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Résumé 

Au cours des dernières décennies, la conception de complexes moléculaires ayant une 

organisation et des propriétés prévisibles n’était pas possible. Bien qu’il soit possible de calculer 

efficacement les propriétés de molécules individuelles, leur comportement collectif demeure 

imprévisible. Récemment, nous avons assisté au développement d’une nouvelle stratégie 

intitulée « construction modulaire » permettant de produire des matériaux bien définis et 

ordonnés dotés de nouvelles propriétés. Cette stratégie utilise des sous-unités moléculaires aptes 

à réaliser des interactions non-covalentes telles que des ponts hydrogène afin de maintenir des 

modules voisins à des positions programmables. Puisque les ponts hydrogène sont très forts et 

directionnels, un objectif important consiste à concevoir des sous-unités moléculaires aptes à 

réaliser un grand nombre de ponts hydrogène. Les molécules incorporant multiples groupements 

4,6-diamino-1,3,5-triazinyles (DAT) sont un exemple de ce type de composés. Nos travaux sont 

focalisés sur l’introduction d’unités N(DAT)2, qui offrent la possibilité de faire des réseaux 

ordonnés maintenus ensemble par un nombre encore plus grand de ponts hydrogène par 

molécule. Nous décrivons les structures et les propriétés de matériaux cristallins de ce type, dans 

lesquels un nombre croissant de ponts hydrogène donne lieu à la formation de réseaux robustes 

et hautement poreux. 

 

Mots-clés : Chimie supramoléculaire, Génie cristallin, Ponts hydrogène, Construction 

modulaire, Matériaux poreux  
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Abstract 

During the past few decades, designing molecular complexes with predetermined 

properties and predictable architectures was not possible. Although, it is possible to calculate 

the properties of individual molecules with confidence, the behavior of molecular assemblies 

remains unpredictable. Recently there has been a development of a strategy called “modular 

construction,” which can lead to producing well-defined and ordered materials with novel 

properties. This strategy uses molecular subunits that engage in non-covalent interactions such 

as hydrogen bonds to hold the neighboring modules in programmable positions. Since hydrogen 

bonds show high strength and directionality, an important objective is to devise molecular 

subunits that can take part in a large number of hydrogen bonds. Examples are compounds that 

incorporate multiple 4.6-diamino-1,3,5-triazinyl (DAT) groups. Our work has focused on 

introducing N(DAT)2 units, which offer the possibility of making ordered networks held 

together by even larger number of hydrogen bonds per molecule. We describe the structures and 

properties of crystalline materials of this type, in which increasing the number of hydrogen 

bonds gives rise to the formation of robust networks with high levels of porosity.  

 

Keywords : Supramolecular Chemistry, Crystal engineering, Hydrogen bond, Modular 

construction, Porous materials 
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Chapter 1 : Introduction 
 

1.1 Supramolecular Chemistry  

Supramolecular chemistry is defined as “chemistry beyond the molecule,” which 

includes the study of multi-molecular complexes that can be assembled and held together by 

various weak non-covalent intermolecular forces, such as hydrogen bonding, metal 

coordination, π-π stacking, hydrophobic interactions, and van der Waals forces.1 

Supramolecular chemistry was pioneered by Nobel laureates Jean-Marie Lehn, Charles J. 

Pedersen, and Donald J. Cram, who synthesized cryptands, crown ethers,2 and cavitands, 

respectively (Figure 1),3 and revealed concepts related to molecular assembly that are now used 

throughout the field of chemistry and in many neighboring disciplines. The field has grown 

explosively during the last decades and has led to many breakthroughs of practical importance, 

including the development of bulk materials such as metal-organic frameworks (MOFs) and 

peptide-based materials for use in medicine.4,5  
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Figure 1. Examples of early cage-type structures used to reveal principles of supramolecular 

chemistry. (a) [2,2,2]-Cryptand, an illustrative member of the cryptand family. (b) 12-Crown-4, 

a representative example of crown ethers. (c) Representative of the cucurbiturils, an example of 

cavitands, with internal cavities that provide space for accepting guests. 

Supramolecular chemistry started with an initial focus on host-guest chemistry, 

involving interactions between compounds of the type shown in Figure 1 (hosts) and smaller 

molecules (guests) that can be accommodated within the host. The field expanded to include 

systems of greater size and complexity, such as the self-association of multiple molecular 

subunits that interact with one another to create ordered supramolecular complexes. Although 

the study of these subjects represented a new frontier in academic research, it is important to 

note that there are many impressive examples of controlled assembly in nature. Most notable is 

the double helical structure of DNA, in which two separate strands are held together by hydrogen 

bonds between complementary base pairs (Figure 2a). Molecular self-assembly has a crucially 

important role in nature, and advances made by studying the subject systematically as part of 

the field of supramolecular chemistry have now made it possible to build complex unnatural 
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supramolecular architectures. These systems result spontaneously from suitably engineered 

molecules that have the potential to engage in interactions with their neighbors, leading to the 

predictable assembly of aggregates held together by multiple non-covalent bonds. 

Supramolecular chemistry is growing rapidly as a source of complex new structures, and self-

assembly is an essential element of this field because it allows the reversible construction of 

robust, ordered structures with various useful properties as we will describe in further 

discussions such as formation of crystals that will be analyzed by crystal engineering methods.5 

 

 

Figure 2. (a) Double helical structure of DNA molecule with sugar and phosphate backbone in 

each strand. The structure is obtained by forming hydrogen bonds between two complementary 

bases (Adenine(A)-Thymine(T) or Cytosine(C)-Guanine(G)), which are attached to the 

backbone of DNA. (b) View showing the hydrogen bonds between two complementary base 

pairs that are assembling.6   
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1.2 Hydrogen Bonding 

The hydrogen bond was first defined as a bond where hydrogen acts as a bridge formed 

between two strongly electronegative atoms under specific conditions.7 This classical definition 

applies chiefly to strong hydrogen bonds such as N-H···O and O-H···O. More recently, the field 

of hydrogen bonding has been extended to include related interactions involving less 

electronegative atoms such as N-H···π and C-H···O interactions. This has led to the following 

new definition for the hydrogen bond: “The hydrogen bond is an attractive interaction between 

a hydrogen atom from a molecule or a molecular fragment X–H in which X is more 

electronegative than H, and an atom or a group of atoms in the same or a different molecule, in 

which there is evidence of bond formation.”8 The geometry and robustness of non-covalent 

intermolecular interaction such as hydrogen bonds are important factors that determine their 

utility in controlling molecular association. These interactions are suitable for tailoring new 

supramolecular structures and for engineering crystals only if they are sufficiently strong and 

directional to ensure that they can be used predictably and lead to structures in which interacting 

molecules are properly bonded and oriented. In recent years, chemists have frequently taken 

advantage of the special strength and directionality of hydrogen bonds to design and assemble 

novel materials with new properties.9  

The strength of hydrogen bonds in terms of energy can vary in the range 1-40 kcal/mol. 

At one end of the scale are relatively weak hydrogen bonds such as N−H···:N (about 3.1 

kcal/mol), and at the other are F−H···:F hydrogen bonds (about 38.6 kcal/mol).10,11 Different 

types of hydrogen bonds have shown different utility depending on their strength. Even 

relatively weak hydrogen bonds can be suitable for engineering supramolecular complexes, 
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particularly when many hydrogen bonds are involved. In supramolecular chemistry, hydrogen 

bonds involving N and O are often used, due to their high electronegativity and to the fact that 

many common functional groups incorporate these atoms. As a result, hydrogen bonds 

involving N and O have proven to be reliable for controlling crystal packing predictably. 

Functional groups such as amido, carboxyl, amino, and hydroxyl participate in various reliable 

hydrogen bond patterns These functional groups are widely used in supramolecular chemistry 

to generate open and well-ordered hydrogen-bonded networks. As an example, 

triptycene(triscatechol) (Figure 3a) can be crystallized from methyltetrahydrofuran (Me-THF) 

to generate a highly open network held together by multiple O−H···O hydrogen bonds (Figure 

3b-c).12 Moreover, increasing the number of directional hydrogen bonds per molecule typically 

results in increasing the strength and stability of molecular complexes. Each molecule of 

triptycene(triscatechol) (Figure 3a), takes part in a total of six intermolecular O−H···O hydrogen 

bonds, which leads to the formation of an open network with 63% of its volume accessible to 

guests. 
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Figure 3. Examples of open networks that are held together by OH functional groups. (a) 

Structure of triptycene(triscatechol). (b) View showing how molecules are held together in 

adjacent sheets via O−H···O hydrogen bonds. (c) An open network that is obtained by 

crystallization from Me-THF, which generates a structure that is held together by O−H···O 

interactions. 

Many disciplines, including chemistry and biology rely on the functionality of hydrogen 

bonds, since they are frequently used to control the association of molecules. Hydrogen bonds 

have proven to be among the most reliable non-covalent interactions. Directionality, flexibility, 

and reversibility are the factors that give hydrogen bonds a preeminent role in directing 

molecular assembly.  
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1.3 Molecular Crystal Engineering 

An important challenge in science is to develop a detailed understanding of molecular 

crystallization and an ability to predict the structure that will result. Crystallization is part of 

supramolecular chemistry because it involves the creation of complex molecular assemblies 

held together by non-covalent interactions. Crystallization is a kinetic phenomenon where 

multiple molecules are held together in an ordered manner by non-covalent intermolecular 

interactions. This phenomenon has many important roles in science, including purifying 

chemical compounds and providing matter in a form that can be subjected to detailed structural 

characterization by X-ray diffraction and other techniques.13 During crystallization, functional 

groups in a molecule can interact differently to determine how neighboring molecules are 

positioned. Crystal engineering involves the effort to understand the behavior of these 

intermolecular interactions and how they can be used to control the organization and properties 

of crystalline materials.14 

The term “crystal engineering” is board in scope, but it includes controlling how 

molecules pack in the crystalline state by making use of non-covalent interactions as a 

fundamental force that determines how molecular components are positioned relative to their 

neighbors.9 Crystal engineering is an interdisciplinary field that includes many aspects of solid-

state supramolecular chemistry. The goal is to understand all aspects of crystallization well 

enough to make it possible to select suitable molecular components for various purposes and 

ensure that their organization in the solid state provides materials with targeted properties. 

Crystal engineering was initially introduced by Pepinsky,17 but the field was more fully 

developed by Schmidt and coworkers in their research on photodimerization reactions in the 
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solid state, which revealed that the stereochemistry of the photodimers can be predicted by 

topochemical theory, based on how neighboring molecules are oriented.15 Through the years, 

many other scientists have tried to correlate the structure of individual molecules with the way 

they are organized in crystals. In particular, Kitaigorodskii demonstrated that size and shape 

have a crucial role in controlling molecular packing.11 This theory was augmented to take into 

account the special role of specific intermolecular interactions, and Etter showed that hydrogen 

bonds are directional and strong enough to allow the design of crystal architectures.12 A more 

general concept related to weak interactions was introduced by Desiraju, called “supramolecular 

synthons”.20 Synthons are reliable associative motifs that involve the formation of weak non-

covalent interactions such as hydrogen bonds and appear within supermolecules as the source 

of their cohesion (Figure 4).20 Supramolecular synthons play an important role in understanding 

and designing crystalline networks. This results from the fact that they involve strong and 

directional interactions that are robust enough to ensure that they can be transported from one 

framework to another. Synthons are a practical concept that helps simplify the prediction of 

crystal structures by identifying information that can be expected to pass from the level of 

molecular structures to the resulting crystal structures. Through all these various efforts, crystal 

engineering is paving the way to a deeper understanding of how molecular structure and the 

potential to engage in intermolecular interactions of varied nature, strength, and directionality 

can be used to predict and control the structure and properties of crystalline materials. 
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Figure 4. Examples of supramolecular synthons based on hydrogen bonds.21 

An indispensable tool in the field is X-ray crystallography, which makes it possible to 

determine molecular structures in atomic detail. The history of X-ray diffraction began with the 

discovery of X-rays in 1895 by Wilhelm Röntgen, which was a breakthrough that led to the first 

Nobel Prize in Physics in 1901.15 Following this discovery, von Laue found that exposing 

crystals to X-rays led to characteristic patterns of diffraction.23 The discoveries laid the 

foundation for the development of X-ray crystallography in 1912-1913 by the Braggs, father, 

and son, who designed an instrument to observe diffraction patterns and proposed the diffraction 

law.17,18 These developments, for the first time, allowed the three dimensional structures of 

crystalline materials to be determined at the atomic level. Modern X-ray crystallography now 

allows the structure of molecules to be examined in detail, as well as how molecules are arranged 

in crystals relative to their neighbors. Convenient determination of detailed structures requires 

the availability of single crystals of sufficient size; however, powder X-ray diffraction can 

provide useful information about crystalline materials when adequate single crystals are not 
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available and is widely used to test for crystallinity in samples, look for mixture of phases, and 

identify the components in complex materials.26  

These advances in X-ray diffraction make it possible for crystal engineers to quickly 

solve structures, to compare the results with predictions and to plan future experiments. Along 

with important advances in molecular synthesis and increasing needs in science and technology 

for ordered materials, crystal engineering has evolved to become an increasingly powerful and 

useful field. Many other areas have come to rely on crystal engineering for new developments 

related to pharmaceuticals, materials, electronic devices and other important products.  

 

1.4 Modular Construction 

The properties of individual molecules can often be predicted with a high degree of 

confidence, but the collective behaviour of molecules, including their association to give 

complex assemblies, is far more difficult to foresee. To circumvent this obstacle, substantial 

effort has been made by Wuest and co-workers, as well as other groups to develop and exploit 

a powerful strategy that can be called “modular construction”. This strategy provides a tool for 

designing molecules that can associate strongly by specific interactions in a way that yields 

materials in which neighboring molecules are held in predetermined positions.24,25 

The historical roots of modular construction can be found in Etter’s studies of hydrogen 

bonds, which led to the identification of many assembly motifs characteristic of hydrogen 

bonds.12 In her work, Etter showed that hydrogen bonds are reliable for controlling molecular 
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crystallization as they are robust and directional. Designing crystalline materials with 

predictable structures is one of the primary targets of crystal engineering. An effective approach 

is to design compounds with multiple hydrogen-bond acceptors and donors that are arrayed 

around a relatively rigid core, which can orient the hydrogen-bonding sites in ways that favour 

particular types of molecular assembly. A key reference in Etter’s classic paper is to earlier work 

of Wuest et al, in which hydrogen bonding was used explicitly to direct molecular association 

in predictable ways. Related work was carried out by Ermer who studied the crystallization of 

adamantane-1,3,5,7-tetracarboxylic acid and showed that crystallization of this compound is 

controlled predictably by the self-association of tetrahedrally-oriented carboxyl groups which 

leads logically to the formation of a hydrogen-bonded network with diamondoid topology 

(Figure 5).26 

 

Figure 5. Hypothetical diamondoid network, constructed by association of functional groups 

connected to a rigid tetrahedral core (broken lines indicate directional intermolecular 

interactions).24 
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These early observations were the inspiration for increasingly ambitious modular construction, 

based on molecular subunits with well-defined structures and an ability to participate in a large 

number of hydrogen bonds. Examples include tetrapyridinones 1 and 2, in which 2-pyridinone 

units are connected to a rigid tetrahedral core (Figure 6a).27 2-Pyridinone acts as a recognition 

group that tends to self-associate by forming hydrogen-bonded dimers (Figure 6b). The group 

thereby takes advantage of hydrogen bonds in order to place neighboring molecules in 

programmable positions and direct the molecular assembly. Moreover, the tetrahedral core 

orients this supramolecular structure, which results in predictable generation of diamondoid 

network.26,27 

 

Figure 6. (a) Examples of modular construction based on association of 2-pyridinone groups 

connected to a rigid core. (b) Dimerization of 2-pyridinone. 
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Crystallization of tetrapyridinones 1 and 2 results in the formation of  remarkably open networks 

held together by multiple hydrogen bonds. Both hydrogen-bonded networks formed by 

tetrapyridinones 1 and 2 are robust enough to retain their crystallinity during the exchange of 

guests, and the volume accessible to guests is high (up to 53%). This work validates the 

effectiveness of modular construction in crystal engineering as a tool for controlling the 

structure and properties of ordered solid materials. Crystallization of most molecules favours 

the formation of close-packed structures, which maximize the intermolecular interaction. Close-

packed crystalline materials have no potential to include guests, and they only have small 

unfilled spaces between molecules that collectively add up to about 30% of the total volume of 

the crystals. In contrast, modular construction favours crystallization that does not normally lead 

to close packing because hydrogen bonding or other directional interactions prefer that the 

molecular components are arranged in other ways. Because, directional hydrogen bonding and 

close packing can not normally be optimized simultaneously, open networks are created. 

Therefore, modular construction is particular suitable for producing materials with high degrees 

of potential porosity. As a result, this strategy has revolutionized the engineering of highly 

ordered crystalline materials with large and open channels. Among these ordered crystalline 

materials are many that can retain their crystallinity after guests are partially or completely 

removed from the interior. 

 

1.4.1 Porous Materials 

Porous materials are a new class of materials with high structural rigidity and low density 

of mass. These materials are defined as a combination of solid phases with pores that make them 
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different from other materials.33,34 Porous materials play a vital role in our daily life and 

industry. Some examples of their application are the purification of potable water, removing 

dust from gases, filtration, and molecular recognition. Porous materials can vary in composition 

and include both inorganic and organic frameworks. Zeolites are the first and example of 

microporous inorganic materials. Zeolites are aluminosilicates and are known for their potential 

to trap and store certain molecules like gases, for their utility as molecular sieves, and for their 

applications as catalysts. Zeolites contain Lewis acidic sites and can act as heterogeneous 

catalysts by activating specific reactions involving guest molecules inside the pores of the solid. 

These inorganic porous materials have well-defined pore sizes and are highly robust, and they 

can accommodate many gases and other small molecules (Figure 7).35 Zeolites have high surface 

areas and offer resistance against high temperature, pressure, and chemical conditions, which 

justifies their wide usage in industry. Important examples include their use, as catalysts in the 

petroleum industry, as additives in detergents, and as ion-exchange materials.33 

 

                             Figure 7. Different types of zeolites with different pore sizes. 
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The broad utility of zeolites provided a strong motivation for developing other porous 

ordered materials such as metal-organic frameworks (MOFs)37,38 and covalent-organic 

frameworks (COFs).39 MOFs are constructed from metal-containing subunits joined by organic 

linkers. MOFs offer highly open networks with permanent porosity and have applications in 

energy technologies, including fuel cells and catalytic conversion. COFs are constructed from 

organic molecules that undergo reactions leading to the formation of networks held together via 

covalent bonds. COFs typically have rigid structures with exceptional capacities for storing 

guests. Characterizing the structure of COFs is not as easy as for other porous materials since 

they do not typically form single crystals large enough to study by X-ray diffraction. However, 

despite the challenging characterization of COFs, they have useful applications in gas 

separation, energy storage, and electronics. Both MOFs and COFs (Figure 8a and 8b, 

respectively) have high thermal stability, due to the involvement of strong bonds that hold their 

frameworks in place.  

Other porous ordered materials similar to zeolites, MOFs, and COFs are called 

“hydrogen-bonded organic frameworks (HOFs).” In contrast to other porous materials, 

frameworks of HOFs are held together by hydrogen bonds, and the modules used to construct 

HOFs are organic molecules. Each family of porous materials that have been produced by 

modular construction, including MOFs, COFs, and HOFs, has applications in gas storage, 

catalysts, and other areas that require porosity. However, each of these families of porous 

materials has individual properties that make them particularly suitable for use in specific areas. 

This subject will be discussed more in detail below. 
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Figure 8. (a) Classic example of a MOF, called “MOF-5” with a large accessible volume 

represented in yellow. This metal-organic framework is obtained by the association of 1,4-

benzenedicarboxylate with Zn2+.37 (b) An example of COFs, called “COF-1”, which is obtained 

by linking three boronic acid groups to form six-membered rings of boroxine (B3O3).40 Both of 

the frameworks remain crystalline after desolvation and show permanent porosity.  

1.4.1.1 Hydrogen-Bonded Organic Frameworks (HOFs) 

Hydrogen-bonded organic frameworks (HOFs) are organic porous materials, that have 

attracted much attention from crystal engineers during the past decades. HOFs are less known 

than MOFs and COFs because they are held together by relatively weak interactions, makes 

them inherently less stable. However, HOFs possess a high degree of crystallinity, because they 

are held together by hydrogen bonds, which can be broken and reformed reversibly to ensure 

that errors arising during crystallization are corrected. HOFs have several remarkable features 

that make them superior to other porous materials such as MOFs in certain applications. These 
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features include low density, self-healing by recrystallization, simple access by routine methods 

of crystallization, metal-free compositions, and a characteristic ability to deform in ways that 

promote the selective inclusion of guests. Nevertheless, hydrogen bonds are weaker than 

coordinative bonds in MOFs and COFs, so designing HOFs with high stability remains 

challenging. Removing guests from many open hydrogen-bonded frameworks will lead to the 

loss of their crystallinity, and their open structures will collapse. Over the years, many scientists 

have tried to design HOFs with permanent porosity and predictable structures similar to zeolites 

and MOFs. In order to meet the challenge of constructing HOFs with rigidity and stability, some 

factors should be taken into consideration. These factors include: 1) the need to incorporate 

multiple directional hydrogen-bonding units to ensure that the overall density of hydrogen bonds 

in the structure is high, 2) introducing stabilizing interactions between the building blocks and 

guests, and 3) using modules that have relatively little conformational freedom.32. Hydrogen 

bonds are individually weak, so multiple hydrogen bonds per module are needed to produce 

robust networks. Fortunately, various functional groups can be introduced to create multiple 

sites of hydrogen bonding per module. Examples of these functional groups include carboxylic 

acids, amidinium cations, benzimidazolones, diaminotriazines, amides, and others. As an 

example, Mastalerz and Oppel designed a highly ordered and open network constructed from 

triptycene trisbenzimidazolone 3, in which imidazolone groups are grafted onto a rigid core of 

triptycene (Figure 9). The resulting porous network has a high surface area, which helps to 

increase the capacity for gas storage, and the volume accessible to guests is about 60%. This 

crystalline network is robust enough that it will retain its crystallinity after desolvation and 

results in a material with a high degree of permanent porosity.39 
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Figure 9. Example of a highly porous framework made by using the strategy of modular 

construction. 

 

 

1.4.1.2 Porosity Measurement 

In order to characterize porous materials, several parameters need to be measured, such 

as porosity, pore size, pore morphology, and specific surface area.43 Porosity is the most 

important parameter among the others, as it influences the mechanical, physical, and chemical 

properties of the porous materials. The porosity value presents the volume occupied by guests 

compared to the total volume of the crystalline material, and it can vary in the range 0-100%. 

Depending on the size of the pores, there are various available methods for measuring porosity. 

If the size of pores is less than 2 nm (microporous), porosity can be measured by the adsorption 

of N2 or other gases. On the other had, if the size of the pores is greater than 50 nm 

(macroporous) or in the rang 2-50 nm (mesoporous), three methods can be used. These methods 

are: 1) pycnometry, which measures the accurate mass-volume relation in solids or liquids. 2) 
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liquid intrusion, which is mostly measured by using Hg, and 3) gas adsorption, which is the 

most common method to measure porosity since this method has the potential to provide 

information on the size of the pores with a large defined surface area in materials.  

The proof of permanent porosity can be obtained by the gas adsorption technique, which 

determines the reversible gas adsorption isotherm at low pressure and temperature. This 

isotherm represents the relationship between the adsorbed gas and the relative pressure. 

Measuring the adsorbed gas can occur by exposure of suitable gas such as N2, Kr, or CO2 to a 

porous sample that has been desolvated or been exchanged with another solvent that has a lower 

boiling point. Technically, the volume of the adsorbed gas can be measured at the boiling point 

of the appropriate gas. As soon as the sample comes into contact with the gas, and the gas 

reaches equilibrium with the surface, it is possible to measure the rational isotherm (Figure 10).34   

 

               Figure 10. Typical gas adsorption isotherm graph 

This gas adsorption isotherm also provides information on pore size, distribution of porous 

samples (quantity of each pore size in a relative volume of porous sample), and the specific 
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surface area. Specific surface area is another important feature of porous materials and, is 

defined as the total surface area of porous materials per unit of mass or volume. Measuring the 

surface area mostly measures the internal surface area in an open-cell porous material, and the 

external surface is very small and, can be neglected. Furthermore, there are several advantages 

to the internal surface area such as sound absorption, heat exchange, noise reduction, and 

catalysis. Depending on the size of the pores, there are several methods to measure the surface 

area, but the most common one is gas adsorption by using the BET isotherm. Brunauer-Emmett-

Teller (BET) is a classical method to determine the gas adsorption data on a solid surface and 

to measure the specific surface area. The BET isotherm technique is based on Langmuir theory, 

which is only suitable for monolayer adsorption of gas molecules. Therefore, in 1938, Stephen 

Brunauer, Paul Hugh Emmett and Edward Teller extended this theory to provide a way to handle 

multilayer gas adsorption called the “BET method”.44 The porous sample in the gas adsorption 

BET method is either evacuated by heating under vacuum or degassed to remove unwanted 

species in the air, such moisture condensed on the pore surface. After this step, the gas, which 

is typically N2, is absorbed on the surface at a low temperature in the adsorptive gas atmosphere 

and can be measured by the isotherm. It is worth mentioning that the results of Hg intrusion and 

gas adsorption are quite similar.  
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Figure 11. (a) Gas adsorption measurement by BET isotherm of COF-1 (Figure 8b). (b) BET 

isotherm of triptycene trisbenzimidazolone (Figure 9) as a HOF with a pore distribution diagram 

underneath. Both COF and HOF examples showed BET surface areas of 711 m2/g and 2796 

m2/g respectively. 

1.5 4,6-Diamino-1,3,5-triazinyl (DAT) Group 

4,6-Diamino-1,3,5-triazinyl (DAT) groups are one of the most interesting recognition 

groups for use in the synthesis of hydrogen-bonded molecular complexes. DAT groups (4) are 

melamine derivatives, which are broadly useful in applications such as drug production, 

polymers, separation, and heterogenous catalysts. DAT groups are easily accessible, and they 

can be synthesized from the reaction between nitriles and dicyandiamide.45,46  
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In addition, DAT groups have been extensively used in modular construction, since they can 

act as both hydrogen bond acceptors and donors, allowing them to take part in multiple 

hydrogen bonds according to reliable motifs. As a result, they are one of the most reliable 

functional groups for use in modular construction (Figure 6b). These motifs can be 

represented by structures I-III (Figure 12), which differ according to the relatively 

orientation of substituents. Because several motifs are possible, supramolecular assembly 

directed by DAT group will be far from being fully predictable. However, association is 

normally governed by one of the three patterns, and others are uncommon (Figure 12).44 As 

a result, DAT groups have proven their ability to direct the construction of hydrogen-bonded 

organic frameworks (HOFs).  

 

Figure 12. Hydrogen bonding motifs of DAT pairs. I. Face to face. II. Face to side. III. Side 

to side.45 
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Wuest and co-workers have developed various compounds containing DAT groups 

incorporated in well-defined molecular structures. One of the most interesting examples is 

hexakis[4-(2,4-diamino-1,3,5-triazin-6-yl)phenyl]benzene (5a), which acts as a module for the 

construction of a network in which each molecule is linked to six neighbors by hydrogen 

bonding of DAT groups. In the crystal structure of compound 5a, hydrogen bond networks 

according to face to face motif I is favored, and the other two patterns are not observed, 

presumably for steric reasons.46,47 Representations of the structure are provided in Figure 13. 

 

Figure 13. (a) Molecular structure of hexakis[4-(2,4-diamino-1,3,5-triazin-6-yl) 

phenyl]benzene (5a). (b) Representation of a possible network for compound 5a. (c) Structure 

of crystals grown from DMSO/benzene, showing how each molecule is joined to its six 

neighbors through hydrogen bonds. (d) Representation of the open crystalline framework, 

with a guest accessible volume of 72%. 
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1.6 Purpose of this Study 

Modular construction is able to provide predictably ordered materials with 

predetermined properties. The strategy is based on ensuring that molecular subunits engage in 

interactions that will hold neighboring modules in predetermined positions. Hydrogen bonds, 

due to their flexibility and directionality, have proven to be suitable for directing modular 

construction, despite being weaker than covalent bonds or coordinative interactions involving 

metals. As the number and the strength of hydrogen bonds increase, the resulting structures 

should become more robust and suitable for applications that require high stability. Therefore, 

our goal is to devise new modules for construction in which recognition groups that can be 

involved in unusually large numbers of hydrogen bonds are grafted to suitable molecular cores. 

Our work has been inspired by previous work in which DAT groups have played a key role in 

creating predictably ordered hydrogen-bonded organic frameworks (HOFs) with a high degree 

of permanent porosity. In this study, we have investigated a new recognition group related to 

DAT groups, but with a higher density of sites for hydrogen bonding. This new functional group 

has been grafted onto different rigid cores to generate unusually robust and open crystalline 

networks closely related to zeolites and MOFs. 
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2.1 Introduction 

As summarized in Chapter 1, it is possible to design molecular compounds that 

crystallize to form highly open networks held together by hydrogen bonds. Modular 

construction is a powerful tool and has proven to be reliable strategy in which molecular 

subunits can be held in predetermined positions by multiple directional hydrogen bonds. Simple 

DAT groups have been used extensively for this purpose, and in favorable cases open networks 

held together by DAT groups can be desolvated to generate rigorously porous crystalline 

materials. To increase the robustness and porosity of the materials, we decided to examine the 

behaviour of related compounds with even higher densities of DAT groups. This led us to study 

complex derivatives of melam (HN(DAT)2), which is the subject of the manuscript that is 

incorporated in Chapter 2. 

Chapter 2 is presented in the form of an article describing the synthesis and associative 

behaviour of various molecular compounds incorporating multiple N(DAT)2 units. The chapter 

shows that it is possible in this way to make highly porous networks that are held together by 

large numbers of hydrogen bonds. Selected examples can be converted by desolvation to give 

robust and stable HOFs with high degrees of permanent porosity.  

Preliminary work, including the synthesis of various melams and analysis of their crystal 

structures, was carried out by Huy Che-Quang. I optimized the method of synthesis, made 

additional compounds, completed the characterizations, and wrote the experimental section. Dr 

Thierry Maris worked on the crystal structures. In addition, Prof. Ashlee Howarth and her 
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student Zvart Ajoyan at Concordia University measured the porosity of our materials. Prof. 

James Wuest supervised my work, and together we wrote the manuscript and experimental 

section. 
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2.2 Abstract 

 Ordered materials with predictable structures and properties can be made by a 

modular approach, using molecules designed to interact with neighbors and hold them in 

predetermined positions. Incorporating 4,6-diamino-1,3,5-triazin-2-yl (DAT) groups in 

modules is an effective way to direct assembly because each DAT group can form multiple N–

H···N hydrogen bonds according to established patterns. We have found that modules with high 

densities of N(DAT)2 groups can be made by base-induced double triazinylations of readily 

available amines. The resulting modules can form structures held together by remarkably large 

numbers of hydrogen bonds per molecule. Even simple modules with only 1–3 N(DAT)2 groups 

and fewer than 70 non-hydrogen atoms can crystallize to form highly open networks in which 

each molecule engages in over 20 N–H···N hydrogen bonds, and more than 70% of the volume 

is available for accommodating guests. In favorable cases, guests can be removed to create 

rigorously porous crystalline solids analogous to zeolites and metal-organic framewroks. 
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2.3 Introduction 

Modular construction has emerged as a powerful strategy for making ordered materials 

with predictable structures and properties. The strategy employs well-defined molecular 

modules designed to be joined to neighbors and held in predetermined positions. The properties 

of the individual modules can be varied according to need, and various chemical interactions 

can be chosen to direct the assembly. As a result, modular construction has unlimited scope for 

making useful new materials.  

The rapid growth of modular construction in recent decades was triggered by two closely 

related advances. One, in organic chemistry, was the discovery that predictably ordered 

networks can be constructed from modules that engage in hydrogen bonding.[1–4] The other, in 

inorganic chemistry, was the related demonstration that coordination to metals can also be used 

to program assembly.[5] This early work revealed the special potential of modular construction 

as a way to make porous materials. When modules have little flexibility and favor directional 

interactions with neighbors, close packing and optimal intermolecular bonding cannot normally 

be achieved at the same time. Open structures are typically formed, with interstitial volumes 

occupied by molecules of solvent or other guests present during assembly. These observations 

provided a starting point for the subsequent development of important new classes of porous 

ordered materials, including metal-organic frameworks (MOFs),[6] covalent organic frameworks 

(COFs),[7,8] and hydrogen-bonded organic frameworks (HOFs).[9–11] All three classes share a 

key feature; specifically, they have open structures from which guests can be removed to create 

rigorously porous ordered materials. Together, MOFs, COFs, and HOFs already have many 
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applications, particularly in catalysis, separations, and the reversible inclusion of gases and other 

guests. 

HOFs are less widely used than MOFs at present but offer unique advantages. For 

example, HOFs have metal-free porous structures of low density, and it may be possible to make 

biodegradable and biocompatible forms from renewable resources such as biomass. In addition, 

HOFs can show selective inclusion resulting from the special ability of hydrogen-bonded 

networks to deform in response to guests, and HOFs can be produced by low-energy solution-

based methods of crystallization, purification, and processing. However, hydrogen bonds are 

typically weaker than the coordinative interactions present in MOFs, so removing guests from 

hydrogen-bonded networks to give well-ordered HOFs with significant levels of permanent 

porosity is inherently challenging.  

An encouraging precedent, known for decades, is the behavior of hydroquinone as a 

module for constructing porous materials.[12] Each molecule in crystals of the β-form is 

hydrogen-bonded to four neighbors to create an open network, in which about 16% of the 

volume is available to accommodate guests. The network can be obtained either in porous guest-

free form or as solvates, with small guests occupying the available volume. Although the 

porosity is low, the fact that it arises from modules of great simplicity hints at the latent potential 

of HOFs as porous materials. A breakthrough in the field of HOFs was the discovery that 

crystalline hydrogen-bonded molecular solids can have high permanent porosities similar to 

those of MOFs and purely inorganic analogues such as zeolites. In the first reported example of 

this type,[13,14] solvated crystals composed of hydrogen-bonded molecules of 

tetrakis(diaminotriazine) 1 were placed under vacuum, which led to the removal of guests and 
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the formation of a porous solid without loss of crystallinity, as confirmed initially by single-

crystal X-ray diffraction and later by porosimetry. Subsequent work has revealed that other 

highly open hydrogen-bonded networks are robust enough to yield rigorously porous crystalline 

molecular solids after removal of guests.[15–19] As a result, HOFs cannot be dismissed as 

curiosities, and they can have properties that place them among the most remarkable porous 

materials known, including solvent-accessible volumes well above 70%, values of SBET 

exceeding 3000 m2 g-1, and densities below 0.5 g cm-3.[9–11,16,17] 

 

 

The structural integrity of such materials is maintained in large part by intermolecular 

hydrogen bonds, as assessed quantitatively by using DFT calculations to partition the lattice 
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energy of related solids into contributions from various sources, including hydrogen bonding.[20] 

Individual hydrogen bonds are weaker and less directional than covalent bonds and coordinative 

interactions involving metals. To compensate for this inherent disadvantage, each molecule in 

HOFs must normally engage in multiple hydrogen bonds. Diverse hydrogen-bonding functional 

groups can be used, but those that can serve simultaneously as donors and acceptors maximize 

the number of interactions per molecule. As illustrated by the behavior of compound 1 and many 

other examples, simple 4,6-diamino-1,3,5-triazin-2-yl (DAT) groups have proven to be 

particularly effective. Each group can form multiple hydrogen bonds according to three 

established motifs (I−III), which differ only in the relative orientation of the molecular cores 

(represented by gray spheres).[21] 

The established ability of DAT groups to direct the assembly of HOFs and ensure their 

structural integrity provides a strong incentive to find ways to increase the density of DAT 

groups in molecules designed for use in modular construction. A special opportunity is 

suggested by the structure of melam (2), a compound first reported by Liebig in 1834.[19] In 

melam (2), two DAT groups are bonded to a central atom of nitrogen, thereby creating an 

N(DAT)2 unit. Melam (2) is an intermediate in the formation of graphitic carbon nitrides by 

thermal condensation of melamine (3),[20–23] and it can also be obtained by other high-

temperature methods.[24,25] However, substituted derivatives of melam (2) are virtually 

unknown. Devising ways to graft multiple N(DAT)2 groups onto suitable molecular cores would 

allow the synthesis of compounds with exceptional capacities for forming hydrogen bonds. In 

this paper, we report simple ways to convert primary amines RNH2 into the corresponding 

substituted melams RN(DAT)2. In addition, we show that compounds with multiple N(DAT)2 
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groups can be used as modules to construct remarkably open hydrogen-bonded networks, and 

we demonstrate that the resulting materials can be converted into HOFs with high porosity.  

 

 

2.4 Results and Discussion 

 

Conversion of Primary Amines RNH2 into Substituted Melams RN(DAT)2.  

We found that primary amines RNH2 can be converted into substituted melams 

RN(DAT)2 by either of two straightforward procedures (Methods A and B in Scheme 1). Both 

methods are related to a process reported by Nohara et al. for triazinylating arylamines.[29] In 

our Method A, the amine is allowed to react with excess cyanuric chloride and sodium hydride 

at 25 °C in anhydrous THF, and the resulting intermediate is treated with concentrated aqueous 

NH3 at 60 °C. In Method B, sodium hydride is replaced in the first step by 

diisopropylethylamine. In both methods, the initial step achieves bis(triazinylation) of the 

starting amine, as shown in representative cases by isolating bis(4,6-dichloro-1,3,5-triazin-2-

yl)amines (4). Similar chlorotriazines were reported earlier by Nohara et al.[29] The 

chlorotriazines can normally be purified by crystallization or rapid column chromatography if 

desired but are susceptible to hydrolysis, so we typically converted them into substituted melams 
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by direct aminolysis, without isolation and purification. Method A was used to prepare melams 

5, 9, and 10 in overall yields of 60, 40, and 40%, respectively, and Method B provided analogues 

6–8 in overall yields of 53, 79, and 35%, respectively. Both methods are generally effective, and 

we simply selected the route that provided the higher yield, which appears to depend on factors 

that include the solubility and acidity of triazinylated intermediates. Melams 5–10 are all derived 

from arylamines, but Method A can also be used to make substituted melams from aliphatic 

amines, as illustrated by the conversion of benzylamine into melam 11 in 19% overall yield. As 

a result, our work provides simple ways to convert diverse primary amines into N(DAT)2-

substituted derivatives, thereby giving access to a promising new family of modules for 

constructing HOFs. 

Scheme 1 
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PhN(DAT)2 (5) 

Analysis by X-ray diffraction showed that crystals of melam 5 grown by cooling a hot 

solution in DMSO have the composition 5 • 3 DMSO and belong to the monoclinic space group 

C2/c. Other crystallographic data are provided in Table 1, views of the structure are shown in 

Figure 1, and selected parameters related to hydrogen bonding are collected in Table 2. As 

expected, compound 5 forms a network joined by multiple N–H···N hydrogen bonds 

characteristic of DAT groups, and interstitial volumes accommodate molecules of solvent. As 

shown in Figure 1a, each DAT group of compound 5 is linked to an essentially coplanar DAT 

group in two neighboring molecules, thereby giving rise to chains joined by a total of four 

hydrogen bonds of Type I per molecule (N···N distance = 2.968 Å). Association is reinforced 

by additional N–H···O hydrogen bonds involving well-ordered bridging molecules of DMSO 

(average N···O distance = 2.941 Å). Hydrogen-bonded chains of melam 5 pack to give 

corrugated sheets perpendicular to the b-axis (Figure 1b), and the sheets are stacked to give the 
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observed structure. Approximately 55% of the volume of the structure is accessible to guests.[30–

32] As shown in Table 2, the density of N–H···N hydrogen bonds per unit of volume in the 

crystals (2.92 × 10-3 Å-3) is substantially lower than that observed in the structure of the 

benchmark HOF derived from compound 1 (5.32 × 10-3 Å-3). 

Table 1. Crystallographic Data for Substituted Melams 5–8 

Compound 5 • 3 DMSO 
2 6 • 2 DMSO • 

9 H2O 

7 • n DMSO 

(n = ~12–16)a 
7 • 4 DMSO 

8 • 3 DMSO 

• solvent 

8 • 5 DMSO • 

2 C6H6 

       

crystallization 

medium 
DMSO DMSO/H2O DMSO/EtOH DMSO/Et3NH+ F- DMSO/EtOH DMSO/C6H6 

formula C18H31N11O3S3 C40H70N44O11S2 
C18H20N22 + 

solvent 
C26H44N22O4S4 

C24H38N22O3

S3 + solvent 
C40H62N22O5S5 

crystal system monoclinic monoclinic tetragonal orthorhombic orthorhombic monoclinic 

space group C2/c C2/c P43212 Pbca Pbcn P21/c 

a (Å) 10.9174(4) 25.072(4) 21.2871(5) 16.7736(4) 22.6297(5) 16.7222(7) 

b (Å) 18.9758(8) 13.115(2) 21.2871(5) 21.5283(5) 16.5486(4) 22.2116(9) 

c (Å) 13.2699(5) 20.790(3) 32.0541(7) 22.2754(5) 21.7786(5) 16.9061(7) 

α (°) 90 90 90 90 90 90 

β (°) 93.486(2) 112.824(6) 90 90 90 119.267(2) 

γ (°) 90 90 90 90 90 90 

V (Å³) 2743.99(18) 6300.7(18) 14525.0(8) 8043.8(3) 8155.9(3) 5477.8(4) 

Z 4 4 8 8 8 4 
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Z’ 0.5 0.5 1 1 1 1 

T (K) 200 150 150 150 150 150 

ρcalc (g cm-3) 1.321 1.484 0.498b 1.415 1.269b 1.323 

λ (Å) 1.54178 1.54178 1.34139 1.34139 1.54178 1.54178 

µ (mm-1) 2.823 1.558 0.190b 1.778 2.139b 2.469 

measured 

reflections 
17420 43823 99948 101158 125544 76432 

independent 

reflections 
2709 5686 13667 8659 7393 10704 

Rint 0.0492 0.0554 0.0648 0.0276 0.0438 0.0253 

observed 

reflections 
2489 5531 8222 7595 6925 9626 

R1, I > 2σ(I) 0.0573 0.0637 0.0470 0.0658 0.0855 0.0699 

R1, all data 0.0598 0.0645 0.0815 0.0716 0.0879 0.0735 

wR2, I > 2σ(I) 0.1573 0.1772 0.1487 0.1926 0.2383 0.2062 

wR2, all data 0.1544 0.1779 0.1709 0.1973 0.2397 0.2088 

GoF 1.047 1.057 1.121 1.097 1.201 1.141 

aComposition estimated by X-ray crystallography and NMR spectroscopy 

bCalculated without contributions from disordered solvent molecules as determined using the 

mask/squeeze routine 
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Figure 1. Representations of the structure obtained by crystallizing  PhN(DAT)2 (5) from 

DMSO. (a) View showing how molecules are linked into chains by N–H···N hydrogen bonds 

characteristic of DAT groups, reinforced by N–H···O hydrogen bonds involving bridging 

molecules of DMSO. Hydrogen bonds are represented by broken lines, with N···N and N···O 

distances given in Å. (b) View along the a-axis showing the cross sections of stacked corrugated 

sheets (in contrasting colors), each composed of parallel hydrogen-bonded chains packed along 

the a-axis. Unless noted otherwise, guest molecules of DMSO are omitted for clarity, and atoms 

of carbon are shown in gray, hydrogen in white, nitrogen in blue, oxygen in red, and sulfur in 

yellow. 

Table 2. Selected Parameters Related to Hydrogen Bonding in the Structures of Compounds 1 

and 5–10 

Compound DAT groups 

per molecule 

N–H···N 

hydrogen 

bonds per 

moleculea 

Hydrogen-

bonded 

neighbors 

per molecule 

N–H···N 

hydrogen bonds 

per unit volume 

(10-3 Å-3) 

     

1 4 16 8 5.32  

5 2 4 2 2.92  

6 4 14 3 8.89  

7 (P43212) 4 16 4 4.41  
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7 (Pbca) 4 22 7 10.94  

8 (Pbcn) 4 22 7 10.79  

8 (P21/c) 4 16 5 5.84  

9 6 20 5 5.19  

10 6 12 6 3.37  

aAn N–H···N hydrogen bond is considered to be formed when the measured N···N distance is 

less than 3.60 Å, the N···H distance is less than 2.65 Å, and the N–H···N angle is more than 

120°. 

In the structure, each molecule of PhN(DAT)2 (5) adopts a nonplanar propeller-shaped 

conformation similar to those favored by triphenylamine and related triarylamines. The central 

atom of nitrogen is sp2-hybridized (sum of C–N–C angles = 360.0°), defining a trigonal NC3 

core. The plane of this core lies at an angle of 46° with respect to the phenyl group, whereas the 

average angle between the plane of the core and the two triazinyl groups is 39°, reflecting 

slightly greater conjugation with the heterocyclic rings. Similarly, analysis of crystals of 

HN(DAT)2 (2) shows that the two triazinyl groups are turned out of the plane of the NC2 core, 

but in this case the central atom of nitrogen is only disubstituted, and the average angle of 

heteroaryl torsion is smaller (about 12°).[26]  

Tautomer 5A is favored in crystals of PhN(DAT)2 5, instead of alternatives such as 

internally hydrogen-bonded structure 5B. The average endocyclic carbon-nitrogen bond length 
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(1.343 Å) is similar to the length of exocyclic C–NH2 bonds (1.336 Å), which are formally 

single. The longest carbon-nitrogen bonds in the N(DAT)2 group of compound 5 (average length 

= 1.411 Å) are those involving the central atom of nitrogen, which is shared by two triazinyl 

rings. HN(DAT)2 (2) shows analogous behavior, and its carbon-nitrogen bond lengths are 

similar to those observed in substituted derivative 5. Although tautomer 5A provides an 

adequate representation of the molecular structure of compound 5, it is important to note that 

the carbon-nitrogen bonds in the N(DAT)2 group, both endocyclic and exocyclic, all have 

significant double-bond character. In PhN(DAT)2 5, the triazinyl rings are geometrically 

distorted, as they are in HN(DAT)2 (2), in melamine, and even in 1,3,5-triazine itself,[33,34] and 

the average endocyclic N–C–N angle in compound 5 (126.12°)  is much larger than the average 

C–N–C angle (113.82°).   

 

 

 

1,2-Ph[N(DAT)2]2 (6) 

Crystals of melam 6 were grown by allowing H2O to diffuse slowly into a solution in 

DMSO. Analysis by X-ray diffraction established that the crystals have the composition 2 6 •  2 

DMSO • 9 H2O and belong to the monoclinic space group C2/c. Table 1 presents additional 

crystallographic data, and Figure 2 provides views of the structure. Melam 6 generates an open 
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network joined by multiple N–H···N hydrogen bonds characteristic of DAT groups, and 

interstitial volumes accommodate guests. Figure 2a shows that molecules of compound 6 are 

linked along the b-axis to form chains held together by hydrogen bonds of Type III involving 

non-coplanar DAT groups (average N···N distance = 3.023 Å). Each molecule engages in a total 

of eight hydrogen bonds of this type. In addition, each molecule interacts with a third neighbor 

(Figure 2b) to form four N–H···N hydrogen bonds of Type I in which the DAT groups are non-

coplanar (average N···N distance = 3.093 Å). The chains are thereby linked into hcb sheets 

aligned with the bc-plane (Figure 2c), and each molecule of melam 6 engages in a total of 

fourteen N–H···N hydrogen bonds. Approximately 31% of the volume of the structure is 

accessible to guests.[27–29] 

 

	

a 
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d 

 

Figure 2. Representations of the structure obtained by crystallizing 1,2-Ph[N(DAT)2]2 (6) from 

DMSO/H2O. (a) View showing part of a chain of molecules held together by distorted N–H···N 

hydrogen bonds of Type III. (b) View illustrating how each molecule also participates in 

distorted N–H···N hydrogen bonds of Type I, which link the chains into sheets parallel to the 

bc-plane. (c) View along the b-axis showing the cross sections of sheets parallel to the bc-plane 

(in contrasting colors). (d) View demonstrating how the structure is reinforced by additional N–

H···O and O–H···N hydrogen bonds involving bridging molecules of H2O. A single bridging 

molecule is shown in one of two statistically equivalent disordered positions. Hydrogen bonds 

are represented by broken lines (with N···O distances in Figure 2d given in Å).  Unless noted 

otherwise, guest molecules are omitted for clarity, and atoms are shown in standard colors. 

As shown in Table 2, the numbers of N–H···N hydrogen bonds and hydrogen-bonded 

neighbors per molecule are both lower in the structure of 1,2-Ph[N(DAT)2]2 (6) than in the 
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benchmark HOF derived from compound 1, even though both compounds incorporate four DAT 

groups. In contrast, the density of hydrogen bonds is higher in melam 6. In the observed 

structure, paired DAT groups appear to be prevented from achieving an optimal coplanar 

orientation by geometrical constraints resulting from the attachment of two DAT groups to a 

single atom of nitrogen in N(DAT)2, as well as from the congested ortho-substitution of 

compound 6. For these reasons, the four DAT groups in compound 6 cannot fully exploit their 

potential for forming N–H···N hydrogen bonds, and various sites are free to engage in additional 

N–H···O and O–H···N hydrogen bonds with included molecules of DMSO and H2O. Of special 

note in the structure of melam 6 are bridging molecules of H2O (Figure 2d).  

As in the case of PhN(DAT)2 (5), the central atom of nitrogen in each N(DAT)2 group 

in compound Ph[N(DAT)2]2 (6) is sp2-hybridized, the three aryl and heteroaryl substituents 

adopt a propeller-shaped conformation, and the preferred tautomer is analogous to structure 5A. 

The dihedral angle between the planes defined by the NC3 core and the phenyl group is increased 

from 46° in melam 5 to an average value of 61° in analogue 6 by the effect of ortho-substitution, 

and the average angle between the plane of the NC3 core and the two triazinyl groups in 

compound 6 is significantly smaller (24°). 

 

1,3-Ph[N(DAT)2]2 (7) 

Allowing anhydrous EtOH to diffuse into a solution of melam 7 in DMSO produced 

crystals that were suitable for analysis by X-ray diffraction. The crystals proved to belong to the 

tetragonal space group P43212 and to include disordered molecules of DMSO, with an 
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approximate composition 7 • ~12–16 DMSO as estimated by X-ray crystallography and NMR 

spectroscopy. Additional crystallographic data are summarized in Table 1, and views of the 

structure are presented in Figure 3. The central atom of nitrogen in the two N(DAT)2 groups in 

compound 7 is sp2-hybridized, its aryl and heteroaryl substituents adopt a propeller-shaped 

conformation, and the dihedral angles between each planar NC3 core and the substituents are 

similar to those observed in simple melam PhN(DAT)2 (5). Like analogues 5–6, compound 7 

gives rise to a network joined by multiple N–H···N hydrogen bonds characteristic of DAT 

groups.  

	

a 



Chapter 2. Modular Construction of Porous Hydrogen-Bonded Molecular Materials from 

Melams 

55 

 

b 
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Figure 3. Representations of the structure produced by crystallizing 1,3-Ph[N(DAT)2]2 (7) from 

DMSO/EtOH. (a) View showing part of a chain of molecules with interdigitated DAT groups 

joined along the c-axis by distorted N–H···N hydrogen bonds of Types II and III. (b) Image 

showing how each molecule also participates in distorted N–H···N hydrogen bonds of Type I, 

which link the chains into a three-dimensional cds network. (c) Space-filling view along the c-

axis showing the cross sections of channels, with a single molecule of compound 7 highlighted 

in a contrasting color. Hydrogen bonds are represented by broken lines, and guests are 

disordered and not shown. Unless noted otherwise, atoms are drawn in standard colors. 

Figure 3a shows that interdigitation of non-coplanar DAT groups links 1,3-

Ph[N(DAT)2]2 (7) into chains aligned with the c-axis and held together by twelve distorted 

hydrogen bonds of Types II and III per molecule (average N···N distance = 3.080 Å). Each 

molecule also forms four distorted N–H···N hydrogen bonds of Type I (average N···N distance 

= 2.935 Å) with two other neighbors (Figure 3b), thereby joining the chains into a three-

dimensional cds network connected by a total of sixteen N–H···N hydrogen bonds per molecule 

of melam 7. The resulting network is remarkably open, and conspicuous channels (8.4 × 16 Å2) 

are aligned with the c-axis (Figure 3c). Approximately 74% of the volume of the structure is 

accessible to guests.[27–29] It is noteworthy that melam 7, which is a small molecule with only 40 

atoms other than hydrogen, can give rise to a network with such a high degree of openness. In 

contrast, the prototypic HOF derived from compound 1 is built from larger molecules (57 non-

hydrogen atoms), yet only 42% of the volume of the structure can accommodate guests. 

The behavior of 1,3-Ph[N(DAT)2]2 (7) reveals the special ability of multiple N(DAT)2 

groups to direct modular construction. Simpler analogue PhN(DAT)2 (5) has only one N(DAT)2 
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group, so chains are favored, with each molecule participating in only four N–H···N hydrogen 

bonds involving two neighbors (Table 2). In 1,2-Ph[N(DAT)2]2 (6), the presence of two 

N(DAT)2 groups allows the construction of sheets instead of chains, with an increased number 

of N–H···N hydrogen bonds per molecule (twelve) and neighbors (three); however, steric 

obstacles created by ortho-substitution prevent the DAT groups from participating fully in 

hydrogen bonding. 1,3-Disubstitution in isomer 7 eliminates these obstacles and leads to the 

formation of a highly open three-dimensional network with more hydrogen bonds per molecule 

(sixteen) and interacting neighbors (four), as summarized in Table 2. 

The high potential porosity of the structure derived from 1,3-Ph[N(DAT)2]2 (7) led us to 

attempt crystallizations under other conditions. In one such experiment, the compound was 

found to crystallize from DMSO containing a dissolved salt (Et3NH+ F-), and a related hydrogen-

bonded network was formed. The crystals proved to have the composition 7 • 4 DMSO and to 

belong to the orthorhombic space group Pbca. Et3NH+ F- is not included in the observed 

structure but appears to play a role in the crystallization. Table 1 includes additional 

crystallographic information, and Figure 4 provides views of the structure. Interdigitated DAT 

groups join compound 7 into chains aligned with the a-axis and held together by ten N–H···N 

hydrogen bonds per molecule (four of Type II, four of Type III, and two single N–H···N 

interactions), with an average N···N distance of 3.113 Å (Figure 4a). Each molecule interacts 

simultaneously with five other neighbors to form seven additional N–H···N hydrogen bonds 

(five single bonds and two of Type I) with an average N···N distance of 3.084 Å. The result is 

a three-dimensional vco network joined by a total of twenty-two N–H···N hydrogen bonds per 

molecule of melam 7. Six of the set of seven hydrogen-bonded neighbors lie approximately in 
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the ab-plane and define sheets, which are linked by hydrogen bonds of Type I involving the 

seventh neighbor (Figure 4b). Approximately 50% of the volume of the structure is accessible 

to guests.[30–32] Additional cohesion is provided by N–H···O hydrogen bonds involving bridging 

molecules of DMSO (Figure 4c), as shown in Figure 1a in the case of simple analogue 

PhN(DAT)2 (5). 

 

	

                                                                 a 
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Figure 4. Representations of the structure obtained by crystallizing 1,3-Ph[N(DAT)2]2 (7) from 

DMSO in the presence of Et3NH+ F-. (a) View showing part of a chain of molecules with 

interdigitated DAT groups joined along the a-axis by N–H···N hydrogen bonds of various types. 

(b) Space-filling view along the a-axis showing the cross sections of sheets parallel to the ab-

plane (in contrasting colors). (c) Image showing reinforcing N–H···O hydrogen bonds involving 

bridging molecules of DMSO. Hydrogen bonds are represented by broken lines. Unless noted 

otherwise, guests are omitted for clarity, and atoms are drawn in standard colors. 

The ability of 1,3-Ph[N(DAT)2]2 (7) to form at least two different hydrogen-bonded 

networks is not surprising and can be attributed to multiple factors, including (1) the 
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conformational flexibility of compound 7; (2) the ability of simple DAT groups to engage in 

several characteristic patterns of coplanar hydrogen bonding (I–III), as well as non-planar 

variants; and (3) access to additional interdigitated hydrogen-bonding motifs arising from the 

special features of N(DAT)2 groups in proximity. These factors may make the structures of 

compounds with multiple N(DAT)2 groups hard to foresee, but they also ensure that a single 

module can give rise to potentially porous crystalline materials with diverse architectures, 

depending on the conditions of crystallization. Crystallizations of melam 7 in pure DMSO and 

in DMSO containing Et3NH+ F- may differ because of the special ability of fluoride to form 

hydrogen bonds. 

It is instructive to compare key features of the vco network formed by crystallizing 1,3-

Ph[N(DAT)2]2 (7) in DMSO/ Et3NH+ F- with those of the prototypic HOF derived from 

compound 1. Compounds 1 and 7 both incorporate four DAT groups, and the numbers of N–

H···N hydrogen bonds per molecule and close neighbors are similar (Table 2). Nevertheless, 

the density of hydrogen bonds in the vco network generated by melam 7 (10.94 × 10-3 Å-3) is 

substantially higher than the corresponding value for the HOF built from compound 1 (5.32 × 

10-3 Å-3). This difference identifies compounds with multiple N(DAT)2 groups as promising 

modules for constructing porous crystalline materials that are more robust than those held 

together by simple DAT groups.   

1,4-Ph[N(DAT)2]2 (8) 

Crystals were grown by allowing anhydrous EtOH or diethyl ether to diffuse into 

solutions of melam 8 in DMSO. Analysis by X-ray diffraction revealed that the crystals have 
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the approximate composition 8 • 3 DMSO and belong to the orthorhombic space group Pbcn. 

Table 1 presents additional crystallographic data, and Figure 5 provides views of the structure. 

The conformational and tautomeric preferences of the N(DAT)2 groups in melam 8 are similar 

to those observed in analogues 5 and 7, and compound 8 gives rise to a network joined by 

multiple N–H···N hydrogen bonds characteristic of DAT groups. In particular, each molecule 

interacts with two neighbors along the b-axis to form a distinctive motif with interdigitated DAT 

groups (Figure 5a), which creates a total of ten hydrogen bonds (average N···N distance = 3.200 

Å), including four of Type II, four of Type III, and two additional simple N–H···N hydrogen 

bonds. As in the case of isomeric 1,3-disubstituted analogue 7, achieving compact interdigitation 

in the structure of 1,4-disubstituted melam 8 appears to require the formation of Type II and III 

N–H···N hydrogen bonds in which the participating DAT groups deviate significantly from 

optimal coplanarity. Each molecule of melam 8 is also linked to five other neighbors by a total 

of ten additional hydrogen bonds (two of Type I and eight simple N–H···N hydrogen bonds). 

Six of the total of seven neighbors lie approximately in the bc-plane, defining sheets (Figure 

5b), and the seventh neighbor (connected by paired N–H···N hydrogen bonds of Type I) is 

incorporated in an adjacent sheet. This yields a three-dimensional vcg network, in which each 

molecule is joined to its neighbors by a total of twenty-two N–H···N hydrogen bonds. The 

structure is remarkably similar to the one formed by isomeric 1,3-disubstituted melam 7 (Figure 

4b), and the density of hydrogen bonds (10.79 × 10-3 Å-3) is even higher (Table 2). Included 

molecules of DMSO form additional hydrogen bonds with melam 8, and approximately 51% of 

the volume is accessible to guests.[30-32]  
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Figure 5. Representations of the structure produced by crystallizing 1,4-Ph[N(DAT)2]2 (8) 

grown from DMSO/EtOH. (a) Part of a chain of interdigitated molecules joined along the b-axis 

by distorted N–H···N hydrogen bonds of Types II and III, as well as by simple hydrogen bonds. 
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(b) Space-filling view along the b-axis showing the cross sections of sheets parallel to the bc-

plane (in contrasting colors). Hydrogen bonds are represented by broken lines, with N···N 

distances given in Å. Guests are omitted for clarity, and atoms are shown in standard colors, 

unless noted otherwise 

 

Crystals also resulted when benzene was allowed to diffuse into solutions of 1,4-

Ph[N(DAT)2]2  (8) in DMSO. The crystals were found to have the composition 8 • 5 DMSO • 2 

C6H6 and to belong to the monoclinic space group P21/c. Additional crystallographic data are 

summarized in Table 1, and views of the structure appear in Figure 6. Molecules with 

interdigitated DAT groups are linked into chains along the c-axis by distorted N–H···N 

hydrogen bonds of Types II and III, with an average N···N distance of 3.175 Å (Figure 6a). Two 

additional neighbors are joined to each molecule of melam 8 by a total of three hydrogen bonds 

(two of Type I and one simple N–H···N hydrogen bond), yielding an open three-dimensional 

noy network in which each molecule is joined to five neighbors by a total of sixteen hydrogen 

bonds. Significant channels (6.3 × 13 Å2) are aligned with the a-axis (Figure 6b), and 

approximately 65% of the volume is accessible to guests.[27–29] Included molecules of solvent 

are largely ordered, and DMSO forms additional hydrogen bonds with melam 8. 
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Figure 6. Representations of the structure obtained by crystallizing 1,4-Ph[N(DAT)2]2  (8) from 

DMSO/C6H6. (a) Part of a chain of interdigitated molecules joined along the c-axis by distorted 
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N–H···N hydrogen bonds of Types II and III. (b) Space-filling view along the a-axis showing 

the cross sections of channels. A single molecule of compound 8 is shown in a contrasting color. 

Hydrogen bonds are represented by broken lines, with N···N distances given in Å. Guests are 

omitted for clarity and atoms are drawn in normal colors, unless noted otherwise. 

 

1,3,5-Ph[N(DAT)2]3 (9) 

Melams 6–8 incorporate two N(DAT)2 groups and consistently produce networks in 

which N–H···N hydrogen bonding is a major cohesive force, as measured both by the density 

of hydrogen bonds per unit volume and by the number per molecule. Of particular note is the 

behavior of melams 7–8, in which suitably oriented N(DAT)2 groups form special interdigitated 

associative motifs. These patterns of association led us to study the behavior of 1,3,5-

Ph[N(DAT)2]3 (9), in which three N(DAT)2 groups are positioned in similar ways. 

Crystals of melam 9 grown from DMSO/MeOH proved to have the approximate 

composition 9 • 11 DMSO and to belong to the monoclinic space group C2/c. Table 3 provides 

additional crystallographic data, and Figure 7 shows views of the structure. The three N(DAT)2 

groups of compound 9 favor conformations like those observed in simpler analogues 5, 7, and 

8. Each molecule of melam 9 is linked to two neighbors by interactions involving interdigitated 

N(DAT)2 groups (Figure 7a–b), leading to the formation of chains held together by a total of 

fourteen N–H···N hydrogen bonds per molecule (eight of Type II and six of Type III, with an 

average N···N distance of 3.128 Å). As shown in Figure 7c, three other neighbors are joined to 

each molecule of melam 9 by a total of six hydrogen bonds of Type I (average N···N distance 
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= 2.994 Å). These interactions give rise to a highly open three-dimensional noy network in 

which the number of hydrogen-bonded neighbors (five), the number of N–H···N hydrogen 

bonds per molecule (twenty), and the density of hydrogen bonds (5.19 × 10-3 Å-3) all have high 

values (Table 2). Approximately 68% of the volume of the structure is accessible to guests,[30–

32] included molecules of DMSO are disordered, and very large channels (12 × 13 Å2) are aligned 

with the c-axis (Figure 7d). 

Table 3. Crystallographic Data for Substituted Melams 9–10 

Compound 9 10 

   

crystallization medium DMSO/MeOH DMSO/EtOH 

formula C24H27N33 + solvent C27H33N33 + solvent 

crystal system monoclinic trigonal 

space group C2/c P3c1 

a (Å) 29.648(3) 22.8270(11) 

b (Å) 34.503(3) 22.8270(11) 

c (Å) 17.4110(5) 21.2262(7) 

α (°) 90 90 

β (°) 107.839(4) 90 

γ (°) 90 90 
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V (Å³) 16954(3) 14234.3(12) 

Z 8 6 

Z’ 1 0.5 

T (K) 150 100 

ρcalc (g cm-3) 0.609* 0.574* 

λ (Å) 1.54178 1.54178 

µ (mm-1) 0.372* 0.344* 

measured reflections 175817 64830 

independent reflections 13025 8793 

Rint 0.0495 0.0366 

observed reflections 13025 4978 

R1, I > 2σ(I) 0.0969 0.0927 

R1, all data 0.1043 0.1187 

wR2, I > 2σ(I) 0.3721 0.2953 

wR2, all data 0.3901 0.3123 

GoF 1.083 1.016 

*Calculated without contributions from disordered solvent molecules as determined using the 

mask/squeeze routine 
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Figure 7. Representations of the structure produced by crystallizing 1,3,5-Ph[N(DAT)2]3 (9) 

from DMSO/MeOH. (a) View showing a central molecule of compound 9 (light blue) and one 

of two neighbors that engage in hydrogen bonds involving interdigitated N(DAT)2 groups. (b) 

Image showing the same central molecule (light blue) and a second neighbor with interdigitated 

N(DAT)2 groups.  (c) View showing how the central molecule (light blue) and three additional 

neighbors are linked by N–H···N hydrogen bonds of Type I. (d) Space-filling view along the c-

axis showing the cross sections of channels, with a single molecule of compound 9 highlighted 

in a contrasting color. Hydrogen bonds are represented by broken lines, disordered guests are 

not shown, and atoms are drawn in standard colors, unless noted otherwise. 
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1,3,5-Me3-1,3,5-Ph[N(DAT)2]3 (10) 

The consistent behavior of substituted melams 7–9 suggests that well-oriented N(DAT)2 

groups can direct modular construction with certain elements of predictability. In particular, the 

groups yield networks held together by unusually large numbers of N–H···N hydrogen bonds 

per molecule, and normal patterns of association characteristic of DAT groups are observed, as 

well as more complex versions arising from interdigitation. However, other organizational 

details, such as the precise number of hydrogen-bonded neighbors or hydrogen bonds per 

molecule, cannot yet be foreseen with confidence. Nevertheless, it is clear that compounds with 

multiple N(DAT)2 groups are well-suited for the modular construction of hydrogen-bonded 

materials. 

The behavior of 1,3,5-Me3-1,3,5-Ph[N(DAT)2]3 (9) encouraged us to study its methyl-

substituted analogue 10. Crystals suitable for analysis by X-ray diffraction were grown by 

allowing anhydrous EtOH to diffuse into solutions of melam 10 in DMSO. The crystals were 

found to have the approximate composition 10 • 7 DMSO and to belong to the trigonal space 

group P3c1. Other crystallographic data are summarized in Table 3, and views of the structure 

are presented in Figure 8. The three N(DAT)2 groups of compound 10 favor conformations 

similar to those observed in simpler analogues; however, the average angle (75.6°) between the 

plane of the aryl core and the NC2 plane defined by the central atom of nitrogen and the two 

bonded atoms of carbon in each N(DAT)2 group is significantly increased by the effect of the 

flanking methyl groups. The nearly orthogonal orientation of the N(DAT)2 groups disfavors 

interdigitation of the type observed in the structures of melams 7–9. Instead, each molecule of 

compound 10 is joined to six neighbors by a total of twelve N–H···N hydrogen bonds of Type 
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I (average N···N distance = 2.976 Å), forming chains aligned with the c-axis (Figure 8a). This 

yields a highly open three-dimensional cds network in which approximately 69% of the volume 

is accessible to guests,[27–29] and large channels (10 × 11 Å2) are aligned with the c-axis (Figure 

8b). 

 

	

a 
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Figure 8. Representations of the structure obtained by crystallizing melam 10 from 

DMSO/EtOH. (a) View showing how a central molecule (light blue) is joined to six neighbors 

by a total of twelve N–H···N hydrogen bonds of Type I to form chains aligned with the c-axis. 

(b) Space-filling view along the c-axis showing the cross sections of channels. A single molecule 

of compound 10 is shown in a contrasting color. Hydrogen bonds are represented by broken 

lines, disordered guests are not shown, and atoms are drawn in normal colors, unless noted 

otherwise. 
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Demonstrating Porosity in Materials Constructed from Complex Melams 

The integrity of the prototypic HOF derived from compound 1 is maintained primarily 

by N–H···N hydrogen bonds involving four simple DAT groups. As summarized in Table 2, 

each molecule of compound 1 forms sixteen hydrogen bonds with eight neighbors. In the P43212 

structure of 1,3-Ph[N(DAT)2]2 (7), with a total of four DAT groups incorporated in two 

N(DAT)2 units, each molecule takes part in the formation of sixteen N–H···N hydrogen bonds 

involving four neighbors. In crystals of melam 10, with three N(DAT)2 groups, each molecule 

forms twelve N–H···N hydrogen bonds involving six neighbors. Table 2 shows that the densities 

of N–H···N hydrogen bonds in the structures derived from compounds 1, 7, and 10 are similar 

(5.32, 4.41, and 3.37 × 10-3 Å-3, respectively). For this reason, we thought that desolvating 

crystals of melams 7 or 10 might yield HOFs, even though the percentage of guest-accessible 

volume in the observed structures (74% and 68%, respectively) is substantially higher than that 

in the structure of compound 1 (42%), making the formation of an open guest-free framework 

from compounds 7 and 10 correspondingly more challenging. 

Unfortunately, all attempts to produce ordered solids with permanent porosity by 

removing solvent from the P43212 crystals of 1,3-Ph[N(DAT)2]2 (7), were unsuccessful. 

Desolvation could be achieved by placing crystals containing DMSO under vacuum at 25 °C, 

but the resulting material proved to be amorphous and nonporous. Crystals were also immersed 

in DMSO/EtOH (1:1), then exposed to pure EtOH, and finally placed under vacuum at 25 °C, 

but the residual solid was again amorphous and nonporous. In addition, we were unable to 

convert crystals of melam 7 into a porous activated form by exposure to supercritical CO2 

(scCO2).  
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We turned to melam 10 and desolvated crystals grown from DMSO/EtOH by placing 

them in EtOH to effect exchange, followed by removing included solvent under vacuum at 25 

°C. Analysis by powder X-ray diffraction confirmed that the resulting material was crystalline 

(Figure 9), but the structure of the solvated form was not retained, and exposure to solvent did 

not regenerate the original form. Efforts to obtain desolvated material in the form of single 

crystals suitable for structural analysis by X-ray diffraction have not yet been successful. 

Material with a similar powder diffraction pattern was obtained by exposing crystals of melam 

10 to scCO2,[35] and the resulting solid proved to be porous. Reversible adsorption/desorption of 

N2 at 77 K is shown in Figure 10, and the Brunauer–Emmett–Teller (BET) surface area was 

determined to be 515 m2 g-1. The observed surface area exceeds that found for the prototypic 

HOF prepared from compound 1 (359 m2 g-1 as measured by sorption of CO2 at 196 K)[14] and 

is the highest reported for a HOF held together primarily by N–H···N hydrogen bonds.  

 

Figure 9. Powder X-ray diffraction pattern of the porous solid obtained by subjecting crystals 

of melam 10 grown from DMSO/EtOH to exchange and desolvation under vacuum at 25 °C. 
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Figure 10. N2 sorption isotherm at 77 K for crystals of melam 10 desolvated by exposure to 

scCO2. Inset: Distribution of pore sizes as estimated by DFT. 

The observed Type I N2 sorption isotherm indicates that the new HOF is microporous, 

and further analysis of the data by DFT suggests the presence of pores 9.3 Å in diameter (Figure 

10, inset). The desolvated HOF and the solvated framework initially produced by crystallizing 

melam 10 from DMSO/EtOH have structures that are not identical, but they appear to be related 

because both have pores of similar diameter (9.3 Å as measured by porosimetry and 10–11 Å 

as found by X-ray crystallography). However, the experimentally determined BET surface area 

(515 m2 g-1) is much smaller than the value (3000 m2 g-1) estimated by MOF Explorer for 

hypothetical solvent-free crystals of melam 10 grown from DMSO/EtOH.[36,37] In the case of 

the prototypic HOF derived from compound 1, the measured surface area (359 m2 g-1) is also 

much lower than the estimated value (1650 m2 g-1). These changes reveal that both frameworks 
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respond to desolvation by undergoing deformations that reduce accessible surface substantially. 

Figure 8 shows that channels in the structure of crystals of melam 10 are aligned with the c-axis. 

Because similar channels appear to be retained in the corresponding HOF, we conclude that 

forces induced by desolvation are exerted primarily along the c-axis, which is the principal 

direction of N–H···N hydrogen bonding and presumably the least resistant to compression.   

The porous crystalline solid constructed from melam 10 is especially noteworthy 

because most previously reported HOFs, including the prototypic HOF formed from compound 

1, show little or no adsorption of N2 at 77 K.[38–42] The porosity of HOFs produced from 

compound 1 and melam 10 appears to be largely one-dimensional, with access limited to 

channels parallel to the c-axis in both structures. The special ability of the HOF derived from 

melam 10 to sorb N2 may be due to the significantly larger diameter of its channels.  

Solvated crystals formed by compounds 1, 7, and 10 have similar densities of N–H···N 

hydrogen bonds, all formed by interacting DAT groups (Table 2), yet the consequences of 

desolvation differ markedly. In the cases of benchmark compound 1 and melam 10, structural 

changes occur but porous crystalline solids are nevertheless obtained. In contrast, desolvation 

of crystals of 1,3-Ph[N(DAT)2]2 (7) produces amorphous nonporous materials under all 

conditions examined. These intriguing differences in behavior appear to result from various 

factors. In particular, the percentage of guest-accessible volume is much higher in crystals of 

melams 7 and 10, making it inherently more difficult for the desolvated forms to remain 

crystalline and to maintain open structures. In addition, N–H···N hydrogen bonds that maintain 

the structure of crystals of compounds 1, 7, and 10 have similar overall densities but may vary 

in strength or in the degree of non-isotropic spatial distribution, which may make the 
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frameworks vulnerable to stresses applied in certain directions. Differences in the behavior of 

the three compounds may also reflect structure-reinforcing effects of hydrogen bonding with 

included molecules of solvent, and specific architectural features may also affect the ease of 

repositioning neighboring molecules. For example, compound 1 has a nearly rigid 

tetraphenylmethyl core, and DAT groups normally lie close to the plane of aryl substituents to 

allow the formation of intramolecular C–H···N interactions.[21] As a result, compound 1 has a 

well-defined shape, whereas melams 7 and 10 can adopt diverse conformations that differ 

according to the torsional angles formed by the planar NC3 core of each N(DAT)2 group with 

respect to the aryl and triazinyl substituents. 

At present, the relative importance of these various factors is not clear. Further study is 

needed to reveal why melam 10 yields a HOF with record porosity for frameworks held together 

primarily by N–H···N hydrogen bonds, despite the potential disadvantages of a high percentage 

of accessible volume and significant molecular flexibility. We believe that the simplicity of 

making complex melams, combined with the apparent ease of crystallizing them, will give rise 

to a large new family of HOFs, allowing systematic comparisons of the type needed to reveal 

how to control porosity by design. These studies may help lead to HOFs that can rival or surpass 

other classes of porous materials in performance.  

2.5 Conclusions 

Our work provides straightforward ways to convert amines RNH2 into the corresponding 

melams RN(DAT)2 by base-induced triazinylations and subsequent reactions with NH3. 

Complex melams have a special ability to form structures held together by large numbers of N–
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H···N hydrogen bonds per molecule. When suitably designed, even simple compounds with 

only 1–3 N(DAT)2 groups and no more than 70 non-hydrogen atoms can crystallize to form 

highly open networks in which each molecule engages in over 20 N–H···N hydrogen bonds and 

more than 70% of the volume is available for accommodating guests. In favorable cases, guests 

can be removed to create rigorously porous crystalline hydrogen-bonded frameworks. In 

principle, any compound with multiple NH2 groups can be converted into a derivative with an 

equal number of N(DAT)2 groups and a greatly enhanced ability to engage in intermolecular 

hydrogen bonds. As a result, our work is expected to lead to a broad new family of compounds 

suitable for the modular construction of HOFs with unusually high degrees of robustness, 

porosity, and other useful properties.  

  

2.6 Experimental Section 

All reagents and solvents were obtained from commercial sources and used without 

further purification unless otherwise indicated.  

N2-(4,6-Diamino-1,3,5-triazin-2-yl)-N2-phenyl-1,3,5-triazine-2,4,6-triamine (5). Aniline 

(0.19 g, 2.0 mmol), cyanuric chloride (3.6 g, 20 mmol), and sodium hydride (60% by weight in 

oil, 1.6 g, 40 mmol) were combined in anhydrous oxygen-free THF (10 mL), and the mixture 

was stirred at 25 °C overnight under an atmosphere of N2. The resulting yellow suspension was 

filtered, the separated solid was washed with THF, and volatiles were then removed from the 

combined filtrate and washings by evaporation under reduced pressure. The residual yellow 
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solid was transferred to a sealable tube and treated with aqueous NH3 (14 M, 12 mL, 170 mmol). 

The tube was closed, and the mixture was stirred at 60 °C for 72 h to give a suspension of 

colorless solid. The solid was separated by filtration and was washed with hot H2O, MeOH, and 

anhydrous EtOH. The washed solid was then dried in vacuo to give a colorless sample of 

compound 5 (0.38 g, 1.2 mmol, 60%). Further purification could achieved by crystallization 

from hot DMSO: mp > 300 °C; FTIR (ATR) 3473, 3304, 3138, 1629, 1527, 1334, 1015, 802, 

625 cm−1; 1H NMR (300 MHz, DMSO-d6) δ 7.27 (t, 3J = 7.3 Hz, 2H), 7.08 (t, 3J = 7.3 Hz, 1H), 

7.05 (d, 3J = 7.3 Hz, 2H), 6.60 (bs, 8H); 13C NMR (100 MHz, DMSO-d6) δ 169.29, 168.77, 

143.51, 129.31, 127.43, 125.46; HRMS (ESI-TOF) m/z [M + H]+ calcd for C12H14N11 

312.14282, found 312.14309. 

N2,N2'-(1,2-Phenylene)bis(N2-(4,6-diamino-1,3,5-triazin-2-yl)-1,3,5-triazine-2,4,6-triamine 

(6). 1,2-Benzenediamine (0.21 g, 1.9 mmol), cyanuric chloride (1.5 g, 8.1 mmol), and 

diisopropylethylamine (1.4 mL, 8.0 mmol) were combined in anhydrous oxygen-free THF (10 

mL), and the mixture was stirred at 25 °C overnight under an atmosphere of N2. The resulting 

yellow suspension was filtered, the separated solid was washed with THF, and volatiles were 

then removed from the combined filtrate and washings by evaporation under reduced pressure. 

The residual yellow solid was transferred to a sealable tube and was treated with aqueous NH3 

(14 M, 11 mL, 150 mmol). The tube was closed, and the mixture was stirred at 60 °C for 72 h 

to give a suspension of colorless solid. The solid was separated by filtration and was washed 

with hot H2O, MeOH, and anhydrous EtOH. The washed solid was then dried in vacuo to give 

a colorless sample of compound 6 (0.56 g, 1.0 mmol, 53%). Further purification could achieved 

by crystallization from hot DMSO: mp > 300 °C; FTIR (ATR) 3455, 3322, 3189, 1619, 807, 
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1528, 1331, 807 cm-1; 1H NMR (300 MHz, DMSO-d6) δ 7.03 (m, 2H), 6.91 (m, 2H), 6.23 (s, 

16H); 13C NMR (100 MHz, DMSO-d6) δ 168.54, 168.25, 140.27, 129.15, 125.67; HRMS (ESI-

TOF) m/z [M + H]+ calcd for C18H21N22 545.23141, found 545.23061. 

N2,N2'-(1,3-Phenylene)bis(N2-(4,6-diamino-1,3,5-triazin-2-yl)-1,3,5-triazine-2,4,6-triamine 

(7). 1,3-Benzenediamine (0.21 g, 1.9 mmol), cyanuric chloride (1.5 g, 8.1 mmol), and 

diisopropylethylamine (1.4 mL, 8.0 mmol) were combined in anhydrous oxygen-free THF (10 

mL), and the mixture was stirred at 25 °C overnight under an atmosphere of N2. The resulting 

yellow suspension was filtered, the separated solid was washed with THF, and volatiles were 

then removed from the combined filtrate and washings by evaporation under reduced pressure. 

The residual yellow solid was transferred to a sealable tube and was treated with aqueous NH3 

(14 M, 10 mL, 150 mmol). The tube was closed, and the mixture was stirred at 60 °C for 72 h 

to give a suspension of colorless solid. The solid was separated by filtration and was washed 

with hot H2O, MeOH, and anhydrous EtOH. The washed solid was then dried in vacuo to give 

a colorless sample of compound 7 (0.83 g, 1.5 mmol, 79%). Further purification could achieved 

by crystallization induced by allowing anhydrous EtOH to diffuse slowly into a saturated 

solution in DMSO: mp > 300 °C; FTIR (ATR) 3316, 3187, 1623, 1525, 1341, 1015, 809, 756 

cm-1; 1H NMR (400 MHz, DMSO-d6) δ 7.19 (t, 3J = 8.0 Hz, 1H), 6.88 (dd, 3J = 8.0 Hz, 4J =2.0 

Hz, 2H), 6.73 (t, 4J = 2.0 Hz, 1H), 6.60 (s, 16H); 13C NMR (175 MHz, DMSO-d6) δ 168.56, 

168.26, 142.77, 128.85, 124.23, 123.96; HRMS (ESI-TOF) m/z [M + H]+ calcd for C18H21N22 

545.23141, found 545.23203. 

N2,N2'-(1,4-Phenylene)bis(N2-(4,6-diamino-1,3,5-triazin-2-yl)-1,3,5-triazine-2,4,6-triamine 

(8). 1,4-Benzenediamine (0.21 g, 1.9 mmol), cyanuric chloride (1.5 g, 8.1 mmol), and 



Chapter 2. Modular Construction of Porous Hydrogen-Bonded Molecular Materials from 

Melams 

82 

diisopropylethylamine (1.4 mL, 8.0 mmol) were combined in anhydrous oxygen-free THF (10 

mL), and the mixture was stirred at 25 °C overnight under an atmosphere of N2. The resulting 

yellow suspension was filtered, the separated solid was washed with THF, and volatiles were 

then removed from the combined filtrate and washings by evaporation under reduced pressure. 

The residual yellow solid was transferred to a sealable tube and was treated with aqueous NH3 

(14 M, 11 mL, 150 mmol). The tube was closed, and the mixture was stirred at 60 °C for 24 h 

to give a suspension of colorless solid. The solid was separated by filtration and was washed 

with hot H2O, MeOH, and anhydrous EtOH. The washed solid was then dried in vacuo. 

Crystallization of the solid was induced by allowing anhydrous EtOH to diffuse into a solution 

in DMSO, followed by slow evaporation of the mixture. This yielded compound 8 (0.36 g, 0.66 

mmol, 35%) as a colorless solid: mp > 300 °C; FTIR (ATR) 3314, 3188, 1620, 1527, 1333, 

1017, 813 cm-1; 1H NMR (400 MHz, DMSO-d6) δ 7.04 (s, 4H), 6.57 (s, 16H); 13C NMR (100 

MHz, DMSO-d6) δ 169.04, 168.78, 139.62, 127.35; HRMS (ESI-TOF) m/z [M + H]+ calcd for 

C18H21N22 545.23141, found 545.23104. 

1,3,5-Benzenetriamine Trihydrochloride. 1,3,5-Benzenetriamine was prepared by the Pd/C-

catalyzed reduction of 3,5-dinitroaniline by hydrazine, using a published method.[43] After the 

reaction mixture was filtered through Celite, the Celite was washed with MeOH, and the 

combined filtrate and washings were treated with concentrated aqueous HCl (20–50 mL). The 

resulting colorless precipitate was separated by filtration and dried in vacuo to afford 1,3,5-

benzenetriamine trihydrochloride: 1H NMR (400 MHz, DMSO-d6) δ 6.7 (br s, 9H), 6.6 (s, 3H). 

N2,N2',N2''-(Benzene-1,3,5-triyl)tris[N2-(4,6-diamino-1,3,5-triazin-2-yl)-1,3,5-triazine-

2,4,6-triamine] (9). 1,3,5-Benzenetriamine trihydrochloride (0.46 g, 2.0 mmol), cyanuric 

chloride (3.4 g, 18 mmol), and sodium hydride (60% by weight in oil, 1.6 g, 40 mmol) were 
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combined in anhydrous oxygen-free THF (10 mL), and the mixture was stirred at 25 °C for 72 

h under an atmosphere of N2. The resulting yellow suspension was filtered, the separated solid 

was washed with THF, and volatiles were then removed from the combined filtrate and 

washings by evaporation under reduced pressure. The residual yellow solid was transferred to a 

sealable tube and was treated with aqueous NH3 (14 M, 12 mL, 170 mmol). The tube was closed, 

and the mixture was stirred at 60 °C for 72 h to give a suspension of colorless solid. The solid 

was separated by filtration and was washed with hot H2O, MeOH, and anhydrous EtOH. The 

washed solid was then dried in vacuo and was crystallized from hot DMSO. The resulting 

crystals were separated by filtration, washed with H2O, and dried in vacuo to afford compound 

9 (0.62 g, 0.80 mmol, 40%) as a colorless solid: mp > 300 °C; FTIR (ATR) 3315, 3187, 1619, 

1525, 1342, 1011, 814,  462 cm-1; 1H NMR (400 MHz, DMSO-d6) δ 6.66 (s, 3H), 6.56 (s, 24H); 

13C NMR (100 MHz, DMSO-d6) δ 168.63, 168.56, 141.86, 121.53; HRMS (ESI-TOF) m/z [M 

+ H]+ calcd for C24H28N33  778.31999, found 778.32019. 

N2,N2',N2''-(2,4,6-Trimethylbenzene-1,3,5-triyl)tris[N2-(4,6-diamino-1,3,5-triazin-2-yl)-

1,3,5-triazine-2,4,6-triamine] (10).  2,4,6-Trimethyl-1,3,5-benzenetriamine (0.33 g, 2.0 

mmol),[44–46] cyanuric chloride (3.4 g, 18 mmol), and sodium hydride (60% in oil, 0.72 g, 18 

mmol) were combined in anhydrous oxygen-free THF (10 mL), and the mixture was stirred at 

25 °C for 48 h under an atmosphere of N2. The resulting yellow suspension was filtered, the 

separated solid was washed with THF, and volatiles were then removed from the combined 

filtrate and washings by evaporation under reduced pressure. The residual yellow solid was 

transferred to a sealable tube and was treated with aqueous NH3 (14 M, 11 ml, 150 mmol). The 

tube was closed, and the mixture was stirred at 60 °C for 48 h to give a suspension of colorless 
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solid. The solid was separated by filtration and was washed with hot H2O, MeOH, and 

anhydrous EtOH. The washed solid was then dried in vacuo to give a colorless sample of 

compound 10 (0.65 g, 0.79 mmol, 40%). Further purification could be achieved by 

crystallization induced by allowing anhydrous EtOH to diffuse slowly into a saturated solution 

in DMSO: mp > 300 °C; FTIR (ATR) 3320, 3197, 1614, 1530, 1445, 813, 1345 cm-1; 1H NMR 

(400 MHz, DMSO-d6) δ 6.40 (s, 24H), 1.97 (s, 9H); 13C NMR (175 MHz, DMSO-d6) δ 168.57, 

168.15, 138.26, 136.84, 15.50; HRMS (ESI-TOF) m/z [M + H]+ calcd for C27H34N33 820.36694, 

found 820.36583. 

N-Benzyl-4,6-dichloro-1,3,5-triazin-2-amine. N-Benzyl-4,6-dichloro-1,3,5-triazin-2-amine 

was prepared by a published procedure[47] and crystallized from hot hexane. The crystals were 

separated by filtration, washed with hexane, and dried in vacuo to afford N-benzyl-4,6-dichloro-

1,3,5-triazin-2-amine (3.69 g, 14.5 mmol, 78%) as a colorless solid: 1H NMR (400 MHz, CDCl3) 

δ 7.41-7.31 (m, 5H), 6.30 (bs, 1H), 4.70 (d, 3J = 6.1 Hz, 2H). 

N2-Benzyl-N2-(4,6-diamino-1,3,5-triazin-2-yl)-1,3,5-triazine-2,4,6-triamine (11). N-Benzyl-

4,6-dichloro-1,3,5-triazin-2-amine (0.995 g, 3.90 mmol), cyanuric chloride (2.17 g, 11.8 mmol), 

and sodium hydride (60% by weight in oil, 0.470 g, 11.8 mmol) were combined in anhydrous 

oxygen-free THF (10 mL), and the mixture was stirred at 25 °C for 48 h under an atmosphere 

of N2. The resulting yellow suspension was filtered, the separated solid was washed with THF, 

and volatiles were then removed from the combined filtrate and washings by evaporation under 

reduced pressure. The residual solid was transferred to a sealable tube and was treated with 

aqueous NH3 (14 M, 12 mL, 170 mmol). The tube was closed, and the mixture was stirred at 80 

°C for 72 h to give a suspension of colorless solid. The solid was separated by filtration and was 
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washed with hot H2O, MeOH, and anhydrous EtOH. The washed solid was then dried in vacuo 

to give a colorless sample of compound 11 (0.30 g, 0.92 mmol, 24%). Further purification could 

be achieved by crystallization induced by allowing CHCl3 to diffuse slowly into a saturated 

solution in DMSO: mp 266 °C; FTIR (ATR) 3323, 3137, 1629, 1530, 1450, 1378, 1283, 1015, 

946, 814 cm-1; 1H NMR (400 MHz, DMSO-d6) δ 7.34 (d, 3J = 7.3 Hz, 2H), 7.25 (t, 3J = 7.3 Hz, 

2H), 7.17 (t, 3J = 7.3 Hz, 1H), 6.45 (s, 8H), 5.13 (s, 2H); 13C NMR (100 MHz, DMSO-d6) δ 

168.75, 168.47, 140.50, 128.75, 128.12, 127.18, 50.33; HRMS (ESI-TOF) m/z [M + H]+ calcd 

for C13H16N11 326.15847, found 326.15836. 

Homogeneity of Crystalline Samples of Melams 5–11 

Typically, crystallizations of compounds 5–11 were efficient and yielded small, well-

formed single crystals that appeared to be homogeneous when examined by polarized light 

microscopy. Diffusion of EtOH into a solution of melam 5 (0.0205 g) in DMSO (2 mL) induced 

the formation of 0.0149 g of crystals (73%, assuming that the initial and recrystallized solid 

samples are equally solvated). Crystallizations of melams 6, 7, 9, and 10 on similar scales 

provided crystals in 98%, 61%, 83%, and 65% yields, respectively. Crystallization of melam 8 

on a somewhat larger scale (0.90 g) from DMSO (15–18 mL) provided 0.36 g of crystals (40%). 

In general, removal of crystals of melams 5–11 from the mother liquors, followed by drying, 

led to rapid loss of crystallinity and the formation of amorphous solids, so it was not possible to 

confirm by powder X-ray diffraction that the bulk samples consisted largely of a single 

crystalline phase. 
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highly porous crystalline molecular materials held together by hydrogen bonds. 
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Chapter 3. Conclusions and Perspectives 
In previous chapters, we have shown that the strategy of the modular construction can 

be used in conjunction with N(DAT)2 units to generate well-defined highly open hydrogen-

bonded networks. Hydrogen bonds have a crucial role in this work since they are robust and 

directional. N(DAT)2  groups have a strong potential to direct the self-assembly of frameworks 

that are held together by numerous N-H···N bonds per module. Our work has proven that even 

simple structures, such as those containing only one or two N(DAT)2 groups, can still form 

highly open networks. The results also show that as more hydrogen bonds are involved in these 

frameworks, the volume accessible to guests can reach or even surpass 70%. The architectures 

resulting from self-assembly of compounds containing N(DAT)2 units are robust and in 

favorable cases can retain their crystallinity after removing guests by desolvation. This allows 

the exchange of guests as well as the formation of unusually open-hydrogen-bonded frameworks 

(HOFs) with a high robustness, significant porosity, and other valuable properties. As an 

example, in our work melams 7 and 10 showed particularly high solvent-accessible volumes 

and high potential porosity. We examined both materials to see if they could be converted into 

permanently porous HOFs. In fact, melam 10 yielded a crystalline porous HOF, but melam 7 

resulted in amorphous material. At this stage of our work, there is no clear answer why the open 

framework of melam 7 collapses when solvent is removed and fails to yield a porous crystalline 

HOF. Melam 10 is microporous and has channels with a large diameter (9.3 Å), which may 

facilitate the loss of guests under mild conditions and allow conversion into a HOF without loss 

of crystallinity. Melam 10 showed a small surface area (515 m2/g) compared to other types of 

HOFs such as those ones built from modules held together by N−H···O hydrogen bonds. For 
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example, Mastalerz generated a HOF by grafting imidazolone units onto a rigid core of 

triptycene, and the resulting desolvated material showed a surface area of 2796 m2/g (Chapter 

1, Figure 10). We are optimistic that the relatively small surface area of our compound will 

result in high selectivity toward specific gas species such as CO2. As a result, our work is 

expected to lead to a broad new family of compounds suitable for the modular construction of 

HOFs with unusually high degrees of robustness, porosity, and other useful properties. 

By deepening our understanding of the self-assembly of N(DAT)2 groups, our research 

opens new doors in the design and synthesis of frameworks based on N(DAT)2 functionality. 

Such compounds are likely to be highly porous and may thus prove to be useful materials. There 

are a large number of new compounds that can be targeted as part of future work. As an example, 

hexaphenylbenzene is an interesting compound that can be used as a core onto which N(DAT)2  

groups can be grafted, giving compound 1. An analogue of this compound with one DAT group 

appended to each phenyl ring has been examined before by the Wuest group and found to give 

a robust open hydrogen-bonded network. We expect the addition of multiple N(DAT)2 groups 

will produce a molecule with a remarkable ability to engage in multiple hydrogen bonds and 

produce highly porous frameworks.1  

Another promising class of compounds that have proven to generate highly open 

networks by other strategies are those with tetraphenylmethane cores. Potential new targets 

include compounds 2 and 3, which are rigid and structurally well-defined.2 Another interesting 

target can be achieved by grafting N(DAT)2  groups onto a tetraphenyl orthocarbonate core (4).3 

Target 4 is particularly attractive because the Wuest group has developed significant expertise 

in the synthesis of aryl orthocarbonates, and we believe that compound 4 and analogues can be 
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made from readily available phenols in two or three steps. Moreover, these compounds can 

participate in unusually large numbers of intermolecular hydrogen bonds, leading to the 

generation of robust and highly open networks. Similarly, N(DAT)2 functionalized 

bicyclooxacalixarene cages 5, are realistic targets that are expected to have a high potential for 

producing robust networks that can retain their crystallinity after desolvation, as well as its 

analogues did.4,5 

 

We expect that materials built from these compounds will have a strong potential utility 

because of their porous nature and additional favorable properties, such as low density relative 

to other porous materials such as MOFs and zeolites. Moreover, because compounds with 

N(DAT)2 groups associate by hydrogen bonding, they are expected to give porous materials 
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with structures that can deform in response to the requirements of guests, leading to a potential 

for selective inclusion. As a result, future targets 1-5 are likely to be particularly effective for 

use in separations and the selective storage of guests.  

An important challenge for the future is to identify permanently porous ordered organic 

materials that can be produced cheaply on a large scale. Converting the –NH2 group into the 

N(DAT)2 group is a simple one-pot operation that uses inexpensive reagents, so commercial 

production of new materials held together by the interactions of multiple –N(DAT)2 groups 

should be feasible, starting from various readily-available compounds with multiple –NH2 

groups. Particularly attractive possibilities include the conversion of polyamines such as 

(aminomethyl)polystyrene or poly(vinylamine) into the corresponding derivatives in which the 

–NH2 groups have been transformed into –N(DAT)2 groups. Strong but reversible inter-chain 

interactions based on hydrogen bonding should give rise to the formation of networks with high 

intrinsic porosity. 

In such ways, hydrogen-bonded organic frameworks (HOFs) may eventually have an 

important practical impact. By studying and working on these types of materials, we have built 

new types of HOFs with novel properties. We believe that the approach we have used will lead 

to many more classes of compounds that can generate porous organic materials. 
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I. Methods of Activation and Measurements of Porosity 

Equipment: Vacuum activation was performed using a Micromeritics Smart VacPrep equipped 

with a hybrid turbo vacuum pump. Drying with supercritical CO2 (scCO2) was carried out using 

a Tousimis Samdri-PVT-3D manual critical-point dryer. N2 adsorption-desorption isotherms 

were collected at 77 K using a Micromeritics Tristar II Plus instrument. 

Attempted Methods of Activation: With a Pasteur pipet, mother liquors (DMSO/EtOH) were 

removed from freshly crystallized samples of melams 7 (P43212 form) and 10 (~100 mg each), 

and the residual solids were placed under vacuum at 25 °C for 5 h prior to N2 adsorption-

desorption measurements. Samples prepared in this way did not sorb N2, so they were placed 

under vacuum at 25 °C for an additional 24 h. After this additional treatment, the samples still 

did not demonstrate permanent porosity. Freshly-crystallized samples of melams 7 and 10 were 
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also exposed twice for 5 min to EtOH (10 mL) to promote exchange of included solvent, but no 

permanent porosity was observed after the exchanged samples were dried under vacuum. 

Supercritical Activation: With a Pasteur pipet, mother liquors (DMSO/EtOH) were removed 

from freshly crystallized samples of melams 7 (P43212 form) and 10 (~100 mg each), and the 

residual solids were exposed twice for 5 min to EtOH (10 mL) to promote exchange of included 

solvent. The two resulting samples were then transferred to supercritical drying dishes, placed 

in a supercritical drying chamber, and subjected to exchange with liquid CO2 for 2 h. The 

samples were each purged once after 10 min and again after 2 h, before being heated to the 

supercritical point of CO2 (31.1 °C at 1071 psi). The samples were each left in supercritical CO2 

for 15 min before the supercritical drying chamber was bled at a rate of 0.5 cm3 min-1. 

Measurements of Porosity: Figure S1 shows the BET plot obtained for samples of melam 10 

activated by scCO2. Figure S2 shows the powder X-ray diffraction patterns of materials prepared 

by subjecting solvated crystals of melam 10 grown from DMSO/EtOH to two methods of 

activation: (1) Initial exposure of the crystals to 1:1 DMSO/EtOH, subsequent exposure to pure 

EtOH, and desolvation at 25 °C under vacuum and (2) initial exposure of the crystals to EtOH, 

followed by supercritical activation as described above. 
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Figure S1. BET plot for crystalline melam 10 activated by scCO2. The solid black line 

corresponds to p/p0 at the monolayer capacity (nm), and the dotted line corresponds to the 

calculated value for monolayer formation (√C + 1)-1. 
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Figure S2. Powder X-ray diffraction patterns, as simulated for the hypothetical solvent-free 

form of crystals of melam 10 grown from DMSO/EtOH (red), as measured for crystals exposed 

to pure EtOH and then subjected to activation by supercritical CO2 (blue), and as measured for 

crystals exposed to 1:1 DMSO/EtOH and then to pure EtOH, followed by desolvation at 25 °C 

under vacuum (black). 

 

 

 

 



Annex A 

vii 

II. Additional Crystallographic Information 

Data collection was carried out on a Bruker Venture Metaljet diffractometer using GaKα 

radiation (λ = 1.34139 Å). During all experiments, the samples were cooled using an Oxford 

Cryostream liquid-nitrogen device at 150 K. The cell lattice parameters were determined using 

reflections taken from three sets of 104 frames measured and harvested within the APEX3 suite 

of programs.1 Integration of frames was performed using SAINT,7 and a semiempirical 

absorption correction was applied with SADABS.2 The structures were solved using a dual space 

and intrinsic phasing approach with SHELXT,3 and the refinement was carried out using 

SHELXL-2018/3.4  

Many of the crystal structure refinements were challenging because of the presence of 

disordered molecules of solvent, which resulted in weak reflections at high angles. For melam 

8 crystallized from DMSO/EtOH, certain molecules of solvent proved to be disordered in ways 

that prevented the use of models with reasonable geometries. The refinement was carried out by 

including disordered molecules of DMSO molecules refined with partial occupancy factors, 

while the remaining disordered solvent contribution was modeled by applying the mask/squeeze 

routine implemented in OLEX2.5,6 A total of 392 electrons was found in the unit cell, 

corresponding (with Z = 4) to roughly two molecules of DMSO and one molecule of H2O for 

each molecule of melam 8. For melams 9 and 10, as well as for melam 7 crystallized from 

DMSO/EtOH, the entire solvent contribution was treated with the mask/squeeze routine. Totals 

of 4086, 3664, and 3625 electrons per cell were found for melams 7, 9, and 10, respectively. 

This corresponds roughly to 96, 87, and 86 molecules of DMSO in the unit cells, respectively, 

giving 12 molecules of DMSO per molecule of melam 7 (Z = 8), 11 for melam 9 (Z = 8), and 7 
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for melam 10 (Z = 12). Crystals of melam 10 grown from DMSO/EtOH were highly unstable. 

They decomposed within seconds when removed from their mother liquors and yielded a new 

crystalline form when kept at 25 °C in contact with the mother liquors for several days.   

Solvent-accessible volumes were evaluated using the VOID routine in PLATON,5 and 

hydrogen-bonded network topologies were investigated using TOPOS.7 Structural data have 

been deposited at The Cambridge Crystallographic Data Centre with deposition numbers CCDC 

1970867‑ 1970874. These data can be obtained free of charge via 

www.ccdc.cam.ac.uk/data_request/cif, by emailing data_request@ccdc.cam.ac.uk, or by 

contacting The Cambridge Crystallographic Data Centre, 12 Union Road, Cambridge CB2 1EZ, 

UK; fax: +44 1223 336033. 
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III. ORTEP Diagrams 

 

Figure S2. Thermal atomic displacement ellipsoid plot of the structure obtained by crystallizing 

PhN(DAT)2 (5) from DMSO. The ellipsoids of non-hydrogen atoms are drawn at the 50% 

probability level, and hydrogen atoms are represented by a sphere of arbitrary size. Symmetry 

code (i): 1-x, y, ½-z. 
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Figure S3. Thermal atomic displacement ellipsoid plot of the structure obtained by crystallizing 

1,2-Ph[N(DAT)2]2 (6) from DMSO/H2O. The ellipsoids of non-hydrogen atoms are drawn at 

the 50% probability level, and hydrogen atoms are represented by a sphere of arbitrary size. 

Only the major component of the disordered solvent molecule is shown. 
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Figure S4. Thermal atomic displacement ellipsoid plot of the structure produced by crystallizing 

1,3-Ph[N(DAT)2]2 (7) from DMSO/EtOH. The ellipsoids of non-hydrogen atoms are drawn at 

the 50% probability level, and hydrogen atoms are represented by a sphere of arbitrary size. 
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Figure S5. Thermal atomic displacement ellipsoid plot of the structure obtained by crystallizing 

1,3-Ph[N(DAT)2]2 (7) from DMSO in the presence of Et3NH+ F-. The ellipsoids of non-

hydrogen atoms are drawn at the 50% probability level, and hydrogen atoms are represented by 

a sphere of arbitrary size. Only the major component of the disordered solvent molecule is 

shown. 
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Figure S6. Thermal atomic displacement ellipsoid plot of the structure produced by crystallizing 

1,4-Ph[N(DAT)2]2 (8) from DMSO/EtOH. The ellipsoids of non-hydrogen atoms are drawn at 

the 50% probability level, and hydrogen atoms are represented by a sphere of arbitrary size. 

Only the major component of the disordered solvent molecule is shown. 
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Figure S7. Thermal atomic displacement ellipsoid plot of the structure obtained by crystallizing 

1,4-Ph[N(DAT)2]2 (8) from DMSO/C6H6. The ellipsoids of non-hydrogen atoms are drawn at 

the 50% probability level, and hydrogen atoms are represented by a sphere of arbitrary size. 

Only the major component of the disordered solvent molecule is shown. 
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Figure S8. Thermal atomic displacement ellipsoid plot of the structure produced by 

crystallizing 1,3,5-Ph[N(DAT)2]3 (9) from DMSO/MeOH. The ellipsoids of non-hydrogen 

atoms are drawn at the 50% probability level, and hydrogen atoms are represented by a sphere 

of arbitrary size. 
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Figure S9. Thermal atomic displacement ellipsoid plot of the structure obtained by crystallizing 

melam 10 from DMSO/EtOH. The ellipsoids of non-hydrogen atoms are drawn at the 50% 

probability level, and hydrogen atoms are represented by a sphere of arbitrary size. Symmetry 

code (i): x-y, -y, 1/2-z. 
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IV. 1H and 13C NMR Spectra of Melams 5–11 
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