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Abstract

We describe the class of strategy-proof mechanisms for choosing sets of objects
when preferences are additive and monotonic. JEL classification numbers: D71.

1. Introduction

We study strategy-proof mechanisms for choosing a set of objects from a given collection
of such sets. We assume that the objects are valuable, public in nature, and that their
consumption generates no cross-effects. Under these assumptions, a typical preference is
naturally represented by a measure, i.e., a monotonic additive set function.
Choosing independent public projects or selecting candidates to a given set of unrelated

positions are classic illustrations of our model. Collective choice under uncertainty is a
perhaps less familiar application. In this case, the objects are the possible states of nature
and the social decision problem consists in choosing a bet, i.e., an uncertain prospect where
“collective success”is achieved if a specific event occurs, and failure ensues otherwise. Since
a subjective-expected-utility agent ranks bets according to the subjective probability she
attaches to the events characterizing them, her preferences are represented by a probability
measure.
In all these examples, specifying the class of feasible sets of objects is fundamental.

Feasibility constraints may take various forms: local public projects must normally be
chosen under some aggregate budget constraint, recruitment decisions may involve capacity
constraints, lower bounds, diversity requirements, and so on. It is therefore important
to study mechanisms whose range may be constrained in many different ways. For any
collection of feasible sets, the theorem we shall prove describes the class of strategy-proof
mechanisms whose range coincides with that collection.
To illustrate our result, suppose there are three agents and the set of relevant objects

is X = {a, b, c, d, e} . Let agent 1 select which of the sets {a, b} , {b, c} , {a, c} will be
∗erbahel@vt.edu, Department of Economics, Virginia Polytechnic Institute and State University,

Blacksburg, VA 24061, USA.
†yves.sprumont@umontreal.ca, Département de Sciences Économiques and CIREQ, Université de

Montréal, C.P. 6128, succursale centre-ville, Montréal QC, H3C 3J7, Canada.



part of the selected set, and let the agents decide by majority vote which of {d} or {e}
will be included as well. The selected set is the union of these two separate choices. If
preferences are additive, it is easy to see that this mechanism is strategy-proof. Note
that not all subsets of X can be chosen: the range of the mechanism contains the six
sets {a, b, d} , {b, c, d} , {a, c, d} , {a, b, e} , {b, c, e} , {a, c, e}. Observe also that (i) no
set in the range is a strict subset of another, (ii) every set in the range is the union of
one of the sets {a, b} , {b, c} , {a, c} and one of the sets {d} , {e}, (iii) the choice between
{a, b} , {b, c} , {a, c} is dictatorial whereas the choice between {d} and {e} is majority-based.
As we shall see, all strategy-proof mechanisms defined for monotonic additive preferences
have a structure similar to the one in this example.

Our work belongs to the literature on strategy-proofness in contexts where the set
of social alternatives has a Cartesian product structure and preferences are separable or
additive. To see the connection, note that the collection of all subsets of a finite set of
objects {1, ...,m} may be identified with the Cartesian product {0, 1}m . Early works in
the field, such as Barberà, Sonnenschein and Zhou (1991) and Le Breton and Sen (1999),
describe the unconstrained strategy-proof mechanisms —those whose range is the entire set
of alternatives.
Subsequent contributions explore the consequences of imposing feasibility constraints

on the range of the mechanism. Barberà, Massó and Neme (2005) characterize all the
strategy-proof mechanisms for choosing sets of objects (or, equivalently, alternatives in
the cube {0, 1}m) when preferences are either additive or separable. Reffgen and Svensson
(2012) generalize the analysis to the case where alternatives form an arbitrary finite product
set.
Compared to this strand of work, the specificity of the current paper lies in the assump-

tion that preferences are monotonic. We believe that this restriction is worth studying
because of its importance in many applications. Although the structure of strategy-proof
mechanisms may in general be very sensitive to the restrictions imposed on individual
preferences1, it turns out that this is not the case here: restricting attention to the domain
of monotonic additive preferences does not substantially alter the characterization offered
in Theorem 1 of Barberà, Massó and Neme (2005).

2. Setup

Let N = {1, ..., n} , n ≥ 2, be the set of agents and let X = {1, ...,m} , m ≥ 2, be a set
of objects. The set of (social) alternatives is X := {A : ∅ 6= A ⊆ X}. We emphasize that
each alternative is a set of objects. Throughout the paper, ⊆ denotes inclusion and ⊂ is
reserved for strict inclusion.
Agent i’s preference is a linear order Pi on X . For any nonempty subset of alternatives

A ⊆ X , let τ(Pi;A) denote the maximal element of Pi in A. We call a preference Pi
1Compare Theorem 1 and Theorem 2 in Barberà, Massó and Neme (2005).
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additive if there exists a function ui : X → R such that

APiB ⇔
∑
x∈A

ui(x) >
∑
x∈B

ui(x) for all A,B ∈ X .

We then say that Pi is represented by ui. We call Pi monotonic additive if it is represented
by a function ui such that ui(x) > 0 for all x ∈ X. If Pi is monotonic additive, then APiB
whenever B ⊂ A. Let Pa denote the set (or domain) of additive preferences and Pma the
domain of monotonic additive preferences. We use P to denote an arbitrary domain of
preferences.
For any domain P, a profile (of preferences in P) is a list P = (P1, ..., Pn) ∈ PN . If

i ∈ N and P ′i ∈ P, we denote by (P ′i , P−i) ∈ P the profile obtained from P by replacing
agent i’s preference Pi with P ′i . A social choice function (SCF) on the domain P is a
function f : PN → X . The range of f is the set Rf =

{
f(P ) : P ∈ PN

}
. The SCF

f is manipulable by i ∈ N at P ∈ PN via the report P ′i ∈ P if f(P ′i , P−i)Pif(P ). If
f is not manipulable by any agent at any profile via any report, it is strategy-proof. Our
purpose is to describe the class of strategy-proof SCFs on the domain of monotonic additive
preferences Pma.

3. Characterization

For any nonempty set of alternativesA ⊆ X , a decomposition ofA is a collection {A1, ...,AL}
such that

(i) Al ⊆ X for l = 1, ..., L,
(ii) Al ∩ Al′ = ∅ for all Al ∈ Al, Al′ ∈ Al′ , l 6= l′,

(iii) A =

{
L⋃
l=1

Al : (A1, ..., AL) ∈ A1 × ...×AL
}
.

A decomposition of A is maximal if there is no other decomposition {A′1, ...,A′L′} of A such
that L′ > L. Barberà, Massó and Neme (2005) prove that every set A ⊆ X has a unique
maximal decomposition; see also Svensson and Torstensson (2008). The sets A1, ...,AL are
the components of A.
If f : PN → X is a SCF on the domain P and {A1, ...,AL} is the maximal decomposi-

tion of its range Rf , then there exist well-defined SCFs f1 : PN → A1, ..., fL : PN → AL
such that f(P ) = f1(P ) ∪ ... ∪ fL(P ) for all P ∈ PN . If Al contains a single alternative,
say Al, then obviously fl(P ) = Al for all P ∈ PN . For any l ∈ {1, ..., L}, we say that f is
dictatorial on Al if there is an agent i ∈ N such that fl(P ) = τ(Pi;Al) for all P ∈ PN . If
l ∈ {1, ..., L} is such that Al contains exactly two alternatives, say, Al and Bl, we say that
f is voting by committees on Al if there exists a nonempty, inclusion-monotonic family
WAl of nonempty subsets of N such that

fl(P ) =

{
Al if {i ∈ N : AlPiBl} ∈ WAl ,

Bl otherwise.
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Of course, an equivalent definition obtains by permuting the roles of the alternativesAl, Bl.2

Let us begin by recalling Barberà, Massó and Neme’s (2005) characterization of the
strategy-proof SCFs on the domain of all additive preferences.

Theorem 1 (Barberà, Massó and Neme, 2005)3. Let f : PNa → X be a SCF and let
{A1, ...,AL} be the maximal decomposition of Rf . Then f is strategy-proof if and only if
(i) f is dictatorial on Al for all l such that |Al| ≥ 3 and (ii) f is voting by committees on
Al for all l such that |Al| = 2.
We now turn to our characterization on the domain of monotonic additive preferences.

Say that a set of alternatives A ⊆ X is a clutter if there are no A,B ∈ A such that A ⊂ B.

Theorem 2. Let f : PNma → X be a SCF and let {A1, ...,AL} be the maximal decomposi-
tion of Rf . Then f is strategy-proof if and only if (i) Rf is a clutter, (ii) f is dictatorial
on Al for all l such that |Al| ≥ 3, and (iii) f is voting by committees on Al for all l such
that |Al| = 2.

4. Proof

We derive Theorem 2 from Theorem 1. Let f : PNma → X be a SCF and let {A1, ...,AL} be
the maximal decomposition of Rf . It is easy to check that f is strategy-proof if conditions
(i), (ii), and (iii) hold. Conversely, suppose that f is strategy-proof.

Step 1. The range Rf is a clutter.
Substep 1.1. The SCF f is unanimous on its range: for all A ∈ Rf and all P ∈ PNma,
[τ(Pi;Rf ) = A for all i ∈ N ]⇒ [f(P ) = A] .

The argument is standard. Fix A ∈ Rf and P ∈ PNma; and suppose that τ(Pi;Rf ) = A
for all i ∈ N . Since A ∈ Rf , there exists P ∈ PNma such that f(P ) = A. Consider the
sequence of preference profiles P 0 = P , P 1 = (P1, P−1), ..., P

n = P and apply strategy-
proofness repeatedly to obtain A = f(P ) = f(P 0) = f(P 1) = ... = f(P n) = f(P ).

Substep 1.2. The range Rf is a clutter.
Let A,B ∈ Rf and suppose, contrary to the claim, that A ⊂ B. Without loss of

generality, assume that

there is no C ∈ Rf such that B ⊂ C. (4.1)

For each i ∈ N, choose a function uBi : X → R++ such that

uBi (x) >
∑

y∈X\A
uBi (y) for all x ∈ A, (4.2)

uBi (x) >
∑

y∈X\B
uBi (y) for all x ∈ B, (4.3)

2Namely: f is voting by committee on Al if there exists a nonempty, inclusion-monotonic family WBl

of nonempty subsets of N such that fl(P ) = Bl if {i ∈ N : BlPiAl} ∈ WBl
and fl(P ) = Al otherwise. To

see that the two definitions are equivalent, simply define WBl
= {S : N \ S /∈ WAl

} .
3This is Theorem 1, p. 196. Our reformulation follows that Reffgen and Svensson (2012), p. 671.
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and let PBi ∈ Pma be the monotonic additive preference represented by uBi . Because of (4.1)
and (4.3), τ(PBi ;Rf ) = B. Letting PB = (PB1 , ..., P

B
n ), Substep 1.1 implies f(P

B) = B.
Since A ∈ Rf , there exists PA ∈ PNma such that f(PA) = A. Consider the sequence of

preference profiles
P 0 = PA, P 1 = (PB1 , P

A
−1), ... , P

n = PB.

If f(P 0) ⊂ f(P 1), f is manipulable by agent 1 at P 0 via PB1 . If f(P
1) ⊂ f(P 0), f is

manipulable by agent 1 at P 1 via PA1 . It follows that either

(i) f(P 0) \ f(P 1) 6= ∅ and f(P 1) \ f(P 0) 6= ∅,

or
(ii) f(P 0) = f(P 1).

Suppose first that (i) holds. Because the first statement in (i) means that f(PA) \
f(PB1 , P

A
−1) = A \ f(PB1 , PA−1) 6= ∅, (4.2) implies that f(PA)PB1 f(PB1 , PA−1), contradicting

strategy-proofness. Therefore (ii) must hold, and A = f(P 0) = f(P 1). Repeating the
argument yields A = f(P 0) = f(P 1) = ... = f(P n) = f(PB), contradicting the fact that
f(PB) = B.

Step 2. The SCF f is dictatorial on each component Al such that |Al| ≥ 3 and f is voting
by committees on each component Al such that |Al| = 2.
The proof consists in extending the SCF f : PNma → X to a SCF f+ : PNa → X which is

strategy-proof and has the same range as f ; it then suffi ces to apply Theorem 1 in Barberà,
Massó and Neme (2005) to conclude. The key step in extending f is to show that any
linear order on the range Rf which is the restriction to Rf of an additive preference on X
is also the restriction to Rf of a monotonic additive preference on X :
Substep 2.1. For every Pi ∈ Pa there exists P+i ∈ Pma such that APiB ⇔ AP+i B for all
A,B ∈ Rf .
To prove this claim, fix Pi ∈ Pa and let ui : X → R represent Pi. Define α :=

minx∈X u(x). If α > 0, then Pi ∈ Pma and the claim is trivially true. From now on, assume
α ≤ 0. Note that α < 0 because Pi is a linear order.
Index the alternatives in the range of f so that Rf = {At : t ∈ T} . For every (possibly

empty) set S ⊆ T, define

aS =

(⋂
t∈S

At

)
\
( ⋃
t∈T\S

At

)
with the convention that

⋂
t∈∅

At = X. Observe that for every x ∈ X there is a unique

(possibly empty) set S(x) ⊆ T such that x ∈ aS(x). Choose δ > −αmaxS⊆T |aS| , define

u+i (x) = ui(x) +
δ∣∣aS(x)∣∣ for all x ∈ X,
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and let P+i ∈ Pa be the additive preference represented by u+i . Since for all x ∈ X

u+i (x) > ui(x)−
αmaxS⊆T |aS|∣∣aS(x)∣∣ ≥ ui(x)− α ≥ 0,

we have P+i ∈ Pma.
It remains to check that the restrictions of Pi and P+i to Rf coincide. To this end,

observe first that for every S ⊆ T,∑
x∈aS

u+i (x) =
∑
x∈aS

ui(x) + δ.

It follows that for every t ∈ T,∑
x∈At

u+i (x) =
∑

S⊆T : t∈S

∑
x∈aS

u+i (x)

=
∑

S⊆T : t∈S

( ∑
x∈aS

ui(x) + δ

)
=

∑
S⊆T : t∈S

∑
x∈aS

ui(x) + δ |{S ⊆ T : t ∈ S}|

=
∑
x∈At

ui(x) + δ |{S ⊆ T : t ∈ S}|

=
∑
x∈At

ui(x) + 2
|T |−1δ.

Hence, for any t, t′ ∈ T,
∑

x∈At u
+
i (x)−

∑
x∈At′

u+i (x) =
∑

x∈At ui(x)−
∑

x∈At′
ui(x), which

implies that AtP+At′ ⇔ AtPAt′ .

Substep 2.2. Conclusion of the proof.
For every P ∈ PNa , choose a profile P+ ∈ PNma such that AP+i B ⇔ APiB for all

A,B ∈ Rf and all i ∈ N. Define f+ : PNa → X by

f+(P ) = f(P+).

By construction, f+ is a SCF defined on the domain of all additive preferences and it has
the same range as f, i.e., Rf+ = Rf . Strategy-proofness of f implies that (i) f+(P ) = f(P )
for all P ∈ PNma (because the alternatives selected by f at two profiles that coincide on the
range must be the same) and (ii) f+ is strategy-proof. Since {A1, ...,AL} is the maximal
decomposition of Rf+ , it follows from (ii) and Theorem 1 in Barberà, Massó and Neme
(2005) that f+ is dictatorial on each component Al such that |Al| ≥ 3 and is voting by
committees on each component Al such that |Al| = 2. It now follows from (i) that f itself
is dictatorial on each Al such that |Al| ≥ 3 and is voting by committees on each Al such
that |Al| = 2.�
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