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Résumé 

Après des décennies d'amélioration, l'espérance de vie a stagné dans plusieurs pays à faible mortalité 

ces dernières années, avec, dans certains cas, quelques reculs. L’augmentation de la mortalité due à la 

grippe et aux surdoses de drogue, en particulier dans la génération des baby-boomers, a été le 

principal responsable de cette stagnation de l’espérance de vie. Cette découverte était inattendue, car 

il est considéré que la mortalité extrinsèque – par opposition à la mortalité intrinsèque due à des 

maladies dégénératives se déclarant souvent aux grands âges – joue un rôle négligeable dans les 

changements actuels d'espérance de vie. Pour la même raison, les tendances temporelles de la 

mortalité extrinsèque n’ont guère retenu l’attention des chercheurs. Les crises périodiques dues aux 

épidémies de grippe et à la crise des opioïdes sont considérées comme les principaux déterminants 

des variations de la mortalité extrinsèque. Cependant, des preuves récentes suggèrent que les effets 

de cohorte jouent un rôle important dans la modulation de la mortalité extrinsèque, mais que de 

telles influences sont encore mal connues. 

L'objectif principal de cette thèse est d'examiner le rôle des effets de cohorte sur l’évolution de la 

mortalité extrinsèque dans les dernières décennies, avec un accent particulier mis sur la grippe et les 

causes de décès comportementales. Plus spécifiquement, elle vise à (1) déterminer les différences par 

cohorte de mortalité par la grippe et l’influence des expositions précoces au virus sur cette mortalité; 

(2) analyser le désavantage de mortalité des baby-boomers au Canada et aux États-Unis en identifiant 

la contribution des causes comportementales à ce désavantage; et (3) développer un outil 

méthodologique permettant à la fois l'analyse visuelle de la dynamique temporelle des effets non 

linéaires d'âge, de période et de cohorte (APC) et la comparaison entre divers phénomènes ou 

populations. 

Pour ces analyses, nous utilisons des micro-données de mortalité provenant de systèmes de 

statistiques de l’état civil au Canada et aux États-Unis. Nous utilisons également les taux de mortalité 

et de fécondité de divers pays pour généraliser l'analyse visuelle des effets non linéaires à d'autres 

phénomènes démographiques que la mortalité. Les analyses ont été réalisées en appliquant des 

modèles de Serfling pour l’estimation de la mortalité par grippe, des mesures démographiques 

permettant une décomposition par cause des variations de la mortalité, des techniques de lissage 

pour identifier les tendances et des approches statistiques et visuelles sur des configurations de Lexis 

pour l’analyse des effets APC. 

Les résultats, sous la forme de trois articles scientifiques, montrent que malgré des fluctuations 

marquées au cours des années calendrier (période), les cohortes de naissance ont une influence 

indépendante et durable sur la mortalité liée à la grippe ou due au comportement. Les principaux 

résultats du premier article suggèrent que deux mécanismes modulent la mortalité grippale au fil des 

cohortes. Pour la population jeune et adulte, les risques de mortalité par cohortes  dépendent du 

contraste en le premier virus auquel on est vraisemblablement exposé (le virus laissant« l’empreinte 

antigénique ») et le virus rencontré à l’âge adulte, au moment de l’épidémie sous observation. Des 

modifications significatives du risque de décès ont ainsi été observées lors d’épidémies de grippes 
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pour les cohortes nées lors d'importants changements antigéniques (par exemple, une diminution 

significative du risque pour les cohortes nées entre 1957 et 1968). Pour les âges plus avancés, nous 

n’avons pas identifié de tels effets de cohorte « ponctuels », mais plutôt un effet de cohorte de plus 

longue haleine, qui aura conduit à un déclin progressif de la mortalité par grippe entre 1959 et 2016. 

En nous inspirant des théories dites de technophysio ou de cohort morbidity phenotype, nous attribuons ce 

déclin à des changements s’étant produit bien avant, c’est-à-dire à l’amélioration marqué des 

conditions sanitaires qui a eu lieu entre 1900 et 1930, au moment où les cohortes concernées 

venaient au monde et dont elles ont pu bénéficier.  

Les travaux du deuxième article de cette thèse révèlent que la plupart des excès de mortalité chez les 

baby-boomers au Canada et aux États-Unis sont dus à des causes comportementales. Le désavantage 

des baby-boomers résulte de plusieurs effets de cohortes sur des causes comportementales 

différentes, et non pas d'effets de période ponctuels affectant la même cohorte aux âges différents, 

un mécanisme alternatif qui pourrait expliquer la «pénalité des boomers». Les baby-boomers 

présentaient respectivement un risque d'hépatite C et de mortalité par drogue trois fois et deux fois 

plus élevé que les cohortes voisines. La contribution méthodologique des graphique de courbure APC, 

présentée dans le troisième article, nous a permis d'analyser la dynamique des effets non linéaires au 

fil du temps, à travers divers phénomènes et populations. Cette technique offre une plus grande 

flexibilité que les modèles statistiques ou autres graphiques de Lexis. 

Les résultats présentés dans cette thèse montrent l'importance d'analyser les effets de cohortes sur la 

mortalité extrinsèque. Nos résultats indiquent que même en présence de perturbations de période 

importantes affectant la mortalité extrinsèque à la plupart des âges, les effets de cohorte se sont 

maintenus au fil du temps. Ces résultats suggèrent également que les politiques publiques peuvent 

améliorer considérablement la santé de la population en formulant des politiques qui prennent en 

compte la sensibilité différentielle des cohortes aux facteurs de risque et en fournissant un soutien 

social aux cohortes les plus vulnérables. 

Mots-clés : mortalité, effets d’âge-période-cohorte, causes extrinsèques, mortalité par influenza, 

baby-boomers, mortalité comportementale, surdose de drogues, effets de cohorte de naissance, 

identité générationnelle, surfaces de Lexis 
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Abstract 

After decades of improvement, life expectancy momentarily declined during 2014-15 in several high 

income countries, with subsequent reversals in some cases. The main sources of this stagnation have 

been increases in mortality from influenza and drug overdoses, mainly for the baby-boomer 

generation. This trend is unexpected because it has long been assumed that extrinsic mortality, 

which is due to causes originating outside the body – in opposition to intrinsic mortality from 

degenerative diseases at old ages –, plays a negligible role in life expectancy changes. For this reason, 

the temporal patterns of extrinsic mortality have received little attention in demographic research. 

Period crises such as influenza epidemics and the opioid crisis are considered the main determinants 

of variations of extrinsic mortality. However, despite recent evidence suggesting that cohort effects 

have an important role in modulating extrinsic mortality, little is known about this relationship.  

The main objective of this dissertation is to help fill this gap by examining cohort influences on 

extrinsic mortality change, with a particular emphasis on influenza and behavioral causes. More 

specifically, we aim (1) to quantify cohort differences in mortality from influenza and the influence 

of early life exposures to the virus on subsequent influenza mortality; (2) to analyze the baby 

boomers’ disadvantage in mortality in Canada and the United States, while identifying the 

contributions of behavioral causes to this disadvantage; and (3) to develop a methodological tool 

that can be used to both conduct visual analysis of the temporal dynamics of nonlinear Age-Period-

Cohort (APC) effects, and compare these dynamics across various phenomena or populations. 

To achieve these goals, we use micro-level mortality data from vital statistics in Canada and the 

United States. We also employ death and fertility rates from various countries to generalize the visual 

analysis of nonlinear effects to other demographic phenomena. The analyses were conducted by 

applying Serfling models for the estimation of influenza mortality, demographic measures for the 

decomposition of cause-specific mortality changes, smoothing techniques for the identification of 

trends, and statistical and visual approaches on the Lexis configuration for the analysis of APC 

effects.  

The results, in the form of three scientific articles, show that despite marked fluctuations over 

calendar years (periods), birth cohorts have an independent and sustained influence on influenza and 

mortality from behavioral causes. The main results from the first paper suggest that two mechanisms 

modulated influenza mortality over cohorts. For the young and adult population, the mortality risks 

over cohorts depend of the contrast between the first virus to which individuals were exposed (the 

virus producing an antigenic imprinting) and the virus encountered in adulthood during the observed 

epidemic. For this age segment, significant changes in risk were found during influenza epidemics 

among cohorts born during important antigenic shifts (e.g., a decrease in risk for cohorts born 

between 1957 and 1968). For older ages, we did not identify such “punctual” cohort effects but 

rather a smooth and monotonic change in cohort effects that might have driven a progressive 

decline in influenza mortality between 1959 and 2016. Inspired by so-called cohort morbidity 

phenotype and technophysio evolution theories, we attributed this decline to changes produced 
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earlier, i.e., to the sharp sanitary improvements occurred between 1900 and 1930, when the 

concerned cohorts were born and when they could have benefited. 

Findings from the second paper revealed that most of the baby boomers’ excess mortality in Canada 

and the United States is driven by behavioral causes of death. The “boomer disadvantage” resulted 

from multiple cohort effects on behavioral-related mortality, and not from punctual period effects 

affecting the same cohort at different ages. Among the baby boomers, the risk of dying from 

hepatitis C was almost three times higher, and the risk of dying from drug-related causes was almost 

two times higher, than among the adjacent cohorts. These results were obtained using an innovative 

methodology developed in the third paper, which allowed us to analyze the dynamics of nonlinear 

effects over time through APC curvature plots. This technique provides greater flexibility than 

statistical models or other Lexis plots, and it has been shown to be applicable to other demographic 

phenomena, such as fertility. 

The findings presented in this dissertation offer evidence of the importance of analyzing cohort 

effects on extrinsic mortality. Our results indicate that even in the presence of substantial period 

disturbances affecting extrinsic mortality at most ages, cohort effects were sustained over time. 

These findings also suggest that public policies can significantly improve the health of the 

population by formulating policies that take into account the differential sensitivity of cohorts to risk 

factors and by providing social support to the most vulnerable cohorts.  

Keywords (10/10): mortality, age-period-cohort effects, extrinsic causes, influenza mortality, baby 

boomers, behavioral mortality, drug overdoses, birth cohort effects, generational identity, Lexis 

surfaces  
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Chapter 1 - General Introduction 

 

Life expectancy has almost doubled in most Western societies since the turn of the 20th century 

(HMD 2019; Roser 2019) – an achievement that is nothing short of spectacular. Improvements in life 

expectancy over the past one hundred years have surpassed any gains in longevity made during the 

previous thousands of years of human history (Deaton 2015; Floud et al. 2011; Fogel and Costa 

1997). Although some perceptive observers have pointed to the possibility that changes in mortality 

might stem from improvements in early life conditions as early as 1934 (Kermack et al. 1934), most 

have assumed that the changes were essentially secular, affecting the survival prospects of all age 

groups in real time, in response to medical innovations and improvements in sanitation (Szreter 

1988).   

It has been well-established that from the end of the 19th century to the middle of the 20th century, 

improvements in life expectancy resulted mainly from reductions in mortality from “extrinsic” 

causes – those originating outside the body, such as infectious diseases. These developments had the 

greatest impact among infant and children. Since the mid-20th century, however, improvements in 

life expectancy have principally stemmed from reductions in mortality at older ages, primarily from 

causes that can be considered “intrinsic” in nature – those originating within the body – (Carnes et 

al. 2006; Meslé and Vallin 2000; Olshansky and Ault 1986; Omran 1971).  

Demographers’ understanding of mortality changes has benefited from the development of 

conceptual frameworks that take into account the three temporal dimensions of mortality: that is, 

the changes occurring over age (age effects), periods (period effects), and cohorts (cohort effects). 

Age variations in mortality are typically associated with developmental processes in the life course. 

Mortality changes over periods are associated with short-term impacts (e.g., shocks) around the 

moment of death that affect most age groups simultaneously. Cohort effects originate from an event 

that occurred in the past, experienced collectively by a set of individuals born at the same time, and 

that leaves distinctive lingering effects for a significant portion of the life cycle of the cohort (Glenn 

1976; Hobcraft et al. 1982; Keyes et al. 2010; Yang 2008). The decomposition of effects into so-

called Age-Period-Cohort (APC) components provides valuable information on factors responsible 

for mortality changes that are not directly observable. 
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The mechanisms that have contributed to decreases in intrinsic mortality at old ages have received 

considerable attention. At the turn of the 21st century, three theoretical frameworks, i.e., the fetal 

origins (Barker and Osmond 1986), the technophysio evolution (Fogel and Costa 1997), and the cohort 

morbidity phenotype (Finch and Crimmins 2004), proposed that changes over cohorts have been 

primarily responsible for the reduction of intrinsic mortality at old ages. According to these 

frameworks, the gradual improvement of early life conditions – namely, better nutritional intake and 

reduction of infection load – led to physiological and health improvements, which, in turn, resulted 

in progressive reductions in intrinsic mortality at old ages. In the literature on mortality change, the 

relative importance of period- and cohort-based factors in the reduction of intrinsic mortality at old 

ages has been subject to considerable discussion, and the debate continues (Barbi and Vaupel 2005; 

Crimmins and Finch 2006; Ouellette et al. 2014; Yang 2008). 

While the analyses of mortality change have concentrated on the impact of period- and cohort-based 

factors on variations in intrinsic mortality at older ages, the contributions of young and adult 

extrinsic mortality to changes in all-cause mortality did not receive much attention until very 

recently. It is sometimes assumed that extrinsic mortality plays a negligible role in current and future 

all-cause mortality trends (Bongaarts 2005, 2006). Furthermore, the few existing studies that 

investigated extrinsic mortality often limited their attention to period-based determinants of change. 

However, recent trends in life expectancy in several western countries demonstrate that this 

approach failed to anticipate the recent reversal in long-term mortality improvements, or to identify 

its underlying causes, which – like influenza and drug-related mortality – are largely extrinsic (Ho 

and Hendi 2018; Raleigh 2019; Statistics Canada 2019). In fact, evidence has recently been 

accumulating that cohort-based factors play an important role in the temporal dynamics of these 

extrinsic causes of death, even in the presence of marked variations over periods (Arevalo et al. 

2019; Gagnon et al. 2018a; Gostic et al. 2019; Huang et al. 2017; Zang et al. 2019).  

In this dissertation, we argue that the analysis of cohort effects on extrinsic mortality in adulthood is 

an important issue that should be given more attention in demography and connected disciplines. 

We feel that it may represent a valuable step toward deepening our understanding of the challenges 

contemporary populations face. Improving our knowledge of the temporal patterns of extrinsic 

mortality can help to mitigate the dramatic outcomes of mortality crises, such as the ongoing opioid 

epidemic in Canada and the United States, and to suggest ways to prevent the spread of high levels 

of extrinsic mortality to other populations.  
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The dissertation is structured as follows. In the second chapter, we present our theoretical 

background. We start by introducing the conceptual partitioning of total mortality into intrinsic and 

extrinsic causes of death, and then discuss their impact on recent and future changes in mortality. 

We also review the underlying mechanisms reflected in the APC variations in mortality, the 

challenges associated with decomposing mortality changes into APC components, and the debate 

about the contributions of period- and cohort-based factors to recent mortality trends. Finally, we 

present some limitations of the dominant paradigms for the analysis of mortality change. This 

review is intended to paint a broad picture of the main approaches that are currently being used to 

study mortality, and to identify the gaps that our work tries to fill.  

The third chapter describes the data and the methods employed for the analyses. This section pays 

particular attention to the methods used in the APC analysis of mortality change, which have a 

central role in this dissertation. 

Chapters 4, 5, and 6 consist of the three scientific articles that together constitute the main 

contribution of this dissertation. In the first article (chapter 4), we analyzed the APC patterns of 

influenza mortality in the United States between 1959 and 2016. The main objective of this analysis 

was to investigate the interactions between the first influenza virus subtype to which the cohort 

members were exposed – the antigenic imprint – and the influenza virus subtypes they encountered 

later in life, during the observed epidemics. This work included analyses of linear and nonlinear 

effects of mortality, i.e., the long-term trends and the divergences from these trends. Such analyses 

enabled us to identify the cohorts who experienced significant changes in their mortality risks.  

In the second article (chapter 5), we analyzed baby boomers’ excess mortality in the United States 

and Canada. Several studies have independently proposed that drug overdoses (Huang et al. 2017; 

Miech et al. 2011; Remund et al. 2018; Zang et al. 2019) and suicides (Chauvel et al. 2016) are more 

prevalent among boomers. However, there is little research on the causes of deaths that have 

contributed the most to what could be called “the boomer penalty.” The objective of our work was 

to provide a comprehensive analysis of these causes, and to determine whether the boomers’ penalty 

resulted from sustained disadvantages during the life course of the cohort or from a sequence of 

unrelated mortality crises, experienced at different ages by the same cohorts. 

The aim of the third article (chapter 6) was to fill a methodological gap in the analysis of the 

nonlinear APC effects identified in the first two articles. Statistical methods for the analysis of 
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nonlinear effects that were already available allowed us to estimate an average of these effects, but 

not their changes over time. In this work we proposed a visualization tool that allows for the 

analysis of the temporal dynamics of nonlinear APC effects, and the comparison of several 

phenomena or populations in one single plot. To generalize this methodological contribution to the 

study of other demographic phenomena, we show how the tool can be applied to the analysis of 

nonlinear period effects, and include an example related to fertility. 

In chapter 7, we conclude with a discussion of our findings, highlighting the similarities and the 

differences between the cohort effects on influenza and behavioral mortality; the advantages of the 

methods we employed for the analysis of mortality; as well as the potential implications of the 

mortality patterns we have detected for population health. Finally, we describe the general 

limitations we encountered and offer a few ideas for further research. 

It is noteworthy that during my doctoral studies, in addition to writing this dissertation, I co-first-

authored one paper and second-authored two papers analyzing cohort effects on influenza mortality 

that were published: one in PLOS Pathogens (Gagnon et al. 2015), a second in mBio (Gagnon, Acosta, 

Hallman, et al. 2018), and a third in Vaccine (Gagnon et al. 2018b). A fourth paper is currently under 

revision at Clinical Infectious Diseases (Gagnon et al. 2019). In all these articles, I wrote, in collaboration 

with Alain Gagnon, significant portions of the code in R and the code in Stata. I also participated in 

the research design, the implementation of figures in R and Excel, the analyses of the results, and 

the revision of the manuscripts. Additionally, a fifth paper analyzing the impacts of violence on 

external mortality in Colombia (Acosta et al. 2018) is finished and currently in preparation for 

publication. The research design, analysis strategy, discussion of results, and the writing of this 

article were made in collaboration with Catalina Torres and Rafael Silva-Ramírez. Robert Bourbeau 

participated in the revision of the manuscript.  

Following the open science principles of transparency and accessible knowledge, the analyses and the 

methodological contributions contained in this dissertation are entirely reproducible. Most of the 

data are openly available from official websites and other published scientific works. The 

programming code written to perform the quantitative and visual analyses presented here are openly 



25 
 

available through Open Science Framework (OSF) repositories1. The information for accessing data 

and scripts is detailed within each article. 

 

  

                                                             
1 OSF is an open source software project of the Center for Open Science to increase the openness, integrity, and 
reproducibility of scientific research. The OSF offers cloud-based repositories for documenting and sharing materials 
and data to facilitate open access science. 
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Chapter 2 - Theoretical Background 

 

This section presents the concepts and the theoretical issues surrounding existing analyses of 

mortality change. First, we define intrinsic and extrinsic mortality, and discuss their respective 

contributions to recent and future mortality trends. Second, we introduce the basic concepts related 

to age, period, and cohort (APC) analyses of mortality. We begin by examining the methodological 

challenges associated with decomposing mortality change into APC effects. Next, we examine the 

biological, epidemiological, and social factors that underlie APC changes in mortality, and provide a 

brief account of the debate surrounding the role of period- and cohort-based factors in recent 

mortality trends. Finally, we discuss some limitations of the existing approaches in the analysis of 

mortality change, and some of the gaps that this dissertation aims to fill. 

 

 Mortality partitions and epidemiological transition 2.1.

 Intrinsic and extrinsic mortality 2.1.1.

For more than 200 years, biologists, actuaries, and demographers have proposed several conceptual 

partitions of all-cause mortality to explain the mortality process itself, and to improve the 

mathematical modeling of mortality change over age and time (Carnes et al. 2006; Carnes and 

Olshansky 1997). The distinction between intrinsic and extrinsic causes of death was originally 

proposed by Gompertz (1825) as a way to study the aging process, particularly as it pertains to the 

limits of life. Since then, several conceptual frameworks for alternative mortality partitions have 

been proposed (Bongaarts 2005; Carnes and Olshansky 1997; Makeham 1860; Shryock et al. 1973). 

Carnes and Olshansky (1997) put forward a biological-based partitioning of mortality between 

intrinsic and extrinsic causes of death that merged 20th-century theoretical developments in 

demography, actuarial science, and evolutionary biology. According to the authors, intrinsic 

mortality originates from inside the body, and is thus due to failure of the organism’s functions; 

whereas extrinsic mortality originates from outside the body, and is thus due to environmental 

factors. The authors acknowledged, however, that there is a large gray area in the proposed 

classification because it fails to recognize the potential interaction of intrinsic and extrinsic factors. 

For instance, environmental exposures during critical periods of an individual’s development – i.e., 
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extrinsic factors – may have long-term effects on chronic or degenerative diseases – i.e., intrinsic 

factors – at older ages (Barker and Osmond 1986; Finch and Crimmins 2004; Gluckman et al. 2005). 

Carnes and colleagues (2006) pointed out, however, that although a perfect partitioning of mortality 

is not attainable, analyses that use an imperfect partitioning approach offer greater insights into 

mortality and a better modeling fit than analyses performed on all-cause mortality that do not 

employ partitioning.  

Throughout this dissertation, the concepts of intrinsic and extrinsic mortality are used to refer to 

deaths that mainly originate from, respectively, intrinsic or extrinsic factors. Accounting for the 

interactive dynamics between intrinsic and extrinsic stressors is essential for the analysis of cohort 

effects on mortality. As we will explain later in this dissertation, these effects result from shared 

exposures to extrinsic factors that have long-term consequences for both intrinsic and extrinsic 

mortality.  

 

 The contributions of intrinsic and extrinsic causes of death to 2.1.2.

mortality change 

In the original formulation of the epidemiological transition theory, Omran (1971, 1983) proposed 

three stages in the mortality and disease patterns in human history: the age of pestilence and famine, the age 

of receding pandemics, and the age of degenerative and man-made diseases. Applying the partitioning approach 

proposed by Carnes and Olshansky (1997), we argue that the three stages of Omran’s theory 

correspond to a transition in which extrinsic causes were gradually replaced by intrinsic causes as the 

main killers. However, Omran’s model predicted that an important component of extrinsic 

mortality, called “man-made diseases” – and denoted here as human-made diseases –, would 

gradually expand and come to play a more important role in all-cause mortality.  

Later, Olshansky and Ault (1986) added a fourth stage to the epidemiological transition theory that 

would have begun in the second half of the 20th century: the age of delayed degenerative diseases. In this 

stage, the ranking of the principal causes of death was not modified, as degenerative diseases 

continued to be the leading killers; but the risk of dying from these diseases was shifted to older 

ages. Another important feature of this fourth stage was the gradual reduction of deaths from 

human-made diseases (Olshansky and Ault 1986).  
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As an alternative to the epidemiological transition model, several authors put forward the concept of 

a sanitary or health transition (Frenk et al. 1991; Meslé and Vallin 2000). Instead of focusing on the 

composition of mortality by cause of death alone, these authors expanded the scope of the analysis 

to the periods, the age structure, and the causes of death that contributed to the substantial 

improvements in life expectancy. More precisely, in the first health transition, increases in life 

expectancy resulted mainly from massive reductions in mortality from infectious disease. In the 

second health transition, gains in life expectancy were primarily attributable to substantial reductions in 

cardiovascular diseases at older ages, and gradual declines in mortality from human-made diseases 

(Meslé and Vallin 2000). A third health transition, which is currently beginning in some Western 

countries, consists in considerable decreases in mortality risk for elderly population (Vallin and 

Meslé 2004). Similar to Olshansky and Ault (1986), within the second stage of the sanitary transition 

framework, deaths from human-made diseases were expected to recede to very low levels, and to 

play a small role in all-cause mortality (Meslé and Vallin 2000, Vallin and Meslé 2004).  

In addition to being useful for the analysis of previous changes in mortality, the intrinsic/extrinsic 

partition is a core concept in the projection of mortality trends. Scholars have argued that when 

attempting to project future mortality trends in countries with high life expectancy, the main focus 

should be on changes in intrinsic mortality, because these causes of death are currently the leading 

killers, and are likely to remain the largest contributors to life expectancy variations. It has also been 

posited that because extrinsic mortality has been decreasing, reaching insignificant levels during the 

last phase of the health transition, it will continue to decline to the point where it has virtually no 

impact on population-level mortality (Bongaarts 2005, 2006).  

This shift in the leading causes of death has been widely analyzed and conceptualized through the 

prisms of the epidemiological and health transition theories. However, a significant challenge 

researchers face is that many of the factors that contribute to mortality changes are normally not 

observable. The identification of unique APC contributions to mortality changes can offer important 

clues about the effects of underlying and often unobserved biological, epidemiological, social, and 

economic factors (Fosse and Winship 2019a; Hobcraft et al. 1982; Holford 1983; W. M. Mason and 

Fienberg 1985; Murphy 2010; Tarone and Chu 1996). In the sections that follow, we will describe 

some characteristics of APC analysis, and explore the factors that underlie such variations in 

mortality. 
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 Age, period, and cohort determinants of mortality  2.2.

 APC analysis of mortality change  2.2.1.

The APC decomposition of change indicates the contributions from variations occurring over the 

life course of individuals (age effects), from the events occurring in the same period of observation 

(period effects), or from particular characteristics that uniquely shape the individuals born at a given 

time and that endure over time (cohort effects). Identifying the APC effects on any given socio-

demographic phenomenon has long been a methodological challenge that has sparked disagreement. 

The question of whether it is possible to isolate the APC components of mortality change has been 

debated since the beginning of the 20th century (Keyes et al. 2010; Murphy 2010; O’Brien 2014a). 

This is because, given the perfect linear dependence between the three temporal variables (age = 

period - cohort), there is no unique solution, but rather an infinite number of solutions that provide the 

exact same fitting (Fosse and Winship 2018; Glenn 1976; Holford 1983; K. O. Mason et al. 1973; 

O’Brien 2014a). Therefore, it is impossible to estimate a unique solution describing APC effects 

without the imposition of additional constraints. This inability to identify a unique solution is the 

well-known identification problem that is inherent in APC analyses.  

For more than a century, demographers, sociologists, and epidemiologists have been proposing 

different ways to overcome this identification problem, with at least four waves of theoretical and 

methodological developments emerging. In the 1870s, several mathematical and graphical advances 

providing analytical and visual descriptions of mortality were introduced; including, notably, the 

Lexis diagram (Keiding, 2011). In the 1920s and 1930s, influential works in epidemiology (Andvord 

1921; Andvord et al. 1930; Derrick 1927; Frost 1939; Kermack et al. 1934) tried to disentangle the 

age, period, and cohort components of the rapid decrease in mortality observed at the end of the 

19th century and the beginning of the 20th century. During the 1970s and 1980s, a third wave of 

methodological advancements included the first statistical propositions to account simultaneously 

for age, period, and cohort effects; and the formal recognition of the identification problem (Glenn 

1976). In addition, during the same period, the first methodological attempts were made to 

overcome the identification problem by adding theoretically-based constraints to the models. More 

recently, Fu (2000) started a fourth wave of methodological production that has been widely 
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popularized by the work of Yang and colleagues (Yang et al. 2004; Yang and Land 2013a). These 

ongoing developments of the APC methodology suggest that a unique solution could be estimated 

by assigning arbitrary constraints that do not require the subjective intervention of the researcher. 

However, this proposed solution is far from being universally accepted, and a debate currently 

surrounds these methodological developments (Fosse and Winship 2018; Luo 2013; O’Brien 2013; 

Tolnay 2013; Yang and Land 2013b). 

A considerable achievement in the development of APC analyses is the possibility of decomposing 

each APC component into linear and nonlinear effects (Holford 1983; Rodgers 1982). The linear 

effects refer to the slope of the linear trend of change. The nonlinear effects, also known in the APC 

literature as curvatures or nonlinear fluctuations, refer instead to divergences from the linear trend in each 

APC dimension. Nonlinear effects are indicative of the relative risk of each age, period, or cohort 

category compared to the respective overall linear trend. The distinction between linear and 

nonlinear effects is important because the identification problem exclusively concerns the linear 

effects component. By contrast, the nonlinear effects are unambiguously identifiable because their 

shape and magnitude do not vary in response to the model constraints that are imposed in order to 

find a unique solution (Clayton and Schifflers 1987; Fosse and Winship 2019a; Holford 1983; 

O’Brien 2014b; Rodgers 1982). It follows that it is much easier and more reliable to distinguish APC 

effects when mortality trends have accelerated, decelerated, or changed direction – i.e., nonlinear 

effects – than when changes are steady and monotonic – i.e., linear effects  (Kuh et al. 2003). 

Although the analysis of nonlinear effects provides substantial information about the phenomenon 

under observation, this aspect has been greatly underappreciated in the APC literature (Fosse and 

Winship 2019a). A more detailed discussion of the identification problem inherent in APC analyses 

and the methodological attempts to overcome it is presented in the methods section of Chapter 3.  

Although they provide substantial information about the demographic components of variation, 

ages, periods, and cohorts have no effect on mortality by themselves. Instead, they are markers of 

the unobserved factors underlying the temporal dynamics of mortality. We turn to these factors in 

the next section. 
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 Age-, period-, and cohort-based factors underlying mortality change 2.2.2.

Age-based factors influence mortality in several ways. An individual’s physiological frailty varies 

considerably with age due to the maturation and deterioration of the organism. In parallel, the 

gradual accumulation of permanent damages over the life course – resulting from diseases, injuries, 

the environment, and behaviors – contribute to the physiological deterioration of the individual with 

age. In addition, each life stage corresponds to specific behaviors and exposures that can increase or 

decrease the risk of death, such as the risk of work-related mortality.  

Period-based factors typically stem from environmental variations or shocks that can be either 

natural or human-caused, such as natural disasters, epidemics, wars, famines, changes in sanitary 

conditions, and advances in medical technology. These period disturbances may produce 

contemporary shifts in mortality at most ages, albeit to varying degrees. Over the last three centuries, 

the management of environmental factors was responsible for massive reductions of mortality, first 

at the youngest ages, and then at all other (Finch and Crimmins 2004; Fogel and Costa 1997; Meslé 

and Vallin 2000; Omran 1983; Szreter 1988, 2004). Nevertheless, in addition to triggering direct, 

contemporary shifts in mortality, period disturbances can have long-term implications that uniquely 

shape the mortality experience of the cohorts who lived through the disturbance, especially the 

youngest cohort members (Keyes et al. 2010; Yang 2008). In other words, these extrinsic period 

disturbances may produce not only period effects, but also cohort effects on mortality. Because of 

the difficulties in distinguishing between the short- and long-term implications of such disturbances, 

identifying the changes in mortality that result from period- and cohort-based factors that change 

gradually over time is challenging.  

The identification of cohort-based factors requires a more complex conceptualization. Cohort-based 

factors operate through intricate interactions between extrinsic stressors that modify either the frailty 

composition of the cohort or the intrinsic characteristics of the cohort members. In other words, 

cohort-based variations may stem from either selection processes or long-term modifications of 

individuals’ mortality risks (Preston et al. 1998). The idea behind selection is that extremely 

beneficial/adverse conditions early in life tend to increase the proportion of frail/robust individuals 

within the cohort, which may, in turn, translate into higher/lower levels of mortality later in life 

(Hobcraft et al. 1982; Preston et al. 1998; Vaupel et al. 1979). Other mechanisms may instead modify 

the individuals’ mortality risks. Shared exposures to extrinsic factors during critical or sensitive life 

stages of the cohort members can lead to biological or behavioral modifications that increase or 
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decrease their later life mortality risks. This mechanism could explain the long-term effects of 

detrimental exposures early in life, producing cohort effects that are manifested through different 

temporal patterns. Several analyses that provide evidence for such an association will be detailed 

later.   

 

Manifestation of cohort effects  

Cohort effects do not all become apparent in the same way. There are important differences in the 

timing and the dynamics of cohort effects over time (Chauvel 2013; Chauvel et al. 2016; Hobcraft et 

al. 1982; Keyes et al. 2010). Hobcraft and colleagues (1982) distinguished three types of cohort 

effects.  

The first type, denoted as the cohort-inversion effect, manifests itself as a gradual reversal of the effect 

over time. This pattern results from the selection process described above (Chauvel 2013; Chauvel et 

al. 2016; Hobcraft et al. 1982)2. In the second type of cohort effect pattern, called the conventional 

linear model, the magnitude of the effect is invariable during the whole period of observation. 

Although most of the current statistical methods for the analysis of APC effects assume this pattern, 

this cohort effect is unrealistic. It does not take into account variations over time, or the interactions 

with age- and period-based factors. The third and more common type of cohort effect is denoted as 

the continuously-accumulating cohort effect. This effect results from a period disturbance that affects the 

population “differentiated by age and becomes embodied in cohorts differentially” (1982, p. 10).  

It is important to highlight at this point the difference between cohort and age-period interaction 

effects. Period disturbances that disproportionately affect some age groups may lead to either cohort 

or age-period interaction effects, depending whether the disturbance is differently embodied in the 

cohorts or not. According to Keyes et al. (2010, p. 1101), unlike in the sociological perspective, in the 

epidemiological perspective, “short-term fluctuations in health that result from age by period interactions” 

are also considered cohort effects. In this dissertation, only the age-period interactions that take the 

                                                             
2 This effect was proposed by Canudas-Romo and Guillot (2015) for explaining the mortality patterns of baby boomers 
in the United States, who, compared to their neighboring cohorts, experienced lower mortality levels in early life and 
higher adult mortality. A more detailed discussion of this case, which compares the selection mechanism and the 
attributes of the boomer disadvantage, is presented in chapter 5. 
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form of lagged effects embodied in the cohorts will be considered cohort effects – as it is proposed 

in the continuously-accumulating cohort effect presented above.  

In the following, we discuss some theoretical frameworks linking early life exposures and later life 

mortality that are useful for the analysis of cohort effects on mortality. 

 

Early life exposures and adult mortality risks 

A distinction between critical and sensitive periods is typically made in order to differentiate the time 

windows in which exposures affect, respectively, the biological or the behavioral development of 

individuals (Kuh et al. 2003; Montez and Hayward 2011). These periods usually refer to stages of the 

individuals’ physiological and psychosocial development. Critical or sensitive periods are indispensable 

for the initiation of cohort effects. Given the age differences in susceptibility,  period disturbances 

experienced by the whole population have an especially large impact on age groups going through 

critical or sensitive life stages. Thus, such disturbances may change the intrinsic characteristics of the 

susceptible groups, initiating cohort effects.  

Another important distinction concerns the type of exposure that creates the cohort effects. Montez 

and Hayward (2011) have classified these exposures as either physical or social. They considered 

nutrition and infections to be key physical exposures, and socioeconomic conditions and family 

environment to be key social exposures. Compared to nutrition and exposure to infection, 

socioeconomic characteristics and family environment are expected to vary far less across cohorts, 

and are therefore rarely translated into cohort effects. Instead, large variations in social exposures are 

expected to result from rapid and extensive social changes, which can affect different birth cohorts 

very differently (Kuh et al. 2003; Ryder 1965). 

The link between exposures during critical and sensitive periods and later life mortality could develop 

in several ways. Through the imprinting mechanism, exposures of the cohort members to extrinsic 

factors during critical stages could be inscribed into their physiological functions or structures, and 

leave biological imprints on their adult mortality risks (Ben-Shlomo and Kuh 2002; Montez and 

Hayward 2011). This imprinting mechanism could increase the cohort members’ mortality risks as a 

result of past physiological insults, or it could provide them with long-term protection if their past 

antigenic exposures are similar to those they encounter later. These contrasting effects of permanent 



35 
 

harm and protection are denoted, respectively, as scarring and acquired immunity in Preston et al. 

(1998)’s typology. In contrast to the imprinting mechanism, the pathway mechanism – also denoted as 

correlated environments by Preston et al. (1998) – refers to exposures that are not directly linked to 

mortality risks at older ages, but rather to the accumulation of correlated risk factors through the life 

course (Ben-Shlomo and Kuh 2002; Montez and Hayward 2011; Palloni et al. 2009; Preston et al. 

1998). Unlike the imprinting mechanism, in which early life insults leave permanent imprints affecting 

mortality risks in adulthood, in the pathway mechanism, the influence of early life conditions on adult 

mortality is indirect because individuals tend to experience similar environments during life. Because 

imprinting and pathway mechanisms are not mutually exclusive, other authors have proposed the 

existence of a cumulative mechanism. This mechanism allows for the possibility that interactions and 

the accumulation of stressors have an impact in both early and later life (Ben-Shlomo and Smith 

1991; Montez and Hayward 2011). In this case, some early life exposures that are imprinted on 

individuals may be either mitigated or exacerbated by the conditions they encounter over their life 

course, and could influence their further exposures. 

Numerous hypotheses have linked early life exposures and later life mortality. In the following, we 

present some of the hypotheses that could be related to the origination of cohort effects. We also 

offer a brief account of some empirical analyses that have attempted to identify and quantify such 

cohort effects. 

 

Cohort effects from physical exposures 

Related to the scarring mechanism concept, the fetal origins hypothesis (Barker and Osmond 1986) 

proposes that an individual’s nutritional intake very early in life is a strong determinant of whether 

that individual develops chronic or non-transmissible diseases at older ages. The cohort morbidity 

phenotype hypothesis (Finch and Crimmins 2004) assigns a larger role to infection and inflammation 

during early life. 

The antigenic imprinting hypothesis, originally formulated for influenza infections (Davenport et al. 

1953; Francis 1960), states that early life exposure to a specific strain of influenza virus could 

compromise an individual’s immune system. Strains that the person subsequently encountered 

would be stored in the immune repertoire, but with a lower position in the hierarchy than those he 
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or she encountered earlier (Henry et al. 2018). When the imprinted and the encountered virus are 

similar, the person is expected to have protection; but if these strains are very dissimilar, there is a 

considerable increase in the individual’s risk of having severe outcomes from the influenza infection 

(Gagnon et al. 2013; Kobasa et al. 2007; Shanks and Brundage 2012).  

Two observations can be offered about the mechanism proposed by the antigenic imprinting 

hypothesis. First, its double-edged aspect (i.e., protection/disadvantage) was not addressed by the 

acquired immunity typology proposed by Preston et al. (1998), according to whom previous exposure 

to a pathogen is always construed as protective when the same pathogen is encountered later in life. 

Second, contrary to the scarring imprinting hypothesis, the critical stage for antigenic imprinting is related 

more to the previous antigenic experience of the individual, and less to his or her physiological stage 

of development. Because influenza viruses constantly mutate and spread widely across the 

population, each cohort has its own particular and enduring antigenic signature (Ma et al. 2011), which 

translates into cohort effects on influenza mortality. 

Likewise, exceptional periods of extreme adverse conditions, such as famines and epidemics, have 

served as natural experiments for analyzing the influence of nutrition shortages and infections 

experienced by cohorts early in life on their mortality over the life course (Mu and Zhang 2011). A 

large number of empirical analyses, some of which are reviewed below, have been conducted that 

sought to identify the cohort effects on mortality that result from shared exposures to such 

exceptional periods during critical life stages.  

The results of studies that examined the long-term effects on later life mortality of being exposed to 

extreme nutritional deprivation due to famine early in life have been mixed. Analyses of early life 

exposure to famines in Finland in 1866-1868 (Kannisto et al. 1997), and in the Netherlands in 1944-

1945 (Painter et al. 2005), found no effects on adult and old-age mortality. By contrast, higher 

mortality risks after age 50 were found for cohorts exposed early in life to the Dutch famines of 

1846-1847 (Lindeboom et al. 2010). Previous research has found that the disease load experienced 

during the first years of life had a large impact on the later life mortality of cohorts in Sweden 

(Bengtsson and Broström 2009; Bengtsson and Lindström 2000, 2003) and in Quebec (Bilodeau 

Bertrand 2015).  

In historical populations, season of birth offers proxy information about the epidemiological context 

and the availability of nutrition shared by cohorts during critical stages of their life course. 
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Individuals born during autumn and winter were shown to have longer lifespans in Denmark, 

Austria, Britain, and Australia (Doblhammer and Vaupel 2001); in the United States (Gavrilov and 

Gavrilova 2011); and in Quebec (Gagnon 2012; Jarry et al. 2013). The reason that is usually given for 

this seasonal advantage in historical contexts is that after the summer season, more food from crops 

was available and the incidence of infections was considerably lower. 

Influenza pandemics have also offered opportunities to study the long-term effects of short-term 

shocks, which may affect cohorts through both scarring and acquired immunity mechanisms. 

Analyses of scarring effects resulting from early life exposure to the 1918 Spanish flu pandemic have 

found negative effects on health, educational attainment, and income in the United States (Almond 

2006) and Taiwan (Lin and Liu 2014); and higher mortality from cardiovascular diseases in the 

United States (Mazumder et al. 2010; Myrskylä et al. 2013). Similarly, Kelly (2011) found evidence of 

negative cohort effects on child development for those cohorts exposed to the 1957 Asian flu 

pandemic in England.  

Among the analyses of the cohort effects resulting from antigenic imprinting mechanisms are studies 

that examined the influence of exposure to influenza pandemics in infancy on mortality during 

subsequent influenza pandemics. Numerous studies (Oeppen and Wilson 2006; Gagnon et al. 2013; 

Hallman 2015; Shanks and Brundage 2012) have found a higher relative risk of death during the 

1918 Spanish pandemic for those cohorts who were born during the 1890 Russian pandemic in 

Canada and the United States. Likewise, other analyses found higher relative risks of death during 

the 2009 flu pandemic in North America (US and Mexico) for those cohorts who were born during 

the 1957 Asian pandemic, as well as for those cohorts who were born during the 1957 Asian and the 

1968 Hong Kong pandemics in Mexico (Gagnon et al. 2018a). These increased mortality risks likely 

resulted from the large antigenic differences between the priming influenza virus strains – H2N2 in 

1957 and H3N2 in 1968 – and the strains these cohorts encountered later in life – pH1N1 in 2009. 

The opposite effect – i.e., a protective effect due to antigenic similarities – was also found in several 

countries during the 2009 North American pandemic for those cohorts born around the 1918 

Spanish pandemic, and who were therefore primed by a similar subtype H1N1 (Fisman et al. 2009; 

Gagnon et al. 2018a; Ikonen et al. 2010; Lemaitre et al. 2012; Nguyen and Noymer 2013) . 
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Cohort effects from social exposures 

The influences of family environments and socioeconomic status in early life on later life mortality 

have been extensively studied (Bengtsson and Broström 2009; Gagnon and Bohnert 2012; Hayward 

and Gorman 2004; Jarry et al. 2013). However, as we argued earlier in this chapter, such exposures 

do not lend themselves into cohort effects because the inter-cohort variations are not as substantial 

as the intra-cohort variation. The effects of sudden social changes in early life on mortality later in 

life have received less attention, but various theoretical frameworks have been proposed to analyze 

the translation of these social changes into cohort effects. The demographer Norman Ryder (1965) 

proposed the birth cohort effect and the sociologist Karl Mannheim (1952) proposed the generational effect 

as mechanisms for explaining social changes via the succession of cohorts through, respectively, 

demographic and social metabolism processes (Lutz 2013; Mayer 2009). Nevertheless, both effects 

have potential implications for mortality outcomes through their influence on mental health, 

attitudes, behaviors, and correlated environments.  

According to Ryder (1965), birth cohort effects refer to the distinctive aspects of the cohort itself 

(i.e., cohort size, education) and to the uniqueness of the sociohistorical context that the members of 

a cohort experience simultaneously during their life cycle (i.e., economic cycles, increased 

participation of women in the workforce). Such shared social contexts leave permanent traces in the 

cohort members’ lives (Alwin and McCammon 2003, 2007; Easterlin 1987; Ryder 1965). Thus, 

changes in population size and educational attainment across cohorts, as well as sudden institutional 

and economic transformations during sensitive life stages, can translate into cohort differences in 

the availability of material and social resources, and in cohort differences in perceived well-being, 

which are all widely recognized as important determinants of mortality (Canon 2018; Easterlin 1987; 

Hayward and Gorman 2004; Montez et al. 2012; Montez and Friedman 2015; Montez and Hayward 

2011; Sasson 2016a, 2016b; van Raalte et al. 2012, 2014) 

According to Mannheim (1952), generational effects may result from involvement in social 

movements at sensitive stages of life during sudden sociohistorical transformations. This 

participation could lead to the emergence of a shared and distinctive generational identity among the 

members of the generation, which is manifested through common dispositions, attitudes, and 

behaviors (Alwin and McCammon 2007; Eyerman and Turner 1998; Mannheim 1952). Sudden and 
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important changes in sociohistorical processes are expected to lead to important variations in 

attitudes and behaviors across generations, which could, in turn, shape the cohorts’ mortality.  

The baby boomer cohorts are clear examples of cohorts who experienced abrupt social changes that 

translated into cohort effects on several dimensions of life. Because of their social location and 

sociohistorical experience, the boomer cohorts have experienced marked birth cohort and generational 

effects (Alwin et al. 2014; Alwin and McCammon 2007). Through their large number and because 

they lived through an epoch of important social movements and transformations at young ages, the 

baby-boomers were exposed to conditions that turned into both birth cohort and generational 

effects. Following Ryder’s concept of the birth cohort effect, Easterlin (1987) extensively analyzed 

the influence of the cohort size on the lives of the baby-boomers. According to Easterlin, the 

boomers experienced a sharp contrast between the expectations they developed during the 

prosperous period in which they grew up, and the harsh economic conditions they encountered later 

in life when they entered to the labor market in large numbers.  This mismatch would then have led 

to a decrease in perceived well-being and to a considerable increase in levels of stress and 

frustration. For this reason, he predicted that the rates of suicide, homicide, and drug abuse would 

be higher among boomers than among adjacent cohorts (Easterlin 1987). Moreover, other 

researchers have argued that the involvement of boomers in the counterculture movements at 

younger ages led them to develop risky attitudes regarding sexual behavior and substances abuse, 

which might have translated into higher mortality risks from behavioral causes (Colliver et al. 2006; 

Crome and Rao 2018; Duncan et al. 2010; McBride 1990; Miech et al. 2011; Patterson and Jeste 

1999; Puac-Polanco et al. 2016; R. Rao and Roche 2017; T. Rao 2019). ] 

Starting in the early 20th century, the formulation of numerous theoretical frameworks linking 

period- and cohort-based factors to mortality, like those presented above, have had a strong 

influence on the analysis of mortality change and the underlying factors. Several deliberations broke 

out in the scientific community about the extent to which these factors had contributed to mortality 

reductions in western populations since the 19th century. Numerous shifts between the period and 

cohort paradigms in the analysis of mortality change took place during the century, which had 

substantial implications for research. A detailed account of these discussions and shifts in paradigms 

can be found in Murphy (2010) and Smith and Kuh (2001). We will focus now on those pertaining 

to period- and cohort-based factors of mortality change. 
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 The role of period- and cohort-based factors in mortality change 2.2.3.

Because the variation in mortality risk over the life course is widely considered to be the most 

significant determinant of variation in vital rates (Carstensen 2007; Clayton and Schifflers 1987; 

Hobcraft et al. 1982; Holford 1991; Yang 2008), most of the studies on secular mortality changes 

have concentrated on the decomposition between period and cohort components. However, it has 

been very difficult to dissociate period and cohort contributions to these secular changes because 

mortality improvements in Western societies since the mid-19th century have been mostly 

monotonic (i.e., dominated by linear effects). 

During most of the 20th century, the perspective attributing a greater influence to period-based 

factors on mortality changes remained dominant. Nevertheless, at the end of the century, the 

confluence of the theoretical frameworks presented above, which privileged the role of cohorts in 

mortality changes, helped the cohort paradigm regain credibility (Murphy 2010; Smith and Kuh 

2001).  

The concepts of generation developed by Mannheim (1952) and birth cohort developed by Ryder (1965) 

were appealing frameworks for explaining social changes through generation and cohort 

replacement mechanisms. Finch and Crimmins (2006; 2004) not only proposed a mechanism linking 

early life exposures to mortality at old ages with the cohort morbidity phenotype; they also argued that the 

declines in old-age mortality during the 20th century were the consequence of the gradual 

improvements experienced by those same cohorts earlier in life during the 19th century. Moreover, in 

addition to developing the theory of technophysio evolution, Fogel and Costa (1997) proposed a 

cumulative mechanism, which stated that improvements occurred over cohorts through the 

intergenerational transmission of improvements experienced at the individual level (Floud et al. 

2011; Fogel and Costa 1997).  

However, the debate over the relative contributions of period- and cohort-based factors is far from 

concluded. Barbi and Vaupel (2005) challenged the association between child and elderly mortality 

within the same cohorts proposed by Finch and Crimmins (2004). Instead, they argued that period 

effects, such as medical technology improvements during adulthood, had a larger influence than 

cohort-based factors on decreases in mortality at older ages. The position of Barbi and Vaupel 

(2005) was consistent with that of Szreter (1988, 2004), who argued that most of the mortality 
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reductions observed during the end of the 19th century in England were far more responsive to 

period-based factors, such as improvements in sanitary conditions and the implementation of public 

health policies, than to cohort effects. To examine the influence of period- and cohort-based factors 

on the mortality of historical populations, Gagnon and Mazan (2009) analyzed the mortality of 

cohorts born in Quebec during the 17th and 18th centuries. In contrast with previous analyses, which 

only observed decreases in both infant and old-age mortality within the same cohorts, their study 

was able to analyze the influence of increases in infant mortality, as was the case in 17th century 

Quebec,  on later life mortality. Their analysis did not find that increases in infant mortality levels 

were followed with increases in old-age mortality within the same cohorts, as the cohort morbidity 

phenotype hypothesis would have predicted. In a study that examined more recent mortality trends 

and at a wider geographical scale, Myrskylä (2010) found that early life experiences had little 

influence on old-age mortality in cohorts born during the late 19th century and the early 20th century 

in six European countries.  

The contrasting results about the role of period- and cohort-based factors are not limited to 

mortality changes in the past; indeed, there is also a lack of convergence of results in more recent 

mortality changes or trends. In accordance with the cohort morbidity phenotype hypothesis and the 

technophysio evolution theory, Yang (2008) proposed that decreases in U.S. intrinsic mortality during the 

second half of the 20th century were dominated by cohort effects. Similar conclusions were reported 

by Masters (2012) based on an analysis of the mortality crossover between white and black 

populations in the United States. Some of these findings were challenged by a study from Ouellette 

and colleagues (2014), who demonstrated that most of the accelerated adult mortality decline that 

occurred in the late 1960s simultaneously affected most age groups in several high-income countries. 

They argued that period-based factors, such as improved measures of prevention and better 

diagnostic methods, were the main determinants of these reductions. 

Given the biological, epidemiological, social, and economic factors that are known to determine 

mortality changes (and for which APC variables are just markers), it is clear that both period- and 

cohort-based factors have jointly contributed to mortality changes over time (Murphy 2010; 

Ouellette et al. 2014; Yang 2008). Most researchers are aware that there are both period and cohort 

influences on mortality changes, and that a complete and exclusive attribution of mortality changes 

to any of these dimensions would be an oversimplification of the complex and intricate process of 

mortality, and of its resulting temporal patterns.  
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 Implications of current paradigms for the analysis of 2.3.

mortality change 

The approaches presented above have considerable influence in guiding research on mortality. 

Analyses of mortality changes generally focus their attention on long-term trends of chronic 

degenerative mortality at old ages. This approach focuses on one set of causes (i.e., intrinsic), one 

age group (i.e., old ages), one temporal pattern (i.e., linear effects), and one category of cohort 

effects (i.e., scarring mechanisms contemplated in the fetal origins and cohort morbidity phenotype 

hypotheses). In the following, we argue that these approaches are poorly suited for addressing many 

of the challenges certain populations face that can affect their current and future mortality trends. 

 

 Role of young and adult extrinsic mortality in the contemporary 2.3.1.

population health trends 

As we discussed earlier in this chapter, the temporal dynamics of non-communicable and 

degenerative diseases have received considerable attention as the primary contributors to life 

expectancy improvements during the second and third phases of the health transition – or as the 

leading causes of death in the fourth stage of the epidemiological transition. According to these 

theoretical frameworks, extrinsic causes of death are expected to progressively decline to very low 

levels, and to play a marginal role in changes at the macro population level (Bongaarts 2005, 2006; 

Meslé and Vallin 2000; Olshansky and Ault 1986; Vallin and Meslé 2004).  

However, some analyses have offered evidence that recent changes in mortality patterns do not 

support this hypothesis. After decades of improvements in life expectancy, several high-income 

countries experienced a decline in mortality between 2014 and 2015 (Raleigh 2019). This 

deterioration was unexpected because those populations were not suffering from wars, famines, or 

infectious pandemics. A comprehensive analysis by Ho and Hendi (2018) identified two extrinsic 

causes – i.e., influenza infection and drug overdoses – as the leading contributors to mortality 

increases in at least 12 high-income countries (out of 18) between 2014 and 2015. The majority of 

these countries have seen their life expectancy rise again in later years, except in the United States, 

where life expectancy has declined for three years in a row, and the United Kingdom, where life 
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expectancy stagnated between 2015 and 2016. The 2015-2016 improvements that occurred in most 

high income countries suggest that the observed deterioration between 2014 and 2015 was a 

divergence from the long-term trend of mortality improvements rather than a reversal of this trend. 

Nevertheless, the decline in life expectancy, however small or short-lived it was, should be a cause 

for concern because it indicates a considerable deceleration of previous improvements (Jasilionis 

2018). Moreover, in the United States, life expectancy has declined for three consecutive years after 

2014, and behavioral-related mortality at young ages seems to drive these declines (Barbieri 2019, 

Woolf and Schoomaker 2019). 

The observed role of influenza- and drug-related mortality in the decline in life expectancy between 

2014 and 2015 stresses the need of analyzing the temporal dynamics of the extrinsic causes of death, 

and their implications at the population level. Understanding the temporal pattern in these causes is 

crucial for understanding the ongoing mortality crisis, including how it can be mitigated, and what 

actions can be taken to prevent new crises in other populations. The evidence suggests that the 

observed recent increases in mortality from influenza and drug abuse do not respond to occasional 

fluctuations with transitory impacts. On the contrary, influenza and drug abuse appear to be risk 

factors with potentially important implications for mortality in the near future. 

For instance, new, highly virulent influenza strains are slowly spreading worldwide and are 

threatening to become pandemics (CDC 2018a; Peiris et al. 2007; Pu et al. 2018; Quan et al. 2018; 

Shan et al. 2019; WHO 2018, 2019). Ho and Hendi (2018) found that in most of the high income 

countries that experienced a deterioration of life expectancy, influenza-related mortality was the 

leading negative contributor to the life expectancy change between 2014 and 2015. Nevertheless, 

since influenza incidence fluctuates from one year to the next, depending on the virulence of the 

virus subtype (H1N1, H3N2,…), the interactions host-pathogen, the pool of susceptible, and so on, 

these changes may very well be temporary and reversed in the coming years. The role played by 

influenza mortality in the observed decline in life expectancy will be further developed in the 

Discussion section of this dissertation (Chapter 7). 

With respect to drug-related mortality, several signs indicate that worse outcomes are to be expected. 

The ongoing opioid crisis, which for now appears to be confined to a few countries (the United 

States, Canada, and Australia), could spread to other countries in Europe (Boseley 2018; Ho 2019; 

Ho and Hendi 2018; Paun 2019), Latin America, and Africa (Ryan et al. 2016; Staff and agencies 
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2019). In the United States, where the largest increases in overdose deaths to date are found, a 

smooth exponential trend of drug overdoses since 1990 suggests that the opioid epidemic is just a 

manifestation of a long-term process with apparently no signs of deceleration in the near future 

(Jalal et al. 2018). The deaths related to chronic substance abuse – such as overdoses, alcoholic 

cirrhosis, HIV/AIDS, and hepatitis C – have a considerable impact at the population level, and the 

exponential shape of the overdose mortality trend suggests that the future implications of drug 

abuse will be even greater.  

As mentioned by Vallin and Meslé, “it is possible to enter into a new stage [of the health transition] 

without having completed the previous one” (Vallin and Meslé 2004, p. 38). Canada and the United 

States are clear examples of this divergence from the sequence of health progresses proposed within 

the health transition theoretical framework. Both countries made significant advancements into the 

third stage – i.e., the fight against aging – but are still struggling to reduce the fatal outcomes from 

human-made diseases, which were supposed to be addressed a long time ago, during the second 

stage. The delay of these countries for controlling extrinsic mortality seems to be rooted in 

education and wealth stratification and could be the main contributor for lifespan inequality within 

these populations (Ho 2018; Sasson 2016a, 2016b; van Raalte et al. 2012, 2014, 2018). Compared to 

behavioral-related mortality, social factors also seem to determine the risk of influenza-related 

mortality, but to a lesser degree (Cordoba and Aiello 2016; Lowcock et al. 2012; Nagata et al. 2013). 

Because lifespan inequality is considered the most fundamental of all inequalities (van Raalte et al. 

2018), the analysis of extrinsic mortality should be considered an urgent issue in demographic 

research. 

 

 Cohort effects on extrinsic mortality  2.3.2.

Regarding temporal patterns, as we argued earlier, it is not surprising that period effects are typically 

linked to extrinsic mortality, while cohort effects are usually linked to intrinsic mortality. It seems 

more intuitive to link extrinsic mortality to environmental exposures that kill instantaneously, than 

to events experienced earlier in life. Therefore, most studies on extrinsic mortality have privileged 

the period perspective, while overlooking the contributions of cohort effects to these causes of 

death. But as Koopman and colleagues (2015, p. 51) observed, “death can be better explained by the 

interaction of intrinsic and extrinsic stressors.” As extrinsic mortality implies the interplay between 
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the individual and the environment, it may be expected that the intrinsic attributes of individuals 

influence their risk of mortality from extrinsic causes. Even with substantial variations over periods, 

acute or infectious causes of death are not exempt from cohort patterns. Indeed, intrinsic 

differences across cohorts, such as differences in immune or behavioral characteristics, may translate 

into susceptibility differentials to extrinsic risk factors in some segments of the population.  

From the elements presented in this chapter, we argue that the partition of mortality between 

intrinsic and extrinsic causes is essential for a better understanding of how cohort effects on 

mortality operate. There are substantial differences between intrinsic and extrinsic mortality in the 

manner in which cohort effects originate and are enacted later in life. The fetal origins, the technophysio 

evolution, and the cohort morbidity phenotype hypotheses, which currently dominate the study and 

understanding of cohort effects on mortality, are well suited for the analysis of intrinsic causes. 

However, these theoretical frameworks are not appropriate to analyze cohort effects on extrinsic 

mortality; cohort effects on mortality from infectious diseases operate through immune-related 

mechanisms, and cohort effects on human-made causes usually relate to social exposures. 

With the aim of analyzing the manifestation of cohort effects on extrinsic mortality patterns, we 

present in this dissertation two analyses of cohort effects on extrinsic mortality. The first analysis, 

which is on influenza mortality, focuses on the effects of the antigenic imprinting mechanisms. The 

second analysis is conducted in order to identify the main causes of death that led to a divergence 

from the secular trend of mortality among the boomers. These findings will help us evaluate 

whether the attributes of the mortality experiences of the boomer cohorts are compatible with the 

hypotheses that have been proposed to explain their disadvantage in mortality. In addition, to 

improve the analysis of nonlinear effects by elucidating the temporal pattern of cohort effects, we 

proposed a methodological contribution for the visual analysis of the changes over time of nonlinear 

APC effects. 
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Chapter 3 - Data and Methods 

 

This chapter presents the different sources of data used in the three articles of this dissertation. We 

also describe the approach used to exploit these data and the methods of analysis that led to the 

estimation of influenza mortality, the visual methods for the depiction of the temporal dynamics of 

nonlinear APC effects, the statistical methods for the analysis of linear and nonlinear APC effects, 

and the decomposition of mortality change over cohorts by cause. Table 3.1 shows an outline of the 

data and methods employed in each article of this dissertation with the purpose of facilitating the 

comprehension of this section. More information of these components is detailed in the rest of the 

chapter. 

 

Table 3.1: Objectives, data and methods by article  

Article Objective Data Methods 

Determinants of 
Influenza Mortality 
Trends: Age-Period-

Cohort analysis of 
influenza mortality 

in the United States, 
1959-2016 

(Chapter 4) 

- Estimate monthly 
influenza-related mortality 
by virus subtype in the 
United States during the 
period 1959-2016 

- Study the roles of age, 
period, and cohort factors 
as drivers of influenza 
mortality change in the 
United States over the 
years 1959-2016  

- Address the changes in 
mortality risk over cohorts  

- Monthly death counts by cause of 
death, sex, and single years of age in 
the United States between 1959 and 
2016 (NVSSa) 

- Annual counts of population at risk 
by single years of age in the United 
States from 1959 to 2016 (HMDb) 

- Annual percentages of respiratory 
specimens testing positive by 
influenza subtype in the United 
States between 1976 and 1996 
(FluViewc) 

- Weekly indicators of ILId and 
percentages of respiratory 
specimens testing positive for 
influenza in the United States 
between 1997 and 2016  

- Classic Serfling 
model 

- Surveillance Serfling 
model 

- Lexis surfaces of 
mortality 

- Detrended APC 
models (Drift APC 
models) 

- Intrinsic estimator 
model 

- APC contrasts 
analysis 

Baby Boomers’ 
Excess Mortality in 

Canada and the 
United States 
(Chapter 5) 

- Identify the disadvantaged 
cohorts by country and sex 

- Identify the leading causes 
of baby boomers' excess 
mortality 

- Estimate coefficients of 
nonlinear cohort effects by 
sex, country, and leading 
cause of death 

- Plot nonlinear cohort 
effects by sex, country, and 

- Annual death counts for all-cause 
mortality for Canada and the 
United States by sex and single 
years of age between 1968 and 2016 

(CHMDe and HMD) 

- Annual exposures to risk for 
Canada and the United States by 
sex and single years of age between 

1968 and 2016 (CHMD and 
HMD) 

- Annual death records by cause of 

- Lexis surfaces of 
mortality change 

- Cohort partial 
mortality rate 

- Detrended APC 
models 

- P-splines smoothing 
and interpolation 

- APC curvature plots 
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Article Objective Data Methods 

leading cause of death for 
the period 1974-2016 

- Plot nonlinear cohort 
effects by sex, 
race/ethnicity in the 
United States for the 
period 1990-2016 

death, sex, and single years of age in 
the United States between 1968 and 
2016 (NVSS) 

- Annual death records by cause of 
death, sex, and single years of age in 
Canada between 1974 and 2014 
(CVSDf) 

- Annual death records by sex, race, 
ethnicity, cause of death, and single 
years of age in the United States 
between 1990 and 2016 (NVSS) 

- Annual population estimates by sex, 
race, ethnicity, and single year of 
age for the United States between 
1990 and 2016 (NVSS) 

APC Curvature 
Plots: Displaying 
Nonlinear Age-
Period-Cohort 

Patterns on Lexis 
Plots 

(Chapter 6) 

- Plot mortality curvatures 
for drug-related causes 
among boomers by 
race/ethnicity in the 
United States for the 
period 1990-2016 

- Plot young adult mortality 
hump for Spain, Russia, 
Taiwan, and the United 
States during the period 
1965-2016 

- Cohort fertility rate 
curvatures for Spain, 
Sweden, and the United 
States 

- Annual death records by sex, race, 
ethnicity, cause of death, and single 
years of age in the United States 
between 1990 and 2016 (NVSS)  

- Population estimates by calendar 
year, single years of age, sex, race, 
ethnic group, and cause of death 
from 1990 to 2016 (NVSS) 

- Annual all-cause mortality data and 
exposures to risk for Spain, Russia, 
Taiwan, and the United States 
during the period 1965-2016 
(HMD) 

- Age specific fertility rates for Spain, 
Sweden, and the United States for 
the cohorts born between 1905 and 
1985 (HFDg) 

- Lexis surfaces of 
mortality 

- Lexis surfaces of 
mortality change 

- P-splines smoothing 
and interpolation 

- Detrended APC 
models 

- APC curvature plots 

a U.S. National Vital Statistics System 

b Human Mortality Database 
c Web application containing weekly U.S. influenza surveillance reports  
d Influenza-like Illness 
e Canadian Human Mortality Database 
f Canadian Vital Statistics Database 
g Human Fertility Database 

 

 

 

 Data 3.1.

This section presents a summary of the data used for the analyses presented in this dissertation. A 

detailed description can be found within each article. For the analysis of influenza mortality (article 

1) and of the contributions of the leading causes of the baby boomers’ excess mortality (article 2), 
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we required death counts and population estimates with high resolution in age and period 

dimensions. For the construction of the visual tool for the analysis of nonlinear APC effects (article 

3), we required additional vital rates, because we were seeking to extend the application of this tool 

to other demographic phenomena. As we mentioned in the introduction, most of the data we used 

are openly available from official websites and previous scientific publications. The only exception is 

the set of micro-data on Canadian mortality, which is not publishable because of confidentiality 

restrictions. However, for reproducibility purposes, smoothed Canadian mortality rates by the causes 

of death included in the analyses are openly available in the respective OSF repository (Acosta 

2019c). 

 

 Death counts 3.1.1.

Death counts data by sex, single year of age (0-100), and calendar year (1959-2016) for Canada and 

the United States were obtained from the Canadian Human Mortality Database (CHMD) (2019) and 

the Human Mortality Database (HMD) (2019), respectively. The CHMD obtained the Canadian 

death counts from Statistics Canada, and the HMD obtained the U.S. death counts from the 

National Center for Health Statistics. For both countries, the death counts were available by age, but 

not by single year birth cohort, which is an important limitation that will be discussed later. Mortality 

counts were adjusted in the CHMD and in the HMD when information about age or sex was 

missing by distributing missing cases proportionally according to observed distributions by sex or 

age (Wilmoth et al. 2019). 

For the analysis of influenza mortality in the United States (article 1) and the baby boomers’ excess 

mortality in Canada and the United States (article 2), mortality data by cause of death were needed. 

For the United States, death counts by sex, age, calendar year, race, ethnicity, and cause were 

retrieved from the mortality micro-data files for the period 1959-2016. These mortality micro-data 

files were collected and coded from individual death certificates that were published by the National 

Vital Statistics System (NVSS), and are openly available through the National Bureau of Economic 

Research website (NBER 2019). These death counts are considered complete and of good quality 

from 1933 onward because of the legal requirements for death registration. As mortality counts in 

the United States are confined to those that occurred within the country, deaths of U.S. residents 

that occurred outside the country are not included (Andreeva et al. 2019). 
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For Canada, mortality data by age (0-100), cause, and sex between 1974 and 2014 were aggregated 

from the Vital Statistics - Death Database (CVSD) (Statistics Canada 2018). As we mentioned 

earlier, Canadian mortality micro-data are not openly available due to confidentiality restrictions. 

This database is compiled by Statistics Canada from death certificates received from all provinces 

and territorial vital statistics registries. It is considered virtually complete because the registration of 

deaths is a legal requirement in each Canadian province and territory. The potential for 

undercoverage is considered minimal, and it is constantly monitored. The database includes all 

deaths of residents in Canada and of Canadian residents that occur in the United States. For any 

missing province or territory of residence, sex, age, and date of birth of the decedent, Statistics 

Canada, the provinces, and the territories carry out imputations that are based on standard edit 

specifications (Statistics Canada 2018).  

The U.S. mortality data cover four successive revisions of the International Statistical Classification 

of Diseases (ICD) (from the 7th to the 10th ICD revisions), whereas the Canadian mortality data 

cover three of these revisions (from the 8th to the 10th ICD revisions). An important discontinuity in 

the trend was noted for influenza and pneumonia mortality when the revisions were implemented, 

but not for behavioral causes (Anderson et al. 2001). Therefore, the death counts classified in the 

influenza and pneumonia category using ICD codes from the 7th to the 9th revisions (1959-1999) 

were adjusted to ensure comparability with the 10th ICD revision (1999-2016). These adjustments 

were made by using the comparability ratios computed from the bridge-coding studies between the 

following ICD revisions: 7th and 8th (Klebba and Dolman 1975), 8th and 9th (Klebba and Scott 1980), 

and 9th and 10th (Anderson et al. 2001). Since the 6th ICD revision in 1949, the method for 

computing the comparability ratios has been based on a dual classification of a single year’s mortality 

data; that is, a classification of the underlying cause of death according to both the previous and the 

new revision. Based on this dual coding, it is possible to measure discontinuities in mortality data 

resulting from the introduction of each new revision, and to compute comparability ratios 

(Anderson et al. 2001; Klebba and Scott 1980). The cause-specific comparability ratios are estimated 

by dividing the death counts classified in the new revision by the death counts classified in the 

previous revision. The comparability ratios may be applied to adjust the mortality counts in order to 

ensure that the causes of death classified by a previous revision are comparable to the same causes 

classified by the new revision. For our analyses, we adjusted pneumonia and influenza deaths by 

dual-coding the mortality data referring to the years 1969, 1976, and 1996 in order to measure the 
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discontinuities resulting from the introduction of the 8th, 9th, and 10th revisions, respectively 

(Anderson et al. 2001; Klebba and Dolman 1975; Klebba and Scott 1980).  

Table 1 presents the ICD codes (from the 7th to the 10th ICD revisions) that we used to identify the 

pneumonia and influenza (P&I) mortality for the analysis of influenza mortality in the United States 

between 1959 and 2016 (article 1). Table 1 also includes the ICD codes (from the 8th to the 10th ICD 

revisions) we used to identify deaths from drugs, alcohol, HIV/AIDS, hepatitis C, suicide, and 

chronic obstructive pulmonary disease (COPD) for the analysis of the baby boomers’ excess 

mortality in Canada and the United States (article 2). Note that codes identifying deaths from 

HIV/AIDS and from hepatitis C were first used starting in 1987. 

Table 3.2: ICD codes (from ICD-7 to ICD-10 revisions) for selected causes of death 

ICD revision 7th  8th  9th  10th  

ICD periods for Canada 1958-1968 1969-1978 1979-1999 2000-2016 

ICD periods for the United States 1959-1967 1968-1978 1979-1998 1999-2016 

Pneumonia and Influenza (P&I) 480-483, 490-493 
470-474, 
480-486 

480-487 J10-J18 

HIV NA 0420-0449 B20-B24 

Hepatitis C NA 0704-0705 B171, B182 

COPD 4900-4928 4900-4928 J40-J44 

Suicides 9500-9599 9500-9599 X60-X84 

Drug-related causes (accidental overdoses + drug 
dependence + mental and behavioral disorders due to 
use of drugs) 

2943,  
3040-3049, 

3091,  
8500-8599, 
9800-9803 

2920-2929, 
3040-3049, 
3052-3059, 
8490-8589, 
9800-9805 

F11-19, F55, 
X40-X44,  
Y10-Y14 

Alcohol-related causes (accidental alcohol 
intoxication + long-term harm from liver cirrhosis + 
mental and behavioral disorders due to use of alcohol 
+ other diseases due to consumption of alcohol) 

2910-2919, 
3030-3039,  
5353, 5710, 
8600-8609 

2910-2919, 
3030-3039, 
3050, 3575, 
4255, 5353, 
5710-5713, 

7903, 
8600-8609 

 E244, F10,  
G312, G621,  
G721, I426,  

K292,  
K700-K709,  
K860, X45,  
Y15, Y90, 

Y91 

 

 

 Population estimates 3.1.2.

For the estimation of mortality rates by age, calendar year, and sex in Canada and the United States, 

we employed population estimates from the CHMD (2019) and the HMD (2019), respectively. For 

both countries, the exposure-to-risk estimates were adjusted in the HMD to reflect the timing of 
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deaths during the calendar year (Wilmoth et al. 2019). The Canadian annual population estimates 

were provided to the CHMD by Statistics Canada (2017). The primary sources for the Canadian 

population estimates are the decennial and quinquennial censuses, as well as the intercensal and 

postcensal population estimates produced by Statistics Canada. The undercount errors of the 

population estimates vary between 1% and 3% from census to census, and Statistics Canada has 

corrected these errors since 1971 (Andreev et al. 2019). The only problem that has been detected in 

Canadian population estimates is the number of centenarians, which appears to be large relative to 

the numbers reported in other high-income countries (Bourbeau and Lebel 2000); fortunately, these 

figures have recently been adjusted by Statistics Canada (Andreev et al. 2019). Be that as it may, this 

potential problem does not affect our analyses because we used population estimates below age 100.  

For the United States, the HMD obtained the annual population estimates from the U.S. Census 

Bureau. For consistency, the HMD adjusted the data between 1959 and 1969 to exclude members of 

the Armed Forces serving overseas. The data on population counts since 1970 were obtained 

directly from the U.S. Census Bureau intercensal population estimates for the U.S. resident 

population, without applying additional corrections (Andreeva et al. 2019).  

For the analysis of influenza mortality, monthly exposures were required. We interpolated the annual 

exposures to risk to obtain the monthly exposures, assuming that changes in the exposures were 

distributed uniformly during the year. The seasonality of fertility, mortality, and migration is not 

expected to bias the estimates when aggregated by epidemic season. 

For the analysis of the baby boomers’ excess mortality by race and ethnicity, annual population 

estimates by sex, single year of age, race, and ethnicity between 1990 and 2016 were obtained from 

the Bridged-Race Population Estimates, which were published online by the NCHS (2019). The 

bridged-race estimates were elaborated by an agreement between the NCHS and the U.S. Census 

Bureau. These data resulted from bridging the 31 race categories used in Censuses 2000 and 2010 to 

the four race categories that are used in the U.S. Vital Statistics System. These estimates provide a 

way to compare racial and ethnic categories registered in the Vital Statistics System and in the 

census, and, thus, to obtain an accurate estimate of vital rates by race and ethnicity (Ingram et al. 

2003). 

In addition to the above data, we used aggregated vital data in the third article (chapter 6). Data on 

exposures and mortality counts from Spain, Russia, Taiwan, and the United States between 1965 and 
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2016 were obtained from the HMD (2019). Age-standardized fertility rates (ASFR) from Spain, 

Sweden, and the United States were obtained from the Human Fertility Database (HFD) (2019). 

 

 Measures of Influenza Virus Circulation  3.1.3.

For the estimation of monthly influenza mortality in the United States in the first article, we 

estimated monthly indicators of influenza-like illness (ILI) and percentages of respiratory specimens 

testing positive for influenza between 1997 and 2016 from weekly indicators registered in the 

FluView Interactive database (CDC 2018), as we had done in previous work (Gagnon et al. 2018a).  

Information on ILI in the United States is collected from near 50 million patient visits per year to 

more than 3,500 healthcare providers in all states and territories. The health care providers report 

the total number of patients seen for any reason and those with ILI symptoms, which are defined as 

those who presented “fever and cough and/or sore throat without a known cause other than 

influenza” (CDC 2019). Virologic surveillance data of laboratory-confirmed influenza cases are 

routinely obtained from 100 public health providers and 300 clinical laboratories that perform tests 

for surveillance and diagnosis purposes, respectively. These laboratories are located in all 50 states 

and territories of the United States. Virologic surveillance data are published weekly, and include 

information on age group, tested virus subtype, and geographical location (CDC 2019). 

In addition, to estimate the influenza-related mortality by virus subtype between 1959 and 2016, we 

retrieved information from complementary sources on virologic surveillance before 1997. Because 

there was no information available in the FluView Interactive database before October 1997, the 

annual percentages of respiratory specimens testing positive by influenza virus subtype between 

1976 and 1996 were obtained from Thompson et al. (2003). In contrast to the FluView Interactive 

database, the information provided by Thompson et al. (2003) is aggregated for all ages and the 

whole epidemic year, which prevented the estimation of influenza mortality before 1997 in models 

that required surveillance data. 
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 Methods 3.2.

The analyses presented in this dissertation are entirely reproducible, except for some steps applied to 

Canadian data, due to confidentiality. We published all the scripts required in Open Science 

Framework (OSF) repositories (Acosta 2019a, 2019b, 2019c). 

 

 Estimation of influenza-related mortality 3.2.1.

Before analyzing influenza-related mortality in the first article (chapter 4), it was required to identify 

these deaths, which is challenging for at least two reasons. First, flu infections are not typically 

confirmed by laboratory tests. Second, a considerable number of deaths, to which influenza is likely 

a contributor, result from secondary complications, such as bacterial pneumonia or the exacerbation 

of underlying chronic diseases. Therefore, we can assume that the number death records with 

influenza as a standalone cause of death is much smaller than the number of deaths related to 

influenza (Noymer and Nguyen 2013; Simonsen et al. 2006).  

Various methods have thus been developed for estimating influenza mortality (Thompson et al. 

2009). For the analyses performed here, we applied two kinds of Negative Binomial Serfling 

regression models. We summarize these methods in this section, but a more detailed explanation 

about their application is provided in the first article (chapter 4). To estimate influenza mortality 

between 1959 and 2016, we applied a classical Serfling model, which is based exclusively on seasonal 

variations. This model assumes that there is no circulation of influenza during summer periods in 

temperate regions. Hence, a mortality baseline was estimated by fitting P&I deaths that occurred 

exclusively within summer seasons. Then, influenza-related mortality was defined as the difference 

between the observed P&I death counts and the estimated mortality baseline.  

A surveillance Serfling model that includes influenza measures was applied to improve the accuracy 

of the estimates. This model takes into account influenza-like illness measures (ILI) and laboratory 

test data. To estimate influenza mortality, deaths recorded in the P&I categories were fitted to obtain 

a “predicted” mortality count. Next, all influenza activity terms were set to zero in order to estimate 

a mortality baseline without influenza activity. The difference between the predicted mortality and 

the baseline then reflected the mortality caused by influenza. Although this method generates more 

accurate estimates than the classical Serfling model, its use is restricted to periods in which influenza 
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circulation measures are available on a monthly basis. As there is no measure of influenza circulation 

by month and age prior to 1997 in the United States, the Surveillance-Serfling method could not be 

applied to earlier periods. Additional details of the Serfling models are included in the supplementary 

material of the first paper (S1), such as information on the parameterization, the criteria for the 

selection of the best models, the fitting measures, and the sensitivity analyses that were performed. 

 

 Estimation of mortality by cohort and the decomposition of changes 3.2.2.

by cause of death 

For the analysis of the leading causes of death contributing to the relative excess mortality among 

baby boomers in the second article (Chapter 5), we propose the cohort’s partial mortality rate to measure 

the mortality level within a cohort, and to decompose its change by cause of death. This measure is 

defined as:  

𝐶𝑃𝑀𝑅𝑐(𝑘,𝑙) = ∑ 𝑚𝑥
𝑐𝑙

𝑥=𝑘  , (1) 

 

where 𝑚𝑥 is the age-specific mortality rate, for the age interval 𝑘, 𝑙, over the cohort 𝑐.  

Being the sum of the age-specific mortality rates between two ages in a cohort, this measure is the 

mortality analogous of the cohort’s total fertility rate (𝑇𝐹𝑅𝐶) (Preston et al. 2000). A similar index 

(indice synthétique de mortalité) was previously suggested by Termote (1998) as a measure of changes in 

mortality over periods.  

An advantage of the 𝐶𝑃𝑀𝑅𝑐(𝑘,𝑙) is that it attributes the same weight to all deaths, independent of 

age, and thus avoids the distortion of the contributions of causes of death that are highly correlated 

with age.  

The change in the cohort’s partial mortality rate between cohort (𝑎) and a disadvantaged cohort (𝑑) for the 

age interval(𝑘, 𝑙) is defined as: 

∆𝐶𝑃𝑀𝑅𝑑−𝑎(𝑘,𝑙) = 𝐶𝑃𝑀𝑅𝑑(𝑘,𝑙) − 𝐶𝑃𝑀𝑅𝑎(𝑘,𝑙). (2) 

The decomposition of the ∆𝐶𝑃𝑀𝑅𝑑−𝑎(𝑘,𝑙) by cause of death is straightforward because the sum of 

all the changes in the cohort’s partial mortality rate by cause of death 𝑖 (∆𝐶𝑃𝑀𝑅𝑖
𝑑−𝑎(𝑘,𝑙)

) equals the observed 

total change in the cohort’s partial mortality rate: 

∆𝐶𝑃𝑀𝑅𝑑−𝑎(𝑘,𝑙) = ∑ ∆𝐶𝑃𝑀𝑅𝑖
𝑑−𝑎(𝑘,𝑙)

𝑖 . (3) 
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 Smoothing of mortality rates 3.2.3.

To identify trends and avoid the “noise” introduced by random variations, we smoothed the 

mortality rates in numerous instances. For this smoothing process, we used the P-spline method, 

which is a very flexible method of smoothing that combines B-splines and a penalized likelihood 

function. The B-spline consists of an aggregate of consecutive polynomial pieces that are joined at 

certain values, denoted as knots (Eilers and Marx 1996). Such polynomial pieces are bell-shaped 

curves that add an excellent local control to the data smoothing (Ouellette 2011). The number of 

knots and smoothing values is critical: too many leads to overfitting, while too few leads to 

underfitting (Eilers and Marx 1996). Eilers and Marx (1996) proposed using a relatively large number 

of knots and penalizing the flexibility of the fitted curve to find an optimal smoothing value. This 

penalization is applied to the regression coefficients. In the P-spline approach, the selection of the 

optimal smoothing parameters for the B-splines is done by finding a balance between parsimony and 

accuracy. For this purpose, Eilers and Marx (1996) proposed the use of the Akaike Information 

Criterion (AIC) (Burnham and Anderson 2002; Camarda 2012; Hilbe 2011; Raftery 1995). Later, 

Currie and colleagues (2004) extended the P-splines method for smoothing and forecasting two-

dimensional mortality tables to allow for the fitting of mortality surfaces. They pointed out that the 

use of the Bayesian Information Criterion (BIC) was preferable to the use of the AIC in the 

selection of optimal parameters, because this measure penalizes model complexity more heavily, 

avoiding the undersmoothing of data (Camarda 2012; Currie et al. 2004). Another advantage of the 

P-spline method is that it allows for the fitting of Poisson distribution data that account for 

overdispersion (negative binomial model). These attributes are suitable for the smoothing of 

mortality data because death counts are positive integer values, some having low to very low 

frequencies, with overdispersion. We used the R package MortalitySmooth (Camarda 2012) to estimate 

one- and two-dimensional P-Splines of mortality data. 

 

 Age-Period-Cohort analyses of vital rates 3.2.4.

Graphical and statistical methods for APC analyses are abundant in the literature. This section 

presents a summary of the developments of the APC methodology that justify its use in this 

dissertation. The section begins with a general presentation of the classical APC model, in which we 
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describe the identification problem and other attributes that are specific to APC models. Then, we 

distinguish between methods that are suitable for the analysis of linear effects and nonlinear effects. 

As we mentioned in the introduction, several statistical methodological attempts have been made 

since the end of the 19th century to analyze the APC effects on mortality. However, the model 

proposed by Mason and colleagues (1973) – denoted as the multiple-classification model – was the 

first that accounted simultaneously for APC variations (Glenn 1976; O’Brien 2014; Yang et al. 2004). 

For more than 40 years, most of the proposed APC statistical models have been adaptations of the 

multiple-classification model developed by Mason (1973). For this reason, this model is also referred 

to in the APC literature as the Classical APC model (CAPC) (Fosse and Winship 2019a, 2019b; 

O’Brien 2014; Yang and Land 2013a). The multiple-classification model is defined as: 

 

𝑙𝑜𝑔(𝑑𝑒𝑎𝑡ℎ𝑠𝑎,𝑡) =  𝜃0 + 𝛼𝑎 + 𝛽𝑡 + 𝛾𝑐 + 𝑙𝑜𝑔(𝑒𝑥𝑝𝑜𝑠𝑢𝑟𝑒𝑎,𝑡),  (4) 

 

where 𝑑𝑒𝑎𝑡ℎ𝑠𝑎,𝑡 is the death counts at age 𝑎 at time 𝑡,  𝜃0 is a constant, 𝛼𝑎 is the effect of age 𝑎, 𝛽𝑡 

is the effect of period 𝑡, 𝛾𝑐  is the effect of cohort 𝑐, and 𝑒𝑥𝑝𝑜𝑠𝑢𝑟𝑒𝑎,𝑡 is the population of age 𝑎 at 

risk at time 𝑡. Single or multiple years may be employed.  

Subsequent studies have acknowledged that the APC effects could be decomposed into linear and 

nonlinear components (Fienberg and Mason 1979; Holford 1983; Rodgers 1982). In this partitioning 

approach, the linear effects refer to the overall linear trend, and the nonlinear effects refer to the 

divergences from this linear trend. Rodgers (1982) proposed the concept of a curvilinear component – 

later referred to and popularized as curvature by Holford (1983) – to refer to the divergences from the 

linear effects. Other methods for the analysis of nonlinear components were further developed 

(Clayton and Schifflers 1987; Holford 1991, 2005; O’Brien 2014a, 2014b; Tango and Kurashina 

1987; Tarone and Chu 1996). According to this approach, instead of using the dummy variables in 

Equation 4, each temporal dimension of the APC model can be decomposed into linear and 

curvature terms (Holford 1983; Rodgers 1982). As an example, for age, we have: 

𝛼𝑎 = 𝛼𝑎
𝑑 + 𝛿𝑎(𝑎 − 𝑎0), (5) 

 



58 
 

where 𝛼𝑎 is the effect of age 𝑎, 𝛼𝑎
𝑑 is the age curvature for age 𝑎, 𝛿𝑎 is the age linear effect, and 𝑎0 

is the reference age. Similarly, period and cohort effects have nonlinear (𝛽𝑝
𝑑 , 𝛾𝑐

𝑑) and linear (𝛿𝑝, 𝛿𝑐) 

components. Being independent of the partitioning of the linear effects, the nonlinear components 

or curvatures remain the same whatever the constraint used and are identifiable.  

Although the partitioning of linear effects among APC components has an infinite number of 

solutions, these solutions are restricted to the linear dependence between the three temporal 

dimensions. Then, taking into account the perfect multicollinearity between APC variables 

(𝑐𝑜ℎ𝑜𝑟𝑡 = 𝑝𝑒𝑟𝑖𝑜𝑑 − 𝑎𝑔𝑒), and the decomposition between the linear and curvature components 

presented in Equation 5, Equation 4 can be reformulated as (Holford 2006): 

𝑙𝑜𝑔(𝑑𝑒𝑎𝑡ℎ𝑠𝑎,𝑡) =  𝜃0 + 𝑥 𝛼𝑎
𝑑 + 𝛿𝑎(𝑎 − 𝑎0) + 𝑦 𝛽𝑝

𝑑 +  𝛿𝑝(𝑝 − 𝑝0) + 

(𝑦 − 𝑥) 𝛾𝑐
𝑑 +  𝛿𝑐(𝑐 − 𝑐0)𝛽𝑡 + 𝑙𝑜𝑔(𝑒𝑥𝑝𝑜𝑠𝑢𝑟𝑒𝑎,𝑡), 

 (6) 

 

where 𝑥 and 𝑦 are arbitrary constants; i.e., are determined by one of infinite solutions of the 

decomposition of the linear trend among the APC dimensions. From Equation 6, two essential 

implications from APC models can be noted. First, although the solutions for the partitioning of the 

linear component are infinite, the slopes of the age, period, and cohort linear effects cannot vary 

freely from each other. Second, if any of the slopes is fixed, the other two are determined (Rodgers 

1982).  

In this sense, the possible values that 𝑥 and 𝑦 can take in Equation 6 are constrained to a solution 

line, which represents all the possible slope values that give an identical fit to the data in terms of 

likelihood ratios, AICs, BICs, and the like (Fosse and Winship 2019a; Holford 1991; Mason et al. 

1973). As proposed by Rodgers (1982), the linear effects of any APC model can be expressed as:   

𝛿𝑎
∗ = 𝛿𝑎 + 𝑣, (7) 

𝛿𝑝
∗ = 𝛿𝑝 − 𝑣, (8) 

𝛿𝑐
∗ = 𝛿𝑐 + 𝑣, (9) 

where 𝛿𝑎
∗, 𝛿𝑝

∗, and 𝛿𝑐
∗ are arbitrary age, period, and cohort slopes, respectively, from an APC model 

under particular constraints; and 𝑣 is an arbitrary constant, fixed to some value, which is the bias of 

the APC slopes estimates from the true linear effects (Rodgers 1982).  
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Fosse and Winship (2019a, 2019b) have proposed the visualization tool 2D-APC graph, which helps 

visually depict the solution line and the interrelationship among age, period, and cohort linear 

effects. Figure 1 presents a 2D-APC graph with arbitrary dependence of the linear effects as an 

example. In this plot, the vertical axis on the left indicates the set of possible values for the slope of 

the age effects (𝛿𝑎
∗), the horizontal axis indicates the set of possible values for the slope of the period 

effects (𝛿𝑝
∗), and the vertical axis on the right indicates the set of possible values for the slope of the 

cohort effects (𝛿𝑐
∗). The vertical and horizontal dashed lines indicate when the slope of the linear 

age, period, or cohort effects take the value of zero (i.e., when the effects are detrended in each 

dimension). And, finally, the diagonal solid line indicates a solution line of the APC model in which 

all points (i.e., all the possible partitions of the linear effects among the APC factors) offer the exact 

same fit. This plot offers an intuitive way of visualizing several properties of the APC model: the 

identification problem (i.e., there is not a unique solution), the interdependence of APC linear 

effects contained in the solution line described in Equations 6 to 9 (i.e., the APC slopes are not 

independent of each other), and the fact that arbitrarily defining one of the slopes in any of the three 

temporal dimensions implies the identification of the other two.  

Figure 3.1: Example of a 2D-APC graph of the partitioning of the linear effects.  

 

Note: The vertical axis on the left indicates the slope of the age effects (𝛿𝑎
∗), the horizontal axis indicates the slope of the 

period effects (𝛿𝑝
∗), and the vertical axis on the right indicates the slope of the cohort effects (𝛿𝑐

∗). The vertical and the 

horizontal dashed lines indicate when the slope of the linear age, period, or cohort effects takes the value of zero. The 
diagonal solid line indicates the solution line of the APC model. 
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Analysis of linear effects  

Unique solution approaches 

Since the formulation of the multiple-classification model, several methods have been proposed that 

attempt to overcome the identification problem by imposing mathematical constraints with a unique 

solution for the partitioning of the linear effects. The nature of these constraints can be divided into 

two main groups: explicit and mechanical constraints (Fosse and Winship 2019a).  

Most of the models that impose explicit constraints were developed during the 1970s and the 1980s. 

The most common approach used for the selection of explicit constraints is the constraint-based 

model (Mason et al. 1973). This approach consists of restricting two of the age, period, or cohort 

categories so that they have the same effect on the outcome variable under theoretical assumptions 

(e.g., that the effects of two age groups are identical, independent of period and cohort variations). 

However, as has been noted by others, these assumptions are difficult if not impossible to justify 

from a theoretical standpoint, and the resulting slope of each estimated linear effect is highly 

sensitive to minor differences in the specification of the model (Clayton and Schifflers 1987; Fosse 

and Winship 2019a; Rodgers 1982; Tarone and Chu 1996; Yang et al. 2004; Yang and Land 2013).  

The most recent type of statistical model aiming to decompose the linear trend on the basis of 

mechanical constraints was proposed during the first decade of the 21st century. In this approach, 

the constraint is not imposed by the researcher, but is generated by the design matrix itself. The 

logic behind this approach is to select, among the infinite possible solutions, the solution for which 

the estimators reach the minimum variance. One way to select such a solution is to apply a Moore-

Penrose (MP) inverse estimation, which produces a solution that is orthogonal to the null vector of a 

particular design matrix (Fosse and Winship 2018; Fu 2000; O’Brien 2014a; Yang et al. 2004). 

However, there is no a unique MP solution, and different estimators can be obtained when applying 

this approach depending on the parameterization of the model (Fosse and Winship 2018; O’Brien 

2014a). Among the possible MP estimators are the ridge estimator (Fu 2000), the intrinsic estimator 

(Yang et al. 2004; Yang and Land 2013a), and the orthogonal estimator (Fosse and Winship 2018).  

The validity of this “general purpose” approach has been debated (Bell and Jones 2013, 2014; 

Fienberg 2013; Fosse and Winship 2018; Fu 2016; Held and Riebler 2013; Land et al. 2016; Luo 

2013; Masters et al. 2016; O’Brien 2013; Reither et al. 2015; Tolnay 2013; Yang and Land 2013b). 
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The main reason for the broad skepticism surrounding this mechanical approach is that it is 

impossible to prove that the actual process under observation – in this case, mortality– behaves 

according to the implicit assumptions of the MP estimators, which are based on statistical 

properties, rather than being grounded in social, cultural, or biological theory (Fosse and Winship 

2018; Luo 2013).  

Interval solution approaches 

Beyond the approaches we discussed above, other methods that attempt to overcome the 

identification problem have been proposed. These methods offer a range of possible solutions for 

the partitioning of the linear effects (i.e., a segment of the solution line) instead of a “true unique 

solution” (i.e., a point of the solution line). These models rely on weaker and less arbitrary 

assumptions, which are more tenable from a theoretical standpoint.  

Within the drift approach proposed by Clayton and Schifflers (1987), for instance, they state that the 

linear component can be decomposed into two dimensions: one linear component pertaining to age 

effects, and a second component that is impossible to separate into period and cohort effects, which 

is the drift. Equations 7 to 9 imply that the sum of the period and cohort linear effects (i.e., the drift) 

is the same and unbiased, independently of the constraint imposed on the model. Thus, the drift of 

the model is defined as: 

𝛿 = 𝛿𝑝 + 𝛿𝑐 . (10) 

where 𝛿𝑝 and 𝛿𝑐 are the period and cohort linear effects. Again, note that given the identification 

problem presented earlier, the model yields the same fit for an infinite number of different partitions 

of the drift (𝛿) among the period (𝛿𝑝
∗) and cohort (𝛿𝑐

∗) components.  

From this approach, two opposite scenarios can be proposed: one in which the whole drift is 

attributed to period changes (i.e., the cohort effects are detrended, 𝛿𝑐
∗ = 0), and a second one in 

which it is completely attributed to cohort changes (i.e., the period effects are detrended, 𝛿𝑝
∗ = 0). 

According to this approach, it is highly plausible that the true partition of the linear effects is located 

somewhere in between these two scenarios, and the common aspects that are invariant in both 

could be considered valid in the unknown “true” scenario.  

An alternative interval approach, which has been denoted as restricted ranges (Holford 1991; 

Wickramaratne et al. 1989), and has been further developed as the bounding analysis of APC effects 
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(Fosse and Winship 2019b, 2019a), is based in prior theoretical knowledge that is applied to 

constrain the possible values of the slope in each temporal dimension (e.g., mortality cannot 

decrease between two specific ages, or mortality necessarily increases between two periods because 

of an epidemic that affects all age groups). After restricting the model to theoretical constraints, the 

output of this approach is a range of solutions, which can, in some cases, approximate a unique 

solution.  

Analysis of nonlinear effects 

Statistical approaches 

As we pointed out in chapter 2, an advantage of the analysis of the nonlinear effects is that these 

effects do not vary depending on the constraint imposed on the model specification, and are thus 

identifiable (Carstensen 2007; Clayton and Schifflers 1987; Holford 1991). For this reason, some 

approaches focus exclusively on the identification and measurement of the curvature components 

𝛼𝑎
𝑑, 𝛽𝑝

𝑑 , and 𝛾𝑐
𝑑 , which are the only components that can be identified; leaving aside the linear effect, 

whose “true” value remains unknown.  

When reducing the linear trends to zero (the so-called detrended APC effects), it is possible to 

isolate and plot the curvatures and to estimate the relative risk of each category of age, period, and 

cohort; compared to the expected risk for the overall trend (Holford 1991).  

In addition, Tango and Kurashina (1987) have proposed the analysis of contrasts, which are the 

second derivatives (also known in the APC literature as local curvatures or second-order effects) of the 

mortality changes that are specific to each temporal dimension. Contrast measures follow the form:  

𝐶ℎ = (𝜋ℎ+1 − 𝜋ℎ) −  (𝜋ℎ − 𝜋ℎ−1), (11) 

 

where 𝜋ℎ is the ℎ-th age, period, or cohort effect estimate. The resultant local curvature 𝐶ℎ is 

invariant to the parameterization used to obtain the effects. This measure essentially compares the 

ℎ-th category with the categories on either side (Holford 1991).  

Based on the contrast idea, Tarone and Chu (1996) developed a simple but useful extension of 

Equation 12 to measure the change in slope between two disjoint segments of effects, each of which 

is composed of several age, period, or cohort categories. The utility of Tarone and Chu (1996)’s 
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contrast approach is that it is able to quantify the changes in risk between two blocks composed of 

several APC categories, plus a statistical measure of significance. Therefore, it can be used to identify 

“breakpoints” or “rupture points” at which the direction of the risk trend changes significantly (i.e., 

the risk increases or decreases significantly). Further details about the formulation of the contrasts 

can be found in the supplementary material of chapter 4 (S1).  

It is important to highlight that, although they are identifiable, a limitation of these nonlinear effects 

is that they refer to fixed average effects, and do not allow the size of the nonlinear effects to vary 

over time/age (Chauvel 2013). In other words, these averages hide variations of the nonlinear effects 

over age, period, or cohort. For instance, as described in chapter 2, a selection mechanism could 

manifest initially with a higher relative risk of death for one cohort and later reverse to relative 

advantage because of the gradual exclusion of the frailest individuals. This variation in time of the 

cohort mortality risk would be not reflected in the resulting cohort effect, and even might cancel out 

when averaged. A partial solution to this problem was proposed by Chauvel (2013): namely, the Age-

Period-Cohort hysteresis model, which can be used to measure increases or decreases in the magnitude of 

the curvature over age/time. However, this estimate is still a fixed measure of change that only 

allows for continuous increases or decreases over time. Thus, it does not identify non-constant 

changes or temporary nonlinear effects, which is crucial information when analyzing APC effects on 

mortality. For instance, when analyzing cohort effects on mortality, the lack of information about 

the actual pattern of nonlinear effects over age/time makes it impossible to detect the difference 

between a short-term age-period interaction and a real, sustained cohort effect, or the changes in the 

location of the most advantaged or disadvantaged cohorts over age/time. 

Visual approaches 

Graphical methods for the analysis of nonlinear variations over age, period, and cohort have been 

widely used in mortality research since the 19th century (Caselli and Vallin 2005; Keiding 2011; 

Vaupel et al. 1987). Given the identification problem of statistical analyses, several authors have 

argued that graphical analyses are more transparent (Murphy 2010; Preston and Wang 2006; Willets 

2004). Although using graphical analyses does not overcome the identification problem, it offers 

some advantages over using the available statistical methods for the analysis of nonlinear APC 

effects.  
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In particular, the Lexis surfaces of mortality change are widely recognized in the demographic 

literature as being very powerful, yet simple methods for detecting age, period, and cohort effects in 

the mortality dynamic (Barbi and Camarda 2011; Ouellette et al. 2012; Rau et al. 2013; Schöley and 

Willekens 2017; Vaupel et al. 1987). Unlike statistical analyses, the visualization of mortality changes 

makes it possible to identify the temporal dynamics of nonlinear effects, such as their changes in 

location and intensity over age/time.  

Changes in mortality rates over age/cohort (i.e., vertical changes along the same period in the Lexis 

diagram) reflect the confounded linear and nonlinear age/cohort effects operating within the same 

period. Analogously, changes in vital rates over period/cohort (i.e., horizontal changes along the 

same age in the Lexis diagram) reflect the confounding age/cohort effects within the same period, 

and changes in vital rates over age/period (i.e., diagonal changes along the same cohort in the Lexis 

diagram) reflect the confounding age/period effects within the same cohort.   

To construct mortality surfaces of mortality change, we first estimate two-dimensional smoothed 

mortality rates with the P-splines methods described above in order to eliminate the noise of 

random fluctuations. Then, for each single-year age x and period t, we estimate single-year rates of 

mortality change (Kannisto 1994; Rau et al. 2013) over age/cohort  

∆𝑎𝑐𝑥,𝑡 = log(𝑚𝑥,𝑡
𝑠 ) − log(𝑚𝑥−1,𝑡

𝑠 ), (12) 

over period/cohort 

∆𝑝𝑐𝑥,𝑡 = log(𝑚𝑥,𝑡
𝑠 ) − log(𝑚𝑥,𝑡−1

𝑠 ), (13) 

and over age/period 

∆𝑎𝑝𝑥,𝑡 = log(𝑚𝑥,𝑡
𝑠 ) − log(𝑚𝑥−1,𝑡−1

𝑠 ), (14) 

 

where 𝑚𝑥,𝑡
𝑠  is the smoothed death rate for the single-year age x in period t.  

Then, we plot ∆𝑎𝑐𝑥,𝑡, ∆𝑝𝑐𝑥,𝑡 , and ∆𝑎𝑝𝑥,𝑡 values on separate Lexis surfaces using two different color 

scales, with one scale depicting the slope of the mortality improvement, and the second scale 

displaying the slope of the mortality deterioration over age/period/cohort. Invariance of color in the 

Lexis surfaces is indicative of monotonic changes in mortality rates (linear changes), whereas 

changes in color are indicative of changes in the slope of the mortality change (nonlinear changes or 

curvatures). The presence of systematic changes in the color scale that follows horizontal, vertical, 

and diagonal traces are symptomatic of age, period, and nonlinear cohort effects, respectively. The 
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changes between scales indicate that mortality change reaches a local valley or a local peak in 

mortality change; i.e., maximum improvement or maximum deterioration, respectively. 

The advantage of using these surfaces rather than the statistical methods described above is that 

whereas the former allow us to identify all nonlinear variations present in the Lexis surface, the latter 

only estimate averages of the nonlinear changes, as discussed earlier. The use of Lexis surfaces of 

mortality change allows the shapes of curvatures to move freely through the Lexis diagrams, and 

depicts the pattern with higher fidelity to the observed data. Thus, using this approach, it is possible 

to identify the differences between short-term interactions and sustained effects, as well as effects 

that are reversed over time. A rich summary of several options for using Lexis surfaces to depict 

mortality dynamics can be found in the works of Vaupel et al. (1987) and Rau et al. (2018). 

On the other hand, when we compare the Lexis surfaces of mortality change with the statistical 

estimates obtained from APC models, we can see that the former are more difficult to use for the 

comparison of several curvature features, populations, or demographic phenomena in the same plot. 

For these comparisons, we need as many surfaces as the populations or phenomena we are 

interested in comparing. Thus, this approach has been inadequate in some cases, as it not only uses 

space inefficiently; it makes it difficult to compare the patterns even when the surfaces are facetted. 

Being aware of these limitations, we identified the need to design a new visual tool that allows us to 

take advantage of the flexibility that the Lexis surfaces offer, while also enabling us to extract and 

depict the information required for comparisons across populations or demographic phenomena. In 

the third article of this dissertation (Chapter 6), we propose the APC curvature plots, which represent a 

methodological contribution to improving the analysis of nonlinear APC effects of any population 

change process. 
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Chapter 4 - Determinants of Influenza Mortality Trends: 

Age-Period-Cohort analysis of influenza mortality in the 

United States, 1959-20163 

 

Abstract 

This study examines the roles of age, period, and cohort in influenza mortality trends over the years 

1959–2016 in the United States. First, we use Lexis surfaces based on Serfling models to highlight 

influenza mortality patterns as well as to identify lingering effects of early-life exposure to specific 

influenza virus subtypes (e.g., H1N1, H3N2). Second, we use age-period-cohort (APC) methods to 

explore APC linear trends and identify changes in the slope of these trends (contrasts). Our analyses 

reveal a series of breakpoints where the magnitude and direction of birth cohort trends significantly 

change, mostly corresponding to years in which important antigenic drifts or shifts took place (i.e., 

1947, 1957, 1968, and 1978). Whereas child, youth, and adult influenza mortality appear to be 

influenced by a combination of cohort- and period-specific factors, reflecting the interaction 

between the antigenic experience of the population and the evolution of the influenza virus itself, 

mortality patterns of the elderly appear to be molded by broader cohort factors. The latter would 

reflect the processes of physiological capital improvement in successive birth cohorts through 

secular changes in early-life conditions. Antigenic imprinting, cohort morbidity phenotype, and other 

mechanisms that can generate the observed cohort effects, including the baby boom, are discussed. 

 

 Introduction 4.1.

At the beginning of the twentieth century, pneumonia and influenza (P&I) were the leading causes 

of death in the United States (Deaton 2015), and today, they remain the most important causes of 
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Robert Bourbeau, D. Ann Herring, Kris Inwood, David J.D. Earn, Joaquin Madrenas, Matthew S. Miller, and Alain 
Gagnon (2019a), Determinants of influenza mortality trends: age-period-cohort analysis of influenza mortality in the 
United States, 1959–2016. Demography 56:5, 1723-1746. https://doi.org/10.1007/s13524-019-00809-y 
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death among infectious diseases (Armstrong et al. 1999). The Spanish Flu (1918-1920), also known 

as the “mother of all pandemics” (Taubenberger and Morens 2006), caused more deaths than the 

First World War and killed more people in 24 weeks than AIDS did over a span of 24 years (Barry 

2005). The following three influenza pandemics (in 1957, 1968 and 2009) and the appearance of new 

subtypes such as the highly-pathogenic avian H5N1 and H7N9 influenza viruses (Haque et al. 2007) 

demonstrate that influenza remains a significant threat to public health. Population aging makes it 

likely that casualties will increase (Simonsen et al. 2011), given that about 90% of all influenza deaths 

occur among people aged 65 and over (Thompson et al. 2003). 

As is true for most infectious diseases, mortality from influenza diminished appreciably during the 

twentieth century (Armstrong et al. 1999). However, there is still much uncertainty regarding the 

mechanisms responsible for this reduction. The emphasis has been on monitoring disease and 

mortality from specific strains from year to year, with indicators of virulence, basic reproductive 

number (the number of people infected by one index case) or attack rates (the percentage of people 

infected) broken down by geographic areas and broadly defined age groups (Reichert et al. 2004; 

Thompson et al. 2010; Thompson et al. 2003). The generalized nature of these investigations has 

fostered interpretations of change over time almost exclusively in terms of secular or period change, 

modulated by biological age, with few alternative explanations of time trends. More recently, some 

investigators have focused on age-specific mortality from influenza during pandemics (Lemaitre et 

al. 2012; Nguyen and Noymer 2013), while others have analyzed the consequences of early life 

exposure to pandemic influenza on health and mortality in general (Almond 2006; Kelly 2009; 

Mazumder et al. 2010) or on mortality during subsequent influenza pandemics (Gagnon et al. 2013; 

Hallman 2015; Hallman and Gagnon 2014; Ma et al. 2011; Oeppen and Wilson 2006; Viboud et al. 

2010). To our knowledge, only a few studies (see, e.g., Azambuja (2009, 2015) and Cohen et al. 

(2010)) have undertaken an analysis of influenza mortality variation over time in an age-period-

cohort (APC) framework. 

In most previous analyses, information on age was analysed using five-year (or larger) age groups, 

allowing for broad distinctions in mortality patterns among infants, children, adolescents, adults and 

seniors, but affording few chances to identify cohort effects defined on a yearly basis, as pertaining 

to cohorts born during a pandemic year. There is also non-negligible heterogeneity within broadly 

defined age categories, especially when referring to individuals in a terminal age category as broad as 

65+ years. Some studies have shown an important change in influenza mortality risk after age 60, 
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with an 11-fold higher risk for a senior aged over 80 compared to persons aged between 65 and 69 

(Simonsen et al. 2005, 2011; Thompson et al. 2009). 

The present study examines the roles of age, period, and cohort factors as drivers of influenza 

mortality change over the years 1959-2016 in the U.S. It also addresses the effect of early-life 

exposure to the different influenza A virus (IAV) subtypes that have circulated over the past decades 

on later life mortality in the U.S. for single-year ages, periods, and cohorts, focusing on both 

seasonal epidemic and pandemic periods. To this end, we first estimated influenza mortality from 

death records by single years of age in the U.S. from 1959 to 2016 using Serfling models based on 

mortality data (Serfling 1965). Second, we used Surveillance-Serfling models (Thompson et al. 2009) 

accounting for influenza-like illness (ILI) incidence between 1997 and 2016 to estimate the 

proportion of deaths during the month of infection by age. Then we constructed Lexis surfaces 

from influenza death rates and applied detrended APC models (Carstensen 2007; Clayton and 

Schifflers 1987; Holford 1991) and the Intrinsic Estimator model (W. J. Fu 2000; Yang et al. 2004) 

to explore period and cohort effects on mortality variation. We also estimated “contrasts,” proposed 

by Tarone and Chu (Tarone and Chu 1996), to identify statistically significant changes in mortality 

risk along birth cohorts trends. We interpret our results in light of the antigenic imprinting (Davenport 

et al. 1953; Ma et al. 2011) and the cohort morbidity phenotype hypotheses (Finch and Crimmins 2004), 

described in the next section. 

 

 Age-Period-Cohort Effects on Influenza Mortality 4.2.

Susceptibility to infection and mortality from influenza chiefly depends on virus-host interaction 

factors and on the evolution of the virus itself (Thompson et al. 2003). As the immune response 

generated against a given strain of the influenza A virus (IAV) is not fully cross-protective, the virus 

can evade the host’s immunity from one season to the next by accumulating mutations that change 

its antigenicity. This process, called antigenic drift, is differentiated from the appearance of a novel 

IAV by reassortment of the HA and NA surface proteins of IAV, called antigenic shift, which can lead 

to pandemics (Nelson and Holmes 2007).  

Whereas typical IAV seasonal outbreaks most seriously affect the elderly (M. W. Thompson et al. 

2010), epidemiological analyses of influenza pandemics have revealed a shift of mortality toward 
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younger ages, as was the case during the 1918, 1968, and 2009 pandemics in the US (Nguyen and 

Noymer 2013; Oeppen and Wilson 2006; Simonsen et al. 1998). During these outbreaks, older 

individuals often benefited from immunity acquired from previous exposures to virus strains similar 

to the current pandemic strain, while younger adults and children were at higher risk because of a 

lack of cross-protection from previous infections by similar IAVs. Risk can also be compounded in 

younger individuals, whose strong immune response to the virus can quickly turn overreactive and 

dysregulated, leading to immunopathology and organ damage (Kobasa et al. 2007; Loo and Gale 

2007; Shanks and Brundage 2012).  

The antigenic imprinting hypothesis additionally postulates that mortality from influenza not only 

depends on the virulence of the circulating strain but also on the strain to which a specific cohort 

was primed (Davenport et al. 1953; Ma et al. 2011; Rajendran et al. 2017). This original strain would 

indeed keep its senior position in the immune repertoire over successive episodes of infection, with 

each novel strain taking a more junior position (Henry et al. 2018; Miller et al. 2013). Based on 

studies showing the variable efficacy of repeated annual influenza vaccination (Smith et al. 1999), 

protection is expected when the original strain is similar to the circulating strain, but if the two are 

very dissimilar, susceptibility to severe outcome may increase (Cobey and Hensley 2017). According 

to this hypothesis, infection in the first years of life with a H3N8 virus, as was presumably the case 

for those born during the 1890 Russian IAV pandemic (Worobey et al. 2014), increased the risk of 

death upon encounter with the doubly heterosubtypic H1N1 virus that was responsible for the 

Spanish flu pandemic in 1918 (Gagnon et al. 2013; Hallman and Gagnon 2014; Shanks and 

Brundage 2012). Corroborating this, fifty years later, during the 1968 H3N2 Honk Kong flu 

pandemic, the largest excess mortality was for those aged 50 or a little older (Gagnon et al. 2015). 

Similarly, a peak in excess mortality during the 2009 H1N1 pandemic was observed at age 52, i.e., 

for those born in 1957, at the time of the H2N2 Asian flu pandemic (Gagnon et al. 2018a).  

Hence, whereas mortality at all ages during a given year should reflect the virulence of the circulating 

strain that year, mortality levels of a specific cohort are expected to reflect the antigenic distance 

between this strain and the first strain this cohort encountered in early life. The priming of specific 

cohorts to specific viral strains is expected to produce punctual cohort-specific influences, 

independently of period trends, that is, turning points in the longer-term ascending or descending 

mortality trends that persist over time.  



71 
 

Patterns of influenza mortality may also be interpreted in the light of broader theoretical 

perspectives such as Finch and Crimmins’ cohort morbidity phenotype hypothesis (2004), which 

attributes the vast reductions in later life mortality from chronic conditions over the last 200 years to 

the secular reduction in infections during early life. Together, improvements in nutrition and the 

declining incidence of infectious diseases have been almost continuous since the Industrial 

Revolution (Floud et al. 2011). Both are believed to have played a salient role in boosting physiological 

capital, an initial health advantage resulting from improved conditions during infancy and early 

childhood, leading to large increases in life expectancy (Fogel and Costa 1997; Meslé and Vallin 

2000). Improvements gained at the individual level in successive cohorts could also have benefited 

the progeny, with further health improvements reverberating down the generations, as implied by 

the theory of technophysio evolution (Fogel and Costa 1997). Finding firm evidence for such a 

mechanism, however, requires linking a wealth of socioeconomic and environmental data over many 

generations. Such data are, especially at the individual level, rarely, if ever, available. 

The cohort morbidity phenotype hypothesis specifically addresses secular changes in mortality from 

chronic or non-transmissible diseases in old age. Yet, much research has also documented strong 

comorbidities between chronic diseases and influenza-related mortality for people aged over 65 

(Plans-Rubió 2007; Reichert et al. 2004; Simonsen et al. 2005). This provides a rationale to address 

past reductions in mortality from influenza from a cohort perspective – and more generally from an 

APC perspective – and not only as the result of secular (period) changes. In other words, improved 

survival from IAV infections in successive cohorts of elderly could have resulted not only from 

enhanced responses to infection and to medical treatments but also from delayed onset of comorbid 

conditions involving influenza and chronic diseases. In this respect, other cohort processes may also 

shape influenza mortality via these comorbidities or its relationship with mortality in general. For 

instance, increases in all-cause mortality (or at least slowdown in life expectancy improvements) have 

been documented for the boomer generation in recent years (Canudas-Romo and Guillot 2015; Rau 

et al. 2013), and it is possible that what drives these cohort processes also partly drives influenza 

mortality. Thus, our study also briefly addresses the baby boom as a possible contributor to APC 

trends in influenza mortality.   
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 Data and Methods 4.3.

 Data 4.3.1.

Aggregate U.S. death counts by month, single years of age, cause, and sex between January 1959 and 

December 2016 were obtained from the National Center for Health Statistics (2018). These data cover 

four successive revisions of the International Statistical Classification of Diseases (from ICD-7 to 

ICD-10) to classify the deaths. Concordance tables bridged the 7th, 8th, and 9th to the 10th ICD 

revisions to ensure consistency of definitions for disease categories under study and their 

comparability over time (Anderson et al. 2001; Klebba and Dolman 1975; Klebba and Scott 1980). 

Annual counts of population at risk from 1959 to 2016 by single years of age were taken from the 

Human Mortality Database (2019); monthly counts were estimated through interpolation. Monthly 

indicators of influenza-like illness (ILI) and percentages of respiratory specimens testing positive for 

influenza between 1997 and 2016 were estimated from weekly indicators registered in the CDC 

FluView Interactive database (2018). All these data are openly available in the referenced websites. 

Annual percentages of respiratory specimens testing positive for influenza between 1976 and 1996 

were obtained from Thompson et al. (2003).  

 

 Influenza Mortality 4.3.2.

Measuring and estimating cause-specific mortality is challenging. Mortality from influenza is no 

exception (Thompson et al. 2009). On one hand, death records do not contain information from 

laboratory tests to confirm influenza as the “true” underlying cause of death. Therefore, many 

deaths recorded as “deaths from influenza” may, in fact, result from morbid events initiated by a 

disease other than influenza. On the other hand, an influenza infection could trigger a wide 

spectrum of secondary complications, such as bacterial infections, heart disease, or kidney and 

diabetes complications, among others (Simonsen et al. 2011), and many deaths primarily due to 

influenza infections may be wrongly attributed to another cause. Previous analyses of U.S. death 

certificates confirm that reports of influenza as a standalone cause-of-death are not to be trusted and 

should be regrouped first with other causes of death prior its estimation and analysis (Noymer and 

Nguyen 2013). Given that our purpose is to specifically account for APC effects on influenza 

mortality, and not to precisely estimate general influenza mortality levels, we estimated the Serfling 

models based on the restricted “Pneumonia & Influenza” (P&I) cause of death category.  
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 The Serfling Regression Model  4.3.3.

Serfling models estimate a mortality baseline by fitting death counts of the summer season, during 

which influenza virus does not circulate widely, while taking into account seasonal and secular 

mortality trends (Serfling 1963; Thompson et al. 2009). Influenza-related mortality is then estimated 

for each month as the difference between the observed P&I death counts and the estimated baseline 

(see Fig. 4.1). Note that the amplitude of the baseline (and thus the estimated number of deaths) 

depend on the months chosen to define the summer period. According to our estimates, the best fit 

was obtained when using a summer period from June to September (details of the Serfling model 

and the sensitivity tests of alternative summer period definitions are provided in the Supplementary 

Material). 

One important advantage of the Serfling model is that it only requires death counts and populations 

at risk by month and age. In the present case, it permits the estimation of influenza mortality over a 

long period, i.e., from 1959 to 2016. However, since it relies strongly on seasonal variations, this 

model may capture unrelated mortality that follows a similar seasonal pattern leading to incoherent 

estimates, like a negative number of influenza deaths (Nguyen and Noymer 2013). Hence the 

interest of the “Surveillance-Serfling” model described next. 

 

Figure 4.1: Monthly observed P&I death counts and baseline mortality (without influenza 
activity) predicted by the Serfling model at age 80, 1959-2016  
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 The Surveillance-Serfling Regression Model 4.3.4.

Besides the three components of the Serfling regression model (time trend, seasonality, and 

population at risk), the Surveillance-Serfling model can also take into account influenza morbidity 

indicators, i.e., influenza-like illness (ILI) and other viral surveillance data, which may considerably 

improve the accuracy of the estimates (Lemaitre et al. 2012; Simonsen et al. 2011; Thompson et al. 

2003, 2009). The Surveillance-Serfling model has the further advantage of fitting data from all 

seasons, and not exclusively from the summer seasons; it thus includes more observation points (i.e., 

throughout the year), which improves estimates for the single-year age data used in this study. We 

fitted this model for the P&I underlying causes of mortality in the US, from 1997 to 2016, i.e., for 

the periods during which measures of influenza circulation and mortality are both available on a 

monthly basis. We tested several models accounting for both ILI incidence (CDC 2018), its 

combination with subtype circulation (ILI decomposed by subtype according to the proportion of 

positive tests for H1N1, H2N2, etc.,), and including a 1-month lag term tracking influenza ILI 

incidence and subtype circulation the month preceding the index month. We selected the best fit for 

each age based on AIC (Burnham and Anderson 2002). A detailed description of the full model 

equation, the fitting procedure, and the chosen model parameterization by age are provided in the 

Supplementary Material. 

In order to capture influenza mortality, we first fitted the model to deaths recorded in the P&I 

categories to obtain a predicted mortality count. Then we set the influenza activity terms (i.e., 𝑓𝑙𝑢𝑎,𝑡 

and 𝑓𝑙𝑢𝑎,𝑡−1 in Eq. S2) to zero in order to obtain a mortality baseline, that is without influenza 

activity. The difference between predicted mortality and the baseline reflects mortality caused by 

influenza. For example, Fig. 4.2 shows the number of deaths recorded within the P&I category at 

age 80 between October 1997 and December 2016 (grey line), the number of deaths predicted by 

the Surveillance-Serfling model given the influenza incidence (dotted line), and the mortality baseline 

with the influenza terms set to zero (black line). The distance between the black and the dotted lines 

is defined as influenza-related mortality.  
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Figure 4.2: Observed and predicted influenza death counts at age 80, 1997-2016. 

 
Note: Between 1998 and 2002, estimates for May – September are not included since there is no influenza 
circulation data during these periods 
 

 

 Lexis Surfaces 4.3.5.

We estimated annual mortality rates over 101 single years of age (ages 0 to 100) and 57 epidemic 

years (from 1959-1960 through 2015-2016), comprising around 5,700 data points. The construction 

of Lexis surfaces (for more details, see Vaupel et al. (1987)) is done by binding together mortality 

rates estimated by the Serfling models. In order to identify differences in mortality levels, a color is 

assigned to each data point, with the lightest color-coding for the minimum mortality rate and the 

darkest for the maximum. Yearly mortality data was aggregated in our Lexis surfaces by epidemic 

seasons rather than calendar years, i.e., from October 1st to May 31st.  

 

 Age-Period-Cohort Analyses 4.3.6.

Besides quantifying the influences of each temporal component, statistical age-period-cohort 

analyses avoid the subjectivity that may come from visual inspection of Lexis surfaces. Given perfect 

linear dependence (age = period - cohort), it is impossible, however, to estimate a unique solution 

describing long term APC trends without the imposition of additional constraints. Acknowledging 

this well-known identification problem, we propose two complementary approaches that provide 

tentative, yet heuristic insights on period and cohort trends over sizeable stretches of historical time.  
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More precisely, we first evaluate period and cohort effects according to two opposite scenarios: one 

in which all the linear trend in mortality change is attributed to period influences (i.e., the cohort 

effects slope is constrained to zero), and another in which this trend is solely attributed to cohort 

influences (i.e., the period effects slope is constrained to zero), respectively denoted as the APCd 

and ACPd scenarios.  

Second, we used the intrinsic estimator (IE) method, which finds a solution of the partition of the 

linear trend between age, period, and cohort by using a constraint that minimizes the APC variance 

parameter (W. Fu 2016; Land et al. 2016; Xu and Powers 2016). Since the constraint is not explicitly 

chosen by the user, it may be seen as less subjective than other methods (Yang et al. 2004). Yet, the 

estimates may vary widely according to the constraints, whether it is chosen by the user or not, 

making the choice of any method ultimately arbitrary. 

If there is no unique, statistically optimal solution to partitioning the long-term linear trend in APC 

models, changes in the slope of these trends are, on the other hand, unambiguously identifiable. 

These changes provide important information about increases or decreases in mortality risks. For 

this analysis, we use the contrasts approach (Tarone and Chu 1996) to identify the “breakpoints” or 

“rupture points” where the trends of the cohort effects significantly change in direction and to 

quantify these changes (contrasts). For this, we measured the difference between the slopes of two 

disjoint blocks composed of several consecutive cohorts and assessed their statistical significance 

according to two alternative approaches. First, we quantified the difference between the slopes 

formed by the first and last cohort of each block of cohorts. Alternatively, we compared the sum of 

all slopes formed by any pair of cohorts contained within each block.  

Finally, in order to reduce the influence of stochastic variation on the APC model estimates, we 

aggregated data on a 2-year basis. To avoid undue influences of seasonal infant and young child 

mortality that could be unrelated to influenza, such as from the Respiratory Syncytial Virus (RSV) 

(Simonsen et al. 2011), we also excluded ages 0-4 from the APC models. See the Supplementary 

Material for a broader discussion about the use of APC methods, details of the models, and 

sensitivity analyses. All of the data and code for reproducing results are openly available (Acosta 

2019b). 
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 Results 4.4.

 Influenza Mortality  4.4.1.

We describe the dynamics of influenza mortality over time by first plotting the monthly influenza 

mortality counts estimated from the Serfling model over all available calendar months (Fig. 4.3a). In 

agreement with previous research, these estimates show substantial mortality variation by period that 

is related to the dominant virus subtype prevailing during each epidemic season (Reichert et al. 2004; 

Simonsen et al. 1997; M. W. Thompson et al. 2010). For instance, there are noticeable peaks in 

mortality for the epidemic seasons 1967-1968 and 1999-2000, dominated by the H2N2 and H3N2 

influenza subtypes, respectively, whereas important mortality dips are apparent for the seasons 1976-

1977, 1978-1979, and 2009-2010, respectively dominated by the B, H1N1, and pH1N1 strains. Yet, 

Fig. 4.3a shows no clear overall mortality trend over time. 

 

Figure 4.3: Serfling estimates of monthly influenza death counts 
a 

 

b 

 
Note: Serfling estimates of monthly influenza death counts (panel a) and of influenza death counts using the 
total U.S. population in 2015 as the standard population (panel b) 

 

Second, we plotted in Fig. 4.3b the standardized influenza mortality counts using the July 2015 US 

total population size and age-structure as the standard population (so that results for each year are 

adjusted to 2015). As seen in this figure, once changes in the size and the age structure of the 

population are neutralized, a downward trend of influenza mortality appears. For instance, had the 

1967 U.S. population shared the size and age structure of the 2015 U.S. population, the number of 

deaths due to influenza would have been more than three times higher (39,973 vs. 12,463), primarily 
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because older age groups experiencing the highest risk of influenza mortality would have accounted 

for a larger share of the population. 

Table 4.1 indicates that influenza seasons dominated by the H2N2 subtype (which circulated in the 

earliest periods covered in this study and disappeared in 1968) were the deadliest, at least based on 

the U.S. population of 2015 as the standard. Compared to seasons in which the seasonal H1N1 was 

the dominant subtype, mortality was 2.2 times higher during seasons dominated by the H2N2 

subtype, 1.5 times higher for those dominated by H3N2, and 38% lower in the seasons when the 

pH1N1 subtype, introduced during the 2009 pandemic, was dominant. If overall mortality was lower 

during that pandemic (Lemaitre et al. 2012; Nguyen and Noymer 2013; Simonsen et al. 2011), it is 

mostly due to an overall shift in increased susceptibility from older to younger ages. Young and 

middle-aged adults (up to age 50-60) indeed had increased risks of death during the 2009 outbreak 

relative to usual influenza seasons, while the opposite was true for the elderly (Gagnon, Acosta, 

Hallman, et al. 2018). Contrary to what may be observed during pandemics, as in 2009, influenza 

mortality is higher during normal influenza seasons for the very young or the very old (see upcoming 

Fig. 4.4). 

Table 4.1: Influenza-associated mortality by dominant viral strain using the size and the age 
distribution of the total US population in 2015 as the standard population, influenza seasons 
1959-2016 

Dominant strain 
a 

Average number of 
deaths per epidemic 

season c 

Standardized average 
number of deaths per 

epidemic season d 

Relative risk of deaths 
(with H1N1 as the 

reference) d 

B 8,661 17,504 1.10 

H1N1 9,075 15,967 Ref. 

pH1N1 9,274 9,946 0.62 

H2N2 11,311 34,947 2.19 

H3N2 13,024 23,844 1.49 

No dominant b 11,056 15,836 0.99 
a The dominant strain for a specific season was defined as the strain that cumulated at least 50% of all isolates 
identified during that season. H2N2 was imputed as the dominant subtype between 1959 and 1975, where no 
data about subtype tests are available. 
b Influenza seasons for which no subtype reached 50% of all isolates. Four seasons show no dominant 
subtype: 1988-1989, 2002-2003, 2006-2007, and 2010-2011. 
c Influenza mortality was estimated from the Serfling model applied to P&I mortality data. 
d Influenza mortality standardized using the total US population in 2015. 
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 Lexis Surfaces 4.4.2.

Figures 4.4a and 4.4b show Lexis surfaces of influenza mortality estimated with the Serfling and 

surveillance models. The estimated mortality levels and patterns from both models are highly 

consistent. Along the age dimension, the surfaces uncover high mortality for the newborn, very low 

mortality for children and young adults, and a considerable increase in the risk of death after age 50 

or 60, as one would expect for this disease.  

 
Figure 4.4: Lexis surfaces of influenza mortality rates estimated by the Serfling models 

a b 

  
Note: Lexis surfaces of influenza mortality rates estimated by the Serfling model, 1959-2016 (panel a) and the 
Surveillance-Serfling model, 1997-2016 (panel b). The vertical arrows a, b, d, and e indicate periods of severe 
H3N2 epidemics. Arrow c marks the reappearance of H1N1 (1977-1978); arrows f and g indicate periods 
dominated by pH1N1. The solid and dashed black diagonal lines mark the 1947 and 1968 birth cohorts, 
respectively. The surface covered by the dashed square in Fig. 4.4a is shown in a three-dimensional 
perspective in Fig. 4.5 
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The surfaces also show high variations of mortality by period, with important mortality surges at all 

ages during the 1968-1969 pandemic, as well as during the flu seasons of 1972-1973 (Chin et al. 

1974), 1999-2000 (CDC 2000), and 2003-2004 (Meadows 2004), all of which resulted from 

significant drift events of the H3N2 strain (see periods identified by arrows a, b, d, and e at the top of 

both panels in Fig. 4.4). Although the 2009 pandemic and the 2013-2014 season were not 

particularly lethal, they show – especially for 2009 – a mortality shift from older to younger ages (see 

periods identified with arrows f and g). As discussed above, mortality levels are highly dependent on 

the predominant virus subtype circulating during each epidemic season. In this sense, the 1960s and 

1970s, the second half of the 1990s, as well as the first half of the 2000s, are considered as extended 

periods with high influenza mortality, coinciding with the circulation of the H2N2 and H3N2 

subtypes. Conversely, lower mortality is observed after the re-appearance of the H1N1 at the end of 

the 1970s (see period identified with arrow c), especially during the first halves of the 1980s and 

1990s, and during the second half of the 2000s, which were dominated by this milder seasonal 

subtype. 

Diagonal patterns in Fig. 4.4 also suggest the presence of cohort effects. These are immediately 

perceptible during two main periods, i.e., from the 1960s to the beginning of the 1980s, and again 

from the late 1990s to the late 2000s. Some diagonal patterns are apparent during the milder H1N1 

era that spans in between those two periods, but only at ages below 60. Of notice are the cohorts 

born around the 1968 pandemic (dashed diagonal lines in Figs. 4.4 and 4.5), which were presumably 

exposed early in life to the 1968 H3N2 influenza pandemic virus, and which thereafter experienced 

lower mortality relative to neighboring cohorts (see the light tone “valley” between 1996 and 2006, 

marked by a dashed diagonal line in Figs. 4.4 and 4.5). Fig. 4.4 also suggests the presence of a slight 

drop in mortality for the 1947 cohort (the tone is generally lighter for this cohort relative to its 

neighbours, as is clearly the case between 1993 and 1997) and of other “punctual” cohort effects, 

but further analyses are needed in order to provide firmer support for these observations. The 

results of our APC analyses presented next help providing such support.  
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Figure 4.5: Three-dimensional perspective of the influenza mortality estimated by the 
Serfling model applied to P&I mortality data 

 
Note: This section frames ages 20-60 and period 1990-2008, covered by the dashed square in Fig. 4.4a. The 
dashed diagonal line locates the 1968 birth cohort. Arrows d and e mark severe H3N2 epidemics (see also Fig. 
4.4) 

 

 Linear APC Trends 4.4.3.

Since age-specific effects are regular over time, we focus on period-specific and cohort-specific 

influences on mortality change. According to our APC detrended model, the long-term slope of 

mortality change is -0.02024 (p<0.001). In other words, controlling for age effects, influenza 
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mortality risk significantly decreased on average by 2.02% per year between 1959 and 2016. Figure 

4.6 and Table S1.4 (Supplement Material) present APC estimates of influenza mortality derived from 

two scenarios in which this linear trend is completely attributed either to period influences (APCd, 

dotted line) or to cohort influences (ACPd, solid line), as well as from the IE model (dashed line).  

As expected, the period effect estimates (Fig. 4.6, left panel; Table S1.4, upper part) reveal important 

fluctuations of mortality that closely follow the major antigenic drifts and shifts that took place in 

the last few decades. Independent of the model’s parametrization, important peaks are immediately 

visible for the 1968 H3N2 pandemic, as well as for the 2003-2004 and 2014-2015 severe H3N2 

epidemic seasons. Appreciable dips are also apparent for the 1981-1982, 1993-1994, and 2005-2006 

epidemic seasons, during which the dominant subtype was the less virulent H1N1 seasonal virus. 

Figure 4.6: Period and cohort relative (to average) risks of influenza-related mortality 
derived from the Serfling model, ages 5 to 100, 1959-2016. 

 
Notes: The bold gray vertical lines highlight birth cohorts where statistically significant changes in 
slope occur, i.e., 1896-1901, 1928-1929, 1947-1948, 1956-1957, 1968-1969, and 1977-1980 (see 
Table 4.2) 

 

Regarding the longer-term linear cohort effects (Fig. 4.6, right panel; Table S1.4, lower part), the IE 

estimates are very similar to those from the ACPd model, suggesting that broadly defined cohort 
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influences mainly account for improvements over time in influenza mortality. The ACPd and the IE 

estimates both depict a slight increase of mortality throughout cohorts born from 1860 to the late 

1890s, followed by a sharp decline from one cohort to the next continuing to the last decades of the 

20th century. This trend differs markedly from the flatter trend drawn from the APCd estimates, 

which instead first suggests a sizeable increase in mortality across cohorts born in the second half of 

the 19th century, followed by a monotonic reduction for cohorts born from around 1900 to the 

1930s, and a leveling-off thereafter. Note that a method that attributes all the linear trends of 

mortality to period changes, such as the APCd method, naturally yield a cohort trend that neither 

increase nor decrease over the period of observation.  

Despite substantial differences in the above scenarios and uncertainties regarding the “true” trends, 

some attributes of the cohort effects are common to the three sets of APC estimates: all suggest a 

decline in the cohort mortality trend for individuals born between 1900 and 1930 and between 1957 

and 1968, as well as an increasing trend for years of birth ranging from 1947 to the mid-1950s, and 

from 1968 to the end of the 1970s. Afterwards, the cohort trend might have been either decreasing 

or levelling-off. Admittedly, recent cohorts, especially those born after 2000, were only followed-up 

in their youth and during a brief stretch of time. In contrast, the cohorts born in the last decades of 

the 19th century could only be observed at very old ages, also for a brief number of years, shortly 

after the onset of our study period in 1959. In between, a number of cohorts could be followed over 

a longer period of time and throughout a larger portion of the life course, even though none is 

observed over its entire life. 

 

 Changes in Trends 4.4.4.

Based on visual inspection of Fig. 4.6, we first identified several ostensible turning points in the 

cohort effects trend and then investigated these further using the linear contrasts approach. Table 

4.2 lists the six turning points where we identified changes in the direction of the cohort trend were 

statistically significant, along with the magnitude of these changes; the turning points are also 

marked by bold gray vertical lines in the right panel of Fig. 4.6. Two disjoint blocks composed of 8 

to 16 single-year cohorts (i.e., 4 to 8 two-year cohorts) were defined for each breakpoint. We 

performed the two alternative contrast approaches, denoted a and b. For five breakpoints out of six, 
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the changes in slope were significant (p < 0.01 or p < 0.05), regardless of the estimated contrast (for 

one breakpoint, p < 0.1). For simplicity, we focus here on contrast a. 

The first contrast in Table 4.2 indicates a change in slopes of magnitude -0.530 (p < 0.001) between 

two blocks composed of eight two-year cohorts each, indicating a -0.033 difference in the slope by 

single-year cohort. This contrast mortality flanks the cohorts born at the turn of the 20th century 

(~1896-1901), with the first block including cohorts born from 1882-1883 to 1896-1897, and the 

second block those born from 1900-1901 to 1914-1915. The negative contrast indicates a reduction 

in the slope of the trend of the second block relative to the slope of the first block (see how the 

curve depicting the cohort effects is concave down in Fig.4.6 for the cohorts born at the turn of the 

20th century, regardless of the APC method used). It is worth noting that the crisp peak in Fig. 4.6 

for the cohort 1900-1901 (i.e., a punctual peak flanked by a trough at each side) is the result of 

systematic misreporting of age (and year of birth) in the death certificates of people born around 

1900. Such instance of age heaping, also visible in the form of a diagonal trace in Fig. 4.4 for the 

1900 cohort, are described for influenza mortality during the 1918 influenza pandemic in Ontario in 

Hallman (2015). 

The second contrast indicates an increase of 0.21 (0.013 per year, p < 0.05) in the slope of the 

cohort trend around 1926-1927. A third contrast indicates a significant upward change of 0.287 

(0.036 per year, p < 0.01) in the slope of the trend after the 1946-1947 cohort. The forth contrast 

suggests a 0.45 downward change in slope (0.038 per year, p < 0.001) after the 1956-1957 birth 

cohorts. A fifth contrast reveals a significant 0.397 increase in slope (0.04 per year, p < 0.05) after 

1968-1969, and a sixth identifies a decrease of 0.348 (0.035 per year, p < 0.05) in the slope after 

1976-1981. The changes in slopes for more recent cohorts were not statistically significant (the small 

numbers of death make the estimates uncertain). To test the sensitivity of the contrast estimates, we 

reran the model using three-year instead of two-year cohorts. The results were highly consistent with 

those presented in Table 4.2 (see Table S1.3 in the Supplementary Material).  

 

  



85 
 

Table 4.2. Contrasts for comparing the linear trends between two disjoint blocks of 2-year 
birth cohorts 

# 
Cohorts where 

changes in 
slope occur 

Block 1 Block 2 Contrast a SE Contrast b SE 

1 ~ 1896-1901 1882-1897 1900-1915 -0.528*** 0.085 -5.584*** 0.774 

2 ~ 1928-1929 1914-1929 1928-1943 0.214* 0.093 1.802* 0.774 

3 ~ 1946-1947 1940-1947 1946-1953 0.246** 0.095 0.772** 0.295 

4 ~ 1956-1957 1946-1957 1956-1967 -0.430*** 0.1 -0.982*** 0.221 

5 ~ 1968-1969 1960-1969 1968-1977 0.393* 0.156 0.839* 0.337 

6 ~ 1976-1981 1968-1977 1980-1989 -0.335* 0.155 -0.585+ 0.354 

Note: Contrast a is defined as the difference between the slopes formed by the straight lines connecting the 
first and the last pair of consecutive birth cohorts within each block. Contrast b is defined as the sum of 
differences of all slopes formed by any pair of cohorts taken in each block. 
+ p < .10; * p < .05; ** p < .01; *** p < .001 

 

 Discussion 4.5.

This study identifies several factors modulating influenza mortality in the US population between 

1959 and 2016. Consistent with previous analyses (Reichert et al. 2004; Simonsen et al. 1997; M. W. 

Thompson et al. 2010), the particular IAV subtype circulating during a given season is an important 

determinant of all-age mortality during that season, with H2N2 being the most lethal subtype, 

followed by H3N2, H1N1, and pH1N1 (Fig. 4.3 and Table 4.1). Over time, the succession and 

alternation in virus subtypes from one season to the next leaves clear one-year vertical bars on the 

Lexis configuration that are genuine period effects affecting all age groups simultaneously (vertical 

arrows in Figs. 4.4 and 4.5). 

Yet, year-to-year changes in virulence and virus subtype also prime successive cohorts to alternative 

strains which, through lingering effects on later life mortality, leave specific diagonal traces on the 

Lexis configuration typical of a cohort effect. Our analyses suggest up to three, perhaps four, such 

“imprinted cohort” effects, centered around the 1947, 1957, 1968, and ~1978-1980 cohorts; the 

other two significant contrasts identified for the ~1901 and ~1928 cohorts could also be interpreted 

as imprinted cohort effects, but we believe that they point to longer term changes in mortality at 

older ages, in line with the cohort morbidity phenotype. We discuss first the imprinted cohort effects. 

The clearest one concerns the cohorts born at the time of the 1968-1969 “Hong Kong” flu 

pandemic. Mortality in these cohorts was lower relative to neighboring cohorts, as observed in Figs. 
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4.4, 4.5, and 4.6, and confirmed by a statistically significant change in slope documented in Table 

4.2. We propose that individuals from the 1968-1969 birth cohorts developed a robust immune 

response to the H3N2 pandemic virus circulating around the time of their birth. They then benefited 

from having been primed to that variant when exposed again to subsequent (and numerous) 

epidemics dominated by the same H3N2 subtype, which has proved to be more lethal than the co-

circulating H1N1 variant. However, APC analysis conducted on all-cause mortality and other causes 

of death (cardiovascular and respiratory) also produced a dip in mortality for cohorts born at the end 

of the baby boom (Table S1.4, Supplementary Material). This suggests that the 1968 cohort could 

also have benefitted from a reduction in influenza mortality unrelated to its early-life antigenic 

imprinting. Although we cannot fully discard this possibility, we note that the significant contrast 

identified for influenza mortality is precisely centered on the 1968 cohort in Table S1.4, whereas the 

signal for all-cause, cardiovascular, and respiratory mortality is dispersed among cohorts born up to 

six years before or after 1968. 

If the 1968-1969 cohorts benefited from lower mortality relative to neighboring cohorts, the 

opposite is true for those born around 1978-1980. The increment of risk among the cohorts born 

from 1969 to 1976 most likely results from the gradual decrease in the proportion of cohort 

members primed to the H3N2 subtype. Indeed, with the B subtype, the H1N1 – reintroduced into 

the circulation in early 1978 – largely dominated the 1976-1977, 1979-1980, and 1981-1982 flu 

seasons and the relative gain in protection the H1N1-primed cohorts born those years might have 

had during subsequent outbreaks caused by the H1N1 subtype was more than offset by lack of 

protection during the more deadly H3N2 outbreaks. Accordingly, the risk could have decreased for 

cohorts born after 1980 because a higher proportion of individuals among these cohorts were 

primed to the co-circulating H3N2. 

The picture is less clear for the cohorts born around 1957, who were primed to the H2N2 virus that 

appeared that year, i.e., during the “Asian flu pandemic.” The drop in mortality following that 

cohort in Fig. 4.6 and the significant contrasts in Table 4.2 suggest that these cohorts benefitted 

from cross-protective immunity during the H3N2 seasons through sharing the neuraminidase 

component N2. Alternatively, the immune systems of the members of this cohorts might have been 

“refocused” on the H3N2 subtype upon early life exposure in 1968, adjusting its antigenic signature 

to this subtype “in time,” at a relatively young age (see Gagnon et al. (2015)). Again, the baby boom 

could have had a role in this context: the 1957 cohort was among the largest of the era, with 
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potential for increased mortality, as described in Easterlin (1987). However, although we find 

significant contrasts for all-cause and respiratory disease mortality for the 1957 cohort, this signal 

appeared much more dispersed around that cohort than for influenza mortality (Table S1.4). 

A decade before the Asian Flu pandemic, i.e., in 1947, a vaccine that was previously effective against 

the circulating H1N1 virus during the prior seasons totally failed to provide protection because of 

what turned out to be an important intrasubtypic antigenic drift, akin to a “pseudo-pandemic” 

(Kilbourne 2006). Yet, there is no simple immunologic explanation as to why the curve is concave 

up in Fig. 4.6 for the cohorts born at that time, quite the contrary since a “deep imprint” from 

H1N1 should instead have increased the risks of mortality in subsequent decades from the H3N2 

subtype, as explained above for the 1978-1980 cohorts. Perhaps priming to H1N1 in 1947 was still 

protective relative to priming to H2N2 in 1957, which was associated with an increase in mortality 

during the 2009 H1N1 pandemic and the 2013-2014 resurgent outbreak (Gagnon, Acosta, Hallman, 

et al. 2018); that would explain an increase in risk in cohorts born after 1947. However, other 

mechanisms, unrelated to imprinting, might have been at play, such as selection. The year 1947 is 

not only notorious for a major antigenic shift. Demographers have also noted a record-breaking 

number of marriage licenses issued in May and June 1946 (Whelpton et al. 1948), the first spring 

season to follow the conclusion of WWII, and therefore a sudden surge of fertility in 1947. Since the 

healthiest couples had their first babies within a year following their marriage, the 1947 cohort could 

have been “graced” with greater than usual health via synchronization of the fertility of the 

healthiest parents. Such “selection-by-synchronization” phenomenon was proposed earlier to 

explain a surge in the frequency of twin births at the end of WWI in France (Pison et al. 2004). 

Of note is the lack of a cohort effect for those born during the 1918 Spanish flu pandemic, which 

left no specific diagonal trace in the Lexis configuration and produced no significant second order 

cohort effects in the contrast analysis. It is possible that selection processes for this cohort offset the 

lingering effects of early life exposure to the H1N1 virus that caused the 1918 pandemic. However, 

its antigenic signature was apparently not fully erased. During the 1968 influenza pandemic, death 

rate ratios (relative to previous influenza seasons) peaked for the cohorts born around 1918 

(Gagnon et al. 2015), while these same cohorts appeared protected during the 2009 flu pandemic 

(Gagnon, Acosta, Hallman, et al. 2018; Jacobs et al. 2012; Nguyen and Noymer 2013).  
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We hypothesize that the extent to which the lingering effects from early life imprinting is 

recognizable depends on the life stage at which mortality is observed. In this paper, we observe the 

cohorts primed to the 1918 virus mostly during seasonal outbreaks, at advanced ages, when 

influenza deaths would usually no longer directly result from the virus itself, but rather from 

comorbid conditions and poor health (Plans-Rubió 2007; Reichert et al. 2004; Simonsen et al. 2005), 

and thus, under the regime of the cohort morbidity phenotype. Accordingly, these differences by age are 

reflected in the parameterization of the surveillance model in this study. As shown in Table S1.1 in 

the Supplementary Material, for ages above 65 the model using a measure of ILI with no subtype 

distinction provided the best fit, whereas for ages 25 to 65, the inclusion of the information related to 

the virus subtype circulation significantly improved model fit.  

This brings us to the contrasts identified for the cohorts born around 1900 and 1928 (see Table 4.2). 

The two years are often considered as years of significant antigenic drifts (Beveridge 1991; Collins 

1931; Patterson 1986). Although the status of the first is debated (Hill et al. 2017), there is potential 

for long-term “imprinted cohort effects” for individuals born during those two years, as described 

above for more recent cohorts. However, we believe that the contrasts for these cohorts born in the 

first half of the 20th century (observed at older ages in this study) are rather mainly indicative of 

broader transition processes. 

Researchers have extensively documented a context of deprived sanitary conditions in Northern 

America during the late nineteenth century due to the rapid growth of cities, reflected in high infant 

and child mortality (Burian et al. 2000; Haines 2000; Olson and Thornton 2011). Despite important 

discoveries in bacteriology in the 19th century, germ theory did not begin to guide public policies 

until the turn of the 20th century. As argued by Preston and Haines, “There is probably no area of 

public health where a majority of the progress between 1850 and 1950 occurred by 1900” (1991, p. 

22). But between 1900 and 1930 the U.S. experienced the most rapid decline in mortality rates in 

documented history, as a result of sharp reductions in infant mortality from infectious diseases 

(Cutler and Miller 2005). This is consistent with the downward trend in cohort effects between these 

dates, as progressively lower levels of disease load early in life translated into lower and lower levels 

of influenza mortality later in life (recorded after 1959).  

Congruently, a distinctive second-order linear contrast around 1900 clearly marks the beginning of 

this trend (Table 4.2). This is the only identified contrast that remains highly significant when 



89 
 

moving the rupture point forward or backward by a few years, suggesting that it is not associated to 

one specific antigenic drift year but to a smoother longer-term change. The contrast identified about 

thirty years later for the cohorts born around the years 1928-1929 could signal the end of the sharp 

decline in influenza mortality that began with the cohorts born at the turn of the 20th century. Had 

this contrast mainly resulted from the 1928 antigenic event, the changes in the slope would also have 

appeared more abrupt and more statistically significant. Nevertheless, it is not possible with the data 

at hand to provide firmer evidence regarding the nature of the contrasts identified. It is also possible 

that both antigenic imprinting and cohort morbidity phenotypes scenarios are at play in the earlier cohorts 

of this study. 

This study has several limitations. We discuss three. First, Surveillance-Serfling models did not 

include information about other viruses that could be correlated with influenza seasonality, such as 

Respiratory Syncytial Virus (RSV). Consequently, our estimations of influenza mortality could be 

slightly overestimated. Nonetheless, this potential bias would be mostly concentrated in children 

aged less than five years (Simonsen et al. 2011), which were excluded from the APC analysis. In 

addition, RSV infections are unlikely to explain mortality trends that coincide with the circulation of 

specific strains of influenza virus in a given season. 

Second, mortality data used here are useful for identifying age-related trends but are limited 

concerning other concomitant influences affecting disease burden and mortality risks, such as 

medical comorbidity, propensity for care-seeking, laboratory testing of viral strains, or even infection 

rates, which may break down differently by population subgroups. Our choice to focus on P&I 

deaths as a basis to estimate the number of influenza deaths most likely led to an underestimation of 

this number, especially at older ages (because of comorbidities). This means that the old-young 

difference is probably biased. Had we used a broader category such as “cardiorespiratory” instead, 

our model would have proportionally captured more deaths from the exacerbation of comorbidities 

at older than at younger ages. Other important differentials could affect mortality outcomes, notably 

differences based on race or sex. Haines notes for instance that African Americans were protected 

to some extent by their more rural residence in the first half of the 20th century, although their 

mortality remained higher than that of other Americans (Haines 2000, 2001). It is thus possible that 

the African Americans who were born during those years and who survived to the onset of this 

study in 1959 were less “deeply imprinted” to specific influenza strains than the general population 

because of lower incidence of influenza in early life, with potentially less clear antigenic imprinting 
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effects in these groups. Unfortunately, due to sample size issues, it was not possible in the context of 

this study to explore such possibility. Regarding sex differences, men are often said to declare more 

(and complain more) from flu symptoms than women, which is popularly encapsulated in the 

expression “man flu,” perhaps erroneously (Sue 2017). Relative to women, they also appear to be 

less responsive to influenza vaccination and to be in general more susceptible to complications and 

death to many acute respiratory diseases, including influenza (Engler et al. 2008; Furman et al. 2014; 

Giefing‐Kröll et al. 2015). However, the analyses conducted for this paper could not reveal 

fundamental sex-based differences with respect to APC patterns of influenza mortality (not shown 

here). 

Third, and perhaps most importantly, the use of first-order APC statistical analysis has been 

criticized as unreliable because of the irresolvable issue of full dependency of the three age, period, 

and cohort components, which are sensitive to the restrictions arbitrarily imposed (Luo 2013; Luo et 

al. 2016; O’Brien 2013). Yet, although perfect collinearity will never be overcome, we believe it is 

still possible to gain useful knowledge about cohort trends, especially if several methods are used 

and if the analyses are supported and informed by external evidence from history and the social 

sciences in general (Luo 2013). For instance, based on Fig. 4.6, it is unclear whether mortality 

increased in cohorts born from 1850 to 1900 or whether it remained relatively stable. But the same 

figure shows that three models with widely different sets of constraints concur to show declining 

mortality in cohorts born from 1900 to 1930. This pattern can also be seen in the Lexis surfaces of 

Figs. 4.4 and, taking into consideration the historical sketch above, we feel it would be difficult to 

argue that period-based rather than cohort-based factors explain this trend. That said, results for 

long-term linear trends should always be seen as indicative or exploratory, not as confirmatory. For 

recent cohorts, it is no surprise that uncertainties persist about cohort versus period long-term 

trends on mortality; these cohorts were observed for only a short time at relatively young ages when 

mortality risks are relatively low. 

 

 Conclusion 4.6.

The findings reported in this study have several key implications. On the one hand, they suggest that 

the mechanisms proposed by the antigenic imprinting and the cohort morbidity phenotype theories are not 

necessarily mutually exclusive as engines of influenza mortality variation; these two mechanisms 
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even seem to act simultaneously, triggering different mortality changes at distinct levels or scales. 

Yet, the irregular and sudden changes in influenza mortality at young ages are largely caused by the 

interactions between the population’s signature of antigenic imprinting and the characteristics of the virus 

encountered in adulthood. The progressive decline in influenza mortality observed in cohorts born 

between 1900 and 1930 (and for virtually all cohorts born after 1900 if we accept the IE results), on 

the other hand, would result from continuous improvements of early life conditions (better hygiene, 

lower disease load in infancy, and so on), which manifest themselves at older ages.  

We suggest that the contrasting mortality patterns reflect a difference in the pathways that lead from 

influenza infection to death at different ages and that this difference has major health policy 

implications. Interventions for younger patients should be focused on mitigating the immune 

response when this response is potentially harmful (e.g., during pandemics). On the other hand, in 

the case of the elderly, indirect pathways involving comorbid conditions should be targeted as 

priorities. It is also important that vaccination campaigns cease to identify susceptible groups of 

individuals based almost exclusively on their age group, and instead define susceptibility from a 

combination of APC influences. The yearly-defined cohort effects and contrasts are further evidence 

that surveillance and mortality data on influenza should be made available by single years of age to 

all stakeholders, as argued recently (Gagnon, Acosta, and Miller 2018). Knowing the strain to which 

a cohort has been primed and how “deep” this antigenic signature is would help to improve the 

efficiency of immunization campaigns and to inform medical professionals about priorities based on 

the age or the generation of patients.  

The finding that cohort-specific influences may account for important changes in influenza mortality 

at older ages also tempers the common assumption that reductions in mortality from infectious 

diseases stemmed exclusively from period-based improvements in environmental and technological 

factors such as sanitation, hygienic practices, and medical technology. We argue that a considerable 

part of improvements, at least for the cohorts born between 1900 and 1930, was accomplished on a 

cohort basis. In this context, the general increase in overall mortality from influenza, which is 

expected in the coming years because of population aging (Simonsen et al. 2011), might be tempered 

by long-term beneficial effects of earlier improvements in early life conditions. Therefore, our results 

highlight the importance of these conditions not only for the reduction of chronic and degenerative 

mortality but also for the enhancement of survival from infectious diseases at old ages. It would be 
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interesting to perform similar analyses on other infectious diseases to assess the generalizability of 

the scenarios proposed here. 
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Chapter 5 - Baby Boomers’ Excess Mortality in Canada and 

the United States4 

 

Abstract 

Studies suggest that, relative to adjacent cohorts, baby boomers in Canada and the United States 

have experienced a slowdown in mortality improvements or even an increase in mortality in recent 

years. These findings are somewhat counterintuitive since the unprecedented improvements in early 

life conditions experienced by baby boomers were expected to lead, according to various theoretical 

approaches, to declines in morbidity and mortality in later life, as was the case for earlier generations.  

The present study explores the mechanisms responsible for the “excess” mortality endured by the 

baby boom cohorts in Canada and in three racial/ethnic groups in the United States. Using micro-

level mortality data from vital statistics systems, we analyzed the contributions of the causes of death 

that are likely driving this cohort’s excess mortality and their dynamics over time. The analyses were 

done using methods of demographic decomposition, as well as visual, and other statistical methods. 

We found evidence of a higher susceptibility in the “trailing edge boomer generations” (those born 

around 1960) to behavioral causes of death: namely, mortality from drugs, alcohol, HIV/AIDS, 

hepatitis C, COPD, and suicide. Most of these causes contributed to the mortality disadvantage of 

baby boomers through sustained cohort effects that followed the cohorts over time. This finding 

calls into question the assumption that secular improvements in early life conditions lead to a 

monotonic decline in later life cohort mortality rates. Instead, there may be important disruptions in 

the progress in health and mortality that have been recorded over the last two centuries or so, and it 

is possible that the baby boom generation represents one such disruption. Our results call for a 

renewed exploration of the mechanisms that drive current age-period-cohort mortality patterns. The 

mechanisms that can generate the observed cohort disadvantage of baby boomers (distress, 

frustration, riskier attitudes toward drug use and sexual practices) that are constituent of the boomer 

                                                             
4 Article in preparation for submission as Enrique Acosta, Alain Gagnon, Nadine Ouellette, Robert Bourbeau, Marilia 
Nepomuceno, and Alyson A. van Raalte (2019b) Baby Boomers’ Excess Mortality in Canada and the United States 
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generation identity, as well as the factors that could mitigate them, as seem to be the case of the 

Welfare State for Canadian females, are addressed and discussed. 

 
 Introduction 5.1.

Previous research has established that all-cause mortality improvements slowed down or even 

reversed among baby boomers in Canada (Bourbeau and Ouellette 2016) and the United States 

(Canudas-Romo and Guillot 2015; Rau et al. 2013) in recent years5. These findings were 

unexpected.. According to the cohort morbidity phenotype and the technophysio evolution theories, the 

unprecedented gradual improvements in early life conditions experienced in recent history – such as 

better nutrition, reduction of infectious diseases, enhanced medical measures, and higher levels of 

education – have led to massive declines in mortality across birth cohorts (Floud et al. 2011; Fogel 

and Costa 1997). Other studies focusing on specific causes of death also identified mortality 

disadvantages for U.S. baby boomers with respect to overdoses (Chauvel et al. 2016) and other 

external causes (Remund et al. 2018; Zang et al. 2019). Moreover, U.S. boomers report being less 

satisfied with their health than adjacent birth cohorts, and tend to have a high prevalence of obesity, 

diabetes, hypertension, hypercholesterolemia, substance and alcohol abuse, as well as functional 

limitations (Duncan et al. 2010; D. E. King et al. 2013; Leveille et al. 2005; Martin et al. 2009).  

There are at least four alternative mechanisms that may drive what could be termed the “boomer 

penalty” in mortality. First, the relatively low levels of mortality at early ages among baby boomers 

could have increased the health heterogeneity within the cohort, resulting in a decrease of the 

average physiological capital of its members (Canudas-Romo and Guillot 2015). Second, the large 

sizes of the boomer cohorts6, compounded by the wide range of socioeconomic contexts they 

experienced in childhood and adulthood, may have increased the prevalence of stress and frustration 

                                                             
5 In this analysis we refer to excess mortality, disadvantage, or penalty for the baby boomer cohorts, as divergences from the 
linear trend of mortality change. We avoid writing the term relative in all cases for better readability. These qualifiers 
should not be confused with absolute differences in mortality across cohorts. 
6 The most distinctive characteristic of the baby boomer cohorts is their large size in relative and absolute terms. Among 
the baby boomer cohorts, 1959 was the cohort with the largest amount of births (4’312.100 births in the United States 
and 479.275 in Canada) and 1961 was the cohort with the largest amount of exposure to risk at age 0 (4’166.678,6 
person-years in the United States and 465.285.6 in Canada). Although the size of the cohorts could vary through the life 
course of their members due to mortality and migration, in the United States and Canada the relative differences in size 
across cohorts were virtually invariant. The person-years exposed to risk peaked for cohorts born between 1961 and 
1963 in both countries during the period 1961-2018 among boomers.  
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among the members of this generation (Easterlin 1987). Third, the distinctive attitudes toward risk 

and the risk-taking behaviors associated with the boomers’ generational identity could have 

increased mortality risks (Johnston 1991). Finally, the slowing or absence of mortality improvements 

observed among the boomers may have little to do with a usual cohort effects, and might instead 

result from a series of unrelated period crises that would have primarily targeted these cohorts but at 

increasing ages.  

The boomer disadvantage in mortality is still poorly understood. The existing studies on this topic 

have tended to emphasize long-term cohort changes, while overlooking short-term relative 

differences across adjacent cohorts. Furthermore, there is still uncertainty about whether the 

composition and the temporal patterns of excess mortality in the boomer generation are similar 

across sexes, race, ethnicities, and countries.  

This paper attempts to compare the cause-specific contributions to the excess mortality among baby 

boomers, and the temporal patterns of these contributions. This study has two primary objectives: 1) 

to examine the causes of death underlying the excess mortality among baby boomers in Canada and 

the United States; and 2) to determine whether this disadvantage is the result of a sequence of 

unrelated period crises that disproportionately affected the boomer cohorts at different ages, or of a 

tidy bundle of sustained, cause-specific disadvantages that has followed the boomers throughout 

their life course. In other words, we aim to determine whether the boomers’ excess mortality 

resulted from a series of temporary “bruises” aligned diagonally in the Lexis configuration, or from 

lasting “scars” gained earlier in life but with lingering effects (Chauvel 2013; Ellwood 1982). The 

methodological approach taken in this study is based on decomposition techniques, age-period-

cohort (APC) statistical models, and visual tools for analyzing the changes of cohort susceptibility 

over time. These methods were applied to mortality data retrieved from the Canadian and the U.S. 

vital statistics systems.  

 

To our knowledge, this is the first comprehensive analysis of the composition and the temporal 

dynamics of the disadvantage in mortality among baby boomers in Canada and across races and 

ethnicities in the United States.  
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 Data and Analytical Strategy 5.2.

 Data sources 5.2.1.

Death counts for all-cause mortality for both countries between 1959 and 2016 were obtained from 

the Human Mortality Database (2019). Mortality data by cause were retrieved from available vital 

statistics. For Canada, death counts by sex, calendar year, single year of age (0-100), and cause of 

death between 1974 and 2014 were aggregated from the Vital Statistics - Death Database (CVSD) 

(Statistics Canada 2018). For the United States, death counts by cause, sex, race, ethnicity, calendar 

year, and single year of age between 1974 and 2016 were retrieved using mortality microdata from 

the National Center for Health Statistics (2018). Information about race and ethnicity has been 

included in U.S. death certificates since 1990, but is unavailable for Canada. 

The period under analysis spans three International Classification of Diseases (ICD) revisions (8th, 

9th, and 10th). Table S1 (in the supplement material) shows the codes used to identify mortality by 

major causes of death in each ICD revision. For these broad categories, we found no important 

disruptions in the trend of mortality from these causes during the observed period of time.  

 

Annual counts of the Canadian and the U.S. population at risk by sex and single year of age (0-100) 

between 1959 and 2016 were taken from the Human Mortality Database (2019). Estimates of the 

racial/ethnic proportions within the U.S. population between 1990 and 2016 were obtained from the 

Bridged-Race Population Estimates (NVSS 2019). 

 

 Analytical Strategy  5.2.2.

We analyzed the excess mortality among baby boomers in four steps. We first located the cohorts 

with the smallest and the largest mortality deviations from the linear trend, and called them, 

respectively, the advantaged and the disadvantaged cohorts. Second, we identified the leading causes that 

contributed to these mortality deviations. Third, for each of these leading causes, we estimated the 

cohort effects on mortality when age and period variations are accounted for. Fourth, we analyzed 

the changes over time of these cohort penalties by cause. Because Canadian and U.S. populations are 

highly heterogeneous in terms of race and ethnicity, and mortality differs considerably between these 

groups (Masters 2012; Woolf et al. 2018; Zang et al. 2019), we also conducted the above analyses 
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separately for three racial/ethnic groups in the U.S. population: namely, Non-Hispanic blacks 

(NHB), Hispanics, and Non-Hispanic whites (NHW). For the sake of clarity, we present for each 

step of the analysis a detailed description of the methods used, immediately followed by a summary 

of the results obtained from the application of these methods. All of the data and code for 

reproducing results are openly available (Acosta 2019c). 

 

 Analysis of the Boomers’ Excess Mortality 5.3.

 Cause-specific contributions to the boomers’ excess mortality 5.3.1.

To decompose the excess mortality among boomers by leading causes of death, we first identified 

those cohorts located at the beginning (advantaged) and the end (disadvantaged) of the relative 

deterioration in mortality. Second, we identified the leading causes of death responsible for this 

deterioration. 

Identification of the advantaged and disadvantaged cohorts 

We first plotted Lexis surfaces of smoothed mortality changes from one period to the next within 

the same age (see Figure 5.1), and then pinpointed the cohorts located at the onset and at the end of 

the deterioration in mortality – i.e., the advantaged and the disadvantaged cohorts, respectively. The 

smoothing of mortality rates was performed using two-dimensional P-splines. Additional 

information about the smoothing process, the estimation of the relative changes in mortality, and 

the construction of the Lexis surfaces is presented in the supplementary material S2 at the end of 

this manuscript.  
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Figure 5.1. Lexis surfaces of mortality changes over periods/cohorts.   

  

  

 
Notes: Read horizontally from earlier to more recent calendar years/cohorts. The green-to-blue scale 
indicates the mortality rate decline for year t compared to year t-1 (or cohort c compared to cohort c-1) at the 
same age, and the yellow-to-red scale indicates a relative mortality increase between consecutive calendar 
years/cohorts. For example, if we examine age 50 for U.S. females, we see that the death rate decreased over 
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time, reaching its minimum value in 2000 (i.e., cohort 1950). We can also see that from 2000 to 2006, the 
death rate increased over time, reaching its maximum value in 2007 (i.e., cohort 1956). The diagonal black 
dashed lines indicate the proximate location of the advantaged and the disadvantaged cohorts for each 
subpopulation. 
 

The diagonal patterns shown in Figure 5.1 indicate that the advantaged and the disadvantaged birth 

cohorts were centered in 1940 and 1960, respectively (black dashed lines). To identify the precise 

locations of these cohorts in the Lexis configuration, we needed to compare the mortality rates 

across cohorts. For this purpose, we proposed an index of the cohort’s partial mortality rate 

(CPMRc(k,l)). This index was the sum of the age-specific death rates along the cohort c, between 

ages k and l. This measure offers the advantages of controlling for variations in the age structure of 

the population and allows us to decompose the cause-specific contributions to mortality changes 

across cohorts. See the supplementary material S2 at the end of the dissertation for more details 

about the formulation and attributes of the CPMRc(k,l).   

Since our goal was to identify relative and not absolute mortality changes, we based our analysis on 

the deviation from the linear trend in mortality. We obtained the linear trend by applying a linear 

regression over the 𝐶𝑃𝑀𝑅𝑐(𝑘,𝑙) estimates between the cohorts 1940 and 1960. The cohorts with the 

largest negative and positive differences relative to the linear trend were labeled, respectively, as the 

advantaged and the disadvantaged cohorts. To compare mortality rates across cohorts over the longest 

possible lifespan, we estimated the 𝐶𝑃𝑀𝑅𝑐(𝑘,𝑙) for the age interval 35-54 between the cohorts 1940 

and 1960. These estimates cover the period 1975-2014, as 2014 was the last year for which 

information about causes of death was available for Canada. 

Figure 5.2 displays the estimates of 𝐶𝑃𝑀𝑅1940(35,54) to 𝐶𝑃𝑀𝑅1960(35,54) (solid lines), as well as the 

respective linear trends (dashed lines). As expected, males had higher levels of mortality than females 

within each country. Mortality was also higher in the United States than in Canada (~40% higher for 

females and ~70% higher for males). Indeed, for the cohorts born at the end of the 1950s, the 

mortality levels of U.S. females and Canadian males were quite similar. In absolute terms, the male 

and female 𝐶𝑃𝑀𝑅𝐶(35,54) deteriorated in the United States, whereas in Canada, mortality 

improvement stagnated, but mortality did not increase.  

Figure 5.2 identifies the cohorts with the largest negative and positive deviations from the 

𝐶𝑃𝑀𝑅𝑐(35,54) linear trend. These cohorts are labeled, respectively, the advantaged (circles) and the 
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disadvantaged (triangles) cohorts. Whereas the advantaged cohorts were born around the same times 

in all the subpopulations (between 1947 and 1949), the disadvantaged cohorts of U.S. males were 

born considerably earlier (1952) than the disadvantaged cohorts in the other groups under 

observation (between 1957 and 1960). The difference between the advantaged and the 

disadvantaged cohort was also quite sizeable for U.S. males in comparison of the other groups. The 

selection of the disadvantaged cohorts for Canadian males and U.S. females, and especially for 

Canadian females, was not as straightforward, to the point that we can reasonably call into question 

the notion of advantaged versus disadvantaged cohorts in Canada. To assess the consistency of our 

estimates, we performed sensitivity tests in which we changed the location of the disadvantaged 

cohorts and the cohort intervals under observation. These estimates are presented in the 

supplemental materials (Figures S5.3 to S5.5). 

Figure 5.2. Cohort’s partial mortality rate within the age interval 35-54 

 

Notes: 𝐶𝑃𝑀𝑅𝑐(35,54) by country and sex (solid lines), and their respective linear trends (in dashed lines). The 
points and labels indicate the year of birth of the advantaged (circles) and the disadvantaged  (triangles) cohorts. 
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Decomposition of the cohorts’ excess mortality by cause of death  

After we established the precise locations of the advantaged and the disadvantaged cohorts in Figure 5.2 

using the 𝐶𝑃𝑀𝑅𝑐(35,54), we proceeded to decompose the mortality changes between the two 

cohorts (∆𝐶𝑃𝑀𝑅𝑑−𝑎(35,54)) by causes of death. See the supplementary material S2 for additional 

information about this decomposition. 

The decomposition of ∆𝐶𝑃𝑀𝑅𝑑−𝑎(35,54) into broad categories of causes of death showed that the 

largest contributions to the deterioration in mortality across cohorts, regardless of country and sex, 

were from external causes, infectious and parasitic diseases, diseases of the digestive system, mental 

and behavioral disorders, and diseases of the respiratory system. In all subpopulations, the 

contributions of external causes and infectious diseases were the most important (see Figure S5.1 in 

the supplemental materials). 

Next, we disaggregated these broad causes into more detailed causes of death and re-estimated their 

contributions to mortality changes. The ICD codes used to identify deaths from these causes are 

detailed in Table S2 in the supplemental materials. The six causes with the largest positive 

contributions to mortality changes (i.e., mortality deterioration) across cohorts were those related to 

alcohol, drugs, HIV/AIDS, hepatitis C, chronic obstructive pulmonary disease (COPD), and suicide 

(see Figure S5.2 in the supplementary material S2). These six leading causes of together contributed 

~75% - 80% of the total positive changes in mortality from the advantaged to the disadvantaged 

cohorts in all groups (Figure 5.3). The relative cause-specific contributions were consistent across 

subpopulations, with two exceptions. First, for U.S. males, HIV/AIDS was the cause that made the 

largest positive contribution, whereas for the other groups, the cause that made the largest positive 

contribution was drugs. Second, for Canadian males, the relative contribution of suicide (~25%) to 

the total positive changes in mortality was noticeably larger than in any other group (~5-10%). In 

the next steps of the analysis, we focus on these six leading causes of death as we attempt to 

determine the magnitude of the cause-specific cohort disadvantages and their temporal dynamics.  
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Figure 5. 3. Cumulative contribution to positive ∆𝑪𝑷𝑴𝑹𝒅−𝒂(𝟑𝟓,𝟓𝟒) (i.e., mortality 
deterioration) by cause between the advantaged and the disadvantaged cohorts 

 
 

 

 The magnitude and the temporal dynamics of the boomer cohorts’ 5.3.2.

disadvantage  

Detrended cohort effects on mortality by cause of death 

The estimates from the ∆𝐶𝑃𝑀𝑅𝑖
𝑑−𝑎(35,54)

 reported in Figure 5.3 were useful for identifying the 

causes of death that made the largest contributions to the relative deterioration in mortality from the 

advantaged to the disadvantaged cohorts. However, to properly assess the “cohort penalty” by cause of 

death, we need to account simultaneously for variations over the three APC dimensions (a further 

discussion on this topic is presented in the supplementary material S2). We should, however, note 

that the use of APC models is challenging because of the well-known identification problem, in which 

the perfect multicollinearity between the variables (cohort = period – age) results in an infinite number 

of solutions with an identical fit. Despite the several attempts to solve this problem by imposing 

arbitrary restrictions on the APC models (e.g., constrained generalized linear (Fienberg and Mason 
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1985) and intrinsic estimator (Yang et al. 2004) models), the problem remains entirely (Bell and 

Jones 2013; Fienberg 2013; Fosse and Winship 2018, 2019; Luo 2013).  

In the present study, we were not interested in decomposing the linear effects, but were instead 

concerned with analyzing the deviation of the mortality of the boomer cohorts from the linear trend. 

As these divergences from the linear trend – which are also referred in the APC literature as 

nonlinear effects, curvatures (Holford 1983), or humps (Chauvel et al. 2016; Remund et al. 2018) – 

are unaffected by the constraints chosen for the model identification, they are unambiguously 

identifiable (Clayton and Schifflers 1987; Holford 1983; Rodgers 1982). 

For the analysis of the cohort effects on mortality by cause, we estimated the relative mortality risks 

across cohorts (i.e., the nonlinear cohort effects) using a cohort-detrended APC model (APCd) 

(Carstensen 2007; Chauvel 2013). In this approach, the linear trend is attributed entirely to variations 

over the age and period dimensions, which results in a series of cohort components with zero slope. 

Under this parameterization, the logarithm of the cohort effects can be interpreted as relative risks 

with respect to the overall linear trend (Carstensen 2007; Holford 1991). To estimate the APCd 

model, we grouped ages, periods, and cohorts into two-year categories, and fitted splines to a 

Poisson model, using the R package Epi (Carstensen et al. 2018).  

Comparisons between Canada and the United States 

Figure 5.4 and Table S3 show the relative risks and confidence intervals obtained from the APCd 

model by country, sex, and cause of death (see Figure S5.6 in the supplemental materials for a 

facetted version of Figure 5.4). In all boomer groups, the largest relative cohort disadvantages were 

observed for hepatitis C, HIV/AIDS, and drug abuse mortality (with relative risks between 1.7 and 

3.0), while the smallest cohort disadvantages were found for alcohol abuse, suicide, and COPD (with 

relative risks between 1.2 and 1.5). The main difference detected between the two countries was in 

the pattern of mortality due to COPD, for which only the U.S. boomers had a risk that was higher 

than the overall cohort average.  

The mortality patterns of Canadian females differed considerably from those of their male 

counterparts and from those of U.S. males and females. For all causes of death, the Canadian female 

boomers had little to no disadvantage. For alcohol, suicide, and COPD, the mortality risks of this 

group were not significantly higher than the overall cohort average. In contrast, boomer males in 

Canada and boomer males and females in the United States had similarly high relative risks of dying 
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from hepatitis C, HIV/AIDS, drugs, and suicide. More precisely, these three subpopulations of 

boomers had the largest disadvantages in mortality for causes related to drugs, HIV/AIDS, and 

hepatitis C; moderate disadvantages for causes related alcohol; and considerably smaller 

disadvantages for death from suicide.  

Figure 5. 4. Cohort relative risks by country, sex, and cause of death 

  
Notes: The width of the ribbon indicates the confidence interval at the 95% level. Estimates were obtained 
from a cohort-detrended model (APCd). The reference category is the overall cohort average, depicted in the 
plot with a horizontal dashed line. The beginning and end of the baby boom (i.e., 1946 and 1964, 
respectively) are marked with vertical gray bars. 

Comparisons across races and ethnicities in the United States 
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In order to explore the disparities across racial and ethnic groups in the United States, we estimated 

detrended cohort effects as cohort relative risks for the NHB, Hispanic, and NHW populations 

(Figure 5.5; see also separate plots in Figure S5.7 in the supplemental materials). Except for a few 

cases, the female and male boomers in the United States had similar cause-specific cohort 

disadvantages within each race or ethnicity. The causes that contributed the most to the boomers’ 

disadvantages relative to their respective cohort average in all subpopulations were hepatitis C and 

HIV/AIDS, and the cause that contributed the least was suicide. 

The main difference between the sexes in the causes that contributed to the boomers’ mortality 

disadvantage was that hepatitis C, which posed a much greater risk for males (reaching a maximum 

of a 2.5-fold risk on average) than for females (2.1-fold risk on average), regardless of race/ethnicity.  

When analyzing the cause-specific contributions to the boomers’ mortality disadvantage by race and 

ethnicity, two results stand out. First, the NHW boomers of both sexes were the only groups with a 

significantly higher relative risk of suicide mortality. Second, although boomers of all groups had a 

large drug-related mortality disadvantage, the relative risks for NHB (1.9 for females and 2.0 for 

males) were substantially higher than those for Hispanics (1.32 and 1.45) and NHW (1.3 and 1.5). 
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Figure 5.5: Cohort relative risks by race/ethnicity within the U.S., sex, and cause of death 

  
Notes: The width of the ribbon indicates the confidence interval at the 95% level. Estimates were obtained 
from a cohort-detrended model (APCd). The reference category is the overall cohort average, depicted in the 
plot with a horizontal dashed line. The beginning and the end of the baby boom (i.e., 1946 and 1964, 
respectively) are marked with vertical gray bars. 
 

In summary, these results show that boomer cohorts had higher relative risks of dying from most of 

the causes that were making the largest contributions to the deterioration in mortality from the 

advantaged to the disadvantaged cohorts, regardless of national context, sex, and race/ethnicity. 

Three exceptions are, however, noteworthy. First, among Canadian female boomers, the relative 
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risks of mortality were significantly higher than the cohort average only for causes related to drugs, 

HIV, and hepatitis C. Second, only boomers in the U.S. had a significant disadvantage in COPD 

mortality. Third, only Canadian males and U.S. NHW males and females had a significantly higher 

relative risk of mortality from suicide. In the next section, we analyze the temporal pattern of these 

cause-specific cohort disadvantages.  

Dynamics of the cohorts’ excess mortality over time 

The APCd estimates presented above were useful for the estimation of the average cohort 

disadvantage. However, these estimates were of limited use for the analysis of the temporal 

dynamics of nonlinear effects because, as averages, they did not allow us to observe variations in 

relative risks over time (Chauvel 2013). The changes in the magnitude or the location of the largest 

curvatures by cause over time, however, can help us determine whether the boomer penalty resulted 

from a sequence of temporary age-period interactions, or, conversely, from a process that operated 

continuously throughout the life course of the boomers. To analyze these temporal dynamics, we 

constructed APC curvature plots. This graphical tool allowed us to display the changes in the nonlinear 

APC components over time on a Lexis diagram by focusing on the ridges; i.e., the series of Lexis 

coordinates in which the relative risk reaches a maximum. These plots helped provide synthetic 

information on nonlinear APC effects simultaneously across several populations or for several 

causes of death. In Chapter 6 (article 3), we provide a detailed description of the construction and 

interpretation of the APC curvature plots. 

To construct the APC curvature plots, we needed to extract the boomer curvatures – in this case, the 

excess mortality by cause of death. To do this, we first estimated a mortality baseline by excluding 

the cohorts that diverged from the secular trend in mortality and by interpolating the mortality rates. 

The excess mortality was defined as the difference between the observed and the interpolated 

surface. The interpolation of the mortality rates was estimated with two-dimensional P-splines, and 

performed with the R package MortalitySmooth (Camarda 2012). The measured excess mortality was 

then translated into visual attributes: the locations of the ridge over time (i.e., the age/cohort for 

which the positive divergence in mortality reached its maximum level in each period) were indicated 

through the coordinates position in the Lexis diagram; and the magnitude (i.e., the relative risk in the 

ridge compared to in the base of the hump) was indicated by the point size. We constructed APC 

curvature plots to compare the cohorts’ excess mortality across causes of death, countries, and 

races/ethnicities simultaneously in the same figure. 
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 Comparisons between Canada and the United States 

The APC curvature plots presented in Figure 5.6 show the temporal dynamics of excess mortality 

(i.e., the age/cohort with the greatest excess mortality in each period) by cause of death, country, 

and sex (see also Figure S5.8 in the supplementary material). We first describe the results for 

HIV/AIDS-related mortality. The patterns for HIV/AIDS were similar across subpopulations, but 

differed considerably from the patterns for the other causes. Between the mid-1980s and the mid-

1990s, the ridge for HIV/AIDS-related excess mortality largely surfaced in the diagram as an age 

effect for both sexes in Canada and the United States, with young adults (ages 25-35) being 

disproportionately targeted. However, after the turn of the 21st century, the ridges for HIV/AIDS 

shifted and began to align diagonally toward a cohort pattern for all groups under observation, with 

some noticeable differences. Whereas Canadians of both sexes and U.S. males born around 1965 

were most susceptible, the largest disadvantage for U.S. females was observed for those born around 

1955. For Canadian females, this cohort effect was interrupted in the second part of the 2000s, when 

it returned to an age effect, but this time targeting those aged ~40. 

The locations of the ridges of excess mortality from hepatitis C, drugs, and alcohol were similarly 

centered on the cohorts born around 1955-1960, with the relative risks of dying from drugs and 

alcohol being considerably lower. The main exception was for Canadian females, who did not have a 

sustained cohort mortality disadvantage related to alcohol, suicide, or COPD, which is consistent 

with previous results regarding this group. Whereas the COPD disadvantage did not follow any clear 

pattern, the horizontal traces of the alcohol and suicide ridges were more indicative of short-term 

age-period interaction effects.  

Turning now to variations in the magnitude of the cohort disadvantage over time (see also Figure 

S5.8 in the supplemental materials), we can see that the relative risks of HIV/AIDS mortality were 

considerably higher at the turn of the 1990s for all groups (up to 10.7), and for U.S. males in 

particular. Nevertheless, at the turn of the century, the relative risks of HIV/AIDS mortality 

decreased sharply, and remained below 1.8 during the rest of the period. Apart from HIV/AIDS, 

the largest boomer disadvantages were observed for mortality from hepatitis C and drug abuse, 

which, respectively, hit their maximum relative risk levels of 4.9 and three at the turn of the century. 

Compared to the other causes, the relative risks of alcohol, COPD, and suicide mortality among 

boomers were substantially lower, never exceeding 1.7, 1.7, and 1.5, respectively. 



109 
 

Figure 5.6. APC curvature plots by country, sex, and cause of death 

 
Notes: Location (age/cohort) and magnitude (in relative risks) of the largest excess mortality in each period. 
The color of the points indicates the cause of death and the size indicates the relative risk at the ridge, 
compared with the mortality baseline. The white diagonal band indicates the location of the baby boomer 
cohorts (i.e., 1946-1964). 
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Comparison across races and ethnicities within the United States 

Figure 5.7 presents APC curvature plots of the cause-specific disadvantage in mortality by sex and 

race/ethnicity in the United States (see also Figure S5.9 in the supplementary material). The trends 

displayed in Figure 5.7 show that boomers of both sexes and of all race/ethnicities had clear and 

sustained cohort disadvantages for all causes of death except COPD and suicide. Systematic cohort 

disadvantages in COPD and suicide were only identified for NHW. For the other racial/ethnic 

groups, the ridges for these causes were more indicative of an age effect. Consistent with the 

estimates at the national level (presented in Figure 5.6), the ridges of HIV/AIDS-related mortality 

for all racial/ethnic groups showed an age pattern of disadvantage until the end of the 1990s, with 

the largest relative risks among all the causes (12.2). At the turn of the century, the relative risk of 

HIV/AIDS mortality among boomers decreased considerably and shifted into a sustained cohort 

effect. Moreover, consistent with the patterns at the national level, U.S. boomers of all 

race/ethnicities had the highest relative risks of hepatitis C and drug abuse mortality, reaching 

maximum levels of 4.7 and 3.8, respectively. The smallest relative disadvantages among boomers 

were for mortality from alcohol, COPD, and suicide (2.8, 2, and 1.9, respectively). 

Turning finally to variations in relative risks over time, we can see that for most racial/ethnic groups, 

the relative risks of hepatitis C mortality peaked at the turn of the century and decreased thereafter. 

However, for Hispanic and NHB females, the relative risks of hepatitis C mortality did not start to 

decrease until 2010. The ridge of the drug-related mortality disadvantage peaked three times: first at 

the turn of the 1990s, then at the turn of the 2000s, and, finally, during in the last year of 

observation (i.e., 2016). The relative risks of alcohol-related mortality were especially high in 1990 

(2.1- to 2.8) and decreased progressively over time for Hispanics and NHW. However, for NHB 

female and male boomers, this declining trend was reversed in 2010, as the relative risks of alcohol 

mortality increased markedly. For COPD and suicide, the relative risks among boomers increased 

monotonically during the observation period, reaching an average of 1.5. 
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Figure 5. 7. APC curvature plots by race/ethnicity within the U.S., sex, and cause of death  

 
Notes: Location (age/cohort) and magnitude (in relative risk) of the largest excess mortality in each period, 
across causes of death, sexes, and races/ethnicities within the United States. The color of the points indicates 
the cause of death and the size indicates the relative risk at the excess ridge, compared with the mortality 
baseline. The white diagonal band indicates the location of the baby boomer cohorts (i.e., 1946-1964).  
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Taken together, these results suggest that what could be called “the boomer penalty” is the result of 

several cause-specific disadvantages that accompanied boomers throughout their life course, 

regardless of their country, sex, or race/ethnicity. However, the absence of a cohort disadvantage for 

several causes among Canadian female boomers should be noted. 

 

 Discussion 5.4.

This study was designed to identify the leading causes of death that have contributed to the baby 

boomers experiencing a mortality disadvantage relative to their adjacent cohorts, and to explore the 

changes over time of these contributions in Canada and the United States. Relative to previous 

cohorts, Canadian boomers experienced a deceleration in mortality improvements, while American 

boomers experienced an increase, in absolute terms, in all-cause mortality.  

In summary, six behavioral causes of death – namely, drug and alcohol abuse, HIV/AIDS, hepatitis 

C, suicide, and COPD – contributed at least 75% of the positive changes in mortality – i.e., the 

deterioration in mortality – across cohorts. The disadvantages observed among the boomers were 

substantially larger among males than among females for most causes, regardless of national context 

or race/ethnicity. The highest relative risks of mortality were from hepatitis C and drug-related 

causes, and the lowest relative risks of mortality were from COPD and suicide. These results should, 

however, be interpreted with caution, given that higher relative risks do not necessarily indicate 

greater excess mortality in absolute terms. For instance, even though boomers had considerably 

higher relative risks of mortality from hepatitis C than from alcohol, because the baseline for 

mortality from alcohol was much higher, alcohol contributed more than hepatitis C to the mortality 

disadvantage among boomers. 

Our findings also revealed that excess mortality among baby-boomers was sustained over the life 

course for most of the main causes that we identified as constitutive of the boomer penalty, both in 

Canada and the United States, and regardless of race or ethnicity in the latter . The mortality 

disadvantages of Canadian female boomers were, however, much smaller and less indicative of any 

sustained cohort effects. 

In the rest of this section, we discuss the mechanisms that may explain our results. In particular, we 

focus on the factors that could have contributed to an increased boomer susceptibility to mortality 
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from behavioral causes, and on the differences across population groups. We close this section by 

pointing out the advantages and limitations of our analysis and recommend further investigations on 

the current topic for future research.  

 

 Temporal dynamics of the cause-specific excess mortality among 5.4.1.

boomers 

First, it could be argued that the boomers’ excess mortality does not stem from sustained cohort 

effects, but from successive period crises that targeted the boomers at different life stages – that is, a 

sequence of age-period interaction effects that disproportionately affected these cohorts. The 

temporal patterns of mortality from HIV/AIDS are indicative of age-period interaction effects 

during the most critical stage of the epidemic (i.e., between the late 1980s and the early 1990s), 

which disproportionately affected those in their thirties. Although HIV/AIDS mortality decreased 

substantially after the introduction of the antiretroviral therapy in 1996 (Murphy et al. 2001; Palella 

et al. 2006; Vittinghoff et al. 1999), we found evidence that the effects of the epidemic lingered 

throughout the later adult lives of the late boomers (Figures 5.6, 5.7, S5.5, and S5.6). This higher 

susceptibility among boomers to HIV/AIDS may be the reason for the recent increases in HIV 

prevalence among people aged 50 and older, who account for nearly the half of those living with 

diagnosed HIV in the United States (CDC 2018a).  

In the case of drug overdoses, our findings indicated that although the absolute changes in severity 

were largely driven by period-based factors that affected most ages, the boomer cohorts faced higher 

risks of drug-related mortality than the adjacent cohorts during the whole observation period. The 

magnitude of this cohort susceptibility was not, however, constant over time (Figures 5.6, 5.7, S5.8, 

and S5.9). The disadvantage in drug-related mortality among boomers peaked twice: at the turn of 

the 1990s, which marks the beginning of the crack epidemic, and at the turn of the 2000s, which 

corresponds to the start of the opioid epidemic. These increases in relative risks at the beginning of 

each crisis and their posterior attenuation may be attributable to the vanguard role of boomers in 

abusing these drugs before the epidemics spread to other cohorts. This “inter-cohort contagion” of 

substance abuse is particularly notable for the case of the millennial cohorts. While the boomer 

cohorts had the largest relative risks of alcohol- and drug-related mortality during the 1990s and 

2000s, the millennial cohorts have started experiencing relative increases in mortality from these 
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causes, to the point that the millennials’ risks of alcohol- and drug-related mortality have exceeded 

those of boomers in recent years (Huang et al. 2017; Miech et al. 2013; Sauer et al. 2018; Zang et al. 

2019). For both HIV/AIDS and drug mortality, punctual and strong period crises affecting most age 

groups (i.e., period effects) have been detected. However, lagged effects from these disturbances 

along the cohorts have been observed among the boomers (i.e., cohort effects).  

Figures 5.6 and 5.7 suggest that the mechanism outlined above underlies multiple outcomes. Our 

results are consistent with previous findings indicating that behavioral risks related to opioid abuse, 

HIV/AIDS, and hepatitis C interacted with each other in these cohorts. In most groups, the cohorts 

with the largest disadvantages for these causes of death had similar locations and synchronic 

variations in magnitude since the mid-2000s. Some of these similarities may result from the ongoing 

opioid epidemic, which might have contributed to the spread of HIV/AIDS and hepatitis C 

infections among chronic intravenous drug users (IVDUs) (Strader 2005; Zibbell et al. 2017). In 

addition, while IVDUs who share contaminated needles face a higher risk of HIV infection, 

individuals who have been diagnosed with HIV have both higher rates of prescription opioid use to 

treat chronic pain symptoms and higher risks of developing drug use disorders (Becker et al. 2016). 

Similarly, our observation of the synchronicity between COPD and drug abuse mortality among 

NHB females and NHW of both sexes (Figure 5.7) was consistent with previous findings suggesting 

that the risk of COPD mortality is higher among opioid users (Levine 2017; Vozoris et al. 2016). 

However, the results for the other groups did not display this kind of synchronicity. 

Taken together, our findings suggest that the mortality penalty endured by the boomers is not the 

result of a series of age-period interactions that coincidentally increased mortality at different life 

stages. Instead, the boomer disadvantage resulted from multiple and parallel long-term disadvantages 

that have accompanied these cohorts over time.  

 

 Factors contributing to the boomer penalty 5.4.2.

Although our research design is exploratory, our findings are consistent with numerous mechanisms 

already proposed in the literature. Below, we present and discuss in more detail the mechanisms, 

mentioned in the introduction, that may be driving the survival disadvantage among boomer 

cohorts. These mechanisms pertain to selection processes, birth cohort effects, and generational 

identity effects. 
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According to the frailty hypothesis (Vaupel et al. 1979; Zheng 2014), low selection pressure during 

infancy and childhood would have resulted in a heterogeneous cohort, with a large proportion of 

frail individuals surviving to adult ages and being susceptible to mortality from intrinsic causes of 

death. It has been argued that the higher mortality experienced by the boomers during their young 

and adult ages could be the consequence of increased survival rates early in life due to a reduced 

infection burden and improved nutrition intakes (Canudas-Romo and Guillot 2015). However, our 

results do not corroborate this hypothesis. The leading causes of death contributing to the boomer 

penalty are not intrinsic, but are, rather, behavioral or extrinsic. The likelihood that frail individuals 

who were “saved” in early life through better nutrition and reduced infection loads would go on to 

develop risky behaviors later in life seems rather low. Moreover, the frailty hypothesis does not 

explain the substantial mortality improvements among young adults in the cohorts born after the 

boomers, who experienced lower initial mortality rates than the boomers. 

Based on our results, two complementary mechanisms allow us to interpret the higher susceptibility 

of the boomers: namely, Ryder (1965)’s birth cohort influence and Mannheim (1952)’s historical 

generational7 membership influence. In his seminal work, Ryder (1965) stated that some the 

characteristics of some birth cohorts have permanent effects through the life course. According to 

Ryder, cohort size was the most evident manifestation of inter-cohort differences, since it is a 

persisting feature of the cohort’s lifetime, with cascading effects on education, family formation, and 

labor force participation. Following Ryder’s approach, Easterlin extensively studied the implications 

of cohort size and other cohort-specific characteristics for the historical locations of the boomers 

during their life course (Easterlin 1976, 1987; Easterlin et al. 1993). Easterlin’s central argument was 

focused on the mismatch between the early life and the later life conditions that the boomers were 

known to have experienced. Born amid a post-war economic boom, the development of the welfare 

state, and unprecedented enrollment rates in higher education, the boomers became adults in a social 

context characterized by competition for resources – because of the large size of the cohort – a 

progressive erosion of the welfare state, and a weaker and increasingly precarious labor market. 

According to Easterlin, this imbalance between expectations and reality had serious implications for 

the perceived well-being of the boomers, increasing the prevalence of mental distress and frustration 

                                                             
7 Here, we use generation in a historical sense, so it should not be confused with the genealogical sense of kinship. See 
Alwin and McCammon (2007) for an extensive discussion about the three uses of the concept generation in the social 
sciences. 
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among these cohorts. Easterlin (1987) expected baby boomers to experience higher mortality from 

suicide, substance abuse, vehicle accidents, and homicide. 

In contrast, generational membership, in the Mannheimian sense, implies a more complex social 

process in which individuals participate in the social movements of their time, and develop a shared 

identity with a unique worldview (Alwin and McCammon 2007; Eyerman and Turner 1998; 

Mannheim 1952). The enormous and unprecedented generational rift experienced by the boomers at 

sensitive life stages helped to consolidate their distinctive generational identity. The social 

importance and the inclusion of social movements in the popular culture and mass consumption – 

especially in rock music and literature – boosted and magnified the influence of these minorities on 

their contemporaries (Alwin et al. 2014; Alwin and McCammon 2007; Bristow 2015; Eyerman and 

Turner 1998; Stewart and Torges 2014). For the first time in history, a generational identity was 

simultaneously diffused to several western societies, including the United States, Canada, the United 

Kingdom, France, and Australia (Edmunds and Turner 2005).  

The signatures of solidarity within this generation were the defiance of social norms and the 

rebellion against the older generations, which were expressed in drug use and a more explicit 

sexuality (Cross and Kleinhesselink 1985; Johnston 1991). An increasing number of studies have 

found that dispositions and attitudes toward riskier behaviors regarding drug use and sexuality tend 

to be drawn from formative experiences and peer influences during the early stages of life, rather 

than from successive period-based influences throughout the life course (Johnson and Gerstein 

2000; Keyes et al. 2011; Rhodes 1997). Thus, the differential constructions of risk perception and 

habituation during the early stages of the boomers’ life course have been linked to higher risks of 

mortality from HIV/AIDS and other infections (McBride 1990), from substance abuse (Colliver et 

al. 2006; Crome and Rao 2018; Duncan et al. 2010; Miech et al. 2011; Patterson and Jeste 1999; R. 

Rao and Roche 2017), and from road traffic accidents (Puac-Polanco et al. 2016; T. Rao 2019).  

Although they refer to different phenomena, birth cohort and generational identity are not completely 

independent. Their increased exposure to peers might have made the boomers less apt to identify 

with the values and beliefs of previous generations (Easterlin 1987; Phillips 2014; Stewart and 

Torges 2014), and encouraged the rise and spread of the youth-based social movements of the 1960s 

and 1970s (Abrams 1970; Bristow 2015, 2016; Cross and Kleinhesselink 1985; Goertzel 1972). 
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It is, therefore, possible that the cohort attributes of boomers not only reinforced their rebellious 

and risky generational identity, but that these two mechanisms may have acted in parallel to increase 

their mortality risk along the life course. In light of the mechanisms presented above, we now 

discuss some of the similarities and differences in the magnitude and the temporal dynamics of the 

boomer penalty across countries, sexes, and races/ethnicities. 

 

 Comparison of findings across the population groups under study  5.4.3.

The unprecedented transnational diffusion of the boomer identity that we discussed above, as well 

as some similarities in the socioeconomic contexts in Canada and the United States during the 

sensitive life stages of the boomers, could explain our findings to some extent. We found that the 

causes that made the largest contributions to the excess mortality among the boomers were the same 

in both countries, and that the temporal patterns of the cohort effects were quite similar in the 

United States and Canada.  

However, we also uncovered substantial differences in the magnitude of the boomer penalty 

between the two countries. As Figures 5.1 and 5.2 show, the Canadian boomers mainly experienced 

a slowdown in mortality improvements (indicated by the green diagonal trace in Figure 5.1), while 

the U.S. boomers experienced a noticeable deterioration in mortality (indicated by the change of the 

scale sign from a negative to a positive change in mortality in Figure 5.1).  

A possible explanation for this difference in the magnitude of the penalty may be the dissimilar 

experiences of the Canadian and the U.S. boomers during critical stages of their life course, which 

could have led to sizable differences in how the birth cohort and the generational identity 

mechanisms were embodied in these groups, and unfolded in their later lives. First, the levels of 

stress and frustration may have been substantially lower among Canadian boomers than among their 

counterparts in the United States. Although Canadian boomers are also part of a large cohort and 

grew up amid a post-war economic boom, the mismatch between the expectations they developed in 

childhood and the reality they encountered in young adulthood was not as extreme as it was in the 

United States. Compared to the United States, Canada has a stronger welfare system (Banting and 

Hoberg 1997; Myles 1998), much lower levels of inequality (Lemieux 1993; Ross et al. 2000; Rycroft 

2013), and a less pronounced cultural orientation toward individualistic values (Adams 2004; Clark 

1991; Lipset 2013; Steger et al. 1989).  
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Second, the generational rift experienced by Canadian boomers may have been less striking than that 

experienced by their counterparts in the United States. The dominant values in Canadian society – 

such as traditional views on the rights of women, racial/ethnic minorities, and non-heterosexual 

communities, as well as attitudes regarding religion, sexuality, and drug use – were also challenged by 

the counterculture movements (Palmer 2008). However, the scale of the political and social conflicts 

during the 1960s and 1970s was smaller in Canada than it was in the United States (Campbell et al. 

2012). At that time, Canada had no Jim Crow laws and was not involved in the Vietnam War. 

Indeed, Canada has historically been perceived and has served as a refuge for U.S. citizens fleeing 

racism and the draft. Such was the case for the NHB who were escaping from slavery through the 

Underground Railroad to Canada during the 19th century, and for the draft-dodgers – mostly young 

boomers – who were seeking to avoid military service in the Vietnam War during the 1960s. 

Previous research has shown that the civil rights and the antiwar movements were the most 

important sources of the generational rift. Thus, the most influential and cohesive events for the 

U.S. boomers occurred around the counterculture movements during the 1960s and 1970s (Alwin et 

al. 2014; Alwin and McCammon 2007; Bristow 2015; Stewart and Torges 2014). Meanwhile, the 

Canadian boomers may have experienced milder birth cohort effects that translated into lower levels 

of anxiety, which led them to adopt a less rebellious generational identity associated with less risky 

attitudes and behaviors. These social and political differences between the two countries might have 

contributed to the boomer penalty being smaller among the Canadians.  

With respect to differences by sex, there is a large amount of evidence pointing to a higher 

propensity among males than among females to engage in risk-taking behaviors that could lead to 

death (Ferrence 1988; Fingerhut and Cox 1998; Harris and Jenkins 2006; Pampel 2001; Veevers and 

Gee 1986; Waldron et al. 2005). Since most of the excess mortality among the boomers stemmed 

from behavioral causes, it is not surprising that the boomer penalty was larger among males in all 

groups under observation.   

Regarding the temporal patterns, two male-female differences stand out. First, the ridges of excess 

mortality by cause of death follow horizontal, rather than diagonal lines for Canadian females. The 

differences in the welfare state policies of Canada and the United States discussed above could 

explain this smaller boomer penalty among Canadian females. There is evidence that welfare state 

and social policies buffer social gender inequalities to some extent (Karamessini and Rubery 2013; 

Kushi and McManus 2018; Rubery 2012). It is possible that because they benefited from public 
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policies that supported single and married mothers, and that incentivized women to enter and 

remain in the labor market, Canadian female boomers experienced less work-family conflict than 

their U.S. counterparts. Nevertheless, there is still evidence of a boomer penalty in mortality among 

Canadian female boomers (see Figures 5.1, 5.2, and 5.4) involving the same causes of death as those 

that affected mortality among the other boomer groups (see Figure 5.3). Hence, these results need to 

be interpreted with caution. The analytical strategy adopted here may not able to capture the actual 

temporal pattern of the boomer penalty among Canadian females because of its small magnitude.  

A second male-female difference was in the location of the most disadvantaged cohorts. As Figures 

5.1, 5.6, and 5.7 indicate, the cohorts with the largest excess mortality among females were the more 

recent boomer cohorts. No similar pattern was observed among male boomers. This difference in 

location could reflect the age differences within couples, which was 2.4 years on average for married 

couples between 1960 and 1985 (USCB 2018). Since males are more prone to risky behaviors and 

may have more success in influencing couple choices (de Palma et al. 2011), the negative outcomes 

in boomer couples may have disproportionately affected females of the more recent cohorts.  

Interestingly, when we looked at the differences across races and ethnicities within the United States, 

we found that despite the significant differences in the socio-historical contexts experienced by the 

different racial and ethnic groups, the patterns of sustained disadvantages of boomers relative to 

their respective average cohorts were similar across these groups. This finding is somewhat 

surprising given the birth cohort effect proposed by Easterlin (1987). When describing the large 

mismatch between the high expectations in childhood and the harsher reality encountered in 

adulthood, Easterlin was referring to the life courses of NHW boomers in the United States. These 

experiences were in stark contrast with those lived by minorities. NHW were the main beneficiaries 

of the economic boom and social policies implemented during the post-war period, which led 

boomer children to develop outsized expectations. The unprecedented numbers of university 

admissions and the large numbers of mortgage loans offered during the post-war period were 

selectively addressed to the young NHW population – the parents of the NHW boomers. For 

racial/ethnic minorities, however, residential segregation (Luders-Manuel 2017; Massey and Denton 

1993; Rothstein 2017; Sharp and Hall 2014; Steil et al. 2018) and educational segregation (Herbold 

1994; Humes 2006; Turner and Bound 2002), among other discriminatory policies, hindered their 

access to the social and economic benefits of that period.  
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By contrast, the generational rift the boomer cohorts experienced and embraced, albeit in very 

different ways, had a substantial impact on most racial/ethnic groups within the United States. 

Young boomers from different social, racial, and ethnic backgrounds became involved in the diverse 

social movements of the time, such as the student, anti-war, feminist, gay liberation, civil rights, 

Black Power, Red Power, and Chicano movements (Reed 2019; Rollins 1986; Stewart et al. 1998). 

Hence, it may be expected that the generational identities the boomers developed influenced wider 

segments of the U.S. population, regardless of their socioeconomic status and race/ethnicity. Thus, 

the birth cohort effects proposed by Easterlin may have been less relevant to the boomer 

generation. 

These differences across race/ethnicities in the birth cohort effects and the generational identity 

mechanisms could be the reason behind the observed disparities in the temporal dynamics of 

suicides ridges. NHW boomers of both sexes were the only groups within the United States that 

showed sustained cohort disadvantages in suicide mortality. Whereas suicide mortality may have 

been more associated with the higher prevalence of stress and frustration resulting from the birth 

cohort effects proposed by Easterlin (Chauvel et al. 2016; Easterlin 1987; Phillips 2014), the higher 

susceptibility to mortality from substance abuse, HIV/AIDS, and hepatitis C may have been more 

responsive to the risky attitudes and behaviors embodied in the boomer generational identities 

(Boeri et al. 2006; Jalal et al. 2018; Johnston 1991; Keyes et al. 2011; Miech et al. 2011). 

Regarding the drug epidemics, the crack and the opioid crises have been respectively associated with 

NHB and NHW populations in the scientific literature and media coverage. It is possible that the 

stigma and the lower price of crack made the poor black neighborhoods in the inner city more 

vulnerable to the crack epidemic at the turn of the 1990s (Agar 2003; Johnston 1991; Palamar et al. 

2015; Palamar and Ompad 2014). Likewise, the medical-legal origin of the opioid crisis, as well as 

racial discrimination in prescription practices (Barnett et al. 2017; Hwang et al. 2015; Jones et al. 

2018; King et al. 2014; Manchikanti et al. 2017; Quinones and Hellegers 2016; Zang et al. 2019), 

appear to have put the NHW blue-collar population at greater risk during the early stages of the 

opioid crisis at the turn of the 21st century. However, there is evidence that these drug epidemics 

have ravaged all social groups, even though they disproportionately affected specific social status or 

racial/ethnic groups in certain periods (Agar 2003; Ho 2017; Jalal et al. 2018; Woolf et al. 2018). 
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We have attempted here to provide a summary of the mechanisms that could contribute to the 

mortality penalty among baby boomers in Canada and the United States, as well as to point out 

some similarities and disparities in these mechanisms by country, sex, and race/ethnicity. To do so, 

we adopted a more comprehensive approach to analyzing the excess mortality among boomers as a 

whole than was used by most previous research on the topic. Instead of exploring a single cause of 

death, as most of the previous studies on mortality among boomers did, our strategy began by 

exploring the penalty in all-cause mortality common to boomers in Canada and the United States, 

and to subsequently decompose this disadvantage by cause of death. The decomposition of the 

mortality changes using the Cohort Partial Mortality Rate measure (𝐶𝑃𝑀𝑅𝑐(𝑘,𝑙)) – proposed for the 

first time in this research – allowed us to identify a common set of causes underlying the excess 

mortality among boomers in Canada and the United States.  

The analysis of the temporal dynamics of nonlinear cohort effects using APC curvature plots permitted 

us to show that the disadvantage in mortality among boomers resulted from multiple and 

simultaneous cause-specific cohort effects, instead of from a sequence of age-period interaction 

effects. As we noted above, we would have been unable to generate such findings if we had limited 

our analytical strategy to the more conventional APC statistical models. Using this approach, we 

were able to show that multiple disadvantages were experienced concurrently by the boomer 

cohorts, and that these disadvantages may be interrelated and modulated by common mechanisms, 

independent of national context, sex, and race/ethnicity. These findings offer additional clues that 

can be used to analyze causal mechanisms that were not exclusively related to one output, but that 

instead generated simultaneous and sustained disadvantages throughout the life course of the 

boomers.  

To our knowledge, this is the first analysis that has reported concurrent and sustained cohort effects 

for Canadian and U.S. boomers. Such findings provide valuable information for designing health 

policies. Currently, the populations of these countries are dealing with health crises involving the 

causes that made the largest contributions the boomers’ excess mortality. Specifically, these 

populations are experiencing dramatic increases in mortality from drug overdoses (Helmerhorst et 

al. 2017; Ho 2017; Huang et al. 2017; Jalal et al. 2018), alcohol abuse (CIHI 2018; Tapper and Parikh 

2018), and suicide (Curtin et al. 2016); increases in binge drinking (Bulloch et al. 2016; Dwyer-

Lindgren et al. 2015; Manthey et al. 2019) and in the incidence of hepatitis C infections (CDC 

2018b; PHAC 2019; Zibbell et al. 2017); as well as the stalling of the long-term decrease in deaths 
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from of HIV/AIDS (CDC 2019). Our research suggests that policy-makers should encourage 

prevention and diagnosis based not only on an individual’s risk factors and age, as is usually done, 

but on the person’s birth cohort. Canadian and U.S. health authorities have already proposed 

adopting such an approach for dealing with hepatitis C, and have recommended systematic testing 

for baby boomers (CATIE 2018; CDC - Division of Viral Hepatitis 2019; CDC 2012; Shah et al. 

2018). Our findings also suggest that such an approach should be extended to other behavioral 

causes. In the rest of this section, we consider the limitations of this study, and offer some 

recommendations for further research.  

 

 Limits of the analytical strategy and suggestions for future work 5.4.4.

We are aware that our research has several limitations. The first is related to the information 

recorded on the death certificates. On the one hand, deaths from some of the causes under analysis 

may be misreported on the death certificates. HIV/AIDS and hepatitis C mortality began to be 

recognized within the ICD codes in 1987, and thus long after actual deaths from these causes started 

to occur. It may have taken some time for medical authorities to accurately recognize and record 

such causes on death certificates. Hence, underreporting is expected for these two causes. In 

addition, the attribution of just one cause to each death can hide multiple interactions, which can be 

especially problematic when the causes are related to behavioral factors. Because risk behaviors tend 

to cluster (Ho 2017), several deaths classified in one specific cause may have multiple contributing 

factors. For example, a death may be caused by a combination of drug and alcohol abuse, or of HIV 

and hepatitis C infections. For suicide mortality, suicidal intent is difficult to assess, and the 

approaches used in assigning such an intent vary by geographical location. Moreover, some causes 

cannot be discerned from the classification when the intentions and the means are mutually 

exclusive, as is the case for suicides by drug overdose. In Table S2 in the supplemental materials, we 

classified such deaths as suicides, which could mean that drug-related death rates have been 

underestimated, while the number of suicides has been overestimated. This bias in drug-related 

mortality could also be magnified by other underreporting issues for this cause of death on death 

certificates (Ho 2017; Paulozzi et al. 2006).  

Another limitation of the identification of causes of death is the discontinuity resulting from the 

ICD revisions implemented during the observation period (see Tables S1 and S2). Although we did 
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not find evidence of significant disruptions in the classification at an aggregated level, several 

specific codes that did not exist in previous ICD revisions were introduced during the period, 

including codes for several alcohol- and drug-related causes of death. For instance, death from drug 

abuse was introduced in the 9th ICD version, and poisoning from both drugs and alcohol with 

undetermined intent was introduced in the 10th revision.  

An additional potential source of error in the data is related to the racial/ethnic classification within 

the United States. Discrepancies between the numerator and the denominator in the Hispanic ethnic 

classification have been detected. Whereas on the death certificates (i.e., the numerator) the 

information on ethnicity is provided by funeral directors – who may be asked to use a certain 

classification by relatives of the deceased, or who simply impute the deceased’s ethnicity using their 

own judgment – in the census (i.e., the denominator) this information is self-reported (Arias et al. 

2008; Zang et al. 2019). This divergence in data collection procedures may have resulted in an 

underestimation of mortality in the Hispanic population. In addition, the lack of racial and ethnic 

information in the Canadian death register limited our analyses of the heterogeneity of boomers 

within Canada, and made it impossible to compare similar groups in the two countries. 

With regard to the methods used to analyze the temporal pattern of the disadvantage in mortality, 

there is more than one approach to detecting excess mortality (Acosta and van Raalte 2019). Because 

each approach is conceptually different, their application can lead to different estimations. Here, we 

used an interpolation approach because our aim was to analyze the excess mortality among the 

boomers relative to the mortality levels of the more advantaged cohorts surrounding the boomers. If 

the question is about the deviation from the overall cohort average, the estimation of the residual 

from an age-period model would be more appropriate. It is noteworthy that the main difference 

between the two approaches lies in the magnitude of the excess they report, but that their findings 

regarding the temporal pattern over time are consistent. 

On the question of the explanatory power of this work, neither the analytical strategy nor the data 

for the analysis presented here allowed us to test or disentangle the role played by the birth cohort 

and the generational identity effects on the boomer penalty in mortality. Here, we proposed such 

mechanisms as underlying determinants of the boomer disadvantage in mortality in a speculative 

manner. Longitudinal data that include measures of drug use, alcohol consumption, sexual behavior, 
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mental health, mental stress, and/or expectations, among other factors, would allow for an inquiry 

that takes an explanatory approach. 

We believe that our research will serve as a basis for future studies on the excess mortality among 

boomers. We propose that further research should be undertaken in the following areas. First, future 

studies should test the causal mechanisms identified here as being potentially responsible for the 

excess mortality among boomers, and measure to what extent each of these mechanisms has 

contributed to the boomer penalty. Second, an important question that future studies should address 

is why the pattern of the cohort disadvantage among Canadian female boomers, for which no 

sustained cohort effects were identified, differed from that among Canadian male boomers and U.S. 

boomers for all races/ethnicities under analysis. Third, more analysis of the impact of the boomer 

disadvantage on changes in life expectancy and lifespan inequality, and on years of life lost, would 

help to clarify the implications of this excess mortality among the boomers at the population level 

for future mortality trends. Fourth, it is not yet known whether strong generational differences are a 

common feature of all socioeconomic groups, or whether they are disproportionately concentrated 

among the socially disadvantaged. It is vital to assess the contributions of different dimensions of 

social position to the inter- and intra-cohort inequalities in mortality related to substance abuse and 

infections. Finally, the similarities in the mortality penalty among boomers found in Canada and the 

United States suggest that similar mechanisms could be involved in other national contexts with 

similar mortality patterns, such as in France, Australia, and England (Acosta et al. 2017; HMD 2019). 

 

 Conclusions 5.5.

We found evidence that most of the relative excess mortality among baby boomers in Canada and 

the United States was driven by behavioral causes of death: namely, drug abuse, alcohol abuse, 

HIV/AIDS, hepatitis C, COPD, and suicide. The main exception to this general finding was that 

among Canadian female boomers, these causes of death did not translate into sustained cohort 

effects over time. We also found that the contributions of these behavioral causes of death to the 

excess mortality among boomers in Canada and the United States were the consequence of multiple 

and simultaneous long-term sustained disadvantages that have followed the members of this cohort 

since their twenties. 
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The behavioral nature of the excess mortality among the boomers, and the sustained cause-specific 

effects of this excess mortality throughout their young and adult lives, highlight the pertinence of a 

more comprehensive and structural analysis of the boomer mortality disadvantage. The observation 

that the causes that made the largest contributions to the excess mortality among boomers were 

linked to behavioral risks suggests that a common set of mechanisms underlie the boomer penalty in 

Canada and the United States. We propose that the relatively high levels of distress and frustration 

among boomers – the birth cohort effect proposed by Easterlin – and the riskier attitudes toward 

drug use and sexual behavior that are constituent of the boomer generation identity have together 

played a substantial role in their mortality disadvantage. Further analyses are needed to test how 

these mechanisms have affected the mortality penalty among boomers, and how the impact of these 

mechanisms has differed across socioeconomic groups. 

If the cohort differences in mortality continue along the same trend, it is possible that people who 

are currently aged 65 or older will experience substantial increases in mortality in the upcoming 

years. Such increases might be even greater than those previously experienced by the boomer 

cohorts, because the mortality risks related to suicide and mental health disorders are considerably 

higher at older than at younger ages. Moreover, as the baby boomers age, they will become 

increasingly likely to experience chronic pain, which has been a fundamental factor in the ongoing 

opioid abuse epidemic (Jones et al. 2018).  
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Chapter 6 - APC Curvature Plots: Displaying Nonlinear Age-

Period-Cohort Patterns on Lexis Plots8 

 

Abstract 

The analysis of age-period-cohort (APC) patterns of vital rate changes over time is of great 

importance for understanding demographic phenomena. Given the limitations of statistical 

modeling, the use of graphical analyses is often regarded as a more transparent approach to 

identifying APC effects. The current paper proposes a Lexis plot for the depiction and analysis of 

curvature, which is defined as the estimable nonlinear component of age, period, and cohort effects. 

In a single visualization, we combine the dynamics of the location, the magnitude, and the spread of 

nonlinear temporal effects for multiple populations or demographic phenomena. Using vital rates, 

we provide three examples in which we analyze the APC nonlinear effects of different demographic 

phenomena. We construct several APC curvature plots to display the following patterns: the modal 

cohort of excess mortality from drug-related causes by racial/ethnic group in the U.S. among the 

baby boomer generations; the modal age of excess mortality in young adults; and the modal age of 

fertility over cohorts and across populations. The use of the APC curvature plot offers more 

flexibility when analyzing nonlinear APC effects than the use of mathematical models or other Lexis 

plots. 

 

 

 Introduction 6.1.

It has long been recognized that populations change along the three dimensions of age, period 

(typically calendar year), and cohort (typically year of birth) (Caselli and Vallin 2005; Keiding 2011). 

The question of whether it is possible to independently isolate these age, period, and cohort (APC) 

effects on temporal changes in population phenomena has been vigorously debated since the first 

half of the 20th century (Keyes et al. 2010; Murphy 2010). Recently, discussions of this topic became 

                                                             
8 Article published in the journal Demographic Research as: Enrique Acosta and Alyson van Raalte (2019) APC curvature 
plots: displaying nonlinear age-period-cohort patterns on Lexis plots. Demographic Research 41:42, 1205-1234. 
https://doi.org/10.4054/DemRes.2019.41.42 

https://www.demogr.mpg.de/en/projects_publications/publications_1904/journal_articles/apc_curvature_plots_displaying_nonlinear_age_period_cohort_patterns_on_lexis_plots_6274.htm
https://www.demogr.mpg.de/en/projects_publications/publications_1904/journal_articles/apc_curvature_plots_displaying_nonlinear_age_period_cohort_patterns_on_lexis_plots_6274.htm
https://www.demographic-research.org/volumes/vol41/42/
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even more heated in reaction to the set of methods proposed by Yang and colleagues (Bell and 

Jones 2013; Fosse and Winship 2018, 2019a; Luo 2013; Masters et al. 2016; Reither et al. 2015; Yang 

and Land 2013). At the center of this latest debate is the identification problem that arises because 

of the perfect linear dependence between these three dimensions (age = period - cohort), as this 

dependence makes it impossible to estimate a unique solution without imposing additional 

constraints. 

Given this limitation, the use of graphical analyses is often regarded as a more transparent approach 

to identify APC effects than the use of statistical modeling (Murphy 2010; Preston and Wang 2006; 

Willets 2004). Consistent with this idea, the hand-drawn contours indicating cohort mortality 

improvement patterns presented in the work of Kermack, McKendrick, and McKinlay (1934) have 

been recognized as a pioneering example of research demonstrating that long-term mortality change 

tends to follow the birth cohort dimension (Finch and Crimmins 2004; Hobcraft, Menken, and 

Preston 1982; Preston and Wang 2006). Nevertheless, the question of whether the identification of 

such visual patterns could also be interpreted as “cohort effects” (i.e., whether improvements in 

mortality could be the consequence of period-based improvements or the improved performance of 

newer birth cohorts) has yet to be resolved. This is, for example, the case for APC statistical models; 

see Murphy (2010) for an interesting review. 

The analyses that focus instead on identifying divergence from secular trends (also known as 

curvature9) in each of the three temporal dimensions (Holford 1983; Rodgers 1982; Tango and 

Kurashina 1987) are more effective and less polemical than those focused on identifying the 

dominant patterns of change. For example, such analyses might seek to identify a systematic 

fluctuation that follows a cohort, and that is independent of changes over the age and the period 

dimensions. Such curvature would be indicative of divergence in the behavior of members of a 

particular set of cohorts from the behavior of the cohorts born before or after them. 

Our aim here is to propose a visualization tool that allows for the depiction of such APC curvature 

and its attributes. In particular, we overcome a key limitation of the existing methods: comparing the 

                                                             
9 Note that the term curvature used here refers to deviations from linear effects, as originally proposed by Holford and 
used in the APC literature (Clayton and Schifflers 1987; Holford 1983, 1991, 2005; Tango and Kurashina 1987). Other 
names used for this component are nonlinear effects and nonlinear fluctuations. This term should not be confused with local 
curvature, also referred to as contrast and second-order difference (Clayton and Schifflers 1987; Holford 1991; Pullum 1980; 
Tango and Kurashina 1987; Tarone and Chu 1996), which are used to measure the change in the slope of the effects. 
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change in curvature attributes over time across several demographic phenomena or populations in a 

single visualization. 

The paper is structured as follows. In section 2, we present a short description of some of the 

existing statistical and graphical methods for the detection and analysis of nonlinear APC effects, 

while highlighting the advantages and the limitations of each of these methods. For the sake of 

clarity, we complement the description of each method by applying it to the analysis of excess 

mortality related to drug abuse among Hispanic baby boomers in the United States. These mortality 

rates are presented in a Lexis surface in Figure 6.1. In section 3, we present our proposed 

visualization technique. We describe its advantages, and explain how it can complement existing 

methodologies. Section 4 consists of a step-by-step description of the construction of the plot. 

Section 5 provides three empirical applications of the proposed visualization (Figures 6.5-6.7). In the 

final section, we draw some conclusions.  

For the examples presented, we used the R programming language (R Core Team 2018) for the 

analysis and data visualization. In addition, we used the packages ggplot2 (Wickham 2016), Epi 

(Carstensen et al. 2018), MortalitySmooth (Camarda 2012), and HMDHFDplus (Riffe 2015). All of the 

data and code for reproducing results are openly available (Acosta 2019a).  

 

 Existing methods for analyzing APC curvature 6.2.

As discussed in the introduction, partitioning temporal variations into linear APC components is 

controversial due to the identification problem. Systematic divergence from this linearity, also 

known as curvature, is, however, unambiguously identifiable. Such curvature could have concave 

(humps) or convex (valleys) shapes, independent of linear trends. When looking at curvature 

graphically, it becomes clear that if a deviation follows horizontal, vertical, or diagonal trends on a 

Lexis surface, it is indicative of an age, period, or cohort effect, respectively. For instance, when 

looking at the Lexis surface of drug-related mortality rates for U.S. Hispanic males depicted in 

Figure 6.1, we can see that the diagonal pattern suggests that there is a cohort pattern of increased 

risk of death among the members of the baby boomer cohorts (i.e., conventionally defined as the 

cohorts born between 1946 and 1964). In this section, we review some existing statistical (detrended 

Age-Period-Cohort models) and visual (Lexis surfaces of changes in vital rates, and Lexis surfaces of excess rates) 
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tools for the detection and analysis of a curvature, and apply each one to the case of drug-related 

mortality among Hispanic baby boomers.  

Figure 6.1: Lexis surface of observed and smoothed drug-related mortality rates for 
Hispanic males in the United States 

a b 

  

Note: Panel (a) is a Lexis surface of observed drug-related mortality rates for Hispanic males in the United 
States between 1990 and 2016. Panel (b) is the corresponding Lexis surface of smoothed mortality rates. The 
smoothing was done using a two-dimensional non-parametric smoothing technique. Specifically, we assume 
that our events are Poisson-distributed, and smooth the data with P-splines, with the smoothing parameters 
optimized according to AIC. Smoothing was performed using the MortalitySmooth R package developed by 
Camarda (2012). 
 
 

 Statistical APC models for analyzing curvature 6.2.1.

Several arithmetic and statistical models have been proposed to identify deviation from trends, such 

as the Median Polish technique (Keyes and Li 2010; Selvin 2001; Tukey 1977) and the Detrended Age-

Period-Cohort models (dAPC) (Carstensen 2007; Clayton and Schifflers 1987; Holford 1983).  

In general terms, the APC effects can be decomposed into linear trend and curvature components 

(Fosse and Winship 2019b; Holford 1983; Tango and Kurashina 1987). While there are infinitely 
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many ways to partition the linear effects into APC components, the curvature components have the 

same shape and magnitude regardless of the parameterization used to fit the model (Clayton and 

Schifflers 1987; Holford 1983, 1991). To obtain these nonlinear components, the effects (log of 

relative risks) in dAPC models are constrained to be zero on average, with a zero slope (detrended). 

In this parameterization, the reference category is the overall age, period, or cohort average; centered 

at its linear trend component. More details about the parameterization of the model can be found in 

Carstensen (2007). 

As an example, Figure 6.2 shows the estimates of the nonlinear cohort effects in relative risk values 

that are obtained from a dAPC model applied to the drug-related mortality of Hispanic males. If we 

focus our attention on the concave shape of the curvature for the boomer cohorts (born between 

1940 and 1970), we see that according to these estimates, the most disadvantaged cohort (the 

curvature peak) is the cohort born in 1953, for whom the risk of dying from a drug overdose is 

nearly 1.5 times higher than would be expected given the overall linear cohort trend.  

 

Figure 6.2: Relative risks of drug-related mortality for cohorts of Hispanic males in the 
United States 

  

Notes: The cohort relative risk estimates were obtained from a detrended APC model (dAPC) applied to 
drug-related mortality for Hispanic males aged 20-70 during the 1990-2016 period. Cohort effects (i.e., the log 
of the relative risks) are constrained to be zero (0) on average, with zero (0) slope. B-splines are used for 
fitting the APC effects. The reference category is the overall cohort average, indicated in the plot with a 
horizontal dashed line. The gray area indicates the 95% confidence interval. Estimates were obtained using 
the R package Epi (Carstensen et al. 2018). 
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Although identifiable, the curvature estimates are average effects that are fixed over the whole length 

of time (Chauvel 2013). The invariability of these estimates has two particularly undesirable 

consequences. First, the estimates do not allow the size of the effect to vary over time/age. Second, 

because of this lack of variability, the estimates attribute the highest or the lowest nonlinear effect to 

a fixed temporal dimension, permanently labeling it as advantaged or disadvantaged. For instance, 

from the estimates depicted in Figure 6.2, is not possible to establish variation in the magnitude of 

the relative risks over age/time; and, as a consequence, we are unable to determine whether those 

individuals born in 1953 actually had the highest risk during the entire period under observation. 

An alternative model proposed by Chauvel (2013) allows for the estimation of a hysteresis value that 

indicates whether the magnitude of the curvature increases or decreases over time. This model is, 

however, a fixed measure of change that reflects only constant increases or decreases over time, and 

it does not allow for modifications in the curvature ridge/floor location over time/age.  

 

  Graphical tools for analyzing curvature 6.2.2.

Several graphical tools have been proposed for uncovering patterns of systematic divergence from 

linear trends. The focus of most of these tools is the analysis of mortality. Plots of the change in 

smoothed rates over age/cohort, over period/cohort, and over age/period are effective tools for 

discerning the dynamics of demographic phenomena over time, and for uncovering patterns of 

systematic divergence from APC linear trends. Indicative Lexis diagrams (Willets 2004) and colored 

Lexis surfaces (Rau et al. 2008, 2018; Richards, Kirkby, and Currie 2006) of these derivatives have 

been proposed as visualization techniques that could be applied to identify the presence of such 

patterns in Lexis plots.  

Variations over APC dimensions are complementary perspectives that can be used to visually detect 

curvature on Lexis surfaces. When looking at rate changes over age/cohort (i.e., vertical changes 

along the same period in the Lexis diagram), we can identify within-period divergence in rate 

changes, although we cannot unambiguously attribute such divergence to age or cohort because of 

the identification problem. Analogously, when looking at changes over age/period (i.e., diagonal 



133 
 

changes along the same cohort in the Lexis diagram) it is possible to determine age/period 

fluctuations that are independent from variations over cohorts. 

 

Raw derivatives in vital rates are generally noisy, particularly when using high-resolution data or low-

frequency events. Thus, it has been suggested that the underlying data should be smoothed over 

ages and years in order to reduce random fluctuations10 (Rau et al. 2018); as shown in Figure 6.1.  

Figure 6.3 depicts Lexis surfaces of rates of mortality change over age/cohort (Panel a) and over 

period/cohort (Panel b) from drug-related causes in Hispanic males in the United States. Note that 

for this empirical example, we do not depict the Lexis surface of rates of mortality change over 

age/period because our interest is on cohort effects, which are not identifiable in such surfaces.  

Given the large variations in drug-related mortality over time, the plot of derivatives over 

age/cohort (vertical changes along the same period as in the Lexis diagram, Panel a) depicts the 

nonlinear cohort effect of the Hispanic boomers more clearly than the plot of derivatives over 

period/cohort (horizontal changes along the same age group as in the Lexis diagram, Panel b). The 

diagonal contour line following the cohorts born around 1955 in Figure 6.3a indicates that the peak 

in mortality rates followed those cohorts, even if the cohort curvature is camouflaged by the strong 

period fluctuations visible in Figure 6.3b. 

  

                                                             
10 Note that smoothed rates are useful for identifying divergence from the trend that occur over large time scales (i.e., 
effects that appear gradually over several age, period, or cohort groups). However, when divergence is very exceptional 
and compromises only a few units of time in a given dimension (i.e., effects that appear in only a couple of age, period, 
or cohort groups) the smoothing process could weaken or remove the divergence of interest. In those cases, the use of 
observed rates is preferable to the use of smoothed rates. 
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Figure 6.3: Lexis surfaces of changes in drug-related mortality rates over age/cohort and 
over period/cohort for Hispanic males in the United States 

a b 

  

Notes: Panel (a) is the Lexis surface of changes over age/cohort (read vertically from young to old ages, or 
from newer to earlier cohorts); with a yellow-to-red scale indicating the relative mortality rate increase for age 
x compared to age x-1 (or cohort k compared to cohort k+1) in the same year, and a green-to-blue scale 
indicating a relative mortality decline between consecutive ages/cohorts. The black contour line depicts zero 
changes in mortality, which indicates a local maximum or minimum death rate in a given calendar 
year/cohort (i.e., a curvature ridge or floor). For example, if we examine the year 2000, we see that death rates 
increased with age until hitting their maximum value at age 44 (curvature ridge). From ages 45 to 71, the 
death rates declined over age until reaching their minimum value at age 72 (curvature floor). Panel (b) is the 
corresponding Lexis surface of changes in drug-related mortality rates over period/cohort (read horizontally 
from earlier to more recent calendar years/cohorts) for Hispanic males in the United States; with a yellow-to-
red scale indicating the relative mortality rate increase for year t compared to year t-1 (or cohort k compared 
to cohort k-1) in the same age, and a green-to-blue scale indicating a relative mortality decline between 
consecutive calendar years. Again, the black contour indicates a curvature ridge or floor in a given 
age/cohort. For example, if we examine age 50, we see that the death rates increased with time until hitting a 
maximum value in 2005 (curvature ridge). From 2006 to 2011, the death rates declined over time until 
reaching their minimum value in 2012 (curvature floor). 

 

Alternatively, the use of Lexis surfaces to depict deviations from trends is an effective way to display 

variation in the magnitude and the spread of curvature over time/age. The first step in the extraction 
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of curvature (excesses or depths) is to estimate a baseline, which is a counterfactual scenario of vital 

rates in the absence of age, period, or cohort nonlinear effects.  

Several methods are available to estimate a baseline from which it is possible to obtain curvature in 

vital rates. These approaches include applying interpolation techniques (Camarda 2012), extracting 

the irregularity using decomposition techniques (Remund, Camarda, and Riffe 2018), using 

detrended APC models (Chauvel, Leist, and Smith 2017), or simply detrending the smoothed vital 

rates over the selected perspective of change (i.e., over age, period, or cohort). There is no ideal 

generic method that can be applied because each demographic phenomenon and research question 

has specific underlying hypotheses that should be accounted for. 

For the case of cohorts of Hispanic males in the United States who are disadvantaged in terms of 

drug-related mortality, we present two examples using the interpolation and dAPC approaches for 

the estimation of the mortality baseline. For the interpolation process, we excluded deaths pertaining 

to disadvantaged cohorts, who were previously estimated to be born between the advantaged 1940 

and 1970 cohorts, and interpolated the surface with these 30 cohorts removed. The estimation of 

the mortality baseline was done through the two-dimensional interpolation option available in the R-

package MortalitySmooth. Figure 6.4a depicts the excess mortality rates (per 100,000 population) 

among these cohorts over the interpolated baseline; i.e., the difference between the smoothed 

observed mortality rates and the hypothetical mortality that is predicted if mortality had developed 

according to a linear trend from the 1940 to the 1970 birth cohort. 

Alternatively, to obtain a mortality baseline that accounts for all cohorts present in the observed 

data, we fitted a dAPC model with all linear trends attributed to age and period variations (cohort-

detrended), and set all cohort terms to zero, while removing all cohort curvature components from 

the predicted baseline. Figure 6.4b presents the excess mortality among cohorts over a baseline that 

excludes cohort curvature; i.e., the difference between the smoothed observed mortality rates and 

the hypothetical mortality that is predicted if mortality had developed according to the overall linear 

trend for all of the cohorts. 

Although they are similar in shape, the excess mortality estimates in Figures 6.4a and 6.4b are 

considerably different in magnitude and must be interpreted differently. As the magnitude and the 

shape of the excess mortality obtained from the interpolated baseline depend exclusively on the two 

cohorts selected for the interpolation, they are sensitive to the arbitrariness of the selection of these 
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cohorts. In contrast, the excess mortality that is obtained from the baseline without cohort curvature 

components is relative to the performance of all of the observed cohorts included in the observation 

window.  

Figure 6.4: Lexis surfaces of the excess drug-related mortality rates for male Hispanic 
boomers in the United States during 1990-2016, ages 15-75 

a b 

  

Note: Panel (a) is the excess mortality rates (/100k) estimated as the difference between the smoothed 
mortality rates and an interpolated baseline that omits the 1940-1970 cohorts from the Lexis mortality 
surface. Panel (b) is the excess mortality rates (/100k) estimated as the difference between the smoothed 
mortality rates and a baseline obtained from a dAPC model with the cohort terms set at zero; i.e., centered at 
the linear trend component of the cohort effects. In this case, the excess mortality is relative to the overall 
mortality trend across cohorts.  

 

Compared to the curvature effects obtainable from statistical dAPC models, the plots of rate 

derivatives (Figure 6.3) and of trend divergence (Figure 6.4) are much more flexible in depicting the 

temporal dynamic of nonlinear fluctuations, as they allow the shape of curvature to move freely 

through the Lexis diagram, and depict patterns with a higher degree of fidelity to the observed data. 

Another important advantage of these plots is that they depict general patterns that modulate the 

changing phenomena over a wide age and time frame. In a single image, it is possible to identify 
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several irregularities potentially indicative of APC effects on the dynamics of a specific phenomenon 

of a population.  

These plots are useful for the analysis of temporal patterns in a single phenomenon in a single 

population. However, when comparisons across several phenomena within a single population or of 

a single phenomenon across several populations are desired, it is necessary to construct a surface for 

each phenomenon/population analyzed. In addition to requiring considerable space, an important 

limitation of such comparisons is that displaying contrasting patterns across surfaces is visually 

difficult, even when surfaces are facetted.  

 

 The proposed visualization  6.3.

In the current paper, we follow in the tradition of the aforementioned literature by attempting to 

visually depict and contrast the nonlinear changes in demographic phenomena over the APC 

dimensions. Specifically, we demonstrate the value of making a broad-picture comparison of how 

the location of a curvature feature of a demographic phenomenon is changing over time. This 

curvature feature could be anything from the location of the cohort with maximum excess mortality 

by cause of death to the mode of age-specific fertility in different populations. In the former case, 

the visualization enables the comparison of the temporal patterns for many phenomena (causes of 

death) in one population on one plot. In the latter case, the aim is to compare the temporal 

patterning of a single phenomenon (age-specific fertility schedules) across a variety of populations or 

subgroups. While the simplest visualization depicts the changing location of these demographic 

phenomena (i.e., a curvature ridge or floor), the use of visual attributes such as color, size, and 

opacity allows for more information about the densities to be depicted; including, for instance, the 

change in the magnitude and the spread of curvature.  

It should be noted that if the emphasis is placed on the maximum/minimum point of the curvature 

over time (ridge/floor), other local maximums/minimums would be neglected in the case of 

multimodal distributions. This information could be of great importance, and alternative plots could 

depict the dynamics of multiple modes over time. Moreover, the depiction of several features in the 

same plot also offers the possibility of analyzing the interrelation among them, such as the 

correlation between magnitude and spread. Nevertheless, the choice of the amount of information 
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to display in the plots depends on the context of the research question, and should be made while 

strategically considering the tradeoff between visual complexity and the clarity of the visualization 

(Munzner 2014).  

Although the APC curvature plots proposed here contribute additional information that is not 

available in APC statistical models, they should be seen as complementary. Some estimable 

functions from statistical APC models are of great value, and are not obtainable by graphical 

analysis, such as the statistical significance of a particular pattern (Holford 1991). In Table 1, we 

summarize some of the advantages and limitations of the statistical and visual methods we have 

discussed. 

Table 6.1: Comparison of the properties of different methods for the analysis of nonlinear 
APC patterns  

  
Detection of 

curvature 

Temporal dynamic of curvature 
features 

Comparability 
across 

populations / 
phenomena 

Statistical 
measures a 

Type Method Location Magnitude Spread 

Statistical 
models 

dAPC models + - - - + + 

dAPC hysteresis model + - +/- - + + 

Graphical 
tools 

Surface of derivatives + + - - - - 

Surface of excess - +/- + + - - 

APC curvature plots - + + + + - 

Note: (+) indicates that the method is able to perform the property; (+/-) that it does so to some degree, 
albeit imprecisely; and (-) that it is not able to perform the property. 
a Some examples of these statistical measures are tests of statistical significance and confidence intervals. 

 

In the following, we describe the procedure for constructing APC curvature plots for demographic 

phenomena, and apply the procedure to three empirical examples: (1) the excess mortality of baby 

boomer cohorts in the United States from drug-related causes across racial/ethnic populations, (2) 

the stability of the age location of the young adult mortality hump, and (3) the temporal patterning 

of age-specific cohort fertility peaks across countries.   
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 Construction of the plot  6.4.

For this kind of analysis, we suggest the use of the finest possible resolution for the data. The 

smaller the grid in the Lexis surface, the clearer and more precise the depiction of the temporal 

dynamic of demographic curvature will be. The construction of the APC curvature plot involves 

three main steps: 

 

 Detection of curvature and the temporal section frame of interest 6.4.1.

As mentioned in the introduction, there are statistical methods (e.g., dAPC models in Figure 6.2) 

and pre-existing visualization tools (e.g., Lexis surfaces of changes in vital rates over age/cohort and 

over period/cohort in Figure 6.3) that allow for the detection of curvature patterns.  

After some features of curvature (e.g., curvature ridge and floor) have been identified, their temporal 

positions in the Lexis diagram determine the temporal frame of interest. This framing is important 

because other “irregularities” located outside of this temporal section represent a potential source of 

noise for the analysis. 

 

  Estimation of curvature features 6.4.2.

Remund and colleagues (2017) proposed three attributes of interest that could be used in describing 

the young adult mortality hump, and provided examples of summary indices that could be used to 

measure them. These attributes are location (e.g., mode, mean, and median), magnitude (e.g., loss in 

life expectancy, years of life lost, and death counts), and spread (e.g., standard deviation and 

quantile). These dimensions and indices could be enriched so that they can be used to analyze other 

demographic phenomena.  

 

The minimum requirement of a comparative APC curvature plot is the location measure (i.e., mode, 

mean, etc.). Other dimensions, such as magnitude and spread, are optional and complementary 

measures that could be used to enrich the comparative analysis, but that are not strictly necessary for 

the construction of a basic version of the plot.  
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In cases in which the deviance from the trend is also a local or an absolute maximum or minimum, 

the mode of the ridges and the valleys may be obtainable by extracting the age/period coordinates 

of the maximum or the minimum smoothed values within the temporal section frame. However, for 

cases in which these irregularities are not a local maximum or minimum, the estimation of their 

respective location, magnitude, and spread requires additional information pertaining to the 

divergence of vital rate estimates.  

As discussed in section 2.2, several methods are available for estimating divergence in vital rates, and 

which method is appropriate depends on the underlying hypotheses regarding the demographic 

phenomenon and the research question to be addressed. The location, the magnitude, and the 

spread of curvature can be estimated from this divergence in vital rates. It is worth noting that all 

three features could be estimated using age, period, or cohort perspectives depending on the 

temporal dimension that is of interest. 

 

  Translation of curvature attributes into visual properties of the plot 6.4.3.

The population or the demographic phenomenon to be compared in the Lexis surface is a 

categorical value that should be translated into color; preferably using a color-blind safe palette (as is 

done here), or into different point shapes for a black-and-white printout11. The location measures 

should be translated into the age and period coordinates in the Lexis diagram. To prevent unrelated 

curvatures from being fused, unifying these point coordinates by lines should be avoided.  

The magnitude and the spread measures should be standardized, and can be translated into opacity 

level and shape size. 

 

 Empirical Application 6.5.

For illustrative purposes, we applied the procedure described above to construct APC curvature 

plots for three demographic outcomes with different temporal perspectives: a) comparing excess 

mortality from drug-related causes across several racial/ethnic groups of boomers in the United 

                                                             
11 When using different point shapes, equal areas must be given equal values of spread across the different point shapes 
employed. As this is usually not done by default in the plotting systems (e.g., ggplot2), a correction factor must be applied 
to adjust the proportionality of areas across the shapes. 
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States; b) examining excess mortality among young adults; and c) comparing cohort fertility rates 

across several countries. In this section, we describe how we estimated the location, the magnitude, 

and the spread features of curvature; and how we translated these features into an APC curvature 

plot that displays the attributes for each case. Although our main objective is to propose a 

visualization tool, we briefly comment on some of the determinants that might be driving the 

nonlinear APC patterns that are easily identifiable and comparable using this visualization technique.  

 

 Excess mortality from drug-related causes among boomers 6.5.1.

Previous exploratory and descriptive analyses have suggested that baby boomers in the United States 

have a disproportionate susceptibility to drug-related mortality throughout their life course (Acosta 

et al. 2019; Miech, Koester, and Dorsey-Holliman 2011; Zang et al. 2019). Thus, for this specific 

case, we are interested in comparing the attributes (location, magnitude, and spread) of the cohort 

mortality curvature of drug-related mortality for several racial/ethnic groups of U.S. males in a single 

Lexis plot.  

We use cause-specific mortality data and population estimates by single calendar year, single year of 

age, sex, race, ethnic group, and cause of death from 1990 to 2016 drawn from the U.S. National 

Vital Statistics System (NVSS 2019a, 2019b). This dataset allows us to use single-year resolution in 

the estimation and visualization of nonlinear cohort effects. Here, we define drug-related mortality 

as deaths involving drug use registered in the categories of accidental and undetermined intent 

overdoses, or in the categories of mental or behavioral causes (i.e., ICD 10 codes F11-19, F55, X40-

44, Y10-14). 

Detecting the mortality curvature and measuring its features (location, magnitude, and spread) 

involved three distinct steps. First, we smoothed the entire drug-related mortality surface over 

period and age using two-dimensional P-splines, with the smoothing parameters optimized by AIC, 

for all male racial/ethnic groups; as presented in Figure 6.1b for the Hispanic ethnic group. Second, 

from these smoothed rates, we calculated the change in mortality from age x to age x+1 (from 

cohort k to cohort k-1) for each year (Figure 6.3a), and the change in mortality from period t to 

period t+1 (from cohort k to cohort k+1) for each age (Figure 6.3b). The ridges and floors of 

curvature were identified with black lines used to indicate the ages at which the mortality change was 

zero. In the derivative over age/cohort (plotted in Figure 6.3b), the curvature ridge indicating the 
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maximum level of drug-related mortality is mostly diagonal, following the cohorts born between 

1950 and 1960 throughout their life course. Third, using a dAPC model, we estimated the excess 

mortality relative to the overall cohort average risk for each racial/ethnic group; as the example 

presented in Figure 6.4b for U.S. Hispanic males shows. From these excess mortality estimates, we 

were able to extract information about the temporal dynamic of the location (age/cohort with the 

largest mortality relative risk), the magnitude (largest mortality relative risk compared at the 

curvature), and the spread (steepness of the excess mortality compared to the mortality of the 

surrounding ages) of the curvature during the 1990-2016 period. We can see that the curvature 

trajectory is not completely straight, and that its magnitude and spread are not constant over time. 

As discussed in the introduction, these changes in the location, the magnitude, and the spread over 

age/time cannot be identified from the dAPC estimates, such as those depicted in Figure 6.2. To 

compare the curvature ridge pattern differences across racial/ethnic groups, we plotted in Figure 6.5 

the following attributes of the excess drug-related mortality among boomers on an APC curvature 

plot:  

1. Category: Each observed racial/ethnic group was identified by a distinct color, or by a 

different point shape in the case of a black-and-white printout (see Figure S3.1).  

2. Location: For each calendar year, we plotted the age/cohort location of the maximum relative 

risk of drug-related mortality. 

3. Magnitude: The relative risk compared to the baseline value for each point was translated into 

opacity. Note that the opacity scale reflects the difference in relative risk within each 

racial/ethnic group. We use a relative scale because it allows us to better identify the 

variation in magnitude over time and for each group. The absolute differences in magnitude 

across racial/ethnic groups can be seen by comparing the minimum and maximum values 

reached by group. This range in magnitude is indicated in the legend for each group. 

4. Spread: The standard deviation of the hump in relative risk for each period was translated 

into point size. 
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Figure 6.5: APC curvature plot of the features of excess drug-related mortality among four 
racial/ethnic groups of boomer males in the United States 

 

Notes: The coordinates of the points indicate the location of the curvature ridge over time (i.e., the modal age/cohort 
with the excess mortality in each single-year period). The magnitude, indicated by the color opacity, is measured as the 
relative risk of the death rate in the modal age/cohort to the corresponding death rate in the baseline. The minimum and 
maximum levels of relative risk that the curvature ridge of each racial/ethnic group reached during the period under 
observation are indicated in the legend. The spread, indicated by the point size, is estimated as the standard deviation of 
the curvature in each single-year period. The white band indicates the baby boomer cohorts (i.e. born between 1946 and 
1964). 

 

In this case, we were not only able to extract and summarize the differences in location from four 

different plots in a single visualization; we were able to compare additional outputs to the rate of 

mortality change plots, such as the magnitude (relative risk) of the mortality curvature ridge 

compared to the expected values and the spread (standard deviation) of the curvature. Thus, we 
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were able to clearly identify the disadvantaged cohorts for all of the racial/ethnic groups by 

observing the alignment of the points along a diagonal line. Our finding that the degree of cohort 

disadvantage, relative to the overall cohort average, was greater among non-Hispanic black boomers 

than among other race groups is reflected in the larger values of relative risk among the former 

group (i.e., 1.7 to 2.0). Note that we picked a cause of death with particularly strong cohort 

patterning. For other causes of death, such as cerebrovascular diseases, nonlinear excess mortality 

risks would not follow cohort patterns; thus, the depicted points would not fall along a diagonal line. 

 

  Young adult mortality hump 6.5.2.

Excess mortality in young adults –also known as the accident or young adult mortality hump– is a 

well-known feature of the age structure of most mortality regimes, particularly among males. 

Goldstein (2011) presented a plot of the hump peaks over time for several countries, and Remund 

and colleagues (2018) decomposed and plotted the contributions by cause of death in order to 

analyze several features of the hump in the United States. Here, we used mortality data for certain 

countries drawn from the Human Mortality Database (HMD 2019) to compare not only the 

curvature ridges of the hump, but the additional features of their changes in magnitude and spread 

over time and across different countries. As in the method employed by Goldstein, we defined the 

hump as the difference between the cross-sectional period smoothed mortality rates and an 

interpolated mortality baseline between ages 10 and 40. We performed the smoothing and the 

baseline interpolation using the methods we previously applied to obtain Figure 6.4a. However, 

unlike the example presented in Figure 6.4a, we interpolated the hypothetical baseline with excess 

age-related mortality rather than cohort-related mortality. 

We compared the young adult mortality hump in Spain, Russia, Taiwan, and the United States 

during the 1965-2016 period. Figure 6.6 (S3.2 for the black-and-white printout) shows the variation 

over time of the modal age of the hump, its magnitude measured by excess death rates (per 100,000 

population), and the spread of the hump measured by standard deviation. 
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Figure 6.6: APC curvature plot of the features of excess mortality in young adult males in 
four countries  

 

Notes: The coordinates of the points indicate the location of the curvature ridge over time (i.e., the modal age/cohort 
of the excess mortality by single-year period). The magnitude, indicated by the color opacity, is the excess death rates 
(/100k), calculated as the difference between the death rate in the modal age/cohort and the corresponding death rate in 
the baseline. The minimum and maximum excess mortality rates reached by the curvature ridge of each country during 
the period under observation are indicated in the legend. Finally, the curvature spread, indicated by the point size, is 
estimated as the standard deviation of the curvature in each period.  

 

In contrast to the more regular location patterns we see for Taiwan and the United States, we 

observe in this plot an age-period interaction effect for Spain around age 30 during the first half of 

the 1990s and a cohort effect for Russia among the cohorts born between 1975 and 1980. In the 

case of Spain, this finding of an age-period interaction effect is consistent with evidence indicating 

that in this period, Spain was the western European country with the highest incidence of HIV 

infection, which was mainly driven by the sharing of contaminated needles during the “heroin 

boom” of the 1980s (Valdes and George 2013). In the case of Russia, the cohort pattern could be 

indicative of a long-term mortality disadvantage for those cohorts who entered adulthood in the 

early 1990s, when the country was undergoing a profound socio-historical transformation, as well as 

a severe alcohol abuse epidemic (Keenan et al. 2015). This pattern is consistent with a cohort pattern 

found in Belarus (not shown here), a country that experienced similarly far-reaching contextual 

changes during the same period. It is noteworthy that part of the age-period interaction effect 

depicted in the APC curvature plot for Spain would be attributed to a cohort effect if a statistical 
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approach would have been used. This is because, unlike the visual tools, the existing APC statistical 

methods are unable to make the distinction between age-period interaction effects and sustained 

cohort effects.  

 

  Cohort fertility rate 6.5.3.

As a final example to show the applications beyond mortality, we plotted some aspects of fertility 

behavior along cohorts. Figure 6.7 (S3.3 for the black-and-white printout) depicts the age-specific 

fertility outcomes of the cohorts born between 1905 and 1985 in Spain, Sweden, and the United 

States. Cohort age-specific fertility rates (ASFR) were obtained from the Human Fertility Database 

(HFD 2019) and extracted using the R package HMDHFDplus (Riffe 2015). 

In this case, we plotted the modal age/period of fertility for each cohort (location), the ASFR 

pertaining to this mode (magnitude), and the standard deviation before that age/period (spread). 

The standard deviation before the mode was used to enable us to consider more recent cohorts who 

are likely to have reached the modal age in fertility, but have not yet completed their childbearing. As 

mentioned previously, any number of indices could be used to capture the three dimensions of 

location, magnitude, and spread.  

Figure 6.7: APC curvature plot of cohort fertility rate peaks in three countries 

 

Notes: The coordinates of the points indicate the location of the curvature ridge along the cohort (i.e., the modal 
age/period of the ASFR by single-year cohort). The magnitude, indicated by the color opacity, is measured as the ASFR 
mode by cohort. The minimum and maximum ASFR reached by the modal age/period of each country are indicated in 
the legend. The curvature spread, indicated by the point size, is estimated as the standard deviation of the curvature 
before the modal age/period. 
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This plot highlights a number of interesting features in the fertility dynamics of these three 

countries. We see strong evidence of period effects for many of the countries in which the fertility 

booms were synchronous for several cohorts (e.g., Sweden in 1943-1944; the U.S. in 1947, 1990, and 

2007; and Spain in 1940, 1948, and 1964). The plot also illustrates the sustained differences in modal 

ages of fertility over time (e.g., the ages are consistently youngest for the U.S. and oldest for Spain; 

with an exceptional shift between Sweden and Spain during the 1980s). The overall decline in 

fertility in Spain and the United States is also illustrated by the fading peak ASFR over time, whereas 

this pattern is irregular in Sweden. Lastly, the concentration of fertility at more advanced ages is 

reflected in the decline in the standard deviation before the modal age at fertility in all three 

countries. 

 

 Conclusions 6.6.

In this paper, we discussed the advantages of using visualization tools on Lexis diagrams for analyses 

of age-period-cohort nonlinear effects of vital rates rather than mathematical models, as well as 

some of the limitations of these tools. We proposed the APC curvature plot to enrich the analysis of 

irregularities in vital rates that are indicative of nonlinear age, period, or cohort effects. We argue 

that compared to mathematical models and other Lexis plots, this visual display provides a higher 

level of flexibility because it allows us not only to depict the dynamics of the location, the 

magnitude, and the spread of temporal effects over time together; but to contrast different 

populations or subtypes of demographic phenomena in a single visualization. We outlined the 

process that can be used to construct APC curvature plots for the analysis of nonlinear APC effects. 

Using vital rates, we provided some examples of how this approach can be applied by analyzing 

cohort effects on drug-related mortality by racial/ethnic groups within the United States; age effects 

on young adult mortality in Russia, Taiwan, Spain, and the United States; and age/period effects on 

fertility in Spain, Sweden, and the United States. Finally, we have provided R-code that can be used 

to reproduce these examples. 
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Chapter 7 - General Conclusions 

 

The articles presented in this dissertation covered analyses of APC effects on mortality from 

influenza and behavioral causes, and provided a methodological contribution for the visual analysis 

of nonlinear APC effects. In this chapter, we first explore how the cohort effects on extrinsic 

mortality analyzed in this dissertation differ from the more conventional cohort effects on intrinsic 

mortality that have been conceptualized and analyzed in the existing literature. Next, we discuss the 

similarities and the differences between the cohort effects on influenza and behavioral mortality, 

such as the age-cohort and period-cohort interactions, and the interactions of these cohort effects 

with intrinsic factors. We also present two hypotheses regarding the greater relative susceptibility of 

baby boomers to mortality from influenza and behavioral causes12, which allow us to explore 

possible interactions between these two set of causes. Then, we discuss the advantages of using the 

nonlinear effects approach for the analysis of mortality, highlighting the methodological 

contribution presented in chapter 6, and the contributions of our approach to the analyses presented 

in chapters 4 and 5. Finally, we outline a few of the potential implications of the mortality patterns 

we have detected for population health; discuss the potential usefulness of our findings for public 

health policies; describe the general limitations of our study; and offer some ideas for further 

research. 

 

 Cohort effects on influenza and behavioral mortality 7.1.

 Cohort mechanisms 7.1.1.

The findings presented in this dissertation highlight the usefulness of analyzing cohort effects on 

extrinsic mortality at different stages of the life course. Our results indicate that even in the presence 

of large period disturbances affecting mortality at most ages, relative differences across cohorts were 

sustained over time. These findings invite us to rethink the dominant assumptions about how cohort 

                                                             
12 As noted in Chapter 5, when we refer to differences in mortality across cohorts with the terms such as “advantage”, 
“disadvantage”, “greater susceptibility”, “penalty”, and “excess”, etc.,  these are expressed relative to the linear trend of 
change – i.e., nonlinear effects or divergence from the linear trend –, and make no reference to absolute differences in 
mortality between cohorts. The identification problem that is inherent in APC data prevents us to attribute absolute 
variations over period or cohort dimensions. 
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effects on mortality arise, as well as about how these effects operate over the life course, and 

through which causes of death. As we pointed out in chapter 2, the cohort effects that are typically 

conceptualized and studied in mortality analyses are those that originate from exposures during 

critical stages of development, and have lingering effects on intrinsic mortality at older ages. Our 

findings suggest that other mechanisms also play important roles in shaping contemporary mortality. 

We identified cohort effects that stemmed from physical and social exposures, and that affected the 

extrinsic mortality of these cohorts starting at young ages. 

We suggest that the observed cohort differentials in influenza mortality resulted from two 

mechanisms that varied depending on age. Children and young adults may have excess influenza 

mortality during a specific season or during a pandemic if the circulating influenza strain is very 

different from the strain they encountered early in life, and to which they are said to be “primed.” 

Because the influenza virus is highly mutable, successive cohorts are primed to different subtypes, 

leading to a succession of cohorts with varying degrees of susceptibility every epidemic season 

depending on the strain in circulation (i.e., antigenic imprinting hypothesis). At old ages, the early life 

imprint of influenza appears to fade away, while the health capital of the cohort members, which 

largely depends on their infection load in early life, becomes the main determinant of influenza 

mortality (i.e., cohort morbidity phenotype hypothesis). Hence, cohort effects on influenza mortality seem 

to operate at two different levels based on antigenic and scarring13 imprints early in life.  

Our findings regarding the relative baby boomers’ excess mortality suggest that social exposures 

during sensitive life stages increased their risk of behavioral mortality beginning at young ages. Two 

mechanisms acting together seem to have been involved in this cohort effect. First, the large sizes of 

the boomer cohorts and the socioeconomic contexts in which they were living increased their levels 

of stress and frustration (birth cohort effect in Ryder (1965)’s sense). Second, the boomers’ exposure to 

sudden socio-historical changes and their involvement in social movements at young ages forged a 

generational identity that was characterized by risky attitudes and behaviors (generational effect in 

Mannheim (1952)’s sense).  

                                                             
13 Note that these scarring imprints do not necessarily manifest as punctual and distinctive cohort effects on mortality, 
because they do not refer exclusively to short-term shocks experienced in early life, such as famines or pandemics. For 
influenza mortality at old ages, changes in exposure to infection loads early in life (scarring imprints) occurred gradually 
and monotonically over cohorts, which resulted in the cohort effects on mortality having a similar pattern. 
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Having presented these mechanisms and the dominant approach of cohort effects on intrinsic 

mortality, we will now move on to discuss the differences in how these cohort effects manifested 

themselves over time, especially with regard to their interactions with period- and age-based factors. 

 

 Cohort interactions with age and period dimensions 7.1.2.

The differences between the mechanisms underlying the cohort influences on influenza and 

behavioral mortality have implications for age and period effects. Because extrinsic mortality is 

mainly determined by environmental factors, the variation of these factors over time may interact 

with cohort effects. For both influenza and behavioral mortality among the boomers, period-based 

fluctuations had significant effects at most ages. For instance, the influenza, drug, and HIV 

epidemics undoubtedly influenced the mortality of boomers at most ages. However, our findings 

suggest that the cohort differential in mortality risk was sustained, despite variations over periods.  

More precisely, we identified considerable differences between influenza and behavioral mortality in 

these period-cohort interactions. In the case of influenza, a cohort advantage or disadvantage could 

be reversed depending on the similarities or differences between the antigenic signatures of the cohort 

and the influenza virus strains in circulation. For instance, those individuals born around 1918 – 

who were mostly primed to H1N1 – were disadvantaged when they were exposed to the 1968 

H3N2 pandemic, but were advantaged when they were exposed to H1N1 during the 2009-2010 

pandemic and during the 2013-2014 influenza season in both Mexico and the United States (Gagnon 

et al. 2018a). In contrast, the baby boomers’ disadvantage in mortality due to behavioral causes was 

preserved over the full period under observation, despite period-based mortality crises. 

Turning to the interactions with age-based factors, we can see that for influenza mortality, the 

cohort effects varied considerably depending on the life stage. For the younger cohorts in our 

analysis (i.e., the cohorts born during the second half of the 20th century), we identified changes in 

risk levels among those born during the years surrounding major antigenic events (i.e., pandemics or 

significant antigenic events). In these instances, it appears that the cohort differential in mortality for 

the young and the adult populations was mainly determined by the interaction between the antigenic 

cohort signature and the virus strain encountered later in life. For the older cohorts in our analysis (i.e., 

the cohorts born during the end of the 19th century and the beginning of the 20th century), we found 

that the changes in risk levels over cohorts were smoother, with large monotonic segments, and 
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appeared to be less related to important antigenic events during early life. The variations in risk 

levels over cohorts at older ages were more likely linked to changes in the sanitary conditions these 

cohorts were exposed to in early life, in line with the cohort morbidity phenotype hypothesis (Crimmins 

and Finch 2006; Finch and Crimmins 2004).  

In contrast, for the causes of death that underlie the boomer penalty, the most disadvantaged 

cohorts (i.e., those born at the end of the 1950s and the beginning of the 1960s) were exclusively 

observed during young and adult ages (<60y). For this reason, we were not able to determine 

whether the cohort effects we found for these cohorts at youth and adult ages will continue to 

operate as they reach older ages, or whether these effects will change into a different temporal 

pattern, as was observed for influenza mortality. The cohort effects on mortality among these 

boomers could change at older ages in several ways. First, selection could reverse the observed 

trends. The large extrinsic mortality rates experienced by baby boomers during their young and adult 

ages might have weeded out the frailest individuals, increasing the average robustness of these 

cohorts. As a consequence, the levels of intrinsic mortality at older ages could decline. In a second 

scenario, the boomer penalty could disappear. It is possible that when these boomers reach older 

ages, their extrinsic mortality will become proportionally negligible, and their intrinsic mortality will 

be no different from that of their neighboring cohorts. A third possibility is that the boomer penalty 

will become even more pronounced at older ages. This exacerbation of the boomer disadvantage 

with age could result from two different processes that underlie the adverse health behaviors of baby 

boomers. The low levels of perceived well-being and the high levels of frustration observed among 

the boomers could increase as they grow older, thereby exacerbating their disadvantage in extrinsic 

mortality. In addition, the cumulative damage from the extrinsic stressors the boomers were exposed 

to over their life course may have weakened their health capital, which could precipitate the onset of 

chronic and degenerative diseases, thereby increasing their risk of intrinsic mortality.  

Most of the interactions we identified between age-based factors and cohort effects on extrinsic 

mortality operate through the interactions of extrinsic and intrinsic factors in causing death. Various 

mutual influences between these two types of stressors can be identified from the analyses presented 

in chapters 4 and 5. 
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 Interactions between extrinsic and intrinsic causes of death  7.1.3.

Although mortality from influenza and behavioral mortality are essentially external causes of death, 

they may interact with intrinsic causes of death and frailty. As we discussed in chapter 4, influenza 

infections can exacerbate degenerative diseases, such as respiratory and cardiovascular diseases. In 

addition, injures from influenza infections can precipitate the onset of intrinsic diseases (McElhaney 

et al. 2006). In terms of behavioral causes, substance intoxications can lead to instant death, but the 

cumulative damage of drug and alcohol abuse can also lead individuals to develop chronic and non-

communicable diseases later in life, or aggravate the severity of these diseases. Moreover, the use of 

substances, as well as acute HIV and hepatitis C infections, may induce or exacerbate other chronic 

diseases, such as substance abuse disorders, alcoholic cirrhosis, acquired immunodeficiency 

syndrome (AIDS), and chronic hepatitis C (Cherubin 1972; Jaffe and Kimmel 2006; Laine et al. 

2001; Shield et al. 2014). In these cases, the stressors are extrinsic, but the cumulative damage from 

these stressors may lead to progressive levels of physiological deterioration and dysfunction that can 

substantially increase the risk of intrinsic mortality. Thus, the aging process is influenced not only by 

genetically determined intrinsic stressors (Koopman et al. 2015), but by cumulative interactions 

between intrinsic and extrinsic stressors.  

Just as extrinsic stressors have an influence on mortality risk from intrinsic causes, intrinsic stressors 

can similarly interact with mortality from extrinsic causes. Their physiological and health capital 

could make individuals more or less resistant to the effects of extrinsic factors, such as acute 

infections or harmful behaviors. This influence of intrinsic stressors on extrinsic mortality suggests 

that there are links between the cohort morbidity phenotype hypothesis and mortality from influenza and 

behavioral causes. The improvements in health capital over cohorts, which resulted from the gradual 

amelioration of early life conditions, may have translated into an increased resistance to the damage 

caused by influenza, HIV, and hepatitis C infections, as well as by substance abuse. As our findings 

suggest, cohort effects on influenza mortality at old ages operate through the individuals’ intrinsic 

status, rather than through the extrinsic stressor itself; that is, the virulence or the toxicity of the 

influenza virus itself. 

Taken together, the interactions described above highlight the problems associated with the 

partitioning of mortality into intrinsic and extrinsic causes (Carnes et al. 2006; Carnes and Olshansky 

1997). As Koopman and colleagues argued (2015, p. 51), “aging and death are not explained by a 
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single case, but by intrinsic and extrinsic stressors that congregate over age and each constitute 

partial causes.” 

 

 Baby boomers and increased mortality risk from influenza 7.2.

and behavioral mortality 

A common finding from the analyses of influenza and behavioral mortality that needs to be 

addressed is that the second-order cohort curvatures on influenza and behavioral mortality detected 

for the baby boomers in the United States were similar. A common feature of the cohort differences 

in mortality found in both analyses and the all-cause mortality patterns was that the cohorts born at 

the end of the 1950s had a higher relative risk of death than the earlier cohorts born in the late 1940s 

(also denoted “leading-edge” boomers) and the more recent cohorts born in the late 1960s (also 

denoted “leading-edge” Xers14; see Figures 4.6 and 5.4). Here, we address two alternative hypotheses 

regarding the causal mechanisms that may have led to these similarities.  

The first hypothesis is that a common factor would have increased both influenza and behavioral 

mortality among boomers, compared to the linear trend. The most distinctive characteristic of the 

boomer generation compared to other generations is its large size. This variation in size was, 

according to Ryder, “the most evident manifestation of inter-cohort differences” (1965, p. 845). As 

we discussed in chapter 5, the large sizes of the baby boomer cohorts and the economic contexts 

they experienced increased the frustration and distress levels of their members through birth cohort 

effects (Easterlin 1987) or through a generational identity effect (Mannheim 1952). The large sizes of 

these cohorts and their unprecedented levels of educational enrollment increased their exposure to 

and the influence of their peers, which increased their isolation from the influence of previous 

generations (Easterlin 1987; Phillips 2014). Such increases in horizontal identification at the expense of 

vertical identification would have made the boomers less apt to identify with the values and beliefs of 

previous generations (Stewart and Torges 2014), and encouraged the rise and spread of the social 

youth-based movements of the 1960s and 1970s (Abrams 1970; Bristow 2015, 2016; Cross and 

                                                             
14 Note, however, that the pattern is not identical. For influenza, the cohort born in 1957 had the largest departure from 
the linear trend in relative risk of mortality among the boomers; but for behavioral causes, the pattern is less precise, and 
is dispersed within the “trailer edge” boomer cohorts (1956-1964). 
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Kleinhesselink 1985; Goertzel 1972). Because of this generational rift, rebellious attitudes and 

behaviors became distinctive characteristics of the baby boomers’ generational identity, and may, in 

turn, have increased their mortality risk from behavioral causes. 

The large size of the boomer generation may have also played an important role in the increased 

mortality observed among the cohorts born around 1957. It is, for example, possible that the large 

sizes of these cohorts amplified the incidence rate during the 1957 pandemic among infants and 

children, and thus increased the imprinting of the H2N2 pandemic strain on these cohorts. The 

higher risk of infection these cohorts faced later in life would have been compounded by their larger 

number of “horizontal” social interactions with their cohort peers in different social contexts (e.g., 

schools, universities, workplaces, nursing homes) (Gagnon et al. 2018a).  

A second hypothesis linking both sets of causes of death with the boomer cohorts is that riskier 

behaviors may have mediated the increasing risk of influenza-related mortality. This mediation could 

have occurred in different ways. As we discussed earlier in this section, substance abuse and 

infections linked to risky behaviors can lead to a higher prevalence of chronic diseases (Cherubin 

1972; Jaffe and Kimmel 2006; Laine et al. 2001; Shield et al. 2014). This deterioration in health 

capital may, in turn, increase an individual’s mortality risk by exacerbating his or her comorbidities 

when he or she is exposed to influenza infections (Plans-Rubió 2007; Reichert et al. 2004; Simonsen 

et al. 2005, 2011). An alternative form of mediation involves several and intricate pathways linking 

opioid consumption, HIV/AIDS, influenza, and bacterial infections. There is growing evidence that 

opioid users are more susceptible to infectious diseases, not only because they share needles, but 

because opioids impair their innate and adaptive immune system defenses (Becker et al. 2016). 

Several studies have found that opioid users have higher risks of contracting viral and bacterial 

infections (Becker et al. 2016; Edelman et al. 2019; Roy et al. 2011). In addition, there appears to be 

an endogenous causal relationship between HIV infection and opioid abuse. As individuals infected 

with HIV are often prescribed opioids for the treatment of painful chronic conditions, they also 

have a probability of developing a substance abuse disorder (Becker et al. 2016). Thus, opioid use 

and HIV infection not only mutually reinforce each other, but increase the risk of influenza 

infection given their immunosuppressive effects. Moreover, because influenza infection alone is 

sufficient to increase the host’s susceptibility to secondary bacterial infections, such as pneumonia 

and tuberculosis (Redford et al. 2014; Small et al. 2010), when the infection occurs in the presence of 

opioid abuse or HIV infection, the host’s risk of developing severe influenza-related complications – 
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and of subsequent mortality – rises dramatically (CDC 2019; Cohen et al. 2012; Coussons-Read et al. 

1998; Redford et al. 2014; Sheth et al. 2011). Given these intricate causal mechanisms, it is possible 

that the higher rates of HIV infection and opioid abuse among the boomers provide a partial 

explanation for their higher levels of influenza mortality. Analogously, the lower prevalence of these 

related behavioral risks among the “leading-edge” boomers and the “leading-edge” Xers may have 

reduced their susceptibility to death from influenza. 

Up to this point, we have discussed the different characteristics of our findings regarding the cohort 

effects on mortality from influenza and behavioral causes. In particular, we examined the similarities 

and differences between the cohort mechanisms underlying these effects, as well as their mutual 

interactions and their interactions with intrinsic stressors. We will now discuss a methodological 

aspect that was at the core of this dissertation: namely, the APC analysis of mortality change.  

 

 Nonlinear effects approach 7.3.

The main contribution of this thesis perhaps lies in our analysis of nonlinear APC cohort effects on 

influenza and behavioral mortality. To this end, different approaches were applied. For the analysis 

of influenza mortality, the contrast approach allowed us to identify the cohorts in which the 

direction of the risk changed significantly. From the turning points at which risk either increased or 

decreased, we could identify those cohorts who were either advantaged or disadvantaged when 

exposed to influenza infections during the observed period.  

In the analysis of the boomers’ mortality, the APC curvature plot tool, which we proposed and 

generalized in chapter 6, was pertinent for at least two purposes. First, the ridges depicted in the 

plots allowed us to conclude that the contribution by cause to the boomer penalty operated as a 

sustained cohort effect. This finding permitted us to discard alternative processes that would have 

produced a similar boomer disadvantage in all-cause mortality, but that were not related to a cohort 

effect. The same cohort disadvantage in all-cause mortality could be produced from a sequence of 

age-period interactions targeting boomers at different ages, and involving different causes of death – 

e.g., a HIV crisis during the young adult stage, followed by the opioid crisis during the mid-life stage. 

In such cases, it would be more appropriate to consider such excess mortality not as a cohort effect, 

but as an aggregate of several unrelated age-period interaction effects. Second, this visual analysis 
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allowed us to compare the temporal dynamics of the ridges across causes of death and across 

subpopulations. The similar patterns and synchronicity of these ridges suggested that they shared an 

underlying mechanism that unfolded through several causes of death (substance abuse, HIV, 

hepatitis C, suicide, and COPD) in most subpopulations (females and males in Canada and most 

racial/ethnic  groups in the United States). These similarities across causes and populations offered 

useful hints about the unobserved factors responsible for these cohort differences in mortality.  

As we mentioned in chapters 2 and 3, the use of APC analyses is controversial because of the 

limitations imposed by the identification problem on the analysis of linear effects. As Fosse and 

Winship stated, “the APC identification problem can be radically simplified as a problem of 

determining the value of the three linear effects” (2019a, p. 468). In contrast, there has been a 

consensus regarding the robustness and validity of the analysis of nonlinear effects since the 

beginning of the 1980s (Holford 1983; Rodgers 1982).  

Our findings do not rely on the controversial aspects of APC methodology because most of our 

analyses focused on nonlinear effects. We demonstrated that it is possible to gain useful knowledge 

from mortality patterns – and, in general, from any population process – through the rigorous 

application and interpretation of APC analyses. For this reason, we are confident that our findings 

will remain relevant amid future developments in and controversies surrounding APC methods. 

However, the observation that the use of APC analyses is limited does not imply that all analyses of 

linear APC effects must be avoided. Important findings could be obtained from such analyses, 

provided we keep in mind that identifying the true and exact decomposition of these linear effects is 

not possible, and that the underlying assumptions should be based on theoretical knowledge. For 

instance, for our analysis of influenza mortality (chapter 4), we proposed several scenarios for the 

partitioning of linear effects based on restricted ranges (Holford 1991; Wickramaratne et al. 1989), 

and our interpretations of the results were cautious and guided by theory. The decomposition of the 

linear trend provided by the intrinsic estimator approach (Figure 4.6) was used for comparison 

purposes only. 
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 Implications 7.4.

 Contemporary and future trends of mortality 7.4.1.

As we argued in chapter 2, the hypothesis of an “insignificant” influence of extrinsic mortality on 

current mortality trends (Bongaarts 2006) is not supported by the recent mortality trends in several 

high income countries that showed a leading role of extrinsic causes in the observed decline in life 

expectancy (Ho and Hendi 2018; Raleigh 2019). Therefore, extrinsic mortality should be considered 

in the analysis and the projection of mortality trends. Our findings even suggest that cohort effects 

on extrinsic mortality had an important role in the decline in life expectancy between 2014 and 2015, 

and that the influence of extrinsic causes on changes in all-cause mortality could increase in the 

future. 

It is noteworthy that changes in life expectancy between two periods do not only dependent on the 

mortality levels in second, but also on those experienced during the first. In this regard, Luy and 

colleagues (2019) have suggested that the low levels of influenza mortality during the 2013-2014 

epidemic season – dominated by H1N1 subtype – increased the frailty of the pool of susceptible 

boosting in turn the mortality levels during the more severe 2014-2015 epidemic season – dominated 

by the more severe H3N2 subtype. They conclude that both the low mortality in 2014 and the 

increased frailty of the population inflated the mortality levels in 2015.  

We argue here that the largest difference in influenza mortality between 2014 and 2015 might not 

have mainly resulted from an increased frailty composition of the pool of susceptible, as proposed 

by Luy and colleagues. Instead, we propose that the cohort effects on influenza mortality played the 

main role in this mortality change, and in consequence, they were the main culprit of the decline in 

life expectancy in several European countries. The elderly population – mostly primed to the H1N1 

subtype – was relatively protected against the pH1N1 subtype that dominated the 2013-2014 

epidemic season (Gagnon et al. 2018a), but had a larger susceptibility when exposed to the H3N2 

subtype during the 2014-2015 epidemic season. If there was an exceptional year of influenza 

mortality, it was not 2015 but 2014, due to the large protection of the elderly population, which 

contribute to the largest proportion of mortality during seasonal influenza epidemics – that is, ~95% 

(Simonsen 2006). If the described mechanisms were actually responsible for inflating the mortality 

increase in 2015, relative to 2014, this is clear evidence of the important role that cohort effects on 

extrinsic mortality could play in the contemporary changes of life expectancy. This unprecedented 
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large sensibility of life expectancy change to variations in influenza mortality is also indicative that 

the large contributions of other causes to the previous improvements in life expectancy are 

decelerating. 

Other cohort effect on extrinsic mortality that could have a considerable influence in future changes 

in mortality is the higher susceptibility of baby boomers to influenza, drug-taking, HIV, and hepatitis 

C. This boomer penalty should be a matter of serious concern. If the boomers’ disadvantage does 

not diminish over age/time, as currently seems to be the case, the influence of these extrinsic causes 

of death on life expectancy could become even larger for two reasons. First, if the boomers’ relative 

disadvantage in influenza mortality is the consequence of a higher prevalence of HIV infection and 

opioid abuse, this disadvantage may persist and even grow as this generation reaches old ages. Thus, 

if the high prevalence of HIV infections and opioid abuse persists among boomers, it could, in 

conjunction with increased frailty with age, worsen future influenza mortality trends. Second, the 

already high risks of death from substance abuse, COPD, and HIV and hepatitis C infections among 

the boomers could interact with the physiological weakening that comes with aging. These 

interactions could, in turn, result in a further expansion of the mortality disadvantage of this 

generation from both extrinsic and extrinsic causes. 

 

 Public policy  7.4.2.

Typically, preventive measures such as influenza vaccination and substance abuse prevention 

campaigns are implemented during periods of crisis, and target specific population subgroups based 

on age, specific behaviors, and socioeconomic status. But our findings highlight the need to address 

cohort effects in a full APC framework for targeting groups at risk. This approach could improve 

the effectiveness of policies aimed at preventing and mitigating epidemics related to infections and 

behavioral risks.  

For instance, the acknowledgment of the influence of antigenic signatures on influenza mortality could 

be an incentive to design cohort-specific vaccines. This would encourage the collection and 

publication of influenza measures by single year of age, as previous studies have already called for 

(Gagnon et al. 2018b; Gagnon et al. 2019; Gostic et al. 2019). When the antigenic imprint of a cohort is 

incompatible with the viruses they encounter later in life, they face an increased risk of contracting 

superinfections – i.e., co-parasitic infections such as bacterial pneumonia – and thus of mortality 
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(Gagnon et al. 2013; Kobasa et al. 2007). Information on the antigenic signatures of different cohorts 

would also be useful for anticipating such threats and regulating immune overreactions. 

 

 Limitations 7.5.

The specific limitations of each article were previously discussed. Here, we discuss some of the 

general limitations of our research related to the data and the methods we employed.  

The mortality and population records in the United States and Canada, which are used in all articles, 

are considered to be of very good quality (HMD 2019). However, as we mentioned in chapter 3, 

because these data sources provide information on individuals’ completed ages but not on their birth 

dates, their birth cohorts had to be imputed. Because of the fine resolution used for all analyses 

(single year of age and calendar year), significant biases in the findings are not anticipated. We also 

performed several tests using adjustments available in the literature (Carstensen 2007) to convert 

from period to cohort data, and found no significant differences in our findings. 

The identification of causes of death is also problematic because of changes in the ICD classification 

over our study period – between the 7th and 10th revisions for the United States, and between the 8th 

and 10th revisions for Canada. Although we applied comparability ratios (described in the data and 

methods chapter) to make the classification of influenza and pneumonia more homogenous, some 

discontinuity may persist because the ratios were obtained from dual coding in a single year for each 

introduction of a new revision. Therefore, there is no guarantee that the comparability ratios 

estimated for selected years are representative of the differences in all periods in which the 

adjustments were applied. Nevertheless, because the discontinuities introduced by such potential 

biases correspond to period changes that affected all ages/cohorts equally, we do not expect these 

discontinuities to have significant implications for our findings regarding cohort effects on mortality.  

An additional issue with the identification of causes of death is related to the registered ICD codes 

on death certificates, as has already been pointed out in literature. Because we restricted our analysis 

to the unique cause recorded as the main underlying cause on the death certificate, the multiple 

interactions driving mortality were not observable. In the case of behavioral causes of death, this 

could be problematic, because risky behaviors tend to cluster (Ho 2017). The imputation of intent – 

i.e., self-inflicted or accidental – on death certificates may also be problematic for measuring 
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extrinsic mortality. Notably, the distinction in drug overdoses between accidental and suicide may 

lead to some bias.  

Regarding the racial and ethnic information used in Article 2 for the United States, two limitations 

should be pointed out. First, there were discrepancies between the numerator and the denominator 

in the calculation of our death rates for Hispanics, because ethnic origin is self-reported in the 

census, but is recorded by funeral directors on the death certificates. As was reported in other 

studies (Arias et al. 2008; Zang et al. 2019), this discrepancy may have led to an underestimation of 

the mortality of the Hispanic population in our analyses. Second, previous research has shown that 

the cause of death influences racial classification on the death certificates in the United States 

(Noymer et al. 2011), which may bias our findings regarding the baby boomers’ excess mortality by 

race and ethnicity. This could, for instance, shift drug-related death counts from other groups 

toward the NHB population, and alcohol-related death counts toward American Indians. In addition 

to these potential sources of error in racial/ethnic classification, the lack of information regarding 

race and ethnic origin on Canadian death certificates prevented the analysis of ethnic differences in 

the boomers’ penalty for the Canadian population.  

Finally, our empirical studies of extrinsic causes of mortality could only be exploratory, since they 

did not provide confirmatory tests of the unobserved and underlying mechanisms responsible for 

the observed mortality patterns, for which age-period-cohort effects are just markers. Nevertheless, 

we have suggested several hypotheses regarding the potential causal mechanisms that are consistent 

with the observed patterns of mortality, and with the principles that were proposed in theoretical 

works on the role of cohorts and generations in social processes. Thus, following Billari (2015), we 

might argue that our analyses are part of an initial stage of discovery that generates novel evidence at 

the population level. This step is indispensable for formulating hypotheses, which are essential 

inputs for a second stage of explanation, in which the hypothesized causal mechanisms are tested. In 

this sense, the analyses presented in this dissertation take a first and necessary step toward deepening 

our understanding of cohort effects on extrinsic mortality. 
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 Directions for future research 7.6.

Further research is needed to enrich our understanding of the observed demographic phenomena, 

and to analyze and test some of the mechanisms that underlie the cohort patterns of extrinsic 

mortality that we have observed and highlighted in this dissertation. In the case of influenza 

mortality, further analyses are needed to test our hypotheses that second-order cohort effects at old 

ages are determined by cohort morbidity phenotype mechanisms, and that the cohort patterns observed 

for those born during the second half of the 20th century are related to early life exposures to 

influenza infections. Longitudinal data that include serologic and morbidity information would be 

adequate for performing these kinds of tests. 

In addition, further research should be undertaken to investigate why lingering effects from early life 

exposures to important antigenic events, such as the 1890 Russian and the 1918 Spanish pandemics, 

are not evident at old ages. For this purpose, mortality data from the second half of the 19th century 

onward are needed, as these data can be used to compare the mortality experiences of neighboring 

cohorts during the full span of their life course. 

Moreover, to improve our understanding of the mechanisms that underlie the baby boomers’ excess 

mortality, we need to examine the role of within-cohort heterogeneity. Although we attempted to do 

so by analyzing differences in the cohort mortality pattern by racial/ethnic group, our groups were 

still too heterogeneous in their socioeconomic attributes. A mortality disadvantage among boomers 

has also been identified in other several other western societies, such as France, Australia, and the 

UK (Acosta et al. 2017). Thus, further analyses that decompose the excess within these national 

contexts are required to determine whether the same mechanisms are operating at a transnational 

level.  

In addition to observing that the boomer cohorts are more susceptible to risky behaviors than 

adjacent cohorts, the analysis presented here, as well as some other studies (Huang et al. 2017; Miech 

et al. 2013; Sauer et al. 2018; Zang et al. 2019), have identified a similarly large risk of substance 

abuse-related mortality among millennial cohorts, the intensity of which has even surpassed that of 

the boomers in recent years. There is a need for studies that investigate the mechanisms that have 

led millennials to acquire this disadvantage, and the extent to which it is the consequence of 

intergenerational transmission of risky behaviors, as has been suggested here and in other works 

(Sauer et al. 2018). 
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Moreover, it is necessary to examine the contributions of various processes within the birth cohort 

and generational effects, such as frustration, stress, parity, and generational identity. This 

decomposition is essential for identifying the role played by each of these determinants in the 

relatively high susceptibility to behavior-related mortality risks observed among boomers, and for 

designing health interventions aimed at preventing and mitigating adverse outcomes. 

Another question that deserves attention and further analyses is whether there are causal links 

between influenza and behavioral mortality. The causal links between those two sets of causes 

proposed here need to be analyzed from an explanatory perspective. Analyses using longitudinal 

datasets that include information about comorbidity and multiple causes of death would clearly 

advance such research. 

Concerning the methodological aspects of the APC analysis, measures of statistical significance 

would be a valuable addition to existing visual methods and the approach proposed here. Better 

statistical models also need to be developed to quantify changes in the nonlinear APC effects over 

age/time. This approach would make it easier to distinguish between age-period interactions and 

cohort effects from a quantitative perspective. As we discussed in the third paper, the hysteresis 

APC model (Chauvel 2013) is an attempt in this direction, but its inflexibility – i.e., a fixed estimate 

of change, which only allows for constant increases or decreases – makes it ill-suited for studying 

non-monotonic variations, and the changes in the location of the most advantaged and 

disadvantaged categories in APC dimensions over age/time.   
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Supplementary Material S1: Determinants of Influenza 

Mortality Trends: Age-Period-Cohort analysis of influenza 

mortality in the United States, 1959-2016 

 

Influenza Mortality Models  

The Serfling Regression Model  

We used a Serfling regression model in order to estimate mortality from influenza from 1959 to 

2016 and to explore its age, period, and cohort components. We first estimated a mortality baseline 

without influenza by fitting Pneumonia and Influenza (P&I) death counts during the summer 

season, during which the influenza virus does not circulate widely in North America. Influenza-

related mortality was estimated for each month as the difference between the observed P&I death 

count and the estimated baseline. Since previous analyses have used different combinations of 

summer months to define the baseline (Dushoff et al. 2006; Lemaitre et al. 2012; Nguyen and 

Noymer 2013; Simonsen et al. 2005), we tested four summer periods to fit the Serfling model (i.e., 

May to September, May to October, June to September, and June to October). The comparison of 

these estimates with those obtained from the Surveillance-Serfling model, which are estimated over 

the whole year (see below), guided us in selecting the summer period for the Serfling model (see Fig. 

S1.1). 

 

The formulation of our Serfling model is: 

𝑙𝑜𝑔(𝑑𝑒𝑎𝑡ℎ𝑠𝑎,𝑡) =  ∑ 𝛽𝑖𝑡𝑖10
𝑖=0 + 𝛽11𝑠𝑖𝑛 (

2𝜋𝑡

12
) + 𝛽12𝑐𝑜𝑠 (

2𝜋𝑡

12
) + 𝑙𝑜𝑔(𝑒𝑥𝑝𝑜𝑠𝑢𝑟𝑒𝑎,𝑡), (S1) 

where 𝑎 is age (a = 0, 1, 2, …, 100), 𝑡 the epidemic period (here from January 1959 to December 

2016), 𝑑𝑒𝑎𝑡ℎ𝑠𝑎,𝑡 the death count, and 𝑒𝑥𝑝𝑜𝑠𝑢𝑟𝑒𝑎,𝑡 the population at risk. The model thus includes 

three key components: (∑ 𝛽𝑖𝑡𝑖10
𝑖=0 ) controls for secular trends in mortality, while (𝛽11𝑠𝑖𝑛 (

2𝜋𝑡

12
) +

𝛽12𝑐𝑜𝑠 (
2𝜋𝑡

12
)) captures influenza seasonality over time, and 𝑙𝑜𝑔(𝑒𝑥𝑝𝑜𝑠𝑢𝑟𝑒𝑎,𝑡) controls for changes 

in the age structure of the population over time.  
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In contrast to the original formulation and common uses of the Serfling method, which is based 

on linear regression models (Serfling 1963) or Poisson distributions (Thompson et al. 2009),  we 

used a negative binomial distribution to estimate this model, which accounts for overdispersion. 

This distribution is also better-suited for low-frequency-count data (Hilbe 2011; Nguyen and 

Noymer 2013), which may indeed occur given the single-year age classification used here. 

To estimate the mortality baseline for each age and summer period definition, we tested nine 

different polynomial degrees for the secular trend (from the 2nd to the 10th) and two seasonal terms 

(sin and sin + cos). Based on the Akaike information criteria (AIC) we selected the model providing 

the best fit among the 18 alternative parameterizations. The threshold values proposed by Hilbe 

(2011) were used to assist in deciding if the improvement of the model fit was statistically significant. 

 

The Surveillance-Serfling Model 

In order to estimate influenza mortality, we also use a “Surveillance-Serfling” regression model, 

which includes parameters tracking influenza-like illness (ILI) incidence and influenza circulation by 

subtype between 1997 and 2016. The model is written as: 

𝑙𝑜𝑔(𝑑𝑒𝑎𝑡ℎ𝑠𝑎,𝑡) =  ∑ 𝛽𝑖𝑡𝑖10
𝑖=0 + 𝛽11𝑠𝑖𝑛 (

2𝜋𝑡

12
) + 𝛽12𝑐𝑜𝑠 (

2𝜋𝑡

12
) + 𝛽13𝑠𝑖𝑛 (

3𝜋𝑡

12
) +

𝛽14𝑐𝑜𝑠 (
3𝜋𝑡

12
) + 𝛽15𝑠𝑖𝑛 (

4𝜋𝑡

12
) + 𝛽16𝑐𝑜𝑠 (

4𝜋𝑡

12
) + 𝛽17𝑠𝑖𝑛 (

6𝜋𝑡

12
) + 𝛽18𝑐𝑜𝑠 (

6𝜋𝑡

12
) +

𝛽19𝑠𝑖𝑛 (
8𝜋𝑡

12
) + 𝛽20𝑐𝑜𝑠 (

8𝜋𝑡

12
) + 𝛽21𝑠𝑖𝑛 (

10𝜋𝑡

12
) + 𝛽22𝑐𝑜𝑠 (

10𝜋𝑡

12
) + 𝛽23𝑓𝑙𝑢𝑔,𝑡 +

𝛽24𝑓𝑙𝑢𝑔,𝑡−1 + 𝑙𝑜𝑔(𝑒𝑥𝑝𝑜𝑠𝑢𝑟𝑒𝑎,𝑡), 

(S2) 

where 𝑎 is age (a = 0, 1, 2, …, 100),  𝑡 the monthly period (over 211 months, from October 1997 to 

December 2016, excluding periods from May through September between 1998 and 2002, for which 

influenza circulation data is not available), 𝑑𝑒𝑎𝑡ℎ𝑠𝑎,𝑡 the death counts, and 𝑒𝑥𝑝𝑜𝑠𝑢𝑟𝑒𝑎,𝑡 the 

population at risk. Like the traditional Serfling model, this model controls for secular trends in 

mortality (∑ 𝛽𝑖𝑡
𝑖10

𝑖=0 ) and seasonality (with the sin/cos terms), while 𝑙𝑜𝑔(𝑒𝑥𝑝𝑜𝑠𝑢𝑟𝑒𝑎,𝑡) tracks 

changes in the age structure of the population over time.  

In addition, 𝑓𝑙𝑢𝑖,𝑔,𝑡 and 𝑓𝑙𝑢𝑖,𝑔,𝑡−1 account for influenza virus circulation during the current (t) 

and the previous (t-1) month, respectively. To define the measure of virus circulation, we tested 
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several options, with models that included influenza-like illness (ILI) incidence terms by age group g 

(g = 0, 1-4, 5-24, 25-64, 65+), combined with influenza surveillance data by subtype.  

The measure accounting for ILI incidence by age group is defined for the current month t as: 

𝑓𝑙𝑢𝑔,𝑡 = 𝐼𝐿𝐼𝑡 ∗
𝑜𝑝𝑔,𝑡

𝑇𝑜𝑝𝑡
 . (S3) 

 

For each month t, 𝐼𝐿𝐼𝑡 is the percentage of outpatients with ILI symptoms, 𝑜𝑝𝑔,𝑡 the numbers of 

outpatients of age group g with ILI symptoms, and 𝑇𝑜𝑝𝑡 the numbers of outpatients of all ages with 

ILI symptoms. 

Alternatively, the measure combining information from ILI incidence by age group and influenza 

surveillance data by subtype is defined, for age group g and current month t, as: 

𝑓𝑙𝑢𝑖,𝑔,𝑡 = 𝐼𝐿𝐼𝑡 ∗
𝑜𝑝𝑔,𝑡

𝑇𝑜𝑝𝑡
∗

𝑝𝑡𝑖,𝑔,𝑡

𝑇𝑝𝑡𝑔,𝑡
 , (S4) 

 

where 𝑝𝑡𝑖,𝑡 is the numbers of specimens that tested positive for influenza subtype i (i = A-H1N1, A-

H3N2, A-pH1N1, and B) in month t, and 𝑇𝑝𝑡𝑔,𝑡 the numbers of positive tests for all subtypes in 

age group g and month t.  

For each age, we tried 216 models by combining nine different polynomial degrees (from the 2nd 

to the 10th), six orders of cyclical forms (
2𝜋𝑡

12
, …, 

10𝜋𝑡

12
), and the two alternative influenza measures 

described above with and without their respective one-month lag term. We chose the model that 

provided the best fit according to AIC values, as we did for the Serfling model. Table S1.1 presents 

by single years of age the minimum AIC value obtained from each parametrization of influenza 

measures, the AIC change once the virus subtype information and the one-month lag variable are 

included, the statistical significance of this change, and the model providing the best fit. 

Alternatively, we applied a “backward stepwise” selection approach for each age (not shown here), 

starting with all flu activity terms in the model, removing at each step the least significant terms 

among the non-significant terms at the 5% level, and reintroducing, through re-estimation, the most 

significant term among those that reach a significance level of 4% (for a more detailed description of 
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the backward stepwise procedure, see Draper and Smith (1998)); the results obtained from this model 

selection strategy were not fundamentally different from those obtained from model selection based 

on AIC.  

As shown in Table S1.1, there is considerable age variation with regard to the parameters that 

provided best AIC statistics. For example, neither the addition of one-month lag ILI terms nor the 

specification of virus subtype circulation (as in Eq. S4) provided significant improvement in model 

fit. We thus retained the default ILI model for that age, as we did generally until about age 20. From 

age 20 to age 65 approximately, the best models generally included terms specifying subtype 

circulation, usually without one-month lag terms for the younger portion of this age group (i.e., from 

age 20 to age 40), and then including these lag terms for the older portion (from age 40 to age 65). 

Interestingly, regarding the elderly (65+), models including lag terms systematically provided the best 

fit, while terms specifying subtype circulation were no longer kept in this age group. 

 

Table S1.1: Fitting measures for alternative Surveillance-Serfling model parameterization 
and the model providing the best fit 

Age 

Models with minimum AIC for alternative 
influenza measures 

AIC Change 

Model with Best Fit 

ILI 
ILI + 
Lag 

ILI by 
Subtype 

ILI by Subtype 
+ Lag 

Subtype Lag 

0 1253.18 1249.56 1265.5 1265.92 12.32 -3.62 ILI 

1 919.61 915.5 923.43 922.84 3.82 -4.11 ILI 

2 725.45 723.27 731.26 738.15 5.81 -2.18 ILI 

3 646.39 645.79 650.16 650.75 3.77 -0.6 ILI 

4 573.62 574.81 579.92 583.57 6.3 1.19 ILI 

5 559.41 561.4 558.08 564.56 -1.33 1.99 ILI 

6 501.87 503.59 507.62 513.37 5.75 1.72 ILI 

7 489.08 487.43 490.92 486.73 1.84 -1.65 ILI 

8 455.09 454.21 458.14 463.76 3.05 -0.88 ILI 

9 491.21 489.77 494.59 493.63 3.38 -1.44 ILI 

10 466.71 470.62 470.56 478.43 3.85 3.91 ILI 

11 453.68 450.11 458.19 455.83 4.51 -3.57 ILI 

12 494.51 495.09 497.39 503.53 2.88 0.58 ILI 

13 501.45 503.43 506.76 506.02 5.31 1.98 ILI 

14 561.41 559.46 564.3 564.6 2.89 -1.95 ILI 

15 517.14 510.13 519.99 516.18 2.85 -7.01* ILI + Lag 

16 513.91 515.85 519.42 526.81 5.51 1.94 ILI 
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Age 

Models with minimum AIC for alternative 
influenza measures 

AIC Change 

Model with Best Fit 

ILI 
ILI + 
Lag 

ILI by 
Subtype 

ILI by Subtype 
+ Lag 

Subtype Lag 

17 581.24 569.74 584.72 579.01 3.48 -11.5* ILI + Lag 

18 634.97 627.68 637.26 635.55 2.29 -7.29* ILI + Lag 

19 620.07 622.02 621.99 624.73 1.92 1.95 ILI 

20 709.84 708.75 710.87 711.1 1.03 -1.09 ILI 

21 737.76 736.37 739.47 737.37 1.71 -1.39 ILI 

22 756.61 753.29 756.38 746.25 -0.23 -3.32 ILI by Subtype + Lag 

23 783.69 776.83 788.22 781.54 4.53 -6.86* ILI + Lag 

24 773.6 764.65 771.15 762.11 -2.45 -8.95* ILI + Lag 

25 772.79 763.86 761.31 752.58 -11.48* -8.73* ILI by Subtype + Lag 

26 828.39 829.37 818.03 820.89 -10.36* 2.86 ILI by Subtype 

27 822.74 823.57 816.73 819.48 -6.01* 2.75 ILI by Subtype 

28 852.38 853.82 833.85 828.98 -18.53* -4.87 ILI by Subtype 

29 868.88 868.56 858.39 861.99 -10.49* 3.6 ILI by Subtype 

30 868.75 864.05 840.67 838.92 -28.08* -1.75 ILI by Subtype 

31 898.65 897.54 888.72 892.16 -9.93* 3.44 ILI by Subtype 

32 895.02 888.72 879.16 870.55 -15.86* -8.61* ILI by Subtype + Lag 

33 902.35 902.82 879.92 885.36 -22.43* 5.44 ILI by Subtype 

34 928.21 930.96 904.47 906.11 -23.74* 1.64 ILI by Subtype 

35 957.63 950.01 930.15 920.91 -27.48* -9.24* ILI by Subtype + Lag 

36 993.31 990.27 970.91 965.65 -22.4* -5.26 ILI by Subtype 

37 1003.80 1005.54 974.54 976.54 -29.26* 2.00 ILI by Subtype 

38 1019.02 1019.71 994.78 997.54 -24.24* 2.76 ILI by Subtype 

39 1039.89 1040.3 980.94 982.96 -58.95* 2.02 ILI by Subtype 

40 1096.56 1096.6 1070.03 1071.26 -26.53* 1.23 ILI by Subtype 

41 1117.01 1113.46 1070.26 1064.97 -46.75* -5.29 ILI by Subtype 

42 1139.82 1134.15 1098.46 1091.88 -41.36* -6.58* ILI by Subtype + Lag 

43 1182.14 1178.64 1139.25 1129.00 -42.89* -10.25* ILI by Subtype + Lag 

44 1174.09 1172.45 1139.65 1132.74 -34.44* -6.91* ILI by Subtype + Lag 

45 1189.94 1173.68 1158.7 1137.30 -31.24* -21.4* ILI by Subtype + Lag 

46 1193.53 1188.18 1162.46 1155.31 -31.07* -7.15* ILI by Subtype + Lag 

47 1224.04 1220.95 1182.04 1176.25 -42.00* -5.79 ILI by Subtype 

48 1253.2 1241.69 1219.45 1200.79 -33.75* -18.66* ILI by Subtype + Lag 

49 1230.24 1222.48 1195.82 1187.28 -34.42* -8.54* ILI by Subtype + Lag 

50 1256.68 1239.82 1206.42 1178.99 -50.26* -27.43* ILI by Subtype + Lag 

51 1278.99 1265.01 1257.43 1242.06 -21.56* -15.37* ILI by Subtype + Lag 

52 1315.05 1310.33 1270.05 1264.2 -45.00* -5.85 ILI by Subtype 
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Age 

Models with minimum AIC for alternative 
influenza measures 

AIC Change 

Model with Best Fit 

ILI 
ILI + 
Lag 

ILI by 
Subtype 

ILI by Subtype 
+ Lag 

Subtype Lag 

53 1294.50 1291.12 1248.83 1241.36 -45.67* -7.47* ILI by Subtype + Lag 

54 1348.10 1338.71 1322.77 1314.32 -25.33* -8.45* ILI by Subtype + Lag 

55 1375.52 1365.52 1330.37 1310.74 -45.15* -19.63* ILI by Subtype + Lag 

56 1340.04 1334.59 1305.5 1298.79 -34.54* -6.71* ILI by Subtype + Lag 

57 1377.11 1360.76 1349.13 1320.86 -27.98* -28.27* ILI by Subtype + Lag 

58 1393.18 1379.07 1363.76 1342.33 -29.42* -21.43* ILI by Subtype + Lag 

59 1366.61 1358.58 1350.46 1343.21 -16.15* -7.25* ILI by Subtype + Lag 

60 1400.24 1385.01 1385.27 1363.20 -14.97* -22.07* ILI by Subtype + Lag 

61 1398.81 1382.72 1386.15 1364.82 -12.66* -21.33* ILI by Subtype + Lag 

62 1406.38 1389.39 1401.95 1383.40 -4.43 -16.99* ILI + Lag 

63 1413.11 1387.61 1398.26 1371.30 -14.85* -26.96* ILI by Subtype + Lag 

64 1411.28 1401.58 1407.53 1405.00 -3.75 -9.7* ILI + Lag 

65 1446.69 1439.4 1439.53 1434.19 -7.16* -5.34 ILI + Lag 

66 1420.72 1412.92 1422.14 1420.16 1.42 -7.80* ILI + Lag 

67 1478.71 1477.89 1469.73 1472.63 -8.98* 2.90 ILI by Subtype 

68 1452.67 1443.32 1459.12 1451.76 6.45 -9.35* ILI + Lag 

69 1481.45 1470.96 1478.79 1465.77 -2.66 -10.49* ILI + Lag 

70 1514 1498.86 1520.66 1511.50 6.66 -15.14* ILI + Lag 

71 1528.38 1516.05 1520.66 1511.10 -7.72* -9.56* ILI + Lag 

72 1542.65 1531.88 1550.73 1544.48 8.08 -10.77* ILI + Lag 

73 1581.03 1545.63 1593.46 1569.16 12.43 -35.4* ILI + Lag 

74 1625.8 1601.78 1630.62 1614.63 4.82 -24.02* ILI + Lag 

75 1610.39 1589.52 1612.54 1589.19 2.15 -20.87* ILI + Lag 

76 1669.03 1646.30 1688.18 1678.24 19.15 -22.73* ILI + Lag 

77 1655.57 1634.70 1672.49 1660.45 16.92 -20.87* ILI + Lag 

78 1687.91 1665.14 1698.20 1685.00 10.29 -22.77* ILI + Lag 

79 1671.13 1632.57 1686.63 1648.95 15.50 -38.56* ILI + Lag 

80 1741.59 1702.51 1751.36 1723.60 9.77 -39.08* ILI + Lag 

81 1756.79 1735.71 1762.31 1749.88 5.52 -21.08* ILI + Lag 

82 1796.94 1743.86 1808.05 1765.94 11.11 -53.08* ILI + Lag 

83 1818.83 1754.24 1817.96 1761.74 -0.87 -64.59* ILI + Lag 

84 1836.27 1791.06 1828.33 1798.58 -7.94* -29.75* ILI + Lag 

85 1830.59 1766.90 1841.48 1798.47 10.89 -63.69* ILI + Lag 

86 1887.33 1830.52 1897.01 1858.01 9.68 -56.81* ILI + Lag 

87 1884.98 1845.15 1884.34 1863.21 -0.64 -39.83* ILI + Lag 

88 1868.12 1807.10 1878.52 1837.84 10.40 -61.02* ILI + Lag 
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Age 

Models with minimum AIC for alternative 
influenza measures 

AIC Change 

Model with Best Fit 

ILI 
ILI + 
Lag 

ILI by 
Subtype 

ILI by Subtype 
+ Lag 

Subtype Lag 

89 1895.92 1839.37 1890.94 1849.60 -4.98 -56.55* ILI + Lag 

90 1885.84 1833.45 1897.95 1872.23 12.11 -52.39* ILI + Lag 

91 1861.53 1818.42 1851.95 1821.22 -9.58* -30.73* ILI + Lag 

92 1854.97 1819.36 1866.54 1851.63 11.57 -35.61* ILI + Lag 

93 1808.29 1756.82 1812.80 1784.57 4.51 -51.47* ILI + Lag 

94 1794.13 1759.20 1780.75 1759.90 -13.38* -20.85* ILI + Lag 

95 1709.93 1682.89 1709.38 1698.82 -0.55 -27.04* ILI + Lag 

96 1655.25 1614.18 1657.18 1629.80 1.93 -41.07* ILI + Lag 

97 1582.43 1545.28 1593.54 1570.11 11.11 -37.15* ILI + Lag 

98 1538.01 1520.43 1541.58 1537.46 3.57 -17.58* ILI + Lag 

99 1468.42 1444.55 1465.76 1445.61 -2.66 -23.87* ILI + Lag 

100 1392.47 1373.31 1395.84 1388.01 3.37 -19.16* ILI + Lag 

* Statistically significant reduction in AIC values. 

Note: The AIC is estimated to be -2LL+2k, where LL is the maximum log-likelihood and k is the number of parameters. A threshold 
value of 6 units is used to define whether the difference between two AIC statistic values is statistically significant, according to the 
selection criteria proposed by Hilbe (2011). 

 

Specifying the Summer Season in the Serfling Model 

Figure S1.1 presents estimates from the Serfling model using four different definitions of the 

summer period (i.e., May to September, May to October, June to September, and June to October) 

along with estimates from the Surveillance-Serfling model, while Fig. S1.2 shows the Lexis surfaces 

obtained from these models. Serfling estimates of death counts are generally sensitive to the 

definition of the summer period, with numbers yielded by those based on May to October or June 

to October being considerably lower compared to the others. For ages younger than 40, estimates 

obtained from the Surveillance-Serfling model are considerably lower and more erratic than those 

from any of the Serfling models (see Fig. S1.1). After that age, the surveillance model and the 

Serfling model based on the June to September summer period provides highly consistent estimates. 

Figures S1.1 and S1.2 show that estimates from the Serfling model using June – September as 

baseline months fluctuate less over age, compared to other Serfling models. Figure S1.3 plots the 

color version of the Lexis surfaces of influenza mortality rates estimated by the Serfling model and 

the Surveillance-Serfling model, also presented in black-and-white in Fig. 4 of the published version 

of this paper. 
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Figure S1.1: Serfling and Surveillance-Serfling influenza death count estimates by age, 
between 1997 and 2016, according to alternative summer periods as baseline months  

 
 

Figure S1.2: Lexis surfaces from Serfling estimates, between 1997 and 2016, according to 
different definitions of the summer period 

May – September 

 

May – October 

 

June – September 

 

June – October 
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Figure S1.3: Lexis surfaces of influenza mortality rates estimated by the Serfling model, 
1959-2016 

a b 

 
 

 

Notes: Lexis surfaces of influenza mortality rates estimated by the Serfling model, 1959-2016 (a) and the 
Surveillance-Serfling model, 1997-2016 (b). The vertical arrows a, b, d, and e indicate periods of severe H3N2 
epidemics. Arrow c marks the reappearance of H1N1 (1977-1978); arrows f and g indicate periods dominated 
by pH1N1. The solid and dashed black diagonal lines mark the 1947 and 1968 birth cohorts, respectively. 
The surface covered by the dashed square in Fig. 4.4a is shown in a three-dimensional perspective in Fig. 4.5 

 

Age-Period-Cohort Analysis  

In this section, we present several descriptive steps and sensitivity analyses made to evaluate period- 

and cohort-based trends in influenza mortality estimates, obtained from the application of the 

Serfling model to the 1959-2016 period. 

Before fitting any APC models, it is suggested to ascertain first whether the three-factor model 

describes data better than any simpler two-factor age-period (AP) or age-cohort (AC) model 
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(Carstensen 2007; Clayton and Schifflers 1987; Holford 1991; Yang and Land 2013). Along with this 

evaluation, we also compared Poisson and Negative Binomial models to select the one that provides 

the best fit to our data. SE for our APC estimates were computed using a variance formula that 

accounts for autocorrelation (Hilbe 2011). The AICs presented in Table S1.2 suggest that the full 

APC model with Negative Binomial distribution for our response variable provides the best 

description of the data in terms of parsimony and goodness of fit.  

 

Table S1.2: Akaike information criteria (AIC) values for APC models according to Poisson 
and negative binomial distributions  

 
k 

Poisson Negative Binomial 

 

LL AIC LL AIC 

A 48 -98934 197964 -25736 51568 

AP 75 -54503 109156 -23817 47784 

AC 122 -67604 135452 -24609 49462 

APC 148 -50074 100444 -23555 47406 
 

Note: The AIC is estimated to be -2LL+2k, where LL is the maximum log-likelihood and k is the number of parameters. 

 

Since the results in Table S1.2 indicate that the (three-factor) APC model accounts for significantly 

more variation than the simpler two-factor models, we proceeded to fit such a model, in which the 

number of influenza-related deaths at age a and time t, i.e., 𝑑𝑒𝑎𝑡ℎ𝑠𝑎,𝑡 , which are expressed as 

follows: 

𝑙𝑜𝑔(𝑑𝑒𝑎𝑡ℎ𝑠𝑎,𝑡) =  𝜃0 + 𝛼𝑎 + 𝛽𝑡 + 𝛾𝑐 + 𝑙𝑜𝑔(𝑒𝑥𝑝𝑜𝑠𝑢𝑟𝑒𝑎,𝑡),  (S5) 

where 𝜃0 is a constant, 𝛼𝑎 the effect of age group a, 𝛽𝑡 the effect of period t, 𝛾𝑐  the effect of cohort 

c, and 𝑒𝑥𝑝𝑜𝑠𝑢𝑟𝑒𝑎,𝑡 the population of age 𝑎 at risk at time t.  

Given the perfect linear dependency among the age, period, and cohort components (Period – 

Age = Cohort), this model has an infinite number of solutions if no additional constraints are 

specified. Several alternatives have been proposed to address this so-called “identification problem,” 

essentially by imposing external constraints that are either explicitly chosen by the researcher (e.g., 

the constraint-based models of Fienberg and Mason (1985)), or implicitly defined by the design 

matrix, which depends on the number of age groups and periods (and thus cohorts) included in the 

model itself (e.g., the ridge and intrinsic estimators of Fu (2000) and Yang et al., (2004)). Yet, these 
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solutions are contentious because of the sensitivity of the outcomes to the constraint chosen, which 

validity can never be known with certainty (Clayton and Schifflers 1987; Fienberg 2013; Fosse and 

Winship 2018; Luo 2013; Tarone and Chu 1996). The main issue with all these models is indeed that 

they apportion the linear trend of change over time between period and cohort influences without 

providing a means to assess the validity of this decomposition using conventional statistical criteria 

(all solutions will yield the same goodness of fit statistics, e.g., the same AIC, BIC, Likelihood Ratio 

Test estimates, etc.). Hence, results obtained from this method should always be interpreted with 

caution and be seen as tentative or indicative rather than confirmatory. 

The “long term slope” or “linear trend” that can be partitioned among period and cohort 

influences is known in the APC literature as the “drift parameter” (Carstensen 2007; Clayton and 

Schifflers 1987; Holford 1991). To avoid confusion with antigenic drift, we prefer to use the terms 

long-term slope or linear trend. To analyze the contribution of period and cohort variations to the linear 

trend of influenza mortality over time, we chose to use the APC-detrended and the Intrinsic Estimator 

(IE) approaches to model mortality rates, which are described below.  

 

Period- and Cohort-Detrended Models 

According to Clayton and Schifflers (1987) Eq. S5 can be rewritten as a factor model:  

 

𝑙𝑜𝑔(𝑑𝑒𝑎𝑡ℎ𝑠𝑎,𝑡) =  𝜃0 + 𝛼𝑎 +  𝛽𝑝
𝑑 +  𝛿𝑃(𝑝 − 𝑝0) + 𝛾𝑐

𝑑 + 𝛿𝐶(𝑐 − 𝑐0) + 𝑙𝑜𝑔(𝑒𝑥𝑝𝑜𝑠𝑢𝑟𝑒𝑎,𝑡), (S6) 

  

where 𝛽𝑝
𝑑 and 𝛾𝑐

𝑑 are the detrended period and cohort effects, 𝛿𝑃 and 𝛿𝐶  the linear trends of the 

period and cohort effects, 𝑝0 and 𝑐0 the reference period and cohort, respectively, and the 

remaining equation terms are defined as above. Thus, the overall linear trend of the model is  

𝛿 = 𝛿𝑝 + 𝛿𝑐 . (S7) 

Note that, given the identification problem discussed above, the model yields the same fit for an 

infinite number of different partitions of the linear trend (𝛿) among the period (𝛿𝑝) and cohort (𝛿𝑐) 

linear trends.  

Under the assumption that the long-term slope of mortality change can be entirely attributed to 

either period- or cohort-based factors, it is possible to estimate both period-detrended (𝛿𝑝 = 0) and 
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cohort-detrended (𝛿𝑐 = 0) as alternative models, denoted here as APCd and ACPd, respectively. 

Different parameterization can be defined to extract the linear trend, either by using equal weight on 

all units in the dataset (Holford (1991)’s approach) or by using the death counts or exposures as 

weights (Carstensen (2007)’s approach). Yet, the slopes of the linear trends obtained from these 

three approaches are very similar (-2.024%, -1.967%, and -1.978%, respectively) and the difference 

between them is not statistically significant at the 95% confidence level. 

 

The Intrinsic Estimator  

In order to address the identification problem arising from the perfect collinearity of the APC 

models, the Intrinsic Estimator (IE) method implicitly identifies a constraint that minimizes the 

APC parameter variance. The IE method can thus be seen in this regard as less arbitrary than other 

methods (Yang et al. 2004) since it does not leave the choice of the constraint to the researcher 

(note that in the case of the detrended method, one still has to choose to assign all the long-term 

slope to either cohort or period influences, which also amounts to the arbitrary addition of an 

external constraint). Yet, there remains controversy as to whether the IE method provides results 

that are truly less arbitrary (Luo 2013; Luo et al. 2016; Masters et al. 2014, 2016, 2018; Pelzer et al. 

2015; te Grotenhuis et al. 2016; Xu and Powers 2016). In addition, a recent contribution by Fosse 

and Winship (2018) shows how the IE can be regrouped within a larger class of Moore-Penrose 

models and calls into question its applicability, at least based on extreme examples involving strongly 

“imbalanced” Lexis configurations, with as few as 5 age groups and up to 1,000 periods. That being 

said, we decided to include the IE estimates along the detrended estimates discussed above for 

comparison purposes, being aware of the limitations of all these methods. The results obtained from 

the APCd, APCd, and IE models are presented in Fig. 4.5, while the coefficients that were used to 

build this figure are presented at the end of this supplement (Table S1.5). 

To demonstrate the applicability of the IE method to our data, we added sensitivity tests 

proposed in other studies (Luo et al. 2016; Masters et al. 2016, 2018; Yang and Land 2013). Note, 

however, that these tests, when successful, do not provide definitive support that the IE method 

could identify the “true” age, period, and cohort effects; as underlined above, there exists no unique, 

“best fit” solution to APC models.  

We applied two different sensitivity tests for the IE. To test the robustness of the estimates and 

their sensitivity to model specification, we first changed the reference category from first to last of 
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each of the age, period, and cohort terms of the model. Second, we used alternative numbers of 

years to define the cohorts and periods. Figure S1.4 shows that the three estimates are consistent, 

and do not substantively differ when changing the category of reference or the width of the age, 

period, and cohort intervals. Note that the purpose of the multi-year model (dashed line in Fig. S1.4) 

is uniquely to assess the sensitivity of the IE’s partition of first-order effects to alternative 

measurements of age, period, and cohort. Since cohort categories were generated as linearly 

dependent on the two-year age group and three-year time period (recall that Cohort = Period – 

Age), they do not correspond to actual cohorts, and thus, second-order cohort effects, discussed 

below, are not accurately obtained using this partition. 

Figure S1.4: Intrinsic estimates of period and cohort relative risks of influenza-related 
mortality 

 
Notes: Period and cohort effects derived from the estimates of the Serfling model. The solid and dotted lines 
indicate, respectively, estimates from using the first and the last age, period, and cohort as reference, while the 
dashed line provides estimates obtained when using two-year periods and three-year age groups (hence 
labeled as “multi-year”) 

 

Changes in Trends 

Unlike the above age, period and cohort trend estimates (first-order effects), which are dependent 

on the constraint imposed on the model, the changes in the direction of these trends (second-order 

effects) are invariant, whatever the constraint imposed, and thus unambiguously identifiable 

(Holford 1991; Keyes et al. 2010). Among these second-order effects, a contrasts approach allow us to 

identify “breakpoints” where period or cohort trends significantly change direction and to quantify 



214 
 

the extent of these changes (O’Brien 2014b; Shahpar and Li 1999; Tarone and Chu 1996). Thus, we 

are able to measure the difference between the slopes of two disjoint blocks composed of several 

consecutive periods or cohorts.  

A contrast comparing slopes between two disjoint blocks of n consecutive period or cohort 

groups is defined as:  

𝐶 = π𝑘+𝑛 − π𝑘 − (πℎ+𝑛 − πℎ), (S8) 

where πℎ and π𝑘 are respectively the h-th and k-th period or cohort parameter estimates from any 

constraint-based model, with ℎ + 𝑛 ≤ 𝑘. 

Alternatively, by estimating the difference between the linear contrasts defined over the two 

blocks being compared, it is possible to account for the contribution of all periods or cohorts 

included within each block. For two disjoints blocks of four, five, six, and eight consecutive period 

or cohort groupings, the differences in the linear contrasts respectively follow the forms: 

  

𝐶4 = 3π𝑘+3 + π𝑘+2 − π𝑘+1 − 3π𝑘 − (3πℎ+3 + πℎ+2 − πℎ+1 − 3πℎ), (S9) 

  

𝐶5 = 2π𝑘+4 + π𝑘+3 − π𝑘+1 − 2π𝑘 − (2πℎ+4 + πℎ+3 − πℎ+1 − 2πℎ), (S10) 

 

𝐶6 = 5π𝑘+5 + 3π𝑘+4 + π𝑘+3 − π𝑘+2 − 3π𝑘+1 − 5π𝑘 − (5πℎ+5 + 3πℎ+4 + πℎ+3 − πℎ+2 −

3πℎ+1 − 5πℎ),   

(S11) 

 

𝐶8 = 7π𝑘+7 + 5π𝑘+6 + 3π𝑘+5 + π𝑘+4 − π𝑘+3 − 3π𝑘+2 − 5π𝑘+1 − 7π𝑘+7 − (7πℎ+7 +

5πℎ+6 + 3πℎ+5 + πℎ+4 − πℎ+3 − 3πℎ+2 − 5πℎ+1 − 7πℎ+7). 
(S12) 

 

The SE of the contrast estimate is:  

𝑠𝑒 = √𝑠′𝑉𝜋𝑠, (S13) 
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where 𝑠 is the vector of coefficients defining the contrast (in Eqs. S8 to S12) and 𝑉𝜋 is the variance-

covariance matrix for the maximum likelihood estimates of the period or cohort effects. 

In Fig. 4.8 and Table 4.2, the units of analysis correspond to two-year age, period, and cohort 

groupings (analyses using one-year groupings resulted in estimates that were merely unstable). To 

test the sensitivity of the contrasts presented in Table 4.2, we re-estimated the models using three-

year instead of two-year APC groupings and the new contrast estimates are displayed in Table S1.3. 

Note that due to the change in the number of years in the age, period, and cohort groupings, some 

breakpoints are shifted right or left relative to those reported in Table 4.2. Overall, however, the 

results in Table S1.3 are remarkably similar to the results in Table 4.2.  

 

Table S1.3: Contrasts in the linear trends between two disjoint blocks of three-year birth 
cohorts 

# 
Cohorts where 

changes in 
slope occur 

Block 1 Block 2 Contrast a Contrast b 

1 ~ 1896-1898 1881-1898 1896-1913 -0.402*** -0.979*** 

2 ~ 1929-1931 1917-1931 1929-1943 0.166* 0.352* 

3 ~ 1944-1946 1932-1946 1944-1958 0.233** 0.524** 

4 ~ 1956-1958 1944-1958 1956-1970 -0.395*** -0.909*** 

5 ~ 1968-1970 1956-1970 1968-1982 0.431** 0.943** 

6 ~ 1977-1985 1968-1979 1983-1994 -0.423** -1.178* 
Notes: Contrasts a is defined as the difference between the slopes formed by the straight lines connecting the first and 
the last trio of consecutive birth cohorts within each block. Contrast b is defined as the sum of differences of all slopes 
formed by any pair of cohorts taken in each block. 
+ p < .10; * p < .05; ** p < .01; *** p < .001. 

 

 

Finally, in order to provide a broader comparative perspective on influenza mortality, we also 

conducted additional contrast analyses for all-cause mortality and for cardiovascular and respiratory 

diseases mortality, which are the major causes associated with death from influenza complications 

(Reichert et al. 2004; Simonsen et al. 2011). We used data from the Human Mortality Database (2019) 

and from the National Center for Health Statistics (2018) over the period 1959-2016 to browse over the 

same years for which we have already identified significant contrasts (turning points) in influenza 

mortality. Changes in cohort mortality trends were also estimated two and four years before and after 

the identified turning points to assess the smoothness (or abruptness) of these changes.  
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For example, the first estimated contrast on the first line of Table S1.4, i.e., -0.458, is the change 

in slope occurring in cohorts born in 1892-1897, i.e., four years before the cohorts born in 1896-

1901, where the contrast for the cohort trend in influenza mortality is maximum (i.e., -0.528).  The 

fact that all the contrasts located on this first line are all significant and of similar magnitude 

indicates that the change in slope for cohort born at the turn of the 20th century is rather smooth 

and not focussed on a specific year. Also, as seen in Table S1.4, changes in slope in influenza 

mortality are “centered” in years with significant antigenic events, with much smaller contrasts in the 

previous or following four years, except for the cohorts born at the turn of the 20th century, as 

expected. The largest changes for all-cause, respiratory-, and cardiovascular-related mortality, on the 

other hand, are usually spread out with respect to the turning points identified for influenza.   

 

Table S1.4: Contrasts in the linear trends between two disjoint blocks of two-year birth 
cohorts for deaths related to influenza, cardiovascular, and respiratory diseases, and for all-
cause mortality 

Cause id Cohorts 

Contrast a Contrast b 

4 years 
before 

2 years 
before 

Centered 
2 years 

after 
4 years 

after 
4 years 
before 

2 years 
before 

Centered 
2 years 

after 
4 years 

after 

Influenza 

1 ~ 1896-1901 -0.458*** -0.393*** -0.528*** -0.358*** -0.444*** -5.322*** -5.301*** -5.583*** -4.620*** -5.208*** 

2 ~ 1928-1929 0.036 0.172* 0.214* 0.071 -0.012 1.320+ 1.760* 1.801* 1.108 0.464 

3 ~ 1946-1947 0.044 0.041 0.246** 0.032 -0.067 0.008 0.252 0.774** 0.178 -0.286 

4 ~ 1956-1957 -0.173* -0.157+ -0.428*** -0.137 0.006 -0.384* -0.576** -0.976*** -0.440+ -0.005 

5 ~ 1968-1969 0.019 0.038 0.392* 0.171 0.179 0.024 0.253 0.837* 0.558 0.477 

6 ~ 1976-1981 0.05 0.091 -0.334* -0.06 -0.278 0.109 0.070 -0.587+ -0.342 -0.697+ 

CVD1 

1 ~ 1896-1901 -0.142*** -0.127*** -0.152*** -0.128*** -0.163*** -1.713*** -1.624*** -1.718*** -1.557*** -1.760*** 

2 ~ 1928-1929 -0.024 -0.008 0.011 0.022 0.003 -0.127 -0.021 0.087 0.127 0.069 

3 ~ 1946-1947 0.014 0.024 0.066*** 0.093*** 0.074*** 0.039 0.071 0.227*** 0.317*** 0.247*** 

4 ~ 1956-1957 0.102*** 0.064*** 0.029 0.008 0.030 0.269*** 0.159*** 0.058 0.015 0.067+ 

5 ~ 1968-1969 0.033 0.064* 0.122*** 0.114*** 0.075** 0.074 0.169** 0.300*** 0.309*** 0.208*** 

6 ~ 1976-1981 0.000 -0.064* -0.157*** -0.223*** -0.201*** 0.020 -0.158* -0.399*** -0.572*** -0.541*** 

RD2 

1 ~ 1896-1901 -0.058+ -0.089** -0.155*** -0.155*** -0.167*** -0.731* -1.294*** -1.892*** -1.983*** -2.071*** 

2 ~ 1928-1929 -0.158*** -0.195*** -0.167*** -0.161*** -0.179*** -1.921*** -2.265*** -2.225*** -2.117*** -2.071*** 

3 ~ 1946-1947 -0.023 -0.004 0.087** 0.123*** 0.067* -0.096 -0.017 0.292*** 0.432*** 0.230* 

4 ~ 1956-1957 -0.135*** -0.157*** -0.262*** -0.254*** -0.163*** -0.291*** -0.431*** -0.66*** -0.654*** -0.444*** 

5 ~ 1968-1969 0.007 0.011 0.127** 0.136** 0.091+ -0.017 0.066 0.297*** 0.356*** 0.275** 

6 ~ 1976-1981 0.106* 0.073 0.017 -0.106+ -0.175** 0.274* 0.204+ 0.043 -0.254+ -0.467** 

All-
Cause 

1 ~ 1896-1901 -0.015 -0.006 -0.041* -0.029+ -0.079*** -0.182 -0.172 -0.359* -0.332* -0.725*** 

2 ~ 1928-1929 -0.061*** -0.051** -0.025 -0.002 0.016 -0.621*** -0.533*** -0.373* -0.195 0.083 

3 ~ 1946-1947 0.066*** 0.083*** 0.102*** 0.081*** 0.015 0.21*** 0.279*** 0.348*** 0.274*** 0.054 

4 ~ 1956-1957 -0.079*** -0.151*** -0.207*** -0.207*** -0.149*** -0.185*** -0.382*** -0.539*** -0.541*** -0.38*** 

5 ~ 1968-1969 -0.051* 0.017 0.083*** 0.099*** 0.076** -0.138** 0.050 0.219*** 0.264*** 0.198*** 

6 ~ 1976-1981 0.032 -0.031 -0.110*** -0.167*** -0.212*** 0.086 -0.100 -0.272*** -0.406*** -0.537*** 

1 Cardiovascular diseases. 
2 Respiratory diseases. 
Notes: Contrast a is defined as the difference between the slopes formed by the straight lines connecting the first and 
the last pair of consecutive birth cohorts within each block. Contrast b is defined as the sum of differences of all slopes 
formed by any pair of cohorts taken in each block. The grey columns highlight the contrasts centered on cohorts listed 
in the third column (also in grey), i.e., for cohorts with the largest changes in slope in influenza mortality; values in red 
indicate the largest among the five contiguous contrasts, separately for contrasts a and b. 
+p < .10; * p < .05; ** p < .01; *** p < .001. 
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Table S1.5: APCd, ACPd, and IE period and cohort effects on influenza-related mortality 
derived from the Serfling model, ages 5 to 100, 1959-1960 through 2014-2015 influenza 
seasons  

Effect Index Years 
APCd ACPd IE 

Coefficient SE Coefficient SE Coefficient SE 

Period 

1 1959-1960 0.933 0.037 0.382 0.037 0.404 0.037 

2 1961-1962 0.965 0.025 0.456 0.025 0.466 0.025 

3 1963-1964 0.344 0.025 -0.125 0.025 -0.105 0.025 

4 1965-1966 0.243 0.034 -0.185 0.034 -0.153 0.034 

5 1967-1968 0.972 0.031 0.585 0.031 0.587 0.031 

6 1969-1970 0.392 0.034 0.045 0.034 0.073 0.034 

7 1971-1972 0.656 0.021 0.350 0.021 0.357 0.021 

8 1973-1974 0.227 0.025 -0.038 0.025 -0.021 0.025 

9 1975-1976 0.150 0.035 -0.074 0.035 -0.062 0.035 

10 1977-1978 -0.146 0.037 -0.330 0.037 -0.303 0.037 

11 1979-1980 -0.127 0.028 -0.270 0.028 -0.285 0.028 

12 1981-1982 -0.657 0.030 -0.759 0.030 -0.743 0.03 

13 1983-1984 -0.31 0.028 -0.371 0.028 -0.387 0.028 

14 1985-1986 -0.218 0.023 -0.239 0.023 -0.248 0.023 

15 1987-1988 -0.046 0.021 -0.025 0.021 -0.045 0.021 

16 1989-1990 -0.175 0.025 -0.114 0.025 -0.131 0.025 

17 1991-1992 -0.276 0.020 -0.174 0.020 -0.188 0.020 

18 1993-1994 -0.275 0.022 -0.132 0.022 -0.150 0.022 

19 1995-1996 -0.235 0.021 -0.052 0.021 -0.068 0.021 

20 1997-1998 -0.147 0.024 0.077 0.024 0.050 0.024 

21 1999-2000 -0.128 0.023 0.137 0.023 0.119 0.023 

22 2001-2002 -0.253 0.024 0.052 0.024 0.032 0.024 

23 2003-2004 -0.090 0.021 0.257 0.021 0.231 0.021 

24 2005-2006 -0.578 0.026 -0.190 0.026 -0.190 0.026 

25 2007-2008 -0.557 0.031 -0.129 0.031 -0.120 0.031 

26 2009-2010 -0.089 0.046 0.380 0.046 0.412 0.046 

27 2011-2012 -0.558 0.037 -0.048 0.037 -0.053 0.037 

28 2013-2014 -0.017 0.044 0.533 0.044 0.520 0.044 

Cohort 

1 1860-1861 -0.733 0.121 0.776 0.121 0.697 0.121 

2 1862-1863 -0.506 0.085 0.962 0.085 0.909 0.085 

3 1864-1865 -0.576 0.085 0.851 0.085 0.782 0.085 

4 1866-1867 -0.461 0.079 0.926 0.079 0.865 0.079 

5 1868-1869 -0.500 0.074 0.846 0.074 0.792 0.074 

6 1870-1871 -0.492 0.071 0.814 0.071 0.76 0.071 

7 1872-1873 -0.417 0.054 0.847 0.054 0.789 0.054 

8 1874-1875 -0.470 0.055 0.753 0.055 0.704 0.055 

9 1876-1877 -0.282 0.062 0.901 0.062 0.864 0.062 
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Effect Index Years 
APCd ACPd IE 

Coefficient SE Coefficient SE Coefficient SE 

10 1878-1879 -0.268 0.06 0.874 0.06 0.844 0.06 

11 1880-1881 -0.183 0.062 0.918 0.062 0.894 0.062 

12 1882-1883 -0.132 0.053 0.928 0.053 0.889 0.053 

13 1884-1885 -0.029 0.052 0.991 0.052 0.958 0.052 

14 1886-1887 0.003 0.059 0.982 0.059 0.955 0.059 

15 1888-1889 0.076 0.05 1.014 0.05 0.979 0.050 

16 1890-1891 0.091 0.05 0.989 0.05 0.961 0.050 

17 1892-1893 0.185 0.042 1.042 0.042 1.009 0.042 

18 1894-1895 0.211 0.039 1.026 0.039 0.994 0.039 

19 1896-1897 0.234 0.039 1.009 0.039 0.982 0.039 

20 1898-1899 0.211 0.039 0.945 0.039 0.923 0.039 

21 1900-1901 0.341 0.038 1.034 0.038 1.009 0.038 

22 1902-1903 0.216 0.036 0.868 0.036 0.846 0.036 

23 1904-1905 0.241 0.034 0.853 0.034 0.836 0.034 

24 1906-1907 0.250 0.033 0.821 0.033 0.803 0.033 

25 1908-1909 0.231 0.035 0.761 0.035 0.745 0.035 

26 1910-1911 0.215 0.034 0.704 0.034 0.688 0.034 

27 1912-1913 0.195 0.036 0.644 0.036 0.629 0.036 

28 1914-1915 0.176 0.039 0.584 0.039 0.569 0.039 

29 1916-1917 0.104 0.038 0.472 0.038 0.458 0.038 

30 1918-1919 0.141 0.037 0.467 0.037 0.456 0.037 

31 1920-1921 0.098 0.037 0.383 0.037 0.374 0.037 

32 1922-1923 0.045 0.039 0.289 0.039 0.280 0.039 

33 1924-1925 0.086 0.037 0.29 0.037 0.284 0.037 

34 1926-1927 0.037 0.037 0.200 0.037 0.195 0.037 

35 1928-1929 -0.007 0.041 0.116 0.041 0.114 0.041 

36 1930-1931 0.028 0.035 0.110 0.035 0.108 0.035 

37 1932-1933 0.053 0.042 0.094 0.042 0.098 0.042 

38 1934-1935 0.041 0.032 0.041 0.032 0.047 0.032 

39 1936-1937 -0.004 0.038 -0.045 0.038 -0.037 0.038 

40 1938-1939 -0.033 0.041 -0.115 0.041 -0.109 0.041 

41 1940-1941 0.027 0.035 -0.096 0.035 -0.084 0.035 

42 1942-1943 0.000 0.039 -0.163 0.039 -0.148 0.039 

43 1944-1945 0.008 0.038 -0.196 0.038 -0.186 0.038 

44 1946-1947 -0.062 0.043 -0.307 0.043 -0.291 0.043 

45 1948-1949 0.051 0.038 -0.235 0.038 -0.225 0.038 

46 1950-1951 0.086 0.038 -0.240 0.038 -0.222 0.038 

47 1952-1953 0.097 0.039 -0.270 0.039 -0.268 0.039 

48 1954-1955 0.123 0.041 -0.285 0.041 -0.28 0.041 
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Effect Index Years 
APCd ACPd IE 

Coefficient SE Coefficient SE Coefficient SE 

49 1956-1957 0.099 0.043 -0.349 0.043 -0.348 0.043 

50 1958-1959 0.011 0.045 -0.478 0.045 -0.478 0.045 

51 1960-1961 0.122 0.045 -0.408 0.045 -0.403 0.045 

52 1962-1963 0.017 0.042 -0.554 0.042 -0.546 0.042 

53 1964-1965 0.013 0.045 -0.599 0.045 -0.569 0.045 

54 1966-1967 -0.056 0.052 -0.709 0.052 -0.688 0.052 

55 1968-1969 -0.126 0.062 -0.820 0.062 -0.790 0.062 

56 1970-1971 -0.063 0.062 -0.797 0.062 -0.783 0.062 

57 1972-1973 -0.067 0.063 -0.842 0.063 -0.807 0.063 

58 1974-1975 -0.082 0.061 -0.898 0.061 -0.843 0.061 

59 1976-1977 0.054 0.056 -0.802 0.056 -0.775 0.056 

60 1978-1979 0.019 0.067 -0.879 0.067 -0.856 0.067 

61 1980-1981 0.069 0.080 -0.869 0.08 -0.869 0.08 

62 1982-1983 0.016 0.077 -0.962 0.077 -0.952 0.077 

63 1984-1985 0.025 0.082 -0.995 0.082 -0.978 0.082 

64 1986-1987 0.106 0.094 -0.955 0.094 -0.933 0.094 

65 1988-1989 -0.092 0.076 -1.193 0.076 -1.143 0.076 

66 1990-1991 0.073 0.070 -1.069 0.070 -1.017 0.070 

67 1992-1993 -0.132 0.089 -1.315 0.089 -1.248 0.089 

68 1994-1995 -0.035 0.092 -1.258 0.092 -1.193 0.092 

69 1996-1997 0.251 0.078 -1.014 0.078 -0.971 0.078 

70 1998-1999 0.165 0.104 -1.14 0.104 -1.057 0.104 

71 2000-2001 0.018 0.112 -1.328 0.112 -1.263 0.112 

72 2002-2003 0.303 0.135 -1.084 0.135 -1.025 0.135 

73 2004-2005 0.481 0.138 -0.946 0.138 -0.911 0.138 

74 2006-2007 0.235 0.172 -1.233 0.172 -1.168 0.172 

75 2008-2009 -0.171 0.138 -1.680 0.138 -1.622 0.138 
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Guide to Reproduce the Analyses and Results 

Presented in the Paper and Supplementary Material  

This guide presents the material required to fully reproduce the analyses and results presented in the 

paper. All the scripts were elaborated by Enrique Acosta (acosta@mpg.demogr.de) and performed 

using Stata/MP version 15.1. (StataCorp 2017) and R version: 3.5.1 (R Core Team 2018). Data 

inputs (except micro-data files of US mortality), scripts, derived, and this document, are all available 

in the OSF link: https://osf.io/dv9pg/ 

Table S1.6 presents the data and the sources where they can be obtained. All datasets are openly 

available online or presented in previous scientific publications.  

Table S1.6: Data 

Datasets Description Source 

mort1959.dta – 
mort2016.dta 

Micro data of US mortality classified as 
pneumonia or influenza, by single year 
of age, between 1959 and 2016 (58 
files, approximately 35 Gb in total).  
 
In order to use our scripts, download 
the “Stata (.zip)” versions of the files.  
Then unzip them into .dta files and 
place them all in the USmort folder. 

Mortality Data - Vital Statistics NCHS' Multiple Cause 
of Death Data, 1959-2017. The files are available in 
several formats in the NBER website:  
https://www.nber.org/data/vital-statistics-mortality-
data-multiple-cause-of-death.html  
 

Exposures_1x1.csv 
Annual exposure to risk in the US by 
single year of age between 1933 and 
2016 

Human Mortality Database, USA Exposure-to-risk 
(1x1) 
https://www.mortality.org/cgi-
bin/hmd/country.php?cntr=USA&level=1 

ILINET.xlsx 

Influenza-Like-Illness (ILI). Weekly 
Percentage of visits for Influenza-Like-
Illness reported by sentinel providers, 
by age-group, between 1997 and 2018 

CDC – FluView 
https://gis.cdc.gov/grasp/fluview/fluportaldashboard
.html 

virologic_surveillance.xlsx 
Weekly values of Influenza positive 
specimens by subtype, by age-group, 
between 1997 and 2018 

CDC – FluView 
https://gis.cdc.gov/grasp/fluview/flu_by_age_virus.h
tml 

Isolates_subtype_1976_199
9_Thompson_etal_(2003).x
lsx 

Annual Influenza positive specimens by 
subtype in the US for the seasonal years 
1976-77 to 1998-99 

Thompson, W. W. et al., (2003). Mortality associated with 
influenza and respiratory syncytial virus in the 
United States. JAMA, 289(2), 179–186. 

 

Table S1.7 lists the procedures for the data standardization and transformation that are required 

before the analyses, whereas Tables S1.8 and S1.9 show processing steps and analyses to obtain all 

the results that are presented in the main text and Supplementary Material of our paper.  

The values in the first column of the tables S1.7 to S1.9 indicate the logical order of the analyses. In 

the second column, we present a brief description of the dataset, the analysis, the table or the figure 

that is aimed to be accomplished. In the third column, we list the names of the scripts 

mailto:acosta@mpg.demogr.de
https://osf.io/dv9pg/
https://www.nber.org/data/vital-statistics-mortality-data-multiple-cause-of-death.html
https://www.nber.org/data/vital-statistics-mortality-data-multiple-cause-of-death.html
https://www.mortality.org/cgi-bin/hmd/country.php?cntr=USA&level=1
https://www.mortality.org/cgi-bin/hmd/country.php?cntr=USA&level=1
https://gis.cdc.gov/grasp/fluview/fluportaldashboard.html
https://gis.cdc.gov/grasp/fluview/fluportaldashboard.html
https://gis.cdc.gov/grasp/fluview/flu_by_age_virus.html
https://gis.cdc.gov/grasp/fluview/flu_by_age_virus.html
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corresponding to each step, in which the two first letters indicate whether its purpose is to create a 

dataset (db), to perform an analysis (an) or to plot a figure (fg), and the two following digits the 

order of the script within the group (i.e., data preparation, analyses or figure). Finally, the last 

column shows the values of the CPU time taken to complete each step (1:44:29.68 in total), which 

were performed using a 3.5 GHz Intel Core i5 processor with 4 cores and 8 GB of RAM. 

Table S1.7: Data preparation 

# Data Script 
CPU time 
(h: m: s) 

1 Monthly PI mortality by age 1959-2016 db_01_monthly_PI_by_age_1959-2016.do 00:02:15.0 

2 
Monthly measures of influenza circulation (ILI and 
influenza subtype) by age 1997-2016 

db_02_monthly_flu_circulation_by_age.R 00:00:01.0 

3 
Master databases for Serfling (1959-2016) and 
surveillance (1997-2016) models, including monthly 
exposures to risk and influenza circulation measures 

db_03_master_for_flu_estimation_1959-2016.do 00:00:03.6 

4 Annual influenza subtype predominance 1959-2016 db_04_virus_prop_1959_2016.R 00:00:00.6 

5 
Annual mortality by All-cause, cardiovascular- and 
respiratory-related diseases 

db_05_annual_deaths_broad_causes_1959-2016.R 01:30:46.2 

 

Table S1.8: Analyses 

# Analysis Script 
CPU time 
(h: m: s) 

Flu mortality estimates from the Serfling model (1959-2016) 

6 
Analysis of parameterization for Serfling model using 
four summer periods 

an_01_seasonal_AIC_analysis.do 00:27:19.1 

7 
Selection of parameters with best AIC for the Serfling 
model using four summer periods 

an_02_best_serfling_AIC_selection.R 00:00:01.6 

8 
Estimation of flu mortality 1959-2016 with the Serfling 
model for each summer period 

an_03_seasonal_best_AIC.do 00:02:06.2 

9 Relative risk of mortality by influenza subtype (Table 1) an_04_flu_by_subtype_1959_2016.R 00:00:00.6 

Flu mortality estimates from the Surveillance model (1997-2016) 

10 Analysis of parameterization for Surveillance model an_05_surveillance_AIC_analysis.do 01:10:58.6 

11 
Selection of parameters with best AIC for the 
Surveillance model (Table S1) 

an_06_best_surveillance_AIC_selection.R 00:00:00.6 

12 
Estimation of flu mortality 1959-2016 with the 
Surveillance model 

an_07_surveillance_best_AIC.do 00:00:35.5 

Age-Period-Cohort Analyses of influenza mortality (1959-2016) 

13 
Annual influenza mortality obtained from the Serfling 
model according to four summer periods (1959-2016) 
and from the Surveillance model (1997-2016) 

an_08_seasonal_serfling_surveillance_estimates.R 00:00:01.1 

14 Analysis of fit for APC models (Table S2) an_09_APC_model_AIC_values.R 00:00:12.5 

15 APC Intrinsic Estimator model using Yang method an_10_APC_IE_Yang_method.do 00:00:05.9 

16 
APC Period and Cohort detrended models using 
Carstensen method (Table S5) 

an_11_APC_detrended_Carstensen_method.R 00:00:04.5 

17 Contrasts using Tarone method (Tables 2 and S3) an_12_APC_flu_contrasts.R 00:00:06.5 

18 Contrasts applied to broad causes of death (Table S4) an_13_APC_broad_causes_contrasts.R 00:00:45.7 

19 Sensitivity of Intrinsic Estimator estimates an_14_IE_sensitivity_test.R 00:00:01.5 
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Table S1.9: Figures 

# Figure Script 
CPU time 
(h: m: s) 

20 Monthly observed P&I death counts and baseline mortality (without influenza activity) 
predicted by the Serfling model at age 80, 1959-2016 (Figure 1) 

fg_01.R 00:00:01.0 

21 Observed and predicted influenza death counts at age 80, between October 1997 and 
December 2016 (Figure 2) 

fg_02.R 00:00:00.8 

22 
Serfling estimates of monthly influenza death counts (a) and of influenza death counts 
using the US population of 2015 as standard (b), between January 1959 and December 
2016 (Figure 3) 

fg_03(a,b).R 00:00:01.5 

23 
Lexis surfaces of influenza mortality rates estimated by the Serfling model, 1959-2016 
(a) and the Surveillance-Serfling model, 1997-2016 (b) (Figure 4a-b) 

fg_04(a,b).R 00:00:06.6 

24 
Period and Cohort effects on influenza-related mortality derived from the Serfling 
model, age 5 to 100 years, 1959-2016 (Figure 6) 

fg_06.R 00:00:01.6 

25 
Annual Serfling and Surveillance influenza death count estimates by age, between 
1997 and 2016, according to different definitions of summer period (Figure S1) 

fg_S01.R 00:00:03.0 

26 
Lexis surfaces from Serfling estimates, according to different parameterizations of 
summer period (Figure S2a-d) 

fg_S02(a-d).R 00:00:18.7 

27 
Intrinsic estimates of period and cohort effects on influenza-related mortality derived 
from the estimates of the Serfling model, using the first and the last age, period, and 
cohort as reference, and using two-year periods and three-year age groups (Figure S3) 

fg_S03.R 00:00:01.2 

 

Technical Notes  

File organization 

Once the 27 scripts listed in Tables S1.7 to S1.9 are saved in a specific working directory (e.g., 

C:/Users/Jane/influenza_work), the 58 files correspondent to micro-data for the years 1959-2016 

(i.e., mort1959.dta to mort2016.dta) should be placed in a subdirectory named USmort (e.g., 

C:/Users/Jane/influenza_work/USmort), and the remaining four datasets in another subdirectory 

named data (i.e., C:/Users/Jane/influenza_work/data). An additional empty subdirectory named 

figs_tabs should be created for the storing of the figures and the tables (i.e., 

C:/Users/Jane/influenza_work/figs_tabs), as indicated in Fig. S1.5.  

All 27 scripts are prepared to work under this configuration, but it is easily modifiable to adjust to 

the user convenience. We suggest executing the scripts in the order suggested to avoid conflicts of 

dependency.  
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Figure S1.5: Suggested structure of files to execute the scripts db_01 to db_04, an_01 to an_13, and fg_01 to 

fg_S3 

 

 

Setting the working directory 

Our scripts assume that the current working directory is the folder in which the scripts live.  If you 

open a script file (.do or .R) by double-clicking on it then the current working directory should be set 

correctly. However, we have found that in some cases a different working directory is set by default. 

To avoid this nuisance we suggest: 
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1. To print the current working directory, type pwd in the Stata Command window, and 

getwd() in the R console . 

If the current working directory is the folder where the script files live, there is no problem 

and you can skip step 2. 

2. Set the current working directory to the folder where the scripts files live by typing a cd 

command in the Stata Command window and a setwd()command in the R console. For 

example, on a Windows system you might type 

In Stata: cd "C:/Users/Jane/influenza_work" 

In R: setwd(C:/Users/Jane/influenza_work) 

whereas on a Mac you might type 

In Stata: cd "/Users/Jane/influenza_work" 

In R: setwd(/Users/Jane/influenza_work) 

 

and then confirm that you are where you think you are by repeating the step 1.. 

You should then be able to run our scripts.  Note that in Stata for Mac, you should have to go 

through the above steps only once if you have “Start in the last session’s current working directory” ticked 

in Preferences -> General Preferences. More details can be found in the Stata manuals Getting Started 

with Stata for Windows [GSW] (https://www.stata.com/manuals/gsw.pdf) and Getting Started with 

Stata for Mac [GSM] (https://www.stata.com/manuals/gsm.pdf). 

 

Packages  

The Stata module apc (Schulhofer-Wohl and Yang 2006) must be installed previous to the execution 

of the script an_10_APC_IE_Yang_method.do. To install it type ssc install apc in the Stata 

Command window. 

The R packages tidyverse (Wickham 2017), lubridate (Grolemund and Wickham 2011), viridis (Garnier 

et al. 2018), haven (Wickham, code), et al. 2019), writexl (Ooms and details 2018), readxl (Wickham, 

Bryan, et al. 2019), Epi (Carstensen et al. 2019), sandwich (Zeileis 2004), and MASS (Venables and 

Ripley 2002) must be installed previous to the execution of the scripts. To install them use the 

install.packages() command in R. An easy way to install all of them is to assign all of them to a 

vector element, as indicated bellow 

libs <- c("tidyverse", "lubridate", "viridis", "haven", "writexl", "readxl", "Epi", "sandwich", "MASS") 
install.packages(libs) 

  

https://www.stata.com/manuals/gsw.pdf
https://www.stata.com/manuals/gsm.pdf
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Supplementary Material S2: The Boomers’ Excess Mortality 

in Canada and the United States 

 

Construction of Lexis surfaces of mortality change 

Lexis surfaces of changes in mortality rates are widely recognized in the demographic literature as 

powerful, yet simple tools for identifying APC effects (Barbi and Camarda 2011; Rau et al. 2013; 

Schöley and Willekens 2017; J. W. Vaupel et al. 1987). Over periods (and, thus, cohorts) these 

changes reflect a combination of period and cohort effects, because age is controlled by estimating 

mortality changes within the same age group (i.e., horizontal mortality changes in the Lexis surfaces, 

from earlier to more recent calendar years/cohorts). To construct Lexis surfaces reflecting these 

changes, we first estimated two-dimensional smoothed mortality rates to eliminate random 

variations that are not part of the mortality trend. We applied the P-splines method (Eilers et al. 

2015; Eilers and Marx 1996) for the two-dimensional smoothing, using the R package 

MortalitySmooth (Camarda 2012), which allowed us to select the best fitting parameters based on the 

Akaike Information Criteria (AIC) (Burnham and Anderson 2002). From the smoothed death rates, 

we estimated the rates of mortality change (∆𝑝𝑐𝑥,𝑡), and then plotted them in a Lexis surface. 

According to the diagonal patterns shown in Figure 5.1, the advantaged and the disadvantaged birth 

cohorts were born during the mid-1940s and around 1960, respectively (black dashed lines). 

From the smoothed death rates, we estimated, for each age x, the relative change in mortality from 

year t-1 to year t (or from cohort c-1 to cohort c) as: 

∆𝑝𝑐𝑥,𝑡 = log(𝑚𝑥,𝑡
𝑠 ) − log(𝑚𝑥,𝑡−1

𝑠 ), (1) 

 

where 𝑚𝑥,𝑡
𝑠  is the smoothed death rate for age x in period t.  

We then plotted ∆𝑝𝑐𝑥,𝑡 values in a Lexis surface in two color scales to depict the yearly changes in 

mortality over periods/cohorts (Figure 5.1). The relative mortality decrease for year t-1 compared to 

that for year t (or cohort c-1 compared to cohort c) in the same age x is indicated with a green-to-

blue scale, while the relative mortality increase is indicated with a yellow-to-red scale. Vertical traces 
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on the Lexis surface are indicative of nonlinear period effects on mortality, and 45° diagonal traces 

are indicative of nonlinear cohort effects. 

 

Cohort partial mortality rate measure 

For the estimation and comparison of cohort mortality levels, we propose an index of the cohort’s 

partial mortality rate, defined as:  

𝐶𝑃𝑀𝑅𝑐(𝑘,𝑙) = ∑ 𝑚𝑥
𝑐𝑙

𝑥=𝑘  , (2) 

 

where 𝑚𝑥 is the age-specific mortality rate for the age interval 𝑘 − 𝑙 for cohort c.  

A similar index (indice synthétique de mortalité) was suggested by Termote (1998) as a complementary 

measure for analyzing mortality changes on a period basis. Being the sum of the age-specific 

mortality rates between two ages, this measure is the mortality analogous of the cohort’s total 

fertility rate (𝑇𝐹𝑅𝐶) (S. Preston et al. 2000), but framed within a specific age interval. This index is 

appropriate for our objective for at least three reasons. First, it is not influenced by variations in size 

across ages or cohorts. Second, contrary to other measures of mortality, such as life expectancy or 

life years lost, the 𝐶𝑃𝑀𝑅𝑐(𝑘,𝑙) is not weighted by age – that is, it does not overestimate the 

importance of the causes of death that are more prevalent in the younger age groups. Third, the 

index is fairly easy to decompose by causes of death.  

The change in the cohort’s partial mortality rate between the advantaged (𝑎) and disadvantaged (𝑑) cohorts 

for the age interval 𝑘 − 𝑙 is defined as 

∆𝐶𝑃𝑀𝑅𝑑−𝑎(𝑘,𝑙) = 𝐶𝑃𝑀𝑅𝑑(𝑘,𝑙) − 𝐶𝑃𝑀𝑅𝑎(𝑘,𝑙). (3) 

The decomposition of the ∆𝐶𝑃𝑀𝑅𝐶𝑑−𝑎(𝑘,𝑙) by cause of death is straightforward, since this index 

satisfies a simple balance equation in which the sum of all changes in the cohort’s partial mortality rate by 

cause of death 𝑖 (∆𝐶𝑃𝑀𝑅𝑖
𝑑−𝑎(𝑘,𝑙)

) equals the total change in the cohort’s partial mortality rate: 

∆𝐶𝑃𝑀𝑅𝑑−𝑎(𝑘,𝑙) = ∑ ∆𝐶𝑃𝑀𝑅𝑖
𝑑−𝑎(𝑘,𝑙)

𝑖 . (4) 
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Classification of causes of death and measurement of mortality 

change 

The period under analysis spans three ICD revisions (8th through 10th). To facilitate an initial 

decomposition by cause of death of the mortality deterioration, we first constructed broad causes of 

death based on the ICD chapters (see Table S2.1). This broad categorization allowed us to analyze 

mortality changes across a few groups of causes, and guaranteed a low degree of variation across the 

three ICD revisions covered during the period of observation.  

 

Table S2. 1. ICD Chapters revisions 8th to 10th 
ICD 8 9 10  

Period 1968-1978 1979-1998 1999-2016 

Certain infectious and parasitic diseases 001-139 001-139 A00–B99 

Neoplasms 140-239 140-239 C00–D48 

Endocrine, nutritional, and metabolic diseases 240-279 240-279 E00–E90 

Diseases of the blood and blood-forming organs and certain 
disorders involving the immune mechanism 

280-289 280-289 D50–D89 

Mental and behavioral disorders 290-319 290-319 F00–F99 

Diseases of the nervous system 320-359 320-359 G00–G99 

Diseases of the eye and adnexa 360-379 360-379 H00–H59 

Diseases of the ear and mastoid process 380-389 380-389 H60–H95 

Diseases of the circulatory system 390-459 390-459 I00–I99 

Diseases of the respiratory system 460-519 460-519 J00–J99 

Diseases of the digestive system 520-579 520-579 K00–K93 

Diseases of the genitourinary system 580-629 580-629 N00–N99 

Pregnancy, childbirth, and the puerperium 630-679 630-679 O00–O99 

Diseases of the skin and subcutaneous tissue 680-709 680-709 L00–L99 

Diseases of the musculoskeletal system and connective tissue 710-739 710-739 M00–M99 

Congenital malformations, deformations, and chromosomal 
abnormalities 

740-759 740-759 Q00–Q99 

Certain conditions originating in the perinatal period 760-779 760-779 P00–P96 

External causes of morbidity and mortality 800-999 800-999 V01–Y98 

Other causes 780-799 780-799 R-U 

 

Figure S2.1 shows the estimates of the cause-specific decomposition of the mortality deterioration 

from the advantaged to the disadvantaged cohorts. According to these results, most of the excess 
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mortality among boomers is composed of increases in deaths from causes within the ICD Chapters 

covering external, infectious, digestive, mental/behavioral, and respiratory diseases.  

 

Figure S2. 1: Percentage contributions of broad causes to the mortality deterioration from 
the advantaged to the disadvantaged cohorts 

 
 

Based on the leading broad causes of mortality deterioration identified in Figure S2.1, we 

constructed more detailed causes of death, and decomposed the mortality deterioration again. Table 

S2.2 presents the ICD codes used to classify deaths from HIV/AIDS, hepatitis C, COPD, suicide, 

alcohol, and drugs. Note that none of these causes of death was confined to the same broad 

category – that is, to the same ICD chapter. For instance, alcohol-related mortality included deaths 

from mental and behavioral disorders due to alcohol (which are covered by the mental and 

behavioral disorders chapter), from alcoholic liver disease (which are covered by the digestive system 

chapter), and from alcohol poisoning (which are covered by the external causes chapter).  

 

Table S2.2: ICD codes included in each category of causes of death, revisions 8th to 10th 
ICD 8 9 10  

Period 1968-1978 1979-1998 1999-2016 

HIV/AIDS NA 0420-0449 B20-B24 

Hepatitis C NA 0704-0705 B171, B182 

Chronic lower respiratory diseases 4900-4939 4900-4939 J40-J47 

Suicides 9500-9599 9500-9599 X60-84 
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ICD 8 9 10  

Period 1968-1978 1979-1998 1999-2016 

Drug-related causes (accidental 
overdoses + drug dependence) 

2943,  
3040-3049, 

3091,  
8500-8599, 
9800-9803 

2920-2929, 
3040-3049, 
3052-3059, 
8490-8589, 
9800-9805 

F11-19, F55, 
X40-44,  
Y10-14 

Alcohol-related causes (accidental 
alcohol intoxication + long-term 
harm from liver cirrhosis + ) 

2910-2919, 
3030-3039,  
5353, 5710, 
8600-8609 

2910-2919, 
3030-3039, 
3050, 3575, 
4255, 5353, 
5710-5713, 

7903, 
8600-8609 

 E244, F10,  
G312, G621,  
G721, I426,  

K292,  
K700-K709,  
K860, X45,  

Y15, Y90, Y91 

 

 

Figure S2.2 depicts the contributions to the mortality deterioration of each cause of death. Increases 
in mortality from HIV/AIDS, hepatitis C, COPD, suicide, alcohol, and drugs contributed between 
75% and 80% of the deterioration in mortality from the advantaged to the disadvantaged cohorts 
for both sexes in Canada and the United States. 

 

Figure S2.2. Percentage contributions to the increase in ∆𝑪𝑷𝑴𝑹𝒅−𝒂(𝟑𝟓,𝟓𝟒)  

 
Note: Only categories with positive contributions to ∆𝐶𝑃𝑀𝑅𝑑−𝑎(35,54) of least 2% in the four 

subpopulations were included. 
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Estimates from the ∆𝐶𝑃𝑀𝑅𝑖
𝑑−𝑎(35,54)

 depicted in Figure 5.3 were useful for identifying the causes 

of death that made the largest contributions to the relative mortality deterioration between the 

advantaged and the disadvantaged cohorts within the age interval 35-54y.  

However, this measure has two limitations. First, whereas the variable age is controlled when the 

mortality levels are compared within the same age interval, the variable period is not; consequently, 

changes in mortality over cohorts are confounded with changes over periods. For instance, the 

estimates of cohort differences in drug-related mortality levels could be the result of period 

variations. During the observed age interval, i.e., 35-54, the earliest cohorts were exposed for a 

shorter period of time and at incipient stages of the opioid epidemic (e.g., because the cohort 1945 

was observed during the period 1980-1999, they had only been exposed to the initial years of the 

opioid crisis, which started in the late 1990s). The more recent cohorts, by contrast, had been 

exposed to the crisis for a more extended period, when it was in its more advanced stages (e.g., the 

cohort 1955 was observed during the period 1990-2009, when the opioid crisis was fully underway).  

Second, while the decomposition of ∆𝐶𝑃𝑀𝑅𝑑−𝑎(35,54) allows us to identify the causes of the 

relative mortality deterioration between the disadvantaged and the advantaged cohorts, because of 

how our window of observation was configured, we were not able to identify whether the causes of 

death that were responsible for the deterioration were also responsible for the subsequent 

improvements in mortality for the cohorts born after the boomers. If that was not the case (i.e., if 

the causes of the mortality deterioration were different from the causes of the subsequent 

improvements), the excess in all-cause mortality among the boomers would not be strictly related to 

the sum of multiple cause-specific excesses, but would instead be an artifact of more intricate 

processes involving increases in some causes and decreases in others. 

To overcome these two limitations, and to properly assess the cohort’s excess mortality by cause of 

death, we need to account simultaneously for variations over the three age-period-cohort (APC) 

dimensions. 

 

Alternative selection of disadvantaged cohorts 

The selection criteria of the disadvantaged cohorts depicted in Figure 5.2 could be problematic for 

two reasons. First, for Canadian males, the cohorts 1954 and 1957 have similar degrees of deviance 
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from the linear trend of mortality (172 and 179, respectively), and it could be argued that 

𝐶𝑃𝑀𝑅𝑐(35,54) is in absolute terms larger in 1954 than in 1957 (5,545 and 5,288, respectively). Second, 

since the highest degree of positive deviance from the mortality trend for U.S. females was reached 

by the cohort 1960 – i.e., the last cohort observed – we were not able to determine whether the 

deterioration in mortality continued among more recent cohorts. To address these points, we tested 

the consistency of our estimates by selecting 1954 as the disadvantaged cohort for Canadian males, 

and by extending the estimation of 𝐶𝑃𝑀𝑅𝑐(35,54) to more recent cohorts for U.S. females. These 

estimations are presented in the supplemental materials (see Figures S2.3 to S2.5). 

The cause-specific contributions to the deterioration in mortality from the advantaged to the 

disadvantaged cohorts were sensitive to the locations imposed on these cohorts. In order to test the 

consistency of the estimates presented in Figure 5.3, we chose alternative locations for the 

disadvantaged cohorts in the cases in which the greatest divergence from the linear trend was not 

obvious. For Canadian males, the degree of deviation was roughly similar for the cohorts 1954 and 

1957. Hence, we use 1954 as an alternative disadvantaged cohort. For U.S. females, the level of 

divergence did not stop increasing over the observed cohorts. We extended the estimation up to the 

cohort 1963, which was only possible by reducing the age interval to 35-53. These 𝐶𝑃𝑀𝑅𝑐(35,53) 

estimates between the cohorts 1940 and 1963 for U.S. females are depicted in Figure S2.3. 

According to these findings, the most disadvantaged cohort for this age interval is located in 1958. 

 

Figure S2.3. Alternative estimates of the cohorts’ partial mortality rates for U.S. females  
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Notes: Cohorts’ partial mortality rates (solid line) and the linear trend (dashed line) for U.S. females within 

the age interval 35-53 (CPMRc(35,53)), between the cohorts 1940 and 1963. The labels indicate the year of 
birth of the advantaged (circular shape) and the disadvantaged (triangular shape) cohorts. 

 

In Figure S2.4, we compare the contributions by cause to the mortality deterioration of the 

advantaged and the alternative disadvantaged cohorts for Canadian males and U.S. females (in purple). To 

facilitate this comparison, the plot also presents the estimations of the cause-specific contributions 

obtained with the original disadvantaged cohorts (in green). Similarly, Figure S2.5 shows the 

cumulative contributions of the six leading causes of death to the mortality deterioration. As Figures 

S2.4 and S2.5 show, the contributions by cause of death to the mortality deterioration were highly 

similar between the estimates using the original location and those using the alternative location of 

the disadvantaged cohorts. 

 

According to the estimates presented in Figures S2.3 to S2.5, the contributions of the leading causes 

to the mortality deterioration from the advantaged to the disadvantaged cohorts did not differ 

substantially when different disadvantaged cohorts were selected for Canadian males and U.S. 

females.  

 

Figure S2.4. Alternative estimates of percentage contributions to the increase in 

∆𝑪𝑷𝑴𝑹𝒅−𝒂(𝒌,𝒍) for Canadian males and U.S. females 
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Notes: Percentage contributions to the increase in ∆𝐶𝑃𝑀𝑅𝑑−𝑎(𝑘,𝑙) by cause of death for Canadian males 

(∆𝐶𝑃𝑀𝑅𝑑−𝑎(35,54)) and U.S. females (∆𝐶𝑃𝑀𝑅𝑑−𝑎(35,53)), according to the original (respectively, 1957 and 
1960, in green) and the alternative (respectively, 1954 and 1958, in purple) disadvantaged cohorts. Only 
causes that contributed to mortality deterioration in all cases are shown. 

 

Figure S2. 5. Alternative estimates of cumulative contributions by leading causes to the 
deterioration in mortality from the advantaged to the disadvantaged cohorts 

 
Notes: Estimates according to the location of the disadvantaged cohort. For Canadian males, the 

disadvantaged cohort was originally placed in 1957, and alternatively in 1954. For U.S. females, the 

disadvantaged cohort was originally placed in 1960, and alternatively in 1958. 
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Detrended cohort effects from the APC model 

 

Figure S2.6: APCd estimates by cause of death, sex, and country. 
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Figure S2.7: APCd estimates for each sex and racial-ethnic group, comparing the leading 
causes of the boomers’ excess mortality 

 
 

  



236 
 

Temporal dynamic of the excess mortality among boomers by 

cause of death  

Figure S2.8: Variation in relative risk at the ridge compared to the baseline over time by 
country 
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Figure S2.9: Variation in relative risk at the ridge compared to the baseline over time by 
race/ethnicity 
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Supplementary Material S3: Appendix APC Curvature Plots: 

Displaying Nonlinear Age-Period-Cohort Patterns on Lexis 

Plots 

 

Black-and-white printout of the APC curvature plots 

Figure S3.1: B&W APC curvature plot of the features of excess mortality from drug-related 
causes in four racial/ethnic groups of boomer males in the United States 

 

Notes: The coordinates of the points indicate the location of the curvature ridge over time (i.e., the modal age/cohort 
with the excess mortality in each single-year period). The magnitude, indicated by the opacity, is measured as the relative 
risk of the death rate in the modal cohort to the corresponding death rate in the baseline. The minimum and maximum 
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levels of relative risk that each racial/ethnic group reached during the period under observation are indicated in the 
legend. The spread, indicated by the point size, is estimated as the standard deviation of the curvature in each single-year 
period. The white band indicates the baby boomer cohorts (i.e. born between 1946 and 1964). A correction factor was 
applied to adjust the proportionality of areas across the shapes.  

 
 
Figure S3.2: B&W APC curvature plot of the features of excess mortality in young adult 
males in four countries 

 

Notes: The coordinates of the points indicate the location of the curvature ridge over time (i.e., the modal age/cohort 
of the excess mortality by single-year period/cohort). The magnitude, indicated by the opacity, is the excess death rates 
(/100k), calculated as the difference between the death rate in the modal age/cohort and the corresponding death rate in 
the baseline. The minimum and maximum excess mortality rates reached by country during the period under observation 
are indicated in the legend. Finally, the curvature spread, indicated by the point size, is estimated as the standard 
deviation of the curvature in each period. A correction factor was applied to adjust the proportionality of areas across 
the shapes. 
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Figure S3.3: B&W APC curvature plot of cohort fertility rate peaks in three countries 

 

Notes: The coordinates of the points indicate the location of the curvature ridge along the cohort (i.e., the modal 
age/period of the ASFR by single-year cohort). The magnitude, indicated by the opacity, is measured as the ASFR mode 
by cohort. The minimum and maximum ASFR reached by the cohorts of each country are indicated in the legend. The 
curvature spread, indicated by the point size, is estimated as the standard deviation of the curvature before the modal 
age/period. A correction factor was applied to adjust the proportionality of areas across the shapes. 
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Guide to Reproduce the Analyses and Results Presented in 

the Paper 

This guide presents the material required to fully reproduce the analyses and results presented in the 
paper. All the scripts were performed using R version: 3.6.1 (R Core Team 2019). Data inputs, 
scripts, and this document, are all available in the OSF link: https://osf.io/5bmyz/ 

 

Procedure for reproducing results 

Open the master script (00_master.R) in a new R session. This script will execute all scripts required 
for reproducing the analyses and plots of the paper.  

Before executing this master script, make sure to introduce within the quotation marks in lines 21-28 
your username and password for the Human Mortality Database (HMD) and the Human Fertility 
Database (HFD). This information is required for constructing the APC curvature plots 6, 7, A2, 
and A3. 

If you are not yet registered in these databases, you can do it in the respective websites 
https://www.mortality.org/ and https://www.humanfertility.org/. 

Our scripts assume that the current working directory is the folder in which the master script 
(00_master.R) lives. If you open a new R session by double-clicking on the master file (00_master.R) 
then the current working directory should be set correctly. 

You can also set the working directory to the folder where the master script (00_master.R) lives by 
typing a setwd() command in the R console. For example, on a Windows system you might type 

setwd(C:/Users/Jane/apc_curvature_plots_rep_material/) 

whereas on a Mac you might type 

setwd(/Users/Jane/apc_curvature_plots_rep_material/) 

 

Description of the files contained in the ZIP archive 

The zip. file contains 1 data file and 12 scripts 

 

Folder “data” 

The file db_drugs_deaths_exposures_race.csv contains all drug-related male deaths and exposure-to-
risk in the United States for the period 1990-2016, by single years of age, and race/ethnicity. 

https://osf.io/5bmyz/
https://www.mortality.org/
https://www.humanfertility.org/
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The mortality counts (456.776 deaths) were obtained from the micro-data files of the U.S. National 
Vital Statistics System. Here, we define drug-related mortality as deaths involving drug use registered 
in the categories of accidental and undetermined intent overdoses, or in the categories of mental or 
behavioral causes (i.e., ICD 10 codes F11-19, F55, X40-44, Y10-14).The raw files are available in 
http://www.nber.org/data/vital-statistics-mortality-data-multiple-cause-of-death.html 

The exposure to death data come from the HMD and the proportion by race and ethnicity was 
estimated from the Bridged-Race Population Estimates. The raw files are available in 
https://www.cdc.gov/nchs/nvss/bridged_race/data_documentation.htm 

 

Folder “scripts” 

These are the R-files for generating the main results described in the paper. All these scripts are 
called from the master script. 

 aa00_preparing_R_session.R: Script for preparing the R session: Installing and loading 
required packages for running the scripts. 

 an01_smooth_US_mort_by_race_1990_2016.R: Estimation of smoothed, interpolated, and 
excess death rates of drug mortality in the US, by race. 

 an02_excess_from_dAPC_Carstensen_function.R: Script for estimating of excess death 
rates of drug mortality in the US, by race, as the difference between the smoothed mortality 
rates and a baseline obtained from a dAPC model with the cohort terms set at zero. 

 fg01_obs_&_smth_drugs.R: Script for plotting Figure 1: Lexis surface of observed and 
smoothed drug-related mortality rates for Hispanic males in the United States. 

 fg02_drugs_cohort_effects.R: Script for plotting Figure 2: Relative risks of drug-related 
mortality for cohorts of Hispanic males in the United States. 

 fg03_surfaces_change.R: Script for plotting Figure 3: Lexis surfaces of changes in drug-
related mortality rates over age/cohort and over period/cohort for Hispanic males in the 
United States 

 fg04a_excess_from_interpolation.R: Script for plotting Figure 4a: Lexis surfaces of the 
excess drug-related mortality rates for male Hispanic boomers in the United States during 
1990-2016, ages 15-75. Excess mortality rates (/100k) estimated as the difference between 
the smoothed mortality rates and an interpolated baseline that omits the 1940-1970 cohorts 
from the Lexis mortality surface.  

 fg04b_excess_from_dAPC_curvatures.R: Script for plotting Figure 4a: Lexis surfaces of the 
excess drug-related mortality rates for male Hispanic boomers in the United States during 
1990-2016, ages 15-75. Excess mortality rates (/100k) estimated as the difference between 
the smoothed mortality rates and a baseline obtained from a dAPC model with the cohort 
terms set at zero; i.e., centered at the linear trend component of the cohort effects. 

 fg05_APC_curvatures_plot_boomers.R: Script for plotting Figures 5 and A1: APC curvature 
plot of the features of excess drug-related mortality among four racial/ethnic groups of 
boomer males in the United States. 

 fg06_APC_curvatures_plot_young_hump.R: Script for plotting Figures 6 and A2: APC 
curvature plot of the features of excess mortality in young adult males in four countries. 

http://www.nber.org/data/vital-statistics-mortality-data-multiple-cause-of-death.html
https://www.cdc.gov/nchs/nvss/bridged_race/data_documentation.htm
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 fg07_APC_curvatures_plot_cohort_fertility.R: Script for plotting Figures 7 and A3: APC 
curvature plot of cohort fertility rate peaks in three countries. 

 

Folder “figures” 

All figures (1 to 7, and A1 to A3) will be stored in this folder. 

 


