
Université de Montréal

Representation learning in unsupervised domain
translation

par

Samuel Lavoie-Marchildon

Département d’informatique et de recherche opérationelle
Faculté des arts et des sciences

Mémoire présenté en vue de l’obtention du grade de
Maître ès sciences (M.Sc.)

en informatique

31 décembre 2019

c© Samuel Lavoie-Marchildon, 2019

Résumé

Ce mémoire s’adresse au problème de traduction de domaine non-supervisée. La traduction
non-supervisée cherche à traduire un domaine, le domaine source, à un domaine cible sans
supervision. Nous étudions d’abord le problème en utilisant le formalisme du transport
optimal. Dans un second temps, nous étudions le problème de transfert de sémantique à
haut niveau dans les images en utilisant les avancés en apprentissage de représentations et
de transfert d’apprentissages développés dans la communauté d’apprentissage profond.

Le premier chapitre est dévoué à couvrir les bases des concepts utilisés dans ce tra-
vail. Nous décrivons d’abord l’apprentissage de représentation en incluant la description de
réseaux de neurones et de l’apprentissage supervisé et non supervisé. Ensuite, nous intro-
duisons les modèles génératifs et le transport optimal. Nous terminons avec des notions
pertinentes sur le transfert d’apprentissages qui seront utiles pour le chapitre 3.

Le deuxième chapitre présente Neural Wasserstein Flow. Dans ce travail, nous construi-
sons sur la théorie du transport optimal et démontrons que les réseaux de neurones peuvent
être utilisés pour apprendre des barycentres de Wasserstein. De plus, nous montrons que
les réseaux de neurones peuvent amortir n’importe quel barycentre, permettant d’apprendre
une interpolation continue. Nous montrons aussi comment utiliser ces concepts dans le cadre
des modèles génératifs. Finalement, nous montrons que notre approche permet d’interpoler
des formes et des couleurs.

Dans le troisième chapitre, nous nous attaquons au problème de transfert de sémantique
haut niveau dans les images. Nous montrons que ceci peut être obtenu simplement avec un
GAN conditionné sur la représentation apprise par un réseau de neurone. Nous montrons
aussi comment ce processus peut être rendu non-supervisé si la représentation apprise est
un regroupement. Finalement, nous montrons que notre approche fonctionne sur la tâche de
transfert de MNIST à SVHN.

Nous concluons en mettant en relation les deux contributions et proposons des travaux
futures dans cette direction.

Mot-clés Apprentissage profond, transport optimal, transfert d’apprentissage, traduction
d’images non-supervisée, traduction de domaine non-supervisée.

II

Abstract

This thesis is concerned with the problem of unsupervised domain translation. Unsuper-
vised domain translation is the task of transferring one domain, the source domain, to a
target domain. We first study this problem using the formalism of optimal transport. Next,
we study the problem of high-level semantic image to image translation using advances in
representation learning and transfer learning.

The first chapter is devoted to reviewing the background concepts used in this work.
We first describe representation learning including a description of neural networks and
supervised and unsupervised representation learning. We then introduce generative models
and optimal transport. We finish with the relevant notions of transfer learning that will be
used in chapter 3.

The second chapter presents Neural Wasserstein Flow. In this work, we build on the
theory of optimal transport and show that deep neural networks can be used to learn a
Wasserstein barycenter of distributions. We further show how a neural network can amortize
any barycenter yielding a continuous interpolation. We also show how this idea can be used
in the generative model framework. Finally, we show results on shape interpolation and
colour interpolation.

In the third chapter, we tackle the task of high level semantic image to image translation.
We show that high level semantic image to image translation can be achieved by simply
learning a conditional GAN with the representation learned from a neural network. We
further show that we can make this process unsupervised if the representation learning is a
clustering. Finally, we show that our approach works on the task of MNIST to SVHN.

We conclude by relating the two contributions and propose future work in that direction.

Keywords Deep learning, optimal transport, transfer learning, unsupervised image
to image translation, unsupervised domain translation.

III

Contents

Résumé . II

Abstract . III

List of Tables. VII

List of Figures. .VIII

Acronyms, abbreviations and notations . X

Acknowledgements .XIII

Introduction . 1

Chapter 1. Background . 2

1.1. Representation Learning . 2
1.1.1. Linear functions . 3
1.1.2. Non-linear functions . 4
1.1.3. Training . 4
1.1.4. Supervised learning . 5

1.1.4.1. Classification . 5
1.1.4.2. Regression . 6

1.1.5. Unsupervised learning . 6
1.1.5.1. Clustering . 6
1.1.5.2. Latent factor analysis . 7

1.2. Generative model . 8

1.3. Optimal transport . 10

1.4. Domain adaptation . 12

1.5. Image to image translation . 14

Chapter 2. Neural Wasserstein Flow . 16

IV

2.1. Introduction . 16

2.2. Background . 17
2.2.1. Regularized optimal transport. 17
2.2.2. A flow on the Wasserstein geodesic . 17

2.3. Neural Wasserstein Barycenter . 19

2.4. Neural Wasserstein Flow . 20
2.4.1. Generative Wasserstein Flow . 21

2.5. Experiments . 22
2.5.1. Shape interpolation . 22
2.5.2. Images experiments . 22

2.5.2.1. Image to image interpolation. 23
2.5.2.2. Generative interpolation . 24

2.6. Conclusion . 24

Chapter 3. Toward high level semantic unsupervised domain translation . . 26

3.1. Introduction . 26

3.2. Related work . 27

3.3. Conditional representation GAN . 28
3.3.1. Generative adversarial network. 28
3.3.2. Conditional Representation GAN . 29

3.4. Domain invariant representation learning . 30
3.4.1. Clustering adaptation . 30

3.4.1.1. Clustering . 30
3.4.1.2. Domain adaptation . 31

3.4.2. Auto-encoder adaptation . 33

3.5. Experiments . 33
3.5.1. Datasets . 33
3.5.2. Implementation details . 34
3.5.3. Clustering adaptation evaluation . 34
3.5.4. CRGAN evaluation . 35

3.5.4.1. Quantitative analysis . 35
3.5.4.2. Qualitative analysis . 36

V

3.6. Conclusion and future works . 36

Conclusion . 41

Bibliography . 43

VI

List of Tables

3.1 Comparing different clustering algorithms on MNIST, SVHN, Quickdraw and
FashionMNIST (FMNIST) using equation 3.5.1. Our1 correspond our raw
clustering algorithm, which is a modification of IMSAT. Our2 Correspond our
clustering algorithm trained on a source dataset and adapted to a target dataset.
The SVHN results were obtained by adapting the MNIST clustering on SVHN and
the FashionMNIST results were obtained by adapting the Quickdraw clustering
to FashionMNIST. 35

3.2 Domain translation accuracy obtained using equation 3.5.2 on MNIST-SVHN and
Quickdraw-FashionMNIST. 36

VII

List of Figures

1.1 XOR function. The markers indicate the output of the function given its inputs
x1 and x2. 3

2.1 Two possible transportation plans. The two transportation plans are optimal for
W1 but only the one on the right is optimal for W2. 18

2.2 Comparison of the L2, W1 and W2 interpolation. We show the barycenters at
λ = {0, 0.25, 0.5, 0.75, 1} . 19

2.3 Shape interpolation. The initial shape is a square which is interpolated between
a square λ = (1, 0, 0), an open circle λ = (0, 1, 0) and a star λ = (0, 0, 1). The
purpose of the color is to show the initial positions of the points in order to show
that the interpolation yields minimum distortion. 23

2.4 Image-to-image interpolation. The source image is a white "6" which is interpolated
betweed red λ = (0, 1, 0), blue λ = (0, 0, 1) and green λ = (1, 0, 0)) "6". 24

2.5 Generated interpolation between blue and red MNSIT. 25

3.1 Left - Conditional GAN framework: the generator g is conditioned on a sample
from a prior distributions and a class label. f is a critic which take either a real
image and its associated label or a generated image and its conditioned label.
Right - CR-GAN framework: the generator is conditioned on the representations
r ∈ R from a pre-trained function h. f is a critic which take either a real image
and its associated representation from a pre-trained function h or a generated
image and its representation from h. 29

3.2 Qualitative comparison of CycleGAN and MUNIT with our methods on MNIST
to SVHN. For each figure, the even column c correspond to the source samples
and the odd column c + 1 correspond to source samples translated to the target
domain. The first row of figures are the results obtained on CycleGAN. The
second row of figures are the results on MUNIT. The last row of results are the
results obtained using our approach. 37

VIII

3.3 Qualitative comparison of CycleGAN and MUNIT with our methods on Quickdraw
to FashionMNIST. For each figure, the even column c correspond to the source
samples and the odd column c+ 1 correspond to source samples translated to the
target domain. The first row of figures are the results obtained on CycleGAN.
The second row of figures are the results on MUNIT. The last row of results are
the results obtained using our approach. 38

3.4 Effect of sampling a different z given an image. The first row presents the source
samples to be transferred. Each subsequent rows the samples generated given a
different z. 39

3.5 Edges-to-shoes by using the representation learned from an adapted autoencoder.
The first row presents the source samples to be transferred. Each subsequent row
is a sample generated given a different z. 40

IX

Acronyms, abbreviations and notations

GAN Generative Adversarial Network

WGAN Wasserstein Generative Adversarial Network

VAE Variational auto-encoder

MNIST Modified National Institute of Standards and Technology data-
base, a dataset of handwritten digit

SVHN Street View House number, a dataset of digits of house number

XOR Exclusive or

ReLU Rectified Linear Unit

ELU Exponential Linear Unit

Sigmoid Logistic function

I Indicator function

X

1 One-hot vector

x y z λ ... A vector in Rd

L Objective function

T U Familly of functions

X Y Z H Topological spaces

π Transport plan

Π Family of transport plan

| · | Cardinality

|| · ||p p-norm

∆k k probability simplex

DKL KL divergence

Push-forward operator

◦ Composition of function operator

XI

d, f, g, ψ, φ Parametric functions

∇ Gradiant operator

∂ Partial derivative operator

XII

Acknowledgements

This project taught me a lot about the discipline of research, its purpose and its craft. I
started this project thinking naively that research was simply solving open problems. Firstly,
I learned that solving open problems is far from simple and requires a lot of dedication and
effort. Secondly, I learned that research is much more than solving problems. In research,
you need to communicate your ideas and listen to others. You need to be careful about every
details. And, you need to contribute to the community.

I had the chance to meet a lot of people that helped me improve in different aspects of
research. I would like to first mention Aaron who advised me throughout this journey. I
thank you for sharing your experience with me and guiding me in my research endeavours.
It was truly enjoyable working with you.

I would also like to acknowledge everyone who collaborated with me on different projects.
This includes Devon, Joseph, Francis, Sébastien, Jacob, Amjad and Faruk. I am grateful to
have had the chance to work with you.

Next, I wish to mention the Mila community. It’s truly amazing to have the chance to
exchange daily with passionate researchers, whether it is informally at the coffee machine or
in a reading group. In particular, I would like to mention the following colleagues and friends
that I had the pleasure to meet during my journey: Joseph, Chin-Wei, Philippe, Francis,
Devon, Tristan, Simon, Shawn, Jae Hyun, Evan, Ankesh, David, Julien, Paul, Akram, Mark,
Nicolas, Gabriel, Rémi, Martin and Olexa.

Finalement, j’aimerais remercier mes proches pour leur support inconditionnel tout au
long de ce parcours. Merci Catherine, Marie-Hélène et Ghislaine.

XIII

Introduction

A good representation of the data and the problem is at the core of solving complex tasks.
For example, the problem of classifying real images can be extremely hard when we consider
it as simply fitting a linear model on the values of the pixels. Hence, for a long time, the
computer vision community worked hard at designing good representations of that data or
the problem. Techniques for edges detection and clever heuristics for classifying images were
invented, without a considerable and generalizable breakthrough. Such breakthrough came
after the convolution was successfully applied in a deep neural network trained to classify
images. This convolutional neural network learns to capture relevant features in the images
so that it can accurately predict the content of the image. In this example, the representation
is learned through the composition of linear and non-linear functions. This example was one
of the realizations that stemmed the resurgence of representation learning using deep neural
networks. In essence, we can summarize the task of representation learning as learning a
representation such that it can solve a downstream task of interest.

In this thesis, we study how the recent advances in deep representation learning can be
applied to the task of unsupervised domain translation. This task was initially formalized
and studied by the mathematician Monge (Monge 1781). In his work, he was interested in
the optimal transportation of masses. Since then, the field of optimal transport has greatly
evolved and been applied to various problems.

In the first chapter, we will review current the literature in deep representation learning,
optimal transport and domain translation that is relevant to the sequel of this document. In
the second chapter, we present a framework for learning a continuous flow on the Wasser-
stein geodesic using deep neural networks. Finally, in the third chapter, we explore how
representation learning and transfer learning can be applied to high-level semantic domain
translation

Chapter 1

Background

In this chapter, we present different strategies for learning a representation. Before present-
ing any learning paradigm, we introduce neural networks and a general technique to train
them. Then, we present two supervised representation learning algorithms: the classifica-
tion and the regression. We follow with two unsupervised representation learning paradigms:
clustering and latent factors analysis. Then, we reverse the problem and consider generative
algorithms that allow us to implicitly sample from the distribution of the data. We will also
introduce some concepts of optimal transport that will be useful in chapter 2. We finish with
a discussion on transfer learning; more specifically we discuss domain adaptation and image
to image translation.

1.1. Representation Learning
Machine learning is a tool for solving problems for which we have data, but no analytic

solution. This paradigm becomes increasingly interesting as data is more accessible and the
problems more complex. In essence, machine learning aims at solving a task by fitting a
parameterized function f in order to optimize an objective function L.

Sometimes, the optimal solution involves a non-linear relation of different features of
the input representations. A popular toy example is the XOR problem. Given two binary
features x ∈ {0, 1}2, apply the XOR function to x. The XOR function is defined as:

XOR(x1, x2) =

 1 if x1 6= x2

0 otherwise.

It can be verified that such function requires a non-linear relationship between the inputs –
x1 and x2 – and the output. Hence, for any L, a linear function on the euclidean space cannot
represent the XOR function. One way to picture why a linear function cannot represent the
XOR function is to represent it in space as shown in Figure 1.1. As we can see, there is not
straight line that can correctly separate the space.

Figure 1.1. XOR function. The markers indicate the output of the function given its inputs
x1 and x2.

Deep neural networks can learn non-linear functions of the input features by composing
linear and non-linear continuous functions. It is this composition that allows them to trans-
form the space such that it can be possible to finally solve non-linear problem with a simple
linear function.

More formally, let h0 = x the input representation. A neural network is the composition
of functions fl. In the feedforward chain of compositions setup, we call the output of each
function fl a hidden layer computed as hl+1 = fl(hl), for any 0 ≤ l < L.

A function fl : f 2
l ◦ f 1

l is normally a composition of two continuous functions. We will
consider f 1

l a linear function and f 2
l a non-linear function.

al+1 = f 1
l (hl)

is called the pre-activation functions and is the representation obtained before applying the
non-linear function.

1.1.1. Linear functions

A commonly used linear function is the affine transformation. The layer resulting from
an affine transformation is usually called a linear layer. LetWl ∈ RDl×Dl+1 the weights, which
are free parameters that can be learned. It is common practice to also use biases bl ∈ RDl+1 ,
which are also free parameters. The pre-activation of a linear layer is defined as

al+1 = W>hl + bl.

Another commonly used linear function is the cross-correlation operation, which is re-
lated to convolution operation. The layer resulting from a convolution is usually called a
convolutional layer. This operation involves repeatedly applying a kernel of free parameters
to every positions of a representation.

3

The idea of applying the same kernel at every feature of a layer, or channel for 2D inputs,
is reminiscent of the idea of weights sharing. This has the advantage of having to store fewer
parameters. But the real strength of the convolution is due to the property of equivariance
on the translation. In other words, because the same kernel is applied at every location of
an image, the location of an object in the image will affect the pre-activation representation
by shifting its position accordingly. Finally, weights sharing also has a regularization effect.

1.1.2. Non-linear functions

The non-linear activation functions are usually simple continuous functions applied
element-wise to a pre-activation. However, composing these simple functions enable the
network to represent any functions given enough capacity. Some examples of such functions
are the the Leaky-ReLU:

Leaky-ReLU(x, λ) = max(0, λx)

where λ > 0. The ReLU (Nair and Hinton 2010) is a special case where λ = 1. The
ELU (Clevert, Unterthiner, and Hochreiter 2015):

ELU(x, λ) = max(0,x) + min(0, λ(exp(x)− 1))

and the Sigmoid (Han and Moraga 1995)

Sigmoid(x) = 1
1 + exp(−x) .

1.1.3. Training

There is currently no closed-form solution known for finding the global optimum of a
neural network. Hence, in practice, it is common to use gradient-based technique to find
an optimum. However, because a neural network can be non-convex, we don’t have any
guarantee that the optimum found is the global optimum.

The procedure for learning the parameters of a neural network relies on basic calculus.
We want to optimize the free-parameters of a function f ∈ F in a family of parametrizable
functions F in order to minimize (or maximize) an objective function L(f). F is determined
by the architectural choices, e.g. the number of layers, the width of each layers and the
non-linearities.

For now, we will consider that we want to minimize L(f). But, the procedure to maximize
is almost identical.

Finding the minimum of L involves finding a stationary point which is defined as follow

∇fL(f) = 0.

4

As we will see in the sequel, L are continuous functions which have a derivative that
we can compute. Moreover, because f is defined as a composition of continuous functions
with derivative defined almost everywhere, we can use the chain rule to backpropagate the
gradient signal to minimize L back to every parameters. The backpropagation is defined as

∂L
∂fl

=
L−1∑
j=l

∂L
∂fj+1

∂fj+1

∂fj

where f i is the ith layer and L is the total number of layers.
Using this signal, it is possible to update every parameters of a layer f i using different

algorithms. Probably, the most common one is stochastic gradient descent (Kunnumkal and
Topaloglu 2009)

fl ← fl − α
∂L
∂fl

(1.1.1)

where α > 0 is called the learning rate and is used to avoid that the optimization diverge.
Other optimization algorithms involve adding momentum (Rumelhart, Hinton, and Williams
1988) or running average (Diederik P. Kingma and Ba 2014) to SGD.

1.1.4. Supervised learning

In supervised learning, we assume that we have access to supervised annotation l ∼ L for
each x. Depending on the task, l can be discrete or continuous. The objective of supervised
learning is to learn a parameterized function f to predict l given x

1.1.4.1. Classification

A classical supervised learning task is classification. Practical applications of classification
are numerous and can range from predicting the content of a natural image to predicting the
sentiment in a sentence. In this context, a discrete label l is assigned to every sample x. The
task is to learn a function f to predict the label l of a sample x. It does so by minimizing
the error between f(x) and the true l

L(f) = R(f(x), l).

For a classification task, R is usually defined as the binary cross entropy when |L| = 2

L(f) = −l log(f(x))− (1− l) log(1− f(x))

and the categorical cross entropy when |L| > 2

L(f) = −
|L|∑
i=1

1l=i log f(x)i.

5

In the categorical cross entropy, we usually represent the predicted label f(x) as a normalized
vector where f(x)i ≥ 0, ∀i and ∑|L|i=1 f(x)i = 1. Another subtlety is the use of the one-hot
encoding 1i=l which is defined as the vector containing a 1 at index l and 0 everywhere else.

1.1.4.2. Regression

Regression is a supervised learning task where l is continuous rather than discrete. Some
practical applications of the regression include predicting the future value of a time-serie or
the price of an asset given different factors. The learning algorithm used to learn a regression
is very similar to the one used to learn a classification. We have a mapping f : x→ R and
the objective is to minimize the risk R. However, the risk functions is now usually defined
as a norm || · ||pp instead of the cross-entropy.

L(f) = ||l − f(x)||pp.

In practice, the 1-norm or the 2-norm squared is almost always used.

1.1.5. Unsupervised learning

Unsupervised learning is the setup where no extrinsic annotations are available. This
setup is increasingly interesting as more data are available. Two unsupervised learning
paradigms that have seen a surge recently, and that will be at the core of this thesis, are
unsupervised learning representation of the data and learning generative models of the data.
We finish this section on representation learning with a presentation of two unsupervised
representation learning paradigms: clustering and latent factor analysis.

1.1.5.1. Clustering

Clustering is a canonical example of unsupervised representation learning. In its sim-
plest case, the main assumption of clustering is that the data can be separated into K

discrete clusters. While, in theory, K can be unbounded and parameterized by a Dirichlet
process (Murphy 2012), we will only consider the simplest case in this work. There exist a
number of algorithms for finding clusters, each of them making different assumptions. We
will review K-Means (Lloyd 2006) in this section.

K-Means main assumption is that the data is linearly separated in clusters. Intuitively,
it finds K clusters where points in a cluster have a small distance in comparison to points in
a different cluster. More precisely, let x ∈ RD with D ≥ 1, k ∈ N and µk ∈ RD the prototype
associated to the kth cluster. In K-Means, a prototype µk is the the average point of a
cluster. Essentially, K-Means tries to find K prototypes and assign every x to a prototype
such that the objective

L({µk}Kk=1) =
|X|∑
i=1

K∑
k=1

Si,kD(xi,µk)

6

is minimized, S is the indicator function and D is the distortion. In practice, D is defined
as the 2-norm squared.

We can see that a two-stages optimization process is involved. One stage is the cluster
assignment where L is minimized with respect to S. The second stage involves minimizing
L with respect to {µk}Kk=1. The optimization alternates each stage until convergence is ob-
tained. A common algorithm for solving this optimization is the Expectation-Maximization
algorithm.

The first step consist of assigning one of K cluster to every x as follow

Si,k =

 1 if k = arg minj D(xi,µj)
0 otherwise.

The second step consist of minimizing L with respect to µk. When D is the 2-norm, a
solution for L exists in closed form:

∂

∂µk

|X|∑
i=1

Si,k||xi − µi||22 = 0 =⇒ 2
|X|∑
i=1

Si,k(xi − µk) = 0

which we can solve to obtain µk in closed form

µk =
∑|X|
i=1 Si,kxi∑|X|
i=1 Si,k

.

1.1.5.2. Latent factor analysis

Latent factor analysis aims at learning a continuous representation of the data on a
lower manifold. For example, PCA (Pearson 1901) aims at learning a linear mapping W ∈
RD×(D−M), with 0 ≤ M < D, that maximize the variance, or equivalently minimize the
distortion.

A more general framework for learning continuous latent factors is the auto-
encoder (Kramer 1991) which we will now describe.

Auto-Encoder
In complex datasets, semantic can be encoded as a non-linear combination of the input

features. For example, in real images, the category is usually defined as the combination
of high-level features, like shapes and edges, which are in turn defined as a composition of
pixels. Thus, it is necessary to consider a non-linear mapping to extract those non-linear
features.

One such algorithm for unsupervised learning of a representation, using non-linear func-
tion, is the Auto-Encoder. In its simplest form, the auto-encoder learns a mapping that min-
imizes the reconstruction error of a sample x ∈ X and its mapped representation x̃ = f(x)

L(f) = ||x− f(x)||22.

7

The mapping is a composition of an encoder and a decoder: f = d ◦ e. If d and e are linear
mapping, the auto-encoder recovers PCA up to a rotation of the latent space.

However, this added flexibility comes at the cost that the representation learned might
be meaningless. Given enough capacity, the mapping can simply learn the identity. This is
this reason that motivates the regularization of auto-encoders.

One such regularization is defining a transformation t : X → X and minimize the follow-
ing objective

L(f) = ||x− f(t(x))||22.

This regularization forces the mapping to be invariant to the transformation t. A transfor-
mation t often used is

t(x) := x+ ε

where ε is a noise usually sampled from the isotropic Gaussian N (0, 1). This regularized
auto-encoder is called the Denoising Auto-Encoder (Vincent et al. 2008), because it learns
to remove Gaussian noise from the input.

1.2. Generative model
In general, we only have access to a finite set of samples x from the true density function

Px. However, having access to Px could be interesting for many practical reasons. For
example, anomaly detection is interested in detecting if a sample x̂ comes from Px. We
could also be interested in sampling data from Px directly. Thus, the objective of generative
models is to learn Px using only the samples available.

A common strategy used in generative models is to learn a mapping g : x→ x, such that
Px = g#Pz1. The idea is to choose a probability distribution Pz that we can sample from, for
example, the isotropic Gaussian distribution, and to learn a function g that transforms Pz
to the desired distribution Px. A number of frameworks build on this strategy. For example,
the VAE (Diederik P Kingma and Welling 2013) framework learns an encoder that maps
to a parametrized prior distribution Pz, while also learning a generative model Px|z using a
decoder. Hence, the VAE is an example of a model that acts as a representation learning
and a generative model at the same time.

The generative adversarial network, which we will go in more detail in the next section,
learns a mapping g : z → x by solving a min-max optimization problem between two
functions d and g, which they train simultaneously.

GANs were initially introduced as an adversarial game where a generator g tries to fool
a discriminator d, which in turn tries to distinguish true samples from fake samples. More
precisely, let x ∼ X be the usual measurable data space which induces a probability measure
Px, d : x→ [0, 1] and g : z → x. We have z ∼ Pz usually taken to be the isotropic Gaussian
1g#Pz is the pushforward defining the measure obtained by transforming Pz using g

8

distribution. The objective function is the following

L(d, g) = Ex∼Px log d(x) + Ez∼Pz log(1− d(g(z)))

and optimized as a min-max game

min
g

max
d
L(d, g).

In practice, d and g are alternatively updated. In this particular iteration of the algorithm,
it is important that d does not reach the optimum until the end of the training. The
reason is that, as we will see in the following iteration, d converges to an estimation of the
Jensen Shannon Divergence. However, the Jensen Shannon Divergence is ill-defined for two
distributions that do not share the same support. This is the case of Px and g#Pz, which
we will denote Px′ , at the beginning of the training.

max
d

Ex∼Px log d(x) + Ex∼Px′ log(1− d(x))

=⇒ ∂

∂d

∫
x
Px(x) log d(x) + Px′(x) log(1− d(x))dx = 0

=⇒
∫
x

Px(x)
d(x) −

Px′(x)
1− d(x)dx = 0

=⇒
∫
x
Px(x)(1− d(x))− Px′(x)d(x)dx = 0

which attains a stationary point at

d∗(x) = Px(x)
Px(x) + Px′(x) . (1.2.1)

Substituting our optimal discriminator in equation 1.2.1, we obtain

Ex∼Px(X) log d∗(x) + Ex∼Px′ log(1− d∗(x))

=
∫
x
Px(x) log

(
Px(x)

Px(x) + Px′(x)

)
dx+

∫
x
Px(x) log

(
Px′(x)

Px′(x) + Px(x)

)
dx.

Which is the definition of the Jensen Shannon Divergence.
This framework has inspired many follow-up work that derives an estimation of different

metrics which they try to minimize with g. Different metrics have different properties. For
example, the Wasserstein distance, which we will take some time to derive, is defined even
when two distributions do not share the same support. In the following subsection, we will
describe the properties of the Wasserstein distance that will be useful later. WGAN proposes
to learn a parametric function f : x→ R to estimate the Earth-mover distance.

max
f :Lipschitz-1

Ex∼Pxf(x)− Ex∼g#Pzf(x). (1.2.2)

9

In the next section, we introduce more notions of optimal transport. But the reader who
wants to learn more can consult the book Computation Optimal Transport (Peyré and Cuturi
2019), which is aimed at readers with a computer science background.

1.3. Optimal transport
In our everyday life, we often wonder what is the optimal way to do something. For

example, what is the path from my house to work that will minimize my time spent walking?
In logistics and economics, the concept of transportation and minimizing cost is at the
center of their interests. Even in physics, it can be observed that particles follow the path of
minimum effort (McCann 1997). Optimal transport, initiated by the work of Monge (Monge
1781), offers a powerful yet simple formalism for defining the optimal way of transporting
distributions. The field of optimal transport has been widely studied and is still being studied
to this day as more connections with other formalism and more applications are being found.

In this work, we explored the application of optimal transport for the problem of unsu-
pervised domain translation. In this section, we present a primer on optimal transport. More
precisely, we present the Monge and Kantorovich formulation. We then draw the connection
between the Earth-mover distance and Wasserstein GANS. We offer more background in the
second chapter where we discuss the geodesics induced by the Wasserstein distance as well
as barycenters in Wasserstein space.

Monge was interested in the mapping of minimal cost c. In this work, we will consider
mapping of probability distribution measure Px and Py. Hence, we want a formalism for
defining the cost c : X × Y → [0,∞] of moving a point in X to a point in Y . Consider a
mapping t : X → Y , the Monge formulation define the optimal transport cost as

inf
t∈T

Ex∼Pxc(x, t(x)) (1.3.1)

where T is the family of admissible functions defined as

T := {t s.t. Py = t#Px} . (1.3.2)

This formulation has a solution if a deterministic mapping satisfying equation 1.3.2 exists.
For example, if X and Y are continuous or are two discrete sets that have the same number
of element, there exist a deterministic mapping between the two sets. However, if the two
discrete sets have a different number of atoms, such a deterministic mapping does not exists.

TheKantorovich formulation is a relaxation of the Monge Mapping. Instead of learning
a deterministic mapping, this formulation proposes to learn a probabilistic transport plan.
The transport plan essentially allows one to probabilistically split mass, solving the issue of
the Monge map. It can be observed that the Monge map is a special case of the transport

10

plan. The Kantorovich formulation is formalized as follow

inf
π∈Π(Px,Py)

∫
(x,y)∼X×Y

c(x,y)dπ(x,y) (1.3.3)

where Π is the family of possible transport plan defined as

Π(Px,Py) :=
{
π ∈ P(X × Y) s.t.

∫
y
π(·,y) = Px,

∫
x
π(x, ·) = Py

}
.

We define P the set of probability measures on the joint space X×Y . The transport plan can
be intuitively understood as a mapping with marginal Px and Py. Hence, the Monge problem
and the Kantorovich problem simply tries to find an arrangement of each distribution that
minimizes a cost.

A well studied case of equation 1.3.3 is the case when c is the || · ||pp and is called the
Wasserstein distance

inf
π∈Π(Px,Py)

(∫
(x,y)∼X×Y

||x− y||ppdπ(x,y)
)1
p
. (1.3.4)

We will come back to the Wasserstein distance later. But for now, we present the dual
formulation of equation 1.3.3, which exists and can be easier to estimate in some cases.

sup
(φ,ψ)∈U(c)

Ex∼µφ(x) + Ey∼νψ(y) (1.3.5)

where φ : X → R and ψ : Y → R. In the optimal transport, it is common to call these
functions Kantorovich potential. Equivalently, in the deep learning community, it is common
to call these functions critics (Arjovsky, Chintala, and Bottou 2017). U(c) is defined as the
family of constrained functions defined as

U(c) := φ(x) + ψ(y) ≤ c(x,y)∀x,y ∈ X × Y .

Essentially, φ and ψ can be any function as long as their sum is lower or equal to the cost c
for all x and y

For a convex cost function c, we can define ψ as a function of c and φ. We then call ψ
the c-transform of φ and denote it φc. The c-transform is defined as

φc(y) = inf
x∈X

(φ(x) + c(x,y)).

Allowing us to define equation 1.3.5 as a sup over only one critic. Using the c-transform, we
can show that in the special case where c is the L1 norm, φ can simply be constrained to be
Lipschitz-1, recovering the earth-mover distance used in WGAN (Santambrogio 2015).

In the next section, we look at a slightly different problem where we are concerned with
learning a hypothesis function which is robust to changes in distribution rather than learning
a transport from one distribution to the other.

11

1.4. Domain adaptation
Machine learning is a powerful tool for fitting data distributions and capturing statistical

correlation. However, in practical applications, the task and/or the feature space of the
data may be different at test time and the function learned might not generalize. Hence,
the associations learned during training might be spurious or not representative of the true
objective. This problem has been recognized for a long time by the community and many
strategies to counter this problem (Pan and Yang 2010). In this section, we will concentrate
on the problem of domain adaptation, as defined by (Ben-David et al. 2010) and review some
practical strategies used for tackling this problem.

Domain adaptation is the problem of adapting a classifier trained on a labelled source
domain to a target domain with few or no labelled samples. In this work, we will only
consider the unsupervised case where no label is available in the target domain. We will
define a domain, as in (Ben-David et al. 2010), as a tuple (Px, fx(x)), where fx is the ground
truth labelling function. In the case of binary classification, fx : X → [0, 1] is a mapping on
the line between 0 and 1. However, this definition can be easily generalized if fx maps to
the K-simplex where K is the number of classes.

The objective of classification, as described earlier, is to learn a hypothesis function h in
order to minimize the risk R(fx, h).

However, the problem of domain adaptation is hard because we cannot optimize our ob-
jective explicitly, at least not for the target domain. We instead have to rely on assumptions
and implicit biases. The literature describing tricks to achieve good domain adaptation is
vast. For a comprehensive and more complete review, the reader can read (Wilson and Cook
2018).
Gradient reversal. The first trick that we will present, is the one of projecting the source
and target distribution to a shared space with matched marginal distribution. Given X
and Y , two spaces with distributions Px and Py respectively, one can learn a function h1 :
{X ,Y} → Z with Pzx = h1#Px and Pzy = h1#Py the distributions induced by pushing
Px and Py through h1. One can match the marginals Pzx and Pzy by minimizing some
distributional distance. For example, it is possible to use the same strategy as the GAN
framework (Goodfellow et al. 2014) on the representation of a neural network (Ganin et al.
2016). The objective function is essentially

Ld(h1) = max
d

Ex∼Px log(d(h1(x))) + Ey∼Py log(1− d(h1(y)))

where d : {zx, zy} → [0, 1]. They also train a classifier h : h2 ◦ h1 where h2 is also a function
h2 : {zx, zy} → ∆K mapping from the hidden representation to the K-simplex, using the
cross-entropy

Lx(h) = −Ex∼X [fx(x)> ln h(x)].

12

Reducing the objective to
min
h
Ly(h) + λLd(h)

where λ > 0 is a regularization constant defined as an hyper parameter.
Cluster assumption. Introduced by (Shu et al. 2018) in the context of unsupervised do-
main adaptation, enforcing the cluster assumptions is another trick that showed impressive
empirical results on domain adaptation. The cluster assumption enforces that the decision
boundary of the classifier is in the low-density region for the source and target domain.
A panoply of strategies has been proposed to enforce this assumption, showing constant
gains empirically. (Grandvalet and Bengio 2005; Shu et al. 2018) proposes to minimize the
conditional entropy

Lc(h) = −Ey∼Py
[
h(y)> ln h(y)

]
.

In practice, because the classification loss already enforces a clustering with respect to the
true labels, the above is only needed for the target domain. We can essentially view this
loss as constraining f to cluster target data. However, (Grandvalet and Bengio 2005) rec-
ommends that f should be locally-Lipschitz to avoid f changing abruptly its prediction
for small variation in the pixel values. (Shu et al. 2018) proposes to use a constraint (pro-
posed by (Miyato et al. 2018)), calling it the virtual adversarial training, to enforces h to be
locally-lipschitz. Hence they propose to use the additional term

Lv(h) = Ex∼Px

[
max
||r||≤ε

DKL(h(x), h(x+ r))
]

where ε ∼ N (0, 1). One can interpret the above objective as encouraging h to be robust
around an ε-ball around each h.

(Mao et al. 2019) propose Virtual Mixup loss to enforce the lipschitz property in an
area of data interpolated in pixel space. The idea is that for a point x̃ = λx + (1 − λ)x′

a linear interpolation of two points x ∈ Px and x′ ∈ Px, the prediction of h should be a
linear interpolation of its input. More precisely, let ỹ = λh(x) + (1− λ)h(x′), the objective
function is defined as

Lm(h) = −E(x,x′)∼Pxỹ
> ln h(x̃).

Combining all of theses objectives, we obtain the following objective

min
h
Ly(h) + λ1Ld(h) + λ2Lc(h) + λ3Lvx(h) + λ4Lvy(h) + λ5Lmx(h) + λ6Lmy(h).

Finally, in our last section, we look at the current works on image to image translation.
It can be argued that, in theory, the problem of image to image translation is a transport
problem where we want to transport images from one set to images to a target set. However,
many practical considerations arise when we try to define the transport. For example, how
should we define the cost of transferring images from one set to the other? The L2 distance
captures variation at the pixel level. But is that enough to ensure a good transport? Perhaps

13

it is if the change in distribution is only local (e.g. changes in colour). But if the change
in images is non-local, for example a translation, then the L2 distance is not practical.
Fortunately, some techniques have been developed lately for performing image to image
translation. We will review these techniques in the following section.

1.5. Image to image translation
The task of transferring images from one domain to a different domain, also known as

Image-to-Image translation, has been popularized by (Isola et al. 2016). In essence, they
propose to learn a conditional GAN (Mirza and Osindero 2014) on paired samples of the
source and target domain.

Let (x,y) ∼ Px,y, paired samples. The objective is to learn a discriminator d on the joint
Px,y and a conditional generator g : x→ y in an adversarial setting. The proposed Pix2Pix
is

L(d, g)cGAN = E(x,y)∼Px,y [log d(x,y)] + Ex∼Px [log(1− d(x, g(x))] .

Althought the above objective is the classical GAN loss, any alternative GAN objective could
be used.

Pix2Pix also recommends using the L1 loss between g(x) and its paired y to encourage
the mapping to be near the ground truth

LL1(g) = E(x,y)∼Px,y ||y, g(x)||.

Thus, Pix2Pix uses the following objective

min
g

max
d
LcGAN(g, d) + λLL1(g)

with λ > 0.
Taigman, Polyak, and Wolf 2016 proposed a supervised approach where the generator

g is conditioned on the output of a pre-trained feature extraction f . They propose to train
g using a mixture of losses described as follows. Given x ∈ X , y ∈ Y , x′ = g(f(x)),
y′ = g(f(y)), they first propose to train a discriminator d : x→ ∆3 (the 3-simplex), which
predict if the samples comes from g(f(x)), g(f(y)) or y. We will denote d(·)1 the estimation
of g(f(x)), d(·)1 the estimation of g(f(y)) and d(c)̇2 the estimation of y. The objective
function of the discriminator is:

LD(d) = Ex∼Px10 log d(g(f(x))) + Ey∼Py11 log d(g(f(y))) + Ey∼Py12 log d(y).

Using the above discriminator, they define the GAN loss as follow:

LGAN(g) = −Ex′∼Px12 log d(g(f(x′)))− Ey′∼Py12 log d(g(f(y′))).

14

They also propose to use an L1 constancy loss on the pre-trained representation of f(x) and
f(x′) to enforce that high level features captured by f are preserved after generation.

Lconst(g) = Ex∼Px||f(x)− f(g(f(x)))||1.

Another objective they propose is the identity loss at the pixel level between x and g(f(x))
which enforces the generated image to be close in pixel space to the source image:

LTID(g) = Ex∼Px||x− g(f(x))||1.

Finally, they propose an anisotropic total variation loss, which enforce a smoothing between
pixels on generated images

LTV(g) = Ex′∼g#f#Px

W∑
i=1

H∑
j=1

((x′i,j+1 − x′i,j)2 + (x′i+1,j − x′i,j)2)0.5.

Combining all the losses, the global objective is the following

max
d

min
g
LD(d) + LGAN(g) + λ1Lconst(g) + λ2LTID(g) + λ3LTV(g).

CyCADA (Hoffman et al. 2018) propose a similar idea where the substitute the LTID and
LTV with a cycle-consistency loss, defined in the following.

CycleGAN Zhu et al. 2017 introduced the task of unpaired and unsupervised Image-
to-Image translation by proposing to learn a mapping and its inverse constrained with a
cycle-consistency loss and a GAN loss (Goodfellow et al. 2014) for each mapping. Let gxy
and gyx the mapping X 7→ Y and Y 7→ X respectively, the cycle-consistency loss is defined
as

Lcyc(gxy, gyx) = Ex∼Px||gyx(gxy(x))− x||1 + Ey∼Py ||gxy(gyx(y))− y)||1
with the full objective defined as

min
gxy ,gyx

LGANXY (gxy) + LGANYX (gyx) + λLcyc(gxy, gyx)l

A number of works have been inspired by this task and have proposed a solution to improve
on CycleGAN. But, as observed in Bézenac, Ayed, and Gallinari 2019; Galanti, Wolf, and
Benaim 2018; Benaim, Galanti, and Wolf 2018, the cycle-consistency is theoretically ill-
posed and can result in arbitrary mapping that may not be semantically relevant. Having
said that, CycleGAN and its derivatives still show impressive empirical results. Bézenac,
Ayed, and Gallinari 2019 argue that the cause of these good results is effectively not the
cycle-consistency objective, but an implicit bias toward transformations that stay close to
the source samples in features space due to the architectural design. In fact, they observe
that the architecture used in these models usually have skip connections (He et al. 2015)
which favor a transfer closer to the identity.

15

Chapter 2

Neural Wasserstein Flow

2.1. Introduction
The problem of Optimal Transport has been formalized in 1781 by Monge (Monge 1781).

This problem – concerned with the optimal way of transporting distributions – has then
been widely studied and applied in many fields including economics (Galichon 2016) and
computer vision (Peyré and Cuturi 2019). More recently, the deep learning community has
become interested in the field. Notably, it has seen great interest in the generative adversarial
framework, as it can be been shown that approximating the Earth-mover distance it more
stable than other metrics for training GANs (Arjovsky, Chintala, and Bottou 2017). Follow-
up works have shown that it is possible to estimate the optimal transport for any cost c using
neural networks by estimating the regularized transport plan using the smooth dual (Sanjabi
et al. 2018; Seguy et al. 2018).

In this work, we are interested in how we can learn a flow between distributions following
the Wasserstein geodesic using neural networks. The interest of this work is two-fold. First,
Wasserstein geodesics, more specifically interpolations following the geodesic in theW2 space,
have interesting geometric and uniqueness properties that can have practical utility. Second,
neural networks can potentially enable this framework to scale to problems with data of high
dimensionality.

To this end, we first show than neural networks can be used to learn a mapping to a
weighted barycenter of k distributions using the formalism of (Agueh and Carlier 2011). We
then generalize this idea to show that a neural network can infer any barycenters by framing
the optimization problem as a Monte-Carlo integration over the interpolation parameter.
This effectively allows us to learn a continuous interpolation between distributions. Finally,
we show how this framework can be adapted to the GAN framework and show that we can
sample from barycenter distributions.

Finally, we show results on shape interpolation and colour interpolation on images. We
also show results on generating samples from the barycenter.

2.2. Background
2.2.1. Regularized optimal transport

In the GAN literature, the objective is usually to learn a parameterized generative model
g to generate a target distribution of P1. Hence, without loss of generality, the mapping is
usually learned as follow

min
g
W1(g#P0,P1) (2.2.1)

where, in this specific case, P0 is usually defined as a prior distribution which we can sample
such as the isotropic Gaussian. While equation 2.2.1 is fine for a generative model, it
completely disregards the initial distribution P0 as the distance is computed between the
target distribution P1 and the parameterized distribution g#P0.

Using regularized optimal transport (Cuturi 2013)

inf
π∈Π(P0,P1)

∫
(x,x′)∼X0×X1

c(x,x′)dπ(x,x′) + λΩ(π), (2.2.2)

where Ω is a strongly convex, such as L2 norm or negative entropy, it is possible to recover a
regularized transport plan πε (Blondel, Seguy, and Rolet 2018; Seguy et al. 2018) by training
the smooth dual. In the sequel, we will only consider Ω = L2 without loss of generality. The
smooth dual of equation 2.2.2 is

sup
φ,ψ

Ex∼P0φ(x) + Ex′∼P1ψ(y)

− 1
2λE(x,x′)∼P0×P1(φ(x) + ψ(x′)− c(x,x′))2

+

(2.2.3)

and the regularized transport plan πε can be recovered as follow

πε(x,x′) = 1
λ
P0(x)P1(x′)(φ(x) + ψ(x′)− c(x,x′))+) (2.2.4)

by re-arranging the terms, we obtain
πε(x,x′)

P0(x)P1(x′) = 1
λ

(φ(x) + ψ(x′)− c(x,x′))+) (2.2.5)

which can be used to learn an optimal mapping between µ and ν

min
g

E(x,x′)∼P0×P1c(g(x),x′) πε(x,x′)
P0(x)P1(x) . (2.2.6)

We will re-use the identity from equation 2.2.5 in Algorithm 2 and Algorithm 1.

2.2.2. A flow on the Wasserstein geodesic

Geodesics are informally defined as paths of the minimum distance between two points
on a manifold. Thus, to define a geodesic, we need a metric space. An example of a geodesic
in Euclidean space between two points equipped with the L2 norm is the straight line.

17

A Wasserstein geodesic is a geodesic defined in the Wasserstein space. We call a Wasser-
stein spaceWp = (X ,Wp) simply a topological space equipped with the Wasserstein distance.

The Wasserstein geodesic has interesting theoretical properties, the first one being the
existence of at least one geodesic for p ≥ 1. However, the geodesic is unique only for p ≥ 2.
In other words, only one path of minimum distance exists between two distributions when
p ≥ 2. This is illustrated in the following example
Uniqueness of the geodesic on lines in 2D. Let P0 and P1 2 uniform distributions
defined in R2 as depicted in 2.1. We can see that at least two optimal mappings are possible
when using the W1 distance. However, only one mapping exists for W2.

Figure 2.1. Two possible transportation plans. The two transportation plans are optimal
for W1 but only the one on the right is optimal for W2.

Another interesting property of the Wasserstein geodesic is the geometry of the displace-
ment interpolation of the distribution along the geodesic. In fact, the W2 interpolation is
spatially consistent because it captures the structure of the underlying metric space. This
can be observed in the following example depicted in Figure 2.2 where we compare the inter-
polation in L2, W1 and W2. We see that the L2 interpolation captures the weighted average
of the two distributions. While it is a consistent interpolation, it offers the effect of two
static distribution appearing and disappearing depending on λ. The W1 interpolation that
we illustrate is one possible interpolation. Other interpolations, such as the one obtained by
W2 could be possible with W1, but are not guaranteed. Finally, the unique W2 interpolation
offers a consistent interpolation that moves more naturally between the distributions in a
geometric sense.

Other work has been interested in learning a flow on the Wasserstein geodesic using
gradient flows (Peyré and Cuturi 2019). While this approach is interesting, we propose an
alternative to learning a flow on the Wasserstein geodesic by considering weighted barycen-
ters.

A barycenter distribution is a distribution on the geodesic. We show examples of barycen-
ters between two Gaussians in Figure 2.2 and observe different barycenters depending on how

18

λ

y
L2 W1 W2

Figure 2.2. Comparison of the L2, W1 and W2 interpolation. We show the barycenters at
λ = {0, 0.25, 0.5, 0.75, 1}

we weight each distribution. It is possible to define a weighted barycenter between k distri-
butions in Wasserstein space (Agueh and Carlier 2011). Concretely, given a set of probability
measures {Pi}ki=1 defined on X and let λ ∈ ∆k a vector on the k-simplex of positive weights
that sum to 1, the Wasserstein Barycenter is defined as

min
P∗∈P(X)

k∑
i=1

λiW
p
p (P∗,Pi). (2.2.7)

2.3. Neural Wasserstein Barycenter
In equation 2.2.7, we have seen a definition of the barycenter of k probability measures

{Pi}ki=1. In this section, we propose to learn an approximation of P∗ by learning a mapping
g : X → X , parametrized as a neural network, pushing an arbitrary probability measure
P∗ = g#P to the barycenter. In practice, we will define such arbitrary measures as samples
from one of Pi and will only learn P∗ implicitly. For simplicity, we will consider P = P1.

We have seen that its possible to learn a regularized transport plan (equation 2.2.4) using
the smooth dual equation 2.2.3 by parametrizing the critics as a neural network (Seguy et al.
2018). It is also possible to use this transport plan to learn a mapping from P0 to P1 as seen
in equation 2.2.6.

Building on that, we propose to learn a mapping to a barycenter parametrized by a
neural network by using the regularized transport plan. In essence, we propose to learn g by
solving the following objective

min
g

k∑
i=1

λiE(x,x′)∼πε(P1,Pi)c(g(x),x′) (2.3.1)

where λ ∈ ∆k. Intuitively, g maps to a barycenter of barycenter. The first barycenter is
defined by the transport plan of equation 2.3.1 which define a target barycentric point within
a distribution Pi for each point in P1. The second barycenter is defined as the Fréchet mean
over the k distributions Pi.

19

In practice, we need to train two critics for each transport plan π when computing the
W2 distance. However, we note that it could be possible to reduce the number of critics to
one if using the c-transform (Villani 2008). However, we leave such exploration for future
work.

Contrary to WGAN, because the transport plans are computed with respect to a fixed
distribution, it is possible to pre-train them before training g, potentially stabilizing the opti-
mization. Considering the regularized transport plan, we use the identity in equation 2.2.5 to
train the mapping g. We depict in more detail how to train a neural Wasserstein barycenter
in algorithm 1

Algorithm 1 Neural Wasserstein Barycenter
Input: α (learning rate), c (cost function), g (initialized generator), {φi}ki=1, {ψi}ki=1
(initialized critics), {Pi}ki=1 (target distributions), λ (Concentration of each distribution)
Train the critics {φi}ki=1 and {ψi}ki=1
for j = 1 to k do
repeat
x ∼ P1
x′ ∼ Pj
δ ← φj(x) + φcj(x′)−

1
2λ(φj(x) + ψj(x′)− c(x,x′))2

+

φj ← φj + α∂φjδ
ψj ← ψj + α∂ψjδ

until φj and ψj have converged
end for
repeat
δg ← 0
for j = 1 to k do
x ∼ P1
x′ ∼ Pj
δg ← δg + 1

λj
(φj(x) + ψj(x′) + c(x,x′)+)∇gc(g(x),x′)

end for
g ← g − αδg

until g has converged

2.4. Neural Wasserstein Flow
We propose to learn a continuous interpolation between distributions by learning a map-

ping to any barycenters on the geodesic of the distributions of interest. We propose to do so
by using a similar strategy from equation 2.3.1, but instead of learning a fixed barycenter,
we propose to condition g on λ. Hence, by taking the expectation over ∆k, which we can
do by sampling over a uniform Dirichlet distribution, we can learn an amortized map gλ to
a λ weighted barycenter of {Pi}ki=1.

20

The objective function is

min
g

Eλ∼∆k

k∑
i=1

λiE(x,x′)∼πε(P1,Pi)c(g(x,λ),x′). (2.4.1)

We provide more details about the training in algorithm 2. The training is essentially
the same procedure as algorithm 1, with the difference that g is conditioned on λ

Algorithm 2 Neural Wasserstein Flow
Input: α (learning rate), c (cost function), g (initialized generator), {φi}ki=1, {ψi}ki=1
(initialized critics), {Pi}ki=1 (target distributions)
Train the critics {φi}ki=1 and {ψi}ki=1 (see Algorithm 1)
repeat
δg ← 0
λ← Dir(1)
for j = 1 to k do
x ∼ P1
y ∼ Pj
δg ← δg + 1

λj
(φj(x) + ψj(x′) + c(x,x′)+)∇gc(g(x,λ),x′)

end for
g ← g − αδg

until g has converged

2.4.1. Generative Wasserstein Flow

The above Wasserstein flow can also be adapted to the generative framework, allowing
one to sample from the barycenter distribution.

In the traditional GAN framework, we are interested in learning g using, for exam-
ple equation 1.2. Hence, at every iteration, the critics used to estimate the Earth-mover
distance have to be estimated using equation 2.2.1. This dynamic yields a min-max game
objective as shown in (Arjovsky, Chintala, and Bottou 2017).

It has been shown that equation 2.2.6 can be used to learn a generative model (Sanjabi
et al. 2018) as follows

min
g

max
φ,ψ

E(x,x′)∼g#P0×P1c(x,x′)
πε(x,x′)

P0(x)P1(x′) (2.4.2)

where P0 is taken as a prior distribution like the isotropic gaussian N (0, 1).
It is straightforward to extend equation 2.4.2 to our Neural Wasserstein Barycenter frame-

work as presented in equation 2.3.1. The only difference is that instead of taking P from
one of our empirical distribution, we take P as the generated distribution g#N (0, 1). We
use the isotropic Gaussian, but other prior distributions could be used as well. Hence, this
framework can allow us to generate samples at the barycenter distribution.

21

Because we can learn a generative model to a barycenter, we can also extend it to
learn a generative model on any Wasserstein barycenter similarly as in equation 2.4.4. This
effectively yield a generative model on the Wasserstein geodesic. However, the extension is
not as straightforward, because here the transport plan πε(gλ#P,Pi) has now to take into
account the interpolation parameter λ. More precisely, because the generated distribution
is dynamic in λ, the critics used to estimate the transport plan also have to be dynamic for
λ. This can be done by conditioning the critics on λ. Hence, equation 2.2.3 used to learn
the transport plan has to be adapted. We propose the following adaptation where we also
simply condition the critics on λ

sup
φ,ψ

Ex∼Pφ(g(x,λ),λ) + Ex′∼Piψ(x′,λ)

− 1
2εE(x,x′)∼P×Pi(φ(g(x,λ),λ) + ψ(x′,λ)− c(g(x,λ),x′))2

+.
(2.4.3)

The above critics can be used in equation 2.2.4 to obtain a λ regularized transport plan πελ.
Similarly as in equation 2.4.2, we can learn a generative flow by using πελ and solving the

following min-max game

min
g

max
φ,ψ

Eλ∼∆k

k∑
i=1

E(x,x′)∼gλi#P×Pic(x,x′)
πελi(x,x

′)
P(x)Pi(x′)

. (2.4.4)

2.5. Experiments
2.5.1. Shape interpolation

We first show results on shape interpolation. In these experiments, we represent shapes
as points cloud. More precisely, we consider a square, a circle and a star and we want to
map points from the square to points on the geodesic conditioned on a concatenation of the
interpolation vector λ on the 3-simplex and the points in R2.

The mapping g is simply a three-layer MLP with ReLU activations. The critics are also
three-layers MLPs with ReLUs. Everything is trained using Adam solver.

We show in figure 2.4 that our model interpolates reasonably well on the shape and
each point preserves its relative position. For example, red points stay at the top right
corner throughout the non-rigid transformation. Thus, this model could have great potential
for application on shape matching or point cloud interpolation. However, we leave the
exploration of such applications as well as comparison with current literature on these tasks
for future work.

2.5.2. Images experiments

In this subsection, we conduct experiments on images directly. While other techniques
exist for computing Wasserstein interpolation in low dimensions like gradient flow, no known

22

λ = (0, 1, 0)

λ = (0, 0, 1) λ = (1, 0, 0)

Figure 2.3. Shape interpolation. The initial shape is a square which is interpolated between
a square λ = (1, 0, 0), an open circle λ = (0, 1, 0) and a star λ = (0, 0, 1). The purpose of
the color is to show the initial positions of the points in order to show that the interpolation
yields minimum distortion.

technique scale to high dimension. Hence, as far as we know, these are the first results of
Wasserstein’s interpolation in high dimensions. However, we note that practically, it could
also be possible to perform the colour interpolation presented below by representing the
colour of MNIST as a 3D histogram.

In these experiments, we will use the MNIST dataset which we will colour in blue or
red. The MNIST dataset is a dataset of 60000 handwritten digits, we will consider three
channels. In other words, the dimensionality of each image will be 28× 28× 3.

2.5.2.1. Image to image interpolation

For the task of image to image interpolation, we condition a function, parameterized as
a neural network, on a source image and we expect such an image to interpolate between
distributions. In ?? we demonstrate the ability of our model to interpolate colours in MNIST
images. More precisely, we define the source distribution as the usual white MNIST digits
and the target distributions are red, blue and green digits. Because we have three target
distributions, λ is defined on the 3-simplex.

We observe that our model can interpolate between the different colours and even generate
a colour that is outside the training distribution but on the geodesic.

23

The mapping g is parametrized as an encoder-decoder function. First, we encode the
source image to a vector. We then concatenate λ to the encoded embedding. Finally, we
decode the concatenated embedding back to the pixel space.

λ = (0, 1, 0)

λ = (0, 0, 1) λ = (1, 0, 0)

Figure 2.4. Image-to-image interpolation. The source image is a white "6" which is inter-
polated betweed red λ = (0, 1, 0), blue λ = (0, 0, 1) and green λ = (1, 0, 0)) "6".

2.5.2.2. Generative interpolation

In figure 2.5 we demonstrate our ability to generate samples along the geodesic. To do so,
we train a GAN with similar architecture as in (Radford, Metz, and Chintala 2015) with the
only difference that neither the generator nor the critics use batch norm. However, we could
probably use batch norm if we conditioned the parameters on the interpolation parameter
λ. Hence, the generator generates the barycenter distribution corresponding to λ by taking
as input a sample from a prior distribution z ∼ N (0, 1) and λ.

Our training set is only composed of blue MNIST digits (λ = 0) and red MNIST digits
(λ = 1). As we see, we can generate purple digits that are outside of the training distribution.

2.6. Conclusion
In conclusion, we presented Neural Wasserstein flow, a model parameterized by a neural

network that can learn a mapping to any barycenter on the Wasserstein geodesic, effectively
learning a continuous interpolation between distributions. We show results on points cloud
as well as colour interpolation on the pixel representation of the images. Finally, we also
show that our technique can also be used as a generative model.

24

λ0

λ0.1

λ0.2

λ0.3

λ0.4

λ0.5

λ0.6

λ0.7

λ0.8

λ0.9

λ1

z1 z2 z3 z4 z5 z6 z7 z8 z9 z10

Figure 2.5. Generated interpolation between blue and red MNSIT.

However, one of the downsides of the Wasserstein distance when applying it to images
is that it relies on the L2 distance defined pixel-wise. Hence, only local interpolation can be
applied, such as colour interpolation. High-level interpolation such as class semantic inter-
polation or even affine transformation on images would require either an objective function
designed for images or a different representation of the images which would allow the L2

norm to capture theses high-level semantic features.

25

Chapter 3

Toward high level semantic unsupervised domain
translation

3.1. Introduction
Unpaired and unsupervised image-to-image translation has captured a lot of interest

after it has seen great empirical success (Kim et al. 2017; Zhu et al. 2017) on tasks that
require low-level semantic transfer like colours and textures. However, transferring high-level
semantic features is still an open question. An example of such a task would be transferring
MNIST digits to SVHN digits and vice-versa or transferring doodle images to real images
and vice-versa. In such a task, the model has to capture semantically shared features.

In this chapter, we study the problem of such semantic-preserving unsupervised domain
translation (SPUDT). While existing works have considered semi-supervised variants by
training classifiers with labels on the source domain, we show it is possible to perform
SPUDT without any pairing or any labels, but simply with access to samples from the two
domains.

Based on empirical observations, we propose a framework for performing SPUDT. Our
framework decouples the translation task into three subtasks: (1) unsupervised learning of a
semantic representation in the source domain, which we use to map a sample from the source
domain to a code in a latent space. The representation learning methods include but are not
limited to clustering or latent factor taken as the code of the encoder of an auto-encoder;
(2) adapting these representations to the target domain, such that we preserve the shared
semantic information across domains; and finally (3) learning a conditional generative model
for generation in the target domain, where the conditioning input is the semantic-preserving
and domain-invariant representation. We implement our framework through leveraging ad-
vances in unsupervised clustering techniques for semantic representation learning, domain
adaptation for adapting representations across domains, and conditional GANs for finally
generating samples in the target domain.

While existing works have tended to show results that transfer from complex domains to
simpler ones (such as SVHN→MNIST, or Faces→Emoji), using our pipeline we are able to
show unsupervised domain translation from simpler to complex domains such as with the
MNIST→SVHN and QuickDraw→FashionMNIST tasks. To the best of our knowledge, this
is the first time successful unsupervised domain translation has been demonstrated in such
challenging source-to-target domain-shift settings.

3.2. Related work
Domain translation has been popularized following the work on Image-to-Image trans-

lation by (Isola et al. 2016) in which they propose to learn a conditional GAN (Mirza and
Osindero 2014) on paired samples of the source and target domain.

Domain Transfer networks (Taigman, Polyak, and Wolf 2016) propose a semi-supervised
approach where the generation objective is a composition of a GAN loss (Goodfellow et al.
2014) an identity loss ||x− x′||2 and a f-constancy loss ||f(x), f(x′)||2, where x and x′ are
source and generated samples respectively and f is a supervised pre-trained function on the
source domain. In our work, we observe that how f is learned is fundamental to a good
transfer and essentially propose to learn it in an unsupervised manner.

CycleGAN (Zhu et al. 2017) introduced the task of unpaired and unsupervised Image-
to-Image translation by proposing to learn a mapping and its inverse constrained with a
cycle-consistency loss and a GAN loss for each mapping. Follow-up work have been inspired
by this task and have proposed solutions to improve on CycleGAN (Liu, Breuel, and Kautz
2017; Kim et al. 2017; Almahairi et al. 2018; Huang et al. 2018). But, as observed in Benaim,
Galanti, and Wolf 2018; Galanti, Wolf, and Benaim 2018; Bézenac, Ayed, and Gallinari 2019,
the cycle-consistency is theoretically ill-posed and can result in arbitrary mapping that may
not be semantically relevant. Having said that, CycleGAN and its derivatives still show
impressive empirical results. However, Bézenac, Ayed, and Gallinari 2019 argues that the
cause of the good results is effectively not the cycle-consistency objective, but an implicit
bias toward transformations that stay close to the source samples in features space due to
the architectural design.

While enforcing this implicit bias can improve results on tasks that require little spatial
or geometrical transformation (e.g. transferring edges to shoes), going in this direction won’t
solve more difficult tasks where the semantics are not encoded at the feature level.

In order to tackle this problem, we propose to re-use ideas from the clustering and the
domain adaptation communities. Regularized Information Maximization (Gomes, Krause,
and Perona 2010) proposes to learn a regularized mapping from samples to clusters that
maximizes mutual information while minimizing a pre-defined constraints. IMSAT (Hu et
al. 2017) proposes a regularization that constraint a sample and its transformation to map
to the sample cluster.

27

Recent work on domain adaptation (Shu et al. 2018; Mao et al. 2019) has achieved
impressive results on datasets like MNIST to SVHN by proposing a number of regularizations
and assumptions – mainly the cluster assumption – on the classifier.

3.3. Conditional representation GAN
Learning generative models have seen tremendous progress recently. We first present some

background on generative adversarial networks before presenting the conditional representa-
tion generation framework that is general and agnostic to the domain invariant representation
learning scheme.

3.3.1. Generative adversarial network

Given an unknown target probability measure Px over a topological space X (e.g. a
space of images), Generative Adversarial Networks (GANs) (Goodfellow et al. 2014) aim at
learning a map g : Z → X minimizing some discrepency1 between g#Pz and Px, where Pz is
a known fixed probability measure (often an isotropic gaussian) over a space Z, and g#Pz
denotes the push-forward of Pz by g. The optimization procedure is generally characterized
by a min-max game where a critic aims to maximize the objective and a generator aims at
minimizing the same objective. In the following, without loss of generality, we will consider
the minimization of the Earth-mover distance:

min
g:Z→X

W1(g#Pz,Px). (3.3.1)

The Earth-mover distance can be cast into an optimization problem over 1-
Lipschitz functions f : X → R, yielding the following min-max optimization prob-
lem (arjovsky2017wasserstein)2:

min
g

max
f : 1-Lipschitz

Ex∼Pxf(x)− Ex̂∼g#Pzf(x̂). (3.3.2)

Conditional GAN (Mirza and Osindero 2014) generalizes this setup to the case where the
data is labelled with elements in a discrete set C. That is, a target joint distribution Px,c
over X × C is approximated via the objective

min
g:Z×C→X×C

W1(g#Pz,c,Px,c), (3.3.3)

where Pz,c is a fixed and known joint probability measure over the latent space Z ×C, often
taken to be the product of a Gaussian and a uniform distribution over the labels. Evidently,
equation 3.3.3 implies g# : Pz,c → Px,c and thus, g models the conditional probability
distribution Px|c. A visual depiction of the conditional GAN is provided in figure 3.1.
1The discrepancy was originally defined as the Jensen Shannon Divergence for an optimal discriminator.
2In practice, the hard Lipschitz constraint can be relaxed into a soft constraint, see for instance the gradient
penalty in WGAN-GP (Gulrajani et al. 2017)

28

3.3.2. Conditional Representation GAN

Conditional Representation GAN (CR-GAN) generalizes the formulation of conditional
GANs given in equation equation 3.3.3. Figure 3.1 compare the traditional GAN framework
with CRGAN. Let two spaces be X and Y . We define generally h : {X ,Y} → H a given
function that maps X and Y to a common hidden representation H, capturing the features
we are interested to transfer. Two specific methods for learning h that capture high level
semantic features without supervision will be given in the following section. We define a
function g : Z ×H → Y a generator conditioned on the representation H. Without loss of
generality, the training objective of CRGAN is

min
g

max
f :1-Lipschitz

Ez∼Pz ,h∼h#Pxf(g(z,h),h)− Ey∼Py ,h∼h#Pyf(y,h). (3.3.4)

In this paper we use the earth-mover distance, but other distributional discrepencies could
be used as well.

Figure 3.1. Left - Conditional GAN framework: the generator g is conditioned on a sample
from a prior distributions and a class label. f is a critic which take either a real image and its
associated label or a generated image and its conditioned label. Right - CR-GAN framework:
the generator is conditioned on the representations r ∈ R from a pre-trained function h. f
is a critic which take either a real image and its associated representation from a pre-trained
function h or a generated image and its representation from h.

As in conditional GANs, a discrepancy between the joint distributions Py,h and Pŷ,h is
learned. Hence, similarly as in conditional GAN, the optimum is obtained when Py,h = g# :
Pz,h. Thus, g models the conditional probability Py|h. A special case of CR-GAN is simply
the conditional GAN where h is simply a human that classified samples from both X and
Y . In other words, z models the structure unrelated to the representation. In this case,
because h compresses an image to a simple category, Z models the attributes unrelated to
the category, as observed in conditional GANs (Mirza and Osindero 2014). As we will observe
in the experiments section, this is true in general when h learns a compressed representation.

In this work, we are more interested in learning h with unsupervised learning algorithms
that capture invariant features in X and Y . However, we note that supervision can easily
be incorporated into the representation learning algorithm depending on the task.

29

3.4. Domain invariant representation learning
In representation learning, it is assumed that latent factors generate the data distribution.

The interest is usually in finding a representation that describes some of the factors to do
well at solving a given task. For example, the goal of learning a representation for the task of
classification is to learn a representation such that the data is linearly separated into classes.

Learning a good representation (Bengio, Courville, and Vincent 2013) in an unsupervised
manner as well as learning invariant features across different domains (Ben-David et al. 2010)
are still two active areas of research. As it was argued in Locatello et al. 2019, unsupervised
learning has to define a set of assumption and inductive biases. In the following, we propose
an algorithm for solving the specific case of unsupervised domain translation where we know
a priori how many high-level categories exists. Given a different set of assumptions, other
representation learning algorithms could be learned, potentially yielding a more general
representation learning algorithm. We leave the exploration of these algorithms for future
work.

3.4.1. Clustering adaptation

Our approach is conceptually straightforward. We propose to first learn k clusters and
to use them as ground truth for learning an adapted classifier. The quality of the domain
translation is proportional to the quality of the clusters and the adapted classifier. Fortu-
nately, it is possible to evaluate both. In practice, any clustering and domain adaptation
algorithm can be used, as long as they produce well-shared clusters. Hence, as unsupervised
representation learning and domain adaptation techniques will be improved, a larger class
of domain translation might be possible.

3.4.1.1. Clustering

Clustering defines the task of grouping similar objects. At the core of this unsupervised
approach is the notion of similarity. By defining correctly the notion of similarity, clustering
algorithms can extract relevant semantic information in a dataset.

Following RIM (Gomes, Krause, and Perona 2010) and IMSAT (Hu et al. 2017), we
propose to learn a mapping c : X → C, where C ∈ Rk is a continuous space representing a
soft clustering of X , by optimizing the following objective

min
c
λR(c)− I(X ; C), (3.4.1)

where λ > 0 is a Lagrange multiplier, I is the mutual information defined as

I(X ; C) = H(C)−H(C|X),

30

R is a regularizer to restrict the class of functions. As it was proposed in IMSAT, we
propose to define the regularization as follows

R(c) = Ex∼Px||c(x)− c(x′)||2 (3.4.2)

where x′ = T (x), and T is defined as some transformation such as affine transformation.
Essentially, this ensure that the mapping is invariant under the set of transformation defined
by T .

If c is a deterministic function and C is discrete, then H(C|X) = 0, and max I(X ; C) =
maxH(C). Hence, we are interested in a clustering of maximum entropy. This can be
achieved if Pc = Pcat where Pcat is the categorical distribution with uniform probability for
every category. In practice, we can represent C as the space of one-hot vectors.

Hence, we can maximize the mutual information by mapping to the uniform categori-
cal distribution denoted Pcat. To do so, we propose to estimate the earth-mover distance
W1(c#Px,Pcat) using the Wasserstein GAN framework

I(X ; C) = max
f :Lipschitz-1

Eû∼c#Pxf(û)− Eu∼Pcatf(u). (3.4.3)

Hence, minimizing equation 3.4.3 would essentially minimize the Earth-mover distance be-
tween c#Px and Pcat giving us a mapping of maximal I(X ; C).

Combining equation 3.4.2 and equation 3.4.3 in equation 3.4.1, we obtain the following
objective for clustering

min
c

max
f :Lipschitz-1

λEx∼Px||c(x)− c(x′)||2 − (Eû∼c#Pxf(û)− Eu∼Pcatf(u)). (3.4.4)

3.4.1.2. Domain adaptation

Domain adaptation aims at adapting a function from a domain X so that it can perform
well on domain Y . Unsupervised domain adaptation refers to the case where Y is unlabelled
during training. Different strategies exist for tackling this problem (Ganin et al. 2016; Shu
et al. 2018; Mao et al. 2019). The strategy we will use in this work consists of matching
the marginal distribution of a hidden representation of a neural network (Ganin et al. 2016)
while enforcing the cluster assumption (Chapelle and Zien 2005). We motivate this approach
because of the empirical success it has achieved in the modality of interest for this paper (Mao
et al. 2019).

It has been shown that the error of a hypothesis function h on the target domain Y is
upper bounded by the following (Ben-David et al. 2010)

εY(h) ≤ εX (h) + d(X ,Y) + min
h′

εX (h′) + εY(h′) (3.4.5)

where ε is the risk and can be computed given a loss function, for example the cross entropy

Lx(h) = εx(h) := −Ex∼Pxt(x)> ln h(x). (3.4.6)

31

Where t : X → C is a labelling function. Typically, a human labels each example, but in our
case, it can also be learned using an unsupervised learning algorithm.

Considering that h is a neural network, it can be decomposed as follows: h := h2 ◦
h1. Gradient reversal (Ganin et al. 2016) proposes matching the marginal of some hidden
representation h1(X) and h1(Y):

Ld(h1) := max
D

Ehx∼h1#Px [logD(hx)] + Ehy∼h1#Py [log(1−D(hy)]. (3.4.7)

Here, D : {h1#Px, h1#Py} → [0, 1] is called the discriminator.
(Shu et al. 2018) point out that this is not enough and propose to leverage the cluster

assumption which simply states that the decision boundary of h should be in the low-density
region and points within the same cluster should belong to the same class. More concretely,
the entropy of h(y) should be low. This can be achieved with the following objective (Grand-
valet and Bengio 2005)

Lc(h) = −Ey∼Pyh(y)> ln h(y). (3.4.8)

Because we estimate equation 3.4.8 with finite samples of Y , h may not be locally-
lipschitz (Grandvalet and Bengio 2005; Shu et al. 2018). Thus, they propose to further
regularize the hypothesis function class by constraining it to be robust to local perturbation
using the virtual adversarial training objective presented in (Miyato et al. 2018). Virtual
adversarial training can be summarized as the following objective

Lvx(h) = max
||r||2≤ε

DKL(h(x)||h(x+ r))

where ε > 0 is a small number. This essentially force h to be robust around an epsilon ball
of radius ε. Lvy(h) is similarly defined for Y .

Virtual Mixup Training (Shu et al. 2018) proposes to further regularize h by enforcing
that the predictions at points x̃ should themselves be linear interpolations of the predictions
at x1 and x2. More concretely, let

x̃ = αx1 + (1− α)x2

ỹ = αh(x1) + (1− α)h(x2).

With α ∼ U(0, 1), where U(0, 1) is a continuous uniform distribution between 0 and 1.
The objective proposed is

Lmx(h) = −Ex∼Pxỹ> ln h(x̃).

With Lmy(h) similarly defined for Y .
Hence, the final domain adaptation objective used is

min
h
Lx(h) + Ld(h1) + Lc(h) + Lvx(h) + Lvy(h) + Lmx(h) + Lmy(h).

32

3.4.2. Auto-encoder adaptation

We propose an invariant auto-encoder for learning a representation where the perceptual
difference between domains is contained in low-level features.

An auto-encoder learns two functions, an encoder e : X → H and a decoder d : H → X .
The encoder is trained end-to-end to minimize the following objective

Lae(e, d) = Ex∼X ||x− d(e(x))||2. (3.4.9)

A variant of the auto-encoder has been proposed where the auto-encoder has extra regu-
larization, like VAE and denoising auto-encoder. While such variant has been shown to have
the potential to learn good representations, we leave their analysis to future work.

Because we want H to be domain invariant, we propose to adapt the encoder of the auto-
encoder by simply matching the marginal distribution of the hidden code. More precisely,
let x ∼ Px and y ∼ Py, samples following two distributions. Let f : e(X) → R a critic
function, without loss of generality, we can define the marginal distribution loss as

Ld(e) = sup
f :Lipschitz-1

Ex̃∼e#Pxf(x̃)− Eŷ∼e#Pyf(ŷ). (3.4.10)

Combining equation 3.4.9 and equation 3.4.10, we obtain the global loss of the auto-
encoder adaptation

min
e,d
Lae(e, d) + Ld(e). (3.4.11)

3.5. Experiments
We now provide experimental results on our proposed approach. We first show that the

clustering adaptation can be used to learn a shared clustering between domains, allowing us
to cluster harder datasets. Then, we show that the representation learned can be used for
high-level semantic image to image translation using CRGAN. We demonstrate our results
on two benchmarks: MNIST (LeCun and Cortes 2010) - SVHN (Netzer et al. 2011) and
Quickdraw (Fernandez et al. 2019) - Fashion (Xiao, Rasul, and Vollgraf 2017). Finally, we
show that CRGAN can be used with a more general representation learning algorithm by
applying it to the representation of edges to shoes (Yu and Grauman 2014) learned using an
adapted auto-encoder.

3.5.1. Datasets

MNIST. is a balanced dataset of 60000 handwritten digits. The MNIST images are original
28 × 28 with one channel. To facilitate the training and easily compare them with SVHN,
we upsample the MNIST images to 32× 32 and triple the number of channels.
SVHN. is a dataset of 73257 digits from real-world images obtained using google street
view. The images a 32× 32 with three channels.

33

Quickdraw. is a dataset of handwritten objects from 345 categories containing millions of
samples.
FashionMNIST. is a balanced dataset of 60000 black and white fashion objects across 10
classes.
Shoes. is a dataset of edges and coloured shoes. For the experiments involving shoes, we
resize the dataset to 64× 64.

In our experiments, we take classes that are both presents in the quickdraw dataset and
Fashion MNIST. Moreover, we merge categories that are drawn identically by humans such
as top and pullover. Hence, the categories we transfer are the following: top, pants, shoes,
handbag. Finally, we resize both datasets to 32× 32.

3.5.2. Implementation details

For the clustering algorithm, we use a six-layer convolutional neural network with average
pooling for downsampling, Leaky ReLU for nonlinearity and batch normalization without
affine parameters for normalization. For domain adaptation, we use the same architecture as
in (Shu et al. 2018) except that we removed the affine parameters from batch normalization.
Finally, for CRGAN, the critic and the generator follow the DCGAN architecture without
batch normalization in the critic. Everything is trained using ADAM (Diederik P. Kingma
and Ba 2014).

3.5.3. Clustering adaptation evaluation

We first compare the proposed clustering algorithm against IMSAT (Hu et al. 2017) and
K-Means (Lloyd 2006) on our different benchmarks. The K-Means results were obtained
using the generic implementation from Scikit-learn. The IMSAT results were obtained fol-
lowing the implementation details from (Hu et al. 2017). Contrary to what is sometimes
being done in the literature, we do not pre-process the datasets by applying techniques
edges filtering. Instead, we apply the clustering algorithms directly to the raw image.

We use the Purity evaluation metric for evaluating and comparing the variant of our
clustering algorithm with other methods. The purity is computed as follows

1
N

N∑
i=1

arg max
j
|li ∩ c(xi)j| (3.5.1)

where li is the ground truth label and c is the clustering function.
Table 3.1 present the comparative results.
What we want to highlight here is the fact that some datasets like SVHN are hard to clus-

ter by digit identity without any pre-processing and with the current clustering techniques.
One of the causes is the different contrast of the colour of the digit as well as the artifacts in
the images. Hence, adapting the clustering learned on a source dataset to a target dataset

34

Table 3.1. Comparing different clustering algorithms on MNIST, SVHN, Quickdraw and
FashionMNIST (FMNIST) using equation 3.5.1. Our1 correspond our raw clustering algo-
rithm, which is a modification of IMSAT. Our2 Correspond our clustering algorithm trained
on a source dataset and adapted to a target dataset. The SVHN results were obtained by
adapting the MNIST clustering on SVHN and the FashionMNIST results were obtained by
adapting the Quickdraw clustering to FashionMNIST.

Data K-Means IMSAT Our1 Our2

MNIST 59.45 98.24 98.89 N/A
SVHN 19.5 12.5 25.1 88.0
Quickdraw 80.08 84.96 92.57 N/A
FMNIST 89.8 94.8 81.15 92.4

that contains the same categories of interest but that does not have the same distractor can
be an interesting strategy for learning clustering on real datasets.

3.5.4. CRGAN evaluation

We now present qualitative and quantitative results on our proposed CRGAN learned
with the clustering adaptation representation learning presented above. The quantitative
numbers are obtained by pre-training a classifier on the target domain and evaluating whether
the label is preserved throughout the transfer. More precisely, let f a pre-trained classifier
and gx = g ◦ h the function which is the composition of the representation learning h and
the generative model g. The quantitative evaluation is obtained as

1
N

N∑
i=1

f(gx(xi, z)) ∩ lxi (3.5.2)

where lxi is the true label of sample xi and z ∼ N (0, 1).
We compare our algorithm with two other unsupervised and unpaired algorithms: Cy-

cleGAN and MUNIT. For CycleGAN and MUNIT, we followed the implementation from
the authors’ official repository. In both cases, the results were negative for transferring high
level semantic.

3.5.4.1. Quantitative analysis

We present our quantitative results in table 3.2 using the evaluation metric presented
in equation 3.5.2. The classification column presents the supervised results obtained when
evaluating a classifier trained on the target domain. We see that current unsupervised and
unpaired image-to-image translation techniques currently fails at the image to image trans-
lation task that requires transferring high-level semantic. CycleGAN and MUNIT obtain
both random performances on MNIST-SVHN and FashionMNSIT to Quickdraw. However,
for the Quickdraw to FashionMNIST results, we observe that CycleGAN may transfer the

35

high-level semantic class, but it fails at aligning it to the correct class in the target domain.
Hence, our proposed approach is the only one that obtains sensible results on the task of
transferring high-level semantic in an unsupervised and unpaired fashion.

Table 3.2. Domain translation accuracy obtained using equation 3.5.2 on MNIST-SVHN
and Quickdraw-FashionMNIST.

Data Cycle MUNIT Our Class

MNIST-SVHN 10.89 10.37 73.15 93.00
SVHN-MNIST 11.27 9.84 77.51 99.14
QD-FMNIST 2.00 24.79 85.66 99.73
FMNIST-QD 26.18 25.06 85.60 99.87

3.5.4.2. Qualitative analysis

We now compare qualitative samples on MNIST-SVHN and Quickdraw-FashionMNIST
generated from our benchmarks and our method.

By sampling different z ∈ Pz, we can samples a diversity of samples from the target
domain as observed in the example given in figure 3.4 for MNIST to SVHN. We observe that
z indeed controls de style of SVHN while the source sample controls the digit identity.

We conclude this section by showing in figure 3.5 that CRGAN can be applied to other
types of representation. In this example, we train an autoencoder with a gradient reversal
loss on the encoder as described in section 3.4.2 on the usual edges to shoes dataset. Thus,
the representation used is the output of the encoder. This result implicates that a more
general representation learning algorithm that captures shared high-level semantic features
could be used. We leave the exploration of such exploration for future work.

3.6. Conclusion and future works
In this work, we have presented a general view of conditional GAN. We have shown that

conditional GAN can be used with any domain invariant representation learning scheme.
Thus, we can essentially separate the task of representation learning from the task on gen-
eration. Given that insight, we have presented clustering adaptation, as a scheme to adapt
the clustering learned on a source domain to a target domain. Coupled with the Conditional
representation GAN, this allowed us to transfer high-level semantics from a source domain to
a target domain. Finally, we have noted that a more general representation learning scheme
can be used. For example, it is possible to adopt a classifier to learn a transfer on domains
where only low-level features change, like the edge to shoes dataset. This insight indicates
that a more general representation learning scheme that could capture high level semantic
could be used in place of clustering. This would allow for more fine-grained transfer. For

36

MNIST-SVHN SVHN-MNIST

C
yc
le
G
A
N

M
U
N
IT

O
ur
s

Figure 3.2. Qualitative comparison of CycleGAN and MUNIT with our methods on MNIST
to SVHN. For each figure, the even column c correspond to the source samples and the odd
column c + 1 correspond to source samples translated to the target domain. The first row
of figures are the results obtained on CycleGAN. The second row of figures are the results
on MUNIT. The last row of results are the results obtained using our approach.

example, in MNIST-SVHN, the digit identity is not the only feature shared. For example,
the inclination of the digit or the thickness of the digit is also shared attributes that are not
captured by our method. Finally, another representation learning scheme where supervision
is used could be valuable to investigate and could potentially have interesting applications.

37

Quickdraw-FMNIST FMNIST-Quickdraw

C
yc
le
G
A
N

M
U
N
IT

O
ur
s

Figure 3.3. Qualitative comparison of CycleGAN and MUNIT with our methods on Quick-
draw to FashionMNIST. For each figure, the even column c correspond to the source samples
and the odd column c + 1 correspond to source samples translated to the target domain.
The first row of figures are the results obtained on CycleGAN. The second row of figures are
the results on MUNIT. The last row of results are the results obtained using our approach.

38

Figure 3.4. Effect of sampling a different z given an image. The first row presents the source
samples to be transferred. Each subsequent rows the samples generated given a different z.

39

Figure 3.5. Edges-to-shoes by using the representation learned from an adapted autoen-
coder. The first row presents the source samples to be transferred. Each subsequent row is
a sample generated given a different z.

40

Conclusion

We developed a framework for interpolating on the Wasserstein geodesic. This framework
is flexible and can work with any number of distributions. We also show that it can be
used as a generative model. The feature of it is that we can generate samples that are on
the barycenter of distributions, enabling us to generate outside of the initial distributions.
However, the main challenge of this approach goes back to the initial premise. If the content
to be transferred is not representable feature-wise, then the L2 norm is not a good measure.
In Chapter 2, we presented the example of transferring colour, because colour can be easily
compared pixel-wise. But, the experiment would not have been successful if we have tried
to represent an affine transformation, for example, a translation.

To solve this problem, two avenues are possible. The first one is to develop cost functions
that are better suited for the task. This angle is interesting and could potentially solve the
problem for known transformation, such as affine. However, it is hard to imagine that we
could define a cost function for complex non-linear transformation. The second avenue is to
have a better representation. This is reminiscent of the Fourier transform which enables us to
transform data in the frequency domain, where operations are easier, and then to transform
back to the data domain. The challenge of such an approach is that we need to define how
to obtain the desirable representation. The second issue is that we need to also define how
to go from representation space to data space.

The third chapter was the first stab in this direction. The idea was simply to learn a
representation that captures the high level semantic and to learn a mapping back to the data
space. We see that such an approach can be successful but rely on having a definition of the
high level semantic through labels. This is why we introduced the idea of learning the high
level semantic through clustering. But this assumes that at least one of the domains can
be clustered with respect to the desired semantic. Moreover, we map exactly to the same
representation for all domains, which means that we could not possibly use the framework
of optimal transport to transfer from one domain to the other in representation space.

I think that for future work, representation learning seems like a promising approach
for solving the task of high level semantic unsupervised domain translation. But first, we
have to ask how we can reliably capture all the high-level features. For example, in our

digits example, we captured the digit identity, but not the other features like thickness and
rotation. We also have to think about how we can map back to the data domain.

42

Bibliography

Agueh, Martial and Guillaume Carlier (Jan. 2011). “Barycenters in the Wasserstein Space”.
In: SIAM J. Math. Analysis 43, pp. 904–924. doi: 10.1137/100805741.

Almahairi, Amjad et al. (Oct. 2018). “Augmented CycleGAN: Learning Many-to-Many Map-
pings from Unpaired Data”. In: Proceedings of the 35th International Conference on
Machine Learning. Ed. by Jennifer Dy and Andreas Krause. Vol. 80. Proceedings of Ma-
chine Learning Research. Stockholmsmässan, Stockholm Sweden: PMLR, pp. 195–204.
url: http://proceedings.mlr.press/v80/almahairi18a.html.

Arjovsky, Martin, Soumith Chintala, and Léon Bottou (June 2017). “Wasserstein Generative
Adversarial Networks”. In: Proceedings of the 34th International Conference on Machine
Learning. Ed. by Doina Precup and Yee Whye Teh. Vol. 70. Proceedings of Machine
Learning Research. International Convention Centre, Sydney, Australia: PMLR, pp. 214–
223. url: http://proceedings.mlr.press/v70/arjovsky17a.html.

Ben-David, Shai et al. (May 2010). “A theory of learning from different domains”. In: Ma-
chine Learning 79.1, pp. 151–175. issn: 1573-0565. doi: 10.1007/s10994-009-5152-4.
url: https://doi.org/10.1007/s10994-009-5152-4.

Benaim, Sagie, Tomer Galanti, and Lior Wolf (2018). “Estimating the Success of Unsuper-
vised Image to Image Translation”. In: Computer Vision – ECCV 2018. Ed. by Vittorio
Ferrari et al. Cham: Springer International Publishing, pp. 222–238. isbn: 978-3-030-
01228-1.

Bengio, Yoshua, Aaron Courville, and Pascal Vincent (Aug. 2013). “Representation Learning:
A Review and New Perspectives”. In: IEEE Trans. Pattern Anal. Mach. Intell. 35.8,
pp. 1798–1828. issn: 0162-8828. doi: 10.1109/TPAMI.2013.50. url: http://dx.doi.
org/10.1109/TPAMI.2013.50.

Bézenac, Emmanuel de, Ibrahim Ayed, and Patrick Gallinari (2019). “Optimal Unsupervised
Domain Translation”. In: CoRR abs/1906.01292. arXiv: 1906.01292. url: http://
arxiv.org/abs/1906.01292.

Blondel, Mathieu, Vivien Seguy, and Antoine Rolet (Sept. 2018). “Smooth and Sparse Opti-
mal Transport”. In: Proceedings of the Twenty-First International Conference on Artifi-
cial Intelligence and Statistics. Ed. by Amos Storkey and Fernando Perez-Cruz. Vol. 84.

https://doi.org/10.1137/100805741
http://proceedings.mlr.press/v80/almahairi18a.html
http://proceedings.mlr.press/v70/arjovsky17a.html
https://doi.org/10.1007/s10994-009-5152-4
https://doi.org/10.1007/s10994-009-5152-4
https://doi.org/10.1109/TPAMI.2013.50
http://dx.doi.org/10.1109/TPAMI.2013.50
http://dx.doi.org/10.1109/TPAMI.2013.50
https://arxiv.org/abs/1906.01292
http://arxiv.org/abs/1906.01292
http://arxiv.org/abs/1906.01292

Proceedings of Machine Learning Research. Playa Blanca, Lanzarote, Canary Islands:
PMLR, pp. 880–889. url: http://proceedings.mlr.press/v84/blondel18a.html.

Chapelle, O. and A. Zien (Jan. 2005). “Semi-Supervised Classification by Low Density Sep-
aration”. In: AISTATS 2005. Max-Planck-Gesellschaft, pp. 57–64.

Clevert, Djork-Arné, Thomas Unterthiner, and Sepp Hochreiter (2015). “Fast and Accurate
Deep Network Learning by Exponential Linear Units (ELUs)”. In: CoRR abs/1511.07289.

Cuturi, Marco (2013). “Sinkhorn Distances: Lightspeed Computation of Optimal Transport”.
In: Advances in Neural Information Processing Systems 26. Ed. by C. J. C. Burges et al.
Curran Associates, Inc., pp. 2292–2300. url: http://papers.nips.cc/paper/4927-
sinkhorn-distances-lightspeed-computation-of-optimal-transport.pdf.

Fernandez, Raul et al. (July 2019). Quick, Stat!: A Statistical Analysis of the Quick, Draw!
Dataset.

Galanti, Tomer, Lior Wolf, and Sagie Benaim (2018). “The Role of Minimal Complexity
Functions in Unsupervised Learning of Semantic Mappings”. In: International Conference
on Learning Representations. url: https://openreview.net/forum?id=H1VjBebR-.

Galichon, Alfred (2016). Optimal Transport Methods in Economics. 1st ed. Princeton Uni-
versity Press. url: https://EconPapers.repec.org/RePEc:pup:pbooks:10870.

Ganin, Yaroslav et al. (2016). “Domain-adversarial training of neural networks”. In: The
Journal of Machine Learning Research 17.1, pp. 2096–2030.

Gomes, Ryan, Andreas Krause, and Pietro Perona (2010). “Discriminative Clustering by
Regularized Information Maximization”. In: NIPS.

Goodfellow, Ian J. et al. (2014). “Generative Adversarial Nets”. In: Proceedings of the 27th In-
ternational Conference on Neural Information Processing Systems - Volume 2. NIPS’14.
Montreal, Canada: MIT Press, pp. 2672–2680. url: http://dl.acm.org/citation.
cfm?id=2969033.2969125.

Grandvalet, Yves and Yoshua Bengio (2005). “Semi-supervised Learning by Entropy Mini-
mization”. In: Advances in Neural Information Processing Systems 17. Ed. by L. K. Saul,
Y. Weiss, and L. Bottou. MIT Press, pp. 529–536. url: http://papers.nips.cc/
paper/2740-semi-supervised-learning-by-entropy-minimization.pdf.

Gulrajani, Ishaan et al. (2017). “Improved Training of Wasserstein GANs”. In: Proceedings of
the 31st International Conference on Neural Information Processing Systems. NIPS’17.
Long Beach, California, USA: Curran Associates Inc., pp. 5769–5779. isbn: 978-1-5108-
6096-4. url: http://dl.acm.org/citation.cfm?id=3295222.3295327.

Han, Jun and Claudio Moraga (1995). “The Influence of the Sigmoid Function Parameters on
the Speed of Backpropagation Learning”. In: Proceedings of the International Workshop
on Artificial Neural Networks: From Natural to Artificial Neural Computation. IWANN
’96. London, UK, UK: Springer-Verlag, pp. 195–201. isbn: 3-540-59497-3. url: http:
//dl.acm.org/citation.cfm?id=646366.689307.

44

http://proceedings.mlr.press/v84/blondel18a.html
http://papers.nips.cc/paper/4927-sinkhorn-distances-lightspeed-computation-of-optimal-transport.pdf
http://papers.nips.cc/paper/4927-sinkhorn-distances-lightspeed-computation-of-optimal-transport.pdf
https://openreview.net/forum?id=H1VjBebR-
https://EconPapers.repec.org/RePEc:pup:pbooks:10870
http://dl.acm.org/citation.cfm?id=2969033.2969125
http://dl.acm.org/citation.cfm?id=2969033.2969125
http://papers.nips.cc/paper/2740-semi-supervised-learning-by-entropy-minimization.pdf
http://papers.nips.cc/paper/2740-semi-supervised-learning-by-entropy-minimization.pdf
http://dl.acm.org/citation.cfm?id=3295222.3295327
http://dl.acm.org/citation.cfm?id=646366.689307
http://dl.acm.org/citation.cfm?id=646366.689307

He, Kaiming et al. (2015). “Deep Residual Learning for Image Recognition”. In: CoRR
abs/1512.03385. arXiv: 1512.03385. url: http://arxiv.org/abs/1512.03385.

Hoffman, Judy et al. (Oct. 2018). “CyCADA: Cycle-Consistent Adversarial Domain Adapta-
tion”. In: Proceedings of the 35th International Conference on Machine Learning. Ed.
by Jennifer Dy and Andreas Krause. Vol. 80. Proceedings of Machine Learning Re-
search. Stockholmsmässan, Stockholm Sweden: PMLR, pp. 1989–1998. url: http://
proceedings.mlr.press/v80/hoffman18a.html.

Hu, Weihua et al. (2017). “Learning discrete representations via information maximizing self-
augmented training”. In: Proceedings of the 34th International Conference on Machine
Learning-Volume 70. JMLR. org, pp. 1558–1567.

Huang, Xun et al. (2018). “Multimodal Unsupervised Image-to-Image Translation”. In:
ECCV.

Isola, Phillip et al. (2016). “Image-to-Image Translation with Conditional Adversarial Net-
works”. In: 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR),
pp. 5967–5976.

Kim, Taeksoo et al. (June 2017). “Learning to Discover Cross-Domain Relations with Gen-
erative Adversarial Networks”. In: Proceedings of the 34th International Conference on
Machine Learning. Ed. by Doina Precup and Yee Whye Teh. Vol. 70. Proceedings of Ma-
chine Learning Research. International Convention Centre, Sydney, Australia: PMLR,
pp. 1857–1865. url: http://proceedings.mlr.press/v70/kim17a.html.

Kingma, Diederik P. and Jimmy Ba (2014). Adam: A Method for Stochastic Optimization.
cite arxiv:1412.6980Comment: Published as a conference paper at the 3rd International
Conference for Learning Representations, San Diego, 2015. url: http://arxiv.org/
abs/1412.6980.

Kingma, Diederik P and Max Welling (2013). Auto-Encoding Variational Bayes. cite
arxiv:1312.6114. url: http://arxiv.org/abs/1312.6114.

Kramer, Mark (Feb. 1991). “Nonlinear Principal Component Analysis Using Auto-
Associative Neural Networks”. In: AIChE Journal 37, pp. 233–243. doi: 10.1002/aic.
690370209.

Kunnumkal, Sumit and Huseyin Topaloglu (2009). A Stochastic Approximation Method with
Max-Norm Projections and its Applications to the Q-Learning Algorithm.

LeCun, Yann and Corinna Cortes (2010). “MNIST handwritten digit database”. In: url:
http://yann.lecun.com/exdb/mnist/.

Liu, Ming-Yu, Thomas Breuel, and Jan Kautz (2017). “Unsupervised Image-to-Image Trans-
lation Networks”. In: ArXiv abs/1703.00848.

Lloyd, S. (Sept. 2006). “Least Squares Quantization in PCM”. In: IEEE Trans. Inf. Theor.
28.2, pp. 129–137. issn: 0018-9448. doi: 10.1109/TIT.1982.1056489. url: https:
//doi.org/10.1109/TIT.1982.1056489.

45

https://arxiv.org/abs/1512.03385
http://arxiv.org/abs/1512.03385
http://proceedings.mlr.press/v80/hoffman18a.html
http://proceedings.mlr.press/v80/hoffman18a.html
http://proceedings.mlr.press/v70/kim17a.html
http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1312.6114
https://doi.org/10.1002/aic.690370209
https://doi.org/10.1002/aic.690370209
http://yann.lecun.com/exdb/mnist/
https://doi.org/10.1109/TIT.1982.1056489
https://doi.org/10.1109/TIT.1982.1056489
https://doi.org/10.1109/TIT.1982.1056489

Locatello, Francesco et al. (Sept. 2019). “Challenging Common Assumptions in the Unsuper-
vised Learning of Disentangled Representations”. In: Proceedings of the 36th International
Conference on Machine Learning. Ed. by Kamalika Chaudhuri and Ruslan Salakhutdi-
nov. Vol. 97. Proceedings of Machine Learning Research. Long Beach, California, USA:
PMLR, pp. 4114–4124. url: http://proceedings.mlr.press/v97/locatello19a.
html.

Mao, Xudong et al. (2019). “Virtual Mixup Training for Unsupervised Domain Adaptation”.
In: CoRR abs/1905.04215. arXiv: 1905.04215. url: http://arxiv.org/abs/1905.
04215.

McCann, Robert J. (1997). “A Convexity Principle for Interacting Gases”. In: Advances in
Mathematics 128.1, pp. 153–179. issn: 0001-8708. doi: https://doi.org/10.1006/
aima.1997.1634. url: http://www.sciencedirect.com/science/article/pii/
S0001870897916340.

Mirza, Mehdi and Simon Osindero (2014). “Conditional Generative Adversarial Nets”. In:
CoRR abs/1411.1784. arXiv: 1411.1784. url: http://arxiv.org/abs/1411.1784.

Miyato, Takeru et al. (2018). “Virtual adversarial training: a regularization method for su-
pervised and semi-supervised learning”. In: IEEE transactions on pattern analysis and
machine intelligence 41.8, pp. 1979–1993.

Monge, Gaspard (1781). Mémoire sur la théorie des déblais et des remblais. De l’Imprimerie
Royale.

Murphy, Kevin P. (2012). Machine Learning: A Probabilistic Perspective. The MIT Press.
isbn: 0262018020, 9780262018029.

Nair, Vinod and Geoffrey E. Hinton (2010). “Rectified Linear Units Improve Restricted Boltz-
mann Machines”. In: Proceedings of the 27th International Conference on International
Conference on Machine Learning. ICML’10. Haifa, Israel: Omnipress, pp. 807–814. isbn:
978-1-60558-907-7. url: http://dl.acm.org/citation.cfm?id=3104322.3104425.

Netzer, Yuval et al. (2011). “The Street View House Numbers (SVHN) Dataset”. In: url:
http://ufldl.stanford.edu/housenumbers/.

Pan, Sinno Jialin and Qiang Yang (Oct. 2010). “A Survey on Transfer Learning”. In: IEEE
Trans. on Knowl. and Data Eng. 22.10, pp. 1345–1359. issn: 1041-4347. doi: 10.1109/
TKDE.2009.191. url: https://doi.org/10.1109/TKDE.2009.191.

Pearson, Karl (1901). “On Lines and Planes of Closest Fit to Systems of Points in Space”.
In: Phil. Mag. 6.2, pp. 559–572.

Peyré, Gabriel and Marco Cuturi (2019). “Computational Optimal Transport”. In: Foun-
dations and Trends R© in Machine Learning 11.5-6, pp. 355–607. issn: 1935-8237. doi:
10.1561/2200000073. url: http://dx.doi.org/10.1561/2200000073.

Radford, Alec, Luke Metz, and Soumith Chintala (2015). Unsupervised Represen-
tation Learning with Deep Convolutional Generative Adversarial Networks. cite

46

http://proceedings.mlr.press/v97/locatello19a.html
http://proceedings.mlr.press/v97/locatello19a.html
https://arxiv.org/abs/1905.04215
http://arxiv.org/abs/1905.04215
http://arxiv.org/abs/1905.04215
https://doi.org/https://doi.org/10.1006/aima.1997.1634
https://doi.org/https://doi.org/10.1006/aima.1997.1634
http://www.sciencedirect.com/science/article/pii/S0001870897916340
http://www.sciencedirect.com/science/article/pii/S0001870897916340
https://arxiv.org/abs/1411.1784
http://arxiv.org/abs/1411.1784
http://dl.acm.org/citation.cfm?id=3104322.3104425
http://ufldl.stanford.edu/housenumbers/
https://doi.org/10.1109/TKDE.2009.191
https://doi.org/10.1109/TKDE.2009.191
https://doi.org/10.1109/TKDE.2009.191
https://doi.org/10.1561/2200000073
http://dx.doi.org/10.1561/2200000073

arxiv:1511.06434Comment: Under review as a conference paper at ICLR 2016. url:
http://arxiv.org/abs/1511.06434.

Rumelhart, David E., Geoffrey E. Hinton, and Ronald J. Williams (1988). “Neurocomputing:
Foundations of Research”. In: ed. by James A. Anderson and Edward Rosenfeld. Cam-
bridge, MA, USA: MIT Press. Chap. Learning Representations by Back-propagating
Errors, pp. 696–699. isbn: 0-262-01097-6. url: http://dl.acm.org/citation.cfm?id=
65669.104451.

Sanjabi, Maziar et al. (2018). “On the Convergence and Robustness of Training GANs with
Regularized Optimal Transport”. In: Advances in Neural Information Processing Systems
31. Ed. by S. Bengio et al. Curran Associates, Inc., pp. 7091–7101. url: http://papers.
nips.cc/paper/7940-on-the-convergence-and-robustness-of-training-gans-
with-regularized-optimal-transport.pdf.

Santambrogio, F. (2015). Optimal Transport for Applied Mathematicians: Calculus of Vari-
ations, PDEs, and Modeling. Progress in Nonlinear Differential Equations and Their
Applications. Springer International Publishing. isbn: 9783319208282. url: https://
books.google.ca/books?id=UOHHCgAAQBAJ.

Seguy, Vivien et al. (2018). “Large Scale Optimal Transport and Mapping Estimation”. In:
International Conference on Learning Representations. url: https://openreview.net/
forum?id=B1zlp1bRW.

Shu, Rui et al. (2018). “A DIRT-T Approach to Unsupervised Domain Adaptation”. In:
International Conference on Learning Representations. url: https://openreview.net/
forum?id=H1q-TM-AW.

Taigman, Yaniv, Adam Polyak, and Lior Wolf (2016). “Unsupervised Cross-Domain Image
Generation”. In: ArXiv abs/1611.02200.

Villani, C. (2008). Optimal Transport: Old and New. Grundlehren der mathematischen Wis-
senschaften. Springer Berlin Heidelberg. isbn: 9783540710509. url: https://books.
google.ca/books?id=hV8o5R7%5C_5tkC.

Vincent, Pascal et al. (2008). Extracting and Composing Robust Features with Denoising
Autoencoders.

Wilson, Garrett and Diane Cook (Dec. 2018). A Survey of Unsupervised Deep Domain Adap-
tation.

Xiao, Han, Kashif Rasul, and Roland Vollgraf (2017). “Fashion-MNIST: a Novel Image
Dataset for Benchmarking Machine Learning Algorithms”. In: CoRR abs/1708.07747.
arXiv: 1708.07747. url: http://arxiv.org/abs/1708.07747.

Yu, A. and K. Grauman (June 2014). “Fine-Grained Visual Comparisons with Local Learn-
ing”. In: Computer Vision and Pattern Recognition (CVPR).

47

http://arxiv.org/abs/1511.06434
http://dl.acm.org/citation.cfm?id=65669.104451
http://dl.acm.org/citation.cfm?id=65669.104451
http://papers.nips.cc/paper/7940-on-the-convergence-and-robustness-of-training-gans-with-regularized-optimal-transport.pdf
http://papers.nips.cc/paper/7940-on-the-convergence-and-robustness-of-training-gans-with-regularized-optimal-transport.pdf
http://papers.nips.cc/paper/7940-on-the-convergence-and-robustness-of-training-gans-with-regularized-optimal-transport.pdf
https://books.google.ca/books?id=UOHHCgAAQBAJ
https://books.google.ca/books?id=UOHHCgAAQBAJ
https://openreview.net/forum?id=B1zlp1bRW
https://openreview.net/forum?id=B1zlp1bRW
https://openreview.net/forum?id=H1q-TM-AW
https://openreview.net/forum?id=H1q-TM-AW
https://books.google.ca/books?id=hV8o5R7%5C_5tkC
https://books.google.ca/books?id=hV8o5R7%5C_5tkC
https://arxiv.org/abs/1708.07747
http://arxiv.org/abs/1708.07747

Zhu, Jun-Yan et al. (2017). “Unpaired Image-to-Image Translation Using Cycle-Consistent
Adversarial Networks”. In: 2017 IEEE International Conference on Computer Vision
(ICCV), pp. 2242–2251.

48

	Résumé
	Abstract
	Contents
	List of Tables
	List of Figures
	Acronyms, abbreviations and notations
	Acknowledgements
	Introduction
	Chapter 1. Background
	1.1. Representation Learning
	1.1.1. Linear functions
	1.1.2. Non-linear functions
	1.1.3. Training
	1.1.4. Supervised learning
	1.1.4.1. Classification
	1.1.4.2. Regression

	1.1.5. Unsupervised learning
	1.1.5.1. Clustering
	1.1.5.2. Latent factor analysis

	1.2. Generative model
	1.3. Optimal transport
	1.4. Domain adaptation
	1.5. Image to image translation

	Chapter 2. Neural Wasserstein Flow
	2.1. Introduction
	2.2. Background
	2.2.1. Regularized optimal transport
	2.2.2. A flow on the Wasserstein geodesic

	2.3. Neural Wasserstein Barycenter
	2.4. Neural Wasserstein Flow
	2.4.1. Generative Wasserstein Flow

	2.5. Experiments
	2.5.1. Shape interpolation
	2.5.2. Images experiments
	2.5.2.1. Image to image interpolation
	2.5.2.2. Generative interpolation

	2.6. Conclusion

	Chapter 3. Toward high level semantic unsupervised domain translation
	3.1. Introduction
	3.2. Related work
	3.3. Conditional representation GAN
	3.3.1. Generative adversarial network
	3.3.2. Conditional Representation GAN

	3.4. Domain invariant representation learning
	3.4.1. Clustering adaptation
	3.4.1.1. Clustering
	3.4.1.2. Domain adaptation

	3.4.2. Auto-encoder adaptation

	3.5. Experiments
	3.5.1. Datasets
	3.5.2. Implementation details
	3.5.3. Clustering adaptation evaluation
	3.5.4. CRGAN evaluation
	3.5.4.1. Quantitative analysis
	3.5.4.2. Qualitative analysis

	3.6. Conclusion and future works

	Conclusion
	Bibliography

