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Sommaire

La planification à des niveaux d’abstraction plus élevés est essentielle lorsqu’il s’agit de

résoudre des tâches à long horizon avec des complexités hiérarchiques. Pour planifier avec

succès à un niveau d’abstraction donné, un agent doit comprendre le fonctionnement de

l’environnement à ce niveau particulier. Cette compréhension peut être implicite en termes de

politiques, de fonctions de valeur et de modèles, ou elle peut être définie explicitement. Dans

ce travail, nous introduisons les concepts comme un moyen de représenter et d’accumuler

explicitement des informations sur l’environnement.

Les concepts sont définis en termes de transition d’état et des conditions requises pour

que cette transition ait lieu. La simplicité de cette définition offre flexibilité et contrôle

sur le processus d’apprentissage. Étant donné que les concepts sont de nature hautement

interprétable, il est facile d’encoder les connaissances antérieures et d’intervenir au cours

du processus d’apprentissage si nécessaire. Cette définition facilite également le transfert

de concepts entre différents domaines. Les concepts, à un niveau d’abstraction donné, sont

intimement liés aux compétences, ou actions temporellement abstraites. Toutes les transitions

d’état suffisamment importantes pour être représentées par un concept se produisent après

l’exécution réussie d’une compétence. En exploitant cette relation, nous introduisons un

cadre qui facilite l’apprentissage tout au long de la vie et le raffinement des concepts à

différents niveaux d’abstraction. Le cadre comporte trois volets:

• Le sytème 1 segmente un flux d’expérience (par exemple une démonstration) en

une séquence de compétences. Cette segmentation peut se faire à différents niveaux

d’abstraction.
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• Le sytème 2 analyse ces segments pour affiner et mettre à niveau son ensemble de

concepts, lorsqu’applicable.

• Le sytème 3 utilise les concepts disponibles pour générer un graphe de dépendance de

sous-tâches. Ce graphe peut être utilisé pour planifier à différents niveaux d’abstrac-

tion.

Nous démontrons l’applicabilité de ce cadre dans l’environnement hiérarchique 2D CRAFT

[6]. Nous effectuons des expériences pour explorer comment les concepts peuvent être appris

de différents flux d’expérience et comment la qualité de la base de concepts affecte l’opti-

malité du plan général. Dans les tâches avec des dépendances de sous-tâches complexes, où

la plupart des algorithmes ne parviennent pas à se généraliser ou prennent un temps impra-

ticable à converger, nous démontrons que les concepts peuvent être utilisés pour simplifier

considérablement la planification. Ce cadre peut également être utilisé pour comprendre

l’intention d’une démonstration donnée en termes de concepts. Cela permet à l’agent de

répliquer facilement la démonstration dans différents environnements. Nous montrons que

cette méthode d’imitation est beaucoup plus robuste aux changements de configuration de

l’environnement que les méthodes traditionnelles. Dans notre formulation du problème, nous

faisons deux hypothèses: 1) que nous avons accès à un ensemble de compétences suffisam-

ment exhaustif, et 2) que notre agent a accès à des environnements de pratique, qui peuvent

être utilisés pour affiner les concepts en cas de besoin. L’objectif de ce travail est d’explorer

l’aspect pratique des concepts d’apprentissage comme moyen d’améliorer la compréhension

de l’environnement. Dans l’ensemble, nous démontrons que les concepts d’apprentissage

peuvent être un moyen léger mais efficace d’augmenter la capacité d’un système.

Mots clés: Segmentation des compétences, segmentation de démonstration, apprentissage

conceptuel, planification, apprentissage par renforcement hiérarchique, apprentissage par

renforcement
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Summary

Planning at higher levels of abstraction is critical when it comes to solving long horizon tasks

with hierarchical complexities. To plan successfully at a given level of abstraction, an agent

must have an understanding of how the environment functions at that particular level. This

understanding may be implicit in terms of policies, value functions, and world models, or

it can be defined explicitly. In this work, we introduce concepts as a means to explicitly

represent and accumulate information about the environment.

Concepts are defined in terms of a state transition and the conditions required for that

transition to take place. The simplicity of this definition offers flexibility and control over

the learning process. Since concepts are highly interpretable in nature, it is easy to encode

prior knowledge and intervene during the learning process if necessary. This definition also

makes it relatively straightforward to transfer concepts across different domains wherever

applicable. Concepts, at a given level of abstraction, are intricately linked to skills, or tem-

porally abstracted actions. All the state transitions significant enough to be represented by

a concept occur only after the successful execution of a skill. Exploiting this relationship, we

introduce a framework that aids in lifelong learning and refining of concepts across different

levels of abstraction. The framework has three components:

• System 1 segments a stream of experience (e.g. a demonstration) into a sequence of

skills. This segmentation can be done at different levels of abstraction.

• System 2 analyses these segments to refine and upgrade its set of concepts, whenever

applicable.

• System 3 utilises the available concepts to generate a sub-task dependency graph.

This graph can be used for planning at different levels of abstraction.
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We demonstrate the applicability of this framework in the 2D hierarchical environment

CRAFT [6]. We perform experiments to explore how concepts can be learned from dif-

ferent streams of experience, and how the quality of the concept base affects the optimality

of the overall plan. In tasks with complex sub-task dependencies, where most algorithms

fail to generalise or take an impractical amount of time to converge, we demonstrate that

concepts can be used to significantly simplify planning. This framework can also be used

to understand the intention of a given demonstration in terms of concepts. This makes it

easy for the agent to replicate a demonstration in different environments. We show that

this method of imitation is much more robust to changes in the environment configurations

than traditional methods. In our problem formulation, we make two assumptions: 1) that

we have access to a sufficiently exhaustive set of skills, and 2) that our agent has access to

practice environments, which can be used to refine concepts when needed. The objective

behind this work is to explore the practicality of learning concepts as a means to improve

one’s understanding about the environment. Overall, we demonstrate that learning concepts

can be a light-weight yet efficient way to increase the capability of a system.

Keywords: Skill segmentation, demonstration segmentation, concept learning, planning,

hierarchical reinforcement learning, reinforcement learning
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Chapitre 1

Introduction

Most of the tasks in the real world require planning across different levels of abstraction,

or hierarchies. Let us consider the example of preparing dinner. This task can be broken

down into a higher level plan of doing groceries, preparing the cooking utensils, preparing

the ingredients, cooking, setting the table, and serving the food. Here, each individual step

can be further broken down into a finer level of plan. Doing groceries, for instance, would

involve collecting one’s wallet and grocery bag, stepping out the house, locking the door,

navigating to the grocery store, etc. For humans, this is a very natural way to plan and

execute long horizon tasks. If one were to observe carefully, the levels of hierarchy that get

the most attention during planning are the ones with higher degree of uncertainty about

its transitions, and the ones that are more immediate in terms of execution. Therefore, for

such planning to be successful an agent must have the ability to seamlessly switch between

different levels of hierarchy and, along with this, have the ability to continually refine its

understanding about the environment at each level.

In this work, we focus on continually improving an agent’s understanding of the environ-

ment across different levels of abstraction. Abstraction can be along two dimensions – state

abstraction (related to the environment state and observations) and temporal abstraction

(related to the action space of the agent). In this work, we explore the relationship bet-

ween these two dimensions of abstraction and introduce concepts as means to represent and

accumulate information about the environment.



Reinforcement learning (RL) has been the framework of choice for developing intelligent

agents that can function in complex scenarios [1, 10, 176]. Traditional ways of learning and

representing information in this setting have been in terms of policies (Def. 3) [129, 163],

value functions (Def. 2) [130, 17], or a combination of both [119, 75, 60]. These learned

entities, usually represented as parameterised functions, are implicit ways of representing

information about the environment. For example, in the case of the Atari2600 game Pong

[18], the value function implicitly captures the fact that if it lets the ball go past the pad

it is controlling, it will incur a negative reward [130]. With the help of powerful function

approximators like deep neural networks [103], these methods have the ability to capture

intricate details about the environment even from high-dimensional state spaces.

Recent advances have made it possible to achieve several remarkable feats like outperforming

human level benchmarks in Atari2600 games [130, 12], mastering landmark strategy games

like Go, Chess, and Shogi [167, 168], and multi-player real-time strategy games like Star-

Craft II and Dota 2 [20, 184]. It has also fared well in continuous control tasks like solving

a rubik’s cube with a single hand [144], flying autonomous aerial vehicles, [198], among

many others [202, 99, 105, 129, 163, 34]. However, these methods have very low sample

efficiency (and therefore high infrastructure cost), and it is highly non-trivial to re-use the

learnt information in a different context. These methods also frequently suffer from gene-

ralisation issues, training instability, and lack of reproducibility. In certain cases, it is hard

to design an appropriate reward function, and therefore learning useful behaviours becomes

challenging [93]. These problems are exacerbated as environments increase in complexity

and when the tasks have dependencies at different levels of hierarchy. However, there are

several promising lines of research that work towards overcoming these issues.

Model based reinforcement learning (MBRL) methods work towards learning the model of

the environment. This is then used to either plan directly [13], or in conjunction with

model free methods [50, 74]. Depending on how the model is learnt, certain aspects of the

information may be transferable. In multi-task settings, for example, training the model

against a variety of tasks can make the model robust for transfer [110]. One can also

specifically design algorithms that extract transferable features from the environment, like

successor representations [15], skills (Def. 4) [80, 53, 180], or priors [61] (See section 2.3.1
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for details). Compared to model free methods, MBRL methods have higher sample efficiency,

and the learnt information is comparatively more reusable. These methods, however, have

their own set of limitations. The MBRL solutions are prone to model bias, i.e. depending

on the training data and the methodology with which they are trained, they may learn

characteristics about the environment that may not correspond to the actual environment

dynamics. This can derail the process of planning and execution. These methods, like

their model free counterparts, are susceptible to catastrophic forgetting (the phenomenon

of overwriting previously learned information while learning new information). As we get

access to new information, we usually have to re-learn the model as there is no infrastructure

to easily refine previously learnt information. This aspect of the problem is addressed in the

domain of lifelong learning.

Lifelong learning (LL) studies the problem of continually refining an agent’s understanding

about the world and upgrading its capabilities from various sources of information. Advanced

LL systems should be able to use the accumulated knowledge to help future learning, discover

new tasks, and be able to learn even at the time of deployment [32]. Since, extracting and re-

using knowledge across different domains is a core component of LL, there is huge emphasis

on knowledge extraction and representation techniques. Research in LL has produced some

remarkable systems in the domain of Natural Language Processing (NLP) like Lifelong Topic

Model (LTM) [31], Never Ending Language Learner (NELL) [128], Lifelong Interactive

Learning and Inference (LILI) [121]. Simultaneously, in the domain of RL there have been

systems like Horde [177]. Majority of the progress in the context of RL, however, have been in

closely related domains like transfer learning, multi-task learning, online learning, and meta-

learning1. RNNs are widely used in the domain of meta learning as they can support two

layers of learning – slow learning and accumulation of knowledge that is implicitly stored in

network weights, and fast learning and adaption to current task through activation functions

[86, 87, 7, 30]. Several attempts have been made to increase the scope of these methods

through explicit use of memory [157, 156]. Significant progress has been made when it

comes to few-shot learning with the advent of MAML and related works [51, 138, 127]. We

explore this further in section 2.3.2. However, in terms of real world deployment there is a

1Lifelong Learning is a super-set of these domains, and does not make certain assumptions that the other
domains make
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lot of work that needs to be done in terms of improving knowledge representation techniques,

gauging the correctness and applicability of learnt information, multi-modal learning, among

others [32].

Another way to address the issue of interpretability and transferability is to understand

the core causal mechanisms of the environment. Causal mechanisms describe the cause-

and-effect relationship between different entities in the environment. This, in theory, is

the most compact and efficient way to represent environment dynamics. Having access to

this would greatly assist in making sense of new information and performing optimally in a

situation. This aspect of the problem is explored in a principled way with Causal Reinfor-

cement Learning. Current state-of-the-art methods that use causal inference in RL settings

are limited to the domain of multi-armed bandits [114]. Another popular approach to ex-

tract causal relations is explicitly modelling objects and their interactions in the environment

[44, 162, 118, 96, 63, 201, 69, 188, 183, 4, 106, 120]. These methods drastically improve

the sample efficiency of existing RL algorithms and pave the way to scale standard models

to more complex problem settings. However, these methods focus more on high-dimensional

state representations than environments having sub-task dependencies. We explore Object-

Oriented RL and Causal RL further in section 2.3.3.

Although each thread of research makes some much needed progress towards achieving a

lifelong learning system, current methods are lacking in several ways:

1) Systems capable of extracting crucial task relevant details are highly data inefficient;

2) There are no reliable ways to continually extract and store information related to the core

causal structure of the environment;

3) Generalisability of the extracted information is limited. This is especially true for hierar-

chical environments with sub-task dependencies.

Humans are able to formalize concepts with very little interaction with the environment

and then are able to learn relevant skills through practice. Consider the task of learning

to cook from internet videos. Someone who is an unskilled cook can watch a video and

attempt to replicate it but may have to practice several times to master certain concepts

(e.g., cutting onions). However, on subsequent demonstrations, the concepts that have been
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previously learned can be applied easily in new scenarios (e.g. cutting other things). Over

time, through repeated exposure to different cooking examples, the learner gradually builds

their database of knowledge. This can be used to replicate previously seen situations, and

further combining and generalizing from the experience becomes possible. In this work, we

introduce the notion of concepts as a means to represent and accumulate information about

an environment.

1.1. Concepts: Definition and relation to state and temporal abs-

tractions

There are two dimensions of abstraction for any given environment. One dimension is in

terms of state, and another is in terms of action. Let us first consider action abstractions for

the task of preparing dinner. At the lowest level of abstraction, actions may be represented

in terms of motor commands that the agent executes in the environment. For example,

“contract muscle X to position Y”. Actions at higher levels of abstraction can be represented

as a composition of actions from lower levels of abstraction. For example, the action “pick up

object” can be decomposed into “place hand on object”, “grasp object”, “lift hand”. Similarly,

“do groceries” can be decomposed into “go to the vegetable section”, “pick up carrot”, “place

carrot into trolley”, etc. In order for an agent to plan in terms of higher level actions, the

probability of success of its lower level actions should be reasonably high and there must

be a clear understanding of the state transitions that will take place. In this work, we

define concepts as a means to continually develop this understanding across various levels of

abstraction.

Definition 1. A concept is a 2-tuple consisting of an abstracted state transition and the

conditions required for that transition to take place.

This brings us to the second dimension of abstraction, which is the state abstractions. The

complete state information about the world would include the dinner table, the kitchen,

utensils, furniture, vegetables, along with task irrelevant information like texture of the

table cloth, height of the TV stand, traffic situation outside, etc. Therefore, when we want

to formulate the concept of “cutting a tomato”, we must omit information about other objects

in the environment and also certain information about the object itself. For example, the
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“color” of the “tomato” is irrelevant for the skill of “cutting”. The transition can now simply

be described as “fresh tomato” to “sliced tomato”. The required conditions for this transition

would be that “fresh tomato” is on the “cutting board”, “knife” is positioned appropriately

in “the dominant hand”, the “non-dominant hand” is “empty”. When these conditions are

satisfied and the high-level action of “cutting” is executed, it leads to the formation of “slices of

tomato” from ”fresh tomato”. This kind of abstraction, being on the level of state information

is termed as state abstraction.

In an ideal scenario, for the concept to be as generalisable as possible, the transition and

the conditions should be described at the highest level of abstraction. This would enable the

concept to be applicable to a wider range of scenarios. Coming up with the perfect state

abstraction for a given concept is equivalent to uncovering the core causal principles about

the environment. This is an unsolved problem, one that even humans can get wrong at times.

In fact, the field of science exists to precisely uncover such relationships between different

entities. In routine real world environments, this is still a very difficult problem. Even

though one can formulate concepts with a single example, in order to increase its reliability

and generalisability, it is best to gain access to as many examples as possible. Another

challenge is to identify the state transitions that are significant enough to be formulated as

concepts. Formulating too many concepts would increase the system’s redundancy through

excess memory usage and optimisation procedures. On the other hand, missing crucial

concepts can lead to sub-optimal planning (see chapter 7) and in some cases, an absence of

solution ( see section 6.2.1).

Humans have a complex memory structure that automatically weighs the importance of real

world events, abstracts away irrelevant information based on prior knowledge, and stores the

information in an organised way. During real world execution, based on the sensory cues and

imagination, relevant experiences can be recalled into the conscious memory and can then be

used to plan ahead. This stored information can be routinely updated with experience and

can gradually lead to the coherent understanding of a phenomenon. In machine learning,

there has been a conscious effort to build such capabilities. Works like Memory Augmented

Neural Networks [157], Neural Turning Machines [68] explore the functioning of memory

that is compatible with neural networks. Various kinds of priors have been proposed to
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simplify and speed-up the process of learning. These priors can be in terms of key transitions

themselves (events) [29], high-level actions (skills or behaviours) [80, 53, 180, 61], or they

can have a cognitive basis to their definition like object representations (section 2.3.3). In this

work, we aim to roughly replicate the process of human learning using priors. We propose a

rudimentary yet effective way of identifying crucial transitions and use that to accumulate

relevant information.

Let us first examine the relationship between skills (or temporally abstracted actions) and

events. Events can be roughly defined as state transitions that are significant enough to be

represented as concepts. One can note that all the events that occur at a particular level of

abstraction, happen only after the execution of a skill at that level of abstraction. Therefore,

the process of improving one’s understanding at a particular level of hierarchy can be greatly

simplified if we take the preliminary step of identifying the end of skill executions. We use

this observation as the basis to design our framework, which has three components:

• System 1: Experience Segmentation

• System 2: Lifelong concept learning

• System 3: Graph based planning

System 1 considers the task of splitting a given stream of experience into useful segments,

which are used as inputs to the other components of the framework. The stream of experience

may be in the form of expert demonstration or experience collect by the agent itself. In the

example of learning to cook from internet videos, our agent would look at a video of a human

cooking and split that into segments such as cutting onions, placing pan on the stove, stirring

the pot, etc. Assuming that the priors available in terms of an initial set of skills is exhaustive

enough, it reduces System 1’s function to simply identifying the end of skill execution.

System 2 tackles the problem of formulating concepts using the segments from System 1.

The agent continually learns the set of concepts intrinsic to the environment, which can be

used for higher level reasoning and planning. It uses a set of practice environments (Def. 9)

to practice skills and refine its concepts to whatever extent it can. Segments from System 1

make it easy for System 2 to function, as the system only needs to analyse the states at the

point of segmentation.
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System 3 uses the concepts learned via System 2 to form a sub-task dependency graph that is

specific to the current situation and goal. This drastically simplifies the process of planning

and enables the agent to handle obstructions, different initial conditions and thus, effectively

move about the environment. Given a demonstration of a task, System 3 also outputs a

reward vector summarising the intention of the demonstrator. This, along with the sub-task

dependency graph, drastically simplifies the problem of imitating the demonstration across

various environment conditions

The success of System 1 depends on the exhaustiveness of the set of skills that the agent

possesses. If the set of skills is diverse enough, it can adequately segment any stream of

experience into a sequence of skills2. Since all changes in the environment are the result

of successful executions of skills, System 2’s task of formulating concepts from experience

becomes simple. The accuracy, completeness, and compactness of the learnt set of concepts,

in turn, determines the quality of the overall framework. Being a lifelong learning system, the

effectiveness of the system only increases with exposure. After a decent level of maturity, the

agent can use the learnt concepts to effortlessly learn from demonstrations and plan across

complex hierarchical environments.

We demonstrate the applicability of this framework on the 2D hierarchical environment

CRAFT [6], where it is easy to construct configurations tasks that are dependent on the

successful execution of several other tasks. We assume access to a set of initial skills diverse

enough to learn the necessary concepts3. We also assume access to a sufficient number of

practice environments (Def. 9), where the agent can practice different skills to discover and

refine concepts. The main motivation behind the use of prior knowledge is the reduction in

effort needed to upkeep the agent. Our priority lies in the ease with which the agent is able

to adapt to new situations, discover and refine concepts, and recover from failures. We want

the agent to achieve this with minimal training data and interventions. Given a mature set

of concepts, we show that this framework requires a single demonstration, to uncover the

2One can note that getting access to an initial set of skills as a prior is easy. Since there is no restriction on
the way we want to define and implement skills, all the policies and techniques from the world of classical
robotics become available to use
3In this work, we don’t work upon improving the skill set. In an ideal scenario, both these aspects are
improved upon concurrently, but we assume that the set of skills are fixed, and don’t need improving.

8



motivation of the demonstrator, and replicate the demonstration in different instantiations

of the environment.

The components of the framework bear similarity with the three rungs in the “Ladder of

Causation” [148] – association, intervention, and imagination. System 1’s main function is to

perceive and identify important junctions in a given stream of experience. System 2’s function

is to build concepts or understand the causal mechanisms. It aims to refine and understand

the concepts by executing various skills in practice environments which is equivalent to

performing various interventions. And finally System 3 builds a sub-task dependency graph

according to the given situations using the concepts it understands about the environment.

This resembles the counterfactual planning aspect in the “Ladder of Causation”.

1.2. Design considerations

1.2.1. Streams of Experience - Demonstrations and Self-Play

A stream of experience refers to the sequence of states or observations that the agent en-

counters. It can be expert demonstrations from various points of view, or it can be states

that the agent itself encounters during exploration. In complex hierarchical environments or

hard exploration environments, it is hard to encounter all the critical states through random

sequencing of skills and actions. Demonstrations, therefore, are a convenient way gain access

to relevant information.

There are cases where it may be hard to obtain demonstrations, like unexplored or unsolved

environments where there are no optimal controllers, or environments with high degrees

of freedom (DoF) where it is not intuitive for experts to give guidance. In these cases,

self-exploration is the only way. In most cases, however, demonstrations are either readily

available or the cost of obtaining them is relatively cheap. Demonstrations obtained may be

from a different point of view or may have different environment configurations than what

the agent is familiar with. We can tackle this through various domain adaptation techniques

[195, 92]. In our work, we consider demonstrations to be partially observable. In the case

of CRAFT, the internal state of the agent, which represents the items gathered so far, is
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not visible. But the data gathered using practice environments via self-exploration is fully

observable.

1.2.2. Choice of environment

The objective of our work is to provide a potentially complete solution to tasks with hie-

rarchical dependencies. Thus one of the foremost criteria is that the tasks should have

non-trivial dependencies, which are easy to understand from a human perspective. It should

be easy to setup tasks of varying levels of difficulty and arbitrary length. The environment

should be close to real world scenarios without having too many complications (e.g. high di-

mensional state space) that can be dealt with separately. The emphasis is on demonstrating

the agent’s ability to learn the core concepts of the environment either from demonstrations

or self-exploration, which can be utilised in different instantiations of the environment.

We found the environment CRAFT to be appropriate for our use (See section 3.2 for a

detailed description). An example of hierarchical task dependency in this environment is as

follows: in order to break a “stone”, you need an “axe”. To make an axe you need to combine

“stick” and “iron” at “workshop #1”. To make a stick, you need to visit “workshop #0” with

“wood”. These dependencies can be different for different initial conditions and environment

configurations, and task length can be arbitrarily long. So unless the agent understands the

core concepts related to the objects in the environment, it can be impossible to solve certain

tasks.

1.2.3. Contributions

We summarize the claimed contributions of this work as follows:

(1) We introduce the notion of concepts as a means to continually improve an agent’s

understanding about the environment at various levels of abstraction

(2) We introduce a framework to continually extract relevant concepts based on the

relationship between skills and the concepts
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(3) We demonstrate the applicability of this framework in the 2D hierarchical environ-

ment CRAFT, where the framework is used to systematically segment various streams

of information, update concepts with ease, and form sub-task dependency graphs that

help in hierarchical planning

Concepts are a simple way to represent information about the environment across various

levels of hierarchy. These are interpretable, easy to update, and easy to transfer to rela-

ted tasks and domains. The framework, on the other hand, provides an intuitive way to

continually gather concepts from various streams of experience. The framework divides the

problem of planning in a way that that eases the functioning of its individual components

to tackle complex hierarchical tasks. Each component can be individually updated to reflect

the current state of the art and can be easily added-on to different systems of hierarchical

planning without incurring much additional cost.
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Chapitre 2

Related Work

We divide the literature survey as follows: We first discuss the two major streams of expe-

rience generally available to an agent: self-exploration and demonstrations. Then we delve

into the literature associated with each of the three sub-systems individually. For System 1,

we mention existing works that learn to segment from demonstrations, along with systems

that attempt to learn the most effort-consuming prior – an exhaustive set of skill. For sys-

tem 2, we discuss relevant literature in model based RL, causal RL, and lifelong RL with a

specific emphasis on knowledge representation. Finally, for System 3, we talk about different

methods that can be used for hierarchical planning with information represented in terms of

concepts.

2.1. Different streams of experience

A stream of experience, as we discussed in chapter 1, refers to a sequence of states or

observation that the agent encounters. This can be obtained via expert (or sub-optimal)

demonstrations of tasks, or via self-exploration.

Exploration is an important aspect of an intelligent system. Proper exploration leads to

discovering of crucial information, and helps the agent effectively navigate the environment

[124]. Exploration alone, however, may not be fully sufficient to uncover all the core concepts

of the environment. Even if it is sufficient, it may take a lot of time and effort. Demons-

trations, therefore, can be effectively leveraged for this purpose. The topic of learning from



demonstrations has been a focused topic of research in this community for several decades

[8] [91]. Since demonstrations, both optimal and sub-optimal, are readily available for va-

rious environments in most cases, or the cost of obtaining one is relatively negligible, this

significantly increases the information available for use. In this section, we discuss different

methods present in the literature.

2.1.1. Learning via Exploration

The goal of exploration is to learn about the crucial aspects of the environment as quickly and

effectively as possible. Preliminary methods include ε-greedy exploration or adding Gaussian

noise to the controls. More recently, there are works that aim to systematically encourage

exploration by providing reward bonuses. Houthooft et. al (2016) [89] encourages explora-

tion by having the agent maximize information gain about its belief about the environment

dynamics. Recent works have used the notion of curiosity to formulate an exploration signal

(We direct the reader to Burda et. al (2018) [25] for a systematic review of different methods

using curiosity). Sahni et al. (2017) [146] tackles the problem of exploration using curiosity

along with dynamics model building in a self-supervised manner. In spirit, this is similar

to the direction we are proposing and can be thought of as a combination of System 1 and

System 2. In Burda et. al (2018) [26], the exploration bonus can be given in terms of the

error of a neural network predicting features of the observations given by a fixed randomly

initialized neural network. This work manages to achieve the state-of-the art performance

on Montezuma’s revenge, circa 2018.

Count-based exploration methods form a significant component of recent research. Bellemare

et. al (2016) [19] proposed an algorithm to derive pseudo-count from an arbitrary density

model, which is used as an exploration bonus. Ostrovski et. al. (2017) [145] extended this

method to a more practical and general algorithm by using Pixel CNNs. Tang et. al. (2016)

[179] suggests a method to generalise classical count-based methods to high-dimensional

state spaces, by mapping states to hash-codes. Fu et. al. (2017) [59] describes how discri-

minative modelling using exemplar models corresponds to implicit density estimation, which

can then be combined with count-based exploration.
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One can simultaneously improve other aspects of the system during exploration, like building

reliable world models (see section 2.3.1), or learning a set of skills or options [146, 49, 71, 2]

(see section 2.2.1). We can see that each objective would support the fulfilment of the other.

Learning a good set of skills or model improves the effectiveness of the exploration, and

effective exploration improves the probability of finding useful skills and the quality of the

model learnt.

2.1.2. Learning from Demonstrations

Demonstrations can be an effective means to gather information about the environment.

The demonstrations in most cases are readily available and are relatively cheap to get access

to. Even in the case of demonstrations, there can be different levels of supervision.

In “supervised learning" this is achieved by providing a sufficiently large labeled dataset

that the agent can learn the mapping from the input space (in this case the state of the

environment or an image) to an output space (the actions required to achieve a goal). This

approach in the context of agent learning is often referred to as “behavioural cloning" [126,

136]. While appealing in its simplicity, it has the drawback of poor generalization in the

case where the agent is presented with new tasks or when it deviates from the optimal action

even slightly. This is a result of the fact that sequential decision making process violates the

“i.i.d" (independent and identically distributed data) assumption of the training and testing

data that is required for supervised learning.

A better approach is to learn a policy that is robust to deviations by being able to converge

back to the optimal plan. In “imitation learning", or direct policy derivation, the demons-

trator and the learner execution is interleaved so that the learner may make mistakes and

then be corrected by the expert [151, 153]. However, this still requires significant time for

the expert who is now explicitly inside the learning loop. Another alternative approach is

inverse reinforcement learning, or indirect policy derivation, where the agent learns a reward

signal from the demonstrations and then learns a policy using reinforcement learning [9].

Unfortunately, this tends to be even more inefficient in terms of expert demonstrations since

learning the rewards signal is actually ill-posed (the reward is under-specified).
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In our approach, we propose to increase the efficiency of learning from expert demonstrations

through the use of a hierarchical decomposition that roughly corresponds to learning the

underlying causal mechanisms of the world. This approach removes the expert from the

learning loop as it is in the case of imitation learning, and is drastically more efficient than

inverse reinforcement learning.

2.2. System 1: Automatic Skill Segmentation

When we consider the problem of learning concepts specifically, it doesn’t matter where the

experience came from, as long as it can be converted into a format easy to understand by the

agent. As described in Chapter 1, all the crucial changes in the environment happens after the

execution of a skill. Therefore, the ability of an agent to segment a stream of experience into

a sequence of skills becomes very important. This ability allows us to individually examine

each segment and its effect on the environment, thus making the problem of credit assignment

a lot easier. Several works combine demonstration segmentation with skill learning [98, 166,

139, 104, 55, 101], each requiring different forms of prior knowledge.

Kipf et. al. (2018) [98] introduce ComPILE, which decomposes the demonstration and

encodes each segment with a latent representation using a VAE-like encoder. The corres-

ponding latent conditioned decoder is then used as skill. Shiarlis et. al. (2018) [166] also

produces a similar output, with the difference being this also requires ground truth label of

sub-task sequences as input.

Skill segmentation has also been explored with real world robots [139, 104]. Although

the data used by the models are low-dimensional and require either task specific priors or

hand-specified features, they provide a theoretically complete framework for learning from

decomposable demonstrations. Both use variants of auto-regressive HMMs to segment the

demonstration and form sub-task dependency graphs. In both cases, the task graph allows

for self regulation during testing. Niekum et. al. (2013) [139] further allows for fine-tuning

through real-time user interactions, while Kroemer et. al. (2015) [104] requires only two

demonstration to form a task graph.
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Fox et. al (2017) [55] works on discovering options at multiple levels of hierarchy from

demonstrations. It recursively computes the hierarchy of options, and learns the meta-

controller at each level, thereby reducing the complexity of long horizon tasks significantly.

This is followed up with Krishnan et. al. (2017) [101], which removes the need for users to

specify the options, and extends the method to continuous control control spaces. Although

these methods can deal with high dimensional inputs like images, the tasks dealt with do not

have hierarchical dependencies. The transferability of the learned options and meta-policies

also has not been explored.

Xu et. al (2017) [194] propose Neural Task Programming (NTP), which forms a bridge

between few-shot learning from demonstration and neural program induction. NTP takes as

input a task specification (e.g., video demonstration of a task) and recursively decomposes

it into finer sub-task specifications. These specifications are fed to a hierarchical neural

program, where bottom-level programs are callable subroutines that interact with the en-

vironment. NTP learns to generalize well towards unseen tasks with increasing lengths,

variable topologies, and changing objectives. On a similar stride, Huang et. al. (2018) [90]

takes in a demonstration and initialises a hierarchical policy. Their method involves creating

neural task graphs, which serves as an intermediate representation before initialising the

hierarchical policy. These methods have been shown to work well in real world tasks with

minimal hierarchical dependencies.

All the works cited in this section consider full state information and action sequences as

demonstrations. Our work, along with Sun et. al. (2019) [174] is able to deal with de-

monstrations comprising of sequence of observation (partial state information). We note

that several domain adaptation techniques can be applied to utilise demonstrations from

different points of view or operating under different environment configurations [195, 92].

Option learning from demonstrations

Options [178] is a well-established framework for long-horizon tasks and hierarchical envi-

ronments. There is a one to one correlation between options available and the set of skills,

concepts, and events in our framework. The conditions in the each concept is related to

the initiation set of an option, the skills necessary to accomplish an event can represent the
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intra-option policy and the final transition, when achieved would satisfy the termination

condition. Decomposing the problem in terms of the initial set of skills, and providing a

framework for the lifelong learning of concepts is equivalent to providing a complete set of

intra-options skills, and learning concepts for creating new options given an environment.

In other words, we are replacing the option learning with concept learning. We argue that

is a much simpler problem as events and concepts can be much easily related to the set

of skills that the agent possesses. If we were to look at System 3 in terms of options, it

uses the gathered knowledge about the environment to identify the set of options that are

possible and plan. Thus, we can replace a sub-task dependency graph based planner with

an options-based policy by representing the learnt information differently.

There are several methods, both supervised [66, 48, 100, 166, 173] and unsupervised

[79, 56, 55, 101, 165], that learn options directly from demonstrations. Specifically in

unsupervised learning approaches, ”Multi-Modal Imitation Learning from Unstructured De-

monstrations using Generative Adversarial Nets” [79] uses a single optimisation objective to

segment demonstrations and learns skills simultaneously. However, in this work there are no

hierarchical dependencies between the sub-tasks and the problem of scaling to higher levels of

hierarchies is not considered. Parameterised hierarchical procedures for neural programming

[56], considers the problem of learning multi-level hierarchical neural programs. This paper

is an extension to [55] and [101]. However, they experiment in algorithmic domains, and

robotics/RL tasks haven’t been considered. Directed info-GAIL [165] proposed a principled

way using information theory to segment demonstrations. The tasks considered, however,

have comparatively shorter horizons, and are less compositional in nature.

2.2.1. On relaxing the initial skill set assumption

In our work, we assume access a set of initial skills that is used by System 1 to segment

demonstration, and by System 3 for the purpose of planning. The exhaustiveness of the skill

set determines the effectiveness of the overall framework. In this work, we assume that this

initial set of skills is exhaustive enough and do not update this with experience. We note

that learning and updating the set of skills along with the set of concepts would be the ideal
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way to approach this problem. In this section, we explore different methods in the existing

literature that can be used to relax this assumption.

There are works that attempt to learn such a set of skills from scratch. Eysenbach (2018) [49]

specifies an exploration objective based on information theory that forces the skills learnt to

be as diverse from each other as possible. Florensa et. al (2017) [53] learns skills using a

stochastic neural network which allows for flexible weight sharing among different policies.

The diversity of skills is encouraged using an information theoretic objective, similar to

Eysenbach et. al (2018) [49]. Other work on transfer in RL has focused on learning reusable

skills e.g. in the form of embedding spaces [80, 53, 180].

A suitable set of skills can also be learnt either using demonstrations [5] or while optimising

for performance in a multi-task setting [58, 6, 143]. Andersen et. al (2018) [5] proposes

to learn a suitable set of skills from demonstration, using latent space factorization and

transition state clustering [102]. However, it does require access to the environment and

reward signals.

Co-Reyes et. al (2018) [37] propose SeCTAR, which learns a latent-conditioned policy and

a latent-conditioned model, that are consistent with each other. Therefore, one can use the

latent-conditioned model to predict the sequence of latent codes that can achieve the required

outcome for a given task. These latent codes are subsequently used to initialise policies that

interact with the environment to fulfil the required objective. This work presents another

method to simultaneously learn a set of policies along with the model of the environment.

Although latent variables are relatively more transferable and interpretable, it non-trivial to

continually improve the overall model with experience. Compared to our work, where we

use unlabelled streams of experience to facilitate learning, they assume access to final task

objectives.

Option Critic [11] explores the aspect of using deep neural networks as a basis for learning

options from scratch. However, options learnt may not always be useful. In this work, they

show instances where multiple options do the same thing, or where a single option attempts

to learn the entire task without any hierarchical decomposition. Although such failure cases
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occur frequently, this is a significant step in learning to uncover hierarchy in the environment

from scratch.

Learning a default behaviour, or base skill, (Def. 7, see section 4.1) in an environment can be

of tremendous use. Several behaviours that an agent typically learns in the environment may

be represented as a slight deviation from the default behaviour. In dynamic environments like

Freeway or Seaquest [18], the agent is always executing a skill just to survive the episode. In

such cases, a significant portion of the demonstration can be represented as segments of the

default behaviour. Therefore, learning default behaviours and learning skill discriminators to

identify such behaviour becomes critical. Several works in the recent literature aim to learn

default behaviours from scratch [61, 180, 65]. Goyal et al. (2019) [65] uses an information

bottleneck objective to learn a base policy that is generally optimal for all possible goals.

This can be useful for distinguishing unique behaviours the agent may be undertaking, and

thus, for segmenting the demonstration.

2.3. System 2: Continual concept learning

In this section, we first explore model based RL methods and the types of concepts they

are able to extract from the environment. Then we move on to meta learning and lifelong

Learning (LL) methods, where the concepts are learned with an emphasis on re-usability.

We also examine the system architectures that enable lifelong learning. Then, we look into

causality based methods in RL, where there is a formal attempt to extract the causal relations

in the environment. In principle, understanding the causal structure of the environment is

the most compact and complete way to model the environment.

2.3.1. Model Based Methods

Model based reinforcement learning (MBRL) methods work towards learning the model

of the environment and then use this to either plan directly [13], or work in conjunction

with model free methods to improve their sample efficiency [50, 74]. The model of the

environment may be learnt in terms of future prediction models [72, 141, 33], expected

value functions [50, 176], or they can be a little more explicit in nature like latent space
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approximation functions [74, 142, 57, 77, 62, 70, 187, 76]. In several works, the model

learned is implicitly embedded in the weights of an RNN [169, 190, 189]. Ha et. al. 2018

[74] give a nice background of model based methods evolving from basic neural networks

[191, 133, 152, 192, 137, 158, 159, 160] and probabilistic methods [41, 122] to their

more recent counterparts involving deep neural networks [67, 73, 47, 161, 189, 190, 169,

42, 123]

Most of the work in MBRL can be categorised as either improving the accuracy and usefulness

of the model, or improving the interpretability and transferability of the learned concepts.

The latter aspects are important when it comes to working with humans and equipping the

agent with continual learning capabilities. Depending on how the model is learnt, certain

aspects of the information may be transferable. In multi-task settings, for example, training

the model against a variety of tasks can make the model more robust for transfer [110]. One

can also specifically extract transferable features from the environment, in terms of successor

representations [15], skills [80, 53, 180], or priors [61].

A common way to tackle high dimensional state spaces is to extract the crucial aspects from

the environment by learning a latent space representation [74, 142, 57, 77, 62, 70, 187, 76].

DeepMDP [62] can be viewed as a formalization of such methods and also provides theoretical

guarantees for the quality of the learned latent space representation of the state space and

the environment model. There is a possibility that features irrelevant to the tasks are learned

and the relevant ones are missed. This can be alleviated in Universal Planning Networks

[172], which learns to extract task specific features along with the model of the world in the

inner loop while optimising to imitate the expert in the outer loop.

Recent works have made progress in specifically modelling individual entities and their local

interactions as opposed to a global model of the world. This is under the hypothesis that

this would lead to more sample efficient way to learn about the world and increase the ge-

neralisation capability to novel scenarios. In a recent example, Object-centric perception,

prediction, and planning (OP3) [183] works with an interactive inference algorithm to bind

information about object properties to the entity variables. This work shows that indivi-

dual entity abstraction can help the system generalise to novel environment configurations.
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This system also achieves two to three times better accuracy than a state-of-the-art video

prediction model that does not exhibit entity abstraction.

Recent methods have combined model free RL techniques to increase the final asymptotic

performance of the overall system while retaining the sample efficiency of model based me-

thods [135, 13, 88, 149, 107, 186, 50]. And there are several threads of work aiming to

reduce model bias and distribution mismatch [197, 200, 193, 24, 95]. These techniques

hold promise to improve the current capability of model based methods to learn crucial

concepts. More than just improving upon the sample inefficiency of model free methods,

there is an expectation that the learnt model can be used for different tasks in the same en-

vironment and may even be extrapolated to different environments. Most methods, however,

learn concepts implicitly, which is great for general applicability of the method, but affects

the ability to reuse learnt concepts. We explore this further in the sub-section on Meta and

Lifelong learning (section 2.3.2).

2.3.2. Meta and Lifelong Learning in RL

Meta-learning generally refers to learning an effective set of prior knowledge that makes the

task of future learning and adapting to situations easier. This can be considered as a sub-set

of lifelong learning, where the goal is to continually refine an agent’s understanding about the

environment and improve its capabilities. Learning a good set of concepts effectively initia-

lises the framework for single shot imitation of the demonstration and planning in different

environment instances. So in a way System 2 can be seen as performing a meta-learning

update. If one were to simultaneously update the set of the skills either by adding new skills

or composing old ones, that could also be considered as a meta-learning update. Learning

to continually make these updates such that the task of learning new concepts and refining

skills becomes easier with experience, upgrades the problem from a meta-learning setting to

a lifelong learning setting. Works in these domains can be classified in terms of knowledge

representation, knowledge extraction techniques, and the amount prior engineering it takes

for the system to start the process of continual learning. We direct the reader to Vanschoren

(2018) [182] for an in-depth survey.
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In several works, information is extracted and stored implicitly. RNNs are widely used for the

purpose of meta learning [86, 87, 7, 30], where the learning happens at two stages – rapid

adaptation within a task, and gradually learning across a series of tasks. Works are built

on top of this concept that consider neural networks with explicit memory architectures

like (NTMs) [68] and memory networks [38], under the premise that this would help in

scenarios where there is a sudden influx of new information [156, 157]. Meta Networks is

a recent addition to this class of methods, which introduce a new meta-learning algorithm

that significantly improves upon the sample efficiency in comparison [132].

The field of meta learning has gained tremendous attention with the advent of MAML [51].

This popularised the idea of learning an initialisation of model parameters such that the mo-

del is able to adapt to the new task with just a few examples. This was an improvement from

the previous state-of-the-art in few-shot learning, where the LSTM[86]-based meta-learner

aimed at learning an update rule training a neural network learner. Nichol et. al (2018)

[138] obtain an algorithm similar to the first order approximation of MAML, by applying

the Shortest Decent algorithm [84] in a meta learning setting. This method improves the

scalability of meta learning algorithms by reducing the computation and memory usage. But

these methods do not consider the problem of refining and utilising knowledge in a lifelong

learning setting. Mishra et. al (2017) [127] propose a class of meta-learning architectures

that use temporal convolutions and soft attention to aggregate information from past expe-

rience and pinpoint specific pieces of information. The applicability of this framework has

been demonstrated in both supervised and reinforcement learning domains.

Meta-learning from the perspective of Reinforcement Learning has also been explored

through the use of Guided Policy Search [115] to meta-learn an optimisation algorithm

[116, 117]. Dual et. al (2016) [46] represent the reinforcement learning algorithm using an

RNN, utilising its property of slowly incorporating task related meta information with lear-

ning of weights while quickly adapting to the given situation by storing information in the

activations of the RNNs. The method has been shown to work in both small scale settings

like the multi-armed bandits and finite MDPs, along with tasks involving high-dimensional

information like vision based navigation. A similar method has been proposed in parallel by

Wang et. al (2016) [185] that focuses on structured tasks like dependent bandits. Although
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the process of adapting to new tasks is highly sample efficient, the meta-training process is

highly data consuming. To resolve this problem, Menconda et. al. (2019) [125] proposed

“guided meta policy search”, which leverages expert demonstrations in a nested optimisation

loop to reduce the sample complexity of the meta learning algorithm. Another approach

to increasing sample efficiency is to disentangle the problem of task inference and control

[150]. Through the use of online probabilistic filtering of task variables, one can infer how

to solve a new task from limited data and integrated with off-policy RL algorithms leading

to efficient meta-training and adaptation.

Meta learning has also been explored in the context of imitation learning. Since it requires an

impractical amount of data to learn complex vision-based tasks from demonstrations alone,

meta-imitation learning aims to reduce the need for data by leveraging experience from

previous tasks [45, 52, 94]. It is interesting to note that the prior knowledge learned from

previous tasks is represented as skills [52]. James et. al (2018) [94] learn a task embedding

from demonstration that helps it to learn a new task from a single demonstration. With the

help of domain randomisation techniques, this has shown promising results in sim-to-real

transfer. Although these methods demonstrate significant reduction in sample complexity,

the training data required to adequately train these models are very specific and in some

cases, tedious to obtain. Zhou et. al. [199] propose a method that combines the benefits of

the trial-and-error method of learning in RL to scale to a broader distribution of tasks, and

improve the accuracy and sample efficiency of meta-imitation learning methods. On a similar

thread, Yu et. al (2018) [195] incorporate demonstrations that are not directly available for

use by incorporating domain invariance during meta-training. This allows them to adapt

to human demonstrations from different point of views and environment configurations in

a one shot fashion. These methods take a significant step in learning adequate priors that

increases their effectiveness on tackling new tasks. Although these methods can successfully

handle high dimensional state spaces, their effectiveness in domains with more complex

causal mechanisms are yet to be tested.

Under the context of zero-shot learning, there have been related streams of research that

work towards learning a fundamental aspect about the tasks in the training data, such that

they are able to function in test tasks without any additional training. Juhnyuk et. al
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(2017) [143] train a system to function in a multi-task setting by learning sub-policies to

generalise to natural language instructions. The system is able to function in tasks with

longer and never-seen-before instructions, while accounting to interruptions, simply because

it learnt to relate the instructions to the sub-policies it possesses. DARLA [83] proposes a

multi-step training procedure where the agent first learns to disentangle different aspects of

the environment, then learns to act using the disentangled features. This allows the agent

to adapt different configurations of the domain without additional training. These works are

related to research previously described in the context of meta-learning, except that these

method rely on either a certain amount of prior knowledge to extract the information crucial

for zero-shot adaptation or the problem setting is specifically designed for such algorithms

to thrive.

Meta learning has been explored in the context of model based reinforcement learning

(MBRL). One argument for model-based RL is the potential of transfer to tasks in the

same environment. Sutton et. al (1990) [175] discuss early examples of this type of trans-

fer on simple problems. Recent works have demonstrated that meta-learning a predictive

dynamics model can help the agent quickly adapt to related but novel task configurations

[35, 134, 27]. This has been demonstrated in the context of vision based robot manipula-

tion with novel reward structures and visual distractors [27], continuous online adaptation

in continuous control tasks on both simulated and real-world agents [35, 134]. As described

in the previous section on MBRL methods (Section 2.3.1), learning re-usable skills can be

considered as a meta-learning step. The re-usable skills can be learnt in the form of em-

bedding spaces [80, 53, 180], successor representations [15], meta-learned priors [61] or

meta-policies [51, 36]. Meta-policies can either learn to opt for different models based on

the environment requirements [36] or quickly adapt its parameters to the new environment

setting [51]. As with previous approaches in meta-learning, the ability to continually update

the learned information is lacking. These methods would suffer from the usual problems

of catastrophic forgetting (phenomenon of overwriting previously learned information while

learning new information) and capacity saturation (running out of memory to store newly

learned information, this is also a frequent cause of catastrophic forgetting) if applied in the

context of lifelong learning.
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Rusu et. al (2016) [154] tackle the problem of continually learning task related informa-

tion by introducing the architecture of progressive nets. The network makes use of lateral

connections to incorporate new information as an add-on to previously learned information.

By progressively adding new layers while having the previous layers frozen, the architecture

manages to avoid the problem of catastrophic forgetting. This also makes incorporating

new information less time consuming and adapting to new situations more sample efficient.

However, a downside is that the parameters of the neural network grows exponentially with

experience. As we discuss in the section of Causal Reinforcement Learning (Section 2.3.3),

in order to have general lifelong learning capabilities without exponential increase in sto-

rage capacity, it is important to represent knowledge in terms of learning the core causal

mechanisms of the environment.

The ideas presented in this section help an agent improve its generalisation capabilities and

efficiency by re-using learnt information. The majority of the research work in this area is

focused towards reducing the need for labelled data, or domain specific knowledge. This is

usually compensated with an increase in the cost of training, or the requirement of carefully

crafted training data. Our method deviates from this approach by assuming access to domain

specific knowledge like the initial skill set and state embedding functions. Instead we focus

on the quality and the re-usability of the information extracted. The concepts learnt using

our framework are much more fundamental to the environment. Therefore, the information

retained consumes much less storage space, is transferable across a wider variety of situations,

and can be easily updated as the agent gets access to more data. Our framework can also be

easily adapted to work with different streams of experience with varying levels of information.

2.3.3. Causal Reinforcement Learning

Understanding the underlying causal structure of the environment can lead to a dramatic

increase in the agent’s performance in terms of generalization. It can reduce the search

space during execution, increase the efficiency of the way information is stored, ease of

understanding the objectives of demonstrations, among many other things. Everything the

agent can do would generally be enhanced with the understanding of the underlying causal

mechanisms.
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The existing literature on learning core causal mechanisms can be roughly divided into two

categories. One line of research follows the ideas mentioned in Lake et. al (2017) [109].

This work encourages the development of causal models as a means to gather knowledge

about the environment and emphasise the need for prior knowledge that is grounded in

intuitive physics and intuitive psychology. The majority of the recent works that are built

from this foundation focus on improving object representation techniques (as a component

of intuitive physics) as a means to bridge the gap between human and machine reasoning.

For example, Davidson et. al (2020) [40] found that providing the Rainbow model [82] with

simple, feature-engineered object representations substantially boosts its performance on the

Frostbite game from Atari 2600. The other line of research works towards bridging the gap

between causal inference [147] and reinforcement learning.

The importance of object representation has long been recognised in the RL literature.

Agnew et. al (2020) provides a nice overview about the growth of this line of research [3].

Diuk et al. (2008) [44] proposed OO-MDP (Object oriented MDPs) as a means to represent

the environment, which makes interactions related to different objects the main focus of the

environment. This framework was extended in Scholz et al. (2014) [162] to include physics

models of object dynamics as priors, and Li et al. (2017) [118] investigate integrating object

information into modern deep learning approaches. Kansky et. al (2017) [96] introduce

Schema networks, which demonstrate the ability of learning models of object interactions

based on intuitive physics to generalise to drastically different configurations of the Breakout

[18] without additional training. This work is an improvement from Interactive Networks

[16] and the Neural Physics Engine [28] as latent physical properties and relations need

not be hard-coded, and planning can make use of backward search, since the model can

distinguish different causes. However, all of these techniques require environment specific

object labels.

Methods have been proposed to learn the model of the environment with a focus on object

representations and their interactions in an unsupervised way [63, 201, 69, 188, 183, 4,

106, 120]. Watters et. al (2019) [188] follow a four module decomposition – the vision

module, transition model, exploration policy, and the reward predictor. The first three

modules are similar to the three components of our framework. These modules are trained
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during an unsupervised exploration phase without rewards. The fourth module, however,

is trained during a subsequent task phase. In our specifications, the function of the reward

predictor is performed by the third system itself, which has access to the concept base from

the second sub-system. Veerapaneni et. al (2019). [183] tackle the key technical challenge

of grounding entity representations to actual objects in the environment by framing this

variable binding problem as an inference problem. Interactive inference algorithm that the

system uses works on the basis of temporal continuity and interactive feedback to bind

information about object properties to the entity variables.

Overall, these methods improve the sample efficiency of existing RL algorithms by orders of

magnitude and show promise for a reliable way to build scalable models of the environment.

In our problem setting, since we consider low dimensional state spaces, the problem of object

representation is trivialised. The concepts we build are more related to object utilisation

and conversion into newer entities. The problem setting we consider is more suited towards

the challenges posed by tasks with long range hierarchical dependencies.

Other than these works, there are several works that consider the problem of concept learning.

However, the terminology of concept is used differently in each case. In Hay et. al (2018) [81],

the concepts are represented in terms of different interdependent behaviours, while Lake et.

al (2015) [108] and Lazaro-Gredilla et. al (2019) [112] represent concepts as programs. Lake

et. al (2015) [108] consider simple programs that represent strokes of an alphabet and can be

learnt from very small number of examples. On the other hand, problem setting considered by

Lazaro-Gredilla et. al (2019) [112] is very relevant to ours. The concepts are represented as

programs with complex architecture, which can be decomposed into visual perception system,

working memory, and action controller. This is very similar our sub-system decomposition,

however, our method of representing concepts is a part of System 2 architecture, and our

sub-system decomposition allows each sub-system to function independently of the other.

Instead of demonstrations or self-exploration to learn about the concepts, the concepts are

extracted from image pairs. The applicability of this framework is demonstrated in both

simulated and real-world manipulation environments.

On the other hand, there are works that explore the applicability of causal inference in the

context of reinforcement learning. Zhu et. al (2019) [203] proposes discovering the causal
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dependency graph with the best scoring using reinforcement learning methods. They pro-

duce notable results in non-linear datasets with quadratic functions and sociology datasets,

although they do not work with any reinforcement learning environments. There is a rich

literature as a result of a systematic study of causal inference in the multi-armed bandit

setting [21, 14, 111, 196, 54, 164, 113]. The need for causal inference arises the mo-

ment the assumption of independence between multiple arms is removed. [113] introduced

structural causal bandit problem, SCM-MAB, where an SCM [147] is used to capture the

relationship between the underlying causal mechanisms. [114] extends it to the case where

not all variables are manipulable.

Roughly, our learning process can be described as a learning the do(x) (do-operator over the

variable x) through a combination of online learning from observations without any interfe-

rence [54] and learning through the process of interference [196]. One of the assumptions

that we make that renders the problem significantly easier is the absence of confounder va-

riables in the environment. We assume all the variables required for the process of causal

inference are visible. Overall, these methods provide a systematic and theoretically rigo-

rous way to reason about different causal mechanisms in the environment. These methods,

however, are yet to be extended to more complex problem settings.

2.4. System 3: Sub-task graph generation and planning

System 3 is responsible for the overall planning aspect of the system. In the context of

learning to replicate demonstrations, System 3 can be used to infer the objective of the given

demonstration in terms of a generalisable reward vector. It works by constructing a sub-task

dependency graph that is specific to the current environment situation, and uses that to

plan across different levels of abstraction. The effectiveness of this component is primarily

dependent on the quality of the concept base learnt using System 1 & System 2.

With the absence of a concept base, inferring the demonstration objective and replicating

it in different environments can also be done using classical imitation learning methods like

behaviour cloning [126, 136], Dagger [151, 153]. Inverse reinforcement learning methods [9]

tend to be more generalisable with respect to some aspects, although highly data inefficient.
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These methods of replicating demonstration aren’t always robust to changes in environment

configuration and sub-task dependencies. It is not trivial to reuse the information learned

in different context.

In terms of planning, if we assume access to the environment dynamics and the availability

of hierarchical abstraction, then we can employ classical planning methods like depth-first

search [64, 140], A-star [78] or Dijkstra [43]. However, the cost of these methods grows

exponentially with the number of interactive objects present in the environment. The heu-

ristics that would be needed to use approximate versions of these methods would need to

have some resemblance to the learnt concepts.

Classical RL based policy and value iteration methods [176] can also be used at the abs-

traction level to learn generalisable policies. However, this is highly cost ineffective as it is

non-trivial for the basic versions of the algorithms to adapt to new reward functions and it

takes a lot of data to learn a decently accurate policy. It is also highly improbable that the

learnt policy would extract the core causal mechanisms from the environment, and therefore

would fail in environments with different sub-task dependencies. However, methods descri-

bed in section 2.3.3 that explicitly model objects and their interactions can be much more

generalisable in these settings.

If concepts are available during planning, along with the exhaustive set of skills, we can

create an exhaustive set of options, with the initiation and the termination condition defined

using the set of concepts. This would enable all the option-based policy and value iteration

methods to come into play[178], making the planning a lot more efficient. We can also

convert the environment into the graph format proposed in [170], enabling the use of a

pre-trained zero shot sub-task graph planner.

Morere et. al. (2019) [131] propose a systems approach to learning and planning in hie-

rarchical with unknown dynamics. Their work is similar in spirit to ours and deals with

environments that have sub-task dependencies. Their method of learning concepts, or ga-

thering knowledge about the environment is implicit in their skills. As their agent matures

with experience, the learned skills are decomposed into fundamental skills and also whene-

ver beneficial, composed into complex skills. Benefits gained by using composed skills are
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similar to the benefits gained by composing concepts. However we note that the benefit of

composing skills is lost when the sub-task dependencies themselves are changed. This is not

true for the case of concepts, as they are based on core causal mechanisms of the environ-

ment. For example, a complex skill of “obtaining gold” as a combination of “removing stone

using an axe” and “picking up gold” is valid only when the object gold is blocked by stone.

However the concept of “stone” getting removed from the environment with the use of an

“axe” is always valid. Therefore, it is much more simpler and practical to plan in terms of

concepts instead of skills. Other than the fact that this method is not applicable when there

is a change in the inherent sub-task dependencies, this method is the closely related to ours.

Both methods deal with the aspect of gradually growing the knowledge base from experience

and having a framework based approach towards hierarchical domains.
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Chapitre 3

Method Overview

Our framework has three components:

• System 1: Experience segmentation

• System 2: Lifelong concept learning

• System 3: Graph based planning

Fig. 3.1. Overall system diagram with demonstrations as the input stream of experience



This framework is designed to ensure continual learning and planning across different levels

of abstractions in complex hierarchical environments. System 1 performs the preliminary

step of preparing a given stream of experience such that relevant information can be easily

extracted. In this work, by assuming access to an initial set of skills, a stream of experience

is segment into a sequence of skills. System 2 analyses these segments and assimilates the

extracted pieces of information into concepts. These concepts are repeatedly refined and

generalised as the agent gets access to more information. Finally, System 3 uses the initial

set of skills and the learnt concepts for the purpose of planning. It can infer objectives from

a demonstration in terms of concepts, which is a robust way to replicate the demonstration

across a variety of environment configurations.

3.1. Background and Definitions

The environment E has a state space S, action space A and the transition function P such

that P (st+1|st, a) denotes the probability that the environment reaches the next state st+1

by taking the action a at state st, where st, st+1 ∈ S; a ∈ A. The environment is partially

observable, such that O is the observable part of S.

We also define the initial set of states, I ⊆ S as the set of states the agent can find itself in

on resetting the environment or at the beginning of an episode.

Definition 2. The state value function represents a mapping from the state to the average

expected result the agent can get from the state.

Definition 3. A policy is a mapping from state to action. This mapping can either be

deterministic or stochastic

Deterministic : πi : S → A (3.1.1)

Stochastic : πi : S × A→ [0,1] (3.1.2)

A Skill is a special case of a policy. Skills are parameterised and also have an additional

action, END. The parameterisation makes the skill re-usable in different contexts. For
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example, “cutting carrots” and “cutting onions” can be defined using the a single skill “cut-

ting” that can incorporate parameters “carrots” and “onion” to fine-tune its behaviour in the

environment. The END action ensures that once the required objective is reached, the skill

stops executing and returns control to the framework. This aspect of returning control is

important in planning across different levels of abstractions.

Definition 4. A skill is a sequence of actions, specific to the current state and given para-

meters, that brings a distinct change in the environment, if such a change is possible.

Deterministic :πi : Ω× S → A ∪ {END} (3.1.3)

Stochastic :πi : Ω× S × (A ∪ {END})→ [0, 1] (3.1.4)

where πi ∈ Π and Ω ∈ Rpi is a tuple of parameters, specific to πi, and pi ∈W is the number

of parameters. In our work, once a set of parameters is chosen, they are typically kept

constant until the “END” action is chosen and the skill execution is deterministic in nature.

Therefore, instead of sampling actions one at a time, we can repeatedly sample actions till

the “END” action is chosen. So, specific to this work, the skill transition can be described

as:

πi : Ω× S → S × AK (3.1.5)

where K ∈ W represents the number of low-level actions that the skill executed till the

“END” action was taken.

Definition 5. A set of skills is termed as exhaustive if any sequence of observations can

be described as a sequence of the skills contained in the set.

The most trivial set of exhaustive skills in an environment with discrete actions is the

action space itself. The total number of exhaustive skills sets are infinite, because one can

keep composing existing skills in the set to form new skills. This is similar to the options

framework [178], where the potential set of options are infinite, and the utility is optimal

only at certain number, beyond which, it actually hurts the performance.
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Definition 6. A minimally exhaustive set of skills contains the minimum number of

skills that can explain any sequence of observations as a sequence of skills contained in the

set

One can note that in order for a set of skills to be minimally exhaustive, the skills must have

an intricate relationship with the underlying causal mechanisms of the environment. Given

an environment, humans can be remarkably accurate as to what the minimally exhaustive

set of skills could be. Search for how to do this automatically has been an area of research

for the past few decades. In our work, however, we assume that a minimally exhaustive set

of skills is available at the start.

Definition 7. Depending on the nature of the environment (if the environment is dynamic

and stochastic, or if the nature of the tasks involve a consistent type of behaviour), there can

be a skill that is always being executed unless something else is chosen. We call such a skill

as the default or base skill.

For example, in the case of CRAFT, the base skill is navigation. In Freeway, the base skill

is dodging oncoming cars. In Seaquest, the base skill is staying afloat above water. In

Montezuma’s revenge, the base skill is staying still, not doing anything. This can be learned

from scratch given sufficient interaction with the environment (see section 2.2.1).

Definition 8. At any level of hierarchy, execution of skills leads the agent from one state

to another. There are particular states that cause a change in either the structure of the

environment, or the internal state of the agent. Such states are termed as events.

Note that not all structural changes in the environment need not correspond to skill

execution, some of the changes can simply be due to the dynamic nature of the environment.

Using this definition of events, let us recall the definition of concepts (Def. 1.1) as the

2-tuple that consists of an abstract state transition and conditions required for such a

transition to take place. In this work, all the state transitions that are consolidated into

concepts are, in fact, events.
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Definition 9. Some of the environments available for use for the agent at all times are

called practice environments. Here, the transitions are fully observable, and are typically

used to refine and develop new concepts

3.2. The CRAFT Environment

Craft is a 2D grid based environment, developed by Jacob Andreas at al. 2006, where every

tile of the grid is populated by one of the following (11 objects or agent):

• Wood

• Iron

• Grass

• Workshop (w0)

• Tool shed (w1)

• Workbench (w2)

• Stone

• Water

• Gem

• Gold

• Boundary

• Agent

• Empty space
Fig 3.2: State space of CRAFT (visual)

The state space of the agent S, has an observable part O, and a non-observable part I

which is the internal state of the agent, also called as the inventory. Both these parts are

represented using a matrix that is populated with -1, 0, and 1. The observation O is given in

the form of a grid, which has a dimension of (W ×H×12), where 12 represents the different

types of entities available in the environment state (List 3.2). The 12th layer is related to

the information about the agent where 1 indicates the position of the agent, -1 represents

the direction towards which the agent is facing. For example, if the agent is at the position

(4,5) facing north, then (4,5,11) = 1, (4,6,11) = -1, and rest of the elements in (4,5,*) are

0. The inventory has a dimension of (21), where each dimension is used to represent the
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quantity of a particular object in the inventory. The observable part can also be represented

visually, as shown in Fig 3.2

There are 5 actions an agent can take, each represented by an integer. 0 stands for down,

1 stands for up, 2 stands for left, 3 stands for right, 4 stands for USE. The action USE is

used to abstract environment interactions. For example, if you perform the action USE at

workshop # 0 with the object “wood" in the inventory, you get a “plank". If you perform

the same action in front of “grass", you remove the “grass" from the environment and add it

to your inventory.

The tasks in this environment have an inherent hierarchical structure. Getting the gem,

for example, requires you to cross the water. To do that you need to build a bridge by

collecting iron and wood, and assembling it at the workshop. We describe all such tasks in

the subsection 3.2.1.

3.2.1. Recipes

There are 10 possible tasks in the environment, each of which can be completed following a

particular order of sub-tasks (assuming empty inventory):

− Make[plank] — [”get_wood”, ”use_workshop0”]

− Make[stick] — [”get_wood”, ”use_workshop1”]

− Make[cloth] — [”get_grass”, ”use_workshop2”]

− Make[rope] — [”get_grass”, ”use_workshop0”]

− Make[bridge] — [”get_iron”, ”get_wood”, ”use_workshop2”]

− Make[bed] — [”get_wood”, ”use_workshop0”, ”get_grass”, ”use_workshop1”]

− Make[axe] — [”get_wood”, ”use_workshop1”, ”get_iron”, ”use_workshop0”]

− Make[shears] — [”get_wood”, ”use_workshop1”, ”get_iron”, ”use_workshop1”]

− Get[gold] — [”get_iron”, ”get_wood”, ”use_workshop2”, ”get_gold”]

− Get[gem] — [”get_wood”, ”use_workshop1”, ”get_iron”, ”use_workshop0”,

”get_gem”]
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3.2.2. Possible events

We have a set of events which can be categorized as follows:

− Primary events {get_wood, get_iron, get_grass} involve collecting the raw mate-

rials that are readily available in the environment. These events are usually success-

fully executed.

− Workshop events {use_workshop0, use_workshop1, use_workshop2}, depending

on the state of the inventory during execution, give out different complex objects,

which can be used to pass through barriers in the environment or make more complex

objects. Success usually involves a change in the inventory, from simpler to more

complicated objects

− Complex events {get_gem, get_gold} usually require having a particular complex

object that is used to pass the barrier surrounding the final object to be successful.

This is usually harder to successfully complete.

3.2.3. Skill Set

We have two parameterised skills in CRAFT, assuming only a single level of hierarchy:

(1) Go_to_(x,y): This uses dijkstra shortest path algorithm to move to the position

(x,y) from the current position.

(2) Use_object_at_(x,y): This uses dijkstra shortest path algorithm to move to a po-

sition adjacent to (x,y) from the current position, orients itself towards (x,y), and

performs the action USE.

Given the way CRAFT is constructed, if we use expert demonstrations, only the second

skill is sufficient to explain the demonstration. And every single skill execution usually

corresponds to an event. Recall that an event corresponds to either a change in the internal

state of the agent, or a change in the structure of the environment. The first skill in this

case is the default skill. This skill ensures the completeness of the set of skills for this level
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of hierarchy, i.e., these two skills are sufficient to ensure that any demonstration at a state-

action level can be uniquely converted to a sequence of sub-tasks and skills at this level of

hierarchy.
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Chapitre 4

System 1: Automatic skill segmentation

In this chapter, we consider the general case of segmenting a demonstration. We as-

sume that the demonstration is comprised of observations at different time instants,

i.e. we do not have access to the action sequence or to the full state. We assume

access to several fully observable practice environments, and an exhaustive set of skills

such that any demonstration can be decomposed as a sequence of these skills. Given this

setup, our objective is to recover the sequence of skills being performed in the demonstration.

4.1. Formal Problem Definition

Input: Single demonstration τ ,

where, τ = {o1, o2, o3, . . . oN}, oi ∈ O, ∀i ∈ {1,2, . . . N} and all the observations are from

consecutive states, i.e. if si ∈ S is the state corresponding to observation oi, then ∃a ∈ A

such that P(si+1|si, a) > 0 ∀i ∈ {1,2, . . . N − 1}.

Given:

(1) Practice environments 9), D : {e1, e2, . . . eL}, ei ∈ E, ∀i ∈ {1,2, . . . L}

where the agent can act out random or specific policies and fully observe the transi-

tions. Each ei has a distinct initial condition and configuration.

(2) Exhaustive set of skills (Def. 5), Π : {π1, π2, . . . πK}



Output: Sequence of skills (and respective parameters) executed in the demonstration

Output: (πk1 , ωk1 , πk2 , ωk2 , . . . πkT , ωkT ),∀ki ∈ Z+ such that

If,

πki(s{ki,1}, ωki) = (a{ki,1}, a{ki,2} . . . a{ki,Li}),

where s{ki,(j+1)} = transition(s{ki,j}, a{ki,j}); s{ki,(Li+1)} = s{ki+1,1}; and

o{ki,j} = observation(s{ki,j})

Then,

(o{k1,1}, o{k1,2} . . . o{k1,L1}, o{k2,1} . . . o{kT ,LT }) = (o1, o2 . . . oN)

Here, note that πki ∈ Π is a skill (Def. 4), and ωki ∈ Ω represents the parameters for

that skill. In simple terms, if we execute the output sequence of skills in the initial state

of the demonstration, we would recover the sequence of observations that make up the

demonstration.

Assumptions:

− Demonstrations can be decomposed into a sequence of skills, and this set of skills can

be learned by interacting in the practice environment.

− The agent is the only dynamic part of the environment, although this method can

be extended to dynamic environments as well.

− The practice, demonstration and test environments come from the same distribution

of environments.

Key contributions: We introduce a method to segment demonstrations, which can be

comprised of only partially observable state sequences, and may not have an associated action

sequence. Since we learn to use the existing priors well, we can apply this method even when

a single demonstration is available. The ability to convert a monolithic demonstration into

a sequence of skills makes the problem of credit assignment much simpler. As a by-product,

inferring the intention of a demonstration, and replicating the demonstration in various

instances becomes much simpler. This ability to convert a sequence of low level observations
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into a sequence of skills at a higher abstraction level is crucial for long range planning in

complex hierarchical environments.

4.2. Skill discriminators

For the purposes of segmenting demonstrations into sequence of skills, we build skill discri-

minators for each individual skill. We pass the observations to skill discriminators, and each

skill discriminator individually outputs either 0 ( no ), 0.5 ( possible ), 1 ( yes ), which we

can use to identify which skill is being executed.

The skill discriminator of the base skill, if exists, mostly outputs the value 1, unless it sees a

sub-optimal behaviour, when it outputs 0. The sub-optimal behaviour usually corresponds

to some other skill being executed. For example, the base skill in Seaquest [18] is to stay

afloat and do nothing. From the perspective of the base skill discriminator, if the agent is

doing nothing, it is displaying the optimal base skill behaviour. If the agent decides to go

underwater to “shoot sharks” or “rescue divers”, although it is performing a useful sub-task in

terms of the overall episode, it is a sub-optimal behaviour when looking through the lens of

the base skill discriminator. Similarly, in our example, CRAFT, the base skill is “navigation”.

As long as the agent is optimally moving from point A to point B, the base skill discriminator

outputs the value 1. The moment it takes a detour or starts interacting with an object, the

base skill discriminator outputs 0.

4.2.1. A note on defining skill discriminators

The environment we consider in this work is deterministic in nature. Since we assume access

to an initial set of skills, defining skill discriminators becomes relatively easy. For a given

segment of experience, we simply check if the agent can reach the final state from the initial

state by executing a particular skill. If the skill execution is equally efficient as the segment

of experience and they achieves the same environment transition, then we can confidently

predict that the skill was executed.
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In the case of a stochastic environment, we can approach this in a more principled way

by learning configuration-invariant skill embeddings for every skill. This can be done by

sampling skills in random order in different practice environments (Def. 9) and utilising the

sampled segments to form a supervised learning dataset1. This dataset can be used to train

an RNN that can predict both the skill and the value of skill discriminator given a segment

of experience. In the case of an RNN the skill embeddings are learned implicitly, however,

there are architectures in recent work where skill embeddings are learnt explicitly [37].

4.3. Example: System 1 in CRAFT

Skill Discriminators: As mentioned in the previous section, since CRAFT involves deter-

ministic transitions, it is relatively straightforward to define skill discriminators when given

access to the skills. In CRAFT, we use two skills:

(1) Go_to skill: This skill is defined using the Dijkstra algorithm which the goal state as

input and outputs the optimal trajectory that takes the agent to the goal state from

the current state

(2) Use_object skill: Given the position of an object as the input, this skill computes

the optimal set of actions that takes the agent from the current state to a state

that is adjacent to the object. The skill outputs this set of actions along with the

action "USE" appended at the end. The optimal set of actions is calculated using

the Dijkstra algorithm, similar to the “go_to" skill

The skill discriminators are then defined using the skill definitions as follows:

(1) Go_to_discriminator: Given a sequence of observation, this discriminator uses the

Go_to skill to compute the optimal trajectory from the initial state to the current

state. If the given sequence of states is longer than the computed optimal path, then

the discriminator outputs 0, otherwise it outputs 1. Note that go_to is a base skill,

and therefore go_to_discriminator mostly outputs the value 1.

(2) Use_object_discriminator: The output of this discriminator depends on the last ac-

tion executed and length of the path from the initial position to the final position. If
1Since we know which skill was executed and if it was successful, we automatically create the labels required.
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the path followed is optimal and the last action executed is USE, then the discrimi-

nator outputs 1. If the path followed is optimal, and the last action executed is not

USE, then the discriminator outputs 0.5. This is because we cannot be sure if the

segment represents the use_object skill. In all other cases, the discriminator outputs

0.

Predictor Function: This is responsible for assimilating information from all the skill

discriminators and making the final decision of where to segment a given stream of experience.

To understand how the function works, let us understand the behaviour of different skill

discriminators. Recall that a skill discriminator can output the values {0, 0.5, 1} on receiving

a segment of experience. Here, ‘1’ indicates that the given segment is a consequence of

executing the given skill, ‘0’ indicates that it is not, and ‘0.5’ indicates that it could be and

that it is waiting for future observations to make a final decision.

The base skill discriminators output the value ‘1’ for most of the observation, whereas other

skill discriminators output ‘0’, or ‘0.5’ depending on the way the observation sequence is

proceeding. As we discussed in section 1.1, an event occurs after the successful execution

of a skill. Therefore, at every time-step when an event has occurred, the corresponding

skill discriminator outputs ‘1’, whereas every other discriminator (including the base skill

discriminator) outputs ‘0’.

Therefore, at any point of time, there is at most one skill discriminator that outputs the value

‘1’, however there may be several skill discriminators that haven’t made a decision ‘0.5’. The

prediction functions waits until the end of observation sequence or until the point when all

the skill discriminator outputs ‘0’. From this point, it searches backward for the first time

instance where a skill discriminator has output the value ‘1’. This is the place where the

stream of experience is segmented and remaining segmented is passed again to the predictor

function. This process happens recursively until the stream of experience is represented in

terms of a sequence of skills. Since the predictor function considers one observation at a

time, it can function in online settings without any changes in the design.

43



4.3.1. Assumptions

Here we summarize some of the key assumptions inherent in our system:

(1) The demonstrations only consist of actions that either make some observable change

in the demonstration, or is the action ”USE”: This means that the demonstration does

not have situations where the agent is trying to walk into the obstacles or objects.

This assumption ensures that we have a single correct prediction for the sequence of

skills. This can be removed easily, without affecting the generality of the solution

(2) We have access to fully observable and customizable reference environments, i.e.

we can spawn multiple environments with a specific inventory and a specific set of

objects initialized at random positions. This reduces the time and effort taken to

reproduce the fully observable version of the events without affecting the generality

of the baseline.

4.3.2. Example of segmentation, using predict function

To show the behaviour of System 1, we consider the task of making “cloth”. To make a

cloth in the CRAFT environment, we first obtain “grass”, and then USE workshop no.2

(Figure 4.1). As we see in Figure 4.2-4.3, we segment the demonstration sequence, when we

are sure about the skill that the segment belongs to. We can also see that the default skill

(navigation), usually predicts 1 (green), as long as the agent is navigating in the environment

optimally. The moment it behaves sub-optimally (Figure 4.3), our framework assumes that

the behaviour was intentional and classifies it as a skill.

4.4. Summary

In this chapter, we describe the functioning of System 1 and the design choices we make

that are specific to the CRAFT environment. We show how the System 1 uses the predictor

function, along with the skill discriminators to decide where to segment a given stream of

experience. The effectiveness of the system depends on the exhaustiveness of the skills it
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(a) Optimal demo (b) Sub-optimal demo

Fig. 4.1. Behaviour of System 1 with optimal (Left) and sub-optimal (Right) demonstra-
tions of making stick. “@v” represents the agent’s starting position. In the optimal demo,
the agent first moves to the object grass denoted using “gs”, and then uses workshop #2
denotes using “w2”. In the sub-optimal demo, the agent makes a few detours to positions
‘2’, and ’3’

possesses. This reliance, however, can be relaxed by learning generalisable skill discriminators

as described in section4.2.1 or like the one in Kipf et. al (2018)[98]. However, the principle

behind System 1 remains the same. In Chapter 5, we discuss how these segments can be

analysed to extract concepts.
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(a) Optimal demo

(b) Predictor function

Fig. 4.2. Skill segmentation prediction for the optimal demo. Yellow represents the value
‘0.5’, which indicates that the skill discriminator’s decision is pending. Green represents the
value ‘1’, which indicates that the skill has successfully finished executing. Red represents the
value ‘0’, which indicates that the given segment does not correspond to the particular skill.
We can see that predictor function waits till the time instance when all the skill discriminators
outputs ‘0’. Then, it segments at the latest point of time when at least one skill discriminator
has an output of ‘1’ (gray arrow). Then the sequence after the segmentation is again passed
through the skill discriminators.
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(a) Sub-optimal demo

(b) Predictor function

Fig. 4.3. Skill segmentation prediction for the sub-optimal demo. System 1 successfully
decomposes the sequence of observations into 4 segments. As we describe in Figure 4.2, the
system declares a segmentation (gray arrow) at the position where one only skill discriminator
confidently predicts the end of skill execution.
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Chapitre 5

System 2: Lifelong Concept Learning

The System 2 works in conjunction with System 1 to identify the characteristic concepts of

the environment. This is a lifelong learning system that keeps on improving with experience,

both from input demonstrations and self-exploration in practice environments. System 2

consists of a concept database that tracks all of the concepts about the characteristic events

that the agent has experienced so far. It also has access to practice environment and skills

due to System 1, with which it can reproduce the partially observed events in the fully

observable practice environments whenever necessary.

System 1 can be used to segment demonstrations and identify concepts on the fly. If the

agent encounters a new event, i.e. it does not find an appropriate concept in the System 2

database to explain the partially observed sequence of states of the event, then the agent

initiates System 2 to reproduce the event in fully observable practice environments to identify

the transition concepts and pre-conditions.

There is an element of planning required to reproduce the partially observed events in fully

observable environments. Most often, if the environment conditions allow it, the event

is reproduced by following some or all of the previous skills executed up until that point.

Specifically for the sections of the state space that are ill-defined, we experiment with various

pre-conditions, until we have sufficient information to disentangle out the most elementary

set of concepts for that event.



Using these concepts, the agent can adapt to partial demonstrations and different initial

conditions. When the agent cannot complete the demonstration, we understand the reason

for not doing so easily by analysing the conditions that were not met. More importantly, in

conjunction with System 3, this becomes a powerful way to plan ahead in complex hierar-

chical environments, and can attempt to fulfill the final objective in a different way.

One can do this in a more principled way by associating this with the way humans learn

based on (Un)conscious (In)competence [22]:

(1) Unconscious Incompetence: An agent is usually unaware of the concepts or transitions

that it hasn’t encountered before. The moment it encounters something it cannot

explain with the existing set of concepts, it moves on to the next state.

(2) Conscious Incompetence: This is the phase when we initiate system 2 to reproduce the

event with different full state configurations, collecting data of various instances when

the partially observable part of the event is reproduced, along with the corresponding

full state configurations.

(3) Conscious Competence: This phase corresponds to the process where we disentangle

out the core concepts of the environments from the data collected in the previous

phase. Once we form competence about the transitions, we add the formulated

concepts to the concept database and move onto the next phase. Prior to forming

the concepts, we use a lot of memory to store the collected samples and we have a

sub-optimal explanation of the transition that we have witnessed. This excess use of

memory corresponds to the word ”conscious”, i.e. the transition that we are trying

to explain hasn’t yet been boiled down to it’s core essence.

(4) Unconscious Competence: Once we have discarded the excess information, we have

distilled down the collected transitions to the simplest possible concepts. We free up

the memory of the agent, while being competent in being able to explain the observed

event, and use this information in planning.

49



5.1. Example: System 2 in CRAFT

The motivation of the agent is to discover and store the most basic set of concepts, with

which any event in the environment can be described. Events are a subset of sub-tasks, which

happen after the end of skill execution. In CRAFT, due to assumption 2 in section 4.3.1,

every skill execution corresponds to a possible event. Depending on the current inventory

and the object being interacted with, different changes may happen in the inventory (the

unobservable part of the state space) and in the structure of the environment. Our goal with

the concept database of System 2 is to predict the unobservable changes in the state of the

environment.

5.1.1. State Embedding Functions

State Embedding Functions are built to extract crucial information from the segments that

we get from System 1. Only this information from the State Embedding Functions is used

in System 2 to build the concept base.

The State Embedding Functions, in our case study, take in the two observations for an event

– the observation just before the end of segment and the one just after, and the output from

State Embedding Functions is recorded as the event. We use the following State Embedding

Functions:

• Trigger: Outputs the index of the skill that caused the event1.

• Object_in_front_before: Outputs the index of the object in front of the agent in

the observation pre-skill execution.

• Object_in_front_after: Outputs the index of the object in front of the agent in the

observation post-skill execution.

• Event_location: Store the coordinate at which the agent performed the event.

• New_Reachable_Objects: Outputs the new objects that became reachable via

go_to_(x,y) skill. This usually happens if objects were blocked by other consumable

objects that later got consumed. This function is very useful for System 3.

1In our case, since all the events are caused after the completion of “use_object” skill. The index is always
equal to 1
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Format of the stored concepts

The concepts of the agent comprise five characteristics:

(1) Object of interaction: Represented using the object index.

(2) Skill: Represented using skill index. In our situation, it is always 1.

(3) Transition: Represented using an integer vector of size 22. 21 elements represent the

transition of the internal inventory of the agent, and the final element indicates if the

object of interaction was consumed or not ( indicated via -1 or 0 ).

(4) Pre-condition: Represented using a integer vector of size 21, describes the minimal

conditions that need to be satisfied in the inventory of the agent for the event exe-

cution to take place successfully.

5.1.2. Reproducing Events

In CRAFT, the inventory is the only unobservable part of the demonstration. Therefore, in

order to get the full picture of the event, we reproduce the same observations with various

initial inventories. Specifically, we spawn an environment with the detected object of interac-

tion, and different initial inventory and execute use_object_at_(x,y) skill. We experiment

with the following initial inventory configurations:

• One object only. We consider cases where all the objects are present once.

• Two non-identical objects only. We consider all the possible pairs.

• Randomly initialised inventory. All the objects have an equal probability of being 0

to 3 in number. We consider 100 such initializations.

The first two types of initializations ensure that we encounter all the basic concepts that can

exist. With this initialisation and the object of interaction, we execute the skill and record

the transition (in terms of the structure of the environment and the inventory) along with

the initial condition. Let us call this dataset D.
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5.1.3. Learning to Disentangle concepts

Most of the concepts in CRAFT are easy to infer. A minor complication arises with stone

and water, but the workshop interactions are the only major source of complication. We use

the following method to disentangle all the possible concepts:

(1) Unique transitions: From set of recorded transitions D, we gather all the unique

transitions and rank them in ascending order such that the simplest transitions occur

first 2.

(2) Linearly independent transitions: We collect transitions, starting from the simplest

ones, such that the new transition is linearly independent to all the collected ones. Let

us call this collection of linearly independent transitions as S. These steps ensure that

we collect the simplest possible set of concepts that can explain all the phenomena3.

(3) Pre-condition concept: For every transition T in the set of linearly independent

transitions S, we check the entire repository of recorded transitions D and collect the

various initial conditions where T occurred. Of all these initial conditions, we select

the simplest one as the pre-condition P 4, for the transition T .

5.1.4. Assumptions

(1) We have access to fully observable and customizable reference environments, i.e.

we can spawn multiple environments with a specific inventory and a specific set of

objects initialized at random positions. This reduces the time and effort taken to

reproduce the fully observable version of the events without affecting the generality

of the baseline.

(2) The concepts can be disentangled via simple linear decomposition of all the observed

transitions.

(3) Every event has only one possible initial condition. There is no ”OR” in the pre-

conditions.

2Any complex object being made or used up is weighted more than simpler ones
3There may be cases where we don’t end up learning the simplest set of concepts, there may provably be a
better method to do so
4We take the least common number of times each object in the inventory occurs in the initial condition
vectors as the number of that object in P
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(4) Every complex object can be made using only one method.

5.1.5. Learning concepts via exploration

In this section, we experiment with agent executing skills at random and discovering concepts

by itself. Each environment is constructed with 3 primitives of each kind, one instance of

every other object placed randomly in a 15x15 grid. We experiment with 3 such constructed

environments, as shown in Figure 5.1-5.3.

Fig. 5.1. Number of correct, compounded and incorrect concepts learnt when utilising 10
practice environments, using 10 randomly ordered skills in each. (Shaded colored region
represents average deviation of the result). Note that the total number of independent core
concepts that can be gathered from the environment is 16.

53



Fig. 5.2. Number of correct, compounded and incorrect concepts learnt when utilising 100
practice environments, using 15 randomly ordered skills in each.

Fig. 5.3. Number of correct, compounded and incorrect concepts learnt when utilising 100
practice environments, using 15 randomly ordered skills in each.

Most of the incorrect concepts we find are a result of not being able to identify the conditions

necessary. Because of limited interactions witnessed in the environment, the agent rarely sees

the minimal inventory version of the same transitions. Let us consider the example of making

“stick” from “wood”. Ideally, the concept requires only 1 piece of “wood” as the pre-requisite.
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But since the system sees limited examples of the concept, it is possible that in all the

examples of the transition, the agent has at least 1 piece of “wood” and 1 piece of “cloth” as

its initial inventory. In such a case, the agent learns that to make “stick”, we must have at

least 1 piece of “wood” and 1 piece of “cloth”. It is easy for even human beings to make such

mistakes when one has no prior on how the individual entities are typically used.

5.1.6. Learning concepts using demonstration

Let us see an example of how the concept base grows with different demonstrations. Re-

call that concepts are defined as a 2-tuple consisting of an abstract state transition and

conditions required for such a transition to take place (Def. 1.1). Here, the CRAFT en-

vironment’s internal state of the agent (inventory) is a decent abstraction of the current

environment situation. Although, this abstraction does not take the reachability of objects

and environment structure into account, this is sufficient to represent the concepts necessary

for our purpose. The state transition is represented as a 22-dimension vector where the first

21 elements represent the inventory changes that takes place, and the final element indicates

if the object being interacted with was consumed or not (-1 indicates that it was consumed,

0 indicates that it was not). The pre-requisite or conditions vector is a 21-dimension vector

that indicates the minimal objects that are needed in the inventory for the transition to take

place successfully. Specifically, each index of the inventory represents a particular object

in the environment (7:iron, 8:grass, 9:wood, 10:gold, 11:gem, 12:plank, 13: stick, 14:axe,

15:rope, 16:bed, 17:shears, 18:cloth, 19:bridge, 20:ladder). The first seven indices usually

assume the value 0 as they represent environment entities that cannot be taken into the

inventory. (0:empty_space, 1:boundary, 2:workshop0, 3:workshop1, 4:workshop2, 5:water,

6:stone) 5.

Let us now examine how the concepts are added to the inventory. In Table 5.1, we show that

the concepts that are gathered by the agent as it interacts with different workshops with

the object “grass” already present in the inventory. In workshop #0, it learns the concept

of making a “rope”. In workshop #2, it becomes familiar with the object “cloth”. When

5Note that the we use the internal state of the agent provided by CRAFT as is, and the indices used to
represent different entities are consistent throughout the environment.
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interacting with workshop #1, it has an initial inventory of “grass” and “plank”, and it learns

the concept of constructing a “bed”. Finally, in the last diagram, we are shown a full snapshot

of the concept base. Here, we notice that although it is not acclimatised with obtaining the

object “plank”, it knows how to use it in the context of making “bed”. Therefore, if it had to

make a “bed” with no “plank” in the inventory, it would not know how to do so. However, it

can add the missing concepts to its repertoire whenever the opportunity is presented. The

advantage of such a method of learning and representing concepts explicitly is that they

can still function without having the complete information and it is very intuitive for users

to interact with such systems. For example, in this case, the user can simply notice that

the agent is missing a trivial concept, and manually add it or guide the agent to learn the

required concept.

Concepts added while getting grass

Concepts added while making cloth

Concepts added while making rope
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Concepts added while making bed

Final snapshot

Tab. 5.1. Different concepts the agent learns with respect to the object “grass”

In Table 5.2, we showcase the ability to break down a compounded concept into basic ele-

mental concepts as the agent gains experience. As discussed before, it is possible for an

agent to register redundant information about the environment into its conceptualisation of
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a transition. This may simply be because the agent didn’t see enough examples of the tran-

sitions to disentangle accidental correlations. Similarly, it may store two or more separate

elemental concepts as a single concept. For example, in Table 5.2, when the agent interacts

with “workshop #0” with both “grass” and “wood” in its inventory, it learns the concept of

making “plank & rope” as a single concept. Only later when it is shown examples of making

“plank” and “rope” separately, it eliminates the compound concept of making “plank & rope”

from its repertoire and retains the concept of making them individually.

Using workshop0 with grass & wood

Using workshop0 with wood

Using workshop0 with grass
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Tab. 5.2. Example of a compounded concept broken down after witnessing more informa-
tion

We notice that this way of learning concepts is similar to the way we humans disentangle

factors of variation and understand the core causal mechanisms of the environment. This is

a simple way for a lifelong learning agent to learn different concepts about the environment

from limited data. These concepts can be refined as the agent gets access to more experience.

The learnt concepts are intricately linked to segments supplied by System 1. If one has access

to skills at multiple levels of hierarchy that are sufficiently exhaustive (Def. 5), then one

can learn concepts at multiple levels of hierarchy. This would enable an agent to plan across

different time scales and help the agent effectively navigate across complex environments.

5.2. Summary

In this chapter we show how the System 2 functions in the environment CRAFT. For the

abstracted state representation, we used the agent’s internal state that is pre-built in the

CRAFT environment. In a general scenario, we’d have to learn this representation from

scratch or use expert knowledge about the domain to design a representation. The purpose of

the representation is to abstract away all the unnecessary details and ensure that the concepts

learnt can be re-used in a wide variety of situations. Using this abstracted representation,

we demonstrated how concepts can be learnt in a lifelong manner from different streams of
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experience like partially observable demonstrations and from self-exploration where internal

state of the agent can be seen. When the system is unable to disentangle factors of variation,

the concepts learnt may be incorrect. The system may learn the wrong pre-requisites, or

combine multiple concepts and store it as a single concept. Some of these mistakes, however,

can be corrected with more data, as demonstrated in Table 5.2. This ability to refine and

update concepts with ease is an important aspect of a lifelong learning agent. In Chapter 6,

we explore how the accuracy and completeness of the learnt concepts determines the final

performance of the agent.
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Chapitre 6

System 3: Graph Based Planning

System 3 utilises the concepts learned by the agent using System 1 and System 2 for planning.

These concepts make the agent robust to drastic changes in the environment configurations

and vastly reduces the search space during operation. System 3 can be employed in both

the imitation and goal-specific planning scenario. In imitation learning, System 3 utilises its

understanding about the event dependencies to understand the demonstrator’s intentions.

This intention is converted into a reward function which is later used in planning.

6.1. Inferring objective

In a given demonstration, there is at least one core objective that the agent is trying to

achieve. But if one were to observe a demonstration of an agent operating in a complex

environment, it becomes hard to identify the core objective from other side-objectives that

were also achieved. In the example of making a salad, if the demonstration also consisted

of converting “vegetable waste” into ”compost” which was later utilised elsewhere, it would

be hard for an agent to comprehend if making “compost” was the core objective or making

“salad”. Similarly, in the domain of CRAFT, if the core objective is to get “gem” but the

“gem” is surrounded by “stone”, it becomes necessary for the agent to make an “axe” for the

complete sequence of events). In such demonstrations, it becomes ill-posed for an agent to

identify if core objective included making “axe”. In this work, we follow certain guidelines

to decide which events should be a part of the core objective. These objectives must be

achieved in the test environment for a replication to be considered successful.



Let us examine the example of obtaining “gem” that is surrounded by “stone”. As mentioned

previously, this involves making an “axe” and “removing stone”. To make an “axe” there is

a pre-requisite of having “stick” and “iron” already present in the inventory. These items

are taken to “workshop #0”, where the “axe” is made. Similarly, to make “stick”, one must

first obtain “wood” and build the “stick” at “workshop #1”. As we can see, there are several

dependency relationships that exist between the events (See figure 6.1b). Here, getting “gem”

is the only event in the sequence that is not utilised elsewhere. Such events are termed as

independent events. There are other events that either make other objects in the environment

reachable or lead to building of objects that can be utilised later. Such events are termed as

reusable events. In our work, we treat all the independent events as the core objective and

reusable events as the bonus objective1. . It is not necessary for an agent to ensure that the

reusable events are replicated in test environments. In this example, since “axe” can reused

again for the purpose of removing other “stones”, making an ”axe” becomes a part of the

bonus objective.

System uses this principle to identify independent and reusable events from a given sequence

of events. Figure 6.1c shows the final output of System 3 for the above example. We outline

the general algorithm in Algorithm 1. In this algorithm, we analyse events one at a time and

keep track of what each event achieved in the environment. Specifically, we make note of all

the objects in the environment that become reachable to the agent and the event that was

previously executed to ensure that the current event becomes reachable. This information is

stored using a “reachability dependency" table. Similarly, we have an “inventory dependency"

table that contains the information related to events that created the objects being used in

this event and the new objects that are being created in this event. We use these dependency

tables to determine which events were executed for their own sake (independent events) and

which events left certain objects in the inventory that can be reused later (reusable events).

1The numerical value of the bonus objective is a hyper-parameter
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(a) Events

(b) Inferring event dependencies

(c) Independent and Re-usable event

Fig. 6.1. Inferring objectives from demonstrations. Some events are inventory dependent
(blue line), and some are reachability dependent (dashed red line).

Algorithm 1 Inferring the objectives given event sequence
1: procedure InferObjective(Event_Sequence, Initial_set_of_reachable_objects)
2: Inventory_buffer ← [ ]
3: Reachability_buffer ← [ ]
4: Independent_events ← Event_Sequence
5: Reusable_events ← [ ]
6: Parent_Edges ← [ ]
7: for all Event ∈ Event_Sequence do
8: Event_pre-requisite ← Check_prerequisite(Event)
9: New_reachable_positions ← Get_new_reachable_position(Event)
10: New_objects_created ← Get_newly_created_objects(Event)
11: Event_position ← Check_event_position(Event)
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12: if Event_position /∈ Initial_set_of_reachable_objects then
13: Parent_event ← Get_parent(Event_position, Reachability_buffer)
14: Parent_edges ← Add_parent_child(Parent_event, Event)
15: Independent_events ← Independent_events − {Event}
16: end if
17: Inventory_buffer ← Add_to_inventory_buffer(New_objects_created, Event)
18: Reachability_buffer ← Add_to_reachability_buffer(New_reachable_positions,

Event)
19: if Event_pre-requisite ∈ Inventory_buffer then
20: Parent_events, Reachability_buffer ← Update_reachability_buffer(

Event_pre-requisite,
Reachability_buffer)

21: if Parent_events then
22: Independent_events ← Independent_events − {Event}
23: for Parent_event ∈ Parent_events do
24: Parent_edges ← Add_parent_child(Parent_event, Event)
25: end for
26: end if
27: end if
28: end for
29: Reusable_events ← Get_events_from_buffer(Inventory_buffer)
30: return: Independent_events, Reusable_events
31: end procedure

6.2. Planning using a Graph Guide

System 3 utilises the information it has gathered using prior systems to construct a graph

guide:

Definition 10. A graph guide is graphical representation of the environment state that

is constructed using the concepts present in the concept base. It has a core structure that

represents dependencies between events that do not change with environment structure and

an auxiliary structure that needs to be regularly updated to reflect the current environment

structure.

System 3 relies on this graph guide to provide dependency information about different events.

This information is used to formulate plans that help the agent accomplish a given objective.

The graph guide is similar to the subtask graph introduced in Sohn et. al (2018) [170]. In

their work, the RL problem is completely restructured to represent dependency information
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in terms of graph. The optimal solver proposed in their work uses only this graph to formulate

solutions. Our work, up to this point, can be considered as a bridge between classical RL

and the subtask graph RL. The key difference in the subtask graph introduced in Sohn et. al

(2018) [170] and graph guide presented in our work is the presence of an auxiliary structure

in the graph guide. This auxiliary structure captures environment details that could alter

task dependencies. For example, in the case of CRAFT, the auxiliary graph contains the

position information about different objects in the environment. Since using up certain

objects make can other objects directly reachable by the agent, this can affect the overall

optimal plan of the agent.

6.2.1. Construction of the graph guide in CRAFT

The purpose of a graph guide is to provide all the information necessary for the purpose

of planning at different levels of abstraction. To execute an event successfully, the graph

guide must be able to represent all the pre-requisites that need to be achieved and different

ways of achieving them. This ensures that the agent can completely rely on the graph guide

during the course of planning and the optimisation procedures reduces to choosing between

different pathways to achieve the same final objective.

As we discussed before, there are two types of dependency relationships between events in

the CRAFT environment – inventory dependency and reachability dependency. Inventory

dependencies are trivial to identify using the learnt concepts and these dependencies do

not change with environment structure. These dependencies are represented by the core

structure of a graph guide. For example, irrespective of the environment configuration, one

must have a “stick” and “iron” in the inventory, and utilise these objects in “workshop #0”

to build an “axe” (See Fig. 6.2). The reachability dependency, however, depends on the

current environment configuration. This dependency is used to represent objects that block

a particular object from being readily reachable to the agent. For example, in Fig. 6.3,

“gem” is reachability dependent on removing “stone”, whereas in Fig. 6.4, it is reachability

dependent on removing “grass”.
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(a) Stage 0 (b) Stage 1 (c) Stage 2

Fig. 6.2. Constructing the core skeleton of the graph

(a) Environment #1 (b) Core Skeleton

Fig. 6.3. Adapting the core skeleton to Environment #1 (cont.)
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(c) Step 1: Node positions

(d) Step 2: Updating reachability conditions

Fig. 6.3. Adapting the core skeleton to Environment #1 (cont.)
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(e) Re-configuring core skeleton

Fig. 6.3. Adapting the core skeleton to Environment #1

(a) Environment #2 (b) Core Skeleton

Fig. 6.4. Adapting the core skeleton to Environment #2. (cont.)
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(c) Step 1: Node positions (no “wood” available in the environment)

(d) Step 2: Updating reachability conditions

Fig. 6.4. Adapting the core skeleton to Environment #2.

The graph guide is constructed by iteratively updating the core skeleton graph and the

auxiliary skeleton graph of the environment until all the dependencies have been represented

in the graph guide. First, considering the agent’s objectives, the core skeleton graph is

constructed using the concepts acquired in the concept base (Figure 6.2). Then the we

identify different positions at which each event in the core skeleton can take place. Then

we check if all the positions are reachable by our agent. In the case that they are not, we
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check the concept base to identify events that can make those positions reachable. These

events are then added onto the core skeleton graph, and the entire process is repeated. The

detailed version of this algorithm is outlined in Algorithm 2.

Let us consider the case when getting a “gem” is the core objective, and making an “axe”

is the bonus objective. We observe the functioning of this algorithm in two environments

with different reachability dependencies (Figure 6.3 & 6.4). In Figure 6.3, the core skeleton

is re-configured such that making “axe” is now a pre-requisite for getting “gem”, whereas in

Figure 6.4, the agent has to remove “grass” in order to obtain “gem”. Note, that the agent

is able to realise beforehand that “axe” cannot be made with the available objects in the

second environment (Figure 6.4c). As we can see, that such deductions can ease planning

considerably. However, as we mentioned before, this vastly depends on the quality of the

concepts that the agent has gathered. In case, the concept base is incomplete, we may end

up with sub-optimal solutions or even miss solutions.

Algorithm 2 Constructing Graph Guide
1: procedure ConstructGraphGuide(Current_environment, Independent_events,

Reusable_events)
2: All_events ← Independent_events ∪ Reusable_events
3: New_events ← Independent_events ∪ Reusable_events
4: Core_Skeleton = []
5: Node_locations = []
6: Auxiliary_skeleton = []
7: while len(New_events) > 0 do
8: Event ← Pop_event_from_queue(New_events)
9: Child_event ← Get_event_prerequisite(Event)
10: Add_to_core_skeleton(Core_Skeleton, Event, Child_event)
11: if Child_event /∈ All_events then
12: New_events ← New_events ∪ Child_event
13: All_events ← All_events ∪ Child_event
14: end if
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15: Node_locations ← Get_location_in_env(Current_environment, Event)
16: for node_location ∈ Node_locations do
17: nodes_blocking← get_blocking_nodes(node_location, Current_environment)
18: for node in nodes_blocking do
19: All_possible_events ← possible_events_to_unblock(node)
20: Unexplored_events ← All_possible_events − All_events
21: if len(Unexplored_events) > 0 then
22: Add_to_auxiliary_skeleton(node_location, node)
23: New_Events ← New_Events ∪ Unexplored_events
24: All_Events ← All_Events ∪ Unexplored_events
25: end if
26: end for
27: end for
28: end while
29: return: Core_Skeleton, Node_locations, Auxiliary_skeleton
30: end procedure

6.2.2. Using the graph guide to plan

As we mentioned before, the events that constitute core objective are the ones that need to

occur for the planning to be considered successful, whereas the events that constitute the

bonus objective need not necessarily occur. When using the graph guide to plan, the agent

has to decide between different events that can be executed. To help the agent weigh between

different choices, we assign rewards to both types of events. This is a hyperparameter that

would determine the sequence of events in the solution outputted by System 3. At any point

of time, the agent considers the trade-off between the cost to reach a particular position

and the reward it would get on completing an event, and uses this information to make a

decision. This roughly corresponds to an agent considering different options in the “Options”

framework [178] by considering the expected value of each option.

In our experiments, the events constituting the core objective have a reward of +1, and the

bonus events have a reward of +0.3. These rewards are propagated to the lower-most leaves

of in the graph guide. For example, if making an axe has a reward of +1, but the agent

does not have the necessary pre-requisites to do this, then this reward of +1 is propagated

to getting wood and getting iron. Then interacting with any positions that contain either

an iron ore or a tree would provide the agent with a reward of +1. (Figure 6.5). At any
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point of time during planning, the agent would choose between different nodes based on the

estimated reward of executing a given node 2. After each execution, we update the guiding

graph with new costs and available nodes (Figure 6.5 – 6.5d). This is described in Algorithm

3 & Algorithm 4

(a) Environment #3 (b) Graph guide

Fig. 6.5. In these figures we show how the assigned event cost is propagated through the
graph, (cont.)

2We also use a discount factor of 0.9 while propagating the cost down the graph
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(c) Graph guide with cost

(d) Graph guide with updated cost

Fig. 6.5. The assigned event cost is updated as the agent interacts with the environment
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Algorithm 3 Assigning cost to nodes and gathering available options using graph guide
1: procedure GetOptions(Core_skeleton, Auxiliary_skeleton, Node_locations,

Independent_events, Reusable_events, Current_environment)
2: α← 0.4 # Ratio of Bonus event rewards to Must execute event reward ratio
3: γ ← 0.9 # Reward dilution ratio
4: Final_event_reward_list ← [ ]
5: Event_reward_list ← Initialise_events_rewards_list(Independent_events,

Reusable_events, α)
6: while len(Event_reward_list) > 0 do
7: Event, reward ← Pop_first_entry(Event_reward_list)
8: event_reachable, inventory_satisfied ← check_event_conditions(Event,

Auxiliary_skeleton, Current_environment)
9: if event_reachable & inventory_satisfied then
10: nodes_available ← Get_available_positions(Auxiliary_skeleton, Event)
11: Add_nodes_to_list(Final_event_reward_list, nodes_available, reward)
12: else
13: if not inventory_satisfied then
14: Prerequisite_event←Get_prerequisite_event(Event, Core_skeleton)
15: New_reward ← reward ×γ
16: Add_nodes_to_list(Event_reward_list, Prerequisite_event,

New_reward)
17: end if
18: if not event_reachable then
19: New_events ← Get_events_to_unblock_location(Event,

Auxiliary_skeleton)
20: New_reward ← reward ×γ
21: Add_nodes_to_list(Event_reward_list, New_events, New_reward)
22: end if
23: end if
24: end while
25: result: Final_event_reward_list
26: end procedure
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Algorithm 4 Overall planning algorithm with graph guide
1: procedure ConvertToPlanNode(Environment, Cost_so_far, Reward_so_far)
2: return: Make_node(Environment, Cost_so_far, Reward_so_far)
3: end procedure
4: procedure PlanWithGuide(Initial_environment, Event_sequence)
5: Solutions ← [ ]
6: To_search ← [ ]
7: Initial_node ← ConvertToPlanNode(Initial_environment, 0, 0)
8: To_search ← To_search ∪ Initial_node
9: Initial_reachable_objects←Get_initially_reachable_objects(Initial_environment)
10: Independent_events, Reusable_events← InferObjective(Initial_reachable_objects,

Event_sequence)
11: while len(To_search) > 0 do
12: Current_node ← Pop_first_entry(To_search)
13: Graph_guide ← ConstructGraphGuide(Current_node,

Independent_events, Reusable_events)
14: Options ← GetOptions(Graph_guide, Reusable_events,

Independent_events, Current_environment)
15: for option ∈ Options do
16: New_node ← execute_option(Current_node, option)
17: bool_value ← Node_is_costlier_than_existing_solutions(New_node,

Solutions)
18: if bool_value then
19: break
20: end if
21: To_search ← To_search ∪ option
22: if Objective_satisfied(New_node, Independent_Events) then
23: Solutions ← Solutions ∪ New_node
24: end if
25: end for
26: end while
27: result: Solutions
28: end procedure

We must note that the quality of the solution depends heavily on the completeness of the

concept-base. As we can see in Table 6.1, initially the agent is not able to figure out a solution.

Once it understands that the wood can be taken out of the environment, it proposes a sub-

optimal solution. Finally, when it understands that grass is also a removable object, it gives

the best solution.
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Current conceptbase:

Proposed solution:

No solution

Current conceptbase:

Proposed solution:
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{get_grass, get_grass, get_gem}

Current conceptbase:

Proposed solution:

{get_wood, get_gem}

Tab. 6.1. We see how the quality of the concept base affects the optimality of the solution.
If “get_wood” was present in the concept base, it comes up with a more optimal solution
than if only “get_grass” is present in the concept base. If neither of the concepts are present,
the agent doesn’t understand how to complete the task

6.3. Comparison with other planning methods

Planning

efficiency

Adaptability Training cost Pre-

requisite
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Imitation

Learning

Negligible

cost,

but high

probability

of failure

Barely

adaptable

Multiple

demonstrations

Low

(network

hyperparameters)

Inverse

RL

Low More

adaptable

than imitation

learning, but

no guarantee

Significantly

more number of

demonstration

Low

(network

hyperparameters)

RL Low Fully

adaptable

Lots of episodes

on practice en-

vironments

Low

(network

hyperparameters)

Classic

dijkstra

planning

Very poor,

exponential

with the

number of

choices

Fully

adaptable to

new situations

None None

Our

Method

Highly

efficient

Highly

adaptable,

although

dependent on

the quality of

the concept

base

Low training

data – either

in terms of

demonstrations

or practice

environment

runs

State

embedding

functions,

exhaustive

set of skills,

concept

format

Tab. 6.2. Comparison with different methods

In this chapter, we explored how System 3 uses the learnt concepts to infer objectives from

a demonstration and formulates an optimal plan when given the objective. The System

3 constructs a graph guide that represents the inventory and reachability dependencies of
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different events. Having access to this significantly simplifies the process of planning in

environments with hierarchical dependencies, and ensures that the agent can easily adapt to

a vast range of environment configurations.
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Chapitre 7

Experiments and Results

In this chapter we discuss the two kinds of problem settings where our framework provides the

maximum utility. First, we consider the case of replicating demonstrations across different

environment configurations. In this case, our framework is used to infer the objective of the

demonstration in terms of events. These events are then replicated by the agent in the test

environment configurations. In the second problem setting, we consider the case of planning

when the objective is already mentioned in terms of a reward function. In this case, our

framework computes the best possible way to achieve this objective using the concepts it has

learned about the environment. In a hierarchical environment like CRAFT, we show how

the ability to derive and utilise concepts is crucial for success in planning and replication.

Using the concepts, our system is able to succeed in instances where most other approaches

fail.

7.1. Learning from Demonstrations

In this section, we focus on learning the intention of the demonstrator and replicating that

intention in different test environments. We assume infinite access to practice environments

for any algorithm that can make use of it.

7.1.1. Single Demonstration

:



In this experiment, we have a single demonstration of an agent picking up gold after dismant-

ling a stone using an axe. We apply our algorithm to infer the objective of the demonstration

and attempt to replicate it across test environments having different sub-task dependencies.

We perform an ablation study for our method to understand the effect of different aspects

of our framework on the performance of the agent. We use the following algorithms:

(1) Our method (perfect concept base): We assume full access to the set of concepts that

govern the environment dynamics.

(2) Our method (concept base learned from demo only): We assume that the concept

base has been assembled only using the given demonstration.

(3) Our method (concept base learned from demo + random exploration): The concept

base has been assembled using the demonstration and random exploration within the

practice environment 1,

(4) Repeat skill sequence + Meta controller to choose the skill (Behaviour cloning at the

skill level): We use our system to figure out the set of skills that were executed in the

demonstrations, but instead of using System 3 to plan, we employ a neural network

to learn the mapping from (state, inventory) to action

(5) Behaviour cloning at the action level: Just plain behaviour cloning with no extra

modifications. There is an aspect of System 1 being used to decipher the sequence

of actions.

First we explore how additional exploration in the practice environments can enhance the set

of concepts learned when compared to learning from demonstration alone. These methods

are compared to the baseline where the framework has access to the perfect concept base.

Then we explore the contribution of the System 3’s planning algorithm by comparing it with

a meta controller that learns to pick skills based on the current environment state. Then we

consider behaviour cloning at the level of primitive actions (UP, DOWN, RIGHT, LEFT,

USE) which shows the contribution of planning at the level of skills compared to planing at

the level of primitive actions. The results are displayed in Table 7.3.

13 distinct environment, 100 skills per environment
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% Envi-

ronments

Solved

Extra steps

taken

Training

time

Average

deployment

time

Our method (per-

fect concept base)

100% 0 n/a 2.58 secs

Our method

(concept base lear-

ned from demo

only)

18.18% 0 0.147 secs 0.047 secs

Our method

(concept base lear-

ned from demo and

random explora-

tion)

51.51% 13.58 9.37 secs 43.25 secs

Meta controller to

choose skills

15.15% 17.8 n/a 0.01 secs

Behaviour cloning

at action level

0% n/a n/a n/a

Tab. 7.1. Comparison with different methods

When the concept base is learned from a single demonstration, the agent has a very limited

understanding of the environment. This limits the generalisation capability of the agent,

but since the number of concepts learned is smaller, it doesn’t have to spend much time

finding the optimal path. This is seen in “Our method (concept base learned from demo

only)” which takes only 0.047 secs to deploy but achieves an accuracy of 18.18%. As the

concept base increases in size, so does its ability to solve a wider range of environment. “Our

method (concept base learned form demo and random exploration)” solves 51.51% of the

environments it is deployed in. However, time taken to deploy is very high – 43.25 secs on

average. We hypothesise that due to missing concepts, it sometimes may take much longer to
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arrive at a given state, and due to compounded concepts, it may spend unnecessary amount

of time making objects it does not need.

Since we have a single demonstration, behaviour cloning at skill level and at the action level

suffers from a data deficiency. In this case, we therefore simply replicate the skill sequence

and the action sequence. The skill level replication works when all the relevant sub-task

dependencies are the same, whereas it is highly improbable for direct action replication to

work. We can see this in the table above. We can see that the best case scenario is planning

at the level of skills while having the most accurate possible set of concepts.

7.1.2. Multiple demonstrations

The experimental setup is similar to the one in section 7.1.1, except that we have access to

multiple demonstrations. In this experimental setup, we ensure that each demonstration has

a different sub-task dependency structure. That is, to accomplish the task of getting gold, it

has to ensure that a different set of events occur in the environment. We consider a similar

ablation study to understand how planning at the level of skills, planning using System 3’s

algorithm, and planning with concept bases with different levels of accuracy individually

affect the performance of the agent.

Algorithms being used :

(1) Our method (perfect concept base),

(2) Our method (concept base learned from demos only),

(3) Our method (concept base learned from demo + random exploration),

(4) Our method (concept base learned from demo + directed exploration),

(5) Repeat skill sequence + Meta controller to choose the skill (Behaviour cloning at the

skill level)

(6) Behaviour cloning at the action level

Results:
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% Envi-

ronments

Solved

Extra steps

taken

Training

time

Average

deployment

time

Our method (per-

fect concept base)

100% 0 n/a 1.78 secs

Our method

(concept base lear-

ned from demo

only)

90.90% 0 1.79 secs 1.385 secs

Our method

(concept base lear-

ned from demo and

random explora-

tion)

90.90% 0 10.59 secs 1.245 secs

Meta controller to

choose skills

24.24% 8.0 23.17 secs 0.016 secs

Behaviour cloning

at action level

3.03% 0 47.58 secs 0.007secs

Tab. 7.2. Comparison with different methods

Statistics for the framework with the perfect concept base remain the same as there is no

additional training that takes place. In the case where the concept base is only updated using

the demonstrations, since there are more demonstrations, it is able to show performance

similar to the case when further exploration is allowed. This result has high variance and is

susceptible to the variance and quality of the demonstrations. In both these cases, imperfect

concept bases can lead to unnecessary optimisation in certain scenarios that can lead to

agent getting stuck or performing unnecessary actions. Similar to the single demonstration

replication setting, behaviour cloning at skill level would work with high probability if the

sub-task dependencies remains the same. Behaviour cloning at the action level is highly

sensitive to small changes in the environment and the performance is very unreliable. This
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is obvious due to the fact that this environment is specifically designed to fail for algorithms

that rely on rote memorisation. Generalisation capabilities of the behaviour cloning are also

limited as the problem setting considers a very low data regime.

7.1.3. A note on baselines

In this work, we consider a scenario where we have very limited expert demonstrations

that were gathered in environments which we can no longer access. This assumption itself

disqualifies a significant number of methods from contention. This includes methods related

to Inverse Reinforcement Learning [9], GAIL and its variants [85, 165], and even simpler

methods in direct policy derivation [151, 153]. These methods require frequent interaction

with the environment during their training procedure. Although we assume unlimited access

to practice environments, we do not have access to the exact environments which were used

to generate these demonstrations.

TACO [166] seems to be a contender given the similarity of our problem setup, but it

actually represents the inverse of System 1. System 1 uses an exhaustive set of skills as

a pre-requisite to observe a stream of experience and output the sequence of skills that

were executed. TACO on the other hand, uses the sequence of skills as a pre-requisite (or

sketches, as they call it) to output a set of sub-policies, or skills. Once we have the sequence

of executed skills and the set of skills, the difference between our methods reduce to using

System 3 versus using a meta controller to execute the sequence of skills. We have already

included the latter as a baseline.

Methods like behaviour cloning, on the other hand, are destined to perform poorly in our

problem setup. Not only do we have very limited data to train these algorithms, these al-

gorithms are also required to handle long range sub-tasks dependencies. When it comes to

learning efficient priors to operate in low data regimes, it is natural to look at work in meta

learning and related fields. It is important to note that most of the methods that we mention

in the related work (section 2.3), along with methods in the domain of OO-MDP (section

2.3.3) work towards improving sample efficiency in simple tasks in high dimensional input
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regime. These methods are not necessarily equipped to tackle long range sub-task dependen-

cies. Added to this, they do not explicitly focus on inferring objective from demonstrations.

The objectives that the expert demonstrations aim to achieve are usually very straightfor-

ward. Therefore, it puts them at a disadvantage in our problem setup where there may be

multiple core and auxiliary objectives.

Due to these considerations, we believe that behaviour cloning at action level and meta-

controller operating at the skill level are sufficient baselines to provide a proof of concept

for this framework. To fully explore the scope of this framework, we must examine how

this framework would fare in a high dimensional state space setting. This would involving

comparing various methods that replace the current version of System 1, System 2, and

System 3. These settings may prove challenging as uncover underlying concepts may not be

as trivial. However, this examination is currently out of scope for this publication.

7.2. Planning with a Reward

Planning can be done either at a high abstraction level using the learnt skills and concepts or

using primitive environment actions. Planners that opt to act using primitive environment

actions face a remarkably challenging problem as the environment configuration itself can

change with object interactions. In most cases, unless we use deep neural networks that are

allowed to train with large amounts of data, the problem itself is intractable. Even in these

cases, we postulate that the network implicitly learns abstractions of the environment that

it uses to predict the next action. As we mentioned before, this problem setting is designed

specifically to fail for methods that do not work towards learning the core causal mechanisms

of the environment. Therefore, when it comes to the question of quickly adapting to new

task settings, such methods have a high probability of failure.

For these reasons, we only consider planners that can act at a high level of abstraction. In

spite of acting at a higher abstraction level, classical AI methods like Dijkstra, A-Star or

depth-first search that cannot work with the concepts learnt from systems 1 & 2 face an

extremely challenging situation. This is because the cost of planning in this environment

increases exponentially with the number of interactive objects. This is due to the fact that the
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environment structure itself can change with the use of certain objects. For example, when a

“stone” is removed from an environment configuration, certain objects that were blocked by

the “stone” may now become accessible, and the cost of travelling to other objects may also

change. This would change the overall setup of the problem and the agent has to include

the overall state into its search space instead of just the agent itself.

Reinforcement learning methods at the skill level face a similar challenge. Since the sub-

task dependencies for each environment may be different, any superfluous concepts that it

may learn by over-fitting to specific environment settings would lead to failure in test cases.

In a limited data domain, it is highly improbable for an RL agent to uncover core causal

mechanisms, or concepts. Our method, which uses an imperfect concept base itself fails

about half of the time.

In the comparison table below, we use a DQN [130] to compare against our methods which

have access either an imperfect or a perfect concept base. The task involves getting “gold”

in the same 33 environments which were used for previous experiments. These environments

are designed such that each one of them have a different sub-task dependency graph with

varying range of complexity.

Algorithms used:

(1) Our method (perfect concept base)

(2) Our method (concept base with random exploration)

(3) RL at the skill level

Results:

% Test en-

vironments

Solved

Extra steps

taken

Training

time

Average

deployment

time

Our method (per-

fect concept base)

100% 0 n/a 2.58 secs
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Our method

(concept base

learned random

exploration)

51.51% 13.58 9.37 secs 43.25 secs

RL at skill level 12.12% 17.8 507 secs 0.02 secs

Tab. 7.3. Comparison with different methods

As we can see, our method has very little time to train compared to RL at the skill level. The

performance of our method, however, is highly dependent on the correctness of the concept

base. Note that the RL agent simply outputs the skill given a state, whereas our method

builds a sub-task dependency graph using the learnt concepts at each time-step where there

is a change in the environmental structure. This is the primary reason for higher deployment

time, but also higher accuracy compared to the RL agent.

In this chapter we saw how our framework performs in different problem settings. In the

case of replicating demonstrations, we saw that the accuracy of the concept base can be

improved by random exploration in practice environments which in turn improves the overall

performance of the agent. In both planning and demonstration replication setting, the

framework outperforms methods that do not plan using the understanding of the environment

provided by the learnt concepts.
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Chapitre 8

Conclusion

In this work we have introduced concepts as a means to accumulate and represent infor-

mation about the environment. Based on the relationship between concepts, skills, and

events, we proposed a framework for an agent to continually improve its capability in a

given environment. The framework proposed is comprised of three sub-systems that tackle

different aspects of the problem - System 1 works in making information from various modes

(including partially observable demonstrations) accessible, System 2 helps in disentangling

and consolidating the concepts of the environment, while System 3 makes use of the agent’s

current understanding of the world to effectively plan in novel environment configurations.

It is important to note that the effectiveness of this framework improves with time and

experience. Concepts are an intuitive way to assimilate information as it is lightweight,

interpretable, and easily transferable. An agent is able to function with even a partially

developed set of concepts that can be improved whenever it is feasible. A neat example of this

capability is the ability extract relevant concepts from partially observable demonstrations,

combining it with existing information, and being able to generalise to novel scenarios. Since,

the planning component of the framework is disentangled from the component that learns

the concepts, the agent can learn in an online fashion. It can update its capabilities even as

it is being deployed.

Some limitations of the current framework



In this work, we assume access to a initial set of skills that can exhaustively cover all the

different behaviours that the agent can exhibit (See Def. ??). However, there are several real

world environments where it would be tedious and impractical to specify such an exhaustive

set of skills. If one considers situations like cooking, or operating in a construction site, there

are several objects which have to be dealt with in a specific way. For example, cutting a

pineapple is specifically different from cutting most fruits and vegetables, because one has to

also remove the thorns during the cutting process. If one had to exhaustively specify a set of

skills in such environments, cutting for pineapple would have to be an separate skill by itself.

In environments like the kitchen and the construction site, the variety of objects that could

be potentially encountered are tremendously large. In such environments it would be better

to compose skills at a lower level of hierarchy and form object-specific skills at a higher level.

The cutting of pineapple, for example, can be described in terms of multiple cuts specifically

parameterised according to the shape and texture of the pineapple. One can compose this

information in both the concept base and the set of skills simultaneously. We leave out such

environments in this work, as that would involve the need to consider switching between

multiple levels of hierarchy for an optimal plan.

We also leave out environments where the agent has to deal with interruptions like charging

battery and evading enemies. Success in such environments vastly depends on the ability of

an agent to learn an effective hierarchical controller. This includes stochastic environments

like Freeway, Seaquest, Pacman and real world environments like autonomous driving. In

such environments, constructing and planning using a sub-task dependency graph does not

completely solve the problem. Such environments may require utilising Linear Temporal

Logic (LTL) [155] or training adaptive meta controllers [143].

For continuous control domains, like the Cheetah and Hopper [181, 23], it is theoretically

impossible to specify an exhaustive set of skills as the action space itself is infinite. Although

via directed exploration we can come up with a broad ranging set of skills [49]. We do

not explicitly consider such environments, but we note that our proposed method of skill

segmentation would still work with a decent margin of error.

We note that the utility of our framework is apparent when we’re tackling hierarchical

environments. However, one may not find much benefit using this framework for strategy
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games like Go, Chess or multi-agent games like DotA and StarCRAFT. Here, it is not

intuitive to abstract strategic plays into an exhaustive set of skills, and we are not sure if

this is the right way to look at this problem. On the other hand, the core concepts of a game

environment are easy to obtain and can be much easily incorporated as priors.

Another limitation in the current version of the framework is having a fixed set of skills

that is decided at the start of deployment. The framework could potentially function better

if there was a robust way of improving the quality of skills. The trade-off between skill

interpretability and exhaustiveness of the skill set is something we have not considered in

this work.

8.1. Possible avenues for future Work

Demonstrating the working of this framework in the environment CRAFT involved an as-

sumption that we have access to an exhaustive set of initial skills. The exhaustiveness of the

skill set ensures that the segments obtained from System 1 has all the relevant information

necessary for the formation of concepts. As discussed in section 2.2.1, there are several ways

to relax this assumption. There are works that learn skills during the exploration phase [49],

or while segmenting the demonstrations [166]. An exhaustive set of skills is non-trivial to

define and it is especially hard when we’re discovering skills or behaviours in an unsupervised

way. A successful way to do this is by specifying that the learnt skills should be as diverse

from the one another as possible [49]. We also assume that the learnt set of skills is fixed

and don’t work towards refining individual skills, decomposing skills into skills of a lower

abstraction level, or composing skills to form more abstract skills. Some works have worked

towards this on a preliminary level [155, 131], but a generalised approach to this problem

is missing.

Refining and updating skills at different levels of abstractions can be done in conjunction with

developing concepts. In section 1.1, we talked about the intricate relationship between skills,

events, and concepts. This relationship is the basis on which our framework is designed.

In an ideal situation, skills, events, and concepts are learned simultaneously without any

prior assumptions. But as we discussed, it is highly non-intuitive for even humans to do this
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effectively. We as humans are able to utilise prior knowledge to not just execute various tasks

effectively, but also to further refine and develop our understanding about the environment.

In the future we would like to explore how one could start with a very limited amount of

information about the environment. We would like to explore what is the minimum amount

of information that is just enough to define the problem well, and how one could use this

to gradually develop an expansive set of concepts and skills. As described in the lifelong

learning book [32], an advanced lifelong learning agent should also be able to discover new

problem statements that are worth tackling and refine relevant concepts in a self-supervised

way.

In this work, we assumed access to the format of the concepts, and State Embedding Func-

tions that are used to extract information from the segments. We note that it is non-trivial

to automate the process of discovering these from scratch. Progress in this aspect of the

problem is tied to the progress in unsupervised learning, and knowledge representation in

lifelong learning. Improvement in these aspects would lead to a lot of dividends in terms

of real world applicability and generalisation capabilities of algorithms. Another aspect we

would like explicitly explore is learning concepts and planning across different levels of hie-

rarchy. The options framework [178] makes it very flexible for the planner to operate at

different levels, however the size of the search space expands exponentially. It takes a lot of

effort for an algorithm to learn the value function for different options such that the planner

can function effectively. It is also not trivial to update the options when there is an influx

of new information. In future work, we hope to experiment with planners that can easily

switch between various levels of hierarchy. We postulate that effective representation and

usage of concepts can work towards improving the quality and efficiency of existing planners.

8.1.1. Other ways of skill segmentation

In this work, we consider hard-coded skill discriminators. Although, they most use informa-

tion from the corresponding skills, we must work towards a more generalisable way of skill

segmentation. An self-supervised way to do this would be use trajectory embedding tech-

niques [97] to map the behaviour of different skill to controllable latent variables. When a
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demonstration is encountered by the system, it can observe the behaviour of latent variables

to detect segmentation points and classification of the segments.

Developing reliable skill embedding is one way to go about this. Here, we take the actions

to the sub-policy space, and work towards a solution in that sub-policy domain. We can

also go the other way by taking the sub-policies into the action space and defining relevant

loss functions in the discrete action domain. Example of such loss functions can be found in

the trajectory comparison literature [39], although it is not trivial to ignore to state space

artifacts that we consider as irrelevant.

ComPILE [98] is an important advancement in an agent’s ability to divide demonstrations

into segments that can be used to learn skills. The basic information extraction block in

ComPILE is a VAE. It iteratively predicts the segmentation and the encodes the segment

into a latent variable z, which is then decoded into low level actions. The information

extraction mechanism can be replaced with other generative modelling methods like GANs.

This avenue is yet to be explored.

One can also explore adding different layers of complexity in a UPN-like-architecture [172].

Where instead of relying on learning transition function on a action level, we can learn

transition function on a skill level. Instead of having to replicate the demonstration in terms

of actions, we can work towards having skills as the basis of creating a demonstration. Since,

the UPNs learn task specific features from state, these features may be able to ignore the

state specific details that do not matter at higher levels of abstraction.

8.1.2. Lifelong Learning Agents

This work forms a stepping stone towards consolidating different aspects of machine learning

into a single problem statement. The core of aspect of intelligent systems is being able to

re-use learnt information to continually upgrade one’s capability. This work highlights the

progress made in various domains to achieve this, and introduces the notion of “concepts”

that can potentially simplify this endeavour.
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This work can be grouped with other works that tackle hierarchical environments using a

framework based approach [131, 171]. In this respect, there are several avenues that are yet

to be explored such as extending the method to environments that resemble the real world

more closely and improving the robustness of information extraction techniques. As mentio-

ned in the Lifelong learning book [32], a critical aspect of information extraction is affirming

the correctness of extracted knowledge and understanding when a piece of information can

be applied. These aspects have been explored in the context of Natural Language Processing

[31, 128], and are yet to be explored in the RL setting.

We hope that this work encourages researchers to look at hierarchical domains from a fra-

mework point of view. The use of concepts specifically demonstrates how prior knowledge

about the environment can be efficiently utilised and help the agent to continually improve

its understanding about the environment. Specifically, in CRAFT environment, we demons-

trate the drastic difference this makes in terms of the agent’s generalisation capability and

planning efficiency.
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Annexe B

Les différentes parties et leur ordre d’apparition

J’ajoute ici les différentes parties d’un mémoire ou d’une thèse ainsi que leur ordre d’appari-

tion tel que décrit dans le guide de présentation des mémoires et des thèses de la Faculté des

études supérieures. Pour plus d’information, consultez le guide sur le site web de la facutlé

(www.fes.umontreal.ca).



Ordre des éléments constitutifs du mémoire ou de la thèse
1. Les pages de garde obligatoire∗
2. La page de titre obligatoire
3. Le résumé en français et les mots clés français obligatoires
4. Le résumé en anglais et les mots clés anglais obligatoires
5. Le résumé dans une autre langue que l’anglais obligatoire

ou le français (si le document est écrit dans
une autre langue que l’anglais ou le français)

6. Le résumé de vulgarisation facultatif
7. La table des matières, la liste des tableaux, obligatoires

la liste des figures
8. La liste des sigles, la liste des abréviations obligatoires
9. La dédicace facultative
10. Les remerciements facultatifs
11. L’avant-propos facultatif
12. Le corps de l’ouvrage obligatoire
13. L’index analytique facultatif
14. Les sources documentaires obligatoires
15. Les appendices (annexes) facultatifs
16. Les documents spéciaux facultatifs

∗ Les pages de garde sont obligatoires pour le dépôt initial, qui est normalement fait en format
papier. Elles sont cependant à proscrire pour le dépôt final, fait sous forme électronique, dans
Papyrus. L’ouverture d’un fichier débutant par une page blanche peut être déconcertante
pour le lecteur.
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