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Résumé 

 
Dans le monde entier, les infections virales causent des problèmes de santé 

majeurs et récurrents, engendrant de sérieux problèmes socio-économiques. Notamment, 

les virus de la famille Flaviviridae qui représentent un fardeau considérable sur la santé 

mondiale et font partie des domaines prioritaires de la virologie médicale selon le rapport 

2016 du ‘Global Virus Network’. Bien que le traitement actuel contre le virus de 

l’hépatite C (VHC) ait un taux de guérison dépassant 98%, d’autres comme le virus de la 

dengue (DENV) et le virus zika (ZIKV) n’ont pas encore de traitement spécifique 

autorisé. 

 En prenant avantage de la grande expertise de notre laboratoire dans l’étude du 

VHC, nous avons utilisé des données d’une étude de biologie des systèmes visant à 

identifier l’interactome des différentes protéines virales. Les techniques utilisées ont 

combiné l’immunoprécipitation des protéines virales suivie de l’identification des 

protéines interacteurs humaines par spectrométrie de masse. Des études de génomique 

fonctionnelle par ARN interférent (ARNi) ont permis d’étudier l’effet de la diminution de 

l’expression des protéines identifiées sur la réplication du VHC. Cette étude a conduit à 

la découverte de l’interactant spécifique 17-bêta-hydroxystéroïde déshydrogénase de type 

12 (HSD17B12 ou DHB12) de la protéine virale Core comme facteur cellulaire requis à 

la réplication du VHC. HSD17B12 est une enzyme cellulaire dont l’activité catalytique 

est requise pour l’élongation des acides gras à très longue chaîne (VLCFA) lors de la 

deuxième des quatre réactions du cycle d’élongation. 

 Dans cette étude, nous avons déterminé que les cycles de réplication du VHC, 

ZIKV et DENV dépendent de l’expression et de l’activité métabolique du facteur 

cellulaire HSD17B12. Ainsi, nous avons étudié les effets de l’inhibition de l’expression 

génique par ARNi et de façon pharmacologique sur la réplication de plusieurs flavivirus 

dans une approche antivirale à large spectre. Nous avons démontré que le silençage de 

HSD17B12 diminue significativement la réplication virale, l’expression des protéines 

virales et la production de particules infectieuses de cellules Huh7.5 infectées par la 

souche JFH1 du VHC. L'analyse de la localisation cellulaire de HSD17B12 dans des 
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cellules infectées suggère une colocalisation avec l'ARN double brin (ARNdb) aux sites 

de réplication virale, ainsi qu’avec la protéine Core (et les gouttelettes lipidiques) aux des 

sites d’assemblage du virus. Nous avons également observé que le silençage de 

HSD17B12 réduit considérablement le nombre et la taille des gouttelettes lipidiques. En 

accord avec ces données, la diminution de l’expression de HSD17B12 par ARNi réduit 

significativement l’acide oléique et les espèces lipidiques telles que triglycérides et 

phosphatidyl-éthanolamine dans l'extrait cellulaire total. Ces travaux suggèrent une 

contribution de la capacité métabolique de HSD17B12 lors de la réplication du VHC. 

 De même, nous avons démontré que le silençage de HSD17B12 réduit 

significativement les particules infectieuses de cellules infectées par DENV et ZIKV. Ces 

études supportent le rôle de HSD17B12 dans l’efficacité des processus de la réplication 

de l'ARN viral et de l’assemblage de particules virales. De plus, l'inhibiteur spécifique de 

HSD17B12, INH-12, réduit la réplication du VHC à des concentrations pour lesquelles 

aucune cytotoxicité notable n'est observée. Le traitement avec 20 µM d'INH-12 réduit 

jusqu'à 1,000 fois les particules infectieuses produite par des cellules Huh-7.5 infectées 

par DENV et ZIKV lors de plusieurs cycles de réplication, et bloque complètement 

l'expression des protéines virales.  

En conclusion, ces travaux ont conduit à une meilleure compréhension du rôle de 

HSD17B12 lors de la synthèse de VLCFA et de lipides requise à la réplication du VHC, 

permettant d’explorer l’inhibition de HSD17B12 et de l’élongation d’acides gras à très 

longue chaîne comme nouvelle approche thérapeutique pour le traitement à large spectre 

des infections par les virus de la famille Flaviviridae. 

Mots clé: Médecine Moléculaire, Découverte de médicament, Cible antivirale, Agents 

Antiviraux à large spectre, Flaviviridae, VHC, DENV, ZIKV, 17-bêta-hydroxystéroïde 

déshydrogénase de type 12, HSD17B12, DHB12, KAR, acide gras à longue chaîne, 3-

oxoacyl-CoA réductase à très longue chaîne, inhibiteur de HSD17B12. 
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Abstract 

Infections with viruses are major recurrent socio-economical and health problems 

worldwide. These include infections by viruses of the Flaviviridae family, which present 

a substantial global health burden and are among the priority areas of medical virology 

according to the Global Virus Network 2016 report. While the current treatment regimens 

for hepatitis C virus (HCV) infection have cure rates of more than 98%, other important 

members of Flaviviridae like dengue virus (DENV) and zika virus (ZIKV) have no 

specific licensed treatments.  

By taking advantage of the most-studied HCV, which our lab has developed a 

vast expertise in the last 20 years, we used proteomics data of an HCV interactome study, 

combining viral protein immunoprecipitation (IP) coupled to tandem mass spectrometry 

identification (IP-MS/MS) and functional genomics RNAi screening. The study 

uncovered the 17-beta-hydroxysteroid dehydrogenase type 12 (HSD17B12, also named 

DHB12), as a specific host interactor of core that promotes HCV replication. HSD17B12 

catalytic activity is involved in the synthesis of very-long-chain fatty acids (VLCFA) 

upon the second step of the elongation cycle. 

In this study, taking HCV as a virus model, we elucidated the dependency of 

HCV, dengue virus (DENV) and zika virus (ZIKV) replication on expression and 

metabolic capacity of the host factor HSD17B12.  We investigated the effects of the 

inhibition of gene expression by RNAi and of its pharmacological enzymatic inhibition 

on flavivirus replication in a broad-spectrum antiviral approach. We showed that 

silencing expression of HSD17B12 decreases viral replication, viral proteins and 
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infectious particle production of the JFH1 strain of HCV in Huh7.5 cells. The cellular 

localization analysis of HSD17B12 showed a co-staining with double-stranded RNA 

(dsRNA) at viral replication sites and with core protein (and lipid droplets) at virus 

assembly sites. Furthermore, HSD17B12 gene silencing drastically reduced the number 

and size of lipid droplets. In association, the reduced expression of HSD17B12 by RNAi 

decreases oleic acid levels and lipids such as triglycerides (TG) and 

phosphatidylethanolamine (PE) in whole-cell extract. The data suggested the requirement 

of the metabolic capacity of HSD17B12 for HCV replication.  

Similarly, we provide evidence that HSD17B12 silencing significantly reduces 

DENV and ZIKV infectious particles. The studies support a role of HSD17B12 for 

effective viral RNA replication and particle assembly processes. Moreover, the specific 

HSD17B12 inhibitor, INH-12, reduces HCV replication at concentrations for which no 

appreciable cytotoxicity is observed. The treatment of DENV- and ZIKV-infected Huh-

7.5 cells with 20 µM of INH-12 dramatically reduces production of infectious particles 

by up to 3-log10 in infection assays, and completely block viral protein expression. 

In conclusion, these studies extends our understanding of the role of HSD17B12 

in VLCFA synthesis required for the replication of HCV, allowing to explore the 

inhibition of HSD17B12 and elongation of VLCFA as a novel therapeutic approach for 

the treatment of a broad-spectrum of viruses of the Flaviviridae family.  

Keywords:  Molecular Medicine, Drug Discovery, Antiviral host target, Broad-

spectrum antiviral, Flaviviridae, HCV, DENV, ZIKV, 17-beta-hydroxysteroid 
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dehydrogenase type 12, HSD17B12, DHB12, KAR, very-long-chain fatty acids, very-

long-chain 3-oxoacyl-CoA reductase, HSD17B12 inhibitor.  
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1.1. Flaviviridae family  

Viruses of the Flaviviridae family are enveloped single-strand positive-sense RNA 

viruses, with the nucleocapsids surrounded by two or more types of envelope 

glycoproteins and a lipid layer [1]). It is composed of different genera, including 

Hepacivirus [e.g., hepatitis C virus (HCV)], Flavivirus [e.g., Zika Virus (ZIKV), Dengue 

Virus (DENV)], Pegivirus and Pestivirus [2]. Multiple members within the Flavivirus and 

Hepacivirus genera are significant human pathogens. 

HCV is a major human liver-specific pathogen that causes chronic infection, and is 

the primary cause of liver dysfunction worldwide with more than 70 million people at 

risk of progression to liver cirrhosis and hepatocellular carcinoma (HCC) [3]. Medically 

relevant flaviviruses, including ZIKV, DENV, West Nile Virus (WNV), Japanese 

Encephalitis Virus (JEV) and Yellow Fever Virus (YFV), are usually arboviruses 

(transmitted by arthropods, mainly mosquitoes and ticks) that are responsible for severe 

mortality in humans and animals worldwide. DENV and YFV infections can cause severe 

disease in infected patients, including vascular leakage and haemorrhage [4-6]. DENV 

causes 60 million symptomatic infections annually, leading to approximately 10,000 

deaths per year [3]. On the other hand, JEV and WNV infections tend to cause 

neurological diseases [7, 8]. ZIKV infection is associated with microcephaly (a serious 

birth defect) and other neurological disorders [9]. In the last decade, targeting HCV by 

direct-acting antiviral drugs achieved unprecedented cure rates reaching about 98% of the 

treated patients; however, there is still an urgent need for medications and vaccines 

against other Flaviviridae viruses such as DENV and ZIKV. These viruses represent a 
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considerable threat to public health due to the increase in their outbreaks and 

geographical spread [10]. 

On the level of molecular virology, viruses within the hepacivirus and flavivirus 

genera are similar in their general genome organization and the general principle of the 

replication cycles [2]. The similarities in the ways of host cell manipulation by these 

viruses may offer the opportunity to learn from the data related to HCV. We can focus on 

the importance of the virus-host lipid interaction, in the context of antiviral therapy, to 

discover new avenues to target DENV and ZIKV.  
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1.2. General aspects of HCV 

1.2.1. Discovery of HCV 

The problem of parentally transmitted hepatitis appeared following the 

development of serological tests to detect hepatitis A virus (HAV) and hepatitis B virus 

(HBV) infections in the 1970s [11]. Most cases of unknown origin surprisingly 

represented hepatitis. The condition was termed non-a, non-b hepatitis (NANBH). 

Further, it has been demonstrated that NANBH is progressing gradually and has led to 

liver cirrhosis in 20% of infected patients [12]. In order to solve this problem, early 

studies on viral hepatitis used chimpanzees as reliable models for infection transfer from 

human biological materials [13, 14], further proving the existence of NANBH-causing 

agents. The chimpanzees’ hepatocytes showed tubule-like structures in their cytoplasm 

[15]. Tubule forming agent (TFA) is described as a lipid-enveloped agent that can be 

filtered and inactivated by organic solvents [16]. After many efforts to identify the 

causative agent of NANBH, a team lead by Dr. Michael Houghton at Chiron Corporation 

identified, for the first time, an agent termed HCV by using bacterial expression cDNA 

libraries to immune-screen NANBH patient sera [17] (Fig. 1.1). Upon discovery, the 

same group produced the first enzyme specifically for NANBH-specific antibodies. The 

use of this testing tool demonstrated that the major cause of parentally transmitted 

NANBH is HCV [18].	
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Figure 1.1. Schematic illustration for HCV first identification. 

Figure 1.1 shows the use of bacterial expression cDNA libraries to immune-screen 
NANBH patient sera. This led to discovery of clone 5-1-1 (HCV genome). The figure is 
adapted with permission from (Houghton, M., Discovery of the hepatitis C virus. Liver 
Int, 2009. 29 Suppl 1: p. 82-8) [19]. 
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1.2.2. HCV infection: disease and fate 

HCV is a significant chronic disease, as 70% of infections progress to persistent 

infections [20]. During the first week of infection, HCV titers increase exponentially as 

the virus is able to generate up to 1012 virions daily [21, 22]. The patients are mainly 

asymptomatic; this leads to the spread of the infection. Further, the patients become 

clinically symptomatic late after the liver disease is established, and its symptoms 

become apparent [23]. 

HCV infection is the disease most causative of liver transplantation [24]. The 

liver damage occurs despite HCV not being a cytopathic virus. Several studies showed 

that the liver pathology leading to HCC is due to direct cytotoxic T-lymphocyte-mediated 

killing of hepatocytes [25]. 

1.2.3. HCV transmission 

In developing countries, the primary cause of HCV transmission is iatrogenic, 

stemming from the use of blood-contaminated medical instruments. For example, Egypt 

has one of the highest populations of HCV infection. This high prevalence was before the 

introduction of treatment campaigns with direct-acting anti-HCV drugs. The HCV surge 

among the Egyptian population was due to anti-schistosomiasis campaigns of mass 

intravenous (IV) injections using glass syringes in the 1950s [26]. In developed countries, 

the primary source of transmission is the recreational injection	
  drug	
  use. In Canada, for 

example, the drug-using population represents near 80% of acquired HCV infection [27]. 
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1.2.4. Virus composition 

HCV has an outer envelope containing two proteins: E1 and E2. Underneath the 

membrane is a layer of the viral core protein, which binds to the viral genome forming 

the nucleocapsid where the RNA is located [28]. 

HCV particles purified from sera of humans and chimpanzees exhibit a wide 

range of low densities between 1.03 g/cm3 and 1.20 g/cm3 [29, 30]. Further 

characterization showed that the particles of lower density have higher infectivity [31]. 

The virus from patient sera was described for the first time as a lipo-viro-particle when it 

was found to be associated with a very low-density lipoprotein (VLDL) or low-density 

lipoprotein (LDL). Virus particles obtained from cell culture confirmed the association 

with lipoprotein and apolipoproteins ApoE and ApoB. However, they had slightly higher 

density and a lower specific infectivity [32, 33]. HCV has a unique lipid profile among 

the Flaviviridae family. HCV particles are composed mainly of neutral lipids like 

cholesterol esters and triglycerides. In contrast, the lipidomic characterization of bovine 

viral diarrhea virus (BVDV), from the same family, did not reveal the presence of those 

neutral lipids [34]. 

1.2.5. HCV genome 

The HCV genome is about 9.6 kb. The genome is represented by a non-

interrupted open reading frame flanked by two untranslated regions (UTRs). The 5'UTR 

contains the internal ribosomal entry site (IRES) where the virus genome translation 

starts. The 3'UTR has cis-acting RNA elements that stimulate translation. The viral open 

reading frame codes for about 3000 amino acids. The HCV polyprotein is processed by a 

combination of viral and cellular proteases. The viral polyprotein is processed into three 
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structural proteins [35] - capsid protein and (E1 and E2) envelope proteins – and seven 

non-structural proteins (P7, NS2, NS3, NS4A, NS4B, NS5A, and NS5B) [19] (Fig. 1.2).  
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Figure 1.2. Genomic organization of HCV virus. 

The figure shows the HCV genome and the protein code. Scissors indicate cleavage by 
cellular proteases, whereas the arrows depict cleavage by the viral proteins. The figure is 
adapted with permission from (Neufeldt, C.J., et al., Rewiring cellular networks by 
members of the Flaviviridae family. Nat Rev Microbiol, 2018. 16(3): p. 125-142.) [2].   
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1.2.6. Genetic variance, genotypic distribution, and origins  

HCV is very diverse genetically and based on phylogenetic and sequence analysis 

of the viral genome it is classified into seven genotypes (1-7) [19]. Genotyping is based 

on genome areas which are highly conserved, namely E1, core, NS5B, and 5'UTR [36]. 

The different genotypes diverge at about 30-35% of the nucleotide sequence. The strains 

in different genotypes have less than 15% difference in nucleotide sequence [37]. 

HCV genotype 1, as opposed to 2 and 3, is the most distributed genotype in the 

developed Western world. The distribution includes North America and Northern and 

Western Europe. Regarding genotypes 4, 5, and 6, they are more confined to some 

regions of the world. For example, genotype 4 is found mainly in the Middle East [38]. 

Genotype 5 is found in South Africa [39], while genotype 6 is predominantly found in 

South Asia [40]. Genotype 7 is most probably related to Central Africa [41]. 
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1.3. Molecular biology of HCV 

1.3.1. HCV proteins  

HCV Core 

The first structural protein encoded by the HCV open reading frame (ORF) is the 

core protein (Fig.1.3), which forms the viral nucleocapsid [42]. The premature core (191 

amino acids) is constituted by three domains. Recruitment of the premature core to the 

endoplasmic reticulum (ER) depends on the carboxyl terminal (C-terminal) of domain III 

[43]. However, the association and targeting lipid droplets (LDs) are dependent on the 

proteolytic cleavage of the distal C-terminal (domain III) by the signal peptide peptidase 

enzyme, and generation of the mature core (177 amino acids) [44]. The mature core has 

two domains. The amino terminal (N-terminal) of domain I is rich in positively charged 

amino acids and is mostly hydrophilic. This characteristic contributes to RNA-binding 

ability of the protein [45, 46]. Moreover, the same domain catalyzes the homo-

oligomerization of the core and its interaction with glycoprotein E1 [47, 48]. On the other 

hand, the hydrophobic C-terminal of domain II is responsible for membrane association, 

for instance, to the membrane surrounding LD [47]. Alternative reading frame protein 

(ARFP) is a result of a ribosomal frame-shift near codon 11 in core sequence. The protein 

is composed of 160 amino acids and is expressed in HCV-infected patients. The function 

of this protein is still to be elucidated [49]. HCV core, particularly of genotype 3, induces 

the expression of lipid de novo synthesis genes and contributes to the development of 

hepatic steatosis [50].  
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Figure 1.3. HCV proteins attached to ER membranes. 

Schematic representation of HCV proteins shows three structural proteins; (core) capsid 
protein, (E1 and E2) envelope proteins, and seven nonstructural proteins (P7, NS2, NS3, 
NS4A, NS4B, NS5A, and NS5B) [35]. The figure is adapted with permission from 
(Neufeldt, C.J., et al., Rewiring cellular networks by members of the Flaviviridae family. 
Nat Rev Microbiol, 2018. 16(3): p. 125-142.)[2].  
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The envelope glycoproteins 

HCV has two envelope glycoproteins namely, E1 of 35kDa and E2 of 70kDa. The 

two proteins are heavily glycosylated. They have a small C-terminal transmembrane 

domain that contains the retention signal in the ER, and a large N-terminal ectodomain 

facing the ER lumen [51]. The two envelope proteins are heterodimerized through the 

transmembrane domain [52]. E1 and E2 are responsible for the early stage of viral entry 

through the interaction with permissive cell receptors [53]. 

P7 

P7 is a protein with the ability to form pores in artificial membranes. It also has 

ion channel activity. In virtue of these characteristics, it belongs to the family of 

viroporins [54]. P7 resides in the ER and has two hydrophobic transmembrane passages 

linked together through a short hydrophilic segment [55].  P7 has a significant role in 

HCV particle infectivity through its ion channel activity and interaction with other viral 

proteins. However, the P7 protein is dispensable in HCV RNA replication and virus entry 

[56]. 

NS5A 

NS5A plays an essential role in viral replication, particle production, and 

modulation of cellular environment [57]. No enzymatic activity has been reported for 

NS5A. NS5A has three domains: one highly structured domain (DI) and two unstructured 

domains (DII and DIII). DI integrity is essential for RNA replication, while deletion of 

large parts of DII and DIII could be done without affecting it. A large deletion of DIII 

domain was used to generate a fluorescent fusion protein of NS5A to produce an RNA 
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replication-competent replicon [58]. However, the NS5A mutants are impaired in particle 

production due to the loss of the interaction with core protein [59]. NS5A has two 

different phosphorylated forms. They are named according to their molecular mass: the 

basal p56, and the hyper-phosphorylated p58. The p56/p58 ratio was reported to alter 

HCV RNA replication efficiency [60]. The NS5A N-terminal alpha-helix anchors the 

cytosolic leaflet of the ER, which is critical for HCV RNA replication [61]. NS5A 

interacts with ER vesicle-associated membrane protein A (VAP-A), which could play an 

essential role in the recruitment of effector enzymes such as oxysterol binding protein 

(OSBP), which is capable of binding VAP proteins [62]. NS5A importantly interacts with 

phosphatidylinositol-4-kinase III alpha (PI4KIIIA). This interaction stimulates the 

enzyme. Further, the stimulation of the enzyme leads to the accumulation of 

phosphatidylinositol-4-phosphate (PI(4)P) which is essential to the recruitment of other 

effector enzymes that have pleckstrin homology domains (PH domains) [63, 64]. Indeed, 

NS5A plays a vital role in the preparation of HCV RNA for encapsidation. It is proposed 

that NS5A and possibly NS2 [65] deliver the virus RNA genome from sites of RNA 

replication to the LD at which core protein processes the encapsidation [66]. Further, 

NS5A Domain I was shown to be critical for the induction of double-membrane vesicles 

associated with hepatitis C virus replication [67]. 

NS2 

NS2 encodes a cysteine protease that catalyzes the cleavage of the HCV 

polyprotein precursor at the NS2/NS3 junction. NS2’s cysteine protease function is 

enhanced by the N-terminal one third of NS3 [68, 69]. NS2 is not directly required for 

HCV replication. However, it plays a pivotal role in the regulation of HCV assembly. 
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The role involves complex interactions with structural and non-structural viral proteins 

[70]. NS2 is proposed to act as a scaffold bringing the replicase machinery (NS3, NS5A) 

and the envelope glycoproteins to assembly sites. Mutations in NS2 abrogate the 

interaction with NS3, NS5A, P7, and E2, consequently impairing HCV particle 

production [65, 71, 72]. 

NS3 

NS3 has multiple enzymatic activities, including protease and helicase activities. 

The protease activity is stimulated when the enzyme binds to its co-factor NS4A and 

mediates the processing of the polyprotein in the nonstructural protein region [73]. The 

C-terminus carry the helicase activity. This activity mediates ATP hydrolysis together 

with unwinding HCV RNA [74, 75]. NS3 is critical for HCV replication and particle 

assembly [76]. NS3, together with its co-factor NS4A, is localized to the ER membrane 

and the contact sites between the ER and the mitochondrial membrane. This localization 

promotes its ability to hinder the induction of innate cellular immunity. Indeed, NS3/4A 

can cleave mitochondrial antiviral signalling protein MAVS, which is the adaptor of the 

retinoic acid-inducible gene (RIG-I) [77, 78]. 

NS4A  

The central part of the NS4A protein acts as an NS3 co-factor, while the N-

terminus plays a role in tethering NS3 to cellular membranes [79].  However, the function 

of the C-terminus part is not clear. Mutagenesis studies suggest that through interaction 

with other nonstructural proteins, it may play a role in HCV RNA replication and particle 

production [80]. 
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NS4B 

NS4B is an integral membrane protein composed of a central core of four 

transmembrane domains, and C- and N- terminuses facing the cytoplasm [81]. NS4B can 

induce the rearrangement of ER membranes and generation of vesicle-like structures, 

which act as HCV replication complex sites [82, 83].  NS4B has shown to bind viral 

RNA and to interact with HCV nonstructural proteins [84]. Further, NS4B was shown to 

play a role in viral assembly [85]. Moreover, it was demonstrated to harbour NTPase 

activity [86], and, similar to the other HCV nonstructural proteins, NS4B has been 

reported to form oligomers [87]. Interestingly, it was demonstrated that NS4B protein 

oligomerization is critical for membranous web formation and HCV RNA replication, 

and hence is required for the assembly of a replication complex, possibly through the 

induction of membrane curvature and vesicle formation [70]. 

NS5B 

HCV replication proceeds via synthesis of a complementary negative-strand RNA 

using the genome as a template and the subsequent synthesis of genomic positive-strand 

RNA from this negative-strand RNA template. The enzyme responsible for this process is 

NS5B RNA-dependent RNA polymerase (RdRp), which is the core of the replication 

machinery responsible for the amplification of the HCV genome. The NS5B protein is 

composed of two domains: a hydrophobic transmembrane domain, and the C-terminal 

catalytic domain to which the former is linked [58, 88]. The active site of the polymerase 

includes a GDD motif that is involved, along with the contribution of Mg2+ ions, in the 

binding of nucleotide substrates and nucleotide polymerization [78].  
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1.3.2. HCV life cycle  

The HCV life cycle includes three major steps: the viral entry, the translation and 

replication of the virus genome, and the assembly of the viral particles [89]. The HCV 

life cycle is represented in (Fig. 1.4). 

 

 

Figure 1.4. Schematic representation of the HCV life cycle. 

Virus binding and internalization (a); cytoplasmic release and uncoating (b); IRES-
mediated translation and polyprotein processing (c); RNA replication (d); packaging and 
assembly (e); virion maturation and release (f). The steps are illustrated as separate steps 
for simplicity. The bold black arrows refer to the replication and assembly compartments 
(representative electron microscope images are shown). The steps occur in a tightly 
coupled fashion. The figure is adapted with permission from (Moradpour, D., F. Penin, 
and C.M. Rice, Replication of hepatitis C virus. Nat Rev Microbiol, 2007. 5(6): p. 453-
63.) [89]. 
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1.3.2.1. HCV entry 

HCV, during circulation in the blood, is directly in contact with the basolateral 

membrane of hepatocytes. The contact allows it to bind to the receptors on the surface of 

these cells and trigger its entry, as reviewed in Lindenbach et al. 2013 [72]. LDL receptor 

(LDL-R), glycosaminoglycans (GAGs), and heparan sulfate proteoglycans (HSPGs) 

mediate low-affinity attachment of HCV to hepatocytes’ surfaces. This attachment occurs 

by virtue of the HCV particle apolipoprotein E (ApoE) content [72]. In addition to this, 

there are five hepatocyte surface molecules necessary for HCV particle entry. These are: 

CD81, scavenger receptor class B type I (SR-BI), claudin 1 (CLDN1), occludin (OCLN) 

and Niemann-Pick C1-like 1 (NPC1L1). As well, receptor tyrosine kinase (RTK) and 

tight junction cadherin are regulatory molecules essential for HCV entry [72]. (Fig. 1.5) 

(i) CD81 

Human CD81 is widely expressed in many cell types. The molecule is a 

tetraspanin adaptor cell surface protein [90]. CD81 promotes a conformational change in 

the HCV E1/E2 glycoproteins. The conformational change is important for low-pH-

dependent fusion and viral endocytosis [91]. CD81, through its large extracellular loop, 

binds HCV envelope glycoprotein E2 to facilitate HCV entry [53, 92]. The sequences of 

the extracellular loops of CD81 are conserved between humans and chimpanzees. 

However, cells from different species with different sequences can support HCV entry in 

vitro [93]. 
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Figure 1.5. Schematic representation of hepatocyte HCV entry factors. 

HCV lipo-viro-particle attaches to the cell membrane through interaction with HSPG, 
LDLR, and SR-BI. SR-BI may produce conformational changes in E2, leading to the 
exposure of the CD81 binding site. Interaction of E2 with CD81 leads to the activation 
of the signal transduction through EGFR, Ras, and Rho (Ras homology) GTPases. 
These signalling events enhance the lateral movement of CD81-HCV complexes to the 
cell-cell contact sites. Then, CD81 interacts with CLDN1 and promotes HCV 
internalization via clathrin-mediated endocytosis. The low pH of the endosomes leads to 
HCV fusion. The figure is adapted with permission from( Lindenbach,	
  B.D.	
  and	
  C.M.	
  Rice,	
  
The	
  ins	
  and	
  outs	
  of	
  hepatitis	
  C	
  virus	
  entry	
  and	
  assembly.	
  Nat	
  Rev	
  Microbiol,	
  2013.	
  11(10):	
  
p.	
  688-­‐700.) [72].	
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(ii) Scavenger receptor class B type I (SR-BI) 

SR-BI is a 509-amino acid polypeptide, and it regulates lipid metabolism through 

its function as a primary receptor for high-density lipoproteins (HDLs), supporting its 

selective uptake into hepatocytes [94, 95]. SR-B1 was initially identified as a putative 

receptor for HCV because it binds soluble E2 (sE2). This binding was suggested to occur 

through the interaction with E2 hypervariable region 1 (HVR1) [96]. SR-BI mediates 

primary attachment of HCV particles of intermediate density to cells. These initial 

interactions involve apolipoproteins, such as ApoE, which is present on the surface of 

HCV particles [97]. This suggests that the lipoprotein components in the virion act as 

host-derived ligands for important entry factors such as SR-BI. It has been shown that 

HCV entry relies on the lipid transfer activity of SR-BI [97]. Indeed, SR-BI antagonist 

was demonstrated to have additive and synergistic potency when used in combination 

with other antiviral agents [98]. 

(iii), (iv) Claudin 1 and Occludin 

CLDN1 and OCLN are two tight junction proteins. The two proteins were 

identified as factors able to render non-human cells supportive of HCV entry [99, 100]. It 

was suggested that CLDN1 and OCLN support the later phase of HCV entry, after SRB1 

and CD81. Interestingly, CLDN1 and OCLN do not directly interact with the HCV 

envelope proteins. However, CLDN1 and CD81 interact to form a part of the HCV 

receptor complex [101, 102]. It was also shown that HCV envelope glycoproteins 

stimulate endocytosis of both CD81 and CLDN1 and support their fusion with the early 

endosome, supporting a model wherein HCV stimulates receptor trafficking to promote 

particle internalization [103].  
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(v) Niemann-Pick C1-like 1 

NPC1L1, a 13 transmembrane cell surface cholesterol-sensing receptor, is 

expressed in the gastrointestinal tract on the apical surface of intestinal enterocytes, in 

addition to the human hepatocytes like Huh7 cells. Further, NPLC1L1 is responsible for 

the regulation of cellular cholesterol absorption and controls body cholesterol 

homeostasis [104]. 

Silencing or antibody-mediated blocking of NPC1L1 impairs cell culture-derived HCV 

(HCVcc), demonstrating that NPC1L1 expression is required for HCV infection initiation 

[105]. The requirement was shown to be dependent on virion cholesterol content, and to 

occur before the virion-cell membrane fusion step [105]. Further, ezetimibe, the clinically 

available FDA-approved NPC1L1 antagonist, potently blocks HCV uptake in vitro. 

[105]. 

Regulatory molecules 

(i) Receptor tyrosine kinases 

Using kinase RNAi screens, two receptor tyrosine kinases RTKs, including the 

epidermal growth factor receptor (EGFR) and ephrin type-A receptor 2 (EphA2), were 

identified as HCV entry cofactors [106]. The two receptors regulate CD81-claudin-1 co-

receptor associations and viral glycoprotein-dependent membrane fusion [106]. GTPase 

HRas, (Harvey Rat Sarcoma oncogene homolog) activation downstream of EGFR 

signalling was shown as a critical host signal transducer for EGFR-mediated HCV entry. 

Moreover, HRas signalling drives the lateral membrane diffusion of CD81 [107]. 
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(ii) E-cadherin 

E-cadherin is a transmembrane glycoprotein, which acts as a significant adherent 

junction protein. It plays an essential role in maintaining cell-cell adhesion. Further, it 

plays a vital role in maintaining the epithelial architecture and cell polarity and 

differentiation [108, 109]. Li and co-workers showed that E-cadherin regulates HCV 

entry [110]. Their functional studies demonstrated that E-cadherin is closely associated 

with CLDN1 and OCLN on the cell membrane. It was also demonstrated that the 

depletion of E-cadherin severely diminished the cell-surface distribution of these two 

tight junction proteins. The phenotype indicates that E-cadherin plays a vital role in the 

regulation of CLDN1/OCLN localization on the cell surface [110]. 

1.3.2.2. HCV translation and replication  

HCV has highly structured 5’- and 3’-untranslated regions (UTRs) flanking a 

single open reading frame instead of a 5’-terminal cap and a 3’-terminal poly (A) tract 

structure characterizing the host cell mRNA [111]. HCV translation initiation occurs by a 

cap-independent mechanism mediated by the type III internal ribosomal entry site (IRES) 

in the 5’ UTR [112]. The IRES encompasses 5’ UTR stem-loop II-IV [111]. The IRES 

includes two stem-loop structures located in the core-coding region. Beside the IRES, 

several cis-acting RNA elements in the 3’ UTR stimulate the translation of HCV RNA. 

Recent reports suggest the circularization of the HCV genome occurs as a result of the 

interaction between stem-loop structures residing in the NS5B coding region and motifs 

in the IRES [113].  
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Further, it has been shown that possible circularization of the HCV genome is 

likely facilitated by cellular and viral proteins, for instance, PCBP2 (poly(rc)-binding 

protein 2), ILF3 (interleukin enhancer-binding factor 3) and IGF2BP1 (insulin-like 

growth factor II mRNA-binding protein 1) [114, 115]. The circularization of the HCV 

genome facilitates the translation (5’ to 3’ direction) and the viral replicase-mediated 

RNA synthesis (3’ to 5’ direction). Furthermore, liver-specific microRNA-122 (miR-122) 

[116] binds to two sites in the 5’ UTR of the HCV RNA genome, leading to stimulation 

of IRES-mediated translation, and protecting viral RNA from degradation via recruitment 

of Argonaute 2 [111, 117]. 

HCV RNA translation leads to a single polyprotein, which is subsequently 

processed by viral and host encoded proteases into 10 mature proteins (discussed in 

section 1.3.1). Host signal peptidases and signal peptide peptidases process the structural 

proteins of HCV by mediating the cleavage at the core/E1, E1/E2, E2/p7 and p7/NS2 

junctions. Further, the NS2 cysteine protease, whose activity is enhanced by the N-

terminus of NS3, mediates the cleavage of the NS2/NS3 junction releasing the NS3/4A 

serine protease. NS3/4A processes most of the non-structural (NS) proteins by mediating 

the cleavage of the NS4A/4B, NS4B/5A, and NS5A/5B junctions while also cleaving 

itself and other host factors [70]. 

On the other hand, viral and cellular proteins orchestrate the process of HCV 

RNA replication in the multi-step process [118]. The first step of RNA synthesis 

generates a negative-strand genome, which serves as a template for progeny positive-

strand RNA that is produced in 5- to 10-fold excess [118]. 
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It is unclear how RNA replication and translation are co-regulated. As described 

before, the circularization of the RNA genome might be one mechanism. Another 

possibility is the formation of alternative RNA structures. For instance, it was shown that 

the 5’ UTR of the positive-strand RNA genome and its complementary sequence – i.e., 

the 3’ UTR of negative-strand RNA – have very different secondary structures [119]. 

Moreover, RNA sequences in domain II of the IRES are essential for RNA replication 

[120]. These characteristics could present multiple signals that might be involved in the 

coordination between RNA translations and replication. 

  HCV, like the other positive-strand RNA viruses, remodels the intracellular 

membranes, leading to the formation of organelle-like membranous structures named as 

replication factories (RFs) or membranous web (MW). The MW plays many essential 

roles, which include (i) compartmental concentration of factors required for efficient viral 

RNA replication, (ii) spatial coordination of (RNA translation, replication, assembly) in 

the viral replication cycle, and (iii) protecting viral proteins and RNA from intracellular 

innate immunity [120]. 

  Positive-strand RNA virus-induced membranous rearrangements could be 

included in two morphological types: the double-membrane vesicle (DMV) type and the 

invaginated vesicle/spherule type [89, 121]. Interestingly, picornavirus and coronavirus 

replication sites belong to the DMV type, though they have only a very distant 

evolutionary relationship with HCV, whereas the more closely HCV-related flavivirus 

such as DENV and West Nile virus (WNV) have replication sites in the form of 

invaginated vesicles within the ER [120]. 
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 Electron microscopy (EM) studies of HCV-infected cells show the formation of 

DMVs of ∼150 nm diameter [122]. The DMVs aggregate to form the structure defined as 

the membranous web. The DMVs originate as a protrusion from the ER to the cytoplasm, 

by the action of HCV viral proteins NS4B and NS5A [67, 82]. Importantly, the outer 

membrane is often linked to the ER membrane. The membranous structures also contain 

Single Membrane Vesicles (SMVs) and Multi-membrane Vesicles (MMVs) [123]. 

Biochemical characterizations have demonstrated that HCV RNA and replicase activity 

reside within nuclease-resistant and protease-resistant environments [121]. This suggests 

that the HCV replication occurs inside the lumen of DMVs. Only 10% of DMVs have 

pores like a connection to the cytoplasm [124]. Hence, it may be only a minor fraction of 

the DMVs that support active replication at a given time. Otherwise, DMVs have nuclear 

pore complex-like structures, which might enable the traffic in and out of a closed 

membrane compartment [125].  

Host factors, besides HCV proteins, critically contribute to RF formation. For 

instance, cyclophilin (CypA), by acting on NS5A, is suggested to contribute to the 

formation of HCV RFs [126]. Another example is PSTPIP2 (proline-serine-threonine 

phosphatase interacting protein 2), which belongs to the BAR (Bin-Amphiphysin-Rvs) 

domain-containing protein family that acts as a sensor or inducer of positive membrane 

curvature [127]. A study by Chao et al. [127] showed that PSTPIP2 is required for HCV-

induced membrane alterations and, thus, RNA replication. Both NS4B and NS5A interact 

with PSTPIP2, and recruit it to HCV-remodeled membranes. Further, depletion of this 

host factor abrogates DMV formation [127]. 
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HCV uses a sterol regulatory element-binding protein-1 (SREBP1) pathway to 

induce de novo lipid and membrane biosynthesis [128]. The induction has been shown to 

cause distinct changes in the lipidomic profile of HCV-infected cells [129]. The SREBP1 

pathway was also activated in the core- and NS4B-overexpressing cells [128, 130]. 

Further, the overexpression stimulates the transcription of lipogenic genes such as fatty 

acid synthase (FASN) and 3-hydroxy-3-methylglutaryl coenzyme-A reductase (HMG-

CoA), the rate-limiting enzyme of the cholesterol biosynthesis of the mevalonate 

pathway. Further, viral replication requires the metabolic intermediate geranylgeranyl 

phosphate in protein prenylation [131]. NS5B has been shown to also interact with FASN 

to stimulate its RdRp activity [132]. 

HCV is strongly dependent on the lipid kinase PI4KIIIα and its product, 

phosphatidylinositol-4-phosphate (PI(4)P) [120]. PI(4)P is predominantly found in Golgi 

membranes and the inner leaflet of the plasma membrane of non-infected cells. However, 

in HCV infected cells, the PI(4)P is highly enriched in DMVs and RF [63, 133]. PI4KIIIα 

knockdown impairs HCV replication and causes the aggregation of DMVs of 

significantly reduced diameter [63]. The same phenotype was shown when a PI4KIIIα 

pharmacological inhibitor was used [62]. The phenotype shows that PI(4)P is critically 

required for DMV functionality. Notably, DMV induction by the distantly related 

picornaviruses also requires PI(4)P, suggesting an evolutionarily conserved mechanism 

[134]. 

One pathway linked to PI(4)P which involves non-vesicular cholesterol transport 

is the oxysterol binding protein (OSBP)-mediated cholesterol transport [62 352]. OSBP 

catalyzes the cholesterol transport to PI(4)P-containing HCV-remodeled membranes [63]. 
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Importantly, rhinoviruses manipulate this cellular lipid transport system in a strikingly 

similar way [135], demonstrating an evolutionarily conserved mechanism of DMV 

biogenesis. In HCV-infected cells, it has been shown that DMV diameters were reduced 

both by blocking OSBP-mediated cholesterol transport [130] and by depletion of 

cholesterol from purified DMVs [121], showing that cholesterol is an essential structural 

component of HCV-remodeled membranes. The knockdown of PI4KIIIα or OSBP results 

in very similar DMV morphologies. However, PI4KIIIα knockdown blocks HCV RNA 

replication potently [120]. In the same context, HCV infection induces the synthesis of 

specific sphingolipids that enhance NS5B-mediated RNA replication [136]. 

Sphingolipids, in addition to cholesterol, play a critical role in detergent-resistant 

membranes (DRM) [structural part of RF composed of condensation of phospholipids, 

sphingolipids, and cholesterol [120]]. 

Autophagy is another cellular pathway eventually used by HCV and other 

positive-strand RNA viruses to establish RFs. One obvious link is the similarity of the 

autophagosomes and DMV-type RFs morphologies. Moreover, HCV infection stimulates 

a key event in autophagosome formation, LC3 lipidation [137]. It was demonstrated that 

lipidated LC3 associates HCV proteins on viral replication-specialized cell membranes 

[138]. However, it is still not well defined which steps of the HCV replication cycle are 

modulated by autophagy. For instance, autophagy was reported to stimulate the 

translation of incoming HCV RNA without affecting RNA replication [137]. Others 

suggest that autophagosomes serve as platforms for HCV RNA synthesis [139]. Further, 

autophagy might affect virus production [140]. Hence, autophagy may have a 
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multifaceted impact on HCV replication. However, to what extent the autophagy 

machinery plays a role in viral DMV biogenesis remains to be investigated. 

1.3.2.3. HCV assembly 

The core protein is the maestro protein of viral assembly. (The HCV core protein 

interaction with other viral proteins in the assembly process is represented in (Fig. 1.6)) 

The mature core with a positively charged N-terminal binds viral genome RNA, whereas 

the C-terminal domain facilitates membrane binding via palmitoylated cysteine residues 

[47, 141]. The core protein is synthesized on ER ribosomes and then homodimerizes and 

traffics to cytosolic LDs. Mutations that prevent core protein from trafficking and binding 

to LD strongly inhibit virus assembly and lead to core protein degradation [142, 143]. 

Cellular factors were demonstrated for core-cLD (cytosolic LD) association. For instance, 

diacylglycerol-O- acyltransferase 1 (DGAT1), an enzyme required for the synthesis of 

triglycerides that are stored in cytosolic LDs [144], and the activity of cytosolic 

phospholipase which is regulated by mitogen-activated protein kinase (MAPK), were 

reported to be involved in core trafficking to LDs [145]. Further, core protein processes a 

conserved motif YXX* in which X is any amino acid and * corresponds to a hydrophobic 

amino acid. This motif interacts with clathrin assembly protein complex 2 medium-chain 

(AP2M1) and is involved in transporting core from cLD to ER [146]. Inhibition of RTKs 

that regulate AP2M1 activation is reported to strongly inhibit HCV assembly (i.e., anti-

cancer compounds erlotinib and sunitinib) [147]. 
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Figure 1.6.  Schematic representation of HCV protein interactions necessary for 
virus particle assembly. 

NS2, NS3, P7, and phosphorylated NS5A interact with core and envelope proteins to 
promote particle assembly. The figure is adapted with permission from (Zayas,	
  M.,	
  et	
  al.,	
  
Coordination	
  of	
  Hepatitis	
  C	
  Virus	
  Assembly	
  by	
  Distinct	
  Regulatory	
  Regions	
  in	
  Nonstructural	
  
Protein	
  5A.	
  PLoS	
  Pathog,	
  2016.	
  12(1):	
  p.	
  e1005376.)	
  [66]	
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Recently, imaging studies were conducted on virus-producing cells to obtain 

further insight into the trafficking of core protein during virus assembly and release 

[148]. It has been demonstrated that the core protein is rapidly trafficked to the surface of 

cLDs, and then recruited from the surface of cLD into motile puncta that move in 

correspondence with cell microtubules. The movement with microtubule architecture 

represents the virus particle within the secretory pathways [148]. 

While the trafficking of a core protein to LD is critical for the assembly, the core 

interaction with other viral factors at the assembly sites is crucial. For example, NS5A 

interaction with the LDs bound core protein is a crucial step in HCV assembly [59]. The 

C-terminal unfolded domain of NS5A has an essential role in HCV assembly. In 

particular, a key event for the virus assembly is the phosphorylation of specific serine in 

this domain by casein kinase IIα (CK IIα) [149]. Also, NS5A interactions with ApoE and 

annexin A2 were shown to enhance the assembly process [150, 151]. Further, NS2 and 

P7 play a pivotal role in organizing the formation of the virus assembly complex. NS2 

processes the three transmembrane domains (TMDs). Moreover, the C-terminal cysteine 

protease domain of NS2 induces the protein homodimerization. The two parts of the 

protein – TMDs and the cysteine protease – are required for the production of the virus 

particle [152, 153]. Additionally, NS2 interacts with membrane-bound P7, and the 

interaction is essential to localize the proteins to the LD bound core [154]. 

Moreover, significant defects in HCV assembly were reported when a mutation in 

the NS3 helicase domain was created. The demonstration of this suggests the possibility 

that NS3 helicase activity serves a purpose in packaging viral RNA during nucleocapsid 

assembly [155]. 
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E1 and E2 are located on the luminal side of the ER and associate the newly 

composed virion envelope. They fold and form non-covalent heterodimers [156]. The 

folding of each HCV glycoprotein is dependent on the other one. However, the E2 

ectodomain can independently fold on its own into a structure that can be recognized by 

conformation-specific antibodies [157]. 

HCV particle production is tightly linked to very-low-density lipoprotein (VLDL) 

[158]. The link was shown in cell cultures and in humans. For instance, the cell culture-

produced HCV particles have incorporated apolipoproteins [159] as in human serum-

derived virus particles [160]. Apolipoprotein E (ApoE) has a particular importance in the 

HCV assembly. Many observations indicate, for example, that antibodies targeting ApoE 

efficiently neutralize HCV particles, highlighting its essential role in the particles’ 

determinants of infectivity [161]. Further, the genetic knockdown of ApoE reduces HCV 

particle production, and this can be restored upon ectopic expression of ApoE, pointing to 

its essential role in particle production [161-163]. In the same context, ApoE was shown 

to interact with NS5A and viral envelope glycoproteins [159, 164, 165]. Recent 

functional data are in consensus with earlier reported imaging studies in pointing toward 

the role of ApoE in a post-envelopment step of HCV particle production. The data 

suggested that HCV secretion utilizes the same pathway as VLDL secretion [159, 166, 

167]. 

The endosomal sorting complex required for transport (ESCRT) pathway is 

involved in the scission of budding membrane compartments that curve away from the 

original cellular membranes. Several reports demonstrated that ESCRT could be required 

for HCV in post-assembly steps during virus egress [168].  
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1.4. In vitro models to study HCV 

1.4.1. Huh7 cells 

The discovery of the Huh7 cell line that was isolated from HCC of a Japanese 

patient was a cornerstone in the advancement of HCV research [169]. The cell line was 

used to create HCV replicon that could express the virus proteins and replicate the viral 

RNA continuously [83]. This accomplishment led to the development of in vitro cell 

assays for screening of small molecules antivirals. It was found that some mutations in 

the virus genome increase the replication in vitro. However, these mutations render the 

HCV unable to be infectious to chimpanzees [170]. 

1.4.1.1. Subgenomic replicon system 

The HCV subgenomic replicon model encodes for the viral proteins NS3 to NS5B 

of HCV genome (Fig. 1.7). Two IRES sequences govern the translation of the replicon. 

The first IRES is derived from HCV and mediates the translation of a neomycin selection 

marker that is resistant against the cytotoxic compound G418. Additionally, it mediates 

expression of firefly luciferase (FLuc) gene as a quantifiable readout. The second IRES is 

derived from Encephalomyocarditis virus (EMCV) and mediates the translation of the 

five HCV viral proteins necessary for replication [171]. There are variations to the 

replicon system; for example, an additional GFP within the NS3 to NS5B is added for 

immunofluorescence microscopy investigations. The replicon system is a model of 

choice for high-throughput RNA interference (RNAi) and chemical screens to identify 

potential replication stimulators/inhibitors and co-factors/restriction factors [171].  
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Figure 1.7. An example of an HCV subgenomic replicon. 

Luciferase and antibiotic resistance are expressed under HCV IRES, while the 
nonstructural proteins are expressed under EMCV IRES. The figure is adapted with 
permission from (Lohmann,	
  V.	
  and	
  R.	
  Bartenschlager,	
  On	
  the	
  history	
  of	
  hepatitis	
  C	
  virus	
  cell	
  
culture	
  systems.	
  J	
  Med	
  Chem,	
  2014.	
  57(5):	
  p.	
  1627-­‐42.) [171]. 
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1.4.1.2. JFH-1 System 

In 2005, the attempts to isolate in vitro infectious strains of HCV were successful 

in isolating Japanese fulminant hepatitis 1(JFH-1) genotype 2a clone [172]. This strain 

was isolated from a Japanese patient who developed fulminant hepatitis [173]. JFH-1 is 

able to replicate in cell culture systems [172]. Various chimeras were created to increase 

infectivity, one of which is JC1.  JC1 is a chimeric HCV genome composed of a hybrid 

of two isolates genomes. This includes J6 (encoding core to NS2 from another genotype 

2a isolate), and JFH-1 (encoding NS3 to NS5B). This chimeric HCV genome yields a 

viral titer 1000 times more efficient than the original JFH-1 genome [171]. JC1 has also 

been modified to contain a luciferase gene, renilla luciferase (RLuc), to measure the 

modulatory effects on the entire HCV genome (Fig. 1.8). Like the replicon, JC1 can be 

used in high-throughput RNAi and chemical compound screens. Further, other constructs 

containing fluorescent proteins are used for visualization in microscopic investigations 

[171]. 

Many mutations were introduced to the JFH-1 system in order to boost viral titers. 

However, permissive cell lines such as Huh7.5 can also increase viral replication due to a 

point mutation in RIG-I, a cytoplasmic RNA sensor, which disrupts the activation of 

IRF3 for the production of ISGs to induce an antiviral state in the cell [174, 175]. After 

the discovery of JFH-1, several infectious isolates were developed for genotypes 1a, 1b, 

3a, 4a [176, 177].  
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Figure 1.8. Schematic representation of a) JFH-1 genome and b) hybrid JC1 
genome. 

Viral proteins are indicated from J6 and JFH-1 in dark grey and grey, respectively. The 
figure is adapted with permission from	
  (Lohmann,	
  V.	
  and	
  R.	
  Bartenschlager,	
  On	
  the	
  history	
  
of	
  hepatitis	
  C	
  virus	
  cell	
  culture	
  systems.	
  J	
  Med	
  Chem,	
  2014.	
  57(5):	
  p.	
  1627-­‐42.) [171].	
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1.4.1.3. Primary Human Hepatocytes (PPHs) 

PHHs are the best in vitro model to study hepatocyte metabolism and function. 

They are usually isolated from healthy tissues adjacent to tumors in patients undergoing 

liver resection [178]. Fetal livers of aborted embryos can also be a source of PHHs [179]. 

PHHs have a short lifespan that ranges from days to two weeks, as they do not divide 

[180]. Several reports have demonstrated HCV-productive infections in PHH after 

culture [181]. The productive HCV infection was also shown in PHHs isolated from 

HCV-infected patients [182, 183]. Importantly, PHH could be transplanted in mice livers 

to establish an in vivo humanized model [184]. 

1.4.1.4. HCV pseudo-particles 

Human immunodeficiency virus (HIV) core particles were used to express HCV 

glycoprotein on their envelope, creating HCV pseudo-particles (HCVpp). These pseudo-

particles are infectious to hepatocytes and hepatoma cells [185]. HCV pseudo-particles 

contributed to studies of the virus entry and assessments of neutralizing antibody (nAb) 

responses [186]. 
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1.5. Fatty acid metabolism is an underexplored area during HCV and 
flaviviruses infection 

A fatty acid is a carboxylic acid with a long aliphatic chain. They are categorized 

according to the number of the carbon atoms in their aliphatic tail and whether their 

aliphatic tail contains double bonds between its carbons [187]. Short fatty acids have less 

than 6 carbons, medium fatty acids have from 6 to 12 carbons, long fatty acids have from 

12 to 16 carbons, and very long fatty acids have more than 16 carbons. As an energy 

source for the cell, their synthesis and the oxidation of their β-carbon (β-oxidation) are 

highly regulated [188]. Fatty acids are mainly secured via metabolic by-products, directly 

through dietary intake, as well as through the catabolism of glycerolipids [188]. 

Indeed, the synthesis of fatty acids has long been identified as a requirement for 

the replication of a large number of viruses including the Flaviviridae family (HCV, 

DENV, YFV, WNV, JEV) [189], and antiviral effects have been reported with inhibitors 

of acetyl-CoA carboxylase 1 (ACC1) and fatty acid synthase (FASN) [187, 189, 190]. 

 The very-long-chain fatty acids (VLCFA) are the a major component of cell 

lipidome, and are obtained from dietary intake and de novo synthesis [191]. Importantly, 

it was shown that the most enriched lipids in HCV- and related Flaviviridae virus-

infected cells have acyl chains longer than 16 carbons (VLCFA). These lipid species are 

integrated in the replication factory membrane (membranous web) and LDs [129, 144, 

192-194]. To our knowledge, no studies investigated the mechanisms involving de novo 

VLCFA synthesis that may underlie these specific enrichments. 

Fatty acids up to 16 carbon atoms in length (C16) are synthesized in the cytosol 

by the multifunctional fatty acid synthase (FASN) to elongate fatty acids in two-carbon 
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increments [195]. Palmitic acid (16:0) is the primary product of FASN, and it is the major 

precursor for VLCFA synthesis [196, 197]. The synthesis of VLCFA species (≥ C18) 

takes place at the ER membrane [191]. 

 VLCFA are very abundant and represent the necessary components of cellular 

lipid families and species [191]. For example, phospholipids, sphingolipids, and 

triglycerides have VLCFA incorporated in their molecules and controlling their physical 

and chemical properties [191]. The intracellular pool of VLCFA is determined by several 

molecular mechanisms, including the regulation of their de novo synthesis, cellular 

uptake, and oxidation to produce energy. Further, their availability involves the balance 

between their use in complex lipid species building (anabolism) and their release from 

lipid breakdown (catabolism) [198]. 

 Lipid droplets (LDs) are the major neutral lipid storage compartments inside the 

cell, which play an essential role in HCV and flavivirus replication [199]. The main 

components of LDs are triglycerides (TGs) and cholesterol ester (CEs). Interestingly, 

oleic acid, and stearic acid VLCFA are the primary fatty acid tails for TGs and CEs in 

LDs[200, 201] 

Interestingly, several VLCFA-elongating enzymes are human hubs interacting 

with proteins of different RNA viruses. The interacting RNA viruses include HIV-1 from 

the Retroviridae family, and human respiratory syncytial virus (RSV) from the 

Paramyxoviridae family, in addition to influenza A virus (FLU) from the 

Orthomyxoviridae family. On the other hand, the interacting DNA viruses include the 

human papillomavirus (HPV) and Epstein-Barr virus (EBV) [202-206] (Fig. 1.9). 
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  Figure 1.9. Schematic representation of VLCFA de novo synthesis enzymes as hub 
proteins for several families of viruses  

The interactions highlight the importance of VLCFA for many viruses. 

 

VLCFAs need more investigations regarding their suggested pro-viral roles. 

Acquiring more knowledge of the molecular details of VLCFA structure and function in 

HCV and flavivirus replication, and also the mechanisms whereby their derived lipids are 

generated and trafficked to the relevant intracellular sites, may enable more targeted 

antiviral strategies without global effects on the host cell. 

In the next sections, we will discuss the requirements of HCV for fatty acid 

metabolism. The discussion will show how VLCFA de novo synthesis, which is not an 

investigated pathway, may represent an essential requirement for HCV replication and its 

related flaviviruses.   
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1.6. HCV and the requirement for fatty acid metabolism 

Human liver has distinctive mechanisms for lipid metabolism. Fatty acids handled 

in the hepatocytes can be summarized into three processes: (i) acquiring fatty acids from 

extracellular sources, including the uptake, and the de novo fatty acid synthesis (de novo 

lipogenesis), (ii) fatty acid storage, including triglyceride synthesis and the formation of 

LDs, and (iii) fatty acid consumption and extracellular transportation, including fatty acid 

degradation (lipolysis), β-oxidation, and the secretion of VLDL [188]. 

1.6.1. Biogenesis of fatty acids up to 16 carbon (palmitic acid) 

Flaviviridae viruses induce cell lipid synthesis and energy production to establish 

lipid structures that host the viral genome and proteins for proper replication [207]. The 

de novo lipogenesis machinery has been demonstrated to be very essential for virus 

replication and virion production. The de novo lipogenesis includes fatty acid synthesis 

by acetyl-CoA carboxylase (ACC) and fatty acid synthase (FASN) at the cytosol, and 

very-long-chain fatty acid (VLCFA) elongation at the ER (> 16 carbons). To synthesize 

fatty acid acyl chains up to 16 carbons long (palmitic acid), ACC is activated in parallel 

to FASN to maintain the synthesis process [207]. Different sources of the intracellular 

pool of fatty acids are represented in (Fig. 1.10). ACC is a highly regulated enzyme in the 

fatty acid synthesis pathway [208]. It catalyzes the reaction of producing malonyl-CoA 

by Acetyl-CoA carboxylation. ACC is allosterically up-regulated by citrate and 

glutamate, and allosterically down regulated by long- and short-chain fatty acyl-CoAs 

such as palmitoyl-CoA. AMP-activated protein kinase (AMPK) inactivates ACC by 

phosphorylation [208]. There are two ACCs in the human genome, ACC1 and ACC2.  
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Figure 1.10.  Different sources of the intracellular pool of fatty acids. 

Fatty acids may come from extracellular sources or de novo synthesis. Fatty acid synthase 
(FASN) produces fatty acids up to 16 carbons (palmitic acid), and fatty acids more than 
16 carbons (VLCFA) are synthesized at the ER. Acetyl CoA carboxylase (ACC) provides 
malonyl CoA for both cytoplasmic FASN and ER-mediated fatty acids chains 
elongations. 

 

ACC1 is highly enriched in lipogenic tissues, whereas ACC2 occurs in oxidative tissues. 

Two different metabolic roles are executed by ACC1 and ACC2. ACC1 makes malonyl-

CoA serve as a substrate for fatty acid synthesis, whereas ACC2 makes malonyl-CoA 
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serve as a carnitine palmitoyltransferase 1 (CPT1) inhibitor, thus preventing fatty acid 

degradation [188, 208, 209]. 

FASN is a multifunctional enzyme of a 270 kDa. The FASN protein molecule 

includes seven enzymatic domains that compose complete machinery required to 

synthesize palmitic acid de novo from acetyl and malonyl esters of coenzyme A (CoA) in 

addition to NADPH [195]. The FASN machinery includes ketoreductase (KR), 

dehydratase (DH), enoyl reductase (ER), acyl carrier protein (ACP), and thioesterase 

(TE) [195]. FASN is expressed in two main tissues that produce fatty acids: the liver and 

adipose tissue. FASN enzyme undergoes posttranslational activation. In this process, the 

central acyl carrier domain (ACP) of FASN must be modified by an intrinsic 

phosphopantetheine transferase (PPT) that covalently attaches the phosphopantetheine 

moiety of coenzyme A (CoA) onto a conserved serine residue of the ACP [210-212]. 

1.6.1.1. ACC and FASN requirement in HCV replication 

Inhibition of ACC, the rate-limiting enzyme in the de novo fatty acid synthesis, 

leads to inhibition of HCV replication. The effect was shown with pharmacological 

inhibition or siRNA depletion, and also in the case of enzyme phosphorylation [209, 

213]. The inhibition of virus replication involves disruption of HCV-induced 

membranous web [214]. Furthermore, inhibition of ACC is associated with a significant 

reduction of LDs, and this leads to significant inhibition of virus assembly and release 

[209]. ACC inhibition also hinders flavivirus replication, specifically WNV [215]. 

A large body of research evidence supports FASN’s importance for HCV 

replication. Clinically, in HCV-infected livers, FASN protein expression is significantly 
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increased [216-218]. Experimentally, FASN is up-regulated in HCV-infected Huh7 cells 

[219]. Further, Huh7.5 infected with HCV was demonstrated to have more free fatty acid 

than non-infected cells [220]. Moreover, FASN has palmitoylation activity, and it 

palmitoylated NS4B. NS4B palmitoylation is important for the formation of the 

replication complex [87]. Also, FASN interacts with NS5B. This physical interaction 

enhances NS5B RdRp activity [87, 221]. HCV proteins can stimulate FASN activity. 

This includes HCV core protein [222], NS2 [223] and NS4B [130]. Importantly, FASN 

induction by HCV promotes the synthesis of phospholipids, which are important 

components for membranous web [219]. 

 In the same context, FASN enzyme activity participates in the creation of the 

specialized membranous compartment-specific for the replication of Flaviviridae viruses. 

The viruses include HCV, DENV, YFV, and WNV. Cerulenin, orlistat, and C75 are 

FASN inhibitors that drastically inhibit the replication of these viruses [224-228]. 

Interestingly, DENV and WNV infection does not increase FASN expression. However, 

FASN relocates to the virus membranous replication compartment. The relocation could 

provide the expanding replication specialized membranes with the fatty acids and lipids 

required to support virus replication [224, 226, 229].  

1.6.2. Desaturation and activation of fatty acid acyl chains and HCV 

Fatty acids synthesized from palmitic acid can undergo desaturation to yield 

mono- or poly-unsaturated fatty acids. Mono-unsaturated fatty acids are of special 

importance as they control biophysical characteristics of the membrane like fluidity and 

curvature [230], including those of HCV-infected cells [225]. The stearoyl-CoA 

desaturase (SCD) is an enzyme involved in the very-long-chain monounsaturated fatty 
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acid synthesis. SCD is a membrane-bound enzyme at the ER that catalyzes the insertion 

of the first cis-double bond at the delta-9 position of saturated fatty acids. Thus, it 

converts saturated fatty acids into monounsaturated fatty acids (MUFAs) [231]. The 

monounsaturated products are the major substrates for the synthesis of more complex 

lipids such as phospholipids, diacylglycerols, triglycerides, and cholesterol esters. SCD is 

a highly regulated enzyme. It has four isoforms with distinct tissue distribution and 

substrate specificity [232-237].  

SCD1 catalyzes a rate-limiting step in the synthesis of oleic acid and palmitoleic 

acid from stearoyl- and palmitoyl-CoA, respectively [238]. SCD1 has been shown to be 

important in chronic liver diseases and is linked to aggressive hepatocellular carcinoma 

migration and invasion [239]. Notably, the SCD1 product oleic acid is accumulated in the 

livers of chronic HCV patients in the form of triglycerides [240]. 

SCD1 inhibition leads to the inhibition of HCV replication. The effect was shown 

by genetic depletion of the enzyme, or by pharmacological inhibition, in subgenomic 

replicon cells and JC1 infected cells [241, 242]. HCV proteins were associated with 

SCD1 on HCV specialized detergent-resistant membranes. Also, NS4B-mediated 

membrane rearrangement is supported by SCD1 enzyme activity to provide a suitable 

microenvironment for HCV replication [241]. SCD1 inhibition disrupts the formation of 

the HCV membranous web. Hence, SCD1 inhibition disturbs HCV replication complexes 

and renders HCV RNA susceptible to nuclease-mediated degradation [242]. 

The fatty acids synthesized by the de novo pathway are already active as their acyl 

chains are covalently linked to CoA group and can be used by several enzymes to be 

incorporated in HCV membranous structures. For non-esterified fatty acids (coming from 
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external sources or recycled from the action of lipases on complex cellular lipids) to enter 

bioactive pools, they must be activated by members of the long-chain acyl-CoA synthase 

(ACSL) enzyme family, which generate fatty acid-CoA [243]. Mammals have five ACSL 

isoforms (ACSL1, ACSL3, ACSL4, ACSL5, and ACSL6) [243]. ACSL3 has shown to 

be important for phosphocholine and phospholipid synthesis [244]. The products of fatty 

acid activation may serve as substrates for the synthesis of more complex lipids or 

contribute to cellular signalling, e.g., synthesis of phosphoinositides. It also contributes to 

protein myristoylation and palmitoylation, which are post-translational modifications that 

are important in cell physiological processes [245]. 

Fatty acid activation by ACSL3 is essential for very low-density lipoprotein 

(VLDL) assembly and secretion in Huh7. It was shown that ACSL3 depletion inhibits 

HCV secretion in Huh7 cells, without affecting HCV replication. The phenotype goes in 

the same context as inhibition of VLDL assembly, and secretion inhibits HCV secretion 

[158]. It is suggested that ACSL3-targeting with small molecules can be useful in both 

inhibiting VLDL secretion and HCV infection [246]. 

1.6.3. Fatty acid β-oxidation and HCV  

Fatty acid β-oxidation is the process of breaking down fatty acids to release energy [208]. 

The role of fatty acid β-oxidation in HCV infection is controversial. While data coming 

from liver samples of patients indicate that HCV induces a decrease in fatty acid β-

oxidation in the liver, in vitro studies showed that HCV replication is dependent on fatty 

acid β-oxidation [227, 247, 248]. 
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Three proteins play a pivotal role in regulating β-oxidation in hepatocytes; 

peroxisome proliferator-activated receptor alpha (PPARα), carnitine palmitoyltransferase 

(CPT1), and AMP-activated protein kinase (AMPK) [208]. 

Peroxisome proliferator-activated receptor α (PPARα) is a nuclear receptor that 

has an important role in positive regulation of fatty acid β-oxidation [249, 250]. PPARα 

requires heterodimerization with receptor X for retinoids (RXR) in order to exert its 

function [249, 250]. The PPARα: RXR heterodimer, upon ligand binding, perform 

conformation changes and bind to DNA at a specific sequence, which is a PPARα 

response element-promoter, resulting in gene transcription [250, 251]. Activation of 

PPARα increases the expression of the enzymes involved in lipid catabolism and fatty 

acid β-oxidation in the mitochondria and the peroxisomes [249]. PPARα knockout mice 

show steatosis when exposed to high-fat diets [252, 253]. PPARα agonist has been shown 

to decrease hepatic steatosis in mice receiving a methionine and choline-deficient diet 

[254]. 

The expression of PPARα appears to be impaired with HCV [247, 248]. However, 

the pro-viral role of PPARα stimulation was shown in several studies. Rakic et al. 

demonstrated that HCV replication was inhibited by the inhibition of PPARα [227]. The 

authors suggested two mechanisms for the inhibition: PPARα inhibition (i) induces local 

hyperlipidemia that can disrupt replication complexes by altering membranous structures 

in which replication occurs [83, 255], and (ii) alters the lipidation state of host proteins 

that are necessary for replication to occur [131, 225]. Recently, Lin et al. showed that 

calcitriol inhibits HCV replication in Huh7.5 cells. This inhibition was reversed by 
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treatment with the PPARα activator. The authors suggested that calcitriol-mediated HCV 

inhibition occurs through PPARα inhibition [256]. 

CPT1 acts as a rate-limiting enzyme in β-oxidation by importing long-chain and 

very-long-chain fatty acids to the mitochondria [208]. CPT1, similarly to PPARα, was 

shown to be down-regulated in chronic HCV-infected livers [248]. On the other hand, 

etomoxir, a pharmacological CPT1 inhibitor, significantly inhibits HCV replication. 

Further, depletion of mitochondrial fatty acid β-oxidation enzyme dodecenoyl coenzyme 

A delta isomerase (DCI) inhibits HCV replication [257]. These effects suggest that fatty 

acid β-oxidation may play a pro-viral role in HCV replication. 

AMP-activated protein kinase (AMPK) is a sensory enzyme of cellular energy 

supply [258]. AMPK activation switches off lipid anabolic pathways and switches on β-

oxidation by phosphorylating multiple targets. The AMPK targets include ACC and 

HMG-CoA [258]. ACC phosphorylation leads to enzyme inhibition and decreases fatty 

acid synthesis. ACC synthesizes malonyl CoA, which is a potent inhibitor of fatty acid 

oxidation in the mitochondria. A decrease of intracellular malonyl CoA leads to CPT1 

activation and channelling of fatty acids from lipogenesis to mitochondrial β-oxidation 

[208]. On the other hand, ACC activation by AMPK inhibition inhibits fatty acid β-

oxidation via inhibition of CPT1. Failure to activate AMPK leads to hyperlipidemia and 

hypertriglyceridemia [208]. This phenotype has been demonstrated in AMPKα2-/- mice 

[259, 260]. Further, AMPK expression has been shown to suppress liver sterol regulatory 

element-binding protein 1c (SREBP1c) [216], a significant activator of cellular 

lipogenesis [261, 262]. 
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Modulation of AMPK activity has been demonstrated to impact HCV replication. 

For instance, inhibition of AMPK activity increases HCV replication [257, 263]. The 

same results were shown when using siRNA interference to achieve AMPK knockdown 

[264]. Pharmacological restoration of AMPK activity efficiently inhibits virus replication 

[213]. Interestingly, a report by Tsai et al. showed that the AMPK activation drug 

metformin increased phosphorylation of STAT1 and STAT2 in HCV-infected huh7.5 

cells. The effect was down regulated when AMPK inhibitor was used, suggesting that 

one mechanism of metformin-induced HCV inhibition could involve activation of IFN-β 

signalling [265].  

Altogether, the discussed in vitro studies show that fatty acid β-oxidation exerts a pro-

viral role in HCV replication.   

1.7. Lipid droplet as an important organelle for HCV and flaviviruses 

Viruses of the Flaviviridae family show substantial differences in transmission, 

tissue tropism, and pathogenesis. However, they use similar intracellular replication 

strategies and utilize LDs to support their replication and assembly [1]. 

LDs are essentially the storage compartment of insoluble oil dispersed in aqueous 

cytoplasm. LDs have a unique structure, containing a hydrophobic core and a single layer 

of amphipathic phospholipids. The neutral lipid core contains predominantly 

triacylglycerols (TGs) and cholesterol esters (CEs) [266]. 

The protein composition of the phospholipid layer of LD determines its function 

[267]. Perilipin, adipose differentiation-related protein (ADRP), and tail anchoring 

protein 47 (TIP47) are of particular interest. These proteins can control neutral lipid 
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storage. Perilipin, when phosphorylated, switches its role from neutral lipid storage to 

lipid mobilization by recruiting hormone-sensitive lipase (HSL)[268]. ADRP has a 

similar function through the interaction with adipose triglyceride lipase (ATGL) [269]. 

TIP47 plays potential role in LD biogenesis [270]. Importantly, the COPI system 

regulates LD lipolysis. The knockdown of COPI components increases neutral lipid 

storage. Also, it increases ADRP and TIP47 on LD surfaces and decreases ATGL [271]. 

  HCV and flaviviruses exploit LDs to promote their replication. For HCV 

infection, LD surface protein ADRP is replaced by viral capsid protein. The activity of 

DGAT1 catalyzes this procedure [144]. The loss of LD ADRP leads to loss of LD 

mobility balance, which forces LDs to move towards the nucleus [272]. The gathering of 

LDs in the proximity of the nucleus leads to contact with HCV replication complexes 

[272]. NS5A mediates the traffic of HCV RNA from the replication complex to the LD. 

This process is followed by nucleocapsid formation. The nucleocapsid buds into the ER, 

and fuses with VLDL to form viral lipo-viro-particles in the ER lumen reviewed in [199, 

273]. (Fig. 1.11) 
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Figure 1.11. LDs are the platforms for HCV assembly. 
LD loses its mobility balance due to the replacement of ADRP by core protein. LD 
moves towards the HCV replication complexes close to the nucleus (1, 2, 3) forming 
nucleocapsid (4) and fuses with VLDL (5) forming viral lipo-viro-particles in the ER 
lumen. The figure is adapted with permission from (Zhang,	
   J.,	
   Y.	
   Lan,	
   and	
   S.	
   Sanyal,	
  
Modulation	
  of	
  Lipid	
  Droplet	
  Metabolism-­‐A	
  Potential	
  Target	
  for	
  Therapeutic	
  Intervention	
  in	
  
Flaviviridae	
  Infections.	
  Front	
  Microbiol,	
  2017.	
  8:	
  p.	
  2286.)[199].	
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On the other hand, DENV capsid protein utilizes host Golgi-specific brefeldin A-

resistance guanine nucleotide exchange factor 1 (GBF1)-ARF-COPI pathway to localize 

to the surface of LDs [274]. The accumulation of DENV capsid protein on LDs is 

associated with cellular perilipin 3 and intracellular K+ concentration. Exposure of the 

capsid protein cationic surface to the aqueous environment through binding to LDs is 

critical for DENV assembly [275]. Replicated DENV genomes are transferred through 

the vesicle pores, and then contained by the nucleocapsids that bud through the ER 

membrane nearby. Packed virions accumulate within the lumen of the vesicle packet-

containing ER network before being transported to the Golgi [199, 272, 273]. (Fig. 1.12) 

LDs are made of triglycerides (TGs) and cholesterol esters (CEs) that mainly 

incorporate VLCFA, especially stearic and oleic acids [200]. The importance of LDs for 

HCV and flavivirus infection emphasizes the importance of VLCFA de novo synthesis 

for such viruses.  
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 Figure 1.12.  Importance of LDs for DENV assembly. 

The (GBF1)-ARF-COPI pathway delivers DENV capsid to the surface of LDs (1). 
DENV capsid protein on LDs is associated with cellular perilipin 3 and intracellular K+ 
concentration (2). Replicated DENV genomes are released through the vesicle pores, then 
engaged into nucleocapsids [276]. Capsid protein can be released from LDs to the cytosol 
or other cellular compartments for subsequent viral assembly (4). Packed virions 
accumulate within the lumen of the vesicle packet-containing ER network before 
transportation to the Golgi (5). (ERGIC): ER–Golgi intermediate compartment. (ERES): 
ER export sites. The figure is adapted with permission from (Zhang, J., Y. Lan, and S. 
Sanyal, Modulation of Lipid Droplet Metabolism-A Potential Target for Therapeutic 
Intervention in Flaviviridae Infections. Front Microbiol, 2017. 8: p. 2286.)[199].  
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1.8. De novo synthesis of very-long-chain fatty acids (VLCFAs)  

Fatty acids (≥16 carbons) go through elongation by ER-resident enzymes 

following the conversion of their acyl chains to acyl-CoAs. Fatty acid elongation takes 

part by cycling through a four-step process (condensation, reduction, dehydration, and 

reduction). In the first rate-limiting reaction step, malonyl-CoA is condensed with acyl-

CoA to produce 3-ketoacyl-CoA. This reaction is catalyzed by fatty acid elongase. There 

are seven elongases in mammals (ELOVLs 1-7) that exhibit characteristic substrate 

specificity [277]. In the second step, 3-ketoacyl-CoA is reduced to 3-hydroxy acyl-CoA 

by 17-Beta hydroxysteroid dehydrogenase type 12 (HSD17B12, KAR, DHB12, 3-

ketoacyl-CoA reductase) [278]. Nicotinamide adenine dinucleotide phosphate (NADPH) 

is used as a reducing agent in this reaction [278]. Third, 3-hydroxy acyl-CoA dehydratase 

(HACD1–4) dehydrates 3-Hydroxyacyl-CoA, generating 2,3-trans-enoyl-CoA [279]. 

Finally, 3-hydroxy acyl-CoA is reduced to an acyl-CoA having two more carbon chain 

units than the original acyl-CoA. A 2,3-trans-enoyl-CoA reductase (TER) uses NADPH 

as a reductant to catalyze this reaction [191, 278]. (Fig. 1.13) 

1.8.1. ELOVLs 

ELOVLs are the rate-limiting enzymes in VLCFA synthesis. They catalyze the 

condensation of the acyl-CoA with malonyl-CoA, producing 3-ketoacyl-CoA which 

undergoes the following reactions in the VLCFA elongation cycle. ELOVLs have 

different protein expression profiles in different cells and organs, which highlight the 

different requirements for their VLCFA products and the containing lipid species. The 

members of ELOVLs family are as follows: 
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Figure 1.13. Very-long-chain fatty acid (VLCFA) elongation cycle at ER.  

Proceeding from ELOVLs1-7, HSD17B12, HACD1-4 and ending with TER [191]. 
ELOVLs carry out the condensation step by adding two carbons to the acyl chain, 
HSD17B12 catalyzes the reduction of the resulting keto-acyl, HACDs carry out the 
dehydration step, and TER catalyzes the final reduction step. The figure is adapted with 
permission from (Kihara, A., Very long-chain fatty acids: elongation, physiology and 
related disorders. J Biochem, 2012. 152(5): p. 387-95.)[191]. 
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ELOVL1 plays a very critical role in the synthesis of saturated VLCFA beyond 

palmitic acid up to a saturated chain of 26 carbons. This activity makes the enzyme very 

important in the building of membrane lipids, especially sphingolipids. Further, the 

enzyme was shown to be involved in synthesizing nerve sphingomyelin [280]. 

ELOVL2 was also discovered by the sequence similarity to ELOVL1 and 

ELOVL3. ELOVL2 is involved in the catalysis of the elongation of polyunsaturated 20-

carbon VLCFA [281]. 

ELOVL3 was the first ELOVL discovered. The enzyme was identified in the 

brown adipose tissue and liver of mice. It showed very high expression in the brown 

adipose tissue upon exposure to cold stimuli and sympathetic activation. Due to this 

characteristic expression, the enzyme was called cold-induced glycoprotein of 30 kDa 

(Cig30). The enzyme has a role in the elongation of saturated and monounsaturated fatty 

acid beyond palmitic acid up to 24-carbon VLCFA [280, 282]. 

ELOVL4 is involved in the synthesis of VLCFA beyond carbon 26 with saturated 

and unsaturated chains. Defect in the enzyme is linked to the Stargardt-like macular 

dystrophy, which is a retinal disease that leads to loss of vision [283, 284]. 

ELOVL5 catalytic activity is involved in the elongation of polyunsaturated fatty 

acids with 18 and 20 carbon chain. It has been demonstrated that ELOVL2 and ELOVL6 

compensate ELOVL5 deficiency in ELOVL5 ablated mouse [285, 286]. 

ELOVL6 plays a central role in bridging palmitic acid that is synthesized by 

FASN to fatty acid chains of 18 carbons and more. The enzyme catalyzes the elongation 

of palmitic acid and palmitoleic acid to stearic and oleic acids [287]. 
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ELOVL7 is preferentially involved in fatty acid elongation of saturated VLCFA 

[288].  

In summary, synthesis of VLCFA requires first ELOVL6, which elongates C16:0 

to C18.0, and then ELOVL1, which elongates these VLCFA further to C24:0 and 

≥C26:0. C18.1-C24.1 requires ELOVL6 and ELOVL3, while polyunsaturated VLCFA 

synthesis requires ELOVL2/4/5 [289, 290]. (Fig. 1.14) 
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Figure 1.14. ELOVL family substrates and products. 

First, ELOVL6 elongates C16:0 to C18.0, and then ELOVL1 elongates these VLCFA 
further to C24:0 and ≥C26:0. C18.1-C24.1 requires ELOVL6 and ELOVL3, while 
polyunsaturated VLCFA synthesis requires ELOVL2/4/5. The figure is adapted with 
permission from  (Brolinson,	
  A.,	
  Regulation	
  of	
  ELOVL	
  and	
  fatty	
  acids	
  metabolism.	
  2009,	
  
University	
  of	
  Stockholm.)[290].	
  
 

 



	
  
	
  

58	
  

1.8.2. HSD17B12 

HSD17B12 (GenBank accession nos. AF078850 and NM_016142) is a member 

of 14 different mammalian steroid dehydrogenases. HSD17Bs are the key enzymes 

responsible for the synthesis of sex steroids and their inactivation [291-295]. They 

synthesize the active androgens and estrogens by reductive HSD17Bs, which catalyze the 

molecular hydrogenation at position 17β of the steroid backbone. Also, they inactivate 

the steroids through the removal of hydrogen by oxidative HSD17Bs [292]. A particular 

property of this family of enzymes is the wide difference of their primary structures (an 

average of only ∼20% amino acid identity). However, they have high specificity for 

substrates that have closely related structures [292]. Human HSD17Bs need two types of 

nucleotide cofactor for their activity: NAD and NADH. On the other hand, they differ in 

subcellular localization and tissue-specific expression patterns [292]. The best-

characterized HSD17B enzyme is HSD17B1 [296, 297], which catalyzes the conversion 

of estrone (E1) into estradiol (E2) [298]. 

 Employing structure-function relationship analysis using sequence alignment, 

enzyme modeling, and site-directed mutagenesis showed that HSD17B12 is homologous 

to HSD17B3, the enzyme responsible for testosterone (T) synthesis [299]. HSD17B12 

gene is located at p11.2 on human chromosome 11. Genomic structures of HSD17B3 and 

HSD17B12 genes are very similar. The two genes consist of 11 exons. However, 

HSD17B12 shows longer 5′- and 3′-untranslated regions. Further, the first and last exons 

of HSD17B12 possess additional 0.2- and 1.2-kb sequences, respectively (Fig. 1.15). 

Nevertheless, the rest of the 11 exons have the same numbers of nucleotides, except for 

exons 5 and 6. HSD17B3 and HSD17B12 proteins share 41% identity in the amino acid 
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sequence alignment. Interestingly, the two enzymes have a conserved active site 

(YXXXK) and a slightly modified cofactor-binding (NADPH) motif (GXXXGXL) 

instead of GXXXGXG as described for HSD17Bs [298]. (Fig. 1.16) 

 

 

 

Figure 1.15. Schematic representation of the Genomic Structure of HSD17B3 and 

 HSD17B12. 

The exons are numbered I–XI inside boxes. The exon sizes for HSD17B3 and HSD17B12 
are indicated below and above the boxes, respectively. Chromosomal locations are also 
indicated. The figure is adapted with permission from (Luu-The, V., P. Tremblay, and F. 
Labrie, Characterization of type 12 17beta-hydroxysteroid dehydrogenase, an isoform of 
type 3 17beta-hydroxysteroid dehydrogenase responsible for estradiol formation in 
women. Mol Endocrinol, 2006. 20(2): p. 437-43.) [300]. 
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Figure 1.16. Comparison between amino acid sequences of HSD17B3 and 

HSD17B12. 

Dashes and stars represent identical and missing amino acids, respectively. The 
consensus sequences for active sites and cofactor binding are underlined. The figure is 
adapted with permission from (Luu-The, V., P. Tremblay, and F. Labrie, Characterization 
of type 12 17beta-hydroxysteroid dehydrogenase, an isoform of type 3 17beta-
hydroxysteroid dehydrogenase responsible for estradiol formation in women. Mol 
Endocrinol, 2006. 20(2): p. 437-43.)  [300]. 
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In 2003, Moon and Horton characterized HSD17B12 as an ER-bound keto-acyl 

reductase [278] (Fig. 1.17). They showed that the primary function of the enzyme is 

suggested to be fatty acid chain extension to form VLCFA. Studies on HSD17B12 

orthologous in Caenorhabditis elegans (let767) and yeast (YBR159w) have also 

supported the role of HSD17B12 in VLCFA synthesis [301]. Interestingly, HSD17B12 

has activity similar to the FASN keto-acyl reductase subunit, which is among the 

complexes responsible for de novo fatty acid synthesis [195, 208] (Fig. 1.18). Further, 

HSD17B12 is partially regulated by SREBP1, similarly to FASN [302]. FASN has been 

widely studied as a candidate target for inhibiting virus replication [224, 303] and cancer 

cell growth and division [304], and for  the  treatment  of  obesity-related disorders [305], 

suggesting that HSD17B12 may also be a candidate for those therapeutic targets.  

 

 

Figure 1.17. ELOVLs and HSD17B12-catalyzed reactions in the elongation of 
VLCFA. 

ELOVLs carry out the condensation step by adding two carbons to the acyl chain; 
HSD17B12 catalyzes the reduction of the resulting keto-acyl 
(http://www.lipidhome.co.uk). 
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Figure 1.18. Schematic representation of the modeled HSD17B12 active site. 

Valine at position 196 (VAL169) and phenylalanine at position 234 (PHE234) are located 
in the substrate-recognition domain of the enzyme and potentially involved in substrate 
specificity. Tyrosine at position 202 and lysine at position 206 are the conserved active 
site residues involved in estrone and VLCFA keto-acyls reduction. The figure is adapted 
with permission from (Luu-The, V., P. Tremblay, and F. Labrie, Characterization of type 
12 17beta-hydroxysteroid dehydrogenase, an isoform of type 3 17beta-hydroxysteroid 
dehydrogenase responsible for estradiol formation in women. Mol Endocrinol, 2006. 
20(2): p. 437-43.) [300].  
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On the other hand, the HSD17B12 enzyme has been suggested to catalyze the 

conversion between estrone and estradiol [300]. It was found that HSD17B12 expression 

is significantly increased in breast cancer tissue samples. Besides, HSD17B12 was 

detected in both the cytoplasm and nuclei of these cells [306]. Interestingly, recent 

studies showed no significant correlations detected between HSD17B12 expression and 

estradiol concentration in breast carcinoma [307]. Moreover, it has been shown that the 

reduced cell proliferation of breast cancer in the absence of HSD17B12 was rescued by 

the addition of arachidonic acid (AA), but not estradiol, to the cell culture [302]. Thus, 

HSD17B12 affects cancer cell growth via the production of VLCFA, especially 

arachidonic acid. HSD17B12 was shown in a study from our lab to have a pro-viral role 

in HCV replication [308]. Further, literature mining showed that HSD17B12 is a hub 

protein that physically interacts with proteins of several viral families. These interactions 

emphasize the important role of the VLCFA de novo synthesis pathway for different viral 

infections. 
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1.9. Project rationale  

Host-targeting agents based on virus-host interactome studies are expected to 

increase the therapeutic antiviral arsenal for infectious diseases. Indeed, cellular proteins 

required for viral replication provide a vast reservoir of targets that can be modulated 

with small molecules to develop broad-spectrum antiviral therapies. Our research project 

focused on Flaviviridae viruses causing human diseases. By taking advantage of the most 

studied HCV, we exploited the data of our previous studies that elucidated the HCV 

interactome, combining viral protein immune-precipitation (IP) coupled to tandem mass 

spectrometry identification (IP-MS/MS) and functional genomics RNAi screening [308, 

309]. This study identified 426 host proteins interacting with HCV protein core, NS2, 

NS3/4A, NS4B, NS5A, and NS5B. Further, a set of 98 human proteins was statistically 

enriched as a specific interactor with one of the HCV proteins. The overlap between these 

98 proteins with reported HCV-human interactors showed 24 common proteins, 

demonstrating the reliability and value of the used approach. Furthermore, assessment of 

the biological significance of these human proteins with an RNA interference (RNAi) 

gene silencing screen identified 11 novel cofactors that promote viral replication [308]. 

The cofactors included the 17-beta-hydroxysteroid dehydrogenase type 12 

(HSD17B12, also named DHB12) as a specific core interactor that promotes HCV 

replication [308]. HSD17B12 catalyzes the second of the four reactions of the VLCFA 

elongation cycle. HSD17B12 participates in the production of VLCFA of different chain 

lengths that are involved in multiple biological processes as precursors of membrane 

lipids and lipid mediators, and which also catalyze the transformation of estrone (E1) into 

estradiol (E2). Interestingly, literature mining showed that HSD17B12 is a human hub 
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interacting with several viral proteins of RNA viruses and DNA viruses [202-206]. These 

interactions highlight the significance of studying the possible dependence mechanisms 

of HSD17B12-mediated VLCFA synthesis for HCV and related flaviviruses replication.   
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1.10. Hypothesis and objectives 

1.10.1. Hypothesis 

The premise of my project is based on the dependence of HCV replication on co-

opted host factors as common themes employed by different viruses to promote their life 

cycle. In HCV, we found that core capsid protein physically interacts with HSD17B12 to 

promote virus replication (Germain et al., Mol. Cell. Proteomics 2014). The interaction 

led us to postulate that this interaction is important for the virus’s establishment and 

promotion of its specialized cellular compartments for replication and assembly/release. 

Further, HSD17B12 may be important for the replication of related flaviviruses, as they 

need similar cellular compartments.   

1.10.2. Objectives 

The objective of my project is to characterize the role of HSD17B12 in HCV 

replication. The goal is to comprehend the importance of the HCV-HSD17B12 

interaction in order to uncover dependence mechanisms for other viral infections and to 

validate novel antiviral targets for a large spectrum of RNA viruses. 

1.10.3. Aims 

-To investigate the dependency of HCV on HSD17B12-mediated VLCFA de novo 

synthesis 

-To determine the mode-of-action of HSD17B12 catalytic activity and its 

pharmacological inhibition as an antiviral approach. 

- To investigate the dependency of related flaviviruses DENV and ZIKV on HSD17B12 

activity and explore its inhibition as a broad-spectrum antiviral target.  
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This chapter features the article, currently submitted to Nature Scientific Reports, titled " 

Very-long-chain fatty acid metabolic capacity of 17-beta-hydroxysteroid 

dehydrogenase type 12 (HSD17B12) promotes replication of hepatitis C virus and 
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2.1.  ABSTRACT  

 Flaviviridae infections represent a major global health burden. By deciphering 

mechanistic aspects of hepatitis C virus (HCV)-host interactions, one could discover 

common strategy for inhibiting the replication of related flaviviruses. By elucidating the 

HCV interactome, we identified the 17-beta-hydroxysteroid dehydrogenase type 12 

(HSD17B12) as a human hub of the very-long-chain fatty acid (VLCFA) synthesis 

pathway that promotes HCV replication. Here we show, in Huh7.5 cells, that HSD17B12 

knockdown (KD) induces dispersion and dysfunction of HCV replication sites and 

drastically reduces virion production. Mechanistically, depletion of HSD17B12 induces 

alteration in VLCFA-containing lipid species and drastic reduction of lipid droplets (LD) 

that play a critical role in virus assembly. Oleic acid (C18.1) supplementation rescues 

production of infectious particles in HSD17B12 KD cells, supporting a specific role of 

VLCFA at the HCV replicative life cycle.  Furthermore, the small-molecule HSD17B12 

inhibitor, INH-12, significantly reduces replication and infectious particle production of 

HCV as well as flaviviruses dengue virus and zika virus revealing a conserved 

requirement across Flaviviridae virus family. Overall, the data provide a strong rationale 

for the full evaluation of HSD17B12 inhibition as a promising broad-spectrum antiviral 

target for the treatment of Flaviviridae viral infections. 
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2.2. INTRODUCTION  

RNA viruses are exploiting basic cellular pathways and cytoplasmic organelles to 

achieve different stages of their replicative life cycle [310]. This is especially 

characteristic of Flaviviridae, Coronaviridae and Picornaviridae families of positive-

strand RNA viruses that utilize cytoplasmic membranes derived from endoplasmic 

reticulum (ER) for the formation of viral RNA replication and virion assembly 

compartments. Hepatitis C virus (HCV), a member of the Flaviviridae family, induce 

extensive endoplasmic reticulum (ER) membrane protrusions that generate double-

membrane vesicles (DMVs) organized within a membranous web (MW), while other 

such as Dengue virus (DENV), Zika virus (ZIKV) and West Nile virus (WNV) use 

distinct ER invaginated vesicles as replication factories [273]. Mechanistically, the 

biogenesis of these virus-induced replication factories requires substantial structural 

changes to the ER membrane that involve membrane deformations, extensions and 

contractions to generate the appropriate architecture. As such, de novo synthesis of host 

lipids is crucial to the formation and functioning of these replication factories by 

facilitating membrane curvature and stimulating the activity of viral enzymes in the 

replication complex (review [311]). Furthermore, the proximity between these replication 

factories and lipid droplets (LDs), an organelle which is important in lipid storage and 

metabolism, contributes to the generation of infectious viral particles. Indeed, LDs are 

essential host components for the assembly of several Flaviviridae members [122, 312-

314]. As these viruses lack the appropriate enzymatic machinery to conduct their own 

lipid synthesis, they have evolved multiple mechanisms to hijack host fatty acid and lipid 
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metabolic pathways for completing their intracellular replication cycles [31, 224, 315, 

316].  

Fatty acids are constituents of triglycerides, phospholipids and complex lipids, and their 

syntheses have long been identified as a requirement for the replication of many viruses 

(FLU, HCMV, EBV) including Flaviviridae (HCV, DENV, YFV, WNV, JEV). They 

contribute to the structural integrity of membranes, energy production and storage, and 

generation of LDs. Saturated fatty acids up to 16 carbon atoms in length are synthesized 

in the cytosol of the cell by the multifunctional protein fatty acid synthase (FASN), which 

utilizes acetyl-CoA (C2:0-CoA), malonyl-CoA and NADPH to elongate fatty acids in 

two-carbon increments. Upon infection, the production of fatty acids and neutral lipids is 

often provided by an increase in FASN abundance and activity, which allow HCV 

propagation without transporting FASN to replication sites [190]. Others, like DENV, 

directly manipulate de novo fatty acid synthesis of palmitic acid (C16:0) by re-

localization of FASN to these sites [190, 224, 317]. Moreover, antiviral effects have been 

reported with inhibitors of acetyl-CoA carboxylase 1 (ACC1) and FASN, which severely 

impede the replication of Flaviviridae family members and enteroviruses [190, 224, 317]. 

Fatty acid elongation to very-long-chain fatty acids (VLCFA, ≥ C18) and regulation 

during Flaviviridae life cycle, however, are poorly understood. While fatty acids and 

lipids are used at different stages of viral life cycles, little is known about the modulation 

and requirement for de novo VLCFA synthesis to promote infection. The elongation of 

fatty acid beyond palmitic acid takes place at the ER membrane and involves multiple 

enzymes that are acting together as one physiological functional unit for each two-carbon 

increment elongation cycle. These enzymes include elongation of very-long-chain fatty 
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acid elongase subtypes 1 to 7 (ELOVL1-7) (1st reaction), 17-beta-hydroxysteroid 

dehydrogenase type 12 (HSD17B12, also named DHB12) (2nd reaction), very-long-chain 

(3R)-3-hydroxyacyl-CoA dehydratase subtypes 1 to 4 (HACD 1-4) (3rd reaction) and 

very-long-chain enoyl-CoA reductase (TECR) (4th reaction).  

HSD17B12 was first described as a key enzyme of steroid metabolism pathway [300] and  

then identified as the human homolog of the yeast 3-ketoacyl-CoA reductase that 

catalyzes the second reaction in each VLCFA elongation cycle [278]. It interacts with all 

seven elongase ELOVL1-7 and of the 4 dehydratase HACD1-4 to generate the diversity 

among saturated, mono and polyunsaturated VLCFA species [318]. HSD17B12 is a 

metabolic hub of the VLCFA synthesis pathway [319] that was discovered in our HCV 

interactome screen as an interactor of viral structural protein core [308]. Furthermore, 

HCV infection of Huh7.5.1 was recently reported to increase intracellular concentrations 

of VLCFA consistent with the formation of intrahepatic lipid droplets during infection, 

which are important during viral assembly and the accumulation of hepatic lipids during 

steatosis [320]. Hence, we investigated the role of HSD17B12 during the replication of 

HCV and related flaviviruses. We showed that HSD17B12 knockdown (KD) disrupts the 

functional integrity of ER-associated replication complexes upon HCV infection and 

severely reduces the number of cytoplasmic lipid droplets (LD). The KD of HSD17B12 

result in significant inhibition of HCV, DENV and ZIKV infectious particle production 

and is associated with the reduced relative abundance of phosphatidylethanolamine (PE), 

triglycerides (TGs) and oleic acids (C18.1) of whole cell extracts as revealed by shotgun 

lipidomics analysis. We further show that INH-12, a small-molecule steroid-based 

HSD17B12 inhibitor, reduces the replication of HCV, DENV and ZIKV. The data 
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support a contribution of de novo VLCFA synthesis for Flaviviridae virus infections and 

provide a strong rationale to explore the broad-spectrum antiviral potential of targeting 

HSD17B12 to treat and/or prevent RNA virus infections. 

2.3. RESULTS 

2.3.1. HSD17B12 redistributes to replication and assembly sites during 

HCV infection. 

HSD17B12 was previously shown to interact with HCV core [308] suggesting that HCV 

co-opts HSD17B12 functions during the infection. To further assess the cellular 

localization of HSD17B12, naïve and HCV-replicating Huh7.5 human hepatoma cells 

were imaged using confocal fluorescence microscopy (Fig. 2.1. and 2.S1).  HSD17B12 

contains a C-terminal di-lysine motif that confers ER localization for type I membrane 

proteins, and previous study showed that the enzyme co-localizes with the ER resident 

protein calnexin [278]. We confirmed that HSD17B12 is an ER resident protein in 

Huh7.5 cells by the co-staining with protein disulfide isomerase (PDI) used as an ER 

marker (Fig. 2.1A).  Upon HCV infection, we showed that a fraction of endogenous 

HSD17B12 overlaps viral replication and assembly sites as revealed by co-staining with 

anti-double-strand RNA (dsRNA) and anti-core antibodies, respectively (Fig. 2.1B-C). 

Similar results are obtained with ectopic expression of a FLAG-tagged HSD17B12 fusion 

protein and detection with specific anti-FLAG antibodies in HCV-infected Huh7.5 cells 

(Fig. 2.S1). The data support the relocation of HSD17B12 at virus-induced RNA 

replication sites and core-associated lipid droplets suggesting that HCV promotes de novo 

synthesis of VLCFA and derived lipids for the benefit of its replication. 
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2.3.2. HSD17B12 promotes HCV RNA replication and infectious 
particle production 

 

To get an insight into the role of HSD17B12 in virus infection, we first evaluated the 

impact of HSD17B12 knockdown (KD) on cell toxicity by transducing Huh7.5 cells with 

lentivirus expressing short hairpin RNA (shRNA) specific to HSD17B12 and to non-

target sequence (NT). Expression KD was validated at both mRNA and protein levels 

(Fig. 2.2A). We used Huh-7 cells stably expressing a firefly luciferase gene under the 

control of then EF1α housekeeping promoter to assess on- and off-target cytotoxic effects 

of shRNA-mediated HSD17B12 depletion (Fig. 2.S2A). We showed that the luciferase 

signal was minimally affected indicating that HSD17B12 KD does not significantly 

affect general protein synthesis. In parallel, we demonstrated that HSD17B12 KD has no 

major effect on cell viability and proliferation using an Alamar Blue assay (Fig. 2.S2B). 

Lentiviruses with best silencing efficiency of HSD17B12 gene were used to assess its 

role in cells harboring a full-length infectious genome or HCV replicating subgenome 

(Huh7-Con1-Fluc) for which viral RNA replication is occurring in the absence of virus 

entry and capsid assembly due to the lack of HCV structural proteins. We showed that 

KD of HSD17B12 in subgenomic replicon-containing Huh7-Con1-Fluc cells 

significantly decreased viral replication as monitored by luciferase assays performed at 4 

days post-transduction compared to cells expressing shNT (Fig. 2.2B). To further 

investigate the contribution of HSD17B12 to viral replication and virion assembly, we 

took advantage of the ribozyme-based full-length JFH-1 clone that upon DNA 

transfection of Huh7.5 generates the authentic ends of HCV RNA genome, and 

subsequently replicates to produce infectious particles that spread in the cell culture 
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[321]. We first determined the intracellular HCV RNA levels at 4 days post-transfection 

by real-time qRT-PCR. Surprisingly, we found that HSD17B12 KD led to a significant 

intracellular accumulation of HCV RNA compared to cells expressing shNT (Fig. 2.2C). 

Similar results were observed in HSD17B12-depleted HepG2 cells, another liver cell line 

(Fig. 2.S3A). However, we detected a significant decrease of NS3 and core proteins in 

HSD17B12 KD Huh7.5 cells when assessed by western blot analysis (Fig. 2.2D). While 

the low levels of viral proteins should negatively impact HCV replication kinetics, the 

increased intracellular HCV RNA in HSD17B12 KD cells possibly reflect an impaired 

nucleocapsid assembly promoting its retention. The assembly of HCV particles relies on 

the close proximity between virus-induced MW structures and LDs. As HSD17B12 

interacts with core and co-localizes to core-containing LD, and that HSD17B12 KD 

decreased core protein levels, we postulated that HSD17B12 also contributes to the 

production of infectious viral particles. To test this, we evaluated the release of 

extracellular HCV RNA and of supernatant-associated infectivity of HSD17B12 KD 

cells. We found a significant reduction of the extracellular HCV RNA levels using qRT-

PCR analysis (Fig. 2.2E). In parallel, we demonstrated a significant decreased production 

of extracellular infectious particles by up to 9-fold as revealed by infection of naive 

Huh7.5 with supernatants of HSD17B12 KD cells compared to control cells expressing 

shNT (Fig. 2.2F). Similar results were obtained using the supernatants of HSD17B12 KD 

HepG2 cells (Fig. 2.S4). Finally, the KD of HSD17B12 KD was investigated on 

translation of HCV proteins by co-expression of an HCV IRES-driven firefly luciferase 

(Fluc) and CMV-driven cap-dependent renilla luciferase (Rluc). No significant difference 

of HCV IRES-dependent translation is observed in HSD17B12 KD cells and cells 
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expressing shNT when both reporter activities were monitored (Fig. 2.S2C). Altogether, 

the data strongly support a role of HSD17B12 during both replication and particle 

production steps of HCV life cycle.  

2.3.3. HSD17B12 contributes to a lipid metabolic environment favoring 
particle assembly    

 

Lipid droplets (LDs) are essential to HCV assembly and their depletion decreased 

production of infectious virus particles [322]. LDs are composed mainly of triglycerides 

(TGs), which extensively incorporate VLCFA, especially stearic (C18:0) and oleic 

(C18:1) acids. As HSD17B12 is a key player of the VLCFA synthesis pathway, we 

postulated that its metabolic capacity contributes to the biogenesis and maintenance of 

LDs through requirement of newly synthesized TGs. To better understand the molecular 

mechanism by which HSD17B12 contributes to virus assembly and particle production, 

we analyzed the cytoplasmic LD organelles in HSD17B12-depleted cells by staining LDs 

with LipidTOX (Fig. 2.3). Upon imaging analysis, we showed that HSD17B12 KD 

drastically decreases the relative number, areas and density of LDs in both mock 

uninfected and JFH-1-infected Huh7.5 cells. As compared to control cells expressing 

shNT, the reduced LDs of HSD17B12 KD cells can be explained by a decreased TGs 

synthesis as a result of the deficiency in VLCFA availability (≥ C18). To further 

investigate if HSD17B12 KD induces a lipid metabolic remodeling that disfavors HCV 

infection, we used a shotgun mass spectrometry lipidomics approach to measure fatty 

acid species and lipid families in whole cell extracts. We showed a significant decrease in 

the cellular contents of TGs of HSD17B12 KD cells compared to control cells (Fig. 
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2.4A). Furthermore, we found a decrease of the relative abundance of oleic acids (C18.1) 

with concomitant increase of palmitic acids (C16.0) resulting in significant decreased of 

C18:C16 ratios that are expected from reduced HSD17B12 enzymatic activity (Fig. 2.4B-

D). These results support the requirement of HSD17B12 metabolic capacity for LD 

maintenance by de novo synthesis of VLCFA and TGs, as well as during HCV assembly 

on LDs. We also examined whether the reduced amount of LDs is explained by an 

increased expression of catabolic lipid enzymes possibly due to the need of stored fatty 

acids for metabolic reactions. Interestingly, we detected striking increased mRNA levels 

of hormone sensitive lipase (LIPE) and phospholipase A2 (PLA2G1B) in HSD17B12 KD 

cells (Fig. 2.S5). Given their role in lipolysis, these results suggest that reduced 

expression of HSD17B12 induces a feedback response that hydrolyses TGs of LDs. Such 

rescued response, however, is unable to maintain cellular contents of oleic acids (C18:1) 

and TGs that are required for MW structures and viral assembly sites. Interestingly, we 

also showed a significant decrease in the cellular contents of the phospholipid 

phosphatidylethanolamine (PE) (Fig. 2.4E), which is reported to be important for viral 

replication compartments of positive-strand RNA virus [323, 324], while no changes 

were observed for phosphatidylcholine (PC) species (Fig. 2.4F). The decreased VLCFA 

and lipid species of HSD17B12 KD cells contrast with the opposite metabolic needs of 

HCV-infected cells to synthesize ER-derived specialized MW structures and to expand 

LDs for virion assembly. Overall, our data strongly support the metabolic capacity of 

HSD17B12 in tailoring a lipid metabolic environment that favors HCV infection, and that 

its inhibition interferes with the replication and particle assembly processes by reduction 

of de novo VLCFA synthesis and lipid species. 
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2.3.4. Depletion of HSD17B12 disrupts HCV-induced MW structures   

 

HSD17B12 contributes to the synthesis of oleic acids that produce important 

concentration-dependent alterations of the lipid membrane structure [325]. In light of the 

altered metabolic capacity of HSD17B12 KD cells and reduced abundance of LDs (Fig. 

2.3), one might expect some biochemical and functional changes of HCV-induced MW 

structures. To test this, we first assessed the cellular distribution of dsRNA as a marker of 

viral replication sites in HSD17B12 KD cells by confocal microscopy (Fig. 2.5A). No 

anti-dsRNA antibody staining was observed in parental cells transduced with lentivirus-

expressing shNT validating the staining of HCV RNA replication compartments. In JFH-

1-replicating control cells expressing shNT, we showed a dot-like cytoplasmic staining 

with a well-defined distribution of replication sites into punctuated foci as previously 

reported [326]. In HSD17B12 KD cells, however, we observed a more diffuse staining 

with a wide-spread pattern of distribution. The HCV-induced MW structures are known 

to be partially resistant to mild detergents and to protect viral components from 

exogenous proteases and nucleases in vitro [172, 327].  To assess the membrane integrity 

of the diffuse replication sites of HSD17B12 KD cells, we performed an RNase 

protection assay using membrane permeabilizing detergent (digitonin) and exogenous 

nucleases as previously reported [242, 312] (Fig. 2.5B). The treatment of shNT-

expressing control cells with nuclease and digitonin showed less than 10% degradation of 

HCV RNA and 90% degradation of cytoplasmic actin mRNA used as control. However, 

more than 50% of HCV RNA is degraded in HSD17B12 KD cells, demonstrating that the 

depletion of HSD17B12 lead to increased digitonin sensitivity of the MW most probably 

because of a modified membrane VLCFA composition. As control, cells permeabilized 



	
  
	
  

80	
  

with NP40 lead to the almost complete degradation of HCV RNA. Overall, the data 

demonstrate that HSD17B12 KD disrupts the functional integrity of HCV MW.  

2.3.5. Oleate supplementation rescues HCV replication in HSD17B12 
KD cells  

 

The requirement of oleic acids was previously reported for HCV replication [242]. 

Furthermore, HCV-infected cells were shown to contain a higher relative abundance of 

TGs and a strikingly increased utilization of C18 fatty acids, most prominently oleic acids 

[192]. As HSD17B12 KD decreases the cellular contents of oleic acids (Fig. 2.4C) and is 

associated with increased intracellular HCV RNA levels and a decrease of infectious 

particle production (Fig. 2.2), we hypothesized that supplementing HSD17B12 KD cells 

with oleic acid-BSA would rescue HCV replication (Fig. 2.S6). We showed that addition 

of oleic acid (20 µM) to cell culture medium of KD cells partially rescues particle 

production, supporting the requirement of oleic acids and other VLCFA species for viral 

replication, progeny assembly and MW integrity.  

2.3.6. HSD17B12 is required for ZIKV and DENV replication 

 

Many flaviviruses manipulate de novo fatty acid synthesis of palmitic acid [190, 224, 

317], which serves as the main substrate for the synthesis of VLCFA. As very little is 

known about the requirement of VLCFA for flavivirus infection, we assessed the 

replication of DENV and ZIKV in HSD17B12-depleted Huh7.5 cells (Fig. 2.6). We 

showed that HSD17B12 KD significantly decreased DENV (strain 16681) and ZIKV 

(FSS13025 strain) replication as monitored by Rluc activities for both reporter viruses. 
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HSD17B12 KD also significantly reduced infectious titers of supernatants using plaque 

forming unit (PFU) assays. We then evaluated the effects of INH-12, a small-molecule 

inhibitor of HSD17B12 on flavivirus replication (Fig. 2.7). INH-12 is a steroid-based 

selective HSD17B12 inhibitor (Fig. 2.7A) synthesized at greater than 99% pure, which 

has great solubility, high cell permeability and from a series of compounds that are rarely 

cytotoxic at concentrations up to 50 µM [328]. We first confirmed that INH-12 reduces 

viral replication of HCV replicon containing cells (Fig. 7B) and core protein expression 

of JFH-1 infected cells (Fig. 2.7C) at concentrations for which no appreciable 

cytotoxicity is observed (Fig. 2.S7). Outstandingly, the treatment of DENV- and ZIKV-

infected Huh7.5 cells with INH-12 dose-dependently reduces the production of infectious 

particles in infection assays (Fig. 2.7D, F), and up to 3-log10 for DENV, and completely 

block viral protein expression as monitored by Western blotting (Fig. 2.7E, G). The data 

demonstrate the conserved requirement of HSD17B12 metabolic capacity for the 

replication of HCV and related flaviviruses DENV and ZIKV. 

2.4. DISCUSSION  

The elongation of fatty acids to VLCFA and modulation of the pathway for virus-induced 

specialized membranous structures are poorly understood aspects of the biology of 

Flaviviridae.  In this study, we characterized the requirement of HSD17B12 for HCV 

infection and its mode-of-action. This is a continuation of our HCV interactome study 

that uncovered HSD17B12 as a specific viral core interactor promoting HCV replication 

[308]. Interestingly, literature mining showed that HSD17B12 is a hub protein that 

interacts with proteins of different RNA and DNA viruses [202-206], which underline a 

potential broad-spectrum role of HSD17B12 against viral infections. HSD17B12 is an 
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ER-bound keto-acyl reductase that catalyzes conversion between E1 and E2 [300], and 

later reported to catalyze the second reaction of each VLCFA elongation cycle [278]. Our 

lipidomics analysis also support a function of HSD17B12 in VLCFA synthesis as 

revealed by the significant decreased ratio of oleic acid (C18.1) to palmitic acid (C16.0) 

in HSD17B12 KD cells. In addition, a recent study described that VLCFA amounts are 

increased in HCV-infected cells [320]. Accordingly, patients with fatty liver display 

elevated levels of VLCFA in this organ [329]. This suggests an important role of the 

VLCFA synthesis pathway for HCV infection and pathogenesis. In this study, we provide 

strong and compelling evidence that the VLCFA metabolic capacity of HSD17B12 

promotes the replication of HCV and flaviviruses DENV and ZIKV. First, HSD17B12 

KD significantly decreases viral replication and infectious particle production in Huh7.5 

cells (Fig. 2.2). Second, the inhibitor of HSD17B12, INH-12 [328], reduces virus 

replication at concentrations for which no appreciable cytotoxicity is observed and 

dramatically reduces infectious particle production (Fig. 2.7). To our knowledge, this is 

the first report describing a pro-viral role of the metabolic capacity of HSD17B12-

mediated VLCFA synthesis to promote viral replication and particle assembly processes 

of several Flaviviridae members. Our data further highlight an additional antiviral 

mechanism-of-action other than FASN inhibitors [190, 224, 317] through modulation of 

VLCFA metabolism with HSD17B12 inhibitors. 

To mechanistically explore the contribution of HSD17B12 in promoting replication of 

pathogenic Flaviviridae viruses, we focused our study on the replicative life cycle of 

HCV. We first provide evidence for the re-localization of a pool of ER resident 

HSD17B12 at virus-induced MW and LD sites (Fig. 2.1). The biogenesis of the special 
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architecture of MW (such as DMVs) and assembly compartments likely requires specific 

lipid species and stoichiometry that provide the membrane biophysical characteristics 

needed for optimal viral genome replication and particle assembly processes [241, 242, 

330]. FASN has the capacity to synthesize fatty acids up to palmitic acid and was thought 

to be solely bringing the flux of fatty acids in proximity to replication and assembly 

compartments of flaviviruses [190, 219, 224, 226]. However, FASN capacity to 

synthesize fatty acids is not sufficient to explain the enrichment of VLCFA at virus-

induced specialized membrane sites [64, 229], since it requires the elongation enzymatic 

machineries. We provide strong evidence of the requirement for de novo VLCFA 

synthesis with carbon chains ≥ C18 upon virus infection. Indeed, HSD17B12 KD blocks 

VLCFA elongation flux resulting in the expected increase of its substrate palmitic acid 

(C16.0) (Fig. 2.4). However, such increased palmitic acid levels are not enough to 

promote virus replication and particle assembly (Fig. 2.2 and Fig. 2.6). Whether other 

elongation enzymes are hijacked to trigger de novo VLCFA synthesis will need further 

investigation of virus-induced specialized membrane compartments using proteomics and 

cell fractionation studies. 

HSD17B12 KD decreased replication of subgenomic HCV RNA in absence of virus 

assembly but unexpectedly increased intracellular viral RNA levels of HCV-infected 

cells, which correlate with functional alteration of MW distribution and biochemical 

properties. Since the reduction in membrane VLCFA such as oleic acids may impact the 

compartment integrity, whether the segregation of viral RNA synthesis at less defined 

virus-replicating sites contributes to the increased HCV RNA levels needs further 

investigation. An alternative explanation is the accumulation of intracellular HCV RNA 
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as a consequence of the significant reduction of LDs that disrupt encapsidation of newly 

synthesized viral RNA and decrease particle production of HSD17B12 KD cells. 

HSD17B12 KD reduces the number and size of LDs and decreases oleic acid and TGs 

levels, which are the main components of LDs.  The induction of lipolytic enzymes is 

observed and may reflect a cellular feedback requirement to increase cytoplasmic VLCFA 

involved in various vital metabolic processes. Interestingly, inhibition of lipolytic 

enzymes by core is rather observed upon HCV infection to maintain LD organelles [331, 

332], impeding the activity of the hormone-sensitive lipase enzyme (LIPE) [333] and the 

adipose triglyceride lipase (ATGL) [334]. The LDs are crucial to several virus assembly 

processes [122, 224, 312-314] and as such the metabolic capacity of HSD17B12 to 

maintain LDs most likely contributes to the production of HCV, DENV and ZIKV 

infectious particles.  In addition, the decreased LDs in HSD17B12 KD cells is expected 

to lead to a rapid degradation of core protein as disrupting its localization to LDs leads to 

a destabilization of the protein [335-338]. Along with the requirement of de novo VLCFA 

synthesis to maintain LDs, the inhibition of HSD17B12-mediated LD homeostasis as an 

essential platform for virus assembly provides an antiviral mechanism-of-action for the 

significant reduction of HCV, DENV and ZIKV infectious particles. Finally, INH-12 is a 

selective inhibitor of HSD17B12 reductase activity, which supports a competitive mode-

of-inhibition by occupation of the active site of the enzyme for its antiviral activity [300, 

339, 340]. In summary, our study identifies HSD17B12 as a host co-factor involved in 

the replication of HCV and related flaviviruses DENV and ZIKV, and as a promising 

validated antiviral target. This study supports a conserved key role of de novo VLCFA 
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synthesis in Flaviviridae infections and reveals the therapeutic potential of targeting 

HSD17B12 as a broad-spectrum antiviral approach. 

2.5. METHODS  

2.5.1. Cell lines, antibodies, reagents: 293T, HeLa, VeroE6, Huh-7, Huh7.5 and 

HepG2 cell lines were cultured in Dulbecco's modified Eagle's medium (DMEM) 

containing 10% fetal bovine serum, 100 U/ml penicillin, 100 µg/ml streptomycin, 2 mM 

l-glutamine, and 1% nonessential amino acids (all from Wisent). Cells were transfected 

with linear (25-kDa) polyethylenimine (PEI; Polysciences) or jetPRIME (Polyplus-

transfection, Invitrogen) as described by the manufacturer. Huh7 cells stably expressing a 

reporter Con1 subgenomic replicon (Huh7-Con1-Fluc) were maintained in complete 

DMEM with 500 µg/ml G418 (Multicell).  

2.5.2. Lentivirus production: 293T cells were transfected with PEI by using plasmids 

pRSV-REV, pMD2-VSVG, and pMDLg/pRRE and shRNA-encoding plasmid pLKO.1-

puro (non-target and HSD17B12 TRCN0000027145, TRC 1 generation; Sigma-Aldrich). 

Lentiviruses were titrated using Hela cells as previously reported [338]. For gene 

silencing, cells were transduced shRNA-expressing lentiviruses at a multiplicity of 

infection (MOI) ≥ 2. Cells were collected for analysis according the design of different 

experiments. 

2.5.3. HCV infection assay: First, we knockdown the gene of interest in Huh7.5 cells 

using shRNA expressing lentivirus, then three days from transduction, we transfect the 

cells with plasmid pEF/JFH-1-Rz/Neo by using JetPRIME (Polyplus-transfection, 

Invitrogen) (2ug plasmid DNA/5*105 cells) as in [309], and cell media is replaced after 4 

h. At 4 days post-transfection, cells and culture media are collected. Virus-containing 
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culture medium is cleared through a 0.45-µm filter and used to infect naive cells. Infected 

naive cells are collected after 4 days. Extracellular viral particles from cell culture 

supernatants are concentrated with 50 kDa Amicon- EMD Millipore) for RNA extraction 

and RT-PCR determination. 

2.5.4. The Con1b Replicon: Huh7 cells stably express the genotype 1b Con1 

subgenomic replicon, were used. This bicistronic replicon expresses the neomycin 

phosphotransferase and the Firefly luciferase through the HCV IRES, while NS3-NS5B 

polyprotein production is under the control of the encephalomyocarditis virus (EMCV) 

IRES [309]. Luciferase assays were performed as described. 

2.5.5. Cytotoxicity assays: Cells were cultured in transparent 96-well plates. Twenty 

microliters of 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2H-tetrazolium bromide (MTT) 

stock solution (5 mg/ml in PBS) was added to the cells and incubated for 1 h at 37°C in 

the dark. Following the removal of the medium, cells were incubated at room temperature 

for 10 min with 150 µl of dimethyl sulfoxide (DMSO) containing 2 mM glycine, pH 11. 

Absorbance at 570 nm was read with a reference at 650 nm.  For the Alamar Blue assay, 

cells were cultured in black 96-well plates. Ten microliters of Alamar Blue reagent 

(Invitrogen; diluted 1:4 in PBS) was added to the cells and following a 3-h incubation at 

37°C, fluorescence at 595 nm (excitation wavelength, 531 nm) was measured with an 

EnVision plate reader (PerkinElmer). A control plate with medium only (no cells) or 

Alamar Blue only was used to determine the background that was subtracted from the 

fluorescence value. 
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2.5.6. qRT-PCR: Cells RNA was extracted using RNeasy Plus Kit. DNase treatment, 

reverse transcription and real-time PCRs were performed at the IRIC Genomic Core 

Facility with TaqMan-based assays. For HCV RNA detection, we used primers 

CATGGCGTTAGTATGAGTGTCG and GGTTCCGCAGACCACTATG and TaqMan-

labeled probe CAGCCTCC (probe 75; no. 04688988001 from the Roche Universal Probe 

Library); for ZIKV PF strain, we used with primers GCCCTTCTGTTCACACCATT and 

CCACATTTGGGCGTAAGACT and for DENV2, we used the primers AGATGAA-

CTGATTGGCCGGGC and AGGTCTCTTCTGTGGAAATA. Relative viral RNA and 

genes mRNA levels were calculated using the 2 -ΔΔCT method using ACTIN as an 

internal control, and plotted as fold change by normalizing to control samples 

2.5.7. Luciferase assays: Cells were washed once PBS. For firefly luciferase (Fluc) 

assays, 1 volume PBS and 1 volume of 2× luciferase buffer (100 mM Trizma acetate, 20 

mM magnesium acetate, 2 mM EGTA, 1% Brij 58, 0.7% β-mercaptoethanol, 3.6 mM 

ATP, 45 µg/ml d-luciferin, pH 7.9) were added to the cells. Cells were incubated for 15 

min at room temperature in the dark. For Renilla luciferase (Rluc) assays, 1 volume of 

PBS and 1 volume of 2 mM EDTA (pH 8)–5 µM coelenterazin (Nanolight) were added 

to the washed cells. Fluc and Rluc activities were measured with a luminescence counter 

(PerkinElmer). 

2.5.8. Antibodies: The following antibodies were used in this study: mouse anti-actin 

(EMD Milipore), mouse anti-HCV core (Affinity BioReagents), mouse anti-HCV NS3 

(Abcam), mouse anti-Flag tag (Sigma), mouse anti-dsRNA (English Scientific 

Consulting), mouse anti-PDI (Stressgen), rabbit anti-HSD17B12 (Novus Biologicals), 

mouse anti-DENV NS3 (GeneTex; cross-reactive with ZIKV NS3) and rabbit DENV-
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NS4B (GeneTex; cross-reactive with ZIKV NS4B). Secondary antibodies coupled with 

horseradish peroxidase and Alexa Fluor were purchased from Bio-Rad and Invitrogen. 

2.5.9. Immunofluorescence analysis: Cells were grown on a coverslip in 6-well or 24-

well plates, fixed, permeabilized and blocked as previously reported [338]. Following 

three rapid washes, cells were labeled for 2 h at room temperature with primary 

antibodies diluted in 5% BSA–0.02% sodium azide–PBS. Slides were washed three times 

in PBS and then probed with Alexa Fluor 488-, 594-conjugated secondary antibodies 

(Invitrogen) diluted 1:1000 in 5% BSA–0.02% sodium azide–PBS for 1 h in the dark. 

Cells were extensively washed and incubated with Hoechst dye (Invitrogen) at a final 

concentration of 1 µg/ml in PBS for 10 min. Following three rapid washes, the slides 

were mounted with 1,4-diazabicyclo [2.2.2] octane (Sigma-Aldrich) as an anti-fading 

agent. Labeled cells were then examined by confocal laser scanning microscopy (Leica 

TCS-SP5 MP) at the CRCHUM-Imaging Core Facility. For lipid droplets staining, after 

fixation, permeabilization and blocking, the nuclei were stained with Hoechst. Following 

three rapid washes, cells were incubated for 1 h with HCS LipidTOX Deep Red 

(Invitrogen) diluted 1:1000 in PBS, immediately afterward cells were mounted with anti-

fading agent. Labeled cells were then examined by Zeiss Observer microscopy. Data 

were analyzed by CRCHUM-Imaging Core Facility. 

2.5.10. RNase protection assay: The RNase protection assay was adapted from Lyn et al 

[242]. Transduced cells with shNT and shHSD17B12 were transfected with JFH-1 

plasmid for 4 days. Cells were washed once with cold buffer B (20 mM HEPES-KOH 

(pH 7.7), 110 mM potassium acetate, 2 mM magnesium acetate, 1 mM EGTA, and 2 mM 

dithiothreitol). For samples undergoing digitonin (Sigma-Aldrich, USA) treatment, buffer 
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B containing 50 µg/ml of digitonin was added to cells for 5 min at 37°C. The reaction 

was stopped by washing twice with cold buffer B. For samples treated with micrococcal 

nuclease (Sigma-Aldrich, USA) and/or NP-40 substitute (octyl-I-phenoxypoly-

ethoxyethanol; Bioshop Canada Inc.), the cells were washed twice with buffer D (20 mM 

HEPES-KOH (pH 7.7), 110 mM potassium acetate, 2 mM magnesium acetate, 2 mM 

dithiothreitol, and 1 mM CaCl2) and treated with buffer D containing 0.1 unit/mL 

micrococcal nuclease, with or without, 0.45% NP-40 substitute for 15 min at 37°C. 

Samples treated with 0.45% NP-40 substitute only were incubated for 10 min at 37°C. 

Total RNA was extracted using the RNeasy Mini Kits (Qiagen) and treated with DNase. 

250 ng of total RNA was reverse transcribed into cDNA, and equal amounts of cDNA 

processed for qRT-PCR at IRIC. The absolute amount of HCV RNA and actin were 

calculated. 

2.5.11. Lipidomics analysis: Tested cells were collected and pelleted. Cell pellets were 

kept on ice and re-suspend in 1 ml of nanopure water then were transferred to glass tubes. 

20 µl of internal standard mix was added using the 25 µl glass syringe. Next, ~800 µl of 

glass beads were added using scoop device. Using a glass pipet, 3 ml of 17:1 

CHCl3:MeOH was added to each tube. The tubes were vortexed at 4°C (in the cold room) 

for 2 h and phases were separated by centrifugation at 3000g for 5 min. The lower 

organic phase was transferred to a clean 15 ml glass tube. The solvent of the organic 

phase tube was evaporated under nitrogen flow. Using a glass pipet 1.5 ml of 2:1 

CHCl3:MeOH was added to the remaining aqueous phase. This phase was vortexed again 

at 4°C (in the cold room) for 1 h. Phases were separated by centrifugation at 3000g and 

combined with the organic phase from the 17:1 CHCl3:MeOH extract. The solvent was 
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evaporated under nitrogen flow. Lipid film was dissolved in 150 µl of 2:1 CHCl3:MeOH 

and transferred to 2 ml glass vial with either Teflon or aluminum lined caps. Samples 

were stored at -20°C until ready to be analyzed by mass spectrometry. Prior to infusing 

the samples in the mass spectrometer, samples were diluted in a 1:1 ratio using 2:1 

CHCl3:MeOH + 0.1% NH4OH. Then samples are run through quantitative shotgun mass 

spectrometry using a high resolution Thermo Orbitrap Velos instrument. Data were 

analyzed as previously reported [341]. For free fatty acids (FFA), the relative abundance 

of specific fatty acid was calculated to total detected FFA. For TG, PC, PE, the relative 

abundance was calculated to total detected lipid species.  

2.5.12. HSD17B12 inhibitor INH-12 and antiviral assays: INH-12 (compound 97; 

Table 1 in [339] was synthesized as reported in [340]. The antiviral effects of INH-12 

were determined on Huh7.5 cells transfected with JFH-1 plasmid and incubated with 

various concentrations (0 - 20 µM) of INH-12 for 4 days. Cells were analyzed by western 

blot. HCV replicon containing cells were treated with INH-12 and analyzed by 

luminescence assay.  For DENV and ZIKV replication, Huh7.5 cells were infected at a 

MOI of 3 pfu per cell for western blot analysis, and at a MOI of 0.002 pfu per cell for the 

luciferase replication assay for 2 h at 37°C. Virus inoculum was removed, cells were 

washed with PBS and incubated with various concentrations (0 - 20 µM) of INH-12. 

DMSO was used as control. Virus replication was analyzed by western blot after 2 days, 

by luminescence assay after 3 days, and by plaque assay for virus titration at 3 days post-

infection.  

2.5.13. Oleic acid supplementation: For rescue experiments, Huh7.5 cells were treated 

with oleic acids, which was prepared as previously described by Chatel-Chaix et al [338]. 
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Briefly, 0.5 g of fatty-acid-free BSA (catalog number A6003; Sigma-Aldrich) was 

dissolved in 3.6 ml of 0.1 M Tris-Cl, pH 8. A 12.6-mg sample of oleic acid (catalog 

number O1008; Sigma-Aldrich) was transferred into clean, fatty-acid free BSA (catalog 

number A6003; Sigma-Aldrich) and then diluted in 3.6 ml of Tris-BSA buffer by gently 

shaking the solution until it was clear. The oleic acid stock was at 12.5 mM. 

2.5.14. DENV/ZIKV titration by plaque assay and Rluc assays: Confluent monolayers 

of VeroE6 cells were infected with serial 10-fold dilutions of virus supernatants for 2 h at 

37°C. Two hours later, inoculum was removed and replaced with serum-free MEM 

(Gibco, Life Technologies) containing 1.5% carboxymethylcellulose (Sigma-Aldrich). 

Four days (ZIKV) or seven days (DENV) post-infection, cells were fixed for 2 h at room 

temperature with formaldehyde directly added to the medium to a final concentration of 

5%. Fixed cells were washed extensively with water before being stained with a solution 

containing 1% crystal violet and 10% ethanol for 30 min. After rinsing with water, the 

number of plaques was counted at the appropriate dilution and virus titers were 

calculated. RNA replication of DENV and ZIKV reporter virus [342] was determined by 

measuring the activity of virus-encoded renilla luciferase (Rluc) as previously described 

[343]. After lysis of the cells, coelenterazine (1.43 µM final concentration) was added 

and luminescence was measured. 

2.5.15. Statistical analysis: The statistical analysis was performed with the GraphPad 

Prism 7 software. All Student t tests were non-parametric two tailed, and P values of 

<0.05 were considered significant.  
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 2.9. FIGURES	
   

 

Figure 2.1. HSD17B12 overlaps replication and core-associated assembly sites of 
HCV infection. (A) Parental Huh7.5 cells were fixed with formaldehyde, permeabilized 
with 0.1% Triton X-100 and co-stained with anti-HSD17B12 and anti-PDI antibodies. 
(B) Huh7.5 cells (Mock) and transfected with JFH-1 expressing DNA plasmid (HCV) for 
4 days were co-stained with anti-HSD17B12 and anti-dsRNA antibodies and (C) with 
anti-HSD17B12 and anti-core antibodies. Nuclei were stained with Hoechst. Fluorescent 
images were obtained using a confocal laser scanning microscope. Merged images are 
presented on the right column. Scale bars represent 20 µm. 
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Figure 2.2. HSD17B12 KD decreases HCV replication and infectious viral particle 
production. (A) Huh7.5 cells transduced with lentivirus-expressing shNT or 
shHSD17B12 for 4 days are analyzed for HSD17B12 mRNA and protein levels. The 
effects of shNT (NT) and shHSD17B12 (HSD17B12) were determined on (B) reporter 
activity of Huh7 cells harboring an HCV subgenomic replicon (Huh7-Con1-Fluc), (C) 
intracellular HCV RNA levels of JFH-1-infected Huh7.5 cells by qRT-PCR and (D) NS3 
and core protein levels by western blot. Supernatants of cells transduced with lentivirus 
expressing shNT or shHSD17B12 and infected with JFH-1 for four days were analyzed 
for (E) extracellular HCV RNA levels and (F) extracellular infectivity by re-infecting 
naive Huh7.5 cells for 4 days and analysis of HCV RNA levels by qRT-PCR. HCV RNA 
levels are normalized with actin RNA content and arbitrarily set to 1 for cells expressing 
shNT and infected with JFH-1. Values represent mean ± SD from the analysis of more 
than three experiments. P values, < 0.05 (*), < 0.01 (**) or < 0.001 (***) are indicated in 
comparison with shRNA NT cells.   
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Figure 2.3. HSD17B12 KD reduces the number of cytoplasmic LDs. Huh7.5 cells 
transduced with lentivirus-expressing shNT (NT) or shHSD17B12 (HSD17B12) are 
either uninfected (Mock) or infected with HCV (JFH-1) for four days and analyzed for 
the contents of LDs. Cells were fixed with formaldehyde, permeabilized with 0.1% Triton 
X-100 and stained with Lipidtox and Hochest. Cells were imaged with 7 field views for 
each condition to quantify number, area and density of LDs per cell. P values < 0.001 
(***) and (+++) are indicated in comparison with cells expressing shNT for non-infected 
and JFH-1-infected cells, respectively. 
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Figure 2.4. HSD17B12 KD induces alteration in cellular lipid metabolism. Huh7.5 
parental cells transduced with lentivirus-expressing shNT (NT) or shHSD17B12 
(HSD17B12) were used to determine the relative cellular abundance of (A) triglycerides 
(TGs), (B) palmitic acids (C16.0), (C) oleic acids (C18.1), (D) oleic/palmitic (C18/C16) 
ratios (E) phosphatidylethanolamine (PE) and (F) phosphatidylcholine (PC) among all 
detected lipid species by shotgun lipidomics analysis of whole cell extracts. The data of 
three experiments were pooled for the analysis. P values, < 0.05 (*), < 0.001 (***), or 
non-significant (NS) are indicated in comparison with cells expressing shNT as control. 
NS: non-significant. (Data were normalized to control arbitrary value of 1 “except D”, 
non-parametric two tailed student t test was used to compare each test condition with the 
control). 
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Figure 2.5. HSD17B12 KD induces dispersion and disruption of HCV replication 
sites. (A) Huh7.5 parental cells (MOCK shNT), infected with JFH-1 and transduced with 
lentivirus-expressing shNT (HCV shNT) or shHSD17B12 (HCV shHSD17B12) were 
stained with anti-dsRNA antibodies as makers of viral replication sites by confocal 
microscopy. Results are representative of multiple field views. (B) Huh7.5 cells 
transduced with lentivirus-expressing shNT or shHSD17B12 and transfected with JFH-1 
DNA plasmids for four days are analyzed for RNA susceptibility to exogenous nucleases. 
Cells were treated with micrococcal nuclease, digitonin and NP40 as indicated by a +, 
and the relative abundance of HCV RNA (left panel) and actin mRNA (right panel) levels 
were determined by qRT-PCR analysis. RNA levels of cells treated with nuclease only 
are normalized to one. Values represent mean ± SD from the analysis of two experiments. 
P values < 0.05 (*) are indicated in comparison with shNT treatment. 
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Figure 2.6. HSD17B12 KD decreases DENV and ZIKV replication and infectious 
viral particle production. Huh7.5 cells transduced with lentivirus-expressing shNT 
(NT) or shHSD17B12 (HSD17B12) are infected with (A) ZIKV FSS13025 strain and (B) 
DENV2 16681 strain both expressing a renilla luciferase (Rluc) gene. At 3 days post-
infection, cells were analyzed for luminescence as readout of viral replication (left 
panels). Supernatants were analyzed for the content of infectious particle production by 
plaque assays (right panels). The luminescence signals and plaque forming units (PPU) of 
cells transduced with lentivirus-expressing shNT were arbitrarily set to 1. Values 
represent mean ± SD from the analysis of three experiments. P values < 0.001 (***) are 
indicated in comparison with shNT treatment. (Data were normalized to control arbitrary 
value of 1, non-parametric two tailed student t test was used to compare each test 
condition with the control). 
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Figure 2.7. HSD17B12 inhibitor INH-12 blocks HCV, ZIKV and DENV replication. 
(A) Chemical structure of INH-12. (B) Huh-7 cells expressing an HCV subgenomic 
replicon Con1b luciferase were treated with 0 and 20 µM of INH-12. (C) Huh7.5 cells 
infected with JFH-1, (D-E) with ZIKV H/PF/2013 strain and (F-G) with DENV2 16681 
strain were treated with 0 to 20 µM of INH-12.  Infectious virus titers (D and F) were 
measured at a MOI = 0.002 for 3 days by plaque assays.  The expression of viral proteins 
(E and G) was determined at a MOI = 3 at 2 days post-infection by western blot. P 
values, < 0.05 (*) or < 0.001 (***) in comparison with DMSO control are indicated from 
analysis of 3 experiments (Data were normalized to control arbitrary value of 1 (D-F), 
non-parametric two tailed student t test was used to compare each test condition with the 
control). 
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2.S SUPPLEMENTARY FIGURES 
   

 

Figure 2.S1.   

HSD17B12 overlaps with HCV assembly sites. Huh7.5 parental (Mock) and JFH-1-
infected cells (HCV) were transfected with an N-terminal FLAG-tagged HSD17B12 
fusion protein expressing vector. Cells were fixed with formaldehyde, permeabilized with 
0.1% Triton X-100 and stained with anti-FLAG, anti-core antibodies. Nuclei were stained 
with Hoechst. Images were obtained using a confocal laser-scanning microscope. Co-
localization is indicated by white arrows on merged images from right column. Scale bars 
represent 20 µm. 
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Figure 2.S2. 

HSD17B12 KD has minor effects on protein translation, cell survival and no effect 
on HCV IRES-mediated translation. Huh7 cells transduced with shNT (NT) and 
shHSD17B12 (HSD17B12) are (A) stably expressing a luciferase gene under an EF1 
alpha promoter to assess protein translation (B) used to monitor cell survival using an 
Alamar Blue assay and (C) HCV IRES-driven Firefly luciferase activities normalized to 
expression of CMV-driven Renilla luciferase as a cap-dependent translation control. 
Values represent mean ± SD from the analysis of at least two experiments. P values < 
0.05 (*) or non-significant (NS) are indicated in comparison with shRNA NT treatment. 
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Figure 2.S3. 

HSD17B12 KD increases intracellular HCV RNA levels of HepG2-infected cells. 
HepG2 cells transduced with shNT (NT) and shHSD17B12 (HSD17B12) are transfected 
with the JFH-1-expressing DNA plasmid for four days. Cell extracts are analyzed for the 
intracellular HCV RNA levels using qRT-PCR, normalized with actin RNA content and 
arbitrarily set to 1 for cells transduced with shNT. Values represent mean ± SD from 
analysis of three experiments. P values < 0.001 (***) are indicated in comparison with 
shRNA NT treatment. 
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Figure 2.S4. 

HSD17B12 KD decreases extracellular HCV RNA levels of HepG2 infected cells. 
HepG2 cells transduced with lentivirus-expressing shNT (NT) or shHSD17B12 
(HSD17B12) are transfected with the JFH-1-expressing DNA plasmid for 4 days. Cell 
supernatants are analyzed for the extracellular HCV RNA levels using qRT-PCR and 
arbitrarily set to 1 for cells transduced with lentivirus expressing shNT. Values represent 
mean ± SD from the analysis of three experiments. P values < 0.001 (***) are indicated 
in comparison with shRNA NT treatment. 
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Figure 2.S5. 

HSD17B12 KD increases expression of lipolysis genes. Huh7.5 parental cells 
transduced with lentivirus-expressing shNT (NT) and shHSD17B12 (HSD17B12), either 
uninfected (Mock) or infected with JFH-1 for four days are analyzed for mRNA levels of 
hormone sensitive lipase (LIPE) and phospholipase A2 (PLA2G1B) by RT-qPCR. Levels 
are normalized with actin RNA content and arbitrarily set to 1 for Mock NT cells. Values 
represent mean ± SD from the analysis of three experiments. P values < 0.001 (***) are 
indicated in comparison with shRNA NT or NT JFH-1 treatment. 
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Figure 2.S6. 

Oleic acid supplementation restores HCV RNA replication sites and rescues 
infectious particle production of HSD17B12 KD cells. Huh7.5 cells transduced with 
lentivirus-expressing shNT (NT) or shHSD17B12 (HSD17B12) and infected with JFH-1 
are used to evaluate the rescued effects of BSA-oleic acid (20 µM) to the cell culture 
media on (A) intracellular HCV RNA levels and (B) extracellular infectivity of 
supernatants upon re-infection of naive Huh-7.5 cells. HCV RNA levels are normalized 
with actin RNA contents and arbitrarily set to 1 for cells transduced with shNT and 
infected with JFH-1. Values represent mean ± SD from the analysis of three experiments. 
P values, < 0.05 (*) or < 0.001 (***) are indicated in comparison with untreated 
shHSD17B12 transduced cells.  
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Figure 2.S7 

HSD17B12 inhibitor INH-12 has minor effect on cell viability. The effects of small-
molecule HSD17B12 inhibitor INH-12 on the cellular viability were determined in HCV 
Con1b replicon-containing Huh7 cells at 20 µM using an Alamar Blue assay. Minor 
effect is observed in comparison with DMSO control. Values represent mean ± SD from 
the analysis of at least two experiments. P value < 0.05 (*) is indicated in comparison 
with DMSO treatment. 
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This chapter features the manuscript, currently under preparation, titled "Requirement 

of VLCFA metabolic pathway for HCV replication." By Bassim Mohamed and 

Daniel Lamarre. 

The first author (Bassim Mohamed) performed all experiments, as well as the analysis of 

results and the making of all figures for this manuscript. The designing of experiments 

and the writing of the article were done by the first author, with valuable input, insight 

and revisions by Dr. Daniel Lamarre. 
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3.1. ABSTRACT 

Hepatitis C virus (HCV) as a member of the Flaviviridae family depends on lipids 

in every step of its replication cycle. However, some pathways of lipid metabolism have 

not being explored regarding a possible pro-viral role for HCV replication. The very-

long-chain fatty acids (VLCFA) de novo synthesis pathway is an example. VLCFAs are 

significant constituents of cell lipids, which are used in the synthesis of complex lipids 

such as phospholipids, sphingolipids and triglycerides, as well as for energy production 

through beta-oxidation. HSD17B12 is a pivotal enzyme of this synthesis and reacts with 

several elongation enzymes (ELOVLs) to produce a diversity of VLCFA. In the present 

study, we showed that HSD17B12 knockdown (KD) inhibits HCV replication using the 

HCV Con1B subgenomic replicon model to similar levels than the inhibition of fatty acid 

synthase (FAS) enzyme. Oleic acid supplementation is able to partially restore HCV 

replication induced by HSD17B12 KD in this in vitro cell model. Furthermore, the 

metabolism of HSD17B12-mediated products, VLCFA, through sphingolipids synthesis 

and beta-oxidation processes was shown to be essential for HCV replication. The present 

work supports the requirement of HSD17B12 and VLCFA synthesis pathway in HCV 

replication and highlights potential areas for antiviral development.     
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3.2. INTRODUCTION  

Host cell lipid metabolic pathways are commonly co-opted by multiple viruses of 

the Flaviviridae family and represented an attractive target for antiviral development. 

Several studies have highlighted that Flaviviridae infections are highly dependent on 

cellular fatty acid and lipid metabolism for their replication. Fatty acid synthase (FASN) 

and acetyl-CoA carboxylase (ACC) are two key enzymes in fatty acids synthesis that 

have been pursued as therapeutic targets against some member of Flaviviridae viruses 

[215, 224, 226]. However, it was shown that the most enriched lipids in Flaviviridae 

infected cells have very-long-chain fatty acids longer than 16 carbons (so-called VLCFA) 

[129, 144, 192, 229]. There are contradicting observations regarding VLCFA metabolism 

and its role in HCV replication. For example, fatty acid beta-oxidation was shown to be 

pro-viral in a report by Rasmussen et al. [257] but to have an antiviral activity in a report 

by Levy et al. [344]. Besides, the requirement of the oleic acid-synthesizing stearoyl-

CoA desaturase enzyme 1 (SCD1) for HCV was also controversial. A report by Lyn et 

al., [242] showed that inhibition of SCD1 reduces HCV replication while studies by 

Hofmann et al., [192] demonstrated that SCD1 knockdown does not have any effects on 

HCV replication. This inconsistency may be due to different in vitro culture models for 

HCV and pathway probing. Fatty acid synthesis up to 16 carbons occurs in the cytoplasm 

and involves key enzymes like FASN and ACC. However, fatty acids more than 16 

carbons are elongated at the endoplasmic reticulum (ER) organelle [278]. HSD17B12 is a 

pivotal and hub enzyme in VLCFA elongation that in complex with other synthesizing 

enzymes of the pathway will lead to diverse elongation products such as stearic acid 

(18:0) (the precursor of oleic acid (18:1)), polyunsaturated γ-linolenic (18:3 n-6), 
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arachidonic (20:4 n-6) and eicosapentaenoic acid (20:5 n-3) [278]. VLCFA are essential 

in different aspects of cell biology. In the present study, commercially available small-

molecule inhibitory compounds and RNA interference (RNAi) gene silencing approach 

are used to evaluate the requirement of HSD17B12 and de novo VLCFA synthesis for 

viral replication	
   in HCV genotype 1B replicon (Con1B) containing cells. The study 

provides a broad picture of HCV replication dependency on the VLCFA elongation 

pathway.  

3.3. RESULTS 

3.3.1. Role of de novo VLCFA synthesis in HCV replication   

FASN enzyme is a crucial enzyme for the synthesis of palmitic acid (C16), which 

is the substrate for the synthesis of VLCFA species (un-, mono- and poly-saturated) 

produced by the elongation machinery (ELOVLs, HSD17B12, HACDs, TER). 

Hopperton et al., showed that 70-80% of labeled acetate, and the same for labeled 

palmitate, were incorporated in phospholipids synthesis in the tested cell lines [197], 

demonstrating that de novo fatty acid synthesis by FASN is required but not sufficient for 

the synthesis of cell phospholipids [197]. 

We first explored the effect of C75, a potent synthetic inhibitor of FASN, on HCV 

Con1B replicon (Fig. 3.1). We showed that C75 inhibits HCV replication at treatment 

concentration of 30 µM for four days by monitoring luciferase activities and has minimal 

effect on cell viability. The inhibition demonstrates the requirement of fatty acid synthesis 

of 16 carbon chain (palmitic acid) but also supports the need of greater than 16 carbon 

(VLCFA) for HCV replication. Indeed, we showed that HSD17B12 KD has a comparable 
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level of HCV replication inhibition than C75 at 30 µM.  Finally, the combination 

demonstrated an additive inhibitory effect (statistically significant by t test) supporting 

the requirement of de novo synthesis of palmitic acid and its elongation to VLCFA for 

HCV replication. (Fig. 3.1) 

3.3.2. Role of ELOVLs in HCV replication 

Fatty acid elongases (ELOVLs) are physically interacting with HSD17B12 [345], 

and elongate fatty acids chains by adding two carbon atoms in each VLCFA elongation 

cycle. The roles of the various elongases, however, have not been investigated in HCV 

infection. We showed that the KD of ELOVL 1, 3, 4, and 5 significantly inhibits 

replication of HCV subgenomic replicon and has no effects on cell viability suggesting 

pro-viral role for each individual ELOVL in HCV infection (Fig. 3.2 A-B).  We further 

investigated the KD of ELOVL 1, 3, 4, and 5 in JFH-1-infected cells (Fig. 3.2 C-D). We 

showed that the KD of ELOVL1 and ELOVL3 decrease HCV replication. ELOVL1 and 

3 are involved in the VLCFA elongation of C18:0 to C24:0 and of C18:1 to C24:1, 

respectively. In contrast, the KD of ELOVL4 and ELOVL5, increases HCV replication. 

ELOVL4 and 5 are involved in the elongation of polyunsaturated of greater length 

(C18:2 to C34.6). The data suggest that different HCV models have different responses to 

ELOVL KD-mediated deprivation of distinctive VLCFA species.  

3.3.3. Role of the synthesis of neutral lipids for HCV replication 

We next investigated the synthesis of neutral lipids containing VLCFA for HCV 

replication. The various long-chain acyl-CoA synthase isoforms (ACSL) are a family of 

enzymes that catalyze the conversion of long and very-long-chain fatty acids to long and 
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very-long-chain acyl-CoA in the presence of ATP, CoA, and Magnesium. Long and very-

long-chain acyl-CoA molecules serve as substrate for each step in the synthesis of neutral 

lipids including diglycerides, TGs and cholesterol ester [346].  The impact of competitive 

inhibitors of ACSL 1, 3, and 4	
  was first assessed by testing the	
  pharmacological inhibitor 

Triacsin C [347]. ACSL3 is of particular importance as it was shown to be critical in the 

synthesis of neutral lipids of LDs [201]. This was further supported by the observation 

that addition of oleic acid to cells leads to an increase in LDs, which is manifested by a 

significant increase of LDs-ACSL3 association [348]. Inhibition of ACSL by Triacsin C 

is well documented to block the synthesis diglycerides, TGs, and cholesterol esters and to 

decrease LDs availability [322, 349]. We used a concentration of 4.5 µM Triacsin C. This 

concentration is in the same range of the concentrations reported to deplete LDs in Huh7 

cells with no obvious effect on cell viability [348]. Our experiments demonstrated that 

the treatment with 2.5 to 4.5 µM of Triacsin C has a weak (26.7%) but significant 

inhibitory effect on HCV replication using the replicon model. As a control for 

cytotoxicity, we evaluated the effect of Triacsin C on Huh7 cells stably expressing the 

luciferase gene under EF1α promoter and showed no significant effects of the treatment 

concentrations that have been used (Fig. 3.3). 

3.3.4. Role of de novo synthesis of sphingolipids for HCV replication 

ELOVL6 and ELOVL1 are key enzymes of the VLCFA elongation cycle and 

essential for the synthesis of sphingolipids [350, 351]. We showed that ELOVL1 KD 

leads to inhibition of HCV replication (section 3.3.2). However, to determine the role of 

sphingolipids in HCV replication, we used the commercially available compound L-

cycloserine as an irreversible inhibitor of 3-ketodihydrosphingosine synthase, which is 



	
  
	
  

115	
  

the first enzyme of the regulated sphingolipids synthesis pathway. L-cycloserine mainly 

affects sphingomyelin and ceramide synthesis [352]. HCV subgenomic replicon 

containing cells were treated with 250 µM and 500 µM L-cycloserine as used by Nieto et 

al., [352]. After four days, HCV RNA replication was determined using luciferase 

activity. Alongside, cell viability was determined by an Alamar Blue assay. We showed 

that L-cycloserine inhibits HCV replicon reporter activity in a dose-dependent manner 

and did not affect cells survival (Fig. 3.4). The data suggest that de novo synthesis of 

sphingomyelin and ceramides that incorporate VLCFA are essential for HCV genome 

replication.  

3.3.5. Role of VLCFA (< C22) beta-oxidation  

VLCFA are critical for energy production by providing the very-long acyl chain 

substrates for beta-oxidation. The effects of fatty acid beta-oxidation on HCV genome 

replication are controversial. Some reports demonstrated that VLCFA beta-oxidation is 

vital for virus replication [257], while others showed that it contributes to an antiviral 

effect [344]. We explored the effect of inhibiting carnitine palmitoyltransferase 1 (CPT1) 

with etomoxir as a potent inhibitor of beta-oxidation, which blocks the access of long and 

very-long fatty acids acyl-CoA chains (< C22)	
  to the mitochondria leading to inhibition 

of mitochondrial beta-oxidation. We used concentrations reported in the study of 

Fernandes-Siqueira et al. [353] to achieve potent inhibition of mitochondrial beta-

oxidation. We showed that treatment of HCV subgenomic replicon-containing cells with 

400 µM etomoxir significantly decreased HCV replication. Cells viability was not 

affected as demonstrated by an Alamar Blue assay. The data suggest that the beta-
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oxidation of VLCFA (< C22)	
  contributes to the replication of the HCV in a sub-genomic 

replicon model (Fig. 3.5).  

3.3.6. Role of oleic acid synthesis  

Oleic acid is the most abundant fatty acid in cell lipids. It contains 18 carbons and 

has one double bond in its acyl chain (C18.1). It has been shown that oleic acid and 

derived lipids are incorporated into cell membranes to modulate its biophysical properties 

[354]. Oleic acid can be de novo synthesized from stearic acid (C18.0) by the action of 

the Δ-9-desaturase (SCD1), which is the rate-limiting step in the de novo synthesis of 

monounsaturated fatty acids (MUFA), specifically from stearoyl- and palmitoyl-CoA to 

oleic acid and palmitoleic acid, respectively [238]. 

We tested the effects of the potent and selective SCD1 inhibitor CAY10566 on 

HCV Con1B replicon-containing cells at concentrations of 5 and 10 µM for 4 days in 

accordance to previous studies [355, 356]. We observed a significant inhibition of HCV 

replication (Fig. 3.6), which is similar to the previously reported observations using two 

different inhibitors of SCD1 [242]. This inhibition was associated with defective 

membranous web formation [242], due to the requirement of SCD1 for mono-unsaturated 

fatty acids phospholipid synthesis [356], confirming the requirement of VLCFA in 

membranous web formation.  

3.3.7. Rescue of HCV replication by addition of oleic acid to HSD17B12 
KD cells  

As the oleic acid precursor "stearic acid" is a significant product of VLCFA 

elongation [278] and oleic acid has an essential role for HCV replication, we investigated 

the rescue of HCV replication by addition of oleic acid exogenously to the culture 
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medium of HSD17B12 KD cells. We showed that treatment of cells harboring Con1b 

replicon with 10 µM of BSA-oleic acid partially rescued HCV replication as 

demonstrated by the increased reporter activity (Fig. 3.7). The data suggest that 

HSD17B12 KD-mediated inhibition of HCV replication is partially through the inhibition 

of oleic acid synthesis, but also supports a role of HSD17B12 in the elongation of other 

VLCFA and derived lipid species that are required for HCV replication.  

3.4. DISCUSSION 

Several human viral pathogens are greatly dependent on cellular lipid metabolism. 

This suggests that one can be able to exploit these pathways for antiviral intervention. 

Host-targeted antivirals can increase the barriers to viral drug resistance. However, 

developing therapeutic strategies for viral infections will need a better understanding of 

the specific lipid species, their functions in the different viral life cycles and the impact of 

the reduced levels on host biology. The knowledge will be essential to avoid targeting 

pathways critical for host cell survival or enhancing the replication of some other viruses. 

VLCFA are believed to play an essential role in the replication of HCV and 

related flaviviruses. In virus-infected cells, lipid species derived from VLCFA are 

significantly enriched in the membranes of virus replication compartments and of whole-

cell extracts [129, 144, 192-194]. Therefore, inhibition of HSD17B12 metabolic capacity 

provides direct evidence of the requirement of de novo VLCFA synthesis in viral 

infections. 

In our study, the inhibition of HCV replication in HSD17B12 depleted cells was 

comparable to the one achieved by FASN inhibition. Understanding the biology of FASN 
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that enables the synthesis of fatty acids up to 16 carbons in length and upstream to 

HSD17B12-mediated VLCFA synthesis, raise the question of whether FASN inhibition 

can deprive HSD17B12 elongation activity of an important substrate, and subsequently, 

limit the availability of VLCFA for HCV replication. We previously showed that 

HSD17B12 KD is associated with an increase in palmitic acid levels. However, the 

availability of palmitic acid during the absence of HSD17B12 catalytic activity could not 

promote HCV replication. Furthermore, HSD17B12 KD mediated HCV replication 

inhibition is partially restored by oleic acid treatment suggesting that the loss of catalytic 

capacity of HSD17B12 is responsible for the inhibition of HCV replication by limiting 

the availability of VLCFA such as oleic acid.  From these data, we can conclude that 

FASN-mediated synthesis of palmitic acid is required for its pro-viral activity but not 

sufficient for HCV replication, which required the additional downstream HSD17B12-

mediated VLCFA synthesis. 

VLCFA includes diverse species for which the process of synthesis is regulated 

by different ELOVLs [277]. Our data suggest that HSD17B12 inhibition has a similar 

effect than the individual knockdown of ELOVL1, 3, 4 and 5	
  on HCV RNA replication. 

However, in the presence of a full virus replication cycle using the JFH-1 model, 

knockdown of ELOVL4 and 5 increase intracellular HCV RNA levels similarly to 

HSD17B12 KD cells. The different responses could be due to the distinctive genomic 

structures of the replicon and JFH-1. Specifically, JFH-1 codes for the proteins required 

for all the viral life cycle steps including viral RNA packaging and assembly, and this is 

not the case for Con1B replicons. Failure of JFH-1 viral RNA packaging may lead to 

intracellular viral RNA accumulation, and may this be the case when knocking down 
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ELOVL4 and 5, however, more experiments are needed to elucidate the specific 

mechanisms underlining this phenotype. 

VLCFA are representing significant components in the synthesis TGs [200]. Our 

data demonstrated by treating the replicon with Triacsin C are similar to a report by 

Liefhebber et al. using the JFH-1 model [322]. They demonstrated that Triacsin C 

through inhibiting TGs synthesis and depleting LDs led to slightly reduced viral RNA 

synthesis, however, the compound significantly impaired assembly of infectious virions 

in infected cells [322]. The data highlight the significance of TGs synthesis and LDs for 

infectious virion particles production, but not of the same significance for the virus 

replication step.  

Sphingomyelins (SM) are the most abundant sphingolipids in the cell. In most 

cells, the acyl moieties of these sphingolipids are of very-long-chain (C16–24) and often 

saturated [357]. Furthermore, SM play important role for HCV and beside cholesterol 

organize the solid membrane characterized as the DRM replication sites [358]. We 

inhibited SM synthesis by inhibiting 3-ketodihydrosphingosine synthase as was reported 

previously [352]. We observed a potent inhibitory effect on HCV replicon replication. 

Our data are in the same context with the observations by Umehara et al. [359], who 

tested myrocin, a serine palmitoyltransferase (SPT) inhibitor, against HCV using 

chimeric mice with humanized liver infected with HCV genotype 1a or 1b. SPT enzyme 

is another regulatory enzyme in sphingolipids synthesis. Myrocin treatment was able to 

reduce HCV RNA in the serum and liver. Further, when myrocin was combined with 
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PEG-IFN the HCV RNA levels were reduced to less than 1/1000 of the control levels 

[359]. 

VLCFA are essential substrates for beta-oxidation and represent a vital source of 

energy for the synthesis of viral proteins. We confirmed that etoxomir, a beta-oxidation 

inhibitor [353],  inhibits HCV replication, supporting the study of Rasmussen et al. who 

demonstrated a similar reduction in HCV replication by inhibition of fatty acid beta-

oxidation  [257]. The observation supports the pro-viral role of fatty acids beta-oxidation 

in HCV replication. However, the inhibitor concentration used in our experiments (400 

µM) is unusual high concentration although similar concentrations were reported in the 

literature [353, 360]. The high concentration of etomoxir can cause free radicles 

generation and leads to off-target biological effects [361]. Further, the resultant metabolic 

perturbation could not be detected by our cell viability assay. This should be considered 

as a limitation regarding interpreting the inhibitor effect on the replicon replication. 

Nevertheless, studies on livers from chronic infected patients showed a downregulation 

of fatty acids beta-oxidation [247, 248] and suggest that it reflected a defense strategy by 

the host cells to decrease virus replication. Therefore, these observations are supportive 

of a pro-viral role of VLCFA beta-oxidation. 

Oleic acid is an intracellular VLCFA product of SCD1 enzyme activity, in 

addition to being imported from the extracellular nutritional sources. Our data with SCD1 

inhibition support the study of Lyn et al. [242]. They showed that SCD1-mediated oleic 

acid synthesis is essential to the formation of a functional HCV replication membranous 

compartment. This is due to the ability of oleic acid to form membranous curvatures and 

to provide the required fluidity to membranes [241, 242]. Besides, HCV dependence on 
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the de novo synthesis of oleic acid signifies that the intracellular synthesis of oleic acid is 

more essential for HCV replication than extracellular nutritional sources. However, this 

preference could be different in vivo and the importance of oleic acid de novo synthesis 

pathway for HCV replication should be investigated with in vivo models. 

Our study shows that intracellular lipid metabolic pathways that handle VLCFA 

such as oleic acid synthesis, sphingolipids synthesis, and beta-oxidation are essential for 

HCV replication. Hence, HSD17B12 catalytic activity may be involved in multiple 

aspects of HCV replication in vitro. For instance, HSD17B12 could be vital in supplying 

the stearic acid for oleic acid synthesis, thus, could be essential for HCV membranous 

web formation. Furthermore, HSD17B12 could be critical in providing the sphingolipids 

synthesis with very-long acyl chains, again in forming the detergent-resistant membranes 

for HCV replication. However, further studies are needed to elucidate the specific 

mechanisms that may govern HCV dependence on HSD17B12 catalytic activity. 

In this study, we used commercially available inhibitors to probe several lipid 

metabolic pathways and relayed on the literature for the specificity and cytotoxicity of 

these compounds. This can be a limitation because as we did not characterize the 

compounds in depleted cell for the target enzyme using shRNA and validating the 

phenotype achieved by each inhibitor, providing more confidence regarding the results 

obtained with those inhibitors in our cell models for virus replication.   

In conclusion, the present study, along with our group previous study (Mohamed 

et al. Scientific Reports in revision), for the first time provides evidence in support of the 

importance of HSD17B12-mediated VLCFA synthesis in replication of HCV and related 

flaviviruses. The viral dependence on VLCFA may open new opportunities for 
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developing antiviral agents targeting HSD17B12 and other VLCFA synthesis enzymes in 

a broad spectrum antiviral strategy against HCV, related flaviviruses and possibly others 

RNA viruses for which there are no approved treatment to date. 

3.5. METHODS 

3.5.1. The Con1B Replicon: Huh7 cells stably express the genotype 1b Con1 

subgenomic replicon (Huh7-Con1B-Fluc) were used. This bicistronic replicon expresses 

the neomycin phosphotransferase and the Firefly luciferase through the HCV IRES, while 

NS3-NS5B polyprotein production is under the control of the encephalomyocarditis virus 

(EMCV) IRES [309]. The cells harboring the replicon were maintained in complete 

DMEM with 500 µg/ml G418 (Multicell). The medium contained 10% fetal bovine 

serum, 100 U/ml penicillin, 100 µg/ml streptomycin, 2 mM l-glutamine, and 1% 

nonessential amino acids (all from Wisent).  

3.5.2. Chemicals: Enzymes inhibitors (Triacsin, L-cycloserine, CAY10566, etomoxir) 

were purchased from Cayman chemical Inc., USA. Oleic acid and fat free bovine serum 

albumin (BSA) were purchased from Sigma-Aldrich Inc., USA. 

3.5.3. Luciferase assays: For firefly luciferase (Fluc) assays, cells were washed once 

with PBS, then, one volume PBS and one volume of 2× luciferase buffer (100 mM 

Trizma acetate, 20 mM magnesium acetate, 2 mM EGTA, 1% Brij 58, 0.7% β-

mercaptoethanol, 3.6 mM ATP, 45 µg/ml d-luciferin, pH 7.9) were added to the cells. 

After, cells were incubated for 15 min at room temperature in the dark. 

3.5.4. Cytotoxicity assay: the Alamar Blue assay, cells were cultured in black 96-well 

plates. Ten microliters of Alamar Blue reagent (Invitrogen; diluted 1:4 in PBS) was 
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added to the cells (100µl media) and following a 3-h incubation at 37°C, fluorescence at 

595 nm (excitation wavelength, 531 nm) was measured with an EnVision plate reader 

(PerkinElmer). A control plate with medium only (no cells) or Alamar Blue only was 

used to determine the background that was subtracted from the fluorescence value. 

3.5.5. Lentivirus production: 293T cells were transfected with PEI by using plasmids 

pRSVREV, pMD2-VSVG, and pMDLg/ pRRE and shRNA-encoding plasmid pLKO.1-

puro (non-target and HSD17B12 TRCN0000027145, (sequence: 

CCGGCCTGCCTTCTTGGATTTATTTCTCGAGAAATAAATCCAAGAAGGCAGGT

TTTT), TRC 1 generation; Sigma-Aldrich), or pLKO.1-puro (ELOVL) as shown in 

(Table 3.1.).  Lentiviruses were titrated using Hela cells. For gene silencing, cells were 

transduced shRNA-expressing lentiviruses at a multiplicity of infection (MOI) ≥ 2. 
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Table 3.1. The table is showing the sequences of ELOVLs shRNA, which were used in 
the study. 

 

3.5.6. HCV infection assay: Huh7.5 cells (transduced with lentivirus preparation three 

days before) were transfected with plasmid pEF/JFH-1-Rz/Neo by using JetPRIME 

(Polyplus-transfection, Invitrogen) (2 µg plasmid DNA/5*105 cells), and cell media were 

replaced after 4 h. At 4 days post-transfection, cells were collected. 

3.5.7. qRT-PCR: Cells RNA was extracted using RNeasy Plus Kit. DNase treatment, 

reverse transcription, and real-time PCRs were performed at the IRIC Genomic Core 

ELOVL1 Milipore Sigma- Mission shRNA plasmid 
SHCLND-NM_016031  
TRCN0000149553 
Sequence: 
CCGGGATAAACTCTTCCGTGCATGTCTCGAGACATGCACGGAA
GAGTTTATCTTTTTTG 
 

ELOVL3 Milipore Sigma- Mission shRNA plasmid 
SHCLND-NM_152310  
TRCN0000149584 
Sequence: 
CCGGGAACTACATGAAGGAACGCAACTCGAGTTGCGTTCCTTC
ATGTAGTTCTTTTTTG 
 

ELOVL4 Milipore Sigma- Mission shRNA plasmid 
SHCLND-NM_022726  
TRCN0000011405 
Sequence: 
CCGGGCCTATGCAATCAGCTTCATACTCGAGTATGAAGCTGAT
TGCATAGGCTTTTT 
 

ELOVL5 Milipore Sigma- Mission shRNA plasmid 
SHCLND-NM_021814  
TRCN0000151740 
Sequence: 
CCGGCACATTTATCTGCTCTGTCATCTCGAGATGACAGAGCAG
ATAAATGTGTTTTTTG 
 

!
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Facility with TaqMan-based assays. For HCV RNA detection, we used primers 

CATGGCGTTAGTATGAGTGTCG and GGTTCCGCAGACCACTATG and TaqMan 

labeled probe CAGCCTCC (probe 75; no. 04688988001 from the Roche Universal Probe 

Library). Relative viral RNA and genes mRNA levels were calculated using the 2 -ΔΔCT 

method using ACTIN as an internal control, and plotted as fold change by normalizing to 

control samples 

3.5.8. Statistical analysis: The statistical analysis was performed with the GraphPad 

Prism 7 Software. One-way ANOVA with Tukey’s multiple comparisons test and 

Student t test (two-tailed and non-parametric), were used. P values of <0.05 were 

considered significant. 

3.6. ACKNOWLEDGEMENTS  

We thank Jake Liang for pEF/JFH1-Rz/Neo plasmid; Takaji Wakita (National Institute of 

Infectious Diseases, Tokyo), Charles Rice (Rockefeller University) and Apath LLC for 

the use of JFH-1 and Huh7.5 cells; Ralf Bartenschlager (University of Heidelberg) for 

luciferase-encoding Con1b subgenomic replicon, and IRIC’s Genomics Core Facility for 

real-time PCR. This work was supported by an operating grant from the Canadian 

Institutes of Health Research to DL and by A PhD scholarship to BM from National 

Research Centre of Egypt, and Egyptian Government of Higher Education and Scientific 

Research. 

3.7. ADDITIONAL INFORMATION 

Competing financial interest: The authors declare no competing financial interests. 



	
  
	
  

126	
  

3.8. FIGURES 

 

Figure 3.1.	
   Effects of FASN inhibitor and HSD17B12 KD on HCV Con1B 
replication.	
  

The effects of pharmacological inhibition of fatty acid synthase (FASN) using C75 at 30 
µM for 4 days and shHSD17B12 transduction and combination on HCV replication-
dependent luciferase activity. As a control, a non-target shRNA (NT) was used. B) Cell 
viability of different treatments was determined using an Almar Blue assay. Data are 
representing (mean± SD) of 2 experiments including 8 biological replicates. One-way 
ANOVA with Tukey’s multiple comparisons test were used. P values <0.05 (*), <0.001 
(***), and non-significant (NS) are indicated. 
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Figure 3.2. Effects of depleting different ELOVLs on HCV RNA replication. 

Knockdown effects of shRNA-expressing lentiviruses specific to ELOVl-1, -3, -4, -5 and 
non-target shRNA (NT) were determined in A) Con1B replicon cells at day 3 post-
transduction (MOI of 10) (reporter luminescence as a readout), and C) at day 7 post-

***" ***" ***" **"

D. 
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transduction (MOI of 10) 4 days of JFH-1 infection in Huh7.5 cells (qPCR as readout). 
B) Cell viability of different manipulations was determined using an Almar Blue assay. 
Data are representing 3 experiments (mean± SD). One-way ANOVA with Tukey’s 
multiple comparisons test were used. P values <0.01(**)  <0.001 (***) are indicated in 
comparison with shNT treatment. D) ELOVLs 1,3,4, and 5 KD efficiency for two 
biological replicates in Huh7.5.  Student t test was used (non-parametric, two tailed). The 
statistical significance is indicated by (*). 
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Figure 3.3. Effects of ASCLs inhibition on HCV Con1B replication. 

A) The effects of pharmacological inhibition of acyl CoA synthase (ACSL) using 
Triacsin at 2.5 and 4.5 µM for 4 days on HCV replication-dependent luciferase activity. 
As a control, DMSO treated cells were used. B) Cells expressing luciferase under control 
of EF1α promoter were used to determine cells viability. Data are representing 3 
experiments (mean± SD). One-way ANOVA with Tukey’s multiple comparisons test 
were used.  P values <0.01 (**) and non-significant (NS) are indicated in comparison 
with DMSO treatment. 
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Figure 3.4. Effects of 3-ketodihydrosphingosine inhibition on HCV Con1B 
replication. 

A) The effects of pharmacological inhibition of 3-ketodihydrosphingosine using L-
cycloserine at 250 and 500 µM for 4 days on HCV replication-dependent luciferase 
activity. As a control, DMSO treated cells were used. B) Cell viability of different 
treatments was determined using Almar Blue. Data are representing 3 experiments 
(mean± SD).  One-way ANOVA with Tukey’s multiple comparisons test were used. P 
values <0.001 (***) and non-significant (NS) are indicated in comparison with DMSO 
treatment. 
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Figure 3.5. Effects of CPT1 inhibition on HCV Con1B replication. 

A) The effects of pharmacological inhibition of carnitine palmitoyl acyltransferase-1 
(CPT1) using etomoxir at 400 µM for 4 days on HCV replication-dependent luciferase 
activity. As a control, DMSO-treated cells were used. B) Cell viability of the treatment 
was determined using an Almar Blue assay. Data are representing (mean± SD) of 2 
experiments including 8 biological replicates.  Student t test (two-tailed and non-
parametric) was used. P values <0.01 (**) and non-significant (NS) are indicated in 
comparison with DMSO treatment. 
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Figure 3.6. Effects of SCD1 inhibition on HCV Con1B genome replication. 

A) The effects of pharmacological inhibition of stearoyl CoA dehydrogenase-1 (SCD1) 
using CAY10566 at 5 and 10 µM for 4 days on HCV replication-dependent luciferase 
activity. As a control, DMSO-treated cells were used. B) Cell viability of different 
treatments was determined using an Almar Blue assay. Data are representing 3 
experiments (mean± SD). One-way ANOVA with Tukey’s multiple comparisons test 
were used. P values <0.001 (***) and non-significant (NS) are indicated in comparison 
with DMSO treatment. 
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Figure 3.7. Effects of oleic acid treatment on HSD17B12 KD-mediated decrease of 
HCV Con1B replication. 

A) Rescue experiments of HCV replication were performed in HSD17B12 KD cells by 
addition of BSA-oleic acids (10 µM) to the cell culture media using replicon-dependent 
Luc signal as readout. B) Cell viability of different treatments was determined using an 
Almar Blue assay. Data are representing (mean± SD) of 2 experiments including 8 
biological replicates. One-way ANOVA with Tukey’s multiple comparisons test were 
used. P values <0.01 (**) are indicated in the comparison between shHSD17B12 and 
shHSD17B12+ oleic acid in figure A. P values <0.05 (*), and non-significant (NS) are 
indicated in cell survival in comparison to NT/BSA treatment in figure B. 
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4.1. Elucidating the contribution of HSD17B12 and VLCFA in 
Flaviviridae virus replication 

The synthesis of fatty acids has long been recognized as a requisite for the 

replication of a wide range of viruses including HCV, DENV, YFV, WNV, and JEV. 

Moreover, antiviral effects have been described with the inhibitors of ACC and FASN 

[187, 190, 224, 317]. However, the requirement for the elongation of fatty acids to very-

long-chain fatty acids (VLCFA) is a poorly understood aspect of Flaviviridae biology. 

We demonstrated, for the first time, that the gene silencing of HSD17B12 is 

reducing the expression of viral proteins and inhibiting the replication of three 

Flaviviridae viruses. Accordingly, our studies showed that the elongation of fatty acids to 

VLCFA, which necessitate the enzymatic activity of HSD17B12 [318], is required for 

HCV, DENV and ZIKV replication and particle production.  

Moreover, we provided substantial evidence that the antiviral effect achieved by 

the gene silencing of HSD17B12 was due to the inhibition of its enzymatic activity and 

not off-target effects. For this purpose, we performed multiple integrated experiments 

including (i) the testing of HSD17B12 KD on selected cellular lipid species and levels, 

(ii) comparing the antiviral effect with the precursor shorter fatty acid synthesis, (iii) 

probing the antiviral activity of HSD17B12 pharmacological inhibitor, (iv) evaluating the 

KD of related VLCFA synthesis enzymes such as ELOVLs, (v) characterizing 

HSD17B12 KD on the integrity and function of the HCV membranous replication site, 

and (vi) lipid droplets (LDs) as assembly sites. Consequently, from these	
   studies, we 

established the pro-viral requirement of HSD17B12 enzymatic activity for the replication 

of HCV and related flaviviruses, which will be discussed in the following sections. 
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4.2. A role of HSD17B12 in the transition of HCV RNA genome from 
replication to assembly sites 

The transition between virus replication and assembly needs an efficient and 

controlled viral RNA genome trafficking to LDs to be integrated in the encapsidation 

process. Moreover, the process requires a separation of the HCV core from the multi-

enzymes replication complex to avoid competition for the HCV RNA binding [72, 312]. 

Accordingly, in resolving this problem, the HCV core is sequestrated and accumulated at 

LDs. Furthermore, NS5A is essential for HCV assembly and localizes with LDs [362]. 

The co-localization of NS5A and the core promotes the transfer of HCV RNA from 

replication to nucleocapsid assembly sites [363].  

As a result, the promotion of HCV RNA transition from replication to assembly 

requires a high regulation of membrane phospholipid components in the interface 

between the HCV membranous web and LDs [364]. For example, the presence of 

phospholipids will provide the required fluidity and desired curvatures of the membrane-

associated HCV RNA replication sites. Our previous study showed that the HCV core 

physically interacts with HSD17B12 [308]. We now showed that HSD17B12 overlaps 

HCV core cytoplasmic distribution, supporting the presence of the enzyme at core 

trafficking sites.  HSD17B12 might contribute to the process of ER-derived membrane 

phospholipids regulation through the synthesis of VLCFA products as phospholipids 

precursors to these subcellular viral replication compartments. Hence, HSD17B12 has the 

ability to modify the membranous web and LDs associated to different cytoplasmic RNA 

virus life cycles. 
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4.2.1. HSD17B12 contributes to HCV-induced membranous replication 
sites 

Our data draw attention to the link between HSD17B12-mediated VLCFA 

synthesis and the biology of HCV replication sites (membranous web) as the intracellular 

levels of lipids are critical factors in virus replication. Indeed, many single-stranded 

positive RNA viruses, including those of the Flaviviridae family, depend on the 

enrichment of specific and newly synthesized phospholipids at virus-induced 

membranous replication sites. The specific lipid enrichment not only contributes to the 

formation of viral RNA replication sites, but also provides protection from the sensing of 

viral RNA by the pathogen recognition receptor (PRR) of the antiviral response [192, 

323, 324, 365, 366]. Recent studies describe a cellular increased level of phospholipids 

harboring C18:1 acyl chains and polyunsaturated fatty acids upon HCV infection [192]. 

Electron microscopy imaging studies further revealed that HCV-induced membrane 

rearrangements are predominantly protrusions of the ER	
  [121]. Remarkably, the half-live 

of phospholipids at ER membranes is relatively short (60 hours) [367]. Hence, de novo 

synthesis of VLCFA is undoubtedly needed to replenish the phospholipids at the ER 

components [368]. Thus, the maintenance of HCV specialized membranes (membranous 

web) must necessitate the HSD17B12 enzymatic activity in close proximity to replication 

sites to continuously replenish its lipid components.	
  

The membrane curvatures are vital to HCV replication membranous web 

formation [123] and involved the presence of oleic acid [241, 242]. Indeed, many studies 

reported the capacity of oleic acid to provide exclusive membranous characteristics to 

support viral RNA replication [241, 242, 330, 369, 370]. Based on the biology of 

membrane curving, there is a common way for membrane layers to adopt a curved 
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geometry. The curves occur by the asymmetric organization of the phospholipids of 

different shapes and physical features [370, 371 , 372]. Phosphatidylethanolamine (PE) 

has a smaller head group and a larger hydrophobic tail, and most probably induces 

negative membrane curvature when tightly packed with phosphatidylcholine (PC), which 

has a cylindrical geometric shape with a tendency to form a planar bilayer [371-373]. The 

induction of membrane curvatures also requires modification in membrane fluidity (how 

loose the packed membrane phospholipids are), which is governed by the structure of 

unsaturated fatty acyl chains (e.g. oleic acid) of its phospholipids [372, 373].  In 

accordance with the foregoing, our data demonstrate that the activity of HSD17B12 

contributes to the supply of activated acyl chains (acyl-CoA) of greater than 16 carbons, 

which are requisite to the induction of membrane curvatures at HCV replication 

compartments, namely oleic acid and phosphatidylethanolamine (PE) [121, 374, 375]. 

The studies of Lyn et al. and Nguyen et al. [241, 242] further support our data and 

showed that blocking de novo synthesis of oleic acid by small-molecule SCD1 inhibitor 

and SCD1 gene silencing inhibits HCV RNA replication and viral particle production. 

Moreover, the effects are associated with defective DMVs (membranous web) synthesis, 

as revealed by electron microscope imaging [241, 242]. More recently, Hofmann et al. 

[192] showed that the inhibition of the polyunsaturated fatty acids (PUFA) synthetic 

pathway via the gene silencing of the rate-limiting Δ6-desaturase enzyme FADS2 (that 

desaturates palmitic acid and oleic to PUFA of equivalent carbon lengths), or by 

treatment with a small-molecule inhibitor, impaired HCV viral particles production [192]. 

Therefore, altogether, our data strongly support a role of HSD17B12 and production of 

VLCFA species at HCV replication sites, and possibly other related flaviviruses. 
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HCV also interacts with host membrane proteins to maintain replication site 

curvatures. These proteins include karyopherins and nucleoporins [123, 376]. The role of 

membrane proteins in membrane curvatures may include wedging themselves between 

the phospholipid layers [369, 377]. Additionally, membrane proteins can interact with the 

large surface of the facial side of the membrane and facilitate the induction of membrane 

curvature [378].  Interestingly, the combination of membrane lipids re-organization and 

of protein-induced curvature has been reported in several flaviviruses life cycles to 

establish the virus-induced replication specialized membranes [121]. For instance, DENV 

requires the activity of SCD1 to produce oleic acid to support the curvatures of its 

membranous compartment [194]. Furthermore, DENV NS4A protein, through the 

insertion of it predicted transmembrane segment 2 (pTMS 2) into the luminal leaflet of 

the ER membrane may act as a wedge resulting in a curvature toward the cytosol [379]. 

The structure of HCV-induced membranous web is enriched in PI(4)P molecules 

(contains C18:0 and C20:4 VLCFA tails) that require VLCFA synthesizing activity. Our 

study showed a co-localization between HSD17B12 and dsRNA at HCV replication sites. 

Hence, the proposed link between VLCFA synthesis and PI(4)P synthesis can give more 

insight into the dependence of the HCV replication compartment on HSD17B12 catalytic 

activity. Additional studies are required to elucidate the involvement of the VLCFA 

synthesis pathway for PI(4)P enrichment and PI(4)P-dependent recruitment of effector 

proteins (e.g., oxysterol binding protein (OSBP)) at replication sites, as well as for the 

requisite enrichment of important lipids such as cholesterol for membranous web 

integrity. Electron microscopy imaging of HSD17B12 KD cells could help to confirm 
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membrane alterations by the direct visualization of viral replication sites upon infection 

with HCV and related flaviviruses.  

4.2.2. A role of HSD17B12 in LD biology and HCV assembly 

HCV disturbs LD homeostasis by inhibiting LD lipolysis and increasing its 

stability [364]. This biology establishes a cellular microenvironment that is more 

favorable to viral infection. LD organelles have a unique structure with one layer of 

phospholipids covering a core of neutral lipids mainly formed of TGs and cholesterol 

esters (CEs). The composition of the LD phospholipid monolayer critically regulates their 

consumption and morphology [380]. The phospholipid monolayer is associated with LD-

associated proteins such as adipose triglyceride lipase (ATGL), hormone-sensitive lipase 

(HSL), and the family of PAT-domain proteins (perilipin, adipophilin, and TIP47). The 

ER hosts the enzymes needed for neutral lipid synthesis (TGs and cholesterol ester (CE)). 

From the ER membrane, the neutral lipid synthesis mediates LDs to undergo a series of 

well-organized processes and grow into larger and mature LDs [381]. Consequently, the 

growing of LDs requires very-long-chain acyl-CoA molecules, which are from a 

nutritional source or de novo synthesized [200, 381]. Hence, the deficiency in 

incorporating VLCFA, especially oleic acid, negatively affects the ability of TGs 

synthesis. In our study, we provided strong evidence that depleting HSD17B12 leads to 

the direct depletion of LD organelles by reduction of lipid species abundances such as 

oleic acid, TG and PE and/or by stimulation of hemostatic mechanisms including 

increased lipolysis gene expressions of HSL and PLA2. Accordingly, the increase in the 

expression of lipolysis genes is expected to lead to the digestion of lipid stores such as 

LDs and accessory lipid compartments. Importantly, the digestion of the lipid stores may 
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lead to the release of unbalanced amounts of free lipids intracellularly. For instance, the 

uncontrolled liberation of fatty acids species may distort and deform the HCV specialized 

membranes and the interface between the membranous web (MW) and LDs [225, 382]. 

Hence, inhibition of HSD17B12 activity induces a metabolic environment that disfavors 

LDs maintenance that promotes HCV infection.  Moreover, the decreased oleic acid 

levels upon HSD17B12 inhibition may impact the triglycerides synthesis enzyme 

diacylglycerol O-acyltransferase 1 (DGAT1) as oleic acid is the main substrate for 

DGAT1 [383]. Two independent studies showed the significance of DGAT1 for HCV 

particle assembly. For instance, Herker et al. demonstrated that DGAT1 is required for 

the trafficking of the HCV capsid protein core onto the surface of LDs [144]. Another 

independent study showed that DGAT1 is critical for NS5A trafficking regarding LDs 

[384]. In addition, the NS5A trafficking needs an active DGAT1 enzyme as demonstrated 

by the ectopic expression of a catalytically inactive mutant of DGAT1 (H426A) that led 

to a blocking of NS5A recruitment to LDs, but not of core, and impaired the release of 

infectious viral particles [384]. Our observation that the inhibition of HSD17B12 

catalytic activity leads to the deficiency of oleic acid underscores the potential inability of 

DGAT1 to in the trafficking of NS5A to the LDs for proper HCV particle assembly. 

More investigations are required to demonstrate an essential role of HSD17B12 catalytic 

activity for NS5A trafficking to LDs. 

Interestingly, LDs also link the HSD17B12 catalytic activity to the very low-

density lipoprotein synthesis [385] and to the HCV post-assembly particle secretion 

process [158]. VLDL synthesis occurs in two different stages. In the first stage, TGs are 

transferred from LDs by microsomal triglyceride transfer protein (MTP) to 
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apolipoprotein B (ApoB), which is critical for the integrity of the VLDL structure [386]. 

If sufficient source of TGs is not available, ApoB is ubiquitinated and degraded [387]. In 

the second stage, VLDL precursors containing ApoB fuse with ER/Golgi luminal 

triglycerides droplets [388] and is facilitated by apolipoprotein E (ApoE) [389]. 

Moreover, MTP transfers additional TG from LD to the growing VLDL particle at the 

luminal compartment. This activity promotes VLDL assembly and secretion [388]. 

Therefore, MTP is crucial for the proper secretion of VLDL, and genetic defects in the 

MTP gene severely reduce VLDL secretion [390, 391]. It has been shown that HCV 

secretion depends on the biology of VLDL assembly throughout the utilization of LDs 

triglycerides stores [158]. The study of Huang et al. [158] showed the significance of this 

process. When using the potent BMS-2101038 inhibitor of MTP involved in triglyceride 

transport from LDs to VLDL, HCV secretion is impeded by 80% but the inhibitor does 

not affect intracellular HCV RNA [158]. The study of Gastaminza et al. [392] took 

advantage of the accumulation of HCV infectious particle intracellular by treatment of 

cells with brefeldin A (BFA) (inhibits protein transport from ER to Golgi) in a manner 

reflecting the rate of production of HCV infectious particles. Furthermore, the authors 

studied the accumulation of intracellular infective particles in the presence of MTP 

inhibitor in cells treated with BFA. They demonstrated that the infectious particles 

accumulated only in BFA treated cells but not in cells treated with the combination of 

BFA and MTP inhibitor. They concluded that MTP inhibition impairs infectious 

maturation and secretion [392]. Altogether, these data demonstrate that the synthesis of 

VLDL from LDs is essential for HCV release. As the triglyceride components of LDs are 

mainly of VLCFA, especially oleic acid (C18:1) and stearic acid (C18:0) [200], it 
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strongly supports an important contribution of HSD17B12 catalytic activity for HCV 

post-assembly release. More studies are required to confirm a direct role of HSD17B12 

on VLDL formation and HCV release, and to demonstrate the blockage of viral secretion 

with HSD17B12 inhibition. 

4.3. Mode of action of HSD17B12 for the replication of flaviviruses  

Previous studies showed a unified requirement of fatty acids upstream to the 

synthesis of VLCFA for replication of HCV and related flaviviruses. In this context, 

FASN and ACC are two key enzymes that have been explored for a broad-spectrum 

antiviral approach against flaviviruses [215, 224-226, 228, 393]. A recent study by 

Gullberg et al. [194] further demonstrated the essential requirement of SCD1 activity for 

DENV replication and infectivity. The study provided evidence of SCD1-mediated oleic 

acid synthesis in establishing replication compartments in tight coordination with sites of 

virion assembly. However, no studies have directly investigated host factors required for 

VLCFA synthesis that are critical to the replication of flaviviruses. The inhibitory effect 

of HSD17B12 depletion on HCV, DENV and ZIKV infection suggests similarity 

between HCV and flaviviruses in their requirement for establishing membranes 

rearrangement to (i) harbor their genome replication and (ii) coordinate the replication, 

assembly and release steps. Indeed, it has been demonstrated that VLCFA-containing 

lipid species are enriched upon flaviviruses infection [193, 394] and are involved in 

virus-induced membrane rearrangement [229]. The membrane rearrangement includes 

the formation of vesicles ∼90 nm in diameter defined as vesicles packets (VPs) and 

formed by ER membrane layers invaginations. As such, the VLCFA pathway must be 

involved in VP formation. VPs have the same function as the DMVs of HCV replication 
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factories, as they are the sites of virus replication harboring the replicase components and 

dsRNA replication intermediates [395]. Electron microscope studies could help to 

confirm a direct role of HSD17B12 on DENV and ZIKV specialized membranes. 

The critical requirement of HSD17B12 to maintain the availability of LDs 

strongly supports a pro-viral role and represents a potential mechanism for the 

requirement of HSD17B12 activity in the life cycle of flaviviruses. DENV decreases the 

total LDs of infected cells due to the consumption of these organelles via lipophagy 

[396]. DENV uses the TGs reservoir of LD to release free fatty acids by activation of the 

lipophagy pathway. The increase in free fatty acid generates more ATP via cellular beta-

oxidation and promotes viral replication [396]. Similarly, the impairment of cellular 

lipophagy decreases DENV replication [397]. ZIKV also shares its dependence on LDs. 

The two viruses exploit AUP1, a type-III membrane protein with dual localization signals 

for LDs and ER organelles [398]. AUP1 triggers LDs lipophagy, leading to the release of 

fatty acids for phospholipids synthesis and energy production. The AUP1−/− cells are 

resistant to ZIKV and DENV infection and virion production [399]. The LD homeostasis 

and requirement of a constant VLCFA synthesis for DENV and ZIKV replication are in 

strong support to the KD of HSD17B12 in mediating LDs depletion as a mechanism that 

is associated with inhibition of virus replication. LDs play a critical role in DENV 

assembly as suggested by evidence that DENV C (capsid) protein needs to associate with 

LDs [313]. The physical contact between DENV C protein and LD leads to the exposure 

of cationic facing the aqueous environment [275]. Moreover, a peptide drug spanning 

residues 14–23 from the C protein (pep14–23) was shown to inhibit C protein interaction 

with LDs [400], leading to the inhibition of viral morphogenesis [400]. This data also 
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support HSD17B12-mediated LDs depletion as one of the mechanism for inhibition of 

DENV particle production.  Although LD is mainly composed of VLCFA-derived neutral 

lipids, our study is the first that highlights the link of HSD17B12 catalytic activity to the 

aforementioned LDs manipulation upon DENV and ZIKV replication. In the same 

context, it was reported that FASN is mobilized to LD in flaviviruses infected cells [401], 

suggesting that building up fatty acid is concurrent with lipophagy, emphasizing the 

availability of the palmitic acid substrate for HSD17B12-mediated VLCFA synthesis. 

Hence, HSD17B12 inhibition alone or in combination with FASN inhibition represents a 

promising targeting antiviral approach for the potent inhibition of flavivirus replication.  

4.4. Broad-Spectrum Antiviral activity of specific HSD17B12 inhibitors  

4.4.1. The pharmacological inhibition of HSD17B12 impedes replication 
of HCV and flaviviruses 

Our study indicated that the inhibitor INH-12, which has a greater specificity for 

HSD17B12 than for other HSD17B enzymes [339], has a potent inhibitory effect on 

HCV RNA replication and viral protein levels. Furthermore, it showed a potent inhibitory 

effect on DENV and ZIKV replication, viral protein accumulation and virus particle 

production. This represents a novel example of the inhibition of enzymes acting on the de 

novo VLCFA synthesis, namely oleic acid synthesis. We showed that HSD17B12 

inhibition reduced the synthesis of oleic acid levels (Chap 2), similarly to SCD1 

inhibition [242], which correlates with the inhibitory effects on HCV replication and 

assembly. As evidence of the specificity of INH12, in addition to the direct and expected 

effect on oleic acid reduction, the concentrations range of the inhibitor that led to HCV 
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inhibition are in the same range of concentrations required for the in vitro enzymatic 

inhibition [339, 340]. 

4.4.2. HSD17B12 and FASN inhibition has comparable antiviral effects 

The antiviral mechanism of FASN inhibition is not completely defined. Indeed, 

FASN has been reported to support palmitoylation activity [221]. Palmitoylation is the 

covalent attachment of palmitate (C16:0) to cysteine residues via a thioester bond [402]. 

The primary function of protein palmitoylation is to enhance membrane affinity, allowing 

the modified protein to interact with cellular membranes [402]. Besides, protein 

palmitoylation plays an essential role in protein stability [403]. The palmitoylation 

activity of FASN has been shown to promote the replication of several viruses [404-406]. 

Particularly the palmitoylation of HCV core and NS4B was shown to influence the 

efficiency of HCV replication and assembly [87, 141]. Accordingly, FASN inhibition 

hinders HCV RNA replication and protein accumulation [225], and involves the 

disturbance in viral proteins palmitoylation as shown with other viruses [404]. 

HSD17B12 KD hinders the viral replication in the presence of an increased abundance of 

palmitic acid levels, arguing that de novo VLCFA synthesis inhibition exerts a dominant 

antiviral activity downstream to the various FASN activities and bypassing FASN-

mediated palmitic acid synthesis and its palmitoylation activity. The viral inhibition in 

the presence of increased palmitic acid levels suggests that FASN modulates HCV 

replication through two aspects: (i) providing palmitic acid for protein palmitoylation and 

(ii) providing palmitic acid as a precursor for further de novo VLCFA synthesis as 

proposed in the model depicted in Fig. 4.1. 
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Figure 4.1. FASN pathway provides HSD17B12 catalysis with palmitic acid for 
elongation. 

Inhibition of FASN (pharmacological or genetic knockdown) leads to downstream 
deprivation of palmitic acid, which is a major precursor for the de novo synthesis of 

VLCFA. 
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4.5. HSD17B12 targeting as a broad-spectrum antiviral approach  

The understanding of the regulation of host lipid pathways controlling replication 

of HCV and flaviviruses would enable the tailored design of host-targeted antiviral 

molecules directed against VLCFA metabolic enzymes with safety margin. Several 

approaches have been used to discover antivirals that depend on small-molecule high 

throughput screening (HTS) against phenotypic viral replication assay (not target based). 

Furthermore, a major obstacle that has emerged from antiviral drug discovery with 

antiviral targets is the emergence of drug resistance. This phenomenon favor the targeting 

of host proteins that are dependence factors for viral replication and that are less critical 

for cell biology.  From the present study, we explored the VLCFA synthesis pathway for 

promising targets against flaviviruses replication. Our results suggest that it would be 

essential for antiviral design to focus on the key enzymes of the pathway and specific 

lipid moieties that can generate effective antiviral responses by depriving the virus of the 

replication membranous compartments (membranous web and lipid droplets). In addition, 

combining inhibitors of several host enzymes that target the synthesis of these specific 

VLCFA and derived lipids that hinder the stability of the virus replication compartments 

may maximize the success of therapy to eliminate the virus and to reduce cytotoxicity 

effects. Moreover, such combination is expected to inhibit the virus from acquiring the 

ability to manipulate the patient’s immune response. Such combination should also cover 

the most effective VLCFA species in inhibiting a broad spectrum of flaviviruses from 

ensuring the achievement of the maximum response in infected patients.  
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4.6. Future perspective 

In order to gain more insight of targeting HSD17B12 activity as an antiviral 

approach against flaviviruses, we propose to further validate the requirement of 

HSD17B12 activity for DENV and ZIKV replication using a gene knockout (KO) 

approach. The CRISPR-Cas9 technology will be applied to human cell lines, primary 

hepatocytes, and monocyte-derived macrophages (MDM) [407]. In order to evaluate the 

level of dependency of virus replication on HSD17B12 expression, we plan to implement 

a CRISPR interference (CRISPRi) methodology, in which a doxycycline-inducible 

deactivated Cas9 is fused to a KRAB repression domain, which specifically, reversibly 

and dose-dependently inhibit gene expression [408] (Fig. 4.2). If cell viability of 

HSD17B12 KO cells is occurring, the CRISPRi technology will allow evaluating the 

balance between the minimal gene depletion required for maximal antiviral potency in 

the absence of cytotoxicity. 

In addition, we plan to characterize compounds of the HSD17B12 inhibitor series 

in collaboration with Dr. Poirier from the University of Laval. An important control is the 

testing of compounds with similar structure that have no inhibitory effects on purified 

HSD17B12 enzyme using in vitro enzymatic assay that correlate with the absence of 

antiviral activity. Complete dose-response curves will be performed with INH-12 to 

provide antiviral potency against ZIKV, and DENV and cytotoxicity. More direct 

investigations using LC-MS/MS analysis of INH-12 treated cells will unambiguously 

identify VLCFA species and derived lipids that are reduced, and correlates with 

significant decrease of DENV and ZIKV infectious particle production. These studies 

will validate the direct inhibition of HSD17B12 in controlling Flaviviridae infection in 
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vitro, and provide strong support to initiate in vivo pre-clinical studies with animal 

models.  

 

 

Figure 4.2. A modular RNA-guided genome regulation. 

The fusion of catalytically inactive Cas9 protein (dCas9) to effector domains with 
specific regulatory characteristics enables stable and efficient transcriptional activation or 
repression in human cells. Furthermore, A co-expressed short guide single-guide (sg) 
RNA solely determines the site of delivery. The fusion of dCas9 to a transcriptional 
repressor domain can robustly silence the expression of multiple endogenous genes. 
Adapted with permission from (Gilbert, L.A., et al., CRISPR-mediated modular RNA-
guided regulation of transcription in eukaryotes. Cell, 2013.	
  154(2): p. 442-51.)[409]. 

 

We plan to evaluate targeting multiple VLCFA synthesis enzymes in a 

combinational approach. A good rationale is the testing of HSD17B12 inhibitor in 

combination with ELOVL6 inhibitor that block the elongation reaction from palmitate 

(C16:0) to stearic acid (C18:0) [410, 411]. Furthermore, we could combine various levels 

of HSD17B12, ELOVL6 and stearoyl-CoA desaturase 1 (SCD1) inhibitors, which 

completely block the synthesis of oleic acid (C18:1) [242]. These combination studies are 
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unprecedented in literature and can provide pharmacological evidence for a safer 

combination approach based on synergistic inhibition and partial blockage of selected 

VLCFA metabolizing enzymes that control Flaviviridae infection but at levels of enzyme 

inhibition for which there is an acceptable or no appreciable target-based toxicity.  

The dose-dependent antiviral effects of INH-12 or of any inhibitor combination 

identified previously would be tested in a pilot in vivo study. INH-12 and newly 

synthesized compounds from the same series and optimized for antiviral potency and 

adequate pharmacokinetic properties and safety in animal studies would be tested for 

their efficacy in established DENV- and ZIKV- infected AG129 and Ifnar1-/- mice model 

[412, 413]. 
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4.7. Potential limitations 

All experiments were performed on Huh7.5 cell lines that have different lipid 

metabolism compared to primary cells. Indeed, cell lines are more dependent on de novo 

fatty acid synthesis to meet the need for expanding their biomass and continuous cell 

division. Such metabolic difference may alter the homeostatic events of HSD17B12 KD 

in cell lines compared to primary cells or in vivo studies. Therefore, this highlights the 

importance of using primary cells for in vitro viral infections. Importantly, as factors 

regulating cellular lipid metabolism in vivo are more complicated than in vitro conditions, 

in vivo validation studies are required.  

The JFH-1 strain is unique among the HCV strains and makes it not necessarily 

representative of HCV biology [414]. Furthermore, different HCV strains have different 

interactions with cell lipids. For example, a study by Weng et al. [415] demonstrated that 

sphingomyelin (SM) binds  and enhances the template binding activity of genotype (1b) 

RNA-dependent RNA polymerase (RdRp). However, this effect varied according to HCV 

genotypes. For instance, SM did not activate J6CF (2a) RdRp. Further, SM binds to 

RdRps of genotype 1a and 2a (JFH1) but did not activate them [415]. In another example, 

the HCV of genotype 3 induces the expression of lipid de novo synthesis genes and 

contributes to the development of hepatic steatosis more aggressively than other 

genotypes [50]. While the distinction in how HCV genotypes interact with lipids should 

be considered when we generalize the conclusions of the present study, the fact that we 

showed antiviral effects for genetically distinctive viruses of the flaviviruses tempered 

the potential differences within HCV genotypes.  
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Finally, we used a ribozyme-based JFH-1 infectious system (DNA plasmid) 

developed by Kato et al. [321]. Two independent studies from our lab have validated this 

infectious system [309, 338]. Accordingly, the validation studies showed that the 

transcription from the transfected JFH-1 DNA plasmid generates low viral RNA (vRNA) 

levels and vRNA increases as a function of time due viral replication and propagation by 

reinfection (and is blocked by the HCV protease inhibitor BILN2061 validated in human) 

[309, 338]. As control, cells were transfected with the replication-defective mutant JFH-1 

GND (containing a point mutation in the HCV polymerase NS5B), which indicated the 

basal levels of HCV RNA (plasmid-dependent) detected at day one to six, upon the lack 

of RNA polymerase activity [309]. The data revealed that the plasmid-dependent viral 

RNA (vRNA) transcription minimally contributes to the observed levels of intracellular 

vRNA, especially at four days post-transfection (intact JFH-1 plasmid has 35-fold vRNA 

more than the one with defective polymerase (GND)). Moreover, the vRNA in the 

supernatant was quantified, and the supernatant of cells transfected with JFH-1 plasmids 

was used to infect naïve cells, also the resultant infectivity was successfully assessed by 

qPCR. These validation studies confirm that using the JFH-1 infectious DNA plasmid 

allow to monitor HCV vRNA replication and viral infectivity in order to evaluate the 

effects of proteins KD and newly discovered host-targeted antivirals.  

DENV replicates predominantly in human cells of the innate immune system 

including monocytes, macrophages, immature dendritic cells and mature dendritic cells 

[416-421]. On the other hand, human studies and animal models (mice and non-human 

primates) have detected ZIKV in placenta [422] and neuronal cell types including neural 

progenitor cells and mature neurons and astrocytes [423], ocular tissues including the 
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cornea, neurosensory retina and optic nerve, as well as the aqueous humor of the anterior 

chamber [424], and cells of the reproductive tract including testis [425] and the vaginal 

epithelium and the uterus [426]. These target cells of DENV and ZIKV replication have 

different lipid metabolism requirement in comparison to Huh7.5 hepatoma cells that was 

used in our experiments.  The difference in metabolism should be identified and taken in 

consideration regarding the in vivo role of HSD17B12 and its targeting to block DENV 

and ZIKV replication. 

We also used commercially available inhibitors to probe several lipid metabolic 

pathways and relayed on the literature for the specificity and cytotoxicity of these 

compounds. This can be a limitation because as we did not characterize the compounds in 

depleted cell for the target enzyme using shRNA and validating the phenotype achieved 

by each inhibitor, providing more confidence regarding the results obtained with those 

inhibitors in our cell models for virus replication.  
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4.8. Conclusion  

This project was based on the discovery of the HCV core interacting protein 

HSD17B12 that plays a pro-viral role in HCV replication. The interaction led us to focus 

on studying the importance and mechanisms of HSD17B12-mediated VLCFA synthesis 

for HCV replication. We then investigated the significance of the requirement of 

HSD17B12 to the replication of related flaviviruses ZIKV and DENV. We provided in 

vitro evidence that the modulation of HSD17B12 catalytic activity has potential broad-

spectrum antiviral effects against Flaviviridae infections.  

Our mechanistic studies demonstrated that HSD17B12 contributes to the 

formation of functional viral replication compartments and to the homeostasis of LDs that 

are essential as viral assembly platform. Moreover, the lipidomic shotgun analysis of total 

extracts of HSD17B12 KD cells directly showed a decreased abundance of essential 

VLCFA-containing PE required for specific membrane characteristics that promote virus 

replication. Additionally, we observed metabolic conditions that disfavor availability of 

LD required to promote virus assembly including (i) decreased TG abundance and (ii) 

increased expression of lipolytic enzyme hormone-sensitive lipase (HSL). Altogether, our 

studies support the fact that HSD17B12 contributes to the flux of de novo VLCFA 

synthesis in proximity to subcellular compartments that are required for promoting 

replication and assembly/release of flaviviruses.  

The research in this thesis has provided novel evidence for the critical 

requirement of de novo synthesis of VLCFA to Flaviviridae infection by demonstrating i) 

HSD17B12 KD cells can not form proper replication or assembly lipid compartments, 

and have a deteriorated viral proteins accumulation ii) the inability to produce HCV viral 
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particles by the use of HSD17B12 KD iii) hindering DENV and ZIKV replication and 

viral particles production by the use of HSD17B12 KD and inhibitor. These results are a 

valuable stepping-stone in understanding the dynamics of VLCFA synthesis for 

Flaviviridae infections, as well as a starting point to study the effects of targeting 

HSD17B12 host enzyme and other of the VLCFA synthesis pathway to block flaviviral 

infections with the long-term goal of discovering novel pan-viral therapeutics. 
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