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ABSTRACT   
 

There are two main approaches to assess the robustness of genetic codes and coding sequences. 

The statistical approach is based on empirical estimates of probabilities computed from random 

samples of permutations representing assignments of amino acids to codons, whereas, the 

optimization-based approach relies on the optimization percentage frequently computed by using 

metaheuristics. We propose a method based on the first two moments of the distribution of robustness 

values for all possible genetic codes. Based on a polynomially solvable instance of the Quadratic 

Assignment Problem, we propose also an exact greedy algorithm to find the minimum value of the 

genome robustness. To reduce the number of operations for computing the scores and Cantelli’s 

upper bound, we developed methods based on the genetic code neighborhood structure and pairwise 

comparisons between genetic codes, among others. For assessing the robustness of natural genetic 

codes and genomes, we have chosen 23 natural genetic codes, 235 amino acid properties, as well 

as 324 thermophilic and 418 non-thermophilic prokaryotes. Among our results, we found that although 

the standard genetic code is more robust than most genetic codes, some mitochondrial and nuclear 

genetic codes are more robust than the standard code at the third and first codon positions, 

respectively. We also observed that the synonymous codon usage tends to be highly optimized to 

buffer the impact of single-base changes, mainly, in thermophilic prokaryotes.  

Keywords: Quadratic assignment problem, Cantelli’s upper bound, Generalized linear mixed models, 

Genetic code, hydrophobicity, thermophiles, codon usage bias. 
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RÉSUMÉ  
 

Deux approches principales existent pour évaluer la robustesse des codes génétiques et des 

séquences de codage. L'approche statistique est basée sur des estimations empiriques de probabilité 

calculées à partir d'échantillons aléatoires de permutations représentant les affectations d'acides 

aminés aux codons, alors que l'approche basée sur l'optimisation repose sur le pourcentage 

d’optimisation, généralement calculé en utilisant des métaheuristiques. Nous proposons une méthode 

basée sur les deux premiers moments de la distribution des valeurs de robustesse pour tous les 

codes génétiques possibles. En se basant sur une instance polynomiale du Problème d'Affectation 

Quadratique, nous proposons un algorithme vorace exact pour trouver la valeur minimale de la 

robustesse génomique. Pour réduire le nombre d'opérations de calcul des scores et de la borne 

supérieure de Cantelli, nous avons développé des méthodes basées sur la structure de voisinage du 

code génétique et sur la comparaison par paires des codes génétiques, entre autres. Pour calculer 

la robustesse des codes génétiques naturels et des génomes procaryotes, nous avons choisi 23 

codes génétiques naturels, 235 propriétés d'acides aminés, ainsi que 324 procaryotes thermophiles 

et 418 procaryotes non thermophiles. Parmi nos résultats, nous avons constaté que bien que le code 

génétique standard soit plus robuste que la plupart des codes génétiques, certains codes génétiques 

mitochondriaux et nucléaires sont plus robustes que le code standard aux troisièmes et premières 

positions des codons, respectivement. Nous avons observé que l'utilisation des codons synonymes 

tend à être fortement optimisée pour amortir l'impact des changements d'une seule base, 

principalement chez les procaryotes thermophiles. 

Mots-clés: Problème d'Affectation Quadratique, La borne supérieure de Cantelli, Modèles linéaires 

Généralisés mixtes, Code génétique, hydrophobicité, thermophiles, biais d'utilisation des codons. 
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CHAPTER 1 

CHAPTER    1 : INTRODUCTION 

 

At the main stages of the flow of genetic information from DNA to proteins, namely, DNA replication 

and repair, RNA transcription, RNA splicing, translation and post-translational modification, errors are 

frequent but only the mutations, which occur during DNA replication and repair, can be inherited1. The 

reduction of error and mutation rates and increase of the robustness are two important strategies that 

usually increase the fitness of an organism2 [2, 3, 4, 5, 6]. The variations in error and mutation rates 

stems from genetic variations of some proteins directly involved in the DNA replication and repair 

systems [5].  

The robustness is an intrinsic property of the proteins [7], regulatory gene networks [8, 9], protein 

interaction networks [8] and natural genetic codes [6, 11]. This property is based on one or two 

principles, the redundancy and the capacity to buffer the effect of errors [8, 9, 10, 12]. Both principles 

are present in the standard genetic code. The principle of redundancy can be seen in the fact that 

each one of most amino acids is encoded by more than one codon in the natural genetic codes. On 

the other hand, the other principle, that is, the capacity to mitigate the effect of errors, or mutations, is 

clearly reflected by two characteristics of the natural genetic codes: 1) Most of the codons that specify 

the same amino acid differ by one single-base change at the third codon position. 2) Similar amino 

acids are allocated to codons that differ by one single-base change. The first characteristic is due to 

the wobble codon-anticodon interaction and the resulting degeneracy of the genetic code [13]. The 

second characteristic, called here the load minimization property, has been considered by some 

authors as an evidence of evolutionary selection for minimizing the effect of errors and mutations [14, 

 
1 In DNA replication an incorrect nucleotide is incorporated only once in 108–1010 events, whereas in transcription and translation, the 
misincorporation rates are of 1 in 104 events and 1 in 103–104 events, respectively. [1] 
2 The fitness of an organism is the ability to survive and reproduce in a given environment.  
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15, 16]. However, other authors argue that this property could be an artifact of the evolution of the 

standard genetic code rather than a selectable feature3 [17, 18, 19]. 

The load minimization property is computed as the mean change in a given amino acid property 

between all the codons that differ by one single-base substitution, henceforth called as mean 

phenotypic change. The mean phenotypic change is a measure of the robustness of a given genetic 

code. There are two main approaches to assess the robustness to errors, namely, the “statistical 

approach” and the “engineering” approach [20, 21]. Both approaches essentially use the same 

function of mean phenotypic change. The main difference between both approaches lies in the 

method of assessing the significance or the relevance of the mean phenotypic change values. The 

first one is based on the estimates of the probability of obtaining random codes as or more robust 

than a given natural code [14, 22]4. The second approach is based on the use of optimization 

algorithms to find at least one code more robust than the standard code. This code is used to calculate 

the percent of optimization of natural genetic codes [18, 24]. 

Concerning the statistical approach, since the theoretical null distribution of the mean phenotypic 

change is unknown, an empirical null distribution is estimated by generating a random sample of 

codes [14, 25, 26]. The probability of obtaining codes as or more conservative than the natural genetic 

code is computed from this sampling distribution. For a genetic code representation based on codons, 

the number of all possible codes is of the order of 1089, whereas for a genetic code representation 

based on codon blocks5, the total number of codes is of the order of 1018. As it is impossible to 

encompass the entire population of all possible codes, a comparatively much smaller sample of codes 

 
3 There are two types of robustness: 1) The extrinsic robustness which is usually the result of natural selection, for example, the heat 
shock response. 2) The intrinsic robustness which is probably the side-product of selection for another feature or the result of selection 
in high mutation rate regimes, for example, the scale free structures of metabolic networks and protein interaction networks, the load 
minimization property of the genetic code [17]. 
4 Some authors used the scores calculated from empirical estimates of mean and standard deviation [22].  
5 Set of synonymous codons. 
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must be generated. On the other hand, since the unknown probability of generating codes more 

conservative than a given genetic code could be too small, the size of the random sample should be 

as large as possible to improve the accuracy of the estimates. Therefore, this method is inaccurate 

and expensive in terms of running time. 

As for the “engineering” approach, the problem of quantifying the genetic code robustness to errors 

is formulated as an optimization problem. This problem, known as Load minimization problem, 

consists of finding a code with a minimum value of mean phenotypic change and is equivalent to the 

Quadratic Assignment Problem (QAP) which is NP-hard in its most general form [27]. To date most 

used algorithms to solve the Load minimization problem have been metaheuristics and local search 

algorithms [18, 28, 29, 30, 31].  Consequently, the reported estimates of optimization percent are sub-

optimal. Multi-objective and population-based search algorithms have recently been applied to the 

Load Minimization Problem [32, 33]. Although these algorithms are useful to find more realistic 

solutions, they do not overcome the shortcomings related to suboptimality.  

We focused on finding more efficient methods to assess the mean phenotypic change or robustness 

values of natural genetic codes and genomes. Concerning the statistical approach, we used the 

Cantelli’s upper bound and scores as measures of relevance instead of numerically estimated 

parameters like the probability of obtaining codes more robust than the natural genetic code. The 

Cantelli’s upper bound and scores were computed by using the equations for the mean and variance 

of the distribution of the robustness values corresponding to all possible genetic codes, assuming that 

the assignments of amino acids to codons are random. Since this method does not require generating 

a random sample of codes of large size, it represents an improvement, mainly, in terms of efficiency 

with respect to the previous method based on empirical parameter estimates.  
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We applied this method to compute the robustness of 23 natural genetic codes with respect to 235 

amino acid properties. We used three genetic code representations for the whole genetic code and 

for each codon position and substitution type. To date, most of the studies have been limited to the 

codon-block representation of the genetic code (i.e. blocks of synonymous codons) and less than 20 

amino acid properties [25, 26, 34, 35, 36].  

 The most relevant amino acid properties obtained by our analysis shed light on possible scenarios 

where a genetic code with the load minimization property could have emerged and evolved. Moreover, 

this analysis provides a comparative view of the relevance of each of the 235 properties of amino 

acids not only for the ability of the natural genetic codes to mitigate the impact of single-base changes 

but also for the adaptive evolution of proteins [38]. We corroborated that the hydrophobicity/polarity is 

the most relevant property [25, 39, 40].  More exactly, the most significant amino acid property scales 

were the Miyazawa’s hydrophobicity, Polar requirement and Kyte’s hydropathy index. Overall, we 

observed that there are other properties, besides the Hydrophobicity/polarity, linked to relevant values 

of genetic code robustness, namely, the average long-range contacts, Flexibility, Solvent Accessible 

surface area and transmembrane helix and small-linker propensities.  

We observed that when considered the whole set of single base changes, the standard code turned 

out to be among the first three most robust codes of the 23 chosen natural genetic codes. However, 

the mitochondrial and nuclear genetic codes tend to be more robust than the canonical code at the 

third and first codon positions, respectively. These results indicate that natural codon reassignments 

increasing code robustness at these codon positions could be important factors in the recent evolution 

of the standard genetic code.  

As for the “engineering” approach, we have found that the weight matrices of a genetic code 

representation used for computing the genomic robustness share some characteristics with the 
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coefficient matrices of one instance of the Quadratic Assignment Problem with polynomial solution. 

Actually, only the weight matrix corresponding to the codon-based representation (i.e. synonymous 

codons not grouped into blocks) has these characteristics. In this case, we would apply a greedy 

algorithm to find the global minimum of the genomic robustness. For computing the optimization 

percentage, this value was used together with the mean of the genomic robustness values for all 

possible codes6. Therefore, the improvement with respect to previous methods is twofold: the 

estimates of optimization percentage are accurate and more efficiently computed.  

We applied both approaches to evaluate the genomic robustness values of 324 thermophilic and 418 

non-thermophilic prokaryotes according to 84 amino acid properties, three methods to process the 

stop codons and two weightings, one assigning equal weights to all single base changes (called 

unbiased weighting) and the other based on translation errors (also called, biased weighting). Both 

groups of prokaryotes were compared with respect to the scores and optimization percentage used 

as measures of relevance of genomic robustness values. Several three-level logistic mixed models 

were built including the scores, optimization percentage or principal components as fixed effects and 

the binary thermal categories as dependent variables. The most relevant amino acid properties and 

genetic code representations were chosen according to the probability values for fixed effects. Several 

studies have explored the relationship between codon usage and codon robustness by using the 

genomic robustness or, more precisely, the mean phenotypic change weighted with codon usage [35, 

40, 41, 42, 43, 44, 45].  On the other hand, significant differences have been reported between 

thermophiles and mesophiles with respect to codon and amino acid usage [46, 47 ,48, 49]. We 

observed that the synonymous codon usage in prokaryotic genomes tend to be more robust for the 

weighting based on translation errors and amino acid hydrophobicity scales. We also detected that 

 
6 The traditional methods used empirical estimates of the mean based on generating random samples of codes [25, 26]. 
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thermophilic prokaryotes are significantly more robust than non-thermophilic prokaryotes for average 

long-range contacts, mainly, at the first codon position [51, 52, 53]. These results agree with the 

selection for error minimization observed in coding sequences as well as with results indicating a 

significant influence of the mRNA stability and load minimization at the protein level on the 

synonymous codon usage divergence between thermophilic and mesophilic prokaryotes [41, 42, 43, 

44, 50]. The codon block for the amino acid, Arginine, resulted to be the block most optimized to 

mitigate the effect of errors in thermophiles relative to non-thermophiles, among all codon blocks with 

at least two codons with different robustness (called here, heterogeneous codon blocks)7.  

We propose two methods to reduce the number of operations for computing the scores and Cantelli’s 

upper bound, one based on applying some transformations to the equations for the first two moments 

of the distributions of robustness values and the other based on partitioning the graph representing 

the genetic codes into two components according to four different criteria, namely, a first robustness-

based criterion, for which one component contains heterogeneous codon blocks and the other, 

homogeneous codon blocks8, a second criterion based on pairwise comparisons between genetic 

codes, a third criterion based on the distinction between sense codons9 and stop codons and a fourth 

one based on the distinction between synonymous and non-synonymous single-base changes .  

The thesis is organized as follows. In chapter 2 after introducing the three main theories on the origin 

and evolution of the standard genetic code, we briefly describe some methods for assessing the 

robustness of genetic codes and genomes and their applications to test some hypotheses on the 

evolution of the codon usage bias as well as on the origin and evolution of the standard genetic code. 

 
7 We observed that for both weightings applied and for any amino acid index without repeated values, the set of codon blocks 
containing at least two codons with different robustness corresponds to the amino acids, Alanine, Glycine, Lysine, Arginine, Valine, 
Leucine, Serine, Isoleucine, Proline and Threonine. It is noteworthy that this set is equal to the known set of primitive amino acids 
except for the amino acids, Arginine and Lysine, that must be replaced for the Aspartic and Glutamic acids [54].    
8 The homogeneous codon blocks are sets of synonymous codons with the same robustness.  
9 The sense codon is a codon that codes for an amino acid. 
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In chapter 3, we review some elements of the Quadratic Assignment Problem. The problem of finding 

the most robust genetic code is an application of the QAP. We showed that the problem of finding the 

code for which the genomic robustness reaches a maximum value is equivalent to a known polynomial 

instance of QAP. On the other hand, the mean and variance of the distribution of robustness values 

for all possible assignments of amino acids to codons stem from the statistical applications of the 

Quadratic Assignment Problem. In chapter 4, we present the statistical and optimization-based 

methods that we propose to assess the robustness of genetic codes and genomes. We also describe 

some “shortcuts” to improve the efficiency of calculation and the statistical methods used in data 

analysis. In the chapters 5 and 6, we report and analyze the results of the application of our methods 

to compute the genetic code and genomic robustness. We set forth the amino acid properties 

according to which the genetic codes and genomes showed the most significant values of robustness. 

Several natural genetic codes are compared according to the whole and partial genetic code 

representations. Additionally, thermophilic and non-thermophilic genomes are compared according to 

several amino acid properties and different genetic code representations. The results are statistically 

analyzed and discussed. In chapter 7, we review the contributions of this project and suggest some 

possible lines of research to pursue in the future.  
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CHAPTER 2 

 

CHAPTER 2: ON THE ROBUSTNESS OF THE GENETIC CODES AND GENOMES 

 

2.1 Early evolution of the standard genetic code 
 

The standard genetic code is clearly structured such that similar amino acids tend to be assigned to 

codons differing by only a single nucleotide. This non-random arrangement of the genetic code results 

in its ability to mitigate the phenotypic impact of mutations or translation errors. Three main theories 

have been proposed to explain why the standard code has this property. These theories, namely, the 

Adaptive, Stereochemical and Coevolution theories, refer to the ancient evolution of the genetic code 

at the time of the last universal ancestor. In line with the Adaptive theory, this property is the result of 

selective forces acting on the ancestral genetic codes to minimize the effect of errors on the protein 

structure and function [14, 22, 55]. The Stereochemical theories states that this property is not a 

consequence of natural selection but rather due to the fact that the result that similar amino acids tend 

to bind to related codons or anticodons. As suggested by this theory, the interactions between 

ribozymes and amino acids used as cofactors gave rise to the initial genetic code in the context of the 

RNA-world [21, 39, 56, 57].  As for the coevolution theory, it suggests that the genetic code was 

expanded from an ancestral form containing a limited set of abiogenically synthetized amino acids, 

by incorporating the novel amino acids as biosynthesis pathways evolved. The codons specifying the 

precursor amino acids were reassigned to product amino acids synthetized from them in such a way 

that the effect of these replacements on protein structures tended to be minimized. According to this 

theory, the error minimization plays a subsidiary role because the evolutionary advantage that entails 

the new amino acid introduction outweighs its deleterious effect [59,60,61,62].   
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In general, there are two specific patterns in the genetic code structure that can be considered as 

good evidences for the adaptive and coevolution theories. The second codon position tends to group 

the amino acids with similar properties. More exactly, the codons that share the nucleotide U at 

second position specify hydrophobic amino acids whereas those that share the nucleotide A at this 

position specify hydrophilic amino acids. This pattern has been considered consistent with the 

adaptive theory. On the other hand, the codons starting with the same nucleotide correspond to amino 

acids that come from the same biosynthetic pathway [21,58].  More precisely, the amino acids of the 

shikimate, glutamate and aspartate families are encoded by codons starting with U, C and A, 

respectively. In addition, the codons with G at the first position correspond to the primitive amino acids   

[54]. This pattern agrees with the coevolution theory.  Other alternative evolutionary pathways that 

could give rise to this structure of the standard genetic code have been put forward, such as, the 2-1-

3 model of Massey [58, 64], the four columns theory of Higgs [65] and the ambiguity reduction model 

[66, 67].   

Three main methodologies have been applied to test these theories: 1) The methods to quantify the 

robustness of genetic codes. (Adaptive and Coevolution theories), 2) The techniques of in vitro 

selection of RNA ligands, called aptamers, based on their binding strength to the amino acids. (stereo-

chemical theory) and 3) Phylogenetic analysis of tRNAs and aminoacyl-tRNA synthetases. 

(Coevolution theories) [39, 66, 68]. 

2.2 Recent evolution of the standard genetic code 
 

In addition to the standard code, more than 20 alternative genetic codes have been reported so far. 

These genetic codes, belonging to organelles and organisms with reduced genomes, have evolved 

from the standard code through a few codon reassignments. Three types of changes of the standard 

code are clearly visible, the reassignment of codons, the unassignment of codons and the introduction 
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of new amino acids. Among the 23 alternative natural genetic codes, 10 involve reassignments of only 

sense codons and 8 also involve reassignments of stop codons [39, 69].  Two non-canonical amino 

acids have been shown to be encoded by the standard genetic code, namely, selenocysteine and 

pyrrolysine. 

Two main theories explain the origin and evolution of the non-canonical genetic codes, the Codon 

capture and the Ambiguous intermediate theories. The Codon capture theory states that some codons 

vanish from genomes subjected to neutral mutational pressure resulting from errors of the DNA repair 

and replication systems. Later, these codons can eventually reappear by genetic drift. Then, a 

misreading non-cognate tRNA can capture this codon but reassigning it to a different amino acid. As 

for the Ambiguous intermediate theory, it states that in a duplicated tRNA gene, a mutation can occur 

that changes the anticodon identity or the specificity to aminoacyl-tRNA synthetase10. This results in 

an ambiguous translation of the considered codon. Two ambiguous translation types have been 

identified: 1) Ambiguity involving sense codons, according to which there is a competition between 

the wild-type cognate tRNA and non-cognate misreading tRNA or between two different amino-acyl 

tRNA synthetases charging the cognate tRNA. 2) Ambiguity involving a stop codon. In this case there 

is a competition between the release factor and the non-sense suppressor tRNA [69,70, 71, 72, 73]. 

Sengupta S and Higgs P. have introduced a unified gain-loss model of codon reassignment 

incorporating, as particular cases, the above-mentioned theories and two additional theories, namely, 

the unassigned codon and compensatory change [71, 72, 73].   

 

 

 
10 It has also been considered the possibility of mutations that affect genes involved in tRNA splicing and posttranscriptional base 

modifications as well as the genes for translational release factors. 



11 
 

2.3 Methods to quantify the genetic code robustness 
 

The development of methods to quantify the robustness of the genetic codes have been essential to 

test different scenarios of the origin and evolution of the standard genetic code. These methods have 

also been useful to compare different natural genetic codes with respect to their robustness. These 

methods have three main components, namely, the computation of the mean phenotypic change, the 

procedures to assess the relevance of the mean phenotypic change values and representations of 

the genetic code. Different variations of such methods have been explored with the main objective of 

identifying the conditions under which the highest mean phenotypic change values are reached for 

the considered genetic code. 

2.3.1 Exploring different functions of weighted mean phenotypic change 
 

We point out below some of the most interesting results on the amino acid properties and weighting 

used in the mean phenotypic change. Several functions of mean phenotypic change, or robustness, 

of the standard genetic code based on different amino acid properties have been computed for 

comparison purposes. According to the statistical approach, the most relevant values were found for 

Polarity requirement [25, 29, 35, 62]. For this property, the proportion of codes more robust than the 

standard code was shown to be 2 in a sample of 104 randomly generated codes [25]. Later, by using 

a mean phenotypic change that include weights biased with respect to the codon position and 

substitution type, much smaller estimates of this proportion were obtained (only one code more robust 

than the standard code in a sample 106 randomly generated codes) [26]. Since this genetic code 

model including a more realistic weighting based on translation errors, led to most relevant values of 

robustness, the authors considered these results as a good evidence for the correctness of the 

adaptive theory [26]. In other words, the standard genetic code has been structured by selective forces 

in such a way that the effect of mistranslations is minimized. Furthermore, other authors have shown, 
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by using a population genetic model of code-message coevolution, that the reduction of the effect of 

mutations could have also driven the evolution of the genetic codes [39].  Even more outstanding 

estimates of the genetic code robustness (of the order of 2×10-9) were obtained by considering, first, 

a weighting that combines the substitution type and position with the amino acid frequency and 

second, a weight matrix whose elements are the effect in terms of folding free energy caused by 

amino acid substitutions [36].  

Other research projects aimed at exploring other aspects of the genetic code optimality, have been 

considered using different weightings based on the relative frequencies of tRNAs gene copies [74], 

the codon usage [35, 40, 43, 44] as well as the two known classes of Aminoacyl-tRNA synthetases 

[75].  All these studies shed light on the relationship between the genetic code ability to minimize the 

effect of mistranslations and mutations and different factors like the amino acid and codon usage, the 

tRNA frequencies as well as the identities of the amino acids recognized by both Aminoacyl-

tRNA.synthetases. 

2.3.2 Evaluating different scenarios of genetic code evolution  
 

The representation based on codon-blocks11 has been the most frequently used representation. 

However, in order to validate certain genetic code evolution models, specific representations and 

randomization methods have been devised. We briefly explain some of these works below.  

By using the approach based on optimization, Novozhilov and Koonin, have observed that a 

representation of the primordial genetic code based on 16 codon blocks shows high values of 

minimization percentage. These results are consistent with the expected low accuracy of the 

translation, DNA replication and repair systems at the initial phase of the genetic code evolution. In 

 
11 Each alternative code is generated by randomly allocating each of the amino acids to the codon blocks observed in the natural 
genetic code, while the stop codons remain invariant.  
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this scenario, the most robust codes must have represented a significant evolutionary advantage [76]. 

By using a similar approach based on optimization, Di Giulio, have validated different representations 

linked to the stages of genetic code expansion associated to the evolution of amino acid biosynthesis 

pathways [60, 62].  

On the other hand, Massey stated that certain scenarios of the neutral evolution of primordial codes 

may be at the origin of the robustness of the standard genetic code structure. This study has provided 

evidence for the hypothesis that the addition of novel amino acids to the evolving codes derived from 

a process of duplication and divergence of Aminoacyl-tRNA synthetase and/or tRNA genes tends to 

favour the assignment of similar amino acids to similar codons. For their simulation experiments of 

code evolution, they used representations of genetic codes with different numbers of amino acids and 

codon block structures. The robustness was assessed by using the proportion of alternative genetic 

codes better than the standard code [63, 64]. 

As for Freeland and Hurst, they have shown that the pattern of biosynthetic connection between the 

amino acids encoded by codons starting with the same base does not explain the standard genetic 

code robustness. In this work, they used the known block-based representation of the standard 

genetic code and the statistical approach to assess the code robustness relevance. The amino acids 

were classified into four groups with respect to the base identity that their corresponding codons have 

at the first position. For estimating the proportion of codes more conservative than the natural code, 

two randomization schemes were applied, one for which the amino acid assignments were 

randomized without any restriction and the other for which the amino acid assignments were 

randomized under the restriction that each amino acid can only be reassigned within its corresponding 

group [14].     
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Buhrman et al. have incorporated in the method for assessing the robustness, the genetic code 

patterns described by the coevolution theory [14, 21] and some results of the aptamer experiments. 

Regarding the aptamer experiments, the assignments of seven amino acids were fixed on the basis 

of the enrichment observed for their codons in binding sites. The randomization of codon assignments 

was restricted to three sub-groups of biosynthetically connected amino acids [77].  

2.3.3 The optimization algorithms used to assess genetic code robustness 
 

For computing the optimization percentage, it is required to find the code with the minimum value of 

mean phenotypic change. Several metaheuristics have been applied for this purpose, such as, 

simulated annealing [28], genetic algorithms [20, 29, 30, 31, 78, 79], Great deluge [74, 81] and record-

to-record travel algorithms [80]. The mean phenotypic change used as objective function in these 

studies, frequently included one or two amino acid properties, such as, polarity and volume. Overall, 

some authors have preferred to independently compute the robustness for each property of a 

previously chosen set of amino acid properties and compare the results [35, 43].  This approach based 

on meta-heuristic mono-objective optimization has been improved in two directions, by using multi-

objective optimization algorithms or exact optimization algorithms.  

As for the multi-objective optimization strategy, De Oliveira et al. [33] argued that the evolution of the 

genetic code to its present form can be more accurately described by a simultaneous optimization of 

two robustness functions, the first for polar requirement and the other, for hydropathy index or 

molecular volume. By applying a bi-objective genetic algorithm they have obtained codes with high 

values of optimization percentage. Other authors have applied multi-objective genetic algorithm with 

eight objective functions. They conclude that the genetic code is moderately optimized to mitigate the 

effect of errors [32]. 
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Buhrman et al. [27] formulated the load minimization problem as a Quadratic assignment problem and 

solved it by using an exact branch and bound QAP-solver QAPBB [82]. They stated that the solution 

obtained by using the record-to-record travel algorithm was actually the global optimum for the block-

based representation of the genetic code [80]. 

Other classical problems have been considered to study the genetic code structure, such as, the 

graph clustering problem [84] and the Traveling Salesman Problem (TSP) [83]. In particular, the load 

minimization problem was formulated as a TSP and solved by using a Hopfield neural network [83]. 

2.4 Robustness at the gene and genome level 
 

The mean phenotypic change weighted with codon usage indicates the extent to which codon usage 

is optimized according to the genetic code structure. A significant association between codon usage 

and robustness to errors could indicate that natural selection for buffering the effect of errors could be 

an important factor in the evolution of coding sequences and genomes.  

Zhu et al. have observed that, in Escherichia coli, the weighting based on codon position, 

transition/transversion bias and codon usage at the genome level decrease the error minimization. 

More exactly, they observed that the proportion of better codes is larger than those observed for 

Freeland and Hurst [35]. However, the genetic code turned out to be more robust according to codon 

usage preference in Saccharomyces cerevisiae [40]. Najafabadi et al. have demonstrated that 

introducing, as weights, the tRNA gene copy numbers into the mean phenotypic change used by Zhu 

et al.12, increased the error minimization level estimated for the Escherichia coli genome [43]. In other 

work, an index, called error adaptation index, was defined from the mean phenotypic change to 

estimate the robustness to errors at the gene level. The authors showed that this index has significant 

 
12 The tRNA gene copy numbers is correlated with the tRNA abundance within the cell. 
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correlation with the codon adaptation index and mRNA levels [44]. These results suggest that the 

codon usage is selected in such way that the effect of errors/mutations on protein structure and 

function is minimized, mainly in highly expressed genes [43, 44]. Marquez et al., have suggested that 

there is not selection on codon usage for minimizing the effect of errors but rather for specific error 

minimization levels. They argued that the ability to modify the protein evolution rate by changing the 

usage of codons with different robustness could represent a selective advantage [45].  

On the other hand, Archetti observed that in Drosophila and rodents, genes tend to prefer the most 

robust codons, that robustness is correlated with codon usage bias, and the error minimization is 

correlated with the rate of non-synonymous substitutions. He concluded that natural selection for 

minimizing the impact of errors at the protein level is an important factor in the evolution of coding 

sequences [42]. These results are consistent with several other findings, for example, it was observed 

that the frequency of codons more robust to translation errors tend to be higher in ligand-binding sites 

[85]. It was, also, detected that differences in synonymous codon usage between thermophiles and 

mesophiles are subject to constraints related to robustness to translation errors, indicating that the 

association between robustness and frequencies of synonymous codon usage is affected by the 

growth temperature range [50]. Moreover, in [86] the attenuation observed in the infection caused by 

reengineered poliovirus having several synonymous mutations in its capsid genes suggests, 

according to the authors, a link between the viral mutational robustness and synonymous codon 

usage. 

Others authors have found by studying base changes in antibiotic resistance gene TEM-1 β-

lactamase and the fitness cost of substitutions in two influenza hemagglutinin inhibitor genes, that the 

standard genetic code structure is such that the deleterious impact of mutations is minimized, thus, 

increasing the probability of adaptive mutations [87]. More recently, a large-scale in silico mutagenesis 
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experiment in which the changes in folding free energy produced by single amino acid replacements 

were computed for more than 20,000 protein structures suggested that codon usage is optimized for 

mitigating the errors at the protein level [88]. It was shown that, even, empirical mutational matrices 

are optimized to reduce the cost of amino acid replacements in bacterial protein-coding sequences 

[89]. Moreover, the ability to buffer the impact of errors has not only been considered for the 

synonymous codon usage but also for the amino acid usage. Hormoz observed that the natural amino 

acid composition leading to more stable proteins is also tuned for a higher robustness to errors, which 

is consistent with the association observed between thermostability and mutational robustness in 

thermophilic proteins [90, 91].  

 

 

 

 

  



18 
 

CHAPTER 3 

CHAPTER 3: A BRIEF INTRODUCTION ON THE QUADRATIC ASSIGNMENT PROBLEM 

 

The Quadratic Assignment Problem (QAP) was first introduced in 1957 by Koopmans and Beckmann 

as a model for the facility location problems [92]. Since then, a wide spectrum of applications has 

been identified for the QAP in a wide variety of different areas such as wiring problems, statistical 

data analysis [93,94], microarray layout problems [95], scheduling, parallel and distributed computing, 

and graph alignment among others [96, 97, 98]. In 1976, Shani and Gonzalez have shown that this 

problem is NP-hard [99]. 

Consider a set, denoted by 𝑆𝑛,  of permutations of the set  {1,2 … 𝑛} and two 𝑛𝑥𝑛 coefficient matrices 

𝐴 = (𝑎𝑖𝑗) and 𝐵 = (𝑏𝑖𝑗). The Koopmans-Beckmann QAP is formulated as the problem of finding the 

permutation, 𝜋0𝜖𝑆𝑛, minimizing the following double sum, 

min
𝜋𝜖𝑆𝑛

∑ ∑ 𝑎𝜋(𝑖)𝜋(𝑗)𝑏𝑖𝑗
𝑛
𝑗=1

𝑛
𝑖=1   

3.1 Solution methods 
 

A variety of authors have addressed the problem with the objective of developing exact solution 

methods. The main strategies considered to find the global optimal solution are Dynamic 

programming, Cutting planes, Branch and Bound, and Branch and Cut algorithms [95, 96] To date, 

Branch and Bound algorithms have been the most frequently used optimization approaches to solve 

this problem. All the above exact algorithms are extremely inefficient, even, for relatively small 

instances (𝑁 = 30) [98, 100]13. However, a great variety of real-world problems are formulated as 

 
13 For our codon-block based representation of the genetic code 𝑁 = 20, because it does not include the termination codons. For 
the codon-based representation of the standard genetic code, 𝑁 = 64 and without the termination codons, 𝑁 = 61.   
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QAP instances of size much larger than 𝑁. Consequently, numerous heuristic methods have been 

developed for finding good suboptimal solutions in reasonable running times. Some of the main 

heuristic search strategies are the construction methods, limited enumeration methods, the 

improvement methods, the Tabu search algorithms, Simulated annealing, Genetic algorithms, Greedy 

Randomized Adaptive Search Procedure, Ant systems, Iterated local search, Neural networks and 

other methods [98, 101]. Some hybrid metaheuristics have also been developed like, for example, the 

method called ANGEL that combines three different strategies, namely, an ant colony optimization 

strategy with a genetic algorithm and a Local search method or a method that interleaves descent 

local search and genetic algorithms [103]. The performance of each of these heuristics depends on 

the problem characteristics [98].  

3.2 Lower bounds 
 

The QAP lower bounds have been extensively studied for two main reasons. First, they are an 

essential component of the Branch and Bound procedures. The research endeavours related to these 

procedures mostly focused on developing tight and computationally efficient lower bounds. Second, 

the lower bounds have been useful to verify the quality of the heuristic solutions. There are five main 

kinds of lower bounds [98, 101, 102, 103]: Gilmore-Lawler and related lower bounds, eigenvalue 

related lower bounds, reformulation-based bounds, the lower bounds based on LP relaxations as well 

as those based on semidefinitive relaxations. The Gilmore-Lawler lower bound, 𝐿𝐵, has been the most 

commonly used lower bound for the QAP [98, 104].  

Below, we focus on Gilmore-Lawler lower bounds, but before we will introduce the proposition of 

Hardy, Littlewood and Polya [98]. This proposition is important for two reasons: 1) It is the basis for 

the definition of these lower bounds, 2) It is very useful to understand under which conditions the 

weighted mean phenotypic change reaches extremes values.  
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Consider two n dimensional vectors, A and B, which are sorted in increasing or decreasing order 

(denoted by the superscripts i, and d), and the inner product between them. The scalar product of two 

vectors, is defined by, 〈𝐴, 𝐵〉 = ∑ 𝑎𝑖𝑏𝑖
𝑛
𝑖=1  

Proposition (Hardy, Littlewood, Polya) [98] 

Let A and B be two n dimensional vectors. Then, the following inequalities hold for any permutation π 

є Sn 

〈𝐴𝑑 , 𝐵𝑖〉 ≤ 〈𝐴𝜋 , 𝐵〉 ≤ 〈𝐴𝑑 , 𝐵𝑑〉 

Returning to the definition of the Gilmore-Lawler bound, the entries  𝜆𝑖𝑗 of a 𝑛𝑥𝑛 matrix are calculated 

by sorting the rows, 𝑎𝑖,∗ and 𝑏𝑗,∗ in increasing and decreasing order, respectively,  

𝜆𝑖𝑗 = min
𝜋𝜖𝑆𝑛 ,𝜋(𝑗)=𝑖

∑ 𝑎𝑖𝜋(𝑘)𝑏𝑗𝑘
𝑛
𝑘=1   

This implies from the proposition of Hardy, Littlewood and Polya that,  

𝐿𝐵 = min
𝜋𝜖𝑆𝑛

∑ 𝜆𝜋(𝑖)𝑖 ≤ min
𝜋𝜖𝑆𝑛

∑ ∑ 𝑎𝜋(𝑖)𝜋(𝑗)𝑏𝑖𝑗
𝑛
𝑗=1

𝑛
𝑖=1

𝑛
𝑖=1   

The LB lower bound is computed by solving the linear assignment problem shown on the left-hand 

side of the above inequality. Hence, LB is the lower bound for the optimal solution value of the QAP. 

LB can be calculated in 𝑂(𝑛3) time by using the Hungarian algorithm [98, 104]. 

3.3 Instances of QAP solvable in polynomial time 
 

There are several versions of the QAP whose coefficient matrices have some specific properties that 

make them solvable in polynomial time. These matrices can be classified according to these 

properties as Monge and anti-Monge matrices, Toeplitz and Circulant matrices, sum and product 
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matrices, and graded matrices [98]. We have found that one of the matrices used to compute the 

genomic robustness is a sum matrix. Below, we will focus on this kind of matrices.  

A matrix 𝐴 = (𝑎𝑖𝑗) is called a sum matrix if each of its elements can be computed as follows, 𝑎𝑖𝑗 =

𝛼𝑖
𝑟 + 𝛼𝑗

𝑐 for 1 ≤ 𝑖. 𝑗 ≤ 𝑛, where 𝛼𝑖
𝑐 and 𝛼𝑗

𝑟 are vectors of real numbers called column and row 

generating vectors respectively.  A matrix is symmetric if 𝑎𝑖𝑗 = 𝑎𝑗𝑖 and, skew symmetric if 𝑎𝑖𝑗 = −𝑎𝑗𝑖 

for 1 ≤ 𝑖. 𝑗 ≤ 𝑛 .  

Theorem 1 (E. Cela): If the matrix A is a sum matrix and the matrix B is an arbitrary matrix, then the 

QAP instance is solvable in 𝑂(𝑛3) time, where 𝑛 is the size of the problem. 

As was proven by Cela E. [98] this QAP instance can be transformed to a linear assignment problem 

as follows, 

∑ ∑ 𝑎𝜋(𝑖)𝜋(𝑗)
𝑛
𝑗=1

𝑛
𝑖=1 𝑏𝑖𝑗 = ∑ ∑ (𝛼𝜋(𝑖)

𝑟 + 𝛼𝜋(𝑗)
𝑐 )𝑏𝑖𝑗

𝑛
𝑗=1

𝑛
𝑖=1   

= ∑ (𝛼𝜋(𝑖)
𝑟 ∑ 𝑏𝑖𝑗

𝑛
𝑗=1 ) + ∑ (𝛼𝜋(𝑗)

𝑐 ∑ 𝑏𝑖𝑗
𝑛
𝑖=1 )𝑛

𝑗=1
𝑛
𝑖=1   

= ∑ 𝛼𝜋(𝑗)
𝑟𝑛

𝑗=1 𝛽𝑗
𝑟 + ∑ 𝛼𝜋(𝑗)

𝑐𝑛
𝑗=1 𝛽𝑗

𝑐  

= ∑ 𝑑𝜋(𝑖)𝑖
𝑛
𝑖=1    where,  𝑑𝑖𝑗 = 𝛼𝑖

𝑟𝛽𝑗
𝑟 + 𝛼𝑖

𝑐𝛽𝑗
𝑐   

 

Thus, in this case the QAP reduces to linear assignment problem, min
𝜋𝜖𝑆𝑛

∑ 𝑑𝜋(𝑖)𝑖
𝑛
𝑖=1  which is solvable in 

𝑂(𝑛3) time. As shown by theorem 2, the QAP is solvable in 𝑂(𝑛2) time if an additional requirement is 

fulfilled.  

Theorem 2 (E. Cela): If the matrix A is a sum matrix and at least one of the matrices is symmetric or 

skew symmetric, then the QAP is solvable in 𝑂(𝑛2) time, where n is the size of the problem.  
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As will be shown in section (Methods), the problem of finding the global minimum of the genomic 

robustness is solvable in  𝑂(𝑛2) time, according to theorem 2.  

Concerning the formulation of the QAP in terms of graphs, other polynomial solvable cases have been 

identified. If the matrices, A and B, represent the weight matrices of two isomorphic undirected graphs, 

the set over which the minimum is computed is the set of isomorphisms between both graphs and is 

a subset of 𝑆𝑛. Christofides and Gerrard have shown that if both graphs are isomorphic chains, cycles, 

wheels or trees, these QAP instances are polynomially solvable [98, 105, 106].  
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 CHAPTER 4 

 

CHAPTER 4: METHODS 

 

 

4.1 Research objectives and methods 

 

In this section, we briefly present some terms that we will develop further in the chapter. We then set 

out our two main objectives and the methods applied to achieve them. We also give a general idea of 

some procedures that we propose to speed up the calculations.  

Robustness is the ability to mitigate the effect of errors and is computed as the opposite of the mean 

phenotypic change. The robustness of the genetic code was already addressed in Chapter 1 and 

derives from the fact that similar amino acids are assigned to similar codons. The robustness of a 

codon depends on its corresponding amino acid and the amino acids encoded by the codons that 

differ from this codon in one single base. Thus, the robustness of a coding sequence is calculated 

directly from the relative frequency and robustness values of each of its codons. To assess the 

robustness of genetic codes and genomes, methods based on randomly generated permutations and 

metaheuristics have been employed. We propose accurate and efficient methods to compute the 

relevance values based on Castelli’s upper bound (or scores) and optimization percentages.  

Our first main objective is to test whether the robustness to errors is associated with the codon 

reassignments giving rise to the alternative genetic codes. We computed the significance scores 

and Cantelli’s upper bounds for the robustness values of 23 genetic codes under 235 different amino 

acid indices. It is well known that hydrophobicity is behind the error-mitigation property of the standard 

genetic code, but the relationship of many other amino acid indices with this code property is unknown. 

We chose a wide variety of amino acid properties, some of them also closely linked to protein stability. 
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Since each amino acid index is the result of an approximate measurement or modelling, we select 

several indices per amino acid property. The Cantelli’s upper bounds indicating the significance of 

code robustness values computed under these amino acid properties and for a given genetic code 

will be sorted in increasing order. The presence of clustering patterns clearly distinguishable of groups 

of indices representing the same property in these lists would reveal a more general picture of the 

natural genetic code robustness to single-base changes at the protein level.  

It has been observed that there is no link between the increase in robustness to errors through codon 

reassignments and the evolution of several alternative genetic codes when the whole genetic 

structure is considered. Since the translation error rates differ by substitution position and type, it is 

therefore possible a partial strengthening of the ability of alternative genetic codes to buffer the effect 

of errors with respect to the codon positions or type of single base changes (transition or transversion).  

The neighborhood structures of genetic codes will be also explored. The robustness, or the mean 

phenotypic change, is a function that assigns real values to a given codon (or codon blocks14) 

computed from the information on their neighboring codons15 (or neighboring codon blocks16) and the 

corresponding amino acids. We define the neighborhood structure of the genetic code as a 

representation based on two subsets of groups of synonymous codons, one containing codons with 

equal robustness values and the other containing codons and sub-blocks17 with different robustness 

values. This representation based on the code neighborhood structure will be employed with two 

purposes: reducing the number of codons and codon blocks to process for robustness computations 

and exploring amino acid-to-codon assignment patterns that could be biologically meaningful.   

 
14 The codon block is the set of synonymous codons. 
15 The codon differing by one single base substitution from a given codon is called neighboring or adjacent codon.  
16 The codon blocks differing by at least one single base substitution from a given codon block is called neighboring or adjacent codon  
    block. 
17 The codon sub-block is a sub-set of synonymous codons with the same robustness values.  
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Our second main objective is to test whether the robustness to errors is associated with the 

synonymous codon usage in thermophilic and non-thermophilic prokaryotic genomes. We 

computed the optimization percentages and scores on 324 thermophilic and 418 non-thermophilic 

prokaryotes for 84 amino acid indices. With this application, we will be able to answer the following 

questions, Is the robustness to single-base changes important for the evolution of synonymous codon 

usage in thermophilic and non-thermophilic prokaryotes? Does this ability is stronger for properties 

linked to protein stability and mistranslation-based weighting? It has been shown that in certain genes, 

conserved protein sites and viral genomes, the most robust codons tend to occur more frequently. 

However, in prokaryotic genomes the results have been equivocal. Several factors have been shown 

to play an important role in the evolution of codon usage bias, the robustness and growth temperature 

range are two of them. On the other hand, significant differences have been observed at the level of 

amino acid and codon usage between thermophiles and mesophiles. However, only one study has 

been carried out so far to test the relationship among growth temperature range, synonymous codon 

usage and robustness. It would be interesting to explore this relationship using a much larger sample 

size and, besides, at the codon block level. As we are interested in testing the association between 

the synonymous codon usage and robustness, we will only consider the codon blocks containing 

codons with different robustness values, called here heterogeneous codon blocks.  

In this chapter, we describe the statistical and optimization-based methods used to compute the 

relevance of robustness values for genetic codes and genomes. We also describe the three different 

genetic code representations applied in the computations, one based on codon blocks, and the other 

two, on sense codons and on the whole set of codons. We detailly explain the two methods to assign 
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numerical values to stop codons18 as well as both weightings applied, one based on the mistranslation 

rates, called here biased weighting, and the other based on equal weights and used for comparative 

purposes.  

We perform the statistical method to solve the following two practical problems corresponding to the 

two above-mentioned objectives:  

1) Given 𝑝 amino acid properties and three representations of 𝑞 genetic codes, compute the 

robustness parameters for these genetic codes according to these properties, the two weightings 

and two methods to assign numerical values to stop codons.  

2) Given p amino acid properties, the synonymous codon usages of d genomes, the three 

representations of a given genetic code, compute the robustness parameters for these genomes 

according to these properties, the two weightings and two methods to assign numerical values to 

stop codons.  

The second practical problem is also considered in the context of the optimization-based approach. 

The robustness parameters in the above two problems include, for the statistical approach, the mean 

phenotypic change for a given genome or genetic code, and the first two moments of the distribution 

of its values for all possible amino acid-to-codon (or codon block) assignments. These parameters 

are used to compute the Cantelli’s upper bound and scores. For the optimization-based approach, 

the robustness parameters in the second problem comprises the mean phenotypic change weighted 

with the synonymous codon usage of a given genome, the first moment of the previously mentioned 

distribution as well as the minimum value of the mean phenotypic change. In this chapter, we propose 

efficient methods and algorithms to compute these parameters. These algorithms have the following 

 
18 We use three methods to process the stop codons, two of them assign numerical values to these codons according to different 
criteria and the other, entails ignoring the stop codons and the single-base changes from them to the other codons. This method 
based on neglecting the stop codons is equivalent to the representation based on sense codons.  
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general characteristics:1) They are based on partitioning the graph representing the genetic codes 

into two subgraphs, one represents an invariant component and the other, the component for which 

the values of the above parameters vary depending on the genetic code (first problem) or genome 

(second problem). We apply four main partitioning criteria, the first criterion is based on the code 

neighborhood structure (second problem), the second criterion is based on pairwise comparisons 

(first problem) of genetic codes and the other two criteria are based on the distinctions between the 

sense and stop codons, synonymous and non-synonymous single-base changes (both problems). 2) 

We propose equations for more efficient computations of the first two moments of the distribution of 

robustness values corresponding to all possible amino-acid-to-codon (or codon block) assignments. 

3) Since the matrices for computing the mean phenotypic change weighted with the relative frequency 

of synonymous codons have the characteristics specific to a known instance of the Quadratic 

Assignment Problem with polynomial solution, an exact algorithm will be used to find the amino acid-

to-codon assignment corresponding to the minimum value of this function.   

 

4.2 Two methods for assessing the relevance of the mean phenotypic change 

 

There are two related approaches to tackle the problem of assessing the relevance of the mean 

phenotypic change, namely, the approach based on optimization and the statistical approach. 

According to the first one, this problem is formulated as an optimization problem which will be called 

here as load minimization problem (LMP). The difference between both approaches, consists in the 

way we define the relevance or significance of the values taken by the function of weighted mean 

phenotypic change for a given genetic code and amino acid property. The mean phenotypic change 

allows us to quantify the ability of the genetic code to mitigate the effect of translation errors or 

mutations. It is not enough to compute the values of this function, we must have also a measure of 
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how far these values are found from what is expected, assuming that the hypothesis of random 

assignment of amino acids to codons, or codon blocks, is true. That is, we need a measure of 

significance of these values. According to LMP, the optimization percentage is considered as a 

measure of the robustness relevance.  As for the statistical approach, the proportion of random 

genetic codes more robust than a given genetic code is used to assess the significance of the 

robustness values computed for this genetic code. The statistical approach is adopted in all practical 

applications explored in this work. The LMP is only considered for computing the relevance of the 

genomic robustness. 

 4.2.1 Load minimization problem (LMP) 
 

A given genetic code is represented in terms of two undirected graphs, 𝐺𝑔  and  𝐺𝑝, where 𝐺𝑝 

represents the relationship between amino acids or translation-stop signals, while 𝐺𝑔  represents the 

genetic relationship between codons or blocks of synonymous codons for the corresponding 

phenotypes. In other words, each vertex of 𝐺𝑝 denoting a phenotype 𝑝 will have a single 

corresponding vertex in 𝐺𝑔 which represents one block or one of all of the codons for 𝑝. Conversely, 

each vertex of 𝐺𝑔 has a single corresponding vertex in 𝐺𝑝. Hence, both graphs have the same number 

of vertices. More details follow.  

Graph 𝐺𝑝: 

The graph  𝐺𝑝 = (𝑉𝑝, 𝐸𝑝, 𝜔)  is defined as a weighted complete graph representing the distances 

between amino acids and translation-stop signals. More precisely, each vertex is assigned to an 

amino-acid or translation-stop signal (called phenotype), whereas a given phenotype may be 

assigned to more than one vertex. We denote by 𝜃 this labeling function 𝜃: 𝑉𝑝 → 𝛴, 𝑉𝑝 = {1 … 𝑛} is a 

set of vertices representing amino acids and translation-stop signals, where Σ denotes the set of such 

elements.  
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The weight function, ω: 𝐸𝑝 → ℝ≥0, is the squared Euclidean distance between the amino acids or 

translation-stop signals, 𝜔(𝑖, 𝑗) = (𝑝(𝑖) − 𝑝(𝑗))2, where 𝑝: 𝑉𝑝 → ℝ 

Graph 𝐺𝑔: 

 𝐺𝑔 = (𝑉𝑔, 𝐸𝑔, 𝛾) represents the adjacency structure of codons or blocks of synonymous codons in a 

given genetic code. More precisely, 𝐺𝑔 is an undirected weighted graph representing the relation 

between codons or synonymous codon blocks. 𝑉𝑔 = {1 … 𝑛}  is the set of vertices, each representing 

a codon or a block of synonymous codons. An edge is defined between two vertices, 𝑢 and 𝑣, if and 

only if we can transform a codon of 𝑢 into a codon of 𝑣 by making a single base change. We also 

define a weight function, 𝛾: 𝐸𝑔 → ℝ≥0 representing the weight of a single-base change corresponding 

to an edge of 𝐸𝑔. 

We denote by 𝐴𝑔 and 𝐴𝑝, the weight matrices of the graphs 𝐺𝑔 and 𝐺𝑝, respectively. More precisely, 

for each vertex pair, 𝑢, 𝑣 of Vp, 𝐴𝑝(𝑢, 𝑣) = 𝜔(𝑢, 𝑣), and for each vertex pair, 𝑢, 𝑣 of 𝑉𝑔, 𝐴𝑔(𝑢, 𝑣) =

𝛾(𝑢, 𝑣), if the edge (𝑢, 𝑣) is defined, otherwise, 𝐴𝑔(𝑢, 𝑣) = 0.  The total number of single-base changes 

between the codons represented in the graph 𝐺𝑔 is denoted by N. 

Let 𝜋 be a permutation, i.e. 𝜋 ∈ 𝑆𝑛 where 𝑆𝑛 is the set of all permutations of size 𝑛, 𝑛 standing for the 

number of vertices of each graph (remember that both graphs have the same number of vertices). 

The matrix, 𝐴𝜋
𝑝 = 𝜔(𝜋(𝑢), 𝜋(𝑣)), is obtained by permuting the rows and columns of 𝐴𝑝 according to 

the permutation 𝜋. This permutation represents a mapping of phenotypes to codons or codon blocks 

defined from a given genetic code (figure 4.1). The function of mean phenotypic change according to 

a given permutation is defined in terms of the Frobenius inner product as follows,  

 𝐹𝜋 =
1

𝑁
〈𝐴𝜋

𝑝 , 𝐴𝑔〉𝐹 =
1

𝑁
∑ ∑ 𝛾(𝑢, 𝑣)𝜔(𝜋(𝑢), 𝜋(𝑣))𝑛

𝑣=1
𝑛
𝑢=1               (1) 

  𝐹𝜋 =
1

𝑁
∑ ∑ 𝛾(𝑢, 𝑣)(𝑝(𝜋(𝑢)) − 𝑝(𝜋(𝑣)))

2𝑛
𝑣=1

𝑛
𝑢=1                       (1a) 
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The term inside the double sum can be interpreted as the cost of simultaneously assigning the amino 

acid 𝜋(𝑢) to the codon, or block, 𝑢 and the amino acid 𝜋(𝑣), to the codon, or block, 𝑣. 

The load minimization problem can be stated as a Quadratic assignment problem, as follows: 

        min
𝜋∈𝑆𝑛

𝐹𝜋                                                                                (1b) 

Thus, this problem consists of finding a permutation, 𝜋0, that minimizes the weighted mean phenotypic 

change, 𝐹𝜋0
. The robustness corresponding to the permutation π that represents a given genetic code 

is defined as,  

                                               𝑅𝜋 = −(𝐹𝜋)                                                                         (2) 

Since one term is the exact opposite of the other, both are equivalent.  Smaller estimates of mean 

phenotypic change imply a greater robustness. Hence, if the robustness 𝑅𝜋is used instead of 𝐹𝜋, the 

LMP problem can be formulated as a maximization problem. 

They are often used interchangeably in this work. Under this approach, the optimization percentage, 

OP19, is considered a measure of the relevance of the value of mean phenotypic change for a given 

genetic code, 𝐹𝜋𝑧
. It is defined in terms of the mean of the statistical distribution of Fπ for all 𝜋 in 𝑆𝑛, µ, 

and the value of an optimal assignment 𝐹𝜋0
, as follows, 

                                             𝑂𝑃 = (
µ−𝐹𝜋𝑧

µ−𝐹𝜋0

) 100                if  𝐹𝜋𝑧
≤ µ                                    (3) 

                                              𝑂𝑃 = 0                               otherwise.        

 

19 Other definition used in the literature: 𝑂𝑃 = (
𝐹𝜋𝑧−𝐹𝜋0

𝐹𝜋𝑚−𝐹𝜋0

) 100, where 𝐹𝜋𝑚
 is the maximum value of the mean 

phenotypic change and the other terms have the same definition explained in the text [31, 32]. 
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In previous studies, the parameterµ has been 

computed by randomly generating samples of 

genetic codes. This approach has two 

drawbacks. The first is its inaccuracy, as 

different samples may lead to different mean 

values. The second problem is its inefficiency, 

as improving accuracy requires increasing the 

size of the considered sample, which is time 

consuming. In this work, µ is accurately 

computed using an analytical equation for this 

parameter. As for 𝐹𝜋0
, rather than using 

suboptimal local search approaches as in 

former works, we will use an exact algorithm 

by taking advantage of some characteristics 

of the weight matrices specific to the genomic robustness context (explained later in the text). Such 

characteristics are related to known instances of the quadratic assignment problem that are solvable 

in polynomial time. 

  

  4.2.2 The statistical approach 
 

While the mean phenotypic change is defined in the same way as before, a different approach is used 

for computing its significance. This approach consists of estimating the probability 𝑃(𝑅𝜋 ≥ 𝑅𝜋𝑧
) of 

randomly generating a code more robust than a given genetic code, assuming the hypothesis of 

random arrangement. This probability can also be defined as the probability of obtaining a random 

code with mean phenotypic change value lower than that of a given genetic code. In other words: 

 

Figure 4.1 Computing the mean phenotypic change 𝐹𝜋 according to 

a given permutation π. Two graphs of order 4, Gg = (Vg, Eg, γ)  and 

Gp = (Vp, Ep, ω), that represent a hypothetical code of four codons 

specifying four amino acids. Dashed grey line: Bijective mapping 

between Vp and Vg. Blue line: Edges of the complete graph Gp 

whose weights contribute to 𝐹𝜋 after the bijective mapping. Bottom: 

The Mean Phenotypic Change according to the permutation π. 
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𝑃(𝐹𝜋 ≤ 𝐹𝜋𝑧
)= 𝑃(𝑅𝜋 ≥ 𝑅𝜋𝑧

) 

Since the shape of the distribution of robustness values corresponding to the whole population of 

genetic codes is unknown, this proportion has been estimated by using empirical sampling 

distributions. Rather, we use the known moments of the population distribution of the assignment 

costs for the quadratic assignment problem. On this basis, we propose a method that essentially relies 

on the knowledge of the equations for the mean, µ, and variance, 𝜎2, of the distribution of 𝐹𝜋, for all 

possible amino acid-to-codon assignments. Both moments can be accurately computed using an 

algorithm with a running time quadratic in number of codons or synonymous codon blocks. Even if 

the shape of the density function for this distribution is unknown, it is possible to estimate how far the 

robustness statistics is from the population mean, given a knowledge of its moments. In this sense, 

𝑃, the probability of obtaining codes more conservative than a given genetic code was replaced by 

two other measures of significance of 𝑅𝜋𝑧
 or  𝐹𝜋𝑧

: the Cantelli’s bound (UB) which is just an upper 

bound on 𝑃, defined as, 

   𝑃(𝐹𝜋 ≤ 𝐹𝜋𝑧
) ≤ 𝑈𝐵  

and the score 𝑆, defined as follows, 

                                                      𝑆 = (𝐹𝜋𝑧
− µ)/𝜎   

This score indicates how many standard deviations a given robustness value is from the population 

mean. Thanks to these improvements, we will not need to use the random sampling of the huge 

population of all possible codes. In that way, we get rid of the most expensive part of the method 

based on the statistical approach. Even though the Cantelli’s bound doesn’t allow us to estimate, in 

exact terms, the significance of the robustness values, it is very useful to efficiently compute and 

compare the robustness relevance of several genomes or codes according to numerous amino acid 

properties. The analysis of the neighborhood structure of the genetic codes, aimed at detecting the 
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codons and synonymous codon blocks that share a common amino acid neighborhood, has been 

effective to reduce the number of vertices and edges to process. Likewise, the set of vertices with the 

same amino acid assignment in genetic code representations based on codons, has been very useful 

to decrease the running time. These improvements among others have been included in the 

algorithms implemented for computing the genetic code and genome robustness.  

 

4.3 Representations of the genetic codes 

 

In this work, we use 3 representations (𝐺𝑔, 𝐺𝑝, 𝜋, γ, ω) of the genetic code, two based on codons and 

one based on synonymous codon blocks. For each representation, we will consider either the whole 

genetic code representation, as its name implies, containing the whole edge set, 𝐸𝑔, or the partial 

genetic code representations formed by specific subsets of 𝐸𝑔 defined by the type and codon position 

of the considered substitution. Recall that there is one-to-one correspondence between 𝐸𝑔 and 𝐸𝑝 

defined by 𝜋. Every partition of 𝐸𝑔 implies, therefore, a unique partition of 𝐸𝑝 (see eq 1, 2).    

The block-based representation has been used to compute the mean and variance for the set of all 

possible codes with the same degeneracy structure as the natural genetic code. The bock structure 

of the genetic code is a result of the interaction between the cognate tRNA and the codon in mRNA. 

The anticodon interacts through Watson-Crick base-pairing with the first two bases of the codon and 

can form wobble base pairs at the third codon position. The wobble base pairs at the third position 

allow a single cognate tRNA to read multiple codons, thereby, determining the degeneracy of the 

genetic code [13, 107]. The structure of synonymous codon blocks has the effect of greatly increasing 

the robustness. Thus, we can affirm that the genetic code robustness has two components, one well-

known component caused by the codon-anticodon interaction and other component whose origin is 

unknown. For evaluating the predictions from different theories proposed to explain the origin of the 
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unknown component, the block-based representation has been used to hold the degeneracy structure 

constant when exploring the space of all possible codes. In so doing, the estimates of the robustness 

relevance will be adjusted for the synonymous codon block structure of the genetic code.  

In contrast, the codon-based representations allow us to obtain estimates of the robustness relevance 

unadjusted for the codon block structure of the genetic code. More exactly, these estimates depend 

on the two characteristics of the known natural genetic codes:  the codon block structure and the 

characteristic according to which the similar amino acids tend to be encoded by codons differing by 

one single base change. The codon-based representation is used to compute the mean and variance 

for the set of all possible codes with the same number of codons for each amino acid as the natural 

genetic code. This constraint is much weaker than that based on the block-structure. Hence, the set 

of all possible codes generated under the codon-based model is much larger than that based on 

block-based model. 

4.3.1 The codon-based representations 

 

We first present the model based on the whole set of codons including, not only the sense codons but 

also the stop codons. For that reason, we use, in this case, the term phenotypes which encompasses 

the amino acids specified by the sense codons as well as the translation-stop signals. As defined 

above, the genetic code representation involves two graphs, the graph 𝐺𝑔 representing the 

neighborhood structure of a given genetic code and 𝐺𝑝, the distances between the phenotypes. Since 

each vertex in the graph 𝐺𝑔, represents only one codon, in the other graph 𝐺𝑝, one amino acid can 

be represented by more than one vertex. The number of vertices representing the same amino acid 

depends on the number of codons for this amino acid in the considered genetic code.  

According to this representation, both graphs have 64 vertices. The graph 𝐺𝑔 has 288 edges that 

connect vertices whose codons differ by a single-base change. The graph 𝐺𝑝, which is a complete 
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graph (K64), has 2016 edges. Some of them, represent zero-valued distances either because of amino 

acids with the same property values or because of vertices denoting the same amino acid. It is worth 

noting that if two amino acids are assigned to codons that differ by more than one nucleotide, their 

distance is multiplied by zero in the equation for the mean phenotypic change.  

It is worth noting that the graph 𝐺𝑔 is the same regardless of the genetic code. In contrast, the graph 

𝐺𝑝  varies according to the number of codons representing each amino acid, which is specific to each 

genetic code. Likewise, the mapping of  𝑉𝑝 to 𝑉𝑔 represented by 𝜋 is specific to each genetic code.  

Another codon-based representation including only the sense codons is considered in this work. The 

standard code for example, which has 3 stop codons, is represented by a graph 𝐺𝑝 of 61 vertices and 

263 edges. The considered codon-based representation will be specified in the text, whenever used. 

4.3.2 The representations based on synonymous codon blocks 

 

In this model, the vertices of the graph 𝐺𝑔 represent the synonymous codon blocks formed by sense 

codons. Hence, synonymous substitutions are ignored.  If two codons from two synonymous codon 

blocks differ by one single-base change, then there will be a single edge between the vertices 

representing these two codon blocks. Notice that this single edge in block-based representation will be 

weighted by the sum of weights of all edges linking codons from both blocks (figure 4.2) This yields 20 

vertices and 77 edges for the graph 𝐺𝑔. representing the standard genetic code. This genetic code 

representation only incorporates the missense single-base changes between the blocks formed by 

sense codons. In contrast to the codon-based models, in block-based models each amino acid amino 

acid is associated with a single vertex of 𝑉𝑝.  

For the genetic codes containing ambiguous assignment rules that involve stop and sense codons, the 

property value of the corresponding amino acid is considered instead of the stop codons. This method 
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to suppress this kind of ambiguity, results in two codes (Karyorelict nuclear code and Condylostoma 

nuclear code) with similar amino acid assignments.   

4.3.3 Partial genetic code representations 
 

In order to evaluate the contribution to the genetic code or genome robustness of each codon position 

and substitution type, different partial representations of the genetic codes will be considered.The edge 

set, 𝐸𝑔, of the graph 𝐺𝑔 will be partitioned according to two criteria: the codon position affected by a 

substitution or the type of substitution (transition or transversion)20. These criteria give rise to 5 different 

partial representations.  

The block- or codon-based models that include separately the single-base changes between one of 

the three codon positions, are actually disconnected graphs. The same is true for the graphs 

representing the transitions. The graph of the block-based model for the third codon position has 16 

components and those for the other two positions have 4 components. The graphs of the codon-based 

models for each codon position have each one 16 components. The graphs, whose edges represent 

only the transitions, have 4 and 8 components in the models based on codon blocks and in the models 

based on the whole set of codons, respectively.  

4.3.4 Block and codon neighborhood representations 

For quantifying the independent contribution of each synonymous codon block, and codon, to the 

general genetic code or genome robustness, the representation of vertex neighborhoods based on 

 
20 A transversion is a substitution between a pyrimidine (U,C) and a purine (A,G) and a transition is a substitution between 

two pyrimidines or two purines. 
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disconnected graphs is also considered. Each disconnected graph has 𝑛 connected components, 

where 𝑛 is the number of vertices of the corresponding connected-graph representation. The 

connected components are star graphs. The star graphs represent the neighborhood of codons or 

synonymous codon blocks. According to the codon-based representation, in this disconnected graph, 

each codon,𝑢, is represented by 𝑐𝑢 + 1 vertices, where, 𝑐𝑢 denotes the number of nodes adjacent 

to 𝑢. It follows that the disconnected graph has ((∑ 𝑐𝑢) + 𝑛𝑛
𝑢 ) vertices and 2𝑛 edges (figure 4.3). 

The contribution of every connected component representing the codons of the block 𝜚 and their 

neighboring codons,𝑣, to the total mean phenotypic change,𝐹𝜋, is denoted by 𝐹𝜋
𝜚
. This contribution 

involves a given number of single-base changes, 𝑁𝜚 and is related to 𝐹𝜋 as follows,  

       𝑅𝜋 = −𝐹𝜋 = − (
1

𝑁
∑ 𝑁𝜚𝐹𝜋

𝜚𝑛
𝜚=1 )                                       (4) 

According to the codon-based representation, 𝐹𝜋
𝜚
 is defined as a double sum, 

       𝐹𝜋
𝜚

=
1

N𝜚
∑ ∑ 𝛾𝑢𝑣

𝑐𝑢
𝑣=1

𝑡
𝑢=1 (𝑝(𝜋(𝑢)) − 𝑝(𝜋(𝑣)))2               (4a)    

 

Figure 4.2 Relationship between the codon-based and the synonymous codon block representations. Red lines: 

Contraction of the edges between codons that specify the same amino acids. Green lines: edges connecting 

multiple synonymous codons of two adjacent blocks. All these edges except one, are deleted. The only edge 

that remains is weighted with the sum of parallel edge weights, (a+b+c+d). Blue lines: non-deleted edges whose 

weights stay the same.  
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These equations are derived from the equations (1a) and (2). According to the block-based 

representation,  𝐹𝜋
𝜚
 is defined as a simple sum over the neighboring blocks of 𝜚. Similarly, the 

independent contributions of codons in codon-based representations are defined as simple sums over 

their neighboring codons.  

4.4 Weight functions      

  

Four weights functions are considered in this work, two for computing the mean phenotypic change 

of genetic codes and the other two for the mean phenotypic change of the genomes. In this work, the 

term weight function refers to the function, 𝛾: 𝐸𝑔 → [0,1]. Each of these functions is defined for two 

models, one based on codons and the other based on synonymous codon blocks.   

4.4.1 Weights for genetic code robustness 

 

Under the unbiased weighting in the representation based on codons, all edges have the same weight 

value equal to 1. Thus, considering that all these codons are grouped in the blocks represented by 

vertices in block-based models, this yield weights equal to the number of codons connecting two 

 

Figure 4.3 Set of 4-star graphs that represent the neighborhood of 4 codons. Only a subset of edges is 

represented. On each edge, the weight of the single-base change between the corresponding codons is shown.  
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blocks, 𝑛𝑢𝑣 ∈ ℕ>0 . The definition of these weights assumes unbiased error frequency between the 

neighboring vertices 𝑢 and 𝑣. (table 4.1)  

We also considered a known mistranslation-based weighting, for which the weights are biased with 

respect to the type and position of the substitution21 (table 4.2) [20, 26, 30, 35, 36, 37, 40, 43]. For the 

codon representations, ℎ𝑢𝑣, stands for the weight assigned to the edge linking codons u and v. For 

the block-based representation, ℎ𝑖 denotes the weight of the single-base change i of a total of 𝑛𝑢𝑣 

single-base changes connecting synonymous codon blocks through the edge (𝑢, 𝑣). (table 4.1) The 

weights, ℎ𝑢𝑣   or ℎ𝑖  , take the set of values shown in table 4.2 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
21 The biased weights reflect, mainly, the fact that the codon positions differ in the frequency of transitional versus transversional 
translation errors. Hence, the mean phenotypic change with this biased weighting is a measure of the optimization level of the 
genetic code, or genome, with respect to translation errors [20, 26, 30, 35, 36, 37, 40, 43]. 

Table 4.1 Weights for the mean phenotypic change of genetic codes according to 

codon and block-based models 𝐹𝜋
𝑐 , 𝐹𝜋

𝑏  

Weighting type Genetic code representations 

 Codon-based model 

𝐹𝜋
𝑐 

Block-based model 

𝐹𝜋
𝑏 

Unbiased weights 𝛾𝑢𝑣 = 1 𝛾𝑢𝑣 = 𝑛𝑢𝑣 

Biased weights 𝛾𝑢𝑣 = ℎ𝑢𝑣 𝛾𝑢𝑣 = ∑ ℎ𝑖
nuv
i=1   

The vertices u, v represent either codons in codon based models or synonymous codon blocks in 
block based models. 
Biased weights:  Weights based on substitution type and codon position. 
Unbiased weights: Binary weights.  

𝛾𝑢𝑣 : Weight on the edge between the vertices u and v. 

𝑛𝑢𝑣 : Number of adjacent codons of the blocks u and v.  
ℎ𝑢𝑣: Weights on the edges (u,v) based on substitution type and position, values shown in table 4.2  

ℎ𝑖 : Weight of the single-base change i between codons belonging to adjacent blocks, u and v. 
 

Table 4.2 Biased weighting values based on mistranslation rates (ℎ𝑖 , ℎ𝑢𝑣) 

Substitution types Codon positions 

Codon position 1 Codon position 2 Codon position 3 

Transition            1            0.5            1 

Transversion           0.5            0.1            1 
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4.4.2 Weights for genomic robustness 

 

 

These functions are used to compare the groups of thermophile and non-thermophile genomes with 

respect to the robustness or mean phenotypic change at codon usage level. As for the codon-based 

model, 𝛾𝑢𝑣 is defined from the genomic frequency 𝑓𝑢 of codon u and the genomic frequency 𝑓𝑠𝑢 of the 

synonymous codon block 𝑠𝑢 containing u, where,∑
𝑓𝑢

𝑓𝑠𝑢

𝑡
𝑢 =  1, t representing the number of 

synonymous codons belonging to codon block u. (table 4.3) 

 

I 

 

 

 

 

 

 

 

 

 

 

In the context of the representation based on the codon blocks, the weight 𝑓𝑖 corresponds to the 

frequency of codon i from the codon block su. This codon i differs by one single-base change from a 

given codon that belongs to the synonymous codon block 𝑣. The weight of this base change is ℎ𝑖. We 

should have,0 ≤ 𝑓
𝑢 

, ∑ 𝑓𝑖
nuv
i ≤ 1 , 𝑛𝑢𝑣  denoting the number of codons of the block u that are adjacent 

Table 4.3 Weights for the mean phenotypic change of genomes according to codon and 

block-based models 𝐹𝜋
𝑐 , 𝐹𝜋

𝑏. 

Weighting type Genetic code representations 

Codon-based Model 

𝐹𝜋
𝑐 

 

      Block-based model 

𝐹𝜋
𝑏 

Unbiased weights 
𝛾𝑢𝑣 =

𝑓𝑢

𝑓𝑠𝑢
  𝛾𝑢𝑣 =

∑ 𝑓𝑖
nuv
i=1

𝑓𝑠𝑢
 

Biased weights 
𝛾𝑢𝑣 =

ℎ𝑢𝑣𝑓𝑢

𝑓𝑠𝑢
 𝛾𝑢𝑣 =

∑ 𝑓𝑖
nuv
i=1 ℎi

𝑓𝑠𝑢
 

The vertices u, v represent either codons in codon based models or synonymous codon blocks in 

block based models. 

Biased weights: Double weights based on the synonymous codon frequency as well as the 

substitution types and position. 

Unbiased weights: Weights based on synonymous codon frequency. 

 𝛾𝑢𝑣 : Weight on the edge between the vertices u and v. 

𝑛𝑢𝑣 : Number of adjacent codons of the blocks u and v.  

ℎ𝑢𝑣:  Weights on the edges (u, v) based on substitution type and position, values shown in table 

4.2. 

ℎi : Weight of the single-base change i between codons belonging to adjacent blocks, u and v. 

𝑓𝑖,𝑓𝑢: Frequency of codons i and u. 

𝑓𝑠𝑢:  Frequency of the synonymous codon block 𝑠𝑢  containing u. 
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to codons of the block v (see table 4.3). For a synonymous codon block u formed by only one codon, 

the weight on the edge between this block and its neighbors, 𝛾𝑢𝑣, is equal to zero.  

The reason of this requirement is to eliminate the maximal weight on blocks formed by only one codon. 

If the aim is to evaluate the effect on the genomic robustness of the synonymous codon usage bias, 

it does not make sense to include blocks of one codon (for example, in the standard code, AUG(MET) 

and UGG(TRP)). If the amino acids are mapped to codons, or synonymous codon blocks, in such a 

way that codons or blocks with the greatest mean phenotypic change, or the smallest robustness, are 

less frequent at the genome level and, on the other hand, those codons or blocks with the smallest 

mean phenotypic change, or the greatest robustness, are the most frequent ones, then the genomic 

robustness is maximized. (see proposition of Hardy, Littlewood and Polya proposition in Chapter 3 

and Appendix I, figure I.1).  In view of that, the genomic robustness can be considered as a measure 

of association between the robustness, or mean change in a given amino acid property, and the usage 

frequency of the synonymous codons at the genome level22.  

4.5 Methods to process stop codons 

The capability of the genetic code and genomes to mitigate the effect of single-base changes is 

naturally measured for the sense codons by using the amino acid properties in graph 𝐺𝑝. But how to 

assess the effect of the stop codons?, Ignoring their effect is the simplest approach. This implies for 

the standard code the exclusion of 27 edges of 𝐸𝑔 and 𝐸𝑝. These edges are part of the neighborhoods 

of vertices representing not only stop codons but also amino acids. As a consequence, the effect of 

 
22 If the relationship between both the synonymous codon robustness and usage frequency is monotonically increasing, the genomic 

robustness reaches a maximum value. Conversely, if this relationship is monotonically decreasing, the genomic robustness reaches 
a minimum value. 
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the corresponding single-base changes is overlooked and thereby, the contribution of some amino 

acids such as, tyrosine, arginine, serine, tryptophan among others, are strongly affected.  

Another possibility is to arbitrarily assign large values to vertices or edges involving stop codons. The 

rationale behind this approach is the highly disruptive consequences of mutations resulting in 

premature stop codons. However, these over-valued weights for the translation-stop signals reduce 

the relative contribution of the other amino acids to the robustness relevance. On the other hand, this 

approach does not consider natural mechanisms to counter the negative effects provoked by 

premature stop codons.  

Yet another method has been proposed which is based on the property value of the most probable 

amino acids inserted by nonsense suppressor tRNAs (NST) [27]. The NST resulting from naturally 

occurring mutations is able to read the premature stop codons and compete with the release factors 

for decoding them. Thus, these tRNAs introduce specific amino acids, thereby allowing the translation 

into proteins which, otherwise, would be truncated. This suggests that the robustness to nonsense 

errors or mutations is rather guaranteed by external factors like these tRNAs. Besides, it is known that 

the stop codons are reassigned to amino acids in some variant genetic codes. The method takes 

advantage of these facts to quantify the contribution of the stop codons to genetic code robustness.  

We propose a method based on the “mean” suppressor tRNAs. Our method entails assigning to each 

stop codon, the mean of the property values corresponding to amino acids coded by all codons 

adjacent to it according to a given genetic code (Appendix I, table I.1). We consider also a method 

which consists of assigning to stop codons the mean of the amino acid property scale. Therefore, the 

edges of 𝐸𝑝 representing the nonsense base changes will tend to be weighted with small values as 

happened with the mean suppressor tRNA method, but unlike the latter, this weighting does not 

depend on the amino acid encoded by the codons adjacent to stop codons.  
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Three methods to incorporate the contribution of the stop codons are considered in this work: One 

method just consists of ignoring the stop codons, the other two as explained above, are based either 

on the “mean” suppressor tRNAs or on the property-scale mean.  

4.6 The neighborhood structure of the genetic codes 
 

In this section we will explore some aspects of the neighborhood structure of the genetic codes. This 

will be very useful for identifying some biologically meaningful patterns and for reducing the mean 

phenotypic change computation running time. 

The function of mean phenotypic change, or robustness, is essentially defined from the codon or block 

neighborhoods represented by star graphs (see section 4.3.4). For each star graph, the peripheral 

vertices represent the codons or blocks connected by single base changes to the considered codon, 

or block, which is in turn represented by the central vertex. Each star graph corresponds to a row in 

the weight matrix of the graph 𝐺𝑔. The robustness, or the mean phenotypic change, is a function that 

assigns a numerical value to a given codon, or codon block, represented by the central vertex of the 

star graph. Thus, the neighborhood structure of a genetic code is a representation based on a set of 

codon blocks formed by sub-blocks or codons with different values of robustness. There are two types 

of codon blocks, the codon blocks containing codons with equal robustness values and those 

containing codons with different robustness values. Below we will focus on some interesting 

regularities of the neighborhood structure in the context of the codon-based representation. 

A set of codons is defined as a homogeneous sub-block if it complies with three requirements: 1) The 

codons of the set are synonymous, 2) The sets of amino acids encoded by the neighboring codons 

are equal, 3) The considered codons are connected to the adjacent codons specifying the same amino 

acid, through edges with equal weights.  
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The synonymous codon blocks whose all codons belong to the same homogeneous sub-block, are 

called homogenous blocks. The homogenous blocks are, hence, a particular type of homogeneous 

sub-block. In other terms, the homogeneous blocks are the blocks whose all codons have equal 

robustness. The synonymous codon blocks for which at least one subset of codons is a homogeneous 

sub-block are called heterogeneous synonymous codon blocks or heterogeneous blocks. In other 

terms, the heterogeneous blocks are the codon blocks containing at least two codons with different 

robustness. There are heterogeneous blocks that only contain different homogeneous sub-blocks, 

such as, those that code for Val, Ala in the standard code. There are other heterogeneous blocks 

formed by homogeneous sub-blocks as well as codons, like those that correspond, in the standard 

code, to leucine, arginine and serine. 

The organization of amino acid assignments in the standard code (even in the variant genetic codes 

studied in this work) is such that the maximum size of the homogenous sub-block or block is 2. These 

two codons are always adjacent and differ by one transition in the third position. For the standard 

code and the other 24 alternative genetic codes studied in this work, the codons adjacent through the 

edges involving the first and second codon position always belong to neighboring homogeneous sub-

blocks or blocks with C or U in the third position. This is a consequence of a general pattern according 

to which the codons with pyrimidine in the third position are organized in doublets that code for the 

same amino acid. Since all these homogeneous sub-blocks are doublets, only the reassignments that 

involves one of the codons of each doublet, breaks the structure of neighboring homogeneous sub-

blocks.23  

This neighborhood structure according to which all codons ending in pyrimidines and most of those 

ending in purines are grouped in neighboring homogeneous sub-blocks is seen in all these natural 

 
23 It is noteworthy that only the codons ending in purines are involved in the reassignments that give rise to the 24 natural 

genetic codes from the standard code, except for the Yeast mitochondrial code (ttable:3, NCBI). 
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genetic codes. Even in the Yeast mitochondrial code, its homogeneous sub-blocks (CUU, CUC) is 

found also in the standard code except that it specifies another amino acid (Thr). Thus, we could claim 

that almost all codons adjacent to codons of homogeneous sub-blocks belong to other homogeneous 

sub-blocks. 

The codons belonging to a given homogeneous sub-block always have the same value of weighted 

mean phenotypic change or robustness. Conversely, codons with equal robustness values no 

necessarily belong to the same homogeneous sub-block. The robustness values do not only depend 

on edge weights of the star sub-graphs representing the codon neighborhoods and on how amino 

acids is assigned to these vertices but also on the values attached to them according to a given 

property. For example, if the methionine and isoleucine have the same property values according to 

a given hypothetical scale, the codons AUA and AUG will have the same robustness or mean 

phenotypic change (see an example in Appendix I, Figure I.2). 

This is because these codons fail to fulfil the requirement of synonymy for forming a homogeneous 

sub-block. Then, if the property values of these two amino acids are equal, both could be considered 

as the same amino acid. Even the codons CUA and CUG that code for Leucine would seem to form 

a homogeneous sub-block, in this case, because both seemingly meet the second criterion of equal 

sets of neighboring amino acids. None of these codons actually forms a homogeneous sub-block. For 

that reason, a labelling function based on amino acid identity instead of the amino acid property is 

used to validate for each codon the fulfilment of the three requirements to form a homogeneous sub-

block (Appendix I, pseudocode I.1).  

We have developed an algorithm to determine the codons belonging to homogeneous sub-blocks (L) 

or homogenous blocks (B). Recall that 𝐴𝑔 denotes the weight matrix of the graph 𝐺𝑔 representing the 

codon neighborhood structure of the considered genetic code. ϴ is an array of size 64 that represents 

the assignment of 20 amino acids to 64 codons (that is, the labelling function). 
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This algorithm allows us to verify whether each codon represented in Ag fulfils the three requirements 

for being part of a homogeneous sub-block or block (pseudocode 1, lines 4 and 9,10). If all codons 

specifying the same amino acid belong to a unique homogeneous sub-block, then we have a 

homogeneous block (Appendix I, pseudocode I.1, line 29).  

The characterization of the neighborhood structure of the genetic codes allows us, as will be shown 

in the next section, to reduce the number of blocks or codons to process. For example, the standard 

genetic code can be represented, considering only the sense codons, as a set containing 10 

homogeneous blocks and 10 heterogeneous blocks for both weighting used and regardless de amino 

acid property. 

 

4.7 Methods to compute the mean phenotypic change 
 

The three strategies described in this section aim to reduce the running time of mean phenotypic 

change computation. These methods rely on splitting the 𝐺𝑔 vertices into two groups according to 

three criteria: 1) The types of codons represented by these vertices, such as, the sense and stop 

codons, 2) The types of blocks defined according to their neighborhood structures for a given genetic 

code, such as, the homogeneous and heterogeneous blocks, 3) The two groups of codons determined 

by pairwise comparisons between the standard code and any other natural genetic code with respect 

to their phenotypic assignments, such as, the group of codons assigned to the same amino acid in 

both genetic codes and the other group of codons with different amino acid assignments in both 

codes. All these methods are based on the partitioning of the graph representing the genetic codes 

into two subgraphs according to the above criteria. More precisely, the part of the graphs for which 

the mean phenotypic change is invariant for all different genetic codes, models or genomes, is 

separated from the part with a variable mean phenotypic change. The subgraph with a constant mean 
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phenotypic change will be processed only once for each amino acid property, thus reducing the total 

running time. This improvement is possible, due to the additivity of the robustness or mean phenotypic 

change function. In other words, the robustness value of a graph representing a given genetic code 

is equal to the sum of robustness values of its sub-graphs. Moreover, the mean phenotypic change 

of the whole genetic code representation is obtained by adding the mean phenotypic change of the 

partial representations for each type and codon position of the single-base changes.  

 

4.7.1 Computing the mean phenotypic change for different genetic code representations 

 

It is possible to take advantage of the similarity among the genetic code representations with the aim 

of reducing the number of vertices and edges used for computing the values of the mean phenotypic 

change. 

We denote by 𝐹𝜋
𝑐, the mean phenotypic change under the codon-based representation of the genetic 

code based on the 64 codons, 𝐹𝜋
𝑠𝑡𝑝

, that of the stop codons and  𝐹𝜋
𝑠𝑒, that of the sense codons, where 

𝜋 is a given mapping between 𝐺𝑔 and  𝐺𝑝 vertices. The equations shown below are obtained by 

dividing into two groups the terms of the sum: one corresponding to the single-base changes between 

the stop codons and their adjacent codons (𝐹𝜋
𝑠𝑡𝑝

), whereas the other group includes only those terms 

that correspond to the single-base changes involving sense codons, (𝐹𝜋
𝑠𝑒). In terms of graphs, the 

underlying graph 𝐺𝑔 is partitioned into two subgraphs, one for the stop codons and their adjacent 

codons and the other for the sense codons and their adjacent codons. The mean phenotypic change 

is computed separately for both. Let 𝑠 represents a stop codon, 𝑣 any of the 𝑛 codons adjacent to it 

that could be a sense codon or another stop codon, 𝑛𝑠 the number of stop codons of a given genetic 
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code and 𝑝 the value of a given property assigned to the stop codon 𝑠 or to its neighboring amino 

acid. Then, considering the additivity of the mean phenotypic change, we have, 

              𝐹𝜋
𝑐 = 𝐹𝜋

𝑠𝑒 + 𝐹𝜋
𝑠𝑡𝑝

                                                           (5) 

      = 𝐹𝜋
𝑠𝑒 +

1

𝑁
(∑ ∑ 𝛾𝑠𝑣

9
𝑣=1

𝑛𝑠
𝑠=1 (𝑝(𝜋(𝑠)) − 𝑝(𝜋(𝑣)))

2
)    

For the genetic codes studied in this work, 0 ≤ 𝑛𝑠 ≤ 4.  

Since the stop codons and their neighboring codons represent less than 10 percent of the genetic 

codes, computing 𝐹𝜋
𝑐 from 𝐹𝜋

𝑠𝑒 by adding the contribution of the vertices representing these codons, 

𝐹𝜋
𝑠𝑡𝑝

, rather than computing it from scratch, greatly reduce the number of vertices and edges to 

process (equation 5).  

As for the mean phenotypic change defined under the block-based representation, 𝐹𝜋
𝑏 is equal to 𝐹𝜋

𝑠𝑒. 

The contraction of the edges representing synonymous substitutions in the block-based 

representation (see figure 4.2) and the fact that several codons specify the same amino acid in a 

codon-based model, leads to the elimination of the influence of synonymous substitutions on the 

robustness values. It is worth noting that even though the robustness values are equal, the null 

population mean and variance computed under both representations for the same genetic code, will 

not necessarily be equal.  

 

4.7.2 Considering the codon neighborhood structure for computing the genomic robustness 

 

For computing the robustness of two set of genomes (thermophiles and non-thermophiles) according 

to the standard code and a set of previously chosen amino acid properties, the mean phenotypic 

change weighted with the genomic codon and block usage frequencies will be used. Before 

performing the inner product of two weight matrices, namely, the matrix formed by weights based on 
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synonymous codon usage and the distance matrix, we perform the partition of the graph 𝐺𝑔 into two 

subgraphs, one formed by the vertices representing the codons of the homogeneous blocks and the 

other, formed by codons belonging to heterogeneous blocks. This allows us to take advantage of the 

fact that the blocks formed by codons with the same robustness, have the same contribution to the 

total genomic robustness among different genomes. This can be proved as follows, for a given codon-

based representation, the mean phenotypic change (𝐹𝜋
𝜗) for each homogeneous block 𝜗 containing 

the codons 𝑞 is defined by the equation, 𝐹𝜋
𝜗 =

1

𝑁𝜗
∑ ∑

ℎ𝑞𝑣𝑓𝑞

𝑓𝜗𝑞

𝑐𝑞

𝑣=1
𝑦
𝑞=1 (𝑝(𝜋(𝑞)) − 𝑝(𝜋(𝑣)))2. This equation 

is derived from the equation 4a by redefining it in terms of 𝜗 and substituting 𝛾𝑞𝑣 with the expressions 

for the biased weightings (table 4.3). We denote by 𝑦  the number of synonymous codons of 𝜗 ,  𝑐𝑞, 

the number of vertices adjacent to 𝑞  and  𝑁𝜗, the number of single-base changes involving the codons 

of 𝜗. As the terms that correspond to the contributions of all codons belonging to the considered 

homogeneous block are equal, they can be grouped together, as follows, 

𝐹𝜋
𝜗 =

1

𝑁𝜗
∑

𝑓𝑞

𝑓𝜗𝑞
∑ ℎ𝑞𝑣

𝑐𝑞

𝑣=1
𝑦
𝑞=1 (𝑝(𝜋(𝑞)) − 𝑝(𝜋(𝑣)))2                                               (6) 

           =
1

𝑁𝜗
(∑ ℎ𝑞𝑣

𝑐𝑞

𝑣=1
(𝑝(𝜋(𝑞)) − 𝑝(𝜋(𝑣)))2) (∑

𝑓𝑞

𝑓𝜗𝑞

𝑦
𝑞=1 ),  Since by definition,(∑

𝑓𝑞

𝑓𝜗𝑞

𝑦
𝑞=1 ) = 1,                     

 =
1

𝑁𝜗
(∑ ℎ𝑞𝑣

𝑐𝑞

𝑣=1 (𝑝(𝜋(𝑞)) − 𝑝(𝜋(𝑣))
2

) , where  𝑞  is any codon of  𝜗 (6a) 

Consequently, the mean phenotypic change for these blocks in particular does not depend on the 

synonymous codon usage. Thus, the contribution of the codons of all homogeneous blocks for the 

considered genetic code is previously computed for each amino acid property k, 𝑆𝜋
𝑞(𝑘), thereby, 

excluding it from the computations of the mean phenotypic change for each genome (7). Then, inside 

the loop over the genomes, it will be only necessary to process the 𝑥 codons from the heterogeneous 

blocks and their 𝑛 neighboring codons for computing the mean phenotypic change per genome 𝑔 and 

property, 𝑘, for the sense codons  𝐹𝜋
𝑠𝑒(𝑘, 𝑔). (pseudocode 2)  
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               𝑆𝜋
𝑞(𝑘) =  ∑ ∑ ℎ𝑞𝑣

𝑛
𝑣=1

𝑧
𝑞=1 (𝑝(𝜋(𝑞)) − 𝑝(𝜋(𝑣)))

2
                                                 (7a) 

𝐹𝜋
𝑠𝑒(𝑘, 𝑔) =

1

𝑁
(𝑆𝜋

𝑞(𝑘) + (∑ 𝑚(𝑒, 𝑔) ∑ ℎ𝑒𝑣
𝑛
𝑣=1

𝑥
𝑒=1 (𝑝(𝜋(𝑒)) − 𝑝(𝜋(𝑣)))

2
))          (7b) 

Where 𝑚(𝑒, 𝑔) denotes the frequency of codon 𝑒 of the heterogeneous block 𝑠𝑒 in the genome 𝑔. 

Then, (𝑒, 𝑔) =
𝑓𝑒

𝑓𝑠𝑒
 , where 𝑓𝑒 is the frequency of the codon 𝑒 and 𝑓𝑠𝑒, the frequency of 𝑠𝑒. The weights 

on the edges between 𝑒 (or 𝑞) and 𝑣, are denoted by ℎ𝑒𝑣  (or ℎ𝑞𝑣). 

Thus, this method is applied to compute the mean phenotypic change or robustness for several 

genomes and properties. Since the homogenous blocks represent roughly half of each genetic code, 

the decrease in the number of edges to process is considerable. Due to the fact that this algorithm 

(Appendix I, pseudocode I.2) is applied to one genetic code, the number of stop codons, as well as, 

the number of the homogeneous and heterogeneous blocks are constant. Therefore, the running 

time of this algorithm, as measured in terms of the number of genomes 𝐺 and amino acid properties 

K, is 𝑂(𝐺𝐾). 

4.7.3 Computing the mean phenotypic change for different genetic codes  

 

For computing the mean phenotypic change of a set of 𝑛 genetic codes according to 𝑘 amino acid 

properties, we previously make pairwise comparisons between two amino acid to codons 

assignments, one for the standard code represented by the permutation 𝜋 and the other for a given 

alternative genetic code represented by the permutation 𝛽, with the aim of determining the sub-set 

of 𝑡 codons assigned to different amino acids for each pair of these genetic codes,𝜋(𝑡) ≠ 𝛽(𝑡).  After 

this preprocessing step, for each property, 𝑘, the mean phenotypic change under the codon-based 

model is computed, 𝐹𝜋
𝑐𝑜(𝑘). From the subgraph of 𝐺𝑔 whose vertices represent the subset of codons 

𝑡, the mean phenotypic change is computed for two subsets of amino acids assigned to these 

codons, one is defined from the standard code, 𝐹𝜋
𝑡(𝑘, 𝑐) and the other, from the alternative genetic 
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code, 𝐹𝛽
𝑡(𝑘, 𝑐). Then, 𝐹𝛽

𝑐𝑜(𝑘, 𝑐) is computed for the whole set of vertices and edges corresponding to 

β and each amino acid property 𝑘, as follows: 

𝐹𝜋
𝑡(𝑘, 𝑐) =

1

𝑁
(∑ ∑ 𝛾𝑡𝑣

𝑛
𝑣=1

𝑟
𝑡=1 (𝑝𝑘,𝑐(𝜋(𝑡)) − 𝑝𝑘,𝑐(𝜋(𝑣)))

2
),  𝑡: 𝜋(𝑡) ≠ 𝛽(𝑡)      (8) 

𝐹𝛽
𝑡(𝑘, 𝑐) =

1

𝑁
(∑ ∑ 𝛾𝑡𝑣

𝑛
𝑣=1

𝑟
𝑡=1 (𝑝𝑘,𝑐(𝛽(𝑡)) − 𝑝𝑘,𝑐(𝛽(𝑣)))

2
)    

 𝐹𝛽
𝑐𝑜(𝑘, 𝑐) = 𝐹𝜋

𝑐𝑜(𝑘) − 𝐹𝜋
𝑡(𝑘, 𝑐) + 𝐹𝛽

𝑡(𝑘, 𝑐)                                                     (8a) 

Notice that the number and identities of these codons and amino acids depend on the alternative 

genetic code 𝑐. The number of codons with different amino acid assignments, 𝑟, is between 1 and 6, 

for the genetic codes included in this work. On the other hand, the function that assigns numerical 

values to phenotypes, 𝑝𝑘,𝑐 , depends not only on the amino acid property 𝑘 but also on the genetic 

code 𝑐, because of the mean suppressor method to quantify the contribution of the stop codons. This 

method allows us to greatly reduce the number of processed vertices per genetic code due to the 

small number of codon reassignments and stop codons in the genetic codes (line 8, Appendix I, 

pseudocode I.3). Considering that the number of codon reassignments and stop codons is constant, 

this algorithm has quadratic complexity in terms of the number of amino acid properties and genetic 

codes (Appendix I, pseudocode I.3).  

 

4.8 Methods to assess the relevance of genome and genetic code robustness 

 

The statistical method to assess the significance of the weighted mean phenotypic change had been 

previously based on the empirical sampling distribution of this measure. The weighted mean change, 

or robustness, of a given genetic code indicates the efficiency of this code for minimizing the effect of 

errors or mutations. The statistical approach is distinguished from that based on optimization by the 

way the strength or the relevance of the robustness values is measured. This approach is based on 

estimates of the proportion of random codes more efficient for minimizing the effect of errors than the 
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considered genetic code. Empirical sampling distributions of the weighted mean phenotypic change 

are used to assess the relevance of these estimates, assuming that the hypothesis of random 

assignment is true. Since the shape of the null distribution is unknown, we propose to evaluate the 

significance by using two other criteria, namely, the Cantelli’s upper bound and the scores. These 

parameters depend on the first two moments of the population distribution. Equations for these 

parameters are known in the context of the statistical approach to the Quadratic Assignment 

Problem24 [93, 108]. The most important advantage of this method over the previous one, based on 

random sampling of codes, is its performance in terms of running time. In this section, we propose 

methods to compute these parameters for different genetic code representations, genetic codes and 

genomes. 

4.8.1 Mean of the null population distribution 

 

The mean of the population distribution of the mean phenotypic change is a parameter used in both 

approaches, one based on probability values estimated from the empirical sampling distribution of 

mean phenotypic change and the other, on the estimates of the optimization percentage. Previous 

works have mainly used random samples of codes to estimate the population mean of the mean 

phenotypic change. Since the Load minimization problem and the Quadratic assignment problem are 

essentially the same problem and the mean phenotypic change used in both approaches are similar 

to objective functions used in the context of the quadratic assignment problem, the equation for the 

population mean can be used with a few modifications. Below, the general equation used to compute 

the population mean of the mean phenotypic change, µ, depends on weight matrices of both graphs, 

𝐺𝑔 and  𝐺𝑝. The sum of weights, 𝛾𝑢𝑣, corresponding to single-base changes between the blocks, or 

 
24 We used essentially the same equations for the first two moments by virtue of the equivalence between the Quadratic 
assignment and Load minimization problems. 
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codons, 𝑢 and 𝑣, (9a)  is computed independently of the sum of weights of 𝐺𝑝 (9b), where 𝑝(𝑖) 

represents the property values assigned to the phenotypes, 𝑖, 𝑗 and 𝑁, the total number of single-

base changes. 

                  µ =
1

𝑛(𝑛−1)𝑁
(∑ ∑ 𝛾𝑢𝑣

𝑐𝑢
𝑣=1

𝑛
𝑢=1 )(∑ ∑ (𝑝(𝑖) − 𝑝(𝑗))2𝑛

𝑗
𝑛
𝑖 )                             (9)    

𝑇 = (∑ ∑ 𝛾𝑢𝑣
𝑐𝑢
𝑣=1

𝑛
𝑢=1 )                                                                        (9a) 

𝑃 = (∑ ∑ (𝑝(𝑖) − 𝑝(𝑗))2𝑛
𝑗=1

𝑛
𝑖=1 )                                                         (9b) 

The mapping of the amino acids to codons represented by the permutation, 𝜋 (where, 𝜋𝜖𝑆𝑛) is not 

required for the computation of µ. The equation for the mean in the context of the LMP is proved as 

follows,             

                         µ =
1

(𝑁)𝑛!
∑ (∑ (∑ 𝛾𝑢𝑣(𝑝(𝜋(𝑢)) − 𝑝(𝜋(𝑣) ))2𝑛

𝑣=1 )𝑛
𝑢=1 )𝑛!

𝜋𝜖𝑆𝑛
                      (9c) 

µ =
1

(𝑁)n!
 ∑ ∑ 𝛾𝑢𝑣(∑ (𝑝(𝜋(𝑢)) − 𝑝(𝜋(𝑣) )

2𝑛!
𝜋𝜖𝑆𝑛

)𝑛
𝑣=1

𝑛
𝑢=1                          (9d) 

µ =
(𝑛−2)!

(𝑁)n!
 (∑ ∑ 𝑦𝑢𝑣

𝑛
𝑣=1

𝑛
𝑢=1 )(∑ ∑ (𝑝(𝑖) − 𝑝(𝑗))2𝑛

𝑗=1
𝑛
𝑖=1 ).                         (9e) 

In the set of all possible mappings of 𝑛 amino acids to 𝑛 blocks or codons, each pair of vertices 𝑢 and 

𝑣, representing codons or blocks, will be obviously assigned to all possible permutations of two amino 

acids (equation 9d). Hence, each pair of 𝑢 and 𝑣 will be allocated to the same pair of amino acids in 

(𝑛 − 2)! permutations of 𝑆𝑛. In other words, every permutation of two amino acids assigned to 𝑢 and 

𝑣, will be repeated (𝑛 − 2)! times in the set, 𝑆𝑛. (equation 9e). Two strategies will be adopted to reduce 

the number of operations required to compute the null population mean under the codon-based 

models: 

1) The block-based representations are built under the constraints imposed by the 

synonymous block structure. In contrast, the codon-based representations do not consider this 

block structure in 𝐺𝑔 but preserves in 𝐺𝑝 the number of each amino acid assigned to codons 
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instead. We take advantage of this characteristic by grouping in vectors 𝑛 the right-hand terms 

of equation (9) that correspond to the same amino acids in graph 𝐺𝑝, thereby obtaining the 

equation (10a). More precisely, 𝑛(𝑐,𝑖), 𝑛(𝑐,𝑗) are the number of amino acids, 𝑖 or 𝑗 , encoded by 

the genetic code 𝑐 and  𝑝𝑘, the values of the property 𝑘 assigned to 𝑖 and 𝑗.  

   𝑃(𝑐,𝑘)
𝑠𝑒 = ∑ ∑ (𝑝𝑘(𝑖) − 𝑝𝑘(𝑗))

2
64−𝑛𝑠(𝑐)
𝑗=1

64−𝑛𝑠(𝑐)
𝑖=1                                  (10)                                      

 𝑃(𝑐,𝑘)
𝑠𝑒 = ∑ ∑ 𝑛(𝑐,𝑖)

20
𝑗=1

20
𝑖=1 𝑛(𝑐,𝑗) (𝑝𝑘(𝑖) − 𝑝𝑘(𝑗))

2
                                  (10a)       

This grouping based on amino acid identity, reduces up to fourfold the number of 

operations performed on 𝐺𝑝 weight matrices for the codon-based models.  

2)   The partitioning of both graphs, 𝐺𝑝 and 𝐺𝑔,  into two sub-graphs is performed, one sub-graph 

formed by the vertices representing sense codons (𝐺𝑔) (or amino acids in 𝐺𝑝) and the other, 

formed by the stop codons (𝐺𝑔) (or translation-stop signals in 𝐺𝑝). Firstly, the summation of 𝐺𝑝 

weights is performed for the model based on sense codons (eq 10a) then, the only vertices 

used to compute the right-handed term for the models based on the whole set of codons, 𝑃(𝑐,𝑘)
𝑐𝑜  , 

are those representing the stop codons (eq 11a). This decreases more than tenfold the number 

of vertices and edges used to compute the null population mean for each genetic code or 

genome. The same idea is applied for the left-handed terms, 𝑇(𝑐)
𝑠𝑒 , of the equation of the null 

population mean for the representation based on sense codons (eq 11b).  

𝑃(𝑐,𝑘)
𝑐𝑜 = ∑ ∑ (𝑝𝑘,𝑐(𝑖) − 𝑝𝑘,𝑐(𝑗))

264
𝑗=1

64
𝑖=1                                           (11) 

𝑃(𝑐,𝑘)
𝑐𝑜 = 𝑃(𝑐,𝑘)

𝑠𝑒 + ∑ ∑ (𝑝𝑘,𝑐(𝑠) − 𝑝𝑘,𝑐(𝑗))
29

𝑗=1
𝑛𝑠(𝑐)
𝑠=1                                    (11a) 

   𝑇(𝑐)
𝑠𝑒 = (∑ ∑ 𝛾𝑢𝑣

64−𝑛𝑠(𝑐)
𝑣=1

64−𝑛𝑠(𝑐)
𝑢=1 ) =  𝑇𝑐𝑜 − ∑ ∑ 𝛾𝑠𝑣

9
𝑣=1

𝑛𝑠(𝑐)
𝑠=1             (11b) 
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Where, 𝑛𝑠 is the number of stop codons of the genetic code 𝑐 and   𝑝𝑘.𝑐(𝑠), the property values assigned 

to the stop codons, 𝑠, by using the mean-suppressor or scale-mean method according the genetic code 

𝑐 and amino acid property 𝑘.  

As for the models based on the whole set of codons, the double sum of 𝛾𝑢𝑣 can be formulated by 

grouping the weights with respect to the substitution types and positions as follows, 

𝑇𝑐𝑜 = ∑ ∑ 𝛾𝑢𝑣
64
𝑣=1

64
𝑢=1  ,  192 ≤ 𝑛𝑝𝑡, 𝑛𝑙 ≤ 576,   0 ≤ 𝑟𝑝𝑡, 𝑟𝑙 ≤ 1             (12)      

𝑇𝑐𝑜 = ∑ ∑ 𝑛𝑝𝑡
2
𝑡=1

3
𝑝=1 𝑟𝑝𝑡 = ∑ 𝑛𝑙

6
𝑙=1 𝑟𝑙 , grouping 𝑝 and 𝑡 as 𝑙. 

Where 𝑛𝑝𝑡 is the number of single-base changes for the codon position 𝑝 and substitution type 𝑡. The 

weight of single-base changes according 𝑝 and 𝑡 is 𝑟𝑝𝑡. The sum of weights for the models based on 

sense codons is not constant among the genetic codes, because the number and nature of sense 

codons (𝑛𝑠𝑐) is specific to each genetic code (𝑛𝑠𝑐 = 64 − 𝑛𝑠(𝑐)).  

The term, 𝑇(𝑐)
𝑏 , is defined as the sum of graph 𝐺𝑔 weights for the codon-block model. Owing to the fact 

that these weights depend on the synonymous codon block structure, 𝑇(𝑐)
𝑏  differs among genetic 

codes. Since the weights of the model based on codon blocks represent the contribution of missense 

single-base changes (𝜃(𝑢) ≠ 𝜃(𝑣)) between synonymous codon blocks, 𝑇(𝑐)
𝑏  can be computed from 

those 𝐺𝑔 weights corresponding to the missense substitutions in the representation based on sense 

codons, as follows: 

                    𝑇(𝑐)
𝑏 = ∑ ∑ 𝛾𝑢𝑣

64−𝑛𝑠
𝑣=1 ,(𝜃(𝑢)≠𝜃(𝑣))

64−𝑛𝑠
𝑢=1 = 𝑇(𝑐)

𝑠𝑒 − ∑ ∑ 𝛾𝑢𝑣
64−𝑛𝑠(𝑐)
𝑣=1,(𝜃(𝑢)=𝜃(𝑣))

64−𝑛𝑠(𝑐)
𝑢=1 .    (13) 

To compute 𝑇(𝑐)
𝑏  we therefore consider another partitioning criterion based on the distinction between 

synonymous and missense single-base changes. These methods can be applied to reduce the 

number of operations performed to solve two practical problems: 1) compute the null population 

means for a previously chosen set of genetic codes and amino acid properties (pseudocode 4), 2) 
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compute the null population means for a previously chosen set of genomes and amino acid 

properties25.  

These algorithms to compute the null population mean of the genetic code (or genome) robustness 

values for a set of genetic codes (or genomes) and several amino acid properties have quadratic time 

complexity in terms of the number of genetic codes (or genomes) and amino acid properties (Appendix 

I, pseudocode I.4). The empirical sampling distribution of code robustness values had been previously 

used to compute estimates of this parameter. This method is clearly more expensive in terms of 

running time, on account of an additional loop to iterate over the random codes for calculating their 

robustness values.  

 

4.8.2 Variance of the null population distribution 
 

The variance is required to compute the Cantelli’s upper bound and scores. Both parameters are 

considered as measures of significance or strength of the genetic code and genome robustness 

values. Regarding the statistical approach to the quadratic assignment problem, it is known the first 

two moments of the distribution of the cost of all possible assignments. The equation for the variance 

of this distribution was used with a few modifications inasmuch as the cost function has essentially 

the same form as the mean phenotypic change. Additionally, taking into account that the weight 

matrices of 𝐺𝑔 and 𝐺𝑝 are symmetrical this equation is expressed as follows,  

𝜎2 =
1

𝑛(𝑛−1)(𝑁)2 (
𝐷4

(𝑛−2)(𝑛−3)
+

4𝐷3

(𝑛−2)
+ 2𝐷2) − 𝜇2                           (14) 

             𝑛: the number of vertices, 𝑁:Total number of single base changes.  

 
25 The pseudocode for this practical problem is very similar to the first one except for three differences : The weighting based on 
synonymous codon usage is used, the control-variables of the loops are replaced by the genome array index and 𝑇(𝑧)

𝑐𝑜  is inside the 

loop that iterates over the genome array. 
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Each of the above terms,𝐷4, 𝐷3 and 𝐷2 are equal to the product of two terms which are independently 

computed from the weight matrices of the graphs 𝐺𝑔 and 𝐺𝑝. Below, the equations for these terms 

are presented. Besides, the relationships between them are briefly explored in order to show some 

shortcuts for reducing the number of operations. The term 𝐷2 represents the contribution of the 

assignments of each pair of amino acids to every pair of adjacent codons or blocks (eq 15-15b). There 

are (𝑛 − 2)! permutations with the same pair of amino acids assigned to each pair of codons or blocks, 

from which it follows that every specific mapping of two amino acids to two codons is contained in a 

permutation of size 𝑛 (where, 𝑛 > 2); these permutations represent a proportion of 
1

𝑛(𝑛−1)
 of all 

permutations of size 𝑛 (eq 14). (for more details see appendix VI) 

𝐷2 = (𝑇2)(𝑃2)                                                                     (15) 

𝑇2 = (∑ ∑ 𝛾𝑢𝑣
2𝑛

𝑣=1
𝑛
𝑢=1 )                                                          (15a) 

𝑃2 = (∑ ∑ (𝑝(𝑖) − 𝑝(𝑗))4𝑛
𝑗=1

𝑛
𝑖=1 )                                           (15b) 

The term 𝐷3 represents the contributions to variance of the assignments of three amino acids to three 

codons or blocks represented by vertices of two adjacent edges of 𝐺𝑔 (eq 16). There are (𝑛 − 3)! 

assignments of each three amino acids to every pair of adjacent edges. These assignments are 

represented by permutations of size 3 inside other permutations of size 𝑛 (where, 𝑛 > 3). Then, the 

permutations containing each of these permutations of size 3 represents a proportion of 
1

𝑛(𝑛−1)(𝑛−2)
 of 

the set of permutations of size 𝑛 (eq. 14). (for more details see appendix VI) 

   𝐷3 = (𝑇3)(𝑃3)                                                                                (16) 

  𝑇3 = (∑ ((∑ 𝛾𝑢𝑣
𝑛
𝑣=1 )2 − ∑ 𝛾𝑢𝑣

2𝑐𝑢
𝑣=1 )𝑛

𝑢=1 ),                                          (16a) 

  𝑃3 = (∑ ((∑ (𝑝(𝑖) − 𝑝(𝑗))2𝑛
𝑗=1 )

2
− ∑ (𝑝(𝑖) − 𝑝(𝑗))4𝑛

𝑗=1 )𝑛
𝑖=1 )           (16b)        

Both terms, 𝑇3 and 𝑃3, can be defined from 𝑇2 and 𝑃2, respectively, as follows, 
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𝑇3 = ∑ (∑ 𝛾𝑢𝑣
𝑛
𝑣=1 )2𝑛

𝑢=1 − ∑ ∑ 𝛾𝑢𝑣
2𝑛

𝑣=1
𝑛
𝑢=1    

 𝑇3 = ∑ (∑ 𝛾𝑢𝑣
𝑛
𝑣=1 )2𝑛

𝑢=1 − 𝑇2                                                               (17)    

 And for the weight matrix of 𝐺𝑝: 

𝑃3 = ∑ (∑ (𝑝(𝑖) − 𝑝(𝑗))
2𝑛

𝑣=1 )
2

− ∑ ∑ (𝑝(𝑖) − 𝑝(𝑗))
4𝑛

𝑣=1
𝑛
𝑢=1

𝑛
𝑢=1         

𝑃3 = ∑ (∑ (𝑝(𝑖) − 𝑝(𝑗))
2𝑛

𝑣=1 )
2

− 𝑃2
𝑛
𝑢=1                                                (17a) 

The term 𝐷4 represents the contribution to variance of the assignments of four amino acids to four 

codons, or blocks, represented by vertices of two non-adjacent edges of 𝐺𝑔 (eq 1). There are (𝑛 − 4)! 

assignments of each quartet of amino acids to every pair of non-adjacent edges. Hence, the 

permutations containing these patterns represents a proportion of 
1

𝑛(𝑛−1)(𝑛−2)(𝑛−3)
 of the set of 

permutations of size 𝑛. This term is defined as follows, 

D4 = (𝑇4)(𝑃4)                                                                                             (18) 

T4 = ((∑ ∑ 𝛾𝑢𝑣
𝑛
𝑣=1

𝑛
𝑢=1 )2 − 4 ∑ (∑ 𝛾𝑢𝑣

𝑛
𝑣=1 )2𝑛

𝑢=1 + 2 ∑ ∑ 𝛾𝑢𝑣
2𝑛

𝑣=1
𝑛
𝑢=1 )                 (18a) 

 P4 = ((∑ ∑ (𝑝(𝑖) − 𝑝(𝑗))
2𝑛

𝑣=1
𝑛
𝑢=1 )

2

− 4 ∑ (∑ (𝑝(𝑖) − 𝑝(𝑗))
2𝑛

𝑣=1 )
2

𝑛
𝑢=1 + 2 ∑ ∑ (𝑝(𝑖) − 𝑝(𝑗))4𝑛

𝑣=1
𝑛
𝑢=1 )  

Both terms, 𝑇4 and 𝑃4, are defined by exclusion from 𝑇,  𝑇3, 𝑇2  and 𝑃, 𝑃3, 𝑃2 , respectively.  

       𝑇4 = (∑ ∑ 𝛾𝑢𝑣
𝑛
𝑣=1

𝑛
𝑢=1 )2 − 4(𝑇3) + 2(𝑇2)                                                         (19) 

𝑃4 = (∑ ∑ (𝑝(𝑖) − 𝑝(𝑗))2𝑛
𝑣=1

𝑛
𝑢=1 )2 − 4(𝑃3) + 2(𝑃2)                                        (19a)        

As proven below, for 𝑇4, 

        𝑇4 = ((∑ ∑ 𝛾𝑢𝑣
n
𝑣=1

𝑛
𝑢=1 )2 − 4[∑ ((∑ 𝛾𝑢𝑣

𝑛
𝑣=1 )2 − (∑ 𝛾𝑢𝑣

2𝑛
𝑣=1 ))𝑛

𝑢=1 ] + 2 ∑ ∑ 𝛾𝑢𝑣
2n

𝑣=1
𝑛
𝑢=1 ) 

𝑇4 = ((∑ ∑ 𝛾𝑢𝑣
n
𝑣=1

𝑛
𝑢=1 )2 − 4[(∑ (∑ 𝛾𝑢𝑣

𝑛
𝑣=1 )2𝑛

𝑢=1 ) − (∑ ∑ 𝛾𝑢𝑣
2𝑛

𝑣=1
𝑛
𝑢=1 )] + 2 ∑ ∑ 𝛾𝑢𝑣

2n
𝑣=1

𝑛
𝑢=1 )  

𝑇4 = ((∑ ∑ 𝛾𝑢𝑣
n
𝑣=1

𝑛
𝑢=1 )2 − 4 ∑ (∑ 𝛾𝑢𝑣

n
𝑣=1 )2𝑛

𝑢=1 + 2 ∑ ∑ 𝛾𝑢𝑣
2n

𝑣=1
𝑛
𝑢=1 )  

𝑇4 = (∑ ∑ 𝛾𝑢𝑣
𝑛
𝑣=1

𝑛
𝑢=1 )2 − 4(𝑇3) + 2(𝑇2)        substituting with (15a) and (16a) 

𝑇4 = (𝑇)2 − 4(𝑇3) + 2(𝑇2)                           substituting with (9a) 
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The equation (19a) has a similar proof.  

Three methods to reduce the number of operations will be adopted to compute the null population 

variance for several genetic codes and amino acid properties26 : 

1) Grouping the terms on the basis of the amino acid identity. The codon-based representation 

doesn’t incorporate the synonymous codon block structure but only the number of each amino 

acid mapped to different codons according to a given genetic code. As in the procedure for 

computing the mean, we take advantage of this information to reduce roughly fourfold the 

number of operations per iteration by using an array 𝑛(𝑐,𝑖) which contains the number of the 

amino acid 𝑖 (Appendix I, pseudocode I.5, lines 10-17) assigned to codons according to 

genetic code 𝑐. 

2)  As in the methods to compute the population mean and the mean phenotypic change, it 

will be performed the partitioning of the codon-based graphs into two sub-graphs, representing 

the stop codons and sense codons, as well as the synonymous and missense single-base 

changes (Appendix I, pseudocode I.5 lines, 13-16, 20-25). Thus, for computing the variance 

under the representation based on the whole set of codons, it would be only necessary to 

process the vertices and edges corresponding to the stop codons and their neighborhoods, 

which roughly represent much less than 5% of most genetic codes. 

3)  Using equations that we propose for computing the variance (equations 17, 17a, 19,19a, 

and the pseudocode 5 lines: 3, 4, 7, 8, 11, 12, 15, 17, 23, 25, 27 and 28.). It allows us to save 

operations by avoiding processing several times the same sub-graphs.   

 
26 The method for computing the variance of the null distribution of the mean phenotypic change corresponding to G genomes 

and K properties, is very similar to the algorithm described in the pseudocode 5. Three changes must be introduced: 1) Input: 
weights based on codon usage bias, 2) Loop over genomes instead of genetic codes, 3) The terms,𝑇1

𝑐𝑜, 𝑇2
𝑐𝑜, 𝑇3

𝑐𝑜, 𝑇4
𝑐𝑜  must be inside 

the loop over genomes.  
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This algorithm has time complexity of 𝑂(𝐶𝐾|𝐸𝑝|). Assuming that the number of vertices and edges 

are constant, time complexity would be, 𝑂(𝐶𝐾), where C denotes the number of genetic codes and 

K, the number of amino acid properties. Since the number of edges processed is roughly constant 

among different genetic codes, this assumption seems reasonable (Appendix I, pseudocode I.5).  

 4.8.3 The Cantelli’s upper bound and scores 

 

The Cantelli’s upper bound [109, 110] and scores are used to assess the strength or the relevance of 

mean phenotypic change estimates. For comparing genetic codes or genomes, these measures of 

relevance will be used. The greater the relevance, the farther these estimates are from expected 

values according to the considered genetic code representation and amino acid property.  

In previous works, the method to assess the significance of mean phenotypic change values has been 

based on estimates of the proportion of more robust codes than a given genetic code. Since it is 

unknown the shape of the distribution of the mean phenotypic change under the assumption that the 

hypothesis of random assignment is true, an empirical null distribution is estimated by using random 

generation of code samples. Thus, with the aim of reducing the standard error of the estimates, the 

size of this random sample of codes has been increased as much as possible (for example, 109 codes 

[36]). Therefore, this method is inaccurate and too expensive in terms of running time. With the 

purpose of avoiding these issues, we have used the Cantelli’s upper bound and the score as 

measures of relevance of robustness values. Both measures are useful to quantify how far the 

robustness values are from the null population mean. For previous methods, it was necessary to 

compute the mean phenotypic change values of the codes of a random sample to assess the 

relevance of this parameter estimates for a given genome or genetic code.  
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The Cantelli’s upper bound and score, are defined from the mean and variance of the null population 

distribution. The Cantelli’s upper bound is defined in the context of the one-sided Chebyshev 

inequalities, as follows, 

Let be the mean phenotypic change, 𝐹𝜋, a random variable (Mean phenotypic change) with mean 𝜇 

and variance 𝜎2. Then for any 𝑎 > 0, 

  (𝐹𝜋 ≥ 𝜇 + 𝑎) ≤ 𝑈𝐵1 =
𝜎2

𝜎2+𝑎2                           

   (𝐹𝜋 ≤ 𝜇 − 𝑎) ≤ 𝑈𝐵2 =
𝜎2

𝜎2+𝑎2 

𝑈𝐵1 denotes the upper bound on the probabilities of right-sided deviations from the mean,𝜇. 

 𝑈𝐵2 denotes the upper bound on the probabilities of left-sided deviations from the mean, 𝜇. 

Below, the equation to compute the upper bound: 

    𝑈𝐵1 = 𝑈𝐵2 =
𝜎2

𝜎2+(𝜇−𝐹𝜋)2   , where 𝑎 = 𝜇 − 𝐹𝜋               (20) 

The score is defined as, 

𝑆𝑐𝑜𝑟𝑒 =
𝐹𝜋−𝜇

𝜎
                                                                (21) 

When it is important to know the direction of the deviations of  𝐹𝜋 values from the mean, 𝜇, the scores 

are used instead of the Cantelli’s upper bounds. 

 

4.8.4 Approach based on optimization 
 

The optimization percentage is other known measure used to assess relevance of the mean 

phenotypic change values of amino acid-to-codon assignments. We will apply this measure in the 

context of the mean phenotypic change at the genome level. Two sets of genomes from thermophiles 

and non-thermophiles will be previously chosen to compare them according to the optimization 

percentage. In order to compute this measure, three parameters are required such as, the null 
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population mean, 𝜇, the mean phenotypic change for a given genetic code, 𝐹𝜋𝑧
 and the minimum value 

of the mean phenotypic change, 𝐹𝜋0
 (eq. 3). This section deals with the algorithm to compute the latter 

parameter. Two weight functions will be used to compute the mean phenotypic change or robustness 

of a given genome (table 4.3). One weight function depends uniquely on the synonymous codon 

usage at the genome level and the other function, combines this parameter with a weighting scheme 

based on mistranslation rates.  

The Load Minimization Problem in the context of its application to the genomic robustness, is a 

polynomially solvable version of the Quadratic Assignment Problem. This is a consequence of the 

fact that the weight matrix of 𝐺𝑔, whose elements are the frequency of synonymous codons, is a SUM 

matrix (Chapter 3, section 3.3), as will be shown below. The frequency of the synonymous codon,𝑢, 

belonging to the block, 𝑠𝑢, is defined as, 𝑚𝑢 =
𝑓𝑢

𝑓𝑠𝑢
. A right-handed term, 𝑏𝑢 , is defined by including 

the phenotypic distances represented in 𝐺𝑝, as well as, the weights of 𝐺𝑔 , ℎ𝑢𝑣 , based on the type and 

position of single-base changes. In this case, 𝑚𝑢 is actually the row generating vector of the 

corresponding 𝑛𝑥𝑛 matrix, where 𝑛 stands for the number of vertices representing codons. More 

specifically, the entries of each row, 𝑢, of this matrix are constant and equal to 𝑚𝑢. Hence, we have 

a Sum matrix with a row generating vector and a column generating vector of zeros. Thus, the QAP 

instance that corresponds to the problem of minimizing the genomic robustness can be formulated as 

follows, 

      min
𝜋𝜖𝑆𝑛

𝐹𝜋0
= min

𝜋𝜖𝑆𝑛

1

𝑁
∑ 𝑚𝜋(𝑢)

𝑛
𝑢=1 ∑ ℎ𝑢𝑣(𝑝𝑘(𝑢) − 𝑝𝑘(𝑣))

2
𝑛
𝑣=1        (22a) 

      min
𝜋𝜖𝑆𝑛

𝐹𝜋0
= min

𝜋𝜖𝑆𝑛

1

𝑁
∑ 𝑚𝜋(𝑢)𝑏𝑢

𝑛
𝑢=1                                              (22b)                         

Additionally, since right-hand term in equation 22a is the Hadamard product of two square and 

symmetric matrices, the resulting 𝑛𝑥𝑛 matrix will be also symmetric. Consequently, from the theorem 



63 
 

2 (see Chapter 3), we know that a QAP instance that can be reformulated as the inner product of a 

SUM matrix and a symmetric matrix is solvable in 𝑂(𝑛2) time.  As a result, the minimization problem 

(eq. 22b) is solved by sorting in opposite order the vectors 𝑚𝜋(𝑢) and 𝑏𝑢. Computing 𝑏𝑢, takes time 

𝑂(𝑛2)  and sorting,𝑂(𝑛𝑙𝑜𝑔𝑛), consequently the algorithm runs in 𝑂(𝑛2) time. 

This algorithm is applied to the practical problem of computing the optimization percentage (eq. 3), 

used as measure of relevance of robustness values, for a set of previously chosen archaeal and 

bacterial genomes classified as thermophiles and non-thermophiles.  

4.9 Information entropy and robustness of the synonymous codon blocks 

 

The information entropy [111] and the standardized information entropy will be used as measures of 

synonymous codon usage bias. The information entropy, IE, is defined in terms of the genomic 

proportion of the codon,𝑐 of the block 𝑏, 𝑝(𝑏, 𝑐) , the number of synonymous codon blocks, 𝑛𝑏, and 

the number of codons of each block, 𝑡, as follows, 

𝐼𝐸 = ∑ (− ∑ 𝑝(𝑏, 𝑐)𝑡
𝑐=1 log2(𝑝(𝑏. 𝑐)))𝑛𝑏

𝑏=1   

The standardized information entropy is defined as the information entropy divided by the maximum 

entropy per synonymous codon block (log2 𝑡).  

 

4.10 Statistical analysis and data 

 

4.10.1 Three-level logistic mixed models 

 

In order to select the amino acid indices that better discriminate between thermophiles and non-

thermophiles with respect to the genomic robustness, several binomial random mixed models will be 

built, one for each amino acid property. For every genome and amino acid property, the scores 

corresponding to the mean phenotypic change will be computed and included as fixed effects in 
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multilevel generalized mixed models with logit as link function, and the thermic status as binary 

response variable. More specifically, we will build three-level random intercept models [112, 113], 

using the three taxonomic ranks, such as, phylum, class and genus as grouping factors in a three-

level nested design. The coefficients for fixed effects of these models are estimated by the maximum 

likelihood method based on Laplace approximation. The statistical significance of the fixed effects is 

determined by using the chi-square distributed likelihood ratio test statistic. For this test statistic, the 

same nested model will be used for all amino acid properties. The p values for the fixed effects will 

be used to choose the best amino acid properties with respect to different representations of genetic 

code.  

4.10.2 Natural genetic codes and amino acid properties 
 

It will be used 23 variant genetic codes from the web site: https://www.ncbi.nlm.nih.gov/Taxonomy 

/Utils/wprintgc.cgi. Most amino acid attributes will be obtained from the original sources. The 

references for the amino acid attributes are found in the appendix IX. A set of 235 amino acid property 

scales will be used for the application on the genetic code robustness (table IX.1 in appendix IX). We 

classify the amino acid property scales as general or local properties. We consider as local those 

property scales linked, for example, to specific secondary structures or transmembrane proteins. On 

the other hand, other property scales, such as, polarity, hydrophobicity, molecular weight, among 

others are classified as general properties. The general properties are intrinsic to the amino acids 

regardless of the protein context in which they are located. Thus, a set of 84 general amino acid 

properties was chosen for computing the genomic robustness (table IX.1 in appendix IX). We perform 

the standardization of all amino acid property scales by centering and scaling them by their respective 

mean and standard deviation.  
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4.10.3 Genomes  
 

Two samples are chosen, one sample has 324 thermophilic and hyper-thermophilic bacteria and 

archaea (Growth temperature greater than 40-450C) and the other, 418 non-thermophilic bacteria and 

archaea (psychrophiles + mesophiles) (Table IX.3 in appendix IX). The taxonomic composition of the 

first sample is 23 phyla, 41 classes and 60 orders and that of the second sample is 17 phyla, 39 

classes and 80 orders. The genomic codon usage will be downloaded from (Refseq) 

hive.biochemistry.gwu.edu/review/codon. To determine the growth temperature range group, we 

consider the following criteria, for hyperthermophiles: optimal growth temperatures (OGT) higher than 

80oC; for thermophiles: OGT between 45oC and 80oC; for mesophiles: OGT between 20oC and 45oC, 

and for psychrophiles: OGT lower than 20oC. The thermophiles and hyperthermophiles are included 

in the group called thermophiles. Whereas the mesophiles and psychrophiles are grouped as the non-

thermophiles. 

4.10.4 Code and statistical software 
 

All computations will be made with C++11 programs developed by us and compiled with g++. 

(https://github.com/Sautie/RGenomeGcode). The generalized linear mixed models are built and fitted 

by using the Lme4 package [114]. For principal component analyses, it will be used the packages, 

FactoMineR and Factoextra. For the two-sided Wilcoxon ranksum test and Benjamini–Hochberg 

procedure to control the false discovery rate, the R base packages will be used [115].  (https://www.R-

project.org/). 

 

 

 

https://github.com/Sautie/RGenomeGcode
https://www.r-project.org/
https://www.r-project.org/
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CHAPTER 5 

 

CHAPTER 5: RESULTS  

 

5.1 Overview on main results 
 

In this section, we outline some of the most remarkable results that will be described in this Chapter 

and further analyzed in Chapter 6. We computed the mean phenotypic change of 23 natural genetic 

codes with respect to 235 amino acid indices. The Cantelli’s upper bounds and scores were used as 

measures of relevance of the values of mean phenotypic change or robustness. We used two weighting 

schemes, three code representations and two methods to assign numerical values to stop codons in 

order to test under which of these conditions the robustness values are relevant. The standard genetic 

code showed the most relevant robustness values for hydrophobicity/polarity, the solvent accessible 

surface area, average long-range contacts, flexibility, Transmembrane helix and Small-linker 

propensities. We found that the 23 natural genetic codes tend to be more robust at the first and third 

codon positions for properties linked to protein stability. The standard genetic code was the most robust 

code for most of the above conditions. Moreover, some nuclear codes resulted to be more robust than 

the standard genetic code at the first codon position and most mitochondrial genetic codes showed to 

be more robust than the standard code at third codon position. These results suggest that increasing 

the robustness with respect to one of the above codon positions is an important factor in the codon 

reassignments that give rise to some alternative genetic codes.  

We computed the robustness of 324 thermophilic and 418 non-thermophilic prokaryotes with respect 

to 84 amino acid indices. The Optimization percentages and scores were used as measures of 

relevance of the values of synonymous codon usage robustness. We observed significant values of 

synonymous codon usage robustness in prokaryotic genomes, indicating that the most robust codons 
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tend to be more frequent at the expense of the least robust codons in these genomes. The synonymous 

codon usages of prokaryotic genomes tend to be much more robust for hydrophobicity and other 

properties linked to protein stability, specially, with respect to translational errors. We found that 

thermophilic prokaryotes are more robust than non-thermophilic prokaryotes, mainly, at the level of the 

first codon position and codon blocks corresponding to some of the most frequent amino acids in 

thermophilic and hyperthermophilic proteins, such as, R, K, P, V and L. It is known that these amino 

acids tend to play an important role in protein thermostability. We could consider these results as 

evidences of selection on synonymous codon usage for maximizing the robustness to errors, mainly, in 

prokaryotes living in high temperature environments. However, other selective factors and mutational 

bias might also be involved in the emergence of these general codon-choice patterns.  

 

5.2 The robustness of natural genetic codes 

 

5.2.1 Cantelli’s bound and empirical estimates of robustness relevance 

 

For comparing the weighted mean phenotypic change of genetic codes according to our 235 

previously chosen properties, the Cantelli’s upper bound was used instead of the more classical 

method based on generating random codes. As explained in the Methodology Section, the 

computation of the Cantelli’s upper bound is much more efficient. Our objective is to verify that the 

Cantelli’s upper bound produce, to a great extent, the same rankings for the 235 amino acid properties 

as the method based on empirical estimates of probability. For this purpose, we chose the codon-

block based representation of the genetic code, as it is the most frequently used in the literature. 

Empirical null distributions of the weighted mean phenotypic change were computed from a random 

sample of codes. The mean phenotypic change was computed for each random code with the same 

codon-block structure as the standard genetic code. Then, for each amino acid property and codon 
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position, we computed the proportion of codes with unbiased-weighted mean phenotypic change 

smaller than that of the natural genetic code (fig 5.1 and 

 
Figure. 5.1 Biased-substitution (left) and Unbiased-substitution (right) weighted mean phenotypic change defined in 

terms of the hydrophobicity (Miyazawa’s contact energies, p132). The block-based model and random samples of 

10050000 codes were used. The dot-dashed lines and arrows indicate the values corresponding to the standard genetic 

code (SGC). The solid black lines represent Normal distribution fittings. 

 

fig II.1-II.2, table IX.2 in appendices II and IX). For the subset of 𝑛 amino acid properties with empirical 

estimates of the proportion smaller than 0.5 and including all codon positions, the spearman 

correlation coefficient between these empirical estimates and the Cantelli’s bound was 0.95 (𝑛=139). 

For the codon positions 1, 2 and 3, the Spearman correlation coefficients are 0.99(𝑛=142), 0.91(𝑛=84) 

and 0.87(𝑛=199), respectively (table II.3 in appendix II). The scatter plot (fig II.1) clearly shows that 

for the third-codon-position model, there is a monotonically-increasing functional relationship between 

both logarithmically transformed parameters. This relationship is also visible above a given threshold 

in models including all codon positions or only the first position. Both analyses indicate that the 

rankings obtained by using both methods are essentially the same for the subset of the amino acid 

properties with estimates of the proportion of random codes smaller than 0.5. Thus, the association 

between both rankings is strongest among the amino acid properties for which the natural genetic 
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code is more robust (proportions of randomly generated codes for several amino acid indices in Table 

IX.2, Appendix IX). 

5.2.2 The best-preserved amino acid properties by the natural genetic codes 
 

The robustness is defined as the ability of the genetic codes to mitigate the effect of errors or 

mutations. The smaller the Cantelli’s bound, the greater the relevance of the genetic code robustness 

according to a given amino acid property. Thus, the amino acid property for which the Cantelli’s bound 

reaches the smallest value is the one that best reflects the robustness of the considered genetic code. 

The genetic code should be more conservative for the most biologically important amino acid 

properties. 

In previous works, several amino acid properties have been explored to find which of them are better 

preserved by the standard code [16, 25, 29, 35, 116]. It is known that the polarity/hydrophobicity 

properties are among the best-preserved properties by this genetic code. For that reason, several 

papers only use one or some of them to measure the ability of the standard code for error 

minimization. In this regard, very few properties different from the polarity/hydrophobicity have been 

studied. On the other hand, there are different ways of modelling, or measuring, the same amino acid 

property. Consequently, different numerical values are assigned to the same amino acid and same 

property according to different amino acid property scales. Hence, to improve our understanding of 

the extent of the genetic code’s ability for error minimization, the spectrum of properties was 

broadened by including not only different amino acid properties but also several measurements or 

scales for the same property. This strategy could reveal new properties and scales preserved by the 

standard code, not necessarily related to polarity/hydrophobicity. The place that a given scale or group 

of scales tends to have in the ranked list of the 235 amino acid properties reflects its biological 
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significance. In this way, the standard genetic code itself might be used to discern the relative 

importance of each amino acid property. 

Here we will focus on the first 10 of these properties with the smallest Cantelli’s bound value. Overall, 

for the three graph representations of the standard code (block-based, sense-codon based, and 

codon based) as well as for the biased and unbiased weightings, 7 of the 37 hydrophobicity/polarity 

scales appear among the top ten properties in the ranking of the 235 amino acid attributes according 

to the Cantelli’s bounds (see details in tables 5.1-5.2, tables II.4-II.7 in appendix II).  

The Polar Requirement has been the most used scale to measure the capacity of the standard genetic 

code for error minimization. Our findings suggest that Polar Requirement is the best attribute to 

quantify the efficiency of the genetic code for error minimization, but only when using the codon block-

based representation for the standard genetic code. (table 5.1, table II.1 in appendix II). 

This finding corroborates previous results based on this scale and the same representation of the 

standard code but using other methods. Nevertheless, using the codon-based representations, the 

Miyazawa’s contact energies turned out to be the amino acid hydrophobicity scale best reflecting the 

capacity of the standard genetic code for error minimization, regardless of weights used for the graph 

Gg. Moreover, the Miyazawa Contact energies is, on average, the scale for which the 23 natural 

genetic codes showed to be the most effective for error minimization (fig 5.2, table 5.2, tables II.2, 

II.6, II.7, in appendix II). In general, some of the hydrophobicity scales ranked, as expected, among 

the best-preserved scales by the genetic codes (fig 5.2, fig II.3 in appendix II), corroborating that the 

genetic codes are structured in such a way that amino acids similar in hydrophobicity/polarity are 

encoded by similar nucleotide codons [16, 25, 116]. This arrangement of the genetic codes has the 

effect of minimizing changes in hydrophobicity/polarity caused by single-base substitutions, thus, 

being a significant buffering mechanism at the level of proteins, given the crucial role that this amino 

acid property plays in protein folding and stability [117, 118]. Apart from hydrophobicity/polarity scales,  
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we observe 5 groups of scales clustering among the top positions for the standard genetic code 

regardless of the weightings and genetic code representations (tables 5.1, 5.2, tables II.4, II.5, fig II.3 

in appendix II). These scales are grouped under the following categories, the average long-range 

contacts, the hydrophilic accessible surface, the conformational flexibility of amino acids in proteins, 

as well as, the amino acid propensities for small linkers and for transmembrane alpha-helices (fig 5.2, 

Table 5.1 Biased-weighted mean phenotypic change under the block-based model (rob). The first 10 aa 
properties (from a total of 235) in increasing order of Cantelli’s bounds (CB) for the standard code. Pr(AC): 
Proportion of artificial genetic codes with Cantelli’s bound values lower than that of the standard code. These 
codes were generated by all possible reassignments of one codon in the synonymous codon sets with more 
than 1 codon. Pr sim: Probability estimated by numerical simulation. Pr norm:  Probability estimated by normal 
approximation. The numbers after p in parentheses (first column) indicate the position in the list of amino acid 
properties (Appendix, table IX.1). 

Amino acid properties rob Score CB Pr(AC) Pr,sim Pr norm 

Polar requirement (p149)                 0.2779 -3.2203 0.0879 0.3548 2.0000E-06 0.0006 

Hydrophobicity (Wimley, p148)                0.3489 -2.1718 0.1749 0.5000 3.2338E-05 0.0149 

Hydrophobicity (Meek, p 130)                0.4005 -2.1192 0.1821 0.4444 5.2100E-05 0.0170 

Long-range contacts (p164)          0.2959 -2.1154 0.1826 0.3685 6.4000E-06 0.0172 

Flexibility (2FN, MS, p209) 0.3068 -2.0717 0.1890 0.3468 1.5100E-05 0.0191 

Flexibility (2FN, ML, p184)                0.3343 -2.0639 0.1901 0.4169 1.6100E-05 0.0195 

Solvent accesible surface (p44)           0.3055 -2.0269 0.1958 0.3266 1.5700E-05 0.0213 

Hydrophobicity (Cowan,p 117)               0.3308 -2.0108 0.1983 0.3347 3.8900E-05 0.0222 

Flexibility (MS,p212)                 0.3217 -1.9289 0.2118 0.3581 6.2687E-06 0.0269 

Hydrophobicity (Miyazawa, p132)             0.2858 -1.9108 0.2150 0.4266 7.8000E-06 0.0280 

2FN: Two flexible neighbors, MS: Mean scale parameter, ML: Mean location parameter 

Table 5.2 Biased-weighted mean phenotypic change (rob) under the model based 
on sense codons (rob). The first 10 aa properties (from a total of 235) in increasing 
order of Cantelli’s bounds (CB) for the standard code. Pr(AC): Proportion of artificial 
genetic codes with Cantelli’s bound  values lower than that of the standard code. 
These codes were generated by all possible reassignments of one codon in the 
synonymous codon sets with more than 1 codon. The numbers after p in 
parentheses (first column) indicate the position in the list of amino acid properties 
(Appendix, table IX.1). 

Amino acid properties rob score CB Pr(AC) 

Hydrophobicity(Miyazawa, p132)              0.2858 -11.2272 7.8709E-03 0.1605 

Hydrophobicity(Kyte, p125)                  0.3442 -11.1653 7.9578E-03 0.2113 

Hydrophobicity(Cowan, p117)                0.3308 -10.9024 8.3429E-03 0.1774 

Transmembrane alpha-helix(p35)            0.3434 -10.8956 8.3533E-03 0.1806 

Long-range contacts (p164)           0.2959 -10.8850 8.3693E-03 0.1347 

Solvent accesible surface (p44)            0.3055 -10.8621 8.4044E-03 0.1581 

Transmembrane alpha-helix(p28)            0.4039 -10.8394 8.4394E-03 0.2177 

Hydrophobicity(Parker, p135)                0.3314 -10.7593 8.5644E-03 0.1718 

Polar requirement (p149)                  0.2779 -10.6454 8.7470E-03 0.1726 

Hydrophobicity(Cornette,p115)              0.3669 -10.6039 8.8151E-03 0.1823 
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fig II.3 in appendix II). One can wonder why these properties rank, on average, much better than most 

hydrophobicity/polarity scales. 

 

We can raise three reasons, the first reason is that the genetic code is only optimized for 

hydrophobicity, and the high ranking of the 5 other groups of properties is only due to the close relation 

between them and the hydrophobicity property. The second reason is that the genetic code is 

simultaneously optimized for many properties. The third reason is that the fact that some of the 

hydrophobicity scales are not highly ranked is only due to the approximate way of estimating them 

using experimental or computational methods. In general, for all amino acid properties and weighting 

schemes the measures of relevance for codon-based representations have shown the highest values. 

This is due to the following factors: the weighing schemes, the methods to assign numerical values 

to stop codons as well as the constraints imposed by different genetic code representations for 

 

Figure 5.2 Average ranks calculated from the Cantelli’s upper bounds for the biased weighted mean phenotypic 

change for 23 genetic codes and 235 amino acid attributes. Block-based model (the figure on the right side) and 

Codon-based Model, stop codon=Mean suppressor (the figure on the left side). Marine green: Long-range 

contacts, Solvent Accessible surface area, Hydrophobicity/polarity, flexibility, transmembrane helix and small linker 

propensities; Dark maroon: The other amino acid properties. 
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computing the moments of the distribution. Notice that the block-based representations have the 

following two constraints: 1) Each vertex represents one block of synonymous codons, thereby, 

excluding the synonymous single-base changes. 2) The stop codons are excluded from the model 

and thus also, all the single-base changes towards or from these codons. In contrast, the only 

constraint imposed by the model based on the whole set of codons is to keep the number of codons 

assigned to each amino acid. This constraint is much weaker than the first constraint of block-based 

models because it does not imply the exclusion of any single-base change. Moreover, the results 

obtained by biased-weighting result in score and Cantelli’s bound values smaller than those computed 

under the unbiased weighting. This difference clearly visible when comparing the codon-based 

models with both weightings (tables 5.2, tables II.2, II.4-II.7 in appendix II) is consistent with previous 

reports on the genetic code [26].  Finally, we observed that artificial codes obtained by changing the 

assignment of a single codon is sufficient to obtain genetic codes more robust than the standard 

genetic code. This observation is interesting as it validates previous results obtained by different 

analysis methods stating that the standard genetic code is neither a local minimum, nor a global 

minimum [30, 37, 119]. This observation is even more evident for the representations based on codon 

blocks (Table 5.1 and 5.2, II.1-II.2, II.4-II.7 in appendix II, Pr(AC)). 

 

5.2.3 Comparing natural genetic codes according to robustness     

 

Most of the known species use the standard genetic code. The difference between this code and the 

known as Bacterial, archaeal and plant plastid code is restricted to the identity of the start codons. 

They have, therefore, the same mean phenotypic change value. Moreover, in presence of ambiguous 

coding rules involving stop codons, only the sense codons were considered. In this sense, the 

Karyorelict and the Condylostoma nuclear codes turned out to be also equivalent. 
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In this section, we use the Miyazawa’s contact energies hydrophobicity scale, as it is the scale 

showing the most relevant value of genetic code robustness (see previous section). As observed in 

tables 5.3 and 5.5 (Pr(AC), see also tables III.1, III.2, III.4 in appendix III), the standard genetic code 

is among the three most robust natural codes, which is consistent with previous results [120]. Overall, 

the number of natural genetic codes more robust than the standard genetic code is very small 

compared to the proportion of artificial genetic codes (obtained by only one codon reassignment 

compared to the standard genetic code) more conservative than the standard genetic code (tables 

5.3, 5.5 tables III.1, III.2, III.4, appendix III).  This is even more evident for the block-based models. 

Moreover, none of the nuclear codes containing one reassigned codon with respect to the standard 

code is more robust than it. It is known that the variant genetic codes arise from the standard code by 

codon reassignments. Therefore, these results suggest that the codon reassignments leading to more 

robust codes do not play a crucial role in the evolution of variant genetic codes from the standard 

genetic code at least for some natural genetic codes.  

 

5.2.4 The robustness of the standard genetic code for each codon position        

 

For the top 10 amino acid properties in codon-based models, the robustness values of the standard 

code at the third codon position are more relevant than those at the first position. This trend was also 

observed in the block-based models except for one hydrophobicity scale (Meek). For all amino acid 

properties and genetic code representations, the third and first codon positions are more robust than 

the second codon position. (Tables 5.4, 5.6, III.3, III.5 in appendix III) These findings corroborate 

previous results according to which the robustness values are biased with respect to codon position 

[26, 79]. Important evolutionary constraints imposed to the arrangement of the genetic codes by the 

translation errors could explain why the codon positions significantly differ in robustness. These 

differences in the degree of load minimization reflects mainly differences in the relative frequencies  
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of mistranslation errors, because these errors are much more frequent than transcription errors and 

mutations [1,3]. 

 

5.2.5 Comparing natural genetic codes according to substitution positions and types      

 

This study extends previous results on the standard code by showing that the robustness of the 

natural genetic codes differs according to codon position. The Cantelli’s bound values shown on both 

axes indicate that the third codon position is the most robust followed by the second and first codon 

positions in that order (fig 5.3). 

Table 5.3 Biased-weighted mean phenotypic change (rob) under the block-based model. 

Scores for 23 genetic codes sorted in increasing order of their Cantelli’s bounds (CB), The 

phenotype is expressed in terms of hydrophobicity (Miyazawa’s contact energies), Pr(AC): 

Proportion of artificial genetic codes with Cantelli’s bound values lower than those of the standard 

code. These codes were generated by all possible reassignments of one codon in the synonymous 

codon sets with more than 1 codon. The numbers in parentheses (In the footnotes and in first 

column of the table) indicate the NCBI translation table. 

Genetic codes rob Score CB Pr(AC) 

Traustochytrium mitochondrial Code (23) 0.28408 -1.91423 0.21440 0.44773 

The standard genetic Code(1)* 0.28582 -1.91081 0.21500 0.42661 

The Ciliate, Dasycladacean and Hexamita Nuclear Code (6) 0.29305 -1.88353 0.21989 0.45164 

Peritrich Nuclear Code (30) 0.29696 -1.87946 0.22063 0.45000 

Mesodinium Nuclear Code (29) 0.29035 -1.87530 0.22140 0.44672 

The ascidian Mitochondrial Code (14) 0.29831 -1.87261 0.22189 0.48158 

The Mold, Protozoan, Coelenterate Mitochondrial Code (4)** 0.29836 -1.86993 0.22239 0.42063 

The Vertebrate Mitochondrial Code (2) 0.30275 -1.85809 0.22459 0.42656 

The Euplotid Nuclear Code (10) 0.30169 -1.84668 0.22675 0.43145 

Candidate Division SR1 and Gracilibacteria Code (25) 0.30766 -1.84411 0.22723 0.44677 

Pachysolen tannophilus Nuclear Code (26) 0.31648 -1.84298 0.22745 0.42984 

The Invertebrate Mitochondrial Code (5) 0.29998 -1.84139 0.22775 0.43281 

Trematode Mitochondrial Code (21) 0.29737 -1.83934 0.22815 0.43571 

The Echinoderm and Flatworm Mitochondrial Code (9) 0.29636 -1.83112 0.22973 0.44194 

Karyorelict Nuclear Code (27)*** 0.30937 -1.83038 0.22987 0.44365 

Blastocrithidia Nuclear Code (31) 0.31385 -1.82457 0.23100 0.44286 

Pterobranchia Mitochondrial Code (24) 0.30946 -1.82253 0.23140 0.43175 

The Alternative Flatworm Mitochondrial Code (14) 0.29736 -1.82132 0.23163 0.44344 

Cephalodiscidae Mitochondrial UAA-Tyr Code(33) 0.31170 -1.80746 0.23436 0.43952 

Scenedesmus obliquus Mitochondrial Code (22) 0.33100 -1.77118 0.24172 0.43468 

Chlorophycean Mitochondrial Code(16) 0.33136 -1.75852 0.24436 0.43790 

The alternative yeast nuclear Code (12) 0.35567 -1.70472 0.25601 0.43790 

The Yeast Mitochondrial Code(3) 0.36198 -1.67550 0.26265 0.42969 

* The Bacterial, archaeal and plant plastid Code (11) has the same parameter values as the standard code, 

** Full name: The Mold, Protozoan, and Coelenterate Mitochondrial Code and the Mycoplasma/Spiroplasma Code (4) 
***The Condylostoma nuclear Code (28) has the same parameter values as the Karyorelict nuclear code, 
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Table 5.4 Biased-weighted mean phenotypic change (rob) under the partial block-based models for the 

standard code. The 10 amino acid properties correspond to those of table. p1: first codon position. p2: second 

codon position. p3: third codon position. rob: standard code robustness. cb: Cantelli’s upper bound. The 

numbers after p in parentheses (first column) indicate the position in the list of amino acid properties (Appendix, 

table IX.1). 

  
  Amino acid properties 

p1 p2 p3 

rob score cb rob score cb rob score cb 

Polar requirement (p149)                 0.5107 -2.8134 0.1122 0.3024 -1.6981 0.2575 0.0233 -4.5171 0.0467 

Hydrophobicity (Wimley,p148)                0.6141 -1.9094 0.2152 0.2604 -1.5997 0.2810 0.1751 -2.5457 0.1337 

Hydrophobicity (Meek, p130)                0.5847 -2.1950 0.1719 0.3067 -1.4258 0.3297 0.3122 -1.9376 0.2103 

Long-range contacts (p164)          0.3621 -2.2992 0.1591 0.3958 -0.6200 0.7223 0.1307 -2.7856 0.1142 

Flexibility (2FN, MS, p209) 0.5263 -1.9139 0.2144 0.2754 -1.3575 0.3518 0.1214 -2.8754 0.1079 

Flexibility (2FN, ML, p184)                0.4718 -2.1413 0.1790 0.3184 -1.1427 0.4337 0.2143 -2.3433 0.1541 

Solvent accesible Surface (p44)           0.4474 -2.0530 0.1918 0.3686 -0.7703 0.6276 0.1021 -2.9447 0.1034 

Hydrophobicity (Cowan, p117)               0.5191 -1.9700 0.2049 0.4246 -0.4550 0.8285 0.0509 -3.3819 0.0804 

Flexibility (MS,p212)                 0.5247 -1.8434 0.2274 0.3537 -0.8459 0.5829 0.0891 -2.9829 0.1010 

Hydrophobicity (Miyazawa, p132)   0.3142 -2.1465 0.1783 0.5178 0.1096 0.9881 0.0258 -3.1182 0.0933 

Table 5.5 Biased-weighted mean phenotypic change (rob) under the codon-based model with 

codon stop=scale mean and scores for 23 genetic codes sorted in increasing order of their Cantelli’s 

bounds (Cbound). The phenotype is expressed in terms of hydrophobicity (Miyazawa’s contact 

energies), rob: robustness, CB: Cantelli’s bound, Pr(AC): Proportion of artificial genetic codes with 

Cantelli’s bound  values lower than those of the standard code. These codes were generated by all 

possible reassignments of one codon in the synonymous codon sets with more than 1 codon. The 

numbers in parentheses (In the footnotes and first column of the table) indicate the NCBI translation 

table. 

Genetic codes rob score CB Pr(AC) 

The Ciliate, Dasycladacean and Hexamita Nuclear Code (6) 0.30050 -11.54775 0.007443 0.14344 

The standard genetic Code (1)* 0.29419 -11.54154 0.007451 0.13468 

The Invertebrate Mitochondrial Code (5) 0.30172 -11.52646 0.007471 0.11875 

The Mold, Protozoan, and Coelenterate Mitochondrial Code (4)** 0.30020 -11.52475 0.007473 0.12143 

Trematode Mitochondrial Code (21) 0.29783 -11.52116 0.007477 0.11984 

The Echinoderm and Flatworm Mitochondrial Code (9) 0.29688 -11.52022 0.007479 0.12258 

Peritrich Nuclear Code (30) 0.30462 -11.51620 0.007484 0.14918 

The ascidian Mitochondrial Code (14) 0.30015 -11.51391 0.007487 0.12813 

Mesodinium Nuclear Code (29) 0.29658 -11.50963 0.007492 0.13770 

The Alternative Flatworm Mitochondrial Code (14) 0.29783 -11.50771 0.007495 0.12377 

Karyorelict Nuclear Code (27)*** 0.30937 -11.49534 0.007511 0.13651 

The Euplotid Nuclear Code (10) 0.30378 -11.49447 0.007512 0.12258 

Pterobranchia Mitochondrial Code (24) 0.31064 -11.46938 0.007545 0.13968 

Blastocrithidia Nuclear Code (31) 0.31385 -11.46045 0.007556 0.14286 

Cephalodiscidae Mitochondrial UAA-Tyr Code (33) 0.31171 -11.45581 0.007562 0.14032 

Candidate Division SR1 and Gracilibacteria Code (25) 0.30797 -11.36612 0.007681 0.15161 

The Vertebrate Mitochondrial Code (2) 0.30974 -11.33189 0.007727 0.15781 

Chlorophycean Mitochondrial Code (16) 0.34145 -11.02311 0.008163 0.15000 

Traustochytrium mitochondrial Code (23) 0.32120 -10.99462 0.008205 0.13952 

Pachysolen tannophilus Nuclear Code (26) 0.32218 -10.98076 0.008225 0.12823 

Scenedesmus obliquus Mitochondrial Code (22) 0.34511 -10.92780 0.008304 0.16694 

The alternative yeast nuclear Code (12) 0.35797 -10.49485 0.008998 0.14597 

The Yeast Mitochondrial Code(3) 0.36006 -9.97786 0.009945 0.12344 

* The Bacterial, archaeal and plant plastid Code (11) has the same parameter values as the standard code, 
** Full name: The Mold, Protozoan, and Coelenterate Mitochondrial Code and the Mycoplasma/Spiroplasma Code (4) 
***The Condylostoma nuclear Code (28) has the same parameter values as the Karyorelict nuclear code, 
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The biased and unbiased weighted mean change in Miyazawa’s contact energies were computed for 

each codon position. Among the 23 genetic codes, 3 codes are more efficient than the standard 

genetic code at the first codon position, 11 perform better than the standard code at the second 

position and 12, at the third codon position. For transversions and transitions, only one genetic code 

for each of these substitution types is more robust than the standard code. (fig 5.3) Thus, the standard 

genetic code is more robust than most genetic codes at the first position and with respect to both 

substitution types.  

Concerning the substitution type, no nuclear code is more efficient than the standard code (fig 5.3). 

Furthermore, only two nuclear codes are more robust than the standard code in the third position. 

There are three nuclear genetic codes more robust than the standard genetic code at the first and 

second codon positions, namely, the Peritrich Nuclear Code, the Candidate Division SR1 and 

Gracilibacteria Code and the Ciliate, Dasycladacean and Hexamita Nuclear code (fig 5.3, top left). At 

the second and third codon positions, the Mesodinium nuclear code is more robust than the standard 

genetic code. Even, the Ciliate, Dasycladacean and Hexamita Nuclear code is the only genetic code 

more robust than the standard code according to the codon-based model (fig 5.3). Thus, some variant 

nuclear genetic codes could have evolved from the standard genetic code by codon reassignments 

Table 5.6 Biased-weighted mean phenotypic change (rob) under the partial models based on sense 

codons of the standard code. The 10 amino acid properties correspond to those of table. p1: first codon 

position. p2: second codon position. p3: third codon position. rob: standard code robustness. Cb: Cantelli’s 

upper bound.  The numbers after p in parentheses (first column) indicate the position in the list of amino acid 

properties (Appendix, table IX.1). 

  
  Amino acid properties 

p1  p2 p3  

rob score cb rob score cb rob score cb 
Hydrophobicity (Miyazawa, p132)              0.3142 -6.6535 0.0221 0.5178 1.4752 0.3148 0.0258 -9.4326 0.0111 

Hydrophobicity (Kyte, p125)                  0.4326 -6.2770 0.0248 0.4628 -0.7053 0.6678 0.1383 -8.9600 0.0123 

Hydrophobicity (Cowan, p117)                0.5191 -5.3754 0.0335 0.4246 -0.5688 0.7555 0.0509 -9.3153 0.0114 

Transmembrane alpha-helix (p35)            0.4790 -5.7662 0.0292 0.4426 -0.5178 0.7886 0.1103 -9.0482 0.0121 

Long-range contacts (p164)           0.3621 -6.1674 0.0256 0.3958 -0.3247 0.9046 0.1307 -8.8082 0.0127 

Solvent accesible Surface (p44)            0.4474 -5.5833 0.0311 0.3686 -0.9240 0.5394 0.1021 -9.0119 0.0122 

Transmembrane alpha-helix (p28)            0.4694 -6.2648 0.0248 0.5789 0.3525 0.8895 0.1643 -8.8927 0.0125 

Hydrophobicity (Parker, p135)                0.3784 -6.2651 0.0248 0.4938 0.7836 0.6196 0.1227 -8.9236 0.0124 

Polar requirement (p149)                  0.5107 -4.5651 0.0458 0.3024 -1.3870 0.3420 0.0233 -9.3166 0.0114 

Hydrophobicity (Cornette, p115)  0.3066 -6.9096 0.0205 0.6361 2.5487 0.1334 0.1572 -8.8204 0.0127 
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that do not increase the robustness of the whole code but only the robustness at one or two codon 

positions.   

As for the mitochondrial genetic codes, we observed that 5 and 10 codes are more robust than the 

standard genetic code at the codon positions 2 and 3, respectively, of a total of 13 mitochondrial 

codes. Even though the standard genetic code is more robust than most mitochondrial genetic codes 

according to several models representing the whole set of codons or blocks, we obtained that almost 

all mitochondrial genetic codes are more robust than the standard code at the third codon position. 

This result suggests that the increase of the robustness at the third codon position seems to play a 

crucial role for the evolution of the mitochondrial codes. It is interesting to note that, unlike the other 

mitochondrial codes, there are 5 mitochondrial codes more robust than the standard code at two 

codon positions. More specifically, the Ascidian Mitochondrial Code, the Trematode Mitochondrial 

Code, the Echinoderm and Flatworm Mitochondrial Code and the Alternative Flatworm Mitochondrial 

Code are more robust than the standard code at the codon positions 2 and 3. Moreover, the vertebrate 

mitochondrial code is more robust than the standard code for the transversions, as well as, for the 

codon positions 2 and 3. (fig 5.3). In general, the codon reassignments lead to more robust codes at 

the third codon position for the mitochondrial genetic codes and, at the first codon position, for the 

nuclear genetic codes. This finding is consistent with the idea that some alternative genetic codes 

have evolved from the canonical genetic code by codon reassignments that result in a partial 

optimization with respect to codon position. 

 

5.2.6 Neighborhood structure of natural genetic codes 

 

In this work, the classification of the codon blocks as homogeneous, or heterogeneous, according to 

their amino acid neighborhoods has been useful for reducing the number of vertices and edges to. 
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Figure 5.3 Cantelli’s bounds corresponding to the Biased weighted mean change in Miyazawa’s contact energies under the codon-based 

model with stop codon=mean suppressor. Codon positions and the substitution type (transition/transversion) for 23 genetic code variants. 

Top left: Second codon position Cantelli bound versus first codon position Cantelli’s bound, Top right: Transversion Cantelli bound versus 

Transition Cantelli’s bound, Bottom: Third codon position Cantelli bound versus first codon position Cantelli’s bound,. Letters in green: Nuclear 

genetic codes, Letters in black: Mitochondria and plastid genetic codes, sgc: standard code, vmc: The Vertebrate Mitochondrial Code, ymc: 

The Yeast Mitochondrial Code, mmc: The Mold, Protozoan, and Coelenterate Mitochondrial Code, ivmc: The Invertebrate Mitochondrial Code, 

cnc: The Ciliate, Dasycladacean and Hexamita Nuclear Code, emc: The Echinoderm and Flatworm Mitochondrial Code, enc: The Euplotid 

Nuclear Code, amc: The Ascidian Mitochondrial Code, aync: The Alternative yeast nuclear code, afc: The Alternative  Flatworm Mitochondrial 

Code, cmc: Chlorophycean Mitochondrial Code, tmc: Trematode Mitochondrial Code, smc: Scenedesmus obliquus Mitochondrial Code, pmc: 

Pterobranchia Mitochondrial Code, cgc: Candidate Division SR1 and Gracilibacteria Code, ptnc:  Pachysolen tannophilus Nuclear Code, knc: 

Karyorelict Nuclear Code, mnc: Mesodinium Nuclear Code, pnc: Peritrich Nuclear Code, bnc: Blastocrithidia Nuclear Code, cmtc: 

Cephalodiscidae Mitochondrial UAA-Tyr Code, tamc: Traustochytrium mitochondrial code. 
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compute the genomic robustness. As explained in chapter 4, this is possible by excluding the 

homogeneous blocks, because only the contribution of heterogeneous blocks to the mean phenotypic 

change weighted with the synonymous codon usage vary among different genomes. In this section 

we explore some regularities in the neighborhood structure of the 23 genetic codes. 

Considering only the sense codons, the standard genetic code has a set of 10 synonymous codon 

blocks containing at least two codons with different robustness values which represents the half of 

the code. These codon blocks specify the following amino acids, L, S, P, R, I, T, K, V, A and G (table 

III.6). Two of these amino acids, K and I, are encoded by the codons of blocks with homogeneous 

neighborhood in some genetic code variants. In contrast, some other codon blocks which are 

homogeneous in the standard genetic code, turn out to be heterogeneous in other genetic codes, 

such as, those specifying the amino acids, Y, Q, W, N and C (table III.6, Figure VIII.1). We describe 

two kinds of codon blocks: 1) the general heterogeneous blocks, defined as synonymous codon 

blocks with heterogeneous amino acid neighborhood in the 23 genetic codes, 2) the general 

homogeneous blocks, defined as the synonymous codon blocks with homogenous amino acid 

neighborhood in the 23 genetic codes. 

1) L, S, P, R, T, V, A and G 

2) F, H, M and D 

Although these codon blocks vary according to the number of synonymous codons and the 

composition of their amino acid neighborhoods among different genetic codes, the neighborhoods of 

the group 1 remain heterogeneous and those of the group 2, homogenous, in all the variant genetic 

codes considered in this work.  It is noteworthy that all the amino acids of the group 1, except R, are 

considered primitive amino acids because they have been detected in experiments that simulate the 

conditions of the early earth, in the Murchison meteorite and in the estimates of ancestral sequence 

composition [121].   
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We can wonder whether the heterogeneous structure of the neighborhoods of type 1 would confer 

evolutionary advantage or not, at least before the standard genetic code fixation. The existence of 

codons specifying the same amino acid but with different robustness values allows to adaptively adjust 

the robustness of a given genome, by modifying its codon usage bias. We can consider that the 

synonymous substitutions leading to more robust genomes increase the fitness of the organism. But 

there are other known factors that may affect in opposite direction the codon usage bias by 

augmenting the frequency of less robust synonymous codons, for example, the genetic drift or the 

positive selection to enhance the RNA stability or the translation efficiency of highly expressed genes 

[122]. Hence, a greater number of heterogeneous blocks or a greater number of homogeneous sub-

blocks and isolated codons per heterogeneous block (ρ), could improve the ability for adaptive 

evolution of microorganisms exposed, for example, to environmental factors increasing the error rate, 

because there would be more possibilities to maximise the robustness under the constraints imposed 

by the other factors.  

The standard code has the fourth greatest value of ρ among all genetic codes included in this work. 

(table 5.7). Moreover, all the nuclear codes, except two, have values of ρ greater than 3 and all the 

mitochondrial codes except one have values of ρ below 3 (table 5.7). This difference between the 

nuclear and mitochondrial codes is a consequence of the difference in the number of codon 

reassignments between both sub-groups of genetic codes. More precisely, almost all the 

mitochondrial codes have between 4 and 5 reassigned codons and all the nuclear codes have 

between 1 and 3 reassigned codons with respect to the standard code (table 5.7). 
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5.3 Genomic robustness     

 

The genomic robustness is referred to the ability of genomes to minimize the effect of errors and 

mutations. A genome is more robust if the more robust codons are more frequently used than the less 

robust codons (see section Methods). The proteins of thermophilic bacteria and archaea have 

numerous adaptations that make them stable and functional at high temperature. Significant 

differences have been reported between thermophiles and non-thermophiles at the amino acid and 

codon usage level. However, little has been made to explore the link between the codon robustness, 

codon usage and thermophily.. 

Table 5.7 Neighborhood structure of 22 natural genetic codes. HB: the number of homogeneous blocks. SIC: 

number of homogeneous sub-blocks and isolated codons. ρ: the number of homogeneous sub-blocks and 

codons per heterogeneous block, in this case, neither the homogeneous blocks nor the stop codons were 

included in the sets of homogeneous sub-blocks and isolated codons, respectively. CR: the number of codon 

reassignments with amino acid encoded by adjacent (n) and non-adjacent (c) codons. Totc: Total number of 

codons and their adjacent codons affected by codon reassignments taking the standard code as reference. The 

numbers in parentheses (In the footnotes and in first column of the table) indicate the NCBI translation table. 

Green: nuclear codes. 

Genetic codes HB 
sic 

ρ 
CR 

(n,c) 
tot
c 

The Standard Code (1) * 10 41 3.1000 0 0 

The Vertebrate Mitochondrial Code (2) 12 30 2.2500 4 n 24 

The Yeast Mitochondrial Code (3) 12 31 2.3750 2 n+4 c 37 

The Mold, Protozoan, and Coelenterate Mitochondrial Code (4)** 10 37 2.7000 1 n 9 

The Invertebrate Mitochondrial Code(5) 12 31 2.3750 4 n 24 

The Ciliate, Dasycladacean and Hexamita Nuclear Code (6) 10 43 3.3000 2 n 15 

The Echinoderm and Flatworm Mitochondrial Code (9) 8 40 2.6667 4 n 24 

The Euplotid Nuclear Code (10) 9 42 3.0000 1 n 9 

The Ascidian Mitochondrial Code (13) 13 31 2.5714 4 n 24 

The Alternative yeast nuclear Code (12) 10 42 3.2000 1 c 9 

The Alternative Flatworm Mitochondrial Code (14) 5 44 2.6000 5 n 27 

Chlorophycean Mitochondrial Code (16) 8 44 3.0000 1 n 9 

Trematode Mitochondrial Code (21) 9 37 2.5455 5 n 28 

Scenedesmus obliquus Mitochondrial Code (22) 7 43 2.7692 2 n 16 

Pterobranchia Mitochondrial Code (24) 9 41 2.9091 3 n 20 

Candidate Division SR1 and Gracilibacteria Code (25) 9 42 3.0000 1 n 9 

Pachysolen tannophilus Nuclear Code (26) 8 41 2.7500 1 c 10 

Karyorelict Nuclear Code (27)*** 10 40 3.0000 3 n 21 

Mesodinium Nuclear Code (29) 9 43 3.0909 2 n 15 

Peritrich Nuclear Code (30) 10 43 3.3000 2 n 15 

Blastocrithidia Nuclear Code (31) 10 38 2.8000 3 n 21 

Cephalodiscidae Mitochondrial UAA-Tyr Code (33) 7 44 2.8462 4 n 25 

*Bacterial, archaeal, plant plastid Code (11) 
** The Mold, Protozoan, and Coelenterate Mitochondrial Code and the Mycoplasma/Spiroplasma Code (4) 
***Condylostoma Nuclear Code (27) 
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There are two approaches to explain the evolution of codon usage bias, one is based on the idea of 

the non-random distribution of mutational pressure at the genome level, and the other approach uses 

the concept of natural selection to understand how some codons are favoured over the other 

synonymous codons. It was shown, mainly for the highly expressed proteins, that the amino acids 

encoded by the most frequent codons tend to be more efficiently and accurately incorporated in 

proteins than those encoded by the less frequent codons [122, 123]. Thus, different contributions of 

codons to the efficiency and accuracy of protein expression leads to a biased distribution of 

synonymous codon frequency. In addition, several other factors have been shown to drive the 

evolution of codon usage bias, such as, protein hydrophobicity, RNA stability, optimal growth 

temperature and codon robustness, among others [48,122, 123]. In this section, we focus on the last 

two factors. 

We identified the amino acid properties for which the genomic robustness reaches the greatest values 

according to a given genetic code model. The genomic robustness could be interpreted as a measure 

of correlation between the genomic synonymous codon bias and the codon robustness according to 

a given amino acid property (see section Methods). If the value of the score corresponding to genomic 

robustness for a given property is significantly smaller than that obtained by using other amino acid 

properties, this amino acid property will be considered as a relatively more important factor in the 

evolution of the genomic synonymous codon bias than the other properties. We also determined the 

amino acid properties for which the codon robustness is more strongly correlated with the 

synonymous codon usage in thermophiles than in non-thermophiles as well as the codon position or 

substitution type that contributes more to genomic robustness in thermophiles than in non-

thermophiles. To compute the robustness of thermophilic (324) and non-thermophilic prokaryotes 

(418) under 84 different amino acid indices. Two measures of relevance of robustness were 

considered, namely, the scores and optimization percentage.  
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 5.3.1 The amino acid properties that maximize the genomic robustness 
 

According to all codon-based models, the two scales for which the genomic robustness reach the most 

relevant values are the Miyazawa’s contact energies for the optimization percentage, and the Kyte’s 

hydropathy index for the scores (tables 5.8 and 5.9). More precisely, the Kyte scale is linked to the 

most significant genomic robustness values for scores, and to the second most optimized robustness 

values according to the optimization percentage, reaching a value of 6.72 standard deviations below 

the mean which is equivalent to an optimization percentage of 90.43% in thermophiles. We observed 

that the top 5 to 10 indices linked to the most significant values of genomic robustness, correspond to 

the hydrophobicity property regardless of the methods used to weight single-base changes, to process 

the stop codons or to estimate the genomic robustness. In general, 20 of the 31 chosen hydrophobicity 

scales was found among the first 30 positions of the 84 amino acid indices sorted in decreasing order 

of their corresponding values of optimization percentage or scores (figure 5.4, figures IV.1, IV.2 and 

IV.4 in appendix IV). These findings suggest that the genetic code structure and protein stability are 

strongly associated with general trends in codon usage bias. The Polar Requirement is linked to values 

of optimization percentages and scores less significant than most of those corresponding to 

hydrophobicity/polarity and accessible surface area indices. This is interesting because the Polar 

Requirement has been used to estimate the degree of error minimization in coding sequences [35,45]. 

In general, the thermophiles showed estimates of robustness more relevant according to both 

relevance measures than those observed for non-thermophiles. Likewise, it was observed for both 

groups of genomes that the robustness values computed under the weighting based on mistranslation 

rates (also called, biased weighting, table 5.9) are more relevant than those observed for the 
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unbiased weighting regardless of the temperature range group, the method used to process the stop 

codons, and both relevance measures used (table 5.8). Similar general patterns were seen for the 

optimization percentages and scores corresponding to genomic robustness using code representations 

containing all single-base changes and those that include the single-base changes involving the first 

or third codon positions (figure IV.4 in Appendix IV). The Spearman rank correlation was used to 

determine the strength of the association between two rankings of the 84 amino acid properties, one 

based on the median scores and the other, on the only one of the codon positions or substitution types, 

strong correlation was found between both relevance  

Table 5.8: Medians corresponding to the Polar Requirement and the 3 amino acid properties linked to the largest medians 
of the Optimization percentage (MP) for thermophilic and non-thermophilic prokaryotes for each genetic code representation. 
MSW: The standard code model based on sense codons and biased weighting. MS: The standard code model based on 
sense codons and unbiased weighting. M0W: The codon-based model of the standard code with biased weighting and scale 
mean values assigned to stop codons. M0: The codon-based model of the standard code with unbiased weighting and scale 
mean values assigned to stop codons. MMW: The codon-based model of the standard code with biased weighting and the 
values assigned to stop codons according to the “mean suppressor” method. MM: The codon-based model of the standard 
code with unbiased weighting and the values assigned to stop codons according to the “mean suppressor” method. Non-
thermophiles: Non-thermophilic prokaryotes (N=418), Thermophiles: thermophilic prokaryotes (N=324).The First (1Q) and 
third (3Q) quartiles are shown in parenthesis.  

Models 
Thermophiles  Non-thermophiles 

Amino acid properties Medians(1Q, 3Q) Amino acid properties Medians (1Q, 3Q) 

MSW 
  
  

Hydrophobicity(Miyazawa,40) 91.28(90.54, 92.02)  Hydrophobicity(Miyazawa,40) 90.43(89.18, 91.18)  

Hydrophobicity(Kyte,33) 90.50(89.65, 91.24)  Hydrophobicity(Kyte,33) 90.18(89.06, 90.93)  

Hydrophobicity(Cowan, 27) 90.01(89.14, 90.85)  Hydrophobicity(Cowan, 27) 89.68(88.53, 90.49)  

Polar Requirement (Woese) 72.73(71.90,73.77) Polar Requirement (Woese) 71.96(70.56,73.16) 

MS 
  
  

Hydrophobicity(Miyazawa,40) 79.27(77.76, 80.46)  Hydrophobicity(Miyazawa,40) 78.98(76.16, 80.59)  

Hydrophobicity(Kyte,33) 77.78(75.88, 79.70)  Hydrophobicity(Kyte,33) 77.84(75.05, 79.50)  

Hydrophilicity(Parker,42) 76.71(74.87, 78.37)  Hydrophilicity(Parker,42) 75.95(72.93, 77.53)  

Polar Requirement (Woese) 46.99(45.66,47.91) Polar Requirement (Woese) 46.68(44.65,47.83) 

M0W 
  
  

Hydrophobicity(Miyazawa,40) 91.62(90.84, 92.23)  Hydrophobicity(Miyazawa,40) 91.02(89.32, 91.77)  

Hydrophobicity(Kyte,33) 90.43(89.56, 91.24)  Hydrophobicity(Kyte,33) 90.33(88.89, 91.19)  

Hydrophobicity(Cowan, 27) 89.98(88.93, 90.66)  Hydrophobicity(Cowan, 27) 89.73(88,36, 90.50)  

Polar Requirement (Woese) 70.51(69.58,71.73) Polar Requirement (Woese) 69.54(68.21,70.79) 

M0 
  
  

Hydrophobicity(Miyazawa,40) 79.88(78.42, 81.23)  Hydrophobicity(Miyazawa,40) 79.65(76.80. 81.14)  

Hydrophobicity(Kyte,33) 78.05(76.22, 80.09)  Hydrophobicity(Kyte,33) 77.97(75.40. 79.69)  

Hydrophilicity(Parker,42) 77.00(75.07, 78.69)  Hydrophilicity(Parker,42) 76.23(73.20. 77.64)  

Polar Requirement (Woese) 45.66(44.39,46.90) Polar Requirement (Woese) 44.93(43.32,46.08) 

MMW 
  
  

Hydrophobicity(Miyazawa,40) 90.94(90.18, 91.55)  Hydrophobicity(Miyazawa,40) 90.28(88.64, 91.00)  

Hydrophobicity(Kyte,33) 90.22(89.39, 90.93)  Hydrophobicity(Kyte,33) 90.04(88.81, 90.79)  

Hydrophobicity(Cowan, 27) 89.79(88.74, 90.48)  Hydrophobicity(Cowan, 27) 89.36(88.20. 90.21)  

Polar Requirement (Woese) 71.06(70.14,72,25) Polar Requirement (Woese) 70.11(68.75,71.28) 

MM 
  
  

Hydrophobicity(Miyazawa,40) 79.09(77.66, 80.50)  Hydrophobicity(Miyazawa,40) 78.78(76.05, 80.27)  

Hydrophobicity(Kyte,33) 77.35(75.54, 79.43)  Hydrophobicity(Kyte,33) 77.28(74.70. 78.98)  

Hydrophilicity(Parker,42) 76.95(74.96, 78.61)  Hydrophilicity(Parker,42) 76.05(73.10. 77.52)  

Polar Requirement (Woese) 46.21(44.98,47.55) Polar Requirement (Woese) 45.63(43.97,46.77) 
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measures (estimates between -0.7781 and -0.9795) (Figure IV.3, Table IV.1 in Appendix IV). median 

minimization percentages. This statistic showed a high consistency between both rankings for different 

definitions of genomic robustness. 

More specifically, significant negative rank correlation coefficients were observed between both 

relevance measures, (between -0.9174 and -0.9607), for genomic robustness values that include all 

single-base changes involving the three codon positions and both substitution types (transitions and 

transversions).  

Table 5.9: Medians corresponding to the Polar Requirement and the 3 amino acid properties linked to the largest medians of the 
scores for thermophilic and non-thermophilic prokaryotes for each genetic code representation. MSW: The standard code 
representation based on sense codons and biased weighting.  MS: The standard code representation based on sense codons and 
unbiased weighting. M0W: The codon-based model of the standard code with biased weighting and scale mean values assigned to 
stop codons. M0: The codon-based model of the standard code with unbiased weighting and scale mean values assigned to stop 
codons. MMW: The codon-based model of the standard code with biased weighting and the values assigned to stop codons according 
to the “mean suppressor” method. MM: The codon-based model of the standard code with unbiased weighting and the values assigned 
to stop codons according to the “mean suppressor” method. Non-thermophiles: Non-thermophilic prokaryotes (N=418), Thermophiles: 
thermophilic prokaryotes (N=324).The First (1Q) and third (3Q) quartiles are shown in parenthesis. 

Models 
Thermophiles Non-thermophiles  

Amino acid properties Medians (1Q,3Q) Amino acid properties Medians (1Q,3Q) 

MSW 
  
  

Hydrophobicity(Kyte,33) -6,4168( -6,9369, -5,8882)  Hydrophobicity(Kyte,33) -6,1237( -6,5696, -5,4601)  

Hydrophobicity(Miyazawa,40) -6,2499( -6,7558, -5,6859)  Hydrophobicity(Miyazawa,40) -5,9352( -6,3592, -5,2385)  

Hydrophobicity(Cowan, 27) -5,9177( -6,4212, -5,4171)  Hydrophobicity(Cowan, 27) -5,6468( -6,0842, -5,0275)  

Polar Requirement(Woese) -3.4722(-3.8651,-3.1053) Polar Requirement(Woese) -3.2585(-3.5630,-2.8209) 

MS 
  
  

Hydrophobicity(Miyazawa,40) -3,8613( -4,1619, -3,4997)  Hydrophobicity(Miyazawa,40) -3,6949( -3,9898, -3,2249)  

Hydrophobicity(Kyte,33) -3,7660( -4,0952, -3,4296)  Hydrophobicity(Kyte,33) -3,6491( -3,9175, -3,2072)  

Hydrophobicity(Fauchere, 29) -3,4713( -3,7745, -3,1660)  Hydrophobicity(Fauchere, 29) -3,3366( -3,6110. -2,9350)  

Polar Requirement(Woese) -1.1780(-1.3139,-1.0525) Polar Requirement(Woese) -1.1224(-1.2279,-0.9639) 

M0W 
  
  

Hydrophobicity(Kyte,33) -6,7169( -7,1973, -6,1287)  Hydrophobicity(Kyte,33) -6,3468( -6,8318, -5,7125)  

Hydrophobicity(Miyazawa,40) -6,5632( -7,0448, -5,9766)  Hydrophobicity(Miyazawa,40) -6,1647( -6,6346, -5,5283)  

Hydrophobicity(Cowan, 27) -6,2659( -6,7469, -5,7111)  Hydrophobicity(Cowan, 27) -5,9165( -6,3944, -5,3215)  

Polar Requirement(Woese) -3,7079( -4,0616, -3,3056) Polar Requirement(Woese) -3,4260( -3,7536, -3,0266) 

M0 
  
  

Hydrophobicity(Kyte,33) -4,7292( -5,1201, -4,2988)  Hydrophobicity(Kyte,33) -4,4761(-4,8568, -3,9994)  

Hydrophobicity(Miyazawa,40) -4,7261( -5,0978, -4,2920)  Hydrophobicity(Miyazawa,40) -4,4685( -4,8378, -3,9490)  

Hydrophobicity(Cornette, 25) -4,3256( -4,6801, -3,9217)  Hydrophobicity(Fauchere, 29) -4,0871( -4,4171, -3,5930)  

Polar Requirement(Woese) -1,9361( -2,1298, -1,7292) Polar Requirement(Woese) -1,7924( -1,9667, -1,5770) 

MMW 
  
  

Hydrophobicity(Kyte,33) -6,8869( -7,3773, -6,2847)  Hydrophobicity(Kyte,33) -6,5091( -7,0061, -5,8586)  

Hydrophobicity(Miyazawa,40) -6,6900( -7,1843, -6,0892)  Hydrophobicity(Miyazawa,40) -6,2864( -6,7692, -5,6363)  

Hydrophobicity(Cowan, 27) -6,3950( -6,8817, -5,8277)  Hydrophobicity(Cowan, 27) -6,0425( -6,5269, -5,4240)  

Polar Requirement(Woese) -3,8070( -4,1722, -3,3955) Polar Requirement(Woese) -3,5230( -3,8603, -3,1069) 

MM 
  
  

Hydrophobicity(Kyte,33) -4,9358( -5,3445, -4,4877)  Hydrophobicity(Kyte,33) -4,6750( -5,0698, -4,1846)  

Hydrophobicity(Miyazawa,40) -4,9143( -5,3010. -4,4562)  Hydrophobicity(Miyazawa,40) -4,6487( -5,0398, -4,1074)  

Hydrophobicity(Cornette, 25) -4,5464( -4,8980. -4,1225)  Hydrophobicity(Cornette, 25) -4,2817( -4,6377, -3,8211)  

Polar Requirement(Woese) -2,0593( -2,2733, -1,8411) Polar Requirement(Woese) -1,9190( -2,1106, -1,6869) 
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Whereas, for genomic robustness values that include single-base changes involving only one of the 

codon positions or substitution types, strong correlation was found between both relevance measures 

(estimates between -0.7781 and -0.9795) (Figure IV.3, Table IV.1 in Appendix IV). 

5.3.2   Comparing the thermophilic and non-thermophilic prokaryotes  

 

We aimed at identifying the amino acid properties for which the association between the binary 

thermal categorisation of genomes and the genomic robustness scores is strongest. Thereby, we 

could determine those factors linked to thermal stability of proteins that have an important influence 

 
 

  
Figure 5.4 The 84 amino acid property scales sorted in order of increasing values of the median 

Minimization percentages for thermophilic (N=324) genomes and non-thermophilic (N=418) genomes. 

Each color corresponds to a given type of amino acid property. Each figure corresponds to the Minimization 

percentage medians computed under the standard code representation based on sense codons. Top left: 

For thermophilic prokaryotes and unbiased weightings, Top right: For thermophilic prokaryotes and biased 

weightings, Bottom left:  For non-thermophilic prokaryotes and unbiased weightings, Bottom right: For non-

thermophilic prokaryotes and biased weightings. (The reference of each amino acid index, in Table IX.1, 

Appendix IX). 
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on the evolution of codon usage bias. The presence of a strong association between the genomic 

codon usage bias and codon robustness in thermophiles would suggest a mechanism of thermal 

adaptation involving codon usage bias. The Three-level logistic mixed models have been used to 

estimate the association between the relevance measures included as fixed effects and thermic 

status. Both relevance measures were computed by using three genetic code representations, two 

weightings and two methods to assign numerical values to stop codons. The Principal component 

analysis was also applied to the scores and optimization percentages computed under these 

conditions. To determine which of the first two principal components discriminate better between both 

temperature-range groups, three-level logistic mixed models were, also, fitted using the principal 

components as fixed effects. 

We observed the most significant differences between both groups in terms of scores and optimization 

percentage for the genomic robustness computed under the genetic code representations based on 

sense codons and unbiased weightings. Both groups are clearly separated along the second principal 

component, showing a significant change in log odds of -2.84 for one-unit increase in the second 

principal component coordinates (P=1.836e-05) (figures 5.5, table 5.10, tables V.1-V.6, figures V.1-

V.3 in Appendix V). Although the average long-range contacts tend to be linked to much smaller 

robustness values than those linked to hydrophobicity property, the most relevant difference between 

both temperature range groups were observed for this property (tables 5.10 and 5.11, figure 5.6). In 

other terms, the association between the robustness and the genomic synonymous codon frequency 

was stronger in thermophiles than in non-thermophiles when the average long-range contacts were 

considered. The optimization percentage and scores computed for the representation of the single 

base changes involving the first codon position, unbiased weightings and scale means assigned to 

stop codons, showed the most significant expected changes in log odds for each one-unit increase in 

the second principal component (for optimization percentage values, p value:< 2.2e-16), 



89 
 

 

  

  
Figure 5.5: Principal component analysis of the Optimization percentages and scores for 84 amino acid properties and the model 

based on sense codons. Top left: The first two principal components for the Minimization percentages computed under genetic code 

models based on sense codons and unbiased weighting.  Top right:  The first two principal components for the Minimization 

percentages computed under genetic code models based on sense and biased weighting, Bottom left:  The first two principal 

components for the scores computed under genetic code models based on sense and unbiased weighting. Bottom right: The first 

two principal components for the scores computed under genetic code models based on sense and biased weighting. Blue: Non-

thermophilic prokaryotes (N=418), Orange: Thermophilic prokaryotes (N=324).  

Table 5.10 The top 5 amino acid properties corresponding to the coefficients (coeff) with the smallest p values for the scores computed under 

the biased (MSW) and unbiased (MS) weighted mean phenotypic changes and genetic code representation based on sense codons. These 

coefficients, sorted in order of increasing p values, belong to Three-level logistic mixed models whose dependent variables has two levels: 

thermophiles and non-thermophiles. The third and fourth columns contain the medians as well as the first and third quartiles (shown in 

parentheses) for the scores. se: standard error, AIC: Akaike Information criteria. Non-thermophiles: Non-thermophilic prokaryotes (N=418), 

Thermophiles: thermophilic prokaryotes (N=324). (The reference of each amino acid index, in Table IX.1, Appendix IX).  

  Amino acid properties Thermophiles Non-thermophiles coeff(se) pvalue AIC 

MS Long-range contacts (41-50) [p163]  -0.3835(-0.4420.-0.3277)   -0.2643(-0.3123, -0.2344)   -255.32(10.78) 2,20E-16 257.26 

  Long-range contacts (21-30) [p161]  -0.2402(-0.2888, -0.1950)  -0.1343(-0.1814, -0.0959)   -186.4(40.81) 2,20E-16 267.58 

  Long-range contacts (11-20) [p160]  -0.5963(-0.6665, -0.5414)   -0.4723(-0.5260, -0.4326)  -84.26(20.64) 4,74E-12 296.67 

  Long-range contacts (>50) [p164]  -1.1371(-1.2489, -1.0059)   -1.0125(-1.1121, -0.9047)   -33.11(11.53) 5,51E-08 314.93 

  Thermodynamic stability [p177]  -0.2588(-0.2972, -0.2135)   -0.2365(-0.2655, -0.1849)  -137.66(40.76) 1,99E-07 317.42 

MSW Long-range contacts (31-40) [p162] -1.2300(-1.3808, -1.0963)  -0.9895(-1.1125, -0.8781)  -25.53(8.85) 8,16E-08 315.69 

  Long-range contacts (21-30) [p161] -2.0717(-2.3010, -1.8509)  -1.7714(-1.9566, -1.5589)   -12.91(4.96) 1,46E-06 321.26 

  Long-range contacts (41-50) [p163] -2.1552(-2.3889, -1.9299)  -1.8456(-2.0289, -1.6252)  -12.06(4.74) 2,81E-06 322.52 

  Long-range contacts (11-20) [p160] -2.8946(-3.2306, -2.6047)  -2.6063(-2.8400, -2.2680)  -6.93(2.53) 3,37E-05 327.26 

  Long-range contacts (>50) [p164] -3.5130(-3.9060, -3.1783)  -3.2257(-3.4944, -2.8109)   -5.9(2.12) 3,72E-05 327.45 
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among all representations explored for codon positions and substitution types (Transitions and 

transversions). The first two principal components computed for both relevance measures according 

to the previously mentioned first codon position representation, showed the clearest distinction 

Table 5.11 The top 5 amino acid properties corresponding to the coefficients (coeff) with the smallest p values for the optimization 

percentages computed under the biased (MSW) and unbiased (MS) weighted mean phenotypic changes and genetic code 

representation based on sense codons. These coefficients, sorted in order of increasing p values, belong to Three-level logistic mixed 

models whose dependent variables has two levels: thermophiles and non-thermophiles. The third and fourth columns contain the 

medians as well as the first and third quartiles (shown in parentheses) for the scores. se: standard error, AIC: Akaike Information 

criteria. Non-thermophiles: Non-thermophilic prokaryotes (N=418), Thermophiles: thermophilic prokaryotes (N=324). (The reference 

of each amino acid index, in Table IX.1, Appendix IX). 

   Amino acid properties Thermophiles Non-thermophiles coeff(se) pvalue aic 

MS  Long-range contacts (41-50) [p163] 31.66(30.03, 33.03)  29.00(27.86, 30.21)  306.1(61.1) 1,79E-11 299.27 

  Long-range contacts (21-30) [p161] 31.91(30.48, 33.37)  29.48(28.40, 30.57)  362.27(58.38) 3,07E-11 300.33  

  Long-range contacts (11-20) [p160] 37.31(0.361, 0.386)  35.01(33.58, 36.31) 188.47(47.98) 1,04E-06 320.59  

  Long-range contacts [p165] 44.72(43.08, 46.12) 43.28(41.52,44.69)  157.72(51.89) 4,94E-06 323.60 

  Conformational Entropy [p100] 28.33(27.07, 29.82)  26.60(24.87, 27.86)  124.91(46.91) 5,11E-05 328.05 

MSW  Long-range contacts (31-40) [p162] 48.86(47.40, 49.85)  44.20(42.59, 46.65)  175.44(49.29) 4,27E-07 318.89 

  Long-range contacts (21-30) [p161]  58.06(56.90, 59.11)  54.11(52.61, 56.07)  177.28(52.45) 1,61E-06 321.45 

  Long-range contacts (41-50) [p163] 58.75(57.25, 60.22)  54.95(53.06, 56.86)  131.17(47.12) 9,01E-06 324.75 

  Long-range contacts [p165] 72.03(70.89, 73.08) 69.58(67.94, 70.84)  145.65(51.57) 7,05E-05 328.66 

   Long-range contacts (11-20) [p160] 68.66(67.25, 69.57)  65.44(63.49, 67.15)  111.88(40.05) 0,0002826 331.27 

  
Figure 5.6 Histograms of the scores and Optimization percentages computed under different standard code models and amino 

acid properties. Green: Thermophilic prokaryotes (N=324), Grey: Non-thermophilic prokaryotes (N=418). A: The standard code 

models based on sense codons with unbiased weighting and long-range contacts (p163). C: The standard code models based 

on sense codons with unbiased weighting and Long-range contacts (p161).  
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between both thermal categories (figure 5.7, tables V.7-V.10 in Appendix V). The second most 

significant expected change in log odds were observed, also, for the first codon position  

 

representations but in this case for those based on sense codons (second principal components (p 

value): 2.587e-11 and 1.867e-07 for biased and unbiased weightings, respectively). The 

transversions was the substitution type for which the best separation was observed between 

thermophilic and non-thermophilic prokaryotes. This result was obtained for the mean change in the 

conformational entropy computed under the unbiased weighting (P=8.88E-12, Figure 5.9, tables V.15-

V.18 in Appendix V).  

 
 

  
Figure 5.7: Principal component analysis of the Optimization percentages and scores for 84 amino acid properties and four partial 

standard code models. Top left: The first two principal components for the Optimization percentages computed under the first codon 

position models based on the whole set of codons with scale mean values assigned to stop codons and unbiased weighting.  Top 

right:  The first two principal components for Optimization percentages computed under models using biased weighting and scale 

mean values assigned to stop codons, Bottom left:  The first two principal components for the scores computed under the first codon 

position models with scale mean values assigned to stop codons and unbiased weighting. Bottom right: The first two principal 

components for the scores computed under models using biased weighting and scale mean values assigned to stop codons. Blue: 

Non-thermophilic prokaryotes (N=418), Orange: Thermophilic prokaryotes (N=324).  
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The proteins of thermophiles are distinguished from those of non-thermophiles on the basis of some 

factors, such as, loop length, hydrophobic core compactness, aromatic side-chain stacking, salt 

bridges, hydrogen bonds, flexibility, conformational entropy, among others [51, 52 ,53].  In general, 

we observed that for the amino acid properties linked to three of these factors, namely, average long-

range contacts (hydrophobic compactness), flexibility and conformational entropy, the genomic  

robustness values tend to be more relevant in thermophiles than in non-thermophiles (Appendix V). 

The thermophilic proteins are characterized by their rigidity and the compactness of their hydrophobic 

cores. The hydrophobic interactions in the protein interior are critical determinants of protein tertiary 

structure and stability [124]. Other studies also showed that the long-range contacts are important for 

stabilising the thermophilic proteins and the transition state structures of folded proteins [125]. Some 

evidences have pointed out that the conformational entropy is connected to an enhanced thermal 

stability. For example, the thermophilic proteins have an unfolded state with a reduced entropy and a 

  
Figure 5.8. Histograms of the scores and Optimization percentages computed under different standard code models and amino acid 

properties. Green: Thermophilic prokaryotes (N=324), Grey: Non-thermophilic prokaryotes (N=418). B: The first codon position models 

based on the whole set of codons with unbiased weighting, Long-range contacts (p165) and scale means assigned to stop codons., 

B: The transversion models based on the whole set of codons with unbiased weighting, Conformational entropy (p102) and “Mean 

suppressor” values assigned to stop codons. (The reference of each amino acid index, in Table IX.1, Appendix IX). 
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residual structure more compact than mesophilic proteins [126, 127]. The conformational entropy is 

also closely related to flexibility. Besides being linked to thermal stability, the flexibility plays a crucial 

role in protein function [52]. Therefore, these amino acid properties are among the best-preserved 

ones by the genomic codon usage bias in thermophiles probably because they are strongly linked to 

the stability of thermophilic proteins.  

The distribution of the codon usage bias measured by information entropy is essentially the same in 

both groups of genomes. In contrast, the differences between both growth temperature range groups 

are clearly visible in the histograms of 

scores and optimization percentage 

computed under several properties 

(histograms V.1-V.3 in Appendix V), 

These differences are because the 

more robust codons tend to be much 

more frequent, at the expense of the 

least robust codons, and this 

association between codon-choice 

patterns and robustness is stronger in 

thermophiles than in non-thermophiles. 

We could conclude that selective, 

or/and neutral, pressures influence the 

evolution of codon usage bias in such a 

way that the effect of the single-base 

changes, with respect to amino acid 

 

 
Figure 5.9 Principal component analysis of the scores and Optimization 

percentages for 84 amino acid properties and two partial genetic code models 

with unbiased weightings, Top: The first two principal components for scores 

computed under the transversion model based on sense codons, Bottom The 

first two principal components for the Optimization percentages computed 

under the transversion model based on the whole set of codons and scale 

means assigned to stop codons, Blue: Non-thermophilic prokaryotes (N=418), 

Orange: Thermophilic prokaryotes (N=324). 
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properties like the average long-range contacts and hydrophobicity, is more efficiently minimized in 

thermophilic prokaryotes than in non thermophilic prokaryotes. 

Concerning the relationship between robustness and base composition for each codon position, we 

observed no separation between thermophiles and non-thermophiles at the third position (figure VI.2, 

Top left, in Appendix VI), corroborating previous evidences pointing to a weak selective pressure at 

this codon position27. As for the genomic robustness scores involving the first codon position, a 

separation was seen between the thermophiles and non-thermophiles, mainly, for the amino acid 

scales such as, average long-range contacts and hydrophobicity (figures VI.1 and VI.2, Appendix VI). 

The observed split-up between both groups of genomes at these codon positions but not at the third 

position, is consistent with the above results obtained by using the Three-level logistic mixed models.  

 

5.3.3 Genomic robustness at the codon block level 

 

The difference between the genomes of thermophiles and non-thermophiles with respect to the 

codon-block robustness could shed light on the relationship between the thermal adaptation and the 

ability to minimize the effect of errors at synonymous codon block level. For this analysis, the codon 

block robustness was computed as the mean phenotypic change in the average long-range contacts 

for the model based on sense codons using the biased and unbiased weightings (section 5.3.2). The 

above-mentioned property and genetic code representation were selected because of their strong 

discriminative power between thermophiles and non-thermophiles (table 5.10). Only the 

heterogeneous blocks were considered because only these blocks contribute to the difference 

between both groups with respect to genomic robustness (see section Methods). The more robust 

 
27 27 The base composition at the third codon position is rather the result of the neutral mutational pressure because 

at this position occur most of the synonymous single-base changes.  
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the codon block, the stronger the association between the usage frequency and the robustness of its 

codons.  

The codon blocks of the amino acids R, P, K, L and V showed to be significantly more robust in 

thermophiles than in non-thermophiles for average long-range contacts (tables 5.12 and 5.13, see 

tables VI.1 and VI.2 Appendix VI). The codon block of the amino acid Leucine (L) was observed to be 

significantly more robust in thermophiles than in non-thermophiles but only for the biased weightings. 

Since the thermophiles were found to be significantly more robust than non-thermophiles according 

to the unbiased and biased-weighted mean phenotypic changes for all codon blocks (table 5.14), we 

could conclude that the contributions to genomic robustness from the codon blocks encoding for the 

amino acids, R, K, P, V and L in thermophiles exceed those of the blocks more robust in non-

thermophiles (Tables 5.12 and 5.13). 

 

 

 

 

 

 

 

 

 

This finding implies that these codon blocks are the most efficient to reduce the effect of errors among 

all codon blocks in thermophilic genomes. The stronger ability of these codon blocks to minimize the 

effect of single-base changes is compatible with the important role played by their corresponding amino 

acids in thermophilic adaptation. Both factors, namely, the involvement in thermal adaptation and, to a 

Table 5.12: Medians of the Unbiased-weighted mean change (UMC) in 

long-range contacts (p163) for each synonymous codon block (second 

and third columns). The first and the third quartiles are shown in 

parentheses. The first column: the amino acids encoded by codon blocks 

containing at least two codons with different robustness (hb). Model of 

the standard code based on the sense codons. The smaller UMC 

medians of both groups are shown in red letters. Non-thermophiles: Non-

thermophilic prokaryotes (N=418), Thermophiles: thermophilic 

prokaryotes (N=324). P values: Wilcoxon rank-sum test. False discovery 

rate:0.01, *: Significant.  

hb Thermophiles  Non-thermophiles  P values 

A 0.1605(0.1600, 0.1609)  0.1606(0.1602, 0.1610)  0.0238 

R* 0.3654(0.3565, 0.3816)  0.4417(0.4180, 0.4627)  2.4038e-90 

G* 0.6728(0.6700, 0.6766)  0.6633(0.6601, 0.6694)  2.5050e-54 

I* 0.9105(0.8721, 0.9250)  0.8467(0.8348, 0.8669)  1.3177e-47 

L 0.4641(0.4581, 0.4691)  0.4646(0.4569, 0.4773)  0.0094 

K* 0.4799(0.4136, 0.5312)  0.5256(0.3860, 0.5602)  0.0021 

P* 0.0542(0.0512, 0.0558)  0.0552(0.0532. 0.0573)  1.1032e-09 

S* 0.5525(0.5445, 0.5646)  0.5478(0.5399, 0.5551)  1.5879e-09 

T* 0.1055(0.0984, 0.1132)  0.1015(0.0946, 0.1088)  6.9170e-09 

V* 0.9503(0.9440, 0.9612)  0.9565(0.9466, 0.9675)  1.9157e-06 
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lesser extent, the contribution to genomic robustness of these blocks could explain the high frequency 

of these amino acids observed in thermophilic genomes (table VI.1 in appendix VI). The higher 

frequency of the amino acids R, K, P, L and V has been considered as characteristic features of 

hyperthermophilic or thermophilic proteins28. [46, 126, 128, 129].  

 

 

 

 

 

 

 

 

 

It is known the high propensity of the charged amino acids, mainly the amino acid R, to participate in 

stabilizing salt-bridge interactions (ion pairs), specially, in the exposed part of thermophilic proteins. 

The amino acids, V and L, contribute to the hydrophobic interactions that play a crucial role in protein 

stability. The pyrrolidine ring of the amino acid, P, reduces the backbone conformational entropy of 

the unfolded state of the protein, which increases, in turn, the protein stability by decreasing the 

entropic difference between the folded and unfolded states [128].   

 

 

 

 
28 The amino acid K are more frequent in hyperthermophilic proteins than in mesophiles but less frequent in thermophilic proteins than in mesophilic proteins. In 
the case of the amino acid, P, it is less common in hyperthermophilic proteins than in mesophilic proteins but more frequent in thermophilic proteins than in 
mesophilic proteins [126]. 

Table 5.13: Medians of the Biased-weighted mean change (BMC) in long-
range contacts (p163) for each synonymous codon block (second and 
third columns). The first column: the amino acids encoded by codon blocks 
containing at least two codons with different robustness (hb). Model of the 
standard code based on the sense codons. The first and the third quartiles 
are shown in parentheses.  The smaller BMC medians of both groups are 
shown in red letters. Non-thermophiles: Non-thermophilic prokaryotes 
(N=418), Thermophiles: thermophilic prokaryotes (N=324). p values: 
Wilcoxon rank-sum test. False discovery rate:0.01,*: Significant. 

hb Thermophiles Non-thermophiles p values 

A 0.0670(0.0670, 0.0671)  0.0671(0.0670, 0.0671)  0.0239 

R* 0.1890(0.1801, 0.2235)  0.2887(0.2577, 0.3093)  4.3323e-76 

G* 0.3399(0.3374, 0.3433)  0.3315(0.3286, 0.3369)  2.5050e-54 

I* 0.3406(0.3368, 0.3421)  0.3342(0.3330, 0.3363)  1.3143e-47 

L* 0.2214(0.2213, 0.2217)  0.2217(0.2215, 0.2223)  1.6615e-22 

K* 0.1041(0.0975, 0.1092)  0.1087(0.0947, 0.1121)  0.0021 

P* 0.0124(0.0121, 0.0125)  0.0125(0.0123, 0.0127)  1.1044e-09 

S 0.2422(0.2408, 0.2435)  0.2423(0.2409, 0.2431)  0.3237 

T* 0.0383(0.0352, 0.0415)  0.0378(0.0349, 0.0399)  0.0054 

V* 0.3895(0.3837, 0.3997)  0.3950(0.3855, 0.4059)  4.9679e-06 

Table 5.14: Genomic robustness (medians) of thermophiles and non-thermophiles 
defined as the Biased (BMC) and unbiased (UMC) weighted mean squared changes 
in long-range contacts (p163) under the model based on sense codons. The first and 
third quartiles are shown in parenthesis. p values: Wilcoxon rank-sum test. 
  Thermophiles Non-thermophiles P values 

BMC 0.1735(0.1720,0.1785) 0.1842(0.1806,0.1875) 6.6869e-70 

UMC 0.4127(0.4110, 0.4153) 0.4197(0.4161,0.4239) 1.2336e-64 
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5.3.4 Codon robustness and synonymous codon usage 

 

Significant differences have been observed between thermophiles and mesophiles with respect to 

synonymous codon frequency [48, 130]. It has been previously observed that the ability of codons to 

minimize the effect of errors explains, to some extent, these differences [50]. We explored the 

relationship between the codon robustness and these differences for the heterogeneous block 

codons. The codon robustness was computed by using the model with the best discriminative 

performance between both thermal categories, namely, the unbiased weighted mean change in 

average long-range contacts (p161) under the genetic code representation based on sense codons.  

Significant differences were found between the thermophilic (thermophiles + hyperthermophiles) and 

non-thermophilic (mesophiles + psychrophiles) prokaryotes with respect to the usage frequency of 

some codons. The codons that have higher occurrence in thermophilic prokaryotes are, CUU (L), 

CUC (L), CUA(L), UCU(S), UCC(S), UCA(S), CCA(P), AGA(R), AGG(R), AUA (I), ACA (T), AAG(K), 

GUA(V), GUU (V), GCA(A), GCU (A), GGA(G), GGG(G). On the other hand, the more commonly 

used codons in non-thermophilic prokaryotes compared to the other group are, CUG (L), UCG(S), 

CCG (P), CGU(R), CGC(R), CGA(R), CGG(R), AUU(I), AUC(I), ACC(T), AAA(K), GUG(V), GUC(V), 

GCG(A), GCC(A), GGU(G), GGC(G) (table 5.15). 

 We found that 5 of the 6 codons for the arginine, were among the 10 top codons that showed the 

most significant differences in usage frequency between both groups of genomes (CGU, CGC, CGA, 

AGA and AGG). Two of these codons are among the 4 least robust codons, namely, CGU and CGC, 

and are much less frequent in thermophiles than in non-thermophiles, while the codons, AGG and 

AGA, which are more robust than the above two codons, are much more frequent in thermophiles 

compared to non-thermophiles (table 5.15). This explains why, when compared both groups of 
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genomes with respect to the codon block for the arginine, the thermophiles showed to be much more 

robust than non-thermophiles. (tables 5.12 and 5.13).             

Generally, a significant increase in the frequency of usage of at least one of the most robust codons 

at the expense of the least robust codons for a given block in thermophiles, will result in an increase 

in the robustness of this codon block in that group of genomes relative to the other.  As described 

above, this is especially true for the set of synonymous codons specifying the arginine. This pattern 

was also observed, to a lesser extent, for the codon blocks corresponding to the amino acids, P, V 

and L.  As for the amino acid, proline, it was seen that one of its two least robust codons, namely, 

CCG, showed to be remarkably less frequent in thermophiles than in non-thermophiles. This codon 

is less frequently used in thermophiles than the other more robust codons for this amino acid (CCU, 

CCC) compared to non-thermophiles. On the other hand, we observed that the codons, GUU and 

CUU, encoding for the amino acids, V and L, are more robust and more frequently used in 

thermophiles than their corresponding synonymous codons, GUG and CUG (table 5.15). 

The robustness of synonymous codons is strongly associated with their usage frequencies at the 

genome level, mainly, in thermophilic prokaryotes. Our results indicate that the higher robustness of 

the thermophilic prokaryotes compared to that observed for non-thermophilic prokaryotes is mainly 

due to the heterogenous codon blocks corresponding to some of the most frequent amino acids in 

thermophilic or hyper-thermophilic proteins.   
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Table 5.15 The Unbiased-Weighted Mean change in long-range contacts (p163) for each 
codon (LR). LR was computed by using the standard code representation based on sense 
codons and a weighting with the synonymous codon frequency. The contiguous cells of the 
third column with the same color indicate codons forming homogeneous sub-blocks. the fourth 
and fifth columns show The Medians of the synonymous codon usage frequencies as well as 
the first and third quartiles in parentheses. The first column: The amino acids encoded by the 
heterogeneous blocks of the standard code. Non-Thermophiles: Non-Thermophilic prokaryotes 
(N=418), Thermophiles: Thermophilic prokaryotes (N=324). p values: Wilcoxon rank-sum test. 
*: Significant for a False discovery rate:0.01.  

Amino 
Acids 

Codons LR thermophiles Non-thermophiles p values 

L UUA 0.6606 0.1521(0.0427,0.2948) 0.1799(0.0111.0.3893) 0.6713 

 

UUG 0.3847 0.1395(0.1017,0.1963) 0.1439(0.0890,0.2042) 0.8968 

CUU* 0.6179 0.1908(0.1432,0.2384) 0.1209(0.0983,0.1600) 1.41E-31 

CUC* 0.6179 0.1488(0.0636,0.2515) 0.0936(0.0549,0.1815) 3.09E-05 

CUA* 0.8245 0.0683(0.0419,0.1030) 0.0620(0.0183,0.1080) 6.12E-04 

CUG* 0.6526 0.1570(0.0743,0.2679) 0.2314(0.0746,0.5172) 7.13E-06 

S AGU 1.6924 0.1479(0.0991.0.2023) 0.1705(0.0666,0.2348) 0.3163 

 

AGC 1.6924 0.2002(0.1409,0.2733) 0.2294(0.1445,0.3013) 0.0328 

UCU* 1.3973 0.1660(0.0892,0.2363) 0.1598(0.0503,0.2307) 0.0035 

UCC* 1.3973 0.1607(0.0895,0.2162) 0.1274(0.0643,0.2015) 7.41E-05 

UCA* 0.1517 0.1592(0.1021.0.2397) 0.1414(0.0570,0.2193) 3.76E-05 

UCG* 0.1816 0.1112(0.0593,0.1649) 0.1305(0.0829,0.2644) 1.95E-07 

P CCU 0.1301 0.2440(0.1477,0.3554) 0.2528(0.0926,0.3558) 0.0246 

 
CCC 0.1301 0.2308(0.1033,0.3148) 0.1741(0.0965,0.3127) 0.024 

CCA* 0.2551 0.2454(0.1402,0.3890) 0.2094(0.0774,0.3817) 0.0022 

CCG* 0.2551 0.2152(0.1039,0.3566) 0.2898(0.1418,0.5179) 1.14E-07 

R CGU* 2.1368 0.0593(0.0382,0.1036) 0.2291(0.1282,0.3411) 6.29E-70 

 

CGC* 2.1368 0.0582(0.0279,0.2180) 0.3363(0.1692,0.5189) 1.08E-40 

CGA* 0.5428 0.0437(0.0230,0.0657) 0.0757(0.0448,0.1230) 2.75E-26 

CGG* 0.6231 0.0411(0.0183,0.1789) 0.1042(0.0414,0.1841) 7.36E-07 

AGA* 1.1619 0.3188(0.1121.0.5554) 0.0817(0.0182,0.1984) 1.46E-27 

AGG* 0.6578 0.2615(0.1616,0.3930) 0.0421(0.0266,0.0643) 3.00E-73 

I AUU* 1.7514 0.3375(0.2075,0.4362) 0.4711(0.2048,0.5743) 6.07E-10 

 AUC* 1.7514 0.2418(0.1322,0.4051) 0.3769(0.2187,0.7402) 1.16E-14 

AUA* 2.2895 0.4339(0.2334,0.5098) 0.1009(0.0387,0.2065) 1.32E-47 

T ACU 0.3315 0.2061(0.1198,0.2892) 0.1982(0.0672,0.2971) 0.091 

 
ACC* 0.3315 0.2711(0.1547,0.4051) 0.3532(0.2092,0.5191) 1.25E-07 

ACA* 0.5311 0.2827(0.1558,0.4103) 0.1879(0.0686,0.3196) 1.74E-10 

ACG 0.2829 0.1914(0.1001.0.3032) 0.2084(0.1454,0.2977) 0.0404 

K AAA* 1.2751 0.5524(0.3655,0.6972) 0.6814(0.2874,0.7790) 0.0021 

 AAG* 0.5663 0.4475(0.3027,0.6344) 0.3185(0.2209,0.7125) 0.0021 

V GUU* 1.8816 0.3261(0.2244,0.4248) 0.2615(0.1053,0.3772) 1.37E-08 

 

GUC* 1.8816 0.1714(0.0880,0.2746) 0.2067(0.1117,0.3310) 7.25E-04 

GUA* 1.9094 0.2169(0.1102,0.3048) 0.1759(0.0554,0.3011) 5.40E-04 

GUG* 2.234 0.2426(0.1712,0.3659) 0.3077(0.1907,0.4414) 5.30E-06 

A GCU* 0.4773 0.2514(0.1591.0.3363) 0.2366(0.0832,0.3205) 6.34E-05 

 
GCC 0.4773 0.2661(0.1390,0.3926) 0.2745(0.1650,0.4460) 0.1009 

GCA* 0.5068 0.2544(0.1574,0.3884) 0.2335(0.1108,0.3483) 2.24E-04 

GCG* 0.5068 0.1623(0.0943,0.2745) 0.2313(0.1439,0.3393) 5.26E-10 

G GGU* 1.2619 0.2513(0.1750,0.3258) 0.2985(0.1642,0.3908) 6.31E-04 

 
GGC* 1.2619 0.2276(0.1275,0.3598) 0.3726(0.2134,0.5814) 7.37E-19 

GGA* 1.0564 0.3036(0.1968,0.4172) 0.1224(0.0785,0.2910) 3.56E-31 

GGG* 0.9547 0.1839(0.1292,0.2312) 0.1282(0.1011.0.1675) 2.25E-24 
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CHAPTER 6 

 

                                    CHAPTER 6: DISCUSION 

 

We observed that, among 235 amino acid indices, the 5 amino acid properties linked to the most 

relevant values of genetic code robustness, following the hydrophobicity/polarity, are the solvent 

accessible surface area, average long-range contacts, flexibility, Transmembrane helix and Small-

linker propensities (see section 5.3.3). The amino acid property best preserved was the 

hydrophobicity/polarity. More specifically, the most relevant scales were, the Kyte’s hydropathy index 

and Miyazawa’s hydrophobicity, for the codon-based models and Polar requirement for the block-

based models. It is interesting that the block-based model is precisely the representation used in 

previous works that apply, however, another estimation method based on randomly generated codes 

[25].  

The standard genetic code was among the first three most robust natural codes with respect to the 

Cantelli’s upper bounds computed by using the Miyazawa’s hydrophobicity scale and different genetic 

code representations. This result is in agreement with previous studies by showing that the increase 

of robustness is not linked to the emergence of most alternative genetic codes [120,131]. We found 

that the Ciliate, Dasycladacean and Hexamita Nuclear Code was the most robust code or the third 

most robust code for two code representations, which is consistent with previous findings [131, 132]. 

We also corroborated that codon reassignments that create the Alternative yeast nuclear Code and 

Yeast mitochondrial code from the standard genetic code, are linked to the largest decrease in 

robustness [131]. The three codon positions have not the same contributions to genetic code 

robustness. Overall, the third codon position is the most robust codon position, followed by the 1st 

and 2nd positions in that order. These results agree with findings reported by other authors [79]. We 
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also observed that the standard genetic code is more robust than most alternative genetic codes at 

the first codon position and with respect to transitions or transversions.  

We also found that some nuclear codes are more robust than the standard genetic code at the first 

and second codon positions and most mitochondrial genetic codes are more robust than the standard 

code at the third codon position. The observation that some alternative genetic codes are more robust 

than the standard code at the first and third codon positions but not with respect to the whole code 

structure, suggests that the partial increment of robustness could have been an important factor in 

the fixation of codon reassignments giving rise to the emergence of new variant genetic codes. This 

is interesting because previous studies only considered the robustness computed from whole genetic 

code representations [120,131, 132].  

In general, our results indicate that the natural genetic codes are more robust for amino acid properties 

strongly related to the protein stability and hint at the possibility that the load-minimization property 

might be an adaptation that takes place, mainly, at the level of one or two of the codon positions in 

alternative genetic codes. This adaptation involving the codon positions for which the protein 

translation errors are more frequent could be an important factor in the recent evolution of the standard 

genetic code and probably also played a crucial role at the transition from the RNA world to the modern 

DNA/RNA/protein world, when the fidelity of a primitive translation system was still very low (For more 

details see sections 2.1, 2.2 and 2.3.2) [39, 73].  

We showed that there are two types of sets of synonymous codons in the standard genetic code, the 

homogeneous and heterogeneous codon blocks. To study the relationship between the robustness 

and the frequency of synonymous codons at the codon block level, only the heterogeneous codon 

blocks must be considered because only such blocks comprise at least two codons with different 

robustness values. We found that in the standard genetic code the set of heterogeneous codon blocks 

corresponds to the 10 amino acids, A, G, R, V, L, K, S, I, P and T for both weightings used and 
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regardless of the amino acid property. Substituting two of these amino acids, K and R, for the acidic 

amino acids, D and E, leads to the known set of primitive amino acids [54]. This characteristic of the 

standard code linked to robustness might be a by-product or, on the contrary, another important factor 

in the evolution of the primordial genetic code to its present form [39]. The possibility of maximizing, 

at the level of the synonymous codon usage, the robustness to errors for the first amino acids 

incorporated into the genetic code could have been advantageous for primitive organisms with highly 

error-prone machineries for protein synthesis.   

The synonymous codon usage is not random and, frequently, the alternative codons for the same 

amino acid occur with different frequencies. The synonymous codon usage pattern is unique to each 

species and is the result of a balance between neutral mutational processes and natural selection. 

Several factors have been shown to be related to the synonymous codon usage [3, 122,123]. The 

robustness to errors and growth temperature range group are two of these factors. Previous studies 

have shown that the synonymous codon usage and robustness to errors are correlated at the genome 

and gene level [40, 41, 43, 44, 50, 85, 86, 87]. Whereas, other studies have shown that in prokaryotic 

genomes there is no bias in the synonymous codon usage towards a higher frequency of the more 

robust codons [35, 42, 45]. However, it is not possible to know with certainty from these studies what 

is the general trend in prokaryotes, either because they used less than four prokaryotic genomes 

[35,43] or because they used a subset of genes representing complete genomes [42, 45] (For more 

details see section 2.4).  

Regarding the thermophilic adaptation at the coding sequence level in prokaryotes, it is known that 

certain amino acids and codons tend to occur with high frequency in thermophilic prokaryotes [46,48, 

49, 128, 129,130] and why some amino acids could confer selective advantages in high-temperature 

environments [128], but little is known about why certain synonymous codons tend to be used more 

frequently than others. To date, only one study has been conducted exploring the relationship 
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between these synonymous codon usage preferences and the robustness to errors [50]. The authors 

concluded that the differences in the usage of synonymous codons between the mesophilic and 

thermophilic prokaryotes could be explained in terms of the synonymous codon usage robustness to 

errors and mRNA secondary-structure stability. However, in this study a small sample was used, the 

translational errors were not considered and in addition, the Mclachlan matrix, which is an amino acid 

substitution matrix, was applied, so no information was provided on the properties of the amino acids 

involved [50]. 

To assess the robustness of the synonymous codon usage, computed from complete genome 

sequences, a sample of thermophilic (324) and non-thermophilic prokaryotes (418) was chosen. The 

mean phenotypic change weighted with the relative frequency of synonymous codons was applied as 

measure of the ability to mitigate the impact of errors at the level of proteins. The optimization 

percentage and scores were computed for 84 amino acid indices, two weightings and genetic code 

representations as well as under three different methods to process the stop codons.  

We have found that the synonymous codon usage of prokaryotic genomes is highly optimized to buffer 

the impact of errors. The highest degrees of error mitigation were observed for hydrophobicity and 

the other amino acid properties linked to protein folding and stability, indicating that the higher the 

robustness of synonymous codons in terms of these properties, the larger their frequencies at the 

genome level. The fact that several hydrophobicity indices and other properties related to protein 

stability are linked to the highest robustness values could be interpreted as an evidence of the action 

of selective pressures shaping the synonymous codon usage to minimize the effect of errors in 

proteomes. The robustness values for the weighting based on mistranslations were larger compared 

to those observed for the unbiased weighting. It is well known the high cellular cost of protein 

misfolding and aggregation caused by mistranslations and environmental factors like temperature. 

Consequently, increasing the frequency of the most robust codons at the expense of the least robust 
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codons could be an evolutionary response to the observed high mistranslation rates [3, 133, 134, 135, 

136].  Mitigating the effect of mistranslations would reduce the amount of severely misfolded proteins, 

thereby, facilitating the activity of the quality-control system based on chaperones and proteases 

constrained by metabolic costs [3, 134, 137].  

We observed that synonymous codon usages of thermophilic genomes tend to be more robust to 

errors than those of non-thermophiles [50]. The thermostability and mutational robustness are known 

features of thermophilic proteins [90, 91]. Our results suggest that the high degree of optimization of 

synonymous codon usages in thermophilic genomes could be another mechanism to withstand high 

temperatures. Thus, the increased use of the most robust codons, especially at critical sites for protein 

stability could represent a general protection mechanism against the consequences of high rates of 

translation errors [91, 138], as was observed in conserved ligand-binding sites [85]. This observation 

explains why the codon block most optimized in thermophilic genomes to mitigate the effect of errors 

corresponds to arginine, one of the most important amino acids for thermostability (see section 5.3.3). 

It could also explain why we detected significantly higher robustness in thermophiles relative to non-

thermophiles for the blocks corresponding to other amino acids, K, P, V and L, known to frequently 

occur in thermophilic and hyperthermophilic proteins [128, 129] (see section 5.3.3). 

The high frequency of use of codons AGR (AGG, AGA) and the low frequency of codons CGY (CGU, 

CGC), are typical features of thermophilic genomes [46,48,49,130]. Our results indicate that the 

codons AGR are more frequent in thermophiles because they are more robust than the less frequent 

codons CGY. We also observed significant association between codon robustness and frequencies, 

for the codons, CCA (P), GUU (V) and CUU (L), which turned out to be more robust and more frequent 

than their respective synonymous codons, CCG, GUG and CUG. We also found that the association 

between the synonymous codon usage robustness and temperature range groups is stronger for the 

average long-range contacts, mainly, at the first codon position. The most significant differences in 



105 
 

base composition between thermophiles and mesophiles among the three codon positions have been 

observed at this codon position (for the bases, A and C) [46].  

The information flow from DNA to proteins has multiple error-prone steps. For example, considering 

only the protein synthesis which has one of the highest error rates, it was estimated that the 15% of 

average-length proteins would contain at least one amino acid substitution. There two main 

mechanisms or forces in the evolution of coding sequences, one relies on the error prevention and 

removal and the other, on error mitigation. The first mechanism is seen, for example, in substrate 

selection and proofreading mechanisms of DNA and RNA polymerases and its effect is reducing the 

error rates.  Whereas, the mechanism for error-mitigation consists of reducing the effect of errors, an 

example of this is the complex network of chaperones and proteases that target misfolded proteins 

for chaperone-assisted refolding or degradation, although there are other examples like the intrinsic 

robustness of proteins and duplicate genes, among others [3, 7, 8, 9, 10, 12, 133, 134, 135, 139]. 

Both mechanisms have also been observed at the level of synonymous codon usage, the mechanism 

for error prevention, in this case, entails increasing the frequency of the translationally optimal codons 

that minimize the rate of amino acid misincorporations and the mechanism for error mitigation is based 

on increasing the use of the codons that reduce the effect of single-base changes in proteins. We 

have demonstrated that the synonymous codon usage robustness, mainly, to translational errors is a 

general trend in prokaryotic genomes and that this trend is stronger in the codon blocks corresponding 

to some of the most frequent amino acids in thermophilic and hyperthermophilic proteins. These 

results can be considered as evidences of selection on synonymous codon usage for maximizing the 

robustness in prokaryotes. However, the possibility of being a by-product of other mutational or 

selective pressures could not be ruled out.  
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CHAPTER 7 

 

CHAPTER 7: CONCLUSIONS AND FUTURE WORK 

 

7.1 Conclusions 

 

We have introduced some modifications to the statistical and optimization-based approaches to assess 

the genetic code and genome robustness in order to improve their efficiency and accuracy. The two main 

improvements are: 1) A method based on the first two moments of the unknown distribution of the 

weighted mean phenotypic change values for all possible amino acid-to-codon assignments. The 

Cantelli’s upper bound and scores, defined from both moments, were used as measures of relevance of 

the genetic code and genome robustness values. This is a distribution-free method because it does not 

rely on any distribution assumption. 2) Thanks to the identification of a polynomially solvable instance of 

the Quadratic Assignment Problem, an exact algorithm to find the minimum genome robustness value 

was applied to compute the optimization percentage. In addition, we performed other minor 

improvements that decrease the number of operations required to compute the weighted mean 

phenotypic change and its distribution parameters, such as, mean and variance. More precisely, these 

improvements are based on, 1) equations for efficiently computing the variance and mean, 2) partitioning 

the graph representation of the genetic code into two components in the following four ways: 2.1) The 

vertices of one component represent the codons that belong to heterogeneous codon blocks and those 

of the other component represent the codons belonging to homogeneous codon blocks. 2.2) The vertices 

of one component represent the codons specifying different amino acids and those of the other 

component represent the codons that correspond to same amino acid. This partitioning is derived from 

the pairwise comparison between the amino acid-to-codon assignments corresponding to two genetic 
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codes. 2.3) The vertices of one component represent sense codons and those of the other component 

represent stop codons. 2.4) One component contains the edges representing missense single-base 

changes and the other, the edges representing synonymous single base changes. All these modifications 

make the statistical and optimization-based approaches suitable for large-scale data analysis. For 

instance, the influence of the load minimization property of the genetic code on amino acid and 

synonymous codon usages can be efficiently tested by using these methods on large samples of 

biological sequences and amino acid properties. In addition, we have showed that the correspondence 

between our method and that based on the empirical sampling distribution of the weighted mean 

phenotypic change is high, mainly for amino acid properties related to the most relevant robustness 

values.  

We applied these methods to answer two main questions: 1) Is the increase in robustness to single-base 

changes important for the evolution of the alternative genetic codes?  2) Is the robustness to single-base 

changes important for the evolution of synonymous codon usage in prokaryotes? 

1)  In general, our results indicate that several alternative genetic codes arise from the standard 

code not through codon reassignments that increase the robustness with respect to the entire code but 

by means of codon reassignments that increase the robustness with respect to the third and first codon 

positions, for the mitochondrial and nuclear genetic codes, respectively. Therefore, we can conclude 

that robustness with respect to substitution position could be important for the evolution of several 

alternative genetic codes. We have also found that robustness of the 23 natural genetic codes are highly 

optimized not only for hydrophobicity/polarity but also for other properties also linked to protein folding 

and stability, such as, solvent accessible surface area, average long-range contacts and flexibility. 

2) We consider that robustness is important for the evolution of synonymous codon usage in 

prokaryotes based on three observations: The robustness is strongly associated with the frequency of 
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synonymous codon usage in prokaryotic genomes. The highest robustness values were observed for 

the weighting based on protein translation errors, one of the most frequent sources of errors in the 

information flow from DNA to proteins. The thermophilic prokaryotes are significantly more robust to 

errors than non-thermophilic prokaryotes, mainly at the level of those heterogeneous codon blocks that 

correspond to some of the amino acids that tend to be more frequent in thermophilic or hyper-thermophilic 

proteins. We have also shown that the high robustness values observed for these heterogeneous  codon 

blocks in thermophilic genomes are due to the fact that the most robust codons, such as, AGG(R), 

AGA(R), CCA (P), GUU (V) and CUU (L),  tend to be significantly more frequent than the least robust 

codons CGU(R),  CGC(R),  CCG(P), GUG(V) and CUG(L).  

 

7.2 Future work 

 

Several factors have been shown to be associated with the frequency of synonymous codon usage, 

such as, the base composition, the translation efficiency and accuracy, the RNA stability and the optimal 

growth temperature, among others. It is known, for example, that the highly expressed genes tend to 

prefer codons corresponding to abundant tRNAs. This correspondence between codon usage bias and 

tRNA content increases the protein translation efficiency and accuracy. We could explore the 

relationship between codon robustness and other factors like codon usage bias, mRNA secondary 

structures and tRNA gene copy number, in the highly expressed genes of thermophiles and non-

thermophiles. This work might be useful, for example, to develop new methodologies for the 

optimization of heterologous gene expression. 

 We think that these methods to assess the genetic code and genome robustness together with other 

methods for calculating certain physical and chemical properties of new chemical compounds could be 

very useful for the new technologies to incorporate non-canonical amino acids into the genetic code.  
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APPENDICES 

 

Appendix I. Algorithms and methods 

 

 

 

 

 

 

 

 

 

 
Figure I.1 Three hypothetical genomes that depend on a genetic code of four codons that code for different 

amino acids. Below each genome, on the left side, the mean phenotypic change in terms of amino acid distances, 

on the right, the codon frequency. The size of the circles is proportional to the values of the mean phenotypic 

change and codon usages. According to the proposition of Hardy, Littlewood, Polya (1952), if the more frequent 

codons are those with smaller mean phenotypic change (or larger robustness), then the value of the mean 

phenotypic change (bottom left) weighted with the genomic codon usage will be also smaller. This is the case for 

the genome 1, which is the most robust among the three genomes. Inside the box, genomes sorted in increasing 

order of the mean phenotypic change or robustness. Bottom left: Computing the weighted mean phenotypic 

change for this example. 

 

Table I.1 Set of codons adjacent to each of the three stop codons UAA, UAG and UGA 

(standard genetic code). In red letters, the only position that differs between the stop 

codon and its neighbors.  
UAA (Ochre) UAG (Amber) UGA(Opal) 

codons Amino acid codons Amino acid codons Amino acid 

AAA Lys AAG Lys AGA Arg 

CAA Gln CAG Gln CGA Arg 

GAA Glu GAG Glu GGA Gly 

UCA Ser UCG Ser UAA None 

UGA None UGG Trp UCA Ser 

UUA Leu UUG Leu UUA Leu 

UAC Tyr UAA None UGC Cys 

UAG None UAC Tyr UGG Trp 

UAU Tyr UAU Tyr UGU Cys 
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Figure I.2 Top: Two neighboring codons (UUU, UUC) that form a homogeneous block in the 

standard genetic code. They share the same amino acid neighborhood because their adjacent 

codons specify the same amino acids. Middle: two adjacent codons (AUC, AUA) that do not form 

a homogeneous sub-block in the standard genetic code. Bottom: The homogenous block that 

corresponds to the amino acid Phe and its neighborhood according to the block-based model. 
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Pseudocode I.1 Algorithm to verify whether each codon represented in 

Ag fulfils the three requirements for being part of a homogeneous sub-

block or block. 
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Pseudocode I.2 Algorithm to compute the robustness or mean phenotypic change for a set of genomes 

according to a set of amino acid indices. 

 

Definitions:𝜋(𝑒), 𝜋(𝑣), 𝜋(𝑞), 𝜋(𝑠): Mapping of phenotypes to codons v, q, e and s.  

𝑝𝑘(𝜋(𝑒)), 𝑝𝑘(𝜋(𝑞)), 𝑝𝑘(𝜋(𝑣)): Values assigned to the amino acids 𝜋(𝑢), 𝜋(𝑞), 𝜋(𝑣) according to the k 

amino acid property.  𝑚(𝑒, 𝑔), 𝑚(𝑠, 𝑔): Frequency of codons e and s for the genome g. ℎ𝑞𝑣 , ℎ𝑒𝑣 , ℎ𝑠𝑣: 

Weights on the edges between the codons q, e, s and their corresponding neighbors v. Z: Number of 

codons belonging to homogeneous blocks in the standard code. x: Number of codons belonging to 

heterogeneous blocks in the standard code. N: Total number of single base changes, Nse: Total number 

of single base changes involving only sense codons. n: Number of neighboring vertices.                          



120 
 

 

 

 

 

 

Pseudocode I.3 Algorithm to compute the robustness or mean phenotypic change for a set of genetic 

codes with respect to several amino acid indices. 

 

Definitions: 

𝛽(𝑡),  𝜋(𝑡): Codons t to which the alternative genetic codes 𝛽 and standard genetic code 𝜋 assign 

different phenotypes. 𝛽(𝑠) 𝛽(𝑣) 𝜋(𝑢) 𝜋(𝑠) 𝜋(𝑣): Phenotypes assigned to codons u, stop codons s and 

their neighboring codons v.  𝛾𝑠𝑣 , 𝛾𝑢𝑣 , 𝛾𝑡𝑣: Weights on edges between codons u, s, t and codons v. 

𝐹𝜋
𝑡(𝑘, 𝑐): Mean phenotypic change for the subset of codons assigned differently in the standard 

genetic code with respect to alternative codes. 𝐹𝛽
𝑡(𝑘, 𝑐) ∶ Mean phenotypic change for the subset of 

codons assigned differently in the alternative with respect to the standard genetic code. ns number of 

stop codons. 𝐹𝛽
𝑏(𝑘, 𝑐), 𝐹𝜋

𝑏(𝑘, 𝑐):  The mean phenotypic change for π and β under the block model b. 

As explained in previous section, 𝐹𝛽
𝑏(𝑘, 𝑐) = 𝐹𝛽

𝑠𝑒(𝑘, 𝑐) and 𝐹𝜋
𝑏(𝑘, 𝑐) = 𝐹𝜋

𝑠𝑒(𝑘, 𝑐) . 

n: Number of neighboring vertices.                          
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Pseudocode I.4 Algorithm to compute the null population means for a set of genetic codes  with respect to a 

set of amino acid indices. 

 

Definitions: 

   𝑃(𝑘)
𝑏 , 𝑇(𝑐)

𝑏 : Terms for computing 𝜇(𝑐,𝑘)
𝑏  under the codon-block based model. 𝑃(𝑐,𝑘)

𝑐𝑜 , 𝑇𝑐𝑜: Terms for computing 

𝜇(𝑐,𝑘)
𝑐𝑜  under the codon-based model. 𝑃(𝑐,𝑘)

𝑠𝑒 , 𝑇(𝑐)
𝑠𝑒 : Terms for computing 𝜇(𝑐,𝑘)

𝑠𝑒  under the model based on sense 

codons.𝑛𝑙: Number of single-base changes of each type, 𝑙. 𝑟𝑙: Weights for single-base changes, s: Stop 

codons, ns(c): number of stop codons of the genetic code c. N: Number of single-base changes, Ns(c): 

Number of single-base changes involving sense codons in the genetic code c. nb: number of codon blocks, 

n(c): number of  sense codons of the genetic code c. 
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Pseudocode I.5 Algorithm to compute the null population variances for a set of genetic codes  with respect 

to several amino acid indices. 

Definitions: variance: Equation for the population variance (eq. 14).𝑃2(𝑘)
𝑏 , 𝑃3(𝑘)

𝑏 , 𝑃4(𝑘)
𝑏 : Right-handed terms 

in 𝐷2, 𝐷3, 𝐷4 of equation 14, for the block model, b, and amino acid property, k.𝑇2(𝑐)
𝑏 , 𝑇3(𝑐)

𝑏  , 𝑇4(𝑐)
𝑏 : Left-handed 

terms in 𝐷2, 𝐷3, 𝐷4 of equation 14, for b and genetic code, c.𝑃2(𝑐,𝑘)
𝑠𝑒 , 𝑃3(𝑐,𝑘)

𝑠𝑒  , 𝑃4(𝑐,𝑘)
𝑠𝑒 : Right-handed terms in 𝐷2, 

𝐷3, 𝐷4 of equation 14, for the model based on sense codons, se,  as well as, k and c.𝑇2(𝑐)
𝑠𝑒 , 𝑇3(𝑐)

𝑠𝑒 , 𝑇4(𝑐)
𝑠𝑒 : Left-

handed terms in 𝐷2, 𝐷3, 𝐷4 of equation 14, for se and c.𝑃2(𝑐,𝑘)
𝑐𝑜  , 𝑃3(𝑐,𝑘)

𝑐𝑜 , 𝑃4(𝑐,𝑘)
𝑐𝑜 : Right-handed terms in 𝐷2, 𝐷3, 

𝐷4 of equation 14, for the codon-based model, co, as well as, c and k.𝑇2
𝑐𝑜, 𝑇3

𝑐𝑜, 𝑇4
𝑐𝑜: Left-handed terms in 

𝐷2, 𝐷3, 𝐷4 of equation 14 for the codon-based model. 𝑇1
𝑐𝑜 , 𝑃2(𝑐,𝑘)

𝑠𝑡𝑝
, 𝑃3(𝑐,𝑘)

𝑠𝑡𝑝
, 𝑇2(𝑐)

𝑠𝑡𝑝
 , 𝑇3(𝑐)

𝑠𝑡𝑝
, 𝑇1(𝑐)

𝑠𝑡𝑝
: Auxiliary variables 

for computing the contribution of stop codons stp to right-handed and left-handed terms. ns(c): number of 

stop codons of c.  
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Appendix II. Robustness of the standard genetic code 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table II.2 The first 10 aa properties (from a Total of 235) in increasing order of 
Cantelli’s bounds (CB) for the standard code. It was used the Unbiased-
weighted mean phenotypic changes and representation based on sense 
codons. Pr(AC): Proportion of artificial genetic codes with Cantelli’s bound  
values Lower than those of the standard code. These codes were generated by 
all possible reassignments of one codon in the synonymous codon sets with 
more than 1 codon. The numbers after p in parentheses (first column) indicate 
the position in the list of amino acid properties (Appendix, Table IX.1). 

Amino acid properties rob score CB Pr(AC) 

Hydrophobicity (Miyazawa, p132)                   0.9026 -8.8416 1.2631E-02 0.2202 

Hydrophobicity (Cornette,p115)                   1.0187 -8.5917 1.3366E-02 0.2089 

Hydrophobicity (Kyte, p125)                       1.1083 -8.5177 1.3596E-02 0.1758 

Hydrophobicity (Wilson, p147)                       1.0755 -8.5135 1.3609E-02 0.2605 

Hydrophobicity (Parker, p135)                     0.9681 -8.5024 1.3644E-02 0.2202 

Transmembrane Alpha-Helix (p35)                 1.0523 -8.3352 1.4189E-02 0.1960 

Transmembrane Alpha-Helix (p28)                 1.2221 -8.3344 1.4192E-02 0.2323 

Hydrophobicity (Wilson, p147)         0.9657 -8.2757 1.4391E-02 0.2331 

Long-range contacts (p164)                0.9355 -8.0984 1.5019E-02 0.1685 

Solvent accesible Surface (p44)                 0.9570 -8.0712 1.5118E-02 0.1903 

Table II.1 The first 10 aa properties (from a Total of 235) in increasing order of Cantelli’s bounds (CB) 
for the standard code. It was used the Unbiased-weighted mean phenotypic changes and codon-
block representation. Pr(AC): Proportion of artificial genetic codes with Cantelli’s bound  values Lower 
than those of the standard code. These codes were generated by all possible reassignments of one 
codon in the synonymous codon sets with more than 1 codon. Pr sim: Probability estimated by numerical 
simulation. Pr norm:  Probability estimated by normal approximation. The numbers after p in 
parentheses (first column) indicate the position in the list of amino acid properties (Appendix, Table 
IX.1). 

Amino acid properties rob score CB Pr(AC) Pr.sim Pr norm 

Polar requirement (p149)                  0.8659 -2.2253 0.1680 0.4250 2.2537E-04 0.0130 

Hydrophobicity (Wimley, p148)                 0.7357 -2.0568 0.1912 0.4960 3.2338E-05 0.0199 

Hydrophobicity (Meek, p130)                 0.8781 -1.8719 0.2220 0.4710 5.2100E-04 0.0306 

Medium thermodynamic stability (p188)                0.6057 -1.6512 0.2683 0.5589 1.6430E-04 0.0493 

Protein-Protein interactions (p153)            0.9150 -1.6047 0.2797 0.5048 1.4190E-03 0.0543 

Flexibility (2FN, MS, p209)                 0.8546 -1.5268 0.3002 0.3847 2.3600E-05 0.0634 

Flexibility (2FN, ML, p148)                 0.9122 -1.4832 0.3125 0.4516 5.5400E-04 0.0690 

Small linker propensity (p174)       0.8551 -1.4304 0.3283 0.4242 1.0600E-04 0.0763 

Long-range contacts (p164)           0.9355 -1.3538 0.3530 0.4444 5.1880E-04 0.0879 

Long-range contacts (p160)          1.0160 -1.3114 0.3677 0.4847 3.1284E-04 0.0949 

2FN: Two flexible neighbors, MS: Mean scale parameter, ML: Mean location parameter 
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Figure II.1 Relationship between the negative logarithmic transformation of the Cantelli’s bounds and p values 

computed by the permutation method by using samples of 10050000 codes for the standard genetic code and 235 

amino acid properties. It was used the codon-block-based model with unbiased-substitution weighting. Top left: Third 

codon position, Top right: All codon positions, Bottom: First codon position. 
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Table II.3 Spearman rank correlation coefficients 
between Cantelli’s upper bounds and empirical 
estimates of probability of obtaining codes more 
robust than the standard genetic code computed from 
a random sample of 10050000 codes (p values) for 
amino acid properties with p values smaller than the 
values shown in the first column. Cp1:  Cantelli’s upper 
bounds computed under the block-based 
representation of edges connecting first codon 
positions, Cp2: Cantelli’s upper bounds computed 
under the block-based representation of edges 
connecting second codon positions, Cp3: Cantelli’s 
upper bounds computed under the block-based 
representation of edges connecting third codon 
positions.Cpt : Cantelli’s upper bounds computed 
under the whole block-based representation. 

P values   Cp1 Cp2 Cp3 Cpt 

<1*106 0.9645 0.9636   0.8691 0.9130 

<3*106  0.9836 0.8254 0.8439 0.9436 

<5*106  0.9881 0.9483  0.8715 0.9552 

<7*106 0.9087 0.4429  0.8887 0.8758 

<9*106  0.6607 0.0836 0.8608  0.6022 

Table II.4 Biased-weighted mean phenotypic change (rob) under the codon-based 
models, with stop codons=scale mean. The first 10 aa properties (from a total of 235) in 
increasing order of Cantelli’s bounds (CB) for the standard code. Pr(AC): Proportion of 
artificial genetic codes with Cantelli’s bound  values lower than that of the standard code. 
These codes were generated by all possible reassignments of one codon in the 
synonymous codon blocks with more than 1 codon. The numbers after p in parentheses 
(first column) indicate the position in the list of amino acid properties (Appendix, table 
IX.1). 

Amino acid properties rob score CB Pr(AC) 

Hydrophobicity (Miyazawa, p132)            0.2942 -11.5415 7.4512E-03 0.1347 

Hydrophobicity (Kyte, p125)                0.3509 -11.5015 7.5028E-03 0.1871 

Transmembrane alpha-helix (p28)          0.3952 -11.3401 7.7162E-03 0.1927 

hydrophobicity(Cowan,p117)              0.3397 -11.1858 7.9289E-03 0.1363 

Transmembrane alpha-helix (p35)          0.3507 -11.1856 7.9291E-03 0.1444 

Hydrophobicity(Parker, p135)              0.3392 -11.0920 8.0625E-03 0.1185 

Long-range contacts (p164)         0.3170 -11.0837 8.0745E-03 0.1153 

Solvent accesible surface (p44)          0.3286 -10.9339 8.2953E-03 0.1355 

Polar requirement (p149)                0.2998 -10.9131 8.3267E-03 0.1427 

Transmembrane helix turn (Wilson, p219)           0.3960 -10.9060 8.3374E-03 0.1387 
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Table II.5 Biased-weighted mean phenotypic change (rob) under the codon-based 
models, with stop codons=mean suppressor. The first 10 aa properties (from a total of 
235) in increasing order of Cantelli’s bounds (CB) for the standard code. Pr(AC): 
Proportion of artificial genetic codes with Cantelli’s bound  values lower than that of the 
standard code. These codes were generated by all possible reassignments of one codon 
in the synonymous codon sets with more than 1 codon. The numbers after p in 
parentheses (first column) indicate the position in the list of amino acid properties 
(Appendix, table IX.1). 

Amino acid properties rob score CB Pr(AC) 

Hydrophobicity (Miyazawa, p132)                 0.2820 -11.7264 7.2198E-03 0.1387 

Hydrophobicity (Kyte, p125)                     0.3358 -11.7027 7.2488E-03 0.1815 

Transmembrane alpha-helix (p28)               0.3811 -11.5252 7.4722E-03 0.2121 

Long-range contacts (p164)              0.2981 -11.4091 7.6239E-03 0.1089 

Transmembrane alpha-helix (p35)               0.3388 -11.3485 7.7048E-03 0.1508 

hydrophobicity(Cowan,p117)                   0.3291 -11.3367 7.7207E-03 0.1427 

Solvent accesible surface (p44)               0.3089 -11.2582 7.8280E-03 0.1355 

Hydrophobicity (Parker, p135)                   0.3357 -11.1424 7.9903E-03 0.1371 

Polar requirement (p149)                     0.2880 -11.1216 8.0199E-03 0.1460 

Transmembrane helix turn (Wilson, p219)                0.3868 -11.0195 8.1680E-03 0.1500 

Table II.6 The first 10 aa properties (from a Total of 235) in increasing order of Cantelli’s 
bounds (CB) for the standard code. It was used the Unbiased -weighted mean 
phenotypic changes. Codon-based representation, codon stop=scale mean. Pr(AC): 
Proportion of artificial genetic codes with Cantelli’s bound  values Lower than those of 
the standard code. These codes were generated by all possible reassignments of one 
codon in the synonymous codon sets with more than 1 codon. The numbers after p in 
parentheses (first column) indicate the position in the list of amino acid properties 
(Appendix, Table IX.1).  
Amino acid properties rob score CB Pr(AC) 

Hydrophobicity (Miyazawa, p132)               0.8919 -9.0042 1.2184E-02 0.1952 

Hydrophobicity (Kyte, p125)                   1.0809 -8.7702 1.2834E-02 0.1500 

Hydrophobicity (Cornette,p115)               1.0094 -8.6967 1.3049E-02 0.1984 

Transmembrane Alpha-Helix(p28)             1.1856 -8.6462 1.3200E-02 0.2016 

Hydrophobicity (Parker, p135)                 0.9668 -8.5717 1.3428E-02 0.1863 

Hydrophobicity (Wilson, p147)                   1.0773 -8.5286 1.3562E-02 0.1992 

Transmembrane Alpha-Helix (p35)             1.0312 -8.5219 1.3583E-02 0.1653 

Long-range contacts (p164)            0.9310 -8.2054 1.4635E-02 0.1468 

Transmembrane Helix turn (Wilson, p219)         1.1428 -8.1344 1.4888E-02 0.1734 

Solvent accesible Surface (p44)             0.9586 -8.0303 1.5270E-02 0.1653 
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Table II.7 The first 10 aa properties (from a Total of 235) in increasing order of 
Cantelli’s bounds (CB) for the standard code. It was used the Biased-
weighted mean phenotypic change and codon-based representation, stop 
codon=mean suppressor. Pr(AC): Proportion of artificial genetic codes with 
Cantelli’s bound  values Lower than those of the standard code. These codes 
were generated by all possible reassignments of one codon in the synonymous 
codon sets with more than 1 codon. The numbers after p in parentheses (first 
column) indicate the position in the list of amino acid properties (Appendix, 
Table IX.1). 

Amino acid properties rob score CB Pr(AC) 

Hydrophobicity (Miyazawa, p132)                 0.8658 -9.3064 1.1414E-02 0.2153 

Hydrophobicity (Kyte, p125)                     1.0544 -9.0531 1.2054E-02 0.1565 

Hydrophobicity (Cornette,p115)                 0.9815 -8.9945 1.2210E-02 0.2016 

Transmembrane Alpha-Helix (p28)               1.1583 -8.9336 1.2375E-02 0.2145 

Hydrophobicity (Parker, p135)                   0.9473 -8.7788 1.2810E-02 0.2202 

Transmembrane Alpha-Helix(p35)               1.0070 -8.7730 1.2826E-02 0.1806 

Hydrophobicity (Wilson, p147)                     1.0582 -8.7529 1.2884E-02 0.2444 

Long-range contacts (p164)              0.9013 -8.6374 1.3227E-02 0.1548 

Solvent accesible Surface (p44)               0.9258 -8.4711 1.3744E-02 0.1653 

Small linker propensity (p174)          0.8234 -8.4511 1.3808E-02 0.1750 

 

 

 

 

 

Figure II.2 Distributions of the unbiased-weighted mean change for the amino acid properties, Hydrophobicity/polarity scales: 

Left: Guy, middle: Polar Requirement, right: Meek PH 7.4, random sample of 107 codes. Dot-dashed line: Standard genetic 

code. 
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Figure II.3 Amino acid property sorted in increasing order of average ranks. The average ranks were 
calculated from lists of amino acid properties sorted in increasing order of Cantelli’s upper bounds for the 
23 genetic codes. The block-based (left bar) and codon-based (right bar) models were used with biased-
weighted mean change in each of the 235 amino acid properties.  
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Appendix III. Robustness of the Natural genetic codes 

 

 

 

 

 

 

 

 

Table III.1 Biased-weighted mean phenotypic change (rob) under the codon-based model with 

codon stop=mean suppressor. Scores for 23 genetic codes sorted in increasing order of their Cantelli’s 

bounds (CB). The phenotype is expressed in terms of hydrophobicity (Miyazawa’s contact energies), CB: 

Cantelli’s bound, Pr(AC): Proportion of artificial genetic codes with Cantelli’s bound  values lower than 

those of the standard code, These codes were generated by all possible reassignments of one codon in 

the synonymous codon sets with more than 1 codon, The numbers in parentheses (In the footnotes and 

in first column of the table) indicate the NCBI translation table. 

Genetic codes rob score CB Pr(AC) 

The standard genetic Code (1)* 0.28203 -11.72635 0.007220 0.13871 

Traustochytrium mitochondrial Code (23) 0.28187 -11.69421 0.007259 0.13952 

The Invertebrate Mitochondrial Code (5) 0.29371 -11.64130 0.007325 0.12344 

 The Mold, Protozoan, and Coelenterate Mitochondrial Code (4)** 0.29217 -11.64034 0.007326 0.12698 

The ascidian Mitochondrial Code (14) 0.29214 -11.63001 0.007339 0.12969 

Trematode Mitochondrial Code (21) 0.29052 -11.62715 0.007343 0.12937 

The Echinoderm and Flatworm Mitochondrial Code (9) 0.28957 -11.62656 0.007343 0.13226 

The Euplotid Nuclear Code (10) 0.29576 -11.60929 0.007365 0.12742 

The Vertebrate Mitochondrial Code (2) 0.29146 -11.60551 0.007370 0.14375 

 The Ciliate, Dasycladacean and Hexamita Nuclear Code (6) 0.29714 -11.59581 0.007382 0.16475 

 Pterobranchia Mitochondrial Code (24) 0.30263 -11.58188 0.007400 0.14683 

 Mesodinium Nuclear Code (29) 0.29290 -11.56558 0.007420 0.15328 

Peritrich Nuclear Code (30) 0.30127 -11.56368 0.007423 0.17049 

The Alternative Flatworm Mitochondrial Code (14) 0.29409 -11.56191 0.007425 0.13607 

Cephalodiscidae Mitochondrial UAA-Tyr Code (33) 0.30797 -11.50799 0.007494 0.15806 

 Karyorelict Nuclear Code(27)*** 0.30937 -11.49534 0.007511 0.15397 

Candidate Division SR1 and Gracilibacteria Code (25) 0.29979 -11.49077 0.007517 0.15565 

Blastocrithidia Nuclear Code (31) 0.31385 -11.46045 0.007556 0.16032 

Pachysolen tannophilus Nuclear Code (26) 0.30987 -11.17548 0.007943 0.12742 

Chlorophycean Mitochondrial Code(16) 0.33478 -11.11967 0.008023 0.15806 

Scenedesmus obliquus Mitochondrial Code (22) 0.33302 -11.11534 0.008029 0.16210 

The alternative yeast nuclear Code (12) 0.34563 -10.68904 0.008676 0.13790 

 The Yeast Mitochondrial Code (3) 0.35169 -10.10900 0.009691 0.13594 

* The Bacterial, archaeal and plant plastid Code (11) has the same parameter values as the standard code, 

** Full name: The Mold, Protozoan, and Coelenterate Mitochondrial Code and the Mycoplasma/Spiroplasma Code (4) 
***The Condylostoma nuclear Code (28) has the same parameter values as the Karyorelict nuclear code, 
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Table III.2 Unbiased-weighted mean change (rob) and Scores for 25 genetic codes sorted in increasing order 
of their Cantelli’s bounds (CB). The codon-based representations for the genetic codes, stop codon=mean 
suppressor. The phenotype is expressed in terms of Hydrophobicity (Miyazawa’s contact energies Pr(AC): 
Proportion of artificial genetic codes with Cantelli’s bound  values Lower than those of the standard code. These 
codes were generated by all possible reassignments of one codon in the synonymous codon sets with more 
than 1 codon. The numbers in parentheses (In the footnotes and first column of the table) indicate the NCBI 
translation table. 

Genetic codes rob score CB Pr(AC) 

Traustochytrium mitochondrial Code (23) 0.85300 -9.36144 0.011282 0.21210 

The Vertebrate Mitochondrial Code (2) 0.86813 -9.32004 0.011381 0.21250 

The standard genetic Code (1)* 0.86580 -9.30636 0.011414 0.21532 

The ascidian Mitochondrial Code (14) 0.88825 -9.18577 0.011713 0.21875 

The Mold, Protozoan, and Coelenterate Mitochondrial Code (4)** 0.89093 -9.18378 0.011718 0.21429 

The Invertebrate Mitochondrial Code (5) 0.89649 -9.17636 0.011736 0.21875 

The Echinoderm and Flatworm Mitochondrial Code (9) 0.88100 -9.17451 0.011741 0.21210 

Trematode Mitochondrial Code (21) 0.88417 -9.17219 0.011747 0.21190 

The Euplotid Nuclear Code (10) 0.89760 -9.15891 0.011781 0.21855 

Pterobranchia Mitochondrial Code (24) 0.91742 -9.10677 0.011914 0.22063 

The Ciliate, Dasycladacean and Hexamita Nuclear Code (6) 0.90343 -9.09904 0.011934 0.23115 

The Alternative Flatworm Mitochondrial Code (14) 0.89021 -9.07784 0.011989 0.22295 

Candidate Division SR1 and Gracilibacteria Code (25) 0.89093 -9.07509 0.011997 0.23871 

Peritrich Nuclear Code (30) 0.91135 -9.07474 0.011997 0.23934 

Mesodinium Nuclear Code (29) 0.88797 -9.06236 0.012030 0.23689 

Cephalodiscidae Mitochondrial UAA-Tyr Code (33) 0.92801 -8.99894 0.012198 0.22903 

Pachysolen tannophilus Nuclear Code (26) 0.86726 -8.95448 0.012318 0.22984 

Karyorelict Nuclear Code (27)*** 0.93378 -8.95350 0.012321 0.23810 

Blastocrithidia Nuclear Code (31) 0.94249 -8.92413 0.012401 0.24603 

Scenedesmus obliquus Mitochondrial Code (22) 0.93503 -8.82857 0.012667 0.24194 

Chlorophycean Mitochondrial Code (16) 0.94537 -8.78141 0.012802 0.24919 

The alternative yeast nuclear Code (12) 0.90696 -8.60083 0.013338 0.23629 

The Yeast Mitochondrial Code (3) 0.86712 -8.10033 0.015012 0.23594 
* The Bacterial, archaeal and plant plastid Code (11) has the same parameter values as the standard code. 

** Full name: The Mold, Protozoan, and Coelenterate Mitochondrial Code and the Mycoplasma/Spiroplasma Code (4) 
***The Condylostoma nuclear Code (28) has the same parameter values as the Karyorelict nuclear code. 

Table III.3 Biased-weighted mean phenotypic change (rob) under the partial codon-based models for the 

standard code. Stop codons: Mean suppressor. The 10 amino acid properties correspond to those of table. 

p1: first codon position. p2: second codon position. p3: third codon position. rob: standard code robustness. Cb: 

Cantelli’s upper bound. The numbers after p in parentheses (first column) indicate the position in the list of amino 

acid properties (Appendix, table IX.1). 

  
Amino acid properties 

p1 p2 p3 

rob score cb rob score cb rob score cb 

Hydrophobicity (Miyazawa, p132)                 0.3108 -6.9674 0.0202 0.4843 1.4680 0.3170 0.0510 -9.8135 0.0103 

Hydrophobicity (Kyte, p125)                     0.4303 -6.5378 0.0229 0.4294 -0.8661 0.5714 0.1477 -9.3821 0.0112 

Transmembrane alpha-helix (p28)               0.4486 -6.6576 0.0221 0.5399 0.2433 0.9441 0.1548 -9.4166 0.0112 

Long-range contacts (p164)              0.3828 -6.3023 0.0246 0.3676 -0.5141 0.7910 0.1438 -9.2975 0.0114 

Transmembrane alpha-helix (p35)               0.4816 -5.9250 0.0277 0.4124 -0.6192 0.7228 0.1222 -9.4593 0.0111 

Hydrophobicity (Cowan,117)                   0.5131 -5.5656 0.0313 0.4010 -0.5805 0.7479 0.0733 -9.7114 0.0105 

Solvent accesible Surface (44)               0.4591 -5.6809 0.0301 0.3440 -1.0748 0.4640 0.1235 -9.3841 0.0112 

Hydrophobicity (Parker, 135)                   0.3679 -6.6128 0.0224 0.4766 1.0436 0.4787 0.1627 -9.2237 0.0116 

Polar requirement (149)                     0.5087 -4.7334 0.0427 0.2825 -1.5205 0.3020 0.0729 -9.7542 0.0104 

Transmembrane helix turn (Wilson, 219)  0.6383 -5.0493 0.0377 0.4221 -0.9087 0.5477 0.1000 -9.5909 0.0108 



131 
 

 

 

Table III.4 Unbiased- weighted mean change (rob) and Scores for 25 genetic codes sorted in increasing order of their 
Cantelli’s bounds (CB). The codon-based representation of the genetic codes stop codon=scale mean. The phenotype 
is expressed in terms of Hydrophobicity (Miyazawa’s contact energies). Pr(AC): Proportion of artificial genetic codes with 
Cantelli’s bound  values Lower than those of the standard code. These codes were generated by all possible reassignments 
of one codon in the synonymous codon sets with more than 1 codon. The numbers in parentheses (In the footnotes and first 
column of the table) indicate the NCBI translation table.  
Genetic codes rob score CB Pr(AC) 

The Ciliate, Dasycladacean and Hexamita Nuclear Code (6) 0.9108595 -9.018596 0.01214549 0.192623 

The standard genetic Code (1)* 0.8919356 -9.004190 0.01218391 0.195161 

Peritrich Nuclear Code (30) 0.9188763 -8.994349 0.01221026 0.203279 

The Echinoderm and Flatworm Mitochondrial Code (9) 0.8979796 -8.991426 0.01221811 0.179839 

The ascidian Mitochondrial Code (14) 0.9064351 -8.989967 0.01222202 0.185938 

Trematode Mitochondrial Code (21) 0.9011511 -8.989617 0.01222296 0.180952 

The Mold, Protozoan, and Coelenterate Mitochondrial Code (4)** 0.9091272 -8.989099 0.01222436 0.187302 

The Alternative Flatworm Mitochondrial Code (14) 0.8990188 -8.983252 0.01224008 0.182787 

The Invertebrate Mitochondrial Code (5) 0.9146736 -8.982887 0.01224106 0.187500 

Mesodinium Nuclear Code (29) 0.8950918 -8.977502 0.01225557 0.206557 

The Euplotid Nuclear Code (10) 0.9158360 -8.965212 0.01228878 0.188710 

Karyorelict Nuclear Code (27)*** 0.9337789 -8.953503 0.01232055 0.203968 

Blastocrithidia Nuclear Code (31) 0.9424901 -8.924134 0.01240077 0.213492 

Pterobranchia Mitochondrial Code (24) 0.9355838 -8.917568 0.01241881 0.191270 

Cephalodiscidae Mitochondrial UAA-Tyr Code (33) 0.9368719 -8.907624 0.01244621 0.193548 

The Vertebrate Mitochondrial Code (2) 0.9055493 -8.897803 0.01247335 0.204688 

Candidate Division SR1 and Gracilibacteria Code (25) 0.9090002 -8.868576 0.01255467 0.218548 

Pachysolen tannophilus Nuclear Code (26) 0.8933405 -8.642784 0.01321044 0.210484 

Chlorophycean Mitochondrial Code (16) 0.9611024 -8.609776 0.01331057 0.215323 

Scenedesmus obliquus Mitochondrial Code (22) 0.9564830 -8.565025 0.01344815 0.215323 

Traustochytrium mitochondrial Code (23) 0.9062763 -8.499936 0.01365208 0.208871 

The alternative yeast nuclear Code (12) 0.9329488 -8.292858 0.01433250 0.214516 

The Yeast Mitochondrial Code (3) 0.8850806 -7.894931 0.01579032 0.212500 
* The Bacterial, archaeal and plant plastid Code (11) has the same parameter values as the standard code. 

** Full name: The Mold, Protozoan, and Coelenterate Mitochondrial Code and the Mycoplasma/Spiroplasma Code (4) 
***The Condylostoma nuclear Code (28) has the same parameter values as the Karyorelict nuclear code. 

Table III.5 Biased-weighted mean phenotypic change (rob) under the partial codon-based models for the 

standard code. Stop codons: Scale Mean. The 10 amino acid properties correspond to those of table. p1: first 

codon position. p2: second codon position. p3: third codon position. rob: standard code robustness. cb: Cantelli’s 

upper bound. The numbers after p in parentheses (first column) indicate the position in the list of amino acid 

properties (Appendix, table IX.1). 

  
Amino acid properties 

p1  p2 p3  

rob score cb rob score cb rob score cb 

Hydrophobicity (Miyazawa, p132)            0.3383 -6.7348 0.0216 0.4867 1.5386 0.2970 0.0575 -9.7743 0.0104 

Hydrophobicity (Kyte, p125)                0.4694 -6.2536 0.0249 0.4312 -0.8033 0.6078 0.1522 -9.3571 0.0113 

Transmembrane alpha-helix (p28)          0.4752 -6.4689 0.0233 0.5435 0.3485 0.8917 0.1669 -9.3565 0.0113 

Hydrophobicity (Cowan,p117)              0.5492 -5.2796 0.0346 0.4019 -0.5464 0.7701 0.0680 -9.7404 0.0104 

Transmembrane alpha-helix (p35)          0.5240 -5.6039 0.0309 0.4133 -0.5908 0.7413 0.1149 -9.4967 0.0110 

Hydrophobicity (Parker, p135)              0.3828 -6.4931 0.0232 0.4801 1.1155 0.4456 0.1546 -9.2688 0.0115 

Long-range contacts (p164)         0.4430 -5.7532 0.0293 0.3667 -0.4531 0.8297 0.1414 -9.3081 0.0114 

Solvent accesible surface (p44)          0.5149 -5.1806 0.0359 0.3438 -1.0222 0.4890 0.1272 -9.3590 0.0113 

Polar requirement (p149)                0.5325 -4.4931 0.0472 0.2848 -1.4540 0.3211 0.0821 -9.6903 0.0105 

Transmembrane helix turn (Wilson, p219) 0.6634 -4.8727 0.0404 0.4249 -0.8594 0.5752 0.0996 -9.5927 0.0108 
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Table III.6 Neighborhood structure of the standard 
code. The third column shows the values of the 
weighted mean phenotypic change associated to 
nucleotide substitutions for each codon and the 
Miyazawa’s contact energies; the boxes with only 
one color correspond to Sets of synonymous 
codons with the same amino acid neighborhood. 
The amino acids with (*) in the first column are 
coded by subsets of codons with different amino 
acid neighborhoods. The fourth column shows the 
weighted mean phenotypic change for each set of 
synonymous codons. The amino acids shown in 
the fifth column are encoded by the codons that 
differ by one nucleotide substitution in a given 
codon position (p1, p2, p3) with respect to the 
corresponding codons shown in the second 
column. The weighting scheme is based on the 
type and position of the nucleotide substitution. 

 

 

 

 

 

 

 

 

 

 

 

aa codon Fmcodon Fmccs      aa Neighborhood(p1-p2-p3) 

F TTT 0.3899 0.3899  leu Ile val ser tyr cys Leu Leu 

  TTC 0.3899    leu Ile val ser tyr cys Leu Leu 

L* TTA 0.3497 0.3606  ile val ser stop stop phe phe 

 TTG 0.3093   met val ser stop trp phe phe 

 CTT 0.3653   phe ile val pro his arg  

 CTC 0.3653    phe ile val pro his arg 

 CTA 0.3823    Ile val pro gln arg 

  CTG 0.3836    met val pro gln arg 

S* AGT 0.2526 0.3240 cys arg gly  ile thr asn arg 

 AGC 0.2526   cys arg gly  ile thr asn arg 

 TCT 0.3809   pro thr ala phe tyr cys  

 TCC 0.3809   pro thr ala phe tyr cys  

 TCA 0.3448   pro thr ala stop stop leu 

  TCG 0.3384   pro thr ala stop trp leu  

Y TAT 0.2970 0.2970 his asn asp phe ser cys stop stop 

  TAC 0.2970   his asn asp phe ser cys stop stop 

Stop* TAA    gln lys glu Leu Ser Tyr 

  TAG    gln lys glu leu ser trp tyr 

C TGT 0.8955 0.8955 arg ser gly phe ser tyr stop trp  

  TGC 0.8955   arg ser gly phe ser tyr stop trp  

Stop* TGA    arg arg gly leu ser trp cys 

W TGG 0.8122 0.8122  arg arg gly leu ser stop cys stop 

P* CCT 0.3080 0.3061 ser thr ala leu hist arg  

 CCC 0.3080   ser thr ala leu hist arg  

 CCA 0.3041   ser thr ala leu gln arg  

 CCG 0.3041   ser thr ala leu gln arg  

H CAT 0.1909 0.1909 tyr asn asp leu pro arg gln 

 CAC 0.1909   tyr asn asp leu pro arg gln 

Q CAA 0.1621 0.1621  lys glu stop leu pro arg his 

  CAG 0.1621    lys glu stop leu pro arg his 

R* CGT 0.4189 0.2699 cys ser gly Leu Pro his  

 CGC 0.4189   cys ser gly Leu Pro his  

 CGA 0.0559   stop glys Leu pro gln  

 CGG 0.3593   trp gly leu pro gln 

 AGA 0.0873   gly stop ile thr lys ser  

  AGG 0.2353   trp gly met thr lys ser  

I* ATT 0.4046 0.4114  leu val phe thr asn ser met 

 ATC 0.4046    leu val phe thr asn ser met 

  ATA 0.4250   leu leu val thr asn ser met  

M ATG 0.4560 0.4560 Ile val leu leu thr lys arg il 

T* ACT 0.2677 0.2733  ala pro ser ile asn ser 

 ACC 0.2677    ala pro ser ile asn ser 

 ACA 0.2721   ala pro ser ile arg lys  

  ACG 0.2856   ala pro ser met arg lys  

N AAT 0.1858 0.1858 asp his tyr ile thr ser Lys 

  AAC 0.1858   asp his tyr ile thr ser Lys 

K* AAA 0.1875 0.1896  gln glu stop ile thr arg asn 

  AAG 0.1916    gln glu stop met thr arg  asn 

V* GTT 0.2056 0.1989 ile leu phe ala asp gly   

 GTC 0.2056   ile leu phe ala asp gly 

 GTA 0.1883   ile leu leu ala glu gly  

  GTG 0.1961   met leu leu ala glu gly 

A* GCT 0.1422 0.1419 val asp gly thr pro ser  

 GCC 0.1422   val asp gly thr pro ser  

 GCA 0.1416   val glu gly thr pro ser  

  GCG 0.1416   val glu gly thr pro ser  

D GAT 0.1569 0.1569 asn his tyr val ala gly glu 

  GAC 0.1569   asn his tyr val ala gly glu 

E GAA 0.0786 0.1896 lys gln stop val ala gly asp 

  GAG 0.0786   lys gln stop val ala gly asp 

G* GGT 0.1945 0.1536 ser arg cys val ala asp  

 GGC 0.1945   ser arg cys val ala asp  

 GGA 0.0444   arg arg stop val ala glu  

 GGG 0.1687    arg arg trp val ala glu 
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Appendix IV. Robustness of archaeal and bacterial genomes 
 

 

 

 

 

  

  

  

Figure IV.1 The 84 amino acid property scales sorted in order of increasing values of the median 
Optimization percentages for thermophilic (N=324) genomes. Each color corresponds to a given type of 
amino acid property. Each figure corresponds to the Minimization percentage medians computed under 
one of the standard code representations. Top left: The standard code models based on the whole set of 
codons with unbiased weighting and scale mean values assigned to stop codons. Top right: The standard 
code models based on the whole set of codons with biased weighting and scale mean values assigned to 
stop codons. Middle left: The standard code models based on sense codons and unbiased weighting, 
Middle right: The standard code models based on sense codons and biased weighting, Bottom left: The 
standard code models based on the whole set of codons with unbiased weighting and the values assigned 
to stop codons according to the “mean suppressor” method. Bottom right:  The standard code models based 
on the whole set of codons with biased weighting and the values assigned to stop codons according to the 
“mean suppressor” method. 
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Figure IV.2 The 84 amino acid property scales sorted in order of increasing values of the median Optimization 
percentages for non-thermophilic (N=418) genomes. Each color corresponds to a given type of amino acid 
property.  Each figure corresponds to the Minimization percentage medians computed under one of the 
standard code representations. Top left: The standard code models based on the whole set of codons with 
unbiased weighting and scale mean values assigned to stop codons. Top right: The standard code models 
based on the whole set of codons with biased weighting and scale mean values assigned to stop codons. 
Middle left: The standard code models based on sense codons and unbiased weighting, Middle right: The 
standard code models based on sense codons and biased weighting,  Bottom left:  The standard code models 
based on the whole set of codons with unbiased weighting and the values assigned to stop codons according 
to the “mean suppressor” method. Bottom right:  The standard code models based on the whole set of codons 
with biased weighting and the values assigned to stop codons according to the “mean suppressor” method. 
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Table IV.1 The Spearman’s rank correlation coefficients between median Optimization percentages and 
median scores computed under the whole (W) and partial (P) standard code models Thermophiles and 
Non-thermophiles. MS: Standard code representation based on sense codons and unbiased weighting, 
MSW: Standard code representation based on sense codons and biased weighting. M0W: The codon-
based model of the standard code with biased weighting and scale mean values assigned to stop codons. 
M0: The codon-based model of the standard code with unbiased weighting and scale mean values 
assigned to stop codons. MMW: The codon-based model of the standard code with biased weighting and 
the values assigned to stop codons according to the “mean suppressor” method. MM: The codon-based 
model of the standard code with unbiased weighting and the values assigned to stop codons according to 
the “mean suppressor” method. Non-thermophiles: Non-thermophilic prokaryotes (N=418), Thermophiles: 
thermophilic prokaryotes (N=324).  
 Name 
  

Thermic status 
  

W Models 
  

P Models 

P1 P2 P3 Trans Tranv 

MS 
  

Thermophiles  -0.9607  -0.9795  -0.8893  -0.8421  -0.9621 -0.7781 

Non-thermophiles  -0.9586  -0.9799  -0.8824  -0.8127  -0.9474 -0.7795 

MSW 
  

Thermophiles  -0.9472  -0.9099  -0.9795   
  

 -0.9575 -0.9360 

Non-thermophiles  -0.9442  -0.9298  -0.9829  -0.9197 -0.9410 

M0 
  

Thermophiles  -0.9405  -0.9706  -0.8528 -0.8496  -0.9776 -0.8966 

Non-thermophiles  -0.9273  -0.8994  -0.8672 -0.8187  -0.9592 -0.8943 

M0W 
  

Thermophiles  -0.9364  -0.9646  -0.9297   
  

 -0.9713 -0.9339 

Non-thermophiles  -0.9231  -0.9549  -0.9308  -0.9345 -0.9240 

MM 
  

Thermophiles  -0.9335  -0.9737  -0.8399  -0.8445  -0.9752 -0.8839 

Non-thermophiles  -0.9174  -0.9622  -0.8515  -0.8018  -0.9576 -0.8839 

MMW 
  

Thermophiles  -0.9247  -0.9561  -0.9788   
  

 -0.9640 -0.9268 

Non-thermophiles  -0.9299  -0.9444  -0.9788  -0.9322 -0.9276 

 

Figure IV.3 Medians of scores versus medians of optimization percentages for 235 aa properties and 742 genomes, Green: Non-

thermophiles, Black: thermophiles. Weighting with synonymous codon usage. A: Unbiased-weighted mean phenotypic change, 

model based on sense codons. B: Biased-weighted mean phenotypic change, model based on sense codons, C: Unbiased-

weighted Mean phenotypic change, codon-based model with codon Stop=Mean Suppressor, D: Biased-Weighted mean 

phenotypic change, codon-based model with Codon Stop= Mean suppressor.  
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P1 P2 P3 Ts Tv 

Figure IV.4 The 84 amino acid property scales sorted in order of decreasing values (from top to 

bottom) of the median Optimization percentages (OP) for thermophilic (T) and non-thermophilic (N) 

genomes. Each color corresponds to a given type of amino acid property. The amino acid properties 

for which OP are equal to zero are represented by the color white (see the legend of the figure). 

Each of the 5 sets corresponds to the median Minimization percentages computed under one of the 

5 types of partial standard code models: P1, first codon position; P2: second codon position; P3: 

third codon position, Ts: transitions and Tv, transversions. Each of the 12 columns for each set 

corresponds to one of the following models, from left to right:  Column 1: The codon-based models of the standard code with biased weighting 

and the values assigned to stop codons according to the “mean suppressor” method (MMW) in thermophiles. Column 2: The MMW models 

in non-thermophiles. Column 3: The codon-based models of the standard code with unbiased weighting and the values assigned to stop 

codons according to the “mean suppressor” method (MM). Column 4:  The MM models in non-thermophiles. Column 5: The standard code 

models based on sense codons and biased weighting (MSW) in thermophiles. Column 6: The MSW models in non-thermophiles. Column 7: 

The standard code models based on sense codons and unbiased weighting (MS) in thermophiles. Column 8: The MS models in non-

thermophiles. Column 9: The codon-based models of the standard code with biased weighting and scale mean values assigned to stop 

codons (M0W) in thermophiles. Column 10: The M0W models in non-thermophiles. Column 11: The codon-based models of the standard 

code with unbiased weighting and scale mean values assigned to stop codons (M0) in thermophiles. Column 12: The M0 models in non-

thermophiles.  Non-thermophiles: Non-thermophilic prokaryotes (N=418), Thermophiles: thermophilic prokaryotes (N=324). 
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Appendix V. Comparison between thermophilic and non-thermophilic prokaryotes 
 

 

 

 

 

 

  

Table V.1 The amino acid properties with significant coefficients (coeff) in order of increasing p values (4th and 5th 
columns) from the Three-level logistic mixed models that best discriminate between thermophiles and non-
thermophiles. The coefficients (coeff) represent the fixed effects for the scores corresponding to the unbiased-
weighted mean phenotypic change. It was used the whole representation based on sense codons of the standard 
code. Weighting with synonymous codon usage.  The first and third quartiles are shown in parentheses, se: standard 
error, AIC: Akaike Information criterion. Non-thermophiles: Non-thermophilic prokaryotes (N=418), Thermophiles: 
thermophilic prokaryotes (N=324). (The numbers after p in parentheses (first column) indicate the position in the list of 
amino acid indices (Appendix, Table IX.1).  

  

Amino acid properties Thermophiles  Non-thermophiles coeff se pvalue AIC 

Long-range contacts (p163) -0.2402( -0.2888 , -0.1950)  -0.1343( -0.1814 , -0.0959)   -255.32 10.78 2.20E-16 257.26 

Long-range contacts (p161)  -0.3835( -0.4420 , -0.3277)  -0.2643( -0.3123 , -0.2344)  -186.40 40.81 2.20E-16 267.58 

Long-range contacts (p160) -0.5963( -0.6665 , -0.5414)  -0.4723( -0.5260 , -0.4326)  -84.26 20.64 4.74E-12 296.67 

Long-range contacts (p164) -1.1371( -1.2489 , -1.0055)  -1.0125( -1.1121 , -0.9047)  -33.11 11.53 5.51E-08 314.93 

Thermodynamic stability(p177) -0.2588( -0.2972 , -0.2135)  -0.2365( -0.2655 , -0.1849)  -137.66 40.76 1.99E-07 317.42 

Conformational entropy (p101) -0.3389( -0.3893 , -0.2980)  -0.2900( -0.3195 , -0.2510)  -62.83 23.14 2.45E-06 322.25 

Solvent accesible surface (p48) -2.3950( -2.6392 , -2.1655)  -2.2737( -2.4692 , -1.9859)  -8.32 2.95 9.20E-05 329.16 

Hydrophobicity(Kyte, p125) -3.7660( -4.0952 , -3.4296)  -3.6491( -3.9175 , -3.2072)  -5.39 1.90 2.24E-04 330.84 

Polar requirement (p149)  -1.1778( -1.3139 , -1.0519)  -1.1224( -1.2279 , -0.9637)  -13.76 4.90 2.93E-04 331.34 

Flexibility (2FN, MS, p209)  -1.9569( -2.1728 , -1.7647)  -1.8829( -2.0510 , -1.6615)  -9.36 3.46 3.17E-04 331.49 

2FN: Two flexible neighbors       

Table V.2 The amino acid properties with significant coefficients (coeff) in order of increasing p values (4th and 5th columns) 
from the Three-level logistic mixed models that best discriminate between thermophiles and non-thermophiles. The 
coefficients (coeff) represent the fixed effects for the scores corresponding to the unbiased weighted mean phenotypic 
change. The whole codon-based representation of the standard code with stop codon=scale mean. Weighting with 
synonymous codon usage. The first and third quartiles are shown in parentheses, se: standard error, AIC: Akaike 
Information criterion. Non-thermophiles: Non-thermophilic prokaryotes (N=418), Thermophiles: thermophilic prokaryotes 
(N=324).  (The numbers after p in parentheses (first column) indicate the position in the list of amino acid indices (Appendix, 
Table IX.1). 

Amino acid properties Thermophiles Non-thermophiles coeff se pvalue AIC 

Conformational entropy (p99) 0.0242( 0.0022 , 0.0486)  0.0693( 0.0484 , 0.0933)  -107.49 34.975 1.41E-06 321.19 

Flexibility (2RN, MS, p211)  -2.5810( -2.8057 , -2.3109)  -2.4174( -2.6286 , -2.1643)  -11.76 4.57E+00 1.59E-06 321.42 

Polarity (p151) -3.2215( -3.4855 , -2.9387)  -2.8958( -3.1471 , -2.6356)  -8.88 3.34E+00 3.13E-06 322.72 

flexibility (p186) -1.3595( -1.4998 , -1.1909)  -1.3328( -1.4625 , -1.1838)  -17.76 6.53E+00 6.11E-06 324.00 

Thermodynamic stability (p177) -1.2845( -1.4398 , -1.1619)  -1.1851( -1.3153 , -1.0644)  -18.12 6.91E+00 6.94E-06 324.25 

Flexibility (RFN, ML, p185) -1.6215( -1.7875 , -1.4422)  -1.5765( -1.7300 , -1.4110)  -14.68 5.46E+00 1.04E-05 325.02 

Hydrophobicity (Wilson, p147) -0.6908( -0.7747 , -0.6096)  -0.6737( -0.7484 , -0.5927)  -31.72 1.21E+01 1.23E-05 325.35 

Flexibility (2FN, ML, p184) -1.0762( -1.1997 , -0.9446)  -1.0681( -1.1793 , -0.9571)  -20.32 7.24E+00 1.46E-05 325.67 

Flexibility (2RN, ML, p183)  -1.6740( -1.8489 , -1.4867)  -1.6218( -1.7815 , -1.4336)  -13.26 5.00E+00 1.65E-05 325.90 

Long-range contacts (p164) -2.8056( -3.0894 , -2.5109)  -2.6905( -2.9449 , -2.3879)  -7.84 3.02E+00 2.99E-05 327.03 

RFN : Rigid and Flexible neighbors, 2RN: Two rigid neighbors, 2FN: Two flexible neighbors, 2RN: Two rigid neighbors 
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Table V.3 The amino acid properties with significant coefficients (coeff) in order of increasing p values (4th and 5th columns) 
from the Three-level logistic mixed models that best discriminate between thermophiles and non-thermophiles. The 
coefficients (coeff) represent the fixed effects for the scores corresponding to the biased-weighted mean phenotypic 
change. The whole representation based on sense codons of the standard code. Double-weighting with synonymous 
codon usage and base change position/type. The first and third quartiles are shown in parentheses, se: standard error, AIC: 
Akaike Information criterion. Non-thermophiles: Non-thermophilic prokaryotes (N=418). Thermophiles: thermophilic 
prokaryotes (N=324). (The numbers after p in parentheses (first column) indicate the position in the list of amino acid indices 
(Appendix, Table IX.1). 

Amino acid properties Thermophiles  Non-thermophiles coeff se pvalue aic 

Long-range contacts (p162)  -1.2300( -1.3808 , -1.0963)  -0.9895( -1.1125 , -0.8781)  -25.50 8.85 8.16E-08 315.7 

Long-range contacts (p161) -2.0717( -2.3010 , -1.8509)  -1.7714( -1.9566 , -1.5589)  -12.90 4.96 1.46E-06 321.3 

Long-range contacts (p163) -2.1552( -2.3889 , -1.9299)  -1.8456( -2.0289 , -1.6252)  -12.10 4.74 2.81E-06 322.5 

Long-range contacts (p160) -2.8946( -3.2306 , -2.6047)  -2.6063( -2.8400 , -2.2680)  -6.94 2.53 3.37E-05 327.3 

Long-range contacts (p164)  -3.5130( -3.9060 , -3.1783)  -3.2257( -3.4944 , -2.8109)  -5.91 2.12 3.72E-05 327.5 

Hydrophobicity(Ponnuswamy, p137) -5.1128( -5.5916 , -4.6683)  -4.7962( -5.1369 , -4.2313)  -4.43 1.56 4.91E-05 328.0 

Thermodynamic stability(p177) -1.1080( -1.2111 , -0.9664)  -1.0733( -1.2072 , -0.9577)  -17.90 6.40 5.65E-05 328.2 

Polarity (p151) -4.1722( -4.5054 , -3.8238)  -3.9518( -4.2663 , -3.5489)  -5.72 2.00 6.20E-05 328.4 

Solvent accesible surface (p48)  -4.4668( -4.9202 , -4.0949)  -4.1781( -4.4820 , -3.6718)  -4.63 1.64 8.46E-05 329.0 

Hydrophobicity (Guy, p120) -4.4076( -4.8609 , -4.0084)  -4.1434( -4.4671 , -3.6340)  -4.53 1.60 1.18E-04 329.6 

Table V.4 The amino acid properties corresponding to the coefficients with the smallest p values. These coefficients, 
(coeff) sorted in order of increasing p values, are from the Three-level logistic mixed models that best discriminate 
between thermophiles and non-thermophiles. The coefficients represent the fixed effects for the optimization ratios 
(OP=OR*100) corresponding to the unbiased-weighted mean phenotypic change computed using the model 
based on the sense codons of the standard code. The second and third columns contain the median Minimization 
percentages for all properties in both groups. The first and third quartiles are shown in parentheses, se: standard error, 
AIC: Akaike Information criterion. Non-thermophiles: Non-thermophilic prokaryotes (N=418), Thermophiles: thermophilic 
prokaryotes (N=324). OP: Optimization percentages. (The numbers after p in parentheses (first column) indicate the 
position in the list of amino acid indices (Appendix, Table IX.1). 

 Amino acid properties Thermophiles Non-thermophiles coeff se pvalue aic 

 Long-range contacts (p163)  0,3166(0,3003, 0,3303)  0,2900(0,2786, 0,3021)  306,1 61,1 1,793E-11 299.27 

 Long-range contacts (p161) 0,3191(0,3048, 0,3337)  0,2948(0,2840, 0,3057)  362,27 58,38 3,071E-11 300.33  

 Long-range contacts (p160) 0,3731(0,3611, 0,3868)  0,3501(0,3358, 0,3631) 188,47 47,98 1,035E-06 320.59  

 Long-range contacts (p165) 0,4472(,43080, 46124))  0,4328(,41528, 44693)  157,72 51,89 4,938E-06 323.60 

Conformational Entropy(p100) 0,2833(0,2707, 0,2982)  0,2660(0,2487, 0,2786)  124,91 46,91 5,108E-05 328.05 

Thermodynamic stability (p177) 0,3690(0,3534, 0,38p164)  0,3610(0,3460, 0,3750)  110,07 42,2 0,0002282 330.87 

Hydrophobicity(Ponnuswamy,p137) 0,6550(0,6398, 0,6701)  0,6378(0,6162, 0,6521)  97,46 30,89 0,0002592 331.11 

Polarity(Zimmerman, p151) 0,5813(0,5598, 0,6042)  0,5512(0,5295, 0,5718)  76,79 28,04 0,000559 332.55 

Conformational Entropy(p101) 0,4289(0,4094, 0,4474)  0,4090(0,3886, 0,4280)  73,63 25,55 0,0005609 332.56 

Accessible surface area (p48) 0,6279(0,6137, 0,6403)  0,6185(0,5969, 0,6341)  82,39 30,24 0,002068 334.97 
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Table V.5 The amino acid properties corresponding to the coefficients with the smallest p values. These coefficients, (coeff) 
sorted in order of increasing p values, are from the Three-level logistic mixed models that best discriminate between 
thermophiles and non-thermophiles. The coefficients represent the fixed effects for the optimization ratios (OP=OR*100) 
corresponding to the unbiased-weighted mean phenotypic change computed using the model based on the whole set of 
codons of the standard code and scale means assigned to stop codons. The second and third columns contain the median 
Minimization percentages for all properties in both groups. The first and third quartiles are shown in parentheses, se: standard 
error, AIC: Akaike Information criterion. Non-thermophiles: Non-thermophilic prokaryotes (N=418), Thermophiles: 
thermophilic prokaryotes (N=324). OP: Optimization percentages. (The numbers after p in parentheses (first column) indicate 
the position in the list of amino acid indices (Appendix, Table IX.1). 

 Amino acid properties Thermophiles Non-thermophiles coef se pvalue aic 

Flexibility(S_RR, p211)  0,5072(0,4783, 0,5206)  0,4985(0,4821, 0,5125)  171,62 86,74 1,995E-07 317.42 

Polarity(Zimmerman, p151)   0,5836(0,5573, 0,6107)  0,5468(0,5295, 0,5649)  115,96 40,26 1,541E-06 344.35 

Thermodynamic stability (p177) 0,3687(0,3540, 0,3850)  0,3597(0,3443, 0,3727)  140,25 49,36 0,00001787 326.05 

Polar requirement (Woese, p149)  0,4566(0,4439, 0,4690)  0,4489(0,4342, 0,4595)  131,2 41,36 0,000112 329.53 

Flexibility(ML_Ft,p186) 0,3319(0,3063, 0,3466)  0,3433(0,3308, 0,3545)  127,83 41,72 0,0001226 329.70 

Flexibility(ML_RF,p185) 0,3786(0,3554, 0,3945)  0,3892(0,3758, 0,4001)  130,79 41,85 0,0001242 329.73 

 Flexibility(ML_2R,p183) 0,4077(0,3823, 0,4233)  0,4150(0,3960, 0,4276)  111,3 36,13 0,0001526 333.22 

 Long-range contacts(p164) 0,5514(0,5274, 0,5663)  0,5541(0,5340, 0,5692)  98,68 33,97 0,0001707 333.22 

Hydrophobicity(Cornette, p115) 0,7303(0,7132, 0,7472)  0,7231(0,6991, 0,7379)  91,81 32,56 0,0002831 331.28 

Flexibility(S_RF, p211) 0,5664(0,5487, 0,5790)  0,5570(0,5388, 0,5695)  100,18 33,18 0,0005203 332.42 

Table V.6 The amino acid properties corresponding to the coefficients with the smallest p values. These coefficients, (coeff) 
sorted in order of increasing p values, are from the Three-level logistic mixed models that best discriminate between 
thermophiles and non-thermophiles. The coefficients represent the fixed effects for the optimization ratios (OP=OR*100) 
corresponding to the biased-weighted mean phenotypic change computed using the model based on the sense codons of 
the standard code. The second and third columns contain the median Minimization percentages for all properties in both 
groups. The first and third quartiles are shown in parentheses, se: standard error, AIC: Akaike Information criterion. Non-
thermophiles: Non-thermophilic prokaryotes (N=418), Thermophiles: thermophilic prokaryotes (N=324). OP: Optimization 
percentages. (The numbers after p in parentheses (first column) indicate the position in the list of amino acid indices 
(Appendix, Table IX.1). 

 Amino acid properties Thermophiles Non-thermophiles coeff se pvalue aic 

 Long-range contacts (p160) 0,4886(0,4740, 0,4985)  0,4420(0,4259, 0,4665)  175,44 49,29 4,27E-07 318,89 

 Long-range contacts (p161)  0,5806(0,5690, 0,5911)  0,5411(0,5261, 0,5607)  177,28 52,45 1,61E-06 321,45 

 Long-range contacts (p163)  0,5875(0,5725, 0,6022)  0,5495(0,5306, 0,5686)  131,17 47,12 9,01E-06 324,75 

 Long-range contacts (p165)  0,7203(,70890, 73088))  0,6958(,67940, 70848))  145,65 51,57 7,05E-05 328,66 

 Long-range contacts (p160)  0,6866(0,6725, 0,6957)  0,6544(0,6349, 0,6715)  111,88 40,05 0,0002826 331,27 

Hydrophobicity(Kyte, p125) 0,9050(0,8965, 0,9124)  0,9018(0,8906, 0,9093)  178,3 49,57 0,000622 332,75 

Accessible surface area (p48)  0,7753(0,7651, 0,7831)  0,7557(0,7381, 0,7686)  123,46 40,45 0,001706 334,62 

Hydrophobicity(Guy, p120)  0,7889(0,7784, 0,8016)  0,7743(0,7594, 0,7877)  102,68 38,76 0,002244 335,12 

Accessible surface area (p44) 0,8501(0,8402, 0,8589)  0,8438(0,8316, 0,8525)  132,3 41,55 0,002432 335,27 

Hydrophobicity(Cornette, p115) 0,8694(0,8590, 0,8783)  0,8681(0,8532, 0,8764)  130,4 48,83 0,002685 335,45 
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Table V.7 The amino acid properties corresponding to the coefficients with the smallest p values. These coefficients, (coeff) 
sorted in order of increasing p values, are from the Three-level logistic mixed models that best discriminate between thermophiles 
and non-thermophiles. The coefficients represent the fixed effects for the scores corresponding to the unbiased-weighted mean 
phenotypic change computed using the first codon position model based on the whole set of codons of the standard code and 
scale means assigned to stop codons. The second and third columns contain the median scores for all properties in both groups. 
The first and third quartiles are shown in parentheses, se: standard error, AIC: Akaike Information criterion. Non-thermophiles: 
Non-thermophilic prokaryotes (N=418), Thermophiles: thermophilic prokaryotes (N=324).   (The numbers after p in parentheses 
(first column) indicate the position in the list of amino acid indices (Appendix, Table IX.1). 

 Amino acid properties Thermophiles Non-thermophiles coeff se pvalue AIC 

Flexibility (ML_FF,p184) -0,4465(-0,5525, -0,3937)  -0,3664(-0,4567, -0,3029)  -158,29 52,89 2,20E-16 255,46 

Flexibility (ML_RF,p185) -0,9775(-1,0853, -0,9114)  -0,8856(-0,9486, -0,8173)  -81,3 20,53 2,20E-16 271,74 

 Long-range contacts (p165) -1,5498(-1,7183, -1,4359)  -1,2478(-1,3460, -1,1388)  -41,33 13,6 2,80E-13 291,11 

 Long-range contacts (p162) -0,2806(-0,3431, -0,1374)  0,04270(-0,0643, 0,15914)  -69,311 19,99 3,64E-13 291,63 

 Long-range contacts (p161) -1,1648(-1,3046, -1,0222)  -0,7830(-0,9100, -0,6758)  -50,38 17,13 5,34E-13 292,38 

Flexibility(ML_2R,p183) -1,2890(-1,4092, -1,1683)  -1,1767(-1,2743, -1,0825)  -46,6 12,09 2,64E-12 295,51 

 Long-range contacts (p163) -0,4747(-0,5299, -0,3119)  -0,0980(-0,2034, 0,00270)  -54 12,65 1,79E-11 299,26 

Transmembrane Helix propensity (p139) -1,1512(-1,2845, -1,0474)  -1,0455(-1,1321, -0,9555)  -48,12 13,69 1,02E-10 302,66 

Hydrophobicity(Meek, p130) -1,0963(-1,2223, -1,0014)  -1,0472(-1,1351, -0,9668)  -43,79 12,75 2,71E-09 309,07 

Flexibility(S_RR,p211) -0,4465(-0,5525, -0,3937)  -0,3664(-0,4567, -0,3029)  -24,32 7,724 2,80E-09 309,14 

Table V.8 The amino acid properties corresponding to the coefficients with the smallest p values. These coefficients, (coeff) 
sorted in order of increasing p values, are from the Three-level logistic mixed models that best discriminate between 
thermophiles and non-thermophiles. The coefficients represent the fixed effects for the scores corresponding to the biased-
weighted mean phenotypic change computed using the first codon position model based on the whole set of codons of the 
standard code and scale means assigned to stop codons. The second and third columns contain the median scores for all 
properties in both groups. The first and third quartiles are shown in parentheses, se: standard error, AIC: Akaike Information 
criterion. Non-thermophiles: Non-thermophilic prokaryotes (N=418), Thermophiles: thermophilic prokaryotes (N=324) (The 
numbers after p in parentheses (first column) indicate the position in the list of amino acid indices (Appendix, Table IX.1). 

 Amino acid properties Thermophiles Non-thermophiles coef se p value aic 

Flexibility (ML_FF,p184) -1,3503(-1,5021, -1,2630)  -1,2041(-1,3080, -1,1318)  -45,94 13,10973 3,53E-12 296,08 

Long-range contacts (p162) -0,3833(-0,4456, -0,1837)  0,05307(-0,0756, 0,18102)  -51,214 12,723041 4,65E-12 296,63 

Long-range contacts (p165) -1,7005(-1,8908, -1,5415)  -1,3170(-1,4423, -1,1877)  -38,63 11,65838 7,25E-12 297,5 

Long-range contacts (p161) -1,2554(-1,3967, -1,0848)  -0,7548(-0,9287, -0,6408)  -36,03 10,85555 1,20E-11 298,48 

Long-range contacts (p163) -0,6697(-0,7377, -0,4616)  -0,1710(-0,3143, -0,0604)  -46,56 9,984566 4,02E-10 305,35 

Long-range contacts (p160) -0,9010(-1,0044, -0,7235)  -0,4439(-0,6172, -0,3705)  -39,85 10,977796 6,64E-10 306,33 

Flexibility(ML_RF,p185) -1,6666(-1,8346, -1,5654)  -1,5191(-1,6359, -1,4120)  -31,35 10,27387 1,09E-09 307,29 

Hydrophobicity(Meek, p130) -0,9012(-1,0117, -0,8260)  -0,8560(-0,9218, -0,7879)  -50,43 15,0149 3,24E-09 309,42 

Accessible surface area (p48) -2,5879(-2,8071, -2,4024)  -2,1823(-2,3440, -2,0223)  -18,5 6,480696 5,73E-09 310,53 

Flexibility(ML_2R,p183) -1,8160(-2,0025, -1,6780)  -1,6940(-1,8251, -1,5531)  -23,31 8,291051 3,46E-08 314,03 
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Table V.9 The amino acid properties corresponding to the coefficients with the smallest p values. These coefficients, 
(coeff) sorted in order of increasing p values, are from the Three-level logistic mixed models that best discriminate 
between thermophiles and non-thermophiles. The coefficients represent the fixed effects for the  optimization ratios 
(OP=OR*100)  corresponding to the unbiased-weighted mean phenotypic change computed using the first codon 
position model based on the whole set of codons of the standard code and scale means assigned to stop codons. 
The second and third columns contain the median Minimization percentages for all properties in both groups. The first 
and third quartiles are shown in parentheses, se: standard error, AIC: Akaike Information criterion. Non-thermophiles: 
Non-thermophilic prokaryotes (N=418), Thermophiles: thermophilic prokaryotes (N=324).  OP: Optimization 
percentages  (The numbers after p in parentheses (first column) indicate the position in the list of amino acid indices 
(Appendix, Table IX.1). 

   Amino acid properties Thermophiles Non-thermophiles coef  se pvalue aic 

Flexibility(ML_FF,p184) 0,1100(0,0897, 0,1968)  0,0863(0,0707, 0,1196)  476,03 54,42 2,20E-16 263,75 

Flexibility(ML_Ft,p186) 0,2127(0,1889, 0,3581)  0,1911(0,1741, 0,2114)  361,55 56,16 2,20E-16 259,91 

Flexibility(S_FF,p209) 0,3647(0,3477, 0,3805)  0,3390(0,3252, 0,3513)  300,1 61,72 2,20E-16 269,17 

Flexibility(S_RR,p211)  0,4064(0,3776, 0,4271)  0,3519(0,3402, 0,3678)  346,1 48,03 2,20E-16 346,1 

Flexibility(S_Ft,p227) 0,3452(0,1433, 0,3584)  0,1689(0,1401, 0,1965)  72,99 11,4 2,20E-16 245,43 

Long-range contacts (p165) 0,3593(0,3377, 0,3716)  0,2973(0,2800, 0,3180)  466,8 67,38 2,48E-16 277,28 

Long-range contacts (p164)  0,6898(0,6739, 0,7088)  0,6728(0,6600, 0,6850)  272,5 47,27 3,53E-13 291,57 

Polar requirement (Woese, p149) 0,2165(0,2082, 0,2277)  0,2043(0,1980, 0,2090)  579 98,75 4,56E-13 292,07 

Long-range contacts (p161) 0,3290(0,2926, 0,3445)  0,2278(0,2009, 0,2597)  262,62 64,48 3,19E-12 295,89 

Accessible surface area (p48) 0,4541(0,4349, 0,4690)  0,4037(0,3881, 0,4245)  312,9 106 8,94E-12 297,91 

Table V.10 The amino acid properties corresponding to the coefficients with the smallest p values. These 
coefficients, (coeff) sorted in order of increasing p values, are from the Three-level logistic mixed models that best 
discriminate between thermophiles and non-thermophiles. The coefficients represent the fixed effects for the 
optimization ratios (OP=OR*100) corresponding to the biased-weighted mean phenotypic change computed using 
the first codon position model based on the whole set of codons of the standard code and scale means assigned to 
stop codons. The second and third columns contain the median Minimization percentages for all properties in both 
groups. The first and third quartiles are shown in parentheses, se: standard error, AIC: Akaike Information criterion. 
Non-thermophiles: Non-thermophilic prokaryotes (N=418), Thermophiles: thermophilic prokaryotes (N=324). OP: 
Optimization percentages (The numbers after p in parentheses (first column) indicate the position in the list of amino 
acid indices (Appendix, Table IX.1). 

Amino acid properties Thermophiles Non-thermophiles coef  se pvalue aic 

Flexibility(ML_Ft, p186)  0,4075(0,3918, 0,4313)  0,3878(0,3740, 0,4015)  253,75 60,39 8,47E-13 293,29 

Hydrophobicity(Cornette, p115) 0,7332(0,7229, 0,7461)  0,7188(0,7103, 0,7278)  369,3 54,7 5,99E-12 297,12 

Flexibility(ML_RF,185) 0,3999(0,3854, 0,4224)  0,3789(0,3667, 0,3929)  245,19 58,16 1,49E-11 298,91 

 Long-range contacts(p165) 0,3986(0,3674, 0,4111)  0,3082(0,2901, 0,3368)  206,3 65,01 2,58E-11 299,99 

 Long-range contacts(p164) 0,6884(0,6727, 0,7063)  0,6704(0,6578, 0,6848)  228,7 52,25 9,17E-11 302,47 

 Long-range contacts(p161) 0,3608(0,3051, 0,3779)  0,2229(0,1908, 0,2664)  143,15 32,78 1,10E-09 307,32 

 Flexibility(ML_2R,p183)  0,4573(0,4370, 0,4802)  0,4430(0,4249, 0,4584)  182,89 41,16 1,18E-09 307,45 

Flexibility(S_RR,p211)   0,5418(0,5262, 0,5596)  0,5288(0,5162, 0,5412)  216,4 50,66 6,19E-09 310,68 

Accessible surface area (p48)  0,5024(0,4772, 0,5177)  0,4272(0,4108, 0,4580)  175,49 58,51 7,45E-09 311,04 
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Table V.11 The amino acid properties corresponding to the coefficients with the smallest p values. These coefficients, 
(coeff) sorted in order of increasing p values, are from the Three-level logistic mixed models that best discriminate 
between thermophiles and non-thermophiles. The coefficients represent the fixed effects for the scores corresponding to 
the unbiased-weighted mean phenotypic change computed using the second codon position model based on the sense 
codons of the standard code. The second and third columns contain the median scores for all properties in both groups. 
The first and third quartiles are shown in parentheses, se: standard error, AIC: Akaike Information criterion. Non-
thermophiles: Non-thermophilic prokaryotes (N=418). Thermophiles: thermophilic prokaryotes (N=324). (The numbers 
after p in parentheses (first column) indicate the position in the list of amino acid indices (Appendix, Table IX.1). 
Amino acid properties Thermophiles Non-thermophiles coeff se pvalue aic 

Conformational entropy (p98)  -0,8184(-0,9081, -0,6576)  -0,4696(-0,5783, -0,4060)  -48,89 10,38 3,65E-07 318,59 

Conformational entropy (p92) -0,8822(-0,9732, -0,7058)  -0,4875(-0,6091, -0,4138)  -42,58 8,40 8,80E-07 320,28 

Conformational entropy (p97)   -1,5286(-1,6733, -1,3886)  -1,2860(-1,3888, -1,1925)  -21,46 8,74 2,12E-06 321,98 

Conformational Entropy (p94)   -1,0841(-1,1873, -0,9501)  -0,8407(-0,9320, -0,7677)  -26,06 9,83 6,40E-06 324,09 

Conformational Entropy (p90)  -0,9866(-1,0750, -0,8621)  -0,7690(-0,8507, -0,6906)  -26,03 9,65 1,04E-05 325,01 

Thermodynamic stability (p104)   -0,5726(-0,6364, -0,5227)  -0,5364(-0,5812, -0,4843)  -42,88 17,62 1,67E-05 325,93 

Hydrophobicity (Abraham, p108)   -0,0545(-0,1157, -0,0000)  0,02604(-0,0042, 0,0607)  -51,82 20,09 1,97E-04 330,59 

Conformational Entropy (p91)  -0,8088(-0,8887, -0,7169)  -0,6957(-0,7690, -0,6078)  -18,91 6,75 4,10E-04 331,97 

PK_aa-NH2 (p199) -0,6594(-0,7389, -0,4570)  -0,3193(-0,4144, -0,2373)  -21,79 9,43 4,60E-04 332,19 

Hydrophobicity (p147)   -0,8815(-0,9557, -0,8287)  -0,8582(-0,9144, -0,7752)  -24,57 9,60 1,23E-03 334,01 

Table V.12 The amino acid properties corresponding to the coefficients with the smallest p values. These coefficients, 
(coeff) sorted in order of increasing p values, are from the Three-level logistic mixed models that best discriminate 
between thermophiles and non-thermophiles. The coefficients represent the fixed effects for the scores corresponding 
to the biased-weighted mean phenotypic change computed using the second codon position model based on the 
sense codons of the standard code. The second and third columns contain the median scores for all properties in both 
groups. The first and third quartiles are shown in parentheses, se: standard error, AIC: Akaike Information criterion. 
Non-thermophiles: Non-thermophilic prokaryotes (N=418), Thermophiles: thermophilic prokaryotes (N=324).  (The 
numbers after p in parentheses (first column) indicate the position in the list of amino acid indices (Appendix, Table 
IX.1). 

Amino acid properties Thermophiles Non-thermophiles coeff se pvalue aic 

Hydrophobicity (Cowan, p117)  -0,5951(-0,6564, -0,5328)  -0,5336(-0,5751, -0,4796)  -107,87 34,86 7,83E-13 293,13 

Hydrophobicity (Abraham, p108)   -1,1849(-1,3057, -1,0822)  -1,0343(-1,1077, -0,9686)  -57,64 18,76 1,07E-12 293,75 

Polarity(Zimmerman, p151)  -0,8278(-0,9737, -0,6931)  -0,7383(-0,8315, -0,5919)  -56,64 17,47 1,26E-10 303,08 

Hydrophobicity (Karplus, p122)  -0,6839(-0,8034, -0,5774)  -0,5948(-0,6677, -0,5038)  -53,97 17,19 9,86E-10 307,1 

Hydrophobicity(Meek, p129) -0,4961(-0,5777, -0,4013)  -0,4561(-0,5212, -0,3570)  -83,97 23,91 6,85E-09 310,88 

Hydrophilicity(Parker, p135)  -0,1333(-0,1990, -0,0738)  -0,1004(-0,1392, -0,0423)  -77,41 25,99 7,03E-09 310,93 

Polar requirement (Woese, p149) -0,5092(-0,5590, -0,4705)  -0,4831(-0,5230, -0,4398)  -73,44 29,23 1,67E-07 317,08 

Hydrophobicity (Levitt, p128)   -1,1671(-1,2576, -1,0836)  -1,0078(-1,0672, -0,9329)  -36,52 13,63 1,96E-07 317,39 

Conformational entropy (p98) -1,1276(-1,2111, -1,0221)  -0,9844(-1,0375, -0,9279)  -43,03 16,23 2,60E-07 317,93 

Hydrophobicity(Ooi, p133) -0,5175(-0,5544, -0,4692)  -0,5033(-0,5449, -0,4607)  -60,62 20,66 5,36E-07 319,33 
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Table V.13 The amino acid properties corresponding to the coefficients with the smallest p values. These coefficients, 
(coeff) sorted in order of increasing p values, are from the Three-level logistic mixed models that best discriminate between 
thermophiles and non-thermophiles. The coefficients represent the fixed effects for the optimization ratios (OP=OR*100) 
corresponding to the biased-weighted mean phenotypic change computed using the second codon position model based 
on the whole set of codons of the standard code and values assigned to stop codons according to the “Mean suppressor” 
method. The second and third columns contain the median Minimization percentages for all properties in both groups. The 
first and third quartiles are shown in parentheses, se: standard error, AIC: Akaike Information criterion. Non-thermophiles: 
Non-thermophilic prokaryotes (N=418), Thermophiles: thermophilic prokaryotes (N=324). OP: Optimization percentages 
(Appendix, Table IX.1). 

  Amino acid properties Thermophiles Non-thermophiles   se pvalue aic 

Hydrophobicity(Cowan, p117) 0,2480(0,2122, 0,2815)  0,2174(0,1949, 0,2390)  178,39 53,02 5,45E-12 296,94 

Hydrophilicity(Roseman,p138) 0,2668(0,2400, 0,3007)  0,2001(0,1815, 0,2214)  263,92 91,52 5,67E-12 297,01 

 Hydrophobicity(Abraham, p108) 0,4114(0,3702, 0,4646)  0,3557(0,3320, 0,3825)  112,2 30,14 3,82E-10 305,26 

Polarity(Zimmerman, p151) 0,2560(0,2103, 0,3099)  0,2269(0,1785, 0,2528)  132,44 47,06 2,61E-09 309 

Hydrophobicity(Karplus, p122) 0,2437(0,2012, 0,2959)  0,2093(0,1723, 0,2370)  124,97 41,28 3,78E-09 309,72 

Hydrophobicity(Meek, p129) 0,1385(0,1075, 0,1698)  0,1277(0,0967, 0,1514)  161,883 52,09 2,01E-08 312,98 

 Long-range contacts(p163) 0,0725(0,0465, 0,0893)  0,0640(0,0500, 0,0793)  230,69 71,36 4,16E-08 314,38 

hydrophobicity(Sandberg, p233) 0,3417(0,2998, 0,3821)  0,3125(0,2799, 0,3436)  104,01 32,82 4,51E-08 314,54 

Hydrophobicity(Fauchere, p119) 0,5333(0,4879, 0,5731)  0,4877(0,4522, 0,5212)  79,3 24,02 1,56E-07 316,94 

Polar requirement (Woese, p149) 0,1963(0,1876, 0,2078)  0,1918(0,1804, 0,2000)  268,44 93,43 1,68E-07 317,09 

Table V.14 The amino acid properties corresponding to the coefficients with the smallest p values. These coefficients, 
(coeff) sorted in order of increasing p values, are from the Three-level logistic mixed models that best discriminate 
between thermophiles and non-thermophiles. The coefficients represent the fixed effects for the optimization ratios 
(OP=OR*100) corresponding to the biased-weighted mean phenotypic change computed using the second codon 
position model based on the sense codons of the standard code. The second and third columns contain the median 
Minimization percentages for all properties in both groups. The first and third quartiles are shown in parentheses, se: 
standard error, AIC: Akaike Information criterion. Non-thermophiles: Non-thermophilic prokaryotes (N=418), 
Thermophiles: thermophilic prokaryotes (N=324). OP: Optimization percentages (Appendix, Table IX.1). 
 Amino acid properties Thermophiles Non-thermophiles coef se pvalue aic 

Hydrophilicity(Roseman,p138) 0,2690(0,2408, 0,3026)  0,2019(0,1846, 0,2229)  283,05 193,1 4,79E-12 296,7 

 Long-range contacts(p163) 0,0638(0,0354, 0,0841)  0,0536(0,0345, 0,0763)  208,71 49,17 1,45E-09 307,9 

Polarity(Zimmerman, p151) 0,2790(0,2359, 0,3349)  0,2535(0,2098, 0,2759)  141,78 56,03 4,55E-09 310,1 

Hydrophilicity(Parker, p135) 0,0589(0,0352, 0,0904)  0,0456(0,0196, 0,0620)  191,42 72,98 1,47E-08 312,4 

Hydrophobicity(Karplus, p122) 0,2738(0,2309, 0,3262)  0,2407(0,2089, 0,2669)  123,76 40,16 2,18E-08 313,1 

Hydrophobicity(Meek, p129) 0,1744(0,1425, 0,2029)  0,1639(0,1321, 0,1828)  202,13 69,9 2,44E-07 317,8 

Hydrophobicity(Fauchere, p119) 0,5441(0,5043, 0,5786)  0,5059(0,4737, 0,5378)  81,73 27,64 2,01E-06 321,9 

Conformational Entropy(p92) 0,3452(0,3163, 0,3709)  0,2890(0,2698, 0,3097)  113,65 41,43 4,12E-06 323,3 

Hydrophobicity(Ooi, p133) 0,2267(0,2057, 0,2417)  0,2211(0,2034, 0,2393)  113,05 33,94 1,28E-05 325,4 

Conformational Entropy(p98) 0,3334(0,3018, 0,3558)  0,2895(0,2734, 0,3081)  112,8 42,69 1,72E-05 326 
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Table V.15 The amino acid properties corresponding to the coefficients with the smallest p values. These coefficients, (coeff) 
sorted in order of increasing p values, are from the Three-level logistic mixed models that best discriminate between 
thermophiles and non-thermophiles. The coefficients represent the fixed effects for the scores corresponding to the 
unbiased-weighted mean phenotypic change computed using Transversion models based on the sense codons of the 
standard code. The second and third columns contain the median scores for all properties in both groups. The first and third 
quartiles are shown in parentheses, se: standard error, AIC: Akaike Information criterion. Non-thermophiles: Non-thermophilic 
prokaryotes (N=418), Thermophiles: thermophilic prokaryotes (N=324).   (The numbers after p in parentheses (first column) 
indicate the position in the list of amino acid indices (Appendix, Table IX.1). 
Amino acid properties Thermophiles Non-thermophiles coeff se pvalue aic 

Conformational entropy (p102)  -0,0396(-0,0408, -0,0377)  -0,0363(-0,0370, -0,0354)  -6354,20 1680,16 2,52E-12 295,43 

Thermodynamic stability (p177)  -0,0323(-0,0343, -0,0305)  -0,0294(-0,0304, -0,0278)  -4483,10 822,56 1,66E-09 308,12 

Long-range contacts (p162) -0,0113(-0,0122, -0,0104)  -0,0107(-0,0122, -0,0100)  -4970,61 55,47 7,75E-09 311,12 

Conformational Entropy(p100) -0,0217(-0,0224, -0,0184)  -0,0171(-0,0177, -0,0166)  -5259,32 64,53 3,72E-08 314,16 

Medium-range contacts (p182) -0,0706(-0,0715, -0,0692)  -0,0680(-0,0687, -0,0670)  -5409,70 86,31 1,79E-07 317,21 

Long-range contacts (p160) -0,0152(-0,0162, -0,0142)  -0,0149(-0,0166, -0,0139)  -3302,86 64,53 4,07E-07 318,79 

Long-range contacts (p163)  -0,0089(-0,0106, -0,0074)  -0,0088(-0,0115, -0,0076)  -1955,47 92,20 2,77E-06 322,49 

Long-range contacts (p164) -0,0325(-0,0341, -0,0312)  -0,0330(-0,0352, -0,0321)  -1988,44 76,74 9,40E-05 329,2 

Hydrophobicity (Ponnuswamy, 137) -0,0760(-0,0765, -0,0754)  -0,0753(-0,0760, -0,0747)  -3081,00 118,60 7,11E-05 328,68 

Conformational entropy (p90)  -0,0606(-0,0621, -0,0565)   -0,0526(-0,0548, -0,0512)  -1505,23 125,1 3,16E-03 335,74 

Table V.16 The amino acid properties corresponding to the coefficients with the smallest p values. These coefficients, 
(coeff) sorted in order of increasing p values, are from the Three-level logistic mixed models that best discriminate 
between thermophiles and non-thermophiles. The coefficients represent the fixed effects for the scores corresponding to 
the unbiased-weighted mean phenotypic change computed using Transversion models based on the whole set of codons 
of the standard code and values assigned to stop codons according to the “Mean suppressor” method. The second and 
third columns contain the median scores for all properties in both groups. The first and third quartiles are shown in 
parentheses, se: standard error, AIC: Akaike Information criterion. Non-thermophiles: Non-thermophilic prokaryotes 
(N=418), Thermophiles: thermophilic prokaryotes (N=324).   (The numbers after p in parentheses (first column) indicate 
the position in the list of amino acid indices (Appendix, Table IX.1). 
Amino acid properties Thermophiles  Non-thermophiles coeff se pvalue aic 

Conformational entropy (p102)  -0,0423(-0,0428, -0,0398)  -0,0385(-0,0391, -0,0379)  -7595,00 69,66 8,88E-12 297,89 

Conformational entropy (p101)  -0,0232(-0,0237, -0,0219)  -0,0213(-0,0218, -0,0206)  -6119,00 85,44 1,31E-08 312,13 

Thermodynamic stability (p177) -0,0329(-0,0344, -0,0311)  -0,0300(-0,0309, -0,0287)  -4715,20 73,95 1,34E-08 312,19 

Medium-range contacts (p182) -0,0681(-0,0688, -0,0666)  -0,0654(-0,0660, -0,0646)  -12318,90 38,86 1,90E-08 312,86 

Flexibility(S_RR,p211) -0,0361(-0,0382, -0,0353)  -0,0357(-0,0389, -0,0348)  -2663,20 102,29 5,74E-07 319,46 

Hydrophobicity(Wilson,p147) -0,0129(-0,0135, -0,0123)  -0,0131(-0,0143, -0,0126)  -2933,86 192,33 1,56E-03 334,45 

Flexibility(ML_2R,p183) -0,0201(-0,0214, -0,0190)  -0,0210(-0,0229, -0,0199)  -1709,58 105,55 1,59E-03 334,48 

Flexibility(S_Ft, p212) -0,0337(-0,0352, -0,0330)  -0,0342(-0,0362, -0,0335)  -1609,46 91,62 3,46E-03 335,91 

Flexibility(S_RF,p210) -0,0482(-0,0494, -0,0470)  -0,0479(-0,0494, -0,0474)  -1499,12 374,21 4,96E-03 336,56 
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Table V.17 TvMsanstopda The amino acid properties corresponding to the coefficients with the smallest p values. These 
coefficients, (coeff) sorted in order of increasing p values, are from the Three-level logistic mixed models that best discriminate 
between thermophiles and non-thermophiles. The coefficients represent the fixed effects for the optimization ratios 
(OP=OR*100) corresponding to the unbiased-weighted mean phenotypic change computed using Transversion models based 
on the sense codons of the standard code. The second and third columns contain the median Minimization percentages for all 
properties in both groups. The first and third quartiles are shown in parentheses, se: standard error, AIC: Akaike Information 
criterion. Non-thermophiles: Non-thermophilic prokaryotes (N=418), Thermophiles: thermophilic prokaryotes (N=324). OP: 
Optimization percentages (The numbers after p in parentheses (first column) indicate the position in the list of amino acid indices 
(Appendix, Table IX.1). 

Amino acid properties Thermophiles Non-thermophiles coef  se pvalue aic 

Conformational Entropy(p101) 0,2905(0,2720, 0,3136)  0,2653(0,2526, 0,2782)  170,64 52,33 2,063E-08 313,02 

Long-range contacts(p162)  0,1608(0,1412, 0,1700)  0,1572(0,1446, 0,1673)  258,2 67,04 2,288E-08 313,22 

Thermodynamic stability (p177)  0,3473(0,3165, 0,3727)  0,3059(0,2927, 0,3204)  150,21 52,14 7,051E-08 315,41 

 Long-range contacts(p161)  0,1975(0,1723, 0,2073)  0,1940(0,1796, 0,2036)  150,17 42,95 0,00000245 322,25 

Conformational Entropy(p100)  0,2703(0,2464, 0,2938)  0,2207(0,2046, 0,2363)  115,6 37,79 0,000005631 323,85 

 Conformational Entropy(p102) 0,4550(0,4262, 0,4874)  0,4101(0,3900, 0,4343)  85,96 29,27 0,000007816 324,47 

Long-range contacts(p165) 0,2864(0,2669, 0,3026)  0,2907(0,2771, 0,3028)  115,6 37,95 0,00007771 328,84 

Hydrophobicity(Ponnuswamy,p137) 0,4422(0,4211, 0,4615)  0,4352(0,4046, 0,4545)  78,53 26,83 0,0005628 332,56 

Flexibility(S_RR,p211) 0,3230(0,3079, 0,3417)  0,3281(0,3102, 0,3424)  86,23 35,1 0,004065 336,2 

 

 

 

 

 

 

Table V.18 The amino acid properties corresponding to the coefficients with the smallest p values. These coefficients, 
(coeff) sorted in order of increasing p values, are from the Three-level logistic mixed models that best discriminate 
between thermophiles and non-thermophiles. The coefficients represent the fixed effects for the  optimization ratios 
(OP=OR*100)  corresponding to the unbiased-weighted mean phenotypic change computed using Transversion models 
based on the whole set of codons of the standard code and scale means assigned to stop codons. The second and third 
columns contain the median Minimization percentages for all properties in both groups. The first and third quartiles are 
shown in parentheses, se: standard error, AIC: Akaike Information criterion. Non-thermophiles: Non-thermophilic 
prokaryotes (N=418), Thermophiles: thermophilic prokaryotes (N=324). OP: Optimization percentages (The numbers 
after p in parentheses (first column) indicate the position in the list of amino acid indices (Appendix, Table IX.1). 

Amino acid properties Thermophiles Non-thermophiles coef  se pvalue aic 

Flexibility(S_RR,p211) 0,2572(0,2346, 0,2778)  0,2541(0,2375, 0,2689)  299,67 79,72 5,714E-11 301,54 

Thermodynamic stability (p177) 0,3357(0,3083, 0,3627)  0,2965(0,2854, 0,3095)  274,07 105 3,559E-10 305,12 

 Flexibility(ML_2R,p183)  0,1670(0,1438, 0,1859)  0,1794(0,1588, 0,1934)  220,8 61,21 1,425E-07 316,77 

Conformational Entropy(p101)  0,3420(0,3274, 0,3669)  0,3169(0,3039, 0,3308)  124,47 36,59 0,000007099 324,29 

Polar requirement (Woese, p149)  0,2210(0,2106, 0,2346)  0,2285(0,2177, 0,2373)  201,69 59,87 0,00004167 327,66 

 Flexibility(ML_RF,p185) 0,0770(0,0559, 0,0989)  0,0982(0,0791, 0,1202)  186,1247 60,45 0,000044 327,77 

Hydrophobicity(Cornette, p115) 0,6067(0,5858, 0,6237)  0,5927(0,5656, 0,6088)  95,59 31,67 0,00004971 328 

Hydrophobicity(Meek, p130)  0,2894(0,2733, 0,3008)  0,2830(0,2722, 0,2946)  159,51 53,59 0,0001666 330,28 

 Hydrophobicity(Bull, p114)  0,6743(0,6531, 0,6900)  0,6618(0,6385, 0,6796)  78,59 29,67 0,0005524 332,53 

 Hydrophobicity(Lawson, p126)  0,2688(0,2532, 0,2858)  0,2381(0,2181, 0,2488)  101,39 35,36 0,0007292 333,04 
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Figure V.1 Histograms of the scores computed under different standard code models and amino acid properties. Green: 
Thermophilic prokaryotes (N=324), Grey: Non-thermophilic prokaryotes (N=418). A: The transversion models based on 
sense codons, unbiased weighting and Conformational entropy (p102), B: The transversion models based on the whole 
set of codons with unbiased weighting, Conformational entropy (p102) and “Mean suppressor” values assigned to stop 
codons. C: The standard code models based on sense codons with unbiased weighting and Long-range contacts (p161). 
D: The second codon position models based on the whole set of codons, biased weighting, Hydrophilicity (Roseman, p138) 
and scale means assigned to stop codons.  
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Figure V.2 Histograms of the Optimization percentages computed under different standard code models and 

amino acid properties. Green: Thermophilic prokaryotes (N=324), Grey: Non-thermophilic prokaryotes (N=418). 

A: The standard code models based on sense codons with unbiased weighting and long-range contacts (p163). 

B: The first codon position models based on the whole set of codons with unbiased weighting, Long-range contacts 

(p165) and scale means assigned to stop codons. C: The second codon position models based on the whole set 

of codons with biased weighting, Hydrophilicity (Roseman, p138) and values assigned to stop codons by using 

the “mean suppressor” method. D: The Transition models based on sense codons, unbiased weighting and Long-

range contacts (p162).  
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Figure V.3. Histograms of the scores computed under different standard code models and amino acid 

properties. Green: Thermophilic prokaryotes (N=324), Grey: Non-thermophilic prokaryotes (N=418). A: The 

second codon position models based on sense codons with biased weighting and Hydrophobicity (Cowan, 

p117), B: The standard code models based on sense codons with unbiased weighting and Long-range contacts 

(p163), C: The transversion models based on the whole set of codons with unbiased weighting, Hydrophobicity 

(Cornette, p115) and scale mean values assigned to stop codons, D: Transversion models based on the whole 

set of codons with unbiased weighting, Medium-range contacts (p182) and scale mean values assigned to stop 

codons.  
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Appendix VI. Robustness and base composition 

 

 

 

 
 

 

 
 

 

 

 

 

 

Figure VI.1 Top left: The scores corresponding to the unbiased-weighted mean change in hydrophobicity 

(Ponnuswamy, p137) for codon position 3 versus the GC content at this position. Top right: The scores corresponding 

to the unbiased-weighted mean change in hydrophobicity (Ponnuswamy, p137) for codon position 2 versus the GC 

content at this position. Bottom: The scores corresponding to the unbiased-weighted mean change in hydrophobicity 

(Ponnuswamy, p137) for codon position 1 versus GC content at this position. Representation based on sense codons 

of the standard code. Blue: genomes of Non-thermophiles, Black: genomes of thermophiles. 

 

Table VI.1 Median amino acid composition for thermophiles and 

non-thermophiles. The prokaryotic genomes were classified into 

two categories: Non-thermophiles (mesophiles + psychrophiles, 

N=418) and thermophiles (Hyperthermophiles + thermophiles, 

N=324). The first and third quartiles shown in parentheses. AA: 

amino acid. *: significant according to Wilcoxon rank-sum test 

and False discovery rate: 0,01. #: p value between 0.05 and 0.07. 

a Thermophiles Non-thermophiles p values 
 L 0,1010(0,0961, 0,1078)  0,1026(0,0971, 0,1070)   0.6434 

 S* 0,0544(0,0495, 0,0594)  0,0604(0,0562, 0,0654)   3.0555e-27 

P 0,0415(0,0369, 0,0455)  0,0405(0,0350, 0,0503)  0.9592 

R 0,0541(0,0415, 0,0625)  0,0477(0,0396, 0,0659)  0.0686 

I* 0,0747(0,0636, 0,0926)  0,0629(0,0490, 0,0747)   8.9875e-19 

 T* 0,0466(0,0445, 0,0493)  0,0541(0,0514, 0,0579)  9.7770e-69 

 K* 0,0704(0,0519, 0,0853)  0,0514(0,0329, 0,0675)  3.0097e-20 

V* 0,0768(0,0707, 0,0843)  0,0690(0,0652, 0,0734)  1.7887e-25 

A* 0,0703(0,0587, 0,0832)  0,0907(0,0737, 0,1197)  3.1018e-27 

G 0,0715(0,0657, 0,0766)  0,0695(0,0642, 0,0823)  0.5715 
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Figure VI.2 Top left: The scores corresponding to the unbiased -mean change in long-range contacts (161) for the 
codon position 3 versus the GC content at third codon position. Weighting with synonymous codon usage and base 
change position/type. Top right: The scores corresponding to the unbiased weighted mean change in long range 
contacts (161) for the codon position 2 versus the GC content at the second codon position, Bottom: The scores 
corresponding to the unbiased weighted mean change in long-range contacts (161) for the codon position 1 versus 
the GC content at first codon position. Representation based on sense codons of the standard code. Blue: genomes 
of Non-thermophiles, Black: genomes of thermophiles. 

Table VI.2 Medians of the Unbiased-weighted mean change in 
long-range contacts (p161) for each synonymous codon block 
(third and fourth columns). The first and the third quartiles are 
shown in parentheses. The first column: the amino acids 
encoded by blocks with heterogeneous neighborhoods in the 
standard code (hb). Model of the standard code based on the 
sense codons. Non-thermophiles: Non-thermophilic prokaryotes 
(N=418), Thermophiles: thermophilic prokaryotes (N=324). p 
values: Wilcoxon rank-sum test. 
hb      Thermophiles Non-Thermophiles P 

values A 0.2421(0.2394,0.2439)  0.2425 (0.2406,0.2442) 0.0239 

R 0.1796(0.1726,0.1989)  0.2582 (0.2343, 0.2781)* 3.2E-88 

G 0.6352 (0.6326, 0.6388)  0.6265 (0.6235 ,0.6321)* 2.5E-54 

I 0.8424 (0.8107,0.8541) 0.7908 (0.7811, 0.8072)* 1.3E-47 

L 0.3683(0.3640.0.3707) 0.3693(0.3634,0.3751) 0.0024 

K 0.4563(0.3970. 0.5014) 0.4964(0.3735, 0.5268) 0.0021 

P 0.0702 (0.0688,0.0712) 0.0704 (0.0698, 0.0720)* 1.1E-09 

S 0.6320(0.6239, 
0.64p163) 

0.6267(0.6173,0.63p160)* 1.4E-10 

T 0.1353(0.1259,0.1445) 0.1336(0.1253, 0.1399) 0.0048 

V  0.7264(0.7182, 0.7349) 0.7294 (0.7229,0.7403)* 3.4E-06 
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Table VI.3 Medians of the biased-weighted mean change in 
long-range contacts (p161) for each synonymous codon block 
(third and fourth columns). The first and the third quartiles are 
shown in parentheses. The first column: the amino acids 
encoded by blocks with heterogeneous neighborhoods in the 
standard code (hb). Model of the standard code based on the 
sense codons. Non-thermophiles: Non-thermophilic 
prokaryotes (N=418), Thermophiles: thermophilic prokaryotes 
(N=324). p values: Wilcoxon rank-sum test. 
 hb Thermophiles Non-thermophiles pvalue 
A 0.1087 (0.1085,0.1089) 0.1088 (0.1086 0.1089) 0.0239 

R  0.0912(0.0817,0.1282)  0.1935 (0.1623,0.2128)* 1.47E-75 

G 0.3079(0.3064, 0.3100)  0.3028(0.3011,0.3061)* 2.51E-54 

I 0.3056(0.3024,0.3067)  0.3004(0.2994,0.3020)* 1.32E-47 

L 0.1735 ( 0.1730. 0.1739) 0.1738 (0.1732, 0.1742)* 1.66E-08 

K 0.1282 (0.1223,0.1327) 0.1322 (0.1199,0.1352) 0.0021 

P  0.0303 (0.0301, 0.0305)  0.0304 (0.0303, 0.0305)* 1.10E-09 

S 0.2782 (0.2773 ,0.2795)  0.2776(0.2767,0.2785)* 2.72E-09 

T  0.0750 (0.0701, 0.0792) 0.0743 (0.0703,0.0772) 0.0271 

V 0.2657 (0.2617,0.2723) 0.2693 (0.2631,0.2764)* 3.16E-06 

  
  
Figure VI.3 Histograms of the mean phenotypic change for the codon blocks corresponding to Arginine computed 
under models based on sense codons, Long-range contacts (p163) using either unbiased (left) or biased (right) 
weightings.  

 
Figure VI.4 Histograms of information entropies computed for thermophilic and non-

thermophilic genomes. Green: Thermophilic prokaryotes (N=324), Grey: Non-

thermophilic prokaryotes (N=418). 
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Appendix VII. Developing the equation for the variance (terms 𝑫𝟐  and 𝑫𝟑) 

 

Term 𝑫𝟐 

In the equation 14, we have actually the sum of two terms, 𝐷2 and 𝐷2𝑎, corresponding to the 

two products of weights on the edges of 𝐸𝑔 and 𝐸𝑝 (eq 2 and 3), for example, for 𝐸𝑔 these 

products are,   (𝑦𝑢𝑣 𝑦𝑢𝑣)  and (𝑦𝑢𝑣 𝑦𝑣𝑢) . Since both graphs are undirected, 𝐷2 is equal to 𝐷2𝑎 

(eq 1). As a result of this, this term is multiplied by two in (eq 14, see section Methods).   

 

𝐷2𝑎 + 𝐷2 = 2𝐷2                                                                            (1) 

𝐷2 = (𝑇2)(𝑃2)                                                                                 

𝑇2 = (∑ ∑ 𝛾𝑢𝑣
2𝑛

𝑣
𝑛
𝑢 )                                                                            (2) 

𝑃2 = (∑ ∑ (𝑝(𝑖) − 𝑝(𝑗))4𝑛
𝑗

𝑛
𝑖 )  

 

𝐷2𝑎 = (𝑇2𝑎)(𝑃2𝑎)                                                                              

𝑇2𝑎 = (∑ ∑ 𝛾𝑢𝑣
𝑛
𝑣

𝑛
𝑢 𝛾𝑣𝑢)                                                                     (3) 

𝑃2𝑎 = (∑ ∑ (𝑝(𝑖) − 𝑝(𝑗))2𝑛
𝑗

𝑛
𝑖 (𝑝(𝑗) − 𝑝(𝑖))2)  

𝐷2𝑎 + 𝐷2 = 2𝐷2                                                                  

 

Since both weighted adjacency matrices are symmetrical, it follows that, 𝑇2𝑎 = 𝑇2 and  𝑃2𝑎 =

𝑃2. Hence, 𝐷2 = 𝐷2𝑎 and thus, 𝐷2 + 𝐷2𝑎 = 2𝐷2. 

 

Term 𝑫𝟑 

In both weight matrices, we have four products of the weights of two adjacent edges. For 

example, in the 𝐺𝑔 weight matrix, we have the following products, (𝛾𝑢𝑣𝛾𝑢ℎ), (𝛾𝑣𝑢𝛾𝑢ℎ),  (𝛾𝑢𝑣𝛾ℎ𝑢) 

and (𝛾𝑣𝑢𝛾ℎ𝑢). There are, hence, four terms, 𝐷3, 𝐷3𝑎, 𝐷3𝑏 and 𝐷3𝑐, each one corresponding to 

each weight product. Since both weight matrices are symmetrical, these four terms are equal 

(eq 16c, see Methods). As consequence, this term is multiplied by four in eq. 16c. (see 

Methods) 

 

The term 𝐷3 is defined as, 

                        𝐷3 = (𝑇3)(𝑃3) , where                                                     (4) 
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 𝑇3 = (∑ ((∑ 𝛾𝑢𝑣
𝑛
𝑣 )2 − ∑ 𝛾𝑢𝑣

2𝑐𝑢
𝑣 )𝑛

𝑢 ), 

𝑃3 = (∑ ((∑ (𝑝(𝑖) − 𝑝(𝑗))2𝑛
𝑗 )

2
− ∑ (𝑝(𝑖) − 𝑝(𝑗))4𝑛

𝑗 )𝑛
𝑖 )  

If the first endpoints of both edges represent the same vertex 𝑢 then,           

𝐷3 = (𝑇3)(𝑃3),                                                                    (5) 

𝑇3 = ∑ ∑ (𝛾𝑢𝑣𝛾𝑢ℎ)𝑛
𝑣,ℎ,𝑣≠ℎ

𝑛
𝑢   

𝑃3 = (∑ ∑ (𝑝(𝑖) − 𝑝(𝑗)))2𝑛
𝑗,ℎ,𝑖≠ℎ 

𝑛
𝑖 (𝑝(𝑖) − 𝑝(ℎ))2)  

if the second endpoint of the first edge and the first endpoint of second edge represent the 

same vertex 𝑢 then,                                                                                              

𝐷3𝑎 = (𝑇3𝑎)(𝑃3𝑎),                                                               (6) 

𝑇3𝑎 = ∑ ∑ (𝛾𝑣𝑢𝛾𝑢ℎ)𝑛
𝑣,ℎ,𝑣≠ℎ

𝑛
𝑢   

𝑃3𝑎 = (∑ ∑ (𝑝(𝑗) − 𝑝(𝑖))2𝑛
𝑗,ℎ,𝑗≠ℎ 

𝑛
𝑖 (𝑝(𝑖) − 𝑝(ℎ))2)  

if the second endpoint of the second edge and the first endpoint of first edge represent the 

same vertex 𝑢 then, 

𝐷3𝑏 = (𝑇3𝑏)(𝑃3𝑏)                                                                    (7) 

𝑇3𝑏 = ∑ ∑ (𝛾𝑢𝑣𝛾ℎ𝑢)𝑛
𝑣,ℎ,𝑣≠ℎ

𝑛
𝑢   

𝑃3𝑏 = (∑ ∑ (𝑝(𝑖) − 𝑝(𝑗))2𝑛
𝑗,ℎ,𝑗≠ℎ 

𝑛
𝑖 (𝑝(ℎ) − 𝑝(𝑖))2)  

if the second endpoint of the second edge and the second endpoint of first edge represent the 

same vertex 𝑢 then, 

𝐷3𝑐 = (𝑇3𝑐)(𝑃3𝑐)                                                                   (8) 

𝑇3𝑐 = ∑ ∑ (𝛾𝑣𝑢𝛾ℎ𝑢)𝑛
𝑣,ℎ,𝑣≠ℎ

𝑛
𝑢   

𝑃3𝑐 = (∑ ∑ (𝑝(𝑗) − 𝑝(𝑖))2𝑛
𝑗,ℎ,𝑗≠ℎ 

𝑛
𝑖 (𝑝(ℎ) − 𝑝(𝑖))2)  

 

  Where, 𝑣, 𝑗 ≠ ℎ,    ∀  1 ≤ 𝑖, 𝑗, 𝑢, 𝑣, ℎ ≤ 𝑛    𝑖, 𝑗, 𝑢, 𝑣, ℎ, 𝑛 ∈ 𝑁,  

Since both weight matrices are symmetrical, 𝑇3 = 𝑇3𝑎 = 𝑇3𝑏 = 𝑇3𝑐  and  𝑃3 = 𝑃3𝑎 = 𝑃3𝑏 = 𝑃3𝑐 

. Hence, 𝐷3 = 𝐷3𝑎 = 𝐷3𝑏 = 𝐷3𝑐 . That’s why in our case, 𝐷3 + 𝐷3𝑏 + 𝐷3𝑐 + 𝐷3𝑑 = 4𝐷3. There 

are 4(n-3)! assignments for each three amino acids to each three vertices connected by two 

adjacent edges. 
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Appendix VIII Neighborhood structure of natural genetic codes 
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Appendix IX Amino acid properties, genomes and empirical estimates of robustness 
Table IX.1 List of amino acid properties scales. Pnum: Numerical identifiers of the amino acid property scale, Loc, L: Local amino acid property:  
Amino acid property scale defined from specific proteins, protein regions/domains and sites. Glo, G: Global amino acid property: Amino acid 
property scale defined for the amino acid regardless the biological context.  aa: amino acid, B: beta, A: Alpha. Asa: accessible Surface area.  

Pnum Loc/Glo Amino acid property scale names References 

1 L Scores for adenine-protein interaction  
Mandel-Gutfreund and Margalit, Nucleic Acids Research, 1998, Vol. 26, No. 10 2306–
2312  

2 L aa Helix Propensities in B/A proteins  Bo Jiang Tao Guo Lei‐Wei Peng Zhi‐Rong Sun, Peptide Science 45(1): 35-49, December 1997 

3 L aa Alpha Helical Propensities Muñoz V, Serrano L. J Mol Biol. 1995 Jan 20;245(3):275-96. 

4 L aa Helix Propensities in alfa proteins Bo Jiang Tao Guo Lei‐Wei Peng Zhi‐Rong Sun, Peptide Science 45(1): 35-49, December 1997 

5 L aa B-sheet Propensities in B+A proteins Bo Jiang Tao Guo Lei‐Wei Peng Zhi‐Rong Sun, Peptide Science 45(1): 35-49, December 1997 

6 L  aa B-sheet Propensities in B proteins  Bo Jiang Tao Guo Lei‐Wei Peng Zhi‐Rong Sun, Peptide Science 45(1): 35-49, December 1997 

7 L aa B-sheet Propensities in B/A proteins Bo Jiang Tao Guo Lei‐Wei Peng Zhi‐Rong Sun, Peptide Science 45(1): 35-49, December 1997 

8 L aa Alpha Helical Propensities Blaber M1, Zhang XJ et al. J Mol Biol. 1994 Jan 14;235(2):600-24. 

9 L Buried Alpha Helix solvent accessibilities  
Michael J. Thompson and Richard A. Goldstein PROTEINS: Structure, Function, and Genetics 
25:38-47 (1996) 

10 L aa Coil Propensities in B+A proteins Bo Jiang Tao Guo Lei‐Wei Peng Zhi‐Rong Sun, Peptide Science 45(1): 35-49, December 1997 

11 L aa Coil Propensities in B/A proteins Bo Jiang Tao Guo Lei‐Wei Peng Zhi‐Rong Sun, Peptide Science 45(1): 35-49, December 1997 

12 L Coil Propensities in B-sheet proteins jiang 1997 Bo Jiang Tao Guo Lei‐Wei Peng Zhi‐Rong Sun, Peptide Science 45(1): 35-49, December 1997 

13 L 
Helix Propensities in pept. whithout Helix-
stabilizing schain interactions. A. Chakrabartty, T. Kortemme, and R. L. Baldwin, Protein Science (1994), 3:843-852. 

14 L Normalized frequency of Alpha-Helix Chou PY, Fasman GD (1974) Biochemistry. 13 (2): 222–245. 

15 L Coil Accessible Surface area  Fan Jiang Protein Engineering vol. 16 no. 9 pp. 651-657, 2003 

16 L aa Alpha Helix Propensities Deléage G1, Roux B.  Et al. Protein Eng. 1987 Aug-Sep;1(4):289-94. 

17 L aa Rotational Potentials in Alpha-Helix 
Bahar,I, Kaplan Mand. Jernigan   R.L PROTEINS: Structure, Function, and Genetics 29:292–308 
(1997) 

18 L Exposed Alpha Helix solvent accessibilities  
Michael J. Thompson' and Richard A. Goldstein PROTEINS: Structure, Function, and Genetics 
25:38-47 (1996) 

19 L Helix Propensities in B+A proteins Bo Jiang Tao Guo Lei‐Wei Peng Zhi‐Rong Sun, Peptide Science 45(1): 35-49, December 1997 

20 L 
conformational preference parameter for 
membrane-Buried helices  Rao M.J.K., Argos P. Biochim. Biophys. Acta 869:197-214(1986). 

21 L Free energy for a-Helical conformation Victor Munoz and Luis Serrano, PROTEINS: Structure, Function, and Genetics 20:301-311 (1994) 

22 L 
 Thermodynamic scale for the aa Helix-forming 
tendencies  O'Neil KT, DeGrado WF. Science. 1990 Nov 2;250(4981):646-51. 

23 L aa Rotational Potentials in Alpha-Helix 
I. Bahar,M. Kaplan,and R.L. Jernigan PROTEINS: Structure, Function, and Genetics 29:292–308 
(1997) 

24 L aa Rotational Potentials in Alpha-Helix 
I. Bahar,M. Kaplan,and R.L. Jernigan PROTEINS: Structure, Function, and Genetics 29:292–308 
(1997) 

25 L aa Rotational Potentials in Alpha-Helix 
I. Bahar,M. Kaplan,and R.L. Jernigan PROTEINS: Structure, Function, and Genetics 29:292–308 
(1997) 

26 L 

Helicity in water, 0222nm Circular dicroism (CD) 
spectra is used as a measure of Helicity (model 
peptides). Liu LP, Deber CM. Biopolymers. 1998;47(1):41-62. 

27 L 
Helicity in n-butanol, 0222nm CD spectra is used 
as a measure of Helicity (model peptides). Liu LP, Deber CM. Biopolymers. 1998;47(1):41-62. 

28 L 
statistical transmembrane Alpha-Helix 
Propensities in single-spanning proteins Liu LP, Deber CM. Biopolymers. 1998;47(1):41-62. 

29 L 
Free energy for a Helical region based on psi-phi 
matrices Victor Munoz and Luis Serrano PROTEINS: Structure, Function, and Genetics 20:301-311 (1994) 

30 L Helix-coil stability constants Altmann KH1, Wójcik J, Vásquez M, Scheraga HA.  Biopolymers. 1990;30(1-2):107-20. 

31 L Helix-forming tendency in thermostable proteins 
Gregory L. Warren Gregory A. Petsko Protein Engineering, Design and Selection, Volume 8, 
Issue 9, September 1995, Pages 905–913 

32 L Helix propensity scale Jianxin Yang, Erik J. Spek, Youxiang Gong, et al Protein Science (1997). 6:1264-1272. 

33 L Helix propensity scale RichardsonJ.S. and Richardson,D.C. (1988) Science, 240, 1648-1652. 
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34 L Helix propagation Propensities Rohl CA, Chakrabartty A, Baldwin RL. Protein Sci. 1996 Dec;5(12):2623-37. 

35 L transmembrane Alpha-Helix propensity Gromiha MM. Protein Eng. 1999 Jul;12(7):557-61 

36 L Helix propensity scale 
Williams R.W., Chang A., Juretic D. and Loughran.S; Biochim Biophys Acta. 1987 Nov 26;916(2):200-
4. 

37 L Asa in coil structures Fan Jiang Protein Engineering vol. 16 no. 9 pp. 651-657, 2003 

38 L Total Asa in folded beta s structures Laurence Lins, Annick Thomas, AND RoberT Brasseur; Protein Sci. 2003 Jul; 12(7): 1406–1417. 

39 L Hydrophilic Asa in folded beta s structures Laurence Lins, Annick Thomas, AND RoberT Brasseur; Protein Sci. 2003 Jul; 12(7): 1406–1417. 

40 L Hydrophobic Asa in folded beta s structures Laurence Lins, Annick Thomas, AND RoberT Brasseur; Protein Sci. 2003 Jul; 12(7): 1406–1417. 

41 L Total Asa in folded coil structures Laurence Lins, Annick Thomas, AND RoberT Brasseur; Protein Sci. 2003 Jul; 12(7): 1406–1417. 

42 L Hydrophilic Asa in folded coil structures Laurence Lins, Annick Thomas, AND RoberT Brasseur; Protein Sci. 2003 Jul; 12(7): 1406–1417. 

43 L Hydrophobic Asa in folded coil structures Laurence Lins, Annick Thomas, AND RoberT Brasseur; Protein Sci. 2003 Jul; 12(7): 1406–1417. 
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Two flexible neighbors, Mean Scale parameters (fit of the B-
factors to a Gumbel distribution) 

Smith DK, Radivojac P, Obradovic Z, Dunker AK, Zhu G.;Protein Sci. 2003 
May;12(5):1060-72. 

210 G 
One rigid and one flexible neighbor, Mean Scale parameters (fit 
of the B-factors to a Gumbel distribution) 

Smith DK, Radivojac P, Obradovic Z, Dunker AK, Zhu G.;Protein Sci. 2003 
May;12(5):1060-72. 
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211 G 
Two rigid neighbors, Mean scale parameters (fit of the B-factors to 
a Gumbel distribution) 

Smith DK, Radivojac P, Obradovic Z, Dunker AK, Zhu G.;Protein Sci. 2003 
May;12(5):1060-72. 

212 G 
Total Mean scale parameters (fit of the B-factors to a Gumbel 
distribution) 

Smith DK, Radivojac P, Obradovic Z, Dunker AK, Zhu G.;Protein Sci. 2003 
May;12(5):1060-72. 

213 G Attenuation of the non local electrostatic energies Avbelj F, Fele L.; J Mol Biol. 1998 Jun 12;279(3):665-84. 

214 L Scores for thymine-protein interaction  
Mandel-Gutfreund and Margalit, Nucleic Acids Research, 1998, Vol. 26, No. 10 
2306–2312  

215 G Total metabolic costs of Amino acid biosynthesis 
Hiroshi Akashi and Takashi Gojobori; Proc Natl Acad Sci U S A. 2002 Mar 19; 99(6): 
3695–3700. 

216 L Buried Turn propensity 
Michael J. Thompson' and Richard A. Goldstein; PROTEINS: Structure, Function, 
and Genetics 25:38-47 (1996) 

217 L Exposed Turn propensity 
Michael J. Thompson' and Richard A. Goldstein; PROTEINS: Structure, Function, 
and Genetics 25:38-47 (1996) 

218 L Averaged Turn Propensities in transmembrane Helices 
Monné M, Nilsson I, Elofsson A, von Heijne G.; J Mol Biol. 1999 Nov 5;293(4):807-
14. 

219 L Normalized Turn potential in transmembrane Helices 
Monné M, Nilsson I, Elofsson A, von Heijne G.; J Mol Biol. 1999 Nov 5;293(4):807-
14. 

220 L Turn propensity Deléage G, Roux B.; Protein Eng. 1987 Aug-Sep;1(4):289-94. 

221 L Turn propensity 
CAROLA DAFFNER, GARETH CHELVANAYAGAM,’ AND PATRICK ARGOS; 
Protein Science (1994), 32376-882. 

222 L Potentials for position i of the type VIII Turn 
Harri Santa, Markku Ylisirnio, Tommi Hassinen; Protein Engineering vol.15 no.8 
pp.651–657, 2002 

223 L Potentials for position i+1 of the type VIII Turn 
Harri Santa, Markku Ylisirnio, Tommi Hassinen; Protein Engineering vol.15 no.8 
pp.651–657, 2002 

224 L Potentials for position i+2 of the type VIII Turn 
Harri Santa, Markku Ylisirnio, Tommi Hassinen; Protein Engineering vol.15 no.8 
pp.651–657, 2002 

225 L Potentials for position i+3 of the type VIII Turn 
Harri Santa, Markku Ylisirnio, Tommi Hassinen; Protein Engineering vol.15 no.8 
pp.651–657, 2002 

226 G Residue volumes 
Jerry Tsai, Robin Taylor, Cyrus Chothia and Mark Gerstein; J. Mol. Biol. (1999) 290, 
253-266 

227 G Residue volumes 
Jerry Tsai, Robin Taylor, Cyrus Chothia and Mark Gerstein; J. Mol. Biol. (1999) 290, 
253-266 

228 G Residue volumes 
Jerry Tsai, Robin Taylor, Cyrus Chothia and Mark Gerstein; J. Mol. Biol. (1999) 290, 
253-266 

229 L Enthalpies of Gly-X-Hyp with aa in position x 
Anton V. Persikov, John A. M. Ramshaw, Alan Kirkpatrick,and Barbara Brodsky; 
Biochemistry 2000, 39, 14960-14967 

230 L Occurrences of aa in position x of Gly-X-Hyp  
Anton V. Persikov, John A. M. Ramshaw, Alan Kirkpatrick,and Barbara Brodsky; 
Biochemistry 2000, 39, 14960-14967 

231 L Enthalpies of  Gly-Pro-Y with aa in position y 
Anton V. Persikov, John A. M. Ramshaw, Alan Kirkpatrick,and Barbara Brodsky; 
Biochemistry 2000, 39, 14960-14967 

232 L Occurrences of aa in position y of Gly-Pro-Y 
Anton V. Persikov, John A. M. Ramshaw, Alan Kirkpatrick,and Barbara Brodsky; 
Biochemistry 2000, 39, 14960-14967 

233 G 
Principal property scale Z1 (Hydrophobicity) (QSAM methods: PLS 
and PCA) 

Sandberg M, Eriksson L, Jonsson J, Sjöström M, Wold S. J Med Chem. 1998 Jul 
2;41(14):2481-91. 

234 G 
Principal property scale Z2 (molecular weight, van der Waals 
volume) (QSAM methods: PLS and PCA) 

Sandberg M, Eriksson L, Jonsson J, Sjöström M, Wold S. J Med Chem. 1998 Jul 
2;41(14):2481-91. 

235 G 
Principal porperty scale Z3(electrophilicity, electronegativity) 
(QSAM methods: PLS and PCA) 

Sandberg M, Eriksson L, Jonsson J, Sjöström M, Wold S. J Med Chem. 1998 Jul 
2;41(14):2481-91. 
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Table IX.2 The number of randomly generated codes more robust than the standard genetic code for 226 Amino 
acid property scales (Pt, P1, P2 and P3). Genetic code robustness defined from the unbiased-weighted mean 
phenotypic change computed under the block-based model. Pt: The number of genetic codes more robust than 
the standard code for the whole block-based model. P1, P2 and P3: The number of genetic codes more robust 
than the standard code for the partial block-based models of edges between codon positions 1, 2 and 3, 
respectively. Pnumb: Numerical identifiers of the Amino acid property scales. aa: Amino acids. A: Alpha.B: beta, 
Asa: accessible Surface area.  
 Pnumb Amino acid property names P1  P2 P3 Pt 

1 Scores for adenine-protein interaction  1924977 1799147 990679 445281 

2 aa Helix Propensities in B/A proteins  7889574 9467636 6529127 9413418 

3 aa Alpha Helical Propensities 8730000 8853246 1238692 8462966 

4 aa Helix Propensities in alfa proteins 6809377 6262395 2096990 8763340 

5 aa B-sheet Propensities in B+A proteins 92495 8097226 997314 920819 

6  aa B-sheet Propensities in B proteins  515434 7692498 83276 894800 

7 aa B-sheet Propensities in B/A proteins 540133 6725196 1195493 1224272 

8 aa Alpha Helical Propensities 8279072 8488203 473810 8417431 

9 Buried Alpha Helix solvent accessibilities  5069743 9918349 341644 8021623 

10 aa Coil Propensities in  B+A proteins 1556324 9867968 2518686 6588562 

11 aa Coil Propensities in B/A proteins 1242745 9738595 1340579 5491289 

12 Coil Propensities in B-sheet proteins jiang 1997 495699 8325132 89826 1299296 

13 Helix Propensities in pept. whithout Helix-stabilizing schain interactions. 8933750 9201058 416078 8507273 

14 Normalized frequency of Alpha-Helix 1371506 5567746 2856733 2016153 

15 coil Accessible Surface area  6581583 9811455 1859170 8637350 

16 aa Alpha Helix Propensities 7119445 9299079 3938994 8595049 

17 aa Rotational Potentials in Alpha-Helix 8623714 9536758 880679 8826639 

18 Exposed Alpha Helix solvent accessibilities  353487 2096665 1972102 243252 

19 Helix Propensities in B+A proteins 7247316 9444656 6348144 9181857 

20 conformational preference parameter for membrane-Buried helices  45657 6404750 236421 57392 

21 Free energy for a-Helical conformation 6954186 8794040 2495724 7853168 

22  thermodynamic scale for the aa Helix-forming tendencies  8546526 8425752 1472612 8441056 

23 aa Rotational Potentials in Alpha Helix 8448518 9260655 552990 8475045 

24 aa Rotational Potentials in Alpha Helix 7229330 8326810 3491223 7787549 

25 aa Rotational Potentials in Alpha Helix 6131808 7727083 2418808 6524634 

26 
Helicity in water, 0222nm Circular dicroism (CD) spectra is used as a 
measure of Helicity (model peptides). 8176816 9466091 1224835 8707127 

27 
Helicity in n-butanol, 0222nm CD spectra is used as a measure of 
Helicity (model peptides). 2295748 8215438 247 3043568 

28 
statistical transmembrane Alpha-Helix Propensities in single-spanning 
proteins 21906 9477014 324530 662700 

29 Free energy for a Helical region based on psi-phi matrices 8409108 9356993 1469688 8617791 

30 Helix-coil stability constants 7068129 7157722 1295430 6923280 

31 Helix-forming tendency in thermostable proteins 6000901 8806880 4705404 7886743 

32 Helix propensity scale 8526402 7689640 481975 7528482 

33 Helix propensity scale 8639387 9308143 1959029 8909942 

34 Helix propagation Propensities 9031317 9154745 717207 8530176 

35 transmembrane Alpha-Helix propensity 9218 7298338 61939 23968 

36 Helix propensity scale 4309673 9314768 3550941 7340990 

37 Asa in coil structures 551412 5912867 4742413 1876342 
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Pnumb name P1  P2 P3 Pt 

38 Total Asa in folded beta s structures 17446 2607333 312755 2181 

39 Hydrophilic Asa in folded beta s structures 35323 5618438 1441403 168640 

40 Hydrophobic Asa in folded beta s structures 259825 9829358 132552 1548712 

41 Total Asa in folded coil structures 32370 3928490 64573 5105 

42 Hydrophilic Asa in folded coil structures 37462 6155263 12956 19962 

43 Hydrophobic Asa in folded coil structures 41089 4212336 70363 7607 

44 Hydrophilic Asa in folded proteins 6998 4999102 58580 4266 

45 Hydrophobic Asa in folded proteins 44037 4605839 62675 9885 

46 Total Asa in folded proteins 21020 4243877 49401 3458 

47 Asa in Alpha Helix 401872 5389053 1209952 559566 

48 Accessible Surface area 22243 2728341 131094 3284 

49 Accessible Surface area in Beta strands  1584771 5088808 5523351 2893860 

50 Total accessible Surface area 4738399 4339589 5490501 4576471 

51 Hydrophilic accessible Surface area 534952 9700672 817940 3432830 

52 Hydrophobic accessible Surface area 140141 1482935 412026 8537 

53 Optimized beta-structure-coil equilibrium constant 8992186 8510938 597101 8470503 

54 Buried Beta sheet solvent accessibility 583761 4361765 167076 280715 

55 B sheet propensity 277973 8677042 21319 1270462 

56 
Propensity of Amino acid residues to occur in Isolated E‐
strand 2497049 7485229 88683 2480691 

57 
Propensity of Amino acid residues to occur in Edge β‐
strand  8147176 7461063 121795 7277581 

58 Exposed Beta sheet solvent accessibility 4418271 8627193 2792561 6416356 

59 
Propensity of Amino acid residues to occur in Inner β‐
strand  289708 8115925 27424 738851 

60 B sheet propensity 3261796 9809546 1661868 7301929 

63 Free energy for B-strand region 1113933 6845199 54071 1113625 

64 Free energy for B-strand region 7727065 7249105 14077 7135887 

65 Free energy for B-strand conformation 8425445 7182219 159848 7638946 

71 Cytosine_protein interaction 445870 649081 8928751 334373 

72 Lipid accessibilities within the transmembrane Helix 1 14214 6237910 316687 35720 

73 Buried coil solvent accessibility 1448212 2847693 8969909 3092145 

74 Exposed coil solvent accessibility 1329699 690902 2264976 2457166 

75 Random coil propensity 2831186 9233626 2581698 6459179 

76 Position-Dependent Propensities for Polyproline II Helices 5474497 6148001 87400 5237918 

77 Position-Dependent Propensities for Polyproline II Helices 7097378 6913250 5273917 7541368 

78 Position-Dependent Propensities for Polyproline II Helices 2558446 1381159 5239947 1416711 

79 Position-Dependent Propensities for Polyproline II Helices 5970287 7619804 1085551 6071910 

80 Position-Dependent Propensities for Polyproline II Helices 8068206 6250373 1012899 6818306 

81 Amino Acid Propensities in Polyproline II Helices L3 6682899 6602984 416526 6306322 

82 Position-Dependent Propensities for Polyproline II Helices 6373838 8542176 230559 7265264 

 



164 
 

 

83 Position-Dependent Propensities for Polyproline II Helices 4541942 6655113 2842128 4907366 

84 Position-Dependent Propensities for Polyproline II Helices 8486424 4754660 4651303 7101135 

85 Amino Acid Propensities in Polyproline II Helices L+3 6819500 6166696 1422182 6108347 

86 Position-Dependent Propensities for Polyproline II Helices 7564883 6375653 1770173 6715413 

87 Position-Dependent Propensities for Polyproline II Helices 6725994 4122457 1284211 4264444 

88 Position-Dependent Propensities for Polyproline II Helices 7289649 6373628 2982414 6714235 

89 
difference between Side-chain conformational entropies of Amino 
acids in the a-Helical and the coil states 4603373 6839137 3928732 5508765 

90 
Conformational entropy differences between free and Buried states 
of aa Side-chains 3579483 4354921 5341142 3798707 

91 Absolute entropy 7290912 9274785 4897379 4897379 

92 
The Side-chain conformational entropies of Amino acids in the coil 
states 8101860 5441874 484300 5388714 

93 Backbone Entropy of All Residues in the Coil Library 7344823 7995020 4538 6724890 

94 Mean changes in Side-chain conformational entropy 5245400 4424159 2561957 3898449 

95 
The Side-chain conformational entropies of Amino acids in the a-
Helical structures 7750735 5495525 906521 5450036 

96 Side-chain conformational entropy 333112 2878251 4748683 575899 

97 Side-chain conformational entropy         

98 Side-chain conformational entropy 8613255 8756413 205198 8096713 

99 Sequence-dependence of backbone entropy OPLS-AA-01 8322602 7917573 1615708 7984508 

100 Sequence-dependence of backbone entropy AMBER 94 5172227 5493142 5938442 5593827 

101 Sequence-dependence of backbone entropy G-S-94 7960326 5128673 584218 5174473 

102 Sequence-dependence of backbone entropy OPLS-UA 6617863 8117723 1096385 6667360 

103 Scores for guanine-protein interaction  5179699 7454362 151701 3980913 

104 High thermodynamic stability 7533046 4955767 335379 4868366 

105  Alpha Helix 1 (p15) Propensities 116781 3628998 7596702 1261992 

106  Alpha Helix 2 (p15) Propensities 4456171 8789916 1527457 6082011 

107  Alpha Helix 3 (p15) Propensities 6154446 9225965 6490426 8720573 

108 Hydrophobicity 179975 8416664 128537 748453 

109 Lipid accessibilities within the transmembrane Helix 2 2440559 1625350 4596927 1366721 

110 
The free energy difference due to the main-chain conformational 
entropy between the a-Helical and the coil states 7750735 5495525 906521 5450036 

111 Surface propensity scale 95583 6863314 2014565 491304 

112 
Metabolic costs of Amino acid biosynthesis, numbers of available 
hydrogen atoms in NADH, NADPH, and FADH2 253301 354505 2521310 23563 

113 scaled Side Chain Hydrophobicity 124358 7792909 27916 183161 

114 
Hydrophobicity, free energies of transfer of aa from the solution to 
the Surface 6116 8842175 197818 60069 

115 Hydrophobicity, for detecting amphipathic structures in proteins 1117 7892854 190589 11390 

116 Hydrophobicity, (retention times on HPLC,  ph 3) 40275 6914710 70644 94563 

117 Hydrophobicity, (retention times on HPLC, ph 7.5 ) 13191 7733114 4238 38425 

118 Consensus normalized Hydrophobicity scale 1276799 9238166 1564296 4906093 

120 Hydrophobicity,Partition energy 36520 6921425 666644 197640 

121 Hydrophilicity 287388 3306331 683209 208967 

122 pure Hydrophobicity scale 51545 5097606 3011013 186840 
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123 Hydrophobicity 214555 1230241 840738 20810 

124 Hydrophobicity 39162 3736322 704501 77570 

125 Hydropathy index 4140 9036906 141114 79875 

126 
Hydrophobicity, free energy of transfer of aa from cyclohexylpyrrolidone 
to water 3695701 5140584 32005 1752954 

127 Hydrophobicity, free energy of transfer of aa from etanol to water 1284395 4372422 1030877 915566 

128 Hydrophobic parameter 385139 4417404 837662 433838 

129 Hydrophobicity, ph 2.1 (retention times on HPLC) 122928 3057784 872134 72620 

130 Hydrophobicity, ph 7.4 (retention times on HPLC) 15533 919859 1258192 5236 

131 Hydrophobicity, partition coefficients (interior and Surface aa) 38972 5374322 936474 145386 

132 Hydrophobicity, contact energies derived from protein structure 2452 5686891 3389 903 

133 Hydrophobicity, Total free energy of hydration 1850224 9969652 464943 7084216 

134 Helix propensity 8760674 8549955 1060286 8457862 

135 Hydrophilicity, HPLC 6417 5484519 124182 9882 

136 
Average ratios between residue occurrences at the intra- and 
extracellular Sides of the membrane 3922991 4685261 9363279 6069337 

137 Hydrophobicity,Accessibility reduction ratio 25620 8306236 91019 111660 

138 
Hydrophilicity of polar Amino acid Side-chains is markedly reduced by 
flanking peptide bonds 492302 7962089 144024 954027 

139 distribution of Amino acid residues in transmembrane a-Helix bundles 57377 4938990 3018017 440476 

141 Transmembrane central aa frequence 52231 8691686 976515 445829 

142 Transmembrane extracelular aa frequence 46158 5058868 1679970 194044 

143 Transmembrane intracelular aa frequence 1231210 1753113 3864326 744985 

144 Transmembrane both termini aa frequence 301725 5593613 3712822 1057753 

145 Transmembrane Total aa frequence 1753505 2323384 4210348 1269574 

146 Transfer free energy to lipophilic phase 2387228 9487692 2677701 6552722 

147 Hidrophobicity (HPLC) 160160 1619095 27388 4536 

148 
Hydrophobicity, Free energies of transfer of AcWl-X-LL peptides from 
bilayer interface to   water 62823 77618 291333 325 

149 Polar requirement 34153 2266517 998 2265 

150 Hydrophobicity,  Hydration potential 3245500 9399974 1046444 6704433 

151 Polarity 1441678 7582381 710033 2052661 

152 Propensities of Amino acids for all protein-protein interfaces 3006235 618933 1450316 448162 

153 Propensities of Amino acids for type I protein-protein interfaces 1035224 7989 3477963 14190 

154 Propensities of Amino acids for type II protein-protein interfaces 825245 5618523 3571343 1657399 

155 Propensities of Amino acids for type III protein-protein interfaces 8760330 6567012 4310579 8080650 

156 aa isoelectric point 5833210 4381307 7397764 5638653 

157 L1 (p15) Propensities 7758934 2232066 4834520 5207232 

158 L2 (p15) Propensities 9855716 7123734 893692 8789744 

159 L3 (p15) Propensities 225994 3829890 7128463 1317715 

160 Average 11-20 Long-range contacts per residue  403558 2068621 22515 48439 

161 Average 21-30 Long-range contacts per residue  505563 3945109 2613838 863509 

162 Average 31-40 Long-range contacts per residue  569085 1828559 2153612 361094 

163 Average 41-50 Long-range contacts per residue  1478197 3740950 1751568 1196595 
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164 Average p50 Long-range contacts per residue  1549 5211155 102549 5188 

165 Average 4-10 Long-range contacts per residue  58617 3295092 72985 25473 

166 LH (p15) Propensities 6345018 7641084 1282205 6625884 

167 Medium Longth linker propensity 7406137 1753322 1892130 3475392 

168 Longth 1 linker propensity 8804812 1892583 1716712 5430194 

169 Longth 2 linker propensity 6791478 2415935 5424295 4601448 

170 Longth 3 linker propensity 5431494 1956150 1975137 2333304 

171 Total linker propensity 8671865 1381509 992685 4345468 

172 Helical linker propensity 8031137 8700418 5140224 8795068 

173 non-Helical linker propensity 6795241 6955893 999229 6557131 

174 Small Longth linker propensity 1690 2414642 126271 1060 

175 Long Longth linker propensity 5148804 1086404 2580974 1698438 

176 Propensity of Amino acid residues to occur loops 1306026 9355931 1509077 5021718 

177 Low thermodynamic stability 2625379 2970315 3120171 1806119 

178 m1 (p15) Propensities 21933 6315805 7147280 977469 

179 m2 (p15) Propensities 1265629 9355387 328735 4289250 

180 m3(p15) Propensities 9190572 7172046 426028 7930021 

181 
The free energy difference due to the main-chain conformational 
entropy between the beta strand and the coil states 1529871 8011611 1628956 3312602 

182 Average Medium-range contacts in globular proteins 7105547 9578232 1984091 8509082 

183 
Two rigid neighbors, Mean Location parameters (fit of the B-factors 
to a Gumbel distribution) 101076 3445063 1258703 108422 

184 
Two flexible neighbors, Mean Location parameters (fit of the B-
factors to a Gumbel distribution) 46361 1564039 548437 5540 

185 
One rigid and one flexible neighbor, Mean Location parameters (fit of 
the B-factors to a Gumbel distribution) 54856 1698797 640908 7414 

186 
Mean Location parameters (fit of the B-factors to a Gumbel 
distribution) 59039 2156701 878327 18139 

187 Amino acid melting point 798202 6625835 2830792 2150690 

188 Medium thermodynamic stability 104868 5883 3140009 1643 

189 Amino acid molecular weight  2692101 2001593 4010199 1549599 

190 Free energy of residues at the N terminal position 1 in α-helices 1233837 1203879 3455441 761192 

191 Free energy of residues at the N terminal position 2 in α-helices 7735077 8636267 42733 6781336 

192 Free energy of residues at the N-cap  position in α-helices 528002 1161642 7887773 1141117 

193 Average partner number 579993 1615198 1069427 146479 

194 Amino acid optical rotation 6395794 6616239 2063102 5918243 

195 other  (p15) Propensities 2139463 8071802 955599 4241465 

196 
Metabolic costs of Amino acid biosynthesis,numbers of High-energy 
phosphate bonds in ATP and GTP molecules 505365 70542 5669636 102609 

197 phi (p15) Propensities 6083155 7152755 770449 6103305 

198 Amino acid PK-C 3217516 5512449 6013282 4624161 

199 Amino acid PK-N 7105149 4428613 849223 4561508 

200 Propensity of Amino acid residues to occur polyproline type Helix 6553621 8041859 472957 7035187 

201 Amino acid Propensities in polyproline II helices 7354082 6096504 2444232 6360025 

202   r1 (p15) Propensities 5516362 8998399 1434158 6734005 
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203   r2 (p15) Propensities 5483769 6399091 4655908 5991878 

204   r3 (p15) Propensities 7424334 7755301 282251 7427097 

205 Sidechain Radii  5486645 4311436 4161890 4529815 

206 cis-trans prolyl isomerisation Rate constants 3723672 5842676 965741 2954065 

207 trans-cis prolyl isomerisation Rate constants 7581049 2081287 1930515 3752661 

208 Refractivity  2502312 314134 928112 176225 

209 
Two flexible neighbors, Mean Scale parameters (fit of the B-factors to a Gumbel 
distribution) 20277 1089522 72640 236 

210 
One rigid and one flexible neighbor, Mean Scale parameters (fit of the B-factors 
to a Gumbel distribution) 111931 4319109 13293 18129 

211 
Two rigid neighbors, Mean scale parameters (fit of the B-factors to a Gumbel 
distribution) 16888 4774643 179237 20564 

212 Total Mean scale parameters (fit of the B-factors to a Gumbel distribution) 49137 3064301 35682 4582 

213 attenuation of the non local electrostatic energies 2630395 9469340 218354 5700217 

214 Scores for thymine-protein interaction  5998623 1490661 24218 1260423 

215 Total metabolic costs of Amino acid biosynthesis 389884 49543 4143881 19013 

216 Buried Turn propensity 485692 9362108 46465 1621988 

217 Exposed Turn propensity 3653704 7619070 2880992 5093060 

218 Averaged Turn Propensities in transmembrane Helices 475510 4569912 228103 149199 

219 Normalized Turn potential in transmembrane Helices 141535 8151384 57637 213148 

220 Turn propensity 1033995 9155264 26860 2791472 

221 Turn propensity 1647186 9498542 1934948 5380069 

222 Potentials for position i of the type VIII Turn 5899286 7944322 922532 6222882 

223 Potentials for position i+1 of the type VIII Turn 2943344 5671896 737542 2548079 

224 Potentials for position i+2 of the type VIII Turn 984446 7028347 2868842 2619576 

225 Potentials for position i+3 of the type VIII Turn 6724516 8227120 2056020 7524673 

226 Residue volumes 2073074 1832223 5102480 1399870 

227 Residue volumes 1993660 2372185 4694130 1535166 

228 Residue volumes 2335125 1935311 5223061 1625665 

229 Enthalpies of Gly-X-Hyp with aa in position x 1994458 4937706 5631645 3146093 

230 Occurrences of aa in position x of Gly-X-Hyp  6456005 6368349 1661830 5903596 

231 Enthalpies of Gly-Pro-Y with aa in position y 1511364 5088943 6448598 3130247 

232 Occurrences of aa in position y of Gly-Pro-Y 6205366 6611046 655215 5820307 

233 Principal property scale Z1 (Hydrophobicity) (QSAM methods: PLS and PCA) 26457 7832670 74321 46695 

234 
Principal property scale Z2 (molecular weight, van der Waals volume) (QSAM 
methods: PLS and PCA) 2441179 2116342 3493935 1357986 

235 
Principal porperty scale Z3(electrophilicity, electronegativity) (QSAM methods: 
PLS and PCA) 4825834 4227768 8899181 6143427 



168 
 

 

 

Table IX.3 List of Non-thermophiles (N=418) and thermophiles (N=324). Non-thermophiles: mesophilic 
and psychrophilic prokaryotes. Thermophiles: thermophilic and hyperthermophilic prokaryotes. TS: 
Thermic status: NT: Non-thermophiles, H: Thermophiles, Taxid: NCBI Taxonomy identifier, Assembly: 
NCBI Refseq Assembly identifiers. CDS: The coding sequence sizes.  

Procaryote species and strain names  TS Assembly Taxid CDS 
Absiella dolichum DSM 3991 NT GCF_000154285.1 428127 2101 

Acholeplasma laidlawii PG-8A NT GCF_000018785.1 441768 1374 

Achromobacter insuavis AXX-A NT GCF_000219745.1 1003200 5920 

Acidovorax avenae subsp, avenae NT GCF_003029785.1 80870 3960 

Acinetobacter baumannii DU202 NT GCF_000498375.2 1370126 3840 

Acinetobacter haemolyticus TG19599 NT GCF_000302315.1 1221297 3054 

Acinetobacter johnsonii SH046 NT GCF_000162055.1 575586 3251 

Acinetobacter junii SH205,txt NT GCF_000162075.1 575587 3069 

Acinetobacter lwoffii ATCC 9957 = CIP 70.31 NT GCF_000369125.1 1311804 3203 

Actinobacillus pleuropneumoniae serovar 12 str. 1096 NT GCF_000178635.1 754261 1977 

Actinobacillus succinogenes 130Z NT GCF_000017245.1 339671 2101 

Actinomyces bovis NT GCF_900444995.1 1658 2062 

Aequorivita antarctica,txt NT GCF_900489835.1 153266 3431 

Aequorivita capsosiphonis DSM 23843 NT GCF_000429125.1 1120951 3530 

Aequorivita sublithincola DSM 14238 NT GCF_000265385.1 746697 3134 

Aeromonas hydrophila 145 NT GCF_000586035.1 1273135 4256 

Aeromonas molluscorum 848 NT GCF_000388115.1 1268236 3596 

Aeromonas salmonicida subsp. Salmonicida NT GCF_001643305.1 29491 4108 

Aggregatibacter actinomycetemcomitans serotype d str. SA3033 NT GCF_001596385.1 1434260 2031 

Aggregatibacter actinomycetemcomitans serotype e str. ANH9776 NT GCF_001596315.1 1434265 1678 

Agrobacterium tumefaciens str. Cherry 2E-2-2 NT GCF_000349865.1 1281779 4976 

Agromyces cerinus subsp. cerinus NT GCF_900142065.1 232089 3788 

Alcaligenes faecalis subsp. faecalis NCIB 8687 NT GCF_000275465.1 1156918 3409 

Aliivibrio logei ATCC 35077 NT GCF_000390125.1 1269941 4631 

Aliivibrio salmonicida LFI1238, NT GCF_000196495.1 316275 4004 

Alteromonas macleodii str. 'Balearic Sea AD45' NT GCF_000300175.1 1004787 3926 

Anaeroarcus burkinensis DSM 6283 NT GCF_000430605.1 1120985 3060 

Aquimarina latercula DSM 2041 NT GCF_000430645.1 1121006 5376 

Aquimarina muelleri DSM 19832 NT GCF_000430665.1 1121007 3893 

Arcobacter nitrofigilis DSM 7299 NT GCF_000092245.1 572480 3086 

Arcticibacter svalbardensis MN12-7 NT GCF_000403135.1 1150600 3898 

Arthrobacter globiformis NBRC 12137 NT GCF_000238915.1 1077972 4245 

Arthrobacter luteolus NBRC 107841 NT GCF_001552075.1 1216973 3508 

Arthrobacter psychrolactophilus NT GCF_003219795.1 92442 3396 

Azonexus hydrophilus DSM 23864 NT GCF_000429605.1 1121032 3100 

Azospira oryzae PS NT GCF_000236665.1 640081 3425 

Azotobacter vinelandii CA6 NT GCF_000380365.1 1283331 4776 

Bacillus psychrosaccharolyticus ATCC 23296 NT GCF_000305495.1 1174504 4247 

Bacillus subtilis subsp. subtilis str. 168 NT GCF_000155325.1 224308 4142 

Bacillus thuringiensis serovar canadensis NT GCF_002147125.1 180855 5843 

Bacteroides ovatus ATCC 8483 NT GCF_000154125.1 411476 4769 

Bacteroides thetaiotaomicron VPI-5482 NT GCF_000011065.1 226186 4816 

Bartonella henselae str. Houston-1 NT GCF_000046705.1 283166 1520 

Bdellovibrio bacteriovorus str, NT GCF_000525675.1 765869 2760 

Bifidobacterium longum subsp. infantis ATCC 15697 = JCM 1222 = DSM 
20088 

NT GCF_000269965.1 391904 2443 

Bordetella bronchiseptica RB50 NT GCF_000195675.1 257310 4993 

Bordetella pertussis STO1-CHOC-0017 NT GCF_000479755.1 1331277 3366 

Borrelia recurrentis A1 NT GCF_000019705.1 412418 1029 

Borreliella garinii IPT120 NT GCF_000501815.1 1408846 690 
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Prokaryote species and strain names  TS Assembly taxid CDS 
Brachybacterium squillarum M-6-3 NT GCF_000225825.1 1074488 2760 

Brachyspira hyodysenteriae ATCC 27164 NT GCF_000383255.1 1266923 2586 

Bradyrhizobium japonicum USDA 135 NT GCF_000472945.1 1038863 6704 

Brevundimonas aveniformis DSM 17977 NT GCF_000428765.1 1121123 2547 

Brucella melitensis ATCC 23457 NT GCF_000022625.1 546272 3152 

Brucella pinnipedialis B2/94 NT GCF_000221005.1 520461 3276 

Burkholderia pseudomallei DL36 NT GCF_002887895.1 1436041 6808 

Caedibacter taeniospiralis,txt NT GCF_002803295.1 28907 1187 

Campylobacter coli BIGS0010 NT GCF_000314205.1 1247735 1606 

Campylobacter hyointestinalis subsp. hyointestinalis LMG 9260 NT GCF_001643955.1 1031746 1704 

Campylobacter jejuni subsp. jejuni NT GCF_002804585.1 32022 1543 

Candidatus Blochmannia floridanus NT GCF_000043285.1 203907 587 

Candidatus Blochmannia vafer str. BVAF NT GCF_000185985.2 859654 585 

Candidatus Pelagibacter ubique HTCC7217 NT GCF_000702645.1 1400525 1473 

Cardiobacterium hominis ATCC 15826 NT GCF_000160655.1 638300 2322 

Cardiobacterium valvarum F0432 NT GCF_000239355.1 797473 2334 

Carnobacterium funditum DSM 5970 NT GCF_000744185.1 1449337 2035 

Carnobacterium maltaromaticum ATCC 35586 NT GCF_000238575.1 1087479 3295 

Cellulophaga algicola DSM 14237 NT GCF_000186265.1 688270 4156 

Cellulophaga baltica NN016038 NT GCF_000477035.2 1348585 3876 

Cellulophaga lytica DSM 7489 NT GCF_000190595.1 867900 3248 

Chlamydia trachomatis B/TZ1A828/OT NT GCF_000026905.1 672161 905 

Chryseobacterium glaciei NT GCF_001648155.1 1685010 4277 

Chryseobacterium greenlandense NT GCF_001507325.1 345663 3599 

Citrobacter freundii GTC 09629 NT GCF_000388155.1 1297584 4792 

Citrobacter koseri ATCC BAA-895 NT GCF_000018045.1 290338 4321 

Clavibacter michiganensis subsp. michiganensis NCPPB 382 NT GCF_000063485.1 443906 3114 

Clavibacter nebraskensis NCPPB 2581 NT GCF_000355695.1 1097677 2801 

Cloacibacillus evryensis DSM 19522 NT GCF_000585335.1 866499 3009 

Clostridium botulinum E3 str. Alaska E43 NT GCF_000020285.1 508767 3132 

Clostridium botulinum NCTC 2916 NT GCF_000171055.1 445335 3571 

Clostridium kluyveri DSM 555 NT GCF_000016505.1 431943 3804 

Clostridium perfringens str. 13 NT GCF_000009685.1 195102 2593 

Clostridium vincentii NT GCF_002995745.1 52704 3246 

Colwellia piezophila ATCC BAA-637 NT GCF_000378625.1 1265503 4377 

Colwellia polaris NT GCF_002104515.1 326537 3688 

Colwellia psychrerythraea 34H NT GCF_000012325.1 167879 4441 

Conexibacter woesei DSM 14684 NT GCF_000025265.1 469383 5868 

Crocosphaera watsonii WH 0401 NT GCF_001039615.1 555881 3640 

Cryobacterium flavum NT GCF_900103805.1 1424659 3682 

Cryobacterium levicorallinum NT GCF_900113585.1 995038 3290 

Cryobacterium luteum NT GCF_900110125.1 1424661 3452 

Cryobacterium psychrotolerans NT GCF_900101115.1 386301 2930 

Cryobacterium roopkundense NT GCF_000764165.1 1001240 3849 

Cryptobacterium curtum DSM 15641 NT GCF_000023845.1 469378 1337 

Cupriavidus oxalaticus NBRC 13593 NT GCF_001592245.1 1349762 5824 

Cystobacter fuscus DSM 2262 NT GCF_000335475.2 1242864 9615 

Cytophaga aurantiaca DSM 3654 NT GCF_000379725.1 1121373 3726 

Cytophaga xylanolytica NT GCF_003254275.1 990 3339 

Deinococcus frigens DSM 12807 NT GCF_000701425.1 1121380 3700 

Deinococcus marmoris DSM 12784 NT GCF_000701405.1 1121381 4297 

Deinococcus radiodurans ATCC 13939 NT GCF_000687895.1 1408434 3030 

Delftia acidovorans CCUG 274B NT GCF_000411195.1 883101 6196 
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Prokaryote species and strain names TS Assembly Taxid CDS 
Demequina aestuarii NT GCF_000975095.1 327095 2554 

Dermabacter hominis NBRC 106157 NT GCF_001570785.1 1349750 1847 

Dichelobacter nodosus VCS1703A NT GCF_000015345.1 246195 1277 

Duganella zoogloeoides ATCC 25935 NT GCF_000383895.1 1261617 5273 

Eikenella corrodens CC92I NT GCF_000504685.1 1073362 2085 

Enhydrobacter aerosaccus NT GCF_900167455.1 225324 6405 

Enterococcus italicus DSM 15952 NT GCF_001885995.1 888064 2154 

Erwinia amylovora LA635 NT GCF_000513415.1 1407062 3404 

Erwinia pyrifoliae DSM 12163 NT GCF_000026985.1 644651 3561 

Erysipelothrix rhusiopathiae ATCC 19414 NT GCF_000160815.2 525280 1612 

Escherichia albertii NBRC 107761 NT GCF_000759775.1 1115511 4125 

Escherichia coli DSM 30083 = JCM 1649 = ATCC 11775 NT GCF_000734955.1 866789 4859 

Faecalibacterium prausnitzii M21/2 NT GCF_000154385.1 411485 2868 

Ferrimonas balearica DSM 9799 NT GCF_000148645.1 550540 3746 

Fibrobacter succinogenes subsp. elongatus NT GCF_003149165.1 706585 2816 

Flavobacterium antarcticum DSM 19726 NT GCF_000419685.1 1111730 2702 

Flavobacterium flevense NT GCF_900142775.1 983 3446 

Flavobacterium frigidarium DSM 17623 NT GCF_000425505.1 1121890 3058 

Flavobacterium frigoris PS1 NT GCF_000252125.1 1086011 3311 

Flavobacterium micromati NT GCF_900129585.1 229205 3072 

Flavobacterium psychrophilum FPG3 NT GCF_000754405.1 1452724 2311 

Flavobacterium saccharophilum NT GCF_900142735.1 29534 4342 

Flavobacterium segetis NT GCF_900129575.1 271157 2822 

Flavobacterium urumqiense NT GCF_900108015.1 935224 2919 

Flavobacterium xanthum NT GCF_900142695.1 69322 3157 

Flavobacterium xueshanense NT GCF_900112975.1 935223 2959 

Flectobacillus major DSM 103 NT GCF_000427405.1 929703 4795 

Flexibacter flexilis DSM 6793 NT GCF_900112255.1 927664 3505 

Francisella tularensis subsp. holarctica FSC200 NT GCF_000168775.2 351581 1584 

Fusobacterium nucleatum subsp. nucleatum ATCC 25586 NT GCF_000007325.1 190304 1983 

Gardnerella vaginalis JCP8481B NT GCF_000414445.1 1261070 1183 

Gemella haemolysans ATCC 10379 NT GCF_000173915.1 546270 1628 

Gemmatimonas aurantiaca T-27 NT GCF_000010305.1 379066 3915 

Giesbergeria anulus NT GCF_900111115.1 180197 3076 

Glaciecola punicea ACAM 611 NT GCF_000252165.1 1121923 2635 

Glaciibacter superstes DSM 2113 NT GCF_000421145.1 1121924 4414 

Glaesserella parasuis ST4-1 NT GCF_000690655.1 1399771 1998 

Gloeobacter violaceus PCC 7421 NT GCF_000011385.1 251221 4430 

Gottschalkia acidurici 9a NT GCF_000299355.1 1128398 2838 

Haemophilus influenzae Rd KW20 NT GCF_000027305.1 71421 1610 

Haemophilus parahaemolyticus HK385 NT GCF_000262265.1 1095744 1881 

Haemophilus parainfluenzae HK26 NT GCF_000259485.1 1095745 1964 

Halobiforma haloterrestris NT GCF_900112205.1 148448 4149 

Halomonas alkaliantarctica NT GCF_000712975.1 232346 3356 

Halomonas aquamarina NT GCF_900110265.1 77097 3128 

Halomonas halodenitrificans DSM 735 NT GCF_000620045.1 1121941 3040 

Halomonas subglaciescola NT GCF_900142895.1 29571 2740 

Halomonas titanicae BH1 NT GCF_000336575.1 1204738 4753 

Halorubrum distributum JCM 9100 NT GCF_000337055.1 1227467 3073 

Halorubrum lacusprofundi ATCC 49239 NT GCF_000022205.1 416348 3456 

Helicobacter bilis ATCC 43879 NT GCF_000158435.2 613026 2160 

Helicobacter pylori SA216A NT GCF_900005055.1 1345597 1447 

Helicobacter rodentium ATCC 700285 NT GCF_000687535.1 1449345 1764 
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Prokaryote species and strain names TS Assembly Taxid CDS 
Holospora obtusa F1 NT GCF_000469665.2 1399147 1064 

Hymenobacter glacialis NT GCF_001816165.1 1908236 3375 

Hymenobacter nivis NT GCF_003149515.1 1850093 4252 

Hyphomonas johnsonii MHS-2 NT GCF_000685275.1 1280950 3404 

Hyphomonas oceanitis SCH89 NT GCF_000685295.1 1280953 3982 

Ignatzschineria larvae DSM 1322 NT GCF_000510805.1 1111732 1958 

Intrasporangium oryzae NRRL B-24470 NT GCF_000576595.1 1386089 4076 

Janibacter corallicola NBRC 107790 NT GCF_001570965.1 1216969 2919 

Janthinobacterium lividum PAMC 25724 NT GCF_000242815.1 1112211 4152 

Kandleria vitulina WCE2011 NT GCF_000621925.1 1410659 1953 

Kingella kingae KK274 NT GCF_000470595.1 1305595 1697 

Kingella oralis ATCC 51147 NT GCF_000160435.1 629741 2351 

Klebsiella aerogenes MGH 78 NT GCF_000692215.1 1439323 4945 

Klebsiella variicola At-22 NT GCF_000025465.1 640131 5176 

Kluyvera cryocrescens NBRC 102467 NT GCF_001571285.1 1218112 4631 

Komagataeibacter hansenii ATCC 23769  NT GCF_000164395.1 714995 2978 

Komagataeibacter xylinus NBRC 13693 NT GCF_000964505.1 1234668 2891 

Labedella gwakjiensis NT GCF_003014675.1 390269 3532 

Lachnospira multipara ATCC 19207 NT GCF_000424105.1 1282887 2470 

Lactobacillus acidophi 
 
 
 
lus NCFM 

NT GCF_000011985.1 272621 1832 

Legionella pneumophila subsp. pneumophila str. 
Mississauga 

NT GCF_002002625.1 1206778 2953 

Leifsonia rubra CMS 76R NT GCF_000477555.1 1348338 2468 

Leifsonia xyli subsp. xyli str. CTCB07 NT GCF_000007665.1 281090 2191 

Leptospira interrogans serovar Hardjo str. Norma NT GCF_001293065.1 1279460 3893 

Leptotrichia buccalis C-1013-b NT GCF_000023905.1 523794 2187 

Leuconostoc citreum LBAE E16 NT GCF_000239935.1 1127129 1718 

Leuconostoc gelidum subsp. gasicomitatum 
KG16-1 

NT GCF_001536305.1 1165892 1944 

Listeria innocua Clip11262 NT GCF_000195795.1 272626 3078 

Listeria monocytogenes EGD NT GCF_000582845.1 1334565 2841 

Lysobacter concretionis Ko07 = DSM 16239 NT GCF_000768345.1 1122185 2575 

Magnetospirillum magnetotacticum MS-1 NT GCF_000829825.1 272627 4077 

Malonomonas rubra DSM 5091 NT GCF_900142125.1 1122189 3549 

Mannheimia haemolytica serotype A1/A6 str. 
PKL10 

NT GCF_000584935.1 1450449 2043 

Maribacter antarcticus DSM 21422 NT GCF_000621125.1 1122191 3930 

Marinobacterium georgiense DSM 11526 NT GCF_900107855.1 1122198 3573 

Marinomonas mediterranea MMB-1 NT GCF_000192865.1 717774 4115 

Marinomonas polaris DSM 16579 NT GCF_900129155.1 1122206 4501 

Mariprofundus ferrooxydans M34 NT GCF_000379405.1 1188231 2586 

Massilia glaciei NT GCF_003011895.2 1524097 5099 

Melissococcus plutonius S1 NT GCF_000747585.1 1385937 1595 

Mesorhizobium loti R88b NT GCF_000517145.1 935548 6723 

Methanobrevibacter smithii TS147C NT GCF_000189975.1 911125 1674 

Methanococcoides burtonii DSM 6242 NT GCF_000013725.1 259564 2406 

Methanococcus aeolicus Nankai-3 NT GCF_000017185.1 419665 1489 

Methylobacterium platani JCM 14648 NT GCF_001043885.1 1295136 5962 

Methylococcus capsulatus str. Bath NT GCF_000008325.1 243233 2957 

Micavibrio aeruginosavorus EPB NT GCF_000348745.1 349215 2284 

Microbacterium oleivorans NBRC 103075 NT GCF_001552475.1 1223528 2805 

Microbulbifer marinus NT GCF_900107725.1 658218 3323 

Microbulbifer yueqingensis NT GCF_900100355.1 658219 3145 

Micrococcus luteus SK58 NT GCF_000176875.1 596312 2279 

Micromonospora aurantiaca ATCC 27029 NT GCF_000145235.1 644283 6177 

Microscilla marina ATCC 23134 NT GCF_000169175.1 313606 7211 

Moraxella catarrhalis 46P47B1 NT GCF_000192945.1 857578 1624 

Moraxella lacunata NBRC 102154 NT GCF_001591245.1 1223506 2490 
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Prokaryote species and strain names TS Assembly taxid CDS 
Morganella morganii SC01 NT GCF_000307755.2 1239989 3898 

Moritella dasanensis ArB 0140 NT GCF_000276805.1 1201293 4154 

Moritella yayanosii NT GCF_900465055.1 69539 3701 

Mucispirillum schaedleri ASF457 NT GCF_900157005.1 1379858 2119 

Mycobacterium leprae Br4923 NT GCF_000026685.1 561304 2131 

Mycobacterium tuberculosis D 4155 NT GCF_000658535.1 1438824 4097 

Myxococcus fulvus 124B02 NT GCF_000988565.1 1334629 8460 

Myxococcus xanthus DK 1622 NT GCF_000012685.1 246197 7181 

Neisseria lactamica Y92-1009 NT GCF_000180595.1 869214 1927 

Neisseria meningitidis ATCC 13091 NT GCF_000146655.1 862513 2168 

Neisseria polysaccharea ATCC 43768 NT GCF_000176735.1 546267 1922 

Neorickettsia sennetsu str. Miyayama NT GCF_000013165.1 222891 759 

Nitriliruptor alkaliphilus DSM 45188 NT GCF_000969705.1 1069448 5079 

Nitrosomonas cryotolerans ATCC 49181 NT GCF_900143275.1 1131553 2448 

Nocardia farcinica IFM 10152 NT GCF_000009805.1 247156 5747 

Nocardiopsis xinjiangensis YIM 90004 NT GCF_000341145.1 1246474 4383 

Nosocomiicoccus ampullae NT GCF_001696685.1 489910 1544 

Nostoc commune NIES-4072 NT GCF_003113895.1 2005467 6724 

Oceanicoccus sagamiensis NT GCF_002117105.1 716816 3900 

Octadecabacter arcticus 238 NT GCF_000155735.2 391616 5047 

Oenococcus oeni DSM 20252 = AWRIB129 NT GCF_000309445.1 1122618 1614 

Oleispira antarctica RB-8 NT GCF_000967895.1 698738 3866 

Olsenella urininfantis NT GCF_900155635.1 1871033 1515 

Orientia tsutsugamushi str. TA716 NT GCF_000964855.1 1359175 1372 

Paeniclostridium sordellii VPI 9048 NT GCF_000444095.1 1292035 3335 

Paeniglutamicibacter antarcticus NT GCF_900010755.1 494023 3865 

Pantoea agglomerans 299R NT GCF_000330765.1 1261128 4163 

Paraburkholderia bannensis NBRC 103871  NT GCF_000685015.1 1218075 7442 

Paraglaciecola arctica BSs20135 NT GCF_000314995.1 493475 5024 

Paraglaciecola hydrolytica NT GCF_001565895.1 1799789 4402 

Paraglaciecola polaris LMG 21857 NT GCF_000315055.1 1129793 4338 

Parvimonas micra A293 NT GCF_000493795.1 1408286 1498 

Pasteurella multocida subsp. multocida str. HB03 NT GCF_000512395.1 1147130 2050 

Bacillus cereus ATCC 14579 NT GCF_000007825.1 226900 5231 

Pectobacterium carotovorum subsp. carotovorum 
ICMP 5702 

NT GCF_001039055.1 1267545 4194 

Pediococcus claussenii ATCC BAA NT GCF_900203775.1 487 2062 

Pedobacter antarcticus 4BY NT GCF_000722885.1 1358423 3889 

Pelosinus fermentans DSM 17108 NT GCF_000271485.2 1122947 4485 

Peptostreptococcus anaerobius 653-L NT GCF_000178095.1 596329 1787 

Phenylobacterium immobile (ATCC 35973)  NT GCF_001375595.1 31967 3148 

Photobacterium frigidiphilum NT GCF_003025615.1 264736 5622 

Photobacterium profundum SS9 NT GCF_000196255.1 298386 5354 

Photorhabdus luminescens NBAII H75HRPL105 NT GCF_000826725.2 1429883 4139 

Pirellula staleyi DSM 6068 NT GCF_000025185.1 530564 4597 

Piscirickettsia salmonis AUSTRAL-005 NT GCF_000576045.2 1398558 3111 

Planococcus donghaensis MPA1U2 NT GCF_000189395.1 933115 3149 

Planococcus halocryophilus Or1 NT GCF_000342445.1 1005941 2737 

Planococcus kocurii NT GCF_001465835.2 1374 3252 

Planomicrobium glaciei CHR43 NT GCF_000513535.1 1273538 3716 

Plantibacter cousiniae NT GCF_900167175.1 199709 3667 

Plesiomonas shigelloides 302-73 NT GCF_000392595.1 1315976 3227 

Polaribacter butkevichii NT GCF_002954605.1 218490 3308 

Polaribacter filamentus NT GCF_002943715.1 53483 3511 

Polaribacter glomeratus NT GCF_002954665.1 102 3352 

Polaribacter irgensii 23-P NT GCF_000153225.1 313594 2400 
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Polaribacter sp. MED152 NT GCF_000152945.2 313598 2615 

Polaribacter sp. SA4-10 NT GCF_002163835.1 754397 2926 

Polaromonas glacialis NT GCF_000709345.1 866564 4731 

Polaromonas jejuensis NBRC 106434 NT GCF_001598235.1 1321608 4706 

Polaromonas naphthalenivorans CJ2 NT GCF_000015505.1 365044 4879 

Polaromonas sp. EUR3 1.2.1 NT GCF_000688115.1 1305734 3950 

Porphyromonas catoniae F0037 NT GCF_000318215.2 1127696 1591 

Porphyromonas gingivicanis JCM 15907  NT GCF_000614585.1 1236526 1529 

Prevotella intermedia ATCC 25611 = DSM 20706 NT GCF_000439065.1 1122984 2141 

Prochlorococcus marinus str. MIT 9301 NT GCF_000015965.1 167546 1786 

Propionibacterium freudenreichi NT GCF_900000085.1 1744 2163 

Propionivibrio dicarboxylicus NT GCF_900099695.1 83767 4034 

Proteus mirabilis PR03 NT GCF_000372565.1 1279010 3402 

Proteus mirabilis WGLW6 NT GCF_000297815.1 1125694 3649 

Pseudoalteromonas agarivorans DSM 14585 NT GCF_002310855.1 1312369 3902 

Pseudoalteromonas amylolytica NT GCF_001854605.1 1859457 4051 

Pseudoalteromonas arctica A 37-1-2 NT GCF_000238395.3 1117313 4061 

Pseudoalteromonas atlantica T6c NT GCF_000014225.1 342610 4319 

Pseudoalteromonas citrea DSM 8771 NT GCF_000238375.2 1117314 4319 

Pseudoalteromonas distincta NT GCF_000814675.1 77608 3888 

Pseudoalteromonas espejiana DSM 9414 NT GCF_002221525.1 1314869 3894 

Pseudoalteromonas haloplanktis ATCC 14393 NT GCF_000238355.1 1117315 4239 

Pseudoalteromonas luteoviolacea S4054 NT GCF_000974945.1 1129367 4868 

Pseudoalteromonas sp. Bsw20308 NT GCF_000310105.2 283699 3990 

Pseudoalteromonas translucida KMM 520 NT GCF_001465295.1 1315283 3569 

Pseudoalteromonas undina DSM 6065 NT GCF_000238275.2 1117320 3532 

Pseudomonas aeruginosa ATCC 15442 NT GCF_000504485.1 1424337 6338 

Pseudomonas fluorescens LMG 5329 NT GCF_000411675.1 1324332 6216 

Pseudomonas fragi NBRC 3458 NT GCF_002091615.1 1215101 4484 

Pseudomonas grimontii NT GCF_900101085.1 129847 6286 

Pseudomonas mendocina ZWU0006 NT GCF_000798915.1 1339237 4659 

Pseudomonas mucidolens NBRC 103159 NT GCF_002091735.1 1215111 5084 

Pseudomonas putida W15Oct28 NT GCF_000708715.2 1449986 5425 

Pseudomonas synxantha NBRC 3913 NT GCF_002091795.1 1215118 6024 

Pseudomonas syringae pv. actinidiae ICMP 18744 NT GCF_000342185.1 1104680 5476 

Pseudomonas viridiflava UASWS0038 NT GCF_000307715.1 450396 5174 

Pseudophaeobacter arcticus DSM 23566 NT GCF_000473205.1 999550 4660 

Psychrobacillus insolitus NT GCF_003254155.1 1461 3176 

Psychrobacter arcticus 273-4 NT GCF_000012305.1 259536 2113 

Psychrobacter cryohalolentis K5 NT GCF_000013905.1 335284 2505 

Psychrobacter fozii NT GCF_003217155.1 198480 2822 

Psychrobacter glacincola NT GCF_001411745.2 56810 2862 

Psychrobacter piscatorii NT GCF_001444505.1 554343 2541 

Psychrobacter urativorans NT GCF_001298525.1 45610 2385 

Psychroflexus torquis ATCC 700755 NT GCF_000153485.2 313595 3574 

Psychromonas aquimarina ATCC BAA-1526 NT GCF_000428725.1 1278312 4624 

Psychromonas arctica DSM 14288 NT GCF_000482725.1 1123036 3867 

Psychromonas hadalis ATCC BAA-638 NT GCF_000420245.1 1278302 3424 

Psychromonas ingrahamii 37 NT GCF_000015285.1 357804 3683 

Psychromonas ossibalaenae ATCC BAA-1528 NT GCF_000381745.1 1278307 4330 

Psychroserpens burtonensis DSM 12212 NT GCF_000425305.1 1123037 3381 

Ralstonia pickettii NBRC 102503 NT GCF_001544155.1 1218114 4296 

Raoultella ornithinolytica NBRC 105727 = ATCC 31898 NT GCF_001598295.1 1349784 5099 

Rathayibacter caricis DSM 15933 NT GCF_003044275.1 1328867 3736 

Renibacterium salmoninarum ATCC 33209 NT GCF_000018885.1 288705 2633 

Rheinheimera baltica DSM 14885 NT GCF_000425345.1 1123053 3828 

Rhizobium leguminosarum bv. viciae GB30 NT GCF_000419745.1 1041142 6985 
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Prokaryote species and strain names TS Assembly taxid CDS 
Rhodococcus erythropolis CCM2595 NT GCF_000454045.1 1136179 5776 

Rhodococcus rhodnii LMG 5362 NT GCF_000389715.1 1273125 3993 

Rhodoferax antarcticus ANT.BR NT GCF_001938565.1 1111071 3669 

Rhodoferax ferrireducens T118 NT GCF_000013605.1 338969 4479 

Rickettsia prowazekii str. Dachau NT GCF_000277225.1 1105097 851 

Robiginitomaculum antarcticum DSM 21748 NT GCF_000365025.1 1123059 2584 

Roseicitreum antarcticum NT GCF_900107025.1 564137 3809 

Roseisalinus antarcticus NT GCF_900172355.1 254357 4439 

Roseobacter denitrificans OCh 114 NT GCF_900113215.1 375451 3986 

Rothia mucilaginosa ATCC 25296 NT GCF_000175615.1 553201 1715 

Rubrobacter radiotolerans DSM 5868 NT GCF_900175965.1 643560 3183 

Ruminobacter amylophilus NT GCF_900115655.1 867 2211 

Runella slithyformis DSM 19594 NT GCF_000218895.1 761193 5744 

Saccharibacter floricola DSM 15669 NT GCF_000378165.1 1123227 2133 

Salinibacterium xinjiangense NT GCF_900230175.1 386302 2787 

Salipiger mucosus DSM 16094 NT GCF_000442255.1 1123237 5245 

Salmonella enterica subsp. enterica serovar 
Enteritidis str. P125109 

NT GCF_000009505.1 550537 4502 

Sandarakinorhabdus limnophila DSM 17366 NT GCF_000420765.1 1123240 2456 

Sanguibacter antarcticus NT GCF_002564005.1 372484 3091 

Serratia liquefaciens ATCC 27592 NT GCF_000422085.1 1346614 4811 

Serratia odorifera DSM 4582 NT GCF_000163595.1 667129 4596 

Serratia proteamaculans 568 NT GCF_000018085.1 399741 4999 

Serratia symbiotica SCt-VLC NT GCF_900002265.1 1347341 1695 

Shewanella algae JCM 14758 NT GCF_000614935.1 1236541 3403 

Shewanella baltica OS183 NT GCF_000179535.2 693971 4213 

Shewanella benthica KT99 NT GCF_000172075.1 314608 3381 

Shewanella frigidimarina NCIMB  NT GCF_000014705.1 318167 4024 

Shewanella halifaxensis HAW-EB4 NT GCF_000019185.1 458817 4309 

Shewanella loihica PV-4 NT GCF_000016065.1 323850 3902 

Shewanella marina JCM 15074 NT GCF_000614975.1 1236542 3444 

Shewanella oneidensis MR-1 NT GCF_000146165.2 211586 4214 

Shewanella piezotolerans WP3 NT GCF_000014885.1 225849 4395 

Shewanella psychrophila NT GCF_002005305.1 225848 5276 

Shewanella putrefaciens JCM 201 NT GCF_000018025.1 425104 3696 

Shewanella sediminis HAW-EB3 NT GCF_000018025.1 425104 4564 

Shewanella violacea DSS12 NT GCF_000091325.1 637905 3908 

Shigella flexneri Shi06AH130 NT GCF_000565825.1 1434144 4247 

Simplicispira psychrophila DSM 11588 NT GCF_000688255.1 1123255 3224 

Sinorhizobium fredii USDA 257 NT GCF_000265205.3 1185652 6292 

Slackia exigua ATCC 700122 NT GCF_000162875.1 649764 1719 

Snodgrassella alvi wkB2 NT GCF_000600005.1 1196094 2217 

Solirubrobacter soli DSM 22325 NT GCF_000600005.1 1196094 2217 

Sphingomonas adhaesiva NBRC 150 NT GCF_001569165.1 28182 3698 

Sphingomonas aerolata NT GCF_003046295.1 185951 3343 

Sphingomonas aurantiaca NT GCF_003050705.1 185949 3853 

Sphingomonas jatrophae NT GCF_900113315.1 1166337 3732 

Sphingopyxis granuli NBRC 100800 NT GCF_001591045.1 1219060 3739 

Spiroplasma mirum ATCC 29335 NT GCF_000517365.1 838561 1099 

Sporolactobacillus laevolacticus DSM 442 NT GCF_000497245.1 1395513 3409 

Sporosarcina globispora NT GCF_001274725.1 1459 5251 

Sporosarcina psychrophila NT GCF_001590685.1 1476 4269 

Staphylococcus aureus subsp. aureus N315 NT GCF_000009645.1 158879 2776 

Staphylococcus epidermidis ATCC 12228 NT GCF_000007645.1 176280 2482 

Staphylococcus hominis SK119 NT GCF_000174735.1 629742 2106 

Starkeya novella DSM 506 NT GCF_000092925.1 639283 4401 

Stenotrophomonas maltophilia stmalt0435 NT GCF_000455625.1 1347913 4213 
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Stenotrophomonas pictorum JCM 9942 NT GCF_001310775.1 1236960 2346 

Sterolibacterium denitrificans NT GCF_001586935.1 157592 814 

Streptococcus anginosus subsp. whileyi MAS624 NT GCF_000478925.1 1353243 1938 

Streptococcus cristatus ATCC 51100 NT GCF_900475445.1 889201 1880 

Streptococcus mitis bv. 2 str. F0392 NT GCF_000221165.1 768726 1798 

Streptococcus pyogenes ATCC 10782 NT GCF_000146715.1 864568 1765 

Streptococcus suis 11538 NT GCF_000440275.1 1214180 1997 

Streptomyces alboniger NT GCF_001507305.1 132473 1840 

Sulfurimonas autotrophica DSM 16294 NT GCF_000147355.1 563040 2140 

Synechococcus elongatus PCC 6301 NT GCF_000010065.1 269084 2602 

Tenacibaculum ovolyticum DSM 18103 NT GCF_000430545.1 1123347 3555 

Thermomonas fusca DSM 15424 NT GCF_000423885.1 1123377 2800 

Thiobacillus thioparus DSM 505 NT GCF_000373385.1 1123393 3071 

Thiocapsa marina 5811 NT GCF_000223985.1 768671 4701 

Tistrella mobilis KA081020-065 NT GCF_000264455.2 1110502 5729 

Treponema pallidum subsp. pallidum str. Nichols NT GCF_000410535.2 243276 1004 

Tumebacillus permanentifrigoris NT GCF_003148565.1 378543 4234 

Undibacterium pigrum NT GCF_003201815.1 401470 5619 

Variovorax paradoxus NBRC 15149 NT GCF_001591365.1 1321610 6173 

Veillonella parvula DSM 2008 NT GCF_000024945.1 479436 1824 

Vibrio cholerae PhVC-311 NT GCF_001027505.1 1399575 3578 

Vibrio natriegens NBRC 15636 = ATCC 14048 = DSM 759 NT GCF_001456255.1 1219067 4509 

Vibrio parahaemolyticus 1911C NT GCF_002775145.1 1287654 4554 

Vibrio vulnificus JY1701 NT GCF_000269765.1 1035117 3911 

Wigglesworthia glossinidia endosymbiont of Glossina brevipalpis NT GCF_000008885.1 36870 636 

Wolbachia endosymbiont of Cimex lectularius NT GCF_000829315.1 246273 981 

Wolbachia pipientis wAlbB NT GCF_000242415.2 1116230 955 

Xanthomonas arboricola pv. arracaciae NT GCF_002940565.1 487851 4193 

Xanthomonas axonopodis pv. melhusii NT GCF_002019215.1 487834 4207 

Xanthomonas campestris pv. campestris str. CN18 NT GCF_900034305.1 1358019 4078 

Xanthomonas campestris pv. vesicatoria str. 85-10 NT GCF_001854165.1 316273 4465 

Xanthomonas citri pv. phaseoli var. fuscans NT GCF_002759275.1 473423 4274 

Xanthomonas oryzae ATCC 35933 NT GCF_000482445.1 1313303 3425 

Xenorhabdus budapestensis NT GCF_002632465.1 290110 3458 

Xylella fastidiosa subsp. fastidiosa GB514 NT GCF_000148405.1 788929 2074 

Yersinia enterocolitica subsp. enterocolitica WA-314 NT GCF_000297175.1 1194086 4023 

Yersinia pestis CO92 NT GCF_000009065.1 214092 3979 

Yokenella regensburgei ATCC 49455 NT GCF_000735455.1 911023 4479 

Zymobacter palmae DSM 10491 NT GCF_000620025.1 1123510 2510 

Zymomonas mobilis subsp. mobilis ZM4 = ATCC 31821 NT GCF_000007105.1 264203 1748 

Acetomicrobium mobile DSM 13181 H GCF_000266925.1 891968 2010 

Acetomicrobium thermoterrenum DSM 13490 H GCF_900107215.1 1120987 1840 

Acidianus brierleyi H GCF_003201835.1 41673 2859 

Acidianus hospitalis W1 H GCF_000213215.1 933801 2332 

Acidianus sulfidivorans JP7 H GCF_003201765.1 619593 2270 

Acidilobus saccharovorans 345-15 H GCF_000144915.1 666510 1478 

Acidimicrobium ferrooxidans DSM 10331 H GCF_000023265.1 525909 2034 

Acidothermus cellulolyticus 11B H GCF_000015025.1 351607 2152 

Aciduliprofundum boonei T469 H GCF_000025665.1 439481 1521 

Aciduliprofundum sp. MAR08-339 H GCF_000327505.1 673860 1491 

Aeropyrum camini SY1 = JCM 12091 H GCF_001316065.1 1198449 1628 
Alicyclobacillus acidiphilus NBRC 100859 H GCF_001544355.1 1255277 3549 

Alicyclobacillus acidocaldarius LAA1 H GCF_000173835.1 543302 2740 

Alicyclobacillus contaminans DSM 17975 H GCF_000429525.1 1120971 3152 

Alicyclobacillus herbarius DSM 13609 H GCF_000430585.1 1120972 3011 

Alicyclobacillus hesperidum URH17-3-68 H GCF_000294675.1 1200346 2757 

Alicyclobacillus pomorum DSM 14955 H GCF_000472905.1 1111479 3171 
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Alicyclobacillus sendaiensis NBRC 100866 H GCF_001552675.1 1220572 2606 

Alicyclobacillus vulcanalis H GCF_900156755.1 252246 2782 

Ammonifex degensii KC4 H GCF_000024605.1 429009 2121 

Anaerobranca californiensis DSM 14826 H GCF_900142275.1 1120989 1978 

Anaerobranca gottschalkii DSM 13577 H GCF_900111575.1 1120990 2191 

Anaerolinea thermophila UNI-1 H GCF_000199675.1 926569 3105 

Anoxybacillus flavithermus subsp. yunnanensis str. E13 H GCF_000753835.1 1380408 2515 

Anoxybacillus kamchatkensis G10 H GCF_000283415.1 1212546 2910 

Anoxybacillus tepidamans PS2 H GCF_000620165.1 1382358 3292 

Anoxybacillus thermarum H GCF_000836725.1 404937 2681 

Aquifex aeolicus VF5 H GCF_000008625.1 224324 1526 

Archaeoglobus profundus DSM 5631 H GCF_000025285.1 572546 1785 

Archaeoglobus sulfaticallidus PM70-1 H GCF_000385565.1 387631 2180 

Archaeoglobus veneficus SNP6 H GCF_000194625.1 693661 2072 

Archaeoglobus fulgidus DSM 4304 H GCF_000008665.1 224325 2369 

Bacillus amyloliquefaciens EBL11 H GCF_000559145.1 1457158 3719 

Bacillus licheniformis DSM 13 = ATCC 14580 H GCF_000011645.1 279010 4219 

Bifidobacterium thermacidophilum subsp. porcinum DSM 17755 H GCF_000771045.1 1435463 1504 

Bifidobacterium thermophilum DSM 20212 H GCF_000687575.1 1410648 1626 

Caldibacillus debilis DSM 16016 H GCF_000383875.1 1121917 3188 

Caldicellulosiruptor acetigenus DSM 7040 H GCF_000421725.1 1121259 2328 

Caldicellulosiruptor bescii DSM 6725 H GCF_000022325.1 521460 2599 

Caldicellulosiruptor hydrothermalis 108 H GCF_000166355.1 632292 2542 

Caldicellulosiruptor kristjanssonii I77R1B H GCF_000166695.1 632335 2475 

Caldicellulosiruptor lactoaceticus 6A H GCF_000193435.2 632516 2256 

Caldicellulosiruptor naganoensis NA10 H GCF_000955735.1 1387569 1991 

Caldicellulosiruptor obsidiansis OB47 H GCF_000145215.1 608506 2167 

Caldicellulosiruptor owensensis OL H GCF_000166335.1 632518 2131 

Caldicoprobacter faecalis H GCF_900115765.1 937334 2274 

Caldicoprobacter oshimai DSM 21659 H GCF_000526435.1 1304880 2398 

Caldilinea aerophila DSM 14535 = NBRC 104270 H GCF_000281175.1 926550 4038 

Caldimicrobium thiodismutans H GCF_001548275.1 1653476 1765 

Caldimonas manganoxidans ATCC BAA-369 H GCF_000381125.1 1265502 3222 

Caldimonas taiwanensis NBRC 104434 H GCF_001592165.1 1349753 3143 

Caldisalinibacter kiritimatiensis H GCF_000387765.1 1304284 2557 

Caldisericum exile AZM16c01 H GCF_000284335.1 511051 1496 

Caldisphaera lagunensis DSM 15908 H GCF_000317795.1 1056495 1491 

Calditerricola satsumensis JCM 14719 H GCF_001311905.1 1294024 1672 

Calditerrivibrio nitroreducens DSM 19672 H GCF_000183405.1 768670 2099 

Caldivirga maquilingensis IC-167 H GCF_000018305.1 397948 2005 

Caldivirga sp. MU80 H GCF_001663375.1 1650354 2161 

Caloramator fervidus H GCF_900108045.1 29344 1735 

Caloramator proteoclasticus DSM 10124 H GCF_900129265.1 1121262 2437 

Caminicella sporogenes DSM 14501 H GCF_900142285.1 1121266 2263 

Candidatus Desulforudis audaxviator MP104C H GCF_000018425.1 477974 2220 

Carboxydothermus ferrireducens DSM 11255 H GCF_000427565.1 1119529 2462 

Carboxydothermus hydrogenoformans Z-2901 H GCF_000012865.1 246194 2417 

Carboxydothermus islandicus H GCF_001950325.1 661089 2369 

Carboxydothermus pertinax H GCF_001950255.1 870242 2476 

Chlorobaculum tepidum TLS H GCF_000006985.1 194439 2245 

Chloroflexus aggregans DSM 9485 H GCF_000021945.1 326427 3707 

Chloroflexus aurantiacus Y-400-fl H GCF_000022185.1 480224 4056 

Chloroflexus islandicus H GCF_001650695.1 1707952 3861 

Chthonomonas calidirosea T49 H GCF_000427095.1 1303518 2837 
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Prokaryote species and strain names TS Assembly taxid CDS 
Coprothermobacter platensis DSM 11748 H GCF_000378005.1 1259795 1401 

Coprothermobacter proteolyticus DSM 5265 H GCF_000020945.1 309798 1409 

Deinococcus geothermalis DSM 11300 H GCF_000196275.1 319795 3003 

Desulfacinum hydrothermale DSM 13146 H GCF_900176285.1 1121390 3175 

Desulfotomaculum acetoxidans DSM 771 H GCF_000024205.1 485916 4007 

Desulfotomaculum aeronauticum DSM 10349 H GCF_900142375.1 1121421 3723 

Desulfotomaculum alcoholivorax DSM 16058 H GCF_000430885.1 1121422 3326 

Desulfotomaculum alkaliphilum DSM 12257 H GCF_000711975.1 1121423 2574 

Desulfotomaculum arcticum H GCF_900113335.1 341036 4865 

Desulfotomaculum australicum DSM 11792 H GCF_900129285.1 1121425 2797 

Desulfotomaculum geothermicum H GCF_900115975.1 39060 3536 

Desulfotomaculum intricatum H GCF_001592105.1 1285191 2850 

Desulfotomaculum profundi H GCF_002607855.1 1383067 2530 

Desulfotomaculum thermocisternum DSM 10259 H GCF_000686645.1 1121430 2562 

Desulfotomaculum thermosubterraneum DSM 16057 H GCF_900142025.1 1121432 3262 

Desulfovirgula thermocuniculi DSM 16036 H GCF_000429345.1 1121468 3031 

Desulfurella acetivorans A63 H GCF_000517565.1 694431 1814 

Desulfurella amilsii H GCF_002119425.1 1562698 1982 

Desulfurella multipotens H GCF_900101285.1 79269 1770 

Desulfurobacterium atlanticum H GCF_900188395.1 240169 1728 

Desulfurobacterium indicum H GCF_001968985.1 1914305 1625 

Desulfurobacterium sp. TC5-1 H GCF_000421485.1 1158318 1661 

Desulfurobacterium thermolithotrophum DSM 11699 H GCF_000191045.1 868864 1508 

Desulfurococcus amylolyticus 1221n H GCF_000020905.1 490899 1386 

Desulfurococcus amylolyticus DSM 16532 H GCF_000231015.2 768672 1422 

Desulfurococcus amylolyticus Z-533 H GCF_000513855.1 1150674 1330 

Desulfurococcus mucosus DSM 2161 H GCF_001006085.1 675631 1206 

Desulfurococcus mucosus DSM 2162 H GCF_000186365.1 765177 1345 

Dictyoglomus thermophilum H-6-12 H GCF_000020965.1 309799 1862 

Dictyoglomus turgidum DSM 6724 H GCF_000021645.1 515635 1742 

Dissulfuribacter thermophilus H GCF_001687335.1 1156395 2232 

Ferroglobus placidus DSM 10642 H GCF_000025505.1 589924 2479 

Fervidicella metallireducens AeB H GCF_000601455.1 1403537 2585 

Fervidicola ferrireducens H GCF_001562425.1 520764 2305 

Fervidobacterium changbaicum H GCF_900100515.1 310769 1904 

Fervidobacterium gondwanense DSM 13020 H GCF_900143265.1 1121883 1936 

Fervidobacterium islandicum H GCF_000767275.2 2423 1897 

Fervidobacterium nodosum Rt17-B1 H GCF_000017545.1 381764 1755 

Fervidobacterium pennivorans DSM 9078 H GCF_000235405.2 771875 1930 

Fervidobacterium thailandense H GCF_001719065.1 1008305 1861 

Geobacillus kaustophilus NBRC 102445 H GCF_000739955.1 1220595 3284 

Geobacillus stearothermophilus ATCC 7953 H GCF_000705495.1 937593 2654 

Geobacillus thermocatenulatus GS-1 H GCF_000612265.1 1444308 3359 

Geobacillus thermodenitrificans subsp. thermodenitrificans DSM 465 H GCF_000496575.1 1413215 3263 

Geobacillus thermoleovorans B23 H GCF_000474195.1 1406857 3220 

Geobacillus uzenensis H GCF_002217665.1 129339 3103 

Geobacillus zalihae NBRC 101842 H GCF_001544135.1 1220596 3364 

Geoglobus acetivorans H GCF_000789255.1 565033 2159 

Geoglobus ahangari H GCF_001006045.1 113653 1985 

Geothermobacter sp. EPR-M H GCF_002093115.1 1969733 3251 
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Prokaryote species and strain names TS Assembly taxid CDS 
Geotoga petraea H GCF_900102615.1 28234 2022 

Haloarcula californiae ATCC 33799 H GCF_000337755.1 662475 4182 

Haloferax elongans ATCC BAA-1513 H GCF_000336755.1 1230453 3776 

Halothermothrix orenii H 168 H GCF_000020485.1 373903 2362 

Hippea alviniae EP5-r H GCF_000420385.1 944480 1738 

Hippea maritima DSM 10411 H GCF_000194135.1 760142 1703 

Hydrogenobacter hydrogenophilus H GCF_900215655.1 35835 1674 

Hydrogenobacter thermophilus TK-6 H GCF_000010785.1 608538 1870 

Hydrogenobaculum sp. 3684 H GCF_000213785.1 547143 1578 

Hydrogenobaculum sp. SN H GCF_000348765.2 547146 1578 

Hydrogenobaculum sp. Y04AAS1 H GCF_000020785.1 380749 1597 

Hyperthermus butylicus DSM 5456 H GCF_000015145.1 415426 1675 

Ignicoccus hospitalis KIN4/I H GCF_000017945.1 453591 1448 

Ignicoccus islandicus DSM 13165 H GCF_001481685.1 940295 1478 

Isosphaera pallida ATCC 43644 H GCF_000186345.1 575540 3893 

Marinithermus hydrothermalis DSM 14884 H GCF_000195335.1 869210 2174 

Marinitoga hydrogenitolerans DSM 16785 H GCF_900129175.1 1122195 2095 

Marinitoga piezophila KA3 H GCF_000255135.1 443254 2033 

Meiothermus ruber H328 H GCF_000346125.2 1297799 2857 

Metallosphaera cuprina Ar-4 H GCF_000204925.1 1006006 1894 

Metallosphaera hakonensis H GCF_003201675.1 79601 2393 

Metallosphaera sedula DSM 5348 H GCF_000016605.1 399549 2298 

Metallosphaera yellowstonensis MK1 H GCF_000243315.1 671065 2680 

Methanocaldococcus bathoardescens H GCF_000739065.1 1301915 1614 

Methanocaldococcus fervens AG86 H GCF_000023985.1 573064 1554 

Methanocaldococcus infernus ME H GCF_000092305.1 573063 1437 

Methanocaldococcus jannaschii DSM 2661 H GCF_000091665.1 243232 1762 

Methanocaldococcus sp. FS406-22 H GCF_000025525.1 644281 1790 

Methanocaldococcus villosus KIN24-T80 H GCF_000371805.1 1069083 1346 

Methanocaldococcus vulcanius M7 H GCF_000024625.1 579137 1695 

Methanoculleus thermophilus H GCF_001571405.1 2200 2171 

Methanohalobium evestigatum Z-7303 H GCF_000196655.1 644295 2267 

Methanosarcina thermophila TM-1 H GCF_000969885.1 523844 2597 

Methanothermobacter marburgensis str. Marburg H GCF_000145295.1 79929 1701 

Methanothermobacter tenebrarum H GCF_003264935.1 680118 1543 

Methanothermobacter thermautotrophicus str. Delta H H GCF_000008645.1 187420 1756 

Methanothermobacter wolfeii H GCF_900095815.1 145261 1655 

Methanothermococcus okinawensis IH1 H GCF_000179575.2 647113 1576 

Methanothermococcus thermolithotrophicus DSM 2095 H GCF_000376965.1 523845 1624 

Methanothermus fervidus DSM 2088 H GCF_000166095.1 523846 1296 

Methanotorris igneus Kol 5 H GCF_000214415.1 880724 1751 

Methylacidiphilum infernorum V4 H GCF_000019665.1 481448 2108 

Moorella glycerini H GCF_001373375.1 55779 3432 

Moorella humiferrea H GCF_002995755.1 676965 2583 

Moorella mulderi DSM 14980 H GCF_001594015.1 1122241 2919 

Palaeococcus ferrophilus DSM 13482 H GCF_000966265.1 588319 2246 

Palaeococcus pacificus DY20341 H GCF_000725425.1 1343739 1950 

Parageobacillus caldoxylosilyticus NBRC 107762 H GCF_000632715.1 1220594 3574 

Parageobacillus thermantarcticus H GCF_900111865.1 186116 3263 

Parageobacillus thermoglucosidasius NBRC 107763 H GCF_000648295.1 1223501 3674 

Persephonella hydrogeniphila H GCF_900215515.1 198703 2050 

Persephonella marina EX-H1 H GCF_000021565.1 123214 2033 

Persephonella sp. IF05-L8 H GCF_000703045.1 1158338 1876 
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Persephonella sp. KM09-Lau-8 H GCF_000703085.1 1158345 2160 

Petrotoga miotherma DSM 10691 H GCF_002895605.1 1434326 1876 

Petrotoga mobilis SJ95 H GCF_000018605.1 403833 1938 

Picrophilus torridus DSM 9790 H GCF_000711815.1 1123384 2058 

Pseudothermotoga hypogea DSM 11164 = NBRC 106472 H GCF_000711815.1 1123384 2058 

Pseudothermotoga lettingae TMO H GCF_000017865.1 416591 2052 

Pseudothermotoga thermarum DSM 5069 H GCF_000217815.1 688269 1966 

Pyrobaculum islandicum DSM 4184 H GCF_000015205.1 384616 1966 

Pyrococcus abyssi GE5 H GCF_000195935.2 272844 1862 

Pyrococcus furiosus DSM 3638 H GCF_000007305.1 186497 1979 

Pyrococcus horikoshii OT3 H GCF_000011105.1 70601 1801 

Pyrococcus kukulkanii H GCF_001577775.1 1609559 2064 

Pyrococcus sp. ST04 H GCF_000263735.1 1183377 1789 

Pyrococcus yayanosii CH1 H GCF_000215995.1 529709 1786 

Pyrodictium occultum H GCF_001462395.1 2309 1617 

Pyrolobus fumarii 1A H GCF_000223395.1 694429 1906 

Rhodothermus marinus DSM 4252 H GCF_000024845.1 518766 2865 

Rhodothermus marinus SG0.5JP17-171 H GCF_000565305.1 762569 2862 

Rhodothermus profundi H GCF_900142415.1 633813 2605 

Rubrobacter radiotolerans DSM 5868 H GCF_900175965.1 643560 3183 

Ruminiclostridium thermocellum BC1 H GCF_000493655.1 1349417 2882 

Sphaerobacter thermophilus DSM 20745 H GCF_000024985.1 479434 3445 

Spirochaeta thermophila DSM 6578 H GCF_000184345.1 869211 2239 

Staphylothermus hellenicus DSM 12710 H GCF_000092465.1 591019 1586 

Staphylothermus marinus F1 H GCF_000015945.1 399550 1598 

Streptococcus thermophilus TH1435 H GCF_000521285.1 1415776 1608 

Sulfobacillus thermosulfidooxidans str. Cutipay H GCF_000294425.1 1214914 3648 

Sulfolobus acidocaldarius DSM 639 H GCF_000012285.1 330779 2243 

Sulfolobus islandicus REY15A H GCF_000189555.1 930945 2540 

Sulfolobus metallicus DSM 6482 = JCM 9184 H GCF_001316045.1 523847 1776 

Sulfolobus solfataricus P2 H GCF_000007005.1 273057 2829 

Sulfurisphaera tokodaii str. 7 H GCF_000011205.1 273063 2770 

Sulfurivirga caldicuralii H GCF_900141795.1 364032 1620 

Tepidibacter formicigenes DSM 15518 H GCF_900142235.1 1123349 2464 

Tepidiphilus margaritifer DSM 15129 H GCF_000425565.1 1123354 2067 

Thermaerobacter marianensis DSM 12885 H GCF_000184705.1 644966 2302 

Thermanaerovibrio acidaminovorans DSM 6589 H GCF_000024905.1 525903 1730 

Thermanaerovibrio velox DSM 12556 H GCF_000237825.1 926567 1672 

Thermoactinomyces daqus H GCF_000763315.1 1329516 3444 

Thermoactinomyces vulgaris H GCF_001294365.1 2026 3232 

Moorella thermoacetica ATCC 39073 H GCF_000013105.1 264732 2460 

Nautilia profundicola AmH H GCF_000021725.1 598659 1704 

Thermoanaerobacter ethanolicus CCSD1 H GCF_000175815.1 589861 1935 

Thermoanaerobacter indiensis BSB-33 H GCF_000373165.1 1125975 2371 

Thermoanaerobacter italicus Ab9 H GCF_000025645.1 580331 2265 

Thermoanaerobacter kivui H GCF_000763575.1 2325 2173 

Thermoanaerobacter mathranii subsp. mathranii str. A3 H GCF_000092965.1 583358 2139 

Thermoanaerobacter sp. YS13 H GCF_000806225.2 1511746 2565 

Thermoanaerobacter thermohydrosulfuricus WC1 H GCF_000353265.2 1198630 2437 

Thermoanaerobacter wiegelii Rt8.B1 H GCF_000147695.2 697303 2424 

Thermoanaerobacterium aotearoense SCUT27 H GCF_000512105.1 1421016 2687 

Thermoanaerobacterium sp. PSU-2 H GCF_002102475.1 1930849 2475 

Thermoanaerobacterium sp. RBIITD H GCF_900205865.1 1550240 3019 

Thermoanaerobacterium thermosaccharolyticum DSM 571 H GCF_000145615.1 580327 2566 

Thermoanaerobaculum aquaticum H GCF_000687145.1 1312852 2281 
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Prokaryote species and strain names TS Assembly taxid CDS 
Thermobrachium celere DSM 8682 H GCF_000430995.1 941824 2243 

Thermococcus barophilus MP H GCF_000151105.2 391623 2182 

Thermococcus celericrescens H GCF_001484195.1 227598 2331 

Thermococcus cleftensis H GCF_000265525.1 163003 2033 

Thermococcus eurythermalis H GCF_000769655.1 1505907 2180 

Thermococcus gammatolerans EJ3 H GCF_000022365.1 593117 2117 

Thermococcus gorgonarius H GCF_002214385.1 71997 1774 

Thermococcus guaymasensis DSM 11113 H GCF_000816105.1 1432656 2029 

Thermococcus kodakarensis KOD1 H GCF_000009965.1 69014 2237 

Thermococcus litoralis DSM 5473 H GCF_000246985.2 523849 2306 

Thermococcus nautili H GCF_000585495.1 195522 2132 

Thermococcus onnurineus NA1 H GCF_000018365.1 523850 1934 

Thermococcus pacificus H GCF_002214485.1 71998 1868 

Thermococcus peptonophilus H GCF_001592435.1 53952 1974 

Thermococcus piezophilus H GCF_001647085.1 1712654 1856 

Thermococcus profundus H GCF_002214585.1 49899 2075 

Thermococcus radiotolerans H GCF_002214565.1 187880 1984 

Thermococcus sibiricus MM 739 H GCF_000022545.1 604354 1913 

Thermococcus siculi H GCF_002214505.1 72803 2099 

Thermococcus sp. 2319x1 H GCF_001484685.1 1674923 2017 

Thermococcus sp. 4557 H GCF_000221185.1 1042877 2085 

Thermococcus sp. 5-4 H GCF_002197185.1 2008440 1961 

Thermococcus sp. AM4 H GCF_000151205.2 246969 2231 

Thermococcus sp. EP1 H GCF_001317345.1 1591054 1909 

Thermococcus sp. PK H GCF_000430485.1 913025 2175 

Thermococcus zilligii AN1 H GCF_000258515.1 1151117 1789 

Thermocrinis albus DSM 14484 H GCF_000025605.1 638303 1580 

Thermocrinis minervae H GCF_900142435.1 381751 1460 

Thermocrinis ruber H GCF_000512735.1 75906 1594 

Thermocrinis sp. GBS H GCF_000702425.1 1313265 1385 

Thermocrispum agreste DSM 44070 H GCF_000427905.1 1111738 3619 

Thermodesulfatator atlanticus DSM 21156 H GCF_000421585.1 1123371 2184 

Thermodesulfatator autotrophicus H GCF_001642325.1 1795632 2128 

Thermodesulfatator indicus DSM 15286 H GCF_000217795.1 667014 2226 

Thermodesulfobacterium commune DSM 2178 H GCF_000734015.1 289377 1702 

Thermodesulfobacterium geofontis OPF15 H GCF_000215975.1 795359 1617 

Thermodesulfobacterium hveragerdense DSM 12571 H GCF_000423845.1 1123372 1689 

Thermodesulfobacterium hydrogeniphilum H GCF_000746255.1 161156 1624 

Thermodesulfobacterium thermophilum DSM 1276 H GCF_000421605.1 1123373 1709 

Thermodesulfobium acidiphilum H GCF_003057965.1 1794699 1721 

Thermodesulfobium narugense DSM 14796 H GCF_000212395.1 747365 1825 

Thermodesulforhabdus norvegica H GCF_900114975.1 39841 2631 

Thermodesulfovibrio aggregans H GCF_001514535.1 86166 1955 

Thermodesulfovibrio islandicus DSM 12570 H GCF_000482825.1 1123375 2042 

Thermodesulfovibrio sp. N1 H GCF_001707915.1 1871110 1905 

Thermodesulfovibrio thiophilus DSM 17215 H GCF_000423865.1 1123376 1867 

Thermodesulfovibrio yellowstonii DSM 11347 H GCF_000020985.1 289376 2028 

Thermofilum adornatus H GCF_000446015.1 1365176 1825 

Thermofilum carboxyditrophus 1505 H GCF_000813245.1 697581 1849 

Thermofilum pendens Hrk 5 H GCF_000015225.1 368408 1866 

Thermofilum uzonense H GCF_000993805.1 1550241 1641 

Thermoflavifilum aggregans H CF_002797735.1 454188 2362 

Thermogladius calderae 1633 H GCF_000264495.1 1184251 1400 

Thermoleophilum album H GCF_900108055.1 29539 2047 

Thermomicrobium roseum DSM 5159 H GCF_000021685.1 309801 2644 

Thermomonas hydrothermalis H GCF_900129205.1 213588 2172 

Thermoplasma acidophilum DSM 1728 H GCF_000195915.1 273075 1521 
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Thermoplasma volcanium GSS1 H GCF_000011185.1 273116 1545 

Thermoproteus sp. CP80 H GCF_002077075.2 1650659 1567 

Thermoproteus tenax Kra 1 H GCF_000253055.1 768679 1959 

Thermoproteus uzoniensis 768-20 H GCF_000193375.1 999630 2114 

Thermosediminibacter oceani DSM 16646 H GCF_000144645.1 555079 2195 

Thermosipho affectus H GCF_001990485.1 660294 1740 

Thermosipho africanus TCF52B H GCF_000021285.1 484019 1878 

Thermosipho atlanticus DSM 15807 H GCF_900129985.1 1123380 1566 

Thermosipho melanesiensis BI429 H GCF_000016905.1 391009 1877 

Thermosipho sp. 1070 H GCF_001682135.1 1437364 1735 

Thermosipho sp. 1074 H GCF_001999655.1 1643331 1777 

Thermosipho sp. 1223 H GCF_001999705.1 1643332 1742 

Thermosphaera aggregans DSM 11486 H GCF_000092185.1 633148 1368 

Thermosulfidibacter takaii ABI70S6 H GCF_001547735.1 1298851 1814 

Thermosynechococcus elongatus BP-1 H GCF_000011345.1 197221 2476 

Thermotoga caldifontis AZM44c09 H GCF_000828655.1 1408159 1937 

Thermotoga naphthophila RKU-10 H GCF_000025105.1 590168 1778 

Thermotoga neapolitana DSM 4359 H GCF_000018945.1 309803 1833 

Thermotoga petrophila RKU-1 H GCF_000016785.1 390874 1782 

Thermotoga profunda AZM34c06 H GCF_000828675.1 1408160 2072 

Thermotoga sp. 2812B H GCF_000789335.1 1157948 1805 

Thermotoga sp. Cell2 H GCF_000789375.1 1157947 1631 

Thermotoga sp. EMP H GCF_000294555.1 1157949 1799 

Thermotoga sp. KOL6 H GCF_002866025.1 126741 1689 

Thermotoga sp. Mc24 H GCF_000784835.1 1231241 1764 

Thermotoga sp. RQ2 H GCF_000019625.1 126740 1836 

Thermotoga sp. RQ7 H GCF_000832145.1 126738 1817 

Thermotoga sp. SG1 H GCF_002865985.1 126739 1799 

Thermotoga sp. TBGT1765 H GCF_000784795.1 1263836 1679 

Thermotoga sp. TBGT1766 H GCF_000784825.1 1230478 1680 

Thermotoga sp. Xyl54 H GCF_000784785.1 1235863 1695 

Thermovibrio ammonificans HB-1 H GCF_000185805.1 648996 1801 

Thermus aquaticus Y51MC23 H GCF_000173055.1 498848 2325 

Thermus tengchongensis YIM 77401 H GCF_000744175.1 1449357 2506 

Vulcanisaeta distributa DSM 14429 H GCF_000148385.1 572478 2420 

Vulcanisaeta moutnovskia 768-28 H GCF_000190315.1 985053 2357 

Vulcanisaeta sp. EB80 H GCF_002078205.2 1650660 2284 

Vulcanisaeta thermophila H GCF_001748385.1 867917 2039 

 

 

 

 

 


