ benchmark. This is evidenced by the 4% improvement in the RIVRMSE depicted in

Table 2.4. However, this over-performance does not appear to be significant according to the

DM-test.

At this stage, it is worth stressing the value-added of using our methodology. An affine

SDF such as BCHJ includes a volatility premium parameter that generates some premium

in both variance, skewness and kurtosis risks simultaneously. As a result, using such pricing

kernel does not reveal us which higher-order risk seems to be driving the over-performance of

non-monotonic pricing kernels over linear pricing kernels such as the CRRA one. Our results,

in contrast, allow us to claim that the pricing kernel monotonicity introduced by the single

skewness risk is enough to outperform the monotonic CRRA pricing kernel.

2.4.4 Analyzing the out-of-sample pricing results

Our discussion in Section 2.4.3 was based on the in-sample results. Given that the different

SDFs, that were compared, differ by their number of parameters, it is natural to wonder if

these results and their interpretation are not purely driven by data overfitting or pricing kernel

over-parametrization.26

To tackle this concern, we implement an out-of-sample analysis in which we use the

RRAs estimated h weeks back in the past to price currently traded options, for h = 1, 2, 3, 4.

Consequently, if our results are not driven by the pricing kernel over-parametrization, we

expect the one-week ahead results to quantitatively and qualitatively reflect the in-sample

results.

As it appears in the second row of Table 2.4, the key results derived in-sample carry out

out-of-sample, at the one week horizon. We uncover that, out-of-sample, SDF(6) is still the last

pricing kernel that matters in options pricing. Out-of-sample, at the one week horizon, SDF(4)

26This question is at least relevant for the SDFs of orders 3 to 6 since we found that higher-orders SDFs
above the 6th order, even though more parametrized, add little information to options pricing.
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and BCHJ become indistinguishable in terms of average fit. This conclusion still applies at the

two-week horizon. For horizons longer that 2 weeks, we observe some divergence in the main

conclusions. Higher-order risks beyond SDF(4) appear to be completely useless. This implies

that these risks can be disregarded if we want to predict options prices at longer horizons. The

out-of-sample analysis also reveals that our benchmark SDF(4) becomes slightly outperformed

by the BCHJ pricing kernel above the two-week horizon. Successfully pricing options at longer

horizons requires some minimum degree of persistence of the estimated parameters. Here, it

appears that the degree of persistence of the RRA parameters decline substantially above the

two-week horizon.27

2.4.5 Analyzing the behaviour of the RRA parameters

This section documents the time-series properties of the estimated RRA parameters.

The estimation technique we employ in this paper relies on a joint estimation of the eq-

uity risk premium parameter and the RRA parameters from option prices. Therefore, before

addressing the properties of the RRA parameters, we want to highlight the relevance of this

methodology.28

Figure 2.4 graphs the options root mean square of the relative implied volatility (RIVRMSE)

as a function of the ERP parameter λ for one typical week in our sample. For this illustra-

tion, we use the week on which the value of the volatility index VIX is the closest to its first

quartile.29 In our sample, this week ranges from September 20, 2004 to September 24, 2004.

This figure was produced using 250 values of λ uniformly spaced between -10 and 10. Options

traded during this week are priced assuming SDF(4) is the “true” pricing kernel. For each

value of λ, we maximize the options log-likelihood over the SDF(4) parameters. The dotted

vertical black line shows the λ value that minimizes the RIVRMSE and the dotted horizontal

black line shows the corresponding RIVRMSE. As evident from the figure, the RIVRMSE

plotted as a function of λ is highly curved and far from being flat as the returns log-likelihood
27It is worth stressing that, to ease the comparison, we use a very simple forecasting methodology which

consists in predicting future values, simply using past values. Given that some RRA parameters become less
persistent beyond the two weeks horizons, it might be appropriate to use some more sophisticated forecasting
methodologies such an AR regression or more generally an HAR regression. We leave this for future research.

28This procedure presents the additional advantage of yielding a time-varying λ which helps reduce the
concerns about affine models being outperformed by non-affine models such as the NGARCH. Indeed, we find
that the estimated λ react to changes in market volatility.

29We obtain similar results for other quartiles.

94



reported in Figure 2.1. This evidence reinforces our confidence in our estimation methodology

premise that options prices do help better capture the equity risk premium.

Although the study of risk aversion has attracted a lot of attention in the finance litera-

ture, 30 the emphasis has been mainly put on the first-order aversion parameter RRA(2), and

most of the papers assume a CRRA utility function.31 As we show in the Appendix, assuming

a CRRA utility function entails some tight restrictions among the high-orders risk aversion

parameters.32

The top (resp. bottom) graph of Figure 2.7 depicts the ERP parameter λ (resp. RRA(2))

implied by SDF(4). Figure 2.8 provides the same information for the CRRA pricing kernel.33

The red (resp. black) lines show the average of each time-series (resp. zero-level threshold).

As evident from these two figures, for both pricing kernels, the two parameters fluctuate sub-

stantially over the sample period. The Arrow-Pratt risk aversion measure RRA(2) appears

to be tightly related to λ as the two parameters share almost the same values and move

together. While such tight connection between these two parameters is highly expected when

estimating SDF(2), having it satisfied for more general SDFs reinforces the link between risk

compensation and risk aversion.

The RRA(2) implied by the CRRA pricing kernel is positive in all weeks with an average

value of 4.13. This average RRA(2) is more moderate than the 7.36 reported by Rosenberg

and Engle (2002) and more close to the value of 4 estimated by Gormsen and Jensen (2018)

using the methodology of Bliss and Panigirtzoglou (2004).34

The RRA(2) implied by SDF(4) takes on positive values in 96% of the weeks with an aver-
30The first papers can be traced back to Hansen and Singleton (1982) and Mehra and Prescott (1985) among

others.
31See for example Rosenberg and Engle (2002), Bliss and Panigirtzoglou (2004), and more recently Gormsen

and Jensen (2018).
32Our analysis in Section 2.4.3 clearly points to a rejection of this assumption in the options market.
33The CRRA pricing kernel was estimated using exactly the same methodology as for our SDFs, except

that the higher-order RRA parameters are restricted and the no-arbitrage condition was added as a nonlinear
constraint.

34Rosenberg and Engle (2002) estimated both a CRRA utility and a nonlinear pricing kernel using Chebyshev
polynomials. The paper uses an asymmetric GARCH model with constant mean that was estimated using
Maximum Likelihood. This model does not price options in closed-form which limit the amount of data that
could be used in the estimation. For instance, their reported estimates are obtained using short-term one-
month options from 1991 to 1995. Based on in-sample pricing results, the authors argue that the nonlinear
pricing kernel substantially outperforms the CRRA benchmark. The higher-order RRA parameters are not
readily available from the expression of the nonlinear pricing kernel. In practice, one would have to compute
higher-order derivatives of the SDF to obtain these parameters. Higher-order derivatives calculation is known
to be noisy beyond the second order.
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age value of 4.37, which is fairly close to the CRRA RRA(2) average. The fact that the CRRA

and the SDF(4) implied RRA(2) are, on average, close facilitates to some extent the compar-

ison of higher-order RRAs. The RRA(2) implied by SDF(4) was particularly noisy and took

on many negative values in the calm period preceding the 2008 financial crisis and close to

the end of our sample. Figure 2.9 shows the dynamics of the annualized equity risk premium

(ERP) implied by SDF(4) and the CRRA pricing kernels. Both ERPs fluctuate substantially

over time. The average ERP is 10.54% for the CRRA and 10.10% for SDF(4). The first row

of Table 2.8 gives the ERP for the other SDFs. We can observe that, better capturing options

market anomalies requires some slightly higher levels of first-order risk aversion. Importantly,

the average ERP is 6.23% for SDF(2) and 7.00% for SDF(3). The average ERP is thus increas-

ing with the order of the SDF.35 Here, it is tempting to interpret the increased average ERP

as induced by the added risk factors. As such, skewness risk adds a modest ERP of 0.77%

while kurtosis risks adds a more substantial 3.1%.

Moving on to higher-order aversion parameters, it is worth stressing that the expected

utility framework implies nonnegative RRAs at all orders.36 Here, we choose to let the op-

tions data reveal the true signs of these parameters. This contrasts with Dittmar (2002a) who

restricted the parameters when fitting returns on industry-sorted portfolios. It is well known

that higher-order RRA parameters have different scales. For example, for a CRRA utility

function, we have, for n ≥ 3,

RRA(n) =
n−2∏
j=0

(RRA(2) + j). (2.13)

The above formula implies in particular that the RRA’s magnitude grows exponentially with

the SDF’s order. To ease the interpretation, we define some standardized RRAs that are ob-

tained by inverting the CRRA relationship (2.13) at each order.37 This normalization allows

to have all the RRA parameters on the same scale. In the sequel, we refer to these normalized

values as being the RRAs. Note that this transformation is such that RRA(n)=RRA(2) when
35A sequential maximum likelihood will imply here a constant ERP at all orders, which is less attractive.
36If the investors have a negative preference for even moments and a positive preference for odd ones (as

shown by Scott and Horvath (1980)), then the RRAs, which are normalized versions of the absolute aversion
parameters, should be positive.

37When the estimated RRA is negative, we set the standardized RRA as the negative of the standardized
RRA of the negative of the initial estimate, to preserve the signs of the estimate. This normalization is similar
to the inversion that allows to compute Black and Scholes implied volatilities from observed option prices.
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the true pricing kernel is CRRA. This gives a visual test of the CRRA assumption

To evaluate the robustness of the estimates, we report in Table 2.10 the correlations be-

tween the RRA parameters estimated using different SDFs. The observation (n,m) of this

table gives the correlation between RRA(n) estimated using SDF(n) and the same RRA(n)

estimated using SDF(m). It appears that the RRA(3) inferred from SDF(3) is at least 65%

correlated with any version of it estimated from higher-order SDFs. This figure is even higher

for SDF(4) at 86%. This correlation is less than 35% for RRA(2) and 25% for RRA(5). This

demonstrates that the aversion to skewness and kurtosis are strongly stable when other risk

factors are added to the pricing kernel. Figure 2.7 (respectively Figure 2.10) show the RRA(2),

RRA(3), and RRA(4) implied by SDF(4) (respectively SDF(6)). The dynamics of RRA(2) in-

ferred from SDF(4) becomes more stable at higher orders.

In Panel A of Table 2.5, we report some descriptive statistics for the RRA parameters

implied by SDF(4). The skewness aversion parameter RRA(3) takes on positive values in 98%

of the weeks compared to 92% for RRA(4). As a result, all the parameters display some

positive averages. These statistics are rather satisfactory given that the parameters are freely

estimated without any positivity restriction. We also note that the estimates are fairly stable

across time. This contrasts with the usual noisy risk premium estimates yield by the Fama-

MacBeth regressions. RRA(3) appears to be the most stable time-series as it has the lowest

coefficient of variation.38 All the three RRA parameters appears to be persistent. A simple

regression of each RRA on its lagged value yields an adjusted R2 of 40% for RRA(2), 55% for

RRA(3) and 63% for RRA(4). The relative aversion to skewness and kurtosis risks seem to

have decreased over time from their very high levels observed at the beginning of the sample

during the dot-com bubble.

Panel A of Table 2.6 reports the correlations between the RRA parameters implied by

SDF(4). The skewness and the kurtosis aversion parameters tend to move together as evi-

denced by the positive correlation of 88% between their times-series. Both parameters are

negatively correlated with RRA(2). Indeed, RRA(3) has a significantly -0.19 correlation with

RRA(2) while the correlation of RRA(4) with RRA(2) is -0.14. This establishes a qualitative

distinction with the CRRA utility. The risk aversion parameters do not move in tandem as

we use to believe in the CRRA world. This evidence is further corroborated by the correla-
38We define the coefficient of variation as the ration between the standard deviation and the absolute values

of the average. This statistics is useful when comparing the randomness of variable of different scales
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tion between the RRA parameters and the market volatility. RRA(2) is negatively correlated

with the market volatility while RRA(3) and RRA(4) are positively correlated with the latter.

To further confirm this evidence, we regress each RRA parameter on its lagged value and

the market volatility.39 The results, which are reported in Panel A of Table 2.7, show that

RRA(2) load negatively on the market volatility while RRA(3) and RRA(4) load positively on

the market volatility. This implies that the aversion to variance risk is low in high volatility

periods while aversion to skewness and kurtosis are high during these episodes. Since the

market volatility is a countercyclical variable (see Schwert (1989)), we conclude that RRA(2)

is procyclical while RRA(3) and RRA(4) are countercyclical. Given that the risk aversion

is expected to be a countercyclical variable, our results tend to suggest that skewness and

kurtosis aversions are better proxies for the aggregate risk aversion than the first-order risk

aversion. In Table 2.11, we run a similar regression using the RRA(2) implied by the CRRA

utility function. The result shows that the first-order risk aversion is also procyclical in the

CRRA world. This result is in line with Bliss and Panigirtzoglou (2004) who uncover the

same evidence and hypothesize that the results may be driven by the absence of high risk

averse investors during periods of high market volatility.

The RRA(5) implied by SDF(5) appears to be well-behaved as it has the expected positive

sign in 80% of weeks. However, the time-series substantially changes with the addition of

the hyperkurtosis risk. Indeed, with a PK that incorporates hyperkurtosis risk, the RRA(5)

times-series take on a positive sign in only 44% of the weeks.

The RRA(6) time-series is notoriously negative, having positive values in only 26% of the

weeks. This sizeable deviation of the sign of the hyperkurtosis aversion from the expected

sign doesn’t ease the interpretation of the aversion to this risk. As it appears on Figure 2.11,

both RRA(5) and RRA(6) time-series are noisier than that of the first three RRAs. As a

result, even though SDF(6) outperforms SDF(4) both in-sample and out-of-sample, it is more

reasonable to adopt the latter as the most valid pricing kernel.

2.4.6 Risk Premium Implications

In this section, we investigate the moments risk premium implications of the aversion to

the different higher-order moments. Our objective is to learn about the relationship between
39Regressing the RRAs on their lagged values allow to alleviate the effect of autocorrelation in the residuals.
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risk aversion and moment risk premium. Importantly, we want to answer the following ques-

tion: what can we learn about risk aversion by simply observing the moments risks premium?

Before tackling this question, we want to formally define the moments risk premium. The

first moment risk premium or RP(1) simply refers to the equity risk premium whose behaviour

has been analyzed in Section 2.4.5. For the higher-orders moments, we define a multiplicative

risk premium as the ratio of risk-neutral centred moment and its physical counterpart powered

by the inverse of the moment order, that is, for n > 1:

RP(n) =

EQ
((
Rt→T − EQ(Rt→T )

)n)
EP ((Rt→T − EP(Rt→T ))n

)
1/n

.

Note that the multiplicative moments risk premium are suitably normalized to make them

comparable. In the Appendix, we prove that our models deliver closed-form risk neutral mo-

ments which eases the calculation of the premium.40 Table 2.8 reports the sample averages

of the one-month ahead moments premium for different pricing kernels. In parentheses below

each average premium, we report the Newey-West (1987) t-stat for testing the hypothesis H0:

“E(RP(1))=0” for the first order moment and H0: “E(RP(n))=1” for higher-order moments.

As it can be seen from this table, the null hypothesis H0 is rejected for all the orders and

all the pricing kernels implying the existence of some premium in each moment risks. Here,

we observe that RP(n) is greater than one on average for any n > 1 and any pricing kernel.

This result implies that moments risk are intensified under the risk neutral moments. Odd

moments such are the skewness and the hyperskewness and more negative under Q while even

moments such as variance, kurtosis and hyperkurtosis are more positive under Q compared

to the physical P measure.

Table 2.8 suggests a striking evidence according to which a simple pricing kernel such

SDF(2), in which only variance risk is priced, can generate high-order moments risk premium

up to the sixth order. This evidence implies, in particular that, inferring information on risk

aversion from a single higher-order moment may be misleading. Subsequently, each higher-

order RP(n) increases as we add some new factors to the pricing kernel. Indeed, adding

skewness and kurtosis to the pricing kernel contribute to significantly increase the RP(n) and
40This was to be expected since we have closed-form option pricing. We prove that risk-neutral moments

are functions of physical moments and risk aversion parameters.
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thus increase the divergence of Q moments from the P moments. The results from Table

2.8 also suggest that hyperskewness and hyperkurtosis have marginal contributions to RP(n).

This last evidence is firstly consistent with our previous result (see Section 2.4.3) that these

two risks capture a rather small variation in options prices and secondly in line with the fact

that the signs of their corresponding RRA parameters are subject to major deviations from

the expected theory predictions (see Section 2.4.5).

Broadly speaking, our results are consistent with Bakshi and Madan (2006) who theoreti-

cally shows that the departure between risk-neutral and physical index volatility is connected

to the higher-order physical return moments and the parameters of the pricing kernel process.

Their theory predicts a positive volatility spreads when investors are risk averse, and when

the physical index distribution is negatively skewed and leptokurtic. Empirically, we complete

their investigation by looking at the relationship between higher-order risk aversion and their

moments risk premium.

Now focusing on the premium implied by SDF(4), Panel A of Table 2.9 reports the corre-

lation between the estimated RP(n) on one side, and their correlations with market volatility

on the other side. It appears that RP(2), RP(3), and RP(4) are strongly positively correlated,

and also co-move with the market volatility. Indeed, the correlation between these three RP’s

is at least 93%. This results contrasts with the negative correlation that we documented

between RRA(2) and RRA(3) (RRA(4)) and reinforces our claim that risk aversion should not

be directly inferred from single moments risk premium.

Now comparing with the parametric pricing kernels, Table 2.8 additionally shows that

the two benchmarks CRRA and BCHJ are also quite successful at capturing risk premium at

the different orders. Panel B of Table 2.9 shows that the correlation between RP(2), RP(3),

and RP(4) are even stronger that the ones reported for SDF(4). In particular, RP(2) and RP(4)

are perfectly correlated (correlation=1). However, we note that the BCHJ implied premium

are only barely correlated with the market volatility in contrast with what we observe for

SDF(4). Figures 2.12 and 2.13 plot the RP(n) time-series for the first six orders for both the

BCHJ and the SDF(4) pricing kernels. As evident from these figures, the BCHJ SDF implies

systematically a higher premium than the SDF(4) for all the moments orders.41 This might

be the underlying reason of the underperformance of the BCHJ utility compared to SDF(4)

41The volatility premium parameter in the BCHJ pricing kernel is estimated dynamically each week.
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and the CRRA when pricing call options. To further develop this point, note that, the nor-

malized volatility risk premium is 1.24 for the BCHJ against 1.09 for SDF(4)on average.42

This observation demonstrates that it is possible to successfully match option prices without

excessively inflating the volatility under the risk neutral measure. 43

2.4.7 The Shape of the Pricing Kernel

In this section, we study the implications of our pricing results for the shape of the pricing

kernel.

In Figure 2.14, we plot the one-month ahead SDFs on three specific weeks.44 The top

left (right) figure displays the shape of the SDFs for the week in which the VIX is at its 25%

quartile (50%). The bottom left figure graphs the SDFs on the week in which the VIX is at its

75% quartile. On each graph, the blue line depicts SDF(2) as a function of future index price

expressed in terms of returns standard deviations. The red line provides the same information

for SDF(3), the green line plots SDF(4) and the black line graphs SDF(5).

As evident from these figures, the SDF(5)’s representation is almost confounded with that

of SDF(4). This observation is consistent with our early evidence that SDF(5) improves the

options fit by only 1%, on average, both in-sample and one-week ahead out-of-sample.

As it was to be expected, SDF(2) is linear function of the wealth. SDF(3) and SDF(4) seem

to be non-monotonic as evidenced by their sharp increase in the high positive returns domain.

This non-monotonic features appears to be less pronounced on a low-volatility day. It also

appears that SDF(4) is less non-monotonic compared to SDF(3). Indeed, a representative

agent endowed with SDF(4) seems to have higher marginal utilities in low returns states and
42It is interesting to compare our average of the BCHJ volatility risk premium 1.24 to the full sample estimate

1.124 reported by Christoffersen, Heston, and Jacobs (2013)(see Table 4 on page 1989). We hypothesize that
this non-negligeable difference might be driven by the difference in our samples. Our sample is far bigger than
the ones used in Christoffersen, Heston, and Jacobs (2013)and BCHJ and it has relatively more put options.

43It is worth emphasizing that our SDFs are maturity-independent. Bliss and Panigirtzoglou (2004) found
that the classical Arrow-Pratt measure of relative risk aversion RRA(2) exhibits some maturity-dependent
features. Our framework can be easily extended to incorporate this maturity-dependent feature. Additionally,
based on the usual projection argument, we also hypothesize that a maturity-dependent SDF(4) will certainly
out-perform the BCHJ pricing kernel. In this paper, we do not pursue this estimation since the theoretical
motivation for the maturity-dependent RRA parameters is still not well-understood. Maturity-dependent risk
aversion parameters suggest some sort of segmentation of the options markets across horizons which is not
always compatible with our maintained assumption of a representative agent in the economy.

44The estimated-SDFs are maturity-independent. The maturity level is only used to convert the wealth level
into standard deviations returns.
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relatively less marginal utilities in high returns states.45

Overall, these results confirm the finding of Christoffersen, Heston, and Jacobs (2013) and

BCHJ according to which a non-linear SDF is needed to capture the options prices anomalies.

Here, we complement their finding by documenting how the shape of SDF is affected by the

priced kurtosis risk.

2.4.8 Robustness Analysis

A real challenge for the estimation of the RRAs lies in the fact that the asset pricing

factors in which we are interested in are powers of the market returns and are thus expected

to be “highly correlated”. In table 2.2, we report the correlations between the normalized

physical moments of the market returns. The table shows that the correlation between the

moments M2, M3, M4, M5, and M6 is at least 82% confirming that the risk factors are indeed

“highly correlated”. As it is well known, a high correlation between asset pricing factors can

raise some identification issues. In this paper, we argue that the use of options allows us to

alleviate this identification issue. In fact, option prices are highly nonlinear functions of the

factors and as such using options presents a better alternative to using stocks returns.

To confirm this intuition, we implement a Monte Carlo exercise whose results are reported

in Table 2.12. For one hundred randomly chosen weeks, we generate synthetic option prices

using some known pricing kernels reported in the table’s rows. CRRA(n) is the CRRA pricing

kernel truncated at order n using the standard Taylor expansion. Recall that the RRAs of

the CRRA pricing kernel are functions of the RRA(2) which we calibrate using the data-based

weekly estimates of the CRRA risk aversion parameter RRA(2). SDF(n) is the estimated

nonparametric pricing kernel of order n whose parameters are calibrated using the weekly

estimates of the RRAs. Once the synthetic options prices are generated, we use our estimation

methodology to recover the true parameters. The first column of the table provides the average

pricing errors measured by the RIVRMSE. The remaining columns report the average of the

absolute relative errors on the RRAs (Panel A) and the median of the absolute relative errors

on the RRAs (Panel B). It clearly appears that the options pricing errors are small which

provides an evidence that the true prices are perfectly matched. As a direct implication, the
45Since the average of the SDF is the same for all SDFs, this is was to be expected. Higher values in the left

tail of the SDFs will be certainly associated with lower values in the right-tail.
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parameters estimates have relatively small errors as measured by the median errors. The

RRA(5) and RRA(6) parameters have a few outliers that slightly inflate the average errors.

Overall, we conclude that the Monte Carlo results are satisfactory for all the pricing kernels.

2.5 Conclusion

In this paper, we embed the higher-order risks in an option pricing framework and ana-

lyze how the different moments risks contribute to fitting the index option prices. We use a

methodology that allows us to accurately pin down the dynamics of the risk aversion param-

eters. Our results indicate that SDF(4) is a fairly good approximation of the true SDF, as

evidenced by how well it fits options prices. When compared with the BCHJ pricing kernel,

which is perhaps the “most successful pricing kernel" in the discrete time literature, we find

that both pricing kernel are virtually undistinguishable in terms of options fit.

We also study the higher-order risks beyond the kurtosis such as hyperskewness and hy-

perkurstosis risks which are valued by a CRRA investor. Empirically, we find that together

hyperskewness and hyperkurtosis have a rather small contribution to asset pricing and the

estimates of the aversion parameters exhibit substantial deviations from the expected utility

theory predictions. Our analysis also reveals that the CRRA pricing kernel is not supported

by the options data partially because the variance, skewness and kurtosis risks aversion pa-

rameters do not move in tandem as implied by the CRRA utility. Indeed, while skewness

and kurtosis risks aversion parameters strongly co-move, the aversion to variance parameter

seems to be negatively correlated to the latter.
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Figure 2.1: Returns Log-likelihood as a function of the Equity Risk Premium Parameter λ
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This figure depicts the returns log-likelihood as a function of the equity risk premium (ERP) parameter λ.
The values of λ correspond to 300 points uniformly spaced of the range [-3,3]. Next, for each value of λ, we
maximize the log-likelihood over the remaining physical parameters. By doing so, we assume that the returns
are generated by the Component IG-GARCH(1,1) model. The red starred point shows the global maximum of
the log-likelihood function and the red squared point is obtained when the λ parameter is calibrated using the
value log(E(ret )))

/
Var(ret ), where ret are the excess returns. This calibrated value is such that the convexity-

adjusted ERP equals the average excess returns. In particular, this calibrated λ implies an annualized ERP
of 3.91% . The two dotted horizontal lines form the 1% confidence interval around the global maximum. The
two dotted vertical lines show the range of λ’s that are not rejected at a 1%confidence level by the likelihood
ratio test. The lower (resp upper) bound of this range implies an ERP of -4.11% (resp 5.00%) on an annual
basis.
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Figure 2.2: Time-series of Short-run and Long-run Volatilities
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The top (resp. bottom) panel of this figure shows the dynamics of the short-run (resp. long-run) volatility
factor implied by the Component IG-GARCH(1,1) physical model. The two volatility factors are filtered
using the returns-based maximum likelihood estimates. The ERP parameter λ is calibrated such that the
convexity-adjusted model-based ERP equal the average excess returns, that is λ = log(E(ret )))

/
Var(ret ), where

ret .
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Figure 2.3: In-sample Likelihood Ratio Test for the Statistical Significance of the RRA
parameters
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Using the in-sample results, we implement the Likelihood Ratio (LR) test of the following two hypotheses:
“Hn,10 : SDF(n) does not over-perform SDF(n−1) in terms of options fit" and “H2,n

0 : SDF(n) does not over-
perform SDF(n−2) in terms of options fit". The purple bars reports the fraction of weeks for which Hn,10 is
rejected at the 1% confidence level and the lighted blue bars depicts the same information for Hn,20 . The
dotted horizontal line refers to the 1% level. Here, we interpret a rejection of Hn,10 as the statistical significance
of the the RRA(n) implied by SDF(n). Similarly, a rejection of Hn,20 can be interpreted as a joint statistical
significance of RRA(n) and RRA(n−1) implied by SDF(n). The sample covers the period 1996-2017 and contains
1158 weeks.
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Figure 2.4: Option RIVMSE as a function of the ERP parameter λ
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This figure graphs the options root mean square of the relative implied volatility (RIVRMSE) as a function of
the ERP parameter λ for one typical week in our sample. For this illustration, we use the week for which the
value of the volatility index VIX is the closest to its first quartile. In our sample, this week runs from September
20, 2004 to September 24, 2004. For the values of λ, we use 250 uniformly spaced points between -10 and 10.
Options are priced assuming SDF4 is the “true” pricing kernel. For each value of λ, we maximize the options
log-likelihood over the SDF4 parameters. The dotted vertical black line shows the λ value that minimizes the
RIVRMSE and the dotted horizontal black line shows the corresponding RIVRMSE. This optimal λ implied
a conditional ERP of 7.54%.
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Figure 2.5: In-sample Goodness of Fit by Maturity
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We report the in-sample RIVRMSE results by maturity buckets. For each plot, the nth (2 ≤ n ≤ 10) bar
provides the RIVRMSE whenSDF (n) is used as pricing kernel. The top left figure gives the RIVRMSE for the
full dataset of options. The top right figure provides the RIVRMSE for short-maturity options. The bottom
left graph gives the RIVRMSE for medium-maturity options and the last graph provides the same information
for long-maturity options. Short-term options have between 6 and 45 days to maturity (DTM), and long-term
options have between 92 and 365 DTM. We estimate the RRA parameters using options data from 1996 to
2017 on a weekly basis.
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Figure 2.6: In-sample Goodness of Fit by Moneyness
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We report the in-sample RIVRMSE results by moneyness buckets. For each plot, the nth (2 ≤ i ≤ 10) bar
provides the RIVRMSE when SDF (n) is used as pricing kernel. The top left figure gives the RIVRMSE for
the full dataset of options. The top right figure provides the RIVRMSE for Out-of-money (OTM) puts. The
bottom left graph gives the RIVRMSE for At-the-money (ATM) options and the last graph provides the same
information for OTM calls. Following Israelov and Kelly (2017), we measure the moneyness using the proxy
log (K/S) /

(
VIX
√
DTM

)
, where VIX is the CBOE VIX index. OTM puts are options with moneyness less

than -1, ATM options are those options having their moneyness between -1 and 0 and finally OTM calls have
their moneyness greater than 0.
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Figure 2.7: SDF(4) Risk Aversion Estimates
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This figure depicts the ERP parameter λ, RRA(2), RRA(3) and RRA(4) estimated from SDF(4). The red (black)
lines show the average of each time-series (zero- level threshold). Each RRA(n) parameter is a standardized
version of (−1)nSnt U (n+1)(St)/U ′(St), where U is the utility function of the representative agent. For a
CRRA utility function, the latter quantity is related to the RRA(2) by a well known parametric function.
The standardized RRA(n) is obtained by applying the reciprocal of this parametric function to the estimated
(−1)nSnt U (n+1)(St)/U ′(St). If the utility is CRRA, then we have RRA (n)=RRA (2) for all n. The options
data covers the period from 1996 to 2017 and the risk aversion parameters are estimated on a weekly basis.
The options data covers the period from 1996 to 2017 and the risk aversion parameters are estimated on a
weekly basis.
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Figure 2.8: CRRA Risk Aversion Estimates
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This figure depicts the ERP parameter λ and RRA(2) estimated from the CRRA pricing kernel. The red
(black) lines show the average of each time-series (zero- level threshold). The options data covers the period
from 1996 to 2017 and the risk aversion parameters are estimated on a weekly basis.
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Figure 2.9: SDF(4) and CRRA Expected Risk Premium
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This figure shows the annualized equity risk premium estimated from the SDF(4) and the CRRA pricing
kernels. The red (black) lines show the average of each time-series (zero- level threshold). The options data
covers the period from 1996 to 2017 and the risk aversion parameters are estimated on a weekly basis.
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Figure 2.10: Relative Risk Aversion Parameters Implied by SDF (6)
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This figure presents the relative risk aversion parameters implied by SDF(6) together with the estimate
of the physical equity risk premium parameter λ. Each RRA(n) parameter is a standardized version of
(−1)nSnt U (n+1)(St)/U ′(St), where U is the utility function of the representative agent. For a CRRA util-
ity function, the latter quantity is related to the RRA(2) by a well known parametric function. The
standardized RRA(n) is obtained by applying the reciprocal of this parametric function to the estimated
(−1)nSnt U (n+1)(St)/U ′(St). For a CRRA utility, we have RRA(n)=RRA(2) for all n. The options data covers
the period from 1996 to 2017 and the risk aversion parameters are estimated on a weekly basis.
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Figure 2.11: SDF(6) Higher-Order Risk Aversion Estimates
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The top figure presents the time-series of RRA (5) estimated from SDF(5). The remaining two figures
plots RRA(5) and RRA (6) estimated from SDF (5). Each RRA (n) parameter is a standardized version of
(−1)nSnt U (n+1)(St)/U ′(St), where U is the utility function of the representative agent. The options data
covers the period from 1996 to 2017 and the risk aversion parameters are estimated on a weekly basis.
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Figure 2.12: Moments Risks Premia

This figure presents the time-series of the first three moments premium implied by our nonparametric SDF(4)

pricing kernel (purple line) and the benchmark BCHJ pricing kernel (green line). For the first order moment,
the risk premium is simply the annualized standard equity risk premium. For the higher-orders moments, we
define the risk premium as the ratio of risk-neutral centred moment and its physical counterpart powered by

the inverse of the moment order, that is, for n > 1:

RP(n) =

(
EQ ((Rt→T − EQ(Rt→T )

)n)
EP ((Rt→T − EP(Rt→T ))n)

)1/n

.

As standard in the literature, we winsorize the moments premium data at the 1% level.
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Figure 2.13: Moments Risks Premia (continued)

This figure presents the time-series of orders 4,5 and 6 moments premium implied by our nonparametric
SDF(4) pricing kernel (purple line) and the benchmark BCHJ pricing kernel (green line). For the first order
moment, the risk premium is simply the annualized standard equity risk premium. For the higher-orders

moments, we define the risk premium as the ratio of risk-neutral centered moment and its physical
counterpart powered by the inverse of the moment order, that is, for n > 1:

RP(n) =

(
EQ ((Rt→T − EQ(Rt→T )

)n)
EP ((Rt→T − EP(Rt→T ))n)

)1/n

.

As standard in the literature, we winsorize the moments premium data at the 1% level.
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Figure 2.14: One-month Pricing Kernel

-4 -2 0 2 4
Returns Std.

0

1

2

3
SDFs with VIX at its 25% quartile

SDF
(2)

SDF
(3)

SDF
(4)

SDF
(5)

-4 -2 0 2 4
Returns Std.

1

1.5

2

2.5

3

SDFs with VIX at its 50% quartile

-4 -2 0 2 4
Returns Std.

0

2

4

6
SDFs with VIX at its 75% quartile

We plot the one-month ahead SDFs on three specific weeks. The top left (right) figure displays the shape
of the SDFs for the week in which the VIX is at its 25% quartile (50%). The bottom left figure graphs the
SDFs on the week in which the VIX is at its 75% quartile. On each graph, the purple line depicts SDF(2) as
a function of future index price expressed in terms of returns standard deviations. The blue line provides the
same information for SDF(3), the green line plots SDF(4) and the black line graphs SDF(5).
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Table 2.1: Physical Parameters Estimates

σ2 λ η ah bh
1.02e-04 1.42e+00 -4.66e-04 2.83e-01 8.82e-01

(1.15e-06) (3.94e-03) (5.93e-04)
ch aq bq cq LogLike

3.73e-03 4.26e-01 9.91e-01 4.50e-03 4.30e+04
(2.96e-05) (4.44e-03) (3.94e-06) (1.55e-05)

This table reports the MLE estimates of the parameters Component IG-GARCH(1,1) parameters under the
physical measure. The estimation uses returns data from 19620705 to 20171229. Below each parameter,
we report the parameter’s standard error obtained using the outer product of the gradient. The equity risk
premium parameter is calibrated using the sample average of the market returns and the long-run volatility
parameter σ2 is calibrated using the sample variance.

Table 2.2: Physical Moments Correlations

This table reports the correlations between the signed physical moments for different orders ranging from two
to ten. As standard in the literature, the moments are computed at the one-month horizon. M2 is simply the

annualized square root of the variance. For n ≥ 3, the standardized moment Mn is defined as:

Mn =
EP
((
Rt→t+30 − EP(Rt→t+30)

)n)(
EP
(
Rt→t+30 − EP(Rt→t+30)

)2)n/2 .
M2 −M3 M4 −M5 M6 −M7 M8 −M9 M10

M2 -0.97 -0.85 -0.93 -0.82 -0.85 -0.76 -0.55 -0.13
−M3 0.94 0.99 0.92 0.94 0.87 0.64 0.16
M4 0.98 1.00 1.00 0.98 0.74 0.20
−M5 0.97 0.98 0.93 0.69 0.18
M6 1.00 0.99 0.75 0.21
−M7 0.98 0.75 0.21
M8 0.81 0.27
−M9 0.76
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Table 2.3: Options Data Descriptive Statistics

Panel A: By maturity
Short Maturity Medium Maturity Long Maturity All Options

% of Contracts 51.20 29.89 18.91 100.00
Average Implied Vol 0.23 0.24 0.27 0.24

Average Price 6.03 11.10 18.21 9.85
Average Bid-Ask Spread 0.52 0.94 1.27 0.79

Average Volume 869.95 651.33 558.50 745.71
Panel B: By moneyness

OTM Puts ATM Options OTM Calls All Options
% of Contracts 62.91 22.27 14.82 100.00

Average Implied Vol 0.27 0.20 0.16 0.24
Average Price 5.06 23.53 9.63 9.85

Average Bid-Ask Spread 0.59 1.33 0.84 0.79
Average Volume 611.95 1240.03 570.67 745.71

This table reports some descriptive statistics for the options data along the maturity dimension (Panel A) and
moneyness dimension (Panel B). For each maturity/moneyness bucket, we report the percentage of contracts,
the average of the option price, the average of the option implied volatility, the average of the bid-ask spread,
and finally the average volume. Short-term options have between 6 and 45 days to maturity (DTM), and long-
term options have between 91 and 365 DTM. Following Israelovr and Kelly (2017), we define the moneyness
as log (K/S) /

(
VIX
√
DTM

)
, where VIX is the CBOE VIX index. OTM puts are options with moneyness less

than -1, ATM options are those options having their moneyness between -1 and 0 and finally OTM calls have
their moneyness greater than 0. The options sample covers the period 1996-2017.

Table 2.4: Out-Of-Sample Goodness-Of-Fit Assessment

CRRA BCHJ SDF(2) SDF(3) SDF(4) SDF(5) SDF(6) SDF(7) SDF(8) SDF(9) SDF(10)

Ins 1.43∗∗∗ 1.04∗ 2.18∗∗∗ 1.18∗∗∗ 1.00 0.99∗∗∗ 0.95∗∗∗ 0.95∗∗∗ 0.95∗∗∗ 0.95∗∗∗ 0.95∗∗∗
(12.85) (1.71) (9.23) (14.28) (-10.74) (-13.21) (-13.77) (-13.91) (-13.92) (-13.99)

Oos_1 1.42∗∗∗ 1.01 2.21∗∗∗ 1.15∗∗∗ 1.00 0.99∗∗∗ 0.97∗∗∗ 0.96∗∗∗ 0.96∗∗∗ 0.96∗∗∗ 0.96∗∗∗
(8.59) (0.34) (7.12) (11.03) (-8.50) (-7.82) (-8.91) (-9.12) (-8.08) (-7.14)

Oos_2 1.39∗∗∗ 0.99 2.11∗∗∗ 1.12∗∗∗ 1.00 0.99∗∗∗ 0.98∗∗∗ 0.97∗∗∗ 0.97∗∗∗ 0.97∗∗∗ 0.97∗∗∗
(10.65) (-0.48) (10.32) (11.63) (-3.31) (-4.52) (-4.73) (-4.97) (-4.95) (-3.70)

Oos_3 1.40∗∗∗ 0.96 2.03∗∗∗ 1.08∗∗∗ 1.00 1.01 1.00 0.99 0.99 0.99 0.98∗∗
(8.25) (-1.21) (9.87) (6.03) (0.64) (-0.26) (-0.34) (-0.43) (-0.43) (-2.37)

Oos_4 1.39∗∗∗ 0.92∗∗ 1.98∗∗∗ 1.04∗ 1.00 1.01 1.00 0.99 0.99 0.99 0.97∗∗
(5.94) (-2.15) (6.98) (1.85) (0.74) (-0.46) (-0.81) (-0.92) (-0.88) (-2.12)

This table reports, for different specifications of the SDF, ratios of average root mean square of the relative
errors in the implied volatility domain (RIVRMSE). Following the forecasting literature, we report the average
RIVRMSE of each specification as a ratio with the average RIVRMSE of the baseline specification, SDF(4) in
our study. In parentheses below each ratio, we report Diebold-Mariano (DM) statistics, based on time-series of
RIVRMSEs, comparing the forecast accuracy of the different specification with that of SDF(4). This statistic
accounts for autocorrelation in errors and is normally distributed asymptotically. It is positive (negative)
whenever the SDF(4) outperforms (underperforms, which never happens) the alternate specification. The n
weeks-horizon out-of-sample results are obtained by pricing week t options using the relative risk aversion
(RRA) parameters estimated for week t− n.
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Table 2.5: Descriptive Statistics for the RRA parameters and the ERP parameter λ

Panel A: SDF(4) Parameters
λ RRA(2) RRA(3) RRA(4)

% of RRA > 0 96.55 95.85 98.10 92.23
Min -8.62 -8.49 -5.04 -6.24
25% Percentile 2.57 2.36 4.75 3.35
Average 4.44 4.37 6.98 4.94
75% Percentile 6.48 6.63 8.16 6.69
Max 12.17 12.61 33.31 21.24
Coefficient Of Variation 0.68 0.74 0.57 0.69

Panel B: SDF(5) Parameters

λ RRA(2) RRA(3) RRA(4) RRA(5)

% of RRA > 0 96.55 95.85 97.93 91.62 80.83
Min -8.62 -8.49 -6.19 -8.15 -10.27
25% Percentile 2.58 2.36 4.99 3.80 0.00
Average 4.46 4.37 7.16 5.19 1.20
75% Percentile 6.52 6.61 8.35 7.17 2.23
Max 12.17 12.61 32.47 22.82 9.20
Coefficient Of Variation 0.68 0.74 0.57 0.75 2.05

Panel C: SDF(6) Parameters

λ RRA(2) RRA(3) RRA(4) RRA(5) RRA(6)

% of RRA > 0 96.55 95.77 97.75 91.11 44.39 26.08
Min -8.63 -8.49 -7.31 -9.18 -15.52 -14.93
25% Percentile 2.67 2.36 5.32 3.94 -6.05 -6.51
Average 4.49 4.38 7.80 5.63 -1.81 -2.92
75% Percentile 6.52 6.61 9.60 8.17 0.86 0.00
Max 12.17 12.61 35.54 22.94 10.66 10.11
Coefficient Of Variation 0.67 0.73 0.59 0.77 2.64 1.43

This table presents some descriptive statistics for the RRA parameters and the ERP parameter λ . The
statistics include the percentage of positive values, the minimum value, the first quartile, the mean, the third
quartile, the maximum value, and finally the coefficient of variation defined as the standard deviation divided
by the absolute value of the mean. The RRA parameters are first suitable normalized following the procedure
outlined in the main text. Panel A (Panel B, Panel C) reports the results for SDF(4) (SDF(5) and SDF(6))
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Table 2.6: Correlations between RRA parameters and volatility factors

Panel A: SDF(4) Parameters

RRA(2) RRA(3) RRA(4) λ
√

252 ∗ ht
√

252 ∗ qt
RRA(3) -0.19
RRA(4) -0.14 0.88
λ 0.99 -0.08 -0.04√

252 ∗ ht -0.44 0.18 0.26 -0.45√
252 ∗ qt -0.45 0.17 0.26 -0.46 0.97

Panel B: SDF(5) Parameters

RRA(2) RRA(3) RRA(4) RRA(5) λ
√

252 ∗ ht
√

252 ∗ qt
RRA(3) -0.18
RRA(4) -0.08 0.84
RRA(5) -0.05 -0.03 0.23
λ 0.99 -0.07 0.02 -0.07√

252 ∗ ht -0.44 0.16 0.21 -0.09 -0.45√
252 ∗ qt -0.45 0.15 0.21 -0.10 -0.46 0.97

Panel C: SDF(6) Parameters

RRA(2) RRA(3) RRA(4) RRA(5) RRA(6) λ
√

252 ∗ ht
√

252 ∗ qt
RRA(3) -0.23
RRA(4) -0.11 0.86
RRA(5) 0.19 -0.47 -0.44
RRA(6) 0.39 -0.61 -0.62 0.78
λ 0.99 -0.11 -0.00 0.15 0.34√

252 ∗ ht -0.43 0.25 0.28 -0.33 -0.35 -0.44√
252 ∗ qt -0.44 0.24 0.28 -0.34 -0.35 -0.45 0.97

This table presents the correlations between the RRA parameters implied by SDF(4) (Panel A), SDF(5) (Panel
B), and SDF(6) (Panel C). The correlations between these parameters and the two volatility factors are also
provided. The RRA parameters are first suitable normalized following the procedure outlined in the main text.
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Table 2.7: Determinants of RRA parameters

Panel A: SDF(4) Parameters

λ RRA(2) RRA(3) RRA(4)

Intercept 4.85∗∗∗ 4.93∗∗∗ 0.95∗∗∗ 0.16
(7.95) (8.31) (3.40) (0.71)

AR(1) 0.50∗∗∗ 0.52∗∗∗ 0.70∗∗∗ 0.75∗∗∗
(9.93) (10.98) (18.93) (28.79)√

252 ∗ qt -17.37∗∗∗ -18.55∗∗∗ 8.09∗∗∗ 7.41∗∗∗
(-6.92) (-7.27) (3.47) (4.70)√

252 ∗ ht −
√

252 ∗ qt -10.33∗∗ -9.92∗ 8.76 4.30
(-2.01) (-1.85) (1.32) (0.96)

ADS -0.43∗∗∗ -0.53∗∗∗ 0.61∗∗∗ 0.45∗∗∗
(-5.14) (-5.60) (4.30) (4.75)

Adjusted R2 0.44 0.45 0.56 0.64
Adjusted R2 with AR(1) only 0.39 0.40 0.55 0.63

Panel B: SDF(5) Parameters

λ RRA(2) RRA(3) RRA(4) RRA(5)

Intercept 4.82∗∗∗ 4.93∗∗∗ 1.06∗∗∗ 0.17 1.44∗∗∗
(8.10) (8.41) (3.35) (0.51) (3.35)

AR(1) 0.51∗∗∗ 0.52∗∗∗ 0.69∗∗∗ 0.66∗∗∗ 0.28∗∗∗
(10.61) (11.40) (18.34) (21.33) (6.26)√

252 ∗ qt -17.26∗∗∗ -18.54∗∗∗ 8.17∗∗∗ 10.76∗∗∗ -3.52
(-6.99) (-7.31) (3.38) (5.13) (-1.57)√

252 ∗ ht −
√

252 ∗ qt -10.04∗ -9.52∗ 7.53 1.51 3.69
(-1.95) (-1.78) (1.10) (0.27) (0.76)

ADS -0.43∗∗∗ -0.53∗∗∗ 0.65∗∗∗ 0.66∗∗∗ 0.05
(-5.23) (-5.61) (4.37) (5.57) (0.52)

Adjusted R2 0.44 0.45 0.55 0.52 0.09
Adjusted R2 without controls 0.39 0.40 0.54 0.51 0.08

Panel C: SDF(6) Parameters

λ RRA(2) RRA(3) RRA(4) RRA(5) RRA(6)

Intercept 4.76∗∗∗ 4.87∗∗∗ 0.77∗∗ -0.18 3.57∗∗∗ 2.20∗∗∗
(8.08) (8.39) (2.26) (-0.46) (5.94) (4.80)

AR(1) 0.51∗∗∗ 0.52∗∗∗ 0.68∗∗∗ 0.66∗∗∗ 0.36∗∗∗ 0.44∗∗∗
(10.61) (11.47) (18.70) (21.92) (10.09) (12.71)√

252 ∗ qt -16.73∗∗∗ -18.18∗∗∗ 12.25∗∗∗ 14.29∗∗∗ -31.16∗∗∗ -25.68∗∗∗
(-6.89) (-7.24) (4.20) (5.75) (-7.93) (-8.29)√

252 ∗ ht −
√

252 ∗ qt -9.90∗ -9.35∗ 14.19∗ 4.18 -5.82 -12.47∗
(-1.92) (-1.74) (1.91) (0.69) (-0.62) (-1.76)

ADS -0.41∗∗∗ -0.53∗∗∗ 0.81∗∗∗ 0.78∗∗∗ -1.11∗∗∗ -1.14∗∗∗
(-5.10) (-5.58) (4.95) (5.50) (-5.10) (-6.60)

Adjusted R2 0.43 0.45 0.56 0.54 0.28 0.37
Adjusted R2 without with AR(1) 0.38 0.40 0.54 0.52 0.22 0.32

We regress each RRA parameter on its lagged value, the annualized long-run volatility
√

252 ∗ qt, the differ-
ence between the short-run and the long-run volatilities,

√
252 ∗ ht-

√
252 ∗ qt, and finally the ADS business

cycle indicator. Panel A (Panel B, Panel C) shows the outputs of this regression for SDF(4) (SDF(5), SDF6)
parameters. HAC corrected t-stats are presented in parenthesis below each estimate. The RRA parameters
are first suitable normalized following the procedure outlined in the main text.

123



Table 2.8: Average moments risk premium

This table reports the sample averages of the one-month ahead moments premium for different pricing
kernels. RP(1) is the standard equity risk premium, that is the difference between the expected returns and
the risk free rate. For n > 1, we define a multiplicative risk premium as the ratio of risk-neutral centred
moment and its physical counterpart powered by the inverse of the moment order, that is, for n > 1:

RP(n) =

(
EQ ((Rt→T − EQ(Rt→T )

)n)
EP ((Rt→T − EP(Rt→T ))n)

)1/n

.

In parentheses below each average premium, we report the Newey-West (1987) t-stat for testing the
hypothesis H0: “E(RP(n))=0" for the first order moment and H0: “E(RP(n))=1" for higher-order moments.

We winsorize the moments premium data at the 1% level.

CRRA BCHJ SDF(2) SDF(3) SDF(4) SDF(5) SDF(6)

Equity Risk 10.53∗∗∗ 10.12∗∗∗ 6.23∗∗∗ 7.00∗∗∗ 10.12∗∗∗ 10.19∗∗∗ 10.38∗∗∗
(15.17) (20.10) (12.14) (15.98) (21.12) (21.08) (20.48)

Variance Risk 1.04∗∗∗ 1.24∗∗∗ 1.01∗∗∗ 1.05∗∗∗ 1.09∗∗∗ 1.09∗∗∗ 1.10∗∗∗
(23.66) (23.66) (10.09) (13.69) (14.39) (14.11) (13.82)

Skewness Risk 1.06∗∗∗ 1.28∗∗∗ 1.02∗∗∗ 1.06∗∗∗ 1.12∗∗∗ 1.12∗∗∗ 1.13∗∗∗
(22.59) (23.85) (8.16) (13.35) (14.05) (13.81) (13.86)

Kurtosis Risk 1.04∗∗∗ 1.24∗∗∗ 1.01∗∗∗ 1.04∗∗∗ 1.08∗∗∗ 1.08∗∗∗ 1.09∗∗∗
(22.77) (23.75) (9.26) (14.18) (15.08) (14.75) (14.90)

HyperSkewness Risk 1.05∗∗∗ 1.26∗∗∗ 1.01∗∗∗ 1.05∗∗∗ 1.09∗∗∗ 1.09∗∗∗ 1.10∗∗∗
(23.47) (23.89) (8.00) (14.30) (14.99) (14.57) (15.31)

HyperKurtosis Risk 1.00 1.24∗∗∗ 1.01∗∗∗ 1.04∗∗∗ 1.08∗∗∗ 1.08∗∗∗ 1.01
(0.08) (23.94) (8.53) (14.29) (15.59) (14.64) (0.72)
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Table 2.9: Moments risk premium correlations

This table reports the correlations between the one-month ahead moments premium for different pricing
kernels. For the higher-orders moments, we define a multiplicative risk premium as the ratio of risk-neutral
centred moment and its physical counterpart powered by the inverse of the moment order, that is, for n > 1:

RP(n) =

(
EQ ((Rt→T − EQ(Rt→T )

)n)
EP ((Rt→T − EP(Rt→T ))n)

)1/n

.

Panel A: SDF(4) implied RPs

RP(1) RP(2) RP(3) RP(4) RP(5) RP(6)

RP(1)

RP(2) 0.11
RP(3) 0.03 0.93
RP(4) 0.10 0.99 0.94
RP(5) 0.06 0.94 0.97 0.96
RP(6) 0.08 0.97 0.94 0.99 0.96√
252 ∗ ht 0.47 0.40 0.28 0.35 0.29 0.30

Panel B: BCHJ implied RPs

RP(1) RP(2) RP(3) RP(4) RP(5) RP(6)

RP(1)

RP(2) 0.23
RP(3) 0.28 0.90
RP(4) 0.22 1.00 0.90
RP(5) 0.26 0.95 0.98 0.95
RP(6) 0.22 1.00 0.90 1.00 0.95√
252 ∗ ht 0.48 0.06 0.12 0.04 0.10 0.02
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Table 2.10: RRA parameters correlations across the SDF orders

Panel A: RRA(2) correlations

RRA(2) from SDF(4) RRA(2) from SDF(5) RRA(2) from SDF(6)

RRA(2) 0.35 0.30 0.30 0.30

Panel B: RRA(3) correlations

RRA(3) from SDF(4) RRA(3) from SDF(5) RRA(3) from SDF(6)

RRA(3) 0.70 0.68 0.65

Panel C: RRA(4) correlations

RRA(4) from SDF(5) RRA(4) from SDF(6)

RRA(4) 0.87 0.86

Panel D: RRA(5) correlations

RRA(5) from SDF(6)

RRA(5) 0.25

This table reports the correlations between the RRA parameters estimated using different SDFs. The observa-
tion (n,m) of this table gives the correlation between RRA(n) estimated using SDF(n) and the same RRA(n)

estimated using SDF(m).

Table 2.11: Determinants of RRA(2) implied by the CRRA utility

Intercept 1.69∗∗∗ 3.21∗∗∗ 3.02∗∗∗ 3.36∗∗∗
(15.47) (13.44) (12.14) (11.75)

AR(1) 0.54∗∗∗ 0.47∗∗∗ 0.47∗∗∗ 0.46∗∗∗
(20.28) (15.48) (15.36) (15.44)√

252 ∗ qt -7.91∗∗∗ -6.89∗∗∗ -9.07∗∗∗
(-8.44) (-6.90) (-6.80)√

252 ∗ ht −
√

252 ∗ qt -7.90∗∗ -7.57∗∗
(-2.45) (-2.32)

ADS -0.21∗∗∗
(-2.90)

Adjusted R2 0.29 0.33 0.33 0.33

We regress each the CRRA-implied RRA(2) on its lagged value, the annualized long-run volatility
√

252 ∗ qt,
the difference between the short-run and the long-run volatilities,

√
252 ∗ ht-

√
252 ∗ qt, and finally the ADS

business cycle indicator. HAC corrected t-stats are presented in parenthesis below each estimate.

126



Table 2.12: Monte Carlo Results Summary

Panel A: Average Relative Absolute Error

Avg. RIVMSE RRA(2) RRA(3) RRA(4) RRA(5) RRA(6)

CRRA(4) 0.03329 0.00301 0.10066 0.33488
CRRA(5) 0.00328 0.00376 0.07465 0.07920 0.08735
CRRA(6) 0.00130 0.00096 0.02251 0.03650 0.04699 0.09508
SDF(4) 0.00013 0.00000 0.00001 0.00003
SDF(5) 0.00426 0.00696 0.02206 0.03128 0.24021
SDF(6) 0.00316 0.00806 0.02062 0.03851 0.25929 0.10093

Panel B: Median Relative Absolute Error

RRA(2) RRA(3) RRA(4) RRA(5) RRA(6)

CRRA(4) 0.03329 0.00000 0.00000 0.00000
CRRA(5) 0.00328 0.00000 0.00000 0.00000 0.00000
CRRA(6) 0.00130 0.00050 0.01434 0.02337 0.01702 0.04421
SDF(4) 0.00013 0.00000 0.00000 0.00000
SDF(5) 0.00426 0.00000 0.00001 0.00001 0.00032
SDF(6) 0.00316 0.00003 0.00009 0.00014 0.00824 0.00375

To assess the robustness of our estimation procedure, we implement a Monte Carlo exercice whose results are
reported in this table. For one hundred randomly chosen weeks, we generate synthetic option prices using
some known pricing kernels reported in the table’s rows. CRRA(n) is the CRRA pricing kernel truncated at
order n using the standard Taylor expansion. Recall that the RRAs of the CRRA pricing kernel are functions
of the RRA(2) which we calibrate using the data-based weekly estimates of the CRRA risk aversion parameter
RRA(2). SDF(n) is the estimated nonparametric pricing kernel of order n whose parameters are calibrated using
the weekly estimates of the RRAs. Once the synthetic options prices are generated, we use our estimation
methodology to recover the true parameters. The first column of the table provides the average pricing errors
measured by the RIVRMSE. The remaining columns report the average of the absolute relative errors on the
RRAs (Panel A) and the median of the absolute relative errors on the RRAs (Panel B).
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Appendix for Chapter 2 (B)

B APPENDIX

B.1 Option Valuation using EP
t

[
SDF(k)

t,T XT

]
We depart from the standard risk-neutral valuation approach, which determines an option’s price

based on the Q-distribution of its payoff. Here, we untangle the two ingredients of this risk-neutral
distribution. The first is the SDF and the second is the physical distribution of the payoff. First, note
that equation (2.6) is equivalent to

SDF(k)
t,T =

k∑
j=1

κ
(k)
j,t,T

RRA(j)
t

Sj−1
t

(ST − St)j−1,

assuming, for convenience, that RRA(1) = 1.
Consider a call option with a strike price K that matures at time T . Using equation (2.1), the

price of the call option can be expressed as

Callt
(
T,K

)
= EP

t

[
SDF(k)

t,T (ST −K)+
]

(A.1)

=
k∑
j=1

κ
(k)
j,t,T

RRA(j)
t

Sj−1
t

EP
t

[
(ST − St)j−1(ST −K)+] . (A.2)

Furthermore, we have

EP
t

[
(ST − St)j−1(ST −K)+)] =

j−1∑
q=0

(−1)j−1−qCj−1
q (St)j−1−qE

(
SqT (ST −K)1{ST≥K}

)
,

where 1{A} is an indicator function that equals 1 when the condition A is met and 0 elsewhere. The
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latter expectation is simply

E
(
SqT (ST −K)1{ST≥K}

)
=
∫ ∞

ln(K)
eqx(ex −K)p(x)dx.

where p(x) is the density of ln(ST ). Hence, it follows that the call price can be computed in semi-closed
form using the following identity

∫ ∞
ln(K)

eqxp(x)dx = f(q)
[

1
2 + 1

π

∫ ∞
0

1
f(q)Re

[
e−iφ ln(K)f(iφ+ q)

iφ

]
dφ

]
, (A.3)

as long as the log-price’s moment generating function f is known in closed-form.

B.2 Rewriting the Maximization Problem Constraints

Consider the kth-order approximation to the SDF. Equation (2.3) becomes

1 = EP
t

[
SDF(k)

t,T (1 +Rt,T )
]

(A.4)

= 1
1 +Rf,t

+
k∑
j=1

κ
(k)
j,t,T RRA(j)

t Et
[
Rjt,T

]
. (A.5)

where Rf,t = (1−Bt)/Bt is the return on the risk-free bond B, RRA(1)
t = 1 for convenience, and κ(k)

j,t,T

is given by

κ
(k)
j,t,T = wj

(1 +Rf,t)
(∑k

l=1 wl RRA(l)
t Et

[
Rl−1
t,T

] ) with wj = (−1)j−1

(j − 1)! , j = 1, . . . , k.

(A.6)

The Euler equation can then be rewritten as:

Rf,t =

∑k
j=1 wj RRA(j)

t Et
[
Rjt,T

]
∑k
j=1 wj RRA(j)

t Et
[
Rj−1
t,T

] (A.7)

⇔ Rf,t

 k∑
j=1

wj RRA(j)
t Et

[
Rj−1
t,T

] =
k∑
j=1

wj RRA(j)
t Et

[
Rjt,T

]
(A.8)

⇔ 0 = Rf,t

 k∑
j=1

wj RRA(j)
t Et

[
Rj−1
t,T

]− k∑
j=1

wj RRA(j)
t Et

[
Rjt,T

]
(A.9)

⇔ 0 =
∑k−1

j=1
wj RRA(j)

t

(
Rf,t Et

[
Rj−1
t,T

]
− Et

[
Rjt,T

])
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+ wk RRA(k)
t

(
Rf,t Et

[
Rk−1
t,T

]
− Et

[
Rkt,T

])
(A.10)

or equivalently

RRA(k)
t = −

∑k−1

j=1
wj RRA(j)

t

(
Rf,t Et

[
Rj−1
t,T

]
− Et

[
Rjt,T

])
wk

(
Rf,t Et

[
Rk−1
t,T

]
− Et

[
Rkt,T

]) . (A.11)

Hence, the maximization problem becomes:

max
λ,RRA(2)

t , ...,RRA(k)
t

LOptions

(
λ, RRA(2)

t , . . . , RRA(k)
t

)
s.t. Equations (A.6) and (A.11). (A.12)

B.3 The Returns’ Model in BCHJ’s Notation

Babaoglu, Christoffersen, Heston, and Jacobs (2018, hereafter BCHJ) specify their model as
follows:

rt = rf + µht + ηyt, (A.13)

ht = w + b1ht−1 + b2ht−2 + c1yt−1 + c2yt−2 + a1h
2
t−1/yt−1 + a2h

2
t−2/yt−2. (A.14)

We here demonstrate that this formulation is observationally equivalent to the one in equations (2.8),
(2.9) and (2.10). First, remark that the η parameter is the same in both formulation and is identified
by the conditional skewness of the innovations (in particular, the negative skewness observed in the
data requires a negative η). Second, the convexity correction is:

ξt =
(

1
η2 +

√
1− 2η
η2 − 1

η

)
ht. (A.15)

Thus, equating equation (2.8), at t, with (A.13), we obtain

µ = λ−
(

1
η2 +

√
1− 2η
η2 − 1

η

)
− 1
η
, (A.16)

= λ− 1
η2 −

√
1− 2η
η2 . (A.17)

Given that η is identified by the conditional skewness, BCHJ’s µ is identified by the market price of
equity risk, which is simply λ in our formulation.

Turning to the variance process, we first rewrite equation (2.10) as

qt = (1− ρq)σ2 + ρqqt−1 + νq,t−1, (A.18)
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Then, we insert qt into ht (equation 2.9)

ht = (1− ρq)σ2 + ρqqt−1 + νq,t−1 + ρh(ht−1 − qt−1︸︷︷︸
(A.18)

) + νh,t−1

= (1− ρq)σ2 + ρqqt−1 + νq,t−1 + ρhht−1 − ρh

(︷ ︸︸ ︷
(1− ρq)σ2 + ρqqt−2 + νq,t−2

)
+ νh,t−1

= w̃ + ρhht−1 + ρq(qt−1 − ρhqt−2︸ ︷︷ ︸
rewrite (2.9)

) + νh,t−1 + νq,t−1 − ρhνq,t−2, (A.19)

where w̃ = (1 − ρh)(1 − ρq)σ2 highlights that BCHJ’s w parameter (which we will obtain shortly) is
identified by the unconditional variance. Now, we rewrite equation (2.9) as

qt−1 − ρhqt−2 = ht−1 − ρhht−2 − νh,t−2 (A.20)

and make use of this result in equation (A.19)

ht = w̃ + ρhht−1 + ρq(ht−1 − ρhht−2 − νh,t−2) + νh,t−1 + νq,t−1 − ρhνq,t−2

= w̃ + b̃1ht−1 + b̃2ht−2 + νh,t−1 + νq,t−1 − ρqνh,t−2 − ρhνq,t−2, (A.21)

where the autoregression coefficients b̃1 = (ρh + ρq) and b̃2 = −ρhρq are identified by short- and
long-term persistence.

Focusing on the innovations, we have

νh,t−1 + νq,t−1 − ρqνh,t−2 − ρhνq,t−2

= (ah + aq)ht−1νt−1 + (ch + cq)νr,t−1 − (ahρq + aqρh)ht−2νt−2 − (chρq + cqρh)νr,t−2

= a1

(
h2
t−1
yt−1

− η2ht−1 − η4
)

+ c1
η

(
ηyt−1 −

ht−1

η

)
+ a2

(
h2
t−2
yt−2

− η2ht−2 − η4
)

+ c2
η

(
ηyt−2 −

ht−2

η

)
= a1

h2
t−1
yt−1

+ c1yt−1 + a2
h2
t−2
yt−2

+ c2yt−2

− a1η
2ht−1 − a1η

4 − c1ht−1

η2 − a2η
2ht−2 − a2η

4 − c2ht−2

η2 , (A.22)

where a1 = (ah + aq)σ−4, a2 = −(ahρq + aqρh)σ−4, c1 = (ch + cq)η, and c2 = −(chρq + cqρh)η.
We conclude by using equation (A.22) in equation (A.21), which yields

ht =
[
w̃ − (a1 + a2)η4]
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+
[
b̃1 −

(
a1η

2 + c1
η2

)]
ht−1 +

[
b̃2 −

(
a2η

2 + c2
η2

)]
ht−2

+ a1
h2
t−1
yt−1

+ c1yt−1 + a2
h2
t−2
yt−2

+ c2yt−2

= w + b1ht−1 + b2ht−2 + a1
h2
t−1
yt−1

+ c1yt−1 + a2
h2
t−2
yt−2

+ c2yt−2, (A.23)

where

w = w̃ − (a1 + a2)η4, b1 = b̃1 −
(
a1η

2 + c1
η2

)
, b2 = b̃2 −

(
a2η

2 + c2
η2

)
.

B.4 Computing the standardized physical moments

The returns physical distribution can be analyzed by looking at the returns standardized moments
for various orders. For n ≥ 1, let’s define the returns centred moments as

Mn = EP
t

[(
Rt,T − EP

t (Rt,T
)n]

.

Next, recall that

Rt,T = ST − St
St

,

which implies that,

Rt,T − EP
t (Rt,T ) = ST − EP

t (St)
St

.

Using the latter equation, we can express the centred returns moments in terms of the underlying
conditional moments,

Mn = 1
Snt

EP
t

[(
ST − EP

t (ST
)n]

= 1
Snt

( n∑
q=0

CqnEP
t

(
SqT
)(
− EP

t (ST )
)n−q)

.

If we denote by f , the moment generating function of ST , then for every k, EP
t

(
SkT
)
is simply f(k).

For n ≥ 3, the normalized moment of order n is

Mn

M
n/2
2

=
EP
t

[(
ST − EP

t (ST )
)n]

EP
t

((
ST − EP

t (ST
)2)n/2 .
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When n = 2, the normalized moment is simply
√
M2.

B.5 Computing the risk-neutral moments

Since the risk-neutral distribution implied by SDF (k) is not available in closed form, one elegant
way to access this distribution is through its moments. Fortunately the Q-moments can be obtained
straightforwardly by combining the the P -moments and the RRA parameters.
To see this, first recall that

SDF(k)
t,T =

k∑
j=1

κ
(k)
j,t,T

RRA(j)
t

Sj−1
t

(ST − St)j−1.

For n ≥ 0, we have

EQ
t (SnT ) = EP

t

[
SDF(k)

t,T S
n
T

]
=

k∑
j=1

κ
(k)
j,t,T

RRA(j)
t

Sj−1
t

EP
t

[
(ST − St)j−1SnT

]
.

Since,

(ST − St)j−1 =
j−1∑
q=0

Cj−1
q SqT (−St)j−1−q,

we have

EP
t

[
SnT (ST − St)j−1] =

j−1∑
q=0

Cj−1
q (−St)j−1−q EP

t

[
Sn+j
T

]
.

B.6 More on the Model

Moment Generating Function

The moment generating function of the returns under the IG-GARCH(C) model is given by

f(φ) = Et[S(T )φ] = S(t)φ exp(A(t) +B(t)h(t+ ∆) + C(t)q(t+ ∆)),

A(t) = A(t+ ∆) + rφ∆− (wq − ahη4 − aqη4)B(t+ ∆) + (wq − aqη4)C(t+ ∆)

− 0.5 ln(1− 2(ah + aq)η4B(t+ ∆)− 2aqη4C(t+ ∆))

B(t) = ϕµ+ (ρh − (ch + cq)η−2 − (ah + aq)η2)B(t+ ∆)− (cqη−2 + aqη
2)C(t+ ∆) + η−2−√

(1− 2(aq + ah)η4B(t+ ∆− 2aqη4C(t+ ∆)))(1− 2ηϕ− 2(cq + ch)B(t+ ∆)− 2cqC(t+ ∆))
η2

C(t) = (ρq − ρh)B(t+ ∆) + ρqC(t+ ∆)
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with

A(T ) = 0, B(T ) = 0, C(T ) = 0.

Setting T = t+ 1, the last line becomes A(t+ 1) = B(t+ 1) = C(t+ 1) = 0. Next,

Et
(

exp(rt+1)
)

= Et(St+1)
St

= exp(At +Btht+1 + Ctqt+1) = exp(r + λht+1),

with Ct = 0, At = r, and Bt = µ+ 1
η2 +

√
1−2η
η2

Et
(

exp(rt+1)
)

= S(t) exp
(
r +

(
µ+ 1

η2 +
√

1− 2η
η2

)
ht+1

)
,

It follows that:

λ = µ+ 1
η2 +

√
1− 2η
η2

λ− ξ = µ+ 1
η

= µ+ 1
η2 +

√
1− 2η
η2 − ξ,

which imply that

ξ = 1
η2 +

√
1− 2η
η2 − 1

η
.

B.7 More on benchmark parametric SDFs

Deriving the RRA parameters for a CRRA utility function

A CRRA utility function is defined: as

U(St) = S1−RRA(2)

t

1− RRA(2) ,

from which it follows that

U′(St) = S−RRA(2)

T

U′′(St) = −RRA(2) S
−(RRA(2) +1)
t

U(3)(St) = RRA(2)(RRA(2) +1)S−(RRA(2) +2)
t

U(4)(St) = −RRA(2)(RRA(2) +1)(RRA(2) +2)S−(RRA(2) +3)
t
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U(5)(St) = RRA(2)(RRA(2) +1)(RRA(2) +2)(RRA(2) +3)S−(RRA(2) +4)
t ,

which we generalize as

U(k)(St) = (−1)k−1
( k−2∏
j=0

(RRA(2) +j)
)
S
−(RRA(2) +k−1)
t , k ≥ 0.

Now recalling the definition of the RRA parameters:

RRA(k)
t = (−1)k−1S

k−1 U(k)(St)
U′(St)

, k ≥ 2,

we deduce that

RRA(k) =
k−2∏
j=0

(RRA(2) +j).

B.8 Alternative representation of the physical model

Babaoglu, Christoffersen, Heston, and Jacobs (2018) additionally show that the initial Component
IGGARCH model can be rewritten as an IGGARCH(2,2) model

log(S(t+ ∆) = log(S(t) + r∆ + µh(t+ ∆) + ηy(t+ ∆),

h(t+ ∆) = w + b1h(t) + b2h(t−∆) + c1y(t) + c2y(t−∆),

+ a1
h(t)2

y(t) + a2
h(t−∆)2

y(t−∆) .

Seting b̃i = bi + ci
η2 + aiη

2, for i=1,2, then we have

a1 = ah + aq, a2 = −ρ2ah − ρ1aq,

b̃1 = ρ1 + ρ2, b̃2 = −ρ1ρ2

c1 = ch + cq, c2 = −ρ2ch − ρ1cq.

The parameters of the Component model are also functions of the parameters in the IGGARCH(2,2)
model as follows

µ̃ = µ+ η−1,

w̃ = w + a1η
4 + a2η

4,

wq = w̃

1− ρ1
,
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σ2 = w̃

(1− ρ1)(1− ρ2) ,

ah = −ρ1

ρ2 − ρ1
a1 −

1
ρ2 − ρ1

a1,

aq = −ρ2

ρ2 − ρ1
a1 + 1

ρ2 − ρ1
a2,

ch = −ρ1

ρ2 − ρ1
c1 −

1
ρ2 − ρ1

c1,

cq = −ρ2

ρ2 − ρ1
c1 + 1

ρ2 − ρ1
c2.

B.9 Change of measure under the volatility-dependent pricing kernel

Assuming the volatility-dependent pricing kernel, the risk-neutral dynamics is given by:

log(S(t+ ∆) = log(S(t) + r∆ + µ?h?(t+ ∆) + η?y?(t+ ∆),

h?(t+ ∆) = w? + b?1h(t) + b?2h(t−∆) + c?1y(t) + c?2y(t−∆),

+ a?1
h?(t)2

y?(t) + a?2
h?(t−∆)2

y?(t−∆) ,

where

h?(t) = shh(t), y?(t) = syy(t),

µ? = µ/sh, η? = η/sh, , w? = shw,

a?i = shai/sy, c?i = shci/sy, for i = 1, 2.

with

sy =

(
0.5µ2η4 +

(
1− 2a1Φη

4)η)2

(
1− 2a1Φη4

)
µ2η4 ,

sh = µη2

s2
y

(√
1− 2 ∗ η/sy − 1

) .
B.10 Component model representation of the purely risk-neutral dynamics

log(S(t+ ∆) = log(S(t) + r∆ + µ?h?(t+ ∆) + η?y(t+ ∆),

h?(t+ ∆) = q?(t+ ∆) + ρ1(h?(t)− q?(t)) + ν?h(t),

q?(t+ ∆) = σ?2 + ρ2(q?(t)− σ?2 + ν?q (t),
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where the innovations νh(t) and νq(t) are defined as

ν?h(t) = c?hy
?(t) + a?h

h?(t)2

y?(t) − c
?
h

h?(t)
η?2

− ahη?2h?(t),

ν?q (t) = c?qy
?(t) + a?q

h?(t)2

y?(t) − c
?
q

h?(t)
η?2

− aqη?2h?(t).
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Chapter 3

Multi-Horizon Pricing of
Co-Skewness Risk: Evidence from
Equity Returns and Options∗

3.1 Introduction

The risk-return relationship has received considerable attention in the asset pricing liter-

ature. Research in this area has mainly focused on finding risk factors that have explanatory

power in the cross-section of returns. Co-skewness risk is an important risk factor that has

been introduced to capture nonlinear dependence between stock returns and market returns.1

This risk represents the component of the stock returns asymmetry that arises due to market

returns asymmetry. Co-skewness risk naturally complements the single factor CAPM model

of Sharpe (1964b) and Lintner (1965a). As shown by Harvey and Siddique (2000a), this risk

is relevant as it has the potential to explain some anomalies that have been observed in the

finance literature.2

Economic theory is unambiguous regarding the sign of the risk premia of co-skewness
∗I benefited from discussions with Ilze Kalnina, Christian Dorion, Marine Carrasco, Benoit Perron, Réne

Garcia, Bruno Feunou, Caio Almeida, Elise Gourier and Erik Vogt.

1Kraus and Litzenberger (1976) are the first to highlight the importance of this risk on a theoretical level.
2Harvey and Siddique (2000a) find that co-skewness partially explains the momentum anomaly.
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risk.3 However, little is yet known about the evolution of the co-skewness risk premia across

investment horizons from both empirical and theoretical viewpoints. Term structure informa-

tion is relevant for investors who are willing to earn such risk premia as it helps them determine

the timing of their investment. In addition, studying empirically the term structure of the risk

premia associated with co-skewness risk could help discriminate between competing structural

asset pricing models.

My contribution is two-fold. First, I propose a hybrid methodology that uses options

and returns data to estimate option-implied co-skewness at any desirable maturity. Options

data is known to contain forward-looking information on investors’ anticipation of future risk,

making it conducive in estimating expected risk and risk premia.4

Second, I use the proposed methodology to perform a multi-horizon analysis of the pricing

of co-skewness risk. A multi-horizon analysis aims at studying the risk-return relationship

across investment horizons. It has the advantage of providing a model-free insight into the

term structure of risk premia. A multi-horizon analysis needs to account for the possibility

that investors’ anticipation of future risk could change across risk horizons. Theoretically, op-

tions traded at a given horizon should be the most informative for capturing the risk premia

at that horizon. However, in practice, this prediction is fallible. It is always possible that

option-implied risk for a given maturity could be more informative for estimating risk premia

for an investment horizon that does not coincide with this maturity. To address this issue,

for a given investment horizon, I look for the option horizon that best captures the price of

the risk5 and use the estimate obtained for this option horizon in my multi-horizon analysis.

My approach to estimating option-implied co-skewness relies on a proper modelling of

the risk-neutral joint density of the market and stock returns across maturities. I treat the

risk-neutral joint density of market and stock returns conditional on a maturity as a smooth

trivariate function. Next, I approximate this trivariate function using Hermite polynomi-

als across its three dimensions. It is important to note that the maturity dimension of this

density function is flexibly modeled using Hermite polynomials. The approximation involves
3As noted by Dittmar (2002b), co-skewness is priced negatively when investors have decreasing absolute

risk aversion.
4This observation can be traced back to papers such as Rubinstein (1994) and Jackwerth and Rubinstein

(1996).
5Since co-skewness risk is priced negatively, I select the option horizon that minimizes the t-statistics of the

estimated average price of risk
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some coefficients that are to be estimated each day. Option-implied risk-neutral joint density

cannot be obtained in a model-free way due to the absence of option contracts whose payoffs

depend on the market and stock returns. Given this issue, additional restrictions are needed.6

To solve this problem, I use the “zero correlation risk premia” assumption of Aït-Sahalia

and Brandt (2007) and French, Groth, and Kolari (1983), which states that the risk-neutral

correlation should not differ considerably from the historical correlation. This restriction is

mild and is supported by the Girsanov’s theorem, as explained by Aït-Sahalia and Brandt

(2007). The approximate density function is required to correctly price options on the market

and options on the stock across strikes and maturities. It should also fulfill the correlation

restriction across risk horizons.7 Provided that such restrictions are satisfied, the polynomial

coefficients are obtained by minimizing the discrepancy between the risk-neutral joint density

and a preliminary estimate of the physical joint density across horizons. The flexibility of

the methodology is exploited when varying the orders of the Hermite polynomials involved

in the approximation. This offers the possibility of checking “to some extent” the robustness

of the term structure conclusions to model misspecification. The latter property is clearly an

advantage when compared with adopting a fully parametric approach.

I estimate the model using options and returns data on 96 stocks of the S&P500 covering

the period of 2001-2014.8 For each month and investment horizon, the price of risk is esti-

mated using Fama and MacBeth (1973) regressions for option horizon ranging from one to

twelve months. Following the literature, I proxy the average risk premia by the average price

of risk multiplied by the standard deviation of the option-implied risk measure.

First, the results show that, on average, the magnitude of the option-implied co-skewness

risk decreases with the option horizon. This finding can be interpreted as a signal of investors

expecting this risk to matter less over a long-horizon.9

Second, my results demonstrate that co-skewness risk premia are negative and exhibit

a decreasing term structure (in absolute value). In particular, I find that the annual risk
6Cross-options whose payoffs depend on the market and stock returns are required to estimate non-

parametrically the risk-neutral joint density.
7My paper appears to be the first to use the “zero correlation risk premia” assumption for the estimation

of option-implied co-skewness risk.
8The sample starts from 2001 to maximize the liquidity of the stock options. The selected stocks are the

ones that have at least 15 traded options at the end of each month between 2001 to 2014.
9Following the literature, I use a co-skewness measure that is appropriately standardized so that the measure

is comparable across risk horizons.
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premia decrease from 3.83% at a monthly horizon to 1.26% at an annual horizon in absolute

value. These results are economically significant and robust to the inclusion of Carhart (1997)

factors and past returns. The decreasing risk premia are also robust across different model

specifications.

These results have direct implication for investors who are willing to earn the co-skewness

risk premia. They suggest that such investors are better off keeping their position (in port-

folios that load on co-skewness risk) on short time periods such as one-month (and possibly

rebalance it), rather than holding it over longer period such as one year.

To the best of my knowledge, my paper is the first to study the multi-horizon pricing of

co-skewness risk accounting for forward-looking information from option data. To that end,

a brief overview of the related literature follows.

There is a growing literature in finance that studies the term structure of risk premia.

Using data on dividend strips, van Binsbergen, Brandt, and Koijen (2012) show that the

equity risk premium has a decreasing term structure. Andries, Eisenbach, Thomas, Schmalz,

Schmalz, and Wang (2015) and Dew-Becker, Giglio, Le, and Rodriguez (2015) find that the

variance risk premium also has a decreasing term structure (in absolute value). Although I

adopt a methodology that is different from the ones used in these papers,10 my results re-

garding the term structure of the co-skewness risk premia are not implied by such existing

term structure results. In fact, as shown by Chabi-Yo (2002), in a dynamic two-period model,

the price of co-skewness is distinct from that of the volatility risk. Recently, Christoffersen,

Fournier, Jacobs, and Karoui (2016) argue that both prices should be the same in a one-period

model. However, their theory has no direct implications for the multi-horizon pricing of co-

skewness risk. Tédongap (2014) studies the multi-horizon pricing of consumption volatility in

the cross-section of returns using a long-run risk model. My multi-horizon analysis is model-

free and uses options data across different maturities. Moreover, my results could be used to

discriminate between competing asset pricing models.

Only a few papers have estimated conditional co-skewness using options data. Conrad,

Dittmar, and Ghysels (2013) estimate conditional co-skewness for several option maturities

but only examine the risk-return relationship at the one-month horizon. Bali, Hu, and Murray
10Most of the existing papers use information on the profitability of investment strategies in options with

different maturities to learn about the term structure of risk premia. Here, investment strategies are realized
using stocks; options are only used to learn about investors’ expectations of future risk.
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(2016) use monthly options to estimate ex-ante co-skewness and further test its ability to ex-

plain variation in a yearly measure of expected returns based on the analyst price target. Both

papers use the one-factor CAPM model together with estimates of total moments obtained

using the methodology of Bakshi, Kapadia, and Madan (2003). The latter methodology only

uses options from a single maturity. When the number of such options is scarce (as is the case

at the long-horizon), the results can be quite sensitive to the interpolation and extrapolation

techniques used. In such case, it is better to add more structure and use all the options data

(covering all strikes and maturities) when estimating the moments for a given maturity, which

is what my paper does. This illiquidity issue has also been tackled by Aliouchkin (2015), who

relies on a fully parametric two-factor model to estimate ex-ante instantaneous co-skewness

and study the risk pricing at the one-month horizon. Using a particular parametric model

does not leave room for addressing issues related to the robustness of the results with respect

to distributional assumptions, which my paper tackles.11 My paper is also the first to make

use of the entire term structure of option-implied co-skewness to study the term structure of

the risk premia. Additionally, I formally show that the option-implied co-skewness delivered

by my methodology more accurately predicts future realized co-skewness risk than the past

historical measure used in Harvey and Siddique (2000a).

Vogt (2015) is the only other paper that uses Hermite polynomials to model the maturity

dimension of the risk-neutral density. Vogt (2015) estimates marginal risk-neutral moments

of the market, but does not consider any joint moments. My paper furthers the study in two

ways. First, the problem I study is more complex due to market incompleteness arising from

the absence of option-linking market and stock returns. Second, the Vogt (2015) methodology

requires a large number of daily options, which is restrictive when looking at individual stock

options, for which less traded options are available. By using a joint model, my approach

allows for the use of additional mild restrictions between the market and the individual stock,

which arguably is more helpful in identifying stock risk-neutral dynamics while still using only

one day of option data.

Furthermore, my methodology can be used to investigate the multi-horizon pricing of

co-variance and co-kurtosis, which will be discussed in the latter sections of this paper. It can

also be used to investigate the multi-horizon pricing idiosyncratic risks (variance, skewness,
11Affine models are often used in the option pricing literature. To obtain option prices in semi closed form,

only a few number of distributions can be used, which is a huge constraint for robustness analysis.
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kurtosis). This analysis can be useful because there is no consensus on the signs of the prices

of idiosyncratic risks.12

The rest of the paper is organized as follows. Section 3.2 describes the term structure

model proposed for the option-implied joint distribution of market and stock returns, which

is required to compute option-implied co-skewness. Section 3.5 presents the data used for

the estimation. Section 3.6 presents the empirical results on the multi-horizon pricing of

co-skewness risk. Section 3.7 concludes.

3.2 The Model

In this section, I propose a flexible term structure model for the option-implied joint

distribution (or joint risk-neutral density) that can be used to compute option-implied co-

skewness at any risk horizon. I start by presenting the model and its key properties and

subsequently show how to estimate it.

Co-skewness risk captures the portion of the stock returns asymmetry that arises as a

result of market returns asymmetry. As shown by Kraus and Litzenberger (1976) and Harvey

and Siddique (2000a), it can be well proxied by the covariance between the stock returns and

the squared market returns.13 Option-implied co-skewness for a given stock is intended to

capture stock co-skewness risk as reflected in traded options on the market and options on

the stock.

For a given maturity, the option-implied co-skewness can be straightforwardly computed

after estimating the joint risk-neutral density of the market and the stock returns at the

horizon defined by this maturity.14 My target is to come up with an estimate of the term

structure of this joint density for each day. For the estimation, I rely on the options traded on

this day as well as historical observed prices. The most recent options data available is likely

to be more informative about the investors’ perception on future risk than options traded on

previous days. This is especially important in periods of turmoil.
12For example, Ang, Hodrick, Xing, and Zhang (2006) find that idiosyncratic volatility is priced negatively

while Fu (2009) finds that it is priced positively. Multi-horizon analysis of idiosyncratic risk may become
challenging when all option maturities do not yield the same sign for the estimated price of risk.

13This is the most popular proxy of co-skewness risk used in the literature due to its extreme simplicity.
Alternative proxies can be found in Harvey and Siddique (2000a).

14This computation involves a numerical integration that is simple to implement and reliable if the density
is available in closed form.
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Let It denote the value of the market index, and St the value of the individual stock at

time t. For any maturity τ , the aim is to estimate the joint risk-neutral density of the pair

(It+τ , St+τ ) without specifying the full dynamics of the two processes I and S, as is the case

for parametric models.15 I achieve this goal by relying on the sieve literature pioneered by

Gallant and Nychka (1987) and Fenton and Gallant (1996). The key idea of this literature is

that we can always reasonably approximate any unknown density by a combination of known

functions called basis functions (which are usually of polynomial form).

A direct application of Gallant and Nychka (1987) in our context requires inferring a com-

bination of the basis functions for each maturity using only options traded for this particular

maturity (see for example Ángel Léon, Mencía, and Sentana (2009)). It is more challenging

to estimate the long-horizon risk using such procedure due to the illiquidity of long-maturity

options, which are less traded. To better model long-horizon risk, it is desirable to incorporate

an additional structure that will allow for the use of the full panel of options data to recover

in a single step the option-implied joint density for any maturity. The option panel is indexed

by two dimensions: the maturity dimension and the moneyness dimension (see e.g. Andersen,

Fusari, and Todorov (2015)). To achieve this desirable property, one needs to specify the form

of the density of the triplet (It+τ , St+τ , τ). Vogt (2015) uses a similar approach in the special

case with no stocks.16

I start by performing a change of variables that allows switching from the pair (I, S) to

some intermediate variables that are more suited to follow the approximate multivariate sieve

density of Gallant and Nychka (1987). To be precise, I model the τ -periods returns on the

market (rI,τ ) and τ -periods returns on the stock (rS,τ ) as follows,

rI,τ = log
(It+τ
It

)
= µI(τ) + VI(τ)Xτ , (3.1)

and

rS,τ = log
(St+τ
St

)
= µS(τ) + VS(τ)Yτ , (3.2)

15Parametric models rely on tight restrictions and are subject to misspecification errors.
16The Vogt (2015) approach is designed to infer the joint risk-neutral distribution of (It+τ , τ). Extending his

main idea to the case of the trivariate process (It+τ , St+τ , τ) requires additional technology, which I develop
in this paper, see section 3.4 for a more comprehensive comparison.
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with

VI(τ) = σI
√
τ , VS(τ) = σS

√
τ , µI(τ) = (rf − σ2

I/2)τ, µS(τ) = (rf − σ2
S/2)τ, (3.3)

where rf is the risk free rate, σI (resp σS) is the market (resp stock) volatility at time t. The

change of variables in (3.1) and (3.2) allows for movements from strictly positive variables (I

and S) that have their own ranges of values to new variables Xτ and Yτ that are expected to

be stationary with ranges approximately centered around zero.

Note that this is exactly the same change of variables that is performed is the classical

Black and Scholes (1973a) model.17 However, in the Black and Scholes (1973a) model, the

univariate variables Xτ and Yτ are normally distributed. More importantly, the Black and

Scholes (1973a) model has no restrictions of the joint behaviour of Xτ and Yτ . It is now

widely recognized that the Black and Scholes (1973a) model does not explain well the implied

volatility smile observed in option prices; this is mainly due to the fact that it does not allow

for the conditional non-normality of Xτ and Yτ (see, for example, Christoffersen, Heston, and

Jacobs (2006b)). The sieve framework allows for the calibration of the degree of non-normality

of Xτ and Yτ that is required to suitably fit the options data. This paper is the first to use the

sieve framework to uncover the joint behaviour of Xτ and Yτ under the risk-neutral measure.

Specifically, I assume that the true unknown density f (Xτ ,Yτ ,τ) of (Xτ ,Yτ , τ) can be well

approximated by the sieve multivariate density f (Xτ ,Yτ ,τ)
K defined as follows,

f
(Xτ ,Yτ ,τ)
K (x, y, τ) =

[
Kx∑
k=0

( Ky∑
j=0

( Kτ∑
l=0

BkjlHl(τ)
)
Hj(y)

)
Hk(x)

]2

e−τ
2/2e−x

2/2e−y
2/2, (3.4)

subject to the constraint

Kx∑
k=0

Ky∑
j=0

Kτ∑
l=0

B2
kjl = 1, (3.5)

where Hj(x)′s are the Hermite polynomials, B is the three-dimensional matrix of coefficients,
17Specifically, µI(τ) and VI(τ) are the mean and volatility of the τ periods index returns. Jackwerth (2000)

use a similar change of variables to estimate nonparametrically the univariate risk-neutral density for one single
maturity.
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and K = (Kx,Ky,Kτ ) defines the orders of the Hermite polynomials.18 By definition, the

multivariate density in (3.4) is always positive and the squared term that appears in this

expression allows for polynomials with order greater than Kx, Ky or Kτ . The constraint

(3.5) ensures that the density integrates to one. It is worth stressing that setting Kx = 0,

Ky = 0, and Kτ = 0 returns to the Black and Scholes (1973a) model with Xτ and Yτ being

independent. Thus, our framework nests this popular model.

Most importantly, the density specification in (3.4) implies that for each maturity τ ,

the risk-neutral distribution of (Xτ , Yτ |τ), which is required to compute the option-implied

co-skewness, is given by

f
(Xτ ,Yτ |τ)
K (x, y|τ) = fXτ ,Yτ ,τK (x, y, τ)∫

R
∫
R f

Xτ ,Yτ ,τ
K (x, y, τ)

. (3.6)

The conditional density in (3.6) can be rewritten in the following compact form,

f
(Xτ ,Yτ |τ)
K (x, y|τ) =

[
Kx∑
j=0

Ky∑
k=0

αjk(B, τ)Hj(x)Hk(y)
]2

φ(x)φ(y)
/( Kx∑

j=0

Ky∑
k=0

[αjk(B, τ)]2
)
,

where

αjk(B, τ) =
Kτ∑
l=0

BjklHl(τ).

Given some mild assumptions on the space of the true density f (Xτ ,Yτ ,τ), Gallant and

Nychka (1987) show that the approximated density f
(Xτ ,Yτ ,τ)
K converges asymptotically to

f (Xτ ,Yτ ,τ) as long as the total number of coefficients (Kx + 1)× (Ky + 1)× (Kτ + 1) of the B

matrix in (3.4) tends to infinity.19

18The Hermite polynomials are orthogonalized polynomials defined as follows,

H0(x) = 1, H1(x) = x,

Hk(x) = xHk−1(x)−
√
k − 1Hk−2(x)√
k

, k ≥ 2

19While the conditional density in (3.6) is enough to compute derivative prices, we can always obtain the
density of (It+τ , St+τ |τ) using the fact that the change of variables defined in (3.1) and (3.2) is a bijection.
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3.3 Option Valuation

Given that my aim is to estimate the co-skewness risk using option prices, it is important

to ensure that I am able to compute option prices swiftly and reliably. In this regard, an

important feature from a practical point of view of my method is that it gives closed-form

expressions for the univariate conditional densities and option prices. In particular, I show that

the conditional marginal densities fXK (x|τ) and fYK (y|τ) can be written as linear combinations

of the Hermite polynomials. Indeed, using some key properties of the Hermite polynomials, I

obtain

fXτK (x|τ) =
2Kx∑
j=0

Ky∑
k=0

α•,k(B, τ)>AKxj α•,k(B, τ)Hj(x)φ(x)
/( Kx∑

j=0

Ky∑
k=0

[αjk(B, τ)]2
)
, (3.7)

fYτK (y|τ) =
2Ky∑
j=0

Kx∑
k=0

αk,•(B, τ)>AKyj αk,•(B, τ)Hj(y)φ(y)
/( Kx∑

j=0

Ky∑
k=0

[αjk(B, τ)]2
)
, (3.8)

where α•,k = (α0,k, . . . , αKx,k)>, αk,• = (αk,0, . . . , αk,Ky)>, φ(x) is the pdf of the normal

density and AKuj is a (Ku + 1)× (Ku + 1) symmetric matrix whose typical elements are

auv,j = (u!v!j!)
(u+v−j

2 )!(u+j−v
2 )!( j+v−u2 )!

if j ∈ Γ and zero otherwise with

Γ = {j ∈ N : |u− v| ≤ j ≤ u+ v; u− v + j

2 ∈ N}.

Note that (3.7) (respectively (3.8)) shows that the larger Kx (respectively Ky) becomes,

the more complex and richer the conditional density fXτK (respectively fYτK ) is. In practice, it

is desirable to have both Kx and Ky large enough. Obtaining the density of the future assets

returns (over different horizons) facilitates the computation of option prices.20

Using the classical risk-neutral valuation formula, the price of European put options on
20This is clearly an attractive feature since this density is not available in closed form in parametric affine

option pricing models, only the characteristic function is available in closed form.
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the market index I with maturity τ and strike price κ is given by

P I(κ, τ) = e−rf τEQ
(

max
(
κ− It+τ , 0

))
, (3.9)

where Q denotes the risk-neutral measure. The probability density of It+τ under Q is provided

by (3.7). Proposition 1 below shows that the price P I(κI , τI) can be computed in closed

form.21

Proposition 1.

P I(κ, τ) = κ exp−rf τ
[
Φ
(
d(τ, κ)

)
−

2Kx∑
k=1

γk(B, τ)√
k

Hk−1
(
d(τ, κ)

)
Φ
(
d(τ, κ)

)]

− It exprf τ+µI(τ)
[

exp
(
VI(τ)2/2

)
Φ
(
d(τ, κ)− VI(τ)

)
+

2Kx∑
k=1

γk(B, τ)J∗k
(
d(τ,K)

)]
,

where

J∗k
(
d(τ, κ)

)
= VI(τ)√

(k)
J∗k−1

(
d(τ, κ)

)
− 1√

k
exp

(
VI(τ)d(τ, κ)

)
Hk−1

(
d(τ, κ)

)
Φ
(
d(τ, κ)

)
J∗0
(
d(τ, κ)

)
= exp

(
VI(τ)2/2

)
Φ
(
d(τ, κ)− VI(τ)

)
, and

d(τ, κ) = log(κ/I)− µI(τ)
VI(τ)

and Φ(.) is the cumulative CDF of the normal distribution, and

γj(B, τ) =
∑Ky
k=0 α•,k(B, τ)>AKxj α•,k(B, τ)

/(∑Ky
k=0 α•,k(B, τ)>α•,k(B, τ)

)
.

The price of a put option on the individual stock can be obtained in a similar manner and

is provided in the Appendix C.2. Call options prices can be obtained in closed forms using

the call-put parity.

3.4 Model Estimation

To obtain the option-implied co-skewness risk at any maturity, we need to estimate the

risk-neutral joint density. The estimation of the risk-neutral joint density is more challenging
21The closed form expression is obtained by exploiting the closed-form expression of the univariate density

in (3.7).
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than that of the univariate density.22 Option contracts whose payoffs depend on the future

joint realizations of the market and stock prices should be informative for this estimation.

Unfortunately, however, such options are not traded.

To overcome this limitation, I impose some additional restrictions on my multivariate

sieve density defined in (3.4). In particular, I adopt the correlation assumption of Aït-Sahalia

and Brandt (2007), which restricts the risk-neutral correlation to be equal to the conditional

historical correlation. As explained by Aït-Sahalia and Brandt (2007), over short time in-

tervals, this assumption can be motivated by the Girsanov’s theorem according to which the

second moments are unaffected by a change of measure in the continuous time limit. As pre-

viously discussed, I refer to this restriction as the “zero correlation risk premia” assumption.

As also argued by Aït-Sahalia and Brandt (2007), we can expect this assumption to hold

approximately over long-horizon.23

I propose to obtain the risk-neutral joint distribution by minimizing a discrepancy mea-

sure between the risk-neutral joint distribution and an estimate of the conditional physical

joint distribution. This is subject to the restrictions that the options on both the market

and the stock are well priced, the correlation restrictions are met, and some no-arbitrage

conditions that guarantee both the stock and the market prices are martingales under the

risk-neutral measure are satisfied. The discrepancy measure is aggregated over an appropri-

ate set of maturities, which allows for the handling of all maturities in a single estimation

stage. I use the quadratic criterion as the discrepancy measure.24 To be more precise, the
22Theoretically, for a given maturity the univariate risk-neutral density is the second derivative with respect

to the strike price of the call options, see Breeden and Litzenberger (1978).
23This assumption can be traced back to French, Groth, and Kolari (1983), who use it to estimate option-

implied market betas for one single option maturity. Aït-Sahalia and Brandt (2007) use this assumption
together with a parametric copula to obtain the risk-neutral joint distribution of the market returns and the
bond returns for one single option maturity. Chabi-Yo and Song (2013) use the methodology of Aït-Sahalia
and Brandt (2007) to derive the risk-neutral joint distribution of the market returns and the innovations of
the VIX index.

24One alternative is to minimize a convex function of the stochastic discount factor defined as the ratio
between the risk-neutral and the P densities. Since I do not have closed form solution for the optimization
problem, dividing by probabilities that are close to zero causes some numerical instabilities in the optimiza-
tion algorithm. These numerical difficulties are also highlighted by Jackwerth and Rubinstein (1996) in the
univariate case for a single option maturity.

149



problem to be solved has the following form,

min
B

[
1
nτ

∑
τ

∫
R2

[
fQK(rI,τ , rS,τ |τ)− f̂P(rI,τ , rS,τ |τ)

]2
drI,τdrS,τ∫

R2

[
f̂P(rI,τ , rS,τ |τ)

]2
drI,τdrS,τ

]

subject to



P Ii = P I(κIi , τ Ii ), ∀i ∈ {1, . . . , nI},

PSj = PS(κSj , τSj ), ∀j ∈ {1, . . . , nS},

EQ (rI,τ ) = rf × τ, ∀τ ∈ {τ1, . . . , τnτ },

EQ (rS,τ ) = rf × τ, ∀τ ∈ {τ1, . . . , τnτ },

ρQτ = ρPτ , ∀τ ∈ {τ1, . . . , τnτ },

where rf is the risk-free rate and

fQK(rI,τ , rS,τ |τ) = 1
VI(τ)VS(τ)f

(Xτ ,Yτ |τ)
K (x, y|τ), (3.10)

f
(Xτ ,Yτ |τ)
K (x, y|τ) is defined in (3.6) and involves the B matrix, and fPK(rI,τ , rS,τ |τ) is an

estimate of the physical joint density, which will be defined below. Note that this problem is

equivalent to finding a minimum variance pricing kernel in a multivariate setting with multiple

maturities. Recently, Schneider and Trojani (2019) solve a similar problem in the univariate

case with a single maturity.

Option-inferred risk is usually a biased predictor of the future realized risk (see e.g. Bliss

and Panigirtzoglou (2004)). The correlation and density restrictions are intended to reduce

this bias. It is also worth emphasizing that, with the exception of the correlation assumption,

my estimation methodology can be regarded as a multivariate generalization of the procedure

proposed by Jackwerth and Rubinstein (1996), where the estimate of the physical joint density

serves as prior information on the risk-neutral joint density. Here, I am able to handle more

than one option maturity at the same time, which is a desirable feature. Given my sieve

framework, only some coefficients of the B matrix need to be estimated to obtain the risk-

neutral joint density.

In practice, option prices are observed with errors, and that some imperfect measures

are to be used to approximate the historical correlations, which implies that the theoretical
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constraints of the optimization problem cannot be fully satisfied. Due to this limitation, it is

easier to solve the following problem,

min
B

[
1
nτ

∑
τ

∫
R2

[
fQK(rI,τ , rS,τ |τ)− f̂P(rI,τ , rS,τ |τ)

]2
drI,τdrS,τ∫

R2

[
f̂P(rI,τ , rS,τ |τ)

]2
drI,τdrS,τ

+ ωI
(

1
nI

nI∑
i=1

[
P Ii − P I(κIi , τ Ii )

]2
(P I)2

)
+ ωS

(
1
nS

nS∑
i=1

[
PSi − PS(κSi , τSi )

]2
(PS)2

)

+ ωρ
(

1
nτ

∑
τ

[ρQτ − ρPτ ]2

(ρP)2

)]

subject to

 EQ (rI,τ ) = rf × τ, ∀τ ∈ {τ1, . . . , τnτ }

EQ (rS,τ ) = rf × τ, ∀τ ∈ {τ1, . . . , τnτ }.

where P I is the average of the index option prices across the maturity and moneyness dimen-

sions, PS is the average of the stock option prices, and ρP is the average of this historical

conditional correlations across the range of maturities.

Note that, now, the minimization criterion involves four discrepancy measures. The first

two measures account for option prices restrictions. The third one incorporates the correlation

restriction and the last one handles the density restriction. These four measures are suitably

standardized to make them comparable to each other. They are further weighted by some

scale factors ωI , ωS and ωρ.

The physical density f̂P(rI,τ , rS,τ |τ) should reflect the current state of the economy. It

can be estimated using returns data over a short time period or estimated over longer time

period conditional on some key variables. Since I am also interested in estimating risk at

long-horizon, I opt for the second approach. The key conditioning variables are the market

volatility and the stock volatility. For each horizon τ , f̂P(rI,τ , rS,τ |τ) is estimated using the

Nadara-Watson kernel as follows,25

fP(rI,τ , rS,τ |τ) = 1
brI brSbσI bσS

×

25More complex estimation of the conditional physical distribution includes the local polynomial approach
by Song and Xiu (2016).
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t−τ∑
t′=0
K
(rI,t′,τ − rI,τ

brI

)
K
(rS,t′,τ − rS,τ

brS

)
K
(σI,t′ − σI,t

bσI

)
K
(σS,t′ − σS,t

bσS

)
/

T−τ∑
t′=0
K
(σI,t′ − σI,t

bσI

)
K
(σS,t′ − σS,t

bσS

)
,

where K is the Gaussian kernel, rI,t′,τ = log(It′+τ/It′), and σI,t′ (resp σS,t′) is an estimate

of the market (stock) volatility at time t′. Recall that the risk-neutral distribution is to be

estimated at time t. The bandwiths (brI , brS , bσIand bσS ) are chosen as in Jackwerth (2000).26

Empirically, the estimation is to be performed for a given set of days.27 For each day in

this set, I solve the optimization problem for each stock. This procedure allows for the use of

the market options when estimating the univariate risk-neutral density of the stock returns.

This feature is attractive and can be achieved in parametric models through the use of factor

models. It is important to make sure that the univariate distribution of the market is not

significantly affected by the stock data. This key property has recently been emphasized by

Gouriéroux and Monfort (2017) and Boloorforoosh, Christoffersen, Fournier, and Gouriéroux

(2017). Empirically, I achieve this property by setting ωI sufficiently higher compared to ωS

and ωρ. Indeed, I set ωI = 107, ωS = 105, and ωρ = 105. This ensures that the market option

data is well fitted and that the fit is similar across the stocks. Papers relying on factor models

(see e.g. Bégin, Dorion, and Gauthier (2017), Gourier (2016b), Aliouchkin (2015)) proceed

by estimating first the dynamics of the market relying on market options, then estimating the

dynamics of the stocks conditional on that of the market. A disadvantage of such methodology

is that it requires the use of several days of options data, which makes the dynamic estimation

of the model computationally fairly intensive. In contrast, my methodology requires only one

day of options data.

Vogt (2015) is the only other paper that uses Hermite polynomials to model the maturity

dimension of the risk-neutral density. Vogt (2015) estimates marginal risk-neutral moments of

the market, but does not consider any joint moments. This paper furthers the analysis in two

ways. First, the problem I study is more complex due to market incompleteness arising from

the absence of option linking market and stock returns. Second, the Vogt (2015) methodology

requires a large number of daily options, which is restrictive when looking at individual stock
26In particular, the bandwith is 1.8×σ×n−1/5, where n is the number of observations and σ is the standard

deviation of the sample returns.
27In the empirical section, the estimation is performed for 168 days.
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options for which less traded options are available. By using a joint model, my approach

allows for the use of additional mild restrictions between the market and the individual stock,

which I argue more accurately identifies stock risk-neutral dynamics while still using only one

day of option data.

For the implementation, I use several combinations to check the robustness of my results.

The main results are reported for the combination Kx = 4, Ky = 4, and Kτ = 2.28 The

range of maturities is set as {1, 2, . . . , 12} months. The market volatility (σI,t) at time t is

estimated using the square root of the realized volatility computed using the market daily

returns observed over the last 21 business days.29 Similarly, the correlations are computed

using historical returns data over the period [t− τ, t].30

3.5 Data

For the estimation, I rely on the daily stock data and monthly options data. The options

data used come from OptionMetrics and include both options on the market (S&P 500) and

options on individual stocks. The index options are of European style, while options on the

individual stocks are of American style. Following the literature, I implement different filters

to clean the data. In doing so, I removed options that violate the no-arbitrage rules, options

with negative bid-ask bounds, and in-the money options. For the index options, I use the

mid-quote as the observed price. For the individual stock options, I convert the implied

volatility provided by OptionMetrics into option prices.31 I use options covering the period of

2001-2014.32 I select stocks that have traded options at the end of every month between 2001

and 2014. Subsequently, I keep stocks that have at least 15 options each day.33 This leaves

a total of 96 stocks. Call options are converted into put options using the call-put parity for
28I estimate the model for two other combinations (Kx,Ky,Kτ ) = (4, 4, 3), (5, 5, 2).
29An appealing alternative approach is to estimate volatility using high-frequency data (see e.g. Andersen,

Bollerslev, Diebold, and Labys (2003)). The stock volatility (σS,t) is estimated in a similarly manner. As the
number of individual stocks covered in the study is relatively large, using daily data simplifies the computation.

30Buss and Vilkov (2012) use the same proxy for historical correlations.
31OptionMetrics uses binomial trees to extract European style implied volatility from the American style

implied volatility.
32Since my methodology uses only daily options to estimate the risk measures for all risk horizons, it is

desirable to have a large number of options per day. Starting the analysis from 1996 and using the same
selection criterion considerably lowers the final number of stocks.

33The higher the number of daily options, the more precise the estimates.
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estimation purposes. I use data on risk free rate and dividends from OptionMetrics.34 I also

use stock prices data from CRSP covering the period of 1980-2015. Additionally, I use data

on Carhart (1997) factors from the Fama-French Library.

Table 3.1 reports the daily average number of available index options in my sample by

maturity buckets. Table 3.2 provides the same information averaged across all stocks. It

appears that the average number of options available each day has increased throughout the

sample. The average daily number of options seems to be much higher for the index than for

the individual stocks. In both cases, this number seems to be much smaller at long maturity.

3.6 Empirical Results

This section presents the results of the estimation and addresses the implications for the

pricing of the co-skewness risks in the cross-section of returns.

3.6.1 Model Fit of the Option Data

Before studying the multi-horizon pricing of co-skewness risk, I analyze the fit of the model

to the cross-section of options and dissect the key results across time and along the maturity

dimension. My methodology can be thought of as being a semi-nonparametric method that

involves the estimation of a relatively large number of coefficients in order to learn from the

data as freely as possible. It is important to ensure that the method does not overfit the

options data. To analyze the fit of the model to data, I use the relative root mean square

error of the prices defined as follows

RRMSE =

√√√√ n∑
i=1

(
P̂i/Pi − 1

)2
, (3.11)

where Pi is the observed option price, P̂i is the model predicted option price, and n denotes

the number of options.

In Section 3.4, I propose a larger weight on the constraint of the index option prices to

ensure that the market marginal density is not significantly affected by stock data. Here, I

proceed to assess the performance of my methodology. A large amount of options are traded
34My model does not account directly for dividends. Thus, I follow the literature and use ex-dividend stock

prices for the option valuation.
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on the index each day and, as shown by Vogt (2015), this information is sufficient to estimate

market marginal density across maturities. This means that the marginal density should not

differ, given that the fit of the market option data is comparable across the stocks. To analyze

this feature, I look at the time series of the coefficient of variation of the index option RRMSE

across the stocks. The coefficient of variation is the ratio of the standard deviation to the

mean. Figure 3.1 displays this time series. Having the coefficient of variation identically equal

to zero will mean that the RRMSE is the same across stocks. Here, I note that the coefficient

of variation of the RRMSE is quite small in magnitude (below 1.2%). It rises during the

financial crisis as a signal of how relatively complicated it was to ensure this consistency

property during the turmoil period. Overall, however, the result is satisfactory.

Table 3.3 reports the RRMSE for the market and the stocks. RRMSE reported for the

stock corresponds to a cross-sectional average. As observed in Table 3.3, the model fits quite

well to both the market and the individual stock options. The overall RRMSE is 45% for

the index and 33% for individual stock options. For both the market and individual stocks,

the RRMSE has somewhat increased over time due to the increasing number of options.

As shown in Table 3.4, the long-maturity options seem to be slightly better fitted than the

short-maturity ones, which can be explained by the relative number of options in these option

categories. There is no evidence of the model overfitting the data since the overall RRMSEs

are not considerably small.

3.6.2 Behaviour of Co-skewness risk and its pricing

Descriptive Statistics for Co-skewness risk

In this section, I study the behaviour of the time series of option-implied co-skewness and

contrast this behaviour with that of the historical co-skewness. I also look at the predictive

content of the option-implied risk for future realized risk.35

Let rm be the market excess returns and rj be the excess returns on a given stock j, I

denote by Vart,m the variance of the market returns and by Vart,j that of the stock returns,

Vart,m = Et
((
rt,m − Et(rt,m)

)2)
, Vart,j = Et

((
rt,j − Et(rt,j)

)2)
. (3.12)

35The historical co-skewness is calculated using returns data only, and does not incorporate option data.
The future realized co-skewness is computed using daily returns data over the next year. It also represents a
future value of the time series of the historical measure.
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Following the literature, the co-skewness risk is proxied by

Coskewt,j =
Et
((
rt,j − Et(rt,j)

)(
rt,m − Et(rt,m)

)2)
Vart,mVar1/2t,j

. (3.13)

Note that, similar to the classical definition of skewness, the co-skewness measure in (3.13)

is suitably standardized by some appropriate functions of the variances in (3.12), making

it scale-invariant and comparable across risk horizons. By replacing the theoretical expec-

tations in (3.13) with their empirical counterparts, one obtains the most popular historical

co-skewness measure of Harvey and Siddique (2000a). To account for the conditional nature

of co-skewness risk, the historical measure is computed using one year of past daily returns.

Panel B of Table 3.5 presents the descriptive statistics for co-skewness risk. Following

the literature, these descriptive statistics are obtained after pooling the measure across its

cross-sectional and time series dimensions. As can be seen in Panel B of Table 3.5, the

option-implied co-skewness is negative on average, which implies that the stock returns load

negatively on the squared market factor. In other words, on average, the stocks in my sample

perform worse when the market is volatile.

Table 3.5 shows that the average option-implied co-skewness has a decreasing term struc-

ture (in absolute value) from -0.34 at the monthly horizon to -0.10 at the yearly horizon.

This result implies that market participants expect the magnitude of stock sensitivities to

this risk factor to decrease with horizon. However, note that this decreasing term structure

of average risk has no direct implication for the term structure of the price of risk, as the

latter can be cyclical or countercyclical. The option-implied co-skewness measure appears to

be smoother at the long-horizon than at the short-horizon. Its standard deviation decreases

from 0.25 at the one-month horizon to 0.19 at the one-year horizon. However, note that this

standard deviation remains constant when moving from the mid-term horizon (six months) to

the long-term (one year). The one year option-implied co-skewness appears to be smoother

than the historical measure, which has a standard deviation of 0.22, as presented in the last

row of Panel B of Table 3.5. The average of the one year option-implied co-skewness (-0.10)

is close to the average of the historical measure (-0.09). This means that this measure is

almost mean unbiased.36 The option-implied co-skewness measure displays a non-trivial cor-
36This property could be useful in predictive regression.
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relation with its historical counterpart, as can be seen in Table 3.6. The correlation between

the option-implied co-skewness and the historical co-skewness decreases from 0.533 to 0.410

as the horizon rises. It is worth stressing that my analysis uses the option-implied measure

obtained for one single day. This measure can be smoothed further by averaging it quarterly

or monthly. This was omitted as it would require estimating the model for every single day

in my sample (instead of every end of month as discussed).37 In contrast, I show that the

single day estimate allows for the recovery of a risk-return trade-off that is in line with the

economic theory (see Section 3.6.2).

The intuition for using options in the estimation of risk measures is that we expect to

better capture investors’ anticipation of the future risk. I now proceed to formally test this

intuition for co-skewness risk. More precisely, I regress the twelve months ahead average

historical risk (which is my proxy for future risk) on the average option-implied measure (for

different option horizons). For comparison purposes, I repeat the same analysis using the past

average historical measure. The results, which are reported in Panel A of Table 3.7, show

that the option implied co-skewness measures contain predictive information for the future

risk. The adjusted R2 of the regression lies between 3.6% and 6.7%, depending on the option

horizon. This is clearly far better compared to an adjusted R2 of -0.5% obtained using the

past average co-skewness as a predictor. The results show that, while the option-implied

measures are non-trivially correlated with the past historical measure, only the former seems

to have an important predictability power for capturing future risk. The results also show

that the option-implied co-skewness is a biased predictor of the future risk, since the intercept

of the regression is statistically different from zero and the slope different from one.38 The

slope is positive and lies between 0.25 and 0.36.

Multi-horizon pricing of co-skewness risk

I now look at the multi-horizon pricing of co-skewness risk in the cross-section of returns.

In Section 3.6.2, I demonstrate that the option-implied measure seems to be to perform well

in predicting future co-skewness risk. I now test whether this predictability gain translates
37Note that while averaging the risk measure over a time period allows us to obtain less noisy estimate, the

procedure has the disadvantage of yielding a measure that reflects less of the conditional ex-ante information.
38To account for the overlapping nature of the regression, the t-statistics are calculated using the HAC

procedure.
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into a better correlation between conditional skewness and future stock returns across risk

horizons. To achieve this goal, I use the Fama and MacBeth (1973) procedure.

Following the literature, at the end of each month, I run a regression of stocks excess

returns on some risk measures. There are 168 months in the sample. The prices of risk, which

are the coefficients from this regression, are then averaged over the sample period, which is

2001-2014. When looking at the k month investment horizon with k greater that one, the

estimated prices of risk are obtained using overlapping returns. To adjust for this effect, I use

the Newey-West t-statistics with k−1 lags. To ensure that the results are not driven by other

factors, I control for some standard systematic factors. Specifically, I use the Carhart (1997)

factors as well as two momentum factors (past monthly returns and past yearly returns). The

Carhart (1997) factors include the market, the size, the value, and the momentum factors.

Following the literature, stock betas with respect to these factors are computed using OLS

regression with one year of past data.39

The Fama and MacBeth (1973) regression takes the following form

rt,t+k = α+ λt,kFt,t+h + λZZt + εt,t+h, (3.14)

where rt,t+k is a cumulative stock excess returns over k months, Ft,t+h is an option-implied

measure corresponding to horizon h, and Z is a matrix of control variables. Varying k from

one to twelve allows for the uncovering of the term structure of the price of risk, which is

important in learning the optimal timing of an investment strategy that is aimed to earn this

price.

Table 3.8 provides the t-statistics for the average price of risk of the co-skewness risk

in the univariate regression (F equals the co-skewness measure in (3.14) and the Z factor

is empty). With the exception of the one-month option-implied measure, all the coefficients

presented in this table are negative, which means that this risk is negatively priced in the

cross-section of returns. This result is consistent with the theoretical predictions of Kraus

and Litzenberger (1976) and Harvey and Siddique (2000a). Looking at the magnitude of

the t-statistics, it appears that for most of the investment horizons, the risk-return relation

looks stronger when the long-horizon implied co-skewness is used instead of the short-horizon
39The market beta is computed in a simple univariate regression. To estimate the beta of the size, value, and

momentum factors, I use a multivariate regression that includes the market factor as an additional regressor.
This allows for the reduction of possible correlation between these anomalies betas and the market beta.
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one. This result is perhaps not surprising given that the long-horizon measure was less noisy

than that of the short horizon, as documented in Section 3.6.2. However, when the yearly

option-implied co-skewness is used (see the last row of Table 3.8), the average price of risk is

statistically significant at the 5% level only for the two and three months horizons. To test the

robustness of this conclusion, I add the control variables discussed above (namely, the Carhart

(1997) factors, the past monthly returns, and the past yearly returns) in the regression. The

t-statistics are reported in Table 3.9. The results are very similar to the ones obtained in the

univariate regression. These results are also robust to the inclusion of the historical measure

of Harvey and Siddique (2000a), as shown in Table 3.10.

Theoretically, options traded at a given horizon should be the most informative for cap-

turing the risk premia at that horizon. That is, short-term options information should better

capture risk premia at the short-horizon and long-term options information should be useful

in capturing risk premia at the long-horizon. My results show that this simple prediction is

not always satisfied. Since the end goal is to investigate risk premia behaviour across horizons,

I adopt the following strategy. For a given investment horizon, I look for the option horizon

that best captures the price of the risk (that is, the one that minimizes the t-statistics of

the estimated average price of risk) and use the estimate obtained for this option horizon to

learn about the risk premia. I proxy the risk premia by the average price of risk scaled by the

standard deviation of the option-implied moment that best captures the pricing relationship.

This strategy fully exploits the information content of the term structure of option-implied

risk for every single investment horizon.

I adopt the above strategy to robustly estimate co-skewness risk premia across invest-

ment horizons. Figure 3.3 depicts the term structure of risk premia both in the univariate

and multivariate regressions. In both cases, the risk premia have a decreasing term structure

(in absolute value). Accounting for control variables, the co-skewness risk premium (in annual

term) decreases from 3.83% at the monthly horizon to 1.26% in absolute value. The term

structure becomes almost flat after the six months horizon. The short-term premium is close

to the 3.6% found by Harvey and Siddique (2000a) and a bit smaller than the 5.64% reported

by Aliouchkin (2015). However, none of these two papers estimated the multi-periods risk

premia that I obtain by exploiting the information content of the entire term-structure of

option-implied co-skewness.

159



To further check the robustness of my results for the co-skewness risk, I examine an al-

ternative measure of this risk. As argued by Harvey and Siddique (2000a), this risk can also

be proxied by the beta from a multivariate regression of stock returns on market returns and

the squared market returns. I evaluate the option-implied version of this beta. My paper

appears to be the first to investigate how the option-implied version of this proxy affects

future returns.40 Table 3.11 reports the t-statistics from running the Fama and MacBeth

(1973) regression with this sole measure as the regressor. As can be seen from the table,

this measure carries a negative average price of risk, which is consistent with the theoretical

prediction of Harvey and Siddique (2000a). For most horizons, the estimates are statistically

significant at the 5% level. Table 3.12 shows that after controlling for Carhart (1997) and

past returns, the estimates are still negative, while the t-statistics are reduced to some extent.

This means that part of the variation previously attributed to the co-skewness measure is

due to the systematic factors. Figure 3.3 depicts the term structure of risk premia both in

the univariate and multivariate regression. The risk premium is estimated as before. From

the univariate regression, we see that the co-skewness risk premia have a decreasing term

structure in absolute value, which is mildly reversed in the mid-term when we control for

other systematic factors. In annual terms, the risk premium is 2.3% at the monthly horizon

and 0.83% at the yearly horizon. These premia are less economically significant than the ones

documented using the first proxy. However, the decreasing magnitude of the premia seems to

be a robust conclusion.

Overall, the decreasing term structure of co-skewness risk premia suggests that market

participants who are willing to earn the co-skewness risk premia should keep their invest-

ment position over shorter time period rather than holding it over longer time period in

order to maximize their earnings. There is a growing literature in finance that studies the

term structure of risk premia. Using data on dividend strips, van Binsbergen, Brandt, and

Koijen (2012) show that the equity risk premia have a decreasing term structure. Andries,

Eisenbach, Thomas, Schmalz, Schmalz, and Wang (2015) and Dew-Becker, Giglio, Le, and

Rodriguez (2015) find that the variance risk premia also have a decreasing term structure (in

absolute value). Here, I show that the co-skewness risk premia also have a decreasing term

structure (in absolute value) and I argue that this result is not implied by the existing result
40Papers that use the historical version of this measure include Bali, Hu, and Murray (2016) and Christof-

fersen, Fournier, Jacobs, and Karoui (2016).
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on the term structure of variance risk premia. In fact, as shown by Chabi-Yo (2002) in a

dynamic two-period model, the price of co-skewness is distinct from that of the volatility risk.

3.6.3 Behaviour of co-kurtosis risk and its pricing

Although my paper aims at studying co-skewness risk, I briefly describe some results for

the co-kurtosis risk, which captures the sensitivity of stock returns to extreme market returns.

Descriptive Statistics for Co-Kurtosis risk

In this section, I study the behaviour of the time series of option-implied co-kurtosis risk

and contrast this behaviour with that of the historical co-kurtosis. I also look at the predictive

content of the option-implied risk for future realized risk.

Following the literature, the co-kurtosis risk is proxied using,

Cokurtt,j =
Et
((
rt,j − Et(rt,j)

)(
rt,m − Et(rt,m)

)3)
Var3/2t,mVar

1/2
t,j

. (3.15)

Panel C of Table 3.5 provides the descriptive statistics on the co-kurtosis risk. It shows

that the option-implied co-kurtosis is positive on average and exhibits a term structure that

is decreasing from an average value of 1.84 at the monthly horizon to 1.49 at the yearly hori-

zon. This means that on average, the stocks load positively on the markets returns when

the latter experiences very extreme variations and that investors expect this sensibility to be

less important over long-horizon.41 Similar to the option-implied co-skewness measure, the

option-implied co-kurtosis measure appears to be smoother at the longer horizon as opposed

to the shorter horizon (the standard deviation decreases from 0.75 to 0.63 from the monthly

horizon to the yearly horizon, but still a little bit noisier than the historical measure, which

has a standard deviation of 0.52). The average yearly implied co-kurtosis (1.49) is smaller

than the average of the historical measure (1.81), which means that on average the measure

is biased.42 This relatively poor behaviour of the co-kurtosis measure compared to the co-

skewness measure can potentially be explained by the fact that co-kurtosis risk is much harder
41In general, the probability of having extreme market returns over longer maturity is small. Crashes or

jumps are more likely to occur over the short-horizon.
42Aliouchkin (2015) also reports some average bias in his option-implied co-kurtosis measure.
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to capture.

The option-implied co-kurtosis risk has a non-trivial correlation with its historical counter-

part, as reported in Table 3.6. This correlation increases from 0.31 at the monthly horizon to

0.41 at the yearly horizon. Table 3.7 reports the results of the future risk predictability analy-

sis. Compared to the results reported for co-skewness risk in Section 3.6.2, the option-implied

co-kurtosis measure delivered by my methodology does not seem to significantly predict the

future risk. Its performance is worse than that of the historical measure. This result can

perhaps be imputable to the measure being noisier than its historical counterpart.

Multi-horizon pricing of co-kurtosis risk

I now turn to the analysis of the pricing of co-kurtosis in the cross-section of returns.

This risk is proxied by the measure defined in (3.15). The t-statistics for the estimated

prices of risk in the univariate regression are reported in Table 3.14. As observable from

this table, the price of co-kurtosis is positive across all risk horizons when using the option-

implied horizon specific expectations. This result is consistent with the theoretical prediction

of Dittmar (2002b) and implies that on average, stocks that load strongly on the co-kurtosis

factor tend to outperform stocks that load weakly or negatively on this factor. However,

the estimates are rarely significant, even though the t-statistics increase when using long-

horizon expectation. After controlling for other systematic factors, the signs of the estimates

obtained using short-horizon expectation are reverted while the ones obtained using long-

horizon information remain positive (see Table 3.15). As depicted in Figure 3.5, contrary

to the results obtained for co-skewness risk, there is no clear evidence of a decreasing term

structure of the risk premia for co-kurtosis risk.

3.7 Conclusion

This paper studies the multi-horizon pricing of co-skewness risk in the cross-section of

stock returns and aims to provide a model-free insight on the term structure of co-skewness

risk premia. To achieve this goal, I introduce a flexible term structure model that allows for

the estimation of option-implied co-skewness risk at any maturity. The entire term structure

of option-implied co-skewness is used in combination with Fama and MacBeth (1973) regres-
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sions to study the term structure of co-skewness risk premia across investment horizons.

Using both returns and options data on 96 stocks of the S&P 500 index, the analysis

reveals that investors expect co-skewness risk to matter less over long-horizon and that the

risk premia they demand for this risk is decreasing in (absolute value) with the investment

horizon. Overall, my results suggest that market participants who are willing to earn the

co-skewness risk premia maximize their earnings by keeping their investment position over a

shorter time period rather than holding it over a longer time period.

This paper is the first to study multi-horizon pricing of co-skewness risk using options

data. It contributes to the term structure literature by showing that co-skewness risk premia

have a decreasing term structure (in absolute value), a result that is not implied by existing ev-

idence on the term structure of equity risk premia (see, for example, van Binsbergen, Brandt,

and Koijen (2012)) or variance risk premia (see for example Andries, Eisenbach, Thomas,

Schmalz, Schmalz, and Wang (2015) and Dew-Becker, Giglio, Le, and Rodriguez (2015)).
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Figures and Tables of Chapter 3

Table 3.1: Daily Average Number of Index Options by Year and Maturity Buckets

Year DTM ≤ 90 90 < DTM ≤ 180 180 < DTM ≤ 270 270 < DTM ≤ 365 Average
2001 87.833 30.833 29.083 26.750 174.500
2002 85.083 27.333 29.000 27.750 169.167
2003 87.667 27.500 27.667 26.667 169.500
2004 94.583 33.583 31.500 29.750 189.417
2005 107.667 29.083 29.583 26.250 192.583
2006 141.917 31.167 26.500 23.500 223.083
2007 191.000 50.250 43.083 36.000 320.333
2008 250.333 75.167 53.833 53.750 433.083
2009 315.500 99.417 65.417 62.083 542.417
2010 335.083 103.917 76.000 77.583 592.583
2011 378.833 116.583 75.583 70.583 641.583
2012 486.583 141.083 90.667 92.333 810.667
2013 659.833 167.917 114.583 115.333 1057.667
2014 1259.833 220.917 122.083 124.750 1727.583

Average 320.125 82.482 58.185 56.649 517.440

I categorize the index option data into four buckets according to the value on the days to maturity (DTM).
For each class, I report the average number of option contracts.



Figure 3.1: Time-Series of the Coefficient of Variation of the Index Option RRMSE across
stocks

For each month, I compute the coefficient of variation of RRMSE of the model predicted market option across
stocks.
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Figure 3.2: Time-Series of Average Co-Skewness and Co-Kurtosis

The dashed line represents the one-month option-implied measure (co-skewness or co-kurtosis), the dash-dotted
line plots the one year measure, and lastly, the solid line depicts the time series of the historical measure.
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Figure 3.3: Term Structure of Co-Skewness Risk

In the top box, each line plots (across months) the annualized product of the average coefficient of an option-
implied co-skewness measure in a Fama and MacBeth (1973) regression and the standard deviation of the
measure. The dashed line is obtained from the univariate regression. The dashed-dotted line is obtained after
controlling for Carhart (1997) factors, the past monthly returns and the past yearly returns.
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Figure 3.4: Term Structure of Co-Skewness Risk, robustness analysis

In the top box, each line plots (across months) the annualized product of the average coefficient of an option-
implied co-skewness measure in a Fama and MacBeth (1973) regression and the standard deviation of the
measure. The dashed line is obtained from the univariate regression. The dashed-dotted line is obtained after
controlling for Carhart (1997) factors, the past monthly returns and the past yearly returns.

Table 3.2: Daily Average Number of Stock Options by Year and Maturity Buckets

Year DTM ≤ 90 90 < DTM ≤ 180 180 < DTM ≤ 270 270 < DTM ≤ 365 Average
2001 12.822 8.688 5.774 1.738 29.023
2002 12.178 8.912 5.909 1.641 28.640
2003 10.213 8.057 5.740 1.646 25.656
2004 9.911 8.252 6.383 1.914 26.459
2005 9.786 8.241 6.671 2.016 26.714
2006 10.982 9.239 7.257 1.979 29.457
2007 13.146 10.938 8.243 2.512 34.839
2008 17.212 13.549 9.403 2.882 43.046
2009 19.774 16.351 11.058 3.607 50.790
2010 22.105 18.181 12.224 3.331 55.840
2011 26.555 22.316 15.411 3.919 68.201
2012 25.656 24.560 19.012 4.447 73.675
2013 34.971 23.168 18.447 4.290 80.876
2014 65.375 20.955 16.988 5.181 108.499

Average 20.763 14.386 10.609 2.936 48.694

I categorize the stock option data into four buckets according to the value on the days to maturity (DTM).
For each class, I report the average number of option contracts.
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Figure 3.5: Term Structure of Co-Kurtosis Risk

In the top box, each line plots (across months) the annualized product of the average coefficient of an option-
implied co-kurtosis measure in a Fama and MacBeth (1973) regression and the standard deviation of the
measure. The dashed line is obtained from the univariate regression. The dashed-dotted line is obtained after
controlling for Carhart (1997) factors, the past monthly returns and the past yearly returns.
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Figure 3.6: Term Structure of Co-Skewness Risk

In the top box, each line plots (across months) the annualized product of the average coefficient of an option-
implied co-skewness measure in a Fama and MacBeth (1973) regression and the standard deviation of the
measure. The dashed line is obtained from the univariate regression. The dashed-dotted line is obtained after
controlling for Carhart (1997) factors, the past monthly returns and the past yearly returns. Here the model
is estimated using the combination (kx, ky, kτ )=(5,5,2).
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Table 3.3: Option Relative Root Mean Square Error By Year

Year Index Stock
2001 0.284 0.234
2002 0.234 0.231
2003 0.362 0.254
2004 0.462 0.277
2005 0.476 0.319
2006 0.503 0.316
2007 0.369 0.322
2008 0.307 0.336
2009 0.464 0.338
2010 0.552 0.394
2011 0.542 0.418
2012 0.589 0.470
2013 0.602 0.460
2014 0.673 0.441
All 0.458 0.343

The table reports the relative root mean square error (RRMSE) of the model predicted option price by year
for both the index and the stocks (see definition in 3.11). The last row provides the RRMSE for the entire
dataset. The value reported for the stocks is a cross-sectional average.

Table 3.4: Option Relative Root Mean Square Error By Maturity

Year Index Stock
DTM ≤ 90 0.592 0.466

90 < DTM ≤ 180 0.530 0.384
180 < DTM ≤ 270 0.500 0.340
270 < DTM ≤ 365 0.465 0.370

All 0.458 0.343

The table reports the relative root mean square error (RRMSE) of the model predicted option price by maturity
(DTM) buckets for both the index and the stocks.
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Table 3.5: Descriptive Statistics for Beta, Co-Skewness and Co-Kurtosis

Panel A: Market Beta Panel B: Co-Skewness Panel C: Co-Kurtosis
h P25 Mean P75 Std P25 Mean P75 Std P25 Mean P75 Std
1 0.670 0.970 1.209 0.473 -0.490 -0.339 -0.176 0.246 1.311 1.835 2.600 0.755
2 0.656 0.928 1.145 0.434 -0.427 -0.288 -0.146 0.225 1.273 1.758 2.430 0.675
3 0.648 0.908 1.116 0.417 -0.378 -0.246 -0.119 0.210 1.238 1.724 2.420 0.659
4 0.643 0.897 1.101 0.409 -0.340 -0.214 -0.097 0.201 1.206 1.696 2.415 0.653
5 0.641 0.892 1.091 0.404 -0.314 -0.189 -0.079 0.196 1.176 1.664 2.389 0.644
6 0.639 0.889 1.087 0.401 -0.293 -0.168 -0.062 0.193 1.152 1.636 2.355 0.637
7 0.638 0.887 1.085 0.401 -0.277 -0.151 -0.046 0.193 1.130 1.614 2.307 0.636
8 0.635 0.886 1.086 0.401 -0.264 -0.137 -0.034 0.193 1.110 1.590 2.262 0.635
9 0.633 0.885 1.084 0.400 -0.253 -0.126 -0.025 0.193 1.087 1.564 2.214 0.631
10 0.628 0.883 1.083 0.400 -0.245 -0.116 -0.015 0.193 1.063 1.534 2.174 0.621
11 0.626 0.883 1.083 0.404 -0.237 -0.108 -0.009 0.193 1.040 1.518 2.126 0.628
12 0.622 0.881 1.085 0.406 -0.231 -0.101 -0.002 0.193 1.014 1.494 2.084 0.626
Hist 0.749 0.998 1.225 0.382 -0.233 -0.094 0.055 0.224 1.647 1.809 2.120 0.522

I report the average (Mean), the standard deviation (Std), the first quartile (P25), and the third quartile (P75)
of the market beta. The co-skewness and the co-kurtosis measures for horizons h range from one to twelve
months. The measures are estimated using the methodology outlined in Section 3.2 at the end of each month
from 2001 to 2014. The statistics are computed across both the time series and cross-sectional dimensions.
The last row of the Table presents the same statistics for the historical measures.

Table 3.6: Correlation between Option-Implied and historical measures

h 1 2 3 4 5 6 7 8 9 10 11 12
Corr(Coskew(h), HistCoskew) 0.533 0.546 0.543 0.532 0.515 0.495 0.477 0.460 0.446 0.433 0.421 0.410
Corr(Cokurt(h), HistCokurt) 0.307 0.325 0.344 0.356 0.364 0.369 0.374 0.379 0.386 0.392 0.399 0.406

I report the correlation between the option-implied high-order co-moments measures and their historical coun-
terpart. The option-implied measures are computed for horizon h ranging from one to twelve months.
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Table 3.7: Predicting Average Realized Co-Skewness and Co-Kurtosis

Panel A: Co-Skewness Panel B: Co-Kurtosis
h α tstat (α) β tstat AdjR2 α tstat (α) β tstat(β) AdjR2

1 -0.020 -0.582 0.251 2.681 0.038 2.401 8.503 0.094 0.694 -0.003
2 -0.014 -0.452 0.319 3.301 0.060 2.340 8.651 0.128 0.967 -0.000
3 -0.019 -0.665 0.353 3.507 0.068 2.302 8.730 0.152 1.150 0.002
4 -0.028 -1.096 0.360 3.506 0.067 2.286 8.828 0.164 1.237 0.003
5 -0.038 -1.577 0.356 3.446 0.065 2.283 8.950 0.169 1.269 0.004
6 -0.046 -2.057 0.348 3.366 0.062 2.287 9.068 0.170 1.272 0.004
7 -0.054 -2.532 0.335 3.260 0.058 2.294 9.187 0.169 1.256 0.004
8 -0.060 -2.981 0.319 3.114 0.053 2.301 9.309 0.168 1.238 0.003
9 -0.066 -3.379 0.303 2.974 0.048 2.309 9.421 0.167 1.218 0.003
10 -0.070 -3.718 0.288 2.835 0.043 2.318 9.532 0.164 1.188 0.003
11 -0.074 -3.998 0.275 2.712 0.039 2.327 9.629 0.162 1.158 0.002
12 -0.077 -4.222 0.264 2.605 0.036 2.332 9.709 0.161 1.143 0.002
Hist -0.105 -6.118 -0.046 -0.548 -0.005 1.795 8.963 0.316 4.347 0.050

I regress the 12 months ahead (average) historical co-skewness (co-kurtosis) on the average of the horizon h
option-implied historical co-skewness (co-kurtosis). The table reports the intercept (α), the slope (β), its t-
statistics (tstat), and the adjusted R2 of this regression. For comparative purposes, in the last row, I report the
results obtained using the historical measures instead of the option-implied ones. The estimation is performed
using the HAC procedure.

Table 3.8: T-statistics for average co-skewness price in univariate regression

(h, k) 1 2 3 4 5 6 7 8 9 10 11 12
1 -0.621 -0.130 -0.209 0.010 0.240 0.254 0.263 0.287 0.363 0.242 0.254 0.042
2 -1.353 -0.772 -0.599 -0.306 -0.338 -0.306 -0.235 -0.197 -0.081 -0.263 -0.312 -0.495
3 -1.302 -0.951 -0.801 -0.505 -0.671 -0.551 -0.483 -0.417 -0.261 -0.555 -0.616 -0.786
4 -1.061 -0.961 -0.940 -0.676 -0.829 -0.625 -0.577 -0.454 -0.313 -0.630 -0.659 -0.801
5 -1.033 -1.006 -1.083 -0.792 -0.949 -0.673 -0.605 -0.433 -0.294 -0.587 -0.600 -0.722
6 -1.247 -1.279 -1.262 -1.000 -1.138 -0.833 -0.733 -0.551 -0.455 -0.655 -0.685 -0.790
7 -1.583 -1.686 -1.612 -1.315 -1.352 -1.023 -0.873 -0.709 -0.704 -0.808 -0.841 -0.922
8 -1.593 -1.819 -1.724 -1.440 -1.502 -1.149 -0.992 -0.850 -0.913 -0.912 -0.923 -0.965
9 -1.639 -1.976 -1.929 -1.654 -1.684 -1.361 -1.171 -1.038 -1.130 -1.072 -1.051 -1.049
10 -1.416 -1.947 -2.003 -1.670 -1.675 -1.399 -1.237 -1.108 -1.181 -1.095 -1.054 -1.004
11 -1.374 -1.924 -2.026 -1.701 -1.694 -1.433 -1.289 -1.096 -1.212 -1.071 -1.014 -0.913
12 -1.520 -2.045 -2.030 -1.692 -1.689 -1.419 -1.309 -1.045 -1.150 -0.972 -0.901 -0.731

At the end of each month between 2001 and 2014, a Fama and MacBeth (1973) regression is performed with
the k months future excess returns as the left hand side and a right hand side populated by the forward-looking
co-skewness at horizon h inferred from the option prices (using the methodology outlined in Section 3.2). The
co-skewness measure is a risk-neutral version of the one defined in (3.13). This table reports the Newey-West
t-statistics (obtained using k − 1 lags) for the average co-skewness price.
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Table 3.9: T-statistics for average co-skewness price with control variables

(h, k) 1 2 3 4 5 6 7 8 9 10 11 12
1 -1.117 -0.506 -0.548 -0.375 -0.525 -0.482 -0.577 -0.389 -0.430 -0.552 -0.479 -0.673
2 -1.762 -1.461 -1.236 -0.805 -1.189 -1.155 -1.256 -1.029 -0.973 -1.126 -1.029 -1.193
3 -1.681 -1.630 -1.347 -0.855 -1.390 -1.259 -1.391 -1.183 -1.091 -1.331 -1.224 -1.359
4 -1.310 -1.439 -1.269 -0.799 -1.310 -1.080 -1.254 -1.036 -1.000 -1.255 -1.143 -1.265
5 -0.933 -1.239 -1.219 -0.649 -1.152 -0.808 -0.959 -0.764 -0.761 -1.020 -0.909 -1.035
6 -0.926 -1.327 -1.286 -0.652 -1.219 -0.843 -0.943 -0.772 -0.777 -0.962 -0.852 -0.968
7 -1.005 -1.428 -1.512 -0.786 -1.263 -0.906 -0.949 -0.825 -0.852 -0.966 -0.886 -0.995
8 -1.058 -1.604 -1.676 -0.958 -1.479 -0.952 -0.910 -0.765 -0.864 -0.932 -0.834 -0.961
9 -1.247 -1.803 -1.875 -1.205 -1.649 -1.152 -0.963 -0.777 -0.917 -0.951 -0.828 -0.939
10 -1.290 -1.865 -1.955 -1.123 -1.463 -1.064 -0.884 -0.599 -0.820 -0.825 -0.665 -0.764
11 -1.552 -2.041 -2.189 -1.200 -1.472 -1.090 -0.888 -0.452 -0.753 -0.727 -0.497 -0.560
12 -1.896 -2.294 -2.395 -1.218 -1.460 -1.132 -0.922 -0.343 -0.603 -0.551 -0.265 -0.238

At the end of each month between 2001 and 2014, a Fama and MacBeth (1973) regression is performed with
the k months future excess returns as the left hand side and a right hand side populated by the forward-looking
co-skewness at horizon h, the Carhart (1997) factors, the past monthly excess returns and the past yearly excess
returns. The co-skewness measure is a risk-neutral version of the one defined in (3.13). This table reports the
Newey-West t-statistics (obtained using k − 1 lags) for the average co-skewness price.

Table 3.10: T-statistics for average co-skewness price with control variables and historical
co-skewness

(h, k) 1 2 3 4 5 6 7 8 9 10 11 12
1 -0.866 -0.109 -0.119 -0.007 -0.186 -0.169 -0.294 -0.191 -0.300 -0.402 -0.304 -0.477
2 -1.493 -1.035 -0.759 -0.395 -0.844 -0.868 -0.998 -0.857 -0.865 -1.004 -0.877 -1.022
3 -1.471 -1.255 -0.937 -0.486 -1.041 -0.955 -1.121 -1.019 -0.989 -1.213 -1.075 -1.196
4 -1.100 -1.133 -0.918 -0.444 -0.953 -0.769 -0.980 -0.881 -0.909 -1.141 -0.999 -1.114
5 -0.728 -0.990 -0.906 -0.313 -0.801 -0.521 -0.717 -0.634 -0.700 -0.928 -0.786 -0.914
6 -0.677 -1.068 -0.967 -0.304 -0.858 -0.568 -0.735 -0.656 -0.729 -0.886 -0.752 -0.877
7 -0.694 -1.142 -1.172 -0.417 -0.888 -0.649 -0.772 -0.724 -0.815 -0.906 -0.802 -0.924
8 -0.728 -1.326 -1.364 -0.599 -1.107 -0.721 -0.768 -0.677 -0.840 -0.885 -0.768 -0.909
9 -0.913 -1.522 -1.571 -0.842 -1.300 -0.942 -0.837 -0.685 -0.884 -0.896 -0.756 -0.886
10 -1.028 -1.592 -1.680 -0.792 -1.171 -0.881 -0.766 -0.506 -0.778 -0.760 -0.586 -0.703
11 -1.408 -1.774 -1.906 -0.873 -1.204 -0.915 -0.766 -0.364 -0.690 -0.642 -0.412 -0.490
12 -1.834 -2.060 -2.129 -0.918 -1.217 -0.972 -0.806 -0.280 -0.536 -0.461 -0.196 -0.191

At the end of each month between 2001 and 2014, a Fama and MacBeth (1973) regression is performed with
the k months future excess returns as left hand side and a right hand side populated by the forward-looking
co-skewness at horizon h, the Carhart (1997) factors, the past monthly excess returns and the past yearly
excess returns and the historical co-skewness. The co-skewness measure is a risk-neutral version of the one
defined in (3.13). This table reports the Newey-West t-statistics (obtained using k − 1 lags) for the average
price of the option-implied co-skewness.
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Table 3.11: T-statistics for average co-skewness price in univariate regression, robustness
analysis

(h, k) 1 2 3 4 5 6 7 8 9 10 11 12
1 -0.493 -0.965 -1.444 -1.230 -1.450 -1.464 -1.328 -1.277 -1.392 -1.193 -1.168 -1.153
2 -0.883 -1.591 -1.532 -1.330 -1.652 -1.724 -1.655 -1.677 -1.821 -1.524 -1.498 -1.469
3 -1.164 -1.929 -1.641 -1.417 -1.719 -1.909 -2.046 -2.069 -2.139 -1.864 -1.929 -1.815
4 -1.240 -1.998 -1.684 -1.495 -1.812 -2.000 -2.173 -2.155 -2.150 -1.912 -1.973 -1.855
5 -1.290 -2.005 -1.684 -1.520 -1.904 -2.112 -2.257 -2.183 -2.113 -1.835 -1.905 -1.798
6 -1.471 -2.100 -1.684 -1.392 -1.861 -2.120 -2.236 -2.192 -2.094 -1.799 -1.906 -1.792
7 -1.628 -2.236 -1.774 -1.480 -1.954 -2.207 -2.245 -2.203 -2.163 -1.841 -1.901 -1.802
8 -1.684 -2.308 -1.844 -1.486 -1.943 -2.223 -2.250 -2.290 -2.282 -1.972 -2.005 -1.899
9 -1.853 -2.395 -2.005 -1.599 -2.023 -2.326 -2.282 -2.314 -2.329 -2.054 -2.045 -1.952
10 -1.793 -2.339 -1.935 -1.576 -2.014 -2.323 -2.266 -2.302 -2.279 -2.008 -1.955 -1.850
11 -1.870 -2.280 -1.938 -1.605 -2.013 -2.372 -2.339 -2.381 -2.363 -2.056 -1.975 -1.876
12 -2.056 -2.357 -2.110 -1.839 -2.120 -2.403 -2.415 -2.333 -2.348 -2.026 -1.919 -1.845

At the end of each month between 2001 and 2014, a Fama and MacBeth (1973) regression is performed with the
k months future excess returns as the left hand side and a right hand side populated by the forward-looking
co-skewness at horizon h inferred from option prices (using the methodology outlined in Section 3.2). The
co-skewness is proxied by the beta obtained in a regression of excess stock returns on the excess market returns
and its square. This table reports the Newey-West t-statistics (obtained using k − 1 lags) for the average
co-skewness price.

Table 3.12: T-statistics for average co-skewness price with control variables, robustness
analysis

(h, k) 1 2 3 4 5 6 7 8 9 10 11 12
1 0.104 0.241 -0.354 -0.096 -0.532 -0.796 -1.385 -1.266 -1.327 -1.128 -0.800 -0.646
2 -0.204 -0.399 -0.841 -0.583 -1.182 -1.310 -2.042 -2.070 -2.143 -1.948 -1.611 -1.354
3 -0.165 -0.648 -1.006 -0.691 -1.266 -1.346 -2.094 -2.209 -2.229 -2.112 -1.999 -1.651
4 -0.119 -0.741 -1.174 -0.678 -1.274 -1.209 -1.956 -2.047 -2.073 -1.891 -1.807 -1.442
5 -0.346 -0.902 -1.269 -0.670 -1.320 -1.285 -1.799 -1.846 -1.798 -1.544 -1.428 -1.111
6 -0.448 -0.998 -1.200 -0.417 -1.141 -1.234 -1.668 -1.740 -1.700 -1.386 -1.266 -0.991
7 -0.512 -1.031 -1.157 -0.332 -1.027 -1.230 -1.547 -1.596 -1.646 -1.261 -1.117 -0.884
8 -0.602 -1.196 -1.228 -0.276 -0.956 -1.185 -1.536 -1.700 -1.787 -1.400 -1.242 -0.999
9 -0.815 -1.289 -1.370 -0.306 -0.973 -1.306 -1.520 -1.693 -1.848 -1.474 -1.289 -1.068
10 -0.654 -1.229 -1.292 -0.199 -0.821 -1.228 -1.424 -1.673 -1.788 -1.345 -1.140 -0.936
11 -0.578 -1.196 -1.348 -0.258 -0.805 -1.296 -1.539 -1.822 -1.976 -1.488 -1.245 -1.053
12 -1.092 -1.378 -1.500 -0.216 -0.662 -1.222 -1.698 -1.948 -2.050 -1.458 -1.162 -0.993

At the end of each month between 2001 and 2014, a Fama and MacBeth (1973) regression is performed with the
k months future excess returns as the left hand side and a right hand side populated by the forward-looking
co-skewness at horizon h, the Carhart (1997) factors, the past monthly excess returns and the past yearly
excess returns. The co-skewness is proxied by the beta obtained in a regression of excess stock returns on the
excess market returns and its square. This table reports the Newey-West t-statistics (obtained using k − 1
lags) for the average co-skewness price.
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Table 3.13: T-statistics for average co-skewness price with control variables and historical
co-skewness, robustness analysis

(h, k) 1 2 3 4 5 6 7 8 9 10 11 12
1 0.323 0.268 -0.277 -0.123 -0.612 -1.060 -1.595 -1.616 -1.596 -1.380 -1.133 -0.941
2 0.008 -0.456 -0.876 -0.676 -1.309 -1.551 -2.246 -2.524 -2.567 -2.441 -2.118 -1.842
3 0.114 -0.691 -1.043 -0.743 -1.381 -1.498 -2.238 -2.674 -2.698 -2.646 -2.567 -2.143
4 0.171 -0.796 -1.244 -0.723 -1.396 -1.316 -2.099 -2.501 -2.501 -2.399 -2.362 -1.906
5 -0.035 -0.906 -1.299 -0.684 -1.475 -1.448 -1.960 -2.288 -2.141 -1.938 -1.849 -1.475
6 -0.121 -0.971 -1.194 -0.343 -1.245 -1.365 -1.829 -2.184 -2.052 -1.779 -1.682 -1.358
7 -0.153 -0.949 -1.100 -0.190 -1.079 -1.319 -1.665 -1.999 -1.959 -1.608 -1.471 -1.191
8 -0.270 -1.139 -1.198 -0.153 -0.992 -1.266 -1.656 -2.111 -2.102 -1.735 -1.566 -1.277
9 -0.449 -1.215 -1.308 -0.127 -0.961 -1.331 -1.626 -2.084 -2.128 -1.766 -1.553 -1.324
10 -0.342 -1.171 -1.258 -0.028 -0.789 -1.256 -1.507 -2.060 -2.044 -1.604 -1.352 -1.125
11 -0.276 -1.142 -1.326 -0.087 -0.757 -1.325 -1.640 -2.235 -2.235 -1.749 -1.448 -1.234
12 -0.874 -1.334 -1.502 -0.043 -0.580 -1.201 -1.919 -2.433 -2.294 -1.673 -1.305 -1.123

At the end of each month between 2001 and 2014, a Fama and MacBeth (1973) regression is performed with the
k months future excess returns as the left hand side and a right hand side populated by the forward-looking
co-skewness at horizon h, the Carhart (1997) factors, the past monthly excess returns and the past yearly
excess returns and the historical co-skewness. The co-skewness is proxied by the beta obtained in a regression
of excess stock returns on the excess market returns and its square. This table reports the Newey-West
t-statistics (obtained using k − 1 lags) for the average price of the option-implied co-skewness.

Table 3.14: T-statistics for average co-kurtosis price in univariate regression

(h, k) 1 2 3 4 5 6 7 8 9 10 11 12
1 -0.247 0.095 0.175 0.195 0.390 0.486 0.392 0.042 -0.044 0.071 0.094 0.121
2 -0.001 0.428 0.493 0.501 0.684 0.694 0.569 0.279 0.236 0.376 0.403 0.388
3 0.098 0.570 0.625 0.647 0.821 0.741 0.552 0.335 0.311 0.471 0.462 0.403
4 0.189 0.637 0.682 0.704 0.788 0.692 0.472 0.303 0.306 0.472 0.431 0.377
5 0.240 0.666 0.726 0.752 0.793 0.684 0.445 0.296 0.297 0.464 0.433 0.383
6 0.355 0.778 0.742 0.792 0.802 0.698 0.455 0.306 0.284 0.473 0.444 0.394
7 0.475 0.903 0.857 0.893 0.866 0.749 0.474 0.300 0.305 0.506 0.479 0.449
8 0.436 0.901 0.820 0.904 0.859 0.750 0.462 0.287 0.293 0.480 0.468 0.443
9 0.542 1.003 0.888 0.946 0.877 0.764 0.491 0.300 0.308 0.485 0.483 0.461
10 0.539 1.067 0.928 0.974 0.865 0.759 0.469 0.283 0.287 0.465 0.479 0.452
11 0.586 1.163 0.982 1.016 0.904 0.809 0.508 0.298 0.315 0.497 0.508 0.474
12 0.692 1.320 1.077 1.075 0.934 0.844 0.527 0.340 0.379 0.541 0.535 0.489

At the end of each month between 2001 and 2014, a Fama and MacBeth (1973) regression is performed with the
k months future excess returns as the left hand side and a right hand side populated by the forward-looking
co-kurtosis at horizon h inferred from option prices (using the methodology outlined in Section 3.2). The
co-kurtosis measure is a risk-neutral version of the one defined in (3.15). This table reports the Newey-West
t-statistics (obtained using k − 1 lags) for the average co-kurtosis price.
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Table 3.15: T-statistics for average co-kurtosis price with control variables

(h, k) 1 2 3 4 5 6 7 8 9 10 11 12
1 -1.171 -1.400 -0.924 -1.025 -0.585 -0.200 0.020 -0.539 -0.311 0.263 0.429 0.574
2 -1.038 -1.016 -0.540 -0.502 0.027 0.333 0.418 0.104 0.404 0.872 1.013 1.091
3 -0.933 -0.758 -0.346 -0.123 0.456 0.626 0.584 0.462 0.748 1.203 1.270 1.306
4 -0.935 -0.682 -0.227 0.136 0.557 0.726 0.617 0.528 0.842 1.307 1.353 1.395
5 -0.980 -0.648 -0.012 0.441 0.819 0.918 0.719 0.657 0.945 1.403 1.457 1.533
6 -0.684 -0.297 0.375 0.866 1.205 1.195 1.042 0.952 1.147 1.570 1.612 1.742
7 -0.263 0.102 0.844 1.317 1.520 1.443 1.241 1.071 1.174 1.577 1.617 1.882
8 -0.153 0.307 1.025 1.560 1.725 1.625 1.445 1.146 1.163 1.520 1.597 1.929
9 0.220 0.635 1.354 1.844 1.988 1.869 1.689 1.299 1.274 1.628 1.720 2.095
10 0.446 0.817 1.557 1.982 2.123 1.986 1.762 1.319 1.283 1.635 1.771 2.154
11 0.663 1.025 1.731 2.111 2.229 2.058 1.816 1.329 1.312 1.676 1.841 2.245
12 0.938 1.332 1.947 2.268 2.371 2.212 1.955 1.475 1.483 1.842 1.993 2.411

At the end of each month between 2001 and 2014, a Fama and MacBeth (1973) regression is performed with
the k months future excess returns as the left hand side and a right hand side populated by the forward-looking
co-kurtosis at horizon h, the Carhart (1997) factors, the past monthly excess returns and the past yearly excess
returns. The co-kurtosis measure is a risk-neutral version of the one defined in (3.15). This table reports the
Newey-West t-statistics (obtained using k − 1 lags) for the average co-kurtosis price.

Table 3.16: T-statistics for average co-kurtosis price with control variables and historical
co-kurtosis

(h, k) 1 2 3 4 5 6 7 8 9 10 11 12
1 -1.171 -1.400 -0.772 -0.803 -0.432 -0.145 0.014 -0.316 -0.171 0.138 0.205 0.272
2 -1.038 -1.016 -0.447 -0.380 0.019 0.216 0.254 0.056 0.206 0.426 0.461 0.486
3 -0.933 -0.758 -0.284 -0.091 0.310 0.382 0.331 0.236 0.364 0.568 0.564 0.568
4 -0.935 -0.682 -0.185 0.100 0.373 0.427 0.333 0.263 0.401 0.608 0.594 0.598
5 -0.980 -0.648 -0.010 0.321 0.544 0.535 0.380 0.324 0.444 0.647 0.637 0.652
6 -0.684 -0.297 0.306 0.627 0.802 0.700 0.543 0.470 0.532 0.718 0.703 0.725
7 -0.263 0.102 0.690 0.951 1.019 0.854 0.650 0.538 0.548 0.724 0.709 0.769
8 -0.153 0.307 0.837 1.127 1.162 0.973 0.765 0.586 0.550 0.703 0.705 0.785
9 0.220 0.635 1.108 1.333 1.349 1.142 0.910 0.672 0.606 0.758 0.763 0.855
10 0.446 0.817 1.275 1.431 1.443 1.221 0.954 0.686 0.614 0.765 0.790 0.891
11 0.663 1.025 1.422 1.525 1.514 1.272 0.990 0.693 0.629 0.787 0.824 0.938
12 0.938 1.332 1.605 1.643 1.619 1.382 1.077 0.771 0.718 0.871 0.902 1.025

At the end of each month between 2001 and 2014, a Fama and MacBeth (1973) regression is performed with
the k months future excess returns as the left hand side and a right hand side populated by the forward-looking
co-kurtosis at horizon h, the Carhart (1997) factors, the past monthly excess returns and the past yearly excess
returns and the historical co-kurtosis. The co-kurtosis measure is a risk-neutral version of the one defined in
(3.15). This table reports the Newey-West t-statistics (obtained using k − 1 lags) for the average price of the
option-implied co-kurtosis.
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Appendix for Chapter 3

C Appendix

C.1 Individual Stock Option Valuation

From the classical risk-neutral valuation formula, we know that the price of European put options
on the stock S with maturity τ and strike price κ is

PS(κ, τ) = e−rfτEQ
(

(κt+τ − St+τ )+
)
, (C.1)

where Q denotes the risk-neutral measure. The probability density of St+τ under Q is provided by
(3.8).
The price of the put option can be obtained in closed form as follows,

PS(κ, τ) = κ exp−rfτ
[
Φ
(
d(τ, κ)

)
−

2Ky∑
k=1

δk(B, τ)√
k

Hk−1
(
d(τ, κ)

)
Φ
(
d(τ, κ)

)]

− St exprfτ+µS(τ)
[

exp
(
VI(τ)2/2

)
Φ
(
d(τ, κ)− VS(τ)

)
+

2Ky∑
k=1

δk(B, τ)J∗k
(
d(τ, κ)

)]
,

where

J∗k
(
d(τ, κ)

)
= VI(τ)√

(k)
J∗k−1

(
d(τ, κ)

)
− 1√

k
exp

(
VS(τ)d(τ, κ)

)
Hk−1

(
d(τ, κ)

)
Φ
(
d(τ, κ)

)
J∗0
(
d(τ, κ)

)
= exp

(
VS(τ)2/2

)
Φ
(
d(τ, κ)− VS(τ)

)
, and

d(τ, κ) = log(κ/I)− µS(τ)
VS(τ)

and Φ(.) is the cumulative CDF of the normal distribution, and
δj(B, τ) =

∑Kx
k=0 αk,•(B, τ)>AKxj αk,•(B, τ)

/(∑Ky
k=0 αk,•(B, τ)>αk,•(B, τ)

)
.
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C.2 Robustness Analysis

In the main text, the model is estimated using the following combination of orders for the sieve
polynomials (kx, ky, kτ ) = (4, 4, 2). I now estimate the model using the combination (kx, ky, kτ ) =
(5, 5, 2). Figure 3.6 displays the term structure of co-skewness risk premia. As evident from this
graph, the term structure is decreasing in absolute value which corroborates the results obtained in
the main text.
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