
Université de Montréal

Axiomatic Approach to Cellular Algebras

par

Amir Ahmadi

Département de mathématiques et de statistique

Faculté des arts et des sciences

Mémoire présenté à la Faculté des études supérieures et postdoctorales

en vue de l’obtention du grade de

Maître ès sciences (M.Sc.)

en Mathématiques

January 6, 2020

c© Amir Ahmadi, 2019





Université de Montréal
Faculté des études supérieures et postdoctorales

Ce mémoire intitulé

Axiomatic Approach to Cellular Algebras

présenté par

Amir Ahmadi

a été évalué par un jury composé des personnes suivantes :

Abraham Broer
(président-rapporteur)

Yvan Saint-Aubin
(directeur de recherche)

Christiane Rousseau
(membre du jury)

Mé moire accepté le :
January 6, 2020





Résumé

Les algèbres cellulaires furent introduite par J.J. Graham et G.I. Lehrer en 1996. Elles for-

ment une famille d’algèbres associatives de dimension finie définies en termes de « données

cellulaires » satisfaisant certains axiomes. Ces données cellulaires, lorsqu’elles sont identi-

fiées pour une certaine algèbre, permettent une construction explicite de tous ses modules

simples, à isomorphisme près, et de leurs couvertures projectives. Dans ce mémoire, nous

définissons ces algèbres cellulaires en introduisant progressivement chacun des éléments cons-

titutifs d’une façon axiomatique.

Deux autres familles d’algèbres associatives sont discutées, à savoir les algèbres quasi-

héréditaires et celles dont les modules forment une catégorie de plus haut poids. Ces familles

furent introduites durant la même période de temps, au tournant des années quatre-vingt-

dix. La relation entre ces deux familles ainsi que celle entre elles et les algèbres cellulaires

sont prouvées.

Mots clés: algèbres cellulaires, catégorie de plus haut poids, algèbre quasi-héréditaire, ma-

trice de Cartan, groupe de Grothendieck, algèbre associative de dimension finie, théorie des

modules.
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Abstract

Cellular algebras were introduced by J.J. Graham and G.I. Lehrer in 1996. They are a class of

finite-dimensional associative algebras defined in terms of a “cellular datum” satisfying some

axioms. This cellular datum, when made explicit for a given associative algebra, allows for

the explicit construction of all its simple modules, up to isomorphism, and of their projective

covers. In this work, we define these cellular algebras by introducing each building block of

the cellular datum in a fairly axiomatic fashion.

Two other families of associative algebras are discussed, namely the quasi-hereditary

algebras and those whose modules form a highest weight category. These families were

introduced at about the same period. The relationships between these two, and between

them and the cellular ones, are made explicit.

Key words: cellular algebra, highest weight category, quasi-hereditary algebra, Cartan ma-

trix, Grothendieck group, finite-dimensional assosiative algebra, module theory.
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Introduction

This thesis establishes the ties between three families of associative algebras that were intro-

duced in the last quarter-century: the quasi-hereditary algebras [9], those whose category

of modules is a highest weight category [7] and the cellular algebras [12]. I was inspired to

understand these ties by the works [11] and [5].

In chapter 1, we give the algebraic preliminaries which are required in working with cel-

lular algebras. The background concepts are those of finite-dimensional associative algebras,

the theory of their representation and category theory. The references [13] and [25] cover

most of these algebraic preliminaries.

In chapter 2, we give the definition of quasi-hereditary algebras and highest weight cat-

egory. We also give the fundamental theorem which relates them. The notion of highest

weight module originates from the representation theory of Lie algebras (see for example

[14] and [4]), but the highest weight categories that characterize some associative algebras

emerged more recently in the work of Cline, Parshall and Scott [7]. Reference [16] gives pure

ideas and excellent motivations about the origin of highest weight category. The definition

of quasi-hereditary algebras has a more complex history. Hereditary algebras were defined

a long time ago and are now covered in basic courses on algebras and their modules. But

quasi-hereditary algebras appeared first in the same work of Parshall et al [21], but also in

[20] and [10].

We devote chapter 3 to cellular algebras. They were first defined by Graham and Lehrer

[12] (see also [19]). We do it by introducing one after the other the building blocks consti-

tuting the “cellular datum”. By doing it in this progressive fashion, we hope to reveal the

role of each of these ingredients. Their introduction in [12] was triggered, in part, by the

special bases for Hecke algebras observed by Kazhdan and Lusztig [18]. Their crucial feature

is indeed the existence of a special basis that reveals their filtered structure. We will also

ix



show that, for a cellular algebra A, the category mod-A is a highest weight category and,

consequently, cellular algebras are quasi-hereditary algebras. Finally, we study in details the

main tools such as the Grothendieck group, the decomposition and Cartan matrices of a

cellular algebra.
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Chapter 1

Preliminaries

In this preliminary chapter we summarize results with which the reader should be familiar,

coupled with some explicit references to the textbook literature.

1.1. Relations

1.1.1. Equivalence Relations

Let X and Y be two non-empty sets. A binary relation or relation, from X to Y,

R is an arbitrary non-empty subset R of X × Y, the cartesian product of X and Y. When

X = Y, we say R is a relation on X. We usually write xRy when (x, y) ∈ R. Now, suppose

R and S are two relations on X. We define R
⋃
S to be the relation generated by R

and S,that is, x
(
R
⋃
S
)
y if and only if xRy or xSy, for x, y ∈ X.

A relation R on X is called reflexive if xRx for all x ∈ X. It is called symmetric if xRy

implies yRx. Also, it is called antisymmetric if xRy and yRx then x = y. Finally, it is

called transitive if xRy and yRz implies xRz.

A relation R on X is called an equivalence relation if R is reflexive, symmetric, and

transitive. In this case, we define the equivalence class of x by

Cx :=
{
y ∈ X : xRy

}
for every x ∈ X. We call X/R :=

{
Cx : x ∈ X

}
the quotient space of X by R.

Now, suppose X,Y, and Z are three non-empty sets, and suppose R is a relation from from

X to Y and S is a relation from Y to Z. Then R and S give rise to a relation from X to Z,



denoted by R ◦ S, and it is called the composition of R and S, defined as follows:

R ◦ S :=
{

(x, z) ∈ X × Z : ∃ y ∈ Y for which xRy and ySz
}
.

When X = Y = Z, we write R2 := R ◦ R, and we define inductively Rn := Rn−1 ◦ R, for

n > 2, n ∈ N. For example, xRmy if there are x2, x3, . . . , xm−1, xm ∈ X such that

xRx2 , x2Rx3 , . . . , xm−1Rxm , xmRy.

Definition 1.1.1. Let X be a non-empty set, and R be a relation on X. We define

T(R) :=
⋃
n>1

Rn and call it the transitive closure of R. It can be verified that T(R) is

the smallest transitive relation on X that contains R, smallest with respect to inclusion. It

means that if S is a transitive relation on X and R ⊂ S, then T(R) ⊆ S.

Remark 1.1.2. T(R) is a relation on X and for every x, y ∈ X, we have:

xT(R)y ⇐⇒ (x, y) ∈ T(R)

⇐⇒ there is m ∈ N and x2, x3, . . . , xm−1, xm ∈ X such that

xRx2 , x2Rx3 , . . . , xm−1Rxm , xmRy.

1.1.2. Ordered Sets

SupposeR is a relation on X. It is called a pre-order on X if it is reflexive and transitive.

In this case, we say (X,R) is a pre-ordered set. Also, it is called a partial order on X

if it is reflexive, antisymmetric, and transitive. We say (X,R) is a partially-ordered set

when R is a partial order. Also, it is called a totally-ordered set if for every two elements

x, y ∈ X we have xRy or yRx. A pre-ordering or a partial ordering is frequently denoted by

�.

Now, suppose R and S are two pre-orders on X. Let τ be the binary relation for x, y ∈ X

defined by:

xτy if and only if xRy or xSy.

The transitive closure of τ is a pre-order and is noted R
⋃
S. It is the pre-order generated

by R and S.

Example 1.1.3. Suppose R is a reflexive relation on a non-empty set X. It can be verified

that Rn is a reflexive relation on X, for all n ∈ N. So, T(R) is a reflexive relation on X and

transitive, by its definition. Hence, T(R) is a pre-ordering on X.
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Now suppose (X,�′) is a pre-ordered set. We want to build a partial order on X by �.

We define a new relation R on X by:

xRy ⇐⇒ x �′ y and y �′ x.

It can be verified that R is an equivalence relation on X, and for every x ∈ X,

Cx =
{
y ∈ X : xRy

}
=
{
y ∈ X : x �′ y, y �′ x

}
We now show that the quotient space X/R is a partially-ordered set. Now consider the

quotient space X/R =
{

Cx : x ∈ X
}
; we define � on X/R by:

Cx � Cy ⇐⇒ x �′ y

for Cx,Cy ∈ X/R. We show that � on X/R is well-defined. Let x′ ∈ Cx, then x′ �′ x. If

Cx � Cy then x′ �′ x �′ y and by transitivity x′ �′ y. Moreover, if x′ �′ y, then x �′ x′ �′ y

and x �′ y and thus Cx � Cy. Thus � is well-defined. It is obvious that � is reflexive and

transitive, since �′ is. Now, suppose Cx � Cy and Cy � Cx, so we have x �′ y and y �′ x.

So, xRy which automatically implies Cx = Cy. Hence � is a partial order. We proved the

following crucial theorem:

Theorem 1.1.4. 1 Suppose (X,�′) is a pre-ordered set. We define the new relation R on X

by:

xRy ⇐⇒ x �′ y and y �′ x

for every x, y ∈ X. Then R is an equivalence relation on X .

On the quotient space X/R, define � as

Cx � Cy ⇐⇒ x �′ y

for any Cx,Cy ∈ X/R. Then (X/R,�) is a partially-ordered set.

Remark 1.1.5. Let (X,�) be a partially-ordered finite set of cardinal m. Since it is finite,

We can form a total order �′′ inductively which is compatible with the partial order �. In

order to do it, we know that X has at least one maximal element. We call it ym; now consider

the resulting partially-ordered set X \ {ym}. It has at least one maximal element ym−1. We

1The theorem plays a crucial role in the structure of cells in cellular algebra, see 1.2.70
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define the order �′′ by: ym−1 �′′ ym. We remove ym−1 from the set X \ {ym}. Now consider

the set

(X \ {ym}) \ {ym−1} = X \ {ym, ym−1}.

It has at least one maximal element, call it ym−2. Now we define ym−2 �′′ ym−1. By continuing

inductively the process we will arrive at the following chain

y1 �′′ y2 �′′ . . . �′′ ym−1 �′′ ym.

So the new total order �′′ on X is compatible with the natural order on {1, . . . ,m}, that

is

i 6 j =⇒ yi �′′ yj.

Since 1 6 · · · 6 m, so we have y1 �′′ · · · �′′ ym. Hence, every finite set of cardinal m can be

totally ordered with its order compatible with the natural order on {1, . . . ,m}. Such a total

order �′′ is constructed from the partial order � by giving a filtration

0 = Λ0 ⊂ Λ1 ⊂ · · · ⊂ Λm = Λ

where the subset Λi is obtained from Λi+1 by deleting one of its maximal elements. So

Λi \ Λi−1 contains a single element yi.

1.2. Algebras

1.2.1. Basics on K-algebras

Definition 1.2.1. [K-algebras]

Let K be a field. A K-algebra is a K-vector space (A,+A) along with a bilinear map

·A : A × A → A, which is usually called multiplicative mapping or law. We denote it by

(A,+A, ·A), when A is a K-algebra. We can restrict algebraic operations of A to any non-

empty subset of it. A non-empty subset C ⊆ A is called a K-subalgebra of A if C is a

K-algebra under the restriction of +A and ·A on itself. We say that K-algebra (A,+A, ·A) is

associative if the multiplication law is associative. In this text, allK-algebras are associative

and finite-dimensional unless the contrary is stated.

Definition 1.2.2. A K-algebra (A,+A, ·A) is called unital algebra if it has an element

which is usually denoted by 1A and called the identity, such that for all a ∈ A:

a ·A 1A = 1A ·A a = a.

4



Definition 1.2.3. Let (A,+A, ·A) and (B,+B, ·B) be two K-algebras. A map f : A →

B between two K-algebras is called an algebra homomorphism if it has the following

properties:

(1) f is a K-linear mapping between two K-vector spaces (A,+A) and (B,+B).

(2) f(a1 ·A a2) = f(a1) ·B f(a2), for all a1, a2 ∈ A.

Definition 1.2.4. [Ideals] Let A be a K-algebra and I ⊆ A be a K-subalgebra.We call I a

left ideal if A ·A I ⊆ I, a right ideal if I ·A A ⊆ I, and a two-sided ideal if it is both a

left and right ideal. A proper (not equal to A) left (right, two-sided) idealM in A is called

left maximal (right maximal, two-sided maximal) if it is not contained strictly in any

other left (right, two-sided) ideal other than A itself.

Definition 1.2.5. [Orthogonal and Primitive Idempotent]

Let (A,+A, ·A) be a unital K-algebra. An element e ∈ A is called an idempotent if e2 = e.

Two idempotents e and f are called orthogonal if e ·A f = f ·A e = 0. An equality

1A = e1 +A e2 +A · · ·+A en, where e1, e2, · · · , en are pairwise orthogonal idempotents, will be

called a decomposition of the identity of the K-algebra A . An idempotent e ∈ A is said

to be primitive if e has no decomposition into a sum of nonzero orthogonal idempotents

e = e1 + e2 in A.

1.2.2. Radical of an Algebra

Definition 1.2.6. Let A be a K-algebra. The Jacobson radical or radical of A denoted

by J(A) or Rad(A), is the intersection of all maximal left ideals of A.

Proposition 1.2.7. [Properties of Jacobson radical] Let (A,+A, ·A) be a unital .K-algebra

and Rad(A) be its radical. It has the following properties:

(1) Rad(A) is the intersection of all maximal right ideals of A.

(2) Rad(A) is a two-sided ideal of A and Rad(A/Rad(A)) = 0.

(3) Rad(A) =
{
r ∈ A : 1− r ·A a is right invertible for all a ∈ A

}
.

(4) Rad(A) =
{
t ∈ A : 1− a ·A t is left invertible for all a ∈ A

}
.

(5) Rad(A) =
{
u ∈ A : 1− a ·A u ·A b is invertible for all a, b ∈ A

}
.

(6) Rad(e ·A A ·A e) = e ·A Rad(A) ·A e, for any idempotent e ∈ A.

(7) The K-algebra e ·A A ·A e has no nontrivial idempotents, for any idempotent e ∈ A.

5



Proof. (1) See proposition 3.4.7 in [13].

(2) See corollary 1.4 in [1].

(3) See proposition 3.4.5 in [13].

(4) See corollary 1.4 in [1].

(5) See proposition 3.4.6 in [13].

(6) See proposition 3.4.8 in [13].

(7) See proposition 2.4.4 in [13]. �

1.2.3. Modules over algebras

Definition 1.2.8. Let (A,+A, ·A) be a unital K-algebra. A left module over A or simply

a left A-module is an additive abelian group M together with a map ·M : A ×M → M

that has the following properties:

(1) a ·M (m1 +M m2) = (a ·M m1) +M (a ·M m2)

(2) (a1 +A a2) ·M m = (a1 ·M m) +M (a2 ·M m)

(3) (a1.Aa2) ·M m = a1 ·M (a2 ·M m)

(4) 1A ·M m = m

for any m,m1,m2 ∈M and any a, a1, a2 ∈ A.

In a similar way, one can define the notion of a right A-module. We shall sometimes write

MA := M to emphasize the right action of A on M . M is called two-sided A-module if it

is both left and right A-module.

Definition 1.2.9. LetM andN be two leftA-modules. A linear mapping (A-linear mapping

or A-homomorphism) of M into N is any mapping T : M → N such that:

(1) T (x+M y) = T (x) +N T (y), for all x ∈M , y ∈M .

(2) T (a ·M x) = a ·N T (x), for all x ∈M , a ∈ A.

The set of all such A-homomorphisms f is denoted by HomA(M,N). It has a natural

K-module structure.

Definition 1.2.10. Let M be a left A-module and N be any non-empty subset of M . We

say N is a left A-submodule of M if:

(1) (N,+|N) is an Abelian group.

(2) The restriction of ·M to N takes its values in N and satisfies the properties 1,2,3, and

4 of 1.2.8.
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Definition 1.2.11. Let M and N be two left A-modules and T : M → N be an A-linear

mapping. We define

Ker(T ) : = {x ∈M : T (x) = 0}

Im(T ) : = {T (x) : x ∈M}

Coker(T ) : = N/Im(T )

It can be verified that Ker(T ) and Im(T ) are two A - submodules ofM and N , respectively.

Theorem 1.2.12. Let M and N be two left A-modules and T : M → N be an A-linear

mapping. We have:

(i) T is injective (monomorphism) ⇐⇒ Ker(T ) = {0M}

(ii) T is surjective (epimorphism) ⇐⇒ Im(T ) = N or Coker(T ) = 0.

(iii) T is bijective (isomorphism) ⇐⇒ T is injective and surjective.

When two A-modules M and N are isomorphic, we write M '
A
N . In the case of vector

spaces, A = K, we writeM '
K
N . For every idempotent e ∈ A, we define eA =

{
ea : a ∈ A

}
.

The operations ex + ey = e(x + y), (ex)a = e(x.a) provide a right A-module structure on

eA.

Theorem 1.2.13. Let e and f be two idempotents of a unital K-algebra A. Then

HomA(eA, fA) '
K
fAe . Moreover, EndA(eA) ' eAe and A ' EndA(A), as K-algebra.

Proof. See page 31 of [13] �

Definition 1.2.14. Suppose M , N , and P are three A-modules (all left or right modules),

and T : M → N and S : N → P are two A-linear mappings. We say the ordered pair (T, S)

is an exact sequence if we have: Ker(S) = Im(T ). We then say that

M N P
T S

is exact or exact at N .

Proposition 1.2.15. Let M , N ,and P be three A-modules, and T : M → N be an A-linear

mapping.

(1) The necessary and sufficient condition for T to be an A-linear injective mapping is

that the the sequence 0 // M
T

// N be exact.
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(2) The necessary and sufficient condition for T to be a surjective A-linear mapping is

that the sequence M
T

// N // 0 be exact.

(3) The necessary and sufficient condition for that T to be A-linear isomorphism is that

the sequence 0 // M
T

// N // 0 be exact sequence at M and N .

Definition 1.2.16. Let M ,M ′,N and N ′ be A-modules, u : M ′ → M and v : N → N ′

be two A-linear mappings. Then for any A-linear mapping T : M → N we can assign the

A-linear mapping v ◦ T ◦ u : M ′ → N ′, and we denote it by HomA(u, v)(T ).

M
T

// N

v

��

M ′

u

OO

HomA(u,v)(T )
// N ′

Indeed, HomA(u, v) is an A-linear mapping from HomA(M,N) to HomA(M ′, N ′).

Proposition 1.2.17. Let A be an algebra, M ,M ′,M ′′ three A-modules, and u : M ′ → M ,

v : M → M ′′ be two A-linear mappings. For the sequence M ′ u
// M

v
// M ′′ // 0

to be exact, it is necessary and sufficient that the sequence of vector spaces

0 // HomA(M ′′, F )
HomA(v,1F )

// HomA(M,F )
HomA(u,1F )

// HomA(M ′, F )

is an exact sequence of K-modules for any A-module F .

Proof. See page 229 of [6]. �

Theorem 1.2.18. Let A be a K-algebra, M be a K-vector space, and N,L be two A-modules.

Then HomK(M,N) is an A-module and we have

HomA(L,HomK(M,N)) ∼=
K
HomK(M,HomA(L,N))

Proof. We define

· : A×HomK(M,N) −→ HomK(M,N)

(a, f) −→ a · f
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by (a · f)(m) = a(f(m)), for all a ∈ A, m ∈ M . It can be verified that HomK(M,N) is an

A-module with this multiplication. Also, We define

φ : HomA(L,HomK(M,N)) −→ HomK(M,HomA(L,N))

f 7−→ f̂

where f̂(m)(l) = f(l)(m). It can be verified that φ is an A-module isomorphism. �

1.2.4. The Jordan-Hölder Theorem

Let A be a K-algebra, and M be an A-module. We say that M satisfies the descending

chain condition (or d.c.c.) if, for every descending chain of A-submodules of M :

M1 ⊇M2 ⊇M3 ⊇ · · ·

there exists an integer n such that Mn = Mn+1 = Mn+2 = · · · . Similarly, an A-module

M satisfies the ascending chain condition (or a.c.c.) if, for every ascending chain of

A-submodules of M :

M1 ⊆M2 ⊆M3 ⊆ · · ·

there exists an integer n such that Mn = Mn+1 = Mn+2 = · · · .

Definition 1.2.19. An A-module M is called Artinian (Noetherian) if it satisfies the

d.c.c (a.c.c.) condition.

Definition 1.2.20. A nonzero A-moduleM is called simple (or irreducible) if it has only

0 andM as A-submodules. A moduleM is called semisimple (or completely reducible)

if it is isomorphic to a direct sum of simple A-modules.

Lemma 1.2.21. [Schur’s Lemma]

Let K be an algebraically closed field,that is, such that every non-constant polynomial with

coefficients in K has a root in K. Let A be a K-algebra, M and N be two finite dimensional

simple A-modules. Then, every non-zero A-module homomorphism f : M −→ N is an

A-module isomorphism. Consequently, HomA(M,N) ∼= K.

Proof. The simplicity of M and 1.2.12(1) implies that f is monomorphism. Also, the

simplicity of N and 1.2.12(2) implies that f is epimorphism. Now, we define the natural
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K-homomorphism

Φ : K −→ HomA(M,M)

λ 7−→ λIdM

It is clear that Φ is injective if λ 6= 0, since K is a field. Also for every f ∈ HomA(M,M), f

has an eigenvalue, since K is closed. Hence, f−λIdM is zero, which proves our assertion. �

Proposition 1.2.22. Let A be a K-algebra, M be a semisimple A-module. The following

conditions are equivalent:

(i) M is Artinian;

(ii) M is Noetherian;

(iii) M is a direct sum of a finite number of simple A-modules.

Proof. see page 63 of [13] �

Definition 1.2.23. Let A be a K-algebra. A finite chain of submodules or series of an

A-module M is a sequence of A-submodules
(
0 = M0,M1, · · · ,Mn = M

)
of M such that

0 = M0 ⊆ M1 ⊆ · · · ⊆ Mn = M . The chain is called a composition series of M if all the

quotient A-modules Mi+1

Mi
are simple, for i = 0, 1, · · · , n− 1. The quotient modules Mi+1/Mi

are called the composition factors of this series and the number n is called the length of

the series, and it is often denoted by l(M).

Definition 1.2.24. Let S be a simple A-module and letM be a A-module with composition

series (Mi)
l(M)
i=1 with l(M) < ∞. Then the number of elements of the set

{
i : 0 < i ≤

l(M),Mi/Mi−1 '
A
S
}

is called the S-length of M . We denote the S-length of M by lS(M)

and we will say that S is a composition factor if lS(M) > 1.

Theorem 1.2.25. Suppose that M is an A-module which has a composition series. Then

any finite chain of A-submodules of M can be included in a composition series. The lengths

of any two composition series of the module M are equal and between the composition factors

of these series one can establish a bijection in such a way that the corresponding factors are

isomorphic.

Proof. See page 65 of [13]. �

Theorem 1.2.26. Suppose M is a finite-length A-module and S be a simple A-submodule

of M , then S is a composition factor of M .
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Proof. We know thatM/S is an A-module with finite length, so it has a composition series

like 0 = S/S ⊆M1/S ⊂M2/S ⊆M3/S · · · ⊆M/S. So the sequence

S ⊆M1 ⊆M2 ⊆M3 ⊆ · · · ⊆M

is a series and
Mi/S

Mj/S
'Mi/Mj implies that it is a composition series. �

1.2.5. Supplementary Sub-Module and Split Module

Definition 1.2.27. Let E be an A-module, two submodules M and N of E are called

suplementary submodules if E is a direct sum of M and N .

Definition 1.2.28. A submodule M of an A-module E is called a direct factor of E if it

has a supplementary submodule in E.

Proposition 1.2.29. Suppose that E, F , and G are three A-modules and the sequence

0 // E
f

// F
g

// G // 0

is exact. Then the following conditions are equivalent:

(1) The submodule f(E) of F is a direct factor.

(2) There exists an A-linear mapping r : F → E such that r ◦ f = 1E.

0 // E
f

//

1E
��

F
g

//

r

��~
~

~
~

G // 0

E

and then r is called a retraction for f .

(3) There exists an A-linear mapping s : G→ F such that g ◦ s = 1G :

G

1G
��

s

��~
~

~
~

0 // E
f

// F
g

// G // 0

and then s is called a section for g. When the conditions hold, f + s : E
⊕

G→ F

is an isomorphism.

Proof. See page 211 of [6]. �
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Definition 1.2.30. Let E,F , and G be three A-modules, and the sequence

0 // E
f

// F
g

// G // 0

be exact. If the sequence satisfies one of the conditions of 1.2.29, then we say that the

sequence splits or (F, f, g) is a trivial extension of G by E.

1.2.6. Projective Modules

Definition 1.2.31. An A-module P is called projective if for every exact sequence

F ′′
u

// F
v

// F ′

of A-modules and A-linear mappings, the sequence of vector spaces

HomA(P, F ′′)
HomA(1P ,u)

// HomA(P, F )
HomA(1P ,v)

// HomA(P, F ′)

is exact.

Proposition 1.2.32. Let P be an A-module. Then the following properties are equivalent:

(1) P is projective.

(2) For every exact sequence 0 // F ′′
u

// F
v

// F ′ // 0 of A-modules and

A-linear mappings, the following sequence

0 // HomA(P, F ′′)
HomA(1P ,u)

// HomA(P, F )
HomA(1P ,v)

// HomA(P, F ′) // 0

is exact.

(3) For every surjective A-linear mapping u : E → E ′′ and every A-linear mapping

f : P → E ′′, there exists an A-linear mapping g : P → E such that f = u◦g.

P

f
��

∃g

~~}
}

}
}

E
u

// E ′′ // 0

(4) Every exact sequence 0 // E ′ // E // P // 0 of A-linear mappings splits

and therefore P is isomorphic to a direct factor of E.

Proof. See page 231 of [6] �
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1.2.7. Tensor Product

In the case of K-vector spaces, the construction of tensor product solves the universal

mapping property ofK-bilinear forms in Vect(K), the category of allK-vector spaces (See [23]

Chapter 14). Similarly, we know that the construction of tensor product over a commutative

algebra A solves the universal mapping property of A-bilinear forms in the category A-

algebras,(See [26]). The difficult situation appears when theK-algebraA is not commutative,

because in this case, being left A-module is not equal with being right A-module. In this

case, the tensor product is constructed as Z-module, or as left or right K-modules. Then it is

endowed with a left and right module structure which does not solve the universal mapping

property in the category Mod-A, when A is not commutative. In this section, we solve this

problem. In this part, when we write X ×Y for two algebraic structures X and Y , it means

only we consider the set as cartesian product, without any algebraic structure.

Definition 1.2.33. [(A,B)-bimodule]

Let A and B be two K-algebras. An Abelian group M is called an (A,B)-bimodule if M is

both a left A-module and a right B-module such that

(a ·m) · b = a · (m · b)

for all a ∈ A,m ∈M, and b ∈ B. In this case M is denoted by AMB.

Definition 1.2.34. [(A)-Balanced form]

Let A be a K-algebra, M be a right A-module, N be a left A-module, and S be a non-empty

set. A function f : M ×N → S is called balanced on A or A-balanced if we have:

f(ma, n) = f(m, an)

for any m ∈M,n ∈ N, a ∈ A.

Definition 1.2.35. [(A,B)- Bilinear forms]

Let A and B be two K-algebras, M be a left A-module, N be a right B-bimodule, and G be

a (A,B)-bimodule. An (A,B)-bilinear form is a function g : M ×N → G which satisfies

the following conditions:

(1) g is A-linear on its first component:

g(m1 +m2, n) = g(m1, n) + g(m2, n) , g(a.m, n) = a.g(m,n)
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(2) g is B-linear on its second component:

g(m,n1 + n2) = g(m,n1) + g(m,n2) , g(m,n.b) = g(m,n).b

for any m,m1,m2 ∈M , n, n1, n2 ∈ N , a ∈ A, and b ∈ B.

We shall denote the set of all (A,B)-bilinear forms of M ×N into G by Bil(A,B)(M ×N,G).

Definition 1.2.36. Let A, B, and C be three K-algebras, M be a (A,B)-bimodule, N be

a (B, C)-bimodule, and G be a (A, C) -bimodule. A function h : M × N → G is called

(A,B, C)-balanced bilinear form if h is (A, C)-bilinear form and B-balanced.

We shall denote by BBil(A,B,C)(M ×N,G) the set of all B-balanced (A, C)-bilinear forms

of M ×N into G.

Definition 1.2.37. [(A,B)-Homomorphisms] Let A and B be two K-algebras and M , N be

two (A,B)-bimodules. An (A,B)-homomorphism is a function φ : M → N such that:

φ(m1 +m2) = φ(m1) + φ(m2) , φ(amb) = aφ(m)b

for any m,m1,m2 ∈M,a ∈ A, b ∈ B.

We denote the set of all (A,B)-homomorphisms of M into N by Hom(A,B)(M,N).

Analogously for bimodules one can introduce all other concepts which were introduced for

modules: isomorphism, subbimodule, quotient bimodule, direct sum, etc.

Definition 1.2.38. Let A and B be two K-algebras and M be a left A-module, and N be

a right B-module, and X ⊆M , Y ⊆ N be two subsets of M and N .

We define Sp(A,B)(X × Y ) :=

{ n,m∑
i,j=1

(aixi, yjbj) : ai ∈ A, xi ∈ X, bj ∈ B, yj ∈ Y, 1 6 i 6 n, 1 6 j 6 m n,m ∈ N
}
.

Also, we define the (A,B)-action on Sp(A,B)(X × Y ) by a · (x, y) · b = (ax, yb), for any

x ∈ X, y ∈ Y, a ∈ A, b ∈ B.

Theorem 1.2.39. [Universal property of Sp(A,B)(X × Y )]

Consider A,B, X, Y the same as 1.2.38, G be an (A,B)-bimodule, and f : X × Y → G be a

(A,B)-bilinear form. Then

(1) Sp(A,B)(X × Y ) has (A,B)-bimodule property.

(2) There is a unique (A,B)-homomorphism f : Sp(A,B)(X × Y ) → G which commutes

the following:
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X × Y G

Sp(A,B)(X × Y )

f

i ∃!f

Proof. (1) Just definition 1.2.38.

(2) One can check that f defined by f(
n,m∑
i,j=1

(aixi, yjbj)) =
n,m∑
i,j=1

f(aixi, yjbj) satisfies all the

requested properties.

�

Definition 1.2.40. Let A,B, and C be three K-algebras and M , N be two (A, C) and (C,B)

bimodules, respectively. We consider KC ⊂ Sp(A,B)(M × N) as Sp(A,B) of the following

elements:

(x1 + x2, y)− (x1, y)− (x2, y)

(x, y1 + y2)− (x, y1)− (x, y2)

(xc, y)− (x, cy)

(ax, y)− a(x, y)

(x, yb)− (x, y)b

for any x, x1, x2 ∈M , y, y1, y2 ∈ N , a ∈ A, b ∈ B, c ∈ C.

We define M ⊗
(A,C,B)

N :=
Sp(A,B)(M×N)

KC
and call it the (A, C,B)-tensor product of M and

N .

Proposition 1.2.41. [Fundamental Properties of (A,B)-tensor product]

Let A,B, C be three K-algebras and M , N , G be three (A, C)-, (C,B)-, (A,B)- bimodules,

respectively. We have the following properties:

(1) M ⊗
(A,C,B)

N has (A,B)-bimodule structure.

(2) Hom(A,B)(M ⊗
(A,C,B)

N,G) '
(A,B)

BBil(A,C,B)(M ×N,G)

Proof. (1) It is clear by 1.2.40.
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(2)

Hom(A,B)(M ⊗
(A,C,B)

N,G) = Hom(A,B)

(Sp(A,B)(M ×N)

KC
, G
)

=
{
φ ∈ Hom(A,B)

(
Sp(A,B)(M ×N), G

)
: φ |KC= 0

}
'

(A,B)
Bil(A,C,B)(M ×N,G)

�

Example 1.2.42. [Classical definition of tensor product]

Let C be a K-algebra, A = K = B, and M be a right C-module and N be a left C-module.

In this case, we have:

M ⊗
(A,C,B)

N = M ⊗
(K,C,K)

N = M ⊗
C
N

which gives the clasical definition of tensor product of M and N .

Definition 1.2.43. Let A be a K-algebra. The left A-module M is finitely generated if

there exist m1,m2, . . . ,mn in M such that for any m in M , there exist a1, a2, . . . , an in A

with m = a1m1 + a2m2 + ...+ anmn.

Theorem 1.2.44. Let A be a K-algebra, M be a finite dimensional K-module, N be a left

A-module. Then N ⊗
K
M ∼= NdimKM as left modules.

Proof. Suppose
{
ai : 1 ≤ i ≤ dimKM

}
be a basis of M . So we have:

N ⊗
K
M =

dimKM∑
i=1

N⊗ai

=

dimKM⊕
i=1

N⊗ai

∼=
dimKM⊕
i=1

N

= N⊕ dimKM

�

Theorem 1.2.45. Let A be a K-algebra, M be a K-vector space, P be a right A-module,

and N be a left A-modules. Then HomK(N,M) is a right A-module and we have

HomK(P ⊗
A
N,M) ∼=

K
HomA(P,HomK(N,M)).
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Proof. The isomorphism is given by

HomK(P ⊗
A
N,M) −→ HomA(P,HomK(N,M))

φ −→ φ̂

where φ̂(p)(n) = φ(p⊗
A
n), for all p ∈ P, n ∈ N . See page 267 of [6] for more details. �

1.2.8. Radical of a Module

For a given A-module M , we shall introduce "a measure of how far it is from being

semisimple": the set of all elements m ∈ M such that f(m) = 0 for any homomorphism f

of M to a simple module. Evidently, these elements form a submodule of M , which will be

called the radical of the module M and be denoted by RadAM .

A proper (not equal to M) non-zero A-submodule N of a left A-module M is called left

maximal if it is not contained in any other left A-submodule of M .

Definition 1.2.46. LetM be an arbitrary leftA-module. The Jacobson radical or radical

ofM is the intersection of all its maximal left A-submodules, and it is denoted by RadA(M).

Proposition 1.2.47. [Properties of Jacobson radical of a module] Let M be an arbitrary left

A-module. Then we have the following properties:

(1) RadA(M) =
⋂

φ∈Simp(A)

Kerφ, where Simp(A) is the set of all A−homomorphisms from

M to a simple A-module.

(2) If A is finite dimensional, then RadA(M) = Rad(A)M .

(3) The A-module M/RadA(M) is semisimple and it is a module over the K-algebra

A/Rad(A).

Proof. (1) See proposition 3.4.1 in [13].

(2) See proposition 3.7 in [1].

(3) See corollary 3.8 in [1]. �

Definition 1.2.48. [Top]

Let M be an A-module. We define Top(M) := M/RadA(M). By 1.2.47.3, Top(M) is a

A/Rad(A) - module.

Theorem 1.2.49. Let (A,+A, ·A) be a K-algebra, andM be an A-module, and S be a simple

A-module. Then the following hold:

(1) HomA(A, S) 6= 0
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(2) Every nonzero A-homomorphism φ : M −→ S is an A-epimorphism.

(3) If Top(M) is a simple A-module, then RadA(M) = Kerφ, ∀ 0 6= φ ∈ HomA(M,S).

Proof. (1) Since S is a simple A-module, so S contains a nonzero element s0 ∈ S. We

define φ : A −→ S by: φ(a) = as0. So HomA(A, S) 6= 0.

(2) ∀ 0 6= ψ ∈ HomA(A, S), Im(ψ) is an A- submodule of L and simplicity of S implies

Im(ψ) = S. So ψ is an A-epimorphism.

(3) Since Top(M) is a simple A-module, so RadA(M) is a maximal A-submodule of M , also

by 1.2.47(1) we have RadA(M) ⊆ Ker(φ), ∀φ : M −→ L, since RadA(M) is maximal,

so we must have Ker(φ) = RadA(M).

�

1.2.9. Projectives by Means of Idempotents

Proposition 1.2.50. Let L be a right ideal of a unitary K-algebra A generated by an idem-

potent e, L = eA. We define O(A) the set of all pairwise orthogonal idempotents of A,

D(e) =
{

(e1, . . . , er) ∈ O(A) : e1 + · · ·+ er = e,
}

D(L) =
{

(L1, . . . , Lr) : L = L1 ⊕ . . .⊕ Lr, Li is a right ideal of A
}

Now, consider the map

φ : D(e)→ D(L)

(e1, · · · , er)→ (e1A, · · · , erA)

Then this map is bijective.

Proof. See page 16 in [25]. �

Proposition 1.2.51. Let (A,+A, ·A) be a K-algebra. For any nonzero idempotent e ∈ A

the following conditions are equivalent:

(1) e ·A A is indecomposable as a right A-module.

(2) A ·A e is indecomposable as a left A-module.

(3) The idempotent e is primitive.

Proof. See page 51 of [13]. �

Lemma 1.2.52. Let (A,+A, ·A) be a K-algebra and I be an ideal of A. Then I is an

idempotent ideal, I2 = I, if and only if I = A ·A e ·AA, for some idempotent element e ∈ A.
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Proof. See page 700 in [8]. �

Lemma 1.2.53. Let (A,+A, ·A) be a K-algebra and e be an idempotent in A. Then

Rad(e ·A A ·A e) = e ·A Rad(A) ·A e

Proof. See Proposition 3.4.8, page 70 in [13]. �

The next lemma plays a crucial role in the understanding of the notion of quasi-hereditary

algebra.

Lemma 1.2.54. Let (A,+A, ·A) be a K-algebra and I be an idempotent ideal in A such

that I = A ·A e ·A A with e an idempotent. Then e ·A A ·A e is semi-simple if and only if

I ·A Rad(A) ·A I = 0.

Proof.

I ·A Rad(A) ·A I = 0⇐⇒ (A ·A e ·A A) ·A Rad(A) ·A (A ·A e ·A A) = 0

1.2.13(ii)⇐⇒ A ·A e ·A Rad(A) ·A e ·A A = 0

1.2.53⇐⇒ A ·A (Rad(e ·A A ·A e)) ·A A = 0

1.2.13(ii)⇐⇒ Rad(e ·A A ·A e) = 0

⇐⇒ e ·A A ·A e is semi-simple.

�

Now, we want to identify the structure of a projectiveA-module, whenA is finite-dimensional

Theorem 1.2.55. Let A be a unital K-algebra, (e1, . . . , er) be a family of pairwise orthogonal

idempotents in A such that e1 + · · ·+ er = 1A. Let AA = e1A⊕ e2A⊕ · · · ⊕ erA. Then, any

right projective A-module P can be written as

P = P1 ⊕ P2 ⊕ · · · ⊕ Ps

where every summand Pi is indecomposable and isomorphic to some ei′A, for some 1 ≤ i′ ≤ r.

Proof. See page 26 of [1] �

Definition 1.2.56. [Essential Epimorphism]

Let M and N be two A-modules. An epimorphism f : M → N is called essential if

f(L) 6= N for any proper submodule L (M .
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It is possible to verify that an epimorphism f : M → N is essential if for every A-module

Q and every homomorphism g : Q→M , the surjectivity f ◦ g implies that g is surjective.

Definition 1.2.57. [Projective Cover]

A projective cover of an A-moduleM is an essential A-module homomorphism f : P →M

where P is projective.

Remark 1.2.58. It can be proved that projective cover is unique up to A-module isomor-

phism.

Now, we want to identify the structure of a projective cover in the case of a finite-

dimensional algebra.

Theorem 1.2.59. Let A be a finite-dimensional K-algebra, {e1, . . . , en} be a complete family

of primitive pairwise othogonal idempotents of A such that AA = e1A ⊕ . . . ⊕ enA. Then

for any A-module M , there exists a projective cover PM , PM
h→ M → 0, where PM =

(e1A)s1⊕· · ·⊕ (enA)sn and s1 ≥ 0, · · · , sn ≥ 0. The epimorphism h induces an isomorphism

h : PM/RadAPM →M/RadAM .

Proof. See page 29 of [1]. �

Remark 1.2.60. One can show that a projective cover is unique up to an A-module iso-

morphism.

Theorem 1.2.61. Suppose that AA = e1A ⊕ . . . ⊕ enA is a decomposition of A into inde-

composable submodules. Then

(1) Every indecomposable projective right A-module is isomorphic to one of the modules

P (1) = e1A, P (2) = e2A, . . . , P (n) = enA

(2) Every simple right A-module is isomorphic to one of the modules:

S(1) = Top(P (1)), . . . , S(n) = Top(P (n))

Moreover, P (i) ' P (j) if and only if S(i) ' S(j).

Proof. See 5.17, page 32 in [1]. �

Now, we give a crucial theorem which will be used in chapter 3.

Theorem 1.2.62. Let (A,+A, ·A) be a finite-dimensional K-algebra and P be a left projective

A-module, then the following are equivalent:

(1) P is indecomposable.
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(2) RadA(P ) is the unique maximal submodule of P .

Proof. See page 15 in [2] �

1.2.10. Cells in Algebras

Let (A,+A, ·A) be a finite-dimensional K-algebra and B = {bi : 1 6 i 6 n = dimKA
}
be

a K-basis for A, that is every element of A is a finite linear combination of elements in B

with coefficients in K; since A is finite-dimensional we can suppose that B =
{
b1, · · · , bn

}
.

For convenience, we define Λ = {1, 2, . . . , n}. So for every two elements bi, bj ∈ B we have

bi ·A bj =
n∑
r=1

αbibjbrbr. We say αbibjbr is the coefficient of br in the expansion of bi ·A bj, for

any i, j ∈ Λ.

Definition 1.2.63. Let (A,+A, ·A) be an K-algebra, B =
{
b1, · · · , bn

}
be a K-basis for A,

and Λ =
{

1, · · · , n
}
be the index set for B. We define the relation L←− on B as follows2:

bi
L← bj if there is a ∈ A such that the coefficient of bi in the expansion of a ·A bj is non-zero,

αabjbi 6= 0.

Remark 1.2.64. For every b ∈ B we have 1A ·A b = b = 1Kb. Hence, L← is reflexive. Now

consider its transitive closure, T(
L←) =

⋃
m>1

(
L←)m . By 1.1.3, T(

L←) is a pre-ordering on B.

By 1.1.2 we have:

biT(
L←)bj ⇐⇒ (bi, bj) ∈ T(

L←)

⇐⇒ ∃ k ∈ N , bi(
L←)kbj

⇐⇒ bi
L← bk2 , bk2

L← bk3 , . . . , bkm−1

L← bkm , bkm
L← bj

⇐⇒ αbk′2bk2
bi 6= 0, αbk′3bk3

bk2
6= 0 , . . . , αbk′mbkmbj 6=0

for some bk2 , bk3 , . . . , bkm−1 , bkm , bk′2 , bk′3 , . . . , bk′m−1
, bk′m ∈ B.

For simplicity, we denote T(
L←) by �tL, by which we mean

aT(
L←)b⇐⇒ b �tL a

so (B,�tL) is a pre-ordered set.

Definition 1.2.65. Let (A,+A, ·A) be an K-algebra and B :=
{
b1, · · · , bn

}
be a K-basis for

A. We define the relation R←− 3 on B as follows:

2L stands for the left multiplication.
3R stands for the right multiplication.
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b1
R← b2 if there is b3 ∈ B such that the coefficient of b1 in the expansion of b2 ·A b3 is non-zero,

αb2b3b1 6= 0.

Remark 1.2.66. For every b ∈ B we have b ·A 1A = b = 1Kb. Hence, R← is reflexive. Now

consider its transitive closure, T(
R←) =

⋃
n>1

(
R←)n. By 1.1.3, T(

R←) is a pre-ordering on B.

By 1.1.2 we have:

bT(
R←)b′ ⇐⇒ (b, b′) ∈ T(

R←)

⇐⇒ ∃ m ∈ N , b(
R←)mb′

⇐⇒ b
R← b2 , b2

R← b3 , . . . , bm−1
R← bm , bm

R← b′

⇐⇒ αb2b′2b 6= 0, αb3b′3b2 6= 0, , . . . , αbmb′mb′ 6=0

for some b2, b3, . . . , bm−1, bm, b
′
2, b
′
3, . . . , b

′
m−1, b

′
m ∈ B.

For simplicity, we denote T(
R←) by �tR, by which mean

aT(
R←)b⇐⇒ b �tR a

so (B,�tR) is a pre-ordered set.

Definition 1.2.67. Let (A,+A, ·A) be an K-algebra and B :=
{
b1, · · · , bn

}
be a K-basis for

A. We define the pre-order �tLR on B by:

�tLR:= �tL ∪ �tR

that is the pre-order generated by �tL and �tR.

Remark 1.2.68. Let (A,+A, ·A) be an K-algebra and B :=
{
b1, · · · , bn

}
be a K-basis for

A. By 1.2.67, b �tLR b′ ⇐⇒ b �tL b′ or b �tR b′

b �tL b′
1.2.64⇐⇒ αb′2b2b 6= 0, αb′3b3b2 6= 0, , . . . , αb′mbmb′ 6=0

for some b2, b3, . . . , bm−1, bm, b
′
2, b
′
3, . . . , b

′
m−1, b

′
m ∈ B and m ∈ N.

b �tR b′
1.2.66⇐⇒ αc2c′2b 6= 0, αc3c′3b2 6= 0, , . . . , αcnc′nb′ 6=0

for some c2, c3, . . . , cn−1, cn, c
′
2, c
′
3, . . . , c

′
n−1, c

′
n ∈ B and n ∈ N.

Notation 1.2.69. We introduced the three pre-orders �tL, �tR, and �tLR on B. Instead

of repeating a property for these three pre-orders, we write the property with �t?, ? ∈{
L,R, LR

}
.
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Now suppose that (A,+A, ·A) is a K-algebra and B :=
{
b1, · · · , bn

}
be a K-basis for A.

By 1.2.63,1.2.65, and 1.2.67, (B,�t?) is a pre-ordered set for ? ∈
{
L,R, LR

}
, respectively.

We define the relation ∼? on B by

b ∼? b
′ ⇐⇒ b �t? b′ and b′ �t? b

for every b, b′ ∈ B and ? ∈
{
L,R, LR

}
. It is clear that R? is an equivalence relation on B.

So, for all b ∈ B, we have Cb
? :=

{
b′ ∈ B : b �t? b′ and b′ �t? b

}
, for ? ∈

{
L,R, LR

}
.

Now consider B/ ∼?=
{

Cb
? : b ∈ B

}
, define the relation �? on B/ ∼? by:

Cb �? Cb′ ⇐⇒ b �t? b′

for every Cb
?,C

b′

? ∈ B/ ∼?. Then by 1.1.4 (B/ ∼?,�?) is a partially-ordered set.

Definition 1.2.70. Let (A,+A, ·A) be an K-algebra and B :=
{
b : b ∈ A

}
be a K-basis for

A. (B,�t?) is a pre-ordered set, and ∼? is an equivalence relation on B. The equivalence

class Cb
? is called the left, right or two-sided cell, according to whether ?= L,R or LR.

1.3. Category

1.3.1. Basic notions in Categories

Definition 1.3.1. A category C consists of the following:

(i) A class ObC whose elements are called the objects. 4

(ii) For each (not necessarily distinct) pair of objects A and B ∈ C , a set HomC (A,B)

called the Hom-set5 for the pair (A,B). The elements of HomC (A,B) are called

morphisms, maps or arrows from A to B. If f ∈ HomC (A,B), we also write

f : A −→ B or fAB.

(iii) For f ∈ HomC (A,B) and g ∈ HomC (B,C) there is a morphism g ◦ f ∈ HomC (A,C),

called the composition of g with f . Moreover, composition is associative: (f ◦g)◦h =

f ◦ (g ◦ h) whenever the compositions are defined.

4It is customary to write A ∈ C instead of A ∈ ObC .
5Distinct hom-sets are disjoint, that is, HomC (A,B) and HomC (C,D) are disjoint unless A = C and

B = D.
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(iv) For each object A ∈ C there is a morphism 1A ∈ HomC (A,A), called the identity

morphism for A, with the property that if fAB ∈ HomC (A,B) then 1B ◦ fAB = fAB

and fAB = fAB ◦ 1A. The class of all morphisms of C is denoted by MorC .

Example 1.3.2. (1) The Category Set of Sets: Ob(Set) is the class of all sets. Hom(A,B)

is the set of all functions from A to B.

(2) The Category Mon of Monoids: Ob(Set) is the class of all monoids. Hom(A,B) is the

set of all monoid homomorphisms from A to B.

(3) The Category Grp of Groups: Ob(Grp) is the class of all groups. Hom(A,B) is the set

of all group homomorphisms from A to B.

(4) The Category AbGrp of Abelian Groups: Ob(AbGrp) is the class of all abelian groups.

Hom(A,B) is the set of all group homomorphisms from A to B.

(5) The Category Mod-R of R-modules, where R is a ring. Ob(ModR) is the class of all

R-modules. Hom(A,B) is the set of all R-modules homomorphisms from A to B.

(6) The Category Vect(K) of Vector Spaces over a Field K: Ob(Vect(K)) is the class of all

vector spaces over K. Hom(A,B) is the set of all K-linear transformations from A to B.

(7) The Category Rng of Rings: Ob(Rng) is the class of all rings (with unit). Hom(A,B)

is the set of all ring homomorphisms from A to B.

(8) The Category CRng of Commutative Rings with identity: Ob(CRng) is the class of all

commutative rings with identity. Hom(A,B) is the set of all ring homomorphisms from

A to B.

(9) The Category Poset of Partially-Ordered Sets: Ob(Poset) is the class of all partially-

ordered sets. Hom(A,B) is the set of all monotone functions from A to B, that is

functions f : A→ B satisfying:

a1 �A a2 =⇒ f(a1) �B f(a2)

Definition 1.3.3. Let C be a category and f, g : A −→ B be two morphisms in C .

• A monomorphism is a morphism h : B −→ C such that

h ◦ g = h ◦ f =⇒ g = f

We usually show it by h : B ↪→ C in diagrams.

• An epimorphism is a morphism h : C −→ A such that

g ◦ h = f ◦ h =⇒ g = f
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We usually show it by h : C � A in diagrams.

• A section is a morphism f : A −→ B such that there is a morphism r : B −→ A

such that: r ◦ f = 1A.

• A retraction is a morphism f : A −→ B such that there is a morphism s : B −→ A

such that: f ◦ s = 1B.

• An isomorphism is a morphism f : A −→ B such that there is a morphism

g : B −→ A such that f ◦ g = 1A , g ◦ f = 1B.

We usually show it by f : A ∼= B in diagrams.

Remark 1.3.4. Isomorphisms are always retractions and sections; sections are always

monomorphisms and retractions are always epimorphisms, so isomorphisms are always monomor-

phisms and epimorphisms.

Definition 1.3.5. A category C is called small if ObC the class of objects of C , and MorC

the class of morphisms of C are sets. Otherwise, C is called a large category.

Example 1.3.6. The category Set, Mon, Grp, AbGrp, Vect(K), ModR, and Poset are

some common examples of small categories.

Definition 1.3.7. Let C and D be two categories. A functor F : C −→ D is a pair of

functions:

(1) The object part of the functor

F : ObC −→ ObC

maps objects in C to objects in D .

(2) The arrow part F : Mor(C ) → Mor(D) maps morphisms in C to morphisms in C as

follows:

(2.1) For a covariant functor, F(HomC (A,B)) ⊂ HomD(F(A),F(B)) for all A,B ∈ C ,

that is, F maps a morphism f : A→ B in C to a morphism F(f) : F(A)→ F(B)

in D .

(2.2) For a contravariant functor, F(HomC (A,B)) ⊂ HomD(F(B),F(A)). for all

A,B ∈ C , that is, F maps a morphism f : A → B in C to a morphism F(f) :

F(B)→ F(A) in D .6

(3) F preserves composition, that is,

6Note the reversal of direction.
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for a covariant functor, F(f ◦ g) = F(f) ◦ F(g).

for a contravariant functor, F(f ◦ g) = F(g) ◦ F(f).

(4) F preserves identity morphisms: F(1A) = 1F(A), for every object A ∈ C .

Definition 1.3.8. A forgetful functor is a functor F from a small category C to the category

set Set,F : C −→ Set, which sends objects in Ob(C ) to their underlying sets and morphisms

to their underlying functions, forgetting any additional structure.

Example 1.3.9. For any object A in a small category C we can define a functor

Hom(A,−) : C −→ Set by sending B in C to F(B) = HomSet(A,B), and sending f :

B −→ C to F(f) : HomSet(A,B) −→ HomSet(A,C) by defining F(f)(g) = f ◦ g.

Definition 1.3.10. [Terminal, Initial, and Zero Objects]

Let C be a category. An object T in C is called terminal if, for any object A, there is

exactly one morphism f : A→ T .

An object S in C is called initial if, for any object A, there is exactly one morphism

f : S → A. An object 0 in C is called a zero object if it is both initial and terminal. In

a category with a zero object we write 0AB : A → B, or just 0 if it is unambiguous, for the

unique morphism A→ 0→ B.

Terminal, initial, and therefore zero objects are unique up to an isomorphism in a cate-

gory.

Definition 1.3.11. A category C is called a linear category if:

i) HomC (A,B) is an abelian group, for all objects A and B in ObC .

ii) ◦ : HomC (B,C)×HomC (A,B) −→ HomC (A,C) is bilinear that is

g ◦ (f1 + f2) = g ◦ f1 + g ◦ f2 , (g1 + g2) ◦ f = g1 ◦ f + g2 ◦ f

for all f, f1, f2 ∈ HomC (A,B) and g, g1, g2 ∈ HomC (B,C).

Definition 1.3.12. Let f : A→ B be a morphism in a category C with a zero object. We

define a kernel of f to be a map k : K → A such that f ◦ k = 0KB; and for any other

morphism c : C → A where f ◦ c = 0CB, there exists a unique morphism g : C → K such

that the following diagram commutes:
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B

A K

C

∃!g

c

0CB

0KB

k

f

If such a k exists, it is unique up to isomorphism and we write k = kerf .

Definition 1.3.13. Let f : A→ B be a morphism in a category C with a zero object. We

define a cokernel of f to be the map c : B → C such that c ◦ f = 0AC ; and for any other

morphism q : B → Q where q ◦ f = 0AQ, there exists a unique morphism g : C → Q such

that the following diagram commutes:
B

A C

Q

∃! g

0AQ

q

c

0AC

f

If such a c exists, it is unique up to isomorphism and we write c = cokerf .

Definition 1.3.14. We say a category is abelian if:

i) It is a linear category.

ii) It has a zero object.

iii) It has all binary products and coproducts.

iv) It has all kernels and cokernels.

v) Any monomorphism is the kernel of a morphism, and any epimorphism is a cokernel of

a morphism.

Alternatively, an abelian category is a category whose Hom-sets are abelian groups, that

has kernels and cokernels for all concrete morphism, finite products and coproducts.

Definition 1.3.15. Let C be an abelian category, and let A be an object in C . Then

we define a subobject of A to be an equivalence class of monomorphisms
{
u : S → A

}
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under the equivalence relation
(
u : S → A

)
≡
(
v : T → A

)
if there exists an isomorphism

w : S → T such that u = v ◦ w.
S T

A

∃w

u v

We denote the collection of subobjects of A as subA. Often we abuse notation and write

B ⊆ A for the subobject
{
f : B → A

}
.

Definition 1.3.16. Let C be an abelian category, and let A be an object in C . Then we

define a quotient object of A to be an equivalence class of epimorphisms
{
u : A → S

}
under the equivalence relation

(
u : A → S

)
≡
(
v : A → T

)
if there exists an isomorphism

w : S → T such that v = w ◦ u.
S T

A

∃w

u v

We denote the collection of quotient objects of A as quotA.

1.3.2. Grothendieck Group

An abelian monoid is a non-empty set M with a binary operation � which has the

following properties:

• (M, �) is closed.

• (M, �) is associative.

• (M, �) is commutative.

• (M, �) has a neutral element.

When we talk about a monoid, we often show its operation by +. A homomorphism between

two monoid (M,+M) and (N,+N) is a function T : M → N such that

f(m+M m′) = f(m) +N f(m′).

Suppose that (M,+) is an abelian monoid. Our goal in this section is to associate to every

monoid M an abelian group S(M) and a monoid homomorphism s : M → S(M) which is as

small as possible in the following sense: for every abelian groupG and monoid homomorphism

28



f : M → G, there exists a unique group homomorphism f : S(M)→ G such that f ◦ s = f

as shown in the following diagram:
M S(M)

G

s

f f

For every m ∈M , we define m̂ : M → Z by

m̂(x) =

 1 : x = m

0 : x 6= m
(1)

We define

F(M) := Z-module generated by
{
m̂ : m ∈M

}
(2)

NM := Z-module generated by
{
m̂+M n− m̂− n̂ : m,n ∈M

}
(3)

Since F(M) is a free abelian group, NM is a normal subgroup of F(M), hence we can

form the quotient group F(M)
NM

and we denote it by S(M). We define s : M → S(M) by

s(m) := m̂+NM . We have the following theorem:

Theorem 1.3.17. Let M be an abelian monoid, G be an abelian group, and f : M → G

be a monoid homomorphism. Then there is a unique group homomorphism f : S(M) → G

such that f ◦ s = f .

M S(M)

G

s

f f

Proof. We know that every element in S(M) is of the form
∑
i∈I
αis(mi), where I is an

arbitrary finite set. With this in mind, we define f(
∑
i∈I
αis(mi)) =

∑
i∈I
αif(mi). To show that

this is well-defined, one has to prove that if s(m) = s(n) then f(m) = f(n). By definition,

s(m) = s(n) if and only if there exist µ, σ, ρ ∈M such that µ = σ+Mρ (that is µ̂−σ̂−ρ̂ ∈ NM)
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and m+M σ +M ρ = n+M µ. Note that µ = σ +M ρ implies f(µ)− f(σ)− f(ρ) = 0, then

f(m) = f(m) + f(σ) + f(ρ)− f(σ)− f(ρ)

= f(m+M σ +M +ρ)− f(σ)− f(ρ)

= f(m+M µ)− f(σ)− f(ρ)

= f(n) + f(µ)− f(σ)− f(ρ) = f(n)

and f(m) = f(n) as required. Also, it can be verified that f ◦ s = f . We show now that f is

unique. Suppose that g : S(M) → G is a group homorphism such that g ◦ s = f . We show

that g = f . We have:

g(
∑
i∈I

αis(mi)) =
∑
i∈I

g(αis(mi))

=
∑
i∈I

αig(s(mi))

=
∑
i∈I

αig ◦ s(mi)

=
∑
i∈I

αif(mi)

=
∑
i∈I

αif(s(mi))

=
∑
i∈I

f(αis(mi))

= f(
∑
i∈I

αis(mi))

So we have f = g. �

Consider the cartesian productM×M of an abelian monoid (M,+). We define the following

equivalence relation ∼ on M ×M by:

(m,n) ∼ (m′, n′)←→ ∃p ∈M such that m+ n′ + p = m′ + n+ p.

It can be verified that ∼ is an equivalence relationship on M ×M . So we form the quotient

space M ×M/ ∼:=
{

[(m,n)] : (m,n) ∈ M ×M
}
. We define the quotient map π : M →

M ×M by: π(m) = [(m, 0)].

Theorem 1.3.18. For every abelian monoid M , M ×M/ ∼ is an abelian group. Also, for

every abelian group G and every monoid homomorphism f : M → G, there exists a unique
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group homomorphism f : M ×M/ ∼ → G, such that f ◦π = f , or equivalently the following

diagram is commutative:

M M ×M/ ∼

G

π

f f

Proof. We define [(m,n)] +(M×M/∼) [(m′, n′)] := [(m+M m′, n+M n′)]. We show that it is

well-defined. Suppose

[(m1, n1)] = [(m2, n2)]

[(m′1, n
′
1)] = [(m′2, n

′
2)]

so there are p, q ∈M such that

m1 + n2 + p = m2 + n1 + p

m′1 + n′2 + q = m′2 + n′1 + q

which implies that

m1 +m′1 + n2 + n′2 + p+ q = m2 +m′2 + n1 + n′1 + p+ q

so we have

[(m1, n1)] +(M×M/∼) [(m′1, n
′
1)] = [(m2, n2)] +(M×M/∼) [(m′2, n

′
2)].

Also, it can be verified that (M ×M/ ∼,+M×M/∼) is a monoid with the neutral element

[(0, 0)]. Also the inverse element of [(m,n)] is [(n,m)], for all m,n ∈ M . Now for every

abelian group G and a monoid homomorphism f : M → G, we define f : M ×M/ ∼→ G by

f [(m,n)] = f(m)− f(n) so we have f ◦ π = f . We want to show that f is unique. Consider
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a group homomorphism g : M ×M/ ∼→ G such that g ◦ π = f . We have

g([(m,n)]) = g([(m, 0)]) +G g([(0, n)]

= g([(m, 0)]) +G g(−[(n, 0)])

= g([(m, 0)])− g([(n, 0)])

= g ◦ π(m)− g ◦ π(n)

= f(m)− f(n) = f [(m,n)]

so we have g = f . �

By 1.3.17, 1.3.18, and the universal mapping property of M ×M/ ∼ and S(M), we have

S(M) '
Z
M ×M/ ∼, so we have the following definition:

Definition 1.3.19. Let M be a monoid, we define7 K(M) := F(M)/NM '
Z
M ×M/ ∼

where F(M) and NM are defined in (2) and (3), and call it the Grothendieck Group of

M .

One of the fundamental example occurs in the case of an additive category. Suppose

C is an additive category. For every B ∈ Ob(C ), we define the isomorphism class of

B to be the set of all objects of C which are isomorphic to B. We denote it by [B]. Set

M :=
{

[B] : B ∈ Ob(C )
}
. We want to endow M with a monoid structure. In order to do

it, we define + : M ×M → M by [B] + [B′] := [B t B′], where t means the direct sum of

objects.

1.3.3. Cartan Matrix

Theorem 1.3.20. Let A be a K-algebra, S =
{
Si : 1 6 i 6 n

}
be the isomorphism classes

of all simple A-modules, and Cfl be the category of finite-length A-modules. Then K(Cfl) is

a free abelian group with basis
{

[Si] : 1 6 i 6 n
}
and for each finite length A-module M we

have that [M ] =
n∑
i=1

lSi(M)[Si] in K(Cfl), where lSi(M) was defined by 1.2.24.

Proof. See Theorem 1.7 in [2]. �

So this theorem shows that if {Si}1≤i≤n is the set of isomorphism classes of simple A-modules

in Cfl, then the Grothendieck group K(Cfl) is a free abelian group with basis elements

7the letter “K” comes from the German word “Klassen”.
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[Si]1≤i≤n. So for every M ∈ Ob((C )fl), we can write [M ] as a linear combination of [Si]’s,

that is

[M ] =
∑

1≤i≤n

mi(M,Si)[Si]

where the coefficients mi(M,Si) are usually denoted by [M : Si]. Each [M : Si] is the

multiplicity of Si in some composition series of M . The [M : Si] are well-defined by Jordan-

Hölder theorem. This structure leads to an invariant of finite-dimensional associative K-

algebras: the Cartan Matrix.

Definition 1.3.21. The Cartan matrix of A is the n×n matrix C = ([Pi : Sj])
n
i,j=1 where

S1, · · · , Sn are the simple A-modules and Pi is the projective cover of Si.
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Chapter 2

Quasi-Hereditary Algebras, Highest Weight Category

2.1. Quasi-Hereditary Algebra

Quasi-hereditary algebras are a class of finite-dimensional algebras which were first intro-

duced by E. Cline, B. Parshall and L. Scott in order to deal with highest weight categories

arising from the representations of semi-simple complex Lie algebras and algebraic groups.

In the defnition below, we shall only consider K-algebras A which are finitely generated as

K-modules,i.e. K-finite algebras. We have two ways to define quasi-hereditary algebras. The

first definition is based on the notion of hereditary ideals, and the second one is based on

the crucial notion of standard modules which leads to the notion of highest weight cate-

gory. Both definitions are equivalent [7, 10]. The reference [8] introduces quasi-hereditary

algebras.

We first introduce the concept of hereditary ideal. It can be defined by three distinct

definitions, whose equivalence is also shown in [8].

Definition 2.1.1. A non-zero (two-sided) ideal J in a K-algebra A is called a hereditary

ideal of A if the three following conditions hold:

(i) J is an idempotent ideal, that is, A possesses an idempotent e such that J = AeA.

(ii) J is projective as a left A-module.

(iii) The K-algebra EndA(AJ) is semi-simple.

Definition 2.1.2. A non-zero (two-sided) ideal J in a K-algebra A is called a hereditary

ideal of A if the three following conditions hold:

(i) J is projective as a left A-module.

(ii’) J is idempotent, that is, A possesses an idempotent e such that J = AeA.



(ii) J(RadA)J = 0.

Definition 2.1.3. A non-zero (two-sided) ideal J in a K-algebra A is called a hereditary

ideal of A if the three following conditions hold:

(i’) The surjective multiplication map Ae ⊗
eAe

eA −→ J is bijective for any idempotent e

satisfying AeA = J .

(ii’) J is idempotent, that is, A possesses an idempotent e such that J = AeA.

(iii) J(RadA)J = 0.

Here is now the first definition of a quasi-hereditary algebra.

Definition 2.1.4. The finite-dimensional unital K-algebra A is called quasi-hereditary if

there is a chain of (two-sided) ideals of A

0 = J0 ⊆ J1 ⊆ J2 ⊆ · · · ⊆ Jn = A

such that for any m ∈
{

1, · · · , n
}
, Jm/Jm−1 is a hereditary ideal of A/Jm−1.

Remark 2.1.5. Here is a quick history of quasi-hereditary algebras. The original inspiration

for quasi hereditary algebras comes from algebraic geometry. The category P of perverse

sheaves on a stratified topological space X is an abelian subcategory of a suitable derived

category of constructible sheaves onX. As discussed in [3], P admits a recursive construction

in it which is built up from constant sheaves on a strata of X. Similarly, a quasi-hereditary

algebra is a finite-dimensional algebra A built up from semisimple algebras. We do not

pursue the perverse sheaves approach here, but it can be shown that P ' A-mod, for a

quasi-hereditary algebra A. For more details and information, see [20, 21].

Remark 2.1.6. The word “inherit” means to receive properties, and in the case of quasi-

hereditary algebras, it means to pass down the property of projectiveness from an algebra

to its hereditary ideals.

Now we give a second definition of quasi-hereditary algebra whose equivalence with the

first is proved [7, 10].

Definition 2.1.7. Let A be a finite-dimensional K-algebra, (I,6) a partially-ordered set

indexing all non-isomorphic classes
{
Si : i ∈ I

}
of simple A-modules. Then (A, I,6) is

called quasi-hereditary algebra if the following assertions hold:

(i) For each i ∈ I, there exists a finite-dimensional A-module ∆(i) with an epimorphism

∆(i)→ S(i) such that the composition factors of the kernel satisfy j � i.
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(ii) For each i ∈ I, a projective cover P (i) of S(i) maps onto ∆(i) such that the kernels

has a finite filtration with factors ∆(j) satisfying j 
 i.

The module ∆(i) is called standard module of index i.

2.2. Highest Weight Categories

Definition 2.2.1. Given an object A in an abelian category, one can define a partial order

on the collection of subobjects of A, subA. For u, v ∈ subA define u � v if there exists a

morphism w such that u = v ◦ w. Then � defines a partial order structure on subA, which

we will call the subobject lattice of A.

Definition 2.2.2. Let C be a category that has a zero object 0, and A be a non-zero object

in C . We call A a simple object if its only subobjects are 0 or A up to isomorphisms.

Additionally, we say that a subobject is simple if its domain is simple and, similarly, that a

quotient object is simple if its codomain is.

Definition 2.2.3. For an object A in an abelian category C with a zero object, a composition

series of A is a finite sequence of subobjects:

A = An ) An−1 ) · · · ) A1 = 0

such that each coker(Ai
Ji
↪→ Ai+1) = Ai+1/Ai, called a composition factor, is simple. If an

object A has a composition series we say it is of finite length.

Definition 2.2.4. If S is a simple object and A is an object of finite length, we define the

composition multiplicity, or simplymultiplicity, [A : S] to be the number of composition

factors of A that are isomorphic to S. (Due to the Jordan-Hölder theorem, this is well-

defined.)

Definition 2.2.5. For a given category C , we call P ∈ C a projective object if, for every

epimorphism φ : B � A and morphism f : P → A, there exists g : P → B such that

φ ◦ g = f , as shown in the following commutative diagram:

A P

B

f

φ g

Definition 2.2.6. We call a monomorphism f : A → B essential if, for any g : B → C,

g ◦ f is a monomorphism only if g is.
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Definition 2.2.7. [K-linear categories]

We say a category C is K-linear for a field K if: For every A,B ∈ C , HomC (A,B) has

the structure of a vector space over K; and if composition of morphisms ◦ : HomC (B,C)×

HomC (A,B)→ HomC (A,C) is a bilinear mapping.

Definition 2.2.8. Let C be a finite K-linear category and {∆(λ), λ ∈ Λ} a set of objects of

C indexed by Λ. An object M ∈ Ob(C ) has a ∆-filtration if it has a finite filtration

0 = M0 ⊆M1 ⊆M2 ⊆ · · · ⊆Mn = M

such that each quotient Mi/Mi−1, 1 ≤ i ≤ n, is isomorphic to one of the objects ∆(λ).

We now give the definition of highest weight category as it appears in [11].

Definition 2.2.9. A highest weight category C is a finite K-linear category defined on

a weight partially-ordered set (Λ,≤) such that C is satisfying:

(HWC)(1) The non-isomorphic simple objects in C are indexed as L(λ), λ ∈ Λ.

(HWC)(2) For any λ ∈ Λ, there is a standard object ∆(λ) ∈ C such as Top(∆(λ)) = L(λ),

and whose composition factors are of the form L(µ) with µ ≤ λ, and moreover,

L(λ) occurs with multiplicity one.

(HWC)(3) The projective cover P (λ) of L(λ) has a ∆-filtration and ∆(λ) occurs with mul-

tiplicity one.

Now, we give a very fundamental theorem which states the relation between highest

weight categories and quasi-hereditary algebras. The proof is that of Parshall [22].

Theorem 2.2.10. Suppose A is a K-algebra. Then A is a quasi-hereditary algebra if and

only if Mod-A is a highest weight category relative to some partial order � on Λ and choice

of standard objects.

Proof. Suppose (A,Λ,≤) is a quasi-hereditary algebra with the sequence 0 = J0 ⊆ J1 ⊆

J2 ⊆ · · · ⊆ Jn = A. For each i, consider the distinct indecomposable summands of the

projectiveA/Ji−1-module Ji/Ji−1. By theorem 1.2.61 any such projective module is identified

by its top. Let Λi ⊂ Λ be the set of λ’s such that ∆(λ) is an indecomposable module of

Ji/Ji−1. If i 6= j, we claim that Λi ∩ Λj = ∅. In order to prove it, suppose that i � j and

λ ∈ Λi ⊂ Λj. Because A/Jj−1 is a homomorphic image of A/Ji−1, and Top(∆j(λ)) = L(λ),

so we deduce that ∆j(λ) is a homomorphic image of the projective A/Ji−1-module ∆i(λ). So,

there exists a nonzero A/Ji−1-homomorphism Ji/Ji−1 → Jj/Jj−1, which is a contradiction,
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because Ji/Ji−1 is an idempotent ideal in A/Ji−1 and Ji ⊂ Jj−1. It proves our claim. Also,

any irreducibleA-module L(λ) is a homomorphic image of some Ji/Ji−1, so is a homomorphic

image of some Ji/Ji−1, hence of some ∆i(λ). Thus Λ is a disjoint union of the Λi. So we

proved that for every λ ∈ Λ, there is a unique i such that λ ∈ Λi and we put ∆(λ) = ∆(λi).

So we can continue this process to find all the standards objects in Mod-A. For every λ and

µ in Λ, we define the partial order λ ≤ µ if and only if λ ∈ Λi and µ ∈ Λj, for some j ≤ i.

We want to verify all the axioms in the definition of a highest weight category. First, by

theorem 1.2.61 Top(∆(λ)) = L(λ), for λ ∈ Λj. Now, suppose that S(µ) is a composition

factor of RadA(∆(λ)). With the same reasoning, if i � j, there exists a nonzero A/Ji−1-

homomorphism Ji/Ji−1 → Jj/Jj−1 by the projectivity of the A/Ji−1-module Ji/Ji−1. As we

showed above, the existence of such a homomorphism is impossible. Thus, we must have

j ≤ i. So, we have two cases: i = j or i > j. If i = j, there is a nonzero morphism

Ji/Ji−1
f→ RadA/Ji−1

(Ji/Ji−1). Hence, we have

f(Ji/Ji−1) = f((Ji/Ji−1)2) = f
(
Ji/Ji−1

)
(Ji/Ji−1) ⊆ RadA/Ji−1

(Ji/Ji−1)(Ji/Ji−1)
1.2.47(2)

=

(Ji/Ji−1)Rad(A)(Ji/Ji−1)
2.1.2(ii)

= 0

which is a contradiction, so we have i > j. Now, we want to show that every projective cover

P (λ) has a ∆-filtration. By 1.2.61(2), there is some primitive idempotent e ∈ A such that

P (λ) = eA. For every i, we have (Ji/Ji−1)e ' Jie/Ji−1e is a direct sum of various ∆(ν), for

ν ∈ Λi. Now suppose that λ ∈ Λi. We know that, by definition, ∆(λ) is an A/Ji−1-direct

summand of Ji/Ji−1, so there is a surjective A-module epimorphism Ji → ∆(λ)→ 0. Since

Ji is an idempotent ideal, we have ∆(λ)Ji = ∆(λ), so L(λ)Ji = L(λ). Hence, the projective

covering epimorphism P (λ) → L(λ) can be restricted to an epimorphism P (λ)Ji → L(λ),

which means that P (λ)Ji = P (λ). On the other hand, if P (λ)Ji−1 = P (λ), then L(λ)Ji−1 =

L(λ) and so HomA(Ji−1, L(λ)) 6= 0, and so λ ∈ Λi ∩ Λj, which is a contradiction. Thus

P (λ)Ji−1 is a proper submodule of P (λ), and so Top(P (λ)/P (λ)Ji−1) = L(λ). It follows

that P (λ)/P (λ)Ji−1 ' P (λ)Ji/P (λ)Ji−1 ' ∆(λ). Thus, the sequence

0 = P (λ)J0 ⊆ P (λ)J1 ⊆ P (λ)J2 ⊆ · · · ⊆ P (λ)Jn = P (λ)A = P (λ)

defines a ∆-filtration of P (λ) with Top(P (λ)) = ∆(λ), and P (λ)Jj ' ∆(µ) with j ≤ i − 1,

for some µ ∈ Λ1 ∪ . . .Λi−1, that is with µ > λ. We have shown that mod-A is a highest

weight category with the partially-ordered set (Λ,≤).
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Conversely, suppose that mod-A is a highest weight category, for the partially-ordered set

(Λ,≤). Let λ ∈ Λ be a maximal element, thus ∆(λ) = P (λ) is a projective A-module. Put

J1 :=
∑
φ

φ(∆(λ)) where the sum runs over all φ ∈ HomA(∆(λ),A). In the category mod-A

we have

A '
⊕
µ∈Λ

P (µ)⊕ dim L(µ)

Since ∆(λ) is a projective module, the filtration of P (µ) with µ 6= λ

0 = P µ
0 ⊆ P µ

1 ⊆ P µ
2 ⊆ · · · ⊆ P µ

n = P (µ)

that exists by 2.2.9(3) can be chosen such that all the quotients P µ
i /P

µ
i−1 isomorphic to ∆(λ)

appear at the bottom of the filtration. In other words, there exists an index i0 (depending

on µ) such that P µ
i0
is a direct sum of copies of ∆(λ) and ∆(λ) does not appear as a quotient

in the filtration induced on P (µ)/P µ
i0

by the main filtration. Now 2.2.9(1) implies that

HomA(∆(λ),∆(µ)) = 0 for µ 6= λ. Therefore, J1
∼= ∆⊕m for some integer m. Hence, J1 is

a projective left A-module. Because ∆(λ) is a projective indecomposable A-module, there

is a primitive idempotent e ∈ A such that Ae ∼= ∆(λ). This implies that f → f(e) = ef(e)

defines an isomorphism HomA(Ae,A) ∼= eA of vector space. Thus, J1
∼= AeA, so J2

1 =

J1. Finally, eAe ∼= HomA(Ae,Ae)op ∼= EndA(L(λ))op is semi-simple. Therefore, J1 is a

hereditary ideal. Thus, the ∆(µ) with λ 6= µ can be regarded as A/J1-module. Similarly,

the L(µ), µ 6= λ, identify precisely with the irreducible A/J1-modules. If the filtration of

P (µ) is adjusted as in the previous paragraph, then J1P (µ) is that term of the filtration whose

quotients are those precisely isomorphic to ∆(λ). (Namely, we have that P µ
i0

= J1P (µ) in the

notation of the previous paragraph.) Thus, P (µ)/J1P (µ) has a filtration with top section

∆(µ) and lower sections ∆(τ) for τ > u and τ 6= λ. Also, it is immediate that P (µ)/J1P (µ)

is the projective cover of L(µ) in A/J1-mod, We have therefore verified that A/J1-mod is a

highest weight category with poset Λ \ {λ} and standard objects ∆(µ), µ 6= λ. By induction

on | Λ |, A/J1 is a quasi-hereditary algebra. If

0 ⊆ J2 ⊆ · · ·

is a defining sequence forA/J1, let Ji be the inverse images of the ideal J i under the canonical

quotient map A −→ A/J1, for i ≥ 2. Then the sequence

0 ⊆ J1 ⊆ J2 ⊆ · · · ⊆ Jt = A
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is a defining sequence for A, proving that A is quasi-hereditary algebra. �

This theorem leaves open the question of whether a highest weight category is always the

module category of some quasi-hereditary algebra.
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Chapter 3

Cellular Algebras

One of the central problems in the representation theory of finite groups and finite-dimensional

algebras is to determine the non-isomorphic simple modules. One of the strengths of the

theory of cellular algebras is that it provides a complete list of their absolutely irreducible

modules over a field. In this chapter all the algebras are finite-dimensional unital algebras

over a field. The definitions and main results on cellular algebras are due to Graham and

Lehrer [12].

3.1. Abstract Cellular Algebra

From what follows, we denote SpKM to be the K-linear space generated by the set M .

Definition 3.1.1. Suppose (A,+A, ·A) is a K-algebra, Λ is a finite indexed set, and B ={
Bλ : λ ∈ Λ

}
is a family of disjoint subsets of A indexed by Λ such that

⊔
λ∈Λ

Bλ is a basis of A,

that is A =
⊕
λ∈Λ

SpKBλ. For every subset Γ of Λ, we define A(Γ) := SpK
( ⊔
γ∈Γ

Bγ

)
:=
⊕
γ∈Γ

SpKBγ,

and we define for convenience A(∅) := 0, and we say A(Γ) is fibered by
{
Bγ : γ ∈ Γ

}
and

that A has a fibered basis B over Λ.

Definition 3.1.2. Let (Λ,≤) be a partially-ordered set. For every λ ∈ Λ, we define

(1) I≤λ =
{
µ ∈ Λ : µ ≤ λ}

(2) I<λ =
{
µ ∈ Λ : µ < λ}

Notation 3.1.3. We note

(1) A(≤ λ) := A(I≤λ) =
⊕
µ∈I≤λ

SpKBµ =
⊕
µ≤λ

SpKBµ

(2) A(< λ) := A(I<λ) =
⊕
µ∈I<λ

SpKBµ =
⊕
µ<λ

SpKBµ



Definition 3.1.4. Let (Λ,≤) be a partially-ordered set. A subset Γ ⊂ Λ is called an ideal

of Λ if Γ =
⋃
λ∈Γ

I≤λ.

Theorem 3.1.5. Suppose (A,+A, ·A) is a K-algebra, (Λ,≤) is a partially-ordered finite

indexed set, I and J are two subsets of Λ, and B =
{
Bλ : λ ∈ Λ

}
is a family of subsets of A

indexed by Λ.Then

(1) A(I ∪ J) = A(I) +A A(J).

(2) A(I ∩ J) = A(I) ∩ A(J).

(3) If J ⊆ I, then A(I \ J) '
K

A(I)

A(J)
.

(4) A(λ) '
K

A(≤ λ)

A(< λ)
, for every λ ∈ Λ.

(5) If J ⊂ I, then A(J) ⊂ A(I).

Proof. (1) We know that
⊔

λ∈I∪J
Bλ =

⊔
λ∈I
Bλ ∪

⊔
λ∈J

Bλ, so

SpK

( ⊔
λ∈I∪J

Bλ

)
= SpK

(⊔
λ∈I

Bλ ∪
⊔
λ∈J

Bλ

)
= SpK

(⊔
λ∈I

Bλ

)
+A SpK

(⊔
λ∈J

Bλ

)
which proves (1).

(2) We know that
⊔

λ∈I∩J
Bλ =

⊔
λ∈I
Bλ ∩

⊔
λ∈J

Bλ So

SpK

( ⊔
λ∈I∩J

Bλ

)
= SpK

(⊔
λ∈I

Bλ ∩
⊔
λ∈J

Bλ

)
= SpK

(⊔
λ∈I

Bλ

)
∩ SpK

(⊔
λ∈J

Bλ

)
which proves (2).

(3) We know that J ∪ (I \ J) = I, so A(I) = A(J ∪ I \ J) and :

A(I) = A(J ∪ I \ J)
(1)
= A(J) +A A(I \ J)

A(J) ∩ A(I \ J)
(2)
= A

(
J ∩ I \ J

)
= A(∅) = 0A

Hence,
A(I)

A(J)
=
A(J) +A A(I \ J)

A(J)
'
K

A(I \ J)

A(J) ∩ A(I \ J)
'
K
A(I \ J)

.

(4) Choose I = I≤λ and J = I<λ and apply (3).

(5) It is easily concluded from the definition 3.1.1.

�
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Definition 3.1.6. Let (Λ,≤) be a partially-ordered set and (A,+A, ·A) be a fibered basis

K-algebra with fibered basis B :=
{
Bλ : λ ∈ Λ

}
over Λ. We say that A is an abstract

cellular algebra if for every λ ∈ Λ we have:

·A : A×Bλ → A(≤ λ) , ·A : Bλ ×A → A(≤ λ)

The partial order ≤ on Λ is used to define a pre-order ≤t?, for any ? ∈ {L,R, LR}, on elements

of B = tBλ. This is done by the technique described in section 1.2.10. Even though the

symbol ≤t? is used, it is crucial to remember that this is not in general a partial order, but

only a pre-order.

Theorem 3.1.7. Let (A,+A, ·A) be an abstract cellular algebra over the partially-ordered

set (Λ,≤) with fibered basis B :=
{
Bλ : λ ∈ Λ

}
. Then for every b ∈ Bλ, b

′ ∈ Bµ, ? ∈{
L,R, LR

}
,we have :

(1) b 6? b
′ implies µ ≤ λ.

(2) b 6t? b′ implies µ ≤ λ.

(3) b ∼? b
′ ⇐⇒ λ = µ.

(4) Cb
L =

{
b′ ∈ Bλ : b ∼L b′

}
(5) Cb

R =
{
b′ ∈ Bλ : b ∼R b′

}
(6) Cb

LR =
{
b′ ∈ Bλ : b ∼LR b′

}
(7) Bλ =

⋃
b∈Bλ

Cb
LR.

Proof. (1). We give the proof for ? = L, that is b ≤L b′

b ≤L b′ ⇐⇒ ∃b′′ ∈ B : αb′′bb′ 6= 0

By 3.1.6, we have : b′′b ∈ A(≤ λ), that is, b′′b can be expanded as a linear combination of

the elements in Bβ, for β ≤ λ. Hence, the condition αb′′bb′ 6= 0 states that the coefficient

of the component in b′ ∈ Bµ in the expansion is nonzero which implies that µ ≤ λ.

(2). A straight application of (1) in 1.2.64,1.2.66,1.2.68 implies (2), for ? ∈
{
L,R, LR

}
,

respectively.

(3). (2) implies (3).

(4). (2) and (3) implies (4) for ? = L.

(5). (2) and (3) implies (5) for ? = R.

(6). (2) and (3) implies (6) for ? = LR.
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(7). (4),(5), and (6) imply (7), for ? ∈
{
L,R, LR

}
.

�

Question 3.1.8. Recall that 3.1.1 says that for every subset Γ of Λ, A(Γ) is fibered by{
Bγ : γ ∈ Γ

}
, and for every Bγ we know by 3.1.6 A ·A Bγ ⊆ A(≤ γ). So we can extend the

conclusion for the multiplication ·A from a single set Bγ into that for elements of
⊔
γ∈Γ

Bγ just

by the definition of direct sum, that is a ·A
∑
γ∈Λ

bγ =
∑
γ∈Λ

a ·A bγ . We know that a ·A bγ ∈ A(≤ γ),

for every γ ∈ Γ. The question which comes to mind is what can be said of a ·A bγ for γ ∈ Γ?

For example, A ·A A(Γ) ⊆ A(Γ)? and A(Γ) ·A A ⊆ A(Γ)?

The following theorem answers our question.

Theorem 3.1.9. Let (A,+A, ·A) be an abstract cellular algebra over the partially-ordered set

(Λ,≤) with fibered basis B :=
{
Bλ : λ ∈ Λ

}
. Then for every subset Γ ⊆ Λ, if Γ is an ideal

of Λ, then A(Γ) is an ideal of A. 1

Proof. Suppose Γ is an ideal of Λ, that is, Γ =
⋃
γ∈Γ

I≤γ. So, for every γ ∈ Γ we have I≤γ ⊆ Γ

which implies that A(≤ γ) ⊆ A(Γ). So we have

·A : A×A(≤ γ)→ A(≤ γ) ⊂ A(Γ).

and similarly for the right multiplication. Hence, A(Γ) is an ideal in A. �

3.2. Anti-Involutive Abstract Cellular Algebra

Definition 3.2.1. Let (A,+A, ·A) be an K-algebra, and f : A −→ A such that f 2 = f . Then

a non-empty subset X of A is called f-invariant if f(X) = X or equivalently, f(X) ⊆ X.

Definition 3.2.2. Let (A,+A, ·A) be an K-algebra. We say that i : A → A is an involution

if

(1) i(i(a)) = a, for all a ∈ A.

(2) i(a+A b) = i(a) +A i(b) for all a ∈ A, b ∈ A.

(3) i(λa) = λi(a) for all a ∈ A, λ ∈ K.

(4) i(a ·A b) = i(a) ·A i(b) for all a ∈ A, b ∈ A.

If A admits such an involution, we say that A is an involutive K-algebra.

1This theorem clarifies the origin of the definition of an ideal in a partially-ordered set with the notion

of ideal in an algebra.
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Definition 3.2.3. Let (A,+A, ·A) be an K-algebra. We say that i : A → A is an anti-

involution if

(1) i(i(a)) = a, for all a ∈ A.

(2) i(a+A b) = i(a) +A i(b) for all a ∈ A, b ∈ A.

(3) i(λa) = λi(a) for all a ∈ A, λ ∈ K.

(4) i(a ·A b) = i(b) ·A i(a) for all a ∈ A, b ∈ A.

If A admits an anti-involution, we say that A is an anti-involutive K-algebra.

We often use ∗A instead of i when (A,+A, ·A) is an i anti-involution on a K-algebra

(A,+A, ·A), and we denote it by (A,+A, ·A, ∗A).

Definition 3.2.4. Suppose (A,+A, ·A, ∗A) is an anti-involutive K-algebra and I is a non-

empty subset of A. We say I is anti-involutive invariant if it is ∗A−invariant.

If A is an abstract cellular algebra over the partial order set (Λ,≤), we know that, when

(A,+A, ·A, ∗A) is an anti-involutive algebra, we have a ·A b = (b∗ ·A a∗)∗, so we can choose to

define of an abstract cellular algebra as:

Definition 3.2.5. Let (A,+A, ·A) be an abstract cellular K-algebra with fibered basis, B :={
Bλ : λ ∈ Λ

}
over the partially-ordered set Λ. We say that A is an anti-involutive

abstract cellular algebra if A(≤ λ) is ∗A-invariant, for every λ ∈ Λ.

Remark 3.2.6. If (A,+A, ·A, ∗A) is an anti-involutive algebra, then A(≤ λ) is a two-sided

ideal of A, for every λ ∈ Λ. Hence, we can reduce the two properties

·A : A×Bλ → A(≤ λ) , ·A : Bλ ×A → A(≤ λ)

to the statement that A(≤ λ) is a two-sided ideal.

3.3. Standard Cellular Algebra

Now, the long-awaited time has come. Theorem 3.1.7 was the most powerful tool to

understand the structure of B =
⊔
λ∈Λ

Bλ. We want to descend gradually from abstract

cellular algebras to the land of standard cellular algebras. Our goal is to come nearer as far

as possible to the fibered basis B as a means of achieving sufficient information about the

algebra A.
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Definition 3.3.1. Let (A,+A, ·A) be a K-algebra with fibered basis B :=
{
Bλ : λ ∈ Λ

}
over

the partially-ordered set (Λ,≤). We say that the fibered basis B is standard if the following

conditions hold:

(1) For any λ ∈ Λ there are finite index sets Iλ and Jλ such that

Bλ =
{
aλij : (i, j) ∈ I(λ)× J(λ)

}
(2) For every λ ∈ Λ, a ∈ A and aλij ∈ Bλ, there exist la,λ(i′, i) and rλ,a(j′, j) ∈ K such that

a ·A aλij
mod(A<λ)
≡

∑
i′∈I(λ)

la,λ(i
′, i)aλi′j ,

aλij ·A a
mod(A<λ)
≡

∑
j′∈J(λ)

rλ,a(j
′, j)aλij′

Definition 3.3.2. A standard cellular algebra is a unital anti-involutive abstract cellular

algebra (A,+A, ·A, ∗A) with a standard fibered basis B :=
{
Bλ : λ ∈ Λ

}
over the partially-

ordered set Λ, where Bλ :=
{
aλij : (i, j) ∈ I(λ)×J(λ)

}
and the set

{
aλij : (i, j) ∈ I(λ)×J(λ)

}
is a K-basis for Bλ, for any λ ∈ Λ. We denote it for convenience by (A,+A, ·A, ∗A,B,Λ).

Remark 3.3.3. Consider all the conditions of definition 3.3.2. Then for every λ ∈ Λ,

aλij = 1A ·A aλij
mod(A<λ)
≡

∑
i′∈I(λ)

l1A,λ(i
′, i)aλi′j

which implies

l1A,λ(i
′, i) =

 1K : i′ = i

0 : i′ 6= i

Similarly by 3.3.1(1)

rλ,1A(j, j′) =

 1K : j′ = j

0 : j′ 6= j

Theorem 3.3.4. Let (A,+A, ·A, ∗A,B,Λ) be a standard cellular algebra.Then we have:

(1) aλij 6L aλrs ⇐⇒ j = s,∃a ∈ A; la,λ(r, i) 6= 0

(2) aλij 6tL aλrs ⇐⇒ j = s,∃n ∈ N,∃a1, . . . , an ∈ A,∃i1, . . . , in ∈ I(λ) such that

la1,λ(i1, i) 6= 0, la2,λ(i2, i1) 6= 0, . . . , lan,λ(r, in) 6= 0

(3) aλij 6R aλrs ⇐⇒ i = r,∃a ∈ A such that rλ,a(s, j) 6= 0

(4) aλij 6tR aλrs ⇐⇒ i = r,∃m ∈ N,∃a1, . . . , am ∈ A,∃j1, . . . , jm ∈ J(λ) such that

rλ,a1(j1, j) 6= 0, rλ,a2(j2, j1) 6= 0, . . . , rλ,am(s, jm) 6= 0
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Proof. Because of the similarity between the proofs of (3) and (4) with those of (1) and

(2), we prove only (1) and (2). For every a′ ∈ A, we know that

a′ ·A aλij =
∑

(r′,s′)∈I(µ)×J(µ)
µ∈Λ

αa′aλij(r
′, s′)aµr′s′

By 3.1.6, we know that a′ ·A aλij ∈ A(≤ λ). Hence, the above equation becomes:

a′ ·A aλij =
∑

(r′,s′)∈I(µ)×J(µ)
µ6λ

αa′aλij(r
′, s′)aµr′s′

so in this case

a′ ·A aλij
mod(A<λ)
≡

∑
(r′,s′)∈I(λ)×J(λ)

αa′aλij(r
′, s′)aλr′s′

So our hypothesis aλij ≤L aλrs implies that there is a ∈ A such that αaaλij(r, s) 6= 0. Also by

3.3.2(2), we have

a ·A aλij
mod(A<λ)
≡

∑
i′∈I(λ)

la,λ(i
′, i)aλi′j

.

So combining these implies that∑
(r′,s′)∈I(λ)×J(λ)

αaaλij(r
′, s′)aλr′s′

mod(A<λ)
≡ a ·A aλij

mod(A<λ)
≡

∑
i′∈I(λ)

la,λ(i
′, i)aλi′j

Therefore, ∑
(r′,s′)∈I(λ)×J(λ)

αa′aλij(r
′, s′)aλr′s′

mod(A<λ)
≡

∑
i′∈I(λ)

la,λ(i
′, i)aλi′j

Since
{
aλpq : (p, q) ∈ I(λ) × J(λ)

}
is a K-basis, so we have s = s′ = j and la,λ(i

′, i) =

αa′aλij(i
′, s) for every i′ ∈ I(λ). So for i′ = r, we have la,λ(r, i) 6= 0.

The second part (2), is a direct application of (1) in 1.2.64. �

Lemma 3.3.5. Let (A,+A, ·A, ∗A,B,Λ) be a standard cellular algebra.Then we have:

(1) If aλij ·A aµrs
mod(A<µ)

6≡ 0, then µ ≤ λ.

(2) If aλij ·A aµrs
mod(A<µ)

6≡ 0, aλij ·A aµrs
mod(A<λ)

6≡ 0, then λ = µ.

Proof. (1) We have:

aλij ·A aµrs
mod(A<λ)
≡

∑
j′∈J(λ)

rλ,aλrs(j
′j)aλij′
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or equivalenty

aλij ·A aµrs =
∑

j′∈J(λ)

rλ,aλrs(j
′, j)aλij′ +A

∑
(s′t′)∈I(ν)×J(ν)

ν<λ

η(s′,t′)a
ν
s′t′ . (4)

We denote

νλ =
∑

j′∈J(λ)

rλ,aλrs(j
′, j)aλi,j′

ν<λ =
∑

(s′,t′)∈I(ν)×J(ν)
ν<λ

η(s′,t′)a
ν
s′t′ .

So we have:

aλij ·A aµrs = νλ + ν<λ

Hence if λ < µ, then νλ + ν<λ ∈ A(< µ) which implies that

aλij ·A aµrs = νλ + ν<λ
mod(A<µ)
≡ 0

which is a contradiction. So we must have µ ≤ λ.

(2) It follows from (1).

�

Theorem 3.3.6. Let (A,+A, ·A, ∗A,B,Λ) be a standard cellular algebra.Then the following

holds:

(1) If aλij ∼L aµrs, then λ = µ, j = s.

(2) If aλij ∼R aµrs, then λ = µ, i = r.

Proof. (1) By 3.1.7(3), λ = µ, by 3.3.4(2), we have j = s.

(2) By 3.1.7(3), λ = µ, by 3.3.4(4), we have i = r.

�

Remark 3.3.7. Now, we can describe precisely C
aλij
L . We have

aλij ∼L aλi′j ←→ aλij 6
t
L a

λ
i′j and aλi′j 6

t
L a

λ
ij

aλij 6
t
L a

λ
i′j

3.3.4(2)←→ ∃n ∈ N, a1, . . . , an ∈ A, i1, . . . , in ∈ I(λ)

such that la1,λ(i1, i) 6= 0, la2,λ(i2, i1) 6= 0, . . . , lan,λ(i
′, in) 6= 0
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Similarly,

aλi′j 6
t
L a

λ
ij

3.3.4(4)←→ ∃m ∈ N, a′1, . . . , a′m ∈ A, i′1, . . . , i′m ∈ I(λ)

such that la′1,λ(i
′
1, r) 6= 0, la′2,λ(i

′
2, i
′
1) 6= 0, . . . , la′m,λ(i, i

′
m) 6= 0

Hence,

C
aλij
L =

{
aλi′j : i′ ∈ I(λ), ∃n,m ∈ N,∃a1, . . . , an, a

′
1, . . . , a

′
m ∈ A,∃i1, . . . , in, i′1, . . . , i′m ∈ I(λ)

such that la1,λ(i1, i) 6= 0, la2,λ(i2, i1) 6= 0, . . . , lan,λ(i
′, in) 6= 0,

la′1λ(i
′
1, r) 6= 0, la′2,λ(i

′
2, i
′
1) 6= 0, . . . , la′m,λ(i, i

′
m) 6= 0

}
With the similar arguments for C

aλij
R , we have:

C
aλij
R =

{
aλij′ : j′ ∈ J(λ),∃t, s ∈ N,∃b1, . . . , bt, b

′
1, . . . , b

′
s ∈ A,∃j1, . . . , jt, j

′
1, . . . , j

′
s ∈ J(λ)

such that rλ,b1(j1, j) 6= 0, rλ,b2(j2, j1) 6= 0, . . . , rλ,bt(j
′, jt) 6= 0,

rλ,b′1(j′1, j
′) 6= 0, rλ,b′2(j′2, j

′
1) 6= 0, . . . , rλ,bt(j, j

′
s) 6= 0

}
Finally, we know that C

aλij
LR = C

aλij
L ∪ C

aλij
R .

Proposition 3.3.8. Let (A,+A, ·A, ∗A,B,Λ) be a standard cellular algebra.We define

BI(λ),j :=
{
aλi′j : i′ ∈ I(λ)

}
Bi,J(λ) :=

{
aλij′ : j′ ∈ J(λ)

}
Then, we have:

(1) BI(λ),j =
⋃

i′∈I(λ)

C
aλ
i′j
L

(2) Bi,J(λ) =
⋃

j′∈J(λ)

C
aλ
ij′

R

(3) Bλ =
⋃

i∈I(λ)

Bi,J(λ) =
⋃

j∈J(λ)

BI(λ),j.

Proof. (1) By 3.3.6(1), 1.2.66, we have aλi′j ∼L aλi′j so aλi′j ∈ C
aλ
i′j
L . Hence, BI(λ),j ⊆ C

aλ
i′j
L

Obviously, C
aλ
i′j
L ⊆ BI(λ),j, this proves (1).

(2) The proof of (2) is analogous to (1).

(3) It follows from the definition of Bλ,Bi,J(λ),BI(λ),j.

�
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Theorem 3.3.9. [Graham-Lehrer’s Cellular Algebra]

Let (A,+A, ·A,B,Λ) be a standard fibered basis algebra. Also suppose that for every λ ∈ Λ,

we have I(λ) = J(λ). If there is an anti-involution ∗A on A such that

∗A : A −→ A∑
(i,j)∈I(λ)×I(λ)

αija
λ
ij 7−→

∑
(i,j)∈I(λ)×I(λ)

αija
λ
ji

for all λ ∈ Λ. Then we have:

(1) A(≤ λ) is ∗A-invariant.

(2) la,λ(i′, i) = rλ,a∗(i, i
′) for all a ∈ A, i, i′ ∈ I(λ).

(3) (A,+A, ·A, ∗A,B,Λ) is a standard cellular algebra.

In this case, the algebra (A,+A, ·A, ∗A) is called a Graham-Lehrer cellular algebra.

Proof. (1) Using (1) in 3.1.3 implies:

A(≤ λ) =
⊕
µ≤λ

SpKBµ =
⊕
µ≤λ

SpK

{
aλij : (i, j) ∈ I(λ)× I(λ)

}
so we have: (

A(≤ λ)
)∗A

= SpK

{
aλij : (i, j) ∈ I(λ)× I(λ)

}∗A
= SpK

{
aλji : (i, j) ∈ I(λ)× I(λ)

}
= A(≤ λ)

(2) We know that

a ·A aλij = (aλji ·A a∗)∗
mod(A<λ)
≡

( ∑
j′∈J(λ)

rλ,a∗(j
′, i)aλjj′

)∗
=
∑

j′∈J(λ)

rλ,a∗(j
′, i)aλj′j

Also

a ·A aλij
mod(A<λ)
≡

∑
i′∈I(λ)

la,λ(i
′, i)aλi′j

So ∑
i′∈I(λ)

rλ,a∗(i
′, i)aλi′j

mod(A<λ)
≡ a ·A aλij

mod(A<λ)
≡

∑
i′∈I(λ)

la,λ(i
′, i)aλi′j

Since
{
aλij : (i, j) ∈ I(λ)×I(λ)

}
is aK-basis ofBλ, so we must have: la,λ(i′, i) = rλ,a∗(i, i

′).

�
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Theorem 3.3.10. Let (A,+A, ·A, ∗A,B,Λ) be a Graham-Lehrer standard cellular algebra.

Then we have:

(1) aλij 6L aλrj ⇐⇒ aλji 6R a
λ
jr

(2) aλij 6tL aλrj ⇐⇒ aλji 6
t
R a

λ
jr

(3) aλij ∼L aλrj ⇐⇒ aλji ∼R aλjr
(4) aλij ∼LR aλrj ⇐⇒ aλji ∼LR aλjr
(5) C

aλij
L = (C

aλji
R )∗

(6) C
aλij
R = (C

aλji
L )∗

(7) C
aλij
LR = (C

aλji
LR)∗

(8) Bi,I(λ) = (BI(λ),i)
∗, for all i ∈ I(λ).

Proof. (1)

aλij 6L a
λ
rj ⇐⇒ ∃a ∈ A; la,λ(r, i) 6= 0

3.3.9(2)⇐⇒ ∃a ∈ A; rλ,a∗(r, i) 6= 0

⇐⇒ aλji 6R a
λ
jr

(2) Apply (1) in 3.3.4(2).

(3) It is implied by (2).

(4) It is obviously carried by (3).

(5) It is obviously carried by (3).

(6) It is obviously carried by (3).

(7) It is obviously carried by (4).

(8) Bi,I(λ)
3.3.8(2)

=
⋃

i′∈I(λ)

C
aλ
ii′
R

3.3.10(5)
=

⋃
i′∈I(λ)

(C
aλ
i′i
L )∗ = (

⋃
i′∈I(λ)

C
aλ
i′i
L )∗

3.3.8(1)
= (BI(λ),i)

∗

�

Suppose (A,+A, ·A, ∗A) is a standard cellular algebra. For any λ ∈ Λ, a ∈ A, aλrs, aλij ∈ Bλ

we have:

aλij ·A (a ·A aλrs) = (aλij ·A a) ·A aλrs

Let us compute the left and right sides of the above equation:
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aλij ·A (a ·A aλrs)
mod(A<λ)
≡ aλij ·A

( ∑
r′∈I(λ)

la,λ(r
′, r)aλr′s

)
mod(A<λ)
≡

∑
r′∈I(λ)

la,λ(r
′, r)
(
aλij ·A aλr′s

)
mod(A<λ)
≡

∑
r′∈I(λ)

la,λ(r
′, r)
( ∑
j′∈J(λ)

rλ,aλ
r′s

(j′, j)
)
aλij′

mod(A<λ)
≡

∑
r′∈I(λ),j′∈J(λ)

la,λ(r
′, r)rλ,aλ

r′s
(j′, j)aλij′

Also we know that (
aλij ·A aλr′s

) mod(A<λ)
≡

∑
r′′∈I(λ)

laλij ,λ(r
′′, r′)aλr′′s

Hence,

aλij ·A (a ·A aλrs)
mod(A<λ)
≡ aλij ·A

( ∑
r′∈I(λ)

la,λ(r
′, r)aλr′s

)
mod(A<λ)
≡

∑
r′∈I(λ)

la,λ(r
′, r)
(
aλij ·A aλr′s

)
mod(A<λ)
≡

∑
r′∈I(λ)

la,λ(r
′, r)
( ∑
r′′∈I(λ)

laλij ,λ(r
′′, r′)aλr′′s

)
mod(A<λ)
≡

∑
r′,r′′∈I(λ)

la,λ(r
′, r)laλij ,λ(r

′′, r′)aλr′′s

Hence ∑
r′∈I(λ),j′∈J(λ)

la,λ(r
′, r)rλ,aλ

r′s
(j′, j)aλij′

mod(A<λ)
≡

∑
r′,r′′∈I(λ)

la,λ(r
′, r)laλij ,λ(r

′′, r′)aλr′′s

which implies i = r′′, j′ = s, and
∑
r′∈I(λ)

la,λ(r
′, r)rλ,aλ

r′s
(s, j) =

∑
r′∈I(λ)

la,λ(r
′, r)laλij ,λ(i, r

′).

So the left side of the last equation is dependent on r, j, s and the right side on r, j, i. Since i

and s are independent on each other, both sides are dependent only on j, r. We thus define

φa(j, r) :=
∑
r′∈I(λ)

la,λ(r
′, r)rλ,aλ

r′s
(j, s) =

∑
r′∈I(λ)

la,λ(r
′, r)laλij ,λ(i, r

′)

and we have

aλij ·A a ·A aλrs
mod(A<λ)
≡ φa(j, r)a

λ
is.

We have proved the following important proposition:
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Proposition 3.3.11. Let (A,+A, ·A, ∗A,B,Λ) be a standard cellular algebra. Then, for any

a ∈ A, λ ∈ Λ:

(1) there is a function φλa : J(λ)× I(λ)→ K such that

aλij ·A a ·A aλrs
mod(A<λ)
≡ φλa(j, r)a

λ
is

for any aλij, aλrs ∈ Bλ.

(2)
∑
r′∈I(λ)

la,λ(r
′, r)rλ,aλ

r′s
(s, j) =

∑
r′∈I(λ)

la,λ(r
′, r)laλij ,λ(i, r

′), for all i and s.

Corollary 3.3.12. In a special case of 3.3.11, when a = 1A, we have:

aλij ·A aλrs
mod(A<λ)
≡ φλ1A(j, r)aλis =

∑
r′∈I(λ)

l1A,λ(r
′, r)rλ,aλ

r′s
(s, j)aλis

3.3.3
= rλ,aλrs(s, j)a

λ
is

aλij ·A aλrs
mod(A<λ)
≡ φλ1A(j, r)aλis =

∑
r′∈I(λ)

l1A,λ(r
′, r)laλij ,λ(i, r

′)aλis
3.3.3
= laλij ,λ(i, r)a

λ
is

So we have:

aλij ·A aλrs
mod(A<λ)
≡ φλ1A(j, r)aλis = rλ,aλrs(s, j)a

λ
is = laλij ,λ(i, r)a

λ
is.

Therefore:

φλ1A(j, r) = rλ,aλrs(s, j) = laλij ,λ(i, r).

Corollary 3.3.13. Let (A,+A, ·A, ∗A,B,Λ) be a standard cellular algebra. Then for any

i, k ∈ I(λ), j ∈ J(λ) we have

laλij ,λ(k
′, k) =

 0 : k′ 6= i

φ1A(j, k) : k′ = i

Proof. For every s ∈ J(λ), we have:

aλij ·A aλks
mod(A<λ)
≡ φ1A(j, k)aλis

aλij ·A aλks
mod(A<λ)
≡

∑
k′∈I(λ)

laλij ,λ(k
′, k)aλk′s

So we must have:

φ1A(j, k)aλis =
∑

k′∈I(λ)

laλij ,λ(k
′, k)aλk′s.
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Since
{
aλij : (i, j) ∈ I(λ)× J(λ)

}
is a K-basis for Bλ, so we must have:

laλij ,λ(k
′, k) =

 0 : k′ 6= i

φ1A(j, k) : k′ = i.

�

The mapping φλa : J(λ) × I(λ) → K will be used several times in the definition of other

mappings. So, it is reasonable to find out its main properties. We recall that for any λ ∈ Λ,

that both A(6 λ) and A(< λ) are ideals of A. So their quotient A(λ) = A(6 λ)/A(< λ) is

a (A,A)-bimodule. Also we can view A as a K-submodule of A spanned by Bλ.

Theorem 3.3.14. Let (A,+A, ·A, ∗A,B,Λ) be a standard cellular algebra. We define

γλ : A(λ)×A(λ) −→ K( ∑
i∈I(λ)
j∈J(λ)

αija
λ
ij,
∑
r∈I(λ)
s∈J(λ)

βrsa
λ
rs

)
7−→

∑
(i,j)∈I(λ)×J(λ)
(r,s)∈I(λ)×J(λ)

αijβrsφ
λ
1A

(j, r)

Then γλ has the following properties:

(1) γλ is (K,A,K)-balanced bilinear form.

(2) γλ induces a K-linear form γ : A(λ) ⊗
A
A(λ) → K such that the following diagram is

commutative:
A(λ)×A(λ) K

A(λ)⊗
A
A(λ)

γλ

⊗
A γλ

Proof. (1) It is clear by its definition that γλ is (K,K)- bilinear form. We show that it

is A-balanced. It is sufficient by its definition to verify it only on the basis elements

of A, that is, γλ(aλij ·A a, aλrs) = γλ(a
λ
ij, a ·A aλrs) we have

aλij ·A (a ·A aλrs)
mod(A<λ)
≡

3.3.12

∑
r′∈I(λ)

la,λ(r
′, r)φλ1A(j, r′)aλis

(aλij ·A a) ·A aλrs
mod(A<λ)
≡

3.3.12

∑
j′∈J(λ)

rλ,a(j
′, j)φλ1A(j′, r)aλis
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aλij ·A (a ·A aλrs)
mod(A<λ)
≡ aλij ·A

( ∑
r′∈I(λ)

la,λ(r
′, r)aλr′s

)
mod(A<λ)
≡

∑
r′∈I(λ)

la,λ(r
′, r)
(
aλij ·A aλr′s

)
mod(A<λ)
≡

3.3.12

∑
r′∈I(λ)

la,λ(r
′, r)φλ1A(j, r′)aλis

(aλij ·A a) ·A aλrs
mod(A<λ)
≡

( ∑
j′∈J(λ)

rλ,a(j
′, j)aλij′ ·A

)
aλrs

mod(A<λ)
≡

∑
j′∈J(λ)

rλ,a(j
′, j)
(
aλij′ ·A aλrs

)
mod(A<λ)
≡

3.3.12

∑
j′∈J(λ)

rλ,a(j
′, j)φλ1A(j′, r)aλis

so we have∑
r′∈I(λ)

la,λ(r
′, r)φλ1A(j, r′)aλis

mod(A<λ)
≡ aλij ·A a ·A aλrs

mod(A<λ)
≡

∑
j′∈J(λ)

rλ,a(j
′, j)φλ1A(j′, r)aλis.

Since
{
aλij : (i, j) ∈ I(λ)× J(λ)

}
is a K-basis, so we must have∑

r′∈I(λ)

la,λ(r
′, r)φλ1A(j, r′) =

∑
j′∈J(λ)

rλ,a(j
′, j)φλ1A(j′, r) (5)

γλ(a
λ
ij ·A a, aλrs) = γλ

( ∑
j′∈J(λ)

rλ,a(j
′, j)aλij′ , a

λ
rs

)
=

∑
j′∈J(λ)

rλ,a(j
′, j)γλ

(
aλij′ , a

λ
rs

)
=

∑
j′∈J(λ)

rλ,a(j
′, j)φλ1A(j′, r)

(5)
=

∑
r′∈I(λ)

la,λ(r
′, r)φλ1A(j, r′)

=
∑
r′∈I(λ)

la,λ(r
′, r)γλ

(
aλij ·A aλr′s

)
= γλ

(
aλij,

∑
r′∈I(λ)

la,λ(r
′, r)aλr′s

)
= γλ(a

λ
ij, a ·A aλrs)
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So γλ is A-balanced.

(2) The existence of γλ is guaranteed by 1.2.41(2).

�

Theorem 3.3.15. Let (A,+A, ·A, ∗A,B,Λ) be a standard cellular algebra. We define

mλ : A(λ)×A(λ) −→ A(λ)( ∑
i∈I(λ)
j∈J(λ)

αija
λ
ij,
∑
r∈I(λ)
s∈J(λ)

βrsa
λ
rs

)
7−→

∑
(i,j)∈I(λ)×J(λ)
(r,s)∈I(λ)×J(λ)

αijβrsφ
λ
1A

(j, r)aλis

Then, the following hold:

(1) mλ is an (A,A,A)-balanced bilinear mapping.

(2) mλ induces an A-linear mapping mλ such that the following diagram commutes:

A(λ)×A(λ) A(λ)

A(λ)⊗
A
A(λ)

mλ

⊗
A

mλ

Proof. (1) We show that mλ(a ·A aλij, aλrs) = a ·A mλ(a
λ
ij, a

λ
rs) . We have

mλ(a ·A aλij, aλrs) = mλ

( ∑
i′∈I(λ)

la,λ(i
′, i)aλi′j, a

λ
rs

)
=

∑
i′∈I(λ)

la,λ(i
′, i)mλ(a

λ
i′j, a

λ
rs)

=
∑
i′∈I(λ)

la,λ(i
′, i)φλ1A(j, r)aλi′s

Besides,

a ·A mλ(a
λ
ij, a

λ
rs) = a ·A

(
φλ1A(j, r)aλis

)
= φλ1A(j, r)(a ·A aλis)

= φλ1A(j, r)
( ∑
i′∈I(λ)

la,λ(i
′, i)aλi′s

)
=

∑
i′∈I(λ)

la,λ(i
′, i)φλ1A(i′, r)aλi′s

So we have:

mλ(a ·A aλij, aλrs) = a ·A mλ(a
λ
ij, a

λ
rs)
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Similarly, we can show that

mλ(a
λ
ij, a

λ
rs ·A a) = mλ(a

λ
ij, a

λ
rs) ·A a

We show that mλ is A-balanced.

mλ(a
λ
ij ·A a, aλrs) = mλ

( ∑
j′∈J(λ)

rλ,a(j
′, j)aλij′ , a

λ
rs

)
=

∑
j′∈J(λ)

rλ,a(j
′, j)mλ

(
aλij′ , a

λ
rs

)
=

∑
j′∈J(λ)

rλ,a(j
′, j)φλ1A(j′, r)aλis

(5)
=

∑
r′∈I(λ)

la,λ(r
′, r)φλ1A(j, r′)aλis

=
∑
r′∈I(λ)

la,λ(r
′, r)mλ

(
aλij, a

λ
r′s

)
= mλ

(
aλij,

∑
r′∈I(λ)

la,λ(r
′, r)aλr′s

)
= mλ(a

λ
ij, a ·A aλrs)

So, mλ is A-balanced.

(2) By 1.2.41(2), mλ induced an A-homorphism mλ which commutes the diagram.

�

Now, we want to talk about the injectivity and surjectivity of mλ. Suppose that there are

i0, i1 ∈ I(λ), j0, j1 ∈ J(λ) such that φλ1A(j0, i0) = φλ1A(j1, i1) = 1K, hence: mλ(a
λ
ij0
, aλi0j) =

aλij = mλ(a
λ
ij1
, aλi1j), but we can choose aλij0 and aλij1 such that

aλij0 6= aλij1 (6)

or similarly, we can choose aλi0j and a
λ
i1j

such that

aλi0j 6= aλi1j (7)

Therefore, mλ would not be injective. If we look carefully at both of the inequalities, (6)

states that the first component of the index is fixed and the second component of the index

runs through in J(λ). Also in the case of (7), the inequality states that the second component

of the index is fixed and the first component of the index tuns through in I(λ). So, the first
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thing which comes to mind is to think of the notions of left and right cells. So we could

define

m′λ : BI(λ),j × Bi,J(λ) −→ A(λ)(
C
aλ
i′j
L ,C

aλ
ij′

R

)
7−→ φλ1A(j, i)aλi′j′

Unfortunately, if

C
aλ
i′j
L = C

aλ
i′′j
L , C

aλ
ij′

R = C
aλ
ij′′

R

then we would have

m′λ
(
C
aλ
i′j
L ,C

aλ
ij′

R

)
= φλ1A(j, i)aλi′j′ , m′λ

(
C
aλ
i′′j
L ,C

aλ
ij′′

R

)
= φλ1A(j, i)aλi′′j′′

and m′λ would not be well-defined. Also, we could exchage the place of BI(λ),j and Bi,J(λ),

but it does not solve our issue, because

m′λ
(
C
aλ
ij′

R ,C
aλ
i′j
L

)
= φλ1A(j′, i′)aλij , m′λ

(
C
aλ
ij′′

R ,C
aλ
i′′j
L

)
= φλ1A(j′′, i′′)aλij

In order to find a solution to our problem, we introduce a left A-module ∆(I(λ), j) and a

right A-module ∆(i, J(λ)).

Definition 3.3.16. Let (A,+A, ·A, ∗A,B,Λ) be a standard cellular algebra. We define

∆(i, λ) := SpK

{
Bi,J(λ)

}
∆(λ, j) := SpK

{
BI(λ),j

}
∀i ∈ I(λ),∀j ∈ J(λ).

Theorem 3.3.17. Let (A,+A, ·A, ∗A,B,Λ) be a standard cellular algebra. Then the following

hold:

(1) ∆(i, λ) is a right A-module, for all i ∈ I(λ).

(2) ∆(λ, j) is a left A-module, for all j ∈ J(λ).

(3) ∆(i1, λ) ' ∆(i2, λ), as right A-modules, for all i1, i2 ∈ I(λ).

(4) ∆(λ, j1) ' ∆(λ, j2), as left A-modules, for all j1, j2 ∈ J(λ).

Proof. (1) By 3.3.1(2), ∆(i, λ) is a right A-module, for all i ∈ I(λ).

(2) By 3.3.1(2), ∆(λ, j) is a left A-module, for all j ∈ J(λ).
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(3) We define φi2,i1 : ∆(i1, λ) −→ ∆(i2, λ), by φi2,i1
( ∑
j∈J(λ)

αja
λ
i1j

)
=

∑
j∈J(λ)

αja
λ
i2j
. It is obvious

that φi2,i1 is K-isomorphism. It remains to show that φi2,i1 is A-linear. We have:

φi2,i1(aλi1j ·A a)
mod(A≺λ)
≡ φi2,i1

( ∑
j′∈J(λ)

rλ,a(j
′, j)aλi1j′

)
=

∑
j′∈J(λ)

rλ,a(j
′, j)aλi2j′

mod(A≺λ)
≡ aλi2j ·A a

= φi2,i1(aλi2j) ·A a

So φi2,i1 is A-isomorphism.

(4) The proof of (4) is similar to (3).

�

As shown in the following theorem, ∆(i, λ) and ∆(λ, j) solve the problem of non-injectivity

of mλ.

Theorem 3.3.18. Let (A,+A, ·A, ∗A,B,Λ) be a standard cellular algebra. Suppose there are

i0 ∈ I(λ), j0 ∈ J(λ) such that φλ1A(j0, i0) 6= 0.

We define:

mλ : ∆(λ, j0)×∆(i0, λ) −→ A(λ)(∑
i∈I(λ)

αia
λ
ij0
,
∑
j∈J(λ)

βja
λ
i0j

)
7−→

∑
(i,j)∈I(λ)×J(λ)

αiβjφ
λ
1A

(j0, i0)aλij

Then, the following are hold:

(1) mλ is an (A,K,A)-balanced bilinear mapping.

(2) mλ induces an (A,A)-isomorphism mλ such that the following diagram commutes:

∆(λ, j0)×∆(i0, λ) A(λ)

∆(λ, j0)⊗
K

∆(i0, λ)

mλ

⊗
K

mλ
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Proof. (1) We show that mλ(a ·A aλij, aλrs) = a ·A mλ(a
λ
ij, a

λ
rs) . We have

mλ(a ·A aλij, aλrs) = mλ

( ∑
i′∈I(λ)

la,λ(i
′, i)aλi′j, a

λ
rs

)
=

∑
i′∈I(λ)

la,λ(i
′, i)mλ(a

λ
i′j, a

λ
rs)

=
∑
i′∈I(λ)

la,λ(i
′, i)φλ1A(j, r)aλi′s

Besides,

a ·A mλ(a
λ
ij, a

λ
rs) = a ·A

(
φλ1A(j, r)aλis

)
= φλ1A(j, r)(a ·A aλis)

= φλ1A(j, r)
( ∑
i′∈I(λ)

la,λ(i
′, i)aλi′s

)
=
∑
i′∈I(λ)

la,λ(i
′, i)φλ1A(i′, r)aλi′s

So we have:

mλ(a ·A aλij, aλrs) = a ·A mλ(a
λ
ij, a

λ
rs)

Similarly, we can show that

mλ(a
λ
ij, a

λ
rs ·A a) = mλ(a

λ
ij, a

λ
rs) ·A a.

Also it is obvious that mλ is K-balanced which proves (1).

(2) Since there are i0 ∈ I(λ), j0 ∈ J(λ) such that φλ1A(j0, i0) 6= 0, hence mλ is surjective. We

show that mλ is injective. Suppose that

mλ

(∑
i∈I(λ)

αia
λ
ij0
⊗
K

∑
j∈J(λ)

βja
λ
i0j

)
= mλ

(∑
i∈I(λ)

cia
λ
ij0
⊗
K

∑
j∈J(λ)

dja
λ
i0j

)
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We have:

mλ

(∑
i∈I(λ)

αia
λ
ij0
⊗
K

∑
j∈J(λ)

βja
λ
i0j

)
= mλ

( ∑
i∈I(λ)
j∈J(λ)

αiβja
λ
ij0
⊗
K
aλi0j

)

=
∑
i∈I(λ)
j∈J(λ)

αiβjmλ(a
λ
ij0
⊗
K
aλi0j)

=
∑
i∈I(λ)
j∈J(λ)

αiβjφ
λ
1A

(j0, i0)aλij.

Similarly,

mλ

(∑
i∈I(λ)

cia
λ
ij0
⊗
K

∑
j∈J(λ)

dja
λ
i0j

)
=
∑
i∈I(λ)
j∈J(λ)

cidjφ
λ
1A

(j0, i0)aλij.

Hence,

mλ

(∑
i∈I(λ)

αia
λ
ij0
⊗
K

∑
j∈J(λ)

βja
λ
i0j

)
= mλ

(∑
i∈I(λ)

cia
λ
ij0
⊗
K

∑
j∈J(λ)

dja
λ
i0j

)
⇐⇒ αiβj = cidj ∀i ∈ I(λ),∀j ∈ J(λ).

So we have: ∑
i∈I(λ)

αia
λ
ij0
⊗
K

∑
j∈J(λ)

βja
λ
i0j

=
∑
i∈I(λ)
j∈J(λ)

αiβja
λ
ij0
⊗
K
aλi0j

=
∑
i∈I(λ)
j∈J(λ)

cidja
λ
ij0
⊗
K
aλi0j

=
∑
i∈I(λ)

cia
λ
ij0
⊗
K

∑
j∈J(λ)

dja
λ
i0j

Hence, mλ is injective. �

The modules ∆(i, λ) and ∆(λ, j) solved the problem of injectivity of mλ. So it is reasonable

to study them more precisely. Theorem 3.3.17 tells us for all i1, . . . , in ∈ Iλ, j1, . . . , jm ∈ Jλ
we have:

∆(i1, λ) '
A

∆(i2, λ) '
A
. . . '

A
∆(in, λ)

∆(λ, j1) '
A

∆(λ, j2) '
A
. . . '

A
∆(λ, jm)
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Also in the product

a ·A aλij
mod(A≺λ)
≡

∑
i′∈I(λ)

la,λ(i
′, i)aλi′j

the coefficients la,λ(i′, i) are independent of J(λ). Indeed, for j1, . . . , jm ∈ Jλ, we have:

a ·A aλij1
mod(A≺λ)
≡

∑
i′∈I(λ)

la,λ(i
′, i)aλi′j1

a ·A aλij2
mod(A≺λ)
≡

∑
i′∈I(λ)

la,λ(i
′, i)aλi′j2

...
...

...

a ·A aλijn
mod(A≺λ)
≡

∑
i′∈I(λ)

la,λ(i
′, i)aλi′jn

This leads us to close our eyes on the second component of the index aλij, so for every

� ∈ J(λ), we have

a ·A aλi�
mod(A≺λ)
≡

∑
i′∈I(λ)

la,λ(i
′, i)aλi′�

Similarly, we can close our eyes on the first component of the index aλij, so for every � ∈ I(λ),

we have

aλ�j ·A a
mod(A≺λ)
≡

∑
j′∈J(λ)

rλ,a(j
′, j)aλ�j′

Definition 3.3.19. Let (A,+A, ·A, ∗A,B,Λ) be a standard cellular algebra. We define

∆(λ) := SpK

{
aλi� : i ∈ I(λ)

}
with left A-module action ·L, defined by:

·L : A×∆(λ) −→ ∆(λ)

(a, aλi�) 7−→
∑
i′∈I(λ)

la,λ(i
′, i)aλi′�

The module ∆(λ) is called standard module. Also we define

∆op(λ) := SpK

{
aλ�j : j ∈ J(λ)

}
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with right A-module action defined by:

·R : ∆op(λ)×A −→ ∆op(λ)

(aλ�j, a) 7−→
∑

j′∈J(λ)

rλ,a(j
′, j)aλ�j′

for all λ ∈ Λ. Finally, we define ∇(λ) := HomA(∆(λ),K). The module ∇(λ) is called

co-standard module.

Theorem 3.3.20. Let (A,+A, ·A, ∗A,B,Λ) be a standard cellular algebra. We define

Mλ : ∆(λ)×∆op(λ) −→ A(∑
i∈I(λ)

βia
λ
i� ,

∑
j∈J(λ)

αja
λ
�j

)
7−→

∑
i∈I(λ)
j∈J(λ)

βiαja
λ
ij

Then we have:

(1) Mλ is (A,K,A) - balanced bilinear mapping.

(2) Mλ induces an (A,A)-bilinear isomorphism Mλ which makes the following diagram

commutes:

∆(λ)×∆op(λ) A(λ)

∆(λ)⊗
K

∆op(λ)

Mλ

⊗
K

Mλ

(3)
⊕

j∈J(λ)

∆(λ) ∼=
K
A(λ) ∼=

K

⊕
i∈I(λ)

∆op(λ), that is, A(λ) is isomorphic to a direct sum of | I |

copies of ∆op(λ) and to a direct sum of | J | copies of ∆(λ).

Proof. (1) We show that Mλ(a ·A aλi�, aλ�j) = a ·AMλ(a
λ
i�, a

λ
�j) we have

Mλ(a ·A aλi�, aλ�j) = Mλ

( ∑
i′∈I(λ)

la,λ(i
′, i)aλi′�, a

λ
�j

)
=

∑
i′∈I(λ)

la,λ(i
′, i)Mλ(a

λ
i′�, a

λ
�j)

=
∑
i′∈I(λ)

la,λ(i
′, i)aλi′j
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Besides,

a ·AMλ(a
λ
i�, a

λ
�j) = a ·A aλij

= (a ·A aλij)

=
∑
i′∈I(λ)

la,λ(i
′, i)aλi′j

So we have:

Mλ(a ·A aλi�, aλ�j) = a ·AMλ(a
λ
i�, a

λ
�j)

Similarly, we can show that

Mλ(a
λ
i�, a

λ
�j ·A a) = Mλ(a

λ
i�, a

λ
j�) ·A a

Also, it is clear that Mλ is K-balanced.

(2) By 1.2.41(2), Mλ induced an (A,A)-bilinear homomorphism Mλ which makes the dia-

gram commute. We show that Mλ is injective. Suppose that

Mλ

(∑
i∈I(λ)

αia
λ
i� ⊗

K

∑
j∈J(λ)

βja
λ
�j

)
= Mλ

(∑
i∈I(λ)

cia
λ
i� ⊗

K

∑
j∈J(λ)

dja
λ
�j

)
We have:

Mλ

(∑
i∈I(λ)

αia
λ
i� ⊗

K

∑
j∈J(λ)

βja
λ
�j

)
= Mλ

( ∑
i∈I(λ)
j∈J(λ)

αiβja
λ
i� ⊗

K
aλ�j

)

=
∑
i∈I(λ)
j∈J(λ)

αiβjmλ(a
λ
i� ⊗

K
aλ�j)

=
∑
i∈I(λ)
j∈J(λ)

αiβja
λ
ij

Similarly,

Mλ

(∑
i∈I(λ)

cia
λ
i� ⊗

K

∑
j∈J(λ)

dja
λ
�j

)
=
∑
i∈I(λ)
j∈J(λ)

cidja
λ
ij
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Hence,

Mλ

(∑
i∈I(λ)

αia
λ
i� ⊗

K

∑
j∈J(λ)

βja
λ
�j

)
= Mλ

(∑
i∈I(λ)

cia
λ
i� ⊗

K

∑
j∈J(λ)

dja
λ
�j

)
⇐⇒ αiβj = cidj ∀i ∈ I(λ),∀j ∈ J(λ)

So we have: ∑
i∈I(λ)

αia
λ
i� ⊗

K

∑
j∈J(λ)

βja
λ
�j =

∑
i∈I(λ)
j∈J(λ)

αiβja
λ
i� ⊗

K
aλ�j

=
∑
i∈I(λ)
j∈J(λ)

cidja
λ
i� ⊗

K
aλ�j

=
∑
i∈I(λ)

cia
λ
i� ⊗

K

∑
j∈J(λ)

dja
λ
�j

Hence, Mλ is injective, and Mλ is obviously surjective by its definition.

(3) By the proof of 1.2.44, we know that the vector spaces ∆(λ)⊗
K

∆op(λ) and
∑

j∈J(λ)

∆(λ)⊗
K
a�j

are isomorphic asK-vector spaces, also the vector spaces
∑

j∈J(λ)

∆(λ)⊗
K
a�j and

⊕
j∈J(λ)

∆(λ)⊗
K

a�j are isomorphic as K-vector spaces. Besides, by (2) we have

A(λ) ∼= ∆(λ)⊗
K

∆op(λ)

∼=
K

∑
j∈J(λ)

∆(λ)⊗
K
a�j

∼=
K

⊕
j∈J(λ)

∆(λ)⊗
K
a�j

∼=
K

⊕
j∈J(λ)

∆(λ)

Similarly, A(λ) ∼=
K

⊕
i∈I(λ)

∆op(λ).

�

Lemma 3.3.21. Let (A,+A, ·A, ∗A,B,Λ) be a standard cellular algebra. If aλrs ·L a
µ
i� 6= 0,

for some λ, µ, r, i, j, then µ ≤ λ.

Proof. We know that

aλrs ·L a
µ
i� =

∑
i′∈I(µ)

laλrs,λ(i
′, i)aλi′�
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So

aλrs ·L a
µ
i� 6= 0

⇐⇒ ∃ i′′ ∈ I(µ); laλrs,µ(i′′, i) 6= 0

⇐⇒ aλrs ·L a
µ
ij

mod(A≺µ)

6≡ 0 ,∀j ∈ J(λ)

3.3.5(1)
=⇒ µ ≤ λ

�

Definition 3.3.22. Let (A,+A, ·A, ∗A,B,Λ) be a standard cellular algebra. Then for every

λ ∈ Λ, we define

ξλ : ∆(λ)op ×∆(λ) −→ K( ∑
j∈J(λ)

αja
λ
�j,

∑
i∈I(λ)

βia
λ
i�

)
7−→

∑
(j,i)∈J(λ)×I(λ)

αjβiφ
λ
1A

(j, i)

Theorem 3.3.23. Let (A,+A, ·A, ∗A,B,Λ) be a standard cellular algebra. Then for evey

λ ∈ Λ, ξλ has the following properties:

(1) ξλ is (K,A,K) balanced bilinear form.

(2) ∀x, z ∈ ∆(λ),∀y ∈ ∆(λ)op: M(x⊗
A
y) ·L z = ξλ(y, z)x

(3) For every x ∈ ∆(λ), we put Iλx :=
{
ξλ(y, x) : y ∈ ∆(λ)op

}
; then Iλx∆(λ) = A(λ) ·L x,

and specifically, if Ix 6= 0, then ∆(λ) is A-cyclic, that is, ∆(λ) = A ·L x.
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Proof. (1) ξλ is (K,K)-bilinear form by its definition, so it remains to show that it is

A-balanced.

ξλ(a
λ
�j ·R a, aλr�) = ξλ

( ∑
j′∈J(λ)

rλ,a(j
′, j)aλ�j′ , a

λ
r�

)
=

∑
j′∈J(λ)

rλ,a(j
′, j)ξλ

(
aλ�j′ , a

λ
r�

)
=

∑
j′∈J(λ)

rλ,a(j
′, j)φλ1A(j′, r)

(5)
=

∑
r′∈I(λ)

la,λ(r
′, r)φλ1A(j, r′)

=
∑
r′∈I(λ)

la,λ(r
′, r)ξλ

(
aλ�j ·A aλr′�

)
= ξλ

(
aλij,

∑
r′∈I(λ)

la,λ(r
′, r)aλr′�

)
= ξλ(a

λ
�j, a ·L aλr�)

(2) It is sufficient to check the property on a generating set:

Mλ(a
λ
i� ⊗
A
aλ�j) ·L ak� = aλij ·L ak�

=
∑

k′∈I(λ)

laλij ,λ(k
′, k)aλk′�

3.3.13
= φ1A(j, k)aλi�

= ξλ(a
λ
�j, a

λ
k�)aλi�

(3) We have:

Iλx∆(λ) =
{
ξλ(y, x)z : y ∈ ∆op(λ), z ∈ ∆(λ)

}
(2)
=

{
Mλ(z ⊗

A
y) ·L x : y ∈ ∆op(λ), z ∈ ∆(λ)

}
= A(λ) ·L x ⊆ A(x) ⊆ ∆(λ).

Since K is a field, if Iλx 6= 0, then Iλx = K. In this case

∆(λ) = Iλx∆(λ) = A(λ) ·L x.

So ∆(λ) is A-cyclic.

�
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Theorem 3.3.24. Let (A,+A, ·A, ∗A,B,Λ) be a standard cellular algebra. Suppose that there

is x0 ∈ ∆(λ) such that Iλx0
6= 0. Then

(1) HomA(∆(λ),∆(µ)) = 0 unless, µ ≤ λ.

(2) HomA(∆(λ),∆(λ)/M) '
K
K, for any left A-submodule M of ∆(λ).

(3) HomA(∆(λ),∆(λ)) '
K
K.

Proof. (1) Suppose that HomA(∆(λ),∆(µ)) 6= 0, then there is f ∈ HomA(∆(λ),∆(µ))

such that f 6= 0. Since Ii = K, so we have ∆(λ)
3.3.23(5)

= A(λ) ·L aλi�. Hence, there is

a ∈ A(λ) such that f(a ·L aλi�) = (a ·L f(aλi�)) 6= 0. Since f(a ·L aλi�) ∈ ∆(µ), so the

condition f(a ·L aλi�) = (a ·L f(aλi�)) 6= 0 implies that f(a ·L aλi�) = (a ·L f(aλi�))
mod(A≤µ)

6≡ 0.

So we must have µ ≤ λ, by 3.3.21.

(2) Since ∆(λ) = A(λ) ·L x0 so we consider f(x0) = a0 ·L x0 + M . For every 0 6= f ∈

HomA(∆(λ),∆(λ)/M), we have f(x0) 6= 0∆(λ)/M , because if f(x0) = 0∆(λ)/M , then for

every a ∈ A(λ) we have f(a ·L x0) = a ·L f(x0) = 0∆(λ)/M , which is a contradiction

with f 6= 0. The condition Iλx0
6= 0 guarantees that there is y0 ∈ ∆op(λ) such that

ξλ(y0, x0) = 1K. We have:

f(x0) = f(1Kx0)

= f(ξλ(y0, x0)x0)

3.3.23(2)
= f(Mλ(x0 ⊗

A
y0)x0)

= Mλ(x0 ⊗
A
y0)f(x0)

= Mλ(x0 ⊗
A
y0) ·L (a0 ·L x0) +M

3.3.23(2)
= ξλ(y0, a0 ·L x0)x0

Hence,

f(x0) 6= 0⇐⇒ ξλ(y0, a0 ·L x0) 6= 0, (8)

which implies that f is an A-isomorphism, and moreover it gives us a two-sided corre-

spondence between HomA(∆(λ),∆(λ)) and K:

f 6= 0⇐⇒ ξλ(y0, a0 ·L x0) 6= 0 (9)

Hence, HomA(∆(λ),∆(λ)/M) ∼=
K
K.
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(3) Put M = 0 in (2).

�

3.4. Standard Cellular Algebras and Highest-Weight Category

Definition 3.4.1. Let (A,+A, ·A, ∗A,B,Λ) be a standard cellular algebra. We define

Λ1 :=
{
λ ∈ Λ : ξλ 6= 0

}
.

Proposition 3.4.2. Let (A,+A, ·A, ∗A,B,Λ) be a standard cellular algebra. Then for every

λ ∈ Λ1, we define:

R(λ) :=
{
v ∈ ∆(λ) : ξλ(y, v) = 0, ∀y ∈ ∆op(λ)

}
.

Then, the following hold:

(1) R(λ) is a left A-submodule of ∆(λ).

(2) R(λ) = RadA(∆(λ)).

(3) L(λ) :=
∆(λ)

R(λ)
is a simple A-module.

(4) If L(λ) is a composition factor of ∆(µ), then µ ≤ λ. Moreover, [∆(λ) : L(λ)] = 1.

(5) L(λ) is absolutely irreducible, that is, HomA(L(λ), L(λ)) '
K
K.

(6)
{
L(λ) : λ ∈ Λ1

}
is a complete set of all non-isomorphic simple A-modules.

Proof. (1) For any x ∈ R(λ) and a ∈ A, we have

ξλ(y ·R a, x) = 0,∀y ∈ ∆op(λ).

We show that a ·L x ∈ R(λ). We have

a ·L x ∈ R(λ)⇐⇒ ξλ(y, a ·L x) = 0,∀y ∈ ∆op(λ)

3.3.23(1)⇐⇒ ξλ(y ·R a, x) = 0,∀y ∈ ∆op(λ)

which proves (1).

(2) Since λ ∈ Λ1, so R(λ) 6= ∆(λ). Thus for any non-zero z ∈ ∆(λ)/R(λ), we can write

z = z1 + R(λ). Since z1 6∈ R(λ), there exists y1 ∈ ∆op(λ) such that ξλ(y1, z1) = 1K.

So, for every x ∈ ∆(λ), we have:

x = 1Kx = ξλ(y1, z1)x = Mλ(x⊗
A
y1) ·L z1
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Therefore ∆(λ) ⊆ A(λ)(z1) ⊆ A(z1) ⊆ ∆(λ). So we have ∆(λ) = A(z1) and

∆(λ)/R(λ) ∼=
A
A(z). So, ∆(λ)/R(λ) is a simple left A-module. Hence, RadA(∆(λ) ⊆

R(λ). It remains to show thatR(λ) ⊆ RadA(∆(λ)). It is obvious that if for any simple

A-moduleM/RadA(∆(λ)) whereM ⊆ ∆(λ), and every A-epimorphism φ : ∆(λ) −→

M/RadA(∆(λ)), we have φ(R(λ)) = RadA(∆(λ)), then R(λ) = RadA(∆(λ)). Now

suppose that R(λ) 6⊆ RadA(∆(λ)), so R(λ) 6= RadA(∆(λ)), hence there are a simple

A-module L0/RadA(∆(λ)) and an A-epimorphism φ0 : ∆(λ) −→ L0/RadA(∆(λ))

such that

φ0(R(λ)) 6= RadA(∆(λ))︸ ︷︷ ︸
0L0/RadA∆(λ)

Since L0/RadA∆(λ) is simple, so we have

φ0(R(λ)) = L0/RadA(∆(λ))

Also from its definition we have:

φ0(∆(λ)) = L0/RadA(∆(λ))

so

φ0(∆(λ)) = φ0(R(λ))

We choose z1 ∈ ∆(λ) \R(λ), so there is u ∈ R(λ) such that

φ0(z1) = φ0(u) (10)
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and ξλ(y1, u) = 0, therefore for every x ∈ ∆(λ), we have:

φ0(x) = φ0(1Kx)

= φ0(ξλ(y1, z1)x)

= φ0(Mλ(x⊗
A
y1) ·L z1)

= Mλ(x⊗
A
y1) ·L φ0(z1)

= ξλ(y1, φ0(z1))x

(10)
= ξλ(y1, φ0(u))x

= Mλ(x⊗
A
y1) ·L φ0(u)

= φ0(Mλ(x⊗
A
y1) ·L u)

= φ0(ξλ(y1, u)x)

= ξλ(y1, u)φ0(x)

= 0Kφ0(x)

= 0L0/RadA∆(λ)

which implies φ0 = 0L0/RadA∆(λ), and it is a contradiction. So we must have

R(λ) ⊆ RadA(A)

consequently, R(λ) = RadA(∆(λ)).

(3) Suppose that L(λ) is a composition factor of ∆(µ), so there is a composition series

of length m such that

{0} = Nµ
0 ⊆ Nµ

1 ⊆ . . . ⊆ Nµ
m = ∆(µ)

such that
Nµ
i+1

Nµ
i

' L(λ), for some 0 6 i 6 m− 1. We have

∆(λ) −→ ∆(λ)

RadA(∆(λ))
= L(λ)

'−→
Nµ
i+1

Nµ
i

↪→ ∆(µ)

Nµ
i

and the composition of these mappings allows us to define the nonzero mapping

Ψ : ∆(λ) −→ ∆(µ)

Nµ
i
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Obviously, we have Im(Ψ) ' L(λ). Also, suppose that Ψ(z1) = w + Nµ
i , for some

nonzero w ∈ ∆(µ) and y ∈ ∆op(λ) such that ξλ(y1, z1) = 1K. For every x ∈ ∆(λ), we

have:

Ψ(x) = Ψ(1Kx)

= Ψ(ξλ(y1, z1)x)

= Ψ(Mλ(x⊗
A
y1) ·L z1)

= Mλ(x⊗
A
y1) ·L Ψ(z1)

= Mλ(x⊗
A
y1) ·L (w +Nµ

i )

= (Mλ(x⊗
A
y1) ·L w) +Nµ

i

SinceMλ(x⊗
A
y1) ∈ A(λ) and w ∈ ∆(µ), so by 3.3.21 the condition (Mλ(x⊗

A
y1)·Lw) 6=

0 implies that µ ≤ λ.

Now, we want to prove the second part. By 1.2.47(1), we have RadA∆(λ) ⊆ Ker(Ψ),

so Ψ induces Ψ such that the following diagram is commutative:

∆(λ)
∆(λ)

Nµ
i

∆(λ)/RadA(∆(λ))

Ψ

πλ
Ψ

Now consider Ψ : ∆(λ)/RadA(∆(λ)) −→ ∆(λ)

Nµ
i

, and suppose that

Ψ(z1 +RadA(∆(λ))) = w1 +Nµ
i

for some w1 ∈ ∆(λ). Now for every x+RadA(∆(λ)) ∈ ∆(λ)

RadA(∆(λ))
, we have:

Ψ(x+RadA(∆(λ))) = Ψ(1Kx+RadA(∆(λ)))

= Ψ(ξλ(y1, z1)x+RadA(∆(λ)))

= Ψ(Mλ(x⊗
A
y1) ·L z1 +RadA(∆(λ)))

= Mλ(x⊗
A
y1)Ψ(z1 +RadA(∆(λ)))

= Mλ(x⊗
A
y1)w1 +Nµ

i

= ξλ(y1, w1)x+Nµ
i
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which states that Ψ is surjective. So we have Im(Ψ) ' ∆(λ)

Nµ
i

. Also, we know that

Im(Ψ) ' L(λ), so L(λ) ' ∆(λ)

Nµ
i

which implies that Nµ
i is a maximal A-submodule of

∆(λ). Therefore, we have RadA(∆(λ)) ⊆ Nµ
i . By (3), L(λ) = Top(∆(λ)) is a simple

A-module, so RadA(∆(λ)) is a maximal A-submodule of ∆(λ) which automatically

forces RadA(∆(λ)) = Nµ
i .

It remains to show that [∆(λ) : L(λ)] = 1. Let

0 = M0 ⊆M1 ⊆ · · · ⊆Mk−2 ⊆Mk−1 = RadA(∆(λ)) ⊆Mk = ∆(λ)

be a composition series with Mk/Mk−1
∼= L(λ). Suppose moreover that there is

another i < k such that Mi/Mi−1
∼= L(λ). Consider then ∆(λ)/Mi−1. Since

Mi/Mi−1
∼= L(λ), this means that Top(Mi) has L(λ) as one of its direct summands.

But then there are at least two linearly independent A-module morphisms

φ1 : ∆(λ) −→ ∆(λ)/Mi−1

and

φ2 : ∆(λ) −→ ∆(λ)/Mi−1

such that φ1 is the natural projection with Ker(φ1) = M1, and φ2 is a projection that

sends Top(∆(λ)) to L(λ) withKer(φ2) ∼= RadA∆(λ). SinceMi−1 6∼= RadA∆(λ), these

are clearly non-zero and distinct. Thus K2 ⊆ HomA(∆(λ),∆(λ)/Mi−1) contradicting

3.3.24(2). It follows that [∆(λ) : L(λ)] = 1.

(4) Suppose that there are λ, µ ∈ Λ1 such that L(λ) ' L(µ). Then there is an A-

isomorphism

% :
∆(λ)

RadA(∆(λ))
−→ ∆(µ)

RadA(∆(µ))
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where %(z1 +RadA(∆(µ))) = w% +RadA(∆(µ)).

So for every x+RadA(∆(λ)) we have,

%(x+RadA(∆(λ))) = %(1Kx+RadA(∆(µ)))

= %(ξλ(y1, z1)x+RadA(∆(µ)))

= %(Mλ(x⊗
A
y1) ·L z1) +RadA(∆(µ)))

= Mλ(x⊗
A
y1)%(z1 +RadA(∆(µ)))

= Mλ(x⊗
A
y1) ·L w% +RadA(∆(µ)))

Since % 6= 0, we must have: Mλ(x ⊗
A
y1) ·L w% 6= 0, so by 3.3.21, we have: µ ≤ λ,

similarly, we can do the same process for

%−1 :
∆(µ)

RadA(∆(µ))
−→ ∆(λ)

RadA(∆(λ))

and conclude that λ ≤ µ, so we have λ = µ.

(5) Follows from the proof of 3.3.24(3) and the simplicity of ∆(λ)/RadA(∆(λ)).

(6) We show that
{
L(λ) : λ ∈ Λ1

}
is a complete set of non-isomorphic simpleA-modules.

Since Λ is a partially-ordered finite set, then by 1.1.5 there exists a filtration of Λ by

maximal subsets ∅ = Λ0 ⊂ Λ1 ⊂ · · · ⊂ Λn = Λ such that Λi \ Λi−1 contains a single

element λi. This, in turn, gives the following filtration of A:

0 ⊆ A(Λ1) ⊆ A(Λ2) ⊆ · · · ⊆ A(Λn) = A (11)

Now, consider a simple A-module L. By 1.2.49(1) HomA(A, L) 6= 0, so there is

0 6= f ∈ HomA(A, L) 6= 0 and by 1.2.49(2) f is an epimorphism. If for every

1 6 i 6 n, f |A(Λi)= 0, then we must have f = 0, which is a contradiction. So at

least one of these restrictions is non-zero. Let j be the smallest integer such that

f |A(Λj) 6= 0. Therefore f |A(Λi)= 0 for all i < j and

A(Λj)↪→ A
f−→︸ ︷︷ ︸

f

L

with f 6= 0. Let λj be the single element in Λj \ Λj−1. Then

A(Λj)

A(Λj−1)
∼=

3.1.5(3)
A(λj) ∼=

3.3.20(2)
∆(λj)⊗

K
∆op(λj) ∼=

3.3.20(3)

⊕
j∈J(λ)

∆(λ)
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So there exists f̂ which makes the following diagram commute:

A(Λj) L

A(Λj)/A(Λj−1) ∼= A(λj)

f

πf
f̂

because A(Λj−1) ⊆ Ker(f). Since

Top(A(λj)) ∼= Top(
⊕
j∈J(λ)

∆(λ)) ∼=
⊕
j∈J(λ)

Top(∆(λ)) ∼=
3.4.2(3)

⊕
j∈J(λ)

L(λ),

then L ∼= L(λ).

�

Definition 3.4.3. Let (A,+A, ·A, ∗A,B,Λ) be a standard cellular algebra, Λ1 and Λ2 be two

ideals of Λ such that Λ1 ⊆ Λ2 ⊆ Λ, and M be a left A-module. Then we define

M(Λ2/Λ1) := A(Λ2/Λ1)⊗
A
M

Remark 3.4.4. There is an important specific case of definition 3.4.3. For every λ ∈ Λ,

consider Λ2 = I≤λ,Λ1 = I<λ , we have

M(λ) = A(λ)⊗
A
M.

Proposition 3.4.5. Let (A,+A, ·A, ∗A,B,Λ) be a standard cellular algebra, P be an indecom-

posable projective left A-module, and Ω be the ideal of Λ generated by
{
λ ∈ Λ : P (λ) 6= 0

}
.

If λ0 is a maximal element of Ω, then

(1) ξλ0 6= 0.

(2) λ0 is the unique maximal element of Ω and Ω = I≤λ0 .
2

(3) P is the projective cover of L(λ0) and P (≤ λ0) ' A(≤ λ0)P = P.

Proof. (1) Since λ0 ∈ Ω, so A(λ0)⊗
A
P 6= 0, also by 3.3.20(2) we have : (∆(λ0)⊗

K
∆op(λ0))⊗

A
P 6= 0 which implies

∆op(λ0)⊗
A
P 6= 0 (12)

2See definition 3.1.2(1).
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HomA(P (λ0),∆(λ0)) = HomA(A(λ0)⊗
A
P,∆(λ0))

∼= HomA((∆(λ0)⊗
K

∆op(λ0))⊗
A
P,∆(λ0))

∼= HomK(∆op(λ0)⊗
A
P,HomA(∆(λ0),∆(λ0)))

∼=
3.3.24(3)

HomK(∆op(λ0)⊗
A
P,K)

∼= ∆op(λ0)⊗
A
P

(12)

6= 0

So P (λ0) has a quotient isomorphic to L(λ0). Since P is an indecomposable projective left

A-module, then by 1.2.62(2), Top(P ) is simple, therefore by 3.4.2(6) there is µ ∈ Λ1 such

that Top(P ) = L(µ). So L(µ) is a composition factor of ∆(λ0) by 1.2.26. By 3.4.2(4), we

have λ0 ≤ µ. However, since ∆(µ) is a homonorphic image of P and ∆(µ) = A(µ) ·L ∆(µ),

it follows that A(µ)P 6= 0 . Therefore µ ≤ λ0, and hence by maximality of λ0, we must have

λ0 = µ ∈ Λ1 which means that ξλ0 6= 0 proving (1). So λ0 is the unique maximal element of

Ω which proves (2).

(3) We have:

A(≤ λ0)× P P

A(≤ λ0)⊗
A
P

·P

⊗
A ·P

Also by the definition of a A-module structure on P , we have:

A(≤ λ0)× P P

A(≤ λ0) ·P P

·P

·P
·P

so the map

A(≤ λ0)⊗
A
P −→ A(≤ λ0) ·P P

a⊗
A
p 7−→ a ·P p
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defines an A-module isomorphism A(≤ λ0) ·P P ' A(≤ λ0)⊗
A
P . Since ξλ0 6= 0, so we have

A(≤ λ0)L(λ0) 6= 0. So A(≤ λ0)L(λ0) is a non-zero A-submodule of the simple A-module

L(λ0). Hence we have: A(≤ λ0)L(λ0) = L(λ0). By (2), consider the canonical projection

P −→ P

RadA(P )
' L(λ0). Now suppose that M is a A-submodule of P which covers L(λ0)

by the canonical projection. We know that every submodule of a finitely generated module

is contained in a maximal submodule. In this case, by 1.2.62(2) RadA(P ) is the unique

maximal ideal of P , and by 1.2.47(1) RadA(P ) equals the kernel of the canonical projection.

So, every non-zero A-submodule of P is contained in RadA(P ), and therefore mapped onto

0 by the canonical projection. So P is the projective cover of L(λ0). Now we want to show

that P (λ0) is the projective cover of L(λ0). Since λ0 ∈ Λ1, so A(≤ λ0)P 6= 0. Now consider

the mapping A(≤ λ0)P −→ A(≤ λ0)L(λ0) = L(λ0). So A(≤ λ0)P covers L(λ0), by 1.2.58

we have A(≤ λ0)P = P , so P (λ0) is the projective cover of L(λ0).

�

From now on, we will denote by P (λ) the projective cover of L(λ).

Theorem 3.4.6. Let (A,+A, ·A, ∗A,B,Λ) be a standard cellular algebra. Let λ be an element

of Λ1. Then

(1) The projective cover P (λ) has ∆-filtration.

(2) If [P (λ) : ∆(µ)] denotes the number of quotients isomorphic to ∆(µ) in such a filtra-

tion, then [P (λ) : ∆(µ)] 6= 0 implies µ ≤ λ.

Proof. (1) Since Λ is a partially-ordered finite set, then by 1.1.5 it can be totally or-

dered, λ1 �′′ · · · �′′ λn, so consider the sequence till λ,

λ1 �′′ · · · �′′ λm = λ

which gives us the following filtration

0 ⊆ A(�′′ λ1) ⊆ A(�′′ λ2) ⊆ · · · ⊆ A(�′′ λm). (13)

Now consider 0 6 i 6 m− 1, so we have ∅ ⊂ I�′′λi ⊆ I�′′λi+1
, which implies that the

following short sequence of (A,A)-bimodule

0 = A(∅) −→ A(�′′ λi) −→ A(�′′ λi+1) −→ A(�′′ λi+1)

A(�′′ λi)
−→ 0
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is exact. Also by 3.1.5(4), we have

0 −→ A(�′′ λi) −→ A(�′′ λi+1) −→ A(λi+1) −→ 0

Since P (λ) is a projective left A-module, then the functor − ⊗
A
P (λ) is an exact

functor, so we have

0 −→ A(�′′ λi)⊗
A
P (λ) −→ A(�′′ λi+1)⊗

A
P (λ) −→ A(λi+1)⊗

A
P (λ) −→ 0.

We denote

P (�′′ λi) := A(�′′ λi)⊗
A
P (λ) , P (λi) := A(λi)⊗

A
P (λ)

so we have:

0 −→ P (�′′ λi) −→ P (�′′ λi+1) −→ P (λi+1) −→ 0.

Also, the filtration

0 ⊆ A(�′′ λ1) ⊆ A(�′′ λ2) ⊆ · · · ⊆ A(�′′ λm) (14)

gives us the filtration

0 ⊆ P (�′′ λ1) ⊆ P (�′′ λ2) ⊆ · · · ⊆ P (�′′ λm) = P (λ). (15)

For every 1 ≤ k ≤ m, we have:

P (�′′ λk)
P (�′′ λk−1)

= P (λk)

= A(λk)⊗
A
P (λ)

∼=
3.3.20(2)

(
∆(λk)⊗

K
∆op(λk)

)
⊗
A
P (λ)

= ∆(λk)⊗
K

(
∆op(λk)⊗

A
P (λ)

)
∼=

1.2.44
∆(λk)

⊕ dimK(∆op(λk)⊗
A
P (λ))

as left A-modules. Thus P (λ) has a ∆-filtration. In particular,

A(λ)⊗
A
P (λ) ∼= ∆(λk)

⊕ dimK(∆op(λ)⊗
A
P (λ))

.

But P (λ) is a projective cover of L(λ) and its ∆-filtration may contain only a single

copy of ∆(λ), otherwise its top would be semisimple (and not simple). Thus A(λ)⊗
A

P (λ) ∼= ∆(λ).
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(2) By (1), the only ∆(µ) that may appear as quotients in the ∆-filtration (15) are those

with µ ∈ Ω, that is [P (λ) : ∆(µ)] 6= 0 implies µ ≤ λ.

�

Corollary 3.4.7. Let (A,+A, ·A, ∗A,B,Λ) be a standard cellular algebra. Then the K-finite

category mod-A is a highest weight category, consequently A is a quasi-hereditary algebra.

Proof. Consider a standard A-module ∆(λ), by 3.4.2(1) Top(∆(λ)) = L(λ) and all of its

compositions factors are of form L(µ) with µ ≤ λ by 3.4.2(4). So, it satisfies 2.2.9(2). By

3.4.2(3), L(λ) is a simple A-module, and by 3.4.2(6)
{
L(λ) : λ ∈ Λ1

}
is a complete set of

non-isomorphic simple objects in mod-A. So, it satisfies 2.2.9(1). The projective cover P (λ)

of L(λ) has ∆-filtration by 3.4.6(1), and ∆(λ) occurs with multiplicity 1 by 3.4.6(2). So,

mod-A satisfies 2.2.9(3). Hence, mod-A is a highest weight category. Consequently, A is

quasi-hereditary algebra by 2.2.10. �

3.5. Cartan Matrix of a Cellular Algebra

In this section, we compute the Cartan matrix of a cellular algebra.

Definition 3.5.1. Let (A,+A, ·A, ∗A,B,Λ) be a standard cellular algebra. We define D =

(dλµ)(λ,µ)∈Λ×Λ1 , where dλµ := [∆(λ) : L(µ)]. It is called the decomposition matrix.

Lemma 3.5.2. Let K be a closed field, (A,+A, ·A) be a K-algebra, M be an A-module, and

P be an indecomposable projective A-module. Then

[M : Top(P )] = dimKHomA(P,M)

Proof. We know that

HomA(P, Top(P )) ∼= EndA(Top(P )) ∼= K

Also by 1.2.21 for any simple A-module S we have:

HomA(P, S) =

 K : S ' Top(P )

0 : S 6' Top(P )

Now, if M is simple, then the result follows obviously. If M is not simple, then there is a

maximal A-submodule M ′ of M such that M/M ′ is simple. So we have the following short

exact sequence

0 −→M ′ −→M −→M/M ′ −→ 0
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and, since P is a projective module, so the functor HomA(P,−) is exact, so we have:

0 −→ HomA(P,M ′) −→ HomA(P,M) −→ HomA(P,M/M ′) −→ 0

and

dimKHomA(P,M) = dimKHomA(P,M ′) + dimKHomA(P,M/M ′)

Now, if M ′ is simple, it is done, otherwise by doing induction on it, the result follows. �

Theorem 3.5.3. Let (A,+A, ·A, ∗A,B,Λ) be a Graham-Lehrer cellular algebra. Then we

have:

(1) dλλ = 1 and the matrix D is uppertriangular, that is, if µ < λ, then dλµ = 0.

(2) dνλ = dimKHomA(P (λ),∆(ν)) = dimK∆op(ν)⊗
A
P (λ).

(3) C = DtD.

Proof. (1) By 3.4.2(3), dλλ = 1. Suppose µ < λ, then by the contraposition of 3.4.2(3),

L(µ) is not a composition factor of ∆(λ), so we have dλµ = 0.

(2) dνλ = [∆(ν), T op(P (λ))]
1.2.61(2)

= [∆(ν), L(λ)]
3.5.2
= dimKHomA(P (λ),∆(ν)) . Now,

we show the second equality of statement (2). Since the standard cellular algebra

is a Graham-Lehrer one, the sets I(λ) and J(λ) coincide and there is a natural

isomorphism between HomK(∆op(ν),K) and ∆(ν) as left A-modules. Thus, as K-

vector spaces

∆op(ν)⊗
A
P (λ) ∼= HomK(∆op(ν)⊗

A
P (λ),K)

∼=
1.2.45

HomA(P (λ), HomK(∆op(ν),K))

∼= HomA((P (λ),∆(ν))

and thus, dimKHomA(P (λ),∆(ν)) = dimK∆op(ν)⊗
A
P (λ).
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(3) We know that the Cartan matrix of A is C = ([P (λ) : L(µ)])(λ,µ)∈Λ1×Λ1 . So we have

[P (λ) : L(µ)] = [A⊗
A
P (λ) : L(µ)]

= [A(Λ)⊗
A
P (λ) : L(µ)]

=
[∑
ν∈Λ

A(ν)⊗
A
P (λ) : L(µ)

]
=

∑
ν∈Λ

[A(ν)⊗
A
P (λ) : L(µ)]

3.3.20(2)
=

∑
ν∈Λ

[(∆(ν)⊗
K

∆op(ν))⊗
A
P (λ)) : L(µ)]

=
∑
ν∈Λ

[∆(ν)⊗
K

(∆op(ν)⊗
A
P (λ)) : L(µ)]

1.2.44
=

∑
ν∈Λ

[∆(ν)
dimK∆op(ν)⊗

A
P (λ)

: L(µ)]

=
∑
ν∈Λ

dimK∆op(ν)⊗
A
P (λ)[∆(ν) : L(µ)]

3.5.3(2)
=

∑
ν∈Λ

dνλ[∆(ν) : L(µ)]

=
∑
ν∈Λ

dνλdνµ.

So

C = ([P (λ) : L(µ)])(λ,µ)∈Λ1×Λ1 = (
∑
ν∈Λ

dνλdνµ)(λ,µ)∈Λ1×Λ1 = DtD.

�
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