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Résumé 
 
 

Les canaux HCN (cycliques nucléotidiques) activés par hyperpolarisation 
appartiennent à la superfamille des canaux cationiques voltage-dépendants et sont responsables 
de la génération de courant drôle (If) dans les cellules cardiaques et neuronales. Malgré la 
similitude structurelle globale avec le potassium voltage-dépendant (Kv) et les canaux ioniques 
cycliques nucléotidiques (CNG), ils montrent un modèle de sélectivité distinctif pour les ions 
K+ et Na+. Plus précisément, leur perméabilité accrue aux ions Na+ est essentielle à son rôle 
dans la dépolarisation des membranes cellulaires. Ils sont également l'une des seules protéines 
connues à sélectionner entre les ions Na+ et Li+, faisant des HCN des canaux semi-sélectifs. Ici, 
nous étudions les propriétés de sélectivité uniques des canaux HCN à l'aide de simulations de 
dynamique moléculaire. Nos simulations suggèrent que le pore HCN1 est très flexible et dilaté 
par rapport aux canaux Kv et qu'il n'y a qu'un seul site de liaison ionique stable dans le filtre de 
sélectivité qui les distingue des canaux Kv et CNG. Nous observons également que la 
coordination et l'hydratation des ions diffèrent dans le filtre de sélectivité de HCN1 par rapport 
aux canaux Kv et CNG. De plus, la coordination des ions K+ par les groupes carbonyle du filtre 
de sélectivité est plus stable par rapport aux ions Na+ et Li+, ce qui peut expliquer les propriétés 
de sélectivité distinctes du canal. 

 
Mots-clés: Canal HCN, Canal ionique, Filtre de sélectivité, Dynamique structurale, Simulation 
MD, Sélectivité lithium-ion. 
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Abstract 
 
 

Hyperpolarization-activated cyclic nucleotide-gated (HCN) channels belong to the 
voltage-gated cation channel superfamily and are responsible for the generation of funny current 
(If) in cardiac and neuronal cells. Despite the overall structural similarity to voltage-gated 
potassium (Kv) and cyclic nucleotide-gated (CNG) ion channels, they show distinctive 
selectivity pattern for K+ and Na+ ions. Specifically, their increased permeability to Na+ ions is 
critical to its role in depolarizing cellular membranes. They are also one of the only known 
proteins to select between Na+ and Li+ ions, making HCNs semi-selective channels. Here we 
investigate the unique selectivity properties of HCN channels using molecular dynamics 
simulations. Our simulations suggest that the HCN1 pore is very flexible and dilatated compared 
to Kv channels and that there is only one stable ion binding site within the selectivity filter 
which discriminates them from both Kv and CNG channels. We also observe that ion co-
ordination and hydration differ within the selectivity filter of HCN1 compared to Kv and CNG 
channels. Additionally, the co-ordination of K+ ions by the carbonyl groups of the selectivity 
filter is more stable compared to Na+ and Li+ ions, which may explain the channel's distinct 
selectivity properties. 

 

 

Keywords: HCN channel, ion channel, selectivity filter, structural dynamics, MD simulation, 
Lithium ion selectivity. 
  



4  

Table of contents 

 

Résumé ................................................................................................................................... 2 

Abstract .................................................................................................................................. 3 

Table of contents .................................................................................................................... 4 

List of Figures ......................................................................................................................... 6 

Abbreviations ......................................................................................................................... 7 

Acknowledgement .................................................................................................................. 9 

Introduction .......................................................................................................................... 10 

1- Background ...................................................................................................................... 11 

1.1- HCN channels in health and disease ............................................................................... 11 

1.1.1- Physiological roles of HCN channels ............................................................................ 11 

1.1.1.1- HCN channels in the heart ........................................................................................ 11 

1.1.1.2- HCN channels in the central nervous system ............................................................. 15 

1.1.2- Disease associate with HCN malfunction ..................................................................... 16 

1.2- Sequence and structure of HCN channels ....................................................................... 18 

1.2.1- Family of HCN channels ............................................................................................... 18 

1.2.2- Sequence arrangement of HCN1 channel .................................................................... 20 

1.2.3- Structural architecture of HCN channels ...................................................................... 21 

1.3- Selectivity filter in HCN channels .................................................................................... 23 

1.3.1- Ion selectivity and permeation in HCN channels .......................................................... 23 

1.3.2- Comparing the selectivity in HCN and Kv channels ...................................................... 23 

1.3.3- Comparing the selectivity in HCN and CNG channels ................................................... 26 

2- MD simulation for studying ion channels .......................................................................... 28 

2.1- From electrophysiology to MD simulations .................................................................... 28 

2.2- Molecular dynamics simulation to study voltage gated ion channels ............................. 29 

2.2- Rational for studying ion selectivity in HCN channel by MD simulation .......................... 29 

3- The idea of Molecular dynamics simulation ...................................................................... 30 

3.1- Calculating atoms trajectory based on potential energy function ................................... 30 

3.2- Temperature and pressure control ................................................................................. 32 



5  

3.3- Periodic boundary conditions ......................................................................................... 32 

3.4- Water molecules ............................................................................................................ 33 

3.5- MD simulation package and forcefield ........................................................................... 33 

4- The manuscript on the structural dynamics of selectivity filter in HCN channel .................. 35 

5- Discussion ......................................................................................................................... 68 

5.1- Dynamics of selectivity filter in HCN1 channel ................................................................ 68 

5.2- Ion localization in selectivity filter of HCN1 channel ....................................................... 69 

5.3- Network of Hydrogen bonds between selectivity filter and pore helix ............................ 70 

5.4- Limitations of the study ................................................................................................. 70 

5.4.1- Using the closed conformation of the channel ............................................................. 70 

5.4.2- The time period of simulation ..................................................................................... 71 

5.5- Future directions ............................................................................................................ 71 

5.5.1- Site-directed mutagenesis studies to manipulate selectivity filter dynamics ................ 71 

6- Conclusion ........................................................................................................................ 72 

7- Bibliography ..................................................................................................................... 73 
 
  



6  

List of Figures 
 
FIGURE 1. ACTION POTENTIAL IN DIFFERENT REGIONS OF HEART  4. .............................................. 13 

FIGURE 2. ACTION POTENTIAL IN NODAL AND NON-NODAL CELLS OF THE HEART 5. ...................... 14 

FIGURE 3. IMPLICATIONS OF PATHOLOGIES OF DYSFUNCTION OF HCN CHANNELS IN CNS AND PNS 
LISTED BY PRECLINICAL AND CLINICAL STUDIES 21. ........................................................................ 18 

FIGURE 4. REPRESENTATION OF THE AMINO ACID RELATIONSHIPS OF THE MINIMAL PORE REGIONS 
OF THE VOLTAGE-GATED ION CHANNEL SUPERFAMILY 2. ................................................................ 19 

FIGURE 5. THE TOPOLOGY OF THE HCN CHANNEL SUBUNIT 45. ..................................................... 21 

FIGURE 6. STRUCTURE OF HCN1 CHANNEL 49. .............................................................................. 22 

FIGURE 7. AMINO ACID SEQUENCE OF SELECTIVITY FILTER AND PORE HELIX IN HCN, CNG AND 
KV CHANNELS. THE SEQUENCES OF THE SELECTIVITY FILTER AND PORE HELIX ARE HIGHLIGHTED. 
SF: SELECTIVITY FILTER. ............................................................................................................... 24 

FIGURE 8. THE STRUCTURAL ARRANGEMENT OF SELECTIVITY FILTER RESIDUES IN HCN CHANNEL 
VERSUS CNG, NAK AND KCSA CHANNELS. .................................................................................. 26 

FIGURE 9. PHYLOGENETIC TREE AND STRUCTURAL MODEL OF CYCLIC NUCLEOTIDE-REGULATED 
CATION CHANNELS 61. .................................................................................................................... 27 

FIGURE 10. A SCHEMATIC REPRESENTATION OF THE MOLECULAR DYNAMICS PROCESSES. ............ 31 
  



7  

Abbreviations 
 
Amino Acid One Letter Code 

A    Ala    Alanine 

C    Cys    Cysteine 

D    Asp    Aspartate 

E    Glu     Glutamate 

F    Phe     Phenylalanine 

G    Gly    Glycine 

H    His     Histidine 

I      Ile      Isoleucine 

K     Lys    Lysine 

L     Leu    Leucine 

M    Met    Methionine 

N    Asn     Asparagine 

P     Pro      Proline 

Q    Gln      Glutamine 

R    Arg      Arginine 

S     Ser      Serine 

T    Thr      Threonine 

V    Val      Valine 

W   Trp      Tryptophan 

 
HCN: Hyperpolarization-activated Cyclic Nucleotide–gated 

CNBD: Cyclic Nucleotide Binding Domain  

VSD: Voltage Sensor Domain 

CNG: Cyclic Nucleotide-gated channels 

Kv: Voltage-gated potassium channels 

Cav: Voltage-gated calcium channel 

cAMP: Cyclic Adenosine Monophosphate 

cGMP: Cyclic Guanosine Monophosphate  

C-linker: Region connecting the HCN channel to the CNBD 



8  

SAN: Sinoatrial Node 

AVN: Atrioventricular Node  

If: Cationic inward current activated by hyperpolarization 

Ih: Cationic inward current activated by hyperpolarization 

GOF: Gain of Function 

LOF: Loss of Function  

CNS: Central Nervous System 

EPSP: Excitatory Postsynaptic Potential 

PFC: Prefrontal Cortex 

PNS: Peripheral Nervous System 

Cryo-EM: Cryogenic Electron Microscopy 

MD simulation: Molecular Dynamics simulation 

Ps: Picosiemens (10-12 siemens) 

fs: Femtosecond (10-15 second) 

V1/2: Mid-point voltage of activation fitted by Boltzmann function 

ECG: Electrocardiogram 

KcsA: K channel of streptomyces A 

AMBER: Assisted Model Building with Energy Refinement 

GROMACS:  Groningen Machine for Chemical Simulations 

NAMD: Nanoscale Molecular Dynamics 

CHRAMM: Chemistry at Harvard Macromolecular Mechanics 

OPLS: Optimized Potentials for Liquid Simulations  

GROMOS: Groningen Molecular Simulation 

VMD: Visual Molecular Dynamics 

PDB: Protein Data Bank 

 

 

  



9  

Acknowledgement 
 
 
The journey to a MSc has not been an easy one, but I am extremely grateful for the people around me 
who have made the trip more enjoyable.  
 
I would like to give my warmest gratitude to Dr. Nazzareno D'Avanzo, for adopting me into the lab, 
always encouraging me on the path, and helping me finish the degree. There were so many times when 
I would complain about the projects or the stress, and he was always positive and reassuring of my 
progress and my abilities.  
 
Thank you to my committee members, Dr. Rafael Najmanovich and Dr. Jurgen Sygusch, for their 
valuable inputs and for insightful discussions and advice given to me on my Memoire. 
 
I am grateful for the financial support that I received from UdeM and the Natural Sciences and 
Engineering Research Council of Canada (NSERC). 
 
My time in graduate school was made much more enjoyable by the company of other members of 
the D'Avanzo laboratory. Thank you for your friendship and enjoyable discussions. A special 
thanks to Yoann Lussier a former research associate in the lab, that was both a mentor and a confidant 
on this journey. 
 
Outside of the lab, I interacted with wonderful staff. Specifically, I am grateful to Dr. Rene 
Cardinal for always being willing to answer my countless questions and inspiring me by his kind 
advice.  
 
Finally, to my family; I would not have reached this this far without your sincere encouragement 
and sacrifices. Thank you from the bottom of my heart!   
  



10  

Introduction 
 
Plasma membrane serves as a hydrophobic barrier around the cells and controls receiving the 

materials from and returning them to the outside environment of cells. These material species 

include water, ions, amino acids and metabolites. Channels are transmembrane proteins that form 

a hydrophilic pore and allow for regulated passage of selected species. This passage is tightly 

regulated to promise the precise permeation of the right substance at a demanded circumstance. 

Such regulatory mechanism is tightly coupled to a variety of open or close signals such fluctuations 

in membrane microenvironment of secondary substances which work like a key for opening or 

closing these gates.  

Hyperpolarization-activated cyclic nucleotide-gated (HCN) channels belong to the voltage-gated 

cation channel superfamily and are responsible for the generation of Ih in cardiac and neuronal 

cells 1,2. HCN channels generate pacemaker activity and modulate cellular excitability in the brain 

and heart. Indeed, in last few years, multiple connections between HCN channels dysfunction and 

pathological states have been made and HCN has been proposed as a novel target for the treatment 

of related heart and central/peripheral nervous system disorders. Among the HCN blockers, 

Ivabradine is an approved drug for the symptomatic management of stable heart-related chest 

pain and heart failure 3 and several other compounds are being evaluated. 

Each of the four protein isoforms are coded by different genes and each isoform is composed of 

four subunits made up of the same fundamental structural scheme; six alpha helices, which are 

molded into the structure of the channel transmembrane domain,  and two cytosolic domains at the 

NH and COOH termini 4.  

The overall structure of HCN channel is very similar to that of Kv channels; The channel is 

composed of four identical subunits which are assembled in the membrane to form a 4-fold 

symmetric pore made by helices S5 through S6. This pore is surrounded by membrane-embedded 

voltage sensors (helices S1 through S4), similar to Kv channels 5,6. Despite the overall structural 

similarity to voltage-gated potassium (Kv) channels, HCNs show much lower selectivity for K+ 

over Na+ ions. Leaking the Na+ ions at potentials close to that of resting membrane is critical to its 

role in depolarizing cellular membranes. Besides, they are one of the only known proteins to select 

between Na+ and Li+ ions, making HCN channels semi-selective channels, rather than non-

selective like the closely related CNG channels. Differences in selectivity between HCN, CNG 

and Kv channels has been attributed to the different orientation of selectivity filter residues, which 
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renders the pore wide-open at the top, resembling a funnel with the first and second binding sites 

falling apart and unable to coordinate the ions synchronously. However, the 3D arrangement of 

selectivity filter, cannot explain all the selectivity feature, hence the need to inspect its dynamics 

in the presence of various cations. Using molecular dynamics simulations, we are investigating the 

unique selectivity properties of HCN channels. Our simulations suggest that the HCN1 pore is 

very flexible and dilatated compared to Kv channels and that there is only one stable binding site 

within the selectivity filter. Additionally, the conserved network of hydrogen bond between the 

pore helix and selectivity filter only exists for the residues at the bottom of the pore in case of 

HCN1 channel and is augmented upon C358T mutation.   

 

1- Background 

1.1- HCN channels in health and disease 

1.1.1- Physiological roles of HCN channels  

HCN channels have a V1/2 near the typical cell resting membrane potential, and thus their 

activation or deactivation can occur with only small deviations in voltage. In resting membrane 

physiological conditions, the activation of HCN channels leads to the net influx of Na+ ions which 

in turn triggers membrane depolarization. This influx of Na+ ions which is accompanied with K+ 

ions at hyperpolarized states, produces a current known as funny current (If) or hyperpolarization-

activated current (Ih) or H-current. The following section outlines several key physiological roles 

of HCN channels which regulate not only heart and brain function, but also the resting properties 

of cells within many different organs. Channel opening and closing must be precisely timed and 

occur at precise voltages to allow for correct tissue function, particularly in the sinoatrial (SA) 

node of the heart and in neurons. An absence of HCN channels, or channels that do not open and 

close at the correct instances, can lead to pathological conditions.  

 

1.1.1.1- HCN channels in the heart 

The rhythmic and spontaneous nature of cardiac muscle, despite removing the heart from 

the body indicated that its activity was independent from the nerves 7. It was initially suggested 

that regulating this rhythmic firing of action potential in the heart was due to a number of electrical 
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currents 8 and was thought to be associated with a decaying potassium current observed in Purkinje 

fibers; Upon depolarization, it was suggested that an outward potassium current (IK2) diminishes 

as an onset to firing a subsequent action potential. This current seemed to associate with 

sympathetic innervations of heart rate because it was modulated by β-adrenergic stimulation 9,10. 

A decade later, this notion was challenged by the observation that adrenaline increases an inward 

current in rabbit SAN tissues and in contrast to the IK2 current, this pacemaker current is carried 

by a mix of sodium and potassium ions and is activated upon hyperpolarization 11. The pacemaker 

current is also known as the “funny” current (If) due to its odd and eccentric properties compared 

to previously well-known potassium, sodium and calcium voltage-activated currents that activate 

upon membrane depolarization and conduct mainly one ion. 

The frequency of a beating heart depends on the rate of diastolic depolarization during an action 

potential in pacemaker cells of the sinoatrial node. The cardiac impulse originates in the sinus 

atrial node (SAN), located at the right atrial endocardium (between the upper and lower cava vein). 

This impulse is formed by highly specialized cells able to generate action potentials that start the 

sinus rhythm (Fig. 1A). These action potentials in turn allow cardiac muscle cells to contract and 

make the heart to play its work. The spontaneous and rhythmical contraction of heart muscles is 

dependent of several internal clocks. HCN channels are among the set of channels responsible for 

regulating these clocks and have a role in stimulating the cardiac action potential.  

According to different phases of actional potential and the channels being involved, the action 

potential in different cardiac conduction system can be divided into two main categories: non-

nodal cells action potential and nodal cells action potential (Fig. 1B) 12.  The nodal cells mainly 

include sinoatrial (SA) node and the atrioventricular (AV) node. SA node is the normal site for the 

origin of the action potential that stimulates heart muscle to contract and is located in the upper 

region of the right atrium. The AV node is specialized for slow conduction of the impulse and to 

behave as an electrical filter to prevent the ventricles from being paced faster than they can fill 

with blood (which otherwise can cause an atrial tachyarrhythmia). The non-nodal zones mainly 

include the His bundle and bundle branches that are specialized for rapid conduction and delivering 

the wave of action potentials to the inner ventricular myocardium (endocardium) via a web-like 

network of Purkinje fibers. 
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Figure 1. Action potential in different regions of heart  13.  
 

In the latter case, the non-nodal, this process involves 5 steps. First of all, phase 0, corresponds to 

the rapid depolarization of the membrane via an increase in sodium inward conductance (Na+) and 

a decrease in potassium conductance (K+). During phase 1, potassium channels open and the 

calcium channels become closed. In the next phase, phase 2, which is also known as plateau phase, 

the repolarizing effect of potassium channels opening is counterbalanced by activation of the L-

type Ca++ current upon opening of the calcium channels. As the calcium conductance fades, 

opening of additional K channels and further outward K+ currents eventually lead to a phase of 

rapid repolarization (phase 3). The resting membrane potential is reached at phase 4 and potential 

remains near the equilibrium potential for K+. Phase 4 is mainly associated with activation of 
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potassium channels. The only channel type that opens on a regular basis during this phase is an 

“inwardly rectifying” K-selective channel which produces a K+ current called IK1. However, 

several other channels such as HCNs channels can modulate this phase. For example in Purkinje 

fibers, activation of HCN channels lead to production of the funny current (If) which is produced 

upon an inward flux of Na+ ions (that is greater than the efflux of K+ ions through K channels), 

leading to the decrease in depolarization threshold and increased excitability of the cells 12-14.  

In case of nodal cells, the action potential takes place without phases 1 and 2. In fact these cells do 

not experience a true resting potential at phase 4. Instead, during this phase the leaking of Na+ ions 

through HCN channels (funny currents; If) that are partially open at -60mv, slowly increases the 

membrane potential above and past the action potential threshold. The action potential spikes 

followed by opening of Ca++ channels and membrane depolarization in Phase 0. Phase 3 follows 

as the repolarization occurs through K+ channels opening and the outward directed, 

hyperpolarizing K+ currents. At the same time, the Ca++ channels become inactivated and close 

(Fig. 2). 

The cardiac action potential is therefore a system with two clocks, the clock that is stimulus-driven 

and depends on Ca++ channels (which produce calcium currents of type T and L). the other clock 

is spontaneous and is mainly regulated by rhythmic opening of the HCN channels and the 

production of If current 12-14.  

 

 
Figure 2. Action potential in nodal and non-nodal cells of the heart 14. 
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1.1.1.2- HCN channels in the central nervous system 

Thus far, four HCN isoforms, HCN1-4, have been cloned 15,16. These isoforms are diversely 

spread throughout the central nervous system (CNS), with HCN1 being predominantly present in 

the cortex, hippocampus, cerebellum and brain stem. HCN2 isoform is mainly situated in areas 

such as the thalamus and brain stem. HCN3 is expressed at low levels in the CNS whilst HCN4 

subunits are highly localised to specific regions such as the olfactory bulb 17,18.   

The presence of HCN channels in neurons plays a crucial role in the transmission of signals as 

well as in controlling the excitement of nerve cells 19,20. In fact, HCN channel play a dual role in 

regulating the neurons excitability and triggering the action potential in these cells; by leaking the 

Na+ ions at potentials close to -65mV, HCNs increase the excitability of the membrane by 

maintaining the membrane potential close to its activation potential and can induce a tonic firing 

pattern of action potential. At the same time, these channels inhibit the membrane from meeting 

hyperpolarized states by keeping the membrane close to depolarized and exited state. This in turn 

could interfere with the membrane response to external stimuli which demand a hyperpolarized 

state of the membrane 19,20. 

HCN channels also have a key role in regulating the integration of electrical inputs within neurons; 

Neuronal dendrites receive excitatory post synaptic potentials (EPSPs) from many synapses all 

along their length. In order to generate a single sensory output, EPSPs need to be temporally and 

spatially summed at the soma before propagating down the axon. This process is called dendritic 

integration 21. As HCN channels can be open at the resting membrane potential, they can increase 

membrane conductance. The increasing number of HCNs on the membranes as they extend away 

from the soma guarantees the inhibition of EPSPs decay due to membrane resistance, as they start 

being transmitted from distal dendrites 22-24.  

HCN channels also have an important role in regulating neuronal excitability through interfering 

with the process of long-term potentiation (LTP); a frequently used neuronal pathway will develop 

improved signal transmission. This process is known as LTP and is essential in developing 

memories 25. As strong synapses are formed during LTP process, the generation of action 

potentials through EPSPs are facilitated 26. LTP thus has the potential to make neurons susceptible 

to overactivation and generating unnecessary EPSPs. Therefore, the LTP process must be carefully 

regulated. HCN1 channels inhibit LTP in the hippocampus 27. Mice with a HCN1 knockout in 
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forebrain area showed enhanced LTP, as shown by improved performance in spatial memory tasks 
28.  

Similar to their role in SA cells of the heart, HCN channels help specific network of neurons to 

beat in an oscillatory and rhythmic pace. For example, the rapid eye movement phase of sleep 

(REM), require neurons to continuously undergo coordinated oscillations. Additionally, in the 

non-REM phase of sleep depend on rhythmic “waves” of action potentials within the thalamus that 

are dispensable of any sensory inputs 29. These pacemaker-like oscillations can become 

synchronized between different brain regions to create the electrical activity characteristic of 

different sleep stages. 

HCN channels are also widely expressed in the peripheral nervous system and there is increasing 

evidence demonstrating a crucial role played by the class of HCN ion channels in starting and 

controlling firing frequency of action potentials responsible for pain 30. Specifically, recent 

findings have shed light on the role of HCN2 isoform in the transmission of pain 31. Additionally, 

recent experimental data have highlighted the key role played by HCN2 in both inflammatory and 

neuropathic pain, suggesting the selective blocking of its activity as a potential target for the 

treatment of pain. Although the HCN1 isoform is one of the pharmacological targets of the potent 

and widely used anesthetic propofol 32, its contribution to the transmission of pain seems to be 

limited.  

 

1.1.2- Disease associate with HCN malfunction 

HCN4 is the main isoform associated with heart disease. Here an overview the disease 

related to central and peripheral nervous system is presented that are often associated with other 

isoforms of the proteins. These associations are summarized in figure 3 33.    

The association between HCN channels malfunction and epilepsy has been the center of attention 

since years ago as a molecule called Lamotrigine, which affects HCN channels, showed anti-

convulsant results 34. However, to date there is no evidence that the two (HCN malfunction and 

epilepsy) have cause and effect relationship. However, modification of the function of HCN 

channels is clearly potentially able to cause uncontrolled action potential firing and provide a 

background setting for the development of epilepsy 35. Additionally, several line of studies suggest 
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that point mutations altering HCN1 channel function are poorly tolerated and predispose neurons 

to hyperexcitability, but may not be sufficient by themselves to cause seizure development 36-38.  

The modulation of HCNs channels also has been suspected to have indirect consequences leading 

to the onset of autism. Studies have demonstrated that decreased If current might affect Shank3 

haploinsufficiency, a protein which is located in synapses and is associated with disorders of the 

autism spectrum 39.  

The association between HCN channels and schizophrenia has been attributed to the interaction 

mode of cAMP with HCN channels, which is necessary for modulating the likelihood of channel 

opening. An imbalance in this interaction has been associated with the risks of causing a 

disconnection from the signaling network at the prefrontal cortex (PFC), the area which is 

responsible for the execution of the working memory, learning, reasoning and understanding, and 

leading to the onset of schizophrenia 40. However, a readjustment of the cAMP level in the cell 

makes it possible to reduce these effects 41.  

The association between HCN malfunction and mood disorders has been highlighted in the studies 

on the effect of these channels on modulating anxiety and depression.  

In the animal models of the depression disease, it has been shown that mice with the suppressed 

TRIP8b gene demonstrated a motor learning deficit as well as resistance to animal sinking into 

despair. Similar behaviors were also observed in mice whose genes HCN1 and HCN2 were 

missing. Additionally, treatment with ZD7288, an inhibitor of HCN channels can cause effects 

similar to antidepressants such as fluoxetine 42,43. Furthermore, it has been shown that inhibition 

of If current in certain areas of the brain would be beneficial on the level of stress, anxiety and fear 

in an individual 44. 
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Figure 3. Implications of pathologies of dysfunction of HCN channels in CNS and PNS listed by 
preclinical and clinical studies 33. 

 

1.2- Sequence and structure of HCN channels 

1.2.1- Family of HCN channels 

HCN channels belong to the voltage-gated ion channel superfamily (Fig. 4) 33. Considering 

the number of members, it is ranked the third largest signaling protein superfamily, following the 

G protein-coupled receptors and the protein kinases.  The members of the family have probably 

evolved from an ancestral protein with two transmembrane (TM) helices such as the bacterial 

KcsA channel. These 2TM channels have been further patched with an auxiliary 4TM 

transmembrane domain for voltage-dependent gating. Appendage of further intracellular or 

extracellular domains with the capacity to induce allosteric conformational shifts upon binding to 

different small molecules have produced extraordinarily versatile signaling molecules with 
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capacity to respond to voltage signals as well as those coming from intracellular/extracellular 

effectors and to integrate information coming from these two distinct types of inputs 4.  

 

Figure 4. Representation of the amino acid relationships of the minimal pore regions of the 
voltage-gated ion channel superfamily 4. 

 

The sequence of these channels has been molded into three functional zones: ion conductance, 

pore gating, and regulation zones. The ion-conducting pore and selectivity filter are formed by 

TM5 (S5) and TM6 (S6) segments and the membrane re-entrant pore loop (P-loop) between them 
4,45-51.  Within 2TM potassium channels such as KcsA, the M1 and M2 segments are analogous to 

TM5 and TM6 and represent the ion conductance and pore gating zones. These segments are 

arranged in an upside-down teepee-like structure within the closed stated of the channel. In this 
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inverted cone-like conformation, the extracellular mouth of the cone is constricted by the 

intervening membrane re-entrant pore loop. This structure is cradled by the M1 and M2 

transmembrane segments. A cavity in the center of the structure is water-filled and contains 

permeating potassium ions. The ion permeation path is blocked at the intracellular end by crossing 

of the M2 helices 52. The addition of the TM1 to TM4 (S1 to S4) segments to the pore structure in 

the Nav, Cav, and Kv channels packs these channels with voltage sensor domain and confers 

voltage-dependent pore opening. This zone and mainly S4 segments, have repeated motifs of 

positively charged amino acid residues which undergo major translocations upon their fluctuations 

in membrane electric field. This motion in turn leads to S6 helices falling apart at the intracellular 

end and opening the channel gate 53,54. In addition, the auxiliary ligand binding domains could 

exert  a torque on the S6 segments that opens the pore by bending this helix upon ligand binding 

and facilitate the channel opening 55,56.   

 

1.2.2- Sequence arrangement of HCN1 channel  

Human genome holds four genes that encode HCN channel isoform (HCN1, 2, 3, 4) each 

yielding a protein of almost 770-1200 amino acid long 15,16. The sequential arrangement of these 

residues give rise to each of the four monomers of the HCN channel, which is composed of the 

following subdomains; an intracellular N-terminal domain (also known as HCN domain) packed 

against five consecutive transmembrane (TM) helices (voltage sensor domain) followed by a pore-

forming domain which is composed of TM5 (S5) helix, the small pore helix oriented oblique to 

the pore axis, and a re-entrant loop (selectivity filter) plus the 6th transmembrane helix. Two 

accessory domains are hanging from the end of the TM6 (S6) helix at the intracellular side of the 

channel; the C-linker domain and the cyclic nucleotide binding domain (CNBD) (Fig. 5). The 

transmembrane channel core consists of six alpha-helical segments (S1–S6) and an ion conducting 

pore loop between S5 and S6 57. 
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Figure 5. The topology of the HCN channel subunit 57. The pore helix is highlighted by the red 
box behind the selectivity filter. 

 

1.2.3- Structural architecture of HCN channels 

The attempts to resolve the total structure of HCN channels have led to the determination 

of several cryo-EM structures representing the open and closed states of the HCN1 channel 5,6.     

According to these structural data, the overall architecture of HCN channel is highly resembling 

that of the Kv channels 5,6; The channel is composed of four identical subunits which are assembled 

in the membrane to form a 4-fold symmetric pore made by helices S5 through S6 (Fig. 5). This 

pore is surrounded by membrane-embedded voltage sensors (helices S1 through S4), similar to Kv 

channels (Fig. 6A). However, HCN channels have several subtle structural differences which 

allows them to fulfill their unique and eccentric role; the S4 segment of HCNs is relatively longer 

compared to Kv channels and is responsible for the unique voltage dependent opening of HCNs 

gate at hyperpolarization voltages of membrane. Additionally, the voltage sensor domain (helices 
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S1 to S4) in HCN1 are “non-swapped” contrary to the domain swapped conformation of Kv 

channels. It means each voltage sensor of each monomer contacts the pore through amino acids 

from the same subunit. However, in case of Kv channels such as Kv1–Kv9 and voltage-dependent 

Na+ and Ca++ channels, the channel assumes the domain swapped conformation in which the 

residues of voltage sensors from one subunit interact with the pore region of the adjacent subunit 

(Fig. 6 B) . At the C-terminal end, the S6 helices make a sharp bend and give rise to a helix-turn-

helix “C-linker,” also known as α-helical disk, just below the membrane. The C-linker is followed 

by chain five additional short α helices (C′- to F′- and A-helices) and a β-jelly roll that gives rise 

to the cyclic nucleotide binding domains (CNBDs) (Fig. 6A and C). Four CNBDs—one from each 

subunit—are docked onto the cytoplasmic face of the C-linker disk from the same and neighboring 

subunit (Fig. 6 A and C). The HCN channel exhibits an additional unique structural feature; The 

45 amino acids preceding S1 give rise to a 3-α-helical domain that is wedged between the voltage 

sensor of the same subunit and the cytoplasmic domains of the neighboring one (Fig. 6A).  This 

domain is unique to HCN channels, and therefore, has been known as the HCN domain 5,6.  

 
 

Figure 6. Structure of HCN1 channel.  A) The structure of HCN1 channel tetramer in the ligand-
free and closed state, viewed from parallel to the membrane. B) The interaction of different 
subunits of the channel in the domain swapped conformation of Kv1.2-2.1 channel and in the non-
domain swapped conformation of HCN1 channel  58. C) the topological arrangement of different 
domains in each monomer of HCN1 58. 
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1.3- Selectivity filter in HCN channels 

1.3.1- Ion selectivity and permeation in HCN channels 

HCN channels are weakly selective for K+ over Na+ ions with a permeability ratio (PK/PNa) 

of 3–5 and are also considerably less permeable to Ca++. However, they are the only know channels 

to select between Na+ and Li+ ions, making HCN channels semi-selective channels, rather than 

non-selective like the closely related CNG channels 15,16,59,60. 

The ion selectivity of HCN channels is matched to their physiological roles. In fact, HCN channels 

are activated by hyperpolarized states and are constitutively active at rest 61. Additionally, these 

channels allow for slow and semi-selective permeation of Na+ and K+ ions along their 

electrochemical gradient 15,62. these features allow for modulation of membrane excitability by 

stabilizing the membrane potential against both excitatory and inhibitory inputs. For example, in 

some neurons as well as the sinusoidal cells of the heart, HCN channels regulate action potential 

firing and membrane excitability via the hyperpolarization-activated current Ih (also called h-

current or funny current or If). To produce this current, HCN channel leaks Na+ and K+ ions at the 

resting potential of the cell (around −60 mV). HCN channels also have relatively a high 

permeability to Na+ ions compared to K+ channels 15,62.  This leads to gradual increase in membrane 

potential and triggering a rhythmic and spontaneous action potential 63.  It may also worth noting 

that the single channel conductance of HCN channels is less than 2 pS when measured in very high 

concentrations of potassium 64,65; which is much smaller than the corresponding  values of 5–50 

pS that have been determined for potassium channels measured at physiological potassium 

concentrations 66. 

 

1.3.2- Comparing the selectivity in HCN and Kv channels 

The sequence of selectivity filter residues in HCN channels is highly conserved and highly 

resembling that of selective voltage dependent potassium channels (Kv). However, unlike the Kv 

channels, HCNs are not highly selective and allow the passage of sodium ions (Na+) vs potassium 

(K+) in a1:4 ratio. In addition, the HCN channels are not blocked by bromide ions (Br+) or 

tetraethylammonium (TEA) 15. Comparing the selectivity filter sequence between HCN channel 

and those of selective Kv channels suggest for the overall conservation of the sequence. However, 
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there are subtle differences in the selectivity filter. As shown in figure 7, K+ channels have a pore-

lining sequence of T(V/I)GYG. By contrast, HCN channels have a pore-lining sequence of 

CIGYG. Interestingly, the cysteine substitution for threonine in an attempt to restore the conserved 

TIGYG sequence in Kv channels, fail to restore the compromised selectivity pattern in HCN 

channel compared to Kv channels 60,67. Therefore, it seems that the observed radical differences in 

selectivity pattern between HCN and Kv channels would be due to other factors such as the 

difference between the network of interactions between selectivity filter residues and those of the 

pore helix which precede the selectivity filter (Fig. 5 and Fig. 7). These interactions have already 

been proved to have a determinant role in regulating the mechanism of selectivity in Kv channels 
68,69. In fact, it has been shown that the conserved network on hydrogen bond interactions between 

the sidechain of pore helix residues and those of the selectivity filter reinforces the proper spatial 

alignment of pore residues in Kv channels and could contribute to the proper orientation of 

selectivity filter carbonyl groups toward the pore interior 68,69. As shown in figure 7, The conserved 

tryptophan in Kv channels (Kv1.1, Kv1.4 and KcsA) is substituted by Phenylalanine in HCN 

channels. This could lead to perturbation of the aforementioned hydrogen bond network and 

interfere with the ability of the pore filter K+ from Na+ ions.   

 
Figure 7. Amino acid sequence of selectivity filter and pore helix in HCN, CNG and KV channels. 
The sequences of the selectivity filter and pore helix are highlighted. SF: selectivity filter. 
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Such subtle differences in the sequence arrangement of selectivity filter and pore helix residues 

could affect the orientation of selectivity filter in HCN channel compared to Kv channels. As 

shown in figure 8, in case of Kv channels, the backbone carbonyl groups of selectivity filter 

residues are arranged in a cylindrical shape and give rise to four equally spaced ion-binding sites 

known as S1-S4 sites from top to bottom 52,70. In this symmetrical arrangement, each ion sits in the 

middle of a cubic cage and at each site, a K+ ion is coordinated by eight oxygen atoms from 

carbonyl groups of the selectivity filter (Fig. 8). This tight and synchronous coordination of K+ 

ions has been accounted responsible for sieving these ions from smaller Na+ ions which interact 

asynchronously 52.  

However, the selectivity filter residues of HCN channel are oriented in a funnel shape structure 

with S1 and S2 sites eliminated due to wide open funnel mouth and disorientation of carbonyl 

groups (Fig. 8) 5. Additionally, the conserved threonine residue which gives rise to S4 in Kv 

channels site is substituted with cysteine in HCN channels (Cys358 in HCN1) 5. According to the 

structural clues based on the cryo-EM structure of HCN1 channel,  the binding site is more dilated 

compared to Kv channels and the ion can bounce up and down between the S3 and S4 sites 5. 

Therefore, the permeability of HCNs, among other things, could stem from the greater distance 

between the propellers of this filter. These observations may justify the 20–fold lower selectivity 

for K+ over Na+ ions in HCN channels compared to K+ channels 15,71,72.  

To explain the mechanism of ion permeation in K+ channels, two main mechanisms  have been 

proposed based on the results of biochemical and structural studies; several studies have supported 

a soft knock-on mechanism in which water molecules are co-transported along with K+ ions, while 

other studies have supported a hard knock-on mechanism in which only K+ ions are found in the 

selectivity filter 73. However, the soft knock-on mechanism has been mainly accepted as the 

mechanism for K+ ion permeation along the selective K+ channels. According to this model, the 

five S0 to S4 ion binding sites, are occupied by 2-3 K+ ions interspersed by water molecules and 

hence through the net translocation of each K+ ion through the membrane, one water molecule is 

translocated as well 74.  However, analysis of ions dynamics in simulations of bacterial Na+ 

channels shows that despite the prevalent mode of alternating occupancy of the channel by 2-3 

ions, the aforementioned knock-on mechanism is loosely coupled to the permeation mechanism 75-

77. Additionally, as the narrowest part of the pore is significantly wider than that of K+ channels, 

ions remain at least partly hydrated while permeating through the Na+ channel. 
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Figure 8. The structural arrangement of selectivity filter residues in HCN channel versus CNG, 
NaK and KcsA channels. The red boxes represent the conventional S0 to S4 sites for binding the 
K+ ion in Kv channels.  

 

1.3.3- Comparing the selectivity in HCN and CNG channels 

Based on structural similarities, cyclic nucleotide-gated (CNG) and HCN channels are close 

relatives among the members of the superfamily of voltage-gated cation channels (Fig. 9) 4,78. 

Despite the overall structural similarity, the two channel classes differ from each other with regard 

to their mode of activation. CNG channels gating process is independent of membrane voltage and 

these channels are opened by direct binding of cAMP or cGMP. However, HCN channels are 

mainly regulated by voltage fluctuations and fully open upon membrane hyperpolarized and close 

upon depolarization. Despite this, cAMP can directly bind to HCN channels at the intracellular 

site and increase the channel opening probability by shifting the voltage dependence of channel 

activation to more positive membrane potentials and thereby facilitating voltage-dependent 

channel activation 16,59,79. 

Similar to CNG channels, HCN channels also seem to have two binding sites at S3 and S4 sites. 

However, CNG and HCN channels reveal distinctive ion selectivity patterns. Although both 

channels pass monovalent cations such as Na+ and K+, CNGs do not discriminate between them. 

Additionally, Ca++ permeation rate is much higher CNG channels compared to HCNs 80,81.  
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Figure 9. Phylogenetic tree and structural model of cyclic nucleotide-regulated cation channels 
78. 

 

The pore of CNG has three bonding sites formed by a combination of acidic residues sidechains 

and backbone carbonyl oxygens. According to the cryo-EM structure of the CNG channel, the 

diameter of the selectivity filter ranges between 4.7-10.1 Å in this channel 82. However, the pore 

seems to be tighter in HCN and with a diameter of around 5 Å 5. The dilatated selectivity filter in 

CNG channels allows for ion with one or more hydration water to pass through feature has been 

attributed to the low selectivity of the CNG channels. Additionally, unlike the delicate hydrogen-

bonding network surrounding the selectivity filter of K+ channels, the selectivity filter of CNG 

channel is mainly reinforced by hydrophobic interactions. This may provide more flexibility for 

the selectivity filter residues to properly arrange around different cations and may not force the 

CNG channel to sieve the ions based on their sizes 82.  

The number of binding sites is also an important factor in determining the mechanism of the 

selectivity; it has been shown that in channels that favor K+ binding over Na+, multi-K+ ion 
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occupancy will increase the probability that a Na+ will exit from the same side it entered (because 

there is a K+ ion blocking the other side due to its higher affinity) and thus permit kinetic 

selectivity. this phenomenon that has already been demonstrated in the NaK channel 83-85.  

 

2- MD simulation for studying ion channels 

2.1- From electrophysiology to MD simulations 

Ion channels carry charges across the membrane. Because of this, their diffusion rate can be 

measured using electrical recording techniques of electrophysiology. Such experiments typically 

provide the first glimpse on how ion channels work. Using voltage clamp experiments on a giant 

squid axon in 1950s, Hodgkin and Huxley were able to identify the first ever voltage-gated cation 

K+ and Na+ currents and deduced how these channels contribute to the propagation of the action 

potential 86. However, understanding the structure-function relationship of the ion channels is 

highly crucial to understanding their involvement in a wide range of fundamental physiological 

functions and therapeutic applications. In this regard, the use of MD simulations greatly 

contributed to the current understanding on the molecular basis of ion selectivity and ion 

permeation 75,87.  

The basis for conventional view on ion selectivity was a rigid pore that is solely optimized for 

coordinating K+ ions and not for Na+ ions 88. However, in reality proteins have a rather fluid-like, 

dynamic structure with rapid conformational fluctuations 89. Hence, the ion-protein interactions 

and their association with ion permeation should be studied in a dynamics context and not be 

limited to a single structure. Molecular dynamics (MD) simulation is a reliable approach which is 

are capable of generating an ensemble of conformations corresponding to a conducting channel 

modeled based the initial crystal structure. These conformations are generated based on 

formulating physical principles which accounts for the experimentally-observed properties of 

biomolecules 90. Therefore, MD simulations can provide a temporal view of the mechanism of ion 

conductance and selectivity at atomic-level resolution.  
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2.2- Molecular dynamics simulation to study voltage gated ion channels 

Modeling and simulations of ion channels are generally limited by the experimental 

knowledge about them. Predicting the structure of a membrane channel from its sequence is 

considered a formidable task for studying ion channels at atomistic resolutions and the “no 

structure, no study” rule is generally adopted by the majority of researchers working in the 

field. Among the different computational approaches for studying ion channels, all-atom molecular 

dynamics (MD), Brownian dynamics (BD), and approaches based on Poisson−Nernst−Planck 

(PNP) theory, are the most prevalent ones. The MD method is considered the most computationally 

expensive but also the most accurate 91.  

Prior to the availability of experimentally determined 3D structure of HCN channels covering the 

whole protein sequence, several MD simulation studies have been performed to determine the 

nature of cAMP binding to CNBD domains and deciphering the atomistic details of such 

interaction on channel gating 92-94.  Additionally, a homology modeling approach to reconstruct 

the HCN structure in closed and open states and based on the structure of KcsA and Calcium-gated 

potassium channel MthK, provided some insight on the overall arrangement of amino-acid 

residues in these two functional states 95. A state of art MD simulation study on the mechanism of 

gating and the role of S4 helix in this regard has shown how S4 helix sharply bends during the 

gating process and splits into two sub helices which in turn induces an splaying motion in S5 helix 

which provides the space for S6 helices to move apart and open up the pore 96.  

2.2- Rational for studying ion selectivity in HCN channel by MD simulation  

To the best of our knowledge, no experimental or computational studies has been performed 

to elucidate the atomistic interactions that could explain the mechanism of selectivity in HCN 

channels. Despite the availability of several cryo-EM structures on the whole sequence of HCN1 

channel, the precise localization of the ions in the selectivity filter is not clear in any of them 5,6.  

This could be due to the fact that ion is not to be stably localized in the S3 or S4 site, judged by 

the green mesh representing the plausible location of K+ ion in cryo-EM structure 5,6. Additionally, 

the density map of water molecule is very similar to that of K+ ion and make it hard to confidently 

decide on precise ion localization in the static structure derived from cryo-EM approach. Besides, 

the static picture provided by cryo-EM is not able to clearly reflect the dynamics behavior of the 

selectivity filter and in the presence of near-native environment.  
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The importance of studying the dynamics of selectivity filter to understand the mechanism of 

selectivity and the underlying atomistic interactions has been reflected in several studies on Kv 

and CNG channels 68,97,98. For example, in case of CNG channels, a close relative of HCNs, MD 

simulations indicates that the side chain of Glu66 in the selectivity filter can assume multiple 

conformations and the diameter of the pore changes significantly along the simulation, depending 

on the nature of cation present in the selectivity filter 97. The crystal structure often reflects the 

conformation trapped in the global minimum of free energy landscape and such conformations 

that visit different local minima are barely captured in crystallographic and cryo-EM studies. 

However, accessing a dynamic perspective of channel structure, and selectivity filter in this case, 

seems to be indispensable to understand the mechanism of selectivity. Such knowledge could be 

gained through the application of MD simulation.      

It should be noted that depending on the size of the system being studied in terms of the atom 

numbers, all-atom MD simulations could be very computationally expensive and at the same time, 

the reliability of the results could be highly affected by time-window of the simulation being 

performed. In fact, several phenomena such as channel gating would demand milli-seconds to 

seconds of simulation while ion conductance or main-chain/side-chain motions of amino acids 

could be captured in nano- to micro-second time scales 99. In this study we performed the 

simulations on 200 ns time scale which seems to be sufficient for finding the stable binding  mode 

of the ions in the selectivity filter. 

 

3- The idea of Molecular dynamics simulation 

3.1- Calculating atoms trajectory based on potential energy function 

The main idea of MD simulation is to calculate and implement the equations of the motion 

of atoms from the potential energy function:  

Based on this notion, in a system composed of N interacting particles, the force acting on each 

particle, i, is estimated by the gradient of the potential energy with respect to atomic displacement 

(equation 1.1); 

𝐹!""⃗ = −∇"𝑈              (1.1) 
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Following the calculation of forces, Newton’s law of motion, 𝐹⃗ = 𝑚𝑎⃗ (equation 1.2), can be used 

to numerically solve the motion of the particle i; 

𝐹!&&⃗ = 𝑚"𝑎!&&&⃗ = 𝑚 #$#%%%⃗
#'
= 𝑚	 #

$(#%%%⃗
#'$

    (1.2) 

In the above equation, m, 𝑎" 	and 𝑣" represent mass, acceleration and velocity, respectively, of the 

ith particle at time t. The variable 𝑟!&&⃗  represents the position vector of particle i in a cartesian 

coordinate system.  

The following equation (equation 1.3) provides the value of 𝑟 at time t + δt as a function of 

acceleration (𝑎⃗), initial position (𝑟!&&⃗ ) and the initial velocity (𝑣!&&&⃗ )  at time t. Here, δt refers to the time 

step of the simulation, which typically falls within the range of few femtoseconds (fs) in order to 

ensure that the change in forces over one timestep is small and the fasted motions are accounted 

for; 

𝑟!&&⃗ (𝑡 + 	𝛿𝑡) = 	 𝑟!&&⃗ (𝑡) +	𝑣!&&&⃗ (𝑡)𝛿𝑡 +	
)#%%%%⃗ ('),'$

-
	        (1.3) 

 Once the new position of each particle, r⃗ (t + δt), is computed, the process is iterated; the 

interatomic forces are updated in order to calculate the subsequent positions after another time 

step. This entire process is repeated to obtain a trajectory of coordinates of the system for a finite 

time period. A number of numerical algorithms have been developed for integrating the equations 

of motion. In this study, the Leap-frog algorithm is employed 100. 

 
 

Figure 10. A schematic representation of the molecular dynamics processes.  
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3.2- Temperature and pressure control 

In the context of classical statistical mechanics, temperature is treated as a direct measure 

of the average molecular kinetic energy and the definition of the temperature in a (classical) many-

body system makes use of the equipartition theorem, which conceptually means that at thermal 

equilibrium, each independent degree of freedom has an equal amount of kinetic energy; for 

example, the average kinetic energy per degree of freedom in the translational motion of a 

molecule is equal to its rotational motions. Thus, according to the equipartition theorem, the 

average kinetic energy, ⟨K⟩, per degree of freedom is related to the thermodynamic temperature, 

T, in the following way (equation 1.4); 

〈𝐾〉 = 	 .
/
∑ .

-
𝑚"𝑣" =

.
-
𝑘0𝑇/

"1.   (1.4) 

where 𝑚" , 𝑣" , and 𝑘0  represent the mass, velocity of the particle, i, and Boltzmann constant, 

respectively. In practice, the measure of the total kinetic energy normalized by the number of 

unrestrained degrees of freedom, 𝑁2  , is used to compute the instantaneous temperature, 𝑇" 

(equation 1.5): 

𝑇(𝑡) = ∑ 3%$$%(')
4&/'

/
"1.   (1.5) 

Here, 𝑣"(𝑡) refers to the velocity of particle, i at time (t). In order to conduct simulations under 

constant temperature or constant pressure, various temperature and pressure coupling algorithms 

are employed. For example, a temperature coupling algorithm may involve velocity rescaling at 

each time step or stochastic impulsive forces that act occasionally on randomly selected particles. 

All approaches of pressure coupling algorithm involve the scaling of the volume of the simulation 

box. In this thesis, Nosé–Hoover algorithm 101 and the Parrinello-Rahman algorithm 102 were 

employed for temperature- and pressure- coupling, respectively. 

     

3.3- Periodic boundary conditions 

Biomolecular simulations usually involve bulk systems, such as a solid crystal or protein in 

a solution. In MD simulations, a system containing the desired molecules is prepared in a finite 

simulation box due to limited computer memory and also to speed up all the calculations. By 

translating copies of the simulation box in 3D space, periodic boundary conditions allow the 

simulation of a bulk system and eliminate edge effects in a finite simulation box. 
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3.4- Water molecules 

Ignoring the solvent (the molecules surrounding the molecule of interest) leads to major 

artifacts. There are two main options for taking solvent into account; Explicitly represent solvent 

molecules or the Implicit solvent modeling. The latter option is less accurate despite being faster 

and is a mathematical model to approximately represent the average effects of solvent.  

The explicit models are determined based on the parameters derived from quantum mechanics, 

molecular mechanics and experimental results. The models of water molecules could be classified 

into different categories based on; (i) the number of interaction points called site, (ii) whether the 

model is rigid or flexible, (iii) whether the model includes polarization effects or not. In this study 

we used the TIP3P water model which is a three-point rigid water molecule with charges and 

Lennard-Jones parameters assigned to each of the 3 atoms of the molecule 103. 

 

3.5- MD simulation package and forcefield 

In order to compute atomic trajectories by solving equations of motion numerically, 

empirical force fields have been developed. In other words, a force field is a mathematical 

expression describing the dependence of the energy of a system on the coordinates of its particles. 

In this context, molecules are simply defined as a set of atoms that are held together by simple 

elastic (harmonic) forces and the force field replaces the true potential with a simplified model 

valid in the nano-environment being simulated. The parameters of the energy functions may be 

derived from experiments in physics or chemistry, calculations in quantum mechanics, or both 

(and hence the name empirical force fields). All-atom force fields account for the parameters for 

every type of atom in the system, including hydrogen. However, united-atom interatomic 

potentials provide a cruder representation (for higher computing efficiency) and treat the hydrogen 

and carbon atoms in each methyl group (terminal methyl) and each methylene bridge as one 

interaction center.  

In recent years, many popular simulation packages, such as Amber, Gromacs, and NAMD, have 

all embraced the parallel computing as well as powerful GPUs based computing using CUDA 

library 104. In the current study, we used NAMD software package to perform the MD simulation 
105. NAMD enables the use of few force fields such as AMBER 106, CHARMM 107, and OPLS 108, 
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but not GROMOS96 109. Here, we used the CHARMM all-atom forcefield which is widely used 

for simulating the protein-membrane systems.  
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4- The manuscript on the structural dynamics of selectivity filter in HCN 
channel 
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ABSTRACT  
 
Hyperpolarization-activated cyclic nucleotide-gated (HCN) channels are responsible for the 

generation of Ih in cardiac and neuronal cells. Despite the overall structural similarity to voltage-

gated potassium (Kv) channels, HCNs show much lower selectivity for K+ over Na+ ions. This 

increased permeability to Na+ is a critical to its role in membrane depolarization. HCNs are also 

one of the only known proteins to select between Na+ and Li+ ions. Here we investigate the unique 

selectivity properties of HCNs using molecular dynamics simulations. Our simulations suggest 

that the HCN1 pore is flexible and dilated compared to Kv channels with only one stable ion 

binding site within the selectivity filter. We also observe that ion co-ordination and hydration differ 

within the HCN1 selectivity filter compared to Kv and CNG channels. Additionally, the C358T 

mutation further stabilizes the symmetry of the S4 site and provides a more fit space for ion 

coordination, particularly for Li+. 
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Introduction 

 Hyperpolarization-activated cyclic nucleotide-gated (HCN) channels belong to the 

voltage-gated cation channel superfamily. The 4 HCN isoforms (HCN1-4) are responsible for the 

generation of Ih in cardiac and neuronal cells where they play a role in setting the resting membrane 

potential, pacemaking, dendritic integration, , and establishing action potential threshold1. HCN 

channels are important for learning and memory2,3, pain sensation4, sour taste sensation5, and 

vision6. Ivabradine is an approved drug for the symptomatic management of stable heart-related 

chest pain and heart failure7 and there are strong efforts in recent years to screen for novel Ih 

inhibitors for the treatment of epilepsy, pain, schizophrenia, addiction and other neurological 

disorders 8,9.   

HCN channels are composed of four subunits consisting of six transmembrane alpha 

helices, and a C-terminal cyclic-nucleotide binding domain (CNBD) that is attached to the S6 

transmembrane domains via an 80 amino acid linker10. The S1-S4 transmembrane domains of each 

subunit generates a non-domain swapped voltage-sensor domain (VSD), which is arranged next to 

the pore-forming S5-S6 helices of the same subunit. Recent atomic resolution structures have also 

identified a novel N-terminal domain HCN-domain11,12, which couples cyclic-nucleotide binding 

to voltage-gating13. Despite the overall structural similarity to voltage-gated potassium (Kv) 

channels, HCN channels demonstrate 20-fold lower selectivity for K+ over Na+ ions (PNa/PK = 0.2-

0.3 in HCNs 14, compared to Kv channels 15. This increased permeability to Na+ ions results in a 

net influx of Na+ ions, and is a critical to the role of HCNs in depolarizing cellular membranes. 

Intriguingly, HCNs are one of the only known proteins that can select between Na+ and Li+ ions, 

making HCN channels semi-selective, rather than non-selective like the closely related CNG 

channels. Differences in selectivity between selective channels like Kv channels, and non-selective 

channels such as CNGs, have been partially attributed to multi-ion vs single-ion binding in the 

selectivity filter 16. In non-selective channels, the selectivity filter residues orient differently than 

selective Kv channels, rendering the top of the pore wide-open, eliminating the first (and possibly 

second) ion binding sites 17 (Fig. 1A). In addition to the 3D arrangement of pore-forming residues, 

the dynamic behavior of the selectivity filter in the presence of various cations could have a major 

effect on ion selectivity. Structures of HCN1 indicate a wide-open top of its selectivity filter, 

similar to CNG channels. However, it remains unknown how many ions stably bind within the 

HCN pore, and what enables HCN channels to maintain semi-selectivity. Here, we investigate the 
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unique selectivity properties of HCN channels using molecular dynamics (MD) simulations. Our 

simulations suggest that the HCN1 pore is dilated with a very high degree of flexibility, with only 

one stable binding site for partially hydrated ions within the selectivity filter. Additionally, the co-

ordination of K+ ions with the carbonyl groups of the selectivity filter is more stable compared to 

Na+ and Li+ ions, which may explain the channel’s distinct selectivity properties. We also 

investigate why the conversion of the HCN selectivity filter sequence (CIGYG) to that of selective 

Kv channels (TIGYG) (Fig. 1B) fails to restore the compromised K+ selectivity in HCN 

channels
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RESULTS 

Dynamics of ions’ motions within the selectivity filter of WT HCN1 

To identify the most stable binding sites for K+, Na+, and Li+ ions in the HCN1 pore, we 

performed all-atom MD simulations. In separate simulations for each ion type, ions were placed 

in the S0, S1, S3, S4 and cavity (C). No ion could be placed in the S2 site because the carbonyl 

groups are flipped away from the conduction pathway, and the tyrosine sidechain makes the site 

becomes unavailable for ion binding. The ions were constrained for the first 20ns of production 

simulations, in order to enable the carbonyl groups of the pore to adjust their arrangement around 

each ion and ensure the ions did not leave the pore simply due to an unfavourable starting 

arrangement. The trajectory of ion movement within the selectivity filter over the course of the 

simulation time for each ion is presented in Fig. 2. After 20ns, all constraints were lifted, ions that 

were initially located at S1, S3 and S4 pop out of the pore and irreversibly join the solvent phase. 

The ion which was initially localized within the cavity migrates to the S4 site, remains partially 

hydrated, and is co-ordinated by the carbonyl groups of Cys358 and water molecules. Since no 

structure of the open HCN1 pore is available, our simulations were performed with the closed pore 

conformation, which prevents the cavity from being replenished with another ion. Therefore, to 

evaluate whether the ion that moves from the cavity into the S4 site gets trapped there because 

there is no additional ion to repel it over the energy barrier into the S3 site, (through either a hard 

or soft knock-on mechanism), we performed an additional set of simulations for each ion type (Fig. 

S2). In these simulations, only one ion (either K+, Na+ or Li+) was placed in the selectivity filter at 

the S3 site. The placement of the ion at S3 position also provides further insight on the ability of 

this site to coordinate the ion and serve as a stable ion binding site. In these systems, shortly after 

initiating the simulations, the ion migrates from the S3 to the S4 site (Fig S2), with the ion 

coordinated by the carbonyl backbone of C358 and waters, similarly to the other set of simulations 

(Fig. 2). Again, this is ion behavior was consistent for K+, Na+, and Li+ ions. This indicates that 

regardless of how the simulations are performed, the S4 site is the only stable binding site within 

the selectivity filter of HCN channels.  

A careful examination of ion movement within the selectivity filter indicates that ions 

fluctuate along the Z axis between the plane of C358 carbonyl groups and lower into the S4 site 

as ions are coordinated in other K+ channels (Fig. 2). The ions frequently sample the plane of the 

C358 carbonyl groups (black lines), a feature that appears unique to HCN channels.  Additionally, 
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ions are partially hydrated with only two of the four selectivity filter subunits participate in 

coordinating the ion (Fig. 3). This differs from observations in Kv and CNG channels 16,20,21 where 

ions are either dehydrated in the selectivity filter (in Kv channels) or synchronously coordinated 

by carbonyl groups from all 4 subunits (in both CNG and Kv channels). This is made evident by 

measuring the distance between the ion and the carbonyl groups of C358 from each subunit.  For 

K+ and Na+ ions, the distance between the ion and C358 carbonyl groups of subunit C and D are 

2.8 Å and 2.5 Å respectively, while the distance of these ions to the C358 carbonyl groups of 

subunit A and B are greater than 5 Å (Fig. 3A and 3B).  We observe similar results for Li+ ions 

when we examine various snapshots during the trajectory, however, Li+ ions move more freely in 

the x-y plane than K+ and Na+ ions, therefore the distribution of distances to are more diffuse (Fig. 

3C). However, a peak at 2.2 Å is observed, which indicates that Li+ ions also regularly closely 

approach the C358 carbonyl groups. In fact, RMSD measurements for the ions stably sitting in S4 

of the pore follow the same selectivity sequences measured electrophysiologically18 with K+ 

showing the most stable behavior in the pore, followed by Na+ and then Li+ (Fig. S1). 

Taken together, these results suggest that there is only one primary binding site in HCN1 

selectivity filter located. This site is at the S4 position, formed between the carbonyl oxygen of 

C358 and the sulfhydryl group of its sidechain. The off-center location of ions in the pore, high 

mobility of these ions between HCN subunits, and overall lack of a second stable binding site in 

the pore may all contribute to the low (~1pS) conductance observed for HCN channels 22.  

 

Hydrated ion coordination within WT HCN1 selectivity filter  

 It is evident that ions permeating through potassium selective pores do so mostly 

dehydrated 20,21. However, our simulations indicate that cations permeating through HCN channels 

are partially hydrated. We examined the number of water molecules coordinating each ion at the 

S4 position throughout the trajectory using ion-oxygen cut-off distances of 3.6 Å for K+, 3.2 Å for 

Na+ and 2.8 Å for Li+23.  Our analysis indicates that each ion spends the majority of the time 

coordinated by four water molecules in addition to the 2 carbonyl groups of the C358 residue (Fig. 

3, right panel). In case of K+ and Na+, two of these waters are arranged to fill the gap between the 

ion and the carbonyl groups from the opposing non-coordinating subunits. The other two water 

molecules interact with the ions such that they do not interfere with direct interaction between ion 

and the carbonyl groups (Fig. 2). This arrangement of coordinating water molecules and carbonyl 
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groups stabilize the off-center localization of K+ and Na+ ions. In case of the Li+, the ion is more 

tightly coordinated by four water molecules, which generally prohibits direct interaction between 

Li+ and the C358 carbonyl groups. As a result, the Li+ ion sits slightly lower than the C358 carbonyl 

plane compared to K+ and Na+. It should be noted that during the simulation time the sulfur atoms 

of Cys358 sit very far apart and at around 7 to 9 Å distance (Fig. S2). In this regard, the S4 site 

resembles a small cavity which has merged with the bottom cavity and cannot assume a caged-

like structure to accommodate the ion. Therefore, while partially hydrated K+ and Na+ ions move 

along the z-axis between the carbonyl plane of C358 and into the wide S4 site while remaining 

partially coordinated with the carbonyl oxygens, the Li+ ion becomes fully hydrated rapidly, and 

primarily wanders in this wide opening of the S4 site.   

 

Limited hydrogen bond network behind the HCN1 selectivity filter helps to stabilize S4 

Ion binding, permeation, conductance and selectivity in potassium channels are all partially 

determined by the rigidity of the selectivity filter 24,25 26. A hydrogen bond network between 

residues on the pore-helix and the selectivity filter residues in potassium channels help to keep the 

carbonyl groups facing the conduction pathway and forming multiple ion binding sites. As a result 

of this hydrogen bond network behind the pore, the distance of the carbonyl groups remains narrow 

enough to favour the coordination of dehydrated ions in the center of cage-like binding sites 

formed by the eight carbonyl groups of the selectivity filter residues (Fig. 1).  Our MD simulations 

indicate that in HCN1 channels, this hydrogen bond network is limited to the lower part of the 

selectivity filter (Fig. 4B and Table S1), with hydrogen bond interactions stabilizing the pore 

facing orientation of C358 and to a lower extent I359. Specifically, the C358 residue is stabilized 

in this orientation through hydrogen bonds formed with H355 via their backbone. This C358-H355 

hydrogen bond is uniformly present in all 4 subunits in all the simulated systems (Table 1). 

Additional hydrogen bonds are formed between G360-S354 and I359-S345, however, these 

hydrogen bonds are not uniformly observed between HCN1 subunits.  

In addition, the protonated imidazole side chain of H355 also forms a stable electrostatic 

interaction with D312 (Fig. 4A). This interaction appears to further stabilize the H355 backbone 

orientation to enable formation of the C358-H355 hydrogen bond (Fig. 4A). Intriguingly, the 

propensity to form the H355-D312 salt-bridge again follows the pattern of ion selectivity (Fig. 

4A), with this salt-bridge formed more frequently in the trajectory of simulations with K+, than 
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Na+, and least frequently for Li+.  This suggest that while the selectivity filter may stabilize ion 

binding at S4 in the HCN1 pore, the ions also contribute to the stabilization of the HCN1 selectivity 

filter. 

 

Ion dynamics and coordination within the selectivity filter of HCN1 C358T 

The role of the pore-lining Cys residue in HCN permeation and selectivity has been 

examined previously by electrophysiological experiments18,19. Mutations of the CIGYG selectivity 

filter sequence in HCN channels to the typical TIGYG selectivity filter sequence of Kv channels 

fails to confer K+ selectivity to HCN channels18,19. In fact, the equivalent C358T mutations 

increases ion conductance by ~30%, increases the permeation of Na+ and Li+ ions, enables the 

permeation of large quaternary ammonium ions such as TMA, and abolishes the channels’ ability 

to select between Na+ and Li+ ions18. To understand why C358T does not favour K+ selectivity, but 

rather enables improved passage of Na+ and Li+ ions, we performed additional sets of MD 

simulations on HCN1 C358T channels. Similar to what we observed in simulations of the wild-

type channel, after 20ns when all constraints on the ions were removed, ions that were initially 

located at S1, S3 and S4 moved rapidly out of the pore and irreversibly join the solvent phase (Fig. 

S5). The ion which was initially localized within the cavity migrates to the S4 site, remains 

partially hydrated. However, in C358T the ions are notably localized below the carbonyl groups 

of Thr358, rather than in same plane. Moreover, especially in the case of Li+, the ion appears more 

stable this lower position on the z-axis, as the ions in the S4 site less frequently move to the plane 

of the T358 carbonyl group compared to ions in the wild-type system. This behavior of Li+ is also 

reflected in the variations of the RMSD plot which is indicative of a much narrower structural 

fluctuation in the mutated system bearing the Li+ ion (Fig. S1). We also observe that in simulations 

of C358T, the K+ ions move towards the central pore axis, as evident by the more uniform 

distribution of distances between K+ and the carbonyl oxygen groups (~2.8 Å for all 4 subunits), 

the increase in number of coordinating carbonyl groups, and the reduced number of coordinating 

waters (Fig. S6). To a lesser degree we see a similar effect with Na+ ions (Fig. S6), however, the 

higher degree of hydration still prevents the Na+ ion from fully approaching the central pore axis. 

This shift towards the central axis, and lower position of the ion in the S4 site, may contribute to 

the small (~30%) increase in ion conductance observed in HCN2 and HCN4 channels with the 
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equivalent C358T mutations18,19, since the strength of the ion-carbonyl interaction would be 

reduced and an incoming ion would be more likely to knock the ion through. 

 

The effect of C358T on the geometry and dynamics of the HCN1 selectivity filter 

Similar to the wild-type systems, the selectivity filters of both wild-type and C358T HCN1 

channels are wide enough to accommodate partially hydrated Na+ and the fully hydrated Li+ ions.  

However, by examining the distribution of distance between the oxygen atoms of the T358 

sidechain, we see that the pore diameter varies from 4.2 Å to 9.2 Å (depending on the ion) (Fig. 

S2). This is narrower and more stable compared to corresponding distance between the sulfur 

atoms of the C358 in wild-type HCN, which varies between 5.2 to 10.2 Å (depending on the ion) 

(Fig. S2).  In the case of K+ ions, the narrower carbonyl groups and sidechain oxygen atoms of 

T358 now enable the dehydrated ion to be directly coordinated by 4 carbonyl groups and 4 side-

chain hydroxyl groups with water molecules now forced to engage directly above and below the 

K+ ion (Fig. S5), similarly to Kv channels,  (Fig. S5 and Fig. S6). While C358T pore at this position 

also narrows compared to WT HCN1 channels in the presence of Na+ and Li+ ions, their hydration 

shell prevents as tight a restriction as that observed for K+. In this regard, it seems that the C358T 

mutation tightens the S4 site and provides a more uniform space for ion coordination (Fig. S5 and 

Fig. S6). These results provide further evidence for a highly dynamic pore in HCN channels. 

 Measurement of the flipping motions for the carbonyl groups of the SF shows a similar 

pattern to that of the wild-type system (Fig. S7), with only the T358 carbonyl group constantly 

facing the pore-axis, while the remaining selectivity filter residues rapidly rearrange their 

orientations. Additionally, a similar pattern of hydrogen bonding is observed between the 

backbone atoms of the SF and the residues behind the pore (Table S1). Similar to wild-type system, 

the hydrogen bond between the backbone of T358 and H355 residues has the highest consistency 

among the different HCN1 subunits and as a result the pore would have a more synchronous 

behavior at the T355 site. Intriguingly, we observed the sidechain of T358 is also stabilized by a 

persistent hydrogen bond to the backbone of the neighboring L357 residue (Table S1 and Fig. S8). 

This stable hydrogen bonding seems to be very important to fix the side-chain of T358 towards 

the pore axis and enable the coordination of dehydrated K+ and partially or fully hydrated Na+ and 

Li+ ions deeper into the S4 site (Fig. S8). Lastly, the electrostatic interactions between the side- 

chains of D312 and H355 persist in these sets of simulations as well.  
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DISCUSSION 

Potassium channels have the backbone carbonyl groups of selectivity filter residues arranged in a 

cylindrical shape, gives rise to four equally spaced ion-binding sites known as S1-S4 sites from 

top to bottom 20,21. In this symmetrical arrangement, a K+ ion in is coordinated by eight oxygen 

atoms from carbonyl groups of the selectivity filter as if sitting in the middle of a cubic cage. This 

synchronous coordination of K+ ions in-turn helps the carbonyl groups remain oriented toward the 

conduction pathway and enables multiple K+ ions to be coordinated in the pore, allowing for rapid 

ion conductance via a “hard” or “soft” electrostatic repulsion (knock-on) (Fig. 5A). According to 

our results, the selectivity filter in HCN1 channel is more dynamic than a Kv pore, with only one 

binding site (between carbonyl groups of C358) stably present during the simulation time. 

Additionally, the dilated pore with a diameter of around 5 Å accommodates the partially hydrated 

K+ and Na+ ions as well as the fully hydrated Li+ ion either in plane with the C358 carbonyl groups 

or slightly deeper into the S4 binding site. However, unlike what is observed for potassium and 

CNG channels 16,20, in HCN channels, ions do not reside along the central pore-axis, but rather 

partially hydrated ions are co-ordinated in an offset manner more reminiscent of what is observed 

in Nav and Cav channels. We propose that the high mobility of a partially hydrated ion within the 

pore, and number of and distance to the co-ordinating carbonyl groups that we observe in our 

studies, and the highly flexible and destabilized outer pore region (which reduces the frequency of 

observing stable S1, S2, and S3 binding sites), all contribute to the low (~1 pS) conductance of 

HCN channels.  Therefore, it is conceivable that the formation of an outer site may occur 

infrequently, and when it does, ions may permeate in either direction by electrostatic repulsion (ie. 

soft or hard knock-on) (Fig. 5B).  However, since this outer site is rarely stable, the equilibrium 

highly favours a single-ion occupied pore.  This model is supported by our simulations where an 

ion was placed in the S3 site, and it readily moved back into the S4 site.  

Our data does enable us to provide some insights on ion selectivity in HCN channels, 

however, given the time-course of our simulations, and the closed conformation of the pore 

(preventing us from fully observing conduction events), we are somewhat limited. Conventional 

views on the mechanism of selectivity in ion channels proposed a “snug fit” model in which 

accounts for the rigidity of the filter and fitting the ion in the pore according to its Pauling radius 
27. This model assumes the ion to be stripped off from its water shell and this dehydration energy 

being compensated by synchronous coordination of ion by selectivity filter oxygen atoms. Recent 
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insights however propose a dynamic model in which the selectivity filter has liquid-like properties 

and selectivity is yielded as a result of several factor such as the effect of strain energy (which 

accounts for structural perturbation of the host (e.g. selectivity filter) as the result of guest (e.g. 

ion) presence in the context of host–guest chemistry), chaperone-like effect of the ions (which 

accounts for the necessity of ions presence to avoid SF collapse), in addition to ion hydration-

dehydration energy compensation28-30.  

Potassium channels have a 100-1000 fold higher selectivity for K+ over Na+ and Li+ ions 
31. It has been argued that the multi-ion arrangement in the potassium channel pore contributes to 

both rapid ion conduction and a high degree of ion selectivity. Studies using NaK channels 32-34 

suggest that multi-K+-ion occupancy increases the probability that a Na+ will exit from the same 

side it entered (because a K+ ion would be blocking the other side due to its higher affinity) and 

thus permit kinetic selectivity. Additionally, smaller ions such as Na+ and Li+, have different 

dehydration energies which may exclude them from the entering the pore (a molecular sieve). 

However, even once they can be dehydrated enough to enter the pore, Na+ ions interact 

asynchronously with the selectivity filter carbonyl backbones and contribute to rapid 

rearrangement of the carbonyl backbone away from the conduction path (flipping), and in some 

cases pinching or collapse of the conduction pathway 28.  

On the other end of the spectrum are CNG channels, which are effectively non-selective 

between monovalent cations. Recent atomic structures indicate that the lack of the external 

tyrosine and glycine residues in their selectivity filter sequence of CNG channels results in the 

elimination of the outer (S1) ion binding site16. The three remaining potential ion binding sites are 

again formed by a combination of backbone carbonyl oxygens and hydroxyl oxygen of the 

threonine residue sidechains, and a continuous elongated density can be observed across all three 

sites in the atomic resolution structure. This suggests multi-ion binding within the CNG pore, 

despite their inability to effectively discriminate between K+, Na+ and Li+ ions 16,35. In fact, MD 

simulations using the engineered NaK2CNG-E channels suggest that the dilated selectivity filter 

in non-selective CNG-like channels may bind up to 2 partially hydrated ions with the inner (or 

lower) ion residing largely in the S3 site along the central pore axis. However, unlike the delicate 

hydrogen-bonding network surrounding the selectivity filter of K+ channels 24, the selectivity filter 

of CNG channel is mainly reinforced by hydrophobic interactions16. This results in a pore diameter 

of the CNG selectivity filter ranges between 4.7-10.1 Å16 compared to the typical pore diameter of 
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1.7-5.4 Å in potassium channels 36. This may provide more flexibility for the selectivity filter 

residues to properly arrange around different cations and may not force the CNG channel to sieve 

the ions based on their sizes16.  

It is clear from our studies here that ion selectivity cannot arise simply from presence or 

absence of multi-ion binding within the pore, or by the pore acting purely as a molecular sieve, 

since HCN channels can still select between K+, Na+, and Li+ ions18,19,37. It is also evident that the 

sulfhydryl group of C358 does not act like the rate-limiting barrier as previously proposed18, since 

the atomic structure, and our MD simulations, do not indicate this sidechain to ever act as the 

narrowest restriction point in the pore. However, it was demonstrated previously that HCN 

selectivity is reduced when the pore lining cysteine is mutated to threonine (C358T equivalent) 18. 

Considering our simulations of WT and C358T HCN1 channels, we provide the following insights 

into HCN selectivity. In the wild-type HCN, the K+ and Na+ ions in the selectivity filter are shielded 

by water molecules or CO groups of C358. In other words, the lower dehydration energy of the 

ion (compared to Li+) allows for stripping several water molecules from the ion and its direct 

interaction with carbonyl groups of C358. Therefore, the ion is localized close to the carbonyl 

groups during the simulation. However, in case of Li+ ion, the higher dehydration energy 

(compared to K+ and Na+ ions) barely allows for stripping the water molecules and the direct 

interaction of the ion with carbonyl groups. Accordingly, the shielded Li+ ion is abandoned to 

wildly jiggle in the wide open S4 site. This behavior reduces the chance of synchronous 

coordination of ion by the selectivity filter, (which is demanded for attracting the ion to the binding 

site and its permeation to either site) and leads to lower chance of Li+ ion permeation compared to 

K+ and Na+. Upon the C358T mutation, the Li+ ion, which is still shielded by water molecules and 

sitting in the S4 site, experiences a tighter space due to being more tightly surrounded by Thr358 

CO groups and its sidechains. This relatively tighter packaging of the shielded Li+ ion at S4 site 

limits the jittering motions of the ion and increases the chance of its synchronous coordination by 

selectivity filter and hence its permeation.  This observation could explain the higher permeation 

rate of Li+ ion upon C358T mutation 67.   

Interestingly, in the mutant structure and in case of K+ ion, the S4 site assume a tight 

conformation and leaves no gap for the water molecules to sneak in and mediate the ion interaction 

with CO groups. In other words, the ion is stripped off from shielding water molecules (except for 

one water molecule at the top and one at the bottom of ion) and directly binds to CO groups of 
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T358. It seems that C358T mutation increases the chance of K+ ion to act like a chaperone in 

gathering the oxygen atoms of T358 around itself and increasing the chance to delicate and precise 

coordination of the pore around this ion at the S4 site. Establishment of an ordered S4 site in the 

mutated structure seems to be highly dependent on the precise localization of the T358 sidechain 

which in turn depends on a stringent hydrogen bond between the sidechain of this residue and the 

backbone carbonyl group of L357 (Fig. S8).  

The importance of the hydrogen bond network between pore residues and those of the pore 

helix in proper arrangement of selectivity filter CO groups has already been shown in several 

studies 24-26. Interesting, L478T/C479T as well as S475E/C479T mutations in HCN4 channel 

(equivalent to L357T/C358T and S354E/C358T mutations in HCN1, respectively) failed to 

produce measurable current despite high levels of N-glycosylated protein expression18. As shown 

in Figure S9, these mutations seem to interfere with the network of hydrogen bond behind the pore 

and specifically those that keep T358 and I350 CO groups in place. In case of L357T/C358T 

mutations, the sidechain of T357 could be localized in a proper location to establish a hydrogen 

bond with the CO group of S354. This interaction could perturb S354 proper localization which in 

turn has an important role in reinforcing the hydrogen bond network behind the pore.  Upon S354E 

mutation, the sidechain of E354 could rest at the very close vicinity of I359 NH group and by 

dragging the backbone of this residue toward itself could interfere with proper arrangement of 

T358 carbonyl group around K+ ion. These effects would lead to disorientation of the CO groups 

at the only binding site of the pore and hence lead to compromised ion permeation along the pore.  
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MATERIALS AND METHODS 
 

System preparation 

Atomic models of HCN1 were constructed based on the Cryo-EM crystal structure of the protein 

(PDB ID: 5U6O17) in a closed conformation with a tightly packed inner helical bundle that 

constricts the pore to a radius of about 1 Å. Since HCN1 retains hyperpolarization-activated gating 

in the truncated form which is devoid of the C-linker and cyclic nucleotide binding domains 

(HCN1ΔCNBD)42, these domains were omitted from the structure of HCN1 used in our 

simulations to reduce the system size and speed up simulation times. Therefore, the target model 

covered residues 94-402 (Uniport ID: O60741). To determine the favourable binding sites of K+, 

Na+ and Li+ ions in the selectivity filter, 3 models for each system were built; In each model, four 

homogenous ions were placed at S1, S3, S4 and the cavity beneath the selectivity filter (Fig. 2). 

Both ions located at S1 and the cavity site were fully hydrated while the ions at S3 and S4 were 

directly exposed to carbonyl groups of the selectivity filter residue. For some simulations, a single 

K+, Na+ and Li+ ion was placed in the S3 site of the selectivity filter and systems were rebuilt. For 

a 3rd set of simulations, a C358T mutation was introduced using Chimera UCSF software43 and the 

systems were rebuilt for each ion condition. For each modeled structure, the pKa value of each 

reside was calculated with the PROPKA server44, and all residues were assigned their standard 

protonation state at pH 7 accordingly. Consequently, His355, located on the pore helix, was 

protonated in our simulations, despite not being protonated in the cryo-EM structure which was 

resolved at pH 817. The protein was then oriented appropriately for molecular dynamics simulations 

using the Orientation of Proteins in Membranes (OPM) webserver45. 

 

Molecular dynamics simulations 

To prepare the microenvironment of the simulation, the channel was embedded in a bilayer of 

POPC lipids in all simulated systems and solvated in 150 mM of KCl (in case of K+/Li+ systems) 

or NaCl (in case of Na+ systems) using the CHARMM-GUI web server46. The total number of 

atoms in the MD systems is on the order of 170000 atoms. The CHARMM36 force field47 for 

protein, lipids, and ions was used. Explicit water was described with the TIP3P model48. 

Parameters for K+ and Na+ ions inside the channel were defined according to Roux and Berneche49 

and parameters for Li+ ions were defined according to Lamoureux and Roux23. 
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The prepared systems were refined using energy minimization for at least 2000 steps, and 

the ions and non-filter backbone atoms were kept fixed throughout the minimization procedure. 

After energy minimisation, the ions location in the conductive filter was restrained for 20 ns to 

relax any unfavourable contacts destabilising the selectivity filter. All the simulations were 

performed under constant NPT conditions at 310 K and 1 atmosphere, and periodic boundary 

conditions with electrostatic interactions were treated by the particle-mesh Ewald (PME) 

algorithm50 with grid spacing less than 1 Å. A 12 Å smoothed cut off (10–12 Å) with switching 

distance cut-off of 10 Å was applied for the switching function to take effect for van der Waals 

interactions. The pressure was maintained at 1 atm using a Nose-Hoover Langevin piston control51, 

with a period of 50 fs and oscillation decay time of 25 fs. To maintain the temperature, the system 

was coupled to the Langevin thermostat with damping coefficient of 1 ps−1. Equations of motion 

were integrated at 2 fs time intervals. Bond lengths involving hydrogen atoms were constrained 

using the SHAKE algorithm as implemented in NAMD. The simulations were performed at time 

step of 2 fs. After minimization and equilibration with harmonic positional restraints on all of the 

C atoms, MD simulations were performed for 200 ns for wild type and all mutants, by using 

NAMD version 2.12, on the supercomputers of Compute Canada. Simulations were performed in 

two steps; an initial 20 ns restrained simulation with the ions’ location in the selectivity filter 

constrained for 20 ns to relax any unfavourable contacts destabilising the selectivity filter. The 

harmonic constraint energy function was applied along all Cartesian directions with an exponent 

of 2 and scaling factor of 3. This initial phase was followed by 180 ns simulation with these 

constraints being lifted. All molecular graphics work and figures were provided using VMD52 and 

UCSF chimera43 software. 
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Table 1. Hydrogen bond network between selectivity filter and pore helix 

H-bond Pair                               H-bond percentage in WT 

POT SOD LIT 

A B C D A B C D A B C D 

S354-G360 - 63 - 77 - 55 - 59 24 62 40 31 

S354-I359 53 20 21 - 48 22 50 45 29 - 36 39 

H355-C358 27 35 30 25 33 27 34 22 31 32 28 26 

K351-Y361 - - - - 40 - - - - - - - 

                                                                      H-bond percentage in C358T 

S354-G360 28 - 165 42 - 51 - 32 - 52 65 29 

S354-I359 57 - - 20 52 32 118 29 80 - 61 33 

H355-C358 26 - 28 33 27 25 34 31 31 21 33 20 

T358-L357 78 72 76 76 73 68 43 76 62 76 77 73 

K351-Y361 60 - - - - 35 - - - - 40 - 
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Figure 1. The arrangement of backbone atoms of the selectivity filter of KcsA, NAK, CNG 

and HCN channels. (top) The four letter codes represent the PDB ID of each protein. The number 

of ions in the selectivity filter are represented in spheres, with the black lines indicating the 

coordination by carbonyl and sidechain oxygens.  (bottom) Sequence alignment of the pore-helix 

and selectivity filters (highlighted in orange) of HCNs, potassium and CNG channels.  
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Figure 2. Identification of a single stable binding site for K+ (POT), Na+ (SOD) and Li+ (LIT) 

ions in the HCN1 selectivity filter (A) Trajectory of K+, Na+ and Li+ ions localization along the 

Z axis of selectivity filter over the time-course of the simulations. The geometrical localization of 

each ion within different zones of selectivity filter are highlighted by different colors. 1S1 (black) 

represents the ion number 1 which was initially positioned in S1 site. 2S3 (blue) represents the ion 

number 2 which was initially positioned in S3 site. 3S4 (green) represents the ion number 3 which 

was initially positioned in S4 site. 4C (red) represents the ion number 4 which was initially 

positioned in bottom cavity site. The thin black lines in the background of each graph represents 

the average location carbonyl groups in the selectivity filter along the Z axis (from bottom to top: 

C358, I359, G360, Y361 and G362), with the specific values reported on the side of the graph. (B) 

Snapshots of the HCN1 selectivity filter with ions and their coordinating waters taken from the 

20th ns, 100th ns and 200th ns, respectively. 
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Figure 3. Ion coordination by C358 carbonyl oxygens and water. (A) Histogram for the 
distribution of distance (Å) between each ion and its coordinating oxygen atoms (from CO groups 
of C358). The caption under each graph represents the distribution of aforementioned distances 
for each protein chain. (B) Histogram for the number of oxygens (from water molecules or 
backbone of selectivity filter residues) that coordinate each ion during the simulation. The captions 
under each graph represent the ion number and its location in the selectivity filter; 1S1_W represents 
water molecules that coordinate ion number 1 initially localized at S1 site. 2S3_W represents water 
molecules that coordinate ion number 2 initially localized at S3 site. 3S4_W represents water 
molecules that coordinate ion number 3 initially localized at S4 site. 4S4_W represents water 
molecules that coordinate ion number 4 following its translocation to S4 site. 4S4_CO represents 
carbonyl groups that coordinate ion number 4 following its translocation to S4 site. 3S4_CO 

represents carbonyl groups that coordinate ion number 3 while localized at S4 site. The CO_A, 
CO_B, CO_C and CO_D represent the carbonyl groups from chain A, B, C and D, respectively. 
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Figure 4. Hydrogen bond and electrostatic interactions behind the HCN1 selectivity filter (A) 

The occupancy of hydrogen bond between the sidechain of D312 and H\355 in the WT HCN1 

systems. The pore is represented from the top view and the selectivity filter is represented as 

ribbon. Red letters indicate protein chains. The localization of D312 and H355 relative to 

selectivity filter is shown is the diagram confined in the box at the top of panel. (B) The average 

occupancy of hydrogen bond interaction between the mainchain residues of selectivity filter and 

the residues on the S5-S6 helix measured for the last 120 ns of the simulation. The stable location 

of ions during the simulation time are represented. 
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Figure 5. Permeation models of Kv and HCN channels. (A) Potassium channels have the 

backbone carbonyl groups of selectivity filter residues arranged in a cylindrical shape, gives rise 

to four equally spaced ion-binding sites known as S1-S4 sites from top to bottom. This symmetrical 

arrangement permits a K+ ion to be coordinated by eight oxygen atoms from carbonyl groups of 

the selectivity filter with the ion sitting in the middle of a cubic cage. This synchronous 

coordination of K+ ions in-turn helps the carbonyl groups remain oriented toward the conduction 

pathway and enables multiple K+ ions to be coordinated in the pore, allowing for rapid ion 

conductance via “soft” of “hard” electrostatic repulsion (knock-on). (B) We propose the following 

model to explain ion permeation in HCN channels. The top of the HCN1 pore is highly flexible, 

favouring flipping of the carbonyl oxygens away from the central pore axis and preventing ion co-

ordination. Therefore, only 1 ion stably binds in the HCN1 pore primarily in plane with the C358 

carbonyl groups and into the S4 site.  Infrequently, the top of the pore may achieve the proper 

orientation to co-ordinate a second ion in an outer site that can lead to electrostatic ion repulsion 

and permeation. However, the equilibrium favours the more disordered upper pore which 

contributes to low conductance (~1pS) in HCNs. 

 
 

 
 



56  

 
 

Figure S1. The box and whisker plot representing the distribution of RMSD for different ions 

during the last 120 ns of simulation. Each plot represents the median, lower quartile, upper quartile, 

lower extreme and upper extreme. The structure derived from the 80th ns of simulation was used 

as the reference structure to measure the RMSD. POT, SOD and LIT represent the K+, Na+ and Li+ 

ions, respectively. 
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Figure S2. The histogram of the distribution of distance between the Sulfur/Oxygen atoms from 

the sidechain of opposing Cys358/Thr358 residues or the oxygen from the backbone of opposing 

Cys358/Thr358 residues, during the last 120 ns of simulation. The distances between chain A and 

C are represented by black color and the distances between chain B and D are represented by blue 

color. POT, SOD and LIT represent the K+, Na+ and Li+ ions, respectively.  
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Figure S3. The degree flipping motions for the carbonyl group of the residues in the selectivity 

filter in the wildtype systems and during the simulation time. The color-coded diagrams represent 

the flipping motions of the tagged residues from chain A (blue), chain B (green), chain C (orange) 

and chain D (red) of the protein. POT, SOD and LIT represent the K+, Na+ and Li+ ions, 

respectively.  
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Figure S4. Trajectory of K+ (POT), NA+ (SOD) and Li+ (LIT) ions in the selectivity filter of 

wildtype HCN1 when ions were initially placed only in the S3 site. A) The time evolution of 

K+, Na+ and Li+ ions localization along the Z axis of selectivity filter through the simulation time 

are highlighted (green). The black diagrams represent the average geometrical localization of 

carbonyl groups of the selectivity filter residues. B) Snapshots of the selectivity filter taken at the 

start (left) and end (right) of the simulations indicate that the ions rapidly move from the S3 site 

into the S4 site and are co-ordinated similarly to what we observed in our other simulated systems.  

C) Histogram for the distribution of number of coordinating oxygens (from coordinating water 

molecules or backbone of selectivity filter residues) that coordinate each ion during the simulation. 

The captions under each graph represent the ion number and its location in the selectivity filter; 

S3S4_W represents water molecules that coordinate the ion initially localized at S3 and translocated 

to S4 site during the simulation.  S3S4_CO represents carbonyl groups that directly coordinate the ion 

initially localized at S3 and translocated to S4 site during the simulation.   
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Figure S5. A single stable binding site for K+ (POT), Na+ (SOD) and Li+ (LIT) ions in the 

C358T HCN1 selectivity filter (A) Trajectory of K+, Na+ and Li+ ions localization along the Z 

axis of selectivity filter over the time-course of the simulations. The geometrical localization of 

each ion within different zones of selectivity filter are highlighted by different colors. 1S1 (black) 

represents the ion number 1 which was initially positioned in S1 site. 2S3 (blue) represents the ion 

number 2 which was initially positioned in S3 site. 3S4 (green) represents the ion number 3 which 

was initially positioned in S4 site. 4C (red) represents the ion number 4 which was initially 

positioned in bottom cavity site. The thin black lines in the background of each graph represents 

the average location carbonyl groups in the selectivity filter along the Z axis (from bottom to top: 

C358T, I359, G360, Y361 and G362), with the specific values reported on the side of the graph. 

(B) Snapshots of the HCN1 selectivity filter with ions and their coordinating waters taken from 

the 20th ns, 100th ns and 200th ns, respectively.  
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Figure S6. A) and B) Histogram for the distribution of distance (Å) between each ion and its 

coordinating oxygen atoms (from CO groups of Thr358 or its sidechain). The caption under each 

graph represents the distribution of aforementioned distances for each protein chain. C) Histogram 

for the distribution of oxygen atom numbers (from coordinating water molecules or backbone of 

selectivity filter residues) that coordinate each ion during the simulation. The captions under each 

graph represent the ion number and its location in the selectivity filter; 1S1_W represents water 

molecules that coordinate ion number 1 initially localized at S1 site. 2S3_W represents water 

molecules that coordinate ion number 2 initially localized at S3 site. 3S4_W represents water 

molecules that coordinate ion number 3 initially localized at S4 site. 4S4_W represents water 

molecules that coordinate ion number 4 following its translocation to S4 site. 4S4_CO represents 

carbonyl groups that coordinate ion number 4 following its translocation to S4 site. 3S4_CO 

represents carbonyl groups that coordinate ion number 3 while localized at S4 site. 
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Figure S7. The degree flipping motions for the carbonyl group of the residues in the selectivity 

filter of HCN1 C358T mutant during the simulation time. The color-coded diagrams represent the 

flipping motions of the tagged residues from chain A (blue), chain B (green), chain C (orange) and 

chain D (red) of the protein. POT, SOD and LIT represent the K+, Na+ and Li+ ions, respectively.  
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Figure S8. A) The average occupancy of hydrogen bond interaction between the mainchain 

residues of selectivity filter and the residues on the pore helix, in the mutated systems. The stable 

location of ions during the simulation time are represented. B) The occupancy of hydrogen bond 

between the sidechain of D312 and H355 in the mutated systems. The pore is represented from the 

top view and the selectivity filter is represented as ribbon. Red letters indicate protein chains. The 

localization of D312 and H355 relative to selectivity filter is shown is the diagram confined in the 

box at the top of panel. The hydrogen bond occupancies were measured for the last 120 ns of the 

simulation. 
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Figure S9. Structural model on Thr357 (top panel) and Glu354 (bottom panel) localization upon 

L357T and S354E point mutations. The new hydrogen bonds formed upon these mutations and 

the distance of interacting atoms are highlighted. The models were built by Rotamer tools of USCF 

Chimera 43 and the rotamers with minimum energy were selected for depiction.   
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5- Discussion 
 

HCN channels are semi-selective ion channels that permeate the K+ over Na+ ions almost to 

a 1:4 ratio. However, they are relatively impermeable to Li+ ions. The structural details of the 

mechanism of selectivity in these channels is unknown and there is no structural data pertaining 

the precise localization of the ions in the selectivity filter as well as the atomistic details of protein-

ion interaction.  

We therefore modeled the structure HCN1 in the presence of either K+, Na+ or Li+ ions to study 

the structural interactions that might explain the channel selectivity as well as the nature of 

selectivity filter dynamics in the presence of these ions. The initial structure of the simulation was 

derived from cryo-EM structure of the channel represented in its closed state. In following lines, 

the findings of the study will be discussed in the light of previous findings on the selectivity 

mechanism of related ion channels. 

 

5.1- Dynamics of selectivity filter in HCN1 channel 

According to the cryo-EM structure of HCN1 channel which was used as the template for 

modeling the structure in the presence of ions (PDB code: 5U6O), the selectivity filter assumes a 

funnel shape from top to bottom. In this conformation, the carbonyl groups of the Cys358 and 

Ile359 are pointed toward the interior of the selectivity filter while the carbonyl groups of the three 

top residues (Gly360, Tyr361 and Gly362) are disoriented and unable to coordinate the ion. Based 

on this observation, it is suggested that probably two binding sites exists in this channel at S3 and 

S4 sites. However, the selectivity filter is relatively dilatated at these two sites with around 5Å 

distance between the opposing oxygen atoms of the coordinating. Upon the simulation, this 

distance fluctuates according to the nature of ion being present in the selectivity filter and expands 

up to 12 Å. Additionally, the S3 binding site is lost due to flipping motions of Ile359 carbonyl 

groups. In case of the CNG channel, the closest relative to HCN channels, the selectivity filter has 

a more or less a cylindrical structure and based on the crystal structure of the protein, holds three 

binding sites for the ion binding (PDB code: 5H3O)82. Similar to HCN1 channel, the pore is 

relatively dilatated in CNG channel and the diameter of the opposing oxygens that  coordinate the 
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ion ranges between 7Å  to 9.5Å 82. It has been argued that this conformation of selectivity 

filter would allow ions with one or more hydration waters to pass, consistent with the poor 

monovalent cation selectivity of CNG channels. Such explanation could also justify the poor 

selectivity of HCN channels. However, it may worth reminding that HCNs have week selectivity 

for Na+ ions over K+. Our simulation results is suggestive of relatively tighter and more ordered 

selectivity filter conformation in the presence of the K+ ions in the filter. However, these 

differences are negligible and regarding the stochastic nature of MD simulation, should be 

interpreted with caution.  

Our data suggest that the selectivity filter dynamics and ion localization could have mutual effects 

on each other and in order to explain the mechanism of selectivity three factors should be 

accounted simultaneously; (i) the dynamics and conformation of the selectivity filter, (ii) the 

diameter of the ion being present in the pore and (iii) the dehydration energy of each ion. 

Considering these notions, it seems that the pore prepares the best environment for both K+ 

followed by Na+. The highly dynamic nature of the selectivity filter results in drastic fluctuations 

of its diameter. The K+ ion can fit in this varied environment by fluctuating between different 

hydrating states which is more affordable considering its dehydration energy compared to Na+ and 

Li+. This may justify the observed selectivity pattern of the channels against these cations.  

  

5.2- Ion localization in selectivity filter of HCN1 channel 

According to our simulation results, only one ion is stably localized in the selectivity filter. 

Interestingly, this ion is mostly localized either between the carbonyl groups of Cys358 or S4 site. 

To the best of our knowledge, such pattern of ion localization in selectivity filter has not been 

reported in case of any other channel. A similar pattern was also observed in our other set of 

simulations performed with one ion in the selectivity filter which was initially localized in S3 site. 

In this regard, it seems that the nature of selectivity of HCN against K+, Na+ and Li+ ions is pretty 

much dependent on the conformational dynamics and size of the S4 site. This view can justify why 

the selectivity against Li+ ion is lost upon C358T mutation;  

According to our simulation results, the S4 site is wide open in the wildtype structure as the result 

of distant localization of Cys358 sidechains. This spacious S4 site allows for radical fluctuations 

of Li+ ion and hence its compromised coordination. However, upon the C358T mutation, this space 
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becomes more confined due to localization of Thr358 sidechains to a closer proximity of the ion. 

This in turn could lead to more restricted ion movement and better coordination of the ion.   

 

5.3- Network of Hydrogen bonds between selectivity filter and pore helix 

Previous studies have highlighted the role interactions between selectivity filter and the pore 

helix in regulating the selectivity filter fluidity and its ability to coordinate the permeating ions. in 

case of CNG channels which are considered non-selective channels, the nature of interactions 

between the selectivity filter and the pore helix are mostly hydrophobic. These greasy hydrophobic 

interaction have been suggested as the base of selectivity filter flexibility and lack of selectivity 82. 

Unlike the CNG channels, the corresponding interactions in HCN1 channel have an electrostatic 

nature. According to our simulation results, this network mainly exists between the residues at the 

bottom of the pore and the base of pore helix. It seems that despite the lack stringency, these 

interactions are strong enough to impart some levels of rigidity to the lower regions of the 

selectivity filter and probably contribute to the week selectivity of Na+ ions over K+ ions.  

 

5.4- Limitations of the study  

5.4.1- Using the closed conformation of the channel 

In this study the interaction of ions with HCN1 protein was modeled based on the structure 

of cryo-EM structure of the channel in the closed state. Recently the cryo-EM structure of the open 

conformation of HCN1 channel was also made available. The least square fitting of the open and 

closed conformations suggests for negligible difference in the selectivity filter conformation. In 

this study, we observed that except for the ion trapped in S4 site, the other ions pop out the pore 

and into the extracellular space. However, there is a chance that the ions move in the opposite 

direction if the open conformation of the channel is utilized. Despite this and considering the 

similarity of selectivity filter conformation in both open and closed conformations, it is probable 

that a similar pattern be observed for the stable ion localization in the selectivity filter.  

 



71  

5.4.2- The time period of simulation 

The other limitation of our study is related to relatively short time of simulation. Considering 

the symmetrical arrangement of the pore, it is expected that all subunits behave similarly along the 

simulation time. This is more or less true in case of the current study. However, if the simulation 

is prolonged, those interactions related to hydrogen bonds between the selectivity filter and the 

pore helix would converge in all the subunits and show a cleaner pattern.  

 

5.5- Future directions 

5.5.1- Site-directed mutagenesis studies to manipulate selectivity filter 
dynamics  

In addition to validating the findings in the open model of the channel as well as prolonging 

the simulation time, we suggest several experimental tests to evaluate the role of hydrogen bond 

network behind the selectivity filter in regulating the selectivity filter dynamics as well as the 

selectivity features of the channel;  

As mentioned in the results, the network of hydrogen bond between the selectivity filter and the 

pore helix mainly exists for the bottom residues of the selectivity filter and at the top, selectivity 

filter residues are free to move with no engagement to pore helix residues. A closer look at this 

zone and in comparison, with highly selective Kv channels suggest that two simultaneous 

mutations could restore this hydrogen bond with the top of selectivity filter to some extent. The 

A363D and F351W could induce the hydrogen bond between Asp363 and Trp35 and restore the 

conventional hydrogen bond network at the top of the selectivity filter. This, in turn could lead to 

more stable conformation of the selectivity filter and partial to full restoration of the S1, S2 and 

S3 binding sites. This hypothesis could be tested through a combination of experimental and 

computational approaches such as site directed mutagenesis electrophysiology recordings as well 

as MD simulation.   
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6- Conclusion 

In this study we evaluated the structural dynamics of the selectivity filter in HCN1 channel 

and in the presence of K+, Na+ and Li+. Our data suggest that there is one stable binding site for the 

ion in the vicinity of the S4 site. The backbone of the selectivity filter at this binding site is 

reinforced through a network of hydrogen bonds between the selectivity filter and the pore helix. 

Our data also suggest that K+ and Na+ can better fit in this flexible binding site due to their larger 

size and the fact that they can partially be stripped from their coordination water molecules and 

directly interact with the carbonyl groups of Cys358. However, in case of Li+, the ion is strongly 

shielded by water molecules and fail to be directly coordinated by the carbonyl groups of Cys358. 

Therefore, it is descended to the S4 site where it radically wanders in the wide open S4 cavity. The 

C358T mutation seems to confine the Li+ in the S4 site and increases the chance of its synchronous 

coordination by carbonyl groups of the selectivity filter.  
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