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RÉSUMÉ 

Les délétions et les duplications délétères (Variations de nombre de copies, CNV) sont 

identifiés dans environ 11% des individus référés dans des cliniques du neurodéveloppement 

pédiatrique. Certains CNVs récurrents ont été formellement associés avec des troubles du 

neurodéveloppement, mais la majorité des CNVs sont non-récurrents et donc trop rares pour 

être évalués par des études d’association. Dans cette optique, nous avons récemment 

développé une nouvelle approche pour estimer l’effet des CNVs non-documentés sur le 

quotient intellectuel non-verbal (QINV) et nous visons étendre cette approche pour l’appliquer 

sur une mesure de traits autistiques.  

Nous avons identifié les CNVs dans deux cohortes d’autisme du Simons Simplex Collection 

(SSC) et du MSSNG, dans leurs apparentés de premier-degré, dans une cohorte du 

neurodéveloppement et dans une population générale. Des modèles statistiques intégrant les 

scores des gènes inclus dans les CNVs ont été utilisés pour expliquer leur effet sur l’intelligence 

générale et sur la réciprocité sociale.  

Les délétions et les duplications diminuent le QINV et l’effet des duplications est 3 fois inférieur 

à celui des délétions. L’effet différentiel est aussi observé pour la réciprocité sociale avec un 

ratio d’altération de 2:1 pour les délétions et les duplications et cet effet est principalement 

expliqué par le QINV. Les estimés de notre modèle pour l’intelligence générale et la réciprocité 

sociale concordent bien avec des observations déjà publiés.  

Nos modèles entraînés sur des CNVs couvrant >4,500 gènes suggèrent que l’effet des CNVs sur 

la cognition et la réciprocité sociale est dû à leurs propriétés polygéniques. Ces modèles 

pourront aider dans l’interprétation des CNVs en clinique.   

 

Mots-clés : Variations de nombre de copies, autisme, intelligence générale, QI, réciprocité 

sociale, SRS, modèle statistique, score génétique.
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ABSTRACT 

Deleterious deletions and duplications (copy number variations, CNVs) are identified in up to 

11% of individuals referred to neurodevelopmental pediatric clinics. However, only few 

recurrent CNVs have been formally associated with neurodevelopmental disorders because 

the majority are too rare to perform individual association studies. We recently developed a 

new framework to estimate the effect size of undocumented CNVs on non-verbal intelligence 

quotient (NVIQ) and sought to extend this approach to another score measuring autistic traits.  

We identified CNVs in an autism sample from the Simons Simplex Collection (SSC) and MSSNG, 

in their first-degree relatives, in a neurodevelopmental cohort and in individuals from an 

unselected population. Statistical models integrating scores of the genes encompassed in the 

CNVs were used to explain their effect on general intelligence and on social responsiveness.  

Deletions and duplications decreased NVIQ and the effect of duplications was three-fold 

smaller than deletions. There was also a differential effect on social responsiveness: the ratio 

of the impairment conferred by deletions and duplications was 2:1 and this effect was mainly 

driven by NVIQ. Models estimates for general intelligence and social responsiveness were 

consistent with previously published observations. 

Our models, trained on CNVs encompassing >4,500 genes, suggest highly polygenic properties 

of CNVs with respect to cognition and social responsiveness. These models will help 

interpreting CNVs identified in the clinic. 

 

Keywords: Copy-number variants, autism, general intelligence, IQ, Social responsiveness, SRS, 

statistical models, genetic scores.  
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INTRODUCTION 

Autism spectrum disorder (ASD) is one of the many neurodevelopmental disorders described 

in the Diagnostic and Statistical manual of Mental Disorders (5th version) (DSM-5) (1). Constant 

changes and refinements have been made to the diagnosis of autism since the documented 

observations of Kanner in 1943 up until the publication of the DSM-5 in 2013 (1,2). This 

disorder is now widely accepted as complex, pervasive, heterogeneous with multiple 

aetiologies, sub-types and developmental trajectories (3). Nowadays, the diagnosis is based on 

the observation of the two domains of core symptoms: Deficits in social communication and 

interaction and stereotyped, restricted and repetitive behaviors or interests (1) (Figure 1). 

The prevalence of this disorder is in constant increase (Figure 2, Figure 4). According to a 

surveillance study done by the Autism and Developmental Disabilities Monitoring network 

(ADDM) in 2014 among children aged 8 years in 11 sites in the United States, the estimated 

prevalence of autism is 16.8 per 1000 (one in 59) (4). This prevalence is higher than previously 

reported estimates from the ADDM network and this is not solely due to the extension of the 

diagnostic criteria by the DSM-5 since there is an 86% overlap between the DSM-IV-TR (2002) 

and DSM-5 (2013) case counts (1,4,5). 

The causes and mechanisms underlying ASD are still not fully known but several 

epidemiological studies have firmly established a genetic component underlying ASD with a 

heritability ranging from 50-90% (6–8) as well as a complex interaction between genetic and 

environmental factors (9,10). Furthermore the implementation of advanced technology for 

chromosomal microarray-based analysis in clinic has rapidly expanded the number of genes 

associated with ASD (e.g. SFARI genes)  through the identification of deleterious Copy-Number 

Variants (CNVs) (11,12) (Figure 4). The unveiling of the genetic contribution to ASD could be 

an approach that would ultimately lead to developing specific molecular diagnostics and 

targeted therapeutics.  
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Figure 1: Representation of the phenotypical heterogeneity of ASD based on DSM-5 criteria 

for ASD. The core symptoms of ASD are represented in the center and represent the common features required 

to receive a diagnosis. Comorbidities spanning behavior, cognition and genetic disorders are represented   around 

the periphery of the figure. Adapted from Veenstra-VanderWeele & Blakely (2012) (13). 

 

Figure 2: Prevalence of ASD reported by the Center for Disease Control and Prevention since 

1975 (4). 
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Phenotypical heterogeneity of autism: 

The heterogeneity of the clinical presentation is a hallmark of autism (3). Different specifiers 

and many psychiatric and medical comorbidities are associated with this disorder.  

Specifiers of autism  

The DSM-5 focuses on a dimensional assessment to examine the core and associated features 

of ASD which led to the inclusion of “specifiers”. The specifiers are dimensions provided to 

describe the heterogeneity of the presentation of ASD and they indicate the presence of 

intellectual and/or language impairment as well as the severity level of the core ASD symptoms 

(14). Intellectual disability (ID) is a developmental disorder characterized by intellectual and 

adaptive functioning deficits (1). Studies published so far have reported highly variable rates 

of ID prevalence in ASD, ranging from 16.7% to 84% (15,16). However, some individuals with 

autism have above-average intelligence quotient (IQ) and high levels of academic and 

occupational functioning (17). Language impairment is also specifier of ASD  with up to 76% of 

occurrence in children with autism (18–20). Thus, some children with ASD fail to acquire 

spoken language skills beyond a basic or minimal level, which may range from no spoken words 

to fewer than 20–30 words (21,22); about 30% of children with autism fall into this group (23). 

Within the group of children who are verbal, some have a notable language deficit, including 

difficulties with the understanding and use of grammar (24,25).  Furthermore, the specifiers of 

autism include the recording of any known genetic or medical disorder and other co-occurring 

neurodevelopmental, mental, or behavioral disorder (Figure 3). 
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Figure 3: Representation of the phenotypical heterogeneity of ASD based on DSM-5 criteria 

for ASD. Adapted from Ousley& Cermak (2013) (26). 

Psychiatric comorbidities  

Neurodevelopmental and psychiatric comorbidities occur in up to 70% of children with autism 

and the most common are social anxiety disorder, oppositional defiant disorder and attention-

deficit/hyperactivity disorder (ADHD) (27). The social anxiety disorder, also known as social 

phobia, occurs during specific social situations and leads to an avoidance reaction and constant 

fear that substantially affects social life, academic performance and professional success (28). 

This comorbidity is seen in approximately 29.2% of individuals with autism (29). The 

oppositional defiant disorder is a behavioral  disorder that has a prevalence of 28.1% among 

autistic individuals (29). This disorder is characterized by uncooperative, defiant, negativistic 

and irritable behaviors toward parents, peers, teachers and other authority figures and often 

interferes with learning, school adjustment and with the child’s relationships with others (28). 

ADHD is outlined by symptoms of inattention, hyperactivity and impulsivity and it frequently 

co-occurs with ASD (30) with a prevalence ranging from 30% to 80% (31). Symptoms such as 

poor social skills, emotional dysregulation, and oppositional behavior were found in both 

diagnoses, but these may be qualitatively distinct.  
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Medical comorbidities  

Some medical conditions are more frequently observed in individuals with autism compared 

to the general population. These conditions include epilepsy, gastrointestinal disorder, 

immune system abnormalities, sleep disorders and motor disorders (13).  

A meta-analysis study shows that the prevalence of epilepsy among autistic individuals is 8% 

compared to 2-3% in the general population (32). This prevalence is of 21.4% among patients 

who have simultaneously autism and ID. Epilepsy is also more frequent among autistic children 

with poor verbal abilities, among those suffering from a neurological impairment such as 

cerebral palsy and among females (33,34). Individuals who have autism and epilepsy tend to 

have more severe impairments affecting their adaptive and social functioning domains and 

their fine and gross motor skills which leads to more challenging behaviors (35,36). This 

severity can be the result of either the physiological complications caused by the recurrent 

seizures or the manifestations of the genetic mutation underlying these two disorders.  

A systematic review reported that the prevalence of gastrointestinal disorders among 

individuals with autism ranges from 9 to 91% (37). The 11 studies included in this review, 

except for the study of Black et al. (38), agree on the fact that this prevalence is higher in the 

autistic population compared to the general population with symptoms including constipation, 

feeding issues/food selectivity and diarrhea (39). Patients with autism who have gastro-

intestinal problems are at a higher risk of anxiety, sensory over-responsivity, irritability, social 

withdrawal and language regression (40–42).  

A case-control study found that autoimmune diseases were diagnosed significantly more often 

among children with ASD than controls and psoriasis was the most frequently diagnosed 

autoimmune condition; it occurred over twice as often in cases than in controls (43). A 

different study reported that allergic manifestations were 5 times as prevalent in children with 

ASD than in controls (52% vs. 10%) (44). Other studies of biological markers of immune 

function in individuals with ASD have found neuroinflammation in brain tissues (45,46) and 

imbalances in cytokine/chemokine levels and other abnormalities (47).  
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Children with ASD are more likely to have sleep problems including dyssomnias and 

parasomnias (48). Dyssomnias include problems such as sleep onset delay, night awakenings 

(49), early morning awakening (50) and periodic limb movements (51). Parasomnias consist of 

problems such as sleep talking, sleep walking, sleep terrors and nightmares (52). These sleep 

problems intensify the symptoms of autism as some research identified that fewer hours of 

sleep per night predicted overall autism scores, social skills deficits and stereotypic behaviors 

(53).  

Movement disorders have also been frequently identified in individuals with ASD, with ataxia 

(54) reported in a number of studies, as well as akinesia, dyskinesia, bradykinesia and 

catatonic-like symptoms (55) among others, with cerebellum and basal ganglia dysfunction 

being implicated (56).  

 

Genetic heterogeneity of autism  

The genetic architecture of autism is very complex. It involves a lot of variants with numerous 

characteristics such as size, frequency and inheritance. First, the size depends on the number 

of nucleotides altered which divides the variants into two classes: single nucleotide variants 

(SNV) and structural variants including the CNVs (57). Second, the frequency divides the 

genetic variants into four categories: A very common variant is a variant with the minor allele 

frequency (MAF) between 5 and 50% , a less common variant has a MAF between 1 and 5%, a 

rare variant has a MAF of less than 1% but still polymorphic in one or more major human 

populations, and a private variant is restricted to probands (the individual through whom a 

family with a genetic disorder is ascertained) and their immediate relatives (58). Third, the 

patterns of inheritance include autosomal recessive, autosomal dominant and X-linked 

through which the variant is transmitted from one parent to the descendant, whereas a de 

novo variant is only seen in the proband (59). These different characteristics determine the 

severity of the variants which leads to their clinical classification into benign, pathogenic or 

variant of uncertain significance defined by the American College of Medical Genetics (60).  
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Copy-number variations 

In 2004, two landmark studies (61,62) have demonstrated that submicroscopic variations 

(<500 Kilobases (kb) in size - 1 Kb =1000 base pairs) are widespread in the human genome. 

These variations are known as CNVs and are defined as a genomic deletion or duplication of 

over 1000 base pairs. On average, each individual has more than 1000 CNVs in the genome 

accounting for 4 million base pairs of genomic difference and contributing to 0.1% of the 

genetic variation at the structural level (63). 

Technological and methodological advances in genetics and genomics such as the 

Fluorescence in situ hybridization (FISH) and comparative genomic hybridization (CGH) have 

permitted the identification of pathogenic CNVs in 11% of individuals with autism but only 12 

recurrent CNVs have been formally associated to ASD (Table 1) (64). Recurrent CNVs share a 

common size, show clustering of fixed breakpoints, and recur in multiple individuals (65). They 

are mainly caused by a non-allelic homologous recombination between two low-copy repeats. 

Low-copy repeats are “hotspots” meaning that they are unstable regions of the genome and 

are subject to high rates of structural mutation. On the other hand, non-recurrent CNVs have 

distinct breakpoints and different sizes and consequently are less common. The major 

mechanism underlying these CNVs is the non-homologous end-joining (65).  

 16p11.2 deletion  

Since the frequency of recurrent CNVs allows the collection of large samples of carriers, many 

of them have been studied and characterized such as the 16p11.2 deletion.  

The 16p11.2 deletion is a recurrent CNV between breakpoints 4 and 5 on the 16th 

chromosome (29.5–30.1 Megabases - 1 Megabase: 1 million base pairs) that encompasses 29 

genes (66). It is associated with a broad range of neurodevelopmental and neuropsychiatric 

diagnoses including developmental delay, ID and autism (66). The overrepresentation of this 

deletion has been demonstrated in ASD cohorts with an odds ratio (OR) of 10 (64). This would 

translate into a risk for ASD of 15% based on the ASD population prevalence of 1.5%.  
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Many studies have attempted to quantify the effect size of this deletion on cognition and other 

phenotypes notably a study by Moreno-De-Luca et al. conducted on 56 probands with the de 

novo CNV and their non-carrier parents and siblings (66). When comparing the probands to 

their family members, they scored 1.7 standard-deviation (SD) lower in cognitive abilities, 2.2 

SD in social behavior and 1.3 SD in neuromotor performance. Another study assessing 

phonology found that probands have a decrease of 2 SD which reflects their language 

impairments (67). Of note, these phenotypes are not specific to the deletion 16p11.2 but they 

are observed in other recurrent CNVs such as the duplication 1q21.1 (68).  

 

Several studies have attempted to identify causative driver genes (altered by the CNV) of these 

above-mentioned neurodevelopmental phenotypes. Manipulations of mouse models found 

that TAOK2 heterozygous and knockout mice have gene dosage-dependent impairments in 

cognition, anxiety and social interaction (69). They also have dosage-dependent abnormalities 

in brain size and neural connectivity in multiple regions, deficits in cortical layering, dendrite 

and synapse formation, and reduced excitatory neurotransmission (69). The purported 

mechanism of synaptic development impairment could be that the loss of TAOK2 causes a 

reduction in the activation of RhoA implicated in the reorganization of the actin cytoskeleton 

and the regulation of the cell shape, attachment and motility (69,70) . 

Other studies suggest that MAPK3 being the most topologically important hub in protein-

protein interaction networks could be the driver gene in this CNV (71).  

However, studies of individual genes do not always replicate across publications. This suggests 

that there is not one clear major candidate, but multiple genes within the 16p11.2 are 

responsible for the observed phenotype by additive effects or interactions (72).  
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Table 1: Recurrent CNVs formally associated to ASD.  

 Odds ratio in autism [95%CI] 

Regions Deletions Duplications 

1q21.1 3 [1-9] 5 [3-10]  

3q29 19 [5-81]  - 

5q35 ∞ - 

7q11.23 32 [2-517]  32 [10-112]  

15q13.3 15 [5-42] - 

16p11.2 (proximal) 14 [8-25] 14 [6-19]  

17p11.2 - 32 [2-517] 

17q12 97 [10-933]  - 

22q11.2 32 [9-112] - 

95% CI: 95% Confidence interval. Table adapted from Sanders et al (2019) (64). 

 

 

 

 

Figure 4: The history of the genetics of autism from 1975 to 2015.  
The increase in the identified genes associated with ASD (SFARI) (11) is represented together with the prevalence 

of ASD reported by the Center for Disease Control and Prevention (4), the different versions of the Diagnostic 

Statistical Manual (from DSM II to DSM 5.0) and the advance in genetics technology. From Huguet et al. (2016) 

(73). 
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Single nucleotide variations 

The identification of CNVs through microarrays and the implementation of new technologies 

such as the whole-exome and the whole-genome sequencing have led to a large and rapidly 

growing number of genes associated with autism susceptibility. It is now estimated that 400-

1000 genes are associated with autism (74). These susceptibility genes contain thousands of 

variants in particular SNVs which are a substitution of one nucleotide. A SNV mutation can be 

synonymous or non-synonymous: a synonymous SNV does not alter the protein sequence 

while a non-synonymous SNV changes the protein either by changing the sequence of amino 

acids (missense mutation) or by changing an original amino acid to a stop codon which leads 

the protein coded by the gene to terminate prematurely (nonsense mutation).  

Synaptic genes are highly penetrant for autism and this is based on recurrent findings of rare, 

de novo, damaging variants of these genes in probands (75). Neuroligins (NLGN), neurexin 

families (NRXN) and SH3 and multiple ankyrin repeat domains (SHANK) harbour some of the 

most consistently reported genetic abnormalities that are associated with autism (75). NRXNs 

and NLGNs are trans-synaptic cell-adhesion molecules that mediate essential signalling 

between presynaptic (NRXN) and postsynaptic (NLGN) specializations (76). Seven point 

mutations (including SNVs) in NRXN1, five missense mutations in NLGN4 and one missense 

mutation in NLGN3 were detected in patients with autism (76). In addition to the NRXN–NLGN 

complex, mutations in the gene encoding SHANK3- a molecular scaffolding protein in the 

postsynaptic density of excitatory synapses that binds indirectly to NLGNs- may also occur 

frequently in autism (77). An astounding 18 point mutations (among which 8 non-synonymous 

mutations) were detected in the SHANK3 gene in patients with autism, in addition to several 

cases containing CNVs that cover this gene (e.g. 22q deletion syndrome) (75,78,79). Mutations 

in synaptic genes are not specific to ASD but are also found in other neuropsychiatric disorders, 

such as schizophrenia (80). Interestingly, neuropsychiatric conditions share common features 

such as cognitive dysfunction, limited emotional expression and lack of social reciprocity 
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suggesting that synaptic dysfunction is the common pathway of these major, chronic 

neuropsychiatric illnesses (81). 

Although rare de novo mutations in genes expressed in the brain are identified in 

approximately 5–14% of individuals with idiopathic autism (82,83), they only contribute to 

autism liability by 2.6% (7). Conversely, common variants which are shared with more than 5% 

of the human population contribute to this liability by almost 50% (7). This contribution is 

therefore important, but unfortunately the causative SNVs still remain unknown since they are 

numerous (>1000) and each is associated with a low risk. So far, the largest genome-wide 

association studies performed on <5000 families with autism were underpowered to identify 

a single SNV with genome-wide significance (73). The recruitment of larger cohorts of patients 

is required to identify these common variants that explain most of the genetic variance in 

autism.  

Overall, the genetic architecture in autism varies substantially from a single penetrant 

mutation being enough to cause autism (NRXN1, SHANK3…) to an accumulation of over one 

thousand low-risk alleles (common variants) (3,84). 

Prediction models  

As mentioned before, CNVs are identified in 11% of autistic individuals but only 12 recurrent 

CNVs have been formally associated to autism (Table 1) (64) and since the majority of these 

CNVs are rare or even private, the possibility of studying them through association studies is 

ruled out. Therefore, their effect on neurodevelopment and cognition is poorly understood.  

In line with this, the research team of Pr. Jacquemont has recently published a new framework 

to estimate the effect of CNVs on general intelligence as measured by  NVIQ (85) because 1) 

ID is one of the specifiers of autism and 2) the CNVs associated to autism have an impact on 

cognition. This framework corresponds to a statistical model trained on two cohorts of the 

general population where the majority of CNVs are benign. It consists of linear regressions 

including functional annotations of genes encompassed by the CNVs used to identify features 

that explain their association with IQ. Among the 10 functional annotation of genes, a stepwise 
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procedure identified that the probability of loss-of-function intolerance score (pLI) (86), which 

is a haploinsufficiency score,  is what best explains the association of any deletion CNV with 

Non-verbal IQ (NVIQ). This score separates the genes tolerant to a loss-of-function (pLI≤ 0.1) 

from the genes that are intolerant to a loss-of-function (pLI≥0.9). Note that a pLI≥0.9 points to 

the genes that would have a significant impact on survival and reproduction (fitness) if altered 

by a heterozygous loss-of-function. However, not all genes associated with diseases have high 

scores of pLI (e.g. BRCA1 is associated to breast cancer but does not affect fertility and 

survival). This model was validated with a concordance analysis using published measures of 

15 recurrent pathogenic CNVs. The estimates of the model were 75% (95% CI, 39-91%) 

concordant with the loss of IQ measured in published case-control studies (Figure 5). This 

means that the effect of deleterious CNVs can be precisely estimated using a model trained on 

mostly benign CNVs (with a low pLI score). In addition, the application of this model in autistic 

cohorts shows similar results to what was found in the general population (Douard et al., 

manuscript under review).  
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Figure 5: Concordance between loss of PIQ estimated by the first model (y-axis) and loss of 

PIQ measured by previously published studies (x-axis) for 15 recurrent CNVs. Each point 

corresponds to a known recurrent CNV: (1) 17p12_(HNPP), (2) 16p12.1, (3) 15q11.2, (4) 16p13.11, (5) 1q21.1 TAR, 

(6) 17q12, (7) 16p11.2 Distal (SH2B1), (8) 1q21.1 Distal (Class I), (9) 15q13.3 (BP4-BP5), (10) 16p11.2 proximal 

(BP4-BP5), (11) 22q11.2, (12) 7q11.23 (William-Beuren), (13) 3q29 (DLG1), (14) 8p23.1, and (15) 17p11.2 (Smith-

Magenis). The diagonal dashed line represents exact concordance. When loss of IQ was not directly measured in 

a previous study, we derived the loss of IQ from the published OR measuring the enrichment of a CNV in the 

neurodevelopmental clinic (open circles). From Huguet et al. (2018) (85). 

 

In the neurodevelopment clinic, CNVs are reported daily but the effect size of 90% of these 

CNVs on autism risk remains undocumented. And it is still unknown if the enrichment of these 

CNVs is related to the core symptoms or to the specifiers and comorbidities of autism.  

 

We hypothesize that the effect of CNVs on autism risk and comorbidities follows a general 

principal and can be estimated using statistical models.  
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The general aim of this study is to quantify the effect of CNVs on general intelligence and on 

social responsiveness which is a domain impaired in autism.  

The specific aims:  

1) Replicate the model assessing the effect of CNVs on general intelligence in a cohort of 

heterogeneous neurodevelopmental disorders. 

2) Validate the previous model through correlation and concordance analysis 

3) Test the model on a measure associated to a core symptom of autism (social responsiveness) 

in different cohorts: cohorts of autism, an unselected population and in a cohort of 

heterogeneous neurodevelopmental disorders.



 
 

 

 

 

 

 

 

CHAPTER 2: METHODOLOGY
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METHODOLOGY 

Cohorts  

Autism cohorts 

Two autism cohorts (Figure 6) were used: The Simons Simplex Collection (SSC) (87) , a cohort 

of 2,569 simplex families, including 2,074 quads (one proband, unaffected parents, one 

unaffected sibling) and 495 trios (one autistic proband and unaffected parents); and the 

MSSNG database (88), which was used as an independent replication cohort and includes 845 

probands. 

Neurodevelopment cohort of Sainte-Justine 

This cohort is designed by the project of Brain Canada and it includes 106 families with at least 

one child carrying a large or a recurrent CNV and diagnosed with a neurodevelopmental 

disorder (autism, ADHD, ID…). All 282 participants were assessed with an IQ test (Table 2) and 

have filled the SRS and other questionnaires that are not used in this study (e.g. Children 

behavioral checklist, Conners Comprehensive Behavior Rating Scale…).  

Unselected cohort 

One community-based cohort was used: the IMAGEN (89) (Figure 6) which includes 1802 

adolescents.  

Genetic data - CNV detection, annotation and filtering 

Genotyping and whole genome sequencing 

 Genotyping data 

CNV detections and standard filtering strategies were previously published (85). CNV calling 

was performed using the same pipeline for individuals from the SSC (87) and IMAGEN (89) to 

obtain a harmonized dataset. 

In the IMAGEN cohort (89), 2,090 individuals were genotyped using a combination of the 

Illumina 610Kq (N probes=620,901; N arrays=708) and 660Wq (N probes=657,366; N 

arrays=1,385). The genotyping was performed at the Centre National de Genotypage (Paris, 
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France). In the SSC (87), 10,032 individuals were genotyped at Yale University using Illumina 

single nucleotide polymorphism (SNP) genotyping arrays 1Mv1, 1Mv3 Duo, or Omni2.5M. 

 Whole genome sequencing data 

In the MSSNG database (88), 7,231 individuals were sequenced at multiple sites using Illumina 

sequencing HiSeq, HiSeq 2,500, or HiSeqX.  

Next generation sequencing data were analysed using Broad Institute Genome Analysis Toolkit 

best practices (90).  

 CGH and FISH data 

In the neurodevelopment cohort of Sainte-Justine, the detection of CNVs was done mainly by 

CGH. In some cases, FISH was done for family members to confirm the inheritance of the CNV 

carried by the proband (de novo or inherited) or to confirm if a sibling carries the same CNV as 

the proband. These genetic tests were performed in the laboratory of Pediatric Genetics at 

CHU Sainte-Justine (Montreal, Canada). The calling and filtering of CNVs were also completed 

by the same laboratory. All the CNVs of this cohort are variants of uncertain significance or 

pathogenic.  

CNV Calling 

CNVs from SSC and IMAGEN were called using PennCNV (91) and QuantiSNP (92) with the 

following parameters: 

- Number of consecutive probes for CNV detection  3 

- CNV size  1Kb 

- Confidence scores  15. 

Then, we merged detected CNVs from both algorithms with CNVision (82).  

For MSSNG, read alignment data were used to compute CNV calling following the workflow of 

Trost et al. (2018) (93). 
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Filtering of microarrays 

To ensure good quality of CNVs, we kept only microarrays without too much noise. 

 For IMAGEN:  

- Wave Factor < |0.05|  

- Standard deviation of the Log-R-Ratio < 0.35 

- Standard deviation of the B allele frequency < 0.08  

- Call Rate > 0.99 

 For the SSC cohort: all microarrays detecting  200 CNVs were considered as noisy and 

were removed from the analysis. 

CNV coordinates 

The CNVs coordinates were updated from hg18 to hg19 using Illumina information and the 

liftover tool from the genome browser (https://genome.ucsc.edu/cgi-bin/hgLiftOver and 

http://grch37.ensembl.org/Homo_sapiens/Tools/AssemblyConverter).  

Concatenation of CNVs 

In a subsequent step, using an in-house algorithm (Pasteur, Paris, France) (85) followed by 

visual inspection (SnipPeep, http://snippeep.sourceforge.net), we stitched CNVs that 

appeared to be incorrectly split by the calling algorithms, and we removed any CNVs (size of  

500 Kb and  100 SNPs) that spanned known large assembly gaps (greater than 150 Kb).  

CNV filtering 

CNVs with the following criteria were selected for analysis: 

- Size ≥ 50 Kb 

- Autosomal 

- Unambiguous type: deletions or duplications 

- Confidence score ≥ 30 with at least one of both detection algorithms 

- Cross array criteria: CNVs overlapping  10 probes in each of the array technologies 

used in the study 

http://grch37.ensembl.org/Homo_sapiens/Tools/AssemblyConverter
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- Additional filters were applied for CNVs which are not 40% overlapping with recurrent 

CNVs : overlap with segmental duplicates or centromeric regions < 50% 

CNV annotation and scoring: 

The genetic annotation was based on RefSeq genes (https://genome.ucsc.edu/) using 

ANNOVAR (94). Each gene was annotated using functional scores such that CNV scores are the 

sum of scores of genes with all isoforms fully contained in the CNV. If an individual carried 

more than one CNV, CNV scores for this individual were summed (Figure 6). The default value 

associated to a gene without available scores was 0. Functional annotations of CNVs were 

performed using a home-made R package grouping several information about genes included 

in the CNVs and obtained using RefSeq genes. Genes were annotated using different scores 

and transformations, but in this study, we were only interested in the pLI because the previous 

study identified this score as the best variable explaining CNVs effects (85).  

Genetic analysis of pairwise relatedness and population stratification 

Relatedness was computed using Huguet et al. (2018) methodology (85) in IMAGEN and SSC 

cohorts. Ancestry was estimated using Admixture (95) 

(http://www.genetics.ucla.edu/software/admixture) with reference populations from 

HapMap3 (96) allowing for 4 ancestry components (Africa, Asia, Europe and India). Results 

show a strong European ancestry component in both datasets with 1,630 individuals from 

IMAGEN and 9,799 individuals from the SSC being estimated to have more than 80% of 

European ancestry. We then performed a principal components analysis based on the 

variance-standardized relationship matrix. For the analysis including IMAGEN and SSC, we only 

used the first three components (C1-C3) as covariates.

https://genome.ucsc.edu/
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Figure 6: Methodological pipeline. Microarray quality control and CNV selection and annotation were performed as previously 

published in Huguet et al. (2018) (85) (Methods); The model used and available data for each phenotype are detailed in the statistical 

analysis section of the methods. SSC: Simon Simplex Collection; CNV: copy number variants; SD: standard deviation; N.A.: Not 

applicable; NVIQ: non-verbal intelligence quotient; SRS: Social Responsiveness Scale.
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Clinical assessments 

NVIQ 

Intellectual abilities were measured using standardized tests according to the cognitive level 

of the participant (Table 2). We used NVIQ because individuals with autism or 

neurodevelopmental disorders are either non-verbal or have language impairment and 

consequently are not able to complete the verbal tasks in the cognitive tests. Then, the NVIQ 

was z-scored using the mean (mean=100) and the SD (SD=15) of the general population as 

follows: (NVIQ-100)/15. Norm-referenced standard scores (deviation IQ) were available for 

most of the participants (85.10%). However, for individuals from SSC who were not able to 

obtain a deviation IQ due to their age and/or developmental level, ratio IQ were derived by 

dividing mental age by chronological age and multiplying by 100. This was only done for the 

kids who underwent the Mullen Scale of Early Learning (MSEL) test. See Bishop et al., (2011) 

for more details concerning convergence between ratio and deviation IQ (98).  

 

SD: Standard deviation; NVIQ: Non-verbal intelligence quotient; DAS-II: Differential Ability Scales - Second Edition 
(99); MSEL: Mullen Scale of Early Learning (100); WASI-I or II: Wechsler Abbreviated Scale of Intelligence – First 

Cohorts 
N available 

NVIQ  

Age Males NVIQ 

mean SD N % Test used Mean  SD 

IMAGEN 1,744 14.45 0.37 880 48.91 WISC-IV 106.62 14.77 

SSC probands 2,564 9.03 3.58 2,227 86.66 

DAS-II (N= 2244) 
MSEL(N=213),  
WASI-I (N=63),  
WISC-IV (N=45) 

84.47 26.27 

 
MSSNG (probands, 
parents, siblings) 

            673 
(Probands=598; 
Parents=65; 
Siblings=10) 

12.8 10.2 511 75.7 

           Leiter (N=73) 
Raven (N=147)(97),  

Stanford-Binet(N=89), 
WASI-I,WASI-II(N=218), 

WISC-IV (N=5),  
WPPSI-IV (N=69), 

94.62 22.61 

 
 
 
 

St-Justine (probands, 
parents, siblings) 

 
 
 

 
 
 

282 
(Probands= 75; 
Parents= 170; 
Siblings=37) 

26.3 16.0 143 50.7 

Leiter (N=13),  
MSEL (N=18),  

WPPSI-IV (N=31), 
WISC-V (N=36), 
WASI-II (N=12), 

WAIS-IV short version 
(N=172), 

 

93.42 18.04 

Table 2: NVIQ available from the different cohorts. 
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or Second Edition (101,102); WISC-IV: Wechsler Intelligence Scale for Children, Fourth Edition (103); Leiter: Leiter 
international performance scale – Original and revised (104,105); WPPSI-IV: Wechsler Preschool and Primary 
Scale of Intelligence – Fourth Edition (106). 

 

Social Responsiveness Scale (SRS) 

For all the individuals from the neurodevelopment cohort of Sainte-Justine, SSC, MSSNG and 

for the unselected population from IMAGEN, severity of social deficits was ascertained with 

scores from the SRS (107,108). Parents completed the SRS – an extensively validated 

quantitative measure of characterizing traits and symptoms of autism– about their offspring. 

Parents also had the questionnaire SRS filled either by a self-report or by a relative or a spouse 

to evaluate their social responsiveness as well.   

The SRS is a 65 items questionnaire rated on a 4-point Likert-type scale and it contains 5 

treatment subscales: Social Awareness, Social Cognition, Social Communication, Social 

Motivation, and Restricted Interests and Repetitive Behavior (109). It generates a total raw 

score that serves as an index of severity of social deficits in the autism spectrum. Note that this 

score can be raw (not corrected) or a T-score (corrected for sex and the type of the 

questionnaire used (preschool-form, school-age form, adult form and adult self-report)).  

Higher scores on the SRS indicate greater severity of social impairment. In the SSC, probands 

have a mean of 97.9 (SD=26.9) for the total raw score which is much higher than the means of 

their parents (mean: 29.5 (SD=21.3)) and their unaffected siblings (mean: 18.4 (SD=13.8)) 

(Figure 6). Similar observations are seen in MSSNG and in the neurodevelopment cohort of 

Sainte-Justine (Figure 6). However, in the neurodevelopment cohort of Sainte-Justine, this 

mean is slightly lower for the probands (mean: 80.5 (SD=32.4)) since they don’t all have a 

diagnosis of autism (heterogeneous neurodevelopmental disorders) (See distribution of SRS 

raw score in Figure 8 and Figure 9 and distribution of SRS T-score in Figure 10).  

Statistical analyses 

Effect of gene dosage on general intelligence in the neurodevelopment cohort of St-Justine 

The model assessing the effect of CNVs on general intelligence applied in the unselected 

population sample (85), in ASD cohorts (Douard et al., manuscript under review) and in the 
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meta-analysis of 7 cohorts including unselected and autism populations (Huguet et al., 

manuscript in preparation) was also replicated in the neurodevelopment cohort of Sainte-

Justine. It is a linear mixed-effect model, explaining the z-NVIQ according to total pLI measured 

for deletions and duplications. These analyses were performed with the function lmekin() from 

the R package "coxme" (110). The random effect takes into account a kinship matrix generated 

to model the genetic covariance between related individuals using the kinship() function from 

the R package "kinship2" (111). 

This model could be written as:  

NVIQ z-score ~ 𝜶𝑋+ 𝛾𝑍 + β₁ pLI DEL + β₂pLI DUP 

where X represents the adjustments covariates (NVIQ test used and sex) and Z is the familial 

relatedness; pLI DUP/DEL: sum of pLI scores for deletions or for duplications. α, β₁, β2 and 𝛾 are 

respectively the vectors of coefficients for fixed and random effects. 

Correlation and concordance analysis of the meta-analysis model in the neurodevelopment 

cohort of St-Justine 

For this analysis, we calculated the correlation and concordance between the loss 

of NVIQ predicted by the model of the meta-analysis and the loss of NVIQ calculated by 

comparison to the biparental mean. This was performed only in the sample of probands of the 

neurodevelopment cohort of Sainte-Justine after separating them in two groups: probands 

with an inherited CNV and probands with a de novo CNV. The loss of NVIQ compared to the 

parents was calculated by subtracting the mean of the NVIQ z-score of the parents from the 

NVIQ z-score of the proband. The loss of NVIQ estimated by the model is calculated based on 

the sum of pLI for deletions and duplications of each individual.  

Effect of gene dosage on social responsiveness 

 SRS as a continuous variable  

We used a linear mixed effect model to quantify the effect of gene dosage measured by pLI 

scores on the SRS total raw score after pooling SSC, MSSNG and Imagen. A kinship matrix was 

generated to model the genetic covariance between related individuals using the kinship() 
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function from the R package "kinship2" (111) and this covariance was used as a random effect 

in the model performed with the function lmekin() from the R package "coxme" (110).  

This model could be written as:  

SRS raw score ~𝜶𝑋+ 𝛾𝑍 + β₁ pLI DEL + β₂ pLI DUP 

where X represents the adjustments covariates (age, sex, NVIQ, ASD diagnosis) and Z is the 

familial relatedness; pLI DUP/DEL: the sum of pLI score for deletions or for duplications. α, β₁, β2 

and 𝛾 are respectively the vectors of coefficients for fixed and random effects. 

We further explored a potential effect of gene dosage on the SRS within the different groups 

(probands, unaffected siblings and parents, unselected population) separately using a linear 

regression (with the function lm ()) and adjusting for the abnormal distributions with a square 

root transformation of the SRS scores when necessary (Table 5). 

Finally, we investigated the effect of gene dosage on SRS in the neurodevelopment cohort of 

Sainte-Justine. The aim of this analysis was to explore if there is a significant effect of gene 

dosage on social communication in a cohort with heterogeneous neurodevelopmental 

disorders and not only autism (Replication analysis). To do so, we used a Quasi-Poisson mixed-

effect model fitted with the function glmmPQL() from the R package “MASS” (112). 

This model could be written as:  

Y= Poisson (µ (X, Z), θ) 

With log µ (X,Z)= 𝜶𝑋+ 𝛾𝑍 + β₁ pLI DEL + β₂ pLI DU 

Where θ: overdispersion parameter P; and X represents the covariates used in this model (age, 

sex and NVIQ). α, β₁, β2 and 𝛾 are respectively the vectors of coefficients for fixed and random 

effects. 

 SRS as a categorical variable  

We also investigated the SRS scores based on the previously published T-score categorization 

(109) as follow:  



25 
 

- T-scores of 76 or higher: Clinically significant deficits in social functioning that interfere 

with interactions with others;  

- 66 <T-scores< 75: Moderate, signaling some clinically significant social deficits;  

- 60 <T-scores< 65 : Mild to moderate deficits in social behavior;  

- T-scores< 59: Indicate an individual probably does not have social difficulties indicative 

of a possible autism diagnosis.  

A logistic regression was applied in this pooled dataset (autistic probands; unaffected siblings 

and unselected population) to investigate the effect of gene dosage on binary categories of 

the SRS: clinical (obtained after merging the moderate, mild and clinically significant 

categories) and normal (Table 7, Figure 10). This logistic regression model took into account 

the family relatedness as random factor using the MCMCglmm () function from the R package 

"MCMCglmm" (113). 

An ordinal regression model was also performed on SRS coding for 4 different levels of social 

deficits (normal, moderate, mild and clinically significant) (Table 7, Figure 10). This model was 

applied using the function MCMCglmm () from the R package "MCMCglmm" (113).  

This model could be written as:  

LogP (Y>k)/P(Y<=k)) ~ 𝜶k𝑋+ 𝛾k𝑍+ β₁ pLI DEL + β₂ pLI DUP;  

Where X represents the adjustment covariates used in this model (age, NVIQ and ASD 

diagnosis). α, β₁, β2 and 𝛾 are respectively the vectors of coefficients for fixed and random 

effects.
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RESULTS 

Effect of gene dosage on general intelligence in the neurodevelopment cohort of St-Justine 

In the neurodevelopment cohort of St-Justine, each point of pLI for deletions decreases z-

scored NVIQ by 0.14 points (β=-0.14, SD=0.03, p=2.4×10-7) (equivalent to 2.09 points of NVIQ). 

These results are very similar to what has been found in the previous analyses conducted in 

unselected populations (β=-0.19) (85), in the autism cohort of SSC (β=-0.17) (Douard et al., 

manuscript under review) and in the meta-analysis combining unselected populations with 

autism cohorts (β=-0.19) (Huguet et al., manuscript in preparation).  

On the other side, duplications have an effect size on z-scored NVIQ that’s 2-3 fold smaller than 

deletions and this effect size is the same in the different cohorts: in the neurodevelopment 

cohort of St-Justine (β=-0.06, SD=0.02, p=3×10-3 per one unit of pLI) (equivalent to a loss of 0.9 

points of NVIQ), in SSC cohort (β=-0.06) (Douard et al., manuscript under review) and in the 

meta-analysis (β=-0.06) (Huguet et al., manuscript in preparation) (Table 3, Figure 7).  

 

Table 3: Effect of gene dosage measured by pLI on NVIQ z-score in the neurodevelopment 
cohort of Saint-Justine..  

SD: Standard deviation; Significant results are in bold black and borderline results are in bold blue.  

 

 

Population (N) Intercept β pLI DEL [SD] P value β pLI DUP [SD] P value 

Probands (75) -0.75 -0.10 [0.03] 2.7 ×10-3 -0.04 [0.02] 0.14 

Probands+ Siblings 
(112) 

-0.03 -0.16 [0.03] 4.3 × 10¯⁸ -0.07 [0.02] 6.2  × 10-4 

Parents (170) -0.21 -0.12 [0.06] 4.2 × 10¯² -0.01 [0.03] 0.75 

Parents + Siblings 
(202) 

-0.17 -0.12  [0.05] 3.3 × 10-2 -0.01 [0.03] 0.68 

All (289) -0.58 - 0.14 [0.03] 2.4 × 10-7 -0.06 [0.02] 3.0 × 10-3 
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Figure 7: Effect of gene dosage on general intelligence in the neurodevelopment cohort of 
St-Justine.  
(A) Density distribution of the NVIQ for the different kinships in Sainte-Justine cohort (probands in red, siblings in 
green, parents in blue). (B) Relationship between NVIQ (y-axis) and gene dosage measured by the pLI score (x-
axis) (deletion: DEL in red, duplications: DUP in blue). (C) Concordance analysis between estimated loss of NVIQ 
computed in the meta-analysis (Huguet et al., manuscript in preparation) (y-axis) and observed loss of NVIQ in 
Sainte-Justine cohort (x-axis). Concordance for probands carriers of de novo CNVs are represented in red, and 
probands carriers of inherited CNVs are represented in blue. NDD: neurodevelopmental disorders; ICC: Intraclass 
correlation coefficient. 

 

Correlation and concordance analysis of the meta-analysis model in the neurodevelopment 

cohort of St-Justine 

In the sample of probands with a de novo CNV (N=30), the concordance, measured by intraclass 

correlation coefficient (ICC) between the loss of NVIQ z-score estimated by the model of the 

meta-analysis and the loss of NVIQ z-score observed by comparison to the parents is of 0.58 
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(95% CI: 0.28 to 0.77; p= 3.11×10-4) and the Pearson correlation is of 0.61 (p=3.71×10-4). 

However, in the sample of probands with an inherited CNV (N=29), the concordance (ICC= 0.25 

(95% CI: -0.12 to 0.56)) and the Pearson correlation (0.25) are lower and not significant (p>.05). 

In the pooled sample (Inherited + de novo CNVs) (N=71), the concordance is of 0.35 (95% CI: 

0.13 to 0.54; p=1.13 × 10¯³) and the Pearson correlation is of 0.36 (p=2×10-3) (Table 4, Figure 

7C).  

Table 4: Concordance and correlation between the loss of NVIQ estimated by the model and 

the real loss compared to parents.  

ICC: Intraclass correlation coefficient; CI: Confidence interval. Significant results are in bold.  

 

Effect of gene dosage on social responsiveness 

SRS raw score in the autism cohorts and the unselected population 

The pLI significantly increases the SRS raw score, with a 2:1 effect size ratio for deletions and 

duplications in the pooled SSC, MSSNG and IMAGEN dataset (deletions: β=3.37 points of 

raw SRS score per unit of pLI, SD=0.55, p= 7.8×10-10; duplications: β=1.77 points of raw SRS 

score per unit of pLI, SD=0.40, p=9.7×10-6). This effect of gene dosage on SRS is mainly 

accounted for by the NVIQ and the autism diagnosis (Table 5, Figure 8). Similar results were 

also observed when these analyses were done in the SSC cohort (deletions: β=3.47 points of 

raw SRS score per unit of pLI, SD=0.58, p= 2.4×10-9; duplications: β=1.54 points of raw SRS 

score per unit of pLI, SD=0.44, p=5.2×10-4) and in a pooled sample of SSC and IMAGEN 

(deletions: β=3.72 points of raw SRS score per unit of pLI, SD=0.57, p= 5.1×10-11; 

duplications: β=1.87 points of raw SRS score per unit of pLI, SD=0.43, p=1.4×10-5) (Table 5). 

However, once we adjust for the autism diagnosis, the effect of pLI on SRS disappears (Table 

5)

Inheritance N ICC [CI] P valeur 
Pearson 

correlation 
P valeur 

De novo 30 0.58 [0.28-0.77] 3.1 × 10¯⁴ 0.61 3.7× 10¯⁴ 

Inherited 29 0.25 [-0.12; 0.56] 0.09 0.25 0.19 

De novo+ 
Inherited 

71 0.35 [0.13-0.54] 1.1 × 10¯³ 0.36 2.0 × 10¯³ 
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Table 5: Effect of gene dosage measured by pLI on SRS raw score in two autism cohorts and IMAGEN.  

 
SD: Standard deviation; NVIQ: Non-verbal intelligence quotient; DEL: deletion; DUP: duplication; pLI: probability of being Loss-of-
function Intolerant; pLI DEL/pLI DUP: pLI score for deletions or for duplications; √Total-raw: square root transformation of the total 
SRS raw. All models used were adjusted for age, sex and ancestry. Models take into account family as random-effect when including 
related individuals (see methodology section). (a)Square root transformation of the total SRS raw score was performed to adjust for 
the non-Gaussian distribution or bimodality of SRS distribution (Figure 8). Significant results are in bold.

Population N  SRS-score             Model CNV score 
Effect size 

(β) 
SE 

 
p 

SSC Probands 2 556 Total-raw 
Linear not adjusted for NVIQ 

pLI DEL  -0.21 0.40 0.60 
pLI DUP -0.28 0.36 0.42 

Linear adjusted for NVIQ  
pLI DEL  -0.31 0.41 0.45 
pLI DUP -0.32 0.36 0.36 

MSSNG Probands 
845 
 
600 

Total-raw 

Linear not adjusted for NVIQ       
pLI DEL 
pLI DUP 

-1.79 
0.14 

1.51 
0.79 

0.24 
0.86 

Linear adjusted for NVIQ  
pLI DEL  
pLI DUP  

-0.72 
-0.46  

1.76 
0.94 

0.68 
0.62 

SSC+ MSSNG  
Probands 

3 403 
 
3 157 

 Total-raw 

Linear not adjusted for NVIQ 
pLI DEL 
pLI DUP 

0.05 
-0.27 

0.51 
0.36 

0.91 
0.47 

Linear adjusted for NVIQ  
pLI DEL 
pLI DUP 

     -0.41 
     -0.65 

0.50 
0.36 

0.41 
0.07 

SSC Unaffected Siblings  2,078 √Total-raw(a) Linear not adjusted for NVIQ 
pLI DEL  0.05 0.08 0.47 
pLI DUP 0.001 0.06 0.99 

SSC Unaffected 
Parents 

4,838 √Total-raw(a) Linear not adjusted for NVIQ 
pLI DEL  0.07 0.09 0.43 
pLI DUP 0.01 0.04 0.83 

IMAGEN 1,010 √Total-raw(a) 
Linear not adjusted for NVIQ  

pLI DEL  -0.06 0.15 0.66 
pLI DUP 0.03 0.09 0.71 

Linear adjusted for NVIQ  
pLI DEL  -0.09 0.15 0.56 
pLI DUP 0.02 0.09 0.81 

SSC Unaffected siblings 
and parents+ IMAGEN 

7,926 
 
Total-raw 

 
Linear mixed-effect  

pLI DEL 
pLI DUP 

0.62 
0.08 

0.62 
0.36 

0.32 
0.82 

SSC Probands + 
IMAGEN 

3,567 Total-raw 

Linear not adjusted for NVIQ 
or autism diagnosis 

pLI DEL  2.68 0.67 7.15x10-5 

pLI DUP 1.29 0.58 0.03 

Linear adjusted for autism 
diagnosis 

pLI DEL  0.41 0.47 0.38 
pLI DUP -0.19 0.40 0.63 

Linear adjusted for NVIQ pLI DEL  
pLI DUP 
NVIQ 

-0.31 
-0.44 
-0.54 

0.46 
0.39 
0.02 

0.50 
0.27 

< 1x10-7 

SSC (Probands and 
unaffected parents and 
siblings) 

9,473 Total-raw  

Linear mixed-effect not 
adjusted for autism diagnosis 

pLI DEL  3.47 0.58 2.40x10-9 
pLI DUP 1.54 0.44 5.20x10-4 

Linear mixed-effect adjusted 
for autism diagnosis 

pLI DEL  0.75 0.37 4.30x10-2 

pLI DUP -0.003 0.29 0.99 

 SSC + IMAGEN 10,483 Total-raw 

Linear mixed-effect not 
adjusted for autism diagnosis 

pLI DEL 3.72 0.57 5.10x10-11 

pLI DUP 1.87 0.43 1.40x10-5 

Linear mixed-effect adjusted 
for autism diagnosis 

pLI DEL 0.55 0.36 0.13 

pLI DUP -0.10 0.27 0.72 

SSC + MSSNG + 
IMAGEN  

11,979 Total-raw 

Linear mixed-effect not 
adjusted for autism diagnosis 
nor NVIQ 

 
pLI DEL  
pLI DUP 

 

3.37 
1.77 

0.55 
0.40 

7.80x10-10 
9.70 x10-6 

Linear mixed-effect adjusted 
for autism diagnosis  

pLI DEL  
pLI DUP 

0.30 
-0.04 

0.35 
0.26 

0.39 
0.88 

  4,210  
Linear mixed-effect adjusted 
for NVIQ  

pLI DEL 
pLI DUP 

0.29 
0.28 

0.60 
0.50 

0.62 
0.57 
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Figure 8: Effect of gene dosage on SRS raw score in the autism and unselected cohorts. 
(A) Density distribution of the raw score of SRS in function of the cohort and kinship (SSC probands in pink, SSC 
siblings in dark green, SSC parents in violet, MSSNG probands in red, MSSNG siblings in light green, MSSNG 
parents in light blue, IMAGEN in brown). (B) Effect size of a unit of pLI on raw score of SRS (y-axis)  for deletions 
(DEL, red) or duplications (DUP, blue) in function of the covariates used (x-axis), in the pooled dataset (SSC + 
MSSNG + IMAGEN). Effects were measured with and without adjustment for the diagnosis of autism or the NVIQ. 
The Y-axis represents the estimated effect of pLI on the SRS raw score. (C) Linear relationship between raw score 
of SRS (y-axis) and gene dosage measured by pLI for deletions (x axis). Individuals with a diagnosis of ASD are 
represented in black and unaffected individuals are in grey. (D) Linear relationship between raw score of SRS (y-
axis) and gene dosage measured by pLI for duplications (x axis). Individuals with a diagnosis of ASD are 
represented in black and unaffected individuals are in grey. 
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SRS raw score in the neurodevelopment cohort of St-Justine 

The relationship between gene dosage and SRS raw score (deletion: OR=1.05, 95% CI=1.02-

1.08, p=1.5×10-3; duplication: OR=1.05, 95% CI=1.02-1.07, p=5.3×10-5) estimated by a Quasi-

Poisson model translates into a gain of 3.0 points of SRS per one unit of pLI for deletions and a 

gain of 2.7 points of SRS per one unit of pLI for duplications. And since this model is a non-

linear model, this also translates into an increase of a mean of 38.1 and 33.9 points of SRS for 

a deletion or a duplication encompassing 10 units of pLI, respectively (Table 6, Figure 9). 

This effect of deletions and duplications on SRS remains significant after adjusting for NVIQ 

(deletion: OR=1.04, 95% CI=1.02-1.06, p=2.3×10-2; duplication: OR=1.05, 95% CI=1.01-

1.08, p=3.0×10-3) and it translates into an increase of a mean of 3.8 and 4.3 points of SRS for a 

deletion or a duplication encompassing one unit of pLI respectively.  

 

Table 6: Effect of gene dosage and NVIQ on SRS raw score in the neurodevelopment cohort 

of St-Justine. 

OR: Odds ratio; DEL: deletions; DUP: Duplications; 95% CI: 95% confidence interval; NVIQ: Non-verbal intelligence 

quotient. Significant results are in bold and borderline results are in bold blue. 

 

Population 
(N) 

OR  
DEL 

95% CI P value OR 
DUP 

95% CI P value OR 
NVIQ 

95% CI P 
value 

NDD cohort 
(195) 

1.05 1.02-1.08 1.54×10¯3 1.05 1.02-1.07 5.33 ×10¯⁵ 0.99 0.99 0.03 
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Figure 9: Effect of gene dosage on SRS raw score in the neurodevelopment cohort of St-

Justine.  (A) Density distribution of SRS raw score for the different kinships (probands in red, siblings in green, 

parents in blue). (B) Effect size of pLI (x-axis) on raw score of SRS (y-axis) for deletions (DEL, red) or duplications 

(DUP, blue) in Sainte-Justine cohort. The Y-axis represents the estimated effect of pLI on the SRS raw score using 

a quasi-poisson regression model. NDD: Neurodevelopmental disorders. 

 

SRS categories in the autism cohorts and the unselected population  

In the pooled dataset of SSC, MSSNG and IMAGEN, the ordinal regression performed on the 4 

categories of SRS (normal, mild, moderate and clinically significant) shows that an increase of 

pLI for deletions or duplications increase the risk of being in a category with higher deficits in 

social functioning (deletions: OR= 1.15; 95% CI, 1.07-1.23; p< 1.0×10-3; duplications: OR= 1.10; 

95% CI, 1.04-1.16; p< 1.0×10-3). This effect disappears once we adjust for the presence of an 

autism diagnosis or for NVIQ (Table 7, Figure 10). Similar results were obtained when using a 

pooled sample of SSC and IMAGEN (deletions: OR= 1.32; 95% CI, 1.12-1.60; p< 1.0×10-3; 

duplications: OR= 1.18; 95% CI, 1.04-1.35; p< 1.0×10-3) (Table 7). 

The logistic regression performed on 2 categories of SRS (normal vs clinical) in the pooled 

dataset (SSC, MSSNG and IMAGEN) also shows that increasing the pLI leads to a higher 

probability of having social deficits that are clinically significant (deletions: OR= 1.21; 95% CI, 
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1.12-1.31; p< 1.0×10-3; duplications: OR= 1.13; 95% CI, 1.07-1.21; p< 1.0×10-3) and adjustments 

with the NVIQ or with the autism diagnosis make the effect of gene dosage on SRS insignificant. 

Similar results were obtained in the pooled dataset of SSC and IMAGEN (deletions: OR= 1.22; 

95% CI, 1.12-1.34; p< 1.0×10-3; duplications: OR= 1.14; 95% CI, 1.06-1.23; p< 1.0×10-3) (Table7, 

Figure 10).  

 Table 7: Effect of gene dosage measured by pLI on SRS categories. 

 SD: Standard deviation; NVIQ: Non-verbal intelligence quotient; DEL: deletion; DUP: duplication; pLI: probability 
of being Loss-of-function Intolerant; pLI DEL/pLI DUP: pLI score for deletions or for duplications. All logistic or 
ordinal regression models used were adjusted for age. Models take into account family as random-effect when 
including related individuals (Methods). (a) Based on the previously published T-score categorization (109) 
(Methods). Significant results are in bold.  

 

Population N  SRS-score Model CNV score 

Effect 
size 
(OR) 

SD 
 

p 

SSC Probands+ 
Unaffected 
siblings+ 
IMAGEN 

5,188 
SRS categories 
(normal, 
clinical) (a)  

Logistic regression not 
adjusted  

pLI DEL  
pLI DUP 

1.22 
1.14 

1.12-1.34 
1.06-1.23 

<1.0 x10-3 
<1.0 x10-3 

Logistic regression 
adjusted for autism 
diagnosis 

pLI DEL  
pLI DUP 

0.93 
0.98 

0.83- 1.05 
0.88-1.05 

0.22 
0.69 

SSC Probands+ 
Unaffected 
siblings+ 
IMAGEN 

5,188 

SRS categories 
(normal, 
moderate, mild, 
clinically 
significant) (a) 

Ordinal not adjusted 
pLI DEL  
pLI DUP 

    
     1.32 
     1.18 
 

1.12- 1.60 
1.04-1.35 

<1.0 x10-3 

<1.0 x10-3 

Ordinal adjusted for 
autism diagnosis 

pLI DEL  
pLI DUP 

1.04 
0.99 

0.97-1.13 
0.94-1.05 

0.35 
0.87 

SSC and MSSNG 
Probands+ 
Unaffected 
siblings+ 
IMAGEN 

5,688 
SRS categories 
(normal, 
clinical) (a) 

Logistic regression not 
adjusted  

pLI DEL 
pLI DUP 

1.21 
1.13 

1.12-1.31 
1.07-1.21 

<1.0 x10-3 
<1.0 x10-3 

Logistic regression 
adjusted for autism 
diagnosis 

pLI DEL  
pLI DUP 

0.94 
0.97 

0.86-1.06 
0.87-1.08 

0.41 
0.61 

 3,523  
Logistic regression 
adjusted for NVIQ 

pLI DEL 
pLI DUP 

1.03 
1.03 

0.97-1.15 
0.99-1.08 

0.73 
0.41 

SSC and MSSNG 
Probands+ 
Unaffected 
siblings+ 
IMAGEN 

5,688 

SRS categories 
(normal, 

moderate, mild, 
clinically 

significant) (a) 

Ordinal not adjusted 
pLI DEL  
pLI DUP 

1.15 
1.10 

1.07-1.23 
1.04-1.16 

<1.0 x10-3 
1.0 x10-3 

   
Ordinal adjusted for 
autism diagnosis 

pLI DEL 
pLI DUP 

1.02 
1.00 

0.96-1.09 
0.99-1.05 

0.53 
0.89 

 3,523  Ordinal adjusted for NVIQ 
pLI DEL 
pLI DUP 

1.00 
1.01 

0.95-1.06 
0.96-1.06 

0.90 
0.55 



35 
 

 

   

Figure 10: Effect of gene dosage on T-score of SRS in the pooled autism and general 
populations. (A) Density distribution of the T-score of SRS in function of the cohort and kinship (SSC probands 

in pink, SSC siblings in dark green, MSSNG probands in red, MSSNG siblings in light green, IMAGEN in brown). (B) 
Effect size of pLI on categories of SRS (y-axis) for deletions (DEL, red) or duplications (DUP, blue) in function of the 
covariates used (x-axis), in the pooled dataset (SSC + MSSNG + IMAGEN). The Y-axis represents the estimated OR 
for the clinical category conferred by one unit of pLI. Effects-size were measured as an OR by ordinal regressions 
on 4 categories (normal, mild, moderate, clinical) or by logistic regressions on binary categorical SRS (clinical and 
normal). These analyses were done with and without adjustment for the diagnosis of autism or the NVIQ.



 
 

 

 

 

 

 

 

CHAPTER 4: DISCUSSION AND CONCLUSION
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DISCUSSION 

Effect of gene dosage on general intelligence 

In the first part, we aimed to replicate the model assessing the effect of CNVs on general 

intelligence (measured by NVIQ) in a cohort of heterogeneous neurodevelopmental disorders. 

The results showed that the effect of deletions is similar across the different populations 

(unselected, autistic and neurodevelopmental) and that the effect size of deletions is 2-3 fold 

higher than the one of duplications. When the model was first tested within the unselected 

population, duplications had no effect on general intelligence (85). However, when testing 

their effect in the autistic cohorts, the neurodevelopment cohort and the meta-analysis, we 

could quantify the impact of duplications on NVIQ and the effect size was the same across the 

different cohorts (a loss of 0.9 points of NVIQ per one unit of pLI). These results confirm that 

models trained on non-pathogenic CNVs in the general population reliably estimate the effect 

size of pathogenic CNVs and suggest “omnigenic” associations of haploinsufficiency with IQ. In 

fact, an omnigenic model is one of the many genetic models in the literature that aim to explain 

the genetic contribution to diseases; and this model supports the hypothesis that for complex 

traits such as autism, association signals tend to be spread across most of the genome—

including many genes without an obvious connection to a specific disease (114). And since our 

model was trained in different cohorts, we covered CNVs encompassing over 4,000 genes. 

Furthermore, when large effect size de novo CNVs were excluded from the analyses, the effect 

of gene dosage on NVIQ remains unchanged (Douard et al., manuscript under review) 

supporting the fact that these results are not driven by highly pathogenic CNVs. In other words, 

these results suggest that autism risk is largely driven by genes with no direct relevance to 

autism (common variants) and is propagated through regulatory networks to a much smaller 

number of core genes with direct effects (e.g. synaptic genes).  

The pLI, the genetic score used in our model, is a measure estimating the sensitivity of genes 

to haploinsufficiency based on the ratio of observed over expected Loss-of-Function 

mutations. This score quantified as well the effect of duplications on intelligence indicating 
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that it can assess intolerance to gene dosage regardless if the gene expression is increased 

(duplication) or decreased (deletion). 

In the second part, we aimed to validate the model of the meta-analysis in the 

neurodevelopment cohort of St-Justine. To do so, we calculated the concordance and the 

correlation between the model estimations and the observed loss of NVIQ. In the sample of 

probands carrying de novo CNVs only, the concordance (0.58) and correlation (0.61) were 

higher than what was obtained in the sample of probands with inherited CNVs (ICC and 

Pearson correlation = 0.25). These results were expected since in the de novo sample, the 

difference of NVIQ between the biparental mean and the proband reflects the loss of NVIQ 

explained strictly by genetics and this can be well-estimated by the model. However, in the 

inherited sample, the probands share the pathogenic CNV with one of the parents, 

consequently the difference of NVIQ between the parents and the proband does not reflect 

the effect of the CNV that can be estimated by the model. Overall, our results fall between 0.2 

and 0.7 which is the range of correlation between the biparental mean on psychometric and 

anthropometric quantitative traits and the individual’s outcome (66,115). 

Effect of gene dosage on social responsiveness 

In the third part, we aimed at testing the model on a measure associated to a core symptom 

of autism. For that purpose, we applied the model on SRS which serves as an index of severity 

of social deficits in the autism spectrum. In the first place, we applied the model within samples 

of probands or unaffected individuals separately, but the results were not significant. 

Therefore, we attempted to pool them together to increase the statistical power needed to 

detect a signal and also to increase the variance of the SRS. Once this was done, we detected 

an effect of gene dosage on SRS with a 2:1 ratio for deletions and duplications in the different 

analyses when SRS was used as a continuous measure (SSC only, SSC+ Imagen, 

SSC+MSSNG+Imagen) (Table 5, Figure 8). When SRS was used as a categorical measure, the 

effect of gene dosage on SRS was also identified but without the 2:1 ratio for deletions and 

duplications. However, this effect disappears after adjusting for the presence of an autism 

diagnosis or for NVIQ. These results suggest that beyond its predictive value of a diagnosis, SRS 
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does not provide additional granularity such as the measure of ASD-trait severity implying that 

although SRS is a continuous measure, its use is mainly categorical. Also, the fact that the effect 

of gene dosage on SRS disappears after correction for NVIQ suggests that the latter mediates 

the effect between the gene dosage and SRS. In other words, haploinsufficiency causes a 

decrease in NVIQ which ultimately causes an increase in SRS scores. Taken together, our results 

indicate that the effect of CNVs on cognition is stronger than its effects on social behavior and 

autism core symptoms.  

We also sought to replicate the previous analyses (done in a pooled sample of autistic and 

unaffected individuals) in a sample with neurodevelopmental disorders. The only result that 

differed is that the effect of gene dosage on SRS remained after adjusting for NVIQ. This can 

be due to the fact that in the neurodevelopment cohort of St-Justine, NVIQ has a very small 

effect on SRS and this effect is borderline significant (Table 6). In other words, since the 

probands in this cohort have different neurodevelopmental disorders and not only autism, 

they have low NVIQ but not necessarily high SRS scores. Whereas in the previous analyses, 

NVIQ is a mediator of the effect between gene dosage and SRS (Table 5) and since all the 

probands are autistic, low scores of NVIQ are mainly associated with high scores of SRS. 

Nevertheless, when NVIQ was accounted for, the effect size and the significance of gene 

dosage on SRS decreased in the neurodevelopment cohort suggesting that the impact of 

haploinsufficiency (measured by the pLI) on social behavior is largely driven by NVIQ.  

Conclusion 

This study highlights a differential effect of deletions and duplications on general intelligence 

and autism risk with a deletion: duplication effect size ratio of 2-3:1. This differential effect of 

gene dosage is a well-established characteristic in many psychiatric disorders where for 

example the 16p11.2 deletion is associated with ASD and obesity whereas the 16p11.2 

duplication is associated with schizophrenia and leanness (116–120).  

The results of this study corroborate the robustness of the model in predicting the effect of 

gene dosage on general intelligence by obtaining similar results across different cohorts and 

clinical diagnoses. Interestingly, when the model was extended to the prediction of social 
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communication by applying it on SRS measures, the estimates of the model overlapped with 

risk computed in previous studies. For example, our model estimates an increase of 37 and 42 

points in the SRS raw score for the 16p11.2 and 22q11.2 deletion which is similar to the 

previously published effect of 44 and 55 points (66,121). The research team has developed a 

prediction tool available online (https://cnvprediction.urca.ca/) to estimate the effect size of 

undocumented deletions and duplications on IQ, autism risk and the SRS score. This tool will 

help clinicians evaluate quantitatively the contribution of a CNV to the patient’s symptoms.  

 

Limitations:  

The predictions for some CNVs are discordant. Notably, deficits associated with the 15q13.3 

deletion are underestimated by our model (Figure 5). This CNV may include genes for 

which the assigned pLI score does not capture the effects on psychiatric traits (e.g. gene 

dosage of CHRNA7, which has a pLI=0 may affect psychopathology without altering genetic 

fitness). Larger samples, novel functional annotations, and more refined models are required 

to improve our estimates of CNV effect sizes on cognitive and behavioral dimensions.  

 

In conclusion, this study represents a new framework to study CNVs and can help in the 

interpretation of the effect size of undocumented CNVs identified in the neurodevelopmental 

clinic.  

 

https://cnvprediction.urca.ca/
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