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Résumé

Cette thèse est organisée en trois chapitres. Les deux premiers proposent
une approche régularisée pour l’estimation du modèle de données de panel
dynamique : l’estimateur GMM et l’estimateur LIML. Le dernier chapitre de
la thèse est une application de la méthode de régularisation à l’estimation
des élasticités de l’offre de travail en utilisant des modèles de pseudo-données
de panel.

Dans un modèle de panel dynamique, le nombre de conditions de moments
augmente rapidement avec la dimension temporelle du panel conduisant à
une matrice de covariance des instruments de grande dimension. L’inversion
d’une telle matrice pour calculer l’estimateur affecte négativement les pro-
priétés de l’estimateur en échantillon fini. Comme solution à ce problème,
nous proposons une approche par la régularisation qui consiste à utiliser une
inverse généralisée de la matrice de covariance au lieu de son inverse clas-
sique. Trois techniques de régularisation sont utilisées : celle des composantes
principales, celle de Tikhonov qui est basée sur le Ridge régression (aussi ap-
pelée Bayesian shrinkage) et enfin celle de Landweber Fridman qui est une
méthode itérative. Toutes ces techniques introduisent un paramètre de régu-
larisation qui est similaire au paramètre de lissage dans les régressions non
paramétriques. Les propriétés en ećhantillon fini de l’estimateur régularisé
dépend de ce paramètre qui doit être sélectionné parmis plusieurs valeurs
potentielles.

Dans le premier chapitre (co-écrit avec Marine Carrasco), nous proposons
l’estimateur GMM régularisé du modèle de panel dynamique. Sous l’hypo-
thèse que le nombre d’individus et de périodes du panel tendent vers l’infini,
nous montrons que nos estimateurs sont convergents and assymtotiquement
normaux. Nous dérivons une méthode empirique de sélection du paramètre
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de régularisation basée sur une expansion de second ordre du l’erreur quadra-
tique moyenne et nous démontrons l’optimalité de cette procédure de sélec-
tion. Les simulations montrent que la régularisation améliore les propriétés
de l ’estimateur GMM classique. Comme application empirique, nous avons
analysé l’effet du développement financier sur la croissance économique.

Dans le deuxième chapitre (co-écrit avec Marine Carrasco), nous nous in-
téressons à l’estimateur LIML régularisé du modèle de données de panel
dynamique. L’estimateur LIML est connu pour avoir de meilleures proprié-
tés en échantillon fini que l’estimateur GMM mais son utilisation devient
problématique lorsque la dimension temporelle du panel devient large. Nous
dérivons les propriétes assymtotiques de l’estimateur LIML régularisé sous
l’hypothèse que le nombre d’individus et de périodes du panel tendent vers
l’infini. Une procédure empirique de sélection du paramètre de régularisation
est aussi proposée. Les bonnes performances de l’estimateur régularisé par
rapport au LIML classique (non régularisé), au GMM classique ainsi que le
GMM régularisé sont confirmées par des simulations.

Dans le dernier chapitre, je considère l’estimation des élasticités d’offre de tra-
vail des hommes canadiens. L’hétérogéneité inobservée ainsi que les erreurs de
mesures sur les salaires et les revenus sont connues pour engendrer de l’endo-
géneité quand on estime les modèles d’offre de travail. Une solution fréquente
à ce problème d’endogéneité consiste à régrouper les données sur la base des
carastéristiques observables et d’ éffectuer les moindres carrées pondérées sur
les moyennes des goupes. Il a été démontré que cet estimateur est équivalent
à l’estimateur des variables instrumentales sur les données individuelles avec
les indicatrices de groupe comme instruments. Donc, en présence d’un grand
nombre de groupe, cet estimateur souffre de biais en échantillon fini similaire
à celui de l’estimateur des variables instrumentales quand le nombre d’ins-
truments est élevé. Profitant de cette correspondance entre l’estimateur sur
les données groupées et l’estimateur des variables instrumentales sur les don-
nées individuelles, nous proposons une approche régularisée à l’estimation du
modèle. Cette approche conduit à des élasticités substantiellement différentes
de ceux qu’on obtient en utilisant l’estimateur sur données groupées.
Mots-clés : modèle de données de panel dynamique, beaucoup de condi-
tions de moments, méthode de régularisation, erreur quadratiqe moyenne,
Méthodes des moments généralisés, maximun de vraisemblance à informa-
tion limité, élasticités d’offre de travail, estimateur sur données groupées.
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Abstract

This thesis is organized in three chapters. The first two chapters propose
a regularization approach to the estimation of two estimators of the dynamic
panel data model : the Generalized Method of Moment (GMM) estimator
and the Limited Information Maximum Likelihood (LIML) estimator. The
last chapter of the thesis is an application of regularization to the estimation
of labor supply elasticities using pseudo panel data models.

In a dynamic panel data model, the number of moment conditions increases
rapidly with the time dimension, resulting in a large dimensional covariance
matrix of the instruments. Inverting this large dimensional matrix to com-
pute the estimator leads to poor finite sample properties. To address this
issue, we propose a regularization approach to the estimation of such models
where a generalized inverse of the covariance matrix of the intruments is used
instead of its usual inverse. Three regularization schemes are used : Principal
components, Tikhonov which is based on Ridge regression (also called Baye-
sian shrinkage) and finally Landweber Fridman which is an iterative method.
All these methods involve a regularization parameter which is similar to the
smoothing parameter in nonparametric regressions. The finite sample pro-
perties of the regularized estimator depends on this parameter which needs
to be selected between many potential values.

In the first chapter (co-authored with Marine Carrasco), we propose the re-
gularized GMM estimator of the dynamic panel data models. Under double
asymptotics, we show that our regularized estimators are consistent and
asymptotically normal provided that the regularization parameter goes to
zero slower than the sample size goes to infinity. We derive a data driven
selection of the regularization parameter based on an approximation of the
higher-order Mean Square Error and show its optimality. The simulations
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confirm that regularization improves the properties of the usual GMM esti-
mator. As empirical application, we investigate the effect of financial deve-
lopment on economic growth.

In the second chapter (co-authored with Marine Carrasco), we propose the
regularized LIML estimator of the dynamic panel data model. The LIML
estimator is known to have better small sample properties than the GMM
estimator but its implementation becomes problematic when the time di-
mension of the panel becomes large. We derive the asymptotic properties of
the regularized LIML under double asymptotics. A data-driven procedure to
select the parameter of regularization is proposed. The good performances
of the regularized LIML estimator over the usual (not regularized) LIML es-
timator, the usual GMM estimator and the regularized GMM estimator are
confirmed by the simulations.

In the last chapter, I consider the estimation of the labor supply elasticities
of Canadian men through a regularization approach. Unobserved heteroge-
neity and measurement errors on wage and income variables are known to
cause endogeneity issues in the estimation of labor supply models. A popu-
lar solution to the endogeneity issue is to group data in categories based
on observable characteristics and compute the weighted least squares at the
group level. This grouping estimator has been proved to be equivalent to ins-
trumental variables (IV) estimator on the individual level data using group
dummies as intruments. Hence, in presence of large number of groups, the
grouping estimator exhibites a small bias similar to the one of the IV estima-
tor in presence of many instruments. I take advantage of the correspondance
between grouping estimators and the IV estimator to propose a regulariza-
tion approach to the estimation of the model. Using this approach leads to
wage elasticities that are substantially different from those obtained through
grouping estimators.
Keywords : Dynamic panel data model, many moment conditions, mean
square error, regularization methods, GMM, LIML, labor supply elasticities,
grouping estimators.
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Chapitre 1

A regularization approach
to the dynamic panel data
model estimation ∗

In this paper, we propose a regularization approach to the estimation of
a dynamic panel data model (DPM) with individual fixed effect. The pre-
sence of this last element creates a correlation between the error term of
the model and one of the explanatory variable which is the lagged value of
the dependent variable. Hence, Generalized Method of Moments (GMM) are
widely used to estimate such models with lagged levels dependent variable
as instruments. A feature of the DPM is that, if a variable at a certain time
period can be used as an instrument, then all the past realizations of that
variable can also be used as instruments. Therefore, the number of moment
conditions can be very large even if the time dimension is moderately large.
Although using many instruments increases asymptotic efficiency of GMM
estimator, it has been proved that its finite sample bias also increases with
the number of instruments. Therefore, estimation in the presence of many
moment conditions involves a variance-bias trade-off also referred to as the
many instruments problem. As a solution to the many instruments problem,
Carrasco (2012) used regularization to invert the covariance matrix of ins-
truments. In this methodology, the bias is controlled by the choice of a regu-

∗. This chapter is co-authored with my advisor Marine Carrasco (Université de Mont-
réal).
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larization parameter and does no longer depend on the number of moment
conditions which can then be increased (even infinitely) to improve the effi-
ciency. This paper proposes regularization as a solution to the many instru-
ments problem in the dynamic panel data model.
As in Carrasco (2012) and Carrasco and Tchuente (2015) on cross-sectional
data, we compute three regularized estimators based on spectral cut-off, Ti-
khonov and Landweber Fridman. The spectral cut-off regularization scheme
is based on principal components whereas the Tikhonov’s one is based on
Ridge regression (also called Bayesian shrinkage) and the last one is an ite-
rative method. Our modified estimator using spectral cut-off regularization
scheme is similar to the bias correction estimator using principal components
proposed by Doran and Schmidt (2006). Our work complements their paper
by proposing a data driven method to choose the optimal number of princi-
pal components to use in order to improve the finite sample properties of the
estimator. The Tikhonov regularization scheme we propose can be conside-
red as the dynamic panel version of the ridge regression. All these methods
involve a regularization parameter similar to the smoothing parameter in
nonparametric regression. This parameter needs to converge to zero at an
appropriate rate to obtain an asymptotically efficient estimator.
We derive the first order asymptotic properties of the modified estimator
under double asymptotics following Alvarez and Arellano (2003). Then, we
derive the leading term of the MSE in a second order expansion of the re-
gularized estimators when N and T go to infinity. This allows us to propose
a data-driven selection of the regularization parameter as minimum of the
approximate MSE. We then prove the optimality of the selection in the sense
of Li (1986, 1987).

The literature related on many instruments problem is very large. Wor-
king on cross sectional models, Donald and Newey (2001) propose to select
the number of instruments that minimizes the Mean Square Error (MSE)
of the estimator. Okui (2011) introduces a shrinkage parameter to allocate
less weight on a subset of instruments. Kuersteiner (2012) proposes a kernel
weighted GMM estimator in a time series framework.
A regularization approach to handle many instruments for two stage least-
squares estimation is proposed by Carrasco (2012) whereas Carrasco and
Tchuente (2015) proposed the regularized version of the Limited Information
Maximum Likelihood estimator (LIML). However, even under conditional
homoskedasticity assumption, a correlation arises in the DPM framework in
the equation linking the endogenous regressor and the optimal instrument
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so that results of Carrasco (2012) no longer apply. Moreover, in the dynamic
panel data setting, the number of instruments is automatically related to the
sample size through the time dimension T .
Several bias corrected estimator have been proposed for DPM (Hahn et al.,
2001, Bun and Kiviet, 2006, Alvarez and Arellano, 2003, Kiviet (1995), Hahn
and Kuersteiner (2002)). Our methodology complements those methods as
regularization provides a partial bias-correction which can be improved by
bias-correcting the regularized estimators. In an identical framework as ours,
Okui (2009) derived a higher-order expansion of the MSE and proposed to
choose the optimal number of moments conditions to minimize an estima-
ted version of this expansion. However, the finite sample bias problem is not
completely addressed since his simulations present large bias for the GMM
estimator when the autoregressive parameter is close to unity.
The remainder of this paper is organized as follows. Section 1.1 presents
the DPM and the classical GMM estimator. Section 1.2 presents regularized
estimator whereas Sections 1.3 and 1.4 respectively present first asympto-
tic properties and high order properties of regularized GMM estimators. A
data-driven selection of the regularization parameter is presented in section
1.5. Section 1.6 presents the extension of the model to exogenous covariates
and the section 1.7 presents the results of Monte Carlo simulations. An empi-
rical application estimating the effect of financial development on economic
growth is discussed in Section 1.8. It appears that the regularization corrects
the bias of the usual GMM estimator which seems to underestimate the fi-
nancial development - economic growth effect.
Throughout the paper, we use the notations I and Iq̄ respectively for the
N × N and q̄ × q̄ identity matrix. The proofs are collected in an online
appendix.

1.1 The model
We consider a simple AR(1) model with individual effects described in

the following equation : for i = 1,...,N , t = 1,...,T ,

yit = δyi,t−1 + ηi + vit, (1.1)

where δ is the parameter of interest satisfying |δ| < 1, ηi is the unobserved
individual effect, vit the idiosyncratic error with conditional mean zero and
variance σ2 conditionally on ηi, yit−1...yi0. For simplicity, we assume that yi0
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is observed. Moreover, we denote yi,t−1 by xi,t.
As it is usual in estimating such models, we first transform the model to
eliminate the individual effects.Two widely used transformations are the first
differences and the foward orthogonal deviation operator. In this paper, we
use the latter for theoretical and computational purposes. Indeed, this trans-
formation preserves homoskedasticity and no serial correlation properties of
the error term. Let the (T − 1) × T matrix A denote the forward ortho-
gonal deviations operator as used by Arellano and Bover (1995) and define
v∗i = Avi, x∗i = Axi, y∗i = Ayi where vi = (vi1, ..., viT )′, xi = (xi1, ..., xiT )′,
yi = (yi1, ..., yiT )′. In particular, the t− th element of y∗i is given by

y∗it = ct[yit −
1

T − t
(yit+1 + ...+ yiT )]

with c2
t = (T − t)/(T − t+ 1).

By multipliying the model by A, equation (1.1) becomes

y∗it = δx∗it + v∗it

We have E(x∗i,tv∗it) 6= 0 so that the Ordinary Least Square (OLS) estimator
of the transformed model is not consistent for fixed T as N tends to infinity.
However, E(xi,t−sv∗it) = 0 for s = 0, ..., t − 1 and t = 1, ..., T − 1. Then, we
consider the GMM estimator of δ based on these moment conditions. The
number of moment conditions is q̄ = T (T − 1)/2 which can be very large
even if T is moderately large. Let zit=(xi1, ..., xit)′ and Zi be the (T − 1) ×
q̄ block diagonal matrix whose t-th block is z′it. The moment conditions are
then given by E(Z ′iv∗i ) = 0 with v∗i = (v∗i1, ..., v∗i,T−1). Under the conditional
homoscedasticity of vit, the covariance matrix of the orthogonality conditions
is σ2 E(Z ′iZi). The GMM estimator of the parameter is given by

δ̂ =
 T−1∑

t=1
x∗
′

t Mtx
∗
t

−1 T−1∑
t=1

x∗
′

t Mty
∗
t


withMt theN×N matrix Zt(Z ′tZt)−1Z ′t with Zt =(z1t, ..., zNt)′, x∗t = (x∗1t, ..., x∗Nt)′
and y∗t defined in the same way. Letting x∗=(x∗′1 , ..., x∗

′
T−1)′ and y∗=(y∗′1 , ..., y∗

′
T−1)′,

the GMM estimator can also be written as

δ̂ = x∗
′
My∗

x∗′Mx∗
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with M = Z(Z ′Z)−1Z ′ and Z = (Z ′1, ..., Z ′N)′, a N(T − 1)× q̄ matrix.

Even though, it is widely used by empirical researchers, this GMM es-
timator suffers from poor finite sample properties. Using a simple AR(1),
Blundell et Bond (1998) showed that the lagged levels of the dependent
variable become weak instruments when the autoregressive parameter gets
close to unity or when the variance of the unobserved individual effect in-
creases toward the variance of the idiosyncratic error vit. Moreover, Doran
et Schmidt (2006) argue that in presence of many instruments, the marginal
contribution of some of them can be small. As a result, many simulations
including those in Okui (2009) showed that the GMM estimator of dynamic
panel data performs poorly in these settings.
The intuition is that when T is very large, the dimension of the q̄ × q̄ matrix
Z ′Z is large and its condition number (the ratio of its largest over its smal-
lest eigenvalue) is also large. A large condition number indicates that the
matrix is ill-conditioned and its inverse is highly unstable. The poor finite
sample properties of the GMM estimator arise because inverting Z ′Z ampli-
fies the potential sampling errors. We propose to use a regularized inverse of
Z ′Z instead of the usual inverse (Z ′Z)−1 to compute the GMM estimator.
Regularization can be seen as a way to stabilize the inverse and reduce the
variability of the estimated weighting matrix, and consequently improve the
finite sample properties of the estimator.

1.2 The regularized estimator
The regularization methods used in this paper are drawn from the lite-

rature on inverse problems (Kress, 1999). They are designed to stabilize the
inverse of Hilbert-Schmidt operators (operators for which the eigenvalues are
square summable). The matrix Z ′Z is not Hilbert-Schmidt however we will
show in Lemma 1 that K = E[Z ′Z/NT 3/2] is Hilbert-Schmidt. So the regu-
larization will be applied to KN = Z ′Z/NT 3/2, the sample counterpart of
K.

Let λ̂1 ≥ λ̂2... ≥ λ̂q ≥ 0 be the eigenvalues of KN . By spectral decompo-
sition, we have KN = PNDNP

′
N with PP ′ = Iq̄ where PN is the matrix of

eigenvectors and D the diagonal matrix with eigenvalues λ̂j on the diagonal.
Let Kα

N denote the regularized inverse of KN which is defined as
Kα
N = PND

α
NP

′
N

6



where Dα
N is the diagonal matrix with elements q(α, λ̂2

j)/λ̂j.
The positive parameter α is the regularization parameter, a kind of smoo-

thing parameter, and the real function q(α, λ2) depends on the regulariza-
tion scheme used. As in Carrasco (2012), three regularization schemes will
be considered : Tikhonov, spectral cut-off and Landweber Fridman regulari-
zation schemes. More details on these schemes can be found in Carrasco et
al. (2007). If we let λ be an arbitrary eigenvalue of the matrix KN , we can
define :

1. Tikhonov regularization (TH) :
This regularization scheme is close to the well known ridge regression
used in presence of multicolinearity to improve properties of OLS esti-
mators. In Tikhonov regularization scheme, the real function q(α, λ2)
is given by

q(α, λ2) = λ2

λ2 + α
.

2. The spectral cut-off (SC)
It consists in selecting the eigenvectors associated with the eigenvalues
greater than some threshold.

q(α, λ2) = I{λ2 ≥ α} =
{

1 if λ2 ≥ α,
0 otherwise.

Another version of this regularization scheme is Principal Components
(PC) which consists in using a certain number of eigenvectors to com-
pute the inverse of the operator. PC and SC are perfectly equivalent,
only the definition of the regularization term α differs. In PC, α is the
number of principal components. In practice, both methods will give
the same estimator so that we will study the properties of SC in detail
in this paper.

3. Landweber Fridman regularization (LF)
In this regularization scheme,Kα

N is computed by an iterative procedure
with the formula{

Kα
N,l = (I − cKN)Kα

N,l−1 + cKN , l = 1, 2, ..., 1/α− 1,
Kα
N,0 = cKN

7



The constant c must satisfy 0 < c < 1/λ2
1 where λ2

1 is the largest eigen-
value of the matrix KN . Alternatively, we can compute this regularized
inverse with

q(α, λ2) = 1− (1− cλ2) 1
α

In each regularization scheme, the real valued function q(α, λ2) satisfies
0 ≤ q(α, λ2) ≤ 1 and lim

α→0
q(α, λ2) = 1 so that the usual GMM estimator

corresponds to a regularized estimator with α = 0.
Remark that M = Z (Z ′Z)−1 Z ′ = ZK−1

N Z ′/NT 3/2. Similarly, let us denote
the matrix Mα = ZKα

NZ
′/NT 3/2. The regularized GMM estimator for a

given regularization scheme is :

δ̂α = x∗
′
Mαy∗

x∗′Mαx∗
. (1.2)

The matrix KN is a block diagonal matrix with the t × t matrix Z ′tZt/NT 3/2

at the t−th block. Exactly as K−1
N , the regularized inverse Kα

N is also a block
diagonal matrix where each block is the regularized inverse of the correspon-
ding block of KN

1. So, if we define Mα
t = Zt(KNt)αZ ′t/NT 3/2 with (KNt)α

being the t − th block of the matrix Kα
N , the regularized estimator can be

rewritten as :

δ̂α =
 T−1∑

t=1
x∗
′

t M
α
t x
∗
t

−1 T−1∑
t=1

x∗
′

t M
α
t y
∗
t

.
1.3 First order asymptotic properties

In this section, we derive the asymptotic properties of the regularized
estimator. As in Okui (2009), we make the following assumptions :
Assumption 1 : {vit} (t = 1...T ; i = 1...N) are i.i.d. across time and
individuals and independent of ηi and yi0 with E(vit) = 0, var(vit) = σ2, and
E(v4

it) <∞.
Assumption 2 : The initial observation satisfies

yi0 = ηi
1− δ + wi0 (i = 1, ..., N)

1. This holds because regularization transforms only the eigenvalues, not the eigenvec-
tors.
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where wi0 is independent of ηi and i.i.d. with the steady state distribution
of the homogeneous process, so that wi0 =

∞∑
j=0

αjvi(−j).

Assumption 3 : ηi are i.i.d. across individuals with E(ηi) = 0, var(ηi)=σ2
η

with 0 < σ2
η <∞, and finite fourth order moment.

Moreover, asymptotic properties are derived under the assumption that both
N and T go to infinity with T < N . Under this restriction the matrix KN is
non singular and so has nonzero eigenvalues.

Let K = E[Z ′Z/NT 3/2] and (λl, φl, l = 1, 2, ...) be the eigenvalues and
orthonormal eigenvectors of K. In the inverse problem literature, this matrix
is referred to as the operator. In Carrasco (2012) and Carrasco and Tchuente
(2015), the operator is assumed to be a trace-class operator which is satisfied
if and only if its trace is finite. Here, however, K is not trace class but it is
Hilbert-Schmidt which is a slightly weaker condition. In the following lemma,
we prove that K is a Hilbert-Schmidt matrix.

Lemma 1. If assumptions 1-3 are satisfied, then
(i) Tr (K) = O

(
T 1/2

)
;

(ii) The matrix K is a Hilbert-Schmidt matrix meaning that tr (K2) =
O (1) .

Lemma 1 shows that even though the eigenvalues of K are not sum-
mable as T goes to infinity, they are square summable. The Hilbert-Schmidt
property is sufficient to derive proofs in our framework. This property is espe-
cially useful to establish the order of magnitude of the bias of the regularized
estimator.

The following proposition provides the first order asymptotic properties
of the regularized estimator.
Proposition 1.
If assumptions 1-3 are satisfied, α the parameter of regularization goes to 0,
α
√
NT goes to infinity and both N and T tend to infinity with T < N , then
(i) Consistency : δ̂α → δ in probability ;
(ii) Asymptotic normality :

√
NT

(
δ̂α − δ

)
d→ N (0, 1− δ2) .

For these properties, we need that α goes to zero slower than
√
NT goes to

infinity. Under similar assumptions, Alvarez and Arellano (2003) proved that
the bias expression of the GMM estimator of DPM in the no regularization
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setting is given by the limit of

bNT =
[
x∗
′
Mx∗

NT

]−1[
− σ2

(1− δ)
1√
NT

T−1∑
t=1

t

(
φT−t
T − t

− φT−t+1

T − t+ 1

)]

and is of order
√
T/N . Hence, if T/N tends to a positive scalar, the classical

GMM estimator is asymptotically biased. In our regularization setting, the
bias is given by the limit of

bαNT =
[
x∗
′
Mαx∗

NT

]−1[
− σ2

(1− δ)
1√
NT

T−1∑
t=1

E[tr[Mα
t ]]
(
φT−t
T − t

− φT−t+1

T − t+ 1

)]

This bias is of order 1/α
√
NT so that the asymptotic bias of the regularized

estimator vanishes under the assumption α
√
NT goes to ∞. We will take

advantage of having an expression for the bias of the regularized estimator
to derive a bias corrected regularized estimator. The simulations results on
this bias corrected regularized estimator are provided in section 8. Since the
asymptotic properties of the regularized estimator presented in this section
do not depend on the regularization scheme we need to investigate higher
order properties to establish the impact of regularization.

1.4 Higher-order asymptotic properties
In this section, we derive the Nagar (1959)’s decomposition of E[(δ̂α−δ)2]

the Mean Square Error (MSE) of our estimators. This type of expansion
is used in many papers on instrumental variables such as Carrasco (2012),
Donald and Newey (2001) and particularly Okui (2009) who works on a
DPM. Moreover, this expansion will guide us in our goal to provide a data-
driven method for selecting the regularization parameter.
The Nagar approximation of the MSE is the σ2H−1 + S(α) in the following
decomposition :

NT (δ̂α − δ)2 = Q+ r, E(Q) = σ2H−1 + S(α) +R (1.3)

where (r+R)/S(α)→ 0 asN →∞, T →∞, α→ 0, andH = σ2

1−δ2

(
1
T

T∑
t=1

ψ2
t

)
.

Proposition 2.
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Suppose assumptions 1-3 are satisfied and E (v3
it) = 0. If N → ∞, T → ∞,

α → 0, α
√
NT → ∞, and α (lnT )

√
T → 0, then for the regularized GMM

estimator, the decomposition given in (1.3) holds with :

S(α) = (1 + δ)2

NT


T−1∑
t=1

E

(
tr[Mα

t ]
) φT−t

T − t
− φT−t+1

T − t+ 1


2

+ (1− δ2)2

σ2
1
NT

T−1∑
t=1

ψ2
tE[w′t−1(I −Mα

t )2wt−1]

where wit = yit−ηi/(1−δ), φj = (1−δj)/(1−δ), and ψt = ct(1−δφT−t/(T−
t)).

In this decomposition, the first term of S(α) comes from the square of the
bias that increases when α goes to zero whereas the second term is from the
second-order expansion of the variance that decreases when α goes to zero.
We observe the usual bias-variance trade-off that arises when selecting a tu-
ning parameter. A large α will reduce the bias but increase the variance. The
rate for the squared bias is O(1/(α2NT )) but the rate of the variance term
is unknown. Unlike in Carrasco (2012) and in Carrasco and Tchuente (2015),
our expression of MSE is unconditional as in Okui (2009) and Kuersteiner
(2012). In Okui (2009) the GMM estimator is computed using min{t,K} lags
for each period t with K the optimal number of instruments selected to mi-
nimize S(K), a criterion similar to our S(α). The expression of S(K) is sim-
plified by tr[MK

t ] = min{t,K} and w′t−1(I−MK
t )2wt−1 = w′t−1(I−MK

t )wt−1
because MK

t is a projection matrix. In the present paper, tr[Mα
t ] is random.

In our panel data setting, the bias expression of S(α) is the sum of the
bias of each period H−1Etr[Mα

t ]E[ṽ′tTv∗t ] where H is the asymptotic variance.
As the formula (3.14) in the special case of Kuersteiner (2012), this period
bias expression is the product of the inverse of H, Etr[Mα

t ] the contribution
of the instrument matrix, and E[ṽ′tTv∗t ] the correlation between the error
term v∗t and the residual from the reduced-form equation relating x∗it to its
optimal instrument ψtwit. A difference with Kuersteiner (2012)’s is that the
contribution Etr[Mα

t ] depends on t and is not the number of instruments.
The regularized estimator using spectral cut-off corresponds to the principal
components estimator of Doran and Schmidt (2006) and, through S(α), we
complement their paper with a data driven method for selecting the optimal
number of principal components.
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1.5 Data-driven selection of the regulariza-
tion parameter

1.5.1 Estimation of the approximate MSE
In Propositon 2, we derived the leading terms of a second-order expansion

of the MSE of the regularized estimator. The aim of this section is to select
α that minimizes an estimated S(α). First, we introduce some notations :

A(α) =
T−1∑
t=1

E[tr[Mα
t ]]
 φT−t
T − t

− φT−t+1

T − t+ 1


and

R(α) = 1
NT

T−1∑
t=1

ψ2
tE[w′t−1(I −Mα

t )2wt−1]

so that,
S(α) = (1 + δ)2

NT
A(α)2 + (1− δ2)2

σ2 R(α).

Let δ̂ and σ̂2 be consistent estimators of δ and σ2, respectively. Then S(α)
can be estimated by

Ŝ(α) = (1 + δ̂)2

NT
Â2(α) + (1− δ̂2)2

σ̂2 R̂(α)

with

Â(α) =
T−1∑
t=1

tr(Mα
t )
 φ̂T−t
T − t

− φ̂T−t+1

T − t+ 1


where

φ̂j = 1− δ̂j

1− δ̂
and

R̂(α) = 1
NT

T−1∑
t=1

x∗
′

t (I −Mα
t )2x∗t .

Note that from Okui (2009, p.3),

Et−1 (x∗it) = ψt

(
yit −

ηi
1− δ

)
= ψtwit−1
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where Et−1 denotes the conditional expectation conditional on (ηi, xit, xit−1, ...)
so that R̂(α) is an unbiased estimator of R (α). The optimal parameter of
regularization is selected by minimizing this estimated S(α)

α̂ = arg min
α∈ET

Ŝ(α)

where ET is the index set of α. ET is a real compact subset for TH, ET is such
that 1

α
∈ {1, 2, ..., q̄} for PC, and ET is such that 1

α
is a positive integer for

LF. Next, we analyse the impact of using an estimated version of S(α) to
select α instead of the true and unknow criterion.

1.5.2 Optimality
We wish to establish the optimality of the regularization parameter se-

lection criterion in the following sense
S(α̂)

infα∈ET S(α)
p→ 1 (1.4)

as N → ∞, T → ∞. It should be noticed that the result (1.4) is not a
convergence result of α̂. It simply etablishes that using an estimated version
of S(α) to choose the regularization parameter is asymptotically equivalent
to using the true and unknown value of S(α).

Proposition 3.
Suppose that Assumptions 1-3 are satisfied and δ̂ → δ, σ̂2 → σ2. If N →∞,
T → ∞ and α

√
NT → ∞, α (lnT )

√
T → 0, T 3/N (lnT )2 → 0, then the

regularization parameter selection criterion is asymptotically optimal in the
sense of (1.4) for Spectral Cut-off and Landweber Fridman regularization
schemes provided that #ET=O(T 2) where #ET refers to the number of ele-
ments in the set ET .

Remarks.
1. Proposition 3 proves the optimality for Principal Components and

Landweber Fridman regularization schemes which have discrete index set
ET . The condition #ET = O(T 2) is a sufficient condition in the Landweber
Fridman regularization scheme and necessarily holds for the principal com-
ponents case 2. Rather than imposing a maximum number of iterations, this

2. Recall that #ET = q̄ for principal components case.
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condition restricts the order of magnitude of the number of elements of the
index set ET . A rigorous proof for the Tikhonov’s continous index set requires
more complicated material which is beyond the scope of this work. However,
optimality could be established for the continous index set case using a dis-
cretization of the compact set ET and the fact that the regularization function
q(α, λ2) of Tikhonov regularization scheme is a real continous function as in
Hansen (2007) .

2. Proposition 3 is related to Donald and Newey (2001) optimality result
for the selection of the number of instruments in a linear IV model and Car-
rasco and Tchuente (2015) for the selection of the regularization parameter
for the regularized LIML estimator. But their proofs rely on applying re-
sults by Li (1986, 1987) on cross-validation for the first stage equation. From
x∗it = ψtwit − ctṽit, the term −ctṽit can be regarded as the error term of the
first stage equation since ψtwit is considered as the optimal instrument in
Okui (2009). However, Li (1986, 1987)’s results do not apply in our frame-
work because of the autocorrelation of this error term. As a result, our proof
combines the strategies of Okui (2009) and Kuersteiner (2012).

3. Compared to Okui (2009), our proof is complicated by the fact that the
tr(Mt (α)) is random in our case while it is deterministic in Okui and the term
A (α) , which is known in closed form in Okui, needs to be estimated here.
As a result, we need to analyse extra terms and we obtain more stringent
conditions on the rate at which T can diverge relatively to N . Our condition
is T 3/N (lnT )2 → 0 whereas it is T ln(T )/N → 0 in Okui (2009).

1.6 Introduction of exogenous regressors
In this section, we aim to generalize the model by taking into account

exogenous covariates. We are now interested in the following model :

yit = δyi,t−1 + γ′mit + ηi + vit (1.5)

where mit is a Lm dimensional vector of strictly exogenous variables in the
sense that E(mitvis) = 0 for each t and s. Following Okui (2009), we assume
that time-invariant variables fi that satisfy E(fivit) = 0 for all t are available
and we denote by Lf the dimension of this vector. Even though they are
often omitted in proofs, time-invariant variables are widely used in empirical
works.
Let us define θ = (δ, γ′)′, xit = (yi,t−1,m

′
it)′ and denote yi = (yi1, ..., yiT )′,
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xi = (xi1, ..., xiT )′ and vi = (vi1, ..., viT )′. Let A be the matrix of forward
orthogonal deviation operator and denote y∗i = Ayi, x∗i = Axi, v∗i = Avi. The
model becomes :

y∗it = θx∗it + v∗it (1.6)

The vector of potential instruments for the endogenous regressor x∗it is the
qt = (Lf+(T+1)Lm+t) dimensional vector zit = (f ′i ,m′i0, ......,m′iT , yi0, ....., yi,t−1)′.
In this setting, the total number of instruments is q̄ = ∑

t qt. Let us define the
following matrix Zt =(z′1t, ..., z′Nt)′, x∗t = (x∗1t, ..., x∗Nt)′ and y∗t =(y∗1t, ..., y∗Nt)′.
If we denote KN = Z ′Z/NT 3/2 and Kα

N the regularized inverse of KN given
a regularization parameter α, then the regularized GMM estimator of θ is

θ̂α =
(
x∗
′
Mαx∗

)−1(
x∗
′
Mαy∗

)
(1.7)

with Mα = ZKα
NZ

′/NT 3/2, Z = (Z ′1, ..., Z ′N)′ and Zi has the same definition
as in the model without covariates.
We now make assumptions to derive the second-order expansion of the MSE
of θ̂ in this general model. Let EZ(a) = E(a|ηi, zit, zi,t−1, ...) for the random
variable a.
Assumption 1’ : (i) {vit} (t = 1...T ; i = 1...N) are iid across time and
individuals and independent of ηi and yi0 with EZ(vit) = 0, EZ(v2

it) = σ2 <
∞, EZ(v3

it) = 0, EZ(v4
it) < ∞ and finite moments up to fourth order. (ii) ηi

are i.i.d across individuals with E(ηi) = 0, var(ηi) = σ2
η, and finite fourth

order moment.
Assumption 2’ : (i) (yit,mit) is a strictly stationary finite-order vector
autoregressive (VAR) process conditional on ηi such that the distribution
of {(yit,m′it)

′ , ..., (yi,t+s,m′i,t+s)′} conditional on ηi does not depend on the
subscript t for all s. (ii) {{mit}Tt=1}Ni=1 is an i.i.d. sequence across individuals
with finite fourth-order moments.
These previous two assumptions are from Okui (2009) who also states that
EZ(x∗it) = w̃i,t−1 = (wi,t−1,m

∗
it)′ with

wi,t−1 = ψt(yi,t−1 − µi)−
ct

T − t
γ′(φT−tmi,t + ...+ φ1mi,T−1)

where ct =
√

T−t
T−t+1 , µ = η

1−δ and φj = 1−δj
1−δ .

Let K = E[Z ′Z/NT 3/2] and (λl, φl, l = 1, 2, ...) be the eigenvalues and
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orthonormal eigenvectors of K. The matrix K is assumed to be a Hilbert-
Schmidt matrix. Moreover, in the extended model we make an assumption
on the growth rate of the eigenvalues of K. If we define W̃ = (w̃′1, ..., w̃′T−1)′
with w̃t = (w̃1t, ..., w̃N,t)′, then we impose the following condition :
Assumption 3 : The matrix K is Hilbert-Schmidt and there is a β > 0 such
that

1
NT

E
∞∑
j=1

< W̃a, ψ̂j >
2

λ̂2β
j

 <∞
for all N and T , where W̃a is the ath column of W̃ , ψ̂j and λ̂j denote the
eigenvectors and eigenvalues of ZZ ′/NT 3/2 and <,> denotes the inner pro-
duct in RN(T−1).
Assumption 3 is a source condition similar to Assumption 2(ii) in Carrasco
(2012). It requires that the Fourier coefficients < W̃a, ψ̂j > decline faster
than the eigenvalues λ̂j to a certain power. It allows us to derive the rate
of convergence of the MSE. More precisely, under this assumption we have
that E[||W̃ −MαW̃ ||2] = O(αβ) for PC and LF and E[||W̃ −MαW̃ ||2] =
O(αmin(β,2)) for TH.

We now prove that under these assumptions, we can isolate the leading
terms of a second-order expansion of the MSE of θ̂ :NTE

[(
θ̂ − θ0

) (
θ̂ − θ0

)′]
.

Proposition 4.
Assume that assumptions 1’, 2’, and 3 are satisfied. If the parameter of
regularization α goes to 0, N and T go to infinity, α ln(T )

√
T → 0, and

αmin{β,1}
√
NT →∞, then the leading terms in the higher-order expansion of

the MSE of θ̂ have the following form :

S(α) = H−1

 σ4

(1− δ)2

[
A(α) 0

0 0

]
+ σ2

NT

T−1∑
t=1

E[w̃′t−1(I −Mα
t )2w̃t−1]

H−1,

where

A(α) = 1
NT

 T−1∑
t=1

Etr[Mα
t ]
 φT−t
T − t

− φT−t+1

T − t+ 1

2
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and

H =


1
T

T∑
t=1

E
(
w2
it

)
1
T

T∑
t=1

E
(
witm

∗′
it

)
1
T

T∑
t=1

E (m∗itwit) 1
T

T∑
t=1

E
(
m∗itm

∗′
it

)
 .

As in the model without covariates, the first part of S(α) is the squared
bias and increases as the regularization parameter goes to zero. The second
term of S(α) is the second order variance of the regularized estimator and it
decreases when α goes to zero.
We observe that the bias term depends only on the bias of the autoregressive
coefficient δ̂ and not on γ̂, whereas the variance term depends on both so
that globally the MSE depends also on γ̂. This is different from Okui (2009).
In his Theorem 4, Okui imposes the extra assumption that the subset of
instruments zKit includes either yit−1 and m∗it or linear combinations of these.
He shows that, in this case, only the element (1,1) of the matrix S(α) is
nonzero so that he can focus on this scalar to select the regularization para-
meter. Interestingly, it means that only the MSE of δ̂ matters for selecting
α. In contrast, we do not impose this extra assumption and we show that
the MSE of γ̂ also plays a role. Given S (α) is a matrix, α can be selected
by minimizing `′Ŝ(α)` for an arbitrary Lm + 1 vector ` and some estimator
Ŝ(α) of S (α). In the simulations, we choose ` so that `′H−1 is a vector of
ones. For the estimation of S(α), similarly to the model without covariates,
A(α) can be estimated by

Â(α) = 1
NT

 T−1∑
t=1

tr[Mα
t ]
 φ̂T−t
T − t

− φ̂T−t+1

T − t+ 1

2

,

the unknown parameters, σ2 and φj, are estimated using a preliminary esti-
mation of θ, and E[w′t−1(I −Mα

t )2wt−1] can be estimated by x∗′t (I −Mα
t )2x∗t

where x∗t = (u∗t ,m∗′t )′ with ut = yt−1.

1.7 Simulation study
In this section, we present Monte Carlo simulations to illustrate the finite

sample properties of the regularized estimators and compare them to others
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estimators. We investigate on the simple DPM as well as the extension of the
model to include covariates.

1.7.1 Model without covariate
We first consider the simple DPM given by the following autoregressive

model

yit = δyi,t−1 + ηi + vit,

with ηi ∼ i.i.d.N(0, σ2
η), yi0 ∼ i.i.d.N(ηi/(1 − δ), σ2/(1 − δ2)) and vit ∼

i.i.d.N(0, σ2). Each simulation is defined by a choice of vector (N, T, σ2, σ2
η, δ).

We consider N = 50 and N = 100. For each value of N , we simulated samples
with T = 10 and T = 25 and for three values of δ=(0.5,0.75,0.95). The num-
ber of replications is 5000 for all cases. Different estimators of the parameter
of interest δ are presented. We denote by GMM the usual GMM estimator
using all available lags of yit as instruments. GMM5 is the GMM based on
the five first instruments at each period. This ad hoc selection of the number
of lags to be used as instruments at each period is used in empirical studies
to handle the many instruments problem (Roodman, 2009). The estimator
proposed in Okui (2009) based on optimal selection of instruments is denoted
IVK. Finally the regularized estimators are denoted as TH for Tikhonov, PC
for principal components and LF for Landweber-Fridman.
The regularized estimators presented in this section are bias corrected via
an iterative procedure. From the bias expression given in Section 1.4, we can
derive an expression for the finite sample bias of the regularized estimator

bαNT = −(1 + δ)√
NT

T−1∑
t=1

E[tr[Mα
t ]]
(
φT−t
T − t

− φT−t+1

T − t+ 1

)

and prove that the bias vanishes when N → ∞, T → ∞, α → 0 and
α
√
NT → ∞. Since the bias is a non-linear function of the parameter of

interest, we obtain the bias-corrected regularized estimator through an ite-
rative procedure.
If we denote QT (α) =

√
NTbαNT then we have

δ̂α = δ − (1 + δ)
NT

QT (δ)
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and the bias corrected regularized estimator of δ is given by

δ̂αi+1 = δ̂αi +QT (δ̂αi )/NT
1−QT (δ̂αi )/NT

The initial value for this iterative procedure is a regularized estimator where
the regularization parameter is selected by minimizing Ŝ(α) as described in
Section 1.5. The GMM estimator is used to estimate unknown parameters in
the minimization criteria. Hence, the estimate for the variance σ2 is given by

σ̂2 = 1
N(T − 1)

N∑
i=1

T−1∑
t=1

(y∗it − δ̂x∗it)2

where δ̂ denotes the GMM estimator of the parameter of interest δ. For each
estimator, we compute the median bias (Med.bias), the median absolute bias
(Med.abs), the length of the inter quartile range (Iqr.), the median mean
square error (Med.mse), and the coverage probabilities (cov) of the 95 %
confidence intervals. The standard error is computed with the formula :

V̄ =

√√√√ 1
N(T − 1)

N∑
i=1

T−1∑
t=1

(y∗it − δ̂x∗it)2[x∗′Mα2x∗]−1

Table A.1 presents the distribution of the condition number of the matrix
Z ′Z. The condition number is defined as the ratio of the largest eigenvalue
on the smallest one and is independent of the scaling (so that the condition
number of Z ′Z is the same as that of KN). The higher the condition number
is, the more ill-conditioned the matrix is and so inverting its eigenvalues can
negatively affect the estimator, therefore the need of regularization is higher.
We present the min, the first quartile, the mean, the median, the third quar-
tile and the max. The last column gives the dimension of the matrix Z ′Z
which is the total number of instruments q̄ = 0.5×T × (T −1) for each value
of T . From Table A.1, we observe that the need of regularization increases
with T for a given δ and also increases with δ for a given T . As δ gets closer
to 1, the instruments become weak yielding a ill-conditioned matrix.
Table A.2-A.9 in appendix contain simulations for different combinations
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of N, T, δ, σ2, σ2
η for the simple model without covariate. For each simu-

lations setting, we provide a table of the properties of the optimal regu-
larization parameter. Table A.3 contains summary statistics for the value
of the regularization parameter which minimizes the approximate MSE for
N = 50, σ2 = 1, σ2

η = 1, and different values of δ and T . We report the mean,
the standard error (std), the mode and the three quartiles of the distribution
of the regularization parameter. The regularization parameter is the optimal
α for TH, the optimal number of iterations for LF and the optimal number
of principal components for PC. Noting that the standard GMM estimator
corresponds to the Tikhonov estimator with α = 0, to the LF estimator with
an infinite number of iterations and to the PC using all the principal compo-
nents, a higher level of regularization will correspond to a larger value of α, a
smaller number of principal components and a smaller number of iterations
for the LF estimator.
The proportion of PC decreases with T (and hence the number of total ins-
truments) for a given δ. This proportion also decreases as δ gets close to
unity for a given T . Hence, as we could expect, a smaller number of prin-
cipal components is selected as the need of regularization increases through
an higher condition number. For TH, for a given value of T , the optimal
α increases with δ so then with the need for regularization. But, when δ is
fixed, the optimal α decreases as T increases and the need of regularization
increases so that settings with large condition numbers are associated with
small α. This is because an increase of T has two potential effects on the bias
of the GMM estimator : a reduction of the bias as the sample size increases
with T and an increase of the bias as the number of instrument increases
with T . The small optimal regularization parameter for the TH in large T
settings seems to reveal that the first effect dominates the second one. Table
A.3 results also show that the optimal number of iterations of LF is high in
large T settings for a given δ for LF and in large δ settings for a given T .

Results comparing the six estimators are presented in Table A.2 for
N = 50. For the LF regularization scheme, the parameter c is set to 0.1/λ̂2

1
(where λ̂1 is the largest eigenvalue of KN) as suggested in Carrasco (2012).
The estimators GMM5 and IVK have better properties than the usual GMM
estimator as expected. Regularization improves the finite sample properties
of the GMM estimator of the DPM model. In almost all combinaisons of T
and δ, PC and LF have smaller bias, smaller MSE and better coverage rate
than the usual GMM, the GMM5 and the IVK. Moreover, as shown by the
Iqr, regularized estimators tend to have less concentrated distribution than
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the GMM estimator and more concentrated distribution than IVK giving
better coverage.
Comparisons between regularized estimators show that PC performs much
better than TH and LF in all settings in terms of bias and MSE. The LF
regularized estimator provides the best coverage probabilities. TH does not
perform as well in this setting as it has higher bais and MSE.
Tables A.4 and A.8 in appendix present simulations results when σ2

η = 10
instead of σ2

η = 1 in the previous tables. In addition to the case when the
autoregressive parameter is close to unity, larger ratio σ2

η/σ
2 setting is known

to be a weak instrument settings where the GMM perform very poorly Blun-
dell et Bond (1998). In comparison to Tables A.2 and A.6, all the estimators
perform worse in terms of bias, MSE and coverage rates. However, regula-
rization procedure provides better properties especially when T is large and
δ close to unity. To summarize these simulation results, one can notice that
regularization procedure proposed in this paper reduces the bias, the MSE
and increases the coverage rates of the GMM estimator. Our regularized es-
timators outperform the GMM5 and the IVK especially in small T when δ
is not large and in large T setting when δ is close to unity. Regularized TH
and LF provide the largest bias correction whereas LF rather provides better
coverage rate.

1.7.2 Model with a strictly exogenous regressor
We now consider the model including a strictly exogenous covariate. The

equation is given by :

yit = δyit−1 + θmit + ηi + vit, |δ| < 1,
mit = ρηi + eit,

with vit ∼ i.i.d. N(0, σ2), ηi ∼ i.i.d. N(0, σ2
η), eit ∼ i.i.d. N(0, σ2

e). Moreover,
the initial value of yi0 is drawn by

yi0 ∼ i.i.d.N

(
ηi

1 + ρθ

1− δ ,
θ2σ2

e + σ2

1− δ2

)

In this setting, for each period t, mi0...,miT are potential instruments in addi-
tion to the lags of yit. Hence, in comparison to the model without covariate,
the total number of instruments increases from q̄ = 0.5 × T × (T − 1) to
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q̄ = 0.5× T × (T − 1) + (T − 1)× (T + 1). We present the results with fixed
ρ = 1, σ2 = 1, σ2

η = 1, σ2
e = 1, N = 50. The optimal regularization parame-

ter is selected following the procedure described in Section 1.5. Simulation
results are presented in Table A.10 for three values of the autoregressive pa-
rameter : 0.50 , 0.75 and 0.95 and the fixed value θ = 0.95 for the coefficient
of the covariate.
As for the model without covariate, we compare the estimators, GMM,
GMM5, IVK, TH, PC, LF, using the median bias (Med.bias), the median
absolute bias (Med.abs), the Interquartile range (Iqr), the mean square error
(Med.mse) and the coverage probability (cov).
Table A.10 results show a significant reduction of the bias in almost all set-
tings on both the estimate of the autoregressive parameter as well as the
exogenous covariate estimate. PC regularisation scheme provides the best
properties among all the estimators. In this model with covariate, the regu-
larized estimators perform relatively better than in the model without cova-
riate certainly because the former has much more instruments. It is worth
noting that the regularized estimators are not bias-corrected since we did not
derive the expression of the bias of the regularized estimator in presence of
exogenous regressors.

1.7.3 Model with an endogenous regressor
Even though in the section 1.6 we only considered the case of a strictly

exogenous covariates in order to simplify proofs, we now present simulation
results with an endogenous covariate. This is obtained by adding a vit−1 term
in the equation of the covariate.

yit = δyit−1 + βmit + ηi + vit, |δ| < 1,
mit = ρηi + vit−1 + eit, |ρ| < 1

with vit ∼ i.i.d.N(0, σ2), ηi ∼ i.i.d.N(0, σ2
η), eit ∼ i.i.d.N(0, σ2

e). Moreover,
the initial value of yi0 is drawn by

yi0 ∼ iidN

(
ηi

1 + ρβ

1− δ ,
β2σ2

e + σ2

1− δ2

)
In the case of a strictly exogenous regressor, all the values (past and

future) of the covariate are used as instruments. When the covariate is en-
dogenous, only the past values are valid instruments. As result, there are
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fewer instruments in comparison with the strictly exogenous case but still
more instruments than in the model without covariate. Table A.11 presents
simulation results of the DPM extended with an endogenous covariate. The
sample size and the values of the parameters are selected to be close to the
values obtained in the empirical application in 1.8. Results in Table A.11
show that regularization reduces the bias of the estimators especially for the
coefficient of the covariate.

1.8 Empirical application
In this section, we estimate the effect of financial development on eco-

nomic growth using the DPM. Financial development can exert a causal
influence on economic growth by improving information asymmetries and
facilitating transactions. As a solution to potential endogeneity of financial
development in a growth regression due to reverse causality or mesurement
errors, DPM are widely used to evaluate the effect of the exogenous compo-
nents of financial development on economic growth (see Levine et al. (2000),
Beck et al. (2000) among others). This model improves upon the usual pu-
rely cross-sectional model by adding more variability through the time-series
dimension, taking into account the unobserved country-specific effects and
controlling for the potential endogeneity of all explanatory variables.
The most used model in the literature to address the financial development-
economic growth question is the following :

yit = δyi,t−1 + β1FinancialDevelopmentit + β′Xit + ηi + εit (1.8)

where y is the log real GDP per capita,X is a matrix of explanatory variables,
η an unobserved country-specific effect, ε is the error term, and the subscripts
i and t represent country and time period. FinancialDevelopment is the
indicator of financial development. For ease of interpretation this regression
model can be transformed into :

yit − yi,t−1 = (δ − 1)yi,t−1 + β1FinancialDevelopmentit + β′Xit + ηi + εit

as the yit − yi,t−1 can be seen as the variation of the real GDP per capita.
In the estimation, many empirical researchers use the growth rate of the real
GDP per capita git = [exp(yi,t)−exp(yi,t−1)]/exp(yi,t−1) instead of yit−yi,t−1.
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But using this approximation removes the autoregressive part of the model
as git−1 is not included as a regressor. So we will estimate exactly the regres-
sion equation (1.8) following our theorical model.
Many indicators are used in the literature to measure financial development.
In this paper we combine two of them : domestic credit to private sector as
a share of GDP and stock market capitalization as a share of GDP. This
approach presents the advantage to take into account both the development
of financial markets (stock market capitalization) and the development of
financial intermediaries (credit to private sector). Khan and Senhadji (2000)
consider that the most exhaustive indicator of financial depth is the one that
combines domestic credit to private sector as a share of GDP, stock market
capitalization as a share of GDP and bond (private and public) market ca-
pitalization as share of GDP. Since this last variable is not available for a lot
of countries, we do not consider it in the indicator of financial development.
To be more precise, in this paper, we measure financial development by the
sum of domestic credit to private sector as a share of GDP and stock market
capitalization as a share of GDP.
The data used are from the World Development Indicators of the World Bank
Group (2015) and cover the period from 1990-2011. The choice of this period
is guided by the availability of the data on financial development. Moreo-
ver, we worked on yearly data instead of non-overlapping five-year average
data as this reduces the time dimension of the panel. We depart from all the
previous papers on the growth-financial development by the estimation the
true baseline DPM equation (1.8), the use of more recent yearly data and
the use of regularization as estimation technique. The matrix of controls X
includes the gross enrolment ratio in secondary education as a control for Hu-
man capital, Trade Openness measured by the sum of exports and imports
as a percentage of GDP, the inflation rate measured by the variation in the
consumer price index and the government size measured by the government
spending share of the GDP. Moreover, all other variables are expressed as
natural logarithms. The panel unit root tests on the variables in log reject
the presence of unit roots. The final sample is an unbalanced panel for 77
countries covering 22 periods from 1990 to 2011 3. We also included time
dummies to account for time-specific effects 4.

3. To deal with missing values, equations with at least one missing observation have
been deleted.

4. Actually we included dummies for each five year period from 1990-2010.
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GMM TH PC LF
δ 0.869 0.737 0.808 0.815

(0.016) (0.060) (0.071) (0.269)
β1 0.019 0.040 0.032 0.076

(0.004) (0.014) (0.015) (0.095)
Optimal parameter 0.003 36 2000

Table 1.1 – Impact of financial development on economic growth

We have a total of q̄ = 517 instruments so that the covariance matrix
KN = Z ′Z/NT 3/2 has a large condition number (of the order of 1019) and
many very small eigenvalues which are a motivation for the use of regulariza-
tion. In Table (1.1), we report various estimates of the financial development
indicator and their standard errors (in brackets). We also report for regula-
rized estimators, the optimal regularization parameter for Tikhonov scheme
(TH), the optimal number of Principal Components (PC) and the optimal
number of iterations for the Landweber Fridman regularization scheme (LF).
These parameters are selected following the procedure described in section
1.5. The GMM estimator using all available instruments (all lagged values of
the regressors) is used as preliminary estimator to estimate unknown para-
meters of S(α). As optimization set En, we choose a grid of 21 points between
0.002 and 0.004 for TH whereas the optimal number of iterations for LF is
searched from 1000 to 2500. For PC, the number of principal components is
selected between 1 and q̄.

The regularized estimates of the effect of financial development on eco-
nomic growth are larger than the GMM one suggesting that these methods
provide a bias correction. However, their standard errors are also larger. This
illustrates the trade-off between bias and variance. The high bias correction
of regularized estimators is reflected in the optimal regularization parame-
ters. Indeed, less than 10 % of the principal components (36 out of 527) are
selected whereas a relatively low number of iterations is selected in the case
of LF. Analysis in terms of confidence interval shows that none the regulari-
zed estimators is included in the confidence intervall of the GMM coefficient.
As in the simulations, PC was found to be more reliable than the other re-
gularizations, we are focusing our attention on the PC estimator. According
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to the PC regularized GMM estimator, the financial development has a po-
sitive and significant effect on the economic growth. An increase of 1% of
the financial development is associated with an increase in the real GDP per
capita of 0.032%.

With an autoregressive coefficient close to unity and a very large number
of instruments, this empirical application provides a good illustration of the
bias correction power of regularization on the GMM estimation in DPM. It
is worth noting that our results may not be directly comparable to those in
the literature because we used the most recent data available and estimated
the baseline DPM so we did not approximate yit − yi,t−1 by the growth rate
of the real GDP per capita. Furthermore we worked on yearly data instead
of five-year average data.

1.9 Conclusion and further extensions
In dynamic panel data models, the number of moment conditions increase

with the sample size so that the GMM estimator has poor finite sample pro-
perties. Instead of selecting a subset of moment conditions, we propose a re-
gularization approach based of three ways of inverting the covariance matrix
of instruments. All the regularization methods involve a tuning parameter
which is selected by a data-driven method based on a higher-order expansion
of the MSE under double asymptotic. Simulations show that those estima-
tors outperform the classical GMM estimator especially in weak instruments
settings.
There are several possible extensions to this work. To address the poor fi-
nite sample problem of the GMM, Blundell and Bond (1998) proposed the
system GMM estimator of dynamic panel model which combines moment
conditions for the model in first differences with moment conditions for the
model in levels. However, even though it is widely used in empirical analysis
(Blundell and Bond (2000), Levine et al. (2000) among others) the weak ins-
trument problem in the GMM estimation of dynamic panel data models is
not completely resolved by the system GMM estimator. Actually, Bun and
Windmeijer (2010) show that the system GMM estimator suffers from the
weak instrument problem if the variance ratio of individual effects to the
disturbance is large. Then, extending our regularization approach to the sys-
tem estimator would be of great interest. Another interesting extension of
this paper would be to derive the regularized Limited Information Likelihood
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maximum (LIML). The LIML estimator is known to have smaller bias pro-
perties than the GMM estimator. Then applying regularization to the LIML
estimator may provide an improved estimator of DPM.
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Chapitre 2

Regularized LIML for
dynamic panel data
models ∗

This paper focus on the estimation of a linear dynamic panel data model
(DPM) using a large number of moment conditions. DPM permits to take
into account both the dynamic nature of a problem and the within popula-
tion heterogeneity. In applied research, these models have been used to study
growth models (Caselli et al. (1996), Bond, Hoeffler and Temple (2001), Le-
vine et al. (2000)), Income dynamics (Hirano (2002)), partial adjustment
model for employment dynamics (Arellano (2016)) estimation of production
functions (Blundell and Bond (2000)), Poverty(Forbes (2000)) and Inequality
(Dollar and Kraay (2002)) analysis and many other economic phenomena.
Generalized Method of Moments (GMM) estimators are widely used to esti-
mate DPM with lagged levels dependent variable as instruments. A feature
of dynamic panel models is that, if a variable at a certain time period can
be used as an instrument, then all the past realizations of that variable can
also be used as instruments. The number of moment conditions can then be
very large even if the time dimension is moderately large. Although using
many instruments increases the asymptotic efficiency of GMM estimator, it
has been proved that its finite sample bias also increases with the number of

∗. This chapter is co-authored with my advisor Marine Carrasco (Université de Mont-
réal).
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instruments. Therefore, estimation in presence of many moment conditions
involves a variance-bias trade-off also referred to as the many instruments
problem.
As a solution to the many instruments problem, Carrasco (2012) proposed
the regularized approach based on the way of inverting the covariance matrix
of instruments. The main originality of this estimation procedure is that it
does not need to restrict the number of instruments, which may be smaller
or larger than the sample size, or even infinite. No instruments are discarded
a priori. Following the regularized two-stage least squares (2SLS) proposed
in this paper, the regularized version of the Limited Information Maximum
Likelihood (LIML) estimator is proposed by Carrasco and Tchuente (2015)
in a cross sectional setting. The first application of regularization in a panel
framework is proposed by Carrasco and Nayihouba (2019) (CN (2019) hen-
ceforth) who derived the regularized GMM estimator for DPM. This paper
proposes a regularization approach to the LIML estimator using three dimen-
sion reduction schemes. The first scheme is based on principal components,
the second one is based on Ridge regression (also called Bayesian shrinkage),
finally the last one is an iterative method called Landweber Fridman. All
these methods involve a regularization parameter similar to the smoothing
parameter in nonparametric regressions. This parameter needs to converge
to zero at an appropriate rate to obtain an efficient estimator.
We show that the regularized LIML estimator is consistent and asymptoti-
cally normal under double asymptotic as in Alvarez and Arellano (2003). We
also derive the leading term of the MSE in a second order expansion of Nagar
(1959)’s type for the regularized estimators. Our three estimators involve a
regularization or tuning parameter, which needs to be selected in practice.
The expansion of the MSE provides a tool for selecting the regularization
parameter. Following the same approach as in Carrasco (2012) and Carrasco
and Tchuente (2015), we propose a data-driven method for selecting the re-
gularization parameter α based on an approximation of the MSE. We show
that this selection method is optimal in the sense of Li (1986, 1987), meaning
that the choice of α using the estimated MSE is asymptotically as good as
minimizing the true and unknown MSE.
Although the LIML estimator is proven to have better properties than the
GMM ones, the existing literature on the many instuments problem in the
DPM framewok mainly focus on the latter estimator. Hence, Andrews and
Lu (2001) introduce and apply to the DPM, a consistent model and moment
selection procedure. But, their method aims to discriminate correct moment
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conditions from incorrect ones whereas we assume that all the moment condi-
tions are valid. Under double asymptotic, Okui (2009) proposes to select the
optimal number of lags by minimizing an approximation of the MSE based
on higher-order asymptotic theory. Our method uses all the available instru-
ments and then is not an instruments selection one. Our approach is closer to
the one of Doran and Schmidt (2006) who investigate in a simulation study
the use of principal components in panel data models. Several bias corrected
estimator have been proposed for dynamic panel data models (Hahn et al.
(2001), Bun and Kiviet (2006), Alvarez and Arellano (2003), Kiviet (1995),
Hahn and Kuersteiner (2002)). Our methodology complements those estima-
tors since we can apply these bias correction procedures to our regularized
estimator to improve the finite sample properties. The very few papers on
the LIML estimator for the DPM have focused on deriving its asymptotic
properties. These include Alvarez and Arellano (2003), Akashi and Konitomo
(2011). Following Donald and Andrews (2001) and Carrasco and Tchuente
(2015) on cross-sectional data models, this paper aims to contribute to the
literature on the LIML estimator by proposing regularization as a solution
to the many instruments problem in the DPM framework.
The remainder of this paper is organized as follows. Section 2.1 presents the
DPM and the usual LIML estimator. In the section 2.2, the regularized es-
timators are presented whereas section 2.3 and 2.4 respectively present first
order asymptotic properties and high-order properties of regularized LIML
estimators. A data-driven selection of the regularization parameter is pre-
sented in section 2.5 and section 2.6 presents the results of Monte Carlo
simulations.
Throughout the paper, we use the notations I and Iq̄ respectively for the
N ×N and q̄ × q̄ identity matrix.

2.1 The model
We consider a simple AR(1) model with individual effects described in

the following equation : for i=1...N , t=1...T ,

yit = δyi,t−1 + ηi + vit, (2.1)

where δ is the parameter of interest satisfying |δ| < 1, ηi is the unobserved
individual effect, vit the idiosyncratic error with conditional mean zero and
variance σ2 conditionally on ηi, yit−1...yi0. For simplicity, we assume that yi0
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is observed. Moreover, we denote yi,t−1 by xi,t.
As it is usual in estimating such models, we first transform the model to eli-
minate the individual effects. Two widely used transformations are the first
differences and the foward orthogonal deviation operator. In this paper, we
will use the latter for theoretical and computational purposes. Indeed, this
transformation preserves homoskedasticity and no serial correlation proper-
ties of the error term. Let the (T − 1) × T matrix A denotes the forward
orthogonal deviations operator as used by Arellano and Bover (1995) and
define v∗i=Avi, x∗i=Axi, y∗i=Ayi where vi = (vi1, ..., viT )′, xi = (xi1, ..., xiT )′,
yi = (yi1, ..., yiT )′. For example the t− th element of v∗i is given by

y∗it = ct[yit −
1

T − t
(yit+1 + ...+ yiT )]

with c2
t = (T − t)/(T − t+ 1).

By multipliying the model by A, it becomes

y∗it = δx∗it + v∗it (2.2)

We have E(x∗i,tv∗it) 6= 0 so that OLS estimator of the transformed model is not
consistent. However, E(xi,t−sv∗it) = 0 for s = 0, ..., t− 1 and t = 1, ..., T − 1.
Then, we are interested in the LIML estimator of δ based on these moment
conditions. There are q̄ = T (T − 1)/2 moment conditions which can be very
large even if T is moderately large. Let zit=(xi1, ..., xit)′ and Zi be the (T −1)
× q̄ block diagonal matrix whose t-th block is z′it. The moment conditions
are then given by E(Z ′iv∗i ) = 0. Under conditional homoscedasticity of vit,
the covariance matrix of the orthogonality conditions is σ2E(Z ′iZi). If we
define the m = N(T − 1) vectors y∗=(y∗′1 , ..., y∗′N)′ and x∗=(x∗′1 , ..., x∗′N)′ with
y∗i = (y∗i1, ..., y∗i,T−1)′ and x∗i = (x∗i1, ..., x∗i,T−1)′, then the LIML estimator of
the parameter is given by

δ̂ = argmin
a

(y∗ − ax∗)′Z(Z ′Z)−1Z ′(y∗ − ax∗)
(y∗ − ax∗)′(y∗ − ax∗) (2.3)

where Z is the m × q̄ matrix define by Z=(Z ′1, ..., Z ′N)′. Let us define the
matrix M = Z(Z ′Z)−1Z ′

δ̂ = argmin
a

(y∗ − ax∗)′M(y∗ − ax∗)
(y∗ − ax∗)′(y∗ − ax∗) (2.4)
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Alvarez and Arellano (2003) show that the LIML estimator can be re-
written in as :

δ̂ = x∗
′
My∗ − l̂x∗′y∗

x∗′Mx∗ − l̂x∗′x∗
(2.5)

where l̂ is the smallest eigenvalue of the matrix [W ∗′MW ∗][W ∗′W ∗]−1 and
W ∗ = (y∗ x∗).
As mentioned in Alvarez and Arellano (2003), this estimator is actually
a symmetrically normalized estimator of the kind considered by Alonso-
Borrego and Arellano (1999). It is asymptotically equivalent to the GMM
estimator for fixed T as N → ∞. Moreover, this estimator belongs to the
k − class estimators.
The computation of the LIML estimator involves the inverse of the q̄ × q̄
matrix Z ′Z. Even for moderate values of T , q̄ can be very large so that the
condition number of Z ′Z (the ratio of its largest over its smallest eigenvalue)
is large. A large condition number indicates that the matrix is ill-conditioned
and its inverse is highly unstable. Using an unstable matrix to derive the
LIML estimator may amplify the potential sampling errors and lead to poor
finite sample properties. We propose to improve the finite sample properties
of the LIML estimator by the use of a regularized inverse of Z ′Z instead of
its usual inverse (Z ′Z)−1. Regularization can be seen as a way to stabilize the
inverse. Unlike moments selection procedures, regularization is a dimension
reduction technique using all the available moment conditions. The regulari-
zed LIML estimator is presented in the next section.

2.2 The Regularized LIML estimator
The regularization methods used in this paper are drawn from the li-

terature on inverse problems (Kress, 1999). They are designed to stabilize
the inverse of Hilbert-Schmidt operators (operators for which the eigenva-
lues are square summable). The matrix Z ′Z is not Hilbert-Schmidt however
Lemma 1 of Carrasco and Nayihouba (2019) show thatK = E[Z ′Z/NT 3/2] is
Hilbert-Schmidt. So the regularization will be applied to KN = Z ′Z/NT 3/2,
the sample counterpart of K.

Let λ̂1 ≥ λ̂2... ≥ λ̂q ≥ 0 be the eigenvalues of KN . By spectral decompo-
sition, we have KN = PNDNP

′
N with PNP ′N = Iq̄ where PN is the matrix of
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eigenvectors andDN the diagonal matrix with eigenvalues λ̂j on the diagonal.
Let Kα

N denote the regularized inverse of KN which is defined as

Kα
N = PND

α
NP

′
N

where Dα
N is the diagonal matrix with elements q(α, λ̂2

j)/λ̂j.
The positive parameter α is the regularization parameter, a kind of smoo-

thing parameter, and the real function q(α, λ2) depends on the regulariza-
tion scheme used. As in Carrasco (2012), three regularization schemes will
be considered : Tikhonov, spectral cut-off and Landweber Fridman regulari-
zation schemes. More details on these schemes can be found in Carrasco et
al. (2007). If we let λ be an arbitrary eigenvalue of the matrix KN , we can
define :

1. Tikhonov regularization (TH) :
This regularization scheme is close to the well known ridge regression
used in presence of multicolinearity to improve properties of OLS esti-
mators. In Tikhonov regularization scheme, the real function q(α, λ2)
is given by

q(α, λ2) = λ2

λ2 + α
.

2. The spectral cut-off (SC)
It consists in selecting the eigenvectors associated with the eigenvalues
greater than some threshold.

q(α, λ2) = I{λ2 ≥ α} =
{

1 if λ2 ≥ α,
0 otherwise.

Another version of this regularization scheme is Principal Components
(PC) which consists in using a certain number of eigenvectors to com-
pute the inverse of the operator. PC and SC are perfectly equivalent,
only the definition of the regularization term α differs. In PC, α is the
number of principal components. In practice, both methods will give
the same estimator so that we will study the properties of SC in detail
in this paper.

3. Landweber Fridman regularization (LF)
In this regularization scheme,Kα

N is computed by an iterative procedure
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with the formula{
Kα
N,l = (I − cKN)Kα

N,l−1 + cKN , l = 1, 2, ..., 1/α− 1,
Kα
N,0 = cKN

The constant c must satisfy 0 < c < 1/λ2
1 where λ2

1 is the square of
the largest eigenvalue of the matrix KN . Alternatively, we can compute
this regularized inverse with

q(α, λ2) = 1− (1− cλ2) 1
α

In each regularization scheme, the real valued function q(α, λ2) satisfies
0 ≤ q(α, λ2) ≤ 1 and lim

α→0
q(α, λ2) = 1 so that the usual GMM estimator

corresponds to a regularized estimator with α = 0.
Remark that M = Z (Z ′Z)−1 Z ′ = ZK−1

N Z ′/NT 3/2. Similarly, let us denote
the matrix Mα = ZKα

NZ
′/NT 3/2. The regularized LIML estimator for a

given regularization scheme is :

δ̂α = argmin
a

(y∗ − ax∗)′Mα(y∗ − ax∗)
(y∗ − ax∗)′(y∗ − ax∗) (2.6)

or alternatively

δ̂α = x∗
′
Mαy∗ − ∧̂x∗′y∗

x∗′Mαx∗ − ∧̂x∗′x∗
(2.7)

where ∧̂ = ∧(δ̂α) and

∧ (δ) = (y∗ − δx∗)′Mα(y∗ − δx∗)
(y∗ − δx∗)′(y∗ − δx∗) (2.8)

The matrix KN is a block diagonal matrix with the t × t matrix Z ′tZt/NT 3/2

at the t−th block. Exactly as K−1
N , the regularized inverse Kα

N is also a block
diagonal matrix where each block is the regularized inverse of the correspon-
ding block of KN

†. So, if we define Mα
t = Zt(KNt)αZ ′t/NT 3/2 with (KNt)α

being the t − th block of the matrix Kα
N , the regularized estimator can be

rewritten as :

δ̂α =
(
T−1∑
t=1

x∗′t M
α
t x
∗
t − ∧̂

T−1∑
t=1

x∗′t xt

)−1( T−1∑
t=1

x∗′t M
α
t y
∗
t − ∧̂

T−1∑
t=1

x∗′t yt

)
(2.9)

†. This holds because regularization transforms only the eigenvalues, not the eigenvec-
tors.
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2.3 Asymptotic properties of the regularized
LIML

In this section, we derive the asymptotic properties of the regularized
estimator. As in Alvarez and Arellano (2003), we make the following as-
sumptions :
Assumption 1 : {vit} (t = 1, ..., T ; i = 1, ..., N) are i.i.d. across time and
individuals and independent of ηi and yi0 with E(vit) = 0, var(vit) = σ2, and
E(v4

it) <∞.
Assumption 2 : The initial observation satisfies

yi0 = ηi
1− δ + wi0 (i = 1, ..., N)

where wi0 is independent of ηi and i.i.d. with the steady state distribution
of the homogeneous process, so that wi0 =

∞∑
j=0

αjvi(−j).

Assumption 3 : ηi are i.i.d. across individuals with E(ηi) = 0, var(ηi)=σ2
η

with 0 < σ2
η <∞, and finite fourth order moment.

Moreover, asymptotic properties are derived under the assumption that both
N and T go to infinity with T < N . Under this restriction the matrix KN is
non singular and so has nonzero eigenvalues.

Let K = E[Z ′Z/NT 3/2] and (λl, φl, l = 1, 2, ...) be the eigenvalues and
orthonormal eigenvectors of K. In the inverse problem literature, this matrix
is referred to as the operator. In Carrasco (2012) and Carrasco and Tchuente
(2015), the operator is assumed to be a trace-class operator which is satis-
fied if and only if its trace is finite. Working on the GMM estimator of the
DPM, Carrasco and Nayihouba (2019) proved under the same assumptions
that K is not trace class but it is Hilbert-Schmidt (Tr (K) = O

(
T 1/2

)
and

Tr (K2) = O (1)). These results show that even though the eigenvalues of
K are not summable as T goes to infinity, they are square summable. The
Hilbert-Schmidt property is sufficient to derive proofs in our framework. This
property is especially useful to establish the order of magnitude of the bias
of the regularized estimator.

The following proposition provides the first order asymptotic properties
of the regularized estimator.
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Proposition 1.
Suppose that Assumptions 1–3 hold. Then as both N and T go to infinity and
α the parameter of regularization goes to zero, provided that α

√
NT → ∞,

we have
(i) Consistency : δ̂α → δ in probability ;
(ii) Asymptotic normality :

√
NT

(
δ̂α − δ

)
d→ N (0, 1− δ2) .

For these properties to hold, we need that α goes to zero slower than
√
NT

goes to infinity. Carrasco and Nayihouba (2019) proved the consistency and
the asymptotic normality of the regularized GMM estimator under the same
condition. Alvarez and Arellano (2003) proved, under similar assumptions,
that the bias of the LIML estimator is of order (1 + δ)/(2N − T ) if 0 ≤
limT/N ≤ 2, whereas the bias of the GMM estimator is of order (1 + δ)/N
provided that 0 ≤ limT/N ≤ ∞. As long as N > T the bias of the LIML
estimator is smaller than the bias of the GMM estimator.
The finite sample bias of the regularized LIML estimator depends on the
regularization parameter so that the selection of this parameter is of great
importance. To gain a better understanding of the effect of α, we proceed to
a higher-order expansion of the mean square error in the next section.

2.4 Mean square error for regularized LIML
In this section, we derive the Nagar’s approximation of the mean square

error (MSE) of δ̂α. This expansion is used in many papers on IV literature
such as Carrasco (2012), Donald and Newey (2001) and particularly Okui
(2009) who works on a dynamic panel data model. Moreover, this expansion
will guide us in our goal to provide a data-driven method for selecting the
regularization parameter. The Nagar approximation of the MSE is the term
σ2H−1 + S(α) in the following decomposition :

NT (δ̂α − δ)2 = Q+ r, E(Q) = σ2H−1 + S(α) +R (2.10)
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where (r +R)/S(α)→ 0 as N →∞, T →∞, α→ 0, and

H = σ2

1− δ2

 1
T

T∑
t=1

ψ2
t


ψt = ct

1− δφT−t
T − t


φj = 1− δj

1− δ .

Proposition 2.
Suppose assumptions 1-3 are satisfied and E (v3

it) = E (v5
it) = 0. If N →∞,

T →∞, α→ 0, α
√
NT →∞, then for the regularized LIML estimator, the

decomposition given in (2.10) holds with :

S(α) = (1− δ2)2

σ4

 σ4

NT

T−1∑
t=1

Etr[(Mα
t )2]

[
[φ2
T−t + ...+ φ2

1]
(T − t)(T − t+ 1) −

1
(1− δ)2

(
φT−t
T − t

− φT−t+1

T − t+ 1

)2]

+ σ2

NT

T−1∑
t=1

ψ2
tE[w′t−1(I −Mα

t )2wt−1]


where wit = yit − ηi/(1− δ).

The first term of S(α) increases when α goes to zero whereas the second
term decreases when α goes to zero. Hence, a large α will reduce the first
term and increase the second one. Proposition 2 shows that the MSE domi-
nant term of the regularized LIML estimator, S(α), comes from two variance
terms unlike for the regularized GMM estimator of the DPM. Indeed, under
similar assumptions, Carrasco and Nayihouba (2019) derived the following
expression of S(α) for the regularized GMM estimator :

SGMM(α) = (1− δ2)2

σ4


[
σ2

1− δ
1√
NT

T−1∑
t=1

Etr(Mα
t )
(
φT−t
T − t

− φT−t+1

T − t+ 1

)]2

+ σ2

NT

T−1∑
t=1

ψ2
tE[w′t−1(I −Mα

t )2wt−1]


The first term of SGMM(α) comes from the square of the bias whereas the
second term comes from the second-order expansion of the variance. Since
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S(α) and SGMM(α) have the same second terms, the difference between them
comes from their the first terms. The first term of S(α) is of order O(1/αNT )
whereas that of SGMM(α) is of order O(1/α2NT ) . Hence, the approximate
MSE of regularized LIML is of smaller order than that of the regularized
GMM estimator.
If we define ṽitT = (φT−tvit+, ...,+φ1vi,T−1)/(T − t), uit = −ctṽitT , ρt =
E(uitv∗it)/σ2, εit = uit − ρtv∗it, then

S(α) = (1− δ2)2

σ4

 1
NT

T−1∑
t=1

Etr[(Mα
t )2]σ2E(ε2it) + σ2

NT

T−1∑
t=1

ψ2
tE[w′t−1(I −Mα

t )2wt−1]


which is similar to the expression of S(α) derived in Carrasco and Tchuente
(2015) for the regularized LIML estimator in a cross-sectional setting. The εit,
uit, v∗it, ψtwit in our notation correspond respectively to vi, ui, εi,fi in their
notation. Moreover, our matrixMα is denoted by Pα in their paper. Because
E[viεi] = 0 in the cross-sectional setting, S(α) comes from two variance
terms. We obtain the same result as we have E(εitv∗it) = 0. However, as in
Carrasco and Nayihouba (2019), our expression of S(α) is unconditionnal
unlike in Carrasco (2012) and Carrasco and Tchuente (2015).

2.5 Data-driven selection of the regulariza-
tion parameter

2.5.1 Estimation of the approximate MSE
In this section, we show how to select the regularization parameter α in

order to minimize the MSE. Let us introduce the following notations

A(α) =
T−1∑
t=1

[
[φ2
T−t + ...+ φ2

1]
(T − t)(T − t+ 1)−

1
(1− δ)2

(
φT−t
T − t

− φT−t+1

T − t+ 1

)2]
E[tr(Mα

t )2]

and
R(α) = 1

NT

T−1∑
t=1

ψ2
tE[w′t−1(I −Mα

t )2wt−1]

so that,
S(α) = (1− δ2)2

NT
A(α) + (1− δ2)2

σ2 R(α).
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Let δ̂ and σ̂2 be consistent estimators of δ and σ2, respectively. Then S(α)
can be estimated by

Ŝ(α) = (1− δ̂2)2

NT
Â(α) + (1− δ̂2)2

σ̂2 R̂(α)

with

Â(α) =
T−1∑
t=1

tr[(Mα
t )2]

 [φ̂2
T−t + ...+ φ̂2

1]
(T − t)(T − t+ 1) −

1
(1− δ̂)2

(
φ̂T−t
T − t

− φ̂T−t+1

T − t+ 1

)2


where
φ̂j = 1− δ̂j

1− δ̂
and

R̂(α) = 1
NT

T−1∑
t=1

x∗
′

t (I −Mα
t )2x∗t .

Note that from Okui (2009, p.3),

Et−1 (x∗it) = ψt

(
yit −

ηi
1− δ

)
= ψtwit−1

where Et−1 denotes the conditional expectation conditional on (ηi, xit, xit−1, ...)
so that R̂(α) is an unbiased estimator of R (α). The optimal regularization
parameter is selected by minimizing this estimated S(α)

α̂ = arg min
α∈ET

Ŝ(α)

where ET is the index set of α. ET is a real compact subset for TH, ET is
such that 1

α
∈ {1, 2, ..., q̄} for PC, and ET is such that 1

α
is a positive integer

for Landweber Fridman. Next, we analyse the impact of using an estimated
version of S(α) to select α instead of the true and unknown criterion.

2.5.2 Optimality
We wish to establish the optimality of the regularization parameter se-

lection criterion in the following sense (see Li, 1986, 1987)

S(α̂)
infα∈ET S(α)

p→ 1 (2.11)
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as N → ∞, T → ∞. The result (2.11) etablishes that using an estima-
ted version of S(α) to choose the regularization parameter is asymptotically
equivalent to use the true and unknown value of S(α). Hence, it is not a
convergence result of α̂.

Proposition 3.
Suppose that Assumptions 1-3 are satisfied and δ̂ → δ, σ̂2 → σ2. If N →∞,
T →∞ and α

√
NT →∞, T 3/N (lnT )2 → 0, then the regularization para-

meter selection criterion is asymptotically optimal in the sense of (2.11) for
Spectral cut-off and Landweber Fridman regularization schemes provided that
#ET=O(T 2) where #ET refers to the number of elements in the set ET .

Carrasco and Tchuente (2015) apply regularization in cross-sectional data
and use Li (1986, 1987) to establish the optimality of their selection rule.
From x∗it = ψtwit − ctṽit, the term −ctṽit can be seen as the error of the se-
cond stage equation since ψtwit = Et−1(x∗it). Then, Li (1986, 1987)’s results
do not work in our framework because of the autocorrelation of this error
term. Consequently, our proof combines the strategies of Kuersteiner (2012)
and Okui (2009).
Proposition 3 proves optimality for Spectral cut-off and Landweber Frid-
man regularization schemes which have discrete index set ET . The condition
#ET = O(T 2) is a sufficient condition in the Landweber Fridman regulariza-
tion scheme and it automatically holds for the principal components case. ‡
Rather than imposing a maximum number of iterations, this condition res-
tricts the order of magnitude of the number of elements of the index set ET . A
rigorous proof for the Tikhonov’s continous index set requires more compli-
cated material which is beyond the scope of this work. However, optimality
could be established by approximating the continous index set by a discrete
one.

2.6 Simulation study
In this section, we present Monte Carlo simulations to illustrate the per-

formance of the regularized LIML estimator and compare them to other
estimators such as the usual not regularized GMM and LIML estimators,
the regularized GMM estimator and the one presented in Okui (2009). In

‡. Recall that #ET = q̄ for principal components case.
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our simulations, we consider the following autoregressive model :

yit = δyi,t−1 + ηi + vit,

with ηi ∼ iidN(0, σ2
η), yi0 ∼ iidN(ηi/(1−δ), σ2/(1−δ2)) and vit ∼ iidN(0, σ2).

Each simulation corresponds to a choice of vector (N, T, σ2, σ2
η, δ). We consi-

der N = 50 and N = 100. For each values of N , we simulated for T = 10,
T = 25 for three values of δ=(0.5,0.75,0.95). The number of replications is
5000 for all cases. Nine estimators of the parameter of interest are presented.
We denote by GMM, the GMM estimator using all available lags of yit as
instruments. IVK is the estimator when the instruments are selected by the
selection procedure proposed by Okui (2009). Finally the regularized LIML
and GMM estimators are denoted as TGMM and TLIML if the Tikhonov
regularization scheme is used, PGMM and PLIML for principal components
which is a variant of spectral cut-off that has an easy interpretation and
LGMM, LLIML for Landweber-Friedman regularization scheme.
In order to select the regularization parameter α, we minimized the estima-
ted version of S(α) given in the previous section. As a consistent estimator of
δ, we used the GMM estimator for TGMM, PGMM, LGMM and the usual
LIML estimator for TLIML, PLIML and LLIML. The variance estimates σ̂2

is given by :

σ̂2 = 1
N(T − 1)

N∑
i=1

T−1∑
t=1

(y∗it − δ̂x∗it)2

For each estimator, we compute the median bias (Med.bias), the median
absolute bias (Med.abs), the length of the inter quantile range (Iqr.), the
median mean square error (Med.mse), and the coverage probabilities (Cov)
of the 95 % confidence intervals. The estimate of the covariance matrix is
computed with the formula :

¯
V (δ̂α) = σ̂2[x∗′(Mα − ∧̂Im)x∗]−1[x∗′(Mα − ∧̂Im)2][x∗′(Mα − ∧̂Im)x∗]−1

where Im is the m×m identity matrix.
Tables B.1-B.4 in appendix present the simulations results for different com-
binations of N , T , δ, σ2 and σ2

η. For each simulations setting, we provide a
table of the properties of the optimal regularization parameter.
Table B.2 contains summary statistics for the value of the regularization pa-
rameter which minimizes the approximate MSE for N = 50, σ2 = 1, σ2

η = 1
and different values of δ and T . We report the mean, the standard deviation
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(std), the mode and the three quartiles of the distribution of the regulariza-
tion parameter. The regularization parameter is the optimal α for TH, the
optimal number of iterations for LF and the optimal number of principal
components for PC. Noting that the standard GMM and LIML estimators
(not regularized) correspond to the Tikhonov estimator with α = 0, to the
LF estimator with an infinite number of iterations and to the PC using all
the principal components, a higher level of regularization will correspond to
a larger value of α, a smaller number of principal components and a smaller
number of iterations for the LF estimator.
The bias reduction of regularization on the LIML estimator is higher when
T = 25 for a given δ and for large δ when T is fixed. So, the optimal propor-
tion of PC selected decreases when δ increases for a given T and increases
with T as δ increases. For TH, the optimal regularization parameter is higher
in δ = 0.95 and T = 25 settings. The optimal number of iterations of LF is
smaller in those latter settings.
The simulations results for N = 50, σ2 = 1, σ2

η = 1 are presented in Table
B.1 in appendix. The parameter c for LF is set to 0.95/λ̂2

1 (where λ̂1 is the
largest eigenvalue of KN .)
The usual (not regularized LIML estimator has better properties than the
usual GMM estimator except when δ is close to unity. When δ = 0.95, the
usual GMM dominates the LIML estimator in terms of bias and MSE.
Regularisation improves the small sample properties of the LIML and the
GMM estimators as the regularized estimators have smaller bias, smaller
MSE and higher coverage probabilities than the not regularized estimators.
The IVK dominates the usual GMM for each value of T and δ with respect
to all criterion. The usual LIML has smaller bias than the IVK when T = 10
for δ = 0.50 and δ = 0.75. For these values of δ, regularized LIML estimators
TLIML and LLIML have smaller bias, smaller MSE that IVK. For T = 25
and δ 6= 0.95, IVK dominates the LIML estimator. However, regularized es-
timators TLIML and LLIML have smaller bias, and higher coverage rates
than IVK.
Table 1 also shows that the LIML estimaot has very poor properties when
δ = 0.95. Even tough regularisation improves the properties of the LIML es-
timators for this value of δ, the regularized LIML estimators are dominated
by all the others estimators in terms of bias, MSE and coverage probabili-
ties.
Comparison between regularized LIML estimators shows that TLIML and
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LLIML have the best coverage rates. In terms of bias and MSE, PLIML do-
minates for T = 10 whereas the two other dominate for T = 25.
Tables B.3 and B.4 show the simulations results when N = 100. In Table
B.3 all the estimators have better properties as the number of observations
increased in comparison to the previous tables. Regularization also provides
better improvements with an important increase of coverage probabilities as
well as an important reduction of the MSE. In this setting, the LIML esti-
mator is also dominated by the GMM and the IVK for δ = 0.95 but when
T = 25, regularized estimators LIML estimators TLIML and PLIML have
the smallest bias, the smallest mean square error and the highest coverage
rate.
It should be noted that the simulations here are not directly comparable with
those in Tables 2 to 9 in Carrasco and Nayihouba (2019) because there the
regularized GMM estimators were bias-corrected.

2.7 Conclusion
Altough the LIML estimator is proved to have better properties than the

GMM estimator, it also exhibits a bias in presence of the many instruments
in the DPM. To improve the properties of the LIML estimator of the DPM,
we propose a regularization approach based of the way of computing the in-
verse of the covariance matrix of the instruments. This technique depends
neither on the ranking of the instruments nor on the dimension of the cova-
riance matrix.
We prove the consistency and the asymptotic normality of the regularized
estimators. We also derive a data driven way to select the regularization para-
meter induced by the regularization procedure. Our simulations results show
that regularization improves the properties of the classical LIML estimator
of DPM. This domination of regularized estimators over classical LIML esti-
mator is higher when T is large (where the classical LIML estimator suffers
from many instrument bias) and when the autoregressive parameter is close
to unity (presence of weak instrument bias). Moreover, the simulations show
that the regularized LIML perform better than regularized GMM for small
δ but not for large δ.
In this paper, we introduced the regularized LIML estimator in a very simple
version of the DPM : iid error terms and only the lag of the dependent va-
riable as covariate. In order to be more realistic and useful for applied re-
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search, the model should be extended to include exogenous or predetermined
covariates and also relax the iid assumption on the error term.
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Chapitre 3

A regularization approach
to estimating labor
elasticities

The estimation of labor supply elasticities rises endogeneity issues be-
cause of measurement errors on wages and income variables, omitted bias
and unobserved heterogeneity. To take into account these issues, several esti-
mation techniques are used in the literature including instrumental variables
estimation, Maximum Likelihood Estimator (MLE) especially in presence of
progressive taxation.
A popular solution to the endogeneity problem in the labor supply literature
is grouping estimators. This technique consists in dividing the sample into
groups and then carrying out the estimation at the group level. The idea be-
hind grouping data and estimating at the groups level is that measurement
errors as well as the effect of unobserved heterogeneity are assumed to cancel
out as the group size gets larger (Angrist, 1991). A necessary condition for
this assumption to hold is to have homogenous groups (so a large number of
groups) as well as large number of observations within groups. An advantage
of grouping estimators is that they don’t rely on the exclusion assumption
required for the traditional instrumental variables estimation and that can
be hard to prove sometimes. Moreover, unlike instrumental variables estima-
tors, grouping estimators can be computed when only aggregated data are
available.
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The simplest and most widely used grouping estimator is the EWALD (Ef-
ficient Wald) estimator which is the weighted least squares of group means.
Angrist (1991) proved that the EWALD is equivalent to the two stage least
squares (2SLS) estimator of the model at the individual level using groups
dummies as instruments. Hence, in presence of large number of groups, the
EWALD estimator suffers from finite sample bias that arises when estima-
ting instrumental variables estimators in presence of many instruments (see
Angrist and Krueger (1991)).
In this paper, we estimate the labor supply elasticity using group dummies
as instruments and use a regularization approach to handle the many ins-
truments problem. This approach proposed by Carrasco (2012) is based on
the way to invert the covariance matrix of the instruments. Indeed, in pre-
sence of many instruments the covariance matrix of the instruments is of
large dimension and inverting it to compute the instrumental variables es-
timator can lead to inaccurate results. Following Carrasco (2012), we use
three regularization schemes : Tikhonov (TH), Principal components (PC)
and Landweber Fridman (LF). Each regularization scheme introduces a re-
gularization parameter which is similar to the smoothing parameter on the
nonparametric regression.
The originality of the regularization approach is that there is no restriction
on the number of instruments which can be very large or even infinite. All
the available instruments are used in the estimation. Details on the theorical
properties as well as simulations results on the performance of the regulari-
zed estimators can be found in Carrasco (2012) for the 2SLS estimator, in
Carrasco and Tchuente (2015) for the regularized LIML (Limited Informa-
tion Maximum Likelihood), Carrasco and Doukali (2016) for the regularized
Jackknife, Carrasco and Nayihouba (2019a) for the regularized GMM esti-
mator for dynamic panel data models, Carrasco and Nayihouba (2019b) for
the regularized LIML for dynamic panel data models.
Grouping estimators are very popular in labor supply literature. Dostie and
Krogman (2012) used survey data to estimate the labor elasticities of Cana-
dian women. Their grouping estimator is based on 48 groups defined by the
interaction of husbands’ age (3 categories), combined education (4 catego-
ries), and geographic location (4 categories). Morissette and Hou (2008) used
population census data and then have larger number of groups. They focus
on the link between Canadian women labor supply and their husband wages.
They grouped the data in 300 groups based on the interaction of province
indicators, three husbands’ age categories (25-34 ; 35-44 ; 45-54), and spouses’
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educational attainment (10 categories). The same categories are used in Blau
and Kahn (2007). Devereux (2007a) constructed 1296 categories defined by
the interaction of 12 husband types, 12 wife types, and 9 census regions to
analyse the link between changes in relative wages and family labor supply
in the US. Husband’s and wife’s types are defined on their education level
and age. Finally, Devereux (2007b) estimates the intertemporal labor supply
elasticity of men using grouping estimators on 432 groups. The categories are
defined using birth cohort and census year.
Devereux (2007b) first linked the grouping estimator literature and the ins-
trumental variables literature by proving the correspondance of grouping
estimators to instrumental variables estimators. We somewhat extend the
connexion between the two literatures by applying regularization, a pro-
cedure developed in the instrumental variables literature, as a solution to
the finite sample properties of the grouping estimator. Following Devereux
(2007b) the groups are based on the cohort of birth, the province and the
census year. Moreover, population census data are used to take advantage of
the large sample size necessary to identification assumption of the grouping
estimator.
Using the regularization approach leads to wage elasticities that range from
0.10 to 0.12 whereas grouping estimator leads to an elasticity of 0.08. These
results suggest that the grouping estimator tends to under estimate the wage
elasticity.
The next section of the paper presents the labor supply model estimated.
The data set used for estimation is presented in section 3.2. A simulation
study that compares the grouping estimator and the regularized estimators
is presented in section 3.3 whereas the estimation results are given in section
3.4.

3.1 The model
We consider the model used in Devereux (2007b) and widely used in labor

supply studies using microdata. For an individual i, we have

Yi = βXi + εi = β0 + β1Logwi + β2Ii + β3X2i + εi (3.1)

i = 1, ..., n where Yi is the hours worked, Logwi is the log of the wage rate,
Ii is the non labor income, X2i is a vector of control variables and εi an error
term.
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The OLS estimator of equation (3.1) is biased because of measurement error
on wage rate and non labor income variables as well as unobserved factors
that are correlated to wage and hours worked. A popular alternative to the
OLS estimator is to group the data and compute weighted least squares at
the group level. This grouping estimator, referred to as the efficient Wald
estimator (EWALD) is given by

βEWALD =
(

G∑
g=1

ngx̄gx̄
′
g

)−1( G∑
g=1

ngx̄gȳg

)−1

(3.2)

where G is the number of groups and ng is the number of observations in
group g.
Even though this estimator is consistent as n (the total sample size) goes to
infinity, it is biased in finite sample.
Angrist (1991) proved that this grouping estimator corresponds to the 2SLS
estimator of the model estimated at the individual level where groups dum-
mies are used as instruments. If we denote by Z the instrument matrix, the
2SLS estimator is

β2SLS = (X ′Z(Z ′Z)−1Z ′X)−1(X ′Z(Z ′Z)−1Z ′Y ) (3.3)

where Y = (Y1, ..., Yn) and X = (X1, ..., Xn).
When G the number of groups is very large, the matrix Kn = Z ′Z/n is
large dimensional and inverting it impacts negatively the properties of the
estimator. This problem arises because of very small eigenvalues which once
inversed lead to very high values.
From the eigenvalue–eigenvector decomposition we can write

Kn = P ′nDnPn

with Pn and Dn are real matrix such that P ′nPn = IG the G × G identity
matrix and Dn the diagonal matrix of the eigenvalues of Kn. Given this
decomposition, the inverse of Kn is

K−1
n = P ′nD

−1
n Pn

with the diagonal elements of D−1
n are the inverse of the eigenvalues of Kn.

When the eigenvalues of the Kn are small, inverting them leads to very large
values that can negatively impact the properties of the estimators. For a given
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eigenvalue λ of Kn, the regularization approach smoothes the procedure of
inversion by the use of q(α, λ2)/λ as diagonal elements of D−1

n instead of 1/λ.
The real value function q(α, λ2) depends on the regularization scheme and
α is a smoothing parameter also referred to as the regularization parameter.
Put differently, instead of the classical inverseK−1

n = P ′D−1
n P , regularization

approach proposes to use the regularized inverse defined by

Kα
n = P ′nD

α
nPn

where Dα
n is the diagonal matrix of q(α2, λ)/λ instead of 1/λ for each eigen-

value of Kn. ∗
As in Carrasco (2012), we consider three regularization schemes that differs
from each other by the definition of the function q(α, λ).

1. Tikhonov regularization
This regularization scheme is close to the well known ridge regression
used in presence of multicolinearity to improve properties of OLS esti-
mator. In Tikhonov regularization scheme, the real function q(α, λ) is
given by

q(α, λ) = λ

λ+ α
.

2. The spectral Cut-off
It consists in selecting the eigenvectors associated with the eigenvalues
greater than some threshold.

q(α, λ) = I{|λ| ≥ α} =
{

1 if |λ| ≥ α,
0 otherwise.

An other variante of this regularization scheme is Principal Components
which consists to use a certain number of eigenvalues to compute the
inverse of the diagonal matrix Dn.

3. Landweber Fridman regularization
In this regularization scheme, Kα

n is computed with

q(α, λ) = 1− (1− cλ) 1
α

λ
.

∗. To put simply we have Dn = diag[λ1, λ2, ..., λq̄], D−1
n = diag[1/λ1, 1/λ2, ..., 1/λq̄]

and Dα
n = diag[q(α, λ2

1)/λ1, q(α, λ2
2)/λ2, ..., q(α, λ2

q̄)/λq̄].
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The constant c must satisfy 0 < c < 1/‖Kn‖2 where ‖Kn‖ is the largest
eigenvalue of the matrix Kn. Alternatively, Kα

n can be computed by
iteration from{

Kα
n,l = (I − cKn)Kα

n,l−1 + cKn, l = 1, 2, 3.........., 1/α− 1,
Kα
n,0 = cKn

More details on these schemes can be found in Carrasco et al.(2007) . In each
regularization scheme, the real values function q(α, λ) satisfies
0 ≤ q(α, λ) ≤ 1 and lim

α→0
q(α, λ) = 1. The previous inequality says that

for a given eigenvalue, its regularized inverse is smaller than its classical
inverse (1/λ). Moreover, when α = 0 both regularized and classical inverse
are equivalent.
Using the regularized inverse Kα

n instead of the classical inverse (Z ′Z)−1, the
regularized estimator is

β̂α = (X ′ZKα
nZ
′X)−1(X ′ZKα

nZ
′Y ) (3.4)

Carrasco (2012) proved that the regularized 2SLS is consistent as the number
of observations n goes to infinity and α → 0 provided that nα 1

2 → ∞ .
Moreover, as n → ∞ the regularized estimator is asymptotically normal if
nα→∞.
The finite sample properties of the regularized estimators depends on the
regularization parameter α. Carrasco (2012) provides a data-driven procedure
to select the regularization parameter for the regularized 2SLS estimator.
This procedure is done in two stages : a criteria to minimize is firstly derived
through a second order expansion of the mean square error of estimator. Then
the optimal regularization paramater is selected to minimize an estimated
version of the criterion where unknown parameters are replaced by their
consistent estimates. This two stages selection procedure is proved to be
optimal.
The estimated version of the minimisation criterion is given :

Ŝ(α) = σ̂uε

(
tr[Pα

n ]
)2

n
+ σ̂2

ε R̂(α) (3.5)
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where

Pα
n = Z ′Kα

nZ/n

σ̂2
ε = (Y −Xβ̂)′(Y −Xβ̂)/n
σ̂uε = e′X ′(Y −Xβ̂)/n

with β̂ a preliminary consistent estimator of β, e a column vector of ones, In
is the identity matrix and R̂(α) a criteria of goodness of fit. In this paper, we
use the generalized cross validation criteria (Craven and Wahba,1978) given
by :

R̂(α) = 1
n

e′X ′(In − Pα
n )(In − Pα

n )Xe(
1− tr[Pαn ]

n

)2

The Ŝ(α) has a bias related term (the one with tr[Pα
n ]) which decreases as

α increases and a variance related term which increases with α. The optimal
regularized parameter is chosen over an optimisation set En that depends on
the regularization scheme. En is a compact subset of [0, 1] for TH, En is such
1/α ∈ {1, 2, ..., G} and En is such 1/α is positive integer for LF.

3.2 The data
This paper uses data from Canadian population census of 2011, 2001, 1991

and 1981. Census data take advantage over surveys data sets on grouping
estimators as they provide large sample size within the groups. The sample
includes Canadian men engaged in salary work aged 45 to 60 in 2011, 35
to 50 in 2001, 25 to 40 in 1991 and 25 to 30 in 1981. Hours of work are
measured by the annual hours worked. Wage rate is measured by the hourly
wage, calculated by dividing the annual earned income by the total hours
worked during the year. We compute the individual’s non labor income by
subtracting his earned income from his total income. Both total and earned
incomes are directly provided in the data. Hence, the individual’s non labor
income includes income sources such as rents, interest, dividends and his
welfare income. This later variable represents all the transfers received by a
person during the previous year from government. The final sample excludes
individuals who did not work the last year, individuals with wage rate less
than 2 $ or greater than 200 $ (in 2010 $ CAD). Descriptive statistics for the
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variables used in the estimation are presented in Table C.1 in appendix.
Following Devereux (2007b), we define a cohort birth by year and province
of birth. There are 540 groups for the four census years. The number of
observations within the groups varies from 13 to 1910 and averages to 406.
These groups sizes are comparable to many of those existing in grouping
estimators applied to labor supply literature. For example, the average group
size is 129 in Dostie and Krogman (2012), 678 in Morisette and Hou (2008),
843 in Devereux (2004). Theoretically at least two observations are needed
in each group in order to be able to derive the variance of the grouping
estimator.

3.3 Simulation study
In this section we compare the grouping estimator EWALD to the regula-

rized estimators using a monte carlo simulation. We use the same simulation
design as in Devereux (2007b). For an individual i, the hours of work H, the
log of the wage rate w and the non labor income y are generated by

Hict = Hct + zict

wict = wct + vict

yict = yct + eict

The z, v and e are drawn from a trivariate normal with the covariance matrix
estimated by the within-groups variances and covariances in the data. If we
denote by w̄ and ȳ the means of w and y respectively over the whole sample,
then wct and yct are given by

wct = 0.75w̄ct + 0.25w̄
yct = 0.75ȳct + 0.25ȳ

where w̄ct and ȳct are the means of w and y for cohort c and year t. The
dependent variable Hct is generated as follow :

Hct = α + βwct + δyct + fc + ft

where fc represents cohort fixed effect and ft the year fixed effect.
The parameters α, β, δ, fc and ft are estimated by the EWALD estimates
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of H on w and y. For computational purpose, this simulation study is ba-
sed on the 2011, 2001 and 1991 census data. Hence, a total sample size of
n = 200000 and 480 groups (160 cohorts and 3 years) are considered. The
groups sizes in the generated data are set be equal to those in the actual data.

Table 3.1 presents the simulations results for the coefficient β (the coeffi-
cient of the wage variable) after 1000 replications for the EWALD and the
three regularized estimators presented in section 3.1. The TH column refers
to the regularized estimator using the Tikhonov regularization scheme, PC is
the one using principal components and LF is the estimator using Landwe-
ber Fridman regularized scheme. For each estimator, we report the median
bias (Med.bias), the mean absolute bias (Med.abs), the inter quartile range
(Iqr), the median mean square error (Med.mse) and the 95 % coverage rate
(Cov.rate). The variance of the regularized estimators is calculated with the
same formula as in Carrasco (2012) :

V̂ {β̂α} = (Y −Xβ̂α)(Y −Xβ̂α)′
n

(X̂ ′X)−1(X̂ ′X̂)(X ′X̂)−1 (3.6)

where X̂ = Pα
nX.

Conventional instrumental variables standard errors are used to calculate the
coverage rates of the grouping estimator. This is equivalent to using formula
(3.6) with α = 0. For the regularized estimators, the regularization parameter
is selected to minimize the criterion given in (3.5). The EWALD estimates
are used to estimate the unknown parameters. The optimal regularization
parameter for TH is searched between 0.005 and 0.9 with 0.001 increment.
The range of the values of the number of iterations for LF is from 100 to
9000 and the number of principal components is selected between 1 and the
numbers of instruments.
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EWALD TH PC LF
Med.bias -0.0350 -0.0182 -0.0232 -0.0117
Med.abs 0.0353 0.0210 0.0247 0.0214

Iqr 0.0218 0.0238 0.0241 0.0316
Med.mse 0.0012 0.0004 0.0005 0.0003

Cov 0.4210 0.8150 0.9420 0.9320
Table 3.1 – Simulations for 1000 replications.

Table 3.1 results show that all the regularized estimators have better
properties than the grouping estimator EWALD. Indeed, the regularized es-
timators have smaller bias, smaller mean square error and larger coverage
rate than the EWALD estimator.

3.4 Estimation results
Table 3.2 presents the coefficient of Log of wage variable obtained from

several estimators. In addition to the wage variable, all the estimated models
include additional covariates which are the non labor income and cohort and
year dummies.
The first column presents the results of the ordinary least squares (OLS)
estimator of the model at the individual level. This estimator suggests a ne-
gative wage elasticity of 0.12. This estimator does not account for the several
sources of endogeneity coming from the measurement errors on wage (com-
puted by dividing the annual income by the annual hours of work) as well
as the effect of unobserved heterogeneity driving simultaneously the labor
supply and the individual’s wage.
Column 2 presents the results of the grouping estimator. This estimator is
the 2SLS estimator on the individual level data using the groups dummies
as instruments. In the grouping literature, EWALD estimator corresponds
to the weighted least squares on the groups mean variables. The results of
EWALD suggest a wage elasticity of 0.08.
The regularized estimators are presented in the last three columns. The TH
column refers to the regularized estimator using the Tikhonov regularization
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scheme, PC is the one using principal components and LF is the estimator
using Landweber Fridman regularized scheme. All these regularized estima-
tors induce a regularization parameter which is the optimal α for TH, the
optimal number of principal components for PC and the optimal number of
iterations for LF. The optimal regularization parameter is selected to mini-
mize the criterion given in (3.5).
Following Table 3.2, the TH estimator is obtained at a value of 0.016 for the
regularization parameter, for PC 375 out of 540 principal components are
selected whereas 6000 iterations are selected to estimate LF. In order to have
an idea of how big or small these parameters are, one should keep in mind
that when the regularization parameter is equal to zero, the TH is exactly
the EWALD estimator or the 2SLS estimator in the instrumental variables
literature. Using a second order expansion of the MSE, Carrasco (2012) pro-
ved that the bias of the regularized estimator TH is of order 1/α

√
n whereas

its variance is of order αmin(2,β) where β ≥ 1/2. Hence, as the parameter of
regularization increases the bias of the regularized estimator decreases whe-
reas its variance increases. Similarly, the EWALD estimator corresponds to
the PC where all the principal components are used. It also corresponds to
the LF with the number of the iterations tends to infinity. So as the number
of principal components (in the case of PC) and the number iterations ( in
the case of LF) decreases, the bias of regularized estimators decreases and
the variance increases.

OLS EWALD TH PC LF
Ln(wage) -0.120 0.083 0.104 0.120 0.110

( 0.002 ) ( 0.012 ) ( 0.013 ) ( 0.014 ) ( 0.013 )
α∗ 0.016 375 6000
Observations 219316 219316 219316 219316 219316

Table 3.2 – Wage elasticities from OLS, EWALD, TH, PC and LF.

The wage elasticities provided by the regularized estimators are larger than
those of the grouping estimator. This results is consistent with those in Table
3.1 which shows that the bias of EWALD is negative and larger than those
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of the regularized estimators. In comparison with the EWALD estimator,
the regularized estimators have larger standard errors. Hence, regularization
reduces the bias of the EWALD estimator at the expense of an increase of
the variance. This is the traditional bias-variance trade-off that arises in ins-
trumental variables estimation in presence of many instruments.
The coefficient of the non labor income variable (not showed in the results
table) is only significant in the OLS model and not in any of the others mo-
dels.
Taxation is also known to be another source of endogeneity in labor supply
models. In presence of progressive taxation the after tax wage depends on
the marginal tax rate which depends on the taxable income which in turn is
function of the hours worked. In this study we do not account for taxation as
census data do not provide enough details to compute correctly the marginal
tax rates. Labor or income dynamics surveys usually provide enough infor-
mation to compute tax rates but using these data for grouping estimators
may be problematic because of small sample size within-groups.

3.5 Conclusion
In this paper, we estimate the labor supply elasticities of Canadian men

using population census 2011, 2001, 1991 and 1981. We take advantage of
the equivalence between grouping estimators and the tradition instrumen-
tal variables estimators to apply a regularization approach. This technique
was developed in the instrumental literature to improve the finite sample
properties of the 2SLS estimator in presence of many insruments. The wage
elasticities obtained by the regularized estimator are larger than those of the
EWALD. These results suggest that the use of regularization in the grouping
estimator setting can be a good alternative to the traditional instrumental
variables approach where the exclusion assumption is sometimes hard to jus-
tify.
The Errors in Variables Estimator (EVE) and the Unbaised Errors in Va-
riables Estimator (UEVE) are others grouping estimators proposed as so-
lutions to the poor performances of the EWALD in finite sample. Devereux
(2007) proved that the EVE is exactly equivalent to the Jackknife Instrumen-
tal Variables Estimator (JIVE) suggested by Phillips and Hale (1977) and
popularized by Angrist, Imbens, and Krueger (1999) and that the UEVE
can be seen as a k-class estimators. Hence, possible extensions of this study
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would be to compare the finite sample properties UEVE and EVE to the
regularized LIML proposed by Carrasco and Tchuente (2015) and the re-
gularized Jackknife instrumental varibale estimator (RJIVE) proposed by
Carrasco and Doukali (2016).
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Annexes
Appendices

A Chapter 1

A.1 Simulations results.

Min q1 Mean Median q3 max q̄

δ = 0.20
T= 5 6.2 10.7 13.4 12.8 15.5 32.1 10
T= 10 21.5 34.7 42.7 41.5 49.7 93.3 45
T= 25 143.2 282.4 359.9 343.6 421.3 959.1 300
T= 50 17418.9 68429.4 734508.6 137592.7 310565.6 92594681.5 1225
δ = 0.50
T= 5 15.3 35.0 44.5 42.9 52.0 131.1 10
T= 10 56.3 119.5 148.4 141.9 173.9 335.3 45
T= 25 343.2 892.4 1176.6 1119.4 1361.3 3137.3 300
T= 50 33789.1 217795.9 2097168.8 428699.4 970051.8 356480210.5 1225
δ = 0.90
T= 5 626.2 1183.7 1509.0 1440.7 1751.9 3901.3 10
T= 10 2168.4 4245.2 5316.8 5067.7 6214.7 13130.8 45
T= 25 16422.2 32971.4 42706.8 40619.7 49839.7 108698.3 300
T= 50 1124835.1 7618036.7 242677244.8 14558610.1 36715676.3 178194140502.4 1225

Table A.1 – Properties of the condition number with N=50, σ2 = 1, σ2
η = 1

for 1000 replications.
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GMM GMM5 IVK TH PC LF
δ = 0.50

T= 10
Med.bias -0.0626 -0.0456 -0.0383 -0.0336 -0.0248 -0.0307
Med.abs 0.0696 0.0616 0.0635 0.0586 0.0579 0.0581

Iqr 0.1029 0.1033 0.1124 0.1070 0.1091 0.1072
Med.mse 0.0048 0.0038 0.0040 0.0034 0.0033 0.0034

Cov 0.8538 0.9006 0.9148 0.9676 0.9268 0.9538

T= 25
Med.bias -0.0398 -0.0121 -0.0144 -0.0086 -0.0017 -0.0069
Med.abs 0.0401 0.0261 0.0265 0.0249 0.0252 0.0251

Iqr 0.0442 0.0499 0.0487 0.0471 0.0505 0.0485
Med.mse 0.0016 0.0007 0.0007 0.0006 0.0006 0.0006

Cov 0.7654 0.9294 0.9234 0.9868 0.9424 0.9754
δ = 0.75

T= 10
Med.bias -0.1273 -0.1009 -0.0876 -0.0874 -0.0747 -0.0846
Med.abs 0.1276 0.1034 0.1122 0.0989 0.0928 0.0970

Iqr 0.1324 0.1334 0.1790 0.1481 0.1507 0.1495
Med.mse 0.0163 0.0107 0.0126 0.0098 0.0086 0.0094

Cov 0.6914 0.7962 0.8656 0.9388 0.8822 0.9214

T= 25
Med.bias -0.0638 -0.0274 -0.0267 -0.0259 -0.0164 -0.0242
Med.abs 0.0638 0.0333 0.0344 0.0329 0.0306 0.0328

Iqr 0.0449 0.0552 0.0583 0.0538 0.0567 0.0548
Med.mse 0.0041 0.0011 0.0012 0.0011 0.0009 0.0011

Cov 0.4748 0.8860 0.8928 0.9774 0.9316 0.9624
δ = 0.95

T= 10
Med.bias -0.3411 -0.3024 -0.3176 -0.3046 -0.2888 -0.3193
Med.abs 0.3411 0.3024 0.3219 0.3069 0.2947 0.3235

Iqr 0.1955 0.2092 0.3381 0.3090 0.3283 0.3926
Med.mse 0.1163 0.0914 0.1036 0.0942 0.0868 0.1046

Cov 0.1900 0.3506 0.7434 0.8430 0.7720 0.8934

T= 25
Med.bias -0.1380 -0.0951 -0.1084 -0.0948 -0.0806 -0.0962
Med.abs 0.1380 0.0951 0.1088 0.0953 0.0819 0.0971

Iqr 0.0575 0.0719 0.1188 0.1039 0.1071 0.1284
Med.mse 0.0191 0.0090 0.0118 0.0091 0.0067 0.0094

Cov 0.0148 0.4852 0.7380 0.8848 0.8224 0.8998

Table A.2 – Simulations results with N = 50, σ2 = 1, σ2
η = 1 for 5000

replications.
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Mean std Mode q1 Median q3
δ = 0.50

T= 10
TH 0.00054 0.00020 0.00012 0.00040 0.00050 0.00064
PC 29.794 4.329 30.000 27.000 30.000 33.000
LF 2405.839 1330.126 2286.000 1455.000 2000.000 2909.000

T= 25
TH 0.00008 0.00002 0.00004 0.00007 0.00008 0.00009
PC 137.492 16.972 135.000 125.000 135.000 150.000
LF 6220.263 2808.828 5333.000 4267.000 5818.000 8000.000

δ = 0.75

T= 10
TH 0.00550 0.05349 0.00016 0.00107 0.00165 0.00268
PC 20.757 4.856 21.000 18.000 21.000 24.000
LF 14185.296 13041.976 10667.000 5333.000 10667.000 18286.000

T= 25
TH 0.00037 0.00011 0.00013 0.00029 0.00035 0.00043
PC 86.896 13.353 85.000 75.000 85.000 95.000
LF 24279.314 12967.227 21333.000 16000.000 21333.000 32000.000

δ = 0.95

T= 10
TH 0.37266 0.45504 0.45000 0.00601 0.03849 0.99033
PC 11.636 5.375 9.000 9.000 9.000 15.000
LF 91501.814 578538.647 8000.000 302.000 8000.000 8000.000

T= 25
TH 0.15202 0.32676 0.45000 0.00365 0.00845 0.03550
PC 40.753 15.385 25.000 25.000 40.000 50.000
LF 435107.242 1032787.507 8000.000 8000.000 8000.000 512000.000

Table A.3 – Properties of the distribution of the regularization parameters
with N = 50, σ2 = 1, σ2

η = 1 for 5000 replications.
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GMM GMM5 IVK TH PC LF
δ = 0.50

T= 10
Med.bias -0.0721 -0.0526 -0.0482 -0.0448 -0.0331 -0.0423
Med.abs 0.0769 0.0666 0.0699 0.0634 0.0632 0.0637

Iqr 0.1079 0.1129 0.1192 0.1135 0.1172 0.1158
Med.mse 0.0059 0.0044 0.0049 0.0040 0.0040 0.0041

Cov 0.8500 0.9052 0.9100 0.9734 0.9328 0.9604

T= 25
Med.bias -0.0417 -0.0152 -0.0172 -0.0112 -0.0039 -0.0098
Med.abs 0.0419 0.0281 0.0277 0.0260 0.0264 0.0262

Iqr 0.0452 0.0527 0.0504 0.0507 0.0523 0.0516
Med.mse 0.0018 0.0008 0.0008 0.0007 0.0007 0.0007

Cov 0.7558 0.9398 0.9280 0.9898 0.9482 0.9806
δ = 0.75

T= 10
Med.bias -0.1529 -0.1246 -0.1411 -0.1141 -0.0958 -0.1120
Med.abs 0.1530 0.1257 0.1505 0.1205 0.1098 0.1191

Iqr 0.1410 0.1448 0.1907 0.1559 0.1633 0.1580
Med.mse 0.0234 0.0158 0.0227 0.0145 0.0121 0.0142

Cov 0.6388 0.7644 0.8460 0.9396 0.8610 0.9186

T= 25
Med.bias -0.0654 -0.0301 -0.0321 -0.0276 -0.0175 -0.0259
Med.abs 0.0654 0.0358 0.0385 0.0335 0.0310 0.0331

Iqr 0.0459 0.0569 0.0590 0.0552 0.0584 0.0568
Med.mse 0.0043 0.0013 0.0015 0.0011 0.0010 0.0011

Cov 0.4708 0.8864 0.8872 0.9768 0.9306 0.9600
δ = 0.95

T= 10
Med.bias -0.3450 -0.3077 -0.3405 -0.3205 -0.3034 -0.3525
Med.abs 0.3450 0.3077 0.3418 0.3211 0.3080 0.3538

Iqr 0.1953 0.2061 0.3170 0.2957 0.3251 0.3973
Med.mse 0.1190 0.0947 0.1168 0.1031 0.0949 0.1251

Cov 0.1754 0.3414 0.7362 0.8366 0.7710 0.9022

T= 25
Med.bias -0.1399 -0.0968 -0.1157 -0.1019 -0.0880 -0.1408
Med.abs 0.1399 0.0968 0.1162 0.1020 0.0897 0.1412

Iqr 0.0574 0.0724 0.1174 0.1044 0.1105 0.1896
Med.mse 0.0196 0.0094 0.0135 0.0104 0.0080 0.0199

Cov 0.0128 0.4802 0.7394 0.8842 0.8210 0.8966

Table A.4 – Simulations results with N = 50, σ2 = 1, σ2
η = 10 for 5000

replications.
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Mean std Mode q1 Median q3
δ = 0.50

T= 10
TH 0.00054 0.00021 0.00011 0.00039 0.00050 0.00064
PC 29.815 4.367 30.000 27.000 30.000 33.000
LF Inf NaN 170667.000 128000.000 170667.000 256000.000

T= 25
TH 0.00009 0.00002 0.00004 0.00007 0.00008 0.00009
PC 138.217 17.054 135.000 125.000 135.000 150.000
LF 577781.303 262991.985 512000.000 390095.000 512000.000 682667.000

δ = 0.75

T= 10
TH 0.00344 0.03671 0.00009 0.00098 0.00150 0.00236
PC 21.211 4.954 21.000 18.000 21.000 24.000
LF Inf NaN 1024000.000 512000.000 1024000.000 1638400.000

T= 25
TH 0.00036 0.00011 0.00011 0.00028 0.00035 0.00042
PC 87.302 13.221 85.000 80.000 85.000 95.000
LF 2300796.828 1223621.596 2048000.000 1365333.000 2048000.000 2730667.000

δ = 0.95

T= 10
TH 0.35606 0.45028 0.45000 0.00504 0.03048 0.98778
PC 11.872 5.668 9.000 9.000 9.000 15.000
LF 5521.438 3632.648 8000.000 327.000 8000.000 8000.000

T= 25
TH 0.13835 0.31678 0.45000 0.00359 0.00791 0.02828
PC 40.833 15.371 25.000 25.000 40.000 50.000
LF 4354.137 3454.176 8000.000 1143.000 2667.000 8000.000

Table A.5 – Properties of the distribution of the regularization parameters
with N = 50, σ2 = 1, σ2

η = 10 for 5000 replications.
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GMM GMM5 IVK TH PC LF
δ = 0.50

T= 10
Med.bias -0.0333 -0.0230 -0.0204 -0.0173 -0.0123 -0.0160
Med.abs 0.0424 0.0404 0.0410 0.0389 0.0383 0.0390

Iqr 0.0733 0.0737 0.0775 0.0732 0.0758 0.0729
Med.mse 0.0018 0.0016 0.0017 0.0015 0.0015 0.0015

Cov 0.9098 0.9288 0.9320 0.9694 0.9410 0.9588

T= 25
Med.bias -0.0221 -0.0078 -0.0102 -0.0056 -0.0011 -0.0046
Med.abs 0.0236 0.0188 0.0186 0.0172 0.0172 0.0173

Iqr 0.0326 0.0365 0.0345 0.0339 0.0348 0.0347
Med.mse 0.0006 0.0004 0.0003 0.0003 0.0003 0.0003

Cov 0.8456 0.9434 0.9376 0.9864 0.9530 0.9766
δ = 0.75

T= 10
Med.bias -0.0820 -0.0649 -0.0559 -0.0536 -0.0467 -0.0514
Med.abs 0.0836 0.0704 0.0781 0.0679 0.0638 0.0670

Iqr 0.0995 0.1041 0.1276 0.1107 0.1098 0.1112
Med.mse 0.0070 0.0050 0.0061 0.0046 0.0041 0.0045

Cov 0.7796 0.8528 0.8896 0.9428 0.8938 0.9276

T= 25
Med.bias -0.0371 -0.0155 -0.0163 -0.0135 -0.0083 -0.0122
Med.abs 0.0371 0.0228 0.0233 0.0214 0.0205 0.0212

Iqr 0.0346 0.0405 0.0414 0.0395 0.0399 0.0403
Med.mse 0.0014 0.0005 0.0005 0.0005 0.0004 0.0004

Cov 0.6732 0.9170 0.9136 0.9710 0.9380 0.9592
δ = 0.95

T= 10
Med.bias -0.3065 -0.2705 -0.2885 -0.2606 -0.2464 -0.2923
Med.abs 0.3065 0.2705 0.2903 0.2625 0.2543 0.2964

Iqr 0.1921 0.1951 0.3301 0.2839 0.3043 0.4002
Med.mse 0.0939 0.0732 0.0843 0.0689 0.0647 0.0879

Cov 0.2344 0.4048 0.7692 0.8534 0.7896 0.9086

T= 25
Med.bias -0.1189 -0.0780 -0.0911 -0.0717 -0.0611 -0.0794
Med.abs 0.1189 0.0780 0.0925 0.0723 0.0627 0.0815

Iqr 0.0532 0.0650 0.1100 0.0821 0.0850 0.1262
Med.mse 0.0141 0.0061 0.0086 0.0052 0.0039 0.0066

Cov 0.0324 0.5588 0.7634 0.8820 0.8112 0.9130

Table A.6 – Simulations results with N = 100, σ2 = 1, σ2
η = 1 for 5000

replications.
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Mean std Mode q1 Median q3
δ = 0.50

T= 10
TH 0.00032 0.00008 0.00010 0.00026 0.00031 0.00036
PC 33.089 3.244 33.000 30.000 33.000 36.000
LF 3475.854 1274.336 3200.000 2667.000 3200.000 4000.000

T= 25
TH 0.00005 0.00001 0.00003 0.00004 0.00005 0.00005
PC 167.610 16.523 175.000 155.000 170.000 180.000
LF 10265.839 3236.181 10667.000 8000.000 9846.000 11636.000

δ = 0.75

T= 10
TH 0.00120 0.00081 0.00019 0.00072 0.00102 0.00146
PC 23.418 4.182 21.000 21.000 21.000 27.000
LF 20999.097 12820.196 16000.000 10667.000 18286.000 25600.000

T= 25
TH 0.00020 0.00005 0.00009 0.00017 0.00020 0.00023
PC 103.970 12.934 100.000 95.000 105.000 110.000
LF 42473.371 16004.677 42667.000 32000.000 42667.000 51200.000

δ = 0.95

T= 10
TH 0.29746 0.42469 0.45000 0.00457 0.01843 0.92724
PC 12.241 5.612 9.000 9.000 9.000 15.000
LF 26886.475 501363.427 8000.000 372.000 8000.000 8000.000

T= 25
TH 0.04658 0.18151 0.45000 0.00239 0.00423 0.00855
PC 47.785 13.911 50.000 35.000 50.000 60.000
LF 407484.865 933804.334 8000.000 8000.000 8000.000 512000.000

Table A.7 – Properties of the distribution of the regularization parameters
with N = 100, σ2 = 1, σ2

η = 1 for 5000 replications.
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GMM GMM5 IVK TH PC LF
δ = 0.50

T= 10
Med.bias -0.0391 -0.0279 -0.0265 -0.0241 -0.0184 -0.0225
Med.abs 0.0486 0.0449 0.0461 0.0439 0.0438 0.0440

Iqr 0.0800 0.0821 0.0856 0.0816 0.0827 0.0820
Med.mse 0.0024 0.0020 0.0021 0.0019 0.0019 0.0019

Cov 0.9028 0.9260 0.9310 0.9696 0.9402 0.9586

T= 25
Med.bias -0.0226 -0.0080 -0.0101 -0.0056 -0.0009 -0.0041
Med.abs 0.0244 0.0197 0.0191 0.0181 0.0184 0.0182

Iqr 0.0336 0.0377 0.0356 0.0358 0.0368 0.0359
Med.mse 0.0006 0.0004 0.0004 0.0003 0.0003 0.0003

Cov 0.8496 0.9448 0.9366 0.9870 0.9510 0.9762
δ = 0.75

T= 10
Med.bias -0.0949 -0.0761 -0.0871 -0.0699 -0.0591 -0.0677
Med.abs 0.0965 0.0814 0.1004 0.0787 0.0756 0.0771

Iqr 0.1091 0.1107 0.1419 0.1175 0.1223 0.1190
Med.mse 0.0093 0.0066 0.0101 0.0062 0.0057 0.0059

Cov 0.7630 0.8474 0.8804 0.9516 0.8898 0.9322

T= 25
Med.bias -0.0390 -0.0173 -0.0192 -0.0149 -0.0094 -0.0140
Med.abs 0.0390 0.0247 0.0255 0.0226 0.0215 0.0223

Iqr 0.0354 0.0434 0.0425 0.0404 0.0419 0.0411
Med.mse 0.0015 0.0006 0.0006 0.0005 0.0005 0.0005

Cov 0.6548 0.9164 0.9050 0.9754 0.9360 0.9612
δ = 0.95

T= 10
Med.bias -0.3258 -0.2888 -0.3212 -0.2958 -0.2836 -0.3389
Med.abs 0.3258 0.2888 0.3223 0.2961 0.2901 0.3403

Iqr 0.1921 0.2000 0.3040 0.2733 0.3012 0.3984
Med.mse 0.1062 0.0834 0.1039 0.0877 0.0842 0.1158

Cov 0.2052 0.3630 0.7516 0.8376 0.7618 0.9112

T= 25
Med.bias -0.1220 -0.0841 -0.1082 -0.0790 -0.0685 -0.1420
Med.abs 0.1220 0.0841 0.1086 0.0795 0.0693 0.1426

Iqr 0.0551 0.0666 0.1089 0.0833 0.0863 0.1920
Med.mse 0.0149 0.0071 0.0118 0.0063 0.0048 0.0203

Cov 0.0260 0.5326 0.7394 0.8872 0.8104 0.8950

Table A.8 – Simulations results with N = 100, σ2 = 1, σ2
η = 10 for 5000

replications.
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Mean std Mode q1 Median q3
δ = 0.50

T= 10
TH 0.00032 0.00008 0.00011 0.00026 0.00031 0.00036
PC 33.160 3.295 33.000 30.000 33.000 36.000
LF Inf NaN 256000.000 204800.000 256000.000 341333.000

T= 25
TH 0.00006 0.00004 0.00003 0.00004 0.00005 0.00005
PC 167.226 16.337 170.000 155.000 165.000 180.000
LF Inf NaN 1024000.000 744727.000 910222.000 1092267.000

δ = 0.75

T= 10
TH 0.00130 0.01223 0.00015 0.00069 0.00097 0.00135
PC 23.723 4.329 21.000 21.000 24.000 27.000
LF Inf NaN 2048000.000 1024000.000 1638400.000 2340571.000

T= 25
TH 0.00020 0.00005 0.00009 0.00017 0.00020 0.00023
PC 103.911 12.851 100.000 95.000 105.000 115.000
LF 3965736.310 1531196.863 4096000.000 2730667.000 4096000.000 4681143.000

δ = 0.95

T= 10
TH 0.27224 0.41269 0.45000 0.00409 0.01478 0.72823
PC 12.484 5.869 9.000 9.000 9.000 15.000
LF 6092.786 3354.498 8000.000 8000.000 8000.000 8000.000

T= 25
TH 0.03997 0.16696 0.45000 0.00228 0.00403 0.00780
PC 48.557 14.235 50.000 40.000 50.000 60.000
LF 5070.820 3519.871 8000.000 1231.000 8000.000 8000.000

Table A.9 – Properties of the distribution of the regularization parameters
with N = 100, σ2 = 1, σ2

η = 10 for 5000 replications.
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GMM GMM5 IVK TH PC LF GMM GMM5 IVK TH PC LF
δ = 0.50 θ = 0.95

T= 10
Med.bias -0.037 -0.050 -0.049 -0.024 -0.021 -0.022 -0.006 -0.010 -0.006 -0.004 0.003 -0.003
Med.abs 0.039 0.054 0.053 0.032 0.031 0.031 0.033 0.081 0.082 0.035 0.042 0.037
Iqr 0.050 0.078 0.075 0.052 0.054 0.053 0.065 0.165 0.165 0.071 0.083 0.073
Med.mse 0.001 0.003 0.003 0.001 0.001 0.001 0.001 0.007 0.007 0.001 0.002 0.001
Cov 0.509 0.861 0.849 0.480 0.402 0.454 0.714 0.949 0.953 0.652 0.451 0.611

T= 25
Med.bias -0.032 -0.025 -0.026 -0.015 -0.013 -0.014 -0.003 -0.003 0.000 -0.002 0.002 -0.002
Med.abs 0.032 0.030 0.027 0.018 0.018 0.018 0.019 0.046 0.031 0.024 0.030 0.025
Iqr 0.026 0.049 0.032 0.029 0.030 0.029 0.038 0.091 0.061 0.047 0.059 0.050
Med.mse 0.001 0.001 0.001 0.000 0.000 0.000 0.000 0.002 0.001 0.001 0.001 0.001
Cov 0.202 0.900 0.815 0.320 0.269 0.298 0.625 0.951 0.949 0.476 0.305 0.438

δ = 0.75 θ = 0.95

T= 10
Med.bias -0.052 -0.089 -0.074 -0.037 -0.031 -0.036 -0.013 -0.027 -0.006 -0.009 -0.003 -0.008
Med.abs 0.052 0.089 0.081 0.039 0.036 0.038 0.032 0.082 0.111 0.036 0.048 0.038
Iqr 0.047 0.086 0.110 0.052 0.055 0.053 0.063 0.161 0.222 0.072 0.095 0.075
Med.mse 0.003 0.008 0.007 0.001 0.001 0.001 0.001 0.007 0.012 0.001 0.002 0.001
Cov 0.329 0.706 0.849 0.450 0.359 0.428 0.701 0.939 0.954 0.706 0.451 0.665

T= 25
Med.bias -0.038 -0.035 -0.031 -0.018 -0.014 -0.017 -0.005 -0.006 0.000 -0.003 0.000 -0.003
Med.abs 0.038 0.036 0.032 0.019 0.018 0.019 0.020 0.045 0.042 0.026 0.035 0.027
Iqr 0.022 0.045 0.038 0.027 0.029 0.028 0.039 0.091 0.083 0.051 0.070 0.054
Med.mse 0.001 0.001 0.001 0.000 0.000 0.000 0.000 0.002 0.002 0.001 0.001 0.001
Cov 0.063 0.800 0.797 0.289 0.245 0.280 0.607 0.952 0.950 0.545 0.301 0.501

δ = 0.95 θ = 0.95

T= 10
Med.bias -0.074 -0.170 -0.153 -0.066 -0.057 -0.083 -0.029 -0.071 -0.055 -0.025 -0.016 -0.018
Med.abs 0.074 0.170 0.156 0.066 0.061 0.095 0.038 0.097 0.176 0.044 0.064 0.094
Iqr 0.045 0.109 0.206 0.058 0.078 0.172 0.065 0.165 0.352 0.081 0.127 0.186
Med.mse 0.005 0.029 0.024 0.004 0.004 0.009 0.001 0.009 0.031 0.002 0.004 0.009
Cov 0.122 0.308 0.828 0.320 0.272 0.337 0.624 0.905 0.957 0.737 0.433 0.585

T= 25
Med.bias -0.051 -0.058 -0.050 -0.041 -0.037 -0.043 -0.017 -0.022 -0.010 -0.014 -0.007 -0.014
Med.abs 0.051 0.058 0.052 0.042 0.042 0.044 0.024 0.049 0.081 0.043 0.087 0.053
Iqr 0.018 0.040 0.063 0.038 0.064 0.046 0.040 0.091 0.162 0.086 0.173 0.107
Med.mse 0.003 0.003 0.003 0.002 0.002 0.002 0.001 0.002 0.007 0.002 0.008 0.003
Cov 0.001 0.409 0.796 0.143 0.206 0.164 0.526 0.942 0.949 0.510 0.313 0.459

Table A.10 – Simulations with an exogenous covariate results with N = 50,
σ2 = 1, σ2

η = 1, σ2 = 1, ρ = 1 for 5000 replications.
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GMM GMM5 IVK TH PC LF GMM GMM5 IVK TH PC LF
δ = 0.87 θ = 0.02

Med.bias -0.1103 -0.0832 -0.0769 -0.0581 -0.0420 -0.0548 0.0252 0.0245 0.0279 0.0083 0.0031 0.0066
Med.abs 0.1103 0.0832 0.0774 0.0586 0.0500 0.0561 0.0268 0.0347 0.0398 0.0386 0.0626 0.0414
Iqr 0.0463 0.0627 0.0660 0.0636 0.0760 0.0661 0.0354 0.0595 0.0670 0.0769 0.1243 0.0822
Med.mse 0.0122 0.0069 0.0060 0.0034 0.0025 0.0031 0.0007 0.0012 0.0016 0.0015 0.0039 0.0017
Cov 0.0030 0.4208 0.5476 0.9510 0.8012 0.9214 0.4112 0.8798 0.8716 0.9994 0.9192 0.9984

Table A.11 – Simulations with an endogenous covariate results withN = 77,
T = 21, σ2 = 1, σ2

η = 1, σ2 = 1, ρ = 1 for 5000 replications.

A.2 Proofs.
Proof of Lemma 1.

(i)

tr[K] = 1
NT 3/2 tr[E[Z ′Z]]

= 1
NT 3/2

N∑
i=1

tr[E[Z ′iZi]]

= 1
T 3/2 tr[E[Z ′iZi]].

By construction the matrix E[Z ′iZi] is a block diagonal matrix which
is defined in the following way

E[Z ′iZi] = Diag[E[zi1z′i1], ..., E[zitz′it], ..., E[ziT−1z
′
iT−1]].

For any t, the matrix E[zitz′it] is of order t × t with diagonal elements
in the form of E[x2

is] for s = 1, 2, ...t. So

tr[K] = 1
T 3/2

T−1∑
t=1

tE[x2
it].

Now using the fact that xit = yit−1 and the autoregressive equation
defining the DPM model

E[y2
it−1] = V ar[yit−1] = V ar[wit−1 − µi]

= V ar[wit−1]− 2Cov[wit−1, µi] + V ar[µi].

By Assumption 3, we have Cov[wit−1, µi] = 0 because wi0 is inde-
pendent of µi so that

E[y2
it−1] = V ar[wit−1] + V ar[µi]

= σ2

1− δ2 +
σ2
η

(1− δ)2
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Now
E[x2

it] = E[y2
it−1]

= σ2

1− δ2 +
σ2
η

(1− δ)2 .

It follows that

tr[K] = 1
T 3/2

T−1∑
t=1

tE[x2
it]

= 1
T 3/2E[x2

it]
T−1∑
t=1

t

= 1
T 3/2E[x2

it]O(T 2)

= O(T 1/2).

(ii) For any symmetric matrix A = (aij) we have
tr[A2] =

∑
i,j

a2
i,j

So the trace of tr[K2] is given by the sum of the squares of all the
elements of the matrix K. By construction, we have

K = Diag[K1, ..., Kt, ...KT−1]
where for a given t, Kt =

∑
i

E[zitz′it/NT 3/2] = E[zitz′it]/T 3/2. Let us

denote by Kab,t the element (a, b) of the t× t matrix Kt. We have

Kab,t = 1
T 3/2E[xiaxib]

= 1
T 3/2

(
σ2

(1− δ2)δ
|a−b| +

σ2
η

(1− δ)2

)
with 1 ≤ a, b ≤ t.
We now calculate tr[K2

t ] by summing the squares of the elements of
Kt.

tr[KtKt] =
t∑

a,b=1
K2
ab,t

=
t∑

a=1
K2
aa,t +

t∑
a6=b=1

K2
ab,t.
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We have
t∑

a=1
K2
aa,t =

t∑
a=1

1
T 3

(
σ2

(1− δ2) +
σ2
η

(1− δ)2

)2

= t

T 3

(
σ2

(1− δ2) +
σ2
η

(1− δ)2

)2

= O

(
t

T 3

)
t∑

a6=b=1
K2
ab,t = 1

T 3

t∑
a6=b=1

(
σ2

(1− δ2)δ
|a−b| +

σ2
η

(1− δ)2

)2

= 1
T 3

σ4

(1− δ2)2

t∑
a6=b=1

δ2(a−b) + 2
T 3

σ2

(1− δ2)
σ2
η

(1− δ)2

t∑
a6=b=1

δ|a−b|

+ 1
T 3

t∑
a6=b=1

σ4
η

(1− δ)4

But
t∑

a6=b=1
δ2(a−b) = 2

t∑
a=2

a−1∑
b=1

δ2b

= 2
t∑

a=2

[
1− δ2a

(1− δ2) − 1
]

= 2
(1− δ2)

t∑
a=2

[
δ2 − δ2a

]

= 2
(1− δ2)

[
t∑

a=2
δ2 −

t∑
a=2

δ2a
]

= 2
(1− δ2)

[
δ2(t− 1)−

t∑
a=2

δ2a
]

= 2
(1− δ2)

[
δ2(t− 1)−

(1− δ2t+2

(1− δ2) − 1− δ2
)]

= O
(
t
)

Similarly we have
t∑

a6=b=1
δ(a−b) = O

(
t
)
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Moreover
t∑

a6=b=1

σ4
η

(1− δ)4 = O
(
t2
)

From the three last results we have
t∑

a6=b=1
K2
ab,t = O

( t

T 3

)

and then

tr[K2
t ] =

t∑
a,b=1

K2
ab,t

= O
( t

T 3

)
+O

( t2
T 3

)
= O

(
t2

T 3

)
.

And finally,

tr[K2] =
T−1∑
t=1

tr[KtKt] =
T−1∑
t=1

O
(
t2

T 3

)
= O(1).

Preliminary results for the proof of Proposition 1
We begin by three lemmas which establish some preliminary useful results.
We essentially show how to adapt some results of Alvarez and Arellano
(2003)[AA(2003) hereafter] in our case. We denote by Et(.) the expectation
conditional on ηi and

{
vi(t−j)

}∞
j=1

.
Lemma 2. Let us denote by dt(α) the N × 1 vectors containing the diagonal
elements of Mα

t , κ3 and κ4 be the third and fourth-order cumulants of vit.
Under assumptions 1-3 :

(i) tr(Mα
t ) ≤ t,

(ii) V ar(v′tMα
t vt) ≤ (2σ4 + κ4)tr[Mα2

t ] ≤ (2σ4 + κ4)t,

(iii) V ar(v′tMα
t vt+j)= σ4tr(Mα

t ) ≤ σ4t, for j > 0,
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(iv) Cov(v′tMα
t vt+j, v

′
t+jM

α
t+jvt+j)≤ κ3E

(
dt+j (α)′Mα

t vt
)
≤ κ3σ

√
t+ j (tr (Mα2

t ))1/2,
for j > 0.

Proof of Lemma 2.

(i) The t × t symmetric matrix Z ′tZt/NT 3/2 can be decomposed as PtDtP
′
t

with PtP ′t = It the t-dimensional identity matrix andDt = diag(λt1, λt2, ..., λtt).
The regularized inverse of Dt is Dt(α)=diag( q(α,λ

t
1)

λt1
, .....,

q(α,λtt)
λtt

). If we
denote by (Z ′tZt/NT 3/2)α the regularized inverse of (Z ′tZt/NT 3/2), then

tr(Mα
t ) = tr[Zt(Z ′tZt/NT 3/2)αZ ′t]/NT 3/2 = tr[PtDtP

′
tPtD(α)P ′t ]

= tr[DtDt(α)] =
t∑
l=1

q(α, λt2l ).

The result follows from 0 ≤ q(α, λt2l ) ≤ 1.

(ii)

Et(v′tMα
t vtv

′
tM

α
t vt) =

∑
i

∑
j

∑
k

∑
l

m(α)tijm(α)tklEt(vitvjtvktvlt)

= (3σ4 + κ4)d′t(α)dt(α) + σ4∑
i

∑
k 6=i

m(α)tiim(α)tkk

+ 2σ4∑
i

∑
j 6=i

m(α)tijm(α)tij

= κ4d
′
t(α)dt(α) + σ4tr(Mα

t )tr(Mα
t ) + 2σ4tr(Mα

t M
α
t )

where m(α)tij is the (i, j) element of the matrix Mα
t . Moreover,

Et(v′tMα
t vt) = tr[Mα

t Et(vtv′t)] = σ2tr(Mα
t ).

So that,

vart(v′tMα
t vt) = Et(v′tMα

t vtv
′
tM

α
t vt)− Et(v′tMα

t vt)Et(v′tMα
t vt)

= κ4d
′
t(α)dt(α) + 2σ4tr(Mα

t M
α
t ).

By definition d′t(α)dt(α)=∑
im(α)t2ii = tr(Mα2

t )≤ t so that vart(v′tMα
t vt)

≤ (κ4 + 2σ4)t and the result follows by the law of total variance.
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(iii) By the law of iterated expectations, the expectation of v′tMα
t vt+j is null

for j > 0, so that V ar(v′tMα
t vt+j) = E(v′tMα

t vt+jv
′
t+jM

α
t vt). Conditio-

ning on t, it follows that

Et(v′tMα
t vt+jv

′
t+jM

α
t vt) = Et[tr(Mα

t vt+jv
′
t+jM

α
t vtv

′
t)]

= tr[Mα
t Et(vt+jv′t+j)Mα

t Et(vtv′t)]
= σ4tr[Mα2

t ]
≤ σ4t.

The result of (iii) follows by taking the expectation of both sides of the
inequality.

(iv) Cov(v′tMα
t vt+k, v

′
t+kM

α
t+kvt+k) =E(v′t+kMα

t+kvt+kv
′
t+kM

α
t vt)

Et+k(v′t+kMα
t+kvt+kv

′
t+kM

α
t vt) = Et+k(v′t+kMα

t+kvt+kv
′
t+k)Mα

t vt

=
∑
l

∑
i

∑
j

m(α)t+kij Et+k(vit+kvjt+kvlt+k)Mα
t vt

= κ3d
′
t+k(α)Mα

t vt

where the last equality comes from Et+k(vit+kvjt+kvlt+k) =κ3 if l = i = j
and 0 otherwise. We have just proved that E(v′t+kMα

t+kvt+kv
′
t+kM

α
t vt) =

E(κ3d
′
t+k(α)Mα

t vt).
Moreover, by Cauchy-Schwarz inequality,

(d′t+k(α)Mα
t vt)2 ≤ (d′t+k(α)dt+k(α))(v′tMα2

t vt)

Since d′t+k(α)dt+k(α) ≤ tr[Mα2
t+k] ≤ t+ k and E(v′tMα2

t vt) ≤ σ2tr[Mα2
t ]

≤ σ2t, by taking expectation of the previous inequality, we have
E[(d′t+k(α)Mα

t vt)2] ≤ [(t+ k)σ]2tr[Mα2
t ]. The result (iv) follows by no-

ting that [E(d′t+k(α)Mα
t vt)]2 ≤ E

[
(d′t+k(α)Mα

t vt)2
]
.

Lemma 3. Let ṽtT = 1
T−t (φT−tvt + ...+ φ1vT−1) and φj = 1−δj

1−δ . If N →
∞, T →∞ and α→ 0, then

(i)
1
NT

T−1∑
t=1

E(w′t−1[Mt −Mα
t ]wt−1) = o(1),
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(ii)
1
NT

T−1∑
t=1

E(w′t−1[Mt − (Mα
t )2]wt−1) = o(1).

(iii) Let us define v̄tT =(vt + ....+ vT )/(T − t+ 1). If lnT/αNT → 0, then
V ar (Υα

21NT )→ 0 and V ar (Υα
22NT )→ 0 where

Υα
21NT = 1√

NT

T−1∑
t=1

ṽ′tTM
α
t vt, (A.1)

Υα
22NT = − 1√

NT

T−1∑
t=1

ṽ′tTM
α
t v̄tT . (A.2)

Moreover,

V

[
1√
NT

T−1∑
t=1

ctṽ
′
tTM

α
t v
∗
t

]
= O

(
lnT
αNT

)

Proof of Lemma 3.

(i) Let us define W = (w′0, ......, w′T−2)′, then

1
NT

T−1∑
t=1

w′t−1[Mt −Mα
t ]wt−1 = 1

NT
W ′Z[K−1

N −Kα
N ]Z ′W/NT 3/2.

By eigenvalues-eigenvectors decomposition, we can writeK−1
N = P ′ND

−1
N PN

and Kα
N = P ′ND

α
NPN with Dα

N = diag[ q̂1
λ̂1
...... q̂q̄

λ̂q̄
] where q̂l

λ̂l
is a notation

for q(α, λ̂2
l )/λ̂l. Let UN = PNZ

′W/
√
NT 3/4 a q̄ × 1 vector, then

1
NT

W ′Z[K−1
N −Kα

N ]Z ′W/NT 3/2 = 1
NT

W ′ZP ′N [D−1
N −Dα

N ]PNnZ ′W/NT 3/2

= 1
NT

U ′N [D−1
N −Dα

N ]Un

= 1
NT

q̄∑
l=1

(1− q̂l)
U2
N,l

λ̂l

≤ supλ̂l(1− q̂l)
1
NT

q̄∑
l=1

U2
N,l

λ̂l

≤ sup
λ̂l

(1− q̂l)
1
NT

W ′ZK−1
N Z ′W/NT 3/2.
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As q̂l is between 0 and 1 so that sup
λ̂l

(1−q̂l) is bounded by 1. Moreover,

1
NT

E
(
W ′ZK−1

N Z ′W/NT 3/2
)

= 1
NT

E

(
T−1∑
t=1

w′t−1Mtwt−1

)
<∞.

We have just proved that

1
NT

E

[
T−1∑
t=1

w′t−1[Mt −Mα
t ]wt−1

]
<∞.

Following Groetsch (1993), we may in passing to the limit as α → 0,
interchange the limit and summation, giving

lim
α→0

1
NT

E

[
T−1∑
t=1

w′t−1[Mt −Mα
t ]wt−1

]
= 0.

(ii) The proof of this result uses the same argument as before noting that

E

(
1
NT

T−1∑
t=1

w′t−1[Mt −Mα2
t ]wt−1

)
≤ E

sup
λ̂l

(1− q̂2
l )

1
NT

T−1∑
t=1

w′t−1Mtwt−1

 <∞.

(iii)

V ar(Υα
21NT ) = 1

NT
V ar

[
T−1∑
t=1

1
T − t

v′tM
α
t (φT−tvt+....+φ1vT−1)

]
= aα0NT+aα1NT .

where aα0NT and aα1NT have the same form as a0NT and a1NT of AA(2003) but
with Mα

t instead of Mt. First, consider aα0NT .

aα0NT = 1
NT

T−1∑
t=1

1
(T − t)2 [φ2

T−tV ar(v′tMα
t vt) + ...+ φ2

1V ar(v′tMα
t vT−1)].

Using Lemma 2 (i)-(iii), we can note that

V art(v′tMα
t vt) ≤ (κ4 + 2σ4)tr[Mα2

t ]
so that

V ar(v′tMα
t vt) = EV art(v′tMα

t vt) + V Et(v′tMα
t vt) ≤ (κ4 + 2σ4)Etr[Mα2

t ].
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Moreover, for j > 0, we have

V ar(v′tMα
t vt+j) = σ4Etr[Mα2

t ].

Hence,

aα0NT = 1
NT

T−1∑
t=1

1
1− δ2

Etr[Mα2
t ]

(T − t)2 [κ4 + 2σ4 + (T − t− 1)σ4]

≤ C

NT

T−1∑
t=1

Etr[Mα2
t ]

(T − t)

≤ C

NT

T−1∑
t=1

Etr[Mα
t ]

(T − t)

≤ C

NT

T−1∑
t=1

Etr[Mα
t ]

for some constant C > 0 and we can conclude that

aα0NT = O
( 1
αNT

)
.

Now looking at aα1NT , we have

aα1NT = 2
NT

T−2∑
t=1

[
T−t−1∑
j=1

φ2
T−t−jcov(v′tMα

t vt+j, v
′
t+jM

α
t+jvt+j)

(T − t− j)(T − t)

]

Using Lemma 2 (iv), we have

|aα1NT | =

∣∣∣∣∣∣ 2
NT

T−2∑
t=1

[
T−t−1∑
jk=1

φ2
T−t−jcov(v′tMα

t vt+j, v
′
t+jM

α
t+jvt+j)

(T − t− j)(T − t)

]∣∣∣∣∣∣
≤ 1

(1− δ)2
2
NT

∣∣∣∣∣∣
T−2∑
t=1

1
(T − t)

[
T−t−1∑
j=1

κ3E(dt+j (α)Mα
t vt)

T − t− j

]∣∣∣∣∣∣
≤ σ2

(1− δ)2
2κ3

NT

T−2∑
t=1

√
EtrMα2

t

(T − t)

[
T−t−1∑
j=1

√
t+ j

T − t− j

]

≤ κ3σ

NT

T−2∑
t=1

Etr[Mα
t ]O (lnT )
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so that
aα1NT = O

(
lnT/(αNT )

)
This allows us to conclude that

V ar(Υα
21NT ) = O

(
lnT/(αNT )

)

We now look at the term Υα
22NT .

V ar(Υα
22NT ) = bα0NT + bα1NT .

where using arguments similar to those of AA (2003) (A72) and (A73) and
Okui (2009),

bα0NT = 1
NT

T−1∑
t=1

V ar(ṽ′tTMα
t v̄tT )

= O

(
1
NT

T−1∑
t=1

Etr(Mα2
t )

(T − t)2

)

= O

(
1

αNT

)

and

|bα1NT | ≤
2
NT

∑
s

∑
t>s

|cov(ṽ′tTMα
t v̄tT , ṽ

′
sTM

α
s v̄sT )|

= 1
NT

O

(∑
s

∑
t>s

(Etr[Mα2
t ])1/2

T − t
(Etr[Mα2

s ])1/2

T − s

)

But, for s < t
Etr[Mα2

t ] ≤ Etr[Mα2
s ]

so that

|bα1NT | ≤
C

NT

T−1∑
t=1

Etr[Mα2
t ]

T − t

T−1∑
s=1

1
T − s

= O

(
ln(T )
αNT

)
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and finally

V ar(Υα
22NT ) = O

(
ln(T )
αNT

)
.

To end the proof of (iii), we note that

1√
NT

T−1∑
t=1

ctṽ
′
tTM

α
t v
∗
t = 1√

NT

T−1∑
t=1

ṽ′tTM
α
t vt −

1√
NT

T−1∑
t=1

ṽ′tTM
α
t v̄tT

because v∗t = (vt − vtT ) /ct. Hence,

V ar

(
1√
NT

T−1∑
t=1

ctṽ
′
tTM

α
t v
∗
t

)
= V ar(Υα

21NT )+V ar(Υα
22NT )+2Cov(Υα

21NT ,Υα
22NT )

Using Cauchy-Schwarz inequality, we have

V ar

[
1√
NT

T−1∑
t=1

ctṽ
′
tTM

α
t v
∗
t

]
≤ V ar(Υα

21NT ) + V ar(Υα
22NT )

+ 2
(
V ar(Υα

21NT )
)1/2(

V ar(Υα
22NT )

)1/2

= O

(
ln(T )
αNT

)
.

and provided that ln(T )/αNT → 0, (iii) holds.

Lemma 4. For a matrix A, let us define the norm ||A||2 = tr(AA′). If
Assumptions 1-3 are satisfied, then

(i) ||KN −K|| = Op(1/
√
N),

(ii) Etr[Mα] = O(1/α)

(iii)

µαNT ≡ 1√
NT

E

 T−1∑
t=1

ctṽ
′
tTM

α
t v
∗
t


= σ2

1− δ
1√
NT

T−1∑
t=1

trEMα
t

(
φT−t
T − t

− φT−t+1

T − t+ 1

)

= O

(
1

α
√
NT

)
.
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Proof of Lemma 4.

(i) Let us define KN,t and Kt as the t− th block of the matrix KN and K.
E||KN −K||2 = Etr[(KN −K)2]

= E
T−1∑
t=1

tr[(KNt −Kt)2].

But for a given t, tr[(KNt − Kt)2] is the sum of the squares of the
elements of (KNt −Kt). By definition of the matrix KNt and Kt, the
(a, b) element of KNt −Kt is

∑
i xiaxib
NT 3/2 −

∑
iE[xiaxib]
NT 3/2

Hence,
E||KN −K||2 = Etr[(KN −K)2]

= E
T−1∑
t=1

tr[(KNt −Kt)2]

=
T−1∑
t=1

t∑
a,b

E

[∑
i xiaxib
NT 3/2 −

∑
iE[xiaxib]
NT 3/2

]2

= 1
N2T 3

T−1∑
t=1

t∑
a,b

V ar

[∑
i

xiaxib

]

= 1
NT 3

T−1∑
t=1

t∑
a,b

V ar

[
xiaxib

]
.

But

V ar

[
xiaxib

]
≤ E[x2

iax
2
ib]

≤ E[x4
ia]1/2E[x4

ib]1/2.
We now prove that E[x4

ia] < ∞. From xia = yi,a−1 = wi,a−1 + µi with
µi = ηi/(1− δ) we have
E[x4

ia] = E[(wi,a−1 + µi)4]
= E[w4

i,a−1 + 4w3
i,a−1µi + 6w2

i,a−1µ
2
i + 4wi,a−1µ

3
i + µ4

i ]
= E[w4

i,a−1] + 4E[w3
i,a−1µi] + 6E[w2

i,a−1µ
2
i ] + 4E[wi,a−1µ

3
i ] + E[µ4

i ].
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• E[w4
i,a−1] is bounded because wi,a−1 is an AR(1) and we have from

Assumption 1 that E[v4
it] <∞.

• E[µ4
i ] is bounded from assumption 3 (ηi has fourth moments).

• E[w2
i,a−1µ

2
i ] is bounded from Cauchy-Schwarz’s inequality and the

fact that E[w4
i,a−1] and E[µ4] are bounded.

• As an AR(1), wi,a−1 can be written as the sum of the vit. From
Assumption 1, ηi is independent of the vit so that E[w3

i,a−1µi] =
E[wi,a−1µ

3
i ] = 0.

We have just proved that E[x4
ia] <∞. Hence,

E||KN −K||2 = 1
NT 3

T−1∑
t=1

t∑
a,b

V ar

[
xiaxib

]

≤ 1
NT 3

T−1∑
t=1

t∑
a,b

E[x4
ia]1/2E[x4

ib]1/2

≤ E[x4
ia]

NT 3

T−1∑
t=1

t∑
a,b

1

≤ E[x4
ia]

NT 3

T−1∑
t=1

t2 = O

(
1
N

)
.

(ii)

Etr[Mα] = Etr[Z[Z ′Z/NT 3/2]αZ ′]/NT 3/2

= Etr[′[Z ′Z/NT 3/2]α][Z ′Z/NT 3/2]
= Etr[Kα

NKN ]

= E

[ q̄∑
j=1

qj(α, λ̂j
2)
]

where λ̂j are the eigenvalues of the matrix KN . From Kress (1999) and
Carrasco et al. (2007, Section3.3), we have that for the three regula-
rizations, q(α, λ2) ≤ Cλ2/α for some positive constant C. Then we
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have

E

[ q̄∑
j=1

qj(λ̂2
j , α)

]
≤ C

α
E

[ q̄∑
j=1

λ̂2
j

]

≤ C

α
Etr[K2

N ]

≤ C

α
E||KN ||2.

We now show that E||KN ||2 is bounded.
E||KN ||2 = E||KN −K +K||2

≤ 2E||KN −K||2 + 2E||K||2 = O
(
1/N

)
+O

(
1
)

= O
(
1
)
.

where E||KN−K||2 = O(1/N) comes from Lemma 1 (i) and E||K||2 =
O(1) comes from Lemma 1 (ii).

(iii) By the law of iterated expectations and Equation (A47) in AA (2003),
we have

E(ctṽ′tTMα
t v
∗
t ) = E(tr[Mα

t v
∗
t ctṽ

′
tT ])

= tr(E[Mα
t ctv

∗
t ṽ
′
tT ])

= tr(E[Mα
t ctEt(v∗t ṽ′tT )])

= σ2tr[E(Mα
t )]

1− δ

 φT−t
T − t

− φT−t+1

T − t+ 1

.
Hence

E

 1√
NT

T−1∑
t=1

ctṽ
′
tTM

α
t v
∗
t

 = σ2

1− δ
1√
NT

T−1∑
t=1

tr(E[Mα
t ])
 φT−t
T − t

− φT−t+1

T − t+ 1

.
But∣∣∣∣∣∣ σ2

1− δ
1√
NT

T−1∑
t=1

E[tr[Mα
t ]]
 φT−t
T − t

− φT−t+1

T − t+ 1

∣∣∣∣∣∣ ≤ σ2

1− δ
1√
NT

∣∣∣∣∣∣
T−1∑
t=1

Etr[Mα
t ]

∣∣∣∣∣∣
≤ σ2

1− δ
1√
NT

∣∣∣∣∣∣Etr[Mα]

∣∣∣∣∣∣
≤ σ2

1− δ
1√
NT

∣∣∣∣∣∣Etr[Mα]

∣∣∣∣∣∣.
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The result (iii) follows from (ii).

Proof of Proposition 1.
Proof of consistency.

δ̂α − δ =
 T−1∑

t=1
x∗
′

t M
α
t v
∗
t

 T−1∑
t=1

x∗
′

t M
α
t x
∗
t

−1

.

According to Equation (A42) of AA(2003), we can decompose the numerator
as

1√
NT

T−1∑
t=1

x∗
′

t M
α
t v
∗
t = 1√

NT

T−1∑
t=1

ψtw
′
t−1M

α
t v
∗
t −

1√
NT

T−1∑
t=1

ctṽ
′
tTM

α
t v
∗
t (A.3)

using wt−1 = yt−1 − µ with µ = η/(1− δ) and ct =
√

(T − t)/(T − t+ 1),

x∗t = ψtwt−1 − ctṽtT ,

ψt = ct(1−
δφT−t
T − t

),

ṽtT = (φT−tvt + ....+ φ1vT−1)
T − t

,

and
φj = 1− δj

1− δ .

The expectation of the first term of the right side of (A.3) is null so that

E

 1√
NT

T−1∑
t=1

x∗
′

t M
α
t v
∗
t

 = −E
 1√

NT

T−1∑
t=1

ctṽ′tTM
α
t v
∗
t

. (A.4)

It follows from Lemma 4 (iii) that

E

 1√
NT

T−1∑
t=1

x∗
′

t M
α
t v
∗
t

 = O

 1
α
√
NT

.
which is o(1) if α

√
NT →∞. We now look at the variance of (x∗′Mαv∗)/

√
NT .

Following the decomposition (A49) in AA(2003) we can write :

1√
NT

x∗
′
Mαv∗ =

(
1√
NT

t=T−1∑
t=1

w′t−1M
α
t vt−Υα

11NT−Υα
12NT

)
−
(

Υα
21NT−Υα

22NT

)
(A.5)
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where Υα
21NT and Υα

22NT are defined in Equations (A.1) and (A.2) respectively
and

Υα
11NT = 1√

NT

T−1∑
t=1

w′t−1M
α
t v̄tT ,

Υα
12NT = 1√

NT

T−1∑
t=1

ctδφT−t
T − t

w′t−1M
α
t v
∗
t .

We have

V ar

(
1√
NT

T−1∑
t=1

w′t−1M
α
t vt

)
= 1
NT

T−1∑
t=1

var(w′t−1M
α
t vt) = σ2

NT

T−1∑
t=1

E(w′t−1M
α2
t wt−1).

= σ2

NT

T−1∑
t=1

E(w′t−1(Mα2
t −Mt)wt−1) + σ2

NT

T−1∑
t=1

E(w′t−1Mtwt−1).

From AA(2003), σ2

NT

T−1∑
t=1

E(w′t−1Mtwt−1) −→ σ4

(1−δ2) .

By Lemma 3 (ii), σ2

NT

T−1∑
t=1

E(w′t−1[Mα
t M

α
t −Mt]wt−1) = o(1) and this allows

us to conclude that V ar( 1√
NT

t=T−1∑
t=1

w′t−1M
α
t v
∗
t ) converges to σ4

(1−δ2) .

Now we give the order of magnitude of Υα
11NT , Υα

12NT , Υα
21NT , and Υα

22NT .

V ar(Υα
11NT ) = 1

NT

T−1∑
t=1

T−1∑
s=1

E(w′t−1M
α
t v̄tT v̄sTM

α
s ws−1).

For t ≥ s,

E(w′t−1M
α
t Et(v̄tT v̄sT )Mα

s w
′
s−1) = σ2

T − s+ 1E(w′t−1M
α
t M

α
s ws−1).

E(w′t−1M
α
t M

α
s ws−1) ≤ [E(w′t−1M

α2
t wt−1)] 1

2 [E(w′s−1M
α2
s ws−1)] 1

2

≤ [E(w′t−1Mtwt−1)] 1
2 [E(w′s−1Msws−1)] 1

2

≤ [E(w′0M1w0)] 1
2 [E(w′0M1w0)] 1

2

≤ E(w′0M1w0).
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By similar calculations as in AA(2003), we have that Var( Υα
11NT ) −→ 0.

Next, following (A60) from AA(2003), we have

V ar(Υα
12NT ) = 1

NT
var(

T−1∑
t=1

ctδφT−t
T − t

w′t−1M
α
t v
∗
t )

= 1
NT

T−1∑
t=1

c2
t δ

2φ2
(T−t)

(T − t)(T − t+ 1)var(w
′
t−1M

α
t v
∗
t )

= σ2

NT

T−1∑
t=1

c2
t δ

2φ2
(T−t)

(T − t)(T − t+ 1)E(w′t−1M
α2
t wt−1)

≤ σ2

NT

T−1∑
t=1

c2
t δ

2φ2
(T−t)

(T − t)(T − t+ 1)E(w′t−1Mtwt−1) −→ 0.

The last inequality comes from the fact thatMt−Mα
t M

α
t is non-negative de-

finite so that E(w′t−1M
α
t M

α
t wt−1) ≤ E(w′t−1Mtwt−1). Moreover, from Lemma

3(iii), the variance of Υα
21NT −Υα

22NT goes to 0 if lnT/αNT → 0.

Summing up, we have that V ar( 1√
NT

T−1∑
t=1

w′t−1M
α
t v
∗
t ) goes to σ4

(1−δ2) , and each

of Υα
11NT , Υα

12NT , Υα
21NT , Υα

22NT have variance going to zero, so that the va-

riance of 1√
NT

T−1∑
t=1

x∗
′

t M
α
t v
∗
t converges to σ4

(1−δ2) as N and T go to infinity, α

goes to zero and ln(T )/αNT → 0. The expectation of (x∗′Mαv∗)/
√
NT goes

to zero and its variance has a finite limit so that (x∗′Mαv∗)/
√
NT converges

in mean square to zero and then in probability.
Turning to the denominator, we have :

1
NT

x∗
′
Mαx∗ = 1

NT

T−1∑
t=1

x∗
′

t M
α
t x
∗
t

= 1
NT

T−1∑
t=1

ψ2
tw
′
t−1M

α
t wt−1 −

2
NT

T−1∑
t=1

ctψtw
′
t−1M

α
t ṽtT + 1

NT

T−1∑
t=1

c2
t ṽ
′
tTM

α
t ṽtT .

We can write the first term in the following way :

1
NT

T−1∑
t=1

ψ2
tw
′
t−1M

α
t wt−1 = 1

NT

T−1∑
t=1

ψ2
tw
′
t−1Mtwt−1−

1
NT

T−1∑
t=1

ψ2
tw
′
t−1(Mt−Mα

t )wt−1
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From Lemma C2 of AA(2003) and ψ2
t = O (1− 1/(T − t)), when T goes to

infinity and regardless of whether N goes to infinity or not, we have

1
NT

T−1∑
t=1

ψ2
tw
′
t−1Mtwt−1

m.s.−−→ σ2

(1− δ2) .

By Lemma 3(i), 1
NT

T−1∑
t=1

w′t−1[Mt−Mα
t ]wt−1 = op(1). As a result, similarly to

AA(2003), we have that the limit of 1
NT

T−1∑
t=1

ψ2
tw
′
t−1M

α
t wt−1 is σ2

(1−δ2) .

2
NT

T−1∑
t=1

ctψtw
′
t−1M

α
t ṽtT is identical to Υα

11NT and is op(1).

Looking at (
T−1∑
t=1

c2
t ṽ
′
tTM

α
t ṽtT )/NT and using the fact that E[c2

t ṽitT ] is boun-

ded, we have that

E

 1
NT

T−1∑
t=1

c2
t ṽ
′
tTM

α
t ṽtT

 = 1
NT

T−1∑
t=1

c2
tE{tr[Mα

t ]Et(ṽ′tT ṽtT )}

= 1
NT

T−1∑
t=1

c2
tE
[
tr[Mα

t ]Et(ṽ2
itT )

]

≤ C

NT
E

 T−1∑
t=1

[tr(Mα
t )]
 = O

 1
αNT


where the last equality comes from Lemma 4 (ii). By Markov’s inequality,

1
NT

T−1∑
t=1

c2
t ṽ
′
tTM

α
t ṽtT = O

(
1

αNT

)
(A.6)

which is o(1) if α
√
NT →∞.

This ends the proof that (x∗′Mαx∗)/NT tends to σ2

(1−δ2) in probability,
hence this term is bounded. Summing up, we have that (x∗′Mαv∗)/NT
converges to 0 in probability and (x∗′Mαx∗)/NT is bounded so that the
regularized estimator is consistent.
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Proof of the asymptotic normality.
From (A.4) and Lemma 4(iii), we have

µαNT = E((x∗′Mαv∗)/
√
NT ) = σ2

1− δ2
1√
NT

T−1∑
t=1

E[tr(Mα
t )]
 φT−t
T − t

− φT−t+1

T − t+ 1

.
From (A.5) and since the variances of Υα

11NT , Υα
12NT , Υα

22NT and Υα
21NT go

to zero, we obtain

1√
NT

T−1∑
t=1

x∗
′

t M
α
t v
∗
t − µαNT = 1√

NT

T−1∑
t=1

w′t−1M
α
t vt + op(1).

The first term of the right hand side can be rewritten as

1√
NT

T−1∑
t=1

w′t−1M
α
t vt = 1√

NT

T−1∑
t=1

w′t−1Mtvt −
1√
NT

T−1∑
t=1

w′t−1[Mt −Mα
t ]vt

Let us denote h = 1√
NT

T−1∑
t=1

w′t−1[Mt −Mα
t ]vt. By the law of iterated expec-

tations, E(h) = 0. V ar(h) = σ2

NT

T−1∑
t=1

E(w′t−1[Mt −Mα
t ]2wt−1). By Lemma 3

(i), we have V ar(h) = o(1) so that h = op(1).

From AA(2003), 1√
NT

T−1∑
t=1

w′t−1Mtvt
d−→ N(0, σ2

1− δ2 ) and we proved that (x∗′Mαx∗)/NT

tends to σ2

(1−δ2) in probability, so that by Slutsky’s theorem(
x∗
′
Mαx∗

NT

)−1 [ 1√
NT

x∗
′
Mαv∗ − µαNT

]
d−→ N(0, 1− δ2)

or
√
NT (δ̂α − δ)−

(
x∗
′
Mαx∗

NT

)−1

µαNT
d−→ N(0, 1− δ2)

From Lemma 4 (iii), µαNT = o(1), hence the bias vanishes and this ends the
proof of asymptotic normality.

Preliminary results for the proof of Proposition 2
Let

∆α = 1
NT

T−1∑
t=1

ψ2
tE[w′t−1(I −Mα

t )2wt−1].

Lemma 5. If assumptions 1-3 are satisfied, then
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(i) ∆α = o(1),

(ii) 1√
NT

T−1∑
t=1

ψtw
′
t−1(I −Mα

t )v∗t = Op(∆1/2
α ),

(iii)

V

(
1
NT

T−1∑
t=1

ψ2
t [w′t−1M

α
t wt−1]

)
= O

 1
NT

.
(iv)

1
NT

T−1∑
t=1

ctψtw
′
t−1M

α
t ṽtT = Op

 1√
NT

.

(v) H =
T−1∑
t=1

ψ2
tE[w′t−1wt−1]/NT = σ2

1− δ2

T−1∑
t=1

ψ2
t

T
= O(1) and h =

T−1∑
t=1

ψtw
′
t−1v

∗
t /
√
NT =

Op(1).

Proof of Lemma 5.

(i) Noting that ψ2
t ≤ 1, this term can be omitted in the proof.

1
NT

T−1∑
t=1

E[w′t−1(I −Mα
t )2wt−1] = 1

NT

T−1∑
t=1

E[w′t−1(I − 2Mα
t +Mα2

t )wt−1]

= 1
NT

T−1∑
t=1

E[w′t−1(I −Mt)wt−1]

+ 2 1
NT

T−1∑
t=1

E[w′t−1(Mt −Mα
t )wt−1]

− 1
NT

T−1∑
t=1

E[w′t−1(Mt −Mα2
t )wt−1].

From Equation (A86) in AA(2003), we have

1
NT

T−1∑
t=1

E[w′t−1(I −Mt)wt−1] = O

(
log(T )
T

)
= o(1).

The last two terms are also o(1) using results from Lemma 3(i) and
(ii).
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(ii) The expectation of the term is 0 and its variance is

V ar

 1√
NT

T−1∑
t=1

ψtw
′
t−1(I −Mα

t )v∗t

 = σ2∆α

and the result follows from Markov’s inequality.

(iii) From Equations (A40) and (A41) of AA(2003), we have V ar
(
T−1∑
t=1

w′t−1Mtwt−1/NT

)
=

O (1/NT ) . We can use the same proof as in AA to establish our result
given that ψt ≤ 1 and Mα

t has eigenvalues smaller than or equal to 1.

(iv)

E

 1
NT

T−1∑
t=1

ctψtw
′
t−1M

α
t ṽtT

 = 0.

Now for the variance, note that

V ar

 1
NT

T−1∑
t=1

ctψtw
′
t−1M

α
t ṽtT

 = 1
N2T 2

T−1∑
t=1

T−1∑
s=1

c2
tψ

2
tE[w′t−1M

α
t ṽtT ṽ

′
sTM

α
s ws−1]

For t ≥ s,

E(w′t−1M
α
t ṽtT ṽ

′
sTM

α
s ws−1) = E(w′t−1M

α
t Et(ṽtT ṽ′sT )Mα

s ws−1)

But

Et(ṽtT ṽ′sT ) = σ2

(T − t)(T − s) [φ2
T−s + ....+ φ2

1] ≤ σ2

(T − t)

so that

E(w′t−1M
α
t ṽtT ṽ

′
sTM

α
s ws−1) ≤ σ2

(T − t)E(w′t−1M
α
t M

α
s ws−1)

Now by Cauchy-Schwarz inequality’s inequality

E(w′t−1M
α
t M

α
s ws−1) ≤ [Ew′t−1M

α2
t w′t−1]1/2[Ew′s−1M

α2
s w′s−1]1/2
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Then,

E(w′t−1M
α
t ṽtT ṽ

′
sTM

α
s ws−1) ≤ σ2

(T − t) [Ew′t−1M
α
t M

α
t w
′
t−1]1/2[Ew′s−1M

α
sM

α
s w
′
s−1]1/2

≤ σ2

(T − t) [Ew′t−1M
α
t w
′
t−1]1/2[Ew′s−1M

α
s w
′
s−1]1/2

≤ σ2

(T − t) [Ew′t−1Mtw
′
t−1]1/2[Ew′s−1Msw

′
s−1]1/2

≤ σ2

(T − t)E(w′0M1w0) ≤ σ2N

(T − t)E(w2
i0).

Hence

V ar

 1
NT

T−1∑
t=1

ctψtw
′
t−1M

α
t ṽtT

 ≤ σ2

(NT 2)E(w2
i0){( 1

T − 1) + ...+ 1
2

+ 2(T − 2)
T − 1 + ...+ 2

1}

= O( T

NT 2 ) = O( 1
NT

).

so that (iv) holds by Markov’s Inequality.

(v)

H = 1
NT

T−1∑
t=1

ψ2
tE[w′t−1wt−1]

= 1
T

T−1∑
t=1

ψ2
tE[w2

i,t−1]

= σ2

1− δ2
1
T

T−1∑
t=1

ψ2
t

and the result follows from the fact ∑T−1
t=1 ψ

2
t /T → 1.

Regarding h, we have E(h) = 0 and V ar(h) = σ2H so that h = Op(1)
since H = O(1).

For completeness, we reproduce here a lemma from Okui (2009) which is
essential to derive the higher-order expansion of the MSE.
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Lemma 6. (Lemma 2 of Okui (2009))
Let ρα = trS(α). Suppose that an estimator δ̂ has a decomposition

√
NT

(
δ̂ − δ

)
=

Ĥ−1ĥ, ĥ = h+ T h + Zh, Ĥ = H + TH + ZH ,(
h+ T h

) (
h+ T h

)′
−hh′H−1TH′−THH−1hh′= Â + Z

A
,

such that T h = op (1), h = Op (1) , H = Op (1) , the determinant of H is
bounded away from zero with probability approaching 1, ρα = op (1) ,∥∥∥TH∥∥∥2

= op (ρα) ,
∥∥∥T h∥∥∥ ∥∥∥TH∥∥∥ = op (ρα),

∥∥∥Zh
∥∥∥ = op (ρα),

∥∥∥ZH
∥∥∥ = op (ρα),∥∥∥ZA

∥∥∥ = op (ρα),
E
(
Â
)

= σ2H + HS (α) H + op (ρα) .
Then, the decomposition (1.3) holds for δ̂ .
Proof of Proposition 2.

Let ρα = S(α). Notice that

ρα ≥
(1 + δ)2

NT


T−1∑
t=1

Etr[Mα
t ]
 φT−t
T − t

− φT−t+1

T − t+ 1


2

(A.7)

and
ρα ≥

(1− δ2)2

σ2
1
NT

T−1∑
t=1

ψ2
tE[w′t−1(I −Mα

t )2wt−1]

First, we establish the rate of the RHS of (A.7). Because

φj = 1− δj
1− δ ≤

1
1− δ

we have 0 ≤ φT−t
T−t −

φT−t+1
T−t+1 ≤

2
1−δ and

(1 + δ)2

NT


T−1∑
t=1

Etr[Mα
t ]
 φT−t
T − t

− φT−t+1

T − t+ 1


2

≤ (1 + δ)2

NT (1− δ)2

(
T−1∑
t=1

Etr[Mα
t ]
)2

= (1 + δ)2

NT (1− δ)2 (Etr[Mα])2

= O(1/(α2NT ))
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by Lemma 4 (ii). Hence, a term that is o(1/(α2NT )) is necessarily o(ρα).
Moreover since

∆α ≥
1
NT

T−1∑
t=1

ψ2
tE[w′t−1(I −Mt)wt−1]

and from Okui (2009), logT/T = o(
T−1∑
t=1

ψ2
tE[w′t−1(I −Mt)wt−1]/NT ) so that

o(logT/T ) = o(ρα). To prove Proposition 2, we use Lemma 6 and

√
NT (δ̂α − δ) =

 1
NT

T−1∑
t=1

x∗
′

t M
α
t x
∗
t

−1 1√
NT

T−1∑
t=1

x∗
′

t M
α
t v
∗
t

.
As in Okui (2009), the numerator can be written in the following way :

1√
NT

T−1∑
t=1

x∗
′

t M
α
t v
∗
t = h+ T h1 + T h2

where

h = 1√
NT

T−1∑
t=1

ψtw
′
t−1v

∗
t

T h1 = − 1√
NT

T−1∑
t=1

ψtw
′
t−1(I −Mα

t )v∗t = Op(∆1/2
α ),

T h2 = − 1√
NT

T−1∑
t=1

ctṽ
′
tTM

α
t v
∗
t = Op

(
1

α
√
NT

)

where the rate for T h2 follows from Lemmas 3(iii) and 4(iii). Moreover

1
NT

T−1∑
t=1

x∗
′

t M
α
t x
∗
t = H + TH +

3∑
j=1

ZH
j
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with

H = σ2

1− δ2
1
T

T−1∑
t=1

ψ2
t

TH = − 1
NT

T−1∑
t=1

ψ2
tE[w′t−1(I −Mα

t )wt−1] = Op(∆α),

ZH
1 = 1

NT

T−1∑
t=1

ψ2
t [w′t−1wt−1]−H = Op(1/

√
NT ),

ZH
2 = −2 1

NT

T−1∑
t=1

ctψtw
′
t−1M

α
t ṽtT = Op(1/

√
NT ),

ZH
3 = 1

NT

T−1∑
t=1

c2
t ṽ
′
tTM

α
t ṽtT = Op(1/αNT ).

By 1/
√
NT = o(logT/T ) and 1/(αNT ) = o(1/(α2NT ) we have that ZH

j are
op(ρα) for j = 1, 2, 3 so that ‖∑3

j=1 Z
H
j ‖ = op(ρα) by triangular inequality.

Moreover, we have ||TH ||||T h1 || = O(∆α/α
√
NT ) = op(ρα) and ||TH ||||T h2 || =

O(∆3/2
α ) = op(ρα) so that we can conclude that ||TH ||||T h1 + T h2 || = op(ρα).

We now apply Lemma 6 with ZA = 0 and

Â = (h+ T h1 + T h2 )2 − 2h2H−1TH

= h2 + (T h1 )2 + (T h2 )2 + 2hT h1 + 2hT h2 + 2T h1 T h2 − 2h2H−1TH .

Lemma 6 states that S (α) satisfies E
(
Â
)

= σ2H + HS (α)H + op(ρα). To
calculate the expectation of Â, we need to compute the expectation of each
term. By the third moment condition and the independence assumption both
on the error term vit, we can show that E(hT h2 ) = E(T h1 T h2 ) = 0. It can easily
be proved that

E(h2) = σ2H,

E{(T h1 )2} = σ2∆α,

E(h2H−1TH) = E(hT h1 ) = σ2TH .
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By Lemma 3 (iii) and Lemma 4 (iii), we have

E{(T h2 )2} = (E(T h2 ))2 + var(T h2 )

= 1
NT

σ4

(1− δ)2


T−1∑
t=1

E[tr(Mα
t )]
 φT−t
T − t

− φT−t+1

T − t+ 1


2

+O((logT )2

N
)

= 1
NT

σ4

(1− δ)2


T−1∑
t=1

E[tr(Mα
t )]
 φT−t
T − t

− φT−t+1

T − t+ 1


2

+ op(ρα)

where the third equality comes from the fact that ln (T )2 /N = op (1/ (α2NT )) =
op(ρα) provided α ln(T )

√
T → 0. Finally

E(Â) = 1
NT

σ4

(1− δ)2


T−1∑
t=1

E[tr(Mα
t )]
 φT−t
T − t

− φT−t+1

T − t+ 1


2

+ σ2H + σ2∆α + op(ρα).

And therefore

S (α) = ( lim
T→∞

H)−2

 1
NT

σ4

(1− δ)2


T−1∑
t=1

E[tr(Mα
t )]
 φT−t
T − t

− φT−t+1

T − t+ 1


2

+ σ2∆α


= (1 + δ)2

NT


T−1∑
t=1

E[tr(Mα
t )]
 φT−t
T − t

− φT−t+1

T − t+ 1


2

+(1− δ2)2

σ2
1
NT

T−1∑
t=1

ψ2
tE[w′t−1(I −Mα

t )2wt−1].

using the fact that limT→∞H = σ2/(1 − δ2). This ends the proof of Propo-
sition 2.
Preliminary results for the proof of Proposition 3
The following lemma will be used in the proof of Proposition 3.

Lemma 7.

(i) tr[K2
N ]− tr[K2] = Op(1/

√
N),
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(ii) E


∑T−1

t=1 (tr(Mα
t )− E[tr(Mα

t )])
φT−t

T−t −
φT−t+1
T−t+1

2
 = O

(
1

α2N

)
.

Proof of Lemma 7.

(i)

tr[K2
N ]− tr[K2] = ||KN ||2 − ||K||2

=(||KN ||+ ||K||)(||KN || − ||K||)

From Lemma 1(ii) and Lemma 4(i), we have ||KN ||+||K|| = Op(1). Moreover,

||KN || − ||K|| ≤ ||KN −K|| = Op

(
1/
√
N

)

by Lemma 4(i) so that we have tr[K2
N ]− tr[K2] = O(1/

√
N).

(ii) As 0 ≤ φT−t
T−t −

φT−t+1
T−t+1 ≤ C, it is sufficient to study the termE

[[∑T−1
t=1 (tr(Mα

t )− E[tr(Mα
t )])

]2]
.

We have

E

[T−1∑
t=1

(tr(Mα
t )− E[tr(Mα

t )])
]2

= E

[T−1∑
t=1

(
tr(Zt (Z ′tZt)

α
Z ′t)− E[tr(Zt (Z ′tZt)

α
Z ′t)]

)]2
= E

[T−1∑
t=1

(
tr((Z ′tZt)

α
Z ′tZt)− E[tr((Z ′tZt)

α
Z ′tZt)]

)]2
= E

[
[tr(Kα

NKN)− trE(Kα
NKN)]2

]
= E

[
‖Kα

NKN − E(Kα
NKN)‖2

]
Moreover,

E
[
‖Kα

NKN − E(Kα
NKN)‖2

]
= E

[
‖Kα

N (KN −K) + (Kα
N − E (Kα

N))K + E (Kα
N (K −KN))‖2

]
≤ 3E ‖Kα

N (KN −K)‖2 + 3E ‖(Kα
N − E (Kα

N))K‖2 + 3 ‖E (Kα
N (K −KN))‖2 .
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We have

E ‖Kα
N (KN −K)‖2 = E ‖Kα

N‖
2 ‖KN −K‖2 ≤ C

α2E ‖KN −K‖2 = O
( 1
α2N

)
,

E ‖(Kα
N − E (Kα

N))K‖2 ≤ CE ‖Kα
N − E (Kα

N)‖2 = CE ‖Kα
N −Kα‖2 = O

( 1
N

)
,

‖E (Kα
N (K −KN))‖2 = ‖E ((Kα

N −Kα) (K −KN))‖2 = o
( 1
N

)
.

The result follows.
Proof of Proposition 3.

We want to prove that
S(α̂)

infα∈ET S(α)
P→ 1

where ET is the parameter set for a given regularization scheme. By Lemma
A9 of Donald and Newey (2001), it is sufficient to prove that

sup
ET

∣∣∣∣∣∣ Ŝ(α)− S(α)
S(α)

∣∣∣∣∣∣ = op(1).

Using the fact that, (1−δ2)2

σ2 R (α) ≤ S (α) and (1+δ)2

NT
A (α)2 ≤ S (α), we

have for some constant C

1
C

∣∣∣∣∣∣ Ŝ(α)− S(α)
S(α)

∣∣∣∣∣∣ ≤ (1 + δ̂)2

(1 + δ)2

∣∣∣∣∣∣Â (α)2 −A (α)2

A (α)2

∣∣∣∣∣∣+
∣∣∣∣∣∣(1 + δ̂)2 − (1 + δ)2

(1 + δ)2

∣∣∣∣∣∣
+ (1− δ̂2)2/σ̂2

(1− δ2)2/σ2

∣∣∣∣∣∣R̂(α)−R(α)
R(α)

∣∣∣∣∣∣+
∣∣∣∣∣∣(1− δ̂

2)2/σ̂2 − (1− δ2)2/σ2

(1− δ2)2/σ2

∣∣∣∣∣∣.
By the consistency of δ̂ and σ̂2, we just need to prove that :

sup
ET

∣∣∣∣∣∣Â (α)2 −A (α)2

A (α)2

∣∣∣∣∣∣ = op(1),

sup
ET

∣∣∣∣∣∣R̂(α)−R(α)
R(α)

∣∣∣∣∣∣ = op(1).

For the first equality, we have

sup
ET

∣∣∣∣∣∣Â (α)2 −A (α)2

A (α)2

∣∣∣∣∣∣ = sup
ET

∣∣∣∣∣∣Â (α)−A (α)
A (α)

∣∣∣∣∣∣
∣∣∣∣∣∣Â (α) +A (α)

A (α)

∣∣∣∣∣∣.
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Moreover ∣∣∣∣∣∣Â (α) +A (α)
A (α)

∣∣∣∣∣∣ ≤ 2 +

∣∣∣∣∣∣Â (α)−A (α)
A (α)

∣∣∣∣∣∣.
So it is sufficient to prove that

sup
ET

∣∣∣∣∣∣Â (α)−A (α)
A (α)

∣∣∣∣∣∣ = op(1).

Â (α)−A (α) =
T−1∑
t=1

tr(Mα
t )
 φ̂T−t
T − t

− φ̂T−t+1

T − t+ 1

− T−1∑
t=1

E[tr[Mα
t ]]
 φT−t
T − t

− φT−t+1

T − t+ 1


=

T−1∑
t=1

tr(Mα
t ) (ν̂t − νt) +

T−1∑
t=1

(tr(Mα
t )− E[tr(Mα

t )]) νt

where νt = φT−t
T−t −

φT−t+1
T−t+1 and ν̂t = φ̂T−t

T−t −
φ̂T−t+1
T−t+1 . We will use the following

result (see Okui (2008, p.13) : For a random sequence {ak}k,
∑
k E(a2

k) = o(1)
implies that supk ak = op(1).

E


[
T−1∑
t=1

tr(Mα
t ) (ν̂t − νt)

]2 = E
T−1∑
t=1

(tr(Mα
t ))2 (ν̂t − νt)2 (A.8)

+
∑
t6=s

E [tr (Mα
t ) (ν̂t − νt) tr(Mα

s ) (ν̂s − νs)] .

Using trMα
t ≤ C/α and, by the consistency of δ̂, E (ν̂t − νt)2 = O (1/NT ),

we have
E

T−1∑
t=1

(tr(Mα
t ))2 (ν̂t − νt)2 = O

( 1
α2N

)
.

By Cauchy-Schwarz’s inequality, the second term of the RHS of (A.8) is also
O(1/Nα2). By Lemma 7(ii),

E

[T−1∑
t=1

(tr(Mα
t )− E[tr(Mα

t )]) νt
]2 = O

( 1
α2N

)

We previously established that

A (α) =
T−1∑
t=1

Etr[Mα
t ]
 φT−t
T − t

− φT−t+1

T − t+ 1

 = O(1/α).
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Hence for any α ∈ ET (which is discrete and finite for SC and LF ) we have

E

∣∣∣∣∣∣Â (α)−A (α)
A (α)

∣∣∣∣∣∣
2

= O
( 1
N

)
.

Now summing up over the elements of ET , we obtain
∑
α∈ET

O
( 1
T

)
= O

(
T 2

N

)

because the cardinal of ET is equal to T 2. Hence, supα
Â(α)−A(α)
A(α) = op (1)

provided T 2/N → 0 (which is true under the condition T 3/(N ln(T )2)→ 0).
Now, we want to prove that

sup
ET

∣∣∣∣∣∣R̂(α)−R(α)
R(α)

∣∣∣∣∣∣ = op(1). (A.9)

We first consider the spectral cut-off regularization scheme
In this case, (I −Mα

t )2 = (I −Mα
t ) so that

R(α) = 1
NT

T−1∑
t=1

ψ2
tE[w′t−1(I −Mα

t )wt−1]

and
R̂(α) = 1

NT

T−1∑
t=1

x∗
′

t (I −Mα
t )x∗t .

Following Okui (2009), we consider the following version of estimated of
R̂(α) :

R̃(α) = 1
NT

T−1∑
t=1

(ψ2
tw
′
t−1wt−1 − x∗

′

t M
α
t x
∗
t ).

Indeed, the difference between R̃(α) and R̂(α) does not depend on α so that
maximizing the criterion with using R̃(α) instead of R̂(α) gives the same
result. By (A43) of AA(2003), x∗t = ψtwt−1 − ctṽtT , so that

R̃(α)−R(α) = 1
NT

T−1∑
t=1

ψ2
t [w′t−1(I −Mα

t )wt−1 − E[w′t−1(I −Mα
t )wt−1]]

+ 2
NT

T−1∑
t=1

ψtctw
′
t−1M

α
t ṽtT −

1
NT

T−1∑
t=1

c2
t ṽ
′
tTM

α
t ṽtT .
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Hence to prove (A.9), we have to prove that :

sup
ET

∣∣∣∣∣∣
1
NT

T−1∑
t=1

ψ2
tw
′
t−1(I −Mα

t )wt−1 −
1
NT

T−1∑
t=1

ψ2
tE[w′t−1(I −Mα

t )wt−1

R(α) ]

∣∣∣∣∣∣ = op(1),

sup
ET

∣∣∣∣∣∣
1
NT

T−1∑
t=1

ψtctw
′
t−1M

α
t ṽtT

R(α)

∣∣∣∣∣∣ = op(1),

sup
ET

∣∣∣∣∣∣
1
NT

T−1∑
t=1

c2
t ṽ
′
tTM

α
t ṽtT

R(α)

∣∣∣∣∣∣ = op(1).

Noting that w′t−1(I −Mα
t )wt−1 ≥ w′t−1(I −Mt)wt−1

sup
ET

∣∣∣∣∣∣
1
NT

T−1∑
t=1

ψ2
tw
′
t−1(I −Mα

t )wt−1 −
1
NT

T−1∑
t=1

ψ2
tE[w′t−1(I −Mα

t )wt−1]

1
NT

T−1∑
t=1

ψ2
tE[w′t−1(I −Mα

t )wt−1]

∣∣∣∣∣∣

≤ sup
ET

∣∣∣∣∣∣
1
NT

T−1∑
t=1

ψ2
tw
′
t−1(I −Mα

t )wt−1 −
1
NT

T−1∑
t=1

ψ2
tE[w′t−1(I −Mα

t )wt−1]

1
NT

T−1∑
t=1

ψ2
tE[w′t−1(I −Mt)wt−1]

∣∣∣∣∣∣

≤ sup
ET

∣∣∣∣∣∣
1
NT

T−1∑
t=1

ψ2
tw
′
t−1wt−1 −

1
NT

T−1∑
t=1

ψ2
tE[w′t−1wt−1]

1
NT

T−1∑
t=1

ψ2
tE[w′t−1(I −Mt)wt−1]

∣∣∣∣∣∣

+ sup
ET

∣∣∣∣∣∣
1
NT

T−1∑
t=1

ψ2
tw
′
t−1M

α
t wt−1 −

1
NT

T−1∑
t=1

ψ2
tE[w′t−1M

α
t wt−1]

1
NT

T−1∑
t=1

ψ2
tE[w′t−1(I −Mt)wt−1]

∣∣∣∣∣∣. (A.10)
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Now we want to prove that

sup
ET

∣∣∣∣∣∣
1
NT

T−1∑
t=1

ψ2
tw
′
t−1wt−1 −

1
NT

T−1∑
t=1

ψ2
tE[w′t−1wt−1]

1
NT

T−1∑
t=1

ψ2
tE[w′t−1(I −Mt)wt−1]

∣∣∣∣∣∣ = op(1).

Note that this term does not depend on α. Moreover, from Okui (2009) in
the analysis of his term ZH

1 , we have

1
NT

T−1∑
t=1

ψ2
tw
′
t−1wt−1 −

1
NT

T−1∑
t=1

ψ2
tE[w′t−1wt−1] = Op

(
1√
NT

)
.

Moreover from AA(2003)

1
NT

T−1∑
t=1

ψ2
tE[w′t−1(I −Mt)wt−1] = Op

(
logT

T

)

so that we can conclude that

sup
ET

∣∣∣∣∣∣
T−1∑
t=1

ψ2
tw
′
t−1wt−1/(NT )−

T−1∑
t=1

ψ2
tE[w′t−1wt−1]/(NT )

T−1∑
t=1

ψ2
tE[w′t−1(I −Mt)wt−1]/(NT )

∣∣∣∣∣∣ = Op

( √
T√

N ln (T )

)
= op(1).

(A.11)
We now turn our attention to (A.10). This terms depends on α. From Lemma
5(iii), we have

E

( 1
NT

T−1∑
t=1

ψ2
tw
′
t−1M

α
t wt−1 −

1
NT

T−1∑
t=1

ψ2
tE[w′t−1M

α
t wt−1]

)2 = O

(
1
NT

)
.

Summing over the elements of ET , we get

∑
ET
E


1
NT

T−1∑
t=1

ψ2
tw
′
t−1M

α
t wt−1 −

1
NT

T−1∑
t=1

ψ2
tE[w′t−1M

α
t wt−1]

1
NT

T−1∑
t=1

ψ2
tE[w′t−1(I −Mt)wt−1]


2

= O
(
T 2
) O

(
1
NT

)
O
(

(lnT )2

T 2

)

= O

(
T 3

N ln (T )2

)
.
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Then, we conclude that

sup
ET

∣∣∣∣∣∣
1
NT

T−1∑
t=1

ψ2
tw
′
t−1(I −Mα

t )wt−1 −
1
NT

T−1∑
t=1

ψ2
tE[w′t−1(I −Mα

t )wt−1]

R(α)

∣∣∣∣∣∣ = op(1)

We now consider the proof of

sup
ET

∣∣∣∣∣∣
T−1∑
t=1

ψtctw
′
t−1M

α
t ṽtT/(NT )

T−1∑
t=1

ψ2
tE[w′t−1(I −Mt)wt−1]/(NT )

∣∣∣∣∣∣ = op(1).

We have

E

( 1
NT

T−1∑
t=1

ψtctw
′
t−1M

α
t ṽtT

)2 = O
( 1
NT

)
by the proof of Lemma 5(iv). We obtain

∑
ET
E




T−1∑
t=1

ψtctw
′
t−1M

α
t ṽtT/(NT )

T−1∑
t=1

ψ2
tE[w′t−1(I −Mt)wt−1]/(NT )


2 = O

(
T 3

N ln (T )2

)
= o (1) .

Then we can conclude

sup
ET

∣∣∣∣∣∣
T−1∑
t=1

ψtctw
′
t−1M

α
t ṽtT/(NT )

T−1∑
t=1

ψ2
tE[w′t−1(I −Mt)wt−1]/(NT )

∣∣∣∣∣∣ = op(1).

Now, we want to prove that

sup
ET

∣∣∣∣∣∣
1
NT

T−1∑
t=1

c2
t ṽ
′
tTM

α
t ṽtT

T−1∑
t=1

ψ2
tE[w′t−1(I −Mt)wt−1]/(NT )

∣∣∣∣∣∣ = op(1).
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Following Okui (2009), we can major this term as follows

sup
ET

∣∣∣∣∣∣
1
NT

T−1∑
t=1

c2
t ṽ
′
tTM

α
t ṽtT

T−1∑
t=1

ψ2
tE[w′t−1(I −Mt)wt−1]/(NT )

∣∣∣∣∣∣ ≤
∣∣∣∣∣∣

1
NT

T−1∑
t=1

c2
t ṽ
′
tTMtṽtT

T−1∑
t=1

ψ2
tE[w′t−1(I −Mt)wt−1]/(NT )

∣∣∣∣∣∣ = Op

(
T

N

)

which is op(1) under the assumption that T/N → 0. This ends the proof of

sup
ET

∣∣∣∣∣∣R̂(α)−R(α)
R(α)

∣∣∣∣∣∣ = op(1).

for the spectral cut-off regularization scheme.
We now consider the Landweber Fridman regularization scheme
The particularity here is that the matrix I −Mα

t is no longer idempotent.
However, we have

(I −Mα
t )2 = I − 2Mα

t +Mα
t M

α
t = I − M̃α

t

where M̃α
t = 2Mα

t −Mα
t M

α
t . As in the case of spectral cut-off regularization

scheme, let us define

R̃(α) = 1
NT

T−1∑
t=1

(ψ2
tw
′
t−1wt−1 − x∗

′

t M̃
α
t x
∗
t ).

Since the difference between R̃(α) and R̂(α) does not depend on α, we can
prove optimality using R̃(α) instead of R̂(α). Hence we have to prove that

sup
ET

∣∣∣∣∣∣R̃(α)−R(α)
R(α)

∣∣∣∣∣∣ = op(1).

Noting that

R̃(α)−R(α) = 1
NT

T−1∑
t=1

ψ2
t [w′t−1(I − M̃α

t )wt−1 − E[w′t−1(I − M̃α
t )wt−1]]

+ 2
NT

T−1∑
t=1

ψtctw
′
t−1M̃

α
t ṽtT −

1
NT

T−1∑
t=1

c2
t ṽ
′
tTM̃

α
t ṽtT ,
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we have to prove that

sup
ET

∣∣∣∣∣∣
1
NT

T−1∑
t=1

ψ2
tw
′
t−1(I − M̃α

t )wt−1 −
1
NT

T−1∑
t=1

ψ2
tE[w′t−1(I − M̃α

t )wt−1]

T−1∑
t=1

ψ2
tE[w′t−1(I −Mt)wt−1]/(NT )

∣∣∣∣∣∣ = op(1),

sup
ET

∣∣∣∣∣∣
2
NT

T−1∑
t=1

ψtctw
′
t−1M̃

α
t ṽtT

T−1∑
t=1

ψ2
tE[w′t−1(I −Mt)wt−1]/(NT )

∣∣∣∣∣∣ = op(1),

sup
ET

∣∣∣∣∣∣
1
NT

T−1∑
t=1

c2
t ṽ
′
tTM̃

α
t ṽtT

T−1∑
t=1

ψ2
tE[w′t−1(I −Mt)wt−1]/(NT )

∣∣∣∣∣∣ = op(1).

Since M̃α
t ≤ 2Mα

t ≤ 2Mt, we can apply the same strategy as in the case
of spectral cut off regularization scheme provided that #ET = O(T 2) with
#ET being the number of elements in the parameter set ET . Imposing that
#ET = O(T 2) is a sufficient condition to have optimality in the Landweber
Fridman regularization scheme with no need to impose a condition on the
maximum number of iterations.
Summing up, we proved that our procedure of selection of regularization pa-
rameter α is optimal under the assumption #ET = O(T 2) for the Landweber
Fridman regularization scheme.

The following lemma will be used in the proof of Proposition 4.
Lemma 8. If assumptions 1’, 2’ and 3 are satisfied, then

(i)

E


 T−1∑
t=1

ctṽ
′
tTM

α
t v
∗
t

2
 = σ4

(1− δ)2E

 T−1∑
t=1

tr[Mα
t ]
 φT−t
T − t

− φT−t+1

T − t+ 1

2

+ o

( T−1∑
t=1

tr[Mα
t ]
)2


= O (lnT/(αNT )) .
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(ii)

1√
NT

E

[
T−1∑
t=1

ctṽ
′
tTM

α
t v
∗
t

]
= σ2

(1− δ)
1√
NT

T−1∑
t=1

Etr[Mα
t ]
 φT−t
T − t

− φT−t+1

T − t+ 1


= O

(
1

α
√
NT

)
.

(iii) Let ∆α be defined as

∆α = 1
NT

tr

[
T−1∑
t=1

E[w̃′t−1(I −Mα
t )2w̃t−1]

]
.

Then
∆α =

{
O(αβ) for SC, LF
O(αmin(β,2)) for TH

Proof of Lemma 8.
(i)-(ii) These results can be established using proofs similar to those of Lem-
mas 3(iii) and 4(iii).

(iii)

∆α = 1
NT

tr

[
T−1∑
t=1

E[w̃′t−1(I −Mα
t )2w̃t−1]

]

= 1
NT

tr

[
E[W̃ ′(I −Mα)2W̃ ]

]

= 1
NT

E
∑
a

E[W̃ ′
a(I −Mα)2W̃a]

= 1
NT

E
∑
a

∑
j

(1− q̂j)2 < W̃a, ψ̂j >
2

≤ 1
NT

E sup
λ̂j

[
λ̂2β
j (1− q̂j)2

]∑
a

∑
j

1
λ̂2β
j

< W̃a, φ̂j >
2 .

It follows from Carrasco et al. (2007, Proposition 3.11) that the term supλ̂j λ̂
2β
j (1−

q̂j)2 < Cαβ for SC and LF and Cαmin(β,1) for Tikhonov for some constant
C > 0. Moreover, the sum

1
NT

E
∑
a

∑
j

1
λ̂2β
j

< W̃a, φ̂j >
2
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is finite by Assumption 3. Hence, the rate of ∆α follows.
Proof of the proposition 4.

Let ρα = trace(S(α)). It follows from Lemma 8 that a term is op(ρα) if it is
either op(1/α2NT ) or op(αβ).
Recall that xt is a N × (Lm + 1) matrix with xt = (yt−1,mt) ≡ (ut,mt).
x∗t = (u∗t ,m∗t ) with u∗t = wt−1−ctṽtT , EZ (u∗t ) = wt−1 , EZ (x∗t ) = (wt−1,m

∗
t ) ≡

w̃t−1, and x∗t − EZ (x∗t ) = (−ctṽtT , 0) .
First, we note that

√
NT (θ̂α − θ) =

 1
NT

T−1∑
t=1

x∗
′

t M
α
t x
∗
t

−1 1√
NT

T−1∑
t=1

x∗
′

t M
α
t v
∗
t

.
Following Okui (2009), we have the following decomposition

1√
NT

T−1∑
t=1

x∗
′

t M
α
t v
∗
t = h+ T h1 + T h2

where

h =


1√
NT

T−1∑
t=1

w′t−1v
∗
t

1√
NT

T−1∑
t=1

m∗tv
∗
t

 ,

T h1 = −


1√
NT

T−1∑
t=1

w′t−1(I −Mα
t )v∗t

1√
NT

T−1∑
t=1

m∗t (I −Mα
t )v∗t

 ,

T h2 = −


1√
NT

T−1∑
t=1

ctṽ
′
tTM

α
t v
∗
t

0

 .
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Now consider the denominator.

1
NT

T−1∑
t=1

x∗
′

t M
α
t x
∗
t

= 1
NT

T−1∑
t=1

(x∗t − EZ (x∗t ))
′Mα

t (x∗t − EZ (x∗t )) (term ZH
4 )

+ 1
NT

T−1∑
t=1

EZ (x∗t )
′Mα

t EZ (x∗t )

+ 2
NT

T−1∑
t=1

EZ (x∗t )
′Mα

t (x∗t − EZ (x∗t )) (term ZH
3 )

= ZH
3 + ZH

4 +H

+ 1
NT

T−1∑
t=1

EZ (x∗t )
′EZ (x∗t )−H (term ZH

1 )

−
[

1
NT

T−1∑
t=1

{
EZ (x∗t )

′ (I −Mα
t )EZ (x∗t )− E

[
EZ (x∗t )

′ (I −Mα
t )EZ (x∗t )

]}]
(term ZH

2 )

+ 1
NT

T−1∑
t=1

E
{
EZ (x∗t )

′ (I −Mα
t )EZ (x∗t )

}
(term TH)

So that
1
NT

T−1∑
t=1

x∗
′

t M
α
t x
∗
t = H + TH +

4∑
j=1

ZH
j
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where

H =


1
T

T−1∑
t=1

E(w2
it) 1

T

T−1∑
t=1

E(witm∗
′

it )

1
T

T−1∑
t=1

E(m∗itwit) 1
T

T−1∑
t=1

E(m∗itm∗
′

it )

 ,

TH = −


1
NT

T−1∑
t=1

E[w′t−1(I −Mα
t )wt−1] 1

NT

T−1∑
t=1

E[w′t−1(I −Mα
t )m∗t ]

1
NT

T−1∑
t=1

E[m∗′t (I −Mα
t )wt−1] 1

NT

T−1∑
t=1

E[m∗′t (I −Mα
t )m∗t ]

 ,

ZH
1 =


1
NT

T−1∑
t=1

w′t−1wt−1
1
NT

T−1∑
t=1

w′t−1m
∗
t

1
NT

T−1∑
t=1

m∗
′

t wt
1
NT

T−1∑
t=1

m∗
′

t m
∗
t

−H,

ZH
2 = −

[
ZH

2,11 ZH
2,12

ZH
2,21 ZH

2,22

]
,

ZH
2,11 = 1

NT

T−1∑
t=1

[w′t−1(I −Mα
t )wt−1 − E{w′t−1(I −Mα

t )wt−1}],

ZH
2,21 = 1

NT

T−1∑
t=1

[m∗′t (I −Mα
t )wt−1 − E{m∗

′

t (I −Mα
t )wt−1}],

ZH
2,12 = 1

NT

T−1∑
t=1

[w′t−1(I −Mα
t )m∗t − E{w′t−1(I −Mα

t )m∗t}],

ZH
2,22 = 1

NT

T−1∑
t=1

[m∗′t (I −Mα
t )m∗t − E{m∗

′

t (I −Mα
t )m∗t}],

ZH
3 = −2


1
NT

T−1∑
t=1

ctw
′
t−1M

α
t ṽtT 0

1
NT

T−1∑
t=1

ctm
∗′
t M

α
t ṽtT 0

 ,

ZH
4 =

 1
NT

T−1∑
t=1

c2
t ṽ
′
tTM

α
t ṽtT 0

0 0

 .
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where
ṽtT = (φT−tvt + ....+ φ1vT−1)

T − t
.

The terms h, H and ZH
1 do not depend on the matrix Mα

t so that we can
use their order given in Okui (2009). We then have that H = O(1), h = op(1)
and ZH

1 = Op(1/
√
NT ) = o(ρα) provided that αβ

√
NT →∞.

Using w̃t−1 = (wt−1,m
∗
t ), the term T h1 can be rewritten as

T h1 = 1
NT

T−1∑
t=1

w̃′t−1(I −Mα
t )v∗t .

We have then E(T h1 ) = 0 and V (T h1 ) = σ2∆α so that T h1 = Op(∆1/2
α ) by

Markov’s inequality. Since from Lemma 8, we have ∆α = Op(αβ), we can
conclude that T h1 = op(1).
Regarding the term T h2 , we can use the same strategy as in the model wi-
thout covariates. We have from Lemma 8 that E

(
T h2
)

= O
(
1/α
√
NT

)
and

V
(
T h2
)

= O
(

(lnT )2

N

)
so that T h2 = op (1) provided that α

√
NT →∞.

Next, we consider TH .

TH = − 1
NT

T−1∑
t=1

E{w′t−1(I −Mα
t )wt−1} = Op(∆α).

We now look at the term ZH
2 . In the same way as in the model without

covariates, we can prove that diagonal elements of ZH
2 are Op(1/

√
NT ). For

the other terms, we have

ZH
2,21 = 1

NT

T−1∑
t=1

[m∗′t (I −Mα
t )w̃t−1 − E{m∗

′

t (I −Mα
t )w̃t−1}],

For a given column k of the exogenous covariates, we can write

ZH,k
2,21 = 1

NT

T−1∑
t=1

[m∗
′,k
t (I −Mα

t )w̃t−1 − E{m∗
′,k
t (I −Mα

t )w̃t−1}],

= 1
NT

T−1∑
t=1

[m∗
′,k
t w̃t−1 − E{m∗

′,k
t w̃t−1}]

+ 1
NT

T−1∑
t=1

[m∗
′,k
t Mα

t w̃t−1 − E{m∗
′,k
t Mα

t w̃t−1}].
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From Okui (2009),

1
NT

T−1∑
t=1

[m∗
′,k
t w̃t−1 − E{m∗

′,k
t w̃t−1}] = Op(1/

√
NT ).

Moreover,

1
NT

T−1∑
t=1

[m∗
′,k
t Mα

t w̃t−1 − E{m∗
′,k
t Mα

t w̃t−1}]

= 1
NT

T−1∑
t=1

[m∗
′,k
t Mα

t w̃t−1 −
1
2E[w̃′t−1w̃t−1]− 1

2E[m∗
′,k
t m∗,kt ]]

− 1
NT

E

[
T−1∑
t=1

[m∗
′,k
t Mα

t w̃t−1 −
1
2E[w̃′t−1w̃t−1]− 1

2E[m∗
′,k
t m∗,kt ]]

]
.

Now using Cauchy Schwarz inequality,

m∗
′,k
t Mα

t w̃t−1 ≤ (w̃′t−1M
α
t M

α
t w̃t−1)1/2(m∗

′,k
t m∗,kt )1/2

≤ (w̃′t−1w̃t−1)1/2(m∗
′,k
t m∗,kt )1/2

≤ 1
2(w̃′t−1w̃t−1) + 1

2(m∗
′,k
t m∗,kt )

Hence,

1
NT

T−1∑
t=1

[m∗
′,k
t Mα

t w̃t−1 −
1
2E[w̃′t−1w̃t−1]− 1

2E[m∗
′,k
t m∗,kt ]]

≤ 1
2

1
NT

T−1∑
t=1

[w̃′t−1w̃t−1 − E[w̃′t−1w̃t−1]] + 1
2

1
NT

T−1∑
t=1

[m∗
′,k
t m∗,kt − E[m∗

′,k
t m∗,kt ]]

= Op(1/
√
NT ) +Op(1/

√
NT ) = Op(1/

√
NT ).

We have just proved that elements with the same form as ZH,k
21 areOp(1/

√
NT ).

The same strategy can be applied to the non diagonal elements of the lm di-
mensional matrix ZH

22 allowing us to conclude that ZH
2 = Op(1/

√
NT ) so

that the ZH
2 = op(ρα) provided that αβ

√
NT →∞.

For the term ZH
3 , we note that

E

 1
NT

T−1∑
t=1

ctw̃
′
t−1M

α
t ṽtT

 = 0
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and for α = 0, Okui (2009) proved that

V ar

 1
NT

T−1∑
t=1

ctw̃′t−1M
α
t ṽtT

 = O
( 1
NT

)
so that

1
NT

T−1∑
t=1

ctw̃′t−1M
α
t ṽtT = Op(

1√
NT

) = op(ρα).

Now looking to the other terms of ZH
3 , they are in form

1
NT

T−1∑
t=1

ctm
l∗′
t M

α
t ṽtT

l = 1, ..., lm. Hence first conditionning on zt, we can prove in the same way
that those terms are op(ρα).
For ZH

4 , following the same strategy as in the model without covariates, we
have

1
NT

T−1∑
t=1

c2
t ṽ
′
tTM

α
t ṽtT = Op(

1
αNT

).

Hence ZH
4 = op(ρα).

We now apply Lemma 6. Let us define ZA = 0 and

Â = (h+ T h1 + T h2 )(h+ T h1 + T h2 )′ − hh′H−1TH1 − TH1 H−1hh′.

Since we want to calculate the expectation of A, we need to calculate the
expectation of each term. By the third moment condition and the indepen-
dence assumption both on the error term vit, we can show that E(hT h′2 ) =
E(T h2 h′) = E(T h1 T h

′
2 ) = E(T h2 T h

′
1 ) = 0.

It can easily be proved thatE(hh′) = σ2H, E{hT h′1 } = E{T h1 h′}=E(hh′H−1TH1 ) =
E(TH1 H−1hh′) = σ2TH . Given these equalities,

E(Â) = σ2H + E(T h1 T h
′

1 ) + E(T h2 T h
′

2 ),

E(T h1 T h
′

1 ) = σ2

NT

T−1∑
t=1

E[w̃′t−1(I −Mα
t )2w̃t−1]

and

E(T h2 T h
′

2 ) = E(T h2 )E(T h2 )′ + var(T h2 )

= σ4

(1− δ)2

[
A(α) 0

0 0

]
+ op(ρα)
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provided α ln (T )
√
T → 0. Hence, by Lemma 6, we have

E(Â) = σ2H +HS(α)H + op(ρα)

with

HS(α)H = σ4

(1− δ)2

[
A(α) 0

0 0

]
+ σ2

NT

T−1∑
t=1

E[w̃′t−1(I −Mα
t )2w̃t−1].
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B Chapter 2

B.1 Simulations results.
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GMM LIML IVK TGMM TLIML PGMM PLIML LGMM LLIML
δ = 0.50

T= 10
Med.bias -0.0622 -0.0254 -0.0377 -0.0524 -0.0231 -0.0442 -0.0211 -0.0503 -0.0228
Med.abs 0.0683 0.0627 0.0622 0.0658 0.0619 0.0634 0.0604 0.0648 0.0618

Iqr 0.0992 0.1195 0.1124 0.1068 0.1179 0.1081 0.1187 0.1082 0.1192
Med.mse 0.0047 0.0039 0.0039 0.0043 0.0038 0.0040 0.0036 0.0042 0.0038

Cov 0.8590 0.9038 0.9210 0.9482 0.9268 0.8996 0.9132 0.9334 0.9178

T= 25
Med.bias -0.0396 -0.0257 -0.0151 -0.0271 -0.0144 -0.0219 -0.0220 -0.0260 -0.0146
Med.abs 0.0400 0.0329 0.0268 0.0323 0.0292 0.0305 0.0315 0.0321 0.0285

Iqr 0.0456 0.0553 0.0504 0.0495 0.0566 0.0526 0.0557 0.0508 0.0550
Med.mse 0.0016 0.0011 0.0007 0.0010 0.0009 0.0009 0.0010 0.0010 0.0008

Cov 0.7572 0.9054 0.9216 0.9664 0.9838 0.9004 0.9186 0.9456 0.9556
δ = 0.75

T= 10
Med.bias -0.1350 -0.0595 -0.0960 -0.1052 -0.0578 -0.0900 -0.0523 -0.1059 -0.0545
Med.abs 0.1352 0.1209 0.1183 0.1133 0.1106 0.1030 0.1059 0.1182 0.1256

Iqr 0.1334 0.2391 0.1804 0.1507 0.2190 0.1551 0.2153 0.1640 0.2545
Med.mse 0.0183 0.0146 0.0140 0.0128 0.0122 0.0106 0.0112 0.0140 0.0158

Cov 0.6730 0.7000 0.8676 0.9170 0.8036 0.8458 0.7710 0.9158 0.8772

T= 25
Med.bias -0.0625 -0.0440 -0.0264 -0.0352 -0.0189 -0.0272 -0.0360 -0.0334 -0.0168
Med.abs 0.0625 0.0485 0.0348 0.0382 0.0339 0.0345 0.0437 0.0378 0.0381

Iqr 0.0455 0.0764 0.0582 0.0557 0.0657 0.0585 0.0740 0.0594 0.0764
Med.mse 0.0039 0.0024 0.0012 0.0015 0.0011 0.0012 0.0019 0.0014 0.0015

Cov 0.4892 0.7170 0.8954 0.9512 0.9246 0.8882 0.7588 0.9542 0.9378
δ = 0.95

T= 10
Med.bias -0.3336 -1.2295 -0.3194 -0.3080 -0.9338 -0.2991 -0.8060 -0.3219 -0.9243
Med.abs 0.3336 1.4964 0.3211 0.3100 1.0945 0.3007 0.9693 0.3289 1.2332

Iqr 0.2034 1.9969 0.3321 0.3111 1.6422 0.3083 1.4702 0.4238 1.7055
Med.mse 0.1113 2.2394 0.1031 0.0961 1.1980 0.0904 0.9395 0.1082 1.5207

Cov 0.1996 0.1300 0.7444 0.8330 0.3626 0.7166 0.3356 0.9102 0.7904

T= 25
Med.bias -0.1362 -1.3211 -0.1069 -0.0986 -0.2386 -0.0946 -0.5943 -0.1216 -0.8887
Med.abs 0.1362 1.4588 0.1072 0.0988 0.3818 0.0947 0.7421 0.1228 1.1555

Iqr 0.0568 1.8260 0.1197 0.1061 1.3659 0.1050 1.3985 0.1738 1.7890
Med.mse 0.0186 2.1281 0.0115 0.0098 0.1458 0.0090 0.5508 0.0151 1.3351

Cov 0.0156 0.0618 0.7380 0.8710 0.3268 0.6974 0.2132 0.9378 0.6266

Table B.1 – Simulations results with N = 50, σ2 = 1, σ2
η = 1 for 5000

replications.
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Mean Std Mode q1 Median q3
δ = 0.50

T= 10

TGMM 0.0005 0.0002 0.0005 0.0004 0.0005 0.0007
PGMM 29.3 4.1 29.0 27.0 29.0 32.0
LGMM 2362.0 1285.1 2207.0 1500.0 2056.0 2901.5
TLIML 0.0001 0.0000 0.0001 0.0001 0.0001 0.0001
PLIML 39.0 1.5 40.0 38.0 40.0 40.0
LLIML 12611.5 3572.9 15127.0 9349.0 15127.0 15127.0

T= 25

TGMM 0.0001 0.0000 0.0001 0.0001 0.0001 0.0001
PGMM 138.5 17.1 140.0 130.0 140.0 150.0
LGMM 6064.1 2804.5 5778.0 4054.0 5778.0 9349.0
TLIML 0.0001 0.0000 0.0001 0.0001 0.0001 0.0001
PLIML 285.8 7.63 290.0 280.0 290.0 290.0
LLIML 15127.0 15127.0 15127.0 15127.0 15127.0

δ = 0.75

T= 10

TGMM 0.0055 0.0549 0.0007 0.0010 0.0016 0.0026
PGMM 20.6 4.6 21.0 17.0 20.0 23.0
LGMM 9493.9 5384.3 15127.0 4845.0 9349.0 15127.0
TLIML 0.0497 0.2161 0.0001 0.0001 0.0001 0.0001
PLIML 36.0 5.6 40.0 34.0 38.0 40.0
LLIML 12698.0 5785.1 15127.0 15127.0 15127.0 15127.0

T= 25

TGMM 0.0004 0.0001 0.0003 0.0003 0.0004 0.0004
PGMM 87.4 13.7 90.0 80.0 90.0 100.0
LGMM 14312.2 2220.2 15127.0 15127.0 15127.0 15127.0
TLIML 0.0001 0.0000 0.0001 0.0001 0.0001 0.0001
PLIML 278.3 18.8 290.0 270.0 290.0 290.0
LLIML 14830.8 2304.6 15127.0 15127.0 15127.0 15127.0

δ = 0.95

T= 10

TGMM 0.3927 0.4660 0.9999 0.0063 0.0456 0.9999
PGMM 13.5 4.5 10.0 10.0 12.0 15.0
LGMM 3219.4 6903.3 1.0 13.0 205.0 344.0
TLIML 0.3041 0.4554 0.0001 0.0001 0.0002 0.9999
PLIML 25.6 13.2 10.0 10.0 31.0 39.0
LLIML 1358.0 4684.8 1.0 1.0 2.0 184.0

T= 25

TGMM 0.1555 0.3330 0.9999 0.0037 0.0088 0.0365
PGMM 53.3 7.0 50.0 50.0 50.0 50.0
LGMM 10110.4 8012.2 15127.0 121.0 15127.0 15127.0
TLIML 0.3330 0.4711 0.0001 0.0001 0.0001 0.9999
PLIML 197.9 111.8 290.0 50.0 280.0 290.0
LLIML 8103.9 8177.8 15127.0 1.0 15127.0 15127.0

Table B.2 – Properties of the distribution of the regularization parameters
with N=50, σ2 = 1, σ2

η = 1 for 5000 replications.118



GMM LIML IVK TGMM TLIML PGMM PLIML LGMM LLIML
δ = 0.50

T= 10
Med.bias -0.0337 -0.0121 -0.0223 -0.0291 -0.0111 -0.0251 -0.0096 -0.0278 -0.0109
Med.abs 0.0439 0.0416 0.0419 0.0429 0.0415 0.0417 0.0413 0.0428 0.0417

Iqr 0.0747 0.0818 0.0806 0.0776 0.0818 0.0781 0.0823 0.0776 0.0820
Med.mse 0.0019 0.0017 0.0018 0.0018 0.0017 0.0017 0.0017 0.0018 0.0017

Cov 0.8978 0.9248 0.9232 0.9512 0.9410 0.9204 0.9324 0.9384 0.9318

T= 25
Med.bias -0.0218 -0.0112 -0.0090 -0.0158 -0.0077 -0.0129 -0.0099 -0.0154 -0.0073
Med.abs 0.0234 0.0190 0.0183 0.0206 0.0193 0.0198 0.0188 0.0206 0.0187

Iqr 0.0324 0.0354 0.0351 0.0347 0.0374 0.0355 0.0355 0.0347 0.0368
Med.mse 0.0005 0.0004 0.0003 0.0004 0.0004 0.0004 0.0004 0.0004 0.0003

Cov 0.8390 0.9266 0.9312 0.9780 0.9882 0.9106 0.9322 0.9416 0.9624
δ = 0.75

T= 10
Med.bias -0.0816 -0.0270 -0.0546 -0.0622 -0.0228 -0.0525 -0.0237 -0.0588 -0.0192
Med.abs 0.0838 0.0672 0.0777 0.0715 0.0646 0.0681 0.0640 0.0709 0.0689

Iqr 0.0992 0.1291 0.1268 0.1090 0.1267 0.1110 0.1248 0.1121 0.1359
Med.mse 0.0070 0.0045 0.0060 0.0051 0.0042 0.0046 0.0041 0.0050 0.0047

Cov 0.7856 0.8464 0.8922 0.9348 0.8908 0.8872 0.8720 0.9396 0.9396

T= 25
Med.bias -0.0370 -0.0178 -0.0160 -0.0211 -0.0094 -0.0160 -0.0149 -0.0189 -0.0076
Med.abs 0.0371 0.0243 0.0229 0.0248 0.0219 0.0230 0.0234 0.0249 0.0240

Iqr 0.0347 0.0437 0.0410 0.0394 0.0422 0.0411 0.0431 0.0431 0.0482
Med.mse 0.0014 0.0006 0.0005 0.0006 0.0005 0.0005 0.0005 0.0006 0.0006

Cov 0.6616 0.8662 0.9174 0.9620 0.9610 0.9156 0.8806 0.9742 0.9752
δ = 0.95

T= 10
Med.bias -0.3105 -0.8503 -0.2941 -0.2766 -0.6223 -0.2629 -0.5158 -0.2981 -0.6905
Med.abs 0.3105 1.2083 0.2974 0.2781 0.8514 0.2651 0.7366 0.3054 1.0954

Iqr 0.1934 1.9015 0.3196 0.2863 1.5497 0.2787 1.3636 0.4076 1.7095
Med.mse 0.0964 1.4599 0.0884 0.0773 0.7249 0.0703 0.5426 0.0933 1.1998

Cov 0.2260 0.1620 0.7550 0.8348 0.3902 0.7284 0.3706 0.9092 0.7978

T= 25
Med.bias -0.1179 -0.3631 -0.0886 -0.0724 -0.0671 -0.0661 -0.1447 -0.1036 -0.2292
Med.abs 0.1179 0.5368 0.0898 0.0733 0.1102 0.0670 0.1939 0.1054 0.5534

Iqr 0.0547 1.3733 0.1103 0.0815 0.3715 0.0840 0.8364 0.1630 1.6616
Med.mse 0.0139 0.2882 0.0081 0.0054 0.0121 0.0045 0.0376 0.0111 0.3063

Cov 0.0330 0.1558 0.7582 0.8708 0.4744 0.7524 0.3284 0.9394 0.6366

Table B.3 – Simulations results with N = 100, σ2 = 1, σ2
η = 1 for 5000

replications.
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Mean Std Mode q1 Median q3
δ = 0.50

T= 10

TGMM 0.0003 0.0001 0.0003 0.0002 0.0003 0.0004
PGMM 32.6 3.1 32.0 31.0 33.0 35.0
LGMM 3459.1 1273.3 3571.0 2588.0 3191.0 4054.0
TLIML 0.0001 0.0000 0.0001 0.0001 0.0001 0.0001
PLIML 39.4 1.0 40.0 39.0 40.0 40.0
LLIML 13406.4 2737.9 15127.0 9349.0 15127.0 15127.0

T= 25

TGMM 0.0001 0.0000 0.0001 0.0001 0.0001 0.0001
PGMM 167.8 16.5 170.0 160.0 170.0 180.0
LGMM 10182.1 3253.5 9349.0 9349.0 9349.0 15127.0
TLIML 0.0001 0.0000 0.0001 0.0001 0.0001 0.0001
PLIML 288.9 3.5 290.0 290.0 290.0 290.0
LLIML 15127.0 15127.0 15127.0 15127.0 15127.0

δ = 0.75

T= 10

TGMM 0.0012 0.0008 0.0007 0.0007 0.0010 0.0014
PGMM 23.1 4.1 21.0 21.0 22.0 26.0
LGMM 13157.8 3624.6 15127.0 9349.0 15127.0 15127.0
TLIML 0.0013 0.0346 0.0001 0.0001 0.0001 0.0001
PLIML 37.5 3.1 40.0 36.0 39.0 40.0
LLIML 14634.5 2837.0 15127.0 15127.0 15127.0 15127.0

T= 25

TGMM 0.0002 0.0000 0.0002 0.0002 0.0002 0.0002
PGMM 104.1 12.9 100.0 100.0 100.0 110.0
LGMM 15120.1 200.1 15127.0 15127.0 15127.0 15127.0
TLIML 0.0001 0.0000 0.0001 0.0001 0.0001 0.0001
PLIML 280.4 14.6 290.0 280.0 290.0 290.0
LLIML 15099.5 792.7 15127.0 15127.0 15127.0 15127.0

δ = 0.95

T= 10

TGMM 0.3168 0.4435 0.9999 0.0045 0.0204 0.9999
PGMM 14.0 4.5 10.0 10.0 13.0 17.0
LGMM 3549.5 7144.7 1.0 11.0 211.0 356.0
TLIML 0.2784 0.4455 0.0001 0.0001 0.0001 0.9999
PLIML 26.3 13.0 10.0 10.0 32.0 39.0
LLIML 1484.2 4877.8 1.0 1.0 3.0 194.0

T= 25

TGMM 0.0463 0.1843 0.0019 0.0024 0.0042 0.0085
PGMM 54.7 7.9 50.0 50.0 50.0 60.0
LGMM 11316.7 7574.7 15127.0 113.0 15127.0 15127.0
TLIML 0.2057 0.4041 0.0001 0.0001 0.0001 0.0001
PLIML 217.0 102.2 290.0 80.0 280.0 290.0
LLIML 8649.8 8008.6 15127.0 1.0 15127.0 15127.0

Table B.4 – Properties of the distribution of the regularization parameters
with N=100, σ2 = 1, σ2

η = 1 for 5000 replications.120



B.2 Proofs.
Lemma 1 : If assumptions 1-3 are satisfied, provided that α

√
NT →∞

we have

(i)

v∗′Mαv∗√
NT

= Op

(
1

α
√
NT

)
.

(ii)

v∗′v∗

NT
− σ2 = Op

(
1√
NT

)
.

(iii) Let ∧0 = v∗′Mαv∗/v∗′v∗, ∧̃ = v∗′Mαv∗/σ2NT . Then

∧ − ∧̃ = Op

(
1

αNT

)
Op

(
1√
NT

)
.

(iv) Let ṽitT = (φT−tvit+, ...,+φ1vi,T−1)/(T−t), uit = −ctṽitT , ρt = E(uitv∗it)/σ2.
Then

T−1∑
t=1

(
E[x∗′v∗]
σ2NT

− ρt
)
v∗′t M

α
t v
∗
t = Op

 1
Tα

.
Proof of Lemma 1.

(i) Let us define v̄tT = (vt + ...+ vT )/(T − t+ 1) so that v∗t = (vt− v̄tT )/ct.

121



E[v∗′Mαv∗] =
T∑
t=1

E[v∗′t Mα
t v
∗
t ]

=
T∑
t=1

trE[v∗′t Mα
t v
∗
t ]

=
T∑
t=1

Etr[v∗′t Mα
t v
∗
t ]

=
T∑
t=1

Etr[Mα
t v
∗
t v
∗′
t ]

=
T∑
t=1

Etr[Mα
t Et[v∗t v∗′t ]]

=
T∑
t=1

Etr[Mα
t σ

2IN ]]

= σ2
T∑
t=1

Etr[Mα
t ]

= σ2Etr[Mα]

= O

 1
α


where the last result comes from Lemma 4 (ii) of CN (2019). We have
just proved that

E

v∗′Mαv∗√
NT

 = O

 1
α
√
NT

.
To derive the order of magnitude of the variance we use the following
decomposition

v∗′Mαv∗√
NT

= 1√
NT

T∑
t=1

c−2
t v′tM

α
t vt−

2√
NT

T∑
t=1

c−2
t v′tM

α
t v̄tT+ 1√

NT

T∑
t=1

c−2
t v̄′tTM

α
t v̄tT

(B.1)
We have

V ar

 1√
NT

T∑
t=1

c−2
t v′tM

α
t vt

 = 1
NT

T∑
t=1

c−4
t V ar(v′tMα

t vt)
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From Lemma 2 (ii) of CN (2019)
V ar(v′tMα

t vt) ≤ (2σ4 + κ4)tr([Mα
t ]2)

and hence

V ar

 1√
NT

T∑
t=1

c−2
t v′tM

α
t vt

 ≤ (2σ4 + κ4)
NT

T∑
t=1

1 + 1
T − t

2

tr([Mα
t ]2)

≤ 2(2σ4 + κ4)
NT

T∑
t=1

tr[Mα
t ]

= O

 1
αNT

.
The second and third terms of (B.1) are similar to Υα

21NT and Υα
22NT

defined in CN (2019). So

V ar

 1√
NT

T∑
t=1

v′tM
α
t v̄tT

 = O

Ln(T )
αNT


V ar

 1√
NT

T∑
t=1

v̄′tTM
α
t v̄tT

 = O

Ln(T )
αNT

.

Hence

V ar

v∗′Mαv∗√
NT

 ≤ O

Ln(T )
αNT

+O

Ln(T )
αNT

+O

 1
αNT


2O
Ln(T )
αNT

+ 2O

√
Ln(T )
αNT

+ 2O

√
Ln(T )
αNT


= O

Ln(T )
αNT

.
Because

E

v∗′Mαv∗√
NT

 = O

 1
α
√
NT


V ar

v∗′Mαv∗√
NT

 = O

Ln(T )
αNT
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we have that if Ln(T )/αNT → 0 then

v∗′Mαv∗√
NT

= Op

 1
α
√
NT

.

But Ln(T )/αNT → 0 because Ln(T )/
√
NT → 0 and α

√
NT →∞.

(ii) We will prove that

E

(
v∗′v∗

NT
− σ2

)
= 0,

V ar

(
v∗′v∗

NT
− σ2

)
= O

(
1
NT

)
.

By the assumptions on the error term, we have

E

[
v∗′v∗

NT
− σ2

]
= E

[
v∗′v∗

NT

]
− σ2

= 1
NT

T∑
t=1

E[v∗′t v∗t ]− σ2

= 1
NT

T∑
t=1

∑
i

E[v∗itv∗it]− σ2

= 1
NT

NTσ2 − σ2

= 0.

Moreover, because v∗t = ct(vt − ¯̄vt/(T − t)) with ¯̄vt = (vt+1 + ... + vT ),
we have

1
NT

v∗′v∗ = 1
NT

T∑
t=1

c2
tv
′
tvt −

2
NT

T∑
t=1

c2
t

T − t
v′t ¯̄vt + 1

NT

T∑
t=1

c2
t

(T − t)2
¯̄v′t ¯̄vt

We now derive the order of magnitude of the variance of these three
terms. From assumption 1, the {vit} (t = 1, ..., T ; i = 1, ..., N) are
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i.i.d. across time and individuals and E(v4
it) <∞. Hence, V ar(v′tvt) ≤

NE[v4
it] and Cov(v′tvt, v′svs) = 0 for t 6= s. Hence,

V ar

(
1
NT

T∑
t=1

c2
tv
′
tvt

)
= 1
N2T 2

T∑
t=1

c4
tV ar(v′tvt)

≤ NE[v4
it]

N2T 2

T∑
t=1

c4
t

≤ N

N2T 2

T∑
t=1

(
T − t

T − t+ 1

)2

= O

(
1
NT

)
.

Moreover, for s = t+ a with a > 0,

Cov(vit ¯̄vit, vis ¯̄vis) = Cov(vit ¯̄vit, vi,t+a ¯̄vi,t+a)
= E(vit ¯̄vitvi,t+a ¯̄vi,t+a)
=

∑
j>0,k>0

E(vitvi,t+jvi,t+avi,t+a+k)

= 0.

using the independence of the vit. Hence,

V ar

(
1
NT

T∑
t=1

c2
t

T − t
v′t ¯̄vt

)
= 1
N2T 2

T∑
t=1

c4
t

(T − t)2V ar(v
′
t
¯̄vt)

≤ Nσ4

N2T 2

T∑
t=1

c4
t (T − t)
(T − t)2

≤ Nσ4

N2T 2

T∑
t=1

(
T − t

T − t+ 1

)2 1
T − t

≤ Nσ4

N2T 2

T∑
t=1

T − t
(T − t+ 1)2

= O

(
1
NT

)
.
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For the variance of the third term, we have

V ar

(
1
NT

T∑
t=1

c2
t

(T − t)2
¯̄v′t ¯̄vt

)

= 1
N2T 2

T∑
t=1

c4
t

(T − t)4V ar(¯̄v′t ¯̄vt) + 2
N2T 2

∑
s

∑
t>s

c2
t

(T − t)2
c2
s

(T − s)2Cov(¯̄v′t ¯̄vt, ¯̄v′s ¯̄vs)

= 1
N2T 2

T∑
t=1

c4
t

(T − t)4V ar(¯̄v′t ¯̄vt) + 2
N2T 2

∑
s

T−s∑
a=1

c2
t

(T − t)2
c2
s

(T − s)2Cov(¯̄v′s+a ¯̄vs+a, ¯̄v′s ¯̄vs)

= N

N2T 2

T∑
t=1

c4
t

(T − t)4V ar(¯̄v2
it) + 2N

N2T 2

∑
s

T−s∑
a=1

c2
t

(T − t)2
c2
s

(T − s)2Cov(¯̄v2
i,s+a, ¯̄v2

is).

But for a given t, we have

V ar(¯̄v2
it) ≤ E(¯̄v4

it)
=

∑
j,k,l,r

E(vi,t+jvi,t+kvi,t+lvi,t+r)

=
∑
j

E(v4
i,t+j) + 3

∑
j 6=k

E(v2
i,t+jv

2
i,t+k)

= (T − t)E(v4
i,t+j) + 3(T − t)2σ4

= O((T − t)2)

so that

N

N2T 2

T∑
t=1

c4
t

(T − t)4V ar(¯̄v2
it) = O

(
1
NT

)
.

Moreover, for a > 0, we can write ¯̄vis = vis+1 + ... + vis+a + ¯̄vi,s+a and
Cov(¯̄v2

i,s+a, ¯̄v2
is) = O((T − s− a)2). Hence,

2N
N2T 2

∑
s

T−s∑
a=1

Cov(¯̄v2
i,s+a, ¯̄v2

is) = 2N
N2T 2

∑
s

c2
s

(T − s)2

T−s∑
a=1

c2
s+a

(T − s− a)2 (T − s− a)2

= O

(
LnT

NT 2

)
= O

(
1
NT

)
.

We have just proved that the three variances are O(1/NT ). By the
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Cauchy-Schwarz inequality we obtain

V ar

(
1
NT

v∗′v∗
)

= O

(
1
NT

)

so that the result (ii) holds since we proved that E(v∗′v∗/NT ) = σ2.

(iii)

∧0 − ∧̃ = v∗′Mαv∗

NT

 1
v∗′v∗/NT

− 1
σ2

.

From (i), we have

v∗′Mαv∗

NT
= 1√

NT

v∗′Mαv∗√
NT

= Op

 1
αNT

.

Moreover, from (ii) we have

v∗′v∗

NT
− σ2 = Op

 1√
NT

.

By the delta method

1
v∗′v∗/NT

− 1
σ2 = Op

 1√
NT



and finally

∧0 − ∧̃ = v∗′Mαv∗

NT

 1
v∗′v∗/NT

− 1
σ2

 = Op

(
1

αNT

)
Op

(
1√
NT

)
.
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(iv) We first calculate the expression of ρt = E(uitv∗it)/σ2.

E[uitv∗it] = E[−ctṽitTv∗it] = −σ
2c2
t

T − t

[
φT−t −

φ1 + ...+ φT−t−1

T − t

]

From Alvarez and Arellano (2003, page 1144) φ1 + ... + φj−1 = (j −
φj)/(1− δ). So

φ1 + ...+ φT−t−1 = T − t− φT−t
1− δ

and

φT−t −
φ1 + ...+ φT−t−1

T − t
= φT−t −

T − t− φT−t
(1− δ)(T − t)

= 1− δT−t
1− δ − T − t− φT−t

(1− δ)(T − t)

= 1
1− δ

(
1− δT−t − 1 + φT−t

T − t

)

= 1
1− δ

(
φT−t
T − t

− δT−t
)
.

From Alvarez and Arellano (2003, page 1144) φj = φj−1 + δj−1 so that

δT−t = φT−t+1 − φT−t

and
φT−t
T − t

− δT−t = φT−t
T − t

− φT−t+1 + φT−t

= T − t+ 1
T − t

φT−t − φT−t+1.

Finally with c2
t = (T − t)/(T − t+ 1)

E[−ctṽitv∗it] = −σ2

(T − t)
(T − t)

(T − t+ 1)
1

(1− δ)

(
T − t+ 1
T − t

φT−t − φT−t+1

)

= −σ2

1− δ

(
φT−t
T − t

− φT−t+1

T − t+ 1

)

128



so that

ρt = E(uitv∗it)/σ2 = E(−ctṽitv∗it)/σ2 = −1
1− δ

(
φT−t
T − t

− φT−t+1

T − t+ 1

)
.

We now prove (iv).
Because x∗t = ψtwt−1 − ctṽtT we have E(x∗′t v∗t ) = E(−ctṽ′tTv∗t ),

E[x∗′v∗]
NTσ2 − ρt =

∑
t

E[−ctṽ′tTv∗t ]

NTσ2 − ρt

=

∑
t

∑
i

E[−ctṽ′itTv∗it]

NTσ2 − ρt

=
N
∑
t

E[−ctṽ′itTv∗it]

NTσ2 − ρt

= N

NTσ2
−σ2

1− δ
∑
t

(
φT−t
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T − t+ 1

)
+ 1

1− δ

(
φT−t
T − t

− φT−t+1

T − t+ 1

)

= −N
NT (1− δ)

∑
t

(
φT−t
T − t

− φT−t+1

T − t+ 1

)
+ 1

1− δ

(
φT−t
T − t

− φT−t+1

T − t+ 1

)

= −N
NT (1− δ)

(
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φT
T

)
+ 1

1− δ

(
φT−t
T − t

− φT−t+1

T − t+ 1

)

= O

(
1
T

)
.

Moreover, from (i)

T−1∑
t=1

v∗′t M
α
t v
∗
t =
√
NT

1√
NT

T−1∑
t=1

v∗′t M
α
t v
∗
t =
√
NTOp

 1
α
√
NT

 = Op

 1
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.
Hence,

T−1∑
t=1

(
E[x∗′v∗]
σ2NT

− ρt
)
v∗′t M

α
t v
∗
t =

(
1
T

)
Op

 1
α

 = Op

 1
Tα

.
Lemma 2. Let us define uit = −ctṽitT , ρt = E[uitv∗it]/σ2, εit = uit− ρtv∗it.

If the assumptions of Proposition 2 are satisfied, then
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T−1∑
t=1

ε′tM
α
t v
∗
t = Op

 1√
α

.
Proof of Lemma 2.

By the spectral decomposition of the matrixMα
t we have ε′tMα

t v
∗
t =

∑
i

qit(ε′tΨit)(v∗′t Ψit)

where Ψit are the orthonormal eigenvectors of Mα
t and qit = q(α, λ̂it

2).

(
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ε′tM
α
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∗
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)2

=
∑
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′
sM

α
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∑
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=
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∑
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.
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We have E[εatv∗at] = 0 for every t, E[v∗btv∗bs] = 0 for t 6= s. So that

E

(
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ε′tM
α
t v
∗
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= E
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∑
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∑
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ΨaitΨajtΨbitΨbjt

]

+ E

[∑
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∑
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Moreover,∑
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∑
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∑
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Because
∑
a

ΨaitΨajt = 1 if i = j and
∑
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ΨaitΨajt = 0 if i 6= j we have
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qitqjsE[εatv∗as]E[εbsv∗bt]
∑
a6=b

ΨaitΨajsΨbitΨbjs

]

= E

[∑
t,s

∑
i,j

qitqjsE[εatv∗as]E[εbsv∗bt]
(∑

a

ΨaitΨajs

)2]

− E
[∑
t,s

∑
i,j

qitqjsE[εatv∗as]E[εbsv∗bt]
(∑

a

Ψ2
aitΨ2

ajs

)]
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so that

E

(
T−1∑
t=1

ε′tM
α
t v
∗
t

)2

= E

[∑
t

∑
i

q2
itE[εatεat]E[v∗btv∗bt]

]

− E
[∑

t

∑
i,j

qitqjtE[εatεat]E[v∗btv∗bt]
(∑

a

Ψ2
aitΨ2

ajt

)]

+ E

[∑
t,s

∑
i,j

qitqjsE[εatv∗atεasv∗as]
∑
a

Ψ2
aitΨ2

ajs

]

+ E

[∑
t,s

∑
i,j

qitqjsE[εatv∗as]E[εbsv∗bt]
(∑

a

ΨaitΨajs

)2]

− E
[∑
t,s

∑
i,j

qitqjsE[εatv∗as]E[εbsv∗bt]
(∑

a

Ψ2
aitΨ2

ajs

)]
.

Since the second and the fifth elements of the right hand side term are posi-
tive, we will prove that the sum of the third and the fourth elements are negli-
gible with respect to the first term. To do that we note that

∑
a

Ψ2
aitΨ2

ajs and∑
a

ΨaitΨajs are bounded as the Ψ2
ait are summable because the eigenvectors of

Mα
t are orthonormal. Moreover, because E[εatv∗atεasv∗as] and E[εatv∗as]E[εbsv∗bt]

are bounded, we have

∑
t,s

∑
i,j

qitqjsE[εatv∗atεasv∗as]
∑
a

Ψ2
aitΨ2

ajs +
∑
t,s

∑
i,j

qitqjsE[εatv∗as]E[εbsv∗bt]
(∑

a

ΨaitΨajs

)2

= Op

(∑
t,s

∑
i,j

qitqjs

)
= Op

(∑
l,j

qlqj

)
.

Because
∑
t

∑
i

q2
it =

∑
j

q2
j and by Lemma 3 of Carrasco and Tchuente (2015,

page 438), the sum of the third and the fourth elements are negligible with
respect to the first term. Hence, by 0 ≤ qj ≤ 1, we have

∑
j

q2
j ≤

∑
j

qj = tr(Mα) = Op

(
1
α

)
.
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following Lemma 4 (ii) of CN (2019). By the Markov’s inequality,

T−1∑
t=1

ε′tM
α
t v
∗
t = Op

(∑
j

q2
j

)1/2
 = Op

 1√
α

.

The following lemma will be used in the proof of Proposition 1.
Lemma 2 (Lemma A4 of Donald and Newey (2001))
If Â p−→ A and B̂ p−→ B. A is positive semi definite and B is positive definite,
τ0 = argminτ1=1

τ ′Aτ
τ ′Bτ

exists and is unique (with τ = (τ1, τ
′
2)′ and τ1 ∈ R) then

τ̂ = argminτ1=1
τ ′Âτ

τ ′B̂τ

p−→ τ0.

Proof of proposition 1
Proof of consistency of the regularized LIML estimator
The regularized LIML estimator of the parameter of interest δ is given by :

δ̂ = argmin
δ

(y∗ − δx∗)′Mα(y∗ − δx∗)
(y∗ − δx∗)′(y∗ − δx∗)

= argmin
δ

(1,−δ)Â(1,−δ)′

(1,−δ)B̂(1,−δ)′

where Â = W ′MαW/NT , B̂ = W ′W/NT and W = [y∗, x∗].
Then,

Â = W ′MαW

NT

= 1
NT



T−1∑
t=1

y∗′t M
α
t y
∗
t

T−1∑
t=1

y∗′t M
α
t x
∗
t

T−1∑
t=1

x∗′t M
α
t y
∗
t

T−1∑
t=1

x∗′t M
α
t x
∗
t
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We now calculate the limit of each term of this matrix. From Okui (2009),
x∗t = ψtwt−1 − ctṽtT with

wt−1 = ψt(yt−1 − µ)

where ct =
√

T−t
T−t+1 , µ = η

1−δ , φj = 1−δj
1−δ and ṽtT = φT−tvt+....+φ1vT−1

T−t .
We have,

1
NT

T−1∑
t=1

x∗′t M
α
t x
∗
t = 1

NT

T−1∑
t=1

ψ2
tw
′
t−1M

α
t wt−1 −

2
NT

T−1∑
t=1

ψtctw
′
t−1M

α
t ṽtT + 1

NT

T−1∑
t=1

c2
t ṽ
′
tTM

α
t ṽtT .

But,

1
NT

T−1∑
t=1

ψ2
tw
′
t−1M

α
t wt−1 = 1

NT

T−1∑
t=1

ψ2
tw
′
t−1Mtwt−1−

1
NT

T−1∑
t=1

ψ2
tw
′
t−1(Mt−Mα

t )wt−1.

From Lemma C2 of Alvarez and Arellano (2003) and ψ2
t = O (1− 1/(T − t)),

when T goes to infinity and regardless of whether N goes to infinity or not,
we have

1
NT

T−1∑
t=1

ψ2
tw
′
t−1Mtwt−1

m.s.−−→ σ2

(1− δ2) .

By Lemma 3(i) for CN (2019), 1
NT

T−1∑
t=1

w′t−1[Mt − Mα
t ]wt−1 = op(1). As a

result, similarly to Alvarez and Arrelano (2003), we have that the limit of
1
NT

T−1∑
t=1

ψ2
tw
′
t−1M

α
t wt−1 is σ2

(1−δ2) .

We have just proved that

1
NT

T−1∑
t=1

x∗′t M
α
t x
∗
t
m.s.−−→ σ2

1− δ2 .

We now look to the term
T−1∑
t=1

x∗′t M
α
t y
∗
t /NT of the matrix Â.

From y∗ = δx∗ + v∗, we have

1
NT

T−1∑
t=1

x∗′t M
α
t y
∗
t = δ

NT

T−1∑
t=1

x∗′t M
α
t x
∗
t + 1

NT

T−1∑
t=1

x∗′t M
α
t v
∗
t .
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The second term of this equality can be decomposed as follows :

1
NT

T−1∑
t=1

x∗′t M
α
t v
∗
t = 1

NT

T−1∑
t=1

ψtw
′
t−1M

α
t v
∗
t −

1
NT

T−1∑
t=1

ctṽ′tTM
α
t v
∗
t .

Moreover,

E

 1
NT

T−1∑
t=1

ψtw
′
t−1M

α
t v
∗
t

 = 0.

and

var

 1
NT

T−1∑
t=1

ψtw
′
t−1M

α
t v
∗
t

 = 1
N2T 2

T−1∑
t=1

E[ψ2
tw
′
t−1(Mα

t )2wt−1]

≤ σ2

N2T 2

T−1∑
t=1

E[ψ2
tw
′
t−1wt−1]

= O(1/NT ).

so that

1
NT

T−1∑
t=1

ψtw
′
t−1M

α
t v
∗
t = Op(1/

√
NT ).

Moreover from Lemma 3 (iii) and Lemma 4 (iii) of CN (2019), we have

1
NT

T−1∑
t=1

ctṽ′tTM
α
t v
∗
t = Op(1/αNT ).

provided that α
√
NT →∞. These two previous results allow us to conclude

that

1
NT

T−1∑
t=1

x∗′t M
α
t v
∗
t = op(1).

Using the limit of 1
NT

T−1∑
t=1

x∗′t M
α
t x
∗
t , we can conclude that

1
NT

T−1∑
t=1

x∗′t M
α
t y
∗
t

p→ σ2δ

1− δ2 .
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We now look at the first element of the matrix Â

1
NT

T−1∑
t=1

y∗′t M
α
t y
∗
t = δ2

NT

T−1∑
t=1

x∗′t M
α
t x
∗
t + 2δ

NT

T−1∑
t=1

x∗′t M
α
t v
∗
t + 1

NT

T−1∑
t=1

v∗′t M
α
t v
∗
t .

By Lemma 1 (i), we have

1
NT

T−1∑
t=1

v∗′t M
α
t v
∗
t = Op

(
1

αNT

)
.

which is op(1) provided that α
√
NT →∞.

Hence the matrix Â converges to the following positive semi definite matrix
A

A = σ2

(1− δ2)

δ
2 δ

δ 1


from the result (A91) of Alvarez and Arellano (2003),

B̂
p−→ B = σ2

(1− δ2)

1 δ

δ 1

 .
The determinant of B is σ4/(1− δ2) and the matrix B is positive definite

as |δ| < 1. To end the proof of consistency, we need to prove that δ is the
unique minimun of τ ′Aτ

τ ′Bτ
. For that, let’s consider τ = (1,−τ1) for any τ1, we

have

τ ′Aτ = (1,−τ1)′A(1,−τ1)

= σ2

(1− δ2)(τ1 − δ)2

≥ 0

with equality if and only τ1 = δ. Since the matrix B is positive definite,
we can conclude that δ is the unique minimun of τ ′Aτ

τ ′Bτ
and this ends the

consistency proof.
Proof of Asymptotic Normality
In the sequel, by abuse of notation, δ sometimes denotes the true value of
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the parameter and sometimes denotes a generic value of the parameter.
Let

A(δ) = (y∗ − x∗δ)′Mα(y∗ − x∗δ)
B(δ) = (y∗ − x∗δ)′(y∗ − x∗δ)

and
∧(δ) = A(δ)

B(δ) .

By definition of the LIML estimator, we have

δ̂α = argmin∧(δ).

The gradient and the Hessian are given by

∧δ(δ) = B(δ)−1[Aδ(δ)− ∧(δ)Bδ(δ)]

∧δδ(δ) = B(δ)−1[Aδδ(δ)− ∧(δ)Bδδ(δ)]
−B(δ)−1[Bδ(δ) ∧′δ (δ)− Aδ(δ) ∧′δ (δ)].

Then by a standard mean-value expansion of the first-order conditions ∧δ(δ̂) =
0, we have √

NT (δ̂α − δ) = − ∧−1
δδ (δ̃)

√
NT ∧δ (δ)

where δ̃ is the mean-value. Because δ̂α is consistent, δ̃ p−→ δ. Moreover, note
that from Alvarez and Arellano (2003, page 1153)

x∗′x∗

NT

p→ σ2

(1− δ2) ,

x∗′v∗

NT

p→ 0,

v∗′v∗

NT

p→ σ2.

Hence,

B(δ̃) = (y∗ − x∗δ̃)′(y∗ − x∗δ̃)
NT

= (δ − δ̃)′x
∗′x∗

NT
(δ − δ̃) + (δ − δ̃)x

∗′v∗

NT
+ v∗′v∗

NT
p−→ σ2
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using the consistency of δ̃.

Bδ(δ̃) = −2x∗′(y∗ − x∗δ̃)
NT

= −2(δ − δ̃)x
∗′x∗

NT
− 2x∗′v∗

NT

p−→ −2 σ2

1− δ2 .

A(δ̃) = (δ − δ̃)′x
∗′Mαx∗

NT
(δ0 − δ̃) + 2(δ − δ̃)x

∗′Mαv∗

NT
+ v∗′Mαv∗

NT
.

We have by Lemma 1 (i) :

x∗′Mαx∗

NT
≤ x∗′x∗

NT
= Op(1)

v∗′Mαv∗

NT
= Op

(
1

αNT

)
.

Moreover in the proof of the consistency of the regularized GMM estimator,
CN (2019) proved that

x∗′Mαv∗√
NT

= op(1)

so that

x∗′Mαv∗

NT
= op(1).

We then have A(δ̃) = op(1) provided αNT →∞.
From B(δ̃) = Op(1), we have ∧(δ̃) = A(δ̃)/B(δ̃) = op(1).

Aδ(δ̃) = −2x∗′Mα(y∗ − x∗δ̃)
NT

= −2(δ − δ̃)x
∗′Mαx∗

NT
− 2(δ − δ̃)x

∗′Mαv∗

NT
.
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From x∗′Mαx∗/NT = Op(1) and v∗′Mαv∗/NT = op(1) and by the consis-
tency of δ̃, we obtain ∧δ(δ̃)→ 0.

Bδδ(δ̃) = 2x∗′x∗
NT

p−→ 2σ2

1− δ2 ,

Aδδ(δ̃) = 2x∗′Mαx∗

NT

p−→ 2σ2

1− δ2 .

Let σ̃2 = v∗′v∗/NT . We have by continuity

∧δδ(δ̃) = ∧δδ(δ) +Op

(
1√
NT

)

and hence σ̃2 ∧δδ (δ̃)/2 p−→ σ2

1−δ2 .
Moreover noting that for the true value of the parameter δ

B(δ) = v∗′v∗,

Aδ(δ) = −2x∗′Mαv∗,

Bδ(δ) = −2x∗′v∗,

∧ (δ) = A(δ))
B(δ) = v∗′Mαv∗

v∗′v∗
,

we have

−
√
NTσ̃2 ∧δ (δ)/2 = −1

2
√
NT

v∗′v∗

NT

[
−2x∗′Mαv∗

v∗′v∗
− v∗′Mαv∗

v∗′v∗

(
−2x∗′v∗
v∗′v∗

)]

= 1√
NT

[
x∗′Mαv∗ − v∗′Mαv∗

x∗′v∗

v∗′v∗

]

= 1√
NT

[
T−1∑
t=1

ψtw
′
t−1v

∗
t −

T−1∑
t=1

ψtw
′
t−1(I −Mα

t )v∗t +
T−1∑
t=1

ε′tM
α
t v
∗
t

− v∗′Mαv∗
(
x∗′v∗

v∗′v∗
− E[x∗′v∗]

σ2NT

)
−

T−1∑
t=1

(
E[x∗′v∗]
σ2NT

− ρt
)
v∗′t M

α
t v
∗
t

]
.

Let
∆α = 1

NT

T−1∑
t=1

ψ2
tE[w′t−1(I −Mα

t )2wt−1].
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From Lemma 5 (i) and (ii) of CN (2019), we have

1√
NT

T−1∑
t=1

ψtw
′
t−1(I −Mα

t )v∗t = Op

(
∆1/2
α

)
= op(1).

From Lemma 2,
1√
NT

T−1∑
t=1

ε′tM
α
t v
∗
t = Op

(
1√
αNT

)
.

which tends to zero if
√
αNT →∞.

From Alvarez and Arellano (2003),

x∗′v∗

NT
− E[x∗′v∗]

NT
= Op(1/

√
NT )

[v∗′v∗]
NT

p−→ σ2.

Hence

x∗′v∗

v∗′v∗
− E[x∗′v∗]

σ2NT
= Op

(
1√
NT

)

and using Lemma 1 (i)

v∗′Mαv∗√
NT

(
x∗′v∗

v∗′v∗
− E[x∗′v∗]

σ2NT

)
= Op

(
1

α
√
NT

)
Op

(
1√
NT

)

which tends to zero provided that α
√
NT →∞.

By Lemma 1 (iv)

T−1∑
t=1

(
E[x∗′v∗]
σ2NT

− ρt
)
v∗′t M

α
t v
∗
t = Op

(
1

αT
√
NT

)

which tends to zero under the assumption that α
√
NT →∞.
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Finally we have

−
√
NTσ̃2 ∧δ (δ)/2 = 1√

NT

[
T−1∑
t=1

ψtw
′
t−1v

∗
t −

T−1∑
t=1

ψtw
′
t−1(I −Mα

t )v∗t +
T−1∑
t=1

ε′tM
α
t v
∗
t

− v∗′Mαv∗
(
x∗′v∗

v∗′v∗
− E[x∗′v∗]

σ2NT

)
−

T−1∑
t=1

(
E[x∗′v∗]
σ2NT

− ρt
)
v∗′t M

α
t v
∗
t

]

= 1√
NT

T−1∑
t=1

ψtw
′
t−1v

∗
t + op(1)

d−→ N

(
0, σ4

1− δ2

)
.

The conclusion follows from Slutzky theorem.

Preliminary results for the proof of Proposition 2.

Lemma 3. Let ∧̃ = v∗′Mαv∗/(NTσ2), ∧0 = ∧(δ0) and ∧̂ = ∧(δ̂) with
∧(δ) = (y∗−x∗δ)′Mα(y∗−x∗δ)

(y∗−x∗δ)′(y∗−x∗δ) . If the assumptions of Proposition 2 are satisfied,
then

∧̂ = ∧̃ − (σ
2

σ̃2 − 1)∧̃ − hH−1h/(NTσ2) + R̂∧

= ∧̃+ o(1/NTα),
√
NTR̂∧ = o(ρα)

where ρα = S(α).

Proof of Lemma 3.
Similarly to the calculations in the previous proposition it can be shown that
∧(δ) is three times continuously differentiable with derivative that is bounded
in probability uniformly in a neighborhood of δ0, so that for any δ̃ between δ̂
and δ0, ∧δδ(δ̃) = ∧δδ(δ0) +Op(1/

√
NT ). Hence, δ̂ = δ0 + [∧δδ(δ0)]−1 ∧δ (δ0) +

Op(1/NT ). By an expansion of ∧(δ0) around δ̂ we have

∧̂ = ∧(δ0)− 1
2(δ̂ − δ0)2[∧δδ(δ0)]−1 +O(1/NT

√
NT )

= ∧(δ0)− 1
2(∧δ(δ0))2[∧δδ(δ0)]−1 +O(1/NT

√
NT ).
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As in the proof of proposition 1

−
√
NTσ̃2

v ∧δ (δ0)/2 = 1√
NT

(
x∗′Mαv∗ − v∗′Mαv∗

v∗′v∗
x∗′v∗

)

= 1√
NT

T−1∑
t=1

ψtw
′
t−1v

∗
t −

1√
NT

T−1∑
t=1

ψtw
′
t−1(I −Mα

t )v∗t

+ 1√
NT

T−1∑
t=1

ε′tM
α
t v
∗
t −

1√
NT

v∗′Mαv∗
[
x∗′v∗

v∗′v∗
− E[x∗′v∗]

NTσ2

]

− 1√
NT

v∗′Mαv∗
E[x∗′v∗]
NTσ2 + 1√

NT

T−1∑
t

ρtv
∗′
t M

α
t v
∗
t

= h+Op(∆1/2
α ) +Op

(
1√
αNT

)
+Op

(
1

α
√
NT

)
Op

(
1√
NT

)

+Op

(
1

αT
√
NT

)

where h =
T−1∑
t=1

ψtw
′
t−1v

∗
t /
√
NT . If we define

H = 1
NT

T−1∑
t=1

ψ2
tE[w′t−1wt−1] = σ2

1− δ2
1
T

T−1∑
t=1

ψ2
t
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we have

σ̃2
v ∧δδ (δ0)/2 = 1

NT

(
x∗′Mαx∗ − v∗′Mαv∗

v∗′v∗
x∗′x∗

)

= σ2

1− δ2
1
T

T−1∑
t=1

ψ2
t + 1

NT

T−1∑
t=1

ψ2
t [w′t−1wt−1]−H

+ 1
NT

T−1∑
t=1

ψ2
tE[w′t−1(I −Mα

t )wt−1]

+ 1
NT

T−1∑
t=1

ψ2
t [w′t−1(I −Mα

t )wt−1 − E{w′t−1(I −Mα
t )wt−1}]

+ 1
NT

T−1∑
t=1

c2
t ṽ
′
tTM

α
t ṽtT

− 2
NT

T−1∑
t=1

ctψtw
′
t−1M

α
t ṽtT

− ∧0

 1
NT

T−1∑
t=1

x∗′t x
∗
t −H

−H∧0

= H +Op(∆α) +Op(1/
√
NT ) +Op(1/αNT )

+Op(1/
√
NT ) +Op(1/αNT )

= H +Op(∆1/2
α + 1/

√
αNT )

where we used results from Lemma 5 of CN (2019).
Combining the two equations we have

∧δ(δ0)[∧δδ(δ0)]−1 ∧δ (δ0) = hH−1h/(NTσ2) +Op(∆1/2
α /NT ) + 1/

√
αNTN2T 2).
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Using the same decomposition as in Donald and Newey (2001)

∧(δ0) = v∗′Mαv∗

v∗′v∗

= σ2

σ̃2 ∧̃

= ∧̃ − (σ
2

σ̃2 − 1)∧̃+ (σ̃2 − σ2)2

σ̃2σ2 ∧̃

= ∧̃ − (σ
2

σ̃2 − 1)∧̃+Op

(
1

αN2T 2

)

= ∧̃ − (σ
2

σ̃2 − 1)∧̃+Op(1/
√
αNTN2T 2)

where we used Lemma 1 (ii) and delta method to obtain σ̃2/σ2 = 1 +
Op(1/

√
NT ). We have

ρα = (1− δ2)2

σ2

 σ2

NT

T−1∑
t=1

E[tr(Mα
t )2]

(
[φ2
T−t + ...+ φ2

1]
(T − t)(T − t+ 1) −

1
(1− δ)2

[
φT−t
T − t

− φT−t+1

T − t+ 1

]2)

+ 1
NT

T−1∑
t=1

ψ2
tE[w′t−1(I −Mα

t )2wt−1]


= (1− δ2)2

σ2

 σ2

NT

T−1∑
t=1

E[tr(Mα
t )2]

(
[φ2
T−t + ...+ φ2

1]
(T − t)(T − t+ 1) −

1
(1− δ)2

[
φT−t
T − t

− φT−t+1

T − t+ 1

]2)

+ ∆α



Notice that

ρα ≥
(1− δ2)2

NT

[
T−1∑
t=1

E[tr(Mα
t )2]

(
[φ2
T−t + ...+ φ2

1]
(T − t)(T − t+ 1)−

1
(1− δ)2

[
φT−t
T − t

− φT−t+1

T − t+ 1

]2)]
(B.2)
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We will establish the rate of the RHS of (B.4). Because φj ≤ 1/(1− δ)
∣∣∣∣∣ [φ2

T−t + ...+ φ2
1]

(T − t)(T − t+ 1) −
1

(1− δ)2

(
φT−t
T − t

− φT−t+1

T − t+ 1

)2
∣∣∣∣∣∣

≤
[φ2
T−t + ...+ φ2

1]
(T − t)(T − t+ 1) + 1

(1− δ)2

(
φT−t
T − t

− φT−t+1

T − t+ 1

)2

≤ C

we have

(1− δ2)2

NT

[
T−1∑
t=1

E[tr(Mα
t )2]

(
[φ2
T−t + ...+ φ2

1]
(T − t)(T − t+ 1) −

1
(1− δ)2

[
φT−t
T − t

− φT−t+1

T − t+ 1

]2)]

= O

 1
NT

T−1∑
t=1

E[tr(Mα
t )2]


= O

E[tr(Mα)]
NT


= O

 1
αNT



so that

(1− δ2)2

NT

[
T−1∑
t=1

E[tr(Mα
t )2]

(
[φ2
T−t + ...+ φ2

1]
(T − t)(T − t+ 1)−

1
(1− δ)2

[
φT−t
T − t

− φT−t+1

T − t+ 1

]2)]
= O

 1
αNT


(B.3)

and

ρα = (1− δ2)2

σ2

 σ2

NT

T−1∑
t=1

E[tr(Mα
t )2]

(
[φ2
T−t + ...+ φ2

1]
(T − t)(T − t+ 1) −

1
(1− δ)2

[
φT−t
T − t

− φT−t+1

T − t+ 1

]2)

+ 1
NT

T−1∑
t=1

ψ2
tE[w′t−1(I −Mα

t )2wt−1]


= Op(1/αNT + ∆α).
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We have
√
NT × 1/

√
αNTN2T 2 = 1/

√
αN2T 2 = o(1/αNT ) = o(ρα)

√
NT∆1/2

α /NT = o(ρα)

and

∧̂ = ∧̃ − (σ
2

σ̃2 − 1)∧̃ − hH−1h/(2NTσ2) + R̂∧

and
√
NTR̂∧ = o(ρα).

To end the proof of this Lemma we have to prove that ∧̂ = ∧̃+ o(1/NTα).
By σ̃2/σ2 = 1 + Op(1/

√
NT ), ∧̃ = Op(1/αNT ), h = Op(1) and

√
NTR̂∧ =

o(ρα) we have

∧̂ − ∧̃ = −(σ
2

σ̃2 − 1)∧̃ − hH−1h

2NTσ2 +
√
NTR̂∧

1√
NT

= o(ρα).

Lemma 4. (Lemma 2 of Okui (2009))
Let ρα = trS(α). Suppose that an estimator δ̂ has a decomposition

√
NT

(
δ̂ − δ

)
=

Ĥ−1ĥ, ĥ = h+ T h + Zh, Ĥ = H + TH + ZH ,(
h+ T h

) (
h+ T h

)′
−hh′H−1TH′−THH−1hh′= Â + Z

A
,

such that T h = op (1), h = Op (1) , H = Op (1) , the determinant of H is
bounded away from zero with probability approaching 1, ρα = op (1) ,∥∥∥TH∥∥∥2

= op (ρα) ,
∥∥∥T h∥∥∥ ∥∥∥TH∥∥∥ = op (ρα),

∥∥∥Zh
∥∥∥ = op (ρα),

∥∥∥ZH
∥∥∥ = op (ρα),∥∥∥ZA

∥∥∥ = op (ρα),
E
(
Â
)

= σ2H + HS (α) H + op (ρα) .
Then, the decomposition (2.10) holds for δ̂.

Proof of Proposition 2.
Let ρα = S(α). Notice that

ρα ≥
(1− δ2)2

NT

[
T−1∑
t=1

E[tr(Mα
t )2]

(
[φ2
T−t + ...+ φ2

1]
(T − t)(T − t+ 1)−

1
(1− δ)2

[
φT−t
T − t

− φT−t+1

T − t+ 1

]2)]
(B.4)
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and
ρα ≥

(1− δ2)2

σ2NT

T−1∑
t=1

ψ2
tE[w′t−1(I −Mα

t )2wt−1].

From (B.3) a term that is o(1/(αNT )) is necessarily o(ρα).
Since

∆α ≥
1
NT

T−1∑
t=1

ψ2
tE[w′t−1(I −Mt)wt−1]

and from Okui (2009), logT/T = o(
T−1∑
t=1

ψ2
tE[w′t−1(I −Mt)wt−1]/NT ) so that

o(logT/T ) = o(ρα).

Our proof of proposition 2 will be very close to those of Carrasco and
Tchuente (2015) and Donald and Newey (2001). The LIML estimator is ob-
tained by solving the following first order condition

x∗′Mα(y∗ − x∗δ̂)− ∧̂x∗′(y∗ − x∗δ̂) = 0

with ∧̂ = ∧(δ̂). Let us consider
√
NT (δ − δ̂α) = Ĥ−1ĥ

with

ĥ = x∗′Mαv∗√
NT

− ∧̂ x
∗′v∗√
NT

Ĥ = x∗′Mαx∗

NT
− ∧̂x

∗′x∗

NT
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The term ĥ can be decomposed as follows ĥ = h+
5∑
j=1

T hj + Zh with

h = 1√
NT

T−1∑
t=1

ψtw
′
t−1v

∗
t ,

T h1 = − 1√
NT

T−1∑
t=1

ψtw
′
t−1(I −Mα

t )v∗t = Op(∆1/2
α ),

T h2 = 1√
NT

T−1∑
t=1

ε′tM
α
t v
∗
t = Op(1/

√
αNT ),

T h3 = −∧̃h = Op(1/αNT ),

T h4 = −∧̃ 1√
NT

T−1∑
t=1

ε′tv
∗
t = Op(1/αNT ),

T h5 =
(

1√
NT

T−1∑
t=1

ψtw
′
t−1v

∗
t

)2

H−1E[x∗′v∗]
σ2NT

1
2
√
NT

= Op(1/
√
NT ),

Zh = −R̂∧
x∗′v∗√
NT
− (∧̂ − ∧̃ − R̂∧)

√
NT

(
x∗′v∗

NT
− E[x∗′v∗]

NT

)

where R̂∧ defined in Lemma 3.
From Alvarez and Arellano (2003),

√
NT (x∗′v∗/NT −E[x∗′v∗]/NT ) = Op(1)

and by Lemma 3, Zh = O(ρα).
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We also have Ĥ = H +
3∑
j=1

THj + ZH with

H = σ2

1− δ2
1
T

T−1∑
t=1

ψ2
t ,

TH1 = − 1
NT

T−1∑
t=1

ψ2
tE[w′t−1(I −Mα

t )wt−1] = Op(∆α),

TH2 = − 2
NT

T−1∑
t=1

ctψtw
′
t−1ṽtT = Op

(
1√
NT

)
,

TH3 = −∧̃H = Op

(
1

αNT

)
,

ZH = 1
NT

T−1∑
t=1

c2
t ṽ
′
tTM

α
t ṽtT −

2
NT

T−1∑
t=1

ctψtw
′
t−1(I −Mα

t )ṽtT − ∧̂
 1
NT

T−1∑
t=1

x∗′t x
∗
t

+ ∧̃H

+ 1
NT

T−1∑
t=1

ψ2
t [w′t−1wt−1 − E{w′t−1wt−1}] + 1

NT

T−1∑
t=1

ψ2
t [w′t−1M

α
t wt−1 − E{w′t−1M

α
t wt−1}].

From Okui (2009, page 11), H = O(1). We derive the rate of convergence of
the ZH term.
From equation (14) of CN (2019) we have

1
NT

T−1∑
t=1

c2
t ṽ
′
tTM

α
t ṽtT = Op

(
1

αNT

)
.

Moreover

1
NT

T−1∑
t=1

ctψtw
′
t−1M

α
t ṽtT = Op

(
1√
NT

)

from Lemma 5 (iv) of CN (2019).
By the result (A14) (page 1139) of Alvarez and Arellano (2003) we have

1
NT

T−1∑
t=1

x∗′t x
∗
t −H = Op

(
1√
NT

)
.
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Moreover by Lemma 3, ∧̂ − ∧̃ = op(1/αNT ). Hence, we have

∧̂

 1
NT

T−1∑
t=1

x∗′t x
∗
t

− ∧̃H = (∧̂ − ∧̃)
 1
NT

T−1∑
t=1

x∗′t x
∗
t

+ ∧̃
 1
NT

T−1∑
t=1

x∗′t x
∗
t −H


= op(1/αNT ) +Op(1/αNT )Op(1/

√
NT )

= o(ρα).

From Okui (2009),

1
NT

T−1∑
t=1

ψ2
t [w′t−1wt−1 − E{w′t−1wt−1}] = Op

(
1√
NT

)
.

Hence, we can conclude that

ZH = Op(1/αNT ) +Op(1/
√
NT ) +Op(1/αNT )Op(1/

√
NT ) +Op(1/

√
NT ) +Op(1/

√
NT )

= Op(1/
√
NT ).

We now apply Lemma 4 with T h =
5∑
j=1

T hj , TH =
3∑
j=1

THj ,

ZA =
( 5∑
j=3

T hj

)2

+ 2
( 5∑
j=3

T hj

)(
T h1 + T h2

)
,

Â = h2 + 2
5∑
j=1

T hj h+
(
T h1 + T h2

)2

− 2h2H−1
3∑
j=1

THj

By
√
αNT →∞ and ∆α = o(1), we have ||T h1 ||||THj || = o(ρα), ||T h2 ||||THj || =

o(ρα) for each j, ||T hk ||||THj || = o(ρα) for each j and k > 2, ||THj ||2 = o(ρα)
for each j and ZA = o(ρα).
We now derive E(Â).

E(Â) = E(h2) + 2
5∑
j=1

E(T hj h) + E

(
T h1 + T h2

)2

− 2
3∑
j=1

E(h2H−1THj )

We can note that hT h3 − h2H−1TH3 = 0, E(h2H−1(TH1 + TH2 )) = −σ2TH1 +
H−1E(h2TH2 ), E(T h1 h) = σ2∆α, E(T h1 T h1 ) = σ2∆α.
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Moreover by Lemma 2, we have

E[(T h2 )2] = 1
NT

E

[∑
t

∑
i

q2
itE[εitεit]E[v∗itv∗it]

]
+ o(1/αNT )

= 1
NT

E

[∑
t

∑
i

q2
itE[εitεit]E[v∗itv∗it]

]
+ o(ρα)

We have
∑
i

q2
it = tr(Mα

t )2 and E[v∗itv∗it] = σ2. Moreover,

E[εitεit] = V ar(εit)
= V ar(uit − ρtv∗it)
= V ar(uit)− 2Cov(uit, ρtv∗it) + ρ2

tV ar(v∗it)

= c2
tV ar

(
φT−tvit + ...+ φ1vi,T−1

T − t

)
− 2σ2ρ2

t + ρ2
tσ

2

= 1
(T − t)(T − t+ 1)V ar

(
φT−tvit + ...+ φ1vi,T−1

)
− σ2ρ2

t

= σ2(φ2
T−t + ...+ φ2

1)
(T − t)(T − t+ 1) − σ

2ρ2
t .

But from the proof of Lemma 1 (iv), we have

ρt = E[−ctṽitTv∗it]
σ2

= 1
σ2
−σ2

1− δ

(
φT−t
T − t

− φT−t+1

T − t+ 1

)

= −1
1− δ

(
φT−t
T − t

− φT−t+1

T − t+ 1

)

and finally

E[εitεit] = σ2(φ2
T−t + ...+ φ2

1)
(T − t)(T − t+ 1) −

σ2

(1− δ)2

(
φT−t
T − t

− φT−t+1

T − t+ 1

)2

.
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So we have

E[(T h2 )2] = σ4

NT

T−1∑
t=1

[
[φ2
T−t + ...+ φ2

1]
(T − t)(T − t+ 1) −

1
(1− δ)2

(
φT−t
T − t

− φT−t+1

T − t+ 1

)2]
E[tr(Mα

t )2] + o(ρα).

By the third moment condition and the independence assumption both on
the error term vit, we have E(hT h2 ) = E(hT h5 ) = E(h2TH2 ) = 0. Moreover,
because E(v5

it) = 0, we have E(hT h4 ) = 0.
Finally

E(Â) = σ4

NT

T−1∑
t=1

E[tr(Mα
t )2]

(
[φ2
T−t + ...+ φ2

1]
(T − t)(T − t+ 1) −

1
(1− δ)2

[
φT−t
T − t

− φT−t+1

T − t+ 1

]2)
+ σ2H + σ2∆α + o(ρα).

And therefore
S (α) =

(
lim
T→∞

H
)−2
× σ4

NT

T−1∑
t=1

E[tr(Mα
t )2]

(
[φ2
T−t + ...+ φ2

1]
(T − t)(T − t+ 1) −

1
(1− δ)2

[
φT−t
T − t

− φT−t+1

T − t+ 1

]2)
+ σ2∆α


= (1− δ2)2

σ2

 σ2

NT

T−1∑
t=1

E[tr(Mα
t )2]

(
[φ2
T−t + ...+ φ2

1]
(T − t)(T − t+ 1) −

1
(1− δ)2

[
φT−t
T − t

− φT−t+1

T − t+ 1

]2)

+ 1
NT

T−1∑
t=1

ψ2
tE[w′t−1(I −Mα

t )2wt−1]

.
using the fact that limT→∞H = σ2/(1 − δ2). This ends the proof of Propo-
sition 2.

Proof of proposition 3

We want to prove that
S(α̂)

infα∈ET S(α)
P→ 1

where ET is the parameter set for a given regularization scheme. By Lemma
A9 of Donald and Newey (2001), it is sufficient to prove that

sup
ET

∣∣∣∣∣∣ Ŝ(α)− S(α)
S(α)

∣∣∣∣∣∣ = op(1).
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Using the fact that, (1−δ2)2

σ2 R (α) ≤ S (α) and (1−δ2)2

NT
A (α) ≤ S (α), we

have for some constant C

1
C

∣∣∣∣∣∣ Ŝ(α)− S(α)
S(α)

∣∣∣∣∣∣ ≤ (1− δ̂2)2

(1− δ2)2

∣∣∣∣∣∣Â (α)−A (α)
A (α)

∣∣∣∣∣∣+
∣∣∣∣∣∣(1− δ̂

2)2 − (1− δ2)2

(1− δ2)2

∣∣∣∣∣∣
+ (1− δ̂2)2/σ̂2

(1− δ2)2/σ2

∣∣∣∣∣∣R̂(α)−R(α)
R(α)

∣∣∣∣∣∣+
∣∣∣∣∣∣(1− δ̂

2)2/σ̂2 − (1− δ2)2/σ2

(1− δ2)2/σ2

∣∣∣∣∣∣.
By the consistency of δ̂ and σ̂2, we just need to prove that :

sup
ET

∣∣∣∣∣∣Â (α)−A (α)
A (α)

∣∣∣∣∣∣ = op(1),

sup
ET

∣∣∣∣∣∣R̂(α)−R(α)
R(α)

∣∣∣∣∣∣ = op(1).

For the first equality, we have

Â (α)−A (α) =
T−1∑
t=1

tr(Mα
t )2 (ν̂t − νt) +

T−1∑
t=1

(
tr(Mα

t )2 − E[tr(Mα
t )2]

)
νt

where

νt = [φ2
T−t + ...+ φ2

1]
(T − t)(T − t+ 1) −

1
(1− δ)2

(
φT−t
T − t

− φT−t+1

T − t+ 1

)2

ν̂t = [φ̂2
T−t + ...+ φ̂2

1]
(T − t)(T − t+ 1) −

1
(1− δ̂)2

(
φ̂T−t
T − t

− φ̂T−t+1

T − t+ 1

)2

.

We will use the following result (see Okui (2009, p.13) : For a random se-
quence, {ak}k,

∑
k E(a2

k) = o(1) implies that supk ak = op(1).

E


[
T−1∑
t=1

tr(Mα
t )2 (ν̂t − νt)

]2 = E
T−1∑
t=1

(tr(Mα
t )2)2 (ν̂t − νt)2 (B.5)

+
∑
t6=s

E
[
tr (Mα

t )2 (ν̂t − νt) tr(Mα
s )2 (ν̂s − νs)

]
.(B.6)
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Using tr(Mα
t )2 ≤ tr(Mα

t ) ≤ C/α and, by the consistency of δ̂, E (ν̂t − νt)2 =
O (1/NT ), we have

E
T−1∑
t=1

(tr(Mα
t ))2 (ν̂t − νt)2 = O

( 1
α2N

)
.

By Cauchy-Schwarz’s inequality, the second term on the RHS of (B.5) is also
O(1/Nα2).
Moreover given that φj ≤ 1/(1− δ) we have

∣∣∣∣∣ [φ2
T−t + ...+ φ2

1]
(T − t)(T − t+ 1) −

1
(1− δ)2

(
φT−t
T − t

− φT−t+1

T − t+ 1

)2
∣∣∣∣∣∣

≤
[φ2
T−t + ...+ φ2

1]
(T − t)(T − t+ 1) + 1

(1− δ)2

(
φT−t
T − t

− φT−t+1

T − t+ 1

)2

≤ C

so that the result of Lemma 7 (ii) of CN (2019) applies and we can write

E

[T−1∑
t=1

(
tr(Mα

t )2 − E[tr(Mα
t )2]

)
νt

]2 = O
( 1
α2N

)
.

From Lemma 1 (iv) we have σ2A (α) /NT = O(1/αNT ) so that

A(α) =
T−1∑
t=1

[
[φ2
T−t + ...+ φ2

1]
(T − t)(T − t+ 1) −

1
(1− δ)2

(
φT−t
T − t

− φT−t+1

T − t+ 1

)2]
E[tr(Mα

t )2]

= O(1/α).

Hence for any α ∈ ET (which is discrete and finite for SC and LF and is
compact for TH) we have

E

∣∣∣∣∣∣Â (α)−A (α)
A (α)

∣∣∣∣∣∣
2

= O
( 1
N

)
.

Now summing up over the elements of ET , we obtain

∑
α∈ET

O
( 1
N

)
= O

(
T 2

N

)
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because the cardinal of ET is equal to T 2. Hence, supα
Â(α)−A(α)
A(α) = op (1)

provided T 2/N → 0 (which is true under the condition T 3/(N ln(T )2)→ 0).
To end the proof of proposition 3 we have to prove that

sup
ET

∣∣∣∣∣∣R̂(α)−R(α)
R(α)

∣∣∣∣∣∣ = op(1) (B.7)

which is exactly the equality (18) of CN (2019) who proved that equation
(B.7) holds provided that T/N → 0, #ET = O(T 2) and T 3/(N ln(T )2)→ 0.
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1981 1991 2001 2011 All
Wage 18.50 22.56 26.40 28.85 25.00

[8.776] [11.50] [13.88] [16.33] [13.88]

Annual hours worked ($1000) 2.202 2.220 2.279 2.166 2.221
[0.435] [0.443] [0.469] [0.400] [0.441]

Earned income ($1000) 39.76 49.05 59.14 61.64 54.53
[18.10] [24.61] [31.28] [34.65] [30.09]

Non labor income ($1000) 1.607 2.787 2.144 3.643 2.689
[4.316] [5.809] [7.849] [12.98] [8.825]

Newfoundland and Labrador 0.0205 0.0160 0.0142 0.0156 0.0158
[0.142] [0.125] [0.118] [0.124] [0.125]

Prince Edward Island 0.00746 0.00740 0.00725 0.00726 0.00732
[0.0861] [0.0857] [0.0848] [0.0849] [0.0852]

Nova Scotia 0.0295 0.0315 0.0294 0.0288 0.0299
[0.169] [0.175] [0.169] [0.167] [0.170]

New Brunswick 0.0265 0.0238 0.0232 0.0235 0.0239
[0.161] [0.153] [0.151] [0.152] [0.153]

Quebec 0.262 0.249 0.251 0.247 0.250
[0.440] [0.433] [0.433] [0.431] [0.433]

Ontario 0.352 0.384 0.390 0.384 0.382
[0.478] [0.486] [0.488] [0.486] [0.486]

Manitoba 0.0367 0.0383 0.0370 0.0352 0.0368
[0.188] [0.192] [0.189] [0.184] [0.188]

Saskatchewan 0.0350 0.0305 0.0271 0.0296 0.0297
[0.184] [0.172] [0.162] [0.170] [0.170]

Alberta 0.115 0.104 0.103 0.105 0.105
[0.319] [0.305] [0.304] [0.307] [0.307]

British Columbia 0.116 0.116 0.119 0.123 0.119
[0.320] [0.320] [0.324] [0.329] [0.324]

Observations 18228 72991 66311 61786 219316
mean coefficients ; sd in brackets.

Table C.1 – Descriptive statistics.
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