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Abstract: The current study aimed to examine whether the APOE ε4 allele, associated with dementia 

with Lewy bodies (DLB), and possibly with dementia in Parkinson’s disease (PD), is also associated 

with idiopathic REM sleep behavior disorder (RBD). Two SNPs, rs429358 and rs7412, were genotyped 

in RBD patients (n=480) and in controls (n=823). APOE ε4 allele frequency was 0.14 among RBD 

patients and 0.13 among controls (OR=1.11, 95% CI 0.88-1.40, p=0.41). APOE ε4 allele frequencies 

were similar in those who converted to DLB (0.14) and those who converted to PD (0.12) or multiple 

system atrophy (0.14, p=1.0). The APOE ε4 allele is neither a risk factor for RBD nor it is associated 

with conversion from RBD to DLB or other synucleinopathies. 

1. Introduction: Rapid eye movement (REM) sleep behavior disorder (RBD) is currently the strongest 

clinical prodromal feature preceding the development of an overt synucleinopathy, including 

Parkinson’s disease (PD), dementia with Lewy bodies (DLB) or multiple system atrophy (MSA) 

(Iranzo, et al., 2014). One of the strongest genetic factors associated with DLB is the APOE epsilon4 

(ε4) allele (Pickering-Brown, et al., 1994), and PD patients who carry this allele may be at increased risk 

for developing dementia. Since both RBD and the APOE ε4 allele are possibly associated with DLB, 

and with dementia in PD patients, we aimed to examine whether the APOE ε4 allele is associated with 

RBD and conversion to DLB. See Supplementary file for detailed introduction and full list of 

references. 

2. Methods: The study population included idiopathic RBD patients (n=480) and controls (n=823) of 

European ancestry. RBD patients were diagnosed using clinical interview and polysomnography 

according to the ICSD-2 (International Classification of Sleep Disorders, version 2) criteria. The control 

group was composed of 253 elderly controls (age 59.5±9.8 years, matched to the available age at onset 

(AAO) of RBD, n=307, age 59.2±11.5), 510 young controls (age 34.0±6.5 years), and additional 60 

controls with no available data on age. All control groups had nearly identical frequencies of the APOE 

ε4 allele (0.13, 0.13 and 0.14, respectively), which allowed us to analyze all controls combined. All 
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individuals signed informed consent forms at enrollment, and the study protocols were approved by the 

respective institutional review boards. DNA was extracted using a standard salting-out protocol. Two 

single nucleotide polymorphisms (SNPs), rs429358 and rs7412, were genotyped using TaqMan SNP 

genotyping assays. Genotypes were called using the QuantStudio™ 7 Flex Real-Time PCR System and 

Software (v 1.0). Goodness of fit test with one degree of freedom was applied to look for deviation from 

the Hardy-Weinberg equilibrium (HWE) among the controls. Differences in APOE allele or carriage 

frequencies were analyzed using the Fisher’s exact test, and differences in continuous variables were 

analyzed using t-test.  A logistic regression model with age and sex as covariates was also applied. All 

statistical analysis was done using SPSS statistics V.23 (IBM Inc.). Detailed methods can be found in 

the supplementary file. 

3. Results: The allele frequency of APOE ε4 was 0.14 among RBD patients and 0.13 among controls 

(OR=1.11, 95% CI 0.88-1.40, p=0.41). Overall, 25.8% of RBD patients carried at least one APOE ε4 

compared to 23.0% among controls (p=0.25, Fisher’s exact test), and there were more homozygous 

carriers of the APOE ε4 allele among controls (3.2%) as compared to RBD patients (2.7%). Logistic 

regression model adjusted for age and sex also demonstrated lack of association between APOE ε4 

allele carriage and risk for RBD (OR = 1.25, 95% CI 0.87-1.79, p=0.23). There was no difference in 

AAO when comparing carriers (n=88) and non-carriers (n=219) of the APOE ε4 allele (59.1 ± 8.4 vs. 

59.3 ± 12.6 years, respectively, p=0.92, t-test). A total of 140 RBD patients (29.2%) were reported to 

have converted to either PD (n=98, 70% of the converters), dementia/DLB (n=28, 20%) or MSA (n=14, 

10%). The carrier frequencies of one or more APOE ε4 in these groups were similar; 23.5%, 25.0% and 

28.6%, respectively (p=0.91), and the allele frequencies were 0.12, 0.14 and 0.14 (p=1.0). The APOE ε4 

allele frequency among those that did not convert was slightly higher, 0.15 (Table 1), with a total of 

26.5% carriers of at least one APOE ε4 allele, compared to 24.3% among those who converted (p=0.65). 

More detailed results can be found in the supplementary file. 
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4. Discussion: Although RBD is a strong risk factor for developing DLB, and although DLB was 

reported to be associated with the APOE ε4 allele, our results demonstrate lack of association between 

the APOE ε4 allele and RBD or its age at onset. These and previous results further suggest that RBD 

may have a distinct genetic background; it is associated with GBA mutations (Gan-Or, et al., 2015b), but 

unlike PD it is not associated with LRRK2 mutations (Fernandez-Santiago, et al., 2016), and unlike DLB 

it is not associated with the APOE ε4 allele. Thus far, GBA, SCARB2, and potentially SNCA (Gan-Or, et 

al., 2015a) overlap between RBD, PD and DLB (Supplementary Figure 1, see Supplementary file). 

Whether RBD has additional, unique genetic factors that were not identified in PD or DLB cohorts is 

still to be determined. Our current study identified similar frequencies of APOE ε4 allele in those who 

progressed to PD, DLB and MSA, suggesting that APOE alleles do not affect the type of subsequent 

synucleinopathy. Our study has some limitations, and a more detailed discussion including full list of 

references can be found in the supplementary file. Our results support a distinct genetic background for 

RBD-associated neurodegeneration, probably suggesting a specific genetic association with 

synucleinopathy rather than tauopathy/amyloidopathy.  
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Table 1. APOE haplotypes in individuals with RBD and controls 

APOE εεεε2/εεεε2  
n,  

(%) 

εεεε2/εεεε3  
n,  

(%) 

εεεε3/εεεε3 
n,  

(%) 

εεεε2/εεεε4 
n, 

(%) 

εεεε3/εεεε4 
n, 

(%) 

εεεε4/εεεε4 
n,  

(%) 

Total 
carriers of 
εεεε4, n (%) 

εεεε4 allele 
frequency 

RBD patients, 
n=480 

4  
(0.8) 

51  
(10.6) 

301  
(62.7) 

4  
(0.8) 

107  
(22.3) 

13  
(2.7) 

124 
(25.8) 

0.14 

RBD converted to 
synucleinopathya,  
n=140 

3 
(2.1) 

12 
(8.6) 

91 
(65.0) 

1 
(0.7) 

32 
(22.9) 

1 
(0.7) 

34 
(24.3) 

0.13 

RBD not converted 
to synucleinopathy,  
n=340 

1 
(0.3) 

39 
(11.5) 

210 
(61.8) 

3 
(0.9) 

75 
(22.1) 

12 
(3.5) 

90 
(26.5) 

0.15 

Controls, 
n=823 

5 
(0.6) 

111 
(13.5) 

518 
(62.9) 

14 
(1.7) 

149 
(18.1) 

26 
(3.2) 

189 
(23.0) 

0.13 

n, number; RBD, REM sleep behavior disorder 
a PD, dementia/DLB or MSA 
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Abstract 

A significant proportion of individuals with REM sleep behavior disorder (RBD) will progress to 

dementia with Lewy bodies (DLB) and Parkinson’s disease (PD). We aimed to examine whether 

the APOE 4 allele, associated with DLB, and possibly with dementia in PD, is also associated 

with idiopathic RBD. The two SNPs tagging the different APOE alleles (rs429358 and rs7412) 

were genotyped in individuals who were initially diagnosed with RBD (n=480) and in controls 

(n=823). APOE 4 allele frequency was 0.14 among RBD patients and 0.13 among controls 

(OR=1.11, 95% CI 0.88-1.40, p=0.41), and this lack of association remained after adjustment for 

age and sex. Furthermore, allele frequencies of APOE 4 were similar in those who converted to 

DLB (0.14) and those who converted to PD (0.12) or multiple system atrophy (0.14, p=1.0). The 

APOE 4 allele is neither a risk factor for RBD nor it is associated with conversion from RBD to 

DLB or other synucleinopathies. 

 

Key words: REM sleep Behavior disorder, APOE 

  



4 
 

Introduction 

Rapid eye movement (REM) sleep behavior disorder (RBD), characterized by lack of muscle 

atonia and enacting of dreams during REM sleep, is currently the strongest clinical prodromal 

feature preceding the development of an overt synucleinopathy. With long term follow-up, more 

than 80% of individuals with idiopathic RBD developed either Parkinson’s disease (PD), dementia 

with Lewy bodies (DLB) or multiple system atrophy (MSA) (Iranzo, et al., 2014,Schenck, et al., 

2013). It was suggested that RBD may define a subtype of PD patients (Fereshtehnejad, et al., 

2015,Gagnon, et al., 2004) with cognitive decline (Gagnon, et al., 2009,Vendette, et al., 2007), 

dementia (Anang, et al., 2014), hallucinations (Sixel-Doring, et al., 2011) and autonomic 

dysfunction (Postuma, et al., 2008), as compared to PD patients without RBD. In addition, 

pathological studies in brains of PD patients with and without RBD demonstrated a more 

widespread -synuclein accumulation in those associated with RBD (Postuma, et al., 2015a). 

 If indeed RBD represents a subtype of PD, or a subtype of synucleinopathy, it is possible 

that it has specific genetic background. A preliminary study that examined the association of RBD 

with several genetic risk factors for PD identified an association mainly with MAPT and SCARB2, 

and marginal or lack of association with other markers (Gan-Or, et al., 2015a). A recent study 

suggested that RBD is associated with mutations in GBA in both idiopathic RBD and PD cohorts 

(Gan-Or, et al., 2015b). This association was stronger than the association of GBA mutations with 

PD in a similar population (Noreau, et al., 2011), suggesting that GBA may be one of the genetic 

factors that is more specific to RBD. Furthermore, the association of GBA mutations with DLB 

(Nalls, et al., 2013) also seems to be stronger than the association with PD (Sidransky, et al., 2009). 

Conversely, mutations in LRRK2 were not associated with RBD (Fernandez-Santiago, et al., 
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2016,Pont-Sunyer, et al., 2015,Saunders-Pullman, et al., 2015), further supporting the hypothesis 

that RBD has a distinct genetic background.  

One of the strongest genetic factors associated with DLB is the APOE epsilon4 (allele 

(Pickering-Brown, et al., 1994), and PD patients who carry this allele may be at increased risk for 

developing dementia (Pankratz, et al., 2006),  although negative results were also reported for 

these associations (Jasinska-Myga, et al., 2007,Lovati, et al., 2010). Since both RBD and the APOE 

 allele are possibly associated with DLB, and with dementia in PD patients, we aimed to examine 

whether the APOE 4 allele is associated with RBD and conversion to DLB.  

 

Methods 

Population 

The study population included consecutively recruited, unrelated idiopathic RBD patients (n=480) 

and controls (n=823) of European ancestry. RBD patients were collected by collaborators from the 

international RBD study group and were diagnosed using clinical interview and polysomnography 

according to the ICSD-2 (International Classification of Sleep Disorders, version 2) 

criteria.(Thorpy, 2012) The control group was composed of 253 elderly controls (age 59.5±9.8 

years, matched to the available age at onset (AAO) of RBD, n=307, age 59.2±11.5), 510 young 

controls (age 34.0±6.5 years), and additional 60 controls with no available data on age. However, 

all control groups had nearly identical frequencies of the APOE 4 allele (0.13, 0.13 and 0.14, 

respectively), suggesting lack of age-effect, which allowed us to analyze all controls combined. 

All individuals signed informed consent forms at enrollment, and the study protocols were 

approved by the respective institutional review boards. 
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Genotyping 

DNA was extracted using a standard salting-out protocol. To determine the APOE haplotypes, two 

tagging single nucleotide polymorphisms (SNPs), rs429358 and rs7412, were genotyped using 

TaqMan SNP genotyping assays (C___3084793_20 and C____904973_10, respectively, 

ThermoFisher Scientific Inc.) according to the manufacturer's instructions. Genotypes were called 

using the QuantStudio™ 7 Flex Real-Time PCR System and Software (v 1.0). Carriers of T in 

rs429358 and T in rs7412 were determined as carriers of the 2 allele, carriers of T in rs429358 

and C in rs7412 were determined as carriers of the 3 allele, and carriers of C in rs429358 and C 

in rs7412 were determined as carriers of the 4 allele. Of this cohort, the GBA gene was sequenced 

in 265 RBD patients (Gan-Or, et al., 2015b), and nine PD-associated SNPs were genotyped in 261 

patients (Gan-Or, et al., 2015a). 

Statistical analysis 

Categorical variables are presented as percentage or frequencies, whereas continuous variables are 

presented as mean ± standard deviation. Goodness of fit test with one degree of freedom was 

applied to look for deviation from the Hardy-Weinberg equilibrium (HWE) among the controls. 

Differences in APOE allele or carriage frequencies were analyzed using the Fisher’s exact test, 

and differences in continuous variables were analyzed using t-test.  To further avoid a potential 

bias due to age, and since sex distribution was different among patients with RBD vs. controls, a 

logistic regression model with age and sex as covariates was also applied. All statistical analysis 

was done using SPSS statistics V.23 (IBM Inc.). 

 

Results 
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Lack of association between the APOE 4, RBD risk and its age at onset 

Table 1 details the different APOE alleles in RBD patients and controls. The frequency of the two 

SNPs defining the APOE alleles did not deviate from HWE. The allele frequency of APOE 4 was 

0.14 among RBD patients and 0.13 among controls (OR=1.11, 95% CI 0.88-1.40, p=0.41). 

Overall, 25.8% of RBD patients carried at least one APOE 4 compared to 23.0% among controls 

(p=0.25, Fisher’s exact test), and there were more homozygous carriers of the APOE 4 allele 

among controls (3.2%) as compared to RBD patients (2.7%). Logistic regression model adjusted 

for age and sex also demonstrated lack of association between APOE 4 allele carriage and risk 

for RBD (OR = 1.25, 95% CI 0.87-1.79, p=0.23). Data on age at onset (AAO) of RBD was 

available for 307 individuals, and there was no difference in AAO when comparing carriers (n=88) 

and non-carriers (n=219) of the APOE 4 allele (59.1 ± 8.4 vs. 59.3 ± 12.6 years, respectively, 

p=0.92, t-test). 

 

The APOE 4 allele is not associated with conversion to PD, DLB or MSA. 

Since most of the patients in our cohort are being followed-up longitudinally, we examined 

whether the APOE 4 allele is associated with conversion to either PD, dementia/DLB, or MSA. 

A total of 140 RBD patients (29.2%) were reported to have converted to either PD (n=98, 70% of 

the converters), dementia/DLB (n=28, 20%) or MSA (n=14, 10%). The carrier frequencies of one 

or more APOE 4 in these groups were similar; 23.5%, 25.0% and 28.6%, respectively (p=0.91), 

and the allele frequencies were 0.12, 0.14 and 0.14 (p=1.0). The APOE 4 allele frequency among 

those that did not convert was slightly higher, 0.15 (Table 1), with a total of 26.5% carriers of at 

least one APOE 4 allele, compared to 24.3% among those who converted (p=0.65). 
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Discussion 

Although RBD is a strong risk factor for developing DLB (Iranzo, et al., 2014,Postuma, et al., 

2015b). and although DLB was reported to be associated with the APOE 4 allele (Kobayashi, et 

al., 2011,Lane, et al., 2009,Pickering-Brown, et al., 1994), our results demonstrate lack of 

association between the APOE 4 allele and RBD or its age at onset. These and previous results 

(Fernandez-Santiago, et al., 2016,Gan-Or, et al., 2015a,Gan-Or, et al., 2015b,Saunders-Pullman, 

et al., 2015) further suggest that RBD may have a distinct genetic background; it is associated with 

GBA mutations (Gan-Or, et al., 2015b), but unlike PD it is not associated with LRRK2 mutations 

(Fernandez-Santiago, et al., 2016,Saunders-Pullman, et al., 2015), and unlike DLB it is not 

associated with the APOE 4 allele. Thus far, GBA, SCARB2, and potentially SNCA overlap 

between RBD, PD and DLB (Figure 1) (Bras, et al., 2014,Gan-Or, et al., 2015a,Gan-Or, et al., 

2015b). Whether RBD has additional, unique genetic factors that were not identified in PD or DLB 

cohorts is still to be determined.  

 Since PD patients with RBD are likely to develop dementia and hallucinations (Anang, et 

al., 2014,Sinforiani, et al., 2008), eventually presenting a phenotype similar to DLB, and based on 

the current and previous genetic and post-mortem results (Postuma, et al., 2015a), we hypothesize 

that RBD-associated synucleinopathy (the central common area in Figure 1) is the same clinical-

pathological entity, whether it is defined as parkinsonism first with subsequent dementia and 

hallucinations, or whether it is defined as DLB with subsequent parkinsonism. In that sense, RBD 

can be considered as a marker for diffuse synucleinopathy, which may be a better description of 

the disease than DLB or PD with dementia. Neuropathological data from GBA mutations carriers 
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also demonstrated a more diffuse synucleinopathy (Choi, et al., 2011,Neumann, et al., 2009,Wong, 

et al., 2004), further supporting this notion. However, others suggest that PD and DLB should 

remain separate entities, at least until better genetic, molecular and clinical data will allow better 

definitions of these diseases and their potential subgroups (Boeve, et al., 2016). It is possible that 

stochastic events, or other genetic or environmental factors, determine whether -synuclein will 

first be deposited in brain areas associated with dementia and later in the areas associated with 

parkinsonism, or vice versa (Lai, et al., 2008,Lai and Siegel, 2003). The observation that -

synuclein can spread in the brain in a prion-like fashion (Bernis, et al., 2015,Danzer, et al., 

2009,Freundt, et al., 2012) may support a stochastic progression hypothesis, yet additional neuro-

pathological studies are needed to examine this possibility. Therefore, there are two possible 

explanations for the lack of association between the APOE 4 allele and conversion to DLB in our 

cohort. First, as previously suggested (Bras, et al., 2014), it is possible that the association of the 

APOE 4 allele with DLB is due to the component of DLB patients who also have a tauopathy, 

and that the association of RBD with DLB is with those who have more pure synucleinopathy. 

Alternatively, since the majority of our cohort had not yet converted to an overt synucleinopathy, 

it is possible that once a larger number would convert, an association between APOE 4 allele and 

conversion to DLB may arise. Hence, a follow-up study will be needed to determine this 

possibility.   

 The association of RBD with the more devastating synucleinopathy, MSA, also 

necessitates more study. Whether unique genetic or environmental factors affect the risk to 

progress from RBD to MSA is still unknown. Our current study identified similar frequencies of 

APOE 4 allele in those who progressed to PD, DLB and MSA, suggesting that APOE is not one 

of these factors. Interestingly, a recent study suggested that GBA mutations are associated with 
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MSA as well,(Mitsui, et al., 2015) however this observation is awaiting replications in additional 

cohorts. 

 Our study has some limitations. The control population was younger than the RBD group. 

To tackle this limitation, we took two approaches. First, we demonstrated that the frequencies of 

the APOE 4 allele were similar across generations (i.e. in the elderly and young control groups), 

which rules out a potential bias. Furthermore, we also performed a logistic regression model with 

adjustment for age, which further demonstrated lack of association between the APOE 4 allele 

and RBD. Another possible limitation would stem from RBD patients being recruited in multiple 

centers, which could have led to a potential population dependent bias if some cohorts are enriched 

in APOE 4 allele carriers. However, since the frequencies of the APOE 4 allele were similar 

across centers, this possibility was ruled out.  

 To conclude, our results support a distinct genetic background for RBD-associated 

neurodegeneration, probably suggesting a specific genetic association with synucleinopathy rather 

than tauopathy/amyloidopathy. To examine the hypotheses raised by the current and previous 

work, larger studies are necessary, including genome wide association and next-generation 

sequencing studies focusing on RBD, and comparing them to results from PD, DLB and MSA.  
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Figure 1. Venn diagram of the genetic overlap between PD, DLB and RBD. 

While GBA mutations, SCARB2 and possibly SNCA variants are associated with all three 

conditions, other genetic variants such as APOE 4 in DLB and LRRK2 mutations in PD are 

distinctively associated with each condition but not with RBD. It is therefore likely that RBD-

associated neurodegeneration (the overlapping area of PD, DLB and RBD) may have distinct 

genetic background. While thus far no genetic variants that are uniquely associated with RBD were 

discovered, it is possible that such genetic risk factors do exist, and that they were not discovered 

in PD/DLB studies since RBD cases are diluted within the cohorts used to study these diseases. 

 

 


