Université de Montréal

Compression in Sequence to Sequence Learning for

Natural Language Processing

par
Gabriele Prato

Département d’informatique et de recherche opérationnelle

Faculté des arts et des sciences

Mémoire présenté a la Faculté des études supérieures et postdoctorales
en vue de l'obtention du grade de
Maitre és sciences (M.Sc.)

en informatique

décembre 2019

© Gabriele Prato, 2019



Université de Montréal

Faculté des études supérieures et postdoctorales

Ce mémoire intitulé
Compression in Sequence to Sequence Learning for
Natural Language Processing

présenté par
Gabriele Prato

a été évalué par un jury composé des personnes suivantes :

Mikhail Bessmeltsev

(président-rapporteur)

Alain Tapp

(directeur de recherche)

Gena Hahn

(membre du jury)

Mémoire accepté le :

30 juin 2019




Sommaire

Dans ce travail, nous proposons une méthode presque sans perte d’information pour
encoder de longues séquences de texte ainsi que toutes leurs sous-séquences en des repré-
sentations riches en information. Nous testons notre méthode sur une tache d’analyse de
sentiments et obtenons de bons résultats avec les vecteurs de sous-phrases et de phrases. Ce
travail présente aussi l'utilisation de la distillation de connaissance et de la quantification
pour compresser le modeéle de Transformer [Vaswani et al., 2017| pour la tache de traduction.
Nous sommes, au mieux de nos connaissances, les premiers & démontrer que le Transformer
avec ses poids quantifiés a 8-bits peut obtenir un score BLEU aussi bon qu’avec ses poids
de précisions pleines. De plus, en combinant la distillation de connaissance avec la quantifi-
cation des poids, nous pouvons entrainer de plus petits réseaux Transformer et obtenir un
taux de compression jusqu’a 12.59x, en ne perdant que seulement 2.51 BLEU sur la tache
de traduction WMT 2014 Anglais-Francais, comparativement au modéle de base.

Le chapitre 1 introduit des concepts d’apprentissage machine pour le traitement des
langues naturelles, concepts qui sont essentiels a la compréhension des deux papiers présentés
dans cette thése. Chapitre 2 et 3 couvrent respectivement chaque papier, avant de conclure
par le chapitre 4.

Mots clés : apprentissage machine, apprentissage profond, traitement des langues na-

turelles, séquence a séquence, compression

11



Summary

In this work, we propose a near lossless method for encoding long sequences of texts as
well as all of their sub-sequences into feature rich representations. We test our method on
sentiment analysis and show good performance across all sub-sentence and sentence embed-
dings. This work also demonstrates the use of knowledge distillation and quantization to
compress the original Transformer model [Vaswani et al., 2017] for the translation task. We
are, to the best of our knowledge, the first to show that 8-bit quantization of the weights
of the Transformer can achieve the same BLEU score as the full-precision model. Further-
more, when we combine knowledge distillation with weight quantization, we can train smaller
Transformer networks and achieve up to 12.59x compression while losing only 2.51 BLEU
off the baseline on the WMT 2014 English-to-French translation task.

Chapter 1 introduces machine learning concepts for natural language processing which
are essential to understanding both papers presented in this thesis. Chapter 2 and 3 cover
each paper respectively, before finally concluding with chapter 4.

Keywords: machine learning, deep learning, natural language processing, sequence to

sequence, compression
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Chapitre 1

Introduction

This chapter covers the motivation behind the two proposed methods in this work.

1.1. General Purpose Sentence Embeddings

Compressing information by encoding it into a fixed size representation in such a way that
perfect decoding is possible is challenging. Instead, most of the existing sentence encoding
methods focus more on learning encoding such that the encoded representations are good
enough for the downstream tasks. In the following work, we focus on perfectly decodable
encoding of sentences which will be very useful in designing good generative models that can

generate longer sentences.

1.2. Compression of Neural Machine Translation Networks

State-of-the-art neural machine translation methods make use of an enormous amount
of parameters and thus inference on edge-devices such as smartphones is impractical unless
compressed. All work on the compression of Transformers [Vaswani et al., 2017] has so far
shown a drop in BLEU score. In this work, we compare the effects of knowledge distillation
and quantization on Transformers, as well as the combination of both methods. To the best
of our knowledge, we are the first to show that it is possible to compress the Transformer

network without any drop in BLEU score.



Chapitre 2

Background

Before diving into the research segment of this thesis and to better understand the work
done, some basic elements of natural language processing in machine learning need to be
covered. This chapter introduces core elements of most machine learning methods in NLP.
Starting with basic text tokenization, various word embedding methods for processing the
text input of neural networks follow, then an overview of numerous approaches to computing
sentence embeddings. An explanation of sequence to sequence learning, recurrent neural
networks and its variations ensues, as well as a description of the attention mechanism. The

chapter ends with the very recent and popular Transformer architecture.

2.1. Tokenization

The question of how to split the text is as old as natural language processing. The
following subsections detail the most popular methods for tokenization of text in machine

learning.

2.1.1. Full Word

This is a very basic approach, were each word is considered a token. Although simple,
this method has been used in much successful work up to very recently. Its advantage is
its easy combination with pretrained word embedding corpuses. The disadvantage is that it
ignores the internal structure of words. For example, information learned about the word
eat could be useful for the word eaten. Not that word tokenization forbids such information

to be used between two or more words. Some embedding methods could make use of such



information for embedding generation. The process can be easier though with more flexible

tokenization methods.

2.1.2. n-gram

The n-gram tokenization with n = 1 is simply character tokenization. For example, the

1-gram tokenization of the sentence I bike. would produce the tokenized sequence :
<I>, < >, <b>, <i>, <k>, <e>, <.>

This is usually inefficient and underperforms other tokenization methods. Generally, n > 1 is
a better choice. The method starts at the very first character of the sequence and takes the
first n characters as the first token. Then, the tokenization window moves by one character
to the right and the second token is again the next n characters. This process continues
until the window reaches the end of the sequence. For example, 3-gram tokenization of the

sentence [ bike. gives the following tokenized sequence :
<l b>, < bi>, <bik>, <ike>, <ke.>

Note the character overlap. This happens for n > 1, as the tokenization window only moves

by one character at a time.

2.1.3. Byte pair encoding

Sennrich et al. [2016] proposed using byte pair encoding (BPE) |Gage, 1994] but for
grouping characters instead of bytes. The method iteratively learns a vocabulary of character
n-grams tokens. Before beginning, a special end of word symbol is added to every word to
be able to reconstruct the original sequence back from the tokenized sequence. The initial
vocabulary contains all the characters in the training corpus as well as the special end of
word symbol. The training corpus is then tokenized with this vocabulary. Then the most
frequent pair of consecutive tokens is added to the vocabulary and each occurrence of that
pair is replaced by the new token. For example, if the most frequent token pair is <A>
followed by <B>, then <AB> will be added to the vocabulary and all such occurrences will
be replace by <AB>. Then, token co-occurrences are counted again and the most frequent
token pair is again added to the vocabulary and replaced by the new token. This process

repeats until the vocabulary grows to the desired size. An important point is that words are



separate entities, meaning no tokens may be paired between words and are also not counted
as adjacent.

An advantage of BPE is that it is language independent. For bilingual machine transla-
tion, one could train a BPE tokenizer per language or train a single tokenizer on a corpus
containing sequences in both languages. With BPE, there is also no out-of-vocabulary words,
as the basic character tokens assures total coverage. This tokenization method is used by
many popular and recent work in natural language processing |Gehring et al., 2017, Vaswani

et al., 2017, as is WordPiece, which is presented in the next subsection.

2.1.4. WordPiece

Schuster and Nakajima [2012] proposed a tokenization method very similar to byte pair
encoding, called WordPiece. Instead of merging token pairs based on frequency, the proposed
solution is to train a language model on the tokenized corpus and merge token pairs which
increase the likelihood the most. A language model is then retrained and the process continues

until the vocabulary grows to the desired size, just like BPE.

2.2. Word Embeddings

Word embeddings serve as a more information rich representation of an input sequence
than word ids. They encode information about a word into a fixed size vector. When trai-
ning a neural network with such embeddings, one can use pretrained word embeddings or
start with randomly initialized embeddings and learn them jointly while training the neural
network. Of course, one could also start with pretrained embeddings and fine-tune them for
the task currently training on. In the case of learning embeddings from scratch or fine-tuning
pretrained embeddings, the general method is to simply compute gradient for these input
embeddings and update them, just like any other weight in the neural network. There is a
vast number of methods to compute word embeddings. The most popular are covered in the

following subsections.
2.2.1. Word2vec
Word2vec [Mikolov et al., 2013b] is an unsupervised method for learning word embed-

dings, meaning input dataset does not require any labelling of responses. In the case of

text for example, only the raw text is needed. By training a neural network on language



modeling, Word2vec uses the representations it learns to better predict surrounding words.
The original paper proposes two variants of the language modeling task. The first one called
Continuous Bag-of-Words (CBOW) gives to the model the surrounding words as input and
then the model predicts the missing word. This can be, for example, a sentence in which one
of the words has been blanked out. The second one, called the Skip-gram model, predicts
surrounding words given a single word as input. The latter has empirically been shown to

perform best [Mikolov et al., 2013b].

2.2.1.1. Skip-gram model

Given a training corpus with the vocabulary wy, ..., wr, we want the model to maximize
the following log probability :

Z Z log p(we|wy) (2.2.1)

t=1 w.eC}

where C} is the set of words surrounding wy, for example in a sequence of text. For p(w.|w;),

the basic skip-gram method defines it as the softmax function :

e 2.2.2
p(welw) = W (2:2.2)

where s is the following scoring function :
(Wi, We) = Vg Uy, (2.2.3)

and vy, and v, are the word embedding vectors of w; and w, respectively.

Mikolov et al. [2013a| proposed to use negative sampling instead of a softmax. In this
approach, instead of computing a probability on the whole vocabulary, the model needs to
correctly predict if a given word is a surrounding word or not. The following binary logistic

loss is used :

log (1 + efs(wt’“’c)) + Z log (1 + es(wt’w")) (2.2.4)

wn €Ny

where NV; are the randomly drawn negative samples not surrounding wy.
2.2.2. FastText
An improvement to the Word2vec method mentioned above was proposed by Bojanowski

et al. [2016]. Contrary to the original approach, FastText does not ignore the internal struc-

ture of words. Instead of learning a single vector representation per word, an embedding is



learned per character n-gram. A word embedding is the sum of its character n-gram vectors.
The special boundary characters < and > are also added at the beginning and end of the
word and the complete word also gets its own embedding. For example, with n = 3, the

embedding for the word prized will be the sum of the embeddings of the following tokens :
<pr, pri, riz, ize, zed, ed>, <prized>
FastText also uses a different scoring function :
s(wy, we) = Z 2 Uy, (2.2.5)
ZEZwt
where Z,, is the set of embeddings of a given word w;, while v,,, is the sum of the embeddings
of the word w,.

FastText pretrained embeddings trained on Common Crawl and Wikipedia are available

in multiple languages at https://fasttext.cc/docs/en/crawl-vectors.html.

2.2.3. MUSE

MUSE [Conneau et al., 2017b] is an unsupervised method for learning bilingual pairs of
word embeddings. The idea is to transform the embeddings of one language to fit as much
as possible the embeddings of the target language. For a word with a translation in both
languages, the corresponding embedding in each language should be as close as possible to
one another. More formally, given a language pair and their word embeddings X and Y
respectively, the method learns a mapping W to minimize an adversarial loss between X
and Y.

Multiple MUSE embeddings all aligned in a single vector space and trained from FastText
embeddings are available at https://github.com/facebookresearch/MUSE.

2.2.4. GloVe

The GloVe method proposed by Pennington et al. [2014] learns word embeddings via a
global word-word co-occurrence matrix of the training corpus. Two sets of vectors w, w and
their corresponding biases b and b are learned. The final word embeddings are the sum of w
and w. The model is trained via the following cost function :

Y ~ 2
J=2 [(Xy) (wf@j + bi + bj — log Xij) (2.2.6)

1,j=1


https://fasttext.cc/docs/en/crawl-vectors.html
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where V is the vocabulary size, X;; is the number of times the word j appears in the context

of the word ¢ and f :

() Tmax)® i & < Trax
fx) = (2.2.7)
1 else
where 2., and « are fixed constants. The original paper [Pennington et al., 2014] empirically
found x,.x = 100 and « = 3/4 to work best.
Multiple versions of GloVe embeddings, pretrained on different corpuses (Wikipedia, Gi-
gaword, Common Crawl, Twitter), are available at https://nlp.stanford.edu/projects/

glove/.

2.2.5. Learning From Scratch

Many recent state-of-the-art NLP models do not use any pretrained word embeddings
[Vaswani et al., 2017, Subramanian et al., 2018, Radford, 2018, Devlin et al., 2018, Liu et al.,
2019b]. They start from randomly initialized word embeddings and learn these representa-
tions jointly with the other weights of the model. Although, similarly to using pretrained
representations, some of these methods begin by pretraining their whole model on unsuper-
vised tasks to learn good representations before fine-tuning on downstream tasks [Radford,

2018, Devlin et al., 2018, Liu et al., 2019b].

2.2.6. Positional Embeddings

Some natural language processing methods encode word level positional information into
embeddings so as to help the neural network. Specifically, some models by design cannot
infer any order in the input sequence. For example, in the Transformer [Vaswani et al., 2017]
architecture, if no positional information was given to the model, mixing up input words in
any order would make no difference with the correctly ordered original input (see section 2.7
for more details). Not all models require being given positional information. For example,
recurrent neural networks can model a past context thanks to the hidden state (see section
2.5).

There are many ways to encode positional information : scalars, one-hots, learned embed-
dings, complex functions [Vaswani et al., 2017] (see chapter 4). So far, no method has been

established as superior, but providing models with positional information usually provides a


https://nlp.stanford.edu/projects/glove/
https://nlp.stanford.edu/projects/glove/

boost in performance (see section 4.1.2). Most methods either sum or concatenate positional
information to the input. For example, the Transformer network [Vaswani et al., 2017| sums

with the input word embeddings the positional fixed embeddings computed with :

PFE (pos.2i) = sin(pos/10000%/4) (2.2.8)

PFE(pos2i+1) = cos(pos/10000%/9) (2.2.9)

where pos is the position of the embedding in the sequence, ¢ is the dimension of the vector
and d is the size of the positional embedding, in this case the size of the word embeddings,
since both need to be summed. The advantage of using such a function is that hopefully the
model can better behave with unseen lengths compared with methods like one-hot encoding.

More simple approaches, like in section 4.1.2, simply encode positional information with
a scalar or into a one-hot and concatenate it with the input. Concatenation is also more
"powerful" than summing with the input, as it lets the model decide how this positional
information should impact the original input.

Just as with word embeddings, it is also possible to learn positional embeddings.

2.3. Sentence Embeddings

It is the end goal in machine learning to have a model generalize well to as many tasks
as possible. In this respect, work in machine learning NLP has been focused on learning
sentence embeddings which can be useful for as many tasks as possible. So far, there has
been no clear best type of method for doing so. Successful methods range from unsupervised
learning to multi-task supervised learning and many different neural network architectures
have been shown to perform well. In the following subsections, three popular such methods

are explained.

2.3.1. Skip-Thought

One of the first method for learning general purpose sentence embeddings, Skip-Thought
[Kiros et al., 2015, pushed for vectors which could be useful for as many downstream tasks
as possible. This fully unsupervised method trained a language model on the BookCorpus
[Zhu et al., 2015] dataset. First, an encoder RNN encodes a sentence into a fixed sized repre-

sentation which is then used by two decoder RNNs, whom each decode the previous sentence



and the next sentence respectively. The trained model is then tested on 8 downstream tasks
with the sole training of a linear classifier on top of the sentence embedding for tasks requi-
ring it, no fine-tuning of any other weights. The eight evaluation tasks are the following :
semantic relatedness, paraphrase detection, image-sentence ranking, two sentiment analysis
tasks, subjectivity/objectivity classification, opinion polarity and question-type classifica-
tion. These downstream tasks and more can be found in the SentEval benchmark |[Conneau
and Kiela, 2018].

For a totally unsupervised method, the Skip-Thought approach performed very well com-
pared to other methods, on par with the then state-of-the-art methods. Its good performance

on all tasks shows the robustness of the learned sentence embeddings.

2.3.2. InferSent

3-way softmax

*

fully-connected layers

*

(U,’U, |’U,—’U‘,’LL*’U)

u | I U
sentence encoder sentence encoder
with premise input with hypothesis input

FIGURE 2.1. The InferSent method for natural language inference. The premise and hy-
pothesis are encoded into an embedding each of their own, then concatenated along with
element-wise absolute difference and product, before finally being classified as either en-

tailment, contradiction or neutral. Taken from [Conneau et al., 2017a].

Compared to Skip-Thought [Kiros et al., 2015|, the InferSent method [Conneau et al.,
2017a] trains on a supervised task before evaluating its sentence embeddings on downstream

tasks. Training is done on SNLI [Bowman et al., 2015, a natural language inference corpus



where given two sentences, a premise and a hypothesis, the model must classify between en-
tailment, contradiction or neutral. Conneau et al. [2017a] compared the performance of seven
different models, all trained on the SNLI task and then evaluated on the downstream tasks.
The seven models where : LSTM, GRU, bidirectional GRU and bidirectional LSTM both
with either mean or max pooling, a self-attentive network and a hierarchical convolutional
network. In all cases, an encoder encodes both the premise and the hypothesis separately,
generating an embedding for both. Then, the two representations are concatenated, along
with the absolute values of their difference and their element-wise product. Finally, a fully
connected network classifies the concatenation. Figure 2.1 presents this architecture via a
graph. The trained models are then evaluated on the following downstream tasks : sentiment
analysis, subjectivity /objectivity classification, opinion polarity, question-type, paraphrase
detection, entailment and semantic relatedness, semantic text similarity and caption-image
retrieval. These tasks can all be found in a single benchmark : SentEval [Conneau and Kiela,
2018].

The bidirectional LSTM with max pooling got the best results out of all models and the

method achieved state-of-the-art results on most downstream tasks.

2.3.3. GenSen

Subramanian et al. [2018] proposed to learn generalizable sentence embeddings by trai-
ning a sequence to sequence model on multiple supervised and unsupervised tasks. Their
method uses a bidirectional GRU as the encoder, shared by all training tasks, and a unidi-
rectional GRU per task as the decoder. They train the model on the following tasks : Skip-
Thought (see section 2.3.1), neural machine translation, constituency parsing and natural
language inference. The method obtained state-of-the-art results on the SentEval bench-
mark [Conneau and Kiela, 2018|, beating Skip-Thought vectors and InferSent (see previous

sections).

2.4. Sequence to Sequence Learning

Sequence to sequence learning [Sutskever et al., 2014] encodes a sequence and uses the
encoded information to decode another sequence. Use cases are tasks such as machine trans-

lation, summarization, question answering. Figure 2.2 shows a simplified example where an
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J' aime le gateau

I like cake

FIGURE 2.2. Sequence to sequence example where a sequence of english words gets encoded

into a representation which is then decoded to its french equivalent.

english sentence gets encoded and then decoded back into a french sentence. Many other
architectures than the one depicted in Figure 2.2 exist. The following sections go into de-
tails explaining some neural network architectures and their usage in sequence to sequence

learning.

2.5. Recurrent Neural Networks

FIGURE 2.3. The recurrent neural network architecture. For each element x; of the input
sequence, a hidden state h; is computed using the current input element as well as the
previously computed hidden state h;_;. In this example, an output y; is also computed for

each element of the input sequence.
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Recurrent neural networks are a class of neural network architectures which iteratively
apply a shared neural network "block" or cell to an input sequence. The RNN cell is applied
to each element of the input sequence and computes a hidden state. These hidden states
are also given as input to an RNN cell, where each cell takes both the current element ¢ of
the input sequence and the previous hidden state t—1. Figure 2.3 shows an example of this
architecture for a sequence of length 3. Since no hidden states were computed prior to hq,
the hy hidden state is taken as input. This hy can be anything, but the values of this original
hidden state are usually set to 0. As can be seen in Figure 2.3, the same set of weights are
used to compute every z;. Same for every h; and y;, the same set of weights are reused, where
W are weights matrices and b the biases. Each hidden state h; is computed the following
way :

ht = tanh(Wzajt —+ bx + Whht,1 -+ bh) (251)

where tanh is the hyperbolic tangent activation function. The output y; is computed by :
yr = Wyht + by (2.5.2)

Note that depending on the task, it is not necessary to compute an y; for every z;. Some
tasks will only require to compute an y,; for the last element of the input sequence.
This is a very general description of the recurrent neural network architecture. Many

variations exist. The most popular of these are detailed in the following sections.

2.5.1. Sequence to Sequence

WX’ bX WX! bX WX’ bX W()! b()
‘x1| ‘le ‘x;,l ‘<s>|

FIGURE 2.4. Two recurrent neural networks in an sequence to sequence setup. One RNN

is the encoder and the other the decoder. Each RNN has its own set of weights. This is an

example setup, different variations are possible.
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The usual sequence to sequence setup (see section 2.4) with recurrent neural networks
has one RNN as the encoder and another RNN as the decoder. The encoder takes as input a
sequence of a certain length and encodes it to a fixed representation, the hidden state. Then,
the decoder takes as input what is usually a start of sequence token and the final hidden
state computed by the encoder to decode an output sequence. The output sequence can be
of any length. For example, the stop condition could be when an outputted ¥, corresponds
to an end of sequence token. For the decoder, apart from the start of sequence token, every
other input to the RNN cell is the previous output. Sometimes, the ground truth is given
as input instead of the previous output. This is called teacher forcing. Figure 2.4 shows two
RNNs in a sequence to sequence setup, where each RNN has its own set of weights and

biases.

2.5.2. Stacked RNN

| Y1 I | Y2 I l Y3 I
A A
W, W,

A
v» by V> by Wy, by
-7 W2, b2 W2, b2 W2, b2
: h(% h % I h > On al h% h > On h%
1
- A A A
W2, bs W, bz W2, bs
S 1 Wl,bl Wl,bl Wl,bl
1
-T T A A A
I/I/Xl’b)lc Vl/xlabJIC Wx]’b)]c

0 O O

FI1IGURE 2.5. Two stacked recurrent neural networks computing an input sequence x; to x3
and output the output sequence y; to y3. Each RNN has its own set of weights W', b! and
W2, b? respectively.

13



One way to increase the depth of recurrent neural networks is to stack them one on top
of the other [Schmidhuber, 1992|. The first RNN takes as input the input sequence just as
in the regular RNN setup, any other RNN on top takes the hidden states computed by the
RNN under them as input and the final RNN’s hidden states are what is usually used to
compute the final output. Figure 2.5 shows an example of two stacked RNNs. Each RNN

has its own set of weights in this case. Of course, weight sharing is also possible.

2.5.3. Bidirectional RNIN

SEm— )
VA Y2 V3
 y 2
l‘---.I
81 [<€ 8 [€ 8 €T & :
\
T S S S
1 ho | hy hy h3
| O W O W
X1 X2 X3

FIGURE 2.6. Example of a bidirectional recurrent neural network setup, where one RNN
computes the input sequence in the original order and the second RNN computes it in the
reverse order. hy and g4 are both padding hidden states. The final outputs y; are computed
using the h; and ¢g; hidden states.

Because the original recurrent neural network setup is unidirectional, the hidden state
computed on the first few elements of a sequence get less information about the rest of the
sequence than the last few elements. When only the last computed output is important, it
is less of an issue, but for tasks where an output for each input element is necessary, then
the unidirectionality of RNNs is an issue. Bidirectional RNNs counter this problem by using
a second RNN to compute the original sequence in the reverse order. Figure 2.6 shows an
example of a bidirectional setup. The two RNNs in this example could share the same weights

or each have their own. The final outputs ; can be computed in many ways, using both the
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hy and ¢; as input. For example, the hidden states can be meaned, max pooled or simply

concatenated and passed through a linear layer.

2.5.4. Long short-term memory

‘\\\\

\ 4

Ct

Hadamard Product Hadamard Product
Add & Sigmoid Add & Sigmoid Add & TanH | Add & Sigmoid I

[Feed Forward ] [Feed Forward] [Feed Forward] [Feed Forward] [Feed Forward] [Feed Fomard] [Feed Fomard] [Feed Fomard]

he.q \\: L - 1 : ! ]

Xt

FIGURE 2.7. Visualization of the computations performed in a LSTM cell. h;_; and h; are
the previous and the current hidden state and ¢;_; and ¢; are the previous and current cell

state.

Long short-term memory |[Hochreiter and Schmidhuber, 1997| proposes to change the

RNN cell for something more complex. First off, it has three "gates", controlled by a sigmoid

function :
iy = o(Wigy + b + Winhy_1 + bip) (2.5.3)
Je = 0(Wieaay + bpo + Wienhy—1 + byp) (2.5.4)
0y = 0(Wouty + box + Wonhy—1 4 bon) (2.5.5)

The LSTM cell also has a cell state, computed with the two gates f; and i; :
c=fiOc 1+ Og (2.5.6)

where ® is the Hadamard product and ¢; is computed exactly like the hidden state of the
regular RNN cell :
gr = tanh(Wy,xe + by + Wyphi—1 + bgr) (2.5.7)
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Finally, the hidden state of the LSTM is computed with the Hadamard product between the

o, gate and the cell state :

hy = 0; ® tanh(¢;) (2.5.8)

Figure 2.7 shows the operations performed in a LSTM cell.
Apart from how the hidden state is computed, the LSTM makes no other changes over
the regular recurrent neural network. LSTMs usually perform better than a regular RNN

[Kiros et al., 2015, Wu et al., 2016b].

2.5.5. Gated Recurrent Unit

hy
4
/ [ Add ] \
A *
[ Hadamard Product ]
1
[ Add & TanH ]
A A
[ Hadamard Product ] [ One Minus ] [ Hadamard Product ]
A A
Add & Sigmoid ] [ Add & Sigmoid ]

[Feed Forward] [Feed Forward] [Feed Forward] [Feed Forward] [Feed Forward] [Feed Forward]

7y A y \ 7y y \ A
ht-1 .\ 0000 [rononaamannneorocoasnon anonaannconancEaEancNEanE beanoncPPaEEcEAEACOEoned: R e e e e e e e

Xt

FIGURE 2.8. Visualization of the operations performed in a GRU cell. The cell computes

the hidden state h; by taking into input x; and the previously computed hidden state h;_

The gated recurrent unit aims at simplifying the LSTM cell while being on par with

performance. It has only two gates instead of three :

Tt = U(met + br.r + thht—l + brh) (259)

2zt = 0(Wopxy + bow + Waonhy 1 + bap) (2.5.10)
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where o is the sigmoid activation function. The GRU cell also has no cell state. Like the

regular RNN cell, it only computes a hidden state :
hi=(1—2z)On + 2 ©®h (2.5.11)
where ©® is the Hadamard product and n; is computed by :
ny = tanh(Woxy + bpp + 10 © (Wonhe—1 + ban)) (2.5.12)

Figure 2.8 shows the operations performed in a GRU cell.

As with the LSTM, a GRU network only computes the hidden state differently than a
regular recurrent neural network. No other changes are made to the original method. GRU
networks have been shown to perform better than regular RNNs and their performance being

on par with LSTMs [Chung et al., 2014].

2.6. Attention

Bahdanau et al. [2014] introduced an attention mechanism used in the context of sequence
to sequence learning (see section 2.5.1). By allowing the decoder to access information on
the original sequence other than the last hidden state computed by the encoder, Bahdanau
et al. removed the burden of encoding all of the information of the original sequence into a
single vector. This is done by computing context vectors in the decoder. When computing
the hidden states z; with the decoder, along with the previous hidden state z;_; and output

yi—1, the decoder takes into input the context vector ¢; :

Zt = f(ﬂ?t_l,zt_l,ct) (261)

where f is the function used to compute a hidden state of the decoder.
The context vector ¢; is computed the following way : first an energy function is computed

between the previous hidden state z;_; and every hidden state h; of the encoder :
e = gz, b)) Vie {1,--- T} (2.6.2)

where g is a function of choice, like a linear layer for example. Then, the softmax is computed

for each ey; :
Q= ?A (2.6.3)
Zj:l S
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We thus get, for the current z;, one ay; for each h; and then the context vector ¢; is simply

summing all h; multiplied by their ay; scalar :

Cp = Zatihi (2.6.4)

i=1

This section describe the original attention mechanism, but multiple others exist, like
multiplicative attention [Luong et al., 2015] and the scaled dot-product attention, which
is described in section 2.7.1. Attention is used by most state-of-the-art methods in NLP
[Vaswani et al., 2017, Devlin et al., 2018, Liu et al., 2019a], with the Transformer architecture

being based purely on self-attention (see next section).

2.7. Transformers

Qutput
Probabilities
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Attention Attention
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FIGURE 2.9. The Transformer architecture. Taken from [Vaswani et al., 2017]
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Vaswani et al. [2017]| introduced a neural network architecture based on a multi-head
self-attention mechanism. They presented their architecture as a neural machine translation
method. First, an encoder stack applies N Transformer layers, where each layer applies the
multi-head attention mechanism, followed by a residual connection, then a feed forward layer
and finally another residual connection. The ouput of each encoder layer contains as many
embeddings as the original input sequence. When the encoder is done, the decoder stack then
decodes one word of the output sequence at a time. Each decoder layer has two multi-head
attention sub-layers instead of one. The first one computes attention between the input of the
decoder and itself, while the second one computes the attention between the decoder input
and the final encoder output. In the neural machine translation setting, the Transformer
thus encodes the original sequence into a sequence of the same length that the decoder then

uses to decode an output sequence in the target language.

2.7.1. Scaled Dot-Product Attention

Scaled Dot-Product Attention Multi-Head Attention

Concat
£
Scaled Dot-Product J& h
Attention ~
1 | 4l
[ [ [
[Linear |r Linear],] Linear]_]
¥ ¥ ¥
V K Q

FIGURE 2.10. Left is the Scaled Dot-Product Attention mechanism and right the Multi-

head attention mechanism. Taken from [Vaswani et al., 2017]

The self-attention mechanism is a scaled dot-product attention. For each input embed-

ding, a query, key, and value vector is computed. All queries packed in matrix Q, all keys in
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K, and values in V. The attention is then computed as following :

Attention(Q, K, V') = softmax (QKT) Vv (2.7.1)
Vi,

where dj, is the dimension of a key vector. The output matrix is then unpacked into as
many embeddings as the input, one embedding per row. Figure 2.10 shows the operations

performed by the Scaled Dot-Product Attention.

2.7.2. Multi-Head Attention

Multi-head attention is simply multiple computations of attention. Each "head" has a
different set of weights to compute QQ, K and V. The output of each attention head is
concatenated and then fed to a linear layer. Figure 2.10 shows the operations performed in

multi-head attention.
2.7.3. Current State-Of-The-Art

Devlin et al. [2018] used the encoder part of the Transformer architecture to achieve
state-of-the-art results on multiple natural language processing tasks. They first trained
the network on BookCorpus [Zhu et al., 2015 and Wikipedia for two unsupervised tasks:
language modeling and predicting, given a sentence pair A and B, if B is the sentence
following A or a random sentence. They then individually fine-tuned this pretrained model
on 11 natural language understanding tasks, the GLUE benchmark [Wang et al., 2018| and
got state-of-the-art results. The method was also used to achieve state-of-the-art results on
multiple other NLP tasks.

Very similar to BERT, Liu et al. [2019b] train a Transformer architecture via the same
pretraining method as BERT, but then train their model on 9 GLUE tasks, sharing and
updating the Transformer weights for all tasks and using task specific layers at the top of
the architecture. They call their method MT-DNN. Liu et al. [2019a| improved the results
of the MT-DNN network by using an ensemble of MT-DNN networks for each task to train
a single of MT-DNN to generalize well on all tasks. This teacher-student method is called
knowledge distillation |[Hinton et al., 2015]. The MT-DNN method is the current state-of-
the-art on the GLUE benchmark [Wang et al., 2018|.
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Radford et al. [2019] train a Transformer network as a language model on their huge
WebText corpus and achieve state-of-the-art results on seven language modelling datasets,
without any training on any of them.

Finally, one of the drawbacks of the Transformer network is its heavy computational cost.
Ott et al. [2018] propose solutions to this problem. Another issue with the architecture is its
fixed size input. To deal with long sequences, Dai et al. [2019] propose to use the Transformer
architecture in a recurrent manner, while keeping track of the previous computations via a

hidden state, similar to recurrent neural networks.
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Chapitre 3

Related Work

In this chapter, we cover related work in representation learning, neural machine trans-

lation, quantization and knowledge distillation.

3.1. Representation Learning

Early efforts such as [Hinton and Salakhutdinov, 2006] have shown autoencoders to effec-
tively yield compressed input representations. Pollack [1990] was the first to propose using
autoencoders recursively. Such models have been shown to be useful for a multitude of tasks.
Luong et al. [2013] use recursive neural networks and neural language models to better
represent rare words via morphemes. Socher et al. [2011a] use recursive autoencoders for
paraphrase detection, learning sentence embeddings [Socher et al., 2010] and syntactic par-
sing. Socher et al. [2011b] also use a recursive autoencoder to build a tree structure based
on error reconstruction. Additionally, Socher et al. [2012] use a matrix-vector RNN to learn
semantic relationships present in natural language and show good performance on such task
as well as sentiment classification. Then, Socher et al. [2013] introduced the Recursive Neural
Tensor Network, trained on a their proposed Sentiment Treebank corpus to better deal with
negating sub-sequences for better sentiment classification. Recently, Kokkinos and Potamia-
nos [2017] proposed Structural Attention to build syntactic trees and improve even further
performance on SST. Parse trees do alleviate the burden of learning the syntactic structure
of text, but these methods limit the number of generated embeddings to the number of nodes
in the parse tree. The proposed method in this work does not have such a restriction as all

possible syntactic tree can be simultaneously represented by the architecture.



Convolutional Neural Networks [LeCun et al., 1989] have been used in natural language
processing as well. Convolutions work well for extracting low and high level text features
and building sequence representations. Lai et al. [2015] proposed to use CNNs recurrently
and show good performance on various language tasks. Zhang et al. [2015], Dos Santos and
Gatti de Bayser [2014] both train CNNs on character level for sentiment analysis, while
Johnson and Zhang [2014| work on word level. Kalchbrenner et al. [2014] propose a Dynamic
Convolutional Neural Network for semantic modelling of sentences and apply their model
to sentiment prediction. The model proposed in this work is very similar to 1D CNNs.
Though, it uses a multilayer perceptron in parallel instead of a kernel to extract meaningful
information out of the layer’s input.

Much progress has been made in recent years in the field of general purpose sentence
embeddings. Fixed length representations of sentence wide context are learned with the
objective of serving for a wide range of downstream tasks. Conneau et al. [2017a] trained a
bidirectional LSTM on the AIINLI natural language inference corpus [Bowman et al., 2015,
Williams et al., 2017| producing embeddings that generalized well on the SentEval [Conneau
and Kiela, 2018] benchmark. Following this trend, Subramanian et al. [2018] trained a GRU
[Cho et al., 2014a] on Skip-thought vectors |Kiros et al., 2015, neural machine translation,
parsing and natural language inference to get even better downstream task results. More
recently, Devlin et al. [2018], Liu et al. [2019b,a| use Transformers |Vaswani et al., 2017
to produce sentence wide context embeddings for each input token and get state-of-the-
art results on multiple natural language processing tasks. Dai et al. [2019] improve the
Transformer method by recursively applying it to fixed length segments of text while using
a hidden state to model long dependencies. One downside to these sentence embedding
generation methods is that the context is always sequence wide. The proposed model in this
work computes a sentence embedding as well as an embedding for all possible sub-sentences
of the sequence with sub-sentence wide context only. All embeddings generated throughout

our architecture are constructed the same way and thus share the same properties.

3.2. Neural Machine Translation

Neural machine translation methods have achieved impressive results lately [Wu et al.,

2016b, Gehring et al., 2017, Ott et al., 2018]. This end-to-end approach to machine translation
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was first proposed by Kalchbrenner and Blunsom [2013], Sutskever et al. [2014], Cho et al.
[2014], with Bahdanau et al. [2014] introducing an attention mechanism soon after. Multiple
improvements to their approach have been proposed, such as multiplicative attention [Luong
et al., 2015] and more recently multi-head self-attention [Vaswani et al., 2017]. The latter’s
novel Transformer architecture achieved state-of-the-art results on the WMT 2014 English-
French and WMT 2014 English-German corpus. Inspiring a new wave of work, state-of-the-
art of numerous natural language processing tasks reached new heights [Devlin et al., 2018,

Liu et al., 2019b|.

3.3. Quantization

Quantization is the process of lowering numerical precision, which allows representation
of numerical values with fewer bits. The focus of early work was simpler hardware deployment
[Fiesler et al., 1993, Tang and Kwan, 1993, Marchesi et al., 1993]. With ever larger neural
networks, quantization has of lately served as a compression method [Gong et al., 2014,
Han et al., 2015, Hubara et al., 2016, Polino et al., 2018|. Multiple approaches have been
explored, such as binary [Courbariaux et al., 2016], ternary |Lin et al., 2015, Li et al., 2016],
learned |Zhang et al., 2018| and uniform affine [Jacob et al., 2018a| quantization and in
combination with pruning [Han et al., 2015]. The practice has been extended to a multitude
different architectures. Rastegari et al. [2016] apply binary quantization to the filters and
convolutional layers of CNNs [LeCun et al., 1989|, while Wu et al. [2015] quantize both
kernels and fully connected layers. Similarly, Zhou et al. [2016] use low bitwidth weights
in convolution kernels. Ott et al. [2016] explore binary and ternary quantization of RNNs
[Jordan, 1990] and introduce their novel exponential quantization method. Wang et al. [2018|
propose the use of different quantization methods per RNN component. Hubara et al. [2016]
apply quantization to both the weights and the activations of RNNs and LSTMs [Hochreiter
and Schmidhuber, 1997|. He et al. [2016] propose modifications to the gates and interlinks of
quantized LSTM and GRU cells [Cho et al., 2014b]. Wu et al. [2016b] reduce the quantization
errors of their deep LSTM network by restraining the values of the residual connections
and cell states. Ott et al. [2018] train Transformers with mixed-precision and get state-of-
the-art on the WMT 14 English-French corpus. Cheong and Daniel [2019] apply k-means

quantization to the Transformer network, as well as iterative magnitude pruning. Fan [2019]
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also use binary quantization on the Transformer, as well as ranged base linear quantization.

Tierno [2019] quantize both the weights and the inputs of Transformer layers.

3.4. Knowledge Distillation

Another method which can be used to compress neural networks is called knowledge
distillation [Hinton et al., 2015]. The approach can be used to distill the knowledge of a
neural network to a smaller one [Kim and Rush, 2016, Tucker et al., 2016, Mishra and
Marr, 2017, Reddy et al., 2017|. The technique has also been combined with quantization
[Wu et al., 2016a, Polino et al., 2018|. Related to Transformers, Liu et al. [2019a| use an
ensemble of these, each trained on a specific task and then train a single Transformer on all
tasks. Knowledge distillation between different types of neural networks has also been tried.
Senellart et al. [2018] use a Transformer as a teacher and a recurrent neural network as the

student. Likewise, Chia et al. [2018] distill from a Transformer to a CNN.
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4.1. Recursive Autoencoder

We introduce our recursive autoencoding approach in this section. First we define our
model’s architecture and how each encoding and decoding recursion is performed. We then
describe how the model keeps track of the recursion steps, followed by a description of how
the input is represented. We also explain the advantages of using the mean squared error

loss for our method. Finally, we dive into the implementation details.

4.1.1. Model Architecture

Our model is a recursive auto-encoder. Figure 4.1 shows an example of our architecture

for a sequence of length three.

Gy O

- J . J ]

X1 X5 X3

Figure 4.1. Example of our recursive autoencoder with an input sequence of length three.
The encoder recursively takes two embeddings and outputs one until a single one is left and
the decoder takes one embedding and outputs two until there are as many as in the original

sequence.
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The encoder takes an input sequence {x1,--- ,x,}, where n is the sequence length of the
layer’s input, and outputs a sequence {y1, - ,yn_1}. The same {y;,- -+ ,y,_1} is then used
as input for the next recursion until the output sequence contains only a single element y,

the sentence embedding. The recursion performs the following operation:
Yi = MLPepe ([z5; 2441]) Vi € {1, -+ ,n— 1} (4.1.1)

where MLP,,,. is a shared multilayer perceptron and [z;;x;41] is the concatenation of the
embeddings x; and x;.1. MLP,,. is shared throughout all of the encoding recursion steps.
For decoding, it is the inverse procedure of recursively transforming an input sequence

{z1,-++ ,x,} into an output sequence {y1,- - , Yni1}:
i ] = MLPace (20) Vi € {1, ,m} (112

where MLP .. is the shared multilayer perceptron used by all decoding recursive steps and
[yi; i, 1) is an embedding twice the size of z;, which we then split into two embeddings y; and
Vi1, each of the same size as x;. Since we obtain two embeddings y; and y;,, for each z;,
we will have the following embeddings: 1, {y2, - ,¥n}, {¥5.---,¥,} and y,, ;. We merge

the overlapping sets by computing the mean:
iyl
yi:%we {2,---,n} (4.1.3)

and set y,11 = ¥, ;. We now have a single set of embeddings {1, -+, yn41}. Both maz and
mean functions gave similar results, hence we stick with mean throughout all experiments.
The output embeddings are then used as input for the next decoding recursion until we get

as many elements as the original input sequence.

4.1.2. Step Encoding

To help the recursive autoencoder keep track of the number of recursive steps which were
applied to an embedding, we concatenate to the input of MLP,,,. the number of the current
recursive step as a scalar, starting from 1 for the first recursion, as well as a one-hot of that
scalar with custom bucket sizes: {1, 2, 3-4, 5-7, ...}. All buckets after 5-7 are also of size 3.
We found this combination of both scalar and one-hot to give best results. When decoding,
we also concatenate to the input of MLP,. this scalar and one-hot, but instead of increasing

our recursive step count, we subtract one to it after each recursive decoding step.
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4.1.3. Input Representation

We use uncased GloVe embeddings [Pennington et al., 2014| of size 300 to represent the
initial input sequence words, which are then passed through a learned resizing multilayer
perceptron (MLP;,,) before given as input to the encoder. The output of the decoder is also
passed through a different learned resizing multilayer perceptron (MLP,,;) to get back to
the GloVe embedding size. We use a vocabulary of 337k words throughout all tasks.

4.1.4. Mean Squared Error

To compute the loss between input GloVe embeddings and the output embeddings, we
use the mean squared error (MSE) loss. Obtaining an MSE of 0 would mean our method
is lossless, which would not necessarily be the case with the cross entropy loss. MSE also
allows us to work with a vocabulary far larger than what is usually the case, as the common

classification layer plus cross entropy loss setup tends to have issues with large vocabularies.
4.1.5. Implementation Details

The two embeddings given as input to MLP,,,. are each of size d.,,;, as is also its output
embedding. Same for MLPg.., the input embedding is of size d.,, and the two output
embeddings are each of size d.,,;,. Both multilayer perceptrons have one hidden layer of size
%demb, halfway between the input and output size. We apply LayerNorm |Lei Ba et al., 2016]
on the output of each layers of the MLPs, followed by a ReLU activation. The input and
output resizing modules MLP;,, and MLP,,; also have one hidden layer halfway the size of
their input and output. They also use ReLLU activations, except for MLP,,;’s last layer. No

LayerNorm is used in these resizing components. We test four different d.,,;, embedding sizes

in section 4.2.1.

4.2. Experiments

In this section, we first present the autoencoding results. Then we present the results on
sentiment analysis using our sentence encoding on the Stanford Sentiment Treebank dataset

[Socher et al., 2013].
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4.2.1. Autoencoding

As a first experiment, we tested our model on the autoencoding task. Training was done
on the BookCorpus [Zhu et al., 2015] dataset, comprising eleven thousand books and almost
one billion words. At test time, we measured accuracy by computing the MSE distance
between an output embedding and the entire vocabulary. We count an output embedding as
“correct" if the closest embedding out of all the vocabulary of size 337k is its corresponding
input embedding.

For the autoencoder, we tried four embedding sizes: 300, 512, 1024 and 2048. In all cases,
models are given GloVe embeddings of size 300 as input. They also all output embeddings
of size 300. Reconstruction accuracy is shown for different sequence lengths in Figure 4.2.
With an embedding size of 2048, the model is able to reproduce near perfectly sequences of
up to 40 tokens. Longer sentences aren’t able to do better and have on average 39 correct
tokens. This results in model accuracy linearly going down after a certain threshold, as can
be seen in Figure 4.2.

To demonstrate how good our model is at reconstruction, we trained a stacked LSTM on
the same autoencoding task. Figure 4.3 shows performance of LSTM models for embedding
sizes 300, 512 and 1024. All LSTMs have two encoder and two decoder layers. The 1024
variant seems to have reached a saturation point, as it performs similarly to the 512 version.
All RAEs and LSTMs were trained for 20 epochs and models with same embedding size have
the same capacity. Figure 4.4 shows a better side by side comparison of the RAE and the
LSTM for embedding sizes 512 and 1024. Table 4.1 shows the MSE loss of all models on the
dev set after 20 epochs. The LSTM with an embedding size of 1024 only slightly achieves
lower MSE than the RAE with embedding size 300.

When the output and input embeddings don’t match as nearest, they are usually close.
Figure 4.5 shows the gain in accuracy for the 1024 and 2048 variants when considering an
output embedding as correct if the input embedding is in the five closest to the output, out
of all the vocabulary. For the 1024 version, we see on average an increase in accuracy of
2.7%, while for the 2048 variant, the gain only starts to get noticeable for sequences longer

than 30, with an overall average increase of 1.4%.
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Figure 4.2. Accuracy comparison of different embedding sizes (300, 512, 1024 and 2048)
for different sequence lengths. Left is our recursive autoencoder and right a stacked LSTM.

An output embedding is counted as correct if the closest embedding out of all the vocabulary

is its corresponding input embedding.

4.2.2. Sentiment Analysis

With strong autoencoding performance, one would think that features get deeply encoded
into the representation, making it difficult to easily extract them back, which is crucial for a
great number of tasks. To this end, we test our architecture on the sentiment analysis task.

The Stanford Sentiment Treebank [Socher et al., 2013] is a sentiment classification task
where each sample in the dataset is a sentence with its corresponding sentiment tree. Each
node in the tree is human annotated, with the leaves representing the sentiment of the words,
all the way up to the root node, representing the whole sequence. Comparison is usually
done on a binary or five label classification task, ranging from negative to positive. Most

models are usually by design only able to classify the root node, while our architecture allows

31



100
90
80
70
60

Accuracy

50

401 [STMygus
30 e LSTMs, e

50 LSTM300

10 20 30 40 50 60
Sentence Length
Figure 4.3. Accuracy comparison of different embedding sizes (300, 512, 1024 and 2048)
for different sequence lengths. Left is our recursive autoencoder and right a stacked LSTM.

An output embedding is counted as correct if the closest embedding out of all the vocabulary

is its corresponding input embedding.

classification of every node in the tree. We use a linear layer on top of each embedding in
the encoder to classify sentiment.

We present in Table 4.2 results for fine-grained sentiment analysis on all nodes as well
as comparison with recent state-of-the-art methods on binary sentiment classification of
the root node. For the five class sentiment task, we compare our model with the original
Sentiment Treebank results and beat all the models. In order to compare our approach with
state-of-the-art methods, we also trained our model on the binary classification task with
sole classification of the root node. Other presented models are GenSen [Subramanian et al.,
2018] and BERTgasg [Devlin et al., 2018|. Both these recent methods perform extremely
well on multiple natural language processing tasks. We set the RAE embedding size depy

to 1024. Larger embedding sizes did not improve the accuracy of our model for this task.
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Figure 4.4. Accuracy comparison of our RAE model versus a stacked LSTM for embedding

sizes 512 and 1024. Models of same embedding size have the same capacity.

In this setting, the RAE has 11M parameters, while the models we compare with, GenSen
and BERTgasg, have respectively 100M and 110M parameters. Both our model and GenSen
fail to beat the RNTN model for the SST-2 task. We see an improvement in accuracy when
combining both methods’ embeddings, surpassing every model in the SST paper, while being
close to BERTgasE’s performance.

Training solely on sentiment classification had same performance as jointly training on
the autoencoding task, as the latter had no impact on the sentiment analysis performance.

Joint training though had a small impact on reconstruction.
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Model  depp MSE (dev)
LSTM 300 0.0274

012 0.0231
1024 0.0191
RAE 300 0.0208
012 0.0124
1024 0.0075
2048  0.0019

Table 4.1. Mean squared error loss of stacked LSTMs and our RAE model for different
embedding sizes. All models are trained on the autoencoding task for 20 epochs and models
of same embedding size have the same capacity. MSE is computed on the BookCorpus dev
set |[Zhu et al., 2015], between the input GloVe embeddings [Pennington et al., 2014| and
output embeddings.

Model SST-5 (All) SST-2 (Root)
NB 67.2 81.8
SVM 64.3 79.4
BiNB 71.0 83.1
VecAvg 73.3 80.1
RNN 79.0 82.4
MV-RNN 78.7 82.9
RNTN 80.7 85.4
RAE 81.07 83
GenSen - 84.5
RAE + GenSen - 86.43
BERTgasE - 93.5

Table 4.2. SST-5 and SST-2 performance on all and root nodes respectively. Model results
in the first section are from the Stanford Treebank paper [Socher et al., 2013]. GenSen and
BERTgagE results are from [Subramanian et al., 2018] and [Devlin et al., 2018] respectively.
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Figure 4.5. Difference in accuracy when counting an output embedding as correct if the
corresponding input embedding is in the five closest versus the closest. Comparison is done

on our RAE model with embedding sizes 1024 and 2048.
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5.1. Compressing Transformers

First, we detail the quantization method we apply to the Transformer. We then define
how we use knowledge distillation in our setting. Finally, we describe how both methods are

combined for greater compression of the Transformer.

5.1.1. Weight Quantization

Weight Quantization is a compression method which consists in reducing the precision of
a network’s weights by representing their values with fewer bits. By quantizing the weights
to k-bit, the space required to store the model reduces by a factor of 3—,3

The uniform quantization procedure applied to our model is based on [Jacob et al.,
2018b]. During the training phase, the weight values are mapped to the closest quantization
level using a scaling factor s computed as :

B b—a
2k

s (5.1.1)

with a and b respectively the minimum and maximum values of the weight matrix being
quantized and 2% the number of quantization levels associated with the k-bit quantization.
However, this quantization is only simulated during the training phase as the values are
mapped back to the original domain after the precision loss. This fake quantization process

is performed during the forward pass as follows :

w, = V”_ﬂwa (5.1.2)

s
with w a real-valued weight, w, its simulated k-bit version and [-] the rounding to the
nearest integer operator. We applied the straight-through estimator (STE), introduced by
Hinton [2012] in his lectures, to approximate the gradient of the quantization function. Our
quantization procedure adds, for each quantized layer, two additional parameters s and a that
are both stored in floating-point. These two parameters are however negligible in comparison
with the resulting compression.

The Transformer’s weights we quantize correspond to each Multi-Head Attention and
Position-wise Feed-Forward layers as well as the embedding layer. We did not quantize the
layers’ biases, as they account for a small fraction of the number of parameters while being
added to many output activations. Likewise, we did not quantize the weights of the layer

norms.
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5.1.2. Knowledge Distillation

A simple method for compressing neural networks is to train smaller models. The know-
ledge distillation approach by Hinton et al. [2015] allows us to do so while mitigating the
loss in performance. This method incorporates the soft-labels generated by a teacher model
in the student’s loss function, jointly with the true labels. More specifically, we first train
our teacher network as the base Transformer configuration specified by Vaswani et al. [2017].
We then train our student network, a smaller Transformer model which we detail in section

5.2.1, with the following loss function L :
L=wH (%,y’) +w H(z,y) (5.1.3)

where H is the cross entropy loss, z the logits computed by the student and y the true labels.
The weights w, and w; are used to control the ratio between the soft-label and true-label

loss. The temperature 7' is the same as the one used to compute the teacher’s soft targets

/

y
' m , ( )

where 2’ are the logits computed by the teacher network. For further details, we refer the

reader to [Hinton et al., 2015].

5.1.3. Quantization & Distillation

As a guideline, we follow the Quantized Distillation approach proposed by Polino et al.
[2018], although we do not use bucketing in our quantization method. No modifications need
to be made to the knowledge distillation nor the quantization method for both methods
to be used jointly. Gradients are computed for the quantized weights, with respect to the
distillation loss, and gradient step is applied to the full precision weights. The teacher network

is not quantized, only the student.

5.2. Experiments

We first detail the Transformer variants we experimented with. We then go over the

training procedure. Finally we discuss the results on the machine translation task.
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PPL BLEU ‘
Amodel  dg R (dev) (test) compression

base |Vaswani et al., 2017] 512 2048 8| - 38.1 1x
base 4.43 38.08
base [8-bit Quantized]| 450 38.13 4x
medium 256 1024 4| 5.62 34.24 3.15x
medium [Knowledge Distilled] 5.57  35.30
medium [Knowledge Distilled| [8-bit Quantized| 5.78  35.57 12.59x
small 128 512 4| 8.02 29.81 7.53x
small [Knowledge Distilled] 7.78  30.21
small [Knowledge Distilled| [8-bit Quantized| 8.02 30.17 30.11x

TABLE 5.1. Results of the different Transformer [Vaswani et al., 2017] variants on the
WMT 2014 English-French corpus. Perplexity is per token, computed on the development

set?. BLEU is measured with multi-bleu.pl! on newstest20142

5.2.1. Transformer Variants

We trained three variants of the Transformer network, which we will refer to as base,
medium and small. The base model has the exact same configuration as the one in [Vaswani
et al., 2017]. The two other variants are exactly the same as base, except for the following :
medium has dyeqe = 256 and dg = 1024 and small has d,oqe = 128 and dg = 512. Also,
both medium and small only have 4 attention heads. For implementation details, we refer
the reader to the Transformer paper |[Vaswani et al., 2017].

For the base model, we tested with and without quantization, while for medium and small
we tried knowledge distillation, knowledge distillation in combination with quantization and
also a regular version of each model. In all cases, we use 8-bit quantization. Only the weights
are quantized, as quantizing both the activations and weights gave much worse results. For
knowledge distillation, we use a base model trained for 10 epochs as the teacher. We found

a temperature T' = 1 to give best results.
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5.2.2. English to French Translation

All models are trained on the WMT 2014 English-French corpus, containing ~36M sen-
tence pairs. We use byte-pair encoding [Sennrich et al., 2016] for tokenization and a shared
source-target vocabulary of 32000 case-sensitive tokens. Each training batch was composed
of about 40000 tokens, with about equal length sequences. The base models were trained for

5 epochs, medium for 4 and small for 3.

5.2.3. Results

We present all of our results in Table 5.1. All quantized or knowledge distilled models
are trained from scratch, no pre-training was done. Perplexity is per token, computed on
the development set and BLEU measured with multi-bleu.pl® on the newstest2014 ? test
set. We used beam search with a beam size of 4 and a length penalty of 0.6, as in Vaswani
et al. [2017]. We did not average checkpoints. The reported compression rate is the difference
between the number of weights x bit precision of a model with the base model.

Our 8-bit quantized base model has no drop in BLEU compared to the baseline, while
being compressed by a factor of 4. With the medium model, BLEU drops by 3.84. Knowledge
distillation rises the medium’s BLEU score by 1.06 point. Quantizing the knowledge distilled
medium model increases compression from 3.15x to 12.59x, while scoring 1.33 more BLEU
than our medium baseline. The small model goes down to 29.81 BLEU, with a compression
ratio of 7.53. Again, knowledge distillation slightly helps. Adding quantization, we get no
loss in BLEU compared to the small baseline, while boosting compression up to 30x. This is
only 3% the number of bits the base transformer uses, yet still gives decent translations (see

Appendix A).

1. https://github.com/moses-smt/mosesdecoder/blob/master/scripts/generic/multi-bleu.
perl

2. https://www.statmt.org/wmtl14/translation-task.html

40


https://github.com/moses-smt/mosesdecoder/blob/master/scripts/generic/multi-bleu.perl
https://github.com/moses-smt/mosesdecoder/blob/master/scripts/generic/multi-bleu.perl
https://www.statmt.org/wmt14/translation-task.html

Chapitre 6

Conclusion

In the first paper, we introduced a recursive autoencoder method for generating sentence
and sub-sentence representations. Decoding from a single embedding and working with a
337k vocabulary, we manage to get near perfect reconstruction for sequences of up to 40
word tokens and very good reconstruction for longer sequences. Capitalizing on our model’s
architecture, we showed our method to perform well on sentiment analysis and more precisely
its advantage when classifying sentiment trees.

In the second paper, we applied knowledge distillation and quantization to the Trans-
former network. To the best of our knowledge, we are the first to do so, as well as the first
work showing Transformers can be quantized without any drop in BLEU. While compres-
sing the network by a factor of 4, we gained 0.05 BLEU over the baseline on WMT 2014
English-French. We gained further compression by training smaller variants of the Trans-
former architecture via knowledge distillation and achieved 12.59x while losing only 2.51

BLEU.

6.1. Future Work

Continuing in the direction of training our model on different NLP tasks, we would like our
representations to generalize well on downstream tasks while maintaining their reconstruction
property. We would also like to further explore the usage of sub-sentence representations in
natural language processing. Finally, we would like to learn our sentence embeddings’ latent
space, similarly to Subramanian et al. [2018]’s method, so as to leverage our autoencoder’s

strong reconstruction ability and generate very long sequences of text.



Secondly, we plan on exploring lower bit-precision quantization methods for the Transfor-
mer architecture. We would also like to explore other compression methods, such as neural
network pruning. Finally, we would like to improve the benefits of distillation by leveraging
the knowledge of better teachers, such as an ensemble of Transformers and larger networks.

Finally, instead of focusing on learning good text representations, a broader work direc-
tion would be to learn good representations of the world. The purpose for such is much more
general. Good world representations can be useful in a wide range of fields, such as natu-
ral languages, reinforcement learning, planning, world modeling and more general machine

learning research.
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