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Evolution of cooperation in evolutionary games

with the opting-out strategy and under random

environmental noise

par

Cong Li
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Summary

In this thesis, we study the effects of a stochastic environment and the use of an opting-

out strategy on the evolution of cooperation in evolutionary games. The thesis contains 8

articles, among which 6 are already published in peer-reviewed journals. Apart from the

introduction, the thesis is divided into two parts, Part 1 made with 5 articles and Part 2

with 3 articles.

Part 1 studies randomized payoffs in evolutionary games. Article 1 introduces stability

concepts for 2×2 matrix games in infinite populations undergoing discrete, non-overlapping

generations in a stochastic environment and gives conditions for an equilibrium, either on

the boundary or in the interior of the simplex of all strategy frequencies, to be stochasti-

cally locally stable or unstable. Article 2 extends the results of Article 1 to the case where

fitness is an exponential function of expected payoff in random pairwise interactions and

shows that, unexpectedly, environmental random noise can break a periodic cycle and pro-

mote stability of an interior equilibrium. Article 3 discusses the effects of weak selection.

While stability conditions in a random environment return to conditions in the determin-

istic case as selection intensity diminishes, random fluctuations in payoffs can accelerate

the speed of convergence toward a stable equilibrium under weaker selection. Article 4

applies stochastic evolutionary stability theory to a randomized Prisoner’s dilemma game

and shows that increasing the variance in payoffs for defection is conducive to the evo-

lution of cooperation. Article 5 studies randomized matrix games in finite populations

and gives conditions for selection to favor the evolution of cooperation in the context of a

randomized Prisoner’s dilemma.

Part 2 considers a repeated Prisoner’s dilemma game with an opting-out behavior

adopted by every player in pairwise interactions. Article 6 studies the evolutionary dynam-

ics of cooperation and defection in this context and shows possible long-term coexistence,

assuming an infinite population and fast (actually, instantaneous) equilibrium in the pair
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frequencies. Article 7 reports experimental results with 264 university students using the

opting-out strategy that support the theoretical prediction of a long-term coexistence of

cooperation and defection. Article 8 extends the analysis of the model with the opting-out

strategy to the case of a finite population and provides a rigorous proof of the two-time

scales for the frequencies of cooperation and defection on one hand and the frequencies of

strategy pairs on the other.

Keywords: Evolution of Cooperation, Randomized payoffs, Replicator dynamics, Dif-

fusion approximation, Prisoner’s Dilemma, Randomized Prisoner’s Dilemma, Opting-out

strategy, Fixation probability, Two-time scales, Stochastically locally stable, Stochastically

locally unstable, Stochastically evolutionarily stable, Stochastically convergence stable,

Weak selection, Long-term coexistence.
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Sommaire

Dans cette thèse, nous étudions les effets d’un environnement stochastique et de

l’utilisation d’une stratégie d’opting-out sur l’évolution de la coopération dans les jeux

évolutionnaires. La thèse contient 8 articles, dont 6 sont déjà publiés dans des revues avec

comité de lecture. Outre l’introduction, la thèse est divisée en deux parties, la partie 1

composée de 5 articles et la partie 2 de 3 articles.

La partie 1 étudie l’impact de gains randomisés dans les jeux évolutionnaires. L’article

1 introduit les concepts de stabilité pour les jeux avec matrice de paiement aléatoire

2×2 dans des populations infinies avec des générations discrètes sans chevauchement dans

un environnement stochastique. On y donne les conditions pour qu’un équilibre, sur la

frontière ou à l’intérieur du simplexe des fréquences des stratégies, soit stochastiquement

localement stable ou instable. L’article 2 étend les résultats de l’article 1 au cas où la

valeur sélective est une fonction exponentielle du gain attendu suite à des interactions

aléatoires par paires et montre que, de manière inattendue, le bruit aléatoire environ-

nemental peut rompre un cycle périodique et favoriser la stabilité d’un équilibre intérieur.

L’article 3 discute des effets de la sélection faible. Alors que les conditions de stabilité

dans un environnement aléatoire reviennent aux conditions du cas déterministe lorsque

l’intensité de la sélection diminue, les fluctuations aléatoires des gains peuvent accélérer

la vitesse de convergence vers un équilibre stable sous une sélection plus faible. L’article

4 applique la théorie de la stabilité évolutive stochastique à un jeu randomisé de dilemme

du prisonnier. On y montre que l’augmentation de la variance des gains de défection est

propice à l’évolution de la coopération. L’article 5 étudie les jeux matriciels randomisés

dans des populations finies et donne les conditions pour que la sélection favorise l’évolution

de la coopération dans le contexte du jeu randomisé de dilemme du prisonnier.

La partie 2 considère un jeu répété de dilemme du prisonnier dans le cas où un com-

portement d’opting-out est adopté par chaque joueur dans les interactions par paires.
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L’article 6 étudie la dynamique évolutive de la coopération et de la défection dans ce

contexte et montre une possible coexistence à long terme, en supposant une popula-

tion infinie et un équilibre rapide (en fait, instantané) dans les fréquences des paires.

L’article 7 rapporte des résultats expérimentaux avec 264 étudiants universitaires util-

isant la stratégie d’opting-out qui soutiennent la prédiction théorique d’une coexistence à

long terme de coopération et de défection. L’article 8 étend l’analyse du modèle avec la

stratégie d’opting-out au cas d’une population finie et fournit une preuve rigoureuse des

deux échelles de temps pour les fréquences de coopération et de défection d’une part et

les fréquences de paires de stratégies d’autre part.

Mots clés: Évolution de la coopération, Gains aléatoires, Dynamique du réplicateur,

Approximation de la diffusion, Dilemme du Prisonnier, Dilemme du Prisonnier alatoire,

Stratégie d’opting-out, Probabilité de fixation, Deux échelles de temps, Stochastiquement

localement stable, Stochastiquement localement instable, Stochastiquement évolutivement

stable, Stochastiquement convergence stable, Sélection faible, Coexistence à long terme
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Chapter 0

Introduction

0.1 Introduction

Cooperation is a fundamental aspect of all biological systems. It is widely observed from

the organization of the cells to the behaviors of individuals. The cooperative behavior

could also be described as an altruistic action where cooperators forgo some of their re-

productive success to help others. Since evolution is based on fierce competition between

individuals that reward only selfish behavior, the question of how natural selection can

lead to cooperative behaviors is one the most important issues in evolutionary biology. In

recent decades, a great deal of researches revealed the reason for the evolution of coop-

eration and five rules that can promote the evolution of cooperation have been proposed

(Nowak, 2006a; Nowak and Sigmund, 2007). They are kin selection (Hamilton, 1964),

direct reciprocity (Trivers, 1971; Axelrod and Hamilton, 1981; Axelrod, 1984), indirect

reciprocity (Nowak and Sigmund, 1998a, 1998b; Ohtsuki and Iwasa, 2004; Nowak and

Sigmund, 2005), network reciprocity (Nowak and May, 1992; Ohtsuki et al., 2006; Li et

al., 2013; Zhang et al., 2015) and group selection (Traulsen and Nowak, 2006; Lessard,

2011),

Among these works, a famous two-player game known as the Prisoner’s Dilemma (PD)

has been widely studied as one of the most important theoretical frameworks (Poundstone,
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1992; Nowak and Highfield, 2011). In the PD game, two strategies, cooperation (C) and

defection (D), are considered in the population and their payoffs are given by the entries

of the payoff matrix


R S

T P


 with the inequalities T > R > P > S and 2R > T + S,

where R and S are the payoffs to C against C and D, respectively, while T and P are

the payoffs to D against the same two strategies. Particularly, when R + P = S + T

with P = 0, the payoff matrix can be expressed in the form


b− c −c

b 0


 (Nowak, 2006b;

Sigmund, 2010). In this case, the actions of C and D can be described separately. Here,

cooperation represents altruism, which incurs a cost c > 0 to the player adopting it and

provides a benefit b > c to the opponent, while defection incurs no cost at all and does

not disqualify from receiving a benefit from a cooperative opponent. Since the effects of

C and D on payoff are additive in this model, we call it the additive PD game. On the

other hand, a PD game that is repeated between the same players some number of times,

fixed or random, is a called a repeated (or iterated) PD game. In particular, a one-round

PD game is a PD game that is not repeated.

In the field of evolutionary game theory, stability analysis is one of the most important

methods. In a population of players, a Nash equilibrium (NE) corresponds to a population

state such that no player has anything to gain by changing only his own strategy. This

means that no player can increase his own expected payoff by changing his strategy while

the other players keep theirs unchanged. In a one-round PD game, the only NE is that

every individual adopts defection (Nowak, 2006b; Sigmund, 2010). Another important

concept in evolutionary game theory is that of an evolutionarily stable strategy (ESS). It

is a strategy understood as a phenotype such that if every individual in the population

adopts it, then any small fraction of the population adopting of mutant strategy, including

a mixed strategy, cannot invade the population under the effects of natural selection

(Maynard Smith and Price, 1973; Maynard Smith, 1982). In a two-player game such

as a one-round PD game, a strategy represented by a frequency vector x is an ESS if:
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(1) E(y,x) ≤ E(x,x) for any strategy y 6= x; and (2) E(y,y) < E(x,y) in the case of

equality in (1). Here, E(y,x) represents the expected payoff to a y-strategist against an x-

strategist. Note that condition (1) implies that an ESS in a two-player game is necessarily

a NE. Moreover, in a one-round PD game, defection is simultaneously an ESS and a NE.

In an infinite population under the assumption of unlimited environmental carrying

capacities, the relative growth rate of a strategy is given by its expected payoff which

defines its fitness. This gives the replicator equation (Taylor and Jonker, 1978; Zeeman,

1980; Hofbauer and Sigmund, 1998) that describes the continuous-time dynamics of strat-

egy frequencies. In the case of two strategies, the replicator equation takes the form

ẋ = x(1 − x)(f1(x) − f2(x)), where x and 1 − x represent the frequencies of strategies

1 and 2, respectively, whose frequency-dependent fitnesses are given by f1(x) and f2(x),

respectively. In generic cases, the boundary x = 0 (x = 1, respectively) is (asymptoti-

cally) stable if and only if f1(0) − f2(0) < 0 (f1(1) − f2(1) > 0, respectively). Moreover,

a stable interior equilibrium x̂ exists if and only if f1(x̂) − f2(x̂) = 0 for 0 < x̂ < 1 and

f ′1(x̂)− f ′2(x̂) < 0.

In a population of fixed finite size N , as a result of limited resources in the environment,

and in the absence of mutation, the effect of random drift will bring the population state

to a fixation state from any initial state. In the neutral case, that is, in the absence

of selection, the probability of ultimate fixation of any strategy is given by its initial

frequency. Under selection, if the fixation probability of a single mutant strategy exceeds

its initial frequency 1/N , then this strategy is said to be favored by natural selection

(Nowak et al., 2004). In discrete-time models, the changes in strategy frequencies are

usually described by a Markov chain. In the special context of two strategies, let x be the

frequency of a given strategy at time t and ∆x be the change of this frequency from time

t to time t + ∆t with ∆t = 1/N . If, for instance, the expected value and variance of this

change can be expressed as E(∆x) = m(x)∆t + o(∆t) and Var(∆x) = v(x)∆t + o(∆t)

with E((∆x)4) = o(∆t), then the Markov chain converges to a continuous-time continuous-
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space process as N → +∞. This process is actually a diffusion with drift function m(x)

and diffusion function v(x) that satisfy Kolmogorov differential equations, from which the

fixation probability can be calculated (Kimura, 1964; Ewens, 2004; Lessard, 2005). This

is the approach that will be used in this thesis for finite populations.

0.2 Organization of the thesis

This rest of the thesis is organized as follows.

In section 0.3, we present some motivations. In subsection 0.3.1, we discuss the in-

terest in considering evolutionary games in a stochastic environment and a review of the

literature on games in a stochastic setting. Then we indicate how the concept of evo-

lutionary stability in a stochastic environment can be defined. In subsection 0.3.2, we

explain why the question about the coexistence of cooperation and defection in nature

is so important and present some simulation results on the subject. Then we introduce

the opting-out strategy as a form of direct reciprocity in mathematical models for the

evolution of cooperation.

In Part 1, we study evolutionary matrix games with random payoffs. This part is made

of 5 articles, among which 4 are already published and another is currently under review.

In Article 1, we apply the concept of stochastic local stability to randomized 2× 2 matrix

games. In Article 2, we extend our results to the case where the fitness of a strategy is

an exponential function of its expected payoff in random pairwise interactions. In Article

3, we explore the role of weak selection in randomized matrix games. In Articles 4 and 5,

we analyse in detail randomized PD game in infinite and finite populations, respectively.

In Part 2, we study the effects that an opting-out (or Out-for-Tat) behavior in a

repeated PD game may have on the evolutionary dynamics. This part contains 3 articles,

2 of which already published and the last one submitted. In Article 6, we show that

cooperation and defection can coexist with the opting-out behavior adopted by every

player in an infinite population assuming a faster timescale for pair frequencies than for
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strategy frequencies. In Article 7, we present experimental results on a repeated PD game

played by 264 university students, some of whom practicing opting-out. In Article 8, we

extend the model to a finite population and prove rigorously the existence of two timescales

and convergence to a diffusion process in the limit of a large population.

0.3 Motivations

0.3.1 Motivation for Part 1:

In evolutionary matrix game theory, the payoffs received by the individuals are given in

the form of a matrix whose entries are usually constant. However, in biological popu-

lations, individuals face uncertainty in their payoff. Such an uncertainty could possibly

be introduced by probabilistic encounter rules or the use of mixed strategies (Taylor and

Jonker, 1978; Eshel and Cavalli-Sforza, 1982; Hofbauer and Sigmund, 1998). On the other

hand, temporal variations may also be caused by changes in the natural environment that

can be periodic, such as seasonal weather fluctuations, or totally random as if occurring

by accident (May, 1973; Kaplan et al., 1990; Lande et al., 2003).

Fluctuations in payoffs may have major effects on evolution. Of particular interest

are stochastic games. These model the situation in which the environment (here, the

population state) changes in response to players’ choice (Shapley, 1953; Fudenberg et al.,

2012; Solan and Vieille, 2015; Hilbe et al., 2018). In stochastic games, the action of a player

has two levels of effect, the immediate effect on the payoff received and the potential effect

on a future payoff influenced by the action of the player on the population state. The

changes in payoffs in such games are predictable to a certain extent, being described by

transition probabilities, not like random changes occurring in the surrounding environment

of a natural population.

Time-dependent payoffs is another way to describe the effect of a natural environment

on evolutionary games. Broom (2005) studied the case where the entries of the payoff

matrix in the replicator equation in continuous time are functions of time. He compared
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the dynamics of the average of the population state over time to the dynamics based on

the average of the payoff matrix. He showed that the time average of the population state

under fluctuating payoffs can be arbitrary far from the interior Nash equilibrium for the

time average payoff matrix.

Many numerical simulations of games with periodic or random payoffs can also be

found. For instance, Uyttendaele et al. (2012) showed that stable periodic orbits, instead

of stable equilibrium points, can by reached by the population state from an arbitrary

initial value when the payoffs are periodic. Stollmeier and Nagler (2018) pointed out that

a PD game like a Hawk-Dove game which can reach an interior stationary distribution

if there is periodic noise in the payoffs. Perc (2006) investigated a PD game on a lat-

tice network and concludes that an increase of stochastic fluctuations in payoffs may be

conducive to the evolution of cooperation. Szolnoki and Perc (2019) considered periodic

payoffs in four different games on a square lattice and a regular random graph. They show

that periodic changes between two available games with global ordering (where coopera-

tors survive and spread in compact clusters on the network) must be fast, while periodic

changes between global and local ordering games (where cooperators and defectors are

typically arranged in role-separating mixed patterns) must be slow for cooperation to

thrive.

All the above theoretical and numerical works reveal that, unless small enough to be

ignored, variability in payoffs may play an important role in evolutionary games. Never-

theless, this topic suffers from a lack of a theoretic mathematical framework, especially in

the case of random environmental noise. The concepts of NE and ESS, originally defined

in a deterministic setting, no longer work in a stochastic setting, for which extensions are

missing. This was the main motivation for introducing evolutionary concepts in matrix

games with random payoffs in Article 1, and studying further applications and assumptions

in Articles 2-5.
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0.3.2 Motivation for Part 2:

A great deal of research in evolutionary games tries to explain the evolution of cooperation.

Most works related to the five rules in favor of cooperation (Nowak, 2006a; Nowak and

Sigmund, 2007) focus on conditions for natural selection to lead to full cooperation in the

population. In natural populations, however, it is hard to find fixation of cooperation,

and at least in humans, coexistence of cooperation and defection is common (Dugatkin,

1997). The possibility of ongoing oscillations between cooperation and defection such as

the alternate occurrence of war and peace periods, or cycles from C to D to TFT (see

below) and neutral drift back to C in an iterated PD game are well documented (Nowak,

2006b; Sigmund, 2010). However, a more general theoretical framework is still needed to

explain how long-term stable coexistence of cooperation and defection can evolve.

Under the effects of direct reciprocity, if interactions between individuals can be re-

peated, cooperation might prevail since clusters of cooperators helping each other would

be more successful than any other (Trivers, 1971; Axelrod, 1984). In an iterated PD game,

pairs of individuals play several rounds of a PD game. Cooperation could be promoted

through equivalent retaliation, known as the Tit-for-Tat (TFT) strategy, starting with

cooperation. This strategy goes as follows: in the first round, display C, and in the next

rounds, choose the action used by the opponent in the previous round. Notice that co-

operation is fixed in a population of all TFT individuals. Moreover, it has been shown

by simulations that the TFT strategy does better than almost any other (Axelrod, 1984).

Actually, in a game where players are restricted to either use TFT or AllD (always de-

fect), TFT is a strict NE if the number of rounds is large enough. With random pairwise

interactions in an infinite population, TFT-fixation is locally asymptotically stable, but

AllD-fixation is too. Therefore, this cannot explain the evolution of cooperation when

rare. In a finite population, however, the probability of ultimate fixation of a single TFT

mutant exceeds its initial frequency if the frequency of TFT at the unstable interior equi-

librium is below 1/3, which is the case if the number of rounds is large enough. This
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property has been called the one-third law of evolution (Nowak et al., 2004).

In an iterated PD game, it is usually assumed that players in an interacting pair cannot

decide to stop the interaction from one round to the next even if at least one of the players

is not satisfied with its current payoff. As a matter of fact, the payoff received by a player

in one round of a PD game is always higher against a C-opponent than against a D-

opponent. Then, if the players have some control on the continuation of the game, every

player should be interested in continuing an interaction with a cooperator, but prone in

interrupting an interaction with a defector. As a result, CC pairs should be more robust

than CD and DD pairs. This is somehow related to assortment of phenotypes that has

been proposed in favor of the evolution of cooperations (Eshel and Cavalli-Sforza, 1982).

Once interrupting an interaction with a defector is available in an iterated PD game,

which is called the opting-out strategy, it can be expected that this behavior will spread and

finally prevail in the population. Studies on the opting-out strategy started with computer

simulations, analogously to studies on the TFT strategy. For instance, Schuessler (1989)

considered a population with cooperators and many types of defectors Dn that display

cooperation in the first n − 1 rounds and start to defect in round n. All strategies are

“trigger strategies” so that an interaction is continued as long as both players cooperate

but ended as soon as one of then defects. Here D1 represents the AllD strategy and D∞
corresponds to cooperation with opting-out (CONCO in this article). These results show

that egoistic cooperation can emerge in a population, and is more robust than expected

from theoretical and sociological analyses. Hayashi (1993) presented computer simulations

with 9 strategies in a “Prisoner’s Dilemma network” where players are at the nodes of the

network and have the option of accepting or not to interact with each other. A pair

(edge) between two nodes comes into existence only by mutual acceptance of the players

at the nodes. The strategies with the top 4 average payoffs in the simulation results can

be considered as Out-for-Tat (OFT) strategies which are characterized by continuing to

interact with a cooperating partner but seeking to interact with someone else as soon as
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the partner defects. The OFT strategy let the partner of the last round of interaction

decide to continue or not unless the partner defects. Therefore, the OFT strategy can be

considered as “TFT on partner selection”. Other computer simulations of populations on

a lattice were reported in Aktipis (2004). Individuals can move to neighboring patches

and an interaction occurs when two individuals are in the same patch. The “Walk Away”

strategy is defined as the strategy that consists in staying on that same patch if the

partner cooperates, while choosing to move if the partner defects or if there is no partner.

Various strategies together with the “Walk Away” strategy are initially placed on the

lattice, including pure C, pure D, TFT and PAVLOV. Moreover all these four strategies

are considered in two versions, a mobile version, which consists in moving when there is

no partner, and a stationary version, which consists in always staying in the same patch.

It is shown that the “Walk Away” strategy is always maintained at a higher frequency

in the population than any other strategy. Moreover, it can resist invasion and invade a

population of defectors at a lower initial frequency than any other strategy.

On the other hand, a first theoretical analysis of the iterated PD game in an infinite

population with opting-out can be found in Fujiwara-Greve and Okuno-Fujiwara (2009).

The focus is put on NE conditions with various strategies which defer in the decision rules

to continue or end an interaction with a partner based on the record of all previous rounds.

It is shown that non-linear average payoffs may create situations with a polymorphic

equilibrium where all individuals have the same expected payoff. This can support long-

term coexistence of cooperation and defection in the population. Moreover, Izquierdo et

al. (2010; 2014) presented a study of 18 strategies, which are the combinations of the

player’s initial action (C or D), the response to a cooperative action (C, D or L, where

L stands for leaving), and the response to a defective action (C, D or L). Through

numerical simulations of an iterated PD game in an infinite population and analytical

approximative mean-field methods, they find that the cornerstone of long-term stability is

the coexistence of C-C-L and D-D-X where X = D or L. Here C-C-L corresponds to the
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opting-out strategy starting with C, while D-D-D corresponds to the AllD strategy and

D-D-L the opting-out strategy starting with D, whilst other strategies, such as C-C-D,

which corresponds to TFT, remain present only in small population frequencies.

The above studies show the possibility of long-term coexistence of cooperation and

defection in the context of an iterated PD game with the option for players to stop an

interaction if this is in their best interest. However, exact conditions for this to happen

had to be studied in a rigorous theoretical framework. Article 6 is a first attempt in this

direction under the assumption that pair frequencies change so much faster than C and

D frequencies that they are given by their equilibrium values given C and D frequencies.

Article 7 shows that results of experiments conducted with university students playing

an iterated PD game with the possibility of opting-out are in agreement, at least in

part, with the theoretical predictions found in Article 6. Article 7 is a more rigorous

mathematical treatment of the two-timescale argument that addresses the validity of a

diffusion approximation for the frequency of C in an iterated PD game with opting-out in

the limit of a large population.

Notice that the opting-out strategy is named differently in many papers. For instance,

Schuessler (1989) calls it CONCO for conditional cooperator; Hayashi (1993) uses OFT

for Out-for-Tat, in analogy with TFT for Tit-for-Tat; it is called the Walk Away strategy

in Aktipis (2004) and referred to as “win stay, lose move”, by analogy to “win stay, lose

shift” (Nowak and Sigmund 1993) of a PAVLOV strategy (named so in memory of the

Russian psychologist “Ivan Petrovich Pavlov” who developed the concept of conditioned

reflex) which consists in changing action in the next round if the opponent defects.

0.4 Main results

The thesis is made up of 8 articles. In this section, we give brief summaries of the new

ideas and results contained in these articles. The full articles follow in Part 1 and Part 2.

The tables 1,2 below list the assumptions that are made and the conditions we studied in
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each article.

Table 1: Assumptions made in the articles. PD stands for Prisoner’s Dilemma, RPD for

Randomized PD, and π for payoff. The parameter w represents an intensity of selection.

Table 2: Conditions studied in the articles. SLS stands for stochastic local stability, SLU

for stochastic local unstability, SES for stochastic evolutionary stability, SCS for stochastic

convergence stability, NE for Nash equilibrium.

0.4.1 In part 1

Part 1 of the thesis contains 5 articles on matrix games in a stochastic environment.

Articles 1, 2, 3 and 5 are already published, Article 4 is currently under review.

Article 1

This article introduces the concept of stochastic stability in randomized matrix games

where the entries of the payoff matrix are random variables. We give conditions for a

boundary or interior equilibrium to be stochastically locally stable (SLS) or stochastically

28



locally unstable (SLU). Moreover, we extend the concepts of evolutionary stability and

continuous stability originally defined in a deterministic setting to corresponding concepts

in a stochastic setting.

Consider a two-strategy game in an infinite population with discrete, non-overlapping

generations. The payoffs in pairwise interactions are given by the payoff matrix

A(t) =


a11(t) a12(t)

a21(t) a22(t)


 =


at bt

ct dt


 . (0.4.1)

These payoffs are assumed to be positive random variables that are uniformly bounded

below and above by some positive constants. The probability distributions of aij(t) for

i, j = 1, 2 do not depend on t ≥ 0. Moreover, as, bs, cs, ds, at, bt, ct and dt are all assumed

to be independent for s 6= t. Let xt be the frequency of strategy 1 at time t ≥ 0. Assuming

random pairwise interactions and expected payoff as fitness, the frequency of strategy 1

at time step t + 1 is given by the recurrence equation

xt+1 =
x2

t at + xt(1− xt)bt

x2
t at + xt(1− xt)(bt + ct) + (1− xt)2dt

. (0.4.2)

We are interested in the equilibrium states of this equation and their stability properties.

According to Karlin and Liberman (1974, 1975), we introduce the following definitions

of local stability or instability in a stochastic setting.

Definition 0.1 A constant equilibrium x̂ is said to be stochastically locally stable (SLS)

if for any ε > 0 there exists δ0 > 0 such that

P (xt → x̂) ≥ 1− ε as soon as |x0 − x̂| < δ0 . (0.4.3)

On the other hand,

Definition 0.2 A constant equilibrium x̂ can be said to be stochastically locally unstable

(SLU) if

P (xt → x̂) = 0 as soon as |x0 − x̂| > 0 . (0.4.4)
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Here, x̂ SLS means that xt tends to x̂ with probability arbitrarily close to 1 if the initial

state x0 is sufficiently near x̂. On the other hand, x̂ SLU means that with probability 1

(or almost sure), xt does not reach x̂ if the initial state x0 differ from x̂.

Applying these definitions to the two-strategy randomized game, we get the following

theorem.

Theorem 0.1 The fixation state x̂ = 0 of the recurrence equation (0.4.2) with the payoff

matrix (0.4.1) is SLS if

E
(

log
(

bt

dt

))
< 0 , (0.4.5)

and SLU if

E
(

log
(

bt

dt

))
> 0 . (0.4.6)

By symmetry, the fixation state x̂ = 1 of the recurrence equation (0.4.2) with the payoff

matrix (0.4.1) is SLS if

E
(

log
(

ct

at

))
< 0 , (0.4.7)

and SLU if

E
(

log
(

ct

at

))
> 0 . (0.4.8)

Now, let X̄, Ȳ , σ2
X , σ2

Y and σX,Y denote the means, variances and covariance for two

random variables X and Y . When random payoffs are close enough to their means, the

condition for x̂ = 1 to be SLS reduces to

log
( c̄

ā

)
<

1
2

(
σ2

c

c̄2
− σ2

a

ā2

)
. (0.4.9)

Figure 1.1 in Article 1 gives an application of this condition to the repeated PD game.

This reveals that, as the variance of the number of rounds increases, the condition for

TFT-fixation to be SLS against AllD becomes more stringent.
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Moreover, in the degenerate case where bt = dt for all t ≥ 0, it can be shown that the

fixation state x̂ = 0 is SLS if

E
(

ct

dt
− at

dt

)
= E

(
ct

dt

)
− E

(
at

dt

)
> 0 , (0.4.10)

and SLU if the inequality is reversed.

On the other hand, defining ut = xt/(1 − xt), an interior constant equilibrium x̂ of

(0.4.2) with 0 < x̂ < 1 is possible only if

û(at − ct) = dt − bt. (0.4.11)

This implies a payoff matrix in the form

at bt

ct dt


 =


ct + zt bt

ct bt + ûzt


 , (0.4.12)

where zt = at−ct. Conditions for stochastic local stability or instability of the equilibrium

are then given in the following theorem.

Theorem 0.2 A constant equilibrium x̂ = û/(1 + û) of the recurrence equation (0.4.2)

with û > 0 and the payoff matrix (0.4.12) is SLS if

E
(

log
(

ûat + dt

ûct + dt

))
< 0 , (0.4.13)

and SLU if

E
(

log
(

ûat + dt

ûct + dt

))
> 0 . (0.4.14)

In randomized matrix games, it is worth emphasizing that it is possible for a constant

interior equilibrium and both fixation states to be simultaneously SLS. This is the case,

for instance, with the payoff matrix

at bt

ct dt


 =


 1 1 + ûηt

1 + ηt 1


 , (0.4.15)
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as illustrated in Figure 1.2 in Article 1.

Moreover, the above definitions allow us to extend the concept of an evolutionarily

stable strategy (ESS; Maynard Smith and Price, 1973) and the concept of a convergence

stable strategy (CSS; Eshel and Motro, 1981; Eshel, 1983, 1996; Christiansen, 1991), both

originally defined for evolutionary games in a constant environment, to similar concepts

for evolutionary games in a stochastic environment.

Definition 0.3 A stochastically evolutionarily stable (SES) strategy is a strategy such

that, if all the members of the population adopt it, then the probability for at least any

slightly perturbed strategy to invade the population under the influence of natural selection

is arbitrarily low. More specifically, a strategy represented by a frequency vector x̂ is SES

if x̂-fixation is SLS against any other strategy x 6= x̂ at least close enough.

Definition 0.4 A strategy represented by a two-dimensional frequency vector given by

x̂ = (x̂, 1− x̂) is said to be stochastically convergence stable (SCS) if the fixation state of

any nearby strategy x̃ = (x̃, 1 − x̃) is SLU against a strategy x = (x, 1 − x) if and only if

x is in the direction of x̂ with respect to x̃. This means that sgn(x− x̃) = sgn(x̂− x̃).

Conditions for a boundary or interior equilibrium to be SES or SCS can be obtained.

Proposition 0.1 Consider the positive randomized game with payoff matrix (0.4.1) whose

entries are independent random variables with means āij and variances σ2
ij for i, j =

1, 2, respectively, while all higher-order centered moments are functions o(σ2) where σ2 =

max{σ2
ij : i, j = 1, 2}. With the assumption that σ2 is small enough and under generic

conditions, the pure strategy x̂ = (0, 1) is SES against any nearby mixed strategy x =

(x, 1− x) if and only if

σ2
22 <

(
ā22

ā12
− 1

)
ā2

22 . (0.4.16)

This is also the necessary and sufficient condition for x̂ = (0, 1) to be SCS. By symmetry,

the pure strategy x̂ = (1, 0) is SES against any nearby mixed strategy x = (x, 1 − x) and
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SCS in generic cases under the condition that σ2 is small enough if and only if

σ2
11 <

(
ā11

ā21
− 1

)
ā2

11 . (0.4.17)

Proposition 0.2 Consider the positive randomized game with payoff matrix (0.4.1) where

a11(t) = a21(t) + z(t) and a22(t) = a12(t) + ûz(t) for some constant û = x̂/(1 − x̂) > 0,

with a21(t), a12(t) and z(t) being independent random variables of means and variances

given by ā21, ā12, z̄ and σ2
21, σ2

12, σ2
z , respectively, while all higher-order centered moments

are functions o(σ2), where σ2 = max{σ2
21, σ

2
12, σ

2
z}. With the assumption that σ2 is small

enough and under generic conditions, the constant mixed strategy x̂ = (x̂, 1 − x̂) is SES

against any mixed strategy x = (x, 1− x) if and only if

z̄d̄2 + z̄σ2
21x̂

2 + z̄σ2
12(1− x̂)2 − d̄σ2

z x̂ < 0, (0.4.18)

where

d̄ = z̄x̂ + ā21x̂ + ā12(1− x̂) > 0. (0.4.19)

On the other hand, it is SCS under the same assumption and conditions if and only if

z̄d̄2 + z̄σ2
21x̂

2 + z̄σ2
12(1− x̂)2 + z̄x̂2σ2

z − d̄σ2
z x̂ < 0 . (0.4.20)

These results show that an interior equilibrium that is SES and SCS can exist only

with special relationships between the means, variances and covariances of the payoffs.

An example is given in Figure 1.3 in Article 1. By varying the means of the payoffs but

keeping fixed their variances and covariances, it is shown the situation may change from

boundaries that are SES and SCS to an interior equilibrium that is SES, and finally SCS.

Article 2

In this article on evolutionary matrix games in a stochastic environment, we study the

case where the fitness of a phenotype is an exponential function of the expected payoff.

We show that stochastic local stability of a constant interior equilibrium can be promoted
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by random environmental noise even if the system may display a complicated nonlinear

dynamics.

We consider a randomized game with payoff matrix (0.4.1) in an infinite population

undergoing discrete, non-overlapping generations. Instead of using the expected payoff in

random pairwise interactions as fitness, we use an exponential function, that is, fi = eπi

where πi stands for the expected payoff of strategy i for i = 1, 2. This is approached by

the linear function 1+πi in the case of small payoffs, which corresponds to weak selection

and leads to the replicator equation in continuous time. In the general case, the recurrence

equation of xt becomes

xt+1 =
xte

π1,t

xteπ1,t + (1− xt)eπ2,t
, (0.4.21)

where π1,t = xtat + (1− xt)bt and π2,t = xtct + (1− xt)dt.

Extending the analysis in Article 1, conditions for a boundary equilibrium to be SLS

or SLU can be found.

Theorem 0.3 The fixation state x̂ = 0 of the recurrence equation (0.4.21) with the payoff

matrix (0.4.1) is SLS if b̄− d̄ < 0 and SLU if b̄− d̄ > 0. By symmetry, the fixation state

x̂ = 1 is SLS if c̄− ā < 0, and SLU if c̄− ā > 0.

We notice that the condition for a fixation state to be SLS with a random payoff matrix

is the same as the condition for the corresponding strategy to be a strict NE with the

corresponding mean payoff matrix. Therefore, with exponential fitness functions, the

variability in payoffs does not change the stability status of boundary equilibria. As we

will see later on in Article 3, this is also consistent with results in the case of weak selection

with linear fitness functions.

Next, we look at any interior equilibrium. In the absence of random environmental

noise, that is, σij = 0 for i, j = 1, 2 so that the payoff matrix is constant and given by

its mean, an equilibrium 0 < x̂ < 1 exists if sgn(b̄ − d̄) = sgn(c̄ − ā), in which case

x̂ = (b̄ − d̄)/γ, where γ = b̄ − d̄ + c̄ − ā. Moreover, x̂ is globally asymptotically stable if
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0 < γ < 2/(x̂(1−x̂)), while period doubling bifurcation and chaos occur if γ > 2/(x̂(1−x̂))

(Tao et al., 1997). In the presence of random environmental noise, which means σij > 0

for some i and j, a constant interior equilibrium x̂ is possible only if there exists û > 0

such that û(ā − c̄) = d̄ − b̄, in which case x̂ = û/(1 + û). This gives the payoff matrix in

the form (0.4.12). Then we have the following result.

Proposition 0.3 With the payoff matrix (0.4.12) in the case σ2
z small enough and under

generic conditions, a constant interior equilibrium x̂ = û/(1+û) of the recurrence equation

(0.4.21) with û > 0 is SLS if

σ2
z >

(
1 + x̂z̄

x̂

)
log(1 + x̂z̄)2 , (0.4.22)

and SLU if the inequality is reversed.

This result shows not only that the two boundary equilibria (x̂ = 0 and x̂ = 1) and

the constant interior equilibrium (x̂ = û/(1+ û)) can be simultaneously SLS, but also that

an increase in the variance of the environmental noise (σ2
z) will promote stochastic local

stability of the constant interior equilibrium. This is rather counterintuitive.

Three examples are given in Article 2 and illustrated in Figures 2.1, 2.2 and 2.3.

Example 1 is for the payoff matrix (0.4.12) with û = 1 and shows three SLS equilibria,

two on the boundary and one in the interior, in the case where z̄ > 0 and σ2
z > (2 +

z̄)2log(1 + z̄/2)2. Example 2 is for the same payoff matrix and shows only one stable

periodic two-cycle in the case where z̄ > 4 and σ2
z = 0. Moreover, an increase of σ2

z ,

promotes stochastic local stability of x̂ = 1/2, although a period-doubling scheme is not

completely destroyed if σ2
z is not too large. Example 3 takes û = 1/2 in the payoff matrix

(0.4.12), so that x̂ = 1/3 is a constant interior equilibrium. If σ2
z = 0, an increase of |z̄| > 6

can lead to period-doubling bifurcation and chaos (Tao et al., 1997). However, in the case

σ2
z > 0, for instance when z̄ = −9, it is possible to get a new peak of the probability

distribution at x̂ = 1/3 instead of a stable periodic four-cycle as occurs in the case σz = 0.
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Although nonlinear biological systems can result in the emergence of complex dynamics

such as chaos (May, 1976), these are hard to find in natural populations. Our results sug-

gest that the complexity of biological system could be reduced significantly by randomness

in the surrounding environment.

Article 3

This article studies randomized matrix games in the case of weak selection. It addresses the

effect of selection intensity, which changes only the speed of evolution in the deterministic

case, on the evolutionary dynamics in a stochastic environment.

We consider an evolutionary matrix game in an infinite population with discrete, non-

overlapping generations. With the payoff matrix in (0.4.1), the fitness of strategy i is given

by in the form fi = (1−w)+wπi, where πi represents the expected payoff of strategy i in

random pairwise interactions, for i = 1, 2. The parameter w is the intensity of selection.

It represents the proportion of fitness that is driven by the payoffs. Weak selection means

that w is significantly small compared to 1, that is, w ¿ 1.

With xt denoting the frequency of strategy 1 at time t in number of generations, the

recurrence equation from time t to time t + 1 is given by

xt+1 =
xt((1− w) + wπ1,t)

xt((1− w) + wπ1,t) + (1− xt)((1− w) + wπ2,t)
, (0.4.23)

where π1,t = xtat +(1−xt)bt and π2,t = xtct +(1−xt)dt. This can be viewed as a Wright-

Fisher model in the limit of a large population size (Hofbauer and Sigmund, 1998), but

with fitness differences of order larger than the inverse of the population size and subject

to stochastic fluctuations.

A stochastic local stability analysis of the boundary equilibria yields the following

result.

Proposition 0.4 Assuming the evolutionary dynamics given by the recurrence equation

(0.4.23) with the random payoff matrix (0.4.1) and under weak selection, that is, w ¿ 1,
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the fixation state x̂ = 0 is SLS if b̄ − d̄ < 0, and SLU if b̄ − d̄ > 0. By symmetry, the

fixation state x̂ = 1 is SLS if c̄− ā < 0, and SLU if c̄− ā > 0

Moreover, if û(at − ct) = dt − bt holds for all t ≥ 0, where û = x̂/(1− x̂) is a positive

constant, which means that the payoff matrix is in the form (0.4.12), we have the following

result.

Proposition 0.5 Assuming the evolutionary dynamics given by the recurrence equation

(0.4.23) with the random payoff matrix (0.4.12) and under weak selection, that is, w ¿ 1,

the constant interior equilibrium x̂ = û/(1 + û) of the recurrence equation (0.4.23) with

û > 0 is SLS if c̄− ā > 0, and SLU if c̄− ā < 0

These results reveal that the stability properties of an equilibrium in matrix games

under weak selection in a stochastic environment and in a constant environment are similar.

If an equilibrium is SLS in the randomized game under weak selection, it is a strict NE in

the deterministic game with the corresponding mean payoff matrix. Moreover, there is only

one exception in the reverse statement for an interior equilibrium, when û(at−ct) = dt−bt

does not hold for all t ≥ 0. In this case, the population state in the stochastic dynamics

under weak selection may tend to stay close to an interior equilibrium in the deterministic

dynamics but without converging to it. Therefore, even if selection is weak, whether or

not a constant interior equilibrium exists and is SLS in the stochastic dynamics cannot in

general be determined only by the means of the random payoffs.

Figures 3.1 and 3.2 in Article 3 give results of numerical simulations for stochastic local

stability of equilibria on the boundary and in the interior, respectively. As the intensity of

selection w decreases, the evolutionary dynamics in a randomized matrix game approaches

the dynamics in the deterministic game with the mean matrix payoff.

Although, variability in payoffs does not seem to affect the stability properties of

equilibria in matrix games as the intensity of selection diminishes, it may have an effect

on the convergence rate. As a matter of fact, when x̂ = 0 is SLS, the rate of convergence
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to 0 is approximated by

E
(

log
[

(1− w) + wbt

(1− w) + wdt

])
≈





w(b̄− d̄) +
w2

(
σ2

d−σ2
b

)
2 if σ2

b 6= σ2
d ,

w(b̄− d̄) + w3σ2
(
b̄− d̄

)
if σ2

b = σ2
d = σ2 ,

(0.4.24)

while w(b̄ − d̄) < 0 approximates the rate of convergence in the deterministic mean-

field dynamics. Therefore, the rate of convergence in the stochastic dynamics is faster

(or slower) than the rate of convergence in the deterministic mean-field approximation if

σ2
b ≥ σ2

d (or σ2
b < σ2

d, respectively). Analogous conclusions can be drawn for the fixation

state x̂ = 1.

Similarly, when the interior equilibrium x̂ = û/(1+û) is SLS, the rate of of convergence

to the equilibrium is given by

E

(
log

[
û((1− w) + wat) + ((1− w) + wdt)
û((1− w) + wct) + ((1− w) + wdt)

])
≈ w(ā− c̄)

(1 + û)
(0.4.25)

+





ûw2

2(1+û)2

[
û
(
σ2

c − σ2
a

)
+ 2(σc,d − σa,d)

]
if û

(
σ2

c − σ2
a

)
+ 2(σc,d − σa,d) 6= 0 ,

w3

(1+û)3

(
û2σ2

a + σ2
d + 2ûσa,d

)
(ā− c̄) if û

(
σ2

c − σ2
a

)
+ 2(σc,d − σa,d) = 0 .

This implies that the rate of convergence to the interior equilibrium x̂ in the stochastic

dynamics is faster (or slower) than the rate in the deterministic mean-field approximation

if û
(
σ2

c − σ2
a

)
+ 2(σc,d − σa,d) ≤ 0 (or û

(
σ2

c − σ2
a

)
+ 2(σc,d − σa,d) > 0, respectively).

These last results suggest that the rate of convergence or divergence of the system near

an equilibrium not only depends on environmental noise, but can even be enhanced by

environmental noise. Figure 3.2b gives a example where the stochastic dynamics is faster

than the deterministic mean-field dynamics.

Article 4

In this paper, we apply the results in Article 1 to study the evolution of cooperation.

We consider a randomized Prisoner’s Dilemma (RPD) game, which assumes a random

payoff matrix whose mean determines a classic PD game, and we use the concepts of SLS

and SES to show that increasing the variance in payoffs for defection is conducive to the

evolution of cooperation.
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Let us start with the definition of a randomized Prisoner’s Dilemma (RPD) game.

Definition 0.5 An evolutionary 2 × 2 matrix game is called a randomized Prisoner’s

Dilemma (RPD) game if the two strategies are cooperation (C) and defection (D) with

random payoff matrix

C D

C

D


Rt St

Tt Pt




(0.4.26)

where Rt and St are the payoffs to C against C and D, respectively, while Tt and Pt are the

corresponding payoffs to D against the same two strategies, all at time t ≥ 0. Moreover,

these payoffs are random variables, not necessarily independent, and their mean values

determine a PD game, which means that T̄ > R̄ > P̄ > S̄ and 2R̄ > T̄ + S̄.

We consider a RPD game with positive and bounded payoffs in an infinite population

with discrete, non-overlapping generations. Let xt and 1− xt denote the frequencies of C

and D, respectively, at time t ≥ 0 in number of generations. Assuming random pairwise

interactions, the recurrence equation from time t to time t + 1 is given by

xt+1 =
xtπC,t

xtπC,t + (1− xt)πD,t
, (0.4.27)

where πC,t = xtRt + (1 − xt)St and πD,t = xtTt + (1 − xt)Pt. Applying Theorem 0.1

for a boundary equilibrium and assuming that the variances of the payoffs are small, the

following result can be shown.

Proposition 0.6 Assuming the recurrence equation (0.4.27) for the frequency of C in a

RPD game with payoff matrix (0.4.26) in the case of small enough variances in the payoffs,

C-fixation is SLS if

log
(
R̄/T̄

)
>

(
σ2

R/R̄2 − σ2
T /T̄ 2

)/
2 , (0.4.28)

and SLU if the inequality is reversed. By symmetry, D-fixation is SLS if

log
(
P̄ /S̄

)
>

(
σ2

P /P̄ 2 − σ2
S/S̄2

)/
2 , (0.4.29)
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and SLU if the inequality is reversed.

In particular, C-fixation is SLS if σ2
R = 0 and σ2

T > −2T̄ 2 log
(
R̄/T̄

)
, while D-fixation

is SLU if σ2
S = 0 and σ2

P > 2P̄ 2 log
(
P̄ /S̄

)
. Therefore, under the RPD game dynamics, not

only C-fixation can be SLS even if T̄ > R̄, but also D-fixation can be SLU even if P̄ > S̄.

This implies that an increase of σ2
T may promote C-fixation, while an increase of σ2

P may

push the population state away from D-fixation.

Figure 4.1a,b in Article 4 presents simulation results on the RPD game obtained by

varying the values of T̄ , P̄ , σ2
T and σ2

P . These are in agreement with the theoretic predic-

tions, even if the variances of the payoffs are not that small.

On the other hand, conditions for C and D to be SES can be obtained.

Proposition 0.7 Under the assumptions of the previous proposition, the pure strategy

C is SES against any nearby mixed strategy if we have R̄2(T̄ − R̄) > −(T̄ σ2
R − R̄σRT ).

By symmetry, the pure strategy D is SES against any nearby mixed strategy if we have

P̄ 2(S̄ − P̄ ) < −(S̄σ2
P − P̄ σSP ).

We notice that, as the covariances between the payoffs diminish to 0, the conditions for

C and D to be SES are in agreement with the conditions for pure strategies in randomized

2 × 2 matrix games with independent payoffs to be SES as given in proposition 0.1.

Moreover, combining the conditions in the two propositions above, we see that there

exists a threshold value of the ratio P̄ /S̄, denoted by z∗, such that D-fixation is SLS if

P̄ /S̄ < z∗, while the pure strategy D may not be SES. Conversely, D-fixation is SLU if

P̄ /S̄ > z∗, while the pure strategy D may be SES. This is illustrated in Figure 4.1c in

Article 4.

Article 5

In this article, we study a randomized 2× 2 matrix game in a finite population assuming

a Wright-Fisher reproduction scheme (Fisher, 1930; Wright, 1931; Cannings, 1974). We
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establish a diffusion approximation in the limit of a large population and apply the ap-

proximation in the case of the RPD game. This will allow us to show that increasing the

variance in payoffs for defection should increase the probability of ultimate fixation of a

single cooperating mutant.

We consider discrete, non-overlapping generations in a finite population of fixed size

N and measure time in number of N generations. Then, ∆t = 1/N represents the time

interval from one generation to the next. There are two possible pure strategies in the

population, S1 and S2, and the payoffs at time t ≥ 0 are given by the matrix

S1 S2

S1

S2


η1(t) η2(t)

η3(t) η4(t)




, (0.4.30)

where ηi(t) are random variables with values that are always larger than−1 and probability

distributions that do not depend on time t ≥ 0, for i = 1, 2.

In addition, we assume that these payoffs have expected values, variances and covari-

ances of order given by the inverse of the population size. More precisely, they can be

expressed in the form ηi(t) = µiN
−1 + ξi(t), where E(ξi(t)) = 0, Var(ξi(t)) = σ2

i N
−1

and Cov(ξi(t), ξj(t)) = σijN
−1, while all the higher-order moments of ξi(t) are functions

o(N−1), for i, j = 1, . . . , 4 with i 6= j. The population-scales parameters µi, σ2
i and σij

are assumed constant.

We suppose that the expected payoffs in random pairwise interactions have additive

effects on fitness understood as relative reproductive success with a baseline value equal

to 1. Given that the frequency of strategy S1 is x(t) at time t ≥ 0, and as a result

of a Wright-Fisher reproduction model, x(t + ∆t) follows a binomial distribution whose

parameters are the population size N and a random frequency

x′(t) =
x(t)π1(t)

x(t)π1(t) + (1− x(t))π2(t)
, (0.4.31)

where π1(t) = 1 + x(t)η1(t) + (1− x(t))η2(t) and π2(t) = 1 + x(t)η3(t) + (1− x(t))η4(t).
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Then the change in the frequency of S1 from time t to time t + ∆t, which is given by

∆x = x(t + ∆t)− x(t), satisfies

E(∆x|x(t) = x) = m(x)∆t + o(∆t), (0.4.32)

E((∆x)2|x(t) = x) = v(x)∆t + o(∆t), (0.4.33)

E((∆x)4|x(t) = x) = o(∆t), (0.4.34)

where

m(x) = x(1− x)
(
µ2 − µ4 + x

(
µ1 − µ2 − µ3 + µ4

)

+ x3(σ13 − σ2
1) + x(1− x)2(2σ34 − σ14 − σ23 + σ24 − σ2

2)

+ x2(1− x)(−2σ12 + σ14 + σ23 − σ13 + σ2
3) + (1− x)3(σ2

4 − σ24)
)

(0.4.35)

and

v(x) = x(1− x)
(
1 + x3(1− x)(σ2

1 + σ2
3 − 2σ13) + x(1− x)3(σ2

2 + σ2
4 − 2σ24)

+ 2x2(1− x)2(σ12 + σ34 − σ14 − σ23)
)
. (0.4.36)

These conditions ascertain a diffusion approximation with drift function m(x) and diffusion

function v(x) in the limit of a large population with the population size N as unit of time

(see, e.g., Kimura, 1964; Risken, 1992; Ewens, 2004). Owing to diffusion theory, the

probability of ultimate fixation of strategy S1 given an initial frequency x(0) = p is given

by

u(p) =

∫ p
0 ψ(y)dy∫ 1
0 ψ(y)dy

, (0.4.37)

where

ψ(y) = exp
(
−2

∫ y

0

m(x)
v(x)

dx

)
(0.4.38)

with m(x) and v(x) given above.
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Considering the case of a RPD game with independent payoffs for cooperation (C)

or defection (D) against cooperation or defection, that is σij = 0 for i, j = 1, . . . , 4 with

i 6= j, the population-scaled expected payoffs are given by

µ1 µ2

µ3 µ4


 =


R S

T P


 (0.4.39)

with T > R > P > S and 2R > T + S. Now, let FC = u(1/N) (FD = 1 − u(1 − 1/N),

respectively) denote the probability of ultimate fixation of a single cooperating mutant

(defecting mutant, respectively) in an all defecting population (cooperating population,

respectively). We say that the evolution of cooperation is favored by selection, the evolution

of cooperation is disfavored (not favored) by selection and the evolution of cooperation is

more favored by selection than the evolution of defection, if the conditions FC > 1/N ,

FD < 1/N and FC > FD, respectively, are satisfied. Assuming the population size N large

enough, these conditions are equivalent to the conditions
∫ 1
0 ψ(y)dy < 1,

∫ 1
0 ψ(y)dy > ψ(1)

and ψ(1) < 1, respectively.

It can be shown that the partial derivatives of g(x) = m(x)/v(x) with respect to the

variances of the payoffs satisfy ∂g(x)/∂σ2
3 > 0 and ∂g(x)/∂σ2

4 > 0 for 0 < x < 1. This

leads to the following result.

Proposition 0.8 Assuming a Wright-Fisher model for a RPD game with independent

payoffs in a large but finite population, whose payoffs given in (0.4.30) have population-

scaled expected values given in (0.4.39), increasing the variance of at least one payoff for

defection, this is σ2
3 and σ2

4, increases the probability of ultimate fixation of cooperation

introduced as a single mutant in an all defecting population, FC , while it decreases the prob-

ability of ultimate fixation of defection introduced as a single mutant in an all cooperating

population, FD.

Now, consider the situation where the population-scaled expected payoffs determine
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an additive PD game, that is,

µ1 µ2

µ3 µ4


 =


b− c −c

b 0


 (0.4.40)

with b > c > 0, where c represents a cost of cooperation and b a benefit. When c ≤ 1, it

is possible to show that ∂g(x)/∂σ2
1 < 0 and ∂g(x)/∂σ2

2 < 0 for 0 < x < 1. Thus we get

the following supplementary result.

Proposition 0.9 Under the assumptions of the previous proposition for a RPD game but

with additive expected payoffs so that the population-scaled values are in the form (0.4.40)

where c ≤ 1, diminishing the variance of at least one payoff for cooperation, that is, σ2
1

or σ2
2, increases the probability of ultimate fixation of cooperation introduced as a single

mutant in an all defecting population, FC , while it decreases the probability of ultimate

fixation of defection introduced as a single mutant in an all cooperating population, FD.

In section 5.5 of Article 5, we discuss five special cases of the RPD game with additive

expected payoffs to exhibit the effects of the variances on conditions under which the

evolution of cooperation could be favored by selection. Table 5.1 gives the numerical

threshold values for FC > 1/N , FD < 1/N and FC > FD to hold.

Next, we turn our attention to the case of a RPD game with additive payoffs that are

not independent. We suppose that the cost c and benefit b in an additive deterministic

PD game are replaced with random variables c(t) and b(t), respectively, so that the payoff

matrix at time t ≥ 0 is given by

η1 η2

η3 η4


 =


b(t)− c(t) −c(t)

b(t) 0


 . (0.4.41)

Moreover, let µc, µb, σ2
c , σ2

b and σbc represent the population-scaled expected values,

variances and covariance of c(t) and b(t), respectively. Then, the conditions for FC > 1/N ,

FD < 1/N and FC > FD become

σbc − σ2
c > 3µc, σbc − σ2

c > 2µc, σbc − σ2
c >

3
2
µc, (0.4.42)

44



respectively. Since µc > 0, these conditions can hold only if σbc > σ2
c , in which case the

first condition is the most stringent one and the third condition the least stringent one.

In particular, if b(t) = rc(t) where r > 0 is a constant that represents the benefit to

cost ratio, the above conditions reduce to

r > 1 + 3
(

µc

σ2
c

)
, r > 1 + 2

(
µc

σ2
c

)
, r > 1 +

3
2

(
µc

σ2
c

)
, (0.4.43)

respectively.

The above results can be extended in the case of an iterated RPD game, which is done

in Section 5.7 of Article 5.

0.4.2 In part 2

Part 2 of the thesis contains 3 articles on the effects of opting-out on the evolution of

cooperation. Articles 6 and 7 are already published, while Article 8 is under review.

Article 6

Article 6 studies the iterated PD game with opting-out in a large population under an

assumption of two time-scales. It provides a theoretical framework for explaining long-

term coexistence of cooperation and defection.

We consider a PD game with additive payoffs for cooperation (C) and defection (D)

in pairwise interactions given by the 2× 2 matrix

C D

C

D


b− c −c

b 0




. (0.4.44)

Every interaction between two players can be repeated but, at the end of each round, each

player can unilaterally decide whether or not to continue the interaction with the same

player. Based on self-interest in the PD game, both a cooperator and a defector prefer

to interact with a cooperator. Thus, the rational choice of every player is to continue an

45



interaction if the opponent is a cooperator and to stop it if the opponent is a defector. This

is called the opting-out strategy, or Out-for-Tat (OFT) strategy for short. Moreover, it is

assumed that, even if two players are willing to continue their interaction, this interaction

may stop at the end of each round with some fixed probability ρ > 0. In all cases, when

an interaction between two players stops for one reason or another, the players become

free to form new pairs for the next round (see Figure 7.3 for a setup of the model).

Assuming random pairing of free players at the end of each round of interaction, the

pair frequencies, denoted by PCC , PCD and PDD, have expected changes from one round

to the next given by

E (∆PCC) = (1− ρ)PCC +
(2ρPCC + PCD)2

4(1− (1− ρ)PCC)
− PCC , (0.4.45a)

E (∆PCD) =
(2ρPCC + PCD)(PCD + 2PDD)

2(1− (1− ρ)PCC)
− PCD , (0.4.45b)

E (∆PDD) =
(PCD + 2PDD)2

4(1− (1− ρ)PCC)
− PDD , (0.4.45c)

if the population is large enough and selection is neglected. On the other hand, the

frequency of C is given by x = PCC + PCD/2. Keeping this frequency fixed and solving

E (∆PCC) = E (∆PCD) = E (∆PDD) = 0, we get the equilibrium condition P 2
CD =

4ρPCCPDD. This condition assumes that the changes in C and D frequencies occur at a

longer time-scale than the changes in pair frequencies. It is similar to the Hardy-Weinberg

equilibrium in population genetics (Ewens, 2004).

Using the fact that PCC + PCD + PDD = 1, the equilibrium condition becomes

P ∗
CD = − ρ

1− ρ
+

√(
ρ

1− ρ

)2

+
4x(1− x)ρ

1− ρ
. (0.4.46)

This function is assumed to give the frequency of CD pairs given a frequency x for C and

1 − x for D (see Figure 7.4a in Article 6 for an illustration). Then, the expected payoffs

of C and D are given by

πC =
2x− P ∗

CD

2x
b− c , (0.4.47a)

πD =
P ∗

CD

2(1− x)
b . (0.4.47b)
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These are used in the replicator equation for C and D in an infinite population in contin-

uous time to yield

dx

dt
= x(1− x)(b− c)− bP ∗

CD

2
. (0.4.48)

With respect to this dynamics, the boundary x = 0 is locally asymptotically stable and

the boundary x = 1 is unstable. On the other hand, if ρ < (b− c)2/(b + c)2, there are two

interior equilibria, denoted by x∗1 and x∗2 with 0 < x∗2 < 1/2 < x∗1 < 1. Their expressions

are given by

x∗1,2 =
1
2
±

√
1
4
− bc

(b− c)2
ρ

1− ρ
. (0.4.49)

Here, the interior equilibrium x∗1 (with x∗1 > 1/2) is locally asymptotically stable, while

x∗2 (with x∗2 < 1/2) is unstable. If ρ = (b− c)2/(b + c)2, then x∗1 = x∗2 = 1/2 is an unstable

equilibrium. Finally, if ρ > (b− c)2/(b + c)2, then no interior equilibrium exists and x = 0

is the only globally stable equilibrium. Figure 7.4b in Article 6 summarizes the phase

portrait of the dynamics.

Moreover, in the iterated PD game with OFT used by all players, none of the mixed

strategy (x, 1− x), even (x∗1, 1− x∗1), can be an ESS when ρ < (b− c)2/(b + c)2. However,

when the population is at the interior stable equilibrium x∗1, no individual not using OFT

can successfully invade this population. This is illustrated by simulation results that show

that neither AllD nor TFT can invade a mixed population where they must play against

both OFT-cooperators and OFT-defectors (see Figure 6.1 in Article 6 for details).

Article 7

Article 7 reports results of an experiment conducted with 264 university students playing

an iterated PD game with or without opting-out. Note that none of the participants had

any background in game theory or economics, they all played anonymously via computer

screens, and they were not allowed to communicate with each other.

47



The participants in the experiment were divided into five groups, including two control

groups (C1 and C2) and three treatment groups (T1, T2 and T3). All three treatment

groups used the same setting, thus we treated them as a single group, denoted by T. The

payoff matrix in one round of a game between two players using either cooperation (C) or

defection (D) as strategy is given in all cases by

C D

C

D


4 1

5 2




, (0.4.50)

which corresponds to a PD game with cost c = 1 and benefit b = 3 for cooperation,

subtracted from, or added to, a baseline payoff 2 to avoid negative values. Games without

any opting-out were played in the control groups C1 and C2, an iterated PD game in

C1, with a fixed probability 5/6 of repetition of the game between the same players, and

a one-round PD game in C2. An iterated PD game with opting-out was played in the

treatment group T. In this group, at the end of each round, an interaction between two

players is continued with probability 5/6 but only if both player are willing to continue.

Otherwise, the interaction was interrupted. When an interaction between two players was

interrupted, the players form new pairs at random with players in the same situation.

The experimental results presented in Figure 7.1 in Article 7 concern the cooperation

level, defined as the frequency that C is used. Comparing the averages of this frequency

for the first 10 rounds and the last 10 rounds, we notice an increase from 0.64 to 0.8 in

C1, a drop from 0.39 to 0.28 in C2 and non-significant increase from 0.56 to 0.58 in T.

These results are basically in agreement with the equilibrium structures in the theoretical

model, where x = 0 is the only NE in C2, while x = 1 and x = x∗1 = 0.82 are locally

asymptotically stable in C1 and T. However, the values of the equilibrium points are

not exactly the same. In the theoretical analysis, we assumed that players always had a

rational behavior and time was long enough for the population to evolve to an equilibrium,

while in the experiment, participants may act irrationally and the number of rounds is not
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large. Nevertheless, the experiment provides a possible explanation for a stable coexistence

of C and D.

Moreover, in the treatment group T, the proportion of players continuing the interac-

tion with the opponent in the next round is 0.92 if the opponent displays C, whereas this

proportion drops to 0.53 if the opponent displays D. More precisely, a C-player in a CC

pair chooses to continue with probability 0.94, while a C-player (D-player, respectively) in

a CD pair chooses to continue with probability 0.67 (0.65, respectively), and a D-player

in a DD pair chooses to continue with probability 0.57 (see Figure 7.2 in Article 7). The

action of a cooperator in CC pairs supports our assumption on opting-out, since then a

C-player chooses to continue with probability close to 1. However, the actions of the other

players are not in agreement with our assumption, which can explain the discrepancy be-

tween the observed equilibrium values in the experiment and the values predicted from

the theoretical model.

There might be several possible reasons for the actual behavior of the participants in

the experiment. The frequency of C-players among all the free players, who did not repeat

the interaction with their partner, is much less than the frequency of C in the population.

The probability to find a new partner displaying C is not that high. Moreover, we surmise

that the following factors might come into play:

(1) a C-player in a CD pair expects a change of strategy of the opponent or seeks a

revenge against the opponent in the next round;

(2) a D-player in CD pair fears a revenge of the opponent in the next round.

On the other hand, we observed that 85.16% of the participants in the experiment

stopped their interaction with their opponent with significantly higher probability when

the opponent displayed D than when the opponent displayed C. These participants can be

seen as OFT-preferred strategists. On the contrary, only 3.3% of the participants stopped

their interaction with significantly higher probability when the opponent displayed C than

when it displays D.
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Article 8

Article 8 studied the iterated PD game with opting-out in a large but finite population

with Moran process (Hofbauer and Sigmund, 1998; Ewens, 2004). Scalings of the intensity

of selection and time with respect to the population size, we will establish a diffusion ap-

proximation with two time scale problem, where pair frequency change faster than strategy

frequency. Moreover, for an additive PD game, we give the conditions for cooperation to

be favored by selection.

We consider a population consist of N pairs of interacting individuals of strategies

cooperation C or defection D. And the payoffs are given by the entries of a 2× 2 matrix.

C D

C

D


πCC πCD

πDC πDD




, (0.4.51)

The change of population states from t to t + ∆t, where ∆t = 1/(2N2), contains a

recombination process of pairs and a birth-death update. The process is illustrated in

Figure 8.1. At the beginning of time t, suppose that all individual adopt opting-out

strategy, so that all CD and DD pairs break apart, while each CC pair breaks apart

with probability ρ, which is a constant. The free individuals who leave their previous

interactions will reform pairs at random. After that, the frequency of CC, CD and DD

in all pairs are denoted by qCC , qCD and qDD respectively, and the expression of their

expectations are given in (8.2.5). The fitness of an i-strategist when interacting with a

j-strategist is given by

wij = 1 + sπij (0.4.52)

where s = σ/N represents the intensity of selection. Then one individual is chosen with

probability proportional to the fitness to produce an offspring identical to itself and one

individual is chosen at random to be replaced by the offspring.

Following the replacement of an individual by the offspring, the frequencies of CC,

CD and DD among the N pairs are denoted by P ′
CC , P ′

CD and P ′
DD respectively, and the
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frequency of C in these pairs is P ′
CC+P ′

CD/2 = x′. Let ∆x = x′−x and ∆PCC = P ′
CC−PCC

denote the change in frequency of C and CC respectively. Given these frequencies at time

t, the conditional moments of ∆x and ∆PCC are approximated as

E(∆x) =
σ

2N2
E ((1− x)A + xB) + o(N−2), (0.4.53a)

E((∆x)2) =
x(1− x)

2N2
+ o(N−2), (0.4.53b)

E((∆x)4) = o(N−3), (0.4.53c)

where A = qCCπCC + qCD
2 πCD and B = qDDπDD + qCD

2 πDC , and

E(∆PCC) =
(x− PCC)2 − ρPCC(1− 2x + PCC)

1− (1− ρ)PCC
+ O(N−1/2), (0.4.54a)

Var(∆PCC) = O(N−1). (0.4.54b)

Moreover, in an infinite population in the absence of selection, the frequency of C remains

constant while the frequency of CC converges uniformly to an equilibrium value

P ∗
CC = x +

ρ

2(1− ρ)
−

√
ρ2 + 4x(1− x)ρ(1− ρ)

2(1− ρ)
, (0.4.55)

These conditions (0.4.53), (0.4.54) and (0.4.55) show that there are two time scales in the

discrete-time Markov chain for the population state, where variable PCC changes more

rapidly than variable x. Substituting PCC = P ∗
CC in the expression of qCC , qCD and qDD

leads to

E(qCC) = P ∗
CC + O(N−1/2), (0.4.56a)

E(qCD) = 2x− 2P ∗
CC + O(N−1/2), (0.4.56b)

E(qDD) = 1− 2x + P ∗
CC + O(N−1/2). (0.4.56c)

As N →∞, this gives the result below according to Ethier and Nagylaki 1980.

Proposition 0.10 Consider a PD game with payoff matrix (0.4.51) for N pairs of indi-

viduals so that, as a result of opting-out from one round to the next, all pairs break apart to

form new pairs at random but a random proportion of CC pairs whose mean is 1− ρ < 1.
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Assume one birth-death event at the end of each round with the probability of giving birth

proportional to an affine function of payoff with coefficient σ/N and the probability of dy-

ing given by 1/(2N). Taking 2N2 birth-death events as unit of time and letting N → ∞,

the Markov chain of the frequency of C converges to a diffusion with v(x) = x(1 − x) as

diffusion function and

m(x) = σ (x(1− x)(πCC − πDD)− (x− P ∗
CC) ((1− x)(πCC − πCD) + x(πDC − πDD)))

(0.4.57)

as drift function, where P ∗
CC is given by (0.4.55).

Now, considering an additive PD game with payoff matrix (0.4.44), the drift function

above can be simplified to

m(x) = σ

[
x(1− x)(b− c)− bf(x, ρ)

2(1− ρ)

]
, (0.4.58)

where f(x, ρ) =
√

ρ2 + 4x(1− x)ρ(1− ρ)−ρ. Let FC (FD respectively) be the probability

of ultimate fixation of C (D respectively) introduced as a single mutant in an all D

(C respectively) population. Following the terminology in Article 5, selection favors the

evolution of cooperation, favors the evolution of cooperation more than defection, disfavors

the evolution of defection if and only if FC > (2N)−1, FC > FD and FD < (2N)−1

respectively. These conditions are also equivalent to

∫ 1

0
ψ(y)dy < 1, (0.4.59a)

ψ(1) < 1, (0.4.59b)
∫ 1

0
ψ(y)dy > ψ(1), (0.4.59c)

respectively, where ψ(y) = exp
(
−2

∫ y
0

m(x)
v(x) dx

)
. With the notation r = b/c > 1 for the

benefit-to-cost ratio and a = (1/ρ) − 1 ≥ 0 for the expected number of times that each

CC pair continues to interact, we can get the proposition from the monotonicity of ψ(y)
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Proposition 0.11 Consider an additive PD game with payoff matrix (0.4.44) in the

framework of proposition 0.10 with 0 < ρ < 1. In a large enough population, increas-

ing the value of r = b/c > 1 or a = 1/ρ − 1 > 0 (or decreasing the value of ρ) increases

(decreases, respectively) the probability of ultimate fixation of cooperation (defection, re-

spectively) introduced as a single mutant in an all defecting (cooperating, respectively)

population, FC (FD, respectively).

Moreover, when FC = FD, it is possible to show that FC = FD < (2N)−1. Combined with

the proposition above, we get the following result

Proposition 0.12 In the setting of proposition 0.11, as the value of r or a increases,

the conditions (0.4.59c), (0.4.59b) and (0.4.59a) for FD < (2N)−1, FC > FD and FC >

(2N)−1, respectively, are satisfied in this order. In particular, when cooperation is favored

by selection, it is necessarily fully favored by selection.

Finally, in order to get explicit conditions for cooperation to be favored by selection, we

use the inequalities

4x(1− x)(
√

ρ− ρ) ≤ f(x, ρ) ≤
√

4x(1− x)(
√

ρ− ρ), (0.4.60)

and replace f(x, ρ) in ψ(y) with the lower bound as its approximation. Thus we get

condition for cooperation to be favored by selection in any sense, that is r > (1+
√

ρ)/(1−
√

ρ)

Figure 8.2 illustrates the surfaces determined by f(x, ρ) and its upper, lower bound.

It approaches to the lower bound as ρ → 0 while approach to the upper bound as ρ → 1.

Figure 8.3 shows the difference between the exact numerical solution of FD = (2N)−1,

FC = FD, FC = (2N)−1 and the approximation obtained by using the lower and upper

bounds of f(x, ρ).
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Abstract

Over the past thirty years, evolutionary game theory and the concept of an evolution-

arily stable strategy have been not only extensively developed and successfully applied

to explain the evolution of animal behaviors, but also widely used in economics and so-

cial sciences. Nonetheless, the stochastic dynamical properties of evolutionary games in

randomly fluctuating environments are still unclear. In this study, we investigate condi-

tions for stochastic local stability of fixation states and constant interior equilibria in a

two-phenotype model with random payoffs following pairwise interactions. Based on this

model, we develop the concepts of stochastic evolutionary stability (SES) and stochastic

convergence stability (SCS). We show that the condition for a pure strategy to be SES and

SCS is more stringent than in a constant environment, while the condition for a constant

mixed strategy to be SES is less stringent than the condition to be SCS which is less

stringent than the condition in a constant environment.
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1.1 Introduction

Thirty four years ago, Maynard Smith’s (1982) monograph “Evolution and the Theory

of Games” was published. A new fundamental theoretical framework to understand the

evolution of animal behavior had reached maturity and was finally made available to a

large readership. Since then evolutionary game theory has been very popular not only in

biology but also in economics and social sciences.

Evolutionary game theory started with the concept of evolutionarily stable strategy

(ESS) introduced by Maynard Smith and Price (1973). Let us recall that an ESS is

a strategy understood as a behavioural phenotype such that, if all the members of a

population adopt it, then no mutant strategy could invade the population under the effect

of natural selection (Maynard Smith, 1974, 1982). In the context of symmetric pairwise

interactions occurring at random in an infinite population, a strategy x is an ESS if: (i)

the payoff to x against itself is larger or equal to the payoff to any other strategy y against

x, and (ii) the payoff to x against y exceeds the payoff to y against itself in the case of

an equality in (i). With E(x,y) representing the payoff received by an individual using

strategy x against an individual using strategy y, this means that: (i) E(x,x) ≥ E(y,x)

for any strategy y 6= x, and (ii) E(x,y) > E(y,y) in the case of an equality in (i). These

conditions are necessary and sufficient for the expected payoff to x to exceed the expected

payoff to y in an infinite population of individuals using either x or y if the frequency of

y is small enough.

If the relative growth rate of a strategy is given by its expected payoff, which defines its

fitness, then the dynamics of the strategy frequencies is described by the replicator equation

(Taylor and Jonker, 1978; Hofbauer and Sigmund, 1998). For n pure strategies, we have

ẋi = xi

(
(Ax)i − xAx

)
, where x = (x1, . . . , xn) is the strategy frequency vector, with xi

being the frequency of strategy i for i = 1, . . . , n, and A = (aij) is the payoff matrix,

with aij being the payoff to strategy i against strategy j for i, j = 1, . . . , n. Here, it is

understood that xAx =
n∑

i=1
xi(Ax)i =

n∑
i=1

n∑
j=1

xixjaij with (Ax)i being the expected payoff
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to strategy i for i = 1, . . . , n. Moreover, if x is an ESS with respect to the mixed strategies

of the n pure strategies with the bilinear payoff function E(x,y) = xAy, then it is an

asymptotically stable rest point of the above replicator dynamics (Hofbauer and Sigmund,

1998). In the special case n = 2, the payoff matrix takes the form A =


a11 a12

a21 a22


,

and the replicator dynamics for the frequency of strategy 1, represented by x, reduces to

ẋ = x(1 − x)
(
(a11 − a12 − a21 + a22)x − (a22 − a21)

)
. Moreover, strategy 1 is an ESS if

a11 > a21, or a11 = a21 and a12 > a22. These conditions are necessary and sufficient for

the expected payoff to strategy 1 to exceed the expected payoff to strategy 2 in an infinite

population when strategy 2 is rare enough.

In a population of fixed finite size N , any fixation state can be reached from any initial

state by random drift. In this framework, Nowak et al. (2004) proposed to call strategy

1 an ESSN if two conditions hold when the initial frequency of strategy 2 is N−1: (i)

strategy 2 has a lower expected payoff than strategy 1 as in Schaffer (1988), in which

case selection is said to oppose strategy 2 invading strategy 1; and (ii) the probability of

ultimate fixation of strategy 2 is less than N−1, in which case selection is said to oppose

strategy 2 replacing strategy 1. In general, these conditions depend on the population size

N and the reproduction scheme (Lessard and Ladret, 2007). Note that condition (ii) is

neither sufficient nor necessary for the probability of ultimate fixation of a single strategy 1

to exceed the probability of ultimate fixation of a single strategy 2. This condition ensures,

however, that strategy 1 is more abundant on average than strategy 2 in the presence of

recurrent mutation occurring at weak enough rate (Antal et al., 2009).

One key assumption in classical evolutionary game theory is that the payoff matrix is

constant, and this supposes that the environmental conditions do not change over time.

Previous work on stochastic evolutionary game theory in an infinite and classical popu-

lation includes Foster and Young (1990) who considered small perturbations of the de-

terministic replicator dynamics that arise through mutations as well as ordinary chance

events that affect the reproductive success of strategies. Then the strategy frequencies
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obey the stochastic differential equation ẋi = xi ((Ax)i − xAx)+σ(Γ(x)Ẇ)i. Here, Ẇ is

a formal time derivative of a standard n-dimensional Brownian motion W, called a white

noise, Γ(x) is a variance-covariance matrix with all bounded entries and ones on the main

diagonal such that xΓ(x) = 0, while σ > 0 is a parameter that represents the strength

of the perturbation. In this stochastic dynamical system, a set of states S is called a

stochastically stable set (SSS) if, in the long run, it is nearly certain that the system lies

within every open set containing S as σ tends to zero. The stochastically stable set is

always nonempty and minimizes a suitably defined potential function. However, it is by

no means equivalent to the set of evolutionary stable strategies even when the latter ex-

ist. It contains often only a subset of the evolutionarily stable strategies, and sometimes

even none. So, a natural and challenging question is what happens to evolutionary game

concepts and dynamics under the effects of a stochastically varying environment.

As a matter of fact, environmental conditions in the real world are changing and uncer-

tain. In turn, stochastic fluctuations in the surrounding environment of a population may

cause changes in the occurrence of interactions between individuals and, more importantly,

the payoffs received by the interacting individuals. Therefore, unless stochastic fluctua-

tions are so small that their effects can be neglected, there is no a priori reason to assume

that the payoff matrix of an evolutionary game is constant if the environment is actually

stochastic. The role played by environmental fluctuations in the dynamics of biological

and ecological systems has been investigated by a number of authors. These studies show

the stochastic nature and the related noise induced effects in some population dynamics

(Ciuchi et al., 1993; Turchin et al., 2000; Bjornstad and Grenfell, 2001; Ozbudak et al.,

2002; Elowitz et al., 2002; Blake et al., 2003; Paulsson, 2004; Spagnolo et al., 2003, 2004;

Chichigina et al., 2005; Romanczuk et al., 2009; La Cognata et al., 2010; Chichigina et

al., 2011). However, the effects of environmental stochasticity on the evolutionary game

dynamics and on some important concepts in evolutionary game theory (for example, the

evolutionarily stable strategy) are still unclear.
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Now assuming that the payoff matrix is random, two questions arise: First, how should

we define the concept of stochastic evolutionary stability (SES) so that it would be a

natural extension of the evolutionary stability concept in a stochastic environment in

the sense that, once fixed, it would still probabilistically favored by selection? Second,

what would be the exact evolutionary properties associated with a strategy that is SES?

In particular, are there extra conditions that would make it stochastically convergence

stable (SCS) in such a way that evolution toward it from other fixation states would be

probabilistically favored by selection under random perturbations in an analogous way

as a convergence stable strategy is favored in a deterministic environment (Eshel and

Motro, 1981; Eshel, 1983, 1996; Christiansen, 1991). Answers to these questions are

important in order to understand and predict the evolution of animal behaviors in a

randomly fluctuating environment.

In this study, we focus attention on the effect of a stochastic environment on a 2×2

matrix game in an infinite population. Generations are discrete, nonoverlapping, and

the payoff matrices over successive generations are independent identically distributed

random matrices. The main mathematical tool in this study is the concept of stochastic

local stability, which was developed in population genetics by Karlin and Liberman (1974,

1975) (see also Ewens 2004).

1.2 A Two-Phenotype Model

We consider an evolutionary game in an infinite population with discrete, nonoverlapping,

generations. There are two phenotypes or pure strategies, 1 and 2, and the payoffs in

pairwise interactions at time step t ≥ 0 are given by the game matrix

A(t) =


a11(t) a12(t)

a21(t) a22(t)


 =


at bt

ct dt


 , (1.2.1)

where aij(t) is the payoff to strategy i against strategy j for i, j = 1, 2. These payoffs are

assumed to be positive random variables that are uniformly bounded below and above
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by some positive constants. Therefore, there exist real numbers A,B > 0 such that

A ≤ aij(t) ≤ B for i, j = 1, 2 and all t ≥ 0. Moreover, the probability distributions of

aij(t) for i, j = 1, 2 do not depend on t ≥ 0. They have means, variances and covariances

given by

E (aij(t)) = āij ,

E
(
(aij(t)− āij)2

)
= σ2

ij ,

E
(
(aij(t)− āij)(akl(t)− ākl)

)
= σij,kl , (1.2.2)

respectively, for i, j, k, l = 1, 2 with (i, j) 6= (k, l), where E denotes mathematical expec-

tation. As for s 6= t, the payoffs aij(s) and akl(t) are assumed to be independent so that

E
(
(aij(s)− āij)(akl(t)− ākl)

)
= 0 for i, j, k, l = 1, 2.

Let xt be the frequency of strategy 1 at time step t ≥ 0 and, similarly, 1 − xt the

frequency of strategy 2. Then the mean payoffs to strategies 1 and 2 are given by

π1,t = xtat + (1− xt)bt ,

π2,t = xtct + (1− xt)dt , (1.2.3)

respectively, and the mean payoff in the whole population by

π̄t = xtπ1,t + (1− xt)π2,t . (1.2.4)

Assuming that payoff translates into reproductive success, referred to as fitness, so that

the number of replicas of a strategy from one step to the next is proportional to its mean

payoff, the frequency of strategy 1 at time step t + 1 is given by the recurrence equation

xt+1 =
xtπ1,t

π̄t
=

x2
t at + xt(1− xt)bt

x2
t at + xt(1− xt)(bt + ct) + (1− xt)2dt

(1.2.5)

for t ≥ 0. Defining

ut =
xt

1− xt
, (1.2.6)
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the recurrence equation takes the simple form

ut+1 = ut

[
utat + bt

utct + dt

]
(1.2.7)

for t ≥ 0.

1.3 Stochastic Local Stability

We are interested in the asymptotic (or long run) behavior of the process {xt} for t ≥ 0.

Let x̂ represent a constant (non-random) equilibrium of this process, that is, an equilibrium

of Eq. (1.2.5) that does not depend on the randomness of the payoff matrix. This is clearly

the case for both x̂ = 0 and x̂ = 1, called the fixation states or the boundary equilibria.

This may also be the case for a constant equilibrium x̂ with 0 < x̂ < 1, called a constant

interior equilibrium.

Following Karlin and Liberman (1974, 1975; Ewens, 2004), a constant equilibrium x̂ is

said to be stochastically locally stable (SLS) if for any ε > 0 there exists δ0 > 0 such that

P (xt → x̂) ≥ 1− ε as soon as |x0 − x̂| < δ0 . (1.3.1)

This means that xt tends to x̂ as t → ∞ with probability arbitrarily close to 1 (but

different from 1) if the initial state x0 is sufficiently near x̂. Notice, however, no matter

how close x0 is to x̂ (but different from x̂), it is not ascertained that xt will converge to x̂.

Statistical fluctuations could cause xt to depart sharply from x̂, but this will occur with

small probability if x0 is close to x̂ and x̂ is stochastically locally stable.

On the other hand, a constant equilibrium x̂ can be said to be stochastically locally

unstable (SLU) if

P (xt → x̂) = 0 as soon as |x0 − x̂| > 0 . (1.3.2)

If this is the case, then x̂ cannot be reached with probability 1 from any initial state

different from x̂.
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1.3.1 Stochastic local stability of fixation states

Consider first the fixation state x̂ = 0 in Eq. (1.2.5), which corresponds to the equilibrium

û = x̂/(1− x̂) = 0 in Eq. (1.2.7). The sufficient condition for this equilibrium to be SLS

is

E
(

log
(

dt

bt

))
= E (log dt)− E (log bt) > 0 (1.3.3)

(see details in Appendix A. Theorem 1). Therefore, under generic conditions, the

inequality Eq. (1.3.3) is necessary and sufficient for stochastic local stability of the fixation

state x̂ = 0. This result in a population genetics framework, which corresponds to a

symmetric game matrix (a12(t) = a21(t) which can be assumed equal to one without loss

of generality) was stated in Karlin and Liberman (1974). A proof in this framework which

only slightly differs from the present more general game-theoretic framework is given in

Karlin and Liberman (1975). It is based on the strong law of large numbers and Egorov’s

theorem.

Suppose random payoffs close enough to their means so that

E (log bt) = log b̄− σ2
b

2b̄2
+ o

(
σ2

)
,

E (log dt) = log d̄− σ2
d

2d̄2
+ o

(
σ2

)
, (1.3.4)

where b̄ and d̄ are the means, and σ2
b and σ2

d the variances, of the random variables bt and

dt, respectively. Here, σ2 = max{σ2
a, σ

2
b , σ

2
c , σ

2
d}. Thus, if σ2 is small enough, the condition

in Theorem 1 for x̂ = 0 to be SLS reduces to

log
(

d̄

b̄

)
>

1
2

(
σ2

d

d̄2
− σ2

b

b̄2

)
. (1.3.5)

If the inequality is reversed, then x̂ = 0 is SLU. Therefore, the condition for x̂ = 0 to be

SLS becomes less stringent as σ2
b increases and more stringent as σ2

d decreases. In the case

where σ2
b = σ2

d = σ2, the fixation state x̂ = 0 is SLS if d̄ > b̄ and SLU if d̄ < b̄. These

are the conditions for x̂ = 0 to be locally stable and locally unstable, respectively, with a

constant payoff matrix which corresponds to the case σ2 = 0.
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By symmetry, Theorem 1.1 implies that the fixation state x̂ = 1 in the recurrence

equation (Eq. (1.2.5)) is stochastically locally stable if

E
(

log
(

at

ct

))
> 0 , (1.3.6)

and stochastically locally unstable if the inequality is reversed. The above condition

reduces to

log
( ā

c̄

)
>

1
2

(
σ2

a

ā2
− σ2

c

c̄2

)
(1.3.7)

if at and ct have means ā and c̄, and variances σ2
a and σ2

c of order σ2 small enough.

As an example, consider successive rounds of the Prisoner’s Dilemma, known as the

iterated Prisoner’s Dilemma (IPD), with two possible strategies in use, TFT for tit-for-tat

starting with cooperation in the first round and the previous strategy of the opponent in

the next rounds and AllD for always-defect with defection in all rounds as strategies 1

and 2, respectively (Axelrod, 1984; Nowak, 2006). The payoff matrix at time step t ≥ 0

is given by

at bt

ct dt


 =


 mtR S + (mt − 1)P

T + (mt − 1)P mtP


 , (1.3.8)

where T > R > P > S are the payoffs in one round of the game with cooperation and

defection as strategies, and mt represents the number of rounds at time step t ≥ 0. This

number is assumed to be a random variable of mean m̄ and small variance σ2
m that is

independent of ms for all s 6= t. We are in the above context with

ā = m̄R, b̄ = S + (m̄− 1)P, c̄ = T + (m̄− 1)P, d̄ = m̄P, (1.3.9)

while

σ2
a = R2σ2

m, σ2
b = σ2

c = σ2
d = P 2σ2

m. (1.3.10)

Since σ2
b = σ2

d and d̄ > b̄, AllD-fixation is SLS. On the other hand, TFT-fixation is SLS if

log
( ā

c̄

)
>

σ2
m

2c̄2ā2

(
c̄2R2 − ā2P 2

)
(1.3.11)
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with

−c̄2R2 − ā2P 2 =
(
m̄RP + (T −R)R

)2 − (m̄RP )2 > 0 . (1.3.12)

This means a more stringent condition as σ2
m increases compared to the condition ā > c̄

when σ2
m = 0, which is equivalent to m̄ > (T − P )/(R− P ). In a stochastic environment,

the mean number of rounds must exceed a higher threshold value for TFT-fixation to be

SLS. For instance, let T = 4, R = 3, P = 2 and S = 1. When σ2
m = 0, TFT-fixation is

SLS if m̄ > 2. When σ2
m > 0, however, this occurs if

log
(

3m̄

2(m̄ + 1)

)
>

σ2
m

2m̄2(m̄ + 1)2
(2m̄ + 1) . (1.3.13)

This inequality is satisfied if and only if m̄ > m(σ2
m), where the threshold value m(σ2

m) is

an increasing function of σ2
m (see Fig. 1.1). This clearly illustrates the fact that stochastic

local stability of TFT-fixation depends not only on the mean of the number of rounds m̄

but also on its variance σ2
m, and that higher is the variance, higher must be the mean for

TFT-fixation to be SLS.

Returning to Theorem 1.1, the stochastic local stability or instability of the fixation

state x̂ = 0 in the degenerate case bt = dt for all t ≥ 0 requires further analysis as presented

in Appendix B. Theorem 2 .

Developing the random variables around their means and using the approximations

E
(

at

dt

)
=

ā

d̄
+

āσ2
d

d̄3
− σa,d

d̄2
+ o

(
σ2

)
,

E
(

ct

dt

)
=

c̄

d̄
+

c̄σ2
d

d̄3
− σc,d

d̄2
+ o

(
σ2

)
, (1.3.14)

the condition in Theorem 2 for x̂ = 0 to be SLS reduces to

c̄− ā

d̄
>

σc,d − σa,d

d̄2 + σ2
d

(1.3.15)

if σ2 is small enough. If the inequality is reversed, then x̂ = 0 is SLU. Therefore, the

condition for x̂ = 0 to be SLS becomes less stringent as σa,d increases and more stringent

as σc,d decreases. In the case where σa,d = σc,d, the fixation state x̂ = 0 is SLS if c̄ > ā and
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SLU if c̄ < ā. These are the conditions for x̂ = 0 to be locally stable and locally unstable,

respectively, with a constant payoff matrix.

Figure 1.1: Stochastic local stability in IPD game. Stochastic local stability of TFT-

fixation against AllD with the random payoff matrix


 3mt 2mt − 1

2(mt + 1) 2mt


, where T = 4,

R = 3, P = 2 and S = 1, while mt is a random variable with mean m̄ and variance σ2
m at

every time step t ≥ 0. The curve separates the regions for stochastic local stability and

stochastic local instability: TFT-fixation is SLS (or SLU) if the point
(
σ2

m, m̄
)

is above

(or below) the curve.

1.3.2 Stochastic local stability of a constant interior equilibrium

Now consider a constant interior equilibrium x̂ of Eq. (1.2.5) with 0 < x̂ < 1. This

corresponds to a constant equilibrium û = x̂/(1 − x̂) > 0 in Eq. (1.2.7). This is possible

only if

û(at − ct) = dt − bt , (1.3.16)
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which implies a payoff matrix in the form

at bt

ct dt


 =


ct + zt bt

ct bt + ûzt


 =


 at dt − ûzt

at − zt dt


 , (1.3.17)

where zt = at − ct. Moreover, taking expectation on both sides of Eq. (1.3.16) yields

û =
(
d̄ − b̄

)/(
ā − c̄

)
from which x̂ =

(
d̄ − b̄

)/(
ā − b̄ − c̄ + d̄

)
, where ā, b̄, c̄ and d̄ denote

the expected values of at, bt, ct and dt, respectively.

The sufficient condition for this constant equilibrium x̂ with û > 0 to be SLS is

E
(

log
(

ûct + dt

ûat + dt

))
= E

(
log

(
1− x̂zt

x̂at + (1− x̂)dt

))
> 0 , (1.3.18)

(see details in Appendix C. Theorem 3).

Assuming the approximation

E (log (ûat + dt)) = log
(
ûā + d̄

)− û2σ2
a + σ2

d + 2ûσa,d

2
(
ûā + d̄

)2 + o
(
σ2

)
(1.3.19)

and the corresponding approximation for E (log (ûct + dt)) lead to the condition

log
(

ûc̄ + d̄

ûā + d̄

)
>

1
2

(
û2σ2

c + 2ûσc,d + σ2
d(

ûc̄ + d̄
)2 − û2σ2

a + 2ûσa,d + σ2
d(

ûā + d̄
)2

)
(1.3.20)

for the equilibrium x̂ = û/(1+ û) to be SLS if σ2 is small enough. The reversed inequality

guarantees that x̂ is SLU. If at, dt and zt are independent random variables, then the above

condition takes the form

log
(

1− x̂z̄

x̂ā + (1− x̂)d̄

)
>

1
2

(
û2σ2

a + û2σ2
z + σ2

d(
ûā− ûz̄ + d̄

)2 − û2σ2
a + σ2

d(
ûā + d̄

)2

)
, (1.3.21)

where z̄ and σ2
z designate the mean and variance of zt, respectively. When all variances

vanish, the condition reduces to z̄ < 0, which means that ā < c̄ and d̄ < b̄. Notice that

this condition becomes more stringent as σ2
z increases.

It is worth emphasizing that it is possible for a constant interior equilibrium and both

fixation states to be simultaneously SLS. For instance, consider a payoff matrix in the

form

at bt

ct dt


 =


 1 1 + ûηt

1 + ηt 1


 , (1.3.22)
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where û > 0 and ηt = −zt is a random variable with mean η̄ = −z̄ > 0 and variance

σ2
η = σ2

z . Then, it is easy to check that: (i) the fixation state x̂ = 0 is SLS if

σ2
η > 2

(
1 + ûη̄

û

)2

log(1 + ûη̄) ; (1.3.23)

(ii) the fixation state x̂ = 1 is SLS if

σ2
η > 2(1 + η̄)2 log(1 + η̄) ; (1.3.24)

and (iii) the constant interior equilibrium x̂ = û/(1 + û) is SLS if

σ2
η < 2

(
1 + x̂η̄

x̂

)2

log (1 + x̂η̄) . (1.3.25)

On the other hand, the three equilibria are SLU if all the inequalities are reversed. In the

special case where û = 1 (i.e., x̂ = 1/2), for instance, it can be shown that there exists a

threshold value η0 > 0 such that (1 + η̄)2 log(1 + η̄) < (2 + η̄)2 log
(
1 + η̄/2

)
if and only

if η̄ < η0. Therefore, the constant interior equilibrium x̂ = 1/2 and both fixation states,

x̂ = 0 and x̂ = 1, are simultaneously SLS when 0 < η̄ < η0 and

2(1 + η̄)2 log(1 + η̄) < σ2
η < 2(2 + η̄)2 log

(
1 + η̄/2

)
. (1.3.26)

On the other hand, the three equilibria are simultaneously SLU when all the inequalities

are reversed. The corresponding regions for the different regimes are illustrated in Fig.

1.2a and simulation results with a constant interior equilibrium and both fixation states

simultaneously SLS are presented in Fig. 1.2b.

1.4 Stochastic Evolutionary Stability and Stochastic Con-

vergence Stability

Extending the standard definition of an evolutionarily stable strategy (ESS) in a constant

environment (Maynard Smith and Price, 1973) to a variable environment, a stochastically
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Figure 1.2: Stochastic local stability of a constant interior equilibrium and of both fixation

states. Stochastic local stability or instability of a constant interior equilibrium and of

both fixation states with the random payoff matrix


 1 1 + ηt

1 + ηt 1


. (A) The black

curve represents the function σ2
η = 2(1 + η̄)2 log(1 + η̄) and the red curve the function

σ2
η = 2(2+ η̄)2 log(1+ η̄/2). There is a critical value of η̄, denoted by η0, that corresponds

to the intersection of the black and red curves. For η̄ < η0, all of x̂ = 0, x̂ = 1 and

x̂ = 1/2 are SLS if the the point
(
σ2

η, η̄
)

is in the range between the black and red curves;

and, conversely, for η̄ > η0, all of x̂ = 0, x̂ = 1 and x̂ = 1/2 are SLU if the point
(
σ2

η, η̄
)

is in the range between the black and red curves. (B) The simulation results,

where û = 1 and ηt = −0.16 and 0.2 with same probability 0.5 so that η̄ = 0.02 and

σ2
η = 0.0324. Four trajectories of xt, the frequency of strategy 1, are illustrated starting

with x0 = 0.2, 0.3, 0.7, 0.8: two converge to x̂ = 1/2, one to x̂ = 0, and one to x̂ = 1. Here,

three equilibrium states x̂ = 0, x̂ = 1 and x̂ = 1/2 are SLS.
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evolutionarily stable (SES) strategy can be defined as a strategy such that, if all the

members of the population adopt it, then the probability for at least any slightly perturbed

strategy to invade the population under the influence of natural selection is arbitrarily low.

More specifically, a strategy represented by a frequency vector x̂ is SES if x̂-fixation is

SLS against any other strategy x 6= x̂ at least near enough.

Similarly, the notion of a continuous stable strategy (CSS) introduced in Eshel and

Motro (1981) (see also Eshel, 1983) and renamed later on convergence stable strategy

(Chrstiansen, 1991; Eshel, 1996) can be extended to a context of a variable environment.

So, a strategy represented by a two-dimensional frequency vector x̂ = (x̂, 1−x̂) can be said

to be stochastically convergence stable (SCS) if the fixation state of any nearby strategy

x̃ = (x̃, 1− x̃) is SLU against a strategy x = (x, 1− x) if and only if x is in the direction

of x̂ with respect to x̃. This means that sgn(x− x̃) = sgn(x̂− x̃).

In this section, assume a positive stochastic game matrix at each time step t ≥ 0 in

the form

A(t) =


a11(t) a12(t)

a21(t) a22(t)




=


ā11 ā12

ā21 ā22


 +


b11(t) b12(t)

b21(t) b22(t)




= Ā + B(t) . (1.4.1)

Here, Ā is a constant matrix with all positive entries, while the entries of B(t) are stochas-

tic with mean equal to 0. The payoff matrix at time step t ≥ 0 for two mixed strategies,

x = (x, 1− x) and x̂ = (x̂, 1− x̂) in this order, is then given by

at bt

ct dt


 =


xA(t)x xA(t)x̂

x̂A(t)x x̂A(t)x̂


 . (1.4.2)

We are now ready to state our next two results which are proved in Appendix D and

E, respectively.
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Result 1.1: Consider the positive stochastic game matrix Eq. (1.4.1) where bij(t) for

i, j = 1, 2 are independent random variables of variances σ2
ij for i, j = 1, 2, respectively,

while all higher-order centered moments are functions o(σ2) where σ2 = max{σ2
ij : i, j =

1, 2}. With the assumption that σ2 is small enough and under generic conditions, the

pure strategy x̂ = (0, 1) is stochastically evolutionarily stable against any nearby mixed

strategy x = (x, 1− x) if and only if

σ2
22 <

(
ā22

ā12
− 1

)
ā2

22 . (1.4.3)

This is also the necessary and sufficient condition for x̂ = (0, 1) to be stochastically con-

vergence stable. By symmetry, the pure strategy x̂ = (1, 0) is stochastically evolutionarily

stable against any nearby mixed strategy x = (x, 1 − x) and stochastically convergence

stable in generic cases under the condition that σ2 is small enough if and only if

σ2
11 <

(
ā11

ā21
− 1

)
ā2

11 . (1.4.4)

Result 1.2: Consider the positive stochastic game matrix Eq. (1.4.1) where a11(t) =

a21(t) + z(t) and a22(t) = a12(t) + ûz(t) for some constant û = x̂/(1− x̂) > 0, with a21(t),

a12(t) and z(t) being independent random variables of means and variances given by ā21,

ā12, z̄ and σ2
21, σ2

12, σ2
z , respectively, while all higher-order centered moments are functions

o(σ2), where σ2 = max{σ2
21, σ

2
12, σ

2
z}. With the assumption that σ2 is small enough and

under generic conditions, the constant mixed strategy x̂ = (x̂, 1 − x̂) is stochastically

evolutionarily stable against any mixed strategy x = (x, 1− x) if and only if

z̄d̄2 + z̄σ2
21x̂

2 + z̄σ2
12(1− x̂)2 − d̄σ2

z x̂ < 0, (1.4.5)

where

d̄ = z̄x̂ + ā21x̂ + ā12(1− x̂) > 0. (1.4.6)

On the other hand, it is stochastically convergence stable under the same assumption and
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conditions if and only if

z̄d̄2 + z̄σ2
21x̂

2 + z̄σ2
12(1− x̂)2 + z̄x̂2σ2

z − d̄σ2
z x̂ < 0 . (1.4.7)

Consider, for instance, a positive stochastic game matrix

A(t) =


1 + z(t) 1

1 1 + ûz(t)


 , (1.4.8)

where û = x̂/(1 − x̂) > 0 and z(t) is a random variable of mean z̄ and variance σ2
z such

that d̄ = z̄x̂ + 1 > 0 and σ2
z is small enough. Owing to Result 1.1, conditions Eqs.

(1.4.3-1.4.4) for the pure strategies (0, 1) and (1, 0) to be SES and SCS are

ûσ2
z < z̄ (1 + ûz̄)2 (1.4.9)

and

σ2
z < z̄ (1 + z̄)2 , (1.4.10)

respectively. On the other hand, conditions Eqs. (1.4.5, 1.4.7) for the constant mixed

strategy x̂ = (x̂, 1− x̂) where x̂ = û/(1 + û) to be SES and SCS reduce to

x̂σ2
z > z̄ (1 + x̂z̄) (1.4.11)

and

x̂σ2
z > z̄ (1 + x̂z̄)2 , (1.4.12)

respectively. Figure 1.3 illustrates the corresponding regions in the case û = 1 which

corresponds to x̂ = 1/2. In the limit of a deterministic game matrix, that is, σ2
z = 0,

both pure strategies are SES and SCS when z̄ > 0, while the mixed strategy is SES and

SCS when z̄ < 0. In the presence of stochastic perturbations on the game matrix, that is,

σ2
z = σ2 > 0 (where σ2 is small), there exist three threshold values z1 > z2 > z3 > 0 such
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that both pure strategies are SES and SCS when z̄ > z1 (where z1 is a positive solution

of σ2
z = z̄(1 + z̄)2), while the mixed strategy is SES when z̄ < z2 (where z2 is a positive

solution of σ2
z = 2z̄(1 + z̄/2)) and SCS when z̄ < z3 (where z3 is a positive solution of

σ2
z = 2z̄(1 + z̄/2)2).

Figure 1.3: Stochastic evolutionary stability and stochastic convergence stability. For the

positive stochastic payoff matrix


1 + z(t) 1

1 1 + z(t)


 with a constant interior equilibrium

x̂ = 1/2, if σ2
z is small, then both pure strategies (0, 1) and (1, 0) are SES and SCS when

z̄ > z1, and the constant mixed strategy (1/2, 1/2) is SES when z̄ < z2 and SCS when

z̄ < z3.

1.5 Conclusion

Evolutionary concepts such as that of an evolutionarily stable strategy (ESS) (Maynard

Smith and Price, 1973) and that of a convergence stable strategy (CSS) (Eshel and Motro,
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1981; Christiansen, 1991) were originally introduced for infinite populations in a determin-

istic environment. Therefore, they were initially stated in terms of conditions that ensure

local (actually, asymptotic) stability of a resident strategy against any mutant strategy, or

local instability (actually, initial invasion) of any resident strategy close enough to a given

population strategy following the introduction of any mutant that brings the population

strategy even closer.

In a stochastic environment, convergence to a constant equilibrium from any given

initial state occurs with some probability. When this probability tends to 1 as the initial

state tends to the equilibrium, then the equilibrium is said to be stochastically locally

stable (SLS). On the other hand, when this probability is always 0 for any initial state

different from the equilibrium, then the equilibrium is said to be stochastically locally

unstable (SLU). These conditions were studied by Karlin and Liberman (1974, 1975) in the

framework of a one-locus two-allele viability model for a random mating diploid population

undergoing discrete, nonoverlapping generations. This framework corresponds to a linear

game model in discrete time with a symmetric payoff matrix for two pure strategies used in

random pairwise interactions. We have extended the analysis to a general payoff matrix.

In the absence of stochastic perturbations on the payoffs, it is well known that a fixed

resident strategy is locally stable against a mutant strategy introduced in small frequency

if the payoff of the resident strategy against itself exceeds the payoff of the mutant strategy

against the resident strategy, or in case of equality, if the payoff of the resident strategy

against the mutant strategy exceeds the payoff of the mutant strategy against itself. In

the presence of stochastic perturbations, it is expected values of functions of the payoffs

that have to be compared for the resident strategy to be SLS, either the expected values

of the logarithm of the payoffs against the resident strategy or, in case of equality of these

payoffs, the expected values of the ratio of the payoffs against the mutant strategy over the

common payoff against the resident strategy. Assuming small enough perturbations, these

conditions can be expressed in terms of means, variances and covariances of the payoffs.
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Under conditions on the random payoffs for a constant interior equilibrium to exist,

we have found a condition for this equilibrium to be SLS. We have shown that this equi-

librium and both fixation states can be simultaneously SLS. This situation distinguishes

game dynamics in a randomly fluctuating environment from game dynamics in a constant

environment since, with constant payoffs, an interior equilibrium can be locally stable only

if both fixation states are locally unstable (Lessard, 1984).

In a constant environment, an evolutionarily stable strategy (ESS) and a convergence

stable strategy (CSS) with respect to mixed strategies on two pure strategies correspond to

a locally stable equilibrium with respect to the dynamics involving the two pure strategies.

Both evolutionary concepts have been extended to take into account random perturbations

on payoffs by using SLS and SLU conditions. We have shown that the condition for a pure

strategy to be stochastically evolutionarily stable (SES) and stochastically convergence

stable (SCS) is more stringent than in a constant environment, while the condition for a

constant mixed strategy to be SES is less stringent than the condition to be SCS which is

less stringent than the condition in a constant environment.

New phenomenons arise in game dynamics in a stochastic environment, and these make

it not only more complex but also more interesting.

1.6 Appendix

1.6.1 A. Theorem 1

Theorem 1.1 The fixation state x̂ = 0 of the recurrence equation (Eq. (1.2.5)) with the

payoff matrix (Eq. (1.2.1)) is stochastically locally stable if

E
(

log
(

dt

bt

))
= E (log dt)− E (log bt) > 0 , (1.6.1)

and stochastically locally unstable if the inequality is reversed.
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We follow Karlin and Liberman (1975) but with non-symmetric fitness parameters

given by the entries of the payoff matrix Eq. (1.2.1). It is easy to check that Eq. (1.2.7)

can be written in the form

ut+1

ut
=

bt

dt

(
1 +

ut(atdt − btct)
utbtct + btdt

)
, (1.6.2)

from which

1
n

(log un − log u0) =
1
n

n−1∑

t=0

log
(

bt

dt

)
+

1
n

n−1∑

t=0

log
(

1 +
ut(atdt − btct)
utbtct + btdt

)
, (1.6.3)

for n ≥ 1. Let

µ = E
(

log
(

bt

dt

))
= E (log bt)− E (log dt) , (1.6.4)

and define

E =

{
1
n

n−1∑

t=0

log
(

bt

dt

)
→ µ

}
. (1.6.5)

The strong law of large numbers garantees that P(E) = 1. If ut → 0, then

log
(

1 +
ut(atdt − btct)
utbtct + btdt

)
→ 0 , (1.6.6)

since at, bt, ct, dt are assumed to be uniformly bounded below and above by positive con-

stants. Under these conditions, Eq. (1.6.3) implies that

lim
n→∞

1
n

n−1∑

t=0

log
(

bt

dt

)
≤ 0 (1.6.7)

if this limit exists. This is not possible in the set E if µ > 0. In this case, we conclude

that

P(ut → 0) ≤ P(EC) = 0 . (1.6.8)

This means that û = 0 is stochastically locally unstable if µ > 0.

Now consider the case where µ < 0. By the strong law of large numbers and Egorov’s

theorem, for any ε > 0, there exists an integer N ≥ 1 such that the probability of the

event
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F =

{
1
n

n−1∑

t=0

log
(

bt

dt

)
<

µ

2
, ∀ n ≥ N

}
(1.6.9)

satisfies

P(F ) ≥ 1− ε . (1.6.10)

On the other hand, using the assumption that A ≤ at, bt, ct, dt ≤ B for some constants

A,B > 0, there exists δ > 0 such that

log
(

1 +
ut(atdt − btct)
utbtct + btdt

)
< −µ

4
(1.6.11)

as soon as ut < δ. Moreover, Eq. (1.2.7) leads to

ut+1 ≤ ut

(
utB + B

utA + A

)
= ut

(
B

A

)
≤ u0

(
B

A

)t+1

, (1.6.12)

for t ≥ 0. Therefore, there exists 0 < δ0 < δ such that ut < δ for t = 0, 1, . . . , N − 1 as

soon as u0 < δ0. As a consequence, Eq. (1.6.3) for n = N and Eq. (1.6.11) yield

1
N

(log uN − log u0) <
µ

2
− µ

4
=

µ

4
< 0 (1.6.13)

in the set F as soon as u0 < δ0, which implies that

uN < u0 < δ, (1.6.14)

and by recurrence that un < δ for all n ≥ N .

It remains to show that un → 0 in F if u0 < δ0 as claimed in Karlin and Liberman

(1975), since then

P (un → 0) ≥ P (F ) ≥ 1− ε . (1.6.15)

It suffices to notice that Eq. (1.6.3) for all n ≥ N under the above conditions gives

1
n

(log un − log u0) <
µ

4
< 0 , (1.6.16)

from which

log un < log u0 +
nµ

4
→ −∞. (1.6.17)

This means that un → 0, which completes the proof.
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1.6.2 B. Theorem 2

Theorem 1.2 The fixation state x̂ = 0 of the recurrence equation (Eq. (1.2.5)) with the

payoff matrix (Eq. (1.2.1)) in the case where bt = dt for all t ≥ 0 is stochastically locally

stable if

E
(

ct

dt
− at

dt

)
= E

(
ct

dt

)
− E

(
at

dt

)
> 0 , (1.6.18)

and stochastically locally unstable if the inequality is reversed.

Assuming bt = dt, the recurrence equation Eq. (1.2.7) with the change of variables

vt = 1/ut becomes

vt+1 = vt

(
ct + dtvt

at + dtvt

)
, (1.6.19)

from which

vt+1 − vt =
(

ct

dt
− at

dt

)
−

at
dt

(
1− at

ct

)

at
ct

+ dt
ct

vt

(1.6.20)

for t ≥ 0, and therefore

1
n

(vn − v0) =
1
n

n−1∑

t=0

(
ct

dt
− at

dt

)
− 1

n

n−1∑

t=0

at
dt

(
1− at

ct

)

at
ct

+ dt
ct

vt

(1.6.21)

for n ≥ 1. Defining

E =

{
1
n

n−1∑

t=0

(
ct

dt
− at

dt

)
→ µ

}
, (1.6.22)

where

µ = E
(

ct

dt
− at

dt

)
= E

(
ct

dt

)
− E

(
at

dt

)
, (1.6.23)

we conclude as in the proof of Theorem 1 that

P(vt → +∞) ≤ P(EC) = 0 (1.6.24)
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if µ < 0. On the other hand, if µ > 0, then there exist an integer N ≥ 1 and a real number

∆ > 0 such that

F =

{
1
n

n−1∑

t=0

(
ct

dt
− at

dt

)
>

µ

2
, ∀ n ≥ N

}
(1.6.25)

satisfies P(F ) ≥ 1− ε for any given ε > 0, and

−
at
dt

(
1− at

ct

)

at
ct

+ dt
ct

vt

> −µ

4
(1.6.26)

as soon as vt > ∆, which is the case for t = 0, 1, . . . , N − 1 as soon as v0 > ∆0 for some

∆0 > ∆ since

vt+1 ≥ vt

(
A + Avt

B + Bvt

)
= vt

(
A

B

)
≥ v0

(
A

B

)t+1

≥ v0

(
A

B

)N

. (1.6.27)

Then, as in the proof of Theorem 1, it can be shown that we have vn > ∆ for all n ≥ N

and vn → +∞ in F as soon as v0 > ∆0, from which

P (vn → +∞) ≥ P (F ) ≥ 1− ε (1.6.28)

as soon as v0 > ∆0.

1.6.3 C. Theorem 3

Theorem 1.3 A constant equilibrium x̂ = û/(1 + û) of the recurrence equation (Eq.

(1.2.5)) with û > 0 and the payoff matrix (Eq. (1.3.17)) is stochastically locally stable if

E
(

log
(

ûct + dt

ûat + dt

))
= E

(
log

(
1− x̂zt

x̂at + (1− x̂)dt

))
> 0 , (1.6.29)

and stochastically locally unstable if the inequality is reversed.

With the payoffs given by the entries of the game matrix (Eq. (1.3.17)), the recurrence

equation (Eq. (1.2.5)) can be written in the form

ut+1 = ut

(
utct + utzt + bt

utct + ûzt + bt

)
, (1.6.30)
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from which it is easy to get

ut+1 − û = (ut − û)
(

utct + utzt + ûzt + bt

utct + ûzt + bt

)

= (ut − û)
(

utat + dt

utct + dt

)
. (1.6.31)

In particular, this ensures that ut+1 − û > 0 if ut − û > 0, and ut+1 − û < 0 if ut − û < 0.

Moreover, some algebraic manipulations lead to

utat + dt

utct + dt
=

(
ûat + dt

ûct + dt

)(
1− dtzt(ut − û)

(ûat + dt)(ûct + dt + (ut − û)ct)

)
. (1.6.32)

In order to conclude, it suffices to proceed as in the proof of Theorem 1 and to note that

log
(

ûat + dt

ûct + dt

)
= − log

(
ûct + dt

ûat + dt

)

= − log
(

1− x̂zt

x̂at + (1− x̂)dt

)
. (1.6.33)

1.6.4 D. Proof of Result 1

For x̂ = (0, 1), x = (x, 1− x) and A(t) = Ā + B(t) as in Eq. (1.4.1), we find

d̄ = E (x̂A(t)x̂) = ā22 ,

b̄ = E (xA(t)x̂) = ā22 + x(ā12 − ā22) ,

σ2
d = E

(
(x̂B(t)x̂)2

)
= σ2

22 ,

σ2
b = E

(
(xB(t)x̂)2

)
= (1− x)2σ2

22 + x2σ2
12 . (1.6.34)

Condition Eq. (1.3.5) for x̂-fixation to be SLS against x if the variances are small enough

becomes

log
(

1 + x

(
a12 − a22

a22

))
<

1
2

(
(1− x)2σ2

22 + x2σ2
12

(a22 + x(a12 − a22))
2 −

σ2
22

a2
22

)
. (1.6.35)

This condition reduces to

x

(
a12 − a22

a22

)
< −x

(
a12σ

2
22

a3
22

)
(1.6.36)
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for x > 0 small enough. This condition is equivalent to

a2
22 (a12 − a22) > a12σ

2
22, (1.6.37)

which is the same as condition Eq. (1.4.3). The reversed inequality ensures that x̂-fixation

is SLU.

Next, we study stochastic convergence stability. Consider a strategy x̃ = (x̃, 1−x̃) with

x̃ > 0 near the pure strategy x̂ = (x̂, 1− x̂) = (0, 1). Given another strategy x = (x, 1−x),

the payoff matrix for x and x̃ in this order is given by

at bt

ct dt


 =


xA(t)x xA(t)x̃

x̃A(t)x x̃A(t)x̃


 , (1.6.38)

where A(t) = Ā + B(t) as in Eq. (1.4.1). We find

d̄ = E (x̃A(t)x̃) = x̃2ā11 + x̃(1− x̃)(ā12 + ā21) + (1− x̃)2ā22 ,

b̄ = E (xA(t)x̃) = xx̃ā11 + x(1− x̃)ā12 + (1− x)x̃ā21 + (1− x)(1− x̃)ā22 ,(1.6.39)

and

σ2
d = E

(
(x̃B(t)x̃)2

)

= x̃4σ2
11 + x̃2(1− x̃)2(σ2

12 + σ2
21) + (1− x̃)4σ2

22 ,

σ2
b = E

(
(xB(t)x̃)2

)

= x2x̃2σ2
11 + x2(1− x̃)2σ2

12 + (1− x)2x̃2σ2
21 + (1− x)2(1− x̃)2σ2

22 . (1.6.40)

Defining ∆x = x− x̃, the above expressions lead to

b̄− d̄ = −g1(x̃)∆x ,

σ2
b − σ2

d = −2h1(x̃)∆x + o(∆x) , (1.6.41)

where

g1(x̃) = (ā22 − ā12) + (ā21 − ā11 + ā12 − ā22)x̃ , (1.6.42)

h1(x̃) = −x̃3σ2
11 − x̃(1− x̃)σ2

12 + x̃2(1− x̃)σ2
21 + (1− x̃)3σ2

22 . (1.6.43)
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With small enough variances, strategy x̃ is SLU against strategy x if

log
(

b̄

d̄

)
>

1
2

(
σ2

b

b̄2
− σ2

d

d̄2

)
, (1.6.44)

where

log
(

b̄

d̄

)
= log

(
1 +

b̄− d̄

d̄

)

= log
(

1− g1(x̃)
d̄

∆x

)

= −g1(x̃)
d̄

∆x + o(∆x) , (1.6.45)

while

1
2

(
σ2

b

b̄2
− σ2

d

d̄2

)
=

σ2
b

2d̄2

(
1

1 + (b̄− d̄)/d̄

)2

− σ2
d

2d̄2

=
σ2

b

2d̄2

(
1 +

g1(x̃)
d̄

∆x

)2

− σ2
d

2d̄2
+ o(∆x)

=
σ2

b − σ2
d

2d̄2
+

σ2
bg1(x̃)
d̄3

∆x + o(∆x)

= −h1(x̃)
d̄2

∆x +
σ2

dg1(x̃)
d̄3

∆x + o(∆x) . (1.6.46)

If ∆x < 0 and |∆x| small enough, then condition Eq. (1.6.44) is equivalent to

(d̄2 + σ2
d)g1(x̃) > d̄h1(x̃) . (1.6.47)

For x̃ close enough to x̂, this condition reduces to

(ā2
22 + σ2

22)(ā22 − ā12) > σ2
22ā22 , (1.6.48)

which is equivalent to Eq. (1.4.3). On the contrary, if ∆x > 0, then strategy x̃ is SLS

against strategy x.

1.6.5 E. Proof of Result 2

Dropping the mention of the time step to simplify the notation, let A = (aij) be a

stochastic game matrix with a11 = a21 + z and a22 = a12 + ûz where û = x̂/(1 − x̂) > 0.
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The payoff of the mixed strategy x = (x, 1− x) against x̂ = (x̂, 1− x̂) is then given by

b = xAx̂ = a21x̂ + zx̂ + a12(1− x̂) , (1.6.49)

which does not depend on x. Therefore, it is the same as the payoff of x̂ against itself,

that is

d = x̂Ax̂ = b . (1.6.50)

On the other hand, the payoff of x̂ = (x̂, 1− x̂) against x = (x, 1− x) is

c = x̂Ax = x̂A(x− x̂) + x̂Ax̂ = x̂Aδ + d , (1.6.51)

where δ = (δ,−δ) = (x− x̂, x̂−x) = x− x̂, while the payoff of x = (x, 1−x) against itself

is

a = xAx = (x− x̂)A(x− x̂) + x̂A(x− x̂) + xAx̂

= δAδ + x̂Aδ + d = δAδ + c . (1.6.52)

Note that

δAδ = δ2(a11 − a12 − a21 + a22) = δ2(1 + û)z . (1.6.53)

Therefore,

E
(a

d
− c

d

)
= E

(
δAδ

d

)
= δ2(1 + û)E

(z

d

)
. (1.6.54)

According to Theorem 2, x̂-fixation is SLS if

E
(z

d

)
< 0 , (1.6.55)

and SLU if this inequality is reversed.

Let us write

a12 = ā12 + η12 ,

a21 = ā21 + η21 ,

z = z̄ + ζ , (1.6.56)
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where η21, η12 and ζ are independent random variables of mean 0 and variances σ2
21,

σ2
12 and σ2

z , respectively, while all higher-order centered moments are o(σ2) where σ2 =

max{σ2
21, σ

2
12, σ

2
z}. Then we find

E
(z

d

)
=

1
d̄

(
z̄d̄2 + z̄σ2

21x̂
2 + z̄σ2

12(1− x̂)2 − d̄σ2
z x̂

)
+ o(σ2) , (1.6.57)

where

d̄ = z̄x̂ + ā21x̂ + ā12(1− x̂) . (1.6.58)

In the case where σ2 is small enough, we conclude that x̂-fixation is SLS if

z̄d̄2 + z̄σ2
21x̂

2 + z̄σ2
12(1− x̂)2 − d̄σ2

z x̂ < 0 , (1.6.59)

and SLU if this inequality is reversed. This gives the condition for x̂ to be a stochastically

evolutionarily stable strategy (SESS).

For stochastic convergence stability (SCS) of x̂, we consider a strategy x̃ = (x̃, 1− x̃)

near x̂ = (x̂, 1 − x̂). Given another strategy x = (x, 1 − x), the payoff matrix for x and

x̃ in this order is, again, given by Eq. (1.6.38). Therefore, the means of the variables b

and d, b̄ and d̄, have the same expressions as in Eq. (1.6.39), but with ā11 = ā21 + z̄ and

ā22 = ā12 + ûz̄. Defining ∆x = x− x̃ and ∆x̂ = x̂− x̃, the difference of the means is found

to be

b̄− d̄ = −g2(x̃)∆x , (1.6.60)

where

g2(x̃) = z̄
(
û− (1 + û)x̃

)
= (1 + û)∆x̂ . (1.6.61)

On the other hand, since

d = x̃2(a21 + z) + x̃(1− x̃)(a12 + a21) + (1− x̃)2(a12 + ûz)

= (1− x̃)a12 + x̃a21 +
(
x̃2 + û(1− x̃)2

)
z ,

b = xx̃(a21 + z) + x(1− x̃)a12 + x̃(1− x)a21 + (1− x)(1− x̃)(a12 + ûz)

= (1− x̃)a12 + x̃a21 +
(
xx̃ + û(1− x)(1− x̃)

)
z , (1.6.62)
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where a12, a21 and z are independent random variables, the variances of b and d are given

by

σ2
d = (1− x̃)2σ2

12 + x̃2σ2
21 + (x̃2 + û(1− x̃)2)2σ2

z ,

σ2
b = (1− x̃)2σ2

12 + x̃2σ2
21 + (xx̃ + û(1− x)(1− x̃))2σ2

z . (1.6.63)

Writing x = x̃ + ∆x and x̃ = x̂−∆x̂, the difference of the variances is found to be

σ2
b − σ2

d = −2h2(x̃)∆x + o(∆x) , (1.6.64)

where

h2(x̃) = σ2
z

(
x̃2 + û(1− x̃)2

)(
û(1− x̃)− x̃

)

= σ2
z

(
x̂2 + û(1− x̂)2

)
∆x̂ + o(∆x̂)

= σ2
z(1 + û)x̂∆x̂ + o(∆x̂) . (1.6.65)

Analogously to the conclusion drawn in the proof of Result 1, if ∆x in absolute value and

the variances are small enough, then strategy x̃ is SLU against strategy x if

(d̄2 + σ2
d)g2(x̃)∆x < d̄h2(x̃)∆x . (1.6.66)

where

σ2
d = (1− x̂)2σ2

12 + x̂2σ2
21 + x̂2σ2

z + O(∆x̂) . (1.6.67)

If ∆x̂ is small enough and such that (∆x)(∆x̂) > 0, which means that sgn(x − x̃) =

sgn(x̂− x̃), then Eq. (1.6.66) reduces to

z̄d̄2 + z̄σ2
21x̂

2 + z̄σ2
12(1− x̂)2 + z̄x̂2σ2

z − d̄σ2
z x̂ < 0 . (1.6.68)

If either ∆x̂ or ∆x changes sign, then the reverse inequality is obtained, which means that

strategy x̃ is SLS against strategy x.
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Abstract

In this letter, we investigate stochastic stability in a two-phenotype evolutionary game

model for an infinite, well-mixed population undergoing discrete, nonoverlapping genera-

tions. We assume that the fitness of a phenotype is an exponential function of its expected

payoff following random pairwise interactions whose outcomes randomly fluctuate with

time. We show that the stochastic local stability of a constant interior equilibrium can be

promoted by the random environmental noise even if the system may display a complicated

nonlinear dynamics. This result provides a new perspective for a better understanding of

how environmental fluctuations may contribute to the evolution of behavioral diversity.
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2.1 Introduction

Since the concept of evolutionarily stable strategy (ESS) has been introduced in evolu-

tionary game theory (Maynard Smith and Price, 1973), it has been successfully applied

to explain the evolution of animal behaviors, in particular, altruistic behaviors (or coop-

erative behaviors) (Maynard Smith, 1982; Axelrod, 1984; Lessard, 1984; Hofbauer and

Sigmund, 1988; Nowak, 2006; Broom and Rychtář, 2013). Studies of evolutionary game

dynamics start with the replicator equation (Taylor and Jonker, 1978) and focus to a great

extent on the time evolution and long-term maintenance of population states pertaining

to behavioral diversity (Lessard, 1984; Hofbauer and Sigmund, 1988; Nowak, 2006; Broom

and Rychtář, 2013). In the archetypal framework of matrix games in discrete time, there

are two important assumptions that are usually made or implicit : the first one is that the

fitness of an individual is a simple linear function of the expected payoff of its phenotype,

and the second one is that the payoff matrix in pairwise interactions is a constant matrix

(Maynard Smith, 1982; Lessard, 1984; Hofbauer and Sigmund, 1988; Nowak, 2006; Broom

and Rychtář, 2013). However, both these two assumptions cannot be considered to be

always true, or completely real. In this letter, we address the consequences of relaxing

these assumptions by considering: (i) a random payoff matrix in pairwise interactions,

and (ii) a nonlinear, actually exponential, fitness function with respect to the expected

payoff.

It may be useful to recall the origins of the replicator equation in evolutionary game

theory (Taylor and Jonker, 1978; Zeeman, 1980; Maynard Smith, 1982; Hofbauer and

Sigmund, 1988). The equation in continuous time was obtained by assuming that the

payoff is the current growth rate. If ni is the current number of i-strategists in a population

of total large size N =
∑

i ni, then its time derivative ṅi = niπi where πi is the payoff

to i assumed in general to be frequency-dependent. This leads directly to the replicator

equation ẋi = xi(πi − π̄) where xi = ni/N is the relative frequency of i and π̄ the average

payoff in the whole population. In discrete time, if πi(t) ≥ −1 with average value π̄(t) is
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interpreted as the mean number of i-strategists at time step t + 1 that are produced by

each i-strategist at time step t, then the frequency of i satisfies the recurrence equation

xi(t + 1) = xi(t)(1+πi(t))
1+π̄(t) . Notice that using c + πi(t) (Maynard Smith, 1982; Weibull,

1995) for some positive constant c instead of 1 + πi(t) gives the same recurrence equation

if all payoffs are multiplied by 1/c. This multiplicative factor can be interpreted as a

strength of selection. Notice also that the aforementioned recurrence equation is a discrete-

time approximation of the replicator equation in the case of small payoffs, which means

weak selection. To see this, consider payoffs kept constant from time step t to time

step t + 1. This is a reasonable assumption if the time interval is small. Then we have

ni(t + 1) = ni(t)eπi(t), from which we get xi(t + 1) = xi(t)e
πi(t)P

j xj(t)e
πj(t) . The approximation

eπi(t) ≈ 1 + πi(t) in this recurrence equation for πi(t) small gives the previous one. This

shows that this recurrence equation is a more general and more precise discrete-time

approximation of the replicator equation than the previous one. Moreover, this recurrence

equation can be used as an exact discrete-time model for a population with interactions

between individuals occurring at the beginning of each time interval (e.g., season) and

having effects on growth in number of individuals from the beginning to the end of the time

interval. All this is in strong support of fitness in discrete time defined as an exponential

function of the payoff, that is, fi = eπi . Notice that such a fitness function is not additive

but rather multiplicative. As a consequence, even in the case of an individual payoff that

results from random pairwise interactions, it is non linear with respect to the strategy

frequencies. As already known, this may lead to dynamical properties very different from,

and much more complicated than, those obtained with a linear fitness function even in the

case of matrix games with only two phenotypes (Vincent and Fisher, 1988; Blume, 1993;

Tao et al., 1997; Szabó and Hauert, 2002; Traulsen et al., 2006; Claussen and Traulsen

2008; Traulsen et al., 2008).

Our objective in this letter is not only to study the effects of a nonlinear fitness function

on matrix game dynamics but also the effects of introducing stochastic perturbations of the
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payoffs. Randomness (or uncertainty) in the environment is one of the main characteristics

of nature, and this random noise will generally affect the results of interactions between

species and between individuals (May, 1973; Turchin et al., 2000; Lande et al., 2003;

Zheng et al., 2017). Therefore, variability in payoffs as measured by their variances and

covariances have to be taken into account in order to better understand evolutionary

outcomes in natural populations. Below are two examples to show that a random payoff

matrix is a reasonable assumption in evolutionary game theory and mathematical ecology.

It is well known that the Lotka-Volterra equation is one of the most important the-

oretical models in ecology (May, 1973). This equation for the densities of species near

equilibrium assumes that the growth rate in continuous-time is density-dependent. In

general, the local approximation takes the form ṅi = ni

(
ri +

∑k
j=1 aijnj

)
where (aij) is

an interaction matrix that may depend on environmental carrying capacities. This model

is actually equivalent to considering π̃i = ri + N
∑

j aijxj as the payoff to i, which is not

only frequency-dependent but also density-dependent. Then, we would have to consider

the time derivative of the population size given by Ṅ = N
∑

i xiπ̃i besides the replica-

tor equation in order to describe the whole continuous-time dynamics. Another approach,

however, is to introduce an extra species 0 of density n0 = 1 and frequency x0 = (N +1)−1

so that the payoff to i becomes π̃i = rix0 +
∑

j aijxj with respect to the new frequencies

and the change of time τ =
∫ t
0 x0(s)ds (Hofbauer and Sigmund, 1988). This leads to a

pure frequency-dependent selection model with random pairwise interactions and payoff

to i given by aij when in interaction with j and ri when in interaction with 0. More

importantly, these payoffs are random variables if the carrying capacities are random vari-

ables. This is the case with stochastic fluctuations in the environment, which is the rule

in nature rather than the exception. In conclusion, extending the Lotka-Volterra equa-

tion to take into account a stochastic environment leads to the replicator equation with

random payoffs. This is the best example to show that a random payoff matrix is a rea-

sonable assumption. Moreover, this shows that the replicator equation or a discrete-time
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approximation of it can take into account limiting factors on population size.

Another example is provided by the payoff matrix in the case of repeated rounds of the

same matrix game between the same two players chosen at random. This is the case, for

instance, with the strategies TFT and AllD in a repeated Prisoner’s Dilemma for modeling

the evolution of cooperation. If the number of repetitions of the game is a random variable

(e.g., a geometric random variable in the case where each round is followed by a next round

with some fixed probability (Nowak, 2006; Zheng et al., 2017)), then the payoff matrix is

a random matrix. More generally, a random payoff matrix is a reasonable assumption in

evolutionary game theory in order to deal with more realistic or more complex situations.

In order to take into account stochastic fluctuations in the surrounding environment,

deterministic evolutionary concepts such as evolutionary stability and convergence sta-

bility have to be extended. Random payoffs received by randomly pairwise interacting

individuals in an infinite population undergoing discrete, nonoverlapping generations were

considered till recently in a two-phenotype setting, and the concepts of stochastic evolu-

tionary stability (SES) and stochastic convergence stability were developed (SCS) (Zheng

et al., 2017). Although this study shows that a random environmental noise may have an

important impact on the stability nature of an equilibrium and, therefore, on the evolution

of animal behavior, it still assumes that the fitness of an individual is a linear function of

the expected payoff of the exhibited phenotype, which corresponds to an assumption of

weak selection. Here we will consider the more general case of an exponential function.

2.2 A two-phenotype model

For simplicity, consider a two-phenotype evolutionary game in an infinite population with

discrete, nonoverlapping generations. The two phenotypes (or strategies) are denoted by

R1 and R2, respectively, and the payoffs in pairwise interactions at time step t (with t ≥ 0)
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are given by the matrix

A(t) =


a11(t) a12(t)

a21(t) a22(t)


 =


at bt

ct dt


 , (2.2.1)

where aij(t) is the payoff to strategy Ri against strategy Rj for i, j = 1, 2. In general, these

payoffs are assumed to be random variables with 〈aij(t)〉 = āij ,
〈
(aij(t)− āij)

2
〉

= σ2
ij ,

and 〈(aij(t)− āij) (akl(t)− ākl)〉 = σij,kl for i, j, k, l = 1, 2 with (i, j) 6= (k, l). As for

s 6= t, the payoffs aij(s) and akl(t) are assumed to be independent of each other so that

〈(aij(s)− āij) (akl(t)− ākl)〉 = 0 for i, j, k, l = 1, 2 (Zheng et al., 2017). Besides, a further

technical assumption is that there exist real numbers A,B > 0 such that P
(
A ≤ aij(t) ≤

B
)

= 1 for all i, j = 1, 2.

Let xt denote the frequency of strategy R1 at time step t and, similarly, 1 − xt the

frequency of strategy R2. Assuming random pairwise interactions, the expected payoffs of

R1 and R2 at time step t, denoted by π1,t and π2,t, respectively, are given by

π1,t = xtat + (1− xt)bt ,

π2,t = xtct + (1− xt)dt . (2.2.2)

The fitnesses of R1-strategists and R2-strategists at time step t are defined as f1,t = eπ1,t

and f2,t = eπ2,t , respectively (Vincent and Fisher, 1988; Blume, 1993; Tao et al., 1997;

Szabó and Hauert, 2002; Traulsen et al., 2006; Claussen and Traulsen 2008; Traulsen et al.,

2008). Then, the average fitness of the population at time step t is f̄t = xtf1,t+(1−xt)f2,t,

and the frequency of R1 at time step t + 1 can be expressed as

xt+1 =
xte

π1,t

xteπ1,t + (1− xt)eπ2,t
(2.2.3)

for t ≥ 0 (Tao et al., 1997; Traulsen et al., 2008)
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2.3 Random environmental noise and stochastic local sta-

bility

In the absence of random environmental noise, that is, in the situation where σ2
ij = 0 for all

i, j = 1, 2 so that the payoff matrix in Eq. (2.2.1) is a constant matrix A(t) =


ā b̄

c̄ d̄


, Eq.

(2.2.3) reduces to a deterministic recurrence equation. For this deterministic recurrence

equation, it has been shown that: (i) only one equilibrium x∗ with 0 < x∗ < 1 (called

interior equilibrium) exists and is given by x∗ = (b̄ − d̄)/γ if b̄ − d̄ and c̄ − ā are both

positive or both negative, where γ = b̄ − d̄ + c̄ − ā; (ii) x∗ is globally asymptotically

stable if 0 < γ < 2/x∗(1− x∗); and (iii) as γ increases such that γ > 2/x∗(1− x∗), there

are period-doubling bifurcation and chaos (Tao et al., 1997). In the special case where

x∗ = 1/2, for instance, only one stable periodic two-cycle is possible for γ > 8.

If at least one σ2
ij for i, j = 1 or 2 is nonzero, which means that the random environ-

mental noise is not degenerate, then Eq. (2.2.3) is a stochastic recurrence equation. In

order to study the asymptotic (or long-run) behavior of the process {xt}, suppose that

x̃ is a constant (nonrandom) equilibrium of {xt}, that is, an equilibrium of Eq. (2.2.3)

that does not depend on the randomness of the payoff matrix. Obviously, both x̃ = 0

and x̃ = 1 are constant equilibria of Eq. (2.2.3) (called also the fixation states or the

boundary equilibria of the system). Moreover, x̃ is called a constant interior equilibrium

if it satisfies 0 < x̃ < 1 (Karlin and Liberman, 1974, 1975; Zheng et al., 2017). Based on

definitions introduced in Karlin and Liberman (1974, 1975), a constant equilibrium x̃ is

said to be stochastically locally stable (SLS) if for any ε > 0 there exists δ0 > 0 such that

P
(
xt → x̃

) ≥ 1 − ε as soon as |x0 − x̃| < δ0, while a constant equilibrium x̃ is said to be

stochastically locally unstable (SLU) if P
(
xt → x̃

)
= 0 as soon as |x0 − x̃| > 0.

Using the above definitions, we give below simplified mathematical arguments for the

stochastic local stability of a constant equilibrium (the more rigorous mathematical proofs

are similar to those in Zheng et al., 2017.)
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Let ut = xt/(1− xt). Then Eq. (2.2.3) can be equivalently expressed as

ut+1 = ute
π1,t−π2,t . (2.3.1)

Consider first the stochastic local stability of the boundary equilibrium x̃ = 0, which

corresponds to ũ = 0. Notice that ut → 0 if and only if xt → 0. Iterating the above

recurrence equation leads to

1
n

(
log un − log u0

)
=

1
n

n−1∑

t=0

(
π1,t − π2,t

)

=
1
n

n−1∑

t=0

((
bt − dt

)
+

(
at − bt − ct + dt

) ut

1− ut

)
. (2.3.2)

Therefore, if ut → 0 and b̄− d̄ 6= 0, then the strong law of large numbers guarantees that

0 ≥ lim
n→∞

1
n

(
log un − log u0

)
≈ lim

n→∞
1
n

n−1∑

t=0

(
bt − dt

)
= b̄− d̄ . (2.3.3)

We conclude that the boundary equilibrium x̃ = 0 is SLU if b̄ − d̄ > 0. On the other

hand, using Egorov’s theorem, it can be shown that x̃ = 0 is SLS if b̄− d̄ < 0 (Karlin and

Liberman, 1975; Zheng et al., 2017).

Suppose that there exists ũ > 0 such that

ũ
(
at − ct

)
= dt − bt (2.3.4)

for all possible t ≥ 0. Then the random payoff matrix can be expressed as

at bt

ct dt


 =


ct + zt bt

ct bt + ũzt


 =


 at dt − ũzt

at − zt dt


 , (2.3.5)

where zt = at − ct. In this situation, Eq. (2.2.3) admits a constant interior equilibrium,

given by x̃ = ũ/(1 + ũ) with 0 < x̃ < 1. Moreover, the previous analysis ascertains that

the two fixation states x̃ = 0 and x̃ = 1 are both SLS if z̄ = ā − c̄ > 0 and both SLU if

z̄ = ā − c̄ < 0. Now, in order to study the stochastic local stability of x̃ = ũ/(1 + ũ), let

Eq. (2.3.1) be rewritten as

ut+1 = ute
−ũzt+(1+ũ)zt

ut
1+ut . (2.3.6)
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A Taylor expansion around ũ leads to the approximation

ut+1 − ũ ≈
(

1 +
ũ

1 + ũ
zt

) (
ut − ũ

)
, (2.3.7)

from which

lim
n→∞

1
n

(
log(un − ũ)2 − log(u0 − ũ)2

)
≈ lim

n→∞
1
n

log
(

1 +
ũ

1 + ũ
zt

)2

=

〈
log

(
1 +

ũ

1 + ũ
zt

)2
〉

. (2.3.8)

Then it can be shown that the constant interior equilibrium x̃ = ũ/(1 + ũ) is SLS if

〈
log (1 + x̃zt)

2
〉

< 0 , (2.3.9)

and SLU if the inequality is reversed. Developing log (1 + x̃zt)
2 around z̄ = ā− c̄ yields

〈
log (1 + x̃zt)

2
〉

≈ log
(
1 + x̃z̄

)2 −
(

x̃

1 + x̃z̄

)2

σ2
z , (2.3.10)

where σ2
z = σ2

a + σ2
c − 2σa,c. Therefore, as long as the random environmental noise does

not vary too much, the constant interior equilibrium x̃ = ũ/(1 + ũ) is SLS if

σ2
z >

(
1 + x̃z̄

x̃

)2

log
(
1 + x̃z̄

)2
, (2.3.11)

and SLU if the inequality is reversed. This result shows not only that the two boundary

equilibria (x̃ = 0 and x̃ = 1) and the constant interior equilibrium (x̃ = ũ/(1 + ũ)) can be

simultaneously SLS, but also that an increase in the variance of the environmental noise

(σ2
z) will promote the stochastic local stability of the constant interior equilibrium.

In order to test the above theoretical predictions, three numerical examples are inves-

tigated below using computer simulations in the case of a random payoff matrix in the

form of Eq. (2.3.6) with a constant interior equilibrium x̃ = ũ/(1 + ũ).

2.3.1 Example 1

If we take ũ = 1 in Eq. (2.3.6), then x̃ = 1/2 is a constant interior equilibrium. From

our theoretical results, both x̃ = 0 and x̃ = 1 are SLS if z̄ > 0, while x̃ = 1/2 is SLS if

105



σ2
z >

(
2 + z̄

)2 log
(
1 + z̄/2

)2. The simulation results based on Eq. (2.2.3) are plotted in

Figure 2.1, in which we take z̄ = 0.1 and σ2
z = 4. These simulations strongly support the

theoretical predictions, that is, both boundaries and the constant interior equilibrium can

be simultaneously SLS. Notice that in the absence of random environmental noise (σ2
z),

both boundaries and the constant interior equilibrium cannot be simultaneously locally

stable.

Figure 2.1: Both boundaries and the constant interior equilibrium can be stochastically

locally stable at the same time. For the random payoff matrix


1 + zt 1

1 1 + zt


 with

z̄ = 0.1 and σ2
z = 4, both boundaries and x̃ = 1/2 are SLS. The simulation results, four

trajectories of xt, are illustrated starting with x0 = 0.2 and x0 = 0.8: two converge to

x̃ = 1/2 (green and pink curves), one to x̃ = 0 (red curve), and one to x̃ = 1 (blue curve).

2.3.2 Example 2

Similarly to Example 1, we take ũ = 1 in Eq. (2.3.6) so that x̃ = 1/2 is a constant interior

equilibrium. If z̄ < 0, then both x̃ = 0 and x̃ = 1 are SLU. On the other hand, if σ2
z = 0,

then x̃ = 1/2 is globally asymptotically stable if |z̄| < 4 (with z̄ < 0), while only one

stable periodic two-cycle can exist when |z̄| > 4 (Tao et al., 1997) (see Figure 2.2a). For
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z̄ = −6 and σ2
z > 0, the simulation results show the following: (i) when σ2

z is small, the

probability distribution of xt over time is bimodal about x̃ = 1/2 (see Figure 2.2b); and

(ii) as σ2
z increases, a new peak of probability distribution appears at x̃ = 1/2, and the

amount of probability near the constant interior equilibrium x̃ = 1/2 rapidly increases

(see Figure 2.2c-d). Obviously, the increase of σ2
z promotes the stochastic local stability

of x̃ = 1/2. However, we can see also that, although the increase of σ2
z leads to a new

peak of the probability distribution at x̃ = 1/2, the period doubling characteristic of the

system is not completely destroyed if σ2
z is not too large.

Figure 2.2: An increase of σ2
z promotes stochastic local stability of x̃ = 1/2. (a) For the

random payoff matrix


1 + zt 1

1 1 + zt


 with z̄ = −6, if σ2

z = 0, both boundaries and

the constant interior equilibrium x̃ = 1/2 are unstable and there is a stable periodic two-

cycle (red dash line). (b) For σ2
z = 1, the time evolution of xt corresponds to a bimodal

probability distribution about x̃ = 1/2, and the system still has the obvious two-cycle

characteristics. (c-d) For σ2
z = 4 in panel (c) and σ2

z = 16 in panel (d), we can see that

increasing σ2
z results in a new peak of probability distribution at x̃ = 1/2 and an increase

in the amount of probability near x̃ = 1/2.
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2.3.3 Example 3

In this example, we take ũ = 1/2 in Eq. (2.3.6) so that x̃ = 1/3 is a constant interior

equilibrium. If z̄ < 0, then both x̃ = 0 and x̃ = 1 are SLU. On the other hand, if σ2
z = 0,

then x̃ = 1/3 is globally asymptotically stable if |z̄| < 6 (with z̄ < 0), while an increase

of |z̄| (with |z̄| > 6) leads to period-doubling bifurcation and chaos (Tao et al., 1997) (see

Figure 2.3a). Here, we take z̄ = −9 so that the system exhibits a stable periodic four-cycle

if σ2
z = 0 (see also Figure 2.3a). Similarly to the results in Example 2, we notice that:

(i) when σ2
z is small (but σ2

z 6= 0), the probability distribution of xt over time shows four

peaks (this phenomenon exactly matches the nonlinear dynamical characteristics of the

system) (see Figure 2.3b); and (ii) with the increase of σ2
z , a new peak of the probability

distribution appears at x̃ = 1/3 and the amount of probability near x̃ = 1/3 is also

positively related to the size of σ2
z (see Figure 2.3c-f).

2.4 Conclusion and discussion

Our theoretical results and simulations on evolutionary games with a random payoff matrix

clearly show that stochastic fluctuations in the payoffs as a result of random noise in the

environment make the dynamical system much more complex, namely that an increase in

the level of environmental noise could promote stochastic local stability of a constant inte-

rior equilibrium. Although it may look at a first glance that the matrix games considered

in this letter have totally uncertain outcomes, this is not the case. The payoffs in pairwise

interactions are not assumed to be independent identically distributed random variables.

In particular, they are not assumed to have the same expected value. The structure of

the game is determined by the expected payoffs which in turn determine the dynamical

properties of fixation states as well as interior equilibria if they exist in the absence of vari-

ability. The local stability properties and conditions have to be extended when random

perturbations on the payoffs are introduced. These extensions for fixation states can be

used to define stochastic evolutionary concepts such as stochastic evolutionary stability
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Figure 2.3: An increase of σ2
z promotes the stochastic local stability of x̃ = 1/3. (a) For

the random payoff matrix


1 + zt 1

1 1 + zt/2


 with z̄ = −9, if σ2

z = 0, both boundaries

and the constant interior equilibrium x̃ = 1/3 are unstable and there is a stable periodic

four-cycle (red dash line). (b) For σ2
z = 0.01, the probability distribution of xt exhibits

four peaks, caracteristic of a stable periodic four-cycle, when σ2
z is small (but σ2

z 6= 0).

(c-f) For σ2
z = 0.25 in panel (c), σ2

z = 9 in panel (d), σ2
z = 16 in panel (e) and σ2

z = 25

in panel (f), we can see that increasing σ2
z not only leads to the appearance of a new

peak of probability distribution of xt at x̃ = 1/3, but also to an increase in the amount of

probability near x̃ = 1/3.
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and stochastic convergence stability (Zheng et al., 2017).

In this letter, we have focused on the existence of a stochastically locally stable interior

equilibrium in a discrete-time two-phenotype model with an exponential function of the

payoff as fitness to best approximate a continuous-time model. Notice that our analysis

is fully valid if we multiply all payoffs by a common positive factor β = 1/c that would

represent the strength of selection (Traulsen et al., 2008). However, the focus in this letter

is not on the effect of such a parameter and, in order to keep the number of parameters

as low as possible without loss of generality, the strength of selection will be incorporated

into the payoffs.

The three examples studied in the paper allow us to address the global dynamics of the

system and make evolutionary predictions in the most interesting cases, namely, when the

fixation states are both stochastically locally stable (SLS) or both stochastically locally

unstable (SLU). As shown, an increase in the variance of environmental noise (σ2
z) favors

the stochastic local stability of an interior equilibrium even in the former case, which is

rather surprising. In our simulations, a gradual increase in the environmental noise in-

tensity leads to a gradual increase in the probability distribution of the population state

over a long period of time near the constant interior equilibrium at which all individuals

have the same average fitness. Moreover, this is in agreement with the mathematical con-

dition for a constant interior equilibrium (Eq. (2.3.11)) to be SLS, so that the population

state tends to wander around it. Notice that the stochastic local stability of the constant

interior equilibrium depends not only on the averages of the payoffs but also on their vari-

ances and covariances contrary to the boundary equilibria. This is a characteristic of the

stochastic model compared to the deterministic model that can make possible the coex-

istence of a SLS interior equilibrium with two SLS boundary equilibria as environmental

noise intensity increases.

Our conclusion may seem counterintuitive and have important biological implications.

There is a connection, however, between our results on SLS equilibria in an evolution-
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ary game model and ideas of noise-induced transitions in stochastic differential equations

models in physics, chemistry and biology (Horsthemke and Lefever, 2006). Random fluc-

tuations in the environment correspond to what is called multiplicative noise, and it is

known that the number of peaks in the stationary probability density of a diffusion process

can change as a function of noise intensity. In a population genetics context, a diffusion

process with a stationary distribution can be obtained as a continuous-time limit of a

discrete-time mutation-selection model. In our model, there is no mutation, selection is

frequency-dependent and strong, and time is kept discrete. Nevertheless, there is an anal-

ogy between a SLS equilibrium in our model and a peak in the stationary probability

density of a diffusion approximation, if it can be found, that would be obtained under

weak mutation and weak frequency-dependent selection. In this case, however, a bound-

ary SLS equilibrium would correspond to a peak not exactly on the boundary but nearby

the boundary.

May (1976) found that a simple deterministic logistic difference equation can lead to

periodic limit cycles and chaos. This discovery led people to believe that nonlinear biolog-

ical systems could result in the emergence of complex dynamics, and that such dynamics

(especially chaos) should be easily observable in natural populations. Nevertheless, the

majority of attempts to find chaos in nature have either drawn a blank or remained con-

troversial. Since then, several studies have aimed to explaining why natural populations

do not exhibit chaos (Sherratt and Wilkinson, 2009). Our results on the effects of random

noise on evolutionary game dynamics can provide some clues for addressing this question,

mainly, that stochastic fluctuations in the environment may play a role in impeding the

emergence of complex dynamical behaviors in natural populations. The explanation might

be that a random environment favors the evolution of more robust equilibrium population

strategies but this remains to be confirmed by further studies.
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Abstract

Weak selection is an important assumption in theoretical evolutionary biology, but its bi-

ological significance remains unclear. In this study, we investigate the effect of weak selec-

tion on stochastic evolutionary stability in a two-phenotype evolutionary game dynamics

with a random payoff matrix assuming an infinite, well-mixed population undergoing dis-

crete, nonoverlapping generations. We show that, under weak selection, both stochastic

local stability and stochastic evolutionary stability in this system depend on the means of

the random payoffs but not on their variances. Moreover, although stochastic local sta-

bility or instability of an equilibrium may not depend on environmental noise if selection

is weak enough, the growth rate near an equilibrium not only depends on environmental

noise, but it can even be enhanced by environmental noise if selection is weak. This is

the case, for instance, when the variances of the random payoffs are equal as well as the

covariances. These results suggest that natural selection could be able to filter (or resist)

the effect of environmental noise on the evolution of animal behavior if selection is weak.
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3.1 Introduction

Weak selection is an important assumption in theoretical evolutionary biology. It is the

assumption that there is little difference between the individuals in reproductive success,

or fitness, so that the effects of natural selection are small. Weak selection has a long-

standing history in population genetics (Kimura, 1968; Ohta, 2002). In infinitely large

populations in a constant environment, however, increasing the intensity of selection often

results in a mere re-scaling of time which does not actually affect the final outcome of

the deterministic dynamics (Hofbauer and Sigmund, 1998; Traulsen et al., 2005). On the

opposite, in finite populations, changing the intensity of selection may have an important

effect on the stochastic dynamics (Kimura, 1968; Nowak et al., 2004). In some situations,

results under weak selection have been shown to stay valid as the intensity of selection

increases (Ohtsuki et al., 2006). In general, however, the evolutionary significance of weak

selection in finite populations remains unclear.

The assumption of weak selection has already been considered in evolutionary game

theory to analyze the stochastic dynamics in finite populations (Nowak, 2006). Here, weak

selection means that the expected payoff of an individual has only a very small effect on its

fitness so that the evolutionary dynamics is mainly driven by random fluctuations (Nowak

et al., 2004; Taylor et al., 2004). Under the assumption of weak selection, Nowak et al.

(2004) deduced the “one-third law” for the fixation probability in a two-phenotype game-

theoretic model and used it to provide an explanation for the evolution of cooperation (see

also Lessard, 2005; Traulsen et al., 2006a, 2006b; Lessard and Ladret, 2007; Traulsen and

Hauert, 2009; Zheng et al., 2011). In order to show the robustness of outcomes in finite

populations under weak selection, Wu et al. (2010, 2013) investigated some properties of

weak selection in the Fermi and Moran processes, where the environment is assumed to

be fixed so that the payoff matrix remains constant.

Environmental conditions in the real world are changing and uncertain, and stochastic

fluctuations in the surroundings of a population may cause changes in the occurrence of
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interactions between individuals and, more importantly, changes in the payoffs received by

the interacting individuals (Zheng et al., 2017, 2018). As pointed out by May (1973), the

birth rates, carrying capacities, competition coefficients, and other ecological parameters

which characterize natural biological systems all, to a greater or lesser degree, exhibit

random fluctuations. Therefore, a very challenging question is whether natural selection

is able to filter (or resist) the effect of environmental noise on the evolution of animal

behavior.

Recently, in order to develop the concept of evolutionary stability in a randomly fluc-

tuating environment, Zheng et al. (2017, 2018) investigated conditions for stochastic local

stability of the fixation states and constant interior equilibria in a two-phenotype model

with random payoffs, and developed the concepts of stochastic evolutionary stability and

stochastic convergence stability. The results obtained show that stochastic local stability

depends not only on the averages of the random payoffs but also on the variances of these

random payoffs. Note that Stollmeier and Nagler (2018) considered also an evolutionary

game dynamics with two phenotypes and time-dependent payoffs in an infinite population

undergoing discrete, nonoverlapping generations, but they focused on the unfair coexis-

tence of strategies.

Extending the analysis of stochastic local stability and stochastic evolutionary stability,

we are interested in this paper in what determines the characteristics of the evolutionary

game dynamics in the presence of environmental noise if selection is weak. Our main goal is

to reveal the fundamental importance of weak selection in the evolution of animal behavior,

or the evolutionary biological significance of weak selection, in a stochastic environment.

It may be useful to recall that stochastic fluctuations in evolutionary game dynamics

may be due to either intrinsic noise (i.e., demographic stochasticity) or extrinsic noise (i.e.,

environmental stochasticity), or a combination of both. Demographic stochasticity mainly

involves the occurrence of interactions between individuals, random events of birth and

death of individuals, etc. Demographic stochasticity in evolutionary game dynamics due
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to a finite population size has received a lot of attention as already mentioned (Nowak et

al., 2004; Taylor et al., 2004; Lessard, 2005; Ohtsuki et al., 2006; Nowak, 2006; Traulsen

et al., 2006a, 2006b; Lessard and Ladret, 2007; Traulsen and Hauert, 2009; Zheng et al.,

2011). On the other hand, stochastic fluctuations in the population state due to a finite

population size can be much smaller than those caused by changes in the environment,

and then ignored, if the population size is large enough. This assumption is current in

evolutionary game theory (Maynard Smith, 1982; Lessard, 1984; Hofbauer and Sigmund,

1998), and deserves as much attention as the assumption of a population size whose

inverse is of order larger than, or equal to, the order of random differences in payoffs.

Weak selection, however, another current assumption in evolutionary game theory, may

come into play in the short-term as well as long-term effects of random fluctuations in the

environment. This is the question addressed in the present paper, which was not addressed

in previous studies.

3.2 Basic model and definitions

Consider an evolutionary game in an infinite population with discrete, nonoverlapping,

generations. There are two phenotypes or pure strategies, S1 and S2, and the payoffs in

pairwise interactions at time step t ≥ 0 are given by the game matrix

A(t) =


a11(t) a12(t)

a21(t) a22(t)


 =


at bt

ct dt


 , (3.2.1)

where aij(t) is the payoff to strategy Si against strategy Sj for i, j = 1, 2. These payoffs

are assumed to be positive random variables that are uniformly bounded below and above

by some positive constants. Therefore, there exist real numbers A,B > 0 such that

A ≤ aij(t) ≤ B for i, j = 1, 2 and all t ≥ 0 (Zheng et al., 2017). Moreover, the probability

distributions of aij(t) for i, j = 1, 2 do not depend on t ≥ 0. The means, variances and

covariances of these random payoffs are given by
〈
aij(t)

〉
= āij ,

〈(
aij(t) − āij

)2
〉

= σ2
ij ,

and
〈(

aij(t)− āij

)(
akl(t)− ākl

)〉
= σij,kl, respectively, for i, j, k, l = 1, 2 with (i, j) 6= (k, l).
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As for s 6= t, the payoffs aij(s) and akl(t) are assumed to be independent of each other so

that
〈(

aij(s)− āij

)(
akl(t)− ākl

)〉
= 0 for i, j, k, l = 1, 2. In general, we also assume that

the variances of the random payoffs are small (Zheng et al., 2017, 2018)

Let xt be the frequency of strategy S1 at time step t ≥ 0 and, similarly, 1 − xt the

frequency of strategy S2. Then the expected payoffs of strategies S1 and S2 at time

step t ≥ 0 are given by π1,t = xtat + (1 − xt)bt and π2,t = xtct + (1 − xt)dt, respectively.

Furthermore, in order to show the effect of selection intensity on the evolutionary dynamics

of strategies S1 and S2, and without loss of generality, the fitnesses of S1 and S2 at time

step t ≥ 0 are simply defined as (1− w) + wπ1,t and (1− w) + wπ2,t, respectively, where

w with 0 ≤ w ≤ 1 represents the selection intensity (Nowak et al., 2004; Nowak, 2006).

So, the number of replicates of a strategy from one step to the next is proportional to

its fitness, and the frequency of strategy S1 at time step t + 1 is given by the recurrence

equation

xt+1 =
xt

(
(1− w) + wπ1,t

)

xt

(
(1− w) + wπ1,t

)
+ (1− xt)

(
(1− w) + wπ2,t

) (3.2.2)

for t ≥ 0. This model can be viewed as a Wright-Fisher model in the limit of a large

population size (see, e.g., Hofbauer and Sigmund, 1998), but with fitness differences of

order larger than the inverse of the population size and subject to stochastic fluctuations.

Defining ut = xt

/
(1− xt), the recurrence equation takes the simple form

ut+1 = ut

[
ut

(
(1− w) + wat

)
+

(
(1− w) + wbt

)

ut

(
(1− w) + wct

)
+

(
(1− w) + wdt

)
]

. (3.2.3)

Let x̂ represent a constant (non-random) equilibrium of Eq. (3.2.2) that does not

depend on the randomness of the payoff matrix A(t). This is clearly the case for both

x̂ = 0 and x̂ = 1, called the fixation states or the boundary equilibria. This may also be the

case for a constant equilibrium x̂ with 0 < x̂ < 1, called a constant interior equilibrium.

A constant equilibrium x̂ is said to be stochastically locally stable (SLS) if for every ε > 0

there exists δ0 > 0 such that P(xt → x̂) ≥ 1 − ε as soon as |x0 − x̂| < δ0 (Karlin and

Liberman, 1974, 1975; Zheng et al., 2017). This means that xt tends to x̂ as t →∞ with
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probability arbitrarily close to 1 (but different from 1) if the initial state x0 is sufficiently

near x̂. On the other hand, a constant equilibrium x̂ can be said to be stochastically locally

unstable (SLU) if P(xt → x̂) = 0 as soon as |x0− x̂| > 0 (Karlin and Liberman, 1974, 1975;

Zheng et al., 2017). If this is the case, then x̂ cannot be reached with probability 1 from any

initial state different from x̂. Based on these definitions, we will present some simplified

mathematical arguments for the stochastic local stability of a constant equilibrium (the

more rigorous mathematical proofs are similar to those in Zheng et al., 2017

3.3 Effect of weak selection on stochastic local stability of

an equilibrium

Consider first the stochastic local stability of the fixation state x̂ = 0 in Eq. (3.2.2), which

corresponds to the equilibrium û = x̂
/
(1 − x̂) = 0 in Eq. (3.2.3). Note that Eq. (3.2.3)

can be rewritten in the form

ut+1

ut
=

[ (1− w) + wbt

(1− w) + wdt

]
Rt , (3.3.1)

where

Rt = 1 +
ut

[(
(1− w) + wat

)(
(1− w) + wdt

)− (
(1− w) + wbt

)(
(1− w) + wct

)]

ut

(
(1− w) + wbt

)(
(1− w) + wct

)− (
(1− w) + wbt

)(
(1− w) + wdt

) .

(3.3.2)

Then, iterating this recurrence equation leads to

1
n

[
log un − log u0

]
=

1
n

n−1∑

t=0

log
[

(1− w) + wbt

(1− w) + wdt

]
+

1
n

n−1∑

t=0

log Rt (3.3.3)

for n ≥ 1. Therefore, if ut → 0 (which compels log Rt → 0), then the strong law of large

numbers guarantees that

lim
n→∞

1
n

[
log un − log u0

]
≈

〈
log

[
(1− w) + wbt

(1− w) + wdt

]〉
. (3.3.4)
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Using Egorov’s theorem, it can be shown that the fixation state x̂ = 0 is SLS if
〈

log
[

(1− w) + wbt

(1− w) + wdt

]〉
=

〈
log

[
(1− w) + wbt

]〉−
〈

log
[
(1− w) + wdt

]〉
< 0 , (3.3.5)

and x̂ = 0 is SLU if the inequality is reversed (Zheng et al., 2017). The mean geometric

growth rate on the left-hand side in Eq. (3.3.5) represents the rate of convergence to 0 if

0 is SLS and the rate of divergence from 0 if 0 is SLU.

In the case where the payoffs have small enough variances, we have the approximation

〈
log

[
(1− w) + waij(t)

]〉 ≈ log
[
(1− w) + wāij

]− w2σ2
ij

2
(
(1− w) + wāij

)2 (3.3.6)

for i, j = 1, 2 (Zheng et al., 2017). Then, the inequality in Eq. (3.3.5) can be rewritten as

log

[
(1− w) + wb̄

(1− w) + wd̄

]
+

w2σ2
d

2
(
(1− w) + wd̄

)2 −
w2σ2

b

2
(
(1− w) + wb̄

)2 < 0 . (3.3.7)

Furthermore, when w is small enough, we have the approximation

log

[
(1− w) + wb̄

(1− w) + wd̄

]
≈ w

(
b̄− d̄

)
. (3.3.8)

Therefore, if selection is weak enough, then the fixation state x̂ = 0 is SLS if b̄ − d̄ < 0

and SLU if b̄− d̄ > 0. This implies that the stochastic local stability of x̂ = 0 depends on

the means of the random payoffs bt and dt, but does not depend on their variances. An

example of stochastic local stability of fixation state x̂ = 0 under weak selection is shown

in Fig. 3.1. By symmetry, under weak enough selection, the fixation state x̂ = 1 is SLS

if c̄− ā < 0 and SLU if c̄− ā > 0. On the other hand, in the degenerate case where bt = dt

(or at = ct) for all t ≥ 0, and under weak enough selection, the fixation state x̂ = 0 (or

x̂ = 1) is SLS if ā − c̄ < 0 (or d̄ − b̄ < 0) and SLU if ā − c̄ > 0 (or d̄ − b̄ > 0). (The

mathematical proofs are given in Appendix A.)

Moreover, as a special case, if û(at − ct) = dt − bt for all t ≥ 0 where û is a positive

constant, then the random payoff matrix A(t) in Eq. (3.2.1) can be re-written as

at bt

ct dt


 =


ct + zt bt

ct bt + ûzt


 =


 at dt − ûzt

at − zt dt


 , (3.3.9)
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Figure 3.1: Effect of selection intensity on the stochastic local stability of fixation state

x̂ = 0. Consider a random payoff matrix A(t) =


7 9 + ηt

8 10 + ξt


, where ηt and ξt are

uniform random variables with η̄ = ξ̄ = 0, σ2
η = 5.3 and σ2

ξ = 30 for all t ≥ 0. Simulation

results illustrate the stochastic local stability or instability of x̂ = 0 for two different

intensities of selection. When w = 1, then x̂ = 0 is SLU and the population state is driven

away from 0 even from an initial state close to 0 such as x0 = 0.01. When w = 0.1, then

x̂ = 0 is SLS and the population state tends to 0. Each curve represents an average of 100

simulated trajectories starting from the same initial state. Notice that each trajectory in

the case w = 1 fluctuates between 0 and 1 without any convergence.
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where zt = at−ct for all t ≥ 0. For this random payoff matrix, x̂ = û
/
(1+ û) is a constant

interior equilibrium of Eq. (3.2.2). Similarly to the the stochastic local stability analysis

of the fixation state x̂ = 0, it can be shown that under weak selection, the constant interior

equilibrium x̂ = û
/
(1 + û) is SLS if c̄ − ā > 0 and SLU if c̄ − ā < 0 (the mathematical

proofs are given in Appendix B). This result shows that, if a constant interior equilibrium

exists, then its stochastic local stability under weak selection depends on the means of the

random payoffs but not on their variances. However, we have to point out that even if

selection is weak, whether a constant interior equilibrium exists or not cannot be in general

determined only by the means of the random payoffs.

3.4 Effect of environmental noise on the growth rate near

an equilibrium under weak selection

A further challenging question concerns the rate of convergence (or divergence) near an

equilibrium in Eq. (3.2.2) with the random payoff matrix A(t) =
(
aij(t)

)
2×2

in Eq. (3.2.1)

at time step t ≥ 0, compared to the deterministic dynamics with the constant mean payoff

matrix Ā =
(
āij

)
2×2

: does this rate increase or decrease as the variance in the payoffs

increases?

Consider first the situation where the fixation state x̂ = 0 is SLS in the stochastic dy-

namics under weak selection. Owing to Eq. (3.3.7) and Eq. (3.3.8), the rate of convergence

to 0 is approximated as

〈
log

[
(1− w) + wbt

(1− w) + wdt

]〉
≈





w(b̄− d̄) +
w2

(
σ2

d−σ2
b

)
2 if σ2

b 6= σ2
d ,

w(b̄− d̄) + w3σ2
(
b̄− d̄

)
if σ2

b = σ2
d = σ2 ,

(3.4.1)

where w(b̄− d̄) < 0 approximates the rate of convergence in the deterministic mean-field

dynamics with payoff matrix Ā. Therefore, the rate of convergence in the stochastic

dynamics is faster (or slower) than the rate of convergence in the deterministic mean-field

approximation if σ2
b ≥ σ2

d (or σ2
b < σ2

d). Note that these inequalities have to be reversed
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for the rate of divergence from 0 to be faster (or slower) in the stochastic dynamics than

that in the mean-field approximation in the case where 0 is SLU with w(b̄ − d̄) > 0. In

particular, the growth rate is always faster in the stochastic dynamics when σ2
b = σ2

d.

Analogous conclusions can be drawn for the fixation state x̂ = 1.

Similarly, in the situation where û(at−ct) = dt−bt for all t ≥ 0 with û being a positive

constant corresponding to a SLS interior equilibrium x̂ = û/(1 + û) in the stochastic

dynamics under weak selection (that is, c̄ > ā), it can be shown that the rate of convergence

to x̂ in the stochastic dynamics is faster (or slower) than that of in deterministic mean-field

approximation if û
(
σ2

c − σ2
a

)
+ 2(σc,d − σa,d) ≤ 0 (or û

(
σ2

c − σ2
a

)
+ 2(σc,d − σa,d) > 0) (see

Appendix C for a proof). Moreover, the same is true for the rate of divergence from a

SLU x̂ in the stochastic dynamics under weak selection (that is, c̄ < ā) if the inequalities

are reversed. Note that, in the special case where σ2
c = σ2

a and σc,d = σa,d, the growth

rate is always faster in the stochastic dynamics.

All these results show that, although stochastic local stability or instability of an equi-

librium state may become unaffected by environmental noise as the intensity of selection

diminishes, the rate of convergence or divergence of the system near the equilibrium not

only depends on environmental noise, but it can be even enhanced by environmental noise.

These findings are supported by simulation results presented in Fig. 3.2.

3.5 Effect of weak selection on stochastic evolutionary sta-

bility

Evolutionary stability, or evolutionarily stable strategy (ESS), is the key concept in evolu-

tionary game theory (Maynard Smith, 1982; Lessard, 1984; Hofbauer and Sigmund, 1998).

Recently, Zheng et al. (2017) extended the standard definition of an ESS in a constant

environment (Maynard Smith, 1982) to a variable environment. A stochastically evolu-

tionarily stable (SES) strategy is defined as a strategy such that, if all the members of

the population adopt it, then the probability for at least any slight perturbed strategy
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Figure 3.2: Simulations for the stochastic local stability of a constant interior equilibrium

under weak selection. We consider the random payoff matrix


4 + zt 3

4 3 + ûzt


, where

û = 1/2 is a positive constant and zt is taken as a normal random variable with mean

z̄ = −0.01 and variance σ2
z = 4 at time step t ≥ 0. In this case, x̂ = û

/
(1 + û) =

1/3 is a constant interior equilibrium. Moreover: (i) if w = 1 (i.e., strong selection),

then x̂ = 1/3 is SLU with respect to the stochastic dynamics; while (ii) x̂ = 1/3 is

a globally asymptotically stable equilibrium with respect to the deterministic dynamics

with payoff matrix


4 + z̄ 3

4 3 + ûz̄


. The simulations show in panel (a) that a decrease

in the selection intensity w results in x̂ = 1/3 becoming SLS, and in panel (b) that the

system state xt tends to x̂ = 1/3 when the selection intensity is small enough. Here,

each of the solid curves represents an average of 100 simulated curves starting at the

same initial state, and the dashed curves represent the deterministic dynamics with payoff

matrix given by the mean payoff matrix in the stochastic dynamics.
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to invade the population under the influence of natural selection is arbitrarily low. More

specifically, a strategy represented by a frequency vector x̂ is SES if x̂-fixation is SLS

against any other strategy x 6= x̂ at least nearby enough (Zheng et al., 2017). Here we

mainly focus on the effect of weak selection on stochastic evolutionary stability.

For two mixed strategies x =
(
x, 1 − x

)
and x̂ =

(
x̂, 1 − x̂

)
with the payoffs to the

pure strategies at time step t ≥ 0 given by A(t) in Eq. (3.2.1), the payoff matrix takes

the form

xA(t)x xA(t)x̂

x̂A(t)x x̂A(t)x̂


 , (3.5.1)

where xA(t)x (respectively, xA(t)x̂) is the expected payoff to strategy x against strategy

x (respectively, x̂), and x̂A(t)x (respectively, x̂A(t)x̂) the expected payoff to strategy

x̂ against strategy x (respectively, x̂). Analogously to the condition Eq. (3.3.7) for the

fixation state x̂ = 0 to be SLS, the fixation of strategy x̂ is SLS if

log

[
(1− w) + w 〈xA(t)x̂〉
(1− w) + w 〈x̂A(t)x̂〉

]

+
w2σ2

x̂A(t)x̂

2
(
(1− w) + w 〈x̂A(t)x̂〉 )2 −

w2σ2
xA(t)x̂

2
(
(1− w) + w 〈xA(t)x̂〉 )2 < 0 , (3.5.2)

where σ2
x̂A(t)x̂ and σ2

xA(t)x̂ denote the variances of x̂A(t)x̂ and xA(t)x̂, respectively. There-

fore, under weak selection, the fixation of strategy x̂ is SLS if
〈
x̂A(t)x̂

〉− 〈
xA(t)x̂

〉
> 0,

that is, x̂Āx̂−xĀx̂ > 0. Similarly, under weak selection, the fixation of strategy x is SLU

if we have
〈
xA(t)x

〉− 〈
x̂A(t)x

〉
< 0, that is, xĀx− x̂Āx < 0. Combining these results,

we can conclude that, under weak selection, strategy x̂ is SES if and only if

x̂Āx̂− xĀx̂ ≥ 0 for all x 6= x̂ , (3.5.3)

and x̂Āx− xĀx > 0 for all x 6= x̂ if the equality holds above. (3.5.4)

Therefore, under weak selection, a SES strategy is a strategy such that, if all the members

of the population adopt it, then the probability for any mutant strategy to invade the

population under the influence of natural selection is arbitrarily low.
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The above conclusion shows that the conditions for strategy x̂ to be SES under weak

selection depends only on the average payoff matrix Ā, and that they exactly match the

standard conditions for an ESS with the payoff matrix Ā (Maynard Smith, 1982). So,

under weak selection: (i) the pure strategy x̂ = (0, 1) is SES if d̄ > b̄; (ii) the pure

strategy x̂ = (1, 0) is SES if ā > c̄; and (iii) if ā > c̄ and d̄ > b̄, or ā < c̄ and d̄ < b̄,

then the mixed strategy x̂ = (x̂, 1 − x̂) with x̂ = (b̄ − d̄)
/
(b̄ − d̄ + c̄ − ā) is SES if b̄ > d̄

and c̄ > ā (Maynard Smith, 1982; Hofbuaer and Sigmund, 1998). Moreover, even if no

constant interior equilibrium exists in Eq. (3.2.2), it is still possible for a mixed strategy

to be SES. For example, consider a random payoff matrix


1 + ξt 3

3 2 + ξt


, where ξt is

a random variable with mean
〈
ξt

〉
= 0 and variance

〈
ξ2
t

〉
= σ2

ξ at time step t ≥ 0, where

σ2
ξ is small but σ2

ξ 6= 0 such that both 1 + ξt and 2 + ξt are positive random payoffs for

t ≥ 0. With this random payoff matrix, although no constant interior equilibrium exists,

the mixed strategy x̂ = (x̂, 1 − x̂) with x̂ = 1/3 is SES with respect to the stochastic

dynamics.

3.6 Discussion

How natural selection can reduce the impact of environmental stochastic fluctuations on

the evolution of animal behavior is a very challenging question. In this study, we have

considered the effects of weak selection on a two-phenotype evolutionary game dynamics

in an infinite population with a random payoff matrix. The results show that, under

weak selection, both stochastic local stability and stochastic evolutionary stability in this

system depend only on the means of the random payoffs and not at all on their variances.

However, although stochastic local stability or instability of an equilibrium may not be

affected by environmental noise, the rate of convergence or divergence near an equilibrium

not only depends on environmental noise, but it can even be enhanced by environmental

noise. This is the case, for instance, when the variances of the random payoffs are equal
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as well as the covariances. These predictions are supported by analytical approximations

and computer simulations.

Our analysis is based on the concept of stochastic evolutionary stability (SES) through

the analysis of stochastic local stability (SLS) that was developed in a previous paper

of ours (Zheng et al., 2017) to predict the results of long-term evolution of strategies

in a stochastic environment. This is actually an extension of the classic concept of an

evolutionarily stable strategy (ESS) to take into account random payoffs as a result of

environmental noise. These have been approximated in the case of weak selection to show

that stochastic evolutionary stability can be unaffected, and evolution can even occur

faster, in the presence of environmental noise when selection is weak enough. It might

be worth stressing that weak selection is not equivalent to weak noise. Actually, it is

almost the opposite, since selection would appear often strong when noise is weak. It may

be obvious that the effects of weak noise can be counteracted by the pressure of strong

selection. That the effects of noise can be counteracted by the pressure of weak selection

is less obvious, not to mention that weak selection can increase the rate of evolution in

the presence of noise. These findings have biological implications, since they reveal an

unexpected role of weak selection in the evolution of biological populations in a random

environment.

Previous studies on the impact of environmental noise on biological evolution involved

such mechanisms as the storage effect and the bet-hedging strategy in populations with

overlapping generations (Chesson, 1983; Warner and Chesson, 1985; Ellner and Hairston,

1994; Olofsson et al., 2009). Such mechanisms concern the trade-off between adult sur-

vival and reproduction, but can involve, in principle, any life history trait. They have

been used to explain the coexistence of competitors, and are somehow related to the no-

tion of protected polymorphism in structured populations under the effects of spatially

or temporally varying selection regimes (Karlin and Liberman, 1982). Our study takes

the opposite view of looking at a general condition, namely, weak selection, which could
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counteract the effects of random noise. That the same condition can enhance the rate of

evolution in the presence of random noise is an unexpected bonus. And that the results

are obtained under minimal assumptions, namely a matrix game with random payoffs in

a well-mixed population, suggest that they might be of general validity.

3.7 Appendix

3.7.1 A. Stochastic local stability of fixation state x̂ = 0 in degenerate

cases

In the degenerate case where bt = dt for all t ≥ 0, let vt = 1/ut = (1 − xt)/xt. From Eq.

(3.2.3), we have the recurrence equation

vt+1 = vt

[ (
(1− w) + wct

)
+ vt

(
(1− w) + wdt

)
(
(1− w) + wat

)
+ vt

(
(1− w) + wdt

)
]

. (3.7.1)

Iterating this recurrence equation leads to

1
n

(
vn − v0

)
=

1
n

n−1∑

t=0

[
(1− w) + wct

(1− w) + wdt
− (1− w) + wat

(1− w) + wdt

]

− 1
n

n−1∑

t=0

(1−w)+wat

(1−w)+wdt

(
1− (1−w)+wat

(1−w)+wct

)

(1−w)+wat

(1−w)+wct
+ (1−w)+wdt

(1−w)+wct
vt

. (3.7.2)

Therefore, if ut → 0 (that is, vt → ∞), then the strong law of large numbers guarantees

that

lim
n→∞

1
n

(
vn − v0

) ≈
〈

(1− w) + wct

(1− w) + wdt
− (1− w) + wat

(1− w) + wdt

〉
. (3.7.3)

Then, using Egorov’s theorem, the fixation state x̂ = 0 is SLS if
〈

(1− w) + wct

(1− w) + wdt

〉
−

〈
(1− w) + wat

(1− w) + wdt

〉
> 0 (3.7.4)

(the more rigorous mathematical proofs are similar to those in Zheng et al. (2017)).

Note that
〈

(1− w) + wct

(1− w) + wdt

〉
≈ (1− w) + wc̄

(1− w) + wd̄
+

(
(1− w) + wc̄

)
w2σ2

d(
(1− w) + wd̄

)3 − w2σ2
c,d(

(1− w) + wd̄
)2 ,
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and
〈

(1− w) + wat

(1− w) + wdt

〉
≈ (1− w) + wā

(1− w) + wd̄
+

(
(1− w) + wā

)
w2σ2

d(
(1− w) + wd̄

)3 − w2σ2
a,d(

(1− w) + wd̄
)2 .

Thus, under weak enough selection (that is, for w small enough), the fixation state x̂ = 0

is SLS if c̄− ā > 0, and SLU if c̄− ā < 0.

Similarly, in the degenerate case where at = ct for all t ≥ 0, under weak enough

selection, the fixation state x̂ = 1 is SLS if b̄− d̄ > 0, and SLU if b̄− d̄ < 0.

3.7.2 B. Stochastic local stability of a constant interior equilibrium

With the random payoff matrix A(t) in Eq. (3.3.9) where û > 0, the recurrence equation

in Eq. (3.2.3) can be rewritten in the form

ut+1 = ut

[
ut[(1− w) + w(ct + zt)] + [(1− w) + wbt]
ut[(1− w) + wct] + [(1− w) + w(bt + ûzt)]

]
. (3.7.5)

From this equation and the equality û(at − ct) = dt − bt, we have

ut+1 − û =
(
ut − û

) [
ut((1− w) + wct) + utwzt + ûwzt + ((1− w) + wbt)

ut((1− w) + wct) + ((1− w) + wbt) + ûwzt

]

=
(
ut − û

) [
ut((1− w) + wat) + ((1− w) + wdt)
ut((1− w) + wct) + ((1− w) + wdt)

]
. (3.7.6)

In particular, this ensures that ut+1 − û > 0 if ut − û > 0, and ut+1 − û < 0 if ut − û < 0.

Moreover, some algebraic manipulations yield

ut((1− w) + wat) + ((1− w) + wdt)
ut((1− w) + wct) + ((1− w) + wdt)

=
[
û((1− w) + wat) + ((1− w) + wdt)
û((1− w) + wct) + ((1− w) + wdt)

]
Qt ,

where

Qt = 1− (ut − û)((1− w) + wdt)wzt

Dt
(3.7.7)

with

Dt =
[
û((1− w) + wat) + ((1− w) + wdt)

]

×
[
û((1− w) + wct) + ((1− w) + wdt) + (ut − û)((1− w) + wct)

]
. (3.7.8)
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Therefore, iterating Eq. (3.7.6) leads to

lim
n→∞

1
n

log
[
un − û

u0 − û

]
= lim

n→∞
1
n

n−1∑

t=0

log

[
û((1− w) + wat) + ((1− w) + wdt)
û((1− w) + wct) + ((1− w) + wdt)

]

+ lim
n→∞

1
n

n−1∑

t=0

log Qt . (3.7.9)

If ut → û (which compels Qt → 1), then the strong law of large numbers guarantees that

lim
n→∞

1
n

log
[
un − û

u0 − û

]
≈

〈
log

[
û((1− w) + wat) + ((1− w) + wdt)
û((1− w) + wct) + ((1− w) + wdt)

]〉
. (3.7.10)

Using Egorov’s theorem, the constant interior equilibrium x̂ = û/(1 + û) is SLS if
〈

log

[
û((1− w) + wat) + ((1− w) + wdt)
û((1− w) + wct) + ((1− w) + wdt)

]〉
< 0 , (3.7.11)

and SLU if the inequality is reversed.

Note that

〈
log

[
û((1− w) + wat) + ((1− w) + wdt)

]〉
≈ log

[
û((1− w) + wā) + ((1− w) + wd̄)

]

− û2w2σ2
a + w2σ2

d + 2ûw2σa,d

2
[
û((1− w) + wā) + ((1− w) + wd̄(

]2

and

〈
log

[
û((1− w) + wct) + ((1− w) + wdt)

]〉
≈ log

[
û((1− w) + wc̄) + ((1− w) + wd̄)

]

− û2w2σ2
c + w2σ2

d + 2ûw2σc,d

2
[
û((1− w) + wc̄) + ((1− w) + wd̄)

]2 .

Thus, under weak enough selection, x̂ = û/(1+ û) is SLS if c̄− ā > 0, and SLU if c̄− ā < 0.

3.7.3 C. Convergence rate near a SLS constant interior equilibrium

With the random payoff matrix A(t) in Eq. (3.3.9), we have shown that, under weak

enough selection, the constant interior equilibrium x̂ = û/(1 + û) is SLS if c̄ − ā > 0.

When the system state is near this constant interior equilibrium, the convergence rate of
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the system to it is given by the right-hand member in Eq. (3.7.10). Under weak selection,

the convergence rate is approximated as
〈

log

[
û((1− w) + wat) + ((1− w) + wdt)
û((1− w) + wct) + ((1− w) + wdt)

]〉

≈ log

[
û((1− w) + wā) + ((1− w) + wd̄)
û((1− w) + wc̄) + ((1− w) + wd̄)

]

− w2
(
û2σ2

a + σ2
d + 2ûσa,d

)

2
[
û((1− w) + wā) + ((1− w) + wd̄)

]2

+
w2

(
û2σ2

c + σ2
d + 2ûσc,d

)

2
[
û((1− w) + wc̄) + ((1− w) + wd̄)

]2 , (3.7.12)

where the term

log

[
û((1− w) + wā) + ((1− w) + wd̄)
û((1− w) + wc̄) + ((1− w) + wd̄)

]

corresponds to the convergence rate of the deterministic system with payoff matrix Ā.

Furthermore, if w is small enough, we have the approximations

log

[
û((1− w) + wā) + ((1− w) + wd̄)
û((1− w) + wc̄) + ((1− w) + wd̄)

]
≈ w(ā− c̄)

(1 + û)
, (3.7.13)

w2
(
û2σ2

a + σ2
d + 2ûσa,d

)

2
[
û((1− w) + wā) + ((1− w) + wd̄)

]2 ≈ w2
(
û2σ2

a + σ2
d + 2ûσa,d

)

2(1 + û)2
, (3.7.14)

w2
(
û2σ2

c + σ2
d + 2ûσc,d

)

2
[
û((1− w) + wc̄) + ((1− w) + wd̄)

]2 ≈ w2
(
û2σ2

c + σ2
d + 2ûσc,d

)

2(1 + û)2
. (3.7.15)

Therefore, Eq. (3.7.12) can be rewritten as
〈

log

[
û((1− w) + wat) + ((1− w) + wdt)
û((1− w) + wct) + ((1− w) + wdt)

]〉
≈ w(ā− c̄)

(1 + û)
(3.7.16)

+





ûw2

2(1+û)2

[
û
(
σ2

c − σ2
a

)
+ 2(σc,d − σa,d)

]
if û

(
σ2

c − σ2
a

)
+ 2(σc,d − σa,d) 6= 0 ,

w3

(1+û)3

(
û2σ2

a + σ2
d + 2ûσa,d

)
(ā− c̄) if û

(
σ2

c − σ2
a

)
+ 2(σc,d − σa,d) = 0 .

This implies that, under weak enough selection, the convergence rate near the SLS constant

interior equilibrium û > 0 in the stochastic dynamics (with c̄ > ā) if faster (or slower)

than that in the deterministic mean field approximation if û
(
σ2

c − σ2
a

)
+ 2(σc,d− σa,d) ≤ 0

(or û
(
σ2

c − σ2
a

)
+ 2(σc,d − σa,d) > 0).
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Abstract

Stochastic variation in the environment is one of the most important characteristics of

nature, and it may cause changes in the occurrence of interactions between individuals

and, more importantly, in the payoffs received by interacting individuals. In order to

explore the effects of random environmental noise on the evolution of cooperation, the

classic Prisoner’s Dilemma (PD) game is extended to a more general randomized Prisoner’s

Dilemma (RPD) game. The entries of the payoff matrix in a RPD game are random

variables whose average values determine a classic PD game. The concepts of stochastic

local stability (SLS) and stochastic evolutionary stability (SES) applied to the RPD game

suggest that the evolution of cooperation could be made easier if the coefficients of variation

of the payoffs are smaller for the cooperation strategy than for the defection strategy.
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4.1 Introduction

In 1950, based on experiments made by Merril Flood and Melvin Dresher, Albert Tucker

proposed a simple but illuminating situation in order to model cooperation, the Prisoner’s

Dilemma (PD) (Poundstone, 1992; Nowak and Highfield, 2011). Imagine that you and

your accomplice are both held prisoners, having been charged with a serious crime. The

prosecutor offers each one of you the following deal: if you plead guilty, while your partner

remains silent, then you will be sentenced to 1 year, and your partner to 4 years; if you

and your partner remain both silent, then you will each be sentenced to 2 years; and if

you and your partner plead both guilty, then you will each be sentenced to 3 years. In this

situation, plead guilty or remain silent means defection or cooperation with the partner,

respectively. The rational choice, whatever the partner does, is to plead guilty. Defection

by both players is the only Nash equilibrium (NE) in this two-player game (Hofbauer and

Sigmund, 1998; Nowak, 2006).

In the previous situation, however, if only the court (not the prosecutor) has the right

to determine the final sentence, and if the deal that the prosecutor can offer is expressed

only in general terms (for example, be frank and expect a lenient sentence, or resist

and expect a severe sentence), then what would be the rational choice? For illustration,

consider the situation where the prosecutor offers the following deal to each one of the

two accomplices: if you plead guilty, while your partner remains silent, then expect to

be released or sentenced to 1 or 2 years with equal probability 1/3, while your partner

will be sentenced to 3, 4, or 5 years with equal probability 1/3; if you and your partner

remain both silent, then expect each of you to be sentenced to 1, 2 or 3 years with equal

probability 1/3; and if you and your partner plead both guilty, then expect each of you

to be sentenced to 2, 3 or 4 years with equal probability 1/3. What distinguishes this

situation from the previous one is the uncertainty (or randomness) in the sentences since

the expected values are the same. A natural question pertains to the consequences of

non-deterministic outcomes on rational choices. Note that these have to be distinguished
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from consequences of previous outcomes on available actions and decision making which

lead to what is known as stochastic games (Fundenberg et al., 2012; Solan an Vieille, 2015;

Hilbe et al., 2018).

Since the 1950s, the PD game has been used as a theoretical framework to explain the

evolution of cooperation in natural populations and human societies (Axelrod and Hamil-

ton 1981; Maynard Smith, 1982; Axelrod, 1984; Hofbauer and Sigmund, 1998; Nowak,

2006). In the standard PD game, only two phenotypes (or strategies) are considered,

cooperation (C) and defection (D), and the payoff matrix has entries R, S, T , P with

T > R > P > S, where R and S are the constant payoffs to C against C and D, respec-

tively, while T and P are the corresponding payoffs to D against the same two strategies.

In this game, defection is the only NE. In order to explain how cooperation could be

favored by natural selection in the framework of the PD game, several mechanisms have

been proposed (Nowak, 2006; Nowak and Sigmund, 2007), among which and not the least

direct reciprocity (Trivers, 1971; Axelrod, 1984). However, this mechanism and all others

are usually considered under the assumption that the payoff matrix of the underlying PD

game is a constant matrix.

Environmental conditions in the real world are obviously changing and uncertain, and

these may cause changes in the occurrence of interactions between individuals and, more

importantly, in the payoffs received by interacting individuals. Therefore, unless stochas-

tic fluctuations are small enough so that their effects can be neglected, there is no a priori

reason to assume that the payoff matrix of an evolutionary game is constant if the environ-

ment is actually stochastic. In fact, effects of environmental stochasticity on population

and community ecology have been investigated by many authors (Lande et al., 2003). May

(1973), for instance, pointed out that birth rates, carrying capacities, competition coeffi-

cients, and other parameters which characterize natural biological systems, to a greater

or lesser degree, exhibit random fluctuations.

Recently, in order to study environmental stochastic effects on the evolution of ani-
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mal behavior, we developed the concepts of stochastic evolutionary stability (SES) and

stochastic convergence stability (SCS) by investigating conditions for stochastic local sta-

bility (Zheng et al., 2017, 2018). Following Karlin and Lieberman (Karlin and Liberman,

1974, 1975; Ewens, 2004), a constant equilibrium is said to be stochastically locally sta-

ble (SLS) if the population state tends to this equilibrium as time goes to infinity with

probability arbitrarily close to 1 when the initial population state is sufficiently near the

equilibrium (Zheng et al., 2017). On the contrary, if the population state cannot tend to

the equilibrium from any other state with probability one, then the equilibrium is said

to be stochastically locally unstable (SLU). On the other hand, extending the standard

definition of an evolutionarily stable strategy (ESS) (Maynard Smith and Price, 1973;

Maynard Smith, 1974, 1982) to a variable environment, a strategy is said to be stochas-

tically evolutionarily stable (SES) if, when all members of the population adopt it, then

the probability for at least any slight perturbed strategy to invade the population under

the effects of natural selection is arbitrarily small (Zheng et al., 2017). However, in the

context of the PD game, a natural question to ask is how the evolution of cooperation is

influenced by random fluctuations in the payoffs as a result of environmental noise.

In fact, some studies have involved the effect of variability of payoffs on the evolution

of cooperation. For example, Johnson et al. (2002) considered whether the stochasticity

of payoffs in a PD game will affect the evolution of cooperation, and they emphasized

that relaxing the assumption of fixed payoffs leads to frequent violations of the payoff

structure required for a classic PD game; and Perc (2006) also investigated a PD game on a

lattices network using simulations, and he found that the increase of stochastic fluctuation

intensity in payoffs might be conducive to the evolution of cooperation. Moreover, Szolnoki

et al. (2019) studied the evolution of cooperation with periodic payoffs on both square

lattices and regular random graph.

In this study, based on the concepts of stochastic local stability and stochastic evolu-

tionary stability in matrix games with random payoffs (Zheng et al., 2017), the randomized
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Prisoner’s Dilemma (RPD) game, where the entries of the payoff matrix are random vari-

ables whose average values determine a classic PD game, provides a general theoretical

framework for understanding the evolution of cooperation in a stochastic environment.

Moreover, we show also mathematically why uncertainty in the payoffs for defection could

be conducive to the evolution of cooperation.

4.2 Model and analysis

We consider a PD game in discrete time with a random payoff matrix Π(t) at time step

t ≥ 0 whose entries are Rt, St, Tt and Pt, where Rt and St are the payoffs to C against

C and D, respectively, while Tt and Pt are the corresponding payoffs to D against the

same two strategies. These payoffs are assumed to be positive random variables that

are uniformly bounded below and above by some positive constants (Zheng et al., 2017).

Moreover, (Rt, St, Tt, Pt) for all integers t ≥ 0 are assumed to be independent identically

distributed random vectors, with means, variances and covariances of the components

denoted by 〈αt〉 = ᾱ,
〈
(αt − ᾱ)2

〉
= σ2

α and
〈
(αt − ᾱ)(βt − β̄)

〉
= σαβ , respectively, for

αt, βt = Rt, St, Tt, Pt; and covariances of αs and βt equal to 0 for s 6= t. It is assumed

throughout that the variances and covariances of the random payoffs Rt, St, Tt and Pt are

small. Furthermore, their means satisfy the inequalities T̄ > R̄ > P̄ > S̄ . A PD game

with a random payoff matrix Π(t) for t ≥ 0 as above describes a randomized Prisoner’s

Dilemma (RPD).

Let xt denote the frequency of C at time step t ≥ 0. Assuming an infinite population

with random pairwise interactions at each time step and average payoff as fitness, the

frequency of C from time step t to time step t + 1 is given by the stochastic recurrence

equation

xt+1 =
xt

(
xtRt + (1− xt)St

)

xt

(
xtRt + (1− xt)St

)
+ (1− xt)

(
xtTt + (1− xt)Pt

) , (4.2.1)

where xtRt + (1 − xt)St is the average payoff to C and, similarly, xtTt + (1 − xt)Pt the
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average payoff to D, both at time step t ≥ 0 (Taylor and Jonker, 1978; Maynard Smith,

1982; Lessard, 1984). The stochastic dynamical properties of this two-phenotype game

model with random payoffs are highlighted by a local stability analysis of the fixation states

(Zheng et al., 2017) (see also the mathematical analysis in Appendix A). It can be shown

that C-fixation (i.e., the boundary x = 1) is SLS if log
(
R̄/T̄

)
>

(
σ2

R/R̄2 − σ2
T /T̄ 2

)/
2 and

SLU if the inequality is reversed. By symmetry, D-fixation (i.e., the boundary x = 0)

is SLS if log
(
P̄ /S̄

)
>

(
σ2

P /P̄ 2 − σ2
S/S̄2

)/
2 and SLU if the inequality is reversed. These

conditions imply that the evolution of cooperation could be more favored by natural

selection if the coefficients of variation of the payoffs for the cooperation strategy, namely

σR/R̄ and σS/S̄, are smaller than those for the defection strategy, namely σT /T̄ and σP /P̄ .

In particular, if σ2
R = 0 , then C-fixation is SLS if σ2

T > −2T̄ 2 log
(
R̄/T̄

)
(which implies

that an increase of σ2
T promotes stochastic local stability of C-fixation (Fig. 4.1A); and if

σ2
S = 0 , then D-fixation is SLU if σ2

P > 2P̄ 2 log
(
P̄ /S̄

)
(which implies that an increase of

σ2
P may result in a loss of stochastic local stability of D-fixation) (Fig. 4.1B). Therefore,

under the RPD game dynamics, not only C-fixation can be SLS even if T̄ > R̄, but also

D-fixation can be SLU even if P̄ > S̄. This is in strong contrast with the dynamics in

the case of a constant PD game. More importantly, uncertainty (or randomness) in the

strategy payoffs could favor the evolution of cooperation.

On the other hand, it can be shown that the pure strategy C is SES against any

nearby mixed strategy if R̄2(T̄ − R̄) > −(T̄ σ2
R − R̄σRT ) (Zheng et al., 2017) (see also the

mathematical analysis in Appendix B). By symmetry, the pure strategy D is SES against

any nearby mixed strategy if P̄ 2(S̄− P̄ ) < −(S̄σ2
P − P̄ σSP ). Comparing the conditions for

stochastic local stability and stochastic evolutionary stability, we find that: (i) if σ2
R = 0,

then the pure strategy C may not be SES even in the case where C-fixation is SLS; and (ii)

if σ2
S = 0, then the pure strategy D is SES in the case where σ2

P < P̄ 2(P̄ − S̄)/S̄, while D-

fixation is SLS in the case where σ2
P < 2P̄ 2 log

(
P̄ /S̄

)
. Consequently, there exists a critical

value of the ratio P̄ /S̄ , denoted by z∗, such that D-fixation is SLS if P̄ /S̄ < z∗, while the
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pure strategy D may not be SES, which occurs when P̄ 2(P̄ − S̄)/S̄ < σ2
P < 2P̄ 2 log

(
P̄ /S̄

)
;

and, conversely, D-fixation is SLU if P̄ /S̄ > z∗, while the pure strategy D may be SES,

which occurs when 2P̄ 2 log
(
P̄ /S̄

)
< σ2

P < P̄ 2(P̄ − S̄)/S̄ (see Fig. 4.1C). Thus, in the

case of a RPD game, the stochastic local stability of C-fixation (or D-fixation) and the

stochastic evolutionary stability of C (or D) could be inconsistent. These dynamical

properties of the randomized PD game suggest that cooperation may be more likely to be

maintained by natural selection in a stochastic environment, even though it may not be

stochastically evolutionarily stable.

In order to test the above theoretical results and predictions, four examples are in-

vestigated using computer simulations. In these examples, we consider the probability

distribution of the frequency of strategy C after 104 time steps over 103 runs based on Eq.

(4.2.1) starting with an initial frequency x0 = 0.5. The means of the random payoffs are

always the same and given by R̄ = 12, S̄ = 9, T̄ = 13 and P̄ = 10, respectively. For the

variances, four sets of values are considered below.

Example 1. σ2
R = σ2

S = σ2
T = 0 and σ2

P = 90.25/3 (Fig. 4.2A): C-fixation and

D-fixation are both SLU and the probability of x ≤ 0.1 is only 0.248.

Example 2. σ2
R = σ2

S = 0, σ2
T = 56.25/3 and σ2

P = 90.25/3 (Fig. 4.2B): C-fixation and

D-fixation are both SLU and the probability of x ≤ 0.1 is only 0.175.

Example 3. σ2
R = σ2

S = 0, σ2
T = 100/3 and σ2

P = 49/3 (Fig. 4.2C): C-fixation and

D-fixation are both SLS which shows that C and D can be simultaneously favored by

natural selection.

Example 4. σ2
R = σ2

S = 0, σ2
T = 100/3 and σ2

P = 64/3 (Fig. 4.2D): C-fixation is SLS

but D-fixation is SLU which shows that only C can be favored by natural selection.

Obviously, all these simulation results not only match the theoretical predictions but

also show that stochasticity in the environment could be conducive to the evolution and

maintenance of cooperation.

Now, let us go back to the RPD game introduced in the beginning of this paper,
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Figure 4.1: The stochastic local stability of C-fixation and D-fixation and the stochastic

evolutionary stability of strategy D. (A) The black curve represents the function σ2
T =

−2T̄ 2 log
(
R̄/T̄

)
, where R̄ = 12, P̄ = 10, S̄ = 9, σ2

R = σ2
P = σ2

S = 0, and Tt = T̄ + δt

with δt being a random variable uniformly distributed on [−δ, δ] so that σ2
T = δ2/3. The

C-fixation is SLS (or SLU) if σ2
T is above (or under) the curve. The color of each point

on the T̄ -σ2
T plane represents the average value of the frequency of C after 5 × 103 time

steps over 103 runs starting with x0 = 0.99. (B) The black curve represents the function

σ2
P = 2P̄ 2 log

(
P̄ /S̄

)
, where R̄ = 12, S̄ = 9, T̄ = 13, σ2

R = σ2
S = 0, Tt = 13 + δ′t with

δ′t being a random variable uniformly distributed on [−10, 10] so that σ2
T = 100/3, and

Pt = P̄ + δ′′2t with δ′′2t being a random variable uniformly distributed on [−δ′′, δ′′] so that

σ2
P = δ′′2/3. The D-fixation is SLU (or SLS) if σ2

P is above (or under) the curve. The

color of each point on the P̄ -σ2
P plane also represents the average value of the frequency

of C after 5 × 103 time steps over 103 runs starting with x0 = 0.01. (C) The blue line

represents the function σ2
P /P̄ 2 = z − 1 with z = P̄ /S̄, and the red curve the function

σ2
P /P̄ 2 = 2 log(z). The blue line and the red curve intersects at z = z∗ so that (i) D-

fixation is neither SLS nor SES (or is both SLS and SES) if σ2
P /P̄ 2 is above (or under)

both the blue line and the red curve; and (ii) D-fixation is SES (or SLS) but not SLS (nor

SES) if σ2
P /P̄ 2 is under the blue line (or the red curve) but above the red curve (or the

blue line).
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Figure 4.2: The probability distribution of the frequency of cooperation in simulations.

Panels (A), (B), (C) and (D) correspond to the simulation results in examples 1, 2, 3 and

4 in the text, respectively, with the same mean random payoffs R̄ = 12, S̄ = 9, T̄ = 13

and P̄ = 10.
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which is an extension of the classic Tucker’s PD game (Poundstone, 1992; Nowak and

Highfield, 2011). Consider the random payoff matrix at time step t ≥ 0 with entries Rt =

u + a11(t), St = u + a12(t), Tt = u + a21(t) and Pt = u + a22(t), where a11(t) = −1,−2,−3

with probability distribution P11 = (1/3, 1/3, 1/3), a12(t) = −3,−4,−5 with P12 = P11,

a21(t) = 0,−1,−2 with P21 = P11, and a22(t) = −2,−3,−4 with P22 = P11. Here, u ≥ 5

is a positive constant such that u + aij(t) ≥ 0 for i, j = 1, 2. Then, C-fixation is SLU,

while D-fixation is SLS and strategy D is SES. However, if we take a22(t) = 0,−3,−6

with probability distribution P22 = (1/2, 0, 1/2) and u = 6, then D-fixation is SLU and

strategy D is not SES.

4.3 Conclusion

In the classic PD game with a constant payoff matrix, if all members of a population

adopt the defection strategy, then no other mutant strategy can successfully invade the

population under the effects of natural selection (Axelrod, 1984; Hofbauer an Sigmund,

1998; Nowak, 2006). Stochastic fluctuations in the environment are generally considered

to be among the main driven forces of evolution in biological populations and human

societies (Kaplan et al., 1990; Zheng et al., 2017). However, it is still unclear how they

could favor the appearance, maintenance and spread of cooperation in natural populations.

Our objective in this study was to show how cooperation, at least when rate or widespread,

could evolve or be maintained under the effects of random environmental noise. Extending

the classic PD game with a constant payoff matrix to a randomized PD (RPD) game with

a random payoff matrix having the same mean, the focus has been put on stochastic local

stability (SLS) of the fixation states and stochastic evolutionary stability (SES) of the

corresponding pure strategies, C for cooperation and D for defection. Our theoretical

results supported by simulations suggest that a decrease of uncertainty in the payoffs to C

(namely, a decrease in σR/R̄ and σS/S̄ for the payoffs to C against C and D, respectively),

or an increase of uncertainty in the payoffs to D (namely, σT /T̄ and σP /P̄ for the payoffs
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to D against C and D, respectively), could be propitious to the evolution of cooperation.

All these results not only reveal how the evolutionary dynamics in the Prisoner’s Dilemma

game may be influenced by stochasticity but also provide a new perspective for a better

understanding of the evolution of cooperative behavior.

4.4 Appendix

4.4.1 A. Stochastic local stability

Consider a two-phenotype game in an infinite population with discrete, non-overlapping

generations. For convenience, two strategies are denoted by 1 and 2, respectively. The

payoffs in pairwise interactions at time step t ≥ 0 are given by the payoff matrix

A(t) =


a11(t) a12(t)

a21(t) a22(t)


 , (4.4.1)

where aij(t) is the payoff to strategy i against strategy j at time step t ≥ 0 for i, j = 1, 2.

Without loss of generality, these payoffs are assumed to be positive random variables,

and we further assume that there exist real numbers A,B > 0 with A < B such that

A ≤ aij(t) ≤ B for i, j = 1, 2 and all t ≥ 0. Moreover, the probability distributions

of aij(t) for i, j = 1, 2 are the same for all t ≥ 0, and the means, variances and covari-

ances of these random payoffs are denoted by 〈aij(t)〉 = āij ,
〈(

aij(t)− āij

)2
〉

= σ2
ij and

〈(
aij(t)− āij

)(
akl(t)− ākl

)〉
= σij,kl, respectively, for i, j, k, l = 1, 2. The payoffs aij(s)

and akl(t) for i, j, k, l = 1, 2 are assumed to be independent of each other for s, t ≥ 0 with

s 6= t, in which case
〈(

aij(s)− āij

)(
akl(t)− ākl

)〉
= 0.

Let xt be the frequency of strategy 1 at time step t ≥ 0, and 1 − xt the frequency

of strategy 2. The expected payoff of strategy i at time step t ≥ 0 is given by πi,t =

xtai1(t)+(1−xt)ai2(t) for i = 1, 2, and the corresponding average payoff of the population

is π̄t = xtπ1,t +(1−xt)π2,t. Moreover, the frequency of strategy 1 from time step t to time
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step t + 1 is given by the recurrence equation

xt+1 =
xtπ1,t

π̄t

=
xt

(
xta11(t) + (1− xt)a12(t)

)

xt

(
xta11(t) + (1− xt)a12(t)

)
+ (1− xt)

(
xta21(t) + (1− xt)a22(t)

) (4.4.2)

for all t ≥ 0 (Zheng et al., 2017). Define ut = xt

/
(1 − xt), the recurrence equation takes

the form

ut+1 = ut

[
uta11(t) + a12(t)
uta21(t) + a22(t)

]
(4.4.3)

for all t ≥ 0 (Zheng et al., 2017).

Let x̂ represent a constant equilibrium of Eq. (4.4.2), that is, an equilibrium of Eq.

(4.4.2) that does not depend on the randomness of the payoff matrix A(t). Following

Karlin and Liberman (1974, 1975), a constant equilibrium x̂ is said to be stochastically

locally stable (SLS) if for any ε > 0 there exists δ0 > 0 such that P
(
xt → x̂

) ≥ 1−ε as soon

as |x0 − x̂| < δ0. On the other hand, a constant equilibrium x̂ is said to be stochastically

locally unstable (SLU) if P
(
xt → x̂

)
= 0 as soon as |x0 − x̂| > 0. Here, we consider only

the stochastic local stability of the boundary equilibria x̂ = 0 and x̂ = 1, and we leave

aside the finer details of the mathematical analysis (the more rigorous proofs are similar

to those in Zheng et al., 2017).

Consider first the stochastic local stability of the boundary equilibrium x̂ = 0, which

corresponds to the equilibrium û = x̂
/
(1 − x̂) in Eq. (4.4.3). Notice that this recurrence

equation can be rewritten in the form

ut+1

ut
=

a12(t)
a22(t)

[
1 +

ut

(
a11(t)a22(t)− a12(t)a21(t)

)

uta12(t)a21(t) + a12(t)a22(t)

]
. (4.4.4)

Then, we have

1
n

[
log un − log u0

]
=

1
n

n−1∑

t=0

log
[
a12(t)
a22(t)

]

+
1
n

n−1∑

t=0

log

[
1 +

ut

(
a11(t)a22(t)− a12(t)a21(t)

)

uta12(t)a21(t) + a12(t)a22(t)

]
. (4.4.5)
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Notice also that the second term on the right-hand side of the above equation tends to 0 as

ut → 0. Thus, the strong law of large numbers guarantees that the boundary equilibrium

x̂ = 0 is SLS if

〈
log

[
a22(t)
a12(t)

]〉
=

〈
log a22(t)

〉− 〈
log a12(t)

〉
> 0 , (4.4.6)

and SLU if the inequality is reversed (Zheng et al., 2017). If both σ2
12 and σ2

22 are not

too large so that the approximations
〈
log a12(t)

〉 ≈ log ā12 − σ2
12

/
2ā2

12 and
〈
log a22(t)

〉 ≈
log ā22 − σ2

22

/
2ā2

22 hold, then x̂ = 0 is SLS if

log
[
ā22

ā12

]
>

1
2

[
σ2

22

ā2
22

− σ2
12

ā2
12

]
, (4.4.7)

and SLU if the inequality is reversed.

By symmetry, the boundary equilibrium x̂ = 1 is SLS if

〈
log

[
a11(t)
a21(t)

]〉
> 0 , (4.4.8)

and SLU if the inequality is reversed (Zheng et al., 2017). As previously, if both σ2
11 and

σ2
21 are not too large, then x̂ = 1 is SLS if

log
[
ā11

ā21

]
>

1
2

[
σ2

11

ā2
11

− σ2
21

ā2
21

]
, (4.4.9)

and SLU if the inequality is reversed.

4.4.2 B. Stochastic evolutionary stability

Let x = (x, 1 − x) denote a mixed strategy so that an individual using x will display

strategy 1 with probability x and strategy 2 with complementary probability 1 − x. In

this context, a strategy x̂ = (x̂, 1 − x̂) is said to be stochastically evolutionarily stable

(SES) if its fixation is SLS against any other strategy x 6= x̂ at least nearby enough

(Zheng et al., 2017).
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Notice that the payoff matrix corresponding to the interaction between x and x̂ is

given by

B(t) =


b11(t) b12(t)

b21(t) b22(t)




=


xA(t)x xA(t)x̂

x̂A(t)x x̂A(t)x̂


 , (4.4.10)

with

b̄12 =
〈
xA(t)x̂

〉

= x
(
x̂ā11 + (1− x̂)ā12

)
+ (1− x)

(
x̂ā21 + (1− x̂)ā22

)
,

b̄22 =
〈
x̂A(t)x̂

〉

= x̂
(
x̂ā11 + (1− x̂)ā12

)
+ (1− x̂)

(
x̂ā21 + (1− x̂)ā22

)
,

and

σ2
b12 =

〈[
xA(t)x̂− 〈

xA(t)x̂
〉]2

〉

= x2x̂2σ2
11 + x2(1− x̂)2σ2

12 + (1− x)2x̂2σ2
21 + (1− x)2(1− x̂)2σ2

22

+2
[
x2x̂(1− x̂)σ11,12 + x(1− x)x̂2σ11,21

+x(1− x)x̂(1− x̂)(σ11,22 + σ12,21) + x(1− x)(1− x̂)2σ12,22

+(1− x)2x̂(1− x̂)σ21,22

]
,

σ2
b22 =

〈[
x̂A(t)x̂− 〈

x̂A(t)x̂
〉]2

〉

= x̂4σ2
11 + (1− x̂)4σ2

22 + x̂2(1− x̂)2
(
σ2

12 + σ2
21

)

+2x̂(1− x̂)
[
x̂2

(
σ11,12 + σ11,21

)
+ (1− x̂)2

(
σ12,22 + σ21,22

)

+x̂(1− x̂)
(
σ11,22 + σ12,21

)]
.
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Thus, for x̂ = (0, 1), we have

b̄12 = xā12 + (1− x)ā22 ,

b̄22 = ā22 ,

σ2
b12 = x2σ2

12 + (1− x)2σ2
22 + 2x(1− x)σ12,22 ,

σ2
b22 = σ2

22 . (4.4.11)

Therefore, with small enough variances of the payoffs, the fixation state x̂ = (0, 1) is SLS

if

log
[
xā12 + (1− x)ā22

ā22

]
<

1
2

[
x2σ2

12 + (1− x)2σ2
22 + 2x(1− x)σ12,22

(xā12 + (1− x)ā22)2
− σ2

22

ā2
22

]
. (4.4.12)

Letting x → 0 (but x 6= 0), we conclude that x̂ = (0, 1) is SES if

ā12 − ā22

ā22
< −

(
σ2

22 − σ12,22

)
ā22 +

(
ā12 − ā22

)
σ2

22

ā3
22

= − ā12σ
2
22 − ā22σ12,22

ā3
22

. (4.4.13)

Similarly, for x̂ = (1, 0), we have

b̄12 = xā11 + (1− x)ā21 ,

b̄22 = ā11 ,

σ2
b12 = x2σ2

11 + (1− x)2σ2
21 + 2x(1− x)σ11,21 ,

σ2
b22 = σ2

11 , (4.4.14)

and the fixation of x̂ = (1, 0) is SLS if

log
[
xā11 + (1− x)ā21

ā11

]
<

1
2

[
x2σ2

11 + (1− x)2σ2
21 + 2x(1− x)σ11,21

(xā11 + (1− x)ā21)2
− σ2

11

ā2
11

]
. (4.4.15)

We conclude that x̂ = (1, 0) is SES if

ā11 − ā21

ā11
> −

(
σ2

11 − σ11,21

)
ā11 +

(
ā11 − ā21

)
σ2

11

ā3
11

= − ā21σ
2
11 − ā11σ11,21

ā3
11

. (4.4.16)
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Abstract

A diffusion approximation for a randomized 2 × 2-matrix game in a large finite popula-

tion is ascertained in the case of random payoffs whose expected values, variances and

covariances are of order given by the inverse of the population size N . Applying the ap-

proximation to a Randomized Prisoner’s Dilemma (RPD) with independent payoffs for

cooperation and defection in random pairwise interactions, conditions on the variances of

the payoffs for selection to favor the evolution of cooperation, favor more the evolution

of cooperation than the evolution of defection, and disfavor the evolution of defection are

deduced. All these are obtained from probabilities of ultimate fixation of a single mutant.

It is shown that the conditions are lessened with an increase in the variances of the pay-

offs for defection against cooperation and defection and a decrease in the variances of the

payoffs for cooperation against cooperation and defection. A RPD game with independent

payoffs whose expected values are additive is studied in detail to support the conclusions.

Randomized matrix games with non-independent payoffs, namely the RPD game with

additive payoffs for cooperation and defection based on random cost and benefit for coop-

eration and the repeated RPD game with Tit-for-Tat and Always-Defect as strategies in

pairwise interactions with a random number of rounds, are studied under the assumption

that the population-scaled expected values, variances and covariances of the payoffs are all
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of the same small enough order. In the first model, the conditions in favor of the evolution

of cooperation hold only if the covariance between the cost and the benefit is large enough,

while the analysis of the second model extends the results on the effects of the variances

of the payoffs for cooperation and defection found for the one-round RPD game.

Running head: Randomized matrix games

Keywords and phrases: Cooperation. Diffusion approximation. Fixation probability.

Prisoner’s Dilemma. Random payoffs.

Mathematics Subject Classification (2010): Primary 92D25; Secondary 60J70
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5.1 Introduction

Cooperative behavior is a phenomenon that is widely observed in nature. However, nat-

ural selection tends to enhance selfish behavior through fierce competition. In order to

explain the rationality of cooperation and its evolution in natural populations, a two-player

game known as the Prisoner’s Dilemma (PD) has been widely studied as one of the most

important theoretical frameworks (Axelrod and Hamilton, 1981; Maynard Smith, 1982;

Axelrod, 1984; Poundstone, 1992; Nowak and Highfield, 2011). In an additive version of

the PD game, cooperation takes the form of a donor who pays a cost c for a recipient to

get a benefit b. Defection costs nothing and does not disqualify from receiving a benefit.

Therefore, the payoff for cooperation never exceeds the payoff for defection (Nowak, 2006;

Nowak and Sigmund, 2007). This is the case in more general versions of the PD game.

Moreover, assuming random pairwise interactions in an infinite population and average

payoffs as relative growth rates, the replicator equation (Taylor and Jonker, 1978) predicts

global convergence to fixation of defection (Hofbauer and Sigmund, 1998).

In a finite population of constant size N undergoing discrete, non overlapping gener-

ations according to a Wright-Fisher model and more general models with exchangeable

reproduction schemes (Fisher, 1930; Wright, 1931; Cannings, 1974; Ewens, 2004), the

fixation probability for a neutral mutant type represented only once initially is just the

inverse of the population size, that is, N−1. If this probability becomes larger than N−1

in the presence of selection, then the mutant type has been said to be favored by selection

(Nowak et al., 2004). Several mechanisms have been considered to explain how coopera-

tion could be favored by natural selection assuming additive effects of average payoffs on

fitness (Nowak and Sigmund, 2007). This is the case, for instance, for cooperation taking

the form of the “tit-for-tat” strategy (Trivers, 1971; Axelrod and Hamilton, 1981; Axel-

rod, 1984) starting with cooperation in a repeated PD game between randomly chosen

partners if the number of rounds exceeds some threshold value (Nowak et al., 2004). This

is also the case in group-structured or graph-structured populations for modeling some
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social or geographical networks with local interactions (Ohtsuki et al., 2006). However,

with a one-round PD game and constant payoffs in a well-mixed population, the fitness

of cooperation never exceeds the fitness of defection, and, as a result, cooperation cannot

be favored by selection.

In nature, there are changes not only in the composition of a population but also in

the surrounding environment in which the population finds itself. These can affect the

payoffs that individuals receive as a result of interactions with others. Randomness in

evolutionary games can take several forms such as probabilistic encounter rules or mixed

strategies depending or not on the replies of others (Taylor and Jonker, 1978; Eshel and

Cavalli-Sforza, 1982; Hofbauer and Sigmund, 1998). Of particular interest are stochastic

games which allow the environment to change in response to the players’ choices (Shapley,

1953; Fudenberg et al., 2012; Solan and Vieille, 2015; Hilbe et al., 2018). But also not to

be forgotten are variations in payoffs caused by disturbances in the natural environment.

These can be periodic, e.g., being seasonal or alternating day and night. But they can also

be totally random as if occurring by accident (May, 1973; Kaplan et al., 1990; Lande et

al., 2003). In the case of deterministically time-dependent payoffs in 2 matrix games, for

instance, Broom (2005) compares the time average of the population state and the interior

Nash equilibrium of the average payoff matrix and shows that they can be arbitrarily far

apart. With periodic payoffs, even stable periodic orbits can be found from arbitrary

starting points (Uyttendaele et al., 2012). On the other hand, Stollmeier and Nagler

(2018) shows that under the effects of random environmental noise, an evolutionary game

involving two strategies with a strategy having a higher expected payoff at any frequency

than the other can reach a stationary distribution with both strategies co-existing.

In a matrix game, unless stochastic fluctuations in the environment are small enough to

be ignored, it is more accurate to use random payoffs than constant payoffs. In particular,

the introduction of random payoffs extends the classical PD game to a randomized PD

game. In order to reveal how environmental noise can generally affect the evolutionary
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game dynamics in an infinite population, the concepts of stochastic evolutionary stability

(SES) and stochastic convergence stability (SCS) have been investigated (Zheng et al.,

2017, 2018). Applying these concepts to a one-round randomized PD game in a well-

mixed population, it can be shown that the evolution of cooperation tends to be more

easily favored by natural selection if the coefficients of variation of the payoffs are smaller

for cooperation than for defection (Li et al., 2019).

On the other hand, in a population genetics framework for a large finite population,

Karlin and Levikson (1974) have shown that, when the mean and variance of frequency-

independent genotypic fitnesses are of the same order given by the inverse of the popula-

tion size, the effect of the variance matters. Actually, the variance in selection, meaning

fluctuating selection intensities, produces a “drift effect” away from the fixation states.

In order to study the effect of stochastic fluctuations in a context of an evolutionary

game in a large finite population, we consider in this paper a matrix game with ran-

dom payoffs for two players using one of two strategies. After ascertaining a diffusion

approximation for this model, we focus on the Randomized Prisoner’s Dilemma (RPD)

with cooperation and defection as strategies, and we consider the probability of ultimate

fixation of either strategy as a single mutant. Conditions that favor the evolution of co-

operation are examined in detail in the case of independent payoffs such that the average

effects of cooperation and defection are additive. A RPD game with random additive

effects of cooperation and defection on the payoffs as well as a repeated RPD game are

also studied.

5.2 The Model

We consider a randomized matrix game with two strategies in a finite population of fixed

finite size N . The two possible pure strategies used by the individuals in the population

are denoted by S1 and S2. At time t ≥ 0 corresponding to some generation, the frequencies

of S1 and S2 are given by x(t) and 1 − x(t), respectively, while their payoffs in pairwise
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interactions are given by the entries of the 2× 2 random game matrix

η1(t) η2(t)

η3(t) η4(t)


 . (5.2.1)

Here, η1(t) and η2(t) are the payoffs to strategy S1 against strategies S1 and S2, respec-

tively, while η3(t) and η4(t) are the corresponding payoffs to strategy S2 against the same

two strategies. We assume that the value of these payoffs are random variables with values

that are always larger than −1 and probability distributions that do not depend on time

t ≥ 0.

In addition, we assume that these payoffs have expected values, variances and covari-

ances of order given by the inverse of the population size, which will be taken later on as

the time interval between two successive generations (see below). More precisely, they can

be expressed in the form

ηi(t) = µiN
−1 + ξi(t), (5.2.2)

where E(ξi(t)) = 0, Var(ξi(t)) = σ2
i N

−1 and Cov(ξi(t), ξj(t)) = σijN
−1, for i, j = 1, . . . , 4

with i 6= j. Therefore, we have

E(ηi(t)) = µiN
−1, (5.2.3a)

E(ηi(t)2) = σ2
i N

−1 + o(N−1), (5.2.3b)

E(ηi(t)ηj(t)) = σijN
−1 + o(N−1), (5.2.3c)

so that µi, σ2
i and σij represent population-scaled parameters for the expected value,

variance and covariance of the payoffs, respectively, for i, j = 1, . . . , 4 with i 6= j. Moreover,

it is assumed that

E(ξ1(t)kξ2(t)lξ3(t)mξ4(t)n) = o(N−1), (5.2.4)

so that

E(η1(t)kη2(t)lη3(t)mη4(t)n) = o(N−1), (5.2.5)
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for non-negative integers k, l, m, n such that k + l + m + n ≥ 3.

We suppose that the payoffs have additive effects on fitness understood as relative

reproductive success with a baseline value equal to 1. Assuming random pairwise interac-

tions, the mean fitness of strategy S1 at time t ≥ 0 can be expressed as

Π1(t) = 1 + x(t)η1(t) + (1− x(t))η2(t), (5.2.6)

and the corresponding mean fitness of strategy S2 as

Π2(t) = 1 + x(t)η3(t) + (1− x(t))η4(t). (5.2.7)

Note that these quantities are always positive since we assume ηi(t) > −1 for i = 1, . . . , 4.

Now, we consider discrete non-overlapping generations as in the Wright-Fisher model

and we measure time in number of N generations. Then, ∆t = N−1 represents the

time interval from one generation to the next. Given that the frequency of strategy S1

is x(t) at time t ≥ 0 corresponding to some generation, the frequency of S1 in the next

generation, x(t+∆t), is distributed as a binomial random variable divided by N . Actually

the conditional probability distribution is given by

x(t + ∆t)|x(t) ∼ 1
N

B(N, x′(t)), (5.2.8)

where B(N, x′(t)) denotes a binomial distribution of parameters N and x′(t) with

x′(t) =
x(t)Π1(t)

x(t)Π1(t) + (1− x(t))Π2(t)
(5.2.9)

being the probability for an offspring to have been produced by an individual using strategy

S1 at time t ≥ 0. Note that x′(t) is a random variable even if the value of x(t) is known,

since Π1(t) and Π2(t) depend on the random payoffs ηi(t) for i = 1, . . . , 4.

5.3 Diffusion Approximation

Let ∆x = x(t + ∆t)− x(t) be the change in the frequency of individuals that use strategy

S1 from time t to time t + ∆t. Given x(t) = x, the first, second and fourth moments of
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∆x can be calculated as (see Appendix A for details)

E(∆x|x(t) = x) = m(x)∆t + o(∆t), (5.3.1)

E((∆x)2|x(t) = x) = v(x)∆t + o(∆t) (5.3.2)

and

E((∆x)4|x(t) = x) = o(∆t), (5.3.3)

where

m(x) = x(1− x)
(
µ2 − µ4 + x

(
µ1 − µ2 − µ3 + µ4

)

+ x3(σ13 − σ2
1) + x(1− x)2(2σ34 − σ14 − σ23 + σ24 − σ2

2)

+ x2(1− x)(−2σ12 + σ14 + σ23 − σ13 + σ2
3) + (1− x)3(σ2

4 − σ24)
)

(5.3.4)

and

v(x) = x(1− x)
(
1 + x3(1− x)(σ2

1 + σ2
3 − 2σ13) + x(1− x)3(σ2

2 + σ2
4 − 2σ24)

+ 2x2(1− x)2(σ12 + σ34 − σ14 − σ23)
)
. (5.3.5)

The above conditions ascertain a diffusion approximation with drift function m(x) and

diffusion function v(x) in the limit of a large population with the population size N as

unit of time (Kimura, 1964; Ewens, 2004).

In the diffusion approximation, the probability density function of S1-frequency evalu-

ated at x at time t ≥ 0 given a value p at time 0, denoted by f(x, p, t), satisfies the forward

Kolmogorov (Fokker-Planck) equation

∂f(x, p, t)
∂t

= − ∂

∂x
[m(x)f(x, p, t)] +

∂2

∂x2

[
v(x)f(x, p, t)

2

]
, (5.3.6)

as well as the backward Kolmogorov equation

∂f(x, p, t)
∂t

= m(p)
∂f(x, p, t)

∂p
+

v(p)
2

∂2f(x, p, t)
∂p2

. (5.3.7)
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Since no mutation is considered in the model at hand, the two boundaries x = 0 and x = 1

are absorbing states.

Let u(p, t) denote the probability that strategy S1 is fixed by time t ≥ 0 so that x(t) = 1

given an initial frequency x(0) = p. This probability satisfies the backward Kolmogorov

equation, that is,

∂u(p, t)
∂t

= m(p)
∂u(p, t)

∂p
+

v(p)
2

∂2u(p, t)
∂p2

(5.3.8)

with the boundary conditions u(0, t) = 0 and u(1, t) = 1. By letting t →∞, the limit

u(p) = limt→∞u(p, t) (5.3.9)

represents the probability of ultimate fixation of strategy S1 given an initial frequency

x(0) = p. As t →∞, the left-hand side in (5.3.8) tends to 0 so that we have

0 = m(p)
du(p)

dp
+

v(p)
2

d2u(p)
dp2

(5.3.10)

with the boundary conditions u(0) = 0 and u(1) = 1. The solution of this ordinary

differential equation is known to be (Risken, 1992; Ewens, 2004)

u(p) =

∫ p
0 ψ(y)dy∫ 1
0 ψ(y)dy

, (5.3.11)

where

ψ(y) = exp
(
−2

∫ y

0

m(x)
v(x)

dx

)
. (5.3.12)

Note that the probability of ultimate fixation of strategy S2 is given by

1− u(p) =

∫ 1
p ψ(y)dy

∫ 1
0 ψ(y)dy

, (5.3.13)

since there is ultimate fixation of strategy S1 or S2 with probability 1.

5.4 Randomized Prisoner’s Dilemma (RPD)

Consider a random game matrix (5.2.1) with independent payoffs whose expected val-

ues determine a classical Prisoner’s Dilemma (PD). In this case, the population-scaled
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parameters in (5.2.3) verify σij = 0 for i, j = 1, . . . , 4 with i 6= j, since the payoffs are

uncorrelated, and

µ1 µ2

µ3 µ4


 =


R S

T P


 (5.4.1)

with T > R > P > S and 2R > T + S. Then, we have a randomized Prisoner’s Dilemma

(RPD) with strategies S1 and S2 corresponding to cooperation (C) and defection (D),

respectively.

Suppose that cooperation is introduced as a single mutant in an all defecting popula-

tion so that the initial frequency of cooperation in the population of size N is p = N−1. If

the probability of ultimate fixation of cooperation, denoted by FC = u(N−1), exceeds the

value N−1, which is the fixation probability under neutrality, then we say that the evolu-

tion of cooperation is favored by selection. Analogously, FD = 1− u(1−N−1) represents

the probability of ultimate fixation of a single defecting mutant in an all cooperating pop-

ulation, and we say that the evolution of defection is disfavored (not favored) by selection

if FD is less than N−1 (Nowak et al., 2004). Moreover, if FC > FD, then the invasion

of a single cooperating mutant in an all defecting population is more likely than the re-

verse situation. In such a case, we say that the evolution of cooperation is more favored

by selection than the evolution of defection. Finally, if all three conditions are satisfied,

which occurs when FC > N−1 > FD, then we say that the evolution of cooperation is fully

favored by selection.

Assuming the population size N large enough and using the diffusion approximation

for the fixation probability, namely (5.3.11), the condition for the evolution of cooperation

to be favored by selection becomes

FC =
ψ(0)

N
∫ 1
0 ψ(y)dy

>
1
N

. (5.4.2)

Since ψ(0) = 1, this condition is equivalent to
∫ 1

0
ψ(y)dy < 1. (5.4.3)
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Moreover, owing to (5.3.4), (5.3.5) and (5.3.12), we have

ψ(y) = exp
(
−2

∫ y

0
g(x)dx

)
(5.4.4)

for 0 ≤ y ≤ 1, where

g(x) =
m(x)
v(x)

(5.4.5)

with drift function

m(x) =x(1− x)
(
µ2 − µ4 + x

(
µ1 − µ2 − µ3 + µ4

)

− (
x3σ2

1 + x(1− x)2σ2
2 − x2(1− x)σ2

3 − (1− x)3σ2
4

))
(5.4.6)

and diffusion function

v(x) = x(1− x)
(
1 + x3(1− x)(σ2

1 + σ2
3) + x(1− x)3(σ2

2 + σ2
4).

)
. (5.4.7)

Note that the function g(x) actually depends on the population-scaled expected values

and variances of the payoffs, µi and σ2
i for i = 1, . . . , 4.

Similarly, the condition for the evolution of defection not to be favored by selection

takes the form

FD =
ψ(1)

N
∫ 1
0 ψ(y)dy

=
φ(1)

N
∫ 1
0 φ(y)dy

<
1
N

, (5.4.8)

where

φ(y) =
ψ(y)
ψ(1)

= exp
(

2
∫ 1

y
g(x)dx

)
. (5.4.9)

Since φ(1) = 1, this condition is equivalent to

∫ 1

0
φ(y)dy > 1, that is,

∫ 1

0
ψ(y)dy > ψ(1). (5.4.10)

Moreover, since FD = ψ(1)FC , the condition

ψ(1) = φ(0)−1 < 1 (5.4.11)
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ensures that FC > FD, in which case selection favors more the evolution of cooperation

than the evolution of defection.

Let h(x) = g(x) when σ2
i = 0 for i = 1, . . . , 4. Then we have

h(x) = µ2 − µ4 + x(µ1 − µ2 − µ3 + µ4). (5.4.12)

Since µ4 > µ2 and µ3 > µ1 in the PD game (5.4.1), the function h(x) is always negative for

0 ≤ x ≤ 1. Therefore, in the case where σ2
i = 0 for i = 1, . . . , 4, we have g(x) = h(x) < 0

in (5.4.4) so that ψ(y) and φ(y) are both strictly increasing functions with respect to y

with ψ(0) = φ(1) = 1. Therefore, we have ψ(y) > 1 and φ(y) < 1 for 0 < y < 1. In

this case, conditions (5.4.3), (5.4.10) and (5.4.11) can never be satisfied. This means that

the evolution of cooperation can never be favored by selection. This is in agreement with

what is known for the classical PD game with deterministic payoffs (Maynard Smith, 1982;

Nowak, 2006).

For the RPD game with independent payoffs, we consider the partial derivatives of

g(x) with respect to the variances of the payoffs. It can be shown (see Appendix B for

details) that

∂g(x)
∂σ2

3

> 0 (5.4.13)

and

∂g(x)
∂σ2

4

> 0 (5.4.14)

for 0 < x < 1. This implies that g(x) for 0 < x < 1 increases as σ2
3 or σ2

4 increases.

Therefore, ψ(y) in (5.4.4) for 0 < y < 1, and its integral from 0 to 1 in (5.4.2) and (5.4.3),

decreases as σ2
3 or σ2

4 increases. On the other hand, φ(y) in (5.4.9) for 0 < y < 1, and its

integral from 0 to 1 in (5.4.8) and (5.4.10), increases as σ2
3 or σ2

4 increases.

Let us summarize our findings.

Conclusion 1: In a RPD game with independent payoffs, increasing the variance of

at least one payoff for defection, that is, σ2
3 or σ2

4, increases the probability of ultimate
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fixation of cooperation introduced as a single mutant in an all defecting population, FC ,

while it decreases the probability of ultimate fixation of defection introduced as a single

mutant in an all cooperating population, FD.

5.5 RPD with independent payoffs

In this section, we focus on a RPD game with independent payoffs whose expected values

are such that

µ1 µ2

µ3 µ4


 =


b− c −c

b 0


 . (5.5.1)

This payoff matrix determines an additive PD game in which cooperation (C) incurs a

fixed cost c > 0 to the individual adopting it, but provides a fixed benefit b > 0 to the

opponent, while defection (D) incurs no cost at all.

In this case, the function h(x) in (5.4.12) is given by h(x) = −c. Moreover, if c ≤ 1,

then it can be shown (see Appendix B for details) that the function g(x) in (5.4.5)

satisfies

∂g(x)
∂σ2

1

< 0 (5.5.2)

and

∂g(x)
∂σ2

2

< 0 (5.5.3)

for 0 < x < 1.

This leads to the following complementary result.

Conclusion 2: In a RPD game with independent payoffs whose population-scaled

expected values determine an additive PD game in the form (5.5.1) with cost of cooperation

c ≤ 1, diminishing the variance of at least one payoff for cooperation, that is, σ2
1 or σ2

2,

increases the probability of ultimate fixation of cooperation introduced as a single mutant

in an all defecting population, FC , while it decreases the probability of ultimate fixation of

defection introduced as a single mutant in an all cooperating population, FD.
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In the rest of this section, we investigate some special cases of the RPD with additive

expected payoffs to exhibit conditions under which the evolution of cooperation could be

favored by selection.

5.5.1 Case 1: σ2
1 = σ2

2 = σ2
3 = 0, σ2

4 = σ2 > 0

This is a situation where the variance of the payoff for defection against defection is

significantly larger than the variances of all the other payoffs.

With h(x) = −c, the function g(x) in (5.4.5) takes the form

g1(x) := g(x) =
−c + (1− x)3σ2

1 + x(1− x)3σ2
. (5.5.4)

This function satisfies g(0) = σ2 − c, g(1) = −c, g′(0) = −σ2(3 + σ2 − c) and g′(1) = 0

(see Appendix C for details).

If σ2 < c, then g(x) < 0 for 0 < x < 1. In this case, the function ψ(y) in (5.4.4)

satisfies ψ(y) > 1 for 0 < y ≤ 1, which entails
∫ 1
0 ψ(y)dy > 1, that is, FC < 1/N .

On the other hand, if σ2 > c, then we have g′(x) < 0 for 0 < x < 1. In this case, g(x)

is a strictly decreasing function from σ2− c > 0 at x = 0 to −c < 0 at x = 1, while ψ(y) is

a strictly convex function for 0 ≤ y ≤ 1. The unique point x∗ between 0 and 1 where g(x)

crosses the x axis is the global minimum point of ψ(y) for 0 ≤ y ≤ 1 (see Figure 5.1a,b).

Since ψ(0) = 1 with ψ′(0) = −2g(0) = −2(σ2 − c) < 0, the condition ψ(1) < 1, which

implies FC > FD, guarantees also that
∫ 1
0 ψ(y)dy < 1, which implies FC > 1/N .

Let σ2∗∗ be the value of σ2 > c such that
∫ 1
0 g(x)dx = 0, that is, ψ(1) = 1. Recall

that g(x) is strictly increasing as a function of σ2 owing to (5.4.14). Consequently, the

condition σ2 > σ2∗∗ is necessary and sufficient to have
∫ 1
0 g(x)dx > 0, that is, ψ(1) < 1,

which implies FC > FD.

Now, let σ2∗ be the value of σ2 strictly comprised between c and σ2∗∗ such that
∫ 1
0 ψ(y)dy =

1. Then we have
∫ 1
0 ψ(y)dy < 1 for σ2∗ < σ2 < σ2∗∗. We conclude that FC > 1/N as soon

as σ2 > σ2∗ > c.
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Finally, let σ2∗∗∗ be the value of σ2 > σ2∗∗ such that
∫ 1
0 φ(y)dy = 1. Then we have

∫ 1
0 φ(y)dy > 1 for σ2 > σ2∗∗∗. This means that FD < 1/N if and only if σ2 > σ2∗∗∗ (see

Appendix E for details).

If σ2/16 is small, in which case x(1 − x)3σ2 is small for 0 ≤ x ≤ 1, we have the

approximation

g(x) ≈ −c + (1− x)3σ2 (5.5.5)

for 0 ≤ x ≤ 1. Moreover, using the approximation ez ≈ 1 + z for z small enough, we get

ψ(y) = exp
(
−2

∫ y

0
g(x)dx

)

≈ 1 + 2cy − 2σ2

(
y − 3

2
y2 + y3 − 1

4
y4

)
(5.5.6)

and

φ(y) = exp
(

2
∫ 1

y
g(x)dx

)

≈ 1 + 2c(y − 1)− 2σ2

(
y − 3

2
y2 + y3 − 1

4
y4 − 1

4

)
(5.5.7)

for 0 ≤ y ≤ 1. Then, ψ(1) = 1 when

σ2 = σ2
∗∗ ≈ 4c, (5.5.8)

while
∫ 1
0 ψ(y)dy = 1 when

σ2 = σ2
∗ ≈

5c

2
(5.5.9)

and
∫ 1
0 φ(y)dy = 1 when

σ2 = σ2
∗∗∗ ≈ 10c. (5.5.10)

Here, we have c < σ2∗ < σ2∗∗ < σ2∗∗∗ with FC > N−1, FC > FD and FD < N−1 when σ2 >

σ2∗, σ2 > σ2∗∗ and σ2 > σ2∗∗∗, respectively (see Figure 5.2 for a schematic representation of

the situation and Table 5.1 for some particular values).

Our result suggests that the evolution of cooperation tends to be fully favored by

selection with an increase of the variance of the payoff for defection against defection.
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5.5.2 Case 2: σ2
1 = σ2

2 = σ2
4 = 0, σ2

3 = σ2 > 0

Here, the variance of the payoff for defection against cooperation is significantly larger

than the variances of all the other payoffs.

In this case, the function g(x) in (5.4.5) becomes

g2(x) := g(x) =
−c + x2(1− x)σ2

1 + x3(1− x)σ2
. (5.5.11)

This function satisfies g(0) = −c, g(1) = −c, g′(0) = 0 and g′(1) = −(c + 1)σ2.

Note that x2(1 − x) ≤ 4/27 for 0 ≤ x ≤ 1, so that g(x) ≤ 0 for 0 ≤ x ≤ 1 if

σ2 ≤ (27/4)c. Proceeding as in the previous case, this entails
∫ 1
0 ψ(y)dy > 1, that is,

FC < 1/N . Actually, this inequality is reversed only when σ2 > σ2∗ > (27/4)c, where σ2∗

is the value of σ2 such that
∫ 1
0 ψ(y)dy = 1.

If σ2/16 is small, then

g(x) ≈ −c + x2(1− x)σ2 (5.5.12)

for 0 ≤ x ≤ 1, from which

ψ(y) ≈ 1 + 2cy − 2σ2

(
1
3
y3 − 1

4
y4

)
(5.5.13)

and

φ(y) ≈ 1 + 2c(y − 1)− 2σ2

(
1
3
y3 − 1

4
y4 − 1

12

)
(5.5.14)

for 0 ≤ y ≤ 1. Then, ψ(1) = 1 when

σ2 = σ2
∗∗ ≈ 12c, (5.5.15)

while
∫ 1
0 ψ(y)dy = 1 when

σ2 = σ2
∗ ≈ 15c (5.5.16)

and
∫ 1
0 φ(y)dy = 1 when

σ2 = σ2
∗∗∗ ≈ 10c. (5.5.17)
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Note that σ2∗ and σ2∗∗ are larger in case 2 than in case 1 and satisfy the inequalities

σ2∗ > σ2∗∗ > σ2∗∗∗ > c (see Figure 5.1c,d and Table 5.1). The conditions for FC > 1/N ,

FC > FD and FD < 1/N remain the same as in the previous case, that is, σ2 > σ2∗,

σ2 > σ2∗∗ and σ2 > σ2∗∗∗, respectively, but these conditions hold in a reverse order as the

variance of the payoff for defection against cooperation increases.

We conclude that selection tends to fully favor the evolution of cooperation when the

variance of the payoff for defection against cooperation increases.

5.5.3 Case 3: σ2
1 = σ2

2 = 0, σ2
3 = σ2

4 = σ2 > 0

This is a situation where the payoffs for defection have a certain level of uncertainty while

the payoffs for cooperation are much less variable.

In this case, the function g(x) in (5.4.5) takes the form

g3(x) := g(x) =
−c + (1− x)

(
x2 + (1− x)2

)
σ2

1 + x(1− x) (x2 + (1− x)2) σ2
. (5.5.18)

This function satisfies g(0) = σ2 − c, g(1) = −c, g′(0) = −σ2(3 + σ2 − c) and g′(1) =

−(c + 1)σ2.

Analogously to case 1, we have g(x) < 0 for 0 < x < 1 when σ2 < c. On the other hand,

if σ2 > c, then g(x) is a decreasing function, while ψ(y) and φ(y) are convex functions

on [0, 1] (see Appendix C for details). Therefore, three threshold values of σ2 could be

found sequentially, that satisfy the inequality c < σ2∗ < σ2∗∗ < σ2∗∗∗ (see Appendix E for

details). As in case 1, if σ2∗, σ2∗∗ and σ2∗∗∗ are the values of σ2 such that
∫ 1
0 ψ(y)dy = 1,

ψ(1) = 1 and
∫ 1
0 φ(y)dy = 1, respectively, then FC > 1/N , FC > FD and FD < 1/N when

σ2 > σ2∗, σ2 > σ2∗∗ and σ2 > σ2∗∗∗, respectively, with c < σ2∗ < σ2∗∗ < σ2∗∗∗ (see Appendix

E and Figures 5.1e,f and 5.2).

If σ2/16 is small, we have the approximation

g(x) ≈ −c + (1− x)
(
x2 + (1− x)2

)
σ2 (5.5.19)
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for 0 ≤ x ≤ 1, from which

ψ(y) ≈ 1 + 2cy − 2σ2

(
y − 3

2
y2 +

4
3
y3 − 1

2
y4

)
(5.5.20)

and

φ(y) ≈ 1 + 2c(y − 1)− 2σ2

(
y − 3

2
y2 +

4
3
y3 − 1

2
y4 − 1

3

)
. (5.5.21)

for 0 ≤ y ≤ 1. Then, ψ(1) = 1 when

σ2 = σ2
∗∗ ≈ 3c, (5.5.22)

while
∫ 1
0 ψ(y)dy = 1 when

σ2 = σ2
∗ ≈

15c

7
(5.5.23)

and
∫ 1
0 φ(y)dy = 1 when

σ2 = σ2
∗∗∗ ≈ 5c. (5.5.24)

Comparisons between numerical and approximate values are made in Table 5.1.

Note that

g3(x)− g1(x) =
(1 + cx)(1− x)x2σ2

(1 + x(1− x)3σ2) (1 + x(1− x) (x2 + (1− x)2) σ2)
> 0 (5.5.25)

for 0 < x < 1. Thus, we have

ψ3(y) = exp
(
−2

∫ y

0
g3(x)dx

)
< exp

(
−2

∫ y

0
g1(x)dx

)
= ψ1(y) (5.5.26)

and

φ3(y) = exp
(

2
∫ 1

y
g3(x)dx

)
> exp

(
2

∫ 1

y
g1(x)dx

)
= φ1(y) (5.5.27)

for 0 < y < 1. This implies that the probability of ultimate fixation of cooperation

(defection) introduced as a single mutant in case 3 is larger (smaller) than in case 1 for

all values of σ2 > 0. Moreover, the values σ2∗, σ2∗∗ and σ2∗∗∗ are smaller in case 3 than in

case 1.

In conclusion, increasing the variance in both σ2
3 and σ2

4 is always more favorable for

the evolution of cooperation than increasing the variance in only one of them.
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5.5.4 Case 4: σ2
1 = σ2

2 = σ2
0 > 0, σ2

3 = σ2
4 = σ2 > 0

Here, this is an example where the variances of the payoffs for cooperation are fixed while

the variances of the payoffs for defection are changing.

With the given variances, the function g(x) in (5.4.5) takes the form

g4(x) := g(x) =
−c + (1− x)

(
x2 + (1− x)2

)
σ2 − x

(
x2 + (1− x)2

)
σ2

0

1 + x(1− x) (x2 + (1− x)2) (σ2 + σ2
0)

, (5.5.28)

which satisfies g(0) = σ2 − c, g(1) = −c− σ2
0.

In this case, the functions g(x), ψ(y) (see Figure 5.1g,h) and φ(y), and the threshold

values of σ2, namely σ2∗, σ2∗∗ and σ2∗∗∗, have the same properties as in cases 1 and 3 (see

Appendices C and E, and Figure 5.2). Moreover, if (σ2 + σ2
0)/16 is small, then we have

the approximation

g(x) ≈ −c + (1− x)
(
x2 + (1− x)2

)
σ2 − x

(
x2 + (1− x)2

)
σ2

0 (5.5.29)

for 0 ≤ x ≤ 1, from which

ψ(y) ≈ 1 + 2cy − 2σ2

(
y − 3

2
y2 +

4
3
y3 − 1

2
y4

)
+ 2σ2

0

(
1
2
y2 − 2

3
y3 +

1
2
y4

)
(5.5.30)

and

φ(y) ≈ 1 + 2c(y − 1)− 2σ2

(
y − 3

2
y2 +

4
3
y3 − 1

2
y4 − 1

3

)

+ 2σ2
0

(
1
2
y2 − 2

3
y3 +

1
2
y4 − 1

3

)
. (5.5.31)

for 0 ≤ y ≤ 1. Then, ψ(1) = 1 when

σ2 = σ2
∗∗ ≈ 3c + σ2

0, (5.5.32)

while
∫ 1
0 ψ(y)dy = 1 when

σ2 = σ2
∗ ≈

15c + 3σ2
0

7
(5.5.33)

and
∫ 1
0 φ(y)dy = 1 when

σ2 = σ2
∗∗∗ ≈

15c + 7σ2
0

3
. (5.5.34)
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Some values are given in Table 5.1. Since the threshold values σ2∗, σ2∗∗ and σ2∗∗∗ for σ2

increase with σ2
0, these results reveal that larger is the value of σ2

0, larger must be the

value of σ2 for selection to favor the evolution of cooperation in any sense. Moreover, note

that σ2∗∗∗ > σ2∗∗ > σ2
0.

The main conclusion is that a higher level of uncertainty in the payoffs for defection

than in the payoffs for cooperation is required for the evolution of cooperation to be fully

favored by selection. This is somehow in agreement with results that can be found for the

RPD in an infinite population (Li et al., 2019).

5.5.5 Case 5: σ2
1 = σ2

2 = σ2
3 = σ2

4 = σ2 > 0

This is a situation where all the variances of the payoffs are of the same magnitude.

With all variances equal to σ2, the function g(x) in (5.4.5) takes the form

g5(x) := g(x) =
−c + (1− 2x)

(
x2 + (1− x)2

)
σ2

1 + 2x(1− x) (x2 + (1− x)2) σ2
, (5.5.35)

which satisfies g(0) = σ2 − c, g(1) = −c− σ2.

In this case, results (5.4.13) and (5.4.14) can no longer determine the monotonicity of

g(x) with respect to σ2. Actually, it may be an increasing function for x near 0, and a

decreasing function for x near 1. Nevertheless, it can be shown that ψ(y) is decreasing

with respect to σ2 for y ∈ (0, 1], which guarantees the existence of σ2∗, while σ2∗∗ and σ2∗∗∗

do not exist (see Appendices D and E, and Figure 5.1i,j).

If σ2/16 is small, then we have the approximation

g(x) ≈ −c + (1− 2x)
(
x2 + (1− x)2

)
σ2 (5.5.36)

for 0 ≤ x ≤ 1, from which

ψ(y) ≈ 1 + 2cy − 2σ2
(
y − 2y2 + 2y3 − y4

)
(5.5.37)

for 0 ≤ y ≤ 1. Then,
∫ 1
0 ψ(y)dy = 1 when

σ2 = σ2
∗ ≈

15c

4
. (5.5.38)
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Table 5.1: Comparison between the numerical values and the approximate values of σ2∗,

σ2∗∗, σ2∗∗∗ in cases 1 to 5. The population-scaled expected cost c for cooperation is set to

1 or 0.5. The value of σ2
0 in case 4 is set to 0.5. The approximate values are given first

followed by the numerical values in brackets.

Note that σ2∗ is the only threshold value of σ2 in this case (see Table 5.1 for particular

values).

Therefore, the evolution of cooperation can be favored by selection, that is FC > N−1,

but cannot be fully favored, which means that we cannot have FC > N−1 > FD. This is

in agreement with the conclusion in case 4.
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Figure 5.1: Curves of g(x) and ψ(y) in cases 1 to 5. The population-scaled expected cost

c for cooperation is set to 1. In each panel, the curve in Blue is for the threshold value of

σ2 such that g(x) ≤ 0 for 0 ≤ x ≤ 1, while the curves in Red, Green and Purple are for

the threshold values σ2∗, σ2∗∗ and σ2∗∗∗, respectively (except for case 5 where there are no

σ2∗∗ and σ2∗∗∗). Panels (a) and (b) represent g(x) and ψ(y) in case 1, and so on up to case

5. In case 4, the value of σ2
0 is set to 0.5.
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Figure 5.2: Relationships between σ2∗, σ2∗∗, σ2∗∗∗ and FC , FD in cases 1, 3 and 4. The

regions where the fixation probabilities FC and FD are larger or smaller than N−1 and

where FC is larger or smaller than FD are given according to the position of σ2 with

respect to the increasing threshold values σ2∗, σ2∗∗ and σ2∗∗∗. In case 2, these threshold

values are decreasing.

5.6 RPD with additive payoffs

In this section, we consider a RPD game with additive payoffs. At time t ≥ 0, cooperation

(C) incurs a random cost c(t) > 0 to the individual adopting it, but provides a random

benefit b(t) > 0 to the opponent, while defection (D) incurs no cost at all, so that the

random payoff matrix takes the form

η1(t) η2(t)

η3(t) η4(t)


 =


b(t)− c(t) −c(t)

b(t) 0


 . (5.6.1)

The main difference with the model in the previous section is that the payoffs are not

independent.
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Here, c(t) and b(t) are assumed to be random variables with

E(b(t)) = µbN
−1 > 0, (5.6.2a)

E(c(t)) = µcN
−1 > 0, (5.6.2b)

Var(b(t)) = σ2
bN

−1, (5.6.2c)

Var(c(t)) = σ2
cN

−1, (5.6.2d)

Cov(b, c) = σbcN
−1, (5.6.2e)

so that the population-scaled parameters in (5.2.3) for the means, variances and covari-

ances of the payoffs are given by

µ1 = µb − µc, (5.6.3a)

µ2 = −µc, (5.6.3b)

µ3 = µb, (5.6.3c)

µ4 = 0, (5.6.3d)

and

σ2
1 = σ2

b + σ2
c − 2σbc, (5.6.4a)

σ2
2 = σ2

c , (5.6.4b)

σ2
3 = σ2

b , (5.6.4c)

σ12 = σ2
c − σbc, (5.6.4d)

σ13 = σ2
b − σbc, (5.6.4e)

σ23 = −σbc, (5.6.4f)

σ34 = σ24 = σ14 = σ2
4 = 0. (5.6.4g)

Substituting the above expressions into (5.3.4) and (5.3.5) yields

m(x) = x(1− x)
(−µc + x(σbc − σ2

c )
)

(5.6.5)
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and

v(x) = x(1− x)
(
1 + x(1− x)σ2

c

)
(5.6.6)

as drift function and diffusion function, respectively. Note that σ2
b does not come into play

in these functions.

If µc, σ2
c and σbc are of the same small enough order, then

ψ(y) = exp
(
−2

∫ y

0

m(x)
v(x)

dx

)
≈ 1− 2

∫ y

0

(−µc + x(σbc − σ2
c )

)
dx

= 1 + 2µcy −
(
σbc − σ2

c

)
y2 (5.6.7)

as in Lessard (2005). Therefore, the conditions

∫ 1

0
ψ(y)dy < 1, ψ(1) < 1,

∫ 1

0
ψ(y)dy > ψ(1), (5.6.8)

become

σbc − σ2
c > 3µc, σbc − σ2

c > 2µc, σbc − σ2
c >

3
2
µc. (5.6.9)

respectively. These are the conditions for selection to favor the evolution of C, favor more

the evolution of C than the evolution of D, and disfavor the evolution of D, respectively.

Since µc > 0, these conditions can hold only if σbc > σ2
c , in which case the first condition

is the most stringent one and the third condition the least stringent one.

In the particular case b(t) = rc(t) where r > 0 is a constant, the above conditions

reduce to

r > 1 + 3
(

µc

σ2
c

)
, r > 1 + 2

(
µc

σ2
c

)
, r > 1 +

3
2

(
µc

σ2
c

)
, (5.6.10)

respectively. These conditions can hold for r > 1 if σ2
c is large enough compared to µc.

Moreover, it can be shown that at least the second condition does not depend on the

assumption that σ2
c and σbc are small and of the same order (see Appendix F).
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5.7 Repeated RPD

We turn now our attention to a RPD game that is repeated a random number of times.

There are two pure actions, cooperation (C) and defection (D), and the payoffs in a single

round of interaction between two players at time t ≥ 0 are given by the random game

matrix

R(t) S(t)

T (t) P (t)


 . (5.7.1)

Here, R(t) and S(t) are the payoffs to action C against C and D, respectively, while

T (t) and P (t) are the corresponding payoffs to action D against the same two actions.

These payoffs are assumed to be independent random variables whose distributions do not

depend on time t ≥ 0. Moreover, their expected values determine a classical PD game.

Actually, we assume

E(R(t)) = µRN−1 > 0, (5.7.2a)

E(S(t)) = µSN−1 > 0, (5.7.2b)

E(T (t)) = µT N−1 > 0, (5.7.2c)

E(P (t)) = µP N−1 > 0, (5.7.2d)

with µT > µR > µP > µS and 2µR > µT + µS . Finally, at each time t ≥ 0, the number of

rounds of interaction between the same two players is a random variable n(t) ≥ 1 that is

independent of R(t), S(t), T (t) and P (t).

In this repeated RPD game, we consider two strategies, Tit-for-Tat (TFT) and Always-

Defect (AllD). In a pairwise interaction, a TFT-strategist uses action C in the first round

and, in each of the next rounds, copies the action previously used by the opponent. On

the other hand, an AllD-strategist uses action D in all the rounds. Thus, the payoffs to

these two strategies at time t ≥ 0 are given by

η1(t) η2(t)

η3(t) η4(t)


 =


 n(t)R(t) S(t) + (n(t)− 1)P (t)

T (t) + (n(t)− 1)P (t) n(t)P (t)


 . (5.7.3)
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Moreover, the population-scaled parameters (5.2.3) for the means, variances and covari-

ances of the these payoffs take the form

µ1 = µRE(n(t)), (5.7.4a)

µ2 = µS + µPE(n(t)− 1), (5.7.4b)

µ3 = µT + µPE(n(t)− 1), (5.7.4c)

µ4 = µPE(n(t)), (5.7.4d)

and

σ2
1 = σ2

RE(n(t)2), (5.7.5a)

σ2
2 = σ2

S + σ2
PE((n(t)− 1)2), (5.7.5b)

σ2
3 = σ2

T + σ2
PE((n(t)− 1)2), (5.7.5c)

σ2
4 = σ2

PE(n(t)2), (5.7.5d)

σ23 = σ2
PE((n(t)− 1)2), (5.7.5e)

σ24 = σ34 = σ2
PE(n(t)(n(t)− 1)), (5.7.5f)

σ12 = σ13 = σ14 = 0, (5.7.5g)

where σ2
R = NVar(R(t)), σ2

S = NVar(S(t)), σ2
T = NVar(T (t)) and σ2

P = NVar(P (t)).

Substituting the above expressions into (5.3.4) and (5.3.5) yields

m(x) = x(1− x)
(
µS − µP + x(µR − µS − µT + µP ) + x(µR − µP )E(n(t)− 1)

− x3σ2
RE(n(t)2)− x(1− x)2σ2

S + x2(1− x)σ2
T

+ (1− x)σ2
PE

(
((n(t)− 1)x + 1− x)((n(t)− 1)(1 + x) + 1− x)

))
(5.7.6)

and

v(x) = x(1− x)
(
1 + x3(1− x)σ2

RE(n(t)2) + x(1− x)3σ2
S

+ x3(1− x)σ2
T + x(1− x)σ2

PE
(
((n(t)− 1)x + 1− x)2

))
(5.7.7)
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as drift function and diffusion function, respectively. Assuming that µR, µS , µT and µP ,

as well as σ2
R, σ2

S , σ2
T and σ2

P , are of the same small enough order, we have

ψ(y) = exp
(
−2

∫ y

0

m(x)
v(x)

dx

)
≈ 1− 2

∫ y

0

m(x)
x(1− x)

dx (5.7.8)

as in Lessard (2005). Then, the condition for the evolution of TFT to be favored by

selection when introduced as a single mutant, which is given by

∫ 1

0
ψ(y)dy < 1, (5.7.9)

becomes

2
∫ 1

0

∫ y

0

m(x)
x(1− x)

dxdy > 0. (5.7.10)

Using the expression of m(x) given in (5.7.6), this condition can be written in the form

µS − µP +
1
3
(µR − µS − µT + µP ) +

1
3
(µR − µP )E(n(t)− 1)

− 1
10

E(n(t)2)σ2
R −

1
10

σ2
S +

1
15

σ2
T + cP σ2

P > 0, (5.7.11)

where

cP = 2E((n(t)− 1)2)
∫ 1

0

∫ y

0
(1− x)x(1 + x)dxdy

+ 2E(n(t)− 1)
∫ 1

0

∫ y

0
(1− x)2(1 + 2x)dxdy

+ 2
∫ 1

0

∫ y

0
(1− x)3dxdy

=
7
30

E((n(t)− 1)2) +
7
10

E(n(t)− 1) +
2
5

> 0. (5.7.12)

If all the variances of the payoffs vanish, then the condition (5.7.11) corresponds to the

one-third law of evolution (Nowak et al., 2004; Lessard, 2005), since it says then that the

mean payoff to TFT exceeds the mean payoff to AllD when the frequency of TFT is equal

to 1/3. Note that this condition holds if the expected number of rounds E(n(t)) is large

enough, since µR > µP . On the other hand, when the variances of the payoffs do not
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vanish, we see that an increase of σ2
T and σ2

P , or a decrease of σ2
R and σ2

S , makes it easier

for the evolution of TFT to be favored by selection.

Similarly, from

φ(y) = exp
(

2
∫ 1

y

m(x)
v(x)

dx

)
≈ 1 + 2

∫ 1

y

m(x)
x(1− x)

dx, (5.7.13)

the condition for the evolution of AllD not to be favored by selection when introduced as

a single mutant, that is,

∫ 1

0
φ(y)dy > 1, (5.7.14)

reduces to

2
∫ 1

0

∫ 1

y

m(x)
x(1− x)

dxdy = 2
∫ 1

0

∫ 1−y

0

m(1− x)
x(1− x)

dxdy > 0, (5.7.15)

which is equivalent to

µS − µP +
2
3
(µR − µS − µT + µP ) +

2
3
(µR − µP )E(n(t)− 1)

− 2
5
E(n(t)2)σ2

R −
1
15

σ2
S +

1
10

σ2
T + cP σ2

P > 0, (5.7.16)

where

cP =
4
15

E((n(t)− 1)2) +
3
10

E(n(t)− 1) +
1
10

> 0. (5.7.17)

Therefore, an increase of σ2
T and σ2

P , or a decrease of σ2
R and σ2

S , makes it easier also for

the evolution of AllD not to be favored by selection.

Finally, we have

ψ(1) ≈ 1− 2
∫ 1

0

m(x)
x(1− x)

dx < 1 (5.7.18)

when

∫ 1

0

m(x)
x(1− x)

dx = µS − µP +
1
2
(µR − µS − µT + µP ) +

1
2
(µR − µP )E(n(t)− 1)

− 1
4
E(n(t)2)σ2

R −
1
12

σ2
S +

1
12

σ2
T + cP σ2

P > 0, (5.7.19)
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where

cP =
1
4
E((n(t)− 1)2) +

1
2
E(n(t)− 1) +

1
4

> 0. (5.7.20)

This means that an increase of σ2
T and σ2

P , or a decrease of σ2
R and σ2

S , makes it easier for

selection to favor more the evolution of TFT than the evolution of AllD.

5.8 Discussion

Environmental noise in the payoffs of a matrix game may have important effects on the

evolutionary dynamics, and even change the outcome of evolution. As a matter of fact,

the dynamics is driven not only by the expected values of the payoffs but also by their

variances. Variability in payoffs can push the time average of a population state far from

its interior Nash equilibrium (Broom, 2005) or even change the stability of a fixation

state (Stollmeier and Nagler, 2018). In the case of a deterministic one-round Prisoner’s

Dilemma (PD), where all the payoffs are constant, cooperation can never be favored by

natural selection. However, introducing uncertainty in the payoffs makes it possible for

cooperation to be favored.

Assuming a Randomized Prisoner’s Dilemma (RPD) with independent payoffs in a

large finite population, we have shown that, if the means and variances of the payoffs are

of the same order of magnitude given by the inverse of the population size N , increasing

the variance in the payoffs for defection, tends to promote the evolution of cooperation

(conclusion 1). Moreover, if the payoffs have additive expected values, decreasing the

variance in the payoffs for cooperation, at least for an expected cost for cooperation small

enough, has the same effect (conclusion 2). More precisely, increasing the variance of the

payoff for defection against defection (case 1) increases the probability of ultimate fixation

of cooperation introduced as a single mutant, FC , while increasing the variance of the pay-

off for defection against cooperation (case 2) decreases the probability of ultimate fixation

of defection introduced as a single mutant, FD. Increasing both variances simultaneously
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(cases 3 and 4) enhances the effect.

In particular, we have shown that the evolution of cooperation is fully favored by

selection, in the sense that FC > N−1 > FD, where N−1 is the probability of ultimate

fixation of a single mutant under neutrality, if the population-scaled variance of the payoffs

for defection against cooperation and defection, σ2, exceeds (15c + 7σ2
0)/3, where σ2

0 is

the population-scaled variance of the payoffs for cooperation against cooperation and

defection (case 4 and case 3 for σ2
0 = 0). Moreover, as σ2 is increased, the conditions for

FC > N−1, FC > FD, and FD < N−1 are satisfied when σ2 > σ2∗, σ2 > σ2∗∗, and σ2 > σ2∗∗∗,

respectively, where σ2∗, σ2∗∗ and σ2∗∗∗ represent three increasing threshold values (Figure

2). These are the conditions for selection to favor the evolution of cooperation, favor more

the evolution of cooperation than the evolution of defection, and disfavor the evolution

of defection, respectively. We have analogous conditions with increasing threshold values

when only the population-scaled variance of the payoff for defection against defection is

increased (case 1), and with decreasing threshold values when only the population-scaled

variance of the payoff for defection against cooperation is increased (case 2).

Our results are in agreement with the fact that, in the case of a RPD in an infinite

population, a larger variance of the payoffs for defection is required for C-fixation to

be stochastically locally stable and D-fixation stochastically locally unstable (Li et al.,

2019). On the other hand, they significantly differ from results obtained with constant

payoffs in finite populations. For instance, in the case of a PD game in a graph-structured

population and the case of a repeated PD game in a well-mixed population (Nowak et al.,

2004; Nowak, 2006), the condition FC > N−1 is sufficient for FC > N−1 > FD.

Note that more uncertainty in the payoffs for defection than for cooperation makes

sense. Among the reasons, defectors are more isolated than cooperators and may not share

with others the increments or decrements of surrounding resources caused by variations

in the environment. They may also suffer from punishment or lack of reward from others.

Even if the expected payoffs may still be higher for defection than for cooperation, their
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variances may also be higher.

On the other hand, when increasing the variance of all the payoffs (case 5), we have

shown that selection can favor the evolution of both cooperation and defection in the sense

that FC > N−1 and FD > N−1. Note that, since genotypic fitnesses in a random mating

diploid population can be viewed as payoffs in random pairwise interactions of haploid

individuals (in which case the payoff matrix is symmetric), our results extend previous

results stated without proofs for population genetics models (Karlin and Levikson, 1974).

Increasing the variance of the payoffs for defection (cooperation, respectively) pushes the

system away from fixation of defection (cooperation, respectively), and at the same time

promotes fixation of cooperation (defection, respectively). When the variance of all the

payoffs increases, the system state is more likely to stay away from fixation.

Of further interest is the effect of the variances of the cost and benefit in a RPD with

additive payoffs which are not independent. At least when the population-scaled means

and variances of the cost and benefit, as well as their population-scaled covariance, are

of the same small enough order, the conditions for FC > N−1, FC > FD and FD < N−1

take the form σbc− σ2
c > 3µc, σbc− σ2

c > 2µc and σbc− σ2
c > 3µc/2, respectively, where µc

is the population-scaled expected cost, σbc the population-scaled covariance between the

cost and benefit, and σ2
c the population-scaled variance of the cost. The first condition is

the most stringent one and the last condition the least stringent one, but they all require

that σbc > σ2
c since µc > 0. Of course, this does not occur if the cost and benefit are

constants or independent random variables.

In the case of a repeated RPD game, the payoffs to TFT and AllD in pairwise in-

teractions with a random number of rounds between the same players are generally not

independent even if the payoffs to cooperation and defection are independent in each

round. Assuming that the population-scaled means and variances of these payoffs are

of the same small enough order, we have shown that an increase in the variances of the

payoffs for defection, or a decrease in the variances of the payoffs for cooperation, makes
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it easier for FTFT > N−1, FTFT > FAllD and FAllD < N−1 to hold. Since fixation of TFT

means fixation of cooperation, the conclusion is that these conditions tend to promote the

evolution of cooperation in agreement with our results for a one-round RPD game.

As a final remark, our results are based on a diffusion approximation that has been

ascertained for a randomized matrix game with payoffs that have expected values, vari-

ances and covariances of order given by the inverse of a large population size N . This

approximation can be used to study not only fixation probabilities, but any dynamical

properties.

5.9 Appendix

5.9.1 A. Conditional moments of ∆x

First fourth moments of a binomial distribution

Let x̃ be a random variable such that Nx̃ follows a binomial distribution of parameters N

and x, noted B(N, x). The first moment of x̃ is E(x̃) = x. As for the second moment, we

have

E(x̃2) =
N∑

i=0

(
i

N

)2 (
N

i

)
xi(1− x)N−i

=
1

N2

[
N∑

i=0

i(i− 1)
(

N

i

)
xi(1− x)N−i +

N∑

i=0

i

(
N

i

)
xi(1− x)N−i

]

=
1

N2

[
N(N − 1)x2

N∑

i=2

(
N − 2
i− 2

)
xi−2(1− x)N−i

]
+

x

N

=
N − 1

N
x2 +

x

N

= x2 +
x(1− x)

N
. (5.9.1)
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Analogously, using the above expression for E(x̃2), the third moment is given by

E(x̃3) =
N∑

i=0

(
i

N

)3 (
N

i

)
xi(1− x)N−i

=
x(N − 1)2

N2

[
N∑

i=1

(i− 1)2 + 2(i− 1) + 1
(N − 1)2

(
N − 1
i− 1

)
xi−1(1− x)(N−1)−(i−1)

]

=
x(N − 1)2

N2

[
x2 +

x(1− x)
N

+
2

N − 1
x +

1
(N − 1)2

]

= x3 +
3x2(1− x)

N
+ o(N−1). (5.9.2)

Finally, as for the fourth moment, we find

E(x̃4) =
N∑

i=0

(
i

N

)4 (
N

i

)
xi(1− x)N−i

=
x(N − 1)3

N3

×
[

N∑

i=1

(i− 1)3 + 3(i− 1)2 + 3(i− 1) + 1
(N − 1)3

(
N − 1
i− 1

)
xi−1(1− x)(N−1)−(i−1)

]

=
x(N − 1)3

N3

×
[
x3 +

3x2(1− x)
N

+
3

N − 1
(x2 +

x(1− x)
N

) +
3

(N − 1)2
x +

1
(N − 1)3

+ o(N−1)
]

= x4 +
6x3(1− x)

N
+ o(N−1). (5.9.3)

First conditional moments of ∆x

Given that x(t) = x, the frequency change ∆x = x(t+∆t)−x(t) has the same probability

distribution as x̃− x, where Nx̃ ∼ B(N, x′). Here, the parameter

x′ =
xΠ1

xΠ1 + (1− x)Π2
(5.9.4)

is a random variable with

Π1 = 1 + xη1 + (1− x)η2 (5.9.5)

and

Π2 = 1 + xη3 + (1− x)η4, (5.9.6)
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where ηi has mean N−1µi, variance N−1σ2
i + o(N−1) and covariance N−1σij + o(N−1)

with ηj for i, j = 1, . . . , 4 with j 6= i. Note that

x′ =
x(1 + P1)

1 + P3
, (5.9.7)

where

P1 = xη1 + (1− x)η2, (5.9.8a)

P2 = xη3 + (1− x)η4, (5.9.8b)

P3 = xP1 + (1− x)P2. (5.9.8c)

The random variables Pj for j = 1, 2 are homogeneous linear functions of η1, . . . , η4, while

P3 is a homogeneous linear function of P1 and P2. Thus, the moments of P1 and P2 satisfy

E(P1) = N−1 (xµ1 + (1− x)µ2) , (5.9.9a)

E(P2) = N−1 (xµ3 + (1− x)µ4) , (5.9.9b)

E(P 2
1 ) = N−1

(
x2σ2

1 + (1− x)2σ2
2 + 2x(1− x)σ12

)
+ o(N−1), (5.9.9c)

E(P 2
2 ) = N−1

(
x2σ2

3 + (1− x)2σ2
4 + 2x(1− x)σ34

)
+ o(N−1), (5.9.9d)

E(P1P2) = N−1
(
x2σ13 + x(1− x)(σ14 + σ23) + (1− x)2σ24

)
+ o(N−1), (5.9.9e)

and

E(P k
1 P l

2) = o(N−1) (5.9.10)
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as soon as k, l are non-negative integers such that k + l ≥ 3. Therefore, we have

E(x′) = E
(
x(1 + P1)(1− P3 + P 2

3 )
)

+ o(N−1)

= E
(
x + x(1− x)(P1 − P2) + x(1− x)(P2 − P1)(xP1 + (1− x)P2)

)
+ o(N−1)

= x + x(1− x)
(
E(P1)−E(P2)

)

+ x(1− x)
(− xE(P 2

1 ) + (1− x)E(P 2
2 ) + (2x− 1)E(P1P2)

)
+ o(N−1)

= x +
x(1− x)

N

(
µ2 − µ4 + x(µ1 − µ2 − µ3 + µ4)

)

+
x(1− x)

N

(
− x3σ2

1 − x(1− x)2σ2
2 − 2x2(1− x)σ12

+ x2(1− x)σ2
3 + (1− x)3σ2

4 + 2x(1− x)2σ34

+ (2x− 1)
(
x2σ13 + x(1− x)(σ14 + σ23) + (1− x)2σ24

) )
+ o(N−1). (5.9.11)

Since

E(∆x|x(t) = x) = E(x̃− x) = E(x̃)− x = E(x′)− x, (5.9.12)

the first conditional moment of ∆x is given by

E(∆x|x(t) = x) =
x(1− x)

N

(
µ2 − µ4 + x

(
µ1 − µ2 − µ3 + µ4

)

+ x3(σ13 − σ2
1) + x(1− x)2(2σ34 − σ14 − σ23 + σ24 − σ2

2)

+ x2(1− x)(−2σ12 + σ14 + σ23 − σ13 + σ2
3) + (1− x)3(σ2

4 − σ24)
)

+ o(N−1), (5.9.13)

while its second conditional moment can be expressed as

E((∆x)2|x(t) = x) = E
(
(x̃− x)2

)

= E
(
x̃2 − 2xx̃ + x2

)

= E
(

x′2 +
x′(1− x′)

N

)
− 2xE(x′) + x2

= E
(
(x′ − x)2

)
+ E

(
x′(1− x′)

N

)

= E
(
(x′ − x)2

)
+

x(1− x)
N

+ o(N−1). (5.9.14)
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Moreover, we have

E
(
(x′ − x)2

)
= E

((
x(1− x)(P2 − P1)(P3 − 1)

)2
)

+ o(N−1)

= E
(
x2(1− x)2(P2 − P1)2

)
+ o(N−1)

=
x2(1− x)2

N

(
x2(σ2

1 + σ2
3) + (1− x)2(σ2

2 + σ2
4) + 2x(1− x)(σ12 + σ34)

− 2x2σ13 − 2x(1− x)(σ14 + σ23)− 2(1− x)2σ24

)
+ o(N−1). (5.9.15)

Therefore, we get

E((∆x)2|x(t) = x)

=
x(1− x)

N

(
1 + x3(1− x)(σ2

1 + σ2
3 − 2σ13) + x(1− x)3(σ2

2 + σ2
4 − 2σ24)

+ 2x2(1− x)2(σ12 + σ34 − σ14 − σ23)
)

+ o(N−1). (5.9.16)

Finally, the fourth conditional moment of ∆x can be expressed as

E((∆x)4|x(t) = x) = E
(
(x̃− x)4

)

= E
(
x̃4 − 4xx̃3 + 6x2x̃2 − 4x3x̃ + x4

)

= E
(

x′4 +
6x′3(1− x′)

N

)
− 4xE

(
x′3 +

3x′2(1− x′)
N

)

+ 6x2E
(

x′2 +
x′(1− x′)

N

)
− 4x3E(x′) + x4 + o(N−1)

= E
(
(x′ − x)4

)
+

6
N

E
(
x′(1− x′)(x′ − x)2

)
+ o(N−1). (5.9.17)

Note that

E
(
(x′ − x)4

)
= E

(
x4(1− x)4(P2 − P1)4

)
+ o(N−1) = o(N−1) (5.9.18)

and

E
(
x′(1− x′)(x′ − x)2

)
= E

(
x′(1− x′)x2(1− x)2(P2 − P1)2

)
+ o(N−1) = O(N−1),

(5.9.19)

from which we conclude that E((∆x)4|x(t) = x) = o(N−1).
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5.9.2 B. Partial derivatives of g(x) with respect to σ2
i

The function g(x) is defined as the drift function in (5.3.4) divided by the diffusion function

in (5.3.5), that is,

g(x) =
m(x)
v(x)

=
h(x)− (

x3σ2
1 + x(1− x)2σ2

2 − x2(1− x)σ2
3 − (1− x)3σ2

4

)

1 + x3(1− x)(σ2
1 + σ2

3) + x(1− x)3(σ2
2 + σ2

4)
, (5.9.20)

where

h(x) = µ2 − µ4 + x(µ1 − µ2 − µ3 + µ4). (5.9.21)

Then the partial derivatives with respect to σ2
i > 0 for i = 1, . . . , 4 are given by

∂g(x)
∂σ2

1

= −x3
(
1 + (1− x)h(x) + x2(1− x)σ2

3 + (1− x)3σ2
4

)
(
1 + x3(1− x)(σ2

1 + σ2
3) + x(1− x)3(σ2

2 + σ2
4)

)2 , (5.9.22a)

∂g(x)
∂σ2

2

= −x(1− x)2
(
1 + (1− x)h(x) + x2(1− x)σ2

3 + (1− x)3σ2
4

)
(
1 + x3(1− x)(σ2

1 + σ2
3) + x(1− x)3(σ2

2 + σ2
4)

)2 , (5.9.22b)

∂g(x)
∂σ2

3

=
x2(1− x)

(
1− xh(x) + x3σ2

1 + x(1− x)2σ2
2

)
(
1 + x3(1− x)(σ2

1 + σ2
3) + x(1− x)3(σ2

2 + σ2
4)

)2 , (5.9.22c)

∂g(x)
∂σ2

4

=
(1− x)3

(
1− xh(x) + x3σ2

1 + x(1− x)2σ2
2

)
(
1 + x3(1− x)(σ2

1 + σ2
3) + x(1− x)3(σ2

2 + σ2
4)

)2 . (5.9.22d)

Under the assumptions µ4 > µ2 and µ3 > µ1, we have h(x) < 0 for 0 < x < 1, in which

case

∂g(x)
∂σ2

3

> 0 (5.9.23)

and

∂g(x)
∂σ2

4

> 0. (5.9.24)

On the other hand, the conditions

∂g(x)
∂σ2

1

< 0 (5.9.25)

and

∂g(x)
∂σ2

2

< 0 (5.9.26)
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hold if and only if

h(x) > −1 + x2(1− x)σ2
3 + (1− x)3σ2

4

1− x
. (5.9.27)

Since the right-hand member in (5.9.27) is less than −1 for 0 < x < 1, a sufficient condition

for (5.9.25) and (5.9.25) to hold is h(x) ≥ −1 on (0, 1).

5.9.3 C. Monotonicity of g(x) and convexity of ψ(y), φ(y) in cases 1, 3-5

In case 1, with σ2
1 = σ2

2 = σ2
3 = 0 and σ2

4 = σ2 > 0, the expression of g(x) takes the form

g(x) =
−c + (1− x)3σ2

1 + x(1− x)3σ2
, (5.9.28)

whose derivative is given by

g′(x) =
σ2(1− x)2

[
(c− σ2)(1− x)4 − cx2(2 + (2− x)2)− 3

]

(1 + x(1− x)3σ2)2
. (5.9.29)

If σ2 > c, then g′(x) < 0 for 0 < x < 1. Thus, g(x) is a strictly decreasing function on

[0, 1].

In case 3, with σ2
1 = σ2

2 = 0 and σ2
3 = σ2

4 = σ2 > 0, we have

g(x) =
−c + (1− x)aσ2

1 + x(1− x)aσ2
, (5.9.30)

where a = x2 + (1− x)2. Under the condition σ2 > c, the derivative of g(x) for 0 < x < 1

is given by

g′(x) =
2x− 3a + c

(
2x2 + (1− 4x)a

)− σ2a2(1− x)2

(1 + x(1− x)aσ2)2
, (5.9.31)

where 2x− 3a = −6x2 + 8x− 3 ≤ −1
3 < 0 and

c
(
2x2 + (1− 4x)a

)− σ2a2(1− x)2 < c
(
2x2 + (1− 4x)a

)− ca2(1− x)2

= c
(
a(1− 4x− (1− x)4 − x2(1− x)2) + 2x2

)

= cx2
(
a(−7 + 6x− 2x2) + 2

)

= cx2
(−4x4 + 16x3 − 28x2 + 20x− 5

)

= −cx2
(
4(x− 1)4 + (2x− 1)2

)

< 0. (5.9.32)
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Therefore, g′(x) < 0 for 0 < x < 1. Consequently, the function g(x) is strictly decreasing

on [0, 1].

In case 4, with σ2
1 = σ2

2 = σ2
0 > 0 , σ2

3 = σ2
4 = σ2 > 0 and a = x2 + (1− x)2, we have

g(x) =
−c + (1− x)aσ2 − xaσ2

0

1 + x(1− x)a(σ2 + σ2
0)

. (5.9.33)

Under the condition σ2 > c, the derivative of g(x) for 0 < x < 1 is given by

g′(x) =
1(

1 + x(1− x)a(σ2 + σ2
0)

)2

[
(−6x2 + 8x− 3)σ2 + (−6x2 − 4x− 1)σ2

0

+ (σ2 + σ2
0)

(−c(2x− 1)3 − σ2a2(1− x)2 − σ2
0a

2x2
) ]

, (5.9.34)

where −6x2 + 8x− 3 ≤ −1
3 < 0, −6x2 − 4x− 1 < 0 and

−c(2x− 1)3 − σ2a2(1− x)2 − σ2
0a

2x2 < −c
(
(2x− 1)3 + a2(1− x)2

)− σ2
0a

2x2

= −cx2
(
4(x− 1)4 + (2x− 1)2

)− σ2
0a

2x2

< 0. (5.9.35)

Thus, g′(x) < 0 for 0 < x < 1, from which the function g(x) is strictly decreasing on [0, 1].

Finally, in case 5, with σ2
1 = σ2

2 = σ2
3 = σ2

4 = σ2 > c > 0 and a = x2 + (1 − x)2, the

expression of g(x) takes the form

g(x) =
−c + (1− 2x)aσ2

1 + 2x(1− x)aσ2
, (5.9.36)

whose derivative for 0 < x < 1 is

g′(x) =
(−12x2 + 12x− 4)σ2 + 2σ2

(
c(1− 2x)3 − σ2a3

)

(1 + 2x(1− x)aσ2)2
, (5.9.37)

where −12x2 + 12x− 4 ≤ −1 < 0 and

c(1− 2x)3 − σ2a3 < −c
(
(2x− 1)3 + a3

)

= −2cx2
(
(2x− 1)2 + 2a(x− 1)2

)

< 0. (5.9.38)

199



We conclude that g′(x) < 0 for 0 < x < 1, from which the function g(x) is strictly

decreasing on [0, 1].

In addition, with ψ(y) = exp
(−2

∫ y
0 g(x)dx

)
> 0, φ(y) = exp

(
2

∫ 1
y g(x)dx

)
> 0 and

g′(y) < 0 for 0 < y < 1 in cases 1, 3, 4, 5, we have

ψ′′(y) = 2ψ(y)
(
2g2(y)− g′(y)

)
> 0 (5.9.39)

and

φ′′(y) = 2φ(y)
(
2g2(y)− g′(y)

)
> 0 (5.9.40)

on (0, 1), from which ψ(y) and φ(y) are strictly convex functions on [0,1].

5.9.4 D. Monotonicity of ψ(y) with respect to σ2 in case 5

In case 5, with σ2
1 = σ2

2 = σ2
3 = σ2

4 = σ2 > 0, we have

g(x) =
−c + (1− 2x)aσ2

1 + 2x(1− x)aσ2
, (5.9.41)

where a = x2 + (1 − x)2. We show that, with respect to σ2 > 0 and for every y ∈ (0, 1],

the function

k(y) = − lnψ(y)
2

=
∫ y

0
g(x)dx (5.9.42)

is strictly increasing so that

ψ(y) = exp (−2k(y)) (5.9.43)

is strictly decreasing. For y ∈ (0, 1), we find

∂k(y)
∂σ2

=
∫ y

0

∂g(x)
∂σ2

dx =
∫ y

0

a (2cx(1− x)− (2x− 1))
(1 + 2ax(1− x)σ2)2

dx. (5.9.44)

It is easy to check that the integrand in (5.9.44) is positive on [0, x∗) and negative on

(x∗, 1] with

x∗ =
1
2

+
√

c2 + 1− 1
2c

. (5.9.45)
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This implies that the derivative in (5.9.44) is strictly increasing on [0, x∗) and strictly

decreasing on (x∗, 1]. Moreover, ∂k(0)/∂σ2 = 0 and

∂k(1)
∂σ2

=
∫ 1

0

a (2cx(1− x)− (2x− 1))
(1 + 2ax(1− x)σ2)2

dx

=
∫ 1

2

0

a (2cx(1− x)− (2x− 1))
(1 + 2ax(1− x)σ2)2

dx +
∫ 1

1
2

a (2cx(1− x)− (2x− 1))
(1 + 2ax(1− x)σ2)2

dx

=
∫ 1

2

0

a (2cx(1− x)− (2x− 1))
(1 + 2ax(1− x)σ2)2

dx +
∫ 1

2

0

a (2cx(1− x) + (2x− 1))
(1 + 2ax(1− x)σ2)2

dx

=
∫ 1

2

0

4acx(1− x)
(1 + 2ax(1− x)σ2)2

dx > 0. (5.9.46)

We can conclude that ∂k(y)/∂σ2 > 0 for y ∈ (0, 1].

5.9.5 E. Existence of σ2
∗, σ2

∗∗ and σ2
∗∗∗ in cases 1 to 5

In cases 1 to 4, it is easy to check that

lim
σ2→∞

g(x) = x−1. (5.9.47)

From (5.4.13) and (5.4.14) shown in Appendix B, g(x) for 0 < x < 1 strictly increases with

respect to σ2 > 0 and, therefore, ψ(1) = exp
(
−2

∫ 1
0 g(x)dx

)
strictly decreases. Moreover,

when σ2 = 0, we have g(x) < 0 for every x ∈ [0, 1]. This implies that ψ(1) > 1 for σ2 > 0.

On the other hand, owing to Fatou’s lemma, we have

lim
σ2→∞

∫ 1

0
g(x)dx = lim inf

σ2→∞

∫ 1

0
g(x)dx ≥

∫ 1

0
lim

σ2→∞
g(x)dx. (5.9.48)

Therefore, we get

lim
σ2→∞

ψ(1) = lim
σ2→∞

exp
(
−2

∫ 1

0
g(x)dx

)

≤ exp
(
−2

∫ 1

0
lim

σ2→∞
g(x)dx

)

= exp
(
−2

∫ 1

0
x−1dx

)

= 0. (5.9.49)
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We conclude that the equation ψ(1) = 1 has a unique solution with respect to σ2 > 0,

denoted by σ2∗∗. Then, we have FC > FD if and only if σ2 > σ2∗∗.

In cases 1, 3 and 4, where ψ(y) is a strictly convex function, the conditions ψ(0) = 1 and

ψ(1) = 1 when σ2 = σ2∗∗ entails
∫ 1
0 ψ(y)dy < 1 when σ2 = σ2∗∗. Since this integral strictly

decreases with respect to σ2 and
∫ 1
0 ψ(y)dy > 1 when σ2 = 0, the equation

∫ 1
0 ψ(y)dy = 1

has a unique solution with respect to σ2 between 0 and σ2∗∗, denoted by σ2∗. Then, we

have FC > N−1 if and only if σ2 > σ2∗.

Moreover, we know that FD = FC > N−1 when σ2 = σ2∗∗. Using Fatou’s lemma and

the inequality ex ≥ 1 + x > x for x > 0, we get

lim
σ2→∞

FD = lim
σ2→∞

1

N
∫ 1
0 φ(y)dy

=
(

N lim
σ2→∞

∫ 1

0
exp

(
2

∫ 1

y
g(x)dx

)
dy

)−1

≤
(

N

∫ 1

0
exp

(
2

∫ 1

y
lim

σ2→∞
g(x)dx

)
dy

)−1

=
(

N

∫ 1

0
exp

(
2(y−2 − 1)

)
dy

)−1

≤
(

2N

∫ 1

0
(y−2 − 1)dy

)−1

= 0. (5.9.50)

Owing to (5.4.13) and (5.4.14) proved in Appendix B, we know that φ(y) = exp
(
2

∫ 1
y g(x)dx

)

is strictly increasing with respect to σ2 > 0 for y ∈ [0, 1). Therefore, FD is a strictly de-

creasing function of σ2. Thus, there must exist a threshold value of σ2 > σ2∗∗, denoted

by σ2∗∗∗, which is the unique solution of the equation
∫ 1
0 φ(y)dy = 1. If σ2 > σ2∗∗∗, then

FD < N−1.

In case 2, it is still possible to ascertain the existence of σ2∗, since
∫ 1
0 ψ(y)dy > 1 when

σ2 = 0 and

lim
σ2→∞

∫ 1

0
ψ(y)dy ≤

∫ 1

0
exp

(
−2

∫ y

0
x−1dx

)
dy = 0. (5.9.51)
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However, c < σ2∗ < σ2∗∗ can no longer be guaranteed.

In case 5, we have

g(x) =
−c + (1− 2x)aσ2

1 + 2x(1− x)aσ2
(5.9.52)

with a = x2 + (1− x)2. Moreover, we find

∫ 1

0
g(x)dx =

∫ 1
2

0
g(x)dx +

∫ 1

1
2

g(x)dx

=
∫ 1

2

0
g(x)dx +

∫ 1
2

0
g(1− x)dx

=
∫ 1

2

0

−c + (1− 2x)aσ2

1 + 2x(1− x)aσ2
dx +

∫ 1
2

0

−c + (2x− 1)aσ2

1 + 2x(1− x)aσ2
dx

= −2c

∫ 1
2

0

1
1 + 2x(1− x)aσ2

dx. (5.9.53)

Since the integrand in (5.9.53) is bounded by 1 and uniformly converges to 0 as σ2 →∞
on [ε, 1/2] for ε > 0, we have

lim
σ2→∞

ψ(1, σ2) = lim
σ2→∞

exp
(
−2

∫ 1

0
g(x)dx

)

= exp
(
−2 lim

σ2→∞

∫ 1

0
g(x)dx

)

= exp

(
4c lim

σ2→∞

∫ 1
2

0

1
1 + 2x(1− x)aσ2

dx

)

= 1. (5.9.54)

From Appendix C, we already know that ψ(1) is strictly decreasing with respect to σ2

for y ∈ (0, 1]. Thus, we have ψ(1) > 1 for σ2 > 0, which implies that equation (5.4.11)

can never be satisfied. As a matter of fact, we always have FC < FD and σ2∗∗ does not

exist. Moreover, since φ(y) is a strictly convex function on [0, 1] with φ(0) = ψ(1)−1 < 1

and φ(1) = 1, we have φ(y) < 1 for y ∈ [0, 1). This tells us that condition (5.4.10) can

never be satisfied. We always have FD > N−1 and σ2∗∗∗ does not exist. The only threshold

value of σ2 in this case is σ2∗, since ψ(y) is a strictly convex function on [0, 1] and a strictly

decreasing function with respect to σ2 for y ∈ (0, 1] (see Appendix D). Its boundary value
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ψ(0) = 1 with ψ′(0) = 2c − 2σ2 < 0 for σ2 large enough, along with equation (5.9.54),

guarantees the existence of σ2∗ which is the unique value of σ2 > 0 such that
∫ 1
0 ψ(y)dy = 1.

5.9.6 F. Condition for ψ(1) < 1 in the additive RPD with b(t) = rc(t)

We consider an additive RPD game where the benefit b(t) is linear with respect to the

cost c(t), that is, b(t) = rc(t). Here, r is a constant that represents the ”benefit to cost

ratio”. Then we have σbc = rσ2
c , from which

g(x) =
−µc + x(r − 1)σ2

c

1 + x(1− x)σ2
c

. (5.9.55)

Moreover, the denominator can be expressed as

1 + x(1− x)σ2
c = 1 +

σ2
c

4
−

(
−σ2

c

4
+ xσ2

c − x2σ2
c

)

=
(

A

2

)2

−
((

1
2
− x

)
σc

)2

=
(

A

2
+

(
1
2
− x

)
σc

)(
A

2
−

(
1
2
− x

)
σc

)
, (5.9.56)

where A =
√

4 + σ2
c . Assuming g(x) in the form

g(x) =
S1

A
2 +

(
1
2 − x

)
σc

− S2

A
2 −

(
1
2 − x

)
σc

, (5.9.57)

we get the equations

S1

(
A

2
− σc

2

)
− S2

(
A

2
+

σc

2

)
= −µc, (5.9.58)

(S1 + S2)σc = (r − 1)σ2
c , (5.9.59)

which are equivalent to

S1 − S2 =
−2µc + (r − 1)σ2

c

A
, (5.9.60)

S1 + S2 = (r − 1)σc. (5.9.61)
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Thus, we get

ψ(y) = exp
(
−2

∫ y

0
g(x)dx

)

= exp
(
− 2

(
− S1

σc
ln

(
A

2
+

(
1
2
− y

)
σc

)
− S2

σc
ln

(
A

2
−

(
1
2
− y

)
σc

)

+
S1

σc
ln

(
A

2
+

σc

2

)
+

S2

σc
ln

(
A

2
− σc

2

) ))

=
(

A + σc − 2σcy

A + σc

)S1
σc

(
A− σc + 2σcy

A− σc

)S2
σc

, (5.9.62)

from which

ψ(1) =
(

A− σc

A + σc

)S1−S2
σc

. (5.9.63)

Since A + σc ≥ A− σc > 0, the condition ψ(1) < 1 is satisfied if and only if S1 − S2 > 0,

which means

r − 1 >
2µc

σ2
c

. (5.9.64)
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Abstract

The long-term coexistence of cooperation and defection is a common phenomenon in nature

and human society. However, none of the theoretical models based on the Prisoner’s

Dilemma (PD) game can provide a concise theoretical model to explain what leads to the

stable coexistence of cooperation and defection in the long-term even though some rules

for promoting cooperation have been summarized (Nowak, 2006, Science 314, 1560-1563).

Here, based on the concept of direct reciprocity, we develop an elementary model to show

why stable coexistence of cooperation and defection in the PD game is possible. The basic

idea behind our theoretical model is that all players in a PD game prefer a cooperator as

an opponent, and our results show that considering strategies allowing opting out against

defection provide a general and concise way of understanding the fundamental importance

of direct reciprocity in driving the evolution of cooperation.

Keywords: Evolution of cooperation; Long-term stable coexistence of cooperation

and defection; Out-for-tat (OFT); Tit-for-tat (TFT).
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6.1 Introduction

Five rules for promoting cooperation based on kin selection (Hamilton, 1964), direct and

indirect reciprocity (Trivers, 1971; Axelrod and Hamilton, 1981; Axelrod, 1984; Nowak

and Sigmund, 2005), graph selection (Nowak and May, 1992; Ohtsuki et al., 2006) and

group selection (Traulsen and Nowak, 2006a) have been summarized (Nowak, 2006a). The

one-third law based on the stochastic evolutionary game in a finite population also shows

how the emergence of cooperation can be favored by natural selection (Nowak, 2004).

Although these theoretical results have been successful in explaining the evolution of

cooperation, none of them provides a simple mechanism that can lead to stable coexistence

of cooperation and defection in the long-term even though this phenomenon is common

in nature and human society (Dugatkin, 1997).

Cooperation means that a donor pays a cost, c, for a recipient to get a benefit, b, where

b > c (Nowak, 2006b; Sigmund, 2010). In the corresponding one-shot Prisoner’s Dilemma

(PD) game, defection is the only Nash equilibrium (NE) (Nowak, 2006b; Sigmund, 2010).

On the other hand, for the repeated PD game with two strategies TFT (tit-for-tat) and

AllD (always defect), TFT is a NE if the expected number of iterated interactions between

a pair of individuals is larger than the critical value b/(b−c) (Axelrod and Hamilton, 1981;

Axelrod, 1984; Nowak, 2006a, 2006b; Sigmund, 2010). However, the stable coexistence of

TFT and AllD is impossible in the TFT-AllD game. Clearly, the success of TFT is mainly

due to the increased chance of interactions between cooperators (Axelrod, 1984; Axelrod

and Dion, 1988). That is, TFT provides a mechanism whereby cooperators preferentially

interact among themselves. Similarly, assortative matching among cooperators has been

used to explain why altruism can emerge (Eshel and Cavalli-Sforza, 1982; Cavalli-Sforza

and Feldman, 1983; Fletcher and Doebeli, 2006; Taylor and Nowak, 2006; Pacheco et

al., 2008), although the evolutionary origin of the non-uniform interaction rates among

cooperators has not been explained (Taylor and Nowak, 2006; Pacheco et al., 2008). For

the repeated PD game, one of the key assumptions is that the interaction between a pair of
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individuals will be repeated for several rounds, but that the expected number of iterated

rounds is fixed (Axelrod, 1984; Axelrod and Dion, 1988; Nowak, 2006b; Sigmund, 2010).

In particular, no player in a repeated PD game is able to unilaterally stop the interaction

with his/her opponent. However, based on individual self-interest in the PD game, both

cooperators and defectors prefer an opponent who cooperates (or only cooperators are

always welcome). Thus, if players are able to unilaterally terminate the interactions with

their opponents, then a simple rule will be followed by all individuals: I would like to keep

my opponent if he/she is a cooperator; and if my opponent is a defector, I will immediately

stop the interaction with him/her and seek a new partner instead. Clearly, this simple rule

reflects the basic characteristics of direct reciprocity. Recently, an interesting study based

on the concept of conditional dissociation, i.e. the option to leave an interacting partner

in response to his/her behavior, found that a strategy called “out-for-tat” (OFT) may

be important for the coexistence of cooperation and defection (Schuessler, 1989; Hayashi,

1993; Aktipis, 2004; Fujiwara-Greve and Okuno-Fujiwara, 2009; Izquierdo et al., 2010,

2014). In this study, strategy OFT means that an individual will respond to defection

by merely leaving, i.e. OFT will not tolerate defection but, unlike TFT, it does not

seek revenge. Although this study shows a possibility for the coexistence of cooperation

and defection because of OFT, it is still not clear what the dynamical mechanism of the

coexistence is. To reveal the fundamental evolutionary force driving the coexistence of

cooperation and defection, based only on the concept of direct reciprocity (Trivers, 1971;

Axelrod and Hamilton, 1981; Axelrod, 1984), we develop a concise theoretical model

to show how opting out against defection improves the coexistence of cooperation and

defection in PD game settings.
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6.2 Definitions and assumptions

Consider a simplified PD game with payoff matrix


b− c −c

b 0


 (Nowak, 2006b; Sigmund,

2010). Unlike the classic repeated game, we assume that the interaction between a pair

of individuals can be continued but each player can unilaterally break off the interaction

with his/her opponent at any time according to his/her own volition. This means that all

individuals (including both cooperators and defectors) will respond to defection by merely

leaving (i.e. all individuals use OFT) (Izquierdo et al., 2010, 2014). On the other hand,

we continue to assume as in the classic repeated game that the expected number of rounds

between a pair of individuals is limited even if these two individuals would like to continue

their interaction (Axelrod, 1984; Axelrod and Dion, 1988; Nowak, 2006b; Sigmund, 2010).

Specifically, we assume that the interaction between a pair of individuals will be terminated

after each round with probability ρ, where ρ is independent of these individuals’ strategies.

Thus, the probability that an interaction pair CC (where C represents cooperation) will

remain in the next round is 1− ρ, implying that the expected length of their interaction

is 1/ρ. On the other hand, the interaction pairs CD (where D denotes defection) and

DD will never continue to the next round, becoming single individuals immediately. At

the end of each round, all single individuals form new interaction pairs through random

mating in the next round.

Let PCC , PCD and PDD denote the frequencies of interaction pairs CC, CD and DD,

respectively, with PCC + PCD + PDD = 1. Then, the frequency of C at time t, denoted by

x, is given by x = PCC +PCD/2, and the frequency of D by 1−x = PCD/2+PDD. Notice

that, for a given population size N , the expected change of the frequency of cooperation
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from x to x± 1/N in the time interval
(
t, t + 1/N

)
can be logically expressed as

〈∆x〉 ≡ 〈x(t + 1/N)− x(t)〉

= Pr{∆x = 1/N}(x(t) + 1/N
)

+ Pr{∆x = −1/N}(x(t)− 1/N
)

+
[
1− Pr{∆x = 1/N} − Pr{∆x = −1/N}

]
x(t)− x(t)

=
1
N

[
Pr{∆x = 1/N} − Pr{∆x = −1/N}

]
, (6.2.1)

where Pr{∆x = ±1/N} denotes the probability that ∆x equals exactly ±1/N . On the

other hand, notice also that the expected changes of numbers of interaction pairs CC ,

CD and DD are

N

[
(1− ρ)PCC +

(
2ρPCC + PCD

2(ρPCC + PCD + PDD)

)2

· (ρPCC + PCD + PCC

)− PCC

]
,

N

[
(2ρPCC + PDD)(PCD + PDD)

2(ρPCC + PCD + PDD)2
· (ρPCC + PCD + PDD

)− PCD

]
,

N

[(
PCD + 2PDD

2(ρPCC + PCD + PDD)

)2

· (ρPCC + PCD + PDD

)− PDD

]
,

respectively. Thus, the expected changes of PCC , PCD and PDD, which are defined as

∆P∗ = P∗(t + 1/N)− P∗(t) for ∗ = CC, CD and DD, are given by

〈∆PCC〉 = (1− ρ)PCC +
(2ρPCC + PCD)2

4(1− (1− ρ)PCC)
− PCC ,

〈∆PCD〉 =
(2ρPCC + PCD)(PCD + 2PDD)

2(1− (1− ρ)PCC)
− PCD ,

〈∆PDD〉 =
(PCD + 2PDD)2

4(1− (1− ρ)PCC)
− PDD , (6.2.2)

respectively. Thus, for large N , the changes of PCC , PCD and PDD should be considered

to be the fast variables comparing to the change of x since lim
N→∞

〈∆x〉 = 0 but 〈∆PCC〉,
〈∆PCD〉 and 〈∆PDD〉 are independent of N . Then, in analogy with the Hardy-Weinberg

equilibrium in population genetics (Hofbauer and Sigmund, 1998), it is reasonable to

assume that the interaction pairs CC, CD and DD are at a “temporal equilibrium” at any

time t because of the random meeting between a pair of individuals. From the solutions of
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equations 〈∆PCC〉 = 0, 〈∆PCD〉 = 0 and 〈∆PDD〉 = 0, the temporal equilibrium satisfies

P 2
CD = 4ρPCCPDD (or

(
(1−ρ)/ρ

)
P 2

CD +2PCD−4x(1−x) = 0 since PCC +PCD +PDD = 1

and x = PCC + PCD/2). This implies that, at any time t, PCD can be expressed as

PCD = − ρ

1− ρ
+

√(
ρ

1− ρ

)2

+
4x(1− x)ρ

1− ρ
(6.2.3)

for all possible 0 < x < 1 and 0 < ρ < 1.

6.3 Stability analysis of the deterministic model

Based on the definitions and assumptions in Section 6.2, it is easy to see that, at any

time t, a cooperator has an opponent displaying cooperation (respectively, defection) with

probability 2PCC

/
(2PCC + PCD) (PCD

/
(PCD + 2PCC), respectively). Similarly, a de-

fector has an opponent displaying cooperation (respectively, defection) with probability

PCD

/
(PCD +2PDD) (2PDD

/
(PCD +2PDD), respectively). This implies that the expected

payoffs of C and D, denoted by πC and πD, respectively, can be expressed as

πC =
2PCC

2PCC + PCD
(b− c)− PCD

2PCC + PCD
c

=
2x− PCD

2x
b− c ,

πD =
PCD

PCD + 2PDD
b =

PCD

2(1− x)
b . (6.3.1)

Obviously, if the population size is assumed to be large enough, then the time evolution

of x obeys a simple differential equation

dx

dt
= x(1− x)(πC − πD)

= x(1− x)(b− c)− bPCD

2
, (6.3.2)

where PCD is assumed to be at the temporal equilibrium (see Eq. (6.2.3)) (Hofbauer and

Sigmund, 1998).

For the above differential equation, Eq. (6.3.2), it is easy to see that the boundary

x = 0 must be at least locally asymptotically stable since d(dx/dt)
/
dx|x=0 = −c, and that
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the boundary x = 1 must be unstable since d(dx/dt)
/
dx|x=1 = c. On the other hand, it

is also easy to see that the interior equilibrium of Eq. (6.3.2) is the solution of equation

πC − πD = 0, i.e.

x(1− x)(b− c)− b

2


− ρ

1− ρ
+

√(
ρ

1− ρ

)2

+ 4x(1− x)
ρ

1− ρ


 = 0

⇒ x(1− x) =
bc

(b− c)2
· ρ

1− ρ
. (6.3.3)

Thus, two interior equilibria (denoted by x∗1 and x∗2, respectively, with 0 < x∗2 < x∗1 < 1)

exist if ρ < (b− c)2
/
(b + c)2, in which case

x∗1,2 =
1
2
±

√
1
4
− bc

(b− c)2
· ρ

1− ρ
; (6.3.4)

x∗1 = x∗2 = 1/2 if ρ = (b − c)2
/
(b + c)2; and no interior equilibrium can exist if ρ >

(b − c)2
/
(b + c)2. For ρ = (b − c)2

/
(b + c)2, the unique interior equilibrium x∗ = 1/2

must be unstable since it is easy to see dx/dt < 0 for all possible x ∈ (0, 1) except for

x = 1/2. On the other hand, for ρ < (b−c)2
/
(b+c)2, it is also easy to see that the interior

equilibrium x∗1 (with x∗1 > 1/2) is locally asymptotically stable but x∗2 (with x∗2 < 1/2) is

unstable since dx/dt < 0 for x ∈ (x∗1, 1), dx/dt > 0 for x ∈ (x∗2, x
∗
1), and dx/dt < 0 for

x ∈ (0, x∗2) . All of these stability results not only show clearly a dynamical mechanism for

the time evolution of cooperation when all individuals use OFT but also provide insights

into how direct reciprocity leads to the coexistence of cooperation and defection.

Notice that in our model the pure strategy set is {C, D}, and that all individuals will

respond to defection by using OFT. Thus, it is easy to see that the pure strategy D is an

evolutionarily stable strategy (ESS) since, when all individuals use D, no mutant strategy

can successfully invade this population; and it is also easy to see that the pure strategy

C is not an ESS since, when all individuals use C, strategy D can successfully invade

the population (Maynard Smith, 1982). On the other hand, when all individuals use a

mixed strategy (ε, 1−ε) (where an individual using this mixed strategy will display C with

probability ε and D with probability 1− ε), the proportions of interaction pairs CC, CD
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and DD are ε2, 2ε(1− ε) and (1− ε)2, respectively, in each round (Broom and Rychtar,

2013); and the expected payoffs of C and D are πC = εb − c and πD = εb, respectively

(see Eq. (6.3.1)). Thus, the expected payoff of the mixed strategy (ε, 1 − ε) is ε(b − c).

This implies that no mixed strategy can be an ESS in our model. In particular, while

the interior equilibrium x∗1 is locally asymptotically stable in the dynamics (6.3.2) when

ρ < (b− c)2
/
(b + c)2, the mixed strategy (x∗1, 1− x∗1) is not an ESS.

However, it may still be possible that an individual not using OFT successfully invades

a population consisting of individuals using OFT. Notice that when a mutant not using

OFT invades an OFT population, the probability that it will have an opponent using C,

denoted by φC|M , should be

φC|M =
2ρPCC + PCD

2(ρPCC + PCD + PDD)

= 1− 1− x

ρx + (1− x) + (1− ρ)PCD

/
2

(i.e. this probability is the frequency of C in the group of single individuals at the end of

each round). It is easy to see that we must have φC|C > φC|M (or φC|C > x > φC|M ). On

the other hand, when the system state is at the stable interior equilibrium x∗1, all OFT

individuals have the same expected payoff. This means that the expected payoff of the

mutant must be less than the expected payoff of any one OFT individual when x = x∗1.

Thus, when all individuals use OFT and the system state is at an interior stable equi-

librium x∗1, no individual not using OFT can successfully invade this population. This is

illustrated by simulation results that show neither AllD nor TFT can invade a mixed pop-

ulation where they must play against both OFT-cooperators and OFT-defectors (Fig 6.1).

The simulation is based on the standard Moran process (Zhou et al., 2010; Broom and

Rychtar, 2013), where the total population size is fixed with N = 1000. (In this process,

in each time step only one individual is chosen for reproduction and one is chosen for

elimination. In the population composed of AllD-individuals (or TFT-individuals), OFT-

cooperators and OFT-defectors, let y1, y2 and y3 be the frequencies of AllD-individuals

(or TFT-individuals), OFT-cooperators and OFT-defectors, respectively, and π1, π2 and
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π3 denote the expected payoff of AllD-individual (TFT-individual), OFT-cooperator and

OFT-defector, respectively. Then, in each time step, a new AllD-individual (or TFT-

individual) is produced with probability π1y1

/∑3
i=1 πiyi, a new OFT-cooperator is pro-

duced with probability π2y2

/∑3
i=1 πiyi, and a new OFT-defector is produced with prob-

ability π3y3

/∑3
i=1 πiyi; and the probability that an AllD-individual (or TFT-individual),

or an OFT-cooperator, or an OFT-defector, is chosen for elimination is y1, or y2, or y3.)

Since the population size is large (i.e. N = 1000), for any given initial state, as time passes

the stochastic trajectories of OFT-C fluctuate around the stable equilibrium x∗1 obtained

from Eq. (6.3.2).

6.4 Stochastic dynamics in a finite population

Notice that the boundary x = 1 (or x = 0) is always unstable (or stable) in dynamics

(6.3.2). Thus, a natural question is whether the evolutionary emergence of cooperation will

be favored by natural selection when all individuals use OFT. Specifically, for the situation

with ρ < (b − c)2
/
(b + c)2 and the initial frequency of C in the interval 0 < x < x∗2, the

question is whether the probability that the system state reaches (or passes) the stable

equilibrium x∗1 at some time t is larger than the same probability under neutral selection.

To show this, following previous works (Nowak et al., 2004; Traulsen et al., 2005; Nowak,

2006b), the stochastic dynamics is applied to our model in a finite population with fixed

size N (where N could be large). We take the fitness of a cooperator (respectively, a

defector) as fC = (1−ω) + ωπC (respectively, fD = (1−ω) + ωπD), where the parameter

ω denotes the selection intensity with 0 ≤ ω ≤ 1 (Nowak et al., 2004; Nowak, 2006b).

Following the approach of Traulsen et al. (2005), the transition probabilities that the

system state changes from x to x + 1/N and from x to x − 1/N in a small time interval

are defined as s+(x) = x(1 − x)fC

/
f̄ and s−(x) = x(1 − x)fD

/
f̄ , respectively, where

f̄ = xfC + (1− x)fD denotes the mean fitness of the population.

Let φ(x;x0, t) be the probability density distribution that the frequency of C equals x
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Figure 6.1: Simulation of AllD (or TFT), OFT-cooperators and OFT-defectors in Moran

Process. The time evolution of AllD-individuals (or TFT-individuals), OFT-cooperators

and OFT-defectors in a mixed population is simulated using the Moran Process (Nowak,

2006b), where the population size is fixed at N = 1000, the selection intensity is taken as

ω = 0.01 (Nowak, 2006b), the parameter ρ is taken as ρ = 0.05, and AllD-individuals (or

TFT-individuals), OFT-cooperators and OFT-defectors have the same initial proportion,

which is 1/3. In panels (a) and (b), the population consists of AllD-individuals, OFT-

cooperators and OFT-defectors, where the payoff matrix is


1 −1

2 0


 (with x∗1 = 0.8804)

in panel (a), and


2 −1

3 0


 (with x∗1 = 0.843) in panel (b). Similarly, in panels (c) and

(d), the population consists TFT-individuals, OFT-cooperators and OFT-defectors, where

the payoff matrix in panel (c) is same as the payoff matrix in panel (a), and the payoff

matrix in panel (d) is same as the payoff matrix in panel (b). All of these simulation results

show clearly that neither AllD nor TFT can successfully invade a population composed of

OFT-cooperators and OFT-defectors.
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at time t when the initial frequency of C is x0. Notice that

φ(x;x0, t + 1/N)− φ(x;x0, t) = φ(x− 1/N ;x0, t)s+(x− 1/N)

+ φ(x + 1/N ;x0, t)s−(x + 1/N)

− φ(x;x0, t)s+(x)− φ(x;x0, t)s−(x) , (6.4.1)

and that the Taylor expansions of φ(x;x0, t + 1/N), φ(x± 1/N ;x0, t) and s±(x∓ 1/N) at

x and t can be given by

φ(x;x0, t + 1/N) ≈ φ(x;x0, t) +
∂

∂t
φ(x;x0, t)

1
N

,

φ(x± 1/N ;x0, t) ≈ φ(x;x0, t)± ∂

∂x
φ(x;x0, t)

1
N

+
∂2

∂x2
φ(x;x0, t)

1
2N2

,

s±(x∓ 1/N) ≈ s±(x)∓ ∂

∂x
s±(x)

1
N

+
∂2

∂x2
s±(x)

1
2N2

. (6.4.2)

Thus, the Fokker-Planck equation (or diffusion approximation) of φ(x;x0, t) can be ex-

pressed as

∂φ(x;x0, t)
∂t

=
∂

∂x
D(1)(x)φ(x;x0, t) +

∂2

∂x2
D(2)(x)φ(x;x0, t) , (6.4.3)

where D(1)(x) = s+(x)− s−(x) and D(2)(x) =
(
s+(x) + s−(x)

)/
2N . Similarly, we have

φ(x;x0, t + 1/N)− φ(x;x0, t) = s+(x0)φ(x;x0 + 1/N, t)

+ s−(x0)φ(x;x0 − 1/N, t)

− s+(x0)φ(x;x0, t)− s−(x0)φ(x;x0, t) . (6.4.4)

Also from the Taylor expansions of φ(x;x0, t+1/N) and φ(x;x0± 1/N, t) at t and x0, the

backward Kolmogorov equation of φ(x;x0, t) is given by

∂φ(x;x0, t)
∂t

= D(1)(x0)
∂φ(x;x0, t)

∂x0
+ D(2)(x0)

∂2φ(x;x0, t)
∂x2

0

. (6.4.5)

For an initial x0 at time t = 0, let µ(x0, t) denote the probability that x ≥ x∗1 has

occurred at or before time t, where µ(0, t) = 0 and µ(x0, t) = 1 if x0 ≥ x∗1. From Eq.

(6.4.5), the probability µ(x0, t) also obeys the backward equation

∂µ(x0, t)
∂t

= D(1)(x0)
∂µ(x0, t)

∂x0
+ D(2)(x0)

∂2µ(x0, t)
∂x2

0

. (6.4.6)
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The ultimate probability µ(x0) = lim
t→∞µ(x0, t) is the stationary solution of this equation,

that is

D(1)(x0)
dµ(x0, t)

dx0
+ D(2) d

2µ(x0, t)
dx2

0

= 0 .

Therefore, it can be expressed as

µ(x0) =

∫ x0

0 exp
[
− ∫ z

0
D(1)(y)

D(2)(y)
dy

]
dz

∫ x∗1
0 exp

[
− ∫ z

0
D(1)(y)

D(2)(y)
dy

]
dz

(6.4.7)

(Traulsen et al., 2006b; Zheng et al., 2011). For the situation with ωN ¿ 1 (weak

selection), the Taylor expansion of µ(x0) about ω = 0 is given by

µ(x0) ≈ x0

x∗1
+ ωN

−x∗1
∫ x0

0 S(z)dz + x0

∫ x∗1
0 S(z)dz

(x∗1)2
, (6.4.8)

where

S(z) =
∫ z

0

[
(b− c)− b

2
· PCD(y)
y(1− y)

]
dy . (6.4.9)

So, it is easy to see that (i) µ(x0) = x0

/
x∗1 if ω = 0 (i.e. under the neutral selection,

µ(x0) equals the ratio from x0 to x∗1); and (ii) for ω > 0 but ωN ¿ 1, µ(x0) > x0

/
x∗1 if

x0

∫ x∗1
0 S(z)dz > x∗1

∫ x0

0 S(z)dz. In particular, for x0 = 1/N , µ(1/N) > 1
/
(x∗1N) if

1
N

∫ x∗1

0
S(z)dz > x∗1

∫ 1/N

0
S(z)dz . (6.4.10)

That is, under weak selection, the emergence of cooperation will be favored by natural

selection if inequality (6.4.10) holds. The numerical analysis shows clearly that there

exists a critical value of ρ, denoted by ρc, such that µ(1/N) > 1
/
x∗1N if ρ < ρc (see

Fig 6.2). In this analysis, µ(x0) is not defined as the fixation probability. Instead it is

defined as the probability that the system will reach a state x∗1, given that the initial

state is x0. Since x∗1 is locally asymptotically stable in the deterministic model, the

condition µ(1/N) > 1
/
x∗1N represents that the evolutionary emergence of cooperation

will be favored by natural selection when x0 = 1/N .
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Figure 6.2: The numerical analysis and stochastic simulation of µ(1/N). The numerical

analysis and stochastic simulation of µ(1/N), where the population size is fixed at N =

1000, the payoff matrix is


1 −1

2 0


 in panel (a) and


2 −1

3 0


 in panel (b). In both

panels (a) and (b), the dash curve corresponds to ω = 0, blue curve denotes the numerical

solution of µ(1/N) for ω = 0.01, which is taken as the function of 1/ρ, and the red squares

are the results of stochastic simulation (using the Moran process (Nowak, 2006b)) for

ω = 0.01. These results show that there must exist a ρc such that µ(1/N) > 1
/
x∗1N if

ρ < ρc.
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6.5 Discussion

In this paper, our analysis that emerges from allowing individuals to opt out against

defection shows that this elementary mechanism based on direct reciprocity favors the

emergence of cooperation by natural selection through the stochastic evolutionary game

model and, at the same time, promotes the stable coexistence of cooperation and defection

under standard evolutionary dynamics. This last result is especially important since stable

coexistence is such a commonly observed phenomenon (Dugatkin, 1997) that does not

occur for models of the repeated PD game that typically analyze such strategies as AllD,

AllC in combination with others based on direct reciprocity (e.g. TFT, generous-TFT and

win-stay lose-shift) (Nowak, 2006b, Sigmund, 2010). Besides, coexistence is possible even

if the local game is a coordination game excluding the existence (Wu et al., 2016). We

agree with the generally recognized opinion that direct reciprocity is the most important

force driving the evolution of cooperation, at least for the humans (Trivers, 1971; Clutton-

Brock, 2002). Here, the strategies allowing opting out provide a better general mechanism

to understand the fundamental importance of direct reciprocity.

We also noticed that for the long-term evolutionary dynamics of cooperation and de-

fection, some previous studies (Nowak, 2006a, 2006b; Nowak and Sigmund, 2007) based on

the repeated PD game suggested an evolutionary cycle of cooperation and defection (i.e.

from AllD to TFT to GTFT to AllC and back to AllD) and that this cycle of cooperative

and defective societies is a fundamental part of all observations regarding the evolution

of cooperation. However, compared to these studies, our model not only provides a very

simple mechanism such that the stable coexistence of cooperation and defection is possible

but also an alternative possible explanation for the cooperative and defective behavior in

nature and human society. Finally, we have to say that in our model the cost (or penalty)

for changing partners is ignored. However, in real system the change of partners may have

to pay some cost. The trade off between the cost for changing partners and the payoff

may profoundly influence the evolution of cooperation. Thus, the effect of the cost for
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changing partners on the evolutionary dynamics of cooperation should be considered in

future studies.
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Abstract

Cooperation coexisting with defection is a common phenomenon in nature and human soci-

ety. Previous studies for promoting cooperation based on kin selection, direct and indirect

reciprocity, graph selection and group selection have provided conditions that cooperators

outcompete defectors. However, a simple mechanism of the long-term stable coexistence

of cooperation and defection is still lacking. To reveal the effect of direct reciprocity on

the coexistence of cooperation and defection, we conducted a simple experiment based on

the Prisoner’s Dilemma (PD) game, where the basic idea behind our experiment is that all

players in a PD game should prefer a cooperator as an opponent. Our experimental and

theoretical results show clearly that the strategies allowing opting out against defection

are able to maintain this stable coexistence.
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7.1 Introduction

A great deal of research has been devoted to explain how the evolution of cooperation can

be favored by natural selection. Five rules for promoting cooperation based on kin selection

(Hamilton, 1964), direct and indirect reciprocity (Trivers, 1971; Axelrod and Hamilton,

1981; Axelrod, 1984; Nowak and Sigmund, 2005), graph selection (Nowak and May, 1992;

Ohtsuki et al., 2006) and group selection (Traulsen et al., 2006) have been summarized

(Nowak, 2006a), and these models provided simple conditions that natural selection can

lead to full cooperation. However, few literatures have considered how cooperation and

defection can coexist in the long-term even though this phenomenon is common in nature

and human society (Dugatkin, 1997). Other studies (Nowak, 2006b, Sigmund, 2010)

have shown ongoing oscillations between cooperative and defective societies can evolve

in theoretical models, possibly explaining such phenomena as the alternate appearance

of war and peace (Nowak, 2006b). However, these models still do not provide a simple

mechanism to drive the long-term stable coexistence of cooperation and defection.

Cooperation means that a donor pays a cost, c, for a recipient to get a benefit, b,

where b > c (Nowak, 2006b; Sigmund, 2010). In the corresponding one-shot PD game,

defection is the only Nash equilibrium (NE) (Nowak, 2006b; Sigmund, 2010). On the

other hand, for the repeated PD game with two strategies TFT (tit-for-tat) and AllD

(always defect), TFT is a NE if the expected number of iterated interactions between a

pair of individuals is larger than the critical value b/(b− c) (Axelrod and Hamilton, 1981;

Axelrod, 1984; Nowak, 2006a, 2006b; Sigmund, 2010). However, the stable coexistence of

TFT and AllD is impossible in the TFT-AllD game. Clearly, the success of TFT is mainly

due to the increased chance of interactions between cooperators (Axelrod, 1984; Axelrod

and Dion, 1988). That is, TFT provides a mechanism whereby cooperators preferentially

interact among themselves. Similarly, assortative matching among cooperators has been

used to explain why altruism can emerge (Eshel and Cavalli-Sforza, 1982; Cavalli-Sforza

and Feldman, 1983; Fletcher and Doebeli, 2006; Taylor and Nowak, 2006; Pacheco et
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al., 2008), although the evolutionary origin of the non-uniform interaction rates among

cooperators has not been explained (Taylor and Nowak, 2006; Pacheco et al., 2008).

For the repeated PD game, one of the key assumptions is that the interaction between

a pair of individuals will be repeated for several rounds, and no player in the game is

able to stop the interaction with his/her opponent (Axelrod, 1984; Axelrod and Dion,

1988; Nowak, 2006b; Sigmund, 2010). However, based on individual self-interest in the

PD game, both cooperators and defectors prefer an opponent who cooperates (i.e. only

cooperator is always welcome). Thus, if players are able to unilaterally terminate the

interactions with their opponents, then a simple rule will be followed by all individuals: I

would like to keep my opponent if he/she is a cooperator; and if my opponent is a defector,

I will stop the interaction with him/her and seek a new partner instead.

Recently, an interesting study based on the concept of conditional dissociation found

that a strategy called out-for-tat (OFT) is important for the coexistence of cooperation

and defection (Schuessler, 1989; Hayashi, 1993; Orbell and Dawes, 1993; Hauk, 2003;

Aktipis, 2004; Fujiwara-Greve and Okuno-Fujiwara, 2009; Izquierdo et al., 2010, 2014).

Since OFT means that an individual displaying cooperation (C) will respond to defection

(D) by merely leaving, OFT will not tolerate defection but, unlike TFT, it does not seek

revenge. To reveal the fundamental evolutionary force driving the coexistence of C and D,

we conduct a simple experiment based on the repeated PD game, where, unlike the classic

repeated game, each player can unilaterally break off the pairwise interaction with his/her

opponent according to his/her own volition. On the other hand, different from previous

experiments on repeated PD game with outside option (Schuessler, 1989; Hayashi, 1993;

Orbell and Dawes, 1993; Hauk, 2003; Aktipis, 2004; Fujiwara-Greve and Okuno-Fujiwara,

2009; Izquierdo et al., 2010, 2014), the expected number of rounds between a pair of

individuals is still limited in our experimental design even if these two individuals would

like to continue their interaction (Axelrod, 1984; Axelrod and Dion, 1988; Nowak, 2006b;

Sigmund, 2010).
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7.2 Results

A total of 264 university students were divided into five groups, including two control

groups (C1 and C2) and three treatment groups (T1, T2 and T3) (see Appendix A1).

Note that the experimental settings in all three treatment groups T1, T2 and T3 are

exactly the same, therefore in the data analysis we treat them as one group, denoted by

T (see Appendix A2). The basic payoff matrix in our experiment is

C D

C

D


4 1

5 2




, (7.2.1)

where this payoff matrix can be normalized as a simplified PD game with b = 3 and c = 1.

Each subject participated in 65 to 80 rounds of interactions between pairs of individuals

playing this game over about 40 minutes. Participants were told that the experiment

would be randomly stopped at 60-80 rounds. Thus, to avoid end-round effects and to keep

the comparison unbiased, we only used data in the first 60 rounds in all groups in later

statistical analysis.

The control experiments C1 and C2 are the classic repeated PD game and one-shot

PD game, respectively. In C1, each interaction pair continues to the next round with

probability 5/6 and is terminated with probability 1/6. At the end of each round, all

single subjects form new interaction pairs through random meeting in the next round. In

C2, all subjects are shuffled to form new interaction pairs in every round. On the other

hand, the experimental setting in the treatment T is similar to C1 except that, at the end

of each round, each subject decides whether he/she would like to continue the interaction

in the next round with his/her current opponent. An interaction pair is terminated if

at least one of the two subjects decides to stop; and is automatically terminated by the

system with probability 1/6 even if both subjects choose to continue. After that, similarly,

all single subjects are randomly repaired with a new opponent to play in the next round

(see Appendix A1).
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The primary experimental result (Fig. 7.1) is that for all control and treatment experi-

ments, the cooperation level (defined as the frequency that C is used) in C1 is significantly

higher than either in treatment T or in control C2, and that in T is significantly higher

than in C2. (see Appendix A2).

Figure 7.1: Cooperation levels per round for treatment compared to control experiments.

Panel (a) shows the time evolution of cooperation levels per round in C1, C2 and T

respectively, with dashed line at round 60. Panel (b) shows the average cooperation levels

over 60 rounds with standard errors in C1, C2 and T, respectively, which are: 0.72±0.0808

in C1; 0.32± 0.0876 in C2; and 0.56± 0.0287 in T. Mann-Whitney U-test shows that the

differences between C1 and C2, between C1 and T and between T and C2 are significant

with p-value < 0.01 (after Bonferroni correction) (see Appendix A2, Table 7.3).

It is also easy to see that the cooperation level in C1 increased over time from an

average of 64% in the initial 10 rounds to an average of 80% from round 51 to 60. This

time evolution of C in C1 can be characterized well by the TFT-AllD game, where both

TFT and AllD are evolutionarily stable with current parameters (Nowak, 2006b, Sigmund,

2010). In particular, the system state tends to TFT given the initial data because it has

a larger basin of attraction under the evolutionary dynamics. In C2, the cooperation level

is much lower, declining from 39% in the initial 10 rounds to 28% from round 51 to 60.

Obviously, C2 reflects well the characteristics of the one-shot PD game where only D is

evolutionarily stable. However, in T, a relatively stable cooperation level is maintained
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over all rounds (e.g. an average of 56% in the initial 10 rounds and 58% from round 51

to 60). Moreover, the cooperation level in T is between the cooperation levels in C1 and

in C2. This suggests that the treatment T provides a possible mechanism to maintain the

stable coexistence of C and D.

In the treatment T, the chance that a subject decides to continue the interaction with

his/her current opponent in the next round is 92% if his/her opponent displays C, whereas

this chance drops to 53% if his/her opponent displays D (Fig. 7.2). We are also interested

in how a player using strategy A responds when his/her opponent displays strategy B,

where A, B = C, D. For the interaction pair C-C, only 10% of the interactions are stopped

by the players, with 94% of the C-players choosing to continue the interaction with their

current opponent; for the interaction pair C-D, the probability that at least one player

chooses to stop the interaction is 56%, in which C-players (respectively, D-players) choose

to stop the interaction with probability 33% (respectively 35%); and for the interaction

pair D-D, 67% of the interactions are terminated by the players, in which each D-player

chooses to stop the interaction with probability 43% (Fig. 7.2).

Figure 7.2: Individuals’ responses to the behavior of their opponents in the first 60 rounds.

Panel (a) shows the probability that, at the end of each round, a player chooses to keep,

or break, the interaction with his/her opponent who uses C (D). Panel (b) shows the

probabilities that, at the end of each round, a player using C (D) chooses to keep, or

break, the interaction when his/her opponent uses C and when his/her opponent uses D.
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We then identify the subjects who stop the interactions with significantly higher prob-

ability when their opponents display D than that when their opponents display C using

two sided binomial sample test with 95% confidence intervals. These subjects are called

OFT-strategists. According to this standard, most of the subjects (85.16%) can be classi-

fied as OFT-strategists. Only 3.3% of the subjects stop their interactions with significantly

higher probability when their opponents display C than when they display D. The re-

maining 11.54% of the subjects cannot be identified (i.e., the chance that they will stop the

interactions when their opponents display D is not significantly different from the chance

when their opponents display C).

7.3 Discussion

To reveal the mechanism behind the treatment T maintaining the coexistence of C and D,

we develop a concise theoretical framework to show how opting out against D leads to the

coexistence of C in PD game settings. Consider a simplified repeated PD game (Nowak,

2006b, Sigmund, 2010) with payoff matrix


b− c −c

b 0


 (analysis for the general PD game

is shown in Appendix B5). At the end of each round, each player can unilaterally break

off the interaction with his/ her opponent according to his/her own volition. In fact, we

assume that all individuals (including both cooperators and defectors) respond to D by

merely leaving (i.e., using OFT) (Izquierdo et al.,2010,2014). Moreover, as in the classic

repeated game, the interaction between a pair of individuals is terminated after each round

with probability ρ even if these two individuals would like to continue their interaction

(Axelrod, 1984; Axelrod and Dion, 1988; Nowak, 2006b; Sigmund, 2010). Thus, the

probability that an interaction pair C-C continues in the next round is 1 − ρ, implying

that the expected length of their interaction is 1/ρ. On the other hand, the interaction

pairs C-D and D-D will never continue to the next round, becoming single individuals

immediately. At the end of each round, all single individuals form new interaction pairs
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through random meeting in the next round (Fig. 7.3).

Figure 7.3: The setup of the evolutionary model. OFT-cooperators and OFT-defectors

are marked by blue angels and red fiends, respectively. At the end of a round, C-D

pairs and D-D pairs will be broken since all individuals immediately stop the interaction

with a defector, and a C-C pair will be terminated with probability ρ even though both

individuals are willing to continue. These single individuals will be paired with a new

partner through random meeting in the next round.

Based on the theoretical analysis in Appendix B4, the time evolution of the frequency

of OFT-cooperators, denoted by x, can be modeled by the replicator dynamics (Maynard

Smith, 1982; Hofbauer and Sigmund, 1998)

dx

dt
= x(1− x)(b− c)− bPCD

2
, (7.3.1)

where the frequency PCD of C-D pairs is shown to be given by Eq. (7.5.4) in Appendix

B4. The stability analysis of this dynamics shows that (i) the boundary x = 0 is locally
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asymptotically stable for all possible 0 < ρ < 1 but the boundary x = 1 is never stable;

(ii) two interior equilibria (Eq. (7.5.6) in Appendix B4), denoted by x∗1 and x∗2 with

0 < x∗2 < 1/2 < x∗1 < 1, exist if ρ < (b−c)2/(b+c)2, and x∗1 is locally asymptotically stable

and x∗2; (iii) a unique unstable interior equilibrium x∗ = 1/2 exists if ρ = (b− c)2/(b+ c)2;

and (iv) the boundary x = 0 is globally asymptotically stable if ρ > (b− c)2/(b + c)2 (Fig.

7.4). Similar results for the general PD game are obtained in Appendix B5.

Clearly, there are some differences between this simple theoretical model and the ex-

perimental data in the treatments. In particular, the theoretical model assumes that all

C-D pairs and D-D pairs will be terminated by the players, whereas in the experiments,

the termination rate of such interaction pairs was 72% and subjects sometimes used D to

response D (i.e., they adopted TFT-like strategies, see Appendix A3 for details). Since

more interactions with defectors were continued to the next round, it is therefore not sur-

prising that the observed frequency of cooperation of 0.56 is less than the theoretically

predicted stable equilibrium level x∗1 of 0.82 for our parameters (Fig. 7.4(a)). Neverthe-

less, the experiment and theory both show that adding the option of opting out can lead

to the stable coexistence of C and D.

In conclusion, our experimental results and theoretical analysis that emerge from al-

lowing individuals to opt out against defection show that this elementary mechanism based

on direct reciprocity promotes the stable coexistence of cooperation and defection. These

outcomes are especially important since stable coexistence is such a commonly observed

phenomenon (Hamilton, 1964) that does not occur for models of the repeated PD game

that typically analyze such strategies as AllD and AllC in combination with others based

on direct reciprocity (e.g. TFT, generous-TFT and win-stay lose-shift) (Nowak, 2006b;

Sigmund, 2010). This supports our contention that, while we agree with the generally

recognized opinion that direct reciprocity is the most important force driving the evolu-

tion of cooperation (Axelrod, 1984; Clutton-Brock, 2002), strategies allowing opting out

provide a better general framework for its analysis.
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Figure 7.4: Evolutionary dynamics of Eq. (7.3.1) with b = 3 and c = 1. (a) Blue, yellow

and pink regions represent respectively the proportions of C-C, C-D and D-D pairs for

all possible 0 < x < 1 at the temporal equilibrium with P 2
CD = 4ρPCCPDD (Eq. (7.5.3) in

Appendix B4), where the parameter ρ is taken as ρ = 1/6; and the blue line denotes the

stable interior equilibrium x∗1 = 0.82. (b) Phase portrait of the dynamics Eq. (7.3.1) for

different ρ. The red line denotes the stable boundary x = 0, the solid blue curve denotes

the stable interior equilibrium x∗1 (which is bigger than 1/2), and the dashed curve denotes

the unstable interior equilibrium x∗2. The population evolves to the boundary x = 0 for

initial x in the pink region, and the dynamics leads to a stable coexistence of C and D for

initial x in the blue region. The inverse 1/ρ represents the expected number of interactions

of a C-C pair, where the vertical dash line denotes 1/ρ = 6.
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We now discuss some aspects of the experimental design and theoretical models, and

review related literature.

In the experimental design, we assumed that the expected number of rounds in an

interaction was limited even when there was an outside option because of the following

two reasons. First, in the real world, an interaction may be terminated due to unexpected

reasons even if both individuals would like to continue. In addition, this assumption allows

us to compare the experimental results in T and C1 directly.

In the theoretical model, we assumed all individuals would respond to defection by

leaving. However, many subjects in experiments used D as a response to D. A possible

explanation of these behaviors would be direct reciprocity, e.g., these subjects want to

punish their opponents by defection. Furthermore, there are also some subjects responded

to D by C. They may expect that their kindness can encourage their opponent to cooperate

in the future. Whatever the ultimate reasons behind these non-OFT behaviors are, it is

also important to verify theoretically whether individuals not using OFT can successfully

invade a population consisting of OFT-cooperators and OFT-defectors. It is easy to see

that the expected payoff of an individual displaying C (or D) but not using OFT can be

no higher than that of an OFT- cooperator (or OFT- defector) since the chance that an

individual not using OFT is paired with an opponent displaying C will be less than that of

an individual using OFT. Thus, when all individuals use OFT and the system state is at

an interior stable equilibrium x∗1, an individual not using OFT cannot successfully invade

this population since OFT- cooperators and OFT- defectors have the same expected payoff

at this equilibrium.

We note that there exist three classes of literature investigating the effect of outside

option on cooperation, but their focus and results are different from ours. One class

considers infinitely repeated PD game, where an interaction is terminated only if one of

individuals in the partnership chooses to stop (Schuessler, 1989; Hayashi, 1993; Orbell

and Dawes, 1993; Hauk, 2003; Aktipis, 2004; Fujiwara-Greve and Okuno-Fujiwara, 2009;
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Vesely and Yang, 2012), or is deemed dead by the system (Izquierdo et al., 2010, 2014).

These studies often focus on Nash equilibrium (NE) or a certain class of strategies. For

instance, it has been shown the game has no pure strategy NE because trust building

strategies can defeat defectors (Fujiwara-Greve and Okuno-Fujiwara, 2009), and that TFT

is dominated by some conditional and unconditional strategies (Izquierdo et al., 2010,

2014). Another class allows abstaining from a game (Orbell and Dawes, 1993; Hauert et

al., 2002; Semmann et al., 2003; Hauk, 2003; ), with players choosing between an outside

option (i.e., to be a loner) and the PD game. In such case, cooperators, defectors and loners

can coexist if the payoff of the outside option is higher than the payoff of mutual defection.

However, voluntary participation usually does not lead to a stable equilibrium, but to

an unending limit cycle (Hauert et al., 2002; Semmann et al., 2003). The third class is

developed on graph selection, arguing that dynamical networks where subjects can update

their network connections can lead to cooperative outcomes (Santos et al., 2006; Wu et

al., 2010; Fehl et al., 2011; Rand et al., 2011; Wang et al., 2012; Bednarik et al., 2014).

When subjects play several PD games simultaneously with their neighbors, they often

preferentially break social links with defectors and form new links with cooperators, which

creates an incentive to cooperate (Fehl et al., 2011; Rand et al., 2011; Wang et al., 2012;

Bednarik et al., 2014). Our model can be seen as the simplest dynamical networked PD

game, where each individual only connects to one partner. However, network reciprocity,

such as cooperators have more connections on average than defectors (Rand et al., 2011;

Wang et al., 2012), or cooperators form large cooperative clusters (Fehl et al., 2011;

Bednarik et al., 2014), are not included in our model.

Although the three classes of models contain the idea of walking away from the in-

teraction with defectors, it cannot be simply concluded that outside option promotes the

coexistence of cooperation and defection. Because other assumptions in these models,

such as infinitely repeated game (Schuessler, 1989; Hayashi, 1993; Orbell and Dawes,

1993; Hauk, 2003; Aktipis, 2004; Fujiwara-Greve and Okuno-Fujiwara, 2009; Vesely and
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Yang, 2012), optional participation (Hauert et al., 2002; Semmann et al., 2003) and spatial

reciprocity (Santos et al., 2006; Wu et al., 2010; Fehl et al., 2011; Rand et al., 2011; Wang

et al., 2012; Bednarik et al., 2014), may have positive effects on cooperation. Thus, our

theoretical analysis and experimental results provide convincing evidences that opting out

against defection alone is enough to maintain the stable coexistence of cooperation and

defection.

There are also existing studies (Nowak, 2006b; Sigmund, 2010) that discuss the long-

term evolutionary dynamics of cooperation and defection based on the repeated PD game.

They have shown evolutionary cycles of cooperation and defection (i.e. from AllD to TFT

to GTFT to AllC and back to AllD) can exist, and suggest that societal oscillation between

cooperation and defection is a fundamental part of all our observations regarding the

evolution of cooperation. However, compared to these studies, our model provides a very

simple mechanism such that stable coexistence of cooperation and defection is possible

without oscillation.

7.4 Methods: Experimental design

The experiments were conducted in computer labs at Beijing Normal University on April

2th and April 3th, 2015. The treatment group T1 was conducted on April 2th, and groups

T2, T3, C1 and C2 were conducted on April 3th. All 264 participants were undergraduate

students from Beijing Normal University who had no background in game theory and

economics. The interactions between participants were anonymous, and via the computers.

In the experiments, the participants were separated by the frosted-glass such that they

could not see each other’s computer screen, and they were not allowed to communicate

during the experiment (see Appendix A2, Figure 7.5).

Before the experiment started, the rules of the game were explained to all participants,

who were also shown the instructions of the experiment (in Chinese) for their particular

control or treatment group. To ensure that all participants fully understand the game, they
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were required to answer correctly 4-5 questions before logging in to the formal experiments.

The total number of rounds (or length) of the formal experiment for each of groups was

about 65-80 (taking about 40 minutes), and the participants were told that the experiment

would be randomly stopped at 60-80 rounds. Although there is no time limitation for

participants’ decision making in each round, it was recommended that participants submit

their decisions within 30 seconds (there was a 30 second countdown on the screen).

When the experiment for each of groups was finished, the score of each participant in

the experiment was converted to Chinese Yuan (CNY) with ratio 1: 0.3. The payoff of each

participant plus a fixed amount of 20 Yuan was his/her total earning in the experiment.

The overall average earning in our experiments was 83.9 Yuan (with minimum 63 Yuan,

and maximum 108 Yuan); the group average earning is 80.6 Yuan (with minimum 63

Yuan, and maximum 95 Yuan) in T1, 79.3 Yuan (with minimum 66 Yuan, and maximum

91 Yuan) in T2, 83 Yuan (with minimum 72 Yuan, and maximum 96 Yuan) in T3, 98 Yuan

(with minimum 83 Yuan, and maximum 108 Yuan) in C1, and 83 Yuan (with minimum

66 Yuan, and maximum 96 Yuan) in C2.

7.5 Appendix

A. Experimental Design and Results

7.5.1 Experimental design and description

The experiments based on the Prisoner’s Dilemma (PD) game were conducted in 5 groups,

of which 2 are control groups (denoted by C1 and C2 respectively), and 3 are treatment

groups with the same experimental settings (denoted by T1, T2 and T3). The payoff

matrix of the PD game is taken as

C D

C

D


4 1

5 2




,
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where C denotes the cooperation and D the defection. This payoff matrix can be normal-

ized as 
4 1

5 2


 =


2 2

2 2


 +


2 −1

3 0


 =


2 2

2 2


 +


b− c −c

b 0


 ,

where b = 3 and c = 1. Therefore the benefit to cost ratio is b/c = 3.

Each subject in an interaction pair is to choose C or D in each round. At the end of

each round, the players’ choices and payoffs are shown to both of them (on the computer

screen). For different groups, the special experimental designs are given below.

(1) C1 group follows the classic repeated PD games, in which each interaction pair is

automatically stopped by the system at the end of each round with probability ρ = 1/6,

and is continued in the next round with complementary probability 1 − ρ = 5/6. If an

interaction pair is automatically terminated, then both players are randomly re-paired

with new opponents in the next round (Table 7.1). In the experiment, each round has at

least 4 single subjects (note that each round has on average 7 single subjects), so we can

guarantee that players will not meet their previous partner in the next round.

(2) C2 group follows the classic one-shot PD game, in which each interaction pair is

terminated at the end of each round with probability ρ = 1. All players are then randomly

re-paired in the next round (Table 7.1).

(3) Three treatment groups T1, T2 and T3 also follow the repeated PD game (similar

to C1 group), but a new option is added for each player whereby he/she unilaterally stops

the interaction with his/her opponent at the end of each round even if his/her opponent

prefers to continue the game in next round. Thus, in three treatment groups (T1, T2 and

T3), there are two reasons an interaction pair may stop at the end of each round. One is

that the interaction is automatically stopped by the system with probability ρ = 1/6, and

the other is that at least one player in the interaction pair unilaterally stops the interaction

with his/her opponent. At the end of each round, not only the choice and payoff of each

player and his/her opponent’s choice and payoff are shown on the computer screen but

also the reason why the interaction stops is shown when this occurs. If an interaction
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Table 7.1: Experimental design.

pair is stopped, then both players are randomly re-paired with new opponents in the next

round (Table 7.1). In the experiment, each round has at least 4 single subjects, so we can

guarantee that players will not meet their previous partner in the next round.

7.5.2 Basic data analysis

The proportion of cooperation (C), denoted by PC , in each round for each of C1, C2

and T (where T is the collection of T1, T2 and T3 since T1, T2 and T3 have the same

experimental design) is shown in Figure 7.5a (i.e. time evolution of C) (see also Figure 7.1

in the main text), where the average of PC in the first 60 rounds is 0.72 in C1, 0.32 in C2

and 0.56 in T (Table 7.2, Figure 7.6).For the average of PC , C1 is significantly larger than

T, and T is significantly larger than C2 (Table 7.3). From Figure 7.5a, it is clear that the

cooperation level (PC) slowly increases from 0.64 to 0.8 in C1, slowly decreases from 0.39

to 0.28 in C2, and maintains a constant level of about 0.56 in T. Furthermore, to show the

cooperation level in each of T1, T2 and T3, the proportion of C per round for each of T1,

T2 and T3 is also shown in Figure 7.7a, where the average of PC in the first 60 rounds is

0.56 in T1, 0.52 in T2 and 0.62 in T3 (Table 7.2), and the differences between T1 and T2,

between T1 and T3, and between T2 and T3 are not significant (Table 7.3, Figure 7.6).

Notice that, for each interaction pair, there are three possible strategy-pairs in each

round, which are C-C, C-D and D-D, respectively (for example, if one player displays

C and his/her opponent also displays C, then this strategy-pair is denoted by C-C).

For convenience, the proportions of interaction pairs C-C, C-D and D-D in each round
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Figure 7.5: PC and the frequency of pairs in C1, C2 and T. Panel (a) shows PC per round

for each of C1, C2 and T. Panels (b), (c) and (d) show PCC , PCD and PDD per round in

C1, C2 and T, respectively. The dotted lines mark at round 60.

Figure 7.6: Average PC in C1, C2 and T (T1, T2, T3). Average PC in C1, C2 and T

(T1, T2, T3) with standard errors in the first 60 rounds, which is 0.72 in C1, 0.32 in C2,

0.56 in T (0.56 in T1, 0.52 in T2, 0.62in T3).
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Figure 7.7: PC and the frequency of pairs in T1, T2 and T3. Panel (a) shows PC per

round for each of T1, T2 and T3. Panels (b), (c) and (d) show PCC , PCD and PDD per

round in T1, T2 and T3, respectively. The dotted lines mark at round 60.

Table 7.2: Average of PC , and averages of PCC , PCD and PDD for each of C1, C2, T (T1,

T2, T3).
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Table 7.3: Statistical test for difference in the average of PC between each group. Mann-

Whitney U-test for difference in the average of PC (n1 = 60, n2 = 60) between C1 and

C2, between C1 and T, between C2 and T, between T1 and T2, between T1 and T3, and

between T2 and T3, where the symbol “*” denotes that the difference is significant at

α = 0.01/12 = 8.3E − 4 (with Bonferroni correction).

are denoted by PCC , PCD and PDD, respectively. Similar to 1 the analysis of PC , the

proportions of interaction pairs C-C, C-D and D-D (i.e. PCC , PCD and PDD) per round

for each of C1, C2 and T are plotted in Figure 7.5b, in Figure 7.5c and in Figure 7.5d,

respectively. The averages of PCC , PCD and PDD in the first 60 rounds are 0.60, 0.23 and

0.17 in C1; 0.10, 0.43 and 0.47 in C2; and 0.40, 0.32 and 0.28 in T (Table 7.2, Figure 7.8).

For the averages of PCC , PCD and PDD in each of C1, C2 and T, the difference between C1

and T and the difference between C2 and T are all significant (Table 7.4). Furthermore,

for each of T1, T2 and T3, the proportions PCC , PCD and PDD per round are plotted

in Figure 7.7b, Figure 7.7c and Figure 7.7d, respectively. The averages of PCC , PCD and

PDD are 0.41, 0.30 and 0.29 in T1; 0.35, 0.33 and 0.31 in T2; and 0.46, 0.32 and 0.22 in

T3 (Table 7.2, Figure 7.8, Table 7.4).
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(a) Mann-Whitney U-test for difference in the average of PCC

(b) Mann-Whitney U-test for difference in the average of PCD

(c) Mann-Whitney U-test for difference in the average of PDD

Table 7.4: Statistical test for difference in the averages of PCC , PCD and PDD between

each group. Mann-Whitney U-test for difference in the averages of PCC , PCD and PDD

(n1 = 60, n2 = 60) between C1 and C2, between C1 and T, between C2 and T, between

T1 and T2, between T1 and T3, and between T2 and T3, where the symbol “*” denotes

that the difference is significant at α = 0.01/12 = 8.3E − 4 (with Bonferroni correction).
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Figure 7.8: Averages of PCC , PCD and PDD in C1, C2 and T (T1, T2, T3). Averages of

PCC , PCD and PDD in C1, C2 and T (T1, T2, T3) in the first 60 rounds, which are 0.60,

0.23, 0.17 in C1; 0.10, 0.43, 0.47 in C2; 0.40, 0.32, 0.28 in T (0.41, 0.30, 0.29 in T1; 0.35,

0.33, 0.31 in T2; 0.46, 0.32, 0.22 in T3).

7.5.3 Individual’s response to his/her opponent’s behavior in treatment

T

To show how a player responds to his/her opponent’s behavior (C or D), individual

responses (i.e. continue the interaction with the current opponent in the next round,

or stop the interaction with the current opponent) to C and D in T1, in T2 and in T3 are

shown in Table 7.5a. Here, the response to C (D) is measured by the probability that the

interaction will be kept, or will be stopped. It is easy to see that individuals’ responses

to C are very similar between T1, T2 and T3 (Table 7.6). The responses to D are also

similar between T1 and T2, but are different between T1 and T3, and between T2 and

T3 (Table 7.6).

Furthermore, we look into how a player using strategy A responds if his/her opponent

displays strategy B, where A, B = C, D. The probabilities that a player using strategy A

chooses to keep, or stop, the interaction with his/her opponent using strategy B (where
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A, B = C, D) in the treatments (T1, T2, and T3) are shown in Table 7.5b. It is easy to

see that in all the treatment groups, the probability of a player to choose keep is much

higher if the opponent displays C rather than D. In Table 7.5c we show the probability

that players in a particular interaction pair choose to stop or keep, and if the interaction

is continued, what the choice combination in the next round is going to be. For the C-C

pair, only 10% of the interactions are terminated by choice, and of all the pairs continue

to the next round, 88% display C-C, 10% C-D, and only 2% D-D. For C-D pairs, the

interactions are stopped by choice at a probability of 56%; and in the next round, 25%

of the continued pairs display C-C, 23% C-D, 19% D-C, and 33% D-D. The probability

that a D-D interaction pair is stopped by choice is 67%; in the next round, 61% of the

interaction pairs stay at D-D, only 6% turn into C-C, and 32% to C-D.

B. Theoretical Analysis

7.5.4 Evolutionary dynamics for the PD game with additive payoff ma-

trix , where all individuals use OFT

For payoff matrix


b− c −c

b 0


, let PCC , PCD and PDD denote the proportions of inter-

action pairs C-C, C-D and D-D, respectively. Then, the frequency of C, denoted by x,

is given by x = PCC + PCD/2, and the frequency of D is 1 − x = PCD/2 + PDD. For a

large population, the changes in proportions PCC , PCD and PDD between rounds should

be considered as fast variables comparing to the change of x since the meeting between a

pair of individuals is random. To show this, consider a large population with size N , in

which the expected change from x to x ± 1/N in the time interval (t, t + 1/N), denoted
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(7.5a) The probabilities that a player chooses to keep, or break, the interaction with

his/her opponent using strategy A at the end of each round, where A = C, D.

(7.5b) The probabilities that a player using strategy A chooses to keep, or break, the

interaction with his/her opponent using strategy B at the end of each round, where A, B

= C, D.

(7.5c) The probability that an interaction pair C-C (or C-D, D-D) is broken at the end

of each round, and the probability that two players display a particular strategy-pair in

the next round if the interaction between these two players is kept.

Table 7.5: The probabilities for breaking pairs in the experiment.
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Table 7.6: Statistical test in the average frequencies that a player chooses to keep the

interaction. Mann-Whitney U-test for difference in the average frequencies that a player

chooses to keep the interaction after his/her opponent uses strategy A in that round

(n1 = 60, n2 = 60) between T1 and T2, between T2 and T3, and between T1 and

T3, where A=(C, D). The symbol “*” denotes that the difference is significant at α =

0.01/3 = 3.3E − 3 (with Bonferroni correction).

by ∆x = x(t + 1/N)− x(t), is

〈∆x〉 = 〈x(t + 1/N)− x(t)〉

= Pr(∆x = 1/N)(x(t) + 1/N) + Pr(∆x = −1/N)(x(t)− 1/N)

+[1− Pr(∆x = 1/N)− Pr(∆x = −1/N)]x(t)− x(t)

=
1
N

[Pr(∆x = 1/N)− Pr(∆x = −1/N)] . (7.5.1)

Where Pr(∆x = ±1/N) denotes the probability that ∆x equals exactly ±1/N . Similarly,

the expected changes to PCC , PCD and PDD are given by

〈∆PCC〉 ≈ (1− ρ)PCC +
(2ρPCC + PCD)2

4(1− (1− ρ)PCC)
− PCC ,

〈∆PCD〉 ≈ (2ρPCC + PCD)(PCD + 2PDD)
2(1− (1− ρ)PCC)

− PCD,

〈∆PDD〉 ≈ (PCD + 2PDD)2

4(1− (1− ρ)PCC)
− PDD. (7.5.2)

respectively. Notice that 〈∆PCC〉, 〈∆PCD〉 and 〈∆PDD〉 are independent of population

size N , and that limN→∞ 〈∆x〉 = 0. Thus, for large N , the changes of PCC , PCD and PDD
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are fast variables comparing to the change of x. Thus, in analogy to the Hardy-Weinberg

equilibrium in population genetics (see Hofbauer and Sigmund, 1998), we can assume that

at any time t the proportions PCC , PCD and PDD are at a “temporal equilibrium” for the

current value of x, satisfying

P 2
CD = 4ρPCCPDD. (7.5.3)

Therefore, we obtain

PCD = − ρ

1− ρ
+

√(
ρ

1− ρ

)2

+
4x(1− x)ρ

1− ρ
. (7.5.4)

for all 0 < x < 1 and 0 < ρ < 1 since PCC + PCD + PDD = 1 and x = PCC + PCD/2 (see

Figure 7.4 in the main text).

Notice that, at any time t, an individual using C has an opponent displaying C (re-

spectively, D) with probability 2PCC/(2PCC + PCD) (respectively, PCD/(2PCC + PCD)).

Similarly, an individual using D has an opponent displaying C (respectively, D) with prob-

ability PCD/(PCD + 2PDD) (respectively, 2PDD/(PCD + 2PDD)). The expected payoffs of

C and D, denoted by πC and πD, respectively, are then given by

πC =
2PCC

2PCC + PCD
(b− c)− PCD

2PCC + PCD
c =

2x− PCD

2x
b− c,

πD =
PCD

PCD + 2PDD
b =

PCD

2(1− x)
b. (7.5.5)

Thus, the time evolution of x can be given by dx/dt = x(1−x)(πC −πD), i.e., Eq. (7.3.1)

in the main text.

The boundary x = 0 of Eq. (7.3.1) in the main text is at least locally asymptotically

stable since d(dx/dt)/dt|x=0 = −c, but the boundary x = 1 must be unstable since

d(dx/dt)/dt|x=1 = c. On the other hand, an interior equilibrium of Eq. (7.3.1) in the

main text must satisfy πC − πD = 0, i.e., x(1 − x) = (bc/(b − c)2)(ρ/(1 − ρ)). Thus, two

interior equilibria, denoted by x∗1 and x∗2, respectively, with 0 < x∗2 < x∗1 < 1, exist if

ρ < (b− c)2/(b + c)2, in which case

x∗1,2 =
1
2
±

√
1
4
− bcρ

(b− c)2(1− ρ)
. (7.5.6)

255



x∗1 = x∗2 = 1/2 if ρ = (b − c)2/(b + c)2; and no interior equilibrium can exist if ρ >

(b− c)2/(b + c)2. For ρ = (b− c)2/(b + c)2, the unique interior equilibrium x∗ = 1/2 must

be unstable since dx/dt < 0 for all x ∈ (0, 1) except for x = 1/2. On the other hand, for

ρ < (b− c)2/(b+ c)2, the interior equilibrium x∗1 > 1/2 is locally asymptotically stable but

x∗2 is unstable since d(dx/dt)/dt|x=x∗1 < 0 and d(dx/dt)/dt|x=x∗2 > 0.

7.5.5 Analysis of PD game with general payoff matrix, where all players

use OFT

For the payoff matrix


R S

T S


 with T > R > P > S, similar to the analysis in the

subsection above, the expected payoffs πC and πD are given by

πC =
2PCC

2PCC + PCD
R +

PCD

2PCC + PCD
S =

2x− PCD

2x
R +

PCD

2x
S,

πD =
PCD

PCD + 2PDD
T +

2PDD

PCD + 2PDD
P =

PCD

2(1− x)
T +

2(1− x)− PCD

2(1− x)
P.(7.5.7)

Thus, the time evolution of x can be described by

dx

dt
= x(1− x)(R− P )− PCD

2
((1− x)(R− S) + x(T − P )) . (7.5.8)

where PCD is at the temporal equilibrium, i.e. PCD = − ρ
1−ρ +

√(
ρ

1−ρ

)2
+ 4x(1−x)ρ

1−ρ for

all 0 < x < 1 The boundary x = 1 is unstable but the boundary x = 0 is at least locally

asymptotically stable since d(dx/dt)/dt|x=1 = T−R > 0 and d(dx/dt)/dt|x=0 = S−P < 0.

The interior equilibrium of Eq. (7.5.8) is the solution of equation

x(1− x)(R− P )− PCD

2
((1− x)(R− S) + x(T − P )) = 0.

⇒ − ρ

1− ρ
+

√(
ρ

1− ρ

)2

+ 4x(1− x)
ρ

1− ρ
=

2x(1− x)(R− P )
(1− x)(R− S) + x(T − P )

⇒ x2 − x [1− αA(T − S)] + α(P − S)(R− S). (7.5.9)

where

A = R− S − T + P, (7.5.10)

α =
ρ/(1− ρ)

(R− P )2 + (ρ/(1− ρ))A2
. (7.5.11)
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So, two possible interior equilibria can be given by

x∗1,2 =
1 + αA(T − S)±

√
(1 + αA(T − S))2 − 4α(P − S)(R− S)

2
. (7.5.12)

Here x∗1 = x∗2 = (1 + αA(T − S))/2 if (1 + αA(T − S))2 − 4α(P − S)(R− S) = 0.

For the local stability of interior equilibrium, a straight forward calculation shows that

(i) if only one interior equilibrium exists, then it must be unstable; and (ii) for the situation

with two interior equilibria x∗1 and x∗2 (with x∗1 > x∗2), x∗1 is locally asymptotically stable

but x∗2 is unstable.
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Abstract

We consider a Prisoner’s Dilemma (PD) that is repeated with positive probability 1 − ρ

only between cooperators as a result of an opting-out strategy practiced by all individuals.

The population is made of N pairs of individuals and is updated at every time step by

a birth-death event according to a Moran model. Assuming an intensity of selection of

order 1/N and taking 2N2 birth-death events as unit of time, a diffusion approximation

exhibiting two time scales, a fast one for pair frequencies and a slow one for cooperation

(C) and defection (D) frequencies, is ascertained in the limit of a large population size.

This diffusion approximation is applied to an an additive PD game, cooperation incurring

a cost c and providing a benefit b to the opponent, and used to obtain the probability

of ultimate fixation of a single C introduced as a single mutant in an all D population

under selection and compare it to the probability under neutrality, which is 1/(2N), as

well as the corresponding probability for a single D introduced as a single mutant in an

all C population under selection. This gives conditions for cooperation to be favored by

selection. We show that these conditions are satisfied when the benefit-to-cost ratio, b/c,

exceeds some increasing function of ρ that is approximately given by (1 +
√

ρ)/(1−√ρ).
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8.1 Introduction

In a two-player two-strategy game, known as the Prisoner’s Dilemma (PD), in which

cooperation and defection, denoted by C and D, respectively, are used by individuals in

pairwise interactions, the payoffs are given by the entries of a 2× 2 matrix

πCC πCD

πDC πDD


 . (8.1.1)

Here, πij represents the payoff to an individual using strategy i against an individual

using strategy j where i, j ∈ {C, D}. In a PD game, cooperation against cooperation

pays more than defection against defection, but less than defection against cooperation,

while cooperation against defection pays the least. Thus, the entries of the payoff matrix

satisfy the inequalities πDC > πCC > πDD > πCD (see, e.g., Poundstone, 1992; Nowak

and Highfield, 2011). In particular, if cooperation and defection have additive effects on

the payoff with cooperation incurring a cost c but providing a benefit b to the opponent,

then we have πCC = b − c, πCD = −c, πDC = b and πDD = 0. We call this case the

additive PD game.

In a one-round PD game with defection paying more than cooperation against both

defection and cooperation, defection is the only rational choice and the only Nash equilib-

rium (NE) (see, e.g., Hofbauer and Sigmund, 1998; Nowak, 2006). In a repeated PD game,

however, with pairwise interactions repeated between the same players a random number

of times that does not depend on the strategies in use, the tit-for-tat (TFT) strategy

starting with cooperation becomes a Nash equilibrium against the always-defect (AllD)

strategy if the number of repetitions of the game is large enough (Axelrod and Hamilton,

1981; Axelrod, 1984). This can be seen as an effect of direct reciprocity (Trivers, 1971),

since TFT against TFT leads to reciprocal cooperation and TFT or AllD against AllD to

reciprocal defection at least after the first round.

On the other hand, if an individual can choose to repeat or not an interaction with

an opponent in an iterated PD game, the rational choice is to repeat the interaction with
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a cooperator as long as possible, but end it with a defector as soon as possible. This is

known as the opting-out or out-for-tat (OFT) strategy (Hayashi, 1993; Schuessler, 1989;

Aktipis, 2004; Fujiwara-Greve and Okuno-Fujiwara, 2009; Izquierdo et al., 2010, 2014). As

a result, an interaction between two cooperators may be continued with some probability,

while an interaction between two defectors or between one defector and one cooperator

may never be repeated. This can be seen as a mechanism that creates direct reciprocity by

which the evolution and maintenance of cooperation can be favored by selection (Zhang

et al., 2016; Zheng et al., 2017; Kurokawa, 2019).

The opting-out strategy is akin to assortment of cooperative acts in social space, where

cooperative behaviour is a repeatable trait of individuals, and cooperative individuals as-

sociate and interact with each other disproportionately more than with defectors (see, e.g.,

Eshel and Cavalli-Sforza, 1982). There is some evidence that individuals from a range of

species show stability in their level of cooperativeness (Bergmüller et al., 2010) and that

animal social network structures may show significant within-population heterogeneity in

social tie strengths (Krause et al. 2015). Recent empirical investigations in wild Trinida-

dian guppies (Poecilia reticulata) support the hypothesis that assortment by repeatable

cooperativeness may be an important feature for the evolution and persistence of non-kin

cooperation in real-world populations (Brask et al. 2019).

In this paper, we will consider a Prisoner’s Dilemma (PD) that is repeated with positive

probability 1−ρ only between cooperators as a result of an opting-out strategy practiced by

all individuals. The population will be assumed to be made of N pairs of individuals and

be updated at every time step by a birth-death event according to a Moran model. With

appropriate scalings of the intensity of selection and time with respect to the population

size, we will establish a diffusion approximation in the limit of a large population that

shows that two time scales come into play, a fast one for pair frequencies and a slow one

for C and D frequencies. This diffusion approximation will be applied to an additive PD

game, cooperation incurring a cost c and providing a benefit b to the opponent, and used
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to obtain the probability of ultimate fixation of a single C introduced as a single mutant

in an all D population under selection and compare it to the probability under neutrality,

which is 1/(2N), as well as the corresponding probability for a single D introduced as

a single mutant in an all C population under selection. This will provide conditions for

cooperation to be favored by selection.

8.2 The Model

Consider a population of N pairs of interacting individuals in which each individual is

either a cooperator, C, or a defector, D. The population state and its changes from time

t to time t + ∆t, a time interval of length ∆t = 1/(2N2), are represented in Figure 8.1.

At time t, the number of CC pairs in the population is NPCC , while the number of

CD pairs is NPCD and the number of DD pairs NPDD. Then, x = PCC + PCD/2 is the

frequency of C in the population, and 1− x the frequency of D.

Suppose that all individuals in the population adopt the opting-out strategy so that

only the individuals paired with a C partner are interested in continuing the interaction in

the time interval [t, t + ∆t]. As a result, all CD or DD pairs break apart, while each CC

pair breaks apart with some probability ρ and, therefore, stays unbroken with probability

1− ρ. The parameter ρ is assumed to be a positive constant. Then, the number of free D

individuals is

ND = NPCD + 2NPDD = 2N(1− x), (8.2.1)

while the number of free C individuals is

NC = NPCD + 2R = 2R + 2N(x− PCC), (8.2.2)

where R stands for the number of broken CC pairs. This number is a random variable

that follows a binomial distribution with parameters NPCC and ρ.

Now assume that all free individuals form new pairs at random. The number of these
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is

NC + ND

2
= NPCD + NPDD + R, (8.2.3)

while the conditional expected frequencies of CC, CD and DD among these are

NC(NC − 1)
(NC + ND)(NC + ND − 1)

,
2NCND

(NC + ND)(NC + ND − 1)
,

ND(ND − 1)
(NC + ND)(NC + ND − 1)

,

(8.2.4)

respectively. Besides, there are NCC = NPCC −R unbroken CC pairs.

Let the random variables qCC , qCD and qDD represent the frequencies of CC, CD and

DD in the set made of all new pairs and all unbroken CC pairs. Note that qCC+qCD/2 = x

and qDD + qCD/2 = 1−x, which means that the frequencies of C and D in the population

are unchanged. On the other hand, the expected values of qCC , qCD and qDD are given

by

E(qCC) = 2x− 1 +
(1− x)2

1− (1− ρ)PCC
+ O(N−1/2), (8.2.5a)

E(qCD) = 2(1− x)− 2(1− x)2

1− (1− ρ)PCC
+ O(N−1/2), (8.2.5b)

E(qCC) =
(1− x)2

1− (1− ρ)PCC
+ O(N−1/2), (8.2.5c)

while their variances are all of order N−1, that is,

Var(qCC) = O(N−1), (8.2.6a)

Var(qCD) = O(N−1), (8.2.6b)

Var(qDD) = O(N−1). (8.2.6c)

These results are shown in Appendix A.

The update of the population at the end of the time interval [t, t + ∆t] is obtained by

a birth-death event according to a Moran model in a context of evolutionary game theory

(see, e.g., Hofbauer and Sigmund, 1998; Ewens, 2004; Nowak et al. 2004; Ohtsuki et al.

2006). One individual is chosen with probability proportional to fitness to produce an
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Figure 8.1: Changes of the population state in a time interval [t, t + ∆t].

offspring identical to itself and one individual is chosen at random to be replaced by the

offspring.

Here, the fitness of an i-strategist in interaction with a j-strategist is given in the form

wij = 1 + sπij , (8.2.7)

where 1 stands for a baseline fitness, s = σN−1 represents an intensity of selection, and

πij denotes the payoff to i against j, for i, j ∈ {C,D}. Therefore, the offspring produced

is a cooperator with conditional probability

Pr(C) =
2qCCwCC + qCDwCD

2qCCwCC + qCDwCD + qCDwDC + 2qDDwDD

= x +
σ

N
((1− x)A− xB) + o(N−1), (8.2.8)

and a defector with conditional probability

Pr(D) =
2qDDwDD + qCDwDC

2qCCwCC + qCDwCD + qCDwDC + 2qDDwDD

= 1− x− σ

N
((1− x)A− xB) + o(N−1), (8.2.9)
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where

A = qCCπCC +
qCD

2
πCD (8.2.10)

and

B = qDDπDD +
qCD

2
πDC . (8.2.11)

Note that Pr(C) and Pr(D) are both random variables whose main terms are linear

functions of qCC , qCD and qDD.

On the other hand, the offspring produced replaces a cooperator with probability x,

and a defector with probability 1−x. Actually, it replaces a cooperator in a CC pair with

probability qCC or a CD pair with probability qCD/2, while it replaces a defector in a DD

pair with probability qDD or a CD pair with probability qCD/2.

Following the replacement of an individual by the offspring, the frequencies of CC,

CD and DD among the N pairs are denoted by P ′
CC , P ′

CD and P ′
DD respectively, and the

frequency of C in these pairs is P ′
CC +P ′

CD/2 = x′. This gives the population state at the

beginning of the next time interval which corresponds to time t + ∆t = t + 1/(2N2) with

2N2 time intervals as unit of time. Note that PCD and PDD can be expressed in terms of

x and PCC , so that x and PCC can be used to describe the population state.

8.3 Diffusion Approximation

Let ∆x = x′−x and ∆PCC = P ′
CC −PCC be the changes in the frequencies of C and CC,

respectively, from time t to time t + ∆t with ∆t = 1/(2N2). Given these frequencies at

time t, the conditional first, second and fourth moments of ∆x are approximated as (see

Appendix B for details)

E(∆x) =
1

2N2
m(x, PCC) + o(N−2) , (8.3.1)

E((∆x)2) =
1

2N2
v(x) + o(N−2) (8.3.2)
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and

E((∆x)4) = o(N−3) , (8.3.3)

respectively, where

m(x, PCC) = σE ((1− x)A− xB) (8.3.4)

and

v(x) = x(1− x). (8.3.5)

Moreover, we have

E(∆PCC) =
(x− PCC)2 − ρPCC(1− 2x + PCC)

1− (1− ρ)PCC
+ O(N−1/2) (8.3.6)

and

Var(∆PCC) = O(N−1) (8.3.7)

for the conditional mean and variance of ∆PCC . On the other hand, in an infinite popula-

tion in the absence of selection, the frequency of C remains constant while the frequency

of CC converges uniformly to an equilibrium value P ∗
CC in [0, 1]. This equilibrium value

is obtained by solving the equation E(∆PCC) = 0, which gives

P ∗
CC = x +

ρ

2(1− ρ)
−

√
ρ2 + 4x(1− x)ρ(1− ρ)

2(1− ρ)
, (8.3.8)

where x is the frequency of C (see Appendix C for details).

The conditions (8.3.1), (8.3.2), (8.3.3), (8.3.6), (8.3.7) and (8.3.8) show that there are

two time scales at work in the discrete-time Markov chain for the population state, the

variable PCC changing more rapidly than the variable x. Moreover, as N → ∞, these

conditions ascertain that the Markov chain converges to a diffusion approximation with

m(x) = m(x, P ∗
CC) as drift function, and v(x) = x(1−x) as diffusion function (Ethier and

Nagylaki 1980).
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Using (8.2.5) with PCC = P ∗
CC and the equality (see (8.6.34) in Appendix C)

(1− x)2

1− (1− ρ)P ∗
CC

= P ∗
CC − 2x + 1 (8.3.9)

leads to

E(qCC) = P ∗
CC + O(N−1/2), (8.3.10a)

E(qCD) = 2x− 2P ∗
CC + O(N−1/2), (8.3.10b)

E(qDD) = 1− 2x + P ∗
CC + O(N−1/2). (8.3.10c)

Let us summarize.

Result 8.1: Consider a PD game with payoff matrix (8.1.1) for N pairs of individuals

so that, as a result of opting-out from one round to the next, all pairs break apart to form

new pairs at random but a random proportion of CC pairs whose mean is 1 − ρ < 1.

Assume one birth-death event at the end of each round with the probability of giving birth

proportional to an affine function of payoff with coefficient σ/N and the probability of dying

given by 1/(2N). Taking 2N2 birth-death events as unit of time and letting N → ∞, the

Markov chain of the frequency of C converges to a diffusion with v(x) = x(1 − x) as

diffusion function and

m(x) = σ (x(1− x)(πCC − πDD)− (x− P ∗
CC) ((1− x)(πCC − πCD) + x(πDC − πDD)))

(8.3.11)

as drift function, where P ∗
CC is given by (8.3.8).

In the diffusion approximation, it is known (see, e.g., Kimura, 1964; Risken, 1992;

Ewens, 2004) that the probability density function of C evaluated at x at time t ≥ 0 given

a value p at time 0, denoted by f(x, p, t), satisfies the forward Kolmogorov (Fokker-Planck)

equation

∂f(x, p, t)
∂t

= − ∂

∂x
[m(x)f(x, p, t)] +

∂2

∂x2

[
v(x)f(x, p, t)

2

]
, (8.3.12)

as well as the backward Kolmogorov equation

∂f(x; p, t)
∂t

= m(p)
∂f(x; p, t)

∂p
+

v(p)
2

∂2f(x; p, t)
∂p2

. (8.3.13)
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In the case at hand with no mutation, the two boundaries x = 0 and x = 1 are absorbing

states.

Moreover, if u(p, t) denotes the probability that C is fixed by time t ≥ 0, so that

x(t) = 1 given an initial frequency x(0) = p, then it is known that this fixation probability

satisfies the backward Kolmogorov equation, that is,

∂u(p, t)
∂t

= m(p)
∂u(p, t)

∂p
+

v(p)
2

∂2u(p, t)
∂p2

, (8.3.14)

with the boundary conditions u(0, t) = 0 and u(1, t) = 1. By letting t →∞, the limit

u(p) ≡ limt→∞u(p, t) (8.3.15)

represents the probability of ultimate fixation of C given an initial frequency x(0) = p.

As t →∞, the left-hand side in (8.3.14) tends to 0 so that we have

0 = m(p)
du(p)

dp
+

v(p)
2

d2u(p)
dp2

(8.3.16)

with the boundary conditions u(0) = 0 and u(1) = 1. The solution of this ordinary

differential equation is known to be (see, e.g., Ewens, 2004)

u(p) =

∫ p
0 ψ(y)dy∫ 1
0 ψ(y)dy

, (8.3.17)

where

ψ(y) = exp
(
−2

∫ y

0

m(x)
v(x)

dx

)
. (8.3.18)

Note that the probability of ultimate fixation of D is given by 1 − u(p), since there is

ultimate fixation of C or D with probability 1.

8.4 Additive PD game

Consider an additive Prisoner’s Dilemma (PD) where a cooperator pays a fixed cost c > 0

while its partner receives a fixed benefit b > c. The payoff matrix (8.1.1) takes the form

πCC πCD

πDC πDD


 =


b− c −c

b 0


 . (8.4.1)
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Substituting the above payoffs into m(x) in Result 8.1 yields

m(x) = σ (x(1− x)(b− c)− b(x− P ∗
CC))

= σ

[
x(1− x)(b− c)− bf(x, ρ)

2(1− ρ)

]
, (8.4.2)

where

f(x, ρ) =
√

ρ2 + 4x(1− x)ρ(1− ρ)− ρ. (8.4.3)

This function defines a concave surface on the domain [0, 1]× [0, 1] with f(x, ρ) > 0 inside

this domain and f(x, ρ) = 0 on its boundary (see Figure 8.2a).

Now, let FC = u((2N)−1) be the probability of ultimate fixation of C introduced as a

single mutant in an all D population of size 2N . The corresponding fixation probability

for a single D introduced in an all C population is FD = 1−u(1− (2N)−1). The evolution

of cooperation is said to be favored by selection if FC > (2N)−1, where (2N)−1 is the

fixation probability under neutrality. Similarly, the evolution of defection is said to be

unfavored by selection if FD < (2N)−1. On the other hand, the evolution of cooperation

is said to be more favored by selection than the evolution of defection if FC > FD. Finally,

if the three conditions are simultaneously satisfied, that is, FC > (2N)−1 > FD, then the

evolution of cooperation is said to be fully favored by selection (Nowak et al., 2004; Li

and Lessard, 2020).

When the population size 2N is big enough, the conditions to have FC > (2N)−1,

FD < (2N)−1, FC > FD take the form
∫ 1

0
ψ(y)dy < 1, (8.4.4a)

∫ 1

0
ψ(y)dy > ψ(1), (8.4.4b)

ψ(1) < 1, (8.4.4c)

respectively (Li and Lessard, 2020). Here, we have

ψ(y) = exp
(
−2

∫ y

0
g(x)dx

)
, (8.4.5)
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where

g(x) =
m(x)
v(x)

= σc

[
(b/c− 1)− (b/c)f(x, ρ)

2(1− ρ)x(1− x)

]

= σc

[
r

(
1− 2√

1 + 4ax(1− x) + 1

)
− 1

]
, (8.4.6)

with the notation r = b/c > 1 for the benefit-to-cost ratio and a = (1/ρ) − 1 ≥ 0 for the

expected number of times that each CC pair continues to interact.

In the extreme case a = 0 (or ρ = 1 which means no repeated interactions between

cooperators), we have g(x) = −σc < 0 which implies that ψ(y) is a strictly increasing

function of y ∈ [0, 1] with ψ(0) = 1. All conditions in (8.4.4) are not satisfied. Cooperation

is never favored by selection, while defection always is. This is exactly the case of the classic

PD game. On the other hand, if a → ∞ (or ρ = 0 which means permanent CC pairs),

we have g(x) = σ(b − c) > 0 which implies that ψ(y) is a strictly decreasing function of

y ∈ [0, 1] with ψ(0) = 1. All conditions in (8.4.4) are satisfied. Cooperation is fully favored

by selection. This is easy to understand since, in this case, CC pairs never break apart

and their number can only increase.

Analogously, in the extreme case r = 1, we get −σc ≤ g(x) < 0 for x ∈ [0, 1] and,

therefore, ψ(y) is a strictly increasing function of y ∈ [0, 1] with ψ(0) = 1, which implies

that all conditions in (8.4.4) are not satisfied and cooperation can never be favored by

selection. In this case, the cooperators pay as much as they give and the game is actually

no longer a PD game. On the other hand, if r → ∞, for any given a > 0, there exists

r > 0 such that g(x) > 0 for x ∈ [0, 1] which implies that ψ(y) is a strictly decreasing

function of y ∈ [0, 1] with ψ(0) = 1. In this case, conditions in (8.4.4) are all satisfied and

cooperation is fully favored by selection.

In the general case 0 < ρ < 1 and r > 1, the expression of g(x) in (8.4.6) shows that

∂g(x)/∂a > 0 and ∂g(x)/∂r > 0. This gives that ψ(y) is a strictly decreasing function of

a and r for every y ∈ (0, 1]. This leads to the following conclusion.

Result 8.2: Consider an additive PD game with payoff matrix (8.4.1) in the frame-
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work of Result 8.1 with 0 < ρ < 1. In a large enough population, increasing the value

of r = b/c > 1 or a = 1/ρ − 1 > 0 (or decreasing the value of ρ) increases (decreases,

respectively) the probability of ultimate fixation of cooperation (defection, respectively) in-

troduced as a single mutant in an all defecting (cooperating, respectively) population, FC

(FD, respectively).

The proof of this result is straightforward by using the approximations

FC ≈
(

2N

∫ 1

0
exp

(
−2

∫ y

0
g(x)dx

)
dy

)−1

, (8.4.7a)

FD ≈
(

2N

∫ 1

0
exp

(
2

∫ 1

y
g(x)dx

)
dy

)−1

, (8.4.7b)

for N large enough.

Moreover, since g(x) is a symmetric function, that is, g(x) = g(1 − x) for x ∈ [0, 1].

When FC = FD, that is, ψ(1) = 1, we have
∫ 1
0 g(x)dx = 0 from which

∫ 1−y

0
g(x)dx =

∫ 1

0
g(x)dx−

∫ 1

1−y
g(x)dx

= −
∫ 0

y
g(1− x)d(1− x)

= −
∫ y

0
g(1− x)dx

= −
∫ y

0
g(x)dx. (8.4.8)

In this case, we have
∫ 1

0
ψ(y)dy =

∫ 1
2

0
ψ(y)dy +

∫ 1

1
2

ψ(y)dy =
∫ 1

2

0

(
ψ(y) + ψ(1− y)

)
dy

=
∫ 1

2

0

(
exp

(
−2

∫ y

0
g(x)dx

)
+ exp

(
−2

∫ 1−y

0
g(x)dx

))
dy

=
∫ 1

2

0

(
exp

(
−2

∫ y

0
g(x)dx

)
+ exp

(
2

∫ y

0
g(x)dx

))
dy

≥ 2
∫ 1

2

0
dy = 1, (8.4.9)

with an equality if and only if g(x) ≡ 0 on [0, 1], which means σ = 0 (no selection).

Otherwise,
∫ 1
0 ψ(y)dy > 1 = ψ(1), which means that FC = FD < (2N)−1 owing to
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(8.4.4a,b,c). From the previous analysis in the extreme cases and Result 8.2, we know

that increasing the value of a from 0 to ∞ or r from 1 to ∞, FC will increase FC from

a value smaller than (2N)−1 to a value larger than (2N)−1, and will decrease FD in the

opposite direction. But when FC and FD are equal, their values are less than (2N)−1.

This implies that FD crosses the value (2N)−1 first, then equals FC and finally FC crosses

the value (2N)−1. Thus we get the following corollary of Result 8.2.

Result 8.3: In the setting of Result 8.2, as the value of r or a increases, the conditions

(8.4.4b), (8.4.4c) and (8.4.4a) for FD < (2N)−1, FC > FD and FC > (2N)−1, respectively,

are satisfied in this order. In particular, when cooperation is favored by selection, it is

necessarily fully favored by selection.

In order to get explicit conditions on the parameters of the model for cooperation to

be favored by selection, we use the inequalities (see Appendix D for details)

4x(1− x)(
√

ρ− ρ) ≤ f(x, ρ) ≤
√

4x(1− x)(
√

ρ− ρ), (8.4.10)

where the lower bound is the limit of f(x, ρ) as ρ → 0 and the upper bound the limit of

f(x, ρ) as ρ → 1. Panels (a), (b) and (c) in Figure 8.2 illustrate the surfaces determined

by f(x, ρ), 4x(1 − x)(
√

ρ − ρ) and
√

4x(1− x)(
√

ρ − ρ), respectively. Panels (d) and (e)

show the transverse sections where f(x, ρ) approaches the upper bound when ρ is close to

0 and the lower bound when ρ is close to 1, respectively.

Now, substituting g(x) given in (8.4.6) in the expression of ψ(y) given in (8.4.5) yields

ψ(y) = exp
(

σc

(
−2(r − 1)y +

r

1− ρ

∫ y

0

f(x, ρ)
x(1− x)

dx

))
. (8.4.11)

Panel (f) in Figure 8.2 shows that the lower bound of f(x, ρ) gives a good approximation

of the integral in (8.4.11) for y = 1. Using this lower bound in this equation yields the

approximation

ψ(y) ≈ exp
(
−2σc

(
r − 1− r

2
√

ρ

1 +
√

ρ

)
y

)
, (8.4.12)

which is a monotonic function of y starting with the value 1 at y = 0. Using this approx-

imation for ψ(y) in (8.4.4), we see that this approximation would have to be a strictly
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Figure 8.2: Function f(x, ρ). Panels (a), (b) and (c) show the surfaces determined by the

function f(x, ρ), the lower bound 4x(1−x)(
√

ρ−ρ) and the upper bound
√

4x(1− x)(
√

ρ−
ρ), respectively. Panels (d) and (e) show the transverse sections for ρ = 0.05 and ρ = 0.5.

Panel (f) shows
∫ 1
0

f(x,ρ)
x(1−x)dx which comes into play in ψ(1). The blue, red and yellow curves

in panels (d), (e) and (f) stand for f(x, ρ), 4x(1 − x)(
√

ρ − ρ) and
√

4x(1− x)(
√

ρ − ρ),

respectively.
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Figure 8.3: Conditions for cooperation to be favored by selection in the additive PD game

in the case c = 1 and σ = 1. In panel (a), the red curve stands for the exact numerical

solutions of FD = (2N)−1, FC = FD and FC = (2N)−1, which are almost identical, while

the blue and green curves stand for approximations obtained by using the lower and upper

bounds of f(x, ρ) plotted in Figure 8.2. Panel (b) is a magnification of the three curves

for a small region of the domain in Panel (a).
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decreasing function for cooperation to be favored by selection in any sense, that is,

r >
1 +

√
ρ

1−√ρ
, (8.4.13)

which is equivalent to

ρ <

(
r − 1
r + 1

)2

. (8.4.14)

The right-hand side in (8.4.13) is a lower threshold value for r, or equivalently, the right-

hand side in (8.4.14) an upper threshold value for ρ. Analogously, using the upper bound

of f(x, ρ) in (8.4.11) yields the approximation

ψ(y) ≈ exp
(
−2σc

(
(r − 1)y − r

2
√

ρ

(1 +
√

ρ)
arcsin(y)

))
. (8.4.15)

Using this approximation in (8.4.4c), we conclude that selection would favor more coop-

eration than defection if

r >
1 +

√
ρ

1 +
√

ρ− π
√

ρ
, (8.4.16)

or equivalently,

ρ <

(
r − 1

(π − 1)r + 1

)2

. (8.4.17)

The right-hand side in (8.4.16) is an upper threshold value for r, while the right-hand side

in (8.4.17) is a lower threshold value for ρ. Note that the right-hand side in (8.4.16) goes

to +∞ as ρ → (π − 1)−2 ≈ 0.218. As shown in Figure 8.2f, the approximation of f(x, ρ)

by the upper bound is not that good unless ρ is small enough.

The values of r or ρ such that FD = (2N)−1, FC = FD and FC = (2N)−1, respectively,

are illustrated in Figure 8.3 in the case c = 1 and σ = 1. The relative positions of the three

curves using the exact expression of f(x, ρ) given in (8.4.3) are in agreement with Result

8.3 but very close to each other. These curves are compared to the two curves obtained

by using the lower and upper bounds of f(x, ρ) given in (8.4.10). These correspond to

the boundaries of the regions defined by (8.4.13) and (8.4.16), respectively. It can be seen
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that the first one based on the lower bound gives a good approximation. The form of the

curves suggests that the conditions FD < (2N)−1, FC > FD and FC > (2N)−1, which are

all in favor of the evolution of cooperation, are in the form r greater than some increasing

function of ρ, and the approximation obtained from the lower bound of f(x, ρ) that this

function is close to the one given in (8.4.13).

8.5 Discussion

Direct reciprocity is one of the most important mechanisms that can promote the evolution

of cooperation (Trivers, 1971; Axelrod and Hamilton, 1981; Axelrod, 1984). In a repeated

Prisoner’s Dilemma (PD) game, for instance, tit-for-tat (TFT) starting with cooperation

is a form of reciprocity and known to be a Nash equilibrium against always-defect (AllD)

if the number of repetitions of the game is large enough (Nowak et al., 2004; Nowak and

Sigmund 2007). In this paper, we have considered the case where the PD game can be

repeated only if both players are willing to continue their interaction, which occurs only

when both cooperate. This is a rational choice when all players practice what is known

as the opting-out strategy. This creates a kind of assortment that benefits cooperation

(C) over defection (D) and should promote its evolution (Hayashi, 1993; Schuessler, 1989;

Aktipis, 2004; Fujiwara-Greve and Okuno-Fujiwara, 2009; Izquierdo et al., 2010, 2014).

A theoretical analysis of the effects of the opting-out strategy on the dynamics of a

PD game in an infinite population can be found in Zheng et al. (2017). This uses the

replicator equation for the C and D frequencies under the assumption of instantaneous

equilibrium pair frequencies. In this paper, we have considered the same question but in a

finite population in discrete time and in the limit of a large population size. We have shown

that the dynamics of the population state over successive birth-death events according to

a Moran model is approximated by a continuous-time diffusion if the intensity of selection

and time are appropriately scaled with respect to the population size (Result 8.1). This has

been ascertained by verifying conditions given in Ethier and Nagylaki (1980) for Markov
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chains with two timescales, here a fast one for pair frequencies and a slow one for C and

D frequencies. Note that the drift function in this diffusion approximation given by m(x)

in (8.4.2), where x is the frequency of C, corresponds to the growth rate of x given by

the replicator equation in Zheng et al. (2017). In the diffusion approximation, however,

the boundaries x = 0 and x = 1 are absorbing states and a stationary distribution with

coexistence of C and D is precluded unless a certain level of mutation is introduced. This

is not the case with the replicator equation for an infinite population.

Assuming an additive PD game with cooperation incurring a cost c and providing a

benefit b to the opponent, we have shown that increasing the benefit-to-cost ratio, r = b/c,

or the expected number of repetitions of the PD game for a CC pair, a = 1/ρ− 1, makes

it easier for the evolution of cooperation to be favored by selection, or for the evolution

of defection to be unfavored by selection, or for the evolution of cooperation to be more

favored by selection than the evolution of defection (Result 8.2). Here, this is understood

in the sense that the probability of ultimate fixation of C introduced as a single mutant in

an all D population under selection exceeds what it would be under neutrality, which is

given by its initial frequency, or that the probability of ultimate fixation of D introduced

as a single mutant in an all C population under selection is less than its initial frequency,

or that the former probability exceeds the latter. Note that the first condition is the most

stringent one and the second condition the least stringent one (Result 8.3). Moreover, the

three conditions take the form r greater than some increasing function of ρ that has been

shown to be approximated by (1 +
√

ρ)/(1−√ρ) (see Figure 8.3).

The condition r > (1+
√

ρ)/(1−√ρ) for selection to favor the evolution of cooperation

in the case of an additive PD game with opting-out in a large finite population is equivalent

to ρ < (b− c)2/(b + c)2. This happens to be the condition for the existence of an interior

equilibrium in an infinite population (Zheng et al., 2017). On the other hand, comparing

to the situation with TFT against AllD in a repeated PD game, we note that the condition

for selection to favor the evolution of TFT in a large finite population is r > (1+2ρ)/(1−ρ)
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(Nowak et al., 2004; Nowak and Sigmund, 2007). Since (1+
√

ρ)/(1−√ρ) > (1+2ρ)/(1−
ρ) for ρ ∈ (0, 1), it happens that the condition for selection to favor the evolution of

cooperation is more stringent with opting-out than without opting-out. This is somehow

in agreement with experimental results (Zhang et al., 2016) showing a higher level of

cooperation in groups without the possibility of opting-out than in groups using opting-

out. However, this does not necessarily mean that TFT is better than the opting-out

strategy in promoting the evolution of cooperation. Monte Carlo simulations (Izquierdo

et al., 2010; Zheng et al., 2017) have shown that opting-out can prevail more than TFT

in populations with these two strategies in use. Thus, a theoretical analysis of a model

involving both TFT and opting-out would be of interest for future works.

The opting-out strategy provides an opportunity not only for cooperators to find co-

operative partners but also for defectors who have an even greater advantage to do so.

Moreover, ending an interaction with someone might incur a cost since there is a risk

of not finding a new partner in time. In our model, there is no cost for opting-out. A

cost could affect cooperators and defectors to different degrees and, therefore, the level of

cooperation reached in the population.

Finally, the work in this paper has focussed on a two-player game. Kurokawa (2019)

has studied the effect of opting-out on a three-player game in an infinite population. Ex-

tensions to n-player public goods game would be of interest.
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8.6 Appendix

8.6.1 Appendix A: Mean and variance of pair frequencies after re-pairing

of free individuals

The equations (8.2.1) and (8.2.2) for the numbers of free C and D individuals can be

written into the form

NC = Nγ, (8.6.1a)

ND = Nβ, (8.6.1b)

NC + ND = 2Nα. (8.6.1c)

where

γ =
2R

N
+ PCD ≤ 2, (8.6.2a)

β = PCD + 2PDD = 2(1− x) ≤ 2, (8.6.2b)

α =
β + γ

2
=

R

N
+ PCD + PDD ≤ 1, (8.6.2c)

with R being a binomial random variable with parameters NPCC and ρ.

The number of new pairs formed at random by all free individual is (NC+ND)/2 = αN .

Besides, there are NCC = NPCC − R = N − αN unbroken CC pairs. The new pairs are

obtained by pairing the (2k − 1)-th and 2k-th free individuals chosen at random without

replacement for k = 1, . . . , αN . Let XCC,k, XCD,k and XDD,k be the random variables

that take the value 1 if the k-th new pair is of types CC, CD and DD, respectively, and

0 otherwise, for k = 1, ..., αN . Then, the numbers of new CC, CD and DD pairs can be
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expressed as

YCC =
αN∑

k=1

XCC,k, (8.6.3a)

YCD =
αN∑

k=1

XCD,k, (8.6.3b)

YDD =
αN∑

k=1

XDD,k, (8.6.3c)

respectively. By symmetry, the first and second conditional moments of XCC,k, XCD,k

and XDD,k are given by

E(XCC,k) = E(X2
CC,k) = E(XCC,1) =

NC

2αN

NC − 1
2αN − 1

, (8.6.4a)

E(XCD,k) = E(X2
CD,k) = E(XCD,1) = 2

NC

2αN

ND

2αN − 1
, (8.6.4b)

E(XDD,k) = E(X2
DD,k) = E(XDD,1) =

ND

2αN

ND − 1
2αN − 1

, (8.6.4c)

E(XCC,kXCC,l) = E(XCC,1XCC,2) =
NC

2αN

NC − 1
2αN − 1

NC − 2
2αN − 2

NC − 3
2αN − 3

, (8.6.4d)

E(XCD,kXCD,l) = E(XCD,1XCD,2) = 4
NC

2αN

ND

2αN − 1
NC − 1
2αN − 2

ND − 1
2αN − 3

, (8.6.4e)

E(XDD,kXDD,l) = E(XDD,1XDD,2) =
ND

2αN

ND − 1
2αN − 1

ND − 2
2αN − 2

ND − 3
2αN − 3

. (8.6.4f)

where l 6= k. In particular, this yields

E(YCC) =
NC(NC − 1)
2(2αN − 1)

=
γN(γN − 1)
2(2αN − 1)

, (8.6.5a)

E(YCD) =
NCND

2αN − 1
=

γNβN

2αN − 1
=

(2αN − βN)βN

2αN − 1
, (8.6.5b)

E(YDD) =
ND(ND − 1)
2(2αN − 1)

=
βN(βN − 1)
2(2αN − 1)

. (8.6.5c)

Now, let qCC , qCD and qDD represent the random frequencies of CC, CD and DD among

the αN new pairs and N − αN unbroken CC pairs. Their expected values are given by

E(qDD) = E
(

YDD

N

)
=

1
2
E

(
β2N − β

2αN − 1

)
, (8.6.6a)

E(qCD) = E
(

YCD

N

)
= E

(
β(2αN − βN)

2αN − 1

)
= β −E

(
β2N − β

2αN − 1

)
, (8.6.6b)

E(qCC) = 1−E(qCD)−E(qDD) = 1− β +
1
2
E

(
β2N − β

2αN − 1

)
. (8.6.6c)
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Note that

β2N − β

2αN − 1
= β

β − 1/N

β + γ − 1/N
≤ β ≤ 2. (8.6.7)

Moreover, the expected value of this random variable is given by

E
(

β2N − β

2αN − 1

)
=

β2

2(ρPCC + PCD + PDD)
+ O(N−1/2). (8.6.8)

This is obviously true when β = 0. On the other hand, when β = PCD + 2PDD > 0, we

have PCD ≥ 1/N or PDD ≥ 1/N , from which α = R/N+PCD+PDD ≥ PCD+PDD ≥ 1/N .

In this case, we have

0 ≤ β

α− 1/(2N)
≤ PCD + 2PDD

PCD + PDD − 1/(2N)
≤ 2

PCD + PDD

PCD + PDD − 1/(2N)
≤ 4. (8.6.9)

Moreover, β = PCD + 2PDD ≤ 2(ρPCC + PCD + PDD). Using these inequalities and the

Cauchy-Schwarz inequality yields

∣∣∣∣E
(

β2N − β

2αN − 1

)
− β2

2(ρPCC + PCD + PDD)

∣∣∣∣

≤ 1
2
E

(∣∣∣∣
β(β − 1/N)
α− 1/(2N)

− β2

ρPCC + PCD + PDD

∣∣∣∣
)

=
1
2
E

(
β

α− 1/(2N)

∣∣∣∣β −
1
N
− β(α− 1/(2N))

ρPCC + PCD + PDD

∣∣∣∣
)

≤ 2E
(∣∣∣∣

β(ρPCC −R/N + 1/(2N))
ρPCC + PCD + PDD

− 1
N

∣∣∣∣
)

≤ 2E
(∣∣∣∣

β(ρPCC −R/N + 1/(2N))
ρPCC + PCD + PDD

∣∣∣∣ +
1
N

)

≤ 4E
(∣∣∣∣ρPCC − R

N
+

1
2N

∣∣∣∣
)

+
2
N

≤ 4
N

E (|ρNPCC −R|) +
4
N

≤ 4
N

(
E

(
(ρNPCC −R)2

))1/2
+

4
N

= 4
(

PCCρ(1− ρ)
N

)1/2

+
4
N

= O(N−1/2) (8.6.10)
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This proves Eq. (8.6.8). Using this equation and the equality β2 = 4(1 − x)2 in (8.6.6)

yield

E(qDD) =
(1− x)2

1− (1− ρ)PCC
+ O(N−1/2) (8.6.11a)

E(qCD) = 2(1− x)− 2(1− x)2

1− (1− ρ)PCC
+ O(N−1/2), (8.6.11b)

E(qCC) = 2x− 1 +
(1− x)2

1− (1− ρ)PCC
+ O(N−1/2). (8.6.11c)

Moreover, using the inequality 2α ≥ β, we have

Var(qDD) = Var
(

YDD

N

)

=
1

N2

(
E(Y 2

DD)− (E(YDD))2
)

=
1

N2


E




(
αN∑

k=1

XDD,k

)2

−

(
E

(
αN∑

k=1

XDD,k

))2



=
1

N2
E

(
αN(αN − 1)E(XDD,1XDD,2) + αNE(X2

DD,1)− (αNE(XDD,1))2
)

=
1

N2
E

(
αN(αN − 1)

βN

2αN

βN − 1
2αN − 1

βN − 2
2αN − 2

βN − 3
2αN − 3

+ αN
βN(βN − 1)

2αN(2αN − 1)
− α2N2

(
βN(βN − 1)

2αN(2αN − 1)

)2 )

= E
(

α2 βN(βN − 1)
2αN(2αN − 1)

(
(βN − 2)(βN − 3)

(2αN − 2)(2αN − 3)
− βN(βN − 1)

2αN(2αN − 1)

))

+ E
(

α

N

βN(βN − 1)
2αN(2αN − 1)

(
1− (βN − 2)(βN − 3)

(2αN − 2)(2αN − 3)

))

≤ 1
N

E
(

α
βN(βN − 1)

2αN(2αN − 1)

(
1− (βN − 2)(βN − 3)

(2αN − 2)(2αN − 3)

))

≤ 1
N

, (8.6.12)

which implies that Var(qDD) = O(N−1). Analogously, using the inequality 2α ≥ γ, we

can ascertain that

Var(qCD) = Var
(

YCD

N

)
= O(N−1). (8.6.13)

Since qCC + qCD + qDD = 1, we have also

Var(qCC) = Var(1− qCD − qDD) ≤ 2(Var(qCD) + Var(qDD)) = O(N−1). (8.6.14)
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8.6.2 Appendix B: Moments of changes in C and CC frequencies

From time t to time t + ∆t, the frequencies of CC, CD and DD pairs go from PCC ,

PCD and PDD, with x = PCC + PCD/2 as frequency of C, to P ′
CC , P ′

CD and P ′
DD, with

x′ = P ′
CC +P ′

CD/2 as frequency of C, after random re-pairing of free individuals, weighted

random sampling of an individual to produce an offspring, with weights given by fitness,

and random sampling of an individual to be replaced by the offspring. The random

frequencies of CC, CD and DD pairs after the first step are qCC , qCD and qDD with

x = qCC + qCD/2, while according to (8.2.8) and (8.2.9), the conditional probabilities to

sample C and D at the second step are

Pr(C) = x +
σ

N
((1− x)A− xB) + o(N−1) (8.6.15)

and

Pr(D) = 1− x− σ

N
((1− x)A− xB) + o(N−1), (8.6.16)

respectively, where

A = qCCπCC +
qCD

2
πCD (8.6.17)

and

B = qDDπDD +
qCD

2
πDC . (8.6.18)

Obviously, the probabilities to sample C and D at the third step are x and 1− x, respec-

tively.

Change in C frequency

The change in the frequency of C from time t to time t +∆t, represented by ∆x = x′−x,

takes the values 1/(2N) and −1/(2N) with conditional probabilities (1 − x)Pr(C) and
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xPr(D), respectively, and 0 otherwise. The expected value of this change is

E(∆x) = E
(

1
2N

(1− x)Pr(C)− 1
2N

xPr(D)
)

=
σ

2N2
E ((1− x)A− xB) + o(N−2). (8.6.19)

The second moment is given by

E((∆x)2) = E
(

1
4N2

(1− x)Pr(C) +
1

4N2
xPr(D)

)

=
1

2N2
x(1− x) + o(N−2). (8.6.20)

As for the fourth conditional moment, we have

E((∆x)4) = E
(

1
16N4

(1− x)Pr(C) +
1

16N4
xPr(D)

)
= o(N−3). (8.6.21)

Change in CC frequency

The change in the frequency of CC pairs from time t to time t + ∆t is given by

∆PCC = P ′
CC − PCC = (P ′

CC − qCC) + qCC − PCC . (8.6.22)

Given qCC , qCD and qDD, the difference P ′
CC − qCC takes the values 1/N and −1/N with

conditional probabilities (qCD/2)Pr(C) and qCCPr(D), respectively, and 0 otherwise.

Therefore, The difference has an expected value O(N−1) and a variance O(N−2). Using

this and the expression of the expected values and variances of qCC , qCD and qDD given

in Appendix A, we get

E(∆PCC) = E(P ′
CC − qCC) + E(qCC)− PCC

= 2x− 1 +
(1− x)2

1− (1− ρ)PCC
− PCC + O(N−1/2)

=
(x− PCC)2 − ρPCC(1− 2x + PCC)

1− (1− ρ)PCC
+ O(N−1/2) (8.6.23)

and

Var(∆PCC) = Var((P ′
CC − qCC) + qCC) ≤ 2(Var(P ′

CC − qCC) + Var(qCC)) = O(N−1).

(8.6.24)
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8.6.3 Appendix C: Convergence of CC frequency in an infinite neutral

population

In an infinite population with no selection, the frequency of C in [0, 1], represented by

x = PCC + PCD/2, remains constant since then

x′ − x = E(∆x) = 0 (8.6.25)

owing to (8.6.19) as N → +∞. Moreover, the change in the frequency of CC from time t

to time t + ∆t is given by

P ′
CC − PCC = E(∆PCC) =

(x− PCC)2 − ρPCC(1− 2x + PCC)
1− (1− ρ)PCC

(8.6.26)

owing to (8.6.23) as N → +∞. After algebraic manipulations, this leads to the recurrence

equation

P ′
CC = 2x− 1 +

(1− x)2

1− (1− ρ)PCC
= h(PCC). (8.6.27)

From the facts that PCC , PCD = 2(x−PCC) and PDD = 1− 2x + PCC are all in [0, 1], we

have the constraints

max{2x− 1, 0} ≤ PCC ≤ x. (8.6.28)

Note that h(0) = x2 ≥ 0 and h(2x−1) ≥ 2x−1, so that h(max{2x−1, 0}) ≥ max{2x−1, 0},
while

h(x) = x− ρx(1− x)
1− (1− ρ)x

≤ x. (8.6.29)

On the other hand, the first and second derivatives of h are given by

dh(PCC)
dPCC

=
(1− x)2(1− ρ)

(1− (1− ρ)PCC)2
≥ 0 (8.6.30)

and

d2h(PCC)
dP 2

CC

=
2(1− x)2(1− ρ)2

(1− (1− ρ)PCC)3
≥ 0, (8.6.31)
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respectively. By solving the equation h(PCC) = PCC , that is,

(1− ρ)P 2
CC − (2x(1− ρ) + ρ)PCC + x2 = 0, (8.6.32)

the only equilibrium point of h in the interval [max{2x− 1, 0}, x] is found to be

P ∗
CC = x +

ρ

2(1− ρ)
−

√
ρ2 + 4x(1− x)ρ(1− ρ)

2(1− ρ)
. (8.6.33)

Owing to the above properties, this is a globally stable equilibrium point. At this equilib-

rium, we get from (8.6.27) that

(1− x)2

1− (1− ρ)P ∗
CC

= P ∗
CC − 2x + 1, (8.6.34)

which simplifies the expressions for E(qCC), E(qCD) and E(qDD) in (8.6.11).

Actually, P ∗
CC is a uniformly globally stable equilibrium point. As a matter of fact,

applying the mean value theorem, there exists P̃CC between PCC and P ∗
CC such that

P ′
CC − P ∗

CC = h(PCC)− h(P ∗
CC) = (PCC − P ∗

CC)
dh(P̃CC)

dPCC
(8.6.35)

with

dh(P̃CC)
dPCC

=
(1− x)2(1− ρ)

(1− (1− ρ)P̃CC)2
≤ (1− x)2(1− ρ)

(1− (1− ρ)x)2
≤ 1− ρ < 1. (8.6.36)

Iterating (8.6.35), we have

|P (n)
CC − P ∗

CC | ≤ |PCC − P ∗
CC |(1− ρ)n ≤ (1− ρ)n (8.6.37)

for all integers n ≥ 1, with (1− ρ)n → 0 as n →∞.

8.6.4 Appendix D: Bounds of f(x, ρ)

For the additive PD game, the drift function m(x) is in the form

m(x) = σ

[
x(1− x)(b− c)− bf(x, ρ)

2(1− ρ)

]
, (8.6.38)
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where

f(x, ρ) =
√

ρ2 + 4x(1− x)ρ(1− ρ)− ρ = φ(4x(1− x), ρ)(
√

ρ− ρ) (8.6.39)

with

φ(u, ρ) =

√
ρ + u(1− ρ)−√ρ

1−√ρ
(8.6.40)

for u, ρ ∈ [0, 1]. We have φ(u, 0) =
√

u and φ(u, 1) = limρ→1 φ(u, ρ) = u by applying

L’Hôpital’s rule. Moreover,

∂φ(u, ρ)
∂ρ

=
(1− u)

√
ρ + u−

√
ρ + u(1− ρ)

2(1−√ρ)2
√

ρ
√

ρ + u(1− ρ)
≤ 0, (8.6.41)

since

(1− u)
√

ρ + u ≤
√

(1− u)ρ + u =
√

ρ + u(1− ρ) (8.6.42)

by Jensen’s inequality for the concave square root function on [0, 1]. Therefore, φ(u, ρ) is

a decreasing function of ρ from
√

u at ρ = 0 to u at ρ = 1 for every u ∈ [0, 1].

We conclude that

√
4x(1− x)(

√
ρ− ρ) ≥ f(x, ρ) = φ(4x(1− x), ρ)(

√
ρ− ρ) ≥ 4x(1− x)(

√
ρ− ρ), (8.6.43)

the upper bound being the limit of f(x, ρ) as ρ → 0 and the lower bound the limit as

ρ → 1 (see Figure 8.2).
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Chapter 9

Conclusion

9.1 Part 1

In part 1 of the thesis we have studied matrix games in a stochastic environment. For

general 2 × 2 randomized matrix games in infinite populations undergoing discrete non-

overlapping generations, Articles 1, 2, and 3 have established conditions for boundary and

interior equilibria to be SLS or SLU. In Article 1, the expected payoff is used directly

as fitness, that is, fitness = payoff . This models strong selection. In Article 2, an

exponential function of the payoff is used as fitness, that is, fitness = Exp(payoff). This

nonlinear function is approached by the linear function 1 + payoff in the case of weak

selection. In Article 3, it is the function fitness = (1−w)+w×payoff , where the intensity

of selection w is small, which is used as fitness. In Articles 4 and 5, we have analysed

randomized Prisoner’s Dilemma games in an infinite and a finite population, respectively,

and revealed that increasing the variance in the payoffs for defection is conducive to the

evolution of cooperation.

In a 2× 2 randomized matrix game, the conditions for a constant interior equilibrium

to exist and be SLS depend on the structure of the payoff matrix, since we must have

(dt − bt)/(at − ct) = û > 0 for all t ≥ 0. Otherwise, the population state may wander

around a locally stable interior equilibrium with respect to the mean payoff matrix without
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ever converging to it. In this case, numerical simulations show that the population state

tends to stay in a region surrounding the interior equilibrium whose size depends on the

variances of the payoffs. It would be interesting to study this phenomenon in more detail.

In Articles 1 and 2, we have noticed that it is possible for both fixation states and a

constant interior equilibrium in a 2×2 randomized matrix game to be simultaneously SLS

with no other interior constant equilibrium in the sense that the expected payoffs of the two

strategies are always equal. Such a situation never occurs in the deterministic dynamics

with constant payoffs, where at least one unstable equilibrium must exist between two

stable equilibria. However, there might be some unstable region between two SLS equilibria

in the case of random payoffs whose characteristics remain to be defined and studied.

In the case of a randomized Prisoner’s Dilemma (RPD), we have shown that the

evolution of cooperation is promoted when the variability in the payoffs for defection is

greater than that for cooperation. There might be several explanations for this result.

It seems that the effects of increases and decreases of the payoffs are asymmetric and

detrimental with respect to evolution. Therefore, decreasing the variance in payoffs for

cooperation or increasing the variance in payoffs for defection should be beneficial for

the evolution of cooperation. It remains to find conditions that explain why defectors

have greater uncertainty in their payoffs. Besides environmental noise, uncertainty in

payoffs may be introduced in different ways. It may be due to the effects of interacting

rules, such as the opting-out strategy studied in part 2 where defectors may face more

uncertainty than cooperators, or punishment strategies from which defectors might suffer.

These effects remain to be studied.

Note that all the articles above studied only 2 × 2 matrix games. It would be worth

extending these studies to more general games, that is, multi-strategy games such as the

Rock-Paper-Scissors game, multi-player games such as Public Goods games, and asym-

metric games such as the Ultimatum game (M.A. Nowak, K.M. Page, K. Sigmund Fairness

versus reason in the ultimatum game. Science. 289(5485):1773-1775 (2000)).
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9.2 Part 2

In part 2 of the thesis, we have studied the effects of opting-out in a repeated Prisoner’s

Dilemma game with additive cost c and benefit b for cooperation in both infinite and finite

populations. Under the assumption that every individual adopts the opting-out strategy,

that is, wants to continue the interaction as long as the opponent cooperates, but stop

it as soon as the opponent defects, we have shown that the evolution of cooperation is

promoted if the benefit-to-cost ratio r = b/c is large enough or the probability ρ that

an interaction between two players willing to continue breaks out is small enough. More

specifically, if r > (1 +
√

ρ)/(1−√ρ), then a stable interior equilibrium exists in the case

of an infinite population and selection favors the evolution of cooperation in the case of a

finite population.

Consider, for instance, the two strategies tit-for-tat (TFT) and always-defect (AllD)

in a repeated PD game. The TFT strategy is an ESS if r > 1/(1− ρ); selection favors the

evolution of TFT more than the evolution of AllD if r > (1 + ρ)/(1 − ρ); the evolution

of TFT is fully favored by selection if r > (1 + 2ρ)/(1− ρ). Since we have the inequality

(1 +
√

ρ)/(1 − √
ρ) > (1 + 2ρ)/(1 − ρ) for 0 < ρ < 1, we conclude that the condition

for selection to favor the evolution of cooperation is more stringent with opting-out than

with TFT. This is somehow in agreement with experimental results reported in Article 7.

However, this does not necessarily mean that TFT is better than the opting-out strategy

for the evolution of cooperation. The Monte Carlo simulations in Article 6 (see also

Izquierdo et al., 2010) have shown that the opting-out strategy can prevail more often than

TFT in the population when both strategies are available in strategy-pool. However, there

is no theoretical analysis to support this result yet. Further studies that involve various

strategies, such as TFT and PAVLOV, together with opting-out are worth considering in

the future.

The opting-out strategy provides the opportunity not only for cooperators to find

cooperative partners but also for defectors who have an even greater advantage to do
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so. Especially, when the frequency of cooperators is large, defectors can easily invade the

population by frequently changing partner and taking advantage of it in the first round.

In the real world, however, ending an interaction with someone might incur a cost since

there is a risk of not finding a new partner for the next round, and this is not considered in

our model. Adding a cost function would be a way to improve it. Moreover, the cost could

be different for cooperators and defectors, which could favor the evolution of cooperation.

Moreover, our experiment results indicate that the probability of interrupting an in-

teraction when the opponent defects is significantly different from our assumption in our

theoretical model which is based on a rational choice. This probability may even be dif-

ferent for a cooperator C and a defector D. A reasonable improvement of our model

would be to consider different probabilities ρCC , ρCD and ρDD, where ρXY represents the

probability for an individual adopting an action X to interrupt an interaction when facing

an individual adopting an action Y . These parameters could themselves be subject to

evolution.

Our articles reveal that the long-term coexistence of cooperation and defection in a

population is possible when introducing the opting-out strategy. This result help us to

understand the reason that why it is hard to observe a society with full cooperation. In the

case if almost every one cooperates in the population, defector can easily find a cooperator

and exploit in the first round of a game. Thus defector is benefited in this situation and

won’t extinct. Finally, we have focussed on PD games with two players. There are other

multi-player games to study the evolution of cooperation, such as Public Goods games,

and it would be interesting to study the effects of opting-out in such games.
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