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Sommaire

Ce mémoire par article part de la question suivante: pouvons-nous utiliser des prothèses

neurales afin d’activer artificiellement certain muscles dans le but d’accélérer la guérison et

le réapprentissage du contrôle moteur après un AVC ou un traumatisme cervical ? Cette

question touche plus de 15 millions de personnes chaque année à travers le monde, et est

au coeur de la recherche de Numa Dancause et Marco Bonizzato, nos collaborateurs dans

le département de Neuroscience de l’Université de Montréal. Il est maintenant possible

d’implanter des électrodes à grande capacité dans le cortex dans le but d’acheminer des

signaux électriques, mais encore difficile de prédire l’effet de stimulations sur le cerveau et

le reste du corps. Cependant, des résultats préliminaires prometteurs sur des rats et singes

démontrent qu’une récupération motrice non-négligeable est observée après stimulation de

régions encore fonctionnelles du cortex moteur. Les difficultés rattachées à l’implémentation

optimale de stimulation motocorticale consistent donc à trouver une de ces régions, ainsi

qu’un protocole de stimulation efficace à la récupération. Bien que cette optimisation a été

jusqu’à présent faite à la main, l’émergence d’implants capables de livrer des signaux sur

plusieurs sites et avec plusieurs patrons spatio-temporels rendent l’exploration manuelle et

exhaustive impossible. Une approche prometteuse afin d’automatiser et optimiser ce processus

est d’utiliser un algorithme d’exploration bayésienne. Mon travail a été de déveloper et de

raffiner ces techniques avec comme objectif de répondre aux deux questions scientifiques

importantes suivantes: (1) comment évoquer des mouvements complexes en enchainant des

microstimulations corticales ?, et (2) peuvent-elles avoir des effets plus significatifs que des

stimulations simples sur la récupération motrice? Nous présentons dans l’article de ce mémoire

notre approche hiérarchique utilisant des processus gaussiens pour exploiter les propriétés

connues du cerveau afin d’accélérer la recherche, ainsi que nos premiers résultats répondant

à la question 1. Nous laissons pour des travaux futur une réponse définitive à la deuxième

question.
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Summary

The idea for this thesis by article sprung from the following question: can we use neural

prostheses to stimulate specific muscles in order to help recovery of motor control after stroke

or cervical injury? This question is of crucial importance to 15 million people each year

around the globe, and is at the heart of Numa Dancause and Marco Bonizzato’s research, our

collaborators in the Neuroscience department at the University of Montreal. It is now possible

to implant large capacity electrodes for electrical stimulation in cortex, but still difficult to

predict their effect on the brain and the rest of the body. Nevertheless, preliminary but

promising results on rats and monkeys have shown that a non-negligible motor recovery is

obtained after stimulation of regions of motor cortex that are still functional. The difficulties

related to optimal microcortical stimulation hence consist in finding both one of these regions,

and a stimulation protocol with optimal recovery efficacy. This search has up to present

day been performed by hand, but recent and upcoming large scale stimulation technologies

permitting delivery of spatio-temporal signals are making such exhaustive searches impossible.

A promising approach to automating and optimizing this discovery is the use of Bayesian

optimization. My work has consisted in developing and refining such techniques with two

scientific questions in mind: (1) how can we evoke complex movements by chaining cortical

microstimulations?, and (2) can these outperform single channel stimulations in terms of

recovery efficacy? We present in the main article of this thesis our hierarchical Bayesian

optimization approach which uses gaussian processes to exploit known properties of the brain

to speed up the search, as well as first results answering question 1. We leave to future work

a definitive answer to the second question.

Keywords BCI · Cortical Stimulation · Gaussian Processes · Bayesian Optimization
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Chapitre 1

Introduction

As Michio Kaku likes to say, the brain is the most complicated object that we know of in the

Universe [1]. Uncovering the code which it speaks and its learning mechanisms are two of the

most fundamental challenges awaiting breakthroughs in the 21st century.

Unfortunately, its complexity still baffles us and leaves most of our analytical tools, and

greatest minds, helpless. Paradoxically, we have great difficulty explaining the things that

are most intuitive and unconscious to us. Moravec’s Paradox, originally discovered in the

1980s when artificial intelligence researchers and roboticists were trying to develop human-like

intelligence, describes this succinctly: "it is comparatively easy to make computers exhibit

adult level performance on intelligence tests or playing checkers, and difficult or impossible

to give them the skills of a one-year-old when it comes to perception and mobility." This

might explain why we have an utter fascination for displays of sensorimotor skills. According

to Wikipedia, all of the 21 internationally broadcasted programs to have ever received an

audience of more than 2 billion people were sports event, most of them being Olympic games or

FIFA world cups. How the three pound piece of meat on our shoulder manages to control our

body so effortlessly and efficiently, and in fact often optimally, has puzzled neurophysiologists

for more than 200 years. Nikolai Bernstein, a self-taught pioneer in the field, coined the

degrees of freedom problem: "It is clear that the basic difficulties for co-ordination consist

precisely in the extreme abundance of degrees of freedom, with which the [nervous] centre

is not at first in a position to deal." Although many solutions have been proposed over the

years, a consensus is still far from having been reached.

Brain-Computer Interfaces (BCI) have become an indispensable tool towards this goal.

Not only do they provide an ability to record from a large number of individual neurons in

targeted areas of the brain, but they also permit electrical stimulation of neuronal regions,



promoting us scientists from a simple observer role to a much more involved and active

role. We can finally test for causal relationships between brain regions and physiological

and behavioral responses. However, with great power comes great responsibility, and in

the case of BCI, this great responsibility is analyzing the massive deluge of data that we

are now able to generate. Understanding this data will require the development of new

mathematical and statistical techniques. And with this great goal in mind, I have tried

to make a small dent in this problem and bring a modest contribution to our community.

More specifically, I have developed an automatic and optimal stimulation algorithm, that

is able to find which stimulation pattern to use to evoke a given target motor response.

Up to now, most neurophysiologists would manually decide where to stimulate during data

collection, or have a preprogrammed extensive stimulation protocol. Recent stimulation

technologies permit exponentially large number of stimulation patterns, rendering this manual

approach infeasible. Our computer science contribution is solving the algorithmic

challenges associated with automating this search, by developing a hierarchical

version of Gaussian Processes which permits effective online optimization over

the stimulation search space. Our neuroscience hope is that this technique will be useful

to a wide range of neurophysiologists, with potentially slightly different goals than those we

used to demonstrate the effectiveness of our approach.

A great second motivating factor of this work is its clinical applications. Indeed, although

we strongly believe that BCIs will be fundamental to understanding the brain’s function and

learning mechanisms, fundamental scientific progress will be slow and take some time. However,

research in the field has already proven itself useful through diverse clinical applications

such as stroke recovery [2], neuroprosthetic implants [3], and all sorts of motor system and

cervical injuries [4, 5]. According to the World Health Organization, roughly 15 million

people each year suffer from debilitating motor system injuries such as spinal cord trauma

and strokes [6, 7]. But these people can be helped, and have been helped. People who have

completely lost the ability to control limbs can regain some mobility through robotic limbs

and exoskeletons [3], and others who have only lost partial function of limb control can regain

a great amount of control through targeted spinal cord stimulation [8]. A lot more has been

done and is known with non-human primates [9, 10, 11], and the general view is that this

knowledge will eventually transfer to human species [12].

3



Chapitre 2

Studying the Motor System with Brain-Computer

Interfaces (BCI) and Electromyograms (EMG)

Fig. 2.1. Sensorimotor Cortex and its Divi-

sions by Pancrat which is licensed under CC

BY-SA 3.0

Neuroscientists analyze the brain at different

levels of resolution, from systems and net-

works, down to neurons, synapses, and even

individual molecules. In this work, we are

interested in the motor system, starting from

the motor cortex (Fig. 2.1), and going all the

way down to the limbs. More precisely, our

interest lies in the mapping between electri-

cal signals in primary motor cortex (M1) and

forelimb muscle activity.

Before delving deeper into our specific

setup, we need to explain the different hard-

ware technologies and methods used to both

stimulate and record from the brain. These

methods are usually distinguished by spa-

tiotemporal resolution, as in Fig. 2.2. The

different techniques permit probing the central nervous system anatomically, at their respec-

tive spatial resolution. Temporal resolution on the other hand permits a functional analysis

of circuits, providing a handle on the dynamics that happen over time.



Cognitive neuroscience has been making a lot of progress in recent years, thanks to general

complementary techniques. Electroencephalography (EEG) gives a low spatial, high temporal

window into the brain, and functional magnetic resonance imaging (fMRI) gives the exact

opposite window, with a high spatial, low temporal resolution. Such techniques now allow us

to ask questions about the brain as a whole, and interactions between different parts of the

brain.

The focus of our research however, is on a much smaller scale. First of all, EEGs and

fMRIs are purely recording devices that can read the neural code and attempt to decode it.

We, on the other hand, are more interested in stimulating the brain, and hence probe its

circuits causally. For this, we decided to work with a microstimulation paradigm in a monkey

motor cortex.

Fig. 2.2. Neuroscience methods and their spatiotemporal resolution. Reprinted with per-

mission from Springer Nature Customer Service Centre GmbH: Springer Nature, Nature

Neuroscience. Putting big data to good use in neuroscience. Terrence J Sejnowski, Patricia S

Churchland, J Anthony Movshon., Copyright c© 2014, Springer Nature (2014)
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The set of experiments in the main article of this thesis were conducted in a male adult

capuchin monkey. The experimental protocol followed the guidelines of the Canadian Council

on Animal Care and was approved by the Comité de Déontologie de l’Expérimentation sur

les Animaux of the Université de Montréal. The monkey was food restricted approximately

12 hours prior to each recording session. Between recording sessions, the monkey was group

housed and supplied with food and water ad libitum.

For stimulation, our hardware of choice was the Utah microelectrode array (see Fig. 2.5

on the right), so called because it was developed at the university of Utah. This array,

consisting of 96 channels (10x10 but the corners are not usable), requires surgery in order

to be implanted inside the skull. Once in place, it permits electrical stimulation of 96 small

regions across a range of roughly 16mm2. Depending on the density of nearby neurons, a

single channel will stimulate somewhere between 10-10000 neurons. This is perfect for testing

connections between different parts of the brain, and getting a coarse-grain view of the

function of a specific brain region. A single moderate current stimulation permits a subtle

jerk of the limbs of the monkey.

This has given us the so called cortical homunculus map of the somatosensory and motor

regions of our cerebral cortex (Fig. 2.3a), originally discovered by Wilder Penfield [13] in

Montreal, as well as the humoristic (yet scientifically accurate) depiction of our sensitivity to

different body parts (Fig. 2.3b) that accompanies it. This is still a very coarse-grain depiction

though, and is still contended by some as not being the entire picture [14]. All of this to

say that new technologies, and new algorithms and analysis methods will be required to

completely understand how the motor cortex exactly controls the body.

Up until recently, the 96 channels of the Utah array were the most available to us. However,

Elon Musk’s new company, Neuralink, has recently announced their work on a 1000 channel

technology [15], which permits both stimulating and recording and which they plan to test on

humans by the end of 2020. This massive increase in available data makes it that much harder

for neuroscientists and surgeons to understand their experimental results. What interests

us is refining and better understanding the role of motor cortex in controlling movements

through cortical stimulations. With regards to this, the space of stimulation parameters has

now grown exponentially large: amplitude of stimulation current, duration of stimulation,

temporal pattern in stimulation, number of channels to stimulate synchronously, etc.
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This is where our algorithm comes in. We want to automate the search process over the

space of stimulation parameters. In essence, we want to answer questions such as "What is

the best stimulation pattern to move the monkey’s fourth finger?", "Given that the monkey

has suffered a stroke, are there channel combinations that are still working and could help

it regain some motor function?", "Is there a way to chain stimulations so as to make an

anesthesized monkey walk again?", etc. The goal of our article is to formalize these questions

and turn them into a working algorithm, but in order to understand our work, we need to

explain one more hardware instrument.

In order to "optimize" a stimulation, we need a quantitative performance measure. In

our case, we have decided to focus on the first question above, that of maximizing the hand

movement. But in order to quantify this hand movement precisely, we would need a camera

and advanced computer vision algorithms. Furthermore, hand displacement might actually

depend on its original positioning, finger placement, muscle tension, etc., rendering the

(a) Somatosensory and motor cortical homunculus by

OpenStax College, licensed under CC BY 3.0

(b) Sensitivity to-scale of our body parts by

Mpj29, licensed from CC BY-SA 4.0

Fig. 2.3. Homunculus
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non-linearity comes from a fixed basis function (also called kernel; see Sec. 3.0.1 for the formal

mathematical definition). GP regression interpolates (and extrapolates) between observed

data points according to this kernel, and furthermore gives a measure of uncertainty (standard

deviation of a Gaussian distribution) at every point, as shown in Fig. 3.2c. Because our inputs

are spatially distributed, we can use a simple Gaussian basis function, which works well for

the single stimulation case. To generalize to spatiotemporal stimulation patterns (multiple

channels with varying time delays in between) however requires modifications, which is where

our main contribution lies. We will use this section to introduce the basic mathematical

details of GPs and Bayesian Optimization, which should be enough to understand our article’s

contribution.

With the GP regressor described above, we now have an estimation of the loss surface on

the stimulation parameter space. Furthermore, it is a probabilistic estimate, which means

that we also have access to a measure of uncertainty. We can use this information to decide

where to query next! This is the fundamental idea behind Bayesian optimization: we want to

find the global optimal of a black-box function, and we do so through a sequential design

process. There are many other global optimization techniques, evolutionary algorithms being

a famous example, but Bayesian optimization has proven very effective on a number of

problems lately [19, 20, 21], and it permits a sequential search, which is what we need for

efficient online learning (evolutionary algorithms, on the other hand, require many parallel

searches). Note that Fig. 3.2c is the result of a GP fit on many data points (we can tell from

the very low uncertainty - blue color - at each of the 10 channels). Bayesian Optimization

would then take this surface and decide on which of the 10 channels to stimulate next, so as

to balance exploitation (high chance of having a high response) and exploration (gathering

information about other channels).

We now delve into the mathematical details. We consider electrical stimulation signals

that are composed of discrete events (e.g. single electrical pulses or short pulse trains)

that can be delivered to one of N channels. A stimulation containing k events is a tuple

sk = (n1, . . . nk,a1, . . . ,ak,∆t1, . . . ,∆tk−1) where ni = 1 . . . N indicates the channel of the ith

event, ai its amplitude, and ∆ti is the inter-event interval between events i and i+ 1. Each

sk generates a noisy pattern of EMG activity g(sk). Our goal is to optimize an objective

11



function C(g(sk)). Here C is flexible; it can be extracting the maximum output of a single

EMG, or measuring a distance between evoked pattern g(sk) and a target pattern gtarget.

Hence, we want to find

argmax
sk

C(g(sk))

where the argmax can be replaced by argmin if we want to minimize a distance function

instead of maximizing an amplitude. This is a very well studied problem in optimization.

However, a few considerations special to our problem naturally lead to using Bayesian

optimization. These are

(1) We are optimizing over both discrete (ni) and continuous (ai, ∆ti) variables.

(2) The function C(g(sk)) that we are optimizing is a black box (it is expensive to evaluate,

and we do not have access to derivatives).

(3) The exploration needs to be as fast as possible (exhaustive search is to be avoided for

clinical reasons, as mentioned above)

(4) Because of cortical plasticity, electrode displacement, and muscle fatigue, the EMG

responses will change over time. We want to be able to track and adapt to these

changes online.

3.0.1. Bayesian Optimization using Gaussian Processes

Bayesian optimization is a natural fit for this problem. It is a response surface (also called

surrogate function) approach to global optimization, which means that at each iteration, it

constructs a response surface that is meant to approximate the function being optimized

(that we only have access to through a few datapoints), and then queries this function at

the maximum of the response surface. The way it constructs the surrogate function is by

treating the unknown function f it is trying to optimize as a random function and placing a

prior over it. This prior dictates attributes of the function such as smoothness and speed

of oscillation. The response of the function at the queried points so far is then treated as

data, from which we get a posterior distribution over possible functions. We then use an

acquisition function to turn this posterior distribution into a surrogate function, which we can

maximize with deterministic optimization methods to find the next query point. Gaussian

Processes are one way to model the random function, and the method that we use. Other

function approximators such as trees [22] and random forests [23], but GPs often prove to be
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Gaussian Process by two functions, m : T → X and K : T ×T → X (restricted to be positive

definite), called the mean function and the kernel function, respectively. These play roles

analogous to the mean and variance parameters of the Gaussian distribution. Indeed, just as

we write X ∼ N (µ,Σ) for a random vector drawn from a multivariate Gaussian distribution,

we write f ∼ GP(m,K) for a random function drawn from a Gaussian Process (see Fig. 3.4).

In many practical cases when we don’t have a priori information about the underlying

function f , we assume m ≡ 0 (Fig. 3.3b). Then, by the above definition of Gaussian Processes,

given a finite number of training data points x = (x1, . . . ,xn) and their response f , plus a

finite number of test data points x∗ whose responses f∗ we would like to predict (note here

that f and f∗ are not functions but vectors. We use the shorthand f = (f(x1), . . . ,f(xn)),

and similarly for f∗), we get a Multivariate Gaussian




f

f∗



 ∼ N



0,




K(x,x) K(x,x∗)

K(x∗,x) K(x∗,x∗)









and we can get our prediction (posterior, Fig. 3.3c) for f∗ by simple conditioning of this

MVN (see appendix B) distribution:

f∗|x∗, f, x ∼ N
(
K(x,x∗)K(x∗,x∗)

−1f,K(x,x)−K(x,x∗)K(x∗,x∗)
−1K(x∗,x)

)

We can see that although the formal definition of the kernel function is intuitive, being

the covariance of the underlying Gaussian process (k(x,y) = Ef∼GP (m,k)[(f(x)−m(x))(f(y)−
m(y))]), its impact on the posterior, and hence future predictions, is much less intuitive.

One way to reason about this prediction is to see it as a linear combination of previous

observations f , where this linear map (K(x,x∗)K(x∗,x∗)
−1) is parameterized by the choice of

kernel K and the relative position of new points x∗ we are trying to predict. This view, which

I believe is the most intuitive, has been called linear smoothing in the literature [25]. This

view also permits relating Gaussian processes to other nonparametric estimation techniques

from frequentist statistics, such as kernel ridge regression (KRR) and support vector machines

(SVMs). Such techniques are closely related to Gaussian processes; for instance, the estimator

of KRR is identical to the posterior mean of GP regression. Nonetheless, the theory and

philosophy behind these approaches remains very different, although there are advances in

bridging the gaps [26].
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The last (very important) detail is the choice of kernel. There are really no restriction for

a two-argument function to be a kernel, other than that it be positive semidefinite. Hence, a

gazillion different kernels have been developed over the years in different fields, for different

applications. Fortunately, there is some order to this zoo, and we leave the interested reader

to a recent review on general classes of useful kernel functions [27]. The most often used (and

often, unfortunately, for the wrong reasons) kernel is the Gaussian kernel, also called radial

basis function (RBF) kernel:

K(x,x′) = σ2 exp(−||x− x′||2
2l2

)

where l is the lengthscale parameter, which controls the covariance between points (a short

lengthscale implies that a given observation of the underlying function will only affect other

very nearby points, at an exponential rate controlled by l), and σ2 is the prior variance

parameter (note Var[f(x)] = K(x,x) = σ2). Note that the "Gaussian" from Gaussian kernel

has nothing to do with the Gaussian from Gaussian process, which explains why Neil Lawrence

is advocating for renaming it exponentiated quadratic kernel.

In our case, because the motor cortex is spatially organized (Fig. 2.3a), with local regions

having similar representations and effects, using an RBF kernel makes sense. However,

Michael L. Stein, in his book Interpolation of Spatial Data [28], has argued that the infinite

differentiability of the RBF kernel is a big problem for physical processes (such as geostatistics,

his main field; we argue also the brain) since observing only a small continuous fraction of

space is enough to infer the whole function. In simpler terms, if we could, in an imaginary

world, stimulate a continuous region of 1mm2 in the brain and know the EMG response

at every point within this small region, we would also know the response of not only the

whole Motor Cortex, but also the entire brain. He thus proposed the Matern kernel as a

generalization of the RBF kernel [29]

Cν(x,x
′) = σ2 2

1−ν

Γ(ν)

(
√
2ν

||x− x′||
l

)ν

Kν

(
√
2ν

||x− x′||
l

)

where Γ is the gamma function, Kν is the modified Bessel function of the second kind, l

is the lengthscale parameter analogous to that of the RBF kernel, and ν is a non-negative

parameter of the covariance. In this form, it is literally incomprehensible, but we note that

the Matern kernel is actually a family of kernels, where each ν parameterizes a different
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and everything else works as above.

We now have access to the machinery necessary for creating a probabilistic estimate,

given some dataset, of the function we are trying to optimize. But our goal is to create an

online algorithm which finds this optimal stimulation pattern efficiently. That is, how can we

best make use of a given finite budget of N queries, so as to find the maximum value. That

is, we need a procedure for, given a probabilistic estimate of the function (for example, the

posterior after 5 datapoints in Fig. 3.3c), deciding where to next query the function, and

hence augment our dataset. That is, we are in an active learning setting, where we can choose

our dataset, as opposed to traditional machine learning where the dataset is given to us.

The traditional way of doing this is to choose N random points. This surprisingly

actually works very well [30]. But in our case, we have another constraint, which is that

every stimulation counts. As mentioned in section 2, for clinical applications, effective

stimulations help restore function after cortical injury. Hence, if we spend half of our random

queries querying channels that aren’t functional anymore, we lose a lot of efficacy towards

restoring patient movement. Hence, our objective, instead of simply being to find the optimal

stimulation pattern after N queries, it is also to accumulate as many "as optimal as possible"

queries on the way there (for those familiar with the jargon, this is a bandit problem rather

than a Bayesian optimization problem, although the distinction between these is becoming

blurred by recent theory [31]).

In choosing the next query point, we thus need to balance between exploitation (querying

a point that we know, or expect, to have a high value), and exploration (gathering information

about channels that might potentially have high value, even though we currently don’t know).

We thus need to define an acquisition function (Fig. 3.3d), which will take our stochastic

Gaussian process posterior, and return a deterministic function, indicating for every point in

the domain, it’s "query value" (essentially balancing between exploration and exploitation).

We can thus find the maximum of this function, and use this as our next query point. Many

acquisition functions have been defined in the field of Bayesian optimization, and we leave the

interested reader to go read about them in a proper tutorial [19]. Although there exist certain

cases where one would prefer a certain acquisition function over another, in practice, they tend

to perform very similarly. As the above tutorial mentions, the common saying is that proper

modeling is more important than the choice of acquisition function. That is, if Bayesian
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optimization is not working properly on some problem, it is in most cases more important to

change the model (eg. change the kernel function, or noise model being used) rather than to

change the acquisition function. Following this advice, we decided to use the very common

Upper Confidence Bound (UCB) acquisition function [19]: UCB(x) = µ(x) + kσ(x). Notice

that k is the parameter which explicitly modulates the trade-off between exploration (high k)

and exploitation (low k).

This completes the machinery necessary for optimizing a blackbox function online. With

this in hand, the reader will be able to understand the few mathematical definitions in the

article.
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Résumé. Le développement de techniques de neurostimulation pour évoquer des outputs moteurs est un

domaine de recherche actif. Ces dernières s’avèrent un outil expérimental crucial pour explorer la compu-

tation dans les circuits neuronaux et trouvent aussi des applications dans les neuroprothèses utilisées pour

aider à la récupération motrice après AVC ou lésion cérébrale. Concevoir des algorithmes permettant de

dévoiler et de contrôler les mappings neurostimulation-moteur pose deux défis importants, liant ainsi les

patterns spatiotemporels de stimulation neuronale à leur activation musculaire: (1) l’exploration des cartes

motrices doit être rapide et efficace (une recherche exhaustive doit être évité pour des raisons cliniques et

expérimentales) (2) l’apprentissage en ligne doit être suffisamment flexible pour s’adapter aux changements

sur ces cartes. Nous proposons un algorithme de recherche de pattern de stimulation pour résoudre ces pro-

blèmes et en démontrons l’efficacité avec des expériences sur des primates non humains. Notre solution est

un nouveau processus itératif utilisant l’optimisation bayésienne via des processus gaussiens sur des espaces

de signaux de plus en plus complexes. Nous montrons que notre algorithme peut apprendre avec succès

et rapidement des correspondances entre des schémas de stimulation complexes et des schémas d’activation

musculaire évoqués, lorsque les approches standard échouent. Fait important, nous découvrons dans M1 des

calculs non linéaires au niveau du circuit qu’il n’aurait pas été possible d’identifier avec les techniques de

mapping classiques.

Mots clés : BCI · Stimulation Corticale · Processus Gaussien · Optimisation Bayesienne

Abstract. The development of neurostimulation techniques to evoke motor patterns is an active area of

research. It serves as a crucial experimental tool to probe computation in neural circuits, and has applications

in neuroprostheses used to aid recovery of motor function after stroke or injury to the nervous system. There

are two important challenges when designing algorithms to unveil and control neurostimulation-to-motor

correspondences, thereby linking spatiotemporal patterns of neural stimulation to muscle activation: (1)

the exploration of motor maps needs to be fast and efficient (exhaustive search is to be avoided for clinical

and experimental reasons) (2) online learning needs to be flexible enough to deal with occasional spurious

responses. We propose a stimulation search algorithm to address these issues, and demonstrate its efficacy

with experiments in the motor cortex (M1) of a non-human primate model. Our solution is a novel iterative

process using Bayesian Optimization via Gaussian Processes on increasingly complex signal spaces. We show

that our algorithm can successfully and rapidly learn correspondences between complex stimulation patterns

and evoked muscle activation patterns, where standard approaches fail. Importantly, we uncover nonlinear

circuit-level computations in M1 that would not have been possible to identify using conventional mapping

techniques.

Keywords: BCI · Cortical Stimulation and Gaussian Processes and Bayesian Optimization
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1. Introduction

Each year, over 15 million people worldwide suffer major debilitating motor system

injuries such as spinal cord trauma [6] or stroke [7]. A promising approach to help restore

movement applies targeted, artificial stimulation to motor structures of the nervous system,

e.g. motor cortex [4], spinal cord [2], or the periphery [5] using brain-computer interfaces

(BCI). Despite years of research, it is still not fully understood how complex movements

are generated [32, 33, 34], and even less so how to regain control of these movements after

injury. Nevertheless, there are often local spatial correspondences between neurostimulation

of specific sites and targeted muscle activation. We want to leverage these in an optimal

way. Previous work has shown that long-train stimulations in motor cortex can activate

entire circuits of neurons, thereby producing complex movements [32, 33]. The challenge we

address here is to specifically identify optimal stimulation signals to evoke targeted muscle

co-activations, where pre-selected muscles are required to be activated at specific times.

New implantable devices which are microfabricated with many electrodes hold potential

for such targeted spatiotemporal stimulation, yet existing control algorithms do not fully

take advantage of them, generally relying on incomplete and manual mapping, and often

single electrode stimulation. Our goal is to develop Bayesian optimization methods to learn

optimal multi-electrode stimulation patterns. Effectively searching the space of possible

spatiotemporal stimulation patterns (which can include duration, intensity, spatial ordering,

etc.) is a complex task because of its combinatorial explosion in size. Exhaustive search is

therefore impossible in practice, especially if algorithms are to be used on-line in clinical

settings. Moreover, relationships between stimulation and output are noisy, and may change

over time due to plasticity of neural circuits [16, 34]. Any method to identify stimulation

protocols must be robust, and flexible enough to track such changes.

We propose a Gaussian Process (GP) based Bayesian Optimization (BO) approach1.

This leverages acquired knowledge of muscle responses for single channel stimulations to

build priors for stim-to-muscle maps for multi-channel stimulation patterns, where only

nonlinear correction terms to a linear prior need to be learned. We refer to this process as

hierarchical GP-BO since it relies on GP models fitted in lower dimensional spaces to initialize

1We make the data and some example code available at https://github.com/samlaf/hierarchical-gaussian-

process.
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and constrain ones in higher dimensional spaces, where sampling would be prohibitively

costly. The advantages of recursively learning correction terms, rather than a complete map,

are threefold: (1) Convergence to optimal stimulation requires fewer exploratory stimuli

than direct optimization on the space of all signals. (2) The algorithm can be used online

and adapts quickly to changes in neural dynamics. (3) Our method precisely learns the

nonlinearities introduced by network dynamics, and can track the evolution of population

codes throughout recovery, thus uncovering circuit-level computations.

The main goal of this paper is to describe a novel algorithm to rapidly find optimal

stimulation patterns of intracortical microstimulation (ICMS), for a targeted motor output.

To complement this algorithmic contribution, we demonstrate its efficacy with a basic

experiment in a non-human primate model where optimal multi-electrode stimulation patterns

are identified to evoke temporal muscle coactivations. This experiment is intended as a

proof-of-concept for our algorithm and as such, uses a single monkey but validates our

findings with multiple combinations of electromyographic (EMG) output patterns. We record

spatiotemporal stimulation patterns combinations and their responses exhaustively, on several

trials. We then perform explicit validation of our approach, with offline tests that are run

several times. However, this exhaustive dataset is limited in spatial and temporal resolution

by experimental constraints, but our algorithm is designed to be scaled up towards our goal

of evoking even more complex targeted movements.

In the discussion, we outline the implementation and future use of our algorithm in online

settings as well as circuit-level neural mechanisms present in M1 it uncovers.

2. Methods

2.1. Neural Stimulation: Setup and Experiment Description

The current set of experiments were conducted in a male adult capuchin monkey. The

experimental protocol followed the guidelines of the Canadian Council on Animal Care and

was approved by the Comité de Déontologie de l’Expérimentation sur les Animaux of the

Université de Montréal. The monkey was food restricted approximately 12h prior to each

recording session. Between recording sessions, the monkey was group housed and supplied

with food and water ad libitum. Prior to the onset of data collection, a 96 channel Utah

array was implanted in primary motor cortex (M1) and five different muscles of the forearm
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both signal delivery changes caused by the implant moving, and

structural changes in the underlying brain substrate.

BO constructs, at every iteration, a probabilistic surrogate to the function C being

optimized, which is used to balance exploration and exploitation through the design of an

acquisition function. It does so by treating the unknown function C as a random function

and placing a prior over it. This prior dictates attributes of the function such as smoothness

and frequency of oscillation. By conditioning on the so far observed responses of the function,

a posterior distribution over possible functions is obtained, from which the algorithm can

decide where to query next based on optimizing an acquisition function. Acquisition functions

convert a probabilistic belief into a deterministic function that explicitly embodies the trade-

off between exploration and exploitation. Following the current literature, we choose to model

the random surrogate as a Gaussian Process [24], and use the Upper Confidence Bound [19]

as acquisition function.

2.2.1. Gaussian Process Prediction

GPs are such that for a finite number of training data points x and their associated

responses y (represented by the plate notation in Fig. 0.7), plus a finite number of test data

points x∗ whose response f∗ we would like to predict, we get a Multivariate Gaussian




y

f∗



 ∼ N








m(x)

m(x∗)



 ,




Ky(x,x) K(x,x∗)

K(x∗,x) K(x∗,x∗)









where m and K are the mean and kernel functions associated to the GP, and

Ky(xp,xq) = K(xp,xq) + σ1xp=xq
(2.1)

where σ is the noise standard deviation parameter, which will be optimized along with K’s

parameters. We can get our prediction for f∗ by simple conditioning on this Multivariate

Normal distribution [24]:

f∗|x∗, y, x ∼ N
(
f̄∗, cov(f∗)

)
,where

f̄∗ = m(x∗) +K(x∗,x)[K(x,x) + σ2I]−1(y −m(x))

cov(f∗) = K(x∗,x∗)−K(x∗,x)[K(x,x) + σ2I]−1K(x,x∗).
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Algorithm 1: Bayesian Optimization
Result: Best Stimulation Pattern

Randomly pick m initial random pts and initialize Kernel hyperparameters;

while haven’t converged on single stimulation pattern do

Fit GP to current dataset;

Compute Acquisition Function;

next_stim = max(acq);

Augment dataset with next_stim;

end

of channel pairs possible, without even considering different inter-event intervals ∆t. The

direct approach of training a GP on this space is not scalable, and does not take advantage of

prior knowledge of motor circuit coding; namely, that motor outputs of spatiotemporal neural

activations can often be decomposed (although not exactly) into individual neural-muscle

correspondences [35]. We leverage this fact in a hierarchical approach where we use GPs

fitted on lower dimensional stimuli spaces, to build priors for GPs in higher dimensional

stimuli spaces.

More formally for the two-electrode space s2 = (c1,c2,∆t), if we write the single-electrode

GP as f1(c) ∼ GP(0, K1) then our prior on the two-electrode GP will be

f2(c1,c2,∆t) ∼ GP(a1f̄n
1 (c1) + a2f̄n

1 (c2), K2) (2.2)

where fn
1 := f1|Data is the GP trained on the single-electrode data, f̄n

1 indicates its mean func-

tion, and K2 is a standard Matern52 [24] multiplicative kernel which separates over time and

space: K2

(

(c
(1)
1 ,c

(1)
2 ,∆t(1)), (c

(2)
1 ,c

(2)
2 ,∆t(2))

)

= Ks

(

(c
(1)
1 ,c

(1)
2 ), (c

(2)
1 ,c

(2)
2 )
)

Kt

(
∆t(1),∆t(2)

)
.

In short, our constructed prior is an independent, additive contribution from the two

channels, factoring in the time delay ∆t, which is also an explored parameter. We use the

kernel in the two-electrode space to learn and correct the multiplicative, nonlinear difference

from this prior. The weights a1 and a2 and the kernel hyper-parameters are optimized

incrementally using BO after each new query. The same procedure can be recursively used

to include more electrodes, although we present results only for the two-electrode case in

29







three numbers of random query points. We also show the same mean accuracy measure but

for many more different settings of initial random queries and active queries in Fig. 0.11b.

For example, the blue line in Fig. 0.11a corresponds to the first row in Fig. 0.11b. We clearly

see the trend; the more random points we use, the better the convergence. It is worth noting

that the number of initial random points seems to be crucial. With certain "bad" initial

random points (roughly 25% of the time for the blue run), we cannot compensate by having

sequential query points. This is shown with the blue trace that plateaued at 75%. (It is

possible that the GP hasn’t actually plateaued yet, but nonetheless it would require many

more queries before convergence to 1.0 accuracy.) In other words, for this muscle, having

fewer than 35 query points implies that we do not converge for all of the runs. Fortunately,

as we argue in the next paragraph, the hierarchical approach renders this less important than

could be thought. But if necessary, this could be improved by having a more accurate (non

i.i.d. likelihood model), as we further discuss in the discussion section. Another less elegant

way to solve this problem is to set k higher. (Here, k = 9 was necessary, whereas for the

easier Muscle 0 for example, k = 5 was amply sufficient. See Appendix.)

Because the point of these single event, single muscle GPs is to use them as a mean

prior for higher dimensional GPs, correctly predicting the best channel is not as important

as it might seem. For example, many channels could be close to the max (see for example

Fig. 0.12), and as long as we can predict a high enough value for these, the higher dimensional

GP will be able to test their combinations and find the best stimulation pattern. For this

reason, in Fig. 0.11c, we show the convergence rate of our algorithm in terms of lmax distance

(for a given number of events k), where

lmax(f,data) = |max
sk

f(sk)−max
sk

E[C(r(sk))]|

where f is the mean of our GP. We use this measure of distance because it is really the

prediction at the max channel which interests us, and not how well the GP is modeling the

true function at other (lower response) points. Of course we are making the assumption

(Eq.2.2) that the most responsive stimulation pattern will contain the most responsive single

channel stimulation. Nonetheless, any divergence from this prior will have to be found

by the nonparametric part of the kernel, and hence the prior mean value will not be that

important. For example, if two channels are not very responsive individually, but their
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combined stimulation lead to a big response, accurately modeling their single event mean

response (which is low anyway) is not that important.

Similarly to the mean accuracy color plot, we notice that the distance metric in Fig. 0.11c

gets progressively smaller as we actively query more sequential points (left to right), and

also that the more initial random points we use, the better. With just 45 random and 40

sequential points, which is less than half the number of points in the dataset (200 in total),

we get an lmax distance of 0.0009. Compared to channel [1,1]’s mean response of 0.015, this

consists of a 6% error, which is negligible. Actually, we see that the diagonal consisting of

a total of 55 query points already has a qualitatively (in terms of color) negligible error.

Even more surprising is that we only need 25 total query points, 15 random and 10 actively

queried, to build a good enough prior for the higher dimensional stimulation spaces. This

is because it is the relative prediction of the channels (the shape of the GP), and not the

absolute predicted value that matters, because we are learning the linear contributions a1

and a2 of the channels in the higher order stimulation patterns (see eq. 2.2). Thus, it will

cost us 25 query points in the single-channel space to build a prior for the double-event space

(see Fig. 0.13c).

To show the effectiveness of our algorithm, we decided to augment the search space in

time, and show results in the following sections.

3.2. Two Event – Single Muscle (fixed ∆t)

Toward our goal to evoke targeted muscle co-activations, we first show a minimal example

where the hierarchical approach is useful. We tested our algorithm on the double-event

stimulation space with fixed ∆t = 60ms (i.e. s2 = (c1,c2,∆t1 = 60)) with target objective

to maximize Muscle 4 response. We choose this search space because of its interesting

nonlinearity, and show that our algorithm is able to find the best double-event stimulation

pattern to elicit a response in a single muscle.

Fig. 0.12 show the search space for an example muscle (opponens pollicis, Muscle 4), with

the mean (max of) responses displayed in the plots. We refer the reader to the appendix

for several other target muscle, different search spaces, and target objective combinations.

These all lead to similar outcomes. The linear additive prior (eq. 2.1) predicts stimulating

channel [1,0] twice to give the highest response, however we see that nonlinear effects are
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comparing algorithms in Fig. 0.13. Previous approaches would have stimulated the same

channel more times, for a longer duration, or with a greater amplitude. We find that it is

best to stimulate it with a spatiotemporal pattern.

Because this space is our final objective, and not being used to construct a prior for a

more complex space, we are interested in performing well in terms of prediction accuracy, and

so only plot performance in terms of this measure. Comparing the standard GP which starts

with a mean prior of 0 (essentially no prior) in Fig. 0.13a to our hierarchical GP approach in

Fig. 0.13c, we see that even for such a small search space of 100 possible stimulations, first

spending 25 queries to build a mean prior from the single-channel stimulations is worth it.

And the query savings will only get better as we increase the space of stimulation patterns.

We also include the color plots in Fig. 0.13b and Fig. 0.13d to get a better overall

qualitative comparison of both algorithms. An interesting (and intuitive) fact that emerges

is that when we have a mean prior, initial random queries are essentially useless. This is

because these random queries would make no use of that prior which, in a sense, was meant

to curtail the need for initial queries. And already for this small search space, using a mean

prior permits more rapid convergence.

3.3. Two Event – Temporal Co-Activation (search ∆t)

To showcase our algorithm on a concrete example, we use a temporal co-activation of

multiple muscles (see Fig. 0.14a) as a target in our objective function, which we define

to act as a proxy for a complex sequential two-muscle movement. We target two muscles

of the animal, the flexor carpi ulnaris (Muscle 0) and the opponens pollicis (Muscle 4),

which we want to activate with a 40ms delay in between peaks. In order to formulate this

problem using a similar objective function as described in the Methods section, we make the

simplifying assumption that movement amplitude will correlate with the maximum amplitude

of combined EMG responses, incorporating the desired delay. We define

C(r(s2)) = maxt [r0(s2,t) + r4(s2,t+ 40)] . (3.1)

In our search, we restrain the ∆t dimension to the discrete set (20,40,60)ms due to data

collection constraints (see Sec. 2.1). We found that having the spatial kernel dimensions share

lengthscales gave the best results. Furthermore, we constrain this lengthscale to be between

1 and 2 so as to avoid spurious local minima where either the data is explained by noise
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We note that the true distance separating the two peaks (τ) is in fact a little more than

40, suggesting that the maximal stimulation pattern might have been with a ∆t a little

shorter than 60. Had the data been collected online, the GP, with its ability to interpolate,

would have found and suggested this optimal pattern, which we remind, is not the one that

would have been expected from additive combinations.

We also successfully tested our algorithm on different muscle combinations, which always

required a very similar total number of query points to learn the optimal stimulation (see

Appendix).

4. Conclusion

We showed that the hierarchical approach to build GPs on the space of multi-electrode

stimulation patterns is a viable one to identify optimal inputs for a given target EMG output.

Not only does it far outperform the standard GP approach (and random search), but it can

also be used online to find the optimal stimulation strategy for a desired co-activation output.

This is a step forward in linking brain activity and behavior by being able to control muscles

directly [36], and for the use of neural prostheses to improve motor recovery after stroke or

other motor system injuries.

The most novel and interesting part of our work is the ability of our algorithm to learn

and elicit targeted complex movements online. As a proof of concept, we used a restricted

stimulation search space for which we can exhaustively sample all stimulation combinations,

and clearly demonstrated faster learning using our approach in thorough offline tests.

5. Discussion

We made a few simplifying modeling assumptions in our hierarchical kernel interactions,

which could be improved upon, though we are unsure whether the performance gains would

justify the significant level of complexity added. For one, we assumed homoscedastic additive

Gaussian noise [24], whereas biology is often better described by Poisson noise (see Fig. 0.8

and 0.10), or even more complex models [37]. Second, we trained the GPs for different

muscles (for each ri) independently, whereas they are clearly correlated (see Fig. 0.6b), and

could potentially share information through multi-output (also called co-Kriging) models.

We actually tried this approach since it is relatively easy to implement (see [38] for a review),
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but it proved unnecessary since for our data, many of the muscles have similar responses

(eg. Fig. 0.8), which makes sharing of information much less effective. Third, using a

non-stationary kernel could accelerate the search even more [21]. This would allow using a

large lengthscale for most of the search space, yet have a smaller lengthscale near optimal

stimulation patterns to permit finding the true maximum.

Nonetheless, we get reasonable results as is, and note that this method can easily be

adapted to more complex objective functions such as incorporating both forelimb and hindlimb

movements, and to different sensor modalities such as acceleration from an accelerometer

or 3D position from a camera. This means that rather than optimizing for high EMG

output, which here only correlates with movement amplitude, we could directly optimize

for movement amplitude and direction using, for example, DeepLabCut [39] to get pose

estimations. Furthermore, our approach is not confined to cortical microstimulation. Indeed,

spinal and peripheral nerve stimulation are promising approaches that could be used to evoke

targeted movements, and a hierarchical stimulation optimization is directly applicable to

these settings.

Long train stimulations (500ms) have already been shown to evoke complex multi-joint

movements [33]. However, we still lack a mechanistic explanation for the role of cortical

dynamics in the generation of these movements. We believe that scaling our approach could

provide answers by uncovering optimal spatiotemporal stimulation patterns that lead to

complex movements. However our preliminary results already show that our algorithm is

capable of revealing circuit-level computations, beyond the assumed linear and additive

combination used to create priors. This makes it a good scientific tool that can not only

be used for pure optimization of a BCI control signal, but also for asking hypothesis-driven

questions about the brain.

38



Acknowledgments

We thank Andrew Bogaard, Eberhard Fetz, Chet Moritz, Maximilian Puelma Touzel and

Olivier Caron-Grenier for useful discussions. We acknowledge the important contributions

of Stephan Quessy for experimental implementations and data collection. Funding: MB

[IVADO fellowship], ND [FRQNT group grant (2019-PR-253402)], GL [NSERC Discovery

Grant (RGPIN-2018-04821), FRQNT Young Investigator grant (2019-NC-253251), FRQS

Research Scholar Award, Junior 1 (LAJGU0401-253188)]

39



Chapitre 4

Conclusion

The presented article has introduced a hierarchical way to combine gaussian processes so as

to effectively search the space of high-order spatiotemporal stimulation patterns to evoke

forelimb muscles. We have shown its usefulness in previously collected monkey motor cortex

neurostimulation data, where it was able to find a non-intuitive optimal stimulation pattern,

where previous linear additive methods would have failed. Furthermore, it is being tested

online in ongoing rat experiments by our collaborators, Marco Bonizzato and Numa Dancause,

with promising results. Although neurostimulation has been proven to help restore motor

function after injury [18] using simple stimulations, it remains to be shown whether even

better results can be achieved using more complicated stimulations, such as those provided

by our method. Nonetheless, such complicated stimulation patterns will definitely be useful

for restoring complex movements such as gaiting [9]. We also see expanded use of this

algorithm in other neurostimulation paradigms, such as peripheral nerve and cortico-cortical

stimulations. It is also very possible to use other objective targets than EMG-based, such as

accelerometer data or camera-based movement measurements.

From an algorithmic point of view, using the mean function of a gaussian process model

to inject prior knowledge is not a new idea, and is used for example by NASA to approximate

computer simulation results [40]. Although the majority of machine learning applications

set the mean function of the GP to zero, most applications in physics, chemistry, biology,

etc., where information about the underlying function is known, can set the mean to some

reasonable a priori value. The main contribution of this work comes from applying

this prior mean information recursively, forming a hierarchical gaussian process,

circumventing the curse of dimensionality in cases such as ours where this hierarchical



construction is valid. Although complicated and high-dimensional parameter spaces have

been explored previously using bayesian optimization over treed structures [41, 22], our

approach of searching through smaller spaces first, and then moving on to larger spaces

recursively using a combination scheme based on knowledge of the system (in this case, the

brain), is novel. We do note similarities with curriculum learning [42] in the machine learning

literature, where classifiers are trained by being presented examples "in a meaningful order

which illustrates gradually more concepts, and gradually more complex ones". In our case,

where we are interested in optimizing a function rather than training a classifier, it is the

search space that is gradually complexified.

Although we have only applied our approach to neurostimulation, the idea seems general

enough to find applications in other domains. For example, a natural domain that comes

to mind where hierarchy is important is control and reinforcement learning [43]. In normal

(non-hierarchical) reinforcement learning, gaussian process models have already been used

successfully to get state of the art data efficient results on low dimensional problems like

cartpole [44]. Perhaps making the approach hierarchical could make it scale to larger

dimensional spaces. However, it is not clear which kinds of problems would have similar

structure as that found in motor cortex, where our approach shines; that is, a spatial hierarchy.

Otherwise, if we give up the requirement of data efficiency, then perhaps we could instead

use deep gaussian processes [45] or scalable sparse gaussian processes [46], though here it is

unclear whether such models could rival deep learning approaches.
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Appendix B

Conditioning a Multivariate Gaussian Distribution

Here we develop the necessary details for understanding the distribution that results from

conditioning a multivariate gaussian distribution. We aim for the crux of the matter, intending

on giving a good intuition and understanding of what is necessary for Gaussian Processes,

while leaving a general theory to proper references [47, 48].

B.1. Conditioning

We start with a block MVN




Xa

Xb



 ∼ N



0,




Σaa Σab

Σba Σbb









where we only deal with the µ = 0 since this is all that we need for Gaussian Processes.

We are interested in calculating Xa|Xb = xb. We do so by doing syntactic manipulations on

the shape of the exponential distribution, showing that after conditioning, it remains of the

same form: exp(−1/2xTΣ−1x). To simplify the calculations, we will work with the inverse of

the covariance matrix, the precision matrix Λ := Σ−1, which we write as

Λ :=




Λaa Λab

Λba Λbb





From here, we find



p(xa|xb) ∝ p(xa,xb) ∝ exp



−1/2
(

xa xb

)




Λaa Λab

Λba Λbb








xa

xb









∝ exp
(
xT
aΛaaxa + xT

aΛabxb + xT
b Λbaxa

)

= exp
(
xT
aΛaaxa + 2xT

aΛabxb

)

∝ exp






(xa − (−Λ−1

aaΛabxb)
︸ ︷︷ ︸

µa|b

)T Λaa
︸︷︷︸

Σ−1

a|b

(xa − (−Λ−1
aaΛabxb))







which shows that conditioning a MVN gives back another MVN

Xa|(Xb = xb) ∼ N
(
µa|b,Σa|b

)

where µa|b = −Λ−1
aaΛabxb and Σa|b = Λ−1

aa . Now the only concern is that our Gaussian

Process is specified by a covariance function (the Kernel), and not a precision matrix. So we

would need to write all of the Λ in terms of Σ. We do so in the following section.

B.2. Block Matrix Inverse

We have



Σaa Σab

Σba Σbb





−1

=




Λaa Λab

Λba Λbb





and we need to express Λab and Λaa in terms of Σ’s. Note that Λaa is NOT equal to Σ−1
aa . We

perform the composition by taking the LDU decomposition of Σ, which we can then invert

easily and multiply back to get Λ. We can do this by performing a Gaussian Elimination

on Σ. To make the syntax easier to follow, we will work with a generic (not necessarily

symmetric) block matrix




A B

C D





First, we write



A B

C D








I 0

−D−1C I



 =




A− BD−1C B

0 D





B-ii



By continuing the Gaussian elimination process to now eliminate the B, we find



I −BD−1

0 I








A− BD−1C B

0 D



 =




A− BD−1C 0

0 D





And so putting these together we get



I −BD−1

0 I








A B

C D








I 0

−D−1C I



 =




A− BD−1C 0

0 D





and by inverting the diagonal matrices (easily done by replacing the negative sign by a

positive sign, as can be checked)



A B

C D



 =




I BD−1

0 I








A− BD−1C 0

0 D








I 0

D−1C I





From this we can invert both sides



A B

C D





−1

=




I 0

−D−1C I








(A− BD−1C)−1 0

0 D−1








I −BD−1

0 I





We define M := (A−BD−1C)−1 to simplify the notation and multiply the three matrices




I 0

−D−1C I








M 0

0 D−1








I −BD−1

0 I



 =




M 0

−D−1CM D−1








I −BD−1

0 I





=




M −MBD−1

−D−1CM D−1 +D−1CMBD−1





B.3. Back to Conditioning

Now that we have a formula for the inverse of a block matrix, this gives us

Λaa = (Σaa − ΣabΣ
−1
bb Σba)

−1

and

Λab = −(Σaa − ΣabΣ
−1
bb Σba)

−1ΣabΣ
−1
bb

and so we find

µa|b = −Λ−1
aaΛabxb = ΣabΣ

−1
bb xb

and

Σa|b = Λ−1
aa = Σaa − ΣabΣ

−1
bb Σba

B-iii


