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Résumé 

L'athérosclérose est une maladie vasculaire complexe qui affecte la paroi des artères (par 

l'épaississement) et les lumières (par la formation de plaques). La rupture d'une plaque de l'artère 

carotide peut également provoquer un accident vasculaire cérébral ischémique et des 

complications. Bien que plusieurs modalités d'imagerie médicale soient actuellement utilisées 

pour évaluer la stabilité d'une plaque, elles présentent des limitations telles que l'irradiation, les 

propriétés invasives, une faible disponibilité clinique et un coût élevé. L'échographie est une 

méthode d'imagerie sûre qui permet une analyse en temps réel pour l'évaluation des tissus 

biologiques. Il est intéressant et prometteur d’appliquer une échographie vasculaire pour le 

dépistage et le diagnostic précoces des plaques d’artère carotide. Cependant, les ultrasons 

vasculaires actuels identifient uniquement la morphologie d'une plaque en termes de luminosité 

d'écho ou l’impact de cette plaque sur les caractéristiques de l’écoulement sanguin, ce qui peut 

ne pas être suffisant pour diagnostiquer l’importance de la plaque. La technique d’élastographie 

vasculaire non-intrusive (« noninvasive vascular elastography (NIVE) ») a montré le potentiel 

de détermination de la stabilité d'une plaque. NIVE peut déterminer le champ de déformation 

de la paroi vasculaire en mouvement d’une artère carotide provoqué par la pulsation cardiaque 

naturelle. En raison des différences de module de Young entre les différents tissus des vaisseaux, 

différents composants d’une plaque devraient présenter différentes déformations, caractérisant 

ainsi la stabilité de la plaque. 

Actuellement, les performances et l’efficacité numérique sous-optimales limitent 

l’acceptation clinique de NIVE en tant que méthode rapide et efficace pour le diagnostic précoce 

des plaques vulnérables. Par conséquent, il est nécessaire de développer NIVE en tant qu’outil 

d’imagerie non invasif, rapide et économique afin de mieux caractériser la vulnérabilité liée à 

la plaque. La procédure à suivre pour effectuer l’analyse NIVE consiste en des étapes de 

formation et de post-traitement d’images. Cette thèse vise à améliorer systématiquement la 

précision de ces deux aspects de NIVE afin de faciliter la prédiction de la vulnérabilité de la 

plaque carotidienne. 

Le premier effort de cette thèse a été dédié à la formation d'images (Chapitre 5). 

L'imagerie par oscillations transversales a été introduite dans NIVE. Les performances de 
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l’imagerie par oscillations transversales couplées à deux estimateurs de contrainte fondés sur un 

modèle de déformation fine, soit l’ « affine phase-based estimator (APBE) » et le « Lagrangian 

speckle model estimator  (LSME) », ont été évaluées. Pour toutes les études de simulation et in 

vitro de ce travail, le LSME sans imagerie par oscillation transversale a surperformé par rapport 

à l'APBE avec imagerie par oscillations transversales. Néanmoins, des estimations de contrainte 

principales comparables ou meilleures pourraient être obtenues avec le LSME en utilisant une 

imagerie par oscillations transversales dans le cas de structures tissulaires complexes et 

hétérogènes. 

Lors de l'acquisition de signaux ultrasonores pour la formation d'images, des 

mouvements hors du plan perpendiculaire au plan de balayage bidimensionnel (2-D) existent. 

Le deuxième objectif de cette thèse était d'évaluer l'influence des mouvements hors plan sur les 

performances du NIVE 2-D (Chapitre 6). À cette fin, nous avons conçu un dispositif 

expérimental in vitro permettant de simuler des mouvements hors plan de 1 mm, 2 mm et 3 mm. 

Les résultats in vitro ont montré plus d'artefacts d'estimation de contrainte pour le LSME avec 

des amplitudes croissantes de mouvements hors du plan principal de l’image. Malgré tout, nous 

avons néanmoins obtenu des estimations de déformations robustes avec un mouvement hors 

plan de 2.0 mm (coefficients de corrélation supérieurs à 0.85). Pour un jeu de données cliniques 

de 18 participants présentant une sténose de l'artère carotide, nous avons proposé d'utiliser deux 

jeux de données d'analyses sur la même plaque carotidienne, soit des images transversales et 

longitudinales, afin de déduire les mouvements hors plan (qui se sont avérés de 0.25 mm à 1.04 

mm). Les résultats cliniques ont montré que les estimations de déformations restaient 

reproductibles pour toutes les amplitudes de mouvement, puisque les coefficients de corrélation 

inter-images étaient supérieurs à 0.70 et que les corrélations croisées normalisées entre les 

images radiofréquences étaient supérieures à 0.93, ce qui a permis de démontrer une plus grande 

confiance lors de l'analyse de jeu de données cliniques de plaques carotides à l'aide du LSME. 

Enfin, en ce qui concerne le post-traitement des images, les algorithmes NIVE doivent 

estimer les déformations des parois des vaisseaux à partir d’images reconstituées dans le but 

d’identifier les tissus mous et durs. Ainsi, le dernier objectif de cette thèse était de développer 

un algorithme d'estimation de contrainte avec une résolution de la taille d’un pixel ainsi qu'une 

efficacité de calcul élevée pour l'amélioration de la précision de NIVE (Chapitre 7). Nous avons 
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proposé un estimateur de déformation de modèle fragmenté (SMSE) avec lequel le champ de 

déformation dense est paramétré avec des descriptions de transformées en cosinus discret, 

générant ainsi des composantes de déformations affines (déformations axiales et latérales et en 

cisaillement) sans opération mathématique de dérivées. En comparant avec le LSME, le SMSE 

a réduit les erreurs d'estimation lors des tests de simulations, ainsi que pour les mesures in vitro 

et in vivo. De plus, la faible mise en œuvre de la méthode SMSE réduit de 4 à 25 fois le temps 

de traitement par rapport à la méthode LSME pour les simulations, les études in vitro et in vivo, 

ce qui pourrait permettre une implémentation possible de NIVE en temps réel. 

Mots-clés : Athérosclérose, plaque vulnérable, élastographie par ultrasons, oscillations 

transversales, imagerie par ondes planes, mouvements hors plan, imagerie à haute résolution, 

transformées en cosinus discret, modèle clairsemé, flux optique, estimation de phase, estimation 

de contraintes affines. 
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Abstract 

Atherosclerosis is a complex vascular disease that affects artery walls (by thickening) 

and lumens (by plaque formation). The rupture of a carotid artery plaque may also induce 

ischemic stroke and complications. Despite the use of several medical imaging modalities to 

evaluate the stability of a plaque, they present limitations such as irradiation, invasive property, 

low clinical availability and high cost. Ultrasound is a safe imaging method with a real time 

capability for assessment of biological tissues. It is clinically used for early screening and 

diagnosis of carotid artery plaques. However, current vascular ultrasound technologies only 

identify the morphology of a plaque in terms of echo brightness or the impact of the vessel 

narrowing on flow properties, which may not be sufficient for optimum diagnosis. Noninvasive 

vascular elastography (NIVE) has been shown of interest for determining the stability of a 

plaque. Specifically, NIVE can determine the strain field of the moving vessel wall of a carotid 

artery caused by the natural cardiac pulsation. Due to Young’s modulus differences among 

different vessel tissues, different components of a plaque can be detected as they present 

different strains thereby potentially helping in characterizing the plaque stability. 

Currently, sub-optimum performance and computational efficiency limit the clinical 

acceptance of NIVE as a fast and efficient method for the early diagnosis of vulnerable plaques. 

Therefore, there is a need to further develop NIVE as a non-invasive, fast and low computational 

cost imaging tool to better characterize the plaque vulnerability. The procedure to perform NIVE 

analysis consists in image formation and image post-processing steps. This thesis aimed to 

systematically improve the accuracy of these two aspects of NIVE to facilitate predicting carotid 

plaque vulnerability. 

The first effort of this thesis has been targeted on improving the image formation 

(Chapter 5). Transverse oscillation beamforming was introduced into NIVE. The performance 

of transverse oscillation imaging coupled with two model-based strain estimators, the affine 

phase-based estimator (APBE) and the Lagrangian speckle model estimator (LSME), were 

evaluated. For all simulations and in vitro studies, the LSME without transverse oscillation 

imaging outperformed the APBE with transverse oscillation imaging. Nonetheless, comparable 
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or better principal strain estimates could be obtained with the LSME using transverse oscillation 

imaging in the case of complex and heterogeneous tissue structures. 

During the acquisition of ultrasound signals for image formation, out-of-plane motions 

which are perpendicular to the two-dimensional (2-D) scan plane are existing. The second 

objective of this thesis was to evaluate the influence of out-of-plane motions on the performance 

of 2-D NIVE (Chapter 6). For this purpose, we designed an in vitro experimental setup to 

simulate out-of-plane motions of 1 mm, 2 mm and 3 mm. The in vitro results showed more 

strain estimation artifacts for the LSME with increasing magnitudes of out-of-plane motions. 

Even so, robust strain estimations were nevertheless obtained with 2.0 mm out-of-plane motion 

(correlation coefficients higher than 0.85). For a clinical dataset of 18 participants with carotid 

artery stenosis, we proposed to use two datasets of scans on the same carotid plaque, one cross-

sectional and the other in a longitudinal view, to deduce the out-of-plane motions (estimated to 

be ranging from 0.25 mm to 1.04 mm). Clinical results showed that strain estimations remained 

reproducible for all motion magnitudes since inter-frame correlation coefficients were higher 

than 0.70, and normalized cross-correlations between radiofrequency images were above 0.93, 

which indicated that confident motion estimations can be obtained when analyzing clinical 

dataset of carotid plaques using the LSME. 

Finally, regarding the image post-processing component of NIVE algorithms to estimate 

strains of vessel walls from reconstructed images with the objective of identifying soft and hard 

tissues, we developed a strain estimation method with a pixel-wise resolution as well as a high 

computation efficiency for improving NIVE (Chapter 7). We proposed a sparse model strain 

estimator (SMSE) for which the dense strain field is parameterized with Discrete Cosine 

Transform descriptions, thereby deriving affine strain components (axial and lateral strains and 

shears) without mathematical derivative operations. Compared with the LSME, the SMSE 

reduced estimation errors in simulations, in vitro and in vivo tests. Moreover, the sparse 

implementation of the SMSE reduced the processing time by a factor of 4 to 25 compared with 

the LSME based on simulations, in vitro and in vivo results, which is suggesting a possible 

implementation of NIVE in real time. 
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Chapter 1 : General introduction 

1.1 Motivation 

Atherosclerosis is a progressive disease affecting large blood vessels such as coronary, 

peripheral or carotid arteries. It is characterized by the accumulation of lipids and fibrous 

deposits inside intimal regions of the vessel wall [1]. As the lipid accumulates in the intima, a 

plaque is gradually formed to induce vessel inward remodeling followed by a decrease of the 

vessel lumen. As a consequence, the narrowed vessel lumen affects the quantity of blood 

distributed downstream, and the insufficient supply of blood could lead to ischemic stroke when 

carotid arteries are considered. On the other hand, the biomechanical instability of a plaque may 

also induce ischemic complications. Indeed, an unstable (vulnerable) plaque, which is prone to 

rupture, is characterized by a lipid core and a thin fibrosis cap infiltrated by macrophages [2]. 

Following rupture, a thrombus may form in the blood stream and when it is detaching of the 

wall by the flow kinetics, it can migrate and obstacle downstream smaller arteries, causing 

ischemic stroke.    

In current clinical practice, the level of luminal vessel narrowing or stenosis degree is 

commonly used as an indicator of treatments to prevent stroke. Specifically, patients with mild 

or moderate stenosis (less than 70% in diameter reduction) are recommended to change lifestyle 

or take medication. Severe stenoses are treated by carotid endarterectomy or angioplasty. 

However, the severity of carotid artery stenosis is not sufficient to identify plaques at high risk 

of rupture. One-third of cryptogenic stroke whose origin is unknown is induced by rupture of 

non-stenotic but high risk plaques [3]. On the other hand, some patients with a severe stenosis 

may never experience any symptoms and are thought to have stable plaques [4]. In other words, 

defining the vulnerability of a plaque is a multifactorial process [5], involving not only the 

plaque geometry, but also its composition [6]. Thus, comprehensive and early diagnosis of 

plaque vulnerability has its clinical value for stroke prevention. 

Several approaches are currently used to evaluate the atherosclerosis progression. 

Angiography can detect a stenosis, but it fails to provide information about the content of the 

plaque. Computed tomography (CT) methods are able to assess the degree of stenosis and the 
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amount of calcium in the plaque, but accurate identification and quantification of plaque 

components are challenging because of the limited temporal, spatial, and contrast resolutions. It 

is also ionizing for patients. Finally, Magnetic resonance imaging (MRI), which is considered 

the gold standard method to identify lipid-rich tissue, is able to identify vulnerable carotid 

plaques. But the scan is time-consuming and expensive. Therefore, there is a need to develop a 

noninvasive, fast and low cost imaging tool to better characterize the plague vulnerability. 

Safety, real time and easy accessibility of ultrasound enable it as a method of choice for 

screening and diagnosis of vascular plaques. Clinically, Doppler imaging is used to evaluate a 

stenosis using the peak systolic velocity [7]. Indeed, an obstructed vessel results in the 

acceleration of the blood flow. However, this method cannot provide information on the 

composition of a plaque. To gain this information, several techniques based on ultrasound echo 

properties were utilized. Intravascular ultrasound (IVUS) can image the vessel wall and provide 

volume information of plaques using a catheter with an ultrasound transducer on the extremity, 

but this technique is invasive. Contrast-enhanced ultrasound (CEUS) is a way to image 

intraplaque neovessels using microbubbles, which are associated with the growth of plaques. 

One drawback of CEUS is the injection of contrast agents within the venous system. Another 

limitation is that it is still insufficient to detect the lipid core and fibrosis cap of a vulnerable 

plaque.  

Ultrasound elastography or strain imaging, a method first introduced by Ophir et al. [8] 

in 1991, is a technique that measures the strain or relative elasticity of biological tissues,. An 

external compression is applied on a tissue and its displacements responding to the stress are 

measured with a tracking method. Strains can be obtained from the spatial derivation of 

displacements. In the late nineties, elastography was explored to characterize the vessel wall 

with IVUS images. The natural cardiac pulsation or the inflation of a compliant balloon on a 

catheter was used by de Korte et al. [9] to differentiate the coronary calcified plaque component 

(less strain) from non-calcified tissues (higher strain) in vivo. However, IVUS elastography is 

invasive, which restricts it to be a complementary tool of B-mode IVUS for assessing vascular 

plaques. In 2004, noninvasive vascular elastography (NIVE) was proposed to show the potential 

of determining the stability or vulnerability of a plague using ultrasound imaging [10]. NIVE 

could determine the strain field of the moving vessel wall of a superficial artery (e.g., carotid) 



 

3 

caused by the natural cardiac pulsation without the need of an external compression. Due to 

Young’s modulus differences among different vessel tissues, a lipid pool, a calcified and a 

normal tissue made of collagen and elastin are expected to present different strains under the 

blood pressure stress activation.  

Currently, sub-optimum performance and computational efficiency limit the clinical 

acceptance of NIVE as a fast and efficient method for the early diagnosis of vulnerable plaques. 

Specifically, NIVE with a cross-sectional view of the vessel is challenging because the motion 

perpendicular to the ultrasound beam, namely the lateral motion, is difficult to track because of 

the limited lateral resolution of ultrasound images and the absence of phase information in that 

direction. To improve the estimation performance of NIVE, developments of new strain 

algorithms and advanced ultrasound image reconstruction methods were made.  

To improve lateral strain estimation, Konofagou et al. [11] proposed to perform 

interpolation between adjacent radiofrequency (RF) A-lines. A one-dimensional (1-D) cross-

correlation based method was used to obtain high precision lateral displacements [12]. The main 

disadvantage of this 1-D method is that the accuracy of the lateral displacement estimation is 

lower by an order of magnitude, compared with the axial displacement estimation, because of 

differences between lateral and axial resolutions. To avoid noisy lateral estimation, the spatial 

angular compounding strategy was proposed to reconstruct radial and circumferential strains 

using only accurate axial estimations at several steering angles [13-15]. However, these 

approaches compute strains from displacement derivatives, which enhances variance of strain 

estimations due to associated high frequency displacement noise. To circumvent this issue, an 

alternative strategy is the affine model-based estimation, which derives all strain components, 

such as axial, lateral and shear strains, directly without derivative operations [16-18]. 

Nevertheless, lateral strain estimation is still not reliable using these affine models [19].  

Advanced ultrasound beamforming methods could also improve lateral strain estimation. 

Korukonda and Doyley demonstrated that synthetic aperture imaging enhanced lateral 

displacement estimation with a cross-correlation based method [20, 21]. Coherent plane wave 

compounding (CPWC) beamforming was also proposed to obtain superior lateral strain 

estimation with the model-based Lagrangian speckle model estimator (LSME) [18]. Recently, 

a transverse oscillation (TO) beamforming strategy provided improved lateral displacement 
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estimations for vascular and cardiac applications [17, 22]. In the context of cross-sectional 

NIVE, however, the performance of model-based strain estimators considering advanced 

beamforming, such as CPWC and TO imaging, has not yet been studied. 

Another important challenge for strain estimation is the inherent issue of out-of-plane 

motion. During 2-D ultrasound acquisitions, out-of-plane motions that are perpendicular to the 

imaging scan plane are not considered, consequently they may impact the reliability of NIVE 

because vascular wall motions are three-dimensional (3-D). The magnitude of out-of-plane 

motions is hypothesized to induce strain estimation artifacts due to reduced image correlation. 

Based on simulations, Fekkes et al. [23] demonstrated that a 3-D cross-correlation based strain 

estimator outperformed 2-D methods when large out-of-plane motions were considered. A 

similar conclusion was made by Brusseau et al [24]. In that latter study, a multi-row probe was 

devised to achieve multi-plane acquisitions. A maximum out-of-plane motion of 0.8 mm was 

considered using a breast mimicking phantom and a 3-D search scheme. However, to our 

knowledge, there has been no study on the influence of out-of-plane motions for NIVE using in 

vitro and in vivo clinical dataset. Moreover, an evaluation framework to determine the impact 

of out-of-plane motions on the performance of estimation methods is a necessity for clinical 2-

D NIVE. 

The computation efficiency is another issue that needs to be addressed. Most strain 

estimation algorithms are window-based. Specifically, pre-and post-motion images are divided 

into overlapping windows. Then, cross-correlation [14, 21] or affine [18, 25] estimations are 

performed within each window. To solve the whole motion field, motion parameters of each 

window are estimated successively. However, there is always a trade-off between the window 

size, window overlapping and computation efficiency. Larger windows and overlaps result in 

more accurate motion estimation with higher spatial resolution, but at a cost of a higher 

computation time. Low computation efficiency may limit NIVE for clinical screening and 

characterization of vulnerable plaques. To reduce computation, a global estimation strategy 

could be an option. Some global approaches, such as the Horn-Schunck (HS) optical flow 

algorithm [26], consider all pixels inside a region of interest (ROI) to solve a dense motion field 

globally. Those schemes usually require to optimize iteratively a cost function until convergence 

and may still be computationally intense. Recently, an effort was made to convert an iterative 



 

5 

optimization process into a least squares scheme to obtain analytic solutions of the Doppler 

vector domain [27]. The impact of this idea on improving computation efficiency deserves to 

be investigated for NIVE. 

1.2 Objectives 

The procedure to perform NIVE analysis consists in image formation and image post-

processing steps. Specifically, image formation, also called beamforming, is a process to 

transmit and receive ultrasound echoes and to reconstruct images using reflected signals from 

moving vessels. Thereafter, using a technology of motion tracking, the image post-processing 

allows to compute the motion or strain field of vessel walls from reconstructed images. This 

thesis aims to improve the accuracy of these two aspects of NIVE to facilitate predicting carotid 

plaque vulnerability. 

First of all, regarding image formation, conventional line-by-line focused imaging is the 

technique implemented on most scanners for clinical examination. Emerging imaging 

modalities, such as plane wave imaging, are promising to enhance image quality. Some other 

specific imaging technologies, such as transverse oscillation beamforming, were proven 

efficient for motion tracking due to enriching lateral phase information. This approach may 

thereby improve the performance of ultrasound elastography. Therefore, the first objective of 

this thesis was to introduce these novel imaging approaches into NIVE. The advantages of 

advanced imaging methods coupled with model-based strain estimators are expected to improve 

NIVE performance. 

Secondly, during the acquisition of ultrasound RF signals for image formation, the 

carotid artery is deformed in 3-D. When performing 2-D NIVE, we assume that the carotid 

artery is only moving in a 2-D scan plane. Thus, 2-D NIVE suffers from the influence of out-

of-plane motions. The next objective of this thesis was to investigate the influence of out-of-

plane motions on the performance of 2-D NIVE. This knowledge could give new guidelines for 

the clinical use of NIVE. 

Finally, regarding image post-processing, NIVE algorithms need to estimate strains of 

vessel walls from reconstructed images with the objective of identifying soft and hard tissues. 
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Although a large amount of strain estimation algorithms have been proposed, a strain estimator 

that is able to determine subtle structures inside a carotid artery is still needed. Therefore, the 

third objective of this thesis was to develop a strain estimation algorithm with a high resolution 

as well as a high computation efficiency.   

1.3 Thesis plan 

This thesis consists of eight chapters. Beside the present introduction (Chapter 1) that 

gives the motivation and objectives of this work, Chapter 2 presents the pathophysiology of 

carotid atherosclerosis, including its causes and symptoms. It also introduces diagnosis tools to 

characterize carotid plaques. Chapter 3 presents the basic principles of ultrasound image 

formation and undertakes a literature review of emerging ultrasound imaging modalities, 

whereas Chapter 4 provides a state of the art introduction to ultrasound elastography and, 

especially, details of approaches used for NIVE. Chapter 5 consists in the first article of this 

thesis, which applied plane wave and transverse oscillation beamforming into the image 

formation to evaluate NIVE performance with two strain estimation algorithms. Chapter 6 is 

the second article of this thesis, which established a framework for evaluating out-of-plane 

motions and discussed the influence of such artifact motions on NIVE performance. Chapter 7 

includes the third article of this thesis, which aims to fulfill our third objective. A strain 

estimation algorithm based on a sparse model is proposed to reconstruct a dense strain field with 

pixel-wise resolution as well as a high computation efficiency. Finally, Chapter 8 discusses 

originalities and limitations of my doctoral works, concludes the whole three projects and gives 

future perspectives. 
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Chapter 2 : Atherosclerosis 

2.1 Atherosclerosis pathogenesis 

Atherosclerosis is a vascular disease that affects artery walls (by thickening) and lumens 

(by plaque formation). Before introducing the method of diagnosis and the characterization of 

the vulnerability of the plaque, it is worthwhile to better understand its pathogenesis. 

A healthy artery wall consists of three layers: tunica intima, tunica media and tunica 

adventitia, as shown in figure 2.1(A). The tunica intima, commonly called the intima, is the 

innermost layer, mainly made up of a single layer of endothelial cells. It is a permeable barrier 

that performs the exchange between the blood and the artery wall. The tunica media is the 

middle layer and normally the thickest part of the artery wall. Smooth muscle cells, its primary 

component, regulate dilation and compression of the artery. The outermost layer, the tunica 

adventitia, consists of collagenous and elastic fibers. This layer helps the artery to attach with 

surrounding tissues.   

The exact mechanism of the pathogenesis of atherosclerosis is still not clearly 

understood. However, a widely acceptable theory on the cause of atherosclerosis is a response 

to an injury, as shown in figure 2.1(A). This theory claims that atherosclerosis is initiated by 

subtle physical devastation of endothelial cells due to some risk factors (e.g., hypertension, 

diabetes, infections, etc...). This injury process provokes an inflammatory response as 

monocytes adhere to the damaged endothelial layer and then entered beneath, which induces 

thickening of the intima. As proliferation of low-density lipoproteins (LDL) goes on at the site 

of the injury, monocytes would differentiate into macrophages and start to ingest LDL, which 

would induce intimal thickening. The macrophages containing LDL, also referred to as foam 

cells, are the main part of the fatty streak, as shown in figure 2.1(B). These fatty streaks are 

asymptomatic and consist in the precursor stage of atherosclerosis. Over time, foam cells die 

and lipids gradually accumulate into the endothelial layer. This could cause the formation of a 

fibrous plaque with a lipid-rich necrotic core and an overlying collagen cap.  
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Figure 2.1 Atherosclerosis pathogenesis. Damaged endothelium (A). Fatty streak 

formation (B). Adapted and modified from [28]. 

2.2 Atherosclerosis progression 

The atherosclerotic disease is progressive; it can start in the childhood and progress 

silently through the elderly. Its pathologic features include three stages corresponding to early, 

intermediate and advanced lesions defined by the American Heart Association (AHA) [29]. A 

summary of atherosclerosis progression phases is shown in figure 2.2, in which 6 types of 

lesions are classified. Initial lesions (type I) and fatty streak lesions (type II) are early lesions, 

where intimal thickening and intracellular lipid accumulation happen. Type III lesions 

correspond to an intermediate stage, as shown in figure 2.3(c), where some small pools of 

extracellular lipid appear in this stage. Type IV lesions (atheroma) represent the first phase of 

advanced lesions. It arises from the formation of lipid cores as more lipids accumulate (figure 

2.3(d)). Type V lesions, referred to as fibroatheroma (figure 2.3(e)), are different from type IV 

lesions, as a fibrous cap covering a lipid core is formed. The fibrous cap is made of smooth 

muscle cells and infiltrated by varying amounts of macrophages and lymphocytes [30]. Type VI 

lesions could be described as the disruption state of type IV and V lesions surface [30]. They 

not only have the morphology of type IV or V lesions, but they also present surface fissures 

and/or hemorrhage/hematoma of lesions and/or thrombi (figure 2.3(f)).  
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Figure 2.2 AHA classification of atherosclerotic lesions. Flow chart in the second column 

presents the progression of atherosclerotic lesions. Roman numbers indicate lesion types 

which are described in the first column. The loop between types V and VI clarifies how 

lesions are enlarged when thrombi deposit on their surfaces repeatedly. Adapted from 

[29]. 

2.3 High-risk plaque description 

Thrombosis accompanying plaque rupture is one of the major cause of ischemic stroke 

in patients with carotid artery atherosclerosis [31]. It is shown that the risk of stroke is annually 

less than 1% when asymptomatic patients have a stenosis less than 75%, while the risk is 

increased to 2% - 5% for those with one higher than 75% [32, 33]. For symptomatic patients 

with severe stenosis (≥ 70%) who suffered from transient ischaemic attacks previously, the risk 

rises up to 10% for the first year and goes much higher to 30%-35% in the next five years [33, 

34].  
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Figure 2.3 Diagram of cross-sectional morphology of AHA lesion classification. Adapted 

and modified from [29].  

However, the risk of lesion rupture is not only associated with the size of the lesion, but 

also with its morphology [35, 36]. A typical morphology of a lesion with a high risk of rupture, 

also named a vulnerable plaque, is presented in figure 2.4. A vulnerable plaque is characterized 

by a thin fibrous cap and a large lipid-rich necrotic core (LRNC). The overlying thin fibrous cap 

is infiltrated by macrophages with few or absence of smooth muscle cells [37]. The thicknesses 

of the thin fibrous cap of vulnerable carotid plaques vary from 80 𝜇𝑚 – 460 𝜇𝑚 depending on 

different measurement modalities, including optical coherence tomography (OCT) [38], 

sonography [39] and post-mortem histopathology [40]. Fissures and ruptures on the thin cap 

would lead to total disruption of the fibrous cap [35], exposing then the lumen to thrombogenic 

substances underlying the lipid core [35].  

Another main ingredient of a vulnerable plaque is the LRNC that is considered as soft 

tissues. A large LRNC was identified as a strong predictor of vulnerable plaque fissures [41]. A 

prevalence study proved that a plaque without intraplaque hemorrhage (IPH) where the LRNC 
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accounts for more than 40% of the plaque area can be considered as a high-risk lesion [42]. 

Moreover, in a small clinical trial of 37 patients with carotid stenosis larger than 70%, patients 

with a LRNC were more often symptomatic than asymptomatic [43].        

Intraplaque hemorrhage (IPH) is commonly seen in advanced lesions and it is associated 

with carotid plaque progression [44, 45]. It arises from the disruption of microvessels which 

could be introplaque neovasculars that stem from tunica adventitia. There is evidence to prove 

that repeated IPH is contributing to the LRNC expansion [46]. In [47], it was reported that the 

incidence of IPH in symptomatic patients was 84%, which is much higher than the occurrence 

of 56% in asymptomatic patients. 

 

Figure 2.4 Micrograph of a carotid plaque from an asymptomatic patient. A large lipid 

core and a thin fibrous cap are presented. Adapted from [31]. 

2.4 Imaging modalities 

There is a strong clinical interest in imaging plaques and assessing its vulnerability, 

particularly for asymptomatic patients. Identifying the content of the plaque would help to predict 

its rupture, determine the treatment and prevent stroke. For symptomatic patients who are taking 

medications, imaging follow-up of plaques is necessary to evaluate treatments and monitor the 

evolution of lesions. This section gives a brief review of imaging modalities of carotid plaques. 

Firstly, some invasive technologies, such as angiography, intravascular ultrasound and optical 

coherence tomography, are introduced. Then, B-mode ultrasound, Doppler ultrasound, CT and 
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MRI, which are noninvasive imaging modalities, are reviewed briefly. Finally, other recent and 

novel imaging methods are discussed. 

2.4.1 Angiography 

Digital subtraction angiography (DSA) is a reference standard to assess stenosis severity 

of an artery. During the intervention, a contrast medium is injected through a catheter that allows 

to see the vessel architecture. The pre-contrast and post-contrast X-ray images are subtracted to 

highlight opacified lumens. Then, DSA enables to observe and measure accurately the lumen 

stenosis. However, it does not allow to see plaque components. Moreover, it is invasive and has 

ionizing radiation, which could induce some complications, such as stroke when the catheter 

detaches a portion of the plaque unintentionally. In addition, it not suitable to patients who are 

allergic to iodic-based contrast agents. An example of DSA of a carotid artery is shown in figure 

2.5.  

 

Figure 2.5 DSA image of a carotid internal artery with a severe stenosis. Adapted and 

modified from [48]. 

2.4.2 Intravascular ultrasound (IVUS) 

IVUS is an invasive imaging technology using a catheter with an ultrasound transducer 

to give a cross-sectional visualization of a plaque. Like ultrasound B-mode imaging, IVUS is 

able to provide anatomical information, such as lumen stenosis, eccentric patterns, echolucent 

lesions, and to a lesser extent information on plaque composition, such as calcification [49]. 
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Conventional IVUS with 20 to 40 MHz transducers provides axial resolution of 70 – 200 𝜇𝑚, 

lateral resolution of 200 – 400 𝜇𝑚 and an imaging depth of 5 – 10 mm [50-52]. One limitation 

of IVUS is that its resolution is insufficient to distinguish the thin fibrous cap whose thickness 

is usually less than 65 𝜇𝑚. Better axial resolution with 40 𝜇𝑚 can be achieved with a 60 MHz 

transducer (Kodama, ACIST Medical Systems), while imaging depth was reduced accordingly. 

Recently, higher frequency IVUS transducers operating at 90 – 150 MHz have been developed 

to counter this problem [52]. The axial resolution can reach 50 𝜇𝑚 and below. However, clinical 

studies are still needed to validate these new technologies. Figure 2.6 shows an IVUS image of 

a carotid artery with a plaque. 

 

Figure 2.6 An IVUS image of an internal carotid artery acquired by a 30 MHz transducer. 

A hyperechoic region (open arrow) suggests a calcification. Hypoechoic plaque is seen at 

the shoulder of the lesion (short arrows). Adapted and modified from [53]. 

2.4.3 Optical coherence tomography (OCT) 

OCT is a high resolution imaging method whose axial resolution is 4 – 20 𝜇𝑚. Its 

principle is like ultrasound imaging and allows to measure echo time delay and intensity of light 

scatterers. However, light velocity is much higher than sound speed. One uses low-coherence 

interferometry to measure the echo time delay indirectly because of such a high speed. The 

intensity of the backscattered light is recorded to produce a two-dimensional (2-D) image of 

optical scattering. Due to the superior spatial resolution, OCT is advantageous to measure the 
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thickness of a thin fibrous cap for vulnerable plaque characterization. However, the imaging 

depth of OCT is limited (2 – 3 mm) due to the limited penetration of light. Another promising 

finding is that OCT is able to identify macrophages in fibrous caps (figure 2.7), which suggests 

that it could be useful to characterize different features of vulnerable plaques [54].  

 

Figure 2.7 Raw (A), logarithm (B) OCT and histology (C) images of a fibroatheroma with 

less macrophages in the fibrous cap. Raw (D), logarithm (E) OCT and histology (F) 

images of a fibroatheroma with more macrophages in the fibrous cap. Adapted from [54]. 

2.4.4 Noninvasive vascular ultrasound 

Noninvasive vascular ultrasound and more specifically, B-mode ultrasound, allows the 

evaluation of superficial arteries. For carotid plaque imaging, it permits to identify plaque 

morphology including size, texture and echogenicity in real time. In addition, it provides the 

measurement of the intima-media thickness, which is recognized as a marker of early 

atherosclerosis [55]. It is also sensitive to plaque calcification detected by the hyper-

echogenicity from calcification spots. However, B-mode ultrasound only presents the 

morphology of a plaque in terms of echo brightness, which may not be sufficient to distinguish 

plaque components and tell us about its vulnerability. 

2.4.5 Doppler ultrasound 

Color Doppler is a noninvasive imaging method to assess the stenosis degree although 

its spatial resolution is less than DSA. In addition, Doppler provides blood flow velocity, which 

is a diagnosis indicator of stenosis degrees, but its measurement is affected by imaging angles, 

inter-observer discrepancy and shadow artifact due to calcification [35]. The peak systolic 
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velocity (PSV) is recommended for the diagnosis of carotid stenosis. Specifically, a 50%-69% 

stenosis of the internal carotid artery (ICA) is identified when PSV is 125-230 cm/sec [7]. When 

the PSV is more than 230 cm/sec, the stenosis is viewed as being more than 70% [7]. Coupling 

ultrasound B-mode and Doppler imaging, the carotid duplex imaging mode is a first-line 

examination for carotid atherosclerosis. A carotid duplex image showing a plaque in the ICA is 

presented in figure 2.8.    

 

Figure 2.8 An echolucent plaque indicated by the yellow arrow causing 70% stenosis. 

ECA = external carotid artery, ICA = internal carotid artery, CCA = common carotid 

artery, STA = superficial temporal artery.  Adapted from [56]. 

2.4.6 Computed tomography (CT) 

A CT scan provides slice data according to Hounsfield unit (HU) values as different 

tissue presents varied X-ray attenuation. Calcifications with higher HU values are prone to be 

identified during a CT scan, which overcome shadow artifacts of large calcifications for B-mode 

imaging. The spatial resolution of CT scan is on the sub-millimeter range, which suggests the 

possibility to differentiate plaque components, such as fatty, mixed and calcified tissues [57] 

whose HU values are respectively less than 60 HU, between 60 and 130 HU and larger than 130 

HU [58]. Figure 2.9 shows a plaque component analysis using CT scan. In addition, it was 

reported in [59] that there is high positive relationship between plaque lipid volume and the 

presence of ulceration. Thanks to slice scan imaging and developed software toolkit for image 

reconstruction, CT can obtain total volume of plaques and volume of subcomponents of plaques 

according to HU thresholds. CT imaging mainly has two limitations. Firstly, CT plaque imaging 
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is irradiative. Secondly, although CT plaque imaging has high imaging contrast for 

calcifications, the imaging contrast of fatty tissues is limited.   

 

Figure 2.9 Plaque component analysis of a 75-year-old man with a transient ischemic 

attack using CT image reconstruction software. Volume-rendered image where the carotid 

artery is traced (A). Reconstruction post-processed image (B). Plaque cross-sectional 

identification positioned in (B), as indicated by white arrows (C), (D) and (E), where the 

lumen is indicated by a red contour, the lipid component by the red color, mixed tissues 

in green and calcium in blue. Adapted from [57]. 

2.4.7 Magnetic resonance imaging (MRI) 

MRI is a non-invasive and nonradioactive imaging method, which allows to identify not 

only the stenosis degree, but also to evaluate plaque components. One superior advantage of 

MRI over other imaging modalities is its ability to detect the presence of IPH. A hemorrhagic 

plaque presents a higher intensity in T1-weighted MRI. To detect LRNC and the fibrous cap of 

a vulnerable plaque, contrast-enhanced T1-wighted MRI was introduced [60]; it requires using 

a contrast agent and dedicated carotid coils. One case showing a LRNC and a fibrous cap with 

a 1.5-Tesla scanner is presented in figure 2.10. Although MRI is currently considered the best 

modality to characterize a vulnerable carotid plaque, there are some limitations. One important 

limitation is the side effect of contrast agents, which makes patients with a decreased renal 

function ineligible. The other limitation is that the scan time is time-consuming due to complex 

procedures, which also leads to a high cost and less equipment availability. 
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Figure 2.10 Pre-contrast T1-weighted image (A), post-contrast T1-weighted images (B, 

C). Histological image (D) indicating the fibrous cap by the green contour and LRNC by 

the yellow contour. Micrographs regarding regions in (D) that are showing a strong 

contrast enhancement (E, F). Adapted from [60]. 

2.4.8 Other novel imaging modalities 

Contrast-enhanced ultrasound (CEUS) is an imaging technique for visualizing vessels 

using micro bubbles. Flowing micro bubbles inside vessels resonate when they are exposed to 

acoustic waves, which leads to ultrasound signal enhancement. The enhanced regions not only 

help better identifying the vascular lumen, but also provide a visualization of intra-plaque 

neovascularization, which is associated with plaque growth [61-63]. However, more clinical 

validations are needed for reproducibility and clinical utility of the approach [57, 64]. 

Positron emission tomography (PET) and single photon emission computed tomography 

(SPECT) are nuclear functional imaging techniques that monitor metabolic disorders. The most 

common application of PET/SPECT into assessing atherosclerotic plaques is to quantify plaque 

inflammation using a radiotracer based on 18F-fluorodeoxyglucose (FDG). Accumulated 

macrophages within an inflammatory region of an atherosclerotic plaque would metabolize 

FDG, which makes uptake of FDG be an indicator of plaque inflammation. One limitation of 
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PET/SPECT with FDG is their low spatial resolution (4 – 5 mm for PET and 1 – 1.6 cm for 

SPECT) [49, 65, 66]. The other is its radiation and high cost.   

Near-infrared fluorescence (NIRF) imaging is a molecular imaging technique without 

radiation. Fluorescent contrast agents, such as fluorophores, are excited by near-infrared 

wavelengths (700-900 nm). When the excited state of fluorophores is relaxed to a low energetic 

state, the generated fluorescence light is acquired to reconstruct 2-D images. A recent study 

found that proteolytic enzymes might be associated with fibrosis cap erosion promoting plaque 

rupture [67]. Using gelatinase-activated or cathepsin-B-sensitive probes, NIRF is able to 

identify the proteolytic activity of a vulnerable plaque [67-69]. However, NIRF is now used 

only in animal or pre-clinical studies. Performing a large study validation with patients is 

needed. 

Non-invasive ultrasound elastography has been proposed to characterize plaques of 

carotid arteries. It captures deformations of vascular walls induced by the blood pressure pulse 

using motion estimation algorithms, from which the estimated strains allow to differentiate a 

soft LRNC (large strain) and hard calcification spots (small strains). An example of non-

invasive ultrasound elastogram is shown in figure 2.11. 

 

Figure 2.11 Shear strain elastogram of a plaque with 60% stenosis of internal carotid artery 

in a cross-sectional view. Adapted from [70].  



 

19 

2.5 Summary 

Atherosclerosis is a complex vascular disease. It could begin in childhood without 

symptoms and develop silently until the first cardiovascular event in the elderly. Despite many 

imaging modalities being available for research and clinical use (see Table 2-1), the early 

diagnosis of atherosclerosis, especially for vulnerable plaques, is still challenging. 

Table 2-1 Comparison of imaging modalities 

Imaging modalities Diagnosis criteria Limitations 

Angiography Lumen stenosis Ionizing radiation, invasive 

IVUS Anatomical information 

and calcification 

Invasive 

OCT Fibrous cap Low penetration depth (2 – 3 mm) 

Ultrasound Plaque morphology and 

calcification 

Insufficient to detect other plaque 

components 

Doppler Lumen stenosis Insufficient to detect other plaque 

components 

CT Calcification and plaque 

volumn 

Ionizing radiation 

MRI Lipid core and intraplaque 

hemorrhage 

Injection of contrast agents, time-

consuming and expensive 

CEUS Neovascularization Injection of micro bubbles 

PET/SPECT Plaque inflammation Low resolution, radiation and 

expensive 

NIRF Fibrous cap 

 

Injection of Fluorescent contrast 

agents 

Elastography Lipid core and 

calcification 

Low resolution and computation 

time 

Although MRI is currently considered as the reference modality to characterize a 

vulnerable carotid plaque, it is not feasible for early screening of asymptomatic peoples and 

clinical routine diagnosis of symptomatic patients due to its high cost, long acquisition time and 
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less equipment availability. For follow-up of patients with atherosclerosis during treatments, 

invasive and/or ionizing radiative imaging modalities, such as IVUS, CT, angiography, are also 

better to be avoided. 

Ultrasound is a safe (non-invasive, nonradioactive) and real time imaging method for 

assessment of biological tissues. It is of value, especially noninvasive vascular ultrasound, for 

early screening and diagnosis of atherosclerosis due to its low cost and high clinical availability. 

Despite the fact that current non-invasive vascular ultrasound does not have the same tissue 

sensitivity as MRI for vulnerable plaque characterization, non-invasive ultrasound elastography 

would be a competitive way to characterize components of vulnerable plaques, such as LRNC, 

by measuring biomechanical properties. Therefore, this thesis is focusing on vulnerable carotid 

plaque characterization using non-invasive ultrasound elastography. 

In the following two chapters of this thesis, physical principles of medical ultrasound 

imaging as well as a literature review on imaging beamforming methods are presented in 

Chapter 3. Chapter 4 introduces fundamental principles of quasi-static elastography and present 

a literature review on non-invasive vascular ultrasound elastography.  
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Chapter 3 : Medical ultrasound imaging 

3.1 Principles of ultrasound image formation 

The pulse-echo technique is the basis of ultrasound imaging. Specifically, an electrical 

pulse is converted into ultrasound waves by an ultrasonic transducer. Then, echoes from tissue 

reflection and scattering are collected by the same transducer and post-processed into a display 

format. Different post-processing techniques are used, either based on echo intensities or 

frequencies. Final display formats are classified into gray-scale and Doppler imaging modes. 

Doppler imaging is mostly used to measure the velocity of blood flow.  

3.1.1 Gray-scale imaging modes 

When ultrasonic waves travel in a homogeneous medium, they will continue propagating 

in the same direction without energy loss. When ultrasonic waves come across the interface of 

two different tissues, propagation of ultrasonic waves depends of the tissues’ acoustic 

impedance Z = ρ × c, where ρ is the tissue density and c is the speed of sound. In fact, the 

ultrasonic waves will be reflected in part at the interface and the rest will be transmitted into the 

next tissue. The amount of reflection is determined by reflection coefficient R: 

𝑅 =
(𝑍1−𝑍2)2

(𝑍1+𝑍2)2
,     (3.1) 

where Z1 and Z2 are acoustic impedances of the two tissues respectively. The larger the 

difference of acoustic impedances of two tissues, the larger the amplitudes of echoes by 

reflection will be. Normally, the differences in acoustic impedance of soft tissues are not 

significantly large, which ensures the amount of reflected energy from a tissue interface is small, 

allowing ultrasound to carry more energy through the next tissue. Finally, the echoes from the 

tissues inside an insonification area are acquired by an ultrasound transducer to form an image. 

When an ultrasonic wave is transmitted by a transducer, the echoes are received and 

converted into radiofrequency (RF) signals by the piezoelectric effect of the same transducer. 

RF signals can be displayed in different modes (see figure 3.1). Amplitude mode (A-mode) is 

to display echo envelop amplitudes from different tissue interfaces as a function of receiving 
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time. One axis shows amplitude information. The amplitude spikes represent the amplitudes of 

echoes by reflection. The other axis displays imaging depth information. Brightness mode (B-

mode) is an alternative way that displays echoes. Each amplitude of echo in A-mode is 

modulated into image intensity of a pixel in a gray level image where the pixel brightness is 

proportional to the amplitude of echo. When ultrasonic waves are transmitted by several 

elements, the received A-mode scan lines are combined and converted into brightness spots in 

B-mode imaging. Sweeping the region of interest of a tissue using several transmissions, a 2-D 

B-mode image is formed, whose lateral and axial directions represent the 2-D tissue dimension, 

respectively. Motion mode (M-mode) is to track motions of a certain position along time. One 

axis displays time information. The other axis shows amplitudes or brightness variance in terms 

of time. As shown in M-mode imaging, a static object displays a straight line, while a moving 

object shows a profile of oscillations.  

 

Figure 3.1 Gray-scale imaging modes. Display examples of A-mode, B-mode and M-

mode with respect to static and moving objects.  

Both B-mode and M-mode are able to track tissue motions. An advantage of B-mode is 

that it can show a 2-D view of tissues. Current ultrasound elastography techniques are mainly 

based on 2-D ultrasound images, which are detailed in the next section. 

3.1.2 Line-by-line focused imaging 

Line-by-line focused imaging is the most widely used approach in modern ultrasound 

scanning systems (see figure 3.2). To form a 2-D image, a combination of elements of a 
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transducer transmits a focused ultrasound beam into an imaged area. Then, the echoes are 

received by the same transducer to build a scan line in the reconstructed image. By sweeping 

ultrasound beams across the imaged area sequentially, a full image delineating tissues within 

the imaged area is reconstructed. 

 

Figure 3.2 An image formation process using line-by-line focused imaging. The number 

of scan lines for one image is typically 256. Adapted from [71]. 

The reconstruction time of one image using line-by-line focused imaging depends on the 

number of scan lines and the imaging depth. For a given maximum imaging depth, 𝐷𝑑𝑒𝑝𝑡ℎ, the 

travelling time of an ultrasonic wave for one scan line is  

   𝑡𝑙𝑖𝑛𝑒 =
2𝐷𝑑𝑒𝑝𝑡ℎ

𝑐
, (3.2) 

where 𝑐 is the speed of ultrasound in soft tissues, which is assumed to be constant at 1540 m/s. 

Multiplying by 2 is to consider the round trip of ultrasonic wave travelling. If we want to build 

an image with 256 scan lines for an imaging depth of 5 cm, the construction time is 256 × 𝑡𝑙𝑖𝑛𝑒, 
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which is about 16.6 ms. Under this condition, the frame rate is about 60 Hz, which allows real 

time imaging.  

 

Figure 3.3 A diagram of delay and sum beamforming for transmitting (a) and receiving 

(b) phases using a linear transducer whose five elements are excited. The limited number 

of elements considered is just for the purpose of display. 

3.1.3 Standard ultrasound beamforming 

During transmitting and receiving of ultrasound signals, the generation and control of 

the ultrasound beam are called beamforming. A standard ultrasound beamforming technique is 

the delay and sum (DAS) approach (see figure 3.3). In transmitting, the amplitudes of pulses 

across transducer elements are controlled by applying a weight function, which is also referred 

as an apodization function. Then, weighted pulses are delayed to allow for compensation of 

travelling times between transducer elements and the focal point. Finally, weighted and delayed 

pulses are transmitted to form a focused beam. In receiving, transducer elements in turn collect 

received echoes, which are called raw channel data. To perform focusing in a certain region, 
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received echoes are accordingly delayed. Then, weighted echoes are summed to form a RF 

signal.      

3.1.4 Beam manipulations 

Ultrasound beam shapes can be altered by manipulating arriving time and amplitude of 

the pulse of individual elements in a transducer. For example, to steer a beam with an angle, a 

linear sequence of delays associated with the steering angle is applied into active transducer 

elements (see figure 3.4(a)). Using a linear transducer, beam steering allows to form images at 

different angles without moving the transducer. By compounding these images, image quality 

can be improved. 

At a given depth, ultrasound beams can be focused on transmitting using a symmetric 

and spherical sequences of delays if the beam is perpendicular to the transducer surface (see 

figure 3.4(b)). In modern line-by-line focused imaging scanners, focal depths and numbers of 

focal points on transmitting are flexible and can be determined by users. More focal points 

provide better image quality but at the expense of a lower frame rate. A common way is multi-

focal imaging where several beamformed RF signals with different focal depths are combined 

into one scan line. In addition, beam steering and focusing can also be performed simultaneously 

to make focused beams directional (see figure 3.4(c)), where delays depend on travelling times 

of ultrasound from transducer elements to the focal point. Other than transmitting focusing, 

dynamic receiving focusing can also be achieved at each depth using received echoes. It is more 

flexible than transmitting focusing as received echoes can be stored; delays can then be applied 

according to desired focussing depths without sacrificing the frame rate. 

Ultrasound signals on some active transducer elements have to be attenuated to suppress 

side lobes of ultrasound beams in transmitting or receiving. This selective manipulation can be 

done by apodization (see figure 3.4(d) and (e)). Usually, some window functions, such as 

Gaussian or hamming function, are applied to excite the innermost elements using more powers.  
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Figure 3.4 Beam shapes generated by a linear transducer with six active elements using 

unfocused beam steering (a), focusing without beam steering (b), focusing with beam 

steering (c), no apodization (d) and apodization (e). 

3.1.5 Resolutions 

Spatial resolution of an ultrasound imaging system corresponds to the smallest distance 

necessary between two targets to produce separate echoes. The axial resolution is equal to the 

half of the pulse wavelength. Higher transmitted frequency thus means a better axial resolution. 

Lateral resolution at a focal point is determined by the width of the ultrasound beam. For line-

by-line focused imaging, the beam width is proportional to the transmitted frequency and F-

number, which is defined as the ratio between the dimension of the active transducer aperture 

and focal depth. The elevational resolution is the slice thickness of a 2-D imaging plane. For a 

linear transducer, the elevational resolution is associated with the element height, focal depth 

and transmitted pulse wavelength. 

It is necessary to consider temporal resolution when imaging moving targets. The 

temporal resolution is related to the time interval of transmitted pulses and the way to construct 

an image. The minimum time interval, which is the reciprocal of the pulse repetition frequency, 

ensures the echo from preceding pulse does not overlap with the echo of the following pulse. 

For an example of line-by-line focused imaging (see figure 3.2), the temporal resolution would 

be lower if we would construct an image with more scan lines as more pulse transmissions 

would be needed. 
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3.2 Advanced beamforming approaches 

Conventional line-by-line focused imaging limits the accuracy of NIVE. One factor is 

that focused imaging provides relatively low temporal resolution of around 30-100 frames per 

second as it builds images sequentially [18]. The low frame rate can result in a large motion 

between two consecutive frames, thus requiring additional efforts to deal with these large 

displacements. Moreover, the lower frame rate can cause larger inter-frame out-of-plane 

motions, which increase image decorrelation thereby inducing inaccurate estimations with 

NIVE. The other factors are the limited lateral resolution of focused imaging, and the absence 

of phase information for speckle tracking in that direction. Thus, the lateral estimation of NIVE 

is not as reliable as for the axial estimation. To obtain more accurate motion estimation, some 

advanced beamforming approaches have been introduced into NIVE. In this section, we firstly 

introduce some ultrafast imaging techniques using unfocused transmission strategies to enhance 

the imaging frame rate. Then, some beamforming techniques trying to increase lateral resolution 

of images are also presented. Some of them also aim providing lateral phase information. Please 

note that only advanced beamforming approaches applied into the framework of ultrasound 

elastography are described in this section. Some other advanced beamforming approaches can 

be found in [72-76].     

3.2.1 Synthetic aperture imaging 

Synthetic aperture imaging, as depicted in figure 3.5, uses a succession of single-element 

transmissions to construct a low resolution image using echoes received by all elements. Then, 

these low resolution images are combined into a high resolution image. 
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Figure 3.5 Principle of synthetic aperture imaging. In transmitting, each element sends a 

spherical wave sequentially spreading throughout the entire scan plane. In receiving, all 

elements of a transducer acquire echoes. For each transmitting and receiving event, 

channel data are reconstructed into a low resolution image using DAS approach. Finally, 

all low resolution images are summed into a high resolution image. 

Using raw channel data from each transmission, receiving focusing can be implemented 

at each imaging point through DAS beamforming by considering round trip times from 

transmitting elements to the point target and back to receiving elements. To perform transmitting 

focusing, channel data from multiple unfocused single-element transmissions are summed 

coherently into a final beamformed signal. The final beamformed signal 𝑠(𝑥, 𝑧) at position of 

(𝑥, 𝑧) can be written mathematically as 

   𝑠(𝑥, 𝑧) = ∑ ∑ 𝑊𝑖𝑗𝑅𝐹𝑖𝑗(𝜏𝑇𝑋,𝑅𝑋)
𝑀𝑅𝑋
𝑗=1

𝑁𝑇𝑋
𝑖=1 , (3.3) 

  𝜏𝑇𝑋,𝑅𝑋 = (√𝑧2 + (𝑥 − 𝑥𝑖)2 + √𝑧2 + (𝑥 − 𝑥𝑗)
2
) 𝑐⁄ , (3.4) 

where 𝑁𝑇𝑋 and 𝑀𝑅𝑋 are the numbers of active elements used in transmitting and receiving 

modes, respectively; 𝑅𝐹𝑖𝑗 is the RF signals received by the 𝑗𝑡ℎ element from the 𝑖𝑡ℎ element 

transmission; 𝑊𝑖𝑗 corresponds to the apodization function; and 𝜏𝑇𝑋,𝑅𝑋 is the applied time delay 
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which accounts for the wave transmitted from the 𝑖𝑡ℎ element position, 𝑥𝑖, to the point target 

and back to the 𝑗𝑡ℎ element position, 𝑥𝑗. In a word, dynamic focusing in transmitting and 

receiving enables synthetic aperture imaging to have a good resolution.  

Another advantage of synthetic aperture imaging is its high frame rate as one full image 

is formed in one transmission. In comparison, with line-by-line focused imaging, only one scan 

line is formed in one transmission. Another similar technique, sparse synthetic aperture imaging 

that uses limited active elements instead of all elements can achieve a higher frame rate (e.g., 

1000 frames per second) [77]. 

3.2.2 Plane wave imaging 

Another alternative for ultrafast imaging is plane wave imaging, which generates a plane 

wavefront by activating all transducer elements instead of only firing one element at a time. 

Each transmission of unfocused plane waves allows to construct one image. Theoretically, the 

frame rate is equivalent to the pulse repetition frequency and can reach up to 20 kHz. To obtain 

better image quality than single plane wave imaging, Montaldo et al. [78] proposed coherent 

plane wave compounding (CPWC) imaging, where low resolution images using several plane 

waves with tilted angles are coherently summed to form a high resolution image. As shown in 

figure 3.6, several tilting plane waves are transmitted using all transducer elements activated by 

a vector of linear delays, 𝜏𝜃, which are defined as  

  𝜏𝜃 = 𝑁𝑑𝑝𝑖𝑡𝑐ℎ𝑠𝑖𝑛𝜃 𝑐⁄ , (3.5) 

where 𝑁 is the number of transducer elements, 𝑑𝑝𝑖𝑡𝑐ℎ is the pitch that is the distance between 

adjacent transducer elements, and 𝜃 is the steering angle. Then, acquired echoes using the same 

elements are beamformed using the DAS method and coherently summed considering 

transmitting angles as 

   𝑠(𝑥, 𝑧) = ∑ ∑ 𝑊𝑗𝑅𝐹𝑖(𝜏𝑇𝑋,𝑅𝑋)
𝑀𝑅𝑋
𝑗=1

𝑁𝑇𝑋
𝑖=1 , (3.6) 

  𝜏𝑇𝑋,𝑅𝑋 = (𝑥𝑐𝑜𝑠𝜃𝑖 + 𝑧𝑠𝑖𝑛𝜃𝑖 + √𝑧2 + (𝑥 − 𝑥𝑗)
2
) 𝑐⁄ , (3.7) 

where 𝑁𝑇𝑋 and 𝑀𝑅𝑋 are the numbers of active elements used in transmitting and receiving 

modes, respectively; 𝑅𝐹𝑗 is the RF echo received by the 𝑗𝑡ℎ element; 𝑊𝑗 represents the receiving 
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apodization function; 𝜏𝑇𝑋,𝑅𝑋 is the applied time delay, which accounts for the wave transmitted 

at the angle 𝜃𝑖, to the point target and back to the 𝑗𝑡ℎ element position, 𝑥𝑗. CPCW imaging can 

achieve the same image quality as multi-focal images using line-by-line focused imaging while 

keeping the frame rate ten times higher [78].  

 

Figure 3.6 Principle of coherent plane wave imaging. In transmission, several tilting plane 

waves are generated using all transducer elements activated by linear delays. In receiving, 

all transducer elements acquire echoes. For each transmission and receiving event, 

channel data are beamformed into a low resolution image. Finally, all low resolution 

images at different tilting angles are coherently summed into a high resolution image. 
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3.2.3 Transverse oscillation beamforming 

The anisotropy of speckle patterns of an ultrasound image due to the limited lateral 

resolution deteriorates lateral strain estimations. Transverse oscillation (TO) beamforming is a 

technique to produce a lateral beam profile that is as close as possible to the axial beam profile. 

As shown in figure 3.7, there are more oscillations in the lateral beam profile when using TO 

beamforming, which could allow a better performance of lateral motion tracking similar to the 

one in the axial direction. TO beamforming was originally proposed to modulate the lateral 

beam so as to estimate 2-D velocity vectors of blood flow [79, 80]. Afterwards, it was applied 

in elastography to generate TO images that were used to obtain for more accurate lateral 

displacement estimates [81]. Recently, TO beamforming was coupled with plane wave imaging 

to characterize in vivo flow velocity [82] and pulse wave velocity of an arterial wall [22]. 

 

Figure 3.7 Beamformed images and corresponding frequency spectra using standard and 

TO beamforming, respectively. Lateral and axial beam profiles indicated by blue and 

green lines are shown, respectively.  
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There are two ways to generate TO images. The first one is to use the DAS method with 

specific apodization functions. It differs from conventional apodization functions used for the 

DAS method as it is a two Gaussian peaks apodization function. Moreover, the distance between 

the two peaks should be changed with increasing imaging depth. The final TO image is 

generated by weighting and summing beamformed RF signals using the predefined apodization 

functions. An alternative way to generate TO images is by the TO filtering method, which is 

performed on the spectrum of beamformed data. A filter mask is multiplied with the spectrum 

of the beamformed RF image, which features the spectrum of a TO image as four sub-regions 

(see figure 3.7). Then, a TO image is recovered by an inverse Fourier transform. 

3.3 Summary 

Line-by-line focused imaging provides a low frame rate. Moreover, there is a trade-off 

among the number of transmitting focused points, frame rate and image resolutions. Ultrafast 

imaging techniques have been developed to achieve dynamic transmitting and receiving 

focusing to maximize spatial resolution while keeping a high frame rate, which could improve 

the performance of NIVE. 

Korukonda and Doyley showed that the high lateral resolution of synthetic aperture 

imaging improved lateral NIVE estimations [20, 21]. However, single-element transmission 

with synthetic aperture imaging induces less transmitted energy, which decreases the 

penetration depth and signal-to-noise ratio (SNR) of beamformed images. Plane wave imaging 

avoids this limitation through using all elements to transmit a plane wave. To produce high 

quality images at an ultrafast frame rate, CPWC imaging was proposed and subsequently 

introduced into NIVE. Poree et al. [18] verified that CPWC imaging helps obtaining more 

accurate NIVE strain estimations than using line-by-line focused imaging. Even so, lateral 

NIVE estimations are still challenging due to limited phase or speckle information existing in 

the lateral direction of images. TO beamforming allows to introduce lateral oscillations to help 

tracking lateral motions. Thus, an ultrafast TO imaging coupling CPWC imaging with TO 

beamforming could be beneficial for strain estimations with NIVE, which is detailed in Chapter 

5. In the next chapter, the principle of ultrasound elastography and strain estimation algorithms 

for NIVE are described.         
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Chapter 4 : Ultrasound elastography 

4.1 Background 

It is known that changes in mechanical properties of tissues are associated with the onset 

and progression of some diseases. For example, tissues tend to be stiffer for liver cirrhosis. 

Palpation has been used for centuries by physicians who compress an organ and feel its stiffness 

for disease diagnosis. However, palpation is subjective. Elastography seeks to objectively 

characterize tissue stiffness using modalities of medical imaging, such as ultrasound or MRI. 

For example, in ultrasound elastography, tissue deformation is induced by internal or external 

excitation. Then, the response of tissue deformation is captured by ultrasound images from 

which elastography techniques can derive information on tissue stiffness, which is unattainable 

with conventional ultrasound echo imaging.      

Current ultrasound elastography techniques can be classified into quasi-static or dynamic 

elastography. Quasi-static elastography, also called strain imaging, measures the tissue strain 

under a stress induced by excitations. The first work on strain imaging utilized a manual 

compression on the top of a tissue to induce its deformation [8]. Later, a focused ultrasound 

beam was used to deform the tissue through acoustic radiation force impulse (ARFI) imaging 

[83]. Another way to induce deformation is to exploit cardiovascular natural movements. Strain 

imaging based on cardiac pulsation is referred as myocardial elastography [84]. When pulsating 

vessels are studied, IVUS elastography [85] and NIVE [86] were respectively proposed to assess 

vascular elasticity invasively and noninvasively.  

Dynamic elastography, also referred as shear wave imaging, applies mechanical 

excitations to produce a shear wave. The tracking of this shear wave allows quantifying the 

elastic modulus of a tissue. More details on shear wave imaging can be found in [87-89]. In this 

thesis, the focus is mainly on strain imaging and details are described in the next section.          

4.2 Principles of ultrasound strain imaging 

Ultrasound strain imaging is a technique to measure relative stiffness of tissues, which 

assumes that a soft tissue is supposed to deform more (representing larger strain) than a hard 
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tissue under the same stress. It was firstly introduced by Ophir et al [8] in 1991. The principle 

in 1-D of strain imaging is shown in figure 4.1. Here, an ultrasound transducer uniaxially applies 

a small compression on a soft phantom with a hard inclusion. The deformation process of the 

phantom can be regarded as the compression of a spring where the parts with different stiffness 

would give rise to different displacements according to the Hooke’s law. To measure these 

displacements at each depth, a cross-correlation method is used to analyze two RF signals, 

namely pre-compression and post-compression signals. Finally, the spatial gradient of the 

displacement field represents the strain distribution, which is also known as an elastogram. 

As tissues deform in all three dimensions, 2-D strain estimations are preferred instead of 

1-D estimations when performing a 2-D scan. In the next section, state-of-the-art 2-D strain 

estimation methods are described. 

 

Figure 4.1 Principle of ultrasound strain imaging. A minute compression is applied on a 

soft phantom with a hard inclusion. Two RF signals, pre-compression and post-

compression signals, are acquired and analyzed to obtain displacements at each depth. 

Finally, the spatial gradient of the displacement field represents the strain distribution. 

Adapted from [90].  



 

35 

4.3 Strain estimation methods 

Most 2-D strain estimation methods can be categorized as either window-based or pixel-

based methods. Window-based methods use a local strategy which assumes that pixel motions 

inside a measurement window are uniform and attempt to estimate the motion of a block 

centroid using some similarity metrics (see figure 4.2). Pixel-based methods utilize a global 

strategy which estimates the motion of each pixel by imposing some prior information. The two 

different methods are described in following sections. 

 

Figure 4.2 Diagram of window-based motion estimation. A measurement window with 

size of 𝑀 × 𝑁 defined in a reference frame is tracked within a searching region of a target 

frame. The motion vector of the image block is estimated using some similarity metrics. 

4.3.1  Window-based strain estimation methods 

4.3.1.1 Space-domain methods 

Space-domain methods exploit the similarity of image intensities of two image blocks. 

Like the block matching strategy in computer vision, a reference block is tracked in a searching 

region using some similarity metric. In ultrasound elastography, they are also referred to as 

speckle tracking methods.  

The most commonly used similarity metric is the normalized cross-correlation (NCC),  
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  𝑁𝐶𝐶(𝑖, 𝑗) =
∑ ∑ (𝑟(𝑥,𝑦)−𝑟̅)(𝑡(𝑥+𝑖,𝑦+𝑗)−𝑡(𝑖,𝑗)̅̅ ̅̅ ̅̅ ̅)𝑁−1

𝑥=0
𝑀−1
𝑦=0

√∑ (𝑟(𝑥,𝑦)−𝑟̅)2 ∑ (𝑡(𝑥+𝑖,𝑦+𝑗)−𝑡(𝑖,𝑗)̅̅ ̅̅ ̅̅ ̅)2𝑁−1
𝑥=0

𝑀−1
𝑦=0

, (4.1) 

where 𝑟 and 𝑡 are pixel intensities from reference and target frames, respectively, and 𝑟̅ and 𝑡̅ 

are mean pixel intensities inside measurement windows with size of 𝑀 × 𝑁 from reference and 

target frames, respectively. The position of the peak of a 2-D NCC map determines the 

displacement vector of the centroid of a measurement window. Nevertheless, this is only able 

to provide displacement estimations at an integer pixel level. To obtain sub-pixel accuracy, ones 

either interpolate RF signals before computing NCC [91] or fit the NCC map into a sub-pixel 

resolution using some analytical functions [92-95]. After that, the peak position of a NCC map 

gives rise to sub-pixel estimations at the expense of higher computational load. Other than the 

NCC metric, the sum absolute difference (SAD) [96] and the sum squared error (SSE) [16, 97] 

are also used as similarity metrics. A lower SAD or SSE value implies higher correlation of two 

image blocks.  

In practice, a correlation would be deteriorated due to the change of speckle patterns 

when complex anatomical structures or out-of-plane motions are existing, which is also called 

speckle decorrelation. To reduce speckle decorrelation, prior information, such as displacement 

continuity, is combined with NCC or SAD measurement as a cost function to obtain a smooth 

displacement vector [98-100]. McCormick et al. [101] proposed to incorporate motion 

information of neighboring blocks into a NCC similarity metric. A Bayesian framework was 

used to convert displacement estimation into probability density estimation by maximizing 

posterior probability density.   

Another category of window-based space-domain methods originates from the optical 

flow algorithm in computer vision. Assuming that the intensity of a point at location (𝑥, 𝑧) 

moving by (𝑈𝑥, 𝑈𝑧) between two consecutive ultrasound images remains constant, 𝐼(𝑥, 𝑧, 𝑡) =

𝐼(𝑥 + 𝑈𝑥, 𝑧 + 𝑈𝑧 , 𝑡 + 1), which can be expanded by Taylor series and by ignoring high-order 

terms, one gets 𝐼(𝑥 + 𝑈𝑥 , 𝑧 + 𝑈𝑧 , 𝑡 + 1)= 𝐼(𝑥, 𝑧, 𝑡)+𝐼𝑥𝑈𝑥 + 𝐼𝑧𝑈𝑧 + 𝐼𝑡. Then, the optical flow 

constraint equation is expressed in linear algebra form as: 

  [𝐼𝑥 𝐼𝑧] [
𝑈𝑥

𝑈𝑧
] = −𝐼𝑡, (4.2) 
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where 𝐼𝑥, 𝐼𝑧, 𝐼𝑡 are the derivatives of the image intensity in the corresponding direction. Since 

there are two unknown variables in (4.2), Lucas and Kanade [102] proposed the Lucas-Kanade 

(LK) optical flow method, which assumes displacements of pixels within a small measurement 

window with size of 𝑀 × 𝑁 being the same. Then, an over-determined linear equation system 

can be built as: 

   [

𝐼𝑥1
𝐼𝑧1

⋮ ⋮
𝐼𝑥𝑀×𝑁

𝐼𝑧𝑀×𝑁

] [
𝑈𝑥

𝑈𝑧
] = − [

𝐼𝑡1
⋮

𝐼𝑡𝑀×𝑁

]. (4.3) 

The solution can be solved locally using a least squares scheme. Since the optical flow method 

can achieve sub-pixel precision, the LK optical flow method was used for fine estimations in a 

hybrid framework in which other window-based methods were deployed first for coarse 

estimations [15, 103]. 

Once displacements are obtained, strains are computed with displacement derivatives. 

However, the two-point derivative operation amplifies the noise of displacement estimations, 

especially for lateral estimations [104]. A least squares strain estimator (LSQSE) [105] is 

usually used to compute spatial derivatives with less variances through a linear fit of multiple 

points instead of two points although it reduces the elastogram resolution [106].   

An affine model-based method is an alternative way to estimate strains directly, i.e. 

without computing displacement derivatives. In the framework of the LK optical flow 

estimation, Maurice et al. [107] proposed an optical flow-based Lagrangian speckle model 

estimator (LSME) to obtain affine motion components (see figure 4.3). Within a pre-

compression measurement window whose center point is C, the first-order Taylor expansion of 

displacements of a point P is presented as 

   𝑈𝑥(𝑥𝑝, 𝑧𝑝) = 𝑈𝑥(𝑥𝑐, 𝑧𝑐) + (𝑥𝑝 − 𝑥𝑐)𝑠𝑥𝑥(𝑥𝑝, 𝑧𝑝) + (𝑧𝑝 − 𝑧𝑐)𝑠𝑥𝑧(𝑥𝑝, 𝑧𝑝), (4.4) 

   𝑈𝑧(𝑥𝑝, 𝑧𝑝) = 𝑈𝑧(𝑥𝑐, 𝑧𝑐) + (𝑥𝑝 − 𝑥𝑐)𝑠𝑧𝑥(𝑥𝑝, 𝑧𝑝) + (𝑧𝑝 − 𝑧𝑐)𝑠𝑧𝑧(𝑥𝑝, 𝑧𝑝), (4.5) 

where 𝑥𝑝, 𝑧𝑝 and 𝑥𝑐 , 𝑧𝑐 are the coordinates of point P and C in the lateral and axial directions 

respectively, and 𝑠𝑥𝑥, 𝑠𝑥𝑧, 𝑠𝑧𝑥, 𝑠𝑧𝑧 stand for lateral strain, lateral shear, axial shear and axial 

strain, respectively. To simplify the notations, an arbitrary point is considered and 𝑥𝑐, 𝑧𝑐 are set 
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to zero to assume estimations locally. Replacing 𝑈𝑥 and 𝑈𝑧 in (4.2) with (4.4) and (4.5), (4.2) is 

thus rewritten as: 

     [𝐼𝑥𝑥 𝐼𝑥𝑧 𝐼𝑥 𝐼𝑧𝑥 𝐼𝑧𝑧 𝐼𝑧]

[
 
 
 
 
 
𝑠𝑥𝑥

𝑠𝑥𝑧

𝑈𝑥
𝑠𝑧𝑥

𝑠𝑧𝑧

𝑈𝑧 ]
 
 
 
 
 

= −𝐼𝑡. (4.6) 

Compared with (4.2), the number of unknown variables is increased to six in (4.6). To 

solve the six motion components, an over-determined linear equation system considering a 

measurement window can be built and solved in a similar manner as (4.3). 

 

Figure 4.3 Illustration of the affine transformation of a point P in a measurement window 

with a center point C. 𝑥𝑝, 𝑧𝑝 and 𝑥𝑐, 𝑧𝑐 are the coordinates of point P and C in lateral and 

axial directions, respectively. 𝑈𝑥 and 𝑈𝑧 are lateral and axial displacements, respectively. 

𝑠𝑥𝑥, 𝑠𝑥𝑧, 𝑠𝑧𝑥, 𝑠𝑧𝑧 stand for lateral strain, lateral shear, axial shear and axial strain, 

respectively. 
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4.3.1.2 Frequency-domain methods 

Sumi proposed a 2-D phase tracking method to obtain displacement vectors iteratively 

[108]. The principle is that the displacement vector of a reference image block is associated with 

the gradient of the phase of the cross-spectrum 𝑆(𝑘𝑥, 𝑘𝑧), which is computed by multiplying the 

2-D discrete Fourier transform of the reference block by the conjugate Fourier transform of a 

spatial shifted block. Here, 𝑘𝑥 and 𝑘𝑧 are frequency variables in the lateral and axial directions, 

respectively. Assuming a measurement window where pixel displacements are uniform, the 

displacement components, 𝑑𝑥 and 𝑑𝑧, are determined by minimizing the following cost function 

using a least squares scheme: 

   𝐽 = ∑ ∑ ‖𝑆(𝑘𝑥, 𝑘𝑧)‖
2 {Θ(𝑘𝑥, 𝑘𝑧) −

2𝜋

𝑀

𝑑𝑥

∆𝑥
𝑘𝑥 −

2𝜋

𝑁

𝑑𝑧

∆𝑧
𝑘𝑧}

2
𝑁
𝑘𝑧=0

𝑀
𝑘𝑥=0 , (4.7) 

where Θ is the phase of the cross-spectrum, and ∆𝑥 and ∆𝑧 are lateral and axial image resolution, 

respectively. At each iteration, the searching region is warped using the displacement vector 

from previous iteration, after which a new displacement vector can be obtained using (4.7) 

again. Until a certain criterion is reached, the iteration is terminated. The final displacement 

vector is an accumulation of each iterative estimation. 

Nevertheless, it is not easy to perform 2-D estimations in the frequency domain as lateral 

phase information is not available since there is no carrier frequency in the lateral direction with 

conventional ultrasound echoes. Basarab et al. [109] proposed a phase-based block matching 

method to obtain more accurate lateral estimations using 2-D RF images modulated by TO 

beamforming (see section 3.2.3). They found a relation between the displacement vector and 

the phases of analytical images as follows: 

[
2𝜋𝑓𝑥 2𝜋𝑓𝑧

−2𝜋𝑓𝑥 2𝜋𝑓𝑧
] [

𝑈𝑥

𝑈𝑧
] = [

Φ1

Φ2
], (4.8) 

where 𝑓𝑥 and 𝑓𝑧 are modulated spatial frequencies in lateral and axial directions, respectively, 

that are assumed to be known, and Φ1 and Φ2 are phase differences of Fourier spectra from 

original TO RF images. Introducing the affine transformation (4.5) and (4.6) into (4.8), the 

phase-based method was developed into an affine phase-based estimation method [110], which 

has been proposed to evaluate cardiac motions [17].  
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4.3.2 Pixel-based strain estimation methods 

Instead of performing estimations within a measurement window using window-based 

methods, pixel-based methods can globally derive displacements of each pixel inside a ROI to 

obtain a dense motion field. There are a few pixel-based methods used in ultrasound 

elastography. These methods normally formulate displacement estimations as an optimization 

problem where a cost function incorporating a data term and a regularization term is minimized 

as follows,  

min
𝑈𝑥,𝑈𝑧

𝐷𝑑𝑎𝑡𝑎(𝑈𝑥, 𝑈𝑧) + 𝜆𝑅𝑟𝑒𝑔(𝑈𝑥, 𝑈𝑧), (4.9) 

where 𝜆 is a parameter to control the influence of the regularization term. The most common 

regularization term is the spatial smoothness constraint. This physical prior information reduces, 

to some extent, estimation variances due to speckle decorrelation. Recently, temporal continuity 

was jointly considered to make estimations more robust [111]. The data term exploits the 

correspondence between pre-compression and post-compression images. In 1981, Horn and 

Schunck [26] proposed the classical HS optical flow method, which includes the optical flow 

constraint equation (see (4.2)) as a data term and a global displacement smoothness constraint 

as a regularization term. This method has been used to characterize strains of carotid plaques 

[112] and breast phantoms [113, 114]. With a local smoothness constraint, negative NCCs were 

used as a data term of a cost function to compute a 2-D displacement field [106, 115]. SSE was 

also used as a data term coupled with a displacement continuity regularization for 2-D 

displacement estimations [116, 117].  

A disadvantage of these optimization-based methods is their computational complexity 

as they require to optimize iteratively a cost function until convergence. A dynamic programming 

and analytic minimization of the cost function was proposed to avoid an iteration process [116, 

118]. It reduced computation time and enabled real time ultrasound elastography. 

Once 2-D displacements are obtained, axial and lateral strains can be computed using 

the LSQSE method as done for window-based methods or Kalman filtering [116]. Although 

some works have considered axial or lateral strain during the minimization process [106, 115], 

shear strains are still missing.  
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4.4 Summary 

Tissue motion is complex and does not necessarily undergo rigid transformations 

(displacement) alone, but also compression and expansion (strains and shears). Most of above-

mentioned strain estimation methods, either window-based or pixel-based, are displacement-

based. Strains and shears are computed from derivatives of displacements. Because the 

derivative operation is highly sensitive to high-frequency noise and to decorrelation, some direct 

strain estimation methods attempted to obtain strains directly using adaptive stretching [104, 

119-121] or spectrum shift [122, 123] strategies without an explicit derivative operation. 

However, these methods are only able to provide 1-D axial strain estimation. For cross-sectional 

NIVE, the lateral strain and shears are necessary to build radial and circumferential strain maps. 

Above-mentioned affine estimation methods could be a suitable alternative to provide strain 

estimations with full strain components. However, these window-based methods always have a 

trade-off between window size, overlap and estimation accuracy. Usually, considering a small 

window results in image decorrelation inducing larger estimation variances, but with a higher 

elastogram resolution. A large window is able to increase correlation, while decreasing spatial 

resolution of strain maps. Pixel-based methods avoid this issue at the cost of a high computation 

time, but they are displacement-based with the need of a derivative operation. 

To conclude this section, a direct and pixel-based strain estimation method is needed for 

cross-sectional or longitudinal 2-D NIVE. Implementing such approach in the context of 3-D 

imaging would also be highly relevant but it is beyond the scope of this thesis. In Chapter 7, a 

novel strain estimation algorithm is proposed. It is able to estimate pixel-wise strains globally 

against local noise. Moreover, an analytical solution is formulated avoiding the need of an 

iterative minimization to achieve a high computation efficiency.  
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Chapter 5 : Two-dimensional affine model-based 

estimators for principal strain vascular ultrasound 

elastography with compound plane wave and transverse 

oscillation beamforming 

5.1 Introduction to manuscript 

This chapter reproduces the content of a published article ‘Two-dimensional affine 

model-based estimators for principal strain vascular ultrasound elastography with compound 

plane wave and transverse oscillation beamforming’ in the journal Ultrasonics (Vol. 91, p. 77-

91, 2019) by Hongliang Li, Jonathan Porée, Marie-Hélène Roy Cardinal and Guy Cloutier after 

evaluation by a peer review committee. 

The following is the order of authors for this published article and corresponding 

affiliations: 

Hongliang Li1,2, Jonathan Porée1,2, Marie-Hélène Roy Cardinal1 and Guy Cloutier1,2,3 

1 Laboratory of Biorheology and Medical Ultrasonics, University of Montreal Hospital Research 

Center (CRCHUM), Montréal, QC, Canada; 

2 Institute of Biomedical Engineering, University of Montreal, Montréal, QC, Canada; 

3 Department of Radiology, Radio-Oncology and Nuclear Medicine, University of Montreal, 

Montréal, QC, Canada. 

The contributions of all authors of the published article is detailed below: 

Hongliang Li: Developed and implemented the corresponding beamforming and strain 

estimation algorithms, performed the post-processing of the data, drafted the manuscript and 

responded to the reviewer’s comments of the article.  

Jonathan Porée: Developed the finite element model, performed in vitro data acquisitions, 

contributed to strain estimation algorithms. 
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Marie-Hélène Roy Cardinal: Contributed to the interpretation of results and the revision of the 

manuscript. 

Guy Cloutier: Supervised this work as the research director. Contributed to the interpretation of 

results as the project director. Corrected and finalized the manuscript for submission and revision. 

5.2 Abstract 

Polar strain (radial and circumferential) estimations can suffer from artifacts because the 

center of a nonsymmetrical carotid atherosclerotic artery, defining the coordinate system in 

cross-sectional view, can be misregistered. Principal strains are able to remove coordinate 

dependency to visualize vascular strain components (i.e., axial and lateral strains and shears). 

This paper presents two affine model-based estimators, the affine phase-based estimator 

(APBE) developed in the framework of transverse oscillation (TO) beamforming, and the 

Lagrangian speckle model estimator (LSME). These estimators solve simultaneously the 

translation (axial and lateral displacements) and deformation (axial and lateral strains and 

shears) components that were then used to compute principal strains. To improve performance, 

the implemented APBE was also tested by introducing a time-ensemble estimation approach. 

Both APBE and LSME were tested with and without the plane strain incompressibility 

assumption. These algorithms were evaluated on coherent plane wave compounded (CPWC) 

images considering TO. LSME without TO but implemented with the time-ensemble and 

incompressibility constraint (Porée et al., IEEE Trans. Med. Imag. 2015) served as benchmark 

comparisons. The APBE provided better principal strain estimations with the time-ensemble 

and incompressibility constraint, for both simulations and in vitro experiments. With a few 

exceptions, TO did not improve principal strain estimates for the LSME. With simulations, the 

smallest errors compared with ground true measures were obtained with the LSME considering 

time-ensemble and the incompressibility constraint. This latter estimator also provided the 

highest elastogram signal-to-noise ratios (SNRs) for in vitro experiments on a homogeneous 

vascular phantom without any inclusion, for applied strains varying from 0.07% to 4.5%. It also 

allowed the highest contrast-to-noise ratios (CNRs) for a heterogeneous vascular phantom with 

a soft inclusion, at applied strains from 0.07% to 3.6%. In summary, the LSME outperformed 
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the implemented APBE, and the incompressibility constraint improved performances of both 

estimators. 

Keywords – Ultrasound elastography, compound plane wave imaging beamforming, transverse 

oscillation beamforming, optical flow estimation, phase estimation, affine model-based 

estimation, tissue incompressibility. 

5.3 Introduction 

In recent years, noninvasive vascular elastography (NIVE) has gained increasing 

attention for evaluating the functionality of superficial arteries. Principal strains are able to 

remove coordinate dependency to visualize vascular strain components [124]. Currently, most 

two-dimensional (2-D) elastography algorithms are based on the cross-correlation, either in the 

space domain [14, 21, 92, 125-130] or frequency domain [131-133], or based on registration 

methods [99, 115]. With known axial (along the ultrasound beam) and lateral (perpendicular to 

it) displacements between pre- and post-motion image blocks, axial and lateral strains and shears 

were computed from estimated displacement derivatives in respective directions [21, 128, 131, 

132]. Since associated high frequency displacement noise enhances the variance of such strain 

estimators, the least squares strain estimator (LSQSE) was proposed to increase the signal-to-

noise ratio (SNR) by a piecewise linear fit [14, 92, 125, 130]. However, tissue motion in the 

imaging plane may be complex and does not necessarily only undergo rigid transformations 

(translations and rotations), but also compression and expansion [134]. The signal distortion 

caused by such complex deformations induces decorrelation effects. Signal processing 

strategies, such as temporal stretching [135] and iterative coarse-to-fine approaches [92, 136, 

137], have been used to reduce decorrelation noise. Other estimators were also proposed to 

reduce decorrelation noise by considering axial strain or axial shear [115, 119, 138]. 

In addition to abovementioned rigid model-based estimators, an alternative strategy is 

the affine model-based estimation methodology, which considers all non-rigid deformations of 

the tissue. Space-domain and phase-domain affine model-based methods have been investigated 

for cross-sectional imaging of arteries [10, 16, 19, 139] and cardiac structures [17]. One of them 

is a registration-based algorithm [16]. It minimized a cost function using a numerical 

optimization method and improvements in SNR and contrast-to-noise ratio (CNR) were reported 
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on axial strain estimations compared to the 2-D cross-correlation, but at a higher computational 

time cost. 

Two other space-domain methods based on optical flow (OF) were proposed. In [139], 

a two-step OF strategy was reported to improve the performance of the axial strain estimation. 

More specifically, the OF estimation was performed sequentially two times and the two axial 

strain estimates were recombined. However, shear components were unable to be recombined 

and the lateral strain was also not considered. Furthermore, this latter approach [139] requires 

extra computational load due to an additional OF estimation. The other affine method is the OF-

based Lagrangian speckle model estimator (LSME). In [19], Mercure et al. concluded that this 

approach performed better than an optimization-based LSME due to its reliability and 

computational efficiency. In [18], an OF-based LSME involving a constrained motion model 

was developed to provide robust 2-D principal strain estimations. Another method with an affine 

model is the affine phase-based estimator (APBE) [17], inspired by the phase-based estimator 

(PBE) [109, 140, 141]. This algorithm demonstrated a more accurate lateral estimation for 

cardiac motions than the standard block matching algorithm. 

To perform cross-sectional scans in the context of NIVE, lateral estimations are 

particularly challenging due to the lower lateral than axial resolution of conventional focusing 

imaging, and the lack of phase information in the lateral direction. To overcome this limitation, 

several methods have been introduced. One assumes tissue incompressibility to improve the 

quality of lateral displacements [142], and SNR and CNR of elastograms [131], [18]. Konofagou 

and Ophir used the lateral weighted interpolation of radiofrequency (RF) data to improve lateral 

displacement estimations [11]. However, the lateral interpolation and iterative scheme increase 

computational complexity [143]. 

Angular compounding schemes were also proposed to obtain lateral strain with more 

accurate axial estimations at multiple beam steering angles, using conventional focusing 

imaging [14, 144-146]. Another way is to use advanced beamforming methods to enable more 

accurate lateral estimations. Korukonda and Doyley [20, 21] demonstrated that synthetic 

aperture imaging could improve lateral NIVE estimates because of the high lateral sampling 

frequency and narrow lateral beamwidth. However, due to the single element emission, the low 

transmit power might be insufficient for the clinical use of NIVE [147]. Hansen et al. reported 
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that elastograms obtained with plane-wave angular compounding were comparable to standard 

focusing angular compounding [148]. Plane wave images are known, however, to exhibit low 

contrast and low resolution due to the lack of transmit focusing [75]. 

Alternatively, coherent plane wave compounding (CPWC) beamforming was proposed 

to solve these issues [78]. Under the framework of CPWC imaging, superior lateral strains and 

shears were obtained, compared with conventional OF-based LSME using standard focusing, 

by considering the incompressibility constraint and a time-ensemble approach [18]. Transverse 

oscillation (TO) beamforming [79, 80] was also proposed to improve lateral estimations for 

vector velocity [149], cardiac motion [17] and longitudinal vascular wall motion [22] 

assessments. In [150], TO was adapted to plane wave imaging using a Fourier domain 

beamforming. In the context of cross-sectional NIVE, however, the OF-based LSME and APBE 

using the combined CPWC and TO imaging beamforming (CPWC&TO) have not yet been 

studied. 

In this manuscript, we provide a performance evaluation of different elastography 

estimators and image beamforming schemes for cross-sectional carotid artery scanning. 

Validations were performed with simulations and in vitro phantom experiments. Overall, three 

contributions were made in this paper. One contribution is on the performance evaluation of two 

affine model-based estimators in the same framework of high-frame-rate imaging. Those 

estimators are determining simultaneously, using a minimization process, the translation (axial 

and lateral displacements) and deformation (axial and lateral strains and shears) components 

that were then used to compute principal strains. The second contribution is on the development 

of the affine-based APBE, and the introduction of a time-ensemble approach and an 

incompressibility constraint, as proposed in [18] for the OF-based LSME. Those improvements 

provided better principal strain estimations than previous APBE. The third contribution is the 

introduction of transverse oscillations (TO) into the LSME and the verification that TO imaging 

may be helpful for principal strain estimations when the tissue structure is complex and 

heterogeneous. In this study, the OF-based LSME of [18] is used as a benchmark comparison 

method. A list of abbreviations used in this paper is given in Table 5-1. 
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Table 5-1 List of abbreviations 

CPWC Coherent Plane Wave Compounding beamforming 

TO Transverse Oscillation beamforming 

CPWC&TO Coherent Plane Wave Compounding with Transverse 

Oscillation beamforming 

APBE Affine Phase-Based Estimator 

LSME Lagrangian Speckle Model Estimator 

CPWC&TO + APBE 

CPWC&TO* + APBE 

APBE tested on CPWC&TO data 

APBE tested on CPWC&TO data with heterodyne 

demodulation 

CPWC&TO + APBET APBE with the time-ensemble approach tested on 

CPWC&TO data 

CPWC&TO + APBET&I APBE with the time-ensemble approach and the 

incompressibility constraint tested on CPWC&TO data 

CPWC&TO + LSMET LSME with the time-ensemble approach tested on 

CPWC&TO data 

CPWC&TO + LSMET&I LSME with the time-ensemble approach and the 

incompressibility constraint tested on CPWC&TO data 

CPWC + LSMET&I LSME with the time-ensemble approach and the 

incompressibility constraint tested on CPWC data 

(benchmark reference of [18]) 

5.4 Theory 

5.4.1 Image formation 

5.4.1.1 Coherent plane wave compounding beamforming 

Ultrafast plane wave imaging only needs a simultaneous single pulse emission on all 

selected transducer elements to produce a plane wave illumination unlike the conventional line-

by-line scanning mode. The image generated by this scheme, however, has low image resolution 

and contrast due to the lack of transmit focusing [75]. Montaldo et al. [78] proposed a coherent 

plane wave compounding beamforming to enhance the image quality without sacrificing 

significantly the high frame rate capability. Each point of an image formed by one single plane 

wave is obtained by summing RF signals along transducer elements using certain delays, as 

given by [78]: 

𝑠(𝑥, 𝑧) = ∫𝑅𝐹(𝑥𝑖, 𝜏𝑇𝑋 + 𝜏𝑅𝑋)𝑑𝑥𝑖,  (5.1) 
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where the coordinate x, z corresponds to the image plane, 𝑥𝑖  is the position of the receiving 

transducer element, 𝜏𝑇𝑋 = (𝑧𝑐𝑜𝑠𝜃 +  𝑥𝑠𝑖𝑛𝜃)/𝑐,  𝜏𝑅𝑋 = √𝑧2 + (𝑥 − 𝑥𝑖)2/𝑐, where 𝜏𝑇𝑋 and 

𝜏𝑅𝑋 are the emission and receive delays, respectively, 𝜃 is the angle of the emission pulse, and 

c is the speed of sound. Once the image for one single plane wave is beamformed, the 

compounded image is obtained by summing coherently all beamformed images with several 

plane waves at different angles. Twenty-one emissions between −10° to 10° with a 1° increment 

provided the best image quality for vascular strain imaging using the ultrasound probe of the 

current study [18]. Therefore, we kept this configuration for simulations and in vitro 

experiments. 

5.4.1.2 Filtering-based TO beamforming using CPWC images 

Transverse oscillation beamforming allows producing lateral phase information in 

ultrasound images. Classical TO imaging requires a specific apodization function in reception, 

made of two Gaussian peaks, to modulate the frequency spectrum of the beamformed TO image 

into four identified spots [22, 151]. The following equation describes this apodization function 

wi: 

𝑤𝑖 = 
1

2
(𝑒

−𝜋(
𝑥𝑖−𝑥0

𝜎0
)
2

+ 𝑒
−𝜋(

𝑥𝑖+𝑥0
𝜎0

)
2

),  (5.2) 

where 𝑥𝑖  is the position of the transducer element, 𝑥0 = 𝜆𝑧𝑧/𝜆𝑥, 𝜎0 = √2𝜆𝑧𝑧/𝜎𝑥, 𝜆𝑧 is the transmitted 

pulse wavelength, 𝑧 is the depth of interest, 𝜆𝑥 is the expected lateral oscillation wavelength, and 𝜎𝑥 is 

the full width at half maximum (FWHM) of the Gaussian envelope. It can be noticed in (5.2) that the 

apodization function must be changed dynamically as a function of depth 𝑧 to keep a constant lateral 

oscillation wavelength during image beamforming. In addition, to implement different TO parameters 

(i.e., 𝜆𝑥 and 𝜎𝑥) one needs to beamform the raw data again. 

To overcome these limitations and allow determining proper parameters, a filtering (or 

convolution) method was used to generate TO images [22]. In theory, TO filtering is able to 

generate oscillations with any lateral wavelengths. One advantage of the TO filtering method is 

that it is easy to control and obtain optimal TO parameters. Such post-processing approach only 

needs to filter beamformed data using different TO parameters and does not require access to 

pre-beamformed data using different apodization functions. The filtering or convolution is only 

performed along the lateral direction if RF images are used, while both lateral and axial 
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directions should be filtered when B-mode images are considered. In this paper, we choose to 

filter each line of a RF CPWC image by multiplying it with two modulated Gaussian functions 

in the Fourier domain, as given by (5.3). The filtered frequency pattern of a RF image was made 

of four spots with an expected lateral oscillation frequency. This filter  is available in the 

public domain [152] as a Matlab graphical user interface. It is given by: 

Ω =  𝑒
−2(𝜋𝜎𝑥(𝑥𝑓 −

1

 𝜆𝑥
))

2

+ 𝑒
−2(𝜋𝜎𝑥(𝑥𝑓 + 

1

𝜆𝑥
))

2

,  (5.3) 

where 𝜎𝑥 and 𝜆𝑥 are defined in (2), and 𝑥𝑓  is the lateral coordinate in the frequency domain of 

the RF image. 

5.4.2 Elastography estimator description 

5.4.2.1 Optical flow based Lagrangian speckle model estimator 

The OF-based LSME accounts for rigid and non-rigid tissue motions using an affine 

transformation model, and estimates the displacement and strain in a small region of interest 

(ROI), also called measurement window (MW). Assuming that the image intensity between two 

consecutive RF images is not modified in a MW, we can deduce the optical flow equation for 

an arbitrary point: 

𝐼𝑥𝑈𝑥 + 𝐼𝑧𝑈𝑧 + 𝐼𝑡 = 0,  (5.4) 

where 𝐼𝑥, 𝐼𝑧 are the spatial gradient of the image intensity, 𝑈𝑥, 𝑈𝑧 represent the lateral and axial 

displacements, and It denotes the temporal gradient of the image intensity. 

In a MW, taking a 1st order Taylor expansion of displacements 𝑈𝑥, 𝑈𝑧 of an arbitrary 

point, the affine description of the displacement field is given by 

𝑈𝑥(𝑥, 𝑧) = 𝑈𝑥(𝑥0, 𝑧0) + (𝑥 − 𝑥0)𝑠𝑥𝑥 + (𝑧 − 𝑧0)𝑠𝑥𝑧,  (5.5) 

𝑈𝑧(𝑥, 𝑧) = 𝑈𝑧(𝑥0, 𝑧0) + (𝑥 − 𝑥0)𝑠𝑧𝑥 + (𝑧 − 𝑧0)𝑠𝑧𝑧,  (5.6) 

where 𝑥0, 𝑧0 are coordinates of the center of the MW, 𝑠𝑥𝑥, 𝑠𝑥𝑧 , 𝑠𝑧𝑥, 𝑠𝑧𝑧 are the lateral strain, 

lateral shear, axial shear, and axial strain, respectively, and 𝑠𝑖𝑗 = 𝜕𝑈𝑖 𝜕𝑗⁄ . 
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Since there are two unknown variables in (5.4), to solve the 2-D optical flow, we assume 

that the motion field of each pixel within a MW with p×q pixels is the same and that the 

coordinates of the center of the MW, 𝑥0, 𝑧0, are zero. Then, we can rewrite (5.4) by considering 

(5.5) and (5.6) for each pixel to obtain an over-determined linear equation system for all pixels 

in a MW, 

[

𝐼𝑥1
𝑥1 𝐼𝑥1

𝑧1 𝐼𝑥1

⋮ ⋮ ⋮
𝐼𝑥𝑝×𝑞

𝑥𝑝×𝑞 𝐼𝑥𝑝×𝑞
𝑧𝑝×𝑞 𝐼𝑥𝑝×𝑞

𝐼𝑧1
𝑥1 𝐼𝑧1

𝑧1 𝐼𝑧1

⋮ ⋮ ⋮
𝐼𝑧𝑝×𝑞

𝑥𝑝×𝑞 𝐼𝑧𝑝×𝑞
𝑧𝑝×𝑞 𝐼𝑧𝑝×𝑞

]

[
 
 
 
 
 
𝑠𝑥𝑥

𝑠𝑥𝑧

𝑈𝑥
𝑠𝑧𝑥

𝑠𝑧𝑧

𝑈𝑧 ]
 
 
 
 
 

= − [

𝐼𝑡1
⋮

𝐼𝑡𝑝×𝑞

]. (5.7) 

Then, solving this equation system using a robust weighted least square method, as described 

by (4) of [18], the affine motion vector 𝑚⃗⃗ =  (𝑠𝑥𝑥, 𝑠𝑥𝑧 , 𝑈𝑥, 𝑠𝑧𝑥, 𝑠𝑧𝑧 , 𝑈𝑧)
𝑇 is obtained. Note that 

derivatives of displacement are not used to compute strain components. 

5.4.2.2 Affine phase based estimator 

Once there are periodic oscillations in axial and lateral directions for a RF image, such 

as TO images, 2-D motions between consecutive images can be estimated using the APBE 

method. This estimator is briefly described here; more details are given in [17]. The pre-motion 

and post-motion images 𝑖1 and 𝑖2 with lateral modulations at consecutive times 𝑡1 and 𝑡2 can be 

assumed using a 2-D signal model modulated by spatial frequencies 𝑓𝑥 and 𝑓𝑧, respectively 

[140]: 

𝑖1(𝑥, 𝑧, 𝑡1) = 𝑤1(𝑥, 𝑧, 𝑡1) cos(2𝜋𝑓𝑥𝑥) cos(2𝜋𝑓𝑧𝑧),  (5.8) 

𝑖2(𝑥, 𝑧, 𝑡2) = 𝑤2(𝑥, 𝑧, 𝑡2) cos(2𝜋𝑓𝑥(𝑥 + 𝑈𝑥)) cos(2𝜋𝑓𝑧(𝑧 + 𝑈𝑧)),  (5.9) 

where 𝑤1 and 𝑤2 are two 2-D windows defined arbitrarily, 𝑓𝑥 = 1 𝜆𝑥⁄  and 𝑓𝑧 = 1 𝜆𝑧⁄ , with 𝜆𝑥 

and 𝜆𝑧 defined in (5.2), and 𝑈𝑥 and 𝑈𝑧 being lateral and axial components of the displacement, 

respectively. Note that phases in (5.8) and (5.9) do not change when the displacement is equal 

to one wavelength, thus the largest unbiased estimated displacement is limited to half a 

wavelength (𝜆𝑥/2 in the lateral direction and 𝜆𝑧/2 in the axial direction). 

Given the Fourier spectrum of 𝑖1 or 𝑖2, four single-quadrant analytic signals can be 

obtained by keeping only one quadrant and canceling other three quadrants. Since the 2-D 



 

51 

Fourier transform of real images is symmetric, only two analytic signals were considered. 

According to [140], the upper left and right quadrants of each spectrum were used. Two-

dimensional displacements between consecutive images are associated with phases of analytic 

signals, as described here: 

𝑈𝑥 =
Φ1−Φ2

4𝜋𝑓𝑥
,  (5.10) 

𝑈𝑧 =
Φ1+Φ2

4𝜋𝑓𝑧
,  (5.11) 

with 

Φ1(𝑥, z) = ∅𝑠11(𝑥, z, 𝑡1) − ∅𝑠21(x, z, 𝑡2),  (5.12) 

Φ2(𝑥, z) = ∅𝑠12(x, z, 𝑡1) − ∅𝑠22(x, z, 𝑡2),  (5.13) 

where ∅𝑠11, ∅𝑠12 are extracted phases of abovementioned analytical images for the image 𝑖1, 

and ∅𝑠21, ∅𝑠22 are phases of analytical images for the image 𝑖2. 

We can do the same process for (5.10) and (5.11) as we did for the LSME by introducing 

an affine model, and then rewriting these two equations for each pixel in a MW with p×q pixels. 

The affine APBE model is obtained by combining all equations into a matrix format, as 

described below in (5.14) and (5.15). The similar affine motion vector 𝑚⃗⃗  was obtained by 

solving this over-determined equation system using the same robust weighted least square 

method, as we did for the LSME, unlike the classical least square fitting in [17], to provide a 

common framework of comparison. This constitutes a new contribution to the APBE (new 

implementation). 

[

𝑥1 𝑧1 1
⋮ ⋮ ⋮

𝑥𝑝×𝑞 𝑧𝑝×𝑞 1
] [

𝑠𝑥𝑥

𝑠𝑥𝑧

𝑈𝑥

] =
1

4𝜋𝑓𝑥
[

Φ1(𝑥1, 𝑧1) − Φ2(𝑥1, 𝑧1)
⋮

Φ1(𝑥𝑝×𝑞 , 𝑧𝑝×𝑞) − Φ2(𝑥𝑝×𝑞 , 𝑧𝑝×𝑞)
],  (5.14) 

[

𝑥1 𝑧1 1
⋮ ⋮ ⋮

𝑥𝑝×𝑞 𝑧𝑝×𝑞 1
] [

𝑠𝑧𝑥

𝑠𝑧𝑧

𝑈𝑧

] =
1

4𝜋𝑓𝑧
[

Φ1(𝑥1, 𝑧1) + Φ2(𝑥1, 𝑧1)
⋮

Φ1(𝑥𝑝×𝑞 , 𝑧𝑝×𝑞) + Φ2(𝑥𝑝×𝑞 , 𝑧𝑝×𝑞)
].  (5.15) 

5.4.2.3 Time-ensemble approach 

Because of the ultrafast CPWC imaging mode considered in this study, we could 

implement a time-ensemble approach into the APBE, as done for the LSME in [18]. 
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Specifically, we assumed a constant motion over a given period of time 𝑇 = 𝑛𝑡 . Δ𝑡, where 𝑛𝑡 is 

the number of successive frame pairs, and ∆𝑡 is the time step between two consecutive frames. 

By combining these frames, the number of linear equations in the least square estimation is 

increased to 𝑛𝑡 × 𝑛, where n is the number of pixels in the MW of the estimator. In theory, the 

more time ensemble is used, better is the robustness of the least square estimation. However, 

the improvement in strain estimation is at the expense of computational time. For the LSME, 

we chose a time ensemble number of 8, as it provided the best compromise between accuracy 

and computational time [18]. For the developed APBE, we assessed estimation errors for 

different time ensembles (results not shown). We found exponentially decreasing strain 

estimation errors as a function of the time ensemble numbers. For example, an ensemble number 

of 12 provided 5% less estimation errors than 𝑛𝑡  = 8 while increasing by 50% the computation 

time. Thus, to provide comparable results between APBE and LSME, we used 𝑛𝑡  = 8 for both 

strain estimation methods. 

5.4.2.4 Incompressibility constraint for the affine models 

Arterial tissue incompressibility is a common assumption used in computational models 

of arteries [153, 154], motion compensation for strain imaging [51], ultrasound speckle tracking 

[52], angular strain compounding [35,53], and ultrasound modulography [54]. Ex vivo analyses 

have confirmed that arteries may be considered incompressible under physiological conditions 

[55,56]. Karimi et al. [57] recently showed that both excised healthy and atherosclerotic human 

coronary arteries are incompressible. The artery tissue is in fact slightly compressible but may 

be regarded as incompressible at small strains [55], which is attainable by the high frame rate 

plane wave imaging method used in this study. In addition, as described in Sections 5.5.5.1 and 

5.5.2.1, we modeled the tissue as isotropic and quasi-incompressible (Poisson’s ratio = 0.4995) 

for vascular simulations. For in vitro experiments, two phantoms were built with polyvinyl 

alcohol cryogel (PVA-C) following the manufacturing description of [58]. The Poisson’s ratio 

of this material was estimated at 0.499 ± 0.001, which corresponds to an incompressibility 

condition [58]. 

The deformation of an incompressible tissue produces no volume change, which is 

formulated with the divergence of the displacement field 𝑈 as ∇ ∙ 𝑈 = 0. Under the condition 
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of 2D plane strain, the out of plane strain component is negligible and the divergence of 𝑈 can 

be rewritten as ∇ ∙ 𝑈 =
𝜕𝑈

𝜕𝑥
+

𝜕𝑈

𝜕𝑧
= 𝑠𝑥𝑥 + 𝑠𝑧𝑧 = 0. Consequently, under these assumptions: 

𝑠𝑥𝑥 = −𝑠𝑧𝑧.  (5.16) 

By introducing (5.16) into (5.7) for the LSME, the motion vector 𝑚⃗⃗  is reduced from six 

to five unknowns, and consequently the minimization process considered the following 

equation: 

 [

𝐼𝑥1
𝑧1 𝐼𝑥1

⋮ ⋮
𝐼𝑥𝑝×𝑞

𝑧𝑝×𝑞 𝐼𝑥𝑝×𝑞

𝐼𝑧1
𝑥1 𝐼𝑧1

𝑧1 − 𝐼𝑥1
𝑥1 𝐼𝑧1

⋮ ⋮ ⋮
𝐼𝑧𝑝×𝑞

𝑥𝑝×𝑞 𝐼𝑧𝑝×𝑞
𝑧𝑝×𝑞 − 𝐼𝑥𝑝×𝑞

𝑥𝑝×𝑞 𝐼𝑧𝑝×𝑞

].

[
 
 
 
 
𝑠𝑥𝑧

𝑈𝑥
𝑠𝑧𝑥

𝑠𝑧𝑧

𝑈𝑧 ]
 
 
 
 

= − [

𝐼𝑡1
⋮

𝐼𝑡𝑝×𝑞

]. (5.17) 

For the APBE, axial and lateral motion components were computed using (5.14) and 

(5.15), respectively, and then the lateral strain 𝑠𝑥𝑥 was replaced by the axial strain -𝑠𝑧𝑧 when 

considering this assumption. Other displacement and strain components were assessed during 

the minimization process and used in these equations. In [18], it was shown that this 

incompressibility constraint in the LSME reduced the variability of principal strain estimations. 

In the current study, we aimed improving the quality of principal strain elastograms by also 

incorporating this constraint into the APBE. Reported results considered APBE and LSME 

implementations with and without the incompressibility constraint. 

5.4.3 Implementation of elastography estimators and evaluation scheme 

We adopted the implementation scheme of [18], which includes 7 steps. Briefly, a rigid 

registration using 2-D Fourier-based ensemble-correlations [155] was first performed for each 

small MW between pre- and post-deformed RF images to account for large displacements. Then, 

the affine motion vector 𝑚⃗⃗  was computed using a weighted least-squares method [156] from 

registered pre- and post-deformed MWs. For the sake of a fair comparison, the same parameters 

were used for both estimators (LSME and APBE). Image pixels in a MW were weighted by a 

2-D Gaussian function with a FWHM of 1.0×1.0 mm. Thus the MV size was set at 1.3×1.3 mm, 

which corresponds to 68 samples axially by 26 RF lines laterally, with the same 80% overlap in 
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axial and lateral directions. The spatial discretization of elastograms was thus 0.26×0.26 mm. A 

90% overlap in time was chosen for the time-ensemble approach. 

We filtered CPWC images to obtain TO images (labeled CPWC&TO). The APBE, the 

APBE using the time-ensemble approach, and the constrained APBE (i.e., incompressibility 

constraint) with the time-ensemble approach were tested on CPWC&TO data (we used the 

following abbreviations (see also Table 5-1): CPWC&TO + APBE, CPWC&TO + APBET and 

CPWC&TO + APBET&I). In addition, the LSME using the time-ensemble approach, with or 

without the incompressibility constraint, was tested with CPWC&TO and CPWC data 

(described as: CPWC&TO + LSMET, CPWC&TO + LSMET&I, and CPWC + LSMET&I). The 

performance of six strategies (image beamforming schemes + estimators) was evaluated with 

simulations and in vitro phantom experiments. 

5.5 Materials and methods 

We simulated a heterogeneous vascular model with a mimicking atherosclerotic plaque 

and fabricated homogeneous vessel wall and heterogeneous phantoms for evaluation. Plane 

wave data were collected and beamformed using CPWC imaging at 21 angles, which allowed a 

frame rate of 500 s-1. We used the full aperture to transmit and receive plane waves. Also, a 

rectangular window apodization function was used for beamforming. The RF images were 

reconstructed on a regular Cartesian grid (with 50 × 20 μm resolution). CPWC images were 

then filtered to obtain CPWC&TO images. 

5.5.1 Simulation of a heterogeneous image sequence 

5.5.1.1 Finite element model 

A model of a carotid artery with soft and hard inclusions in a cross-sectional view was 

created using COMSOL Multiphysics (Structural Mechanics Module, version 3.5, COMSOL, 

France). The plaque geometry described in [157] was meshed with approximately 15,000, 6-

node triangular elements. To avoid translations and rotations of the rigid body, a soft and 

compressible (elasticity modulus E = 1 Pa and Poisson’s ratio 𝛾 = 0.001) layer of 1 mm 

thickness was added on the outer layer. This artificial outer contour was anchored and was not 
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considered in the elastography analysis. As reported, a wide range of Young’s moduli, varying 

from 30 kPa to 270 MPa, for ex vivo or in vivo atherosclerotic tissues has been reported in the 

literature, depending on plaque internal structures and measurement methods [158]. In this 

study, a large soft necrotic core (E = 10 kPa) was embedded in a medium mimicking a fibrous 

plaque (E = 600 kPa). Four calcified inclusions (E = 5000 kPa) were also embedded within the 

plaque. The Poisson’s ratio of all plaque components considered isotropic was fixed at 0.4995 

(i.e., incompressible). These mechanical parameters are close to those used in [159, 160]. 

Recently, similar parameters were also selected for elasticity reconstruction methods [161-163]. 

Displacements of the vessel wall between two successive image frames were computed using 

the finite element method (FEM). To consider realistic dynamic conditions, a systemic blood 

pressure waveform with minima and maxima at 80 and 120 mmHg (10 and 16 kPa) was applied 

to the simulated geometry. This waveform was discretized with 500 samples to simulate an 

ultrafast non-invasive ultrasound acquisition at a frame rate of 500 s-1. The strain field was 

derived under plane strain conditions from computed displacement fields. 

5.5.1.2 Acoustic models 

The ultrasound simulation program Field II [164] was used to obtain RF images coupled 

with FEM simulated wall motions. The L14-5/38 linear array probe with 128 elements 

(Ultrasonix Medical Corporation, Richmond, BC, Canada) was simulated by considering a 7.2 

MHz center frequency, a 70% fractional bandwidth (at -6 dB) and a sampling rate of 40 MHz. 

The bandwidth of that probe is between 5-14 MHz. The central frequency of 7.2 MHz allowed 

good resolution and acceptable grating lobes when using CPWC imaging [78]. The 

abovementioned vascular model included randomly distributed scatterers whose density was 

100 per resolution cell [165] in a cross-sectional view. For CPWC beamforming, the full 

aperture was activated in transmission to create plane waves. The vascular model was static 

during emission angles changing from −10° to 10°. The plane wave data with different steering 

angles were beamformed and compounded to form pre-deformation images using the delay-

and-sum algorithm [78]. To form post-deformation images, the displacement fields generated 

by the FEM were applied on this model and the plane wave data on the deformed model were 

beamformed and compounded using the same steering angles. The CPWC image sequence was 



 

56 

filtered to generate CPWC&TO images. All beamformed images were contaminated with white 

Gaussian noise at a SNR of 20 dB. 

5.5.2 In vitro experiment description 

5.5.2.1 Phantom fabrication 

Two phantoms were built following the manufacturing description in [166]. The solution 

had a concentration of 10% by weight of polyvinyl alcohol dissolved in pure water and ethanol 

homopolymer. The weight percentage of added particles used as acoustic scatterers (Sigmacell 

cellulose, type 50, Sigma Chemical, St Louis, MO, USA) was 3%. The homogeneous phantom 

consisted in a 6 freeze-thaw cycles polyvinyl alcohol cryogel (PVA-C) material. The second 

phantom was constructed to mimic a heterogeneous vascular wall with a soft inclusion. The 

outer PVA-C layer was fabricated with 6 freeze-thaw cycles and the soft inclusion mimicking a 

lipid pool underwent 1 freeze-thaw cycle. The first homogeneous phantom without any 

inclusion had a modulus of 182 ± 21 kPa as measured by tensile test [166]. The heterogeneous 

phantom with a soft inclusion had a modulus of 25 ± 3 kPa [166], with the surrounding material 

at 182 ± 21 kPa. 

5.5.2.2 Experimental setup 

The experimental setup is analog to that illustrated in figure 2 of [18]. The intra-luminal 

pressure was monitored (Vivitro Labs Inc., Victoria, BC, Canada) and varied using a pulsatile 

pump (model 1421, Harvard Apparatus, Holliston, MA). Peak and minimum pressures were set 

at 120 and 60 mmHg, respectively, and an image sequence was acquired. To test the robustness 

of the different elastography estimators to different strains, the image sequence was down 

sampled using different time steps to produce frame rates from 500 s-1 to 9 s-1. 

5.5.2.3 Ultrasound data acquisition 

Cross-sectional RF images were acquired with a Sonix Touch ultrasonic system 

(Ultrasonix Medical Corp.) equipped with a linear array probe of 128 elements (L14-5/38). 

Plane wave ultrafast data at different steering angles were stored on the Sonix DAQ multi-
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channel system. A software development kit (TexoSDK, v6.0.1, Ultrasonix Medical Corp.) was 

used to generate and record plane wave data. Beamforming was performed in post-processing. 

5.5.3 The choice of TO filtering parameters 

As described in (5.3), the frequency pattern of the image formed by a TO filter is 

determined by two parameters, the expected lateral oscillation wavelength 𝜆𝑥 and the FWHM 

of the Gaussian envelope 𝜎𝑥. Intuitively, smaller are 𝜆𝑥 and 𝜎𝑥, wider is the spectrum of the 

filtered image and higher is the lateral TO frequency. However, too small 𝜆𝑥 and 𝜎𝑥 will filter 

most energy of the image and may induce the filter to only keep the noise. As a result, the proper 

TO filtering parameters 𝜆𝑥 and 𝜎𝑥 were determined via a simple simulation test. Two successive 

frames was selected from the simulated image sequence described in section 5.4.1 with a SNR 

of 20 dB. Different values of 𝜆𝑥 and 𝜎𝑥 were tested on this image pair 50 times. Parameters 

providing the least deviation between ground true FEM and computed elastograms were chosen 

for TO filtering in the remaining of this study. Considering the spectrum of compounded images 

and the window size of estimators, we set the test range of 𝜆𝑥 from 0.4 to 1 mm and that of 𝜎𝑥 

from 0.2 to 1 mm, with increments of 0.1 mm. 

5.5.4 Data analysis 

5.5.4.1 Principal strain  

The Cartesian strain tensor was transformed into the principal minor and major strain 

tensors, 𝜀𝑚𝑖𝑛, 𝜀𝑚𝑎𝑥, by using the following expression [167]: 

𝜀𝑚𝑖𝑛,𝑚𝑎𝑥 = 
𝑠𝑥𝑥+𝑠𝑧𝑧

2
± √(

𝑠𝑥𝑥−𝑠𝑧𝑧

2
)
2

+ (
𝑠𝑥𝑧+𝑠𝑧𝑥

2
)
2

,  (5.18) 

where 𝑠𝑥𝑥, 𝑠𝑧𝑧 are lateral and axial strains, and 𝑠𝑥𝑧, 𝑠𝑧𝑥 are corresponding shear components. 

When we used the incompressibility constraint, the lateral strain component 𝑠𝑥𝑥 was replaced 

by −𝑠𝑧𝑧 in this equation. 

In this study, otherwise specified, the principal strain map between consecutive frames 

was estimated for an image sequence. Then, principal strains were cumulated over the range of 

pressure considered. The largest cumulated strain map was chosen as the final elastogram. 
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5.5.4.2 Elastogram evaluation 

To evaluate simulated elastograms, the normalized root-mean-square-error (NRMSE) 

between FEM and estimated principal strains was used: 

 𝑁𝑅𝑀𝑆𝐸 =

√∑ (𝑟𝑒𝑓𝑖−𝑒𝑠𝑡𝑖)
2𝑁

𝑖=1
𝑁

𝑟𝑒𝑓𝑚𝑎𝑥−𝑟𝑒𝑓𝑚𝑖𝑛
,  (5.19) 

where N is the number of pixels in an elastogram, 𝑟𝑒𝑓 is the ground truth principal strain from 

the finite element analysis, and 𝑒𝑠𝑡 is the estimated strain from LSME or APBE algorithm. 

Since the ground truth strain value is unknown for in vitro experiments, we chose the 

SNR as the evaluation metric of elastograms for homogeneous and heterogeneous phantoms. 

The CNR was also used for the evaluation of elastograms of the heterogeneous phantom. 

𝑆𝑁𝑅 = 10𝑙𝑜𝑔 (
𝜇𝑟1

𝜎𝑟1

) + 10𝑙𝑜𝑔 (
𝜇𝑟2

𝜎𝑟2

),  (5.20) 

𝐶𝑁𝑅 = 10𝑙𝑜𝑔 (
2(𝜇𝑟1−𝜇𝑟2)

2

𝜎𝑟1
2 +𝜎𝑟2

2 ).  (5.21) 

Here, 𝜇𝑟1 , 𝜇𝑟2 and 𝜎𝑟1 , 𝜎𝑟2  are means and standard deviations of cumulated principal strains in 

selected ROIs 1 and 2. 

5.6 Results 

5.6.1 Optimal TO filtering parameters 

The test results on TO filtering parameter selection using different pairs of 𝜆𝑥 and 𝜎𝑥 are 

represented in figure 5.1(a). The smallest estimation deviation for principal strains was obtained 

for 𝜆𝑥 = 0.5 mm and 𝜎𝑥 = 0.4 mm. These values were used in the remaining of this study. 

Figure 5.1(b) presents the corresponding filtering mask as described by (5.3). 



 

59 

 

Figure 5.1 (a) The choice of TO filtering parameters using different pairs of 𝜆𝑥 and 𝜎𝑥. 

Here the test range of 𝜆𝑥 is from 0.4 mm to 1 mm and that for 𝜎𝑥 is from 0.2 mm to 

1 mm, with 0.1 mm increment. From this simulation, 𝜆𝑥 = 0.5 mm and 𝜎𝑥 = 0.4 mm 

provided the smallest estimation deviation (NRMSE) for principal strains and these values 

were chosen as the TO filtering parameters in our study. (b) The corresponding filtering 

mask. 

5.6.2 The heterogeneous vessel simulation study 

Figure 5.2(a)-(b) shows B-mode images of the heterogeneous artery simulation 

considering CPWC and CPWC&TO beamforming. Principal minor strains obtained with six 

configurations (CPWC&TO + APBE, CPWC&TO + APBET, CPWC&TO + APBET&I, 

CPWC&TO + LSMET, CPWC&TO + LSMET&I and CPWC + LSMET&I) are shown in figure 

5.2(d)-(i), respectively. We chose in figure 5.2(d) the time-ensemble length 𝑛𝑡 = 1 (i.e., no 

time-ensemble) for the APBE tested on CPWC&TO data (CPWC&TO + APBE), whereas 𝑛𝑡 =

8 for other five configurations (as described in Section 5.4.2.3). Visually, figure 5.2(e) presents 

less estimation errors than Fig. 5.2(d), which suggests that the time-ensemble approach 

improved the estimation accuracy of the APBE. Around 12 and 8 o’clock (outside soft and hard 

inclusions), the principal minor strain is expected to decrease with radial distance from the 

lumen, which is known as the strain decay phenomenon [168]. The strain decay is difficult to 

appreciate from figure 5.2(d)-(f). Quantitatively, the APBE with the incompressibility constraint 

and using the time-ensemble approach tested on CPWC images with TOs (figure 5.2(f)) 

provided the smallest estimation error (NRMSE = 10.6%) when compared with the APBE with 
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the time-ensemble approach tested on CPWC images with TOs, CPWC&TO + APBET (figure 

5.2(e), NRMSE = 13.0%) and the APBE tested on CPWC images with TOs, CPWC&TO + 

APBE (figure 5.2(d), NRMSE = 14.2%), which confirms that the combination of the time-

ensemble approach and incompressibility constraint improved the performance of the APBE. 

With the LSME, the principal minor strains in figure 5.2(g)-(i) provided more homogeneous 

and clear outlines of the soft inclusion than APBE elastograms. Moreover, the strain decay at 

12 and 8 o’clock is observed. The performance of the LSME, with and without the 

incompressibility constraint, tested on CPWC images with and without TOs (CPWC&TO + 

LSMET, CPWC&TO + LSMET&I and CPWC + LSMET&I) is overall comparable, with NRMSE 

at 9.0%, 8.6% and 8.4%, respectively. 

 

Figure 5.2 B-mode images and principal strains for a simulated vascular phantom with 

one soft inclusion and four hard inclusions. First row: the CPWC image and CPWC&TO 

image. Second row: ground truth of the principal minor strains from finite-element model 

and the principal minor strain estimated with the APBE on CPWC&TO data, the APBE 

using the time-ensemble approach on CPWC&TO data, the APBE using the 

incompressibility constraint and the time-ensemble approach on CPWC&TO data, the 

LSME using the time-ensemble approach on CPWC&TO data, the LSME using the 

incompressibility constraint and the time-ensemble approach on CPWC&TO data, and the 

LSME using the incompressibility constraint and the time-ensemble approach on CPWC 

data, whose NRMSE are 14.2%, 13.0%, 10.6%, 9.0%, 8.6%, 8.4%, respectively. Third 

row: ground truth of the principal major strains from finite-element model and the 

principal major strain estimated with the APBE and LSME using the same strategies, 

whose NRMSE are 17.4%, 14.5%, 12.9%, 9.6%, 9.4%, and 9.5%, respectively. 
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Regarding the principal major strain, the same conclusions apply. The APBE with the 

time-ensemble approach (figure 5.2(l)) showed less estimation artifacts than APBE without time 

averaging (figure 5.2(k)). However, both panels (k) and (l) did not delineate properly the soft 

inclusion around 4 to 6 o’clock. With the incompressibility constraint (panel (m)), the outline 

of the soft inclusion was better depicted. The NRMSE confirmed those visual observations; 

normalized errors were 17.4%, 14.5% and 12.9% for panels (k)-(m), respectively. With the 

LSME, the incompressibility constraint, CPWC&TO + LSMET&I (figure 5.2(o)) and CPWC + 

LSMET&I (figure 5.2(p)), allowed better outlines of the soft inclusion than the implementation 

without this constraint, CPWC&TO + LSMET (figure 5.2(n)). LSME provided better results 

compared with the three APBE implementations, with NRMSE at 9.6% (panel (n) with TO 

beamforming), 9.4% (panel (o) with TO beamforming), and 9.5% (panel (p) with no TO), 

respectively. 

5.6.3 In vitro experiments 

5.6.3.1 The homogeneous vascular phantom study 

Figure 5.3(a)-(c) shows a picture, and cross-sectional CPWC and CPWC with TOs B-

mode images of the homogeneous phantom without any inclusion. As done for the simulation 

study, the following description compares principal strains of six APBE and LSME 

implementations. APBE results in panels (d)-(f) confirmed the simulation study. Indeed, the 

time-ensemble approach and incompressibility constraint improved principal minor strain 

estimates but several artifacts are noticed on those elastograms. More consistent estimates were 

obtained with the LSME. The strain decay phenomenon is clearly seen in panels (g)-(i). 

Visually, a more homogeneous strain texture was obtained with the LSME that considered the 

time-ensemble and incompressibility constraint, and CPWC beamforming (i.e., the 

implementation of [18], see panel (i)). To evaluate quantitatively the performance of those 

implementations, two regions of interest were selected to calculate the SNR (dashed green lines 

in figure 5.3(i)). One was selected as a 4-mm radius circle surrounding the lumen, whereas the 

other was an arc from 3 to 8 o’clock 5 mm away from the lumen center. SNRs in figure 5.3(d)-

(i) are 11.1 dB, 11.3 dB, 12.0 dB, 15.9 dB, 14.2 dB and 16.5 dB, respectively. The best SNR 
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was obtained with the implementation of the LSME with the time-ensemble and 

incompressibility constraint on CPWC data (CPWC + LSMET&I). 

 

Figure 5.3 B-mode images and principal strains of a homogeneous phantom in vitro 

experiment. First row: the cross-section image of the phantom, the CPWC image and 

CPWC&TO image. Second row: the principal minor strains estimated with the APBE on 

CPWC&TO data, the APBE using the time-ensemble approach on CPWC&TO data, the 

APBE using the incompressibility constraint and the time-ensemble approach on 

CPWC&TO data, the LSME using the time-ensemble approach on CPWC&TO data, the 

LSME using the incompressibility constraint and the time-ensemble approach on 

CPWC&TO data, and the LSME using the incompressibility constraint and the time-

ensemble approach on CPWC data, whose SNRs are 11.1 dB, 11.3 dB, 12.0 dB, 15.9 dB, 

14.2 dB, 16.5 dB respectively. Third row: the principal major strains estimated with the 

APBE and LSME using the same strategies, whose SNRs are 7.2 dB, 7.5 dB, 12.0 dB, 8.9 

dB, 14.2 dB, and 16.5 dB, respectively. 

Regarding principal major strains of figure 5.3(j)-(o), visual observations are similar to 

those reported for principal minor strain elastograms. Overall, artifacts are observed on all strain 

maps and transverse oscillation beamforming seemed to emphasize the variance of both APBE 

and LSME estimators. With TO, the implementation of the incompressibility constraint (figure 

5.3(l) and (n)) provided more consistent estimation at 5 o’clock compared with cases without 
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that constraint (figure 5.3(k) and (m)). The best result was obtained with the LSME with the 

time-ensemble and incompressibility constraint on CPWC data, as confirmed by SNR results. 

On panels (j) to (o), SNRs are 7.2 dB, 7.5 dB, 12.0 dB, 8.9 dB, 14.2 dB and 16.5 dB, respectively. 

 

Figure 5.4 SNRs calculated from principal strains estimated with CPWC&TO + APBE, 

CPWC&TO + APBET, CPWC&TO + APBET&I, CPWC&TO + LSMET, CPWC&TO + 

LSMET&I, and CPWC + LSMET&I over a range of applied strains from 0.07% to 4.5%. (a) 

Principal minor strains. (b) Principal major strains. Five realizations were considered. 

Figure 5.4 presents the SNR analysis on principal strains for a wide range of applied 

strains (from 0.07% to 4.5%). Those results are confirming observations of figure 5.3 on 

cumulated strain maps at a frame rate of 500 s-1. Except for the highest strain of 4.5%, CPWC 

beamforming with LSME considering the time-ensemble and incompressibility constraint 

provided the best SNRs. The worse performance was obtained with APBE on CPWC images 

with TOs (CPWC&TO). The time-ensemble approach and incompressibility constraint 

improved SNRs of principal strains for both APBE and LSME. Especially, as seen in figure 

5.4(b), all implementations of the incompressibility constraint provided higher SNRs for 

principal major strains than implementations without that constraint. Differences in performance 

tended to decrease as the applied strain was increased. 
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5.6.3.2 The heterogeneous phantom study 

Figure 5.5 shows visual assessment of the heterogeneous phantom with a soft inclusion 

under the lumen, B-mode images using both beamforming approaches, and cumulated principal 

strain maps. Regarding principal minor strains, fewer artifacts are seen when the time-ensemble 

and then the incompressibility constraint were added to the APBE estimator. When compared 

with LSME implementations (panels (g)-(i)), more deformations are noticed within the soft 

inclusion for the different APBE estimates (panels (d)-(f)). In general, with the exception of a 

few artifacts at 3 o’clock, the soft inclusion was well delineated with LSME implementations. 

Some overestimation of the inclusion dimension is nevertheless noticed with the LSME 

implementation on CPWC data (CPWC + LSMET&I). For quantitative analyses, 5 small 

rectangles of 0.5 mm × 0.5 mm with the same distance away from the lumen center were selected 

(see white ROIs and the manual segmentation of the inclusion on panel (o)). Three ROIs were 

chosen within the soft inclusion that was manually segmented from B-mode images to calculate 

the SNR. The two others were selected out of the soft inclusion to calculate the CNR together 

with the above three ROIs. SNRs from left to right in Fig 5.5(d)-(i) were 7.6 dB, 9.5 dB, 18.3 

dB, 12.5 dB, 19.4 dB and 21.1 dB, respectively. CNRs were -5.2 dB, 4.1 dB, 10.2 dB, -2.6 dB, 

11.5 dB and 16 dB, respectively. According to SNR and CNR results, the best implementation 

is with the LSME considering the time-ensemble and incompressibility constraint on CPWC-

beamformed data (i.e., the benchmark reference of [18]). 

Regarding principal major strains, similar to previous results, all APBE implementations 

with CPWC&TO beamforming did not allow identifying the soft inclusion precisely. A lot of 

artifacts are also noticed with the LSME tested on CPWC&TO images when the 

incompressibility constraint was ignored (panel m). With the incompressibility constraint, the 

LSME provided clearer depiction of the inclusion (panels n and o). SNRs in figure 5.5(j)-(o) 

were 9.7 dB, 11.5 dB, 18.3 dB, 12.6 dB, 19.4 dB and 21.1 dB, respectively. CNRs were -8.5 

dB, 0.4 dB, 10.2 dB, 3.2 dB, 11.5 dB and 16.0 dB, respectively. Again, the LSME with the time-

ensemble and incompressibility constraint with CPWC beamforming provided the best results 

among all implementations. 
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Figure 5.5 B-mode images and principal strains of a heterogeous phantom in vitro 

experiment. First row: the cross-section image of the phantom, the CPWC image and 

CPWC&TO image. Second row: the principal minor strains estimated with the APBE on 

CPWC&TO data, the APBE using the time-ensemble approach on CPWC&TO data, the 

APBE using the incompressibility constraint and the time-ensemble approach on 

CPWC&TO data, the LSME using the time-ensemble approach on CPWC&TO data, the 

LSME using the incompressibility constraint and the time-ensemble approach on 

CPWC&TO data, and the LSME using the incompressibility constraint and the time-

ensemble approach on CPWC data, whose SNRs are 7.6.dB, 9.5 dB, 18.3 dB, 12.5 dB, 

19.4 dB, and 21.1 dB, respectively, and CNRs are -5.2 dB, 4.1 dB, 10.2 dB, -2.6 dB, 11.5 

dB, and 16 dB, respectively. Third row: the principal major strains estimated with the 

APBE and LSME using the same strategies, whose SNR are 9.7 dB, 11.5 dB, 18.3 dB, 

12.6 dB, 19.4 dB, and 21.1 dB, respectively, and CNRs are -8.5 dB, 0.4 dB, 10.2 dB, 3.2 

dB, 11.5 dB, and 16 dB, respectively. 
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Figure 5.6 SNRs and CNRs calculated from principal strains estimated with CPWC&TO 

+ APBE, CPWC&TO + APBET, CPWC&TO + APBET&I, CPWC&TO + LSMET, 

CPWC&TO + LSMET&I, and CPWC + LSMET&I over a range of applied strains from 

0.07% to 3.6%. (a), (b) SNRs for principal strains. (c), (d) CNRs for principal strains. Five 

realizations were considered. 

SNR and CNR analyses of elastograms over different applied strains, from 0.07% to 

3.6%, are given in figure 5.6. Overall, results are consistent with the visual observation of figure 

5.5. LSME configurations considering the time-ensemble and incompressibility constraint 

applied on CPWC images with (CPWC&TO + LSMET&I) and without TOs (CPWC + LSMET&I) 

still provided the highest SNRs and CNRs. Principal strains from the APBE with the time-

ensemble and incompressibility constraint on CPWC images with TOs (CPWC&TO + 

APBET&I) had higher SNRs and CNRs than the other two APBE implementations, which 

confirms again that the time-ensemble and incompressibility constraint improve the 

performance of this estimator. Similar to figure 5.4(b), configurations considering the 
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incompressibility constraint (CPWC&TO + APBET&I, CPWC&TO + LSMET&I and CPWC + 

LSMET&I) presented higher SNRs for principal major strains. With a few exceptions, CNRs 

were also higher for both principal minor and major strains when the incompressibility 

constraint was used (figure 5.6(c) and (d)). Except for the minimum strain of 0.07%, at 500 

images per second, and the maximum strain of 3.6%, transverse oscillation beamforming 

improved the performance of the LSME in terms of SNRs and CNRs for this specific phantom. 

5.7 Discussion 

The APBE proposed in [17] was applied on sectorial cardiac images of standard focusing 

with TOs. Although an affine model that could directly provide access to the deformation matrix 

was introduced, radial, circumferential and longitudinal strains were computed from the 

derivative of the displacement field. In the current study, we adapted the APBE for vascular 

applications by introducing a time-ensemble approach and an incompressibility constraint to 

directly assess deformations (no derivatives). The new APBE was shown to provide better strain 

estimations than the APBE implementation without time ensemble and incompressibility with 

simulations and in vitro experiments. Moreover, we combined CPWC and TO beamforming to 

obtain CPWC&TO images. The higher frame rate of CPWC&TO imaging compared with 

standard focusing imaging used in [17] provided smaller displacements between consecutive 

frames, which is an advantage since displacements must be smaller than half a wavelength for 

unbiased estimations with the APBE, as explained in Section 5.4.2.2. 

In addition, we evaluated the performance of the developed APBE against LSME. Two 

of the three LSME implementations (CPWC&TO + LSMET&I and CPWC + LSMET&I) 

outperformed the new APBE (CPWC&TO + APBET&I) with simulations and in vitro 

experiments. CPWC + LSMET&I provided better strain estimations than CPWC&TO + 

LSMET&I for homogeneous phantom experiments; but comparable or worse performance for 

simulations of the heterogeneous vessel or for the heterogeneous phantom depending on strain 

values. 
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5.7.1 Influence of TO filtering on the quality of CPWC images 

From simulations and in vitro results, as mentioned above, the APBE did not perform 

better than the LSME. TO filtering may be one of the reasons for that. Firstly, although TO 

filtering increases lateral textures of an image to facilitate lateral strain estimation, the filtering 

method used to create TOs is at the expense of losing in lateral resolution. Considering the point 

spread function (PSF) of a CPWC image (see figure 5.7(a)), we used (5.3) as a mask to multiply 

this spectrum to produce a PSF with TOs. This process is also viewed as a convolution of the 

PSF with a Gaussian function having two peaks modulated by 𝜆𝑥 and 𝜎𝑥. The lateral width of 

the resulting PSF with TOs is expanded due to this Gaussian function convolution (see figure 

5.7(b)). Moreover, TO filtering elevates the side lobe level despite narrowing the main lobe 

width. 

 

Figure 5.7 The point spread functions (PSF) and corresponding Fourier spectra of CPWC 

and CPWC&TO beamforming: (a) The PSF of the CPWC image, (b) the PSF of the 

CPWC&TO image, (c) the Fourier spectrum of (a), (d) the Fourier spectrum of (b). 
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Secondly, a CPWC image can be viewed as a wide band signal in the lateral direction 

from a Fourier spectrum analysis (see figure 5.7(c)). When the CPWC image is filtered by the 

band pass TO filter, the CPWC&TO image becomes a narrow band signal in the lateral direction 

(see figure 5.7(d)). The CPWC&TO spectrum is also subdivided from 2 to 4 main components, 

and as a consequence the spectral magnitude at given 2-D frequencies is reduced, which may 

violate the phase constancy assumption of the APBE, leading to less accurate strain estimations. 

Likewise, the increased beam width and reduced spectrum magnitude of filtered TO 

images also violate the intensity constancy assumption of the LSME inducing less accurate 

estimations (see performances of CPWC&TO + LSMET or CPWC&TO + LSMET&I versus 

CPWC + LSMET&I for the homogeneous phantom results of figure 5.4). However, the increased 

lateral oscillations improve image gradients, which was beneficial for the LSME as comparable 

(figure 5.2) and even better (figure 5.6) performances were obtained when comparing 

CPWC&TO + LSMET&I with CPWC + LSMET&I when the tissue structure was complex and 

heterogeneous. 

5.7.2 Influence of the affine model on the APBE 

The APBE implemented without an affine model and known as the PBE was shown to 

be able to track accurately 2D and 3D trajectories with simulated and in vitro data [22, 109, 

169]. The APBE proposed by others improved the lateral displacement estimation but provided 

a slightly less precise axial displacement measurement than the PBE [17]. One possible reason 

reported in the latter study [17] is that the affine model is more complex and is more prone to 

over-fitting than the simple PBE model in the presence of noise. Likewise, the same reason may 

apply to strain estimations with the APBE in our study, which included a minimization process 

to assess all displacement and deformation components simultaneously. Although the affine 

model has a low bias due to a precise description of the tissue motion, the increasing model 

complexity may also bring a high variance in the presence of noise, as discussed earlier when 

interpreting the performance of CPWC&TO images. 



 

70 

5.7.3 Bias and variance of the two strain estimators 

We hypothesize that the LSME providing better performance than the APBE could be 

due to the estimation variance. In the supervised learning field [170], the mean-squared error of 

a model prediction can be decomposed into the noise, the bias and the variance in the form: 

MSE = noise + bias2 + variance. The noise term is the inherent noise that cannot be reduced. 

The bias term is referred to how far the prediction is from the true value. The variance term is 

how much the prediction varies over multiple realizations of the model. Regarding the LSME 

versus APBE, the maximum detectable displacement in one direction with the APBE is half the 

wavelength of the oscillations in that direction [169]. The estimation bias of the LSME is also 

related to the range of displacements. To better clarify this issue, two simple 1-D versions of 

APBE (phase-based) and LSME (optical flow-based) methods were used to estimate 

displacements between a pair of 1-D sinusoids under ideal condition (i.e., no noise). The 

performance for different displacements is presented in figure 5.8. As seen, the optical flow 

LSME method can be viewed as a biased estimator [171], whereas the phase-based APBE 

method is able to provide unbiased estimations until the true displacement becomes less than 

half a wavelength [140]. When the true displacement is more than half a wavelength, the phase 

estimator provides aliased results. As also seen in figure 5.8, when the motion between 

consecutive frames is small enough (typically less than 0.2 𝜆) to be tractable using CPWC 

imaging, the bias of the LSME is small. Introducing a small bias into an estimator can reduce 

the estimation variance leading to an overall lower mean-squared error [172]. Therefore, we 

hypothesize that the reduced variance may account for the better performance of the LSME 

versus APBE. 

Besides abovementioned possible reasons for the poorer performance of the APBE with 

TO beamforming, we also investigated the impact of heterodyning demodulation to see if this 

approach, instead of the frequency domain filtering strategy used to produce lateral oscillations, 

could improve strain results. Readers are referred to the Appendix for more details. 
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Figure 5.8 Performance of the phase-based and optical flow-based estimators to estimate 

the displacement between a pair of 1-D sinusoidal signals under ideal condition (no noise 

added) for different displacements along x and y axes. 

5.7.4 Clinical value of this work 

The second most common death cause is stroke accounting for about 1 of 10 deaths in 

the world [173]. Stroke is mainly induced by atherosclerotic plaque rupture [174]. A prone-to-

rupture plaque is usually composed of a large lipid core covered by a thin fibrous cap [2]. In this 

study, a heterogeneous phantom with a soft inclusion was fabricated to simulate a pathological 

vulnerable condition. Two of the tested configurations (CPWC&TO + LSMET&I and CPWC + 

LSMET&I) revealed the existence of the soft inclusion, as identified by large deformations on 

principal minor strain (Fig. 5.5(h), (i)) and principal major strain (Fig. 5.5(n), (o)) maps. For the 

homogeneous phantom (Fig. 5.3(a)), the anticipated strain decay was noticed on elastograms 

(Fig. 5.3 (h), (i), (n), (o)). Thus, we confirm that the proposed incompressibility constraint and 

time-ensemble approach with CPWC and CPWC&TO configurations may help identifying 

features of vulnerable plaques (soft inclusion) and the strain decay of normal vessel walls. 
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5.7.5 Limitations and perspectives 

Lateral estimations (lateral strain and shear) of LSME and APBE were not as good as 

axial estimates due to the lower lateral resolution in ultrasound imaging. Because of the 

deleterious impact of this fact on principal strains, we used the incompressibility constraint to 

avoid using lateral strain estimates for some tested conditions. Nevertheless, we considered the 

lateral shear estimation that likely deteriorated the performance of both estimators. High 

resolution imaging approaches (e.g., minimum variance beamforming [75, 175]) may be helpful 

to improve the lateral shear (and lateral strain) estimation. This is an avenue that may deserve 

to be explored. 

In this study, we used the 2-D plane strain assumption for both LSME and APBE, and 

consequently the out-of-plane motion was not considered. This out-of-plane motion likely 

occurs if one considers non-homogenous human plaques and that motion may undermine the 

speckle or phase coherence in this direction. Fortunately, the models we presented here can be 

extended to 3-D. Combined with a 3-D data acquisition transducer, this would allow the LSME 

and APBE to estimate the full 3-D strain tensor while alleviating this assumption. In this study, 

the out-of-plane motion was also neglected for the incompressibility constraint. The isovolumic 

assumption used in Section 5.4.2.4 was indeed based on 3-D deformations. This is another 

aspect that would need to be further investigated. 

5.8 Conclusion 

In this paper, two affine model-based estimators were studied under the framework of 

high frame rate imaging. A time-ensemble approach and an incompressibility constraint were 

introduced to improve the performance of the affine phase-based estimator (APBE) for principal 

strain measurements. We also evaluated the performance of the APBE against the Lagrangian 

speckle model estimator (LSME), which also considered the time-ensemble strategy, with or 

without the incompressibility constraint. For all tested conditions, using the incompressibility 

constraint outperformed other implementations. In the simulation study, the LSME gave less 

principal strain estimation errors than the developed APBE. For the in vitro study, LSME 

elastograms provided higher SNRs for a homogeneous phantom, and higher SNRs and CNRs 

than the developed APBE over a wide range of strain values. In general, the LSME without TO 
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filtering provided better results. Nonetheless, comparable or better principal strain estimates 

could be obtained with the LSME and TO filtering in the case of complex and heterogeneous 

tissue structures (with the incompressibility assumption). 
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5.10 Appendix 

5.10.1  Impact of heterodyning demodulation on strain performance of the 

APBE 

The heterodyne demodulation has been shown recently to increase the lateral frequency 

and reduce the lateral beamwidth of the TO method [176, 177]. We thus applied this technique 

to see if it could also improve the performance of the APBE. We decomposed the APBE method 

to fit two heterodyning images whose oscillations are orthogonal. Specifically, only one 

quadrant of the spectrum of one analytic signal of the heterodyning demodulation was used. The 

strain components were derived using the affine model as we did in Section 5.4.2.2. The optimal 

parameters of TO images obtained with the heterodyne demodulation were also obtained using 

successive frames of the simulated carotid image sequence, which are 𝜆𝑥 = 0.5 mm and 𝜎𝑥 =

0.3 mm. Strain results are shown in figure 5.9. For these examples only, displacement and strain 

components without the incompressibility constraint are shown instead of principal strains to 

better appreciate the influence of the heterodyne demodulation on each motion component. The 

time ensemble approach was used. 

As seen in figure 5.9, no improvements are observed for the APBE when using the 

heterodyne demodulation. Two reasons may account for this. Firstly, the APBE may not benefit 

from the double oscillation frequency attributed to the heterodyne demodulation. This may be 

because the APBE is different from the phased-based zero crossing method in which a higher 

phase slope is helpful to locate the peak of the complex correlation function. The APBE is 
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directly applied to analytic signals, which do not require a higher oscillation frequency to enable 

a higher phase slope. Secondly, the APBE was developed in the framework of RF data 

demodulated in each direction (as for TO images). The heterodyne demodulation decomposes a 

TO image into a lateral oscillation image and an axial oscillation image, which correspond to 

two RF images. For each of them, only two analytical phases are used instead of four, as it is 

done for TO filtered images. The APBE has to derive axial and lateral estimations from axial 

and lateral demodulated images, respectively. The absence of modulation in one direction has 

an influence on the accuracy in the other direction (roughly 20% increase in errors compared 

with TO images) [109]. 

Although we found that the heterodyne demodulation did not improve the performance 

of APBE, it does not contradict conclusions of [177]. Since the context is different (TO filtering 

versus TO heterodyne beamforming, linear array versus phased array, affine model-based 

method versus correlation-based method, etc…), the comparison might be misleading because 

different types of images and estimators were considered. Firstly, in [177], the conclusion was 

based on the Cramer-Rao Lower Bound (CRLB) formulation to predict the minimum attainable 

standard deviation of the jitter of displacement estimates of an unbiased motion estimator. Three 

parameters determine the jitter in the CRLB equation, the decorrelation, frequency content and 

SNR of beamformed signals. Our affine-based estimators (APBE and LSME) are not 

correlation-based methods so decorrelation was not computed. Moreover, the LSME is a biased 

estimator which requires good image gradient correlation instead of image intensity correlation. 

Secondly, in the current study, we derived strains using an affine model and a minimization 

procedure. It is a nonlinear process that is more complex than deriving displacements. The 

conclusions on displacement estimations may thus not be applicable. According to results 

reported in this section, we judged inappropriate to also test the LSME estimator with 

heterodyne demodulated images. 
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Figure 5.9 Ground truth of motion components from finite-element model (first column) 

and motion components estimated with the APBE on CPWC&TO beamformed data 

(second column) and CPWC&TO with heterodyne demodulation data (third column). 

Note that the incompressibility constraint was not used to better appreciate the influence 

of the heterodyne demodulation on each motion component. The strain components were 

also not combined to obtain principal strains for this example. 
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Chapter 6 : Investigation of out-of-plane motion artifacts 

in 2D noninvasive vascular ultrasound elastography 

6.1 Introduction to manuscript 

This chapter reproduces the content of a published article ‘Investigation of out-of-plane 

motion artifacts in 2D noninvasive vascular ultrasound elastography’ in the journal Physics in 

Medicine & Biology (Vol. 63, No. 24, p. 245003, 2018) by Hongliang Li, Boris Chayer, Marie-

Hélène Roy Cardinal, Judith Muijsers, Marcel van den Hoven, Zhao Qin, Marc Gesnik, Gilles 

Soulez, Richard G. P. Lopata and Guy Cloutier after evaluation by a peer review committee. 

The following is the order of authors for this published article and corresponding 

affiliations: 

Hongliang Li1,2, Boris Chayer1, Marie-Hélène Roy Cardinal1, Judith Muijsers3, Marcel van den 

Hoven3, Zhao Qin1, Marc Gesnik1, Gilles Soulez2,4,5, Richard G. P. Lopata3, and Guy 

Cloutier1,2,4 

1 Laboratory of Biorheology and Medical Ultrasonics, University of Montreal Hospital Research 

Center (CRCHUM), Montréal, QC, Canada; 

2 Institute of Biomedical Engineering, University of Montreal, Montréal, QC, Canada; 

3 Cardiovascular Biomechanics, Department of Biomedical Engineering, Eindhoven University 

of Technology, Eindhoven, Netherlands; 

4 Department of Radiology, Radio-Oncology and Nuclear Medicine, University of Montreal, 

Montréal, QC, Canada; 

5Department of Radiology, University of Montreal Hospital, Montréal, QC, Canada. 

The contributions of all authors of the published article is detailed below: 

Hongliang Li: Designed and conducted in vitro experiments, implemented RF data acquisition 

and beamforming methods, performed the post-processing and analysis of in vitro data, 

developed post-processing algorithms and performed analysis of clinical data, drafted the 

manuscript and responded to the reviewer’s comments of the article.  
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Boris Chayer: Contributed to designing the in vitro experimental setup, fabricated the carotid 

bifurcation phantom.  

Marie-Hélène Roy Cardinal: Contributed to the interpretation of results and the revision of the 

manuscript. 

Judith Muijsers: Contributed to the in vitro experimental protocol as a master intern from 

Eindhoven University of Technology.  

Marcel van den Hoven: Designed the carotid bifurcation phantom as a master intern from 

Eindhoven University of Technology. 

Zhao Qin: Contributed to plaque identification and segmentation of clinical data using an in 

house computer platform. 

Marc Gesnik: Contributed to in vitro data acquisition through his expertise with the Verasonics 

research scanner. 

Gilles Soulez: Performed clinical data acquisition and plaque segmentation and contributed to 

manuscript corrections. 

Richard G. P. Lopata: Collaborated with LBUM as the supervisor of the two master interns from 

Eindhoven University of Technology and contributed to manuscript corrections. 

Guy Cloutier: Supervised this work as the research director. Contributed to the interpretation of 

results as the project director. Corrected and finalized the manuscript for submission and revision. 

6.2 Abstract 

Ultrasound noninvasive vascular elastography (NIVE) has shown its potential to 

measure strains of carotid arteries to predict plaque instability. When two-dimensional (2-D) 

strain estimation is performed, either in longitudinal or cross-sectional view, only in-plane 

motions are considered. The motions in elevation direction (i.e., perpendicular to the imaging 

plane), can induce estimation artifacts affecting the accuracy of 2-D NIVE. The influence of 

such out-of-plane motions on the performance of axial strain and axial shear strain estimations 

has been evaluated in this study. For this purpose, we designed a diseased carotid bifurcation 

phantom with a 70% stenosis and an in vitro experimental setup to simulate orthogonal out-of-
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plane motions of 1 mm, 2 mm and 3 mm. The Lagrangian speckle model estimator (LSME) was 

used to estimate axial strains and shears under pulsatile conditions. As anticipated, in vitro 

results showed more strain estimation artifacts with increasing magnitudes of motions in 

elevation. However, even with an out-of-plane motion of 2.0 mm, strain and shear estimations 

having inter-frame correlation coefficients higher than 0.85 were obtained. To verify findings 

of in vitro experiments, a clinical LSME dataset obtained from 18 participants with carotid 

artery stenosis was used. Deduced out-of-plane motions (ranging from 0.25 mm to 1.04 mm) of 

the clinical dataset were classified into three groups: small, moderate and large elevational 

motions. Clinical results showed that pulsatile time-varying strains and shears remained 

reproducible for all motion categories since inter-frame correlation coefficients were higher than 

0.70, and normalized cross-correlations between radiofrequency images were above 0.93. In 

summary, the performance of LSME axial strain and shear estimations appeared robust in the 

presence of out-of-plane motions (< 2 mm) as encountered during clinical ultrasound imaging. 

6.3 Introduction 

The second most common death cause is stroke and it is responsible for about 1 of 10 

deaths in the world [173]. Atherosclerotic carotid plaque rupture is responsible for 20% of 

ischemic stroke [174]. Ultrasound noninvasive vascular elastography (NIVE) has shown its 

potential to evaluate plaque stiffness to predict plaque instability. NIVE utilizes the motion of 

the vessel wall caused by the natural cardiac pulsation to estimate strain fields of a plaque. Since 

the theoretical framework of NIVE was proposed [10], several noninvasive carotid strain 

algorithms have been developed and tested in phantom experiments, animal models or human 

subjects to identify vulnerable plaques [6, 25, 94, 178-181]. Hasegawa and Kanai proposed a 

phase-tracking method to estimate radial strain of a carotid arterial wall in longitudinal image 

view [182]. Some cross-correlation-based techniques have also been used to estimate two-

dimensional (2-D) strain tensors [12, 137, 147, 183]. Recently, Porée et al. proposed a 

constrained and time-ensemble approach to improve the optical flow-based Lagrangian speckle 

model estimator (LSME) [18]. In that report, robust 2-D motion estimations in cross-sectional 

image view were obtained using coherent plane wave compounding imaging. 
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When 2-D strain estimation is performed in cross-sectional or longitudinal image view, 

only in-plane motions are estimated to depict axial (along the ultrasound beam) and lateral 

(perpendicular to it) deformations. Since carotid wall motions are three-dimensional (3-D) and 

periodic, they are not constrained to the imaging scan plane directions. A region of interest 

(ROI) may periodically be in and out of the scan plane due to vessel motion in elevation 

direction (i.e., perpendicular to the imaging plane); this phenomenon is known as out-of-plane 

motion. Brusseau et al. [24] assessed the influence of out-of-plane motion on quasi-static 

elastography by tracking a 2-D ROI with a 3-D search scheme. For this purpose, a specific multi-

row ultrasound probe was designed to acquire three adjacent imaging planes by activating 

different element rows sequentially. In the field of 3-D freehand breast or musculoskeletal 

ultrasound, speckle correlation of consecutive images was found to decrease with out-of-plane 

motions [184]. The elevational probe motion deduced from the speckle decorrelation has thus 

been used to provide probe tracking information for 3-D reconstruction [185-187]. For 2-D 

NIVE, it was also hypothesized that out-of-plane motions induced estimation artifacts due to 

reduced image correlation. Fekkes et al. [23] evaluated a cross-correlation-based 2D strain 

estimator on a 3-D atherosclerotic carotid artery simulation model considering out-of-plane 

motion. In that study, a longitudinal vessel motion [188] was simulated and superimposed on a 

model mimicking out-of-plane motion for strain estimation performed in cross-sectional view. 

To our knowledge, the influence of out-of-plane motion on the performance of carotid artery 

strain estimation has not yet been evaluated experimentally. 

In this study, we designed an experimental setup to simulate periodic out-of-plane 

motion with varying magnitudes by an oscillating linear ultrasound probe. An in vitro study was 

conducted on a diseased carotid artery phantom with a soft plaque to evaluate LSME strain 

performance in longitudinal and cross-sectional views. In addition, the LSME accuracy 

regarding different degrees of out-of-plane motion was also investigated with a clinical dataset. 
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6.4 Materials and methods 

6.4.1 Phantom fabrication 

In vitro experiments were performed on a carotid bifurcation phantom with a soft 

inclusion made of polyvinyl alcohol cryogel (PVA-C) material. The geometry of the phantom 

was based on a CT scan of a healthy volunteer [189]. A custom made acrylonitrile butadiene 

styrene (ABS) mold was created by modifying the CT-scan lumen geometry to consider a 70% 

stenosis, using the 3-D printing technology (Dimension Elite, Stratasys Inc., Eden Prairie, MN, 

USA). A gap between the mold and the vessel core allowed pouring a PVA-C wall thickness of 

2 mm through an inlet, as shown in figure 6.1(a). The solution was made of 10% by weight 

concentration of PVA-C dissolved in pure water and mixed with 3% by weight of 50 μm 

cellulose particles (Sigmacell, type 50, Sigma Chemical, St. Louis, MO, USA) to provide 

acoustic scatterers. The PVA-C solution was injected into the mold at a temperature of 45 oC. 

The viscous fluid prevented cellulose particles from sinking after injection. Once injected, the 

molded PVA-C was immediately put inside a freezer to undergo freeze-thaw cycles, which 

started with a plateau at -20 oC. The thin phantom wall froze in a few minutes, which also 

prevented sinking of cellulose particles. The phantom wall underwent 6 freeze-thaw cycles at 

temperature characteristics defined in [166]. 

The atherosclerotic plaque mold (green part in figure 6.1(a)) was 1 mm smaller than the 

stenosis allowing the fabrication of a 1 mm thick cap of PVA-C around the soft inclusion. A 

second inlet (plaque inclusion inlet in figure 6.1(a)) was added to the mold to inject liquid PVA-

C to fill the cap. The PVA-C inside the inclusion underwent 1 freeze-thaw cycle to simulate a 

softer plaque in the upper wall of the internal carotid artery. Young’s moduli of the phantom 

wall and soft inclusion measured by tensile test were 342 ± 24 kPa and 17 ± 3 kPa, 

respectively, which is consistent with previous results [166]. According to reported speeds of 

sound and sample densities for 1 and 6 freeze-thaw cycles [166], acoustic impedances of the 

soft inclusion and wall of the PVA-C phantom are estimated at 1.57 × 106 kg m-2 s-1 and 1.63 × 

106 kg m-2 s-1, respectively. A photograph of the fabricated diseased carotid bifurcation phantom 

is shown in figure 6.1(b). Phantom dimensions are listed in Table 6-1. 
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Table 6-1 The dimension parameters of a carotid bifurcation phantom with a soft 

plaque with 70% stenosis. 

Dimension parameters Dimensions 

Wall thickness 2 mm 

Length 123 mm 

Common carotid artery (CCA) internal diameter 6 mm 

Internal carotid artery (ICA) internal diameter 5 mm  

External carotid artery (ECA) internal diameter 4 mm  

Plaque size  10 mm × 4 mm 

 

Figure 6.1 (a) The mold and vessel core of a carotid bifurcation phantom with a soft plaque 

with 70% stenosis. (b) The polyvinyl alcohol cryogel phantom. 

6.4.2 In vitro experimental setup 

As illustrated in figure 6.2, the carotid bifurcation phantom was suspended in a water 

tank and its lumen was filled with degassed saline (5% salt) to reduce specular reflection and 
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refraction at the phantom-liquid interface due to speed of sound differences between both media 

[12, 18, 145]. The speed of sound in 5% saline at room temperature (25°C) is 1550 m/s [190], 

which is comparable to speeds of sound of the PVA-C material after 6 freeze-thaw (1550 m/s) 

and 1 freeze-thaw (1525 m/s) cycles [166]. The phantom ends were connected to hard inlets of 

the water tank to reduce longitudinal motion from the pump pulsation. Ring clamps and threads 

were used at both ends of the phantom to tighten the vessel and prevent leaking. The intra-

luminal pressure was varied using a pulsatile pump (model 1421, Harvard Apparatus, Holliston, 

MA, USA) and monitored using a ViVitest software system (Vivitro Labs Inc., Victoria, BC, 

Canada). Maximum and minimum pressures controlled by a water column connected to the 

main tubing were 110 and 65 mmHg, respectively. The stroke rate of the pulsatile pump was set 

to 72 beats per minute to simulate the resting heart rate of an adult. 

 

Figure 6.2 In vitro experimental setup diagram. Panel (a) demonstrates longitudinal view 

acquisitions. Panel (b) displays cross-sectional view acquisitions. 

Panel (a) in figure 6.2 shows data acquisition in longitudinal view. A linear array 

transducer, whose scanning axis was parallel to the 𝑥 direction of the setup, was attached to a 

mini-shaker (type 4810, Brüel and Kjær, Naerum, Denmark) to generate out-of-plane motions 

(for practical reason, we moved the probe instead of the vessel phantom). The mini-shaker was 
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driven to vibrate as a 1.2 Hz sinusoid. The frequency and trace of the out-of-plane motion were 

set by a waveform generator and magnitudes of vibration were adjusted by a power amplifier 

(type 2706, Brüel and Kjær, Naerum, Denmark). Three out-of-plane motion magnitudes were 

investigated: 1 mm, 2 mm and 3 mm. The magnitudes were calibrated using a sonomicrometry 

system (Sonometrics Corporation, London Ontario, Canada). Panel (b) in figure 6.2 presents 

data acquisition in cross-sectional view with the probe scanning axis parallel to the 𝑦 direction. 

Other technical parameters were the same as longitudinal view acquisitions. 

6.4.3 Image acquisitions and reconstructions 

6.4.3.1 In vitro experiments 

In vitro ultrafast plane wave data were acquired with a Verasonics research scanner (V1-

128, Verasonics Inc., Redmond, WA, USA) at a sampling frequency of 20 MHz. The full 

aperture of a 5 MHz linear array transducer with 128 elements (ATL L7-4, Philips, Bothell, 

WA, USA) was used to transmit and receive plane waves, and a rectangular window apodization 

function was considered for beamforming. Radiofrequency (RF) data with eleven emissions 

between −5° to 5° with a 1° increment were beamformed using the Stolt’s f-k migration [191], 

which allowed a frame rate of 400 s-1. RF images were reconstructed on a regular Cartesian grid 

with 39 × 75 μm (axial × lateral) sampling distances. The duration of acquisitions was set to 

2.5 s corresponding to three cycles of the pulsatile pump. There were thus 1023 frames in a 

whole image sequence. 

6.4.3.2 Clinical study 

To verify findings of in vitro experiments, we performed NIVE on a clinical dataset 

obtained from 18 recruited participants with carotid artery stenosis of 50% or greater. Exclusion 

criteria were severe vascular calcifications impeding Doppler imaging, and internal carotid 

artery (ICA) for which there was previous radiotherapy in the neck region, endarterectomy or 

stenting. The study was approved by the human ethical review board of the Centre Hospitalier 

de l’Université de Montréal. Participants signed an informed consent. 

Data acquisition details followed procedures described in previous studies [70, 192]. 

Specifically, RF data of ICA plaques were acquired by an experienced radiologist. A Sonix 
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ES500 RP ultrasonic system (Ultrasonix Medical Corp., Richmond, BC, Canada) equipped with 

a L14-5/38 linear array probe (with 128 elements and a 7.2 MHz center frequency) was used. 

Both longitudinal and cross-sectional scans were performed at the plaque location. We used 

line-by-line focused imaging instead of coherent plane wave compounding beamforming, as in 

the in vitro phantom study, because clinical RF data were acquired between April 2005 to 

December 2010 [192]. RF signals were sampled at 20 MHz and reconstructed on a regular 

Cartesian grid with 39 × 150 μm (axial  × lateral) sampling distances. The frame rate for RF 

data was between 19-25 Hz depending on depth of ultrasound images. RF sequences were 

acquired for 3-5 seconds. During the acquisition, once the plaque imaging view was localized, 

the radiologist held the probe static to reduce out-of-plane motions caused by the moving probe. 

Moreover, participants were asked to hold breath and keep still to avoid further motions between 

the probe and the carotid artery. 

6.4.3.3 Comparison of experimental conditions 

An additional line-by-line focused imaging in vitro phantom experiment was performed 

using the Sonix ES500 RP scanner (L14-5/38 probe) to clarify the probe independence on 

reported results. Additionally, to interpret differences between in vitro and clinical results 

(explained later in Discussion), a line-by-line focused imaging experiment on phantom was 

performed using the Verasonics scanner (L7-4 probe) to compare with coherent plane wave 

compounding (CPWC) imaging. To be consistent with the clinical study, line-by-line 

beamformed data in longitudinal view regarding out-of-plane motions of 1 mm, 2 mm and 3 

mm were reconstructed at a resolution of 39 × 150 μm (axial  × lateral) and a frame rate of 25 

s-1. 

6.4.4 Noninvasive vascular elastography 

To characterize complex and non-rigid plaque tissue motions, strain-based elastography 

was used. The optical flow based Lagrangian speckle model estimator (LSME) [18] is able to 

obtain axial strain and shear elastograms directly into a single minimization process. The optical 

flow model is described briefly in Appendix (see section 6.9.1) and more details can be found 

in [18, 25]. The implementation of this algorithm is briefly described here. 
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Firstly, contours of the vascular plaque on a single frame in the middle of the image 

sequence were manually drawn to generate a ROI. An automatic segmentation algorithm [193] 

was used to propagate the ROI on remaining frames. The ROI was subdivided into small 

measurement windows (MW). The MW size was set at 1.5×1.5 mm with the same 80% overlap 

in axial and lateral directions for in vitro measures, and at 1.5×3 mm with 95% and 90% overlaps 

in axial and lateral directions, respectively, for clinical data. The MW size and overlaps were 

kept the same as in previous clinical studies [70, 192]. Secondly, a rigid registration using 2-D 

Fourier-based ensemble-correlations [155] was performed for each small MW between pre- and 

post-deformed RF images to account for large displacements. Then, the axial strain and shear 

derived from the optical flow equation were computed using a weighted least-squares method 

[156] from registered pre- and post-deformed MWs. Finally, a sequence of 2-D axial strain and 

axial shear elastograms were used to calculate time-varying maximum and mean strain and shear 

curves. Only mean strains within ROIs were analyzed for the clinical dataset. 

6.4.5 Data analysis 

To evaluate the influence of in vitro out-of-plane motions on time-varying strain and 

shear curves, correlation coefficients between deformations without out-of-plane motion and 

different elevational motion magnitudes were computed. For example, to compute the 

correlation coefficient between elastography curves without out-of-plane motion (S0) and 1 mm 

out-of-plane motion (S1), two complete peak-to-peak cycles were selected from each curve. 

Elastography curve values (sampled at 400 Hz) of each cycle for S0 was used to calculate 

correlation coefficients with those of each cycle for S1. Thus, four correlation coefficients were 

obtained to compute the mean correlation coefficient and the standard deviation. The mean and 

standard deviation were not computed for S0 since only two cycles were available. The same 

procedure was used to correlate S0 with S2 (2 mm motion) and S3 (3 mm motion) acquisitions. 

For the clinical study, out-of-plane motion is intrinsic due to vessel pulsation during 

ultrasound scan, which is impossible to determine with only 2-D cross-sectional or longitudinal 

image view. However, for an image sequence in longitudinal view, the out-of-plane motion in 

elevation can be estimated by the lateral translation of a plaque ROI in cross-sectional view. 

This can be done with 2-D block matching algorithms [194, 195]. In the current study, the range 
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of cumulated lateral translation (RoCLT) for each cardiac cycle was derived by implementing 

such block matching method. A 2-D cross-correlation-based algorithm [196] considering 

temporal intensity variation of the reference block, using Kalman filtering, was applied on 

reconstructed cross-sectional B-mode images. The mean RoCLT assessed over all available 

cardiac cycles of a participant was averaged and considered as an estimation of the out-of-plane 

motion of the same plaque in the corresponding image sequence in longitudinal view. Only 

longitudinal elastography results of the clinical dataset are reported in this study. 

Unlike in vitro analysis where results could be compared between different out-of-plane 

motions and no motion, there was no reference to compare with (i.e., no out-of-plane motion) 

for the clinical dataset. To assess the quality of strain estimation, two metrics were used to 

evaluate the reproducibility of strain curves, namely the correlation coefficient as for the in vitro 

study and the normalized cross-correlation (NCC), For the correlation coefficient, cycles of each 

strain curve were selected manually. Every two different cycles were used to calculate 

correlation coefficients. We also computed NCC between all pairs of consecutive RF images: 

the preceding image and the motion-compensated image, similar to [197, 198]. Specifically, a 

given 𝑖th RF frame in an image sequence was warped into the (𝑖 + 1)th RF frame coordinate 

system using the estimated 2-D motion field between 𝑖th and (𝑖 + 1)th frames. NCC between 

motion-compensated 𝑖th RF image and (𝑖 + 1)th RF image was calculated for the whole image 

sequence. In this study, the motion compensation process consisted in an affine model 

considering displacements and strains from LSME estimations. The rationale behind this metric 

is that less out-of-plane motion between two consecutive RF frames may provide higher NCC 

values since more robust 2-D motions were used for compensation. On the other hand, larger 

out-of-plane motion affecting strain estimation accuracy should be associated with smaller NCC 

values. Moreover, parts of strain curves associated with severe out-of-plane motion could be 

identified by the occurrence of small NCC values. 
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Figure 6.3 Time-varying maximum strain curves (a) and mean strain curves (b) in 

longitudinal view. The out-of-plane motions are 0 mm, 1 mm, 2 mm, and 3 mm 

respectively from left to right. (c) Axial strain maps at peak dilation for the first flow cycle 

(red circle in (b)) of the segmented plaque superimposed on the reconstructed B-mode 

images. (d) Axial strain maps at peak compression for the first flow cycle (blue circle in 

(b)) of the segmented plaque superimposed on the reconstructed B-mode images. 



 

88 

6.5 Results 

6.5.1 Influence of out-of-plane motions on in vitro images in longitudinal 

and cross-sectional views 

6.5.1.1 Longitudinal view image analysis 

Figure 6.3(a) presents time-varying maximum strain curves (MaxSCs) for no motion and 

out-of-plane motions of 1 mm, 2 mm and 3 mm. Qualitatively, MaxSCs with 1 mm and 2 mm 

out-of-plane motions are similar to the curve without motion. However, it is more difficult to 

identify pulsatile cycles on MaxSC with 3 mm out-of-plane oscillations. Figure 6.3(b) shows 

similar results for time-varying mean strain curves (MeanSCs). Although three pulsatile cycles 

can be identified on MeanSC for the 3 mm out-of-plane motion, peak values are smaller than in 

the case of no motion. Axial strain maps superimposed on reconstructed B-mode images are 

shown in figure 6.3(c) and (d). 

 

Figure 6.4 Correlation coefficients of time-varying maximum and mean strain curves 

regarding different out-of-plane motions in longitudinal view. For maximum strain 

curves, the correlation coefficients are 0.998,  0.985 ± 0.004,  0.920 ± 0.008 and 

0.643 ± 0.158 respectively for out-of-plane motions of 0 mm, 1 mm, 2 mm and 3 mm. 

For mean strain curves, correlation coefficients are 0.999,  0.979 ± 0.016,  0.953 ±
0.021 and 0.818 ± 0.019 respectively for out-of-plane motions of 0 mm, 1 mm, 2 mm 

and 3 mm. 
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Figure 6.4 shows correlation coefficients of MaxSC and MeanSC for out-of-plane 

motions of 0 mm, 1 mm, 2 mm, and 3 mm. Out-of-plane motions up to 2 mm gave correlation 

coefficients higher than 0.9 for MaxSC. Higher correlation coefficients were obtained for 

MeanSCs. The general trend is a reduction of correlation coefficients with increasing out-of-

plane motions. Correlation coefficient results for maximum and mean axial shears are given in 

Appendix (figure 6.11). 

6.5.1.2 Cross-sectional view image analysis 

Results of time-varying MaxSCs revealed similar behavior for 0 mm and 1 mm out-of-

plane motions (figure 6.5(a)). Although some outliers are identified for the 2 mm oscillating 

motion, the overall trend is also similar. By comparison, there are more outliers on MaxSC for 

the 3 mm out-of-plane motion, which hinders the periodicity of the strain curve. Panel (b) 

depicts results for time-varying MeanSCs. With 1 mm and 2 mm out-of-plane motions, results 

look consistent with that without motion. At 3 mm motion, it is again difficult to identify 

pulsatile cycles. Axial strain maps superimposed on reconstructed B-mode images are seen in 

figure 6.5(c) and (d) for two moments within a cycle. 

Correlation coefficients of MaxSCs and MeanSCs for different out-of-plane motions in 

cross-sectional view are shown in figure 6.6. Overall, conclusions are similar to those reported 

for longitudinal view data. At the largest motion of 3 mm, MaxSCs were still severely affected 

as in longitudinal view; mean correlations were around 0.6. Figure 6.12 in Appendix shows 

correlation coefficients for time-varying maximum and mean shear curves in cross-sectional 

view. 
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Figure 6.5 Time-varying maximum strain curves (a) and mean strain curves (b) in cross-

sectional view. The out-of-plane motions are 0 mm, 1 mm, 2 mm, 3 mm respectively from 

left to right. (c) Axial strain maps at peak dilation for the first flow cycle (red circle in (b)) 

of the segmented plaque superimposed on the reconstructed B-mode images. (d) Axial 

strain maps at peak compression for the first flow cycle (blue circle in (b)) of the 

segmented plaque superimposed on the reconstructed B-mode images. 
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Figure 6.6 Correlation coefficients of time-varying maximum and mean strain curves 

regarding different out-of-plane motions in cross-sectional view. For maximum strain curves, 

the correlation coefficients are 0.997,  0.964 ± 0.002,  0.857 ± 0.023 and 0.608 ± 0.087 

respectively for out-of-plane motions of 0 mm, 1 mm, 2 mm and 3 mm. For mean strain 

curves, the correlation coefficients are 0.999,  0.982 ± 0.002,  0.919 ± 0.005 and 0.832 ±
0.004 respectively for out-of-plane motions of 0 mm, 1 mm, 2 mm and 3 mm. 

6.5.2 Influence of out-of-plane motions on clinical images 

In this study, the mean carotid plaque lateral displacement in cross-sectional view for 18 

participants was 0.63 mm, with maximum and minimum values at 1.04 mm and 0.25 mm, 

respectively. Those values were considered as the anticipated out-of-plane motions in 

longitudinal view. We divided them into three groups, small, moderate and large out-of-plane 

motions, with equal range (around 0.27 mm). Examples of MeanSCs from clinical images with 

small, moderate and large out-of-plane motions are shown in figure 6.7(b), (d) and (f), 

respectively. Corresponding axial strain maps at peak compression of the segmented plaque 

superimposed on reconstructed B-mode images are presented in figure 6.7(a), (c) and (e). As 

indicated by the orange dotted line in figure 6.7(b), (d) and (f), NCC curves revealed higher 

values after dilation and compression peaks of strain curves. Figure 6.8 shows correlation 

coefficients of mean strain curves and mean NCC values for clinical data with small, moderate 



 

92 

and large out-of-plane motions. Figure 6.13 presents correlation coefficients of mean shear 

curves and mean NCC values for the same motion categories. 

 

Figure 6.7 Examples of axial strain maps at peak compression of the segmented plaques 

superimposed on reconstructed B-mode images of clinical data with mean out-of-plane 

motions of 0.37 mm (a), 0.64 mm (c) and 0.90 mm (e). Corresponding time-varying mean 

strain curves and normalized cross-correlation (NCC) curves of motion-compensated RF 

images (b), (d) and (f). 
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Figure 6.8 Correlation coefficients of mean strain curves regarding out-of-plane motion 

ranges of 0.24 - 0.51 mm, 0.51 - 0.78 mm, and 0.78 – 1.05 mm, whose sample sizes are 

5, 7 and 6 participants, respectively. Correlation coefficients are 0.796 ± 0.096,  0.768 ±
0.043 and 0.744 ± 0.044, respectively, and corresponding mean normalized cross-

correlation (NCC) values are 0.954 ± 0.013,  0.947 ± 0.026 and 0.936 ± 0.022 for 

these three groups of out-of-plane motions. 

6.5.3 Evaluation of the probe independence 

Figure 6.4 above presented in vitro experimental results on axial strains using the L7-4 

probe (5 MHz). To confirm that those results are not probe dependent and could be used to 

interpret clinical data acquired with the L14-5/38 probe (7.2 MHz), figure 6.9 shows correlation 

coefficients of MaxSC and MeanSC for different out-of-plane motions using that latter probe 

coupled to the Ultrasonix scanner. Similar to experiments with the L7-4 probe, both MaxSC and 

MeanSC were characterized by correlation coefficients higher than 0.83 for 1 and 2 mm out-of-

plane motions, confirming the robustness of strain estimations. 
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Figure 6.9 Correlation coefficients of time-varying maximum and mean strain curves 

regarding different out-of-plane motions in longitudinal view using the Ultrasonix scanner 

(L14-5/38 probe) for in vitro experiments. For maximum strain curves, correlation 

coefficients are 0.945,  0.907 ± 0.034,  0.838 ± 0.035 and 0.560 ± 0.015 for out-of-

plane motions of 0 mm, 1 mm, 2 mm and 3 mm, respectively. For mean strain curves, 

correlation coefficients are 0.964,  0.955 ± 0.036,  0.904 ± 0.028 and 0.803 ± 0.062 

for the same out-of-plane motions, respectively. 

6.5.4 Comparison of different beamforming strategies 

Correlation coefficients of maximum and mean axial strains determined using the 

Verasonics scanner (L7-4 probe) for CPWC and line-by-line focused imaging beamforming are 

presented in figure 6.10. CPWC results correspond to those of figure 6.4. As seen, both 

correlation coefficients of maximum and mean strains from CPWC imaging are higher than 

those obtained with focused imaging. 
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Figure 6.10 Correlation coefficients of time-varying maximum and mean strain curves 

regarding different out-of-plane motions in longitudinal view using the Verasonics 

scanner (L7-4 probe) with focused imaging and coherent plane wave compounding 

(CPWC) imaging for in vitro experiments considering out-of-plane motions of 0 mm, 1 

mm, 2 mm and 3 mm. For maximum strain curves using focused imaging, correlation 

coefficients are 0.985,  0.877 ± 0.029,  0.800 ± 0.011 and 0.599 ± 0.061, respectively. 

For mean strain curves using focused imaging, correlation coefficients are 

0.992,  0.973 ± 0.010,  0.873 ± 0.007 and 0.691 ± 0.014, respectively. For maximum 

and mean strain curves using CPWC imaging, correlation coefficients have been reported 

in figure 6.4. 

6.6 Discussion 

Out-of-plane motion is unavoidable when performing 2-D strain imaging due to vessel 

3-D displacements. Since a 1D linear array probe only provides a 2-D scan plane, it is difficult 

to characterize motion information in elevation (i.e., outside the imaging plane). To evaluate the 

impact of such out-of-plane motion on strain and shear estimates with in vitro and clinical data, 

we investigated it systematically using two beamforming schemes (plane wave and focused 

imaging) with two linear array probes (L7-4 and L14-5/38). For in vitro studies, we designed an 

experimental setup with known motion magnitude and frequency. In vitro results showed that 

the performance of axial strain estimations is indeed decreased with increasing out-of-plane 

motions. Similar results were obtained in Appendix for axial shears. Axial strain estimations 
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with the LSME were nevertheless robust and reproducible when out-of-plane motions was  2 

mm either in longitudinal or cross-sectional imaging view. For the axial shear component, mean 

correlation coefficients of maximum and mean shear magnitudes were above 0.87 for motions 

 2 mm in both longitudinal and cross-sectional imaging views. 

To our knowledge, there is no study reporting clinical out-of-plane motion magnitudes 

because of the lack of clinical trials on carotid elastography in 3D. However, as we did in this 

report, out-of-plane motions can be deduced. Cinthio et al. [188] confirmed that the longitudinal 

movement of human healthy carotid artery walls had the same magnitude as the radial motion 

in longitudinal view, which was less than 1 mm. Recent studies showed that the longitudinal 

motion magnitude of carotid atherosclerotic plaques can reach 1 mm [70, 192, 194, 199]. In the 

current study, we measured the maximum cumulated lateral motion of human carotid 

atherosclerotic plaques at 1.04 mm (mean of 0.63 ± 0.22 mm) in cross-sectional imaging view, 

which coincides with previous studies mentioned above. As shown in vitro, the performance of 

the LSME for axial strain and shear estimations was robust when the out-of-plane motion was 

1 mm (correlation coefficients higher than 0.96), which implies that the LSME likely provides 

reliable axial strain and shear estimations clinically. 

For in vitro experiments, axial strain and shear estimations only had small variations 

between 1 mm out-of-plane motion and no motion. The elevational resolution of a linear array 

probe accounts for these results. It is defined by the elevational F-number = 𝑧𝑓 𝑏ℎ ×⁄ 𝜆, where 

𝑧𝑓 is the focal depth, 𝑏ℎ is the element height and 𝜆 is the transmitted pulse wavelength. For the 

L7-4 probe, the elevational F-number = 25 7𝜆 ⁄ = 1.1 mm. The slice thickness inhibits resolving 

tissue structure within that range, thus reducing the impact of out-of-plane motion within the 

resolution cell. This explanation also applies to the clinical study, for which the elevational F-

number is about 0.86 mm for the L14-5/38 probe. 

From in vivo results in figure 6.7, the lowest NCC values were noticed at dilation and 

compression peaks of strain curves, which means the images were not compensated well using 

2-D motions. That is because of larger out-of-plane motion occurrence at dilation and 

compression peaks of in-plane motions. The potential explanation is that out-of-plane motions 

are synchronized with in-plane motions due to 3-D vascular motions, which helps to identify 
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the part of a cardiac cycle in which 2-D strain estimations are more affected by out-of-plane 

motions. 

To properly compare reported in vitro and clinical results, one would need to consider 

the inter-frame out-of-plane motion that differed between studies. Indeed, a smaller out-of-plane 

motion between consecutive frames should lead to larger overlap in elevation when a 2-D scan 

is performed, resulting in less speckle decorrelation. In the current study, although coherent 

plane wave compounding beamforming (frame rate of 400 s-1, Verasonics scanner) and line-by-

line focused imaging (frame rate between 18-25 s-1, Ultrasonix scanner) were respectively used 

in vitro and in the clinical study, the mean inter-frame out-of-plane motions were smaller than 

90 µm. Indeed, at 400 Hz, the inter-frame out-of-plane motions of 1 mm, 2 mm and 3 mm were 

6 µm, 12 µm and 18 µm, respectively. In the clinical study at 18-25 Hz, mean inter-frame out-

of-plane motions were 28 µm, 64 µm and 90 µm for the three groups depicting different ranges 

of motion in elevation, respectively. Previous studies showed that when inter-frame out-of-plane 

motion remains small (less than 100 µm), strain estimations obtained with 2-D and 3-D cross-

correlation-based estimators are similar [23, 24]. 

As it could be seen in figure 6.10 with in vitro experiments, correlation coefficients for 

CPWC imaging were higher than those obtained with focused imaging when using the same 

ultrasound scanner (Verasonics) and transducer (L7-4). Differences in inter-frame out-of-plane 

motions at frame rates of 400 s-1 (CPWC) versus 25 s-1 (focused imaging) likely accounted for 

this. For CPWC imaging, as mentioned above, the inter-frame out-of-plane motions for 1 mm, 

2 mm and 3 mm displacements were 6 μm, 12 μm and 18 μm, respectively. For focused 

imaging, inter-frame out-of-plane motions for 1, 2, and 3 mm probe oscillation were 40 μm, 

80 μm and 120 μm, respectively. Again, larger transverse motions resulted in more 

decorrelation artifacts. 

Another potential factor that could cause correlation coefficient differences between in 

vitro experiments and the clinical study is the more complex human tissue structure of carotid 

plaques than the designed phantom. To verify that, we refer to figure 6.9 for the 1 mm out-of-

plane motion that is within the range of the largest in vivo clinical out-of-plane motions (0.78 - 

1.05 mm) of figure 6.8. As seen, correlation coefficients of 0.955 ± 0.036 for the in vitro study 

(at 1 mm out-of-plane motion) are higher than those of the group of patients with largest out-of-
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plane motions (0.744 ± 0.044). This suggests that indeed the complexity of the plaque structure 

contributes to decorrelation artifacts. 

In this study, we deduced clinical out-of-plane motions of longitudinal image sequences 

by using 2-D cross-sectional image sequences. In the future, more accurate estimations of 

clinical carotid artery out-of-plane motions may be derived with 3-D data using a 2-D transducer 

array. Moreover, the 2-D LSME may be extended to 3-D to improve strain estimations, as 

theoretically derived in [107]. 

6.7 Conclusion 

In this study, the influence of out-of-plane motions on the performance of the LSME was 

quantified in vitro and evaluated clinically with atherosclerotic carotid artery plaques. The 

experimental framework presented in this study is of interest as it could also allow studying the 

impact of out-of-plane motions on other strain estimation algorithms and beamforming 

strategies. For in vitro experiments, we found higher strain and shear estimation artifacts with 

increasing magnitudes of out-of-plane motion (lower correlation coefficients with higher out-

of-plane motions). However, even with 2.0 mm out-of-plane motion, robust axial strain and 

shear estimations were still obtained. The clinical study verified in vitro results and showed that 

axial strain and shear estimations with small, moderate and large out-of-plane motions were 

quite reproducible. This knowledge should enable more confidence when analyzing clinical 

dataset for vulnerable carotid atherosclerotic plaque studies. Additionally, we found that the 

accuracy of strain estimations was decreased with increasing inter-frame out-of-plane motions, 

which suggests that CPWC imaging may strengthen clinical strain assessment of carotid arteries. 

In conclusion, the performance of the LSME for axial strain and shear estimations is robust in 

the presence of out-of-plane motion magnitudes corresponding to translations of carotid artery 

plaques observed clinically. 
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6.9 Appendix 

6.9.1 Optical flow based Lagrangian speckle model estimator 

Other than axial strain, the LSME is also able to provide estimations of lateral strain, and 

axial and lateral shears. Specifically, an affine transformation model is applied into the optical 

flow equation. Within a small MW with p×q pixels, an over-determined linear equation system 

is solved to obtain all 2-D strain components. 
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where 𝐼𝑥, 𝐼𝑧 are the spatial gradient of the image intensity, It denotes the temporal gradient of 

the image intensity, 𝑥, 𝑧 are coordinates of pixels within the MW, 𝑠𝑥𝑥, 𝑠𝑥𝑧 , 𝑈𝑥, 𝑠𝑧𝑥, 𝑠𝑧𝑧, 𝑈𝑧 are 

lateral strain, lateral shear, lateral displacement, axial shear, axial strain, and axial displacement, 

respectively. Here, axial strain is defined as the change in length in axial direction divided by 

the initial length in axial direction. Correspondingly, axial shear is defined as the change in 

length in axial direction divided by the initial length in lateral direction. In the current study, 

because of the limited lateral resolution of ultrasound imaging, lateral strain and shear 

components were not analyzed. 

6.9.2 Decorrelation results for the axial shear component 

Figure 6.11 shows correlation coefficients of maximum and mean axial shear curves for 

out-of-plane motions of 0 mm, 1 mm, 2 mm, and 3 mm for in vitro longitudinal view images. 

Figure 6.12 presents the same results in cross-sectional view. Finally, figure 6.13 shows 

correlation coefficients of mean axial shear curves for small, moderate and large out-of-plane 

motions for the clinical dataset. As done in previous studies [70, 192], the absolute shear 
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magnitude averaged within the segmented area was considered for maximum and mean time-

varying curves. 

 

Figure 6.11 Correlation coefficients of maximum and mean axial shear curves regarding 

different out-of-plane motions in longitudinal view. For maximum shear curves, 

correlation coefficients are 0.991,  0.970 ± 0.007,  0.877 ± 0.016 and 0.590 ± 0.185 

respectively for out-of-plane motions of 0 mm, 1 mm, 2 mm and 3 mm. For mean shear 

curves, correlation coefficients are 0.999,  0.973 ± 0.010,  0.950 ± 0.012 and 0.720 ±
0.016 respectively for out-of-plane motions of 0 mm, 1 mm, 2 mm and 3 mm. 

 

Figure 6.12 Correlation coefficients of maximum and mean axial shear curves regarding 

different out-of-plane motions in cross-sectional view. For maximum shear curves, 

correlation coefficients are 0.999,  0.981 ± 0.003,  0.973 ± 0.004 and 0.811 ±
0.126 respectively for out-of-plane motions of 0 mm, 1 mm, 2 mm and 3 mm. For mean 

shear curves, correlation coefficients are 0.998,  0.983 ± 0.004,  0.966 ± 0.005 and 

0.807 ± 0.144 respectively for out-of-plane motions of 0 mm, 1 mm, 2 mm and 3 mm. 
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Figure 6.13 Correlation coefficients of mean axial shear curves for small, moderate and 

large out-of-plane motions of clinical images, which are 0.879 ± 0.037,  0.865 ± 0.058 

and 0.832 ± 0.106, respectively, for these three groups of out-of-plane motions. 

Corresponding mean normalized cross-correlation (NCC) values are 0.954 ±

0.013,  0.947 ± 0.026 and 0.936 ± 0.022, respectively. 
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Chapter 7 : Parameterized strain estimation for vascular 

ultrasound elastography with a sparse model 

7.1 Introduction to manuscript 

This chapter reproduces the content of a submitted article ‘Parameterized strain 

estimation for vascular ultrasound elastography with a sparse model’ to the journal IEEE 

Transactions on Medical Imaging by Hongliang Li, Jonathan Porée, Boris Chayer, Marie-

Hélène Roy Cardinal and Guy Cloutier for evaluation by a peer review committee. 

The following is the order of authors for this submitted article and corresponding 

affiliations: 

Hongliang Li1,2, Jonathan Porée1,2, Boris Chayer1, Marie-Hélène Roy Cardinal1 and Guy 

Cloutier1,2,3 

1 Laboratory of Biorheology and Medical Ultrasonics, University of Montreal Hospital Research 

Center (CRCHUM), Montréal, QC, Canada; 

2 Institute of Biomedical Engineering, University of Montreal, Montréal, QC, Canada; 

3 Department of Radiology, Radio-Oncology and Nuclear Medicine, University of Montreal, 

Montréal, QC, Canada. 

The contributions of all authors to the submitted article is detailed below: 

Hongliang Li: Developed and implemented the strain estimation algorithm and analysis 

algorithms, designed and fabricated in vitro phantoms, conducted in vitro data acquisitions, 

performed the post-processing of the data and the analysis of results, and drafted the article.  

Jonathan Porée: Developed the finite element model, performed in vivo data acquisitions, 

contributed to in vitro data acquisitions and algorithm development. 

Boris Chayer: Contributed to the fabrication of soft phantoms with hard inclusions. 

Marie-Hélène Roy Cardinal: Contributed to the interpretation of results and to the writing of the 

manuscript. 
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Guy Cloutier: Supervised this work as the research director. Contributed to the interpretation of 

results as the project director. Corrected and finalized the manuscript for submission. 

7.2 Abstract 

Ultrasound vascular strain imaging has shown its potential to interrogate the motion of 

the vessel wall induced by the cardiac pulsation for predicting plaque instability. There is a 

trade-off among window parameters, quality of a strain image, and computation efficiency for 

window-based strain estimator. Moreover, conventional correlation-based methods only derive 

displacement fields first. Consequently, additional spatial derivatives are required to obtain 

strain estimates. Such gradient operation enhances the variance of the strain estimation when 

high frequency displacement noise is encountered. In this study, a sparse model strain estimator 

(SMSE) is proposed to reconstruct a dense strain field at a high resolution, with no spatial 

derivatives, with a high computation efficiency. Specifically, a dense optical flow (OF) model 

with Discrete Cosine Transform (DCT) descriptions was parameterized to derive affine strain 

components (axial and lateral strains and shears). Moreover, the sparse framework was 

analytically implemented to reduce estimation time. With simulations, the SMSE reduced 

estimation errors by up to 50% compared with the state-of-the-art window-based Lagrangian 

speckle model estimator (LSME). The SMSE was also proven to be more robust than the LSME 

against global and local noise. For in vitro and in vivo tests, residual strains assessing cumulated 

errors with the SMSE were 2 to 3 times lower than with the LSME. Regarding computation 

efficiency, the processing time of the SMSE was reduced by 4 to 25 times compared with the 

LSME, according to simulations, in vitro and in vivo results. Finally, phantom studies 

demonstrated the enhanced spatial resolution of the proposed SMSE algorithm against LSME. 

7.3 Introduction 

Vascular ultrasound strain imaging has shown its potential to extract the motion of the 

vessel wall caused by the cardiac pulsation for the purpose of trying predicting carotid artery 

plaque instability [200]. Currently, window-based methods are widely used to estimate two-

dimensional (2-D) strain maps from radiofrequency (RF) datasets, using either image amplitude 

[14, 18, 21, 107, 127] or phase information [17, 25, 108, 109]. Specifically, pre-and post-motion 
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images are divided into overlapping windows. Assuming that motions of pixels within a window 

are uniform, window-based methods locally derive mean displacements and/or strains within 

that window. However, there is a trade-off among window parameters, quality of a strain image 

and computation efficiency. A small window size with a large overlap are desired for a better 

resolution as the cost of a high computational load. A large overlap nevertheless introduces 

worm artifact filtering [201, 202]. On the other hand, a small window size results in larger 

estimation variances. 

An alternative way is to globally estimate pixel-wise motions in a region of interest 

(ROI) instead of using overlapping windows. To our knowledge, no pixel-based algorithms 

were proposed for vascular ultrasound elastography. Some approaches have been developed for 

quasi-static elastography [106, 111, 115-118], Doppler vector flow [203], myocardial motion 

tracking [204, 205] and computer vision [26]. Usually, ones formulate pixel-based motion 

estimations as an optimization problem where a cost function incorporating a data term and a 

regularization term is minimized. Sparse representations of motion fields were also introduced 

into motion estimators [206-208], where dense motions can be recovered using the compressed 

sensing theory [209] with a small portion of all samples. However, these models only consider 

displacement or velocity fields and do not estimate strain directly on a pixel base (i.e., without 

spatial derivatives that are affecting variance). Affine model-based estimation could circumvent 

this limitation but remains into the category of window-based methods [16, 18, 25]. An optical-

flow-based Lagrangian speckle model estimator (LSME) including an incompressibility 

constraint was proposed to obtain robust strain estimates in the context of vascular elastography 

[18]. A performance evaluation of the LSME and of an affine phase-based estimator (APBE) 

was also conducted showing the superiority of the LSME [25]. Although some of 

aforementioned pixel-based methods [106, 115] have considered axial or lateral strain 

estimations, shear strains are still not considered. To our knowledge, a pixel-wise vascular strain 

estimator with an affine model considering all strain components without spatial derivatives on 

displacements has not yet been proposed. 

Computation efficiency is another issue that needs to be addressed. Computation time of 

window-based methods depends on the window size and on the level of overlap. Specifically, 

the computation time of a whole motion field corresponds to the sum of the time required to 
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locally perform successive window computations. To reduce the computation load, all pixels 

inside a ROI can be used to solve the dense motion field globally. However, this usually requires 

to optimize iteratively a cost function until convergence, which also impacts computation time. 

Rivaz’s group proposed to convert the optimization problem into solving a sparse linear system 

of equations using a computationally efficient iterative algorithm [118]. However, the proposed 

method is still based on displacement estimates. Recently, an effort was made to change the 

iterative optimization into a least squares scheme to obtain analytic solutions of vector Doppler 

flow maps [27]. This strategy was adapted here for vascular strain imaging. 

In this study, we propose to parameterize strain fields using a sparse model based on 

Discrete Cosine Transform (DCT) coefficients, which allows to directly derive strains without 

explicit gradient operation. This parameterized implementation also enables strains to be solved 

analytically using a least squares scheme. The proposed vascular sparse model-based strain 

estimator (SMSE) is providing high-resolution pixel-wise affine strain estimations with high 

accuracy and high computation efficiency compared with LSME implementation. 

7.4 Algorithm description 

The proposed algorithm is within the framework of the Horn-Schunck (HS) optical flow 

method. Unlike HS that only considers a smoothness constraint, a nearly incompressibility 

regularization term was also introduced into the cost function to improve lateral strain 

estimation. Moreover, motion fields were parameterized with a truncated Discrete Cosine Basis. 

This sparse representation was formulated to solve strain fields using a least squares method 

instead of an optimization problem, as in the HS algorithm. The pixel-based solution is 

providing axial, lateral and shear strain components simultaneously. 



 

106 

7.4.1 Cost function with smoothness and nearly incompressibility 

constraints 

7.4.1.1 Data term 

The cost function consists of data and regularization terms. The data term is from the 

optical flow constraint equation, which implies that the intensity between two consecutive 

images is not changing, 

𝐼𝑥𝑈𝑥 + 𝐼𝑦𝑈𝑦 + 𝐼𝑡 = 0,  (7.1) 

where 𝐼𝑥, 𝐼𝑦 are the spatial gradient of the image intensity, It denotes the temporal gradient of 

the image intensity, and 𝑈𝑥, 𝑈𝑦 are the unknown lateral and axial displacements. Since there are 

two unknown variables in (7.1), additional constraints need to be added to overcome the ill-

posed problem. 

7.4.1.2 Smoothness constraint 

Horn and Schunck proposed a classical first-order optical flow smoothness constraint 

[26]. However, it does not take into account discontinuities in displacement fields and tends to 

over smooth them [27, 210]. Here, we used a second-order smoothness constraint that is tailored 

towards complex flow fields [211, 212]. The cost function with such a second-order smoothness 

constraint is defined as: 

min
𝑈𝑥,𝑈𝑦

{(𝐼𝑥𝑈𝑥 + 𝐼𝑦𝑈𝑦 + 𝐼𝑡)
2 + 𝜆𝑠 ((

𝜕2𝑈𝑥

𝜕𝑥2 )
2

+ (
𝜕2𝑈𝑥

𝜕𝑦2 )
2

+ (
𝜕2𝑈𝑥

𝜕𝑥𝜕𝑦
)
2

+ (
𝜕2𝑈𝑥

𝜕𝑦𝜕𝑥
)
2

+ (
𝜕2𝑈𝑦

𝜕𝑥2 )
2

+

(
𝜕2𝑈𝑦

𝜕𝑦2 )
2

+ (
𝜕2𝑈𝑦

𝜕𝑥𝜕𝑦
)
2

+ (
𝜕2𝑈𝑦

𝜕𝑦𝜕𝑥
)2)},  (7.2) 

where 𝜆𝑠 is a regularization parameter to control the influence of the smoothness constraint. The 

first half of (7.2) corresponds to (7.1). The second half represents displacement field smoothness 

constraints. To find suitable displacement fields minimizing (7.2), one can solve Euler-Lagrange 

equations, which is a typical variational problem. A detailed solution description can be found 

in [26]. In this study, displacement fields were parameterized with a truncated Discrete Cosine 
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Basis (see Section 7.4.2). The minimization problem was rewritten as a linear least squares 

problem. 

7.4.1.3 Nearly incompressibility constraint 

An incompressible material experiences no volume change under small deformations. 

Some biological tissues can be considered as nearly incompressible [211]; this is the case of 

human arteries [213]. In the field of ultrasound strain imaging, arterial tissue incompressibility 

was used to improve the quality of strain estimations [18, 25, 214]. Assuming 2-D plane strain, 

a null divergence of the displacement field 𝑈⃗⃗  is considered, i.e. 𝑑𝑖𝑣 𝑈⃗⃗ =  
𝜕𝑈𝑥

𝜕𝑥
+ 

𝜕𝑈𝑦

𝜕𝑦
= 0. Upon 

this assumption, the lateral strain is constrained to be the negative of the axial strain, as used in 

[18]. In the current study, we integrated instead this incompressibility constraint into (7.3) to 

obtain an additional regularization term to constrain the divergence close to zero: 

min
𝑈𝑥,𝑈𝑦

{(𝐼𝑥𝑈𝑥 + 𝐼𝑦𝑈𝑦 + 𝐼𝑡)
2 + 𝜆𝑠 ((

𝜕2𝑈𝑥

𝜕𝑥2 )
2

+ (
𝜕2𝑈𝑥

𝜕𝑦2 )
2

+ (
𝜕2𝑈𝑥

𝜕𝑥𝜕𝑦
)
2

+ (
𝜕2𝑈𝑥

𝜕𝑦𝜕𝑥
)
2

+ (
𝜕2𝑈𝑦

𝜕𝑥2 )
2

+

(
𝜕2𝑈𝑦

𝜕𝑦2 )
2

+ (
𝜕2𝑈𝑦

𝜕𝑥𝜕𝑦
)
2

+ (
𝜕2𝑈𝑦

𝜕𝑦𝜕𝑥
)2) + 𝜆𝑑 (

𝜕𝑈𝑥

𝜕𝑥
+ 

𝜕𝑈𝑦

𝜕𝑦
)},  (7.3) 

where 𝜆𝑑 is a regularization parameter to modulate the influence of the incompressibility 

constraint. Contrary to the implementation of [18], this regularization term does not impose 

tissue incompressibility, but constrains it into the cost function to obtain a nearly incompressible 

condition. This soft constraint avoids an ill-conditioned problem when forcing the divergence 

to zero. A similar quasi incompressibility constraint was utilized for the registration of magnetic 

resonance (MR) tissue images [211, 215], and for Doppler flow and tissue Doppler mapping 

[27, 216, 217]. It is used for the first time into the framework of an optical-flow based non-

invasive vascular elastography method. 

7.4.2 Sparse representation and reconstruction of the strain field 

7.4.2.1 Discrete cosine representation 

As mentioned earlier, the displacement field used in the minimization of (7.3) was 

expressed with type-II discrete cosine basis functions written as: 
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𝑈𝑥(𝑥, 𝑦) = ∑ ∑ 𝑐𝑚,𝑛
𝑥 cos(𝑘𝑥

𝑚(2𝑥 + 1)) cos(𝑘𝑦
𝑛(2𝑦 + 1))

𝑁𝑡
𝑛

𝑀𝑡
𝑚       

  𝑈𝑦(𝑥, 𝑦) = ∑ ∑ 𝑐𝑚,𝑛
𝑦

cos(𝑘𝑥
𝑚(2𝑥 + 1)) cos(𝑘𝑦

𝑛(2𝑦 + 1))
𝑁𝑡
𝑛

𝑀𝑡
𝑚 ,  (7.4) 

where 𝑘𝑥
𝑚 =

𝑚

2𝑀
𝜋, 𝑘𝑦

𝑛 =
𝑛

2𝑁
𝜋, with the grid size (𝑀,𝑁) in lateral and axial directions, and 

(𝑀𝑡, 𝑁𝑡) being the size of the truncated discrete cosine basis (i.e., 𝑀𝑡 ≤ 𝑀, 𝑁𝑡 ≤ 𝑁). Section 

7.5.5 justifies the choice of 𝑀𝑡  and 𝑁𝑡. In (7.4), 𝑐𝑚,𝑛
𝑥  and 𝑐𝑚,𝑛

𝑦
 are the DCT coefficients of the 

lateral and axial displacement components. In [206], it was verified that an optical flow vector 

is sparse in wavelet or DCT domains. Then, the problem to solving the optical flow vector in 

(7.3) was converted to sparse signal recovery from DCT coefficients. The advantage of optical 

flow sparsity enables to recover a dense flow field from much fewer pixels using the compressed 

sensing theory [207, 208]. In the next section, we propose a more efficient strategy to estimate 

sparse DCT coefficients from an over-complete pixel set using a least squares scheme. 

Another advantage of parameterized representations of motion fields is that strain fields 

can be represented by DCT coefficients and DCT basis transformations, which avoids to 

explicitly compute derivative of noisy estimated displacements. Specifically, once DCT 

coefficients are resolved, strain components are represented by a combination of estimated DCT 

coefficients and DCT basis transformations, as shown here: 

𝑆𝑥𝑥 = 
𝜕𝑈𝑥

𝜕𝑥
 =  ∑ ∑ 𝑐𝑚,𝑛

𝑥 (−2𝑘𝑥
𝑚)sin(𝑘𝑥

𝑚(2𝑥 + 1)) cos(𝑘𝑦
𝑛(2𝑦 + 1))

𝑁𝑡
𝑛

𝑀𝑡
𝑚    

  𝑆𝑥𝑦 =
𝜕𝑈𝑥

𝜕𝑦
 =  ∑ ∑ 𝑐𝑚,𝑛

𝑥 (−2𝑘𝑦
𝑛) cos(𝑘𝑥

𝑚(2𝑥 + 1)) sin(𝑘𝑦
𝑛(2𝑦 + 1))

𝑁𝑡
𝑛

𝑀𝑡
𝑚  

  𝑆𝑦𝑦 =
𝜕𝑈𝑦

𝜕𝑦
 =  ∑ ∑ 𝑐𝑚,𝑛

𝑦
(−2𝑘𝑦

𝑛) cos(𝑘𝑥
𝑚(2𝑥 + 1)) sin(𝑘𝑦

𝑛(2𝑦 + 1))
𝑁𝑡
𝑛

𝑀𝑡
𝑚  

  𝑆𝑦𝑥 =
𝜕𝑈𝑦

𝜕𝑥
 =  ∑ ∑ 𝑐𝑚,𝑛

𝑦
(−2𝑘𝑥

𝑚)sin(𝑘𝑥
𝑚(2𝑥 + 1)) cos(𝑘𝑦

𝑛(2𝑦 + 1))
𝑁𝑡
𝑛

𝑀𝑡
𝑚 , (7.5) 

where 𝑆𝑥𝑥, 𝑆𝑥𝑦, 𝑆𝑦𝑦, 𝑆𝑦𝑥 are lateral strain, lateral shear, axial strain and axial shear, respectively. 

Cartesian strain components were combined and represented as principal minor and major strain 

tensors, 𝜀𝑚𝑖𝑛, 𝜀𝑚𝑎𝑥, where 

𝜀𝑚𝑖𝑛,𝑚𝑎𝑥 = 
𝑆𝑥𝑥+𝑆𝑦𝑦

2
± √(

𝑆𝑥𝑥−𝑆𝑦𝑦

2
)
2

+ (
𝑆𝑥𝑦+𝑆𝑦𝑥

2
)
2

.  (7.6) 
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7.4.2.2 Regularized weighted least squares estimation 

The proposed algorithm is capable of reconstructing dense displacement and strain fields 

at each pixel of an image of size 𝑀 × 𝑁. A strain field of a down-sampled image can also be 

computed with less computational complexity. Since the displacement field was parameterized 

with the discrete cosine basis, the cost function in (7.3) should be expressed in terms of DCT 

coefficients and the minimization problem formulated as a solution of a system of linear 

equations, as explained below. 

Let 𝐜 = [𝐜𝐱
𝑇 , 𝐜𝐲

𝑇]
𝑇
 be a column vector with length of 2𝑀𝑡 × 𝑁𝑡, where 𝐜𝐱 =

[⋯ , 𝑐𝑚,𝑛
𝑥 , ⋯ ]

𝑇
and 𝐜𝐲 = [⋯ , 𝑐𝑚,𝑛

𝑦
, ⋯ ]

𝑇
are the DCT coefficients of lateral and axial displacement 

fields, respectively. To parameterize the cost function in terms of 𝐜, the data term, and 

smoothness and nearly incompressibility constraints, are represented in matrix form, 

respectively. Regarding the data term, let 𝐔 = [𝐔𝐱
𝑇 , 𝐔𝐲

𝑇]
𝑇
 represent the displacement field, where 

𝐔𝐱 = [⋯ ,𝑈𝑥, ⋯ ]𝑇 and 𝐔𝐲 = [⋯ ,𝑈𝑦, ⋯ ]
𝑇
 are the column vectors of lateral and axial 

displacements with lengths 𝑀 × 𝑁, respectively. By defining B as a discrete cosine transform 

matrix with size 𝑀𝑁 × 𝑀𝑡𝑁𝑡, and {𝐁}𝑖,𝑀𝑡𝑛+𝑚 = cos(𝑘𝑥
𝑚(2𝑥𝑖 + 1) cos(𝑘𝑦

𝑛(2𝑦𝑖 + 1))), the 

displacement fields can be expressed as 𝐔𝐱 = 𝐁𝐜𝐱 and 𝐔𝐲 = 𝐁𝐜𝐲. Let {𝐈𝒐𝒇,𝒙}𝑖,𝑖
= 𝐼𝑥(𝑥𝑖, 𝑦𝑖), 

{𝐈𝒐𝒇,𝒚}𝑖,𝑖
= 𝐼𝑦(𝑥𝑖, 𝑦𝑖), and {𝐈𝒐𝒇,𝒕}𝑖,𝑖

= −𝐼𝑡(𝑥𝑖, 𝑦𝑖) be diagonal matrixes containing image 

gradients, where the subscript of stands for optical flow. The data term of the cost function can 

then be written as: 

𝐃𝒐𝒇𝐁𝒐𝒇𝐜 + 𝐈𝒐𝒇,𝒕,  (7.7) 

where 𝐃𝒐𝒇 = [𝐈𝒐𝒇,𝒙 𝐈𝒐𝒇,𝒚] with size 𝑀𝑁 × 2𝑀𝑁, and 𝐁𝒐𝒇 = [
𝐁 0
0 𝐁

]. 

The cost function of (7.3) introduced a nearly incompressibility constraint to govern a 2-

D divergence-free displacement field. Since the displacement field 𝐔 is expressed on a DCT 

basis, B and DCT coefficients 𝐜, as shown in (7.4), allow to represent the divergence with a 

combination of transformations on B and 𝐜. Let 𝐁𝒙 = 𝐷̇𝑥𝐁 and 𝐁𝒚 = 𝐷̇𝑦𝐁 be first-order 
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derivatives of B in lateral and axial directions, respectively, where 𝐷̇ stands for the first-order 

derivative operator. Thus, the divergence of the displacement field is presented in terms of 𝐜 as: 

𝐁𝒅𝐜,  (7.8) 

where 𝐁𝒅 = [𝐁𝒙 𝐁𝒚]. Likewise, the two-order smoothness constraint of (7.2) can also be 

written as a linear combination of two-derivative B and c terms, as shown below: 

𝐁𝒔𝐜,  (7.9) 

where 𝐁𝒔 = [𝐁∗ 𝐁∗], and 𝐁∗ = 𝐷̈𝑥𝑥𝐁 + 𝐷̈𝑦𝑦𝐁 + 𝐷̈𝑥𝑦𝐁 + 𝐷̈𝑦𝑥𝐁. Here, 𝐷̈ stands for the two-

order derivative operator applied on pixel coordinates. 

Finally, putting (7.7), (7.8) and (7.9) together into the cost function of (7.3), the 

minimization problem is reformulated into a linear system as 

𝐀𝐜 = 𝐛,  (7.10) 

where 𝐀 = (𝐃𝒐𝒇𝐁𝒐𝒇)
𝑇
(𝐃𝒐𝒇𝐁𝒐𝒇) + 𝜆𝑑𝐁𝒅

𝑇𝐁𝒅 + 𝜆𝑠𝐁𝒔
𝑇𝐁𝐬, and 𝐛 = (𝐃𝒐𝒇𝐁𝒐𝒇)

𝑇
𝐈𝒐𝒇,𝒕. A is a sparse 

matrix with size 2𝑀𝑡𝑁𝑡 × 2𝑀𝑡𝑁𝑡 and b is a column vector with size 2𝑀𝑡𝑁𝑡 × 1. Above least 

squares estimation on a motion field is usually sensitive to outliers, which are associated with 

violation of the optical flow constraint given by (7.1). To avoid it, a weighted least squares was 

performed to assign low weights to outliers after the first least squares estimation. The weights 

were expressed as 𝒘 =
𝟏

𝟏+𝑹
, where 𝑹 = |𝐼𝑥𝑈𝑥 + 𝐼𝑦𝑈𝑦 + 𝐼𝑡| is the absolute value of residuals of 

the optical flow equation to evaluate the estimation bias of each sample. Applying weights on 

each sample, the final estimation of DCT coefficients 𝐜̂ was solved as: 

𝐜̂ = (𝐀̂𝑇𝐀̂)
−𝟏

𝐀̂𝑇𝐛,  (7.11) 

where 𝐀̂ = (𝐃𝒐𝒇𝐁𝒐𝒇)
𝑇
𝐖(𝐃𝒐𝒇𝐁𝒐𝒇) + 𝜆𝑑𝐁𝒅

𝑇𝐁𝒅 + 𝜆𝑠𝐁𝒔
𝑇𝐁𝐬 and 𝐖 is a weight matrix with size 

𝑀𝑁 × 𝑀𝑁, whose column elements are 𝒘. 

7.4.3 Algorithm implementation 

The proposed algorithm consisted of 7 steps: 
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- Step 1: Segment manually the vascular wall on a middle frame of an RF image 

sequence to generate a ROI. The ROI on remaining frames was propagated using an automatic 

segmentation algorithm [193] that allowed tracking translation motion and small changes in 

ROI boundary at given frames. 

- Step 2: Normalize the RF image sequence with the maximum value of image 

intensities. 

- Step 3: Select pixels inside masks generated in Step 1 to do calculation. 

- Step 4: Build vectors and matrixes in (7.10) using (7.7), (7.8), and (7.9), and solve 

the least squares system of (7.10) to obtain DCT coefficients 𝐜. 

- Step 5: Introduce DCT coefficients 𝐜 into (7.4) to compute displacement fields. 

- Step 6: With computed weights 𝐖, solve DCT coefficients 𝐜̂ using (7.11). 

- Step 7: Introduce DCT coefficients 𝐜̂ into (7.5) to compute principal strain 

components using (7.6). 

7.5 Simulations and experiments 

7.5.1 Simulations 

A carotid artery model was created using COMSOL Multiphysics (Structural Mechanics 

Module, version 3.5, COMSOL, France) whose geometry was described in [157]. A soft 

necrotic core (elasticity modulus 𝐸 = 10 kPa) and four calcified inclusions (𝐸 = 5000 kPa) 

were embedded in a medium (𝐸 = 600 kPa) mimicking a fibrous plaque. All plaque 

components were considered nearly incompressible (Poisson’ratio = 0.4995). The density of 

randomly distributed scatterers included in the vascular model was 100 per resolution cell to 

ensure fully developed speckle [165]. 

A systemic blood pressure waveform with pressure changes from 80 to 120 mmHg (10 

to 16 kPa) was applied to the simulated model. The pressure waveform was divided into 500 

segments to allow mimicking a frame rate of 500 s−1. For each intraluminal pressure difference, 

displacements and strains of the vessel wall were calculated using a finite elements method 
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(FEM) under plane strain condition. These displacements plus pre-deformation positions were 

used to update the post-deformation positions of scatterers. The strains were used as gold 

standard for comparison. 

Cross-sectional RF data were simulated using the ultrasound simulation program Field 

II [164]. A L14-5/38 linear array probe with 128 elements (Ultrasonix Medical Corporation, 

Richmond, BC, Canada) was simulated with a 7.2 MHz center frequency and a 40 MHz 

sampling rate. The full aperture was considered as activated in transmission to create plane 

waves with emission angles ranging from −10° to 10° with 1° increment. Plane wave data with 

21 angles at each intraluminal pressure difference were beamformed to create one coherent 

plane wave compounded (CPWC) image using a delay-and-sum algorithm [78]. All 

beamformed images were corrupted with white Gaussian noise to make them more realistic with 

signal-to-noise ratios (SNR) of 20 dB, 15 dB and 10 dB. To evaluate the robustness of strain 

estimation algorithms against localized noise, the 20 dB SNR images were corrupted with 

additional white Gaussian noise at four specific regions where SNR was reduced to 5 dB. 

7.5.2 In vitro experiments 

In vitro data from two vascular phantoms, one homogeneous and the other 

heterogeneous, were used to validate the proposed SMSE algorithm. These phantoms were 

made of 10% polyvinyl alcohol mixed with 3% acoustic scatterers (Sigmacell cellulose, type 

50, Sigma Chemical, St Louis, MO, USA). The homogeneous phantom was solidified using 6 

freeze-thaw-cycles to obtain a modulus of 182 ± 21 kPa [166]. The heterogeneous phantom 

consisted in a soft inclusion within a vascular wall mimicking a lipid plaque. This soft inclusion 

was obtained with 1 freeze-thaw-cycle giving a modulus of 25 ± 3 kPa [166]; the surrounding 

vascular wall was similar to the homogeneous phantom. 

Each phantom was suspended in a water tank and pressurized by connecting the tube 

outlet to a water column. The intraluminal pressure was varied from 60 mmHg to 120 mmHg 

with a pulsatile pump (model 1421, Harvard Apparatus, Holliston, MA, USA). The pressure 

was monitored using a ViVitest software system (Vivitro Labs Inc., Victoria, BC, Canada). 
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7.5.3 In vivo experiments 

To further validate the proposed strain estimator, RF data of a common carotid artery 

were acquired from a 30 year-old healthy male. The study was approved by the human ethical 

review board of the Centre Hospitalier de l’Université de Montréal. The volunteer signed an 

informed consent. 

7.5.4 Data acquisition and image reconstruction 

For in vitro and in vivo experiments, RF data in a cross-sectional view were acquired 

using a Sonix Touch ultrasonic system (Ultrasonix Medical Corporation, Richmond, BC, 

Canada) equipped with a L14-5/38 linear array probe with 128 elements, as considered in the 

simulation study. Plane wave data were generated and stored with full aperture using a Sonix 

DAQ multi-channel system and the development kit software (TexoSDK, v6.0.1). As for 

simulations, CPWC images were beamformed in post-processing using a delay-and-sum 

algorithm [78] and emission angles ranging from −10° to 10° with 1° increment (final frame 

rate of 500 s−1). RF images were reconstructed on a regular Cartesian grid with 50 × 20  μm 

resolution (lateral × axial). All RF images were normalized in intensity before performing 

elastography computations. 

7.5.5 Parameters selection 

In (7.3), 𝜆𝑠 and 𝜆𝑑 govern the influence of smoothness and nearly incompressibility 

constraints. Different pairs of these two parameters were tested using simulation data with a 

SNR of 20 dB. The test ranges for 𝜆𝑠 and 𝜆𝑑 were both from 0.01 to 1 with an increment of 

0.01. The smoothness and nearly incompressibility constraints were assumed to have the same 

influence on simulated, in vitro and in vivo strain estimates. Thus, the parameter pair providing 

the least estimation error was chosen for all reported results. The selected pair of parameters 

was 𝜆𝑠 = 0.05 and 𝜆𝑑 = 0.6. 

For the sparse strain model of (7.3), sizes of the truncated discrete cosine basis 𝑀𝑡  and 

𝑁𝑡 were chosen to reconstruct motion fields based on prior information. To our knowledge, there 

is no guideline on DCT numbers to reconstruct a motion field. We thus considered the following 

observations. The thickness of the carotid artery wall with a plaque was assumed smaller than 3 
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mm [218]. To limit higher spatial frequency variation of the motion field, the minimum 

wavelength of the cosine basis function was set to 1.5 mm. Thus, the number of DCT 

coefficients, 𝑀𝑡 or 𝑁𝑡, was given by the Cartesian grid resolution (lateral or axial)  × image size 

(lateral 𝑀 or axial 𝑁) / 1.5 mm. The truncation allowed reducing the matrix size in (7.10) from 

2𝑀𝑁 to 2𝑀𝑡𝑁𝑡, which impacted positively the computational complexity compared with a 

reconstruction with all DCT coefficients. 

7.5.6 Criteria for evaluation 

7.5.6.1 Comparison with the Lagrangian Speckle Model Estimator (LSME) 

The LSME estimator of [18] was applied to simulation, in vitro and in vivo data to 

compare with the proposed sparse algorithm. For a fair comparison, the estimation parameters 

were the same as in [25]. Namely, the window size was set to 1.0 mm × 1.0 mm with 80% 

overlap in axial and lateral directions, and the time-ensemble number was 8 with 90% time 

overlap. 

7.5.6.2 Evaluation of strain estimation performance 

For simulated data, an image sequence of one pressure cycle was selected and all 2-D 

strain components (𝑆𝑥𝑥, 𝑆𝑥𝑦, 𝑆𝑦𝑦, 𝑆𝑦𝑥) were computed over consecutive frames and cumulated. 

Principal strains were determined using (7.6) and the largest cumulated strain map was 

considered as the final elastogram. Since reference strain values are known for simulations, the 

normalized root-mean-square-error (NRMSE) was used to evaluate elastograms in that case: 

𝑁𝑅𝑀𝑆𝐸 =

√∑ (𝑟𝑒𝑓𝑖−𝑒𝑠𝑡𝑖)
2𝑁

𝑖=1
𝑁

𝑟𝑒𝑓𝑚𝑎𝑥−𝑟𝑒𝑓𝑚𝑖𝑛
,  (7.12) 

where N is the number of pixels in an elastogram, 𝑟𝑒𝑓 is the ground truth principal strain from 

the finite elements analysis, and 𝑒𝑠𝑡 is the estimated principal strains. The subscripts max and 

min refer to the maximum and minimum values of the principal strain map. 

The metric for evaluation of cumulated strains in in vitro and in vivo studies was the 

residual strain. The rationale is that the carotid artery should restore its initial state after an entire 

cycle. The residual strain is a good indicator to evaluate cumulative estimation errors for 
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vascular elastography [23, 148]. The less residual strain means less cumulative estimation 

errors. In this study, a whole cycle was determined by two periodic zero-crossing points on the 

time-varying principal strain curve. The residual strain was calculated as the mean strain value 

of the cumulated end frame for a full cardiac cycle. In addition to the residual strain metric, the 

reproducibility of cumulative strain curves was evaluated for in vivo results. Two successive 

cardiac cycles of cumulated principal strain maps were estimated and spatially averaged to 

obtain mean principal strain curves. Unlike computing a correlation coefficient of two strain 

curves, as done in [219], we performed a linear regression of the two strain curves to fit a 

function, 𝑦 = 𝑎𝑥 + 𝑏, where 𝑥, 𝑦 are strain curves of two successive cycles, and 𝑎, 𝑏 are fitted 

coefficients. Here, 𝑎 was used to evaluate the similarity between the two consecutive strain 

curves and it was expected to be 1 when the two curves are the same. The intercept 𝑏 was used 

to evaluate residual strain errors, and in this case it was expected to be 0 when there is no residual 

strain error. 

7.5.6.3 Other assessments of strain estimation algorithms 

Additionally, computation time for a whole image sequence was viewed as an indicator 

of algorithm efficiency. To assess this, the LSME and proposed SMSE algorithms were both 

implemented in Matlab 2016a (MathWorks Inc., Natick, MA, USA) on a 4-core CPU at 3.7 

GHz. 

Finally, additional in vitro measurements were performed to compare the strain image 

resolution of both LSME and SMSE algorithms. Two soft phantoms with hard inclusions were 

fabricated. The first one had three hard inclusions of 2 mm, 1 mm and 0.8 mm as the same depth. 

The other was made with three hard inclusions of 2 mm but at different depths. The soft 

background was made with 0.3% agar (A9799, Sigma–Aldrich Chemical, St Louis, MO), 4% 

gelatin (G2500, Sigma–Aldrich Chemical), 8% glycerol, and 87.7% distilled water. Hard 

inclusions were fabricated with 15% polyvinyl alcohol, 3% cellulose particles (Sigmacell, type 

5504, Sigma Chemical), and 82% distilled water that underwent 6 freeze-thaw-cycles. Axial 

compressions with maximum deformations of 1 mm were launched on the top of the phantom 

with the ultrasound probe that was driven by a mini-shaker vibrating as a 1.2 Hz sinusoid. For 

the first phantom, the LSME with the same window size (1 mm × 1 mm) but different overlaps 
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of 50%, 80% and 95% were used to compare axial strains 𝑆𝑦𝑦 with those obtained with the 

proposed SMSE algorithm. For the second phantom, the LSME still had a window size of 1 mm 

× 1 mm with a 80% overlap. 

7.6 Results 

7.6.1 The simulation study 

Figure 7.1(a) shows a B-mode image with a SNR of 20 dB of the carotid artery 

simulation using CPWC imaging. Principal strain maps estimated with the LSME and SMSE 

are presented in figure 7.1(d)-(g). For principal minor strains, both LSME and SMSE provided 

similar estimation performance with NRMSE of 8.45% and 6.75% with respect to the ground 

true, respectively. The LSME strain map (figure 7.1(d)) allowed identifying the small hard 

inclusion close to the lumen at 7 o’clock, but provided less evidence of the presence of the two 

hard inclusions in the upper right of the model than with the SMSE (figure 7.1(f)). The 

estimation error of principal minor strains was reduced by 20% with the SMSE compared with 

the LSME. For principal major strains, the SMSE strain map (figure 7.1(g)) revealed hard 

inclusions better than with the LSME (figure 7.1(e)). The NRMSE in figure 7.1(e) and (g) are 

9.56% and 7.02%, respectively. The estimation error of principal minor strains was reduced by 

27% using the SMSE. The impact of the LSME window size on strain estimates can be 

visualized in the zoomed ROI. The SMSE principal minor strain shows smoother inner and outer 

artery edges compared with the window-based LSME algorithm. A similar conclusion applies 

to the principal major strain map. 
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Figure 7.1 (a) B-mode image of an artery simulation model with one soft inclusion and 

four hard inclusions. The image SNR is 20 dB. (b), (c) Principal minor and major strains 

of the finite-elements model ground truth. (d), (e) Principal minor and major strains using 

LSME, whose NRMSE are 8.45% and 9.56%, respectively. (f), (g) Principal minor and 

major strains using SMSE, whose NRMSE are 6.75% and 7.02%, respectively. Close-ups 

in the red rectangular regions are displayed to present the resolution of strain maps. 

To test robustness against noise, figure 7.2 presents simulations with SNRs of 10 dB and 

15 dB. Principal strain maps with the LSME were noisier than with the SMSE when the SNR 

was reduced, especially in the thin wall region of the upper left part. NRMSE of LSME principal 

minor and major strain maps for the SNR of 10 dB are 13.90% and 16.27%, respectively, while 

those with the SMSE are 7.54% and 8.17%, respectively. Estimation errors of principal minor 

and major strains were reduced by 46% and 50%, respectively, using the SMSE. As shown in 

figure 7.2(d), at the SNR of 15 dB, the LSME estimation performance was improved with 

NRMSE of 9.81% and 11.33% for principal minor and major strain maps, whereas they 

remained similar but better with the SMSE (NRMSE of 7.30% and 7.49% for principal minor 

and major strain maps, respectively). 
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Figure 7.2 (a), (b) B-mode images with a SNR of 10 dB and corresponding principal strain 

maps. (c), (d) B-mode images with a SNR of 15 dB and corresponding principal strain 

maps. NRMSEs of principal strain maps with the LSME and SMSE are shown. 

Figure 7.3 presents robustness of both algorithms against localized noise (simulations 

with a SNR of 20 dB where the SNR was reduced to 5 dB into the upper left (a), upper right (b), 

lower left (c) and lower right (d) regions). All LSME principal strain maps were obviously 

deteriorated by the addition of local noise. NRMSE of SMSE principal strain maps nearly 
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remained the same in all regions. Moreover, NRMSE with the SMSE were less than with the 

LSME (see legend of figure 7.3 for values). 

 

Figure 7.3 B-mode images with a global SNR of 20 dB and local noise at a SNR of 5 dB 

in the upper left (a), upper right (b), lower left (c) and lower right (d) regions and 

corresponding principal strain maps. NRMSEs of principal strain maps with the LSME 

and SMSE are shown. 

7.6.2 In vitro experiments 

7.6.2.1 The homogeneous vascular phantom study 

Figure 7.4(a) presents a CPWC B-mode image of the homogeneous vascular phantom. 

Figure 7.4(b)-(e) shows principal strain maps using the LSME and SMSE. Like simulation 

results, the vascular geometry was more smoothly delineated in principal strains using the 

SMSE (panels (d) and (e)) than with the LSME (panels (b) and (c)). According to previous 

literature [168], the strain magnitude is expected to decrease with increasing radial distance from 

the lumen, which is known as the strain decay phenomenon. Qualitatively, the strain decay is 

more distinct on SMSE principal strain maps. Some artifacts are noticed on LSME elastograms 

at the lower left region (figure 7.4(b) and (c)). Residual principal minor and major strains at the 
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end of the flow cycle were -0.49% and 0.49% for the LSME, and they were reduced to -0.14% 

and 0.13% for the SMSE. 

 

Figure 7.4 (a) B-mode image of a homogeneous vascular phantom. (b), (c) Principal minor 

and major strains using the LSME, whose residual strains are -0.49% and 0.49%, 

respectively. (d), (e) Principal minor and major strains using the SMSE, whose residual 

strains are -0.14% and 0.13%, respectively. 

7.6.2.1 The heterogeneous phantom study 

Figure 7.5 presents a CPWC B-mode image of the heterogeneous vascular phantom with 

a soft inclusion, and principal strains using the LSME and SMSE. The soft inclusion is 

identifiable on all strain maps. The strain decay phenomenon caused an overestimation of the 

dimension of the soft inclusion with both algorithms. Residual principal minor and major strains 

were -0.56% and 0.56% for the LSME, respectively. They were lower at -0.19% and 0.17% for 

the SMSE, respectively. 
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Figure 7.5 (a) B-mode image of a heterogeneous vascular phantom with a soft inclusion 

under the lumen. (b), (c) Principal minor and major strains using the LSME, whose 

residual strains are -0.56% and 0.56%, respectively. (d), (e) Principal minor and major 

strains using the SMSE, whose residual strains are -0.19% and 0.17%, respectively. 

7.6.3 In vivo validation 

Figure 7.6 displays an in vivo B-mode image of a common carotid artery. LSME and 

SMSE principal strain maps are shown in figure 7.6(b)-(e). Because of boundary conditions 

imposed by surrounding tissues, non-homogeneous strain maps were noticed with both 

algorithms as a function of the angular position. However, regional differences are observed 

when comparing both elastography methods. Residual strains at the end of the sequence for 

principal minor and major strain maps using the LSME were -5.56% and 5.56%, respectively, 

whereas they were below at -1.92% and 1.77% for the SMSE, respectively. 
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Figure 7.6 (a) In vivo B-mode image of a carotid artery of a 30 year-old healthy male. (b), 

(c) Principal minor and major strains using the LSME, whose residual strains are -5.56% 

and 5.56%, respectively. (d), (e) Principal minor and major strains using the SMSE, whose 

residual strains are -1.92% and 1.77%, respectively. 

 

Figure 7.7 (a) Mean strain curve of cumulated principal minor strains for the LSME and 

SMSE over two cardiac cycles. (b) Mean strain curve of the cumulated principal major 

strain for the LSME and SMSE over two cardiac cycles. 

Principal strain curves averaged over two cardiac cycles are presented in figure 7.7 for 

the LSME and SMSE. As quantified above, the SMSE gave less residual strain errors. To 
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quantify the reproducibility, strain curves of two cardiac cycles were used to perform a linear 

fit. As shown in figure 7.8, a higher regression coefficient 𝑎 and a lower intercept 𝑏 were 

obtained with the SMSE. 

 

Figure 7.8 Two successive cardiac cycles of cumulative principal strain curves were 

selected from figure 7 to perform linear regressions for (a) principal minor strains of the 

LSME and SMSE, and (b) principal major strains of the LSME and SMSE. 

7.6.4 Computation efficiency comparison 

Computation time for processing a whole image sequence was calculated and normalized 

by the number of frames per sequence. As presented in Table 7-1, the computation time of the 

SMSE was reduced by 4 to 25 folds compared with the LSME regarding simulation, in vitro 

and in vivo data. 

Table 7-1 Computation efficiency (second/frame). 

Type of experiments LSME SMSE 

Simulations 13.1 3.0 

In vitro - homogeneous 9.2 1.7 

In vitro - heterogeneous 9.6 2.1 

In vivo 7.5 0.3 
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7.6.5 Spatial resolution 

As seen in figure 7.9, the LSME elastogram with a 50% overlap (panel b) presents a 

smoother strain distribution than with higher overlaps, but fails to detect the inclusion of 0.8 

mm. At 80% or 95% overlaps (panels c and d), the spatial sampling is improved but at the cost 

of a higher variance. The SMSE algorithm provided better results and allowed identifying all 

inclusion sizes. The impact of the hard inclusion depth is presented in figure 7.10 (for the 2 mm 

diameter inclusion). Again, the best results are obtained with the SMSE method. 

 

Figure 7.9 (a) B-mode image of a soft phantom with three sizes of hard inclusions of 2 

mm, 1 mm and 0.8 mm. (b), (c), (d) axial strains using the LSME with a 1.0 mm ×
1.0 mm window size and 50%, 80% and 95% overlaps, respectively. (e) axial strains using 

the SMSE. 

 

Figure 7.10 (a) B-mode image of a soft phantom with three hard inclusions of 2 mm at 

different depths. (b) axial strains using the LSME with a 1.0 mm × 1.0 mm window size 

and 80% overlap. (c) axial strains using the SMSE. 
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7.7 Discussion 

Although dense OF estimation is already applied into computer vision [26] and 

myocardial motion tracking [205] to obtain displacement fields, these models required new 

developments for strain imaging in the context of vascular mechanical characterization. In the 

current study, we extended the dense OF model with DCT descriptions to derive four strain 

components (axial and lateral strains and shears). Those strain components were combined to 

obtain coordinate-system independent principal strains. Moreover, a sparse framework was 

analytically implemented to reduce estimation time compared with window-based strategies. 

For in vivo results, principal strain maps were not homogeneous circumferentially (figure 

7.6(b)-(e)). The same heterogeneous observation in strain maps for healthy carotid arteries were 

recently reported [15, 124]. The potential explanation is likely the presence of different 

boundary conditions surrounding the carotid artery [18]. Thus, we proposed to use a linear 

regression strategy to evaluate the reproducibility of cumulated principal strain curves instead 

of SNR measurements, as done in [15, 124]. 

There is a trade-off between elastogram spatial sampling and computation efficiency for 

window-based approaches. The spatial sampling is determined by the window overlap, as 

demonstrated in figure 7.9 for the case of the LSME algorithm. Compared with the 80% window 

overlap used to obtain most results, the computation time was reduced 4 times when using the 

50% overlap, and it was increased 46 times for the 95% overlap. The proposed SMSE method 

could circumvent this trade-off issue by considering all pixels globally. Even with a theoretical 

pixel resolution, the SMSE computation time was still lower than that of the LSME with a lower 

resolution. Moreover, an arbitrary resolution can be set in this SMSE implementation, which 

could reduce the computation time proportionally. According to in vivo SMSE performance 

whose frame rate was around 3 s-1 with described computer facilities and software, it is believed 

that real-time estimation could be achieved by combining appropriate down-sampling 

estimation and parallel computing. 

Another trade-off of window-based approaches is the compromise between elastogram 

spatial sampling and artifacts. Intuitively, larger overlap can increase elastogram spatial 

sampling, but at an expense of increasing artifacts. As seen in figure 7.9, the axial elastogram 
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using the LSME with a 50% overlap presented a smooth strain distribution, while it failed to 

detect the inclusion of 0.8 mm. With an overlap of 80% or 95%, the elastogram spatial sampling 

was increased and it was visually possible to barely see the 0.8 mm inclusion, but at the expense 

of strong background variance. Moreover, worm artifacts due to a large overlap were noticed. 

Worm artifacts appear as thin and short alternate bands attributed to correlation noise patterns 

when the overlap is increased [201]. The elastogram using the SMSE avoided these artifacts and 

presented clear outlines of each inclusions. 

Theoretically, other sophisticated regularization terms that are used in dense optical flow 

techniques, such as sparsity of optical flow gradients [208] and non-local terms [220, 221] can 

be added into the proposed SMSE model as a prior knowledge instead of the nearly 

incompressibility term to solve the strain field. The impact of using different regularization 

terms on strain estimations deserves to be investigated in future studies. 

The SMSE is not only able to provide robust strain estimates at a sub-mm spatial 

resolution, but also the assessment of the 2-D displacement field, as described by (7.4). Thus, 

the SMSE may be applicable in the context of shear wave elastography to track the 2-D velocity 

field [222]. Future experiments in that direction are worthy to be investigated. Beside ultrasound 

vascular elastography, it is believed that this sparse model can also be of value for magnetic 

resonance elastography [223] or non-rigid object tracking in computer vision applications [224]. 

As shown in Fig. 7.10(c), the detection of small hard inclusions at different depths might also 

enhance the capability of current quasi-static breast compression elastography technologies 

[225]. 

7.8 Conclusion 

In this study, an affine model-based estimator including a sparsity strategy was proposed 

to provide vascular strain estimations at high spatial and temporal resolutions close to real-time. 

With simulation data, the SMSE gave less estimation errors than the window-based LSME 

approach. For in vitro results, elastograms with the SMSE showed less residual strain errors 

than with the LSME. For in vivo results, the SMSE provided also less residual strain errors and 

more reproducible cumulative strain curves. Computation time was reduced significantly with 
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the SMSE compared with the LSME. In addition, the SMSE avoided window effects of window-

based approaches. 
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Chapter 8 : Discussion and general conclusion 

8.1 General summary 

This thesis, including three articles, presented a series of accomplishments from 

experimental validations to algorithm development to improve NIVE for the characterization of 

carotid plaques.  

The first article of this thesis (Chapter 5) exploited TO beamforming and two window-

based affine strain estimators, the developed APBE and the LSME. The most important 

conclusion that we found is that combining the LSME with TO beamforming allowed obtaining 

comparable strain estimates than the LSME without TO beamforming according to simulations 

(figure 5.2) and better performance in the case of complex and heterogeneous phantoms over a 

wide range of applied strains from 0.07% to 3.6% (figure 5.6). In addition, we developed the 

APBE with a time-ensemble approach and an incompressibility constraint under the framework 

of CPWC and TO imaging for NIVE applications. For all simulation and in vitro studies, the 

developed APBE outperformed the original one proposed in the literature.   

In Chapter 5, only in-plane motions were considered during a 2-D scan. However, it is 

recognized that intrinsic 3-D tissue motions should cause speckle decorrelation when 

performing 2-D strain estimations. The second article in this thesis (Chapter 6) thus evaluated 

the influence of such out-of-plane motions on the performance of strain estimations with the 

LSME (as it outperformed the APBE algorithm, as demonstrated in Chapter 5). For this purpose, 

a novel carotid bifurcation phantom with a stenotic soft inclusion was designed. With it, an in 

vitro experimental setup was built to simulate out-of-plane motions of 1 mm, 2 mm and 3 mm. 

We found higher strain estimation artifacts with increasing magnitude of out-of-plane motions 

(figure 6.4 and 6.6). Even so, we still obtained robust strain estimations with 2.0 mm out-of-

plane motion. Moreover, less decorrelation artifacts using CPWC imaging than those obtained 

using focused imaging were noticed, likely due to less inter-frame out-of-plane motions (figure 

6.10). For the clinical validation of this work, we used two datasets of scans on the same carotid 

plaque, in both cross-sectional and longitudinal views, to deduce the out-of-plane motion. The 

deduced out-of-plane motions from the clinical dataset of 18 participants ranged from 0.25 mm 
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to 1.04 mm. Clinical results verified in vitro results and showed that strain estimates remained 

reproducible (figure 6.8), which should give confidence on the use of the LSME algorithm for 

carotid plaque characterization.  

The third article of this thesis (Chapter 7) focused on developing a strain estimation 

algorithm to improve the accuracy of NIVE. Therefore, we only consider affine model-based 

methods other than displacement-based methods including dense optical flow [112] and cross-

correlation-based [145] methods. The reason is that these displacement-based methods have to 

perform a gradient operation to derive affine strain components, which could induce estimation 

variances and reduce strain image resolution. Further performance comparison between affine 

model-based and displacement-based methods could be interestingly investigated. Specifically, 

we proposed a pixel-based affine strain estimator, the SMSE, to obtain a dense strain field with 

pixel-wise resolution as well as a high computation efficiency. The global estimation strategy 

of the SMSE allowed more accurate strain estimations than with the LSME window-based 

method, for simulations, in vitro and in vivo results. Moreover, the SMSE is avoiding window 

effects so as to better characterize small inclusions. In addition, the sparse implementation of 

the SMSE reduced the processing time by 4 to 25 folds, compared with the LSME, which may 

allow a possible real time implementation of NIVE. 

8.2 Originality of works 

The originality of the three main chapters of this thesis was to improve and evaluate the 

performance of NIVE systematically by ways of advanced beamforming methods, an 

experimental image acquisition strategy simulating out-of-plane motions, and a novel strain 

estimation algorithm.  

The main contribution of the first article of this thesis was to introduce TO beamforming 

into NIVE. We are the first to evaluate the performance of TO beamforming on lateral 

estimations with window-based affine strain estimators. Introducing TO speckles helped the 

performance of principal strain estimations with the LSME in the case of complex and 

heterogeneous structures. The second contribution targeted in developing a window-based 

affine strain estimator, the APBE, with a time-ensemble approach and an incompressibility 

constraint, whose performance on NIVE using CPWC and TO beamforming was also evaluated 
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for the first time. We concluded that the developed APBE outperformed the previous one used 

in the literature for cardiac motion tracking. 

The second article of this thesis contained two main original aspects. Firstly, we 

proposed a framework, including an in vitro experimental setup and an evaluation strategy based 

on a clinical dataset, which allowed studying the impact of out-of-plane motions on strain 

estimation algorithms and beamforming methods. With this framework, we evaluated the 

performance of the LSME with different magnitudes of out-of-plane motions using CPWC and 

line-by-line focused imaging. It was found that axial estimations with the LSME were 

convincing in the presence of up to 2 mm out-of-plane motion for in vitro results, and 1.04 mm 

out-of-plane motion for clinical ultrasound imaging. Secondly, the influence of out-of-plane 

motions on NIVE was, for the first time, investigated using two imaging modalities with 

different imaging frame rates, CPWC with a high frame rate (400 s-1) and line-by-line focused 

imaging with a low frame rate (25 s-1). In vitro results indicated that less inter-frame out-of-

plane motion associated with a higher frame rate caused less decorrelation artifacts. This 

suggests that CPWC imaging may be a better alternative to reduce out-of-plane artifacts for 

clinical strain assessment of carotid arteries. 

The originality of the third article of this thesis (Chapter 7) was to propose a pixel-based 

affine strain estimator, which parameterized the strain field with DCT coefficients. This 

parameterized field allowed four main advantages. Firstly, affine strain fields were directly 

constructed using DCT coefficients without an explicit derivative operation, which eliminated 

the amplification of high frequency displacement noise of displacement-based methods. 

Secondly, the displacement representation with DCT coefficients allowed to perform motion 

estimations within a HS optical flow framework. Thus, we could obtain pixel-wise strain 

estimations, which avoided disadvantages of window-based methods, such as a trade-off 

between resolution and estimation accuracy. Thirdly, unlike the HS optical flow, the sparse DCT 

representation could be solved analytically using a least squares method instead of an iterative 

minimization, which made the optimization problem more efficient. Moreover, the processing 

time of this method is only proportional to the pixels inside a vessel wall, not the pixels in the 

whole image. Thus, the donut geometry of cross-sectional vessel with less pixels than other 

organs could make possible a real time implementation of NIVE. Fourthly, the proposed DCT-
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based framework is open to variant cost functions. The data term, which consists in the optical 

flow constraint equation in the current SMSE, can be changed with any displacement-based 

terms. Likewise, the regularization term can also be replaced with other displacement-based 

spatial or temporal terms.      

8.3 Future works 

In this thesis, we have improved the accuracy of NIVE systematically from the image 

formation step to image post-processing development methods in the context of 2-D ultrasound 

imaging. Some future works could be pursued based on the works of Chapters 5, 6 and 7, 

respectively. Regarding beamforming, it would be interesting to implement TO (Chapter 5) for 

NIVE with the proposed SMSE algorithm (Chapter 7). Lateral oscillations could also be 

beneficial for the SMSE as they did for the LSME, and provide even better estimations with the 

SMSE as global estimations may be more robust against the loss of lateral resolution and 

spectrum magnitude of TO images. Like the LSME, the APBE and SMSE robustness could also 

be investigated against out-of-plane motions using the proposed evaluation framework (Chapter 

6). Their performance would need to be evaluated before launching new clinical patient datasets. 

For affine strain estimators, the SMSE can be implemented as a frequency-domain method 

instead of a space-domain method by replacing the optical flow constraint equation in (5.1) by 

an analytic phase correlation equation in (4.8). This implementation could be more suitable for 

TO images for better lateral estimations. In addition, instead of the pre-defined DCT basis 

function used in the current SMSE, the motion fields can be formulated by other learned basis 

functions via dictionary learning [204, 205] or supervised learning [226] that would need large 

amounts of ground-truth data for the training phase to obtain more accurate reconstructions of 

motion fields.     

Recent works have extended 2-D ultrasound imaging to 3-D using a 2-D matrix array 

probe. Provost et al. [227] demonstrated 3-D ultrafast imaging using either diverging or plane 

waves for 3-D shear wave and Doppler imaging. Salles et al. [169] proposed 3-D TO imaging 

to characterize tissue motions using a 3-D displacement-based method. A most recent work 

applied 3-D plane wave imaging into quasi-static elastography to estimate axial strains using a 

1-D NCC method [228]. For 2-D affine strain estimators, the APBE, LSME and SMSE can be 
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easily extended to 3-D. Without the influence of out-of-plane motions, it is expected that more 

accurate estimations could be obtained with 3-D data. On the other hand, we have shown that 

introducing a temporal continuity constraint, i.e. the time-ensemble approach into the APBE, 

improved its robustness. Thus, constraining the spatio-temporal behavior of tissues using 3-D 

data could make it possible to increase the robustness of 3-D estimators. Especially for the 

SMSE, an additional temporal regularization term can be added in the cost function to take into 

account tissue acceleration. This new temporal constraint could improve the assessment of 

vascular wall tissue behavior. 

Although the works in Chapter 5 and Chapter 7 have shown an ability to detect a soft 

inclusion in simulation and in vitro results, they are worthy to be further validated on vulnerable 

plaques characterized by MRI or histology. To characterize the thin fibrosis cap in a vulnerable 

plaque, high frequency ultrasound could be an alternative to measure its thickness. Coupling 

with the high resolution SMSE, the strain difference between the soft lipid core and thin fibrosis 

cap could be identified. 

Some literatures have shown that the strain parameters with the LSME were able to 

discriminate vulnerable plaques characterized by MRI with 31 patients with symptomatic and 

asymptomatic stenosis [70, 229]. However, these studies were performed using line-by-line 

focused imaging. Further clinical data acquisitions using advanced imaging methods, such as 

plane wave and transverse oscillation imaging are necessary to validate the reproducibility of 

the proposed methods in this thesis. 

In this thesis, we focused on static ultrasound elastography which provides tissue relative 

elasticity (strain). Another category of elastography is dynamic ultrasound elastography, such 

as acoustic radiation force imaging (ARFI) and shear wave elastography, which is able to 

provide tissue absolute elasticity (elastic module). Although it is not able to compare the results 

of the two categories directly, one possible quantitative comparison is to evaluate the sensitivity 

and specificity of identifying vulnerable plaques on the same clinical data using these two 

categories of elastography. This further study is worthy to be investigated.    
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8.4 General conclusion 

Atherosclerosis is a complex vascular disease. The early detection of vulnerable plaques 

is essential for stroke prevention and evaluation of therapeutic strategies. NIVE has shown great 

potential for the characterization of vulnerable plaques. It was the objective of this thesis to 

improve NIVE for becoming a fast and efficient method for early screening and diagnosis of 

atherosclerosis. 

The proposed methods and results of this thesis are suggesting the possibility of using 

NIVE for clinical assessment of carotid plaques as we should improvements in accuracy and 

efficiency. Despite there are still many unknown aspects to be explored, we believe that NIVE 

may become an indispensable diagnostic tool for future clinical examinations.    
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