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ABSTRACT  

In this tutorial, we focus on the problem of how to define and estimate treatment 

effects when some patients develop a contraindication and are thus ineligible to receive 

a treatment of interest during follow-up. We first describe the concept of positivity, 

which is the requirement that all subjects in an analysis be eligible for all treatments of 

interest conditional on their baseline covariates, and the extension of this concept in the 

longitudinal treatment setting. We demonstrate using simulated datasets and 

regression analysis that under violations of longitudinal positivity, typical associational 

estimates between treatment over time and the outcome of interest may be misleading 

depending on the data-generating structure. Finally, we explain how one may define 

“treatment strategies,” such as “treat with medication unless contraindicated,” to 

overcome the problems linked to time-varying eligibility. Finally, we show how contrasts 

between the expected potential outcomes under these strategies may be consistently 

estimated with inverse probability weighting methods. We provide R code for all the 

analyses described. 

Keywords: anticoagulants, causal inference, contraindication, inverse probability 

weighting, longitudinal analysis, longitudinal exposure, positivity assumption.  
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1. INTRODUCTION 

When evaluating the relative safety and effectiveness of different medications, 

understanding a causal inference approach based on counterfactual outcomes may 

avoid pitfalls resulting in misleading effect estimates. In this tutorial, we focus on the 

problem of how to define and estimate treatment effects when some patients develop a 

contraindication and are thus ineligible to receive a treatment of interest during follow-

up. 1-4 Under these circumstances, the construction of inverse probability weights for 

the estimation of the effect of sustained treatment becomes impossible as the 

probability of receiving treatment will be zero for contraindicated patients. While 

tutorials exist for estimating the parameters of marginal structural models using IPW 5,6 

we focus on the issues that arise when eligibility for treatment is time-varying and 

standard implementations no longer apply. Guidance on this topic is currently lacking in 

the literature, both for observational studies and randomized controlled trials (RCTs), 7 

even though it is frequently seen in clinical settings.  

We motivate the problem through a hypothetical cohort analysis that compares the 

safety of Direct-Acting Oral Anticoagulants (DOACs) to that of warfarin. We then cover 

the topics of the positivity assumption often required to define an effect of interest, 

treatment strategies 3,8 (also known as dynamic treatment regimes 9), and inverse 

probability of treatment weighting (IPW), 10 and present R code to both numerically 

illustrate the problem and demonstrate one possible solution. Specifically, we show 

using simulated data that several naive regression approaches may result in biased 

estimates while a modified IPW approach based on treatment strategies does not. We 

conclude that in such complex settings, an investigator may choose to contrast mean 

outcomes under different treatment strategies rather than different fixed exposures.  

 

2. COMPARING THE SAFETY AND EFFECTIVENESS OF DOACS VERSUS WARFARIN 

Atrial fibrillation is the most frequent arrhythmia. It is characterized by an irregular 

heart rate, and increased risk of cardio-embolic stroke due to embolization of blood 

clots forming in the heart cavities. To decrease the risk of stroke, most patients with 

atrial fibrillation have an indication for lifelong anticoagulation. Currently, both warfarin 

(vitamin K antagonist) and DOACs are recommended for anticoagulation in non-valvular 

atrial fibrillation. 11 While the safety and effectiveness of warfarin are well understood, 

the level of anticoagulation achieved for patients on warfarin requires close monitoring 

of International Normalized Ratio (INR) and frequent dose adjustments due to 

numerous drug interactions. 12 Frequent blood monitoring imposes a burden on the 
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patient and healthcare system. 13 DOACs, which have been available in Canada since 

2010, require no such routine monitoring and are given as fixed doses based on patient 

characteristics. Multiple studies, including phase 3 RCTs 14-17 and observational studies, 
18 have thus contrasted the effectiveness (stroke and mortality prevention) and safety 

(risk of bleeding) of DOACs versus the mainstay warfarin for patients with atrial 

fibrillation. Notably, severe renal failure (less than 15-30 ml/min creatinine clearance, 

depending on the type of DOAC) is one of several contraindications to DOACs (which 

also include mechanical heart valve or valvular disease) but is not a contraindication for 

warfarin. 19,20 Since DOACs entered the market, treatment switches between warfarin 

and DOACs have been frequent. Typically, warfarin-treated patients will be switched to 

DOACs for treatment simplification, while DOAC-treated patients will be switched to 

warfarin if they develop contraindications to DOACs.   

As a motivating example for this tutorial, we consider an analysis where the goal is to 

evaluate the relative risks of major bleeding using a prospective longitudinal cohort 

study. One complication in such a cohort is the development of renal failure post-

baseline. Upon developing such a condition, a patient would no longer be eligible to 

take a DOAC but would still be eligible to take warfarin. Renal failure is a well-known risk 

factor for cardiovascular disease, bleeding and death. 21,22 Therefore, as renal failure 

develops, higher risk individuals are censored from the DOAC cohort and move into the 

warfarin cohort (as they remain eligible for warfarin treatment). 

In the following sections, we explain and demonstrate why standard regression 

methods of dealing with such a situation may result in incorrect conclusions and we 

present a method that allows for clinically interpretable results. 

 

3. POSITIVITY IN OBSERVATIONAL STUDIES 

Suppose that we are interested in comparing the effect of sustained exposure to DOACs 

versus sustained exposure to warfarin. In the context of observational studies, where 

treatments are not assigned by the study design, the assumptions of positivity, no 

unmeasured confounding, 10 the absence of interference, 23 and exposures 

corresponding to well-defined interventions 24 are required to equate a statistical 

association to a “causal” relation. If medication usage is the exposure of interest, 

positivity means that given the values of their confounding variables, every subject in 

the analysis was eligible to receive any of the medications being compared in the 

analysis. 25  
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In the comparison of DOACs and warfarin, a patient with severe renal failure at baseline 

will not be eligible for treatment with a DOAC and should therefore be excluded from 

the analysis and from the population in which we are estimating a treatment effect. 

Note that the same exclusion criteria would be present in an RCT, and the effect of 

interest would only be estimated in the population eligible for both treatment options, 

as this is the population where the treatment comparison is clinically relevant. As 

contraindication for DOACs prohibits treatment, any average population-level effect will 

be due to the effect in those eligible to receive a DOAC. 

Intuitively, estimation of average causal effects requires positivity because patients who 

were not eligible to receive a medication may be entirely incomparable to those who 

did. In our example, patients ineligible for a DOAC will always get warfarin and may be 

incomparable to patients who were eligible for either. We will have no information on 

how ineligible patients would have fared under the contraindicated medication, thereby 

requiring an extrapolation of the observed effects using patients who were actually 

eligible in order to estimate an overall effect 26 which may give invalid results.  

In Figure 1(a), we give an extreme illustration of the violation of this condition with a 

single continuous baseline covariate, L, a single binary exposure, and a continuous 

outcome, Y, for which larger values indicate improved health. The exposure to warfarin 

or a DOAC is indicated by the plotting labels (either “0” or “1”, corresponding to 

exposure to warfarin or a DOAC, respectively). Suppose that subjects with a value of L 

below a certain threshold will deterministically not be exposed, and subjects with a 

value beyond this threshold will be exposed. Clearly, L confounds the relationship 

between the exposure and outcome as its value affects which treatment is received and, 

given the plot, appears to affect the outcome as well. However, even knowing L, one 

cannot be certain whether the differences between exposed and unexposed subjects 

are due to the treatment or L itself. In Figure 1(b), we plotted the simple regression lines 

fit with just the unexposed observations (dotted line) and just the exposed observations 

(solid line), respectively. These lines appear to fit the data well. However, one may 

fallaciously infer that the treatment is effective for the values of L prior to where the 

lines cross and harmful afterwards. But clearly, this conclusion was made based on 

extrapolations of the regression lines to regions of L where each treatment was never 

observed. In reality, these data were generated with a constant positive treatment 

effect over the entire range of L. The R code for the data generation and plots are 

available in Box 1. 
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(a) 
 

(b) 

Figure 1. (a) A simple setting with a single baseline covariate, L, and outcome Y. The 

observations are denoted as either “0” (warfarin) or “1” (DOAC) corresponding to a 

binary exposure. In this extreme example of violation of the positivity condition, small 

values of L determine that a subject will not be exposed, while larger values imply that 

they will. (b) The same observations with a dotted regression line fit with the non-

exposed subjects and a solid regression line fit with the exposed subjects. 

 

Aside from the statistical difficulty in estimating a treatment effect when positivity is 

violated, one may question the existence of an average “effect” when there are 

members of the population who could never have received one or the other exposure. 

Note that the positivity violation resulting from a true contraindication, where no 

patient with certain covariate values should receive a given treatment, is distinct from a 

practical positivity violation (or “data sparsity”), where no or few patients with certain 

covariate values are observed to receive a given treatment. The latter may be addressed 

using statistical methods 27,28 while the former indicates an ill-defined causal question. 29 
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Box 1: R code for the positivity violation data generation and plots 
 
set.seed(934) 

 

#Set up the axis 

plot(xlab="L",ylab="Y",xlim=c(0,5),ylim=c(0,5),x=0,y=0,xaxt="n", 

yaxt="n",type="l") 

axis(side=1,labels=F)  

axis(side=2,labels=F)  

 

#Generate 20 data points (l, a, y) 

ssize<-20 

l<-runif(min=0,max=5,n=ssize) 

a<-rep(0,ssize) 

a[l<2.5]<-0 

a[l>=2.5]<-1 

y<-(1+l-0.2*l^2)+a+rnorm(n=ssize,sd=0.5) 

 

#Plot the points 

points(x=l[a==0],y=y[a==0],pch="0") 

points(x=l[a==1],y=y[a==1],pch="1") 

 

#Fit and plot the regression lines 

mod0<-lm(y~l,subset=(a==0)) 

abline(mod0,lty=2,lwd=2) 

mod1<-lm(y~l,subset=(a==1)) 

abline(mod1,lty=1,lwd=2) 
 

4. CONTRAINDICATION OCURRING AFTER INITIAL TREATMENT EXPOSURE  

The solution to the problem of baseline violations of the positivity condition is 

conceptually simple; one should remove subjects from the analysis who are known to 

be ineligible for both treatments and evaluate the treatment effects on the remaining 

set. But what happens if subjects become ineligible for a treatment during follow-up? 

The estimation of expected population outcomes under sustained exposure to 

medication in settings where exposure may vary in time also requires longitudinal  

positivity, where every subject must be eligible for either medication given the values of 

their confounding variables at every time point at which a treatment change is 

potentially made. 30 In our example, we are interested in the effect of sustained 

exposure to warfarin versus sustained exposure to a DOAC. Thus, longitudinal positivity 

will be violated if a patient develops a contraindication to either medication at any time 

point. In this section, we demonstrate how ignoring or improperly adjusting for 

longitudinal positivity violations can result in misleading conclusions. In the subsequent 
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section we describe treatment strategies and a modified version of IPW which produce 

valid conclusions. 

4.1 Data Generation 

To illustrate the problem, we generate data according to three distinct scenarios 

illustrated through Directed Acyclic Graphs (DAGs). DAGs are used to represent the 

causal relationships between variables 31. The arrows (or directed edges) between 

variables in the graph indicate that one variable (the parent) affects another (the child) 

in the direction of the arrow. A path between two variables is an unbroken route that 

proceeds along or against the direction of the arrows. A path is considered open unless 

1) conditioning on a variable blocks the path (denoted by a square around the variable) 

or 2) the path goes through an unadjusted collider: a variable that is affected by two 

parent variables. Adjusting for a collider opens the previously blocked path. If there is an 

open path between the outcome and exposure other than the path of interest, 

estimation of the causal effect will be biased.31 

The first two scenarios we consider correspond to the top DAG in Figure 2 and the third 

corresponds to the bottom DAG. Specifically, the variable A0 represents the exposure to 

a DOAC, “1”, or warfarin, “0”, in the first year of follow-up, and A1 represents exposure 

in the second year. The variable RF denotes the renal failure status (yes/no) at the 

beginning of the second year; patients who develop renal failure necessarily receive 

warfarin at the next time point (A1=0). The outcome Y is major bleeding event (yes/no) 

by the end of follow-up. The baseline variable W represents a single confounder of the 

initial exposure and outcome while U represents an unmeasured baseline risk factor of 

major bleeding. For instance, U may be the use of over the counter non-steroidal anti-

inflammatory drugs. This simplified structure assumes that the outcome may not occur 

prior to the second year and is observed for all subjects. In these DAGs, no arrows go 

from either exposure to Y, indicating that there is no true treatment effect. In the top 

DAG, RF causes Y and exposure has no effect on RF. In the bottom DAG, we consider the 

illustrative scenario where RF no longer causes Y, exposure causes RF, and the 

unmeasured risk factor U also affects RF. RF is therefore a collider 32 in the bottom DAG 

as it is caused by A0 and U. 
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Figure 2. DAGs representing the data-generation in the DOAC-warfarin example, in 
scenarios 1 and 2 (above) and scenario 3 (below). In the bottom DAG, renal failure (RF) 
is a collider of A0 and U while in the top DAG it is not. The bolded lines indicate the 
arrows that are different between the DAGs. 

 

The data generation R code for the three scenarios is presented in Box 2. Importantly, 

the outcome models for the first and third scenarios only include main terms while the 

outcome model in the second scenario includes an interaction between W and U. 

Summaries of the generated datasets of n=25,000 subjects each are in Web Table 1 in 

the Web Appendix. From this table, we see that after the initial exposure, roughly 10% 

developed renal failure though the percentages are imbalanced between those with 

early exposure to warfarin and to DOACs, respectively. Almost all subjects without renal 

failure who were taking a DOAC stayed on DOACs while 17% previously on warfarin 

W 

A
0
 Y 

U 

A
1
 RF 

W 

A
0
 Y 

U 

A
1
 RF 



9 
 

switched over to DOACs. No subjects who developed renal failure subsequently took 

DOACs. Without adjustment, a slightly higher percentage of subjects had major bleeding 

in the initial warfarin group compared to the initial DOAC group. 

 

Box 2: R code for the data generation of the DOAC-warfarin example 
 
set.seed(454) 

 

#Baseline covariates 

W<-rnorm(n=25000) 

U<-rnorm(n=25000) 

 

#Early exposure: 1 is DOAC, 0 is warfarin 

A0<-rbinom(size=1,n=25000,p=plogis(0.5-0.5*W)) 

 

#Renal failure (scenarios 1 and 2) 

RF<-rbinom(size=1,n=25000,p=plogis(-2.8+W)) 

#Renal failure (scenario 3) 

RF<-rbinom(size=1,n=25000,p=plogis(-4+W+1.5*U+A0)) 

 

#Late exposure  

A1<-rbinom(size=1,n=25000,plogis(-2+5*A0-2*W)) 

A1[RF==1]<-0 #Everyone who gets renal failure goes on Warfarin 

 

#Outcome (scenario 1) 

Y<-rbinom(size=1,n=25000,p=plogis(-2+0.5*RF+0.5*W+2*U)) 

#Outcome (scenario 2) 

Y<-rbinom(size=1,n=25000,p=plogis(-2+0.5*RF+0.5*W+2.5*W*U))  

#Outcome (scenario 3) 

Y<-rbinom(size=1,n=25000,p=plogis(-2+0.5*W+2*U)) 

 

#Save observed data as dataframe 

DAT=as.data.frame(cbind(W,A0,RF,A1,Y)) 
 

4.2 Regression analyses 

We precede with a series of possible regression analyses that may or may not include 

renal failure in the model. Since Y is binary, a naïve approach might use logistic 

regression analysis. The R code for all analyses is presented in Box 3. 

4.2.1 Intent-to-treat analyses 

We begin with intent-to-treat (ITT) analyses, which consider only the initial exposure to 

medication (A0). Given that RF is a mediator of the relationship between A0 and Y (i.e. an 

intermediate variable along the path from A0 to Y), we do not need to adjust for it in 
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order to estimate the causal effect of A0. However, we must adjust for the confounder 

W.  

In Table 1 we present the odds ratios and confidence intervals from logistic regression 

models, unadjusted and adjusted for W, respectively. From this table, we see that with 

adjustment for the confounder W, we do not conclude in any scenario that there is any 

difference in effect between early exposure to DOACs and warfarin on major bleeding. 

Without adjustment, it appears that DOACs are safer. Given that in this simulated 

example we know that there is no relative effect of DOACs versus warfarin, we 

therefore see that the adjusted ITT analysis gives the correct result.  

 

ITT unadjusted regression, Y ~ A0 
Covariate OR Scenario 1 OR Scenario 2 OR Scenario 3 
A0 0.86(0.81,0.92)* 0.85(0.79,0.90)* 0.87(0.82,0.92)* 
    

ITT adjusted regression, Y ~ A0 + W 
Covariate OR Scenario 1 OR Scenario 2 OR Scenario 3 
A0 1.02(0.96,1.08) 0.96(0.90,1.02) 1.01(0.95,1.08)  
W 1.43(1.39,1.48)* 1.32(1.28,1.36)* 1.40(1.36,1.45)* 

Table 1. ITT Analyses With Odds Ratio (OR) Estimates in the Three Scenarios. 
*Asterisks indicate whether the confidence interval excludes the null. 

 

4.2.2 Adherence adjusted analyses 

We may also be interested in the effect of the exposure over time. For instance, we may 

be interested in the effect of both early (A0) and more recent (A1) exposure to DOACs on 

the outcome, where a corresponding analysis is often called “adherence adjusted”.  

How then should we proceed?  

Simple regression analysis – which we will see leads to incorrect conclusions -- would 

involve including covariates A0 and A1 in the regression. Conceptually, we want to adjust 

for all confounders of the A0 – Y and A1 – Y relationships. In the upper DAG in Figure 2 

(scenarios 1 and 2), RF is a confounder of the A1 – Y relationship, but it is not a mediator 

of A0 – Y. So adjustment for RF may give the correct conclusion as long as the model 

correctly extrapolates outcomes under A1=1 for patients with RF. In the lower DAG 

(scenario 3), in addition to being a confounder of A1, RF is a collider of A0 and U, so 

adjusting for RF will create an open path between U and A0 leading to a misleading (non-

causal) association between A0 and Y. In fact, even including A1 as a covariate will create 
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an open path between U and A0 because A1 is a descendant of RF. 32 Thus in both cases, 

both the adjusted and unadjusted analyses may produce misleading conclusions about 

the existence of an effect. 

In Table 2 we give the results of four naïve modeling strategies, all of which are logistic 

regressions with A0 and A1 as covariates. The details of these models are: 

 M1: Ignore RF. Include W as a covariate.  

 M2: Subset on the subjects who do not develop renal failure (RF=0). Include W 

as a covariate. 

 M3: Subset on subjects who do not develop renal failure (i.e. we artificially 

censor them) and add in inverse probability of censoring weights.4 These weights 

are estimated using a censoring model that adjusts for the baseline covariate 

and early exposure.  

 M4: Include RF and W as covariates. 

Note that for M3, the automatic standard error estimate in the regression function (lm 

or glm) output, based on the Fisher information matrix, does not take into account the 

uncertainty of the weights. We provide the code for a nonparametric bootstrap in the 

Web Appendix A2. 33  

For M1, the results indicate that in all scenarios exposure to DOACs is harmful in the 

early time period and protective in the later time period. The effect of A1 is biased 

because we have not adjusted for RF, a confounder of the A1 – Y association. In 

scenarios 1 and 2, the effect of A0 is biased because adjusting for A1 creates an open 

path A0 ->RF -> Y. In scenario 3, adjusting for A1 opens the path A0 ->U -> Y  

For M2 and M3 where we subset on RF=0, we obtain null (correct) results for both 

exposures in the first scenario. This is because we have a nearly correct model of the 

outcome in the subpopulation without renal failure which occurs independently of 

exposure conditional on measured factors. In the second scenario, the results suggest 

that later exposure to DOACs is protective, because the outcome model is no longer 

correctly specified with respect to W (due to the interaction between W and the 

unobserved U). In the third scenario, the results suggest that only early exposure is 

slightly protective. This occurs because the selection on the collider RF induced a 

correlation between A1 and Y. 32 When adjusting for RF in the regression model (M4), 

we have similar conclusions as the previous two models.  
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M1. Adherence adjusted regression, Y ~ A0 + A1 + W 
Covariate OR (Scenario 1) OR (Scenario 2) OR (Scenario 3) 
A0 1.15(1.06,1.25)* 1.13(1.04,1.23)*  1.63(1.51,1.76)* 
A1 0.82(0.75,0.90)* 0.77(0.70,0.84)* 0.41(0.38,0.45)* 
W 1.38(1.34,1.43)* 1.26(1.22,1.31)* 1.20(1.16,1.24)* 
    
M2. Adherence adjusted regression subsetting for RF=0, Y ~ A0 + A1 + W 
Covariate OR (Scenario 1) OR (Scenario 2) OR (Scenario 3) 
A0 1.05(0.95,1.16) 1.06(0.96,1.17) 0.90(0.81,1.00)* 
A1 0.92(0.83,1.03) 0.83(0.75,0.93)* 0.92(0.82,1.03) 
W 1.38(1.33,1.44)* 1.21(1.17,1.26)* 1.26(1.21,1.31)* 
    
M3. Adherence adjusted regression subsetting for RF=0 and using inverse probability 
of censoring weights†, Y ~ A0 + A1 + W 
Covariate OR (Scenario 1) OR (Scenario 2) OR (Scenario 3) 
A0 1.05(0.95,1.16) 1.05(0.95,1.17) 0.90(0.82,0.99)* 
A1 0.93(0.84,1.04) 0.84(0.74,0.93)* 0.92(0.83,1.03) 
W 1.38(1.33,1.44)* 1.26(1.21,1.31)* 1.26(1.21,1.30)* 
    
M4. Adherence adjusted regression, Y ~ A0 + A1 + W + RF 
Covariate OR (Scenario 1) OR (Scenario 2) OR (Scenario 3) 
A0 1.08(1.00,1.18) 1.05(0.96,0.31) 0.85(0.78,0.93)* 
A1 0.90(0.82,0.99)* 0.86(0.78,0.95)* 0.94(0.85,1.04) 
W 1.38(1.33,1.42)* 1.25(1.21,1.30)* 1.23(1.19,1.27)* 
RF 1.31(1.17,1.46)* 1.42(1.28,1.59)* 4.27(3.83,4.75)* 

Table 2. Regression Analyses Investigating the Effect of Exposure Over Time. †The 
confidence interval for inverse censoring uses a nonparametric bootstrap with 500 
resamples to take into account the uncertainty in the weights. *Asterisks indicate 
whether the confidence interval excludes the null. 
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Box 3: R code for the ITT and adherence adjusted regression analyses 
 
#ITT analysis without adjustment  

ITT1<-glm(Y~A0,family=binomial()) 

exp(coefficients(ITT1)) #OR estimates 

exp(confint(ITT1)) #95% confidence intervals on the OR scale 

 

#ITT analysis with adjustment  

ITT2<-glm(Y~A0+W,family=binomial()) 

exp(coefficients(ITT2)) ; exp(confint(ITT2)) 

 

#Adherence adjusted model with adjustment (M1) 

mod1<-glm(Y~A0+A1+W,family=binomial()) 

exp(coefficients(mod1)) ; exp(confint(mod1)) 

 

#Adherence adjusted model with subsetting on RF (M2) 

mod2<-glm(Y~A0+A1+W,family=binomial(),subset=(RF==0)) 

exp(coefficients(mod2)) ; exp(confint(mod2)) 

 

#Adherence adjusted model with subsetting on RF 

#with censoring weights (M3) 

censor_RF<-function(DAT){ #Create function for use in bootstrap 

pC<-1-predict(glm(RF~A0+W,family=binomial(),data=DAT),type="response") 

cmod<- 

glm(Y~A0+A1+W,family=quasibinomial(),subset=(RF==0),weights=(1/pC),data

=DAT) 

return(coefficients(cmod)) } 

exp(censor_RF(DAT)) 

bsres<-bootstrap.vect(censor_RF,DAT)  

#code for bootstrap.vect available in the Web Appendix A2 

exp(cbind(bsres$CIlow,bsres$CIhigh)) 

 

#Adherence adjusted model with adjustment for RF (M4) 

mod4<-glm(Y~A0+A1+W+RF,family=binomial()) 

exp(coefficients(mod4)) ; exp(confint(mod4)) 
 

From the above results, it is clear that ignoring the development of post-exposure 

contraindications, or treating them as censoring or as a covariate, can lead to false 

conclusions, though this depends on the underlying structure of the data generation. 

The bias was largest when RF was a collider of past treatment and unmeasured risk 

factors of the outcome. Even when RF is not a collider, bias can arise from outcome 

model misspecification over regions of the covariate space where only one exposure 

group is observed. Because we are extrapolating, we lack the needed data (patients 

with A1=1 and RF=1) to judge the appropriateness of the model. The censoring weights 

were not able to correct for the bias as developing RF is both a confounder of A1 and Y 

and the determinant of censoring. Since the weights cannot adjust for RF (which would 
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result in zero probabilities of not being censored and thus weights of infinite size), this 

confounding remains unadjusted for. 

From the DAG and the above analyses, we see that post-exposure contraindication is a 

time-dependent confounder, as it affects further treatment and the outcome. It is well-

known in epidemiology that it is necessary to adjust for time-dependent confounding in 

order to estimate the effect of treatments that may change in time. 10 However, renal 

failure also creates a positivity violation for the exposure A1 because anyone who has 

the contraindication has a zero probability of receiving A1=1. Therefore, we cannot 

adjust for the time-dependent confounder using inverse probability of treatment 

weights in the standard way. (Note that this would involve estimating the probability of 

A1=1 for all subjects, including those with renal failure, for whom we would obtain a 

probability of zero. 1) We demonstrate one way to appropriately analyze this type of 

data in the next section. 

 

5. TREATMENT STRATEGIES WITH IPW 

Using the counterfactual approach to causal inference, one may define mean 

population-level effects as the contrast between summaries of the outcomes that would 

have been observed had the entire population of interest taken treatment 1 versus the 

entire population taken treatment 2. For example, the difference in the means of the 

counterfactual outcomes under either treatment is commonly known as the average 

treatment effect. However, in this context, it is unrealistic to impose sustained 

treatment with DOACs regardless of the intermediate patient outcomes due to the 

above-mentioned potential for developing contraindications. Therefore, the 

counterfactual contrast between the fixed treatment strategies of “always treat with a 

DOAC” versus “always treat with warfarin” cannot be imposed on the population of 

interest. Specifically, the positivity condition for the always-treat-with-DOACs strategy 

does not hold for patients who develop renal failure. 

5.1 Contrasts of interest 

However, we may alternatively contrast the realistic treatment strategies RD: “always 

treat with a DOAC unless the patient develops renal failure, in which case treat with 

warfarin” versus RW: “always treat with warfarin”. These are called “treatment 

strategies” because they correspond with how a doctor may make treatment decisions 

in a clinical setting based on a patient’s characteristics or outcomes after previous 

treatment. These strategies may be made more complex to correspond with what is 
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done in practice so that competing treatment strategies may be compared through 

analysis. 8 

In this setting and with these definitions, the condition of positivity means that patients 

must have a non-null probability of 1) initiating warfarin and then remaining on warfarin 

and 2) initiating DOACs and then either staying on DOACs or switching if renal failure 

develops. It does not mean that every patient in the analysis must have followed one of 

these two strategies, just that they all had the potential to follow either one. For 

estimation with IPW, we also require that we have observed a sizeable number of 

patients following each of these strategies (as the analysis will be powered by these 

sample sizes). 

Define Y(R) to be the potential outcome that a patient would have had if they had 

(perhaps counterfactually) followed the treatment regimen R. The marginal parameter 

of interest may then be P[Y(RD)=1]-P[Y(RW)=1], defined as the difference in probabilities 

of major bleeding under the counterfactual situations where all patients had followed 

strategy RD versus RW. We could alternatively estimate the marginal risk ratio 

P[Y(RD)=1]/P[Y(RW)=1] or the marginal odds ratio (P[Y(RD)=1]/{1- 

P[Y(RD)=1]})/(P[Y(RW)=1]/{1- P[Y(RW)=1]}) as desired. 

5.2 Applying IPW 

A modified version of IPW can be applied to estimate any of these contrasts. Standard 

implementation approaches can be found elsewhere1,10 but notably involve estimating 

the conditional probabilities of exposure to both warfarin and DOACs at each time 

point, the latter of which we know to be zero for certain subjects. The goal of standard 

IPW is to reweight the sample so that treated and untreated subjects at each time point 

(with the same treatment histories) are comparable in terms of their covariate histories, 

as would occur in a sequentially randomized trial with randomization probabilities only 

conditional on past treatment. The reweighted population is often referred to as a 

pseudo-population.25 

The goal of the modified procedure is to reweight the subjects in order to achieve 

balance in terms of covariate histories between the treatment strategy groups rather 

than between those treated vs not. The first step is to use all patient observations to 

estimate the probability of following each strategy through the two time points, 

conditional on confounders. For those subjects who followed one or the other strategy, 

we construct weights using the inverse of their probability of following the strategy that 

was followed. With those same subjects, we then fit a weighted regression model 

adjusting for a variable indicating which strategy was followed. The type of regression 
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will determine the type of contrast estimated (i.e. the risk difference, risk ratio, or odds 

ratio, as defined above). 

To estimate the probability of following strategy RW, one must first fit a model to 

estimate P(A0 = 0|W), the conditional probability of initially receiving warfarin. A 

second model may estimate P(A1 = 0|A0 = 0, W, RF = 0), the conditional probability 

of subsequently receiving warfarin if warfarin was initially received amongst subjects 

who did not develop renal failure. We can use this probability to compute 

P(A1 = 0|A0 = 0, W, RF) = {
P(A1 = 0|A0 = 0, W, RF = 0) if RF = 0

1 if RF = 1,
 

each subject’s conditional probability of receiving warfarin at the second time point had 

warfarin been received at the first. This probability is set to 1 for subjects who develop 

renal failure. The probability of following RW is therefore the product of P(A0 = 0|W) 

and P(A1 = 0|A0 = 0, W, RF). We compute this probability, called pW, for each patient. 

For the probability of following strategy RD, we first estimate the conditional probability 

of receiving DOACs at the first time point, P(A0 = 1|W). For the second time point, we 

compute P(A1 = 1|A0 = 1, W, RF = 0). The probability of following the strategy RD 

throughout the two time points is then 

pD =  P(A0 = 1|W) ∗ {
P(A1 = 1|A0 = 1, W, RF = 0) if RF = 0

1 if RF = 1
} 

which we can compute for each patient. Code for estimating these probabilities with 

logistic regressions is given in Box 4. 

The final step is to fit a weighted regression. The weights are 1/pW for patients who 

followed strategy RW and 1/pD for patients who followed strategy RD. All other patients 

receive a weight of 0 (i.e. are excluded from the final regression step). A linear 

regression conditional on an indicator of the treatment strategy followed will produce 

coefficient estimates corresponding to estimates of the marginal risk difference. A log-

linear regression will produce estimates of the (log) marginal risk ratio, and a logistic 

regression will produce (log) odds ratios. In Box 5, we give the code to estimate each of 

these contrasts of interest, using the bootstrap function to construct confidence 

intervals provided in the Web Appendix A2. 
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Box 4: Estimating the probabilities needed for the IPW weights 
 
#Model for probability of treatment at tp 0 

A0mod<-glm(A0~W,family=binomial()) 

#Model for probability of treatment at tp 1 conditional on A0 

A1mod<-glm(A1~A0+W,family=binomial(),subset=(RF==0)) 

 

#Estimated probability of A0 = 0 (warfarin) 

P0<-1-predict(A0mod,type="response") 

#Estimated probability of following RW for tps 0 & 1 

PW<-((1-predict(A1mod, 

newdata=as.data.frame(cbind(W,A0=0)),type="response"))*(RF==0)+1*

(RF==1))*P0 

 

#Estimated probability of A0 = 1 (DOAC) 

P1<-1-P0 

#Estimated probability of following RD for tps 0 & 1 

PD<-

((RF==0)*predict(A1mod,newdata=as.data.frame(cbind(W,A0=1)),type=

"response")+ (RF==1))*P1 

 

 

Following this procedure for each of the scenarios, the estimates and bootstrapped 95% 

confidence intervals of the marginal odds ratio were 1.05 (0.97, 1.13), 0.93 (0.85, 1.03), 

and 1.04 (0.96, 1.11), respectively. The estimates of the marginal risk difference and 

ratio were similarly null. 

Conclusions about the performance of statistical estimators can be misleading when 

drawn from the analysis of a single finite data sample. To validate these conclusions, we 

present the results of a Monte Carlo simulation study in the Web Appendix A3 with the 

same data-generating functions and models as above. We also investigate a fourth 

scenario where A0 and A1 have small positive effects on the outcome. 

One will often obtain superior estimation (lower in finite sample bias and estimation 

variance) by constructing stabilized weights. 25 We give the related code in the Web 

Appendix A4. 
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Box 5: Fitting weighted regressions to obtain IPW estimates 
 
#subset of patients following RW at first AND second time points 

RW01<-(A0==0&A1==0) 

#subset of patients following RD at first AND second time points 

RD01<-(A0==1&A1==1) | (A0==1&RF==1&A1==0) 

 

#Weights 

w<-(1/PW*RW01 + 1/PD*RD01) 

 

#Those patients who followed either strategy 

sub<-(RD01==1|RW01==1) 

 

#RISK DIFFERENCE: weighted linear regression 

IPTWmod1<-lm(Y~RD01,weights=w,subset=sub) 

 

#RISK RATIO: weighted log-linear model 

IPTWmod2<- 

 glm(Y~RD01,weights=w,subset=sub,family=quasibinomial(link=log)) 

 

#ODDS RATIO: weighted logistic regression 

IPTWmod3<- 

 glm(Y~RD01,weights=w,subset=sub,family=quasibinomial()) 

 

#code to obtain the standard error and 95% CI using 

#nonparametric bootstrap is available in the Web Appendix A2. 

 

6. DISCUSSION 

The treatment-strategy IPW method we described here can be used in a more general 

longitudinal context by estimating the necessary probabilities at each time point to 

obtain the final patient-specific weights. 2 However, because a number of patients 

receive a zero weight, the standard errors can become large. Other more efficient 

methods that can estimate the marginal parameters described in the previous section 

include the parametric g-formula 34 and longitudinal targeted minimum loss-based 

estimation, 35 which can be implemented with machine learning methods. For instance, 

one may use the nested outcome expectation approach36 where nuisance modeling of 

the outcome should be conditional on observed medication exposure. The predictions 

from these models should then be made based on the treatment-strategy of interest 

conditional on the observed history. 

We chose to estimate what is sometimes known as a “saturated” marginal structural 

model, 30 i.e. the mean counterfactual outcome under a specific intervention. In our 

case, this intervention corresponds to each of the treatment strategies. One may also 

choose to model the outcome with respect to baseline covariates using a single 
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weighted regression with the same inverse probability weights, i.e. estimate the 

parameters of a marginal structural model. Alternative approaches to estimating effects 

in the presence of time-varying eligibility to treatment exist 2,37 though a comparison is 

beyond the scope of this paper. 

We demonstrated the potential for bias in the setting of a prospective cohort with 

measured baseline confounder W. However, the bias due to colliders and longitudinal 

positivity violations varies based on the underlying mechanisms and the modeling 

approach used. The conclusions regarding the bias caused by improperly dealing with 

time-varying eligibility are also relevant for the analysis of RCTs in which contra-

indications may develop over time. Similar to observational studies, we may remove all 

patients with contraindications to either treatment option at baseline but it is not 

advisable to censor patients post-randomization due to emerging contraindications 

(models M2 and M3). 3 Nearly identical ITT or treatment strategy approaches can be 

used in RCTs as well. 3 We therefore encourage investigators to take note of time-

varying eligibility in their studies and plan their analytical protocols with these lessons in 

mind. 
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