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1 Consistency violation example

Consider an example where the finest discretizations includes 4 time-points and that the
(true) observed exposure at the finest discretization for a given individual consists of
Ā = (1, 0, 0, 1). Consider also a single final observed outcome Y (4). If consistency holds
at the finest discretization: Y (4) = Y ā(4) = Y (1,0,0,1)(4), if Ā = ā.

Now imagine some discretization approach, say reducing the timeline to 2 time-
points, which results in the observed exposure on the discretized data to be Ā = (1, 1).
The observed outcome, Y (4), which remains is not affected by discretization, since it is
observed at the end of study, may not be equal to the counterfactual outcome that would
have been observed had we intervened under the discretized version of the exposure at
each of the two time-points, i.e. Y (4) = Y (1,0,0,1)(4) 6= Y (1,1)(4). Under our definition
of the hypothetical intervention, the regimen (1,1) corresponds to sustained exposure
from time-point 1 to 4. However, this does not correspond to the observed exposure
which is not sustained. As such, we would not necessarily expect the counterfactual
outcome under the hypothetical intervention on the discretized timeline to correspond
to the observed outcome. Hence consistency does not hold.

2 Pooled LTMLE algorithm

Recall from section 6.1 of the main manuscript, that Q̄ār
t (t) = E(Y ār(t) | Ā(t − 1) =

ār(t − 1), L̄LL(t − 1), Ȳ (t − 1)). and, for j = t, ..., 1, Q̄ār
t (j) = E(Q̄ār

t (j + 1) | Ā(j − 1) =
ār(j − 1), L̄LL(j − 1), Ȳ (j − 1)) where Q̄ār

t (t + 1) := Y ār(t). Further recall that, for every

j = t, . . . , 1, ḡār(j) =
j∏

k=0

P (A(k) = a(k) | L̄LL(k), Ȳ (k), Ā(k− 1) = ār(k− 1)). The pooled

LTMLE algorithm for our specific example where Y (t) is a binary indicator of a failure
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type outcome by time t and the target parameters are the MSM coefficients defined in
equation (1) of the main manuscript can be implemented as follows:

First, calculate the estimator ḡārn (j) of ḡār(j) =
j∏

k=0

P (A(k) = a(k) |

L̄LL(k), Ȳ (k), Ā(k − 1) = ār(k − 1)), by estimating every component
ḡārk,n(j) = Pn(A(k) = a(k) | L̄LL(k), Ȳ (k), Ā(k − 1) = ār(k − 1)). Denote

ḡārn (j) =
j∏

k=0

ḡārk,n(j) as their product.

Define Q̄ār,∗
t,n (t+ 1) ≡ Y (t).

For t = Kr + 1, . . . , 1 set j = t :

Step 1: Initial estimation of Q̄ār
t (j)

Calculate the initial estimate by evaluating the conditional expectation
Q̄ār
t (j) = E(Q̄ār,∗

t,n (j + 1) | Ā(j − 1), L̄LL(j − 1)), Ȳ (j − 1)). Then predict
Q̄ār
t,n(j) for each possible value of ār and every subject i = 1, . . . , n. It follows that

Q̄ār
t,n(j) is of length n× number of potential regimes .

Step 2: Updating step

For every individual and for every exposure regime ār ∈ Ār calculate:

h j(ār, t) = I(Ā(j − 1) = ār(j − 1))

(
∂

∂βββ
η(βββ, Ā, t)

) ∣∣∣∣∣
Ā(t−1)=ār(t−1)

. (1)

The term d
dβββ
η(βββ, Ā, t) is the derivative of the MSM formula with respect to βββ which

is being evaluated at Ā(t−1) = ār(t−1). The term I(Ā(j−1) = ār(j−1)) is an indi-
cator function that is equal to 1 if the observed exposure up until time j−1 is equal
to the exposure regime ār(j− 1). For an individual and a specific exposure regime
ār, the dimension of h j(ār, t) is equal to the dimension of βββ. Therefore, h j(ār, t)
is of dimension (n× number of potential regimes)× number of MSM coefficients .
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The following submodel defines the update path for Q̄ār,∗
t,n (j):

logit(Q̄ār,∗
t,n (j)) = logit(Q̄ār

t,n(j)) + εεεh j(ār, t). (2)

Q̄ār,∗
t,n (j) is obtained by fitting an intercept-free weighted pooled logistic regression,

over all ār, of Q̄ār,∗
t (j+1) on the covariates h j(ār, t) using the previously calculated

initial estimates Q̄ār
t,n(j) as offset and 1/ḡārn (j − 1) as weights.

Subsequently, plug εεε = εεεn into equation (2) and evaluate it for each possible value
of ār to give Q̄ār,∗

t,n (j) for every subject under every possible ār.

For j = t− 1, . . . , 1 :

Step 3: Estimation of Q̄ār
t (j)

For every ār ∈ Ār separately, calculate the conditional expectation
Q̄ār
t (j) = E(Q̄ār,∗

t (j + 1) | Ā(j − 1), L̄LL(j − 1), Ȳ (j − 1)) and evaluate the
obtained estimate Q̄ār

t,n(j) at each respective ār. Consequently, we obtain, for
every subject, a copy of Q̄ār

t,n(j) for each different regime ār. It follows that Q̄ār
t,n(j)

is of length n× number of regimes .

Step 4: Update Q̄ār
t,n(j) to Q̄ār,∗

t (j)

Construct the covariate h j(ār, t) as before using equation (1). Then estimate εεε
by weighted pooled logistic regression over all regimes ār using submodel (2) and
update Q̄ār

t,n(j) to Q̄ār,∗
t,n (j) as above.

Final Step:

The above steps provide Q̄ār,∗
t,n (1) for every t and every ār. The estimate of the

pooled LTMLE estimator ψψψr,n is obtained by solving:

ψψψr,n = argmaxβββ En
Kr+1∑
t=1

∑
ār∈Ār

{Q̄ār,∗
t,n (1)log(expit(η(βββ, ār, t))) +

(1− Q̄ār,∗
t,n (1))log(1− expit(η(βββ, ār, t)))}.
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where En is the empirical distribution. In practice, this estimate is obtained by
regressing Q̄ār,∗

t (1) on ār and t according to the linear specification of the MSM.

3 Data generating algorithm for the simulation

L(0) ∼ Bern[0.3]

L(t) =


NA if Y (t) = 1

Bern[expit(−0.75 + log(1.5)L(t− 1) + log(0.6)A(t− 1)+
log(1.25)L(t− 2) + log(0.8)A(t− 2)+ otherwise
log(1.1)L(t− 3) + log(0.9)A(t− 3))]

A(t) =


NA if Y (t) = 1
1 if A(t− 1) = 1

Bern[expit(−3.5 + log(1.75)L(t) + log(1.5)L(t− 1) +
log(1.25)L(t− 2) + log(1.05)L(t− 3))] otherwise

Y (t + 1) =


1 if Y (t) = 1

Bern[expit(−4 + log(3.5)L(t) + log(0.75)A(t)+
log(2.5)L(t− 1) + log(0.85)A(t− 1) + log(1.5)L(t− 2) otherwise

+log(0.95)A(t− 2))]
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