
Université de Montréal

Deep Learning and Reinforcement Learning Methods for
Grounded Goal-Oriented Dialogue

par Harm de Vries

Département d’informatique et de recherche opérationnelle
Faculté des arts et des sciences

Thèse présentée à la Faculté des arts et des sciences
en vue de l’obtention du grade de Philosophiæ Doctor (Ph.D.)

en informatique

March, 2020

c© Harm de Vries, 2020.

Résumé
Les systèmes de dialogues sont à même de révolutionner l’interaction entre

l’homme et la machine. Pour autant, les efforts pour concevoir des agents conversa-
tionnels se sont souvent révélés infructueux, et ceux, malgré les dernières avancées
en apprentissage profond et par renforcement. Les systèmes de dialogue palissent de
devoir opérer sur de nombreux domaines d’application mais pour lesquels aucune
mesure d’évaluation claire n’a été définie. Aussi, cette thèse s’attache à étudier les
dialogues débouchant sur un objectif clair (goal-oriented dialogue) permettant de
guider l’entrainement, et ceci, dans des environnements multimodaux. Plusieurs
raisons expliquent ce choix : (i) cela contraint le périmètre de la conversation, (ii)
cela introduit une méthode d’évaluation claire, (iii) enfin, l’aspect multimodal en-
richie la représentation linguistique en reliant l’apprentissage du langage avec des
expériences sensorielles. En particulier, nous avons développé GuessWhat ? ! (Qu-
est-ce donc ? !), un jeu imagé coopératif où deux joueurs tentent de retrouver un
objet en posant une série de questions. Afin d’apprendre aux agents de répondre
aux questions sur les images, nous avons développés une méthode dites de norma-
lisation conditionnée des données (Conditional Batch Nornalization). Ainsi, cette
méthode permet d’adapter simplement mais efficacement des noyaux de convolu-
tions visuels en fonction de la question en cours. Enfin, nous avons étudié les tâches
de navigation guidée par dialogue, et introduit la tâche Talk the Walk (Raconte-
moi le Chemin) à cet effet. Dans ce jeu, deux agents, un touriste et un guide,
s’accordent afin d’aider le touriste à traverser une reconstruction virtuelle des rues
de New-York et atteindre une position prédéfinie.

Keywords: apprentissage profond, apprentissage par renforcement, dialogue, ap-
prentissage du langage avec des expériences sensorielles

ii

Summary
While dialogue systems have the potential to fundamentally change human-

machine interaction, developing general chatbots with deep learning and reinforce-
ment learning techniques has proven difficult. One challenging aspect is that these
systems are expected to operate in broad application domains for which there is not
a clear measure of evaluation. This thesis investigates goal-oriented dialogue tasks
in multi-modal environments because it (i) constrains the scope of the conversa-
tion, (ii) comes with a better-defined objective, and (iii) enables enriching language
representations by grounding them to perceptual experiences. More specifically, we
develop GuessWhat, an image-based guessing game in which two agents cooper-
ate to locate an unknown object through asking a sequence of questions. For the
subtask of visual question answering, we propose Conditional Batch Normalization
layers as a simple but effective conditioning method that adapts the convolutional
activations to the specific question at hand. Finally, we investigate the difficulty
of dialogue-based navigation by introducing Talk The Walk, a new task where two
agents (a “tourist” and a “guide”) collaborate to have the tourist navigate to target
locations in the virtual streets of New York City.

Keywords: deep learning, reinforcement learning, goal-oriented dialogue, grounded
language learning

iii

Contents

Résumé . ii

Summary . iii

Contents . iv

List of Figures . viii

List of Tables . xi

List of Abbreviations . xiii

Notation . xiv

Acknowledgement . xviii

1 Introduction . 1

2 Background . 6
2.1 Machine Learning . 6

2.1.1 Supervised Learning . 7
2.2 Deep Learning . 10

2.2.1 Feed-forward Networks . 11
2.2.2 Convolutional Neural Networks 13
2.2.3 Recurrent Neural Networks 15
2.2.4 Optimization . 18

2.3 Reinforcement Learning . 20
2.3.1 Value-based methods . 22
2.3.2 Policy-based methods . 23

3 Prologue to First Article . 25
3.1 Article Details . 25
3.2 Context . 25
3.3 Contributions . 26

iv

3.4 Recent Developments . 26

4 GuessWhat?! Visual Object Discovery through Multi-Modal Di-
alogue . 27
4.1 GuessWhat?! game . 30
4.2 Related work . 33
4.3 GuessWhat?! Dataset . 37

4.3.1 Data collection . 37
4.3.2 Data analysis . 38
4.3.3 Dataset release . 42

4.4 Baselines . 42
4.4.1 Oracle baselines . 43
4.4.2 Questioner baselines . 46

4.5 Discussion . 51

5 Prologue to Second Article . 52
5.1 Article Details . 52
5.2 Context . 52
5.3 Contributions . 52
5.4 Recent Developments . 53

6 End-to-end Optimization of Goal-driven and Visually Grounded
Dialogue Systems . 54
6.1 GuessWhat?! Game . 56

6.1.1 Rules . 56
6.1.2 Notation . 57

6.2 Training Environment . 58
6.2.1 Generation of Full Games 60

6.3 GuessWhat?! from RL Perspective 61
6.3.1 GuessWhat?! as a Markov Decision Process 61
6.3.2 Training the QGen with Policy Gradient 62
6.3.3 Reward Function . 63
6.3.4 Full Training Procedure . 63

6.4 Related Work . 65
6.5 Experiments . 65

6.5.1 Training Details . 67
6.5.2 Results . 67

6.6 Conclusion . 69

7 Prologue to Third Article . 71
7.1 Article Details . 71
7.2 Context . 71

v

7.3 Contributions . 71
7.4 Recent Developments . 72

8 Modulating Early Visual Processing by Language 73
8.1 Background . 75

8.1.1 Residual networks . 75
8.1.2 Batch Normalization . 76
8.1.3 Language embeddings . 77

8.2 Modulated Residual Networks . 77
8.3 Experimental setting . 79

8.3.1 VQA . 79
8.3.2 GuessWhat?! . 83
8.3.3 Baselines . 85
8.3.4 Results . 85
8.3.5 Discussion . 86

8.4 Related work . 88
8.5 Conclusion . 90

9 Prologue to Fourth Article . 92
9.1 Article Details . 92
9.2 Context . 92
9.3 Contributions . 93
9.4 Recent Developments . 93

10 Talk the Walk: Navigating Grids in New York City through
Grounded Dialogue . 94
10.1 Talk The Walk . 96

10.1.1 Task . 97
10.1.2 Data Collection . 98
10.1.3 Dataset Statistics . 98

10.2 Experiments . 100
10.2.1 Tourist Localization . 102

10.3 Model . 105
10.3.1 The Tourist . 105
10.3.2 The Guide . 107
10.3.3 Comparisons . 109

10.4 Results and Discussion . 110
10.4.1 Analysis of Localization Task 111
10.4.2 Emergent Language Localization 111
10.4.3 Natural Language Localization 112
10.4.4 Localization-based Baseline 113

10.5 Additional Experiments and Analysis 115

vi

10.5.1 Natural Language Experiments 115
10.5.2 Visualizing MASC predictions 118
10.5.3 Landmark Classification . 118

10.6 Related Work . 121
10.7 Conclusion . 122

11 Conclusion . 125

Bibliography . 128

vii

List of Figures

1.1 This thesis studies deep and reinforcement learning algorithms for
problems on the intersection of the following three pillars: dialogue,
information-seeking and multi-modality. This figure illustrates how
these setups relate to other popular learning tasks. 4

4.1 An example game. After a sequence of four questions, it becomes
possible to locate the object (highlighted by a green bounding box). 28

4.2 Two example games in the dataset. After a sequence of five questions
we are able to locate the object (highlighted by a green mask). . . . 29

4.3 An example game from the perspective of the oracle. Shown from
left to right and top to bottom. 31

4.4 An example game from the perspective of the questioner. Shown
from left to right and top to bottom. 32

4.5 Samples illustrating the difference between GuessWhat?! and ReferIt
games. As both dataset are constructed on top of MS COCO, we
picked identical objects (and images). 34

4.6 (a) Number of questions per dialogue (b) Number of questions per
dialogue vs the number of objects within the picture (c) Word cloud
of GuessWhat?! vocabulary with each word proportional to its fre-
quency. Words are colored based on a hand-crafted clustering. Un-
informative words such as ”it”, ”is” are manually removed. 36

4.7 (a-b) Histogram of absolute/relative successful dialogues with re-
spect to the number of objects and the size of the objects, respec-
tively. (c) Evolution of answer distribution clustered by the dialogue
length . 38

4.8 (a) Heatmap of the success ratio with respect to the spatial location
within the picture. (b) Histogram of the success ratio relative to the
dialogue length. 39

4.9 Histogram of success ratio broken down per object category. 41
4.10 An schematic overview of the ”Image + Question + Crop + Spatial

+ Category” oracle model. 43
4.11 Overview of the guesser model for an image with 4 segmented ob-

jects. The weights are shared among the MLPs, this allows for an
arbitrary number of objects. 46

viii

4.12 HRED model conditioned on the VGG features of the image. To
avoid clutter, we here only show the part of the model that defines
a distribution over the third question given the first two questions,
its answers and the image P (q2|(q, a)<2, I). The complete HRED
model models the distribution over all questions. 48

4.13 Three samples of QGen+GT model for which the correct object was
predicted. 49

4.14 Three dialogue samples of QGen+GT model for which the wrong
object was predicted. 50

6.1 Oracle model. 56
6.2 Guesser model. 57
6.3 Question generation model. 58
6.4 (a-b) Each line represents a dialogue of size N and describe the

evolution of the average probability of the guesser to find the correct
object question after question. 67

8.1 An overview of the classic VQA pipeline (left) vs ours (right). While
language and vision modalities are independently processed in the
classic pipeline, we propose to directly modulate ResNet processing
by language. 75

8.2 An overview of the computation graph of batch normalization (left)
and conditional batch normalization (right). Best viewed in color. 78

8.3 An overview of the MODERN architecture conditioned on the lan-
guage embedding. MODERN modulates the batch norm parameters
in all residual blocks. 79

8.4 t-SNE projection of feature maps (before attention mechanism) of
ResNet and MODERN. Points are colored according to the answer
type of VQA. Whilst there are no clusters with raw features, MOD-
ERN successfully modulates the image feature towards specific an-
swer types. 87

8.5 Feature map projection from MODERN for a) stage 1, b) stage 2,
c) stage 3, d), stage 4 . 89

8.6 t-SNE projection of feature maps of Reset and MODERN by color-
ing. Points are colored according to the question type (here, colors)
of the image/question pair from the VQA dataset. 90

8.7 t-SNE projection of feature maps (before attention mechanism) of
finetune ResNet. Points are colored according to the answer type of
VQA. No answer-type clusters can be observed in both cases. 90

ix

10.1 Example of the Talk The Walk task: two agents, a “tourist” and a
“guide”, interact with each other via natural language in order to
have the tourist navigate towards the correct location. The guide
has access to a map and knows the target location but not the tourist
location, while the tourist does not have a map and is tasked with
navigating a 360-degree street view environment. 9510.2 Set of instructions presented to turkers before starting their first task. 99

10.3 (cont.) Set of instructions presented to turkers before starting their
first task. 100

10.4 Example dialogue from the Talk The Walk dataset. 101
10.5 Map of New York City with red rectangles indicating the captured

neighborhoods of the Talk The Walk dataset. 102
10.6 We show MASC values of two action sequences for tourist localiza-

tion via discrete communication with T = 3 actions. In general,
we observe that the first action always corresponds to the correct
state-transition, whereas the second and third are sometimes mixed.
For instance, in the top example, the first two actions are correctly
predicted but the third action is not (as the MASC corresponds to a
“no action”). In the bottom example, the second action appears as
the third MASC. 119

10.7 Result of running the text recognizer of (Gupta et al., 2016) on
four examples of the Hell’s Kitchen neighborhood. Top row: two
positive examples. Bottom row: example of false negative (left)
and many false positives (right) . 123

10.8 Frequency of landmark classes . 124

x

List of Tables

4.1 GuessWhat?! statistics split by dataset types. 38
4.2 Classification errors for the oracle baselines on train, valid and test

set. The best performing model is ”Question + Category + Spatial”
and refers to the MLP that takes the question, the selected object
class and its spatial features as input. 44

4.3 Classification errors for the guesser baselines on train, valid and test
finished set. 47

4.4 Test error for the question generator models (QGEN) based on VGG+HRED(FT)
guesser model. We here report the accuracy error of the guesser
model fed with the questions from the QGEN model. 51

6.1 Samples extracted from the test set. The blue (resp. purple) box
corresponds to the object picked by the guesser for the beam-search
(resp. REINFORCE) dialogue. The small verbose description is
added to refer to the object picked by the guesser. 66

6.2 Guessing accuracy of the QGen with CE and REINFORCE. New
objects refers to uniformly sampling objects within the training set,
new images refer to sampling objects from the test set. 68

8.1 GuessWhat?! Oracle hyperparameters 80
8.2 VQA hyperparameters . 81
8.3 VQA accuracies trained with train set and evaluated on test-dev. . 83
8.4 Ablation study to investigate the impact of leaving out the lower

stages of ResNet. 84
8.5 GuessWhat?! test errors for the Oracle model with different embed-

dings. Lower is better. 84

10.1 Talk The Walk grounds human generated dialogue in (real-life) per-
ception and action. 97

10.2 Dataset statistics split by neighborhood and dialogue status. 102
10.3 Accuracy results for tourist localization with emergent language,

showing continuous (Cont.) and discrete (Disc.) communication,
along with the prediction upper bound. T denotes the length of the
path and a 3 in the “MASC” column indicates that the model is
conditioned on the communicated actions. 11010.4 Localization accuracy of tourist communicating in natural language.112

xi

10.5 Full task evaluation of localization models using protocol of Algo-
rithm 3. 112

10.6 Samples from the tourist models communicating in natural language.
Contrary to the human generated utterance, the supervised model
with greedy and beam search decoding produces an utterance con-
taining the current state observation (bar). Also the reinforcement
learning model mentions the current observation but has lost lin-
guistic structure. The fact that these localization models are better
grounded in observations than human utterances explains why they
obtain higher localization accuracy. 11510.7 Full task performance of localization models trained on human and
random trajectories. There are small benefits for training on random
trajectories, but the most important hyper-parameter is to condition
the tourist utterance on a single observation (i.e. trajectories of size
T = 0.) at evaluation time. 116

10.8 Localization performance using pre-trained tourist (via imitation
learning) with beam search decoding of varying beam size. Loca-
tions and observations extracted from human trajectories. Larger
beam-sizes lead to worse localization performance. 117

10.9 Localization given last {1, 3, 5} dialogue utterances (including the
guide). We observe that (1) performance increases when more ut-
terances are included; and (2) MASC outperforms no-MASC in all
cases; and (3) mean T̂ increases when more dialogue context is in-
cluded. 118

10.10Results for landmark classification. 120

xii

List of Abbreviations

AdaM Adaptative Moment estimation

AI Artificial Intelligence

BN Batch Normalization

CBN Conditional Batch Normalization

CNN Convolutional Neural Network

DNN Deep Neural Network

FiLM Feature-wise Linear Modulation

LSTM Long-Short Term Memory

MASC Masked Attention for Spatial Convolutions

MILA Montréal Institute of Learning Algorithms

MLE Maximum Likelihood Estimation

MLP Multi-Layer Perceptron

MSE Mean Squared Error

NLL Negative Log-Likelihood

NYC New York City

RL Reinforcement Learning

RNN Recurrent Neural Network

SGD Stochastic Gradient Descent

VQA Visual Question Answering

xiii

Notation
This thesis adopts (where possible) the notation of the deep learning book (Good-

fellow et al., 2016). To make this manuscript as self-contained as possible, we
include a style sheet with examples below.

Numbers and Arrays

a A scalar (integer or real)

a A vector

A A matrix

A A tensor

In Identity matrix with n rows and n columns

I Identity matrix with dimensionality implied by
context

e(i) Standard basis vector [0, . . . , 0, 1, 0, . . . , 0] with
a 1 at position i

diag(a) A square, diagonal matrix with diagonal entries
given by a

a A scalar random variable

a A vector-valued random variable

A A matrix-valued random variable

xiv

Sets and Graphs

A A set

R The set of real numbers

{0, 1} The set containing 0 and 1

{0, 1, . . . , n} The set of all integers between 0 and n

[a, b] The real interval including a and b

(a, b] The real interval excluding a but including b

A\B Set subtraction, i.e., the set containing the ele-
ments of A that are not in B

G A graph

PaG(xi) The parents of xi in G

Indexing

ai Element i of vector a, with indexing starting at
1

a−i All elements of vector a except for element i

Ai,j Element i, j of matrix A

Ai,: Row i of matrix A

A:,i Column i of matrix A

Ai,j,k Element (i, j, k) of a 3-D tensor A

A:,:,i 2-D slice of a 3-D tensor

ai Element i of the random vector a

xv

Calculus
dy

dx
Derivative of y with respect to x

∂y

∂x
Partial derivative of y with respect to x

∇xy Gradient of y with respect to x

∇Xy Matrix derivatives of y with respect to X

∇Xy Tensor containing derivatives of y with respect
to X

∂f

∂x
Jacobian matrix J ∈ Rm×n of f : Rn → Rm

∇2
xf(x) or H(f)(x) The Hessian matrix of f at input point x∫
f(x)dx Definite integral over the entire domain of x∫

S
f(x)dx Definite integral with respect to x over the set S

Probability and Information Theory

P (a) A probability distribution over a discrete vari-
able

p(a) A probability distribution over a continuous vari-
able, or over a variable whose type has not been
specified

a ∼ P Random variable a has distribution P

Ex∼P [f(x)] or Ef(x) Expectation of f(x) with respect to P (x)

Var(f(x)) Variance of f(x) under P (x)

Cov(f(x), g(x)) Covariance of f(x) and g(x) under P (x)

H(x) Shannon entropy of the random variable x

DKL(P‖Q) Kullback-Leibler divergence of P and Q

N (x;µ,Σ) Gaussian distribution over x with mean µ and
covariance Σ

xvi

Functions

f : A→ B The function f with domain A and range B

f ◦ g Composition of the functions f and g

f(x;θ) A function of x parametrized by θ. (Some-
times we write f(x) and omit the argument θ
to lighten notation)

log x Natural logarithm of x

σ(x) Logistic sigmoid,
1

1 + exp(−x)

||x||p Lp norm of x

||x|| L2 norm of x

1condition is 1 if the condition is true, 0 otherwise

xvii

Acknowledgement
It goes without saying that this work would not have been possible without the

support of many people.
First and foremost, I would like to thank my advisor Prof. Aaron Courville for

his invaluable support throughout my doctorate program. His high-level overview
of the research field, as well as his deep technical knowledge, has been tremendously
helpful in shaping my own research program. Meetings with Aaron were always
fun, productive, and often led to exciting new ideas. I admire his enthusiasm for
new scientific ideas, his clarity of thought, and his great sense of humility. I feel
privileged for having been under his mentorship and for teaching me how to become
a better scientist.

I would also like to express my gratitude towards Prof. Yoshua Bengio for
accepting me into the PhD program, for his guidance throughout the first year of my
studies, and for creating such a stimulating research environment. His enthusiasm
and passion for artificial intelligence has been truly inspiring.

I am also thankful to Dr. Roland Memisevic for being a great co-supervisor
during my second year.

During my PhD, I had the fortune of going on several research internships.
A big thanks goes to Hugo Larochelle for inviting me to his research group at
Twitter Cortex, and for being a great collaborator on the projects presented in
this thesis. Hugo has the unique ability to quickly understand the depth of your
technical problem and to offer new perspectives on them. I’d also like to thank
Olivier Pietquin for welcoming me to his group at INRIA Lille, for communicating
his enthusiasm for reinforcement learning, and for showing me the French way of
living. I’m also thankful to Bilal and Jeremie for being great co-authors. Gratitude
is also due to Douwe Kiela for giving me the opportunity to spend time at Facebook
AI Research (FAIR). I have enjoyed philosophical perspective on the language
grounding problem. At FAIR, I have also benefitted from the many interactions
with Jason Weston, Dhruv Batra, and Devi Parikh.

A major role in this work was played by my collaborator and friend Florian
Strub. Thank you for bearing with me during all the late night coding and writ-
ing. I also enjoyed co-organizing the NeurIPS workshops on Visually Grounded
Interaction and Language with you.

I’d like to thank the administrative staff at the University of Montreal for
making my life so much easier. In particular, thanks to Celine Begin and Linda
Peinthiere for taking care of all the paperwork. At the Montreal Institute for Learn-

xviii

ing Algorithms, I was surrounded by many brilliant researchers who contributed
to a very unique research environment. I feel honored to have been part of this
lab and I am grateful to everyone with whom I had fruitful interactions, includ-
ing: Adriana Romero, Adrien Ali Täıga, Ahmed Touati, Alexandre De Brébisson,
Amar Shah, Amjad Almahairi, Amy Zhang, Asja Fisher, Bart van Merriënboer,
Çağlar Gülçehre, César Laurent, Daniel Jiwoong Im, David Krueger, Dzmitry Bah-
danau, Ethan Perez, Faruk Ahmed, Felix Hill, Francesco Visin, Frédéric Bastien,
Guillaume Alain, Jörg Bornschein, Junyoung Chung, Kelvin Xu, Kyunghyun Cho,
Kyle Kastner, Laurent Dinh, Li Yao, Marcin Moczulski, Martin Arjovski, Mathias
Berglund, Mathieu Germain, Mehdi Mirza, Mohamed Ishmael Belghazi, Nicolas
Ballas, Pascal Lamblin, Pascal Vincent, Saizheng Zhang, Sarath Chandar, Sungjin
Ahn, Tegan Maharaj, Tim Cooijmans, Vincent Dumoulin, Yann Dauphin, and
Yaroslav Ganin.

I am also thankful for all the stimulating interactions with many members from
the research community which I met at conferences or at the research groups I
visited: Abhishek Das, Arthur Szlam, Daniele Callandro, Eric Nalisnick, Ilija Bo-
gunovic, Jake Snell, Jasper Snoek, Jeremie Mary, Laurens van der Maaten, Kurt
Shuster, Owen Lewis, Matteo Pirotta, Mengye Ren, Michal Valko, Nal Kalchbren-
ner, Ronan Fruit, Sachin Ravi, and Taco Cohen.

Some special words of gratitude go to my friends who kept me sane during the
long working hours. Among them are Alberic, Ayman, Benjamin, Cesar, Daniel,
Eduardo, Emile, Fleur, Patrick, and Pieter.

Lastly, I am indebted to my sister in law, Quirine, my brothers, Evert and Jaap,
and my parents, Jan and Rineke, for their continuous support, love and care. Even
though I was physically far away, they knew I was chasing my dream and their
moral support has been invaluable.

Harm de Vries,
March 2019

xix

1 Introduction

While people use natural language in many forms throughout their daily lives,

arguably the most natural and fundamental use is dialogue. Every person, whether

young or old, can hold a conversation, whereas reading essays or giving presen-

tations are considerably more difficult. The ease with which humans engage in

dialogue also manifests itself in how often people use these conversational skills in

their day-to-day activities, including when it comes to ordering food, talking about

the weather conditions or participating in a political debate.

Inspired by these remarkable human capabilities, researchers in the field of

Artificial Intelligence (AI) have long been dreaming of machines that can converse

via natural language. The quest for creating conversational agents—also known as

dialogue systems or chatbots—is not only driven by academic curiosity but also by

their potential economic value. As humans already know how to chat, intelligent

machines with true conversational capabilities could be readily deployed in a wide

array of domains (e.g. customer support, commerce, healthcare, etc) with minimal

adaptation by the end user. By contrast, traditional ways of interacting with

computing devices, such as through terminals or graphical user interfaces, are not

as natural for humans, leading to a much steeper learning curve. Thus, realizing

human-level dialogue systems would genuinely disrupt the field of human-machine

interaction and, as a result, accelerate the integration of intelligent machines into

our contemporary society.

Early attempts at creating chatbots date back more than 50 years ago with

ELIZA, designed by Joseph Weizenbaum in 1966, as the first well-known dialogue

system. ELIZA consists of a set of hard-coded rules aiming to simulate a Roge-

rian psychotherapist by merely rephrasing the user’s reply. While convincing to

some participants, ELIZA was still easily distinguished from humans by its limited

language understanding and lack of common knowledge. Over the last decades,

follow-up chatbots have attempted to design better if-then rules, albeit with min-

imal success, which led many of today’s researchers to believe that capturing the

1

full complexity of dialogue with hand-coded systems is complicated, if not impos-

sible. Chatbot designers have therefore focused on narrow domains like flight or

restaurant booking, but even in such setups, it is difficult to account for all possible

dialogue scenarios in advance. For rare use cases, this often results in frustrating

user experiences. A more viable, scalable, and less human-labor-intensive approach

is to build chatbots through the use of data-driven methods. Rather than using

hard-coded rules, machine learning methods infer dialogue policies from transcripts

of human conversations. Even though such machine learning methods are trained

on a limited number of conversations, they have the potential to generalize to use

cases beyond the training data.

The last decade has seen an explosion of interest in machine learning, primarily

led by a class of learning methods, known as deep learning, that brought break-

throughs in several application domains, including speech recognition, object de-

tection, and machine translation. The success of deep learning was first witnessed

in supervised learning tasks, in which one aims to learn an input-output mapping

from example pairs. Deep learning methods parameterize this input-output map-

ping through an artificial neural network, whose operations are loosely inspired

by the human brain. Contrary to prior learning methods that extract high-level

features from the input data, neural networks often learn directly from low-level

input data like RGB pixels or raw audio waves. Deep neural networks have also

been incorporated into reinforcement learning setups, where an agent learns to act

in an unknown environment in order to maximize some pre-defined reward. Such

deep reinforcement learning methods have beaten the world’s best player at the

game of Go as well as human experts at playing numerous Atari video games.

The rapid progress of deep learning and reinforcement learning has motivated

the application of these techniques to the field of dialogue modeling, where they

are known under the name of end-to-end approaches or neural models. Neural

models have mainly been used in the chitchat setting, where a conversational agent

needs to converse with human participants in open-ended domains. Current end-

to-end models display rather poor conversational performance, as their generated

responses suffer from issues such as (i) being non-specific and (ii) lacking long-term

consistency. Because of these limitations, chatbots for commercial applications,

such as Amazon’s Alexa, Apple’s Siri and Google’s Assistant, only use neural net-

works for particular building blocks and utilize hand-coded programs for other

2

parts.

While chit-chat is considered to be the grand goal for conversational agents,

this thesis studies dialogue in a much more constrained context, the so-called goal-

oriented dialogue setups. As the name suggests, conversations in such setups are

driven by the need to accomplish a specific task, such as booking a flight or re-

serving a table at a restaurant. Often, these dialogue setups can be phrased as

an information-transfer game, where two interlocutors, both having access to some

form of private information, converse to resolve their information discrepancy. For

example, in the case of restaurant booking, there is an information-seeking agent

with particular restaurant preferences and an information-providing agent with

access to a list of available restaurants. The goal of the dialogue is then to trans-

fer the information-seeking’s value function—i.e. restaurant preferences—to the

information-provider, who can then, based on this information, pick a restaurant

from the list. Such goal-oriented setup come therefore with a straightforward eval-

uation measure: whether or not the information-provider chose a restaurant that

met the preferences of the information-seeker. Chit-chat settings do not (yet) have

an automated evaluation procedure, which makes measuring progress for this class

of conversational agents much more cumbersome.

This thesis is concerned with goal-oriented dialogue problems in multi-modal

environments, where interlocutors are not only exposed to text-based information

but also other input modalities such as images or sounds. The solution to these set

of problems requires to combine conversational skills with the ability to perceive,

listen, or act in a virtual world. The motivation for studying multi-modal dialogue

setups are at least two-fold. First, recent evidence from the field of cognitive science

suggests that human language learning is inherently multi-modal (Barsalou, 2008a;

Smith and Gasser, 2005). That is, humans run simulations of their perceptual and

motor systems when they understand and produce natural language. Given that

people acquire language capabilities in a sensory-rich environment, some scholars

have argued that a grounded learning environment is essential to fully understand

all aspects of language. For example, the fact that a banana is often yellow is

much easier to derive from images than from text documents, as these facts are

so implicit that no one ever writes them down. Second, as the field of robotics

is progressing at an unprecedented rate, we might soon be surrounded by robots

doing physical tasks. In this futuristic scenario, robots will perceive and act in

3

Figure 1.1 – This thesis studies deep and reinforcement learning algorithms for problems on
the intersection of the following three pillars: dialogue, information-seeking and multi-modality.
This figure illustrates how these setups relate to other popular learning tasks.

the real world, as well as interact with humans via natural language. Multi-modal

dialogue is perhaps the closest learning setup to prepare for this scenario.

To summarize, this thesis studies deep learning and reinforcement learning al-

gorithms for problems on the intersection of the following three pillars: dialogue,

information-seeking and multi-modality. Other popular learning tasks emerge, such

as image captioning, goal-oriented dialogue, and visual question answering, if we

only pick other subsets—see Fig. 1.1 for an overview. Concretely, this thesis makes

the following contributions to this field:

— We introduce GuessWhat?!, an image guessing game, where one player, the

questioner, needs to locate an unknown object by asking yes-no questions

to the other player, the oracle. We collect a large scale dataset of more than

150k human-played games and establish supervised deep learning baselines

for the three sub-tasks.

— For the task of generating a series of questions, we show that deep reinforce-

ment learning methods achieve higher task accuracy than pure supervised

methods. Analysis of the policies reveals that the deep RL method suffers

4

less from repeating questions, and tailors their questions to strengths of the

oracle model.

— We introduce Conditional Batch Normalization (CBN) layers—now better

known as Feature-wise Linear Modulation (FiLM) layers in the literature—

to modulate the convolutional activations to the question at hand. We insert

CBN layers into a pre-trained convolutional network, and show on two visual

question answering benchmarks that it is beneficial to modulate early on in

the visual processing.

— We introduce Talk the Walk, a new dialogue task where two agents (a

“tourist” and a “guide”) collaborate to have the tourist navigate to target

locations in the virtual streets of New York City. We establish baselines for

the full task by training localization models where both agents communicate

via emergent or natural language.

5

2 Background

This chapter covers the basics of machine learning, aiming to provide the reader

with a high-level overview of the mathematical concepts underlying the contribu-

tions of this thesis. This material is by no means a complete account of machine

learning, deep learning, and reinforcement learning, and readers interested in a

thorough exposure of these fields are referred to the books of Bishop (2006); Good-

fellow et al. (2016); Sutton and Barto (1998), respectively. You are encouraged to

skip this chapter if you are already familiar with deep and reinforcement learning.

2.1 Machine Learning

Machine learning is a branch of computer science concerned with studying sys-

tems that improve their performance with observations or data. Rather than hand-

coding algorithms, machine learning methods infer algorithmic solutions directly

from data. The main motivations for the interest in learning systems is that tra-

ditional computer science algorithms have fallen short on some real-world tasks.

That is, although efficient algorithms have been developed for well-defined math-

ematical problems like sorting numbers and calculating the shortest path between

nodes in a graph, certain tasks in the field of computer vision and natural language

processing were too complicated to be governed by a set of hand-written rules.

For instance, although humans recognize objects in images effortlessly, it is unclear

how they perform such a task, making it incredibly complicated to write down a

program for it. Machine learning methods take a fundamentally different approach

to solving such problems: by first collecting a set of input-output examples for the

objects to recognize, and then searching through a family of functions to find the

program that induces the right behavior for these examples. The latter example

6

falls in the class of supervised learning setups, which we will formalize in the next

section.

2.1.1 Supervised Learning

Perhaps the most commonly used form of machine learning is supervised learn-

ing. This setup assumes access to a collection of labeled examples, the so-called

training set D = {(x(n), y(n))}Nn=1. Each data point is characterized by a D-

dimensional feature vector x(n) ∈ RD, where each dimension, or feature, is a

numeric value that represents some quantitative measurement of the object. For

example, features of a person could be age, height, and weight, while features of an

image could be its pixel values. Each data point also has a label y(n), which rep-

resents the desired output. Often, target labels are manually assigned by a human

domain expert. If the label belongs to one of K classes, i.e. y(n) ∈ {1, . . . , K}, we

speak of a classification problem, and if y(n) ∈ R is real-valued we call it a regres-

sion problem. Task involving more complicated label structures, such as sequences

or graphs, are referred to as structured prediction problems.

The objective of supervised learning tasks is to find a function f that correctly

maps the inputs to the desired outputs. To quantify how well function f is fitting

the dataset, we specify a per-sample-loss function ` that measures the discrepancy

between the prediction and target. By summing the per-sample-losses, we obtain

the total loss over the dataset:

Ltrain(f) =
N∑
n=0

l(f(x(n)), y(n)). (2.1)

For classification problems, a natural loss function is the error, defined as:

`acc(ŷ, y) = 1ŷ==y, (2.2)

which measures the proportion of examples for which the function predicts the

incorrect label. Rather than predicting a single class label, classification models

often output a K-dimensional vector representing the model distribution over the

class labels, i.e. ŷc = Pmodel(y = c|x), and use the negative log likelihood of the

correct label as loss:

`(ŷ, y) = − log ŷy. (2.3)

7

This particular loss also corresponds to the cross entropy between the data and

model distribution (see () for more information on this probabilistic interpretation).

For regression problems, we often use the squared error:

`sq(ŷ, y) = (ŷ − y)2, (2.4)

or absolute error:

`abs(ŷ, y) = |ŷ − y|. (2.5)

Note that until now we only considered the loss on the training examples, even

though it is not the metric that we care about. Instead, we are interested in

the loss on unseen examples, as this indicates how the model would perform when

deployed in the real-world. To mathematically characterize generalization behavior,

we assume that each example is drawn independently from an unknown probability

distribution p(x, y). This probabilistic assumption allows us to define the expected

loss, or risk:

R(f) =

∫
l(f(x), y)dp(x, y) (2.6)

In practice, we can not compute the risk because we do not have access to the data

generating distribution. We therefore estimate this quantity by calculating the loss

Ltest on a separate set of held-out examples, known as the test set Dtest.

Now, the critical question that machine learning studies is: given training set D
and loss function l, how do we find a function f that minimizes the test loss Ltest?

The most common principle for finding an approximate solution to this question is

Empirical Risk Minimization. In this framework, we search for the function f ∗ in

a pre-defined hypothesis space F that minimizes the training loss Ltrain:

f ∗ = arg min
f∈F

Ltrain(f), (2.7)

in the hope that f ∗ achieves low loss on the test set. To make this principle

more concrete, let us consider a softmax regression model for a K-way classification

problem. This model first obtains a K-dimensional score vector s by applying a

linear transformation the input x:

s = Wx+ b (2.8)

8

which is then transformed into a probability distribution over the class labels via

the softmax operation:

ŷc = softmax(s)c =
exp(sc)∑
j exp(sj)

. (2.9)

Finally, we set the loss to the log probability of outputting the correct label:

`(ŷ, y) = − log ŷy. (2.10)

In this example, the hypothesis space F is the set of linear functions, defined

by the parameters θ = [vec(W); b]. Unlike the classification error, the negative

log likelihood is differentiable with respect to the parameters θ, meaning that

we can apply continuous optimization methods to find optimal parameters θ∗ that

minimize the training loss Ltrain. Technically speaking, this optimization problem is

convex in its parameters and therefore enjoys many favorable properties, including

an optimization landscape with one global minimum which is reachable by first-

order methods (Boyd and Vandenberghe, 2004). That is, iteratively taking small

steps in the direction of the negative gradient:

θt+1 = θt − α∇θLtrain(θ), (2.11)

will eventually converge to θ∗ when an appropriately step-size α is chosen.

How well the function f ∗ generalizes largely depends on the underlying data

generating process and the properties of the chosen hypothesis space F . For exam-

ple, the hypothesis space in the softmax regression problem is restricted to linear

functions, so if the underlying data generating process is highly non-linear, we will

experience so-called underfitting. Because there is no function in the hypothesis

space that can fit the data well, this results in high training and test error. The

only way then to improve generalization performance is to choose another (more

expressive) hypothesis space that better fits the data. The opposite of underfit-

ting can happen as well; if we only have a very small dataset but search in a very

large hypothesis space, we are at risk of overfitting. Rather than fitting the true

underlying function, the models then learns spurious patterns and noise present

in the training data. We can easily diagnose overfitting because it results in low

training error but high test error. A common way to combat overfitting is—besides

9

collecting more data—to regularize the search process towards “simpler” functions.

Instead of hard-constraining the hypothesis space, regularizers softly prefers “sim-

pler” function in the hypothesis space, often at the expense of higher training error.

Usually, a regularizer is implemented by adding a term Ω(θ) to the training loss:

Ltrain(θ) =
N∑
n=0

l(f(x(n);θ), y(n)) + λΩ(θ), (2.12)

where λ is a hyperparameter that determines the strength of the regularization

term. Examples of popular regularizers include L1 regularization: Ω(θ) = ||θ||1,

and L2 regularization: Ω(θ) = ||θ||2. To determine the amount of regularization λ,

as well as the values of other hyperparameters, we often use a third set of examples,

the validation set Dvalid.

2.2 Deep Learning

Deep learning is a branch of machine learning, particularly well-suited to pro-

cess natural forms of data, such as images, speech, and language. Until very re-

cently, constructing learning models for these application domains required signif-

icant engineering effort, as well as considerable domain expertise. For instance,

if you want to build a classifier that can recognize cats and dogs from an im-

age, we would first extract hand-crafted features from the picture, which are then

fed to a simple (linear) classifier. For such systems, the choice of feature repre-

sentation is of utmost importance for the success of the machine learning model.

Practitioners have therefore devoted much of their time to hand-engineering ef-

fective representations by designing preprocessing pipelines for extracting image

features. Examples of frequently-used image features are Scale-invariant Feature

Transform (SIFT) (Lowe, 2004) or Histograms of Oriented Gradients (HOG) (Dalal

and Triggs, 2005).

Rather than hand-designing features, the premise of deep learning is to learn

representations directly from raw data. While the idea is conceptually simple,

representation learning is challenging because of the high-dimensionality of natural

data. For example, even a small RGB image of size 64 × 64 already leads to a

10

feature space with more than 12k dimensions. Such high-dimensional spaces require

exponentially more data points to densely fill the same volume, a phenomenon

that is known as the curse of dimensionality (Bellman, 1966). So, even for a very

large dataset, we are still facing a very sparsely-populated feature space. This is

problematic for conventional machine learning methods, such as support vector

machines and nearest neighbor methods, that base their predictions on a local

neighborhood around the considered data point. Namely, the closest neighbors of

a particular data point may be so far apart that their outputs are not semantically

related, i.e., we can not leverage the smoothness prior that nearby data points have

similar labels. Hence, learning algorithms for this set of problems require one to

incorporate priors that go beyond local generalization.

Deep learning models generally assume the existence of multiple factors of

variation that are responsible for explaining the underlying data-generating pro-

cess (Bengio et al., 2013). If we can independently learn about such factors of

variation, then it possible to achieve non-local generalization by constructing novel

combinations of factors that were not seen during training. Deep learning exploits

distributed representations (Hinton et al., 1984) to capture the factors of variation.

Such representations spread the information across multiple dimensions rather than

taking a one-hot value (a vector with one non-zero component), leading to exponen-

tially more efficient representations. For example, to represent a set of N integers,

a binary representation only requires log2N) values, whereas a one-hot represen-

tation needs N values. As the name suggests, the second prior at the essence of

deep learning is depth in the representation. Deep learning methods construct

such hierarchical representations by composing multiple layers of transformation,

aiming to gradually capture more abstract aspects of the data distribution. For

certain function classes, deep representations require exponentially fewer param-

eters than shallow representations, indicating that depth can offer computational

and statistical advantages (Montufar et al., 2014; Bengio et al., 2013).

2.2.1 Feed-forward Networks

A feed-forward neural network, or multi-layer perceptron (MLP), is perhaps one

of the most prototypical examples of an artificial neural network. These models

11

are constructed by chaining several sub-functions:

f(x) = f (3)(f (2)(f (1)(x))), (2.13)

where each f (j) is often referred to as a jth layer of the network. Each layer f (j)

usually consists of an affine transformation, followed by an element-wise activation

function g:

z(j) = W (j)h(j−1) + b(j); (2.14)

h(j) = g(j)(z(j)) h(0) = x (2.15)

where the intermediate representations h(j) ∈ Rd(j) are usually called the hidden

units. The number of hidden units d(j) defines the size of the jth layer. The param-

eters W (j) ∈ Rd(j)×d(j−1)
and b ∈ Rd(j) are called the weights and bias, respectively.

When all the elements in W are non-zero, we speak of a fully-connected layer.

The number of layers define the depth of the network. Common choices for the

activation function g are:

— the Identity function 1:

g(x) = x. (2.16)

— the Sigmoid function:

σ(x) =
(
1 + exp(−x)

)−1
. (2.17)

— the Hyperbolic Tangent function:

tanh(x) =
exp(x)− exp(−x)

exp(x) + exp(−x)
; (2.18)

— the Rectified Linear Unit:

ReLU(x) = max(0, x). (2.19)

In recent years, ReLUs have become the default choice, as they were shown to out-

perform the Tanh and Sigmoid activation functions (Glorot et al., 2011; Maas et al.,

1. This choice results in a linear layer. If all layers in the network are linear, then the model
can only express linear functions.

12

2013). For classification problems, the final layer often uses a softmax activation

function:

softmax(x)k =
exp(xk)∑
k′ exp(xk′)

(2.20)

to output a probability distribution over the class labels.

2.2.2 Convolutional Neural Networks

Convolutional Neural Networks (CNNs), or ConvNets, constitute a popular

class of neural networks, particularly well-suited to process locally-structured data.

While ConvNets have been applied to several data modalities, including speech

and natural language, this thesis will only study these models for image data. For

that reason, we will establish the notation of convolutional layers in this context.

Specifically, we assume that input image X is a 4-tensor 2, where Xi,c,w,h refers to

the ith input sample of the cth channel at location (w, h). For 100 RGB images of

size 128× 128, this results in X having dimensions (100, 3, 128, 128).

At the core of a CNN is the convolutional operator ∗, which, in its discrete

form, is taking input matrix F and kernel matrix G:

Si,j = (F ∗G)i,j =
∑
m

∑
n

Fi−m,j−nGm,n. (2.21)

Intuitively, this operation slides the kernel G over the input F to produce matrix

S, whose output dimensions are determined by the kernel size (W,H), the stride

size—i.e. the steps taken when sliding the kernel—and the type of padding (see

Dumoulin and Visin (2016) for more details). Now, a convolutional layer produces

the cth feature, better known as feature map H(j)
i,c,:,:, by summing the result of

convolutions with all incoming feature maps:

Z(j)
i,c,:,: = b(j)

c +
d(j−1)∑
c′=0

H(j)
i,c′,:,: ∗K

(j)
c,c′,:,:, (2.22)

where kernel K(j) ∈ Rd(j)×d(j−1)×W×H and bias b(j) ∈ Rd(j) are the learnable pa-

rameters. Convolutional layers are designed to take advantage of the structure of

2. Unlike in the section on feed-forward networks, we assume here that X is batch of data
points. This enables us to define the batch normalization operator later in this section.

13

images, by (i) using kernels that operate on small patches and (ii) sharing the ker-

nel weights across different spatial locations. These architectural restrictions lead

to representations that are translation equivariant, i.e. shifting the input image re-

sults in an accordingly shifted feature representation. In general, this assumption

is useful for images because we are interested in detecting particular features, e.g.

a person’s eye, no matter where they are located. Compared to fully-connected

layers, convolutional layers drastically reduce the number of parameters.

Like fully-connected layers, convolution layers are often followed by a non-linear

activation function, such as the ReLU (Eq. 2.19). After this non-linearity, CNNs

often add a pooling layer with the aim to incorporate some invariance with respect

to the precise location of the feature. Pooling layers often compute the average or

max over non-overlapping windows of the feature map, thereby reducing its spatial

dimensions (often by at least a factor two). As a result, further processing stages

require fewer parameters and computation, thereby significantly reducing the risk

of overfitting.

Although convolutional neural networks have been used since the early 90s (Le-

cun et al., 1998), the recent surge of interest started in 2012 by a deep CNN winning

the ImageNet classification challenge (Krizhevsky et al., 2012). The winning entry,

known as AlexNet, consisted of a 8-layer convolutional network trained on one mil-

lion images of the ImageNet dataset (Deng et al., 2009), which includes pictures

of various dog breeds, foods, automobiles, and so on. Since then, CNNs have been

dominating object recognition and detection competitions (Simonyan and Zisser-

man, 2015; Szegedy et al., 2015; Kaiming et al., 2016), with further architectural

modifications leading to even stronger performance. Most notably, more recent

convolutional neural networks have smaller kernels (often of size 3x3) and are sig-

nificantly deeper. For example, a VGG network (Simonyan and Zisserman, 2015)

has 19 layers, while a Residual Network (ResNet) (Kaiming et al., 2016) has up

to 152 layers. Deeper networks are increasingly more difficult to train due to van-

ishing gradients (Bengio et al., 1994; Hochreiter, 1998), so in order to train their

152-layer network, (Kaiming et al., 2016) introduced residual blocks :

H(j) = f(H(j−1);θ(j)) + H(j−1), (2.23)

where the jth feature map is constructed by adding a residual f(H(j−1);θ(j)) to the

14

previous feature map H(j−1). Adding such skip connections to the network makes

it easier to propagate the gradients. Usually, the residual function f consists of

two to three convolution layers. The convolutional layers in ResNets make use of

another important innovation in training CNNs: Batch Normalization (BN) (Ioffe

and Szegedy, 2015). This technique speeds up training but simultaneously acts as a

regularizer. Given a mini-batch B = {Zi,·,·,·}Ni=1 of N feature maps, BN normalizes

the activations at training time as follows:

BN(Zi,c,h,w|γc, βc) = γc
Zi,c,w,h − EB[F·,c,·,·]√

VarB[Z·,c,·,·] + ε
+ βc, (2.24)

where ε is a constant damping factor for numerical stability, and γc and βc are

trainable scalars introduced to keep the representational power of the original net-

work. Note that for convolutional layers the mean and variance are computed over

both the batch and spatial dimensions (such that each location in the feature map

is normalized in the same way). At inference time, the batch mean EB and variance

VarB are replaced by the population mean µ and variance σ2, often estimated by

an exponential moving average over batch mean and variance during training.

After training on ImageNet, the intermediate activations of a CNN are surpris-

ingly general image features which can be used to bootstrap other classification

tasks for which there is limited data available (Donahue et al., 2014). Usually,

this transfer learning procedure extracts activations of the penultimate layer of

the CNN, which are then fed as input to a linear classifier or small MLP. In this

thesis, we will often use features from VGG (Simonyan and Zisserman, 2015) and

ResNet (Kaiming et al., 2016) to obtain such general-purpose image representa-

tions.

2.2.3 Recurrent Neural Networks

Recurrent Neural Networks (RNNs) are the architecture of choice for handling

sequential data, such as audio and natural language. In this section, we focus on

RNNs for natural language processing as this will be the main application in this

thesis. Thus, we consider a linguistic sequence x = (x1, . . . , xK) of length K where

each word xk is taken from a predefined vocabulary V. We transform each token

into a continuous word-embedding ξk = e(xk) ∈ RP by a learned look-up table

15

e. The resulting sequence of embeddings (ξ1, . . . , ξK) is then fed to a recurrent

neural network which produces a sequence of RNN state vectors (s1, . . . , sK) by

repeatedly applying the transition function f :

sk = f(sk−1, ξk). (2.25)

Here, each state sk is a R-dimensional vector representing the information about

the elements of the sequence up to index k. Many transition functions are possible,

but perhaps the simplest one is:

f(sk−1, ξk) = tanh(W [sk−1; ξk] + b), (2.26)

which leads to the Elman RNN (Elman, 1990). However, these simple RNNs

have difficulties learning long-term dependencies as they suffer from the vanish-

ing gradient problem (Bengio et al., 1994; Hochreiter, 1998). For that reason, more

complex transition functions were designed, like the Long-Short Term Memory

(LSTM) cell (Hochreiter and Schmidhuber, 1997) and the Gated Recurrent Unit

(GRU) (Cho et al., 2014), that incorporate gating mechanisms to explicitly control

the information flow of the memory cell. LSTMs also introduce a cell memory ck,

so that the transition function f(sk−1, ck−1, ξk) depends on the previous state sk, :

ik = σ
(
ξkU

i + sk−1W
i
)

(2.27)

fk = σ
(
ξkU

f + sk−1W
f
)

(2.28)

ok = σ
(
ξkU

o + sk−1W
o
)

(2.29)

c̃k = tanh
(
ξkU

g + sk−1W
g
)

(2.30)

ck = σ
(
fk ∗ ck−1 + it ∗ c̃k

)
(2.31)

sk = tanh(ck) ∗ ok. (2.32)

The input gate ik and forget gate fk regulate the information flow into the new

cell ck by weighting the sum over the old cell vector ck−1 and new cell vector c̃k,

respectively. To obtain the new state-vector ck, we apply a tanh non-linearity to

the cell vector ck and multiply it element-wise with the output gate ok. Finally, to

encode sequence x, we take the last hidden state sK .

Besides encoding sequences, RNNs can also be used for generating sequences.

16

To that end, we take a probabilistic perspective and parameterize the RNN to

model the probability for a given sequence y, i.e. P (y) = P (y1, . . . , yL). The chain

rule enables us to decompose this joint probability into the product of conditional

probabilities:
∏L

l=1 P (yl|y1:l−1). We let the RNN output the conditional probability

P (yl|y1:l−1) through a linear transformation from the hidden state sl−1, followed

by a softmax:

P (yl|y1:l−1) = softmax(Wsl−1 + b)yl . (2.33)

The RNN model defines a probability over the sequence y, allowing us to optimize

its parameters with respect to the negative log likelihood:

− logP (y) =
∑
l

logP (yl|yl−1). (2.34)

This way of training is called teacher forcing, as we feed in the ground-truth label

yl−1 of the previous step as input to the current time step k. At evaluation time,

we do not have access to ground-truth labels and therefore feed a sample yl−1

from its own distribution P (yl−1|y1:l−2) back as input to the lth time step. Hence,

we can generate samples from the sequential data distribution P (y1, . . . , yL) by

repeatedly sampling words from the conditional model distribution P (yl|y1:l−1) till

we encounter the special end-of-sequence token.

Sequence-to-sequence models (Cho et al., 2014; Sutskever et al., 2014) combine

an RNN encoder and decoder aiming to map the input sequence x = (x1, . . . , xK) to

the output sequence y = (y1, . . . , yL). These models first encode the input sequence

x via an encoder RNN f enc into a fixed embedding eenc. This fixed vector eenc is

then concatenated to the input of the decoder RNN fdec at each step, i.e.:

ξl = [ξl; e
enc]. (2.35)

In this way, we model the conditional distribution P (y1, . . . , yL|x) rather than

P (y1, . . . , yL). Encoder-decoder architectures have been successfully applied to ma-

chine translation (Cho et al., 2014; Sutskever et al., 2014), where a source language

sentence x needs to be translated into target language sentence y. Encoder-decoder

models also been applied to dialogue (Vinyals and Le, 2015; Serban et al., 2016),

where the history of dialogue x is mapped to a dialogue response y.

17

2.2.4 Optimization

Deep learning methods employ continuous optimization methods to search for

the parameters θ∗ that minimize the training loss L(θ∗) 3. We often use variants

of Stochastic Gradient Descent (SGD) to iteratively update the parameters in the

direction of steepest descent, as defined by the gradient of the loss L with respect

to the parameters θ. To efficiently compute the gradient ∇θL for the neural net-

work parameters, we use a procedure called backprogation (Rumelhart et al., 1986).

Starting from the output, the backpropagation algorithm walks backwards over the

computation graph and computes the partial derivatives with respect to the inter-

mediate nodes via the multi-variate chain rule. More specifically, suppose the loss

L is a function of the hidden units h
(j+1)
1 , . . . ,h

(j+1)
P , which in turn depend on the

hidden unit h
(j)
a in the previous layer, then the multi-variate chain rule states that:

∂L

∂h
(j)
a

=
∑
p

∂L

∂h
(j+1)
p

∂h
(j+1)
p

∂h
(j)
a

. (2.36)

If we apply this rule to the MLP example in equation 2.14, then the gradient ∇z(j)L
with respect to the pre-activation z(j) is given by following the recursive equation:

∇z(j)L =
∂L

∂z(j)
= (W (j))T

∂L

∂z(j+1)
� g(j)′(z(j)). (2.37)

Note that we sometimes write ∇z(j)L to denote ∂L
∂z(j)

. From this expression, it is

straightforward to obtain the gradient with respect to parameters W (j) and bias

b(j):

∂L

∂b(j)
=

∂L

∂z(j)

∂L

∂W (j)
=

∂L

∂z(j)
(h(j−1))T

In practice, it only requires one forward and backward pass through the network

to obtain the gradient ∇θL with respect to all parameters. In a similar way,

the backpropagation algorithm can be applied to CNNs and RNNs, although the

latter architecture requires to backprop through time (Werbos, 1990): a procedure

that “unfolds” the graph over time and copies the parameters over multiple time

3. We omit the “train” superscript for brevity

18

steps. In recent years, many software packages have been developed that can

automatically compute the gradients for any acyclic computation graph. Popular

frameworks include Theano (Al-Rfou et al., 2016), PyTorch (Paszke et al., 2017),

and TensorFlow (Abadi et al., 2015).

Deep learning methods are especially effective when applied to large datasets.

This makes naively applying gradient-based optimization impractical, as calcu-

lating the gradient over all examples is often too computationally expensive. A

straightforward way to alleviate such a computational bottleneck is to calculate an

(unbiased) estimate of the gradient∇θLB on a small mini-batch B = (x(1), . . . ,x(M))

of M examples. These mini-batch gradients can still provide a good update direc-

tion because there is often significant redundancy in the data points. The family

of optimization algorithms that use such cheap but noisy parameter updates are

known as Stochastic Gradient Descent (SGD) methods. Despite noisy gradients,

SGD still converges to a (local) optimum under mild conditions (). In practice, we

do not randomly sample mini-batches, but instead go over the dataset in random

order. Each sweep is called an epoch and processes all examples in the dataset.

Unlike logistic regression, the optimization problem in deep learning is non-

convex with respect to its parameters. Non-convex problems are considered to be

much harder because they lead to an optimization landscape with many local min-

ima, in which gradient-based methods do not necessarily find the optimal solution.

For decades, practitioners believed that the main obstacle for training neural net-

works was the proliferation of local minima with a much higher error than the global

minimum (Dauphin et al., 2014; Choromanska et al., 2015). Recent work, how-

ever, has shown that most critical points in high-dimensional landscapes are saddle

points, which, in principle, are not problematic for local optimization methods. In

practice, such saddle points can considerably slow training because of plateaus and

ill-conditioned structures. To better handle such pathological curvature and speed

up neural network training, stochastic gradient methods often incorporate pre-

conditioners (Dauphin et al., 2015) or momentum (Sutskever et al., 2013). In this

thesis, we will mainly use AdaM (Kingma and Ba, 2014) as stochastic optimiza-

tion method, which incorporates diagonal pre-conditioning and momentum—see

Algorithm 1 for pseudo-code. It is also important to initialize the neural network

parameters in a sensible range so that gradients properly flow through the network.

Here, we opt for the popular Glorot initialization scheme (Glorot and Bengio, 2010).

19

Algorithm 1 AdaM algorithm (Kingma and Ba, 2014)

Require: Initialization of θ0

Require: learning rate sequence (αt)t≥0

Require: decay coefficients (β1, β2) ∈ [0, 1]
Require: damping coefficient ε > 0

1: θ ← θ0

2: µ1 ← 0
3: µ2 ← 0
4: t← 0
5: for epoch 1 → N do
6: Shuffle dataset D
7: while epoch not done do
8: Sample mini-batch B
9: Calculate mini-batch gradient ∇θLB

10: m← β1m+ (1− β1)∇θLB

11: v ← β2v + (1− β2)
(
∇θtLB

)�2

12: ĝ → g/(1− βt+1
1)

13: v̂ → v/(1− βt+1
2)

14: θ ← θ − αt ĝ√
v̂+ε

15: t← t+ 1
return θ

2.3 Reinforcement Learning

Another fundamental topic in machine learning is that of sequential decision-

making. Reinforcement Learning (RL) provides a mathematical framework for

studying systems that take a sequence of actions. In contrast to supervised learn-

ing algorithms, these learning systems do not rely on external human supervision

but instead learn from interactions with the environment. The RL framework is

quite general and covers problems in diverse application domains, ranging from ma-

nipulating robot hands (Andrychowicz et al., 2018) to playing board games (Silver

et al., 2017) to learning treatment policies for chronical diseases (Shortreed et al.,

2011).

Reinforcement learning formalizes the sequential-decision problem as a Markov

Decision Process (MDP) (Sutton and Barto, 1998). At each time step t, an agent

observes state xt ∈ S and can take any action ut ∈ A available for the current state.

After performing action ut, the environment returns the next state xt+1 and gives

the agent a reward r(xt, ut). The state transition is a random process governed

20

by p(xt+1|xt, ut). If the agent is given access to the state-transition function p of

the MDP, we speak of a planning problem. For reinforcement learning problems,

the agent does not know the state transition probabilities and must learn to take

actions from sample trajectories. The agent’s behavior is specified by its policy

π, which can be either stochastic or deterministic. In this work, we consider a

stochastic policy π(ut|xt) that maps a state xt to a probability distribution over

the action set U. The value function v quantifies the expected amount of future

rewards when executing policy π from state x:

vπ(x) = Eut∼π(xt),xt+1∼p(xt+1|xt,ut)

[
∞∑
t=1

γtr(xt, ut)|x1 = x

]
, (2.38)

where γ ∈ [0, 1] is a discount factor that determines how far the agent looks into the

future. In other words, the value vπ(x) indicates how good it is to be in state x. A

related but more useful quantity for optimizing control policies is the action-value

qπ(x, a), which is defined as the expected cumulative rewards for taking action u

from state x:

qπ(x, u) = Eut∼π(xt),xt+1∼p(xt+1

[
∞∑
t=1

γtr(xt, ut)|x1 = x, u1 = u

]
(2.39)

A key concept in reinforcement learning is the bellman equation, which let us

define the current state value in terms of the values of neighbouring states. More

specifically, the expected bellman equation specifies the action value qπ(x, a) by

the following recurrence relation:

qπ(x, u) = r(x, u) + γ
∑
x′

p(x′|x, u)
∑
u′

π(x′, u′)qπ(x′, u′). (2.40)

As we will see later, many RL algorithms exploit this relationship for learning their

action policy. Lastly, we define the optimal action-value as q∗(x, u) = supπ q
π(x, u),

which allows us to define the optimal policy by selecting the highest action value

for each state:

π∗(x) = arg max
u′

q∗(x, u′). (2.41)

It is important to stress that the reinforcement learning problem does not assume

knowledge of the underlying MDP. Instead, it aims to recover the optimal policy

21

from sample trajectories T = {τn = (x
(n)
t , u

(n)
t , r

(n)
t)Tt=1}Nn=1. The probability of

generating trajectory τ depends on the policy π, the state-transition function p of

the MDP, and the distribution over the start state p(x1):

π(τ) = p(x1)
T∏
t=1

π(ut|xt)p(xt+1|xt, ut) (2.42)

For policy gradients, we will define the RL objective in terms of an expectation

over the trajectory distribution.

There are a few useful categorizations of RL algorithms. The first important

division is between model-based and model-free methods. Model-based algorithms

explicitly learn a model of the environment, which the algorithm utilizes at eval-

uation time to plan their actions. These model-based planning approaches may

reduce the number of samples needed to learn an effective policy. On the other

hand, model-free methods do not explicitly model their environment and learn a

policy directly from example trajectories. Model-free approaches are more effective

if the model dynamics are more complicated than learning the actual policy. In

this work, we will focus on model-free RL methods.

RL algorithms are also divided into on-policy and off-policy methods. In off-

policy methods, the agent learns about the target policy while trajectories are

sampled from an exploratory behavior policy. On the contrary, on-policy methods

update their policy with samples generated from their own policy. In general,

on-policy methods are more stable during training but also less sample-efficient.

The two main approaches to training RL agents are value-based and policy-

based methods. We briefly outline the two approaches in the following sub-sections.

2.3.1 Value-based methods

In value-based methods, agents learn a policy π by estimating the action values

qπ(x, u) via a parameterized function Qθ : S × U → R. In deep reinforcement

learning, the Qθ function is parameterized by a deep neural network. The most

popular way of optimizing Q is through Temporal Difference (TD) learning, which

bootstraps the current Q estimate using other action value estimates. That is,

the algorithm aims to minimize the discrepancy between the Qθ-estimate and the

so-called TD target, which is derived from the expected bellman equation and

22

provides a 1-step approximation of the expected cumulative reward. For SARSA,

an on-policy method, this leads to the following loss for a given state-action-reward-

state-action quintuple z = (xt, ut, rt,xt+1, ut+1):

`(z;θ) = (Qθ(xt, ut)−

TD target︷ ︸︸ ︷
rt + λQθ(xt+1, ut+1))2. (2.43)

The total loss is then defined as the expected loss over the distribution of state-

action-reward-state-action pairs. We often use stochastic optimization methods,

such as Adam, to optimize the parameters θ of the Q-network. To ensure that the

algorithm does not get stuck in sub-optimal behavior and keeps exploring novel ac-

tion trajectories, SARSA employs an epsilon-greedy policy, which with probability

ε takes a uniform random action and with probability 1− ε takes a greedy action,

i.e. arg maxu′ Q
θ(x, u′). We often use a high ε at the beginning of training—so as

to explore different strategies—and slowly anneal ε to zero in order to converge to

the optimal policy. While SARSA requires sample trajectories from its own policy,

Q-learning approximates the action-value function by trajectories generated from

a behavior policy. DQN (Mnih et al., 2013) used this off-policy method to train

their agent to successfully play a number of Atari games.

2.3.2 Policy-based methods

In contrast to value-based methods, policy-based methods directly parameter-

ize the policy πθ(ut|xt). The goal of policy optimization is to find a policy that

maximizes the expected return, also known as the mean value:

J(θ) = Eτ∼πθ(τ)[
T∑
t=0

γtr(xt, ut)], (2.44)

where γ ∈ [0, 1] is the discount factor. Note that γ = 1 is allowed as we consider

the episodic scenario (Sutton et al., 1999). To improve the policy, its parameters

θ can be updated in the direction of the gradient of the mean value:

θh+1 = θh + αh∇θJ |θ=θh , (2.45)

23

where h denotes the training time-step and αh is a learning rate such that
∑∞

h=1 αh =

∞ and
∑∞

h=1 α
2
h <∞.

Thanks to the gradient policy theorem (Sutton et al., 1999), the gradient of

the mean value can be estimated from a batch of trajectories Th sampled from the

current policy πθh by:

∇J(θh) = Eτ∼πθ(τ)

[
T∑
t=1

∇θh log πθh(ut|xt)qπθh (xt, ut)

]
, (2.46)

where qπθh (x, u) is the state-action value that defines the cumulative expected

reward for a given state-action pair. However, these policy gradient estimates

often suffer from high variance, thereby significantly slowing down the optimization

process. One common trick to obtain unbiased gradient estimates with reduced

variance is to subtract a baseline value b(xt) from the state-action value qπθh (xt, ut):

∇J(θh) = Eτ∼πθ(τ)

[
T∑
t=1

∇θh log πθh(ut|xt)(qπθh (xt, ut)− b(xt))

]
. (2.47)

Often, we use the state-value vπθ(xt) as baseline, so that the policy gradients

can be rewritten in terms of the advantage function Aπθ(x, u) = qπθ(x, u) −
vπθ(x). There are different ways to estimate the action-values qπθh (x, u). In

REINFORCE (Williams, 1992)), we simply use cumulative discounted rewards of

monte-carlo roll-outs, whereas actor-critic methods use temporal difference learning

to estimate these values.

24

3 Prologue to First Article

3.1 Article Details

H. de Vries, F. Strub, S. Chandar, H. Larochelle, O. Pietquin, A. Courville.

GuessWhat?! Visual Object Discovery through Multi-modal dialogue. The IEEE

Conference on Computer Vision and Pattern Recognition (CVPR), 2017.

Personal contribution In early meetings of the IGLU project (see Context

section), Aaron and Olivier came up with the general research direction of goal-

oriented and multi-modal dialogue. This idea was further developed into the Guess-

What project—building on top of MS COCO, constraining the oracle, etc—in fur-

ther discussions with Florian, Sarath, and myself. I’ve been responsible for develop-

ing the website and the data collection on mechanical turk, with help from Florian

(website+data collection) and Sarath (data collection). Florian implemented signif-

icant parts of the baseline models. Sarath contributed the HRED implementation

for the question generator. I’ve written most parts of the paper, with help from

Hugo, Sarath and Florian.

3.2 Context

The GuessWhat project was developed in the context of Interactive Grounded

Language Understanding (IGLU), a European-funded project that is part of the

CHRIST-ERA program. IGLU is a consortium consisting of research groups from

six universities (University of Montreal, University of Lille, University of Mons, Uni-

versity of Zaragoza, University of Sherbrooke, and KTH Royal Institute of Technol-

ogy), aiming to advance computational methods for interactive and grounded lan-

guage understanding by bringing together expertise from the fields of machine learn-

25

ing, speech processing, robotics, human-machine interaction, and neuroscience.

The GuessWhat project started as a collaboration between the research groups

of Aaron Courville (University of Montreal) and Olivier Pietquin (University of

Lille).

At the time, the language-and-vision research community mostly focused on

single-turn tasks, such as image captioning or referring expression identification.

We found this setting quite unrealistic, as humans often use multiple turns when

making predictions. We were interested in incorporating interactive dialogue into

such multi-modal tasks.

3.3 Contributions

This papers’ main contribution is the development of GuessWhat, an image-

based guessing game in which two agents collaborate to discover an hidden object

through a series of questions. We collect a large-scale dataset of human-played

games, which enables the study of data-hungry deep learning methods for visually

grounded dialogue. Concurrent to this work, Das et al. (2017a) developed the

Visual Dialog task, which is similar to GuessWhat in many ways, but differs in its

(implicit) goal of selecting a target image among a set of distractors.

3.4 Recent Developments

Since the release of GuessWhat dataset, several research groups have investi-

gated several sub-tasks of the complete task, see for example (Shekhar et al., 2019;

Zhao and Tresp, 2018; Zhang et al., 2018). Even more broadly, there has been a

growing interest in the field of grounded language learning and several new tasks

and datasets have been introduced, including visually-grounded instruction follow-

ing (Anderson et al., 2018) and embodied question answering (Das et al., 2018).

26

4
GuessWhat?! Visual Object
Discovery through
Multi-Modal Dialogue

People use natural language as the most effective way to communicate, including

when it comes to describing the visual world around them. They often need only a

few words to refer to a specific object in a rich scene. Whenever such expressions

unambiguously point to one object, we speak of a referring expression (Krahmer

and Deemter, 2012). However, uniquely identifying the referred object is not always

possible, as it depends on the listener’s state of mind and the context of the scene.

Many real life situations, therefore, require multiple exchanges before it is clear

what object is referred to:

- Did you see that dog?

* You mean the one in the corner?

- No, the one that’s running.

* Yes, what’s up with that?

A computer vision system able to hold conversations about what it sees would be

an important step towards intelligent scene understanding. Such systems would be

more transparent and interpretable because humans may naturally interact with

them, for example by asking clarifying questions about what it perceives. Still,

a fundamental challenge remains: how to create models that understand natural

language descriptions and ground them in the visual world.

The last few years has seen an increasing interest from the computer vision

community in tasks towards this goal. Thanks to advances in training deep neural

networks (Goodfellow et al., 2016) and the availability of large-scale classification

datasets (Lin et al., 2014; Russakovsky et al., 2015; Zhou et al., 2014), automatic

object recognition has now reached human-level performance (LeCun et al., 2015).

As a result, attention has been shifted toward tasks involving higher-level image

understanding. One prominent example is image captioning (Lin et al., 2014),

the task of automatically producing natural language descriptions of an image.

Visual Question Answering (VQA) (Antol et al., 2015) is another popular task

that involves answering single open-ended questions concerning an image. Closer

27

Questioner
Is it a vase?
Is it partially visible?
Is it in the left corner?
Is it the turquoise and purple one?

Oracle
Yes
No
No
Yes

Figure 4.1 – An example game. After a sequence of four questions, it becomes possible to locate
the object (highlighted by a green bounding box).

to our work, the ReferIt game (Kazemzadeh et al., 2014) aims to generate a single

expression that refers to one object in the image.

On the other hand, there has been a renewed interest in dialogue systems (O.

Lemon and O. Pietquin, 2012; Serban et al., 2015a), inspired by the success of

data-driven approaches in other areas of natural language processing (Cho et al.,

2014). Traditionally, dialogue systems have been built through heavy engineering

and hand-crafted expert knowledge, despite machine learning attempts for almost

two decades (Levin and Pieraccini, 1997; Singh et al., 1999a). One of the difficulties

comes from the lack of automatic evaluation as – contrary to machine translation –

there is no evaluation metric that correlates well with human evaluation (Liu et al.,

2016a). A promising alternative is goal-directed dialogue tasks (O. Lemon and O.

Pietquin, 2012; Singh et al., 1999a; Weston et al., 2016; Wen et al., 2016) where

agents converse to pursue a goal rather than casually chit-chat. The agent’s success

rate in completing the task can then be used as an automatic evaluation metric.

Many tasks have recently been introduced, including the bAbI tasks (Weston et al.,

2016) for testing an agent’s ability to answer questions about a short story, the

movie dialog dataset (Dodge et al., 2016) to assess an agent’s capabilities regarding

personal movie recommendation and a Wizard-of-Oz framework (Wen et al., 2016)

to evaluate an agent’s performance for assisting users in finding restaurants.

28

Is it a person?

Is it a snowboard?
NoIs it the red one?
Yes

Is it a cow? Yes

NoIs the cow on the left?
No

On the right ? Yes

Is it an item being worn or held?

Is it the one being held by the
person in blue?

Yes First cow near us?

Is it the big cow in the middle?

Yes

Yes
No

#203974 #168019

Figure 4.2 – Two example games in the dataset. After a sequence of five questions we are able
to locate the object (highlighted by a green mask).

In this paper, we bring these two fields together and propose a novel goal-

directed task for multi-modal dialogue. The two-player game, called GuessWhat?!,

extends the ReferIt game (Kazemzadeh et al., 2014) to a dialogue setting. To

succeed, both players must understand the relations between objects and how they

are expressed in natural language. From a machine learning point of view, the

GuessWhat?! challenge is the following: learn to acquire natural language by

interaction on a visual task. Previous attempts in that direction (Unknown, 2016;

Wen et al., 2016) do not ground natural language to their immediate environment;

instead they rely on an external database through which a conversational agent

searches.

The key contribution of this paper is the introduction of the GuessWhat?!

dataset that contains 160,745 dialogues composed of 821,889 question/answer pairs

on 66,537 images extracted from the MS COCO dataset (Lin et al., 2014). We define

three sub-tasks that are based on the GuessWhat?! dataset and prototype deep

learning baselines to establish their difficulty. The paper is organized as follows.

First, we explain the rules of the GuessWhat?! game in Sec. 4.1. Then, Sec. 4.2

describes how GuessWhat?! relates to previous work. In Sec. 4.3.1 we highlight our

design decisions in collecting the dataset, while Sec. 4.3.2 analyses many aspects of

29

the dataset. Sec. 4.4 introduces the questioner and oracle tasks and their baseline

models. Finally, Sec. 4.5 provides a final discussion of the GuessWhat?! game.

4.1 GuessWhat?! game

GuessWhat?! is a cooperative two-player game in which both players see the

picture of a rich visual scene with several objects. One player – the oracle – is

randomly assigned an object (which could be a person) in the scene. This object

is not known by the other player – the questioner – whose goal it is to locate the

hidden object. To do so, the questioner can ask a series of yes-no questions which

are answered by the oracle as shown in Fig 4.1 and 4.2. Note that the questioner

is not aware of the list of objects, they can only see the whole picture.

Once the questioner has gathered enough evidence to locate the object, they

notify the oracle that they are ready to guess the object. We then reveal the list of

objects, and if the questioner picks the right object, we consider the game successful.

Otherwise, the game ends unsuccessfully. We also include a small penalty for every

question to encourage the questioner to ask informative questions. Fig 4.3 and 4.4

display a full game from the perspective of the oracle and questioner, respectively.

The oracle role is a form of visual question answering where the answers are lim-

ited to Yes, No and N/A (not applicable). The N/A option is included to respond

even when the question being asked is ambiguous or an answer simply cannot be

determined. For instance, one cannot answer the question ”Is he wearing glasses?”

if the face of the selected person is not visible. The role of the questioner is much

harder. They need to generate questions that progressively narrow down the list

of possible objects. Ideally, they would like to minimize the number of questions

necessary to locate the object. The optimal policy for doing so involves a binary

search: eliminate half of the remaining objects with each question. Natural lan-

guage is often very effective at grouping objects in an image scene. Such strategies

depend on the picture, but we distinguish the following types:

Spatial reasoning We group objects spatially within the image scene. One

may use absolute spatial information – Is it on the bottom left of the picture?

– or relative spatial location – Is it to the left of the blue car?.

30

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

(m) (n)

Figure 4.3 – An example game from the perspective of the oracle. Shown from left to right and
top to bottom.

Visual properties We group objects by their size – Is it big?, shape – Is it

square? – or color – Is it blue?.

Object taxonomy We can use the hierarchical structure of object categories,

i.e. taxonomy, to group objects e.g. Is it a vehicle? to refer to both cars

and trucks.

Interaction We group objects by how we interact with them – Can you drive

31

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

(m) (n) (o)

(p) (q)

Figure 4.4 – An example game from the perspective of the questioner. Shown from left to right
and top to bottom.

it?.

The goal of the GuessWhat?! task is to enable machines to understand natural

32

descriptions and ground them into the visual world. Note that such higher-level

reasoning only occurs when the scene is rich enough i.e. when there are enough

objects in the scene. People otherwise tend to fall back to a linear search strategy

by simply enumerating objects (often by their category names).

4.2 Related work

The GuessWhat?! game and the data collected from it present opportunities for

the extension of current research on image captioning, visual question answering

and dialogue systems. In the following, we describe previous work in these areas

and relate them to the open challenges offered by GuessWhat?!. We also mention

other relevant work on dataset collection.

Image captioning Our work builds on top of the MS COCO dataset (Lin et al.,

2014) which consists of 120k images with more than 800k object segmentations.

In addition, the dataset provides 5 captions per image which initiated an explo-

sion of interest from the research community into generating natural language de-

scriptions of images. Several methods have been proposed (Karpathy and Fei-Fei,

2015; Vinyals et al., 2015; Xu et al., 2015), all inspired by the encoder-decoder

approach Cho et al. (2014); Sutskever et al. (2014) that has proven successful for

machine translation. Image captioning research uncovered successful approaches to

automatically generate coherent, factual statements about images. Modeling the

interactions in GuessWhat?! requires instead to model the process of asking useful

questions about images.

VQA datasets Visual Question Answering (VQA) tasks form another well known

extension of the captioning task. They instead require answering a question given

a picture (e.g. ”How many zebras are there in the picture?”, ”Is it raining outside?”

). Recently, the VQA challenge (Antol et al., 2015) has provided a new dataset far

bigger than previous attempts (Geman et al., 2015; Malinowski and Fritz, 2014)

where, much like in GuessWhat?!, questions are free-form. An extensive body of

work has followed from this publication, largely building on the image captioning

literature (Agrawal et al., 2016; Lu et al., 2016; Shih et al., 2016; Yang et al.,

33

ReferIt

woman in red jacket with green bag

left woman in red coat

GuessWhat?!

Is it a person? Yes

One of the people with the
stroller on the right?

No

The woman in red? Yes

#36948

guy with hat bottom right front

guy sitting with hat bottom right

GuessWhat?!

Is it a person?

Are they standing?

Are they touching the frisbee ??

Yes

Black cap ?

Yes

No

Yes

One of the two people crossing
the street towards us?

No

#151896 #51020

GuessWhat?!

Is it edible?

Is it on oval plate?

Is it green?

Yes

Yes

Yes

Yes
The whole doughnut?

ReferIt ReferIt

doughnut in the middle with green
frosting

No

Are they holding a square
thing?

Figure 4.5 – Samples illustrating the difference between GuessWhat?! and ReferIt games. As
both dataset are constructed on top of MS COCO, we picked identical objects (and images).

2016a). Unfortunately, many of these advanced methods were shown to marginally

improve on simple baselines (Jabri et al., 2016). Recent work (Agrawal et al., 2016)

also reports that trained models often report the same answer to a question irre-

spective of the image, suggesting that they largely exploit predictive correlations

between questions and answers present in the dataset. The GuessWhat?! game

and dataset attempt to circumvent these issues. Because of the questioner’s aim

to locate the hidden object, the generated questions are different in nature: they

naturally favour spatial understanding of the scene and the attributes of the ob-

jects within it, making it more valuable to consult the image. Besides, it only

contains binary questions, whose answers we find to be balanced and has twice

more questions on average per picture.

Goal-directed dialogue GuessWhat?! is also relevant to the goal-directed di-

alogue research community. Such systems are aimed at collaboratively achieving

a goal with a user, such as retrieving information or solving a problem. Although

goal-directed dialogue systems are appealing, they remain hard to design. Thus,

they are usually restricted to specific domains such as train ticket sales, tourist

information or call routing (Pietquin and Dutoit, 2006; Singh et al., 1999a; Young

34

et al., 2013). Besides, existing dialogue datasets are either limited to fewer than

100k example dialogues (Dodge et al., 2016), unless they are generated with tem-

plate formats (Dodge et al., 2016; Wen et al., 2016; Weston et al., 2016) or sim-

ulation (Pietquin and Hastie, 2013a; Schatzmann et al., 2006) in which case they

don’t reflect the free-form of natural conversations. Finally, recent work on end-to-

end dialogue systems fail to handle dynamical contexts. For instance, (Wen et al.,

2016) intersects a dialogue with an external database to recommend restaurants. In

contrast, GuessWhat?! dialogues are heavily grounded by the images. The result-

ing dialogue is highly contextual and must be based on the content of the current

picture rather than an external database. Thus, to the best of our knowledge, the

GuessWhat?! dataset marks an important step for dialogue research, as it is the

first large scale dataset that is both goal-oriented and multi-modal.

Human computation games GuessWhat?! is in line with Von Ahn’s seminal

work on human computation games (Ahn and Dabbish, 2004; Ahn et al., 2006)

who showed that games are an effective way to gather labeled data. The first ESP

game (Ahn and Dabbish, 2004) was developed to collect image tags, and was later

extended to Peekaboom (Ahn et al., 2006) to gather object segmentations. These

games were developed more than a decade ago, when object recognition was in its

infancy and served a different purpose than GuessWhat?!.

ReferIt Probably closest to our work is the ReferIt game (Kazemzadeh et al.,

2014; Mao et al., 2015; Yu et al., 2016). In this game, one player observes an anno-

tated object in a scene, for which they need to generate an expression that refers

to it (e.g. ẗhe man wearing the white t-shirt¨). The other player then receives this

expression and subsequently clicks on the location of the object within the image.

The original dataset (Kazemzadeh et al., 2014) uses the IMAGEClef dataset (Es-

calante et al., 2010), while three recent extensions (Mao et al., 2015; Yu et al.,

2016) were built on top of MS COCO. All three databases select images with only

2 − 4 objects of the same category. In contrast, GuessWhat?! picks images with

3 − 20 objects without further restrictions on the object class, and thus contains

three times more images than the ReferIt datasets. To further investigate the dif-

ference between ReferIt and GuessWhat?!, we compare three samples for the same

selected object in Fig 4.5. While ReferIt directly locates the object with a single

35

(a) (b)

(c)

Figure 4.6 – (a) Number of questions per dialogue (b) Number of questions per dialogue vs the
number of objects within the picture (c) Word cloud of GuessWhat?! vocabulary with each word
proportional to its frequency. Words are colored based on a hand-crafted clustering. Uninforma-
tive words such as ”it”, ”is” are manually removed.

expression, GuessWhat?! iteratively narrows down the object by means of positive

and negative feedback on questions. We also observe that GuessWhat?! dialogues

favor more abstract concepts, such as ”Is it edible?” or ”Is it on oval plate?” than

ReferIt.

I spy The robotics community has explored variants of the ”I spy” (Vogel et al.,

2010; Parde et al., 2015; Thomason et al., 2016) game for grounded language ac-

quisition. In one of the scenario, the robot is first shown a set of objects that it

can pokes thought some predefined actions (grasp, hold, look etc.) while recording

several modalities (VGG features, sounds, motor joint positions etc.). As a second

step, the human describes one of the object oh his choice and the robot must guess

the referenced object. However, the robotic constraints force the game setting to

remain limited to small number of objects (4 32), and the training are mainly done

in a on-line fashion with no released dataset.

36

4.3 GuessWhat?! Dataset

4.3.1 Data collection

Images We use a subset of the training and validation images and objects of the

MS COCO dataset (Lin et al., 2014). We first discard objects that are too small

(area < 500px2) to be decently located by a human observer. Then, we only keep

images containing three to twenty objects, to avoid trivial or overly complicated

images. In total, we keep 77,973 images with 609,543 objects. We verified that this

selection does not significantly alter the original dataset distribution.

Amazon Mechanical Turk The data collection was crowd-sourced on Amazon

Mechanical Turk (AMT) (Buhrmester et al., 2011). We created two separate tasks

– known as HITs on AMT – for the questioner and oracle roles, and rewarded the

questioner slightly more than the oracle. We ensured the quality of the data collec-

tion by several means. First, the workers had to go through a qualification round

which consisted of successfully completing 10 games while producing fewer than 4

mistakes or disconnects. After qualification, HITs continue to consist of a batch

of 10 successful games. We incentivize the worker to produce as many successful

dialogues in a row by providing bonuses for making fewer mistakes. Secondly, play-

ers could report on each other and players were banned after a certain number of

reports. Thus, players were incentivized to cooperate. In the end, we only kept di-

alogues from qualified people and successful dialogues from the qualification round.

In contrast to traditional dataset collection, our game requires an interactive ses-

sion between two players. Fortunately, we found that the GuessWhat?! game was

highly engaging. A total of more than 10K people participated in our HITs, and

our top ten participants played over 2, 000 games each.

Since questions were manually typed, they could contain spelling mistakes.

Thus, we retrieved all questions containing words that do not occur in an En-

glish dictionary and manually corrected the 1000 most common words. For the

remaining 30k questions, we created two HITs that to correct the spelling mis-

takes.

37

Full Finished Success

dialogues 160,745 152,000 135,400

questions 821,889 780,391 672,940

words 3,985,368 3,788,167 3,254,793

voc. size 11,464 11,259 10,637

voc. size (3+) 5,444 5,324 5,013

images 66,537 66,161 63,642

segmented objects 535,723 531,847 505,599

selected objects 134,073 131,415 117,513

Table 4.1 – GuessWhat?! statistics split by dataset types.

(a)

(4
, 5

]

(5
, 6

]

(6
, 7

]

(7
, 8

]

(8
, 9

]

(9
, 1

0]

(1
0,

 1
1]

(1
1,

 1
2]

(1
2,

 1
3]

0

5000

10000

15000

20000

25000

30000

N
um

be
r

of
 d

ia
lo

gu
es

% Success

Success

Failure

Incomplete

0.0

0.2

0.4

0.6

0.8

1.0

S
uc

ce
ss

 r
at

io

log of object area

(b)

2 4 6 8 10 12 14

Number of questions

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

R
at

io
 y

es
 n

o

Ratio yes--- no

Dialogue of size 9

(c)

Figure 4.7 – (a-b) Histogram of absolute/relative successful dialogues with respect to the number
of objects and the size of the objects, respectively. (c) Evolution of answer distribution clustered
by the dialogue length

4.3.2 Data analysis

In the following, we explore properties of the data we collected using the Guess-

What?! game. We provide global statistics, examine the vocabulary used by the

questioners and highlight the relationship between properties of objects to guess

and the odds of having a successful dialogue.

Dataset statistics The raw GuessWhat?! dataset is composed of 160,745 di-

alogues containing 821,889 question/answer pairs on 66,537 unique images with

1,385,197 objects and 134,073 unique selected objects. The answers are respec-

tively 52.2% no, 45.6% yes and 2.2% N/A. On average, there are 5.2 questions per

38

normalized image width

no
rm

al
iz

ed
 im

ag
e

he
ig

ht

0.80

0.82

0.84

0.86

0.88

%
 S

uc
ce

ss

(a)

(b)

Figure 4.8 – (a) Heatmap of the success ratio with respect to the spatial location within the
picture. (b) Histogram of the success ratio relative to the dialogue length.

dialogue and 2.3 dialogues per image. The dialogues contain 3,985,368 word tokens

in total, making up 11,464 different words with at least one occurrence and 5,444

words with at least 3 occurrences. Moreover, 84.2% of the dialogues are success-

ful, 10.3% are unsuccessful and 5.5% are not completed (disconnection, timeout

etc.). Thus, different subsets co-exist in the GuessWhat?! dataset, we will refer

to the dataset as full, finished and successful when we include all the dialogues,

all finished dialogues (successful and unsuccessful) or only successful dialogues,

respectively. The previous statistics are broken down into dataset types in Tab 4.1.

Question distributions To get a better understanding of the GuessWhat?!

games, we show the number of questions within a dialogue and the average num-

ber of questions given the number of objects within a image in Fig 4.6. First,

the number of questions within a dialogue decreases exponentially, as players tend

to shorten their dialogues to speed up the game (and therefore maximize their

gains). More interestingly, we observe that the average number of questions given

the number of objects within an image appears to follow a function that grows

39

at a rate between logarithmically and linearly. A questioning strategy of simply

listing objects (e.g. ”is it the chair”, etc.) would imply linear growth in the num-

ber of questions, while the optimal binary search strategy would imply logarithmic

growth. Thus the human questioners seem to imply a strategy that is somewhere

in between. We conjecture three reasons why humans do not achieve the optimal

search strategy. First, the questioner does not have access to the ground truth list

of objects in the picture, and might, therefore, overestimate the number of objects.

Second, some humans tend to favor a linear search strategy. Finally, the questioner

may ask additional questions to confirm that he has located the right object. This

can be important in the presence of possible oracle errors.

Vocabulary To gain insight into the vocabulary used by the questioner, we com-

pute the frequency of words in the GuessWhat?! corpus and display the most fre-

quent words as a word cloud in Fig 4.6c. Several key words clearly stand out. As

explained in Sec. 4.1, some of those key words refer to abstract object properties

such as person or object, spatial locations such as right/left or side and visual fea-

tures such as red/black/white. Furthermore, prepositions are also heavily used to

express relationships between objects. To better understand the sequential aspect

of the questions, we study the evolution of the vocabulary at each question round.

We observe that questioners use abstract object properties such as human/objec-

t/furniture only at the beginning of the dialogues, and quickly switch to either

spatial or visual terms such as left/right, white/red or table,chair.

Elements of success To investigate whether certain object properties favour

success, we compute the success ratio of dialogues relative to: the size of the

unknown objects in Fig 4.7b, the number of objects within the images in Fig 4.7a,

the object category, the location of objects within the images and the size of the

dialogues in Fig 4.9, Fig 4.8a and Fig 4.8b, respectively. As one may expect, the

more complex the scene is, the lower the success rate is. When there are only 3

objects, the questioner has 95% success rate, while this ratio drops to around 70%

with 20 objects. Similarly, big objects are almost always found while the smallest

one are only found 60% of the time. Questioners easily find objects in the middle of

the picture but have more difficulties to find them on the border. Finally, objects

from categories that are often grouped together, e.g. bananas or books, have a lower

40

Figure 4.9 – Histogram of success ratio broken down per object category.

41

success rates.

Miscellaneous In Fig 4.7c we break down the ratio of yes-no answers within the

dialogues. While the first yes-no answers are balanced for small dialogues, they

often terminate with a final yes. In contrast, long dialogues often start with a

higher proportion of negative answers which slowly decrease during the exchange.

4.3.3 Dataset release

We split the GuessWhat?! dataset by randomly assigning 70%, 15% and 15% of

the images and its corresponding dialogues to the training, validation and test set.

This way of dividing the data ensures that we evaluate performance on images not

seen during training. The GuessWhat?! dataset and the source code is available

at https://guesswhat.ai/download.

4.4 Baselines

We now empirically investigate the difficulty of the oracle and questioner tasks.

To do so, we trained reasonable baselines for each task and measured their perfor-

mance.

Formally, a GuessWhat?! game revolves around an image I ∈ RW×H×3 contain-

ing a set of K segmented objects {o1, . . . , oK}. Each object ok is assigned an object

category ck ∈ {1, . . . , C} and has a pixel-wise segmentation mask Sk ∈ {0, 1}W×H

to specify its location and size. The game further consists of a sequence of ques-

tions and answers D = {q1, a1, . . . , qJ , aJ}, produced by the questioner and or-

acle. We will use (q, a)1:j to refer to the first j question-answer pairs of a dia-

logue. Each question qj = (wji)
Ij
i=1 is a sequence of length Ij with each token wji

taken from a predefined vocabulary V . Each answer is either Yes, No or N/A, i.e.

aj ∈ {Yes, No, N/A}. Finally, the oracle has access to the identity of the correct

object o∗, and the prediction of the questioner will be denoted as opredict.

42

https://guesswhat.ai/download

Is

VGG16 VGG16

MLP

Yes/No/Not applicable

LSTM LSTM LSTM LSTM LSTM

CONTEXT CROP SPATIAL
INFORMATION

OBJECT
CATEGORY

it a vase ?

Figure 4.10 – An schematic overview of the ”Image + Question + Crop + Spatial + Category”
oracle model.

4.4.1 Oracle baselines

The oracle task requires to produce a yes-no answer for any object within a

picture given a natural language question. We first introduce our model and then

outline its results to get a better understanding of the GuessWhat?! dataset.

Model We propose a simple neural network based approach to this model, illus-

trated in Fig 6.1. Specifically, we use an appropriate neural network architecture to

embed each of the following information: the image I, the cropped object from S,

its spatial information, its category c and the current question q. These embeddings

are then concatenated as a single vector and fed as input to a single hidden layer

MLP that outputs the final answer distribution using a softmax layer. Finally, we

minimize the cross-entropy error during the training and report the classification

error at evaluation time.

The details on how we compute the embeddings are as follows.To embed the full

image, it is rescaled to a 224 by 224 image and is passed through a pre-trained VGG

network to obtain its FC8 features. As for the selected object, it is first cropped

43

Model Train err Val err Test err

Dominant class (no) 47.4% 46.2% 50.9%

Question 40.2% 41.7% 41.2%

Image 45.7% 46.7% 46.7%

Crop 40.9% 42.7% 43.0%

Question + Crop 22.3% 29.1% 29.2%

Question + Image 37.9% 40.2% 39.8%

Question + Category 23.1% 25.8% 25.7%

Question + Spatial 28.0% 31.2% 31.3%

Question + Category + Spatial 17.2% 21.1% 21.5%

Question + Category + Crop 20.4% 24.4% 24.7%

Question + Spatial + Crop 19.4% 26.0% 26.2%

Question + Category + Spatial + Crop 16.1% 21.7% 22.1%

Question + Spatial + Crop + Image 20.7% 27.7% 27.9%

Question + Category + Spatial + Image 19.2% 23.2% 23.5%

Table 4.2 – Classification errors for the oracle baselines on train, valid and test set. The best
performing model is ”Question + Category + Spatial” and refers to the MLP that takes the
question, the selected object class and its spatial features as input.

by finding the smallest rectangle that encapsulates it, based on its segmentation

mask. We then rescale the crop to a 224 by 224 square, before obtaining its FC8

features from the pre-trained VGG network. Although we could use the mask to

drop out pixels around the selected object, we keep the crop as is since pre-trained

VGG networks are exposed to such background noise during their training.

We also embed the spatial information of the crop, to help locate the cropped

object within the whole image. To do so, we follow the approach of (Hu et al.,

2016; Yu et al., 2016) and extract an 8-dimensional vector of the location of the

44

bounding box:

xspatial = [xmin, ymin, xmax, ymax, xcenter, ycenter, wbox, hbox] (4.1)

where wbox and hbox denote the width and height of the bounding box, respectively.

We normalize the image height and width such that coordinates range from −1 to

1, and place the origin at the center of the image. As for the object category, we

convert its one-hot class vector into a dense category embedding using a learned

look-up table. Finally, the embedding of the current natural language question q

is computed using an Long Short-Term Memory (LSTM) network (Hochreiter and

Schmidhuber, 1997) where questions are first tokenized by using the word punct

tokenizer from the python nltk toolkit (Bird et al., 2009). For simplicity, we decided

to ignore the question-answer pairs history (q, a)1:j−1 in our oracle baseline.

Training setting We train all oracle models on the full dataset. During train-

ing, we keep the parameters of the VGG network fixed, and optimize the LSTM,

object category/word look-up tables and MLP parameters by minimizing the neg-

ative log-likelihood of the correct answer. We use ADAM (Kingma and Ba, 2014)

for optimization and train for at most 15 epochs. We use early stopping on the

validation set, and report the train, valid and test error.

Results We report results for several oracle models using a different set of inputs

in Table 4.2. We name the model after the input we feed to it. For instance,

(Question+Category+Spatial+Image) refers to the network fed with the question

q, the object category c, the spatial features xspatial and the full image I.

Because the GuessWhat?! dataset is fairly balanced, simply outputting the most

common answer in the training set – No – results in a high 50.8% error rate. Solely

providing the image or crop features barely improves upon this result. Only using

the question slightly improves the error rate to 41.2%. We speculate that this small

bias comes from questioners that refer to objects that are never segmented or over-

represented categories. As hoped, we observe that the error rate significantly drops

(< 31%) when we finally feed information on the object to guess (crop, spatial or

category) to the model. We find that crop and category information are redundant:

the (Question+Category) and (Question+Crop) model achieve respectively 29.2%

and 25.7% error, while the combined model (Question+Category+Crop) achieves

45

LSTM / HRED
encoder

Is it a vase? Yes
Is it partially visible? No
Is it in the left corner? No
Is it the turquoise and purple one? Yes

MLP MLP MLP

obj1

Softmax

Opredict

obj2 obj3 obj4

MLP

Figure 4.11 – Overview of the guesser model for an image with 4 segmented objects. The
weights are shared among the MLPs, this allows for an arbitrary number of objects.

24.7%. In general, we expect the object crop to contain additional information,

such as color information, beside the object class. However, we find that the object

category outperforms the object crop embedding. This might be partly due to the

imperfect feature extraction from the crops. Finally, our best performing model

combines object category and its spatial features along with the question.

4.4.2 Questioner baselines

Given an image, the questioner must ask a series of questions and guess the

correct object. We separate the questioner task into two different sub-tasks that

are trained independently:

Guesser Given an image I and a sequence of questions and answers (q, a)1:J ,

the Guesser predict the correct object o∗ from the set of all objects O.

Question Generator Given an image I and a sequence of j questions and

answers (vq, a)1:j, the Question Generator produce a new question qj+1.

In general, one also needs a module to determine when to start guessing the object

(and stop asking questions). In our baseline, we bypass this issue by fixing the

number of questions to 5 for the question generator model.

Guesser The role of the guesser model is to predict the correct object. To do

so, the guesser has access to the image, the dialogue and the list of objects in the

image. We encode the image by extracting its FC8 features from VGG16 network.

46

Model Train err Val err Test err

Human 10.8% 11.1% 11.1%

Random 82.9% 82.9% 82.9%

LSTM 27.9% 37.9% 38.7%

HRED 32.6% 38.2% 39.0%

LSTM+VGG 26.1% 38.5% 39.5%

HRED+VGG 27.4% 38.4% 39.6%

Table 4.3 – Classification errors for the guesser baselines on train, valid and test finished set.

A dialogue of a GuessWhat?! game is a sequence on two different levels: there is a

variable number of question-answer pairs where each question in turn consists of a

variable-length sequence of tokens. This can be encoded into a fixed size vector by

using either an LSTM encoder (Hochreiter and Schmidhuber, 1997) or an HRED

encoder (Serban et al., 2015b). While the LSTM encoder considers the dialogue as

one flat sequence, HRED explicitly models the hierarchy by two different Recurrent

Neural Networks (RNN). First, an encoder RNN creates a fixed-size representation

of a question or answer by reading in its tokens and taking the last hidden state

of the RNN. This representation is then processed by the context RNN to obtain

a representation of the current dialogue state. For both models, we concatenate

the image and dialogue features and do a dot-product with the embedding for all

the objects in the image, followed by a softmax to obtain a prediction distribution

over the objects. Given the best performance of the ”Question+Category+Spat”

oracle model, we represent objects by their category and their spatial features. More

precisely, we concatenate the 8-dimensional spatial representation (see Eq. 4.1) and

the object category look-up and pass it through an MLP layer to get an embedding

for the object. Note that the MLP parameters are shared to handle the variable

number of objects in the image. See Fig 4.11 for an overview of the guesser with

HRED and LSTM.

Table 4.3 reports the results for the guesser baselines using human-generated

dialogues. As a first baseline, we report the performance of a random guesser

which does not use the dialogue information. We split the guesser results based on

whether they use the VGG features or not. In general, we find that including VGG

features does not improve the performance of the LSTM and HRED models. We

47

Encoder

VGG

a1

context context

a2

Is it a vase?

context context

w11 w12 w14

Decoder

Encoder Encoder Encoder

Is it partially visible?

q2q1

Is it in the left corner?

w11

w11

D
ecoder

Is it partially visible?

w14w12

w13

Yes No

VGG

Figure 4.12 – HRED model conditioned on the VGG features of the image. To avoid clutter,
we here only show the part of the model that defines a distribution over the third question given
the first two questions, its answers and the image P (q2|(q, a)<2, I). The complete HRED model
models the distribution over all questions.

hypothesize that the VGG features are a too coarse representation of the image

scene, and that most of the visual information is already encoded in the question

and the object features. Surprisingly, we find LSTMs to perform slightly better

than the sophisticated HRED models.

Question Generator The question generation task is hard for several reasons.

First, it requires high-level visual understanding to ask meaningful questions. Sec-

ond, the generator should be able to handle long-term context to ask a sequence of

relevant questions, which is one of the most challenging problems in dialogue sys-

tems. Additionally, we evaluate the question generator using the imperfect oracle

and imperfect guesser, which introduces compounding errors. Hierarchical recur-

rent encoder decoder (HRED) Serban et al. (2015b) is the current state of the art

method for natural language generation tasks. We extend this model by condition-

ing on the VGG features of the image as illustrated in Fig 4.12. Finally, we train

48

Is it a person? No
Is it the kite? No
Is it the kite? No
Is it the chair? No
Is it the boat? Yes

Generated Groundtruth
Is it in the sky? No
Is it the umbrella? No
Is it the ocean? No
Is it the boat? Yes

Is it a person? No
Is it a skateboard? No
Is it a car? Yes
Is it the one on the right? No
Is it the one on the right? No

Is it an object? Yes
Do you wear it? No
Do you ride it? No
Is it metal? Yes

Is it a person? Yes
Is it the one in the front? No
Is it the one in the middle? Yes
Is it the one in the middle? Yes
Is it the whole person? Yes

Is it a person? Yes
Is he in the foreground? No
Is he wearing blue? Yes

Figure 4.13 – Three samples of QGen+GT model for which the correct object was predicted.

our proposed model by minimizing the conditional negative log-likelihood:

− logP (q1:J |a1:J , I) = − log
J∏
j=1

P (qj|(q, a)1:j−1, I), (4.2)

= −
J∑
j=1

Ij∑
i=1

logP (wji |w
j
1:i−1, (q, a)1:j−1, I).

with respect to the described parameters. At test time, we use a beam-search

to approximately find the most probable question qj. Evaluating the questioner

model requires a pre-trained oracle and a pre-trained guesser model. We use our

questioner model to first generate a question which is then answered by the oracle

model. We repeat this procedure 5 times to obtain a dialogue. We then use the

best performing guesser model to predict the object and report its error as the

metric for the QGEN model. Since we use ground truth answers during the QGEN

49

Generated Groundtruth
Is it the cat? No
Is it the cat? No
Is it the chair? No
Is it the book? No
Is it the book? No

Is it an animal? No
Is it a device? Yes
Is it silver in color? Yes

Is it a person? No
Is it a remote? No
Is it the chair? Yes
Is it the one on the right? No
Is it the one next to the right? No

Is it a person? No
Is it a couch? Yes
Does the couch
have two pillows on it? Yes

Is it a person? Yes
Is it the guy in the front? No
Is it the guy in the middle? No
Is it the guy in the middle? No
Is it the guy in the middle? No

Is it a person? Yes
Is it in the foreground? No
Is it on a screen? Yes

Figure 4.14 – Three dialogue samples of QGen+GT model for which the wrong object was
predicted.

training while we use oracle answers at test time, there is a mismatch between the

training and testing procedure. This can be avoided by using the oracle answers

also during training time. We call these models QGEN+GT and QGEN+ORACLE

respectively.

Table 4.4 shows the results. A guesser based on human generated dialogues

achieves 38.7% error. The Question Generator models achieve reasonable perfor-

mance which lies in between the random performance and the performance of the

guesser on human dialogues. We observe that using the Oracle’s answers while

training the Question Generator introduces additional errors which significantly

deteriorates performance. Some example dialogues generated by the QGen+GT

50

Model Error

Human generated dialogue 38.7%

QGen+GT 53.2%

QGen+ORACLE 66.0%

Random 82.9%

Table 4.4 – Test error for the question generator models (QGEN) based on VGG+HRED(FT)
guesser model. We here report the accuracy error of the guesser model fed with the questions
from the QGEN model.

model are shown in Fig. 4.13 and 4.14.

4.5 Discussion

We introduced the GuessWhat?! game, a novel framework for multi-modal

dialogue. To the best of our knowledge, we present the first large-scale dataset

involving images and dialogue. A wide range of challenges may arise from this

union as they rely on different fields of machine learning such as natural language

understanding, generative models or computer vision. GuessWhat?! turns out to

be an engaging game that greatly decreases the cost for collection of a big dataset

required for modern algorithms. As a second contribution, we introduced three

tasks based on the questioner and oracle role. In each case, we prototyped a

neural architecture as a first baseline. We analyzed these results and presented a

quantitative description of the GuessWhat?! dataset.

We believe GuessWhat?! could allow for a myriad of other applications that

may either be based on the game itself or extending the database to other tasks. For

instance, it can be interesting to compute a confidence interval before proceeding

to the final guess. Differently, GuessWhat?! could be a test bed for one-shot

learning (Fei-Fei et al., 2006) of guessing new object categories, transfer learning

on line-drawing images (Castrejon et al., 2016) or using questions from another

language. Thus, the GuessWhat?! dataset offers an opportunity to develop original

machine learning tasks upon it.

51

5 Prologue to Second Article

5.1 Article Details

F. Strub, H. de Vries, J. Mary, A. Courville, O. Pietquin. End-to-end Optimiza-

tion of Visually Grounded Dialogue. International Joint Conference on Artificial

Intelligence (IJCAI), 2017.

Personal contribution We designed the GuessWhat task with the idea of ap-

plying deep reinforcement learning in mind. Hence most credit for this direction

should be attributed to Olivier and Aaron. Florian and I both contributed equally

to the implementation of the algorithms while sitting next to each other in the

SeQuel lab in Lille. The paper was written by Florian and myself, with help from

Bilal and Olivier.

5.2 Context

This a natural follow-up on the original GuessWhat paper which established

supervised baselines for the three sub-tasks of the full problem. At the time, there

was a significant interest in deep reinforcement learning methods, mostly due to

their success in solving video games. Here, we investigate how well these learning

methods work in the context of visually grounded dialogue.

5.3 Contributions

This paper investigates deep reinforcement learning methods for the questioner

task of GuessWhat. The goal-oriented nature of the task allows us to specify a

52

reasonable reward function training such RL agents: whether or not the generated

sequence of questions lead the guesser model to select the correct object. We show

that RL agents achieve much better task performance than supervised baselines.

However, we find its questions are less linguistically diverse and tailored towards

the capabilities of the question-answering model.

5.4 Recent Developments

Concurrent to this work, (Das et al., 2017c) applies deep reinforcement learning

to the visual dialog task. For the GuessWhat task, several recent works improved

upon the RL algorithms for the questioner agent, most notably (Zhang et al., 2018;

Zhao and Tresp, 2018). Other work (Shekhar et al., 2019) has argued that the

evaluation of goal-oriented dialogue agents should go beyond their task success

and, to that end, propose a simple grammar to analyze the type of questions they

generate.

53

6
End-to-end Optimization of
Goal-driven and Visually
Grounded Dialogue Systems

Ever since the formulation of the Turing Test, building systems that can mean-

ingfully converse with humans has been a long-standing goal of Artificial Intelli-

gence (AI). Practical dialogue systems have to implement a management strategy

that defines the system’s behavior, for instance to decide when to provide infor-

mation or to ask for clarification from the user. Although traditional approaches

use linguistically motivated rules (Weizenbaum, 1966), recent methods are data-

driven and make use of Reinforcement Learning (RL) (Lemon and Pietquin, 2007).

Significant progress in Natural Language Processing via Deep Neural Nets (Bengio

et al., 2003) made neural encoder-decoder architectures a promising way to train

conversational agents (Vinyals and Le, 2015; Sordoni et al., 2015; Serban et al.,

2016). The main advantage of such end-to-end dialogue systems is that they make

no assumption about the application domain and are simply trained in a supervised

fashion from large text corpora (Lowe et al., 2015).

However, there are many drawbacks to this approach. First, encoder-decoder

models cast the dialogue problem into one of supervised learning, predicting the

distribution over possible next utterances given the discourse so far. As with ma-

chine translation, this may result in inconsistent dialogues and errors that can

accumulate over time. As the action space of dialogue systems is vast, and existing

datasets cover only a small subset of all trajectories, it is difficult to generalize to

unseen scenarios (Mooney, 2006). Second, the supervised learning framework does

not account for the intrinsic planning problem that underlies dialogue, i.e. the se-

quential decision making process, which makes dialogue consistent over time. This

is especially true when engaging in a task-oriented dialogue. As a consequence, re-

inforcement learning has been applied to dialogue systems since the late 90s (Levin

et al., 1997; Singh et al., 1999b) and dialogue optimization has been generally more

studied than dialogue generation. Finally, it is unclear whether encoder-decoder

supervised training efficiently integrates external contexts (larger than the history

of the dialogue) that is most often used by dialogue participants to interact. This

54

context can be their physical environment, a common task they try to achieve,

a map on which they try to find their way, a database they want to access etc.

These contexts are all the more important as they are part of the so called Com-

mon Ground, well studied in the discourse literature (Clark and Schaefer, 1989).

Over the last decades, the field of cognitive psychology has also brought empirical

evidence that human representations are grounded in perception and motor sys-

tems (Barsalou, 2008a). These theories imply that a dialogue system should be

grounded in a multi-modal environment in order to obtain human-level language

understanding (Kiela et al., 2016).

On the other hand, RL approaches could handle the planning and the non-

differentiable metric problems but require online learning (although batch learning

is possible but difficult with low amounts of data (Pietquin et al., 2011)). For that

reason, user simulation has been proposed to explore dialogue strategies in a RL

setting (Eckert et al., 1997; Schatzmann et al., 2006; Pietquin and Hastie, 2013b).

It also requires the definition of an evaluation metric which is most often related

to task completion and user satisfaction (Walker et al., 1997). Without such a

goal-achievement metric, it is difficult to correctly evaluate dialogues (Liu et al.,

2016a). In addition, successful applications of the RL framework to dialogue often

rely on a predefined structure of the task, such as slot-filling tasks (Williams and

Young, 2007) where the task can be casted as filling in a form.

In this paper, we present an architecture for end-to-end RL optimization of

a task-oriented question generator of a dialogue system and its application to a

multimodal task, grounding the dialogue in a visual context. To do so, we start

from a corpus of 150k human-human dialogues collected via the recently introduced

GuessWhat?! game (de Vries et al., 2016). The goal of the game is to locate an

unknown object in a natural image by asking a series of questions. This task

is hard since it requires scene understanding and, more importantly, a dialogue

strategy that leads one to rapidly identify the target object. From this data, we

first build a supervised agent and a neural training environment. It serves to train

a Deep RL agent online which is able to solve the task. We then quantitatively and

qualitatively compare the performance of our system to a supervised approach on

the same task. In short, our contributions are:

— to propose an original visually grounded goal-directed dialogue system op-

timized via Deep RL;

55

MLP

<yes>,<no>,<na>

LSTM LSTM LSTM LSTM LSTM

spatial

category

Is it a person ?

Figure 6.1 – Oracle model.

— to achieve 10% improvement on task completion over a supervised learning

baseline.

6.1 GuessWhat?! Game

We briefly explain here the GuessWhat?! game that will serve as a task for

our dialogue system, but refer to de Vries et al. (2016) for more details regarding

the task and the exact content of the dataset. It is composed of more than 150k

human-human dialogues in natural language collected through Mechanical Turk.

6.1.1 Rules

GuessWhat?! is a cooperative two-player game in which both players see the

image of a rich visual scene with several objects. One player – the oracle – is

randomly assigned an object (which could be a person) in the scene. This object

is not known by the other player – the questioner – whose goal is to locate the

hidden object. To do so, the questioner can ask a series of yes-no questions which

56

LSTM

encoder

Is it a person? No
Is it an item being worn or held? Yes
Is it a snowboard? Yes

MLP MLP MLP

obj1

Softmax

Opredict

obj2 obj3 obj4

MLP

Is it the red one? No

Is it the one being held by

the one in blue? Yes

Figure 6.2 – Guesser model.

are answered by the oracle as shown in Fig 4.2. Note that the questioner is not

aware of the list of objects and can only see the whole image. Once the questioner

has gathered enough evidence to locate the object, he may choose to guess the

object. The list of objects is revealed, and if the questioner picks the right object,

the game is considered successful.

6.1.2 Notation

Before we proceed, we establish the GuessWhat?! notation that is used through-

out the rest of this paper. A game is defined by a tuple (I, D,O, o∗) where

I ∈ RH×W×3 is a RGB image of height H and width W , D a dialogue with J

question-answer pairs D = (qj, aj)
J
j=1, O a list of K objects O = (ok)

K
k=1 and o∗ the

target object. Moreover, each question qj = (wji)
Ij
i=1 is a sequence of length Ij with

each token wji taken from a predefined vocabulary V . The vocabulary V is com-

posed of a predefined list of words, a question tag <?> that ends a question and a

stop token <stop> that ends a dialogue. An answer is restricted to be either yes,

no or not applicable i.e. aj ∈ {<yes>,<no>,<na>}. For each object k, an object

category ck ∈ {1, . . . , C} and a pixel-wise segmentation mask Sk ∈ {0, 1}H×W are

available.

Finally, to access subsets of a list, we use the following notations. If l = (lji)
I,j
i=1

is a double-subscript list, then lj1:i = (ljp)
i,j
p=1 are the i first elements of the jth list if

1 ≤ i ≤ Ij, otherwise lj1:p = ∅. Thus, for instance, wj1:i refers to the first i tokens of

57

 w21 w22 w23 w24

 w21 w22 w23 w24 w31

Is it an item being worn or held?

 w11 w12 w13 w14

 w11 w12 w13 w14

Is it a person?

Yes
a2

No
a1

VGG

Figure 6.3 – Question generation model.

the jth question and (q, a)1:j refers to the j first question-answer pairs of a dialogue.

6.2 Training Environment

From the GuessWhat?! dataset, we build a training environment that allows RL

optimization of the questioner task by creating models for the oracle and guesser

tasks. We also describe the supervised learning baseline to which we will compare.

This mainly reproduces models introduced in de Vries et al. (2016).

Question generation architecture We split the questioner’s job into two dif-

ferent tasks: one for asking the questions and another one for guessing the object.

The question generation task requires to produce a new question qj+1, given an

image I and a history of j questions and answers (q, a)1:j. We model the ques-

tion generator (QGen) with a recurrent neural network (RNN), which produces a

sequence of RNN state vectors sj1:i for a given input sequence wj
1:i by repeatedly

applying the transition function f , i.e. sji+1 = f(sji , e(w
j
i)). The parameterized

look-up table e embeds the input token into a continuous vector and for our transi-

tion function we use the popular long-short term memory (LSTM) cell (Hochreiter

and Schmidhuber, 1997). In order to construct a probabilistic sequence model, we

add a softmax function g over the RNN state that computes a distribution over

tokens wji from vocabulary V . In the case of GuessWhat?!, the probability of out-

putting token wji is conditioned on all previous questions and answers tokens as

58

well as the image I:

g(sji)wj
i

= P (wji |w
j
1:i−1, (q, a)1:j−1, I). (6.1)

We condition the model on the image by obtaining its VGG16 FC8 features and

concatenating it to the input embedding at each step, as illustrated in Fig. 6.3. We

train the model by minimizing the conditional negative log-likelihood:

− logP (q1:J |a1:J , I) = − log
J∏
j=1

P (qj|(q, a)1:j−1, I), (6.2)

= −
J∑
j=1

Ij∑
i=1

logP (wji |w
j
1:i−1, (q, a)1:j−1, I).

At test time, we can generate a sample p(qj|(q, a)1:j−1, I) from the model as follows.

Starting from the state sj1, we sample a new token wji from the output distribution

g and feed the embedded token e(wji) back as input to the RNN. We repeat this

loop till we encounter an end-of-sequence token. To approximately find the most

likely question, maxqj p(qj|(q, a)1:j−1, I), we use the commonly used beam-search

procedure. This heuristics aims to find the most likely sequence of words by explor-

ing a subset of all questions and keeping the K-most promising candidate sequences

at each time step.

Oracle The oracle task requires to produce a yes-no answer for any object within

an image given a natural language question. We outline here the neural network

architecture that achieved the best performance and refer to de Vries et al. (2016)

for a thorough investigation of the impact of other object and image information.

First, we embed the spatial information of the crop by extracting an 8-dimensional

vector of the location of the bounding box

xspatial = [xmin, ymin, xmax, ymax, xcenter, ycenter, wbox, hbox] (6.3)

where wbox and hbox denote the width and height of the bounding box , respectively.

We normalize the image height and width such that coordinates range from −1 to

1, and place the origin at the center of the image. Second, we convert the object

category c∗ into a dense category embedding using a learned look-up table. Finally,

59

we use a LSTM to encode the current question q. We then concatenate all three

embeddings into a single vector and feed it as input to a single hidden layer MLP

that outputs the final answer distribution P (a|q, c∗,x∗spatial) using a softmax layer,

illustrated in Fig. 6.1.

Guesser The guesser model takes an image I and a sequence of questions and

answers (q, a)1:J , and predicts the correct object o∗ from the set of all objects. This

model considers a dialogue as one flat sequence of question-answer tokens and use

the last hidden state of the LSTM encoder as our dialogue representation. We

perform a dot-product between this representation and the embedding for all the

objects in the image, followed by a softmax to obtain a prediction distribution over

the objects. The object embeddings are obtained from the categorical and spatial

features. More precisely, we concatenate the 8-dimensional spatial representation

and the object category look-up and pass it through an MLP layer to get an em-

bedding for the object. Note that the MLP parameters are shared to handle the

variable number of objects in the image. See Fig 6.2 for an overview of the guesser.

6.2.1 Generation of Full Games

With the question generation, oracle and guesser model we have all components

to simulate a full game. Given an initial image I, we generate a question q1 by sam-

pling tokens from the question generation model until we reach the question-mark

token. Alternatively, we can replace the sampling procedure by a beam-search to

approximately find the most likely question according to the generator. The ora-

cle then takes the question q1, the object category c∗ and x∗spatial as inputs, and

outputs the answer a1. We append (q1, a1) to the dialogue and repeat generating

question-answer pairs until the generator emits a stop-dialogue token or the maxi-

mum number of question-answers is reached. Finally, the guesser model takes the

generated dialogue D and the list of objects O and predicts the correct object.

60

6.3 GuessWhat?! from RL Perspective

One of the drawbacks of training the QGen in a supervised learning setup is that

its sequence of questions is not explicitly optimized to find the correct object. Such

training objectives miss the planning aspect underlying (goal-oriented) dialogues.

In this paper, we propose to cast the question generation task as a RL task. More

specifically, we use the training environment described before and consider the

oracle and the guesser as part of the RL agent environment. In the following, we

first formalize the GuessWhat?! task as a Markov Decision Process (MDP) so as

to apply a policy gradient algorithm to the QGen problem.

6.3.1 GuessWhat?! as a Markov Decision Process

We define the state xt as the status of the game at step t. Specifically, we define

xt = ((wj1, . . . , w
j
i), (q, a)1:j−1, I) where t =

∑j−1
j=1 Ij + i corresponds to the number

of tokens generated since the beginning of the dialogue. An action ut corresponds

to select a new word wji+1 in the vocabulary V . The transition to the next state

depends on the selected action:

— If wji+1 = <stop>, the full dialogue is terminated.

— If wji+1 = <?>, the ongoing question is terminated and an answer aj is

sampled from the oracle. The next state is xt+1 = ((q, a)1:j, I) where qj =

(wj1, . . . , w
j
i , <?>).

— Otherwise the new word is appended to the ongoing question and xt+1 =

((wj1, . . . , w
j
i , w

j
i+1), (q, a)1:j−1, I).

Questions are automatically terminated after Imax words. Similarly, dialogues

are terminated after Jmax questions. Furthermore, a reward r(x, u) is defined for

every state-action pair. A trajectory τ = (xt, ut, r(xt, ut))1:T is a finite sequence of

tuples of length T ≤ Jmax ∗ Imax which contains a state, an action, and the reward.

Thus, the game falls into the episodic RL scenario as the dialogue terminates after

a finite sequence of question-answer pairs. Finally, the QGen output can be viewed

as a stochastic policy πθ(u|x) parametrized by θ which associates a probability

distribution over the actions (i.e. words) for each state (i.e. intermediate dialogue

and image).

61

6.3.2 Training the QGen with Policy Gradient

While several approaches exist in the RL literature, we opt for policy gradient

methods because they are known to scale well to large action spaces (Silver et al.,

2016). This is especially important in our case because the vocabulary size is nearly

5k words. The goal of policy optimization is to find a policy πθ(u|x) that maximizes

the expected return, also known as the mean value:

J(θ) = Eτ∼πθ(τ)[
T∑
t=0

γtr(xt, ut)], (6.4)

where γ ∈ [0, 1] is the discount factor, T the length of the trajectory. Note that

γ = 1 is allowed as we are in the episodic scenario (Sutton et al., 1999). To improve

the policy, its parameters can be updated in the direction of the gradient of the

mean value:

θh+1 = θh + αh∇θJ |θ=θh , (6.5)

where h denotes the training time-step and αh is a learning rate such that
∑∞

h=1 αh =

∞ and
∑∞

h=1 α
2
h <∞.

Thanks to the gradient policy theorem (Sutton et al., 1999), the gradient of

the mean value can be estimated from a batch of trajectories Th sampled from the

current policy πθh by:

∇J(θh) = Eτ∼πθh (τ)

[
T∑
t=1

∇θh log πθh(ut|xt)(qπθh (xt, ut)− b(xt))

]
, (6.6)

where qπθh (x, u) is the state-action value and b(xt) some arbitrarily baseline func-

tion which can help reducing the variance of the estimation of the gradient. The

state action value qπθh (x, u) quantifies the expected cumulative reward of executing

policy πθh after taking action ut in state xt:

qπθh (xt, ut) = Eτ∼πθh (τ)

[T∑
t′=t

γt
′−tr(xt′ , ut′)

]
. (6.7)

It is possible to obtain an unbiased estimate of this q-value by using the cu-

mulative reward of the sample trajectory: q̂πθh (xt, ut) =
∑T

t′=t γ
t′−tr(xt′ , ut′). This

choice leads to the REINFORCE algorithm (Williams, 1992)). Alternatively, we

62

can estimate the state-action value-function by learning a q-function approxima-

tor, resulting in so-called actor-critic methods. Finally, by using the GuessWhat?!

game notation for equation 6.6, the policy gradient for the QGen can be written

as:

∇J(θh) =
J∑
j=1

Ij∑
i=1

∇θh log πθh(wji |w
j
1:i−1, (q, a)1:j−1, I)

(qπθh ((wj1:i−1, (q, a)1:j−1, I), w
j
i)− b(xt)). (6.8)

6.3.3 Reward Function

One tedious aspect of RL is to define a correct and valuable reward function.

As the optimal policy is the result of the reward function, one must be careful to

design a reward that would not change the expected final optimal policy (Ng et al.,

1999). Therefore, we put a minimal amount of prior knowledge into the reward

function and construct a zero-one reward depending on the guesser’s prediction:

r(xt, ut) =

1 If argmaxo[Guesser(xt)] = o ∗ and t = T

0 Otherwise
. (6.9)

So, we give a reward of one if the correct object is found from the generated

questions, and zero otherwise.

Note that the reward function requires the target object o∗ while it is not

included in the state x = ((q, a)1:J , I). This breaks the MDP assumption that

the reward should be a function of the current state and action. However, policy

gradient methods, such as REINFORCE, are still applicable if the MDP is partially

observable (Williams, 1992).

6.3.4 Full Training Procedure

For the QGen, oracle and guesser, we use the model architectures outlined in

section 6.2. We first independently train the three models with a cross-entropy

loss. We then keep the oracle and guesser models fixed, while we train the QGen

in the described RL framework. It is important to pretrain the QGen to kick-start

training from a reasonable policy. The size of the action space is simply too big to

63

Algorithm 2 Training of QGen with REINFORCE
Require: Pretrained QGen,Oracle and Guesser
Require: Batch size K

1: for Each update do
2: # Generate trajectories Th
3: for k = 1 to K do
4: Pick Image Ik and the target object o∗k ∈ Ok

5: # Generate question-answer pairs (q, a)k1:j

6: for j = 1 to Jmax do
7: qkj = QGen(q, a)k1:j−1, Ik)
8: akj = Oracle(qkj , o

∗
k, Ik)

9: if <stop> ∈ qkj then
10: delete (q, a)kj and break;

11: p(ok|·) = Guesser((q, a)k1:j, Ik, Ok)

12: r(xt, ut) =

{
1 If argmaxokp(ok|·) = o∗k
0 Otherwise

13: Define Th = ((q, a)k1:jk
, Ik, rk)1:K

14: Evaluate ∇J(θh) with Eq. equation 6.8 with Th
15: SGD update of QGen parameters θ using ∇J(θh)
16: Evaluate ∇L(φh) with Eq. equation 6.10 with Th
17: SGD update of baseline parameters using ∇L(φh)

start from a random policy.

In order to reduce the variance of the policy gradient, we implement the baseline

bφ(xt) as a function of the current state, parameterized by φ. Specifically, we use

a one layer MLP which takes the LSTM hidden state of the QGen and predicts

the expected reward. We train the baseline function by minimizing the Mean

Squared Error (MSE) between the predicted reward and the discounted reward of

the trajectory at the current time step:

L(φh) = Eτ∼πθh (τ)

[
bφh(xt)−

T∑
t′=t

γt
′
rt′
]2

(6.10)

We summarize our training procedure in Algorithm 2.

64

6.4 Related Work

Outside of the dialogue literature, RL methods have been applied to encoder-

decoder architectures in machine translation (Ranzato et al., 2016; Bahdanau et al.,

2017) and image captioning (Liu et al., 2016b). In those scenarios, the BLEU score

is used as a reward signal to fine-tune a network trained with a cross-entropy loss.

However, the BLEU score is a surrogate for human evaluation of naturalness, so

directly optimizing this measure does not guarantee improvement in the transla-

tion/captioning quality. In contrast, our reward function encodes task completion,

and optimizing this metric is exactly what we aim for. Finally, the BLEU score can

only be used in a batch setting because it requires the ground-truth labels from the

dataset. In GuessWhat?!, the computed reward is independent from the human

generated dialogue.

Although visually-grounded language models have been studied for a long time (Roy,

2002), important breakthroughs in both visual and natural language understand-

ing has led to a renewed interest in the field. Especially image captioning (Lin

et al., 2014) and visual question answering (Antol et al., 2015) has received much

attention over the last few years, and encoder-decoder models (Liu et al., 2016b; Lu

et al., 2016) have shown promising results for these tasks. Only very recently the

language grounding tasks have been extended to a dialogue setting with the Visual

Dialog (Das et al., 2017a,b) and GuessWhat?! (de Vries et al., 2016) datasets. Both

games are goal-oriented and can be cast into an RL framework. However, only the

GuessWhat?! game requires the question generation task to be visually grounded.

6.5 Experiments

As already said, we used the GuessWhat?! dataset that includes 155,281 dia-

logues containing 821,955 question/answer pairs composed of 4900 words on 66,537

unique images and 609,543 objects.

65

Image Beam Search REINFORCE

Is it a person ? no Is it a person ? no
Is it a ball ? no Is a glove ? no
Is it a ball ? no Is an umbrella ? no
Is it a ball ? no Is in the middle ? no
Is it a ball ? no On a person? no

is it on on far right? yes
Failure (blue bat) Success (red chair)

Is it a cat ? no Is it a cat ? no
Is it a book ? no Is it on the table ? yes
Is it a book ? no Is it the book ? no
Is it a book ? no Is it fully visible? yes
Is it a book ? no

Failure (person) Success (bowl)

Is it a person ? yes Is it a person ? yes
Is it the one in front ? yes Is it girl in white ? yes
Is it the one on the left ? no
Is it the one in the middle with
the red umbrella ? yes
Is it the one to the right of the
girl in ? no

Failure (umbrella) Success (girl)

Is it a bag ? yes Is it a suitcase? yes
Is it red ? no Is it in the left side ? yes
Is it the one in the middle ?
no
Is it the one on the far right ?
no
Is it the one with the blue bag
? yes

Success (most left bag) Failure (left bag)

Table 6.1 – Samples extracted from the test set. The blue (resp. purple) box corresponds to
the object picked by the guesser for the beam-search (resp. REINFORCE) dialogue. The small
verbose description is added to refer to the object picked by the guesser.

66

(a) CE (sampling) (b) REINFORCE (sampling)

Figure 6.4 – (a-b) Each line represents a dialogue of size N and describe the evolution of the
average probability of the guesser to find the correct object question after question.

6.5.1 Training Details

We pre-train the networks described in Section 6.2 1. After training, the oracle

network obtains 21.5% error and the guesser network reports 36.2% error on the

test set. Throughout the rest of this section we refer to the pretrained QGen as

Cross-Entropy trained model (CE).

We then initialize our environment with the pre-trained models and train the

QGen with REINFORCE for 80 epochs with plain stochastic gradient descent

(SGD) with a learning rate of 0.001 and a batch size of 64. For each epoch, we

sample each training images once, and randomly choose one of its object as the

target. We simultaneously optimize the baseline parameters φ with SGD with a

learning rate of 0.001. Finally, we set the maximum number of questions to 8 and

the maximum number of words to 12

6.5.2 Results

Accuracy We report the accuracies of the QGen trained with REINFORCE

and CE in Table 6.2. We compare sampling objects from the training set (New

Objects) and test set (New Images) i.e. unseen Images. We report the standard

deviation over 5 runs in order to account for the sampling stochasticity. On the test

set, training with CE obtains 41.6% accuracy, while training with REINFORCE

improves to 58.5%. This is also a significant improvement over the beam-search

1. Source code available at: https://guesswhat.ai

67

https://guesswhat.ai

New Objects New Images

CE

Sampling 41.6% ± 0.2 39.2% ± 0.1

Greedy 43.5% ± 0.1 40.8%

BSearch 47.1% ± 0.0 44.6%

REINFORCE
Sampling 58.5%± 0.3 56.5%± 0.2

Greedy 60.3% ± 0.1 58.4%

BSearch 60.2% ± 0.1 58.4%

Human 90.1%

Human with Guesser 63.8%

Random 18,1%

Table 6.2 – Guessing accuracy of the QGen with CE and REINFORCE. New objects refers to
uniformly sampling objects within the training set, new images refer to sampling objects from
the test set.

CE, which achieves 47.1% on the test-set. Our proposed framework thus closes the

gap towards human-performance (90.1%) with more than 11%. The beam-search

procedure improves over sampling from CE, but lowers the score for REINFORCE.

Samples We qualitatively compare the two methods by analyzing a few gener-

ated samples, as shown in Table 10.6. We observe that the beam-search trained

with CE keeps repeating the same questions, as can be seen in the two top exam-

ples in Tab. 10.6. We noticed this behavior especially on the test set i.e. when

confronted with unseen images, which may highlight some generalization issues.

We also find that the beam-search CE generates longer questions (7.1 tokens on

average) compared to REINFORCE (4.0 tokens on average). This qualitative dif-

ference is clearly visible in the bottom-left example, which also highlights that CE

sometimes generates visually relevant but incoherent sequences of questions. For

instance, asking ”Is it the one to the right of the girl in?” is not a very logical

follow-up of ”Is it the one in the middle with the red umbrella?”. In contrast, RE-

INFORCE seem to implement a more grounded and relevant strategy.In general, we

observe that REINFORCE favors enumerating object categories (”is it a person?”)

or absolute spatial information (”Is it left?”). Note these are also the type of ques-

68

tions that the oracle is expected to answer correctly. Differently, REINFORCE is

able to efficiently tailor its strategy toward the current dialogue context as shown

in Fig 6.4. REINFORCE successfully narrows the space of objects towards the

correct one while CE faces more difficulties to output discriminative questions.

Dialogue Length For the REINFORCE trained QGen, we investigate the im-

pact of the dialogue length on the success ratio. Interestingly, REINFORCE learns

to stop on average after 4.1 questions, although we did not encode a question

penalty into the reward function. This policy may be enforced by the guesser

since asking additional but noisy questions greatly lower the prediction accuracy

of the guesser as shown in Tab. 10.6. Therefore, the QGen learns to stop asking

questions when a dialogue contains enough information to retrieve the target ob-

ject. However, we observe that the QGen sometimes stops too early, especially

when the image contains too many objects of the same category. Interestingly, we

also found that the beam-search fails to stop the dialogue. Beam-search uses a

length-normalized log-likelihood to score candidate sequences to avoid a bias to-

wards shorter questions. However, questions in GuessWhat?! almost always start

with ”is it”, which increases the average log likelihood of a question significantly.

The score of a new question might thus (almost) always be higher than emitting a

single <stop> token.

Vocabulary Sampling from the REINFORCE trained model uses 1,2k distinct

words while CE (beam-search) vocabulary is reduced to 0.5k unique words. Thus,

REINFORCE seems to benefit from exploring the space of words in the training

process.

6.6 Conclusion

In this paper, we proposed to build a training environment from supervised deep

learning baselines in order to train a Deep RL agent to solve a goal-oriented multi-

modal dialogue task. We show the promise of this approach on the GuessWhat?!

dataset, and observe quantitatively and qualitatively an encouraging improvement

over a supervised baseline model. While supervised learning models fail to generate

69

a coherent dialogue strategy, our method learns when to stop after generating a

sequence of relevant questions.

70

7 Prologue to Third Article

7.1 Article Details

H. de Vries*, F. Strub*, J. Mary, H Larochelle, O. Pietquin, A. Courville.

Modulating Early Visual Processing By Language. Neural Infomation Processing

Systems (NIPS), 2017

Personal contribution I came up with the idea of applying conditional batch

normalization to VQA after discussions with Vincent Dumoulin and Aaron. Florian

and I implemented the method for a pre-trained ResNet and applied it to the VQA

and GuessWhat datasets. Florian and I wrote the paper, with help from Jeremie.

7.2 Context

A few months before this work, Vincent Dumoulin (a PhD student at MILA)

successfully applied class-conditional instance normalization in the context of im-

age style transfer. For the GuessWhat project, we were looking to improve the

question-answering model, as our previous paper had shown that even the question

generation process is limited by the strength of this model. We combined both

threads and started investigating the use of conditional normalization methods in

the context of visual question answering.

7.3 Contributions

This paper proposes to condition the batch normalization parameters of a pre-

trained ResNet on the question at hand. This enables the question to influence the

71

visual processing early on in the computational pipeline (even though the convolu-

tional weights are frozen). We show that the modulated ResNet architecture per-

forms better than a strong baseline on the VQAv1 and GuessWhat oracle datasets.

Through ablation studies we also demonstrate that early modulation of the visual

processing pipeline is helpful.

7.4 Recent Developments

An important follow-up work is FiLM (Perez et al., 2018), which extends con-

ditional normalization methods to the domain of visual reasoning. Contrary to

the architecture presented in this work, the conditional batch normalization lay-

ers are stacked on top of the extracted ResNet representations and convolutional

weights are jointly optimized. They also demonstrate that the affine transformation

layer can be decoupled from the normalization layer without affecting performance.

To better reflect this property, they rename conditional batch-normalization to

Feature-wise Linear Modulation (FiLM). These layers have been applied in numer-

ous deep learning applications, such as conditional image generation with generative

adversial networks (Brock et al., 2019) and few-shot image classification (Oreshkin

et al., 2018).

72

8Modulating Early Visual
Processing by Language

Human beings combine the processing of language and vision with apparent

ease. For example, we can use natural language to describe perceived objects and

we are able to imagine a visual scene from a given textual description. Develop-

ing intelligent machines with such impressive capabilities remains a long-standing

research challenge with many practical applications.

Towards this grand goal, we have witnessed an increased interest in tasks at

the intersection of computer vision and natural language processing. In particular,

image captioning (Lin et al., 2014), visual question answering (VQA) (Antol et al.,

2015; Tejas et al., 2017) and visually grounded dialogue systems (Das et al., 2017a;

de Vries et al., 2016) constitute a popular set of example tasks for which large-scale

datasets are now available. Developing computational models for language-vision

tasks is challenging, especially because of the open question underlying all these

tasks: how to fuse/integrate visual and textual representations? To what extent

should we process visual and linguistic input separately, and at which stage should

we fuse them? And equally important, what fusion mechanism to use?

In this paper, we restrict our attention to the domain of visual question an-

swering which is a natural testbed for fusing language and vision. The VQA task

concerns answering open-ended questions about images and has received significant

attention from the research community (Antol et al., 2015; Fukui et al., 2016; Ma-

linowski et al., 2015; Tejas et al., 2017). Current state-of-the-art systems often use

the following computational pipeline (Ben-Younes et al., 2017; Malinowski et al.,

2015; Ren et al., 2015) illustrated in Fig 8.1. They first extract high-level image

features from an ImageNet pretrained convolutional network (e.g. the activations

from a ResNet network (Kaiming et al., 2016)), and obtain a language embedding

using a recurrent neural network (RNN) over word-embeddings. These two high-

level representations are then fused by concatenation (Malinowski et al., 2015),

element-wise product (Lu et al., 2016; Kim et al., 2016, 2017; Malinowski et al.,

2015), Tucker decomposition (Ben-Younes et al., 2017) or compact bilinear pool-

73

ing (Fukui et al., 2016), and further processed for the downstream task at hand.

Attention mechanisms (Xu et al., 2015) are often used to have questions attend to

specific spatial locations of the extracted higher-level feature maps.

There are two main reasons for why the recent literature has focused on pro-

cessing each modality independently. First, using a pretrained convnet as feature

extractor prevents overfitting; Despite a large training set of a few hundred thou-

sand samples, backpropagating the error of the downstream task into the weights of

all layers often leads to overfitting. Second, the approach aligns with the dominant

view that language interacts with high-level visual concepts. Words, in this view,

can be thought of as “pointers” to high-level conceptual representations. To the

best of our knowledge, this work is the first to fuse modalities at the very early

stages of the image processing.

In parallel, the neuroscience community has been exploring to what extent the

processing of language and vision is coupled (F. Ferreira and M. Tanenhaus, 2007).

More and more evidence accumulates that words set visual priors which alter how

visual information is processed from the very beginning (Boutonnet and Lupyan,

2015; Kok et al., 2014; Thierry et al., 2009). More precisely, it is observed that P1

signals, which are related to low-level visual features, are modulated while hearing

specific words (Boutonnet and Lupyan, 2015). The language cue that people hear

ahead of an image activates visual predictions and speed up the image recognition

process. These findings suggest that independently processing visual and linguistic

features might be suboptimal, and fusing them at the early stage may help the

image processing.

In this paper, we introduce a novel approach to have language modulate the

entire visual processing of a pre-trained convnet. We propose to condition the

batch normalization (Ioffe and Szegedy, 2015) parameters on linguistic input (e.g.,

a question in a VQA task). Our approach, called Conditional Batch Normalization

(CBN), is inspired by recent work in style transfer (Dumoulin et al., 2017). The

key benefit of CBN is that it scales linearly with the number of feature maps in a

convnet, which impacts less than 1% of the parameters, greatly reducing the risk of

over-fitting. We apply CBN to a pretrained Residual Network, leading to a novel

architecture to which we refer as MODERN. We show significant improvements on

two VQA datasets, VQAv1 (Antol et al., 2015) and GuessWhat?! (de Vries et al.,

2016), but stress that our approach is a general fusing mechanism that can be

74

Figure 8.1 – An overview of the classic VQA pipeline (left) vs ours (right). While language
and vision modalities are independently processed in the classic pipeline, we propose to directly
modulate ResNet processing by language.

applied to other multi-modal tasks.

To summarize, our contributions are three fold:

— We propose conditional batch normalization to modulate the entire visual

processing by language from the early processing stages,

— We condition the batch normalization parameters of a pretrained ResNet on

linguistic input, leading to a new network architecture: MODERN,

— We demonstrate improvements on state-of-the-art models for two VQA tasks

and show the contribution of this modulation on the early stages.

8.1 Background

In this section we provide preliminaries on several components of our proposed

VQA model.

8.1.1 Residual networks

We briefly outline residual networks (ResNets) (Kaiming et al., 2016), one

of the current top-performing convolutional networks that won the ILSVRC 2015

classification competition. In contrast to precursor convnets (e.g. VGG (Simonyan

and Zisserman, 2015)) that constructs a new representation at each layer, ResNet

75

iteratively refines a representation by adding residuals. This modification enables

to train very deep convolutional networks without suffering as much from the van-

ishing gradient problem. More specifically, ResNets are built from residual blocks:

Fk+1 = ReLU(Fk +R(Fk)) (8.1)

where F k denotes the outputted feature map. We will refer to Fi,c,w,h to denote the

ith input sample of the cth feature map at location (w, h). The residual function

R(F k) is composed of three convolutional layers (with a kernel size of 1, 3 and 1,

respectively). See Fig. 2 in the original ResNet paper Kaiming et al. (2016) for a

detailed overview of a residual block.

A group of blocks is stacked to form a stage of computation in which the rep-

resentation dimensionality stays identical. The general ResNet architecture starts

with a single convolutional layer followed by four stages of computation. The tran-

sition from one stage to another is achieved through a projection layer that halves

the spatial dimensions and doubles the number of feature maps. There are several

pretrained ResNets available, including ResNet-50, ResNet-101 and ResNet-152

that differ in the number of residual blocks per stage.

8.1.2 Batch Normalization

The convolutional layers in ResNets make use of Batch Normalization (BN), a

technique that was originally designed to accelarate the training of neural networks

by reducing the internal co-variate shift (Ioffe and Szegedy, 2015). Given a mini-

batch B = {Fi,·,·,·}Ni=1 of N examples, BN normalizes the feature maps at training

time as follows:

BN(Fi,c,h,w; γc, βc) = γc
Fi,c,w,h − EB[F·,c,·,·]√

VarB[F·,c,·,·] + ε
+ βc, (8.2)

where ε is a constant damping factor for numerical stability, and γc and βc are

trainable scalars introduced to keep the representational power of the original net-

work. Note that for convolutional layers the mean and variance are computed over

both the batch and spatial dimensions (such that each location in the feature map

is normalized in the same way). After the BN module, the output is fed to a

non-linear activation function. At inference time, the batch mean EB and variance

76

VarB are replaced by the population mean µ and variance σ2, often estimated by

an exponential moving average over batch mean and variance during training.

8.1.3 Language embeddings

We briefly recap the most common way to obtain a language embedding from a

natural language question. Formally, a question q = [wk]
K
k=1 is a sequence of length

K with each token wk taken from a predefined vocabulary V . We transform each

token into a dense word-embedding e(wk) by a learned look-up table. For task

with limited linguistic corpora (like VQA), it is common to concatenate pretrained

Glove (Pennington et al., 2014) vectors to the word embeddings. The sequence of

embeddings [e(wk)]
K
k=1 is then fed to a recurrent neural network (RNN), which pro-

duces a sequence of RNN state vectors [sk]
K
k=1 by repeatedly applying the transition

function f :

sk+1 = f(sk, e(wk)). (8.3)

Popular transition functions, like a long-short term memory (LSTM) cell (Hochre-

iter and Schmidhuber, 1997) and a Gated Recurrent Unit (GRU) (Cho et al., 2014),

incorporate gating mechanisms to better handle long-term dependencies. In this

work, we will use an LSTM cell as our transition function. Finally, we take the last

hidden state sI as the embedding of the question, which we denote as eq throughout

the rest of this paper.

8.2 Modulated Residual Networks

In this section we introduce conditional batch normalization, and show how

we can use it to modulate a pretrained ResNet. The key idea is to predict the γ

and β of the batch normalization from a language embedding. We first focus on a

single convolutional layer with batch normalization module BN(Fi,c,h,w; γc, βc) for

which pretrained scalars γc and βc are available. We would like to directly predict

these affine scaling parameters from our language embedding eq. When starting

the training procedure, these parameters must be close to the pretrained values to

recover the original ResNet model as a poor initialization could significantly dete-

riorate performance. Unfortunately, it is difficult to initialize a network to output

77

Figure 8.2 – An overview of the computation graph of batch normalization (left) and conditional
batch normalization (right). Best viewed in color.

the pretrained γ and β. For these reasons, we propose to predict a change ∆βc

and ∆γc on the frozen original scalars, for which it is straightforward to initialize

a neural network to produce an output with zero-mean and small variance.

We use a one-hidden-layer MLP to predict these deltas from the question em-

bedding eq for all feature maps within the layer:

∆β = MLP (eq) ∆γ = MLP (eq) (8.4)

So, given a feature map with C channels, these MLPs output a vector of size C.

We then add these predictions to the β and γ parameters:

β̂c = βc + ∆βc γ̂c = γc + ∆γc (8.5)

Finally, these updated β̂ and γ̂ are used as parameters for the batch normalization:

BN(Fi,c,h,w; γ̂c, β̂c)). We stress that we freeze all ResNet parameters, including γ

and β, during training. In Fig. 8.2, we visualize the difference between the com-

putational flow of the original batch normalization and our proposed modification.

As explained in section 8.1.1, a ResNet consists of four stages of computation, each

subdivided in several residual blocks. In each block, we apply CBN to the three

convolutional layers, as highlighted in Fig. 8.3.

CBN is a computationally efficient and powerful method to modulate neural

activations; It enables the linguistic embedding to manipulate entire feature maps

by scaling them up or down, negating them, or shutting them off, etc. As there

78

Figure 8.3 – An overview of the MODERN architecture conditioned on the language embedding.
MODERN modulates the batch norm parameters in all residual blocks.

only two parameters per feature map, the total number of BN parameters comprise

less than 1% of the total number of parameters of a pre-trained ResNet. This

makes CBN a very scalable method compared to conditionally predicting the weight

matrices (or a low-rank approximation to that).

8.3 Experimental setting

We evaluate the proposed conditional batch normalization on two VQA tasks.

In the next section, we outline these tasks and describe the neural architectures

we use for our experiments. The source code for our experiments is available at

https://github.com/GuessWhatGame. The hyperparameters are also provided in

Table 8.1 and 8.2 for GuessWhat?! and VQA, respectively.

8.3.1 VQA

The Visual Question Answering (VQA) task consists of open-ended questions

about real images. Answering these questions requires an understanding of vi-

sion, language and commonsense knowledge. In this paper, we focus on VQAv1

dataset (Antol et al., 2015), which contains 614K questions on 204K images.

79

https://github.com/GuessWhatGame

Table 8.1 – GuessWhat?! Oracle hyperparameters

Question

word embedding size 300

number of LSTM 1

number of LSTM hidden units 1024

use Glove False

Object category
number of categories 90

category look-up table dimension 512

Crop
crop size 224x224x3

surrounding factor 1.1

CBN
selected blocks all

number of MLP hidden units 512

ResNet ResNet-50v1

Fusion block number of MLP hidden units 512

Optimizer
Name Adam

Learning rate 1e-4

Clip value 3

number of epoch 10

batch size 32

Our baseline architecture first obtains a question embedding eq by an LSTM-

network, as further detailed in section 8.1.3. For the image, we extract the feature

maps F of the last layer of ResNet-50 (before the pooling layer). For input of size

224x224 these feature maps are of size 7x7, and we incorporate a spatial attention

mechanism, conditioned on the question embedding eq, to pool over the spatial

dimensions. Formally, given a feature maps Fi,·,·,· and question embedding eq, we

80

Table 8.2 – VQA hyperparameters

Question

word embedding size 300

number of LSTM 2

number of LSTM hidden units 1024

use Glove True (dim300)

Image

image size 224x224x3

attention mechanism spatial

number of units for attention 512

CBN

selected blocks all

number of MLP hidden units 512

ResNet ResNet-50v1

Fusion block

fusion embedding size 1024

number of MLP hidden units 512

number of answers 2000

Optimizer

Name Adam

Learning rate 2e-4

Clip value 5

number of epoch 20

batch size 32

obtain a visual embedding ev as follows:

ξw,h = MLP ([Fi,·,w,h; eq]) ; αw,h =
exp(ξw,h)∑
w,h exp(ξw,h)

; ev =
∑
w,h

αw,hFi,·,w,h

(8.6)

where [Fi,·,w,h; eq] denotes concatenating the two vectors. We use an MLP with

one hidden layer and ReLU activations whose parameters are shared along the spa-

tial dimensions. The visual and question embedding are then fused by an element-

81

wise product (Antol et al., 2015; Kim et al., 2016, 2017) as follows:

fuse(eq, ev) = P T
(
(tanh(UTeq)) ◦ (tanh(V Tev))

)
+ bP , (8.7)

where ◦ denotes an element-wise product, and P , U and V are trainable weight

matrices and bP is a trainable bias. The linguistic and perceptual representations

are first projected to a space of equal dimensionality, after which a tanh non-

linearity is applied. A fused vector is then computed by an element-wise product

between the two representations. From this joined embedding we finally predict an

answer distribution by a linear layer followed by a softmax activation function.

We will use the described architecture to study the impact CBN when using

it in several stages of the ResNet. As our approach can be combined with any

existing VQA architecture, we also apply MODERN to MLB(Kim et al. (2016,

2017), a state-of-the-art network for VQA More specifically, this network replaces

the classic attention mechanism with a more advanced one that included g glimpses

over the image features:

ξgw,h = P T
αg(tanh(U ′Tq) ◦ tanh(V ′TF T

i,·,w,h))) ; αgw,h =
exp(ξgw,h)∑
w,h exp(ξgw,h)

(8.8)

ev =
∣∣∣∣∣∣
g

∑
w,h

αgw,hFi,·,w,h (8.9)

where Pαg is a trainable weight matrix defined for each glimpse g, U ′ and V ′ are

trainable weight matrices shared among the glimpses and ‖ concatenate vectors

over their last dimension.

Noticeably, MODERN modulates the entire visual processing pipeline and there-

fore backpropagates through all convolutional layers. This requires much more

GPU memory than using extracted features. To feasibly run such experiments on

today’s hardware, we conduct all experiments in this paper with a ResNet-50.

As for our training procedure, we select the 2k most-common answers from the

training set, and use a cross-entropy loss over the distribution of provided answers.

We train on the training set, do early-stopping on the validation set, and report

the accuracies on the test-dev using the evaluation script provided by Antol et al.

(2015).

82

Table 8.3 – VQA accuracies trained with train set and evaluated on test-dev.

Answer type Yes/No Number Other Overall

22
4x

2
24

Baseline 79.45% 36.63% 44.62% 58.05%

Ft Stage 4 78.37% 34.27% 43.72% 56.91%

Ft BN 80.18% 35.98% 46.07% 58.98%

MODERN 81.17% 37.79% 48.66% 60.82%

44
8x

44
8

MLB 1 with ResNet-50 80.20% 37.73% 49.53% 60.84%

MLB 2 with ResNet-152 80.95% 38.39% 50.59% 61.73%

MUTAN + MLB 3 82.29% 37.27% 48.23% 61.02%

MCB + Attention 4 with ResNet-50 60.46% 38.29% 48.68% 60.46%

MCB + Attention 5 with ResNet-152 - - - 62.50%

MODERN 81.38% 36.06% 51.64% 62.16%

MODERN + MLB 6 82.17% 38.06% 52.29% 63.01%

8.3.2 GuessWhat?!

GuessWhat?! is a cooperative two-player game in which both players see the

image of a rich visual scene with several objects. One player – the Oracle – is

randomly assigned an object in the scene. This object is not known by the other

player – the questioner – whose goal it is to locate the hidden object by asking a

series of yes-no questions which are answered by the Oracle (de Vries et al., 2016).

The full dataset is composed of 822K binary question/answer pairs on 67K

images. Interestingly, the GuessWhat?! game rules naturally leads to a rich variety

of visually grounded questions. As opposed to the VQAv1 dataset, the dataset

contains very few commonsense questions that can be answered without the image.

In this paper, we focus on the Oracle task, which is a form of visual question

1. (Kim et al., 2017)
2. (Kim et al., 2017)
3. (Ben-Younes et al., 2017)
4. (Fukui et al., 2016)
5. (Fukui et al., 2016)
6. Kim et al. (2017)

83

Table 8.4 – Ablation study to investigate the impact of leaving out the lower stages of ResNet.

(a) VQA, higher is better

CBN applied to Val.
accuracy

∅ 56.12%

Stage 4 57.68%

Stages 3− 4 58.29%

Stages 2− 4 58.32%

All 58.56%

(b) GuessWhat?!, lower is better

CBN applied to Test error

∅ 29.92%

Stage 4 26.42%

Stages 3− 4 25.24%

Stages 2− 4 25.31%

All 25.06%

Table 8.5 – GuessWhat?! test errors for the Oracle model with different embeddings. Lower is
better.

Raw
features

ft stage4 Ft BN CBN

Crop 29.92% 27.48% 27.94% 25.06%

Crop + Spatial + Category 22.55% 22.68% 22.42% 19.52%

Spatial + Category 21.5%

answering in which the answers are limited to yes, no and not applicable. Specif-

ically, the oracle may take as an input the incoming question q, the image I and

the target object o∗. This object can be described with its category c, its spatial

location and the object crop.

We outline here the neural network architecture that was reported in the original

GuessWhat?! paper (de Vries et al., 2016). First, we crop the initial image by using

the target object bounding box object and rescale it to a 224 by 224 square. We

then extract the activation of the last convolutional layer after the ReLU (stage4) of

a pre-trained ResNet-50. We also embed the spatial information of the crop within

the image by extracting an 8-dimensional vector of the location of the bounding

84

box

[xmin, ymin, xmax, ymax, xcenter, ycenter, wbox, hbox], (8.10)

where wbox and hbox denote the width and height of the bounding box, respectively.

We convert the object category c into a dense category embedding using a learned

look-up table. Finally, we use an LSTM to encode the current question q. We

then concatenate all embeddings into a single vector and feed it as input to a single

hidden layer MLP that outputs the final answer distribution using a softmax layer.

8.3.3 Baselines

For VQA, we report the results of two state-of-the-art architectures, namely,

Multimodal Compact Bilinear pooling network (MCB) (Fukui et al., 2016) (Win-

ner of the VQA challenge 2016) and MUTAN (Ben-Younes et al., 2017). Both

approaches employ an (approximate) bilinear pooling mechanism to fuse the lan-

guage and vision embedding by respectively using a random projection and a tensor

decomposition. In addition, we re-implement and run the MLB model described in

Section 8.3.1. When benchmarking state-of-the-art models, we train on the train-

ing set, proceed early stopping on the validation set and report accuracy on the

test set (test-dev in the case of VQA.)

8.3.4 Results

VQA We report the best validation accuracy of the outlined methods on the VQA

task in Table8.3. Note that we use input images of size 224x224 when we compare

MODERN against the baselines (as well as for the ablation study presented in

Table 8.4a. Our initial baseline achieves 58.05% accuracy, and we find that fine-

tuning the last layers (Ft Stage 4) does not improve this performance (56.91%).

Interestingly, just finetuning the batch norm parameters (Ft BN) significantly im-

proves the accuracy to 58.98%. We see another significant performance jump when

we condition the batch normalization on the question input (MODERN), which

improves our baseline with almost 2 accuracy points to 60.82%.

Because state-of-the-art models use images of size 448x448, we also include the

results of the baseline architecture on these larger images. As seen in Table8.3,

this nearly matches the state of the art results with a 62.15%. As MODERN does

85

not rely on a specific attention mechanism, we then combine our proposed method

with MLB (Kim et al., 2016, 2017) architecture, and observe that outperforms the

state-of-the-art MCB model (Fukui et al., 2016) by half a point. Please note that

we select MLB (Kim et al., 2016, 2017) over MCB (Fukui et al., 2016) as the latter

requires fewer weight parameters and is more stable to train.

Note that the presented results use a ResNet-50 while other models rely on

extracted image embedding from a ResNet-152. For sake of comparison, we run

the baseline models with extracted image embedding from a ResNet-50. Also for the

more advanced MLB architecture, we observe performance gains of approximately

2 accuracy points.

GuessWhat?! We report the best test errors for the outlined method on the

Oracle task of GuessWhat?! in Table 8.5. We first compare the results when we

only feed the crop of the selected object to the model. We observe the same trend

as in VQA. With an error of 25.06%, CBN performs better than than either fine-

tuning the final block (27.48% error) or the batch-norm parameters (27.94% error),

which in turn improve over just using the raw features (29.92% error). Note that

the relative improvement (5 error points) for CBN is much bigger for GuessWhat?!

than for VQA.

We therefore also investigate the performance of the methods when we include

the spatial and category information. We observe that finetuning the last layers or

BN parameters does not improve the performance, while MODERN improves the

best reported test error with 2 points to 19.52% error.

8.3.5 Discussion

By analyzing the results from both VQA and GuessWhat?! experiments, it is

possible to have a better insight regarding MODERN capabilities.

MODERN vs Fine tuning In both experiments, MODERN outperforms Ft

BN. Both methods update the same ResNet parameters so this demonstrates that

it is important to condition on the language representation. MODERN also outper-

forms Ft Stage 4 on both tasks which shows that the performance gain of MODERN

is not due to the increased model capacity.

86

(a) Feature map projection from raw
ResNet

(b) Feature map projection from MOD-
ERN

Figure 8.4 – t-SNE projection of feature maps (before attention mechanism) of ResNet and
MODERN. Points are colored according to the answer type of VQA. Whilst there are no clusters
with raw features, MODERN successfully modulates the image feature towards specific answer
types.

Conditional embedding In the provided baselines of the Oracle task of Guess-

What?! (de Vries et al., 2016), the authors observed that the best test error (21.5%)

is obtained by only providing the object category and its spatial location. For this

model, including the raw features of the object crop actually deteriorates the per-

formance to 22.55% error. This means that this baseline fails to extract relevant

information from the images which is not in the handcrafted features. Therefore

the Oracle can not answer correctly questions which requires more than the use of

spatial information and object category. In the baseline model, the embedding of

the crop from a generic ResNet does not help even when we finetune stage 4 or

BN. In contrast, applying MODERN helps to better answer questions as the test

error drops by 2 points.

Ablation study We investigate the impact of only modulating the top layers

of a ResNet. We report these results in Table 8.4. Interestingly, we observe that

the performance slowly decreases when we apply CBN exclusively to later stages.

We stress that for best performance it’s important to modulate all stages, but

if computational resources are limited we recommend to apply it to the two last

stages.

Visualizing the representations In order to gain more insight into our pro-

posed fusion mechanism, we compare visualizations of the visual embeddings cre-

ated by our baseline model and MODERN. We first randomly picked 1000 unique

87

image/question pairs from the validation set of VQA. For the trained MODERN

model, we extract image features just before the attention mechanism of MODERN,

which we will compare with extracted raw ResNet-50 features and finetune ResNet-

50 (Block4 and batchnorm parameters). We first decrease the dimensionality by

average pooling over the spatial dimensions of the feature map, and subsequently

apply t-SNE (Maaten and Hinton, 2008) to these set of embeddings. We color the

points according to the answer type provided by the VQA dataset, and show these

visualizations for both models in Fig 8.4 and Fig 8.7. Interestingly, we observe that

all answer types are spread out for raw image features and finetuned features. In

contrast, the representations of MODERN are cleanly grouped into three answer

types. This demonstrates that MODERN successfully disentangles the images rep-

resentations by answer type which is likely to ease the later fusion process. While

finetuning models does cluster features, there is no direct link between those clus-

ters and the answer type. These results indicate that MODERN successfully learns

representation that differs from classic finetuning strategies. In Fig. 8.5, we visu-

alize the feature disentangling process stage by stage. It is possible to spot some

sub-clusters in the t-SNE representation, as in fact they correspond to image and

question pairs which are similar but not explicitly tagged in the VQA dataset. For

example, in Fig. 8.6 we highlight pairs where the answer is a color.

8.4 Related work

MODERN is related to a lot of recent work in VQAAntol et al. (2015). The ma-

jority of proposed methods use a similar computational pipeline introduced by (Ma-

linowski et al., 2015; Ren et al., 2015). First, extract high-level image features from

a ImageNet pretrained convnet, while independently processing the question using

RNN. Some work has focused on the top level fusing mechanism of the language

and visual vectors. For instance, it was shown that we can improve upon classic

concatenation by an element-wise product (Antol et al., 2015; Kim et al., 2016,

2017), Tucker decomposition (Ben-Younes et al., 2017), bilinear pooling (Fukui

et al., 2016) or more exotic approaches (Malinowski et al., 2015). Another line

of research has investigated the role of attention mechanisms in VQA (Xu and

Saenko, 2015; Lu et al., 2016; Yang et al., 2016b). The authors of Lu et al. (2016)

88

(a) Stage 1 (b) Stage 2

(c) Stage 3 (d) Stage 4

Figure 8.5 – Feature map projection from MODERN for a) stage 1, b) stage 2, c) stage 3, d),
stage 4

propose a co-attention model over visual and language embeddings, while Yang

et al. (2016b) proposes to stack several spatial attention mechanisms. Although

an attention mechanism can be thought of as modulating the visual features by a

language, we stress that such mechanism act on the high-level features. In contrast,

our work modulates the visual processing from the very start.

MODERN is inspired by conditional instance normalization (CIN) (Dumoulin

et al., 2017) that was successfully applied to image style transfer. While previous

methods transfered one image style per network, Dumoulin et al. (2017) showed

that up to 32 styles could be compressed into a single network by sharing the

convolutional filters and learning style-specific normalization parameters. There

are notable differences with our work. First, Dumoulin et al. (2017) uses a non-

differentiable table lookup for the normalization parameters while we propose a

differentiable mapping from the question embedding. Second, we predict a change

on the normalization parameters of a pretrained convolutional network while keep-

ing the convolutional filters fixed. In CIN, all parameters, including the transposed

convolutional filters, are trained. To the best of our knowledge, this is the first

paper to conditionally modulate the vision processing using the normalization pa-

89

(a) Feature map projection from raw
ResNet

(b) Feature map projection from MOD-
ERN

Figure 8.6 – t-SNE projection of feature maps of Reset and MODERN by coloring. Points are
colored according to the question type (here, colors) of the image/question pair from the VQA
dataset.

rameters.

(a) Feature map projection from ResNet
+ Block4 Ft

(b) Feature map projection from ResNet
+ BatchNorm ft

Figure 8.7 – t-SNE projection of feature maps (before attention mechanism) of finetune ResNet.
Points are colored according to the answer type of VQA. No answer-type clusters can be observed
in both cases.

8.5 Conclusion

In this paper, we introduce Conditional Batch Normalization (CBN) as a novel

fusion mechanism to modulate all layers of a visual processing network. Specifi-

cally, we applied CBN to a pre-trained ResNet, leading to the proposed MODERN

architecture. Our approach is motivated by recent evidence from neuroscience sug-

gesting that language influences the early stages of visual processing. One of the

strengths of MODERN is that it can be incorporated into existing architectures,

90

and our experiments demonstrate that this significantly improves the baseline mod-

els. We also found that it is important to modulate the entire visual signal to obtain

maximum performance gains.

While this paper focuses on text and images, MODERN can be extended to

neural architecture dealing with other modalities such as sound or video. More

broadly, CBN can could also be applied to modulate the internal representation

of any deep network with respect to any embedding regardless of the underlying

task. For instance, signal modulation through batch norm parameters may also

be beneficial for reinforcement learning, natural language processing or adversarial

training tasks.

91

9 Prologue to Fourth Article

9.1 Article Details

H. de Vries, K. Shuster, D. Parikh, D. Batra, D. Kiela. Talk the Walk: Navi-

gating New York City Through Grounded Dialogue. Workshop on Visual Learning

and Embodied Agents in Simulation Environments at ECCV, 2018

Personal contribution I proposed the high-level idea of a dialogue for streetview

navigation, which was refined into the Talk the Walk task via discussions with Ja-

son and Douwe. I captured the 360 panoramas (with help from Douwe and Jason),

collected the grounded dialogues through Mechanical Turk, and implemented the

baselines (with help from Kurt). I also wrote significant parts of the paper, with

substantial contributions from Douwe and minor edits from Jason, Dhruv, and

Devi.

9.2 Context

In the previous chapters of this thesis, we focused on visually-grounded dialogue

tasks in which agents hold a conversation about a static image. The agents in such

tasks are passive observers of the environment and therefore do not have the ability

to act. The aim of this work was to create an environment in which agents need

to work towards a common goal through action, perception and natural language

interaction.

92

9.3 Contributions

This work presents the first large-scale dialogue dataset that is grounded in

action and perception. We introduced the “Talk the Walk” task, in which two

agents, a tourist and guide, collaborate to have the tourist navigate to a target

location in the virtual streets of New York City. By investigating baselines for

several sub-tasks, we established the difficulty of the full dialogue problem for

current deep and reinforcement learning methods.

9.4 Recent Developments

There has been a growing interest in natural language instruction-following in

streetview environments, see e.g. (Chen et al., 2019; Cirik et al., 2018). Other

streetview environments have also been open-sourced to facilitate further research

in this area (Mirowski et al., 2019).

93

10
Talk the Walk: Navigating
Grids in New York City
through Grounded Dialogue

As artificial intelligence plays an ever more prominent role in everyday human

lives, it becomes increasingly important to enable machines to communicate via

natural language—not only with humans, but also with each other. Learning al-

gorithms for natural language understanding, such as in machine translation and

reading comprehension, have progressed at an unprecedented rate in recent years,

but still rely on static, large-scale, text-only datasets that lack crucial aspects of

how humans understand and produce natural language. Namely, humans develop

language capabilities by being embodied in an environment which they can per-

ceive, manipulate and move around in; and by interacting with other humans.

Hence, we argue that we should incorporate all three fundamental aspects of hu-

man language acquisition—perception, action and interactive communication—and

develop a task and dataset to that effect.

We introduce the Talk the Walk dataset, where the aim is for two agents, a

“guide” and a “tourist”, to interact with each other via natural language in order to

achieve a common goal: having the tourist navigate towards the correct location.

The guide has access to a map and knows the target location, but does not know

where the tourist is; the tourist has a 360-degree view of the world, but knows

neither the target location on the map nor the way to it. The agents need to

work together through communication in order to successfully solve the task. An

example of the task is given in Figure 10.1.

Grounded language learning has (re-)gained traction in the AI community, and

much attention is currently devoted to virtual embodiment—the development of

multi-agent communication tasks in virtual environments—which has been argued

to be a viable strategy for acquiring natural language semantics (Kiela et al., 2016).

Various related tasks have recently been introduced, but in each case with some

limitations. Although visually grounded dialogue tasks (de Vries et al., 2016; Das

et al., 2017a) comprise perceptual grounding and multi-agent interaction, their

agents are passive observers and do not act in the environment. By contrast,

94

Figure 10.1 – Example of the Talk The Walk task: two agents, a “tourist” and a “guide”,
interact with each other via natural language in order to have the tourist navigate towards the
correct location. The guide has access to a map and knows the target location but not the tourist
location, while the tourist does not have a map and is tasked with navigating a 360-degree street
view environment.

instruction-following tasks, such as VNL (Anderson et al., 2018), involve action and

perception but lack natural language interaction with other agents. Furthermore,

some of these works use simulated environments (Das et al., 2018) and/or templated

language (Hermann et al., 2017), which arguably oversimplifies real perception or

natural language, respectively. See Table 10.1 for a comparison.

Talk The Walk is the first task to bring all three aspects together: perception

for the tourist observing the world, action for the tourist to navigate through the

environment, and interactive dialogue for the tourist and guide to work towards

their common goal. To collect grounded dialogues, we constructed a virtual 2D

grid environment by manually capturing 360-views of several neighborhoods in

New York City (NYC) 1. As the main focus of our task is on interactive dialogue,

we limit the difficulty of the control problem by having the tourist navigating a

2D grid via discrete actions (turning left, turning right and moving forward). Our

street view environment was integrated into ParlAI (Miller et al., 2017) and used

to collect a large-scale dataset on Mechanical Turk involving human perception,

action and communication.

We argue that for artificial agents to solve this challenging problem, some fun-

damental architecture designs are missing, and our hope is that this task motivates

their innovation. To that end, we focus on the task of localization and develop the

novel Masked Attention for Spatial Convolutions (MASC) mechanism. To model

the interaction between language and action, this architecture repeatedly conditions

1. We avoided using existing street view resources due to licensing issues.

95

the spatial dimensions of a convolution on the communicated message sequence.

This work makes the following contributions: 1) We present the first large scale

dialogue dataset grounded in action and perception; 2) We introduce the MASC

architecture for localization and show it yields improvements for both emergent and

natural language; 4) Using localization models, we establish initial baselines on the

full task; 5) We show that our best model exceeds human performance under the

assumption of “perfect perception” and with a learned emergent communication

protocol, and sets a non-trivial baseline with natural language.

10.1 Talk The Walk

We create a perceptual environment by manually capturing several neighbor-

hoods of New York City (NYC) with a 360 camera 2. Most parts of the city are

grid-like and uniform, which makes it well-suited for obtaining a 2D grid. For Talk

The Walk, we capture parts of Hell’s Kitchen, East Village, the Financial District,

Williamsburg and the Upper East Side—see Figure 10.5 for their respective loca-

tions within NYC. For each neighborhood, we choose an approximately 5x5 grid

and capture a 360 view on all four corners of each intersection, leading to a grid-size

of roughly 10x10 per neighborhood.

The tourist’s location is given as a tuple (x, y, o), where x, y are the coordinates

and o signifies the orientation (north, east, south or west). The tourist can take

three actions: turn left, turn right and go forward. For moving forward, we add

(0, 1), (1, 0), (0,−1), (−1, 0) to the x, y coordinates for the respective orientations.

Upon a turning action, the orientation is updated by o = (o + d) mod 4 where

d = −1 for left and d = 1 for right. If the tourist moves outside the grid, we issue

a warning that they cannot go in that direction and do not update the location.

Moreover, tourists are shown different types of transitions: a short transition for

actions that bring the tourist to a different corner of the same intersection; and a

longer transition for actions that bring them to a new intersection.

The guide observes a map that corresponds to the tourist’s environment. We

exploit the fact that urban areas like NYC are full of local businesses, and over-

2. A 360fly 4K camera.

96

Table 10.1 – Talk The Walk grounds human generated dialogue in (real-life) perception and
action.

Project Perception Action Language Dial. Size Acts

Visual Dialog 3 Real 7 Human 3 120k dialogues 20
GuessWhat 4 Real 7 Human 3 131k dialogues 10
VNL 5 Real 3 Human 7 23k instructions -
Embodied QA 6 Simulated 3 Scripted 7 5k questions -
TalkTheWalk Real 3 Human 3 10k dialogues 62

lay the map with these landmarks as localization points for our task. Specifi-

cally, we manually annotate each corner of the intersection with a set of landmarks

Λx,y = {l0, . . . , lK}, each coming from one of the following categories:

— Bank

— Hotel

— Shop

— Bar

— Playfield

— Restaurant

— Subway

— Coffee Shop

— Theater

The right-side of Figure 10.1 illustrates how the map is presented. Note that

within-intersection transitions have a smaller grid distance than transitions to new

intersections. To ensure that the localization task is not too easy, we do not include

street names in the overhead map and keep the landmark categories coarse. That

is, the dialogue is driven by uncertainty in the tourist’s current location and the

properties of the target location: if the exact location and orientation of the tourist

were known, it would suffice to communicate a sequence of actions.

10.1.1 Task

For the Talk The Walk task, we randomly choose one of the five neighborhoods,

and subsample a 4x4 grid (one block with four complete intersections) from the

entire grid. We specify the boundaries of the grid by the top-left and bottom-

right corners (xmin, ymin, xmax, ymax). Next, we construct the overhead map of the

environment, i.e. {Λx′,y′} with xmin ≤ x′ ≤ xmax and ymin ≤ y′ ≤ ymax. We

subsequently sample a start location and orientation (x, y, o) and a target location

3. Das et al. (2017a)
4. de Vries et al. (2016)
5. Anderson et al. (2018)
6. Das et al. (2018)

97

(x, y)tgt at random 7.

The shared goal of the two agents is to navigate the tourist to the target location

(x, y)tgt, which is only known to the guide. The tourist perceives a “street view”

planar projection Sx,y,o of the 360 image at location (x, y) and can simultaneously

chat with the guide and navigate through the environment. The guide’s role consists

of reading the tourist description of the environment, building a “mental map” of

their current position and providing instructions for navigating towards the target

location. Whenever the guide believes that the tourist has reached the target

location, they instruct the system to evaluate the tourist’s location. The task

ends when the evaluation is successful—i.e., when (x, y) = (x, y)tgt—or otherwise

continues until a total of three failed attempts. The additional attempts are meant

to ease the task for humans, as we found that they otherwise often fail at the task

but still end up close to the target location, e.g., at the wrong corner of the correct

intersection.

10.1.2 Data Collection

We crowd-sourced the collection of the dataset on Amazon Mechanical Turk

(MTurk). We use the MTurk interface of ParlAI (Miller et al., 2017) to render 360

images via WebGL and dynamically display neighborhood maps with an HTML5

canvas. Detailed task instructions, which were also given to our workers before

they started their task, are shown in Figure 10.2 and 10.3. We paired Turkers at

random and let them alternate between the tourist and guide role across different

HITs.

10.1.3 Dataset Statistics

The Talk The Walk dataset consists of over 10k successful dialogues—see Ta-

ble 10.2 for the dataset statistics split by neighborhood. Turkers successfully com-

pleted 76.74% of all finished tasks (we use this statistic as the human success rate).

More than six hundred participants successfully completed at least one Talk The

Walk HIT. Although the Visual Dialog (Das et al., 2017a) and GuessWhat (de Vries

7. Note that we do not include the orientation in the target, as we found in early experiments
that this led to an unnatural task for humans. Similarly, we explored bigger grid sizes but found
these to be too difficult for most annotators.

98

(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 10.2 – Set of instructions presented to turkers before starting their first task.

et al., 2016) datasets are larger, the collected Talk The Walk dialogs are signifi-

cantly longer. On average, Turkers needed more than 62 acts (i.e utterances and

actions) before they successfully completed the task, whereas Visual Dialog requires

99

(a) (b)

(c)

Figure 10.3 – (cont.) Set of instructions presented to turkers before starting their first task.

20 acts. The majority of acts comprise the tourist’s actions, with on average more

than 44 actions per dialogue. The guide produces roughly 9 utterances per dia-

logue, slightly more than the tourist’s 8 utterances. Turkers use diverse discourse,

with a vocabulary size of more than 10K (calculated over all successful dialogues).

An example from the dataset is shown in Figure 10.4. The dataset is available at

https://github.com/facebookresearch/talkthewalk.

10.2 Experiments

We investigate the difficulty of the proposed task by establishing initial base-

lines. The final Talk The Walk task is challenging and encompasses several im-

portant sub-tasks, ranging from landmark recognition to tourist localization and

natural language instruction-giving. Arguably the most important sub-task is lo-

calization: without such capabilities the guide can not tell whether the tourist

reached the target location. In this work, we establish a minimal baseline for Talk

The Walk by utilizing agents trained for localization. Specifically, we let trained

100

https://github.com/facebookresearch/talkthewalk

Tourist: ACTION:TURNRIGHT ACTION:TURNRIGHT

Guide: Hello, what are you near?

Tourist: ACTION:TURNLEFT ACTION:TURNLEFT ACTION:TURNLEFT

Tourist: Hello, in front of me is a Brooks Brothers

Tourist: ACTION:TURNLEFT ACTION:FORWARD ACTION:TURNLEFT ACTION:TURNLEFT

Guide: Is that a shop or restaurant?

Tourist: ACTION:TURNLEFT

Tourist: It is a clothing shop.

Tourist: ACTION:TURNLEFT

Guide: You need to go to the intersection in the northwest corner of the map

Tourist: ACTION:TURNLEFT

Tourist: There appears to be a bank behind me.

Tourist: ACTION:TURNLEFT ACTION:TURNLEFT ACTION:TURNRIGHT ACTION:TURNRIGHT

Guide: Ok, turn left then go straight up that road

Tourist: ACTION:TURNLEFT ACTION:TURNLEFT ACTION:TURNLEFT ACTION:FORWARD ACTION:TURNRIGHT

ACTION:FORWARD ACTION:FORWARD ACTION:TURNLEFT ACTION:TURNLEFT ACTION:TURNLEFT

Guide: There should be shops on two of the corners but you

need to go to the corner without a shop.

Tourist: ACTION:FORWARD ACTION:FORWARD ACTION:FORWARD ACTION:TURNLEFT ACTION:TURNLEFT

Guide: let me know when you get there.

Tourist: on my left is Radio city Music hall

Tourist: ACTION:TURNLEFT ACTION:FORWARD ACTION:TURNLEFT ACTION:TURNRIGHT ACTION:TURNRIGHT

Tourist: I can’t go straight any further.

Guide: ok. turn so that the theater is on your right.

Guide: then go straight

Tourist: That would be going back the way I came

Guide: yeah. I was looking at the wrong bank

Tourist: I’ll notify when I am back at the brooks brothers, and the bank.

Tourist: ACTION:TURNRIGHT

Guide: make a right when the bank is on your left

Tourist: ACTION:FORWARD ACTION:FORWARD ACTION:TURNRIGHT

Tourist: Making the right at the bank.

Tourist: ACTION:FORWARD ACTION:FORWARD

Tourist: I can’t go that way.

Tourist: ACTION:TURNLEFT

Tourist: Bank is ahead of me on the right

Tourist: ACTION:FORWARD ACTION:FORWARD ACTION:TURNLEFT

Guide: turn around on that intersection

Tourist: I can only go to the left or back the way I just came.

Tourist: ACTION:TURNLEFT

Guide: you’re in the right place. do you see shops on the corners?

Guide: If you’re on the corner with the bank, cross the street

Tourist: I’m back where I started by the shop and the bank.

Tourist: ACTION:TURNRIGHT

Guide: on the same side of the street?

Tourist: crossing the street now

Tourist: ACTION:FORWARD ACTION:FORWARD ACTION:TURNLEFT

Tourist: there is an I love new york shop across the street on the left from me now

Tourist: ACTION:TURNRIGHT ACTION:FORWARD

Guide: ok. I’ll see if it’s right.

Guide: EVALUATE_LOCATION

Guide: It’s not right.

Tourist: What should I be on the look for?

Tourist: ACTION:TURNRIGHT ACTION:TURNRIGHT ACTION:TURNRIGHT

Guide: There should be shops on two corners but you need to be on one of the corners

without the shop.

Guide: Try the other corner.

Tourist: this intersection has 2 shop corners and a bank corner

Guide: yes. that’s what I see on the map.

Tourist: should I go to the bank corner? or one of the shop corners?

or the blank corner (perhaps a hotel)

Tourist: ACTION:TURNLEFT ACTION:TURNLEFT ACTION:TURNRIGHT ACTION:TURNRIGHT

Guide: Go to the one near the hotel. The map says the hotel is a little

further down but it might be a little off.

Tourist: It’s a big hotel it’s possible.

Tourist: ACTION:FORWARD ACTION:TURNLEFT ACTION:FORWARD ACTION:TURNRIGHT

Tourist: I’m on the hotel corner

Guide: EVALUATE_LOCATION

Figure 10.4 – Example dialogue from the Talk The Walk dataset.

101

Figure 10.5 – Map of New
York City with red rectangles
indicating the captured neigh-
borhoods of the Talk The Walk
dataset.

Neighborhood #success #failed #disconnects

Hell’s Kitchen 2075 762 867

Williamsburg 2077 683 780

East Village 2035 713 624

Financial District 2042 607 497

Upper East 2081 359 576

Total 10310 3124 3344

Table 10.2 – Dataset statistics split by neighborhood
and dialogue status.

tourist models undertake random walks, using the following protocol: at each step,

the tourist communicates its observations and actions to the guide, who predicts

the tourist’s location. If the guide predicts that the tourist is at target, we evaluate

its location. If successful, the task ends, otherwise we continue until there have

been three wrong evaluations. The protocol is given as pseudo-code in Algorithm

3.

10.2.1 Tourist Localization

The designed navigation protocol relies on a trained localization model that

predicts the tourist’s location from a communicated message. Before we formalize

this localization sub-task in Section 10.2.1, we further introduce two simplifying

assumptions—perfect perception and orientation-agnosticism—so as to overcome

some of the difficulties we encountered in preliminary experiments.

Perfect Perception Early experiments revealed that perceptual grounding of

landmarks is difficult: we set up a landmark classification problem, on which mod-

102

els with extracted CNN (Kaiming et al., 2016) or text recognition features (Gupta

et al., 2016) barely outperform a random baseline—see Section 10.5.3 for full de-

tails. This finding implies that localization models from image input are limited

by their ability to recognize landmarks, and, as a result, would not generalize to

unseen environments. To ensure that perception is not the limiting factor when

investigating the landmark-grounding and action-grounding capabilities of local-

ization models, we assume “perfect perception”: in lieu of the 360 image view,

the tourist is given the landmarks at its current location. More formally, each

state observation Sx,y,o now equals the set of landmarks at the (x, y)-location, i.e.

Sx,y,o = Λx,y. If the (x, y)-location does not have any visible landmarks, we return

a single “empty corner” symbol. We stress that our findings—including a novel ar-

chitecture for grounding actions into an overhead map, see Section 10.3.2—should

carry over to settings without the perfect perception assumption.

Orientation-agnosticism We opt to ignore the tourist’s orientation, which sim-

plifies the set of actions to [Left, Right, Up, Down], corresponding to adding [(-1,

0), (1, 0), (0, 1), (0, -1)] to the current (x, y) coordinates, respectively. Note that

actions are now coupled to an orientation on the map—e.g. up is equal to going

north—and this implicitly assumes that the tourist has access to a compass. This

also affects perception, since the tourist now has access to views from all orienta-

tions: in conjunction with “perfect perception”, implying that only landmarks at

the current corner are given, whereas landmarks from different corners (e.g. across

the street) are not visible.

Even with these simplifications, the localization-based baseline comes with its

own set of challenges. As we show in Section 10.4.1, the task requires communi-

cation about a short (random) path—i.e., not only a sequence of observations but

also actions—in order to achieve high localization accuracy. This means that the

guide needs to decode observations from multiple time steps, as well as understand

their 2D spatial arrangement as communicated via the sequence of actions. Thus,

in order to get to a good understanding of the task, we thoroughly examine whether

the agents can learn a communication protocol that simultaneously grounds obser-

vations and actions into the guide’s map. In doing so, we thoroughly study the

role of the communication channel in the localization task, by investigating increas-

ingly constrained forms of communication: from differentiable continuous vectors

103

to emergent discrete symbols to the full complexity of natural language.

Formalization

The full navigation baseline hinges on a localization model from random tra-

jectories. While we can sample random actions in the emergent communication

setup, this is not possible for the natural language setup because the messages are

coupled to the trajectories of the human annotators. This leads to slightly different

problem setups, as described below.

Emergent language A tourist, starting from a random location, takes T ≥ 0

random actions A = {α0, . . . , αT−1} to reach target location (xtgt, ytgt). Every lo-

cation in the environment has a corresponding set of landmarks Λx,y = {l0, . . . , lK}
for each of the (x, y) coordinates. As the tourist navigates, the agent perceives

T + 1 state-observations Z = {ζ0, . . . , ζT} where each observation ζt consists of

a set of K landmark symbols {lt0, . . . , ltK}. Given the observations Z and actions

A, the tourist generates a message M which is communicated to the other agent.

The objective of the guide is to predict the location (xtgt, ytgt) from the tourist’s

message M .

Natural language In contrast to our emergent communication experiments, we

do not take random actions but instead extract actions, observations, and messages

from the dataset. Specifically, we consider each tourist utterance (i.e. at any point

in the dialogue), obtain the current tourist location as target location (x, y)tgt,

the utterance itself as message M , and the sequence of observations and actions

that took place between the current and previous tourist utterance as Z and A,

respectively. Similar to the emergent language setting, the guide’s objective is

to predict the target location (x, y)tgt models from the tourist message M . We

conduct experiments with M taken from the dataset and with M generated from

the extracted observations Z and actions A.

104

10.3 Model

This section outlines the tourist and guide architectures. We first describe how

the tourist produces messages for the various communication channels across which

the messages are sent. We subsequently describe how these messages are processed

by the guide, and introduce the novel Masked Attention for Spatial Convolutions

(MASC) mechanism that allows for grounding into the 2D overhead map in order

to predict the tourist’s location.

10.3.1 The Tourist

For each of the communication channels, we outline the procedure for generating

a message M . Given a set of state observations {ζ0, . . . , ζT}, we represent each

observation by summing the L-dimensional embeddings of the observed landmarks,

i.e. for {o0, . . . ,oT}, ot =
∑

l∈ζt E
Λ(l), where EΛ is the landmark embedding

lookup table. In addition, we embed action αt into a L-dimensional embedding at

via a look-up table EA. We experiment with three types of communication channel.

Continuous vectors The tourist has access to observations of several time steps,

whose order is important for accurate localization. Because summing embed-

dings is order-invariant, we introduce a sum over positionally-gated embeddings,

which, conditioned on time step t, pushes embedding information into the appro-

priate dimensions. More specifically, we generate an observation message mobs =∑T
t=0 sigmoid(gt) � ot, where gt is a learned gating vector for time step t. In a

similar fashion, we produce action message mact and send the concatenated vectors

m = [mobs; mact] as message to the guide. We can interpret continuous vector

communication as a single, monolithic model because its architecture is end-to-end

differentiable, enabling gradient-based optimization for training.

Discrete symbols Like the continuous vector communication model, with dis-

crete communication the tourist also uses separate channels for observations and

actions, as well as a sum over positionally gated embeddings to generate observa-

tion embedding hobs. We pass this embedding through a sigmoid and generate a

message mobs by sampling from the resulting Bernoulli distributions:

105

hobs =
T∑
t=0

sigmoid(gt)� ot; mobs
i ∼ Bernoulli(sigmoid(hobsi))

The action message mact is produced in the same way, and we obtain the final

tourist message m = [mobs; mact] through concatenating the messages.

The communication channel’s sampling operation yields the model non-differentiable,

so we use policy gradients (Sutton and Barto, 1998; Williams, 1992) to train the

parameters θ of the tourist model. That is, we estimate the gradient by

∇θEm∼p(h)[r(m)] = Em[∇θ log p(m)(r(m)− b)],

where the reward function r(m) = − log p(x, y)tgt|m,Λ) is the negative guide’s

loss (see Section 10.3.2) and b a state-value baseline to reduce variance. We use a

linear transformation over the concatenated embeddings as baseline prediction, i.e.

b = W base[hobs; hact] + bbase, and train it with a mean squared error loss 8.

Natural Language Because observations and actions are of variable-length, we

use an LSTM encoder over the sequence of observations embeddings [ot]
T+1
t=0 , and

extract its last hidden state hobs. We use a separate LSTM encoder for action

embeddings [at]
T
t=0, and concatenate both hobs and hact to the input of the LSTM

decoder at each time step:

ik = [Edec(wk−1); hobs; hact] hdeck = fLSTM(it,h
dec
k−1)

p(wk|w<k, A, Z) = softmax(W outhdeck + bout)k, (10.1)

where Edec a look-up table, taking input tokens wk. We train with teacher-forcing,

i.e. we optimize the cross-entropy loss: −
∑

K log p(wk|w<k, A, Z). At test time,

we explore the following decoding strategies: greedy, sampling and a beam-search.

We also fine-tune a trained tourist model (starting from a pre-trained model) with

policy gradients in order to minimize the guide’s prediction loss.

8. This is different from A2C which uses a state-value baseline that is trained by the Bellman
residual

106

10.3.2 The Guide

Given a tourist message M describing their observations and actions, the ob-

jective of the guide is to predict the tourist’s location on the map. First, we outline

the procedure for extracting observation embedding e and action embeddings at

from the message M for each of the types of communication. Next, we discuss the

MASC mechanism that takes the observations and actions in order to ground them

on the guide’s map in order to predict the tourist’s location.

Continuous For the continuous communication model, we assign the observation

message to the observation embedding, i.e. e = mobs. To extract the action

embedding for time step t, we apply a linear layer to the action message, i.e.

at = W act
t mact + bactt .

Discrete For discrete communication, we obtain observation e by applying a

linear layer to the observation message, i.e. e = W obsmobs + bobs. Similar to the

continuous communication model, we use a linear layer over action message mact

to obtain action embedding at for time step t.

Natural Language The message M contains information about observations

and actions, so we use a recurrent neural network with attention mechanism to

extract the relevant observation and action embeddings. Specifically, we encode

the message M , consisting of K tokens wk taken from vocabulary V , with a bidi-

rectional LSTM:

−→
hk = fLSTM(

−−→
hk−1, E

W (wk));
←−
hk = fLSTM(

←−−
hk+1, E

W (wk)); hk = [
−→
hk;
←−
hk]

(10.2)

where EW is the word embedding look-up table. We obtain observation embedding

et through an attention mechanism over the hidden states h:

sk = hk · ct; et =
∑
k

softmax(s)khk, (10.3)

where c0 is a learned control embedding who is updated through a linear transfor-

mation of the previous control and observation embedding: ct+1 = W ctrl[ct; et] +

107

bctrl. We use the same mechanism to extract the action embedding at from the

hidden states. For the observation embedding, we obtain the final representation

by summing positionally gated embeddings, i.e., e =
∑T

t=0 = sigmoid(gt)� et.

Masked Attention for Spatial Convolutions (MASC)

We represent the guide’s map as U ∈ RG1×G2×L, where in this case G1 = G2 = 4,

where each L-dimensional (x, y) location embedding ux,y is computed as the sum

of the guide’s landmark embeddings for that location.

Motivation While the guide’s map representation contains only local landmark

information, the tourist communicates a trajectory of the map (i.e. actions and ob-

servations from multiple locations), implying that directly comparing the tourist’s

message with the individual landmark embeddings is probably suboptimal. In-

stead, we want to aggregate landmark information from surrounding locations by

imputing trajectories over the map to predict locations. We propose a mechanism

for translating landmark embeddings according to state transitions (left, right, up,

down), which can be expressed as a 2D convolution over the map embeddings. For

simplicity, let us assume that the map embedding U is 1-dimensional, then a left

action can be realized through application of the following 3x3 kernel:
0 0 0
1 0 0
0 0 0

, which

effectively shifts all values of U one position to the left. We propose to learn such

state-transitions from the tourist message through a differentiable attention-mask

over the spatial dimensions of a 3x3 convolution.

MASC We linearly project each predicted action embedding at to a 9-dimensional

vector zt, normalize it by a softmax and subsequently reshape the vector into a 3x3

mask Φt:

zt = W actat + bact, φt = softmax(zt), Φt =

φ0
t φ1

t φ2
t

φ3
t φ4

t φ5
t

φ6
t φ7

t φ8
t

 . (10.4)

We learn a 3x3 convolutional kernel W ∈ R3×3×N×N , with N features, and apply

the mask Φt to the spatial dimensions of the convolution by first broadcasting its

108

values along the feature dimensions, i.e. Φ̂x,y,i,j = Φx,y, and subsequently taking

the Hadamard product: Wt = Φ̂t�W . For each action step t, we then apply a 2D

convolution with masked weight Wt to obtain a new map embedding Ut+1 = Ut∗Wt,

where we zero-pad the input to maintain identical spatial dimensions.

Prediction model We repeat the MASC operation T times (i.e. once for each

action), and then aggregate the map embeddings by a sum over positionally-gated

embeddings: ux,y =
∑T

t=0 sigmoid(gt) � ux,yt . We score locations by taking the

dot-product of the observation embedding e, which contains information about

the sequence of observed landmarks by the tourist, and the map. We compute a

distribution over the locations of the map p(x, y|M,Λ) by taking a softmax over

the computed scores:

sx,y = e · ux,y, p(x, y|M,Λ) =
exp(sx,y)∑

x′,y′ exp(sx′,y′)
. (10.5)

Predicting T While emergent communication models use a fixed length trasjec-

tory T , natural language messages may differ in the number of communicated

observations and actions. Hence, we predict T from the communicated message.

Specifically, we use a softmax regression layer over the last hidden state hK of the

RNN, and subsequently sample T from the resulting multinomial distribution:

z = softmax(W tmhK + btm); T̂ ∼ Multinomial(z). (10.6)

We jointly train the T -prediction model via REINFORCE, with the guide’s loss as

reward function and a mean-reward baseline.

10.3.3 Comparisons

To better analyze the performance of the models incorporating MASC, we com-

pare against a no-MASC baseline in our experiments, as well as a prediction upper

bound.

No MASC We compare the proposed MASC model with a model that does not

include this mechanism. Whereas MASC predicts a convolution mask from the

tourist message, the “No MASC” model uses W , the ordinary convolutional kernel

109

Table 10.3 – Accuracy results for tourist localization with emergent language, showing con-
tinuous (Cont.) and discrete (Disc.) communication, along with the prediction upper bound.
T denotes the length of the path and a 3 in the “MASC” column indicates that the model is
conditioned on the communicated actions.

MASC Train Valid Test

Cont. Disc. Upper Cont. Disc. Upper Cont. Disc. Upper

Random 6.25 6.25 6.25 6.25 6.25 6.25 6.25 6.25 6.25

T=0 7 29.59 28.89 30.23 30.00 30.63 32.50 32.29 33.12 35.00

T=1
7 39.83 35.40 43.44 35.23 36.56 45.39 35.16 39.53 51.72

3 55.64 51.66 62.78 53.12 53.20 65.78 56.09 55.78 72.97

T=2
7 41.50 40.15 47.84 33.50 37.77 50.29 35.08 41.41 57.15

3 67.44 62.24 78.90 64.55 59.34 79.77 66.80 62.15 86.64

T=3
7 43.48 44.49 45.22 35.40 39.64 48.77 33.11 43.51 55.84

3 71.32 71.80 87.92 67.48 65.63 87.45 69.85 69.51 92.41

to convolve the map embedding Ut to obtain Ut+1. We also share the weights of

this convolution at each time step.

Prediction upper-bound Because we have access to the class-conditional like-

lihood p(Z,A|x, y), we are able to compute the Bayes error rate (or irreducible

error). No model (no matter how expressive) with any amount of data can ever

obtain better localization accuracy as there are multiple locations consistent with

the observations and actions.

10.4 Results and Discussion

In this section, we describe the findings of various experiments. First, we analyze

how much information needs to be communicated for accurate localization in the

Talk The Walk environment, and find that a short random path (including actions)

is necessary. Next, for emergent language, we show that the MASC architecture

can achieve very high localization accuracy, significantly outperforming the baseline

110

that does not include this mechanism. We then turn our attention to the natural

language experiments, and find that localization from human utterances is much

harder, reaching an accuracy level that is below communicating a single landmark

observation. We show that generated utterances from a conditional language model

leads to significantly better localization performance, by successfully grounding the

utterance on a single landmark observation (but not yet on multiple observations

and actions). Finally, we show performance of the localization baseline on the full

task, which can be used for future comparisons to this work.

10.4.1 Analysis of Localization Task

Task is not too easy The upper-bound on localization performance in Table

10.3 suggest that communicating a single landmark observation is not sufficient for

accurate localization of the tourist (∼35% accuracy). This is an important result

for the full navigation task because the need for two-way communication disappears

if localization is too easy; if the guide knows the exact location of the tourist it

suffices to communicate a list of instructions, which is then executed by the tourist.

The uncertainty in the tourist’s location is what drives the dialogue between the

two agents.

Importance of actions We observe that the upperbound for only communicat-

ing observations plateaus around 57% (even for T = 3 actions), whereas it exceeds

90% when we also take actions into account. This implies that, at least for ran-

dom walks, it is essential to communicate a trajectory, including observations and

actions, in order to achieve high localization accuracy.

10.4.2 Emergent Language Localization

We first report the results for tourist localization with emergent language in

Table 10.3.

MASC improves performance The MASC architecture significantly improves

performance compared to models that do not include this mechanism. For in-

stance, for T = 1 action, MASC already achieves 56.09 % on the test set and this

further increases to 69.85% for T = 3. On the other hand, no-MASC models hit

111

Table 10.4 – Localization accuracy of tourist communicating in natural language.

Model Decoding Train Valid Test

Random 6.25 6.25 6.25

Human utterances 23.46 15.56 16.17

Supervised

sampling 17.19 12.23 12.43

greedy 34.14 29.90 29.05

beam (size: 4) 26.21 22.53 25.02

Policy Grad.
sampling 29.67 26.93 27.05

greedy 29.23 27.62 27.30

Table 10.5 – Full task evaluation of localization models using protocol of Algorithm 3.

Train Valid Test #steps

Random 18.75 18.75 18.75 -

Human 76.74 76.74 76.74 15.05

Best Cont. 89.44 86.35 88.33 34.47

Best Disc. 86.23 82.81 87.08 34.83

Best NL 39.65 39.68 50.00 39.14

a plateau at 43%. In Section 10.5.2, we analyze learned MASC values, and show

that communicated actions are often mapped to corresponding state-transitions.

Continuous vs discrete We observe similar performance for continuous and

discrete emergent communication models, implying that a discrete communication

channel is not a limiting factor for localization performance.

10.4.3 Natural Language Localization

We report the results of tourist localization with natural language in Table

10.4. We compare accuracy of the guide model (with MASC) trained on utterances

112

from (i) humans, (ii) a supervised model with various decoding strategies, and (iii)

a policy gradient model optimized with respect to the loss of a frozen, pre-trained

guide model on human utterances.

Human utterances Compared to emergent language, localization from human

utterances is much harder, achieving only 16.17% on the test set. Here, we report

localization from a single utterance, but in Section 10.5.1 we show that including

up to five dialogue utterances only improves performance to 20.33%. We also show

that MASC outperform no-MASC models for natural language communication.

Generated utterances We also investigate generated tourist utterances from

conditional language models. Interestingly, we observe that the supervised model

(with greedy and beam-search decoding) as well as the policy gradient model leads

to an improvement of more than 10 accuracy points over the human utterances.

However, their level of accuracy is slightly below the baseline of communicating a

single observation, indicating that these models only learn to ground utterances in

a single landmark observation.

Better grounding of generated utterances We analyze natural language

samples in Table 10.6, and confirm that, unlike human utterances, the generated

utterances are talking about the observed landmarks. This observation explains

why the generated utterances obtain higher localization accuracy. The current

language models are most successful when conditioned on a single landmark ob-

servation; We show in Section 10.5.1 that performance quickly deteriorates when

the model is conditioned on more observations, suggesting that it can not produce

natural language utterances about multiple time steps.

10.4.4 Localization-based Baseline

Table 10.5 shows results for the best localization models on the full task,

evaluated via the random walk protocol defined in Algorithm 3.

Comparison with human annotators Interestingly, our best localization model

(continuous communication, with MASC, and T = 3) achieves 88.33% on the test

set and thus exceed human performance of 76.74% on the full task. While emergent

113

Algorithm 3 Performance evaluation of location prediction model on full Talk
The Walk setup

procedure Evaluate(tourist, guide, T, xtgt, ytgt,maxsteps)
x, y ← randint(0, 3), randint(0, 3) . initialize with random location
features, actions← array(), array()
features[0]← features at location (x, y)
for t = 0; t < T ; t+ + do . create T -sized feature buffer

action← uniform sample from action set
x, y ← update location given action
features[t+ 1]← features at location (x, y)
actions[t]← action

for i = 0; i < maxsteps; i+ + do
M ← tourist(features, actions)
p(x, y|·)← guide(M)
xpred, ypred ← sample from p(x, y|·)
if xpred, ypred == xtgt, ytgt then . target predicted

if locations[0] == xtgt, ytgt then
return True

else
numevaluations← numevaluations− 1
if numevaluations ≤ 0 then

return False
features← features[1 :]
actions← actions[1 :]

x, y ← update location given action . take new action
features[t+ 1]← features at location (x, y)
actions[t]← action

models appear to be stronger localizers, humans might cope with their localization

uncertainty through other mechanisms (e.g. better guidance, bias towards taking

particular paths, etc). The simplifying assumption of perfect perception also helps.

Number of actions Unsurprisingly, humans take fewer steps (roughly 15) than

our best random walk model (roughly 34). Our human annotators likely used some

form of guidance to navigate faster to the target.

114

Method Decoding Utterance

Observations (Bar)

Actions -

Human a field of some type

Supervised

greedy at a bar

sampling sec just hard to tell which is a restaurant ?

beam search im at a bar

Policy Grad.
greedy bar from bar from bar and rigth rigth bulding bulding

sampling which bar from bar from bar and bar rigth bulding bulding..

Table 10.6 – Samples from the tourist models communicating in natural language. Contrary
to the human generated utterance, the supervised model with greedy and beam search decoding
produces an utterance containing the current state observation (bar). Also the reinforcement
learning model mentions the current observation but has lost linguistic structure. The fact that
these localization models are better grounded in observations than human utterances explains
why they obtain higher localization accuracy.

10.5 Additional Experiments and Analysis

In addition to the main experiments and results, we present additional experi-

ments and analysis that provide further insights into the Talk The Walk task. In the

following subsections, we present the results of additional natural language exper-

iments, visualize the MASC predictions for an emergent communication protocol,

and investigate the difficulty of the landmark recognition problem.

10.5.1 Natural Language Experiments

First, we investigate the sensitivity of tourist generation models to the trajec-

tory length, finding that the model conditioned on a single observation (i.e. T = 0)

achieves best performance. In the next subsection, we further analyze localization

models from human utterances by investigating MASC and no-MASC models with

increasing dialogue context.

Tourist Generation Models

After training the supervised tourist model (conditioned on observations and

action from human expert trajectories), there are two ways to train an accom-

115

Table 10.7 – Full task performance of localization models trained on human and random tra-
jectories. There are small benefits for training on random trajectories, but the most important
hyper-parameter is to condition the tourist utterance on a single observation (i.e. trajectories of
size T = 0.) at evaluation time.

Trajectories T Train Valid Test

Random 18.75 18.75 18.75

Human
0 38.21 40.93 40.00

1 21.82 23.75 25.62

2 19.77 24.68 23.12

3 18.95 20.93 20.00

Random

0 39.65 39.68 50.00

1 28.99 30.93 25.62

2 27.04 19.06 19.38

3 20.28 20.93 22.50

panying guide model. We can optimize a location prediction model on either (i)

extracted human trajectories (as in the localization setup from human utterances)

or (ii) on all random paths of length T (as in the full task evaluation). Here, we

investigate the impact of (1) using either human or random trajectories for training

the guide model, and (2) the effect of varying the path length T during the full-task

evaluation. For random trajectories, guide training uses the same path length T as

is used during evaluation. We use a pre-trained tourist model with greedy decoding

for generating the tourist utterances. Table 10.7 summarizes the results.

Human vs random trajectories We only observe small improvements for train-

ing on random trajectories. Human trajectories are thus diverse enough to gener-

alize to random trajectories.

Effect of path length There is a strong negative correlation between task suc-

cess and the conditioned trajectory length. We observe that the full task perfor-

mance quickly deteriorates for both human and random trajectories. This suggests

116

Table 10.8 – Localization performance using pre-trained tourist (via imitation learning) with
beam search decoding of varying beam size. Locations and observations extracted from human
trajectories. Larger beam-sizes lead to worse localization performance.

Beam size Train Valid Test

Random 6.25 6.25 6.25

1 34.14 29.90 29.05

2 26.24 23.65 25.10

4 23.59 22.87 21.80

8 20.31 19.24 20.87

that the tourist generation model can not produce natural language utterances that

describe multiple observations and actions. Although it is possible that the guide

model can not process such utterances, this is not very likely because the MASC

architectures handles such messages successfully for emergent communication.

Effect of beam-size

We report localization performance of tourist utterances generated by beam

search decoding of varying beam size in Table 10.8. We find that performance

decreases from 29.05% to 20.87% accuracy on the test set when we increase the

beam-size from one to eight.

Localization from Human Utterances

We conduct an ablation study for MASC on natural language with varying

dialogue context. Specifically, we compare localization accuracy of MASC and no-

MASC models trained on the last [1, 3, 5] utterances of the dialogue (including

guide utterances). We report these results in Table 10.9. In all cases, MASC

outperforms the no-MASC models by several accuracy points. We also observe

that mean predicted T̂ (over the test set) increases from 1 to 2 when more dialogue

context is included.

117

#utterances MASC Train Valid Test E[T]

Random 6.25 6.25 6.25 -

1
7 23.95 13.91 13.89 0.99

3 23.46 15.56 16.17 1.00

3
7 26.92 16.28 16.62 1.00

3 20.88 17.50 18.80 1.79

5
7 25.75 16.11 16.88 1.98

3 30.45 18.41 20.33 1.99

Table 10.9 – Localization given last {1, 3, 5} dialogue utterances (including the guide). We
observe that (1) performance increases when more utterances are included; and (2) MASC out-
performs no-MASC in all cases; and (3) mean T̂ increases when more dialogue context is included.

10.5.2 Visualizing MASC predictions

Figure 10.6 shows the MASC values for a learned model with emergent discrete

communications and T = 3 actions. Specifically, we look at the predicted MASC

values for different action sequences taken by the tourist. We observe that the first

action is always mapped to the correct state-transition, but that the second and

third MASC values do not always correspond to right state-transitions.

10.5.3 Landmark Classification

While the guide has access to the landmark labels, the tourist needs to recognize

these landmarks from raw perceptual information. In this section, we study land-

mark classification as a supervised learning problem to investigate the difficulty of

perceptual grounding in Talk The Walk.

The Talk The Walk dataset contains a total of 307 different landmarks divided

among nine classes, see Figure 10.8 for how they are distributed. The class dis-

tribution is fairly imbalanced, with shops and restaurants as the most frequent

landmarks and relatively few play fields and theaters. We treat landmark recogni-

tion as a multi-label classification problem as there can be multiple landmarks on

118

Action se-
quence:
Right, Left, Up

Action se-
quence:
Up, Right,
Down

Figure 10.6 – We show MASC values of two action sequences for tourist localization via discrete
communication with T = 3 actions. In general, we observe that the first action always corresponds
to the correct state-transition, whereas the second and third are sometimes mixed. For instance,
in the top example, the first two actions are correctly predicted but the third action is not (as
the MASC corresponds to a “no action”). In the bottom example, the second action appears as
the third MASC.

a corner 9.

For the task of landmark classification, we extract the relevant views of the 360

image from which a landmark is visible. Because landmarks are labeled to be on a

specific corner of an intersection, we assume that they are visible from one of the

orientations facing away from the intersection. For example, for a landmark on the

northwest corner of an intersection, we extract views from both the north and west

direction. The orientation-specific views are obtained by a planar projection of the

full 360-image with a small field of view (60 degrees) to limit distortions. To cover

the full field of view, we extract two images per orientation, with their horizontal

focus point 30 degrees apart. Hence, we obtain eight images per 360 image with

corresponding orientation υ ∈ {N1, N2, E1, E2, S1, S2,W1,W2}.
We run the following pre-trained feature extractors over the extracted images:

ResNet We resize the extracted view to a 224x224 image and pass it through

a ResNet-152 network Kaiming et al. (2016) to obtain a 2048-dimensional

9. Strictly speaking, this is more general than a multi-label setup because a corner might
contain multiple landmarks of the same class.

119

Table 10.10 – Results for landmark classification.

Features Train loss Valid Loss Train F1 Valid F1 Valid prec. Valid recall

All positive - - - 0.39313 0.26128 1

Random (0.5) - - - 0.32013 0.24132 0.25773

Textrecog 0.01462 0.01837 0.31205 0.31684 0.2635 0.50515

Fasttext 0.00992 0.00994 0.24019 0.31548 0.26133 0.47423

Fasttext (100 dim) 0.00721 0.00863 0.32651 0.28672 0.24964 0.4433

ResNet 0.00735 0.00751 0.17085 0.20159 0.13114 0.58763

ResNet (256 dim) 0.0051 0.00748 0.60911 0.31953 0.27733 0.50515

feature vector Sresnetx,y,υ ∈ R2048 from the penultimate layer.

Text Recognition We use a pre-trained text-recognition model Gupta et al.

(2016) to extract a set of text messages Stextx,y,υ = {Rtext
β }Bβ=0 from the images.

Local businesses often advertise their wares through key phrases on their

storefront, and understanding this text might be a good indicator of the

type of landmark. In Figure 10.7, we show the results of running the text

recognition module on a few extracted images.

For the text recognition model, we use a learned look-up table Etext to embed

the extracted text features eβx,y,υ = Etext(Rtext
β), and fuse all embeddings of four

images through a bag of embeddings, i.e., efused =
∑

υ∈relevant views

∑
β e

β
x,y,υ. We

use a linear layer followed by a sigmoid to predict the probability for each class, i.e.

sigmoid(Wefused + b). We also experiment with replacing the look-up embeddings

with pre-trained FastText embeddings Bojanowski et al. (2016). For the ResNet

model, we use a bag of embeddings over the four ResNet features, i.e. efused =∑
υ∈relevant views S

resnet
x,y,υ , before we pass it through a linear layer to predict the class

probabilities: sigmoid(Wefused + b). We also conduct experiments where we first

apply PCA to the extracted ResNet and FastText features before we feed them to

the model.

To account for class imbalance, we train all described models with a binary

cross entropy loss weighted by the inverted class frequency. We create a 80-20

120

class-conditional split of the dataset into a training and validation set. We train

for 100 epochs and perform early stopping on the validation loss.

The F1 scores for the described methods in Table 10.10. We compare to an

“all positive” baseline that always predicts that the landmark class is visible and

observe that all presented models struggle to outperform this baseline. Although

256-dimensional ResNet features achieve slightly better precision on the validation

set, it results in much worse recall and a lower F1 score. Our results indicate that

perceptual grounding is a difficult task, which easily merits a paper of its own right,

and so we leave further improvements (e.g. better text recognizers) for future work.

10.6 Related Work

The Talk the Walk task and dataset facilitate future research on various im-

portant subfields of artificial intelligence, including grounded language learning,

goal-oriented dialogue research and situated navigation. Here, we describe related

previous work in these areas.

Related tasks There has been a long line of work involving related tasks. Early

work on task-oriented dialogue dates back to the early 90s with the introduction

of the Map Task (Anderson et al., 1991) and Maze Game (Garrod and Ander-

son, 1987) corpora. Recent efforts have led to larger-scale goal-oriented dialogue

datasets, for instance to aid research on visually-grounded dialogue (Das et al.,

2017a; de Vries et al., 2016), knowledge-base-grounded discourse (He et al., 2017)

or negotiation tasks (Lewis et al., 2017). At the same time, there has been a

big push to develop environments for embodied AI, many of which involve agents

following natural language instructions with respect to an environment(Artzi and

Zettlemoyer, 2013; Yu et al., 2017; Hermann et al., 2017; Mei et al., 2016; Chaplot

et al., 2018b,a), following-up on early work in this area (MacMahon et al., 2006;

Chen and Mooney, 2011). An early example of navigation using neural networks

is (Hadsell et al., 2007), who propose an online learning approach for robot nav-

igation. Recently, there has been increased interest in using end-to-end trainable

neural networks for learning to navigate indoor scenes(Gupta et al., 2017b,a) or

large cities (Brahmbhatt and Hays, 2017; Mirowski et al., 2018), but, unlike our

121

work, without multi-agent communication. Also the task of localization (without

multi-agent communication) has recently been studied (Chaplot et al., 2018a; Vo

et al., 2017).

Grounded language learning Grounded language learning is motivated by the

observation that humans learn language embodied (grounded) in sensorimotor ex-

perience of the physical world (Barsalou, 2008b; Smith and Gasser, 2005). On

the one hand, work in multi-modal semantics has shown that grounding can lead

to practical improvements on various natural language understanding tasks (see

Baroni, 2016; Kiela, 2017, and references therein). In robotics, researchers dissatis-

fied with purely symbolic accounts of meaning attempted to build robotic systems

with the aim of grounding meaning in physical experience of the world (Roy, 2005;

Steels and Hild, 2012). Recently, grounding has also been applied to the learning of

sentence representations (Kiela et al., 2017), image captioning (Lin et al., 2014; Xu

et al., 2015), visual question answering (Antol et al., 2015; de Vries et al., 2017),

visual reasoning (Johnson et al., 2017; Perez et al., 2018), and grounded machine

translation (Riezler et al., 2014; Elliott et al., 2016). Grounding also plays a crucial

role in the emergent research of multi-agent communication, where, agents commu-

nicate (in natural language or otherwise) in order to solve a task, with respect to

their shared environment (Lazaridou et al., 2016; Das et al., 2017c; Mordatch and

Abbeel, 2017; Evtimova et al., 2017; Lewis et al., 2017; Strub et al., 2017; Kottur

et al., 2017).

10.7 Conclusion

We introduced the Talk The Walk task and dataset, which consists of crowd-

sourced dialogues in which two human annotators collaborate to navigate to target

locations in the virtual streets of NYC. For the important localization sub-task,

we proposed MASC—a novel grounding mechanism to learn state-transition from

the tourist’s message—and showed that it improves localization performance for

emergent and natural language. We use the localization model to provide baseline

numbers on the Talk The Walk task, in order to facilitate future research.

122

Figure 10.7 – Result of running the text recognizer of (Gupta et al., 2016) on four examples of
the Hell’s Kitchen neighborhood. Top row: two positive examples. Bottom row: example of
false negative (left) and many false positives (right)

123

Figure 10.8 – Frequency of landmark classes

124

11 Conclusion

This thesis investigated deep learning and reinforcement learning methods for

multi-modal dialogue problems. As prior work has demonstrated the difficulty

of dialogue modelling for open-ended domains, this work focused on this topic

in a more constrained setting. Specifically, we argued in favor of goal-oriented

tasks because they (i) limit the scope of the conversation and (ii) come with a

well-defined objective. Besides these simplifications, we also argued for studying

dialogue problems in a multi-modal environment, so as to enable conversational

agents to ground their language use into the sensory-motor experience.

Chapter 4 introduced GuessWhat, a two-player guessing game where a so-called

questioner agent aims to identify an unknown object via a series of yes-no questions.

Our main contribution consisted of the collection of more than 150k human-played

games. Using these human-generated dialogues, we prototyped deep learning base-

lines for the three sub-problems of the GuessWhat game: the oracle task, the

questioner task, and the guesser task. The results of these experiments provided

insight into the nature of these sub-problems and inspired us to develop the meth-

ods presented in Chapter 6 and 8.

In Chapter 6, we pointed out the shortcomings of modeling the questioner agent

as a supervised learning task and instead proposed to frame it as a sequential

decision problem. To that end, we set up the question generation problem as a

reinforcement learning task—with the pretrained oracle and guesser model being

part of the environment—and explicitly optimize the agent to find the correct

object. Compared to the supervised baseline, the RL agent achieved significantly

higher task success and suffered less from repeating questions. On the other hand,

we also found its generated questions to be less diverse, as well as tailored to the

answering capabilities of the oracle model.

Chapter 8 improved the oracle model by introducing the idea of Conditional

Batch Normalization (CBN). Specifically, we proposed to use this conditioning

mechanism to let the question modulate the intermediate activations of a pre-

125

trained CNN. While Chapter 4 found that adding raw image features of either the

cropped object or entire scene deteriorated oracle performance, we showed that

adding this information improves performance if we apply a modulated CNN. In

addition, we showed that the proposed model also improved performance for the

Visual Question Answering benchmark. CBN is a very general conditioning mech-

anism which has been effectively transferred to a wide range of applications, in-

cluding class-conditional image generation, speech recognition, and few-shot image

learning.

Chapter 10 introduced Talk The Walk, a new grounded dialogue task where

two agents—a “tourist” and a “guide”—hold a conversation in order to navigate the

tourist to a target location. Compared to GuessWhat, Talk The Walk increases the

level of complexity along several dimensions. First, both agents in Talk The Walk

are able to communicate in free-form natural language, whereas the oracle agent

in GuessWhat is restricted to yes, no, and not applicable answers. Second, the

questioner and oracle agents are passive observers of the environment (the image),

whereas the tourist agent is actively taking actions in this environment. In other

words, the Talk the Walk dialogues are linked to both observations and actions.

Because of this increased complexity, we established baselines for the full task by

training models for the sub-task of tourist localization. Using synthetic language,

we achieved high localization accuracy by incorporating the MASC mechanism,

which we found to be effective for grounding tourist actions into the guide’s map.

We found that localization from extracted human utterances is much harder be-

cause they often do not talk about the observed landmarks.

Looking forward, there are many exciting directions to extend the work pre-

sented in this thesis. Below, I outline a few topics which I believe are fundamental

to further advancing this sub-field.

One pressing issue in goal-oriented dialogue is language drifting, a problem

which is especially relevant for agents that are optimized with reinforcement learn-

ing. As information-seeking dialogue problems are constructed to transfer infor-

mation between two agents, there exists many synthetic communication protocols

that achieve this goal. For that reason, RL agents optimizing for task success tend

to converge to a communication protocol that does not resemble natural language,

even if the model started from a supervised language model (Kottur et al., 2017;

Lewis et al., 2017). In this thesis, we aimed to address this issue by freezing the

126

pre-trained answering model so that the optimized questioner agent was forced

to ask questions that the oracle understood. Others have proposed to optimize

both agents with RL but to regularize the produced utterances by their likelihood

on a pre-trained language model. So far, the results of these proposals are not

fully satisfactory and more research is needed on how to effectively combine super-

vised learning and reinforcement learning techniques for dialogue tasks. It is also

possible that the language drifting problem is the result of optimizing for a single

information-seeking task and might be alleviated by bundling a number of dialogue

tasks. Human language use is not optimized for a single task either so I believe it

is important to train and test our dialogue agents on multiple information-seeking

problems too.

Language-and-vision grounding is another research topic that I believe deserves

further attention from the community. For many language-and-vision tasks it has

recently been reported that language priors overwrite the visual processing (Tejas

et al., 2017; Shekhar et al., 2017; Massiceti et al., 2018). The work presented in this

thesis has made progress in this direction by introducing better neural architectures

and less biased language-vision data sets. However, much work remains to be done.

For example, completely eliminating all biases from the dataset seems unrealistic,

suggesting the need for developing models that can handle such biases. Very much

related to this issue is that current neural architectures lack systematicity and,

therefore, fail to generalize to samples outside the training distribution. For ex-

ample, in the context of visual relationship learning, these systems have difficulties

manipulating previously acquired knowledge about relationships (such as “on top

of”) and objects (e.g. “vase” and “table”) into novel configurations (“a vase on top

of a table”). I think that this type of compositional generalization is a prerequisite

for successful deployment of language-vision models in the real world.

127

Bibliography

Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado,

G. S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A.,

Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg,

J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens,

J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan,

V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., and

Zheng, X. (2015). TensorFlow: Large-scale machine learning on heterogeneous

systems. Software available from tensorflow.org.

Agrawal, A., Batra, D., and Parikh, D. (2016). Analyzing the Behavior of Visual

Question Answering Models. arXiv preprint arXiv:1606.07356.

Ahn, L. V. and Dabbish, L. (2004). Labeling images with a computer game. In

Proc. of the SIGCHI conference on Human factors in computing systems. ACM.

Ahn, L. V., Liu, R., and Blum, M. (2006). Peekaboom: a game for locating objects

in images. In Proc. of the SIGCHI conference on Human Factors in computing

systems. ACM.

Al-Rfou, R., Alain, G., Almahairi, A., Angermueller, C., Bahdanau, D., Ballas,

N., Bastien, F., Bayer, J., Belikov, A., Belopolsky, A., Bengio, Y., Bergeron,

A., Bergstra, J., Bisson, V., Bleecher Snyder, J., Bouchard, N., Boulanger-

Lewandowski, N., Bouthillier, X., de Brébisson, A., Breuleux, O., Carrier, P.-

L., Cho, K., Chorowski, J., Christiano, P., Cooijmans, T., Côté, M.-A., Côté,

M., Courville, A., Dauphin, Y. N., Delalleau, O., Demouth, J., Desjardins, G.,

Dieleman, S., Dinh, L., Ducoffe, M., Dumoulin, V., Ebrahimi Kahou, S., Er-

han, D., Fan, Z., Firat, O., Germain, M., Glorot, X., Goodfellow, I., Graham,

M., Gulcehre, C., Hamel, P., Harlouchet, I., Heng, J.-P., Hidasi, B., Honari, S.,

Jain, A., Jean, S., Jia, K., Korobov, M., Kulkarni, V., Lamb, A., Lamblin, P.,

Larsen, E., Laurent, C., Lee, S., Lefrancois, S., Lemieux, S., Léonard, N., Lin,

128

Z., Livezey, J. A., Lorenz, C., Lowin, J., Ma, Q., Manzagol, P.-A., Mastropi-

etro, O., McGibbon, R. T., Memisevic, R., van Merriënboer, B., Michalski, V.,

Mirza, M., Orlandi, A., Pal, C., Pascanu, R., Pezeshki, M., Raffel, C., Renshaw,

D., Rocklin, M., Romero, A., Roth, M., Sadowski, P., Salvatier, J., Savard, F.,

Schlüter, J., Schulman, J., Schwartz, G., Serban, I. V., Serdyuk, D., Shabanian,

S., Simon, E., Spieckermann, S., Subramanyam, S. R., Sygnowski, J., Tanguay,

J., van Tulder, G., Turian, J., Urban, S., Vincent, P., Visin, F., de Vries, H.,

Warde-Farley, D., Webb, D. J., Willson, M., Xu, K., Xue, L., Yao, L., Zhang,

S., and Zhang, Y. (2016). Theano: A Python framework for fast computation of

mathematical expressions. arXiv e-prints, abs/1605.02688.

Anderson, A. H., Bader, M., Bard, E. G., Boyle, E., Doherty, G., Garrod, S.,

Isard, S., Kowtko, J., McAllister, J., Miller, J., Sotillo, C., Thompson, H. S., and

Weinert, R. (1991). The hcrc map task corpus. Language and Speech, 34(4):351–

366.

Anderson, P., Wu, Q., Teney, D., Bruce, J., Johnson, M., Sünderhauf, N., Reid,

I., Gould, S., and van den Hengel, A. (2018). Vision-and-language navigation:

Interpreting visually-grounded navigation instructions in real environments. In

Proceedings of the IEEE Conference on Computer Vision and Pattern Recogni-

tion (CVPR).

Andrychowicz, M., Baker, B., Chociej, M., Józefowicz, R., McGrew, B., Pachocki,

J. W., Pachocki, J., Petron, A., Plappert, M., Powell, G., Ray, A., Schneider, J.,

Sidor, S., Tobin, J., Welinder, P., Weng, L., and Zaremba, W. (2018). Learning

dexterous in-hand manipulation. CoRR, abs/1808.00177.

Antol, S., Agrawal, A., Lu, J., Mitchell, M., Batra, D., Lawrence, Z., and Parikh,

D. (2015). Vqa: Visual question answering. In Proc. of ICCV.

Artzi, Y. and Zettlemoyer, L. (2013). Weakly supervised learning of semantic

parsers for mapping instructions to actions. Transactions of the Association of

Computational Linguistics, 1:49–62.

Bahdanau, D., Brakel, P., Kelvin, K., Goyal, A., Lowe, R., Pineau, J., Courville,

A., and Bengio, Y. (2017). An actor-critic algorithm for sequence prediction.

Proc. of ICLR.

129

Baroni, M. (2016). Grounding distributional semantics in the visual world. Lan-

guage and Linguistics Compass, 10(1):3–13.

Barsalou, L. (2008a). Grounded cognition. Annu. Rev. Psychol., 59:617–645.

Barsalou, L. W. (2008b). Grounded cognition. Annual Review of Psychology,

59(1):617–645.

Bellman, R. (1966). Dynamic programming. Science, 153(3731):34–37.

Ben-Younes, H., Cadène, R., Thome, N., and Cord, M. (2017). MUTAN:

Multimodal Tucker Fusion for Visual Question Answering. arXiv preprint

arXiv:1705.06676.

Bengio, Y., Courville, A., and Vincent, P. (2013). Representation learning: A re-

view and new perspectives. IEEE Trans. Pattern Anal. Mach. Intell., 35(8):1798–

1828.

Bengio, Y., Ducharme, R., Vincent, P., and Jauvin, C. (2003). A neural proba-

bilistic language model. JMLR, 3(Feb):1137–1155.

Bengio, Y., Simard, P., and Frasconi, P. (1994). Learning long-term dependen-

cies with gradient descent is difficult. IEEE transactions on neural networks,

5(2):157–166.

Bird, S., Klein, E., and Loper, E. (2009). Natural language processing with Python.

O’Reilly Media, Inc.

Bishop, C. M. (2006). Pattern Recognition and Machine Learning. Springer.

Bojanowski, P., Grave, E., Joulin, A., and Mikolov, T. (2016). Enriching word

vectors with subword information. arXiv preprint arXiv:1607.04606.

Boutonnet, B. and Lupyan, G. (2015). Words jump-start vision: A label advantage

in object recognition. Journal of Neuroscience, 35(25):9329–9335.

Boyd, S. and Vandenberghe, L. (2004). Convex optimization. Cambridge university

press.

Brahmbhatt, S. and Hays, J. (2017). Deepnav: Learning to navigate large cities.

CoRR, abs/1701.09135.

130

Brock, A., Donahue, J., and Simonyan, K. (2019). Large scale GAN training for

high fidelity natural image synthesis. In International Conference on Learning

Representations.

Buhrmester, M., Kwang, T., and Gosling, S. (2011). Amazon’s Mechanical Turk a

new source of inexpensive, yet high-quality, data? Perspectives on psychological

science, 6(1):3–5.

Castrejon, L., Aytar, Y., Vondrick, C., Pirsiavash, H., and Torralba, A. (2016).

Learning Aligned Cross-Modal Representations from Weakly Aligned Data. In

Proc. CVPR.

Chaplot, D. S., Parisotto, E., and Salakhutdinov, R. (2018a). Active neural local-

ization. arXiv preprint arXiv:1801.08214.

Chaplot, D. S., Sathyendra, K. M., Pasumarthi, R. K., Rajagopal, D., and

Salakhutdinov, R. (2018b). Gated-attention architectures for task-oriented lan-

guage grounding. AAAI.

Chen, D. L. and Mooney, R. J. (2011). Learning to interpret natural language

navigation instructions fro mobservations. In Proceedings of the 25th AAAI Con-

ference on Artificial Intelligence (AAAI-2011), San Francisco, CA, USA.

Chen, H., Suhr, A., Misra, D., Snavely, N., and Artzi, Y. (2019). Touchdown:

Natural language navigation and spatial reasoning in visual street environments.

In Proceedings of the IEEE Conference on Computer Vision and Pattern Recog-

nition, pages 12538–12547.

Cho, K., Merriënboer, B. V., Gulcehre, C., Bahdanau, D., Bougares, F., Schwenk,

H., and Bengio, Y. (2014). Learning phrase representations using RNN encoder-

decoder for statistical machine translation. In Proc. of EMNLP. Association for

Computational Linguistics.

Choromanska, A., Henaff, M., Mathieu, M., Ben Arous, G., and LeCun, Y. (2015).

The loss surfaces of multilayer networks. Journal of Machine Learning Research,

38:192–204.

131

Cirik, V., Zhang, Y., and Baldridge, J. (2018). Following formulaic map instructions

in a street simulation environment. In 2018 NeurIPS Workshop on Visually

Grounded Interaction and Language.

Clark, H. and Schaefer, E. (1989). Contributing to discourse. Cognitive Science,

13(2):259–294.

Dalal, N. and Triggs, B. (2005). Histograms of oriented gradients for human detec-

tion. In Proceedings of the 2005 IEEE Computer Society Conference on Computer

Vision and Pattern Recognition (CVPR’05) - Volume 1 - Volume 01, CVPR ’05,

pages 886–893, Washington, DC, USA. IEEE Computer Society.

Das, A., Datta, S., Gkioxari, G., Lee, S., Parikh, D., and Batra, D. (2018). Embod-

ied Question Answering. In Proceedings of the IEEE Conference on Computer

Vision and Pattern Recognition (CVPR).

Das, A., Kottur, S., Gupta, K., Singh, A., Yadav, D., Moura, J., Parikh, D., and

Batra, D. (2017a). Visual Dialog. In Proc. of CVPR.

Das, A., Kottur, S., Moura, J., Lee, S., and Batra, D. (2017b). Learning Cooper-

ative Visual Dialog Agents with Deep Reinforcement Learning. arXiv preprint

arXiv:1703.06585.

Das, A., Kottur, S., Moura, J. M., Lee, S., and Batra, D. (2017c). Learning

cooperative visual dialog agents with deep reinforcement learning. In Proceedings

of the IEEE International Conference on Computer Vision (ICCV).

Dauphin, Y. N., Pascanu, R., Gulcehre, C., Cho, K., Ganguli, S., and Bengio, Y.

(2014). Identifying and attacking the saddle point problem in high-dimensional

non-convex optimization. In Ghahramani, Z., Welling, M., Cortes, C., Lawrence,

N. D., and Weinberger, K. Q., editors, Advances in Neural Information Process-

ing Systems 27, pages 2933–2941. Curran Associates, Inc.

Dauphin, Y. N., Vries, H. d., and Bengio, Y. (2015). Equilibrated adaptive learning

rates for non-convex optimization. In Proceedings of the 28th International Con-

ference on Neural Information Processing Systems - Volume 1, NIPS’15, pages

1504–1512, Cambridge, MA, USA. MIT Press.

132

de Vries, H., Strub, F., Chandar, S., Pietquin, O., Larochelle, H., and Courville,

A. (2016). GuessWhat?! Visual object discovery through multi-modal dialogue.

In Proc. of CVPR.

de Vries, H., Strub, F., Mary, J., Larochelle, H., Pietquin, O., and Courville, A. C.

(2017). Modulating early visual processing by language. In Proc. of NIPS.

Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., and Fei-Fei, L. (2009). ImageNet:

A Large-Scale Hierarchical Image Database. In CVPR09.

Dodge, J., Gane, A., Zhang, X., Bordes, A., Chopra, S., Miller, A., Szlam, A.,

and Weston, J. (2016). Evaluating prerequisite qualities for learning end-to-end

dialog systems. In Proc. of ICLR.

Donahue, J., Jia, Y., Vinyals, O., Hoffman, J., Zhang, N., Tzeng, E., and Dar-

rell, T. (2014). Decaf: A deep convolutional activation feature for generic visual

recognition. In Xing, E. P. and Jebara, T., editors, Proceedings of the 31st Inter-

national Conference on Machine Learning, volume 32 of Proceedings of Machine

Learning Research, pages 647–655, Bejing, China. PMLR.

Dumoulin, V., Shlens, J., and Kudlur, M. (2017). A Learned Representation For

Artistic Style. In Proc. of ICLR.

Dumoulin, V. and Visin, F. (2016). A guide to convolution arithmetic for deep

learning. ArXiv e-prints.

Eckert, W., Levin, E., and Pieraccini, R. (1997). User modeling for spoken dialogue

system evaluation. In Proc. of ASRU.

Elliott, D., Frank, S., Sima’an, K., and Specia, L. (2016). Multi30k: Multilingual

english-german image descriptions. arXiv preprint arXiv:1605.00459.

Elman, J. L. (1990). Finding structure in time. Cognitive science, 14(2):179–211.

Escalante, H., Hernández, C., Gonzalez, J., López-López, A., Montes, M., Morales,

E., Sucar, E., Villaseñ, L., and Grubinger, M. (2010). The segmented and anno-

tated IAPR TC-12 benchmark. CVIU.

Evtimova, K., Drozdov, A., Kiela, D., and Cho, K. (2017). Emergent language in

a multi-modal, multi-step referential game. arXiv preprint arXiv:1705.10369.

133

F. Ferreira and M. Tanenhaus (2007). Introduction to the special issue on language–

vision interactions. Journal of Memory and Language, 57(4):455–459.

Fei-Fei, L., Fergus, R., and Perona, P. (2006). One-shot learning of object cate-

gories. IEEE transactions on pattern analysis and machine intelligence.

Fukui, A., Park, D. H., Yang, D., Rohrbach, A., Darrell, T., and Rohrbach, M.

(2016). Multimodal Compact Bilinear Pooling for Visual Question Answering

and Visual Grounding. In Proc. of EMNLP.

Garrod, S. and Anderson, A. (1987). Saying what you mean in dialogue: A study

in conceptual and semantic co-ordination. Cognition, 27(2):181 – 218.

Geman, D., Geman, S., Hallonquist, N., and Younes, L. (2015). Visual turing test

for computer vision systems. Proceedings of the National Academy of Sciences,

112(12):3618–3623.

Glorot, X. and Bengio, Y. (2010). Understanding the difficulty of training deep

feedforward neural networks. In Teh, Y. W. and Titterington, M., editors, Pro-

ceedings of the Thirteenth International Conference on Artificial Intelligence and

Statistics, volume 9 of Proceedings of Machine Learning Research, pages 249–256,

Chia Laguna Resort, Sardinia, Italy. PMLR.

Glorot, X., Bordes, A., and Bengio, Y. (2011). Deep sparse rectifier neural networks.

In Gordon, G., Dunson, D., and Dud́ık, M., editors, Proceedings of the Fourteenth

International Conference on Artificial Intelligence and Statistics, volume 15 of

Proceedings of Machine Learning Research, pages 315–323, Fort Lauderdale, FL,

USA. PMLR.

Goodfellow, I., Bengio, Y., and Courville, A. (2016). Deep Learning. Book in

preparation for MIT Press.

Gupta, A., Vedaldi, A., and Zisserman, A. (2016). Synthetic data for text locali-

sation in natural images. In IEEE Conference on Computer Vision and Pattern

Recognition.

Gupta, S., Davidson, J., Levine, S., Sukthankar, R., and Malik, J. (2017a). Cog-

nitive mapping and planning for visual navigation. In Proceedings of the IEEE

Conference on Computer Vision and Pattern Recognition.

134

Gupta, S., Fouhey, D., Levine, S., and Malik, J. (2017b). Unifying map

and landmark based representations for visual navigation. arXiv preprint

arXiv:1712.08125.

Hadsell, R., Sermanet, P., Han, J., Flepp, B., Muller, U., and LeCun, Y. (2007).

Online learning for offroad robots: Using spatial label propagation to learn long-

range traversability. In Proc. of Robotics: Science and Systems (RSS), volume 11.

He, H., Balakrishnan, A., Eric, M., and Liang, P. (2017). Learning symmetric

collaborative dialogue agents with dynamic knowledge graph embeddings. In

Proceedings of the 55th Annual Meeting of the Association for Computational

Linguistics (Volume 1: Long Papers), pages 1766–1776, Vancouver, Canada.

Association for Computational Linguistics.

Hermann, K. M., Hill, F., Green, S., Wang, F., Faulkner, R., Soyer, H., Szepes-

vari, D., Czarnecki, W., Jaderberg, M., Teplyashin, D., et al. (2017). Grounded

language learning in a simulated 3d world. arXiv preprint arXiv:1706.06551.

Hinton, G. E., McClelland, J. L., Rumelhart, D. E., et al. (1984). Distributed

representations. Carnegie-Mellon University Pittsburgh, PA.

Hochreiter, S. (1998). The vanishing gradient problem during learning recurrent

neural nets and problem solutions. International Journal of Uncertainty, Fuzzi-

ness and Knowledge-Based Systems, 6(02):107–116.

Hochreiter, S. and Schmidhuber, J. (1997). Long short-term memory. Neural

computation, 9(8):1735–1780.

Hu, R., Xu, H., Rohrbach, M., Feng, J., Saenko, K., and Darrell, T. (2016). Natural

Language Object Retrieval. Proc. of CVPR.

Ioffe, S. and Szegedy, C. (2015). Batch Normalization: Accelerating Deep Network

Training by Reducing Internal Covariate Shift. In Proc. of ICML.

Jabri, A., Joulin, A., and van der Maaten, L. (2016). Revisiting visual question

answering baselines. In Leibe, B., Matas, J., Sebe, N., and Welling, M., editors,

Computer Vision – ECCV 2016, pages 727–739, Cham. Springer International

Publishing.

135

Johnson, J., Hariharan, B., van der Maaten, L., Fei-Fei, L., Zitnick, C. L., and

Girshick, R. (2017). Clevr: A diagnostic dataset for compositional language and

elementary visual reasoning. In Proc. of CVPR.

Kaiming, K., Xiangyu, Z., Ren, S., and Sun, J. (2016). Deep residual learning for

image recognition. In Proc. of CVPR.

Karpathy, A. and Fei-Fei, L. (2015). Deep visual-semantic alignments for generating

image descriptions. In Proc. CVPR.

Kazemzadeh, S., Ordonez, V., Matten, M., and Berg, T. (2014). ReferItGame:

Referring to Objects in Photographs of Natural Scenes. In Proc. of EMNLP.

Kiela, D. (2017). Deep embodiment: grounding semantics in perceptual modalities

(PhD thesis). Technical Report UCAM-CL-TR-899, University of Cambridge,

Computer Laboratory.

Kiela, D., Bulat, L., A.Vero, and Clark, S. (2016). Virtual Embodiment: A Scal-

able Long-Term Strategy for Artificial Intelligence Research. NIPS workshop in

Machine Intelligence.

Kiela, D., Conneau, A., Jabri, A., and Nickel, M. (2017). Learning visually

grounded sentence representations. arXiv preprint arXiv:1707.06320.

Kim, J.-H., Lee, S.-W., Kwak, D., Heo, M.-O., Kim, J., Ha, J.-W., and Zhang,

B.-Y. (2016). Multimodal Residual Learning for Visual QA. In Proc. of NIPS.

Kim, J.-H., On, K. W., Lim, W., Kim, J., Ha, J.-W., and Zhang, B.-T. (2017).

Hadamard Product for Low-rank Bilinear Pooling. In Proc. of ICLR.

Kingma, D. P. and Ba, J. (2014). Adam: A Method for Stochastic Optimization.

CoRR, abs/1412.6980.

Kok, P., Failing, M., and de Lange, F. (2014). Prior expectations evoke stimu-

lus templates in the primary visual cortex. Journal of Cognitive Neuroscience,

26(7):1546–1554.

Kottur, S., Moura, J. M., Lee, S., and Batra, D. (2017). Natural Language Does

Not Emerge ’Naturally’ in Multi-Agent Dialog. volume abs/1706.08502.

136

Krahmer, E. and Deemter, K. V. (2012). Computational generation of referring

expressions: A survey. Computational Linguistics, 38(1):173–218.

Krizhevsky, A., Sutskever, I., and Hinton, G. E. (2012). Imagenet classification with

deep convolutional neural networks. In Proceedings of the 25th International

Conference on Neural Information Processing Systems - Volume 1, NIPS’12,

pages 1097–1105, USA. Curran Associates Inc.

Lazaridou, A., Peysakhovich, A., and Baroni, M. (2016). Multi-agent cooperation

and the emergence of (natural) language. arXiv preprint arXiv:1612.07182.

LeCun, Y., Bengio, Y., and Hinton, G. (2015). Deep learning. Nature,

521(7553):436–444.

Lecun, Y., Bottou, L., Bengio, Y., and Haffner, P. (1998). Gradient-based learning

applied to document recognition. In Proceedings of the IEEE, pages 2278–2324.

Lemon, O. and Pietquin, O. (2007). Machine learning for spoken dialogue systems.

In Proc. of Interspeech.

Levin, E. and Pieraccini, R. (1997). A stochastic model of computer-human interac-

tion for learning dialogue strategies. In Eurospeech, volume 97, pages 1883–1886.

Levin, E., Pieraccini, R., and Eckert, W. (1997). Learning dialogue strategies

within the markov decision process framework. In Proc. of ASRU.

Lewis, M., Yarats, D., Dauphin, Y. N., Parikh, D., and Batra, D. (2017). Deal

or no deal? end-to-end learning for negotiation dialogues. arXiv preprint

arXiv:1706.05125.

Lin, T., Maire, M., Belongie, S., Hays, J., Perona, P., Ramanan, D., Dollár, P.,

and Zitnick, L. (2014). Microsoft coco: Common objects in context. In Proc of

ECCV.

Liu, C., Lowe, R., Serban, I., Noseworthy, M., Charlin, L., and Pineau, J. (2016a).

How NOT to evaluate your dialogue system: An empirical study of unsu-

pervised evaluation metrics for dialogue response generation. arXiv preprint

arXiv:1603.08023.

137

Liu, S., Zhu, Z., Ye, N., Guadarrama, S., and Murphy, K. (2016b). Optimization

of image description metrics using policy gradient methods. Under review at

CVPR.

Lowe, D. G. (2004). Distinctive image features from scale-invariant keypoints. Int.

J. Comput. Vision, 60(2):91–110.

Lowe, R., Pow, N., Serban, I., and Pineau, J. (2015). The ubuntu dialogue corpus:

A large dataset for research in unstructured multi-turn dialogue systems. In

Proc. of SIGdial.

Lu, J., Yang, J., Batra, D., and Parikh, D. (2016). Hierarchical Question-Image

Co-Attention for Visual Question Answering. arXiv preprint arXiv:1606.00061.

Maas, A. L., Hannun, A. Y., and Ng, A. Y. (2013). Rectifier nonlinearities improve

neural network acoustic models. In in ICML Workshop on Deep Learning for

Audio, Speech and Language Processing.

Maaten, L. and Hinton, G. (2008). Visualizing data using t-SNE. JMLR,

9(Nov):2579–2605.

MacMahon, M., Stankiewicz, B., and Kuipers, B. (2006). Walk the talk: Connect-

ing language, knowledge, and action in route instructions. In Proceedings of the

21st National Conference on Artificial Intelligence (AAAI-2006), Boston, MA,

USA.

Malinowski, M. and Fritz, M. (2014). A multi-world approach to question answering

about real-world scenes based on uncertain input. In Proc. of NIPS.

Malinowski, M., Rohrbach, M., and Fritz, M. (2015). Ask your neurons: A neural-

based approach to answering questions about images. In Proc. of ICCV.

Mao, J., Huang, J., Toshev, A., Camburu, O., Yuille, A., and Murphy, K.

(2015). Generation and comprehension of unambiguous object descriptions.

arXiv preprint arXiv:1511.02283.

Massiceti, D., Dokania, P. K., Siddharth, N., and Torr, P. H. S. (2018). Visual

dialogue without vision or dialogue. CoRR, abs/1812.06417.

138

Mei, H., Bansal, M., and Walter, M. R. (2016). Listen, attend, and walk: Neu-

ral mapping of navigational instructions to action sequences. In Proceedings of

AAAI.

Miller, A. H., Feng, W., Fisch, A., Lu, J., Batra, D., Bordes, A., Parikh, D., and

Weston, J. (2017). Parlai: A dialog research software platform. arXiv preprint

arXiv:1705.06476.

Mirowski, P., Banki-Horvath, A., Anderson, K., Teplyashin, D., Hermann, K. M.,

Malinowski, M., Grimes, M. K., Simonyan, K., Kavukcuoglu, K., Zisserman,

A., et al. (2019). The streetlearn environment and dataset. arXiv preprint

arXiv:1903.01292.

Mirowski, P., Grimes, M. K., Malinowski, M., Hermann, K. M., Anderson, K.,

Teplyashin, D., Simonyan, K., Kavukcuoglu, K., Zisserman, A., and Hadsell, R.

(2018). Learning to navigate in cities without a map. CoRR, abs/1804.00168.

Mnih, V., Kavukcuoglu, K., Silver, D., Graves, A., Antonoglou, I., Wierstra, D.,

and Riedmiller, M. (2013). Playing atari with deep reinforcement learning. arXiv

preprint arXiv:1312.5602.

Montufar, G. F., Pascanu, R., Cho, K., and Bengio, Y. (2014). On the number

of linear regions of deep neural networks. In Ghahramani, Z., Welling, M.,

Cortes, C., Lawrence, N. D., and Weinberger, K. Q., editors, Advances in Neural

Information Processing Systems 27, pages 2924–2932. Curran Associates, Inc.

Mooney, R. (2006). Learning language from perceptual context: A challenge prob-

lem for AI. In Proc. of the 2006 AAAI Fellows Symposium.

Mordatch, I. and Abbeel, P. (2017). Emergence of grounded compositional language

in multi-agent populations. arXiv preprint arXiv:1703.04908.

Ng, A., Harada, D., and Russell, S. (1999). Policy invariance under reward trans-

formations: Theory and application to reward shaping. In Proc. of ICML.

O. Lemon and O. Pietquin (2012). Data-Driven Methods for Adaptive Spoken

Dialogue Systems. Springer.

139

Oreshkin, B., Rodŕıguez López, P., and Lacoste, A. (2018). Tadam: Task depen-

dent adaptive metric for improved few-shot learning. In Bengio, S., Wallach,

H., Larochelle, H., Grauman, K., Cesa-Bianchi, N., and Garnett, R., editors,

Advances in Neural Information Processing Systems 31, pages 721–731. Curran

Associates, Inc.

Parde, N., Hair, A., Papakostas, M., Tsiakas, K., Dagioglou, M., Karkaletsis, V.,

and Nielsen, R. D. (2015). Grounding the meaning of words through vision and

interactive gameplay. In Proceedings of the 24th International Conference on

Artificial Intelligence, IJCAI’15, pages 1895–1901. AAAI Press.

Paszke, A., Gross, S., Chintala, S., Chanan, G., Yang, E., DeVito, Z., Lin, Z.,

Desmaison, A., Antiga, L., and Lerer, A. (2017). Automatic differentiation in

pytorch. In NIPS-W.

Pennington, J., Socher, R., and Manning, C. (2014). Glove: Global Vectors for

Word Representation. In Proc. of EMNLP.

Perez, E., Strub, F., De Vries, H., Dumoulin, V., and Courville, A. (2018). Film:

Visual reasoning with a general conditioning layer. In Proc. of AAAI.

Pietquin, O. and Dutoit, T. (2006). A probabilistic framework for dialog simula-

tion and optimal strategy learning. IEEE Transactions on Audio, Speech, and

Language Processing.

Pietquin, O., Geist, M., Chandramohan, S., and Frezza-Buet, H. (2011). Sample-

efficient batch reinforcement learning for dialogue management optimization.

ACM Transactions on Speech and Language Processing (TSLP), 7(3):7.

Pietquin, O. and Hastie, H. (2013a). A survey on metrics for the evaluation of user

simulations. The knowledge engineering review, 28(01):59–73.

Pietquin, O. and Hastie, H. (2013b). A survey on metrics for the evaluation of user

simulations. The Knowledge Engineering Review, 28(1):59–73.

Ranzato, M., Chopra, S., Auli, M., and Zaremba, W. (2016). Sequence level training

with recurrent neural networks. Proc. of ICLR.

140

Ren, M., Kiros, R., and Zemel, R. (2015). Exploring models and data for image

question answering. In Proc. of NIPS.

Riezler, S., Simianer, P., and Haas, C. (2014). Response-based learning for

grounded machine translation. In Proceedings of the 52nd Annual Meeting of

the Association for Computational Linguistics (Volume 1: Long Papers), vol-

ume 1, pages 881–891.

Roy, D. (2002). Learning visually grounded words and syntax for a scene description

task. Computer speech & language, 16(3):353–385.

Roy, D. (2005). Grounding words in perception and action: computational insights.

Trends in cognitive sciences, 9(8):389–396.

Rumelhart, D. E., Hinton, G. E., and Williams, R. J. (1986). Learning representa-

tions by back-propagating errors. nature, 323(6088):533.

Russakovsky, O., Deng, J., Su, H., Krause, J., Satheesh, S., Ma, S., Huang, Z.,

Karpathy, A., Khosla, A., Bernstein, M., et al. (2015). Imagenet large scale visual

recognition challenge. International Journal of Computer Vision, 115(3):211–

252.

Schatzmann, J., Weilhammer, K., Stuttle, M., and Young, S. (2006). A survey

of statistical user simulation techniques for reinforcement-learning of dialogue

management strategies. The knowledge engineering review, 21(2):97–126.

Serban, I., Lowe, R., Charlin, L., and Pineau, J. (2015a). A survey of available cor-

pora for building data-driven dialogue systems. arXiv preprint arXiv:1512.05742.

Serban, I., Lowe, R., Charlin, L., and Pineau, J. (2016). Generative Deep Neural

Networks for Dialogue: A Short Review. NIPS workshop Learning Methods for

Dialogue.

Serban, I., Sordoni, A., Bengio, Y., Courville, A., and Pineau, J. (2015b). Hier-

archical neural network generative models for movie dialogues. arXiv preprint

arXiv:1507.04808.

141

Shekhar, R., Pezzelle, S., Klimovich, Y., Herbelot, A., Nabi, M., Sangineto, E.,

and Bernardi, R. (2017). ”foil it! find one mismatch between image and lan-

guage caption”. In Proceedings of the 55th Annual Meeting of the Association

for Computational Linguistics (ACL) (Volume 1: Long Papers), pages 255–265.

Shekhar, R., Venkatesh, A., Baumgärtner, T., Bruni, E., Plank, B., Bernardi, R.,

and Fernández, R. (2019). Beyond task success: A closer look at jointly learning

to see, ask, and GuessWhat. In Proceedings of the 2019 Conference of the North

American Chapter of the Association for Computational Linguistics: Human

Language Technologies, Volume 1 (Long and Short Papers), pages 2578–2587,

Minneapolis, Minnesota. Association for Computational Linguistics.

Shih, K., Singh, S., and Hoiem, D. (2016). Where to look: Focus regions for visual

question answering. In Proc. of CVPR.

Shortreed, S. M., Laber, E., Lizotte, D. J., Stroup, T. S., Pineau, J., and Murphy,

S. A. (2011). Informing sequential clinical decision-making throughÂ reinforce-

ment learning: an empirical study. Machine Learning, 84(1):109–136.

Silver, D., Huang, A., Maddison, C., Guez, A., Sifre, L., Driessche, G. V. D., et al.

(2016). Mastering the game of go with deep neural networks and tree search.

Nature, 529(7587):484–489.

Silver, D., Hubert, T., Schrittwieser, J., Antonoglou, I., Lai, M., Guez, A., Lanc-

tot, M., Sifre, L., Kumaran, D., Graepel, T., Lillicrap, T. P., Simonyan, K.,

and Hassabis, D. (2017). Mastering chess and shogi by self-play with a general

reinforcement learning algorithm. CoRR, abs/1712.01815.

Simonyan, K. and Zisserman, A. (2015). Very deep convolutional networks for

large-scale image recognition. In Proc. of ICLR.

Singh, S., Kearns, M., Litman, D., and Walker, M. (1999a). Reinforcement Learn-

ing for Spoken Dialogue Systems. In Proc. of NIPS.

Singh, S., Kearns, M., Litman, D., and Walker, M. (1999b). Reinforcement Learn-

ing for Spoken Dialogue Systems. In Proc. of NIPS.

Smith, L. and Gasser, M. (2005). The development of embodied cognition: Six

lessons from babies. Artificial Life, 11(1-2):13–29.

142

Sordoni, A., Galley, M., Auli, M., Brockett, C., Ji, Y., Mitchell, M., Nie, J., Gao, J.,

and Dolan, B. (2015). A neural network approach to context-sensitive generation

of conversational responses. arXiv preprint arXiv:1506.06714.

Steels, L. and Hild, M. (2012). Language grounding in robots. Springer Science &

Business Media.

Strub, F., De Vries, H., Mary, J., Piot, B., Courvile, A., and Pietquin, O. (2017).

End-to-end optimization of goal-driven and visually grounded dialogue systems.

In Proceedings of the 26th International Joint Conference on Artificial Intelli-

gence, IJCAI’17, pages 2765–2771. AAAI Press.

Sutskever, I., Martens, J., Dahl, G., and Hinton, G. (2013). On the importance of

initialization and momentum in deep learning. In Dasgupta, S. and McAllester,

D., editors, Proceedings of the 30th International Conference on Machine Learn-

ing, volume 28 of Proceedings of Machine Learning Research, pages 1139–1147,

Atlanta, Georgia, USA. PMLR.

Sutskever, I., Vinyals, O., and Le, Q. (2014). Sequence to sequence learning with

neural networks. In Proc of NIPS.

Sutton, R., McAllester, D., Singh, S., Mansour, Y., et al. (1999). Policy gradient

methods for reinforcement learning with function approximation. In Proc. of

NIPS, volume 99, pages 1057–1063.

Sutton, R. S. and Barto, A. G. (1998). Introduction to Reinforcement Learning.

MIT Press, Cambridge, MA, USA, 1st edition.

Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S., Anguelov, D., Erhan, D.,

Vanhoucke, V., and Rabinovich, A. (2015). Going deeper with convolutions. In

Computer Vision and Pattern Recognition (CVPR).

Tejas, G. Y. K., Douglas, S., B, D., and Devi, P. (2017). Making the V in VQA

matter: Elevating the role of image understanding in Visual Question Answering.

In Proc. of CVPR.

Thierry, G., Athanasopoulos, P., Wiggett, A., Dering, B., and Kuipers, J. (2009).

Unconscious effects of language-specific terminology on preattentive color per-

ception. PNAS, 106(11):4567–4570.

143

Thomason, J., Sinapov, J., Svetlik, M., Stone, P., and Mooney, R. (2016). Learning

Multi-Modal Grounded Linguistic Semantics by Playing I Spy. In Proc. of IJCAI.

Unknown (2016). Akinator. en.akinator.com/. Accessed: 2016-09.

Vinyals, O. and Le, Q. (2015). A neural conversational model. arXiv preprint

arXiv:1506.05869.

Vinyals, O., Toshev, A., Bengio, S., and Erhan, D. (2015). Show and tell: A neural

image caption generator. In Proc. of CVPR.

Vo, N., Jacobs, N., and Hays, J. (2017). Revisiting im2gps in the deep learning

era. In Computer Vision (ICCV), 2017 IEEE International Conference on, pages

2640–2649. IEEE.

Vogel, A., Raghunathan, K., and D. (2010). Eye Spy: Improving Vision through

Dialog. In AAAI Fall Symposium Series.

Walker, M., Litman, D., Kamm, C., and Abella, A. (1997). Paradise: A framework

for evaluating spoken dialogue agents. In Proc. of ACL.

Weizenbaum, J. (1966). Eliza—a computer program for the study of natural

language communication between man and machine. Commun. ACM, 9(1):36–

45.

Wen, T., Gasic, M., Mrksic, N., Rojas-Barahona, L., Su, P., Ultes, S., Vandyke,

D., and Young, S. (2016). A Network-based End-to-End Trainable Task-oriented

Dialogue System. arXiv preprint arXiv:1604.04562.

Werbos, P. J. (1990). Backpropagation through time: what it does and how to do

it. Proceedings of the IEEE, 78(10):1550–1560.

Weston, J., Bordes, A., Chopra, S., Rush, A., van Merriënboer, B., Joulin, A., and

Mikolov, T. (2016). Towards ai-complete question answering: A set of prerequi-

site toy tasks. In Proc. of ICLR.

Williams, J. and Young, S. (2007). Partially observable markov decision processes

for spoken dialog systems. Computer Speech & Language, 21(2):393–422.

144

en.akinator.com/

Williams, R. (1992). Simple statistical gradient-following algorithms for connec-

tionist reinforcement learning. Machine learning, 8(3-4):229–256.

Xu, H. and Saenko, K. (2015). Ask, attend and answer: Exploring question-guided

spatial attention for visual question answering. In Proc. of ECCV.

Xu, K., Ba, J. L., Kiros, R., Cho, K., Courville, A., Salakhutdinov, R., Zemel, R. S.,

and Bengio, Y. (2015). Show, attend and tell: Neural image caption generation

with visual attention. In Proceedings of the 32Nd International Conference on

International Conference on Machine Learning - Volume 37, ICML’15, pages

2048–2057. JMLR.org.

Yang, Z., He, X., Gao, J., Deng, L., and Smola, A. (2016a). Stacked attention

networks for image question answering. In Proc. of CVPR.

Yang, Z., He, X., Gao, J., and Smola, L. D. A. (2016b). Stacked attention networks

for image question answering. In Proc. of CVPR.

Young, S., Gašić, M., Thomson, B., and Williams, J. (2013). POMDP-based sta-

tistical spoken dialog systems: A review. Proc. of the IEEE, 101(5):1160–1179.

Yu, H., Zhang, H., and Xu, W. (2017). A deep compositional framework

for human-like language acquisition in virtual environment. arXiv preprint

arXiv:1703.09831.

Yu, L., Poirson, P., Yang, S., Berg, A., and Berg, T. (2016). Modeling context in

referring expressions. In Proc. in ECCV. Springer.

Zhang, J., Wu, Q., Shen, C., Zhang, J., Lu, J., and van den Hengel, A. (2018). Goal-

oriented visual question generation via intermediate rewards. In The European

Conference on Computer Vision (ECCV).

Zhao, R. and Tresp, V. (2018). Learning goal-oriented visual dialog via tempered

policy gradient. In 2018 IEEE Spoken Language Technology Workshop (SLT),

pages 868–875.

Zhou, B., Lapedriza, A., Xiao, J., Torralba, A., and Oliva, A. (2014). Learning

deep features for scene recognition using places database. In Proc of NIPS.

145

	 Résumé
	 Summary
	 Contents
	 List of Figures
	 List of Tables
	 List of Abbreviations
	 Notation
	 Acknowledgement
	1 Introduction
	2 Background
	2.1 Machine Learning
	2.1.1 Supervised Learning

	2.2 Deep Learning
	2.2.1 Feed-forward Networks
	2.2.2 Convolutional Neural Networks
	2.2.3 Recurrent Neural Networks
	2.2.4 Optimization

	2.3 Reinforcement Learning
	2.3.1 Value-based methods
	2.3.2 Policy-based methods

	3 Prologue to First Article
	3.1 Article Details
	3.2 Context
	3.3 Contributions
	3.4 Recent Developments

	4 GuessWhat?! Visual Object Discovery through Multi-Modal Dialogue
	4.1 GuessWhat?! game
	4.2 Related work
	4.3 GuessWhat?! Dataset
	4.3.1 Data collection
	4.3.2 Data analysis
	4.3.3 Dataset release

	4.4 Baselines
	4.4.1 Oracle baselines
	4.4.2 Questioner baselines

	4.5 Discussion

	5 Prologue to Second Article
	5.1 Article Details
	5.2 Context
	5.3 Contributions
	5.4 Recent Developments

	6 End-to-end Optimization of Goal-driven and Visually Grounded Dialogue Systems
	6.1 GuessWhat?! Game
	6.1.1 Rules
	6.1.2 Notation

	6.2 Training Environment
	6.2.1 Generation of Full Games

	6.3 GuessWhat?! from RL Perspective
	6.3.1 GuessWhat?! as a Markov Decision Process
	6.3.2 Training the QGen with Policy Gradient
	6.3.3 Reward Function
	6.3.4 Full Training Procedure

	6.4 Related Work
	6.5 Experiments
	6.5.1 Training Details
	6.5.2 Results

	6.6 Conclusion

	7 Prologue to Third Article
	7.1 Article Details
	7.2 Context
	7.3 Contributions
	7.4 Recent Developments

	8 Modulating Early Visual Processing by Language
	8.1 Background
	8.1.1 Residual networks
	8.1.2 Batch Normalization
	8.1.3 Language embeddings

	8.2 Modulated Residual Networks
	8.3 Experimental setting
	8.3.1 VQA
	8.3.2 GuessWhat?!
	8.3.3 Baselines
	8.3.4 Results
	8.3.5 Discussion

	8.4 Related work
	8.5 Conclusion

	9 Prologue to Fourth Article
	9.1 Article Details
	9.2 Context
	9.3 Contributions
	9.4 Recent Developments

	10 Talk the Walk: Navigating Grids in New York City through Grounded Dialogue
	10.1 Talk The Walk
	10.1.1 Task
	10.1.2 Data Collection
	10.1.3 Dataset Statistics

	10.2 Experiments
	10.2.1 Tourist Localization

	10.3 Model
	10.3.1 The Tourist
	10.3.2 The Guide
	10.3.3 Comparisons

	10.4 Results and Discussion
	10.4.1 Analysis of Localization Task
	10.4.2 Emergent Language Localization
	10.4.3 Natural Language Localization
	10.4.4 Localization-based Baseline

	10.5 Additional Experiments and Analysis
	10.5.1 Natural Language Experiments
	10.5.2 Visualizing MASC predictions
	10.5.3 Landmark Classification

	10.6 Related Work
	10.7 Conclusion

	11 Conclusion
	 Bibliography

