
Université de Montréal

Entity-centric representations in deep learning

par Rim Assouel

Département d’informatique et de recherche opérationnelle
Faculté des arts et des sciences

Mémoire présenté à la Faculté des arts et des sciences
en vue de l’obtention du grade de Mâıtre ès sciences (M.Sc.)

en informatique

Juin, 2020

c© Rim Assouel, 2020.

Université de Montréal
Faculté des arts et des sciences

Ce mémoire intitulé:

Entity-centric representations in deep learning

présenté par:

Rim Assouel

a été évalué par un jury composé des personnes suivantes:

Pierre-Luc Bacon, président-rapporteur

Yoshua Bengio, directeur de recherche

Hugo Larochelle, membre du jury

Mémoire accepté le: 28/08/2020

Résumé

L’incroyable capacité des humains à modéliser la complexité du monde physique
est rendue possible par la décomposition qu’ils en font en un ensemble d’entités
et de règles simples. De nombreux travaux en sciences cognitives montre que la
perception humaine et sa capacité à raisonner est essentiellement centrée sur la
notion d’objet. Motivés par cette observation, de récents travaux se sont intéressés
aux différentes approches d’apprentissage de représentations centrées sur des entités
et comment ces représentations peuvent être utilisées pour résoudre plus facilement
des tâches sous-jacentes.

Dans la première contribution on montre comment une architecture centrée
sur la notion d’entité va permettre d’extraire des entités visuelles interpretables
et d’apprendre un modèle du monde plus robuste aux différentes configurations
d’objets.

Dans la deuxième contribution on s’intéresse à un modèle de génération de
graphes dont l’architecture est également centrée sur la notion d’entités et comment
cette architecture rend plus facile l’apprentissage d’une génération conditionelle à
certaines propriétés du graphe. On s’intéresse plus particulièrement aux applications
en découverte de médicaments. Dans cette tâche, on souhaite optimiser certaines
propriétés physico-chmiques du graphe d’une molécule qui a été efficace in-vitro et
dont on veut faire un médicament.

Mots-Clés: apprentissage profond, apprentissage non supervisé, apprentissage
de représentations, représentations d’objets, représentations de graphes, découverte
de médicaments

iii

Summary

Humans’ incredible capacity to model the complexity of the physical world is
possible because they cast this complexity as the composition of simpler entities and
rules to process them. Extensive work in cognitive science indeed shows that human
perception and reasoning ability is structured around objects. Motivated by this
observation, a growing number of recent work focused on entity-centric approaches
to learning representation and their potential to facilitate downstream tasks.

In the first contribution, we show how an entity-centric approach to learning
a transition model allows us to extract meaningful visual entities and to learn
transition rules that achieve better compositional generalization.

In the second contribution, we show how an entity-centric approach to generating
graphs allows us to design a model for conditional graph generation that permits
direct optimisation of the graph properties. We investigate the performance of our
model in a prototype-based molecular graph generation task. In this task, called lead
optimization in drug discovery, we wish to adjust a few physico-chemical properties
of a molecule that has proven efficient in vitro in order to make a drug out of it.

Keywords: representation learning, unsupervised learning, deep learning, entity-
centric representations, objects, graphs generation, graph neural networks, conditio-
nal generation, drug discovery.

iv

Table des matières

Résumé . iii

Summary . iv

Contents . v

List of Figures . vii

List of Tables . ix

List of Abbreviations . x

Acknowledgments . xi

1 Introduction . 1
1.1 Background . 1

1.1.1 Machine Learning . 1
1.1.2 Unsupervised vs Supervised Learning 1
1.1.3 Representation Learning . 2
1.1.4 What is a good representation ? 3

1.2 Motivation . 4
1.2.1 Objects and Representation Learning 4
1.2.2 First Contribution : SPECTRA 5
1.2.3 Graphs and Deep Learning 5
1.2.4 Second Contribution : DEFactor 6

1.3 Visual Entity-centric Representations 7
1.3.1 Generative Modeling . 7
1.3.2 Variational Inference and Learning 7
1.3.3 Slot-based Representations 8
1.3.4 Scene-Mixture Models . 9

1.4 Molecular Graphs and Deep Learning 12
1.4.1 Molecular Graph . 12
1.4.2 Molecular Graphs Generation 12

v

1.4.3 Molecular Graph Optimization. 13

2 SPECTRA : Sparse Entity-centric Transitions 15
2.1 Abstract . 16
2.2 Introduction . 16
2.3 Related Work . 18
2.4 SPECTRA . 19

2.4.1 Model overview . 20
2.5 Experiments . 22

2.5.1 Learned Primitive Transformations 22
2.5.2 Structured Representation Learning 24
2.5.3 Intrinsic Exploration Strategy 26

2.6 Conclusion and Future Work . 28
2.7 Architecture and Hyperparameters 28

2.7.1 Fully observed setting . 28
2.7.2 Latent setting . 30

2.8 Additional Visualisations . 31

3 DEFACTOR : Differentiable Edge Factorization-based Probabi-
listic Graph Generation . 35
3.1 Abstract . 36
3.2 Introduction . 36
3.3 Related work . 37
3.4 DEFactor . 39

3.4.1 Graph Construction Process. 39
3.4.2 Training . 42
3.4.3 Conditional Generation and Optimisation 44

3.5 Experiments . 45
3.6 Future work . 49
3.7 Models Comparison . 49
3.8 Conditionnal setting . 50

3.8.1 Graphs continuous approximation 50
3.8.2 Mutual information maximization 51
3.8.3 Reconstruction as a function of number of atoms 51
3.8.4 Visual similarity samples . 52

4 Conclusion . 54

Bibliography . 56

vi

Table des figures

2.1 A: SPECTRA. Illustration of an entity-centric transition model. B:
Naive Perception module with a CNN-based encoder and a slot-wise
decoder. 18

2.2 left: Full and sparse settings are trained on environment contai-
ning one box and evaluated out-of-distribution on two boxes. We
plotted the validation losses of both settings during training. The
full connectivity architecture is unable to achieve out-of-distribution
generalization to an environment with two boxes. right: Illustration
of what the model has to learn in the fully observed setting: to be
correct the model needs to map any concatenation of [agent,move]
to a vacated position = floor and to select only the right entities to
be changed. The learned mappings are general rules that are directly
transferable to settings with more boxes. 23

2.3 Comparison of slot-wise masked decodings when the perception mo-
dule is trained separately or jointly with the sparse transitions. We
show the reconstruction associated with the slots that contain in-
formation about the agent. When the perception module is trained
jointly, slots in the learned latent set are biased to be entity-centric
(here agent-centric). 24

2.4 Loss vs training updates, with training is done in pixel space, tran-
sitions are sampled randomly and results are averaged over 3 runs.
left: Validation perception loss Lpercep of joint and separate training
right: Validation transition loss Ltrans of joint and separate training.
Separate training is better in terms of perception loss but joint trai-
ning gives a better transition model. We posit that this is because the
slots are biased to be entity-centric and transformations involving
only relevant entities are easier to learn. 25

vii

2.5 Comparison is done against randomly sampled transitions. left: Num-
ber of entities changed in the 1-step buffer during training. As expec-
ted, the number of transitions with 2 spatial locations changed in the
grid increases whereas the ones with no location changed decreases.
We also notice a slight increase in the number of transitions with
3 spatial locations changed (corresponding to the agent moving a
box !). Training is done in the fully observed setting. right: Training
done in pixel space. Again here, the number of transitions with two
spatial locations changed in the grid increases whereas the ones with
no location changed decreases. However the number of of transitions
with the agent that moves a box did not increase. 27

2.6 Transition model with and without selection phase. 30
2.7 Additional visualisations of masked decodings from joint and separate

training settings. 32
2.8 Additional visualisations of masked decodings from joint and separate

training settings. 33
2.9 Additional visualisations of masked decodings from joint and separate

training settings. 34

3.1 Overview of our molecule autoencoding ((a) and (b)) and conditional
generation (c) process. 38

3.2 Conditional generation: The initial LogP value of the query molecule
is specified as IL and the Pearson correlation coefficient is specified
as c. We report on the y-axis the conditional value given as input and
on the x-axis the true LogP of the generated graph when translated
back into molecule. For each molecule we sample uniformly around
the observed LogP value and report the LogP values for the decoded
graphs corresponding to valid molecules. 47

3.3 We report here a comparison of the abilities of previous recent models
involving molecular graph generation and optimization 49

3.4 Partial graph Autoencoder used for the pre-training part 50
3.5 Accuracy score as a function of the number of heavy atoms in the

molecule(x axis) for different size of the latent code 52
3.6 LogP increasing task visual example. The original molecule is circled

in red. 53

viii

Liste des tableaux

3.1 Molecular graph reconstruction task. We compare the performance
of our decoder in the molecular reconstruction task with the JT-VAE.
The results for JT-VAE result is taken from Jin et al. [2018].. The
JT-AE refers to an adapted version of the original model using the
same parameters. It is however deterministic, and like DEFactor does
not evaluate stereochemistry. 46

3.2 Constrained penalized LogP maximisation task: each row gives a
different threshold similarity constraint δ and columns are for im-
provements (Imp.), similarity to the original query (Sim.), and the
success rate (Suc.). Values for other models are taken from You et al.
[2018a]. 48

ix

List of Abbreviations

ML Apprentissage Machine de l’anglais Machine Learning
MLE Estimation du Maximum de Vraisemblance de l’anglais Maximum Likelihood
Estimation
MI Information Mutuelle de l’anglais Mutual Information
MLP Perceptron Multicouche de langlais Multi Layer Perceptron
RL Apprentissage par renforcement de l’anglais Reinforcement Learning
DRL Apprentissage par renforcement profond de l’anglais Deep Reinforcement
Learning
VAE Auto-encodeur variationnel de l’anglais Variational Autoencoder
MSE Erreur quadratique moyenne, de l’anglais Mean Square Error
GAN Reseaux de Neuronnes adversariaux generatif de l’anglais Generative Adver-
sarial Networks
GNN Reseaux de Neuronnes pour Graphs de l’anglais Graph Neural Networks
GMM Modèle à Mixture de Gaussiennes de l’anglais Gaussian Mixture Model

x

Acknowledgments

First and foremost, I would like to thank my supervisor Yoshua Bengio without
whom I would not have considered joining this amazing research journey. Thank you
for giving me the ideal amount of research freedom that allowed me to eventually
find my own path and research interests. I am truly grateful to have such an inspiring
and understanding person to guide me through this adventure. With you I made it
through this first milestone and this is all just starting !

I would also like to thank all the amazing friends I made in Montreal who’ve been
unconditionally supportive: Ahmed, Amal, Anne-Marie, Arthur, Vincent, Carla,
Julie, Maxime, Salem, Gauthier, Adrien, Victor, Zhor, Nazia ... to name a few.
Furthermore, I am very grateful for the many members of Mila, who I crossed paths
with in my time pursuing a master’s. I just love the vibe of the lab and I truly found
a new home abroad thanks to all of you. It all started with Salem agreeing (did he
have the choice ?) to be my buddy and answer the hundred questions I had a day,
Ahmed and that couscous party, Gauthier and his shared taste for chocolate, Adrien
always free for a chill Friday afternoon at the lab, Tristan that I still call Yann
junior, and re-inventing objects with Evan. Those tea talks also kept me pretty
busy the whole time.

To Benjamin and Prof. Satoh, thank you for taking a chance on me and giving
the opportunity to discover Tokyo, research and the field of machine learning as
part of my NII experience. To Pierre, Simon, Gilles and all the amazing Owkin
people I met back in Paris without whom I wouldn’t have even applied to Mila.

To Marwin, Mo and Amir, this amazing Benevolent.AI trio ! I know I was a
stubborn collaborator from time to time but working with you on DEFactor was
real fun. I not only learned a lot on drug discovery and graphs in general but it
made me realize the importance of good and frequent communication in research.

Last but not least, a huge thank to my mom, Khadija, my brother, Amine, and
my sister, Nour, for believing in me more than I do !

xi

1 Introduction

1.1 Background

1.1.1 Machine Learning

The desire to understand human cognition has generated a variety of scientific

disciplines. Cognitive science, neuroscience, and the study of machine learning and

artificial intelligence (AI) are the most popular examples. The work in this thesis is

situated in the field of machine learning, which is one of the most pursued branches

in AI research. Machine learning deals with the question of buildingg systems and

designing algorithms that learn from data and experience which is in contrast to the

traditional approach in computer science where systems are explicitly programmed

to follow a sequence of instructions.

More particularly in machine learning we seek to learn algorithms that are

necessary to solve one or several tasks. In traditional computer science a programmer

would specify the algorithm (the set of instructions) for the machine to satisfy the

desired task whereas machine learning would shift this algorithm creation process

to the computer based on some input data. Understanding this thesis will require

basic knowledge of machine learning, and more specifically deep learning. For a full

introduction to machine learning and deep learning, we encourage the reader to

check out Bishop [2006], Murphy [2012], Goodfellow et al. [2016]

1.1.2 Unsupervised vs Supervised Learning

Machine learning algorithms are traditionally divided into two main learning pa-

radigms: supervised learning and unsupervised learning methods. Supervised

learning usually involves learning from a dataset of inputs x and their associated

label y provided by humans. The goal of supervised learning is then to learn a

mapping f linking x to y. Most of the existing algorithms will do so by trying to

1

model the distribution p(y|x) with x, y ∼ (X, Y) [Goodfellow et al., 2016].

On the hand, unsupervised learning designates learning paradigms that only

make use of unlabeled input data x ∼ X. The objective can vary from one task to

another but it often involves estimating or sampling from the input distribution

P (X). Unsupervised learning can also be used as an intermediary to learn a good

representation of the data which is of particular interest in this thesis. Four common

goals of unsupervised learning are [Khemakhem et al., 2019]:

— Density Estimation

Modelling the data distribution, pdata(x), is often concerned with fitting a

model pmodel(x) to estimate the data density.

— Sampling

Sampling involves learning a model that allows you to perform approximate

sampling from pdata(x). This can be accomplished using density estimation if

you learn a model you can sample from. Moreover, one could directly learn a

generator function made specifically for sampling [Goodfellow et al., 2014a].

— Underlying Structure of the Data

In this case, we are interested in revealing underlying structure of the data.

We can often imagine the data is created by some unknown generative process

that takes a few underlying high level concepts and combines them to form

the raw data. In this case we are interested in discovering these hidden

concepts that are part of this data generating process.

— Downstream Task performance

In this case, we aim to learn transformations of the data, which we call repre-

sentations, that are amenable to future prediction tasks. This is commonly

called representation learning.

These four goals are interrelated, and not mutually exclusive. In this thesis we

will focus on a certain type of representations that should help the downstream task

performance when the compositional aspect is of major importance.

1.1.3 Representation Learning

The problem of learning is commonly approached by fitting a model to data

with the goal that this learned model will generalize to new data or experiences.

Traditionally, many machine learning algorithms are built on top of some features,

2

extracted using a pre-defined procedure from the raw data format. The process of

developing sophisticated feature extractors is often referred to as feature engineering.

On the other hand deep learning (DL), addresses the learning problem by jointly

learning representations of the raw input data and a predictive model for the task at

hand. This is usually achieved by stacking multiple layers of differentiable non-linear

transformations and by training such a model in an end-to-end fashion using gradient

descent approaches.

Performance of machine learning algorithms is often dependent on the data

representations they use for their input. A representation is traditionally [Goodfellow

et al., 2016] defined as a transformation of the input data into another space, usually

of a lower dimension before it is used by the machine learning algorithm. The

field of representation learning designates all the methods used to learn these

transformations from raw input data instead of having to specify a function to

extract hand-crafted features [Lowe, 2004, Horn and Schunck, 1981]. As such

representation learning has been defined as representing data in a way that will

facilitate some downstream tasks [Bengio et al., 2013]. Recently, representation

learning has become synonymous with unsupervised representation where we want

to learn a representation useful for many tasks without knowing the task of interest

beforehand.

1.1.4 What is a good representation ?

We want a representation which will by definition facilitate solving of future

supervised downstream tasks that will use this representation as input. However, it

is not straightforward to know a priori what the desirable features must be in order

to result in high downstream performance. Nevertheless, extensive work in cognitive

science shows that human perception and reasoning abilities are structured around

objects [van Steenkiste et al., 2019]. Following this observation a recent line of work

[Greff et al., 2017, van Steenkiste et al., 2018, Eslami et al., 2016, Kosiorek et al.,

2018, Greff et al., 2019, Burgess et al., 2019] has focused on learning entity-centric

representations of the input in an unsupervised way in order to reuse them in

downstream tasks where the notion of entity is central. The scope of this thesis

is centered around this kind of representations. In the next sections we will first

motivate the two contributions and then describe a bit more the related work and

3

background necessary to understand each of the two contributions.

1.2 Motivation

1.2.1 Objects and Representation Learning

The broad field of representation learning designates all the methods used to

extract features from raw data that will be useful for one or several other downstream

tasks [Bengio et al., 2012]. Those shared representations are thus crucial because

they facilitate the transfer of learned knowledge from one task to another for which

only a handful of examples are available. Specifically, a good representation is a

representation that will make the learning of a downstream task easier.

Model-based RL [Chiappa et al., 2017, Sutton, 1991] is a good example where a

learned representation of the world can be reused in order to solve different tasks of

the same environment. However, model-based algorithms have to make accurate

predictions about future states which can be very hard when dealing with high

dimensional inputs such as images. On the other hand, extensive work in cognitive

science shows that human perception and reasoning abilities are structured in terms

of objects. Following this observation, a line of work has focused on unsupervised

learning of object-centric representations from raw images with the hope that they

can be reused in a modular way to solve many downstream reasoning tasks.

Specifically, Greff et al. [2017], Eslami et al. [2016], van Steenkiste et al. [2018],

Kosiorek et al. [2018], Burgess et al. [2019], Greff et al. [2019] have focused on

unsupervised ways to decompose a raw visual scene in terms of objects. They rely

on a latent representation of the visual scene where the latent space is structured as

a set of vectors. Each vector of the set is supposed to represent an “object” (which

we refer to as an “entity”) of the scene. These approaches can be categorized into

two types of models: scene-mixture models and spatial-attention models. In scene-

mixture models [Greff et al., 2017, Burgess et al., 2019, Greff et al., 2019], a visual

scene is the result of a finite mixture of component images. They have the advantage

of providing arbitrary complex segmentation maps of the objects that constitute the

visual scene. As a result, important features such as scale and positions of the objects

are only implicitly encoded. In contrast, spatial-attention models [Eslami et al.,

4

2016, Kosiorek et al., 2018] propose to disentangle the ”where” and the ”what” in

each object representation. Further improvements of the initial Attend-Infer-Repeat

[Eslami et al., 2016] model have been then suggested to handle sequential data

[Kosiorek et al., 2018] and improve their computational cost [Crawford and Pineau,

2019, Jiang et al., 2019].

1.2.2 First Contribution : SPECTRA

However, most of the recent contributions learn those slot-structured represen-

tations in a static way. This means that they do not use any information about

the dynamics of the environment. It is however not clear how to disambiguate

two adjacent objects without any temporal cues about their respective evolution,

especially if they have the same color/appearance. Greff et al. [2019] exhibit the fact

that many segmentation maps are correct for a single image and one mixture will

be better than an other one depending on the goal we wish to achieve. Watters et al.

[2019] study these representations in an RL context considering a visually simple

Spriteworld environment. They introduce a method to learn a transition model

that is applied to all the slots of their latent scene representation. Extending their

work, the first contribution posits that slot-wise transformations should be sparsely

applied and that the perception module should be learned jointly with the transition

model in order to exhibit useful entity-centric representations. Veerapaneni et al.

[2019] also later advocate for a joint training of the perception module and the

transition model.

1.2.3 Graphs and Deep Learning

Those slot-structured representations are in fact an instance of a broader body

of structured representations: graphs. Here, nodes of the graph correspond to

visual entities, and edges are not specified in the static representation but could

be added to represent relations between visual entities. Graphs and graph neural

networks [Zambaldi et al., 2018] have proven particularly useful to perform structured

reasoning when dealing with visual input. Another field where graphs are of crucial

importance is one of drug-discovery. Specifically, generating novel molecules with

optimal properties is an ongoing and unsolved challenge. Recent deep generative

models [Olivecrona et al., 2017, Kusner et al., 2017, Jin et al., 2018, Gómez-

5

Bombarelli et al., 2016, Li et al., 2018a, You et al., 2018b] of graphs have shown

promising ways of performing de-novo molecular design, and recent approaches have

investigated ways to generate and optimize molecular graphs more efficiently.

In particular, sequential methods [Li et al., 2018a,b, You et al., 2018b] to graph

generation aim to construct a graph by predicting a sequence of addition/edition

actions of nodes/edges. Starting from a sub-graph (normally empty), at each time

step a discrete transition is predicted and the sub-graph is updated. Because each

step is a discrete and non-differentiable transformation of the current sub-graph,

in order to optimize some properties of the molecular graph one needs to resort

to RL-based optimization techniques but these have proven to suffer from high

variance in gradients estimation.

1.2.4 Second Contribution : DEFactor

The main challenge here stems from the discrete nature of graph representations

for molecules. This prevents us from using global discriminators that assess generated

samples and backpropagate their gradients to guide the optimisation of a generator.

This becomes a bigger hindrance if we want to either optimise a property of

a molecule (graph) or explore the vicinity of an input molecule (prototype) for

conditional optimal generation, an approach that has proven successful in controlled

image generation [Mirza and Osindero, 2014]. The second contribution suggests a

new framework for conditional graph generation that leverages an entity-centric

approach to graph generation. Our approach biases the model towards learning a

representation of each node (atom) of the graph (molecule) that contains enough

information about the node itself and its neighbours such that simple learned

similarity metrics can compare pairs of entities and retrieve the adjacency structure

of the graph.

6

1.3 Visual Entity-centric Representations

1.3.1 Generative Modeling

The fields of learning representations and generative modeling are tied together

because representations are often learned by performing posterior inference for a

given generative model. The goal of representation learning can be described as

learning a representation z ∈ Z which summarizes important information contained

in some (high-dimensional) input x ∈ X. The usual desiderata for good representa-

tions are that they have to be successful in solving downstream tasks (classification,

RL, etc ..). Another desirable property of representation is their interpretability: to

that extent, recent work focused on both the disentangling and the compositional

aspect of learned representations. In the first contribution we are interested in the

latter to model and explain a visual input as the composition of its constitutive

entities. Namely, we are interested in learning visual entity-centric representations.

1.3.2 Variational Inference and Learning

Most of the related work we are interested in learn representation as part of

a variational inference and learning framework that we introduce in this section.

Let x be a set of observed variables, and z a set of latent variables and let p(x, z)

be their joint distribution. Given a set of observation x1, x2, ...xN ∈ X we want to

maximize the marginal likelihood of the parameters i.e to maximize :

log(p(x)) =
N∑
i=1

log p(xi) =
N∑
i=1

log

∫
p(xi, z)dz (1.1)

The marginalization over the latent variable z makes this computation intractable

in the general case where z is continuous. The idea of variational inference is to mi-

tigate this intractability by maximizing a lower bound on this log-likelihood instead.

A Variational Autoencoder (VAE) learns a latent variable model by maximizing an

approximate lower bound on the marginal log-likelihood, log p(x) = log
∫
p(x, z)dz.

The idea behind the lower bound derivation, called the evidence lower bound

(ELBO), is to approximate the posterior p(z|x) with a parametric model qψ(z|x)
such that :

7

LELBO = Ez∼qψ(z|x)[log pθ(x|z)]−DKL(qψ(z|x) || p(z)) ≤ log p(x) (1.2)

Where p(z) is the prior distribution, often picked to be N (0, I) an isotropic

Gaussian distribution. We parametrize both qψ(z|x), which we call the encoder,

and pθ(x|z), called the decoder, with neural networks. Using the reparameterization

trick, both models can be trained end-to-end to maximize this lower bound. When

used to model a distribution over images, a VAE first encodes a sample x resulting

in the mean and variance parameters of the posterior distribution over the latent

variable. The latent variable z is sampled using the reparameterization trick. This

latent variable z is then transformed by the decoder to obtain x̂, a reconstruction

of the input x. The negative ELBO, used as a loss, is then computed and both the

encoder and decoder are updated end-to-end to minimize this loss like in any neural

network.

Many of the models we are interested in use this variational inference and

learning framework to learn good representations of visual inputs.

1.3.3 Slot-based Representations

In the scope of this thesis we are particularly interested in inductive biases for

entities representations to emerge. van Steenkiste et al. [2019] ask the question of

the requirements such representations should have. In order for entities to serve as

primitives of compositional reasoning they posit they should be :

— Universal : Each entity representation should be able to represent any

object regardless of position, class or other properties. It should facilitate

generalization, even to unseen objects, which in practice means that its

representation should be distributed and disentangled.

— Multi-object : It should be possible to represent multiple objects simulta-

neously, such that they can be related and composed but also transformed

individually.

— Common Format : All objects should be represented in the same format,

i.e. in terms of the same features. This makes representations comparable,

provides a unified interface for compositional reasoning and allows the transfer

of knowledge between objects.

Flat vector representations as used by standard VAEs are inadequate for meeting

this requirements and for capturing the combinatorial object structure that many

8

datasets exhibit. Let us consider an image composed of 3 coloured objects, each

with its own properties such as shape, size, position, color and material. To split

objects, a flat representation would have to represent each object using separate

feature dimensions. But this neglects the simple and (to us) trivial fact that they are

interchangeable objects with common properties. To achieve the kind of combinato-

rial generalization that is so natural for humans, van Steenkiste et al. [2019] argue

that we should use a multi-slot representation where each slot shares a common

representation format, and each would ideally describe an independent part of the

input.

1.3.4 Scene-Mixture Models

A recent line of work has focused on slot-based architectural biases for visual

entity-centric representations to emerge. Among them, we are particularly interested

in scene-mixture models [Greff et al., 2017, Burgess et al., 2019, Greff et al., 2019, van

Steenkiste et al., 2018] which model a visual scene with spatial Gaussian mixtures

models. In these models, an input image x ∈ R
D is represented by a set of K latent

entities (slots) z ∈ R
K×p where each slot zk ∈ R

p is represented in the same way and

is supposed to capture properties of one entity k of the visual scene. Each slot zk is

then decoded by the same decoder fdec into a pixel-wise mean µik and a pixel-wise

assignment mik (non-negative and summing to 1 over k). Assuming that the pixels

i are independent conditioned on s, the conditional likelihood thus becomes:

pθ(x|s) =
D∏
i=1

∑
k

mikN (xi;µik, σ
2) with µik,mik = fdec(zk)i.

Greff et al. [2016] first introduced this way of representing a visual scene and it

has been recently further extended with an expectation maximization (EM) [Greff

et al., 2017], a VAE [Burgess et al., 2019] and an iterative variational inference

[Greff et al., 2019] approach.

Both Greff et al. [2017],Burgess et al. [2019], Greff et al. [2019] decode the latent

slots with the same spatial mixture approach described above but they differ in the

way they extract the slots representations from the visual input.

9

NEM - Neural Expectation Maximization The goal of NEM is to group

pixels in the input that belong to the same object and capture this information

efficiently in a distributed representation θk for each object. Each image x ∈ R
D is

modeled as a spatial mixture of K components parametrized by θ1, ..., θK . A neural

network is used to transform these representations into parameters for the pixel-wise

distributions :

ψi,k = fφ(θk)i

A set of binary variables encodes the unknown pixel true assignment s.t :

zi,k = 1 iff pixel i was generated by k

The full likelihood of x given θ is :

p(x|θ) =
∏
i

∑
zi

p(xi, zi|ψi) =
∏
i

∑
k

p(zi,k = 1)p(xi|zi,k = 1, ψi,k)

But as the marginalization over z complicates the process Greff et al. [2017] are

instead interested in the generalized EM on the following lower bound of the full

log-likelihood :

Q(θ, θold)) =
∑
z

p(z|x, ψold) log p(x, z|ψ)

Each iteration consists of 2 steps :

— E-step : computes γi,k = p(zi,k = 1|xi, ψold
i) which yields a new soft-

assignment of the pixels to the components (clusters), based on how ac-

curately they model x

— M-step : updates θold by taking a gradient ascent step on Q using the

previously computed soft-assignments.

MONet - Multi-object Network With MONet Burgess et al. [2019] propose

to amortize the inference step with a VAE approach. They use an attention module

that will attend specific parts of the image : this module is sequential and outputs

at each time step a mask such that all the input is explained by all the steps. Each

mask is then fed to a component VAE, along with the input image. The mask

indicates which part of the image the VAE should focus on representing via its

posterior qφ(zk|x,mk). The VAE is additionally required to model the attention

10

masks over the K components.

In order for the MONet to be able to model scenes over a variable number

of slots, they used a recurrent attention network αφ for the masks decomposition

process. A scope sk indicates at each time step the proportion of each pixel that

remains to be explained given all previous attention masks, where the scope for the

next step is given by :

sk+1 = sk(1− αφ(x, sk))

The attention mask for step k is given by :

mk = sk−1αφ(x, sk−1)

IODINE - Iterative Object Decomposition Inference Network Greff et al.

[2019] argue that the standard feed-forward VAE inference approach is ill-suited for

slot-based representation learning because we need to infer both the components

and the mixing weights of the scene-mixture model and this is traditionally tackled

as an iterative procedure. They consider Marino et al. [2018] powerful iterative

amortized variational approach and adapt it to slot-based representation learning.

The idea is to start with an arbitrarly guess for the posterior parameters θk and

then iteratively refine them using the input, samples from the current posterior

estimate as well as other easily computable auxiliary inputs (gradients wrt estimates,

parameters, masks ...). The refinement network is parametrised with an LSTM. In

principle it is enough to minimize the final negative ELBO LT but they found it

beneficial to use a weighted sum that includes earlier terms (and corresponding to

the refinement steps t) :

L =
T∑
t=1

t

T
L(t)

where

L(t) = DKL(qθ(z|x)||p(z))− log
∑
k

m
(t)
k N (x;µ

(t)
k , σ

2)

All these spatial-mixture methods have the advantage of providing arbitrary

complex segmentation maps of the objects that constitute the visual scene instead

of fixed bounding boxes. As a result, important features such as scale and positions

of the objects are only implicitly encoded. However, they only study perceptual

groupings in static images and we argue, in the second contribution, that temporal

11

cues are important to extract meaningful entities that can further be used in RL

downstream tasks. Veerapaneni et al. [2019] validate this intuition and design an

entity-centric dynamic latent variable framework for model-based RL emphasizing

the fact that dynamics are important to disambiguate objects in a visual scene.

1.4 Molecular Graphs and Deep Learning

1.4.1 Molecular Graph

A graph is a powerful representation of relations between groups of entities.

We are particularly interested in the way graphs are used to represent chemical

compounds composed of atoms (nodes) linked together with typed chemical bonds

(edges). Formally, a graph is an ordered pair G = (V , E) such that V is a non-empty

set of vertices (also called nodes) and E ⊆ V × V is a set of edges. Additional

information can be attached to both vertices and edges in the form of categories (

e.g. atom and bond type for molecules).

1.4.2 Molecular Graphs Generation

Deep learning-based generative models have gained massive popularity recently

and particularly in the field of images and text generation. The main idea behind

most approaches is to collect an important number of unlabeled data from one

domain and train a model to generate similar data points. Usually, the generative

process (also called decoding) is conditioned on a random vector drawn from a

simpler known prior distribution [Goodfellow et al., 2014b] and/or a point from

a defined vector space that can encode other learned and pre-defined properties

[Chen et al., 2016]. Two main challenges need to be tackled in the case of graph

generation:

— Similar to text, graphs have a discrete nature. Sequential construction

methods with autoregressive models thus involve discrete decision steps, which

are not differentiable and thus problematic for gradient-based optimization

methods common in DL

12

— Unlike words that compose a sentence, nodes in a graph are unordered.

Consequently, even if we would like to decompose the generation into a

sequence of conditional decisions as this is done in the teacher-forcing trick,

there would be no canonical order of decisions.

Approaches that try to tackle the challenges posed by molecular graph generation

can be splitted in two categories : sequential methods and non-sequential methods.

Sequential methods to graph generation [You et al., 2018b, Li et al., 2018a, You

et al., 2018a, Li et al., 2018b] aim to construct a graph by predicting a sequence of

discrete addition/edition actions of nodes/edges. Starting from a sub-graph (usually

empty), at each time step a discrete transition is predicted and the sub-graph is

updated. Although sequential approaches enable us to decouple the number of

parameters in models from the the maximum size of the graph processed, due to the

discretisation of the final outputs, the graph is still non-differentiable w.r.t. to the

decoder’s parameters. This prevents us from directly optimising for the objectives

we are interested in. In contrast to the sequential process Cao and Kipf [2018],

Simonovsky and Komodakis [2018] reconstruct probabilistic graphs. These methods

however make use of fixed size multi-layer perceptron layers in the decoding process

to predict the graph adjacency and node tensors. This however limits their use to

very small graphs of a pre-chosen maximum size. They therefore restrict their study

and application to small molecular graphs ; a maximum number of 9 heavy atoms,

compared to approximately 40 in sequential models.

In our second contribution, we propose a probabilistic graph decoding scheme

that is end-to-end differentiable, computationally efficient w.r.t the number of

parameters in the model and capable of generating arbitrary sized graphs.

1.4.3 Molecular Graph Optimization.

In the second contribution we are interested in generating graphs that have a

structure that is plausible with the one of a molecule and with certain physico-

chemical properties (e.g lead optimization). The aim here is to obtain molecules

that satisfy a target set of objectives, for example activity against a biological

target while not being toxic or maintaining certain properties, such as solubility.

The most popular strategy has been to fine-tune a pre-trained generative model

to produce/select molecules that satisfy a desired set of properties and the search

13

can be done in the molecules space [Segler et al., 2017] or in the latent space

[Gómez-Bombarelli et al., 2016, Kusner et al., 2017, Dai et al., 2018, Jin et al., 2018].

An orthogonal approach would be to cast the problem as a reinforcement learning

setting using an efficient sequential-like generative scheme [You et al., 2018b]. In

the second contribution we propose to cast the optimization of the molecular graph

as a conditional generation problem.

14

2
SPECTRA : Sparse
Entity-centric Transitions

SPECTRA : Sparse Entity-centric Transitions

Rim Assouel, Yoshua Bengio

This chapter presents a joint work with Yoshua Bengio. It was accepted to the

NeurIPS Deep Reinforcement Learning Workshop (DRL Neurips 2019)

Affiliation

— Rim Assouel, Mila, Université de Montréal

— Yoshua Bengio, Mila,Université de Montréal

15

2.1 Abstract

Learning an agent that interacts with objects is ubiquituous in many RL tasks. In

most of them the agent’s actions have sparse effects : only a small subset of objects

in the visual scene will be affected by the action taken. We introduce SPECTRA,

a model for learning slot-structured transitions from raw visual observations that

embodies this sparsity assumption. Our model is composed of a perception module

that decomposes the visual scene into a set of latent objects representations (i.e.

slot-structured) and a transition module that predicts the next latent set slot-wise

and in a sparse way. We show that learning a perception module jointly with a

sparse slot-structured transition model not only biases the model towards more

entity-centric perceptual groupings but also enables intrinsic exploration strategy

that aims at maximizing the number of objects changed in the agent’s trajectory.

2.2 Introduction

Recent model-free deep reinforcement learning (DRL) approaches have achieved

human-level performance in a wide range of tasks such as games [Mnih et al., 2015].

A critical known drawback of these approaches is the vast amount of experience

required to achieve good performance. The promise of model-based DRL is to

improve sample-efficiency and generalization capacity across tasks. However model-

based algorithms pose strong requirements about the models used. They have

to make accurate predictions about the future states which can be very hard

when dealing with high dimensional inputs such as images. Thus one of the core

challenge in model-based DRL is learning accurate and computationally efficient

transition models through interacting with the environment. [Buesing et al., 2018]

developed state-space models techniques to reduce computational complexity by

making predictions at a higher level of abstraction, rather than at the level of raw

pixel observations. However these methods focused on learning a state-space model

that doesn’t capture the compositional nature of observations: the visual scene is

represented by a single latent vector and thus cannot be expected to generalize well

to different objects layouts.

16

Extensive work in cognitive science [Baillargeon et al., 1985, Spelke, 2013] indeed

show that human perception is structured around objects. Object-oriented MDP’s

[Diuk et al., 2008] show the benefit of using object-oriented representations for struc-

tured exploration although the framework as it is presented requires hand-crafted

symbolic representations. [Bengio, 2017] proposed as a prior (the consciousness

prior) that the dependency between high-level variables (such as those describing

actions, states and their changes) be represented by a sparse factor graph, i.e.,

with few high-level variables at a time interacting closely, and inference performed

sequentially using attention mechanisms to select a few relevant variables at each

step.

Besides, a recent line of work [Greff et al., 2017, van Steenkiste et al., 2018,

Eslami et al., 2016, Kosiorek et al., 2018, Greff et al., 2019, Burgess et al., 2019]

has focused on unsupervised ways to decompose a raw visual scene in terms of

objects. They rely on a slot-structured representation (see Figure 2.1) of the scene

where the latent space is a set of vectors and each vector of the set is supposed

to represent an “object” (which we refer to as “entity”) of the scene. Watters et al.

[2019] investigate the usefulness of slot-structured representations for RL. They

introduced a method to learn a transition model that is applied to all the slots of

their latent scene representation. Extending their work, we go further and posit

that slot-wise transformations should be sparse and that the perception module

should be learned jointly with the transition model.

We introduce Sparse Entity-Centric Transitions (SPECTRA), an entity-

centric action-conditioned transition model that embodies the fact that the agent’s

actions have sparse effects: that means that each action will change only a few slots

in the latent set and let the remaining ones unchanged. This is motivated by the

physical consideration that the agent’s interventions are localized in time and space.

Our contribution is motivated by three advantages:

− Sparse transitions enable transferable model learning. The intuition here

is that the sparsity of the transitions will bias the model towards learning

primitive transformations (e.g. how pushing a box affects the state of a

box being pushed etc) rather than configuration-dependent transformations,

the former being more directly transferable to environments with increased

combinatorial complexity.

− Sparse transitions enable a perception module (when trained jointly) to be

17

of the training objective in order to guide the network to learn about essential

properties of objects. As specified by van Steenkiste et al. [2019] we also believe that

objects are task-dependent and that learning a slot-based representations along with

sparse transitions bias the perception module towards entity-centric perceptual

groupings and that those structured representations could be better suited for RL

downstream tasks.

Slot-based representation for RL. Recent advances in deep reinforcement

learning are in part driven by a capacity to learn good representations that can be

used by an agent to update its policy. Zambaldi et al. [2018] showed the importance

of having structured representations and computation when it comes to tasks that

explicitly targets relational reasoning. Watters et al. [2019] also show the importance

of learning representations of the world in terms of objects in a simple model-based

setting. Zambaldi et al. [2018] focus on task-dependent structured computation.

They use a self-attention mechanism [Vaswani et al., 2017] to model an actor-critic

based agent where vectors in the set are supposed to represent entities in the current

observation. Like Watters et al. [2019] we take a model-based approach: our aim is

to learn task-independent slot-based representations that can be further used in

downstream tasks. We leave the RL part for future work and focus on how learning

those representations jointly with a sparse transition model may help learn a better

transition model.

2.4 SPECTRA

Our model is composed of two main components: a perception module and a

transition module (section 3.1). The way we formulated the transition implicitly

defines an exploration policy (section 3.3) that aims at changing the states of as

many entities as possible.

Choice of Environment. Here we are interested in environments containing

entities an agent can interact with and where actions only affect a few of them.

Sokoban is thus a good testbed for our model. It consists of a difficult puzzle

domain requiring an agent to push a set of boxes onto goal locations. Irreversible

19

wrong moves can make the puzzle unsolvable. Each room is composed of walls,

boxes, targets, floor and the agent avatar. The agent can take 9 different actions

(no-op, 4 types of push and 4 types of move).

Fully Observed vs Learned Entities. The whole point is to work with slot-

based representations learned from a raw pixels input. There is no guarantee that

those learned slots will effectively correspond to entities in the image. We thus

distinguish two versions of the environment (that correspond to two different levels

of abstraction):

− Fully observed entities: the input is structured. Each entity corresponds

to a spatial location in the grid. Entities are thus represented by their one-hot

label and indexed by their x-y coordinate. This will be referred to as the fully

observed setting. There is no need for a perception module in this setting.

− Raw pixels input: the input is unstructured. We need to infer the latent

entities representations. This will be referred to as the latent setting.

2.4.1 Model overview

The idea is to learn an action-conditioned model of the world where at each

time step the following take place:

− Pairwise Interactions: Each slot in the set gathers relevant information

about the slots conditioned on the action taken

− Active entity selection : Select slots that will be modified by the action

taken

− Update: Update the selected slots and let the other ones remain unchanged.

Ideally, slots would correspond to unsupervisedly learned entity-centric represen-

tations of a raw visual input like it is done by Burgess et al. [2019], Greff et al. [2019].

We show that learning such perception modules jointly with the sparse transition

biases the perceptual groupings to be entity-centric.

Perception module. The perception module is composed of an encoder fenc and

a decoder fdec. The encoder maps the input image x to a set of K latent entities

such that at time-step t we have fenc(x
t) = st ∈ R

K×p. It thus outputs a slot-based

representation of the scene where each slot is represented in the same way and is

supposed to capture properties of one entity of the scene. Like Burgess et al. [2019],

20

Greff et al. [2019] we model the input image xt with a spatial Gaussian Mixture

Model. Each slot stk is decoded by the same decoder fdec into a pixel-wise mean µik

and a pixel-wise assignment mt
ik (non-negative and summing to 1 over k). Assuming

that the pixels i are independent conditioned on st, the conditional likelihood thus

becomes:

pθ(x
t|st) =

D∏
i=1

∑
k

mt
ikN (xt

i
;µtik, σ

2) with µtik,m
t
ik = fdec(s

t
k)i.

As our main goal is to investigate how sparse transitions bias the groupings of

entities, in our experiments we use a very simple perception module represented in

Figure 2.1. We leave it for future work to incorporate more sophisticated perception

modules.

Pairwise interactions. In order to estimate the transition dynamics, we want

to select relevant entities (represented at time t by the set st ∈ R
K×p) that will

be affected by the action taken, so we model the fact that each entity needs to

gather useful information from entities interacting with the agent (i.e. is the agent

close ? is the agent blocked by a wall or a box ? etc..). To that end we propose

to use a self-attention mechanism [Vaswani et al., 2017]. From the k-th entity

representation stk at time t, we extract a row-vector key Kt
k, a row-vector query Qt

k

and a row-vector value V t
k conditioned on the action taken such that (aggregating

the rows into corresponding matrices and ignoring the temporal indices):

s̃ = softmax(
KQT

√
d

)V

where the softmax is applied separately on each row. In practice we concatenate

the results of several attention heads to use it as input to the entity selection phase.

Entity selection. Once the entities are informed w.r.t. possible pairwise interac-

tions the model needs to select which of these entities will be affected by the action

taken at. Selection of the entities are regulated by a selection gate [Hochreiter and

Schmidhuber, 1997b, Cho et al., 2014] computed slot-wise as:

f tk = σ(MLP ([s̃tk; a
t])) (2.1)

21

where f tk can be interpreted as the probability for an entity to be selected.

Update. Finally, each selected entity is updated conditioned on its state stk at

time-step t and the action taken at. We thus simply have:

st+1
k = f tkfθ([s

t
k, a

t]) + (1− f tk)s
t
k

fθ is a learned action-conditioned transformation that is applied slot-wise. We posit

that enforcing the transitions to be slot-wise and implicitly sparse will bias the

model towards learning more primitive transformations. We verify this assumption

in next subsection in the simpler case where the entities are fully observed (and not

inferred with a perception module).

2.5 Experiments

In this work we demonstrate three advantages of entity-centric representations

learned by SPECTRA:

− Implicitly imposing the transitions to be sparse will enable us to learn

transition models that will transfer better to environments with increased

combinatorial complexity. Section 4.1.

− Learning slot-based representations jointly with a sparse transition model

will bias the perceptual groupings to be entity-centric. Section 4.2.

− Finally we investigate the usefulness of the implicit exploration scheme

induced by SPECTRA when learning the model jointly. Section 4.3.

2.5.1 Learned Primitive Transformations

In this section we show that sparse selection in the transitions yields learned

slot-wise transformations that are transferable to out-of-distribution settings with

increased combinatorial complexity. We restrict ourselves to the fully observed

setting. Like Zambaldi et al. [2018] the entities correspond to a spatial location in

the 7× 7 grid. Each entity sk is thus described in terms of its label to which we

append its x-y coordinate. The results in Figure 2.2 are intuitive ; to learn the right

transitions with our formulation, the model is forced to:

22

better transition model: we hypothesize that the transformations are easier to learn

specifically because they have to focus on the effects of the actions taken on entities,

i.e., involving a few strongly dependent variables at a time rather than more global

but more specific configurations involving all the variables in the state, as suggested

by Bengio [2017].

2.5.3 Intrinsic Exploration Strategy

In many environments a uniformly random policy is insufficient to produce

action and observation sequences representative enough to be useful for downstream

tasks. In this paper we suggest to learn an exploration policy jointly with the model,

based on an intrinsic reward that depends on the transition model itself and exploits

its entity-centric structure to quantify the diversity of aspects of the environment

modified by exploratory behavior. Our model learns to first select entities that will

be changed and then learns how to transform the selected entities. Similar to the

empowerment intrinsic objectives Klyubin et al. [2005], Kumar [2018], a natural

exploration strategy in settings like Sokoban would be to follow trajectories that

overall have as many entities being selected as possible. If the agent indeed never

pushes a box on target when learning its transition model, it will not be able to

transfer its knowledge to a task where it has to push all the boxes on all the targets.

We thus suggest to learn a policy that maximizes the number of entities selected,

as predicted by the current model. We alternate between policy update and model

update.

We used a 10-step DQN for the exploration policy and have the DQN and the

model share the same 1-step replay buffer. The DQN policy is ǫ-greedy with ǫ

decaying from 1 to 0.3. In order to train the DQN we used the following intrinsic

1-step reward:

r(st, at) =
∑
k

✶(f t
k
≥h) (2.2)

with h a chosen threshold for the update gate value. We expect this training strategy

to promote trajectories with as many entities that will have their state changed as

possible. We thus expect the agent to learn not to get stuck, aim for the boxes, push

26

1-step buffer during training. Results are reported in Figure 2.5 and confirm our

hypothesis: the agent learns to avoid actions that will result in no changes in the

environment (blocked push and blocked move).

2.6 Conclusion and Future Work

We have introduced SPECTRA, a novel model to learn a sparse slot-structured

transition model. We provided evidence to show that sparsity in the transitions

yields models that learns more primitive transformations (rather than configuration-

dependent) and thus transfer better to out-of-distribution environments with increa-

sed combinatorial complexity. We also demonstrated that the implicit sparsity of the

transitions enables an exploration strategy that aims at maximizing the number of

entities that be will be modified on the agent’s trajectory. In Figure 2.5 we showed

that with this simple exploration strategy the agent leans to avoid actions that will

not change the environment (blocked move and blocked push). Preliminary results in

pixel space show that SPECTRA biases even a simple perception module towards

perceptual groupings that are entity-centric. We anticipate that our model could be

improved by incorporating a more sophisticated perception module. In the future

we aim to use SPECTRA to investigate possible uses in model-based reinforcement

learning.

2.7 Architecture and Hyperparameters

2.7.1 Fully observed setting

In the fully observed setting the input at time t is a set ot ∈ {0, 1}N×7 corres-

ponding to one-hot labels (that can be agent (off and on target), box (off and on

target), wall, target and floor). of each entity in a 7 × 7 grid (N = 49). We also

append their normalized x− y coordinates so that the final input to the transition

model is a set st ∈ {0, 1}N×9. Like detailed previously in Figure 2.6, the transition

model is composed of two modules: the selection module and the transformation

28

module.

In section 4.1 we also distinguished between the sparse and the full setting and

they are described in 2.6. In the full setting, there is no more selection bottleneck

and the transition module is a simple transformer-like architecture.

Selection module. The selection module is a transformer-like architecture. It

takes as input at time step t the concatenation et = [st, at] of the set st and the

action at. The selection module is then composed of 2 attention heads where is head

is stack of 3 attention blocks [Vaswani et al., 2017, Zambaldi et al., 2018]. The 3

blocks are 1-layer MLP that output key, query and value vectors of channels size

32, 64, 64 respectively. The first two blocks are followed by RELU non linearities

and the last one doesn’t have any. The output of the attention phase is thus the

concatenation of values obtained from the 2 attentions heads s̃t ∈ R
N×112. To obtain

the selection binary selection variables we then simply apply slot-wise a single layer

MLP to the concatenation ẽt = [s̃t, at] followed by a logSoftmax non-linearity in

order to compute the log-probabilities of each entity to be modified by the action

taken. The output of the selection module is thus a set of log-probabilities lt ∈ R
N×2.

Transformation module. The transformation module is a simple shared 2-layers

MLP that is applied slot-wise to the the concatenation et = [st, at] of the input set

st ∈ {0, 1}N×9 and the action taken. It outputs channels of sizes 16, 7 respectively.

The first layer is followed by a RELU non-linearity and the last one by a logSoftmax

non-linearity in order to compute the log-probabilities of the label of each predicted

entity.

Full setting. In the full setting, we don’t have a selection bottleneck anymore.

The transformation module is thus directly applied to the output of the attention

phase ẽt = [s̃t, at]. It consits this time of a simple shared 3-layers MLP that is

applied slot-wise and outputs channels of sizes 64, 32, 7 respectively. The first two

layers are followed by a RELU non-linearity and the last one by a logSoftmax

non-linearity .

29

transposed convolutions. The MLP outputs channels of sizes (7× 34, 7× 7× 34)

with a RELU non-linearity between the 2 layers. The output is then resized to

7× 7× 34 map that will be fed to the convolution part. For the convolution part, it

outputs maps of channel sizes (4, 4, 4, 4, 4) with RELU non-linearities between

each layer. The kernel sizes are (3, 3, 5, 4).

Selection and Tranformation modules. The selection and transformation

module are very similar to the fully observed setting, except that they operate on

the latent space, so we do not apply LogSofmax non-linearities for the transformation

part. The input of the selection module is stcoord and the input to the transformation

module is st. The selection module is composed of 2 attention heads where is head

is stack of 3 attention blocks [Vaswani et al., 2017, Zambaldi et al., 2018]. The 3

blocks are 1-layer MLP that output key, query and value vectors of channels size

34, 16, 16 respectively. The first two blocks are followed by RELU non linearities

and the last one doesn’t have any. The output of the attention phase is thus the

concatenation of values obtained from the 2 attentions heads s̃t ∈ R
N×32. To obtain

the selection binary selection variables we then simply apply slot-wise a 3-layers

MLP of channels sizes 16, 32, 32 respectively to the concatenation ẽt = [s̃t, at]

followed by a Softmax non-linearity in order to compute the probabilities of each

entity to be modified by the action taken. The output of the selection module is thus

a set of probabilities pt ∈ R
N×2. The transformation module is a simple 2-layers

MLP of channels sizes 32,32 respectively with a RELU non-linearity between the

two layers.

2.8 Additional Visualisations

In this section we reported additional visualizations similar to Figure 2.3 where

we monitor:

− Differences in slot-wise masked decodings of the perception module when it

is trained jointly and separately from the sparse transitions.

− Differences in the slot-wise transformations earned by the transition model

when it is trained separately and jointly with the perception module.

31

3

DEFACTOR : Differentiable
Edge Factorization-based
Probabilistic Graph
Generation

DEFACTOR : Differentiable Edge Factorization-based Probabilistic

Graph Generation

Rim Assouel, Mohamed Ahmed, Marwin H Segler, Amir Saffari, and Yoshua

Bengio

This chapter presents joint work with Mohamed Ahmed, Marwin H Segler, Amir

Saffari, and Yoshua Bengio. It was accepted at the 2nd NeurIPS Workshop on

Machine Learning for Molecules and Materials (MLMM Neurips 2018).

Affiliation

− Rim Assouel, Benevolent.AI, Mila, Université de Montréal

− Mohamed Ahmed,Benevolent.AI

− Marwin H Segler, Benevolent.AI

− Amir Saffari, Benevolent.AI

− Yoshua Bengio, Mila, Université de Montréal

35

3.1 Abstract

Generating novel molecules with optimal properties is a crucial step in many

industries such as drug discovery. Recently, deep generative models have shown a

promising way of performing de-novo molecular design. Although graph generative

models are currently available they either have a graph size dependency in their

number of parameters, limiting their use to only very small graphs or are formulated

as a sequence of discrete actions needed to construct a graph, making the output

graph non-differentiable w.r.t the model parameters, therefore preventing them to

be used in scenarios such as conditional graph generation. In this work we propose a

model for conditional graph generation that is computationally efficient and enables

direct optimisation of the graph. We demonstrate favourable performance of our

model on prototype-based molecular graph conditional generation tasks.

3.2 Introduction

We address the problem of learning probabilistic generative graph models for

tasks such as the conditional generation of molecules with optimal properties. More

precisely we focus on generating realistic molecular graphs, similar to a target

molecule (the prototype).

The main challenge here stems from the discrete nature of graph representations

for molecules ; which prevents us from using global discriminators that assess

generated samples and back-propagate their gradients to guide the optimisation of a

generator. This becomes a bigger hindrance if we want to either optimise a property

of a molecule (graph) or explore the vicinity of an input molecule (prototype) for

conditional optimal generation, an approach that has proven successful in controlled

image generation Odena et al. [2016], Chen et al. [2016].

Several recent approaches aim to address this limitation by performing indirect

optimisation Jin et al. [2018], You et al. [2018a], Li et al. [2018a]. You et al. You

et al. [2018a] formulate the molecular graph optimisation task in a reinforcement

learning setting, and optimise the loss with policy gradient Yu et al. [2016]. However

policy gradient tends to suffer from high variance during training. Kang and Cho

Kang and Cho [2018] suggest a reconstruction-based formulation which is directly

36

applicable to discrete structures and does not require gradient estimation. However,

it is limited by the number of samples available. Moreover, there is always a risk that

the generator simply ignores the part of the latent code containing the property that

we want to optimise. Finally, Jin et al.Jin et al. [2018] apply Bayesian optimisation

to optimise a proxy (the latent code) of the molecular graph, rather than the graph

itself.

In contrast, Simonovsky and Komodakis Simonovsky and Komodakis [2018] and

De Cao and Kipf Cao and Kipf [2018] have proposed decoding schemes that output

graphs (adjacencies and node/edge feature tensors) in a single step, and so are able

to perform direct optimisation on the probabilistic continuous approximation of a

graph. However, both decoding schemes make use of fixed size MLP layers which

restricts their use to very small graphs of a predefined maximum size.

Our approach (DEFactor) depicted in Figure 3.1 aims to directly address these

issues with a probabilistic graph decoding scheme that is end-to-end differentiable,

computationally efficient w.r.t the number of parameters in the model and capable of

generating arbitrary sized graphs. We evaluate DEFactor on the task of constrained

molecule property optimisation Jin et al. [2018], You et al. [2018a] and demonstrate

that our results are competitive with recent results.

3.3 Related work

Lead-based Molecule Optimisation. The aim here is to obtain molecules

that satisfy a target set of objectives, for example activity against a biological target

while not being toxic or maintaining certain properties, such as solubility. Currently

a popular strategy is to fine-tune a pretrained generative model to produce/select

molecules that satisfy a desired set of properties [Segler et al., 2017].

Bayesian optimisation is proposed to explore the learnt latent spaces for molecules

[Gómez-Bombarelli et al., 2016], and is shown to be effective at exploiting feature

rich latent representations [Kusner et al., 2017, Dai et al., 2018, Jin et al., 2018]. Li

et al. [2018b,a] propose sequential graph decoding schemes whereby conditioning

properties can be added to the input. However these approaches are unable to

perform direct optimisation for objectives. Finally You et al. [2018a] reformulate the

37

non-differentiable w.r.t. to the decoder’s parameters. This again prevents us from

directly optimising for the objectives we are interested in.

In contrast to the sequential process Cao and Kipf [2018], Simonovsky and

Komodakis [2018] reconstruct probabilistic graphs. These methods however make

use of fixed size MLP layers when decoding to predict the graph adjacency and

node tensors. This however limits their use to very small graphs of a pre-chosen

maximum size. They therefore restrict study and application to small molecular

graphs ; a maximum number of 9 heavy atoms, compared to approximately 40 in

sequential models.

We propose to tackle these drawbacks by designing a graph decoding scheme

that is:

− Efficient: so that the number of parameters of the decoder does not depend

on a fixed maximum graph size.

− Differentiable: in particular we would like the final graph to be differentiable

w.r.t the decoder’s parameters, so that we are able to directly optimise the

graph for target objectives.

3.4 DEFactor

Molecules can be represented as graphs G = (V,E) where atoms and bonds

correspond to the nodes and edges respectively. Each node in V is labeled with its

atom type which can be considered as part of its features. The adjacency tensor is

given by E ∈ {0, 1}n×n×e where n is the number of nodes (atoms) in the graph and

e is the number of possible edge (bond) types. The node types are represented by a

node feature tensor N ∈ {0, 1}n×d which is composed of several one-hot-encoded

properties.

3.4.1 Graph Construction Process.

Given a molecular graph defined as G = (N,E) we propose to leverage the

edge-specific information propagation framework described by Simonovsky and

Komodakis [2017] to learn a set of informative embeddings from which we can

directly infer a graph. Our graph construction process is composed of two parts:

39

− An Encoder that in

— step 1 performs several spatial graph convolutions on the input graph,

and in

— step 2 aggregates those embeddings into a single graph latent represen-

tation.

− A Decoder that in

— step 3 autoregressively generates a set of continuous node embeddings

conditioned on the learnt latent representation, and in

— step 4 reconstructs the whole graph using edge-factorization.

Figure 3.1 provides a summary of those 4 steps.

Steps 1 and 2: Graph Representation Learning. We use the Graph Convo-

lutional Network (GCN) update rule [Kipf and Welling, 2016b] to encode the graph.

Each node embedding can be written as a weighted sum of the edge-conditioned

information of its neighbors in the graph. Namely for each l-th layer of the encoder,

the representation is given by:

H l = σ(
∑
e

[D
− 1

2

e EeD
− 1

2

e H l−1W l
e] +H l−1W l

s) (3.1)

where Ee is the e-th frontal slice of the adjacency tensor, De the corresponding

degree tensor and W l
e and W

l
s are learned parameters of the layer.

Once we have the node embeddings we aggregate them to obtain a fixed-length

latent representation of the graph. We propose to parametrize this aggregation step

by an LSTM and we compute the graph latent representation by a simple linear

transformation of the last hidden state of this Aggregator:

z = gagg(f
e
LSTM({HK})). (3.2)

Because the use of an LSTM makes aggregations permutation dependant, Like

Hamilton et al. [2017], we adapt the aggregator using randomly permuted sets of

embeddings and empirically validated that this did not affect the performance of

the model significantly.

In the subsequent steps we are interested in designing a graph decoding scheme

from the latent code that is both scalable and powerful enough to model the

40

interdependencies between the nodes and edges in the graph.

Step 3: Autoregressive Generation. We are interested in building a graph

decoding scheme that models the nodes and their connectivity (represented by

continuous embeddings S) in an autoregressive fashion. This is in contrast to

Simonovsky and Komodakis [2018], Cao and Kipf [2018], where each node and edge

is conditionally independent given the latent code z. In practice this means that

every detail of the interdependencies within the graph have to be encoded in the

latent variable. We propose to tackle this drawback by autoregressive generation of

the continuous embeddings s = [s0, s1, ..., sn] for n nodes. More precisely we model

the generation of node embeddings such that:

p(s|z) =
n∏
i=1

p(si|s<i, z). (3.3)

In our model, the autoregressive generation of embeddings is parametrized by a

simple Long Short-Term Memory (LSTM, [Hochreiter and Schmidhuber, 1997a])

and is completely deterministic such that at each time step t the LSTM decoder

takes as input the previously generated embeddings and the latent code z which

captured node-invariant features of the graph. Each embedding is computed as a

function of the concatenation of the current hidden state and the latent code z such

that:

ht+1 = fdLSTM(gin([z, st]), ht) (3.4)

st+1 = fembed([ht+1, z]), (3.5)

where fdLSTM corresponds to the LSTM recurrence operation and gin and fembed are

parametrized as simple MLP layers to perform nonlinear feature extraction.

Step 4: Graph Decoding from Node Embeddings. As stated previously, we

want to drive the generation of the continuous embeddings s towards latent factors

that contains enough information about the node they represent (i.e. we can easily

retrieve the one-hot atom type performing a linear transformation of the continuous

embedding) and its neighbourhood (i.e. the adjacency tensor can be easily retrieved

by comparing those embeddings in a pair-wise manner). For those reasons, we

41

suggest to factorize each bond type in a relational inference fashion [Zitnik et al.,

2018, Kipf et al., 2018].

Let S ∈ R
n×p be the concatenated continuous node embeddings generated in

the previous step. We reconstruct the adjacency tensor E by learning edge-specific

similarity measure for k-th edge type as follows:

p(E:,:,k|S) =
n∏
i=1

n∏
j=1

p(Ei,j,k|si, sj). (3.6)

This is modeled by a set of edge-specific factors U = (u1, · · · , ue) ∈ R
e×p such

that we can reconstruct the adjacency tensor as :

Ẽi,j,k = σ(sTi Dksj) = p(Ei,j,k|si, sj), (3.7)

where σ is the logistic sigmoid function, Dk the corresponding diagonal matrix of

the vector uk and the factors (ui) ∈ R
e×p are learned parameters.

We reconstruct the node features (i.e. the atom type) with a simple affine

transformation such that:

Ñi,: = p(Ni|si) = softmax(Wsi), (3.8)

where W ∈ R
p×d is a learned parameter.

Generating Graphs of arbitrary sizes. In order to generate graphs of different

sizes we need to add what we call here an Existence module that retrieves a

probability of a node belonging to the final graph for each of the embedding generated

(in step 3). This module is parametrized as a simple MLP layer followed by a sigmoid

activation and stops the unrolling of the embedding LSTM generator whenever

we encounter a non-informative embedding. This module can be interpreted as an

< eos > translator.

3.4.2 Training

Teacher forcing. To make the model converge in reasonable time we adapt

teacher-forcing on language models [Williams and Zipser, 1989] as follows. The

training is thus done in 3 phases:

42

− We first pre-train the GCN part along with the embedding decoder (fac-

torization, nodes and existence modules) to reconstruct the graphs. This

corresponds to the training of a simple Graph AE as in Kipf and Welling

[2016a] except that we also want to reconstruct the nodes’ one-hot features

(and not just the relations).

− We then append those two units to the embedding aggregator and generator

while keeping them fixed. In this second phase, the embedding generator is

trained using teacher forcing where at each time step t the LSTM decoder

does not take as input the previously generated embedding but the true one

that is the direct output of the pretrained GCN embedding encoder.

− Finally in order to transition from teacher-forcing to a fully autoregressive

state we increasingly [Bengio et al., 2015] feed the LSTM generator more of its

own predictions. When a fully autoregressive state is reached the pre-trained

units are unfrozen and the whole model continues training end-to-end.

Log-Likelihood Estimates We train the autoencoder on the reconstruction

error using the MLE with the estimate negative log-likelihood given by:

Lrec = LX + LX̄ + LN (3.9)

where X and X̄ correspond to the existing and non existing edges in the adjacency

tensor E, and N is the node features containing n nodes features such that:

LX = − 1

|X|
∑

(i,j)∈X

ET
i,j,: log(Ẽi,j,:) + (1− Ei,j,:)

T log(1− Ẽi,j,:) (3.10)

LX̄ = − 1

|X̄|
∑

(i,j)∈X̄

∑
k

log(1− Ẽi,j,k) (3.11)

LN = − 1

n

∑
NT log(Ñ), (3.12)

Since molecular graphs are sparse, we found that such separate normalisations

were helpful for the training.

43

3.4.3 Conditional Generation and Optimisation

Model overview. Given the entangled latent code z for a given input molecular

graph, we create a conditioned input (z, y) by augmenting z with a set of structured

attributes y - the target properties of interest, such as physico-chemical property.

The conditional generator is then trained on the combined reconstruction and

property loss. At the end of a successful training we expect the decoder to generate

samples that have the properties specified in y and to be similar (in terms of

information contained in z) to the original query molecular graph (encoded as

z). To do so we choose a mutual information maximization approach (detailed in

section 3.8) that involves the use of discriminators that assess the properties ỹ of the

generated samples and their feedback is used to guide the learning of the generator.

Discriminator Pre-Training In this phase we pre-train a discriminator to assess

the property y of a generated sample so that we can backpropagate its feedback to

the generator (the discriminator can be trained on another dataset and we can have

several discriminators for several attributes of interest). In order to have informative

gradients in the early stages of the training we have trained the discriminator on

continuous approximations of the discrete training graphs (details insection ??) so

that our objective becomes:

Ldis = E(x,y)∼p̃data(x,y)[− logQ(y|x)], (3.13)

where the graphs sampled from p̃data(x) are the probabilistic approximations of the

discrete graphs from the training distribution pdata(x).

The next step is to incorporate the feedback signal of the trained discriminator

in order to formulate the property attribute constraint. The training is decomposed

in two phases in which we learn to reconstruct graphs of the dataset (MLE phase)

and to modify chemical attributes (Variational MI maximization phase).

Encoder Learning. The encoder is updated only during the reconstruction

phase where we sample attributes y from the true posterior. The encoder loss is a

linear combination of the molecular graph reconstruction (Lrec) and the property

44

reconstruction (Lprop). The total encoder loss is:

Lenc = Lrec + βLprop. (3.14)

where Lrec = E(x,y)∼pdata(x,y),z∼E(z|x)[− log pgen(x|z, y)] (using the log-likelihood es-

timates in (7)) and Lprop = E(x,y)∼pdata(x,y),z∼E(z|x),x′∼pgen(x|z,y)[− logQ(y|x′)]. With

β ∈ [0, 1] a hyperparameter of the model.

Generator Learning. The generator is updated in both reconstruction and

conditional phases. In theMLE phase the generator is trained with same loss Lenc as
the encoder so that it is pushed towards generating realistic molecular graphs. In the

MI maximization phase we sample the attributes from a prior p(y) s.t. we minimize

the following objective: Lcond = Ex∼pdata(x),y∼p(y)z∼E(z|x),x′∼pgen(x|z,y)[− logQ(y|x′)],

Lgen = Lrec + αLcond + βLprop. (3.15)

where β, α ∈ [0, 1] are hyperparameters of the model.

In this phase the only optimisation signal comes from the trained discriminator.

Since there are no realism constraint specified in our model (see [Jin et al., 2018,

You et al., 2018a]), there is a risk of “falling off the manifold”. A possible solution

to mitigate against it is to add a similarity discriminator trained to distinguish

between the real probabilistic graph and the generated ones - so that when trying

to satisfy the attribute constraint the generator is forced to produce valid molecular

graphs. We leave this for future work.

3.5 Experiments

To compare with recent results in constrained molecular graph optimization [Jin

et al., 2018, You et al., 2018a], we present the following experiments :

− Molecular Graph Reconstruction: We test the autoencoder framework

on the task of reconstructing input molecules from their latent representations.

− Conditional Generation: We test our conditional generation framework

on the task of generating novel molecules that satisfy a given input property.

45

Method Reconstruction Accuracy

JT-VAE [Jin et al., 2018] 76.7

JT-AE (without stereochemistry) 69.9

DEFactor 89.2

Table 3.1 – Molecular graph reconstruction task. We compare the performance of our decoder in
the molecular reconstruction task with the JT-VAE. The results for JT-VAE result is taken from
Jin et al. [2018].. The JT-AE refers to an adapted version of the original model using the same
parameters. It is however deterministic, and like DEFactor does not evaluate stereochemistry.

Here, we are interested in the octanol-water partition coefficient (LogP)

optimization used as benchmark in [Kusner et al., 2017, Jin et al., 2018, You

et al., 2018a].

− Constrained Property Optimization: Finally, we test our conditional

autoencoder on the task of modifying a given molecule to improve a specified

property, while constraining the degree of deviation from the original molecule.

Again we use the LogP benchmark for the experiment.

Finally in the following section we use the 250K subset of the ZINC [Irwin et al.,

2012] dataset, released byKusner et al. [2017], along with their given train and test

splits.

Molecular graph reconstruction: In this task we evaluate the exact recons-

truction error from encoding and decoding a given molecular graph from the test

set. We report in Table 3.1 the ratio of exactly reconstructed graphs, where we

see that the our autoencoder outperforms the JT-VAE [Jin et al., 2018] which has

the current state-of-the-art performance in this task. In section 3.8.3 we report the

reconstruction ratio as a function of the molecule size (number of heavy atoms).

Conditional Generation: In this task we evaluate the conditional generation

formulation described in Section 3.3. For a given molecule m with an observed

property value y, the goal here is to modify the molecule to generate a new molecule

with the given target property value ; (m∗, y∗). New molecules are generated by

conditioning the decoder on (z; y∗), where z is the latent code for m. The decoded

46

δ
JT-VAE GCPN DEFactor

Imp. Sim. Suc. Imp. Sim. Suc. Imp. Sim. Suc.

0.0 1.91± 2.04 0.28±0.15 97.5% 4.20±1.28 0.32±0.12 100% 6.62±2.50 0.20±0.16 91.5%

0.2 1.68± 1.85 0.33±0.13 97.1% 4.12±1.19 0.34±0.11 100% 5.55±2.31 0.31±0.12 90.8%

0.4 0.84± 1.45 0.51±0.10 83.6% 2.49±1.30 0.47±0.08 100% 3.41±1.8 0.49±0.09 85.9%

0.6 0.21± 0.71 0.69±0.06 46.4% 0.79±0.63 0.68±0.08 100% 1.55±1.19 0.69±0.06 72.6%

Table 3.2 – Constrained penalized LogP maximisation task: each row gives a different threshold
similarity constraint δ and columns are for improvements (Imp.), similarity to the original query
(Sim.), and the success rate (Suc.). Values for other models are taken from You et al. [2018a].

the test set, we evaluate the decoder by providing pairs of (z, y∗) with increasing

property scores, and among the valid decoded graphs we compute:

− Their similarity scores (Sim.) to the encoded target molecule (called the

prototype) ;

− Their penalized LogP scores. Note that in this setting the conditioning

property values (y∗) are the unpenalized LogP scores. However, to evaluate

the model we compute the penalized LogP scores to assess the model’s ability

to decode synthetically accessible molecules.

− While varying the similarity threshold values (δ), we compute the success

rate (Suc.) for all 800 molecules. This measures how often we get a novel

molecule with an improved penalized LogP score.

− Finally, for different similarity thresholds, for successfully decoded molecules,

we report the average improvements (Imp.) and the similarity (Sim.) for

the molecule that is most improved. We compare our results with Jin et al.

[2018], You et al. [2018a].

The final results are reported in Table 3.2. As can be seen, although slightly

behind GCPN [You et al., 2018a] w.r.t. success rates (Suc.), DEFactor significantly

outperforms other models in terms of improvements (Imp.) achieved (by between

1.3× and 1.95× for thresholds 0.2 and 0.6 respectively, with respect to the next

best model GCPN).

48

3.6 Future work

In this paper, we have presented a new way of modelling and generating graphs in

a conditional optimisation setting such that the final graph being fully differentiable

w.r.t to the model parameters. We believe that our DEFactor model will contribute

to understanding and building ML-driven applications for de-novo drug design or

generation of molecules with optimal properties, without resorting to methods that

do not directly optimise the desired properties.

Note that a drawback of our model is that it uses an MLE training process which

forces us to either fix the ordering of nodes or to perform a computationally expensive

graph matching operation to compute the loss. Moreover in our fully deterministic

conditional formulation we assume that chemical properties optimisation is a one-

to-one mapping but in reality there may exist many suitable way of optimizing

a molecule to satisfy one property condition while staying similar to the query

molecule. To that extent it could be interesting to augment our model to include

the possibility of a one-to-many mapping. Another way of improving the model

could also be to include a validity constraint formulated as training a discriminator

that discriminates between valid and generated graphs.

3.7 Models Comparison

Model Inference Parameters Constrained Probabilistic No Retraining

MolGAN Cao and Kipf [2018] ✗ ✗ ✗ ✓ NA

JT-VAE Jin et al. [2018] ✓ ✓ ✓ ✗ ✗

GCPNNYou et al. [2018a] ✗ ✓ ✓ ✗ ✓

DEFactor(Ours) ✓ ✓ ✓ ✓ ✓

Figure 3.3 – We report here a comparison of the abilities of previous recent models involving
molecular graph generation and optimization

We are interested in the following features of the models :

− Inference : If the model is equipped or not with an inference network. To

encode some target molecule like we do in the conditional setting.

49

3.8.2 Mutual information maximization

For the conditional setting we choose a simple mutual information maximization

formulation. The objective is to maximize the MI I(X;Y) between the target

property Y and the decoder’s output X = Gθ(Y) under the joint pθ(X, Y) defined

by the decoder Gθ. In the conditional setting Gθ is also conditioned on the encoded

molecule z but for simplicity we treat it as a parameter of the decoder (and thus

reason with one target molecule from which we want to modify attributes). We

define the MI as:

I(y;Gθ(y)) = Ex∼Gθ(y)[Ey′∼pθ(y|x)[log pθ(y′|x)]] +H(y)

= Ex∼Gθ(y)[DKL(pθ(.|x)||Q(.|x))
+ Ey′∼pθ(y|x)[logQ(y′|x)]] +H(y)

≥ Ex∼Gθ(y)[Ey′∼pθ(y|x)[logQ(y′|x)]] +H(y)

In our conditional setting we pre-trained the discriminators (parametrized by Q

in the lower bound derivation) to approximate pdata(y|x) which makes the bound

tight only when pθ(ypaired|x) is close to pdata(y|x) and this corresponds to a stage

where the decoder has maximized the log-likelihood of the data well enough (i.e.

when it is able to reconstruct input graphs properly when z and y are paired). Thus,

in the conditional setting we are maximizing the following objective:

Lcond = Ex,y∼pdata(x,y),z∼E(x),y′∼p(y)[logGθ(y, z) + I(y′;Gθ(y′, z))]

3.8.3 Reconstruction as a function of number of atoms

Notice that as we make use of a simple LSTM to encode a graph representation,

there is a risk that for the largest molecules the long term dependencies of the

embeddings are not captured well resulting in a bad reconstruction error. We capture

this observation in figure 4. One possible amelioration could be to add other at each

step other non-sequential aggregation of the embeddings (average pooling of the

emebeddings for example) or to make the encoder more powerful by adding some

attention mechanisms. We leave those for future work.

51

4 Conclusion

In this work we first introduced the field of representation learning and the recent

tendency to bias recent models towards learning more structured representation.

In particular we covered most recent works that focus on a specific kind of struc-

ture in representation learning: entity-centric representations. Visual entity-centric

representations aim at decomposing a raw visual visual scene in terms of objects.

They rely on a latent representation where the latent space is structured as a set of

vectors where each vector ideally capture the properties of one entity of the visual

scene.

We studied this kind of representations in our first contribution. We posit that

temporal cues are important in order to disambiguate entities in a scene and further

advocate for a joint learning of the perception and transition modules. We introduce

an entity-centric action-conditioned transition model that translates the fact that

the agent’s actions have sparse effects. We intuitively motivate the need of sparsity in

transitions by the physical consideration that the agent’s interventions are localized

in time and space.

These slot-structured representations are in fact a specific instance a more

general kind of structured representations: graphs. We therefore introduced recent

progresses made in the field of graph representation learning and generation. Graph

generation have in particular proven useful in the field of drug discovery where

discovery and generation of small molecules is of crucial importance.

In our second contribution we introduced a model for conditional graph gene-

ration that also leverages an entity-centric approach. The idea behind the design

of the model is to learn a slot-structured representation of the graph where each

slot corresponds to an atom of the molecule. We bias the slots towards containing

enough information about their neighbours such that a learned pairwise similarity

measure of the slots can retrieve the edge structure of the graph. We demonstrate fa-

vourable performance of our model on prototype-based molecular graph conditional

generation tasks.

54

A core problem in machine learning is the one of inductive bias that asks

the question of how we can build models that learn the right representations,

abstractions, and skills that allow them to generalize to novel and unforseeable

scenarios. Inductive bias in deep neural networks can come in many forms: the

choice of model architecture, the training objective, and the optimization procedure

to name a few. In this thesis we focused on a particular form of inductive bias

which is the structure of the representation we use for our input data, and, more

specifically entity-centric representations. However, entity-centric approaches to

representation learning are still at their infancy. There is a clear surge of interest

for entity-centric learning in deep learning and it seems clear that objects hold

great potential for enabling more systematic generalisation, building compositional

models of the world, and serving as grounding for language and symbolic reasoning.

However, despite strong intuitions, a general definition of what constitutes an object

is still lacking, and the precise notion of objects remains unknown. Future work

will have to focus more on how the entity-centric aspect of representations can be

defined and evaluated.

55

Bibliographie

Renée Baillargeon, Elizabeth Spelke, and Stan Wasserman. Object permanence in

five-month-old infants. Cognition, 20:191–208, 09 1985. doi: 10.1016/0010-0277(85)

90008-3.

Samy Bengio, Oriol Vinyals, Navdeep Jaitly, and Noam Shazeer. Scheduled sampling

for sequence prediction with recurrent neural networks, 2015.

Yoshua Bengio. The consciousness prior. arXiv preprint arXiv:1709.08568, 2017.

Yoshua Bengio, Aaron C. Courville, and Pascal Vincent. Unsupervised feature

learning and deep learning: A review and new perspectives. CoRR, abs/1206.5538,

2012. URL http://arxiv.org/abs/1206.5538.

Yoshua Bengio, Aaron Courville, and Pascal Vincent. Representation learning:

A review and new perspectives. IEEE Trans. Pattern Analysis and Machine

Intelligence (PAMI), 35(8):1798–1828, 2013.

Christopher M Bishop. Pattern recognition and machine learning. springer, 2006.

Lars Buesing, Theophane Weber, Sebastien Racaniere, S. M. Ali Eslami, Danilo

Rezende, David P. Reichert, Fabio Viola, Frederic Besse, Karol Gregor, Demis

Hassabis, and Daan Wierstra. Learning and querying fast generative models for

reinforcement learning, 2018.

Christopher P. Burgess, Loic Matthey, Nicholas Watters, Rishabh Kabra, Irina

Higgins, Matt Botvinick, and Alexander Lerchner. Monet: Unsupervised scene

decomposition and representation, 2019.

Nicola De Cao and Thomas Kipf. Molgan: An implicit generative model for small

molecular graphs, 2018.

56

Xi Chen, Yan Duan, Rein Houthooft, John Schulman, Ilya Sutskever, and Pieter

Abbeel. Infogan: Interpretable representation learning by information maximizing

generative adversarial nets, 2016.

Silvia Chiappa, Sébastien Racaniere, Daan Wierstra, and Shakir Mohamed. Recur-

rent environment simulators, 2017.

Kyunghyun Cho, Bart van Merrienboer, Çaglar Gülçehre, Fethi Bougares, Holger

Schwenk, and Yoshua Bengio. Learning phrase representations using RNN encoder-

decoder for statistical machine translation. CoRR, abs/1406.1078, 2014. URL

http://arxiv.org/abs/1406.1078.

Eric Crawford and Joelle Pineau. Exploiting spatial invariance for scalable unsuper-

vised object tracking, 2019.

Hanjun Dai, Yingtao Tian, Bo Dai, Steven Skiena, and Le Song. Syntax-directed

variational autoencoder for structured data. CoRR, abs/1802.08786, 2018.

Carlos Diuk, Andre Cohen, and Michael L. Littman. An object-oriented representa-

tion for efficient reinforcement learning. In Proceedings of the 25th International

Conference on Machine Learning, ICML ’08, pages 240–247, New York, NY,

USA, 2008. ACM. ISBN 978-1-60558-205-4. doi: 10.1145/1390156.1390187. URL

http://doi.acm.org/10.1145/1390156.1390187.

S. M. Ali Eslami, Nicolas Heess, Theophane Weber, Yuval Tassa, David Szepesvari,

Koray Kavukcuoglu, and Geoffrey E. Hinton. Attend, infer, repeat: Fast scene

understanding with generative models, 2016.

Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley,

Sherjil Ozair, Aaron Courville, and Yoshua Bengio. Generative adversarial nets.

In Advances in neural information processing systems, pages 2672–2680, 2014a.

Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learning. MIT Press,

2016. http://www.deeplearningbook.org.

Ian J. Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-

Farley, Sherjil Ozair, Aaron Courville, and Yoshua Bengio. Generative adversarial

networks, 2014b.

57

Klaus Greff, Antti Rasmus, Mathias Berglund, Tele Hotloo Hao, Jürgen Schmidhu-

ber, and Harri Valpola. Tagger: Deep unsupervised perceptual grouping. CoRR,

abs/1606.06724, 2016. URL http://arxiv.org/abs/1606.06724.

Klaus Greff, Sjoerd van Steenkiste, and Jürgen Schmidhuber. Neural expectation

maximization, 2017.

Klaus Greff, Raphaël Lopez Kaufman, Rishabh Kabra, Nick Watters, Chris Burgess,

Daniel Zoran, Loic Matthey, Matthew Botvinick, and Alexander Lerchner. Multi-

object representation learning with iterative variational inference, 2019.

Rafael Gómez-Bombarelli, Jennifer N. Wei, David Duvenaud, José Miguel

Hernández-Lobato, Benjamı́n Sánchez-Lengeling, Dennis Sheberla, Jorge Aguilera-

Iparraguirre, Timothy D. Hirzel, Ryan P. Adams, and Alán Aspuru-Guzik. Auto-

matic chemical design using a data-driven continuous representation of molecules,

2016.

William L. Hamilton, Rex Ying, and Jure Leskovec. Inductive representation

learning on large graphs, 2017.

Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural

computation, 9(8):1735–1780, 1997a.

Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural

Comput., 9(8):1735–1780, November 1997b. ISSN 0899-7667. doi: 10.1162/neco.

1997.9.8.1735. URL http://dx.doi.org/10.1162/neco.1997.9.8.1735.

Berthold KP Horn and Brian G Schunck. Determining optical flow. Artificial

intelligence, 17(1-3):185–203, 1981.

John J. Irwin, Teague Sterling, Michael M. Mysinger, Erin S. Bolstad, and Ryan G.

Coleman. Zinc: A free tool to discover chemistry for biology. Journal of Chemical

Information and Modeling, 52(7):1757–1768, 2012. doi: 10.1021/ci3001277. URL

https://doi.org/10.1021/ci3001277. PMID: 22587354.

Jindong Jiang, Sepehr Janghorbani, Gerard de Melo, and Sungjin Ahn. Scalor:

Generative world models with scalable object representations, 2019.

58

Wengong Jin, Regina Barzilay, and Tommi Jaakkola. Junction tree variational

autoencoder for molecular graph generation, 2018.

Seokho Kang and Kyunghyun Cho. Conditional molecular design with deep genera-

tive models, 2018.

Ilyes Khemakhem, Diederik P Kingma, and Aapo Hyvärinen. Variational autoenco-

ders and nonlinear ica: A unifying framework. arXiv preprint arXiv:1907.04809,

2019.

Thomas Kipf, Ethan Fetaya, Kuan-Chieh Wang, Max Welling, and Richard Zemel.

Neural relational inference for interacting systems, 2018.

Thomas N. Kipf and Max Welling. Variational graph auto-encoders, 2016a.

Thomas N. Kipf and Max Welling. Semi-supervised classification with graph

convolutional networks, 2016b.

Alexander S Klyubin, Daniel Polani, and Chrystopher L Nehaniv. All else being

equal be empowered. In European Conference on Artificial Life, pages 744–753.

Springer, 2005.

Adam R. Kosiorek, Hyunjik Kim, Ingmar Posner, and Yee Whye Teh. Sequential

attend, infer, repeat: Generative modelling of moving objects, 2018.

Navneet Madhu Kumar. Empowerment-driven exploration using mutual information

estimation. arXiv preprint arXiv:1810.05533, 2018.

Matt J. Kusner, Brooks Paige, and José Miguel Hernández-Lobato. Grammar varia-

tional autoencoder. In Proceedings of the 34th International Conference on Ma-

chine Learning, 2017. URL http://proceedings.mlr.press/v70/kusner17a.

html.

Yibo Li, Liangren Zhang, and Zhenming Liu. Multi-objective de novo drug design

with conditional graph generative model, 2018a.

Yujia Li, Oriol Vinyals, Chris Dyer, Razvan Pascanu, and Peter Battaglia. Learning

deep generative models of graphs, 2018b.

59

David G Lowe. Distinctive image features from scale-invariant keypoints. Interna-

tional journal of computer vision, 60(2):91–110, 2004.

Joseph Marino, Yisong Yue, and Stephan Mandt. Iterative amortized inference,

2018.

Mehdi Mirza and Simon Osindero. Conditional generative adversarial nets, 2014.

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A. Rusu, Joel Veness,

Marc G. Bellemare, Alex Graves, Martin Riedmiller, Andreas K. Fidjeland, Georg

Ostrovski, Stig Petersen, Charles Beattie, Amir Sadik, Ioannis Antonoglou, Helen

King, Dharshan Kumaran, Daan Wierstra, Shane Legg, and Demis Hassabis.

Human-level control through deep reinforcement learning. Nature, 518(7540):

529–533, February 2015. ISSN 00280836. URL http://dx.doi.org/10.1038/

nature14236.

Kevin P Murphy. Machine learning: a probabilistic perspective. MIT press, 2012.

Augustus Odena, Christopher Olah, and Jonathon Shlens. Conditional image

synthesis with auxiliary classifier gans, 2016.

Marcus Olivecrona, Thomas Blaschke, Ola Engkvist, and Hongming Chen. Molecular

de novo design through deep reinforcement learning, 2017.

RDKit, online. RDKit: Open-source cheminformatics. http://www.rdkit.org.

[Online ; accessed 11-April-2013].

Adam Santoro, David Raposo, David G. T. Barrett, Mateusz Malinowski, Razvan

Pascanu, Peter W. Battaglia, and Timothy P. Lillicrap. A simple neural network

module for relational reasoning. CoRR, abs/1706.01427, 2017. URL http:

//arxiv.org/abs/1706.01427.

Marwin H. S. Segler, Thierry Kogej, Christian Tyrchan, and Mark P. Waller.

Generating focussed molecule libraries for drug discovery with recurrent neural

networks, 2017.

Martin Simonovsky and Nikos Komodakis. Dynamic edge-conditioned filters in

convolutional neural networks on graphs, 2017.

60

Martin Simonovsky and Nikos Komodakis. Graphvae: Towards generation of small

graphs using variational autoencoders, 2018.

Elizabeth S. Spelke. Where perceiving ends and thinking begins: The apprehension

of objects in infancy. 2013.

Richard S. Sutton. Dyna, an integrated architecture for learning, planning, and

reacting. SIGART Bull., 2(4):160–163, July 1991. ISSN 0163-5719. doi: 10.1145/

122344.122377. URL https://doi.org/10.1145/122344.122377.

Sjoerd van Steenkiste, Michael Chang, Klaus Greff, and Jürgen Schmidhuber.

Relational neural expectation maximization: Unsupervised discovery of objects

and their interactions, 2018.

Sjoerd van Steenkiste, Klaus Greff, and Jürgen Schmidhuber. A perspective on

objects and systematic generalization in model-based RL. CoRR, abs/1906.01035,

2019. URL http://arxiv.org/abs/1906.01035.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N.

Gomez, Lukasz Kaiser, and Illia Polosukhin. Attention is all you need, 2017.

Rishi Veerapaneni, John D. Co-Reyes, Michael Chang, Michael Janner, Chelsea

Finn, Jiajun Wu, Joshua B. Tenenbaum, and Sergey Levine. Entity abstraction

in visual model-based reinforcement learning, 2019.

Nicholas Watters, Loic Matthey, Matko Bosnjak, Christopher P. Burgess, and

Alexander Lerchner. Cobra: Data-efficient model-based rl through unsupervised

object discovery and curiosity-driven exploration, 2019.

Ronald J. Williams and David Zipser. A learning algorithm for continually running

fully recurrent neural networks, 1989.

Jiaxuan You, Bowen Liu, Rex Ying, Vijay Pande, and Jure Leskovec. Graph

convolutional policy network for goal-directed molecular graph generation, 2018a.

Jiaxuan You, Rex Ying, Xiang Ren, William L. Hamilton, and Jure Leskovec.

Graphrnn: Generating realistic graphs with deep auto-regressive models, 2018b.

61

Lantao Yu, Weinan Zhang, Jun Wang, and Yong Yu. Seqgan: Sequence generative

adversarial nets with policy gradient. CoRR, abs/1609.05473, 2016. URL http:

//dblp.uni-trier.de/db/journals/corr/corr1609.html#YuZWY16.

Vinicius Zambaldi, David Raposo, Adam Santoro, Victor Bapst, Yujia Li, Igor

Babuschkin, Karl Tuyls, David Reichert, Timothy Lillicrap, Edward Lockhart,

Murray Shanahan, Victoria Langston, Razvan Pascanu, Matthew Botvinick, Oriol

Vinyals, and Peter Battaglia. Relational deep reinforcement learning, 2018.

Marinka Zitnik, Monica Agrawal, and Jure Leskovec. Modeling polypharmacy side

effects with graph convolutional networks. Bioinformatics, 34:13, 457-466, 2018,

2018.

62

