Blocking Pairs versus Blocking Students:
Stability Comparisons in School Choice*

Battal Doğan† Lars Ehlers‡

April 8, 2020

Abstract

It is known that there are school choice problems without an efficient and stable assignment. We consider comparing assignments in terms of their stability by comparing their sets of blocking (student-school) pairs or comparing their sets of blocking students who are involved in at least one blocking pair. Although there always exists a Pareto improvement over the student-optimal stable (DA) assignment which is minimally unstable among efficient assignments when the stability comparison is based on comparing the sets of blocking pairs in the set-inclusion sense, we show that this is not necessarily true when the stability comparison is based on comparing the sets of blocking pairs in the cardinal sense, or when it is based on comparing sets of blocking students (in the set-inclusion or cardinal sense). Given the latter impossibilities, we characterize the priority profiles where there exists a Pareto improvement over the DA mechanism which is cardinaly minimally stable among efficient assignments when counting blocking pairs or counting blocking students. The resulting domain restrictions suggest to take with caution school choice analysis which relies on a particular stability comparison method.

JEL Classification: C70, D47, D61, D63

Keywords: School choice, stability comparisons, minimal instability, deferred acceptance.

* Battal Doğan acknowledges financial support from the British Academy/Leverhulme Trust (SRG1819\190133). Lars Ehlers acknowledges financial support from the SSHRC (Canada) and the FRQSC (Québec). We thank seminar participants at the University of Oxford and participants of the 39th Bosphorus Workshop on Economic Design and the Lisbon Meetings in Game Theory and Applications for valuable comments.

† Department of Economics, University of Bristol, 3B13 The Priory Road Complex, Priory Road, Clifton, BS8 1TU. Email: battal.dogan@bristol.ac.uk.

‡ Département de Sciences Économiques and CIREQ, Université de Montréal, Montréal, QC H3C 3J7, Canada. Email: lars.ehlers@umontreal.ca.
1 Introduction

A school choice problem consists of a set of students and a set of schools such that each student has a preference ordering over schools, and each school has a capacity and a priority ordering over students. How to assign students to schools in a desirable way turns out to be a nontrivial question, which has led to an extensive school choice literature starting with the seminal study by Abdulkadiroğlu and Sönmez (2003).

A clear indication that school choice problems are nontrivial is the incompatibility of (Pareto) efficiency and stability—two natural and desirable properties. An assignment is efficient if there is no other assignment at which a student is better off while no student is worse off. An assignment is stable if it does not involve a “blocking pair” of a student and a school such that the student prefers the school to his assigned school and he has a higher priority than another student who is assigned to that school. Although an efficient assignment can always be found, for example, by a serial dictatorship algorithm (Svensson, 1999), and a stable assignment can always be found, for example, by the deferred acceptance algorithm (DA) (Gale and Shapley, 1962), unfortunately, there exist school choice problems without an assignment that is both efficient and stable (Roth, 1982).

In this paper, we insist on efficiency and investigate assignments which are minimally unstable among efficient assignments: such assignments are efficient and there is no other efficient assignment which is more stable. To formulate what it means to be more stable, we consider comparing assignments by comparing their sets of blocking (student-school) pairs or comparing their sets of blocking students who are involved in at least one blocking pair. According to the first method, an assignment is more stable than another assignment if the set of blocking pairs in the former is a proper subset of the set of blocking pairs in the latter assignment. This method has a corresponding cardinal version such that an assignment is cardinally more stable than another assignment if the number of blocking pairs in the former is less than the number of blocking pairs in the latter assignment. According to the second method, an assignment is blocking-student-wise (BS-wise) more stable than another assignment if the set of blocking students in the former is a proper subset of the set of blocking students in the latter assignment. This method also has a corresponding cardinal version such that an assignment is BS-wise cardinally more stable than another assignment if the number of blocking students in the former is less than the number of blocking students in the latter assignment.

Stability has been a central desirable property in school choice, both in theory and in

1 Clearly, if an assignment is more stable than another assignment, than it is also cardinally more stable.
applications, especially because a student who is involved in a blocking pair is being treated unfairly which makes the assignment open to criticism on fairness grounds, and even on legal grounds since the student may pursue legal action against the school district. Although stability and efficiency are not always compatible, the DA mechanism always chooses the student-optimal stable assignment, which is a reasonable solution if stability concerns come first and efficiency second. If efficiency concerns come first and instability is inevitable, comparing assignments in terms of their stability by comparing their sets of blocking pairs or blocking students, both in set-inclusion and cardinal ways, are all reasonable methods.\(^2\)

The efficiency adjusted deferred acceptance mechanism (EADA) due to Kesten (2010), which Pareto improves over the DA mechanism, turns out to be minimally unstable among efficient assignments, i.e., at each problem, it produces an assignment that is minimally unstable among efficient assignments.\(^3\) However, we show that EADA is not cardinally minimally unstable among efficient assignments. Even more, there is no mechanism which Pareto improves over DA and which is cardinally minimally unstable among efficient assignments (Proposition 2). It turns out that there is no implication relation between any of the blocking–student-wise notions and any of the blocking–pair-wise notions. More interestingly, the EADA mechanism is not BS-wise minimally unstable among efficient assignments, and therefore also not BS-wise cardinally minimally unstable among efficient assignments. Even more, there is no mechanism which Pareto improves over DA and which is BS-wise (cardinally) minimally unstable among efficient assignments (Proposition 1).

Above results suggest that the EADA mechanism’s failure of cardinal minimal instability while satisfying minimal instability cannot be solely attributed to the cardinal feature of the comparison method. We also show that there exist priority profiles for which the EADA mechanism is BS-wise cardinally minimally unstable but not necessarily cardinally minimally unstable, and whenever the EADA mechanism is cardinally minimally unstable, then it is BS-wise cardinally minimally unstable. Thus, the conclusions are opposite for the inclusion comparison and the cardinality comparison (of blocking pairs and blocking students). All these results suggest that several conclusions related to minimal instability are sensitive to the choice of the stability comparison method.\(^4\)

We also investigate restricting the domain of priority profiles. For the unit-capacity case, we characterize the priority profiles for which there exists a Pareto improvement over the DA

\(^2\)Ehlers and Morrill (2020) provide a thorough analysis of legal assignments in school choice.

\(^3\)This result is also proven in Tang and Zhang (2020). We present our proof which is independent and different.

\(^4\)Not all conclusions have to be sensitive, however. In Doğan and Ehlers (2020), we show that a result by Abdulkadiroğlu et al. (2020), which relies on a particular stability comparison method, is in fact robust to the choice of the stability comparison method.
assignment which is *cardinally minimally unstable among efficient assignments* (Theorem 1). Our characterization result provides two important insights.

1. For any priority profile for which there exists a Pareto improvement over the DA assignment that is *cardinally minimally unstable among efficient assignments*, the DA assignment always includes at most one *improvement cycle* and there is a unique efficient Pareto improvement over the DA assignment. This result suggests that such priority profiles are quite restricted. In other words, if one restricts himself to Pareto improvements over the DA mechanism, it is essentially impossible to guarantee an assignment that is *cardinally minimally unstable among efficient assignments*.

2. Our characterization result fully uncovers the three potential reasons why the EADA assignment may fail to be *cardinally minimally unstable among efficient assignments*. Each potential reason corresponds to the violation of one of the three conditions in Theorem 1.

Also, for the unit-capacity case, we characterize the priority profiles for which there exists a Pareto improvement over the DA assignment which is *BS-wise cardinally minimally unstable among efficient assignments* (Theorem 2), which results in similar insights as above: For any “possibility priority profile”, there is a unique efficient Pareto improvement over the DA assignment, which includes exactly one blocking student; and our characterization result again fully uncovers all potential reasons why the EADA assignment fails.

2 Related Literature

Ergin (2002) derived necessary and sufficient conditions (on the capacity-priority profile) for the efficiency of the DA mechanism. The EADA mechanism (Kesten, 2010) is efficient but not necessarily cardinally minimally unstable when counting blocking pairs or counting blocking students. Here we asked a parallel question to Ergin (2002): when is the EADA-mechanism cardinally minimally unstable?

Our methods to compare assignments by their stability are inspired by comparison methods in recent studies (here, we provide a non-exhaustive list). In Pathak and Sönmez (2013),

5 The characterizing conditions are still necessary conditions for the EADA assignment to be *cardinally minimally unstable among efficient assignments* in the general multi-capacity case (Appendix A.2), and therefore the main insights extend to the general setup.

6 See Section 4 for a definition of an improvement cycle

7 Doğan and Yenmez (2020), Dur et al. (2019), Ehlers and Morrill (2020), Kwon and Shorrer (2019), Tang and Zhang (2020), and Troyan et al. (2020) provide different other justifications for EADA.
school choice mechanisms are compared in terms of their manipulability by comparing the sets of problems, in the set inclusion sense, at which they are manipulable. In Andersson et al. (2014), resource allocation mechanisms (in the model of allocating objects with monetary transfers) are compared also in terms of their manipulability, but by comparing cardinalities of the sets of problems at which they are manipulable. Similar comparison methods have been used to compare manipulability of social choice functions (Maus et al., 2007b,a). In Doğan et al. (2018), probabilistic assignments are compared in terms of their efficiency by comparing the sets of consistent utility profiles, in the set inclusion sense, at which they are ex-ante efficient. Although our study uses similar comparison methods, we depart from these studies by focusing on stability.

The closest studies to ours are Abdulkadiroğlu et al. (2020), Kwon and Shorrer (2019), and Tang and Zhang (2020), which also compare school choice mechanisms, and assignments, in terms of their stability. Although these studies also consider minimally unstable assignments, to our knowledge, our study is the first to consider cardinally minimally unstable assignments in school choice.

Tang and Zhang (2020) introduce the notion of self-constrained optimality for assignments, which requires that the assignment Pareto dominates any other assignment that is more stable, and show that the EADA assignment is self-constrained optimal at each problem. This result also implies that the EADA mechanism is minimally unstable among efficient assignments. Kwon and Shorrer (2019) introduce the notion of a blocking triplet which includes, in addition to a blocking pair, a student who violates the priority of the student in the blocking pair. Kwon and Shorrer (2019) show that the EADA mechanism is minimally unstable among efficient assignments also when stability comparison is based on comparing (in the set-inclusion sense) sets of blocking triplets. Different from Tang and Zhang (2020) and Kwon and Shorrer (2019), we also study cardinally minimally unstable efficient assignments and in particular show that the EADA mechanism may fail to choose such an assignment. Moreover, we also consider two alternative methods to compare assignments by their stability, based on comparing sets of blocking students (the set of students who are involved in at least one blocking pair) instead of blocking pairs or blocking triplets.

In another recent study, Combe et al. (2017) consider a teacher assignment problem where each teacher is initially endowed with a position at a school, and individual rationality and stability are incompatible. Combe et al. (2017) also compare assignments in terms of their stability by comparing the sets of blocking pairs in the set inclusion sense.

8We say more about Abdulkadiroğlu et al. (2020) in Section 6.
3 Model

Let N denote a finite set of students and C denote a finite set of schools. Each student $i \in N$ has a preference ordering R_i over $C \cup \{\emptyset\}$, where \emptyset represents an outside option for the student. The strict part of the preference ordering R_i is denoted by P_i, so if $c_1, c_2 \in C \cup \{\emptyset\}$, $c_1 \neq c_2$, and $c_1 R_i c_2$, then $c_1 P_i c_2$. School c is acceptable to student i if the student prefers it to the outside option, that is, $c P_i \emptyset$. Each school $c \in C$ has a capacity $q_c \in \mathbb{N}$, which is the maximum number of students that the school can admit, and a priority ordering \succeq_c over the set of students N.\footnote{Formally, a preference ordering over $C \cup \{\emptyset\}$ is a complete, transitive, and anti-symmetric binary relation over $C \cup \{\emptyset\}$. Binary relation R_i over $C \cup \{\emptyset\}$ is complete if, for every $c_1, c_2 \in C \cup \{\emptyset\}$, $c_1 R_i c_2$ or $c_2 R_i c_1$. It is transitive if, for every $c_1, c_2, c_3 \in C \cup \{\emptyset\}$, $c_1 R_i c_2$ and $c_2 R_i c_3$ imply $c_1 R_i c_3$. It is anti-symmetric if, for every $c_1, c_2 \in C \cup \{\emptyset\}$, $c_1 R_i c_2$ and $c_2 R_i c_1$ imply $c_1 = c_2$.} The strict part of the priority ordering \succeq_c is denoted by \succ_c.

An assignment is a mapping $\mu : N \cup C \rightarrow N \cup C \cup \{\emptyset\}$ such that

(i) for each $i \in N$, $\mu(i) \in C \cup \{\emptyset\}$,

(ii) for each $c \in C$, $\mu(c) \subseteq N$ such that $|\mu(c)| \leq q_c$, and

(iii) for each $i \in N$ and each $c \in C$, $i \in \mu(c)$ if and only if $c = \mu(i)$.

Let \mathcal{A} denote the set of all assignments.

An assignment μ is individually rational if for each $i \in N$, $\mu(i) R_i \emptyset$.

An assignment μ Pareto improves an assignment μ' if for each $i \in N$, $\mu(i) R_i \mu'(i)$ and there exists $j \in N$ such that $\mu(j) P_j \mu'(j)$. An assignment μ is efficient if it cannot be Pareto improved.

A pair $(i, c) \in N \times C$ blocks μ if $c P_i \mu(i)$ and $|\mu(c)| < q_c$ or there exists $j \in \mu(c)$ such that $i \succ_c j$. Let

$B(\mu) = \{(i, c) \in N \times C : (i, c) \text{ blocks } \mu\}$

denote the set of blocking pairs at μ and let $B_i(\mu) = B(\mu) \cap (\{i\} \times C)$ denote the set of blocking pairs at μ containing student i.

An assignment μ is stable if it is individually rational and includes no blocking pair. Unfortunately, there exist school choice problems without an assignment that is both efficient and stable (Roth, 1982). We investigate assignments which are minimally unstable among efficient assignments based on methods to compare assignments by their stability.

\footnote{The priority ordering \succeq_c is a complete, transitive, and anti-symmetric binary relation over N. Our results extend to the more general setup where some students may be unacceptable for some schools.}
A (school choice) problem P is a quintuple (N, C, R, q, \succeq) where $R = (R_i)_{i \in N}$ denotes the (student) preference profile, $q = (q_c)_{c \in C}$ denotes the (school) capacity profile, and $\succeq = (\succeq_c)_{c \in C}$ denotes the (school) priority profile. We keep everything except the preference profile fixed, and for short a problem is denoted by R. Let \mathcal{P} denote the set of all problems.

3.1 Stability Comparisons

A stability comparison is a function f associating with each problem $P \in \mathcal{P}$ a binary relation $f(P)$ over assignments.\footnote{A binary relation over assignments is a subset $\succeq \subseteq A \times A$. We write $\mu \succeq \nu$ instead of $(\mu, \nu) \in \succeq$, and $\mu \succeq \nu \Leftrightarrow \mu \succeq \nu \wedge \nu \not\succeq \mu$. Let \mathcal{L} denote the set of all binary relations. Given $\succeq, \succeq' \in \mathcal{L}$, (i) \succeq is complete if for all $\mu, \nu \in A$ we have $\mu \succeq \nu$ or $\nu \succeq \mu$, (ii) \succeq is transitive if $\mu \succeq \nu$ and $\nu \succeq \eta$ imply $\mu \succeq \eta$, and (iii) \succeq is finer than \succeq' if $\succeq \subseteq \succeq'$. Furthermore, given $\succeq, \succeq' \in \mathcal{L}$ such that $\succeq \subseteq \succeq'$ we say that \succeq is coarser than \succeq' and \succeq' is finer than \succeq.} Instead of $f(P)$, we write $\mu \succeq^P f(\nu)$ (where $\mu \succeq^P f \nu$ means that μ is f-more stable than ν at P). We say that μ is f-minimally unstable at P among efficient assignments if μ is efficient and there exists no efficient assignment ν such that $\nu \succeq^P f \mu$. We will use the abbreviation a.e.a. for “among efficient assignments”.

Below, we describe two natural methods for stability comparisons based on blocking pairs and blocking students. Each of them has an inclusion method and a (corresponding) cardinal method.

3.1.1 Blocking Pairs

The blocking pairs inclusion comparison (pincl) is defined as follows. For each problem $P \in \mathcal{P}$ and $\mu, \nu \in A$,

$$\mu \succeq^P \text{pincl} \nu \Leftrightarrow B(\mu) \subseteq B(\nu).$$

Among others, Abdulkadiroğlu et al. (2020) and Tang and Zhang (2020) study this stability comparison.

The blocking pairs cardinality comparison (pcard) is defined as follows. For each problem $P \in \mathcal{P}$ and $\mu, \nu \in A$,

$$\mu \succeq^P \text{pcard} \nu \Leftrightarrow |B(\mu)| \leq |B(\nu)|.$$

Obviously, for any problem P: (i) $\succeq^P \text{pincl} \subseteq \succeq^P \text{pcard}$, (ii) $\succeq^P \text{pincl}$ is transitive but not complete, and (iii) $\succeq^P \text{pcard}$ is complete (as any two assignments can be compared) and transitive.

We will use the convention to write more stable instead of pincl-more stable, minimally unstable instead of pincl-minimally unstable, cardinally more stable instead of pcard-more stable.\footnote{A binary relation over assignments is a subset $\succeq \subseteq A \times A$. We write $\mu \succeq \nu$ instead of $(\mu, \nu) \in \succeq$, and $\mu \succeq \nu \Leftrightarrow \mu \succeq \nu \wedge \nu \not\succeq \mu$. Let \mathcal{L} denote the set of all binary relations. Given $\succeq, \succeq' \in \mathcal{L}$, (i) \succeq is complete if for all $\mu, \nu \in A$ we have $\mu \succeq \nu$ or $\nu \succeq \mu$, (ii) \succeq is transitive if $\mu \succeq \nu$ and $\nu \succeq \eta$ imply $\mu \succeq \eta$, and (iii) \succeq is finer than \succeq' if $\succeq \subseteq \succeq'$. Furthermore, given $\succeq, \succeq' \in \mathcal{L}$ such that $\succeq \subseteq \succeq'$ we say that \succeq is coarser than \succeq' and \succeq' is finer than \succeq.}
stable, and \textit{cardinally minimally unstable} instead of \textit{pcard-minimally unstable}.

3.1.2 Blocking Students

The blocking students inclusion comparison (\textit{sincl}) is defined as follows. Let $BS(\mu) = \{i \in N : B_i(\mu) \neq \emptyset\}$. For each problem $P \in \mathcal{P}$ and $\mu, \nu \in \mathcal{A}$,

$$\mu \preceq_{\text{sincl}}^P \nu \iff BS(\mu) \subseteq BS(\nu).$$

The blocking students cardinality comparison (\textit{scard}) is defined as follows. For each $P \in \mathcal{P}$ and $\mu, \nu \in \mathcal{A}(P)$,

$$\mu \preceq_{\text{scard}}^P \nu \iff |BS(\mu)| \leq |BS(\nu)|.$$

Obviously, (i) $\preceq_{\text{sincl}}^P \subseteq \preceq_{\text{scard}}^P$, (ii) \preceq_{sincl}^P is transitive but not complete and (iii) \preceq_{scard}^P is complete and transitive.

We will use the convention to write \textit{BS-wise more stable} instead of \textit{sincl-more stable}, \textit{BS-wise minimally unstable} instead of \textit{sincl-minimally unstable}, \textit{BS-wise cardinally more stable} instead of \textit{scard-more stable}, and \textit{BS-wise cardinally minimally unstable} instead of \textit{scard-minimally unstable}.

\textbf{Remark 1} For any stable assignment μ, there is no other assignment which is (cardinally) more stable or BS-wise (cardinally) more stable than μ. However, μ is not necessarily minimally unstable among efficient assignments since μ may not be efficient.

3.2 Mechanisms: DA and EADA

A \textbf{mechanism} associates each problem with an assignment. When we say that a mechanism satisfies a certain assignment property (such as \textit{efficiency} or \textit{minimal instability among efficient assignments}), we mean that at each problem, the assignment prescribed by the mechanism satisfies the property.

The deferred acceptance (DA) mechanism due to Gale and Shapley (1962) is used in many school districts that have reformed their school choice systems. The \textbf{DA mechanism} associates each problem P with the assignment determined by the following \textbf{deferred acceptance algorithm}.

\textbf{Deferred Acceptance (DA) Algorithm:}
Step 1. Each student proposes to her top-ranked acceptable school. If there is no such school, then she is assigned to her outside option. Each school c considers the set of proposals that it receives. Among them, it tentatively accepts the highest priority students up to its capacity and rejects the others. If there is no rejection, then stop.

Step $t \geq 2.$ Each student who is rejected at Step $t - 1$ proposes to her top-ranked acceptable school among the ones that have not rejected her yet. If there is no such school, then she is assigned to her outside option. Each school c considers the set of students that it tentatively accepted at Step $t - 1$ together with students that have proposed at Step t. Among them, it tentatively accepts the highest priority students up to its capacity and rejects the others. If there is no rejection, then stop. Otherwise, move to Step $t + 1$.

The DA algorithm stops in finitely many steps and the DA assignment, which we denote by $DA(P)$, is defined by the acceptances at the last step. At each problem, the DA assignment is stable but not necessarily efficient (Abdulkadiroğlu and Sönmez, 2003).

The **efficiency-adjusted deferred acceptance (EADA) mechanism** (Kesten, 2010) is based on the EADA algorithm which works by iteratively removing certain schools from the preference orderings of certain students and rerunning the DA algorithm. Instead of providing Kesten’s original definition of the EADA algorithm, we provide a simplified version due to Tang and Yu (2014). Given an assignment μ, a school $c \in C$ is underdemanded at μ if no student strictly prefers it to his assigned school. We adopt the convention that for each student $i \in N$, his outside option is underdemanded at any assignment.

Efficiency-Adjusted Deferred Acceptance (EADA) Algorithm:

Round 0. Run DA for the problem $P = (N, C, R, q, \preceq)$.

Round $r \geq 1.$ Identify underdemanded schools at the outcome of Round $r - 1$. Let I_r denote the set of students who are assigned to underdemanded schools (including the students who are assigned to their outside options). Let μ^r denote the restriction of the outcome of Round $r - 1$ to I_r (note that μ^r includes only the underdemanded schools and students in I_r). Remove these schools and I_r from the problem. Stop if there are no remaining schools. Otherwise, run DA for the reduced problem. Move to the next round, Round $r + 1$.

The EADA algorithm stops in finitely many rounds, say in m rounds. The EADA assignment is defined as the collection of μ^1, \ldots, μ^m. That is, $EADA(P) = \mu^1 \cup \cdots \cup \mu^m$. For
each $t \in \{1, \ldots, m\}$, let μ_t denote the assignment obtained by collecting μ^1, \ldots, μ^t together with the DA assignment for the reduced problem at the end of Round t. In other words, μ_t is the assignment obtained by iterating the EADA algorithm for only t rounds. Note that $\mu_m = EADA(P)$, and μ_m contains at least as many blocking pairs as steps where at least one student is assigned a different school than at the previous step: if there is an additional step and a student is assigned a different school, then there is a Pareto improvement which was blocked by some student-school pair at the previous step.

At each problem, the EADA assignment is efficient and Pareto improves the DA assignment (Tang and Yu, 2014; Kesten, 2010).

Remark 2 Given a problem, if the EADA assignment coincides with the DA assignment, then the EADA assignment is the unique assignment that is (BS-wise) (cardinally) minimally unstable among efficient assignments.

4 Minimal Instability of Efficient Improvements of DA

We explore the minimal instability of Pareto improvements of DA according to our stability comparisons based on blocking pairs and blocking students. We do this for inclusion comparisons and the corresponding cardinal comparisons.

The following result shows that there exists a mechanism which is a Pareto improvement over the DA mechanism and minimally unstable among efficient assignments for the blocking pairs inclusion comparison. In particular, the EADA mechanism is minimally unstable among efficient assignments for the blocking pairs inclusion comparison.\footnote{Part (i) also follows from Tang and Zhang (2020). We thank Szilvia Papai for bringing this to our awareness. We present our proof, which is independent and different than the one in Tang and Zhang (2020), in Appendix A.1.} Unfortunately, this is not true for the blocking students inclusion comparison.

Proposition 1 (Inclusion Comparisons and EADA) (i) The EADA mechanism is minimally unstable among efficient assignments.

(ii) The EADA mechanism is NOT BS-wise minimally unstable among efficient assignments. In particular, there is no efficient mechanism which is both a Pareto improvement over the DA mechanism and BS-wise minimally unstable among efficient assignments.

Proof. We show (i) in Appendix A.1.
In showing (ii), consider the following problem P: let $N = \{1, 2, 3, 4, 5, 6, 7\}$, $C = \{c_1, c_2, c_3, c_4, c_5, c_6\}$ (all with unit capacities), and

<table>
<thead>
<tr>
<th>R_1</th>
<th>R_2</th>
<th>R_3</th>
<th>R_4</th>
<th>R_5</th>
<th>R_6</th>
<th>R_7</th>
<th>$\succeq c_1$</th>
<th>$\succeq c_2$</th>
<th>$\succeq c_3$</th>
<th>$\succeq c_4$</th>
<th>$\succeq c_5$</th>
<th>$\succeq c_6$</th>
</tr>
</thead>
<tbody>
<tr>
<td>c_1</td>
<td>c_1</td>
<td>c_3</td>
<td>c_3</td>
<td>c_4</td>
<td>c_1</td>
<td>c_6</td>
<td>7</td>
<td>2</td>
<td>5</td>
<td>4</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>c_5</td>
<td>c_2</td>
<td>c_2</td>
<td>c_4</td>
<td>c_3</td>
<td>\emptyset</td>
<td>c_5</td>
<td>6</td>
<td>3</td>
<td>3</td>
<td>5</td>
<td>7</td>
<td>7</td>
</tr>
<tr>
<td>\emptyset</td>
<td>\emptyset</td>
<td>c_1</td>
<td>\emptyset</td>
<td>\emptyset</td>
<td>c_1</td>
<td>3</td>
<td>\emptyset</td>
<td>\emptyset</td>
<td>\emptyset</td>
<td>\emptyset</td>
<td>\emptyset</td>
<td>\emptyset</td>
</tr>
<tr>
<td>c_6</td>
<td>\emptyset</td>
<td>\emptyset</td>
<td>\emptyset</td>
<td>\emptyset</td>
<td>\emptyset</td>
<td>1</td>
<td>\emptyset</td>
<td>2</td>
<td>\emptyset</td>
<td>\emptyset</td>
<td>\emptyset</td>
<td>\emptyset</td>
</tr>
</tbody>
</table>

Note that

$$DA(P) = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 \\ c_5 & c_2 & c_6 & c_4 & c_3 & \emptyset & c_1 \end{pmatrix}$$

$$EADA(P) = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 \\ c_5 & c_1 & c_2 & c_3 & c_4 & \emptyset & c_6 \end{pmatrix}$$

and $BS(EADA(P)) = \{1, 3, 6\}$ (since $B(EADA(P)) = \{(1, c_1), (3, c_3), (6, c_1)\}$).

Consider the following assignment μ:

$$\mu = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 \\ c_1 & c_2 & c_6 & c_3 & c_4 & \emptyset & c_5 \end{pmatrix}$$

where $BS(\mu) = \{3, 6\}$ (since $B(\mu) = \{(3, c_1), (6, c_1)\}$). Note that μ is efficient and Pareto improves over DA. Moreover, μ is BS-wise more stable than $EADA(P)$ since $BS(\mu) \subsetneq BS(EADA(P))$. Furthermore, note that μ and $EADA(P)$ are the only efficient Pareto improvements over $DA(P)$.

Consider the following assignment ν:

$$\nu = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 \\ c_5 & c_2 & \emptyset & c_3 & c_4 & c_1 & c_6 \end{pmatrix}$$

where $BS(\nu) = \{3\}$ (since $B(\nu) = \{(3, c_3), (3, c_6)\}$). Note that ν is efficient and BS-wise more stable than μ and $EADA(P)$. ■

Now in Proposition 1 (i) is encouraging, but (ii) already shows that no efficient mechanism,

13This follows because for any efficient Pareto improvement η over $DA(P)$, we must have $\eta(6) = \emptyset$, $\eta(4) = c_3$, $\eta(5) = c_4$ and $\eta(7) \neq c_1$. If $\eta(7) = c_5$, then $\eta = \mu$ and if $\eta(7) = c_6$, then $\eta = \mu$.

11
which is a Pareto improvement over DA, is BS-wise minimally unstable a.e.a.. Below we show that the last result extends to the two cardinal comparison methods.

Proposition 2 (Cardinal Comparisons and Efficient Assignments)
(i) The EADA mechanism is NOT (BS-wise) cardinally minimally unstable among efficient assignments.

(ii) There is no efficient mechanism which is a Pareto improvement over the DA mechanism and (BS-wise) cardinally minimally unstable among efficient assignments.

(iii) For any \(n \geq 3 \), there exists a unit-capacity problem \(P \) with \(|N| = n \) and \(|C| = n - 1 \) and an efficient assignment \(\mu \) such that EADA(\(P \)) is the unique efficient Pareto improvement over DA(\(P \)) and

\[
|B(EADA(P))| = n - 1 \text{ and } |B(\mu)| = 1.
\]

Proof. Note that (i) follows from (ii) as EADA is an efficient mechanism which is a Pareto improvement over DA. Furthermore, for BS-wise cardinal minimal instability, (ii) follows from (ii) of Proposition 1 as BS-wise cardinal minimal instability implies BS-wise minimal instability. For cardinal minimal instability, (ii) follows from (iii) as \(n \geq 3 \).

In showing (iii), consider the following problem \(P \): let \(N = \{1, 2, 3, \ldots, n\} \), \(C = \{c_1, c_2, c_3, \ldots, c_{n-1}\} \) (all with unit capacities) and

\[
\begin{array}{cccccccc}
R_1 & R_2 & R_3 & \cdots & R_{n-1} & R_n & \succeq_{c_1} & \succeq_{c_2} & \succeq_{c_3} & \cdots & \succeq_{c_{n-2}} & \succeq_{c_{n-1}} \\
1 & 1 & 1 & \cdots & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\
2 & 3 & 4 & \cdots & n-2 & n-1 \\
3 & 4 & 5 & \cdots & n-3 & n-2 \\
\vdots & \vdots & \vdots & \cdots & \vdots \\
\end{array}
\]

Note that

\[
DA(P) = \begin{pmatrix}
1 & 2 & 3 & \cdots & n-1 & n \\
\emptyset & c_2 & c_3 & \cdots & c_{n-1} & c_1
\end{pmatrix}
\]

\[
EADA(P) = \begin{pmatrix}
1 & 2 & 3 & \cdots & n-1 & n \\
\emptyset & c_1 & c_2 & \cdots & c_{n-2} & c_{n-1}
\end{pmatrix}
\]
and $B(EADA(P)) = \{(1, c_1), (1, c_2), \ldots, (1, c_{n-2}), (1, c_{n-1})\}$. Note that the EADA assignment is the unique efficient Pareto improvement over the DA assignment.

Consider the following assignment μ.

$$\mu = \begin{pmatrix} 1 & 2 & 3 & \cdots & n-1 & n \\ c_1 & c_2 & c_3 & \cdots & c_{n-1} & \emptyset \end{pmatrix}$$

where $B(\mu) = \{(n, c_1)\}$. Note that μ is efficient and is cardinally more stable than $EADA(P)$. ■

Note that in Proposition 2 we considered minimal instability among the whole set of efficient assignments. In particular, in the proof of (iii) of Proposition 2, the efficient assignment, which is cardinally more stable than the EADA assignment, is not a Pareto improvement over the DA assignment. However, we show next that (i) and (ii) of Proposition 2 remain unchanged when we restrict ourselves to efficient Pareto improvements over DA.

Proposition 3 (Efficient Pareto Improvements over DA)

(i) The EADA mechanism is NOT BS-wise (cardinally) minimally unstable among efficient Pareto improvements over the DA mechanism.

(ii) The EADA mechanism is NOT cardinally minimally unstable among efficient Pareto improvements over the DA mechanism.

(iii) For any $n \geq 5$, there exists a unit-capacity problem P with $|N| = n$ and $|C| = n - 1$ and an efficient assignment μ such that μ Pareto improves over $DA(P)$ and

$$|B(EADA(P))| = n - 2 \text{ and } |B(\mu)| = 2.$$

Proof. In showing (i), note that in the example for the proof of (iii) of Proposition 1 we have $BS(\mu) = \{3, 6\} \subsetneq \{1, 3, 6\} = BS(EADA(P))$.

Note that (ii) follows from (iii) as $n \geq 5$.

In showing (iii), consider the following problem P: let $N = \{1, 2, 3, \ldots, n\}$, $C =$
\{c_1, c_2, c_3, \ldots, c_{n-1}\} \text{ (all with unit capacities) and}

\[
\begin{array}{cccccccc}
R_1 & R_2 & R_3 & \cdots & R_{n-2} & R_{n-1} & R_n & \geq c_1 & \geq c_2 & \geq c_3 & \cdots & \geq c_{n-3} & \geq c_{n-2} & \geq c_{n-1} \\
c_1 & c_1 & c_2 & \cdots & c_{n-3} & c_1 & c_{n-1} & n & 2 & 3 & \cdots & n-3 & 1 & n-2 \\
c_2 & c_2 & c_3 & \cdots & 1 & \emptyset & c_{n-2} & n-1 & 1 & 1 & \cdots & 1 & n & n \\
c_3 & \emptyset & \emptyset & \cdots & c_{n-1} & c_1 & \vdots & n-2 & 3 & 4 & \cdots & n-2 & \vdots & 1 \\
\vdots & \emptyset & \emptyset & \cdots & \emptyset & \vdots \\
c_{n-3} & \emptyset & \emptyset & \cdots & \emptyset & \emptyset & \vdots & 3 & \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\
c_{n-2} & \emptyset & \emptyset & \cdots & \emptyset & \emptyset & \vdots & 1 & \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\
\emptyset & \emptyset & \emptyset & \cdots & \emptyset & \emptyset & \vdots & 2 & \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\
\end{array}
\]

Note that

\[
DA(P) = \left(\begin{array}{cccccc}
1 & 2 & 3 & \cdots & n-2 & n-1 \\
c_{n-2} & c_2 & c_3 & \cdots & c_{n-1} & \emptyset & c_1
\end{array} \right)
\]

\[
EADA(P) = \left(\begin{array}{cccccc}
1 & 2 & 3 & \cdots & n-2 & n-1 \\
c_{n-2} & c_1 & c_2 & \cdots & c_{n-3} & \emptyset & c_{n-2}
\end{array} \right)
\]

and \(B(EADA(P)) = \{(1, c_1), (1, c_2), \ldots, (1, c_{n-3}), (n-1, c_1)\}\) and \(|B(EADA(P))| = n-2\).

Consider the following assignment \(\mu\).

\[
\mu = \left(\begin{array}{cccccc}
1 & 2 & 3 & \cdots & n-2 & n-1 \\
1 & 2 & 3 & \cdots & n-2 & n-1 \\
c_1 & c_2 & c_3 & \cdots & c_{n-1} & \emptyset & c_{n-2}
\end{array} \right)
\]

where \(B(\mu) = \{(n-2, c_1), (n-1, c_1)\}\) and \(|B(\mu)| = 2\). Note that \(\mu\) is efficient, \(\mu\) Pareto improves over DA, and \(\mu\) is cardinally more stable than \(EADA(P)\).

5 Domain Restrictions

Recall that the DA mechanism is stable but not necessarily efficient. In an important contribution, Ergin (2002) derived necessary and sufficient conditions (on the capacity-priority profile) for the efficiency of the DA mechanism.

The EADA mechanism is efficient but not necessarily cardinally minimally unstable. Here we ask a parallel question to Ergin (2002) for cardinal minimal instability: when is the EADA-mechanism cardinally minimally unstable? More generally, for which priority profiles, does there exist a Pareto improvement over the DA mechanism which is cardinally minimally unstable among efficient assignments at each problem? We investigate this question under
the following two assumptions:

A1. (Unit capacities) Each school has unit capacity, i.e., \(q_c = 1 \) for each \(c \in C \).

A2. (At least five schools) There are at least five schools, i.e., \(|C| \geq 5\).

The following notions will be useful. A priority profile \((\succeq_c)_{c \in C}\) includes an Ergin-cycle (Ergin, 2002) if there exist a list of three students \((i_1, i_2, i_3)\) and a pair of schools \((c_1, c_2)\) such that \(i_3 \succ c_1 i_1 \succ c_1 i_2\) and \(i_2 \succ c_2 i_3\). We call student \(i_1\) as the initiator of the cycle.

We say that a list of three students \((i_1, i_2, i_3)\) and a pair of schools \((c_1, c_2)\) constitute a tight Ergin-cycle if they constitute an Ergin-cycle, and both

I. there is no \(m \in N \setminus \{i_2, i_3\}\) such that \(i_2 \succ c_2 m \succ c_2 i_3\) and

II. there is no \(m \in N \setminus \{i_1, i_2, i_3\}\) such that \(i_3 \succ c_1 m \succ c_1 i_2\).

Given two Ergin-cycles consisting of \((i_1, i_2, i_3), (c_1, c_2)\), and \((j_1, j_2, j_3), (c_1', c_2')\), respectively, we say that the Ergin-cycles are distinct if all the students and schools in the two Ergin-cycles are distinct, i.e., \(\{i_1, i_2, i_3\} \cap \{j_1, j_2, j_3\} = \emptyset\) and \(\{c_1, c_2\} \cap \{c_1', c_2'\} = \emptyset\). We say that the two Ergin-cycles are distinct except for the initiator if \(i_1 = j_1\) and all the other students and schools in the two Ergin-cycles are distinct.

We introduce the following three conditions on a priority profile \((\succeq_c)_{c \in C}\).

Condition C1: All Ergin-cycles are tight.

Condition C2: There are no two Ergin-cycles that are distinct except for the initiator.

Condition C3: There are no two distinct Ergin-cycles.

Our main result of this section, Theorem 1, is that these three conditions are necessary for the EADA assignment to be *cardinally minimally unstable among efficient assignments*; even more, each of them is necessary for the existence of a Pareto improvement over DA which is *cardinally minimally unstable among efficient assignments*.\(^{14}\) Moreover, the three conditions are sufficient for the EADA assignment to be *cardinally minimally unstable among efficient assignments*.

Theorem 1 Suppose each school has unit capacity and there are at least five schools. Then the following are equivalent:

\(^{14}\)In Appendix A.2, we show that the counterparts of the characterizing conditions in the multi-capacity case are still necessary conditions for the EADA assignment to be cardinally minimally unstable a.e.a.
(i) The EADA mechanism is cardinally minimally unstable among efficient assignments.

(ii) There exists an efficient mechanism which is both a Pareto improvement over DA and cardinally minimally unstable among efficient assignments.

(iii) The priority profile satisfies C1, C2 and C3.

We next investigate the same questions as in Theorem 1 for BS-wise cardinal minimal instability (instead of cardinal minimal instability. It turns the corresponding result is almost identical except for one new cycle condition.

We say that a list of three students \((i_1, i_2, i_3)\) and a pair of schools \((c_1, c_2)\) constitute a **weakly tight Ergin-cycle** if they constitute an Ergin-cycle, and there is no \(m \in N \setminus \{i_1, i_2, i_3\}\) such that \(i_3 >_{c_1} m >_{c_1} i_2\) or \(i_2 >_{c_2} m >_{c_2} i_3\).\(^1\)

Condition C4: All Ergin-cycles are weakly tight.

Theorem 2 Suppose each school has unit capacity and there are at least five schools. Then the following are equivalent:

(i) The EADA mechanism is BS-wise cardinally minimally unstable among efficient assignments.

(ii) There exists an efficient mechanism which is both a Pareto improvement over DA and BS-wise cardinally minimally unstable among efficient assignments.

(iii) The priority profile satisfies C2, C3 and C4.

Remark 3 (a) The proof of Theorem 1 (and, respectively, of Theorem 2) shows that if the priority profile satisfies C1, C2 and C3, then for each problem either the DA assignment is efficient or there exists a unique Pareto improvement of the DA assignment which contains exactly one blocking pair (and, respectively, one blocking student). Therefore, the latter assignment coincides with EADA assignment.

(b) By (a), under C1, C2 and C3 the EADA assignment contains no blocking student if the DA assignment is efficient and otherwise exactly one blocking student. Thus, the EADA mechanism is BS-wise cardinally minimally unstable among efficient assignments if the

\(^{15}\)Note that every tight Ergin-cycle is also weakly tight.
priority profile satisfies C_1, C_2 and C_3. However, the following priority profile

\[
\begin{array}{cc}
\succeq_{c_1} & \succeq_{c_2} \\
3 & 2 \\
1 & 1 \\
2 & 3 \\
\end{array}
\]

satisfies C_2, C_3 and C_4 but violates C_1. Hence, the EADA mechanism is BS-wise cardinally minimally unstable among efficient assignments but not cardinally minimally unstable among efficient assignment. This is in contrast to the inclusion stability comparisons where the EADA mechanism is minimally unstable among efficient assignments but not necessarily BS-wise minimally unstable among efficient assignments.

(c) As the set of efficient Pareto improvements over DA is a subset of the efficient assignments, the conditions C_1, C_2 and C_3 are sufficient for the EADA mechanism to be cardinally minimally stable among efficient Pareto improvements over DA: when counting blocking pairs this follows from Theorem 1 and when counting blocking students this follows from (b). It is an open question to determine necessary and sufficient conditions for the EADA mechanism to be cardinally minimally unstable among efficient Pareto improvements over DA (where blocking pairs or blocking students are counted).

5.1 Proof of Theorem 1

(i)\Rightarrow(ii): This follows from the fact that EADA is an efficient mechanism which is a Pareto improvement over DA.

(ii)\Rightarrow(iii): We show that if one of the conditions C_1, C_2 or C_3 is violated, then there exist problems where no efficient Pareto improvement over DA is cardinally minimally unstable.

Proposition 4 Suppose that the priority profile violates Condition C_1, i.e., it includes an Ergin-cycle that is not tight. Then, there exists a problem such that there is no Pareto improvement over DA which is cardinally minimally unstable among efficient assignments.

Proof. Suppose that a list of students $(1,2,3)$ and a list of schools (c_1,c_2) constitute an Ergin-cycle of $(\succeq_c)_{c\in C}$ that is not tight.

Case 1: Suppose that there is $m \in N \setminus \{2,3\}$ such that $2 \succeq_{c_2} m \succeq_{c_2} 3$ and also suppose that
\(m = 1\). Below, we only depict the relative positions of the students \{1, 2, 3\} in \(\succeq\).

\[
\begin{array}{cc}
\succeq_{c_1} & \succeq_{c_2} \\
3 & 2 \\
1 & 1 \\
2 & 3 \\
\end{array}
\]

Let \(R\) be a preference profile such that the preference orderings of students in \{1, 2, 3\} over their acceptable schools are as depicted below, and each other student finds no school acceptable.

\[
\begin{array}{ccc}
R_1 & R_2 & R_3 \\
\begin{array}{c}
c_1 \\
c_2 \\
\emptyset \\
\end{array} & \begin{array}{c}
c_1 \\
c_2 \\
\emptyset \\
\end{array} & \begin{array}{c}
c_2 \\
c_1 \\
\emptyset \\
\end{array}
\end{array}
\]

Let \(\mu\) be the assignment where the assignments of the students in \{1, 2, 3\} are as depicted above in boxes, and each other student is assigned to his outside option.

Let \(\mu'\) be the assignment where the assignments of the students in \{1, 2, 3\} are as underlined above, and each other student is assigned to his outside option.

Note that \(\mu\) is the unique Pareto improvement over the DA assignment that is efficient and \(\mu'\) is an efficient assignment. Moreover, \(B(\mu) = \{(1, c_1), (1, c_2)\}\) and \(B(\mu') = \{(3, c_1)\}\).

Case 2: Suppose that there is \(m \in N \setminus \{2, 3\}\) such that \(3 \succeq_{c_2} m \succeq_{c_2} 2\) and also suppose that \(m \neq 1\). Below, we only depict the relative positions of the students \{1, 2, 3, m\} in \(\succeq\).

\[
\begin{array}{cc}
\succeq_{c_1} & \succeq_{c_2} \\
3 & 2 \\
1 & m \\
2 & 3 \\
\end{array}
\]

Let \(R\) be a preference profile such that the preference orderings of \{1, 2, 3, m\} over their acceptable schools are as depicted below, and each other student finds no school acceptable.
Let μ be the assignment where the assignments of the students in \{1, 2, 3, m\} are as depicted above in boxes, and each other student is assigned to his outside option.

Let μ' be the assignment where the assignments of the students in \{1, 2, 3, m\} are as underlined above, and each other student is assigned to his outside option.

Note that μ is the unique Pareto improvement over the DA assignment that is efficient and μ' is an efficient assignment. Moreover, $B(\mu) = \{(1, c_1), (m, c_2)\}$ and $B(\mu') = \{(3, c_1)\}$.

Case 3: Suppose that there is $m \in N \setminus \{1, 2, 3\}$ such that $3 \succ_{c_1} m \succ_{c_1} 2$. Without loss of generality, suppose that $m \succ_{c_1} 1$. Below, we only depict the relative positions of the students \{1, 2, 3, m\} in \succeq.

$$
\begin{array}{cccc}
3 & 2 \\
m & 3 \\
1 & \\
2 & \\
\end{array}
$$

Let R be a preference profile such that the preference orderings of \{1, 2, 3, m\} over their acceptable schools are as depicted below, and each other student finds no school acceptable.

$$
\begin{array}{cccc}
R_1 & R_2 & R_3 & R_m \\
\emptyset & c_1 & c_2 & c_1 \\
\emptyset & c_2 & c_1 & \emptyset \\
\emptyset & \emptyset & \emptyset & \emptyset \\
\end{array}
$$

Let μ be the assignment where the assignments of the students in \{1, 2, 3, m\} are as depicted above in boxes, and each other student is assigned to his outside option.

Let μ' be the assignment where the assignments of the students in \{1, 2, 3, m\} are as underlined above, and each other student is assigned to his outside option.

Note that μ is the unique Pareto improvement over the DA assignment that is efficient and μ' is an efficient assignment. Moreover, $B(\mu) = \{(1, c_1), (m, c_1)\}$ and $B(\mu') = \{(3, c_1)\}$.

19
Proposition 5 Suppose that the priority profile violates Condition C2, i.e., it includes two Ergin-cycles that are distinct except for the initiator. Then, there exists a problem such that there is no Pareto improvement over DA which is cardinally minimally unstable among efficient assignments.

Proof. Suppose that there are two Ergin-cycles of $(\succeq_c)_{c \in C}$ consisting of $(i_1, i_2, i_3), (c_1, c_2),$ and $(j_1, j_2, j_3), (c'_1, c'_2),$ that are distinct except for the initiator. Let $i_1 = j_1 \equiv i$.

\[
\begin{array}{cccc}
\geq_{c_1} & \geq_{c_2} & \geq_{c'_1} & \geq_{c'_2} \\
i_3 & i_2 & j_3 & j_2 \\
i & i_3 & i & j_3 \\
i_2 & j_2 \\
\end{array}
\]

Let R be a preference profile such that the preference orderings of students in \{i, i_2, i_3, j_2, j_3\} over their acceptable schools are as depicted below, and each other student finds no school acceptable.

\[
\begin{array}{cccccc}
R_i & R_{i_2} & R_{i_3} & R_{j_2} & R_{j_3} \\
c_1 & c_{1} & c_2 & c'_1 & c'_2 \\
c'_1 & c_2 & c_1 & c'_2 & c'_1 \\
\emptyset & \emptyset & \emptyset & \emptyset & \emptyset \\
\end{array}
\]

Let μ be the assignment where the assignments of the students in \{i, i_2, i_3, j_2, j_3\} are as depicted above in boxes, and each other student is assigned to his outside option.

Let μ' be the assignment where the assignments of the students in \{i, i_2, i_3, j_2, j_3\} are as underlined above, and each other student is assigned to his outside option.

Note that μ is the unique Pareto improvement over DA that is efficient and μ' is an efficient assignment. Moreover, $B(\mu) = \{(i, c_1), (i, c'_1)\}$ and $B(\mu') = \{(i_3, c_1)\}$. ■

Proposition 6 Suppose that the priority profile violates Condition C3, i.e., it includes two distinct Ergin-cycles. Then, there exists a problem such that there is no Pareto improvement over DA which is cardinally minimally unstable among efficient assignments.

Proof. Suppose that there are two distinct generalized cycles of $(\succeq_c)_{c \in C}$ consisting of $(i_1, i_2, i_3), (c_1, c_2),$ and $(j_1, j_2, j_3), (c'_1, c'_2).$ Below, we only depict the relevant relative positions
of the students \((i_1, i_2, i_3, j_1, j_2, j_3)\) in \(\succeq\).

\[
\begin{array}{cccc}
\geq_{c_1} & \geq_{c_2} & \geq_{c'_1} & \geq_{c'_2} \\
i_3 & i_2 & j_3 & j_2 \\
i_1 & i_3 & j_1 & j_3 \\
i_2 & j_2 & \\
\end{array}
\]

Since \(|C| \geq 5\), there exists \(c \in C \setminus \{c_1, c_2, c'_1, c'_2\}\). Without loss of generality, suppose that \(j_1 \succ_c i_1\).

Let \(R\) be a preference profile such that the preference orderings of students in \((i_1, i_2, i_3, j_1, j_2, j_3)\) over their acceptable schools are as depicted below, and each other student finds no school acceptable.

\[
\begin{array}{cccccc}
R_{i_1} & R_{i_2} & R_{i_3} & R_{j_1} & R_{j_2} & R_{j_3} \\
c & c_1 & c_2 & c'_1 & c'_2 & \\
c_1 & c_2 & c_1 & c & c'_2 & c'_1 \\
\emptyset & \emptyset & \emptyset & \emptyset & \emptyset & \\
\end{array}
\]

Let \(\mu\) be the assignment where the assignments of the students in \((i_1, i_2, i_3, j_1, j_2, j_3)\) are as depicted above in boxes, and each other student is assigned to his outside option.

Let \(\mu'\) be the assignment where the assignments of the students in \((i_1, i_2, i_3, j_1, j_2, j_3)\) are as underlined above, and each other student is assigned to his outside option.

Note that \(\mu\) is the unique Pareto improvement over DA that is efficient and \(\mu'\) is an efficient assignment. Moreover, \(B(\mu) = \{(i_1, c_1), (j_1, c'_1)\}\) and \(B(\mu') = \{(j_2, c'_2)\}\). \(\blacksquare\)

(iii)\(\Rightarrow\)(i): We will now show that C1, C2 and C3 are sufficient for the EADA assignment to be cardinally minimally unstable among efficient assignments. First, we define some auxiliary notions and prove some auxiliary results.

A priority profile \((\succeq_c)_{c \in C}\) includes a **generalized cycle** (of length \(n - 1\)) if there exist a list of students \((1, \ldots, n)\) and a list of schools \((c_1, \ldots, c_{n-1})\) such that \(n \succeq_{c_1} 1 \succeq_{c_1} 2\) and for each \(i \in \{2, \ldots, n - 1\}\), \(i \succeq_{c_i} i + 1\).\(^{16}\) Given a generalized cycle consisting of \((1, \ldots, n)\) and \((c_1, \ldots, c_{n-1})\), we call the first student, student 1, as the **initiator** of the generalized cycle.\(^{17}\)

Given two generalized cycles consisting of \((i_1, \ldots, i_n)\), \((c_1, \ldots, c_{n-1})\), and \((j_1, \ldots, j_m)\), \((c'_1, \ldots, c'_{m-1})\), respectively, we say that the two generalized cycles are **distinct** if all the

\(^{16}\)The notion of a generalized cycle was first introduced in Ergin (2002).

\(^{17}\)Note that in the definition of a generalized cycle, the first school \(c_1\) and the first student 1 have particular roles; in that sense, rotating the elements of a generalized cycle would not necessarily result in a new generalized cycle, in contrast to what the word “cycle” would normally indicate.
students and schools in the two generalized cycles are distinct, i.e., \(\{i_1, \ldots, i_n\} \cap \{j_1, \ldots, j_m\} = \emptyset \) and \(\{c_1, \ldots, c_{n-1}\} \cap \{c'_1, \ldots, c'_{m-1}\} = \emptyset \). We say that the two generalized cycles are distinct except for the initiator if \(i_1 = j_1 \) and all the other students and schools in the two generalized cycles are distinct.

We say that a list of students \((1, \ldots, n)\) and a list of schools \((c_1, \ldots, c_{n-1})\) constitute a tight generalized cycle (of length \(n - 1 \)) if they constitute a generalized cycle and

I. there is no \(m \in N \setminus \{2, \ldots, n\} \) and \(k \in \{2, \ldots, n - 1\} \) such that \(k \succ_{c_k} m \succ_{c_k} k + 1 \)

II. and there is no \(m \in N \setminus \{1, 2, \ldots, n\} \) such that \(n \succ_{c_1} m \succ_{c_1} 2 \).

Lemma 1 If the priority profile satisfies C3, then there are no two distinct generalized cycles.

Proof. Note that Ergin-cycles are generalized cycles of length 2. Thus, if there are two distinct Ergin-cycles, then there are two distinct generalized cycles. Furthermore, if there are two distinct generalized cycles, then by Ergin (2002) (Step 2 in the proof of Theorem 1), there are two distinct Ergin-cycles. ■

Lemma 2 If the priority profile satisfies C2 and C3, then there are no two generalized cycles that are distinct except for the initiator.

Proof. Consider any two generalized cycles consisting of \((i_1, \ldots, i_n)\), \((c_1, \ldots, c_{n-1})\), and \((j_1, \ldots, j_m)\), \((c'_1, \ldots, c'_{m-1})\), that are distinct except for the initiator. Then \(i_1 = j_1 \) and all the other students and schools in the two generalized cycles are distinct. But then, by Ergin (2002) (Step 2 in the proof of Theorem 1), either there exist two distinct Ergin-cycles, which implies that C3 is violated, or there exist two Ergin-cycles that are distinct except for the initiator, which implies that C2 is violated. ■

Lemma 3 If the priority profile satisfies C1, C2, and C3, then all generalized cycles are tight.

Proof. Suppose that there is a generalized cycle which is not tight. Then there are a list of students \((1, \ldots, n)\) and a list of schools \((c_1, \ldots, c_{n-1})\) such that

1. there is \(m \in N \setminus \{1, 2, \ldots, n\} \) such that \(n \succ_{c_1} m \succ_{c_1} 2 \) or

2. there is \(m \in N \setminus \{2, \ldots, n\} \) and \(k \in \{2, \ldots, n - 1\} \) such that \(k \succ_{c_k} m \succ_{c_k} k + 1 \).
If \(n - 1 = 2 \), then there is an Ergin-cycle which is not tight, which implies that C1 is violated. So, suppose that \(n - 1 > 2 \).

Step 1: Suppose that (1) is satisfied. Without loss of generality, suppose that there is no shorter generalized cycle which satisfies (1). If \(2 \succ c_2 \ n \), then there exists an Ergin-cycle that is not tight, consisting of \((1, 2, n)\) and \((c_1, c_2)\), which violates C1. Similarly, if there exists \(l \in \{1, \ldots, n - 1\} \) such that \(2 \succ c_l \ n \), then there exists an Ergin-cycle that is not tight. So suppose that \(n \succ q \ 2 \) for all \(l \in \{1, \ldots, n - 1\} \).

Now, if \(n - 2 \succ c_{n-1} \ n - 1 \succ c_{n-1} \ n \succ c_{n-1} \ 2 \), then there is a shorter generalized cycle which satisfies (1), consisting of \((n, 2, 3, \ldots, n - 3, n - 2)\) and \((c_{n-1}, c_2, \ldots, c_{n-2})\), a contradiction. If \(n - 1 \succ c_{n-1} \ n - 2 \succ c_{n-1} \ n \succ c_{n-1} \ 2 \), then, again, there is a shorter generalized cycle which satisfies (1), consisting of \((1, 2, \ldots, n - 2, n)\) and \((c_1, \ldots, c_{n-3}, c_{n-1})\), a contradiction. If \(n - 1 \succ c_{n-1} \ n \succ c_{n-1} \ n - 2 \succ c_{n-1} \ 2 \), then, again, there is a shorter generalized cycle which satisfies (1), consisting of \((n - 2, 2, 3, \ldots, n - 2, n - 1)\) and \((c_{n-1}, c_2, c_3, \ldots, c_{n-2}, c_{n-1})\), a contradiction. If \(n - 1 \succ c_{n-1} \ n \succ c_{n-1} \ 2 \succ c_{n-1} \ n - 2 \), then, there exists an Ergin-cycle that is not tight, consisting of \((2, n - 2, n - 1)\) and \((c_{n-1}, c_{n-2})\), which is a violation of C1, a contradiction. Hence (1) cannot be satisfied.

Step 2: Suppose that (1) is not satisfied but (2) is satisfied. Without loss of generality, suppose that there is no shorter generalized cycle which satisfies (2). Note that \(m \neq 1 \) or \(m = 1 \).

Suppose that \(m \neq 1 \). If \(k \succ c_k \ 1 \succ c_k \ k + 1 \), clearly there is a generalized cycle which satisfies (1), a contradiction. Thus, \(1 \succ c_k \ k \) or \(k + 1 \succ c_k \ 1 \). If \(1 \succ c_k \ k \), then the generalized cycle consisting of \((k, k + 1, \ldots, n, 1)\) and \((c_k, \ldots, c_{n-1}, c_1)\) satisfies (1) by \(1 \succ c_k \ m \succ c_k \ k + 1 \), a contradiction. If \(k + 1 \succ c_k \ 1 \), then the generalized cycle consisting of \((k + 1, 1, 2, \ldots, k)\) and \((c_k, c_1, \ldots, c_{k-1})\) satisfies (1) by \(k \succ c_k \ m \succ c_k \ 1 \), a contradiction.

Suppose that \(m = 1 \). If \(k + 1 \succ c_k \ n \), then the generalized cycle consisting of \((k + 1, n, 2, 3, \ldots, k)\) and \((c_k, c_1, c_2, \ldots, c_{k-1})\) satisfies (1) by \(k \succ c_k \ 1 \succ c_k \ k + 1 \), a contradiction. Similarly, if \(n \succ c_k \ k \), then the generalized cycle consisting of \((k, k + 1, \ldots, n)\) and \((c_k, c_{k+1}, \ldots, c_n)\) satisfies (1) by \(k \succ c_k \ 1 \succ c_k \ k + 1 \), a contradiction. Thus, \(k \succ c_k \ n \succ c_k \ k + 1 \). If \(k + 1 \succ c_l \ 2 \), then the generalized cycle consisting of \((n, k + 1, 2, \ldots, k)\) and \((c_k, c_1, \ldots, c_{k-1})\) satisfies (1) by \(k \succ c_k \ 1 \succ c_k \ k + 1 \), a contradiction. Thus, \(2 \succ c_1 \ k + 1 \). But then the generalized cycle consisting of \((2, k + 1, k + 2, \ldots, n)\) and \((c_1, c_{k+1}, \ldots, c_{n-1})\) satisfies (1) by \(n \succ c_1 \ 1 \succ c_1 \ k + 1 \), a contradiction.

Given an assignment \(\mu \), a list of students \((i_1, \ldots, i_k)\) is called an **improvement cycle**\(^{18}\)

\(^{18}\)The notion of an **improvement cycle** is from Dur et al. (2019).
if $\mu(i_{t+1}) P_{\mu} \mu(i_t)$ for each $t \in \{1, \ldots, k - 1\}$ and $\mu(i_1) P_{\mu} \mu(i_k)$.\footnote{Note that for any $t \in \{1, \ldots, k\}$, $(i_t, i_{t+1}, \ldots, i_k, i_1, \ldots, i_{t-1})$ is also an improvement cycle including the same set of students.} In this case, we say that student i_t \textbf{precedes} student i_{t+1} in the improvement cycle. We say that an assignment μ' is obtained by \textbf{implementing an improvement cycle} at μ if μ' is obtained from μ by simply assigning each student in the improvement cycle to the school of the student whom he precedes, keeping the assignments of the students who do not belong to the improvement cycle the same.

Proposition 7 Suppose that every generalized cycle of the priority profile is tight. Then, at each problem where the DA assignment is not efficient, there is a unique efficient Pareto improvement over the DA assignment.

Proof. Let $P = (N, C, R, q, \succeq)$ be a problem such that every generalized cycle of $(\succeq_c)_{c \in C}$ is tight. Let μ denote the DA assignment.

Step 1: We will first show that there is no student who is included in two different “improvement cycles” at μ.

We claim that any two different improvement cycles cannot have a common student. Suppose not, i.e. suppose that (i_1, \ldots, i_k) and (j_1, \ldots, j_q) are improvement cycles such that $(i_1, \ldots, i_k) \neq (j_1, \ldots, j_q)$ and $\{i_1, \ldots, i_k\} \cap \{j_1, \ldots, j_q\} \neq \emptyset$. We claim that there exists $i \in \{i_1, \ldots, i_k\} \cap \{j_1, \ldots, j_q\}$ such that the student preceding i in the cycle (i_1, \ldots, i_k), say student j, and the student preceding i in the cycle (j_1, \ldots, j_q), say student j', are different students, i.e. $j \neq j'$. To see this, consider any student $i \in \{i_1, \ldots, i_k\} \cap \{j_1, \ldots, j_q\}$. If the students preceding i in the two cycles are different, then we are done. Otherwise, the student j who precedes i in both cycles satisfies $j \in \{i_1, \ldots, i_k\} \cap \{j_1, \ldots, j_q\}$. Proceeding similarly, our claim follows from the facts that the two cycles are finite and different.

Now, without loss of generality, suppose that the two cycles are of the form (j, i_1, \ldots, i_k) and $(j', i_1, j_1, \ldots, j_q)$ such that $j \neq j'$. Let $c_1 \equiv \mu(i_1)$. Note that $c_1 P_{\mu} \mu(j)$ and $c_1 P_{\mu} \mu(j')$. Then, by the stability of μ, we have $i_1 \succ c_1 \{j, j\}$. Without loss of generality, suppose that $i_1 \succ c_1 \succ j$ and $i_1 \succ c_1 \succ j$. Let $c_t \equiv \mu(i_t)$ for each $t \in \{1, \ldots, k\}$, and let $c_0 \equiv \mu(j)$. Since (j, i_1, \ldots, i_k) is an improvement cycle, by Ergin (2002),\footnote{More precisely, it follows from arguments in the proof of Theorem 1 in Ergin (2002).} there exist $t \in \{0, 1, \ldots, k\}$ and $i \in N \setminus \{i_1, \ldots, i_k, j\}$ such that $(c_t, c_{t-1}, \ldots, c_0, c_k, c_{k-1}, \ldots, c_{t+1})$ and $(i, i_t, i_{t-1}, \ldots, i_1, j, i_k, i_{k-1}, \ldots, i_{t+1}, i_t)$ con-
stitute a cycle of \((\succ c)_{c \in C}\).

\[
\begin{array}{cccccccc}
 \geq c_0 & \geq c_1 & \geq c_2 & \cdots & \geq c_t & \cdots & \geq c_k \\
 j & i_1 & i_2 & \cdots & i_t & \cdots & i_k \\
 i_k & j' & i_1 & i_2 & \cdots & i & \cdots & i_{k-1} \\
 j & & & & & i_t-1 & \end{array}
\]

However, note that whether \(t = 1\) or \(t \neq 1\), \((\succ c)_{c \in C}\) includes a generalized cycle that is not tight, which is a contradiction. Hence, no two improvement cycles share a common student.

Step 2: By Lemma 6 of Dur et al. (2019), for any Pareto improvement \(\mu'\) over the DA assignment \(\mu\), there exist a set of disjoint improvement cycles (that is, no two improvement cycles share a common student) such that \(\mu'\) can be obtained from \(\mu\) by implementing the improvement cycles. Since any two improvement cycles are disjoint, there is a unique efficient Pareto improvement over the DA assignment. ■

Proposition 8 Suppose that every generalized cycle of the priority profile is tight. Then, at each problem, any assignment obtained from the DA assignment by implementing an improvement cycle includes a unique blocking pair.

Proof. Let \(P = (N, C, R, q, \succeq)\) be a problem such that every generalized cycle of \((\succeq c)_{c \in C}\) is tight. Let \(\mu\) denote the DA assignment. Let \(\mu'\) be obtained from \(\mu\) by implementing the improvement cycle \((i_1, \ldots, i_k)\). Let \(c_t \equiv \mu(i_{t-1})\) for each \(t \in \{2, \ldots, k\}\) and \(c_1 \equiv \mu(i_k)\). Suppose that \(\mu'\) includes two blocking pairs \((i, c) \neq (j, c')\).

Since \((i_1, \ldots, i_k)\) is an improvement cycle, by Ergin (2002) there exist \(t \in \{1, \ldots, k\}\) (without loss of generality, let \(t = 1\)) and \(i_0 \in N \setminus \{i_1, \ldots, i_k\}\) such that \((c_1, \ldots, c_k)\) and \((i_0, i_1, \ldots, i_k)\) constitute a cycle of \((\succeq c)_{c \in C}\).

\[
\begin{array}{cccc}
 \geq c_1 & \geq c_2 & \cdots & \geq c_k \\
 i_k & i_1 & \cdots & i_{k-1} \\
 i_0 & i_2 & \cdots & i_k \\
 i_1 & \end{array}
\]

Note that since \((i, c), (j, c') \in B(\mu') \setminus B(\mu)\), \(c, c' \in \{c_1, \ldots, c_k\}\).

Case 1: Suppose that \(c = c_1\). Since \((i, c) \in B(\mu') \setminus B(\mu)\), \(i_k \succ c_1\) \(i \succ c_1\) \(i_1\). If \(i \neq i_0\), this contradicts that every generalized cycle is tight. Suppose that \(i = i_0\). Now, either \(j \neq i_0\) or \(c' \neq c_1\). In either case, by similar arguments, it is easy to see that there is a generalized cycle that is not tight.
Case 2: Suppose that $c = c_t$, $t \neq 1$. Since $(i, c) \in B(\mu') \setminus B(\mu)$, $i_{t-1} \succ c_i \succ c_t \succ i_t$, which indicates that there is a generalized cycle that is not tight. ■

Let $P = (N, C, R, q, \succeq)$ be a problem. By Lemma 3, every generalized cycle of $(\succeq, c)_{c \in C}$ is tight. Then, by Proposition 7 all the improvement cycles at $DA(P)$ are distinct and the assignment obtained from $DA(P)$ by implementing the improvement cycles, let us call it μ, is the unique efficient Pareto improvement over $DA(P)$. Now, there can be at most one improvement cycle, since otherwise there must exist two generalized cycles that are either distinct, which would be a violation of Condition C3 by Lemma 1, or distinct except for the initiator, which would be a violation of Condition C2 or C3 by Lemma 2. Now, by Proposition 8, μ includes at most one blocking pair.

If μ includes no blocking pair, then it is trivially cardinally minimally unstable among efficient assignments (in fact, this means that the DA assignment is efficient at this problem). Suppose that μ includes a unique blocking pair. Suppose that μ is not cardinally minimally unstable among efficient assignments. Then, there exist an efficient assignment μ' without a blocking pair. But then, $DA(P)$ does not include any improvement cycle and therefore μ cannot have a blocking pair, a contradiction.

Thus, $\mu = EADA(P)$, and the EADA mechanism is cardinally minimally unstable among efficient assignments.

5.2 Proof of Theorem 2

(i)\Rightarrow(ii): This follows from the fact that EADA is an efficient mechanism which is a Pareto improvement over DA.

(ii)\Rightarrow(iii): We show that if one of the conditions C2, C3 or C4 is violated, then there exist problems where no efficient Pareto improvement over DA is BS-wise cardinally minimally unstable.

Note that in the proof of Proposition 4, Case 2 and Case 3 remain valid for BS-wise cardinal minimal stability, i.e. C4 has to be satisfied. Similarly, the proof of Proposition 6 remains valid for BS-wise cardinal minimal stability, i.e. C3 has to be satisfied. In showing C2, we make the following détour with another condition.

Condition C5: If two Ergin-cycles share exactly one common student and no common schools, and if the common student is the initiator of one of the two cycles, then he must be the initiator of the other cycle as well. Formally, for any two Ergin-cycles consisting of
Proposition 9 Suppose that the priority profile violates C5. Then, there exists a problem such that there is no Pareto improvement over DA which is BS-wise cardinally minimally unstable among efficient assignments.

Proof. Suppose that there are two Ergin-cycles of \((\succeq_{c})_{c \in C}\) consisting of \((i_1, i_2, i_3), (c_1, c_2), (j_1, j_2, j_3), (c'_1, c'_2)\), that violates C5. Note that \(\{i_1\} = \{i_1, i_2, i_3\} \cap \{j_1, j_2, j_3\}\).

Case 1: \(i_1 = j_2 = i\).

\begin{array}{cccc}
\geq_{c_1} & \geq_{c_2} & \geq_{c'_1} & \geq_{c'_2} \\
\hline
i_3 & i_2 & j_3 & i \\
i & i_3 & j_1 & j_3 \\
i_2 & i &
\end{array}

Let \(R\) be a preference profile such that the preference orderings of students in \(\{i, i_2, i_3, j_2, j_3\}\) over their acceptable schools are as depicted below, and each other student finds no school acceptable.

\begin{array}{cccc}
R_i & R_{i_2} & R_{i_3} & R_{j_1} & R_{j_2} \\
\hline
\underline{c_1} & \underline{c_1} & \underline{c_2} & \underline{c'_1} & \underline{c'_2} \\
\underline{c'_1} & c_2 & \underline{c_1} & \emptyset & \underline{c'_1} \\
\underline{c'_2} & \emptyset & \emptyset & \emptyset & \emptyset
\end{array}

Let \(\mu\) be the assignment where the assignments of the students in \(\{i, i_2, i_3, j_1, j_3\}\) are as depicted above in boxes, and each other student is assigned to his outside option.

Let \(\mu'\) be the assignment where the assignments of the students in \(\{i, i_2, i_3, j_2, j_3\}\) are as underlined above, and each other student is assigned to his outside option.

Note that \(\mu\) is the unique Pareto improvement over DA that is efficient and \(\mu'\) is an efficient assignment. Moreover, \(BS(\mu) = \{i, j_1\}\) and \(BS(\mu') = \{i\}\).

Case 2: \(i_1 = j_3 = i\). This case is very similar to the previous case. We omit the detailed arguments and just depict the priority and preference profiles that yield the desired conclusion.

\begin{array}{cccc}
\geq_{c_1} & \geq_{c_2} & \geq_{c'_1} & \geq_{c'_2} \\
\hline
i_3 & i_2 & i & j_2 \\
i & i_3 & j_1 & i \\
i_2 & j_2
\end{array}
Let \(\mu \) be the boxed assignment and \(\mu' \) be the underlined assignment. Note that \(\mu \) is the unique Pareto improvement over DA that is efficient and \(\mu' \) is an efficient assignment. Moreover, \(BS(\mu) = \{i, j_1\} \) and \(BS(\mu') = \{i\} \).

Lemma 4 If a priority profile satisfies C4, and C5, then it also satisfies C2.

Proof. Suppose that \(\succeq \) satisfies C4 and C5 but violates C2. Then, there are two Ergin-cycles of \((\succeq_c)_{c \in C'} \) consisting of \((i_1, i_2, i_3), (c_1, c_2)\), and \((j_1, j_2, j_3), (c'_1, c'_2)\), that are distinct except for the initiator. Let \(i_1 = j_1 \equiv i \).

\[
\begin{array}{cccc}
\succeq_{c_1} & \succeq_{c_2} & \succeq_{c'_1} & \succeq_{c'_2} \\
i_3 & i_2 & j_3 & j_2 \\
i & i_3 & i & j_3 \\
i_2 & j_2
\end{array}
\]

Consider the position of \(i \) in \(\succeq_{c'_2} \). Observe that if \(i \succeq_{c'_2} j_2 \) or \(j_3 \succeq_{c'_2} i \), then C5 is violated. Thus, \(j_2 \succeq_{c'_2} i \succeq_{c'_2} j_3 \). Similarly, \(i_2 \succeq_{c_2} i \succeq_{c_2} i_3 \).

\[
\begin{array}{cccc}
\succeq_{c_1} & \succeq_{c_2} & \succeq_{c'_1} & \succeq_{c'_2} \\
i_3 & i_2 & j_3 & j_2 \\
i & i & i & i \\
i_2 & i_3 & j_2 & j_3
\end{array}
\]

Now consider the position of \(j_2 \) in \(\succeq_{c_2} \). Note that either \(j_2 \succeq_{c_2} i_2 \) or \(i_3 \succeq_{c_2} j_2 \), otherwise C4 is violated. Note that the same is true for \(j_3 \) by similar arguments.

Suppose that \(j_2 \succeq_{c_2} i_2 \). Consider the position of \(j_3 \) in \(\succeq_{c_2} \). If \(j_3 \succeq_{c_2} j_2 \), then C4 is violated: consider the cycle consisting of \((i, j_3, j_2)\) and \((c'_2, c_2)\). If \(j_2 \succeq_{c_2} j_3 \succeq_{c_2} i_2 \), then C4 is violated: consider the cycle consisting of \((j_3, i, j_2)\) and \((c_2, c'_1)\). If \(i_3 \succeq_{c_2} j_3 \), then C4 is violated: consider the cycle consisting of \((i_3, j_3, j_2)\) and \((c_2, c'_1)\).

Note that we have exhausted all possible configurations, and every possible configuration results in a contradiction. ■

(iii)⇒(i): We will now show that C2, C3 and C4 are sufficient for the EADA assignment to
be BS-wise cardinally minimally unstable among efficient assignments. First, we define a weakly tight generalized cycle.

We say that a list of students \((1, \ldots, n)\) and a list of schools \((c_1, \ldots, c_{n-1})\) constitute a weakly tight generalized cycle (of length \(n - 1\)) if they constitute a generalized cycle and

I. there is no \(m \in N \setminus \{1, 2, \ldots, n\}\) and \(k \in \{2, \ldots, n - 1\}\) such that \(k \succ c_k m \succ c_k k + 1\)
II. and there is no \(m \in N \setminus \{1, 2, \ldots, n\}\) such that \(n \succ c_1 m \succ c_1 2\).

Because C3 is satisfied, Lemma 1 remains valid and there are no two distinct generalized cycles.

Because C2 and C3 are satisfied, Lemma 2 remains valid and there are no two generalized cycles that are distinct except for the initiator.

Because C2, C3 and C4 are satisfied, the proof of Lemma 3 shows that all generalized cycles are weakly tight.

Lemma 5 If the priority profile satisfies C2, C3, and C4, then any weakly tight generalized cycle is either tight or an Ergin-cycle (i.e. a cycle of length two).

Proof. Suppose that there is a weakly generalized cycle which is neither tight nor of length two. Then there are a list of students \((1, \ldots, n)\) and a list of schools \((c_1, \ldots, c_{n-1})\) (with \(n - 1 > 2\)) such that \(n \succ c_1 1 \succ c_1 2\) and for some \(k \in \{2, \ldots, n - 1\}\), \(k \succ c_k 1 \succ c_k k + 1\).

Also suppose that this a shortest instance and \(k < n - 1\) (as otherwise we relabel). Consider \(n\)’s position in \(\succeq c_k\).

If \(k \succ c_k 1 \succ c_k k + 1 \succ c_k n\), then the generalized cycle consisting of \((1, \ldots, k, n)\) and \((c_1, \ldots, c_k)\) is not weakly tight, a contradiction.

If \(n \succ c_k k \succ c_k 1 \succ c_k k + 1\), then the generalized cycle consisting of \((1, k + 1, \ldots, n)\) and \((c_k, \ldots, c_n)\) is not weakly tight, a contradiction.

If \(k \succ c_k 1 \succ c_k n \succ c_k k + 1\), then the generalized cycle consisting of \((1, \ldots, k, n)\) and \((c_1, \ldots, c_k)\) is a shorter instance where we have a weakly tight cycle which is not tight or of length two, a contradiction.\(^{21}\)

Thus, \(k \succ c_k 1 \succ c_k n \succ c_k k + 1\). Analogous arguments (where \(k\) is in the role of \(n\) and \(c_1\) is in the role of \(c_k\)) show \(n \succ c_1 k \succ c_1 1 \succ c_1 2\). Consider \(k\)’s position in \(\succeq c_{n-1}\).

\(^{21}\)In case of \(n - 1 = 3\), one can also check that we have a contradiction to C4.
If $n - 1 \succ c_{n-1} k$, then the generalized cycle consisting of $(1, k + 1, \ldots, n - 1, k)$ and (c_k, \ldots, c_n) is not weakly tight, a contradiction.

If $k \succ c_{n-1} n - 1$, then the generalized cycle consisting of $(1, \ldots, k, n)$ and $(c_1, \ldots, c_{k-1}, c_n)$ is not weakly tight, a contradiction.

But now Proposition 7 remains unchanged, and Proposition 8 shows that any assignment obtained from the DA assignment by implementing an improvement cycle includes a unique blocking student (as weakly tight generalized cycles, which are not tight, must be of the form

\[
\begin{array}{cc}
 \succeq_{c_1} & \succeq_{c_2} \\
 3 & 2 \\
 1 & 1 \\
 2 & 3 \\
\end{array}
\]

6 Concluding Remarks

Another important property for the design of mechanisms is strategy-proofness: a mechanism is strategy-proof if at any problem, no student can be better off by reporting a preference relation different than his true preference relation. Proposition 1 in Kesten (2010) shows that there is no efficient and strategy-proof mechanism that selects the efficient and stable assignment whenever it exists. Hence, there exists no mechanism which is strategy-proof and minimally unstable among efficient assignments for any of our stability comparisons based on blocking pairs or blocking students. Even if the priority profile satisfies the conditions C1, C2 and C3 and the EADA mechanism does not coincide with DA, the EADA mechanism is not strategy-proof: this follows from Abdulkadiroğlu et al. (2009).

The top trading cycles (TTC) mechanism (Abdulkadiroğlu and Sönmez, 2003), which is based on Gale’s TTC algorithm (Shapley and Scarf, 1974), is another well-known efficient mechanism. The TTC mechanism is not a Pareto improvement over the DA mechanism, but it is strategy-proof. The TTC mechanism is not minimally unstable among efficient assignments simply because, TTC may not choose the efficient and stable assignment when it exists. Yet, Abdulkadiroğlu et al. (2020) has shown that, if we fix a set of agents and a set of schools with unit capacities, then TTC is minimally unstable among efficient and strategy-proof mechanisms. In our companion paper Doğan and Ehlers (2020), we show that TTC is also minimally unstable among efficient and strategy-proof mechanisms for any of our stability comparisons if we fix a set of agents and a set of schools with unit capacities.

Another known efficient mechanism is the top trading cycles over DA mechanism (DA⊕TTC),
which is based on applying Gale’s TTC procedure over the DA outcome, i.e., first run the DA algorithm and obtain the DA assignment; then, using the DA assignment as the endowment profile, calculate the TTC assignment as in Shapley and Scarf (1974). DA⊕TTC mechanism is efficient and Pareto improves over DA. DA⊕TTC assignments are also not necessarily minimally unstable among efficient assignments, since there exist problems where the EADA assignment is more stable (see Example 8 in Kesten (2010)). Hence, DA⊕TTC is also not cardinally minimally unstable among efficient assignments, which also follows from our Proposition 2.

Another alternative stability comparison is based on blocking triplets. Kwon and Shorrer (2019) study the blocking triplets inclusion comparison (tincl) which is defined as follows (given problem P and assignment μ): $(i, j, c) \in T(\mu)$ if and only if $i \succ_j c$, $\mu(j) = c$, and $cP_i\mu(i)$; then for $\mu, \nu \in \mathcal{A}$,

$$\mu \succ_{\text{tincl}}^P \nu \iff T(\mu) \subseteq T(\nu).$$

Now the blocking triplets cardinality comparison $t\text{card}$ is defined as follows. For each $P \in \mathcal{P}$ and $\mu, \nu \in \mathcal{A}$,

$$\mu \succ_{\text{tcard}}^P \nu \iff |T(\mu)| \leq |T(\nu)|.$$

Note that $\succ_{\text{tincl}}^P \subseteq \succ_{\text{tcard}}^P$.

An immediate observation is that Theorem 1 extends to the blocking triplets cardinality comparison tcard as for problems where schools have unit capacity, for any problem P we have $|B(\mu)| = |T(\mu)|$ for any efficient assignment μ. Hence, tcard and scard coincide on the set of efficient assignments. The same is true for Proposition 2 and (ii) and (iii) of Proposition 3 as in the examples of the proofs all schools have unit capacities.\(^{22}\)

\section{Appendix}

\subsection{Proof of (i) of Proposition 1}

\textbf{Proof.} The following notation will be useful. Given a set of students $I \subseteq N$ and a set of school $S \subseteq C$, let $\mu(I) = \bigcup_{i \in I} \mu(i)$ and $\mu(S) = \bigcup_{c \in S} \mu(c)$ denote the aggregate assignments of

\(^{22}\)Furthermore, (i) of Proposition 1 holds for tincl: let μ and ν be two efficient assignments such that $\mu \succ_{\text{tincl}}^P \nu$; then $T(\mu) \subseteq T(\nu)$; and for all $(i, j, c) \in T(\mu)$ we have (a) $(i, c) \in B(\mu)$ and (b) $(i, j, c) \in T(\nu)$ and $(i, c) \in B(\nu)$. Since $B(\mu) = \{(i, c) : (i, j, c) \in T(\mu) \text{ for some } j \in N\}$ we obtain $B(\mu) \subseteq B(\nu)$ and $\mu \succ_{\text{pincl}}^P \nu$. This and (i) of Proposition 1 imply that $EADA(P)$ is tincl-minimally unstable a.e.a. (which is also shown by Kwon and Shorrer (2019) in Proposition 4).
I and S at μ, respectively. Given a set of students $I \subseteq N$, let $\mu|_I$ denote the restriction of μ to I. Note that $\mu|_I$ is a mapping $\mu|_I : I \cup \mu(I) \rightarrow I \cup \mu(I)$.

The following results from the literature will be useful. The following is Lemma 2 of Tang and Yu (2014), which shows that each step of the EADA algorithm Pareto improves upon the previous step.

Lemma 6 For each $t \in \{2, \ldots, m\}$, μ_t Pareto improves μ_{t-1}. Also, μ_1 Pareto improves the DA assignment.

The following lemma follows from Doğan and Yenmez (2020), which shows that the EADA satisfies a particular consistency property.

Lemma 7 Whenever a student, who is assigned to a school that is underdemanded at DA, is removed with his assigned seat at the EADA assignment, the assignments of the remaining students do not change when the EADA algorithm is run for the reduced problem.

The proof is in two steps. First, we prove the statement for problems at which each school has unit capacity. Then, we extend it to the entire domain of problems.

Unit-capacity case: Let $P = (N, C, R, q, \succeq)$ be a problem such that for each $c \in C$, $q_c = 1$. Let $\mu = EADA(P)$. Let $\{I_1, \ldots, I_m\}$ denote the partition of N generated by the underdemanded schools algorithm. Let $\nu = DA(P)$. For each $t \in \{1, \ldots, m\}$, let $I_{>t} = I_{t+1} \cup \cdots \cup I_m$ (and similarly we define $I_{\leq t}$ and $I_{<t}$). Let μ_1, \ldots, μ_m be as defined above, i.e., for each $t \in \{1, \ldots, m\}$, μ_t is the assignment obtained by iterating the EADA algorithm for only t rounds.

We first claim that $B(\mu_1) \subseteq B(\mu_2) \subseteq \cdots \subseteq B(\mu_m) = B(\mu)$. Note that for each $t \in \{1, \ldots, m-1\}$, μ_{t+1} is a Pareto improvement over μ_t by Lemma 6. Then, for each school $c \in C$, the student who is assigned to c in μ_{t+1} has a weakly lower priority than the student who is assigned to c in μ_t, since otherwise μ_t restricted to $I_{\geq t}$ would be unstable. Thus, for each student $i \in I_{\leq t}$, the set of blocking pairs in μ_t that include i is a subset of the set of the set of blocking pairs in μ_{t+1} that include i. Moreover, since no student in $I_{>t}$ prefers a school that is assigned to a student in $I_{\leq t}$ to his assigned school in μ_{t+1}, no student in $I_{>t+1}$ is included in a blocking pair in μ_t or μ_{t+1}, which proves the claim.

Suppose by contradiction that μ' is an efficient assignment such that $B(\mu') \not\subseteq B(\mu)$. Then, for some $j \in N$, $\mu'(j) \neq \mu(j)$. Let $j \in I_t$. If $\mu(I_t) = \mu'(I_t)$, then by the underdemanded schools algorithm, $\mu(i) = \mu_t(i)$ for all $i \in I_t$. But then $B_t(\mu) \cap (I_t \times \mu(I_t)) = \emptyset$ for all $i \in I_t$.

32
By \(B(\mu') \subseteq B(\mu) \), we also have \(B_i(\mu') \cap (I_i \times \mu(i)) = \emptyset \) for all \(i \in I_t \). Thus, both \(\mu|_{I_t} \) and \(\mu'|_{I_t} \) are stable. Because \(\mu(I_t) = \mu'(I_t) \), it now follows from efficiency that \(\mu(i) = \mu'(i) \) for all \(i \in I_t \), a contradiction to \(\mu'(j) \neq \mu(j) \) and \(j \in I_t \). Thus, \(\mu(I_t) \neq \mu'(I_t) \).

Suppose, without loss of generality, that \(\mu'(j) \notin \mu(I_t) \). But then going from \(\mu \) to \(\mu' \) agent \(j \) is involved in a trading cycle \(j_1, \ldots, j_r \) such that \(\mu'(j_l) = \mu(j_{l+1}) \) for each \(l \in \{1, \ldots, r-1\} \), and \(\mu'(j_r) = \mu(j_1) \). Let \(c_l = \mu(j_l) \) for each \(l \in \{1, \ldots, r\} \).

We show that there exists \(l \in \{1, \ldots, r\} \) such that \(j_l \in I_t, c_{l+1} \in \mu(I_{>t}) \), and \(c_{l+1}P_{\mu}\mu(c_l) \). By efficiency of \(\mu' \), there exists \(l \in \{1, \ldots, r\} \) such that \(c_{l+1}P_{\mu}\mu(c_l) \). Then by the underdemanded schools algorithm, \(c_{l+1} \in \mu(I_{>t}) \). If \(c_{l+1} \in \mu(I_{>t}) \), then we have the desired \(l \). Suppose not, that is, suppose that \(c_{l+1} \notin \mu(I_{>t}) \). Then we have \(\mu_t(j_l) = \mu(j_l) = c_l \) and \(\mu_t(j_{l+1}) = \mu(j_{l+1}) = c_{l+1} \), which implies \(j_l \succ_{c_l} j_{l+1} \). Since \((j_{l+1}, c_{l+1}) \notin B(\mu) \) and \(B(\mu') \subseteq B(\mu) \), we have \((j_{l+1}, c_{l+1}) \notin B(\mu') \) and \(c_{l+2} = \mu'(j_{l+1})P_{\mu'}c_{l+1} \). But then again \(c_{l+2} \notin \mu(I_{>t}) \). If \(c_{l+2} \notin \mu(I_{>t}) \), we have the desired \(l \). Otherwise, \(c_{l+2} \in \mu(I_{>t}) \). Since \(j \in \{j_1, \ldots, j_r\} \) and \(\mu'(j) \notin \mu(I_t) \), continuing similarly we will eventually reach the desired \(l \).

Now, without loss of generality, let \(j \) be such that \(j \in I_t, \mu'(j) \in \mu(I_{>t}) \), and \(\mu'(j)P_{\mu}\mu(j) \). Let \(i_1 = \mu_t(\mu'(j)) \). Note that \(i_1 \in I_{>t} \) since \(\mu'(j) \in \mu(I_{>t}) \). By \(\mu'(j)P_{\mu}\mu(j) \), we have \(i_1 \succ_{\mu(j)} j \). Thus, \(\mu(i_1)R_{i_1}\mu'(j) \) and \((i_1, \mu'(j)) \notin B(\mu) \). By \(B(\mu') \subseteq B(\mu) \), \((i_1, \mu'(j)) \notin B(\mu') \). Hence, \(\mu'(i_1)P_{i_1}\mu'(j) \) and since \(i_1 \in I_{>t} \), by the underdemanded schools algorithm, \(\mu'(i_1) \in \mu(I_{>t}) \).

Let \(i_2 = \mu_t(\mu'(j)) \). By similar arguments, there exists an agent \(i_3 \) such that \(i_3 = \mu_t(\mu'(i_2)) \), \(\mu'(i_3) \in \mu(I_{>t}) \), and \(\mu'(i_3)P_{i_3}\mu(i_3) \). Continuing similarly, since the number of agents is finite, we will eventually reach an agent \(i_r \) such that \(j = \mu_t(\mu'(i_r)) \), \(\mu'(i_r) \in \mu(I_{>t}) \), and \(\mu'(i_r)P_{i_r}\mu(i_r) \), which is a contradiction since \(\mu'(i_r) = \mu(j) \) and \(\mu(j) \in \mu(I_t) \).

Extension to general capacities: Let \(P = (N, C, R, q, \succeq) \) be a problem (not necessarily unit-capacity). We construct an auxiliary unit-capacity problem \(P' = (N, C', R', q', \succeq') \), which has the same set of students, as follows.

(i) For each \(c \in C \), we construct \(q_c \) unit-capacity schools labelled as \(c_1, \ldots, c_{q_c} \) and assign them into \(C' \). Note that \(|C'| = \sum_{c \in C} q_c \) and \(q' \) is a \(|C'| \)-tuple of 1’s.

(ii) For each \(i \in N \) and \(c_p, c'_q \in C' \), we have \(c_p R'_i c'_q \) if and only if \(c P_i c' \) or \([c = c'] \) and \(p \leq q \). Also, \(c_p P_i i \) if and only if \(c P_i i \).

(iii) For each \(c_p \in C' \) and \(i, j \in N \), we have \(i \geq c_p j \) if and only if \(i \geq c j \). Also, \(i \geq c_p c_p \) if and only if \(i \geq c \).
We define a mapping \(\varphi \) from the set of assignments in \(P' \) to the set of assignments in \(P \) as follows. Given an assignment \(\mu \) in problem \(P' \), let \(\varphi(\mu') \) be the assignment in problem \(P \) such that for each \(i \in N \), \(\varphi(\mu')(i) = c \) if and only if \(\mu'(i) = c_p \) for some \(p \in \{1, \ldots, c_q\} \).

Observation 1: \(\varphi(DA(P')) = DA(P) \). To see this, first note that clearly \(\varphi(DA(P')) \) is stable at \(P \). Suppose that \(\varphi(DA(P')) \neq DA(P) \). Since \(DA(P) \) is the student-optimal stable assignment at \(P \), \(DA(P) \) Pareto improves \(\varphi(DA(P')) \). Let \(\mu \) be the assignment in problem \(P' \) such that for each \(i \in N \), \(\mu(i) = c_p \) if and only if \(DA(P) = c \) and \(|j \in DA(c) : j \succeq c i| = p \). Note that \(\mu \) is stable and Pareto improves \(DA(P') \) at \(P' \), which is a contradiction since \(DA(P') \) is the student-optimal stable assignment at \(P' \).

Observation 2: Each student \(i \in N \) who is assigned to an underdemanded school at \(DA(P') \) is assigned to an underdemanded school also at \(DA(P) \). (Note that it is not necessarily true that if \(c \in C \) is underdemanded at \(DA(P) \), each of \(c_1, \ldots, c_q \) is underdemanded at \(DA(P') \).) This easily follows from \(\varphi(DA(P')) = DA(P) \).

We show that \(\varphi(EADA(P')) = EADA(P) \). Let \(i_1 \in N \) be a student who is assigned to an underdemanded school \(c_q \) at \(DA(P') \) (Since all the students who are assigned to a school at the last step of the DA algorithm are assigned to underdemanded schools, there exists such a student). By Observation 1, \(\varphi(DA(P'))(i_1) = DA(P)(i) = c \). By Observation 2, \(c \) is underdemanded at \(DA(P) \). Then, \(\varphi(EADA(P'))(i_1) = EADA(P)(i_1) \).

By Lemma 7, at the problem \(P' \), if student \(i_1 \) is removed with his assigned seat at the \(EADA(P') \) assignment, the assignments of the remaining students do not change when the \(EADA \) algorithm is run for the reduced problem. Again by Lemma 7, at the problem \(P \), if student \(i \) is removed with his assigned seat at the \(EADA(P) \) assignment, the assignments of the remaining students do not change when the \(EADA \) algorithm is run for the reduced problem.

Now, we proceed likewise with the reduced problems. Let \(i_2 \in N \setminus \{i_1\} \) be a student who is assigned to an underdemanded school \(c_q \) at the DA assignment for the problem reduced from \(P' \) (As long as \(N \setminus \{i_1\} \neq \emptyset \), there exists such a student). By similar arguments as above, \(\varphi(EADA(P'))(i_2) = EADA(P)(i_2) \). Proceeding likewise, we will eventually exhaust all the students, which concludes that \(\varphi(EADA(P')) = EADA(P) \).

Suppose that \(EADA(P) \) is not minimally unstable among efficient assignments. Let \(\mu \) be an efficient assignment that is more stable than \(EADA(P) \) at \(P \). Let \(\mu' \) be the assignment in problem \(P' \) such that for each \(i \in N \), \(\mu(i) = c_p \) if and only if \(DA(P) = c \) and \(|j \in DA(c) : j \succeq c i| = p \). Note that \(\mu' \) is efficient and more stable than \(EADA(P') \), which is a contraction since the \(EADA \) assignment is minimally unstable among efficient assignments.
when each school has unit capacity.

A.2 Necessary Conditions in the Multi-Capacity Case

A capacity-priority profile \((q_c, c) \in C\) includes an \textbf{Ergin-cycle} (Ergin, 2002) if there exist a list of three students \((i_1, i_2, i_3)\), a pair of schools \((c_1, c_2)\), and a pair of (possibly empty) disjoint sets of students \((N_{c_1}, N_{c_2})\) such that such that \(i_3 \succ c_1 i_1 \succ c_1 i_2\) and \(i_2 \succ c_2 i_3\).

i. \(i_3 \succ c_1 i_1 \succ c_1 i_2\) and \(i_2 \succ c_2 i_3\),

ii. for each \(t \in \{1, 2\}\), \(N_{c_t} \subset N \setminus \{1, 2, 3\}\) and \(|N_{c_t}| = q_{c_t} - 1\),

iii. \(N_{c_1} \subset \{i \in N : i \succ c_1 1\}\) and \(N_{c_2} \subset \{i \in N : i \succ c_2 3\}\).

Given an Ergin-cycle consisting of \((1, 2, 3)\), \((c_1, c_2)\), and \((N_{c_1}, N_{c_2})\), we call the first student, student 1, as the \textbf{initiator} of the Ergin-cycle.

Given an Ergin-cycle consisting of \((i_1, i_2, i_3)\), \((c_1, c_2)\), and \((N_{c_1}, N_{c_2})\), and another Ergin-cycle consisting of \((j_1, j_2, j_3)\), \((c_0', c_2')\), and \((N_{c_0'}, N_{c_2'})\), we say that the two generalized cycles are \textbf{distinct} if all the students, schools, and sets of students in the two generalized cycles are distinct; we say that the two generalized cycles are \textbf{distinct except for the initiator} if \(i_1 = j_1\) and all the other students, schools, and sets of students in the two generalized cycles are distinct.

We say that a list \((i_1, i_2, i_3)\), \((c_1, c_2)\), and \((N_{c_1}, N_{c_2})\) constitute a \textbf{tight} Ergin-cycle if they constitute an Ergin-cycle and

iv. there is no \(m \in N \setminus \{2, 3\}\) such that \(2 \succ c_2 m \succ c_2 3\)

v. and there is no \(m \in N \setminus \{1, 2, 3\}\) such that \(3 \succ c_1 m \succ c_1 2\).

\textbf{Condition C1*}: All the Ergin-cycles are tight.

\textbf{Condition C2*}: There are no two Ergin-cycles that are distinct except for the initiator.

\textbf{Condition C3*}: For any two Ergin-cycles consisting of \((i_1, i_2, i_3)\), \((c_1, c_2)\), and \((N_{c_1}, N_{c_2})\), and \((j_1, j_2, j_3)\), \((c_0', c_2')\), and \((N_{c_0'}, N_{c_2'})\), there does not exist any student \(i \in \{i_1, i_2, i_3\}\), any school \(c \in C \setminus \{c_1, c_2, c_0', c_2'\}\) and any set of students \(N_c\) distinct from the students in the two Ergin-cycles (including the sets of students in the two Ergin-cycles) such that \(N_c \subset \{j \in N : j \succ c i\}\) and \(|N_c| = q_c - 1\).
Proposition 10 Suppose that \((q_c, \succeq_c)_{c \in C}\) violates Condition \(C1^*\), i.e., it includes an Ergin-cycle that is not tight. Then, there exists a problem such that there is no Pareto improvement over DA which is cardinally minimally unstable among efficient assignments.

Proof. Follows from the same arguments as in the proof of Proposition 4 with the following modifications.

- In the preference profile \(R\), for each \(t \in \{1, 2\}\), each student in \(N_{ct}\) top ranks \(c_t\).
- In the assignments \(\mu\) and \(\mu'\), for each \(t \in \{1, 2\}\), each student in \(N_{ct}\) is assigned to \(c_t\).

Proposition 11 Suppose that \((q_c, \succeq_c)_{c \in C}\) violates Condition \(C2^*\), i.e., it includes two Ergin-cycles that are distinct except for the initiator. Then, there exists a problem such that there is no Pareto improvement over DA which is cardinally minimally unstable among efficient assignments.

Proof. Follows from the same arguments as in the proof of Proposition 5 with the following modifications.

- In the preference profile \(R\), for each \(t \in \{1, 2\}\), each student in \(N_{ct}\) top ranks \(c_t\) and each student in \(N'_{ct}\) top ranks \(c'_t\).
- In the assignments \(\mu\) and \(\mu'\), for each \(t \in \{1, 2\}\), each student in \(N_{ct}\) is assigned to \(c_t\) and each student in \(N'_{ct}\) is assigned to \(c'_t\).

Proposition 12 Suppose that \((q_c, \succeq_c)_{c \in C}\) violates Condition \(C3^*\). Then, there exists a problem such that there is no Pareto improvement over DA which is cardinally minimally unstable among efficient assignments.

Proof. Follows from the same arguments as in the proof of Proposition 6 with the following modifications.

- Note that in the proof of Proposition 6, existence of a school \(c\) with the desired property follows from the unit-capacity assumption and the assumption that \(|C| \geq 5\). Here, it directly follows from the violation of \(C3^*\).
- In the preference profile \(R\), each student in \(N_c\) top ranks \(c\) and for each \(t \in \{1, 2\}\), each student in \(N_{ct}\) top ranks \(c_t\) and each student in \(N'_{ct}\) top ranks \(c'_t\).
- In the assignments \(\mu\) and \(\mu'\), each student in \(N_c\) is assigned to \(c\) and for each \(t \in \{1, 2\}\), each student in \(N_{ct}\) is assigned to \(c_t\) and each student in \(N'_{ct}\) is assigned to \(c'_t\).
References

