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Artificial intelligence for the measurement of vocal stereotypy
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Both researchers and practitioners often rely on direct observation to measure and monitor behavior.
When these behaviors are too complex or numerous to be measured in vivo, relying on direct observa-
tion using human observers increases the amount of resources required to conduct research and to
monitor the effects of interventions in practice. To address this issue, we conducted a proof of concept
examining whether artificial intelligence could measure vocal stereotypy in individuals with autism.
More specifically, we used an artificial neural network with over 1,500 minutes of audio data from 8 dif-
ferent individuals to train and test models to measure vocal stereotypy. Our results showed that the arti-
ficial neural network performed adequately (i.e., session-by-session correlation near or above .80 with a
human observer) in measuring engagement in vocal stereotypy for 6 of 8 participants. Additional
research is needed to further improve the generalizability of the approach.
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Whether experimental or applied, the sci-
ence of behavior analysis targets a wide range
of topics that aim to understand and to
improve the functioning of human organisms
(Skinner, 1951). A common thread central to
this endeavor is the measurement of behavior.
In most research involving human participants,
researchers rely either on permanent products
(e.g., responses automatically recorded from
pressing on a computer screen) or on direct
observation to examine the effects of indepen-
dent variables on behavior. Practicing behavior
analysts must also use these measures to moni-
tor behavior when directly intervening with
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individuals in a professional setting (Behavior
Analyst Certification Board, 2017).

The reliance on direct observation using
human observers in many contexts raises an
important issue related to available resources.
For example, using continuous recording to
monitor multiple or high frequency behavior
often requires an independent observer who
scores the behavior from a video recording.
Furthermore, researchers need to include a
second observer to increase the believability of
the results by monitoring interobserver agree-
ment (Mudford et al., 2009). If a researcher
has 20 hr of video recordings to score for one
participant, the human resources can easily
add up to 30 to 50 hr of work. This time does
not include the resources and time involved in
hiring and training additional staff to conduct
these tasks. With many participants, these
additional resources can add up rapidly and
limit the amount of research that can be done
or the number of intervention sessions that
can be afforded.

One potential solution to significantly
reduce response effort associated with direct
observation is to use artificial intelligence.
Broadly, artificial intelligence is “the study of
how to make computers do things at which, at
the moment, people do better” (Rich &
Knight, 1991, p. 3). As such, the measurement
of behavior is a topic well suited to artificial
intelligence as human observers are currently
better than computers at monitoring most
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types of behavior (Goodwin et al., 2011). One
promising tool in artificial intelligence is
machine learning, which involves training
models to detect signals or patterns in data
(see Lanovaz et al., 2020, for behavior analytic
introduction to the topic). That is, machine
learning takes data as input to develop mathe-
matical models that allows them to predict the
value or categorization of novel data.

One type of machine learning algorithm is
the artificial neural network. Simply put, an
artificial neural network takes input data from
the experimenter, which are then transformed
by mathematical functions to produce a predic-
tion (Goodfellow et al., 2016). Typically, artifi-
cial neural networks contain three types of
layer: (1) the input layer, (2) the hidden layer,
and (3) the output layer (see Fig. 1). The input
layer receives features to train the model. The
hidden neurons allow the model to learn more
complex relationships between these features
by transforming the data. Finally, the output
layer provides the prediction of the model.
Mathematically, the algorithm multiplies the
input data by weights (which are initially set

Figure 1
Visual Representation of the Design of the Artificial Neural Net-
work

Input data Hidden layer Output
(260 features) (128 neurons) (binary variable)
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randomly) and transforms the product using
an activation function to standardize the data.
The result is then multiplied by a second series
of weights and again transformed by an activa-
tion function. Next, the algorithm computes
an error using a loss function, which compares
the output values with the class labels (i.e., the

true  values).  Finally, the  algorithm
retropropagates the gradient (derivative) of
the error to update the weights. The

retropropagation of the gradient of the error
involves a variable called the learning rate,
which determines how “fast” the model
changes the weights. The retropropagation
should produce updated weights that typically
lead to more accurate predictions (less error)
on the next pass. Each pass across the steps is
called an epoch. The whole process is akin to
shaping in behavior analysis where the model
updates itself to provide increasingly more
accurate responses following feedback.

One challenge with artificial neural net-
works is that the training of models requires a
large amount of data. Considering that indi-
viduals with developmental disability often
engage in high rates of repetitive behavior, a
starting point could be to apply these algo-
rithms to this population. Individuals with
developmental disability often engage in ste-
reotypy, which is repetitive behavior character-
ized by movement invariance that is not
maintained by social contingencies (Rapp &
Vollmer, 2005). Researchers and practitioners
further divide stereotypy into two types: motor
and vocal stereotypy. Some researchers have
already evaluated the use of machine learning
algorithms to identify motor stereotypy in this
population (Goodwin et al.,, 2011; Min &
Tewfik, 2010; Rad & Furlanello, 2016; Westeyn
etal., 2005).

In the first study on the automated detection
of stereotypy, Westeyn et al. (2005) used acceler-
ometers to monitor behaviors and then applied a
hidden Markov model to classify the data. Their
model was capable of automatically and accu-
rately detecting 69% of hand flapping in one typ-
ically developing adult who was mimicking
stereotypy. Following this study, other researchers
applied different algorithms (k-nearest neighbors
and iterative subspace identification) to monitor
body rocking and hand flapping in persons with
autism with promising accuracy varying between
83% and 90% (Goodwin et al, 2011; Min &
Tewfik, 2010). Finally, Rad and Furlanello (2016)
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applied artificial neural networks to detect motor
stereotypy and found preliminary results that sup-
port the relevance of this approach.

The prior studies have all focused on motor
stereotypy, but another form that should be
targeted for reduction is vocal stereotypy
(Rapp et al., 2013). A recent systematic review
reported that 48% of individuals with develop-
mental disability engage in at least one form
of vocal stereotypy (Chebli et al., 2016). Exam-
ples of forms reported in the literature include
monosyllable vocalizations, acontextual words
or phrases, and acontextual laughing and
grunting (DiGennaro Reed et al, 2012;
Lanovaz et al., 2011; Rapp et al., 2013; Spen-
cer & Alkhanji, 2018; Weston et al., 2018).
Researchers have also evaluated the potential
of machine learning for measuring vocal ste-
reotypy (Min & Fetzner, 2018; 2019). In their
first article, Min and Fetzner (2018) used a tra-
ditional machine learning algorithm to detect
vocal stereotypy in four children with autism
spectrum disorder (ASD) with an accuracy
between 73% and 93%. In a second study, Min
and Fetzner (2019) applied an artificial neural
network to detect vocal stereotypy with an
accuracy of 85%.

A serious limitation of both prior studies
was that the researchers only measured
whether stereotypy was absent or present in
brief videoclips. If the procedures are to be
useful to researchers and practitioners, we
must develop models that can measure the
duration of stereotypy (not only its presence
or absence) during longer sessions. As a mat-
ter of fact, finding ways to automate the mea-
surement of the duration of vocal stereotypy
could not only decrease the amount of
resources required for conducting research,
but also facilitate the monitoring of the behav-
ior in applied settings. A second limitation is
that the researchers only extracted videos that
did not contain treatment (akin to baseline).
Researchers and practitioners are likely to
measure vocal stereotypy in baseline and treat-
ment sessions, which is why examining the
models under both these conditions is impor-
tant. One common treatment for vocal stereo-
typy is providing access to noncontingent
music (i.e., continuous preferred music).
Researchers have repeatedly shown that this
treatment is effective at reducing vocal stereo-
typy in children with ASD (Gibbs et al., 2018;
Lanovaz et al., 2011; Saylor et al., 2012). Given
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the potential challenges of identifying vocal
stereotypy during this treatment condition,
the inclusion of such sessions when testing
models appears essential.

Thus, the purpose of our study was to deter-
mine whether we could train a machine learn-
ing algorithm to measure the duration of
vocal stereotypy using audio data extracted
from video recordings of both baseline and
treatment sessions. More specifically, our study
examined whether models derived from an
artificial neural network could produce
session-by-session correlations at or above .80
when compared to the values measured by a
human observer. We set the benchmark at .80
because (a) this correlation score is consid-
ered strong to very strong (Schober
et al., 2018), and (b) prior research has found
similar or higher correlations when examining
the validity of discontinuous measurements
methods (Leblanc et al., 2020). Given the pur-
pose of our study, our research ques-
tions were:

1. Can an artificial neural network produce a
session-by-session correlation of .80 or bet-
ter with human observers when measuring
the duration of vocal stereotypy?

2. What type of data analysis (i.e., within-par-
ticipant, between-participant, or hybrid
approach) produces the best measures of
vocal stereotypy?

Method

Participants and Settings

To train and test our models, we measured
vocal stereotypy in eight children with ASD
who had previously participated in a study on
the use of a mobile app to reduce engagement
in stereotypy (Préfontaine et al., 2019). The
mobile app involved the delivery of non-
contingent music for children who engaged
mainly in vocal stereotypy. Two participants,
Dave and Emile, also received differential rein-
forcement as an intervention during some of
the sessions. An independent multidisciplinary
team had provided a diagnosis of ASD to each
child prior to their participation in the study.
All participants received their schooling or
their primary care in English or French.
Table 1 presents the age, gender, and a
description of the vocal stereotypy for each
participant. Our university research ethics
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board approved both the original and the cur-
rent study.

The sessions occurred in each child’s home
during regularly planned activities, which
affected the quality of audio recordings.
Therefore, we excluded sessions (a) where sib-
lings could be heard in the background
because the first author was unable to deter-
mine which sounds were emitted by whom
when relying on the audio recordings, and
(b) in which ambient noise or sounds
impeded the measurement of vocal stereotypy
by the first author. Table 2 presents the num-
ber of sessions and the time in seconds of
recordings for each participant that we used as
part of the current study.

Extraction of Audio Recordings and
Features

The first author extracted the audio from
standard definition video recordings in .mpeg
format using VLC®, an open source video soft-
ware. The program extracted the audio to a .
wav format with a sampling rate of 22,050 Hz,
one audio channel and a bit rate of 16 Kbits/
s. Both the human observers used this .wav file
to measure vocal stereotypy. Artificial neural
networks cannot analyze .wav files because the
amount of information encoded is too large
for processing with a typical computer. To
address this issue, we wused the package
python_speech_features for Python to extract
the Mel Filterbank Cepstrum Coefficient
(MFCC) from the audio files. The MFCC
allows the extraction of a set of 26 audio fea-
tures that have been widely used in machine
learning, specifically in speech recognition
(Chia et al., 2012; Kumar et al., 2011). These
26 features provide a description of the sound
during short time windows. Our algorithm

Table 1

Participant Characteristics
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sampled the sound every 0.1 s for a time win-
dow of the same duration. Therefore, each
second of recording was represented by
260 features (10 timesteps multiplied by
26 features).

Artificial Neural Networks

As part of the current study, we selected an
artificial neural network as our machine learn-
ing algorithm. Our raw data and Python code
are freely available on the Open Science Frame-
work (see https://osfio/edvbs/). Figure 1
depicts our artificial neural network. The input
involved 260 features per second of recording
(see extraction of audio recordings and features
section). Based on broad recommendations by
Heaton (2015) and on the computation power
available to us, our neural network contained a
single hidden layer with 128 neurons. Our
model involved a single binary output value for
each second: vocal stereotypy present (value = 1)
or vocal stereotypy absent (value = 0). For our
analysis, we used the Adam optimizer to set our
learning rate. The algorithm trained our models
until the kappa metric (see below) had not
improved for 10 consecutive epochs (i.e., loops)
on the validation set. Given that our audio
recordings contained more seconds containing
silence than vocal stereotypy, we also applied a
correction to the error to balance them out. To
promote generalization to untrained exemplars,
our algorithm also applied dropout regulariza-
tion, which randomly left out 20% of the data in
each layer when making predictions.

Data Collection and Interobserver

Agreement

The first author manually coded each
audio recording on a second-by-second basis

Participants Age Gender Description of vocal stereotypy

Emile 7 M Grunting and unintelligible vocalizations

Matt 5 M Monosyllable sounds and repetitive singing
Dave 6 M Humming and unintelligible vocalizations
Billy-Peter 8 M Monosyllable sounds and acontextual giggling
Owen 7 M Phrase or word repetitions

Dan 11 M Phrase or word repetitions

Alia 10 F Humming and unintelligible vocalizations
Nate 6 M Phrase or word repetitions
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Table 2

Number of Sessions and Duration of Dataset Per Participant

Marie-Micheéle Dufour et al.

Participants Number of Sessions Total Time (s) With Music (s) Without Music (s)
Emile 38 27,448 719 26,729
Matt 6 4,015 2,044 1,971
Dave 30 20,756 3,685 17,071
Billy-Peter 10 6,909 2,729 4,180
Owen 25 17,461 4,357 13,104
Dan 11 7,533 4,750 2,783
Alia 10 7,091 2,783 4,308
Nate 12 8,351 4,820 3,531
Total 142 99,564 25,887 73,677

using Audacity®, an open source audio soft-
ware. We defined vocal stereotypy as acontextual
or unintelligible sounds or words produced
by the vocal apparatus of the child. If vocal
stereotypy was present even for a fraction of a
second, the first author coded the behavior
as occurring during the second (as in partial
interval recording with 1-s intervals). Other-
wise, she scored the behavior as not occur-
ring during the second. A second observer
measured vocal stereotypy on 42% of the
recordings. The mean second-by-second
interobserver agreement was 97% (range:
93%-99%) and the mean kappa interobserver
agreement was .87 (range: .81-.94).

Procedures

Between-Participant Analysis

Our first analyses aimed to determine
whether our models could predict the dura-
tion of vocal stereotypy for children whose
data were not used during training. If the
model produced adequate predictions, behav-
ior analysts could develop models that could
be applied to any child who engages in vocal
stereotypy. To conduct the analysis, we used a
variation of the leave one out cross-validation
methodology (Wong, 2015). Our code divided
our participants into three sets: the training
set (six participants), the validation set (one
participant), and the test set (one participant).
Our algorithm used the training set to train
and update the model, and the validation set
to determine when to stop the training and to
select the model that produced the highest
kappa value. The test set assessed generaliza-
tion, as it was not used during training or to
select the most accurate model. The program

repeated our analyses eight times so that each
participant was in the test set once, and in the
validation set once.

For each model, we measured accuracy, the
kappa statistic and a correlation on the test
(generalization) set. To measure accuracy, the
code divided the number of seconds on which
the prediction of our model and the observa-
tion of the first author agreed by the total
number of seconds in the dataset. Accuracy
can be easily skewed by unbalanced datasets
by which a model is better at predicting the
absence than the presence of vocal stereotypy.
Therefore, we also measured agreement using
the kappa statistic as it provides control over
agreements that are the result of chance and
balances the values of both possible outcomes.
Kappa and accuracy only provide a within-
session measure of agreement. Behavior
analysts typically consider session-by-session
patterns when analyzing single-case data in
graphs. To address this issue, we added a mea-
sure comparing session-by-session values. Spe-
cifically, our program measured correlations
on a session-by-session basis between the per-
centage of vocal stereotypy computed by the
model and the percentage of stereotypy
observed by the first author. To examine the
potential effects of music on measurement,
the previous analyses were repeated twice:
once with a dataset including all sessions and a
second time with a dataset excluding sessions
with music."

'Emile wore headphones during most of the non-
contingent music sessions. For analyses purposes, these
sessions were categorized as having no music because the
audio recordings contained no background music.
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Figure 2
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Between-Participant Analyses: Correlation Between the Percentages Measured by the Machine Learning Algorithm and Those Measured

by the Human Observer Across All Sessions for Each Participant
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Within-Participant Analysis

Our second series of analyses involved
examining whether we could produce better
results using within-participant predictions. If
the model produced adequate predictions,
behavior analysts could score the first few ses-
sions of a child for vocal stereotypy and then
use the model to predict vocal stereotypy in
subsequent sessions. In this case, we con-
ducted the analysis for each participant

individually. The test set contained a single
session for the participant whereas the
remaining sessions were divided between the
training set (83% of the remaining sessions)
and the validation set (17% of the remaining
sessions). The code repeated the analysis once
per session for each participant. Apart from
the composition of the test, training, and vali-
dation sets, the procedures and analyses
remained the same as for the between-
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Figure 3
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Between-Participant Analyses: Correlation Between the Percentages Measured by the Machine Learning Algorithm and Those Measured
by the Human Observer Across Sessions Without Music Only for Each Participant
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participant analyses. Moreover, we did not test
for the effects of music because the amount of
data would have been insufficient for many
participants. As our analysis produced multiple
values for each participant, the means across
sessions are reported.

Hybrid Analysis

Our third series of analyses involved com-
bining within- and between-participant data.
As in the within-participant analysis, the test

set contained a single session for the partici-
pant, whereas the remaining sessions were
divided between the training set (67% of the
remaining sessions) and the validation set
(33%* of the remaining sessions). However,
we also added between-participant data in
such a way that the training set contained 50%

*We could add more sessions in the validation set
because our training set was larger due to between-partici-
pant data.
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of within-participant data and 50% of data
from other participants, which increased the
number of samples. Because the between-
participant data had a lot more samples, the
algorithm picked the samples randomly to
match the number from the within-participant
component.

Results

As shown in Table 2, there were between six
and 35 sessions per participant, for a total of
142 sessions from eight participants. The total
duration of the 142 sessions was 99,564 s. The
total duration of sessions with music was
25,887 s, whereas the duration of sessions with-
out music was 73,677 s (see Table 2). We used
the previous data to develop our machine
learning models using between-participant,
within-participant, and hybrid analyses.

The left side of Table 3 and Figure 2 pre-
sent the results of the between-participant ana-
lyses. Five of the eight participants had kappa
statistics above or close to 0.5, indicating mod-
erate to substantial agreement between the
human observer and the computer model. For
these five participants, the session-by-session
correlation between the human observer and
the computer model remained above .80,
which indicates a strong to very strong correla-
tion (see Fig. 2). Two participants (i.e., Alia
and Nate) had negative correlations, which
indicates that models were more likely to pro-
duce an inverse pattern when compared to
the true values. Therefore, we repeated the
analysis on sessions without music only to
determine whether the background music was
misleading the algorithms (see right side of
Table 3 and Fig. 3). For Alia and Nate, all

Table 3
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measures improved. However, the removal of
music sessions considerably worsened the cor-
relations for three participants (i.e., Billy-
Peter, Owen, and Dan).

Table 4 and Figure 4 present the results of the
within-participant analyses. Rather than using
the data from the other participants to train the
models (as in our between-participant analyses),
the within-participant analyses consisted of train-
ing the models with the participant’s own data.
This manipulation involved a tradeoff: It
reduced the amount of data available in the
training set for each participant, but it also made
the training set more like the vocal stereotypy
that we were trying to measure. The results show
that the kappa statistics were higher in the
within-participant analysis than the between-
participant analysis for four participants. In con-
trast, the correlations improved for six of eight
participants. A further examination of these data
indicates that this result may be misleading. This
improvement involved the three participants
who had the lowest correlations in the between-
participant analyses. As such, fewer participants
achieved the .80 correlation criterion in the

Table 4

Within-Participant Analyses: Accuracy, Kappa, and Correlation
for Each Participant

Participants Accuracy Kappa Correlation
Emile 0.94 0.75 0.97
Matt 0.80 0.43 0.96
Dave 0.83 0.60 0.66
Billy-Peter 0.91 0.25 0.93
Owen 0.86 0.40 0.88
Dan 0.79 0.23 0.34
Alia 0.91 0.67 0.58
Nate 0.74 0.34 0.33

Between-Participant Analyses: Accuracy, Kappa, and Correlation for All Sessions and Those Without Music Sessions

All Sessions

Sessions Without Music Only

Participants Accuracy Kappa Correlation Accuracy Kappa Correlation
Emile 0.90 0.66 0.86 0.90 0.67 0.87
Matt 0.78 0.49 0.97 0.77 0.54 0.97
Dave 0.79 0.50 0.82 0.81 0.57 0.81
Billy-Peter 0.89 0.50 0.88 0.73 0.33 0.42
Owen 0.83 0.52 0.80 0.78 0.50 0.47
Dan 0.75 0.29 0.30 0.77 0.34 -0.90
Alia 0.79 0.30 -0.37 0.87 0.52 0.78
Nate 0.71 0.33 0.12 0.79 0.57 0.88
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Figure 4
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Within-Participant Analyses: Correlation Between the Percentages Measured by the Machine Learning Algorithm and Those Measured

by the Human Observer Across Sessions for Each Participant
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within-participant analyses (i.e., four) than in
the between-participant analyses (i.e., five).

As discussed previously, one issue with
within-participant analyses is that the training
sets were smaller than in the between-
participant analyses (i.e., anywhere between
4% and 27% of the total number of samples
in the dataset). To address this concern, we
further conducted an analysis using a hybrid
method combining the within- and between-
participant analyses. Table 5 and Figure 5
show the results of the hybrid analyses.

Table 5

Hybrid Approach: Accuracy, Kappa, and Correlation for Each
Participant

Participants Accuracy Kappa Correlation
Emile 0.95 0.74 0.97
Matt 0.78 0.41 0.98
Dave 0.83 0.57 0.84
Billy-Peter 0.91 0.23 0.87
Owen 0.85 0.45 0.88
Dan 0.83 0.24 0.20
Alia 0.92 0.60 0.79
Nate 0.73 0.31 0.08




Artificial Intelligence and Vocal Stereotypy

Figure 5
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Hybrid Analyses: Correlation Between the Percentages Measured by the Machine Learning Algorithm and Those Measured by the

Human Observer Across Sessions for Each Participant
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Adding between-participant data to the
within-participant models increased correla-
tions to near or above .80 for two more partic-
ipants (i.e., Dave and Alia), which led to the
models adequately predicting session-by-
session patterns for six of eight participants.

An unexpected observation from the
previous analyses was that the kappa scores did
not necessarily increase when correlations
increased. Kappa represents within-session

patterns of responding, whereas correlations
capture between-session patterns
(e.g., immediacy, level, trend). One potential
explanation is that errors in measurement in
sessions with low levels of stereotypy may
deflate the mean kappa scores. As an example,
assume that a human observer measured a
behavior for 0.3% of a session whereas the
model did not detect the behavior (i.e., 0%).
Despite the absolute difference being only
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Figure 6
Correlation Between the Kappa Scores and the Percentage of
Engagement in Each Session for Billy-Peter
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0.3%, the kappa score would be 0 for this ses-
sion. To examine this hypothesis, we measured
the correlation between the kappa score and
the percentage of engagement on a session-by-
session basis. Figure 6 shows an example of this
correlation for Billy-Peter.” Our analyses found
a positive correlation between kappa and per-
centage of engagement for all participants,
indicating that sessions with low levels of ste-
reotypy skewed the estimation of the kappa
scores towards lower values (as the computa-
tion of the reported kappa scores involved the
mean of all sessions).

Discussion

Our proof of concept produced session-by-
session correlations near or above .80 for six
of eight participants when using a hybrid
approach, which generally produced the best
outcomes. The hybrid approach may have per-
formed best because it took advantage of each
participant’s  individual responding while
augmenting the dataset with samples from
other participants. Interestingly, the removal
of music during the between-participant ana-
lyses significantly improved the measures for
two further participants while worsening the
predictions for three others. This worsening of
the results may be explained by the removal of
the data from the music sessions. The algo-
rithm trained and tested the models on less
data in the sessions without music only, which
could explain the reduction for some

*We chose Billy-Peter as an example because he showed
the largest discrepancy between kappa and correlation
scores.
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participants. Nonetheless, the results are
encouraging, as the high correlations observed
in the hybrid analyses included both baseline
and treatment sessions.

As noted in the results, the analyses often
produced better estimations of between-
session patterns than within-session patterns,
which may be partly caused by the difficulty
in estimating low levels of behavior. This
result is consistent with prior research by
Leblanc et al. (2020) who found that discon-
tinuous methods of measurement produced
less accurate estimates when challenging
behavior occurred less frequently. Another
potential explanation is that machine learn-
ing may produce systematic minor errors at
the within-session level that have a limited
effect at the between-session level. This type
of systematic error is not unheard of in
behavior analysis. One notable example is the
use of discontinuous recording methods.
Although discontinuous methods may pro-
duce considerably different within-session
patterns, between-session patterns are similar
enough to make these tools useful in practice
(LeBlanc et al, 2020; Meany-Daboul
et al., 2007; Rapp et al., 2008; Schmidt
et al., 2013). Similarly, our machine learning
models preserved important between-session
features used for the analysis of single-case
designs, such as level, trend, and immediacy,
while producing less consistent within-session
patterns.

To our knowledge, this is the first study to
use artificial intelligence algorithms to measure
the duration of vocal stereotypy during sessions.
Our results replicate and extend prior studies
that have used machine learning to measure
motor and vocal forms of stereotypy (Goodwin
et al, 2011; Min & Tewfik, 2010; Rad &
Furlanello, 2016; Westeyn et al., 2005). We also
extend research on artificial intelligence, as we
studied how we can program computers to per-
form a task at which humans are currently bet-
ter. Notably, some of our models produced
session-by-session correlations that rivaled those
produced by discontinuous measurement
methods (Leblanc et al., 2020). Despite the
promising nature of our results, we consider
our study as an experimental proof of concept
because the session-by-session correlations
remained inadequate for two participants. As
researchers working in a university (non-
clinical) setting, we simply did not have access
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to sufficient data to further improve the perfor-
mance of our models.

Our artificial neural network trained the
models on audio data extracted from video
recordings. Hence, the distance between the
microphone and the child varied within and
across sessions, rendering the analysis by the
algorithms more challenging. In the future,
we recommend that researchers use a wireless
microphone positioned on the child’s shirt
collar, which should considerably improve
measurements by increasing the power of the
signal produced by the child’s vocal apparatus.
Moreover, this change would also facilitate the
discrimination between the child’s sounds and
those of other individuals in the environment.
If researchers continue improving the current
models, the use of artificial intelligence may
produce significant changes in research and
practice such as the reduction of costs and the
automation of certain repetitive tasks. With
additional research, we can imagine the devel-
opment of systems that could automatically
measure target vocal behavior within research,
educational and clinical contexts, freeing up
time for researchers and practitioners to focus
on other important activities. The utility of
these models could move beyond single-case
designs. Researchers could also use automated
measures with large randomized samples.

There are two additional limitations that
should be noted. First, we used a single method
and set of hyperparameters to extract the
audio and train our models because we lacked
the computing power to conduct multiple com-
parison analyses. Evaluating the effects of the
extraction method and hyperparameters on
algorithm performance with more powerful
computers (or supercomputers) would be rele-
vant in the future. Second, we did not examine
and compare patterns on single-case graphs.
Instead, we used a correlation measure that is
similar to a recent study examining correspon-
dence between continuous and discontinuous
measurements (see Leblanc et al., 2020). Given
that we had to remove sessions due to low-
quality recordings, the sessions were not neces-
sarily consecutive, preventing a thorough
single-case graph analysis. That said, the ulti-
mate litmus test for our approach will be
whether functional relations remain observable
on single-case graphs when applying these
algorithms in research and applied settings.
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