
Université de Montréal

The Multilevel Critical Node problem : Theoretical
Intractability and a Curriculum Learning Approach

par

Adel Nabli

Département d’informatique et de recherche opérationelle
Faculté des arts et des sciences

Mémoire présenté en vue de l’obtention du grade de
Maître ès sciences (M.Sc.)

en Informatique

Août 2020

© Adel Nabli, 2020

Université de Montréal
Faculté des arts et des sciences

Ce mémoire intitulé

The Multilevel Critical Node problem : Theoretical
Intractability and a Curriculum Learning Approach

présenté par

Adel Nabli

a été évalué par un jury composé des personnes suivantes :

Emma Frejinger
(présidente-rapporteuse)

Margarida Da Silva Carvalho
(directrice de recherche)

Pierre l’Écuyer
(membre du jury)

Résumé

Évaluer la vulnérabilité des réseaux est un enjeu de plus en plus critique. Dans ce mé-
moire, nous nous penchons sur une approche étudiant la défense d’infrastructures stratégiques
contre des attaques malveillantes au travers de problèmes d’optimisations multiniveaux. Plus
particulièrement, nous analysons un jeu séquentiel en trois étapes appelé le « Multilevel Cri-
tical Node problem » (MCN). Ce jeu voit deux joueurs s’opposer sur un graphe : un atta-
quant et un défenseur. Le défenseur commence par empêcher préventivement que certains
nœuds soient attaqués durant une phase de vaccination. Ensuite, l’attaquant infecte un sous
ensemble des nœuds non vaccinés. Finalement, le défenseur réagit avec une stratégie de pro-
tection. Dans ce mémoire, nous fournissons les premiers résultats de complexité pour MCN
ainsi que ceux de ses sous-jeux. De plus, en considérant les différents cas de graphes unitaires,
pondérés ou orientés, nous clarifions la manière dont la complexité de ces problèmes varie.
Nos résultats contribuent à élargir les familles de problèmes connus pour être complets pour
les classes NP, Σp

2 et Σp
3.

Motivés par l’insolubilité intrinsèque de MCN, nous concevons ensuite une heuristique
efficace pour le jeu. Nous nous appuyons sur les approches récentes cherchant à apprendre
des heuristiques pour des problèmes d’optimisation combinatoire en utilisant l’apprentissage
par renforcement et les réseaux de neurones graphiques. Contrairement aux précédents tra-
vaux, nous nous intéressons aux situations dans lesquelles de multiples joueurs prennent des
décisions de manière séquentielle. En les inscrivant au sein du formalisme d’apprentissage
multiagent, nous concevons un algorithme apprenant à résoudre des problèmes d’optimisa-
tion combinatoire multiniveaux budgétés opposant deux joueurs dans un jeu à somme nulle
sur un graphe. Notre méthode est basée sur un simple curriculum : si un agent sait estimer
la valeur d’une instance du problème ayant un budget au plus B, alors résoudre une instance
ayant un budget B+1 peut être fait en temps polynomial quelque soit la direction d’optimi-
sation en regardant la valeur de tous les prochains états possibles. Ainsi, dans une approche
ascendante, nous entraînons notre agent sur des jeux de données d’instances résolues heu-
ristiquement avec des budgets de plus en plus grands. Nous rapportons des résultats quasi
optimaux sur des graphes de tailles au plus 100 et un temps de résolution divisé par 185 en
moyenne comparé au meilleur solutionneur exact pour le MCN.

3

Mots Clés : Optimisation Combinatoire, Optimisation Multiniveaux, Théorie de la Com-
plexité, Hiérarchie Polynomiale, Apprentissage par Renforcement, Apprentissage Multiagent,
Réseaux de Neurones Graphiques.

4

Abstract

Evaluating the vulnerability of networks is a problem which has gain momentum in
recent decades. In this work, we focus on a Multilevel Programming approach to study
the defense of critical infrastructures against malicious attacks. We analyze a three-stage
sequential game played in a graph called the Multilevel Critical Node problem (MCN).
This game sees two players competing with each other: a defender and an attacker. The
defender starts by preventively interdicting nodes from being attacked during what is called
a vaccination phase. Then, the attacker infects a subset of non-vaccinated nodes and, finally,
the defender reacts with a protection strategy. We provide the first computational complexity
results associated with MCN and its subgames. Moreover, by considering unitary, weighted,
undirected and directed graphs, we clarify how the theoretical tractability or intractability
of those problems vary. Our findings contribute with new NP-complete, Σp

2-complete and
Σp

3-complete problems.
Motivated by the intrinsic intractability of the MCN, we then design efficient heuristics

for the game by building upon the recent approaches seeking to learn heuristics for combi-
natorial optimization problems through graph neural networks and reinforcement learning.
But contrary to previous work, we tackle situations with multiple players taking decisions
sequentially. By framing them in a multi-agent reinforcement learning setting, we devise a
value-based method to learn to solve multilevel budgeted combinatorial problems involving
two players in a zero-sum game over a graph. Our framework is based on a simple cur-
riculum: if an agent knows how to estimate the value of instances with budgets up to B,
then solving instances with budget B + 1 can be done in polynomial time regardless of the
direction of the optimization by checking the value of every possible afterstate. Thus, in a
bottom-up approach, we generate datasets of heuristically solved instances with increasingly
larger budgets to train our agent. We report results close to optimality on graphs up to 100
nodes and a 185× speedup on average compared to the quickest exact solver known for the
MCN.
Keywords: Combinatorial Optimization, Multilevel Programming, Computational Com-
plexity Theory, Polynomial Hierarchy, Reinforcement Learning, Multi-Agent Reinforcement
Learning, Graph Neural Networks.

5

Contents

Résumé . 3

Abstract . 5

List of Tables. 9

List of Figures. 11

List of Acronyms & Abbreviations . 13

Acknowledgements . 15

Introduction . 16

Chapter 1. Essentials in Computational Complexity Theory 18

1.1. NP-Completeness . 18

1.2. The Polynomial Hierarchy . 20

Chapter 2. Complexity of the Multilevel Critical Node Problem 23

2.1. The Multilevel Critical Node Problem. 24

2.2. In practice: behaviour of exact solvers for the MCN . 25
2.2.1. Solving the MCN . 25
2.2.2. Solving subgames of the MCN . 27

2.3. Complexity results for the MCN . 28
2.3.1. Complexity of related problems . 29
2.3.2. Undirected graphs: the unitary case . 31

2.3.2.1. The Protection problem . 31
2.3.2.2. The Attack-Protect problem. 34
2.3.2.3. The Vaccination-Attack problem . 35

2.3.3. Undirected graphs: the weighted case . 37
2.3.3.1. The Attackw problem . 37

6

2.3.3.2. The Attack-Protectw problem . 38
2.3.3.3. The Vaccination-Attackw problem . 40
2.3.3.4. The MCNw problem . 41

2.3.4. Directed graphs . 46
2.3.4.1. The Attackdir problem . 47
2.3.4.2. The Vaccination-Attackdir problem . 50

2.3.5. Protectiondir: tractability limits . 52
2.3.5.1. Directed acyclic graphs . 52
2.3.5.2. Arborescence . 55

2.4. Conclusion . 56

Chapter 3. Learning heuristics for Combinatorial Optimization problems . 57

3.1. Introduction to Graph Neural Networks . 58
3.1.1. Neural Message Passing . 58
3.1.2. Graph level representations . 60

3.2. Introduction to Reinforcement Learning and Multi-Agent Reinforcement
Learning . 61

3.2.1. Markov Decision Process . 61
3.2.2. Alternating Markov Games . 63

3.3. Solving Combinatorial Optimization problems with GNN and RL 64

Chapter 4. Learning heuristics for Multilevel Budgeted Combinatorial
Optimization problems . 66

4.1. Problem statement. 68

4.2. Related Work . 69

4.3. MARL formulation of the Multilevel Budgeted Combinatorial problem 69

4.4. Q-learning for the greedy policy . 71

4.5. A curriculum taking advantage of the budgeted combinatorial setting 71

4.6. GNN architecture for the MCN problem . 75
4.6.1. Node embedding . 75
4.6.2. Graph embedding . 76
4.6.3. Final steps . 77

7

4.6.4. Hyperparameters . 77

4.7. Computational results . 77
4.7.1. Distribution of instances . 78
4.7.2. Comparison between the different algorithms . 78

4.7.2.1. Introducing a third algorithm . 78
4.7.2.2. Broadening the scope of the exact algorithm . 79
4.7.2.3. Comparison results . 81
4.7.2.4. Training the Q network with more data . 83
4.7.2.5. Training the Value network with less data . 83

4.7.3. Exploring the abilities of MultiL-Cur . 84
4.7.3.1. Comparison with other heuristics . 84
4.7.3.2. On the difficulty to learn to solve the 3 problems . 86
4.7.3.3. Assessing the ability to generalize to larger graphs . 87
4.7.3.4. Identifying multiple optimal solutions . 88

4.8. Conclusion . 89

Conclusion and future research . 90

References . 92

8

List of Tables

2.1 Fraction of instances solved under 2 hours by MCNMIX . 26

2.2 Computational complexity of the decision versions of the subproblems in MCN.
Entries in gray correspond to results that follow as corollaries. In increasing
order, we have: [1] =⇒ [6], [4] =⇒ [5], [12] =⇒ [13], [14] =⇒ [15], and
[6-10] =⇒ [16-20]. 29

4.1 Evolution during training of the loss on 8 test sets of 1000 exactly solved instances
∈ D(1). Averaged on 3 runs. We measured the loss on distributions arriving at
different stages of the curriculum. The approximation ratio and optimality gap
were measured after training and averaged over all the tests sets. 81

4.2 Comparison between two configurations of training for Q̂. In Config. 1, we
trained with 960 000 episodes while in Config. 2 we used 7 680 000. We display
the evolution of the losses during training on 8 test sets of size 1000. We measure
the resulting optimality gap η and approximation ratio ζ on 3 different test sets,
one for each of the 3 levels of the problem. 83

4.3 Comparison between two configurations of curriculum for V̂ . In Config. 1, we
trained with a total of 800 000 episodes and 375 000 optimization steps while in
Config. 2 we used 400 000 episodes and 93 750 steps. We display the evolution
of the losses during training on 8 test sets of size 1000 arriving at different stages
of the curriculum. We measure the resulting optimality gap η and approximation
ratio ζ on 3 different test sets, one for each of the 3 levels of the problem. 84

4.4 Comparison between several heuristics and exact methods. Results on MCN are
computed on the dataset of the original paper [Baggio et al., 2020]. For MCNdir

and MCNw, we generated our own datasets using the modification described in
Section 4.7.2.2. 85

4.5 Sizes of the test sets used. 85

4.6 Values of the approximation ratio and optimality gap on a test sets of exactly
solved instances from D(1) for each of the 3 problems. 86

9

4.7 Evolution of the optimality gap η and the approximation ratio ζ with the size of
the graphs at test time for each of the 3 problems considered. 87

4.8 Sizes of the test sets used for the results in Table 4.7. 88

10

List of Figures

2.1 Example of an MCN game on a directed graph with unitary costs and benefits
and budgets Ω = Φ = Λ = 1. We removed the vaccinated and protected nodes,
see Property 2.3.1 for a justification. Here, {v1,v3,v4, v5} are saved and {v2, v6}
are infected in the end. 24

2.2 Evolution of the time taken by the exact solver MCNMIX to solve instances of
MCN with respect to the number of nodes of the graphs considered. 26

2.3 Corrected version of Figure 2.2. 27

2.4 Time necessary to solve MCN and its subgames on graphs of size 20. 28

2.5 Graph reduction from CNPsplit to Protect . 34

2.6 Graph reduction from BIK to Attack-Protectw when O = {1,2 . . . , n}. 40

2.7 Graph reduction from BIK to Vaccination-Attackw when O = {1,2 . . . , n}. . . 41

2.8 Example of construction of TIK from an instance B3 ∩ 3CNF with E = (a ∨ b ∨
¬c) ∧ (¬a ∨ ¬b ∨ d) ∧ (a ∨ c ∨ b), where X = {a, b}, Y = {c}, Z = {d} and the
clauses are labeled from left to right. 44

2.9 Graph reduction from TIK to MCNw when O = {1,2 . . . , n}. The only nodes
resulting in positive benefit are the ones in white. The nodes in gray can be
vaccinated and directly attacked. The nodes in green can be protected. The node
in black can be attacked (and protected). 46

2.10 Example of construction of Attackdir from an instance of 3-SAT constituted of
the boolean expression in CNF with 3 literals in each clause E = (a ∨ b ∨ ¬c) ∧
(¬a∨b∨c)∧(a∨¬b∨c). We have U = {a,b,c} and |C| = 3. Taking I = {va, vb, vc}
is optimal. 49

2.11 Example of construction of Vaccination-Attackdir from an instance of BCNF
2

constituted of the boolean expression in CNF with 3 literals in each clause
E = (a ∨ b ∨ ¬c) ∧ (¬a ∨ ¬b ∨ d) ∧ (a ∨ c ∨ b). Here, X = {a, b} and Y = {c,d}.
Taking D = {va, vb}, i.e obliging both a and b to be False makes it impossible to
satisfy E. 52

11

2.12 Graph reduction from CNPsplit to Protectdir . 54
2.13 The set I is represented by black nodes and candidate nodes are dashed. 56

4.1 Architecture of the two neural networks used to solve the MCN: V̂ and Q̂. V̂

computes a score ∈ [0,1] for each node, which can be interpreted as its probability
to be saved given the context (graph embedding and budgets). 75

4.2 Evolution of the loss on the successive validation sets during the curriculum for
the 3 problems considered. 86

4.3 Exact values and approximate values on an instance of MCN constituted of a
graph G and budgets Ω = 1, Φ = 1, Λ = 2. The exact value of each node is
obtained by removing (vaccinating) the said node from G and solving exactly the
subsequent afterstate with Ω set to 0. The approximate values are obtained by
feeding the afterstates to the expert trained on budgets Φ = 1, Λ ∈ [[0,3]] during
the curriculum for instances from D(1). 89

12

List of Acronyms & Abbreviations

CNDP Critical Node Detection Problem

CNF Conjunctive Normal Form

CNN Convolutional Neural Network

CNP Critical Node Problem

DAD Defender-Attacker-Defender

DAG Directed Acyclic Graph

DFS Depth-First Search

DNF Disjunctive Normal Form

DQN Deep Q-Network

GNN Graph Neural Network

MARL Multi-Agent Reinforcement Learning

13

MBC Multilevel Budgeted Combinatorial problems

MCN Multilevel Critical Node problem

MDP Markov Decision Process

MPs Multilevel Programming problems

MVC Minimum Vertex Cover

ReLU Rectified Linear Unit

RL Reinforcement Learning

RNN Recurrent Neural Network

14

Acknowledgements

I would like to thank my parents for the way they cultivated my curiosity since my
childhood, transmitted me the will to seek for academic excellence and supported me
through my tortuous studies, I wouldn’t have been able to come to Canada study at the
Université de Montréal otherwise.

I address my deepest gratitude to Prof. Margarida Carvalho who supervised me won-
derfully during my Master, I sincerely couldn’t have dream of better and kinder supervisor.
She introduced me to beautiful fields of Computer Science that I wouldn’t have discovered
otherwise, I am really grateful for that. She supported me when I had doubts about my
future, always worked hard to provide me with great opportunities and advised me wisely.
I really liked working with her, not only was it fun, but I also learnt a lot, and always felt I
had the freedom to pursue my research interests.

Thus, I also would like to thank Céline Begin, who not only helped me a great deal with
the administrative parts during the Master, but also oriented me towards Prof. Margarida
when I was looking for a supervisor.

Finally, I send my deepest thanks and love to all my friends from Montréal. They sure
illuminated my journey and provided me with the best environment to study, live and laugh
there for two years. I would like to write my special thanks to all my roomates from "le 410":
Lola Welsch, Nicolas Bégin, Emma Blanc, Zoé Delsalle and Margot Bréjard, as well as to
the great friends from Centrale who shared the Montréal adventure with me: Alice Breton
and Charlotte Dubost.

15

Introduction

Assessing the vulnerability of complex infrastructures such as networks is of utmost
importance in practice. Indeed, many interconnected systems such as communication
networks, electric grids or computer networks are vulnerable to malicious attacks or
breakdowns. These malfunctions can be the origin of a cascade of failures spreading
across the network, threatening vital parts of the system. Hence, detecting critical parts
of networks and finding strategies to protect them against failures has attracted much
attention in Computer Science, giving rise to several classes of problems such as the Critical
Node Detection problems or Interdiction Games on networks. These questions being general,
their applications are very diverse, ranging from floods control [Ratliff et al., 1975] to the
decomposition of matrices into blocks [Furini et al., 2019a].

To minimize the propagation of a failure across a network, there are usually two
kinds of strategies: prevention, which seeks to protect in advance the most critical parts
of the system, and blocking, which aims at containing the harmful spread once it already
began. In order to combine both, Baggio et al. 2020 introduced the Multilevel Critical Node
problem (MCN), a zero-sum game between two players, a defender and an attacker. Given
a graph G = (V,A), the defender first vaccinates a set of nodes D ⊆ V that become immune
to infections, then the attacker attacks some other nodes I ⊆ V \D, and, faced with the
infection, the defender protects a new set of nodes P ⊆ V \(D ∪ I), all moves restricted to
budgets constraints. The overall contraction thus naturally leads to a trilevel optimization
formulation, making the problem fall under the Defender-Attacker-Defender (DAD)
framework introduced by Brown et al. 2006 to study the defense of critical infrastructure
against malicious attacks.

Being both a trilevel optimization problem and related to provably hard network
protection problems such as the Firefighter problem [Finbow et al., 2007] or the Critical
Node Problem [Arulselvan et al., 2009], one can expect the MCN to be hard to solve. In
practice, with a high-end CPU, the exact solver described in [Baggio et al., 2020] can
take up to a few hours to solve instances with medium-sized graphs and only few units of

budgets. Thus, there is a need to find new methodologies to speedup the process in order
to tackle real-world instances of the problem, even if it means coming to terms with only
finding sub-optimal solutions. One common way to do so is to design a scalable heuris-
tic, at the expense of having no theoretical guaranty on the quality of the solutions produced.

In this thesis, we propose a framework to learn a heuristic to solve distributions of
instances of the MCN problem, reporting results close to optimality on graphs up to 100
nodes and a 185× speedup on average compared to the quickest exact solver know. First, we
motivate our algorithmic approach by conducting an extensive study of the computational
complexity of several variants of the MCN and of their subgames, managing to show that
MCN is at least Σp

2-hard on directed graphs and Σp
3-complete on weighted ones. Then,

leveraging recent advances in Graph Neural Networks and ideas from the emerging field
of Deep Learning for Combinatorial Optimization, we frame the general class of Multilevel
Budgeted Combinatorial Optimization problems to which the MCN belongs in a Multi-Agent
Reinforcement Learning setting, allowing us to devise two meta-algorithms to learn to solve
those problems, MultiL-DQN and MultiL-Cur. The former is a classic minimax procedure
while the latter takes advantage of both the combinatorial setting (the environment is deter-
ministic) and of the budgeted case (the length of an episode is known in advance) to create a
curriculum, allowing our agent to gradually learn to solve increasingly harder sub-problems
until it can tackle all the instances from the distribution of interest. We compare the two
algorithms and experimentally demonstrate the efficiency of MultiL-Cur on 3 different
versions of the MCN: the classic one tacking place on an undirected graph with unit weights
on the nodes, the positively weighted case, and the directed case where the graph is directed.

We organize our discussion in the following way: first, in Chapter 1, we recall essen-
tials in Computational Complexity theory, introducing definitions of some problem classes
in the polynomial hierarchy. Then, in Chapter 2, we formally define the MCN problem,
report its challenging nature in practice and present a detailed study of its complexity, as
well as of its subgames. In Chapter 3, we define Graph Neural Networks in more details and
introduce the field of Reinforcement Learning, allowing us to discuss previous work in Deep
Learning for Combinatorial Optimization. Finally, in Chapter 4, we frame the general class
of Multilevel Budgeted Combinatorial problems in the Multi-Agent Reinforcement Learning
framework, devise several algorithms to learn heuristics to solve them and validate our
methodology on different versions of the MCN.

17

Chapter 1

Essentials in Computational Complexity
Theory

In many situations, algorithm designers are faced with problems so hard to solve that
they seem intractable. However, proving the inherent intractability of a problem may be as
difficult as finding an efficient algorithm to solve it. In this context, the theory of Compu-
tational Complexity emerged to arm practitioners with a way to characterize some of these
seemingly hard problems, providing a mean to categorize problems by hardness class. In
this chapter, we will introduce the classes of problems we will see throughout this thesis,
beginning in Section 1.1 with the definition of NP-completeness and then presenting the
Polynomial Hierarchy in Section 1.2, focusing on Σp

2-complete and Σp
3-complete problems.

1.1. NP-Completeness
In order to categorize problems by their hardness, we first need to formalize the setting.

The problems we are considering are decision problems, i.e., problems formulated in the
form of a closed-ended question. Formally, a decision problem Π consists of a set of
instances DΠ, which we can separate in two: YΠ ⊆ DΠ being the set of Yes instances, and
NΠ = DΠ\YΠ being the set of No instances. Given an instance of the decision problem, the
aim is thus to find whether it is a Yes or No instance. In order to make this goal as clear
as possible, we formulate our problems in two parts: the first describes what is a generic
instance of the problem and the second asks the yes-no question in terms of the generic
instance. For example, in the Dominating Set problem, we want to find a minimal sized
subset I ⊆ V of nodes of a graph G = (V,E) such that every node not in I is adjacent to at
least one member of I. The decision version of this problem is then stated as follows:

Dominating Set:Dominating Set:
instance: A graph G = (V,E) and a positive integer K ≤ |V |.

question: Is there a subset I ⊆ V with |I| ≤ K such that ∀u ∈ V \I, ∃v ∈ I s.t. (u,v) ∈ E ?

The problems Π for which there exists a deterministic algorithm able to answer the
decision question for any instance in DΠ with a running time upper bounded by a polynomial
expression in the size of the instance belong to the polynomial complexity class, denoted
by P. The problems in this class are usually considered easy to solve from a computational
complexity standpoint, even-though in practice having an algorithm running in O(n10),
with n the size of the instance, becomes very quickly impractical.

Unfortunately, not all problems belong to P. Some, as the Halting Problem [Turing,
1936], have been proven to be undecidable, meaning that it is impossible to construct an
algorithm that always leads to a correct yes-no answer. But between the class P and the
undecidable one, there is a wide range of complexity classes. Among those, there is the
nondeterministic polynomial time class, denoted by NP. Instead of asking to answer the
decision question in polynomial time, NP contains problems Π where it is possible to verify
in polynomial time that a solution proving that a given instance is in YΠ is correct. For
example, Dominating Set is in NP as, given G, K and a solution I, verifying that I
makes it a Yes instance is doable in polynomial time. In particular, we directly have that P
⊆ NP. However, whether this inclusion is strict or not is still an open question, even if it is
believed that it is the case, meaning that there are problems in NP which cannot be solved
efficiently.

Thus, if P 6= NP, it is important to distinguish between problems in P and the ones
in NP - P. To do so, we will introduce the notion of NP-completeness that derives from
the definition of polynomial transformation. A polynomial transformation f is a function
that maps a decision problem Π1 to another decision problem Π2 in polynomial time, such
that any instance of the first problem is transformed into one of the second that has the
same yes-no answer [Johnson, 2012]. Then, a problem Π is said to be NP-hard if, for
any other problem Π′ ∈ NP, there exists a polynomial transformation f from Π′ to Π.
Moreover, Π is said to be NP-complete if Π ∈ NP and Π is NP-hard. Thus, if P 6= NP, all
NP-complete problems are necessary in NP-P as if there existed one NP-complete Π in P,
then all problems in NP would be solvable in polynomial time because there would exist a
polynomial transformation between them and Π, contradicting the fact that P 6= NP in the
first place. Hence, we can think of NP-complete problems as "the hardest problems in NP"
[Garey and Johnson, 1979].

Thus, one class of problems we will look into are NP-complete problems as they are
provably intractable, assuming that P 6= NP. To prove that a given decision problem Π is

19

NP-complete, we need to both show that it belongs to NP and that it is NP-hard. To show
the latter, we need to exhibit a polynomial reduction to Π from any other problem Π′ ∈
NP. As the relation "there exists a polynomial transformation from a problem to another"
is transitive, a sufficient way to do so is to find a polynomial transformation from another
NP-hard problem. Thus, it is advantageous to look at problems that are already proven to
be NP-hard. The first NP-complete result goes by the name of the Cook-Levin Theorem
and showed the NP-completeness of the Satisfiability problem [Cook, 1971; Levin, 1973].
In the following chapter, we will use one of its derivative, the 3-Satisfiability (3-SAT)
problem, proved to be NP-complete in the same paper by Cook [Cook, 1971] and whose
decision version goes as follows:

3-satisfiability (3-SAT):3-satisfiability (3-SAT):
instance: Set U of variables, Boolean expression E over U in conjunctive normal form
with exactly 3 literals in each clause c ∈ C.
question: Is there a 0-1 assignment for the variables in U that satisfies E ?

A few months later, Karp extended the number of known NP-complete problems to
21 [Karp, 1972], one of which being the Knapsack problem, which we will also use in our
forthcoming reductions:

KnapsackKnapsack:
instance: Finite set U , for each u ∈ U , a positive integer size au and a positive integer
profit pu, and two positive integers B and K̄.
question: Is there a subset U ′ ⊆ U such that ∑u∈U ′ au ≤ B verifying ∑u∈U ′ pu ≥ K̄ ?

A few years later, Garey and Johnson published the first book about NP-completeness
[Garey and Johnson, 1979], listing 300 NP-complete problems, one of which being the
Dominating Set problem introduced earlier. Nowadays, there are thousands of problems
proven to be NP-complete to chose from when trying to demonstrate that a new one is
NP-hard.

1.2. The Polynomial Hierarchy
The polynomial hierarchy was introduced in [Meyer and Stockmeyer, 1972]. It allows to

properly classify problems that appear to be harder than NP-complete. To understand what
this means, and why it is a hierarchy, we take the example of the complexity class Σp

2 which
lies one level above the complexity class NP in the polynomial hierarchy. Σp

2 is the class of
decision problems that can be solved in polynomial time by a nondeterministic algorithm

20

using an NP oracle, i.e., an oracle outputing the correct answer to any NP decision problem
in one computational step. In other words, if we use the notation AB to denote the class of
decision problems it is possible to answer in polynomial time using a machine of complexity
A augmented with an oracle of complexity B, then Σp

2 = NPNP. Thus, in simple words, in
the same way that NP-completeness gives insight on problems that may not be solvable in
(deterministic) polynomial time, Σp

2-completeness categorizes those that remain that way
even with access to an NP oracle. The first problem shown to be Σp

2-complete was the
2-alternating quantified satisfiability (B2) problem in the seminal work of Meyer
and Stockmeyer 1972. If the boolean formula studied in B2 is in Disjunctive Normal Form
(DNF) with 3 literals per clause, then the problem is still Σp

2-complete [Wrathall, 1976].
Thus, if we consider expressions in Conjunctive Normal Form (CNF) with 3 literals per
clause, instead of seeking to satisfy the boolean formula, we should state the question as
formulated in [Johannes, 2011]:

2-CNF-Alternating Quantified Satisfiability2-CNF-Alternating Quantified Satisfiability (BCNF
2):

instance: Two disjoint non-empty sets of variables X and Y and a Boolean expression E
over U = X ∪ Y in conjunctive normal form with exactly 3 literals in each clause.
question: Is there a 0-1 assignment for X so that there is no 0-1 assignment for Y such
that E is satisfied?

Through this example, we clearly see that the canonical Σp
2-complete problem is of

the form ∃X∀Y φ(X,Y) with φ(X, Y) a boolean predicate that can be evaluated in
(deterministic) polynomial time. In fact, by definition, Σp

2 contains all problems that can be
stated that way.

But nothing holds us from adding more quantifiers. In fact, any decision problem of the
form ∃X1∀X2∃X3...∀Xk φ(X1, X2, X3,...Xk) with k an integer is in Σp

k, and the decision
problem asking whether or not it is possible to satisfy φ in such situation is named the
k-alternating quantified satisfiability problem (Bk), which has been claimed to be
Σp
k-complete in [Meyer and Stockmeyer, 1972] and proved to be Σp

k-complete in [Wrathall,
1976]. Moreover, Wrathall 1976 showed that Bk is Σp

k-complete if φ is in CNF for odd k

and in DNF for even k. In particular, the following decision problemB3∩CNF is Σp
3-complete:

3-Alternating Quantified Satisfiability3-Alternating Quantified Satisfiability (B3 ∩ CNF):
instance: Three disjoint non-empty sets of variables X, Y and Z, and a Boolean expression
E over U = X ∪ Y ∪ Z in conjunctive normal form with at most 3 literal in each clause
c ∈ C.
question: Is there a 0-1 assignment for X so that for all 0-1 assignments of Y there is a

21

0-1 assignment of Z such that E is satisfied?

The polynomial hierarchy is thus defined recursively by setting Σp
0=P and Σp

k+1 = NPΣp
k

for all integers k ≥ 0. The name polynomial hierarchy PH stands for the union of every
such Σp

k, i.e., PH = ⋃
k∈N Σp

k.

Contrary to the NP class for which thousands of problems have been proved to be com-
plete nowadays, the list of known Σp

k-complete problems with k ≥ 2 is still scarce. Indeed,
in its 2008 version, Schaefer and Umans 2002 listed in their compendium no more than 80
different problems known to be complete for the second and higher levels of the polynomial
hierarchy. Thus, extending the list of complete problems for those higher levels is of great
interest.

22

Chapter 2

Complexity of the Multilevel Critical Node
Problem

Parts of this chapter have appeared in the eponymous preprint "Complexity
of the Multilevel Critical Node Problem" [Nabli et al., 2020] by Adel Nabli,
Margarida Carvalho and Pierre Hosteins.

Contribution. I was involved in all aspects of this scientific work: litera-
ture review, theoretical results (especially for the unitary and directed cases
of the MCN), and writing.

In the previous chapter, we introduced all the notions we use in this one to study the
complexity of a three-stage sequential game played in a graph called the Multilevel Critical
Node problem (MCN) [Baggio et al., 2020]. In this game, there are two players: a defender
and an attacker. The defender starts by preventively interdicting nodes (vaccination) from
being attacked. Then, the attacker infects a subset of non-vaccinated nodes and, finally,
the defender reacts with a protection strategy. In this chapter, we first rigorously define the
game by formulating it as trilevel mixed-integer program and name the variables we will
refer to throughout this thesis. Second, we focus on how solvers for this problem behave
in practice, which allows us to have a glimpse to the hardness of MCN and its subgames.
Then, by considering unitary, weighted, undirected and directed graphs, we clarify how the
theoretical tractability or intractability of those problems vary. Our findings contribute
with new NP-complete, Σp

2-complete and Σp
3-complete problems.

In Section 2.1, we lay down the definition of the MCN. In Section 2.2 we report the
computational challenges it raises for current exact solvers. Then, in Section 2.3, we detail
our findings about the computational complexity of the MCN.

2.1. The Multilevel Critical Node Problem
Graphs are powerful mathematical structures that enable us to model real-world net-

works. The problem of breaking the connectivity of a graph has been extensively studied
in combinatorial optimizationg since it can serve to measure the robustness of a network to
disruptions. In this thesis, we focus on the Multilevel Critical Node problem (MCN) [Baggio
et al., 2020]. Let G = (V,A) be graph with a set V of nodes and a set A of arcs. In MCN
there are two players, designated by defender and attacker, whose individual strategies are
given by a selection of subsets of V . The game goes as follows: first, the defender selects a
subset of nodes D ⊆ V to vaccinate subject to a budget limit Ω and a cost {ĉv}v∈V ; second,
the attacker observes the vaccination strategy, and selects a subset of nodes I ⊆ V \ D to
infect subject to a budget limit Φ and a cost {hv}v∈V ; and third, the defender observes the
infection strategy, and selects a subset of nodes P ⊆ V \ I to protect subject to a budget
limit Λ and a cost {cv}v∈V . Infected nodes propagate the infection to their neighbourhood,
except to vaccinated or protected nodes. The goal of the defender is to maximize the benefit
bv, of saved nodes (i.e., not infected), while the attacker aims to minimize it. We assume
that all parameters of the problem are non-negative integers. The game description can be
succinctly given by the following trilevel program:

(MCN) max
z∈{0,1}|V |∑

v∈V
ĉvzv ≤ Ω

min
y∈{0,1}|V |∑

v∈V
hvyv ≤ Φ

max
x∈{0,1}|V |

α∈[0,1]|V |

∑
v∈V

bvαv (1)

∑
v∈V

cvxv ≤ Λ

αv ≤ 1 + zv − yv ∀v ∈ V

αv ≤ αu + xv + zv ∀ (u,v) ∈ A

where D = {v ∈ V : zv = 1}, I = {v ∈ V : yv = 1} and P = {v ∈ V : xv = 1}. To gain more
intuition about the setting, we provide in Figure 2.1 a simple example of an MCN game
played on a directed graph where all the costs and benefits are unitary.

Vaccinate v
3

v
1

v
5
v
4

v
6

v
2

v
3

G
0

Infect v
2

v
1

v
5
v
4

v
6

v
2

G
1

Protect v
1

v
1

v
5
v
4

v
6

v
2

G
2

v
5
v
4

v
6

v
2

G
3

Figure 2.1. Example of an MCN game on a directed graph with unitary costs and benefits
and budgets Ω = Φ = Λ = 1. We removed the vaccinated and protected nodes, see Property
2.3.1 for a justification. Here, {v1,v3,v4, v5} are saved and {v2, v6} are infected in the end.

24

2.2. In practice: behaviour of exact solvers for the MCN
More than introducing the MCN problem, Baggio et al. 2020 also provided an exact

solver for the unitary case where costs and benefits are all set to one. In the MCN, the
three levels share the same objective function, up to the direction of optimization. Thus,
in the unitary case, it is possible to equivalently reformulate (1) as a single-level program
and then use a Mixed Integer Linear Programming (MILP) solver to find an exact solution
to any given instance of MCN. In order to do that, Baggio et al. 2020 first relaxed the
integer requirement of the third level variable x and reformulated the last two levels of the
problem, corresponding to the attack phase and the protection one, into a MILP using strong
duality and the McCormick convex relaxation [McCormick, 1976] to linearize the bilinear
terms. This relaxed linearized bilevel problem is named rlxAP. The algorithm using rlxAP
as a subroutine to find an (integer) optimal solution to the attack and protection problem
given a vaccination strategy is named AP. To solve MCN, Baggio et al. 2020 reformulated
the trilevel optimization formulation into a MILP named 1lvlMIP, but relaxed the feasible
region by limiting the attacks admissible. Then, they gradually restricted the feasible region
by taking into account more and more attacks using AP as a subroutine, until finding the
solution to MCN, see [Baggio et al., 2020] for details on the procedure.

2.2.1. Solving the MCN

In this part, we focus on the behaviour of a solver for MCN that uses the method described
earlier. For that, we rely on the results of Baggio et al. 2020 as they already undertook this
study. Using IBM ILOG CPLEX 12.7.1.0 on a single core of an Intel Xeon E5-2637 processor
clocked at 3.50GHz with 8 GB RAM, they reported that the average time necessary for the
best solver they considered (MCNMIX) to solve instances of MCN on graphs with 100 nodes
is 848 seconds. The particularity of MCNMIX being that it uses the procedure MIX ++ of
[Fischetti et al., 2017] to directly solve the bilevel integer problem AP to optimilaty without
relying on the relaxed version rlxAP. The instances of MCN Baggio et al. 2020 considered
being ones constituted of Erdős-Rényi undirected random graphs [Erdos and Renyi, 1960]
G = (V,E) with |V | ∈ {20,40,60,80,100} and edge density between 5% and 15% with budgets
Ω,Φ,Λ in [[1,3]]. In order to gain more insight into their results, we gathered all the statistics
produced by Baggio et al. 2020 for their paper, the list of instances they used and times
they took to solve them being publicly available 1. In Figure 2.2 we give more details into
the evolution of the average time taken to solve those instances with the number of nodes
of the graphs considered. In Table 2.1, we detail the number of solved instance, given that
they stopped trying to solve instances if it took more than 2 hours (i.e., the time we display

1. https://github.com/mxmmargarida/Critical-Node-Problem

25

https://github.com/mxmmargarida/Critical-Node-Problem

in Figure 2.2 is actually the average time among all instances that took less than 2 hours to
solve).

Figure 2.2. Evolution of the time taken by the exact solver MCNMIX to solve instances of
MCN with respect to the number of nodes of the graphs considered.

|V | = 20 40 60 80 100
Number of instances given to the solver 120 1080 120 120 120
Number of instances solved under 2 hours 120 876 110 101 85
Fraction of instances solved under 2 hours (%) 100 81 92 84 71

Table 2.1. Fraction of instances solved under 2 hours by MCNMIX .

Thus, disregarding that the instances reaching the time limit are unaccounted for, what
Figure 2.2 seems to tell us is that there is a linear relationship between the time necessary
to solve an instance of MCN with MCNMIX and its size. However, the numbers in Table
2.1 complicate the story. Indeed, the larger the size of the graphs, the more instances were
disregarded by the solver for computation time reasons. Thus, in order to correct this bias,
we decided to reproduce Figure 2.2, but this time with the addition of 2 hours entries in the
lists of times corresponding to a lower bound on the time it would have been necessary to
actually solve the disregarded instances. Moreover, in Table 2.1, we notice that the number
of instances with 40 nodes is larger than any other. Indeed, Baggio et al. 2020 undertook
a detailed study of the graphs of size 40, varying the edge density for this size only. Thus,
to correct the bias, we disregarded all entries corresponding to graphs of size 40 with edge

26

density different than 5%, the edge density used to generate all the instances of other size.
The corrected plot is displayed in Figure 2.3.

Figure 2.3. Corrected version of Figure 2.2

Remembering that Figure 2.3 is produced using only lower bounds on the times necessary
to solve the hardest instances for MCNMIX , we remark that, contrary to what we could
conclude from Figure 2.2, the relationship between the size of the instances of MCN and the
time necessary to solve them seems more exponential, which could suggest that MCN 6∈ P
or that MCNMIX is not efficient to solve MCN.

2.2.2. Solving subgames of the MCN

So far, we focused our study on the behaviour of an exact solver for the whole trilevel
problem. However, MCN is actually constituted of several subgames. In this part and later,
we investigate the subgames (i) Protect, where given the vaccination strategy D and the
attack one I, the defender seeks the optimal protection strategy, (ii) Attack, where given
D and no protection budget, the attacker determines the optimal infection strategy, (iii)
Attack-Protect, where given D, the attacker computes the optimal infection strategy,
and (iv) Vaccination-Attack, where given no budget for protection, the defender finds
the optimal vaccination strategy. Here, we compare the times necessary to solve each of the
subgames of MCN. To do that, we re-implemented the method of Baggio et al. 2020 described
earlier. Although it is originally designed for undirected graphs, all the formulations and
algorithmic approaches also hold for directed ones. Thus, we run our algorithms in the
unitary setting for both directed and undirected graphs. In Figure 2.4, we report results
averaged over 50 Erdős-Rényi random graphs [Erdos and Renyi, 1960] of size 20 and with

27

edge density of 15% for each subgame. All of the budgets Ω,Φ,Λ are random integers in
[[1,3]]. The results are generated using IBM ILOG CPLEX 12.9.0 on my laptop, which has
an Intel Core i7-6700 HQ CPU clocked at 2.60 GHz and 16 GB of RAM.

(a) Undirected case (b) Directed case

Figure 2.4. Time necessary to solve MCN and its subgames on graphs of size 20.

Thanks to Figure 2.4, we notice that there are roughly 3 categories of problems in both
directed and undirected cases, with a hierarchy coinciding perfectly with the number of levels
in each subgame. The quickest problems to solve are Protect and Attack, Vaccination-
Attack and Attack-Protect seem much more expensive, but the most time consuming
problem of all is MCN in both cases. Thus, one can expect to find such a hierarchy in the
computational complexities of the different games.

2.3. Complexity results for the MCN
In this section, we provide a computational complexity classification of the decision ver-

sion of MCN, as well as, of its subgames. This fundamental contribution sheds light on the
practical difficulties we noted in the last section. Furthermore, it contributes to the under-
standing of sequential combinatorial games within the polynomial hierarchy and motivates
the focus on potentially Ω(222|V |) algorithms, heuristic methods or novel solution definitions.
Table 2.2 summarizes our results; unitary cases assume that all costs and benefits are 1.

In Section 2.3.1, we revise the literature associated with MCN, allowing to position our
contribution in the context of Critical Node problems. In Section 2.3.2, we focus on the case
where graphs are undirected and each node benefit and cost is unitary. Section 2.3.3 adds
the possibility of having non-unitary parameters, while Section 2.3.4 generalizes the game to
directed graphs. Finally, Section 2.3.5 investigates structural properties of special directed
graph classes that can be explored to make at least Protection polynomially solvable.

28

Undirected Graphs Directed Graphs
Decision Versions Unitary Case Weighted Case Unitary Case Weighted Case

Section 2.3.2 Section 2.3.3 Sections 2.3.4 & 2.3.5
Protect [1] NP-complete [6] NP-complete [11] NP-complete [16] NP-complete
Attack [2] Polynomial [7] NP-complete [12] NP-complete [17] NP-complete

Attack-Protect [3] NP-hard [8] Σp
2-complete [13] NP-hard [18] Σp

2-complete
Vaccination-Attack [4] NP-complete [9] Σp

2-complete [14] Σp
2-complete [19] Σp

2-complete
MCN [5] NP-hard [10] Σp

3-complete [15] Σp
2-hard [20] Σp

3-complete

Table 2.2. Computational complexity of the decision versions of the subproblems in MCN.
Entries in gray correspond to results that follow as corollaries. In increasing order, we have:
[1] =⇒ [6], [4] =⇒ [5], [12] =⇒ [13], [14] =⇒ [15], and [6-10] =⇒ [16-20].

2.3.1. Complexity of related problems

One way to measure the robustness of a given network is to study its connectivity
properties, for which many metrics exist. With respect to a fixed metric, nodes often play
different roles in the graph, with varying levels of importance. The most important nodes
are qualified as critical. Thus, the problem of detecting subsets of critical nodes with respect
to some connectivity measure is of great interest.

Critical Node Detection Problems (CNDP). The CNDPs have been extensively
studied, with names varying with the connectivity metric to optimize and the constraints
of the problem. Many of its studied versions have been shown to be NP-complete on
general graphs; see [Lalou et al., 2018] for a recent survey. Indeed, many of these belong to
the class of problems called Node-Deletion Problems [Lalou et al., 2018]. They consist in
deleting the smallest subset of nodes from a graph so that the induced subgraph satisfies
a certain property Π. Lewis and Yannakakis 1980 have shown that if Π is nontrivial and
hereditary, then the subsequent node deletion problem is NP-hard. In particular, MinMaxC,
the problem of finding a set of nodes D from a graph G with a budget constraint |D| ≤ Ω
such that the removal of D minimizes the size of the largest connected component in the
remaining graph, has been shown to be NP-hard in the strong sense thanks to this argument
[Shen et al., 2012]. Moreover, some CNDP problems remain NP-hard even on particular
graph classes [Addis et al., 2013; Lalou et al., 2018]. For example, the original Critical Node
Problem (CNP) [Arulselvan et al., 2009] which seeks to minimize the pairwise connectivity
of the graph by removing a limited number of nodes remains NP-hard on split or bipartite
graphs [Addis et al., 2013].

Interdiction Games. In several CNDP, although the optimization problem is formulated
with a natural single objective, the task is inherently constituted of several ones. In the

29

CNP, minimizing the pairwise connectivity maximizes the number of connected components
in the residual graph, while simultaneously minimizing the variance in the component sizes
[Arulselvan et al., 2009]. Even though in this particular case, it has been shown that the
multi-objective formulation is not equivalent to the original one [Ventresca et al., 2018],
splitting the objective in two is sometimes possible. For example, Furini et al. 2019a
exhibited the hidden bilevel structure of the Capacitated Vertex Separator problem by
formulating it as a two player Stackelberg game in which a leader interdicts the network by
removing some of its nodes and a follower determines the maximum connected component
in the remaining graph, highlighting the link between CNDP problems and Interdiction
Games. Interdiction games on networks are a special family of two-player zero-sum
Stackelberg games in which a leader interdicts parts of the network (arcs or nodes) subject
to a budget limitation in order to maximize the disruption of the follower’s objective who
solves an optimization problem on the remaining graph (e.g., the maximum flow or the
maximum clique). Whereas some interdiction games such as the network flow interdiction
are NP-complete [Wood, 1993], others such as the binary knapsack interdiction problem
[DeNegre, 2011; Caprara et al., 2014] or the maximum clique interdiction game [Furini
et al., 2019b] have been shown to be Σp

2-complete, shading light on the intrinsic relationship
between this class of problems and the second level of the polynomial hierarchy.

However, the unitary undirected version of MCN, as originally introduced by Baggio
et al. 2020, is not an interdiction problem per se but contains one. Indeed, the vaccination
stage of the game focuses on identifying critical infrastructures in the network to interdict
them preventively to counter an intentional attack, which falls into the framework of Net-
work Interdiction problems. Nevertheless, the game does not finish with the attack: there is
a third stage where the defender tries to isolate the propagation of the infection to maximize
the unharmed fraction of the network. Finding a blocking strategy to limit the diffusion of
an infection is related to the Firefighter problem, which has been shown to be NP-complete,
even for trees of maximum degree three [Finbow et al., 2007]. Thus, the MCN problem
combines two different paradigms in network protection, prevention and blocking, each being
related to provably hard problems. The overall contraction leads to a trilevel optimization
formulation for the MCN, making it fall under the Defender-Attacker-Defender (DAD)
framework introduced by Brown et al. 2006 to study the defense of critical infrastructure
against malicious attacks.

Defender-Attacker-Defender. Although the general DAD has been claimed to be NP-
hard in [Martin, 2007], complexity results for trilevel combinatorial optimization problems
are scarce. In [Johannes, 2011], a new proof that Trilevel Linear Programming is Σp

2-hard
is provided, building upon the results in [Blair, 1992; Dudás et al., 1998; Jeroslow, 1985]

30

showing that the Multilevel Linear Programming problem with L + 1 levels is Σp
L-hard. In

fact, the decision version of MCN problem can be formulated as "given 3 integer budgets
Ω,Φ,Λ, a graph G and an integer K, is there a vaccination D such that for all attacks I
there exists a protection P saving at least K nodes?" Thus, there seems to be a link between
the MCN and the 3-alternating quantified satisfiability problem which has been shown to be
Σp

3-complete by Meyer, Stockmeyer and Wrathall [Meyer and Stockmeyer, 1972; Wrathall,
1976], making one expect the MCN to be complete for this class.

2.3.2. Undirected graphs: the unitary case

In this section, we focus on undirected graphs G = (V,E), i.e., for each couples of
nodes (u,v) ∈ V × V , if the arc (u,v) is in G, then (v,u) is also in the graph. We thus
call E the set of undirected edges. Here, we also consider unit benefits and costs, i.e.,
∀v ∈ V, ĉv = hv = cv = bv = 1. We introduce s, the function that, given a graph G,
the vaccination strategy D, the attack strategy I and the protection strategy P , returns
s(G,D, I, P), the number of saved nodes in the end of the game. Thus, in this setting, the
trilevel formulation of the problem is simply:

max
D⊆V
|D|≤Ω

min
I⊆V \D
|I|≤Φ

max
P⊆V \(I∪D)
|P |≤Λ

s(G,D, I, P). (2.3.1)

To ease our analysis, guided by the relationship between Critical Node Detection Problems
and Node-Deletion Problems, we first write the immediate Property 2.3.1 stating that
vaccinating or protecting nodes has almost the same effect as removing them from the graph
with respect to s. Starting from G = (V,E) and a subset W ⊆ V , we denote by G[V \W]
the graph resulting from the deletion of the nodes in W and its incident edges.

Property 2.3.1. Given G,D, I, P , we have that s(G,D, I, P) = s(G[V \(D ∪ P)], ∅, I, ∅) +
|D|+ |P |

What Property 2.3.1 actually says is that the infected nodes in G are the ones in the
connected components of G[V \(D ∪ P)] where there is at least one attacked node in I.

We will start by classifying the computational complexity of Protect, followed by the
one of Attack-Protect, and, finally, Vaccination-Attack. From the latter, we obtain
the complexity of Attack, and the minimum complexity of MCN.

2.3.2.1. The Protection problem

In Protect, the defender is given D and I and seeks to find an optimal P . Thus,
thanks to Property 2.3.1, we can assume that the game takes place in Ga = G[V \D] for

31

this last move: the defender wants to find at most Λ nodes P ⊆ Va\I that will maximixe
s(Ga, ∅, I, P). For a given choice of P , we introduce C1(P), ..., CN(P)(P), the N(P) connected
components in the graph Ga[Va\P]. Hence, the objective of the defender being to find P

minimizing the number of infected nodes f(P), we can define it as:

f(P) =
N(P)∑
i=1
|Ci(P)| × 1Ci(P)∩I 6=∅. (2.3.2)

We will show that finding such a P is NP-complete. We argue that it is a direct consequence
of the results of [Addis et al., 2013] showing that the Critical Node Problem is NP-hard on
split graphs.

The Critical Node Problem on split graphs. The Critical Node Problem (CNP) [Arul-
selvan et al., 2009] is a related problem to ours. The setting is very similar to Protection:
we have an undirected graph Ḡ = (V̄ ,Ē), an integer budget B, and we want to find a sub-
set P̄ of nodes to remove that minimizes the pairwise connectivity of the residual subgraph
Ḡ[V̄ \P̄] under the constraint of having |P̄ | ≤ B. If we denote by C̄1(P̄), ..., C̄N(P̄)(P̄) the
N(P̄) connected components of Ḡ[V̄ \P̄], the measure we want to minimize is:

g(P̄) =
N(P̄)∑
i=1

(
|C̄i(P̄)|

2

)
(2.3.3)

where each term in the sum is the pairwise connectivity of C̄i(P̄). Here, we will focus more
particularly on split graphs. A split graph is a graph Ḡ = (V̄ , Ē) whose nodes V̄ can be split
in two sets V̄1 and V̄2, V̄1 forming a clique and V̄2 an independent set. Thus, the decision
problem for this particular case of the CNP is:

CNPsplit:
instance: A split graph Ḡ = (V̄1, V̄2; Ē), a non-negative integer budget B ≤ |V̄ | and a
non-negative integer K̄.
question: Is there a subset P̄ ⊆ V̄ , P̄ ≤ B such that g(P̄) ≤ K̄?

As Addis et al. 2013 noted, in this setting there is at most one connected component
of the residual subgraph Ḡ[V̄ \P̄] that contains more than one node. Moreover, it is easy
to see that if this nontrivial connected component exists, it necessarily contains a subclique
of Ḡ[V̄1]. More than that, it is the only connected component of Ḡ[V̄ \P̄] containing nodes
from V̄1. Thus, we can name C̄1 the connected component containing nodes of V̄1 (in the
case of P̄ ⊇ V̄1, then C̄1 is either a singleton from V̄2 or is empty and our reasoning still
holds). Then, minimizing (2.3.3) is equivalent to minimize |C̄1|. But finding the subset of

32

nodes P̄ to remove to do that has been shown to be NP-hard:

Lemma 2.3.2. [Addis et al., 2013] CNPsplit is NP-hard.

Complexity result. Next, we show that the decison version of Protect is NP-complete
using a reduction from MCNsplit. The decision problem is the following:

ProtectProtect:
instance: A graph Ga = (Va,Ea), a set of attacked nodes I ⊆ Va, a non-negative integer
budget Λ ≤ |Va| − |I| and a non-negative integer K.
question: Is there a subset P ⊆ Va\I, |P | ≤ Λ such that the number of infected nodes
f(P) ≤ K?

Note that the question can be equivalently asked with the inequality s(Ga, ∅,I,P) ≥ |Va|−K.

Theorem 2.3.3. Protect is NP-complete.

Proof. It is easy to see that Protect is NP as determining the objective value only
requires finding the connected components of Ga[Va\P] which can be done in linear time
using a depth-first search (DFS).
To complete the proof, we exhibit an immediate reduction from CNPsplit. Let us take an
instance of this problem, i.e. a split graph Ḡ = (V̄1, V̄2; Ē), a non-negative integer budget
B and a non-negative integer K̄. Given that, we build a graph Ga by growing by one the
size of the clique Ḡ[V̄1] with the addition of a node u. Thus, Va = V̄1 ∪ {u} ∪ V̄2 and Ea is
obtained by taking Ē and adding an edge (u,v̄1) ∀v̄1 ∈ V̄1. In fact, the new graph is still
a split graph Ga = (V̄1 ∪ {u}, V̄2;Ea). Finally, the corresponding instance of Protect is
given by Ga, I = {u}, Λ = B and K =

⌊
1
2(3 +

√
8K̄ + 1)

⌋
(obtained by solving K̄ =

(
K−1

2

)
).

An example of such construction can be found in Figure 2.5. Then, as there is only one
attacked node, minimizing (2.3.2) on this instance of Protect corresponds to chose a P
that minimizes the size of the unique connected component to which u belongs in Ga[Va\P].
Let’s name C1 this connected component. But as u belongs to the clique part of the split
graph Ga, C1 is also the unique connected component of Ga[Va\P] containing nodes from

V1 = V̄1 ∪ {u}. Thus, we have that C1 = C̄1 ∪ {u} and g(P) =
f(P)− 1

2

. Hence, finding
P that minimizes f on Ga is equivalent to finding P that minimizes g on Ḡ. This finishes
the proof that Protect is NP-hard. �

33

V̄1 V̄2 V̄1 ∪ {u} V̄2

u

Figure 2.5. Graph reduction from CNPsplit to Protect

2.3.2.2. The Attack-Protect problem

We showed that solving the last level of MCN is NP-complete, now we will prove that
Attack-Protect is also NP-hard. In this bilevel problem, we are taking the side of the
attacker: the aim is to find the attack that will maximize the number of infected nodes after
protection. The decision version of the problem is:

Attack-ProtectAttack-Protect:
instance: A graph Ga = (Va, Ea), two non-negative integer budgets Φ,Λ such that
Φ + Λ ≤ |Va| and a non-negative integer K ≤ |Va|
question: Is there a subset I ⊆ Va, |I| = Φ such that ∀P ⊆ Va\I, |P | ≤ Λ, the number of
infected nodes f(P) ≥ K?

We will use a reduction from the Dominating Set problem, a known NP-complete
problem [Garey and Johnson, 1979], whose decision version is:

Dominating SetDominating Set:
instance: A graph Ḡ = (V̄ , Ē), a positive integer B ≤ |V̄ |
question: Is there a subset U ⊆ V̄ , |U | ≤ B, such that ∀v ∈ V̄ \U , ∃ u ∈ U such that
(u,v) ∈ Ē?

Theorem 2.3.4. Attack-Protect is NP-hard.

Proof. Let us take a graph Ḡ = (V̄ , Ē) and a positive integer B ≤ |V̄ |. The instance of
Attack-Protect is simply created by taking Ga = Ḡ, Φ = B, Λ = |Va| − Φ − 1 and
K = Φ + 1. In this configuration, we have a protection budget Λ which is exactly one less
than the number of nodes that are not attacked. Thus, if all the protection budget is spent,
there is only one node u in the graph that is neither attacked nor protected. Therefore, if u
becomes infected after protection (i.e f(P) = K = Φ + 1), that means that the protection
strategy did not manage to save one unit of budget while saving all the other nodes, meaning

34

that the other nodes were all in direct contact with at least one attacked one (if it was not the
case, one unit of budget could have been saved by protecting all the neighbors of the node that
is not in direct contact with I). As u also becomes infected, it also means that it is adjacent
to one node in I. Thus, finding I such that ∀P, f(P) ≥ K means that I is a dominating set
of size B, which concludes the proof. �

2.3.2.3. The Vaccination-Attack problem

In this part, we will ignore the fact that there is a protection stage at the end. This
is a particular case of MCN since it is equivalent to studying it with protection budget
Λ = 0. We will show that the bilevel problem Vaccination-Attack is NP-complete. The
decision problem is the following:

Vaccination-AttackVaccination-Attack:
instance: A graph G = (V,E), two non-negative integer budgets Ω and Φ such that
Ω + Φ ≤ |V | and a non-negative integer K.
question: Is there a subset D ⊆ V , |D| ≤ Ω such that ∀I ⊆ V \D with |I| ≤ Φ, the
number of infected nodes |V | − s(G,D, I, ∅) ≤ K?

First, we argue that in this configuration, finding the optimal attack following a given
vaccination can be done in polynomial time.

Lemma 2.3.5. Vaccination-Attack ∈ NP. Moreover, Attack can be solved in polyno-
mial time.

Proof. Given a vaccinated set D, we want to verify that all the possible subsequent attacks
cannot infect more than K nodes. To do that, it suffices to find the best attack, i.e., solve
the Attacker optimization problem, and check whether or not it complies with the inequality.
But, as we highlighted it with Property 2.3.1, the graph on which the attack phase takes
place is Ga = G[V \D] and the saved nodes in the end are exactly the ones in the connected
components of Ga that do not contain any attacked node. Thus, the best attack possible
given Ga and budget Φ is to infect one node in each of the Φ largest connected components of
Ga. This can be done in linear time using a DFS. Hence, Vaccination-Attack ∈ NP. �

In fact, this proof showed that Vaccination-Attack is actually equivalent to another
problem: finding a subset of nodes D to remove from G that minimizes the sum of the sizes
of the Φ largest connected components in the induced subgraph. Let’s call this problem
MinMaxΦC:

35

MinMaxΦCMinMaxΦC:
instance: A graph G = (V,E), two non-negative integer budgets Ω and Φ such that
Ω + Φ ≤ |V | and a non-negative integer K.
question: Is there a subset D ⊆ V , |D| ≤ Ω such that the sum of the sizes of the Φ largest
connected component in G[V \D] is less than K ?

Lemma 2.3.6. Vaccination-Attack and MinMaxΦC are equivalent problems.

Shen et al. 2012 argued that MinMax1C, the problem that only seeks to minimize
the size of the largest connected component, is NP-hard as a direct consequence of the
Theorem 1 of Yannakakis 1978. Indeed, this theorem states that:

Theorem 2.3.7. [Yannakakis, 1978] The node-deletion problem for nontrivial, interesting
graph-properties Π that are hereditary on induced subgraphs is NP-hard. If Π is easy to
recognize (i.e in P), then the problem is NP-complete.

Here, we propose to properly show that our more general problem MinMaxΦC is
NP-complete thanks to Theorem 2.3.7. To do that, we first recall the definitions of
nontrivial, interesting and hereditary graph properties. Then, we exhibit the property Π we
are interested in here and show that it falls under the scope of the theorem.

Corollary 2.3.8. Vaccination-Attack is NP-complete.

Proof. We use Theorem 2.3.7. We recall the definitions of nontrivial, interesting and
hereditary properties as written in [Yannakakis, 1978]:

— Π is nontrivial if it is true for a single node and is not satisfied by all the graphs in
a given input domain.

— Π is interesting if there are arbitrarily large graphs satisfying it.
— Π is hereditary if the fact that it is satisfied on G implies that ∀v ∈ V , it is satisfied

on G[V \{v}].

In MinMaxΦC, we define the following property Π on a graph G with both K and Φ greater
or equal to one: the sum of the sizes of the Φ largest connected component of G is less than
K. It is easy to see that Π is nontrivial as it is satisfied for a single node and there are
graphs that violate Π, it is interesting as we can build arbitrarily large graphs satisfying Π
(e.g by adding arbitrarily many small connected components to graphs satisfying Π with
already strictly more than Φ connected components), and is obviously hereditary. Thus,

36

Theorem 2.3.7 tells us that MinMaxΦC is NP-hard. Π being easy to check in linear time,
MinMaxΦC is NP-complete, and by Lemma 2.3.6, so is Vaccination-Attack. �

Corollary 2.3.9. MCN is NP-hard.

Proof. Given an instance of Vaccination-Attack, there is a corresponding instance of
MCN by taking the same G,Ω,Φ, K and by setting Λ = 0. �

2.3.3. Undirected graphs: the weighted case

In this section, we study the version of MCN presented in problem (1) restricted to
undirected graphs. We will use the subscript w to denote the weighted version, MCNw,
as well as its subgames. In this problem, given a graph G = (V,E), each node v ∈ V

is associated with a benefit bv and cost parameters ĉv, hv and cv, respectively the cost of
vaccinating, attacking and protecting node v. Having introduced costs and benefits, this
problem is thus intimately related to Knapsack problems, which we will use to demonstrate
all of our complexity results in this part. First, we will highlight the direct relationship
between Attackw and Knapsack, which will get us the NP-completeness of this problem.
Then, we will focus on the two bilevel sub-problems Vaccination-Attackw and Attack-
Protectw and prove they are Σp

2-complete thanks to a Knapsack Interdiction problem.
Finally, we show that a trilevel Knapsack interdiction is Σp

3-complete, and use this result to
prove that MCNw is Σp

3-complete.

Note that the NP-completeness of Protectw is immediate from the previous sec-
tion. Hence, we start with complexity results to Attackw, then Attack-Protectw, and
Vaccination-Attackw, and, to conclude, MCNw. We will observe that the introduction of
non-unitary parameters offers sufficient flexibility to go a level up in the polynomial hierarchy
in comparison with the unitary undirected cases.

2.3.3.1. The Attackw problem

In the attack phase, the vaccination already took place so we effectively work on Ga,
which is the result of the deletion of the vaccinated nodes from the original graph. We are
given a non-negative attack budget Φ, and as there is no protection phase afterwards, we
set Λ = 0. The goal is thus to harvest the most benefit possible by infecting nodes subject
to a budget limit. The decision version of the problem is then:

AttackwAttackw:
instance: An undirected graph Ga = (Va, Ea), a non-negative integer cost hv and value bv
for each node v ∈ V , a non-negative integer budget Φ, and a non-negative integer K.
question: Is there a subset of nodes I ⊆ Va to attack, with cost ∑v∈I hv ≤ Φ such that

37

the sum of the benefits of the resulting infected nodes in Ga is greater or equal to K?

To make evident the NP-completeness of the problem, we simply state the decision
version of the Knapsack problem, one of the Karp’s 21 NP-complete problems [Karp, 1972]:

KnapsackKnapsack:
instance: Finite set U , for each u ∈ U , a positive integer size au ∈ N and a positive integer
profit pu ∈ N, and two positive integers B and K̄.
question: Is there a subset U ′ ⊆ U such that ∑u∈U ′ au ≤ B verifying ∑u∈U ′ pu ≥ K̄?

Theorem 2.3.10. Attackw is NP-complete, even on trivial graphs.

Proof. It is easy to see that Attackw ∈ NP. Indeed, given an attack I, finding the sub-
sequent infected nodes can be done in linear time thanks to a DFS. Then, it suffices to sum
the values associated with each infected nodes to verify that it is greater or equal to K.
The reduction from Knapsack we use to show the NP-hardness is straightforward. Given
an instance of Knapsack, we set Va = U , Ea = ∅, K = K̄, Φ = B , and ∀v ∈ Va, hv = av,
bv = pv. In this configuration, Ga having no edges, the attacked nodes are exactly the in-
fected ones in the end, and the goal of the attacker is equivalent to filling up a knapsack
with limited capacity by choosing which nodes to attack. �

2.3.3.2. The Attack-Protectw problem

In the proof of Theorem 2.3.10, we highlighted how a Knapsack instance can be
directly transformed into a weighted graph with no edges. In this section, as well as in the
one that follows, we will use a similar transformation, but add one additional root node
to our construction in order to build a star graph: one root node connected with an edge
to each of the other nodes, each one representing an item of the knapsack. That way, the
complexity results we devise also hold for trees.

As before, the vaccination having already been done, we start from Ga, the graph where
the vaccinated nodes have been removed.

Attack-ProtectwAttack-Protectw:
instance: A graph Ga = (Va,Ea), a non-negative integer K, two non-negative integer
budgets Φ and Λ, ∀v ∈ Va two non-negative integer costs hv, cv and a non-negative integer
benefit bv.
question: Is there a subset I ⊆ Va, with cost ∑v∈I hv ≤ Φ such that ∀P ⊆ Va\I with cost

38

∑
v∈P cv ≤ Λ, the sum of the benefit of the saved nodes is strictly less than K?

In order to show that Attack-Protectw is Σp
2-complete, we use the Bilevel In-

terdiction Knapsack Problem introduced by DeNegre [DeNegre, 2011] and proven to be
Σp

2-complete in [Caprara et al., 2014]. In this problem, two players, a leader and a follower,
can select items in the same set of objects O. First, the leader packs some items into her
knapsack, then the follower chooses among the remaining ones. The aim of the leader is
to interdict a subset of items, subject to a capacity constraint, in order to minimize the
total profit of the follower. The objective of the follower is to maximize its profit, subject
to a constraint capping the maximum profit obtainable for her. The decision problem is then:

Bilevel Interdiction Knapsack (BIK)Bilevel Interdiction Knapsack (BIK):
instance: A set of items O such that each o ∈ O has a positive integer weight ao and a
positive integer profit po, a positive integer maximum weight capacity A for the leader, a
positive integer maximum profit B for the follower, and a positive integer K̄ ≤ B.
question: Is there a subset Ol ⊆ O of items for the leader to select, with ∑o∈Ol

ao ≤ A,
such that every subset Of ⊆ O \ Ol with

∑
o∈Of

po ≤ B that the follower can create has a
total profit ∑o∈Of

po < K̄?

Theorem 2.3.11. Attack-Protectw is strongly Σp
2-complete, even if the graph is a tree.

Proof. First, Attack-Protectw is in Σp
2 since this decision problem is exactly of the

form ∃I ∀P Q(I,P).
Next, we prove the problem Σp

2-hardness. Let us begin by noting that we can restrict the
instances of KIP to the ones where K̄ and B are strictly inferior to ∑o∈O po, otherwise, KIP
is trivial to solve. This remark is used in the second part of this proof.
Starting from an instance of BIK, we construct an instance of Attack-Protectw as follows.
We first build a star graph Ga = (Va,Ea) with a root node r and a node vo for each o ∈ O
linked to r through an edge (r,vo). We set br = ∑

o∈O po + 1 and hr = cr = 1. We also set
bvo = cvo = po and hvo = ao for each o ∈ O. See Figure 2.6. Finally, we set Φ = A+1, Λ = B

and K = K̄.
Suppose first that BIK is a Yes instance. Then, there is a set of items Ol ⊆ O

of total weight ∑o∈Ol
ao ≤ A such that for all Of ⊆ O \ Ol feasible for the follower,

it holds ∑o∈Of
po ≤ K̄ − 1. Consequently, in the Attack-Protectw, the attacker

can select the subset of nodes I = {r} ∪ {vo : o ∈ Ol} with a feasible attacking cost∑
v∈I hv = 1 + ∑

o∈Ol
ao ≤ A + 1 = Φ. Now, the defender can only protect nodes in

{vo : o /∈ Ol} and since the central node of the star graph is infected, the saved nodes will

39

r

1

br = ∑n
o=1 po + 1, hr = cr = 1

b1 = c1 = p1, h1 = a1

2 b2 = c2 = p2, h2 = a2

. . .

n bn = cn = pn, hn = an

Figure 2.6. Graph reduction from BIK to Attack-Protectw when O = {1,2 . . . , n}.

be the protected ones. The aim of the defender is therefore to select the subset of nodes
of maximum total benefit with respect to the protection budget Λ. This is exactly the
follower’s problem in BIK. Hence, since BIK is an Yes instance, the defender (follower in
BIK) cannot attain a benefit (profit in BIK) equal or greater to K = K̄ through a feasible
action. Therefore, the Attack-Protectw is a Yes instance.

Now suppose that Attack-Protectionw is a Yes instance. Thus, there exists an
attack strategy I ⊆ Va such that there is no feasible subset P ⊆ Va \ I of protected nodes
leading to a total benefit greater or equal to K for the defender. As Φ ≥ 1, it is obvious that
the attacker will attack at least the central node r, otherwise, the defender would pick it
and achieve a benefit superior to K (recall that K = K̄ <

∑
o∈O po), contradicting Attack-

Protectionw Yes instance. Hence, the attacker is left with budget Φ− hr = A. Once the
central node is attacked, only the other nodes subsequently protected will not be infected.
Therefore, the rest of the attack budget A is spent on a subset of nodes of {vo ∈ Va : o ∈ O}
and it ensures that for any P = {vo ∈ Va : o ∈ O \ I} with ∑v∈P cv = ∑

o:vo∈P pv ≤ Λ = B,
the total benefit for the defender is ∑v∈P bv = ∑

o:vo∈P pv ≤ K̄ − 1. Consequently, BIK is
also a Yes instance.

This completes the proof that Attack-Protectw is Σp
2-complete. Moreover, since

the BIK was shown to be NP-complete even for unary encoding, we can conclude that no
pseudopolynomial-time algorithm exists to solve the Attack-Protect subgame. Since a
star graph is a tree, the result stated in the theorem holds. �

2.3.3.3. The Vaccination-Attackw problem

Using a similar reduction to the one in the proof of Theorem 2.3.11, we show that the
Vaccination-Attackw on weighted graphs is Σp

2-complete. As in the unitary case, this is
equivalent to studying MCNw problems where we set Λ = 0. The decision version of the
problem is:

40

Vaccination-AttackwVaccination-Attackw:
instance: A graph G = (V,E), a non-negative integer K, two non-negative integer budgets
Ω and Φ, ∀v ∈ V two non-negative integer costs ĉv, hv and a non-negative integer benefit bv.
question: Is there a subset D ⊆ V , with cost ∑v∈D ĉv ≤ Ω such that ∀I ⊆ V \D with cost∑
v∈I hv ≤ Φ, the sum of the benefit of the infected nodes is strictly less than K?

Theorem 2.3.12. Vaccination-Attackw is strongly Σp
2-complete, even if the graph is a

tree.

Proof. As before, Vaccination-Attackw is in Σp
2 since this decision problem is exactly

of the form ∃D ∀I Q(D,I).
Now, we establish the problem Σp

2-hardness. We start from an instance of BIK, defined in the
previous section, and we then construct an instance of Vaccination-Attackw as follows.
First, we build a star graph G = (V,E) with a central node r and |O| leaf nodes vo with
o ∈ O. See Figure 2.7. We add an edge (r,vo) for each such leaf node. The central node has
benefit br = K̄ and costs ĉr = hr = 1. Each leaf node vo with o ∈ O has a benefit bvo = po,
cost for the defender ĉvo = ao and cost for the attacker hvo = po. Finally, we fix Ω = A+ 1,
Φ = B and K = K̄.

r

1

br = K̄, ĉr = hr = 1

b1 = h1 = p1, ĉ1 = a1

2 b2 = h2 = p2, ĉ2 = a2

. . .

n bn = hn = pn, ĉn = an

Figure 2.7. Graph reduction from BIK to Vaccination-Attackw when O = {1,2 . . . , n}.

This is exactly the setting of BIK and one can easily complete the proof of equivalence
of the two decision instances following a path very similar to the proof of Theorem 2.3.11.
Finally, the reduction used a star graph which is a particular case of a tree. Hence, the
problem is Σp

2-complete even on trees. �

2.3.3.4. The MCNw problem

In this section we show that the decision problem MCNw is Σp
3-complete.

MCNwMCNw:
instance: A graph G = (V,E), a non-negative integer K, three non-negative integer
budgets Ω, Φ and Λ, ∀v ∈ V three non-negative integer costs ĉv, hv and cv, and a
non-negative integer benefit bv.
question: Is there a subset D ⊆ V , with cost ∑v∈D ĉv ≤ Ω such that ∀I ⊆ V \D with cost

41

∑
v∈I hv ≤ Φ, there is P ⊆ V \I with cost ∑v∈D cv ≤ Λ such that the sum of the benefit of

the saved nodes is greater or equal to K?

In other to achieve our ultimate goal, we take the 3-Alternating Quantified Satisfiability
problem (B3 ∩ 3CNF), known to be Σp

3-complete problem [Stockmeyer and Meyer, 1973;
Wrathall, 1976], in order to prove that the generalization of BIK to a trilevel, the Trilevel
Interdiction Knapsack (TIK), is Σp

3-complete. Then, TIK is used to demonstrate that
MCNw is Σp

3-complete.

3-Alternating Quantified Satisfiability3-Alternating Quantified Satisfiability (B3 ∩ 3CNF):
instance: Disjoint non-empty sets of variables X, Y and Z, and a Boolean expression E
over U = X ∪ Y ∪Z in conjunctive normal form with at most 3 literal in each clause c ∈ C.
question: Is there a 0-1 assignment for X so that for all 0-1 assignments of Y there is a
0-1 assignment of Z such that E is satisfied?

Trilevel Interdiction Knapsack (TIK)Trilevel Interdiction Knapsack (TIK):
instance: A set of items O such that each o ∈ O has two a positive integer weights a′o and
ao and a positive integer profit po, two positive integer maximum weight capacities A′ and
A, a positive integer maximum profit B and a positive integer goal K̄ ≤ B.
question: Is there a subset O1 ⊆ O of items, with ∑o∈O1 a

′
o ≤ A′, such that every subset

O2 ⊆ O \ O1, with
∑
o∈O2 ao ≤ A, there is a subset O3 ⊆ O \ O2, with

∑
o∈O3 po ≤ B, such

that ∑o∈O3 po ≥ K̄ holds?

Theorem 2.3.13. TIK is Σp
3-complete.

Proof. The statement of TIK is of the form ∃O1 ∀O2 ∃O3 Q(O1,O2,O3), directly
implying that it is in Σp

3.
Next, we use a reduction from the B3∩3CNF which is very much in line with the reduction
from 3-SAT to Subset Sum presented in [Cormen et al., 2009, Theorem 34.15]:

— For each variable u ∈ U , we create two items ou and oū, one for each possible 0-1
assignment of u. We designate by OU = {ou : u ∈ U} and OŪ = {oū : u ∈ U} the two
sets of items of size |U |.

— For each clause c ∈ C, (i) if c has 1 literal, we create one item o1
c , (ii) if c has 2 literals,

we create two items o1
c and o2

c , and (iii) if c has 3 literals, we create three items o1
c , o2

c

and o3
c . We designate by OC the set of items associated with C.

— Weights, profits, maximum capacities, maximum profit and goal will be given by
digits of size |X|+ |Y |+ |Z|+ |C|+ 1 in base 10. Hence, each digit position is labeled

42

by a variable or a clause: the first |C| positions (least significant numbers) are labeled
by the clauses, then the next |X| positions are labeled by the variables X, then the
next |Y | positions are labeled by the variables Y , then the next |Z| positions are
labeled by the variables Z, and, finally, the last position is labeled as forbidden.

— For each u ∈ U , the two corresponding items ou and oū have weights and profits as
described next. The weights and profits a′ou

, aou , pou , a′oū
, aoū and poū have digit

1 in the position labeled by the variable U and 0 in the positions labeled by other
variables; the remaining digits are zero for a′ou

, aou , a′oū
and aoū . In particular, for

all o ∈ OU ∪OŪ , it holds a′ou
= aou and a′oū

= aoū .
If the literal u appears in clause c ∈ C, then pou has digit 1 in the position labeled
as c, and 0 otherwise. Similarly, if the literal ¬u appears in clause c ∈ C, poū has
digit 1 in the position labeled by c, and 0 otherwise. Finally, for all o ∈ OU ∪OŪ ,
pou and poū have digit 0 in the position labeled as forbidden.

— For each c ∈ C, the associated items have weights and profits as follows. If c has
one literal, a′o1

c
and ao1

c
have 1 in the position labeled as forbidden and 0 elsewhere;

po1
c
has digit 3 in the position labeled as c and 0 elsewhere. If c has two literals, a′o1

c
,

a′o2
c
, ao1

c
and ao2

c
have 1 in the position labeled as forbidden and 0 elsewhere; po1

c
and

po2
c
have digit 3 and 2, respectively, in the position labeled as c and 0 elsewhere.

If c has three literals, a′o1
c
, a′o2

c
, a′o3

c
, ao1

c
, ao2

c
and ao3

c
have 1 in the position labeled

as forbidden and 0 elsewhere; po1
c
, po2

c
and po3

c
have digit 3, 2 and 1, respectively,

in the position labeled as c and 0 elsewhere.
— The weight capacity A′ has 1s for all digits with labels in X and 0s elsewhere.

Hence, O1 cannot contain items from {ou, oū : u ∈ Z ∪ Y } ∪OC .
— The weight capacity A has 1s for all digits with labels in Y , 2s for all digits with

labels in X and 0s elsewhere. Hence, O2 cannot contain items from {ou, oū : u ∈
Z} ∪OC .

— The maximum profit B has 1s for all digits with labels in X ∪ Z, 2s for all digits
with labels in Y , 4s for all digits with labels in C, and 0s elsewhere. Hence, O3

can take any item (as long as not interdicted by O2).
— We make K̄ is equal to B, except for the digits with labels Y , where it is 1.

See Figure 2.8 for an illustration of our reduction. Let B3 ∩ 3CNF be a Yes instance.
Then, take in O1 the items ou such that u ∈ X is 1 and the items oū, otherwise. Clearly,
this choice of O1 respects the maximum weight A′. By construction, given this O1, the best
O2 will take all items associated with X and not taken by O1, as it does not interfere with
the budget left for the items associated with Y . Furthermore, the optimal O2 will also take

43

O Z Y X C
forbidden d c b a c1 c2 c3

oa a′oa
= aoa 0 0 0 0 1 0 0 0

poa 0 0 0 0 1 1 0 1
oā a′oā

= aoā 0 0 0 0 1 0 0 0
poā 0 0 0 0 1 0 1 1

ob a′ob
= aob

0 0 0 1 0 0 0 0
pob

0 0 0 1 0 1 0 1
ob̄ a′ob̄

= aob̄
0 0 0 1 0 0 0 0

pob̄
0 0 0 1 0 0 1 0

oc aoc = a′oc
0 0 1 0 0 0 0 0

poc 0 0 1 0 0 0 0 1
oc̄ aoc̄ = a′oc̄

0 0 1 0 0 0 0 0
poc̄ 0 0 1 0 0 1 0 1

od a′od
= aod

0 1 0 0 0 0 0 0
pod

0 1 0 0 0 0 1 0
od̄ a′od̄

= aod̄
0 1 0 0 0 0 0 0

pod̄
0 1 0 0 0 0 0 0

o1
c1 a′o1

c1
1 0 0 0 0 0 0 0

ao1
c1

1 0 0 0 0 0 0 0
po1

c1
0 0 0 0 0 3 0 0

o2
c1 a′o2

c1
1 0 0 0 0 0 0 0

ao2
c1

1 0 0 0 0 0 0 0
po2

c1
0 0 0 0 0 2 0 0

o3
c1 a′o3

c1
1 0 0 0 0 0 0 0

ao3
c1

1 0 0 0 0 0 0 0
po3

c1
0 0 0 0 0 1 0 0

o1
c2 a′o1

c2
1 0 0 0 0 0 0 0

ao1
c2

1 0 0 0 0 0 0 0
po1

c2
0 0 0 0 0 0 3 0

o2
c2 a′o2

c2
1 0 0 0 0 0 0 0

ao2
c2

1 0 0 0 0 0 0 0
po2

c2
0 0 0 0 0 0 2 0

o3
c2 a′o3

c2
1 0 0 0 0 0 0 0

ao3
c2

1 0 0 0 0 0 0 0
po3

c2
0 0 0 0 0 0 1 0

o1
c3 a′o1

c3
1 0 0 0 0 0 0 0

ao1
c3

1 0 0 0 0 0 0 0
po1

c3
0 0 0 0 0 0 0 3

o2
c3 a′o2

c3
1 0 0 0 0 0 0 0

ao2
c3

1 0 0 0 0 0 0 0
po2

c3
0 0 0 0 0 0 0 2

o3
c3 a′o3

c3
1 0 0 0 0 0 0 0

ao3
c3

1 0 0 0 0 0 0 0
po3

c3
0 0 0 0 0 0 0 1

A′ 0 0 0 1 1 0 0 0
A 0 0 1 2 2 0 0 0
B 0 1 2 1 1 4 4 4
K̄ 0 1 1 1 1 4 4 4

Figure 2.8. Example of construction of TIK from an instance B3 ∩ 3CNF with E =
(a∨ b∨¬c)∧ (¬a∨¬b∨ d)∧ (a∨ c∨ b), where X = {a, b}, Y = {c}, Z = {d} and the clauses
are labeled from left to right.

44

exactly one of the items ou or oū for u ∈ Y :

— The two items associated with the most significant digit whose label is in Y cannot be
taken simultaneously in O2 as it would violate the weight capacity A. In fact, exactly
one of these items must be taken, as otherwise O3 would select them both, making
the achievement of the profit K̄ only dependent on the items associated with the Z;
consequently, the goal would be achieved.

— The two items associated with the second most significant digit whose label is in Y
cannot be taken simultaneously, since we already know that one of the items associated
with the most significant digit in Y is taken which would result in a violation of the
weight capacity A. Hence, reasoning as before, O2 will take exactly of the items
associated with the second most significant digit in Y .

— The reasoning above propagates until the least significant digit labeled in Y . We
conclude that the best O2 will have exactly one of the items ou or oū for u ∈ Y .

Finally, O3 will contain O1 and all the items associated with Y not in O2. This makes
the rest of the items selection for O3 completely equivalent to variable assignment in Z for
B3 ∩ CNF (precisely, the standard reduction from 3-SAT to Subset Sum). Therefore, TIK
is a Yes instance.

Next, suppose that TIK is a Yes instance. Certainly, an optimal O1 must have exactly
one of the items ou and oū for u ∈ X, otherwise, O2 could interdict some ou and oū, making
the goal K̄ impossible to be achieved. As argued before, an optimal reaction O2 to O1 will
select the items associated with X not in O1.

Assign 1 to u ∈ X such that ou ∈ O1, and 0 otherwise. For any valid assignment of
the variables in Y , the correspondence in TIK is the following: if u ∈ Y is 1, add oū to
O2, otherwise add ou. This forces O3 to select for each u ∈ Y , ou if u is 1 and oū if u is 0;
otherwise, the goal K̄ is not attained. Since, by hypothesis, TIK is a Yes instance, for those
O1 and O2, there is O3 such that the profit K̄ is exactly achieved which implies that there
is an assignment of Z such that E is satisfied. �

Theorem 2.3.14. MCNw is Σp
3-complete, even on trees.

Proof. MCNw is clearly in Σp
3. Next, from an instance of TIK, we construct the following

instance of MCNw:

— Let Ω = A′, Φ = A+ 1, Λ = B and K = K̄.
— For each item o ∈ O create three nodes v1

o , v2
o and v3

o with
— ĉv1

o
= Ω + 1, hv1

o
= Φ + 1, cv1

o
= po and bv1

o
= 0; this node is only available for the

protection set P ;

45

— ĉv2
o

= Ω+1, hv2
o

= Φ+1, cv2
o

= Λ+1 and bv2
o

= po; this node cannot be vaccinated,
directly infected or protected;

— ĉv3
o

= a′o, hv3
o

= ao, cv3
o

= Λ + 1 and bv3
o

= 0; this node is only available for the
vaccination set D and for the direct infection set I;

— Create a node r with ĉr = Φ + 1, hr = 1, cr = 1 and br = K.
— For each item o ∈ O, add the edges (r, v1

o), (v1
o ,v

2
o) and (v2

o ,v
3
o).

r

v1
2v1

1
...

v2
1

v3
1

v2
2

v3
2

v1
n

v2
n

v3
n

ĉr = Ω + 1, hr = cr = 1, br = K

ĉv1
1

= Ω + 1, hv1
1

= Φ + 1, cv1
1

= p1, bv1
1

= 0

ĉv2
1

= Ω + 1, hv2
1

= Φ + 1, cv2
1

= Λ + 1, bv2
1

= p1

ĉv3
1

= a′1, hv3
1

= a1, cv3
1

= Λ + 1, bv3
1

= 0

ĉv1
n

= Ω + 1, hv1
n

= Φ + 1, cv1
n

= pn, bv1
n

= 0

ĉv2
n

= Ω + 1, hv2
n

= Φ + 1, cv2
n

= Λ + 1, bv2
n

= pn

ĉv3
n

= a′n, hv3
n

= an, cv3
n

= Λ + 1, bv3
n

= 0

Figure 2.9. Graph reduction from TIK to MCNw when O = {1,2 . . . , n}. The only nodes
resulting in positive benefit are the ones in white. The nodes in gray can be vaccinated and
directly attacked. The nodes in green can be protected. The node in black can be attacked
(and protected).

See Figure 2.9 for an illustration of our reduction. Its key ingredients are the following:
(i) independently of the vaccination strategy, an optimal attack will always include the node
r, (ii) hence, the only way to collect a positive benefit po is by ensuring that node v2

o is saved,
(iii) the latter is only possible if v3

o is vaccinated and v1
o is protected or if v3

o is not attacked
and v1

o is protected. These observations allow to show that TIK is a Yes instance if and only
if MCNw is a Yes instance. The remainder of the proof follows a similar reasoning to the
previous proofs for the weighted games. �

2.3.4. Directed graphs

In this section, we consider directed graphs G = (V,A) and restrict costs and benefits
to be unitary. We use the subscript dir for these problem versions. Clearly, these problems
inherit the complexity of their unitary undirected versions, as they are more general. In
fact, we were able to go a level up in the polynomial hierarchy for some of its subgames
in comparison with the unitary undirected cases. In this section, we first prove that
the Attackdir is NP-complete, and then demonstrate that Vaccination-Attackdir is
Σp

2-complete. Later, in Section 2.3.5, we present special properties of Protectdir that
allow us to easily prove NP-completeness for directed acyclic graphs and polynomiality for
arborescences.

46

It should be remarked that we do not address Attack-Protectdir and thus, it remains
open whether it is Σp

2-complete. The difficulty on dealing with this subgame is related to
the lack of Σp

2-hard problems involving unitary parameters or a division on the two players
decision variables: in Attack-Protectdir all parameters are 1 and all nodes can be subject
to infection or protection. On the other hand, as an example, non-trivial instances of KIP
(presented in Section 2.3.3.2) should have weights not all 1, otherwise it becomes polyno-
mially solvable as it can be reduced to its continuous version and, consequently, efficiently
solved [Carvalho et al., 2018]. Another example, 2-CNF-Alternating Quantified Sat-
isfiability, to be introduced in Section 2.3.4.2, and which is Σp

2-complete, demands each
player to control distinct sets of variables. For Vaccination-Attackdir, we were able to
bypass this challenge but an analogous trick does not seem easily adaptable for Attack-
Protectdir.

2.3.4.1. The Attackdir problem

First, we study the Attack problem on directed graphs, Attackdir. We are given a
directed graph Ga resulting from the deletion of the vaccinated nodes from the original
graph, and an integer budget Φ. In this setting, there is no protection phase, i.e. Λ = 0.
The decision version of the problem is:

AttackdirAttackdir:
instance: A directed graph Ga = (Va, Aa), a non-negative integer budget Φ ≤ |Va|, and a
non-negative integer K.
question: Is there a subset of nodes I ⊆ Va, |I| ≤ Φ such that the number of infected
nodes in Ga is greater or equal to K?

We saw that in the undirected case, this problem is solvable in linear time, the best
strategy being to infect the Φ largest connected components of Ga. But in the directed
case, the infection is only allowed to propagate itself according to the direction of the arcs,
which makes the problem of choosing the right set of nodes to attack NP-complete. We will
use a reduction from the 3-Satisfiability problem, which is one of the Karp’s 21 NP-complete
problems [Karp, 1972].

3-satisfiability (3-SAT):3-satisfiability (3-SAT):
instance: Set U of variables, Boolean expression E over U in conjunctive normal form
with exactly 3 literals in each clause c ∈ C.
question: Is there a 0-1 assignment for the variables in U that satisfies E?

Theorem 2.3.15. Attackdir is NP-complete, even on directed acyclic graphs.

47

Proof. Attackdir ∈ NP as, given a set of attacked nodes I, checking whether the set of
infected nodes is greater than K is easily done using a DFS.
To prove that Attackdir is NP-hard, we take an instance of 3-SAT. We build a directed
acyclic graph Ga as follows:

— For each variable u ∈ U , we create two nodes vu and vū, one for each possible 0-1
assignment of u. We call VU = {vu;u ∈ U} and VŪ = {vū;u ∈ U} the two sets of
nodes of size |U |. For each variable u, we also create a directed path pu of length
|C|+ |U | − 1, with an in-going arc from both vu and vū at the beginning of the path.

— For each clause c ∈ C, we create a node vc ∈ VC .
— From each node vu ∈ VU , we draw an arc (vu, vc) to every clause in which the positive

literal u appears. Similarly, we draw an arc (vū,vc) from each vū ∈ VŪ to every clause
in which the negative literal ¬u appears.

An example of this construction can be found in Figure 2.10. We set Φ = |U |,
K = |U | × (|U | + |C|) + |C| and argue that answering Attackdir on this instance is the
same as answering 3-SAT.

Indeed, suppose that 3-SAT is a Yes instance, i.e. there is a 0-1 assignment to the
variables in U such that every clause in E is true. Taking this assignment, by attacking
vu if u is set to be 1 and vū otherwise, we attack exactly Φ nodes in Ga. Moreover,
each path pu is infected, and for each pair (vu, vū), there is exactly one node infected
due to the direction of the arcs. Finally, as E is true, each clause c is true, which
translates into the fact that each vc in the graph Ga is infected. Overall, there are exactly
|U |+ |U | × |pu|+ |C| = |U | × (|U |+ |C|) + |C| nodes infected in the graph.

Conversely, we prove that if Attackdir is a Yes instance, i.e., there is a feasible attack
I∗ on Ga leading to at least K = |U | × (|U |+ |C|) + |C| nodes infected, then E is satisfiable
and the corresponding 0-1 assignment can be read in I. Let I∗ be such an attack strategy.
First, we remark that the largest possible set of infected nodes should contain all the nodes
Vpu of each path pu: it is possible to infect them all as Φ = |U | and due to their size equal to
|C| + |U | − 1, we can prove that not infecting all of them results in a sub-optimal solution.
Indeed, suppose that for one u′ we do not infect any of the nodes Vpu′

of the path pu′ . Let α∗

be the maximum number of nodes we can infect without infecting pu′ . As pu′ is not infected,
vu′ and vū′ cannot be either. Thus, an easy upper bound αup on α∗ is obtained by saying

48

that every node of the graph is infected, except for the ones in {vu′ , vū′} ∪ Vpu′
. Then,

α∗ ≤ αup = (|U | − 1)× |pu|+ 2(|U | − 1) + |C|

= (|U | − 1)× (|U |+ |C| − 1) + 2|U | − 2 + |C|

= |U |2 + |U | × |C| − 2|U | − |C|+ 1 + 2|U | − 2 + |C|

= |U | × (|U |+ |C|)− 1.

As we assumed that the optimal attack I∗ infected at least K = |U |×(|U |+ |C|)+ |C| nodes,
which is strictly greater than αup, we proved that no strategy not infecting all the paths can
infect K nodes.

Thus, as there is exactly Φ different paths, we should attack exactly one element in each
set of nodes {vu, vū} ∪ Vpu : if we attacked more than one, then the remaining budget would
not allow to attack all the paths. As attacking vu or vū leads to a strictly greater number
of infected nodes than infecting a node in pu, there is no harm in assuming that no node
inside the pu is in I∗. This implies that I∗ ⊂ VU ∪ VŪ . At this point, there are at least
|pu| × |U | + |U | = |U | × (|U | + |C|) nodes infected. Since we supposed that we had a Yes
instance to Attackdir, there must be K = |U | × (|U | + |C|) + |C| infected nodes, which
implies that all nodes in VC are infected. Thus, 3-SAT is a Yes instance and I∗ is a 0-1
assignment of U that makes E true, concluding the proof. �

Remark 2.3.16. Note that the proof of Theorem 2.3.15 holds if pu is replaced by a complete
graph with |C| + |U | − 1 nodes (the length of the path). This observation will be useful for
the reduction used in Vaccination-Attackdir

a ¬a

c1

b ¬b

c2

c ¬c

c3

Figure 2.10. Example of construction of Attackdir from an instance of 3-SAT constituted
of the boolean expression in CNF with 3 literals in each clause E = (a ∨ b ∨ ¬c) ∧ (¬a ∨ b ∨
c) ∧ (a ∨ ¬b ∨ c). We have U = {a,b,c} and |C| = 3. Taking I = {va, vb, vc} is optimal.

49

2.3.4.2. The Vaccination-Attackdir problem

Our demonstration of NP-completeness for Attackdir inspires our proof for the
Σp

2-completeness of Vaccination-Attackdir. The formulation of this decision problem is:

Vaccination-AttackdirVaccination-Attackdir:
instance: A graph G = (V,A), two non-negative integer budgets Ω and Φ such that
Ω + Φ ≤ |V | and a non-negative integer K.
question: Is there a subset D ⊆ V , |D| ≤ Ω such that ∀I ⊆ V \D with |I| ≤ Φ, the
number of infected nodes |V | − s(G,D, I, ∅) ≤ K?

We will use a reduction from the variant of the 2-Alternating Quantified Satisfiability
problem (B2) by Johannes 2011 we introduced in the Chapter 1:

2-CNF-Alternating Quantified Satisfiability (BCNF
2):

instance: Disjoint non-empty sets of variables X and Y , Boolean expression E over
U = X ∪ Y in conjunctive normal form with exactly 3 literals in each clause.
question: Is there a 0-1 assignment for X so that there is no 0-1 assignment for Y such
that E is satisfied?

Theorem 2.3.17. Vaccination-Attackdir is Σp
2-complete.

Proof. From the formulation in the form of ∃D ∀I Q(D,I), we deduce that Vaccination-
Attackdir ∈ Σp

2.
To show that it is Σp

2-hard, we take an instance of BCNF
2 . We build G in a similar fashion

to how Ga was built in the proof of the Theorem 2.3.15, the main difference being the use
of cliques instead of paths. However, to differentiate the variables in X from the ones in Y ,
we slightly change the construction:

— For each variable x ∈ X, we create two nodes vx and vx̄, one for each possible 0-1
assignment of x. We call VX and VX̄ the sets of vx and vx̄. We also create two cliques
kx and kx̄ of |C|+ |Y | − 1 nodes Vkx and Vkx̄ .

— For each variable y ∈ Y , we create two nodes vy and vȳ, one for each possible 0-1
assignment of y. Let VY and VȲ be these two sets of nodes, and VU = VX ∪ VY ,
VŪ = VX̄ ∪ VȲ . We also create a clique ky of size |C|+ |Y | − 1.

— For each clause c ∈ C, we create a node vc ∈ VC .
— From each node vu ∈ VU , we draw an arc (vu, vc) to every clause in which the positive

literal u appears. Similarly, we draw an arc (vū, vc) from each vū ∈ VŪ to every clause
in which the negative literal ¬u appears.

50

— From every vx, we draw an arc to one node in kx, and do the same thing with vx̄ and
kx̄. We also draw an undirected edge between each vx and vx̄.

— Finally, from each vy and each vȳ, we draw an arc to one node in ky.

An example of this construction can be found in Figure 2.11. We set Ω = |X|, Φ = |X|+ |Y |,
K = (|X|+ |Y |)× (|Y |+ |C|) + |C| − 1 and argue that answering Vaccination-Attackdir
on this instance is the same as answering BCNF

2 .
Indeed, if we are a given a solution to a Yes instance of BCNF

2 , then by vaccinating the
nodes corresponding to the opposite of the 0-1 assignment of X, we oblige the attacker to
infect the nodes corresponding to the truth values for X. From there, by following the same
reasoning as before, it is easy to see that the Yes instance of BCNF

2 leads to a Yes instance
of Vaccination-Attackdir, i.e. the attacker cannot infect more than K nodes.

Conversely, we show that a set D∗ corresponding to a solution of a Yes instance of
Vaccination-Attackdir is a solution to a Yes instance of BCNF

2 . The first thing to notice
is that given that the vaccination budget is Ω = |X|, that the size of the cliques kx and
kx̄ is equal to |C| + |Y | − 1 and that each clique can be disconnected from the graph by
spending only one unit of vaccination budget, we necessarily have that the best vaccination
strategy D∗ ⊂ ∪

x∈X
{vx, vx̄}. Next, we show that the defender would be worse off is she

decides to vaccinate both vx′ and vx̄′ for some x′ ∈ X instead of vaccinating exactly one
of each member of {vx, vx̄}. In the best case scenario, in addition to the nodes already
vaccinated, deciding to vaccinate the two members of a pair will allow her to protect |C| − 1
nodes in VC (it is not possible to remove all the arcs between the VU ∪ VŪ and the VC as we
suppose that Y 6= ∅, thus at least one clause contains a variable from Y). But by doing so,
as Ω = |X|, the defender will also not protect at all a group of nodes {vx′′ , vx̄′′}∪Vkx′′

∪Vkx̄′′
.

Thus, the attacker can then spend only one unit of her own budget to attack all of this
group, a quantity of infected nodes that otherwise would have been obtained by spending
two units of his budget Φ. Thus, defending the two members of {vx′ , vx̄′} spared one unit of
budget for the attacker, which she can then use to attack one of the disconnected cliques of
size |C| + |Y | − 1 > |C| − 1. Thus, making such a move for the defender is strictly worse
than not doing it and D∗ contains exactly one node from each {vx, vx̄}.
After this stage, it is easy to see that the best move for the attacker is to attack all of
the D∗\(Vx ∪ Vx̄), and for the variables in Y , the situation reduces to the one we already
discussed with Attackdir (note that it is always more interesting for the attacker to spend
her budget on attacking the vy and vȳ than the disconnected cliques as it will always infect
more nodes). Hence, in the end, if the attacker did not manage to infect strictly more than
(|Y | + |X|) × (|Y | + |C|) + |C| − 1 nodes, it means that at least one clause is false, which
concludes the proof. �

51

a ¬a b ¬b c ¬c d ¬d

c1 c2 c3

Figure 2.11. Example of construction of Vaccination-Attackdir from an instance of
BCNF

2 constituted of the boolean expression in CNF with 3 literals in each clause E =
(a ∨ b ∨ ¬c) ∧ (¬a ∨ ¬b ∨ d) ∧ (a ∨ c ∨ b). Here, X = {a, b} and Y = {c,d}. Taking
D = {va, vb}, i.e obliging both a and b to be False makes it impossible to satisfy E.

Corollary 2.3.18. MCNdir is Σp
2-hard.

2.3.5. Protectiondir: tractability limits

In this section, we will concentrate on optimal protection strategies given I (directly in-
fected nodes). Without loss of generality, in what follows, we are restricting our attention to
the induced graph obtained by only considering non-saved nodes when there is no protection.

The motivation to provide a closer look to the protection problem in the directed case is
based on the fact that its NP-completeness was established for split graphs in the unitary
case and for trees in the weighted one. Such results do not clarify the problem complexity
for directed acyclic graphs (DAGs), polytrees and arborescences. Frequently, NP-complete
problems on graphs became polynomially solvable on such graph classes. In this section, we
start by focusing on general results for directed acyclic graphs and then on arborescences.

2.3.5.1. Directed acyclic graphs

We will show that an optimal protection strategy can be restricted to candidate nodes
for any directed acyclic graph.

Definition 2.3.19. In a directed graph G = (V,A), a node v ∈ V \ I that can be reached
from a node of I by a directed path and whose isolated protection results in a maximal set of
strongly connected saved nodes, is called candidate. Denote by C the set of candidate nodes.

52

In other words, a candidate node v has no predecessor that implies saving v. See
Figure 2.13a for an illustration: C = {1,2,3,9}; e.g., node 5 is not a candidate, since
its protection saves nodes {6,7,8}, but this is also guaranteed by saving node 2 instead,
resulting in the maximal set of saved nodes {2, 3,4,5,6,7,8}.

Lemma 2.3.20. Let G = (V,A) be a directed acyclic graph. Given I and Λ, there is an
optimal protection strategy P ⊆ C.

Proof. Let P ⊆ V \ I be an optimal protection strategy such that exists v ∈ P \ C. Then,
by definition of candidate, there is a node u ∈ C whose isolated protection implies saving v,
as well as, all the nodes that v alone was saving. Hence, a feasible protection strategy can be
obtained by removing v from P and adding u to P : note that either the used budget is main-
tained, if u /∈ P , or decreased, if u ∈ P . Let this strategy be denoted by P̃ = (P − {v})∪{u}.

By contradiction, suppose that P̃ is not optimal: there is some node r that was saved in
P but not in P̃ . In fact, we can conclude that under P , r was saved due to v being saved
and possibly due to some other nodes in P \ {v} ⊆ P̃ . However, under P̃ , v is also saved, as
well, as the nodes in P \{v}. Consequently, r is saved in P̃ , resulting in a contradiction. �

Furthermore, we can compute the value of candidate nodes.

Definition 2.3.21. For each v ∈ C, the value of v is denoted by pv and it corresponds to the
number of saved nodes if v is the only protected node.

In the example of Figure 2.13a, p1 = 1, p2 = 6, p3 = 1 and p9 = 1. However, note that
this analysis does not make the problem trivial: in Figure 2.13a, if Λ = 2, the optimal
protection cannot be computed in a greedy way, i.e., protecting nodes 1 and 2 is not
optimal; the only optimal solution is to protect nodes 1 and 3.

Remark 2.3.22. Definitions 2.3.19 and 2.3.21, and Lemma 2.3.20 do not need the condi-
tion that G is a directed acyclic graph. Hence, they extend to any directed graph and thus,
undirected graphs. However, since we know that the protection problem is NP-complete for
general directed graphs, for sake of simplicity, we decided to write the full section assuming
DAGs.

Theorem 2.3.23. Protectdir is NP-complete, even for directed acyclic graphs.

Proof. The statement of Protectdir is exactly the one of Protect in Section 2.3.2,
except that the graph is directed. For sake of simplicity, we drop the subscript a from Ga.

53

The problem is clearly in NP as given the protection P , the number of infected can be
determined in polynomial time through a DFS.
Next, we reduce CNPsplit to Protectdir, showing its NP-hardness. Given an instance of
CNPsplit, we build the following graph G = (V,A):

— For each v ∈ V̄1, we create the set of nodes Tv = {t1v, t2v} in G, and the arc (t1v,t2v).
— For each v ∈ V̄2, we replicate it in G, and for each edge (r,v) ∈ Ē with v ∈ V̄2, the

arc (t1r,v) is added in G.
— Finally, we add the only attacked node u to G and connect it with each t1v for v ∈ V̄1,

through the arc (u,t1v).

To complete the reduction it remains to set Λ = B and K = b2 +
√

8K̄ + 1c (obtained by
solving K̄ =

(K−1
2
2

)
). See Figure 2.12 for an illustration of the reduction.

V̄1 V̄2
⋃
v∈V̄1 Tv ∪ {u} V̄2

u

Figure 2.12. Graph reduction from CNPsplit to Protectdir

First, note that C of G is {t1v : v ∈ V̄1}∪ V̄2, where the nodes in the first set have value at
least 2, and the ones in the second have value 1. Hence, it is clear that the best protection
strategy will prioritize the nodes t1v. In fact, we can argue than only those nodes can be
in an optimal protection strategy. If Λ = B ≥ V̄1, then the instance of CNPsplit is trivial.
Therefore, we can assume Λ = B < V̄1 and thus, it holds P ∗ ⊂ {t1v : v ∈ V̄1}. Consequently,
choosing the optimal P ∗ means to minimize the nodes in Tv, for v ∈ V̄1, and in V̄2 that are
connected to u. By construction, those nodes connected with u correspond to a connected
component C̄1 in Ḡ. Thus, P ∗ minimizes the size of

⋃
v∈C̄1

{t2v} ∪ {u} ∪ C̄1. The remaining of

the proof follows an analogous reasoning to the proof of Theorem 2.3.3. �

54

2.3.5.2. Arborescence

In this section we restrict the protection problem to the case where the graph induced
by V \ I is an arborescence.

Definition 2.3.24. A DAG G = (V,A) is an arborescence if its underlying undirected graph
is a tree (forest) and there is a single node (root) that has a unique directed path from it to
all other nodes.

In arborescence, it is direct the determination of C. Since all nodes in V \ I have
in-degree 1, either they are protected by their predecessor, and thus are not a candidate, or
they are direct successors of nodes in I. Therefore, C is the set of all successors of nodes in
I. For an illustration see Figure 2.13c. We can prove that in this case a greedy approach
leads to optimality.

Lemma 2.3.25. Given G = (V,A), I and Λ, if the graph induced by V \I is an arborescence,
then an optimal protection can be determined in polynomial time, specifically, O(|V | log(|V |)).
Moreover, if the induced graph is a set of arborescences, the result also holds.

Proof. We start by showing that a greedy procedure runs in time O(|V | log(|V |)). As
previously observed, for arborescences, the set of candidate nodes is easy to compute: it is
the set of all successors of I.

Next, the calculation of pv for each v ∈ C can be performed through a depth-first-search
that records the saved nodes by candidates. This requires O(|V |) since the graph is an
arborescence.

Finally, the Λ candidate nodes of largest values are protected. This requires to order the
nodes accordingly with {pv}v∈C. Thus, the greedy method runs in O(|V | log(|V |)).

Next, we show that the described method provides an optimal protection. Let P be the
obtained protection through the greedy method. The key idea to prove the optimality of
P is essentialy due to the fact that in an arborescence, C is simply the set of all successors
of I, otherwise, if we have a node of in-degree at least 2, we do not have an arborescence.
Thus, the protection strategy P cannot imply the protection of some candidate not in P .
This shows the optimality of P . �

Note that in trees (undirected graphs), it does not hold that C is the set of successors of
the nodes in I. Hence, Lemma 2.3.25 does not extend to the undirected case.

Remark 2.3.26. Note that in Lemmata 2.3.20 and 2.3.25, we did not used the fact that
bv = 1. Thus, these lemmas also holds when nodes benefits are not unitary.

55

12

1

10

3

2

4

5

6

7 8

9

11

(a) Polytree.

0

1

2 4

3

5

(b) DAG.

0

1

2

3 4

5

6 7

89

(c) Graph induced by V \I is
an arborescence.

Figure 2.13. The set I is represented by black nodes and candidate nodes are dashed.

2.4. Conclusion
In this chapter, we shed light on the practical challenges encountered when exactly solving

MCN and its subgames, and explained them by providing new results on their computational
complexities. We showed that MCN is at least NP-hard in the undirected unitary case, at
least Σp

2-hard in the directed unitary one and Σp
3-complete in the weighted case. These results

motivate the design of efficient heuristics to solve this multilevel combinatorial problem. In
particular, we focus in this thesis on how one can learn to find such heuristics thanks to
Graph Neural Networks. In order to rigorously frame this problem in a learning context,
we will need to use a Multi-Agent Reinforcement Learning setting. In the next chapter, we
establish the necessary background to properly introduce the learning frameworks we will
discuss in Chapter 4.

56

Chapter 3

Learning heuristics for Combinatorial
Optimization problems

In previous chapters, we introduced the Multilevel Critical Node Problem (MCN) and
showed that this two-player sequential game played on a graph is provably hard to solve,
assuming that P 6= NP. We also showed that this complexity expresses itself in practice as
it is challenging to find a solution to an instance of the problem with the currently existent
exact solver. Thus, the MCN belongs to the vast list of NP-hard combinatorial optimization
problems over graphs that quickly become intractable to solve with exact methods. To deal
with those practical issues that arise in Operations Research, practitioners often have to
come to terms with finding only sub-optimal solutions when tackling real-world instances
of combinatorial problems. To do so, heuristics are widely used in practice as they can be
engineered to be highly scalable, but at the expense of having no theoretical guaranty on the
quality of the solutions produced. Hence, the design of powerful heuristics that empirically
approach optimality has attracted the attention of many Computer Scientists over the years
[Gonzalez, 2007].

With recent advances in Deep Learning [Goodfellow et al., 2016] and Graph Neural
Networks (GNN) [Wu et al., 2020], the idea of leveraging the recurrent structures appearing
in the combinatorial objects belonging to a distribution of instances of a given problem to
learn efficient heuristics with a Reinforcement Learning (RL) framework has received an
increased interest [Bengio et al., 2018; Mazyavkina et al., 2020]. In this thesis, we decided
to take this direction and designed a Reinforcement Learning framework in order to learn
to solve the MCN with a Graph Neural Network based agent. In this chapter, we will
present the necessary background to introduce the setting we will discuss in Chapter 4. We
will begin by introducing the notion of Graph Neural Network in Section 3.1. Then, in
Section 3.2, we will discuss how one can learn to solve sequential games by presenting the
Reinforcement Learning and Multi-Agent Reinforcement Learning frameworks. Finally, we

will bring together GNN and RL in Section 3.3 by reviewing some previous work on Deep
Learning for Combinatorial Optimization on which the novel method we designed to learn
to solve the MCN is built up.

3.1. Introduction to Graph Neural Networks
We aim to learn vector representations of graphs that could allow an agent to systemat-

ically find the optimal decisions to take in a given instance of a combinatorial optimization
problem. The main challenge is thus to find a way to include information about the graph
structures into a machine learning model. However, there is no straightforward way to
encode into a single feature vector all the high-dimensional, non-Euclidean information that
is enclosed inside a given graph structure. To tackle this issue, a method extending deep
learning approaches for graph data have recently emerged under the name of Graph Neural
Networks.

The main advantage of Deep Learning is to learn useful representations for the down-
stream machine learning task directly from raw data, while traditional Machine Learning
techniques require the additional work of hand-crafting features to represent data with vec-
tors. Thus, instead of using engineered features, we seek to learn mappings embedding nodes,
or entire graphs structures, into points of a low dimensional vector space Rd so that the geo-
metric relationship between those points reflects the structure of the graph. However, while
there is a principled way to create Deep Learning models dealing with images or sequences
thanks to Convolutional Neural Networks (CNN) and Recurrent Neural Networks (RNN),
their flexible topology and intrinsic absence of notion of order in their sub-parts make graphs
a challenging data structure to tackle. For example, the naive approach of seeing a graph
as a binary image through its adjacency matrix is not permutation invariant, thus, directly
applying a CNN to the binary image or flattening it and feeding it to a multilayer percep-
tron will result in embeddings that will depend on the arbitrary ordering of nodes we used
to create the adjacency matrix, which is not an intrinsic property of the graph structure.
In order to circumvent this issue, a parameterized permutation invariant operation is at the
root of many Graph Neural Networks: the Neural Message Passing.

3.1.1. Neural Message Passing

Here, we focus on the problem of embedding nodes of a graph. In the next section, we
present how we can go from node representations to graph level ones. More particularly, we
aim to embed nodes in a way that reflects their role inside a given graph, so that an agent
taking decisions at the node level can easily identify the ones playing the same role for the
task at hand and classify them by their relevance to him/her. In the case of the MCN, if

58

the agent is the protector, we seek to identify the nodes that are the most interesting to
protect. In general, we want to find a way to represent nodes that both take into account
their structural role inside the graph, i.e., the position they occupy inside the graph’s
topology, and also contain information about the possible attributes they have with respect
to the attributes of the other nodes in the graph. For example, in the case of the MCN, an
attribute attached to a node could be whether this node has been attacked or not. In order
to formalize the setting, we introduce A ∈ {0,1}n×n the adjacency matrix of the graph
G = (V,A) with n nodes, and X ∈ Rn×p the matrix containing the p attributes of each node.
From this, our purpose is thus to create a new matrix H ∈ Rn×d that embeds in a relevant
way the n nodes in Rd.

A promising way to tackle such task is through Graph Neural Networks (GNN). In order
to build representations that encode the two types of information we are interested in, i.e. the
structural and feature-based information of the nodes, GNNs use the Neural Message Passing
algorithm. The intuition behind this algorithm is to start from the node’s features hv

(0) = xv

for v ∈ V (and xv the associated row of X), and iteratively update them by aggregating
the information of each node’s neighbors N (v) = {u ∈ V : (u,v) ∈ A}. Thus, with one
iteration, the embedding hv

(1) of each node v ∈ V also contains information about its direct
neighbors. From there, if we update once again each node’s embedding by aggregating the
embeddings of its local neighborhood, the embeddings {hv

(2)}v∈V now contain information
about their 2-hop neighbors. In fact, after k iterations of the aggregation-update procedure,
the embeddings {hv

(k)}v∈V contain information about their k-hop neighbors. The overall
procedure can be summarized as in [Hamilton, 2020] with the following iterative equation:

hv
(k+1) = UPDATE(k)

(
hv

(k),AGGREGATE(k)
(
{hu

(k), ∀u ∈ N (v)}
))
. (3.1.1)

Different motivations have lead to formulations falling under this general equation: Bruna
et al. 2014 derived one using graph signal processing tools to generalize Euclidean con-
volutions to the non-Euclidean graph domain, Dai et al. 2016 established a connection
between the task of embedding latent variables in structured data and probabilistic graphical
model inference procedures such as mean field and belief propagation, while Hamilton et al.
2017 took inspiration from the Weisfeiler-Lehman graph isomorphism test to propose their
GraphSAGE algorithm.

We remark in Equation 3.1.1 that, once again, we want to find a way to represented a set,
i.e., an unordered structure, into a single vector through the function AGGREGATE. Thus,
the aggregation function must be permutation invariant as there is no natural ordering of
the node’s neighbors. To do that, Zaheer et al. 2017 state the following theorem:

59

Theorem 3.1.1. [Zaheer et al., 2017] Assume the elements are from a compact set in Rp,
i.e., possibly uncountable, and the set size is fixed to n. Then any continuous function oper-
ating on a set X, i.e., f : Rp×n → R which is permutation invariant to the elements in X can
be approximated arbitrarily close in the form of ρ(∑x∈X φ(x)), for suitable transformations
φ and ρ.

In particular, if φ and ρ are universal approximators such as multilayer perceptrons,
the theorem holds [Zaheer et al., 2017]. Thus, using neural networks in the AGGREGATE
function allows us to learn a suitable permutation invariant function for our use case. In
particular, in the next chapter, we will use a Graph Attention Network (GAT) [Velicković
et al., 2018] which aggregates node embeddings through a conical combination of linear
projections defined with the following equations:

hv
(k+1) = µ(k)

v,vΘ(k)hv
(k) +

∑
u∈N (v)

µ(k)
v,uΘ(k)hu

(k) (3.1.2)

with µ defined by:

µv,u = exp(LeakyReLU(a>[Θhv||Θhu]))∑
k∈N (v)∪{v} exp(LeakyReLU(a>[Θhv||Θhk])) , (3.1.3)

where a ∈ R2×dk+1 and Θ ∈ Rdk+1×dk are the trainable parameters. Here, dk is the original
embedding dimension of hv

(k), dk+1 is the dimension of hv
(k+1).

Through Equation 3.1.2, we notice that the UPDATE function used in GAT is another
conical combination between the aggregated vector and a projection of the previous version
of the node embedding. While such basic types of update methods are usual in GNNs, they
can lead to over-smoothing problems when many iterations are performed, i.e., there is a
risk to make all the node representations similar to one another [Hamilton, 2020]. More
complex methods exist to circumvent this issue; see the chapter 4.3 of [Hamilton, 2020] for
a comprehensive survey on the matter.

3.1.2. Graph level representations

In the previous section, we introduced the Neural Message Passing method, aimed at
creating node embeddings. However, in certain tasks, decision makers directly act on graphs
or sub-graphs and not at the node level. Thus, there is also a need to create graph-level
embeddings. There are two main ways to do that from the node embeddings. The first
supposes that all the information about the graph’s topology is already contained in the
node embeddings we derived with a GNN. This implies that it suffices to see the graph as a
set of node embeddings, meaning that any permutation invariant function applied on this
set, such as the sum, the max, or a more evolved one using neural networks and Theorem

60

3.1.1, will lead to a fixed sized representation of the graphs. This is the method we decided
to use in Chapter 4.

A more complex approach is to gradually simplify the graph structure by coarsening
it iteratively, updating the node embeddings in the simplified structure, until the graph is
summarized in one node. An example of such method is described in [Lee et al., 2019].

3.2. Introduction to Reinforcement Learning and Multi-
Agent Reinforcement Learning

With Graph Neural Networks, we introduced a way to learn expressive node and graph
representations. However, in order for them to be useful for the downstream task, we
still need to define what would constitute a good learning signal to gradually refine the
parameters of a GNN through gradient descent. In this thesis, we focus on a combinatorial
optimization problem on a graph, thus, our aim is to take optimal decisions in any given
instance. A straightforward way to learn to embed the combinatorial structures so that a
decision maker can easily identify the optimal decisions would be to use the predominant
paradigm in Machine Learning: supervised learning, or, in simpler words, learning by
example. However, to do that, we would need a large dataset of examples, i.e., pairs
constituted of an instance and its corresponding optimal decisions. But constituting such
a dataset is challenging for NP-complete combinatorial problems as it would necessitate to
exactly solve a large quantity of instances, which cannot be done efficiently by definition,
unless P=NP. In this context, the go-to framework to learn the representations we seek is
Reinforcement Learning (RL).

In essence, RL consists in learning how to map situations to actions in order to maximize
a numerical reward signal [Sutton and Barto, 1998]. Contrary to supervised learning where
targets are available, RL focuses on agents that learn by interacting with the environment:
they try different possible actions in order to discover the ones yielding the most rewards. A
way to formally model this situation is by using Markov Decision Processes (MDPs), e.g.,
[Puterman, 1994].

3.2.1. Markov Decision Process

The setting we are considering is constituted of a learning agent acting at each time step
t in an environment. At time t, the agent is in a state st ∈ S of the environment and takes
an action at ∈ A(st). By performing at in st, the agent changes the state of the environment
which evolves to st+1. This transition leads to a reward rt for the agent. At each time t, the
purpose of the agent is to take an action that maximizes its long-term reward, which we

61

formally define through the discounted return Gt = ∑
k≥0 γ

krt+k with γ ∈ [0,1] the discount
rate. A Markov Decision Process is then defined as the tuple 〈S,A, P,R, γ〉, with S the
set of states, A the action space, P the transition function which defines the probabilities
of the next state st+1 given the current pair of state-action (st, at), the reward function
R : S ×A → R and γ the discount rate.

In order to act, the agent follows a policy π, i.e., from each perceived state st, the agent
attributes a probability π(at|st) to each of the possible actions at ∈ A(st). Under π, we can
attribute a value Vπ(s) to each state s: the expected return starting from s and following
π thereafter, i.e., Vπ(s) = Eπ

[∑
k≥0 γ

krt+k|st = s
]
. Thus, the goal of an RL algorithm is

to find an optimal policy π∗ maximizing the value Vπ(s) for all initial state s. From there,
the optimal state-value function V ∗ is defined as V ∗(s) = maxπ Vπ(s). Similarly, we can
attribute a value Qπ(s,a) to the act of taking action a in state s under policy π. We call
Qπ the action-value function, defined with Qπ(s,a) = Eπ

[∑
k≥0 γ

krt+k|st = s, at = a
]
, and

Q∗(s,a) the optimal action-value function defined as Q∗(s,a) = maxπQπ(s,a). Thus, we
have the relation V ∗(s) = maxa∈A(s) Q

∗(s,a). From these definitions emerge recursive links
for the expected rewards called the Bellman equations. For example, the Bellman optimality
equation for V ∗ is:

V ∗(s) = max
a∈A(s)

R(s,a) + γ
∑
s′
P (s′|s,a)V ∗(s′) ∀s ∈ S. (3.2.1)

In finite MDPs, with finite, small-sized sets S and A, it is possible to use dynamic
programming to find V ∗ from Equation 3.2.1. For example, in the Value Iteration method,
the intuition is to see the Bellman optimality equation as an update rule until the estimates
V (s) of the values of the optimal value function converge for each possible state s ∈ S.
From there, π∗ is obtained by simply following the greedy policy with respect to V ∗.

Another way to solve the control task, i.e., approximate an optimal policy, is to use
Monte-Carlo samples. With this method, the values estimates are updated by comparing
them to the return obtained by following the current version of the greedy policy during an
episode s0, a0, r0, s1, a1, r1..., sT , aT , rT , with T the last time step of the procedure.

A quicker way to update our estimates is to use a Temporal Difference method which
combines both the dynamic programming and Monte Carlo approaches. Instead of waiting
that a whole episode is finished to obtain an estimate of the target Gt as with Monte Carlo
methods, Temporal Difference leverages the Bellman equation to produce the target by
simply querying an estimate of the value of the next state. In Q-learning [Watkins, 1989],

62

this results in the following update rule, with α a step-size ∈ (0,1]:

Q(st, at)← Q(st, at) + α
[
rt+1 + γmax

a
Q(st+1,a)−Q(st,at)

]
(3.2.2)

However, these guaranteed to converge methods for finite MDPs do not directly generalize
to situations with large, possibly infinite state spaces as it is not practicable anymore to visit
each possible state. To tackle these situations, we need to learn to generalize the experience
we previously had to new situations, i.e., learn to estimate the value of an unseen state. To
do that, we rely on function approximations for Q∗ or V ∗ based on deep neural networks.
Although the theoretical properties of such methods are not as strong nor well understood
as the ones based on lookup tables [Sutton and Barto, 1998], using the same ideas to build
update rules for the function approximation leads to great result in practice. For example,
with Deep Q-Networks (DQN), Mnih et al. 2015 achieved great performances on 49 different
Atari 2600 video games simply by interacting with a game emulator and using a neural
network based agent trained to approximate the optimal Q function with the following
update rule:

wt+1 = wt + α
[
rt+1 + γmax

a
Q̂(st+1,a,wt)− Q̂(st, at,wt)

]
∇wtQ̂(st, at,wt) (3.2.3)

where Q̂ denotes the neural network and wt is the vector of the network’s weights at time t.

3.2.2. Alternating Markov Games

We have seen that with Deep Reinforcement Learning, we can design methods to make
an agent learn good strategies for sequential optimisation problems with large state spaces.
However, the formalism we used so far is not suited to the case where several agents coexist
in the same environment. Whereas single agent RL is usually described with Markov
Decision Processes, the framework needs to be extended to account for multiple agents.
This has been done in the seminal work of Shapley 1953 by introducing Markov Games
(also named Stochastic Games), which are at the base of the Multi-Agent Reinforcement
Learning (MARL) setting [Littman, 1994; Shoham et al., 2007]. In the case of the MCN,
we want to model two-player games in which moves are not played simultaneously but
alternately. The natural setting for such situation was introduced by Littman in [Littman,
1994, 1996; Littman and Szepesvari, 1996] under the name of Alternating Markov Games.

An Alternating Markov Game involves two players: a maximizer and a minimizer. It
is defined by the tuple 〈S1,S2,A1,A2, P,R〉 with Si and Ai the set of states and actions,
respectively, for player i, P the transition function mapping state-actions pairs to probabil-
ities of next states and R a reward function. For s ∈ S = S1 ∪ S2, we re-define V ∗(s) as the
expected reward of the concerned agent for following the optimal minimax policy against an

63

optimal opponent starting from state s. In a similar fashion, Q∗(s,a) is here the expected
reward for the player taking action a in state s and both agents behaving optimally there-
after. Finally, with the introduction of the discount factor γ, we can write the generalized
Bellman equations for Alternating Markov Games [Littman, 1996]:

V ∗(s) =

 maxa1∈A1 Q
∗(s, a1) if s ∈ S1

mina2∈A2 Q
∗(s, a2) otherwise

(3.2.4)

Q∗(s,a) = R(s,a) + γ
∑
s′
P (s,a,s′)V ∗(s′). (3.2.5)

3.3. Solving Combinatorial Optimization problems with
GNN and RL

In this section, we review a procedure to heuristically solve classical combinatorial op-
timization problems involving a single agent on a graph using a combination of GNN and
RL. In the next chapter, we tackle the multi-agent case. Here, the purpose is to learn a
heuristic proposing good quality strategies to solve any instance sampled from a distribu-
tion D of instances of a given combinatorial optimization problem on a graph. Khalil et al.
2017 were the first to tackle such a task with a combination of a graph embedding method
and reinforcement learning. The framework they propose, S2V-DQN, is general and can be
applied to many different combinatorial problems over graphs were a single agent must take
decisions at the node level (e.g., the Minimum Vertex Cover (MVC) problem which seeks to
find a minimum sized set of nodes that covers all the edges of the graph). In their setting,
all the nodes from a graph G = (V,A) are embedded using the structure2vec [Dai et al.,
2016] algorithm. A state s is described with the sequence of the previously taken actions,
which correspond to a partial solution of the problem. The idea is to begin at t = 0 with
s = ∅, and finish at t = T with s a solution to the instance of the problem. The repre-
sentation of s is simply the sum of the corresponding node embeddings. The transition is
completely deterministic, the next state of the environment being obtained by tagging the
node v corresponding to the action taken with the label xv = 1. The action space at each
time step thus corresponds to the set of free nodes at t i.e.{v ∈ V : xv = 0}. The definition
of the reward depends on the problem at hand, in the case of the MVC, each new action
leads to a negative reward −1 and the procedure terminates when the nodes in the partial
solution s constitute a proper cover. Their agent learns to estimate the Q values of all the
state-action pairs possible to encounter in the distribution of instances D by using an adap-
tation of DQN, which they name S2V-DQN. Once their graph neural network is trained,
they heuristically solve any new instance of the problem by incrementally building a solution
following the greedy policy. Thanks to this meta-algorithm, Khalil et al. 2017 managed to
show promising results on three classic budget-free NP-hard problems. Thenceforth, there

64

is a growing number of methods proposed to either improve upon S2V-DQN results [Barrett
et al., 2020; Cappart et al., 2019; Kool et al., 2019; Li et al., 2018; Ma et al., 2019] or tackle
other types of NP-hard problems on graphs [Bai et al., 2020]. Although there are variations
on the way nodes are embedded or on the RL algorithm used, all these recent methods rely
on the same global idea of incrementally building a solution to an instance of a combinatorial
problem by following a greedy policy given by a GNN trained on a distribution of instances;
see [Mazyavkina et al., 2020] for a recent survey.

65

Chapter 4

Learning heuristics for Multilevel Budgeted
Combinatorial Optimization problems

This chapter has appeared in a paper under review at the NeurIPS 2020 con-
ference: "Curriculum learning for multilevel budgeted combinatorial prob-
lems" [Nabli and Carvalho, 2020] by Adel Nabli and Margarida Carvalho.
Contribution. This paper is the result of an original idea of mine. I was
involved in all aspects of this scientific work: literature review, theoretical
results, writing and coding.

Although the approaches presented in the last chapter show promising results on many
fundamental NP-hard problems over graphs, such as Maximum Cut [Barrett et al., 2020] or
the Traveling Salesman Problem [Kool et al., 2019], the range of combinatorial challenges
on which they are directly applicable is still limited.

Indeed, most of the combinatorial problems over graphs solved heuristically with Deep
Learning [Bai et al., 2020; Barrett et al., 2020; Bello et al., 2016; Cappart et al., 2019;
Khalil et al., 2017; Kool et al., 2019; Li et al., 2018; Ma et al., 2019] are classic NP-hard
problems for which the canonical optimization formulation is a single-level Mixed Integer
Linear Program: there is one decision-maker 1 seeking to minimize a linear cost subject
to linear constraints and integer requirements. However, in many real-world situations,
decision-makers interact with each other. A particular case of such setting are sequential
games with a hierarchy between players: an upper level authority (a leader) optimizes
its goal subject to the response of a sequence of followers seeking to optimize their own

1. We will use interchangeably the words decision-maker, agent and player. Note that decision-maker,
player and agent are usually used in Operations Research, Game Theory and Reinforcement Learning,
respectively. Similarly for the words decision, strategy and policy.

objectives given the actions previously made by others higher in the hierarchy. These
problems are naturally modeled as Multilevel Programming problems (MPs) and can be seen
as a succession of nested optimization tasks, i.e. mathematical programs with optimization
problems in the constraints [Bracken and McGill, 1973; Candler and Norton, 1977; Zhang
et al., 2015].

Thus, finding an optimal strategy for the leader in the multilevel setting may be harder
than for single-level problems as evaluating the cost of a given strategy might not be possible
in polynomial time: it requires solving the followers optimization problems. In fact, even
Multilevel Linear Programming with a sequence of L + 1 players (levels) is Σp

L-hard [Blair,
1992; Dudás et al., 1998; Jeroslow, 1985]. In practice, exact methods capable to tackle
medium-sized instances in reasonable time have been developed for max-min-max Trilevels,
min-max Bilevels and more general Bilevel Programs (e.g., [Carvalho et al., 2020; Fischetti
et al., 2017, 2019; Lozano and Smith, 2017; Tahernejad et al., 2020]).

Despite the computational challenges intrinsic to MPs, these formulations are of practical
interest as they properly model hierarchical decision problems. Originally appearing in
economics in the bilevel form, designated as Stackelberg competitions [von Stackelberg,
1934], they have since been extended to more than two agents and seen their use explode
in Operations Research [Lachhwani and Dwivedi, 2017; Sinha et al., 2018]. Thus, research
efforts have been directed at finding good quality heuristics to solve those problems,
e.g. [DeNegre, 2011; Fischetti et al., 2018; Forghani et al., 2020; Talbi, 2013]. Hence, one
can ask whether we can make an agent learn how to solve a wide range of instances of
a given multilevel problem, extending the success of recent Deep Learning approaches on
solving single-level combinatorial problems to higher levels.

In this chapter, we propose a simple curriculum to learn to solve a common type of
multilevel combinatorial optimization problem: budgeted ones that are zero-sum games
played in a graph. Although the framework we devise is set to be general, we center our at-
tention on the Multilevel Critical Node problem (MCN) [Baggio et al., 2020] and its variants.

Our contribution rests on several steps. First, we frame generic Multilevel Budgeted
Combinatorial problems (MBC) as Alternating Markov Games [Littman, 1996; Littman
and Szepesvari, 1996]. This allows us to devise a first algorithm, MultiL-DQN, to learn
Q-values. By leveraging both the combinatorial setting (the environment is deterministic)
and the budgeted case (the length of an episode is known in advance), we motivate a
curriculum, MultiL-Cur. Introducing a Graph Neural Networks based agent, we empirically
demonstrate the efficiency of our curriculum on 3 versions of the MCN, reporting results

67

close to optimality on graphs of size up to 100.

Section 4.1 formalizes the MBC problem. In Section 4.2, we provide an overview of the
relevant literature. The MBC is formulated within the Multi-Agent RL setting in Section
4.3, which leads to the presentation of our algorithmic approaches: MultiL-DQN and MultiL-
Cur in Section 4.4 and Section 4.5, respectively. Section 4.6 describes the neural network
architecture we used to validate our methodology in Section 4.7.

4.1. Problem statement
The general setting for the MPs we are considering is the following: given a graph

G = (V,A), two concurrent players, the leader and the follower, compete over the same
combinatorial quantity S, with the leader aiming to maximize it and the follower to minimize
it. They are given a total number of moves L ∈ N and a sequence of budgets (b1, ..., bL) ∈ NL.
Although our study and algorithms also apply to general integer cost functions c, for the sake
of clarity, we will only consider situations where the cost of a move is its cardinality. We focus
on perfect-information games, i.e. both players have full knowledge of the budgets allocated
and previous moves. The leader always begins and the last move is attributed by the parity
of L. At each turn l ∈ [[1, L]], the player concerned makes a set of bl decisions about the
graph. This set is denoted by Al and constrained by the previous moves (A1, .., Al−1). We
consider games where players can only improve their objective by taking a decision: there
is no incentive to pass. Without loss of generality, we can assume that L is odd. Then, the
Multilevel Budgeted Combinatorial problem (MBC) can be formalized as:

(MBC) max
|A1|≤b1

min
|A2|≤b2

... max
|AL|≤bL

S(G,A1, A2, ..., AL). (4.1.1)

MBC is a zero-sum game as both leader and follower have the same objective function but
their direction of optimization is opposite. A particular combinatorial optimization problem
is defined by specifying the quantity S, fixing L, and by characterizing the nature of both
the graph (e.g directed, weighted) and of the actions allowed at each turn (e.g labeling edges,
removing nodes). The problem being fixed, a distribution D of instances i ∼ D is determined
by setting a sampling law for random graphs and for the other parameters, having specified
bounds beforehand: n = |V | ∈ [[nmin, nmax]], |A| ∈ [[dmin × n(n − 1), dmax × n(n − 1)]],
(b1, ..., bL) ∈ [[bmin1 , bmax1]]× ...× [[bminL , bmaxL]]. Our ultimate goal is thus to learn good quality
heuristics that manage to solve each i ∼ D.

In order to achieve that, we aim to leverage the recurrent structures appearing in the
combinatorial objects in the distribution D by learning graph embeddings that could guide
the decision process. As data is usually very scarce (datasets of exactly solved instances being

68

hard to produce), the go-to framework to learn useful representations in these situations is
Reinforcement Learning.

4.2. Related Work
The combination of graph embedding with reinforcement learning to learn to solve

distributions of instances of combinatorial problems was discussed in Chapter 3. As all the
approaches we mentioned focus on single player games, they are not directly applicable to
MBC.

To tackle the multiplayer case, Multi-Agent Reinforcement Learning (MARL) appears as
the natural toolbox [Littman, 1994; Shoham et al., 2007]. The combination of Deep Learning
with RL recently led to one of the most significant breakthrough in perfect-information,
sequential two-player games: AlphaGo [Silver et al., 2017]. Although neural network based
agents managed to exceed human abilities on other combinatorial games (e.g. backgammon
[Tesauro, 2002]), these approaches focus on one fixed board game. Thus, they effectively
learn to solve only one (particularly hard) instance of a combinatorial problem, whereas we
aim to solve a whole distribution of them. Hence, the MBC problem we propose to study
is at a crossroads between previous works on MARL and deep learning for combinatorial
optimization.

Finally, taking another direction, some shifted their attention from specific problems to
rather focus on general purpose solvers. For example, methodologies have been proposed
to speed up the branch-and-bound implementations for (single-level) linear combinatorial
problems by learning to branch [Balcan et al., 2018] using Graph Convolutional Neural
Networks [Gasse et al., 2019], Deep Neural Networks [Zarpellon et al., 2020] or RL [Etheve
et al., 2020] to name some recent works; see the surveys [Bengio et al., 2018; Lodi and
Zarpellon, 2017]. To the best of our knowledge, the literature on machine learning approaches
for general multilevel optimization is restricted to the linear non-combinatorial case. For
instance, in [He et al., 2014; Shih et al., 2004] the linear multilevel problems are converted
into a system of differential equations and solved using recurrent neural networks.

4.3. MARL formulation of the Multilevel Budgeted
Combinatorial problem

With the definition of the problem in Section 4.1 and the introduction to Alternating
Markov Game of Section 3.2.2, we have all the elements to frame the MBC in this Markov
Game framework. The leader is the maximizer and the follower the minimizer. The states

69

st consist of a graph Gt and a tuple of budgets Bt = (bt1, ..., btL), beginning with s0 ∼ D.
Thus, the value function is defined with:

V ∗(s0) = max
|A1|≤b01

min
|A2|≤b02

... max
|AL|≤b0L

S(G0, A1, A2, ..., AL). (4.3.1)

The game is naturally sequential with an episode length of L: each time step t corresponds
to a level l ∈ [[1,L]]. The challenge of such formulation is the size of the action space that
can become large quickly. Indeed, in a graph G with n nodes, and leader’s budget b1, if
the action that he/she can perform is "removing a set of nodes from the graph" (a common
move in network interdiction games), then the size of the action space for the first move
of the game is

(
n
b1

)
. To remedy this, we define A1, ...,AL the sets of individual decisions

available at each level l. Then, we make the simplifying observation that a player making a
set of bl decisions Al in one move is the same as him/her making a sequence of bl decisions
(a1
l , ..., a

bl
l) ∈ Al× (Al\{a1

l })× ...×
(
Al\{a1

l , .., a
bl−1
l }

)
in one strike. More formally, we have

the simple lemma :

Lemma 4.3.1. The Multilevel Budgeted Combinatorial optimization problem (4.1.1) is
equivalent to:

max
a1

1∈A1
... max

a
b1
1 ∈A1\{a1

1,..,a
b1−1
1 }

min
a1

2∈A2
... max

a
bL
L ∈AL\{a1

L,..,a
bL−1
L }

S(G, {a1
1, .., a

b1
1 },..,{a1

L,.., a
bL
L }).

Proof. We immediately have the following relation:

max
|A1|≤b1

... max
|AL|≤bL

S(G,A1, A2, .., AL) = max
a1

1∈A1
max

|A′1|≤b1−1
... max
|AL|≤bL

S(G, {a1} ∪ A′1, A2, .., AL)

As the same reasoning holds with min, we can apply it recursively, which closes the proof. �

In this setting, the length of an episode is no longer L but B = b1+...+bL: the leader makes b1

sequential actions, then the follower the b2 following ones, etc. To simplify the notations, we
re-define the At as the sets of actions available for the agent playing at time t. As each action
takes place on the graph, At is readable from st. Moreover, we now have |At| = O(|V |+ |A|).

The environments considered in MBC are deterministic and their dynamics are com-
pletely known. Indeed, given a graph Gt, a tuple of budgets Bt = (bt1,..,btL) and a chosen
action at ∈ At (e.g removing the node at), the subsequent graph Gt+1, tuple of budgets Bt+1

and next player are completely and uniquely determined. Thus, we can introduce the next
state function N that maps state-action couples (st, at) to the resulting afterstate st+1, and
p as the function that maps the current state st to the player p ∈ {1,2} whose turn it is to
play. As early rewards weight the same as late ones, we set γ = 1. Finally, we can re-write

70

equations (3.2.4) and (3.2.5) as:

V ∗(st) =

 maxat∈At (R(st, at) + V ∗(N(st, at))) if p(st) = 1
minat∈At (R(st, at) + V ∗(N(st, at))) otherwise

(4.3.2)

Q∗(st, at) = R(st, at) + V ∗(N(st, at)). (4.3.3)

The definition of R depends on the combinatorial quantity S and the nature of the actions
allowed.

4.4. Q-learning for the greedy policy
Having framed the MBC in the Markov Game framework, the next step is to look at

established algorithms to learn Q∗ in this setup. Littman originaly presented minimax Q-
learning [Littman, 1994, 1996] to do so, but in matrix games, where all possible outcomes are
enumerated. An extension using a neural network Q̂ to estimate Q has been discussed in [Fan
et al., 2019]. However, their algorithm, Minimax-DQN, is suited for the simultaneous setting
and not the alternating one. The main difference being that the former requires the extra
work of solving a Nash game between the two players at each step, which is unnecessary in the
later as a greedy policy exists [Littman, 1994]. To bring Minimax-DQN to the alternating
case, we present MultiL-DQN (Algorithm 1), an algorithm inspired by S2V-DQN [Khalil
et al., 2017] but extended to the multilevel setting. Compared to S2V-DQN, there is an
alternation between the use of "min" and "max" in the greedy rollout, as well as in the target
definition. As the player currently playing is completely determined from st, we can use the
same neural network Q̂ to estimate all the state-action values, regardless of the player. We
call Bt the sum of all the budgets in Bt such that an episode stops when Bt = 0.

4.5. A curriculum taking advantage of the budgeted
combinatorial setting

With MultiL-DQN, the learning agent directly tries to solve instances drawn from D,
which can be very hard theoretically speaking. However, Lemma 4.3.1 shows that, at the
finest level of granularity, MBC is actually made of B nested sub-problems. As we know
Bmax = bmax1 + ...+ bmaxL , the maximum number of levels considered in D, instead of directly
trying to learn the values of the instances from this distribution, we can ask whether
beginning by focusing on the simpler sub-problems and gradually build our way up to the
hard ones would result in better final results.

This reasoning is motivated by the work done by [Bengio et al., 2009] on Curriculum
Learning. Indeed, it has been shown empirically that breaking down the target training

71

Algorithm 1: MultiL-DQN
1 Initialize the replay memoryM to capacity C ;
2 Initialize the Q-network Q̂ with weights θ̂ ;
3 Initialize the target-network Q̃ with weights θ̃ = θ̂ ;
4 for episode e = 1, ..., E do
5 Sample s0 = (G0,B0) ∼ D ;
6 t← 0 ;
7 while Bt ≥ 1 do

8 at =


random action at ∈ At w.p. ε
arg maxat∈At Q̂(st, at) otherwise if p(st) = 1
arg minat∈At Q̂(st, at) otherwise if p(st) = 2

;

9 st+1 ← N(st, at) ;
10 t← t+ 1 ;
11 if t ≥ 1 then
12 Add (st−1, at−1, R(st−1, at−1), st) toM ;
13 Sample a random batch {(si, ai, ri, s′i)}mi=1

i.i.d∼ M ;
14 for i = 1,..,m do
15 yi = ri + 1p(s′i)=1 maxa′∈A′ Q̃(s′i, a′) + 1p(s′i)=2 mina′∈A′ Q̃(s′i, a′)
16 Update θ̂ over 1

m

∑m
i=1

(
yi − Q̂(si, ai)

)2
with Adam [Kingma and Ba,

2015];
17 Update θ̃ ← θ̂ every Ttarget steps
18 return the trained Q-network Q̂

distribution into a sequence of increasingly harder ones actually results in better gener-
alization abilities for the learning agent. But, contrary to the continuous setting devised
in their work, where the parameter governing the hardness (entropy) of the distributions
considered is continuously varying between 0 and 1, here we have a natural discrete sequence
of increasingly harder distributions to sample instances from.

Indeed, our ultimate goal is to learn an approximate function Q̂ to Q∗ (or equivalently V̂
to V ∗ (4.3.3)) so that we can apply the subsequent greedy policy to take a decision. Thus,
Q̂ has to estimate the state-action values of every instance appearing in a sequence of B
decisions. Although the leader makes the first move on instances from D, as our game is
played on the graph itself, the distribution of instances on which the second decision is made
is no longer D but instances from D on which a first optimal action for the leader has been
made. If we introduce the function

Nk
l,π∗ : S −→ S

st = (Gt,Bt) 7→

 N(st, a∗t ∼ π∗(At)) if Bt = (0,..,0,k, bl+1, .., bL)
st otherwise

(4.5.1)

72

then, from top to bottom, we want Q̂ to estimate the values of taking an action starting
from the states D∗1 = D where the first action is made, then D∗2 = N

bmax
1

1,π∗ (D) where the second
action is made on instances with original budget bmax1 at level 1, and all the way down to

D∗Bmax
= N2

L,π∗ ◦ ... ◦N
bmax

L
L,π∗ ◦ ... ◦N

bmax
1

1,π∗ (D). (4.5.2)

As the maximum total budget is Bmax, Q̂ has to effectively learn to estimate values from
Bmax different distributions of instances, one for each possible budget in [[1, bmaxl]] for each
l ∈ [[1, L]]. But the instances in these distributions are not all equally hard to solve. Actually,
the tendency is that the deeper in the sequence of decisions a distribution is, the easier to
solve are the instances sampled from it. For example, the last distribution D∗Bmax

contains all
the instances with a total remaining budget of at most 1 that it is possible to obtain for the
last move of the game when every previous action was optimal. The values of these instances
can be computed exactly in polynomial time 2 by checking the reward obtained with every
possible action. Thus, if we had access to the {D∗j}Bmax

j=1 , then a natural curriculum would
be to begin by sampling a dataset of instances s∗Bmax

∼ D∗Bmax
, find their exact value in

polynomial time, and train a neural network V̂ on the couples (s∗Bmax
,V ∗(s∗Bmax

)). Once
this is done, we could pass to the s∗Bmax−1 ∼ D∗Bmax−1 = N3

L,π∗ ◦ ... ◦ N
bmax
1

1,π∗ (D). As these
instances have a total budget of at most 2, we can heuristically solve them by generating
every possible afterstate and, by using the freshly trained V̂ , take a greedy decision to
obtain their approximate targets. In a bottom up approach, we could continue until V̂ is
trained on the Bmax different distributions. The challenge of this setting being that we do
not know π∗ and hence, {D∗j}Bmax

j=1 are not available. To remedy this, we use a proxy, Dr
j ,

obtained by following the random policy art ∼ U(At) for the sequence of previous moves,
i.e., we use Nk

l,πr instead of Nk
l,π∗ . Doing so is provably interesting:

Lemma 4.5.1. ∀j ∈ [[2,Bmax]], supp(D∗j) ⊆ supp(Dr
j).

Proof. For all s0 ∼ D, for all t ∈ [[0,B − 1]], we define A∗t (a0, ..., at−1) ⊆ At(a0,...,at−1) as
the set of optimal actions at time t in state st for the player p(st), where we made evident
the dependence of st on previous actions. As by assumption we consider games where
players can only improve their objective by taking a decision, we have that ∀t, At 6= ∅ =⇒
A∗t 6= ∅. For a given st and subsequent At, recall that art is defined as a random variable
with values in At and following the uniform law. Given s0 ∼ D, we take (a∗0, ..., a∗B−1) ∈
A∗0 × ...×A∗B−1(a∗0,...,a∗B−2), one of the possible sequence of optimal decisions. Then, using
the chain rule, it is easy to show by recurrence that ∀t ∈ [[0, B − 1]], P (ar0 = a∗0, ..., a

r
t =

a∗t) > 0. In words, every optimal sequence of decisions is generated with a strictly positive
probability. �

2. Assuming the quantity S is computable in polynomial time.

73

Thus, by learning the value of instances sampled from Dr
j , we also learn values of instances

from D∗j . To avoid the pitfall of catastrophic forgetting [Lange et al., 2019] happening when
a neural network switches of training distribution, each time it finishes to learn from a Dr

j

and before the transition j to j − 1, we freeze a copy of V̂ and save it in memory as an
“expert of level j”. All this leads to the algorithm MultiL-Cur:

Algorithm 2: MultiL-Cur
1 Initialize the value-network V̂ with weights θ̂ ;
2 Initialize the list of experts LV̂ to be empty ;
3 for j = Bmax, ..., 2 do
4 Create Djtrain, D

j
val by sampling (srj ∼ Dr

j , GreedyRollout (srj ,LV̂));
5 Initialize V̂j, the expert of level j with θ̂j = θ̂ ;
6 Initialize the loss on the validation set Ljval to ∞ ;
7 for epoch e = 1,...,E do
8 for batches (si, ŷi)mi=1 ∈ D

j
train do

9 Update θ̂ over 1
m

∑m
i=1

(
ŷi − V̂ (si)

)2
with Adam [Kingma and Ba, 2015];

10 if number of new updates = Tval then
11 if Lnewval = 1

Nval

∑Nval
k=1

(
ŷk − V̂ (sk)

)2
< Ljval then

12 θ̂j ← θ̂ ; Ljval ← Lnewval ;
13 Add V̂j to LV̂
14 return the trained list of experts LV̂

In order to find the approximate target of an instance srj ∼ Dr
j , MultiL-Cur takes a

sequence of greedy decisions using the list of previously trained experts LV̂ until all the
budget in srj is spent. The procedure is summarized in the Greedy Rollout algorithm:

Algorithm 3: Greedy Rollout
Input: A state st with total budget Bt and a list of experts value networks LV̂

1 Initialize the value v̂ ← 0 ;
2 while Bt ≥ 1 do
3 Retrieve the expert of the next level V̂t+1 from the list LV̂ ;
4 Generate every possible afterstate S ′t ← {N(st, at)}at∈At ;

5 st+1 =
{

arg maxs′∈S′t V̂t+1(s′) if p(st) = 1
arg mins′∈S′t V̂t+1(s′) if p(st) = 2

;

6 v̂ ← v̂ +R(st, st+1) ;
7 t← t+ 1 ;
8 return the value v̂

74

w
i
x
i

w
1

w
5
w
4

w
6

w
2

w
3

x
1
x
2

Graph (G, I, w)

Legend:

: infected nodes

: weight of node

Or

Budgets

(Ω , ф , Ã)

sigmoid

Ì

w
1

w
2 Æ

w
6

r

x
6

x
5

x
3

x
4

[x
1
, r, Ω, ф, Ã] =
[x
2
, r, Ω, ф, Ã] =

[x
6
, r, Ω, ф, Ã] =

V (s)
v 2

v
i
 2

I

V

: node embedding of v
i
 2 V

ReLu
(s ,a
1
)Q
(s ,a
2
)Q

Q (s ,a6)

Node
embedding

Graph
embedding

Figure 4.1. Architecture of the two neural networks used to solve the MCN: V̂ and Q̂. V̂
computes a score ∈ [0,1] for each node, which can be interpreted as its probability to be
saved given the context (graph embedding and budgets).

4.6. GNN architecture for the MCN problem
The problem we focused on being the MCN, we designed a GNN fit to the problem, see

Figure 4.1 for an overview of the architecture. We implemented it with Pytorch Geometric
[Fey and Lenssen, 2019] and Pytorch 1.4 [Paszke et al., 2019]. To train our agent and at
inference, we used one gpu of a cluster of NVidia V100SXM2 with 16G of memory 3.

4.6.1. Node embedding

The first step of the method described in Figure 4.1 is the node embedding part. Each
node v ∈ V begins with two features xv = (wv,1v∈I): its weight and an indicator of whether
it is attacked or not. First, we normalize the weights by dividing them with the sum of the
weights in the graph such that each wv ∈ [0,1]. We extend the two features with the Local
Degree Profile of each node [Cai and Wang, 2018], which consists in 5 features on the degree:

xv = xv||(deg(v),min(DN(v)),max(DN(v)),mean(DN(v)),std(DN(v))) (4.6.1)

with deg the degree of a node, and DN(v) the vector of the degrees of N (v). Then, we
project our features xv ∈ R7 into Rde with a linear layer. Following the success of Attention
on routing problems reported in [Kool et al., 2019], we then apply their Multihead Attention
Layer using a Graph Attention Network (GAT) [Velicković et al., 2018]. Thus, we apply one
GAT layer such that:

xv
′ = µv,vΘxv +

∑
u∈N (v)

µv,uΘxu (4.6.2)

with µ defined by:

µv,u = exp(LeakyReLU(a>[Θxv||Θxu]))∑
k∈N (v)∪{v} exp(LeakyReLU(a>[Θxv||Θxk])) , (4.6.3)

3. We make our code publicly available: https://github.com/AdelNabli/MCN

75

https://github.com/AdelNabli/MCN

where a ∈ R2×dv and Θ ∈ Rdv×de are the trainable parameters. Here, de is the original
embedding dimension of xv, dv is the dimension of xv

′. We apply these equations with nh
different Θ and a, nh being the number of heads used in the attention layer. Then, we
project back in Rde the xv

′ with a linear layer, and sum the nh resulting vectors. After that,
we apply a skip connection [He et al., 2016] and a Batch-Normalization [Ioffe and Szegedy,
2015] layer BN such that:

xv
′ = BN(xv + xv

′). (4.6.4)

Finally, we introduce a feedforward network FF which is a 2-layer fully connected network
with ReLU activation functions. The input and output dimensions are de and the hidden
dimension is dh. The final output is then:

xv = BN(xv
′ + FF(xv

′)). (4.6.5)

We repeated the process described between Equation (4.6.2) and Equation (4.6.5) a total
of na times. As infected nodes are the ones in the same connected component as attacked
ones in the graph, we sought to propagate the information of each node to all the others
it is connected to. That way, the attacker could know which nodes are already infected
before spending the rest of his/her budget, and the defender could realize which nodes are
to protect in his/her last move. So, after the Attention Layers, we used an APPNP layer
[Klicpera et al., 2019] that, given the matrix of nodes embedding X(0), the adjacency matrix
with inserted self-loops Â, D̂ its corresponding diagonal degree matrix, and a coefficient
α ∈ [0,1], recursively applies K times:

X(k) = (1− α)D̂−1/2ÂD̂−1/2X(k−1) + αX(0). (4.6.6)

To achieve our goal, the value of K must be at least equal to the size of the largest
connected component possible to have in the distribution of instances D we are considering,
we thus set K to be equal to the largest number of nodes a graph could have in D.

4.6.2. Graph embedding

Given the resulting nodes embedding xv ∈ Rde , in a skip-connection fashion, we concate-
nate the xv back with the original two features (w′v,1v∈I) (w′v being the normalized weights).
Finally, the graph embedding method we used is the one presented in [Li et al., 2016]. Given
two neural networks hgate and hr which compute, respectively, a score ∈ R and a projection
to Rr, the graph level representation vector is, for a graph of size n:

r =
n∑
i=1

softmax(hgate(xi))� hr(xi) (4.6.7)

where � denotes the Hadamard product. Here, hgate and hr are feedforward neural networks
with 2 layers and using ReLU activation functions. For both, the input dimension is de + 2

76

and the hidden dimension is dh. For hr the output dimension is de whereas for hgate, it is 1.
We used np different versions of the parameters and concatenated the np different outputs
such that the final graph embedding has a dimension of np × de.

4.6.3. Final steps

We now have the nodes embedding xv ∈ Rde and a graph representation r of dimension
de × np. But the context for each node is not entirely contained in r: the budgets, the size
of the graph n and the total sum of weights in the graph are still missing. Thus, we form a
context vector co as follows:

co = r||(n,Ω,Φ,Λ,Ω/n,Φ/n,Λ/n,
∑
v∈V

wv). (4.6.8)

When this is done, we perform, for each node, the concatenation xv||co. This is the entry
of a feedforward neural network, FFV or FFQ, that computes, for V̂ , the probability of each
node being saved given the context, and the state-action values for Q̂. The two feedforward
networks are 3-layers deep, with the first hidden dimension being dh and the second de. We
used LeakyReLU activation functions, Batch Norm and dropout [Srivastava et al., 2014] with
parameter p. Indeed, our experiment shows that using dropout at this stage helps prevent
overfitting, and Batch Norm speedups the training. The last activation function for FFQ is
ReLU whereas for FFV we use a sigmoid. Finally, for FFV , we output:

V̂ (s) =
∑
v∈V

P (v is saved | context)wv. (4.6.9)

For FFQ, we just mask the actions not available, i.e. the nodes that are already labeled as
attacked.

4.6.4. Hyperparameters

All the negative slopes in the LeakyReLU we used were set by default at 0.2. The value
of all the other hyperparameters we introduced here were fixed using Optuna [Akiba et al.,
2019] with a TPE sampler and a Median pruner. The objective we defined was the value of
the loss of V̂ on a test set of exactly solved instances with budgets Ω = 0, Φ = 1, Λ ∈ [[0,3]].
After running Optuna for 100 trials, we fixed the following values for the hyperparameters:
de = 200, dh = 400, dv = 100, α = 0.2, p = 0.2, na = 7, nh = 3, np = 3. It represents a
total of 2,8 million parameters to train for both V̂ and Q̂.

4.7. Computational results
In order to test the validity of the approaches we discussed in this chapter, we tackled

several versions of the MCN. In this section, we report in details the computational results

77

we obtained while training our GNN agents using the algorithms derived earlier. First, we
detail the distributions of instances we considered in Section 4.7.1. Then, in Section 4.7.2,
we report results of the comparison between the different approaches. Finally, in Section
4.7.3, we explore in more details the abilities of our best performing algorithm, MultiL-Cur.

4.7.1. Distribution of instances

We studied 3 versions of the MCN: undirected with unit weights (MCN), undirected with
positive weights (MCNw), and directed with unit weights (MCNdir). The first distribution of
instances considered is D(1), constituted of Erdos-Renyi graphs [Erdos and Renyi, 1960] with
size |V |(1) ∈ [[10,23]] and arc density d(1) ∈ [0.1,0.2]. For the weighted case, we considered
integer weights w ∈ [[1,5]]. The second distribution of instances D(2) focused on larger graphs
with |V |(2) ∈ [[20,60]], d(2) ∈ [0.05,0.15]. To compare our results with exact ones, we used
the budgets reported in the experiments of the original MCN paper [Baggio et al., 2020]:
Ω ∈ [[0,3]], Φ ∈ [[1,3]] and Λ ∈ [[0,3]]. We compared our algorithms on D(1) (Section 4.7.2) and
trained our best performing one on D(2) (Section 4.7.3).

4.7.2. Comparison between the different algorithms

In order to properly compare our methods, first, we introduce in Section 4.7.2.1 a third
algorithm to resolve some of the handicaps MultiL-DQN has compared to MultiL-Cur. Then,
to be able to quantify the quality of our procedures, we discuss in Section 4.7.2.2 how to
adapt the methods from [Baggio et al., 2020] to exactly solve instances from each of the 3
versions of the MCN we studied. Then, we compare the algorithms in Section 4.7.2.3 and
contrast their sensitivity to the abundance of data during training in Sections 4.7.2.4 and
4.7.2.5.

4.7.2.1. Introducing a third algorithm

As it is, comparing MultiL-DQN with MultiL-Cur may be unfair. Indeed, MultiL-DQN
uses a Q-network whereas MultiL-Cur uses a value network. The reason why we used V̂

instead of Q̂ in our second algorithm are twofold. First, as our curriculum leans on the
abilities of experts trained on smaller budgets to create the next training dataset, computing
values of afterstates is necessary to heuristicaly solve instances with larger budgets. Second,
as MCN is a game with one player removing nodes from the graph, symmetries can be
leveraged in the afterstates. Indeed, given the graph G′ resulting of a node deletion, many
couples (G,v) of graph and node to delete could have resulted in G′. Thus, Q̂ has to learn
that all these possibilities are similar, while V̂ only needs to learn the value of the shared
afterstate, which is more efficient [Sutton and Barto, 1998]. To fairly compare the algorithms,

78

we thus introduce MultiL-MC, a version of MultiL-DQN based on a value network and using
Monte-Carlo samples as in MultiL-Cur.

Algorithm 4: MultiL-MC
1 Initialize the replay memoryM to capacity C ;
2 Initialize the value-network V̂ with weights θ̂ ;
3 for episode e = 1, ..., E do
4 Sample s0 = (G0,B0) ∼ D ;
5 Initialize the memory of the episodeMe to be empty;
6 Initialize the length of the episode T ← 0 ;
7 while Bt ≥ 1 do // perform a Monte Carlo sample

8 at =


random action at ∈ At w.p. ε
arg maxat∈At V̂ (N(st, at)) otherwise if p(st) = 1
arg minat∈At V̂ (N(st, at)) otherwise if p(st) = 2

;

9 st+1 = N(st, at) ;
10 Add (st, R(st, at)) toMe ;
11 T ← T + 1
12 Initialize the target yT ← 0 ;
13 for t = 1,..., T do // associate each state to its value
14 Recover (sT−t, R(sT−t, aT−t)) fromMe ;
15 yT−t ← yT−t+1 +R(sT−t, aT−t) ;
16 Add (sT−t, yT−t) toM
17 if there are more than m new couples inM then
18 Create a random permutation σ ∈ SN ;
19 for batches {(si, yi)}mi=1 ∼ σ(M) do // perform an epoch on the memory
20 Update θ̂ over the loss 1

m

∑m
i=1

(
yi − V̂ (si)

)2
with Adam [Kingma and Ba,

2015]
21 return the trained value-network V̂

As we use Monte-Carlo samples as targets, the values of the targets sampled from the
replay memoryM is not dependent on the current expert as in DQN [Mnih et al., 2015] but
on a previous version of V̂ , which can become outdated quickly. Thus, to easily control the
number of times an old estimate is used, we decided to perform an epoch on the memory
every time m new samples were pushed, and used a capacity C = k ×m so that the total
number of times a Monte-Carlo sample is seen is directly k.

4.7.2.2. Broadening the scope of the exact algorithm

In order to constitute a test set to compare the results given by our heuristics to exact
ones, we used the exact method described in [Baggio et al., 2020] to solve a small amount of
instances. However, in order to monitor the learning at each stage of the curriculum, there
is a need to solve instances where node infections were already performed in the sequence

79

of previous moves but there is still some budget left to spend for the attacker, which is not
possible as it is in [Baggio et al., 2020]. Moreover, small changes need to be made in order
to solve instances of MCNw. We thus added some small modification to the procedure of
[Baggio et al., 2020] described in Section 2.2.

Adding nodes that are already infected. We denote by J the set of nodes that are
already infected at the attack stage and βv = 1v∈J the indicator of whether node v is in J or
not. Then, the total set of infected nodes after the attacker spend his/her remaining budget
Λ and infect new nodes I is J ∪ I. In order to find I, we use the AP algorithm of [Baggio
et al., 2020], with the following modification to the rlxAP optimization problem:

min Λp+
∑
v∈V

γv∑
v∈V

yv ≤ Λ

yv≤ 1− βv ∀v ∈ V

hv +
∑

(u,v)∈A
q(u,v)−

∑
(u,v)∈A

q(v,u) ≥ 1 ∀v ∈ V

p−
∑

(u,v)∈A
q(u,v) ≥ 0 ∀v ∈ V

γv + |V |yv − hv ≥ −|V |βv ∀v ∈ V

p, hv, γv, q(u,v) ≥ 0 ∀v ∈ V, ∀(u,v) ∈ A

yv ∈ {0,1} ∀v ∈ V

We indicated changes in blue. The notations for the variables being the ones from [Baggio
et al., 2020].

Adding weights. Taking the weights wv of the nodes v ∈ V into account in the optimization
problems is even more straightforward. As the criterion to optimize is no longer the number
of saved nodes but the sum of their weights, each time a cardinal of a set appears in the
algorithms AP and MCN in [Baggio et al., 2020], we replace it by the the sum of the weights
of its elements. As for the optimization problems that are solved during the routines, we
replace, in the Defender problem and in the 1lvlMIP:∑

v∈V
αv −→

∑
v∈V

wvαv

80

and in the rlxAP problem:

hv +
∑

(u,v)∈A
q(u,v)−

∑
(u,v)∈A

q(v,u) ≥ 1 −→ hv +
∑

(u,v)∈A
q(u,v)−

∑
(u,v)∈A

q(v,u) ≥ wv

4.7.2.3. Comparison results

MultiL-Cur MultiL-MC MultiL-DQN

opt gap (%) approx ratio opt gap (%) approx ratio opt gap (%) approx ratio
0.51 1.006 3.34 1.036 14.53 1.158

Table 4.1. Evolution during training of the loss on 8 test sets of 1000 exactly solved in-
stances ∈ D(1). Averaged on 3 runs. We measured the loss on distributions arriving at
different stages of the curriculum. The approximation ratio and optimality gap were mea-
sured after training and averaged over all the tests sets.

Results from Table 4.1 indicate that MultiL-Cur is the best performing algorithm on
D(1). The metrics we use are the optimality gap η and the approximation ratio ζ. Given
ni, the number of instances of a said type for which the optimal value v∗ is available,
η = 1

ni

∑ni
k=1

|v∗k−v̂k|
v∗

k
and ζ = 1

ni

∑ni
k=1 max(v

∗
k

v̂k
, v̂k

v∗
k
).

For all 3 algorithms, we used roughly the same values of parameters in order to make the
comparison fair. All three algorithms were compared on instances from D(1). The batch size
was fixed to m = 256. Although we share our training times for the sake of transparency
and to compare the methods, we want to highlight that our code is hardly optimized and
that cutting the times presented here may be easy with a few improvements.

For MultiL-Cur, we used a training set of size 100 000 and a validation set of 1000
instances at each stage of the curriculum. As there are 8 distributions to learn from (as we
use afterstates, there is no need to learn the values of instances having Ω = 3, Φ = 3, Λ = 3
as budgets), this amounts for a total of 808 000 episodes. At each stage j, we trained our
expert V̂j for 120 epochs, meaning that we used a total of 375 000 training steps to finish
the curriculum, which necessitated a total of 36 hours. Most of the training time was
directed towards generating the training sets, i.e. performing the greedy rollouts. Moreover,

81

cutting a few hours in this training time is also possible if we do not monitor the evo-
lution of the training on the test sets (computing the loss on the test sets regularly takes time).

For MultiL-MC, we fixed C, the capacity of the replay memory to be equal to 27×256 so
that each Monte-Carlo sample is exactly seen 27 times. We used a total of 700 000 episodes
here, resulting in an average of 377 000 training steps, which took 56 hours. Indeed, the
length of the episodes here is longer on average than the ones used in the curriculum as we
directly begin from instances sampled from D(1) and not the ones where moves were already
performed randomly. So the rollout process lasts longer, which is what takes time in our
algorithm.

Finally, for MultiL-DQN, we used a capacity C = 10 240. In order to perform the same
number of training steps for the same number of episodes than the other two algorithms,
we generated our data in batches of size of 16: at each time step, there are 16 new instances
pushed in memory. We used a total of 16 × 60 000 = 960 000 episodes. The number of
training steps performed was 370 000 on average. The time necessary for that was 29 hours.
Although this is lower than the other two methods (due to a much quicker rollout), the
optimality gap and approximation ratio were so high (η = 32.55%, ζ = 1.54) with this
amount of data that we actually decided to re-launch an experiment using more episodes.
The graphs in Table 4.1 show the behaviour during training of the 3 algorithms with the
setting described until now, however the results of optimality gap and approximation ratio
for the MultiL-DQN algorithm are those from a different training setting where we used
much more episodes. We made a second experiment were we generated batches of size 128
instead of 16, amounting the number of episodes used to 7 680 000 for the same number of
training steps. This second experiment took 72 hours, proving that MultiL-DQN actually
necessitates way more data than the two other algorithms, for worse results.

For both MultiL-MC and MultiL-DQN, we used a probability ε with an exponential
decay: εstart = 0.9, εend = 0.05 and a temperature Tdecay = 1000.

Discussion. Although the results in Table 4.1 are the outcome of a total of ∼ 800000
episodes and ∼ 350000 optimization steps for all 3 algorithms, our experiments show that
we can divide by 2 the data and 4 the number of steps without sacrificing much the results
on D(1) for the curriculum, which cannot be said of MultiL-DQN that is data hungry, see
the next two sub-sections for details. The major drawback of MultiL-Cur is that it needs to
compute all possible afterstates at each step of the rollout. This does not scale well with the
graph’s size: having 100 nodes for the first step means that there are 100 graphs of size 99

82

to check. Thus, the curriculum we present is a promising step towards automatic design of
heuristics, while opening new research directions on restricting the exploration of rollouts.

4.7.2.4. Training the Q network with more data

As discussed earlier, we trained an agent on D(1) with MultiL-DQN using two configura-
tions. First, we used 960 000 episode for 370 000 optimization steps. Faced with the poor
results, we re-trained our agent using more data: 7 680 000 episodes for the same number of
steps. We compare the results of the two methods in Table 4.2. We clearly see that training

Config. 1 Config. 2

Level opt gap (%) approx ratio opt gap (%) approx ratio
Vaccination 29.8 1.54 6.7 1.08

Attack 35.8 1.45 21.2 1.18
Protection 28.8 1.63 4.01 1.07

Table 4.2. Comparison between two configurations of training for Q̂. In Config. 1, we
trained with 960 000 episodes while in Config. 2 we used 7 680 000. We display the
evolution of the losses during training on 8 test sets of size 1000. We measure the resulting
optimality gap η and approximation ratio ζ on 3 different test sets, one for each of the 3
levels of the problem.

with more data radically impacts the results. More than that, there is a necessity of training
with many episodes to obtain reasonable results. We also notice a worse behaviour at the
attack stage compared to the other two where it is the defender’s turn to play. Thus, we
may benefit from adapting the MultiL-DQN algorithms to use two Q networks, one for each
player.

4.7.2.5. Training the Value network with less data

In order to assess the capacity of our curriculum to use less data and less training steps,
we trained our value network on D(1) using a second configuration. We re-trained our experts
using 50 000 instances in the training sets, with 60 epochs at each stage, instead of 100 000
and 120 originally.

83

Config. 1 Config. 2

Level opt gap (%) approx ratio opt gap (%) approx ratio
Vaccination 0.955 1.011 1.126 1.013

Attack 0.409 1.004 0.913 1.009
Protection 0.005 1.000 0.005 1.000

Table 4.3. Comparison between two configurations of curriculum for V̂ . In Config. 1, we
trained with a total of 800 000 episodes and 375 000 optimization steps while in Config. 2
we used 400 000 episodes and 93 750 steps. We display the evolution of the losses during
training on 8 test sets of size 1000 arriving at different stages of the curriculum. We measure
the resulting optimality gap η and approximation ratio ζ on 3 different test sets, one for each
of the 3 levels of the problem.

The results in Table 4.3 clearly show that training with half the data and a quarter of
the steps in the curriculum hardly affects the end results, demonstrating the efficiency of the
method. Training with Config. 2 took 15 hours compared to the 36 necessary for Config. 1.

4.7.3. Exploring the abilities of MultiL-Cur

In this section, we provide a more in-depth view of the abilities of MultiL-Cur. In Section
4.7.3.1, we compare the results from the trained agents on D(2) to 2 other heuristics. Then,
in Section 4.7.3.2 we compare the difficulties faced by our curriculum to learn to solve the
3 versions of MCN we considered. In Section 4.7.3.3, we assess the abilities of our trained
agents to solve instances out of their training distributions. Finally, in Section 4.7.3.4, we
briefly present how one can use the trained value networks to identify multiple solutions to
the MCN.

4.7.3.1. Comparison with other heuristics

Results from the last section show that MultiL-Cur is the best performing algorithm on
D(1). Thus, we trained our learning agent with it on D(2) and tested its performance on the
datasets generated in [Baggio et al., 2020]. We compare the results with 2 other heuristics:
the random policy (for each instance, we average the value given by 10 random episodes),

84

and the DA-AD heuristic [Baggio et al., 2020]. The latter consists in separately solving
the two bilevel problems inside MCN: D is chosen by setting Λ to 0 and exactly solving
the Defender-Attacker problem, while I and P are determined by solving the subsequent
Attacker-Defender problem. In Table 4.4, we report the inference times t in seconds for
our trained agents. The ones for the exact method and DA-AD are from [Baggio et al., 2020].

MCN MCNdir MCNw

exact random DA-AD MultiL-Cur MultiL-Cur MultiL-Cur
|V | t(s) η(%) ζ t(s) η(%) ζ t(s) η(%) ζ η(%) ζ η(%) ζ

20 29 68 3.32 6 0.3 1.00 0.4 0.5 1.00 5.7 1.07 6.9 1.07
40 241 52 2.64 13 7.6 1.09 0.9 5.0 1.06 11.9 1.13 6.5 1.07
60 405 68 3.24 38 7.3 1.09 1.5 4.4 1.05 4.4 1.05 3.7 1.04
80 636 55 2.28 60 3.8 1.04 2.8 2.7 1.03 1.6 1.02 2.8 1.03
100 848 45 1.86 207 2.7 1.03 8.7 49.6 1.50 1.8 1.02 4.1 1.05

Table 4.4. Comparison between several heuristics and exact methods. Results on MCN are
computed on the dataset of the original paper [Baggio et al., 2020]. For MCNdir and MCNw,
we generated our own datasets using the modification described in Section 4.7.2.2.

The size of the training sets considered in Table 4.4 are describe in Table 4.5.

size of Dtest
|V | MCN MCNdir MCNw

20 120 36 36
40 876 35 34
60 110 23 29
80 101 12 30
100 85 11 27

Table 4.5. Sizes of the test sets used.

Discussion. Table 4.4 reveals that the results given by the MultiL-Cur algorithm are close to
the optimum for a fraction of the time necessary to both DA-AD and the quickest exact solver
known (MCNMIX , presented in [Baggio et al., 2020]). For the MCN instances, the jump in
the metrics for graphs of size 100 is due to one outlier among the 85 exactly solved instances
of this size. When removed, the values of η and ζ drop to 17.8 and 1.18. The performances
measured are consistent accross different problems as we also report low values of η and ζ
for MCNdir and MCNw. The curriculum we devised is thus a robust and efficient way to
train agents in a Multilevel Budgeted setting.

85

4.7.3.2. On the difficulty to learn to solve the 3 problems

In this part, we propose to compare the difficulty our curriculum has on learning to solve
the 3 different problems MCN, MCNdir and MCNw on instances from D(1). For that, we ran
our curriculum in exactly the same way 3 times, except for the distribution of graphs from
which we sampled our instances: undirected with unit weights for the MCN, directed with
unit weights for MCNdir and undirected with integer weights for MCNw. In Figure 4.2, we
compare the values of the 3 validation losses during the training, along with the values of the
approximation ratio ζ and optimality gap η on 3 test sets of 9000 exactly solved instances
from D(1) in Table 4.6.

Problem opt gap (%) approx ratio
MCNw 7.08 1.069
MCNdir 2.84 1.032
MCN 0.51 1.006

Table 4.6. Values of the approximation ratio and optimality gap on a test sets of exactly
solved instances from D(1) for each of the 3 problems.

Figure 4.2. Evolution of the loss on the successive validation sets during the curriculum
for the 3 problems considered.

Both the table and the figure seem to tell the same story: the easiest problem to learn to
solve with our curriculum is the MCN, followed by MCNdir, the hardest one being MCNw.

86

4.7.3.3. Assessing the ability to generalize to larger graphs

opt gap (%) approx ratio

M
C
N
w

M
C
N
d
ir

M
C
N

Table 4.7. Evolution of the optimality gap η and the approximation ratio ζ with the size
of the graphs at test time for each of the 3 problems considered.

Previous work on learning to solve single level combinatorial problems with graph neural
networks such as [Khalil et al., 2017; Kool et al., 2019] reported that their trained agent
managed to satisfyingly solve instances with larger graphs at test time than the ones used

87

in their training distributions. In order to assess if this holds for agents trained with our
curriculum on the multilevel combinatorial problem, we trained, for each of the 3 problems,
our agents on both D(1) and D(2), then measured how well they behaved on increasingly
larger graphs at test time. We report our results in Table 4.7.

|V | = 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100
MCNw 36 36 36 35 34 33 29 29 29 28 31 29 30 28 29 29 27
MCNdir 36 36 36 34 35 32 29 27 23 17 13 - 12 - 10 - 11
MCN 36 36 36 32 30 27 29 26 24 22 17 15 14 - 9 - 10

Table 4.8. Sizes of the test sets used for the results in Table 4.7.

We clearly see in Table 4.7 that the experts trained on D(2), i.e. on larger graphs,
perform better than the ones trained on D(1). From the curves, it seems that our experts can
generalize to graphs up to 2 times larger than the ones they were trained on. The fact that
for the curves about D(1) there is first an increase of the values of the metrics and a sudden
decrease around |V | = 80 may be explained by the fact that η and ζ do not directly measure
the goodness of our heuristics. Indeed, if we were to measure how good the decisions taken
at a certain level are, we should solve to optimality the subsequent lower levels, which is
not what we do here: we use our heuristics everywhere. Thus, when our heuristics perform
too badly at each level, i.e. defending poorly but also attacking poorly, there is a chance
that the value measured in the end of the game is actually not too far from the one that
would have followed optimal decisions. To produce the graphs in Table 4.7, we generated 3
test sets, one for each problem, using the solver described in Section 4.7.2.2 with IBM ILOG
CPLEX 12.9.0. The number of instances in those datasets for each value of |V | are listed in
Table 4.8.

4.7.3.4. Identifying multiple optimal solutions

In many situations, there exists multiple solutions to an instance of a combinatorial
problem. For some methods, this can represent a challenge as it clouds the decision-making
process [Li et al., 2018]. However, being able to produce multiple optimal solutions to a
combinatorial problem is of interest. Here, the formulation we used naturally allows to
identify many of the optimal solutions, assuming our value networks correctly approximate
the values of each afterstate. Indeed, if our agents correctly label each node with its value
(i.e. the value of the afterstate if the action is performed on the node, plus reward), then
identifying all the possible ways of acting optimaly is directly readable from them, as shown
in the example presented in Figure 4.3.

88

(a) Exact values (b) Approximate values

Figure 4.3. Exact values and approximate values on an instance of MCN constituted of a
graph G and budgets Ω = 1, Φ = 1, Λ = 2. The exact value of each node is obtained by
removing (vaccinating) the said node from G and solving exactly the subsequent afterstate
with Ω set to 0. The approximate values are obtained by feeding the afterstates to the expert
trained on budgets Φ = 1, Λ ∈ [[0,3]] during the curriculum for instances from D(1).

In Figure 4.3, there are 2 optimal vaccinations: the two blue nodes with value 12. Al-
though the approximate values are not perfectly aligned with the exact ones, the two optimal
decisions are clearly identifiable from them, demonstrating the ability of our method to detect
multiple optimal solutions.

4.8. Conclusion
The methodology presented in this chapter bridges different research fields: Combina-

torial Optimization, Game Theory and Reinforcement Learning. Indeed, it contributes for
tackling Combinatorial Optimization problems where players rational behavior is considered,
while acknowledging the intractability of exact solutions and, consequently, taking advan-
tage of the recent advances in Reinforcement Learning to approximate them. To do that,
we framed the general class of Multilevel Budgeted Combinatorial problems in the Alter-
nating Markov Game framework. This allowed us to derive three algorithms: MultiL-DQN,
MultiL-MC and MultiL-Cur. We compared their abilities to solve the MCN and concluded
that the curriculum based method gives the best results among the three. We explored some
of the properties of MultiL-Cur and showed that, not only does it proposes good quality
strategies for a fraction of the time necessary to both exact solvers and previous heuristics
for the MCN, but also exhibits interesting behaviour as it allows to identify multiple optimal
solutions to a combinatorial problem. Thus, the framework proposed in this chapter is an
interesting avenue to explore the automatic design of heuristics for multilevel combinatorial
problems.

89

Conclusion and future research

In this thesis, we conducted an extensive study of a trilevel combinatorial optimization
problem on a graph: the Multilvel Critical Node problem (MCN). This problem, introduced
in [Baggio et al., 2020], has many connections to recent hot topics in Computer Science as it
is linked to Interdiction Games and the detection of critical infrastructures. We highlighted
the difficulties encountered by current state-of-the-art methods to solve this problem and
proposed to explain them by demonstrating the inherent intractability of the MCN. After
introducing notions of computational complexity theory, we proved that several versions
of the MCN, as well as some of its sub-problems, are complete for different levels of the
Polynomial Hierarchy. Our contributions thus answers the previously open question on the
complexity of the MCN, and it contributes to the extension of the list of Σp

2-hard problems
and the the short list of Σp

3-complete problems. However, future directions of research
remain opened regarding the complexity of the MCN. Indeed, we still don’t know whether
or not the unweighted and undirected MCN is Σ2

p-hard and if the unweighted directed
case is Σ3

p-hard. Moreover, an interesting direction would be to explore the existence of
polynomial time approximation schemes for MCN and its sub-problems.

The complexity results motivated our quest to design efficient heuristics for the game.
Driven by recent breakthroughs in the field of Deep Learning for Combinatorial Optimiza-
tion, we decided to investigate whether we could design a framework allowing us to learn
how to solve instances of the MCN. In that respect, we introduced the necessary background
in Reinforcement Learning and Graph Neural Networks. But contrary to the combinatorial
problems dealt with in previous work, the MCN is not a game involving a single agent.
Thus, we devised new methods based on the theory of Alternating Markov Games in the
hope to broaden the span of combinatorial problems tackled with Deep Learning by making
it reach the shores of the multilevel programming ones. By taking advantages of some
intrinsic properties of combinatorial problems, we derived a curriculum allowing a Graph
Neural Network based agent to gradually learn to solve problems with an increasing number
of levels. Although the framework we devised is set for the general family of Multilevel
Budgeted Problems, we only tested it on versions of the MCN. We report promising results

compared to other heuristics for the MCN, and shed lights on some of the properties of
interest of our curriculum.

However, many challenges remain to be solved in future work. Indeed, the curriculum
we devised hardly generalizes to situations with large graphs as our method is based on an
afterstate value network, making the computation of the values of state-action pairs during
rollout burdensome as soon as large instances are tackled. Moreover, further study on the
metrics needed to evaluate the quality of the proposed solutions in this multilevel setting is
necessary to properly report how close to optimality our agent act at each level. Indeed,
the main drawback of heuristics for multilevel optimization is on their evaluation: given
a leader’s strategy, its associated reward (value) can only be evaluated if the remaining
levels are solved to optimality. This means that in opposition to single-level optimization,
one must be very careful on the interpretation of the estimated reward associated with
an heuristic method: we can be overestimating or underestimating it. In other words, it
means that in the remaining levels, players might be failing to behave in an optimal way.
Consequently, further research is necessary to provide guarantees on the quality of the
obtained solution, namely, on dual bounds.

Overall, this work allowed to extend the relatively small family of complete problems for
higher levels than NP in the Polynomial Hierarchy and proposed the first study of its kind
in how to tackle multilevel combinatorial problems with Deep Learning by bridging the gap
between Multilevel Programming and Alternative Markov Games. It also opened the door
for new interesting avenues in this growing field, paving the way for exciting future work.

91

References

Addis, B., Di Summa, M., and Grosso, A. (2013). Identifying critical nodes in undirected
graphs: Complexity results and polynomial algorithms for the case of bounded treewidth.
Discrete Applied Mathematics, 161(16):2349–2360.

Akiba, T., Sano, S., Yanase, T., Ohta, T., and Koyama, M. (2019). Optuna: A next-
generation hyperparameter optimization framework. arXiv preprint arXiv:1907.10902.

Arulselvan, A., Commander, C. W., Elefteriadou, L., and Pardalos, P. M. (2009). Detecting
critical nodes in sparse graphs. Computers & Operations Research, 36(7):2193 – 2200.

Baggio, A., Carvalho, M., Lodi, A., and Tramontani, A. (2020). Multilevel approaches for
the critical node problem. Operations Research, To appear.

Bai, Y., Xu, D., Wang, A., Gu, K., Wu, X., Marinovic, A., Ro, C., Sun, Y., and Wang, W.
(2020). Fast detection of maximum common subgraph via deep q-learning.

Balcan, M.-F., Dick, T., Sandholm, T., and Vitercik, E. (2018). Learning to branch. In
Dy, J. and Krause, A., editors, Proceedings of the 35th International Conference on Ma-
chine Learning, volume 80 of Proceedings of Machine Learning Research, pages 344–353,
Stockholmsmässan, Stockholm Sweden. PMLR.

Barrett, T. D., Clements, W. R., Foerster, J. N., and Lvovsky, A. I. (2020). Exploratory com-
binatorial optimization with reinforcement learning. In Proceedings of the 34th National
Conference on Artificial Intelligence, AAAI.

Bello, I., Pham, H., Le, Q. V., Norouzi, M., and Bengio, S. (2016). Neural combinatorial
optimization with reinforcement learning. arXiv preprint arXiv:1611.09940.

Bengio, Y., Lodi, A., and Prouvost, A. (2018). Machine learning for combinatorial optimiza-
tion: a methodological tour d’horizon.

Bengio, Y., Louradour, J., Collobert, R., and Weston, J. (2009). Curriculum learning. In
Proceedings of the 26th Annual International Conference on Machine Learning, ICML ’09,
page 41–48, New York, NY, USA. Association for Computing Machinery.

Blair, C. (1992). The computational complexity of multi-level linear programs. Annals of
Operations Research, 34(1):13–19.

Bracken, J. and McGill, J. T. (1973). Mathematical programs with optimization problems
in the constraints. Operations Research, 21(1):37–44.

Brown, G., Carlyle, M., Salmerón, J., and Wood, R. (2006). Defending critical infrastructure.
Interfaces, 36:530–544.

Bruna, J., Zaremba, W., Szlam, A., and Lecun, Y. (2014). Spectral networks and locally
connected networks on graphs. In International Conference on Learning Representations
(ICLR2014), CBLS, April 2014.

Cai, C. and Wang, Y. (2018). A simple yet effective baseline for non-attributed graph
classification. arXiv preprint arXiv:1811.03508.

Candler, W. and Norton, R. (1977). Multilevel programming and development policy. Tech-
nical Report 258, World Bank Development Research Center.

Cappart, Q., Goutierre, E., Bergman, D., and Rousseau, L.-M. (2019). Improving optimiza-
tion bounds using machine learning: Decision diagrams meet deep reinforcement learning.
In AAAI.

Caprara, A., Carvalho, M., Lodi, A., and Woeginger, G. J. (2014). A study on the com-
putational complexity of the bilevel knapsack problem. SIAM Journal of Optimization,
24:823–838.

Carvalho, M., Glorie, K., Klimentova, X., Constantino, M., and Viana, A. (2020). Robust
models for the kidney exchange problem. INFORMS Journal on Computing (to appear).

Carvalho, M., Lodi, A., and Marcotte, P. (2018). A polynomial algorithm for a continuous
bilevel knapsack problem. Operations Research Letters, 46(2):185 – 188.

Cook, S. A. (1971). The complexity of theorem-proving procedures. In Proceedings of the
Third Annual ACM Symposium on Theory of Computing, STOC ’71, page 151–158, New
York, NY, USA. Association for Computing Machinery.

Cormen, T. H., Leiserson, C. E., Rivest, R. L., and Stein, C. (2009). Introduction to Algo-
rithms, Third Edition. The MIT Press, 3rd edition.

Dai, H., Dai, B., and Song, L. (2016). Discriminative embeddings of latent variable models
for structured data. In Balcan, M. F. and Weinberger, K. Q., editors, Proceedings of The
33rd International Conference on Machine Learning, volume 48 of Proceedings of Machine
Learning Research, pages 2702–2711, New York, New York, USA. PMLR.

DeNegre, S. (2011). Interdiction and Discrete Bilevel Linear Programming. PhD thesis,
Lehigh University.

Dudás, T., Klinz, B., and Woeginger, G. J. (1998). The computational complexity of multi-
level bottleneck programming problems. In Migdalas, A., Pardalos, P. M., and Värbrand,
P., editors, Multilevel Optimization: Algorithms and Application, pages 165–179, Boston,
MA. Springer US.

Erdos, P. and Renyi, A. (1960). On the evolution of random graphs. Publ. Math. Inst.
Hungary. Acad. Sci., 5:17–61.

Etheve, M., Alès, Z., Bissuel, C., Juan, O., and Kedad-Sidhoum, S. (2020). Reinforce-
ment learning for variable selection in a branch and bound algorithm. arXiv preprint

93

arXiv:2005.10026.
Fan, J., Wang, Z., Xie, Y., and Yang, Z. (2019). A theoretical analysis of deep q-learning.
arXiv preprint arXiv:1901.00137.

Fey, M. and Lenssen, J. E. (2019). Fast graph representation learning with PyTorch Geo-
metric. In ICLR Workshop on Representation Learning on Graphs and Manifolds.

Finbow, S., King, A., MacGillivray, G., and Rizzi, R. (2007). The firefighter problem for
graphs of maximum degree three. Discrete Mathematics, 307(16):2094–2105.

Fischetti, M., Ljubic, I., Monaci, M., and Sinnl, M. (2017). A new general-purpose algorithm
for mixed-integer bilevel linear programs. Operations Research, 65.

Fischetti, M., Ljubić, I., Monaci, M., and Sinnl, M. (2019). Interdiction games and mono-
tonicity, with application to knapsack problems. INFORMS Journal on Computing,
31(2):390–410.

Fischetti, M., Monaci, M., and Sinnl, M. (2018). A dynamic reformulation heuristic for
generalized interdiction problems. European Journal of Operational Research, 267(1):40 –
51.

Forghani, A., Dehghanian, F., Salari, M., and Ghiami, Y. (2020). A bi-level model and
solution methods for partial interdiction problem on capacitated hierarchical facilities.
Computers & Operations Research, 114:104831.

Furini, F., Ljubic, I., Malaguti, E., and Paronuzzi, P. (2019a). Casting light on the hid-
den bilevel combinatorial structure of the k-vertex separator problem. In OR-19-6, DEI,
University of Bologna.

Furini, F., Ljubic, I., Martin, S., and San Segundo, P. (2019b). The maximum clique inter-
diction problem. European Journal of Operational Research, 277:112–127.

Garey, M. R. and Johnson, D. S. (1979). Computers and Intractability: A Guide to the
Theory of NP-Completeness. W. H. Freeman & Co., USA.

Gasse, M., Chételat, D., Ferroni, N., Charlin, L., and Lodi, A. (2019). Exact combinatorial
optimization with graph convolutional neural networks. In NeurIPS, pages 15554–15566.

Gonzalez, T. F. (2007). Handbook of Approximation Algorithms and Metaheuristics (Chap-
man & Hall/Crc Computer & Information Science Series). Chapman & Hall/CRC.

Goodfellow, I., Bengio, Y., and Courville, A. (2016). Deep Learning. MIT Press. http:
//www.deeplearningbook.org.

Hamilton, W. L. (2020). Lecture notes in graph representation learning, comp 766. https:
//cs.mcgill.ca/~wlh/comp766/notes.html.

Hamilton, W. L., Ying, R., and Leskovec, J. (2017). Inductive representation learning on
large graphs. In Proceedings of the 31st International Conference on Neural Information
Processing Systems, NIPS’17, page 1025–1035, Red Hook, NY, USA. Curran Associates
Inc.

94

http://www.deeplearningbook.org
http://www.deeplearningbook.org
https://cs.mcgill.ca/~wlh/comp766/notes.html
https://cs.mcgill.ca/~wlh/comp766/notes.html

He, K., Zhang, X., Ren, S., and Sun, J. (2016). Deep residual learning for image recognition.
In 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pages
770–778.

He, X., Li, C., Huang, T., Li, C., and Huang, J. (2014). A recurrent neural network for
solving bilevel linear programming problem. IEEE Transactions on Neural Networks and
Learning Systems, 25(4):824–830.

Ioffe, S. and Szegedy, C. (2015). Batch normalization: Accelerating deep network training
by reducing internal covariate shift. In Proceedings of the 32nd International Conference
on International Conference on Machine Learning - Volume 37, ICML’15, page 448–456.
JMLR.org.

Jeroslow, R. G. (1985). The polynomial hierarchy and a simple model for competitive
analysis. Mathematical Programming, 32(2):146–164.

Johannes, B. (2011). New Classes of Complete Problems for the Second Level of the Poly-
nomial Hierarchy. PhD thesis, Technischen Universitat Berlin.

Johnson, D. S. (2012). A brief history of np-completeness, 1954–2012. Optimization Stories,
Special Volume of Documenta Mathematica, pages 359–376.

Karp, R. M. (1972). Reducibility among Combinatorial Problems, pages 85–103. Springer
US, Boston, MA.

Khalil, E., Dai, H., Zhang, Y., Dilkina, B., and Song, L. (2017). Learning combinatorial
optimization algorithms over graphs. In Guyon, I., Luxburg, U. V., Bengio, S., Wallach, H.,
Fergus, R., Vishwanathan, S., and Garnett, R., editors, Advances in Neural Information
Processing Systems 30, pages 6348–6358. Curran Associates, Inc.

Kingma, D. P. and Ba, J. (2015). Adam: A method for stochastic optimization. In Bengio,
Y. and LeCun, Y., editors, 3rd International Conference on Learning Representations,
ICLR 2015, San Diego, CA, USA, May 7-9, 2015, Conference Track Proceedings.

Klicpera, J., Bojchevski, A., and Günnemann, S. (2019). Combining neural networks with
personalized pagerank for classification on graphs. In International Conference on Learning
Representations.

Kool, W., van Hoof, H., and Welling, M. (2019). Attention, learn to solve routing problems!
In International Conference on Learning Representations.

Lachhwani, K. and Dwivedi, A. (2017). Bi-level and multi-level programming problems:
Taxonomy of literature review and research issues. Archives of Computational Methods in
Engineering, 25.

Lalou, M., Tahraoui, M. A., and Kheddouci, H. (2018). The critical node detection problem
in networks: A survey. Computer Science Review, 28:92 – 117.

Lange, M. D., Aljundi, R., Masana, M., Parisot, S., Jia, X., Leonardis, A., Slabaugh, G.,
and Tuytelaars, T. (2019). A continual learning survey: Defying forgetting in classification
tasks. arXiv preprint arXiv:1909.08383.

95

Lee, J., Lee, I., and Kang, J. (2019). Self-attention graph pooling. In Chaudhuri, K. and
Salakhutdinov, R., editors, Proceedings of the 36th International Conference on Machine
Learning, volume 97 of Proceedings of Machine Learning Research, pages 3734–3743, Long
Beach, California, USA. PMLR.

Levin, L. A. (1973). Universal sequential search problems. Problemy peredachi informatsii,
9(3):115–116.

Lewis, J. M. and Yannakakis, M. (1980). The node-deletion problem for hereditary properties
is np-complete. Journal of Computer and System Sciences, 20(2):219–230.

Li, Y., Tarlow, D., Brockschmidt, M., and Zemel, R. (2016). Gated graph sequence neural
networks. In International Conference on Learning Representations.

Li, Z., Chen, Q., and Koltun, V. (2018). Combinatorial optimization with graph convo-
lutional networks and guided tree search. In Bengio, S., Wallach, H., Larochelle, H.,
Grauman, K., Cesa-Bianchi, N., and Garnett, R., editors, Advances in Neural Informa-
tion Processing Systems 31, pages 539–548. Curran Associates, Inc.

Littman, M. L. (1994). Markov games as a framework for multi-agent reinforcement learning.
In Proceedings of the Eleventh International Conference on International Conference on
Machine Learning, ICML’94, page 157–163, San Francisco, CA, USA. Morgan Kaufmann
Publishers Inc.

Littman, M. L. (1996). Algorithms for Sequential Decision-Making. PhD thesis, Brown
University, USA.

Littman, M. L. and Szepesvari, C. (1996). A generalized reinforcement-learning model:
Convergence and applications. Technical report, Brown University, USA.

Lodi, A. and Zarpellon, G. (2017). On learning and branching: a survey. TOP, 25:207–236.
Lozano, L. and Smith, J. C. (2017). A backward sampling framework for interdiction prob-
lems with fortification. INFORMS J. Comput., 29:123–139.

Ma, Q., Ge, S., He, D., Thaker, D., and Drori, I. (2019). Combinatorial optimiza-
tion by graph pointer networks and hierarchical reinforcement learning. arXiv preprint
arXiv:1911.04936.

Martin, P. (2007). Tri-level optimization models to defend critical infrastructure. Master’s
thesis, Naval Postgraduate School, Monterey.

Mazyavkina, N., Sviridov, S., Ivanov, S., and Burnaev, E. (2020). Reinforcement learning
for combinatorial optimization: A survey.

McCormick, G. P. (1976). Computability of global solutions to factorable nonconvex
programs: Part i — convex underestimating problems. Mathematical Programming,
10(1):147–175.

Meyer, A. R. and Stockmeyer, L. J. (1972). The equivalence problem for regular expressions
with squaring requires exponential space. In 13th Annual Symposium on Switching and
Automata Theory (swat 1972), pages 125–129.

96

Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A. A., Veness, J., Bellemare, M. G., Graves,
A., Riedmiller, M., Fidjeland, A. K., Ostrovski, G., Petersen, S., Beattie, C., Sadik, A.,
Antonoglou, I., King, H., Kumaran, D., Wierstra, D., Legg, S., and Hassabis, D. (2015).
Human-level control through deep reinforcement learning. Nature, 518(7540):529–533.

Nabli, A. and Carvalho, M. (2020). Curriculum learning for multilevel budgeted combinato-
rial problems. arXiv preprint arXiv:2007.03151.

Nabli, A., Carvalho, M., and Hosteins, P. (2020). Complexity of the multilevel critical node
problem. arXiv preprint arXiv:2007.02370.

Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin,
Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison,
M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., and Chintala, S. (2019).
Pytorch: An imperative style, high-performance deep learning library. In Wallach, H.,
Larochelle, H., Beygelzimer, A., d Alché-Buc, F., Fox, E., and Garnett, R., editors, Ad-
vances in Neural Information Processing Systems 32, pages 8024–8035. Curran Associates,
Inc.

Puterman, M. L. (1994). Markov Decision Processes: Discrete Stochastic Dynamic Program-
ming. John Wiley & Sons, Inc., USA, 1st edition.

Ratliff, H. D., Sicilia, G. T., and Lubore, S. H. (1975). Finding the n most vital links in flow
networks. Management Science, 21(5):531–539.

Schaefer, M. and Umans, C. (2002). Completeness in the polynomial-time hierarchy a com-
pendium. Sigact News - SIGACT, 33.

Shapley, L. S. (1953). Stochastic games. Proceedings of the National Academy of Sciences,
39(10):1095–1100.

Shen, S., Smith, J. C., and Goli, R. (2012). Exact interdiction models and algorithms for
disconnecting networks via node deletions. Discrete Optimization, 9(3):172–188.

Shih, H.-S., Wen, U.-P., Lee, S., Lan, K.-M., and Hsiao, H.-C. (2004). A neural network
approach to multiobjective and multilevel programming problems. Comput. Math. Appl.,
48(1–2):95–108.

Shoham, Y., Powers, R., and Grenager, T. (2007). If multi-agent learning is the answer,
what is the question? Artificial Intelligence, 171(7):365 – 377. Foundations of Multi-
Agent Learning.

Silver, D., Schrittwieser, J., Simonyan, K., Antonoglou, I., Huang, A., Guez, A., Hubert,
T., Baker, L., Lai, M., Bolton, A., Chen, Y., Lillicrap, T., Hui, F., Sifre, L., van den
Driessche, G., Graepel, T., and Hassabis, D. (2017). Mastering the game of go without
human knowledge. Nature, 550(7676):354–359.

Sinha, A., Malo, P., and Deb, K. (2018). A review on bilevel optimization: From clas-
sical to evolutionary approaches and applications. IEEE Transactions on Evolutionary
Computation, 22(2):276–295.

97

Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., and Salakhutdinov, R. (2014).
Dropout: A simple way to prevent neural networks from overfitting. J. Mach. Learn.
Res., 15(1):1929–1958.

Stockmeyer, L. J. and Meyer, A. R. (1973). Word problems requiring exponential
time(preliminary report). In Proceedings of the Fifth Annual ACM Symposium on Theory
of Computing, STOC ’73, page 1–9, New York, NY, USA. Association for Computing
Machinery.

Sutton, R. S. and Barto, A. G. (1998). Introduction to Reinforcement Learning. MIT Press,
Cambridge, MA, USA, 1st edition.

Tahernejad, S., Ralphs, T. K., and DeNegre, S. T. (2020). A branch-and-cut algorithm for
mixed integer bilevel linear optimization problems and its implementation.

Talbi, E.-G. (2013). Metaheuristics for Bi-level Optimization. Springer-Verlag Berlin Hei-
delberg.

Tesauro, G. (2002). Programming backgammon using self-teaching neural nets. Artificial
Intelligence, 134(1):181 – 199.

Turing, A. M. (1936). On Computable Numbers, with an Application to the Entschei-
dungsproblem. Proceedings of the London Mathematical Society, s2-42(1):230–265.

Velicković, P., Cucurull, G., Casanova, A., Romero, A., Liò, P., and Bengio, Y. (2018).
Graph attention networks. In International Conference on Learning Representations.

Ventresca, M., Harrison, K. R., and Ombuki-Berman, B. M. (2018). The bi-objective critical
node detection problem. European Journal of Operational Research, 265(3):895–908.

von Stackelberg, H. (1934). Marktform und Gleichgewicht. Springer-Verlag, Berlin.
Watkins, C. J. C. H. (1989). Learning from Delayed Rewards. PhD thesis, King’s College,
Cambridge, UK.

Wood, R. (1993). Deterministic network interdiction. Mathematical and Computer Mod-
elling, 17(2):1–18.

Wrathall, C. (1976). Complete sets and the polynomial-time hierarchy. Theoretical Computer
Science, 3(1):23–33.

Wu, Z., Pan, S., Chen, F., Long, G., Zhang, C., and Yu, P. S. (2020). A comprehensive
survey on graph neural networks. IEEE Transactions on Neural Networks and Learning
Systems, page 1–21.

Yannakakis, M. (1978). Node-and edge-deletion np-complete problems. In Proceedings of
the Tenth Annual ACM Symposium on Theory of Computing, STOC ’78, page 253–264.
Association for Computing Machinery.

Zaheer, M., Kottur, S., Ravanbakhsh, S., Poczos, B., Salakhutdinov, R. R., and Smola, A. J.
(2017). Deep sets. In Guyon, I., Luxburg, U. V., Bengio, S., Wallach, H., Fergus, R.,
Vishwanathan, S., and Garnett, R., editors, Advances in Neural Information Processing
Systems 30, pages 3391–3401. Curran Associates, Inc.

98

Zarpellon, G., Jo, J., Lodi, A., and Bengio, Y. (2020). Parameterizing branch-and-bound
search trees to learn branching policies. arXiv preprint arXiv:2002.05120.

Zhang, G., Lu, J., and Gao, Y. (2015). Multi-Level Decision Making: Models, Methods and
Applications. Springer-Verlag Berlin Heidelberg.

99

	Résumé
	Abstract
	Contents
	List of Tables
	List of Figures
	List of Acronyms & Abbreviations
	Acknowledgements
	Introduction
	Chapter 1. Essentials in Computational Complexity Theory
	1.1. NP-Completeness
	1.2. The Polynomial Hierarchy

	Chapter 2. Complexity of the Multilevel Critical Node Problem
	2.1. The Multilevel Critical Node Problem
	2.2. In practice: behaviour of exact solvers for the MCN
	2.2.1. Solving the MCN
	2.2.2. Solving subgames of the MCN

	2.3. Complexity results for the MCN
	2.3.1. Complexity of related problems
	2.3.2. Undirected graphs: the unitary case
	2.3.2.1. The Protection problem
	2.3.2.2. The Attack-Protect problem
	2.3.2.3. The Vaccination-Attack problem

	2.3.3. Undirected graphs: the weighted case
	2.3.3.1. The Attack problem
	2.3.3.2. The Attack-Protect problem
	2.3.3.3. The Vaccination-Attack problem
	2.3.3.4. The MCN problem

	2.3.4. Directed graphs
	2.3.4.1. The Attack problem
	2.3.4.2. The Vaccination-Attack problem

	2.3.5. Protection: tractability limits
	2.3.5.1. Directed acyclic graphs
	2.3.5.2. Arborescence

	2.4. Conclusion

	Chapter 3. Learning heuristics for Combinatorial Optimization problems
	3.1. Introduction to Graph Neural Networks
	3.1.1. Neural Message Passing
	3.1.2. Graph level representations

	3.2. Introduction to Reinforcement Learning and Multi-Agent Reinforcement Learning
	3.2.1. Markov Decision Process
	3.2.2. Alternating Markov Games

	3.3. Solving Combinatorial Optimization problems with GNN and RL

	Chapter 4. Learning heuristics for Multilevel Budgeted Combinatorial Optimization problems
	4.1. Problem statement
	4.2. Related Work
	4.3. MARL formulation of the Multilevel Budgeted Combinatorial problem
	4.4. Q-learning for the greedy policy
	4.5. A curriculum taking advantage of the budgeted combinatorial setting
	4.6. GNN architecture for the MCN problem
	4.6.1. Node embedding
	4.6.2. Graph embedding
	4.6.3. Final steps
	4.6.4. Hyperparameters

	4.7. Computational results
	4.7.1. Distribution of instances
	4.7.2. Comparison between the different algorithms
	4.7.2.1. Introducing a third algorithm
	4.7.2.2. Broadening the scope of the exact algorithm
	4.7.2.3. Comparison results
	4.7.2.4. Training the Q network with more data
	4.7.2.5. Training the Value network with less data

	4.7.3. Exploring the abilities of MultiL-Cur
	4.7.3.1. Comparison with other heuristics
	4.7.3.2. On the difficulty to learn to solve the 3 problems
	4.7.3.3. Assessing the ability to generalize to larger graphs
	4.7.3.4. Identifying multiple optimal solutions

	4.8. Conclusion

	Conclusion and future research
	References

