Université de Montréal

Mémoire de Maîtrise

Investigation génétique de NAFLD dans le diabète de type 2 via construction d'un modèle de prédiction de la maladie et par criblage du locus PNPLA3-SAMM50

Par : Redha Attaoua

Département de Biochimie et médecine moléculaire

Université de Montréal

Mémoire présenté en vue de l'obtention du grade de Maîtrise en Bio-informatique

Juillet 2019

Remerciements

Je dédie tout d'abord ce mémoire de maîtrise à mes parents, à mes frères et à ma petite sœur.

Mes remerciements les plus chaleureux vont en premier à mon directeur de maîtrise, Pr. Pavel Hamet. Je le remercie pour l'accueil au sein de son équipe de recherche et pour sa grande disponibilité et ses conseils précieux et intarissables.

Mes remerciements vont également à mon codirecteur de maîtrise, Dr. Simon Gravel. Je le remercie pour ses conseils notamment en biostatistiques et en bio-informatique, et aussi pour son soutien.

Je remercie Pr. Johanne Tremblay pour ses conseils et son soutien durant toute la période de stage. Pr. Tremblay et Pr. Hamet ont été un motivateur de taille pour moi.

Mes grands remerciements vont aussi à Dr. Mounsif Haloui, chercheur senior au sein du groupe. Mounsif reste pour moi un exemple d'abnégation dans le travail et sa culture scientifique a été d'un grand apport pour moi.

Mes remerciements vont également à François-Christophe Marois-Blanchet, à François Harvey et à Dr. Ramzan Tahir pour leur aide notamment sur le plan technique.

Je remercie aussi Madame Carole Long et Camil Hishmih.

A ceux-là et à d'autres,

Je dédie mon mémoire de maîtrise

• • •

Résumé

La stéatose hépatique non-alcoolique (NAFLD) est une altération hépatique fréquente dans le diabète de type 2 (DT2) et est associée à diverses complications telles que la mortalité. L'établissement d'outils de prédiction non-invasifs de NAFLD est primordial. Mon projet de maîtrise avait pour objectif d'établir des marqueurs génétiques de NAFLD dans le DT2 via deux stratégies : 1) une sélection non-ciblée des marqueurs génétiques (SNPs) via la méthode LASSO et 2) une sélection ciblée de SNPs rapportés comme liés à la maladie ou à des altérations associées. Une population de 4098 patients avec DT2 d'origine caucasienne (ADVANCE) a été utilisée. Des données statistiques sommaires d'études pangénomiques ont été exploitées pour sélectionner, via LASSO, les marqueurs génétiques (SNPs) à inclure dans le score de risque polygénique (PRS). J'ai également développé un modèle de 3210 SNPs ajusté par des covariables capable de prédire les taux élevés de ALT (AUC=0,69) et la mortalité non-cardiovasculaire (AUC=0,66). Le criblage du locus candidat PNPLA3-SAMM50 a mis en avant une diversité des associations génétiques aux différentes altérations métaboliques comme les taux de ALT (substitut du diagnostic de NAFLD) (rs2294915, $P = 1,83 \times 10^{-7}$), à la mortalité non-cardiovasculaire (rs2294917, P = $3,9x10^{-4}$) et à l'efficacité de la thérapie intensive antidiabétique chez certains patients de la population (porteurs GG de rs16991236, P=0,007). Mes travaux ont permis de mieux comprendre le fond génétique de NAFLD dans le DT2 et laissent envisager l'établissement d'outils de diagnostic et de suivi de la maladie plus adéquats.

Mots-clés. NAFLD, diabète de type 2, mortalité non-cardiovasculaire, SNP, score de risque polygénique, PNPLA3-SAMM50

Abstract

Non-alcoholic fatty liver disease (NAFLD) is a liver disorder more frequent in type 2 diabetes (T2D) and is associated with complications such as mortality. For this reason, establishing non-invasive tools for predicting NAFLD is crucial. My master's project aimed to establish genetic markers for NAFLD in T2D using two strategies: 1) a nontargeted selection of genetic markers (SNPs) by the LASSO method and 2) a targeted selection of SNPs reported as associated with the disease or its related abnormalities. A population involving 4098 patients with T2D and Caucasian ancestry was used. Summary statistics data of pangenomic studies were exploited for the selection of SNPs to be involved in the polygenic risk score (PRS). I also designed a model of 3210 SNPs adjusted by covariates and able to predict the high rates of ALT (AUC=0.69) and noncardiovascular death (AUC=0.66). Mapping of the candidate locus PNPLA3-SAMM50 allowed the observation of diversity in terms of genetic association with the metabolic abnormalities such as ALT (surrogate of NAFLD) (rs2294915, $P = 1.83 \times 10^{-7}$), noncardiovascular death (rs2294917, $P = 3.9x10^{-4}$) and the efficiency of the intensive antidiabetic therapy within a subgroup in the population (individuals with GG of rs16991236, P = 0.007). My studies allowed for a better understanding of the genetic background of NAFLD in T2D and open perspectives for establishing more adequate tools for diagnosis and follow-up of the disease.

Keywords. NAFLD, type 2 diabetes, non-cardiovascular death, SNP, polygenic risk score, PNPLA3-SAMM50

Table des matières

Introduction1
Chapitre 1 : Maladies complexes et outils de prédiction4
I- Exemple de marqueurs exploités dans l'exploration génétique des maladies complexes : les SNP (single nucleotide polymorphisms)4
II- Utilisation des SNPs dans l'exploration des maladies complexes4
III- La stratégie par criblage dense du génome humain5
 III-1- Notion de DL dans les études par GWAS
IV- Modélisation statistique pour la prédiction et la stratification des maladies complexes11
IV-1- Méthode statistique LASSO 12
V- Criblage des loci de susceptibilité aux maladies complexes14
Chapitre 2 : Diabète de type 2 et complications16
I- Complications microvasculaires du DT216
I-1- La rétinopathie diabétique
I-2- La néphropathie diabétique 17
II- Complications macrovasculaires du DT217
II-1- L'accident vasculaire cérébral
III- Complications hépatiques dans DT218
Chapitre 3 : Stéatose hépatique non-alcoolique19
I- Données statistiques sur la prévalence du NAFLD19
II- Physiopathologie du NAFLD20
III- NAFLD et DT2
IV- Autres facteurs influençant NAFLD21
V- Mortalité liée à NAFLD21
VI- Thérapies antidiabétiques dans le traitement de NAFLD22
VII- Outils de diagnostic non-invasif de NAFLD23

A- L'imagerie médicale dans le diagnostic et le suivi de NAFLD	23
B- Marqueurs biologique et scores clinico-biologiques pour le diagnostic et le suivi de NAFLD	24
B-1- L'alanine aminotransférase (ALT):	24
B-2- L'aspartate aminotransférase (AST):	24
C- Marqueurs génétiques liés à NAFLD.	25
C-1- PNPLA3 (patatin like phospholipase domain containing 3).	25
C-2- Criblage du locus PNPLA3-SAMM50.	27
C-3- Modèles génétiques de prédiction de NAFLD rapportés dans la littérature	28
Objectifs et hypothèse de travail	30
Matériel et méthodes	32
I- Base de données exploitée lors de l'analyse préliminaire :	32
II- Population étudiée	32
III- Outils statistiques et bioinformatiques exploités	35
IV- Sélection des SNPs pour la construction des PRS.	37
Résultats	40
I- Résultats obtenus lors de l'analyse préliminaire	40
II- Résultats obtenus lors de l'investigation au sein de la population ADVANCE	42
A- Exploration génétique via une approche non-ciblée	44
Conception par la méthode statistique LASSO d'un modèle de prédiction de NAFLD	44
B- Exploration génétique via une approche ciblée	47
B-1- Conception, via sélection ciblée des SNPs, d'un modèle de prédiction de NAFLD et de la mortalité dans le DT2	48
B-2- Criblage dense du locus PNPLA3-SAMM50	57
Discussion et conclusions	69
Bibliographie	76

Liste des abréviations

ACCORD	Action to Control Cardiovascular Risk in Diabetes
ADIPOQ	Adiponectin gene
ADVANCE	Action in Diabetes and Vascular Disease: Preterax and Diamicron MR Controlled Evaluation (ADVANCE) trial
ALT	alanine aminotransférase
ANOVA	analyse de la variance
AST	Aspartate amino-transférase
AUC	area under the receiver operating characteristic
AVC	accident vasculaire cérébral
CARTaGENE	Quebec's population-based biobank for public health and
	personalized genomics
CEU ancestry	Utah residents (CEPH) with Northern and Western European
DisGeNET	database of gene-disease associations
DYSF	dysferlin gene
FTO	FTO alpha-ketoglutarate dependent dioxygenase gene
GATAD2A	GATA zinc finger domain containing 2A
GCKR:	glucokinase regulator gene
GIANT	The Genetic Investigation of ANthropometric Traits consortium
GLM	modèle linéaire généralisé
GLP1	glucagon-like peptide-1
GWAS	genome-wide association study
HDL	High-density lipoprotein
IMC	indice de masse corporelle
KLF6	Kruppel like factor 6 gene
LASSO	least absolute shrinkage and selection operator
LASSOSUM	LASSO for GWAS with summary statistics

MAF	minor-allele frequency
MBOAT	Membrane Bound O-Acyltransferase Domain Containing 1 gene
NAFLD	Non-alcoholic fatty liver disease
NASH	stéatohépatite non-alcoolique
OPTITHERA	optimisation des approches thérapeutiques en soins de première
	ligne
PARVB	parvin beta gene
PLINK	outils pour analyses par genome association study
PNPLA3	patatin like phospholipase domain containing 3 gene
PRS	score de risque polygénique
SAMM50	SAMM50 sorting and assembly machinery component gene
SNiPA	outil d'annotation et de balayage des variations génétiques
SNP	single nucleotide polymorphism
UKBB	UK Biobank
UKPDS	The UK Prospective Diabetes Study
VADT	Veterans Affairs Diabetes Trial
VEP	Variant Effect Predictor

Liste des tableaux

Tableau 1. Nombre des gènes associés à NAFLD ou aux différentes pathologies etphénotypes en relation avec cette maladie.

Tableau 2. Données phénotypiques de la population ADVANCE ventilées par A) les 4 groupes de traitement et par B) les 3 niveaux des taux plasmatiques de ALT. L'intitulé des groupes de traitement est indiqué dans le texte ci-dessus. Les patients pour lesquels le taux de ALT ne sont pas disponibles ne sont pas inclus dans les tableaux.

Tableau 3. Potentiel de prédiction des modèles construits par le programme LASSOSUM.
Ces modèles incluent les données statistiques sommaires 1) des taux plasmatiques de ALT,
2) des taux plasmatiques de AST, 3) du tour de taille et 4) des taux plasmatiques de triglycérides. Les modèles sont éventuellement ajustés par l'âge et le sexe des patients.

Tableau 4. Phénotypes et groupes phénotypiques correspondant aux 3210 SNPsconstitutifs du PRS.

Tableau 5. Potentiel de prédiction du phénotype « taux élevés de ALT » et des mortalités totale, cardiovasculaire et non-cardiovasculaire par le PRS ajusté ou pas par l'âge, le sexe et la composante anthropogénétique des patients.

Tableau 6. SNPs constituant le groupe phénotypique « profil stéatose hépatique » du PRS

Tableau 7. Liste des 112 SNPs associés à la mortalité non-cardiovasculaire lors du GWASdans ADVANCE, leurs coordonnées dans le chromosome 22 et leur localisation exonique,intronique ou intergénique.

Liste des figures

Figure 1. Représentation schématique du principe d'une étude pangénomique par GWAS (genome-wide association study) ainsi que des étapes majeures de l'exploitation des données qui y sont générées

Figure 2. Représentation d'un modèle statistique par régression linéaire.

Figure 3. *A)* Représentation schématique de l'impact des variations génétiques (VG) sur le gène dans lequel elles se situent ou sur des gènes plus éloignés. B) Association des variations génétiques, situés dans un locus, à différents aspects de la maladie.

Figure 4. Représentation schématique du locus PNPLA3-SAMM50

Figure 5. *Représentation schématique de la stratégie établie pour la mise en place d'outils de marquage génétique de NAFLD et de la mortalité dans le DT2.*

Figure 6. Représentation schématique des patients de la population ADVANCE répartis, suivant un schéma factoriel randomisé, en 4 groupes de traitement (thérapie hypoglycémiante et thérapie anti-hypertension artérielle). Schéma adapté et modifié à partir de la figure 11 de (ADVANCE-Group 2010).

Figure 7. Phénotypes A) quantitatifs et B) qualitatifs explorés dans l'étude

Figure 8 : Représentation schématique du processus de construction d'un PRS par LASSOSUM

Figure 9 : Croisement des listes des gènes candidats de NAFLD et de quelques altérations cardiométaboliques qui lui sont associées. Les listes de gènes ont été extraites de la base de données Disgenet (<u>http://www.disgenet.org/search</u>)

Figure 10. Représentation schématique de la stratégie de construction du PRS via sélection ciblée des SNPs.

Figure 11. Mots-clés des phénotypes et des origines des populations utilisés pour l'extraction des intitulés des phénotypes à partir des études par GWAS et des métaanalyses répertoriées dans la base de données GWAS catalog (<u>https://www.ebi.ac.uk/gwas/</u>).

Figure 12. *Représentation des différentes étapes suivies pour la construction du modèle de prédiction de NAFLD et de la mortalité dans ADVANCE, via sélection ciblée des SNPs*

Figure 13. Stratification par le PRS (deux quintiles supérieurs vs autres quintiles des scores du groupe phénotypique « profil stéatose hépatique ») des phénotypes « taux élevés de ALT » et mortalité non-cardiovasculaire. L'ajustement des valeurs a été effectué par l'âge, le sexe et le premier vecteur (PC1) de la composante anthropogénétique des patients.

Figure 14. *Manhattan-Plot du GWAS des taux plasmatiques de l'enzyme ALT en ligne de base dans la population ADVANCE*

Figure 15. Manhattan-plots des phénotypes A) « mortalité totale », B) « mortalité par causes non-cardiovasculaires » et C) « mortalité d'origine cardiovasculaire » au sein de la population ADVANCE.

Figure 16. Cartographie de l'association de 221 SNPs du locus PNPLA3-SAMM50 aux taux de ALT et à la mortalité globale ou cardiovasculaire au sein de la population ADVANCE en présence ou pas du traitement intensif hypoglycémiant.

Figure 17. Profil de DL déterminé par les 112 SNPs associés à la mortalité noncardiovasculaire dans la population ADVANCE. Les positions des 8 SNPs tags sont indiqués dans la figure.

Figure 18. Taux plasmatiques de ALT chez les patients porteurs de chacun des trois génotypes des 8 SNPs tags.

Figure 19. Fréquence de la mortalité non-cardiovasculaire chez les patients porteurs de chacun des trois génotypes des 8 SNPs tags. Les nombres de patients dans chaque groupe génotypique sont indiqués sous les graphes (les individus décédés par causes cardiovasculaires sont exclus dans ce calcul des fréquences). Les fréquences de la mortalité non-cardiovasculaire sont rapportées dans les barres.

Figure 20. *Profils (A) et détails (B) des associations les plus pertinentes des 8 SNPs tags du locus PNPLA3-SAMM50 aux composantes du DT2.*

Figure 21. Fréquence de la mortalité non-cardiovasculaire chez les patients de *ADVANCE*, soumis aux traitements hypoglycémiants standard ou intensif, porteurs des génotypes homozygotes pathogènes (homozygotes des allèles associés à la mortalité non-cardiovasculaire) de chacun des 8 SNPs tags. Le nombre des patients de chaque groupe génotypique est rapporté dans les barres. Les différences significatives sont indiquées par l'étoile.

Figure 22. Fréquence, en présence de la thérapie hypoglycémiante intensive et de la thérapie hypoglycémiante standard, de la mortalité non-cardiovasculaire chez les patients de ADVANCE porteurs des génotypes homozygotes pathogènes de chacun des 112 SNPs associés à ce phénotype. Les carrés rouges indiquent les différences significatives (P < 0,05) entre les deux thérapies.

Introduction

Le domaine de la génétique des maladies complexes a réalisé des avancées importantes les deux dernières décennies grâce à la mise en place de technologies de génotypage à haut débit (Ha, Freytag et al. 2014). Ces dernières ont été utilisées pour le criblage de quantités gigantesques de polymorphismes afin de comparer leurs variations entre des individus atteints de maladies complexes et d'autres sains (études pangénomiques par GWAS) (Manolio 2010). Le but est de rechercher des loci de susceptibilité. Des centaines de régions du génome ont été ainsi associées à divers phénotypes complexes (MacArthur, Bowler et al. 2017). Cependant, les études ont rapporté, dans leur majorité, des associations génétiques relativement faibles (https://www.ebi.ac.uk/gwas/). Cela est dû au caractère complexe et multigénique des maladies étudiées qui ne peut être suffisamment décrit par des polymorphismes pris individuellement. Il est donc important de combiner les variations génétiques afin de mettre en place des outils puissants pour la prédiction et le suivi des pathologies. Diverses stratégies ont été appliquées. Certaines ont consisté en la combinaison de variations génétiques issues de différentes région du génome alors que d'autres se sont focalisées sur l'exploration détaillée de certains loci (Kitamoto, Kitamoto et al. 2014, Khera, Chaffin et al. 2018). Par ailleurs, les variations génétiques exploitées peuvent être sélectionnées de manière ciblée vu leurs associations connues avec les pathologies (Domingue, Belsky et al. 2014) ou de façon non-ciblée en utilisant des outils statistiques notamment par intelligence artificielle (Mavaddat, Michailidou et al. 2019).

La stéatose non-alcoolique du foie (NAFLD) est une pathologie complexe caractérisée par l'accumulation de tissu adipeux, notamment de triglycérides et d'acides gras, au niveau du tissu hépatique (EASL-EASD-EASO. 2016, Townsend and Newsome 2016). Elle est associée à diverses altérations métaboliques et à la mortalité (Targher, Bertolini et al. 2006, Ekstedt, Hagstrom et al. 2015). Cette pathologie est plus fréquente dans le diabète de type 2 (DT2) et est associée à des profils plus délétères dans la maladie (Targher, Bertolini et al. 2006, Younossi, Koenig et al. 2016, Amiri Dash Atan, Koushki et al. 2017). NAFLD constitue une des causes de décès vu les complications qu'elle engendre, comme l'hépatocarcinome du foie (Younossi, Otgonsuren et al. 2015). La maladie survient

généralement en absence de signes cliniques et son diagnostic de référence est basé sur la mise en évidence de lésions histopathologiques au niveau du foie (Loguercio, De Simone et al. 2004, Friedman, Neuschwander-Tetri et al. 2018). Il est donc important de mettre au point des outils de détection puissants, précis et moins invasifs. A ce niveau, la génétique peut être d'un grand apport.

Dans ce contexte, les travaux réalisés au cours de ma maîtrise ont focalisé sur la mise au point de marqueurs génétiques pour la prédiction de NAFLD et des complications associées, notamment la mortalité, dans le DT2 ainsi que de l'efficacité des thérapies associées.

Mes études ont été réalisées au sein d'une population de patients avec DT2 (ADVANCE), recrutée dans le cadre d'un essai clinique établi sur 5 années (Patel, MacMahon et al. 2008). En absence de diagnostic histopathologique de NAFLD, les taux plasmatiques de l'enzyme hépatique alanine aminotransférase (ALT) ont été utilisés comme substitut. Bien que peu corrélés avec le diagnostic de la stéatose hépatique non-alcoolique (Browning, Szczepaniak et al. 2004), les niveaux plasmatiques de cette enzyme sont intéressants à étudier vu qu'ils ont été associés à diverses altérations métaboliques et à la mortalité (Ekstedt, Hagstrom et al. 2015, Martin-Rodriguez, Gonzalez-Cantero et al. 2017). Cela peut aider à mieux comprendre certaines complications du DT2 notamment la mortalité liée à l'atteinte hépatique (Wild, Walker et al. 2018).

Deux stratégies de criblage génétique ont été appliquées: la sélection non-ciblée et la sélection ciblée des marqueurs génétiques. Le but a été de mettre au point des marqueurs de NAFLD, des complications du DT2 tels que la mortalité, et de l'efficacité des thérapies associées. Des outils statistiques et bioinformatiques ainsi que des bases de données pangénomiques ont été exploités à cet effet.

Ces travaux pourraient permettre la mise en évidence de variations génétiques décrivant les diverses composantes de la stéatose hépatique non-alcoolique et du DT2. Cela peut ainsi mieux expliquer la relation entre les altérations hépatiques, cardiovasculaires et métaboliques chez les sujets diabétiques. L'étude pourrait également permettre la stratification de la population de patients afin de détecter ceux qui sont les plus à risque, surtout de mortalité mais aussi des individus bénéficiant plus des thérapies associées au DT2.

Chapitre 1 : Maladies complexes et outils de prédiction

Contrairement aux maladies Mendéliennes qui sont causées par des mutations et des variations génétiques pénétrantes et agrégeant au sein de familles (Winsor 1988) les maladies complexes sont des altérations polygéniques et multifactorielles. En effet, la susceptibilité à des pathologies, telles que Alzheimer et les maladies cardiovasculaires est due à des variations au niveau de gènes interagissant avec des facteurs environnementaux et socioéconomiques (Migliore and Coppede 2009, Sacerdote, Ricceri et al. 2012, Patel, Chen et al. 2013, Simon, Sylvestre et al. 2016, Cooper 2018)

I- Exemple de marqueurs exploités dans l'exploration génétique des maladies complexes : les SNP (*single nucleotide polymorphisms*).

Il s'agit de variations génétiques mono-nucléotidiques, bialléliques et assez bien réparties dans le génome (https://www.ncbi.nlm.nih.gov/snp/). A l'heure actuelle, 162 millions de variations mono-nucléotidiques sont répertoriées (http://db.systemsbiology.net/kaviar/). Les SNPs peuvent s'avérer fonctionnels en 1) modifiant les séquences des protéines (Bottini, Musumeci et al. 2004), 2) en changeant les niveaux d'expression génique (Yasuda, Takeshita et al. 2000) ou en modifiant l'épissage des gènes (Kralovicova, Gaunt et al. 2006).

Les SNPs ont été les variations génétiques les plus exploitées parmi les marqueurs du génome vu leur nombre important et la bonne résolution génomique qu'ils apportent mais aussi la facilité de leur génotypage (McGuigan and Ralston 2002, Hoffmann, Kvale et al. 2011).

II- Utilisation des SNPs dans l'exploration des maladies complexes.

Différentes approches ont été appliquées dans la recherche des gènes de susceptibilité aux maladies complexes. Les plus utilisées sont : 1) la stratégie du gène candidat, lorsque le polymorphisme est connu pour son implication dans le processus physiopathologique de la maladie (Bell, Horita et al. 1984) (Santoro, Cirillo et al. 2006), 2) la stratégie par liaison génétique, qui consiste en la recherche d'une agrégation entre le gène et la pathologie au

sein des familles (Duggirala, Blangero et al. 1999) (Bertram, Blacker et al. 2000) et 3) le criblage dense du génome humain (Manolio 2010).

III- La stratégie par criblage dense du génome humain.

Dite par GWAS (*genome-wide association study*), elle consiste en le criblage de l'ensemble du génome via le génotypage d'un nombre important de marqueurs génétiques (allant jusqu'à des millions de polymorphismes) dans le cadre d'études de type cas-contrôle afin de rechercher des loci dont le profil de variation est statistiquement différent entre les individus atteints de la pathologie et ou du phénotype et ceux qui y sont sains (Manolio 2010) (figure 1).

Figure 1. Représentation schématique du principe d'une étude pangénomique par GWAS (genome-wide association study) ainsi que des étapes majeures de l'exploitation des données qui y sont générées

Cela a été rendu possible grâce aux outils de génotypage pangénomiques tels que les plateformes Affymetrix (<u>https://www.thermofisher.com/ca/en/home/life-science/microarray-analysis/human-genotyping-pharmacogenomic-microbiome-</u>

solutions-microarrays.html) et Illumina (https://www.illumina.com/). Parmi les puces développées dans le cadre de la plateforme Affymetrix, la puce Affymetrix 5.0. Celle-ci permet le génotypage de 1 million de variations génétiques environ dont plus de 500000 **SNPs** et plus de 400000 autres polymorphismes (http://tools.thermofisher.com/content/sfs/brochures/genomewide snp5 datasheet.pdf). La puce 6.0, quant à elle, permet un criblage plus dense du génome (1,8 millions de polymorphismes dont la moitié environ des SNPs) sont (https://www.thermofisher.com/order/catalog/product/901182). la puce UK-Enfin. *BioBANK*, comporte plus de 800000 SNPs dont une partie consiste en des polymorphismes utiles en pathologie ou en anthropogénétique (http://www.ukbiobank.ac.uk/wpcontent/uploads/2014/04/UK-Biobank-Axiom-Array-Content-Summary-2014.pdf).

Bien que le nombre de SNPs génotypés via ces trois puces ne représente qu'une partie des polymorphismes actuellement connus, elles permettent une couverture génomique assez intéressante. Cela est obtenu grâce aux profils de déséquilibre de liaison (DL) existant entre les SNPs (Lewontin and Kojima 1960) mais aussi à l'inférence via *imputation* de génotypes de SNPs non inclus dans les puces (Schafer 1999) (Zeggini, Scott et al. 2008).

III-1- Notion de DL dans les études par GWAS.

Le DL consiste en la transmission simultanée des allèles des SNPs avec une fréquence plus importante que celle due au hasard (Lewontin and Kojima 1960) (Hedrick 1987). Ce phénomène est à l'origine de la diversité génétique entre les populations humaines due à la variabilité des tailles de blocs DL entre elles (Daly, Rioux et al. 2001, HapMap 2005). Divers paramètres ont été mis en avant afin d'estimer le DL. Il s'agit notamment de D' et r² (Lewontin 1964, Hill and Robertson 1968). Tandis que D' permet la mesure des taux de DL en prenant en considération les oscillations éventuelles des fréquences des variations génétiques dans la population (Lewontin 1964), r² représente le carré de la corrélation entre les deux allèles et est influencé notamment par le nombre d'individus au sein de la population explorée et par la fréquence des variations génétiques qui s'y trouvent (Hill and Robertson 1968). Des valeurs élevées de DL sont attestés lorsque D' et r² sont proches de 1 alors que des valeurs proches ou égales à 0 sont synonymes d'un niveau très bas de DL (Abecasis, Noguchi et al. 2001, Mueller 2004, Eberle, Rieder et al. 2006).

Le DL représente une notion importante en génétique vu qu'il permet de focaliser sur des polymorphismes représentatifs d'autres variations génétiques (Carlson, Eberle et al. 2004) et réduire ainsi les efforts en matière de temps et de conception des outils d'analyse. Il facilite par conséquence la recherche des loci impliqués dans les pathologies.

Diverses bases de données ont été établies dans le but de décrire les profils de DL au sein de différentes populations mondiales. Il s'agit notamment de 1) la base de données *HapMap International*, actuellement obsolète (HapMap 2003, HapMap 2005) et 2) la base de données *1000 Genomes* (Auton, Brooks et al. 2015). Cette dernière regroupe les profils de DL de 26 populations issues de diverses parties du monde, dont la population d'origine caucasienne CEU (recrutée aux États-Unis) (Auton, Brooks et al. 2015).

Par ailleurs, des logiciels, comme Haploview (Barrett, Fry et al. 2005), ont été mis en place afin d'exploiter les données de DL disponibles au sein de *HapMap International* ou dans *1000 Genomes*. Cet outil présente une interface interactive et permet la représentation graphique des profils de DL de la population analysée. Il peut être aussi exploité pour marquer (taguer) une région génomique en se basant sur les niveaux de DL entre les polymorphismes (Barrett, Fry et al. 2005).

Effectuer une bonne étude pangénomique impose l'utilisation d'outils statistiques de qualité. Cela assure un maximum d'efficacité dans la détection des loci d'intérêt tout en évitant les artéfacts.

III-2- Outils statistiques pour l'exploitation des données des études par GWAS.

Divers outils statistiques ont été appliqués pour analyser les données d'association génétique dans le cadre des études par GWAS. Parmi elles :

- La régression linéaire.

Cette analyse concerne les phénotypes quantitatifs, tels que l'indice de masse corporelle (IMC) ou la glycémie. Elle consiste à rechercher une linéarité en termes de relation entre le phénotype quantitatif et la variation du gène au sein de la population (Schneider, Hommel et al. 2010, Buzkova 2013) (figure 2). La régression linéaire établit un modèle via l'équation :

$$\mathbf{y} = \beta_1 \mathbf{X}_1 + \beta_2 \mathbf{X}_2 + \dots + \beta_n \mathbf{X}_n + \beta_0 + \varepsilon$$

où $\beta_1 \dots \beta_n$ représentent les impacts des variables indépendantes (variables génétiques par exemple), $X_1 \dots X_n$ les variations indépendantes dans le modèle tandis que l'erreur de prédiction du phénotype par le modèle est représentée par ε (Schneider, Hommel et al. 2010, Yu, Yao et al. 2014).

Figure 2. Représentation d'un modèle statistique par régression linéaire.

L'application de la régression linéaire au sein de populations de faibles tailles nécessite généralement l'utilisation d'un phénotype ayant une distribution gaussienne au sein de la population (Altman and Bland 1995, Dobson 2001). Divers phénotypes, notamment en biomédecine n'ont pas de distribution normale et le deviennent après transformation logarithmique (Limpert, Stahel et al. 2001). Celle-ci peut être à l'origine d'une diminution de la variance du phénotype au sein de la population ce qui permet l'augmentation de la puissance des analyses statistiques (Norton and Strube 2001, Warner 2013). Par ailleurs, la distribution normale permet, surtout lorsque les populations sont de faibles tailles, l'exploitation de tests paramétriques très fréquemment utilisés en statistiques, tels que t-test et ANOVA (Nayak and Hazra 2011).

La régression logistique.

Permet de calculer l'association génétique à un phénotype binaire comme l'atteinte par une maladie ou pas (Talmud, Cooper et al. 2015). Cette analyse permet de déterminer, via calcul de l'*odds-ratio* (OR), l'augmentation ou la diminution du risque d'avènement de la pathologie en présence d'un allèle, d'un génotype ou d'un score donné (Reddy, Wang et al. 2011, Talmud, Cooper et al. 2015).

- Modèle linéaire généralisé (GLM).

Ce dernier peut être utilisé pour réaliser diverses types de modélisation, telles que linéaires ou logistiques (Nelder and Wedderburn 1972, Muller 2004). Il permet de rechercher le modèle de régression décrivant au mieux le profil de variation d'une variable dépendante en établissant une fonction de lien f:

Profil de variation = f(modèle de régression)

Il est ainsi possible de décrire le profil de variation d'une variable dépendante binomiale en appliquant la fonction logarithme (log) alors que la fonction identité reste la plus appropriée pour modéliser une variable dépendante quantitative normalement distribuée (Nelder and Wedderburn 1972, Muller 2004).

En génétique, GLM est généralement exploité afin d'inclure plusieurs variations génétiques (Nelder and Wedderburn 1972, Anche, Bijma et al. 2015).

GLM, notamment sous certaines versions, comme le modèle linéaire généralisé mixte, représente un outil statistique de choix dans les études pangénomiques. En effet, cette analyse est capable de prendre en considération de multiples variations génétiques mais aussi des variations confondantes, telles que l'âge ou la composante anthropogénétique (Hoffman 2013, Hunter, Robinson et al. 2016, Moses 2016). A noter que les phénotypes binaires étudiés par GLM ont généralement des profils de distribution binomiale ou surviennent de manière répétée suivant un modèle de poisson (Goupil, Brachemi et al. 2013, Costa-Urrutia, Abud et al. 2017) alors que les phénotypes quantitatifs sont en général

normalement distribués ou rendus ainsi en rapportant leur distribution à une autre échelle, logarithmique par exemple (Kathiresan, Manning et al. 2007, Ostchega, Porter et al. 2011, Zhou, Liang et al. 2012).

Bien que la régression statistique soit un outil d'analyse performant, il demeure qu'effectuer une multitude de tests statistiques en même temps puisse être à l'origine d'erreurs statistiques de type I dites également associations faussement positives (Chen, Feng et al. 2017). Pour y pallier, on réalise des corrections des niveaux d'association par le nombre de tests effectués via des tests comme celui de Bonferroni (NCBI 2015).

III-3- Limites des études par GWAS.

Les investigations par GWAS ont permis des avancées considérables dans la compréhension de la composante génétique des phénotypes et des pathologies complexes vu qu'elles ont mis en avant des associations génétiques déjà connues (Rung, Cauchi et al. 2009) ou pas (Frayling, Timpson et al. 2007). Les résultats de ces études ont été regroupés dans la base de données *GWAS Catalog* (MacArthur, Bowler et al. 2017) (https://www.ebi.ac.uk/gwas/) afin d'être exploités par la communauté scientifique.

Malgré cela, ces études ont des limites. En effet, les associations génétiques qui y sont obtenues concernent des SNPs fréquents pris séparément et restent souvent faibles (ampleurs d'effets ou OR généralement bas) (https://www.ebi.ac.uk/gwas/). En outre, l'effet des variations génétiques peu fréquentes (MAF < 1%) est peu étudié dans les maladies complexes vu la taille relativement faible des populations et cohortes utilisées (Zuk, Schaffner et al. 2014). Pour y pallier, des consortiums ont été établis afin de mutualiser les données des investigations et effectuer des méta-analyses (Fuchsberger, Flannick et al. 2016, Li, Li et al. 2017). Des démarches de recrutement massif d'échantillons ont été également entamées, à l'image du projet *UK Biobank* (Bycroft, Freeman et al. 2018) (https://www.ukbiobank.ac.uk/). Le but a été de constituer des populations de très grandes tailles dans lesquelles les données de génotypage de millions de SNPs et de caractérisation de milliers de phénotypes sont incluses. Par ailleurs, des stratégies et des outils statistiques ont été mis en place ou sont en cours de développement afin d'optimiser la capture de l'héritabilité des maladies (Vilhjalmsson, Yang et al. 2015, Mak, Porsch et al. 2017, Choi, Mak et al. 2018). Ces derniers permettent, entre autres, la

combinaison des données d'association génétique afin d'expliquer les mécanismes physiopathologiques qui y sont à l'origine, prédire la maladie et stratifier les patients (Mega, Stitziel et al. 2015, Khera, Chaffin et al. 2018).

IV- Modélisation statistique pour la prédiction et la stratification des maladies complexes. Diverses stratégies peuvent être utilisées pour sélectionner les variations génétiques destinées à la construction des modèles de risque. Il est possible d'inclure un maximum voire la totalité des variations génétiques issues des études par GWAS en admettant le caractère hautement polygénique de la pathologie (Boyle, Li et al. 2017, Khera, Chaffin et al. 2018) comme il est concevable de se focaliser sur certains polymorphismes et construire un score de risque polygénique (PRS) (Pilling, Kuo et al. 2017).

Différents processus sont utilisés pour la construction des PRS. La méthode la plus classique consiste en 3 phases (Chatterjee, Shi et al. 2016). La première permet la détermination du risque relatif de la maladie via la combinaison de facteurs de risque génétiques et d'autres environnementaux. La seconde étape consiste en la combinaison du risque relatif ainsi calculé avec le risque d'atteinte par la maladie au sein de la population générale, ce qui permet l'obtention du modèle. La dernière étape a pour but de valider le modèle (Chatterjee, Shi et al. 2016).

Construire un modèle de prédiction de risque de bonne qualité impose l'absence de toute surexploitation des données de la population analysée (Choi, Mak et al. 2018). Cette surestimation (*overfitting*) peut rendre le modèle peu efficace voire inefficace dans la caractérisation de la pathologie sur d'autres populations (Nunez, Steyerberg et al. 2011). Il est donc important que les populations utilisées pour la construction et le test du modèle soient distinctes (Nunez, Steyerberg et al. 2011, Choi, Mak et al. 2018).

Le potentiel d'un modèle de risque est également apprécié en termes de sa capacité à stratifier les individus en fonction du risque qu'ils ont à développer la pathologie. Cet aspect peut s'avérer crucial dans la prise en charge médicale et la rationalisation des moyens thérapeutiques. En effet, l'investigation réalisée dans trois populations par Mega et ses collègues a permis la stratification des individus en utilisant un PRS de 27 SNPs (Mega, Stitziel et al. 2015). L'étude a constaté un bénéfice plus marqué de la thérapie par

statines chez les patients atteints de la maladie coronarienne ayant les scores du modèle les plus élevés.

L'estimation du potentiel de prédiction peut être faite via le calcul de la surface sous la courbe (AUC : area under the receiver operating characteristic), appelée aussi *c*-statistics (Khera, Chaffin et al. 2018). Cela permet d'apprécier la sensibilité et la spécificité du modèle (Fawcett 2003). Des potentiels de prédiction intéressants sont attestés en présence de valeurs AUC s'éloignant de 0,5 et se rapprochant plus de 1 (Wang, Hu et al. 2016). A noter que le potentiel de prédiction d'une maladie, en utilisant AUC par exemple, dépend de la capacité des facteurs de susceptibilité à décrire cette maladie mais aussi de la prévalence de la pathologie au sein de la population (Lewis, Whitwell et al. 2007, Wray, Yang et al. 2010). L'estimation de la variance de la maladie peut être également obtenue via le coefficient de corrélation R² (Barreira, Broyles et al. 2014, Alexander, Tropsha et al. 2015). Ce dernier varie souvent entre 0 et 1 (Kvalseth 1985). Une valeur R² égale à 0 est synonyme d'une absence de prédiction des individus atteints du phénotype étudié alors que le modèle est attesté comme capable de détecter l'ensemble des individus porteurs du phénotype lorsque $R^2 = 1$ (Kvalseth 1985, Taylor 1990). A noter enfin que la correction du potentiel du PRS par le nombre de tests multiples effectués peut s'avérer intéressante à réaliser (Warrier and Baron-Cohen 2018). Cela demeure toutefois non obligatoire dans la conception des modèles de risque (Choi, Mak et al. 2018, Khera, Chaffin et al. 2019).

La sélection des SNPs candidats dans le modèle peut être manuelle et consiste en la recherche de ceux qui sont le plus en association avec le phénotype ou ses composantes (Belsky and Israel 2014). Il est également possible de sélectionner les SNPs en absence de toute hypothèse en utilisant des outils statistiques adéquats tels que l'analyse LASSO (Tibshirani 1996).

IV-1- Méthode statistique LASSO.

La méthode LASSO (*least absolute shrinkage and selection operator*) est une approche par régression statistique (Tibshirani 1996). Elle permet la conception de modèles de prédiction à partir des données pangénomiques en des temps relativement faibles en comparaison avec d'autres méthodes (Hepp, Schmid et al. 2016). De plus, LASSO est assez efficace pour la prédiction des phénotypes les moins fréquents au sein de la population (Ambler, Seaman et al. 2012) et pour la recherche des facteurs de susceptibilité à la pathologie (Lu, Zhou et al. 2017).

Cette méthode permet la pénalisation du vecteur des ampleurs d'effets des variables afin de ramener une partie des coefficients de régression à une valeur nulle, diminuant ainsi les dimensions de la matrice des variables indépendantes (Tibshirani 1996). Cela est réalisé suivant l'équation :

$$\widehat{\boldsymbol{\beta}} = \underset{\beta_{j}, \dots, \beta_{p}}{\operatorname{argmin}} \sum_{i=1}^{N} (y_{i} - \sum_{j} \beta_{j} x_{ij})^{2} \text{ sous la contrainte} \sum_{j=1}^{P} |\beta_{j}| \leq t$$

où p représente le nombre de variables prédictives incluses dans l'analyse et N le nombre d'individus étudiés. Par ailleurs, x_{ij} sont les variables de prédiction (variations génétiques par exemple) et Y_i représente la présence ou non du phénotype chez le i^{ème} individu. A noter que $\hat{\beta}$ est le vecteur des ampleurs d'effet après pénalisation tandis que $\sum_{i=1}^{N} (y_i - \sum_j \beta_j x_{ij})^2$ représente la somme des carrés des résidus de la régression statistique et t est le seuil établi dans la pénalisation des ampleurs d'effet (Tibshirani 1996).

La méthode sous sa version de base reste relativement limitée en termes de nombre de polymorphismes et de biomarqueurs sélectionnés (Zou and Hastie 2005). Cela peut limiter la puissance du modèle de prédiction. Pour y pallier, des analyses statistiques par pénalisation comme *Elastic Net* ont été développées (Zou and Hastie 2005). De plus, des programmes d'exploitation, comme LASSOSUM, dédiés au criblage des données statistiques sommaires issues des études pangénomiques ont été mis en place (Mak, Porsch et al. 2017).

- Le programme LASSOSUM.

LASSOSUM a été développé par un groupe de recherche à Hong Kong en modifiant l'équation de base de LASSO (Mak, Porsch et al. 2017). Cette modification a permis d'exploiter les ampleurs d'effet (bêtas ou OR) rapportés dans la littérature ainsi que le profil de DL d'une population de référence pour la construction de modèles de prédiction en utilisant des populations dont disposent les chercheurs (Mak, Porsch et al. 2017).

Les profils de DL exploités dans l'analyse sont issus de populations d'origine européenne, africaine ou asiatique, répertoriées dans la base de données *1000 Genomes* (Berisa and Pickrell 2016). Il est également possible d'exploiter les profils de DL d'autres populations. Par ailleurs, le programme permet la validation du modèle de prédiction même s'il n'y a pas de population dédiée, grâce à un processus dit « pseudo-validation » (Mak, Porsch et al. 2017).

Bien que la combinaison de marqueurs génétiques issus de diverses régions génomiques puisse s'avérer très efficace dans la prédiction et la stratification des maladies complexes, l'analyse génétique détaillée de certains loci, notamment ceux ayant un fort impact dans la pathologie, peut être intéressante.

V- Criblage des loci de susceptibilité aux maladies complexes.

Les variations génétiques rapportées en association à la maladie peuvent avoir des effets au sein des gènes dans lesquels elles se situent mais également sur des gènes plus éloignés (figure 3 (A)) (Stratigopoulos, Padilla et al. 2008, Jowett, Curran et al. 2010, Claussnitzer, Dankel et al. 2015). Par ailleurs, des groupes de polymorphismes au sein d'un locus de susceptibilité peuvent révéler divers aspects de la maladie, tels que son avènement et son profil (figure 3 (B)) (Kitamoto, Kitamoto et al. 2014).

Les avancées statistiques réalisées jusque-là ont permis de mettre à disposition des outils intéressants pour la conception de modèles de risque (Vilhjalmsson, Yang et al. 2015, Mak, Porsch et al. 2017). L'exploitation de ces outils pour prédire les phénotypes complexes, notamment ceux encore peu explorés comme les complications du diabète de type 2 (DT2), est une opportunité pour les chercheurs et une lueur d'espoir pour les patients.

Figure 3. *A)* Représentation schématique de l'impact des variations génétiques (VG) sur le gène dans lequel elles se situent ou sur des gènes plus éloignés. B) Association des variations génétiques, situés dans un locus, à différents aspects de la maladie.

Chapitre 2 : Diabète de type 2 et complications

Le DT2 est une maladie complexe caractérisée par la diminution de l'action de l'hormone hypoglycémiante « insuline » sur les organes cibles (résistance à l'insuline) (Perley and Kipnis 1966). Cette maladie représente la partie majeure des diabètes (<u>https://idf.org/52-about-diabetes.html</u>).

De plus en plus d'individus sont atteints de DT2 à travers le monde. En effet, la prévalence de la maladie, selon l'Organisation Mondiale de la Santé, a été de 4,7% en 1980 et a presque doublé pour atteindre 9% environ un quart de siècle plus tard (<u>https://www.who.int/news-room/fact-sheets/detail/diabetes</u>). Ce constat alarmant serait dû à l'épidémie mondiale d'obésité et de surcharge pondérale (<u>https://www.who.int/news-room/fact-sheets/detail/obesity-and-overweight</u>) accompagnant un terrain évident de susceptibilité génétique (Medici, Hawa et al. 1999, Grant, Thorleifsson et al. 2006).

Le DT2 constitue une problématique majeure de santé publique vu les complications qu'il engendre. Celles-ci peuvent être d'ordre microvasculaire, macrovasculaire ou hépatique.

I- Complications microvasculaires du DT2.

Les atteintes microvasculaires dans le DT2 sont dues en grande partie à l'élévation chronique de la glycémie. En effet, l'hyperglycémie est à l'origine de l'activation de processus moléculaires engendrant, entre autres, un état de stress oxydant et un dépôt de résidus glucidiques, à l'origine d'altérations des tissus (Hammes, Martin et al. 1991, Lee and Chung 1999, Sato, Sato et al. 2005, Ishibashi, Yamagishi et al. 2012). Les altérations microvasculaires ont été rapportées comme plus fréquentes en présence de l'hypertension artérielle de même que la thérapie antihypertensive a permis de réduire leur présence et a été à l'origine d'un pronostic plus favorable chez les patients diabétiques (Teuscher, Schnell et al. 1988, Brenner, Cooper et al. 2001). Parmi les complications microvasculaires du DT2 :

I-1- La rétinopathie diabétique.

La rétinopathie diabétique constitue une des complications invalidantes chez les sujets diabétiques vu qu'elle est à l'origine de cécité (Leasher, Bourne et al. 2016). A des phases

précoces de la maladie, la rétine est alimentée par un système vasculaire normal. Elle est dite non-proliférative. Plus tardivement, une structure vasculaire anormale apparait au niveau du tissu rétinien. A ce stade la rétinopathie est appelée proliférative (Shah and Chen 2011).

I-2- La néphropathie diabétique.

Il s'agit d'une altération rénale dont les taux dans le DT2 dépassent 40% (Afkarian, Sachs et al. 2013). Elle comporte 5 étapes en fonction du degré de détérioration de la fonction rénale (Haneda, Utsunomiya et al. 2015). Le suivi de la maladie est réalisé via dosage des taux urinaires de l'albumine et via estimation des niveaux de la filtration glomérulaire (Haneda, Utsunomiya et al. 2015). La néphropathie diabétique constitue un enjeu de santé publique vu son association à des taux de mortalité plus élevés (Afkarian, Sachs et al. 2013) mais aussi à cause des coûts faramineux alloués à la prise en charge médicale notamment en termes de dialyse et de transplantation rénale (Gordois, Scuffham et al. 2004, Nichols, Vupputuri et al. 2011, Jarl, Desatnik et al. 2018).

II- Complications macrovasculaires du DT2.

Parmi elles :

II-1- L'accident vasculaire cérébral.

L'accident vasculaire cérébral (AVC) est présent à environ 8% dans le DT2 (Einarson, Acs et al. 2018). Une plus grande susceptibilité à l'AVC a été rapportée chez les patients diabétiques (Cui, Iso et al. 2011, Khoury, Kleindorfer et al. 2013). Cette relation entre les diabètes et l'AVC aurait diverses causes parmi lesquelles la résistance à l'insuline (Rundek, Gardener et al. 2010) et le stress oxydant (Chan 1996, Baynes and Thorpe 1999). Par ailleurs, une susceptibilité plus importante aux AVC dans les diabètes serait due à la présence plus marquée d'individus atteints d'hypertension artérielle parmi les sujets diabétiques (MacMahon, Peto et al. 1990, Kabakov, Norymberg et al. 2006, Mills, Bundy et al. 2016).

II-2- L'infarctus du myocarde.

Les sujets atteints de DT2 représentent une population à plus grand risque d'infarctus du myocarde. Cela a été rapporté dans une étude réalisée au sein d'une population du

Royaume-Uni (Liang, Vallarino et al. 2014). Celle-ci a mis en avant une incidence d'infarctus de myocarde plus prononcée chez les patients diabétiques de type 2.

III- Complications hépatiques dans DT2.

Plusieurs pathologies du foie ont été associées au DT2. Alors que certaines d'entre elles sont d'origine infectieuse (à titre d'exemple, l'hépatite C coexiste plus avec le DT2 chez les personnes d'une certaine tranche d'âge) (Mehta, Brancati et al. 2000), d'autres sont plutôt métaboliques, telles que la stéatose hépatique non-alcoolique (Younossi, Koenig et al. 2016, Amiri Dash Atan, Koushki et al. 2017, Cusi, Sanyal et al. 2017).

Chapitre 3 : Stéatose hépatique non-alcoolique

La stéatose hépatique non-alcoolique, dite également la maladie du foie gras nonalcoolique (NAFLD), est une anomalie atteignant le foie et est attestée par l'agglomération du tissu adipeux sur plus de 5% de la surface hépatique chez des individus non-alcooliques (EASL-EASD-EASO. 2016). Elle atteint un individu sur 4 en moyenne (Younossi, Koenig et al. 2016). NAFLD comporte différents niveaux allant des stéatoses les plus banales jusqu'à des stades graves caractérisés par la cirrhose du foie (Chalasani, Younossi et al. 2018). La maladie peut également évoluer vers le carcinome hépatique (Younossi, Otgonsuren et al. 2015).

La complication du NAFLD vers le carcinome hépatique reste peu fréquente (Younossi, Otgonsuren et al. 2015) et des évolutions moins morbides peuvent être observées. Il peut s'agir d'un état inflammatoire également appelé hépato-stéatite non alcoolique (NASH) (EASL-EASD-EASO. 2016). Les hépatocytes changent de morphologie à ce stade et un état de fibrose hépatique peut s'y installer (Chalasani, Younossi et al. 2018). Cet état de fibrose serait lié au décès des patients (Ekstedt, Hagstrom et al. 2015).

I- Données statistiques sur la prévalence du NAFLD.

Bien que NAFLD soit une pathologie très présente chez les individus ayant une surcharge pondérale (Li, Liu et al. 2016), elle a été également mise en évidence chez des sujets de poids normal (Younossi, Stepanova et al. 2012). Des taux élevés de la maladie ont été mis en avant dans différentes régions de la planète. En effet, 13,5% de la population africaine serait atteinte de NAFLD, de même que les taux avoisinent 24% et 30% environ au sein des populations d'Amérique du Nord et d'Amérique du Sud, respectivement (Younossi, Koenig et al. 2016). Cette disparité des taux de la pathologie entre les populations a été d'ailleurs corroborée dans une récente investigation (Kim, Kim et al. 2019).

II- Physiopathologie du NAFLD.

La résistance à l'insuline est un désordre métabolique très présent dans NAFLD (Sanyal, Campbell-Sargent et al. 2001). Cette relation est médiée par des adipokines insulinosensiblisantes comme l'adiponectine ou des cytokines impliquées dans l'inflammation (Bugianesi, Pagotto et al. 2005, De Taeye, Novitskaya et al. 2007). L'installation de la résistance à l'insuline est accompagnée par l'augmentation de la lipolyse au niveau du tissu adipeux sous-cutané et par l'élévation de la néolipogenèse au niveau hépatique (Eissing, Scherer et al. 2013, Verboven, Wouters et al. 2018). La récupération des triglycérides et des acides gras par le foie ainsi que l'excès de production des lipides au niveau hépatique engendrent l'accumulation lipidique dans les hépatocytes et causent la stéatose.

La stéatose hépatique non-alcoolique est associée à diverses altérations et pathologies métaboliques, ainsi :

III- NAFLD et DT2.

NAFLD est une pathologie qui atteint un individu sur 4 et sa prévalence s'avère plus importante dans le DT2 (Younossi, Koenig et al. 2016, Amiri Dash Atan, Koushki et al. 2017, Cusi, Sanyal et al. 2017). Cela serait lié au contexte de résistance à l'insuline accompagnant le foie stéatosé non-alcoolique (Bugianesi, Gastaldelli et al. 2005). L'insulinorésistance est également à l'origine d'effets toxiques sur le foie via l'hyperglycémie et l'hypertriglycéridémie chroniques qu'elle engendre (Olefsky, Farquhar et al. 1974, Ota, Takamura et al. 2007, Shibata, Ichikawa et al. 2008). NAFLD est par ailleurs responsable de processus malins au niveau du foie, notamment l'hépatocarcinome (Kanwal, Kramer et al. 2018). La mortalité par les cancers du foie a été d'ailleurs rapportée comme étant un peu plus fréquente chez les patients diabétiques par rapport à ceux non-atteints de diabète (Campbell, Newton et al. 2012). A noter aussi que les niveaux de mortalité chez les diabétique de type 2 deviennent plus marqués lorsque ceux-ci ont un foie atteint de stéatose non-alcoolique (Wild, Walker et al. 2018).

III- NAFLD et altérations cardiométaboliques.

La présence plus marquée des altérations cardiovasculaires et de NAFLD chez les patients avec DT2 peut expliquer la relation rapportée entre la stéatose hépatique non-alcoolique et la pathologie cardiovasculaire (Kabakov, Norymberg et al. 2006, Younossi, Koenig et al. 2016, Cusi, Sanyal et al. 2017, Motamed, Rabiee et al. 2017). Des travaux ont mis en évidence la modulation de certaines structures artérielles chez les patients avec NAFLD et syndrome métabolique et attestent de l'association de la maladie avec l'athérosclérose (Kim, Kim et al. 2009). Cependant, un résultat opposé a été constaté en présence de DT2 (Loffroy, Terriat et al. 2015).

Par ailleurs, l'hypertension artérielle a été rapportée comme plus présente chez les patients atteints des formes avancées de la stéatose hépatique non-alcoolique (Ryoo, Suh et al. 2014, Younossi, Koenig et al. 2016). D'un autre côté, NAFLD a été lié aux stades les plus avancés de l'AVC (Li, Hu et al. 2018).

IV- Autres facteurs influençant NAFLD.

Parmi ces facteurs, l'âge des patients. En effet, des travaux ont mis en évidence la différence de la prévalence de la maladie en fonction de l'âge de la population (Younossi, Stepanova et al. 2012). Cette disparité serait liée au vieillissement des hépatocytes au sein desquelles la stéatose s'installe plus facilement (Ogrodnik, Miwa et al. 2017). NAFLD serait par ailleurs influencé par le sexe des patients (Caballeria, Pera et al. 2010, Eguchi, Hyogo et al. 2012) mais aussi par leur composante ethnique (Rich, Oji et al. 2018, Kim, Kim et al. 2019).

V- Mortalité liée à NAFLD

La stéatose hépatique est une maladie survenant généralement en absence de signes cliniques et n'est de manière générale diagnostiquée que par hasard dans le cadre d'analyses médicales de routine (Loguercio, De Simone et al. 2004, Friedman, Neuschwander-Tetri et al. 2018). A cause de ça, le diagnostic de la maladie n'est établi que tardivement lorsque cette dernière arrive à des stades avancés, ce qui rend sa prise en charge difficile. NAFLD est associé à un risque plus élevé de mortalité. Cela a été attesté par exemple par Nseir et ses collègues, qui ont rapporté des taux de décès plus importants chez les personnes ayant un foie stéatosé et atteintes de pneumonie (Nseir, Mograbi et al. 2019). La fibrose hépatique constitue un état fortement lié au décès des patients avec NAFLD. En effet, l'investigation effectuée dans une population de Suède a mis en avant un taux de décès plus important (HR = 1,29) en présence de NAFLD et qui le devient d'avantage chez

les patients avec NAFLD ayant une fibrose hépatique avancée (HR = 3,3) (Ekstedt, Hagstrom et al. 2015). Par ailleurs, l'origine cardiovasculaire du décès des patients atteints de NAFLD a été mise en avant dans l'étude réalisée par Haflidadottir et ses collègues. Cette dernière atteste qu'environ la moitié des individus décédés ont des altérations cardiovasculaires comme origine et 7% des décès sont la conséquence d'anomalies au niveau du foie (Haflidadottir, Jonasson et al. 2014). Le taux faible de mortalité attribué aux problèmes hépatiques dans cette étude serait sous-estimé dans le sens où les atteintes hépatiques telles que NAFLD sont largement liées aux altérations cardiovasculaires, comme je l'ai précédemment mentionné (Motamed, Rabiee et al. 2017).

Le chevauchement des mécanismes physiopathologiques à l'origine de l'atteinte hépatique et des anomalies cardiométaboliques permet d'envisager une exploitation de thérapies dédiées au traitement de maladies comme le DT2 ou à l'hypertension dans la prise en charge de NAFLD.

VI- Thérapies antidiabétiques dans le traitement de NAFLD.

Diverses classes thérapeutiques utilisées dans la prise en charge du DT2 ont fait l'objet d'études afin de tester leur impact sur NAFLD. Parmi elles, les thiazolidinediones (Mayerson, Hundal et al. 2002, Musso, Cassader et al. 2017), les analogues de GLP1 (Ding, Saxena et al. 2006, Petit, Cercueil et al. 2017), les biguanides et notamment la metformine (Sofer, Boaz et al. 2011) et les sulfonylurées tels que gliclazide (Feng, Gao et al. 2017).

- Gliclazide.

Il s'agit d'une molécule appartenant à la classe des sulfonylurées. Cette classe thérapeutique est exploitée pour la régulation de la glycémie chez les patients diabétiques (Gotfredsen 1976, Kolterman, Gray et al. 1984). Ces médicaments peuvent également agir sur des processus métaboliques comme la lyse lipidique (Shi, Moustaid-Moussa et al. 1999). Lorsqu'elles sont appliquées de manière intensive, notamment en association avec d'autres molécules, les sulfonylurées améliorent le pronostic du DT2 via l'amélioration du profil glucidique et des niveaux de la tension artérielle (Patel, MacMahon et al. 2008, Zoungas, Chalmers et al. 2014). Dans ce contexte, l'utilisation des sulfonylurées dans la thérapie du foie stéatosé chez les diabétiques de type 2 peut s'avérer intéressante.

Récemment, une investigation effectuée dans une population de Chine avec DT2 a permis de constater une régression considérable de la stéatose hépatique chez des patients atteints de NAFLD suite à la prise de gliclazide (Feng, Gao et al. 2017). La thérapie croisée du NAFLD et du DT2 apporte ainsi une preuve supplémentaire de la relation existant entre les deux maladies.

VII- Outils de diagnostic non-invasif de NAFLD.

Les complications associées à NAFLD précédemment rapportées mettent en avant la nécessité d'établissement d'outils de diagnostic performants afin de détecter la maladie notamment à des phases précoces. Le diagnostic de référence reste à l'heure actuelle l'analyse histopathologique des tissus hépatiques (Adams, Sanderson et al. 2005). Cette démarche est cependant invasive. Afin d'y pallier, des outils tels que l'imagerie ont été développés dans le but de détecter NAFLD et suivre son évolution (Lee and Park 2014).

A- L'imagerie médicale dans le diagnostic et le suivi de NAFLD.

Diverses technologies d'imagerie ont été appliquées pour diagnostiquer la stéatose hépatique non-alcoolique et déterminer ses divers stades. Tandis que certaines, comme l'ultrasonographie, utilisent des sons à haute fréquence pour la création d'images (Hassani 1974, LaBrecque, Abbas et al. 2014), d'autres mettent à profit des rayons X, comme la tomodensitométrie (Goldman 2007, Wells, Li et al. 2016), ou les propriétés des molécules sous l'effet d'un champ magnétique, telle que l'imagerie par résonnance magnétique (IRM), pour la caractérisation de la maladie (Grover, Tognarelli et al. 2015, Caussy, Alquiraish et al. 2018). Enfin des technologies dites par élastographie permettent de mesurer la modification des niveaux de rigidité de l'organe due à une éventuelle accumulation de fibres au niveau du tissu hépatique (Jiang, Huang et al. 2018).

Les performances de ces technologies restent plus ou moins importantes à divers stades de la maladie. En effet, l'ultrasonographie et l'IRM sont plus adaptées à des stéatoses hépatiques plus prononcées alors que l'imagerie par élastographie est plutôt intéressante à utiliser pour le diagnostic et le suivi de la fibrose au sein du foie (LaBrecque, Abbas et al. 2014, Imajo, Kessoku et al. 2016). L'ensemble de ces données met en évidence l'intérêt de combiner diverses technologies d'imagerie afin de bien caractériser NAFLD.
B- Marqueurs biologique et scores clinico-biologiques pour le diagnostic et le suivi de NAFLD.

Diverses enzymes hépatiques voient leurs taux plasmatiques modifiés en présence de NAFLD (Mathiesen, Franzen et al. 1999). Parmi elles :

B-1- L'alanine aminotransférase (ALT):

Bien que l'élévation des taux de ALT dans le plasma puisse parfois révéler l'existence de NAFLD, cette élévation ne corrèle que peu avec le diagnostic histopathologique du foie stéatosé non-hépatique. En effet, l'étude réalisée par Browning et ses collègues a démontré que 20 individus uniquement sur 100 atteints de stéatose hépatique ont une augmentation des taux sériques de ALT (Browning, Szczepaniak et al. 2004). Cela met en évidence, et à première vue, la capacité limitée qu'a cette enzyme à marquer la maladie. Cependant, les taux de ALT ont été rapportés comme liés à des désordres métaboliques tels que la résistance à l'insuline, la dyslipidémie et la surcharge pondérale (Yoo, Lee et al. 2008). Ils ont également été liés à la mortalité par causes cardiovasculaires et par diabètes (Yun, Shin et al. 2009) et à la mortalité reste cependant très variable et apparait plus prononcée chez les individus appartenant aux tranches d'âges les plus élevées (Liu, Ning et al. 2014, Schmilovitz-Weiss, Gingold-Belfer et al. 2018).

Par ailleurs, la sélection des individus ayant les taux les plus élevés de ALT (60 UI/L) permet de mieux focaliser sur des formes compliquées de la maladie, tels que NASH (Fedchuk, Nascimbeni et al. 2014). L'ensemble de ces données démontre l'intérêt de l'utilisation de biomarqueurs comme ALT dans le suivi de NAFLD en absence de diagnostic histopathologique ou par imagerie médicale.

B-2- L'aspartate aminotransférase (AST):

Comme l'ALT, l'AST est une enzyme dont les taux varient dans la pathologie hépatique (Sookoian, Castano et al. 2016). Les taux de AST combinés à ceux de ALT permettent la distinction entre la stéatose hépatique non-alcoolique et celle due à la surconsommation d'alcool. En effet, un rapport AST : ALT relativement bas atteste plutôt du foie stéatosé non-alcoolique inflammatoire alors qu'un ratio plus élevé révèle une altération hépatique due à la prise excessive d'alcool (Sorbi, Boynton et al. 1999).

Des scores clinico-biologiques de prédiction de NAFLD ont été établis. Ainsi, l'étude de Poynard et ses collègues a permis la conception d'un modèle (*SteatoTest*) incluant des biomarqueurs sanguins, l'IMC, le cholestérol sérique et la glycémie, capable de prédire la stéatose du foie avec un AUC avoisinant 0,80 (Poynard, Ratziu et al. 2005). D'un autre côté, un modèle de prédiction, incluant des biomarqueurs parmi lesquels le taux plasmatique de ALT ainsi que des paramètres anthropométriques comme l'IMC a été mis en place (Bazick, Donithan et al. 2015). Ce score est doté d'un potentiel élevé de prédiction de la stéatohépatite non-alcoolique (AUC = 0,80). Enfin, les scores FIB-4 et *NAFLD fibrosis score* ont été établis afin de diagnostiquer et suivre la fibrose dans NAFLD (Angulo, Hui et al. 2007, Shah, Lydecker et al. 2009).

Améliorer les outils de diagnostic de la stéatose hépatique non-alcoolique et mieux comprendre les mécanismes qui sont associés à la pathologie est un enjeu majeur. La génétique constitue un outil de choix dans cette démarche.

C- Marqueurs génétiques liés à NAFLD.

Divers travaux au sein de familles ou chez des jumeaux ont mis en avant la composante génétique de la stéatose hépatique non-alcoolique (Schwimmer, Celedon et al. 2009, Loomba, Schork et al. 2015). A l'heure actuelle, 333 gènes sont liés à NAFLD (<u>http://www.disgenet.org/browser/0/1/1/C0400966/</u>). Parmi eux TM6SF2 (*transmembrane 6 superfamily member 2*) (Kozlitina, Smagris et al. 2014), GCKR (*glucokinase regulator*) (Tan, Zain et al. 2014) et PNPLA3 (Romeo, Kozlitina et al. 2008).

C-1- PNPLA3 (patatin like phospholipase domain containing 3).

Le gène PNPLA3 est situé sur le bras long du chromosome 22, dans la bande cytogénétique 22q13.31. Il est étalé sur 24 kb environ (<u>https://www.ncbi.nlm.nih.gov/gene/80339</u>) (figure 4) et code une protéine d'environ 53 kDa dite adiponutrine (<u>https://www.uniprot.org/uniprot/Q9NST1</u>). Les niveaux d'expression du gène ont été rapportés comme augmentés au sein du tissu adipeux après la prise alimentaire ou en présence de surcharge pondérale (Baulande, Lasnier et al. 2001).

Figure 4. Représentation schématique du locus PNPLA3-SAMM50

Une étude effectuée en 2004 a permis de mettre en évidence un rôle de l'adiponutrine dans le processus lipolytique (Jenkins, Mancuso et al. 2004). Des investigations ont également rapporté un lien entre la variation génétique codante (I148M : SNP rs738409) et NAFLD (Romeo, Kozlitina et al. 2008). Ce polymorphisme a été lié à l'état d'avancement de la maladie mais aussi aux taux plasmatiques de diverses enzymes hépatiques comme ALT (Sookoian, Castano et al. 2009, Chambers, Zhang et al. 2011).

La variation génétique rs738409 est à l'origine d'une protéine PNPLA3 ayant une plus faible activité (Huang, Cohen et al. 2011). Cela peut favoriser la surcharge des hépatocytes en substances grasses et participer à l'avènement de la stéatose hépatique (Smagris, BasuRay et al. 2015). Le gène PNPLA3 peut s'avérer très intéressant pour marquer la gravité de la pathologie et a été même lié aux phases les plus délétères comme le carcinome hépatocellulaire (Hassan, Kaseb et al. 2013, Carpino, Pastori et al. 2017).

PNPLA3 a été par ailleurs lié aux niveaux plasmatiques de ALT. En effet, l'étude par GWAS effectuée par Chambers et ses collègues a permis de constater l'association du gène à des taux de ALT plus importants ($p = 1,2 \times 10^{-45}$) (Chambers, Zhang et al. 2011). Cela a été également rapporté par d'autres études au sein de populations de diverses origines ethniques (Hotta, Yoneda et al. 2010, Li, Qu et al. 2012). De manière intéressante, l'étude réalisée par Meffert et ses collègues a mis en avant une mortalité liée aux altérations du foie plus importante chez les individus mâles porteurs de l'allèle pathogène du gène alors que cette variante génétique a été plutôt décrite comme étant liée à un effet de protection

contre la mortalité globale chez les femmes dont le foie n'est pas stéatosé (Meffert, Repp et al. 2018). Dans une autre investigation, la relation de PNPLA3 avec le décès a été attestée chez des sujets ayant une surcharge lipidique au niveau du foie (Mandorfer, Scheiner et al. 2018).

Bien que le SNP rs738409 soit localisé au niveau du gène PNPLA3, des polymorphismes en grand DL avec cette variation génétique sont également présents dans le gène voisin SAMM50 (*SAMM50 sorting and assembly machinery component*). Ce dernier s'étend sur plus de 41 kb et renferme 15 exons (<u>https://www.ncbi.nlm.nih.gov/gene/25813</u>). Il code une protéine de 52 kDa environ (<u>https://www.uniprot.org/uniprot/Q9Y512</u>). Il est donc primordial de prendre en considération l'ensemble du locus PNPLA3-SAMM50 lors des analyses d'association à la stéatose hépatique non-alcoolique.

C-2- Criblage du locus PNPLA3-SAMM50.

La majorité des études génétiques du locus PNPLA3 s'est focalisée sur l'exploration de la variation génétique I148M (rs738409) (Romeo, Kozlitina et al. 2008, Kotronen, Johansson et al. 2009). Cet intérêt vient de l'aspect hautement mutagène du polymorphisme (Pingitore, Pirazzi et al. 2014) qui engendre un changement en termes de l'activité de la protéine après substitution du résidu isoleucine par une méthionine. Toutefois, des polymorphismes autres situés au niveau du locus peuvent s'avérer importants dans le marquage et la physiopathologie de la maladie. L'étude par criblage dense du locus englobant les gènes PNPLA3, SAMM50 et PARVB (*parvin beta*) au sein d'une population du Japon atteinte de NAFLD a permis de constater l'association de polymorphismes répartis sur l'ensemble du locus à diverses composantes de la pathologie, notamment son avènement et évolution vers l'état fibrotique (Kitamoto, Kitamoto et al. 2014). De même, l'étude effectuée par Liu et ses collègues a mis en avant une éventuelle fonctionnalité du SNP rs139051 probablement via modification des niveaux d'expression du gène PNPLA3 (Liu, Anstee et al. 2016). Ce marqueur est situé au niveau de l'intron 2 du gène et se trouve en très faible DL avec rs738409 (r2 = 0,20) (Liu, Anstee et al. 2016).

Ces données mettent en avant le rôle important du locus PNPLA3-SAMM50 dans la susceptibilité à la maladie. Se focaliser sur cette région du génome reste cependant

insuffisant. Etablir des modèles de prédiction et de suivi de NAFLD via combinaison de polymorphismes issus de diverses régions du génome peut s'avérer primordial.

C-3- Modèles génétiques de prédiction de NAFLD rapportés dans la littérature.

Divers travaux se sont focalisés sur l'établissement de modèles de prédiction de NAFLD. L'étude récemment réalisée par Di Costanzo et ses collègues au sein d'une population d'Italie a permis la construction d'un modèle constitué de 4 polymorphismes situés dans les gènes PNPLA3, GCKR, TM6SF2 et MBOAT7 (*membrane bound O-acyltransferase domain containing 7*), respectivement et ajusté par l'IMC, la résistance à l'insuline et les taux de triglycérides. Le modèle a montré un excellent potentiel (OR = 4,97 pour le tertile le plus élevé) en termes d'anticipation de l'avènement de NAFLD (Di Costanzo, Belardinilli et al. 2018).

Dans une autre investigation, des chercheurs ont construit, au sein d'une population du Japon, un score de 4 SNPs situés dans les gènes PNPLA3, GCKR, GATAD2A (*GATA zinc finger domain containing 2A*) et DYSF (*dysferlin*), respectivement, et ajusté par le sexe (Kawaguchi, Shima et al. 2018). Ce modèle a montré une bonne capacité de prédiction de NAFLD (AUC = 0,65).

Par ailleurs, des SNPs situés dans le locus PNPLA3-SAMM50 ainsi que dans les gènes ADIPOQ (*Adiponectin*) et COL13A1 (*collagen type XIII alpha 1 chain*) ont été exploités pour la construction d'un modèle génétique prédisant les taux plasmatiques de ALT dans la population mexicaine (Larrieta-Carrasco, Flores et al. 2018). Le score génétique constitué de 9 à 12 allèles de risque a permis d'englober 45% environ des individus ayant des taux élevés de ALT.

Bien que les résultats concernant les 3 scores génétiques ci-dessus mentionnés aient été intéressants, ils doivent être pris avec précaution. En effet, ces modèles ont été construits au sein de populations ayant servi à la sélection des SNPs qui les constituent ce qui suggère une surestimation de leurs potentiels de prédiction.

L'étude effectuée par Vespasiani-Gentilucci et ses collègues dans une population d'Italie a permis la mise en place d'un modèle anticipant l'apparition de NAFLD et ses diverses complications (Vespasiani-Gentilucci, Dell'Unto et al. 2018). Le score polygénique établi dans cette investigation, constitué par les SNPs rs738409, rs58542926 et rs3750861 situés dans les gènes PNPLA3, TM6SF2 et KLF6 (*Kruppel like factor 6*), respectivement, est ajusté par l'âge, l'IMC, le sexe, et le diabète. Ce score a été obtenu par régression logistique après pondération par les ampleurs d'effets des polymorphismes (Vespasiani-Gentilucci, Dell'Unto et al. 2018). Le modèle a été capable de prédire NAFLD (OR = 23) mais aussi la cirrhose hépatique chez des patients avec NASH (OR = 88).

Malgré ces avancées, des améliorations sont encore nécessaires. La disponibilité de bases de données pangénomiques comme *GWAS Catalog* (MacArthur, Bowler et al. 2017) ou *UK-BioBank* (Bycroft, Freeman et al. 2018) et leur accessibilité à l'ensemble de la communauté scientifique constitue une opportunité de taille. Il devient ainsi plus facile de cribler des millions de marqueurs génétiques via diverses stratégies comme par apprentissage machine (Vilhjalmsson, Yang et al. 2015, Mak, Porsch et al. 2017) afin de sélectionner un maximum de variations génétiques liées à NAFLD et décrire au mieux la pathologie.

Objectifs et hypothèse de travail

NAFLD est une altération associée à diverses anomalies cardiométaboliques. Cette relation serait due comme précédemment mentionné à des interactions entre divers processus physiopathologiques ayant comme composante commune la résistance à l'insuline et la toxicité induite par la dérégulation des métabolismes glucidique et lipidique.

Les fonds génétiques de ces altérations métaboliques sont complexes et sont déterminés par des centaines voire des milliers de gènes de susceptibilité. L'hypothèse est que les composantes génétiques de NAFLD et de la mortalité dans le DT2 sont déterminées par des gènes liés à ces anomalies cardiométaboliques. Ainsi, le marquage, la prédiction et le suivi de la stéatose hépatique non-alcoolique et de la mortalité associée nécessitent la combinaison de centaines voire de milliers de variations génétiques associées à ces anomalies cardiométaboliques. Cela permettrait d'englober le maximum des processus causaux de NAFLD.

Dans ce contexte, mon projet de maitrise a pour objectif l'exploration de la composante génétique de NAFLD et de la mortalité dans le DT2. Le but principal est d'établir des outils de marquage et de prédiction des patients diabétiques à risque. En absence de données phénotypiques en termes de diagnostic de NAFLD par histopathologie ou par imagerie, les taux plasmatiques de l'enzyme ALT sont utilisés comme marqueur de la stéatose hépatique non-alcoolique. Bien que peu corrélés au diagnostic de NAFLD (Browning, Szczepaniak et al. 2004), les taux de cette enzyme sont intéressants dans l'exploration des diverses composantes cardiométaboliques liées à la stéatose hépatique non-alcoolique (Martin-Rodriguez, Gonzalez-Cantero et al. 2017). L'étude du fond génétique associé aux variations des niveaux de ALT peut permettre donc une meilleure compréhension des complications du DT2 d'origine hépatique.

Plus spécifiquement, deux approches sont appliquées dans le projet:

1) <u>Une approche non-ciblée</u> basée sur l'exploitation de la technologie LASSO pour la sélection de SNPs afin de construire un modèle de prédiction de la pathologie (figure 5).

2) <u>Une approche ciblée</u> dans laquelle des régions du génome connues pour leur relation avec NAFLD et ses diverses composantes sont explorées. Deux volets du travail sont effectués ici. Le premier volet aura pour but la combinaison de diverses variations génétiques rapportées dans la littérature comme associés à NAFLD ou à ses composantes afin de construire un modèle prédisant la maladie et stratifier la population en fonction du risque de complication de NAFLD et de la mortalité. Le second consiste en le criblage du locus englobant les gènes PNPLA3 et SAMM50 afin de rechercher une diversité éventuelle en termes de marquage de la maladie et de l'effet des thérapies associées (figure 5).

Figure 5. Représentation schématique de la stratégie établie pour la mise en place d'outils de marquage génétique de NAFLD et de la mortalité dans le DT2.

A noter qu'une analyse préliminaire est réalisée dans un premier temps. Celle-ci consiste en le croisement de listes de gènes candidats rapportés dans la littérature (<u>http://www.disgenet.org/search</u>) afin d'estimer la composante génétique commune entre NAFLD et différentes altérations métaboliques retrouvées dans le DT2.

Matériel et méthodes.

I- Base de données exploitée lors de l'analyse préliminaire :

La base de données *Disgenet* (Pinero, Bravo et al. 2017) (http://www.disgenet.org/search) a été exploitée pour l'extraction des listes des gènes candidats de NAFLD et des différentes altérations métaboliques qui lui sont associées. Sous sa version actuelle, Disgenet regroupe des données centrées sur les gènes obtenues après curation à partir de bases de données génétiques et pharmacogénétiques humaines ou murines. Il s'agit de: Comparative Toxicogenomics Database (CTD) (http://ctdbase.org/), UniProt (https://www.uniprot.org/), ClinVar (https://www.ncbi.nlm.nih.gov/clinvar/), Orphanet (https://www.orpha.net/consor/cgi-GWAS catalog (https://www.ebi.ac.uk/gwas/), Rat Genome Database bin/index.php), (https://rgd.mcw.edu/), Mouse Genome Database (http://www.informatics.jax.org/), Genetic Association Database (https://geneticassociationdb.nih.gov/), Literature Human Gene Derived Network (http://www.dbs.ifi.lmu.de/~bundschu/LHGDN.html), *PsyGeNET* (http://www.psygenet.org/), Human Phenotype Ontology (https://hpo.jax.org/app/), CGI (https://www.cancergenetics.com/), ClinGen (https://clinicalgenome.org/), Genomics England (https://panelapp.genomicsengland.co.uk/) panel app et GWAS db (http://jjwanglab.org/gwasdb).

II- Population étudiée.

La population étudiée au cours de la maîtrise a été recrutée dans le cadre de l'essai clinique ADVANCE (*The Action in Diabetes and Vascular Disease: Preterax and Diamicron Modified Release Controlled Evaluation*). Il s'agit d'une étude réalisée dans le cadre d'une collaboration internationale dans laquelle divers groupes de recherche à travers quatre continents ont pris part (Patel, MacMahon et al. 2008). Cela a permis le recrutement de 11140 individus atteints de DT2 afin d'y tester, pendant 5 années, l'effet de la combinaison de thérapies intensives hypoglycémiantes (gliclazide à libération prolongée) et normotensives (indapamide et perindopril) sur l'amélioration des profils microvasculaire, marcrovasculaire et de régulation glucidique des patients (Patel, MacMahon et al. 2008). A noter qu'un suivi de 5 années supplémentaires a été réalisé dans le cadre de l'essai clinique ADVANCE-ON (Zoungas, Chalmers et al. 2014).

A- Protocole de recrutement et de suivi des patients.

Les patients recrutés dans l'investigation sont âgés de 55 ans et plus (Patel, MacMahon et al. 2008). Ces derniers ont été répartis, suivant un schéma factoriel et randomisé, en 4 groupes : 1) Un premier comportant 2783 patients bénéficiant des thérapies hypoglycémiante intensive et hypotensive, 2) un second groupe de 2788 individus soumis à la thérapie intensive hypoglycémiante et à un placébo, 3) un autre groupe constitué de 2786 patients bénéficiant d'un traitement hypoglycémiant standard et d'une thérapie normotensive et 4) un dernier groupe comportant 2783 individus soumis à la thérapie standard et à un placébo (ADVANCE-Group 2010) (figure 6).

Les patients ont été suivis de manière périodique durant 5 ans afin de récupérer les données cliniques. Ces dernières ont concerné, entre autres, le diagnostic d'évènements microvasculaires, macrovasculaires, la mortalité totale et celle d'origine cardiovasculaire. De même, des mesures de paramètres biologiques comme les taux HbA1c, la glycémie et la triglycéridémie ont été réalisées (Patel, MacMahon et al. 2007, Patel, MacMahon et al. 2008, ADVANCE-Group 2010).

Cet essai a mis en avant une amélioration du profil glucidique des patients diabétiques traduit par une diminution des taux de HbA1c jusqu'à 6,5% (Patel, MacMahon et al. 2008). Par ailleurs, l'étude a permis d'observer une régression des anomalies microvasculaires notamment celles affectant le rein après thérapie intensive (Patel, MacMahon et al. 2008).

B- Données génétiques dans ADVANCE.

L'essai clinique ADVANCE a été l'occasion de réaliser un volet génétique du projet supervisé par les Prs. Pavel Hamet et Johanne Tremblay. Plus de 4000 individus ayant une origine caucasienne ont ainsi été génotypés sur des puces. Des millions de génotypes ont été obtenus après imputation. Diverses investigations génétiques de grande qualité ont été effectuées dans le cadre d'explorations individuelles mais aussi dans le cadre de consortiums (Gorski, Tin et al. 2015, Hamet, Haloui et al. 2017, Wuttke, Li et al. 2019). Ces données génétiques sont regroupées au sein de la base de données OPTITHERA au Centre de recherche de l'Hôpital de Montréal (Responsables : Prs. Pavel Hamet et Johanne Tremblay).

Figure 6. Représentation schématique des patients de la population ADVANCE répartis, suivant un schéma factoriel randomisé, en 4 groupes de traitement (thérapie hypoglycémiante et thérapie anti-hypertension artérielle). Schéma adapté et modifié à partir de la figure 11 de (ADVANCE-Group 2010) et à partir de données issues de (Zoungas, de Galan et al. 2009).

Le nombre de patients mis à contribution dans l'investigation est de 4098 patients. Il s'agit d'individus d'origine caucasienne dont les données de génotypage sont disponibles. Dans notre laboratoire, une partie de la population (2228 échantillons) a été génotypée via la puce *Affymetrix 6.0*, une seconde partie (1092 échantillons) via la puce *UKBiobank* et le reste des patients (778 patients) a été génotypé par la puce *Affymetrix 5.0* (Hamet, Haloui et al. 2017).

Comme précédemment mentionné, en absence de données de diagnostic de NAFLD par histopathologie ou par imagerie, les taux plasmatique de ALT seront exploités comme substitut.

Parmi les 4098 patients, 4051 ont les taux plasmatiques de ALT disponibles. Dix millions de SNPs environ ont des génotypes disponibles, dont plus de 99,9% sont en équilibre de Hardy-Weinberg (seuil = $5,7 \times 10^{-7}$). Par ailleurs, 1008 (25%) parmi les 4098 patients ont

bénéficié aussi bien de la thérapie hypoglycémiante intensive que du traitement antihypertensif, 1026 (25%) ont été soumis uniquement au traitement hypoglycémiant intensif et à un placébo, 1042 (25%) ont bénéficié de la thérapie antihypertensive et d'un traitement hypoglycémiant standard et 1022 (25%) ont été traités par thérapie standard hypoglycémiante et par placébo.

La population a été stratifiée en 3 groupes d'individus en fonction de leurs taux plasmatiques de ALT en ligne de base. Un premier groupe de 3138 patients ayant des taux \leq 35 UI/L (relativement bas), un second groupe constitué de 470 malades dont les taux varient entre 35 et 45 UI/L (moyens) et un dernier groupe de 443 patients ayant des niveaux plasmatiques de ALT > 45 UI/L (élevés).

Trente-huit phénotypes ont été pris en considération. Ces derniers décrivent les aspects cardiovasculaires, rénaux et d'homéostasie glucidique : 21 phénotypes quantitatifs et 17 phénotypes qualitatifs ont été explorés (figure 7).

III- Outils statistiques et bioinformatiques exploités.

Deux langages de programmation ont été mis à contribution dans les analyses : les langages Python et R. Python a été utilisé pour l'organisation des données et leur configuration afin de les rendre exploitables dans les calculs.

A- Outils exploités lors de l'analyse préliminaire.

Comme déjà mentionné, l'analyse a consisté en le croisement de listes de gènes candidats issues de la base de données *Disgenet* (http://www.disgenet.org). J'ai croisé la liste des gènes candidats de chacune des altérations cardiométaboliques d'intérêt avec la liste des gènes de NAFLD. Afin d'attester de la validité des listes des gènes communs lors de chaque croisement, le test de Fisher a été exploité en utilisant la fonction « fisher.test » via langage R. Nommons le nombre de gènes communs (n₁). J'ai créé en parallèle une liste de gènes de même taille que celle des gènes de l'altération cardiométabolique étudiée. Cette liste est obtenue en prenant au hasard des gènes parmi ceux répertoriés dans *Disgenet* (http://www.disgenet.org/). Elle est ensuite croisée avec la liste des gènes candidats de NAFLD. Pour chaque croisement, nommons le nombre de gènes communs (n₀). L'hypothèse nulle (H₀) stipule que la liste de gènes communs lors de chaque croisement

est due au hasard alors que l'hypothèse alternative (H₁) (P du test de Fisher < 0,05) atteste que cette liste de gènes communs n'est pas due au hasard.

B- Outils bioinformatiques et statistiques exploités lors de l'investigation au sein de la population ADVANCE.

Si ce n'est pas indiqué, les variables d'ajustement prises en considération dans les analyses sont l'âge, le sexe et l'abus de prise d'alcool par les patients.

Les régressions statistiques linéaire et logistique ont été exploitées dans divers calculs. L'ajustement des moyennes des phénotypes quantitatifs et des fréquences des phénotypes qualitatifs, par l'âge, le sexe et l'excès de prise d'alcool a été effectué en utilisant le programme lsmeans (<u>https://cran.r-project.org/web/packages/lsmeans/index.html.</u> Cela est réalisé suivant la ligne de commande :

Phenotype ~ groupe_patients + age + sexe + abus_d'alcool

où groupe_patients correspond aux catégories des patients en fonction de leurs taux plasmatiques de ALT ou de leur génotype. Les niveaux de signification des associations sont indiqués en P de contraste.

Par ailleurs, le logiciel Haploview a été exploité afin d'établir le profil de DL du locus PNPLA3-SAMM50 au sein de la population ADVANCE et taguer les SNPs qui s'y trouvent. L'extraction des SNPs tags a été réalisée via la méthode *pairwise-tagging* nonagressive (de Bakker, Burtt et al. 2006). Cette méthode permet la sélection des polymorphismes en fonction des niveaux de DL (r^2) entre les paires de SNPs en absence de toute spécification des SNPs tags désirés. Un seuil r^2 est établi à cet effet.

La puissance statistique des résultats les plus pertinents sera calculée via le module pwr (<u>https://cran.r-project.org/web/packages/pwr/index.html</u>). La puissance du test (comparaison entre deux moyennes ou fréquences) est établie par la ligne de commande :

pwr.t2n.test(n1, n2, d)

où **n1** et **n2** représentent le nombre de patients dans les deux groupes comparés et **d** est le coefficient de régression de Cohen (Cohen 1988). Ce dernier a été calculé à partir des moyennes ajustées et de l'erreur standard des phénotypes.

Par ailleurs, la correction des analyses multivariées par le test de Bonferroni a été effectuée

en utilisant le module podkat (<u>https://bioconductor.org/packages/release/bioc/html/podkat.html</u>). Les résultats ayant été corrigés par ce test sont indiqués dans le texte.

Figure 7. Phénotypes A) quantitatifs et B) qualitatifs explorés dans l'étude

IV- Sélection des SNPs pour la construction des PRS.

Cette sélection a été réalisée via deux stratégies : par apprentissage machine (programme LASSOSUM) ou par sélection ciblée.

- Construction du PRS par LASSOSUM.

Les données d'environ 9 millions de SNPs issus du génotypage de la population ADVANCE dans la puce *Affymetrix 6.0* et de plus de 6 millions de SNPs provenant du génotypage de la population dans la puce *UKB-chip* ont été exploitées sous forme de fichiers .fam, .bim, .bed. La population de référence utilisée, est celle génotypée dans la puce *Affymetrix UK BioBank*. Elle est constituée de 1092 patients (1079 individus ont les taux de ALT disponibles). La population test, génotypée dans la puce *Affymetrix 6.0*,

comporte 2228 individus (2220 patients ont les données de ALT renseignés). Les fichiers des données statistiques sommaires utilisés, ont été extraits de la base de données *GWAS catalog* (<u>https://www.ebi.ac.uk/gwas/downloads/summary-statistics</u>) alors que les fichiers rapportant les profils de DL sont ceux de la population *1000 Genomes d'origine caucasienne* (Berisa and Pickrell 2016) (figure 8).

Figure 8 : Représentation schématique du processus de construction d'un PRS par LASSOSUM

- Construction des PRS via sélection ciblée des SNPs.

Cette stratégie est basée sur l'extraction, à partir des fichiers statistiques sommaires, de SNPs ayant été fortement associés dans la littérature à des phénotypes en relation avec NAFLD. Les données statistiques sommaires issues des bases de données *GWAS catalog* (https://www.ebi.ac.uk/gwas/summary-statistics), *GeneATLAS* (http://geneatlas.roslin.ed.ac.uk/), *Giant Consortium DataBase* (https://portals.broadinstitute.org/collaboration/giant/index.php/GIANT_consortium_data _files#WHRadjBMI_28download_GZIP.29), *Global Lipids Genetics Consortium* Database (http://csg.sph.umich.edu/willer/public/lipids2013/) et *Magic Consortium* DataBase (https://www.magicinvestigators.org/downloads/) ont été exploitées à cet effet. Le logiciel *PLINK* (<u>http://zzz.bwh.harvard.edu/plink/</u>) a été mis à contribution pour la gestion des données génotypiques et pour la sélection des SNPs représentatifs en fonction du niveau de DL (index r²) au sein de la population ADVANCE. Cette sélection a été également effectuée en utilisant la base de données *snipa* (Arnold, Raffler et al. 2015) (<u>https://snipa.helmholtz-muenchen.de/snipa3/index.php?task=pairwise_ld</u>).

La construction du PRS est réalisée en calculant la somme des modèles additifs pondérés par les coefficients de régression (bêtas) issus de la littérature. Le PRS est ensuite testé via GLM afin de déterminer son potentiel de prédiction. Ce dernier est estimé par AUC en utilisant le module pROC (<u>https://cran.r-project.org/web/packages/pROC/index.html</u>), suivant les lignes de commande :

Formule <- as.formula(Phénotype ~ variable₁ + variable₂ + ... + variable_n)

modele <- glm(Formule, data=matrice_données, family="binomial")

Ce module a été également exploité dans la comparaison des potentiels des modèles de prédiction via la fonction « roc.test ».

Enfin, le potentiel de stratification par le modèle est établi via le calcul des quintiles des scores de risque et la détermination de la fréquence du phénotype d'intérêt dans chaque strate de la population.

Résultats

I- Résultats obtenus lors de l'analyse préliminaire.

L'exploration de la base de données *Disgenet* (<u>http://www.disgenet.org/</u>) a permis de mettre en évidence 333 gènes candidats de NAFLD, 1671 gènes de DT2 et 11 gènes liés aux taux plasmatiques de ALT (tableau 1).

Phénotype	Nombre de gènes candidats
Diabète non-insulino dépendant	1671
Infarctus du myocarde	965
Insuffisance cardiaque	814
Néphropathie diabétique	560
L'accident vasculaire cérébral ischémique	393
NAFLD	333
Hypertension essentielle	277
Stéatohépatite non-alcoolique	208
Hypertriglycéridémie	156
Résistance à l'insuline	80
Obésité viscérale	44
Insuffisance rénale chronique	28
Taux de ALT sérique	11
Taux plasmatiques élevés de HbA1c	2

Tableau 1. Nombre des gènes associés à NAFLD ou aux différentes pathologies et phénotypes en relation avec cette maladie (données extraites à partir de la base de données Disgenet http://www.disgenet.org/).

L'analyse a permis de constater une fraction importante (58%) des gènes candidats de NAFLD communs avec le DT2 (P test_fisher = 9,5 x 10^{-37} , $n_1 / n_0 = 4,8$) de même que 11,5% des gènes du DT2 sont communs à NAFLD (P test_fisher = 1,3 x 10^{-26}) (figure 9). Cela démontre la relation entre les deux phénotypes et peut expliquer la fréquence élevée du foie stéatosé non-alcoolique chez les sujets diabétiques de type 2 rapportée dans la littérature (Younossi, Koenig et al. 2016, Amiri Dash Atan, Koushki et al. 2017, Cusi, Sanyal et al. 2017).

Figure 9 : Croisement des listes des gènes candidats de NAFLD et de quelques altérations cardiométaboliques qui lui sont associées. Les listes de gènes ont été extraites de la base de données Disgenet (http://www.disgenet.org/search)

Par ailleurs, plus de 36% des gènes de la résistance à l'insuline sont communs avec la stéatose hépatique non-alcoolique (P test_fisher = 3,0 x 10^{-8} , $f_1 / f_0 = 14,5$) et un tiers environ des gènes associés à l'hypertriglycéridémie sont des gènes candidats du NAFLD (P test_fisher = 7,4 x 10^{-12} , $f_1 / f_0 = 11,75$). De manière intéressante, 18% uniquement des gènes liés aux variations des taux plasmatiques de l'enzyme ALT (2 gènes sur 9, parmi lesquels PNPLA3) sont communs avec NAFLD. Ceci confirme les données de la littérature attestant de la capacité limitée de ALT à marquer le phénotype stéatose hépatique (Browning, Szczepaniak et al. 2004). L'analyse a également mis en avant la présence de 18% environ des gènes de l'hypertension essentielle (P test_fisher = 3,0 x 10^{-11} , $n_1 / n_0 = 8,5$), de 14% des gènes de l'infarctus du myocarde (P test_fisher = 3,0 x 10^{-29} , $n_1 / n_0 = 10,0$), de 15% des gènes de l'AVC ischémique (P test_fisher = 1,3 x 10^{-14} , $n_1 / n_0 = 7,5$) dans NAFLD (figure 9).

Ces résultats suggèrent encore une fois un fond génétique partagé entre NAFLD, le DT2 et les altérations cardiométaboliques.

II- Résultats obtenus lors de l'investigation au sein de la population ADVANCE.

L'analyse des données phénotypiques au sein des groupes de patients ayant bénéficié des thérapies hypoglycémiante standard et un placébo (groupe 1), des thérapie intensive hypoglycémiante et un placébo (groupe 2), de traitement hypoglycémiant standard et une thérapie hypotensive (groupe 3) ou de traitements hypoglycémiant intensif et hypotensif (groupe 4) a permis de constater des taux de ALT en ligne de base plus élevés chez les patients du groupe 4 (29,16 ± 0,59 UI/L, P = 0,04) et du groupe 3 (29,25 ± 0,58 UI/L, P = 0,03) en comparaison avec ceux du groupe 1 (27,60 ± 0,58 UI/L). Les complications microvasculaires ont été également plus présentes en ligne de base chez les diabétiques du groupe 2 (0,48 ± 0,02) par rapport à celles du groupe 3 (0,44 ± 0,02; P = 0,04). Le reste des données phénotypiques n'a pas été significativement différent entre les 4 groupes de patients (Tableau 2A).

Comme déjà mentionné, la population ADVANCE (4051 patients ayant les taux de ALT disponibles) a été répartie en trois groupes d'individus : des patients ayant des taux de ALT élevés (ALT > 45 UI/L) \rightarrow groupe 1, ceux avec des niveaux médians (35 UI/L < ALT \leq 45 UI/L) \rightarrow groupe 2 et des patients avec des taux plasmatiques bas (ALT \leq 35 UI/L) \rightarrow groupe 3. Cela a permis de constater un profil métabolique plus défavorable accompagnant l'élévation des taux de l'enzyme notamment en termes du tour de taille des patients (P = 2,3 x 10⁻¹²), de leurs taux plasmatiques de HDL (P = 5,4 x 10⁻⁶), des triglycérides (P = 0,04) ainsi que des taux de HbA1c (P = 3,7 x 10⁻⁶) (tableau 2B).

L'analyse n'a toutefois pas mis en avant de différence significative des taux de mortalité entre les groupes d'individus, qu'il s'agisse de mortalité globale (P = 0,82), d'origine cardiovasculaire (P = 0,71) ou d'origine non-cardiovasculaire (P = 0,48) (tableau 2B). De même, la régression logistique a démontré l'absence de corrélation entre les mortalités noncardiovasculaire ou cardiovasculaires et les taux de ALT (P = 0,31 et P = 0,54; respectivement).

A)

Phénotype	Groupe 1	SE	Groupe 2	SE	Groupe 3	SE	Groupe 4	SE	1 vs 3	1 vs 4
	n = 1	013	n = 10	013	n = 1	029	n = 9	96		
ALT (UI/L)	27,60	0,58	28,21	0,59	29,25	0,58	29,16	0,59	0,03	0,04
HbA1c (%)	7,27	0,05	7,26	0,05	7,33	0,05	7,31	0,05	0,32	0,55
Cholestérole (mmol/L)	5,20	0,04	5,17	0,04	5,22	0,04	5,19	0,04	0,56	0,91
Nombre de médicaments pris contre le diabète de type 2	1,30	0,03	1,38	0,03	1,35	0,03	1,36	0,03	0,25	0,14
LDL (mmol/L)	3,10	0,03	3,05	0,03	3,10	0,03	3,06	0,03	0,98	0,39
HDL (mmol/L)	1,28	0,01	1,28	0,01	1,27	0,01	1,28	0,01	0,33	0,80
Triglycérides (mmol/L)	1,97	0,04	1,95	0,04	2,00	0,04	1,93	0,04	0,62	0,41
Rythme cardiaque (battements/min)	72,40	0,41	72,84	0,42	72,64	0,41	72,99	0,42	0,65	0,27
Pression artérielle systolique (mmHg)	147,13	0,71	147,20	0,71	146,79	0,70	147,47	0,71	0,72	0,71
Tour de taille (cm)	103,15	0,41	103,52	0,41	103,76	0,41	103,63	0,42	0,26	0,38
Fréquence de décès par toutes causes	0,15	0,01	0,13	0,01	0,11	0,01	0,11	0,01	0,01	0,03
Fréquence de décès par causes cardiovasculaires	0,09	0,01	0,07	0,01	0,05	0,01	0,05	0,01	5,02E-04	0,002
Fréquence de décès par causes non-cardiovasculaires	0,06	0,01	0,07	0,01	0,06	0,01	0,06	0,01	0,89	0,84

B)

Phenotype quantitatif	Groupe1	SE	Groupe2 SI	Ε	Groupe3	SE	P_value(contrast)	P_value (contrast)
	ALT <= 35	UI/L	35 < ALT <=	45 UI/L	ALT > 45	UI/L	Grp2 vs	Grp 3vs
	n = 313	8	n=47	0	n = 4	43	Grp 1	Grp 1
ALT (IU/L)	22,07	0,24	39,49	0,52	64,22	0,53	NA	NA
HbA1c (%)	7,24	0,03	7,43	0,07	7,56	0,07	0,004	3,68E-06
Cholestérole (mmol/L)	5,21	0,02	5,15	0,05	5,11	0,05	0,24	0,06
Nombre de médicaments pris contre le DT2	1,34	0,02	1,35	0,04	1,41	0,04	0,72	0,08
LDL (mmol/L)	3,10	0,02	3,00	0,05	3,02	0,05	0,06	0,15
HDL (mmol/L)	1,29	0,01	1,25	0,02	1,21	0,02	0,03	5,35E-06
Triglycérides (mmol/L)	1,93	0,03	2,11	0,06	2,06	0,06	0,003	0,04
Rythme cardiaque (battements/min)	72,52	0,27	73,11	0,58	73,70	0,61	0, 33	0,06
Pression artérielle systolique (mmHg)	146,82	0,46	148,57	1,00	147,97	1,04	0,09	0,28
Tour de taille (cm)	102,74	0,27	105,44	0,58	107,08	0,60	6,22E-06	2,32E-12
Fréquence de décès par toutes causes	0,13	0,01	0,12	0,02	0,13	0,02	0,93	0,82
Fréquence de décès par causes CV	0,06	0,01	0,08	0,01	0,06	0,01	0,29	0,71
Fréquence de décès par causes non CV	0,07	0,01	0,05	0,01	0,07	0,01	0,26	0,48

Tableau 2. Données phénotypiques de la population ADVANCE ventilées par A) les 4 groupes de traitement et par B) les 3 niveaux des taux plasmatiques de ALT. L'intitulé des groupes de traitement est indiqué dans le texte ci-dessus. Les patients pour lesquels le taux de ALT ne sont pas disponibles ne sont pas inclus dans les tableaux.

Ce résultat met en avant la difficulté d'attester la relation entre les variations des taux de ALT et les niveaux de décès déjà rapportée dans la littérature (Liu, Ning et al. 2014). Dans ce contexte, l'analyse génétique peut s'avérer intéressante afin de mieux comprendre

certains mécanismes moléculaires liant la mortalité et les variations des taux de l'enzyme. L'analyse génétique a été abordée via deux approches : une ciblée et une autre non-ciblée.

A- Exploration génétique via une approche non-ciblée

Cette exploration tend à concevoir des modèles de prédiction. Afin d'être le plus exhaustif possible, j'ai sélectionné des SNPs en absence de toute hypothèse physiopathologique via la méthode statistique LASSO (Tibshirani 1996).

Conception par la méthode statistique LASSO d'un modèle de prédiction de NAFLD.

Le programme utilisé dans cette investigation est LASSOSUM. Celui-ci est adapté, comme déjà mentionné, à la construction des modèles de prédiction de risque via l'exploitation des métadonnées génétiques (Mak, Porsch et al. 2017).

Quatre phénotypes ont été pris en considération dans la conception du modèle vu leur relation avec NAFLD :

- Le tour de taille : les données statistiques sommaires utilisées ici sont issues de la base de données UKBB (<u>https://www.ukbiobank.ac.uk/</u>). Le fichier statistique sommaire hébergé dans la base de données *GeneATLAS* (<u>http://geneatlas.roslin.ed.ac.uk/downloads/?traits=750</u>) comporte 9 millions de SNPs environ. Ces données de génotypage sont issues de 549598 individus d'origine caucasienne recrutés au Royaume-Uni.
- Les taux plasmatiques des triglycérides : le fichier des données statistiques sommaires utilisé pour ce phénotype est issu de l'investigation réalisée par Surakka et ses collègues (Surakka et al, 2015). Cette étude a focalisé sur 62166 individus d'origine européenne. Plus de 9 millions de SNPs sont rapportés dans le fichier.
- Les taux plasmatiques de ALT et de AST : les données statistiques sommaires proviennent de l'investigation de Prins et ses collègues (Prins, Kuchenbaecker et

al. 2017). Cette étude a concerné 9961 individus du Royaume-Uni. Les données sommaires comportent plus de 25 millions de SNPs.

A noter que la population de référence exploitée dans l'analyse est constituée de 1079 patients (patients ayant les taux de ALT mesurés parmi les 1092 individus de ADVANCE génotypés dans la puce *UKB-chip*). La population test, quant à elle, renferme 2220 patients ayant les taux de ALT rapportés parmi les 2228 individus de ADVANCE génotypés dans la puce *Affymetrix 6.0*.

Des analyses préliminaires ont permis de détecter un défaut dans le programme LASSOSUM dans le sens où les données phénotypiques manquantes, indiquées par défaut en chiffre « -9 » dans les tableaux « .bim » de Plink génèrent des résultats discordants. Le concepteur du programme LASSOSUM, Pr. Timothy Mak, a attesté cette incompatibilité. L'analyse a été reprise en indiquant en chiffre « 0 » les données phénotypiques manquantes.

Cette analyse a permis la construction de 4 PRS capables de prédire les patients ayant des taux plasmatiques élevés de ALT (ALT > 45 UI/L). Il s'agit de :

- Deux SNPs sélectionnés (rs3747207 dans le gène PNPLA3 et rs1352738 situé dans une région intergénique sur le chromosome 5) après exploitation des données statistiques sommaires (étude de Prins et ses collègues) liées aux niveaux de ALT (Prins et al, 2017) → modèle de prédiction génétique 1.
- Plus de 152000 SNPs extraits après exploitation des données statistiques sommaires de l'investigation de Prins et collègues en rapport avec la variation des niveaux de AST dans la population du Royaume-Uni (Prins et al, 2017) → modèle de prédiction génétique 2.
- Plus de 43000 SNPs sélectionnés à partir des données statistiques sommaires du phénotype « tour de taille » issues la base de données UK-BioBank.
 (<u>http://geneatlas.roslin.ed.ac.uk/downloads/?traits=750</u>) → modèle de prédiction génétique 3.
- Plus de 1,3 x 10⁶ de SNPs en relation avec la triglycéridémie, extraits des données statistiques sommaires de l'étude de Surakka et ses collègues (Surakka et al, 2015)
 → modèle de prédiction génétique 4.

L'analyse a permis de constater que le modèle 1 a un potentiel de prédiction intéressant (AUC = 0,589, P = 1,4 x 10⁻⁷) tandis que la capacité de prédiction par le modèle 2 est de : (AUC = 0,551, P = 0,016). Le modèle génétique 3 a un AUC de 0,555 (P = 0,017) alors que AUC du modèle 4 est = 0,552 (P = 0,021). La combinaison par l'addition des quatre modèles de risque a permis la prédiction des taux élevés de ALT avec un AUC de 0,622 (P significatifs pour chacun des 4 modèles combinés) (tableau 3).

Afin de tester la puissance de la méthode LASSOSUM dans la construction de modèles dans des populations de tailles relativement faibles comme ADVANCE, j'ai effectué une analyse de vérification. J'ai utilisé comme population test le groupe de patients que j'ai précédemment considéré comme référence (2220 patients) de même que j'ai pris comme population de référence les patients que j'ai précédemment utilisés pour tester le modèle (1079 patients). L'analyse des données statistiques sommaires liées à ALT (Prins, Kuchenbaecker et al. 2017) a permis de construire un PRS de 3071 SNPs prédisant les taux élevés de ALT avec un AUC = 0,55 [0,498 - 0,604], P = 0,056). Il apparait ainsi que le modèle obtenu après inversion des populations référence et test est différent en termes de nombre de SNPs et de puissance de prédiction. Cela pourrait être dû à une taille insuffisante des populations utilisées dans l'entrainement des modèles. En effet, les performances de certaines méthodes par apprentissage machine ont été rapportées comme limitées en présence de faibles quantités de données (Wei, Wang et al. 2013).

Phénotype testé	AUC	IC 95%	Р
ALT (1)	0.589	0.553 - 0.625	1,41 x 10 ⁻⁷
AST (2)	0.551	0.512 - 0,590	0,016
WC (3)	0,555	0,517 - 0,593	0,017
TG (4)	0,552	0,513 - 0,590	0,021
1+2+3+4	0,622	0,585 - 0,659	3,69 x 10 ⁻⁷ (1)
			0,037 (2)
			0,014 (3)
			0,023 (4)
1 + 2 + 3 + 4 + âge	0,658	0.622 - 0,694	9,11 x 10 ⁻⁷ (1)
			0,035 (2)
			0,019 (3)
			0,057 (4)
			8,8 x 10 ⁻⁷ (âge)
1 + 2 + 3 + 4 + âge + sexe	0,671	0.636 - 0,707	9,66 x 10 ⁻⁷ (1)
			0,044 (2)
			0,016 (3)
			0,042 (4)
			1,28 x 10 ⁻⁶ (âge)
			3 x 10 ⁻⁴ (sexe)

Tableau 3. Potentiel de prédiction des modèles construits par le programme LASSOSUM.
Ces modèles incluent les données statistiques sommaires 1) des taux plasmatiques de ALT,
2) des taux plasmatiques de AST, 3) du tour de taille et 4) des taux plasmatiques de triglycérides. Les modèles sont éventuellement ajustés par l'âge et le sexe des patients.

B- Exploration génétique via une approche ciblée

Deux investigations seront effectuées ici. Une première consistant en la sélection des SNPs déjà connus pour leur association avec la maladie ou avec l'une de ses composantes afin de construire un modèle de prédiction de NAFLD et une seconde étude tendant à bien caractériser l'association génétique du locus PNPLA3-SAMM50.

B-1- Conception, via sélection ciblée des SNPs, d'un modèle de prédiction de NAFLD et de la mortalité dans le DT2.

Conscient des limites de la conception d'un modèle de prédiction par apprentissage machine dans une population de taille relativement faible, j'ai décidé de concevoir un PRS en incluant des SNPs que j'aurai sélectionnés en fonction de leurs associations dans la littérature et de tester leur potentiel de prédiction et de stratification dans ADVANCE (figure 10). Les SNPs sélectionnés sont ceux, rapportés dans la littérature, comme associés à des phénotypes en relation avec la stéatose hépatique non-alcoolique.

Quatre groupes phénotypiques ont été pris en considération : 1) les phénotypes liés à la surcharge pondérale (obésité, IMC, tour de taille, rapport tour de taille / tour de hanche), 2) ceux liés au métabolisme lipidique surtout aux taux plasmatiques des triglycérides, 3) les phénotypes liés au profil du foie stéatosé (taux plasmatiques de ALT et de AST et foie stéatosé alcoolique) et 4) ceux en relation avec l'homéostasie glucidique (taux de HbA1c, taux de glucose plasmatique ou d'insuline).

Figure 10. *Représentation schématique de la stratégie de construction du PRS via sélection ciblée des SNPs.*

Plus précisément, les fichiers statistiques sommaires issus de la base de données UK *Biobank* (assignés dans la base de données *GeneATLAS*) (http://geneatlas.roslin.ed.ac.uk/) ont été utilisés pour l'extraction de SNPs associés à l'obésité, à l'IMC, au tour de taille, et aux phénotypes fibrose-cirrhose et maladie du foie alcoolique. Par ailleurs, les données statistiques sommaires concernant le phénotype tour de taille/ tour de hanche (TT/TH) ajustés par IMC, issues de l'étude de Pulit et ses collègues (Pulit, Stoneman et al. 2019) ont été obtenues à partir de la base de données du Consortium Giant (https://portals.broadinstitute.org/collaboration/giant/index.php/GIANT consortium data files#WHRadjBMI .28download GZIP.29). Les données statistiques générées par l'étude de Prins et ses collègues (Prins, Kuchenbaecker et al. 2017) et hébergées dans la base de données GWAS catalog (https://www.ebi.ac.uk/gwas/summary-statistics) ont été exploitées pour la sélection de SNPs associés aux taux plasmatiques de ALT, de AST, de triglycérides ou avec les niveaux de HbA1c. D'un autre côté, les données statistiques sommaires issues de l'étude de Willer et ses collègues (Willer, Schmidt et al. 2013) extraites de la base de données Global Lipids Genetics Consortium (http://csg.sph.umich.edu/willer/public/lipids2013/) ont été utilisées pour la sélection de SNPs associés aux taux plasmatiques de triglycérides. Enfin, les fichiers statistiques sommaires fournis par l'étude de Wheeler et ses collègues (Wheeler, Leong et al. 2017) et extraits de la base de données Magic Consortium (https://www.magicinvestigators.org/downloads/) ont été utilisés pour la sélection de SNPs liés aux taux de HbA1c.

Parallèlement, j'ai extrait des SNPs d'intérêt, en exploitant le fichier source des données d'associations répertoriées dans la base de donnes *GWAS catalog* (<u>https://www.ebi.ac.uk/gwas/docs/file-downloads</u>). Cela a été effectué en utilisant 28 mots-clés (figure 11). Une curation manuelle a été nécessaire par la suite afin d'éliminer, parmi les SNPs extraits, ceux associés à des phénotypes non liés à NAFLD. Ce processus a permis la restriction à 34 intitulés de phénotypes (figure 11).

La sélection via l'application d'un seuil d'association génétique $P = 5 \times 10^{-5}$ (*GWAS like level*) sur l'ensemble des données a permis l'extraction de 842513 SNPs (660788 SNPs uniques) (figure 12). Vu ce grand nombre de SNPs, j'ai jugé utile d'appliquer un seuil de

sélection plus stringent (seuil de signification GWAS : $P = 5 \times 10^{-8}$). Le croisement de la liste ainsi obtenue avec celle des SNPs disponibles dans ADVANCE a permis l'extraction de 111955 SNPs (figure 12).

Une dernière série de sélection a consisté en l'extraction des SNPs ayant les coefficients de régression (bêtas) les plus élevés parmi ceux avec lesquels ils sont en DL (figure 12). A noter que l'extraction des données de DL entre les 111955 a permis de générer des tableaux de tailles gigantesques (> 100 Gigabases) impossibles à exploiter dans le serveur du laboratoire. Pour y pallier, j'ai utilisé la commande --r2 du programme *Plink* afin d'extraire, au sein de ADVANCE, les données de DL dans des régions génomiques restreintes autour des 111955 SNP index. Deux cycles de sélection ont été ainsi réalisés (r² \ge 0.8 comme seuil de sélection) : les SNPs issus de la sélection lors du premier cycle ont servi de matrice pour effectuer le second cycle de sélection. Cela a permis de réduire la liste de 111955 à 6482 SNPs. Un troisième cycle a été effectué via l'exploitation des profils de DL de la population *1000 Genomes d'origine caucasienne*, répertoriée dans la base de données snipa (r² \ge 0.8 comme seuil de sélection) (Arnold, Raffler et al. 2015) (https://snipa.helmholtz-muenchen.de/snipa3/). Il a permis de ramener à 6129 le nombre de SNPs sélectionnés.

Dans la perspective d'optimiser la sélection des SNPs ayant un potentiel de prédiction de la mortalité non-cardiovasculaire, j'ai réparti de manière randomisée les individus de la population ADVANCE en deux groupes de tailles égales (2049 sujets dans chaque groupe). J'ai recherché ensuite, au sein du premier groupe de patients, des SNPs ayant des impacts sur la mortalité non-cardiovasculaire au sein de ADVANCE similaires à leurs effets sur leurs phénotypes respectifs dans la littérature (bêtas de même signe entre la littérature et ADVANCE) (figure 12). Cela a permis la construction d'un PRS de 3210 SNPs. Le test du PRS a été réalisé en 3 étapes au sein du deuxième groupe de patients :

1) Le calcul du modèle additif de chaque SNP pondéré par le coefficient de régression correspondant issu de la littérature, suivant l'équation :

Modèle additif pondéré =
$$(1 * A + 2 * B) * |bêta|$$

Figure 11. Mots-clés des phénotypes et des origines des populations utilisés pour l'extraction des intitulés des phénotypes à partir des études par GWAS et des métaanalyses répertoriées dans la base de données GWAS catalog (<u>https://www.ebi.ac.uk/gwas/</u>).

où **A** est la probabilité qu'a le patient d'avoir le génotype hétérozygote du SNP alors que **B** représente la probabilité que ce patient ait le génotype homozygote de l'allèle associé à la mortalité non-cardiovasculaire dans ADVANCE. **Bêta** est le coefficient de régression le plus élevé parmi ceux qui correspondent au SNP et rapportés dans les fichiers statistiques sommaires exploités dans l'étude ou dans la base de données *GWAS catalog*.

2) Les SNPs en relation avec des phénotypes identiques ou très proches ont été mis dans un même groupe de normalisation d'échelle (*scaling*). Neuf groupes de normalisation d'échelle ont été établis : 1) premier groupe \rightarrow comportant les SNPs associés taux plasmatiques des triglycérides, 2) un second groupe \rightarrow constitué de SNPs associés au phénotype binaire hypertriglycéridémie, 3) un troisième groupe \rightarrow renfermant des SNPs associés à l'IMC, 4) un quatrième groupe \rightarrow constitué de SNPs liés aux rapport tour de taille / tour de hanche, 5) un cinquième groupe \rightarrow comportant des SNPs liés au tour de taille, 6) un sixième groupe \rightarrow renfermant des SNPs associés aux taux de ALT, 7) un septième groupe \rightarrow formé de SNPs associés à la maladie du foie alcoolique, 8) un huitième groupe \rightarrow constitué de SNPs associés à la glycémie et 9) un dernier groupe \rightarrow renfermant de SNPs liés aux taux plasmatique de HbA1c.

La somme des modèles additifs pondérés des SNPs de chaque groupe de normalisation d'échelle a été calculée puis normalisée chez chaque individu afin d'obtenir un premier score. Ceci a été établi suivant l'équation :

Score phénotype = (M / S) * N

où **M** exprime la somme des modèles additifs pondérés des SNPs appartenant au même groupe de normalisation d'échelle, **S** est la somme des valeurs absolues des bêtas de ces polymorphismes et **N** est leur nombre.

Les SNPs ont été ensuite regroupés en 7 phénotypes et décrivent 4 groupes phénotypiques : l'obésité, la dyslipidémie, l'homéostasie glucidique et le profil stéatose du foie (tableau 4).

Enfin les SNPs appartenant à chacun des 4 groupes phénotypiques ont vu leurs scores précédemment normalisés additionnés chez chaque individu.

La prédiction par ce modèle des phénotypes « taux élevés de ALT » (> 45 UI/L), mortalité non-cardiovasculaire et mortalité cardiovasculaire a été testée.

Ces analyses ont mis en évidence un potentiel intéressant de prédiction du phénotype « taux élevés de ALT » (AUC : 0,60 IC% [0,557 – 0,640] et un peu moins en termes de prédiction de la mortalité non-cardiovasculaire 0,56 [0,510 – 0,611]. Le modèle a été encore plus faible dans la prédiction de la mortalité cardiovasculaire (AUC = 0,55 [0,496 – 0,595]) (tableau 5). L'addition au PRS des covariables « âge des patients », « sexe des patients », et « premier vecteur de la composante anthropogénétique des patients » a permis d'observer des potentiels de prédiction de 0,70 [0,65 – 0,75] de la mortalité cardiovasculaire, de 0,69 [0,66 – 0,73] du phénotype « taux élevés de ALT » et de 0,66 [0,61 – 0,70] de la mortalité non-cardiovasculaire (tableau 5).

L'analyse a révélé que le groupe phénotypique dont les scores sont les plus prédicteurs de la mortalité non-cardiovasculaire (AUC = 0.55 [0,50 - 0,60]) et du phénotype « taux élevés de ALT » (AUC = 0.60 [0,55 - 0,64]) est « profil stéatosé du foie ».

J'ai utilisé les scores de ce groupe phénotypique pour tester le potentiel de stratification du PRS. Cela a permis d'observer des valeurs plus élevées des niveaux de la mortalité noncardiovasculaire et une fréquence plus importante des individus avec taux élevés de ALT parmi les patients ayant les 2 quintiles les plus hauts des scores.

Figure 12. *Représentation des différentes étapes suivies pour la construction du modèle de prédiction de NAFLD et de la mortalité dans ADVANCE, via sélection ciblée des SNPs*

Le regroupement de ces deux quintiles et la comparaison avec le reste de la population a même mis en avant deux fois plus d'individus avec taux élevés de ALT (0,14 vs 0,07 ; P = $4,2 \ge 10^{-8}$) et une plus grande présence de la mortalité non-cardiovasculaire (fréquence : 0,09 vs 0,06 ; P = 0,01) dans le groupe à risque (figure 13).

Phénotype	Nombre SNPs	Groupe phénotypique
Tour de taille et TT/TH	2032	Obácitá
IMC	941	Obesite
Triglycerides	176	Dyslipidémie
Taux HbA1c	51	Homóostasia glusidiqua
Taux plasmatiques du glucose	6	nomeostasie gluciulque
Taux ALT	3	Drofil stástosá
Maladie du foie alcoolique	1	Promisteatose

Tableau 4. Phénotypes et groupes phénotypiques correspondant aux 3210 SNPsconstitutifs du PRS.

A noter que le score du groupe phénotypique « profil stéatosé du foie » est donné par 4 SNPs : rs6834314 (intergénique, proche de l'extrémité 5' du gène *hydroxysteroid 17-beta dehydrogenase 13*), rs2954021 (intergénique) ainsi que rs738409 et rs16991158, situés dans les troisièmes exon et intron du gène PNPLA3, respectivement (tableau 6).

Les SNPs rs738409 et rs16991158 ont été associés dans ADVANCE aux taux plasmatiques de ALT (P = 6.0 x 10^{-10} et P = 2.0 x 10^{-5} , respectivement) et à la mortalité non-cardiovasculaire (P = 5,2 x 10^{-5} et P = 7 x 10^{-6} , respectivement). Le retrait des deux SNPs du PRS entraine la perte de sa capacité de prédiction du phénotype « taux élevés de ALT » (AUC = 0,53 [0,49 – 0,57]) et de la mortalité non-cardiovasculaire (AUC = 0,54 [0,49 – 0,59]).

Afin de mieux comprendre ce potentiel de prédiction, j'ai testé le modèle sur les phénotypes qualitatifs dans ADVANCE. Cela a mis en avant une capacité de prédiction des évènements de l'infarctus du myocarde (AUC = 0.58 [0.52 - 0.64] et des évènements

de l'AVC (AUC = 0.56 [0,50 - 0,62]). Après ajustement par le sexe des patients, leurs âges et le premier vecteur (PC1) de leur composante anthropogénétique, les AUC des évènements de l'infarctus du myocarde et de l'AVC ont été de 0,62 [0,56 - 0,68] et 0,64 [0,58 - 0,70], respectivement.

						Groupe	s phénotypiques	s (P)	
Phénotype		AUC	IC S	5%	Homéostas	ie Obésité	Dyslipidémie	Profil stéatosé	du foie
					glucidique	2			
Taux élevés de ALT		0,60	0,557	0,640	0,60	0,21	0,63	8,93E-07	
Mortalité non-cardiova	asculaire	e 0,56	0,510	0,611	0,55	0,45	0,46	0,01	
Mortalité totale		0,55	0,518	0,591	0,53	0,27	0,18	0,01	
Mortalité cardiovascul	aire	0,55	0,496	0,595	0,77	0,44	0,24	0,27	
				Group	pes phénotypique	s (P)	(Covariables (P)	
Phénotype	AUC	IC 95%	Homéostasie	Obésité	Dyslipidémie	Profil stéatosé du foie	Age	Sexe	PC1
			glucidique						
Taux élevés de ALT	0,69	0,66 - 0,73	0,76	0,29	0,66	2,94E-07	2,57E-09	8,13E-06	0,11
Mortalité non-cardiovasculaire	0,66	0,61 - 0,70	0,39	0,60	0,49	0,01	3,41E-08	0,001	0,30
Mortalité totale	0,68	0,65 - 0,71	0,37	0,53	0,23	0,01	9,46E-20	0,001	0,001
Mortalité cardiovasculaire	0,70	0,65 - 0,75	0,59	0,73	0,31	0,25	3,14E-14	0,12	3,31E-04

Tableau 5. Potentiel de prédiction du phénotype « taux élevés de ALT » et des mortalités totale, cardiovasculaire et non-cardiovasculaire par le PRS ajusté ou pas par l'âge, le sexe et la composante anthropogénétique des patients.

L'analyse a révélé que la prédiction des évènements de l'infarctus du myocarde est déterminée par les scores des groupes phénotypiques « Obésité » et « Dyslipidémie » (AUC = 0,58 [0,516 - 0,642]) alors que les évènements de l'AVC sont déterminés en grande partie par les scores du profil phénotypique « homéostasie glucidique » (AUC = 0.56 [0.499 - 0.619]).

Figure 13. Stratification par le PRS (deux quintiles supérieurs vs autres quintiles des scores du groupe phénotypique « profil stéatose hépatique ») des phénotypes « taux élevés de ALT » et mortalité non-cardiovasculaire. L'ajustement des valeurs a été effectué par l'âge, le sexe et le premier vecteur (PC1) de la composante anthropogénétique des patients.

Pour attester de l'intérêt du PRS, j'ai recherché une plus-value en termes de marquage en comparaison avec la prédiction apportée par les paramètres clinico-biologiques correspondants au sein de ADVANCE. Les valeurs de tour de taille, d'IMC, et les taux de triglycérides, de HbA1c, de glucose et de ALT pris ensemble ont un potentiel de prédiction de la mortalité non-cardiovasculaire AUC de 0,60 [0,55 - 0,65] alors que l'addition du PRS à ces données clinico-biologiques amène le potentiel de prédiction à 0,62 [0,57 - 0,67]. Ce gain en potentiel de prédiction n'a pas été toutefois significatif (P = 0,48).

SNP	Chromosome	Gène	Phénotype associé
			(données
			de la littérature utilisées)
rs6834314	4	Intergénique	Taux de ALT
rs2954021	8	Intergénique	Taux de ALT
rs16991158	22	PNPLA3	Maladie du foie alcoolique
rs738409	22	PNPLA3	Taux de ALT

 Tableau 6. SNPs constituant le groupe phénotypique « profil stéatose hépatique » du PRS

B-2- Criblage dense du locus PNPLA3-SAMM50

L'effet important des variations au sein du locus PNPLA3-SAMM50 sur le potentiel de prédiction des modèles que j'ai construits et son association à NAFLD et à ses composantes largement rapportée dans la littérature (Romeo, Kozlitina et al. 2008, Kotronen, Johansson et al. 2009) m'a motivé à explorer ce locus plus en détail.

Des études par GWAS réalisées avant mon arrivée au laboratoire, au sein de la population ADVANCE, ont permis de mettre en avant l'association ($P < 5.0 \times 10^{-8}$) d'un panel de SNPs, situé au niveau du locus PNPLA3-SAMM50, aux taux plasmatiques de l'enzyme ALT en ligne de base. Ce locus a été la seule région du génome associée à un niveau supérieur au seuil GWAS (figure 14).

Figure 14. *Manhattan-Plot du GWAS des taux plasmatiques de l'enzyme ALT en ligne de base dans la population ADVANCE*

Les analyses par GWAS ont également mis en avant l'association du locus PNPLA3-SAMM50 au phénotype « mortalité globale » bien qu'avec un niveau de signification inférieur au seuil établi pour GWAS (association la plus significative : SNPs rs66933804 ; $P = 2,0 \times 10^{-5}$ puis rs1977081 ; $P = 4,4 \times 10^{-5}$). Le locus a été plus faiblement associé à la mortalité d'origine cardiovasculaire (association la plus significative pour rs146570360 ; P = 0,007) (figure 15).

Figure 15. *Manhattan-plots des phénotypes A) « mortalité totale », B) « mortalité par causes non-cardiovasculaires » et C) « mortalité d'origine cardiovasculaire » au sein de la population ADVANCE.*

Motivé par ces résultats et afin de mieux caractériser le locus et sa relation avec la variation des taux de ALT, la mortalité et les composantes métaboliques qui y sont impliquées, j'ai analysé plus en détail les profils clinico-biologiques des patients de ADVANCE en fonction des variations de SNPs situés à différents endroits de PNPLA3-SAMM50.

Des données de GWAS disponibles dans le laboratoire ont été exploitées afin d'extraire des SNPs au sein du PNPLA3-SAMM50 en association avec des phénotypes cardiovasculaires, rénaux et de métabolisme glucidique. Deux-cent vingt et un (221) SNPs significativement associés (P < 0,05) à au moins un de ces phénotypes ont été utilisés pour établir une carte des associations phénotypiques au locus (figure 16). A noter que l'utilisation de l'outil *Variant Effect Predictor (VEP)* de la base de données *Ensembl* (https://grch37.ensembl.org/Homo_sapiens/Tools/VEP) a permis de constater qu'environ 1% des polymorphismes sont codants non-synonymes.

Figure 16. Cartographie de l'association de 221 SNPs du locus PNPLA3-SAMM50 aux taux de ALT et à la mortalité globale ou cardiovasculaire au sein de la population ADVANCE en présence ou pas du traitement intensif hypoglycémiant.
L'analyse a permis d'observer des associations génétiques fortes entre une grande partie des SNPs et les taux plasmatiques de ALT. Elle a également mis en avant l'association d'une bonne partie du locus à la mortalité globale alors que l'association à la mortalité cardiovasculaire a été rare et plutôt faible (figure 16). Cela démontre que le locus décrit la mortalité d'origine non-cardiovasculaire. Ces données démontrent donc la capacité de PNPLA3-SAMM50 à mettre en relation les variations des taux de ALT et la mortalité.

Afin de mieux apprécier le résultat, j'ai décidé d'effectuer un criblage de la région génomique. La fixation d'un seuil P $< 5 \times 10^{-3}$ a mis en avant 112 SNPs situés dans le locus significativement associés à la mortalité non-cardiovasculaire (tableau 7).

Le SNP rs66933804 a été écarté de l'analyse vu qu'il n'est pas répertorié dans la base dedonnéesBioMart(versionGrCh37)(https://grch37.ensembl.org/biomart/martview/1fea0111f3ed65774d32f3befd655192).

Le traçage du profil de DL entre ces SNPs (indice D') a mis en avant un grand bloc de DL englobant cette région génomique (figure 17).

Dans le but de caractériser le locus à travers un nombre réduit de polymorphismes, j'ai sélectionné des SNPs tags en fixant le seuil de r^2 à 0,8. Ce seuil permettra de sélectionner un nombre minimum de SNPs capables de capturer une information génétique suffisante au sein de PNPLA3-SAMM50. Il représente d'ailleurs le niveau de DL au-delà duquel deux SNPs sont considérés en fort DL (HapMap 2005).

P Position Localisation 8807 4523555 PPPLA3 intron 2 8809 452373 PNPLA3 Econ 3 977207 4523555 PSPL23 intron 2 9809 4523555 PSPL23 intron 3 9809 4523555 PSPL23 intron 3 9809 4523555 PSPL23 intron 3 9809 452355 PSPL23 intron 3 9809 452355 PSPL23 intron 3 9809 452355 PSPL23 intron 3 9809 452370 PSPL23 intron 3 99115 452370 PSPL23 intron 3 9922 442772 PSPL23 intron 4 99115 453273 PSPL3 intron 4 99115 453273 PSPL3 intron 4 99116 453277 97200 99116 453277 97200 99116 453371 97201 99126 4533174 97201 97208 4533174 97201 97208 4533174 9722174 97216		1	
73807 4422355 PMPLA1from 2 73808 442377 PMPLA55:on 3 73808 442377 PMPLA55:on 3 73808 442375 PMPLA55:on 3 73808 442375 PMPLA55:on 3 73808 442355 PMPLA51:on 3 73808 442392 4459:02 73807 4429:02 59:1930 449:192 73808 4429:25 19:192 4429:192 73808 4429:25 19:192 4429:192 73818 4429:12 1429:192 1429:192 73970 4439:12 1429:192 1429:192 73970 4439:12 1429:192 1429:192 73970 4439:12 1429:192 <	1P	Position	Localisation
2840 4423727 PVPLA3 Exon 3 2420131 4435556 2420132 4435556 2420132 4435556 2420132 4435556 2420132 4435556 2420132 4435566 2420132 4435566 2420132 4435566 2420132 4435567 2420132 4435566 2420132 443569 2420132 443569 2420132 443569 2420132 443569 2420132 443569 2420132 443569 2420132 443569 2420132 443569 2420132 443569 242013 443569 242013 443569 242132 443579 242132 443579 242132 443579 242370 443589 242371 442579 242370 443589 243371 443579 243379 <	738407	44323955	PNPLA3 Intron 2
22406 4420720 PPPLA 5 kon 3 22407 4420450 10065651 20106507 4325480 10065651 20106507 4325480 435566 20106507 4325480 435566 20106507 4325561 1561242 20106507 4325561 1561242 20108507 4325760 15691246 20108507 432570 15691263 20108507 432570 15691263 20108507 432570 15691263 20108507 432570 15691263 20108507 432570 1576424 445082 20108507 432779 4431463 1576443 445082 2010701 432779 1267734 443146 445082 2010701 432779 1267744 4460812 1614307 443140 2010701 432779 126774 443146 1614307 16121674 443907 2010701 432379 17423774 437946 1722774 <t< td=""><td>738409</td><td>44324727</td><td>D101457</td></t<>	738409	44324727	D101457
522000 12001037 44235580 12005007 4425556 1200507 4425556 1200507 4425556 1200507 4425556 1200507 4425556 1200507 4425556 1200507 4425556 1200507 442577 1200507 442577 1200507 442577 1200507 442577 1200507 442577 1200507 442577 1200507 442577 1200507 442577 1200507 442577 1200708 4430001 1200708 4430001 122577 4430021 122577 4430021 122577 4430021 122577 4430021 122577 4430021 122577 4430021 122577 4430021 122577 4430021 123577 4430021 123577 44300021 123577	738409	44324730	PNPLA3 Exon 3
14/4.07 432655 246510 422556 246510 422557 246804 422556 1575647 42558 1515925 42558 1515925 42558 152595 42702 152595 42702 152595 42702 152595 42702 1527980 1425257 1527980 1425277 152990 142528 152990 1425277 152990 142528 152990 142528 152990 142528 15290 142590 14258 15290 14258	50400	44324730	
201016527 4232580 1248400 4232556 1248400 4232556 1248400 4232556 1248400 4232576 1248400 4232577 124850 4232577 120552 4232570 120552 4232570 120552 4232770 120552 4232770 120552 4232770 120552 4232770 1206113 4232770 1207203 4230277 1208104 4232770 1208105 4232770 1208106 4232770 1208107 4232770 1208108 4243277 1208108 423277 1207308 4433017 1207308 4433017 1207308 4433018 1207308 4433018 1207308 4433018 1207308 4433018 1207308 443218 1207308 443218 1207308 443218 12117 443228 12117	3/4/207	44324855	-
1248500 4425516 5076440 4535801 1248400 4425563 1057647 4435807 1248400 4425573 1057647 4435807 124839 4432507 1071631 4438007 1269564 4432570 107278 4436007 139057 4427070 107288 4436007 139058 442770 1073808 4436007 139057 4427070 1073886 4436381 139058 442770 1073886 4436381 1397784 4432070 10737886 4436817 1297780 4430207 1084726 44368167 1297780 4430207 10917387 4437970 1297780 4430307 10917387 44379807 129784 4433813 129277 4437982 129785 4437982 1022577 4437982 129784 4439383 122776 4437982 129174 4439847 122847 4439847 129178	201016637	44325480	1
124800 442556 124800 442557 124800 442527 124800 442527 109017 4328700 13005 44270 13005 44270 13005 442771 128838 435887 128838 435887 128838 435870 13005 442771 128970 432870 13005 442771 128970 4428388 128970 4428388 128970 4428388 128970 4428388 128970 4428388 128970 4429373 128970 4429373 129778 4429318 129778 4429318 128486 4438317 17978 4429318 128486 4439317 128486 4439317 128486 4439317 128486 4439317 128486 4439317 128486 4439317 128486 4439317 128486 4439317 128486 4439818 129786 4439341 129786 44393416 129786 44398416	12485100	44325516	
139890 442551 139890 442527 13995 442527 13995 442527 13995 442527 13995 442527 13995 442527 13995 442527 13995 442527 13995 442527 13995 442527 13995 442527 13995 442527 13997 442527 13997 442527 13997 442527 139970 443021 139770 443021 139780 4435231 197780 443031 197780 443031 197780 443318 19783 443181 19783 443318 19783 443318 19783 443318 19783 443318 19783 4439318 19783 4439318 19783 4439318 1983346 443931	12484801	44325565	1
12.00000, 12.0000 PAPIA3 Intron 3 100000, 12.0000 432827. 10000, 12.0000 432827. 10000, 12.0000 432827. 10000, 12.0000 4432827. 10000, 12.0000 4432827. 10000, 12.0000 4432827. 10000, 12.0000 4432827. 10000, 12.0000 4432827. 10000, 12.0000 4432827. 10000, 12.0000 4432827. 10000, 12.0000 4432827. 10000, 12.0000 4432827. 10000, 12.0000 12.0000 10000, 12.0000 12.0000 10000, 12.0000 12.0000 10000, 12.0000 12.0000 10000, 12.0000 12.0000 10000, 12.0000 12.0000 10000, 12.0000 12.0000 10000, 12.0000 12.0000 10000, 12.0000 12.0000 10000, 12.0000 12.0000 10000, 12.0000 12.0000 10000, 12.0000 12.0000 10000, 12.0000 12.00000 100000, 12.0000	12/18/1000	1/1325621	1
 1.488290 4.45295 4.452950 4.452070 1.00051 4.452070 1.02052 7.452070 1.02152 7.65430 1.02052 7.452070 1.02152 7.65430 1.02052 7.452070 1.02152 7.65430 1.02052 7.452070 1.02152 7.654430 1.02052 7.452070 1.02152 7.654430 1.02152 7.7578 1.02152 7.65453 1.02152 7.65453 1.02152 7.7578 1	101009	444323031	-
6625562 44236272 PNPLA3 Intron 3 130053 4423701 15764484 4480487 130054 4423701 152384 44830487 130055 44237179 15386484 4480487 130255 4423719 15378680 4453393 130555 44237273 153787800 453393 1224370 4323708 1722397 4237377 1234384 4433023 1722397 4237377 1977084 4433023 1722397 4237575 197784 4433023 1722397 4237575 197784 4433304 1722377 4237897 199783 4433315 1722377 4237897 199783 4433316 1722492 437976 199783 4433316 1722492 437976 199783 44338767 1722492 437976 199783 44338767 17231378 4380767 1221137 4433178 17231378 4380767 1221136	12483959	44325996	
1100021 4432700 100021 4432701 1000121 1576442 44361497 1000121 1576442 44361497 1000121 1576442 44361497 1001121 1576442 44361497 1248170 4432771 15766463 44361497 1248174 4432870 172281277 4430017 1270781 4433012 172281277 44300184 127081 4433313 172281295 4437185 12728134 4433815 1822877 4430017 1284866 4433313 1822877 4430017 1284864 443315 1822877 4430176 121815 4433313 1822877 1822677 4430807 1212815 4433387 1822677 4430807 1212815 4433387 1822677 4430807 122182 433377 1822777 4430807 122183 4433847 1822677 4430807 122183 4433847	9625962	44326272	PNPLA3 Intron 3
13052 4432702 1305115 4432770 130525 4432770 130525 4432770 130727 4432970 1307271 4432970 12729307 432370 127020 44339070 127020 4433070 127020 4433070 127020 4433070 127020 4433020 197708 4433020 197708 4433151 197808 4433151 197808 4433151 197808 4433151 197808 4433151 197808 4433151 197808 4433151 197808 4433151 197808 4433151 197808 4433176 197308 4433207 197218 4433020 197318 4433077 197308 443327 197308 443327 197308 443327 197318 4433827	11090617	44326700	
10001115 44321120 10005126 44321121 1000526 44321121 1000111 44326215 1000111 44326215 100111 44326215 100111 44326215 100111 44326215 1017020 4433012 1017020 4433012 1017020 4433012 1017020 4433012 1017020 4433012 1017020 4433012 1017020 4433012 1017020 4433012 1017020 4433012 1017020 4433012 1017020 4433012 1017020 4433012 1017020 4433012 1017020 4433025 1017020 4433025 1017020 4433025 1017021 4433077 1017031 4433077 1017031 4433077 1017031 4433077 1017031 4433077 1017031	139052	44327012	1
10001108 442/173 10001108 4420120 10240100 4420200 10240100 4420200 2076211 4420300 2076211 4420300 2076211 4420300 2076211 4420300 2076211 4420300 2076211 4420300 1977080 4430301 1977081 4430301 1977081 4430301 1977081 4430301 1977081 4433016 1224846 4430315 1325858 443177 1305868 443177 1305868 443177 1305868 443177 1305868 443177 1305868 443177 1305867 4431789 1305868 443177 130587 433178 1303587 4431890 122175 4433804 12218 4439418 1303581 4431842 1303581 44318	10001150	44327012	-
 338552/4 442/19/2 4428277 4428278 4428278 157784 4428078 4428278 157784 4428078 157784 4428078 157784 4428078 157784 4428078 157784 4428021 152784 4428021 1528464 443021 1528484 4433178 1538344 44331815 1538344 44331814 1538344 44331814 1538344 44331814 1528424 4437956 1528427 4437956 1528428 4437957 15216785 4437958 1528428 4437957 15216785 4438079 152168 <l< td=""><td>\$16991158</td><td>4432/1/9</td><td>-</td></l<>	\$16991158	4432/1/9	-
 1248/070 4432773 1238/370 4432773 1232374 4428770 1232375 423078 1232375 433012 123788 433031 1238/384 433313 1238/384 4333151 1238/384 4333151 1238/384 4333161 1238/387 433317 1238/387 433318 1238/387 433318 1238/387 433318 1238/387 433318 1238/38 433318 1	s36055245	44327192	-
4423173 4432076 5220743 4432076 5220433 4432076 5220433 4432076 517780 4433018 5197780 4433018 519780 44330176 519780 44331776 519780 44331776 5183346 44331776 5183346 44331776 5183346 4332177 5183346 4332177 5183346 4332176 5221135 44332176 5222020 44332070 5222021 44332070 5222022 4433277 522022 4433277 52027265 44333370 52027265 44333370 52027265 44333479 52027265 44333479 52027265 44333479 52027265 4433247 5201512 4433246 520152 4433246 520152 4433543 520152 4433543 520153	s12484700	44327273	
2076211 4432076 PNPIA3Intron 4 1977080 4433031 PNPIA3Intron 4 1977084 4437379 6437372 1284464 4430213 rs.23825 4437392 197085 44331313 rs.23876 4437392 197085 44331313 rs.23876 4437392 198386 44331313 rs.23876 4437990 188386 44331314 4438007 rs.239774 4438002 128137 44332750 rs.239853 rs.239853 4438002 rs.239774 4438002 128137 44332763 rs.239853 rs.239854 4438002 rs.239774 4438002 rs.239787 4438002 rs.239787 4438002 rs.238784 4438022 rs.27875 4438023 rs.27875 4438023 rs.27875 4438023 <t< td=""><td>4823173</td><td>44328730</td><td></td></t<>	4823173	44328730	
224433 44320275 197080 4330138 197080 4330138 197080 4330138 197080 4330138 197080 4333113 197080 4333113 197080 4333113 197085 44331513 193565 4333114 183340 44331513 193565 4433778 193565 4433178 183340 4433145 183340 4433747 221135 4433740 1922422 4437740 193565 4433270 1922422 4437740 1937804 4438017 1937804 4438017 1937804 4438017 1937804 4438142 193781 4438042 19782 4438142 193828 433344 193914 4438142 193914 4438142 193154 4438142 193174 4438142 193174 4438142 193174 44	2076211	44329078	
1433001 PNPIA3 Intron 4 1977081 4433013 1977081 4433013 1977081 4433013 1977081 4433013 1977081 4433013 1977081 4433013 1977081 4433013 1977081 4433013 1977081 4433014 1977081 4433013 1977081 4433014 1977081 4433014 197834 4433031 1977081 443304 197835 4433077 197837 4438003 1022947 433976 1027977 4433026 1027977 4433077 1027807 4433076 1027807 4433076 102726 4433176 102727 4433837 102728 4433976 102738 4438376 102728 4433837 102728 4433837 102728 44393182 102738 4	2294433	44329275	
12/1020 4437405 12/2011 4437405 12/2011 4437405 12/2011 4437405 12/2011 4437405 12/2011 4437405 12/2011 4437405 12/2011 4437405 12/2011 4437405 12/2011 4437405 12/2011 4437405 12/2011 4437405 12/2011 4437405 12/2011 4437405 12/2011 4433740 12/2011 4433740 12/2011 4433740 12/2011 4433470 12/2011 4433470 12/2011 4433470 12/2011 4433470 12/2011 4433402 12/2011 4433402 12/2011 4433402 12/2011 4433402 12/2011 4433402 12/2011 4433402 12/2011 4433402 12/2011 4433402 12/2011 4439106 12/2011 4439106	1077090	44220021	PNPIA3 Intron 4
197.103. 44337780 199703. 44337781 199703. 4433178 183344. 44331815 183344. 44331815 183344. 44331815 183344. 44331815 183344. 44331815 183344. 44331815 183344. 44331815 183344. 4433257 122113. 4433257 122113. 4433257 122227. 44332878 120720. 44333778 120720. 4433378 120720. 4433378 120720. 4433378 120720. 4433378 120720. 44333878 120720. 44333878 120720. 44333878 120720. 4433847 120720. 4433847 120720. 4433840 1752441. 4438827 12157. 4433840 1752443. 443924 12157.77 4433840 122157	1077001	44530031	FINE DAD INU UN 4
1244466 4432013 1395634 443178 1395634 443178 139384 4432178 183349 4431813 1228135 4432277 1443283 1432243 1432243 1432243 1432243 1432243 1432243 1432243 1432243 1432243 1432243 1433445 17567 1433845 17567 1433845 17567 1433845 17567 1433845 17567 1433845 175787 1433845 17587 1433845 175281 143854 17587 1433845 17587 14388134 17281213 1433545 17281213 1433545 17281213 1433545 17281213 1433545 17281213 1433545 17281213 1433545 17281213 1433545 17281213 1433545 17281213 1433545 17281213 1433545 17281213 1433545 17281213 17587 1438134 17281213 17587 1438134 17281213 17587 1438134 17281213 17587 1438134 17281213 17587 1438134 17281213 172813 17587 1438134 172813 17587 1438134 172813 17587 1438134 172813 1	1977081	44330128	
1997030 44331513 1997030 44331513 183346 44331815 183346 44331815 183346 44331835 183348 44331835 183348 44331835 183348 44331845 183348 4433827 2251137 44332437 2251137 44332570 2251137 44332570 2251137 44332787 3678014 44330177 1722577 44332078 3678021 4433277 3678021 4433277 3678021 4433278 3678021 4433278 3678021 4433330 17576441 4433842 201726 44333459 202020 44333459 202176 4433459 228178 4433459 228178 4433459 228178 4433459 228179 4433459 228179 4433459 228179 4433459 228179 4433459	12484466	44330213	
1395658 4431778 188348 4431815 188348 44331815 188348 44331815 188348 44331845 2281128 44332477 2281128 44332477 2281128 44332477 2281128 44332477 2281128 44332477 2281128 44332878 2075207 44338370 2075207 44338370 2075206 44333370 2075207 44338370 2075207 44338370 2075206 44338370 2075207 44338370 2075207 44338370 2075206 44338370 2075207 443383470 2075207 44338347 2075207 44338347 2075207 44338486 107112 44338486 2075207 44338486 2075207 44338486 2075207 44338486 2075207 44338486 2075207 44338466 1039121 44354163	1997693	44331513	
100000 14331613 1183344 44331613 1183344 44331613 1183344 44331613 1183344 44331613 1183344 44331613 1183344 44331613 1183344 44331613 1183344 44331613 1183344 4433163 1183344 4433163 1183344 4433163 118374 4433263 118374 4433263 118374 4433263 1183757 4433473 118376 44333370 1183776 44333470 1183376 44333470 1183376 44333470 1183376 4433474 1183376 4433474 1183376 4433474 1183377 4433474 1183377 4433474 1183373 4433474 1183274 4433452 1183274 4433452 1183284 4433526 11817	13056638	44331778	1
 Hab3249 Hab3349 Hab3344 Hab3344 Hab3441 Hab34441 Hab34441 Hab34441 Hab34441 Hab34441 Hab34441 Hab34444 <	1002240	44221045	1
1883349 44331943 228113 4332437 228113 4332437 228113 4332433 228113 4332433 228113 4332433 228113 4332433 228114 4332673 3087591 4332673 207206 433347 207206 433347 207206 433347 207206 433347 207206 433347 207206 433347 207207 4333447 202112 4333447 202112 4333447 202205 4433447 202206 4333447 202207 4333447 202208 433442 1690107 433442 1690117 433541 202208 433442 1690117 433541 2027308 433442 1690117 433541 101002 433646 2027308 433743 433743 433442 110022 433541	51883348	44331815	-
2281133 44332477 2281135 4333250 2281135 4333250 207200 44332878 38073911 4333270 207200 44333287 207200 4333370 207200 44333470 207200 44333470 207200 44333470 207200 44333470 207200 44333470 2080019 40333400 208011 44333480 208012 44333480 208012 44333480 208012 44333480 208012 4433460 2281123 44334460 2281234 44334460 1823177 4433460 1823171 4433460 1823171 4433460 1832134 433460 1910125 4433460 1921175 4433460 1921175 4433460 1931284 4434102 1930285 4433610 191022 433474 1930500 4433609	s1883349	44331943	
2281313 44332493 rs12163276 2281325 44332570 rs12163245 44380767 2281325 44332570 rs2163245 44380767 23072907 44333289 rs232109 44381240 2072905 4433370 rs232310 4438529 2072905 44333470 rs232309 4438529 2072905 44334470 rs282126 44389047 2280010 44334452 rs282126 44390474 rs282127 44334462 rs282126 4439049 rs282128 44335453 rs282126 4439049 rs282128 44335453 rs282126 4439049 rs282129 44335453 rs282126 4439049 rs28129 44335453 rs28176 44390567 2281293 44335453 rs281762 44390567 2281294 44335453 rs281765 4433606 101002 4433606 rs281765 44336067 2290915 44336459 rs281765 44336067 2290915 4433606 rs28176 rs28176 rs8176 <td>s2281138</td> <td>44332477</td> <td>DNDLA2 F</td>	s2281138	44332477	DNDLA2 F
2281135 44332570 2072907 44332573 38079911 44332878 38079912 443332878 38073927 443332878 2072050 44333278 2072050 44333691 2072050 44333691 2072050 44333691 2072050 44333691 2072051 44333691 2072051 44333691 208013 4433840 1433968 rs282108 4433475 4438482 202115 44339019 2022116 44339019 2022117 44334486 4433471 44334486 4433471 44334486 1010021 4433619 2011023 4433619 2011023 4433619 2011024 4433714 1010022 4433619 211047 4433619 211047 4433619 2110428 443171 4433619 rs204917 2124917 4434002 2294915 4434002	s2281137	44332493	PINPLA3 Intron 5
1322107207 4333253 3207207 4333253 3207207 4333253 3207207 4333289 207206 4333172 207207 4333347 3207206 4333470 5207205 4333347 5207205 4333470 5207205 4333470 5207205 4333470 5207205 4333470 5207205 4333470 5207205 4333470 5207205 4333470 5207205 4333470 520910 4333470 520910 4333400 52091175 4334420 5211234 4334420 5211234 4334420 5211234 4334420 5211234 4334420 5211234 4334420 5211234 4334420 5211234 4334420 5211234 4334420 5211234 4334420 5211234 4334420 5211234 4334420 5211254 4334420	\$2281125	44332570	1
SAU/2.W 4433.0253 SAU/2.W 4433.0278 SAU2911 4333.0278 SAU2021 4433.0278 SAU2021 4433.0278 SAU2021 4433.0278 SAU2021 4433.0278 SAU2021 4433.0278 SAU2021 4433.028 SAU20204 4433.028 <	-2072007	44000055	1
32437941 44332878 nc822110 44381482 32003827 44332889 nc7857 44338370 3207205 44333479 st338344 nc7857 44338337 3207205 44333945 nc7857 44338337 32070207 44333945 nc7857 44338037 3201512 4433452 nc822137 4433452 3202176 44334486 nc241351 nc382734 4439123 3202175 4433452 nc241351 4439123 nc2413514 4439123 3202123 4433452 nc2413514 4439402 nc207308 4439402 3202123 44335453 nc207308 4439402 nc207308 4439402 3202123 44335453 nc207308 4439402 nc207308 4439402 3202124 44335453 nc207308 44335453 nc207308 4439402 3202174 44336038 nc207308 4439402 nc207308 4439402 3202124 44339123 nc2014371 nc2014371	52072907	44332653	
38038272 4433289 n.207306 4433289 207206 44333470 44386281 207207 44333470 n.5767 44386281 207207 44333470 155764434 44388371 200019 44333564 443834621 155764434 44388371 201202 44333459 n.827385 44380641 5281283 44390547 2028019 4433459 n.828178 4439186 15281294 44390547 20281203 44334553 n.2281293 4439186 n.2281293 4439186 20281293 44334553 n.2383406 n.2281293 4439019 n.2073080 4391906 2023124 44335453 n.2383406 n.2281293 4439543 n.2073080 4391906 2010022 4433630 n.10002 4433630 n.2073080 N.97 20380124 443390267 n.10002 443390267 N.97 N.97 2039124 4434029 N.97 N.97 N.97 N.97 N.97	s34879941	44332878	
\$207206 44333170 \$207205 44333479 \$208000 44333479 \$289600 44333479 \$289600 44333486 \$401512 44334476 \$289600 443334486 \$4823177 44334476 \$4823177 44334476 \$4333511 44334476 \$4823177 44335416 \$16991175 44335416 \$3435124 44336421 \$101023 44336462 \$2281293 44334662 \$101023 44335416 \$34357690 44335416 \$343578930 44335416 \$343578930 44336495 \$1010023 44336495 \$1010024 4336957 \$2284193 44336495 \$101023 44336495 \$101023 44336495 \$101023 44336495 \$101024 \$1035057 \$1035057 4434167 \$1035057 4434167 \$1035907 \$104771 <	s36038527	44332889	
207207 4433370 4433021 207207 4433370 155764/1 207205 4433364 4433837 5280019 4433364 155764/1 2280012 44333064 1438837 5280012 44333064 15382738 44388817 528012 4433452 5214357 4439108 5423177 4433452 5214357 4439109 522123 4334352 5214357 4439109 52017 44335453 5214357 4439019 5201724 44335453 52073080 44339109 52073081 44335453 52073080 4339402 52073081 44335453 52073080 4339402 52073081 4433653 52073080 4339402 52073081 4433655 52073080 4339402 52073081 4433605 52073080 52073080 5204315 44330024 520895 520895 5204315 44330024 520895 5204315 4434025 520895 5204315 4434025 520891 520554 4434128 5214434105 5205405 4434165 520891 5205415 4434025 52089	s2072906	44333172	
202205 4433479 2380010 44333945 2380010 44333945 22801512 44333465 2482177 44334476 2482177 44334476 2482177 44334476 528000 44334462 5281293 44334462 5281293 44334462 5281293 44334462 5281204 4433531 53852164 4433508 5101002 4433508 5101002 44336657 520653 4339733 5381622 44339657 520653 4339753 5209615 44339753 5381062 4433773 5482116 4434054 5209615 44339753 5381622 44331193 520416 4434026 5209416 4434129 5209416 4434129 5209416 4434129 5209416 4434129 5209416 44341295 5209416 </td <td>s2076207</td> <td>44333370</td> <td>1</td>	s2076207	44333370	1
32021 2000 443333694 5280610 44333364 5280610 44333396 52806200 44333968 52806200 44333968 52806200 44333968 52806200 44333968 52806200 44339459 52821223 44334476 52821223 44334420 52821223 44334529 52821223 44335429 52821223 44335429 52821223 44335429 5282123 44335429 5282123 44335420 5282123 44335420 5282123 44335420 5282123 44335420 5283302 4433554 5201022 44335496 57017047 4339526 5284915 4434902 5294915 4434902 5294915 44340904 5294915 4434153 5294915 4434153 5294915 44342956 510055574 4434155	= 207200E	44323470	1
5.4390.012 44333946 \$22810152 44333468 \$4823177 44334468 \$4823177 44334486 \$4823177 44334486 \$4823178 44334486 \$4823178 44334481 \$4823178 44334481 \$4335124 44334481 \$100127 44335453 \$2073081 44335453 \$2073081 44335453 \$2073081 44335453 \$2073081 44335453 \$2073081 44335453 \$2073081 44335453 \$2073081 44335453 \$2073081 44335453 \$2073081 44335453 \$2073081 44335453 \$2073083 4433753 \$20631304 4439022 \$433114 4433092 \$2294915 4430402 \$433114 \$4331986 \$1305527 44341986 \$2294915 44341666 \$13055843 \$4431143 \$1205841 \$14342959 </td <td>200/2305</td> <td>44533479</td> <td>1</td>	200/2305	44533479	1
s2401512 4433345 2289600 44333968 4433476 44334476 44334476 44334487 5423178 44334529 52281293 44334529 52281293 44334529 52281293 44334529 52281293 44334529 52281293 44334529 52281293 4433546 53437630 4433543 535621602 4433531 53437630 4433574 51010022 4433630 51010022 4433649 57317649 4439903 502633 4433753 507614 4439923 PNPLA3 Intron 7 52294915 4430904 52294915 443166 FNPLA3 Intron 8 5100580 4431156 FNPLA3 Intron 9 5200451 443225 FNPLA3 Intron 9 5200451 4434295 FNPLA3 Intron 9 520441 4434717 5100588 4434771 5100588 4434771 5100588 4434771 5100588 4434771 5100588 4434771 5100588 4434771 51005488 4434771 51005488 4434771 51005488 4434771 51005488 4434771 51005488 4434771 51005488 4434771 51005484 4434713 51005484 4434713 576404 4434713 576404 4434713 576404 4434713 576404 4434713 576404 4434733 576404 4434733 576405 4434286 576404 4434733 576404 4434733 576404 4434733 576404 4434733 576404 4434733 576404 4434733 576404 4434733 576404 4434733 576405 4434785 576404 4434725 57644344375 576404 4434725 576444 4434725 576444 4434725 576444 4434725 576444 4434725 576444 4434733 576444 4434733 576444 4434733 576444 4434733 57644443473 576444 4434733 576444 443473 576444 4434733 576444 4434733 576444 4434733 576444 443473 576444 4434733 576444 4434733	s2896019	44333694	-
\$289000 44339486 \$4623176 44334486 \$4623176 44334486 \$24823177 44334482 \$218128 44334821 \$2281293 44334821 \$2281293 44334821 \$2281293 44334821 \$2281293 44334821 \$34352124 4433543 \$34352124 4433543 \$2073081 4433543 \$2073081 4433543 \$2073083 4433695 \$2073084 4433695 \$2073083 \$433695 \$2073084 4433695 \$2073084 4433695 \$2073084 4433695 \$2004054 4433695 \$2004054 4433695 \$2004054 4433695 \$2004054 4433695 \$2294915 4434002 \$4823181 4434002 \$4823181 4434002 \$4823181 4434026 \$1305587 44349166 \$1305587 4434151	s2401512	44333945	1
4423176 44334476 54823177 44334636 54823177 44334529 54282378 44334529 5281293 44334529 5281293 44334620 53521602 4433540 53437690 4433543 534376930 4433543 53073081 4433543 53073081 4433543 53073081 4433543 51010022 44336430 573176497 4433693 573176497 4433635 573176497 4433635 573176497 4433635 5729633 4433753 52294915 4434902 52294915 4434902 54823180 44341298 54823180 44341986 51205590 44341986 51205591 44341986 52294915 44342969 5204915 44342969 5764045 44342965 5764045 44342926 5764045 44342918	rs2896020	44333968	
sk223177 4334486 PNPLA3 Intron 6 r:2401514 44394019 sk223178 43334642 r:2073080 44394402 si6991175 44335416 r:2073080 44394402 si6991175 44335416 r:2073080 44394402 si3452134 44335416 r:2073080 44394402 si3452143 44335416 r:2073080 r:2073080 si142145 4433695 r:207307497 r:207307497 si310022 4433695 r:2073080 r:2073080 si310022 4433695 r:2073060 r:2073080 si310022 4433695 r:208405 r:208405 si20022 r:204915 4434092 r:204916 si305256 4433956 r:2084015 r:2084015 si305281 44341502 r:2084015 r:2084015 si305587 44341502 r:2084015 r:2084015 si208451 44341502 r:2084015 r:4084157 si305587 44341502 r:40841571 si305602 <td< td=""><td>\$4823176</td><td>44334476</td><td>1</td></td<>	\$4823176	44334476	1
Substrate Fill Control of	×/922177	1/122/1/00	PNPIA3 Intron 6
SH02.11/0 H43345.29 27212193 443348.42 16991175 4433531 335621602 443354.63 33476303 443354.53 2017022 443364.93 5010022 44336.908 5010022 44336.905 573176497 44336.905 573176497 44336.905 573176497 44336.905 5926633 44337029 5926633 44337029 5926633 4433102 5926633 4433102 52294915 4430904 52294915 44341050 51305587 44341672 52294915 44341672 52294915 44341672 52294917 44341672 52294917 44341672 52294917 4434296 51305587 PNPLA3 Intron 8 51305587 44341672 52294917 4434296 51305587 PNPLA3 3'UTR 141234757 HA34665 576404 44347137 51425434715 HA34656	-4022470	44334480	
2281293 44334842 s16991175 44335431 s3651160 44335416 s3437630 4433541 s3073081 44335744 s1010022 4433698 s1010022 4433697 s8142145 4433697 s8142145 4433698 s8142145 4433698 s8142145 4433697 s81632 44337029 s926633 44337033 s209415 4434092 s2294915 4434092 s442180 4434092 s4423181 4434092 s4423181 44341066 s2294915 44341986 s2294915 44341986 s2294915 44341986 s2294917 44341986 s1005500 44341571 s105505 44341572 s2294915 4434157 s1005581 44341571 s1005581 44341571 s1005581 44341571 s1005488 4434571 s105488 4434571 s105488 443	54823178	44334529	
16991175 44335311 33562160 44335406 3352124 44335416 3376930 4433543 2077081 44336908 \$1010022 44336908 \$1010024 44336908 \$1010025 44336957 \$1010024 44336957 \$1101025 44336957 \$1101026 44337029 \$207308 44337029 \$926633 44337029 \$926633 44337029 \$926633 44337029 \$926633 44337029 \$926633 44337029 \$926633 44337029 \$926633 44337029 \$9269380 4433715 \$1055505 4434166 \$1055507 4434167 \$2294915 4434157 \$1055507 44342796 \$101117 \$111508 \$1205590 \$1431131 \$1205590 \$14314151 \$13055865 \$4341672 \$13055867 \$4341673 \$13055867 \$4341673 \$1305587	s2281293	44334842	
335621602 44335406 334352134 44335406 334376390 44335463 S3070381 443354763 S1010022 44336098 \$1010022 44336098 \$1010022 44336098 \$1010022 44336098 \$1010024 44336095 \$10176497 44336957 \$56933804 44337533 \$810622 44338134 \$13056555 44339753 \$2294916 44340092 \$2294915 44340092 \$2294916 44340092 \$4823180 44341108 \$13056555 4434966 \$1305590 44341666 \$13055874 4434128 \$4823181 4434128 \$2924917 4434128 \$1810508 4434151 \$13054858 4434571 \$142354757 44345953 \$1764033 44346963 \$1805068 44347137 \$1610588 44347137 \$1610584 4434	s16991175	44335331	
334352134 44335416 334370300 44335744 5010022 4433608 5010022 4433609 5110427 4433609 5110427 4433609 5116497 4433609 52093804 44337029 520633 44337029 520633 44337029 5206405 44339526 52094915 4430092 52094915 4430092 52094915 4430092 54823180 44341298 PNPLA3 Intron 8 51305507 44341067 52094917 4434157 51305580 4434157 51305580 4434157 51305581 4434157 51305581 4434157 51305581 4434157 51305581 4434157 51305581 4434157 51305581 4434157 51305485 4434157 51305485 4434157 51305485 4434153 514041 44347137 51610508 44347137 51764041 44347137 51764041 44347137 5141542 44347137 5141542 44347137 514154284 </td <td>s35621602</td> <td>44335406</td> <td></td>	s35621602	44335406	
1 1	\$34352134	44335416	1
SH210000 F400000 SAT23000 F400000 S1010002 F400000 S1010002 F400000 S1010002 F400000 S1116497 F400000 S1116497 F400000 S101002 F400000 S101002 F400000 S101002 F400000 S20633 F400000 S206433 F400000 S2094016 F400000 S2094015 F400000 S4823100 F43400000 S4823100 F43410900 S2094015 F43400000 S2094015 F4340000 S2094015 F4340000 S2094015 F4340000 S2094015 F4340000 S2094015 F4340000 S2094015 F4340020 S2094015 F4340020 S2094015 F4340250 PNPLA3 Intron 9 S2008451 F4347433 S1050500 F4347433 S764044 F4347137 S	*2/27/020	44225452	1
SAU/381 4433474 1010022 44336096 S1010022 44336096 S1142145 44336096 S73176497 44336096 S203300 44337029 S205333 44337029 S206335 44337029 S20415 4433696 S204915 44339526 S2294915 44340904 S2294916 44341092 S4823179 44341050 S4823180 44341050 S1055567 44341672 S2294915 44341672 S2294917 44341672 S2294919 44341528 S10555674 44341672 S2294919 44342325 PNPLA3 Intron 9 S204917 4434151 S1055867 4434157 S13055867 4434751 S13055867 4434753 S13055867 4434753 S1610508 4434753 S176404 4434753 S1764045 4434753 <t< td=""><td>554376930</td><td>44335453</td><td>ł</td></t<>	554376930	44335453	ł
1010022 4433698 1010022 44336310 1010022 44336430 1010024 44336957 1010024 44336957 1010025 44336957 1010023 44337533 1010023 44337533 1010025 44330753 10100555 44339753 10100555 44340022 10100555 44340022 10100555 44341006 11005550 44341028 11005550 44341028 11005551 44341028 11005550 44341026 11005557 44341026 11005587 44341026 11005587 4434157 11005587 4434157 11005587 4434157 11005581 4434152 11005581 4434157 1100588 4434571 1100588 4434571 1100588 4434573 1101588 4434573 1101588 44347137	s2073081	44335744	
\$1010022 44336310 \$8142145 44336957 \$8142145 44336957 \$6693804 44337029 \$926633 4433753 \$8310522 44338134 \$1056555 443355.7 \$2294915 4430402 \$4282179 44341103 \$4823180 44341103 \$4823180 44341167 \$2294915 44341056 \$1305550 44341167 \$2294915 44341665 \$1305580 4434167 \$2294917 4434165 \$1305580 4434167 \$2294917 4434167 \$2294917 4434157 \$1305580 4434157 \$1305580 4434157 \$1305580 44345771 \$1410568 4434571 \$14234775 4434575 \$1810508 4434753 \$1764043 4434753 \$1764043 4434753 \$1764043 4434753 \$1764045 4434753	s1010023	44336098	
88142145 44336496 573176497 44336957 s66933804 44337533 s3810622 44337533 s3810622 44337533 s3810622 4433692 s2294915 44340922 s2294915 44340922 s4823179 44341092 s4823181 44341028 s4823181 44341028 s4823181 44341052 s2294915 4434107 s2294917 4434108 s1305580 4434166 s13055874 4434198 s13055884 44341315 s13055884 44341315 s1305488 4434571 s1305488 4434571 s1305488 4434571 s1305488 4434573 s1305488 44347137 s5764044 44347137 s5764045 44347137 s5764045 44347137 s5764045 44347137 s5764045 44347137 s5764045 44347137 s5764045 44347137 s1912828 44348116 s1912828 4434816 s1912828 4434816	s1010022	44336310	
Marken Finderson Starbedy Haddredy Staredy Haddredy <td>\$81421/15</td> <td>44336496</td> <td>1</td>	\$81421/15	44336496	1
Y-0.1.0*9/ 44337029 566933804 44337029 566933804 44337029 586933804 44337029 \$1005655 44337029 \$1005655 44339020 \$2294915 44340902 \$4823180 44341298 \$4823180 44341298 \$4823180 44341298 \$4823180 44341666 \$13055874 44341666 \$13055874 4434158 \$2294917 44341986 \$2294917 44341986 \$2294917 44341989 \$10056874 44341951 \$1005884 4434151 \$1005884 4434571 \$1005488 4434571 \$1005488 4434695 \$5764034 44342950 \$1042354757 44347433 \$105188 44347137 \$10423847513 1 \$1042384751 1 \$1042384751 44347433 \$1015888 44347137 \$1015088 44344713	-72170407	44220057	1
s66933804 44337029 s926633 44337533 s810622 44338134 s1305555 44330904 s2294915 44340092 s4823179 44341094 s4823180 44341028 s4823181 44341026 s4823181 44341666 s1305550 44341672 s2294915 4434138 s4823181 44341666 s1305580 4434152 s1305581 44341235 pNPLA3 Intron 9 s2094915 44341235 pNPLA3 3'UTR s1810508 4434571 s1305488 4434571 s142354757 44345953 s7269329 4434635 s5764044 44347137 s5764045 44347433 s11912828 44348116 s34912002 44348116 s34912002 44348116	5/31/649/	44336957	PNPLA3 Intron 7
sp26633 44337533 sa810622 44338134 sa810622 44338134 si306555 44339526 s2294915 44330922 s4823179 44341093 s4823180 44341298 s4823180 44341067 s1305550 44341666 s13055807 44341666 s13055807 44341672 s2294917 44341986 s2294917 44341232 PNPLA3 Intron 9 s200451 4434123 s2094917 44341315 PNPLA3 Intron 9 s200451 44341232 s1305580 4434151 s13054885 4434751 s13054885 4434753 s5764044 44347137 s5764045 44347250 Intergénique 59514293 s4134753 1 s11912828 44348116 s34912002 44349295	s66933804	44337029	
s3810622 44338134 13005655 44330920 s2294916 44340922 s4823179 4434103 s4823180 4434128 s4823181 44341052 s13055900 44341666 s13055874 4434198 s2294915 44341986 s2294917 44341986 s2294917 44341986 s2294917 44341986 s2294919 44342325 PNPLA3 Intron 9 s209451 4434571 s105588 4434571 s105488 4434573 s105488 4434573 s105488 44347137 s5764044 44347137 s5764045 44347250 s101588 44347137 s5764045 44347233 s110588 44347137 s5764045 44347137 s5764045 44347137 s5764045 44347137 s5764045 44347137 s5764045 44347137 s11912828 44348116 s101202 44348116 s101202 44348146	s926633	44337533	
s13056555 44339526 s2294915 44340904 s2294916 44340922 s4823179 44341198 s4823180 44341298 s4823181 44341605 s1305500 44341665 s13055874 44341672 s2294911 44342325 S2294912 44342325 PNPLA3 Intron 9 s200451 44342969 PNPLA3 'J'UTR s1305885 4434571 s1405058 4434573 s141234757 44346965 s5764044 44347137 s5764045 44347250 s0142394 Intergénique s2002501 44347250 s014238443161 s34912062 44348116 s34912062 4434816	s3810622	44338134	
22294915 44340904 \$2294916 44340922 \$4823180 44341193 \$4823181 44341298 \$4823181 44341666 \$13055874 44341672 \$2294919 44342325 \$2294919 44342325 \$2294919 44342325 \$209451 44342969 \$1055874 44345961 \$105588 4434571 \$105688 4434571 \$1054885 44346965 \$5764034 4434753 \$17283325 44346965 \$5764044 44347137 \$5764054 44347250 \$101tregénique \$20910 44347133 \$11912828 44348116 \$34912062 44348416 \$34912062 4434846	\$13056555	44339526	1
342-37-30 HC-HCUVH 32294916 44340022 34823180 44341028 34823181 4434128 34823181 4434166 513055874 44341672 52294917 44341232 52294917 44341232 52294917 44341232 52294917 44341232 52294917 44342325 5209491 44342325 510055874 44342325 510055874 44342325 51105588 4434571 51105588 4434571 51105588 44347133 5110568 44347133 5110568 44347133 5110588 44347133 5110588 44347133 5110588 44347133 5110588 44347133 5110588 44347133 5110588 44347133 5110588 44347133 5110588 44347133 5110588 44347133 5110588 44347133 5110588 44347133 5110588 44347133	-220/015	44240004	
\$2,249,10 443,419.22 \$4823180 443,411.93 \$4823181 443,411.93 \$4823181 443,41666 \$13055500 443,41666 \$13055874 443,41672 \$2294917 443,41986 \$2294917 443,41928 \$2294913 443,41928 \$2008451 443,41928 \$13055874 443,41928 \$2008451 443,41989 \$13055874 \$443,41571 \$13055874 443,41571 \$1423,4577 443,46639 \$5764043 443,41737 \$5764044 443,41737 \$5764045 443,41733 \$101528 443,417433 \$11912828 443,4164 \$34912062 443,4426	52294915	44540904	ł
s4823179 44341103 s4823180 44341298 s4823181 44341606 s13055900 44341666 s13055874 4434172 s2294917 44341235 S2294919 44341235 S203451 44342325 PNPLA3 Intron 9 s203451 44342325 S105688 4434571 s105688 44345751 s13055830 4434573 s1305483 44345731 s142354757 44345953 s764043 44347137 s5764045 44347250 Intergénique s2091201 44347250 s11912828 44348116 s34912062 4434816	s2294916	44340922	
s4823180 44341298 s4823181 44341665 s1305590 44341665 s13055874 44341672 s2294917 44341986 s2294919 44341232 s209451 4434235 s1805500 44341351 s1810508 4434571 s14235475 44345571 s14235475 44345573 s14235475 44345571 s14354548 44347137 s5764044 44347135 s5764045 44347135 s5764045 44347250 s1112828 4434816 s1112828 4434816 s1112828 4434816 s1112828 4434816	s4823179	44341193	
s4823181 44341606 s13055800 44341666 s13055874 44341672 s2294917 44341986 s2294919 44342325 PNPLA3 Intron 9 s200451 44342969 PNPLA3 3'UTR s1810508 4434571 s10354885 4434577 s12354757 44346953 s7269329 44346639 s5764044 44347137 s5764045 44347250 Intergénique s20912051 44347251 s9614293 44347251 s91423844316 s1912828 44348116 s34912062 44348936	s4823180	44341298	
13055900 44341666 \$13055901 44341667 \$2294917 44341232 \$2294917 44342325 \$1055801 44342325 \$1055801 44342325 \$1055885 44345953 \$13054885 44345953 \$13054885 44345953 \$13054885 44345953 \$5764044 44347137 \$5764045 44347250 \$101ergénique \$2002501 44347250 \$101ergénique \$2002501 44347433 \$11912828 44348116 \$34912052 44346965 \$34912052 44346936	54823181	44341606	PNPLA3 Intron 8
S12052370 +4:941070 S1205874 44341672 S2294917 44341986 S2204919 44342325 PNPLA3 Intron 9 S200815 44342969 PNPLA3 3'UTR S1055885 44345771 S1055845 4434693 S7289329 44346639 S5764034 44347137 S5764045 44347250 Intergénique S2092501 44347251 S1012828 44347433	-12055000	44241666	1
S13U538/4 443410/2 \$2294917 44341986 \$2294917 44341986 \$208451 44342325 \$1810508 44343571 \$1810508 4434577 \$142354757 44345953 \$7289329 44346573 \$5764043 44347137 \$5764045 44347250 \$101tregénique \$202021 44347250 \$11912828 4434816 \$34912062 4434846 \$34912062 4434893	212022200	44341000	-
sz2294917 44341986 sz294917 44342325 PNPLA3 Intron 9 sz008451 44342969 st810508 4434151 st810508 4434571 st13054885 4434571 st14234757 44346955 st5764034 44347137 st5764044 44347250 st0412357 44347250 st0412457 44347251 st0142345 44347251 st0142345 44347231	rs13055874	44341672	1
ss2294919 44342325 PNPLA3 Intron 9 sz008451 44342325 PNPLA3 J'UTR s1810508 44343151 s s181054885 44345771 s s142354757 44346953 s s7289329 44346639 s s5764034 44347137 s s5764045 44347250 Intergénique s2092501 44347251 s s6142934 4434716 s s1912828 44348116 s s1912828 4434926 s	rs2294917	44341986	
s2008451 44342969 PNPLA3 3'UTR s1810508 44343571 s13054885 44345771 s142354757 44345953 s7289329 44346955 s5764044 44347137 s5764045 44347137 s5764045 44347250 Intergénique s2002501 44347251 s9614293 44347433 s11912828 44348116 s34912062 44349236	rs2294919	44342325	PNPLA3 Intron 9
S1810508 44343151 \$13054885 443431571 \$13054885 44345771 \$14234757 4434693 \$728329 4434663 \$5764044 44347137 \$5764045 44347250 \$2092501 44347251 \$5142334725 Intergénique \$2092501 44347433 \$1912828 44348116 \$34912062 44349293	\$2008451	44342969	
S1024085 44345771 \$142354757 44345953 \$7289329 44346505 \$5764043 44347137 \$5764045 44347250 \$2092501 44347251 \$9614293 44347433 \$11912828 44348116 \$34912052 4434846 \$1474455 5434846	-1010500	44242154	PNPLA3 3'UTR
\$1305485 \$434571 \$142354757 \$44345933 \$7289329 \$44346635 \$5764043 \$4434635 \$5764045 \$44347137 \$5764045 \$44347250 \$614293 \$44347231 \$614293 \$44347433 \$1912828 \$44347433 \$1912828 \$44349236 \$1474245 \$44349236	21210208	44343151	
\$142354757 44345953 \$7289329 44346595 \$5764043 44346955 \$5764044 44347137 \$5764045 44347250 \$2092501 44347251 \$5014293 44347233 \$11912828 44348116 \$34912052 4434846 \$147445 44349236	s13054885	44345771	1
\$7289329 44346639 \$5764043 44346965 \$5764044 44347137 \$5764045 44347250 Intergénique \$2002501 44347251 \$9614293 44347251 \$11912828 4434816 \$34912062 44348446 \$147425 \$147425	s142354757	44345953	
55764034 44346965 \$5764034 44347137 \$5764045 44347250 Intergénique \$2092501 44347251 \$5614293 44347251 \$51912828 44347433 \$11912828 44348116 \$34912052 44349236	\$7289329	44346639	1
S27/04/U4 44340730 S2764044 44347250 Intergénique S2092501 44347250 S10912828 44347433 S1912082 44348446 S34912062 44349236	57203323	44240059	
\$5764044 44347137 \$5764045 44347250 Intergénique \$2092501 44347251 \$5614293 44347433 \$1912828 44348116 \$34912062 44344936 \$1474245 4434936	\$5764043	44346965	
s5764045 44347250 Intergénique 32092501 44347251	s5764044	44347137	
\$2092501 44347251 \$\$9614293 44347433 \$11912828 44348116 \$34912062 44348446 \$147425 44349236	s5764045	44347250	Intergénique
\$1012122 44347433 \$11912828 44348116 \$34912062 44348446 \$1474745 44349236	\$2092501	44347251	1 - '
System 44:34/43:3 \$\$1912082 44348116 \$\$34912062 44348446 \$\$147475 \$\$4339236	=0614202	44247422	1
S13912828 44348116 s34912062 44348446 s1474745 4434936	59014293	4434/433	-
534912062 44348446 51474745 44349236	44040000		1
1474745 44349236	11912828	44348116	-
	s11912828 s34912062	44348116 44348446	

Tableau 7. Liste des 112 SNPs associés à la mortalité non-cardiovasculaire lors duGWAS dans ADVANCE, leurs coordonnées dans le chromosome 22 et leur localisationexonique, intronique ou intergénique.

Huit SNPs ont été obtenus : rs1010022 (A/G), rs2073082(G/A), rs2143571 (G/A), rs2294915 (C/T), rs2294917 (T/C), rs738407 (T/C), rs3810622 (T/C) et rs16991236 (A/G). Ces derniers sont en équilibre de Hardy-Weinberg (HW) (seuil = $5,7 \times 10^{-7}$) au sein de la population ADVANCE (les SNPs sont en équilibre de HW au sein de chacun des 3 groupes de patients génotypés dans les puces Affymetrix 5, 6 et UK-chip, respectivement).

Figure 17. Profil de DL déterminé par les 112 SNPs associés à la mortalité noncardiovasculaire dans la population ADVANCE. Les positions des 8 SNPs tags sont indiqués dans la figure.

L'analyse a permis d'observer la corrélation de 7 des 8 SNPs avec les taux plasmatiques de ALT (figure 18). Deux SNPs notamment ont eu des associations significatives sous le modèle additif : rs1010022 (P = 4,6 x10⁻⁴ (GG vs AA) ; P = 7,8 x 10⁻⁴ (AA vs AG)) et rs2294915 (P = 1,83 x 10⁻⁷ (TT vs CC) ; P = 9,4 x 10⁻⁸ (CC vs CT)). Après correction de Bonferroni, les différences entre les génotypes homozygotes neutres et pathogènes de chacun des deux SNPs demeurent significatives (P = 0,004 et P = 1,46 x10⁻⁶, respectivement).

Figure 18. Taux plasmatiques de ALT chez les patients porteurs de chacun des trois génotypes des 8 SNPs tags.

L'investigation a également montré l'association de certains des SNPs tags à la mortalité non-cardiovasculaire (figure 19). Des différences significatives entre les génotypes neutres et les génotypes pathogènes ont été observées pour les SNPs rs1010022 (P = 0,02), rs16991236 (P = 0,03), rs2294915 (P = 0,01), rs2294917 (P = 3,9 x 10⁻⁴), rs3810622 (P = 1,5 x 10⁻³) et rs738407 (P = 0,045). Après correction de Bonferroni, ces différences restent significatives pour les SNPs rs2294917 et rs3810622 (P = 0,011, respectivement).

Figure 19. Fréquence de la mortalité non-cardiovasculaire chez les patients porteurs de chacun des trois génotypes des 8 SNPs tags. Les nombres de patients dans chaque groupe génotypique sont indiqués sous les graphes (les individus décédés par causes cardiovasculaires sont exclus dans ce calcul des fréquences). Les fréquences de la mortalité non-cardiovasculaire sont rapportées dans les barres.

L'analyse a démontré également des profils d'association variés des SNPs avec les différentes composantes du DT2. A titre d'exemple, le SNP rs16991236 a été associé à des anomalies cardiovasculaires telles que la pression artérielle diastolique en ligne de base (P = 0,01) alors qu'il n'avait pas d'association aux paramètres liés au poids ou à l'homéostasie glucidique. Le SNP rs738407 a été associé par exemple à la pression artérielle diastolique en ligne de base (P = 0,03) mais pas au profil lipidique chez les patients. Les associations les plus pertinentes des 8 SNPs tags sont rapportées dans la figure 20.

Cette variabilité d'association génétique aux composantes métaboliques révèle le potentiel qu'a le locus à décrire les différents aspects du DT2. Dans ce contexte, il est intéressant de rechercher une relation éventuelle entre PNPLA3-SAMM50 et la variabilité des effets des thérapies associées. Pour cela, je me suis focalisé sur la thérapie hypoglycémiante.

Figure 20. *Profils (A) et détails (B) des associations les plus pertinentes des 8 SNPs tags du locus PNPLA3-SAMM50 aux composantes du DT2.*

Ceci a permis de constater des intensités d'association à la mortalité non-cardiovasculaire différentes entre les SNPs. Plus précisément, il est apparu que le SNP rs16991236 (localisé

au niveau de l'intron 1 de SAMM50) arrive, via son génotype homozygote pathogène GG (double copie de l'allèle associé à ce phénotype dans notre analyse GWAS), à détecter des individus diabétiques ayant un risque élevé de mortalité non-cardiovasculaire en présence de la thérapie hypoglycémiante standard (fréquence = 0,29) alors que les individus porteurs du même génotype et soumis au traitement hypoglycémiant intensif voient ce risque diminuer de plus de 5 fois pour atteindre une fréquence de 0,05 (P = 0,007, P après correction de Bonferroni = 0,06; puissance de l'analyse = 0,74) (figure 21). Cette différence de mortalité est décrite avec moins d'intensité par les SNPs rs1010022 (fréquences 0,13 vs 0,08; P = 0,20; puissance = 0,25), rs2294915 (0,12 vs 0,08; P = 0,26; puissance = 0,20) et rs2143571 (0,11 vs 0,07; P = 0,45; puissance = 0,12). Les SNPs rs2073082, rs2294917, rs3810622 et rs738407 sont associés via leurs génotypes pathogènes à des taux de mortalité non-cardiovasculaires plus faibles et non significativement différents en présence des thérapies intensives ou standard (figure 21).

Figure 21. Fréquence de la mortalité non-cardiovasculaire chez les patients de ADVANCE, soumis aux traitements hypoglycémiants standard ou intensif, porteurs des génotypes homozygotes pathogènes (homozygotes des allèles associés à la mortalité non-cardiovasculaire) de chacun des 8 SNPs tags. Le nombre des patients de chaque groupe génotypique est rapporté dans les barres. Les différences significatives sont indiquées par l'étoile.

Afin d'avoir une vue d'ensemble sur le locus, j'ai exploré les fréquences de la mortalité non-cardiovasculaire associées aux 112 SNPs du locus, en présence du traitement hypoglycémiant intensif ou de la thérapie standard. Là aussi, les allèles considérés comme pathogènes sont ceux associés à la mortalité non-cardiovasculaire lors du GWAS dans ADVANCE. Cela a permis de distinguer trois groupes de patients en fonction du degré de diminution des taux de mortalité non-cardiovasculaire suite au traitement intensif :

1) Groupe 1 : inclut par exemple les patients porteurs du génotype homozygote pathogène de rs16991236 ou de rs12167845. Les taux de mortalité non-cardiovasculaire chez eux diminuent considérablement après thérapie intensive (P = 0,007 et P = 0,015, respectivement). Ils sont considérés donc comme des bons répondeurs au traitement (figure 22).

2) Groupe 2 : les d'individus appartenant à ce groupe (incluant à titre d'exemple les homozygotes pathogènes rs2294915 ou rs1977080) ont une diminution moins importante des fréquences de la mortalité non-cardiovasculaire après traitement intensif (P = 0,26 et P = 0,49, respectivement) et sont ainsi dits moins répondeurs (figure 22).

3) Groupe 3 : ce dernier groupe de patients a des taux de mortalité plus faibles et similaires en présence ou en absence de la thérapie intensive. Les patients sont par conséquence considérés comme non-répondeurs au traitement (figure 22).

Afin de mieux déterminer la composante physiopathologique qui serait liée à cette disparité en termes de réponse à la thérapie, j'ai comparé les données clinico-biologiques entre les patients porteurs du génotype homozygote pathogène (GG) du SNP rs16991236 (34 patients) au reste de la population ADVANCE. Les patients porteurs de ce génotype sont plus hypertendus (pression artérielle systolique en ligne de base: $155,3 \pm 3,6$ vs $147,1 \pm 0,4$ mmHg; P = 0,02 - pression artérielle diastolique en ligne de base: $85,4 \pm 1,8$ vs $80,9 \pm 0,2$ mmHg; P = 0,01 – pression artérielle diastolique en fin de l'essai : $77,8 \pm 1,7$ vs $74,2 \pm 0,2$ mmHg; P = 0,04). Ces individus ont également des taux de créatinine urinaire plus élevés en ligne de base ($100,8 \pm 4,0$ vs $86,8 \pm 0,5$ µmol/L; P = 4,9 x 10^{-4}) et en fin d'étude ($116,4 \pm 7$ vs $94,8 \pm 0,9$ µmol/L; P = 0,002). Les homozygotes GG ont par ailleurs des taux plus importants de peptide natriurétique de type B (839, $6 \pm 180,2$ vs $262,4 \pm 23,0$ pmol/L; P = 0,001) et des fréquences plus élevées de mortalité non-cardiovasculaire (0,15 ± 0,04 vs 0,06 ± 0,01; P = 0,04).

Figure 22. Fréquence, en présence de la thérapie hypoglycémiante intensive et de la thérapie hypoglycémiante standard, de la mortalité non-cardiovasculaire chez les patients de ADVANCE porteurs des génotypes homozygotes pathogènes de chacun des 112 SNPs associés à ce phénotype. Les carrés rouges indiquent les différences significatives (P < 0,05) entre les deux thérapies.

Discussion et conclusions

Des avancées intéressantes ont été réalisées dans le domaine de la prédiction des maladies complexes et divers outils et stratégies ont été établis. Il est actuellement possible de combiner des variations génétiques au sein des populations afin de construire des scores pour la prédiction des pathologies, leur évolution et l'efficacité des thérapies associées (Mega, Stitziel et al. 2015, Pilling, Kuo et al. 2017, Choi, Mak et al. 2018).

NAFLD est une altération hépatique complexe interagissant avec d'autres anomalies métaboliques telles que le DT2, les désordres cardiovasculaires et la mortalité (Byrne and Targher 2014, Amiri Dash Atan, Koushki et al. 2017, Hwang, Ahn et al. 2018). Elle est plus fréquente chez les diabétique de type 2 et est liée à un DT2 plus compliqué (Targher, Bertolini et al. 2006, Younossi, Koenig et al. 2016, Cusi, Sanyal et al. 2017, Wild, Walker et al. 2018). L'association de la stéatose hépatique avec les altérations cardiovasculaires serait déterminée par sa relation avec le syndrome métabolique (Targher, Bertolini et al. 2006). Vu l'absence de symptômes associés à NAFLD dans une grande partie des cas, la maladie est généralement diagnostiquée tardivement, à des stades où la prise en charge médicale devient difficile (Loguercio, De Simone et al. 2004, Friedman, Neuschwander-Tetri et al. 2018). Etablir des marqueurs non-invasifs de la pathologie est ainsi important afin de mettre des diagnostics précoces et suivre son avancement.

Diverses technologies d'imagerie ont été proposées dans le diagnostic et le suivi de la maladie. Tandis que certaines, comme l'ultrasonographie, se sont avérées plus adaptées à la détection des stéatoses du foie, les plus prononcées notamment (LaBrecque, Abbas et al. 2014), d'autres, telles que l'imagerie par élastographie, ont été indiquées dans la recherche et le suivi des fibroses hépatiques dans NAFLD (Imajo, Kessoku et al. 2016). Utiliser l'imagerie peut toutefois s'avérer coûteux dans certains pays (Papanicolas, Woskie et al. 2018) ce qui peut limiter son exploitation.

Des biomarqueurs tels que les niveaux plasmatiques de l'enzyme ALT ont été utilisés comme substitut dans le diagnostic de la maladie. Bien que les taux de l'enzyme aient été rapportés comme peu corrélés au diagnostic histopathologique de la stéatose hépatique non-alcoolique (Browning, Szczepaniak et al. 2004), ils ont été associés à diverses

altérations métaboliques et cardiovasculaires fortement présentes dans NAFLD, comme la résistance à l'insuline (Vozarova, Stefan et al. 2002, Martin-Rodriguez, Gonzalez-Cantero et al. 2017). Les niveaux de ALT ont été également liés à la mortalité surtout chez les individus appartenant aux tranches d'âges élevées (Liu, Ning et al. 2014, Schmilovitz-Weiss, Gingold-Belfer et al. 2018). Il me parait ainsi opportun qu'en absence de données de diagnostic par examen de biopsie hépatique, par imagerie (Chalasani, Younossi et al. 2018) ou par des scores clinico-biologiques comme *SteatoTest* (Poynard, Ratziu et al. 2005), d'explorer NAFLD en utilisant les taux plasmatiques de cette enzyme. Cela permet de suivre l'évolution de la pathologie et les complications qui lui sont associées et peut aider à mieux comprendre la mortalité d'origine hépatique notamment dans le DT2 (Wild, Walker et al. 2018).

Des modèles de prédiction génétique de NAFLD ont été également établis (Di Costanzo, Belardinilli et al. 2018). Le potentiel de prédiction de certains de ces modèles reste discutable vu un risque possible de surestimation des données survenant lors de leur conception (Di Costanzo, Belardinilli et al. 2018, Kawaguchi, Shima et al. 2018, Larrieta-Carrasco, Flores et al. 2018). Ces modèles sont par ailleurs constitués d'un nombre restreint de SNPs et seraient ainsi limités en termes de prédiction.

Dans ce contexte, mes travaux ont focalisé sur l'exploration du fond génétique de NAFLD au sein d'une population de diabétiques de type 2 (population ADVANCE) (Patel, MacMahon et al. 2008) en utilisant les taux plasmatiques de ALT comme substitut au diagnostic de la maladie. Le but a été de mettre au point des outils de prédiction de la pathologie et surtout des altérations métaboliques associées.

Contrairement aux données de la littérature (Liu, Ning et al. 2014, Schmilovitz-Weiss, Gingold-Belfer et al. 2018), mes analyses n'ont pas détecté d'association des taux de ALT à la mortalité totale, à la mortalité d'origine non-cardiovasculaire et à celle d'origine cardiovasculaire. Afin de mieux comprendre, j'ai exploité la méthode statistique LASSO (programme LASSOSUM) pour construire un PRS capable de prédire les taux élevés de ALT et la mortalité dans ADVANCE. Bien que les modèles construits aient été intéressants, l'inversion des populations référence et test a permis d'obtenir un PRS différent en termes de nombre de SNPs et de potentiel de prédiction. Cela serait lié à une

insuffisance d'apprentissage due à la faiblesse de la taille de population utilisée. Cette limite de performance de l'approche par apprentissage machine en présence de quantités limitées de données a été d'ailleurs rapportée dans la littérature (Wei, Wang et al. 2013). Il est donc important d'acquérir des populations et des cohortes de tailles suffisantes plus adaptées à ce genre d'analyses statistiques. Pour y pallier, j'ai appliqué une autre stratégie pour la construction du PRS. Celle-ci est basée sur une sélection ciblée des SNPs en tenant compte de leur association, rapportée dans la littérature, à des phénotypes liés à NAFLD. Une sélection supplémentaire a été faite en prenant en considération les SNPs dont les effets sur la mortalité non-cardiovasculaire dans ADVANCE et sur leurs phénotypes respectifs dans la littérature sont similaires. Cela a permis l'établissement d'un modèle de 3210 SNPs ayant un potentiel acceptable de prédiction de la mortalité non-cardiovasculaire et des taux élevés de ALT. Cependant, la capacité de prédiction est due en majeure partie aux variations au niveau du locus PNPLA3-SAMM50. Le modèle arrive toutefois via d'autres variations génétiques à prédire des altérations cardiovasculaires telles que les évènements d'infarctus du myocarde et d'AVC. A noter que l'optimisation dans la sélection des SNPs en fonction de la similarité de leurs effets sur la mortalité noncardiovasculaire dans ADVANCE et sur leurs phénotypes dans la littérature peut être critiquée. Cependant, le test du PRS sur un groupe de patients autre que celui utilisé dans l'optimisation a montré l'efficacité du modèle. En outre, le modèle optimisé sur le phénotype mortalité non-cardiovasculaire est capable de prédire les patients ayant des taux élevés de ALT ainsi que les événements d'infarctus du myocarde et d'AVC. Cela atteste la justesse de la démarche d'optimisation et met en avant les liens étroits qui existent entre les altérations hépatiques, cardiovasculaires et le décès dans le DT2. Des analyses supplémentaires du potentiel du PRS seront effectuées. Il est en effet possible que le modèle puisse être plus performant pour prédire certaines complications au sein de certains sous-groupes de patients, ethniquement différents par exemple, et aider à titre d'exemple à comprendre les différences des profils d'altérations métaboliques observées entre les populations de ADVANCE d'origine celtique ou slave (Hamet, Haloui et al. 2017). Il est également possible que le potentiel de prédiction soit différent en fonction des thérapies prodiguées.

Le modèle comporte quatre panels de SNPs décrivant chacun un groupe phénotypique : un panel de polymorphismes associés au groupe phénotypique obésité, un deuxième panel en relation avec la dyslipidémie, un troisième lié à l'homéostasie glucidique et un panel en relation avec le phénotype « foie stéatosé ». La stratégie appliquée dans la conception du PRS a consisté en l'assignation de chacun des SNP à un de ces panels. Cependant, il serait plus approprié d'inclure chaque SNP dans l'ensemble des panels correspondant aux groupes phénotypiques auxquels ce polymorphisme a été associé dans la littérature. Cela peut améliorer la puissance du modèle et refléter davantage l'impact des groupes phénotypiques sur le potentiel de prédiction du PRS. D'autres améliorations peuvent également être apportées. En effet, les seuils de sélection des SNPs candidats à partir des données de la littérature ont été drastiques (niveaux d'association dans littérature P < 5 x 10⁻⁸). Il est donc possible qu'il y ait d'autres SNPs ayant des niveaux d'association plus faibles, toutefois intéressants dans la prédiction de la maladie. Des travaux futurs d'enrichissement du modèle seront réalisés et vont consister entre autres à ajouter des SNPs liés à d'autres phénotypes connus par leur association à NAFLD.

Bien que le PRS ait été construit et testé dans des groupes différents de la population ADVANCE (sélectionnés au hasard), il est essentiel de le valider dans d'autres groupes de patients. Des protocoles de collaboration ont été récemment mis en place afin d'acquérir des échantillons d'individus avec DT2 bien caractérisés sur le plan métabolique, issus de la base de données *UK Biobank* (Bycroft, Freeman et al. 2018) et de l'étude *CARTaGENE* (Awadalla, Boileau et al. 2013). Ceci permettra de tester le PRS sur des phénotypes non-rapportés dans la population ADVANCE, tels que le phénotype NAFLD attesté par histopathologie, par imagerie ou par des scores clinico-biologiques comme *SteatoTest* (Poynard, Ratziu et al. 2005) et confirmer ainsi son potentiel de prédiction. Il est également envisagé de combiner des données phénotypiques et génétiques afin d'améliorer la puissance du modèle. Cette stratégie a été d'ailleurs rapportée dans la littérature (Hyysalo, Mannisto et al. 2014). L'acquisition des populations *UK Biobank* et *CartaGene* (Awadalla, Boileau et al. 2013, Bycroft, Freeman et al. 2018) aura également comme intérêt de mettre à disposition des cohortes de plus grandes tailles plus adaptées à des analyses comme LASSO.

Afin de mieux comprendre le potentiel conféré au PRS par le locus PNPLA3-SAMM50, j'ai étudié ce dernier plus en détail dans la population ADVANCE. Le locus a été rapporté dans la littérature comme lié à l'apparition de la pathologie mais aussi à son évolution vers des stades plus compliqués comme NASH et l'hépatocarcinome du foie (Xu, Tao et al. 2015, Kanwal, Kramer et al. 2018). Toutefois, la plupart des études se sont intéressées à une variation génétique codante « SNP rs738409 » située dans la région génomique (Sookoian, Castano et al. 2009, Hotta, Yoneda et al. 2010). L'analyse d'autres polymorphismes dans le locus peut s'avérer utile afin d'améliorer le marquage de la pathologie et mettre en relief ses différents aspects.

Mes travaux ont permis de constater l'association de PNPLA3-SAMM50 à diverses composantes dans le DT2. Il s'agit notamment des variations des taux de ALT, de mortalité non-cardiovasculaire, des altérations cardiovasculaires, rénales et de l'homéostasie glucidique. Cela démontre une fois encore la relation très étroite entre les anomalies cardiométaboliques et l'atteinte hépatique surtout dans le DT2. Cette relation a été d'ailleurs rapportée dans la littérature et serait médiée par un fond de syndrome métabolique (Targher, Bertolini et al. 2006).

De manière intéressante, les profils d'association des variations génétiques au sein du locus ont été assez distincts. En effet, certaines d'entre elles ont été associées plus aux composantes cardiovasculaires alors que d'autres ont été plus en relation avec les complications rénales ou la dérégulation glycémique. Cette diversité de marquage dans la maladie est en adéquation avec les résultats de l'étude réalisée dans une population du Japon dans laquelle des groupes de polymorphismes au sein du locus ont été différemment associés à divers aspects de NAFLD (Kitamoto, Kitamoto et al. 2014).

L'analyse a rapporté également un potentiel très intéressant du locus dans la stratification des patients en fonction de leur degré de réponse au traitement hypoglycémiant intensif. En effet, PNPLA3-SAMM50 permet de distinguer des individus ayant de fortes diminutions des taux de mortalité non-cardiovasculaire suite au traitement, d'autres dont les taux diminuent plus faiblement et un troisième groupe dont les niveaux de décès d'origine non-cardiovasculaire sont faibles en présence ou en absence de la thérapie intensive. Bien que la puissance des résultats ait été limitée sur le plan statistique pour une

bonne partie des polymorphismes, l'association du SNP rs16991236 a été assez puissante et met en avant un sous-groupe de patients (34 individus) profitant amplement du traitement. Ces derniers voient les niveaux de mortalité non-cardiovasculaire diminuer 6 fois environ après thérapie hypoglycémiante intensive (puissance de l'analyse = 0,74). Ce SNP n'a pas de fonction connue dans la littérature. Il est localisé près de la partie 5' de l'exon 2 du gène SAMM50, ce qui laisse suggérer son implication dans la modification de l'épissage du gène. Dans ce contexte, il est primordial de répliquer les résultats au sein d'une autre population et de réaliser des études fonctionnelles, *in-vitro* ou dans des modèles animaux par exemple. L'ensemble des résultats démontre que l'exploitation de plusieurs polymorphismes du locus met en avant des associations non détectables par l'exploration d'un seul SNP. Il atteste également de l'intérêt de prendre en considération des SNPs noncodants pour la détection de profils d'association pas toujours observables via des variations génétiques codantes. Il est donc évident que les travaux explorant le gène PNPLA3 via un seul SNP codant (rs738409) soient limités.

Les résultats de mes études représentent une avancée de plus dans la compréhension de NAFLD et des altérations métaboliques associées, surtout la mortalité. Ils démontrent qu'il est inapproprié de séparer les composantes hépatiques de celles d'ordre cardiovasculaire ou métabolique. Les données montrent aussi que la génétique peut apporter davantage d'informations dans le sens où elle peut mieux stratifier les patients et détecter des individus à risque plus élevé ou encore des patients bénéficiant plus des thérapies prodiguées.

Les travaux effectués au sein de notre laboratoire s'inscrivent dans une dynamique internationale tendant à une meilleure exploitation des données pangénomiques (Zhou, Qi et al. 2014, Richardson, Harrison et al. 2019). En effet, des stratégies comme la combinaison des métadonnées génétiques, biologiques, des données cliniques et d'imagerie médicale sont appliquées afin d'améliorer la caractérisation des pathologies (Xu, Wu et al. 2017, Zhao, Jhamb et al. 2019). Malgré cela, les communautés scientifique et médicale restent conscientes des difficultés et des étapes à accomplir. Il est à titre d'exemple prématuré d'envisager la mise en place d'outils de prédiction appliqués en clinique dédiés à des groupes ethniques autres que les populations caucasiennes vu le

manque flagrant de données pangénomiques les concernant (Martin, Kanai et al. 2019). Par ailleurs, la diversité des outils statistiques et des cohortes mis à contribution dans la conception des modèles de risque peut être à l'origine de différences en termes de qualité de prédiction entre les kits dédiés à une même pathologie conçus par différents fabricants (Kalf, Mihaescu et al. 2014).

Des années sont encore nécessaires afin d'améliorer ces processus et mettre à la disposition des patients une médecine personnalisée plus équitable et de qualité.

Bibliographie

Abecasis, G. R., E. Noguchi, A. Heinzmann, J. A. Traherne, S. Bhattacharyya, N. I. Leaves, G. G. Anderson, Y. Zhang, N. J. Lench, A. Carey, L. R. Cardon, M. F. Moffatt and W. O. Cookson (2001). "Extent and distribution of linkage disequilibrium in three genomic regions." <u>Am J Hum Genet</u> **68**(1): 191-197.

Adams, L. A., S. Sanderson, K. D. Lindor and P. Angulo (2005). "The histological course of nonalcoholic fatty liver disease: a longitudinal study of 103 patients with sequential liver biopsies." J Hepatol **42**(1): 132-138.

ADVANCE-Group (2010). "Protection against cardiovascular and renal disease in type 2 diabetes: ADVANCEs in the control of blood pressure and blood glucose using Pretarax and Diamicron MR." Wolters Kluwer Pharma Solutions.

Afkarian, M., M. C. Sachs, B. Kestenbaum, I. B. Hirsch, K. R. Tuttle, J. Himmelfarb and I. H. de Boer (2013). "Kidney disease and increased mortality risk in type 2 diabetes." <u>J Am Soc Nephrol</u> **24**(2): 302-308.

Alexander, D. L., A. Tropsha and D. A. Winkler (2015). "Beware of R(2): Simple, Unambiguous Assessment of the Prediction Accuracy of QSAR and QSPR Models." <u>J Chem Inf Model</u> **55**(7): 1316-1322.

Altman, D. G. and J. M. Bland (1995). "Statistics notes: the normal distribution." <u>Bmj</u> **310**(6975): 298.

Ambler, G., S. Seaman and R. Z. Omar (2012). "An evaluation of penalised survival methods for developing prognostic models with rare events." <u>Stat Med</u> **31**(11-12): 1150-1161.

Amiri Dash Atan, N., M. Koushki, M. Motedayen, M. Dousti, F. Sayehmiri, R. Vafaee, M. Norouzinia and R. Gholami (2017). "Type 2 diabetes mellitus and non-alcoholic fatty liver disease: a systematic review and meta-analysis." <u>Gastroenterol Hepatol Bed Bench</u> **10**(Suppl1): S1-s7.

Anche, M. T., P. Bijma and M. C. De Jong (2015). "Genetic analysis of infectious diseases: estimating gene effects for susceptibility and infectivity." <u>Genet Sel Evol</u> **47**: 85.

Angulo, P., J. M. Hui, G. Marchesini, E. Bugianesi, J. George, G. C. Farrell, F. Enders, S. Saksena, A. D. Burt, J. P. Bida, K. Lindor, S. O. Sanderson, M. Lenzi, L. A. Adams, J. Kench, T. M. Therneau and C. P. Day (2007). "The NAFLD fibrosis score: a noninvasive system that identifies liver fibrosis in patients with NAFLD." <u>Hepatology</u> **45**(4): 846-854.

Arnold, M., J. Raffler, A. Pfeufer, K. Suhre and G. Kastenmuller (2015). "SNiPA: an interactive, genetic variant-centered annotation browser." <u>Bioinformatics</u> **31**(8): 1334-1336.

Auton, A., L. D. Brooks, R. M. Durbin, E. P. Garrison, H. M. Kang, J. O. Korbel, J. L. Marchini, S. McCarthy, G. A. McVean and G. R. Abecasis (2015). "A global reference for human genetic variation." <u>Nature</u> **526**(7571): 68-74.

Awadalla, P., C. Boileau, Y. Payette, Y. Idaghdour, J. P. Goulet, B. Knoppers, P. Hamet and C. Laberge (2013). "Cohort profile of the CARTaGENE study: Quebec's population-based biobank for public health and personalized genomics." <u>Int J Epidemiol</u> **42**(5): 1285-1299.

Barreira, T. V., S. T. Broyles, A. K. Gupta and P. T. Katzmarzyk (2014). "Relationship of anthropometric indices to abdominal and total body fat in youth: sex and race differences." <u>Obesity (Silver Spring)</u> **22**(5): 1345-1350.

Barrett, J. C., B. Fry, J. Maller and M. J. Daly (2005). "Haploview: analysis and visualization of LD and haplotype maps." <u>Bioinformatics</u> **21**(2): 263-265.

Baulande, S., F. Lasnier, M. Lucas and J. Pairault (2001). "Adiponutrin, a transmembrane protein corresponding to a novel dietary- and obesity-linked mRNA specifically expressed in the adipose lineage." <u>J Biol Chem</u> **276**(36): 33336-33344.

Baynes, J. W. and S. R. Thorpe (1999). "Role of oxidative stress in diabetic complications: a new perspective on an old paradigm." <u>Diabetes</u> **48**(1): 1-9.

Bazick, J., M. Donithan, B. A. Neuschwander-Tetri, D. Kleiner, E. M. Brunt, L. Wilson, E. Doo, J. Lavine, J. Tonascia and R. Loomba (2015). "Clinical Model for NASH and Advanced Fibrosis in Adult Patients With Diabetes and NAFLD: Guidelines for Referral in NAFLD." <u>Diabetes Care</u> **38**(7): 1347-1355.

Bell, G. I., S. Horita and J. H. Karam (1984). "A polymorphic locus near the human insulin gene is associated with insulin-dependent diabetes mellitus." <u>Diabetes</u> **33**(2): 176-183.

Belsky, D. W. and S. Israel (2014). "Integrating genetics and social science: genetic risk scores." <u>Biodemography Soc Biol</u> **60**(2): 137-155.

Berisa, T. and J. K. Pickrell (2016). "Approximately independent linkage disequilibrium blocks in human populations." <u>Bioinformatics</u> **32**(2): 283-285.

Bertram, L., D. Blacker, K. Mullin, D. Keeney, J. Jones, S. Basu, S. Yhu, M. G. McInnis, R. C. Go, K. Vekrellis, D. J. Selkoe, A. J. Saunders and R. E. Tanzi (2000). "Evidence for genetic linkage of Alzheimer's disease to chromosome 10q." <u>Science</u> **290**(5500): 2302-2303.

Bottini, N., L. Musumeci, A. Alonso, S. Rahmouni, K. Nika, M. Rostamkhani, J. MacMurray, G. F. Meloni, P. Lucarelli, M. Pellecchia, G. S. Eisenbarth, D. Comings and T. Mustelin (2004). "A functional variant of lymphoid tyrosine phosphatase is associated with type I diabetes." <u>Nat Genet</u> **36**(4): 337-338.

Boyle, E. A., Y. I. Li and J. K. Pritchard (2017). "An Expanded View of Complex Traits: From Polygenic to Omnigenic." <u>Cell</u> **169**(7): 1177-1186.

Brenner, B. M., M. E. Cooper, D. de Zeeuw, W. F. Keane, W. E. Mitch, H. H. Parving, G. Remuzzi, S. M. Snapinn, Z. Zhang and S. Shahinfar (2001). "Effects of losartan on renal and cardiovascular outcomes in patients with type 2 diabetes and nephropathy." <u>N Engl J Med</u> **345**(12): 861-869.

Browning, J. D., L. S. Szczepaniak, R. Dobbins, P. Nuremberg, J. D. Horton, J. C. Cohen, S. M. Grundy and H. H. Hobbs (2004). "Prevalence of hepatic steatosis in an urban population in the United States: impact of ethnicity." <u>Hepatology</u> **40**(6): 1387-1395.

Bugianesi, E., A. Gastaldelli, E. Vanni, R. Gambino, M. Cassader, S. Baldi, V. Ponti, G. Pagano, E. Ferrannini and M. Rizzetto (2005). "Insulin resistance in non-diabetic patients with non-alcoholic fatty liver disease: sites and mechanisms." <u>Diabetologia</u> **48**(4): 634-642.

Bugianesi, E., U. Pagotto, R. Manini, E. Vanni, A. Gastaldelli, R. de Iasio, E. Gentilcore, S. Natale, M. Cassader, M. Rizzetto, R. Pasquali and G. Marchesini (2005). "Plasma adiponectin in nonalcoholic fatty liver is related to hepatic insulin resistance and hepatic fat content, not to liver disease severity." J Clin Endocrinol Metab **90**(6): 3498-3504.

Buzkova, P. (2013). "Linear regression in genetic association studies." PLoS One 8(2): e56976.

Bycroft, C., C. Freeman, D. Petkova, G. Band, L. T. Elliott, K. Sharp, A. Motyer, D. Vukcevic, O. Delaneau, J. O'Connell, A. Cortes, S. Welsh, A. Young, M. Effingham, G. McVean, S. Leslie, N. Allen, P. Donnelly and J. Marchini (2018). "The UK Biobank resource with deep phenotyping and genomic data." <u>Nature</u> **562**(7726): 203-209.

Byrne, C. D. and G. Targher (2014). "Ectopic fat, insulin resistance, and nonalcoholic fatty liver disease: implications for cardiovascular disease." <u>Arterioscler Thromb Vasc Biol</u> **34**(6): 1155-1161. Caballeria, L., G. Pera, M. A. Auladell, P. Toran, L. Munoz, D. Miranda, A. Aluma, J. D. Casas, C. Sanchez, D. Gil, J. Auba, A. Tibau, S. Canut, J. Bernad and M. M. Aizpurua (2010). "Prevalence and factors associated with the presence of nonalcoholic fatty liver disease in an adult population in Spain." <u>Eur J Gastroenterol Hepatol</u> **22**(1): 24-32.

Campbell, P. T., C. C. Newton, A. V. Patel, E. J. Jacobs and S. M. Gapstur (2012). "Diabetes and cause-specific mortality in a prospective cohort of one million U.S. adults." <u>Diabetes Care</u> **35**(9): 1835-1844.

Carlson, C. S., M. A. Eberle, M. J. Rieder, Q. Yi, L. Kruglyak and D. A. Nickerson (2004). "Selecting a maximally informative set of single-nucleotide polymorphisms for association analyses using linkage disequilibrium." <u>Am J Hum Genet</u> **74**(1): 106-120.

Carpino, G., D. Pastori, F. Baratta, D. Overi, G. Labbadia, L. Polimeni, A. Di Costanzo, G. Pannitteri, R. Carnevale, M. Del Ben, M. Arca, F. Violi, F. Angelico and E. Gaudio (2017). "PNPLA3 variant and portal/periportal histological pattern in patients with biopsy-proven non-alcoholic fatty liver disease: a possible role for oxidative stress." <u>Sci Rep</u> **7**(1): 15756.

Caussy, C., M. H. Alquiraish, P. Nguyen, C. Hernandez, S. Cepin, L. E. Fortney, V. Ajmera, R. Bettencourt, S. Collier, J. Hooker, E. Sy, E. Rizo, L. Richards, C. B. Sirlin and R. Loomba (2018). "Optimal threshold of controlled attenuation parameter with MRI-PDFF as the gold standard for the detection of hepatic steatosis." <u>Hepatology</u> **67**(4): 1348-1359.

Chalasani, N., Z. Younossi, J. E. Lavine, M. Charlton, K. Cusi, M. Rinella, S. A. Harrison, E. M. Brunt and A. J. Sanyal (2018). "The diagnosis and management of nonalcoholic fatty liver disease: Practice guidance from the American Association for the Study of Liver Diseases." <u>Hepatology</u> **67**(1): 328-357.

Chambers, J. C., W. Zhang, J. Sehmi, X. Li, M. N. Wass, P. Van der Harst, H. Holm, S. Sanna, M. Kavousi, S. E. Baumeister, L. J. Coin, G. Deng, C. Gieger, N. L. Heard-Costa, J. J. Hottenga, B. Kuhnel, V. Kumar, V. Lagou, L. Liang, J. Luan, P. M. Vidal, I. Mateo Leach, P. F. O'Reilly, J. F. Peden, N. Rahmioglu, P. Soininen, E. K. Speliotes, X. Yuan, G. Thorleifsson, B. Z. Alizadeh, L. D. Atwood, I. B. Borecki, M. J. Brown, P. Charoen, F. Cucca, D. Das, E. J. de Geus, A. L. Dixon, A. Doring, G. Ehret, G. I. Eyjolfsson, M. Farrall, N. G. Forouhi, N. Friedrich, W. Goessling, D. F. Gudbjartsson, T. B. Harris, A. L. Hartikainen, S. Heath, G. M. Hirschfield, A. Hofman, G. Homuth, E. Hypponen, H. L. Janssen, T. Johnson, A. J. Kangas, I. P. Kema, J. P. Kuhn, S. Lai, M. Lathrop, M. M. Lerch, Y. Li, T. J. Liang, J. P. Lin, R. J. Loos, N. G. Martin, M. F. Moffatt, G. W. Montgomery, P. B. Munroe, K. Musunuru, Y. Nakamura, C. J. O'Donnell, I. Olafsson, B. W. Penninx, A. Pouta, B. P. Prins, I. Prokopenko, R. Puls, A. Ruokonen, M. J. Savolainen, D. Schlessinger, J. N. Schouten, U. Seedorf, S. Sen-Chowdhry, K. A. Siminovitch, J. H. Smit, T. D. Spector, W. Tan, T. M. Teslovich, T. Tukiainen, A. G. Uitterlinden, M. M. Van der Klauw, R. S. Vasan, C. Wallace, H. Wallaschofski, H. E. Wichmann, G. Willemsen, P. Wurtz, C. Xu, L. M. Yerges-Armstrong, G. R. Abecasis, K. R. Ahmadi, D. I. Boomsma, M. Caulfield, W. O. Cookson, C. M. van Duijn, P. Froguel, K. Matsuda, M. I. McCarthy, C. Meisinger, V. Mooser, K. H. Pietilainen, G. Schumann, H. Snieder, M. J. Sternberg, R. P. Stolk, H. C. Thomas, U. Thorsteinsdottir, M. Uda, G. Waeber, N. J. Wareham, D. M. Waterworth, H. Watkins, J. B. Whitfield, J. C. Witteman, B. H. Wolffenbuttel, C. S. Fox, M. Ala-Korpela, K. Stefansson, P. Vollenweider, H. Volzke, E. E. Schadt, J. Scott, M. R. Jarvelin, P. Elliott and J. S. Kooner (2011). "Genome-wide association study identifies loci influencing concentrations of liver enzymes in plasma." Nat Genet 43(11): 1131-1138.

Chan, P. H. (1996). "Role of oxidants in ischemic brain damage." <u>Stroke</u> 27(6): 1124-1129.

Chatterjee, N., J. Shi and M. Garcia-Closas (2016). "Developing and evaluating polygenic risk prediction models for stratified disease prevention." <u>Nat Rev Genet</u> **17**(7): 392-406.

Chen, S. Y., Z. Feng and X. Yi (2017). "A general introduction to adjustment for multiple comparisons." <u>J Thorac Dis</u> **9**(6): 1725-1729.

Choi, S., T. Mak and P. O'Reilly (2018). "A guide to performing Polygenic Risk Score analyses." bioRxiv.

Claussnitzer, M., S. N. Dankel, K. H. Kim, G. Quon, W. Meuleman, C. Haugen, V. Glunk, I. S. Sousa, J. L. Beaudry, V. Puviindran, N. A. Abdennur, J. Liu, P. A. Svensson, Y. H. Hsu, D. J. Drucker, G. Mellgren, C. C. Hui, H. Hauner and M. Kellis (2015). "FTO Obesity Variant Circuitry and Adipocyte Browning in Humans." <u>N Engl J Med</u> **373**(10): 895-907.

Cohen, J. (1988). "Statistical Power Analysis for the Behavioral Sciences (Second Edition)." LAWRENCE ERLBAUM ASSOCIATES, PUBLISHERS.

Cooper, R. (2018). "Hypertension, Genes, and Environment: Challenges for Prevention and Risk Prediction." <u>Circulation</u> **137**(7): 662-664.

Costa-Urrutia, P., C. Abud, V. Franco-Trecu, V. Colistro, M. E. Rodriguez-Arellano, J. Vazquez-Perez, J. Granados and M. Seelaender (2017). "Genetic Obesity Risk and Attenuation Effect of Physical Fitness in Mexican-Mestizo Population: a Case-Control Study." <u>Ann Hum Genet</u> **81**(3): 106-116.

Cui, R., H. Iso, K. Yamagishi, I. Saito, Y. Kokubo, M. Inoue and S. Tsugane (2011). "Diabetes mellitus and risk of stroke and its subtypes among Japanese: the Japan public health center study." <u>Stroke</u> **42**(9): 2611-2614.

Cusi, K., A. J. Sanyal, S. Zhang, M. L. Hartman, J. M. Bue-Valleskey, B. J. Hoogwerf and A. Haupt (2017). "Non-alcoholic fatty liver disease (NAFLD) prevalence and its metabolic associations in patients with type 1 diabetes and type 2 diabetes." <u>Diabetes Obes Metab</u> **19**(11): 1630-1634.

Daly, M. J., J. D. Rioux, S. F. Schaffner, T. J. Hudson and E. S. Lander (2001). "High-resolution haplotype structure in the human genome." <u>Nat Genet</u> **29**(2): 229-232.

de Bakker, P. I., N. P. Burtt, R. R. Graham, C. Guiducci, R. Yelensky, J. A. Drake, T. Bersaglieri, K. L. Penney, J. Butler, S. Young, R. C. Onofrio, H. N. Lyon, D. O. Stram, C. A. Haiman, M. L. Freedman, X. Zhu, R. Cooper, L. Groop, L. N. Kolonel, B. E. Henderson, M. J. Daly, J. N. Hirschhorn and D. Altshuler (2006). "Transferability of tag SNPs in genetic association studies in multiple populations." <u>Nat Genet</u> **38**(11): 1298-1303.

De Taeye, B. M., T. Novitskaya, O. P. McGuinness, L. Gleaves, M. Medda, J. W. Covington and D. E. Vaughan (2007). "Macrophage TNF-alpha contributes to insulin resistance and hepatic steatosis in diet-induced obesity." <u>Am J Physiol Endocrinol Metab</u> **293**(3): E713-725.

Di Costanzo, A., F. Belardinilli, D. Bailetti, M. Sponziello, L. D'Erasmo, L. Polimeni, F. Baratta, D. Pastori, F. Ceci, A. Montali, G. Girelli, B. De Masi, A. Angeloni, G. Giannini, M. Del Ben, F. Angelico and M. Arca (2018). "Evaluation of Polygenic Determinants of Non-Alcoholic Fatty Liver Disease (NAFLD) By a Candidate Genes Resequencing Strategy." <u>Sci Rep</u> **8**(1): 3702.

Ding, X., N. K. Saxena, S. Lin, N. A. Gupta and F. A. Anania (2006). "Exendin-4, a glucagon-like protein-1 (GLP-1) receptor agonist, reverses hepatic steatosis in ob/ob mice." <u>Hepatology</u> **43**(1): 173-181.

Dobson, A. (2001). "An Introduction to Generalized Linear Models, Second Edition." <u>CHAPMAN & HALL/CRC</u>.

Domingue, B. W., D. W. Belsky, K. M. Harris, A. Smolen, M. B. McQueen and J. D. Boardman (2014). "Polygenic risk predicts obesity in both white and black young adults." <u>PLoS One</u> **9**(7): e101596.

Duggirala, R., J. Blangero, L. Almasy, T. D. Dyer, K. L. Williams, R. J. Leach, P. O'Connell and M. P. Stern (1999). "Linkage of type 2 diabetes mellitus and of age at onset to a genetic location on chromosome 10q in Mexican Americans." <u>Am J Hum Genet</u> **64**(4): 1127-1140.

EASL-EASD-EASO. (2016). "EASL-EASD-EASO Clinical Practice Guidelines for the management of non-alcoholic fatty liver disease." <u>J Hepatol</u> **64**(6): 1388-1402.

Eberle, M. A., M. J. Rieder, L. Kruglyak and D. A. Nickerson (2006). "Allele frequency matching between SNPs reveals an excess of linkage disequilibrium in genic regions of the human genome." <u>PLoS Genet</u> **2**(9): e142.

Eguchi, Y., H. Hyogo, M. Ono, T. Mizuta, N. Ono, K. Fujimoto, K. Chayama and T. Saibara (2012). "Prevalence and associated metabolic factors of nonalcoholic fatty liver disease in the general population from 2009 to 2010 in Japan: a multicenter large retrospective study." <u>J Gastroenterol</u> **47**(5): 586-595. Einarson, T. R., A. Acs, C. Ludwig and U. H. Panton (2018). "Prevalence of cardiovascular disease in type 2 diabetes: a systematic literature review of scientific evidence from across the world in 2007-2017." <u>Cardiovasc Diabetol</u> **17**(1): 83.

Eissing, L., T. Scherer, K. Todter, U. Knippschild, J. W. Greve, W. A. Buurman, H. O. Pinnschmidt, S. S. Rensen, A. M. Wolf, A. Bartelt, J. Heeren, C. Buettner and L. Scheja (2013). "De novo lipogenesis in human fat and liver is linked to ChREBP-beta and metabolic health." <u>Nat Commun</u> **4**: 1528.

Ekstedt, M., H. Hagstrom, P. Nasr, M. Fredrikson, P. Stal, S. Kechagias and R. Hultcrantz (2015). "Fibrosis stage is the strongest predictor for disease-specific mortality in NAFLD after up to 33 years of follow-up." <u>Hepatology</u> **61**(5): 1547-1554.

Fawcett, T. (2003). "ROC Graphs: Notes and Practical Considerations for Data Mining Researc hers." <u>Pattern Recognition Letters</u> **31**: 1-38.

Fedchuk, L., F. Nascimbeni, R. Pais, F. Charlotte, C. Housset and V. Ratziu (2014). "Performance and limitations of steatosis biomarkers in patients with nonalcoholic fatty liver disease." <u>Aliment</u> <u>Pharmacol Ther</u> **40**(10): 1209-1222.

Feng, W., C. Gao, Y. Bi, M. Wu, P. Li, S. Shen, W. Chen, T. Yin and D. Zhu (2017). "Randomized trial comparing the effects of gliclazide, liraglutide, and metformin on diabetes with non-alcoholic fatty liver disease." J Diabetes **9**(8): 800-809.

Frayling, T. M., N. J. Timpson, M. N. Weedon, E. Zeggini, R. M. Freathy, C. M. Lindgren, J. R. Perry, K. S. Elliott, H. Lango, N. W. Rayner, B. Shields, L. W. Harries, J. C. Barrett, S. Ellard, C. J. Groves, B. Knight, A. M. Patch, A. R. Ness, S. Ebrahim, D. A. Lawlor, S. M. Ring, Y. Ben-Shlomo, M. R. Jarvelin, U. Sovio, A. J. Bennett, D. Melzer, L. Ferrucci, R. J. Loos, I. Barroso, N. J. Wareham, F. Karpe, K. R. Owen, L. R. Cardon, M. Walker, G. A. Hitman, C. N. Palmer, A. S. Doney, A. D. Morris, G. D. Smith, A. T. Hattersley and M. I. McCarthy (2007). "A common variant in the FTO gene is associated with body mass index and predisposes to childhood and adult obesity." <u>Science</u> **316**(5826): 889-894.

Friedman, S. L., B. A. Neuschwander-Tetri, M. Rinella and A. J. Sanyal (2018). "Mechanisms of NAFLD development and therapeutic strategies." <u>Nat Med</u> **24**(7): 908-922.

Fuchsberger, C., J. Flannick, T. M. Teslovich, A. Mahajan, V. Agarwala, K. J. Gaulton, C. Ma, P. Fontanillas, L. Moutsianas, D. J. McCarthy, M. A. Rivas, J. R. B. Perry, X. Sim, T. W. Blackwell, N. R. Robertson, N. W. Rayner, P. Cingolani, A. E. Locke, J. F. Tajes, H. M. Highland, J. Dupuis, P. S. Chines, C. M. Lindgren, C. Hartl, A. U. Jackson, H. Chen, J. R. Huyghe, M. van de Bunt, R. D. Pearson, A. Kumar, M. Muller-Nurasyid, N. Grarup, H. M. Stringham, E. R. Gamazon, J. Lee, Y. Chen, R. A. Scott, J. E. Below, P. Chen, J. Huang, M. J. Go, M. L. Stitzel, D. Pasko, S. C. J. Parker, T. V. Varga, T. Green, N. L. Beer, A. G. Day-Williams, T. Ferreira, T. Fingerlin, M. Horikoshi, C. Hu, I. Huh, M. K. Ikram, B. J. Kim, Y. Kim, Y. J. Kim, M. S. Kwon, J. Lee, S. Lee, K. H. Lin, T. J. Maxwell, Y. Nagai, X. Wang, R. P. Welch, J. Yoon, W. Zhang, N. Barzilai, B. F. Voight, B. G. Han, C. P. Jenkinson, T. Kuulasmaa, J. Kuusisto, A. Manning, M. C. Y. Ng, N. D. Palmer, B. Balkau, A. Stancakova, H. E. Abboud, H. Boeing, V. Giedraitis, D. Prabhakaran, O. Gottesman, J. Scott, J. Carey, P. Kwan, G. Grant, J. D. Smith, B. M. Neale, S. Purcell, A. S. Butterworth, J. M. M. Howson, H. M. Lee, Y. Lu, S. H. Kwak, W. Zhao, J. Danesh, V. K. L. Lam, K. S. Park, D. Saleheen, W. Y. So, C. H. T. Tam, U. Afzal, D. Aguilar, R. Arya, T. Aung, E. Chan, C. Navarro, C. Y. Cheng, D. Palli, A. Correa, J. E. Curran, D. Rybin, V. S. Farook, S. P. Fowler, B. I. Freedman, M. Griswold, D. E. Hale, P. J. Hicks, C. C. Khor, S. Kumar, B. Lehne, D. Thuillier, W. Y. Lim, J. Liu, Y. T. van der Schouw, M. Loh, S. K. Musani, S. Puppala, W. R. Scott, L. Yengo, S. T. Tan, H. A. Taylor, Jr., F. Thameem, G. Wilson, Sr., T. Y. Wong, P. R. Njolstad, J. C. Levy, M. Mangino, L. L. Bonnycastle, T. Schwarzmayr, J. Fadista, G. L. Surdulescu, C. Herder, C. J. Groves, T. Wieland, J. Bork-Jensen, I. Brandslund, C. Christensen, H. A. Koistinen, A. S. F. Doney, L. Kinnunen, T. Esko, A. J. Farmer, L. Hakaste, D. Hodgkiss, J. Kravic, V. Lyssenko, M. Hollensted, M. E. Jorgensen, T. Jorgensen, C. Ladenvall, J. M. Justesen, A. Karajamaki, J. Kriebel, W. Rathmann, L. Lannfelt, T. Lauritzen, N. Narisu, A. Linneberg, O. Melander, L. Milani, M. Neville, M. Orho-

Melander, L. Qi, Q. Qi, M. Roden, O. Rolandsson, A. Swift, A. H. Rosengren, K. Stirrups, A. R. Wood, E. Mihailov, C. Blancher, M. O. Carneiro, J. Maguire, R. Poplin, K. Shakir, T. Fennell, M. DePristo, M. H. de Angelis, P. Deloukas, A. P. Gjesing, G. Jun, P. Nilsson, J. Murphy, R. Onofrio, B. Thorand, T. Hansen, C. Meisinger, F. B. Hu, B. Isomaa, F. Karpe, L. Liang, A. Peters, C. Huth, S. P. O'Rahilly, C. N. A. Palmer, O. Pedersen, R. Rauramaa, J. Tuomilehto, V. Salomaa, R. M. Watanabe, A. C. Syvanen, R. N. Bergman, D. Bharadwaj, E. P. Bottinger, Y. S. Cho, G. R. Chandak, J. C. N. Chan, K. S. Chia, M. J. Daly, S. B. Ebrahim, C. Langenberg, P. Elliott, K. A. Jablonski, D. M. Lehman, W. Jia, R. C. W. Ma, T. I. Pollin, M. Sandhu, N. Tandon, P. Froguel, I. Barroso, Y. Y. Teo, E. Zeggini, R. J. F. Loos, K. S. Small, J. S. Ried, R. A. DeFronzo, H. Grallert, B. Glaser, A. Metspalu, N. J. Wareham, M. Walker, E. Banks, C. Gieger, E. Ingelsson, H. K. Im, T. Illig, P. W. Franks, G. Buck, J. Trakalo, D. Buck, I. Prokopenko, R. Magi, L. Lind, Y. Farjoun, K. R. Owen, A. L. Gloyn, K. Strauch, T. Tuomi, J. S. Kooner, J. Y. Lee, T. Park, P. Donnelly, A. D. Morris, A. T. Hattersley, D. W. Bowden, F. S. Collins, G. Atzmon, J. C. Chambers, T. D. Spector, M. Laakso, T. M. Strom, G. I. Bell, J. Blangero, R. Duggirala, E. S. Tai, G. McVean, C. L. Hanis, J. G. Wilson, M. Seielstad, T. M. Frayling, J. B. Meigs, N. J. Cox, R. Sladek, E. S. Lander, S. Gabriel, N. P. Burtt, K. L. Mohlke, T. Meitinger, L. Groop, G. Abecasis, J. C. Florez, L. J. Scott, A. P. Morris, H. M. Kang, M. Boehnke, D. Altshuler and M. I. McCarthy (2016). "The genetic architecture of type 2 diabetes." Nature 536(7614): 41-47.

Goldman, L. W. (2007). "Principles of CT and CT technology." <u>J Nucl Med Technol</u> **35**(3): 115-128; quiz 129-130.

Gordois, A., P. Scuffham, A. Shearer and A. Oglesby (2004). "The health care costs of diabetic nephropathy in the United States and the United Kingdom." J Diabetes Complications **18**(1): 18-26.

Gorski, M., A. Tin, M. Garnaas, G. M. McMahon, A. Y. Chu, B. O. Tayo, C. Pattaro, A. Teumer, D. I. Chasman, J. Chalmers, P. Hamet, J. Tremblay, M. Woodward, T. Aspelund, G. Eiriksdottir, V. Gudnason, T. B. Harris, L. J. Launer, A. V. Smith, B. D. Mitchell, J. R. O'Connell, A. R. Shuldiner, J. Coresh, M. Li, P. Freudenberger, E. Hofer, H. Schmidt, R. Schmidt, E. G. Holliday, P. Mitchell, J. J. Wang, I. H. de Boer, G. Li, D. S. Siscovick, Z. Kutalik, T. Corre, P. Vollenweider, G. Waeber, J. Gupta, P. A. Kanetsky, S. J. Hwang, M. Olden, Q. Yang, M. de Andrade, E. J. Atkinson, S. L. Kardia, S. T. Turner, J. M. Stafford, J. Ding, Y. Liu, C. Barlassina, D. Cusi, E. Salvi, J. A. Staessen, P. M. Ridker, H. Grallert, C. Meisinger, M. Muller-Nurasyid, B. K. Kramer, H. Kramer, S. E. Rosas, I. M. Nolte, B. W. Penninx, H. Snieder, M. Fabiola Del Greco, A. Franke, U. Nothlings, W. Lieb, S. J. Bakker, R. T. Gansevoort, P. van der Harst, A. Dehghan, O. H. Franco, A. Hofman, F. Rivadeneira, S. Sedaghat, A. G. Uitterlinden, S. Coassin, M. Haun, B. Kollerits, F. Kronenberg, B. Paulweber, N. Aumann, K. Endlich, M. Pietzner, U. Volker, R. Rettig, V. Chouraki, C. Helmer, J. C. Lambert, M. Metzger, B. Stengel, T. Lehtimaki, L. P. Lyytikainen, O. Raitakari, A. Johnson, A. Parsa, M. Bochud, I. M. Heid, W. Goessling, A. Kottgen, W. H. Kao, C. S. Fox and C. A. Boger (2015). "Genome-wide association study of kidney function decline in individuals of European descent." Kidney Int 87(5): 1017-1029. Gotfredsen, C. F. (1976). "Dynamics of sulfonylurea-induced insulin release from the isolated perfused rat pancreas." Diabetologia 12(4): 339-342.

Goupil, R., S. Brachemi, A. C. Nadeau-Fredette, C. Deziel, Y. Troyanov, V. Lavergne and S. Troyanov (2013). "Lymphopenia and treatment-related infectious complications in ANCA-associated vasculitis." <u>Clin J Am Soc Nephrol</u> **8**(3): 416-423.

Grant, S. F., G. Thorleifsson, I. Reynisdottir, R. Benediktsson, A. Manolescu, J. Sainz, A. Helgason, H. Stefansson, V. Emilsson, A. Helgadottir, U. Styrkarsdottir, K. P. Magnusson, G. B. Walters, E. Palsdottir, T. Jonsdottir, T. Gudmundsdottir, A. Gylfason, J. Saemundsdottir, R. L. Wilensky, M. P. Reilly, D. J. Rader, Y. Bagger, C. Christiansen, V. Gudnason, G. Sigurdsson, U. Thorsteinsdottir, J. R. Gulcher, A. Kong and K. Stefansson (2006). "Variant of transcription factor 7-like 2 (TCF7L2) gene confers risk of type 2 diabetes." <u>Nat Genet</u> **38**(3): 320-323.

Grover, V. P., J. M. Tognarelli, M. M. Crossey, I. J. Cox, S. D. Taylor-Robinson and M. J. McPhail (2015). "Magnetic Resonance Imaging: Principles and Techniques: Lessons for Clinicians." <u>J Clin</u> <u>Exp Hepatol</u> **5**(3): 246-255.

Ha, N. T., S. Freytag and H. Bickeboeller (2014). "Coverage and efficiency in current SNP chips." <u>Eur J Hum Genet</u> **22**(9): 1124-1130.

Haflidadottir, S., J. G. Jonasson, H. Norland, S. O. Einarsdottir, D. E. Kleiner, S. H. Lund and E. S. Bjornsson (2014). "Long-term follow-up and liver-related death rate in patients with non-alcoholic and alcoholic related fatty liver disease." <u>BMC Gastroenterol</u> **14**: 166.

Hamet, P., M. Haloui, F. Harvey, F. C. Marois-Blanchet, M. P. Sylvestre, M. R. Tahir, P. H. Simon, B. S. Kanzki, J. Raelson, C. Long, J. Chalmers, M. Woodward, M. Marre, S. Harrap and J. Tremblay (2017). "PROX1 gene CC genotype as a major determinant of early onset of type 2 diabetes in slavic study participants from Action in Diabetes and Vascular Disease: Preterax and Diamicron MR Controlled Evaluation study." J Hypertens **35 Suppl 1**: S24-s32.

Hammes, H. P., S. Martin, K. Federlin, K. Geisen and M. Brownlee (1991). "Aminoguanidine treatment inhibits the development of experimental diabetic retinopathy." <u>Proc Natl Acad Sci U S</u> <u>A</u> **88**(24): 11555-11558.

Haneda, M., K. Utsunomiya, D. Koya, T. Babazono, T. Moriya, H. Makino, K. Kimura, Y. Suzuki, T. Wada, S. Ogawa, M. Inaba, Y. Kanno, T. Shigematsu, I. Masakane, K. Tsuchiya, K. Honda, K. Ichikawa and K. Shide (2015). "A new Classification of Diabetic Nephropathy 2014: a report from Joint Committee on Diabetic Nephropathy." J Diabetes Investig **6**(2): 242-246.

HapMap (2003). "The International HapMap Project." <u>Nature</u> **426**(6968): 789-796.

HapMap, C. (2005). "A haplotype map of the human genome." <u>Nature</u> **437**(7063): 1299-1320.

Hassan, M. M., A. Kaseb, C. J. Etzel, H. El-Serag, M. R. Spitz, P. Chang, K. S. Hale, M. Liu, A. Rashid, M. Shama, J. L. Abbruzzese, E. M. Loyer, H. Kaur, H. M. Hassabo, J. N. Vauthey, C. J. Wray, B. S. Hassan, Y. Z. Patt, E. Hawk, K. M. Soliman and D. Li (2013). "Genetic variation in the PNPLA3 gene and hepatocellular carcinoma in USA: risk and prognosis prediction." <u>Mol Carcinog</u> **52 Suppl 1**: E139-147.

Hassani, S. (1974). "Principles of ultrasonography." J Natl Med Assoc 66(3): 205-207, 231.

Hedrick, P. W. (1987). "Gametic disequilibrium measures: proceed with caution." <u>Genetics</u> **117**(2): 331-341.

Hepp, T., M. Schmid, O. Gefeller, E. Waldmann and A. Mayr (2016). "Approaches to Regularized Regression - A Comparison between Gradient Boosting and the Lasso." <u>Methods Inf Med</u> **55**(5): 422-430.

Hill, W. G. and A. Robertson (1968). "Linkage disequilibrium in finite populations." <u>Theor Appl</u> <u>Genet</u> **38**(6): 226-231.

Hoffman, G. E. (2013). "Correcting for population structure and kinship using the linear mixed model: theory and extensions." <u>PLoS One</u> **8**(10): e75707.

Hoffmann, T. J., M. N. Kvale, S. E. Hesselson, Y. Zhan, C. Aquino, Y. Cao, S. Cawley, E. Chung, S. Connell, J. Eshragh, M. Ewing, J. Gollub, M. Henderson, E. Hubbell, C. Iribarren, J. Kaufman, R. Z. Lao, Y. Lu, D. Ludwig, G. K. Mathauda, W. McGuire, G. Mei, S. Miles, M. M. Purdy, C. Quesenberry, D. Ranatunga, S. Rowell, M. Sadler, M. H. Shapero, L. Shen, T. R. Shenoy, D. Smethurst, S. K. Van den Eeden, L. Walter, E. Wan, R. Wearley, T. Webster, C. C. Wen, L. Weng, R. A. Whitmer, A. Williams, S. C. Wong, C. Zau, A. Finn, C. Schaefer, P. Y. Kwok and N. Risch (2011). "Next generation genome-wide association tool: design and coverage of a high-throughput European-optimized SNP array." <u>Genomics</u> **98**(2): 79-89.

Hotta, K., M. Yoneda, H. Hyogo, H. Ochi, S. Mizusawa, T. Ueno, K. Chayama, A. Nakajima, K. Nakao and A. Sekine (2010). "Association of the rs738409 polymorphism in PNPLA3 with liver damage and the development of nonalcoholic fatty liver disease." <u>BMC Med Genet</u> **11**: 172.

Huang, Y., J. C. Cohen and H. H. Hobbs (2011). "Expression and characterization of a PNPLA3 protein isoform (I148M) associated with nonalcoholic fatty liver disease." <u>J Biol Chem</u> **286**(43): 37085-37093.

Hunter, C. M., M. C. Robinson, D. L. Aylor and N. D. Singh (2016). "Genetic Background, Maternal Age, and Interaction Effects Mediate Rates of Crossing Over in Drosophila melanogaster Females." <u>G3 (Bethesda)</u> **6**(5): 1409-1416.

Hwang, Y. C., H. Y. Ahn, S. W. Park and C. Y. Park (2018). "Nonalcoholic Fatty Liver Disease Associates With Increased Overall Mortality and Death From Cancer, Cardiovascular Disease, and Liver Disease in Women but Not Men." <u>Clin Gastroenterol Hepatol</u> **16**(7): 1131-1137.e1135.

Hyysalo, J., V. T. Mannisto, Y. Zhou, J. Arola, V. Karja, M. Leivonen, A. Juuti, N. Jaser, S. Lallukka, P. Kakela, S. Venesmaa, M. Simonen, J. Saltevo, L. Moilanen, E. Korpi-Hyovalti, S. Keinanen-Kiukaanniemi, H. Oksa, M. Orho-Melander, L. Valenti, S. Fargion, J. Pihlajamaki, M. Peltonen and H. Yki-Jarvinen (2014). "A population-based study on the prevalence of NASH using scores validated against liver histology." J Hepatol **60**(4): 839-846.

Imajo, K., T. Kessoku, Y. Honda, W. Tomeno, Y. Ogawa, H. Mawatari, K. Fujita, M. Yoneda, M. Taguri, H. Hyogo, Y. Sumida, M. Ono, Y. Eguchi, T. Inoue, T. Yamanaka, K. Wada, S. Saito and A. Nakajima (2016). "Magnetic Resonance Imaging More Accurately Classifies Steatosis and Fibrosis in Patients With Nonalcoholic Fatty Liver Disease Than Transient Elastography." <u>Gastroenterology</u> **150**(3): 626-637 e627.

Ishibashi, Y., S. Yamagishi, T. Matsui, K. Ohta, R. Tanoue, M. Takeuchi, S. Ueda, K. Nakamura and S. Okuda (2012). "Pravastatin inhibits advanced glycation end products (AGEs)-induced proximal tubular cell apoptosis and injury by reducing receptor for AGEs (RAGE) level." <u>Metabolism</u> **61**(8): 1067-1072.

Jarl, J., P. Desatnik, U. Peetz Hansson, K. G. Prutz and U. G. Gerdtham (2018). "Do kidney transplantations save money? A study using a before-after design and multiple register-based data from Sweden." <u>Clin Kidney J</u> **11**(2): 283-288.

Jenkins, C. M., D. J. Mancuso, W. Yan, H. F. Sims, B. Gibson and R. W. Gross (2004). "Identification, cloning, expression, and purification of three novel human calcium-independent phospholipase A2 family members possessing triacylglycerol lipase and acylglycerol transacylase activities." J Biol Chem **279**(47): 48968-48975.

Jiang, W., S. Huang, H. Teng, P. Wang, M. Wu, X. Zhou and H. Ran (2018). "Diagnostic accuracy of point shear wave elastography and transient elastography for staging hepatic fibrosis in patients with non-alcoholic fatty liver disease: a meta-analysis." <u>BMJ Open</u> **8**(8): e021787.

Jowett, J. B., J. E. Curran, M. P. Johnson, M. A. Carless, H. H. Goring, T. D. Dyer, S. A. Cole, A. G. Comuzzie, J. W. MacCluer, E. K. Moses and J. Blangero (2010). "Genetic variation at the FTO locus influences RBL2 gene expression." <u>Diabetes</u> **59**(3): 726-732.

Kabakov, E., C. Norymberg, E. Osher, M. Koffler, K. Tordjman, Y. Greenman and N. Stern (2006). "Prevalence of hypertension in type 2 diabetes mellitus: impact of the tightening definition of high blood pressure and association with confounding risk factors." <u>J Cardiometab Syndr</u> 1(2): 95-101. Kalf, R. R., R. Mihaescu, S. Kundu, P. de Knijff, R. C. Green and A. C. Janssens (2014). "Variations in predicted risks in personal genome testing for common complex diseases." <u>Genet Med</u> 16(1): 85-91.

Kanwal, F., J. R. Kramer, S. Mapakshi, Y. Natarajan, M. Chayanupatkul, P. A. Richardson, L. Li, R. Desiderio, A. P. Thrift, S. M. Asch, J. Chu and H. B. El-Serag (2018). "Risk of Hepatocellular Cancer in Patients With Non-Alcoholic Fatty Liver Disease." <u>Gastroenterology</u> **155**(6): 1828-1837 e1822. Kathiresan, S., A. K. Manning, S. Demissie, R. B. D'Agostino, A. Surti, C. Guiducci, L. Gianniny, N. P. Burtt, O. Melander, M. Orho-Melander, D. K. Arnett, G. M. Peloso, J. M. Ordovas and L. A. Cupples

(2007). "A genome-wide association study for blood lipid phenotypes in the Framingham Heart Study." <u>BMC Med Genet</u> **8 Suppl 1**: S17.

Kawaguchi, T., T. Shima, M. Mizuno, Y. Mitsumoto, A. Umemura, Y. Kanbara, S. Tanaka, Y. Sumida, K. Yasui, M. Takahashi, K. Matsuo, Y. Itoh, K. Tokushige, E. Hashimoto, K. Kiyosawa, M. Kawaguchi, H. Itoh, H. Uto, Y. Komorizono, K. Shirabe, S. Takami, T. Takamura, M. Kawanaka, R. Yamada, F. Matsuda and T. Okanoue (2018). "Risk estimation model for nonalcoholic fatty liver disease in the Japanese using multiple genetic markers." <u>PLoS One</u> **13**(1): e0185490.

Khera, A. V., M. Chaffin, K. G. Aragam, M. E. Haas, C. Roselli, S. H. Choi, P. Natarajan, E. S. Lander, S. A. Lubitz, P. T. Ellinor and S. Kathiresan (2018). "Genome-wide polygenic scores for common diseases identify individuals with risk equivalent to monogenic mutations." <u>Nat Genet</u> **50**(9): 1219-1224.

Khera, A. V., M. Chaffin, K. H. Wade, S. Zahid, J. Brancale, R. Xia, M. Distefano, O. Senol-Cosar, M. E. Haas, A. Bick, K. G. Aragam, E. S. Lander, G. D. Smith, H. Mason-Suares, M. Fornage, M. Lebo, N. J. Timpson, L. M. Kaplan and S. Kathiresan (2019). "Polygenic Prediction of Weight and Obesity Trajectories from Birth to Adulthood." <u>Cell</u> **177**(3): 587-596 e589.

Khoury, J. C., D. Kleindorfer, K. Alwell, C. J. Moomaw, D. Woo, O. Adeoye, M. L. Flaherty, P. Khatri, S. Ferioli, J. P. Broderick and B. M. Kissela (2013). "Diabetes mellitus: a risk factor for ischemic stroke in a large biracial population." <u>Stroke</u> **44**(6): 1500-1504.

Kim, D., W. Kim, A. C. Adejumo, G. Cholankeril, S. P. Tighe, R. J. Wong, S. A. Gonzalez, S. A. Harrison, Z. M. Younossi and A. Ahmed (2019). "Race/ethnicity-based temporal changes in prevalence of NAFLD-related advanced fibrosis in the United States, 2005-2016." <u>Hepatol Int</u> **13**(2): 205-213.

Kim, H. C., D. J. Kim and K. B. Huh (2009). "Association between nonalcoholic fatty liver disease and carotid intima-media thickness according to the presence of metabolic syndrome." <u>Atherosclerosis</u> **204**(2): 521-525.

Kitamoto, T., A. Kitamoto, M. Yoneda, H. Hyogo, H. Ochi, S. Mizusawa, T. Ueno, K. Nakao, A. Sekine, K. Chayama, A. Nakajima and K. Hotta (2014). "Targeted next-generation sequencing and fine linkage disequilibrium mapping reveals association of PNPLA3 and PARVB with the severity of nonalcoholic fatty liver disease." J Hum Genet **59**(5): 241-246.

Kolterman, O. G., R. S. Gray, G. Shapiro, J. A. Scarlett, J. Griffin and J. M. Olefsky (1984). "The acute and chronic effects of sulfonylurea therapy in type II diabetic subjects." <u>Diabetes</u> **33**(4): 346-354. Kotronen, A., L. E. Johansson, L. M. Johansson, C. Roos, J. Westerbacka, A. Hamsten, R. Bergholm, P. Arkkila, J. Arola, T. Kiviluoto, R. M. Fisher, E. Ehrenborg, M. Orho-Melander, M. Ridderstrale, L. Groop and H. Yki-Jarvinen (2009). "A common variant in PNPLA3, which encodes adiponutrin, is associated with liver fat content in humans." <u>Diabetologia</u> **52**(6): 1056-1060.

Kozlitina, J., E. Smagris, S. Stender, B. G. Nordestgaard, H. H. Zhou, A. Tybjaerg-Hansen, T. F. Vogt, H. H. Hobbs and J. C. Cohen (2014). "Exome-wide association study identifies a TM6SF2 variant that confers susceptibility to nonalcoholic fatty liver disease." <u>Nat Genet</u> **46**(4): 352-356.

Kralovicova, J., T. R. Gaunt, S. Rodriguez, P. J. Wood, I. N. Day and I. Vorechovsky (2006). "Variants in the human insulin gene that affect pre-mRNA splicing: is -23HphI a functional single nucleotide polymorphism at IDDM2?" <u>Diabetes</u> **55**(1): 260-264.

Kvalseth, T. O. (1985). "Cautionary Note About R2." <u>The American Statistician. Published by Taylor</u> <u>& Francis</u> **39**(4): 279-285.

LaBrecque, D. R., Z. Abbas, F. Anania, P. Ferenci, A. G. Khan, K. L. Goh, S. S. Hamid, V. Isakov, M. Lizarzabal, M. M. Penaranda, J. F. Ramos, S. Sarin, D. Stimac, A. B. Thomson, M. Umar, J. Krabshuis and A. LeMair (2014). "World Gastroenterology Organisation global guidelines: Nonalcoholic fatty liver disease and nonalcoholic steatohepatitis." J Clin Gastroenterol **48**(6): 467-473.

Larrieta-Carrasco, E., Y. N. Flores, L. R. Macias-Kauffer, P. Ramirez-Palacios, M. Quiterio, E. G. Ramirez-Salazar, P. Leon-Mimila, B. Rivera-Paredez, G. Cabrera-Alvarez, S. Canizales-Quinteros, Z.

F. Zhang, T. V. Lopez-Perez, J. Salmeron and R. Velazquez-Cruz (2018). "Genetic variants in COL13A1, ADIPOQ and SAMM50, in addition to the PNPLA3 gene, confer susceptibility to elevated transaminase levels in an admixed Mexican population." <u>Exp Mol Pathol</u> **104**(1): 50-58.

Leasher, J. L., R. R. Bourne, S. R. Flaxman, J. B. Jonas, J. Keeffe, K. Naidoo, K. Pesudovs, H. Price, R. A. White, T. Y. Wong, S. Resnikoff and H. R. Taylor (2016). "Global Estimates on the Number of People Blind or Visually Impaired by Diabetic Retinopathy: A Meta-analysis From 1990 to 2010." <u>Diabetes Care</u> **39**(9): 1643-1649.

Lee, A. Y. and S. S. Chung (1999). "Contributions of polyol pathway to oxidative stress in diabetic cataract." FASEB J **13**(1): 23-30.

Lee, S. S. and S. H. Park (2014). "Radiologic evaluation of nonalcoholic fatty liver disease." <u>World</u> J Gastroenterol **20**(23): 7392-7402.

Lewis, C. M., S. C. Whitwell, A. Forbes, J. Sanderson, C. G. Mathew and T. M. Marteau (2007). "Estimating risks of common complex diseases across genetic and environmental factors: the example of Crohn disease." J Med Genet **44**(11): 689-694.

Lewontin, R. and K. Kojima (1960). "The Evolutionary Dynamics of Complex Polymorphisms." **14**(4): 458-472.

Lewontin, R. C. (1964). "The Interaction of Selection and Linkage. I. General Considerations; Heterotic Models." <u>Genetics</u> **49**(1): 49-67.

Li, H., B. Hu, L. Wei, L. Zhou, L. Zhang, Y. Lin, B. Qin, Y. Dai and Z. Lu (2018). "Non-alcoholic fatty liver disease is associated with stroke severity and progression of brainstem infarctions." <u>Eur J</u> <u>Neurol</u> **25**(3): 577-e534.

Li, L., D. W. Liu, H. Y. Yan, Z. Y. Wang, S. H. Zhao and B. Wang (2016). "Obesity is an independent risk factor for non-alcoholic fatty liver disease: evidence from a meta-analysis of 21 cohort studies." <u>Obes Rev</u> **17**(6): 510-519.

Li, M., Y. Li, O. Weeks, V. Mijatovic, A. Teumer, J. E. Huffman, G. Tromp, C. Fuchsberger, M. Gorski, L. P. Lyytikainen, T. Nutile, S. Sedaghat, R. Sorice, A. Tin, Q. Yang, T. S. Ahluwalia, D. E. Arking, N. A. Bihlmeyer, C. A. Boger, R. J. Carroll, D. I. Chasman, M. C. Cornelis, A. Dehghan, J. D. Faul, M. F. Feitosa, G. Gambaro, P. Gasparini, F. Giulianini, I. Heid, J. Huang, M. Imboden, A. U. Jackson, J. Jeff, M. A. Jhun, R. Katz, A. Kifley, T. O. Kilpelainen, A. Kumar, M. Laakso, R. Li-Gao, K. Lohman, Y. Lu, R. Magi, G. Malerba, E. Mihailov, K. L. Mohlke, D. O. Mook-Kanamori, A. Robino, D. Ruderfer, E. Salvi, U. M. Schick, C. A. Schulz, A. V. Smith, J. A. Smith, M. Traglia, L. M. Yerges-Armstrong, W. Zhao, M. O. Goodarzi, A. T. Kraja, C. Liu, J. Wessel, E. Boerwinkle, I. B. Borecki, J. Bork-Jensen, E. P. Bottinger, D. Braga, I. Brandslund, J. A. Brody, A. Campbell, D. J. Carey, C. Christensen, J. Coresh, E. Crook, G. C. Curhan, D. Cusi, I. H. de Boer, A. P. de Vries, J. C. Denny, O. Devuyst, A. W. Dreisbach, K. Endlich, T. Esko, O. H. Franco, T. Fulop, G. S. Gerhard, C. Glumer, O. Gottesman, N. Grarup, V. Gudnason, T. Hansen, T. B. Harris, C. Hayward, L. Hocking, A. Hofman, F. B. Hu, L. L. Husemoen, R. D. Jackson, T. Jorgensen, M. E. Jorgensen, M. Kahonen, S. L. Kardia, W. Konig, C. Kooperberg, J. Kriebel, L. J. Launer, T. Lauritzen, T. Lehtimaki, D. Levy, P. Linksted, A. Linneberg, Y. Liu, R. J. Loos, A. Lupo, C. Meisinger, O. Melander, A. Metspalu, P. Mitchell, M. Nauck, P. Nurnberg, M. Orho-Melander, A. Parsa, O. Pedersen, A. Peters, U. Peters, O. Polasek, D. Porteous, N. M. Probst-Hensch, B. M. Psaty, L. Qi, O. T. Raitakari, A. P. Reiner, R. Rettig, P. M. Ridker, F. Rivadeneira, J. E. Rossouw, F. Schmidt, D. Siscovick, N. Soranzo, K. Strauch, D. Toniolo, S. T. Turner, A. G. Uitterlinden, S. Ulivi, D. Velayutham, U. Volker, H. Volzke, M. Waldenberger, J. J. Wang, D. R. Weir, D. Witte, H. Kuivaniemi, C. S. Fox, N. Franceschini, W. Goessling, A. Kottgen and A. Y. Chu (2017). "SOS2 and ACP1 Loci Identified through Large-Scale Exome Chip Analysis Regulate Kidney Development and Function." J Am Soc Nephrol 28(3): 981-994.

Li, Q., H. Q. Qu, A. R. Rentfro, M. L. Grove, S. Mirza, Y. Lu, C. L. Hanis, M. B. Fallon, E. Boerwinkle, S. P. Fisher-Hoch and J. B. McCormick (2012). "PNPLA3 polymorphisms and liver aminotransferase levels in a Mexican American population." <u>Clin Invest Med</u> **35**(4): E237-245.

Liang, H., C. Vallarino, G. Joseph, S. Manne, A. Perez and S. Zhang (2014). "Increased risk of subsequent myocardial infarction in patients with type 2 diabetes: a retrospective cohort study using the U.K. General Practice Research Database." <u>Diabetes Care</u> **37**(5): 1329-1337.

Limpert, E., W. A. Stahel and M. Abbt (2001). "Log-normal Distributions across the Sciences: Keys and Clues: On the charms of statistics, and how mechanical models resembling gambling machines offer a link to a handy way to characterize log-normal distributions, which can provide deeper insight into variability and probability—normal or log-normal: That is the question." <u>BioScience</u> **51**(5): 341–352.

Liu, W., Q. M. Anstee, X. Wang, S. Gawrieh, E. R. Gamazon, S. Athinarayanan, Y. L. Liu, R. Darlay, H. J. Cordell, A. K. Daly, C. P. Day and N. Chalasani (2016). "Transcriptional regulation of PNPLA3 and its impact on susceptibility to nonalcoholic fatty liver Disease (NAFLD) in humans." <u>Aging</u> (Albany NY) **9**(1): 26-40.

Liu, Z., H. Ning, S. Que, L. Wang, X. Qin and T. Peng (2014). "Complex association between alanine aminotransferase activity and mortality in general population: a systematic review and metaanalysis of prospective studies." <u>PLoS One</u> **9**(3): e91410.

Loffroy, R., B. Terriat, V. Jooste, I. Robin, M. C. Brindisi, P. Hillon, B. Verges, J. P. Cercueil and J. M. Petit (2015). "Liver fat content is negatively associated with atherosclerotic carotid plaque in type 2 diabetic patients." <u>Quant Imaging Med Surg</u> **5**(6): 792-798.

Loguercio, C., T. De Simone, M. V. D'Auria, I. de Sio, A. Federico, C. Tuccillo, A. M. Abbatecola and C. Del Vecchio Blanco (2004). "Non-alcoholic fatty liver disease: a multicentre clinical study by the Italian Association for the Study of the Liver." <u>Dig Liver Dis</u> **36**(6): 398-405.

Loomba, R., N. Schork, C. H. Chen, R. Bettencourt, A. Bhatt, B. Ang, P. Nguyen, C. Hernandez, L. Richards, J. Salotti, S. Lin, E. Seki, K. E. Nelson, C. B. Sirlin and D. Brenner (2015). "Heritability of Hepatic Fibrosis and Steatosis Based on a Prospective Twin Study." <u>Gastroenterology</u> **149**(7): 1784-1793.

Lu, M., J. Zhou, C. Naylor, B. D. Kirkpatrick, R. Haque, W. A. Petri, Jr. and J. Z. Ma (2017). "Application of penalized linear regression methods to the selection of environmental enteropathy biomarkers." <u>Biomark Res</u> **5**: 9.

MacArthur, J., E. Bowler, M. Cerezo, L. Gil, P. Hall, E. Hastings, H. Junkins, A. McMahon, A. Milano, J. Morales, Z. M. Pendlington, D. Welter, T. Burdett, L. Hindorff, P. Flicek, F. Cunningham and H. Parkinson (2017). "The new NHGRI-EBI Catalog of published genome-wide association studies (GWAS Catalog)." <u>Nucleic Acids Res</u> **45**(D1): D896-d901.

MacMahon, S., R. Peto, J. Cutler, R. Collins, P. Sorlie, J. Neaton, R. Abbott, J. Godwin, A. Dyer and J. Stamler (1990). "Blood pressure, stroke, and coronary heart disease. Part 1, Prolonged differences in blood pressure: prospective observational studies corrected for the regression dilution bias." Lancet **335**(8692): 765-774.

Mak, T. S. H., R. M. Porsch, S. W. Choi, X. Zhou and P. C. Sham (2017). "Polygenic scores via penalized regression on summary statistics." <u>Genet Epidemiol</u> **41**(6): 469-480.

Mandorfer, M., B. Scheiner, A. F. Stattermayer, P. Schwabl, R. Paternostro, D. Bauer, B. Schaefer, H. Zoller, M. Peck-Radosavljevic, M. Trauner, T. Reiberger, P. Ferenci and A. Ferlitsch (2018). "Impact of patatin-like phospholipase domain containing 3 rs738409 G/G genotype on hepatic decompensation and mortality in patients with portal hypertension." <u>Aliment Pharmacol Ther</u> **48**(4): 451-459.

Manolio, T. A. (2010). "Genomewide association studies and assessment of the risk of disease." <u>N</u> Engl J Med **363**(2): 166-176. Martin-Rodriguez, J. L., J. Gonzalez-Cantero, A. Gonzalez-Cantero, J. P. Arrebola and J. L. Gonzalez-Calvin (2017). "Diagnostic accuracy of serum alanine aminotransferase as biomarker for nonalcoholic fatty liver disease and insulin resistance in healthy subjects, using 3T MR spectroscopy." <u>Medicine (Baltimore)</u> **96**(17): e6770.

Martin, A. R., M. Kanai, Y. Kamatani, Y. Okada, B. M. Neale and M. J. Daly (2019). "Clinical use of current polygenic risk scores may exacerbate health disparities." <u>Nat Genet</u> **51**(4): 584-591.

Mathiesen, U. L., L. E. Franzen, A. Fryden, U. Foberg and G. Bodemar (1999). "The clinical significance of slightly to moderately increased liver transaminase values in asymptomatic patients." <u>Scand J Gastroenterol</u> **34**(1): 85-91.

Mavaddat, N., K. Michailidou, J. Dennis, M. Lush, L. Fachal, A. Lee, J. P. Tyrer, T. H. Chen, Q. Wang, M. K. Bolla, X. Yang, M. A. Adank, T. Ahearn, K. Aittomaki, J. Allen, I. L. Andrulis, H. Anton-Culver, N. N. Antonenkova, V. Arndt, K. J. Aronson, P. L. Auer, P. Auvinen, M. Barrdahl, L. E. Beane Freeman, M. W. Beckmann, S. Behrens, J. Benitez, M. Bermisheva, L. Bernstein, C. Blomqvist, N. V. Bogdanova, S. E. Bojesen, B. Bonanni, A. L. Borresen-Dale, H. Brauch, M. Bremer, H. Brenner, A. Brentnall, I. W. Brock, A. Brooks-Wilson, S. Y. Brucker, T. Bruning, B. Burwinkel, D. Campa, B. D. Carter, J. E. Castelao, S. J. Chanock, R. Chlebowski, H. Christiansen, C. L. Clarke, J. M. Collee, E. Cordina-Duverger, S. Cornelissen, F. J. Couch, A. Cox, S. S. Cross, K. Czene, M. B. Daly, P. Devilee, T. Dork, I. Dos-Santos-Silva, M. Dumont, L. Durcan, M. Dwek, D. M. Eccles, A. B. Ekici, A. H. Eliassen, C. Ellberg, C. Engel, M. Eriksson, D. G. Evans, P. A. Fasching, J. Figueroa, O. Fletcher, H. Flyger, A. Forsti, L. Fritschi, M. Gabrielson, M. Gago-Dominguez, S. M. Gapstur, J. A. Garcia-Saenz, M. M. Gaudet, V. Georgoulias, G. G. Giles, I. R. Gilyazova, G. Glendon, M. S. Goldberg, D. E. Goldgar, A. Gonzalez-Neira, G. I. Grenaker Alnaes, M. Grip, J. Gronwald, A. Grundy, P. Guenel, L. Haeberle, E. Hahnen, C. A. Haiman, N. Hakansson, U. Hamann, S. E. Hankinson, E. F. Harkness, S. N. Hart, W. He, A. Hein, J. Heyworth, P. Hillemanns, A. Hollestelle, M. J. Hooning, R. N. Hoover, J. L. Hopper, A. Howell, G. Huang, K. Humphreys, D. J. Hunter, M. Jakimovska, A. Jakubowska, W. Janni, E. M. John, N. Johnson, M. E. Jones, A. Jukkola-Vuorinen, A. Jung, R. Kaaks, K. Kaczmarek, V. Kataja, R. Keeman, M. J. Kerin, E. Khusnutdinova, J. I. Kiiski, J. A. Knight, Y. D. Ko, V. M. Kosma, S. Koutros, V. N. Kristensen, U. Kruger, T. Kuhl, D. Lambrechts, L. Le Marchand, E. Lee, F. Lejbkowicz, J. Lilyquist, A. Lindblom, S. Lindstrom, J. Lissowska, W. Y. Lo, S. Loibl, J. Long, J. Lubinski, M. P. Lux, R. J. MacInnis, T. Maishman, E. Makalic, I. Maleva Kostovska, A. Mannermaa, S. Manoukian, S. Margolin, J. W. M. Martens, M. E. Martinez, D. Mavroudis, C. McLean, A. Meindl, U. Menon, P. Middha, N. Miller, F. Moreno, A. M. Mulligan, C. Mulot, V. M. Munoz-Garzon, S. L. Neuhausen, H. Nevanlinna, P. Neven, W. G. Newman, S. F. Nielsen, B. G. Nordestgaard, A. Norman, K. Offit, J. E. Olson, H. Olsson, N. Orr, V. S. Pankratz, T. W. Park-Simon, J. I. A. Perez, C. Perez-Barrios, P. Peterlongo, J. Peto, M. Pinchev, D. Plaseska-Karanfilska, E. C. Polley, R. Prentice, N. Presneau, D. Prokofyeva, K. Purrington, K. Pylkas, B. Rack, P. Radice, R. Rau-Murthy, G. Rennert, H. S. Rennert, V. Rhenius, M. Robson, A. Romero, K. J. Ruddy, M. Ruebner, E. Saloustros, D. P. Sandler, E. J. Sawyer, D. F. Schmidt, R. K. Schmutzler, A. Schneeweiss, M. J. Schoemaker, F. Schumacher, P. Schurmann, L. Schwentner, C. Scott, R. J. Scott, C. Seynaeve, M. Shah, M. E. Sherman, M. J. Shrubsole, X. O. Shu, S. Slager, A. Smeets, C. Sohn, P. Soucy, M. C. Southey, J. J. Spinelli, C. Stegmaier, J. Stone, A. J. Swerdlow, R. M. Tamimi, W. J. Tapper, J. A. Taylor, M. B. Terry, K. Thone, R. Tollenaar, I. Tomlinson, T. Truong, M. Tzardi, H. U. Ulmer, M. Untch, C. M. Vachon, E. M. van Veen, J. Vijai, C. R. Weinberg, C. Wendt, A. S. Whittemore, H. Wildiers, W. Willett, R. Winqvist, A. Wolk, X. R. Yang, D. Yannoukakos, Y. Zhang, W. Zheng, A. Ziogas, A. M. Dunning, D. J. Thompson, G. Chenevix-Trench, J. Chang-Claude, M. K. Schmidt, P. Hall, R. L. Milne, P. D. P. Pharoah, A. C. Antoniou, N. Chatterjee, P. Kraft, M. Garcia-Closas, J. Simard and D. F. Easton (2019). "Polygenic Risk Scores for Prediction of Breast Cancer and Breast Cancer Subtypes." Am J Hum Genet 104(1): 21-34.

Mayerson, A. B., R. S. Hundal, S. Dufour, V. Lebon, D. Befroy, G. W. Cline, S. Enocksson, S. E. Inzucchi, G. I. Shulman and K. F. Petersen (2002). "The effects of rosiglitazone on insulin sensitivity, lipolysis, and hepatic and skeletal muscle triglyceride content in patients with type 2 diabetes." <u>Diabetes</u> **51**(3): 797-802.

McGuigan, F. E. and S. H. Ralston (2002). "Single nucleotide polymorphism detection: allelic discrimination using TaqMan." <u>Psychiatr Genet</u> **12**(3): 133-136.

Medici, F., M. Hawa, A. Ianari, D. A. Pyke and R. D. Leslie (1999). "Concordance rate for type II diabetes mellitus in monozygotic twins: actuarial analysis." <u>Diabetologia</u> **42**(2): 146-150.

Meffert, P. J., K. D. Repp, H. Volzke, F. U. Weiss, G. Homuth, J. P. Kuhn, M. M. Lerch and A. A. Aghdassi (2018). "The PNPLA3 SNP rs738409:G allele is associated with increased liver diseaseassociated mortality but reduced overall mortality in a population-based cohort." <u>J Hepatol</u> **68**(4): 858-860.

Mega, J. L., N. O. Stitziel, J. G. Smith, D. I. Chasman, M. Caulfield, J. J. Devlin, F. Nordio, C. Hyde, C. P. Cannon, F. Sacks, N. Poulter, P. Sever, P. M. Ridker, E. Braunwald, O. Melander, S. Kathiresan and M. S. Sabatine (2015). "Genetic risk, coronary heart disease events, and the clinical benefit of statin therapy: an analysis of primary and secondary prevention trials." <u>Lancet</u> **385**(9984): 2264-2271.

Mehta, S. H., F. L. Brancati, M. S. Sulkowski, S. A. Strathdee, M. Szklo and D. L. Thomas (2000). "Prevalence of type 2 diabetes mellitus among persons with hepatitis C virus infection in the United States." <u>Ann Intern Med</u> **133**(8): 592-599.

Migliore, L. and F. Coppede (2009). "Genetics, environmental factors and the emerging role of epigenetics in neurodegenerative diseases." <u>Mutat Res</u> **667**(1-2): 82-97.

Mills, K. T., J. D. Bundy, T. N. Kelly, J. E. Reed, P. M. Kearney, K. Reynolds, J. Chen and J. He (2016). "Global Disparities of Hypertension Prevalence and Control: A Systematic Analysis of Population-Based Studies From 90 Countries." <u>Circulation</u> **134**(6): 441-450.

Moses, A. (2016). "Statistical modeling and machine learning for molecular biology." <u>Chapman</u> and Hall/CRC.

Motamed, N., B. Rabiee, H. Poustchi, B. Dehestani, G. R. Hemasi, M. R. Khonsari, M. Maadi, F. S. Saeedian and F. Zamani (2017). "Non-alcoholic fatty liver disease (NAFLD) and 10-year risk of cardiovascular diseases." <u>Clin Res Hepatol Gastroenterol</u> **41**(1): 31-38.

Mueller, J. C. (2004). "Linkage disequilibrium for different scales and applications." <u>Brief Bioinform</u> **5**(4): 355-364.

Muller, M. (2004). "Generalized Linear Models." <u>XploRe-Learning Guide, Springer</u>: 204-228.

Musso, G., M. Cassader, E. Paschetta and R. Gambino (2017). "Thiazolidinediones and Advanced Liver Fibrosis in Nonalcoholic Steatohepatitis: A Meta-analysis." JAMA Intern Med **177**(5): 633-640.

Nayak, B. K. and A. Hazra (2011). "How to choose the right statistical test?" <u>Indian J Ophthalmol</u> **59**(2): 85-86.

NCBI (2015). "Etymologia: Bonferroni correction." <u>Emerg Infect Dis</u> **21**(2): 289.

Nelder, J. A. and R. W. M. Wedderburn (1972). "Generalized Linear Models." <u>Journal of the Royal</u> <u>Statistical Society. Series A</u> **135**(3): 370-384.

Nichols, G. A., S. Vupputuri and H. Lau (2011). "Medical care costs associated with progression of diabetic nephropathy." <u>Diabetes Care</u> **34**(11): 2374-2378.

Norton, B. J. and M. J. Strube (2001). "Understanding statistical power." <u>J Orthop Sports Phys Ther</u> **31**(6): 307-315.

Nseir, W. B., J. M. Mograbi, A. E. Amara, O. H. Abu Elheja and M. N. Mahamid (2019). "Nonalcoholic fatty liver disease and 30-day all-cause mortality in adult patients with communityacquired pneumonia." <u>QJM</u> **112**(2): 95-99. Nunez, E., E. W. Steyerberg and J. Nunez (2011). "[Regression modeling strategies]." <u>Rev Esp</u> <u>Cardiol</u> **64**(6): 501-507.

Ogrodnik, M., S. Miwa, T. Tchkonia, D. Tiniakos, C. L. Wilson, A. Lahat, C. P. Day, A. Burt, A. Palmer, Q. M. Anstee, S. N. Grellscheid, J. H. J. Hoeijmakers, S. Barnhoorn, D. A. Mann, T. G. Bird, W. P. Vermeij, J. L. Kirkland, J. F. Passos, T. von Zglinicki and D. Jurk (2017). "Cellular senescence drives age-dependent hepatic steatosis." <u>Nat Commun</u> **8**: 15691.

Olefsky, J. M., J. W. Farquhar and G. M. Reaven (1974). "Reappraisal of the role of insulin in hypertriglyceridemia." <u>Am J Med</u> **57**(4): 551-560.

Ostchega, Y., K. S. Porter, J. Hughes, C. F. Dillon and T. Nwankwo (2011). "Resting pulse rate reference data for children, adolescents, and adults: United States, 1999-2008." <u>Natl Health Stat</u> <u>Report(41)</u>: 1-16.

Ota, T., T. Takamura, S. Kurita, N. Matsuzawa, Y. Kita, M. Uno, H. Akahori, H. Misu, M. Sakurai, Y. Zen, Y. Nakanuma and S. Kaneko (2007). "Insulin resistance accelerates a dietary rat model of nonalcoholic steatohepatitis." <u>Gastroenterology</u> **132**(1): 282-293.

Papanicolas, I., L. R. Woskie and A. K. Jha (2018). "Health Care Spending in the United States and Other High-Income Countries." Jama **319**(10): 1024-1039.

Patel, A., S. MacMahon, J. Chalmers, B. Neal, L. Billot, M. Woodward, M. Marre, M. Cooper, P. Glasziou, D. Grobbee, P. Hamet, S. Harrap, S. Heller, L. Liu, G. Mancia, C. E. Mogensen, C. Pan, N. Poulter, A. Rodgers, B. Williams, S. Bompoint, B. E. de Galan, R. Joshi and F. Travert (2008). "Intensive blood glucose control and vascular outcomes in patients with type 2 diabetes." <u>N Engl</u> J Med **358**(24): 2560-2572.

Patel, A., S. MacMahon, J. Chalmers, B. Neal, M. Woodward, L. Billot, S. Harrap, N. Poulter, M. Marre, M. Cooper, P. Glasziou, D. E. Grobbee, P. Hamet, S. Heller, L. S. Liu, G. Mancia, C. E. Mogensen, C. Y. Pan, A. Rodgers and B. Williams (2007). "Effects of a fixed combination of perindopril and indapamide on macrovascular and microvascular outcomes in patients with type 2 diabetes mellitus (the ADVANCE trial): a randomised controlled trial." Lancet **370**(9590): 829-840.

Patel, C. J., R. Chen, K. Kodama, J. P. Ioannidis and A. J. Butte (2013). "Systematic identification of interaction effects between genome- and environment-wide associations in type 2 diabetes mellitus." <u>Hum Genet</u> **132**(5): 495-508.

Perley, M. and D. M. Kipnis (1966). "Plasma insulin responses to glucose and tolbutamide of normal weight and obese diabetic and nondiabetic subjects." <u>Diabetes</u> **15**(12): 867-874.

Petit, J. M., J. P. Cercueil, R. Loffroy, D. Denimal, B. Bouillet, C. Fourmont, O. Chevallier, L. Duvillard and B. Verges (2017). "Effect of Liraglutide Therapy on Liver Fat Content in Patients With Inadequately Controlled Type 2 Diabetes: The Lira-NAFLD Study." J Clin Endocrinol Metab **102**(2): 407-415.

Pilling, L. C., C. L. Kuo, K. Sicinski, J. Tamosauskaite, G. A. Kuchel, L. W. Harries, P. Herd, R. Wallace, L. Ferrucci and D. Melzer (2017). "Human longevity: 25 genetic loci associated in 389,166 UK biobank participants." <u>Aging (Albany NY) **9**(12): 2504-2520.</u>

Pinero, J., A. Bravo, N. Queralt-Rosinach, A. Gutierrez-Sacristan, J. Deu-Pons, E. Centeno, J. Garcia-Garcia, F. Sanz and L. I. Furlong (2017). "DisGeNET: a comprehensive platform integrating information on human disease-associated genes and variants." <u>Nucleic Acids Res</u> **45**(D1): D833d839.

Pingitore, P., C. Pirazzi, R. M. Mancina, B. M. Motta, C. Indiveri, A. Pujia, T. Montalcini, K. Hedfalk and S. Romeo (2014). "Recombinant PNPLA3 protein shows triglyceride hydrolase activity and its I148M mutation results in loss of function." <u>Biochim Biophys Acta</u> **1841**(4): 574-580. Poynard, T., V. Ratziu, S. Naveau, D. Thabut, F. Charlotte, D. Messous, D. Capron, A. Abella, J. Massard, Y. Ngo, M. Munteanu, A. Mercadier, M. Manns and J. Albrecht (2005). "The diagnostic value of biomarkers (SteatoTest) for the prediction of liver steatosis." <u>Comp Hepatol</u> **4**: 10.

Prins, B. P., K. B. Kuchenbaecker, Y. Bao, M. Smart, D. Zabaneh, G. Fatemifar, J. Luan, N. J. Wareham, R. A. Scott, J. R. B. Perry, C. Langenberg, M. Benzeval, M. Kumari and E. Zeggini (2017). "Genome-wide analysis of health-related biomarkers in the UK Household Longitudinal Study reveals novel associations." <u>Sci Rep</u> **7**(1): 11008.

Pulit, S. L., C. Stoneman, A. P. Morris, A. R. Wood, C. A. Glastonbury, J. Tyrrell, L. Yengo, T. Ferreira, E. Marouli, Y. Ji, J. Yang, S. Jones, R. Beaumont, D. C. Croteau-Chonka, T. W. Winkler, G. Consortium, A. T. Hattersley, R. J. F. Loos, J. N. Hirschhorn, P. M. Visscher, T. M. Frayling, H. Yaghootkar and C. M. Lindgren (2019). "Meta-analysis of genome-wide association studies for body fat distribution in 694 649 individuals of European ancestry." <u>Hum Mol Genet</u> **28**(1): 166-174.

Reddy, M. V., H. Wang, S. Liu, B. Bode, J. C. Reed, R. D. Steed, S. W. Anderson, L. Steed, D. Hopkins and J. X. She (2011). "Association between type 1 diabetes and GWAS SNPs in the southeast US Caucasian population." <u>Genes Immun</u> **12**(3): 208-212.

Rich, N. E., S. Oji, A. R. Mufti, J. D. Browning, N. D. Parikh, M. Odewole, H. Mayo and A. G. Singal (2018). "Racial and Ethnic Disparities in Nonalcoholic Fatty Liver Disease Prevalence, Severity, and Outcomes in the United States: A Systematic Review and Meta-analysis." <u>Clin Gastroenterol</u> <u>Hepatol</u> **16**(2): 198-210.e192.

Richardson, T. G., S. Harrison, G. Hemani and G. Davey Smith (2019). "An atlas of polygenic risk score associations to highlight putative causal relationships across the human phenome." <u>Elife</u> **8**. Romeo, S., J. Kozlitina, C. Xing, A. Pertsemlidis, D. Cox, L. A. Pennacchio, E. Boerwinkle, J. C. Cohen and H. H. Hobbs (2008). "Genetic variation in PNPLA3 confers susceptibility to nonalcoholic fatty liver disease." <u>Nat Genet</u> **40**(12): 1461-1465.

Rundek, T., H. Gardener, Q. Xu, R. B. Goldberg, C. B. Wright, B. Boden-Albala, N. Disla, M. C. Paik, M. S. Elkind and R. L. Sacco (2010). "Insulin resistance and risk of ischemic stroke among nondiabetic individuals from the northern Manhattan study." <u>Arch Neurol</u> **67**(10): 1195-1200.

Rung, J., S. Cauchi, A. Albrechtsen, L. Shen, G. Rocheleau, C. Cavalcanti-Proenca, F. Bacot, B. Balkau, A. Belisle, K. Borch-Johnsen, G. Charpentier, C. Dina, E. Durand, P. Elliott, S. Hadjadj, M. R. Jarvelin, J. Laitinen, T. Lauritzen, M. Marre, A. Mazur, D. Meyre, A. Montpetit, C. Pisinger, B. Posner, P. Poulsen, A. Pouta, M. Prentki, R. Ribel-Madsen, A. Ruokonen, A. Sandbaek, D. Serre, J. Tichet, M. Vaxillaire, J. F. Wojtaszewski, A. Vaag, T. Hansen, C. Polychronakos, O. Pedersen, P. Froguel and R. Sladek (2009). "Genetic variant near IRS1 is associated with type 2 diabetes, insulin resistance and hyperinsulinemia." <u>Nat Genet</u> **41**(10): 1110-1115.

Ryoo, J. H., Y. J. Suh, H. C. Shin, Y. K. Cho, J. M. Choi and S. K. Park (2014). "Clinical association between non-alcoholic fatty liver disease and the development of hypertension." <u>J Gastroenterol</u> <u>Hepatol</u> **29**(11): 1926-1931.

Sacerdote, C., F. Ricceri, O. Rolandsson, I. Baldi, M. D. Chirlaque, E. Feskens, B. Bendinelli, E. Ardanaz, L. Arriola, B. Balkau, M. Bergmann, J. W. Beulens, H. Boeing, F. Clavel-Chapelon, F. Crowe, B. de Lauzon-Guillain, N. Forouhi, P. W. Franks, V. Gallo, C. Gonzalez, J. Halkjaer, A. K. Illner, R. Kaaks, T. Key, K. T. Khaw, C. Navarro, P. M. Nilsson, S. O. Dal Ton, K. Overvad, V. Pala, D. Palli, S. Panico, S. Polidoro, J. R. Quiros, I. Romieu, M. J. Sanchez, N. Slimani, I. Sluijs, A. Spijkerman, B. Teucher, A. Tjonneland, R. Tumino, A. D. van der, A. C. Vergnaud, P. Wennberg, S. Sharp, C. Langenberg, E. Riboli, P. Vineis and N. Wareham (2012). "Lower educational level is a predictor of incident type 2 diabetes in European countries: the EPIC-InterAct study." Int J Epidemiol **41**(4): 1162-1173.

Santoro, N., G. Cirillo, A. Amato, C. Luongo, P. Raimondo, A. D'Aniello, L. Perrone and E. Miraglia del Giudice (2006). "Insulin gene variable number of tandem repeats (INS VNTR) genotype and metabolic syndrome in childhood obesity." J Clin Endocrinol Metab **91**(11): 4641-4644.

Sanyal, A. J., C. Campbell-Sargent, F. Mirshahi, W. B. Rizzo, M. J. Contos, R. K. Sterling, V. A. Luketic, M. L. Shiffman and J. N. Clore (2001). "Nonalcoholic steatohepatitis: association of insulin resistance and mitochondrial abnormalities." <u>Gastroenterology</u> **120**(5): 1183-1192.

Sato, H., S. Sato, R. Kawasaki, T. Yamamoto, T. Yamashita and H. Yamashita (2005). "Retinal Cell Damage Due to Oxidative Stress in Diabetic Retinopathy." <u>ARVO Annual Meeting Abstract.</u> Investigative Ophthalmology & Visual Science May 2005 **46**: 443.

Schafer, J. L. (1999). "Multiple imputation: a primer." Stat Methods Med Res 8(1): 3-15.

Schmilovitz-Weiss, H., R. Gingold-Belfer, D. Boltin, Y. Beloosesky, J. Meyerovitch, R. Tor, N. Issa, A. Grossman, N. Koren-Morag and A. Weiss (2018). "Risk of mortality and level of serum alanine aminotransferase among community-dwelling elderly in Israel." <u>Eur J Gastroenterol Hepatol</u> **30**(12): 1428-1433.

Schneider, A., G. Hommel and M. Blettner (2010). "Linear regression analysis: part 14 of a series on evaluation of scientific publications." <u>Dtsch Arztebl Int</u> **107**(44): 776-782.

Schwimmer, J. B., M. A. Celedon, J. E. Lavine, R. Salem, N. Campbell, N. J. Schork, M. Shiehmorteza, T. Yokoo, A. Chavez, M. S. Middleton and C. B. Sirlin (2009). "Heritability of nonalcoholic fatty liver disease." <u>Gastroenterology</u> **136**(5): 1585-1592.

Shah, A. G., A. Lydecker, K. Murray, B. N. Tetri, M. J. Contos and A. J. Sanyal (2009). "Comparison of noninvasive markers of fibrosis in patients with nonalcoholic fatty liver disease." <u>Clin</u> <u>Gastroenterol Hepatol</u> **7**(10): 1104-1112.

Shah, C. P. and C. Chen (2011). "Review of therapeutic advances in diabetic retinopathy." <u>Ther</u> <u>Adv Endocrinol Metab</u> **2**(1): 39-53.

Shi, H., N. Moustaid-Moussa, W. O. Wilkison and M. B. Zemel (1999). "Role of the sulfonylurea receptor in regulating human adipocyte metabolism." <u>Faseb j</u> **13**(13): 1833-1838.

Shibata, H., T. Ichikawa, K. Nakao, H. Miyaaki, S. Takeshita, M. Akiyama, M. Fujimoto, S. Miuma, S. Kanda, H. Yamasaki and K. Eguchi (2008). "A high glucose condition sensitizes human hepatocytes to hydrogen peroxide-induced cell death." <u>Mol Med Rep</u> **1**(3): 379-385.

Shim, J. J., J. W. Kim, C. H. Oh, Y. R. Lee, J. S. Lee, S. Y. Park, B. H. Kim and I. H. Oh (2018). "Serum alanine aminotransferase level and liver-related mortality in patients with chronic hepatitis B: A large national cohort study." <u>Liver Int</u> **38**(10): 1751-1759.

Simon, P. H., M. P. Sylvestre, J. Tremblay and P. Hamet (2016). "Key Considerations and Methods in the Study of Gene-Environment Interactions." <u>Am J Hypertens</u> **29**(8): 891-899.

Smagris, E., S. BasuRay, J. Li, Y. Huang, K. M. Lai, J. Gromada, J. C. Cohen and H. H. Hobbs (2015). "Pnpla3I148M knockin mice accumulate PNPLA3 on lipid droplets and develop hepatic steatosis." <u>Hepatology</u> **61**(1): 108-118.

Sofer, E., M. Boaz, Z. Matas, M. Mashavi and M. Shargorodsky (2011). "Treatment with insulin sensitizer metformin improves arterial properties, metabolic parameters, and liver function in patients with nonalcoholic fatty liver disease: a randomized, placebo-controlled trial." <u>Metabolism</u> **60**(9): 1278-1284.

Sookoian, S., G. O. Castano, A. L. Burgueno, T. F. Gianotti, M. S. Rosselli and C. J. Pirola (2009). "A nonsynonymous gene variant in the adiponutrin gene is associated with nonalcoholic fatty liver disease severity." J Lipid Res **50**(10): 2111-2116.

Sookoian, S., G. O. Castano, R. Scian, T. Fernandez Gianotti, H. Dopazo, C. Rohr, G. Gaj, J. San Martino, I. Sevic, D. Flichman and C. J. Pirola (2016). "Serum aminotransferases in nonalcoholic fatty liver disease are a signature of liver metabolic perturbations at the amino acid and Krebs cycle level." <u>Am J Clin Nutr</u> **103**(2): 422-434.

Sorbi, D., J. Boynton and K. D. Lindor (1999). "The ratio of aspartate aminotransferase to alanine aminotransferase: potential value in differentiating nonalcoholic steatohepatitis from alcoholic liver disease." <u>Am J Gastroenterol</u> **94**(4): 1018-1022.

Stratigopoulos, G., S. L. Padilla, C. A. LeDuc, E. Watson, A. T. Hattersley, M. I. McCarthy, L. M. Zeltser, W. K. Chung and R. L. Leibel (2008). "Regulation of Fto/Ftm gene expression in mice and humans." <u>Am J Physiol Regul Integr Comp Physiol</u> **294**(4): R1185-1196.

Talmud, P. J., J. A. Cooper, R. W. Morris, F. Dudbridge, T. Shah, J. Engmann, C. Dale, J. White, S. McLachlan, D. Zabaneh, A. Wong, K. K. Ong, T. Gaunt, M. V. Holmes, D. A. Lawlor, M. Richards, R. Hardy, D. Kuh, N. Wareham, C. Langenberg, Y. Ben-Shlomo, S. G. Wannamethee, M. W. Strachan, M. Kumari, J. C. Whittaker, F. Drenos, M. Kivimaki, A. D. Hingorani, J. F. Price and S. E. Humphries (2015). "Sixty-five common genetic variants and prediction of type 2 diabetes." <u>Diabetes</u> **64**(5): 1830-1840.

Tan, H. L., S. M. Zain, R. Mohamed, S. Rampal, K. F. Chin, R. C. Basu, P. L. Cheah, S. Mahadeva and Z. Mohamed (2014). "Association of glucokinase regulatory gene polymorphisms with risk and severity of non-alcoholic fatty liver disease: an interaction study with adiponutrin gene." J <u>Gastroenterol</u> **49**(6): 1056-1064.

Targher, G., L. Bertolini, R. Padovani, F. Poli, L. Scala, R. Tessari, L. Zenari and G. Falezza (2006). "Increased prevalence of cardiovascular disease in Type 2 diabetic patients with non-alcoholic fatty liver disease." <u>Diabet Med</u> **23**(4): 403-409.

Taylor, R. (1990). "Interpretation of the Correlation Coefficient: A Basic Review." <u>Journal of</u> <u>Diagnostic Medical Sonography</u> **6**: 35-39.

Teuscher, A., H. Schnell and P. W. Wilson (1988). "Incidence of diabetic retinopathy and relationship to baseline plasma glucose and blood pressure." <u>Diabetes Care</u> **11**(3): 246-251.

Tibshirani, R. (1996). "Regression Shrinkage and Selection via the Lasso." <u>Journal of the Royal</u> <u>Statistical Society. Series B (Methodological)</u> **58**(1): 267-288.

Townsend, S. A. and P. N. Newsome (2016). "Non-alcoholic fatty liver disease in 2016." <u>Br Med</u> <u>Bull</u> **119**(1): 143-156.

Verboven, K., K. Wouters, K. Gaens, D. Hansen, M. Bijnen, S. Wetzels, C. D. Stehouwer, G. H. Goossens, C. G. Schalkwijk, E. E. Blaak and J. W. Jocken (2018). "Abdominal subcutaneous and visceral adipocyte size, lipolysis and inflammation relate to insulin resistance in male obese humans." <u>Sci Rep</u> **8**(1): 4677.

Vespasiani-Gentilucci, U., C. Dell'Unto, A. De Vincentis, A. Baiocchini, M. Delle Monache, R. Cecere, A. M. Pellicelli, V. Giannelli, S. Carotti, G. Galati, P. Gallo, F. Valentini, F. Del Nonno, D. Rosati, S. Morini, R. Antonelli-Incalzi and A. Picardi (2018). "Combining Genetic Variants to Improve Risk Prediction for NAFLD and Its Progression to Cirrhosis: A Proof of Concept Study." <u>Can J Gastroenterol Hepatol</u> **2018**: 7564835.

Vilhjalmsson, B. J., J. Yang, H. K. Finucane, A. Gusev, S. Lindstrom, S. Ripke, G. Genovese, P. R. Loh, G. Bhatia, R. Do, T. Hayeck, H. H. Won, S. Kathiresan, M. Pato, C. Pato, R. Tamimi, E. Stahl, N. Zaitlen, B. Pasaniuc, G. Belbin, E. E. Kenny, M. H. Schierup, P. De Jager, N. A. Patsopoulos, S. McCarroll, M. Daly, S. Purcell, D. Chasman, B. Neale, M. Goddard, P. M. Visscher, P. Kraft, N. Patterson and A. L. Price (2015). "Modeling Linkage Disequilibrium Increases Accuracy of Polygenic Risk Scores." <u>Am J Hum Genet</u> **97**(4): 576-592.

Vozarova, B., N. Stefan, R. S. Lindsay, A. Saremi, R. E. Pratley, C. Bogardus and P. A. Tataranni (2002). "High alanine aminotransferase is associated with decreased hepatic insulin sensitivity and predicts the development of type 2 diabetes." <u>Diabetes</u> **51**(6): 1889-1895.

Wang, S., F. B. Hu and J. Dupuis (2016). "Type 2 Diabetes Prediction." <u>The Genetics of Type 2</u> <u>Diabetes and Related Traits: Biology, Physiology and Translation, Editors: Florez, Jose C (Ed).</u> 425-440. Warner, R. M. (2013). "Applied statistics: From bivariate through multivariate techniques (2nd ed.)." <u>Sage Publications, Inc</u> Chapter 4.

Warrier, V. and S. Baron-Cohen (2018). "Genetic contribution to 'theory of mind' in adolescence." <u>Sci Rep</u> **8**(1): 3465.

Wei, Z., W. Wang, J. Bradfield, J. Li, C. Cardinale, E. Frackelton, C. Kim, F. Mentch, K. Van Steen, P. M. Visscher, R. N. Baldassano and H. Hakonarson (2013). "Large sample size, wide variant spectrum, and advanced machine-learning technique boost risk prediction for inflammatory bowel disease." <u>Am J Hum Genet</u> **92**(6): 1008-1012.

Wells, M. M., Z. Li, B. Addeman, C. A. McKenzie, A. Mujoomdar, M. Beaton and J. Bird (2016). "Computed Tomography Measurement of Hepatic Steatosis: Prevalence of Hepatic Steatosis in a Canadian Population." <u>Can J Gastroenterol Hepatol</u> **2016**: 4930987.

Wheeler, E., A. Leong, C. T. Liu, M. F. Hivert, R. J. Strawbridge, C. Podmore, M. Li, J. Yao, X. Sim, J. Hong, A. Y. Chu, W. Zhang, X. Wang, P. Chen, N. M. Maruthur, B. C. Porneala, S. J. Sharp, Y. Jia, E. K. Kabagambe, L. C. Chang, W. M. Chen, C. E. Elks, D. S. Evans, Q. Fan, F. Giulianini, M. J. Go, J. J. Hottenga, Y. Hu, A. U. Jackson, S. Kanoni, Y. J. Kim, M. E. Kleber, C. Ladenvall, C. Lecoeur, S. H. Lim, Y. Lu, A. Mahajan, C. Marzi, M. A. Nalls, P. Navarro, I. M. Nolte, L. M. Rose, D. V. Rybin, S. Sanna, Y. Shi, D. O. Stram, F. Takeuchi, S. P. Tan, P. J. van der Most, J. V. Van Vliet-Ostaptchouk, A. Wong, L. Yengo, W. Zhao, A. Goel, M. T. Martinez Larrad, D. Radke, P. Salo, T. Tanaka, E. P. A. van Iperen, G. Abecasis, S. Afaq, B. Z. Alizadeh, A. G. Bertoni, A. Bonnefond, Y. Bottcher, E. P. Bottinger, H. Campbell, O. D. Carlson, C. H. Chen, Y. S. Cho, W. T. Garvey, C. Gieger, M. O. Goodarzi, H. Grallert, A. Hamsten, C. A. Hartman, C. Herder, C. A. Hsiung, J. Huang, M. Igase, M. Isono, T. Katsuya, C. C. Khor, W. Kiess, K. Kohara, P. Kovacs, J. Lee, W. J. Lee, B. Lehne, H. Li, J. Liu, S. Lobbens, J. Luan, V. Lyssenko, T. Meitinger, T. Miki, I. Miljkovic, S. Moon, A. Mulas, G. Muller, M. Muller-Nurasyid, R. Nagaraja, M. Nauck, J. S. Pankow, O. Polasek, I. Prokopenko, P. S. Ramos, L. Rasmussen-Torvik, W. Rathmann, S. S. Rich, N. R. Robertson, M. Roden, R. Roussel, I. Rudan, R. A. Scott, W. R. Scott, B. Sennblad, D. S. Siscovick, K. Strauch, L. Sun, M. Swertz, S. M. Tajuddin, K. D. Taylor, Y. Y. Teo, Y. C. Tham, A. Tonjes, N. J. Wareham, G. Willemsen, T. Wilsgaard, A. D. Hingorani, J. Egan, L. Ferrucci, G. K. Hovingh, A. Jula, M. Kivimaki, M. Kumari, I. Njolstad, C. N. A. Palmer, M. Serrano Rios, M. Stumvoll, H. Watkins, T. Aung, M. Bluher, M. Boehnke, D. I. Boomsma, S. R. Bornstein, J. C. Chambers, D. I. Chasman, Y. I. Chen, Y. T. Chen, C. Y. Cheng, F. Cucca, E. J. C. de Geus, P. Deloukas, M. K. Evans, M. Fornage, Y. Friedlander, P. Froguel, L. Groop, M. D. Gross, T. B. Harris, C. Hayward, C. K. Heng, E. Ingelsson, N. Kato, B. J. Kim, W. P. Koh, J. S. Kooner, A. Korner, D. Kuh, J. Kuusisto, M. Laakso, X. Lin, Y. Liu, R. J. F. Loos, P. K. E. Magnusson, W. Marz, M. I. McCarthy, A. J. Oldehinkel, K. K. Ong, N. L. Pedersen, M. A. Pereira, A. Peters, P. M. Ridker, C. Sabanayagam, M. Sale, D. Saleheen, J. Saltevo, P. E. Schwarz, W. H. H. Sheu, H. Snieder, T. D. Spector, Y. Tabara, J. Tuomilehto, R. M. van Dam, J. G. Wilson, J. F. Wilson, B. H. R. Wolffenbuttel, T. Y. Wong, J. Y. Wu, J. M. Yuan, A. B. Zonderman, N. Soranzo, X. Guo, D. J. Roberts, J. C. Florez, R. Sladek, J. Dupuis, A. P. Morris, E. S. Tai, E. Selvin, J. I. Rotter, C. Langenberg, I. Barroso and J. B. Meigs (2017). "Impact of common genetic determinants of Hemoglobin A1c on type 2 diabetes risk and diagnosis in ancestrally diverse populations: A transethnic genome-wide meta-analysis." PLoS Med 14(9): e1002383.

Wild, S. H., J. J. Walker, J. R. Morling, D. A. McAllister, H. M. Colhoun, B. Farran, S. McGurnaghan, R. McCrimmon, S. H. Read, N. Sattar and C. D. Byrne (2018). "Cardiovascular Disease, Cancer, and Mortality Among People With Type 2 Diabetes and Alcoholic or Nonalcoholic Fatty Liver Disease Hospital Admission." <u>Diabetes Care</u> **41**(2): 341-347.

Willer, C. J., E. M. Schmidt, S. Sengupta, G. M. Peloso, S. Gustafsson, S. Kanoni, A. Ganna, J. Chen, M. L. Buchkovich, S. Mora, J. S. Beckmann, J. L. Bragg-Gresham, H. Y. Chang, A. Demirkan, H. M. Den Hertog, R. Do, L. A. Donnelly, G. B. Ehret, T. Esko, M. F. Feitosa, T. Ferreira, K. Fischer, P.

Fontanillas, R. M. Fraser, D. F. Freitag, D. Gurdasani, K. Heikkila, E. Hypponen, A. Isaacs, A. U. Jackson, A. Johansson, T. Johnson, M. Kaakinen, J. Kettunen, M. E. Kleber, X. Li, J. Luan, L. P. Lyytikainen, P. K. E. Magnusson, M. Mangino, E. Mihailov, M. E. Montasser, M. Muller-Nurasyid, I. M. Nolte, J. R. O'Connell, C. D. Palmer, M. Perola, A. K. Petersen, S. Sanna, R. Saxena, S. K. Service, S. Shah, D. Shungin, C. Sidore, C. Song, R. J. Strawbridge, I. Surakka, T. Tanaka, T. M. Teslovich, G. Thorleifsson, E. G. Van den Herik, B. F. Voight, K. A. Volcik, L. L. Waite, A. Wong, Y. Wu, W. Zhang, D. Absher, G. Asiki, I. Barroso, L. F. Been, J. L. Bolton, L. L. Bonnycastle, P. Brambilla, M. S. Burnett, G. Cesana, M. Dimitriou, A. S. F. Doney, A. Doring, P. Elliott, S. E. Epstein, G. Ingi Eyjolfsson, B. Gigante, M. O. Goodarzi, H. Grallert, M. L. Gravito, C. J. Groves, G. Hallmans, A. L. Hartikainen, C. Hayward, D. Hernandez, A. A. Hicks, H. Holm, Y. J. Hung, T. Illig, M. R. Jones, P. Kaleebu, J. J. P. Kastelein, K. T. Khaw, E. Kim, N. Klopp, P. Komulainen, M. Kumari, C. Langenberg, T. Lehtimaki, S. Y. Lin, J. Lindstrom, R. J. F. Loos, F. Mach, W. L. McArdle, C. Meisinger, B. D. Mitchell, G. Muller, R. Nagaraja, N. Narisu, T. V. M. Nieminen, R. N. Nsubuga, I. Olafsson, K. K. Ong, A. Palotie, T. Papamarkou, C. Pomilla, A. Pouta, D. J. Rader, M. P. Reilly, P. M. Ridker, F. Rivadeneira, I. Rudan, A. Ruokonen, N. Samani, H. Scharnagl, J. Seeley, K. Silander, A. Stancakova, K. Stirrups, A. J. Swift, L. Tiret, A. G. Uitterlinden, L. J. van Pelt, S. Vedantam, N. Wainwright, C. Wijmenga, S. H. Wild, G. Willemsen, T. Wilsgaard, J. F. Wilson, E. H. Young, J. H. Zhao, L. S. Adair, D. Arveiler, T. L. Assimes, S. Bandinelli, F. Bennett, M. Bochud, B. O. Boehm, D. I. Boomsma, I. B. Borecki, S. R. Bornstein, P. Bovet, M. Burnier, H. Campbell, A. Chakravarti, J. C. Chambers, Y. I. Chen, F. S. Collins, R. S. Cooper, J. Danesh, G. Dedoussis, U. de Faire, A. B. Feranil, J. Ferrieres, L. Ferrucci, N. B. Freimer, C. Gieger, L. C. Groop, V. Gudnason, U. Gyllensten, A. Hamsten, T. B. Harris, A. Hingorani, J. N. Hirschhorn, A. Hofman, G. K. Hovingh, C. A. Hsiung, S. E. Humphries, S. C. Hunt, K. Hveem, C. Iribarren, M. R. Jarvelin, A. Jula, M. Kahonen, J. Kaprio, A. Kesaniemi, M. Kivimaki, J. S. Kooner, P. J. Koudstaal, R. M. Krauss, D. Kuh, J. Kuusisto, K. O. Kyvik, M. Laakso, T. A. Lakka, L. Lind, C. M. Lindgren, N. G. Martin, W. Marz, M. I. McCarthy, C. A. McKenzie, P. Meneton, A. Metspalu, L. Moilanen, A. D. Morris, P. B. Munroe, I. Njolstad, N. L. Pedersen, C. Power, P. P. Pramstaller, J. F. Price, B. M. Psaty, T. Quertermous, R. Rauramaa, D. Saleheen, V. Salomaa, D. K. Sanghera, J. Saramies, P. E. H. Schwarz, W. H. Sheu, A. R. Shuldiner, A. Siegbahn, T. D. Spector, K. Stefansson, D. P. Strachan, B. O. Tayo, E. Tremoli, J. Tuomilehto, M. Uusitupa, C. M. van Duijn, P. Vollenweider, L. Wallentin, N. J. Wareham, J. B. Whitfield, B. H. R. Wolffenbuttel, J. M. Ordovas, E. Boerwinkle, C. N. A. Palmer, U. Thorsteinsdottir, D. I. Chasman, J. I. Rotter, P. W. Franks, S. Ripatti, L. A. Cupples, M. S. Sandhu, S. S. Rich, M. Boehnke, P. Deloukas, S. Kathiresan, K. L. Mohlke, E. Ingelsson and G. R. Abecasis (2013). "Discovery and refinement of loci associated with lipid levels." Nat Genet 45(11): 1274-1283.

Winsor, E. (1988). "Mendelian genetics." Can Fam Physician 34: 859-862.

Wray, N. R., J. Yang, M. E. Goddard and P. M. Visscher (2010). "The genetic interpretation of area under the ROC curve in genomic profiling." <u>PLoS Genet</u> **6**(2): e1000864.

Wuttke, M., Y. Li, M. Li, K. B. Sieber, M. F. Feitosa, M. Gorski, A. Tin, L. Wang, A. Y. Chu, A. Hoppmann, H. Kirsten, A. Giri, J. F. Chai, G. Sveinbjornsson, B. O. Tayo, T. Nutile, C. Fuchsberger, J. Marten, M. Cocca, S. Ghasemi, Y. Xu, K. Horn, D. Noce, P. J. van der Most, S. Sedaghat, Z. Yu, M. Akiyama, S. Afaq, T. S. Ahluwalia, P. Almgren, N. Amin, J. Arnlov, S. J. L. Bakker, N. Bansal, D. Baptista, S. Bergmann, M. L. Biggs, G. Biino, M. Boehnke, E. Boerwinkle, M. Boissel, E. P. Bottinger, T. S. Boutin, H. Brenner, M. Brumat, R. Burkhardt, A. S. Butterworth, E. Campana, A. Campbell, H. Campbell, M. Canouil, R. J. Carroll, E. Catamo, J. C. Chambers, M. L. Chee, M. L. Chee, X. Chen, C. Y. Cheng, Y. Cheng, K. Christensen, R. Cifkova, M. Ciullo, M. P. Concas, J. P. Cook, J. Coresh, T. Corre, C. F. Sala, D. Cusi, J. Danesh, E. W. Daw, M. H. de Borst, A. De Grandi, R. de Mutsert, A. P. J. de Vries, F. Degenhardt, G. Delgado, A. Demirkan, E. Di Angelantonio, K. Dittrich, J. Divers, R. Dorajoo, K. U. Eckardt, G. Ehret, P. Elliott, K. Endlich, M. K. Evans, J. F. Felix, V. H. X. Foo, O. H.

Franco, A. Franke, B. I. Freedman, S. Freitag-Wolf, Y. Friedlander, P. Froguel, R. T. Gansevoort, H. Gao, P. Gasparini, J. M. Gaziano, V. Giedraitis, C. Gieger, G. Girotto, F. Giulianini, M. Gogele, S. D. Gordon, D. F. Gudbjartsson, V. Gudnason, T. Haller, P. Hamet, T. B. Harris, C. A. Hartman, C. Hayward, J. N. Hellwege, C. K. Heng, A. A. Hicks, E. Hofer, W. Huang, N. Hutri-Kahonen, S. J. Hwang, M. A. Ikram, O. S. Indridason, E. Ingelsson, M. Ising, V. W. V. Jaddoe, J. Jakobsdottir, J. B. Jonas, P. K. Joshi, N. S. Josyula, B. Jung, M. Kahonen, Y. Kamatani, C. M. Kammerer, M. Kanai, M. Kastarinen, S. M. Kerr, C. C. Khor, W. Kiess, M. E. Kleber, W. Koenig, J. S. Kooner, A. Korner, P. Kovacs, A. T. Kraja, A. Krajcoviechova, H. Kramer, B. K. Kramer, F. Kronenberg, M. Kubo, B. Kuhnel, M. Kuokkanen, J. Kuusisto, M. La Bianca, M. Laakso, L. A. Lange, C. D. Langefeld, J. J. Lee, B. Lehne, T. Lehtimaki, W. Lieb, S. C. Lim, L. Lind, C. M. Lindgren, J. Liu, J. Liu, M. Loeffler, R. J. F. Loos, S. Lucae, M. A. Lukas, L. P. Lyytikainen, R. Magi, P. K. E. Magnusson, A. Mahajan, N. G. Martin, J. Martins, W. Marz, D. Mascalzoni, K. Matsuda, C. Meisinger, T. Meitinger, O. Melander, A. Metspalu, E. K. Mikaelsdottir, Y. Milaneschi, K. Miliku, P. P. Mishra, K. L. Mohlke, N. Mononen, G. W. Montgomery, D. O. Mook-Kanamori, J. C. Mychaleckyj, G. N. Nadkarni, M. A. Nalls, M. Nauck, K. Nikus, B. Ning, I. M. Nolte, R. Noordam, J. O'Connell, M. L. O'Donoghue, I. Olafsson, A. J. Oldehinkel, M. Orho-Melander, W. H. Ouwehand, S. Padmanabhan, N. D. Palmer, R. Palsson, B. Penninx, T. Perls, M. Perola, M. Pirastu, N. Pirastu, G. Pistis, A. I. Podgornaia, O. Polasek, B. Ponte, D. J. Porteous, T. Poulain, P. P. Pramstaller, M. H. Preuss, B. P. Prins, M. A. Province, T. J. Rabelink, L. M. Raffield, O. T. Raitakari, D. F. Reilly, R. Rettig, M. Rheinberger, K. M. Rice, P. M. Ridker, F. Rivadeneira, F. Rizzi, D. J. Roberts, A. Robino, P. Rossing, I. Rudan, R. Rueedi, D. Ruggiero, K. A. Ryan, Y. Saba, C. Sabanayagam, V. Salomaa, E. Salvi, K. U. Saum, H. Schmidt, R. Schmidt, B. Schottker, C. A. Schulz, N. Schupf, C. M. Shaffer, Y. Shi, A. V. Smith, B. H. Smith, N. Soranzo, C. N. Spracklen, K. Strauch, H. M. Stringham, M. Stumvoll, P. O. Svensson, S. Szymczak, E. S. Tai, S. M. Tajuddin, N. Y. Q. Tan, K. D. Taylor, A. Teren, Y. C. Tham, J. Thiery, C. H. L. Thio, H. Thomsen, G. Thorleifsson, D. Toniolo, A. Tonjes, J. Tremblay, I. Tzoulaki, A. G. Uitterlinden, S. Vaccargiu, R. M. van Dam, P. van der Harst, C. M. van Duijn, D. R. Velez Edward, N. Verweij, S. Vogelezang, U. Volker, P. Vollenweider, G. Waeber, M. Waldenberger, L. Wallentin, Y. X. Wang, C. Wang, D. M. Waterworth, W. Bin Wei, H. White, J. B. Whitfield, S. H. Wild, J. F. Wilson, M. K. Wojczynski, C. Wong, T. Y. Wong, L. Xu, Q. Yang, M. Yasuda, L. M. Yerges-Armstrong, W. Zhang, A. B. Zonderman, J. I. Rotter, M. Bochud, B. M. Psaty, V. Vitart, J. G. Wilson, A. Dehghan, A. Parsa, D. I. Chasman, K. Ho, A. P. Morris, O. Devuyst, S. Akilesh, S. A. Pendergrass, X. Sim, C. A. Boger, Y. Okada, T. L. Edwards, H. Snieder, K. Stefansson, A. M. Hung, I. M. Heid, M. Scholz, A. Teumer, A. Kottgen and C. Pattaro (2019). "A catalog of genetic loci associated with kidney function from analyses of a million individuals." Nat Genet 51(6): 957-972.

Xu, R., A. Tao, S. Zhang, Y. Deng and G. Chen (2015). "Association between patatin-like phospholipase domain containing 3 gene (PNPLA3) polymorphisms and nonalcoholic fatty liver disease: a HuGE review and meta-analysis." <u>Sci Rep</u> **5**: 9284.

Xu, Z., C. Wu and W. Pan (2017). "Imaging-wide association study: Integrating imaging endophenotypes in GWAS." <u>Neuroimage</u> **159**: 159-169.

Yasuda, T., H. Takeshita, E. Nakazato, T. Nakajima, Y. Nakashima, S. Mori, K. Mogi and K. Kishi (2000). "The molecular basis for genetic polymorphism of human deoxyribonuclease II (DNase II): a single nucleotide substitution in the promoter region of human DNase II changes the promoter activity." <u>FEBS Lett</u> **467**(2-3): 231-234.

Yoo, J., S. Lee, K. Kim, S. Yoo, E. Sung and J. Yim (2008). "Relationship between insulin resistance and serum alanine aminotransferase as a surrogate of NAFLD (nonalcoholic fatty liver disease) in obese Korean children." <u>Diabetes Res Clin Pract</u> **81**(3): 321-326.
Younossi, Z. M., A. B. Koenig, D. Abdelatif, Y. Fazel, L. Henry and M. Wymer (2016). "Global epidemiology of nonalcoholic fatty liver disease-Meta-analytic assessment of prevalence, incidence, and outcomes." <u>Hepatology</u> **64**(1): 73-84.

Younossi, Z. M., M. Otgonsuren, L. Henry, C. Venkatesan, A. Mishra, M. Erario and S. Hunt (2015). "Association of nonalcoholic fatty liver disease (NAFLD) with hepatocellular carcinoma (HCC) in the United States from 2004 to 2009." <u>Hepatology</u> **62**(6): 1723-1730.

Younossi, Z. M., M. Stepanova, F. Negro, S. Hallaji, Y. Younossi, B. Lam and M. Srishord (2012). "Nonalcoholic fatty liver disease in lean individuals in the United States." <u>Medicine (Baltimore)</u> **91**(6): 319-327.

Yu, C., W. Yao and X. Bai (2014). "Robust Linear Regression: A Review and Comparison." <u>arXiv</u>. Yun, K. E., C. Y. Shin, Y. S. Yoon and H. S. Park (2009). "Elevated alanine aminotransferase levels predict mortality from cardiovascular disease and diabetes in Koreans." <u>Atherosclerosis</u> **205**(2): 533-537.

Zeggini, E., L. J. Scott, R. Saxena, B. F. Voight, J. L. Marchini, T. Hu, P. I. de Bakker, G. R. Abecasis, P. Almgren, G. Andersen, K. Ardlie, K. B. Bostrom, R. N. Bergman, L. L. Bonnycastle, K. Borch-Johnsen, N. P. Burtt, H. Chen, P. S. Chines, M. J. Daly, P. Deodhar, C. J. Ding, A. S. Doney, W. L. Duren, K. S. Elliott, M. R. Erdos, T. M. Frayling, R. M. Freathy, L. Gianniny, H. Grallert, N. Grarup, C. J. Groves, C. Guiducci, T. Hansen, C. Herder, G. A. Hitman, T. E. Hughes, B. Isomaa, A. U. Jackson, T. Jorgensen, A. Kong, K. Kubalanza, F. G. Kuruvilla, J. Kuusisto, C. Langenberg, H. Lango, T. Lauritzen, Y. Li, C. M. Lindgren, V. Lyssenko, A. F. Marvelle, C. Meisinger, K. Midthjell, K. L. Mohlke, M. A. Morken, A. D. Morris, N. Narisu, P. Nilsson, K. R. Owen, C. N. Palmer, F. Payne, J. R. Perry, E. Pettersen, C. Platou, I. Prokopenko, L. Qi, L. Qin, N. W. Rayner, M. Rees, J. J. Roix, A. Sandbaek, B. Shields, M. Sjogren, V. Steinthorsdottir, H. M. Stringham, A. J. Swift, G. Thorleifsson, U. Thorsteinsdottir, N. J. Timpson, T. Tuomi, J. Tuomilehto, M. Walker, R. M. Watanabe, M. N. Weedon, C. J. Willer, T. Illig, K. Hveem, F. B. Hu, M. Laakso, K. Stefansson, O. Pedersen, N. J. Wareham, I. Barroso, A. T. Hattersley, F. S. Collins, L. Groop, M. I. McCarthy, M. Boehnke and D. Altshuler (2008). "Meta-analysis of genome-wide association data and large-scale replication identifies additional susceptibility loci for type 2 diabetes." Nat Genet **40**(5): 638-645.

Zhao, Y., D. Jhamb, L. Shu, D. Arneson, D. K. Rajpal and X. Yang (2019). "Multi-omics integration reveals molecular networks and regulators of psoriasis." BMC Syst Biol **13**(1): 8.

Zhou, X. J., Y. Y. Qi, P. Hou, J. C. Lv, S. F. Shi, L. J. Liu, N. Zhao and H. Zhang (2014). "Cumulative effects of variants identified by genome-wide association studies in IgA nephropathy." <u>Sci Rep</u> **4**: 4904.

Zhou, Y., Y. Liang, K. Li, X. Bai, G. Chen, Z. Xing and J. Xiao (2012). "The phenotypic distribution of quantitative traits in a wild mouse F1 population." <u>Mamm Genome</u> **23**(3-4): 232-240.

Zou, H. and T. Hastie (2005). "Regularization and Variable Selection via the Elastic Net." <u>Journal of</u> the Royal Statistical Society. Series B (Statistical Methodology) **67**(2): 301-320.

Zoungas, S., J. Chalmers, B. Neal, L. Billot, Q. Li, Y. Hirakawa, H. Arima, H. Monaghan, R. Joshi, S. Colagiuri, M. E. Cooper, P. Glasziou, D. Grobbee, P. Hamet, S. Harrap, S. Heller, L. Lisheng, G. Mancia, M. Marre, D. R. Matthews, C. E. Mogensen, V. Perkovic, N. Poulter, A. Rodgers, B. Williams, S. MacMahon, A. Patel and M. Woodward (2014). "Follow-up of blood-pressure lowering and glucose control in type 2 diabetes." <u>N Engl J Med</u> **371**(15): 1392-1406.

Zoungas, S., B. E. de Galan, T. Ninomiya, D. Grobbee, P. Hamet, S. Heller, S. MacMahon, M. Marre, B. Neal, A. Patel, M. Woodward, J. Chalmers, A. Cass, P. Glasziou, S. Harrap, L. Lisheng, G. Mancia, A. Pillai, N. Poulter, V. Perkovic and F. Travert (2009). "Combined effects of routine blood pressure lowering and intensive glucose control on macrovascular and microvascular outcomes in patients with type 2 diabetes: New results from the ADVANCE trial." <u>Diabetes Care</u> **32**(11): 2068-2074.

Zuk, O., S. F. Schaffner, K. Samocha, R. Do, E. Hechter, S. Kathiresan, M. J. Daly, B. M. Neale, S. R. Sunyaev and E. S. Lander (2014). "Searching for missing heritability: designing rare variant association studies." <u>Proc Natl Acad Sci U S A</u> **111**(4): E455-464.