
Université de Montréal

REPRESENTATION LEARNING FOR
DIALOGUE SYSTEMS

Par

Iulian Vlad Serban

Institut Québécois d’Intelligence Artificielle (Mila)

Département d’Informatique et de Recherche Opérationnelle (DIRO),

Faculté des Arts et des Sciences

Thèse présentée à la Faculté des arts et des sciences en vue de l’obtention du grade de

Philosophiœ Doctor (Ph.D.) en informatique.

mai 2019

R© Iulian Vlad Serban, 2019

Université de Montréal
Faculté des études supérieures et postdoctorales

Ce mémoire intitulé

REPRESENTATION LEARNING FOR
DIALOGUE SYSTEMS

Présenté par

Iulian Vlad Serban

a été évalué par un jury composé des personnes suivantes :

Alain Tapp

(président-rapporteur)

Aaron Courville

(directeur de recherche)

Yoshua Bengio

(co-directeur de recherche)

Pascal Vincent

(membre du jury)

Phil Blunsom

Department of Computer Science

Oxford University

(examinateur externe)

I Sommaire

Cette thèse présente une série de mesures prises pour étudier l’apprentissage de représentations

(par exemple, l’apprentissage profond) afin de mettre en place des systèmes de dialogue et des

agents de conversation virtuels. La thèse est divisée en deux parties générales.

La première partie de la thèse examine l’apprentissage des représentations pour les modèles

de dialogue génératifs. Conditionnés sur une séquence de tours à partir d’un dialogue textuel, ces

modèles ont la tâche de générer la prochaine réponse appropriée dans le dialogue. Cette partie de

la thèse porte sur les modèles séquence-à-séquence, qui est une classe de réseaux de neurones pro-

fonds génératifs. Premièrement, nous proposons un modèle d’encodeur-décodeur récurrent hiérar-

chique (“Hierarchical Recurrent Encoder-Decoder”), qui est une extension du modèle séquence-

à-séquence traditionnel incorporant la structure des tours de dialogue. Deuxièmement, nous pro-

posons un modèle de réseau de neurones récurrents multi-résolution (“Multiresolution Recurrent

Neural Network”), qui est un modèle empilé séquence-à-séquence avec une représentation stochas-

tique intermédiaire (une “représentation grossière”) capturant le contenu sémantique abstrait com-

muniqué entre les locuteurs. Troisièmement, nous proposons le modèle d’encodeur-décodeur

récurrent avec variables latentes (“Latent Variable Recurrent Encoder-Decoder”), qui suivent une

distribution normale. Les variables latentes sont destinées à la modélisation de l’ambiguïté et

l’incertitude qui apparaissent naturellement dans la communication humaine. Les trois mod-

èles sont évalués et comparés sur deux tâches de génération de réponse de dialogue: une tâche

de génération de réponses sur la plateforme Twitter et une tâche de génération de réponses de

l’assistance technique (“Ubuntu technical response generation task”).

La deuxième partie de la thèse étudie l’apprentissage de représentations pour un système de

dialogue utilisant l’apprentissage par renforcement dans un contexte réel. Cette partie porte plus

particulièrement sur le système “Milabot” construit par l’Institut québécois d’intelligence artifi-

cielle (Mila) pour le concours “Amazon Alexa Prize 2017”. Le Milabot est un système capable

de bavarder avec des humains sur des sujets populaires à la fois par la parole et par le texte. Le

système consiste d’un ensemble de modèles de récupération et de génération en langage naturel,

comprenant des modèles basés sur des références, des modèles de sac de mots et des variantes

des modèles décrits ci-dessus. Cette partie de la thèse se concentre sur la tâche de sélection de

réponse. À partir d’une séquence de tours de dialogues et d’un ensemble des réponses possi-

bles, le système doit sélectionner une réponse appropriée à fournir à l’utilisateur. Une approche

d’apprentissage par renforcement basée sur un modèle appelée “Bottleneck Simulator” est pro-

posée pour sélectionner le candidat approprié pour la réponse. Le “Bottleneck Simulator” apprend

un modèle approximatif de l’environnement en se basant sur les trajectoires de dialogue observées

et le “crowdsourcing”, tout en utilisant un état abstrait représentant la sémantique du discours.

v

Le modèle d’environnement est ensuite utilisé pour apprendre une stratégie d’apprentissage du

renforcement par le biais de simulations. La stratégie apprise a été évaluée et comparée à des ap-

proches concurrentes via des tests A / B avec des utilisateurs réel, où elle démontre d’excellente

performance.

Mots clés: apprentissage profond, apprentissage par renforcement, systèmes de dialogue, agents

de conversation virtuels, les modèles de dialogue génératifs

vi

II Summary

This thesis presents a series of steps taken towards investigating representation learning (e.g. deep

learning) for building dialogue systems and conversational agents. The thesis is split into two

general parts.

The first part of the thesis investigates representation learning for generative dialogue models.

Conditioned on a sequence of turns from a text-based dialogue, these models are tasked with gen-

erating the next, appropriate response in the dialogue. This part of the thesis focuses on sequence-

to-sequence models, a class of generative deep neural networks. First, we propose the Hierarchical

Recurrent Encoder-Decoder model, which is an extension of the vanilla sequence-to sequence

model incorporating the turn-taking structure of dialogues. Second, we propose the Multiresolu-

tion Recurrent Neural Network model, which is a stacked sequence-to-sequence model with an

intermediate, stochastic representation (a "coarse representation") capturing the abstract semantic

content communicated between the dialogue speakers. Third, we propose the Latent Variable Re-

current Encoder-Decoder model, which is a variant of the Hierarchical Recurrent Encoder-Decoder

model with latent, stochastic normally-distributed variables. The latent, stochastic variables are

intended for modelling the ambiguity and uncertainty occurring naturally in human language com-

munication. The three models are evaluated and compared on two dialogue response generation

tasks: a Twitter response generation task and the Ubuntu technical response generation task.

The second part of the thesis investigates representation learning for a real-world reinforce-

ment learning dialogue system. Specifically, this part focuses on the Milabot system built by the

Quebec Artificial Intelligence Institute (Mila) for the Amazon Alexa Prize 2017 competition. Mi-

labot is a system capable of conversing with humans on popular small talk topics through both

speech and text. The system consists of an ensemble of natural language retrieval and genera-

tion models, including template-based models, bag-of-words models, and variants of the models

discussed in the first part of the thesis. This part of the thesis focuses on the response selection

task. Given a sequence of turns from a dialogue and a set of candidate responses, the system must

select an appropriate response to give the user. A model-based reinforcement learning approach,

called the Bottleneck Simulator, is proposed for selecting the appropriate candidate response. The

Bottleneck Simulator learns an approximate model of the environment based on observed dialogue

trajectories and human crowdsourcing, while utilizing an abstract (bottleneck) state representing

high-level discourse semantics. The learned environment model is then employed to learn a rein-

forcement learning policy through rollout simulations. The learned policy has been evaluated and

compared to competing approaches through A/B testing with real-world users, where it was found

to yield excellent performance.

vii

Keywords: deep learning, reinforcement learning, dialogue systems, conversational agents, gener-

ative dialogue models

viii

Contents

I Sommaire v

II Summary vii

III List of Tables xiii

IV List of Figures xv

V Notation xviii

VI Acknowledgements xxi

1 Introduction 1
1.1 Motivation . 1

1.2 Central Assumptions . 2

1.3 Thesis Structure . 5

2 Technical Background 7
2.1 Probabilistic Generative Models . 7

2.1.1 n-Gram Models . 8

2.1.2 Recurrent Neural Networks . 9

2.1.3 Latent Variable Models . 12

2.1.4 Learning Word, Phrase and Sentence Embeddings with Probabilistic Gen-

erative Models . 16

2.2 Reinforcement Learning . 21

2.2.1 Markov Decision Process . 21

2.2.2 Tabular Reinforcement Learning with Q-Learning 23

2.2.3 Deep Reinforcement Learning with Q-Learning 25

2.2.4 Model-based Reinforcement Learning . 26

2.3 Dialogue Systems . 28

2.3.1 System Components . 29

2.3.2 System Learning . 30

2.3.3 System Evaluation . 31

3 Generative Dialogue Models 35
3.1 Hierarchical Recurrent Encoder-Decoder . 36

3.1.1 Author’s Contribution . 36

ix

3.1.2 Motivation . 36

3.1.3 Prior Related Work . 37

3.1.4 Model . 37

3.2 Multiresolution Recurrent Neural Network . 41

3.2.1 Author’s Contribution . 41

3.2.2 Motivation . 41

3.2.3 Prior Related Work . 42

3.2.4 Model . 43

3.3 Latent Variable Recurrent Encoder-Decoder . 46

3.3.1 Author’s Contribution . 46

3.3.2 Motivation . 46

3.3.3 Prior Related Work . 47

3.3.4 Model . 48

3.3.5 Comparing VHRED to HRED and MrRNN 52

3.4 Experiments . 53

3.4.1 Tasks . 53

3.4.2 Multiresolution RNN Representations . 54

3.4.3 Model Training & Testing . 55

3.4.4 Ubuntu Experiments . 56

3.4.5 Twitter Experiments . 60

3.5 Discussion . 65

3.6 Directions for Future Research . 68

3.6.1 Hierarchical Models with Stochastic Latent Dynamics 68

3.6.2 End-to-end Multiresolution RNNs . 70

4 A Deep Reinforcement Learning Dialogue System 72
4.1 Author’s Contribution . 72

4.2 Motivation . 73

4.3 Prior Related Work . 76

4.4 System Overview . 78

4.5 Response Models . 80

4.6 Response Selection Policy . 83

4.6.1 Reinforcement Learning Setup . 83

4.6.2 Parametrizing the Agent’s Policy . 84

4.6.3 A Neural Network Scoring Model . 84

4.6.4 Input Features for Scoring Model . 86

x

4.7 Learning the Response Selection Policy with Supervised Learning on Crowdsourced

Labels . 89

4.7.1 Crowdsourcing Data Collection . 89

4.7.2 Policy Training . 90

4.7.3 Preliminary Evaluation . 90

4.8 Learning the Response Selection Policy with Supervised Learning on Real-World

User Scores . 92

4.8.1 Learned Reward Function . 92

4.8.2 Preliminary Evaluation of Learned Reward Function 94

4.8.3 Policy Training . 95

4.9 Learning the Response Selection Policy with Off-Policy REINFORCE 96

4.9.1 Off-Policy REINFORCE . 96

4.9.2 Off-Policy REINFORCE with Learned Reward Function 98

4.9.3 Policy Training . 98

4.10 Learning the Response Selection Policy with Model-Based Reinforcement Learning 99

4.10.1 Bottleneck Simulator . 99

4.10.2 Policy Training . 102

4.11 Learning the Response Selection Policy with Other Reinforcement Learning Al-

gorithms . 104

4.11.1 Q-Learning Policy . 104

4.11.2 State Abstraction Policy . 104

4.12 Experiments . 106

4.12.1 Evaluation Based on Crowdsourced Data and Rollout Simulations 106

4.12.2 Real-World User Experiments . 111

4.13 Discussion . 119

4.14 Directions for Future Research . 121

4.14.1 Rethinking The Non-Goal-Driven Dialogue Task 121

4.14.2 Extensions of the Bottleneck Simulator 122

5 Conclusion 124

Bibliography 127

I Appendix: Coarse Sequence Representations 145

II Appendix: Human Evaluation on Amazon Mechanical Turk (Twitter) 155

xi

III Appendix: Human Evaluation in the Research Lab (Ubuntu) 159

IV Appendix: Milabot Response Models 160

V Appendix: Milabot Crowdsourced Data Collection 172

xii

III List of Tables

1 Examples of the closest tokens given by Skip-Gram model trained on 30 billion

training words. This table was adapted from Mikolov et al. (2013b, p. 8). 17

2 Examples of query sentences and their nearest sentences of the Skip-Thought Vec-

tors model trained on the Book Corpus dataset (Zhu et al., 2015). This table was

extracted from Kiros et al. (2015, p. 3). 20

3 Ubuntu evaluation using precision (P), recall (R), F1 and accuracy metrics w.r.t.

activity, entity, tense and command (Cmd) on ground truth utterances. The su-

perscript ∗ indicates scores significantly different from baseline models at 95%
confidence level. 57

4 Ubuntu evaluation using human fluency and relevancy scores given on a Likert-

type scale 0-4. The superscript ∗ indicates scores significantly different from base-

line models at 90% confidence level. The RNNLM and VHRED models are ex-

cluded, since they were not part of the human evaluation. 58

5 Ubuntu model examples. The arrows indicate a change of turn. The examples were

chosen from a set of short, but diverse dialogues, in order to illustrate cases where

different MrRNN models succeed in generating a reasonable response. 59

6 Wins, losses and ties (in %) of VHRED against baselines based on the human study

(mean preferences ± 90% confidence intervals). The superscripts ∗ and ∗∗ indicate

statistically significant differences at 90% and 95% confidence level respectively. . 62

7 Twitter model examples. The arrows indicates a change of turn. The examples

were chosen from a set of short, but diverse dialogues, in order to illustrate cases

where the VHRED model succeeds in generating a reasonable response. 63

8 Twitter evaluation using embedding metrics (mean scores± 95% confidence inter-

vals) . 64

9 Twitter response information content on 1-turn generation as measured by average

utterance length |U |, word entropy Hw = −∑w∈U p(w) log p(w) and utterance

entropy HU with respect to the maximum-likelihood unigram distribution of the

training corpus p. 64

10 Twitter human evaluation w.r.t. fluency and relevancy scores by rating category. . . 64

11 Example dialogues and corresponding candidate responses generated by response

models. The response selected by the system is marked in bold. 82

xiii

12 Policy evaluation w.r.t. average crowdsourced scores (± 95% confidence intervals),

and average return and reward per time step computed from 500 rollouts in the

Bottleneck Simulator environment model (± 95% confidence intervals). Triangle N

indicates policy is initialized from Supervised policy feed-forward neural network

and hence yield same performance w.r.t. crowdsourced human scores. 107

13 A/B testing results (± 95% confidence intervals). The superscript ∗ indicates sta-

tistical significance at a 95% confidence level. 114

14 Amazon Alexa Prize semi-finals average team statistics provided by Amazon. . . . 114

15 First A/B testing experiment topical specificity and coherence by policy. The

columns are average number of noun phrases per system utterance (System NPs),

average number of overlapping words between the user’s utterance and the sys-

tem’s response (This Turn), and average number of overlapping words between

the user’s utterance and the system’s response in the next turn (Next Turn). Stop

words are excluded. 95% confidence intervals are also shown. 116

16 Accuracy of models predicting if a conversation will terminate using different fea-

tures. 118

17 Unigram and bigram models bits per word on noun representations. 146

18 Twitter Coarse Sequence Examples . 149

19 Ubuntu Coarse Sequence Examples . 150

20 Ubuntu human fluency and relevancy scores by rating category 159

xiv

IV List of Figures

1 Example of a probabilistic directed graphical model. 8

2 Probabilistic graphical model for bigram (2-gram) model. 9

3 Probabilistic graphical model for a recurrent neural network language (RNNLM)

model. 11

4 Probabilistic graphical model for hidden Markov model and Kalman filter model. . 13

5 Example of Skip-Gram model as a probabilistic directed graphical model. Condi-

tioned on word w2 the model aims to predict the surrounding words: w1, w3, w4

and so on. The dashed lines indicate arrows to words outside the diagram. 17

6 Illustration of the Skip-Thought Vectors model. Illustration taken from Kiros et al.

(2015, p. 2) . 18

7 An overview of components in a dialogue system, reproduced from Serban et al.

(2018). 30

8 The computational graph of the HRED architecture for a dialogue composed of

three turns. Each utterance is encoded into a dense vector and then mapped into

the dialogue context, which is used to decode (generate) the tokens in the next

utterance. The encoder RNN encodes the tokens appearing within the utterance.

The context RNN encodes the discourse-level context of the utterances appearing

so far in the dialogue, allowing information and gradients to flow over longer time

spans. The decoder predicts one token at a time using a RNN. This figure was

adapted from Sordoni et al. (2015a). 38

9 Computational graph for the Multiresolution Recurrent Neural Network (MrRNN).

The lower part models the stochastic process over coarse tokens, and the upper part

models the stochastic process over natural language tokens. The rounded boxes

represent (deterministic) real-valued vectors, and the variables z and w represent

the coarse tokens and natural language tokens respectively. 45

10 Computational graph for VHRED model. Rounded boxes represent (deterministic)

real-valued vectors. Variables z represent latent stochastic variables. 48

xv

11 Probabilistic graphical models for dialogue response generation. Variables w rep-

resent natural language utterances. Variables z represent discrete or continuous

stochastic latent variables. (A): HRED (and RNNLM) uses a shallow generation

process. This is problematic because it has no mechanism for incorporating uncer-

tainty and ambiguity at a higher level, and because it forces the model to gener-

ate compositional and long-term structure incrementally on a word-by-word basis.

(B): MrRNN expands the generation process by adding a sequence of observed,

discrete stochastic variables for each utterance, which helps generate responses

with higher level semantic structure. (C): VHRED expands the generation process

by adding one learned latent variable for each utterance, which helps incorporate

uncertainty and ambiguity in the representations and generate meaningful, diverse

responses. 51

12 Screenshot of one dialogue context with two candidate responses, which human

evaluators were asked to choose between. 60

13 Probabilistic directed graphical model for Latent Variable Recurrent Encoder-Decoder

RNN with stochastic latent dynamics. 68

14 Probabilistic directed graphical model for Latent Variable Recurrent Encoder-Decoder

RNN with deep stochastic latent dynamics. 70

15 Dialogue manager control flow. 79

16 Computational graph for the scoring models, used for the response selection poli-

cies based on both state-action-value function and stochastic policy parametriza-

tions. Each model consists of an input layer with 1458 features, a hidden layer

with 500 hidden units, a hidden layer with 20 hidden units, a softmax layer with 5
output probabilities, and a scalar-valued output layer. The dashed arrow indicates

a skip connection (the last hidden layer output is passed to the last output layer

through an affine linear function). 85

17 Amazon Mechanical Turk (AMT) class frequencies on the AMT test dataset w.r.t.

candidate responses selected by different policies. 91

18 Probabilistic directed graphical model for the Bottleneck Simulator. For each time

step t, zt is a discrete random variable which represents the abstract state of the

dialogue, st represents the dialogue history (i.e. the state of the agent), at represents

the action taken by the system (i.e. the selected response), yt represents the sampled

AMT label and rt represents the sampled reward. 100

xvi

19 Contingency table comparing selected response models between Supervised AMT

and Bottleneck Simulator. The cells in the matrix show the number of times

the Supervised AMT policy selected the row response model and the Bottleneck

Simulator policy selected the column response model. The cell frequencies were

computed by simulating 500 episodes under the Bottleneck Simulator environment

model. Further, it should be noted that all models retrieving responses from Reddit

have been agglomerated into the class Reddit models. 110

20 Response model selection probabilities across response models for Supervised

AMT, REINFORCE and Bottleneck Simulator on the AMT label test dataset. 95%
confidence intervals are shown based on the Wilson score interval for binomial

distributions. 111

21 Screenshot of the introduction (debriefing) of the experiment. 157

22 Screenshot of the introductory dialogue example. 158

23 Fluency and relevancy reference table presented to human evaluators. 159

24 Consent screen for Amazon Mechanical Turk human intelligence tasks (HITs). . . 173

25 Instructions screen for Amazon Mechanical Turk human intelligence tasks (HITs). 174

26 Annotation screen for Amazon Mechanical Turk human intelligence tasks (HITs).

The dialogue text is a fictitious example. 175

xvii

V Notation

• {·} denotes a set of items.

• (·) denotes a sequence of items.

• {xi}Ii=1 (or simply {xi}i) denotes a set of items x1, x2, . . . , xI−1, xI .

• |V |, where V is a set, is the cardinality of the set (for example, if V is a finite set, then |V | is
the number of elements in the set).

• A × B = {(a, b) | a ∈ A, b ∈ B}, where A and B are sets of items, denotes the Cartesian

product of A and B.

• R denotes the set of real-valued numbers.

• Rn denotes the set of real-valued numbers in n dimensions.

• N denotes the set of non-negative integer numbers.

• N+ denotes the set of positive integer numbers.

• N− denotes the set of negative integer numbers.

• a ∈ R denotes a real-valued variable named a.

• [a, b], where a, b ∈ R and b > a, denotes the closed set of real-valued numbers between a

and b, including a and b.

• (a, b), where a, b ∈ R and b > a, denotes the open set of real-valued numbers between a and

b, excluding a and b.

• a ∈ Rn denotes a real-valued vector of n dimensions.

• A ∈ Rn×m denotes a real-valued matrix of n×m dimensions.

• AT and AT both denote the transpose of the matrix A.

• i = 1, . . . , n means that i will take integer values 1, 2, 3, 4, 5 and so on until and including

integer n.

• An n-gram is a sequence of n consecutive words (or tokens).

• w ∈ U , where U is a sequence of tokens, denotes a token inside U .

xviii

• exp(x) and ex denotes the exponential function of the value x.

• log(x) and ln(x) denotes the natural logarithm function of the value x.

• tanh(x) denotes the hyperbolic tangent taken of value x.

• f ′(x) denotes the derivative of the function f w.r.t. variable x.

• δ

δx
f(x) denotes the derivative of the function f w.r.t. variable x.

• ∇θfθ(x) denotes the derivative of the function f w.r.t. parameters θ. If θ is a vector, then it

denotes the Jacobian matrix.

• x · y, where x and y are vectors or matrices, denotes the element-wise product between x

and y.

• x often denotes an input variable (e.g. a real-valued variable or an input sequence of string

tokens).

• y often denotes an output variable (e.g. an output label, such as a user intention label).

• θ and θ̂ usually denote model parameters.

• ψ and ψ̂ usually denote model parameters.

• Pθ(·) usually denotes the probabilistic model parametrized by parameters θ.

• x ∼ Pθ(x) denotes a sample of the random variable x following the probabilistic model

parametrized by parameters θ.

• Nx(µ,Σ) denotes the probability of variable x under a multivariate normal distribution with

mean µ and covariance matrix Σ.

• x ∼ Uniform(a, b) denotes that x is an integer random variable sampled at uniformly random

from the set {a, a+ 1, · · · , b− 1, b}, with a, b ∈ N and b > a.

• x ∼ Uniform(A), whereA is a finite discrete set, denotes that x is a random variable sampled

at uniformly random from the set A.

• Ex∼P (x) [f(x)] = ∑
x P (x)f(x) =

∫
P (x)f(x)dx is the expectation of the function f(x)

w.r.t. the random variable x following the distribution given by the probability or density

function P .

xix

• KL[Q||P] = −
∫
Q(x) log(Q(x)/P (x))dx is the Kullback-Leibler (KL) divergence between

the two probability distributions P (x) and Q(x).

• 1(·) denotes a Dirac-delta function, which equals one if the statement (·) is true, and other-

wise equals zero.

• ∀ denotes the for all operator.

• The phrase s. t. is an abbreviation of the phrase subject to.

xx

VI Acknowledgements

I had no idea of what I had commited myself to when I decided to study for a Ph.D. degree. I made

this decision while I was still studying my master’s degree at University College London (UCL).

Back then, my future supervisor Yoshua Bengio had come to UCL to give a talk about some of the

advances of deep learning. Although I did not understand much of the talk, I found the abstract

ideas he presented facinating and I thought it was a pity that they were not covered in more depth

in any of my courses at the time. After his talk, another student and I had a chance to chat with him

about his research and about machine learning in general. As the discussion turned to the topic of

future research and the many real-world applications of our field, I saw a spark in his eyes and I

realized that this was someone I wanted to work with. Afterwards, I went home and discovered

that I had, in fact, already read and cited several of his older papers in my bachelor’s thesis. It was

at this point that I decided to apply for studying a Ph.D. degree in his research lab.

I was accepted into the Ph.D. program, and the following fall I arrived in Montreal. This was

at once both a very exciting and a frightening time. I had never been to Canada before, I did not

know anyone there and I certainly wasn’t prepared for the language barrier or the harsh weather

to come. Fortunately, the professors and students in the lab were very welcoming and helpful. It

turned out that, like myself, many of them had come from abroad. This was when I got to know

Aaron Courville, my second supervisor. I quickly realized that he was one of the people I could

communicate with most easily. Every time one of us explained a complex idea, it seemed as if the

other one instantly understood it and started extending it. I also found out that we shared many

of the same ideas about probabilistic graphical models and their uses in deep learning models. I

was fortunate enough that Aaron had time available and could take me on as one of his students.

Through discussions with Yoshua and Aaron, I decided to focus my research on the application

of deep learning and reinforcement learning for building dialogue systems. Shortly after, I was

introduced to Joelle Pineau, my future unofficial advisor and long-term collaborator. Joelle had

previously worked on applying reinforcement learning for building dialogue systems, and she was

keen to start a new research group focused on it. A few months later, we started a research group

with other students investigating deep learning and reinforcement learning techniques for building

dialogue systems. This research group was of great help, because its weekly meetings provided a

common structure and framework for us to work together. That is how the journey of my Ph.D.

began nearly 5 years ago, with the help and supervision of Yoshua, Aaron and Joelle. I’d like to

thank each of them for their enduring help and support throughout the years. Without them, my

Ph.D. degree would never have been possible.

When I started, I thought that a Ph.D. mainly involved reading papers, running experiments

and then writing papers: a set of well-defined, repeatable steps aimed towards advancing scientific

xxi

knowledge bit by bit. Although this is certainly part of it, I later discovered that a Ph.D. is also a

long journey of exploration, discovery and reflection. It is a meticulous process of asking questions

and seeking answers, where both the questions and answers are always kept under scrutiny. This

process involves learning the assumptions and general world view of the researchers in the field

and questioning them, as well as learning the general methodology of the field (including how to

set up experiments, use software libraries, write scientific papers, and so on). However, the pro-

cess also demands patience, persistence, diligence and last, but not least, a will to go on solitary

campaigns to promote new ideas, ask new questions and give new answers. For accompanying

me along this long and difficult journey, I would like to thank all of my collaborators who I have

worked with throughout the years, including students and university staff members at University

of Montreal and McGill University. In particular, I would like to thank Alessandro Sordoni, Caglar

Gulcehre and Laurent Charlin, who have been supportive and who have helped teach and mentor

me throughout the years. I would also like to give particular thanks to students in the dialogue

research group: Nicolas Angelard-Gontier, Peter Henderson, Ryan Lowe, Michael Noseworthy,

Prasanna Parthasarathi, Nissan Pow and Koustuv Sinha. Without their feedback and brainstorming

meetings, many of the ideas proposed in this thesis would never habe been possible. I would also

like to thank our team members from the Amazon Alexa Prize 2017 competition: Chinnadhurai

Sankar, Mathieu Germain, Saizheng Zhang, Zhouhan Lin, Sandeep Subramanian, Taesup Kim,

Michael Pieper, Sarath Chandar, Nan Rosemary Ke, Sai Rajeswar, Alexandre de Brebisson, Jose

M. R. Sotelo, Dendi Suhubdy, Vincent Michalski and Alexandre Nguyen. Although we did not

win the competition, I am very proud to have worked together with them. Even though our work

together is not covered in this thesis, I also had fruitful collaborations with Sungjin Ahn, Sarath

Chandar, Alberto Garcia-Duran, Caglar Gulcehre and Alexander G. Ororbia II over the past few

years. I am thankful to each of them for their collaboration and time. I would also like to thank all

other team members of the Quebec Artificial Intelligence Institute (Mila), including in particular

Hugo Larochelle, Frederic Bastien, Pascal Lamblin and Arnaud Bergeron for their help and tech-

nical assistance. I would also like to thank my collaborators from IBM Research: Tim Klinger,

Kartik Talamadupula, Gerald Tesauro and Bowen Zhou. I hope our paths will cross again in the

future. Last, not but not least, I would like to thank the thesis jury members for reading my thesis

and providing their comments: Alain Tapp, Pascal Vincent, Aaron Courville, Yoshua Bengio and

Phil Blunsom.

xxii

Finally, and most of all, I would like to thank my love, my wife and partner in life, Ansona

Onyi Ching and our son Octavian Ching Serban. Ansona has stood by my side throughout the

years, since before I started studying my Ph.D. degree, and she has always helped me shoulder the

inevitable ups and downs of the journey. Much of my inspiration and courage to move forward

with bold decisions and ideas has come from her. Octavian has in turn given the two of us a

life of happiness and purpose, which I am not sure could be matched by any amount of scientific

achievement. None of this would have been possible without their love and support.

xxiii

1 Introduction

1.1 Motivation

Over the past decades, computers have become a ubiquitous and essential part of modern society.

As a part of this transformation, the way we interact with computers has changed tremendously.

The computers in the middle of the 20th century could only be programmed manually by swapping

in different punch cards. Later, computers were equipped with an extensive internal memory and

could be programmed by interacting with a terminal using a keyboard. In the 80s, a new wave of

computers, known as personal computers, started to appear with graphical user interfaces, which

allowed users to more naturally interact with them using both mouse and keyboard devices. Since

then, other types of computers have emerged, including mobile smartphones, tablet computers

and GPS navigation devices, which can be interacted with using touch gestures (e.g. touch user

interfaces), as well as virtual reality platforms and the XBox 360 (Kinect), which can be interacted

with using head and body gestures. Since at least the 90s, automated telephone systems (called

spoken dialogue systems) have also been developed, which could understand natural language

speech, for example by AT&T Research Labs. However, these systems were often exclusively

built for one particular task with extremely limited capabilities, compared to the general interfaces

discussed earlier. The reader is likely familiar with all of these technologies, but highlighting

the chronological development of these technologies and their transformations serve an important

purpose. With each new transformation computer interfaces have become more intelligent and

more natural to interact with.

Very recently, software companies (e.g. Apple, Microsoft, Google, Amazon and Nuance) have

started to develop general natural language dialogue systems, called intelligent personal assistants.

These personal assistants aim to bridge one of the ultimate communication gaps between humans

and computers, by allowing humans to interact with computers directly using spoken natural lan-

guage for carrying out a multitude of tasks. Unfortunately, understanding and generating natural

language is a very difficult problem. Therefore, it is not surprising that these technologies are still

in their very infancy. This thesis is motivated by these technological developments and the related

outstanding challenges. In addition to intelligent personal assistants, dialogue systems have also

been deployed as supportive virtual friends (Markoff and Mozur, 2015; Dillet, 2016), healthcare

assistants (Furness, 2016; Brodwin, 2018) and tutoring assistants (Nye et al., 2014).

The purpose of this thesis is to make a contribution to the research fields of natural language

processing and representation learning, with the specific aim of building general-purpose natural

language dialogue systems. In particular, the thesis will focus on probabilistic generative models

for building natural language dialogue systems using large text corpora.

1

1.2 Central Assumptions

As is the case with much of scientific research, the work in this thesis is built upon several key

assumptions. These key assumptions constitute the foundations underlying and motivating the

work presented in this thesis. Some of these assumptions are well-established in the field, while

others might be more contestable. This section provides an overview and discussion of these

assumptions.

The first key assumption of this thesis is that communication between humans and machines

should be collaborative in nature and be beneficial to all parties. In any conversation, both the

human interlocutors (human speakers) and the machine interlocutors (machine speakers) are agents

in their own respect, each one with their own goals. The reason that any two interlocutors might

have a conversation in the first place must be because they both believe that there is something

to be gained through the conversation. In other words, each interlocutor believes that there exists

an alignment between their own goals and the goals of the other party, and that by conducting a

conversation they may both benefit from it. However, it is important to stress that their goals are

not necessarily perfectly aligned. Let’s consider the example of a dialogue system selling flight

tickets. In addition to its primary goal of finding a suitable ticket for a human customer, the system

may have a secondary goal to maximize profits by selling the most expensive ticket commensurate

with the human customer’s spending budget. This secondary goal would be in direct conflict with

the human customer, if the human customer has a secondary goal of purchasing an inexpensive

ticket.

The second key assumption is that, in general, the human and machine interlocutors only have

access to partial information about the state of the world, about the other interlocutor’s information

and goals and even about their own goals. For example, the dialogue system selling flight tickets

cannot know the goals of a human customer beforehand, such as their departure city, destination

city or even their spending budget. On the other hand, the human customer does not know which

flight tickets are available and at what prices. The human customer may not even know their

destination city or their exact spending budget. This is something the human customer might

decide on based on the options presented by the dialogue system (e.g. based on the available

destination cities and the price differences between economy and business class shown by the

dialogue system).

Although these two key assumptions may appear evident to the avid reader, they go against

some of the assumptions implied by some of the literature on goal-driven dialogue systems. In

particular, research on voice control systems (or voice command systems) has sometimes made the

implicit assumption that a goal-driven dialogue system should serve as a direct substitute for key-

board input, which will convert the human interlocutor’s speech to an appropriate query and submit

2

it to an application or a service API. For example, consider the case of a voice-controlled GPS-

based navigation system. This system might only expect the human user to mention a destination

(e.g. an address or a location name) and would then, based on the received destination, map out a

route for the human user and display it in a graphical user interface. Strictly speaking, this is not a

collaborative dialogue where both parties stand to benefit. Rather it is a one-way communication

channel, where the system’s main purpose is to convert the words spoken by the human user into

an appropriate format (e.g. an address string represented in a formal language) for making a query

to a subsequent application or service. This is an example of semantic parsing (Wilks and Fass,

1992; Kamath and Das, 2019)

This simple system further makes the assumption that the human user has access to all relevant

information, including their own goal (e.g. the exact destination address and the format the system

requires).

The previous two assumptions discussed were related to the form of communication between

the human and machine interlocutors. The next set of assumptions is related to the building of

dialogue systems. A key assumption here is that versatile dialogue systems, which both satisfy

the previous assumptions and are capable of solving real-world problems through effective and

natural interactions with humans, can only be built by incorporating data-driven approaches. Such

dialogue systems must incorporate modules based on data-driven approaches, such as machine

learning, in order to solve either all or a subset of the underlying engineering problems (for ex-

ample, natural language understanding, natural language generation and general decision making).

This assumption has been adopted widely by the dialogue system research community, as will be

discussed below. However, it should be noted how this assumption stands in contrast to predomi-

nantly rule-based dialogue systems (such as the ELIZA system and the ALICE system discussed

later). Nevertheless, this assumption seems reasonable given the complexity of many of the under-

lying engineering problems. Consider, for example, the natural language understanding problem

of classifying the intention of spoken utterances. Given the magnitude of possible intentions, the

diversity of ways in which each intention can be formulated, and finally the contextual, ambiguous

and error-prone nature of natural language, it would seem extremely difficult to build a determin-

istic, rule-based system to map any utterance to its underlying intention.

This thesis focuses on building dialogue systems using deep learning (a branch of machine

learning), which is particularly suitable for large-scale data-driven machine learning. As will be

discussed later on, the field of deep learning has made tremendous advances and helped set new

state-of-the-art performance records across a variety of natural language processing tasks over the

past few years. Many of the advances of deep learning have helped with natural language represen-

tations (e.g. methods for representing words, phrases and sentences) and natural language genera-

tion (e.g. generating phrases and sentences conditioned on specific information), which constitute

3

sub-problems faced by most dialogue systems. This makes deep learning particularly relevant for

research on building general-purpose natural language dialogue systems.

The final key assumption of this thesis is based on the premise that humans learn about the

world and about how to communicate through natural language by observing and interacting with

others. For example, a toddler might hear a word spoken by a parent and then learn to associate

that word with a particular object in the world. As a more elaborate example, consider a student

studying deep learning, who is in the process of implementing a machine learning model. She

might search on the Internet for similar implementations and find a relevant discussion thread

on a forum website (such as Reddit or Stack Overflow). Suppose that on this discussion thread,

another person exposes a solution to a similar problem and receives feedback from others about

missing aspects in the implementation. By reading through the discussion thread, our protagonist

might learn about the subtasks involved in her own implementation. Using this information, she

might decompose the task into subtasks, with which she is already familiar, and finalize her own

implementation. Alternatively, she may seek additional help by asking a related question in the

discussion thread. Although our premise is that humans learn a significant amount of knowledge

about the world and about how to communicate by observing and interacting, the reader should

note that the premise is not that all knowledge is learned or acquired through these mechanisms.

A significant amount of learning is bound to also occur through other mechanisms (for example,

observing others do a task and then imitating it without any two-way communication). The premise

is only that a significant amount of information is being learned by observing and interacting with

others, and that this is a valuable source of information in its own right.

By accepting this premise – that humans learn a significant amount about the world and about

how to communicate by observing others and by interacting with others – we arrive at the final key

assumption of this thesis. The assumption is that a machine can also learn a significant amount of

information about the world and about how to communicate in natural language by observing and

interacting with others. This last assumption is perhaps the most contestable of all the assumptions

discussed so far. However, it may be mitigated if it is further assumed that the system has access

to other information, such as knowledge bases and encyclopedias.

Unfortunately, it is difficult to deploy real-world machine learning systems and, often even

more difficult, to entice human users to interact with such systems and to collect relevant interaction

data. Therefore, in the first part of this thesis, we will restrict the last assumption even further.

Specifically, we will assume that a significant amount of information about the world and about

how to communicate can be learned by simply observing the interactions of others (e.g. interactions

between human interlocutors). In other words, by giving a machine access to a corpus or a stream

of data containing interactions between human interlocutors, the machine can learn a substantial

amount of information about the real world and about how to communicate in natural language.

4

This most restrictive version of the last assumption poses a problem for the so-called grounding

process of natural language (Harnad, 1990; Quine, 2013). Without going into further details, one

part of this process is where a learner learns to associate linguistic expressions with their mean-

ings, such as words and their intended referents. This is very difficult to accomplish without any

additional information. Consider the thought experiment presented by Harnad (1990): “Suppose

you had to learn Chinese as a second language and the only source of information you had was a

Chinese/Chinese dictionary. The trip through the dictionary would amount to a merry-go-round,

passing endlessly from one meaningless symbol or symbol-string to another, never coming to a halt

on what anything meant.”. This thought experiment is very similar to the most restrictive version

of our last assumption, where the system has to learn the meaning of words, phrases, dialogue

turns and entire interactions by only observing the conversations between third-party interlocutors.

However, in our case, the system has access to more information than in Harnad (1990)’s thought

experiment. The system observes the interactions between interlocutors and can identify and dis-

tinguish the different interlocutors. As a minimum, the observed phrases can be grounded by the

interlocutor who spoke them. In addition, the system knows that the dialogues are collaborative

in nature, and that the majority of dialogues are beneficial to each party and involve some form of

information exchange. Given this additional knowledge about each conversation, the system may

be able to ground more of the linguistic content. For example, phrases emitted by one interlocutor,

but not by another interlocutor, might be grounded as a “goal statement” or as an “information ex-

change” since such phrases must be present in the dialogue and would often only be spoken by one

interlocutor.1 Naturally, the process of grounding natural language becomes easier if the system

has access to other information (e.g. knowledge bases, encyclopedias) or if the system can interact

with human users. This is the case for the second part of the thesis.

1.3 Thesis Structure

The thesis is structured as follows.

Chapter 2 covers background theory related to machine learning and dialogue systems. The

chapter is split into three parts. The first part focuses on probabilistic generative models, which

form the foundation and act as a unifying framework for much of the work presented in this thesis.

Neural network models are also presented here. The second part introduces reinforcement learning,

a set of techniques used extensively later in the thesis. The third part discusses dialogue systems

in detail, including system components, methods for optimizing system components and methods

for system evaluation.

Chapter 3 proposes three sequence-to-sequence models, a class of generative deep neural net-

1For the sake of this argument, we will assume that the associated meaning of a phrase could be probabilistic.

5

works, for building generative dialogue models. Given a sequence of turns from a text-based

dialogue, these models aim to generate an appropriate next response in the dialogue. The three

models proposed are the Hierarchical Recurrent Encoder-Decoder (HRED), Multiresolution Re-

current Neural Network (MrRNN) and Latent Variable Recurrent Encoder-Decoder (VHRED). For

each model, the contribution of the author of this thesis, the motivation, the prior related work and

the model architecture and corresponding learning algorithm are discussed. Following this, experi-

ments are presented on two dialogue response generation tasks: a Twitter response generation task

and a Ubuntu technical response generation task. The chapter concludes with a general discussion

and directions for future research.

Chapter 4 investigates a framework for building dialogue systems, based on combining rep-

resentation learning and reinforcement learning, in order to develop a non-goal-driven dialogue

system capable of learning from real-world interactions with humans. The work presented here

focuses on the Milabot system built by the Quebec Artificial Intelligence Institute (Mila) for the

Amazon Alexa Prize 2017 competition. The chapter first discusses the contribution of the author

of this thesis. The chapter then discusses the motivation of the new framework and compares it to

the earlier task of building generative dialogue models. Following this, a review of prior related

work is presented. Then, the chapter presents an overview of the Milabot system and its underly-

ing ensemble system, which consists of models generating natural language system responses. The

problem of selecting an appropriate system response is presented next and framed as a sequential

decision making problem, motivated by reinforcement learning methods. Following this, several

reinforcement learning algorithms and supervised learning algorithms are proposed in order to

learn policies capable of selecting an appropriate system response. In particular, a model-based

reinforcement learning algorithm, named the Bottleneck Simulator, is proposed. Then, the chap-

ter presents experiments evaluating the proposed policies, conducted based on real-world users,

crowdsourced human annotations and simulations. Finally, the chapter concludes with a broader

discussion and directions for future research.

Chapter 5 concludes the thesis. The chapter provides a brief summary of the work carried out

in the thesis, reviews the main conclusions and provides a bird’s-eye view of the work from the

perspective of probabilistic generative models.

6

2 Technical Background

2.1 Probabilistic Generative Models

This thesis focuses on the field known as machine learning, a sub-field of computer science, statis-

tics and mathematics (Bishop, 2006; Goodfellow et al., 2016). This chapter will introduce the

technical background required to understand the reminder of the thesis and also provide pointers

for further reading.

Arthur Lee Samuel defined the machine learning field as follows: "[A field] of study that gives

computers the ability to learn without being explicitly programmed" (Simon, 2013). In this sen-

tence, Samuel highlights precisely the advantage of machine learning for solving natural language

generation and understanding problems. It is humanly impossible to explicitly write down rules for

understanding and generating every relevant sentence for every conceivable natural language pro-

cessing task. Therefore, it is necessary to build a computer with the ability to learn without being

explicitly programmed. This is often done by letting a computer program learn from examples.

In the following, we will assume that the reader is familiar with basic calculus and probability

theory, including concepts such as integrals, linear algebra, random variables, probability distribu-

tions, expectations, probabilistic independence and so on. In case the reader is not familiar with

this material, please refer to Friedman et al. (2001) and Bishop (2006) for a detailed introduction

to all of these. As another reference, the reader may also refer to Goodfellow et al. (2016).

The first concept we introduce is the probabilistic directed graphical model. A probabilistic

directed graphical model is a set of random variables x = {xm}Mm=1 and an associated directed

graph G = {{xm}Mm=1, {ei}Ii=1}, with vertices (nodes) xm, for m = 1, . . . ,M , and edges ei, for

i = 1, . . . , I . The nodes are random variables. Each edge e ∈ G has a tail, which corresponds to

its origin node and a head, which corresponds to the node it is pointing to (different from the origin

node). We define Pa(xm) as the set of parents of the random variable xm, where xj ∈ Pa(xm)
if there exists an edge with tail xj and head xm. The graph G must then satisfy the following

factorization of the distribution over x:

P (x) =
M∏
m=1

p(xm|Pa(xm)). (1)

This factorization is crucial for understanding the relationships between the random variables.

Given a probabilistic directed graphical model, we are able to follow the generative process of the

model as well as deduce independence statements about the underlying random variables (Bishop,

2006). To illustrate this, take the directed graphical model shown in Figure 1 as an example. This

model has random variables x1, x2, x3, which according to the edges can be factorized as follows:

P (x1, x2, x3) = P (x1)P (x2)P (x3|x1, x2)

7

Based on this factorization, we may deduce that x1 ⊥⊥ x2, i.e. that x1 is unconditionally indepen-

dent of x2. We arrive at this result by integrating out x3:

P (x1.x2) =
∫
P (x1, x2, x3)dx3 =

∫
P (x1)P (x2)P (x3|x1, x2)dx3

= P (x1)P (x2)
∫
P (x3|x1, x2)dx3 = P (x1)P (x2)

Importantly we always assume that the probabilistic directed graphical model be non-acyclic.

Figure 1: Example of a probabilistic directed graphical model.

In other words, there cannot exist any directed paths (sequence of connected edges) starting and

ending at the same node.

2.1.1 n-Gram Models

An important class of probabilistic models are the n-gram models for discrete sequences, where

n ∈ N and where N denotes the set of positive integers. Let w = (w1, . . . , wM) be a sequence

of M discrete symbols, where wm ∈ V for discrete set V . For example, the variables may be the

words of a natural language dialogue or the words of a web document, represented by their indices.

The n-gram model, with parameters θ, assumes the distribution over variables factorizes:

Pθ(w) = Pθ(w1, . . . , wM)

= Pθ(w1)Pθ(w2|w1) · · ·Pθ(wn−1|w1, . . . , wn−2)
M∏
m=n

Pθ(wm|wm−n+1, . . . , wm−1)

The key approximation is that the probabilities over each variable can be computed using only the

previous n− 1 tokens:

P (wm|w1, . . . , wm−1) ≈ Pθ(wm|wm−n+1, . . . , wm−1)

= θwm,wm−n+1,...,wm−1 ,

8

where θv,wm−n+1,...,wm−1 ∈ [0, 1] is the probability of observing token v given the n − 1 previous

tokens wm−n+1, . . . , wm−1, which must sum to one:
∑
v∈V θv,wm−n+1,...,wm−1 = 1. For the 2-gram

model, also known as the bigram model, the factorization corresponds to the directed graphical

model shown in Figure 2. This model is a probabilistic generative model, since it can assign a

probability to any sequence of variables w1, . . . , wM and since it can generate any such sequence

by sampling one variable at a time (first sampling w1, then sampling w2 conditioned on w1 and so

on). This model is used widely in natural language processing applications (Goodman, 2001).

Figure 2: Probabilistic graphical model for bigram (2-gram) model.

Let {wi}Ii=1 be a set of I example sequences, called the training dataset. We assume that the

example sequences are independent and identically distributed. The model parameters θ may be

estimated (learned) by maximizing the log-likelihood on the training set:

θ = arg max
θ′

∑
i

logPθ′(wi).

This is done by setting θv,wm−n+1,...,wm−1 to be proportional to the number of times token v was

observed after tokens wm−n+1, . . . , wm−1 in the training set. In practice, the parameters are often

normally regularised or learned with Bayesian approaches (Goodman, 2001).

The approximation discussed earlier is problematic. As n grows, the model begins to suffer

from what is known as the curse of dimensionality (Richard, 1961; Bishop, 2006). Since the

variables are discrete, the number of possible combinations of n variables is |V |n, which grows

exponentially with n. This means that to estimate parameters θ, the model requires a number of

data examples exponential in n. Therefore, in practice, n is usually a small number such as 3 or 4.

2.1.2 Recurrent Neural Networks

The second class of models we consider are known as recurrent neural networks (RNNs). We

will focus on the well-established recurrent neural network language model (RNNLM) (Mikolov

et al., 2010; Bengio et al., 2003). Other variants have been applied to diverse sequential tasks,

including speech synthesis (Chung et al., 2015), handwriting generation (Graves, 2013) and music

composition (Boulanger-Lewandowski et al., 2012; Eck and Schmidhuber, 2002). As before, let

w1, . . . , wM be a sequence of discrete variables, such that wm ∈ V for a set V . We shall call V

the vocabulary, and each discrete variable wm a token. The RNNLM is a probabilistic generative

9

model, with parameters θ, which decomposes the probability over tokens:

Pθ(w1, . . . , wM) =
M∏
m=1

Pθ(wm|w1, . . . , wm−1). (2)

Unlike the n-gram models, the RNNLM does not make a hard assumption restricting the distri-

bution over a token to only depend on the n − 1 previous tokens. Instead, it parametrizes the

conditional output distribution over tokens as:

Pθ(wm+1 = v|w1, . . . , wm) = exp(g(hm, v))∑
v′∈V exp(g(hm, v′))

, (3)

g(hm, v) = OT
vhm, (4)

hm = f(hm−1, Iwm), (5)

where hm ∈ Rdh , form = 1, . . . ,M , are real-valued vectors called hidden states with dimensional-

ity dh ∈ N. The function f is a non-linear smooth function called the hidden state update function.

For each time step (each token) it combines the previous hidden state hm−1 with the current token

input wm to output the current hidden state hm. The hidden state hm acts as summary of all the

tokens observed so far, which effectively makes it a sufficient statistic from a statistical point of

view. The matrix I ∈ Rde×|V | is the input word embedding matrix, where column j contains the

embedding for word (token) index j and de ∈ N is called the word embedding dimensionality.

Similarly, the matrix O ∈ Rde×|V | is called the output word embedding matrix. By eq. (3) and

eq. (4), the probability distribution over token wm+1 is parametrized as a softmax function over

the dot products between the hidden state and the output word embeddings for each word in the

vocabulary. Therefore, the more similar an output word embedding vector Ov is to the hidden state

vector hm (e.g. the smaller the angle between the two vectors) the higher the probability assigned

to token v.

Unlike the n-gram models discussed earlier, the RNNLM does not parametrize a separate prob-

ability value for every possible combination of tokens. Instead it embeds words into real-valued

vectors using the word embedding matrices, thereby allowing the rest of the model to use the same

set of parameters for all words observed. This was the key innovation behind the so-called neural

network language model proposed by Bengio et al. (2003), and it is used by the RNNLM and its

extensions, which gained state-of-the-art performance on several machine learning tasks (Mikolov

et al., 2010; Jozefowicz et al., 2016; Devlin et al., 2018). In addition to this, by using a RNN to

compute the hidden state which parametrizes the output distribution, the RNNLM can potentially

capture an unlimited amount of context (unlike both n-gram models and the earlier neural network

language models). This is also the main motivation for the generative models we will discuss later.

The graphical model is illustrated in Figure 3.2

2Although the classic RNNLM follow the probabilistic graphical model in Figure 3, later models such as the one

10

Figure 3: Probabilistic graphical model for a recurrent neural network language (RNNLM) model.

The model parameters are learned by maximum likelihood. However, unlike the n-gram mod-

els discussed earlier, there exists no closed-form solution. Therefore, the parameters are usually

learned using stochastic gradient descent on the training set. Let {wi}Ii=1 be the training dataset.

An example sequence wi is sampled at random, and the parameters are updated:

θ ← θ + α∇θ logPθ(wi1, . . . , wiMi
),

where α > 0 is the learning rate and Mi is the length of sequence i. In practice, any first-order

optimization method can be used. For example, the method Adam developed by Kingma and Ba

(2015) tends to work well and it is therefore used in all experiments presented in the first part

of this thesis. For large models, in practice, the gradient w.r.t. each parameter can be computed

efficiently using graphics processing units (GPUs) and parallel computing in combination with the

backpropagation algorithm, a type of dynamic programming (Goodfellow et al., 2016).

There exists different parametrizations of the function f . One of the simplest and most popular

parametrizations is the hyperbolic tangent one-layer neural network:

f(hm−1, Iwm) = tanh(H iIwm +Hhm−1), (6)

where H ∈ Rdh×dh and H i ∈ Rdh×de are its parameters. Usually a constant, called the bias or

intercept, is also added before applying the hyperbolic tangent transformation, but to keep the

notation simple we will omit this. Another popular variant is the Gated Recurrent Unit (GRU)

proposed by Cho et al. (2014):

rm = σ(Irwm +Hrhm−1), (reset gate) (7)

um = σ(Iuwm +Huhm−1), (update gate) (8)

h̄m = tanh(HiIwm +H(rm · hm−1)), (candidate update) (9)

hm = (1− um) · hm−1 + um · h̄m, (update), (10)

where · is the element-wise product and σ is the element-wise logistic function:

σ(x) = 1
1 + exp(−x) , (11)

proposed by Devlin et al. (2018) follow a different probabilistic graphical model.

11

and where I, Ir, Iu ∈ Rdh×|V |, H,Hr, Hu ∈ Rdh×dh and H i ∈ Rdh×de are the parameters. The

motivation for this parametrization is that the reset gate and update gate equations control whether

or not the model reuses the previous hidden state when computing the current hidden state. If the

previous state is useless (i.e. its value will not help determine future tokens in the sequence), rm
should be close to zero and the candidate update will be based mainly on the current input wm.

If the previous state is useful (i.e. hm−1 may help predict future tokens in the sequence) then rm
should not be zero. If the previous state hm−1 is useful, but the current input is useless, then the

update gate should set um to zero ensuring that minimal information is stored from the current

input. In fact, when um is close to zero the update is linear and this helps propagate the gradients

in the training procedure. This parametrization appears to be superior to the hyperbolic tangent

one-layer neural network across several machine learning problems (Greff et al., 2017). A third,

also very popular, parametrization is the Long-Term Short-Term Unit (LSTM) (Hochreiter and

Schmidhuber, 1997):

im = σ(Irwm +H ihhm−1 +H iccm−1), (12)

fm = σ(Ifwm +Hfhhm−1 +Hfccm−1), (13)

cm = fmcm−1 + imtanh(Icwm +Hchhm−1), (14)

om = σ(Iowm +Hohhm−1 +Hoccm), (15)

hm = omtanh(cm), (16)

where hm, cm ∈ Rdh , for m = 1, . . . ,M , are real-valued vectors, Ir, If , Ic, Io ∈ Rdh×|V | and

H ih, H ic, Hfh, Hfc, Hch, Hoh, Hoc ∈ Rdh×dh are the parameters. The variables cm and hm can be

folded into a single vector by concatenation and rewritten as a hidden state update function. The

motivation behind the LSTM parametrization is similar to that of the GRU parametrization. In

practice, the LSTM unit appears to yield slightly more stable training compared to the GRU unit,

although in terms of performance they appear to perform equally well (Greff et al., 2017). For

more details, the reader may also refer to Lipton et al. (2015).

2.1.3 Latent Variable Models

Many probabilistic graphical models also contain latent (hidden) stochastic variables, i.e. stochas-

tic variables which are not observed in the actual data. Two important classes of such models are

the hidden Markov models (HMMs) and Kalman filters (also known as linear state space models).

These models posit that there exists a sequence of latent stochastic variables, with precisely one

latent stochastic variable for each observed token, which explains all the dependencies (e.g. corre-

lations) between the observed tokens. Importantly, the latent stochastic variables obey the Markov

property: each latent stochastic variable depends only on the previous latent stochastic variable.

12

This is similar to the bigram model discussed earlier. It is instructive to understanding the HMM

and Kalman filter, as well as the role that latent variables may play in probabilistic graphical mod-

els. Therefore, we continue by giving a formal definition for these two models.

As before, let w1, . . . , wM be a sequence of discrete variables, such that wm ∈ V w for m =
1, . . . ,M for a vocabulary V w. Let s1, . . . , sM be a sequence of discrete latent variables, such that

sm ∈ V s for m = 1, . . . ,M for a discrete set V s. The HMM, with parameters θ, factorizes the

probability over variables as:

Pθ(w1, . . . , wM , s1, . . . , sM) = Pθ(s1)
M∏
m=2

Pθ(sm|sm−1)
M∏
m=1

Pθ(wm|sm), (17)

= θ0
s1

M∏
m=2

θssm,sm−1

M∏
m=1

θwwm,sm , (18)

where θ0 ∈ R|V s|, θs ∈ R|V s|×|V s| and θw ∈ R|V w|×|V s| are non-negative parameters, which define

probability distributions. The corresponding graphical model is shown in Figure 4. It is straight-

forward to derive that the observed tokens are independent conditioned on the latent variables:

wm ⊥⊥ wm′ |sm, . . . , s′m for m′ 6= m.

Figure 4: Probabilistic graphical model for hidden Markov model and Kalman filter model.

Next, we describe a variant of the Kalman filter, where the observed sequence is discrete.

Let w1, . . . , wM be a sequence of discrete variables, such that wm ∈ V w for m = 1, . . . ,M
for a vocabulary V w. Let s1, . . . , sM be a sequence of continuous (real-world) latent variables,

distributed according to a normal distribution, such that sm ∈ Rd for m = 1, . . . ,M and d ∈ N.

The Kalman filter assumes that the latent stochastic variables define a trajectory in a continuous

space, which describes the observations. The Kalman filter, with parameters θ, factorizes the

probability over variables as:

Pθ(w1, . . . , wM , s1, . . . , sM) = Pθ(s1)
M∏
m=2

Pθ(sm|sm−1)
M∏
m=1

Pθ(wm|sm), (19)

= Ns1(θ0
µ, θ

s
Σ)

M∏
m=2
Nsm(θsµsm−1, θ

s
Σ)

M∏
m=1

exp(θwwm
Tsm)∑

w′ exp(θww′Tsm)
(20)

13

where Nx(µ,Σ) is the probability of variable x under the multivariate normal distribution with

mean µ ∈ Rd and covariance matrix Σ ∈ Rd×d. The parameters defining the generation process

over latent stochastic variables are θ0
µ ∈ Rd and θsµ, θ

s
Σ ∈ Rd×d. The parameter defining the

generation process over observed variables is θw ∈ Rd×|V w|, used in a similar way to the RNN

parameter in eq. (3). The graphical model is the same as the HMM model, shown in Figure 4.

For the HMM, for small vocabularies V s and V w the model parameters may be learned us-

ing the stochastic gradient descent procedure described earlier by simply summing out the latent

variables. For the Kalman filter, as well as the HMM with large vocabularies, the exact gradient

updates are generally intractable and instead other procedures must be used. Two such training

procedures are the expectation-maximization algorithm (EM), and the variational learning proce-

dure (Friedman et al., 2001; Bishop, 2006). We will describe the variational learning procedure,

since it will be used later in the thesis. The variational learning procedure assumes that a poste-

rior distribution Qψ(s1, . . . , sM |w1, . . . , wM) is estimated, with parameters ψ, which approximates

Pθ(s1, . . . , sM |w1, . . . , wM) by a multivariate normal distribution. It utilizes a lower-bound on the

log-likelihood based on Jensen’s inequality:

logPθ(w1, . . . , wM) = log
∑

s1,...,sM
Pθ(w1, . . . , wM , s1, . . . , sM) (21)

= log
∑

s1,...,sM
Qψ(s1, . . . , sM |w1, . . . , wM)Pθ(w1, . . . , wM , s1, . . . , sM)

Qψ(s1, . . . , sM |w1, . . . , wM) (22)

≥
∑

s1,...,sM
Qψ(s1, . . . , sM |w1, . . . , wM) log

(
Pθ(w1, . . . , wM , s1, . . . , sM)
Qψ(s1, . . . , sM |w1, . . . , wM)

)
(23)

=
∑

s1,...,sM
Qψ(s1, . . . , sM |w1, . . . , wM) log

(
Pθ(s1, . . . , sM)Pθ(w1, . . . , wM |s1, . . . , sM)

Qψ(s1, . . . , sM |w1, . . . , wM)

)
(24)

=
∑

s1,...,sM
Qψ(s1, . . . , sM |w1, . . . , wM) logPθ(w1, . . . , wM |s1, . . . , sM)

−
∑

s1,...,sM
Qψ(s1, . . . , sM |w1, . . . , wM) log

(
Qψ(s1, . . . , sM |w1, . . . , wM)

Pθ(s1, . . . , sM)

)
(25)

= Es1,...,sM∼Qψ(s1,...,sM |w1,...,wM) [logPθ(w1, . . . , wM |s1, . . . , sM)]

− KL [Qψ(s1, . . . , sM |w1, . . . , wM)||Pθ(s1, . . . , sM)] , (26)

where Ex∼P (f(x)) is the expectation of function f(x), with x distributed according to P , and

KL[Q||P] is the Kullback-Leibler divergence between distribution Q and P . The distribution

Qψ(s1, . . . , sM |w1, . . . , wM) depends on w1, . . . , wM . Given a set of data examples, it is possi-

ble to maintain a Q distribution with separate parameters ψ over each example. A popular variant

of this approach is known as mean-field variational Bayes (Beal, 2003). A more recent approach

used in the neural network literature for continuous latent stochastic variables, is to have a neural

14

network parametrize the posterior, where all data examples share the same parameters (Kingma

and Welling, 2014; Rezende et al., 2014). Here, the approximate posterior factorizes as:

Qψ(s1, . . . , sM |w1, . . . , wM) =
M∏
m=1

Qψ(sm|w1, . . . , wM) (27)

=
M∏
m=1
Nsm(µψm(w1, . . . , wM), θψΣ(w1, . . . , wM)), (28)

where µψm ∈ Rd and θψΣ ∈ Rd×d are functions of w1, . . . , wM , defined by the approximate posterior

parameters ψ, and where θψΣ is a positive diagonal matrix. The functions µψm and θψΣ are typically

parametrized as neural networks. The procedure now requires a re-parametrization in order to ob-

tain samples (s1, . . . , sM) ∼ Qψ(s1, . . . , sM |w1, . . . , wM). Let εm ∼ N (0, 1), for m = 1, . . . ,M
(i.e. a sample from the multivariate normal distribution with zero mean, identity covariance matrix

and dimensionality d). It is then possible to rewrite sm as:

sm = fm(εm, w1, . . . , wM) = µψm(w1, . . . , wM) +
√

diag(θψΣ(w1, . . . , wM))εm, (29)

where
√

diag(θψΣ(w1, . . . , wM)) is a diagonal matrix with diagonal elements equal to the square

roots of the diagonal elements in θψΣ(w1, . . . , wM). This re-parametrization method allows the

taking of gradients w.r.t. parameters ψ. Based on these gradients, the training procedure can use

approximate stochastic gradient descent to learn the model parameters. As before, let {wi}i be the

training dataset. An example i is sampled together with εi1, . . . ε
i
M ∼ N (0, 1), and the parameters

are updated by:

θ ← θ + α∇θ logPθ(wi1, . . . , wiM |si1, . . . , siM)

− α∇θ log
(
Qψ(si1, . . . , siM |wi1, . . . , wiM)

Pθ(si1, . . . , siM)

)
ψ ← ψ + α∇ψ logPθ(wi1, . . . , wiM |si1, . . . , siM)

− α∇ψ log
(
Qψ(si1, . . . , siM |wi1, . . . , wiM)

Pθ(si1, . . . , siM)

)
,

where sim = fm(εim, wi1, . . . , wiM) form = 1, . . . ,M . It is straightforward to compute the gradients

w.r.t. θ, and since sim have been re-parametrized in terms of εim, it is also straightforward to compute

the gradients w.r.t. ψ. Furthermore, it is possible to compute the gradient of the exact Kullback-

Leibler divergence, which corresponds to the negative term in both equations. For more details,

see Kingma and Welling (2014) and Rezende et al. (2014). See also Jordan et al. (1999).

15

2.1.4 Learning Word, Phrase and Sentence Embeddings with Probabilistic Generative Mod-
els

Much of the work presented later in this thesis builds upon earlier work for learning distributed

embeddings for linguistic units, such as words, phrases and sentences. In this section, we will

introduce some of this work from the point of view of probabilistic graphical models.

The idea of learning distributed embeddings of linguistic units is that each linguistic unit can be

mapped into a real-valued, distributed vector representing its semantic and syntactic components.

For example, if two linguistic units are close to each other in this vector space, then it may be likely

that they have similar semantic or syntactic components (e.g. topic information). An early and

popular method for learning distributed word representations is Latent Semantic Analysis (LSA)

(Deerwester et al., 1990; Landauer et al., 1998a,b). See Ferrone and Zanzotto (2017), Li and Yang

(2018) and Camacho-Collados and Pilehvar (2018) for an overview of many different approaches.

One recent and widely used approach is the Skip-Gram model (Mikolov et al., 2013a,b). Let

{wi}Ii=1 be a set of I example sequences of word tokens, called the training dataset, and assume

that each word token comes from the vocabulary V . In many real-world applications, these might

be extracted from a large corpus of news articles or Wikipedia articles. The Skip-Gram model

aims to learn representations of words, which predict their surrounding words (also called context

words). This approach is motivated by the distributional hypothesis, which states that words which

occur in the same contexts tend to have similar meanings (Harris, 1954). During training, the Skip-

Gram model will sample a sequence at uniform random wi. Then, it will sample a word pair at

uniform random from this sequence, wt, wt′ ∈ wi, under the condition that the two words are

within c distance of each other (i.e. |t − t′| ≤ c). The parameter c is called the training context

and is usually set somewhere in the range between 3 and 12. Following this, the Skip-Gram model

predicts word wt′ conditioned on word wt by:

Pθ(wt′ |wt) =
exp(ITwt′Iwt)

exp(∑w∈V ITwIwt)
, (30)

with word embedding parameters θ = I ∈ R|V |×de and word embedding dimensionality de ∈ N.

These word embedding parameters represent the mapping from a word (e.g. a word index) to its

corresponding real-valued, distributed vector representation. The simplest variant of the model

updates its parameters by maximizing the log-likelihood for that particular sample with stochastic

gradient descent:

θ ← θ + α∇θ logPθ(wt′ |wt). (31)

The Skip-Gram model can be interpreted as a probabilistic graphical model when conditioned on a

given word. Conditioned on one observed word (i.e. an observed random variable taking values in

16

Table 1: Examples of the closest tokens given by Skip-Gram model trained on 30 billion training

words. This table was adapted from Mikolov et al. (2013b, p. 8).

Query Token Redmond Havel ninjutsu graffiti

Redmond Wash. Vaclav Havel ninja spray paint

Closest Tokens Redmond Washington president Vaclav Havel martial arts grafitti

Microsoft Velvet Revolution swordsmanship taggers

the set V), the probabilistic graphical model predicts the set of surrounding words independently

(i.e. unobserved random variables taking values in the set V). This is illustrated in Figure 5.3

Figure 5: Example of Skip-Gram model as a probabilistic directed graphical model. Conditioned

on word w2 the model aims to predict the surrounding words: w1, w3, w4 and so on. The dashed

lines indicate arrows to words outside the diagram.

A simple extension of the Skip-Gram model, called the Skip-Phrase model, enables the learn-

ing of distributed representations for phrases such as New York and Air Canada (Mikolov et al.,

2013b). In this case, frequently co-occuring tokens are mapped together to form a single token. For

example, since New and York co-occur together frequently, the Skip-Phrase model might replace

them with the combined token New_York. Example of the word and phrase embeddings learned

by the Skip-Phrase model are shown in Table 1.

The Skip-Gram model belongs to a broader class of models known as Word2Vec word embed-

ding models. These models have achieved success on many natural language processing tasks due

to their performance and computational efficiency. For this reason, we will use them in some of

the experiments in this thesis. Much work has been done in the area of learning distributed rep-

resentations for words. A very related model based on co-occurence statistics is the Glove model

(Pennington et al., 2014). Other relevant work are Gaussian word embeddings (Vilnis and McCal-

3The interpretation illustrated in Figure 5 only applies when the model is conditioned on one word. In general,
since any neighbouring pair of words wt and wt′ are used to predict each other, it is not possible to rewrite the model
into the form required by eq. (1). This means that is not possible to represent the full model as a probabilistic directed
graphical model.

17

lum, 2015) and contextualized word embeddings (Peters et al., 2018; McCann et al., 2017). See

also Li and Yang (2018) and Camacho-Collados and Pilehvar (2018).

The models discussed so far are capable of representing words and phrases. However, there

exists also various methods and models for learning distributed sentence representations. Though

it is beyond the scope of this thesis to discuss these in detail, it is instructive to discuss at least one

model here.

The Skip-Thought Vectors model (Kiros et al., 2015) is one type of neural network, which

learns to embed sentences into real-valued, distributed vectors. Analogous to the Skip-Gram

model, this model aims to learn the sentence embeddings by predicting neighbouring sentences.

Let {(wi
p,wi,wi

n)}Ii=1 be a set of I example triples, called the training dataset. For each example

i, let wi
p, wi and wi

n represent the sequence of word tokens in three consecutive sentences inside

a document. As before, assume that each word token comes from the vocabulary V . Conditioned

on a sentence wi, the Skip-Thought Vectors model predicts the previous sentence words (wi
p) and

the next sentence words (wi
n) independently:

Pθ(wi
p,wi

n|wi) = Pθ(wi
p|wi)Pθ(wi

n|wi), (32)

where the probability distributions on the right-hand side are given by:

Pθ(wi
p|wi) = Pθ(wip,1|wi)

Mp,i∏
m=2

Pθ(wip,m|wi, wip,1, . . . , w
i
p,m−1), (33)

Pθ(wi
n|wi) = Pθ(win,1|wi)

Mn,i∏
m=2

Pθ(win,m|wi, wip,1, . . . , w
i
n,m−1), (34)

and where sentence wi
p contains Mp,i words, sentence wi

n contains Mn,i words, and where θ are

the model parameters. The probability distributions given in eq. (33) and eq. (34) are parametrized

as variants of the RNNLM with the GRU hidden state update function, but where the token word

predictions are excluded for the conditioning sentence wi. The model is illustrated in Figure 6.

Figure 6: Illustration of the Skip-Thought Vectors model. Illustration taken from Kiros et al. (2015,

p. 2)

Similar to the Skip-Gram model, the training dataset for the Skip-Thought Vector model might

be extracted from a large corpus of news articles or Wikipedia articles. However, unlike the Skip-

18

Gram model, the structure of the training dataset is a triple of three sentences. When Kiros et al.

(2015) proposed the model, it was trained on the Book Corpus dataset (Zhu et al., 2015).

To illustrate the utility of the Skip-Thought Vector model to learn sentence embeddings, Table

2 shows a list of example query sentences and their nearest neighbours from the Skip-Thought

Vectors model trained on the Book Corpus dataset. Such sentence embeddings could potentially

be a powerful tool for building data-driven dialogue systems.

One caveat, which is important to mention, is that it contestable how much learned sentence

representations, such as those learned by the Skip-Thought Vectors model, capture higher-level

sentence structure (such as word order and lexical dependencies). For example, Arora et al. (2017)

demonstrate that across several natural language processing tasks the Skip-Thought Vector model,

and other models, which presume to learn sentence embeddings capturing word order, can be

outperformed by simpler bag-of-words models. Nevertheless, the field is constantly in movement

and it is likely that new approaches, such as those proposed by Radford et al. (2018) and Devlin

et al. (2018), may be capturing higher-level sentence structure.

19

Table 2: Examples of query sentences and their nearest sentences of the Skip-Thought Vectors

model trained on the Book Corpus dataset (Zhu et al., 2015). This table was extracted from Kiros

et al. (2015, p. 3).

Query and nearest sentence

he ran his hand inside his coat , double-checking that the unopened letter was still there .

he slipped his hand between his coat and his shirt , where the folded copies lay in a brown envelope .

im sure youll have a glamorous evening , she said , giving an exaggerated wink .

im really glad you came to the party tonight , he said , turning to her .

although she could tell he had n’t been too invested in any of their other chitchat , he seemed genuinely

curious about this .

although he had n’t been following her career with a microscope , he ’d definitely taken notice of

her appearances .

if he had a weapon , he could maybe take out their last imp , and then beat up errol and vanessa .

if he could ram them from behind , send them sailing over the far side of the levee , he had a chance

of stopping them .

then , with a stroke of luck , they saw the pair head together towards the portaloos .

then , from out back of the house , they heard a horse scream probably in answer to a pair of sharp spurs

digging deep into its flanks .

“ i ’ll take care of it , ” goodman said , taking the phonebook .

“ i ’ll do that , ” julia said , coming in .

he finished rolling up scrolls and , placing them to one side , began the more urgent task of finding

ale and tankards .

he righted the table , set the candle on a piece of broken plate , and reached for his flint , steel , a

20

2.2 Reinforcement Learning

The second part of this thesis investigates building a real-world reinforcement learning dialogue

system. In this section, we will provide a brief introduction to the main reinforcement learning

theory required to understand that system.

Reinforcement learning is a machine learning framework dealing with sequential decision mak-

ing. In this framework, a machine learning system is considered an agent, which takes a sequence

of actions in an environment in order to maximize an objective function. For example, as we will

discuss later, reinforcement learning may be applied to optimize the actions (e.g. responses) taken

by a goal-driven dialogue system.

2.2.1 Markov Decision Process

One concept central to reinforcement learning is the Markov decision process (MDP). An MDP

is a tuple 〈S,A, P,R, γ〉, where S is a set of states, A is a set of actions, P is a state transition

probability function, R(s, a) ∈ [0, rmax] is a reward function, with rmax > 0, and γ ∈ (0, 1) is the

discount factor (Sutton and Barto, 1998). Throughout the thesis, we will assume the formulation of

the standard MDP with a finite time horizon. Time is assumed to be a discrete variable starting at

time t = 0. Furthermore, for simplicity, the set of actions A is assumed to be discrete. For a given

time t, the agent is in a state st ∈ S. In this state, the agent (e.g. the dialogue system) must take

(select) an action at ∈ A. After this, the agent receives a reward rt = R(st, at) and transitions to

a new state st+1 ∈ S with probability P (st+1|st, at).4 The sequence of states, actions and rewards

(s1, a1, r1, . . . , sT , aT , rT) is called an episode. We assume the terminal state is always reached

within a finite number of transitions (steps) T ∈ N. For simplicity, if the episode terminates at

T ′ < T steps, then we assume that the agent reaches the terminal state at sT ′ = sterminal and

remains there (i.e. sT ′+1 = · · · = sT−1 = sT = sterminal) with all future rewards being zero (i.e.

rT ′+1 = · · · = rT−1 = rT = 0). Under this assumption, we may assume without loss of generality

that all episodes have length T .

We will assume that the agent utilizes a stochastic policy π. Given a state s ∈ S as input, the

policy π assigns a probability to each possible action a ∈ A:

π(a|s) ∈ [0, 1], s. t.
∑
a∈A

π(a|s) = 1. (35)

4To simplify notation, we will assume that at a time t = 0 the agent is always in a unique null state s0, which
cannot be reached by the agent at any other point in time, and where the agent always takes the null action a0. This in
turn allows us to rewrite the initial state distribution as the conditional transition distribution: P (s1) = P (s1|s0, a0).

21

The goal of the agent is to learn a policy maximizing the discounted sum of rewards:

R =
T∑
t=1

γtrt, (36)

which is called the cumulative return (or simply the return). Here, γ ∈ (0, 1] is the discount factor.

Given a policy π, the state-value function V π is defined as the expected return of the policy π

starting in state s ∈ S and completing the episode:

V π(s) = Eπ

[
T∑
t=1

γtrt | s1 = s

]
. (37)

The state-action-value function Qπ is defined as the expected return of taking action a ∈ A in state

s ∈ S, and then following policy π and completing the episode:

Qπ(s, a) = Eπ

[
T∑
t=1

γtrt | s1 = s, a1 = a

]
. (38)

A policy π∗ is optimal if it satisfies ∀s ∈ S, a ∈ A:

V π∗(s) = V ∗(s) = max
π

V π(s). (39)

The state-action-value function w.r.t. the optimal policy is:

Qπ∗(s, a) = Q∗(s, a) = Eπ∗
[
T∑
t=1

γtrt | s1 = s, a1 = a

]
∀s ∈ S, a ∈ A. (40)

Given Q∗, one may recover the optimal policy as a (discrete) Dirac-delta distribution:

π∗(s) = arg max
a∈A

Q∗(s, a), (41)

π∗(a|s) = 1(arg maxa′∈AQ∗(s,a′)=a), (42)

where 1(·) equals one if the statement (·) is true, and otherwise equals zero. Here, to simplify

notation, we have assumed that there is a unique optimal action in each state.5

The optimal policy can be found via dynamic programming using the Bellman optimality

equations (Bertsekas and Tsitsiklis, 1995; Sutton and Barto, 1998). These equations state that

∀s ∈ S, a ∈ A it holds that:

V ∗(s) = max
a∈A

Q∗(s, a), (43)

Q∗(s, a) = R(s, a) + γ
∑
s′∈S

P (s′|s, a)V ∗(s′) (44)

if and only if eq. (39) is satisfied. In problems where the state or action spaces are very large, it may

not be possible to solve for these equations directly. In this case, approximate efficient learning

algorithms may be used to find a solution. Some popular algorithms include SARSA, Q-learning,

REINFORCE and actor-critic methods (Sutton and Barto, 1998).
5Here, it should be noted that π∗(s) is a deterministic function, which maps a given state to the optimal action.

22

2.2.2 Tabular Reinforcement Learning with Q-Learning

It is instructive to give a more detailed example of a simplified setting. Let us assume that we are

given a MDP, where the state space S and action space A are small discrete sets each containing a

few hundred or a few thousand elements. In this case, it is possible to learn a tabular policy, which

assigns a probability for each possible state and action pair:

πθ(a|s) = θs,a, (45)

where θ ∈ R|S|×|A| is a parameter matrix denoting the probability for taking an action a ∈ A in

any given state s ∈ S, such that for all s ∈ S:

∑
a∈A

θs,a = 1 and θs,a ≥ 0 ∀a ∈ A (46)

One can learn a tabular policy using the Q-learning algorithm (Watkins, 1989). Let Qψ(s, a)
be an approximate state-action-value function parametrized by ψ ∈ R|S|×|A|:

Qψ(s, a) = ψs,a, (47)

which represents the approximate expected return of taking action a ∈ A in state s ∈ S, and then

following the policy πθ until the episode is completed. Given Qψ, the policy πθ may be defined as

the softmax function:

πθ(a|s) = θs,a = exp(λ−1Qψ(s, a))∑
a′∈A exp(λ−1Qψ(s, a′)) (48)

where λ > 0 is the temperature parameter. A higher λwill lead to a more uniform stochastic policy

(e.g. with more variety of actions taken).

In order to learn an effective policy, Q-learning aims to make the approximate state-action-

value function Qψ satisfy the same optimality condition as given in eq. (44):

Qψ(s, a) = R(s, a) + γ
∑
s′∈S

P (s′|s, a)Vψ(s′) ∀s ∈ S, a ∈ A, (49)

23

where, following eq. (43), it sets Vψ(s′) = maxa∈AQψ(s, a). This equation can be rewritten as:

Qψ(s, a) = R(s, a) + γ
∑
s′∈S

P (s′|s, a)Vψ(s′) ∀s ∈ S, a ∈ A

⇔

Qψ(s, a) = R(s, a) + γ
∑
s′∈S

P (s′|s, a) max
a′∈A

Qψ(s′, a′) ∀s ∈ S, a ∈ A

⇔

Qψ(s, a)−R(s, a)− γ
∑
s′∈S

P (s′|s, a) max
a′∈A

Qψ(s′, a′) = 0 ∀s ∈ S, a ∈ A

⇔

ψs,a −R(s, a)− γ
∑
s′∈S

P (s′|s, a) max
a′∈A

ψs′,a′ = 0 ∀s ∈ S, a ∈ A

⇔

ψs,a −R(s, a)− γ Es′∼P (s′|s,a)[max
a′∈A

ψs′,a′] = 0 ∀s ∈ S, a ∈ A

⇔(
ψs,a −R(s, a)− γ Es′∼P (s′|s,a)[max

a′∈A
ψs′,a′]

)2
= 0 ∀s ∈ S, a ∈ A, (50)

where Es′∼P (s′|s,a)[·] denotes the expectation w.r.t. the distribution P (s′|s, a). Finding a set of

parameters ψ satisfying this condition can be posed as an iterative optimization problem. Given

any state s ∈ S and action a ∈ A, as well as the corresponding value r = R(s, a) and a sample

s′ ∼ P (s′|s, a), the following gradient can be used to update the parameters ψ:

δ

δψs,a

(
ψs,a − ψ̂s,a

)2
,

where ψ̂s,a = r + γ max
a′∈A

ψs′,a′ , (51)

where ψ̂s,a is assumed to be a constant value. This value is called the target value, since ψs,a gets

updated to be closer to it. This leads to the update equation:

ψs,a ← ψs,a − α(ψs,a − ψ̂s,a)

= (1− α)ψs,a + αψ̂s,a (52)

The previous update equation motivates how Q-learning learns the policy πθ. At first, the

policy is initialized to a uniform random policy. This is done by setting ψ = 0. Then the learning

algorithm repeatedly alternates between two steps. In the first step, the policy πθ is used to roll out

an episode. In other words, a sequence of states, actions and rewards (s1, a1, r1, . . . , sT , aT , rT) of

the episode is recorded by having the agent follow the actions according to the policy πθ. In the

24

second step, the approximate state-action-value function is updated according to the Q-learning

update rule. For every tuple (st, at, rt, st+1) in the episode, the parameters are updated using:

Qψ(st, at)← (1− α)Qψ(st, at) + α
(
rt + γmax

a′∈A
Qψ(st+1, a

′)
)
, (53)

where α > 0 is the learning rate. Using eq. (47), we can rewrite this as an update w.r.t. ψ:

ψst,at ← (1− α)ψst,at + α
(
rt + γmax

a′∈A
ψst+1,a′

)
, (54)

By alternating between the two steps (i.e. rolling out episodes and updating the parameters), an

effective policy can be learned. Furthermore, under certain assumptions of the MDP and learning

rate, this learning procedure is guaranteed to converge to an optimal policy. See Bertsekas and

Tsitsiklis (1995) and Sutton and Barto (1998).

2.2.3 Deep Reinforcement Learning with Q-Learning

At the intersection of deep learning and reinforcement learning lies a class of algorithms known

as deep reinforcement learning. These are algorithms that combine the reinforcement learning

framework, where an agent takes actions in an environment in order to maximize an objective

function, and deep learning models, which help represent policies by parametrizing them as neural

networks. For a detailed introduction, the reader should refer to François-Lavet et al. (2018).

One recent and widely-used approach is the deep Q-network model (DQN) introduced by Mnih

et al. (2015). Similar to the tabular policy described above, here an approximate state-action-

value function is used to parametrize the policy of the agent. However, unlike the tabular policy,

the approximate state-action-value function is parametrized as a neural network. Let Qψ(s, a) be

the neural network with parameters ψ. The network takes as input a state s ∈ S and an action

a ∈ A and outputs an estimate of the expected return of taking action a in state s, and then

following the existing policy πθ until the episode is terminated. As before, the deep Q-network

model learns by alternating between rolling out episodes and updating its model parameters. Given

a tuple (st, at, rt, st+1) from an episode observed under policy πθ, the parameters are updated by

minimizing the squared error:

||Qψ(st, at)− Q̂ψ(st, at)||2,

where Q̂ψ(st, at) = rt + γmax
a′

Qψ(st+1, a
′), (55)

where Q̂ψ(st, at) is taken to be a constant variable, similar to the tabular example above. For

example, the parameters may be updated by stochastic gradient descent:

ψ ← ψ − α∇ψ||Qψ(st, at)− Q̂ψ(st, at)||2, (56)

25

where α > 0 is the learning rate. The policy itself can be defined as the softmax function in eq.

(48). Alternatively, the policy can be defined as an ε-greedy policy:

πθ(s, a) = (1− ε)1(arg maxa′∈AQψ(s,a′)=a) + ε

|A|
, (57)

where ε ∈ (0, 1) represents the proportion of actions taken at uniform random.

Deep Q-learning networks and its variants (sometimes referred to as deep Q-learning) have

been successfully applied to a variety of tasks, such as game playing (Tesauro, 1995; Mnih et al.,

2013), robotic control problems (Gu et al., 2016) and dialogue systems (Zhao and Eskenazi, 2016;

Cuayáhuitl, 2017). For more details, the reader is referred to François-Lavet et al. (2018).

2.2.4 Model-based Reinforcement Learning

An important subfield of reinforcement learning is model-based reinforcement learning (Sutton,

1990; Moore and Atkeson, 1993; Peng and Williams, 1993). In model-based reinforcement learn-

ing, an explicit model of the environment is learned together with the policy. For example, an

estimate of the state transition probability function may be learned simultaneously with the policy.

Model-based reinforcement learning is utilized in the second part of this thesis. For this reason,

this section will provide the reader with a brief introduction. For a more detailed introduction, the

reader may refer to François-Lavet et al. (2018, Ch. 6), Polydoros and Nalpantidis (2017) and

Kaelbling et al. (1996).

Consider the following example, where we aim to learn an efficient policy for the MDP

〈S,A, P,R, γ〉, but without having access to the transition distribution P or reward function R.

However, suppose that we still have access to the set of states and actions and the discount factor γ.

Furthermore, suppose we have collected a dataset D = {(si, ai, ri, s′i)}Ii=1, where each example

i consists of a state si ∈ S, where the system took action ai ∈ A, received reward ri ∈ R
and transitioned to the new state s′i ∈ S. We can use the dataset D to estimate an approximate

transition distribution PApprox:

PApprox(s′|s, a) ≈ P (s′|s, a) ∀s, s′ ∈ S, a ∈ A.

For example, PApprox can be learned by counting co-occurrences in D (Moore and Atkeson, 1993):

PApprox(s′|s, a) = Count(s, a, s′)
Count(s, a, ·) , (58)

where Count(s, a, s′) is the observation count for (s, a, s′) and Count(s, a, ·) = ∑
s′ Count(s, a, s′)

is the observation count for (s, a) followed by any other state in D. In addition, we can estimate

an approximate reward function RApprox:

RApprox(s, a) ≈ R(s, a) ∀s ∈ S, a ∈ A,

26

The approximate reward function can be learned by averaging the observed rewards in D:

RApprox(s, a) =
∑I
i=1 1(si=s,ai=a)r

i

Count(s, a, ·) , (59)

Given PApprox and RApprox, we can construct an approximate MDP 〈S,A, PApprox, RApprox, γ〉. The

approximate MDP can then be used to run simulations by drawing samples from the distributions

PApprox and RApprox. By rolling out episodes (i.e. simulating episodes) in the approximate MDP, we

may be able to learn an effective policy π. For example, we can apply the Q-learning algorithm

described earlier to learn an approximate state-action-value function and a corresponding policy.

Under appropriate assumptions, the policy we recover will be optimal w.r.t. the approximate MDP

if it satisfies the Bellman equations of the approximate MDP. Specifically, ∀s ∈ S, a ∈ A it must

hold that:

VApprox(s) = max
a∈A

QApprox(s, a), (60)

QApprox(s, a) = RApprox(s, a) + γ
∑
s′∈S

PApprox(s′|s, a)VApprox(s′), (61)

where VApprox and QApprox are the the state-value and state-action-value functions associated with

the approximate MDP. The hope is that if PApprox(s′|s, a) ≈ P (s′|s, a) and RApprox(s, a) ≈ R(s, a),

then the recovered state-action-value function satisfies QApprox(s, a) ≈ Q(s′, a′) ∀s ∈ S, a ∈ A for

policy π. This would imply that the policy derived fromQApprox(s, a) is close to the optimal policy.

The algorithm described above is very similar to the well-known Dyna-Q algorithm (Sutton,

1990; Kuvayev and Sutton, 1996). However, in the Dyna-Q algorithm the model of the environ-

ment (i.e. PApprox and RApprox) and the policy are learned simultaneously.

27

2.3 Dialogue Systems

Dialogue systems, also known as interactive conversational agents, virtual agents or sometimes

chatbots, are computer programs which interact with humans through either written natural lan-

guage or spoken natural language. They have been applied to a variety of applications ranging

from customer and technical support services to language learning tools and entertainment (Young

et al., 2013; Shawar and Atwell, 2007).

An important distinction should be made between goal-driven dialogue systems (e.g. technical

support services), and non-goal-driven dialogue systems (e.g. chatting for entertainment) (Wallace,

2009; Serban et al., 2017c; Ram et al., 2017; Papaioannou et al., 2017). Both types of dialogue

systems have some form of objective. Goal-driven dialogue systems tend to have a well-defined,

specific performance measure, which is explicitly related to task completion. Although often non-

goal-driven dialogue systems do not have such a specific performance measure, they are usually

built to maximize user engagement (e.g. duration or length of the dialogue).

Early dialogue systems were built using rule-based methods. An example of such a system is

the famous text program ELIZA, a system based on text parsing rules which aimed to mimic a

Rogerian psychotherapist by persistently rephrasing statements or asking questions (Weizenbaum,

1966). Similarly, the dialogue system PARRY aimed to mimic the pathological behaviour of a

paranoid patient, which it managed to do so well that clinical analysts could not differentiate it

from real human patients (Colby, 1981). Later, a more sophisticated rule-based dialogue system,

called ALICE, was developed based on AIML (artificial intelligence markup language) templates

to produce a responses when given a dialogue history (Wallace, 2009; Shawar and Atwell, 2007).

Following the seminal work on ELIZA and PARRY, researchers started to focus on data-driven

systems for goal-driven dialogue. An example is the How may I help you system for routing tele-

phone calls developed by (Gorin et al., 1997). Trained on a database of 10,000 spoken utterances,

the system would combine speech recognition with natural language understanding to efficiently

route telephone calls. An important line of work here were the systems developed for the Airline

Travel Information System (ATIS) domain (Pieraccini et al., 1992; Seneff, 1992; Dowding et al.,

1993; Miller et al., 1994; Ward and Issar, 1994). The research on these systems helped define many

of the fundamental research problems, in particular machine learning problems, which need to be

solved in order to construct real-world dialogue systems.

In the 90s, researchers began to formulate dialogue as a sequential decision making problem

based on Markov decision processes (Singh et al., 1999; Young et al., 2013; Paek, 2006; Pierac-

cini et al., 2009). Some of the seminal work here include the NJFun system (Singh et al., 2002)

and the Let’s Go system (Raux et al., 2006). For a detailed overview of this and some of the

later work, please see Lemon and Pietquin (2007), Young et al. (2013) and Chen et al. (2017).

28

Although this work has pushed the field towards data-driven approaches, modern commercial sys-

tems were and are still highly domain-specific and heavily based on hand-crafted features (Singh

et al., 2002; Young et al., 2013). That’s why a major motivation for developing dialogue systems

using probabilistic generative models, is that such models may be trained on large, un-annotated

corpora and therefore have the potential to scale to new domains. One of the most prominent ex-

amples of modern goal-driven dialogue systems is the emerging line of personal assistants, such

as Apple Siri (Wit, 2014), Amazon Alexa (Stone and Soper, 2014), Microsoft Cortana (Bhat and

Lone, 2017) and Google Now (Wortham, 2012). Although not much information about these sys-

tems is available to the public, it is widely agreed that these systems operate through a modular

framework centered around service applications. Every time a user speaks an utterance to such

a system, the utterance is routed to an appropriate service (such as a weather service application

for identifying the user’s intention and retrieving the appropriate weather report, or a alarm clock

service application for identifying the user’s intention and changing the appropriate alarm on the

device). For a comparison between these systems, please see López et al. (2017). However, there

are also goal-driven dialogue systems, which are not personal assistants. One example is the IBM

Project Debater system, which is capable of coherently debating complex topics in natural lan-

guage involving many back-and-forth turns (Debater, 2018; Slonim, 2018). At the other end of

the spectrum, there are also prominent examples of non-goal-driven dialogues. Two of such ex-

amples are Microsoft Xiaoice (Markoff and Mozur, 2015) and Hugging Face (Dillet, 2016). Both

of these two systems are capable of having casual natural language conversations about everyday

topics. In contrast to the goal-driven dialogue systems, which focus on and evaluate success by

measuring goal completion, these systems focus on engaging the user as much as possible (e.g. by

encouraging long conversations and by encouraging users to return frequently).

2.3.1 System Components

As discussed above, there are many different approaches to building dialogue systems. As illus-

trated in Figure 7, a typical dialogue system can be decomposed into the following components:

a speech recognizer, a natural language interpreter, a state tracker, a response generator, a natural

language generator and a speech synthesizer. For text-only dialogue systems, the speech recog-

nizer and speech synthesizer would be left out. In general, it is possible to develop or improve all

components of the dialogue system using data-driven approaches. Further, it should be noted that

the natural language interpreter and natural language generator are fundamental NLP problems

with many applications outside the scope of dialogue systems.

In the first part of this thesis, the approach taken is to combine all four components in a single

model, which jointly does natural language interpretation, dialogue state tracking and natural lan-

29

guage generation. In the second part of this thesis, the approach taken is to recompose the dialogue

system into a system with two components: a component generating a set of candidate responses,

and a component selecting the appropriate candidate response to emit.

	

	

	

	

	

	

	

	

	

	

Dialogue	
 System	

Automa'c	
 Speech	

Recognizer	

Natural	
 Language	

Interpreter	

Text-­‐To-­‐Speech	

Synthesizer	

Natural	
 Language	

Generator	

Dialogue	
 State	

Tracker	

Dialogue	

Response	

Selec'on	

Figure 7: An overview of components in a dialogue system, reproduced from Serban et al. (2018).

2.3.2 System Learning

Several dialogue components can be optimized in a supervised learning framework. As an ex-

ample, consider the problem of learning a user intent classification model, which is a sub-model

of the natural language interpreter. The goal of this classification model is to map the user’s ut-

terance to the corresponding intention class. The intent class is called the label (or target), and

the conditioned utterances are called the conditioning variables (or input). An example of such a

model might be a multinomial logistic regression classifier which, conditioned on a set of features

extracted from the speech recognition system output of the user’s utterance, assigns a probability

to each intention class. In this case, the model parameters θ can be learned by applying gradient

30

descent to maximize the log-likelihood:

θ̂ = arg max
θ

M∑
m=1

Pθ(ym|xm),

where {xm, ym}Mm=1 is a set of examples pairs, with ym and xm being the label and conditioning

input respectively. Such types of models have allowed goal driven dialogue systems to make

significant progress (Williams et al., 2013). Once trained on a given dataset, these models may

be plugged into a deployed dialogue system. For example, the class predicted by the user intent

model may be given as input to a dialogue state tracker.

We next discuss two types of data-driven response generation components. The first type de-

terministically selects the response from a fixed set of possible utterances, and the second type

generates a response by computing a posterior probability over all possible utterances. The first

type skips the natural language generator in Figure 7, by directly mapping the dialogue history,

tracker outputs and external knowledge to a response utterance (Serban et al., 2018):

fθ : {dialogue history, tracker outputs, external knowledge} → utterance. (62)

Retrieval-based systems, such as the neural network retrieval model proposed by Lowe et al.

(2015b) or the information retrieval model proposed by Banchs and Li (2012) are in this category.

The second type of response generation components explicitly compute a full posterior proba-

bility distribution over possible system responses at every turn:

Pθ(utterance | dialogue history, tracker outputs, external knowledge).

Generative neural network models, the subject of the first part of this thesis, belong to this

category. Reinforcement learning systems with stochastic policies, such as the NJFun system de-

veloped by Singh et al. (2002), also belong to this category. Unfortunately, these systems typically

have only a tiny set of hand-crafted system states and actions, in order to make current reinforce-

ment learning algorithms applicable. This critically limits their application area. Thus, as noted

by Singh et al. (2002, p.5): “We view the design of an appropriate state space as application-

dependent, and a task for a skilled system designer”.

2.3.3 System Evaluation

Accurate evaluation of dialogue systems is important for measuring development progress and de-

termining the utility of different dialogue models. However, this is known to be a very difficult

problem (Galley et al., 2015; Pietquin and Hastie, 2013; Schatzmann et al., 2005). In general, the

evaluation of a dialogue system depends heavily on whether it’s a non-goal-driven system or a

31

goal-driven system. In particular, the evaluation of a goal-driven system depends heavily on the

application domain which the system was designed to solve. This is in contrast with typical su-

pervised machine learning problems, where ground truth labels are available and simple statistical

metrics (e.g. accuracy, precision, recall and F1-score) may be used.

Evaluation for Goal-driven Systems Goal-driven dialogue systems have primarily been evalu-

ated by their ability to solve their intended task by human participants. Typically a small number

of human participants are recruited to evaluate the dialogue system. The participants are instructed

to solve a series of specific tasks, and afterwards their success rate (i.e. how often they manage

to solve each task) and interaction length (i.e. how long it took to solve each task) are measured.

The higher the success rate and the shorter the interaction length, the better the dialogue system is

presumed to be. For example the NJFun system, which provides users with access to information

about fun things to do in New Jersey, was evaluated in this way (Singh et al., 2002). One of the

six tasks participants were instructed to complete was stated as: Task 1. You are bored at home

in Morristown on a rainy afternoon. Use NJFun to find a museum to go to. After completing the

tasks, the average success rate was measured across participants. The success rates were then com-

pared across dialogue systems in order to determine the most effective dialogue system. Instead

of measuring task success rate, it is also possible to ask participants to directly rate the usefulness

of the dialogue system (Kamm, 1995). Unfortunately, there are some problems with both of these

two approaches to evaluation. The first problem is that it is expensive and time-consuming to carry

out human experiments, which slows down research. The second problem is that the number of

participants is limited and the experimental conditions are often not replicable, which introduces

variance into the results or, even worse, makes the results irreproducible. The third problem is

that the evaluation is fundamentally biased. The recruited participants differ significantly from

the real users of the dialogue system, because ultimately they do not care about completing the

actual dialogue task (Young et al., 2013). Finally, these approaches cannot directly be applied to

non-goal-driven dialogue systems.

Automatic Evaluation Metrics For evaluating a one-turn dialogue system response, researchers

have recently proposed to use automatic evaluation metrics adopted from the field of machine trans-

lation (Li et al., 2016a; Galley et al., 2015; Sordoni et al., 2015b; Ritter et al., 2011a). Such an

approach requires a test set of dialogue contexts and dialogue responses, typically extracted from

conversations between humans. For each test example, the dialogue model conditions on the di-

alogue context and generates a response. The similarity between the generated response and the

ground truth response is then estimated, for example by measuring the number of words they have

in common or, more generally, the number of n-grams they have in common. Here, an n-gram is

32

a sequence of n consecutive words. One of the most popular metrics for estimating the similarity

between responses is the BLEU metric, which measures the n-gram overlap, for n = 1, 2, 3, 4
and also takes into account response length (Papineni et al., 2002). Another popular metric is the

METEOR metric, which uses a database called WordNet to take into account semantic similar-

ity between words (Banerjee and Lavie, 2005). Therefore, even if the generated response has no

words in common with the ground truth response, METEOR may still yield a non-zero score be-

cause some of the words may be related according to WordNet. This approach may seem useful for

evaluating machine translation models, but for dialogue systems it is critically flawed as discussed

by (Liu et al., 2016). Liu et al. (2016) computed the correlation between automatic evaluation met-

rics and human annotators across different dialogue systems and tasks, and found the correlations

to be very low. The main problem with automatic evaluation metrics seems to be that for most

real-world dialogue problems the set of appropriate dialogue responses is huge, and therefore it is

unlikely that any words will overlap between the generated response and the ground truth response.

Even when there exists an overlap, the overlap is rarely between the topic-related words, but more

often between pronouns and punctuation marks.6 This is highly misleading, because the metric

is biased away from favouring responses with topic-related words, which arguably determines the

relevance of the response.

In an effort to overcome these issues Liu et al. (2016) propose three metrics based on word

embeddings. The first proposed metric is called greedy matching. Given two responses r and r̂,

each token w ∈ r is greedily matched with a token ŵ ∈ r̂ based on the cosine similarity of their

word embeddings (ew), and the total score is then averaged across all words:

G(r, r̂) =
∑
w∈r; maxŵ∈r̂ cos(ew, eŵ)

|r|

GM(r, r̂) = G(r, r̂) +G(r̂, r)
2 ,

where cos(ew, eŵ) represents the cosine similarity between ew and eŵ. Since G is asymmetric

w.r.t. r and r̂, the metric averages the greedy matching scores G for each ordering of r and r̂. The

greedy scoring metric was originally introduced for intelligent tutoring systems (Rus and Lintean,

2012). It favours generated responses with words, which are similar to the words in the ground

truth response. The second metric Liu et al. (2016) propose is called embedding average. This

metric computes the mean of the word embeddings of each token in a sentence r:

ēr =
∑
w∈r ew

|∑w′∈r ew′ |
.

To score the similarity between a ground truth response r and generated response r̂, the metric

computes the cosine similarity between their respective sentence level embeddings: EA(r, r̂) :=
6The BLEU and METEOR metrics consider punctuation marks as separate words.

33

cos(ēr, ēr̂). The third metric is called vector extrema based on the metric proposed by Forgues

et al. (2014). For each response, this metric computes a new vector by taking the largest absolute

value among all word embeddings in the response. Afterwards, it computes the cosine similarity

between the two vectors. Unfortunately the experiments carried out by Liu et al. (2016) show

that all metrics, including their proposed metrics, the BLEU metric and METEOR metric, have

at best a low correlation with human evaluations of what constitutes good dialogue responses.

This means that they cannot fairly be interpreted as a proxy for human evaluation. However,

due to the distributional hypothesis, the embedding metrics can be interpreted as a measuring topic

similarity. If the generated response contains words on the same topic as the ground truth response,

all embedding-based metrics will yield high scores. For this reason, we will use these metrics to

measure topic relevance.7

7It is possible to remove stop words before calculating these three metrics. This may help the metrics to further
emphasize topic relevance. However, this was not done in this thesis.

34

3 Generative Dialogue Models

This is the first part of the thesis work, which investigates representation learning for generative

dialogue models. Conditioned on a sequence of turns from a text-based dialogue, the models

proposed here are tasked with generating the next, appropriate response in the dialogue.

In this part, we ask a number of open research questions. The first set of questions we ask is

related to model architectures appropriate for dialogues with long-term temporal structure. Which

type of model architectures are appropriate for building dialogue systems operating in complex

real-world domains? Which type of architectures are capable of incorporating discourse-level con-

text? What effect does modelling discourse-level context have on model performance w.r.t. goal-

driven and non-goal-driven dialogue tasks? How does modelling discourse-level context change

the generated model responses compared to simpler models, which do not aim to capture discourse-

level context? The second set of questions we ask is related to modelling higher level semantic

structure. How important is it to model high-level semantic structure? How can high-level se-

mantic structure be modelled while also incorporating the discourse-level context? What are the

appropriate structured representations and how can these representations help to facilitate gener-

alization of the model to unseen topics? What are the advantages and disadvantages of modelling

high-level semantic structure w.r.t. goal-driven and non-goal-driven dialogue tasks? How do these

relate to other forms of composition, such as compositional semantic structure? The third set of

questions we ask is related to modelling uncertainty and ambiguity in human language. Which

type of architectures are capable of modelling the uncertainty and ambiguity inherent in real-world

dialogue settings? How can uncertainty and ambiguity be modelled as latent or observed stochastic

processes? Which model architectures are able to generate meaningful and semantically relevant

responses when confronted with high amounts of uncertainty?

We aim to answer some of these questions in this chapter. Motivated by these questions, we

will propose novel model architectures and learning algorithms. These will be compared to exist-

ing models proposed in the literature and then implemented in practice. The model architectures

and learning algorithms will then be applied and evaluated for building systems for goal-driven and

non-goal-driven dialogue tasks. The quantitative and qualitative evaluation of these model archi-

tectures and learning algorithms, as well as the steps leading to their successful implementation,

should help to shed light on some of the open research questions.

35

3.1 Hierarchical Recurrent Encoder-Decoder

3.1.1 Author’s Contribution

The work in this section covers the author’s work published in the conference publication:
“Building End-To-End Dialogue Systems Using Generative Hierarchical Neural Network Models"

by Iulian Vlad Serban, Alessandro Sordoni, Yoshua Bengio, Aaron Courville and Joelle Pineau, p.

3776–3784, Association for the Advancement of Artificial Intelligence, 2016.

The conference publication can be accessed at: https://aaai.org/ocs/index.php/

AAAI/AAAI16/paper/view/11957/12160. 8

The author of this thesis did the majority of the work related to the development of the models,

the experiments and the writing up of the conference publication. The author received help in

building and evaluating the models from Alessandro Sordoni. The author received help on writing

up the paper from Alessandro Sordoni, Yoshua Bengio, Aaron Courville and Joelle Pineau.

3.1.2 Motivation

The work presented here is in the direction of building end-to-end trainable, non-goal-driven sys-

tems based on generative probabilistic models, which can better incorporate long-term discourse-

level context for generating responses. Examples of long-term discourse-level context include: the

conversation topic, the opinions and statements made by each interlocutor and responses to these

made by other interlocutors, the entities and events mentioned by each interlocutor and the accep-

tance, objections and confusions raised by other interlocutors in response, the points of agreement

or disagreement between interlocutors and so on. To this end, this section adapts the Hierarchical

Recurrent Encoder-Decoder (HRED) model, originally proposed by Sordoni et al. (2015a) for web

query suggestion, to dialogue response generation.

We define the generative dialogue problem as modelling the utterances and interactive structure

of the dialogue (i.e. modelling the words and speaker turns in a dialogue). As such, the model

we describe next may be viewed as a cognitive system, which has to carry out natural language

understanding, reasoning, decision making and natural language generation in order to replicate or

emulate the behaviour observed in the training corpus. This approach differs from previous work

on learning dialogue systems through interaction with humans (Young et al., 2013; Gasic et al.,

2013; Cantrell et al., 2012; Mohan and Laird, 2014), because it learns off-line through examples

of human-human dialogues and aims to emulate the dialogues in the training corpus instead of

maximizing a task-specific objective function.

8The source code for the model described next is available at:
https://github.com/julianser/hed-dlg-truncated.

36

https://aaai.org/ocs/index.php/AAAI/AAAI16/paper/view/11957/12160
https://aaai.org/ocs/index.php/AAAI/AAAI16/paper/view/11957/12160
https://github.com/julianser/hed-dlg-truncated

3.1.3 Prior Related Work

Next, we will discuss some of the related work conducted prior to the research in this chapter.

Modelling conversations on micro-blogging websites with generative probabilistic models was

first proposed by Ritter et al. (2011a), who view the response generation problem as a translation

problem, where a post needs to be translated into a response. Generating responses was found

to be considerably more difficult than translating between languages. This was likely due to the

wide range of plausible responses and lack of phrase alignment between the post and the response.

Nonetheless, Ritter et al. (2011a) found that the statistical machine translation approach was supe-

rior to an information retrieval approach.

In the same vein, Shang et al. (2015) propose to use the neural network encoder-decoder frame-

work for generating responses on the micro-blogging website Weibo (Sutskever et al., 2014; Cho

et al., 2014). They also formulate the problem as conditional generation, where given a post, the

model generates a response. Unfortunately, generation using their model has a complexity scaling

linearly with the number of dialogue turns.9 Following this, Sordoni et al. (2015b) propose to

generate responses to posts on Twitter using a new way to incorporate dialogue context. Sordoni

et al. (2015b) concatenate three consecutive Twitter messages, representing a short conversation

between two users, and define the problem as predicting each word in the conversation given all

preceding words. They encode a bag-of-words context representation with a multilayer neural net-

work and generate a response with a standard RNN. They then combine their generative model with

a machine translation system, and show that the hybrid system outperforms the machine translation

system proposed by Ritter et al. (2011a). Since their approach for incorporating discourse-level

context is based on a bag-of-words representation, it is likely that the model will be sub-optimal

for many real-world dialogue applications.

It is also worth mentioning related work dealing with movie scripts and movie subtitles. To

the best of our knowledge, Banchs and Li (2012) were the first to suggest using movie scripts to

build dialogue systems. Conditioned on one or more utterances, their model searches a database of

movie scripts and retrieves an appropriate response. This was later followed up by Ameixa et al.

(2014), who demonstrate that movie subtitles could be used to provide responses to out-of-domain

questions using an information retrieval system.

3.1.4 Model

We consider a dialogue as a sequence of M utterances D = (U1, . . . , UM) involving two inter-

locutors. Each Um contains a sequence of Nm tokens, i.e. Um = (wm,1, . . . , wm,Nm), where wm,n
9The model will therefore require more computational resources as the dialogue advances, which in general is an

unwanted property.

37

Figure 8: The computational graph of the HRED architecture for a dialogue composed of three

turns. Each utterance is encoded into a dense vector and then mapped into the dialogue context,

which is used to decode (generate) the tokens in the next utterance. The encoder RNN encodes

the tokens appearing within the utterance. The context RNN encodes the discourse-level context

of the utterances appearing so far in the dialogue, allowing information and gradients to flow over

longer time spans. The decoder predicts one token at a time using a RNN. This figure was adapted

from Sordoni et al. (2015a).

is a random variable taking values in the vocabulary V and representing the token at position n in

utterance m. The tokens represent both words and dialogue acts, e.g. pause and end of turn tokens.

The Hierarchical Recurrent Encoder-Decoder (HRED) model, with parameters θ, decomposes the

probability of a dialogue D similarly to a recurrent neural network language model (RNNLM)

described earlier:

Pθ(U1, . . . , UM) =
M∏
m=1

Pθ(Um|U<m),

=
M∏
m=1

Nm∏
n=1

Pθ(wm,n|wm,<n, U<m),
(63)

where U<m = (U1, . . . , Um−1) and wm,<n = (wm,1, . . . , wm,n−1), i.e. the tokens preceding n in the

utterance Um. One critical difference compared to the standard RNNLM is that dialogue acts are

included as separate tokens. Sampling from the model can be performed by sampling one word

at a time from the conditional distribution Pθ(wm,n|wm,<n, U<m) conditioned on the previously

sampled words.

In the original framework for web query suggestion, HRED predicts the next web query given

38

the queries already submitted by the user. The history of past submitted queries is considered as

a sequence at two levels: a sequence of words for each web query and a sequence of queries.

HRED models this hierarchy of sequences with two RNNs: one at the word level and one at the

query level. We make a similar assumption for dialogue, namely, that a dialogue can be seen as a

sequence of utterances which, in turn, are sequences of tokens.

HRED consists of three components: the encoder RNN, the context RNN and the decoder

RNN. These are illustrated in Figure 8. In the following we will assume that the utterance to-

kens w1,1, w1,2, . . . , w2,1, w2,2, . . . wM,NM have been unfolded into one long sequence of tokens

w1, . . . , wT . As before, let de ∈ N be the word embedding dimensionality. The encoder RNN

maps each utterance to an utterance vector. The utterance vector is the hidden state obtained after

the last token of the utterance has been processed by a GRU RNN. Let ht,enc be the hidden state of

the encoder RNN at time step t, and dh,enc ∈ N be its dimensionality. The utterance vector is then

defined as:

rt,enc =σ(Hir,encIwt +Hr,encht−1,enc), (64)

ut,enc =σ(Hiu,encIwt +Hu,encht−1,enc), (65)

h̄t,enc =tanh(Hi,encIwt +Henc(rt,enc · ht−1,enc)), (66)

ht,enc =(1− ut,enc) · ht−1,enc + ut,enc · h̄t,enc, (67)

where I ∈ Rde×|V |, Hr,enc, Hu,enc, Henc ∈ Rdh,enc×dh,enc and Hir,enc, Hiu,enc, Hi,enc ∈ Rdh,enc×de are

the parameters. The higher-level context RNN is a GRU RNN, which keeps track of past utterances

by iteratively processing the utterance vectors:

rt,con =σ(Hir,conht,enc +Hr,conht−1,con), (68)

ut,con =1(wt is not end-of-utterance token)σ(Hiu,conht,enc +Hu,conht−1,con), (69)

h̄t,con =tanh(Hi,conht,enc +Hcon(rt,con · ht−1,con)), (70)

ht,con =(1− ut,con) · ht−1,con + ut,con · h̄t,con, (71)

where Hir,con, Hiu,con, Hi,con ∈ Rdh,con×dh,enc and Hcon, Hr,con, Hu,con ∈ Rdh,con×dh,con are its pa-

rameters, and dh,con ∈ N is its hidden state dimensionality. These equations are similar to the GRU

equations presented earlier, but with the two differences. First, the input tokens have been replaced

with the hidden state of the encoder. Second, ut,con is zero whenever wt is not an end-of-utterance

token, i.e. whenever it wt is not the last token in an utterance. This implies that the state is only

updated at the end of a turn in the dialogue. The hidden state ht,con is then given as input to the

39

decoder RNN, which is also parametrized as the GRU:

rt,dec =σ(Hir,decIwt +Hir,decht,con +Hr,decht−1,dec), (72)

ut,dec =σ(Hiu,decIwt +Hiu,decht,con +Hu,decht−1,dec), (73)

h̄t,dec =tanh(Hi,decIwt +Hi,decht,con +Hdec(rt,dec · ht−1,dec)), (74)

ht,dec =(1− ut,dec) · ht−1,dec + ut,dec · h̄t,dec, (75)

where Hir,dec, Hiu,dec, Hi,dec ∈ Rdh,dec×dh,con , Hdec, Hr,dec, Hu,dec ∈ Rdh,dec×dh,dec and

Hir,dec, Hiu,dec, Hi,dec ∈ Rdh,dec×de are its parameters, and dh,dec ∈ N is its hidden state dimen-

sionality. The probably distribution over the values of token wt+1 is given by eq. (3), where the

hidden state at time t is taken to be ht,dec. Several extensions are possible to this architecture. For

example, the decoder may be parametrized as the LSTM RNN instead of the GRU RNN, and it is

also possible to pass the hidden state ht,con through a hyperbolic tangent one-layer neural network

before giving it as input to the decoder RNN.

For modelling dialogues, the HRED model is expected to be superior to the standard RNN

model for two reasons. First, because the context RNN allows the model to better capture long-term

discourse-level context. The context RNN also allows the model to represent a form of common

ground between speakers, e.g. by representing topics and concepts shared between the speakers

using a distributed vector representation, which we hypothesize to be important for building an ef-

fective dialogue system (Clark and Brennan, 1991). Second, because the number of computational

steps between utterances is reduced. This makes the objective function more stable w.r.t. the model

parameters, and helps propagate the training signal for first-order optimization methods (Sordoni

et al., 2015a).

40

3.2 Multiresolution Recurrent Neural Network

3.2.1 Author’s Contribution

The work in this section covers the author’s work published in the conference publication:
“Multiresolution Recurrent Neural Networks: An Application to Dialogue Response Generation"

by Iulian Vlad Serban, Tim Klinger, Gerald Tesauro, Kartik Talamadupula, Bowen Zhou, Yoshua

Bengio and Aaron Courville, p. 3288–3294, Association for the Advancement of Artificial Intelli-

gence, 2017.

The conference publication can be accessed at: http://www.aaai.org/ocs/index.php/

AAAI/AAAI17/paper/download/14571/14217.

The author of this thesis did the majority of the work related to the development of the models,

the experiments and the writing up of the conference publication. The author received help for

conducting the human evaluation (described later) from Tim Klinger, Gerald Tesauro and Kartik

Talamadupula. The author received help on writing up the paper from Tim Klinger, Gerald Tesauro,

Kartik Talamadupula, Bowen Zhou, Yoshua Bengio and Aaron Courville.

3.2.2 Motivation

This section aims to improve the HRED model by learning an improved representation of higher

level semantic structure. For example, such higher-level semantic structure might capture infor-

mation about the conversation topic and about the entities and events mentioned throughout the

conversation. Specifically, we propose to do this by generalizing the sequential framework for

generative modelling to model multiple parallel sequences. The majority of the previous work on

sequential modelling with recurrent neural networks (RNNs), including work on machine trans-

lation, speech recognition and question answering (Kumar et al., 2016; Bahdanau et al., 2015;

Chorowski et al., 2015; Weston et al., 2015; Luong et al., 2015), has focused on developing new

neural network architectures within a deterministic framework. In other words, it has focused on

changing the parametrization of the deterministic function mapping input sequences to output se-

quences, a parametrization still trained by maximizing the log-likelihood of the observed output

sequence. Instead, this section pursues a complimentary research direction aimed at generalizing

the sequential framework to multiple input and output sequences, where each sequence exhibits its

own stochastic process and represents the underlying semantic structure at a distinct granular level.

The hope is that this will enable the model to learn high-level abstractions, which will improve the

overall generation process.

The model in this section was inspired from the work on jointly modelling dialogue acts and

natural language words in a stochastic process by Stolcke et al. (2000). In their work, the authors

41

http://www.aaai.org/ocs/index.php/AAAI/AAAI17/paper/download/14571/14217
http://www.aaai.org/ocs/index.php/AAAI/AAAI17/paper/download/14571/14217

define a set of dialogue acts, which are used to classify the high-level intention of an interlocutor’s

utterance (e.g. STATEMENT, QUESTION, BACKCHANNEL, AGREEMENT, DISAGREEMENT

AND APPOLOGY). These authors then propose a hidden Markov model (HMM), where the hid-

den states are defined as the dialogue acts and where the observations are the corresponding natural

language words.10 Consequently, their HMM is a probabilistic generative model over both high-

level abstractions (i.e. dialogue acts) and natural language words.

The model proposed in this section is also motivated in part by the theory of compositional

semantics, where the meaning of a phrase depends on the meaning of its constituent parts and their

combination (Baroni et al., 2014; Werning et al., 2012; Partee, 2008). This implies that, in many

cases, the meaning of a phrase may be derived from the bottom-up by composing together words

into higher level semantic units, where the higher-level semantic units represent more complex

meaning. In this work we explore a hypothesis based on a different, but related, idea of composi-

tionality, where we posit that a generative model can benefit by explicitly composing the meaning

of a phrase bottom-up, starting from an abstract, underspecified representation of the phrase and

then incrementally making it more concrete.

We propose a new class of RNN models, called Multiresolution Recurrent Neural Networks

(MrRNNs), which model multiple parallel sequences by factorizing the joint probability over the

sequences. In particular, we impose a hierarchical structure on the sequences, such that information

from high-level (abstract) sequences flows to low-level sequences (e.g. natural language sequences

of words). In other words, the high-level sequences represent high-level semantic structure

This architecture exhibits a new objective function for training: the joint log-likelihood over

all observed parallel sequences. In contrast to the log-likelihood objective function over a single,

long sequence, this objective function biases the model towards modelling high-level abstractions.

At test time, the model generates first the high-level sequence and afterwards the natural language

sequence of words.

3.2.3 Prior Related Work

We now discuss some of the related work conducted prior to the research in this section. Closely

related to our proposal is the model proposed by Ji et al. (2016), which jointly models natural

language text and high-level discourse structure. However, it only models a discrete class per

sentence at the higher level, which must be manually annotated by humans. On the other hand,

the model we propose models a sequence of automatically extracted high-level tokens. Recurrent

neural network models with stochastic latent variables, such as the Variational Recurrent Neural

Networks by Chung et al. (2015), are also related. These models also attempt to learn the high-level

10In Stolcke et al. (2000), the authors also include acoustic features, including prosodic features.

42

representations, while simultaneously learning to model the generative process over high-level

sequences and low-level sequences, which arguably is a more difficult optimization problem. In

addition to this, such models assume the high-level latent variables follow continuous distributions.

Recent dialogue-specific neural network architectures, including the model proposed by Wen

et al. (2017), are also related. Different from the model we propose, they require domain-specific

hand-crafted high-level representations (for example, a hand-crafted dialogue state) learned from

human-labelled examples. They also usually consist of several sub-components each trained with

its own objective function.

Finally, the idea of modelling a higher-level semantic structure in a dialogue is closely related

to the dialogue state tracking challenge (Williams et al., 2013, 2016). This is a goal-driven dialogue

system challenge, where the task is to map the dialogue history to a discrete state representing the

salient information necessary for the goal-driven dialogue system to attain its goal.

3.2.4 Model

We consider the problem of modelling two parallel sequences. As for the Hierarchical Recurrent

Encoder-Decoder (HRED) model, each sequence consists of a sequence of utterances, which con-

sists of a sequence of tokens. Formally, let (w1, . . . ,wN) be the first sequence of length N where

wn = (wn,1, . . . , wn,Kn) is the n’th constituent sequence (utterance) consisting of Kn discrete

tokens (words) from vocabulary V w. Similarly, let (z1, . . . , zN) be the second sequence, also of

length N , where zn = (zn,1, . . . , zn,Ln) is the n’th constituent (utterance) sequence consisting of

Ln discrete tokens (words) from vocabulary V z. In our experiments, each sequence wn will consist

of the words in a dialogue utterance, and each sequence zn will contain the coarse tokens w.r.t. the

same utterance (e.g. the nouns or activities and entities found in the utterance). In other words,

the sequence (z1, . . . , zN) will help represent higher level semantic structure, either by represent-

ing the abstract semantic content directly (e.g. activities and entities found in the utterance) or by

representing an underspecified variant of the actual natural language phrase focused on the most

salient aspects (e.g. nouns).

We will define the generation process as follows. First, the sequence z1 is generated. Then

sequence z2 is generated conditioned on z1 and so on. This generation process is analogous to

the probabilistic graphical model of the standard RNN. Once z1, . . . , zN have been generated, the

sequence w1 is generated conditioned on z1. Then w2 is generated conditioned only on w1, z1 and

z2, and so on. In other words, each low-level sequence is conditioned on the previous low-level

sequences and the current and previous high-level sequences. Formally, we therefore assume that

wn is independent of zn′ conditioned on z1, . . . , zn for n′ > n. Let θ be the parameters of the

43

generative model and factor the probability over sequences:

Pθ(w1, . . . ,wN , z1, . . . , zN) =
N∏
n=1

Pθ(zn|z1, . . . , zn−1)
N∏
n=1

Pθ(wn|w1, . . . ,wn−1, z1, . . . , zn)

=
N∏
n=1

Pθ(zn|z1, . . . , zn−1)Pθ(wn|w1, . . . ,wn−1, z1, . . . , zn), (76)

where we define the conditional probabilities over the tokens in each constituent sequence as:

Pθ(zn|z1, . . . , zn−1) =
Ln∏
m=1

Pθ(zn,m|zn,1, . . . , zn,m−1, z1, . . . , zn−1)

Pθ(wn|w1, . . . ,wn−1, z1, . . . , zn) =
Kn∏
m=1

Pθ(wn,m|wn,1, . . . , wn,m−1,w1, . . . ,wn−1, z1, . . . , zn)

We call the distribution over (z1, . . . , zN) the coarse sub-model, and the distribution over

(w1, . . . ,wN) the natural language sub-model. For the coarse sub-model, we parametrize the

conditional distribution Pθ(zn|z1, . . . , zn−1) as the HRED model described in section 3.1 on the

sequence (z1, . . . , zN). For the natural language sub-model, we parametrize

Pθ(wn|w1, . . . ,wn−1, z1, . . . , zn) as the HRED model on the sequence (w1, . . . ,wN). However,

here there is one difference. The coarse prediction encoder GRU-gated RNN encodes all the

previously generated tokens z1, . . . , zn into a real-valued vector, as defined by eq. (5), which is

concatenated with the context RNN and given as input to the natural language decoder RNN. The

coarse prediction encoder RNN is important because it encodes the high-level information, which

is transmitted to the natural language sub-model. At generation time, the coarse sub-model gener-

ates a coarse sequence (e.g. a sequence of nouns), which corresponds to a high-level decision about

what the natural language sequence should contain (e.g. nouns to include in the natural language

sequence). Conditioned on the coarse sequence, the natural language sub-model then generates a

natural language sequence (e.g. a dialogue utterance). The model is illustrated in Figure 9.

Since (z1, . . . , zN) and (w1, . . . ,wN) are both observed in the training set, we optimize the

parameters w.r.t. the joint log-likelihood over both sequences. At test time, to generate a response

for sequence n we approximate the most likely response:

arg max
wn,zn

Pθ(wn, zn|w1, . . . ,wn−1, z1, . . . , zn−1)

≈ arg max
wn

Pθ(wn|w1, . . . ,wn−1, z1, . . . , zn−1, zn) arg max
zn

Pθ(zn|z1, . . . , zn−1), (77)

where we further approximate the MAP for each constituent sequence using beam search (Graves,

2012).

44

Figure 9: Computational graph for the Multiresolution Recurrent Neural Network (MrRNN). The

lower part models the stochastic process over coarse tokens, and the upper part models the stochas-

tic process over natural language tokens. The rounded boxes represent (deterministic) real-valued

vectors, and the variables z and w represent the coarse tokens and natural language tokens respec-

tively.

45

3.3 Latent Variable Recurrent Encoder-Decoder

3.3.1 Author’s Contribution

The work in this section covers the author’s work published in the conference publication:
“A Hierarchical Latent Variable Encoder-Decoder Model for Generating Dialogues"

by Iulian Vlad Serban, Alessandro Sordoni, Ryan Lowe, Laurent Charlin, Joelle Pineau, Aaron

Courville, and Yoshua Bengio, p. 3295–3301, Association for the Advancement of Artificial Intel-

ligence, 2017.

The conference publication can be accessed at: https://aaai.org/ocs/index.php/

AAAI/AAAI17/paper/view/14567/14219. 11

The author of this thesis did the majority of the work related to the development of the models,

the experiments and the writing up of the conference publication. The author received technical

assistance from Alessandro Sordoni and Ryan Lowe on some parts of the implementation. The au-

thor received help on writing up the paper from Alessandro Sordoni, Ryan Lowe, Laurent Charlin,

Joelle Pineau, Aaron Courville, and Yoshua Bengio.

3.3.2 Motivation

This section is motivated by the observation that in many RNN architectures the variability or

stochasticity in the model occurs only when an output is sampled. This is often an inappropriate

place to inject variability (Boulanger-Lewandowski et al., 2012; Chung et al., 2015; Bayer and

Osendorfer, 2014). This is especially true for sequential data, such as speech and natural language,

which possess a hierarchical generation process with complex intra-sequence dependencies. For

instance, natural language dialogue involves at least two levels of structure; within a single utter-

ance the structure is dominated by local statistics of the language, while across utterances there is

a distinct source of uncertainty (or variance) characterized by aspects such as conversation topic,

speaker goals and speaker style. The Multiresolution Recurrent Neural Network (MrRNN), pro-

posed earlier, overcomes this problem by modelling several observed sequences in parallel while

conditioning the low-level (natural language) sequences on the high-level (abstract) sequences.

However, high-level sequences may not always be available and even when they are available they

may be ineffective. For example, they may not capture important aspects of the data distribution.

This section is further motivated by the observation that natural language, in particular real-

world dialogue, exhibits a high amount of uncertainty and ambiguity. We posit that this high

11The source code for the model described next is available at:
https://github.com/julianser/hed-dlg-truncated.

46

https://aaai.org/ocs/index.php/AAAI/AAAI17/paper/view/14567/14219
https://aaai.org/ocs/index.php/AAAI/AAAI17/paper/view/14567/14219
https://github.com/julianser/hed-dlg-truncated

amount of uncertainty and ambiguity cannot be modelled effectively by a model where all vari-

ability is modelled at the word or token level.

This section introduces a novel hierarchical stochastic latent variable neural network architec-

ture to explicitly model generative processes that possess multiple levels of variability. The model

we propose for generative dialogue modelling has two levels of stochastic variables: a high-level

latent stochastic variable and a low-level variable (e.g. a dialogue utterance). The latent stochastic

variable has a normal distribution. The model samples the latent stochastic variable, and then con-

ditioned on it the model samples the low-level variable. In other words, the stochastic process has

two levels: one latent and one observed.

3.3.3 Prior Related Work

We next discuss some of the related work conducted prior to the research in this section. The

use of a stochastic latent variable learned by maximizing a variational lower-bound is inspired by

the variational autoencoder (VAE) (Kingma and Welling, 2014; Rezende et al., 2014). Such mod-

els have been used predominantly for generating images in the continuous domain (Gregor et al.,

2015; Bachman and Precup, 2015). However, there has also been recent work applying these ar-

chitectures for generating sequences, such as the Variational Recurrent Neural Networks (VRNN)

(Chung et al., 2015), which was applied for speech and handwriting synthesis, and Stochastic

Recurrent Networks (STORN) (Bayer and Osendorfer, 2014), which was applied for music gen-

eration and motion capture modelling. Both the VRNN and STORN incorporate stochastic latent

variables into RNN architectures, but unlike the model we will propose they sample a separate la-

tent variable at each time step of the decoder. Their models do not exploit the hierarchical structure

in the data, and thus does not model higher-level variability, which is clearly important in dialogue.

Most similar to our proposed model is the Variational Recurrent Autoencoder (Fabius and

van Amersfoort, 2014) and the Variational Autoencoder Language Model (Bowman et al., 2016),

which apply encoder-decoder architectures to model music and text. The model we will propose is

different in several ways. In the model we will propose, the latent variable is conditioned on all pre-

vious sub-sequences (sentences). This enables the model to generate multiple sub-sequences (sen-

tences), but it also makes the latent variables co-dependent through the observed tokens. The model

builds on the hierarchical architecture of the Hierarchical Recurrent Encoder-Decoder (HRED)

model, which makes it applicable to generation conditioned on long contexts. Unlike the previ-

ous models in the literature, it also has a direct deterministic connection between the context and

decoder RNN, which allows the model to transfer deterministic pieces of information between its

components.

47

3.3.4 Model

Figure 10: Computational graph for VHRED model. Rounded boxes represent (deterministic)

real-valued vectors. Variables z represent latent stochastic variables.

The model we propose is called the Latent Variable Hierarchical Recurrent Encoder-Decoder

(VHRED) model. This model augments the HRED model with a latent variable at the decoder,

which is trained by maximizing a variational lower-bound on the log-likelihood. This allows it

to model hierarchically-structured sequences in a two-step generation process—first sampling the

latent variable, and then generating the output sequence—while maintaining long-term context.

As before when describing the MrRNN model, let (w1, . . . ,wN) be a sequence consisting ofN

constituent sequences, where wn = (wn,1, . . . , wn,Mn) is the n’th constituent sequence and wn,m ∈
V is the m’th discrete token in that sequence. The VHRED model uses a stochastic latent variable

zn ∈ Rdz for each constituent sequence n = 1, . . . , N conditioned on all previous observed tokens.

Given zn, the model next generates the n’th constituent sequence tokens wn = (wn,1, . . . , wn,Mn):

Pθ(zn | w1, . . . ,wn−1) = Nzn(µprior(w1, . . . ,wn−1),Σprior(w1, . . . ,wn−1)), (78)

Pθ(wn | zn,w1, . . . ,wn−1) =
Mn∏
m=1

Pθ(wn,m | zn,w1, . . . ,wn−1, wn,1, . . . , wn,m−1), (79)

whereNzn(µ,Σ) is the multivariate normal distribution density of variable zn with mean µ ∈ Rdz

and covariance matrix Σ ∈ Rdz×dz , which is constrained to be a diagonal matrix.

As shown in Figure 10. the VHRED model contains the same three components as the HRED

model. The encoder RNN deterministically encodes a single constituent sequence into a fixed-size

48

real-valued vector, as described in section 3.1. The context RNN deterministically takes as input

the output of the encoder RNN, and encodes all previous constituent sequences into a fixed-size

real-valued vector, as described in section 3.1. This vector is transformed through a two-layer feed-

forward neural network with hyperbolic tangent gating function. A matrix multiplication is applied

to the output of the feed-forward network, which defines the multivariate normal mean µprior.

Similarly, for the diagonal covariance matrix Σprior a different matrix multiplication is applied to

the net’s output followed by the softplus function, which ensures positive values (Chung et al.,

2015).

The model’s latent variables are inferred by maximizing the variational lower-bound, which

factorizes into independent terms for each constituent sequence:

logPθ(w1, . . . ,wN) ≥
N∑
n=1
−KL [Qψ(zn | w1, . . . ,wn)||Pθ(zn | w1, . . . ,wn−1)]

+ EQψ(zn|w1,...,wn) [logPθ(wn | zn,w1, . . . ,wn−1)] , (80)

where KL[Q||P] is the Kullback-Leibler (KL) divergence between distributions Q and P . The dis-

tribution Qψ(z | w1, . . . , wM) is the approximate posterior distribution (also known as the encoder

model or recognition model), which aims to approximate the intractable true posterior distribution:

Qψ(zn | w1, . . . ,wN) = Qψ(zn | w1, . . . ,wn)

= N (µposterior(w1, . . . ,wn),Σposterior(w1, . . . ,wn))

≈ Pψ(zn | w1, . . . ,wN), (81)

where µposterior defines the approximate posterior mean and Σposterior defines the approximate pos-

terior covariance matrix (assumed diagonal) as a function of the previous constituent sequences

w1, . . . ,wn−1 and the current constituent sequence wn. The posterior mean µposterior and covari-

ance Σposterior are determined in the same way as the prior, via a matrix multiplication with the

output of the feed-forward network, with a softplus function applied for the covariance.

At test time, conditioned on the previous observed constituent sequences (w1, . . . ,wn−1), a

sample zn is drawn from the prior N (µprior(w1, . . . ,wn−1),Σprior(w1, . . . ,wn−1)) for each con-

stituent sequence. This sample is concatenated with the output of the context RNN and given as

input to the decoder RNN as in the HRED model, which then generates the constituent sequence

token-by-token. At training time, for n = 1, . . . , N , a sample zn is drawn from the approximate

posterior N (µposterior(w1, . . . ,wn),Σposterior(w1, . . . ,wn)) and used to estimate the gradient of the

variational lower-bound given by eq. (80). The approximate posterior is parametrized by its own

one-layer feed-forward neural network, which takes as input the output of the context RNN at the

current time step, as well as the output of the encoder RNN for the next constituent sequence.

49

As before, assume that the utterance tokens w1,1, w1,2, . . . , w2,1, w2,2, . . . wM,NM have been un-

folded into one long sequence of tokens (w1, . . . , wT). Formally, let ht,con ∈ Rdh,con be the hidden

state of the context encoder at time t, and define:

h̄t,con = tanh(Hl2,priortanh(Hl1,priorht,con)), (82)

µt,prior = Hµ,priorh̄t,con, (83)

Σt,prior = diag(log(1 + exp(HΣ,priorh̄t,con))), (84)

where Hl1,prior ∈ Rdz×dh,con and HΣ,prior, Hµ,prior, Hl2,prior ∈ Rdz×dz are its parameters, and where

diag(x) is a function mapping a vector x to a matrix with diagonal elements x and all off-diagonal

elements equal to zero. At generation time, these quantities are computed at the time step corre-

sponding to the end of each utterance, i.e. when wt is the end-of-utterance token, and afterwards

the latent variable is sampled zt ∼ N (µt.prior,Σt,prior). The equations for the approximate posterior

are similar. Let ht,pos ∈ Rdh,con+dh,enc be the concatenation of ht,con and the hidden state of the

encoder RNN at the end of the next constituent sequence, which we assume has dimensionality

dh,enc. The approximate posterior is given as:

h̄t,pos = tanh(Hl2,posteriortanh(Hl1,posteriorht,pos)), (85)

µt,posterior = Hµ,posteriorh̄t,pos, (86)

Σt,posterior = diag(log(1 + exp(HΣ,posteriorh̄t,pos))), (87)

where Hl1,posterior ∈ Rdz×(dh,con+dh,enc) and HΣ,posterior, Hµ,posterior, Hl2,posterior ∈ Rdz×dz are its

parameters. At training time, the latent variable is sampled at the end of each utterance:

zt ∼ N (µt.posterior,Σt,posterior).

The VHRED model helps to reduce the problems with the generation process used by the

RNNLM and HRED model outlined above. The variation of the output sequence is now mod-

elled in two ways: at the sequence-level with the conditional prior distribution over z, and at the

constituent sequence-level (token-level) with the conditional distribution over tokens w1, . . . , wM .

The variable z helps model long-term output trajectories, by representing high-level information

about the sequence, which in turn allows the variable hm to primarily focus on summarizing the

information up to token M . One interpretation of this model is that the randomness injected by the

variable z corresponds to higher-level decisions, like the topic or the sentiment of the sentence.

50

Figure 11: Probabilistic graphical models for dialogue response generation. Variables w represent

natural language utterances. Variables z represent discrete or continuous stochastic latent variables.

(A): HRED (and RNNLM) uses a shallow generation process. This is problematic because it has

no mechanism for incorporating uncertainty and ambiguity at a higher level, and because it forces

the model to generate compositional and long-term structure incrementally on a word-by-word

basis. (B): MrRNN expands the generation process by adding a sequence of observed, discrete

stochastic variables for each utterance, which helps generate responses with higher level semantic

structure. (C): VHRED expands the generation process by adding one learned latent variable

for each utterance, which helps incorporate uncertainty and ambiguity in the representations and

generate meaningful, diverse responses.

51

3.3.5 Comparing VHRED to HRED and MrRNN

To better understand the motivation and structure of the VHRED model, it is useful to compare it

to the MrRNN and HRED models. Figure 11 illustrates the probabilistic directed graphical models

of the VHRED, MrRNN and HRED models. As discussed earlier, HRED uses a hierarchical struc-

ture in order to incorporate long-term discourse-level context. However, similar to the RNNLM,

it implements a shallow stochastic generation process where the output is generated directly one

word at a time. This is problematic because there is no mechanism for incorporating uncertainty

and ambiguity and because it forces the model to generate compositional and long-term structure

incrementally on a word-by-word basis. MrRNN overcomes these problems by expanding the

stochastic generation process to also output a sequence of high-level discrete stochastic variables

for each utterance, which represent high-level semantic structure. In contrast to MrRNN, VHRED

overcomes the problems of HRED by expanding the stochastic generation process to include one

continuous, latent variable for each utterance, which helps to incorporate uncertainty and ambigu-

ity in the representations and helps to generate meaningful, diverse responses.

52

3.4 Experiments

3.4.1 Tasks

In order to investigate the performance of the previously presented models, several empirical ex-

periments have been carried out. The experiments focus on the task of conditional response gener-

ation: given a dialogue context, consisting of one or more utterances, the model must generate the

next response in the dialogue. To get a broad view of the performance, we present results on two

tasks: a goal-driven dialogue task and a non-goal driven dialogue task.

Ubuntu Dialogue Corpus The goal-driven dialogue task we consider is technical support for the

Ubuntu operating system, where we use the Ubuntu Dialogue Corpus (Lowe et al., 2015b).1213 The

corpus consists of about 0.5 million natural language dialogues extracted from the #Ubuntu Internet

Relayed Chat (IRC) channel. Users entering the chat channel usually have a specific technical

problem. The users first describe their problem and afterwards other users try to help them resolve

it. The technical problems range from software-related issues (e.g. installing or upgrading existing

software) and hardware-related issues (e.g. fixing broken drivers or partitioning hard drives) to

informational needs (e.g. finding software with specific functionality). For more details, the reader

is referred to Lowe et al. (2017b).

Twitter Dialogue Corpus The next task we consider is the non-goal-driven task of generating

responses to Twitter conversations. We use a Twitter dialogue corpus extracted in the first half of

2011 using a procedure similar to (Ritter et al., 2011a). Unlike the Ubuntu domain, Twitter con-

versations are often more noisy and do not necessarily center around a single topic. However, due

to their open-ended nature, it is interesting to investigate how different dialogue models perform in

this domain. We perform a minimal preprocessing on the dataset to remove irregular punctuation

marks and afterwards tokenize it using the Moses tokenizer.14 The dataset is split into training,

validation and test sets containing respectively 749,060, 93,633 and 10,000 dialogues.

12We use the Ubuntu Dialogue Corpus v2.0 extracted January, 2016: http://cs.mcgill.ca/~jpineau/
datasets/ubuntu-corpus-1.0/

13For the context and response pairs in the official Ubuntu Dialogue Corpus, there is no distinction between the
users having technical problems and other users helping them resolve their problems. Therefore the model must learn
to act as both a user in need of technical support and as a user providing technical support.

14https://github.com/moses-smt/mosesdecoder/blob/master/scripts/tokenizer/

tokenizer.perl, Retrieved June, 2015

53

http://cs.mcgill.ca/~jpineau/datasets/ubuntu-corpus-1.0/
http://cs.mcgill.ca/~jpineau/datasets/ubuntu-corpus-1.0/
https://github.com/moses-smt/mosesdecoder/blob/master/scripts/tokenizer/tokenizer.perl
https://github.com/moses-smt/mosesdecoder/blob/master/scripts/tokenizer/tokenizer.perl

3.4.2 Multiresolution RNN Representations

For the MrRNNs, we experiment with two procedures for extracting the coarse sequence represen-

tations:

Noun Representation This procedure aims to exploit the basic high-level structure of natural

language discourse. It is motivated by the hypothesis that dialogues are topic-driven and

that these topics may be characterized by the observed nouns. In addition to a tokenizer,

used by both the HRED and VHRED model, it requires a part-of-speech (POS) tagger to

identify the nouns in the dialogue. The procedure uses a set of 84 and 795 predefined stop

words for Ubuntu and Twitter respectively. It maps a natural language utterance to its coarse

representation by extracting all the nouns using the POS tagger and then removing all stop

words and repeated words (keeping only the first occurrence of a word). Dialogue utterances

without nouns are assigned the "no_nouns" token. The procedure also extracts the tense of

each utterance and adds it to the beginning of the coarse representation.

Activity-Entity Representation This procedure is specific to the Ubuntu technical support task,

for which it aims to exploit domain knowledge related to technical problem solving. It is

motivated by the hypothesis that the majority of dialogues are centered around activities and

entities. For example, in the Ubuntu technical support task, it is very common for users to

state a specific problem they want to resolve (e.g. how do I install program X? or My driver X

doesn’t work, how do I fix it?). In response to such questions, other users often respond with

specific instructions (e.g. Go to website X to download software Y or Try to execute command

X). In such cases, it is clear that the principal information resides in the technical entities (X

and Y) and in the verbs (e.g. install, fix, download), and therefore that it will be advantageous

to explicitly model this structure. Motivated by this observation, the procedure uses a set of

192 activities (verbs), created by manual inspection, and a set of 3115 technical entities and

230 frequent terminal commands, extracted automatically from available package managers

and from the web. The procedure uses the POS tagger to extract the verbs from the each

natural language utterance. It maps the natural language to its coarse representation by

keeping only verbs from the activity set, as well as entities from the technical entity set

(irrespective of their POS tags). If no activity is found in an utterance, the representation is

assigned the "none_activity" token. The procedure also appends a binary variable to the end

of the coarse representation indicating if a terminal command was detected in the utterance.

Finally, the procedure extracts the tense of each utterance and adds it to the beginning of the

coarse representation.

Both extraction procedures are applied at the utterance level, therefore there exists a one-to-

54

one alignment between coarse sequences and natural language sequences (utterances). There also

exists a one-to-many alignment between the coarse sequence tokens and the corresponding natural

language tokens, with the exception of a few special tokens. In other words, one sequence of coarse

tokens may correspond to many different natural language utterances. Further details are given in

Appendix I.

3.4.3 Model Training & Testing

We implement all models using the Theano library (Al-Rfou et al., 2016). We optimize all models

based on the training set joint log-likelihood over coarse sequences and natural language sequences

using the first-order stochastic gradient optimization method Adam (Kingma and Ba, 2015). We

train all models using early stopping with patience on the joint-log-likelihood (Bengio, 2012). We

choose our hyperparameters based on the joint log-likelihood of the validation set. We define the

20,000 most frequent words as the vocabulary and the word embedding dimensionality to size 300
for all models, with the exception of the RNNLM and HRED on Twitter, where we use embedding

dimensionality of size 400. We apply gradient clipping to stop the parameters from exploding

(Pascanu et al., 2012). At test time, we use a procedure called beam search to find the response

with the highest probability (Graves, 2012). In particular, we use a beam search of size 5.

Baselines We compare our models to the standard RNNLM with LSTM gating function (Mikolov

et al., 2010) (RNNLM), which at test time is similar to the Seq2Seq LSTM model (Sutskever et al.,

2014). For both Ubuntu and Twitter, we specify the RNNLM model to have 2000 hidden units with

the LSTM gating function.

In addition, we also include a non-neural network baseline for Twitter, specifically the TF-IDF

retrieval-based model proposed by Lowe et al. (2015b).

HRED We experiment with the HRED model with LSTM gating function for the decoder RNN

and GRU gating function for the encoder RNN and context RNN. For Ubuntu, we specify the

HRED model to have 500, 1000 and 500 hidden units respectively for the encoder RNN, context

RNN and decoder RNN. For Twitter, we specify the HRED model to have 2000, 1000 and 1000
hidden units respectively for the encoder RNN, context RNN and decoder RNN.

Multiresolution RNN We experiment with the MrRNN model, where the coarse sub-model is

parametrized as the Bidirectional-HRED model (Serban et al., 2016) with 1000, 1000 and 2000
hidden units respectively for the coarse-level encoder, context and decoder RNNs. The natural

language sub-model is parametrized as a conditional HRED model with 500, 1000 and 2000 hid-

55

den units respectively for the natural language encoder, context and decoder RNNs. The coarse

prediction encoder RNN GRU RNN is parametrized with 500 hidden units.

HRED + Act.-Ent. Features For Ubuntu, we also experiment with another model, called HRED

+ Activity-Entity Features, which has access to the past activity-entity pairs. This model is similar

to to the natural language sub-model of the MrRNN model, with the difference that the natural

language decoder RNN is conditioned on a real-valued vector, produced by a GRU RNN encoding

only the past coarse-level activity-entity sub-sequences. This baseline helps differentiate between a

model which observes the coarse-level sequences only as as additional features and a model which

explicitly models the stochastic process of the coarse-level sequences. We specify the model to

have 500, 1000, 2000 hidden units respectively for the encoder RNN, context RNN and decoder

RNN. We specify the GRU RNN encoding the past coarse-level activity-entity sub-sequences to

have 500 hidden units.

VHRED We experiment with the Latent Variable Hierarchical Recurrent Encoder-Decoder

(VHRED). The encoder and context RNNs for the VHRED model are parametrized in the same

way as the corresponding HRED models. The only difference in the parametrization of the decoder

RNN is that the context RNN output vector is now concatenated with the generated stochastic

latent variable. Furthermore, we initialize the parameters of the feed-forward networks of the prior

and posterior distributions with values drawn from a zero-mean normal distribution with variance

0.01 and with biases equal to zero. We also multiply the diagonal covariance matrices of the

prior and posterior distributions with 0.1 to make training more stable, because a high variance

makes the gradients w.r.t. the reconstruction cost unreliable, which is fatal at the beginning of the

training process. The VHRED encoder and context RNNs are initialized to the parameters of the

corresponding converged HRED models. We also use two heuristics proposed by Bowman et al.

(2016): we drop words in the decoder with a fixed drop rate of 25% and multiply the KL terms in

eq. (80) by a scalar, which starts at zero and linearly increases to 1 over the first 60, 000 and 75, 000
training batches on Twitter and Ubuntu respectively. Applying these heuristics helped substantially

to stabilize the training process and make the model use the stochastic latent variables.

3.4.4 Ubuntu Experiments

Evaluation Methods We carry out an in-lab human study to evaluate the Ubuntu models. We

recruit 5 human evaluators, and show them each 30 − 40 dialogue contexts with the ground truth

response and 4 candidate responses (HRED, HRED + Activity-Entity Features and MrRNNs).

For each context example, we ask them to compare the candidate responses to the ground truth

response and dialogue context, and rate them for fluency and relevancy on Likert-type scale 0-4.

56

Table 3: Ubuntu evaluation using precision (P), recall (R), F1 and accuracy metrics w.r.t. activity,

entity, tense and command (Cmd) on ground truth utterances. The superscript ∗ indicates scores

significantly different from baseline models at 95% confidence level.

Activity Entity Tense Cmd

Model P R F1 P R F1 Acc. Acc.

RNNLM 1.7 1.03 1.18 1.18 0.81 0.87 14.57 94.79

HRED 5.93 4.05 4.34 2.81 2.16 2.22 22.2 92.58

VHRED 6.43 4.31 4.63 3.28 2.41 2.53 20.2 92.02

HRED +

Act.-Ent.
7.15 5.5 5.46 3.03 2.43 2.44 28.02 86.69

MrRNN

Noun
5.81 3.56 4.04 8.68 5.55 6.31∗∗ 24.03 90.66

MrRNN

Act.-Ent.
16.84 9.72 11.43∗∗ 4.91 3.36 3.72 29.01 95.04

Our setup is very similar to the evaluation setup used by (Koehn and Monz, 2006) and comparable

to (Liu et al., 2016). Further details are given in appendix III.

In addition to these experiments, we propose a new set of metrics for evaluating model re-

sponses on Ubuntu, which compare the activities and entities in the model generated response with

those of the ground truth response. That is, the ground truth and model responses are mapped to

their respective activity-entity representations, using the automatic procedure discussed in section

3.4.2, and then the overlap between their activities and entities are measured according to preci-

sion, recall and F1-score. Based on a careful manual inspection of the extracted activities and

entities, we believe that these metrics are particularly suited for the goal-driven Ubuntu Dialogue

Corpus. The activities and entities reflect the principal instructions given in the responses, which

are key to resolving the technical problems. Therefore, a model able to generate responses with

actions and entities similar to the ground truth human responses – which often do lead to solving

the users problem – is more likely to yield a successful dialogue system.

Results The results on Ubuntu are given in Table 3 and Table 4. The MrRNNs clearly perform

substantially better than all the other models w.r.t. both human evaluation and automatic evaluation

metrics. The MrRNN with noun representations achieves two to three times higher scores w.r.t.

57

Table 4: Ubuntu evaluation using human fluency and relevancy scores given on a Likert-type

scale 0-4. The superscript ∗ indicates scores significantly different from baseline models at 90%
confidence level. The RNNLM and VHRED models are excluded, since they were not part of the

human evaluation.

Human Scores

Model Fluency Relevancy

HRED 2.98 1.01

HRED +

Act.-Ent.
2.96 0.75

MrRNN

Noun
3.48∗ 1.32∗

MrRNN

Act.-Ent.
3.42∗ 1.04

entities compared to other models, and the human evaluators also rate its fluency and relevancy

substantially higher than other models. The MrRNN with activity representations achieves two to

three times higher scores w.r.t. activities compared to other models and nearly two times higher

scores w.r.t. entities compared to all baselines. Human evaluators also rate its fluency substantially

higher than the other models. However, its relevancy is rated only slightly higher compared to

the HRED model, which we believe is because human evaluators are more likely to notice soft-

ware entities than actions in the dialogue responses (even though actions are critical to solving

the actual technical problem). Overall, the results demonstrate that the MrRNNs have learned to

model some amount of high-level goal-driven sequential structure on Ubuntu. In comparison, the

VHRED model performs better than both the HRED model and the MrRNN model with noun

representations on activities, which suggests that the latent variables help to model frequently oc-

curring activity patterns. However, the VHRED model performs worse than both MrRNN models

w.r.t. entities. There are two explanations for these observations. First, the latent variables might

have a difficult time modelling rare patterns, since the optimization problem is difficult. Second,

the normally-distributed latent variables may not be able to represent discrete entities well. This

motivates the use of approximate discrete latent variables, which we will discuss later.

Model responses are shown in Table 5. In general, the MrRNN responses are more coherent

and topic-oriented compared to the VHRED, HRED and RNNLM responses, which usually pro-

duce very generic responses (Serban et al., 2016). In particular, the MrRNN with activity-entity

representation appears to give more goal-driven instructions compared to the MrRNN with noun

58

Table 5: Ubuntu model examples. The arrows indicate a change of turn. The examples were

chosen from a set of short, but diverse dialogues, in order to illustrate cases where different MrRNN

models succeed in generating a reasonable response.
Context Response
Hey guys what do you in general use for irc something ubuntu xchat
or xchat-gnome ?→ without -gnome. that is just cut down→ you
mean drop xchat-gnome and go with xchat ?

MrRNN Act. -Ent.: im using xchat right
now
MrRNN Noun: what is xchat-gnome ?
VHRED: correct
HRED: yes

when setting up rules with iptables command only writes changes
this file " etciptables. rules "? i ask this so i can backup before
messing anything→ sudo iptables-save something . dat to backup
your rules restore with sudo iptables-restore < something . dat

MrRNN Act. -Ent.: I don’t see any reason
why you need iptables to do that
MrRNN Noun: are you using ubuntu ?
VHRED: thx
HRED: thanks

Hello I tried to install ubuntu studio but I get W : Failed to fetch
<url >404 Not Found when apt-get update→ the ppa you added is
not online

MrRNN Act. -Ent.: try a different mirror
MrRNN Noun: something
VHRED: but I dont know how to add it
HRED: how do I do that ?

hi community.. is there any difference between " /.bashrc " "
/.bashrc. local " → yes, they’re different files :-) the default
/.bashrc sources /.bashrc. local → sorry I could undersatnd... If
I write on terminal " gedit /.bashrc " it opens a file but how I open
" /.bashrc. local "→ " gedit /.bashrc. local "... → but it just open
blank file nothing inside it

MrRNN Act. -Ent.: open up gedit /.bashrc,
there is a file called " something "
MrRNN Noun: the file is empty..
VHRED: it’s in /.bashrc or /.bashrc
HRED: what are you trying to do ?

representation (see examples 2-4 in Table 5).

59

Figure 12: Screenshot of one dialogue context with two candidate responses, which human evalu-

ators were asked to choose between.

3.4.5 Twitter Experiments

Evaluation Methods We carry out the human study for Twitter on Amazon Mechanical Turk

(AMT). 15 We choose a crowdsourcing platform, because such experiments often involve a larger

and more heterogeneous pool of annotators, which implies less cultural and geographic biases.

Such experiments are also easier to replicate, which we believe is important for benchmarking

future research on these tasks. We set up the evaluation study as a series of pairwise preference

experiments. We show human evaluators a dialogue context along with two potential responses,

one generated from each model conditioned on a given dialogue context. We ask participants to

choose the response most appropriate to the dialogue context. If the evaluators are indifferent to
15We cannot conduct AMT experiments on Ubuntu as evaluating these responses usually requires technical exper-

tise, which is not prevalent among AMT users.

60

either of the two responses, or if they cannot understand the dialogue context, they can choose

“neither response". For each pair of models we conduct two experiments: one where the example

contexts contain at least 80 unique tokens (long context), and one where they contain at least 20

(not necessarily unique) tokens (short context). This helps compare how well each model can

integrate the dialogue context into its response, since it has previously been hypothesized that for

long contexts hierarchical RNNs models fare better (Serban et al., 2016; Sordoni et al., 2015a). A

screenshot is shown in Figure 12. Further details are given in Appendix II.

Next, we evaluate all proposed models using the three embedding-based similarity metrics pro-

posed by (Liu et al., 2016) discussed earlier: Embedding Average (Average), Embedding Extrema

(Extrema) and Embedding Greedy (Greedy). All three metrics are based on computing the textual

similarity between the ground truth response and the model response using word embeddings. All

three metrics measure a coarse form of topic similarity: if a model-generated response contains

words semantically related to the ground truth response, then the metrics will yield a high score.

This is a highly desirable property for dialogue systems on an open platform such as Twitter, how-

ever it is also substantially different from measuring the overall dialogue system performance, or

the appropriateness of a single response. These performance measures require a human evaluation.

Finally, we quantify the amount of information content in the generated model responses by

computing the response length (i.e. number of tokens) and the average unigram entropy. The

unigram entropy is computed in bits on the preprocessed tokenized test set w.r.t. the maximum

likelihood unigram model over the generated responses.

Since the work on the VHRED and MrRNN models was carried out in parallel, these experi-

ments did not include the MrRNN models. However, following these experiments, we conducted

a preliminary comparison between the VHRED and MrRNN models. Here, we asked one human

evaluator to compare the candidate responses generated by the models to the ground truth response

and dialogue context, and rate them for fluency and relevancy on a Likert-type scale 0-4. The setup

was similar to that of the Ubuntu experiment. However, it only involved one human evaluator.16

Results The AMT pairwise preference experiments results are shown in Table 6. These results

demonstrate that VHRED is clearly preferred in the majority of the experiments compared to the

other models. In particular, VHRED is strongly preferred over the HRED and TF-IDF baseline

models for both short and long context settings. VHRED is also preferred over the RNNLM base-

line model for long contexts; however, the RNNLM is preferred over VHRED for short contexts.

This is likely because the RNNLM baseline tends to output much more generic responses. Since it

doesn’t model the hierarchical input structure, the RNNLM model has a shorter memory span, and

thus must output a response based primarily on the end of the last utterance. Such ‘safe’ responses

16The human evaluator was from outside the research lab.

61

Table 6: Wins, losses and ties (in %) of VHRED against baselines based on the human study (mean

preferences± 90% confidence intervals). The superscripts ∗ and ∗∗ indicate statistically significant

differences at 90% and 95% confidence level respectively.

Opponent Wins Losses Ties

Short Contexts VHRED vs RNNLM 32.3 ±2.4 42.5 ±2.6∗ 25.2 ±2.3
VHRED vs HRED 42.0 ±2.8∗ 31.9 ±2.6 26.2 ±2.5
VHRED vs TF-IDF 51.6 ±3.3∗ 17.9 ±2.5 30.4 ±3.0

Long Contexts VHRED vs RNNLM 41.9 ±2.2∗∗ 36.8 ±2.2 21.3 ±1.9
VHRED vs HRED 41.5 ±2.8∗ 29.4 ±2.6 29.1 ±2.6
VHRED vs TF-IDF 47.9 ±3.4∗ 11.7 ±2.2 40.3 ±3.4

are reasonable for a wider range of contexts, meaning that human evaluators are more likely to

rate them as appropriate. However, a model that only outputs generic responses is undesirable for

dialogue, as this leads to uninteresting and less engaging conversations. Conversely, the VHRED

model is explicitly designed for long contexts and for outputting a diverse set of responses by

sampling of the latent variable. Thus, the VHRED model generates longer sentences with more

semantic content than the RNNLM model, which is confirmed by statistical metrics in Table 9.

This can be ‘riskier’ as longer utterances are more likely to contain small mistakes, which can lead

to lower human preference for a single utterance. However, we believe that response diversity is

crucial to maintaining interesting conversations — in the dialogue literature, generic responses are

used primarily as ‘back-off’ strategies in case the agent has no interesting response that is relevant

to the context (Shaikh et al., 2010).

The above results are confirmed by qualitative assessment of the generated responses, shown

in Table 7. VHRED generates longer and more meaningful responses compared to the RNNLM

model, which generates mostly generic responses. Additionally, it was observed that the VHRED

model has learned to better model smilies, slang (see first example in Table 7) and can even con-

tinue conversations in different languages (see fifth example).17 Such aspects are not measured by

the human pairwise preference study. Further, VHRED appears to be better at generating stories

or imaginative actions compared to the generative baseline models (see third example). The last

example in Table 7 is a case where the VHRED generated response is more interesting, yet may be

less preferred by humans as it is slightly incompatible with the context, compared to the generic

RNNLM response.

17There is a notable amount of Spanish and Dutch conversations in the corpus.

62

Table 7: Twitter model examples. The arrows indicates a change of turn. The examples were

chosen from a set of short, but diverse dialogues, in order to illustrate cases where the VHRED

model succeeds in generating a reasonable response.
Context Response

jamaica blood!! <url >→ lol. yes [name]!. [name]!
→ what’s poppin in toronto homie

VHRED: nothing much. just chillin. what’s good with you?
RNNLM: something!!!!!!!
HRED: something!!!!!!

whhhhhhyyyy is it suddenly cold in tallahassee to-
day?? this is florida! how can i dream of the beach
when my fingers are icey cold?? → sittin on deck in
sun looking at lake travis in austin! enjoying day b4
birthday

VHRED: the sun is shining!!!
RNNLM: i know!!!!!!!!!
HRED: something!!!!!!!

reaches for [name]! → - approaches him warily
- hey there buddy. - swings him into the air - how
you doin? → tilts his head and your wariness and
reaches for your face [name].

VHRED: - looks up at you and smiles - you’re so cute. - kisses
your cheek -
RNNLM: - smiles - i’m fine thank you. how are you?
HRED: - grins, looking at you as i look at you -

i think i want an ipad2. but i already have an ibook.
want vs. need. → if you have an ibook. then you
deserve an ipad!

VHRED: that’s what i’m thinking. i’m going to buy a new one.
RNNLM: i want one!!!!
HRED: i don’t know what to do with it. i don’t know what to do.

ah echt? dan anrtwoord ik volgende keer via twitter
als je me smst. → haha doe maar p. goed bezig hoor
myrthe d → goed bezig? die snap ik even niet p

VHRED: haha, ik heb er geen zin in de something, maar ik heb er
geen something meer something
RNNLM: haha something something something
HRED: something something something something something
something something something

i love katie waissel more than like, anything in life.
→ i wanna c the show again! i need <number> meet
her again! n i want a b-day tweet nxt week doubt that
will happen x

VHRED: me too. i’m going to have to wait for her to come back.
i’m so excited.
RNNLM: i’m sure she will. i’m sure she’ll be fine.
HRED: i’m sure she’ll be fine, i’m sure she’ll be fine.

my math teacher over here talkn bout nickels nd i’m
tryna make big money i need to be in calculus → lol

VHRED: i need to go to the gym and get my hair done lol
RNNLM: lol
HRED: how u been

Next, the automatic embedding-based evaluation metrics are shown in Table 8. In agreement

with the previous discussion and our qualitative observations, the VHRED model responses score

higher on these metrics compared to the HRED and RNNLM models. This indicates that VHRED

is better capable of staying on topic on the Twitter domain.

Finally, the results of the preliminary experiment comparing MrRNN to the other models is

given in Table 10. The results in this table should be interpreted with caution, as they involve

only a single annotator. Nevertheless, by these results, it appears that the MrRNN model performs

worse than all other models considered. This could indicate a problem caused by not selecting

appropriate preprocessing or hyperparameters for the MrRNN model on Twitter. Investigating and

quantifying these differences is part of future work.

63

Table 8: Twitter evaluation using embedding metrics (mean scores ± 95% confidence intervals)

Model Average Greedy Extrema

RNNLM 51.24± 0.51 38.9± 0.39 36.58± 0.36
HRED 50.1± 0.52 37.83± 0.4 35.55± 0.37
VHRED 53.26± 0.45 39.64± 0.34 37.98± 0.32

Table 9: Twitter response information content on 1-turn generation as measured by average ut-

terance length |U |, word entropy Hw = −∑w∈U p(w) log p(w) and utterance entropy HU with

respect to the maximum-likelihood unigram distribution of the training corpus p.

Model |U | Hw HU

RNNLM 11.21 6.75 75.61
HRED 11.64 6.73 78.35
VHRED 12.29 6.88 84.56

Human 20.57 8.10 166.57

Table 10: Twitter human evaluation w.r.t. fluency and relevancy scores by rating category.

Fluency (0-4) Relevancy (0-4)
XXXXXXXXXXXXXX

Model
Rating Level

0 1 2 3 4 0 1 2 3 4

RNNLM 0 0 4 1 34 7 6 5 7 14
HRED 1 1 8 1 28 11 4 7 1 16
VHRED 0 0 2 1 36 4 2 4 4 25
MrRNN 2 0 12 4 21 16 7 2 6 8

64

3.5 Discussion

In this first part of the thesis, three different probabilistic generative models were proposed. First,

we proposed the Hierarchical Recurrent Encoder-Decoder (HRED) model, which incorporated the

turn-taking structure of dialogue into its architecture in order to better model discourse-level con-

text. Second, we proposed the Multiresolution Recurrent Neural Network (MrRNN) model. This

is a stacked sequence-to-sequence model with an intermediate, stochastic representation (a “coarse

representation") capturing the high-level semantic content of the dialogue. Third, we proposed the

Latent Variable Recurrent Encoder-Decoder (VHRED) model, which is a variant of the HRED

model with a continuous, stochastic, latent variable for modelling the ambiguity and uncertainty in

human language communication.

We evaluated all these models extensively on two domains: the goal-driven technical response

generation task on Ubuntu, and the non-goal-driven response generation task on Twitter. We eval-

uated all models w.r.t. human evaluation studies, on a crowdsourcing platform and in a laboratory

setting, a qualitative evaluation of the responses and automated evaluation metrics. Here, each

model was compared against multiple baseline models.

The experiment results show that all three proposed models have their own merits. The HRED

model was found to outperform a recurrent neural network language model (RNNLM) with an

LSTM gating function (RNNLM) on the Ubuntu domain, where it generated relevant responses

of higher quality incorporating more dialogue context. The results here suggests that it is able to

better capture discourse-level context. The MrRNN model was found to perform best among all

models on the Ubuntu domain, where it outperformed the RNNLM, HRED, VHRED and another

informed baseline model. Here, MrRNN was able to generate substantially more relevant and flu-

ent responses compared to the other models. For example, in comparison to the RNNLM model, it

obtained nearly an order of a magnitude better performance w.r.t. generating responses with appro-

priate activities on the Ubuntu domain. On the same metric, MrRNN obtained two to three times

better performance compared to the HRED, VHRED and the informed baseline model. These

results clearly indicate that MrRNN is a promising approach to goal-driven response generation

on the Ubuntu domain, as of this writing. This confirms our earlier hypothesis on the importance

of modelling high-level abstractions of semantic content in a stochastic framework. At the same

time, the VHRED model obtained the best performance on the Twitter domain. Here, the VHRED

model was significantly preferred over the RNNLM model, the HRED model and a TF-IDF base-

line model In particular, the VHRED model appeared to be better capable of generating long and

semantically coherent responses compared to other models. As such, VHRED appears to be a

promising approach for non-goal-driven response generation on the Twitter domain. This confirms

our other earlier hypothesis on the importance of modelling high-level latent structure in dialogues

65

through a stochastic generation processes. It also underlines the importance of building dialogue

models, which explicitly model uncertainty and ambiguity.

However, it is important to discuss some of the major limitations and issues of the research

conducted in this part of the thesis. A major limitation of the results presented is that the experi-

ments only consider the evaluation of a single, next response in a dialogue. It is unclear how the

models would perform and compare to each other if they were to conduct a complete dialogue. A

closely related issue arises from the fact that the human evaluators provide annotations for single

responses in a dialogue, without taking into account the past or the future of each dialogue. In

addition, human evaluators do not have the same incentives as real-world users interacting with a

dialogue system. For example, we observed that human evaluators had a strong tendency to prefer

short, generic responses on the Twitter task. However, such responses are unlikely to maintain the

engagement of real-world users. Consequently, the human annotations might not be representative

of the appropriateness or utility in a real-world dialogue between a human user and a dialogue

system. A different but important issue is caused by the high variance of the model training pro-

cedures. All the models presented are sensitive to their parameter initialization, hyperparameter

configuration and random seed of the sampling procedures. Although this issue is mitigated to

some extent by experimenting with multiple hyperparameter combinations, it still constitutes a

significant confounding factor in the experiments presented. Adjusting the hyperparameters and

rerunning the experiments could potentially have a significant impact on the results.

For each proposed model, we have already discussed relevant prior work in the literature.

However, since the work in this chapter was completed and published, other researchers have

conducted related work. It is beyond the scope of this thesis to cover all of the later related work,

but we will briefly mention some of the major lines of research. Many researchers have focused

on improving the neural network architecture, while keeping the same probabilistic generation

process as the RNNLM and HRED models. For example, Bordes et al. (2016) propose to augment

the neural network architecture with a memory component, in order to capture long-term discourse-

context and external knowledge. As another example, Mei et al. (2017) propose to incorporate an

attention mechanism into the model architecture. In another related line of research, researchers

have proposed to modify the objective function of the neural network model. For example, Li et al.

(2016a) propose to replace the well-established maximum log-likelihood objective function with

an objective function which encourages diversity in the generated model responses. As another

example, Li et al. (2017) propose to use an adversarial training loss. In yet another example,

Lowe et al. (2017a) propose to learn an neural network for evaluating model responses, based on

human annotations, which might then be utilized as the objective function for the generative neural

network model. Other researchers have focused on improving the architecture with stochastic

latent variables, such as the models proposed by Zhao et al. (2017) and Cao and Clark (2017). Last,

66

but not least important, researchers have also begun incorporating external knowledge sources into

dialogue systems. For example, researchers have experimented with injecting knowledge ranging

from software manuals to Wikipedia and common sense knowledge bases (Lowe et al., 2015a;

Parthasarathi and Pineau, 2018; Dinan et al., 2019; Young et al., 2017).

Following the work presented in this chapter, the author of this thesis and his colleagues have

also proposed an extension of the VHRED model involving continuous latent variables with piece-

wise constant structures. These latent variables are able to represent far more complex probability

distributions, including multi-modal distributions, which may help to better model many aspects

of real-world dialogue. The new model was applied to both tasks discussed in this chapter and

then evaluated using automated evaluation metrics. Based on these experiment results, the new

model did not perform substantially better than the VHRED model.18 However, the new model

was able to better generate entity phrases suggesting it may be useful for applications involving a

large number of entities and a high amount of uncertainty and ambiguity. The reader is referred to

the conference publication Serban et al. (2017a) for details.

18A model involving continuous latent variables with piecewise constant structures was also applied to three docu-
ment modelling tasks. On all three tasks this model yielded state-of-the-art results.

67

3.6 Directions for Future Research

In this section, we will discuss several avenues for future research.

3.6.1 Hierarchical Models with Stochastic Latent Dynamics

In the latent variable model VHRED, the latent variables were assumed to be independent of each

other given the observed tokens. This is a highly restrictive assumption, because it limits the

effect of the latent variables to a single dialogue utterance. It seems quite likely that for many

tasks there exists latent variables which are relevant across long time spans. For example, user

goals should clearly be modelled as long-term latent variables in any task-driven dialogue model.

As another example, topics should also clearly be modelled as long-term latent variables. This

motivates building generative latent variable models, where the latent variables affect each other

across utterances or, more generally, across sequences.

Models where the latent variables affect each other across time are said to have latent dynamics.

Similar to the hidden Markov model (HMM) discussed in the beginning, the latent variables form a

trajectory in latent space, which should capture the dependencies between the observed sequences.

Figure 13: Probabilistic directed graphical model for Latent Variable Recurrent Encoder-Decoder

RNN with stochastic latent dynamics.

A natural approach is to extend the VHRED model, such that the latent variables depend

on the latent variables at the immediately preceding time step thereby maintaining the Markov

property. Let (w1, . . . ,wN) be a sequence consisting of N constituent sequences, where wn =
(wn,1, . . . , wn,Mn) is the n’th constituent sequence and wn,m ∈ V is the m’th discrete token in that

sequence. Define stochastic latent variables zn ∈ Rdz for each constituent sequence n = 1, . . . , N
conditioned on all previous observed tokens. Given zn, the new model we propose generates the

68

n’th constituent sequence tokens wn = (wn,1, . . . , wn,Mn) as:

Pθ(zn | zn−1,w1, . . . ,wn−1) = Nzn(µprior(zn−1,w1, . . . ,wn−1),Σprior(zn−1,w1, . . . ,wn−1)),

(88)

Pθ(wn | zn,w1, . . . ,wn−1) =
Mn∏
m=1

Pθ(wn,m | zn,w1, . . . ,wn−1, wn,1, . . . , wn,m−1), (89)

where θ are the model parameters andNzn(µ,Σ) is the multivariate normal distribution with mean

µ ∈ Rdz and covariance matrix Σ ∈ Rdz×dz , constrained to be a diagonal matrix, which is followed

by the stochastic variable zn. This model corresponds to the graphical model shown in Figure 13.

In particular, we might further define the prior distribution as:

µprior(zn−1,w1, . . . ,wn−1) = W z
priorzn−1 + µ̂prior(w1, . . . ,wn−1), (90)

Σprior(zn−1,w1, . . . ,wn−1) = Σ̂prior(w1, . . . ,wn−1), (91)

where W z
prior ∈ Rdz×dz , and where µ̂ and Σ̂ are defined as in the former VHRED model. In this

parametrization, the mean of zn depends linearly on zn−1, which is similar to the Kalman filter

model. Furthermore, the magnitude of its uncertainty in different directions, represented by the

covariance matrix, does not depend at all on zn−1. To simplify the model, W z
prior could further be

fixed to the identity matrix. Depending on µ̂prior, this might correspond to the assumption that the

distribution of zn should be centered zn−1.

To train this model, the variational lower-bound could be applied as in the VHRED model.

The approximate posterior could be defined as for the VHRED model, or it could optionally be

conditioned on additional future utterances (since the current location will affect the remaining

part of the trajectory). This parametrization would encourage the model to find a smooth trajectory

in latent space, which can explain the dependence between the observed utterances.

Inspired by models such as the restricted Boltzmann machine and deep directed graphical mod-

els (Goodfellow et al., 2016), it is likely that a hierarchy of stochastic latent variables may help

model natural language dialogues. Instead of one sequence of latent variables (z1, . . . , zM), there

could be two sequences of latent variables (z1, . . . , zM) and (r1, . . . , rM), where zm, rm ∈ Rdh ,

such that the sequence zm is conditioned on rm, for m = 1, . . . ,M . One such possible model is

illustrated in Figure 14. In this case, we would say that the model possess deep stochastic latent

dynamics. The hierarchical ordering of the latent variables could possibly encourage the sequence

(r1, . . . , rM) to capture long-term temporal dependencies and let the sequence (z1, . . . , zM) cap-

ture shorter term dependencies. Due to the increased depth of the model, the gradient signal will

be affected by the additional computational steps and the effect of compounding noise. This will

likely make the model more difficult to train.

69

Figure 14: Probabilistic directed graphical model for Latent Variable Recurrent Encoder-Decoder

RNN with deep stochastic latent dynamics.

Another possible extension is to incorporate structure specific to the generative dialogue mod-

elling problem. Each participant in a dialogue could be assigned a separate latent variable, with

the hope that this variable would represent specific information about that participant, such as the

participant’s goal or the speaking style. This might be particularly useful for dialogues with mul-

tiple or returning participants. This latent variable would be initialized randomly the first time

a new participant is encountered and updated with new information as the system interacts with

the user. This is related to the work of (Li et al., 2016b), which attempts to model the dialogue

participants in a deterministic framework. However, due to the scarce participant-specific data and

the large amount of ambiguity in natural language dialogue, it may be beneficial to model dialogue

participants using stochastic latent variables.

3.6.2 End-to-end Multiresolution RNNs

In the MrRNN model, the coarse (high-level) sequences were extracted a priori using a simple

procedure. This allowed us to train the model using the exact joint log-likelihood. However, for

many real-world applications it may not be possible to build a procedure to extract useful high-

level sequences capturing semantic information pertinent to the domain. Therefore, an obvious

extension of the MrRNN model is to treat the coarse sequence tokens as discrete latent variables

and optimize the model parameters w.r.t. the marginal log-likelihood over the observed natural

language sequences.

70

One way to train such a model this might be to approximate the marginal log-likelihood with

Markov chain Monte Carlo sampling (Goodfellow et al., 2016, Ch. 17). However, we need to con-

sider that the dimensionality of the latent variables may be huge for real-world applications (for

example, in the Ubuntu and Twitter experiments the MrRNN models had thousands of parame-

ters). In this case, such an approach would require sampling many variables from an approximate

posterior distribution and might therefore not be effective in practice.

An alternative approach to train such a model might be to work at the word embedding level

of the generated coarse tokens. Suppose a pretrained MrRNN model is given. We may extend

this model with a separate GRU or LSTM-gated RNN, which is conditioned on the hidden state of

the context RNN in the natural language sub-model. This RNN is then tasked with predicting the

sequence of word embeddings corresponding to the embeddings given as input to coarse prediction

encoder of the MrRNN model. As such, the parameters of the RNN are optimized to minimize

the squared error between the predicted embeddings and the ground truth embeddings. Once it

has been trained to convergence, a new end-to-end MrRNN model may be trained to maximize

the marginal log-likelihood without the use of the coarse sequences. The new model is initialized

from the previous MrRNN model, where the coarse prediction encoder now takes as input the

embeddings predicted by the RNN described earlier. This eliminates the discrete coarse sequences

completely. Since the coarse embeddings are not tied to specific discrete tokens, the model could

potentially learn new aspects of the data distribution, for example, activities or entities not included

in the hand-crafted extraction procedure.

71

4 A Deep Reinforcement Learning Dialogue System

4.1 Author’s Contribution

The work in this chapter covers the work published in the publication:
“The Octopus Approach to the Alexa Competition: A Deep Ensemble-based Socialbot"

by Iulian V. Serban, Chinnadhurai Sankar, Saizheng Zhang, Zhouhan Lin, Sandeep Subramanian,

Taesup Kim, Sarath Chandar, Nan Rosemary Ke, Sai Rajeswar, Alexandre de Brebisson, Jose M.

R. Sotelo, Dendi Suhubdy, Vincent Michalski, Alexandre Nguyen and Yoshua Bengio, Alexa Prize

Proceedings, 2017.

This publication can be accessed at: http://alexaprize.s3.amazonaws.com/2017/

technical-article/mila.pdf. The work in this chapter also covers the work in the fol-

lowing two pre-print articles:
“A Deep Reinforcement Learning Chatbot"

by Iulian V. Serban, Chinnadhurai Sankar, Mathieu Germain, Saizheng Zhang, Zhouhan Lin,

Sandeep Subramanian, Taesup Kim, Michael Pieper, Sarath Chandar, Nan Rosemary Ke, Sai Ra-

jeshwar, Alexandre de Brebisson, Jose M. R. Sotelo, Dendi Suhubdy, Vincent Michalski, Alexan-

dre Nguyen, Joelle Pineau and Yoshua Bengio, arXiv:1709.02349, 2017.

“The Bottleneck Simulator: A Model-based Deep Reinforcement Learning Approach"

by Iulian Vlad Serban, Chinnadhurai Sankar, Michael Pieper, Joelle Pineau and Yoshua Bengio,

arXiv:1807.04723, 2018.

The two pre-print articles may be accessed at: https://arxiv.org/abs/1709.02349 and

https://arxiv.org/abs/1807.04723.

As we will discuss later, the author of this thesis led a team of researchers, including students,

professors and other staff members from the University of Montreal, to participate in the Amazon

Alexa Prize 2017 competition. All members of the team worked together in order to develop

both the system and underlying models, as well as to execute the experiments discussed later.

The author of this thesis did the majority of work related to developing the response selection

policies, described below. Here, Chinnadhurai Sankar and Sai Rajeshwar implemented the two

reinforcement learning policies based on the REINFORCE algorithm with help from the author of

this thesis. The author also did the majority of the work related to designing and executing the A/B

testing experiments, as well as the writing up of the publication and the two pre-print articles, with

help and feedback from his co-authors. Michael Pieper carried out the experiment analyzing why

users terminated the dialogue with help from the author of this thesis.19 The other co-authors of

19In the second pre-print article, Chinnadhurai Sankar implemented and executed the experiments related to the text

72

http://alexaprize.s3.amazonaws.com/2017/technical-article/mila.pdf
http://alexaprize.s3.amazonaws.com/2017/technical-article/mila.pdf
https://arxiv.org/abs/1709.02349
https://arxiv.org/abs/1807.04723

the publications listed above contributed to the competition by collecting and annotating datasets,

designing and implementing nearly two dozen response models, and helping to set up the server

infrastructure and system pipeline.

4.2 Motivation

In the first part of this thesis, we explored different approaches to building generative dialogue

models from corpora of text-based dialogues. Given a sequence of turns from a text-based dia-

logue, these models were given the task of generating the next, appropriate response. Although

there is still much research left to be completed in this area, some of the central assumptions im-

posed by this framework may be limiting the scope of real-world applications of these models.

Perhaps one of the most critical limitations arise from the assumption that generative dialogue

models, applicable to real-world problems, may be learned exclusively from recorded text dia-

logues. As discussed earlier, this type of learning approach without external information may pose

a significant problem for the model’s ability to ground natural language (Harnad, 1990; Quine,

2013). Another assumption in the previous framework is that it is sufficient for the models to be

trained to mimic the conversations between humans. This implies a type of symmetric relationship

between the interlocutors, where any two interlocutors could be switched if their internal states

and goals were switched as well. However, this is unlikely to be the case when a human converses

with a machine. Humans have different expectations and behave differently when they converse

with machines compared to when they converse with other humans. Researchers have explored

this phenomenon extensively in Wizard of Oz experiments, where a dialogue system is being oper-

ated by a human controller. See, for example, Dahlbäck et al. (1993). Even if it were possible to

solve the previous two issues (for example by training a model on conversations between humans

machines and by including external information to facilitate the grounding the natural language

grounding process), there exists a potential third issue. In the previous framework, the models are

trained with a myopic learning signal. Here, the models are only optimized w.r.t. the immediate

next turn in the dialogue.20 This might potentially induce the model to generate responses mean-

ingful only on a short time horizon, which could be catastrophic for many real-world applications.

For example, consider the example of a dialogue system selling flight tickets. Suppose that this

system has been trained on human-machine conversations and, as a result, has learned a highly

myopic policy. If a human interlocutor were to ask “Which flights are flying from Montreal to

New York tomorrow?", such a myopic system might utter a list of flights and then proceed to end

adventure game Home World. These experiments are not discussed in this thesis.
20It should be noted that given an unlimited amount of data and a model with sufficient capacity, it may be possible

to learn an optimal policy from this training signal.

73

the conversation with “Thank you. Have a pleasant day!" without completing the sale.

Motivated by these issues, in this second part of the thesis, we investigate a different frame-

work for building dialogue systems based on combining representation learning and reinforcement

learning. In particular, we focus on building a non-goal-driven dialogue system, which learns from

its own real-world interactions with human interlocutors.

The work presented here started in late 2016, when Amazon.com Inc. proposed an international

university competition with the goal of building a socialbot (Ram et al., 2017). A socialbot is a

spoken dialogue system capable of conversing coherently and engagingly with humans on popular

topics, such as entertainment, fashion, politics, sports, and technology. In this competition, social-

bots conversed through natural language speech using Amazon’s Echo device (Stone and Soper,

2014). In order to participate in this competition, researchers at University of Montreal and the

author of this thesis assembled together a team. Our team members were as follows: Chinnadhurai

Sankar, Saizheng Zhang, Zhouhan Lin, Sandeep Subramanian, Taesup Kim, Sarath Chandar, Nan

Rosemary Ke, Sai Rajeswar, Alexandre de Brebisson, Jose M. R. Sotelo, Dendi Suhubdy, Vincent

Michalski, Alexandre Nguyen, Yoshua Bengio and the author of this thesis. The author of this

thesis was chosen as the team leader. Our team wrote up an application to participate in the com-

petition and submitted it to Amazon.com Inc.. The application was accepted at the end of 2016,

and shortly after our team began working on building the dialogue system.

Our team considered the competition important, because it provided a special opportunity for

training and testing state-of-the-art approaches from representation learning and reinforcement

learning with real-world users in a comparatively unconstrained setting. In the field of machine

learning, this type of setup is also known as machine learning in the wild. The ability to experiment

with real-world users is rare in the machine learning community. As of this writing, the only formal

experiment framework for evaluating any machine learning system involving human participants

at the Quebec Artificial Intelligence Institute (Mila) are crowdsourcing platforms, such as Amazon

Mechanical Turk and Figure Eight.21 Unfortunately, the human participants on these platforms

are not representative of real-world users and are constrained w.r.t. the amount of instruction and

time-on-task available. As such, it is not surprising that the majority of research in the machine

learning community involves experiments on fixed datasets (e.g. labelled datasets) and software

simulations (e.g. game engines). In addition to providing the framework for real-world user eval-

uation, Amazon Inc. also provided the team with computational resources (e.g. cloud computing

server instances), technical support and financial support, which helped to scale up the models

developed by our team and test the limits of state-of-the-art methods.

Our team set out to to build the socialbot, called Milabot, as a large-scale ensemble system

based on deep learning and reinforcement learning. The ensemble architecture brought several

21See www.mturk.com and www.figure-eight.com.

74

www.mturk.com
www.figure-eight.com

advantages with it, including the promise of making the system capable of conversing on a wide

range of topics and the ability for groups of researchers to work more independently on their

own models and algorithms. As will be discussed later, our team developed a new set of deep

learning models for natural language retrieval and generation. These models were combined into

an ensemble system. Given a text-based dialogue history (i.e. a sequence of utterances between

the interlocutors), this ensemble system generates a set of candidate responses. Following this, the

system considers all the candidate responses and selects one of them as the system’s response. The

module responsible for selecting the response is called the response selection policy. This policy

may be learned based on crowdsourced data and based on interactions recorded between real-world

users and the system in order to select the most appropriate response. This part of the thesis will

focus on different approaches for learning the response selection policy and on the experiments

relevant to it. Apart from managing the team and designing the ensemble system architecture,

the main contribution of the author of this thesis lies in the implementation of different response

selection policies and in the execution of the experiments with real-world users.

This chapter deals with a new framework combining deep learning and reinforcement learning,

within an ensemble system, in order to learn from real-world interactions with human interlocu-

tors. This brings with it a new set of open research questions. How can representation learning

and reinforcement learning be combined to build a non-goal-driven dialogue system operating in

a complex real-world domain? How can representation learning and reinforcement learning be

utilized in order to improve the ability of a non-goal-driven dialogue system to initiate and main-

tain engaging conversations with human interlocutors? What reinforcement learning algorithms

are suitable for learning an effective response selection policy? Can model-based reinforcement

learning be applied to learn a response selection policy? How do different reinforcement learning

algorithms influence the qualitative behaviour of the response selection policy? How many ex-

amples are needed and how does the sample efficiency of an algorithm affect the system’s overall

performance? How can probabilistic generative models be applied to learn an effective response

selection policy? How is the qualitative behaviour of such a policy different from policies learned

using other reinforcement learning algorithms? How does the sample efficiency of such an ap-

proach compare to other algorithms? Finally, how can such a system be evaluated effectively?

What are the appropriate evaluation metrics, and how do they reflect the behaviour of the system

and the subjective experience of human interlocutors?

75

4.3 Prior Related Work

Next we discuss some of the related work conducted prior or in parallel to the research in this chap-

ter. Most real-world dialogue systems consist of a number of different modules, such as modules

for querying databases, modules for querying external web-services, modules for handling daily

chitchat conversations, and so on. In this respect, Milabot is similar to many existing dialogue

system architectures (Bohus et al., 2007; Prylipko et al., 2011; Suendermann-Oeft et al., 2015;

Zhao et al., 2016; Miller et al., 2017; Truong et al., 2017). These systems encapsulate individual

modules into black boxes sharing the same interface. This modular design makes it easy to control

each module through an executive component, such as a dialogue manager. This is similar to the

response models in Milabot, where each response model takes the same input (a dialogue history)

and outputs a candidate response, with the response selection policy deciding the final response.

There has been a lot of research applying reinforcement learning to training or improving

dialogue systems. As discussed earlier, the idea of optimizing the behaviour of a dialogue system

by formulating the problem as a sequential decision making problem appeared already in the 1990s

for goal-driven dialogue systems (Singh et al., 1999, 2002; Williams and Young, 2007; Young et al.,

2013; Paek, 2006; Henderson et al., 2008; Pieraccini et al., 2009; Su et al., 2015).

One highly relevant line of research is optimizing dialogue systems through simulations us-

ing abstract dialogue states and actions (Eckert et al., 1997; Levin et al., 2000; Chung, 2004;

Cuayáhuitl et al., 2005; Georgila et al., 2006; Schatzmann et al., 2007; Heeman, 2009; Traum

et al., 2008; Georgila and Traum, 2011; Lee and Eskenazi, 2012; Khouzaimi et al., 2017; López-

Cózar, 2016; Su et al., 2016; Fatemi et al., 2016; Asri et al., 2016). The approaches taken here

vary with how the simulator is created or estimated, and whether or not the simulator is also con-

sidered an agent trying to optimize its own reward. For example, Levin et al. (2000) consider the

problem of building a flight booking dialogue system. Similar to an n-gram language model, Levin

et al. (2000) estimate a user simulator model by counting transition probabilities between dialogue

states and user actions. This simulator is then used to train a reinforcement learning policy. In

their work, the states and actions are all abstract discrete variables, which minimizes the amount of

natural language understanding and generation the policy has to learn. This is similar to the work

in this chapter, where we explore estimating a simulated environment model utilizing a high-level

stochastic variable representing abstract semantic information. In a related example, Georgila and

Traum (2011) consider the problem of learning dialogue policies for negotiation games, where each

interlocutor is an agent with its own reward function. In their work, each policy is also a de facto

user simulator. These policies are learned by playing against other policies using reinforcement

learning. In a more recent example, Yu et al. (2016) propose an open-domain, chitchat dialogue

system optimized using reinforcement learning based on simulations with the rule-based system

76

ALICE (Wallace, 2009). In their work, the reward function is learned from crowdsourced human

annotations. Yu et al. (2016) show that their system achieves substantial improvements w.r.t. the

overall appropriateness of system responses and the conversational depth of the dialogues.

Researchers have also begun to investigate learning probabilistic generative neural network

model policies operating directly on raw text through user simulations (Li et al., 2016c; Das et al.,

2017; Lewis et al., 2017; Liu and Lane, 2017; Lewis et al., 2017). In contrast to earlier work,

these policies are required to simultaneously perform natural language understanding and natural

language generation. For example, Li et al. (2016c) train a probabilistic generative recurrent neural

network using maximum log-likelihood, and then fine-tune it with a multi-objective function. The

multi-objective function contains several terms, including a reinforcement learning term based on

self-play simulation rollouts with a hand-crafted reward function. In another example, Lewis et al.

(2017) apply reinforcement learning for learning a system capable of negotiation in a toy domain.

They demonstrate that it’s feasible to learn an effective policy by training a probabilistic generative

recurrent neural network on crowdsourced data, and that the policy can be further improved using

reinforcement learning through self-play and simulation rollouts. Self-play is a sensible approach

for both Li et al. (2016c) and Lewis et al. (2017), because their problems are likely to be symmetric,

or close to symmetric, w.r.t. the agent policies (for example, a policy performing well on one side of

the negotiation game will likely also perform well on the other side). However, as discussed earlier,

the interactions between humans and machines are unlikely to be symmetric. Humans are very

likely to interact differently with Milabot compared to how they would interact with other humans.

Therefore, self-play is unlikely to be an effective training method for the dialogue task considered

in this chapter. In another example, Liu and Lane (2017) propose to use reinforcement learning

to improve a system in a restaurant booking toy domain. For training the system policy, they

use a user simulator trained on real-world dialogues between human interlocutors. By imposing

the constraint that the system and the user share the same reward function, they demonstrate that

reinforcement learning can be used to improve both the system policy and the user simulator. In a

related example, Zhao and Eskenazi (2016) propose to train a neural network model for playing a

quiz game using reinforcement learning, where the environment is a game simulator. In parallel to

the work in this chapter, Peng et al. (2018) propose to train a dialogue system using a model-based

reinforcement learning approach based on the Dyna-Q algorithm.

Finally, it should be noted that researchers have also applied reinforcement learning for training

agents to communicate with each other in synthetic multi-agent environments (Foerster et al., 2016;

Sukhbaatar et al., 2016; Lazaridou et al., 2016, 2017; Mordatch and Abbeel, 2018).

77

4.4 System Overview

The Milabot system architecture is inspired by the success of ensemble-based machine learning

systems. One example of such a system is the winning system of the Netflix Prize competition (Ko-

ren et al., 2009), which utilized hundreds of machine learning models in order to predict user movie

preferences. Another example is the IBM Watson system (Ferrucci et al., 2010), which applied a

multitude of machine learning algorithms to win the quiz game Jeopardy! in 2011. More re-

cently, Google released an article demonstrating substantial improvements on machine translation

by utilizing an ensemble-based system (Wu et al., 2016).

Milabot consists of an ensemble of response models. The response models are given a dialogue

history as input and must output a response in natural language text. In addition to the text response,

the response models may also output one or several real-valued scalars indicating their internal

confidence. The overall purpose of the ensemble is to provide a diverse set of responses across

many topics. As such, each response model is designed to generate responses on one or several

specific topics using its own unique approach.

The dialogue manager component is responsible for invoking the appropriate system modules

and emitting the final response of the system. The dialogue manager receives as input the dialogue

history (i.e. all utterances recorded in the dialogue so far, including the current user utterance)

and confidence values of the speech recognition system. The dialogue manager follows a three-

step procedure to generate a system response. First, it invokes all the response models in order to

generate a set of candidate responses. Second, if the set of candidate responses contains a priority

(i.e. a response which takes precedence over other responses), then this response will be emitted by

the system.22 Third, in case there are no priority responses, then a response will be selected by the

response selection policy. For example, the response selection policy may score all the candidate

responses and select the highest-scored response to emit. See Figure 7.

When the speech recognition confidences are below a pre-specified threshold, the system asks

the user to repeat their last utterance. Otherwise, the system does not utilize the speech recognition

confidences. However, the ASR system is far from perfect. Therefore, it is very probable that the

system might be substantially improved by improving the ASR system and by conditioning the

response models and the response selection policy on the ASR confidences.

Two demo videos of the Milabot system are available at https://youtu.be/TCVbYpu9Llo

and at https://youtu.be/LG482LzW77Y.

22For example, if a user asked "What is your name?", the ensemble would emit the candidate response "I am an

Alexa Prize socialbot" labelled as a priority response.

78

https://youtu.be/TCVbYpu9Llo
https://youtu.be/LG482LzW77Y

Figure 15: Dialogue manager control flow.

79

4.5 Response Models

The ensemble system consists of 22 response models, including retrieval-based neural networks,

generation-based neural networks, knowledge base question answering systems and rule-based

models. Examples of candidate model responses are shown in Table 11. Here, we will briefly

review the most important response models. Further details are given in Appendix IV.

The ensemble contains several rule-based response models. One of the most important ones

is Alicebot based on the rule-based system ALICE (Wallace, 2009; Shawar and Atwell, 2007).

ALICE uses thousands of AIML (artificial intelligence markup language) templates to produce a

response given the dialogue history and user utterance. Consequently, ALICE has some type of

relevant response for the majority of dialogues and is able to converse on many different topics.

However, ALICE is not particularly adept at tracking the discourse-level context (e.g. staying on

topic or memorizing previous information about the user). ALICE is also prone to repeating itself.

Another important rule-based response model is Elizabot, which performs string matching to select

an answer from a set of template answers. Elizabot is based on a clone of the famous Eliza system,

designed to mimic a Rogerian psychotherapist (Weizenbaum, 1966). As such, most of Elizabot’s

responses are personal questions, which are meant to engage the user to continue the conversation,

such as “Is something troubling you?" and “Can you think of a specific example?". A related

response model is the Initiatorbot model, which acts as a “conversation starter". This model selects

an open-ended question from a list of questions, in order to get the conversation started and increase

the engagement of the user. In many cases, the open-ended questions also suggest a particular topic.

Some example questions the model emits are “What did you do today?", “Do you have pets?" and

“What kind of news stories interest you the most?".

The ensemble also contains a question-answering model called Evibot, which forwards the

user’s utterance to Amazon Inc.’s question-answering web-service Evi.23 Evibot is primarily capa-

ble of handling factual questions, such as “How many people live in Greenland?" and “What do

bears eat?". Therefore, Evibot returns a priority response when a direct question is detected (i.e.

where a user utterance contains a wh-word, such as “who" and “what").

There are also several retrieval-based models inside the ensemble system. The response model

BoWFactGenerator retrieves a response from a set of about 2500 interesting and fun facts, includ-

ing facts about animals, geography and history, based on Word2Vec word embeddings (Mikolov

et al., 2013b). For example, given the user utterance “I love dogs"! the model will emit the re-

sponse “Here’s a funny fact! Dogs have lived with humans for over 14,000 years.". These fun fact

responses serve as an excellent diversion tactic to keep a conversation engaging when the user starts

a new topic or asks a question that cannot be handled by other response models. Another retrieval-

23Previously, Evi was available at: www.evi.com.

80

www.evi.com

based response model is the VHREDSubtitles model, which uses a retrofitted VHRED model in

order to retrieve responses from a corpus of movie subtitles. The ensemble system has several

other neural network retrieval-based models, which retrieve responses from external sources such

as Google Search, the American newspaper The Washington Post24, and Reddit forums25.

Finally, the ensemble system has a RNNLM called GRUQuestionGenerator, which was trained

on Reddit forum discussions and generates question responses word-by-word using beam search (Graves,

2012). The aim of this model is to keep the conversation going by asking a topically-relevant ques-

tion. For example, given the user utterance “I like The God Father." the model will emit the

response “How about the American people you know?".

Our team decided not to pursue developing additional generative probabilistic models, which

generate responses word-by-word. There were two main reasons for this decision. The first reason

was due to their overall complexity and lack of readiness for real-world applications. Implement-

ing generative probabilistic models often requires weeks of development, training time and careful

tweaking. Although generative probabilistic models have the power to generate entirely new re-

sponses, in practice they often generate nonsensical responses which need to be mitigated by other

mechanisms. The second reason was because of their computational time requirements. The Ama-

zon Alexa Prize 2017 competition required Milabot to return a response within a few seconds

(usually less than one second). To maintain this response speed for several models generating

responses word-by-word would have required a significant amount of engineering effort.26

24See www.washingtonpost.com.
25See www.reddit.com.
26This was complicated further by the system’s software architecture, designed with the assumption that all the

models in the ensemble system would run concurrently on a single server instance.

81

www.washingtonpost.com
www.reddit.com

Table 11: Example dialogues and corresponding candidate responses generated by response mod-

els. The response selected by the system is marked in bold.

Dialogue Dialogue
SYSTEM: Hi. This is an Alexa Prize

socialbot.

USER: Hi

SYSTEM: Do you have pets?

USER: Yes, I have two rabbits.

...

USER: Let’s talk about movies.

SYSTEM: What’s your favorite movie?

USER: star wars movie

Candidate Responses Candidate Responses
BoWEscapePlan: I don’t have an

answer for this.

BoWFactGenerator: Did you know

that male rabbits are called bucks,

females are does?

GRUQuestionGenerator: How about

the American family of it?

Initiatorbot: Do you believe in love at

first sight?

LSTMClassifierMSMarco: Mar 23,

2017 Two Parts: Learning What to

Feed Your Rabbit Learning How to...

DualEncoderRedditNews: bye

doggie

DualEncoderRedditPolitics: Who’s

edger u shboys?

Alicebot: Hurrah! Two is a good
number of rabbits.

Elizabot: OK, but can you elaborate a

bit?

VHREDRedditMovies: Hmm. Nope,

never heard of it.

VHREDSubtitles: Would you like to

see them?

HelpResponse: I would really like to

talk about news, politics or movies.

BoWEscapePlan: I don’t have an answer for

this.

BoWFactGenerator: Here’s an interesting fact.

The international telephone dialing code for

Antarctica is 672.

GRUQuestionGenerator: how about your New

York City?

Initiatorbot: How was your day?

LSTMClassifierMSMarco: A third Anthology

film will be released in 2020.

DualEncoderRedditNews: Now whisper it to

me , one more time bby.

DualEncoderRedditPolitics: hahaha on mobile

this ain’t even close. I wish I could show you

but this looks awful I’m sorry man.

Alicebot: What did you like about the robots

in that movie?

Elizabot: How does that make you feel?

Evi: Star Wars movie a movie in the Star
Wars series.

VHREDRedditMovies: Oh please. Please.

Pleeeease. Let this happen.

VHREDSubtitles: What?

HelpResponse: I would really like to talk

about news, politics or movies.

82

4.6 Response Selection Policy

4.6.1 Reinforcement Learning Setup

After generating the candidate response set, the dialogue manager uses a response selection policy

in order to select the response it returns to the user. The system must select a response which

maximizes the satisfaction of the human user for the entire dialogue. In doing so, the system makes

a trade-off between immediate and long-term user satisfaction. Consider the example where the

system converses with a human user about politics. If the system decides to respond with a political

joke, the user may be pleased for one turn. However, the user may later be disappointed with the

system’s inability to debate complex political issues. If the system instead decides to respond with

a short news story, the user may be less pleased for one turn. However, the news story may prompt

the user to follow up with factual questions, which the system may be better adept at handling. To

make the trade-off between immediate and long-term user satisfaction, we frame the problem of

selecting a candidate response as a sequential decision making problem.

We consider the dialogue system as an agent, which takes actions in an environment in order to

maximize rewards. At each time step t = 1, . . . , T , the agent observes the dialogue history st ∈ S
and must choose one of K ∈ N+ actions (responses): At = {a1

t , . . . , a
K
t }. Here, S is the infinite

discrete set of all possible dialogue histories. After taking an action, the agent receives a reward

rt ∈ R, which is a score given by the user or a proxy of the user’s satisfaction. The agent then

transitions to the next state st+1 ∈ S. If the new state is the terminal state, then the conversation is

over and there are no more actions to take. Otherwise, the user’s next response is included in the

next state and the agent is provided with a new set of K ′ ∈ N+ actions: At+1 = {a1
t+1, . . . , a

K′
t+1}.

The agent aims to maximize the discounted sum of rewards:

R =
T∑
t=1

γtrt, (92)

which is the cumulative return and where γ ∈ (0, 1] is a discount factor, as described earlier. In this

setting, it should be noted that the set of actions changes depending on the state. This stems from

the fact that the candidate responses are generated by response models, which themselves depend

on the dialogue history. Furthermore, some of the response models are stochastic. Consequently,

two identical states s, s′ ∈ S (i.e. s == s′) may have different action sets A,A′ (i.e. A 6= A′).27

This stands in contrast to many typical reinforcement learning problems, where the set of actions

is fixed given the state. In order to simplify notation, we will fix the number of actions to K ∈ N+

moving forward.

27In general, the number of candidate responses also changes depending on the state.

83

4.6.2 Parametrizing the Agent’s Policy

We consider two approaches for parametrizing the agent’s policy.

Action-value Parametrization: The first approach learns an approximate state-action-value

function:

Qθ(st, akt) ∈ R where st ∈ S and akt ∈ At, for k = 1, . . . , K, (93)

which estimates expected return of taking action akt (candidate response k) given dialogue history

st and given that the agent continues the episode by using the same policy. As before, θ are

the parameters. For example, given two candidate responses and their corresponding Qθ values,

we would expect the one with the higher value to result in a higher user satisfaction. Given the

approximate state-action-value function, the agent’s policy selects the response with the highest

estimated return:

πθ(at|st) =

 1 if at = arg maxk=1,...,K Qθ(st, akt)
0 otherwise.

(94)

Stochastic Policy Parametrization: The second approach parameterizes the policy as a dis-

crete probability distribution over actions. The agent’s policy selects an action by sampling from

the distribution:

πθ(akt |st) = eλ
−1fθ(st,akt)∑

a′t
eλ
−1fθ(st,a′t)

where st ∈ S and akt ∈ At, (95)

where fθ(st, akt) is the scoring function, which outputs a real-valued score for each candidate re-

sponse akt given st, with parameters θ. The parameter λ is the temperature parameter, which

controls the entropy of the distribution. The higher its value is, the more uniform the distribution

will be. The stochastic policy can be transformed into a deterministic, greedy policy by selecting

the action with the highest probability:

πθ(at|st) =

 1 if at = arg maxk=1,...,K πθ(akt |st) = arg maxk=1,...,K fθ(st, akt)
0 otherwise.

(96)

4.6.3 A Neural Network Scoring Model

The state-action-value function Qθ(st, akt) and scoring function fθ(st, akt) serve a similar purpose.

Given a state st ∈ S, both functions aim to rank the available actions, such that actions with higher

values imply higher expected returns. In particular, if Qθ(st, akt) = fθ(st, akt), the state-action-

value function policy in eq. (94) is equivalent to the greedy policy in eq. (96). For this reason, we

will simply use the same model architecture for both Qθ(st, akt) and fθ(st, akt). We will make both

84

functions take the same set of features as input and process them using the same neural network

model architecture to give a real-valued output. Furthermore, we will refer to both functions as

scoring models.

Specifically, each scoring model will be parametrized as a five-layered neural network.28 The

first layer is the input layer, which receives 1458 real-valued and integer features as input. The

second layer has 500 hidden units, which are computed using a rectified linear activation function

of the previous layer’s units (Nair and Hinton, 2010; Glorot et al., 2011). The third layer has 20

hidden units, which are computed using an affine linear function of the previous layer’s hidden

units. In other words, this layer compresses the 500 hidden units in the second layer down to

20 hidden units. The fourth layer has 5 outputs units, which are computed using an affine linear

function followed by a softmax transformation function of the previous layer’s hidden units. This

ensures that all the layer’s values are positive and sum to one, which enables them to represent a

discrete probability distribution with 5 classes. As we will discuss later, this layer’s output will

be optimized to predict Amazon Mechanical Turk labels. The fifth layer is the final output layer,

which consists of a single real-valued scalar computed by an affine linear transformation applied

to the concatenation of the units in the third and fourth layers. The model is shown in Figure 16.

Figure 16: Computational graph for the scoring models, used for the response selection policies

based on both state-action-value function and stochastic policy parametrizations. Each model con-

sists of an input layer with 1458 features, a hidden layer with 500 hidden units, a hidden layer with

20 hidden units, a softmax layer with 5 output probabilities, and a scalar-valued output layer. The

dashed arrow indicates a skip connection (the last hidden layer output is passed to the last output

layer through an affine linear function).

28Before settling on the model architecture, we experimented with deeper and shallower models. However, we
found that both deeper and shallower models performed either worse or similarly.

85

4.6.4 Input Features for Scoring Model

The scoring models receive as input 1458 real-valued and integer features, computed from the

given dialogue history and candidate response. These features have been derived from word em-

beddings, dialogue acts, part-of-speech tags, unigram word overlap, bigram word overlap and

attributes specific to each response model. The features include:

Word embeddings of model response: Average of candidate response word embeddings (Mikolov

et al., 2013b).29

Word embeddings of last user utterance: Average of previous user utterance word embeddings.

Word embeddings of dialogue history: Average of word embeddings of last 6 utterances in dia-

logue history.

Word embedding of user history: Average of word embeddings of last 3 user utterances in

dialogue history.

Word embedding similarity metrics: Similarity metrics Embedding Average, Embedding Ex-

trema and Embedding Greedy described earlier (Liu et al.,

2016). Each metric is computed between 1) last user ut-

terance and candidate response, 2) last 6 utterances and

candidate response, 3) last 3 user utterances and candi-

date response, 4) last 6 utterances and candidate response

with stop-words removed, and 5) last 3 user utterances

and candidate response with stop-words removed.

Response model class: One-hot vector with length equal to number of response

models, where index i is equal to one if candidate re-

sponse was generated by response model number i.

Part-of-speech response class: Part-of-speech tags for candidate response, estimated us-

ing a maximum entropy tagger trained on the Penn Tree-

bank corpus and mapped to a one-hot vector (Marcus

et al., 1993).
29We use the pre-trained Word2Vec embeddings available at: https://code.google.com/archive/p/

word2vec/.

86

https://code.google.com/archive/p/word2vec/
https://code.google.com/archive/p/word2vec/

Dialogue act response model class: Outer-product between a one-hot vector representing di-

alogue act and a one-hot vector for indicating model class (Stol-

cke et al., 2000).30

Word overlap: Binary feature equal to one only when any non-stop-

words overlap between candidate response and last user

utterance

Bigram overlap short-term: Binary feature equal to one only when a bigram (two

consecutive tokens) exists both in candidate response and

in last user utterance.

Bigram overlap long-term: Binary feature equal to one only when a bigram exists

both in candidate response and in last utterances in dia-

logue history.

Named-entity overlap short-term: Binary feature equal to one only when a named-entity

exists both in candidate response and in last user utter-

ance.31

Named-entity overlap long-term: Binary feature equal to one only when a named-entity

exists both in candidate response and in one of several

last utterances in dialogue history.

Generic response: Binary feature equal to one if candidate response consists

of only stop-words or words shorter than 3 characters.

Wh-word response feature: Binary feature equal to one if candidate response con-

tains a wh-word (e.g. what, where, and so on).

Wh-word context: Binary feature equal to one if last user utterance contains

a wh-word.

Intensifier word response: Binary feature equal to one if candidate response con-

tains an intensifier word (e.g. amazingly, crazy, and so

on).

Intensifier word context: Binary feature equal to one if last user utterance contains

an intensifier word.
30We consider 10 types of dialogue acts.
31Here, a named-entity is defined as an upper-cased word, which is not a stop-word.

87

Unigram response: A group of binary features, which are triggered when

candidate response contains a specific word, such as the

words I, you and thanks.

Negation response: Binary feature equal to one if candidate response con-

tains a negation word, such as not or n’t, and otherwise

zero.

Non-stop-words response: Binary feature equal to one if candidate response con-

tains a non-stop-word.

Features based on the confidences of the speech recognition system are not included. This is in

contrast to other work, where speech recognition confidences are often taken into account by the

policy of the spoken dialogue system. Although such features may improve the performance of the

spoken dialogue system, this decision is made in order to reduce the confounding factor of speech

recognition errors in the experiments with real-world users. For example, if the confidences of

the speech recognition system were included, one policy might be better adept at handling speech

recognition errors than other policies simply by being optimized on a dataset incorporating such

errors. This could in turn make that policy perform better w.r.t. overall user satisfaction. However,

under a perfect speech recognition system, that same policy would not have any such advantage.

Nevertheless, even if speech recognition confidence features are excluded, speech recognition er-

rors still constitute a major confounding factor in the experiments presented later.

For reasons of computational speed and simplicity, no features based on recurrent neural net-

works embedding the dialogue history or candidate response are used.32

In the next sections, we discuss the algorithms for learning the parameters of the neural network

scoring model.

32Due to the speed of the response models, the scoring models in Milabot had to complete their execution within
150ms.

88

4.7 Learning the Response Selection Policy with Supervised Learning on
Crowdsourced Labels

We propose six algorithms for learning the response selection policy. Each algorithm uses a dif-

ferent approach to optimize the parameters of the neural network scoring model. This section

describes the first approach.

The first approach estimates an approximate state-action-value function using supervised learn-

ing on crowdsourced labels. This approach also serves as a method for initializing the parameters

of the neural network scoring model of the other five approaches, discussed in later sections.

Many researchers have turned to crowdsourcing platforms for collecting training data for their

dialogue systems (Gašić et al., 2011; Gasic et al., 2013; Su et al., 2016). Crowdsourcing is a

scalable and cost-efficient method for data collection, which can easily be applied to annotate both

text-based and spoken conversations. With respect to Milabot, crowdsourcing offers the ability

to annotate two orders of magnitude more examples compared to the user scores given through

the Amazon Alexa Prize 2017 competition. Furthermore, crowdsourcing also makes it possible to

annotate single responses in a conversation. In contrast, the users in the Amazon Alexa Prize 2017

competition only provide a single score at the end of the conversation. Such a large amount of

data examples, annotated at the response-level, makes it feasible to train a neural network scoring

model with hundreds of thousands of parameters.

4.7.1 Crowdsourcing Data Collection

We use Amazon Mechanical Turk (AMT) to collect training data for the scoring model by fol-

lowing a setup similar to Liu et al. (2016). We show human evaluators a dialogue followed by 4

candidate responses, and ask them to score how appropriate each candidate response is on a 1-5

Likert-type scale, where 1 indicates an inappropriate or nonsensical response and 5 indicates a

highly appropriate and excellent response. In this setup, human evaluators rate only the overall

appropriateness of the candidate responses.

The dialogues shown to the human evaluators are extracted from interactions between real-

world Alexa users and several preliminary versions of the Milabot system. Dialogues with priority

responses are excluded. The candidate responses are created for each dialogue by invoking the

response models.

In total, we collect 199,678 labels. This dataset is split into training (train), development (dev)

and testing (test) datasets consisting of respectively 137,549, 23,298 and 38,831 labels each. Fur-

ther details are given in Appendix V.

89

4.7.2 Policy Training

The scoring model is trained by considering the fourth layer as a discrete probability distribution

with 5 classes representing the corresponding AMT label classes. Given a dialogue history and

candidate response as input, the neural network parameters are optimized by maximizing the log-

likelihood of the unit in the fourth layer with index corresponding to the assigned AMT label.

Let D = {(xi, yi)}Ii=1 be the training dataset of the dialogue histories, candidate responses and

corresponding AMT labels, where xi ∈ R1458 is a vector of input features computed based on the

dialogue history and candidate response and yi ∈ {1, 2, 3, 4, 5} is the corresponding AMT label

class for i = 1, . . . , I . The neural network parameters θ are optimized to maximize the quantity:∑
(x,y)∈D

logPθ(y|x), (97)

where Pθ(y|x) is the model’s predicted probability of class y ∈ {1, 2, 3, 4, 5} given input features

x ∈ R1458, computed in the fourth layer of the neural network.

The scoring model neural network is implemented using the Theano library (Al-Rfou et al.,

2016). The parameters are updated using the first-order optimization method Adam (Kingma and

Ba, 2015). Different hyperparameter combinations are tried out and the best one is selected based

on the log-likelihood of the examples in the development dataset. For the first hidden layer, the

following number of hidden units are evaluated: {500, 200, 50}. For the second hidden layer,

the following number of hidden units are evaluated: {50, 20, 5}. L2 regularization is applied to

all model parameters, except for bias parameters (Goodfellow et al., 2016). The following L2

regularization coefficients are evaluated: {10.0, 1.0, 10−1, . . . , 10−9}.
The parameters of the last layer (output layer) in the neural network cannot be optimized based

on this algorithm, because the gradients w.r.t. these parameters are zero. Therefore, the parameters

from the fourth layer to the last layer are fixed to the vector [1.0, 2.0, 3.0, 4.0, 5.0] while the param-

eters from the third layer to the last layer are fixed to zero. In other words, the last layer assigns a

score of 1.0 when the fourth layer assigns 100% probability to the unit corresponding to the worst

AMT label (i.e. an inappropriate or nonsensical response) and a score of 5.0 when the fourth layer

assigns 100% probability to the unit corresponding to the best AMT label (i.e. a highly appropriate

and excellent response). Since this scoring model is trained on AMT crowdsourced data, we name

it Supervised AMT.

4.7.3 Preliminary Evaluation

A preliminary evaluation of Supervised AMT is carried out in order to validate the proposed ap-

proach and obtain an estimate of the learned policy’s performance. The performance of Supervised

AMT w.r.t. each AMT label class is given in Figure 17. The figure also shows the performance of

90

three simple, baseline policies: 1) Random, which selects a response at random, 2) Alicebot, which

selects an Alicebot response if available and otherwise selects a response at random, and 3) Evi-

bot + Alicebot, which selects an Evibot response if available and otherwise selects an Alicebot

response. For each policy, the figure shows the frequency of selected responses belonging to each

AMT label class.

First, we observe that Supervised AMT achieves a ~30% point reduction for the "very poor"

AMT label class compared to Random. For the same AMT label class, Supervised AMT obtains

a ~10% point reduction compared to Alicebot and Evibot + Alicebot. Next, we observe that Su-

pervised AMT performs substantially better than the three baselines w.r.t. the AMT label classes

"good" and "excellent". In particular, Supervised AMT has ~8% of its responses for the class "ex-

cellent", which is more than double compared to all three baseline policies. This clearly shows that

Supervised AMT has learned to more often select "good" and "excellent" responses, while avoid-

ing "very poor" and "poor" responses. The overall results show that Supervised AMT improves

substantially over all baseline policies. Despite these improvements, over 45% of the Supervised

AMT responses still belong to the classes "very poor" and "poor".

Very poor Poor Acceptable Good Excellent0

10

20

30

40

50

60

Fr
eq
ue
nc
y
(in

 %
)

Policy
Random
Alicebot
Evibot + Alicebot
Supervised AMT

Figure 17: Amazon Mechanical Turk (AMT) class frequencies on the AMT test dataset w.r.t.

candidate responses selected by different policies.

91

4.8 Learning the Response Selection Policy with Supervised Learning on
Real-World User Scores

In the Supervised AMT model, the parameters from the fourth layer to the fifth layer are fixed to

[1.0, 2.0, 3.0, 4.0, 5.0]. In other words, the last layer assigns a score of 1.0 when the fourth layer

assigns 100% probability to the unit corresponding to the worst AMT label (i.e. an inappropriate or

nonsensical response) and a score of 5.0 when the fourth layer assigns 100% probability to the unit

corresponding to the best AMT label (i.e. a highly appropriate and excellent response). However,

these labels are obtained by non-expert human annotators evaluating a single text-based candidate

response in a dialogue and likely do not take into account the past or future of the conversation, the

goals, personal interests and affective state of the human interlocutor, or the effect of the candidate

response being used in a spoken conversation between a human and a spoken dialogue system with

a monotone, synthetic voice. Therefore, these labels are probably not representative of the overall

utility (i.e. user satisfaction) induced by their corresponding candidate responses. We propose to

remedy this problem by learning to predict the Alexa user scores based on previously recorded

dialogues.

4.8.1 Learned Reward Function

Let D = {(sdt , adt , Rd)}d,t be a set of |D| examples, where t denotes the time step (dialogue turn)

and d denotes the dialogue index. Let sdt be a dialogue history and let adt be the corresponding

response, given by the system at time t for dialogue d. Let Rd ∈ [1, 5] denote the observed real-

valued Alexa user score for dialogue d.

We aim to learn a linear regression model gφ, with model parameters φ. The aim of this model

is to predict the Alexa user score from a given dialogue history and system response:

gφ(st, at) ∈ [1, 5]. (98)

We refer to this model as a reward model, since it directly models the Alexa user score. From

the reinforcement learning perspective, we shall interpret the Alexa user score as the return of the

agent. In other words, the Alexa user score is equal to the discounted sum of rewards given in eq.

(92) for a given episode.

Alexa users are prompted to give a score in the range 1 − 5 at the end of a dialogue with

Milabot, but they may opt out by stopping the application. Since not all Alexa users give scores,

we exclude recorded dialogues without scores. However, ignoring dialogues without scores incurs

a significant bias in the reward model. For example, it seems likely that users who do not provide

a score either find the system to be poor or to lack particular functions/features they expected (e.g.

non-conversational activities, such as playing games or taking quizzes, which were implemented

92

in other socialbots in the Amazon Alexa Prize 2017 competition). Furthermore, some of the users

give decimal scores (e.g. 3.5). Therefore, we treat Rd as a real-valued number in the range 1− 5.

The linear regression model is optimized by minimizing the squared error between the model’s

prediction and the observed return:

∑
(sdt ,adt ,Rd)∈D

(gφ(sdt , adt)−Rd)2. (99)

Since training data is scarce, the reward model receives as input 23 features computed based

on the dialogue history and system response:

AMT label class: A vector indicating the probability of the AMT label classes for the re-

sponse, computed using Supervised AMT, and whether the response is a

priority response or not. If the response is a priority response, all the vec-

tor elements are zero except the last element corresponding to the priority

class (i.e. [0.0, 0.0, 0.0, 0.0, 0.0, 1.0]).

Generic response: A binary feature, which equals one if response contains only stop-words.

Response length: Number of words in response, and square root of the number of words in

response.

Dialogue act: One-hot vector indicating whether last user utterance is a dialogue act

request, a dialogue act question, a dialogue act statement or contains pro-

fanity (Stolcke et al., 2000).

Sentiment class: One-hot vector indicating if the sentiment of last user utterance is negative,

neutral or positive.

Generic user utterance: Binary feature, which equals one if last user utterance only contains stop-

words, and otherwise zero.

User utterance length: Number of words in last user utterance, and square root of the number of

words in the utterance.

Confusion indicator: A binary feature, which equals one if last user utterance is less than three

words and contains at least one word indicating the user is confused (e.g.

"what", "silly", "stupid").

Dialogue length: Number of dialogue turns, as well as square root and logarithm of number

of dialogue turns.

93

We train the reward model using a dataset of recorded dialogues between real-world Alexa

users and several preliminary versions of the Milabot system. The dataset consists of 4340 dia-

logues and is split into a training set of 3255 examples and a test set of 1085 examples.

Due to the scarcity of the training data, we increase data efficiency by learning an ensemble

model through a variant of the bagging technique (Breiman, 1996). We construct 5 new training

datasets, which represent shuffled versions of the original training dataset of 3255 examples. Each

new shuffled dataset is split into a sub-training dataset and sub-hold-out dataset. The sub-hold-

out datasets are constrained such that the examples in one sub-hold-out dataset do not overlap with

other sub-hold-out datasets. We train a linear regression reward model on each sub-training dataset

and select its hyperparameters based on the average squared error on the sub-hold-out dataset. This

procedure increases data efficiency by reusing the sub-hold-out datasets for training, rather than

only for hyperparameter optimization. The final reward model is an ensemble model, where the

output is the average of the underlying 5 linear regression models.

We implement the reward model using the Theano library (Al-Rfou et al., 2016). The model

parameters for each linear regression model is optimized using stochastic gradient descent with

Adam. L2 regularization with the following coefficients are used:

{10.0, 1.0, 0.1, 0.01, 0.001, 0.0001, 0.00001, 0.0}. The L2 regularization coefficient with the small-

est squared error on each sub-hold-out dataset is selected for each model.

4.8.2 Preliminary Evaluation of Learned Reward Function

We evaluate the performance of the learned reward model on the test set of 1085 examples. The

reward model obtains a mean squared error of 0.96 and a Spearman’s rank correlation coefficient

of 0.19 w.r.t. Alexa user scores on the test set. For comparison, a model predicting with the average

Alexa user score obtains a mean squared error of 0.99 and a Spearman’s rank correlation coefficient

of zero.33 The reward model is better than predicting the average, but overall its correlation is low.

One reason for the low correlation might be because of the small amount of training data,

which makes it difficult for the model to learn the relationships between the input features and the

Alexa user scores. Another reason might be because the Alexa user scores are influenced by many

different factors, which in turn leads to them having high variance. For example, the user score

might in many cases be determined largely from a single turn in the dialogue, such as when the

dialogue system has a fatal misunderstanding w.r.t. the conversation topic. As another example,

the score of the user may be affected by the errors of the speech recognition system. More speech

recognition errors will inevitably lead to frustrated users and lower user satisfaction.34 As a last

33Since a model predicting with the average Alexa user score outputs the same value for every example, its correla-
tion with any dependent variable will always be zero.

34For example, in a preliminary analysis, we observed that the Spearman’s rank correlation coefficient between the

94

example, many extrinsic factors are likely to influence the user scores. The user scores may be

affected by the user’s profile (e.g. whether the user is an adult or a child), the interaction model (e.g.

whether there is a single or a group of users conversing with the system), the user’s expectations

towards the system (e.g. whether the user expects that the system is capable of playing games) and

the affective state of the user.

4.8.3 Policy Training

Given the learned reward model, we can train a corresponding neural network scoring model.

However, the learned reward model obtained low correlation with Alexa user scores. Therefore,

we will first initialize the neural network scoring model with the parameters of the Supervised

AMT scoring model, and then fine-tune it with the learned reward model outputs by minimizing

the squared errors between its prediction and the prediction of the learned reward model.

As before, the scoring model parameters are optimized with stochastic gradient descent using

Adam. For training with the learned reward model, we use a separate dataset of several thousand

recorded dialogue examples, where about 80% are used for training and about 20% are used as

hold-out set. No L2 regularization is used. We early stop on the squared error of the hold-out

dataset w.r.t. Alexa user scores predicted by the reward model. Since this scoring model is trained

with AMT labels and a learned reward function, we name it Supervised AMT Learned Reward.

speech recognition system confidences and the Alexa user scores varied between 0.05 − 0.09. Compared to other
factors, this implies that speech recognition performance plays an important role in determining user satisfaction.

95

4.9 Learning the Response Selection Policy with Off-Policy REINFORCE

In the previous section, we discussed how the Supervised AMT model is trained using AMT la-

bels unrepresentative of the overall utility or user satisfaction. One remedy to this problem is the

Supervised AMT Learned Reward model, which learns an approximate state-action-value func-

tion from real-world user scores. In this section, we propose another remedy based on a class of

reinforcement learning algorithms collectively known as policy gradient reinforcement learning.

4.9.1 Off-Policy REINFORCE

Our first policy gradient approach is based on a variant of the classical REINFORCE algorithm in

the off-policy setting (Williams, 1992; Precup, 2000; Precup et al., 2001), which we call Off-policy

REINFORCE or simply REINFORCE. As in eq. (95), let the policy’s distribution over actions be

parametrized as softmax function applied to a neural network scoring function fθ with parameters

θ. As before, let D = {(sdt , adt , Rd, T d)}d,t be a dataset of examples, where sdt is the dialogue

history at time t, adt is the agent’s action at time t, Rd is the return and T d is the total number

of turns in dialogue d. Let |D| be the number of dialogues. Then, let θd be the parameters of

the stochastic policy πθd , with parameters θd, used by the system during dialogue d. The vanilla

Off-policy REINFORCE algorithm updates the policy parameters θ using:

∆θ = α cdt ∇θ log πθ(adt |sdt) Rd, where d ∼ Uniform(1, D) and t ∼ Uniform(1, T d), (100)

where α > 0 is the learning rate, and where cdt is the importance weight ratio:

cdt =
∏t
t′=1 πθ(adt′ |sdt′)∏t
t′=1 πθd(adt′|sdt′)

. (101)

The importance weight ratio accounts for the discrepancy between the learned policy πθ and the

policy πθd , under which the data was collected. The ratio increases the weights of examples with

high probability under the learned policy and decreases the weights of examples with low prob-

ability under the learned policy. The algorithm can be understood from the point of view of a

trial-and-error mechanism. When an example has a high return (i.e. a high Alexa user score), the

term ∇θ log πθ(adt |sdt) Rd will be a vector pointing in a direction increasing the probability of tak-

ing action adt . In this case, the policy πθ will learn to take action adt more frequently. However,

when an example has low return (i.e. low Alexa user score), the term ∇θ log πθ(adt |sdt) Rd will be

a vector close to zero or a vector pointing in the opposite direction. In this case, the policy πθ will

often learn to take action adt less frequently.

Under certain conditions, the parameter update given by eq. (100) is an unbiased estimate of the

true gradient of the return w.r.t. the policy parameters. This is in contrast with the policy Supervised

96

AMT Learned Reward, where the policy is trained with a learned reward model. In that case, there

is no guarantee that the parameter update based on the learned reward model improves the policy’s

performance. As the learned policy diverges further away from the policy, which was used for

training the learned reward model, the learned reward model is likely to become less accurate.

However, in practice, the importance weight ratio tends to suffer from a high amount of vari-

ance (Precup et al., 2001). Therefore, it is common to truncate the products in the numerator and

denominator to only include the current time step t:

cdt,trunc. = πθ(adt |sdt)
πθd(adt |sdt)

. (102)

This technique reduces variance and acts as a regularizer. However, in general, it also introduces

bias into the parameter update.

More generally, the parameter update given by eq. (100) suffers from high variance due to the

so-called credit assignment problem (Sutton and Barto, 1998). Part of the reason is because the

algorithm uses the return, observed at the very end of an entire episode, to update the policy’s action

probabilities for all the intermediate actions in an episode. With a small number of examples, the

high variance of the gradient estimator may often cause the agent to over-estimate the utility of poor

actions or, vice versa, to under-estimate the utility of good actions. This problem is exacerbated in

the Amazon Alexa Prize 2017 competition, when the return is taken to be the Alexa user score.

One way to tackle this problem is through reward shaping, where the reward at each time step is

estimated using an auxiliary function (Ng et al., 1999). The auxiliary function makes it possible to

utilize prior knowledge and structural properties of the environment, which in turn can increase the

sample efficiency of the learning algorithm. Here, we propose a simple variant of reward shaping

which takes into account the sentiment of the user. When the user’s utterance appears to have a

negative sentiment (e.g. an angry comment), we will assume that the immediately preceding action

(system utterance) was highly inappropriate and assign it a reward of zero. For each dialogue d

and time step t, we assign reward rdt :

rdt =


0 if user utterance at time t+ 1 is classified as having negative sentiment,
Rd

T d
otherwise.

(103)

Incorporating the proposed reward shaping and truncated importance weights, the final param-

eter update equation is:

∆θ = α cdt,trunc.∇θ log πθ(adt |sdt) rdt , where d ∼ Uniform(1, D), t ∼ Uniform(1, T d), (104)

where α > 0 is the learning rate.

97

4.9.2 Off-Policy REINFORCE with Learned Reward Function

Similar to the Supervised AMT Learned Reward policy, we may use the learned reward model from

the previous section to train the policy using the REINFORCE algorithm. In this case, we use the

learned reward model gφ, defined in eq. (98), to compute a new estimate for the reward at each

time step in each dialogue:

rdt =

0 if user utterance at time t+ 1 is classified as having negative sentiment,

gφ(st, at) otherwise.

(105)

This new reward is substituted into eq. (104) for training. We name this policy Off-Policy REIN-

FORCE Learned Reward or, more simply, REINFORCE Learned Reward.

4.9.3 Policy Training

During the training procedure, we evaluate the learned policies through an estimate of their ex-

pected returns (Precup, 2000):

∑
d,t

cdt,trunc. r
d
t . (106)

The neural network scoring functions are initialized from the Supervised AMT model parame-

ters, and then optimized using eq. (104) with stochastic gradient descent using Adam. As before,

the training set consists of a few thousand dialogues recorded between Alexa users and several

preliminary versions of the Milabot system. About 60% of these examples are used for training,

and about 20% are used for development and testing respectively. To reduce the risk of overfitting,

only the parameters of the second last layer are trained. The hyperparameters include the tempera-

ture parameter λ and the learning rate α. The hyperparameters are found via a random grid search

and selected based on each policy’s expected return on the development set.

98

4.10 Learning the Response Selection Policy with Model-Based Reinforce-
ment Learning

The previous approaches proposed each have their own advantages and disadvantages, which can

be quantified through the bias-variance trade-off. Specifically, we may evaluate each approach

w.r.t. the amount of (statistical) bias and variance incurred either by its training procedure at each

step (e.g. the bias and variance exhibited by the training procedure’s parameter change compared

to the true, unbiased gradient) or by a learned policy (e.g. the bias and variance exhibited by a set

of learned parameters compared to the set of parameters that maximize the cumulative return). At

one end of the spectrum, the Supervised AMT policy has low variance, because it was trained with

hundreds of thousands of human annotations given for candidate responses. However, Supervised

AMT suffers from a substantial bias, because the human annotations are likely unrepresentative of

the real user satisfaction. At the other end of the spectrum, REINFORCE suffers from high vari-

ance, because it was trained with only a few thousand dialogues and corresponding user scores.

This issue is exacerbated by the fact that the user scores are likely affected by multiple external

factors, such as user profiles and expectations, and by the fact that they are only given at the end

of an entire conversation. Nevertheless, REINFORCE incurs less bias by directly optimizing the

relevant objective metric: the Alexa user score. By utilizing a learned reward function, Supervised

Learned Reward and REINFORCE Learned Reward aim to find a better bias-variance trade-off.

However, the learned reward function becomes increasingly inaccurate as the learned policy di-

verges away from the policy used to train the learned reward function. Furthermore, since the

learned reward function has its own variance component, both Supervised Learned Reward and

REINFORCE Learned Reward might also suffer from a significant amount of variance.

In this section we propose an algorithm for making a different bias-variance trade-off using

model-based reinforcement learning. This algorithm learns a policy from simulations in an ap-

proximate Markov decision process (MDP). In particular, the approximate MDP incorporates a

few high-level assumptions about the structural properties of the environment and prior knowl-

edge, which aim to significantly reduce the variance of the learned policy, while only incurring a

small additional amount of bias.

4.10.1 Bottleneck Simulator

The algorithm we propose learns both a policy and an explicit model of the environment. The

explicit model of the environment is an approximate MDP. The approximate MDP utilizes a bot-

tleneck state, which is why the algorithm is named the Bottleneck Simulator.

The approximate MDP follows the probabilistic generative model shown in Figure 18. At

time t, the agent is in state zt ∈ Z. This variable is a discrete random variable representing the

99

bottleneck state, which represents the abstract, high-level semantic structure related to the dialogue

history. The set Z is defined by a Cartesian product:

Z = ZDialogue act × ZUser sentiment × ZGeneric user utterance, (107)

where ZDialogue act, ZUser sentiment and ZGeneric user utterance are discrete sets. The first discrete set is a set

of 10 dialogue acts: ZDialogue act = {Accept,Reject,Request,Politics,Generic Question,

Personal Question,Statement,Greeting,Goodbye,Other}. The dialogue acts represent the high-

level intention of the user’s utterance (Stolcke et al., 2000). The second discrete set is a set of

three sentiment labels: ZUser sentiment = {Negative,Neutral,Positive}. The third set is a binary set:

ZGeneric user utterance = {True,False}. This variable is True only if the user’s last utterance exclusively

contains stop-words. We construct a hand-crafted, deterministic classifier, which given a dialogue

history st ∈ S outputs the corresponding classes in ZDialogue act, ZUser sentiment and ZGeneric user utterance.

We denote the classifier’s function as fs→z. Although we only consider dialogue acts, sentiment

and generic utterances, it is trivial to expand the set with other types of discrete or real-valued

variables representing other types of semantic structure. The dialogue acts, sentiment and generic

utterances are expected to be indicative of both the future trajectory of the dialogue and of the

user satisfaction. By explicitly modelling these high-level semantic components, the Bottleneck

Simulator captures structural properties of the environment in order to increase the overall sample

efficiency and to reduce the variance of the learned policy.

Figure 18: Probabilistic directed graphical model for the Bottleneck Simulator. For each time step

t, zt is a discrete random variable which represents the abstract state of the dialogue, st represents

the dialogue history (i.e. the state of the agent), at represents the action taken by the system (i.e.

the selected response), yt represents the sampled AMT label and rt represents the sampled reward.

Given a sample zt ∈ Z, the Bottleneck Simulator samples a dialogue history st ∈ S from a

100

finite set of recorded dialogue histories S̄, where S̄ ⊆ S and S is the set of all possible dialogue

histories. Specifically, st is sampled at random uniformly from the set of dialogue histories where

the last utterance is mapped to zt:

st ∼ P (st | S̄, zt) = Uniform({s | s ∈ S̄ and fs→z(s) = zt}). (108)

In other words, st is constrained to be a dialogue history where the dialogue act, user sentiment

and generic property matches the corresponding discrete variable zt.

In our experiments, the set S̄ consists of recorded dialogues between Alexa users and prelim-

inary versions of the Milabot system. The set S̄ increases over time when the system is deployed

in practice, which makes it possible to continuously improve the response selection policy as new

data becomes available. Further, it should be noted that the set Z is defined as a small discrete set,

such that every possible state z ∈ Z occurs at least once in the set of recorded dialogues S̄. This

makes it possible to estimate transition probabilities between consecutive states.

Given a sample st, the agent chooses an action at according to its policy πθ(at|st), with pa-

rameters θ. Then, a reward rt is sampled such that rt ∼ R(rt|st, at), where R is a probability

distribution. The probability distribution R is estimated using a supervised learning model trained

on AMT labels, as given in eq. (97). In principle, the probability distribution can be sampled based

on the estimated probabilities for each AMT label class in the range 1− 5. However, to reduce the

amount of stochasticity, the probability distribution is set to the (discrete) Dirac-delta distribution:

R(rt|st, at) =

1 if rt = ∑5
y=1 Pζ(y|st, at)(y − 3)

0 otherwise,
(109)

where Pζ(y|st, at) is the probability of the AMT label class y ∈ {1, 2, 3, 4, 5} conditioned on di-

alogue history st and action (candidate response) at, computed by the supervised learning model

trained on the AMT labels with parameters ζ . The term (y− 3) ensures that, if 100% of the proba-

bility mass of Pζ(y|st, at) is assigned to the middle AMT label y = 3 (i.e. the label "acceptable"),

then the assigned reward is exactly zero: rt = 0 .

Following this, a discrete random variable yt ∈ {1, 2, 3, 4, 5} is sampled from Pζ(yt|st, at):

yt ∼ Pζ(yt|st, at). (110)

This variable represents how a user might judge the appropriateness of the given response at. The

variable helps predict the future state zt+1, because the response’s appropriateness may have a

significant impact on the user’s next utterance (for example, poor or inappropriate responses often

cause users to respond with confusion or to change topic).

Finally, a new state zt+1 is sampled according by:

zt+1 ∼ Pψ(zt+1 | zt, st, at, yt), (111)

101

where Pψ(zt+1 | zt, st, at, yt) is the transition distribution of observing zt+1 given the other vari-

ables, with parameters ψ. This distribution is defined by three independent two-layer neural net-

work models, which each take as input the same features as the neural network scoring models and

the following additional features:

AMT label class: One-hot vector representing the sampled AMT label class yt.

Dialogue act: One-hot vector representing the dialogue act of last user utterance.

Sentiment: One-hot vector representing the sentiment of last user utterance.

Generic user utterance: Binary feature equal to one if last user utterance only contains stop-words.

Wh-words: Binary feature equal to one if last user utterance contained a wh-word (e.g.

what, who).

The first neural network predicts the next dialogue acts by outputting a probability for each class in

ZDialogue act. The second neural network predicts the next sentiment type by outputting a probability

for each class in ZUser sentiment. The third neural network predicts whether the next user utterance

is generic or not, by outputting a probability for each class in ZGeneric user utterance. The Cartesian

product of their probabilities defines the probability Pψ(zt+1 | zt, st, at, yt) for every z ∈ Z.

The dataset for training the neural network models consists of 499,757 transitions, of which

70% are used for training and 30% for evaluation. As before, the model parameters are optimized

w.r.t. log-likelihood with gradient decent using Adam. The models are trained with early stopping

on the hold-out set. No other regularization is used. The three neural network models attain a

joint perplexity of 19.51. A baseline model, which always assigns the average class frequency

as the output probability, obtains a worse perplexity of 23.87. This indicates that roughly 3 − 4
possible states zt+1 ∈ Z can be eliminated by conditioning on the previous variables zt, st, at and

yt on average. This suggests that the previous states zt and st, together with the agent’s action

at, are bound to have an effect on the future state zt+1, and that an agent trained in the Bottleneck

Simulator may learn to take this effect into account. This is in contrast to both policies learned

using supervised learning, which do not consider future dialogue states, and policies learned using

REINFORCE, which only implicitly take into account future states of the dialogue.

4.10.2 Policy Training

Given the approximate MDP of the Bottleneck Simulator, we can learn a policy directly from

rollout simulations in the approximate MDP. We use the Q-learning algorithm, described in section

2.2.3, with a so-called experience replay buffer in order to learn a neural network scoring model

102

policy (Mnih et al., 2013; Lin, 1993).35 We use an ε-greedy policy with ε = 0.1. We experiment

with the following discount factors: γ ∈ {0.1, 0.2, 0.5}. As before, the neural network scoring

model parameters are trained using Adam. We only train the parameters related to the final output

layer and the skip-connection (shown in dotted lines in Figure 16) using Q-learning, in order to

reduce the risk of overfitting.

As before, the neural network scoring model is initialized with the parameters of the Supervised

AMT policy. Then, training is carried out in two alternating phases. First, the policy is trained for

100 episodes. Second, the policy is evaluated for 100 episodes w.r.t. average return. Afterwards,

the policy is again trained for 100 episodes. For the evaluation, each dialogue history is sampled

from a separate set of dialogue histories, which is disjoint from the set of dialogue histories used

at training time. This ensures that the policy is not overfitting. A policy is trained between 400 and

600 episodes for each hyperparameter combination. The best hyperparameters are selected w.r.t.

average return. To keep notation brief, we call this policy Bottleneck Simulator.

35For experience replay, we use a memory buffer of size 1000.

103

4.11 Learning the Response Selection Policy with Other Reinforcement Learn-
ing Algorithms

As discussed earlier, the work in this second part of the thesis is based on the pre-print article:

“The Bottleneck Simulator: A Model-based Deep Reinforcement Learning Approach"

by Iulian Vlad Serban, Chinnadhurai Sankar, Michael Pieper, Joelle Pineau and Yoshua Bengio,

arXiv:1807.04723, 2018. The article was submitted to the International Conference on Machine

Learning 2018 (ICML 2018). The reviewers rejected the article for the major reason that it was

missing two popular reinforcement learning algorithms: vanilla Q-learning and state abstraction.

This section describes the implementation of these two algorithms. The next section includes

experiment results with these two algorithms.

4.11.1 Q-Learning Policy

The Q-learning algorithm, described in section 2.2.3, can be applied directly to the recorded dia-

logues. As before, let D = {(sdt , adt , Rd, T d)}d,t be a dataset of examples, where sdt is the dialogue

history at time t, adt is the agent’s action at time t, Rd is the return and T d is the total number of

turns in dialogue d. Let |D| be the number of dialogues. Then, let ψ be the parameters of the ap-

proximate state-action-value function Qψ. The parameters are updated by minimizing the squared

error: ∑
(sdt ,adt ,Rd,T d)∈D

||Qψ(st, at)− Q̂ψ(st, at)||2,

where Q̂ψ(st, at) = rt + γmax
a′

Qψ(st+1, a
′), (112)

and rt = 1(t=T d)R
d (113)

where Q̂ψ(st, at) is taken to be a constant variable, and where γ is the discount factor. We

parametrize Qψ as the neural network scoring model from above. We name this policy Q-learning.

The dataset for training the policy consists of 499,757 transitions, of which 70% are used for

training and 30% for evaluation. The model parameters are initialized from the Supervised AMT

parameters and then optimized w.r.t. its loss function with gradient decent using Adam. The model

is trained with early stopping on the hold-out set. No other regularization is used. The following

discount factors are considered: γ ∈ {0.1, 0.2, 0.5}. The hyperparameters are selected based on

the squared error loss on the hold-out set given by (113).

4.11.2 State Abstraction Policy

State abstraction, or state aggregation, is a well-known approach in reinforcement learning, where

similar states are grouped together to form a new, reduced MDP (Bean et al., 1987; Bertsekas and

104

Castanon, 1989; Dietterich, 2000; Jong and Stone, 2005; Jiang et al., 2015). After the states have

been grouped together, a reinforcement learning algorithm (e.g. Q-learning) can then be applied to

learn a policy in the reduced MDP with the hope that fewer iterations and examples are needed to

learn an effective policy.

The state abstraction approach is related to the Bottleneck Simulator. In contrast to state ab-

straction, in the Bottleneck Simulator the grouping is applied exclusively within the approximate

transition model while the agent’s policy operates on the complete, observed state st ∈ S. This

enables the Bottleneck Simulator to reduce the impact of errors caused by disparate states being

grouped together. Since the Bottleneck Simulator policy has access to the complete, observed

state, it may counter such disparate groupings by optimizing for myopic, next-step rewards. The

Bottleneck Simulator allows a deep neural network policy to learn its own high-level, distributed

representations of the complete, observed state. In particular, the Bottleneck Simulator policy may

be initialized using the parameters of another policy operating on the complete, observed state,

such as the Supervised AMT policy trained on AMT labels. Finally, it should be noted that both

state aggregation and the Bottleneck Simulator may incorporate knowledge about the structural

properties of the environment.

We propose a state abstraction policy, which learns an approximate, tabular state-action-value

function Qψ operating on the set of abstract states and actions:

Qψ(st, at) = ψfs→z(st), ha→aabs (at) (114)

where fs→z is the classifier mapping dialogue histories s ∈ S to bottleneck states z ∈ Z defined

earlier with 60 bottleneck states, ha→aabs is a deterministic classifier mapping actions (candidate

responses) a to abstract actions aabs ∈ A with 52 abstract actions, and ψ are the policy parameters

s.t. ψ ∈ R|Z|×|A| = R60×52. The set of abstract actions A is defined by the Cartesian product:

A = AResponse model class ×AWh-question ×AGeneric response, (115)

where AResponse model class is a one-hot vector representing which of the 13 response model classes

generated the response, AWh-question = {True, False} is a binary variable, which is True if the

response contains a wh-question (e.g. a what or why word), and AGeneric response = {True, False}
is a binary variable, which is True if the response only contains stop-words.36

Since this is a tabular policy, we update its parameters using eq. (52). Given a state st, an action

at, a reward rt, and a consecutive state st+1, the parameters are updated by:

ψfs→z(st), ha→aabs (at) ← (1− α)ψfs→z(st), ha→aabs (at) + αψ̂fs→z(st), ha→aabs (at)

where ψ̂fs→z(st), ha→aabs (at) = rt + γ max
a′abs∈A

ψfs→z(st+1), a′abs
, (116)

36To reduce sparsity, some of the similar models have been grouped together in the one-hot vector representation.

105

where α > 0 is the learning rate and γ is the discount factor.

Similar to the Bottleneck Simulator policy, this policy is trained with Q-learning using roll-

out simulations from the Bottleneck Simulator environment model. The discount factor is set to

the same as the learned Bottleneck Simulator policy. The training procedure is the same as the

Bottleneck Simulator policy. We name this policy State Abstraction.

4.12 Experiments

4.12.1 Evaluation Based on Crowdsourced Data and Rollout Simulations

We first evaluate the learned response selection policies by using the AMT crowdsourced dataset

and by rollout simulations in the Bottleneck Simulator environment model. Since these experi-

ments do not involve real-world users, we are able to evaluate all the policies presented earlier.

Crowdsourced Evaluation: We evaluate the learned policies using the AMT test dataset. For

each dialogue history and corresponding set of labelled candidate responses, we measure the score

label 1 − 5 given to the candidate response selected by the learned policies.37 We compute the

average score for each policy across all unique dialogues in the AMT test dataset. We report 95%
confidence intervals estimated under the assumption that the scores are normally-distributed. In

addition, we also measure how often each policy selects each of the 22 response models inside the

ensemble system. We evaluate all the policies presented earlier.

Rollout Simulation Evaluation: We evaluate the performance of each policy w.r.t. rollout

simulations in the Bottleneck Simulator environment model. Although the Bottleneck Simulator

environment model is not an accurate representation of the real world, it has been trained with

maximum log-likelihood on nearly 500,000 recorded transitions. Therefore, the simulations may

be interpreted as a first order approximation of how a policy would perform when interacting with

real-world users. However, this interpretation does not apply to the Bottleneck Simulator and State

Abstraction policies, which have utilized rollout simulations from the Bottleneck Simulator envi-

ronment model during their training. It is possible that the these two policies might be overfitting

the Bottleneck Simulator environment model, which in turn might cause this evaluation to over-

estimate their performance. Therefore, we should not consider a superior performance of either of

these two policies here to imply better performance.

We rollout 500 simulated episodes under each policy and compute the average return and aver-

age reward per time step (i.e. per system response).38 The rollouts are carried out on the held-out

37Due to the nature of the crowdsourcing evaluation, all neural network scoring modules select their candidate
responses by fixing the parameters of the output layer to those of Supervised AMT, as described in section 4.7.

38The average reward per time step is computed by first averaging the rewards in each episode and then averaging
the average rewards across episodes.

106

Table 12: Policy evaluation w.r.t. average crowdsourced scores (± 95% confidence intervals), and

average return and reward per time step computed from 500 rollouts in the Bottleneck Simulator

environment model (± 95% confidence intervals). Triangle N indicates policy is initialized from

Supervised policy feed-forward neural network and hence yield same performance w.r.t. crowd-

sourced human scores.

Crowdsourced Simulated Rollouts

Policy Human Score Return Avg Reward

Evibot + Alicebot 2.25± 0.05 −11.33± 1.09 −0.29± 0.02
Supervised AMT 2.63± 0.06 −6.46± 0.70 −0.15± 0.01
Supervised AMT Learned Reward -N −24.19± 2.04 −0.73± 0.02
REINFORCE -N −7.30± 0.78 −0.16± 0.01
REINFORCE Learned Reward -N −10.19± 0.98 −0.28± 0.02
Bottleneck Simulator -N −6.54± 0.70 −0.15± 0.02
Q-learning -N −6.70± 0.65 −0.15± 0.01
State Abstraction 1.85± 0.05 −13.04± 1.18 −0.35± 0.02

dataset of recorded dialogue transitions (i.e. only states s ∈ S̄, which occur in the held-out dataset

are sampled during rollouts). We report 95% confidence intervals estimated under the assumption

that the returns and rewards are normally-distributed. We evaluate all the policies presented earlier.

Results: The results are given in Table 12. On the crowdsourced evaluation, all policies sig-

nificantly outperform the Evibot + Alicebot baseline policy, which achieves only a modest average

score of 2.25, with the exception of the State Abstraction policy, which achieves an even lower

average score of 1.85. This shows that supervised learning utilizing crowdsourced human anno-

tations has helped learn effective policies. Further, it shows that State Abstraction is an inferior

approach, which may be explained by the fact that it does not utilize the crowdsourced human

annotations to learn a policy operating on the complete, observed state space and complete action

space. More generally, state abstraction may be inadequate for complex sequential decision mak-

ing problems involving very high dimensional state and action spaces, such as selecting responses

for a non-goal-driven dialogue system.

On the rollout simulation evaluation, the three policies achieving the highest average returns

are Supervised AMT, Bottleneck Simulator and Q-learning. These policies achieve average re-

turns ranging from -6.70 to -6.47. Since the Bottleneck Simulator policy performs similarly to the

other policies, it is possible that the policy has not overfitted the Bottleneck Simulator environ-

107

ment model. If this is the case, the results indicate that these three policies might perform best in

real-world interactions with users. Following these policies, the REINFORCE and REINFORCE

Learned Reward policies appear to perform best, with average returns ranging from -10.19 to -7.30.

Last in comes the Evibot + Alicebot, State Abstraction and Supervised AMT Learned Reward poli-

cies, with lower average returns and lower average rewards. As noted earlier, this again shows

that the State Abstraction policy is inferior compared to the other policies. Finally, the poor per-

formance of the Supervised AMT Learned Reward policy suggests that the learned reward model

might be inaccurate.

Figure 20 shows the frequency with which the Supervised AMT, REINFORCE and Bottleneck

Simulator policies select candidate responses from the response models in the ensemble system.

Figure 19 shows a contingency table indicating the difference in the response models selected by

the Supervised AMT policy and Bottleneck Simulator policy. The first figure shows that REIN-

FORCE tends to strongly prefer Alicebot responses over other models. The Alicebot responses

are in general the most topic-dependent and generic responses in the ensemble system. This sug-

gests that the REINFORCE policy has learned to follow a highly risk averse strategy. In contrast,

the Bottleneck Simulator policy selects Alicebot responses with a substantially lower frequency

compared to both the REINFORCE and Supervised AMT policies. It appears that the Bottleneck

Simulator policy instead prefers responses involving interesting and fun facts (“BoWFactGenera-

tor") as well as responses retrieved from Washington Post (“Washington Post Models") and from

Google search results (“LSTMClassifierMSMarco"). These responses have more semantic con-

tent and may have the potential to increase user engagement while discussing a particular topic,

but they are also more risky. An inappropriate response here could cause significant user frustra-

tion and lower the overall user satisfaction. This indicates that the Bottleneck Simulator policy

has learned a more risk tolerant strategy. This might be explained by the fact that the Bottleneck

Simulator policy is trained using simulations. By learning from simulations, the policy may have

been able to explore new actions and discover high-level strategies lasting multiple dialogue turns.

In particular, the policy may have been able to experiment with riskier actions and to learn re-

mediation or fall-back strategies, which may be applied when a risky action fails. This might in

turn explain its stronger preference for candidate responses containing interesting and fun facts

(“BoWFactGenerator"), which might act as a fall-back strategy where the policy distracts the user

to recover from an inappropriate response. Such a strategy would be difficult to learn for the REIN-

FORCE policy, because the sequence of actions exhibited by such high-level strategies are rarely

observed in the dataset. Even if such action sequences were observed frequently, the corresponding

user scores would likely suffer from high variance. Finally, the first figure shows that among the

three policies the Bottleneck Simulator policy has the strongest preference for Initiatorbot, which

outputs “conversation starter" responses. This is explained by the second figure, which shows

108

that the Bottleneck Simulator policy has selected responses from Initiatorbot instead of responses

from Alicebot and Elizabot. This could indicate that the Bottleneck Simulator policy aims to fol-

low a system-initiative strategy, where the system maintains control of the conversation by asking

questions, changing topics and so on.

109

Figure 19: Contingency table comparing selected response models between Supervised AMT and

Bottleneck Simulator. The cells in the matrix show the number of times the Supervised AMT policy

selected the row response model and the Bottleneck Simulator policy selected the column response

model. The cell frequencies were computed by simulating 500 episodes under the Bottleneck

Simulator environment model. Further, it should be noted that all models retrieving responses

from Reddit have been agglomerated into the class Reddit models.

110

0 5 10 15 20 25 30 35 40 45
Response select ion frequency (in %)

Other Models

GRUQuest ionGenerator

Reddit Ret rieval Models

Washington Post Models

LSTMClassifierMSMarco

VHREDSubt it les

BoWFactGenerator

Init iatorbot

Elizabot

Alicebot

Evibot

Policy

Supervised AMT

REINFORCE

Bottleneck Simulator

Figure 20: Response model selection probabilities across response models for Supervised AMT,

REINFORCE and Bottleneck Simulator on the AMT label test dataset. 95% confidence intervals

are shown based on the Wilson score interval for binomial distributions.

4.12.2 Real-World User Experiments

Setup: We next evaluate the response selection policies by carrying out A/B testing experiments

with real-world users in the Amazon Alexa Prize 2017 competition. For each A/B testing exper-

iment, we evaluate multiple response selection policies. Alexa users invoke the Alexa device’s

chatting functionality by saying “Alexa, let’s chat!”. After invoking the chatting functionality,

Alexa users start a conversation with a socialbot selected at random. Alexa users who start a

conversation with the Milabot system are then assigned to a response selection policy at uniform

random. After, their dialogues and their final subjective scores (in the range 1 − 5) are recorded.

We will consider the subjective user scores and the length of the dialogues as the main performance

indicators, since they are both reflective of the overall user experience.

A/B testing enables us to accurately compare different response selection policies by keeping

most other experimental factors constant. This is the advantage of A/B testing compared to other

evaluation methods, such as the alternative method of evaluating system performance over time as

the system changes.39 Nevertheless, the distribution of Alexa users still changes through time both

during and across A/B testing experiments. The distribution of users is likely to depend on the

times of day, weekday and holiday season. In addition, user expectations change through time as

39When different systems are being evaluated at different points in time, it is often difficult to assess the improve-
ment or degradation of performance w.r.t. specific system modifications.

111

users interact with other socialbots in the competition. In other words, the Alexa user distribution

follows a non-stationary stochastic process. Motivated by this observation, we take two steps to

reduce confounding factors in the experiments. First, we evaluate all policies of interest simulta-

neously during each A/B testing experiment. This should result in approximately the same number

of users interacting with each policy w.r.t. time of day and weekday, and minimize the effect of a

changing user distribution on user scores given in that period. However, since the user distribution

changes between A/B testing experiments, it not possible to accurately compare policy perfor-

mance across A/B testing experiments. Second, we discard returning users in the experiments. In

other words, if a user has interacted with the Milabot system multiple times, we will only consider

their first interaction. The reason is that returning users are likely to be influenced by their previ-

ous interactions with the system. For example, a user who previously had a positive experience

with the system may be biased towards giving a high score in their next interaction. Furthermore,

users who return to the system are likely to belong to a particular subpopulation of users, who

may have more free time and be more willing to engage with socialbots than other users. By dis-

carding returning users, we ensure that the evaluation is not biased towards this subpopulation of

users. Finally, we exclude dialogues where users did not provide a score at the end. This biases

the evaluation, since users who do not provide a score are likely to have been dissatisfied with the

system or to have been expecting different functionality (e.g. non-conversational activities, such

as playing games or taking quizzes). In principle, this last issue can be solved by having all the

dialogues evaluated by a third-party (for example, asking human annotators on AMT to evaluate

the dialogue). This is left for future work.

Policies Evaluated: The A/B testing experiments evaluate the following policies: Evibot + Al-

icebot, Supervised AMT, Supervised AMT Learned Reward, REINFORCE, REINFORCE Learned

Reward and Bottleneck Simulator. The A/B testing experiments do not include the Q-learning

and State Abstraction policies presented earlier. The reason for not including them was three-fold.

First, during the Amazon Alexa Prize 2017 competition, only a small number of users interacted

with the system on a daily basis. Therefore, it was infeasible to both evaluate all policies with real-

world users and obtain statistically significant results. Second, there were several prior arguments

for why both the Q-learning and State Abstraction policies would not work well for this problem.

The Q-learning algorithm tends to be sample inefficient in many practical applications (Deisenroth

and Rasmussen, 2011; Schulman et al., 2015) (see also (Tu and Recht, 2018)). Similarly, state ab-

straction methods may be inadequate for complex sequential decision making problems involving

very high dimensional state and action spaces. In particular, state abstraction methods with discrete

state and action spaces may suffer significantly from the curse of dimensionality (Richard, 1961;

Bishop, 2006). Finally, the experiments in section 4.12.1 were conducted after the A/B testing

experiments presented here. As such, there were no prior experiments for deciding on the set of

112

response selection policies to include in the A/B testing experiments.

Chronological Overview: The first A/B testing experiment was conducted between July 29th,

2017 and August 6th, 2017. This experiment evaluated the six policies: Evibot + Alicebot, Su-

pervised AMT, Supervised AMT Learned Reward, REINFORCE, REINFORCE Learned Reward

and Bottleneck Simulator. The REINFORCE and REINFORCE Learned Reward policies used

the greedy action selection mechanism defined in eq. (96). This experiment occurred early in the

Amazon Alexa Prize 2017 competition, which might imply that Alexa users had few expectations

towards the capabilities of the socialbot systems. The experiment period also overlapped with the

summer holidays in the United States, which might have lead to more children interacting with

system than during other seasons.

The second A/B testing experiment was conducted between August 6th, 2017 and August 15th,

2017. This experiment evaluated the two policies: REINFORCE and Bottleneck Simulator. As

before, the REINFORCE policy used the greedy action selection mechanism defined in eq. (96).

This experiment occurred at the end of the competition semi-finals. At this point many Alexa users

had already interacted with other socialbots in the competition, and therefore were likely to have

developed expectations towards the socialbots. The period August 6th - August 15th overlapped

with the end of the summer holidays and the beginning of the school year in the United States,

which might have lead to less children interacting with the system than in the first A/B testing

experiment.

The third A/B testing experiment was conducted between August 15th, 2017 and August 21st,

2017. Based on the results in the first and second A/B testing experiments, we decided to continue

testing the policies REINFORCE and Bottleneck Simulator. As before, the REINFORCE policy

used the greedy action selection mechanism defined in eq. (96). This experiment occurred after

the end of the competition semi-finals. As pointed out earlier, this means that it is likely that many

Alexa users had already developed expectations towards the socialbot systems. This A/B testing

experiment period was entirely within the beginning of the school year in the United States, which

might have lead to less children interacting with the system than in the previous two A/B testing

experiments.

User Satisfaction Results: The main results for the three A/B testing experiments are given

in Table 13. The table shows the average user scores, average dialogue length, average percent-

age of positive user utterances and average percentage of negative user utterances. In total, over

2800 user scores were collected after discarding returning users. Scores were collected after the

end of the semi-finals competition, where all scores had been transcribed by human annotators. In

addition, the aggregated results for the Amazon Alexa Prize 2017 competition are given in Table

14. However, it is impossible to accurately or fairly compare these aggregated results with the Mi-

labot system results because the aggregated results are based on an average across many different

113

Table 13: A/B testing results (± 95% confidence intervals). The superscript ∗ indicates statistical

significance at a 95% confidence level.

Policy User score Dialogue length Pos. utterances Neg. utterances

Exp #1 Evibot + Alicebot 2.86± 0.22 31.84± 6.02 2.80%± 0.79 5.63%± 1.27
Supervised AMT 2.80± 0.21 34.94± 8.07 4.00%± 1.05 8.06%± 1.38

Supervised AMT

Learned Reward
2.74± 0.21 27.83± 5.05 2.56%± 0.70 6.46%± 1.29

REINFORCE 2.86± 0.21 37.51± 7.21 3.98%± 0.80 6.25± 1.28

REINFORCE

Learned Reward
2.84± 0.23 34.56± 11.55 2.79%± 0.76 6.90%± 1.45

Bottleneck Simulator 3.15± 0.20∗ 30.26± 4.64 3.75%± 0.93 5.41%± 1.16

Exp #2 REINFORCE 3.06± 0.12 34.45± 3.76 3.23%± 0.45 7.97%± 0.85
Bottleneck Simulator 2.92± 0.12 31.84± 3.69 3.38%± 0.50 7.61%± 0.84

Exp #3 REINFORCE 3.03± 0.18 30.93± 4.96 2.72± 0.59 7.36± 1.22
Bottleneck Simulator 3.06± 0.17 33.69± 5.84 3.63± 0.68 6.67± 0.98

Table 14: Amazon Alexa Prize semi-finals average team statistics provided by Amazon.

Policy User score Dialogue length

All teams 2.92 22
Non-finalist teams 2.81 22
Finalist teams 3.31 26

systems, including the system variants in the A/B testing experiments and other socialbots which

invoked non-conversational activities in order to increase user engagement (e.g. playing games

and taking quizzes).

Table 13 shows that both REINFORCE and Bottleneck Simulator perform better than the other

policies evaluated in the first A/B testing experiment. In particular, Bottleneck Simulator obtains an

average user score of 3.15, which is significantly higher than all other policies at a 95% statistical

significance level w.r.t. a one-tailed two-sample t-test. In comparison, the second best performing

policies are the Evibot + Alicebot and REINFORCE, which both obtained an average user score of

2.86. To put this difference of 3.15−2.86 = 0.29 score points in perspective, the average user score

of the non-finalist and finalist teams in the competition are 2.81 and 3.31 respectively, yielding a

difference of 3.31 − 2.81 = 0.50 score points. This indicates that learning a high-performing

response selection policy may play a significant role in improving the overall user satisfaction.

114

These results confirm the hypothesis that deep reinforcement learning and, in particular, model-

based deep reinforcement learning utilizing a probabilistic generative model may be an effective

method for learning a response selection policy. Furthermore, the results indicate that designing

the Bottleneck Simulator environment model to include abstract, high-level semantic structure (i.e.

a bottleneck state) could yield a sample efficient reinforcement learning approach.

For the second and third A/B testing experiments, the table shows that both the REINFORCE

and Bottleneck Simulator policies perform well. In the second experiment, REINFORCE per-

forms best obtaining an average user score of 3.06. In the third experiment, Bottleneck Simulator

performs best obtaining an average user score of 3.06. However, the differences between the av-

erage scores of the two policies here are not statistically significant. The performance difference

compared to the first A/B testing experiment could be due to the change in user profiles and user

expectations. At this point in time, many of the Alexa users had interacted with socialbots from

other teams and these socialbots had also been evolving. It is therefore likely that the user ex-

pectations were higher now. Furthermore, since the summer holidays in the United States ended

during these experiments, less children and more adults were likely to interact with the socialbots.

It is plausible that these adults had higher expectations towards the system and that they were less

playful and less tolerant towards mistakes. Given this change in user profiles and expectations,

the risk tolerant strategy learned by the Bottleneck Simulator policy is likely to have faired worse

compared to the risk averse strategy learned by the REINFORCE policy. Although these results do

not favour one policy over another, the results still support the hypothesis that deep reinforcement

learning is a promising approach for learning an effective response selection policy.

The average dialogue length is also an important metric, because it reflects the overall user

engagement and response coherency. On this metric, the REINFORCE policy performs best in the

first and second A/B testing experiments by maintaining an average dialogue length of 37.51 and

34.45 respectively. This supports the hypothesis that deep reinforcement learning is a promising

approach for learning an effective response selection policy. However, the result may also be ex-

plained by the risk averse strategy learned by REINFORCE. By utilizing a risk averse strategy, it

is possible that the policy may be capable of continuing conversations longer by making generic,

coherent responses and avoiding catastrophic mistakes. However, this advantage may come at the

price of lower user engagement, since generic responses are likely to lead to lower user engage-

ment. If this is the case, then the higher average dialogue length may not necessarily indicate a

better performing policy.

Finally, Table 13 shows that the Bottleneck Simulator policy consistently obtains less user ut-

terances with negative sentiment than all other policies. In the second and third A/B testing exper-

iments, the Bottleneck Simulator policy also obtained more user utterances with positive sentiment

compared to the REINFORCE policy. This also confirms the hypothesis that model-based deep re-

115

Table 15: First A/B testing experiment topical specificity and coherence by policy. The columns

are average number of noun phrases per system utterance (System NPs), average number of over-

lapping words between the user’s utterance and the system’s response (This Turn), and average

number of overlapping words between the user’s utterance and the system’s response in the next

turn (Next Turn). Stop words are excluded. 95% confidence intervals are also shown.

Word Overlap

Policy System NPs This Turn Next Turn

Evibot + Alicebot 1.05± 0.05 7.33± 0.21 2.99± 1.37
Supervised AMT 1.75± 0.07 10.48± 0.28 10.65± 0.29
Supervised AMT Learned Reward 1.50± 0.07 8.35± 0.29 8.36± 0.31
REINFORCE 1.45± 0.05 9.05± 0.21 9.14± 0.22
REINFORCE Learned Reward 1.04± 0.06 7.42± 0.25 7.42± 0.26
Bottleneck Simulator 1.98± 0.08 11.28± 0.30 11.52± 0.32

inforcement learning, based on an estimated environment model incorporating abstract, high-level

semantic structure, may be an effective approach for learning a response selection policy.

Topical Specificity and Coherence Results: In order to further understand the differences be-

tween the learned policies, we carry out an analysis of the topical specificity and coherence of the

different policies. The analysis aims to quantify how often each policy stays on topic (e.g. the fre-

quency with which each policy selects responses on the current topic) and the topical specificity of

the response content (e.g. how frequently the policy selects generic, topic-independent responses).

This analysis is carried out at the utterance level, where the number of data examples is an order

of magnitude larger compared to the number of user scores.

The results of this analysis are shown in Table 15. We measure topic specificity given by the

average number of noun phrases per system utterance.40 The more topic-specific a system utterance

is, the higher we would expect this metric to be. We measure topic coherence by two metrics: the

word overlap between the user’s utterance and the immediate next system’s response, and the word

overlap between the user’s utterance and the system’s response at the next dialogue turn. The more

a policy prefers to stay on topic, the higher we would expect these two metrics to be.

Table 15 shows that the Bottleneck Simulator policy obtains significantly higher metric scores

w.r.t. both the average number of noun phrases per system utterance and the two word overlap

metrics. This indicates that the Bottleneck Simulator policy selects system responses with the

40We use https://spacy.io version 1.9.0 to detect noun phrases with the package "en_core_web_md-1.2.1".

116

https://spacy.io

highest topical coherency among all six policies, and that it generates the most topic-specific and

semantically rich responses. This is in agreement with our previous conclusion that the Bottleneck

Simulator policy follows a risk tolerant strategy. Next in line, comes the Supervised AMT policy,

which also appears to maintain high topic specificity and coherence according to all three metrics.

Then, come the Off-policy REINFORCE and Off-policy REINFORCE Learned Reward, policies,

which select responses with significantly less noun phrases and word overlap compared to both

the Bottleneck Simulator policy and the Supervised AMT policy. This is also in agreement with

our previous conclusion, where we found that REINFORCE follows a risk averse strategy.41 Fi-

nally, the baseline policy Evibot + Alicebot selects responses with the least noun phrases and word

overlap among all policies. Overall, these results confirm that model-based deep reinforcement

learning, based on an estimated environment model incorporating abstract, high-level semantic

structure, is an effective approach for learning a response selection policy.

Analyzing Why Conversations Terminate: Finally, we conducted an experiment to investi-

gate why users terminate their conversations with the Milabot system. This experiment aims to

quantify if certain patterns are predictive of when a conversation will terminate. The ability to

predict if a conversation is about to terminate could also serve as an important input feature for a

policy. A policy could potentially use this input feature to adjust its responses in order to continue

the conversation longer (e.g. by switching topics or by saying a joke to recover from an inappro-

priate response), which in turn might increase the overall user satisfaction. In addition, the same

feature could be used to improve the reward shaping technique described in section 4.9.

The experiment is designed as follows. Given the dialogue history of six dialogue turns as

input (three system utterances and three user utterances), a binary classification model is trained to

predict if the next turn will be the last turn of the dialogue. A dataset is constructed for training the

classification model based on the recorded dialogues between Alexa users and different variants of

the Milabot system. For all recorded dialogues of sufficient length, a positive example is created

from the last eight turns of the dialogue, and a negative example is created with a contiguous

sequence of six turns selected at uniform random from the rest of dialogue. A neural network is

given features of the first six dialogue turns as input and trained to predict the binary output by

optimizing its parameters with maximum log-likelihood. For each input utterance five categorical

variables are computed. The first variable is the normalized utterance length. The second variable

41For these experiments, we consider changing the topic of the dialogue to be a risk averse move. The reason is that
many of the response models (e.g. Alicebot, Initiatorbot, BoWFactGenerator) respond with pre-defined answers as
they change topics (for example, BoWFactGenerator might change topic by saying “Did you know that male rabbits

are called bucks, females are does?”). These pre-defined answers are grammatically correct and will rarely if ever
result in a disastrous user experience, but they limit the conversation to a superficial level and may not be entertaining
to users.

117

Table 16: Accuracy of models predicting if a conversation will terminate using different features.

Random Utterance Speech Recognition Word
Baseline Length Sentiment Confidence Embeddings Combined

50.0% 70.1% 57.6% 51.4% 75.4% 75.8%

is the sentiment class. The third variable is a binary value indicating if the minimum confidence

of the speech recognition system for any word in the utterance was less than 0.1 (on the interval

[0, 1]). The fourth and fifth variables are the same as the third variable, but with thresholds set to 0.2

and 0.4 respectively. These variables are concatenated together with the average Word2Vec word

embeddings (Mikolov et al., 2013b) of the utterance to form a feature vector. The feature vector

for each utterance is a 305-length vector. The input to the neural network is the concatenation of

these feature vectors for all three utterances of each interlocutor, yielding a 2 × 3 × 305 length

vector.

In order to quantify which patterns are predictive of when a conversation will terminate, vari-

ants of the model are trained by masking out different input features. The first model masks all

features except for the utterance length feature. The second model masks all features except for the

sentiment feature. The third model masks all features except for the speech recognition confidence

features. The fourth model masks all features except for the Word2Vec word embedding features.

The fifth model doesn’t mask any features. In addition to these five models, a random baseline

model is also included in the experiment. This model obtains 50% accuracy, since there is an equal

amount of positive and negative examples in the test dataset.

Table 16 shows the accuracies different models obtain. The table shows that the features based

on utterance length and word embeddings are most predictive of whether the dialogue will end in

the next turn. Since the utterance length is predictive of whether the dialogue will terminate or not,

it seems likely that short user utterances might indicate low user engagement and, in addition, make

it difficult for the system to return an engaging response. Since word embeddings are predictive of

whether the dialogue will terminate or not, it seems likely that the semantics of the user’s utterance

might be predictive of the user’s engagement level. For example, a user changing topics might

indicate boredom or frustration on the user’s side. As another example, a user answering with a

generic, topic-independent response (e.g. "OK" or "I don’t know") might also indicate boredom

and, in addition, make it difficult for the system to return an entertaining response.

118

4.13 Discussion

In this second part of the thesis, we have explored different approaches to building a dialogue

system combining representation learning and reinforcement learning. We have presented a deep

reinforcement learning dialogue system, called Milabot. Milabot participated in the Amazon Alexa

Prize 2017 competition, where the goal was to build a spoken non-goal-driven dialogue system

(a socialbot) conversing coherently and engagingly with humans on popular topics, in order to

maximize user satisfaction. Milabot processes the human interlocutor’s input together with the

dialogue history using an ensemble of 22 response models, including generative and retrieval-

based models, in order to generate a set of candidate responses. After the candidate responses

have been generated, the response selection policy selects a candidate response to emit to the user.

The goal of the response selection policy is to select the response, which maximizes the overall

user satisfaction. The problem of learning an effective response selection policy may be posed as a

sequential decision making problem, since the system response emitted at one point in the dialogue

will affect both the remainder of the dialogue and the overall user satisfaction.

We have proposed to parametrize the response selection policy as a neural network and pro-

posed six different algorithms for learning the corresponding model parameters. The first approach

learns the model parameters using supervised learning on crowdsourced human annotations. The

second approach is based on deep reinforcement learning with the Q-learning algorithm. The third

approach learns an approximate state-action-value function based on the observed user scores.

The fourth and fifth approaches learn the response selection policy parameters using a class of re-

inforcement learning algorithms called REINFORCE. Finally, inspired both by the work in the first

part of this thesis and state abstraction methods in reinforcement learning, the sixth approach learns

the response selection policy parameters using Q-learning from rollout simulations in a simulated

stochastic environment. The simulated environment is based on an estimated transition model of

the environment, which utilizes an abstract, bottleneck state incorporating high-level semantic in-

formation about the dialogue in order to increase sample efficiency. This approach is called the

Bottleneck Simulator. In addition to these six algorithms, we have also proposed two baseline re-

sponse selection policies: one baseline policy based on a set of heuristic, hand-crafted rules, and

one based on a state abstraction reinforcement learning algorithm.

We have evaluated all the proposed response selection policies against each other in multi-

ple A/B testing experiments with real-world users. The results from these experiments show that

the Bottleneck Simulator policy performs either better than or on par with all the other policies.

A deeper analysis of the conversations with real-world users further reveals that the Bottleneck

Simulator policy maintains the highest topical coherency and generates the most topic-relevant

responses. These conclusions are supported by additional experiments on the crowdsourced hu-

119

man annotations and by rollout simulations in the simulated environment. Overall, the results

suggest that there is much to be gained from learning an approximate environment simulating the

interactions between human and machine interlocutors, which incorporates high-level semantic

information.

In order to properly interpret the experiment results, it is important to also discuss the issues

and limitations of the research presented in this chapter. As discussed earlier, the distribution

over real-world users, including their expectations and prior experience, changed throughout the

A/B testing experiments. In particular, it is highly likely that user expectations were affected by

other socialbots in the competition, including their expectations to talk about certain topics (e.g.

news article topics) or to play social games (e.g. personality quizzes), and by Amazon’s marketing

campaign to drive users to try the socialbots. Despite the fact that each A/B testing experiment

evaluated the response selection policies in parallel, these issues represent a substantial group of

confounding factors and may have biased the users to prefer the behaviour of one policy over

others, which in turn would affect the experiment conclusions. Another important confounding

factor is the effect of speech recognition errors on the observed user satisfaction w.r.t. different

policies. Some policies may be more adept at handling speech recognition errors than others (for

example, by emphasizing the conversation topic more than the words present in the user’s last

utterance). This could make one policy appear to perform better than other policies.

An important limitation of the experiments lies in the underspecified format of the conversa-

tions. All conversations begin from a blank slate with no anchoring points or common ground

established between interlocutors. Unfortunately, there is also no mechanism for introducing ex-

ternal media, such as news articles or songs. Furthermore, even if a user returns to talk to the same

socialbot, their conversation history is not available to the system. This makes the competition

very difficult, as the socialbots have to both establish a topic and a common ground, in addition to

conducting the conversation. This stands in contrast with the Ubuntu and Twitter tasks presented

earlier in this thesis, where the generative model only has to generate the next response in a con-

versation and where the topic and some of the common ground has already been established. On a

related point, other researchers have explored anchoring conversations based on Wikipedia articles

(Burtsev et al., 2018; Zhou et al., 2018; Dinan et al., 2019) and user profiles (Zhang et al., 2018).

Another important limitation of the experiments is caused by their rigid turn-taking structure.

Although the conversations are spoken, it is impossible for the user to interrupt the system and,

vice-versa, for the system to interrupt the user. This distorts the conversation and may have an ad-

verse effect on the user’s expectations and behaviour. This can be handled by allowing socialbots to

utilize incremental dialogue processing and give responses at any point in the conversation (Howes

et al., 2011; Dethlefs et al., 2012).

120

4.14 Directions for Future Research

In this section, we will discuss several avenues for future research.

4.14.1 Rethinking The Non-Goal-Driven Dialogue Task

As discussed earlier, a major limitation of the Amazon Alexa Prize 2017 competition is the un-

derspecified format of the conversations. The conversations have no anchoring points, no given

topics, and no common ground established between interlocutors. This substantially increases the

difficulty of the task. Furthermore, it makes it difficult to compare systems fairly. For exam-

ple, consider the following two hypothetical systems. The first system starts the conversation by

proposing a news article about political issues and then discusses these intelligently with the user.

The second system asks the user to name their favorite movie, then conducts a binary trivia quiz

by presenting them related facts, where the user has to say "yes" or "no" depending on if a fact is

true or false, and finishes by telling the user how often they were right and saying goodbye. Both

of these two systems appear to be strong contenders for the Amazon Alexa Prize 2017 competi-

tion, due to the underspecified format of the conversations. However, from a scientific point of

view, what knowledge or insight would we have gained if the experiments with real-world users

showed that one of these systems performed better than the other one? It seems likely that, at best,

we might conclude that the user population of the experiments preferred one topic over another –

regardless of the underlying components of each dialogue system, such as natural language under-

standing components, natural language generation components, response selection components,

knowledge base components and so on. If that was the case, such an experiment would not help

the research field progress significantly.

One approach to solving this problem is by anchoring conversations around Wikipedia arti-

cles (Burtsev et al., 2018; Zhou et al., 2018; Dinan et al., 2019). For example, in the Conversational

Intelligence Challenge 2017 (ConvAI 2017) the interlocutors are shown a snippet of a Wikipedia

article and asked to converse about it (Burtsev et al., 2018). This immediately anchors the conversa-

tion around a single topic, which makes the task of building an effective dialogue system easier and

the comparison between different dialogue systems more fair and interpretable. This approach also

allows to easily incorporate external information (e.g. information from other Wikipedia articles or

from knowledge bases) and to break down dialogue system performance on a topic-by-topic basis.

Another related approach is proposed by Zhang et al. (2018), where each interlocutor is shown a

short description of a personality profile and then asked to converse while pretending to be a person

with that profile. As such, this approach anchors the conversation around personalities. Unlike the

ConvAI 2017, where the conversations tend to be more fact or knowledge-driven, in this task the

conversations center around personal topics, such as hobbies, family, work, and so on.

121

4.14.2 Extensions of the Bottleneck Simulator

One of the most novel and promising methods, which we have presented, is the Bottleneck Sim-

ulator. This is a model-based reinforcement learning algorithm, which learns an approximate

environment model by mapping a dialogue history st ∈ S to an abstract, high-level semantic state

zt ∈ Z (a bottleneck state) at every turn of the dialogue.

In the algorithm presented earlier, the set Z is defined by a Cartesian product:

Z = ZDialogue act × ZUser sentiment × ZGeneric user utterance, (117)

where ZDialogue act represents a set of dialogue acts, ZUser sentiment represents a set of user sentiments

and ZGeneric user utterance represents a binary set indicating if the user’s last utterance is generic. In

total, Z has 60 states (i.e. |Z| = 60). Although this approach proved effective across many experi-

ments, at best Z is capturing only a limited amount of high level information about the dialogue.

Therefore, the Bottleneck Simulator algorithm can be improved by expanding the set Z to

include additional information. For example, the set Z could be redefined as the Cartesian product:

Z = ZDialogue act × ZUser sentiment × ZGeneric user utterance × ZDialogue topic × ZUser profile, (118)

where ZDialogue topic is a discrete set of dialogue topics and ZUser profile is a discrete set of user profiles.

Here, a model could be constructed to map dialogue histories to a discrete set of topics either by

using a topic model, such as the Latent Dirichlet allocation (LDA) model (Blei et al., 2003), or by

combining a clustering algorithm with a Word2Vec word embedding model, such as the Skip-Gram

model (Mikolov et al., 2013a,b). Alternatively, the set of topics ZDialogue topic could be defined as a

set of real-valued numbers in n dimensions: ZDialogue topic ∈ Rn where n ∈ N. In this case, the topic

for a given dialogue st ∈ S might be computed as the average of the Word2Vec word embeddings

of the last k utterances in the dialogue. The corresponding learned environment model would

require a separate model for predicting the real-valued vector of the next topic conditioned on the

state zt and st, system action at and label yt. For the discrete set of user profiles ZUser profile, a model

could similarly be constructed to map dialogue histories to a set of user profiles. For example, a

regression model can be trained to predict the user’s personality w.r.t. openness, conscientiousness,

extroversion, agreeableness, and neuroticism (Golbeck et al., 2011) based on the user utterances.

These personality traits can then be clustered into a set of n personalities.

To incorporate a richer and larger set of bottleneck states, it seems likely that the Bottleneck

Simulator would require additional training data to estimate the learned environment model. One

way to acquire additional training data is by utilizing other, related datasets, such as the Switch-

board Corpus (Godfrey et al., 1992) or datasets extracted from online discussion forums, such as

www.reddit.com. A simple way to utilize a related dataset is to first train the transition model

122

www.reddit.com

Pψ(zt+1 | zt, st, at, yt), given in eq. (111), on the external dataset and then fine-tune its parameters

on the dialogues recorded with real-world users. As discussed earlier, the transition model can be

evaluated on a hold-out dataset of dialogues recorded with real-world users.

However, if the external dataset consists of dialogues exclusively between human interlocutors

or contains dialogues on highly different topics, then it may be necessary to formulate an approach

for mitigating the differences between the external dataset and the dataset of dialogues recorded

with real-world users interacting with the dialogue system. For example, one method for doing

this is to assign an importance weight to each dialogue example in the external dataset. Dialogues

in the external dataset should be assigned a high importance weight (e.g. 1.0) if they are simi-

lar to the dialogues of users interacting with the dialogue system. Vice versa, dialogues in the

external dataset should be assigned a low importance weight (e.g. 0.0) if they are not similar to

the dialogues of users interacting with the dialogue system. For example, the importance weights

could be computed automatically by a binary classification model trained to distinguish between

dialogues in the external dataset and dialogues with real-world users interacting with the dialogue

system. Once the importance weights have been computed, they can be applied inside the training

procedure for the transition model to reweight the external dialogue examples.

123

5 Conclusion

In this thesis, we have presented an investigation of representation learning methods for building

dialogue systems and conversational agents, specifically based on deep learning and deep rein-

forcement learning. This work is motivated by the multitude of real-world applications, ranging

from intelligent personal assistants and virtual friends to healthcare assistants and intelligent tutor-

ing systems. As such, the purpose of this thesis is to make a contribution to the research fields of

natural language understanding, natural language generation and representation learning, with the

goal of building general-purpose natural language dialogue systems.

In the first part of the thesis, we investigated building probabilistic generative dialogue models

based on deep learning. These probabilistic generative dialogue models are tasked with generating

the next, appropriate response in a text-based dialogue conditioned on the history of the preceding

turns. For this task, we proposed three novel models. The first model proposed is the Hierarchical

Recurrent Encoder-Decoder (HRED) model. Motivated by the need to better model long-term,

discourse-level context, this model incorporates the dialogue turn taking structure into its archi-

tecture. The second model proposed is the Multiresolution Recurrent Neural Network (MrRNN)

model, which is motivated by the idea of modelling higher-level, abstract semantic information

as a stochastic process. The model architecture is a stacked sequence-to-sequence model with

an intermediate, stochastic representation (a coarse representation) capturing high-level semantic

content. The last model proposed is the Latent Variable Recurrent Encoder-Decoder (VHRED)

model. This model is a variant of the HRED model incorporating a continuous, stochastic, latent

variables with the purpose of better modelling the ambiguity and uncertainty present in human

language communication.

The three proposed models were evaluated on two domains: a goal-driven technical response

generation task and a non goal-driven response generation task. The evaluation was conducted

through human evaluation studies using on on a crowdsourcing platform and in a laboratory set-

ting. In addition, the models were evaluated through qualitative evaluation and through automated

evaluation metrics. The experiment results demonstrate that all models improved upon the baseline

models. The HRED model was found to outperform a baseline model on the goal-driven dialogue

task, where it generated relevant responses of high quality suggesting it is better capable of in-

corporating long-term discourse-level context. The MrRNN model was found to perform best on

the goal-driven dialogue task, where it outperformed all baseline models as well as the HRED and

VHRED models. Specifically, MrRNN was able to generate more relevant and fluent responses

compared to the other models. These results demonstrate that MrRNN is a highly promising ap-

proach to response generation on goal-driven dialogue tasks. The success of MrRNN underlines

the importance of modelling higher-level, abstract semantic information, and suggests that similar

124

approaches should be explored in future research. At the same time, the VHRED model was found

to perform best on the non-goal-driven dialogue task, where it appeared to be better capable of

generating long and semantically coherent responses compared to other models. This underlines

the importance of modelling high-level latent structure and suggests that future research should

investigate new methods for modelling natural language ambiguity and uncertainty. In summary,

each of the three proposed models represent one small step forward in the pursuit of building gen-

erative dialogue models. Nevertheless, it seems likely that far more research is required in order to

make this class of models more applicable to real-world problem settings.

In the second part of the thesis, we investigated combining deep learning and reinforcement

learning by building a non-goal-driven deep reinforcement learning dialogue system for the Ama-

zon Alexa Prize 2017 competition, which learns from real-world interactions with human inter-

locutors. This dialogue system is based on an ensemble of 22 response models, where each re-

sponse model generates a candidate response conditioned on the dialogue history text. Given a set

of candidate responses, the system’s response selection policy selects a candidate response to emit

to the user with the goal of maximizing the overall user satisfaction.

We parametrized the response selection policy as a neural network and proposed to learn the

model parameters by framing the response selection task as a sequential decision making problem.

We proposed six different algorithms for learning the model parameters. The first proposed algo-

rithm learns the model parameters using supervised learning on crowdsourced human annotations.

Another four proposed algorithms are based on methods from deep reinforcement learning, specif-

ically Q-learning and REINFORCE algorithms. Finally, motivated by the generative dialogue

models discussed earlier, we proposed an approach for learning the response selection policy pa-

rameters by using Q-learning from rollout simulations in a simulated stochastic environment. The

simulated environment contains an estimated transition model of the environment and utilizes an

abstract state representing high-level semantic information about the dialogue, in order to exploit

structural properties of the environment and increase sample efficiency. This approach is called the

Bottleneck Simulator. In addition to these proposed algorithms, we also presented two baseline

response selection policies: one based on a set of heuristic, hand-crafted rules, and one based on a

state abstraction reinforcement learning method.

We evaluated all proposed response selection policies through several A/B testing experiments

with real-world users. The results from these experiments show that the Bottleneck Simulator

policy performs better than or on par with all other policies. Furthermore, a quantitative analy-

sis of the conversations shows that the Bottleneck Simulator policy maintains the highest topical

coherency and generates the most topic-relevant responses. These conclusions are confirmed by

additional experiments on the crowdsourced human annotations and by rollout simulations in the

simulated environment. In summary, the results demonstrate the overall importance and utility

125

of modelling the interactions between the interlocutors in a stochastic framework incorporating

high-level semantic information.

If we take a step back, a general pattern emerges of the work presented in this thesis. Through-

out the thesis, we have repeatedly applied the framework of probabilistic generative models in

order to understand the existing models and ideas in the literature, to understand their underly-

ing assumptions and hypotheses, and to propose new models motivated by new hypotheses. We

have used the “language of probabilistic generative models” to understand existing ideas and to

formulate new ideas, such as modelling high-level semantic information as a stochastic process,

capturing ambiguity and uncertainty in a stochastic, latent variable, and approximating an environ-

ment model through an abstract, high-level stochastic variable representing the dialogue state. For

each new idea, we have proposed a new structure for a probabilistic generative model by modify-

ing or adding stochastic variables and by making assumptions around these variables, such as their

probabilistic dependencies, whether they are observed or latent, the type of information they aim

to capture and their corresponding learning procedure. These ideas have proved fruitful and may,

in turn, help to move the field a small step forward.

126

Bibliography

R. Al-Rfou, G. Alain, A. Almahairi, C. Angermueller, D. Bahdanau, N. Ballas, F. Bastien, J. Bayer,

A. Belikov, A. Belopolsky, et al. Theano: A python framework for fast computation of mathe-

matical expressions. arXiv preprint arXiv:1605.02688, 2016.

D. Ameixa, L. Coheur, P. Fialho, and P. Quaresma. Luke, I am your father: dealing with out-of-

domain requests by using movies subtitles. In Intelligent Virtual Agents, 2014.

S. Arora, Y. Liang, and T. Ma. A simple but tough-to-beat baseline for sentence embeddings. In

ICLR, 2017.

L. E. Asri, J. He, and K. Suleman. A sequence-to-sequence model for user simulation in spoken

dialogue systems. In INTERSPEECH, 2016.

P. Bachman and D. Precup. Data generation as sequential decision making. In NIPS, 2015.

D. Bahdanau, K. Cho, and Y. Bengio. Neural machine translation by jointly learning to align and

translate. In ICLR, 2015.

R. E. Banchs and H. Li. IRIS: a chat-oriented dialogue system based on the vector space model.

In ACL, System Demonstrations, 2012.

S. Banerjee and A. Lavie. METEOR: An automatic metric for mt evaluation with improved corre-

lation with human judgments. In ACL, Workshop on Intrinsic and Extrinsic Evaluation Measures

for Machine Translation And/Or Summarization, 2005.

M. Baroni, R. Bernardi, and R. Zamparelli. Frege in space: A program of compositional distribu-

tional semantics. LiLT (Linguistic Issues in Language Technology), 9, 2014.

J. Bayer and C. Osendorfer. Learning stochastic recurrent networks. In NIPS, Workshop on Ad-

vances in Variational Inference, 2014.

M. J. Beal. Variational algorithms for approximate Bayesian inference. University of London,

2003.

J. C. Bean, J. R. Birge, and R. L. Smith. Aggregation in dynamic programming. Operations

Research, 35(2):215–220, 1987.

Y. Bengio. Practical recommendations for gradient-based training of deep architectures. In Neural

Networks: Tricks of the Trade. Springer, 2012.

127

Y. Bengio, R. Ducharme, P. Vincent, and C. Janvin. A neural probabilistic language model. JMLR,

3:1137–1155, 2003.

D. P. Bertsekas and D. A. Castanon. Adaptive aggregation methods for infinite horizon dynamic

programming. IEEE Transactions on Automatic Control, 34(6):589–598, 1989.

D. P. Bertsekas and J. N. Tsitsiklis. Neuro-dynamic programming: an overview. In IEEE Confer-

ence on Decision and Control, 1995, volume 1. IEEE, 1995.

H. R. Bhat and T. A. Lone. Cortana - intelligent personal digital assistant: Review. International

Journal of Advanced Research in Computer Science, 8, 2017.

S. Bird, E. Klein, and E. Loper. Natural Language Processing with Python. O’Reilly Media, 2009.

C. M. Bishop. Pattern recognition. Machine Learning, 2006.

D. M. Blei, A. Y. Ng, and M. I. Jordan. Latent dirichlet allocation. JMLR, 3:993–1022, 2003.

D. Bohus, A. Raux, T. K. Harris, M. Eskenazi, and A. I. Rudnicky. Olympus: an open-source

framework for conversational spoken language interface research. In ACL, Workshop on Bridg-

ing the Gap: Academic and Industrial Research in Dialog Technologies, 2007.

A. Bordes, Y.-L. Boureau, and J. Weston. Learning end-to-end goal-oriented dialog. arXiv preprint

arXiv:1605.07683, 2016.

N. Boulanger-Lewandowski, Y. Bengio, and P. Vincent. Modeling temporal dependencies in high-

dimensional sequences: Application to polyphonic music generation and transcription. In ICML,

2012.

S. R. Bowman, L. Vilnis, O. Vinyals, A. M. Dai, R. Jozefowicz, and S. Bengio. Generating

sentences from a continuous space. In CoNLL, 2016.

L. Breiman. Bagging predictors. Machine learning, 24(2):123–140, 1996.

E. Brodwin. A Stanford researcher is pioneering a dramatic shift in how we

treat depression - and you can try her new tool right now. Business In-

sider, 2018. Retrieved 2019-01-01, https://www.businessinsider.com/

stanford-therapy-chatbot-app-depression-anxiety-woebot-2018-1.

M. Burtsev, V. Logacheva, V. Malykh, I. V. Serban, R. Lowe, S. Prabhumoye, A. W. Black, A. Rud-

nicky, and Y. Bengio. The first conversational intelligence challenge. In The NIPS’17 Competi-

tion: Building Intelligent Systems. Springer, 2018.

128

https://www.businessinsider.com/stanford-therapy-chatbot-app-depression-anxiety-woebot-2018-1
https://www.businessinsider.com/stanford-therapy-chatbot-app-depression-anxiety-woebot-2018-1

J. Camacho-Collados and T. Pilehvar. From word to sense embeddings: A survey on vector repre-

sentations of meaning. JAIR, 63, 2018.

R. Cantrell, K. Talamadupula, P. Schermerhorn, J. Benton, S. Kambhampati, and M. Scheutz. Tell

me when and why to do it! Run-time planner model updates via natural language instruction. In

ACM/IEEE International Conference on Human-Robot Interaction, 2012.

K. Cao and S. Clark. Latent variable dialogue models and their diversity. In EACL, 2017.

F. Charras, G. D. Duplessis, V. Letard, A.-L. Ligozat, and S. Rosset. Comparing system-response

retrieval models for open-domain and casual conversational agent. In Workshop on Chatbots

and Conversational Agent Technologies, 2016.

H. Chen, X. Liu, D. Yin, and J. Tang. A survey on dialogue systems: Recent advances and new

frontiers. ACM SIGKDD Explorations Newsletter, 19(2):25–35, 2017.

K. Cho, B. Van Merriënboer, C. Gulcehre, D. Bahdanau, F. Bougares, H. Schwenk, and Y. Bengio.

Learning phrase representations using rnn encoder-decoder for statistical machine translation.

In EMNLP, 2014.

J. K. Chorowski, D. Bahdanau, D. Serdyuk, K. Cho, and Y. Bengio. Attention-based models for

speech recognition. In NIPS, 2015.

G. Chung. Developing a flexible spoken dialog system using simulation. In ACL, 2004.

J. Chung, K. Kastner, L. Dinh, K. Goel, A. Courville, and Y. Bengio. A recurrent latent variable

model for sequential data. In NIPS, 2015.

H. H. Clark and S. E. Brennan. Grounding in communication. Perspectives on socially shared

cognition, 13(1991):127–149, 1991.

K. M. Colby. Modeling a paranoid mind. Behavioral and Brain Sciences, 4:515–534, 1981.

H. Cuayáhuitl. Simpleds: A simple deep reinforcement learning dialogue system. In Dialogues

with Social Robots. Springer, 2017.

H. Cuayáhuitl, S. Renals, O. Lemon, and H. Shimodaira. Human-computer dialogue simulation

using hidden Markov models. In Automatic Speech Recognition and Understanding, 2005 IEEE

Workshop on. IEEE, 2005.

N. Dahlbäck, A. Jönsson, and L. Ahrenberg. Wizard of oz studies - why and how. Knowledge-

based systems, 6(4):258–266, 1993.

129

A. Das, S. Kottur, J. M. Moura, S. Lee, and D. Batra. Learning cooperative visual dialog agents

with deep reinforcement learning. In ICCV, 2017.

I. P. Debater. IBM Research, Project Debater. Research, IBM, 2018. Retrieved 2018-

12-24, https://www.research.ibm.com/artificial-intelligence/

project-debater/index.html.

S. Deerwester, S. T. Dumais, G. W. Furnas, T. K. Landauer, and R. Harshman. Indexing by latent

semantic analysis. Journal of the American Society for Information Science, 41(6):391, 1990.

M. Deisenroth and C. E. Rasmussen. Pilco: A model-based and data-efficient approach to policy

search. In ICML, 2011.

N. Dethlefs, H. Hastie, V. Rieser, and O. Lemon. Optimising incremental dialogue decisions using

information density for interactive systems. In EMNLP / CoNLL, 2012.

J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova. Bert: Pre-training of deep bidirectional trans-

formers for language understanding. arXiv preprint arXiv:1810.04805, 2018.

T. G. Dietterich. Hierarchical reinforcement learning with the MAXQ value function decomposi-

tion. JAIR, 13:227–303, 2000.

R. Dillet. Hugging Face wants to become your artificial BFF. Tech Crunch,

2016. Retrieved 2018-12-24, https://techcrunch.com/2017/03/09/

hugging-face-wants-to-become-your-artificial-bff/.

E. Dinan, S. Roller, K. Shuster, A. Fan, M. Auli, and J. Weston. Wizard of wikipedia: Knowledge-

powered conversational agents. In ICLR, 2019.

J. Dowding, J. M. Gawron, D. Appelt, J. Bear, L. Cherny, R. Moore, and D. Moran. Gemini: A

natural language system for spoken-language understanding. In HLT, 1993.

D. Eck and J. Schmidhuber. Finding temporal structure in music: Blues improvisation with lstm

recurrent networks. In Neural Networks for Signal Processing, 2002, 2002.

W. Eckert, E. Levin, and R. Pieraccini. User modeling for spoken dialogue system evaluation. In

IEEE Workshop on Automatic Speech Recognition and Understanding, 1997.

O. Fabius and J. R. van Amersfoort. Variational recurrent auto-encoders. arXiv preprint

arXiv:1412.6581, 2014.

130

https://www.research.ibm.com/artificial-intelligence/project-debater/index.html
https://www.research.ibm.com/artificial-intelligence/project-debater/index.html
https://techcrunch.com/2017/03/09/hugging-face-wants-to-become-your-artificial-bff/
https://techcrunch.com/2017/03/09/hugging-face-wants-to-become-your-artificial-bff/

M. Fatemi, L. E. Asri, H. Schulz, J. He, and K. Suleman. Policy networks with two-stage training

for dialogue systems. In SIGDIAL, 2016.

L. Ferrone and F. M. Zanzotto. Symbolic, distributed and distributional representations for natural

language processing in the era of deep learning: a survey. arXiv preprint arXiv:1702.00764,

2017.

D. Ferrucci, E. Brown, J. Chu-Carroll, J. Fan, D. Gondek, A. A. Kalyanpur, A. Lally, J. W. Mur-

dock, E. Nyberg, J. Prager, et al. Building Watson: An overview of the DeepQA project. AI

magazine, 31(3), 2010.

J. Foerster, Y. M. Assael, N. de Freitas, and S. Whiteson. Learning to communicate with deep

multi-agent reinforcement learning. In NIPS, 2016.

G. Forgues, J. Pineau, J.-M. Larchevêque, and R. Tremblay. Bootstrapping dialog systems with

word embeddings. In NIPS, Workshop on Modern Machine Learning and Natural Language

Processing, 2014.

V. François-Lavet, P. Henderson, R. Islam, M. G. Bellemare, J. Pineau, et al. An introduction to

deep reinforcement learning. Foundations and Trends R© in Machine Learning, 11(3-4):219–354,

2018.

J. Friedman, T. Hastie, and R. Tibshirani. The elements of statistical learning. Number 10 in 1.

Springer series in statistics New York, NY, USA:, 2001.

D. Furness. Baidu releases Melody, a medical assistant chatbot to keep physicians humming.

Digital Trends, 2016. Retrieved 2019-01-01, https://www.digitaltrends.com/

health-fitness/baidu-melody-medical-chatbot/.

M. Galley, C. Brockett, A. Sordoni, Y. Ji, M. Auli, C. Quirk, M. Mitchell, J. Gao, and B. Dolan.

deltaBLEU: A discriminative metric for generation tasks with intrinsically diverse targets. In

ACL, 2015.

M. Gašić, F. Jurčíček, B. Thomson, K. Yu, and S. Young. On-line policy optimisation of spoken

dialogue systems via live interaction with human subjects. In IEEE Workshop on Automatic

Speech Recognition and Understanding, 2011.

M. Gasic, C. Breslin, M. Henderson, D. Kim, M. Szummer, B. Thomson, P. Tsiakoulis, and

S. Young. On-line policy optimisation of Bayesian spoken dialogue systems via human in-

teraction. In IEEE International Conference on Acoustics, Speech and Signal Processing, 2013.

131

https://www.digitaltrends.com/health-fitness/baidu-melody-medical-chatbot/
https://www.digitaltrends.com/health-fitness/baidu-melody-medical-chatbot/

K. Georgila and D. Traum. Reinforcement learning of argumentation dialogue policies in negoti-

ation. In Twelfth Annual Conference of the International Speech Communication Association,

2011.

K. Georgila, J. Henderson, and O. Lemon. User simulation for spoken dialogue systems: Learning

and evaluation. In Ninth International Conference on Spoken Language Processing, 2006.

X. Glorot, A. Bordes, and Y. Bengio. Deep sparse rectifier neural networks. In International

Conference on Artificial Intelligence and Statistics, 2011.

J. J. Godfrey, E. C. Holliman, and J. McDaniel. Switchboard: Telephone speech corpus for re-

search and development. In IEEE International Conference on Acoustics, Speech, and Signal

Processing, volume 1. IEEE, 1992.

J. Golbeck, C. Robles, M. Edmondson, and K. Turner. Predicting personality from twitter. In IEEE

Third International Conference on Privacy, Security, Risk and Trust (PASSAT) and 2011 IEEE

Third Inernational Conference on Social Computing (SocialCom). IEEE, 2011.

I. Goodfellow, A. Courville, and Y. Bengio. Deep Learning. MIT Press, 2016. URL http:

//goodfeli.github.io/dlbook/.

J. T. Goodman. A bit of progress in language modeling extended version. Machine Learning and

Applied Statistics Group Microsoft Research. Technical Report, MSR-TR-2001-72, 2001.

A. L. Gorin, G. Riccardi, and J. H. Wright. How may I help you? Speech Communication, 23(1):

113–127, 1997.

A. Graves. Sequence transduction with recurrent neural networks. In ICML RLW, 2012.

A. Graves. Generating sequences with recurrent neural networks. arXiv:1308.0850, 2013.

K. Greff, R. K. Srivastava, J. Koutník, B. R. Steunebrink, and J. Schmidhuber. LSTM: A search

space odyssey. IEEE transactions on neural networks and learning systems, 28(10):2222–2232,

2017.

K. Gregor, I. Danihelka, A. Graves, and D. Wierstra. DRAW: A recurrent neural network for image

generation. In ICLR, 2015.

S. Gu, T. Lillicrap, I. Sutskever, and S. Levine. Continuous deep q-learning with model-based

acceleration. In ICML, 2016.

132

http://goodfeli.github.io/dlbook/
http://goodfeli.github.io/dlbook/

S. Harnad. The symbol grounding problem. Physica D: Nonlinear Phenomena, 42(1-3):335–346,

1990.

Z. S. Harris. Distributional structure. Word, 10(2-3):146–162, 1954.

P. A. Heeman. Representing the reinforcement learning state in a negotiation dialogue. In IEEE

Workshop on Automatic Speech Recognition & Understanding, 2009.

J. Henderson, O. Lemon, and K. Georgila. Hybrid reinforcement/supervised learning of dialogue

policies from fixed data sets. Computational Linguistics, 34(4):487–511, 2008.

S. Hochreiter and J. Schmidhuber. Long short-term memory. Neural computation, 9(8):1735–

1780, 1997.

C. Howes, M. Purver, P. G. Healey, G. Mills, and E. Gregoromichelaki. On incrementality in

dialogue: Evidence from compound contributions. Dialogue & Discourse, 2(1):279–311, 2011.

Y. Ji, G. Haffari, and J. Eisenstein. A latent variable recurrent neural network for discourse relation

language models. In NAACL-HLT, 2016.

N. Jiang, A. Kulesza, and S. Singh. Abstraction selection in model-based reinforcement learning.

In ICML, 2015.

N. K. Jong and P. Stone. State abstraction discovery from irrelevant state variables. In IJCAI, 2005.

M. I. Jordan, Z. Ghahramani, T. S. Jaakkola, and L. K. Saul. An introduction to variational methods

for graphical models. Machine learning, 37(2):183–233, 1999.

R. Jozefowicz, O. Vinyals, M. Schuster, N. Shazeer, and Y. Wu. Exploring the limits of language

modeling. arXiv preprint arXiv:1602.02410, 2016.

L. P. Kaelbling, M. L. Littman, and A. W. Moore. Reinforcement learning: A survey. JAIR, 4:

237–285, 1996.

A. Kamath and R. Das. A survey on semantic parsing. In Conference on Automated Knowledge

Base Construction (AKBC), 2019.

C. Kamm. User interfaces for voice applications. National Academy of Sciences, 92(22):10031–

10037, 1995.

H. Khouzaimi, R. Laroche, and F. Lefevre. Incremental human-machine dialogue simulation. In

Dialogues with Social Robots. Springer, 2017.

133

D. Kingma and J. Ba. Adam: A Method for Stochastic Optimization. In ICLR, 2015.

D. P. Kingma and M. Welling. Auto-encoding variational bayes. In ICLR, 2014.

R. Kiros, Y. Zhu, R. R. Salakhutdinov, R. Zemel, R. Urtasun, A. Torralba, and S. Fidler. Skip-

thought vectors. In NIPS, 2015.

P. Koehn and C. Monz. Manual and automatic evaluation of machine translation between european

languages. In Workshop on Statistical Machine Translation, ACL, 2006.

Y. Koren, R. Bell, and C. Volinsky. Matrix factorization techniques for recommender systems.

Computer, 42(8), 2009.

A. Kumar, O. Irsoy, J. Su, J. Bradbury, R. English, B. Pierce, P. Ondruska, I. Gulrajani, and

R. Socher. Ask me anything: Dynamic memory networks for natural language processing.

ICML, 2016.

L. Kuvayev and R. S. Sutton. Model-based reinforcement learning with an approximate, learned

model. In Ninth Yale Workshop on Adaptive and Learning Systems. Citeseer, 1996.

T. K. Landauer, P. W. Foltz, and D. Laham. An introduction to latent semantic analysis. Discourse

processes, 25(2-3):259–284, 1998a.

T. K. Landauer, D. Laham, and P. W. Foltz. Learning human-like knowledge by singular value

decomposition: A progress report. In NIPS, 1998b.

A. Lazaridou, N. T. Pham, and M. Baroni. Towards multi-agent communication-based language

learning. arXiv preprint arXiv:1605.07133, 2016.

A. Lazaridou, A. Peysakhovich, and M. Baroni. Multi-agent cooperation and the emergence of

(natural) language. In ICLR, 2017.

S. Lee and M. Eskenazi. POMDP-based let’s go system for spoken dialog challenge. In Spoken

Language Technology Workshop (SLT), 2012.

O. Lemon and O. Pietquin. Machine learning for spoken dialogue systems. In INTERSPEECH,

2007.

E. Levin, R. Pieraccini, and W. Eckert. A stochastic model of human-machine interaction for

learning dialog strategies. IEEE Transactions on speech and audio processing, 8(1):11–23,

2000.

134

M. Lewis, D. Yarats, Y. N. Dauphin, D. Parikh, and D. Batra. Deal or No Deal? End-to-End

Learning for Negotiation Dialogues. In EMNLP, 2017.

J. Li, M. Galley, C. Brockett, J. Gao, and B. Dolan. A diversity-promoting objective function for

neural conversation models. In NAACL, 2016a.

J. Li, M. Galley, C. Brockett, J. Gao, and B. Dolan. A persona-based neural conversation model.

In ACL, 2016b.

J. Li, W. Monroe, A. Ritter, M. Galley, J. Gao, and D. Jurafsky. Deep reinforcement learning for

dialogue generation. In EMNLP, 2016c.

J. Li, W. Monroe, T. Shi, S. Jean, A. Ritter, and D. Jurafsky. Adversarial learning for neural

dialogue generation. In EMNLP, 2017.

Y. Li and T. Yang. Word embedding for understanding natural language: A survey. In Guide to

Big Data Applications. Springer, 2018.

L.-J. Lin. Reinforcement learning for robots using neural networks. Technical report, Carnegie-

Mellon Univ Pittsburgh PA School of Computer Science, 1993.

Z. C. Lipton, J. Berkowitz, and C. Elkan. A critical review of recurrent neural networks for se-

quence learning. arXiv preprint arXiv:1506.00019, 2015.

B. Liu and I. Lane. Iterative policy learning in end-to-end trainable task-oriented neural dialog

models. In IEEE Workshop on Automatic Speech Recognition and Understanding, 2017.

C.-W. Liu, R. Lowe, I. V. Serban, M. Noseworthy, L. Charlin, and J. Pineau. How NOT to eval-

uate your dialogue system: An empirical study of unsupervised evaluation metrics for dialogue

response generation. In EMNLP, 2016.

G. López, L. Quesada, and L. A. Guerrero. Alexa vs. siri vs. cortana vs. google assistant: a

comparison of speech-based natural user interfaces. In International Conference on Applied

Human Factors and Ergonomics. Springer, 2017.

R. López-Cózar. Automatic creation of scenarios for evaluating spoken dialogue systems via user-

simulation. Knowledge-Based Systems, 106:51–73, 2016.

R. Lowe, N. Pow, I. Serban, L. Charlin, and J. Pineau. Incorporating unstructured textual knowl-

edge sources into neural dialogue systems. In NIPS, Workshop on Machine Learning for Spoken

Language Understanding, 2015a.

135

R. Lowe, N. Pow, I. Serban, and J. Pineau. The ubuntu dialogue corpus: A large dataset for

research in unstructured multi-turn dialogue systems. In SIGDIAL, 2015b.

R. Lowe, I. V. Serban, M. Noseworthy, L. Charlin, and J. Pineau. On the evaluation of dialogue

systems with next utterance classification. In SIGDIAL, 2016.

R. Lowe, M. Noseworthy, I. V. Serban, N. Angelard-Gontier, Y. Bengio, and J. Pineau. Towards

an automatic turing test: Learning to evaluate dialogue responses. In ACL, 2017a.

R. T. Lowe, N. Pow, I. V. Serban, L. Charlin, C.-W. Liu, and J. Pineau. Training end-to-end

dialogue systems with the ubuntu dialogue corpus. Dialogue & Discourse, 8(1), 2017b.

M. T. Luong, I. Sutskever, Q. V. Le, O. Vinyals, and W. Zaremba. Addressing the rare word

problem in neural machine translation. In ACL, 2015.

M. P. Marcus, M. A. Marcinkiewicz, and B. Santorini. Building a large annotated corpus of english:

The penn treebank. Computational linguistics, 19(2):313–330, 1993.

M. Marelli, L. Bentivogli, M. Baroni, R. Bernardi, S. Menini, and R. Zamparelli. Semeval-2014

task 1: Evaluation of compositional distributional semantic models on full sentences through

semantic relatedness and textual entailment. In SemEval Workshop, COLING, 2014.

J. Markoff and P. Mozur. For Sympathetic Ear, More Chinese Turn to Smartphone Program. New

York Times, 2015.

B. McCann, J. Bradbury, C. Xiong, and R. Socher. Learned in translation: Contextualized word

vectors. In NIPS, 2017.

H. Mei, M. Bansal, and M. R. Walter. Coherent dialogue with attention-based language models.

In AAAI, 2017.

T. Mikolov, K. Chen, G. Corrado, and J. Dean. Efficient estimation of word representations in

vector space. In ICLR, 2013a.

T. Mikolov, I. Sutskever, K. Chen, G. S. Corrado, and J. Dean. Distributed representations of words

and phrases and their compositionality. In NIPS, 2013b.

T. Mikolov et al. Recurrent neural network based language model. In INTERSPEECH, 2010.

A. H. Miller, W. Feng, A. Fisch, J. Lu, D. Batra, A. Bordes, D. Parikh, and J. Weston. Parlai: A

dialog research software platform. arXiv preprint arXiv:1705.06476, 2017.

136

S. Miller, R. Bobrow, R. Ingria, and R. Schwartz. Hidden understanding models of natural lan-

guage. In ACL, 1994.

V. Mnih, K. Kavukcuoglu, D. Silver, A. Graves, I. Antonoglou, D. Wierstra, and M. Riedmiller.

Playing atari with deep reinforcement learning. arXiv preprint arXiv:1312.5602, 2013.

V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G. Bellemare, A. Graves, M. Ried-

miller, A. K. Fidjeland, G. Ostrovski, et al. Human-level control through deep reinforcement

learning. Nature, 518(7540):529, 2015.

S. Mohan and J. Laird. Learning goal-oriented hierarchical tasks from situated interactive instruc-

tion. In AAAI, 2014.

A. W. Moore and C. G. Atkeson. Prioritized sweeping: Reinforcement learning with less data and

less time. Machine Learning, 13(1):103–130, 1993.

I. Mordatch and P. Abbeel. Emergence of grounded compositional language in multi-agent popu-

lations. AAAI, 2018.

V. Nair and G. E. Hinton. Rectified linear units improve restricted boltzmann machines. In ICML,

2010.

A. Y. Ng, D. Harada, and S. Russell. Policy invariance under reward transformations: Theory and

application to reward shaping. In ICML, volume 99, 1999.

T. Nguyen, M. Rosenberg, X. Song, J. Gao, S. Tiwary, R. Majumder, and L. Deng. MS

MARCO: A Human Generated MAchine Reading COmprehension Dataset. arXiv preprint

arXiv:1611.09268, 2016.

B. D. Nye, A. C. Graesser, and X. Hu. Autotutor and family: A review of 17 years of natural

language tutoring. International Journal of Artificial Intelligence in Education, 24(4):427–469,

2014.

O. Owoputi, B. O’Connor, C. Dyer, K. Gimpel, N. Schneider, and N. A. Smith. Improved part-of-

speech tagging for online conversational text with word clusters. In NAACL, 2013.

T. Paek. Reinforcement learning for spoken dialogue systems: Comparing strengths and weak-

nesses for practical deployment. In INTERSPEECH, Dialog-on-Dialog Workshop, 2006.

I. Papaioannou, A. C. Curry, J. L. Part, I. Shalyminov, X. Xu, Y. Yu, O. Dusek, V. Rieser, and

O. Lemon. Alana: Social dialogue using an ensemble model and a ranker trained on user

feedback. In Alexa Prize Proceedings, 2017.

137

K. Papineni, S. Roukos, T. Ward, and W. Zhu. BLEU: a method for automatic evaluation of

machine translation. In ACL, 2002.

B. H. Partee. Compositionality in formal semantics: Selected papers. John Wiley & Sons, 2008.

P. Parthasarathi and J. Pineau. Extending neural generative conversational model using external

knowledge sources. In EMNLP, 2018.

R. Pascanu, T. Mikolov, and Y. Bengio. On the difficulty of training recurrent neural networks.

ICML, 28, 2012.

B. Peng, X. Li, J. Gao, J. Liu, and K.-F. Wong. Integrating planning for task-completion dialogue

policy learning. In ACL, 2018.

J. Peng and R. J. Williams. Efficient learning and planning within the dyna framework. Adaptive

Behavior, 1(4):437–454, 1993.

J. Pennington, R. Socher, and C. Manning. Glove: Global vectors for word representation. In

EMNLP, 2014.

M. E. Peters, M. Neumann, M. Iyyer, M. Gardner, C. Clark, K. Lee, and L. Zettlemoyer. Deep

contextualized word representations. In NAACL, 2018.

R. Pieraccini, E. Tzoukermann, Z. Gorelov, J.-L. Gauvain, E. Levin, C.-H. Lee, and J. G. Wilpon.

A speech understanding system based on statistical representation of semantics. In ICASSP.

IEEE, 1992.

R. Pieraccini, D. Suendermann, K. Dayanidhi, and J. Liscombe. Are we there yet? research in

commercial spoken dialog systems. In Text, Speech and Dialogue, 2009.

O. Pietquin and H. Hastie. A survey on metrics for the evaluation of user simulations. The knowl-

edge engineering review, 28(01):59–73, 2013.

A. S. Polydoros and L. Nalpantidis. Survey of model-based reinforcement learning: Applications

on robotics. Journal of Intelligent & Robotic Systems, 86(2):153–173, 2017.

D. Precup. Eligibility traces for off-policy policy evaluation. Computer Science Department Fac-

ulty Publication Series, 2000.

D. Precup, R. S. Sutton, and S. Dasgupta. Off-policy temporal-difference learning with function

approximation. In ICML, 2001.

138

D. Prylipko, D. Schnelle-Walka, S. Lord, and A. Wendemuth. Zanzibar openivr: an open-source

framework for development of spoken dialog systems. In International Conference on Text,

Speech and Dialogue, 2011.

W. V. O. Quine. Word and object. MIT press, 2013.

A. Radford, K. Narasimhan, T. Salimans, and I. Sutskever. Improving language understanding

by generative pre-training. URL https://s3-us-west-2. amazonaws. com/openai-assets/research-

covers/language-unsupervised/language_ understanding_paper. pdf, 2018.

A. Ram, R. Prasad, C. Khatri, A. Venkatesh, R. Gabriel, Q. Li, J. Nunn, B. Hedayatnia, M. Heng,

A. Nagar, E. King, K. Bland, A. Wartick, Y. Pan, H. Song, S. Jayadevan, G. Hwang, and A. Pet-

tigrue. Conversational ai: The science behind the alexa prize. In Alexa Prize Proceedings,

2017.

A. Raux, D. Bohus, B. Langner, A. W. Black, and M. Eskenazi. Doing research on a deployed

spoken dialogue system: One year of let’s go! experience. In Ninth International Conference

on Spoken Language Processing, 2006.

D. J. Rezende, S. Mohamed, and D. Wierstra. Stochastic backpropagation and approximate infer-

ence in deep generative models. In ICML, 2014.

B. Richard. Adaptive control processes: A guided tour, 1961.

A. Ritter, C. Cherry, and W. B. Dolan. Data-driven response generation in social media. In EMNLP,

2011a.

A. Ritter, S. Clark, O. Etzioni, et al. Named entity recognition in tweets: an experimental study.

In EMNLP, 2011b.

V. Rus and M. Lintean. A comparison of greedy and optimal assessment of natural language

student input using word-to-word similarity metrics. In ACL, Workshop on Building Educational

Applications Using NLP, 2012.

J. Schatzmann, K. Georgila, and S. Young. Quantitative evaluation of user simulation techniques

for spoken dialogue systems. In SIGDIAL, 2005.

J. Schatzmann, B. Thomson, K. Weilhammer, H. Ye, and S. Young. Agenda-based user simulation

for bootstrapping a POMDP dialogue system. In HLT / ACL, 2007.

J. Schulman, S. Levine, P. Abbeel, M. Jordan, and P. Moritz. Trust region policy optimization. In

ICML, 2015.

139

S. Seneff. Tina: A natural language system for spoken language applications. Computational

linguistics, 18(1):61–86, 1992.

I. Serban, A. Ororbia, J. Pineau, and A. C. Courville. Piecewise latent variables for neural varia-

tional text processing. In EMNLP, 2017a.

I. V. Serban, A. Sordoni, Y. Bengio, A. C. Courville, and J. Pineau. Building end-to-end dialogue

systems using generative hierarchical neural network models. In AAAI, 2016.

I. V. Serban, T. Klinger, G. Tesauro, K. Talamadupula, B. Zhou, Y. Bengio, and A. Courville.

Multiresolution recurrent neural networks: An application to dialogue response generation. In

AAAI, 2017b.

I. V. Serban, C. Sankar, M. Germain, S. Zhang, Z. Lin, S. Subramanian, T. Kim, M. Pieper,

S. Chandar, N. R. Ke, et al. A Deep Reinforcement Learning Chatbot. arXiv preprint

arXiv:1709.02349, 2017c.

I. V. Serban, A. Sordoni, R. Lowe, L. Charlin, J. Pineau, A. Courville, and Y. Bengio. A hierarchi-

cal latent variable encoder-decoder model for generating dialogues. AAAI, 2017d.

I. V. Serban, R. Lowe, P. Henderson, L. Charlin, and J. Pineau. A survey of available corpora for

building data-driven dialogue systems: The journal version. Dialogue & Discourse, 9(1):1–49,

2018.

S. Shaikh, T. Strzalkowski, S. Taylor, and N. Webb. VCA: an experiment with a multiparty virtual

chat agent. In ACL, Workshop on Companionable Dialogue Systems, 2010.

L. Shang, Z. Lu, and H. Li. Neural responding machine for short-text conversation. In Association

for Computational Linguistics, 2015.

B. A. Shawar and E. Atwell. Chatbots: are they really useful? In LDV Forum, volume 22, 2007.

P. Simon. Too Big to Ignore: The Business Case for Big Data, volume 72. John Wiley & Sons,

2013.

S. Singh, D. Litman, M. Kearns, and M. Walker. Optimizing dialogue management with reinforce-

ment learning: Experiments with the njfun system. JAIR, 2002.

S. P. Singh, M. J. Kearns, D. J. Litman, and M. A. Walker. Reinforcement learning for spoken

dialogue systems. In NIPS, 1999.

140

N. Slonim. Project debater. Computational Models of Argument: Proceedings of COMMA 2018,

305:4, 2018.

A. Sordoni, Y. Bengio, H. Vahabi, C. Lioma, J. Grue S., and J. Y. Nie. A hierarchical recurrent

encoder-decoder for generative context-aware query suggestion. In International on Conference

on Information and Knowledge Management. ACM, 2015a.

A. Sordoni, M. Galley, M. Auli, C. Brockett, Y. Ji, M. Mitchell, J. Nie, J. Gao, and B. Dolan. A

neural network approach to context-sensitive generation of conversational responses. In NAACL-

HLT, 2015b.

A. Stolcke, K. Ries, N. Coccaro, E. Shriberg, R. Bates, D. Jurafsky, P. Taylor, R. Martin, C. V.

Ess-Dykema, and M. Meteer. Dialogue act modeling for automatic tagging and recognition of

conversational speech. Computational linguistics, 26(3):339–373, 2000.

B. Stone and S. Soper. Amazon Unveils a Listening, Talking, Music-Playing Speaker for Your

Home. Bloomberg L.P, 2014. Retrieved 2014-11-07.

P.-H. Su, D. Vandyke, M. Gašić, D. Kim, N. Mrkšić, T.-H. Wen, and S. Young. Learning from

real users: Rating dialogue success with neural networks for reinforcement learning in spoken

dialogue systems. In INTERSPEECH, 2015.

P.-H. Su, M. Gasic, N. Mrksic, L. Rojas-Barahona, S. Ultes, D. Vandyke, T.-H. Wen, and S. Young.

Continuously learning neural dialogue management. arXiv preprint arXiv:1606.02689, 2016.

D. Suendermann-Oeft, V. Ramanarayanan, M. Teckenbrock, F. Neutatz, and D. Schmidt. Halef:

An open-source standard-compliant telephony-based modular spoken dialog system: A review

and an outlook. In Natural language dialog systems and intelligent assistants. Springer, 2015.

S. Sukhbaatar, R. Fergus, et al. Learning multiagent communication with backpropagation. In

NIPS, 2016.

I. Sutskever, O. Vinyals, and Q. V. Le. Sequence to sequence learning with neural networks. In

NIPS, 2014.

R. S. Sutton. Integrated architectures for learning, planning, and reacting based on approximating

dynamic programming. In ICML, 1990.

R. S. Sutton and A. G. Barto. Reinforcement learning: An introduction. Number 1 in 1. MIT Press

Cambridge, 1998.

141

G. Tesauro. Temporal difference learning and TD-Gammon. Communications of the ACM, 38(3):

58–68, 1995.

D. Traum, S. C. Marsella, J. Gratch, J. Lee, and A. Hartholt. Multi-party, multi-issue, multi-

strategy negotiation for multi-modal virtual agents. In International Workshop on Intelligent

Virtual Agents, 2008.

H. P. Truong, P. Parthasarathi, and J. Pineau. Maca: A modular architecture for conversational

agents. In SIGDIAL, 2017.

S. Tu and B. Recht. The gap between model-based and model-free methods on the linear quadratic

regulator: An asymptotic viewpoint. arXiv preprint arXiv:1812.03565, 2018.

L. Vilnis and A. McCallum. Word representations via gaussian embedding. ICLR, 2015.

R. S. Wallace. The anatomy of alice. Parsing the Turing Test, 2009.

W. Ward and S. Issar. Recent improvements in the CMU spoken language understanding system.

In ACL, Workshop on Human Language Technology, 1994.

C. J. C. H. Watkins. Learning from delayed rewards. PhD thesis, King’s College, Cambridge,

1989.

J. Weizenbaum. ELIZA - a computer program for the study of natural language communication

between man and machine. Communications of the ACM, 9(1):36–45, 1966.

T.-H. Wen, M. Gasic, N. Mrksic, L. M. Rojas-Barahona, P.-H. Su, S. Ultes, D. Vandyke, and

S. Young. A network-based end-to-end trainable task-oriented dialogue system. In EACL, 2017.

M. Werning, W. Hinzen, and E. Machery. The Oxford handbook of compositionality. Oxford

Handbooks in Linguistic, 2012.

J. Weston, S. Chopra, and A. Bordes. Memory networks. ICLR, 2015.

Y. Wilks and D. Fass. The preference semantics family. Computers & Mathematics with Applica-

tions, 23(2-5):205–221, 1992.

J. Williams, A. Raux, D. Ramachandran, and A. Black. The dialog state tracking challenge. In

SIGDIAL, 2013.

J. D. Williams and S. Young. Partially observable Markov decision processes for spoken dialog

systems. Computer Speech & Language, 21(2):393–422, 2007.

142

J. D. Williams, A. Raux, and M. Henderson. Introduction to the special issue on dialogue state

tracking. Dialogue & Discourse, 7(3):1–3, 2016.

R. J. Williams. Simple statistical gradient-following algorithms for connectionist reinforcement

learning. Machine learning, 8(3-4), 1992.

T. Wit. The Story of Siri, by its founder Adam Cheyer. Blog

Post, 2014. Retrieved 2018-12-24, https://medium.com/wit-ai/

the-story-of-siri-by-its-founder-adam-cheyer-3ca38587cc01.

J. Wortham. Will Google’s Personal Assistant Be Creepy or Cool? The New York Times,

2012. Retrieved 2013-01-30, http://bits.blogs.nytimes.com/2012/06/28/

will-googles-personal-assistant-be-creepy-or-cool/.

Y. Wu, M. Schuster, Z. Chen, Q. V. Le, M. Norouzi, W. Macherey, M. Krikun, Y. Cao, Q. Gao,

K. Macherey, et al. Google’s neural machine translation system: Bridging the gap between

human and machine translation. arXiv preprint arXiv:1609.08144, 2016.

S. Young, M. Gasic, B. Thomson, and J. D. Williams. POMDP-based statistical spoken dialog

systems: A review. IEEE, 101(5):1160–1179, 2013.

T. Young, E. Cambria, I. Chaturvedi, M. Huang, H. Zhou, and S. Biswas. Augmenting end-to-end

dialog systems with commonsense knowledge. arXiv preprint arXiv:1709.05453, 2017.

Z. Yu, Z. Xu, A. W. Black, and A. I. Rudnicky. Strategy and policy learning for non-task-oriented

conversational systems. In SIGDIAL, 2016.

S. Zhang, E. Dinan, J. Urbanek, A. Szlam, D. Kiela, and J. Weston. Personalizing dialogue agents:

I have a dog, do you have pets too? In ACL, 2018.

T. Zhao and M. Eskenazi. Towards end-to-end learning for dialog state tracking and management

using deep reinforcement learning. In SIGDIAL, 2016.

T. Zhao, K. Lee, and M. Eskenazi. Dialport: Connecting the spoken dialog research community to

real user data. In IEEE, Spoken Language Technology Workshop (SLT), 2016.

T. Zhao, R. Zhao, and M. Eskenazi. Learning discourse-level diversity for neural dialog models

using conditional variational autoencoders. ACL, 2017.

K. Zhou, S. Prabhumoye, and A. W. Black. A dataset for document grounded conversations. In

EMNLP, 2018.

143

https://medium.com/wit-ai/the-story-of-siri-by-its-founder-adam-cheyer-3ca38587cc01
https://medium.com/wit-ai/the-story-of-siri-by-its-founder-adam-cheyer-3ca38587cc01
http://bits.blogs.nytimes.com/2012/06/28/will-googles-personal-assistant-be-creepy-or-cool/
http://bits.blogs.nytimes.com/2012/06/28/will-googles-personal-assistant-be-creepy-or-cool/

Y. Zhu, R. Kiros, R. Zemel, R. Salakhutdinov, R. Urtasun, A. Torralba, and S. Fidler. Aligning

books and movies: Towards story-like visual explanations by watching movies and reading

books. In ICCV, 2015.

144

I Appendix: Coarse Sequence Representations

This appendix describes the course sequence representations utilized by the MrRNN models. The

text for this appendix has been adapted from the appendix in Serban et al. (2017b) written by

the author of this thesis. The appendix text was never published in any journal, conference or

workshop proceedings.

Nouns

The noun-based procedure for extracting coarse tokens aims to exploit high-level structure of nat-

ural language discourse. More specifically, it builds on the hypothesis that dialogues in general are

topic-driven and that these topics may be characterized by the nouns inside the dialogues. At any

point in time, the dialogue is centered around one or several topics. As the dialogue progresses, the

underlying topic evolves as well. In addition to the tokenizer required by the previous extraction

procedure, this procedure also requires a part-of-speech (POS) tagger to identify the nouns in the

dialogue suitable for the language domain.

For extracting the noun-based coarse tokens, we define a set of 795 stop words for Twitter and

84 stop words for Ubuntu containing mainly English pronouns, punctuation marks and preposi-

tions (excluding special placeholder tokens). We then extract the coarse tokens by applying the

following procedure to each dialogue:

1. We apply the POS tagger version 0.3.2 developed by Owoputi and colleagues Owoputi et al.

(2013) to extract POS.42 For Twitter, we use the parser trained on the Twitter corpus devel-

oped by Ritter et al. (2011b). For Ubuntu, we use the parser trained on the NPS Chat Corpus

developed by Forsyth and Martellwhich was extracted from IRC chat channels similar to the

Ubuntu Dialogue Corpus.43 44

2. Given the POS tags, we remove all words which are not tagged as nouns and all words

containing non-alphabet characters.45 We keep all urls and paths.

3. We remove all stop words and all repeated tokens, while maintaining the order of the tokens.
42www.cs.cmu.edu/~ark/TweetNLP/
43As input to the POS tagger, we replace all unknown tokens with the word "something" and remove all special

placeholder tokens (since the POS tagger was trained on a corpus without these words). We further reduce any
consecutive sequence of spaces to a single space. For Ubuntu, we also replace all commands and entities with the
word "something". For Twitter, we also replace all numbers with the word "some", all urls with the word "somewhere"
and all heart emoticons with the word "love".

44Forsyth, E. N. and Martell, C. H. (2007). Lexical and discourse analysis of online chat dialog. In Semantic
Computing, 2007. ICSC 2007. International Conference on, pages 19âĂŞ26. IEEE.

45We define nouns as all words with tags containing the prefix "NN" according to the PTB-style tagset.

145

www.cs.cmu.edu/~ark/TweetNLP/

Table 17: Unigram and bigram models bits per word on noun representations.

Model Ubuntu Twitter

Unigram 10.16 12.38

Bigram 7.26 7.76

4. We add the "no_nouns" token to all utterances, which do not contain any nouns. This ensures

that no coarse sequences are empty. It also forces the coarse sub-model to explicitly generate

at least one token, even when there are no actual nouns to generate.

5. For each utterance, we use the POS tags to detect three types of time tenses: past, present

and future tenses. We append a token indicating which of the 3 tenses are present at the

beginning of each utterance.46 If no tenses are detected, we append the token "no_tenses".

As before, there exists a one-to-many alignment between the extracted coarse sequence tokens

and the natural language tokens, since this procedure also maintains the ordering of all special

placeholder tokens, with the exception of the "no_nouns" token.

We cut-off the vocabulary at 10000 coarse tokens for both the Twitter and Ubuntu datasets

excluding the special placeholder tokens. On average a Twitter dialogue in the training set contains

25 coarse tokens, while a Ubuntu dialogue in the training set contains 36 coarse tokens.

Model statistics for the unigram and bigram language models are presented in Table 17 for

the noun representations on the Ubuntu and Twitter training sets.47 The table shows a substantial

difference in bits per words between the unigram and bigram models, which suggests that the

nouns are significantly correlated with each other.

Activity-Entity Pairs

The activity-entity-based procedure for extracting coarse tokens attempts to exploit domain spe-

cific knowledge for the Ubuntu Dialogue Corpus, in particular in relation to providing technical

assistance with problem solving. Our manual inspection of the corpus shows that many dialogues

are centered around activities. For example, it is very common for users to state a specific problem

they want to resolve (e.g. how do I install program X? or My driver X doesn’t work, how do I

fix it?). In response to such queries, other users often respond with specific instructions (e.g. Go

to website X to download software Y or Try to execute command X). In addition to the technical

entities, the principle message conveyed by each utterance resides in the verbs (e.g. install, work,
46Note that an utterance may contain several sentences. It therefore often happens that an utterance contains several

time tenses.
47The models were trained using maximum log-likelihood on the noun representations excluding all special tokens.

146

fix, go, to, download, execute). Therefore, it seems clear that a dialogue system must have a strong

understanding of both the activities and technical entities if it is to effectively assist users with

technical problem solving. It seems likely that this would require a dialogue system able to relate

technical entities to each other (e.g. to understand that firefox depends on the GCC library) and

conform to the temporal structure of activities (e.g. to understand that the download activity is

often followed by install activity).

We therefore construct two word lists: one for activities and one for technical entities. We

construct the activity list based on manual inspection yielding a list of 192 verbs. For each activity,

we further develop a list of synonyms and conjugations of the tenses of all words. We also use

Word2Vec word embeddings (Mikolov et al., 2013b), trained on the Ubuntu Dialogue Corpous

training set, to identify commonly misspelled variants of each activity. The result is a dictionary,

which maps a verb to its corresponding activity (if such exists). For constructing the technical

entity list, we scrape publicly available resources, including Ubuntu and Linux-related websites as

well as the Debian package manager APT. Similar to the activities, we also use the Word2Vec word

embeddings to identify misspelled and paraphrased entities. This results in another dictionary,

which maps one or two words to the corresponding technical entity. In total there are 3115 technical

entities. In addition to this we also compile a list of 230 frequent commands.

Afterwards, we extract the coarse tokens by applying the following procedure to each dialogue:

1. We apply the technical entity dictionary to extract all technical entities.

2. We apply the POS tagger version 0.3.2 developed by Owoputi and colleagues, trained on

the NPS Chat Corpus developed by Forsyth and Martell as before. As input to the POS

tagger, we map all technical entities to the token "something". This transformation should

improve the POS tagging accuracy, since The corpus the parser was trained on does not

contain technical words.

3. Given the POS tags, we extract all verbs which correspond to activities.48. If there are no

verbs in an entire utterance and the POS tagger identified the first word as a noun, we will

assume that the first word is in fact a verb. We do this, because the parser does not work well

for tagging technical instructions in imperative form (e.g. upgrade firefox). If no activities

are detected, we append the token "none_activity" to the coarse sequence. We also keep all

urls and paths.

4. We remove all repeated activities and technical entities, while maintaining the order of the

tokens.
48We define verbs as all words with tags containing the prefix "VB" according to the PTB-style tagset.

147

5. If a command is found inside an utterance, we append the "cmd" token at the end of the

utterance. Otherwise, we append the "no_cmd" token to the end of the utterance. This

enables the coarse sub-model to predict whether or not an utterance contains executable

commands.

6. As for the noun-based coarse representation, we also append the time tense to the beginning

of the sequence.

As before, there exists a one-to-many alignment between the extracted coarse sequence tokens

and the natural language tokens, with the exception of the "none_activity" and "no_cmd" tokens.

Since the number of unique tokens are smaller than 10000, we do not need to cut-off the

vocabulary. On average a Ubuntu dialogue in the training set contains 43 coarse tokens.

Our manual inspection of the extracted coarse sequences, show that the technical entities are

identified with very high accuracy and that the activities capture the main intended action in the

majority of utterances. Due to the high quality of the extracted activities and entities, we are

confident that they may be used for evaluation purposes as well.

Scripts to generate the noun and activity-entity representations, and to evaluate the dialogue re-

sponses w.r.t. activity-entity pairs are available online at: https://github.com/julianser/

Ubuntu-Multiresolution-Tools/tree/master/ActEntRepresentation.

148

https://github.com/julianser/Ubuntu-Multiresolution-Tools/tree/master/ActEntRepresentation
https://github.com/julianser/Ubuntu-Multiresolution-Tools/tree/master/ActEntRepresentation

Table 18: Twitter Coarse Sequence Examples
Natural Language Tweets Noun Representation

<first_speaker> at

pinkberry with my

pink princess enjoying a

precious moment <url>

<second_speaker>-

they are adorable, alma

still speaks about emma

bif sis . hugs

present_tenses pinkberry

princess moment

present_tenses alma

emma bif sis hugs

<first_speaker> <at>

when you are spray

painting, where are you

doing it ? outside ? in

your apartment ? where ?

<second_speaker> <at>

mostly spray painting

outside but some little

stuff in the bathroom .

present_tenses spray

painting apartment

present_tenses spray

stuff bathroom

149

Table 19: Ubuntu Coarse Sequence Examples
Natural Language Dialogues Activity-Entity Coarse Dialogues

if you can get a hold of the logs, there

’s stuff from **unknown** about his

inability to install amd64

I’ll check fabbione ’s log, thanks

sounds like he had the same problem I

did ew, why ? ...

upgrade lsb-base and acpid

i’m up to date

what error do you get ?

i don’t find error :/ where do i

search from ? acpid works, but i must

launch it manually in a root sterm ...

future_tenses get_activity in-

stall_activity amd64_entity no_cmd

no_tenses check_activity no_cmd

past_present_tenses none_activity

no_cmd no_tenses none_activity

no_cmd ...

no_tenses upgrade_activity lsb_entity

acpid_entity no_cmd

no_tenses none_activity no_cmd

present_tenses get_activity no_cmd

present_tenses discover_activity

no_cmd present_future_tenses

work_activity acpid_entity root_entity

no_cmd ...

150

Stop Words for Noun-based Coarse Tokens

Ubuntu stop words for noun-based coarse representation:

all another any anybody anyone anything both each each other either everybody everyone everything few he her hers herself him himself
his I it its itself many me mine more most much myself neither no one nobody none nothing one one another other others ours ourselves
several she some somebody someone something that their theirs them themselves these they this those us we what whatever which whichever
who whoever whom whomever whose you your yours yourself yourselves . , ? ’ - – !

151

Twitter stop words for noun-based coarse representation: 49

all another any anybody anyone anything both each each other either everybody everyone everything few he her hers herself him himself
his I it its itself many me mine more most much myself neither no one nobody none nothing one one another other others ours ourselves
several she some somebody someone something that their theirs them themselves these they this those us we what whatever which whichever
who whoever whom whomever whose you your yours yourself yourselves . , ? ’ - – !able about above abst accordance according accordingly
across act actually added adj adopted affected affecting affects after afterwards again against ah all almost alone along already also although
always am among amongst an and announce another any anybody anyhow anymore anyone anything anyway anyways anywhere apparently
approximately are aren arent arise around as aside ask asking at auth available away awfully b back bc be became because become becomes
becoming been before beforehand begin beginning beginnings begins behind being believe below beside besides between beyond biol bit both
brief briefly but by c ca came can cannot can’t cant cause causes certain certainly co com come comes contain containing contains cos could
couldnt d date day did didn didn’t different do does doesn doesn’t doing don done don’t dont down downwards due during e each ed edu effect
eg eight eighty either else elsewhere end ending enough especially et et-al etc even ever every everybody everyone everything everywhere ex
except f far few ff fifth first five fix followed following follows for former formerly forth found four from further furthermore g game gave get
gets getting give given gives giving go goes going gone gonna good got gotten great h had happens hardly has hasn hasn’t have haven haven’t
having he hed hence her here hereafter hereby herein heres hereupon hers herself hes hey hi hid him himself his hither home how howbeit
however hundred i id ie if i’ll im immediate immediately importance important in inc indeed index information instead into invention inward
is isn isn’t it itd it’ll its itself i’ve j just k keep keeps kept keys kg km know known knows l ll largely last lately later latter latterly least less
lest let lets like liked likely line little ll ’ll lol look looking looks lot ltd m made mate mainly make makes many may maybe me mean means
meantime meanwhile merely mg might million miss ml more moreover most mostly mr mrs much mug must my myself n na name namely
nay nd near nearly necessarily necessary need needs neither never nevertheless new next nine ninety no nobody non none nonetheless noone
nor normally nos not noted nothing now nowhere o obtain obtained obviously of off often oh ok okay old omitted omg on once one ones only
onto or ord other others otherwise ought our ours ourselves out outside over overall owing own p page pages part particular particularly past
people per perhaps placed please plus poorly possible possibly potentially pp predominantly present previously primarily probably promptly
proud provides put q que quickly quite qv r ran rather rd re readily really recent recently ref refs regarding regardless regards related relatively
research respectively resulted resulting results right rt run s said same saw say saying says sec section see seeing seem seemed seeming
seems seen self selves sent seven several shall she shed she’ll shes should shouldn shouldn’t show showed shown showns shows significant
significantly similar similarly since six slightly so some somebody somehow someone somethan something sometime sometimes somewhat
somewhere soon sorry specifically specified specify specifying state states still stop strongly sub substantially successfully such sufficiently
suggest sup sure t take taken taking tbh tell tends th than thank thanks thanx that that’ll thats that’ve the their theirs them themselves then
thence there thereafter thereby thered therefore therein there’ll thereof therere theres thereto thereupon there’ve these they theyd they’ll theyre
they’ve thing things think this those thou though thoughh thousand throug through throughout thru thus til time tip to together too took toward
towards tried tries truly try trying ts tweet twice two u un under unfortunately unless unlike unlikely until unto up upon ups ur us use used
useful usefully usefulness uses using usually v value various ve ’ve very via viz vol vols vs w wanna want wants was wasn wasn’t way we
wed welcome well we’ll went were weren weren’t we’ve what whatever what’ll whats when whence whenever where whereafter whereas
whereby wherein wheres whereupon wherever whether which while whim whither who whod whoever whole who’ll whom whomever whos
whose why widely will willing wish with within without won won’t words world would wouldn wouldn’t www x y yeah yes yet you youd
you’ll your youre yours yourself yourselves you’ve z zero

49Part of these were extracted from https://github.com/defacto133/twitter-wordcloud-bot/

blob/master/assets/stopwords-en.txt.

152

https://github.com/defacto133/twitter-wordcloud-bot/blob/master/assets/stopwords-en.txt
https://github.com/defacto133/twitter-wordcloud-bot/blob/master/assets/stopwords-en.txt

Activities and Entities for Ubuntu Dialogue Corpus

Ubuntu activities:

accept, activate, add, ask, appoint, attach, backup, boot, check, choose, clean, click, comment, compare, compile, compress, change,
affirm, connect, continue, administrate, copies, break, create, cut, debug, decipher, decompress, define, describe, debind, deattach, deactivate,
download, adapt, eject, email, conceal, consider, execute, close, expand, expect, export, discover, correct, fold, freeze, get, deliver, go, grab,
hash, import, include, install, interrupt, load, block, log, log-in, log-out, demote, build, clock, bind, more, mount, move, navigate, open,
arrange, partition, paste, patch, plan, plug, post, practice, produce, pull, purge, push, put, queries, quote, look, reattach, reboot, receive, reject,
release, remake, delete, name, replace, request, reset, resize, restart, retry, return, revert, reroute, scroll, send, set, display, shutdown, size,
sleep, sort, split, come-up, store, signup, get-ahold-of, say, test, transfer, try, uncomment, de-expand, uninstall, unmount, unplug, unset, sign-
out, update, upgrade, upload, use, delay, enter, support, prevent, loose, point, contain, access, share, buy, sell, help, work, mute, restrict, play,
call, thank, burn, advice, force, repeat, stream, respond, browse, scan, restore, design, refresh, bundle, implement, programming, compute,
touch, overheat, cause, affect, swap, format, rescue, zoomed, detect, dump, simulate, checkout, unblock, document, troubleshoot, convert,
allocate, minimize, maximize, redirect, maintain, print, spam, throw, sync, contact, destroy

153

Ubuntu entities (excerpt):

ubuntu_7.04, dmraid, vnc4server, tasksel, aegis, mirage, system-config-audit, uif2iso, aumix, unrar, dell, hibernate, ucoded, finger,
zoneminder, ucfg, macaddress, ia32-libs, synergy, aircrack-ng, pulseaudio, gnome, kid3, bittorrent, systemsettings, cups, finger, xchm, pan,
uwidget, vnc-java, linux-source, ucommand.com, epiphany, avanade, onboard, uextended, substance, pmount, lilypond, proftpd, unii, jockey-
common, aha, units, xrdp, mp3check, cruft, uemulator, ulivecd, amsn, ubuntu_5.10, acpidump, uadd-on, gpac, ifenslave, pidgin, soundcon-
verter, kdelibs-bin, esmtp, vim, travel, smartdimmer, uactionscript, scrotwm, fbdesk, tulip, beep, nikto, wine, linux-image, azureus, vim,
makefile, uuid, whiptail, alex, junior-arcade, libssl-dev, update-inetd, uextended, uaiglx, sudo, dump, lockout, overlay-scrollbar, xubuntu,
mdk, mdm, mdf2iso, linux-libc-dev, sms, lm-sensors, dsl, lxde, dsh, smc, sdf, install-info, xsensors, gutenprint, sensors, ubuntu_13.04, atd,
ata, fatrat, fglrx, equinix, atp, atx, libjpeg-dbg, umingw, update-inetd, firefox, devede, cd-r, tango, mixxx, uemulator, compiz, libpulse-dev,
synaptic, ecryptfs, crawl, ugtk+, tree, perl, tree, ubuntu-docs, libsane, gnomeradio, ufilemaker, dyndns, libfreetype6, daemon, xsensors,
vncviewer, vga, indicator-applet, nvidia-173, rsync, members, qemu, mount, rsync, macbook, gsfonts, synaptic, finger, john, cam, lpr, lpr,
xsensors, lpr, lpr, screen, inotify, signatures, units, ushareware, ufraw, bonnie, nec, fstab, nano, bless, bibletime, irssi, ujump, foremost, nzbget,
ssid, onboard, synaptic, branding, hostname, radio, hotwire, xebia, netcfg, xchat, irq, lazarus, pilot, ucopyleft, java-common, vm, ifplugd,
ncmpcpp, irc, uclass, gnome, sram, binfmt-support, vuze, java-common, sauerbraten, adapter, login

Ubuntu commands:

alias, apt-get, aptitude, aspell, awk, basename, bc, bg, break, builtin, bzip2, cal, case, cat, cd, cfdisk, chgrp, chmod, chown, chroot,
chkconfig, cksum, cmp, comm, command, continue, cp, cron, crontab, csplit, curl, cut, date, dc, dd, ddrescue, declare, df, diff, diff3, dig, dir,
dircolors, dirname, dirs, dmesg, du, echo, egrep, eject, enable, env, eval, exec, exit, expect, expand, export, expr, false, fdformat, fdisk, fg,
fgrep, file, find, fmt, fold, for, fsck, ftp, function, fuser, gawk, getopts, grep, groupadd, groupdel, groupmod, groups, gzip, hash, head, history,
hostname, htop, iconv, id, if, ifconfig, ifdown, ifup, import, install, ip, jobs, join, kill, killall, less, let, link, ln, local, locate, logname, logout,
look, lpc, lpr, lprm, ls, lsof, man, mkdir, mkfifo, mknod, more, most, mount, mtools, mtr, mv, mmv, nc, nl, nohup, notify-send, nslookup,
open, op, passwd, paste, ping, pkill, popd, pr, printf, ps, pushd, pv, pwd, quota, quotacheck, quotactl, ram, rar, rcp, read, readonly, rename,
return, rev, rm, rmdir, rsync, screen, scp, sdiff, sed, select, seq, set, shift, shopt, shutdown, sleep, slocate, sort, source, split, ssh, stat, strace,
su, sudo, sum, suspend, sync, tail, tar, tee, test, time, timeout, times, touch, top, tput, traceroute, tr, true, tsort, tty, type, ulimit, umask, unalias,
uname, unexpand, uniq, units, unrar, unset, unshar, until, useradd, userdel, usermod, users, uuencode, uudecode, vi, vmstat, wait, watch, wc,
whereis, which, while, who, whoami, write, xargs, xdg-open, xz, yes, zip, admin, purge

154

II Appendix: Human Evaluation on Amazon Mechanical Turk
(Twitter)

This appendix describes the human evaluation of the TF-IDF, RNNLM, HRED and VHRED mod-

els on the Twitter dataset described in the first part of the thesis. The text for this appendix has

been adapted from the appendix in Serban et al. (2017d) written by the author of this thesis. The

appendix text was never published in any journal, conference or workshop proceedings.

Setup

We choose to use crowdsourcing platforms such as AMT rather than carrying out in-lab experi-

ments, even though in-lab experiments usually exhibit less idiosyncratic noise and result in higher

agreement between human annotators. We do this because AMT experiments involve a larger and

more heterogeneous pool of annotators, which implies less cultural and geographic biases, and

because such experiments are easier to replicate, which we believe is important for benchmarking

future research on these tasks.

Allowing the AMT human evaluators to not assign preference for either response is important.

There are many reasons for why humans may not understand the dialogue context, such as topics

they are not familiar with, slang language and non-English language. We refer to such evaluations

as “indeterminable".

The evaluation setup resembles the classical Turing Test where human judges have to distin-

guish between human-human conversations and human-computer conversations. However, unlike

the original Turing Test, we only ask human evaluators to consider the next utterance in a given

conversation and we do not inform them that any responses were generated by a computer. Apart

from minimum context and response lengths we impose no restrictions on the generated responses.

Selection Process

At the beginning of each experiment, we briefly instruct the human evaluator on the task and show

them a simple example of a dialogue context and two potential responses. To avoid presentation

bias, we shuffle the order of the examples and the order of the potential responses for each example.

During each experiment, we also show four trivial “attention check" examples that any human

evaluator who has understood the task should be able to answer correctly. We discard responses

from human evaluators who fail more than one of these checks.

We select the examples shown to human evaluators at random from the test set. We filter out

all non-English conversations and conversations containing offensive content. This is done by

155

automatically filtering out all conversations with non-ascii characters and conversations with pro-

fanities, curse words and otherwise offensive content. This filtering is not perfect, so we manually

skim through many conversations and filter out conversations with non-English languages and of-

fensive content. On average, we remove about 1/80 conversations manually. To ensure that the

evaluation process is focused on evaluating conditional dialogue response generation (as opposed

to unconditional single sentence generation), we constrain the experiment by filtering out examples

with fewer than 3 turns in the context. We also filter out examples where either of the two presented

responses contain less than 5 tokens. We remove the special token placeholders and apply regex

expressions to detokenize the text.

Execution

We run the experiments in batches. For each pairs of models, we carry out 3-5 human intelli-

gence tests (HITs) on AMT. Each HIT contains 70-90 examples (dialogue context and two model

responses) and is evaluated by 3-4 unique humans. In total we collect 5363 preferences in 69 HITs.

The following are screenshots from one actual Amazon Mechanical Turk (AMT) experiment.

These screenshots show the introduction (debriefing) of the experiment, an example dialogue and

one dialogue context with two candidate responses, which human evaluators were asked to choose

between. The experiment was carried out using psiturk, which can be downloaded from www.

psiturk.org.

156

www.psiturk.org
www.psiturk.org

Figure 21: Screenshot of the introduction (debriefing) of the experiment.

157

Figure 22: Screenshot of the introductory dialogue example.

158

III Appendix: Human Evaluation in the Research Lab (Ubuntu)

This appendix describes the human evaluation on the Ubuntu task described in the first part of the

thesis. The text for this appendix has been adapted from the appendix in Serban et al. (2017b) writ-

ten by the author of this thesis. The appendix text was never published in any journal, conference

or workshop proceedings.

All human evaluators either studied or worked in an English speaking environment, and indi-

cated that they had some experience using a Linux operating system. To ensure a high quality of

the ground truth responses, human evaluators were only asked to evaluate responses, where the

ground truth contained at least one technical entity. Before starting, the evaluators were shown

one short annotated example with a brief explanation of how to give annotations. In particular, the

evaluators were instructed to use the reference in Figure 23.

Figure 23: Fluency and relevancy reference table presented to human evaluators.

The 5 evaluators gave 1069 ratings in total. Table 20 shows the scores by category.

Table 20: Ubuntu human fluency and relevancy scores by rating category

Fluency (0-4) Relevancy (0-4)
XXXXXXXXXXXXXX

Model
Rating Level

0 1 2 3 4 0 1 2 3 4

HRED 3 11 21 50 49 68 22 19 19 4
HRED + Act.-Ent. 3 17 19 37 57 69 39 18 6 2
MrRNN Noun 1 2 8 52 71 51 45 24 10 4
MrRNN Act.-Ent 0 2 6 52 74 27 53 39 14 1

159

IV Appendix: Milabot Response Models

This appendix describes the response models for the Milabot ensemble system. The text for this

appendix has been adapted from the appendix in the pre-print article Serban et al. (2017c) written

by the author of this thesis. The appendix text was never published in any journal, conference or

workshop proceedings.

There are 22 response models in the system, including retrieval-based neural networks, generation-

based neural networks, knowledge base question answering systems and template-based systems.

Examples of candidate model responses are shown in Table 11.

Template-based Models

We first describe the template-based response models in the system.

Alicebot: Alicebot uses a set of AIML (artificial intelligence markup language) templates to

produce a response given the dialogue history and user utterance (Wallace, 2009; Shawar and

Atwell, 2007). We use the freely available Alice kernel available at www.alicebot.org. By

default all templates generate non-priority responses, so we configure templates related to the

socialbot’s name, age and location to output priority responses. We modify a few templates further

to make them consistent with the challenge (e.g. to avoid obscene language and to encourage the

user to discuss certain topics, such as news, politics and movies). The majority of templates remain

unchanged.

The Alicebot model also outputs a scalar confidence score. Since the AIML templates repeat

the user’s input utterance, they are not always correct sentences. Therefore, we use a string-based

rules to determine if the response constitutes a correct sentence. If the response is correct sentence,

it returns a high confidence and otherwise it returns a low confidence score. This process is illus-

trated in Algorithm 1.

160

www.alicebot.org

Algorithm 1: Alicebot

1 input: dialogue history

2 response← apply AIML templates to dialogue history

3 if response is correct sentence then
4 if response is given priority then
5 confidence← 1.0

6 else
7 confidence← 0.5

8 else
9 confidence← 0.0

10 output: response, priority, confidence

Elizabot Similar to Alicebot, the Elizabot model performs string matching to select an answer

from a set of templates. The model is based on the famous Eliza system, designed to mimic a

Rogerian psychotherapist (Weizenbaum, 1966).50 Therefore, in contrast with Alicebot, most of

Elizabot’s responses are personal questions which are meant to engage the user to continue the

conversation.

50We use the implementation available at: https://gist.github.com/bebraw/273706.

161

https://gist.github.com/bebraw/273706

Here are two example templates:

1. "I am (.*)"→ "Did you come to me because you are ..."

2. "What (.*)"→ "Why do you ask?"

The ellipses mark the parts of the response sentence which will be replaced with text from

the user’s utterance. The model detects the appropriate template and selects the corresponding

response (if there are multiple templates, then a template is selected at random). The model then

runs the template response through a set of reflections to better format the string for a response

(e.g. "I’d"→ "you would", "your"→ "my").
Algorithm 2: Initiatorbot

1 input: dialogue history

2 if Initiatorbot was triggered in one of last two turns then
3 return ""

4 else if user did not give a greeting then
5 return a non-priority response with a random initiator phrase

6 else
7 return a priority response with a random initiator phrase

Initiatorbot The Initiatorbot model acts as a conversation starter: it asks the user an open-

ended question to get the conversation started and increase the engagement of the user. We wrote

40 question phrases for the Initiatorbot. Examples of phrases include "What did you do today?",

"Do you have pets?" and "What kind of news stories interest you the most?". As a special case, the

model can also start the conversation by stating an interesting fact. In this case, the initiator phrase

is "Did you know that <fact>?", where fact is replaced by a statement. The set of facts is the same

as used by the BoWFactGenerator model, described later.

Before returning a response, Initiatorbot first checks that it hasn’t already been triggered in the

last two turns of the conversation. If the user gives a greeting (e.g. "hi"), then Initiatorbot will

return a response with priority. This is important because we observed that greetings often indicate

the beginning of a conversation, where the user does not have a particular topic they would like to

talk about. By asking a question, the system takes the initiative (i.e. control of the dialogue). The

procedure is detailed in Algorithm 2.

Storybot The Storybot model outputs a short fiction story at the request of the user. We

implemented this model as we observed that many users were asking the socialbot to tell sto-

ries.51 Storybot determines if the user requested a story by checking if there was both a request

51Requests for telling stories is possibly a side-effect of user’s interacting with bots from other teams, which often
emphasized non-conversational activities, such as telling stories and playing quizzes and word games.

162

word (e.g. say, tell.) and story-type word in the utterance (e.g. story, tale). The response states

the story’s title and author followed by the story body. For example, one set of responses from

this model follows the pattern "Alright, let me tell you the story <story_title> <story_body> by

<story_author>" where <story_title> is the title of the story, <story_body> is the main text and

<story_author> is the name of the story’s author. The stories were scraped from the website:

www.english-for-students.com.

An example story is:

** The Ant and The Grasshopper **
The ants worked hard in summer. They sorted food for winter.

At that time, a grasshopper remained idle. When winter came, the ants had enough to eat.

But, the grasshopper had nothing to eat. He had to starve.

He went to the ants and begged for foods. The ants asked in return, "What did you do in summer?"

He replied, "I idled away my time during summer".

The ant replied, "Then you must starve in winter." MORAL: Never be idle.
The Storybot is the only component in the system performing a non-conversational activity. It

is triggered only when a user specifically asks for a story, and in that case its response is a priority

response. Otherwise, the Storybot response model is never triggered. Further, the rest of the system

will not encourage the user to request stories.

Knowledge Base-based Question Answering

Evibot The Evibot response model forwards the user’s utterance to Amazon’s question-answering

web-service Evi: www.evi.com. Evi was designed primarily to handle factual questions. There-

fore, Evibot returns a priority response for direct questions, defined as user utterances contain-

ing a wh-word (e.g. "who", "what"), and otherwise returns a non-priority or, possibly, an empty

response. If the query is a direct question and contains non-stop words, Evibot will follow a

three step procedure to generate its response. First, Evibot forwards a query to www.evi.

com containing the whole user utterance, and returns the resulting answer if its valid. If that

fails, Evibot applies NLTK’s named entity processor (Bird et al., 2009) to the query to find sub-

queries with named entities. For each subphrase that contains a named entity, Evibot forwards

queries to www.evi.com, and returns the result upon a valid response. Finally, if the previ-

ous two steps fail, Evibot forwards queries for every subquery without named entities, and re-

turns either a valid response or an empty response. The procedure is detailed in Algorithm 3.

163

www.english-for-students.com
www.evi.com
www.evi.com
www.evi.com
www.evi.com

Algorithm 3: Evibot

1 input: dialogue history

2 query← last user utterance

3 has-wh-words← true if utterance contains a wh-word, otherwise false

4 has-only-stop-words← true if utterance only has stop words, otherwise false

5 if has-only-stop-words and not has-wh-words then
6 return ""

7 evi-response← send query to www.evi.com

8 priority← true if has-wh-words and evi-response is valid, otherwise false

9 if evi-response is valid then
10 return evi-response, priority

11 else if has-wh-words then
12 priority← has-wh-words

13 subentities← entities extracted from query using NLTK’s named entity processor

14 subphrases← list of subphrases with entities

15 for subphrase in subphrases do
16 evi-response← send subphrase to www.evi.com

17 if evi-response is valid then
18 return evi-response, priority

19 subphrases← list of all subphrases

20 for subphrase in subphrases do
21 evi-response← send subphrase to www.evi.com

22 if evi-response is valid then
23 return evi-response, priority

24 else
25 return ""

BoWMovies The BoWMovies model is a template-based response model, which handles ques-

tions in the movie domain. The model has a list of entity names and tags (e.g. movie plot and

release year). The model searches the user’s utterance for known entities and tags. Entities are

identified by string matching. This is done in a cascading order, by giving first preference to movie

title matches, then actor name matches, and finally director name matches. Tags are also iden-

tified by string matching. However, if exact string matching fails for tags, then identification is

performed by word embedding similarity. If both an entity and a tag are present, the agent will

dispatch an API call to one of several data sources to retrieve the data item for the selected query

164

www.evi.com
www.evi.com
www.evi.com

type. The agent is limited by the data available in the APIs to which it has access. The model’s

responses follow predefined templates.

Movie titles, actor names, and director names are extracted from the Internet Movie Database

(IMDB). Movie descriptions are taken from Google Knowledge GraphâĂŹs API. Other movie title

queries are directed to the Open Movie Database (OMDB).52 For actor and director queries, the

Wikiedata API is used. First, a search for actor and director names is done on a Wikidata JSON

dump.

As described earlier, the model uses word embeddings to match tags. These word embeddings

are trained using Word2Vec on movie plot summaries and actor biographies extracted from the

IMDB database (Mikolov et al., 2013b).

52See www.omdbapi.com. This should not be confused with IMDB.

165

www.omdbapi.com

Algorithm 4: BoWMovies - ComputeResponse

1 input: dialogue history

2 entity← entity contained both in last user utterance and list of movie titles, actors or

directors

3 if no entity then
4 entity← entity contained in previous user utterances and movie titles, actors or

directors
5 if no entity then
6 return ""

7 if entity is a movie title then
8 response← ComputeEntityResponse(entity, movie title)

9 else if entity is an actor name then
10 response← ComputeEntityResponse(entity, actor name)

11 else if entity is an director name then
12 response← ComputeEntityResponse(entity, director name)

13 return response

Algorithm 5: BoWMovies - ComputeEntityResponse

1 input: entity and entity type

2 tag← string matching tag, where tag is valid for entity type (movie title, actor name,

director name)

3 if no tag then
4 tag← word embedding matching tag, where tag is a single word and valid for the

entity type (movie title, actor name, director name)

5 if no tag then
6 tag← word embedding matching tag, where tag is multiple words and valid for the

entity type (movie title, actor name, director name)

7 if no tag then
8 return ""

9 api-response← call external API with query (entity, tag).

10 response← template with api-response inserted

11 return response

166

Retrieval-based Neural Networks

VHRED models: The system contains several VHRED models, sequence-to-sequence models

with Gaussian latent variables trained as variational auto-encoders (Serban et al., 2017d; Kingma

and Welling, 2014; Rezende et al., 2014). The models are trained using the same procedure as Ser-

ban et al. (2017d). The trained VHRED models generate candidate responses as follows. First, a

set of K model responses are retrieved from a dataset using cosine similarity between the current

dialogue history and the dialogue history in the dataset based on bag-of-words TF-IDF Glove word

embeddings (Pennington et al., 2014).53 An approximation of the log-likelihood for each of the 20

responses is computed by VHRED, and the response with the highest log-likelihood is returned.

The system has 4 VHRED models based on datasets scraped from Reddit, one VHRED model

based on news articles and one VHRED model based on movie subtitles:

• VHREDRedditPolitics trained on https://www.reddit.com/r/politics and ex-

tracting responses from all Reddit datasets with K = 10,

• VHREDRedditNews trained on Reddit https://www.reddit.com/r/news and ex-

tracting responses from all Reddit datasets with K = 20,

• VHREDRedditSports trained on Reddit https://www.reddit.com/r/sports and

extracting responses from all Reddit datasets with K = 20,

• VHREDRedditMovies trained on Reddit https://www.reddit.com/r/movies and

extracting responses from all Reddit datasets with K = 20,

• VHREDWashingtonPost54 trained on Reddit https://www.reddit.com/r/politics

and extracting responses from user comments to WashingtonPost news articles, and

• VHREDSubtitles55 using the movie subtitles dataset SubTle (Ameixa et al., 2014) with K =
10.

In particular, VHREDRedditPolitics and VHREDWashingtonPost use a different retrieval pro-

cedure. These two models use a logistic regression model to score the responses instead of the

approximate log-likelihood. The logistic regression model is trained on a set of 7500 Reddit

threads and candidate responses annotated by Amazon Mechanical Turk workers on a Likert-type

scale 1 − 5. The candidate responses are selected from other Reddit threads according to cosine

similarity w.r.t. Glove word embeddings. The label collection and training procedure for the lo-

gistic regression model are similar to the procedures described in Section 4.7. For each response,

53We use the Glove embeddings trained on Wikipedia 2014 + Gigaword 5: https://nlp.stanford.edu/
projects/glove/.

54For VHREDWashingtonPost, the K responses are extracted based on the cosine similarity between the current
dialogue and the news article keywords. K varies depending on the number of user comments within a set of news
articles above a certain cosine similarity threshold.

55For VHREDSubtitles, cosine similarity is computed based on one-hot vectors for each word.

167

https://www.reddit.com/r/politics
https://www.reddit.com/r/news
https://www.reddit.com/r/sports
https://www.reddit.com/r/movies
https://www.reddit.com/r/politics
https://nlp.stanford.edu/projects/glove/
https://nlp.stanford.edu/projects/glove/

the logistic regression model takes as input the VHRED log-likelihood score, as well as several

other input features, and outputs a scalar-valued score. Even though the logistic regression model

did improve the appropriateness of responses selected for Reddit threads, VHREDRedditPolitics

is used extremely rarely in the final system (see Section 4.12.1). This suggests that training a

model to rerank responses based on labelled Reddit threads and responses cannot help improve

performance.

SkipThought Vector Models: The system contains a SkipThought Vector model (Kiros et al.,

2015) trained on the BookCorpus dataset (Zhu et al., 2015) and on the SemEval 2014 Task 1 (Marelli

et al., 2014). The model was trained using the same procedure as Kiros et al. (2015) and is called

SkipThoughtBooks.

SkipThoughtBooks ensures that the system complies with the Amazon Alexa Prize competition

rules. One rule, introduced early in the competition, is that socialbots were not supposed to state

their own opinions related to political or religious topics. If a user wishes to discuss such topics,

the socialbots should proceed by asking questions or stating facts. SkipThoughtBooks also handles

idiosyncratic issues particular to the Alexa platform. For example, many users did not understand

the purpose of a socialbot and asked our socialbot to play music. In this case, the system should

instruct the user to exit the socialbot application and then play music.

SkipThoughtBooks follows a two-step procedure to generate its response. The first step com-

pares the user’s last utterance to a set of trigger phrases. If a match is found, the model returns a

corresponding priority response.56 For example, if the user says "What do you think about Donald

trump?", the model will return a priority response, such as "Sometimes, truth is stranger than fic-

tion.". A match is found if: 1) the SkipThought Vector model’s semantic relatedness score between

the user’s last utterance and a trigger phrase is above a predefined threshold, and 2) the user’s last

utterance contains keywords relevant to the trigger phrase.57 In total, there are 315 trigger phrases

(most are paraphrases of each other) and 35 response sets.

If the model did not find a match in the first step, it proceeds to the second step. In this step,

the model selects its response from among all Reddit dataset responses. As before, a set of K

model responses are retrieved using cosine similarity. The model then returns the response with

the highest semantic relatedness score.

Dual Encoder Models: The system contains two Dual Encoder retrieval models, as proposed

by Lowe et al. (2015b) and Lowe et al. (2017b), called DualEncoderRedditPolitics and DualEn-

coderRedditNews. Both models are composed of two sequence encoders ENCQ and ENCR with

a single LSTM recurrent layer used to encode the dialogue history and a candidate response. The

score for a candidate response is computed by a bilinear mapping of the dialogue history em-

56Trigger phrases may have multiple responses. In this case, a response is selected at random.
57Some trigger phrases do not have keywords. In this case, matching is based only on semantic relatedness.

168

bedding and the candidate response embedding. The models are trained using the method pro-

posed by Lowe et al. (2015b). In principle, it is also possible to use early stopping based on

a separate model trained on a domain similar to our target domain (Lowe et al., 2016). The

response with the highest score from a set of K = 50 candidate responses are retrieved us-

ing TF-IDF cosine similarity based on Glove word embeddings. The model DualEncoderRed-

ditPolitics is trained on the Reddit https://www.reddit.com/r/politics dataset and

extracts responses from all Reddit datasets. The model DualEncoderRedditNews is trained on the

Reddit https://www.reddit.com/r/news dataset and extracts responses from all Reddit

datasets.

Bag-of-words Retrieval Models: The system contains three bag-of-words retrieval mod-

els based on TF-IDF Glove word embeddings (Pennington et al., 2014) and Word2Vec embed-

dings (Mikolov et al., 2013b).58 Similar to the VHRED models, these models retrieve the re-

sponse with the highest cosine similarity. The BoWWashingtonPost model retrieves user com-

ments from WashingtonPost news articles using Glove word embeddings. The model BoWTrump

retrieves responses from a set of Twitter tweets scraped from Donald Trump’s profile: https:

//twitter.com/realDonaldTrump. This model also uses Glove word embeddings and

it only returns a response when at least one relevant keyword or phrase is found in the user’s

utterance (e.g. when the word "Trump" is mentioned by the user). The list of trigger keywords

and phrases include: ’donald’, ’trump’, ’potus’, ’president of the united states’, ’president of the

us’, ’hillary’, ’clinton’, ’barack’, and ’obama’. The model BoWFactGenerator retrieves responses

from a set of about 2500 interesting and fun facts, including facts about animals, geography and

history. The model uses Word2Vec word embeddings. The model BoWGameofThrones retrieves

responses from a set of quotes scraped from https://twitter.com/ThroneQuotes using

Glove word embeddings. Tweets from this source were manually inspected and cleaned to remove

any tweets that were not quotes from the series. As in the BoWTrump model, we use a list of trigger

phrases to determine if the model’s output is relevant to the user’s utterance. We populate this list

with around 80 popular character names, place names and family names, which are large unique to

the domain. We also added a few aliases to try and account for alternative speech transcriptions of

these named entities. Some phrases include: ’ned stark’, ’jon snow’, ’john snow’, ’samwell tarly’,

"hodor", "dothraki" and so on. 59

58We use the pre-trained Word2Vec embeddings: https://code.google.com/archive/p/word2vec/.
59This model was implemented after the competition ended, but is included here for completeness.

169

https://www.reddit.com/r/politics
https://www.reddit.com/r/news
https://twitter.com/realDonaldTrump
https://twitter.com/realDonaldTrump
https://twitter.com/ThroneQuotes
https://code.google.com/archive/p/word2vec/

Retrieval-based Logistic Regression

BoWEscapePlan: The system contains a response model, called BoWEscapePlan, which returns

a response from a set of 35 topic-independent, generic pre-defined responses, such as "Could you

repeat that again", "I don’t know" and "Was that a question?". Its main purpose is to maintain user

engagement and keep the conversation going, when other models are unable to provide meaningful

responses. This model uses a logistic regression classifier to select its response based on a set of

higher-level features.

To train the logistic regression classifier, we annotated 12, 000 user utterances and candidate

response pairs for appropriateness on a Likert-type scale 1− 5. The user utterances were extracted

from interactions between Alexa users and a preliminary version of the system. The candidate

responses were sampled at random from BoWEscapePlan’s response list. The label collection

and training procedure for the logistic regression model are similar to the procedures described

in section 4.7. The logistic regression model is trained with log-likelihood on a training set, with

early-stopping on a development set, and evaluated on the testing set. However, the trained model’s

performance was poor. It obtained a Pearson correlation coefficient of 0.05 and a Spearman’s rank

correlation coefficient of 0.07. This indicates that the logistic regression model is only slightly bet-

ter at selecting a topic-independent, generic response compared to selecting a response at uniform

random. Future work should investigate collecting more labelled data and pre-training the logistic

regression model.

Search Engine-based Neural Networks

The system contains a deep classifier model, called LSTMClassifierMSMarco, which chooses its

response from a set of search engine results. The system searches the web with the last user utter-

ance as query, and retrieves the first 10 search snippets. The retrieved snippets are preprocessed by

stripping trailing words, removing unnecessary punctuation and truncating to the last full sentence.

The model uses a bidirectional LSTM to separately map the last dialogue utterance and the snippet

to their own embedding vectors. The resulting two representations are concatenated and passed

through an neural network to predict a scalar-value between 0 − 1 indicating how appropriate the

snippet is as a response to the utterance.

The model is trained as a binary classification model on the Microsoft Marco dataset with

cross-entropy to predict the relevancy of a snippet given a user query (Nguyen et al., 2016). Given

a search query and a search snippet, the model must output one when the search snippet is relevant

and otherwise zero. Search queries and ground truth search snippets are taken as positive samples,

while other search snippets are selected at random as negative samples. On this task, the model is

able to reach a prediction accuracy of 72.96% w.r.t. the Microsoft Marco development set.

170

The system is able to use search APIs from various search engines including Google and Bing.

In the current model, we choose Google as the search engine, since qualitative inspection showed

that this retrieved the most appropriate responses.

Generation-based Neural Networks

The system contains a generative recurrent neural network language model, called GRUQuestion-

Generator, which can generate follow-up questions word-by-word, conditioned on the dialogue

history. The input to the model consists of three components: a one-hot vector of the current word,

a binary question label and a binary speaker label. The model contains two GRU layers (Cho

et al., 2014) and softmax output layer. The model is trained on Reddit Politics and Reddit News

conversations, wherein posts were labelled as questions by detecting question marks. We use the

optimizer Adam (Kingma and Ba, 2015), and perform early stopping by checking the perplexity

on the validation set For generation, we first condition the model on a short question template

(e.g. “How about”, “What about”, “How do you think of”, “What is your opinion of”), and then

generate the rest of the question by sampling from the model with the question label clamped to

one. The generation procedure stops once a question mark is detected. Further, the length of the

question is controlled by tuning the temperature of the softmax layer. Due to speed requirements,

only two candidate responses are generated and the best one w.r.t. log-likelihood of the first 10

words is returned.

171

V Appendix: Milabot Crowdsourced Data Collection

This appendix describes the crowdsourcing data collection conducted for the Milabot ensemble

system. The text for this appendix has been ada

https://github.com/julianser/aiducate/pull/554pted from the pre-print article Serban et al. (2017c)

written by the author of this thesis. The text was never published in any journal, conference or

workshop proceedings.

We use Amazon Mechanical Turk (AMT) to collect data for training the scoring model. We

follow a setup similar to Liu et al. (2016). We show human evaluators a dialogue along with 4

candidate responses, and ask them to score how appropriate each candidate response is on a 1-5

Likert-type scale. The score 1 indicates that the response is inappropriate or does not make sense,

3 indicates that the response is acceptable, and 5 indicates that the response is excellent and highly

appropriate.

Our setup only asks human evaluators to rate the overall appropriateness of the candidate re-

sponses. In principle, we could choose to evaluate other aspects of the candidate responses. For

example, we could evaluate fluency. However, fluency ratings would not be very useful since

most of our models retrieve their responses from existing corpora, which contain mainly fluent

and grammatically correct responses. As another example, we could evaluate topical relevancy.

However, we choose not to evaluate such criteria since it is known to be difficult to reach high

inter-annotator agreement on them (Liu et al., 2016). In fact, it is well known that even asking for

a single overall rating tends to produce only a fair agreement between human evaluators (Charras

et al., 2016); disagreement between annotators tends to arise either when the dialogue context is

short and ambiguous, or when the candidate response is only partially relevant and acceptable.

The dialogues are extracted from interactions between Alexa users and preliminary versions

of our system. Only dialogues where the system does not have a priority response were extracted

(when there is a priority response, the dialogue manager must always return the priority response).

About 3/4 of these dialogues were sampled at random, and the remaining 1/4 dialogues were

sampled at random excluding identical dialogues.60 For each dialogue, the corresponding candi-

date responses are created by generating candidate responses from the response models.

We preprocess the dialogues and candidate responses by masking out profanities and swear

words with stars (e.g. we map "fuck" to "****").61 Furthermore, we anonymize the dialogues and

candidate responses by replacing first names with randomly selected gender-neutral names (for

60Sampling at random is advantageous for our goal, because it ensures that candidate responses to frequent user
statements and questions tend to be annotated by more turkers. This increases the average annotation accuracy for
such utterances, which in turn increases the scoring model’s accuracy for such utterances.

61The masking is not perfect. Therefore, we also instruct turkers that the task may contain profane and obscene
language. Further, it should also be noted that Amazon Mechanical Turk only employs adults.

172

example, "Hi John" could be mapped to "Hello Casey"). Finally, the dialogues are truncated to the

last 4 utterances and last 500 words. This reduces the cognitive load of the annotators. Examples

from the crowdsourcing task are shown in Figure 24, Figure 25 and Figure 26. The dialogue

example shown in Figure 26 is a fictitious example.

Figure 24: Consent screen for Amazon Mechanical Turk human intelligence tasks (HITs).

173

Figure 25: Instructions screen for Amazon Mechanical Turk human intelligence tasks (HITs).

174

Figure 26: Annotation screen for Amazon Mechanical Turk human intelligence tasks (HITs). The

dialogue text is a fictitious example.

We inspected the annotations manually. We observed that annotators tended to frequently

overrate topic-independent, generic responses. Such responses may be considered acceptable for

a single turn in a conversation, but are likely to be detrimental when repeated over and over again.

In particular, annotators tended to overrate responses generated by the response models Alicebot,

Elizabot, VHREDSubtitles and BoWEscapePlan. Responses generated by these models are often

acceptable or good, but the majority of them are topic-independent, generic sentences. Therefore,

for these response models, we mapped all labels 5 ("excellent") to 4 ("good"). Furthermore, for

responses consisting of only stop-words, we decreased the labels by one level (e.g. 4 is mapped to

3). Finally, the BoWMovies response model suffered from a bug during the label collection period.

Therefore, we decreased all labels given to BoWMovies responses to be at most 2 ("poor").

In total, we collected 199, 678 labels. We split this into training (train), development (dev) and

testing (test) datasets consisting of respectively 137,549, 23,298 and 38,831 labels each.

175

	Sommaire
	Summary
	List of Tables
	List of Figures
	Notation
	Acknowledgements
	Introduction
	Motivation
	Central Assumptions
	Thesis Structure

	Technical Background
	Probabilistic Generative Models
	n-Gram Models
	Recurrent Neural Networks
	Latent Variable Models
	Learning Word, Phrase and Sentence Embeddings with Probabilistic Generative Models

	Reinforcement Learning
	Markov Decision Process
	Tabular Reinforcement Learning with Q-Learning
	Deep Reinforcement Learning with Q-Learning
	Model-based Reinforcement Learning

	Dialogue Systems
	System Components
	System Learning
	System Evaluation

	Generative Dialogue Models
	Hierarchical Recurrent Encoder-Decoder
	Author's Contribution
	Motivation
	Prior Related Work
	Model

	Multiresolution Recurrent Neural Network
	Author's Contribution
	Motivation
	Prior Related Work
	Model

	Latent Variable Recurrent Encoder-Decoder
	Author's Contribution
	Motivation
	Prior Related Work
	Model
	Comparing VHRED to HRED and MrRNN

	Experiments
	Tasks
	Multiresolution RNN Representations
	Model Training & Testing
	Ubuntu Experiments
	Twitter Experiments

	Discussion
	Directions for Future Research
	Hierarchical Models with Stochastic Latent Dynamics
	End-to-end Multiresolution RNNs

	A Deep Reinforcement Learning Dialogue System
	Author's Contribution
	Motivation
	Prior Related Work
	System Overview
	Response Models
	Response Selection Policy
	Reinforcement Learning Setup
	Parametrizing the Agent's Policy
	A Neural Network Scoring Model
	Input Features for Scoring Model

	Learning the Response Selection Policy with Supervised Learning on Crowdsourced Labels
	Crowdsourcing Data Collection
	Policy Training
	Preliminary Evaluation

	Learning the Response Selection Policy with Supervised Learning on Real-World User Scores
	Learned Reward Function
	Preliminary Evaluation of Learned Reward Function
	Policy Training

	Learning the Response Selection Policy with Off-Policy REINFORCE
	Off-Policy REINFORCE
	Off-Policy REINFORCE with Learned Reward Function
	Policy Training

	Learning the Response Selection Policy with Model-Based Reinforcement Learning
	Bottleneck Simulator
	Policy Training

	Learning the Response Selection Policy with Other Reinforcement Learning Algorithms
	Q-Learning Policy
	State Abstraction Policy

	Experiments
	Evaluation Based on Crowdsourced Data and Rollout Simulations
	Real-World User Experiments

	Discussion
	Directions for Future Research
	Rethinking The Non-Goal-Driven Dialogue Task
	Extensions of the Bottleneck Simulator

	Conclusion
	Bibliography
	Appendix: Coarse Sequence Representations
	Appendix: Human Evaluation on Amazon Mechanical Turk (Twitter)
	Appendix: Human Evaluation in the Research Lab (Ubuntu)
	Appendix: Milabot Response Models
	Appendix: Milabot Crowdsourced Data Collection

