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Abstract

In the context of priority-based resource allocation, we formulate methods to

compare assignments in terms of their stability as binary relations (on the set of possible

assignments) that depend on the preference and the priority profile. We introduce three

basic properties, stability preferred, separability, and consistency, that a reasonable

stability comparison should satisfy. We show that, for any stability comparison satisfying

the three properties, the top trading cycles (TTC) mechanism is minimally unstable

among efficient and strategy-proof mechanisms in one-to-one matching. An important

consequence is the robustness of a recent result by Abdulkadiroğlu et al. (2019), which

uses a particular stability comparison method where an assignment is more stable than

another assignment if the set of blocking pairs in the former assignment is a subset of

the set of blocking pairs in the latter assignment. Our unifying approach covers basically

all natural comparison methods and it includes many cardinal stability comparison

methods as special cases.
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1 Introduction

In many resource-allocation problems, each resource is endowed with an exogenously given

priority ordering over the participants, and a mechanism elicits participants’ preferences

and allocates resources based on the reported preferences and the exogenous priorities. A

well-known example is school choice where students report preference orderings over schools

and each school is endowed with a capacity and a priority ordering over students. In a

school choice problem, respecting preferences is captured by the efficiency requirement: an

assignment is efficient if there is no other assignment at which a student is better off while

no student is worse off. On the other hand, respecting priorities is captured by the stability

requirement: an assignment is stable if it does not involve a “blocking pair” of a student

and a school such that the student prefers the school to his assigned school and he has a

higher priority than another student who is assigned to that school. Unfortunately, there

exist school choice problems without an assignment that is both efficient and stable (Roth,

1982).

The seminal paper (Abdulkadiroğlu and Sönmez, 2003) introduces school choice and

proposes to use the students-proposing deferred-acceptance (DA) mechanism or the top trading

cycles (TTC) mechanism for real-life school choice problems. Both DA and TTC are strategy-

proof : for each student, it is a weakly dominant strategy to report his preferences truthfully

(and any (non-)sophisticated student’s best interest is to report his true preferences). DA is

stable but inefficient whereas TTC is efficient but unstable. However, DA is “constrained

efficient” as it chooses the students-optimal stable assignment. The TTC mechanism is

based on Gale’s TTC algorithm (Shapley and Scarf, 1974) and allows students to trade their

priorities among themselves starting with the students with highest priorities. A student

and a school may be involved in a blocking pair at a TTC assignment simply because a

lower priority student can be assigned a seat at that school by trading his high priority at

another school. When considering first stability and second efficiency, DA was suggested,

and considering first efficiency and second stability, TTC was suggested (Abdulkadiroğlu

and Sönmez, 2003). Although it is easy to see that TTC fails stability, intuitively it respects

priorities “to some extent” and should be, in some sense, “minimally unstable”.

The intuition for TTC has been only recently formalized by Abdulkadiroğlu et al. (2019).

They propose to compare assignments in terms of their stability by comparing the sets of

blocking pairs at these assignments. An assignment is more stable than another assignment

if the set of blocking pairs in the former assignment is a subset of the set of blocking pairs in

the latter assignment. Using this stability comparison method, they show the following result:
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TTC is minimally unstable among efficient and strategy-proof mechanisms in one-to-one

matching (when each school has unit capacity), that is, for any other efficient and strategy-

proof mechanism, there exists an instance where the assignment chosen by this mechanism

does not produce a subset of blocking pairs of the TTC-assignment.

Although it does not extend to the many-to-one setup,1 the result of Abdulkadiroğlu et

al. (2019) is an important justification for using TTC in priority-based resource allocation

especially because their stability comparison method, which relies on comparing the sets

of blocking pairs (in the set inclusion sense), is very reasonable. However, there are other

plausible ways to compare assignments in terms of stability. A natural alternative is to

count the number of blocking pairs, which induces a complete comparison method (as all

assignments can be compared by counting blocking pairs) and it is not immediate from

Abdulkadiroğlu et al. (2019) whether TTC is minimally unstable among efficient and strategy-

proof mechanisms also based on this alternative cardinal comparison method. One may also

consider comparison methods that are not based on the set of blocking pairs, but based on

alternative sets such as (i) the set of blocking triplets2 as in Kwon and Shorrer (2019)3 or (ii)

the set of blocking students4 as in Doğan and Ehlers (2020).5 Possibly, TTC is minimally

unstable among efficient and strategyproof mechanisms for certain comparison methods but

not for others.

We show that the result of Abdulkadiroğlu et al. (2019) is robust to the choice of stability

comparison method. We formulate stability comparisons as binary relations (on the set

of possible assignments) that depend on the preference profile. We introduce three basic

properties that any reasonable stability comparison should satisfy. The first property stability

preferred requires that any stable assignment is strictly more stable than any unstable

assignment. The second property separability requires that if an assignment is more stable

than another assignment, and at the same time some subset of students or their assigned

schools are not involved in any blocking pair at the first assignment and the second assignment

1For the many-to-one setup, Abdulkadiroğlu et al. (2019) show that TTC outperforms serial dictatorship,
an obvious efficient alternative, by admitting fewer blocking pairs in an average sense when every possible
priority profile is considered or when participants’ priorities are drawn uniform randomly.

2A blocking triplet includes, in addition to a blocking pair, a student who violates the priority of the
student in the blocking pair.

3Kwon and Shorrer (2019) show that TTC mechanism is minimally unstable among efficient and strategy-
proof mechanisms in one-to-one matching when stability comparison is based on comparing (in the set-inclusion
sense) sets of blocking triplets.

4A blocking student is a student who is involved in at least one blocking pair.
5In Doğan and Ehlers (2020), we show that there are school choice problems where any Pareto improvement

over the deferred acceptance assignment is not minimally unstable among efficient assignments when stability
comparison is cardinal and compares the number of blocking pairs, or when the stability comparison method
is based on comparing (in the set-inclusion or cardinal sense) sets of blocking students.
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assigns these students to the same schools while some of those students are involved in a

blocking pair, then the restriction of the first assignment to the remaining students and schools

is strictly more stable than the restriction of the second assignment. The third property

consistency requires that if two assignments coincide for some subset of students and these

students and their assigned schools are involved in blocking pairs only among themselves,

then the stability comparison remains identical when considering the assignments restricted

to the remaining students and schools. All of the above comparison methods satisfy all

three properties. We show that, given any stability comparison satisfying stability preferred,

separability and consistency, TTC is minimally unstable among efficient and strategy-proof

mechanisms when each school has unit capacity. Our main proof arguments are considerably

different than the corresponding ones of Abdulkadiroğlu et al. (2019) or for characterizations

of TTC by Ma (1994) and Svensson (1999). Loosely speaking, we show that if our theorem is

not true, then we can always find a smaller problem (with fewer students) with a contradiction.

In particular, our approach handles cardinal comparison methods.

The paper is organized as follows. Section 2 introduces school choice problems and

mechanisms. Section 3 defines stability comparison methods and basic properties which any

reasonable stability comparison method shall satisfy. Section 4 defines TTC and states our

main result. Section 5 applies our main result to several natural comparison methods.

2 The Model

Let N denote an infinite set of potential students and C denote an infinite set of potential

schools.6 To specify a (school choice) problem, we first draw a finite set of students N ⊂ N
and a finite set of schools C ⊂ C.

A problem for (N,C) includes a preference profile R = (Ri)i∈N , a capacity profile

q = (qc)c∈C , and a priority profile �= (�c)c∈C . For each student i ∈ N , Ri denotes his

preference ordering over C ∪ {∅},7 where ∅ represents an outside option for the student.

The strict part of the preference ordering Ri is denoted by Pi, so if c1, c2 ∈ C ∪ {∅}, c1 6= c2,

and c1 Ri c2, then c1 Pi c2. School c is acceptable to student i if the student prefers it to the

outside option, that is, c Pi ∅. For each school c ∈ C, qc ∈ N denotes its capacity, which is

6We use the “potential students (schools)” terminology since we will be referring to sub-problems (problems
restricted to a set of students and schools given an original problem).

7Formally, a preference ordering over C ∪{∅} is a complete, transitive, and anti-symmetric binary relation
over C ∪ {∅}. Binary relation Ri over C ∪ {∅} is complete if, for every c1, c2 ∈ C ∪ {∅}, c1Ric2 or c2Ric1. It
is transitive if, for every c1, c2, c3 ∈ C ∪ {∅}, c1Ric2 and c2Ric3 imply c1Ric3. It is anti-symmetric if, for
every c1, c2 ∈ C ∪ {∅}, c1Ric2 and c2Ric1 imply c1 = c2.
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the maximum number of students that the school can admit, and �c is a priority ordering

over the set of students N .8 The strict part of the priority ordering �c is denoted by �c. We

call the quintuple (N,C,R, q,�) a problem. Let P(N,C) denote the set of all problems for

(N,C), and let P denote the set of all problems for any finite sets of students and schools.

Given a problem P = (N,C,R, q,�) ∈ P , a set of students N ′ ⊆ N and schools C ′ ⊆ C,

we call P |(N\N ′,C\C′) as the restriction of P to (N\N ′, C\C ′), where P |(N\N ′,C\C′) is obtained

from P by simply removing N ′ and C ′, and also removing them from q, R, and � while

keeping relative orderings of the remaining students and the relative orderings and capacities

of the remaining schools the same.

Given a problem P = (N,C,R, q,�) ∈ P, an assignment is a mapping µ : N ∪ C →
N ∪ C ∪ {∅} such that

(i) for each i ∈ N , µ(i) ∈ C ∪ {∅},

(ii) for each c ∈ C, µ(c) ⊆ N such that |µ(c)| ≤ qc, and

(iii) for each i ∈ N and each c ∈ C, i ∈ µ(c) if and only if c = µ(i).

Let A(P ) denote the set of all possible assignments at the problem P . Note that,

essentially, A(P ) is determined by (N,C, q).

For any set of students N ′ ⊆ N , we denote the aggregate assignment of N ′ at µ by

µ(N ′) = {c ∈ C|∃i ∈ N ′ : µ(i) = c}.9 We say that a set of students is isolated at µ if no

other student is assigned to a school in their aggregate assignment, i.e., N ′ is isolated at

µ if there is no i ∈ N \N ′ and c ∈ µ(N ′) such that µ(i) = c. Note that if N ′ is isolated at

µ, then N \N ′ is isolated as well. Note also that if µ is a one-to-one assignment (i.e., if no

school is assigned more than one student), then any set of students is isolated at µ.

Given an isolated set of students N ′ for µ with µ(N ′) = C ′, we denote by µ|N\N ′ the

restriction of µ to N\N ′ and C\C ′, where µ|N\N ′ is obtained from µ by simply removing

N ′ and C ′ while keeping the assignments of N\N ′ the same as in µ. Note that µ|N\N ′ ∈
A(P |(N\N ′,C\C′)) (as N ′ is isolated in µ and µ(N ′) = C ′).

An assignment µ is individually rational if for each i ∈ N , µ(i) Ri ∅. An assignment µ

Pareto dominates another assignment µ′ if for each i ∈ N , µ(i) Ri µ
′(i) and there exists

i ∈ N such that µ(i) Pi µ
′(i). An assignment µ is efficient if it is not Pareto dominated.10

8The priority ordering �c is a complete, transitive, and anti-symmetric binary relation over N . Our
results extend to the more general setup where some students may be unacceptable for some schools.

9Note that µ(N ′) = ∅ if and only if all students in N ′ are assigned their outside options.
10Note that efficiency implies individual rationality.
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A pair (i, c) ∈ N × C blocks µ if c Pi µ(i) and [|µ(c)| < qc or there exists j ∈ µ(c) such

that i �c j]. Let

B(µ) = {(i, c) ∈ N × C : (i, c) blocks µ}

denote the set of blocking pairs at µ. In addition, for each i ∈ N , let Bi(µ) = {c ∈ C : (i, c) ∈
B(µ)} denote the set of schools together with which student i constitute a blocking pair,

and for each c ∈ C, Bc(µ) = {i ∈ N : (i, c) ∈ B(µ)} denote the set of students together with

whom school c constitute a blocking pair.

An assignment µ is stable if it is individually rational and includes no blocking pair.

Unfortunately, there exist school choice problems without an assignment that is both efficient

and stable (Roth, 1982).

Given N ′ ⊆ N , we say that µ is N ′-stable if no student in N ′ is involved in a blocking

pair and also no school in µ(N ′) is involved in a blocking pair, i.e., for each i ∈ N ′, Bi(µ) = ∅
and for each c ∈ µ(N ′), Bc(µ) = ∅. We say that µ is N ′-unstable if µ is not N ′-stable.

A mechanism associates each problem with an assignment. When we say that a

mechanism satisfies a certain assignment property, such as efficiency, we mean that at each

problem, the assignment prescribed by the mechanism satisfies the property.

A mechanism ϕ is strategy-proof if reporting true preferences is a weakly dominant

strategy for each student in the preference revelation game induced by ϕ, that is, for each

problem (N,C,R, q,�), each i ∈ N and each preference ordering R′i,

ϕi(N,C,R, q,�) Ri ϕi(N,C, (R
′
i, R−i), q,�).

When (N,C, q,�) is clear, we often denote a problem simply by its preference profile R.

Now, using our convention, the above simply says ϕi(R) Ri ϕi(R
′
i, R−i).

3 A Unifying Approach to Stability Comparisons

Given a problem P ∈ P , a binary relation over assignments is a subset &⊆ A(P )×A(P ). We

use the convention and write µ & ν instead of (µ, ν) ∈&, and [µ � ν ⇔ µ & ν& not ν & µ].

Let L(P ) denote the set of all binary relations at P . Given &∈ L(P ), (i) & is complete if for

all µ, ν ∈ A(P ) we have µ & ν or ν & µ and (ii) & is transitive if µ & ν and ν & η imply

µ & η. Furthermore, given &,&′∈ L(P ) such that &⊆&′ we say that & is coarser than &′

and &′ is finer than &.
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A stability comparison is a function f associating with each problem P ∈ P a binary

relation f(P ) ∈ L(P ). Instead of f(P ), we write &P
f (where µ &P

f ν means that µ is f -more

stable than ν at P ). Note that, at this point, we do not impose any structure on a stability

comparison (such as neither completeness nor transitivity). Later we will describe several

examples of stability comparison methods. Also note that, when (N,C, q) is fixed, while

the set of assignments does not vary with the preference or the priority profile, the stability

comparison may vary with the preference and the priority profile, that is, stability comparisons

depend on the preference and the priority profile.

We introduce the following basic properties for a stability comparison f .

The first property stability preferred requires that any stable assignment is strictly f -more

stable than any unstable assignment. Formally, f satisfies stability-preferred if for each

P ∈ P and µ, ν ∈ A(P ), if B(µ) = ∅ 6= B(ν), then µ �P
f ν.

The second property separability requires the following. Suppose that an assignment is

f -more stable than another assignment, and a set of students is isolated and have the same

aggregate assignment at both assignments. If this isolated set of students or their assigned

schools are not involved in any blocking pair at the first assignment while some of these

students are involved in a blocking pair at the second assignment, then the restriction of

the first assignment to the remaining students and schools is strictly f -more stable than the

restriction of the second assignment.

Formally, f satisfies separability if for each P ∈ P and µ, ν ∈ A(P ) such that ν &P
f µ,

if µ is N ′-stable for some nonempty isolated N ′ ⊆ N , N ′ is also isolated at ν and µ(N ′) =

ν(N ′) = C ′, and Bi(ν) 6= ∅ for some i ∈ N ′, then ν|N\N ′ �P ′

f µ|N\N ′ , where P ′ = P |(N\N ′,C\C′).

The third property consistency requires the following. Suppose that two assignments

coincide for some subset of students which is isolated at both assignments. If these students

and their assigned schools are involved in blocking pairs only among themselves, then the

f -stability comparison remains unchanged when considering the assignments restricted to

the remaining students and schools.

Formally, f satisfies consistency if for each P ∈ P and µ, ν ∈ A(P ) such that ν &P
f µ,

if for some ∅ 6= N ′ ⊆ N that is isolated at both µ and ν, ν(i) = µ(i) for all i ∈ N ′,

Bi(µ) = Bi(ν) ⊆ µ(N ′) = ν(N ′) = C ′ for all i ∈ N ′, and Bc(µ) = Bc(ν) ⊆ N ′ for all

c ∈ µ(N ′), then ν|N\N ′ &P ′

f µ|N\N ′ , where P ′ = P |(N\N ′,C\C′).

Now given a stability comparison f and problem P , we say that µ is f-minimally

unstable at P among efficient assignments if there exists no efficient assignment ν such

that ν �P
f µ.
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Given a mechanism ψ, we say that ψ is f-minimally unstable among efficient and

strategyproof mechanisms if for any efficient and strategyproof mechanism ϕ, [ϕ(P ) &P
f

ψ(P ) for all P ∈ P ] implies ϕ = ψ.

Given a mechanism ψ, we say that φ is weakly f-minimally unstable among efficient

and strategyproof mechanisms if there does not exist any efficient and strategyproof

mechanism ϕ with (i) ϕ(P ) &P
f ψ(P ) for all P ∈ P and (ii) ϕ(P ′) �P ′

f ψ(P ′) for some P ′ ∈ P .

Note that the second definition is slightly different than the first one. Furthermore, if ψ

is f -minimally unstable among efficient and strategyproof mechanisms, then ψ is weakly f -

minimally unstable among efficiency and strategyproof mechanisms (but the converse does not

hold as there might exist a mechanism different from ψ with the identical f -stability measure).

Abdulkadiroğlu et al. (2019) and Kwon and Shorrer (2019) use the weaker second definition

and impose in addition comparability (among mechanisms) for their partial relations.

4 Robust Minimal Instability of Top Trading Cycles

The top trading cycles (TTC) mechanism (Abdulkadiroğlu and Sönmez, 2003) is based

on Gale’s TTC algorithm (Shapley and Scarf, 1974) which runs, given a problem, as follows.

Top Trading Cycles (TTC) Algorithm:11

Step 1. Assign a counter for each school which keeps track of how many seats

are still available at the school. Initially set the counters equal to the capacities

of the schools. Each student points to her top-ranked school. Each school points

to the student who has the highest priority for the school. Since the number of

students and schools are finite, there is at least one cycle. (A cycle is an ordered

list of distinct students and distinct schools (k, ck)k∈{1,...,K} such that for each

k ∈ {1, . . . , K}, student k points to school ck and school ck points to student

k + 1 with the convention that K + 1 = 1. Moreover, each school can be part of

at most one cycle. Similarly, each student can be part of at most one cycle. Every

student in a cycle is assigned a seat at the school she points to and is removed.

The counter of each school in a cycle is reduced by one and if it reduces to zero,

the school is also removed. Counters of all other schools stay put.

Step t ≥ 2. Each remaining student points to her top-ranked school among the

remaining schools and each remaining school points to the student with highest

11Morrill (2015a), Morrill (2015b), and Hakimov and Kesten (2018) propose variants of TTC for the
many-o-one setup. For one-to-one problems, all variants coincide.
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priority among the remaining students. There is at least one cycle. Every student

in a cycle is assigned a seat at the school that she points to and is removed. The

counter of each school in a cycle is reduced by one and if it reduces to zero the

school is also removed. Counters of all other schools stay put.

Our main result is the following.

Theorem 1 Let f be a stability comparison satisfying stability preferred, separability and con-

sistency. Then TTC is f -minimally unstable among efficient and strategy-proof mechanisms

when each school has unit capacity.

The proof of Theorem 1 builds on the observation that if TTC is not f -minimally unstable

among efficient and strategy-proof mechanisms, then there must be a smallest number of

students, say n, such that there exists a mechanism ϕ that is defined on the domain of

problems including n students and strategy-proof, efficient, and f-more stable than TTC.

The heart of the proof contains two key steps: first, if some students who are assigned seats in

Step 1 of the TTC algorithm receive different schools at ϕ, then we construct a new domain

of problems including fewer students where TTC is not f -minimally unstable among efficient

and strategy-proof mechanisms; and otherwise, we construct a smaller problem (using our

basic properties of the stability comparison method) where the restricted TTC assignment is

more stable than the restricted ϕ assignment.

Proof. Suppose not. Let n be the smallest number of students such that there exists a

mechanism defined on the domain of problems with n students and a set of schools C that is

strategy-proof, efficient, and f -more stable than TTC. Note that n ≥ 3 since at any problem

including 1 or 2 students, the TTC assignment includes no blocking pair and f satisfies

stability preferred.

Suppose that ϕ is strategy-proof, efficient, and f -more stable than TTC on the domain of

problems with n students and a set of schools C.

Unless otherwise noted, all parameters of a problem except for the preference profile will

be fixed and we will denote a problem simply by its preference profile.

Lemma 1 Let P be an arbitrary problem including n students with the preference profile

R = (R1, . . . , Rn). Let i ∈ N be a student who is assigned a seat at Step 1 of TTC(R). Let

c ∈ C be the school that points to i at Step 1 of TTC(R). Let R′i be a preference relation for

student i at which c is the only acceptable school. Then, ϕi(R
′
i, R−i) = c.

9



Proof. Suppose not, i.e., suppose that ϕi(R
′
i, R−i) 6= c (note that ϕi(R

′
i, R−i) = ∅).

By efficiency, there exists j1 6= i such that ϕj1(R
′
i, R−i) = c. Let R′j1 be a preference

relation for student j1 at which c is the only acceptable school. By strategy-proofness,

ϕj1(R
′
i, R

′
j1
, R−{i,j1}) = c.

Now, suppose that there exists a preference profile R−{i,j1} of students N \ {i, j1} such

that ϕc(R
′
i, R

′
j1
, R−{i,j1}) ∈ N \ {i, j1}, i.e., c is assigned to a student different from i or

j1. Let j2 ∈ N \ {i, j1} such that ϕj2(R
′
i, R

′
j1
, R−{i,j1}) = c. Let R′j2 be a preference

relation for student j2 at which c is the only acceptable school. By strategy-proofness,

ϕj2(R
′
i, R

′
j1
, R′j2 , R−{i,j1,j2}) = c.

Successive applications of the above argument imply that there exist {j1, . . . , jm} and a

preference profile R∗−{i,j1,j2,...,jm} for students N \ {i, j1, j2, . . . , jm} such that

• for each t ∈ {1, . . . ,m}, R′jt is a preference relation for student jt at which c is the only

acceptable school,

• ϕjm(R′i, R
′
j1
, R′j2 , . . . , R

′
jm , R

∗
−{i,j1,j2,...,jm}) = c, and

• for any preference profile R∗∗−{i,j1,j2,...,jm} for students N \ {i, j1, j2, . . . , jm}, we have

ϕc(R
′
i, R

′
j1
, R′j2 , . . . , R

′
jm , R

∗∗
−{i,j1,j2,...,jm}) ∈ {i, j1, . . . , jm}.

Let P ′ = (R′i, R
′
j1
, R′j2 , . . . , R

′
jm , R

∗
−{i,j1,j2,...,jm}). Note that if m = n, then |B(TTC(P ′))| =

0 < |B(ϕ(P ′))| since i has the highest priority among all students at c. Moreover, this con-

tradicts that ϕ is f -more stable than TTC as f satisfies stability preferred and TTC(P ′) �P ′

f

ϕ(P ′). Thus, m < n.

Now, we will construct a mechanism ϕ′ defined on the domain of problems with students

N ′ = N \ {i, j1, j2, . . . , jm} and schools C ′ = C \ {c} that is strategy-proof, efficient, and

f-more stable than TTC, which will contradict that n is the smallest number of students

such a domain entails.

Let ϕ′ be defined as follows. For each preference profile RN ′ of N ′,

• If for each j ∈ N ′, Rj agrees with R∗j on the relative orderings of C ′, then ϕ′(RN ′) =

ϕ(R′i, R
′
j1
, R′j2 , . . . , R

′
jm , R

∗
N ′)|N ′

• If for each j ∈ N ′′ ⊆ N ′, Rj agrees with R∗j on the relative orderings of C ′, and for

each j′ ∈ N ′ \ N ′′, Rj does not agree with R∗j′ on the relative orderings of C ′, then

let ϕ′(RN ′) = ϕ(R′i, R
′
j1
, R′j2 , . . . , R

′
jm , R

′
N ′)|N ′ where for each j ∈ N ′′, R′j = R∗j , and for
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each j ∈ N ′ \N ′′, R′j is a preference ordering which bottom-ranks c and agrees with

Rj′ on the relative orderings of C ′.

Note that ϕ′ is well-defined, in particular when {i, j1, . . . , jm} report (R′i, R
′
j1
, R′j2 , . . . , R

′
jm),

no student in N ′ can receive school c under any preference profile of N ′ (and {i, j1, . . . , jm}
is always isolated). To see that ϕ′ is strategy-proof, observe that manipulability of ϕ′ would

immediately imply the manipulability of ϕ. Efficiency of ϕ′ also follows directly from the

efficiency of ϕ. We will next show that ϕ′ is f -more stable than TTC.

Note that at any problem R (in the domain where there are n students) such that

(i, j1, . . . , jm) report (R′i, R
′
j1
, R′j2 , . . . , R

′
jm), no student in (i, j1, . . . , jm) is involved in a block-

ing pair at the TTC assignment; moreover, no student in N ′ is included in a blocking pair

together with c at the TTC assignment. Thus, TTC(R) is N\N ′-stable. On the other hand,

consider the problem P ′ = (R′i, R
′
j1
, R′j2 , . . . , R

′
jm , R

∗
−{i,j1,j2,...,jm}). Note that (i, c) is a blocking

pair at ϕ(P ′). Since ϕ is f -more stable than TTC, we have ϕ(P ′) &P ′

f TTC(P ′). Furthermore,

by efficiency of ϕ and construction, we have ∪h∈N\N ′{ϕh(P ′)} = {c} = ∪h∈N\N ′{TTCh(P ′)}
and N\N ′ is isolated under both ϕ(P ′) and TTC(P ′). Consequently, by separability of f ,

at the problem RN ′ (in the domain where there are n−m students) where for each j ∈ N ′,
Rj agrees with R∗j on the relative orderings of C ′, ϕ′(RN ′) = ϕ(P ′)|N ′ �

RN′
f TTC(P ′)|N ′ =

TTC(RN ′) (where the equalities follow from the definition of ϕ′ and TTC).

Now consider any problem R (in the domain where there are n students) such that

(i, j1, . . . , jm) report (R′i, R
′
j1
, R′j2 , . . . , R

′
jm). Then for R, TTC(R) is N\N ′-stable. If for

some i ∈ N\N ′, ϕi(R) 6= ∅, then by efficiency ϕi(R) = c and we use the same arguments

as above (as N\N ′ is isolated under both TTC(R) and ϕ(R)). If TTCi(R) = ϕi(R) for

all i ∈ N\N ′, then by construction, ϕ(R′) is N\N ′-stable and N\N ′ is isolated under

both TTC(R) and ϕ(R). Hence, by consistency of f and ϕ(R) &R
f TTC(R), we obtain

ϕ(R)|N ′ &
RN′
f TTC(R)|N ′ . Thus (as R was arbitrary), for any profile RN ′ of N ′ we have

ϕ′(RN ′) &RN′
f TTC(RN ′) (from the definition of ϕ′ and TTC). Hence, ϕ′ is f -more stable

than TTC, contradicting that n is the smallest number of students such a domain entails.

Lemma 2 Let P be an arbitrary problem including n students with the preference profile

R = (R1, . . . , Rn). Let i ∈ N be a student who is assigned a seat at Step 1 of TTC(R). Then,

ϕi(R) = TTCi(R).

Proof. Let I1 denote the set of students who are assigned a seat at Step 1 of TTC(R) and

C1 denote the set of schools that are allocated at Step 1 of TTC(R). Note that if for each

i ∈ I1, ϕi(R) ∈ C1, then by efficiency, ϕi(R) = TTCi(R) for each i ∈ I1.
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Suppose that there exists i1 ∈ I1 such that ϕi1(R) /∈ C1. Let c1 ∈ C1 be the school that

points to i1 in Step 1 of TTC(R). Let R′i1 be a preference ordering for i1 at which TTCi1(R)

is top-ranked and c1 is second-ranked.12 By strategy-proofness, ϕi1(R
′
i1
, R−i1) 6= TTCi1(R).

By Lemma 1 and strategy-proofness, ϕi1(R
′
i1
, R−i1) = c1.

Note that I1 is still the set of students who are assigned a seat at Step 1 of TTC(R′i1 , R−i1)

and C1 is still the set of schools that are allocated at Step 1 of TTC(R′i1 , R−i1). Now, if for each

i ∈ I1 \ {i1}, ϕi(R) ∈ C1, then efficiency would imply that ϕi(R
′
i1
, R−i1) = TTCi(R

′
i1
, R−i1)

for each i ∈ I1, which would contradict ϕi1(R
′
i1
, R−i1) 6= TTCi1(R) = TTCi1(R

′
i1
, R−i1). Thus,

there exists i2 ∈ I1 \{i1} such that ϕi2(R) /∈ C1. Let c2 ∈ C1 be the school that points to i2 in

Step 1 of TTC(R). Let R′i2 be a preference ordering for i2 at which TTCi2(R) is top-ranked

and c2 is second-ranked. By strategy-proofness, ϕi2(R
′
i1
, R′i2 , R−{i1,i2}) 6= TTCi2(R). By

Lemma 1 and strategy-proofness, ϕi2(R
′
i1
, R′i2 , R−{i1,i2}) = c2.

Continuing in a similar fashion, we identify a list of students (i1, . . . , im) and a preference

profile R′ = (R′1, . . . , R
′
m) such that {i1, . . . , im} = I1, ϕi(R

′) ∈ C1 for each i ∈ I1, and

ϕim(R′) 6= TTCim(R′), which contradicts efficiency of ϕ.

Lemma 3 Let k be a number. Suppose that at any problem P including n students and

a preference profile R, if a student i is assigned a seat at an earlier step than Step k at

TTC(R), then ϕi(R) = TTCi(R). Let P be an arbitrary problem including n students with

the preference profile R = (R1, . . . , Rn). Let i ∈ N be a student who is assigned a seat at

Step k of TTC(R). Let c ∈ C be the school that points to i at Step k of TTC(R). Let

R′i be a preference relation for student i at which c is the only acceptable school. Then,

ϕi(R
′
i, R−i) = c.

Proof. The proof shares some arguments with the proof of Lemma 1. We repeat these

arguments for the sake of completeness.

Suppose not, i.e., suppose that ϕi(R
′
i, R−i) 6= c (note that ϕi(R

′
i, R−i) = ∅). By efficiency,

there exists j1 6= i such that ϕj1(R
′
i, R−i) = c. Let I<k denote the set of students who are

assigned seats at an earlier step than Step k at TTC(R). Note that any student j ∈ I<k is

still assigned the same seat at an earlier step than Step k at TTC(R′i, R−i). Then, by our

supposition, for any student j ∈ I<k, ϕj(R) = TTCj(R). But then, j1 /∈ I<k. Hence, by the

definition of TTC, i has higher priority than j1 at c since c points to i at Step k of TTC(R).

Let R′j1 be a preference relation for student j1 at which c is the only acceptable school. By

strategy-proofness, ϕj1(R
′
i, R

′
j1
, R−{i,j1}) = c.

12We will use the convention and write sometimes for short R′i1 : TTCi1(R)c1.

12



Now, suppose that there exists a preference profile R−{i,j1,I<k} of students N \({i, j1}∪I<k)

such that ϕc(R
′
i, R

′
j1
, RI<k

, R−{i,j1,I<k}) ∈ N \({i, j1}∪I<k). Let j2 ∈ N \({i, j1}∪I<k) be such

that ϕj2(R
′
i, R

′
j1
, RI<k

, R−{i,j1,I<k}) = c. Let R′j2 be a preference relation for student j2 at which

c is the only acceptable school. By strategy-proofness, ϕj2(R
′
i, R

′
j1
, R′j2 , RI<k

, R−{i,j1,j2,I<k}) = c.

Successive applications of the above argument imply that there exist {j1, . . . , jm} and a

preference profile R∗−{i,j1,j2,...,jm,I<k} for students N \ ({i, j1, j2, . . . , jm} ∪ I<k) such that

• for each t ∈ {1, . . . ,m}, R′jt is a preference relation for student jt at which c is the only

acceptable school,

• ϕjm(R′i, R
′
j1
, R′j2 , . . . , R

′
jm , RI<k

, R∗−{i,j1,j2,...,jm,I<k}) = c, and

• for any preference profile R∗∗−{i,j1,j2,...,jm,I<k} for students N \ ({i, j1, j2, . . . , jm}∪I<k), we

have ϕc(R
′
i, R

′
j1
, R′j2 , . . . , R

′
jm , RI<k

, R∗∗−{i,j1,j2,...,jm,I<k}) /∈ N \ ({i, j1, j2, . . . , jm} ∪ I<k).

Let P ′ = (R′i, R
′
j1
, R′j2 , . . . , R

′
jm , RI<k

, R∗−{i,j1,j2,...,jm,I<k}). First note that, each j ∈ I<k is

still assigned the same seat as in TTC(R) at an earlier step than Step k at TTC(P ′). Hence,

by our supposition, for any j ∈ I<k, ϕj(P
′) = TTCj(P

′) = TTCj(R). For later purposes, let

c = c1 and Jc1 = {i, j1, j2, . . . , jm}.

Now, note that if m = n−|I<k|, then N = Jc1∪I<k and TTCi(P
′) = ϕi(P

′) for all i ∈ I<k.

Hence, for all i ∈ I<k we have Bi(TTC(P ′)) = Bi(ϕ(P ′)) and for all c ∈ ∪h∈I<k
TTCh(P ′),

Bc(TTC(P ′)) = Bc(ϕ(P ′)) ⊆ I<k. Thus, I<k is isolated under both ϕ(P ′) and TTC(P ′). But

then ϕ(P ′) &P ′

f TTC(P ′) and consistency of f imply ϕ(P ′)|Jc1 &
P ′J

c1

f TTC(P ′)|Jc1 . But this

is a contradiction to stability preferred of f as under P ′Jc1 we have B(TTC(P ′)|Jc1 ) = ∅ 6=
B(ϕ(P ′)|Jc1 ) since i has the highest priority among students Jc1 at c1. This contradicts that

ϕ is f -more stable than TTC. Thus, m < n− |I<k|.

Next we show that for all i ∈ Ik\Jc1 we have TTCi(P
′) = ϕi(P

′). If ∪i∈IkTTCi(P
′) =

∪i∈Ikϕi(P
′), then this follows from efficiency of ϕ(P ′) and TTC(P ′). Thus, for some i ∈ Ik,

ϕi(P
′) /∈ ∪h∈Ik{TTCh(P ′)}. Thus, by construction of Jc1 and the induction hypothesis,

ϕi(P
′) /∈ {c} ∪ [∪h∈I≤k

{TTCh(P ′)}] (where I≤k = I<k ∪ Ik). Let i = hl belong in TTC(P ′)

to a cycle c1 → h1 → · · · → cl → hl → cl+1 → hl+1 → · · · → c1 but ϕhl
(R′) 6= cl+1, i.e.

TTChl
(P ′) = cl+1, TTChl−1

(P ′) = cl and cl points to hl in the TTC-algorithm. Let P̂hl
: cl+1cl

and P̂ = (P̂hl
, P ′−hl

). By strategyproofness and efficiency, ϕhl
(P̂ ) = ∅ or ϕhl

(P̂ ) = cl.

If ϕhl
(P̂ ) = cl, then ϕhl−1

(P̂ ) 6= cl. Then let P̂ ′hl−1
: clcl−1 and P̂ ′ = (P̂ ′hl−1

, P̂−hl
). By

strategyproofness and efficiency, ϕhl−1
(P̂ ′) = ∅ or ϕhl−1

(P̂ ′) = cl−1. In the latter case, again

we have ϕhl−2
(P̂ ′) 6= cl−1, and so on until each agent hl receives cl and we find a contradiction
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to efficiency. Thus, at some point for ht ∈ Ik\Jc1 and Pht : ct+1ct we have for the constructed

profile R, ϕht(R) = ∅. Then let R′′ht
: ct and R′′ = (R′′ht

, R−ht).

But then set c2 ≡ ct. Analogous successive applications of the above arguments show

that there exists Jc2 and a preference profile R′′Jc2 such that for all i ∈ Jc2 , R′′i : c2, and a

preference profile R∗−Jc1∪Jc2∪I<k
for students N \ (Jc1 ∪ Jc2 ∪ I<k) such that

• for each i ∈ Jc2 , R
′′
i is a preference relation for student i at which c2 is the only

acceptable school,

• ϕh(R′Jc1 , R
′′
Jc2
, RI<k

, R∗−Jc1∪Jc2∪I<k
) = c1 for some h ∈ Jc1 ,

• ϕh(R′Jc1 , R
′′
Jc2
, RI<k

, R∗−Jc1∪Jc2∪I<k
) = c2 6= TTCh(R′Jc1 , R

′′
Jc2
, RI<k

, R∗−Jc1∪Jc2∪I<k
) for

some h ∈ Jc2 , and

• for any preference profile R∗∗−Jc1∪Jc2∪I<k
for students N \ (Jc1 ∪ Jc2 ∪ I<k), we have

ϕc2(R
′
Jc1
, R′′Jc2 , RI<k

, R∗∗−Jc1∪Jc2∪I<k
) /∈ N \ (Jc1 ∪ Jc2 ∪ I<k).

Let P ′′ = (R′Jc1 , R
′′
Jc2
, RI<k

, R∗−Jc1∪Jc2∪I<k
). If for some profileR = (R′Jc1 , R

′′
Jc2
, RI<k

, R∗∗−Jc1∪Jc2∪I<k
)

and some i ∈ Ik\(Jc1 ∪ Jc2) we have ϕi(R) 6= TTCi(R), then we do the same as above and

find c3 and Jc3 together with a profile R′′′Jc3 (and continue).

Otherwise we have for any profile R = (R′Jc1 , R
′′
Jc2
, RI<k

, R∗∗−Jc1∪Jc2∪I<k
) and all i ∈ Ik\(Jc1∪

Jc2), ϕi(R) = TTCi(R).

Now consider P ′′ and Ik+1. If for some i ∈ Ik+1\(Jc1 ∪ Jc2), ϕi(R) 6= TTCi(R), then we

find as above c3 and Jc3 , and so on.

Thus, we find {c1, . . . , cq} and mutually disjunct sets Jc1 , . . . , Jcq and I<k such that for

P (q) = (R′Jc1 , R
′′
Jc2
, . . . , R

(q)
Jcq
, RI<k

, R∗−Jc1∪Jc2∪···∪Jcq∪I<k
) we have

• for each i ∈ Jcp (with p ∈ {1, . . . , q}), R(p)
i is a preference relation for student i at which

cp is the only acceptable school,

• for each p ∈ {1, . . . , q − 1}, ϕh(P (p)) = cp for some h ∈ Jcp ,

• ϕh(P (q)) = cq 6= TTCh(P (q)) for some h ∈ Jcq , and

• ϕi(P
(q)) = TTCi(P

(q)) for all i ∈ N\(Jc1 ∪ · · · ∪ Jcq).

Let µ = ϕ(P (q)) and ν = TTC(P (q)). Because ϕ is f -more stable than TTC, we have

µ &P (q)

f ν. Now we will successively remove in the order Jc1 , . . . , Jcq .
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If µ(i) = ν(i) for all i ∈ Jc1 , then we have Bi(µ) = Bi(ν) = ∅ for all i ∈ Jc1 and

Bc1(µ) = ∅ = Bc1(ν). Thus, by the fact that Jc1 is isolated under both µ and ν and

consistency of f we obtain µ|N\Jc1 &
P

(q)
N\J

c1

f ν|N\Jc1 . Otherwise, Bi(ν) = ∅ for all i ∈ Jc1 and

Bc1(ν) = ∅ but for some j ∈ Jc1 , Bj(µ) 6= ∅. Furthermore, µ(Jc1) = {c1} = ν(Jc1) and Jc1 is

isolated under both µ and ν. But then by separability of f we obtain µ|N\Jc1 �
P

(q)
N\J

c1

f ν|N\Jc1 .

Note that in both cases we obtain µ|N\Jc1 &
P

(q)
N\J

c1

f ν|N\Jc1 .

Then we continue with Jc2 and obtain µ|N\(Jc1∪Jc2 ) &
P

(q)
N\(J

c1
∪J

c2
)

f ν|N\(Jc1∪Jc2 ), and so on

until we obtain µ|N\(Jc1∪···∪Jcq−1 ) &
P

(q)
N\(J

c1
∪···∪J

cq−1 )

f ν|N\(Jc1∪···∪Jcq−1 )
. Note that by construc-

tion under PN\(Jc1∪···∪Jcq−1 ), for Jcq we have Bi(ν|N\(Jc1∪···∪Jcq−1 )
) = ∅ for all i ∈ Jcq and

Bcq(ν|N\(Jc1∪···∪Jcq−1 )
) = ∅ but for some j ∈ Jcq , Bj(µ|N\(Jc1∪···∪Jcq−1 )

) 6= ∅. Furthermore,

µ(Jcq) = {cq} = ν(Jcq) and Jcq is isolated under both µ and ν (and their restrictions). But

then by separability of f we obtain

µ|N\(Jc1∪···∪Jcq ) �
P

(q)
N\(J

c1
∪···∪Jcq )

f ν|N\(Jc1∪···∪Jcq ).

This is a contradiction as for all i ∈ N\(Jc1 ∪ · · · ∪ Jcq), µ(i) = ν(i).13

Concluding the proof: We show, by induction, that ϕ and TTC coincide on the

domain of problems with n students, which contradicts that ϕ is more stable than TTC, and

concludes the proof.

Base case: For any problem with preference profile R including n students, for each

student i who is assigned a seat at Step 1 of the TTC algorithm, ϕi(R) = TTCi(R). This

follows from Lemma 2.

Inductive step: Assume that for any problem with preference profile R including n

students, for each student i who is assigned a seat at an earlier step than Step k of the TTC

algorithm, ϕi(R) = TTCi(R). We will show that for each student j who is assigned a seat at

Step k of the TTC algorithm, ϕj(R) = TTCj(R).

Let Ik denote the set of students who are assigned a seat at Step k of TTC(R) and Ck

denote the set of schools that are allocated at Step k of TTC(R). Note that if for each i ∈ Ik,

ϕk(R) ∈ Ck, then by efficiency, ϕi(R) = TTCi(R) for each i ∈ Ik.

Suppose that there exists i1 ∈ Ik such that ϕi1(R) /∈ Ck. Let c1 ∈ Ck be the school that

points to i1 in Step k of TTC(R). Let R′i1 be a preference ordering for i1 at which TTCi1(R)

13Note that k > 1 and I<k 6= ∅.
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is top-ranked and c1 is second-ranked. By strategy-proofness, ϕi1(R
′
i1
, R−i1) 6= TTCi1(R). By

Lemma 3 and strategy-proofness, ϕi1(R
′
i1
, R−i1) = c1.

Note that Ik is still the set of students who are assigned a seat at Step k of TTC(R′i1 , R−i1)

and Ck is still the set of schools that are allocated at Step k of TTC(R′i1 , R−i1). Now, if for each

i ∈ Ik \ {i1}, ϕi(R) ∈ Ck, then efficiency would imply that ϕi(R
′
i1
, R−i1) = TTCi(R

′
i1
, R−i1)

for each i ∈ Ik, which would contradict ϕi1(R
′
i1
, R−i1) 6= TTCi1(R) = TTCi1(R

′
i1
, R−i1). Thus,

there exists i2 ∈ Ik \{i1} such that ϕi2(R) /∈ Ck. Let c2 ∈ Ck be the school that points to i2 in

Step k of TTC(R). Let R′i2 be a preference ordering for i2 at which TTCi2(R) is top-ranked

and c2 is second-ranked. By strategy-proofness, ϕi2(R
′
i1
, R′i2 , R−{i1,i2}) 6= TTCi2(R). By

Lemma 3 and strategy-proofness, ϕi2(R
′
i1
, R′i2 , R−{i1,i2}) = c2.

Continuing in a similar fashion, we identify a list of students (i1, . . . , im) and a preference

profile R′ = (R′1, . . . , R
′
m) such that {i1, . . . , im} = Ik, ϕi(R

′) ∈ Ck for each i ∈ Ik, and

ϕim(R′) 6= TTCim(R′), which contradicts efficiency of ϕ.

Remark 1 When schools may have multiple available seats, there exists a strategy-proof

and efficient mechanism ϕ such that there exists a problem where the ϕ assignment is stable

while the TTC assignment is unstable, and at any other problem where the ϕ assignment

is different from the TTC assignment, the ϕ assignment is stable (Abdulkadiroğlu et al.,

2019). Therefore, as long as the stability measure f satisfies stability preferred, TTC is not

f -minimally unstable among efficient and strategyproof mechanisms when schools may have

multiple seats.

5 Applications

Below, we apply our main result to different natural stability comparison methods. Some

of them are inclusion methods whereas others are the (corresponding) cardinal methods.

Furthermore, it is easy to verify that any of the comparison methods below satisfies stability

preferred, separability and consistency, and hence, Theorem 1 holds.

This shows the robust minimal instability of TTC among efficient and stretegy-proof

mechanisms (with unit capacities).
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5.1 Blocking Pairs

The blocking pairs inclusion comparison (pincl) is defined as follows. For each problem P ∈ P
and µ, ν ∈ A(P ),

µ &P
pincl ν ⇔ B(µ) ⊆ B(ν).

Among others, Abdulkadiroğlu et al. (2019) and Tang and Zhang (2017) study this stability

comparison.

Corollary 1 [Theorem 1 of Abdulkadiroğlu, Che, Pathak, Roth and Tercieux, 2019] TTC

is weakly pincl-minimally unstable among efficient and strategyproof mechanisms when each

school has unit capacity.

The blocking pairs cardinality comparison (pcard) is defined as follows. For each problem

P ∈ P and µ, ν ∈ A(P ),

µ &P
pcard ν ⇔ |B(µ)| ≤ |B(ν)|.

Note that &P
pincl⊆&P

pcard.
14

Corollary 2 TTC is pcard-minimally unstable among efficient and strategyproof mechanisms

when each school has unit capacity.

Obviously, for any problem P : (i) &P
pincl⊆&P

pcard, (ii) &P
pincl is transitive but not complete,

and (iii) &P
pcard is complete (as any two assignments can be compared) and transitive. Hence,

Corollary 2 implies Corollary 1.

5.2 Blocking Triplets

The blocking triplets inclusion comparison (tincl) is defined as follows. Let (i, j, c) ∈ T (µ) if

and only if i �c j, µ(j) = c, and cPiµ(i). For each P ∈ P and µ, ν ∈ A(P ),

µ &P
tincl ν ⇔ T (µ) ⊆ T (ν).

Kwon and Shorrer (2019) study this stability comparison.

Corollary 3 [Proposition 7 of Kwon and Shorrer, 2019] TTC is weakly tincl-minimally

unstable among efficient and strategyproof mechanisms when each school has unit capacity.

14Doğan and Ehlers (2020) study this stability comparison method for efficient assignments.
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The blocking triplets cardinality comparison tcard is defined as follows. For each P ∈ P
and µ, ν ∈ A(P ),

µ &P
tcard ν ⇔ |T (µ)| ≤ |T (ν)|.

Note that &P
tincl⊆&P

tcard.

Corollary 4 TTC is tcard-minimally unstable among efficient and strategyproof mechanisms

when each school has unit capacity.

Obviously, for any problem P : (i) &P
tincl⊆&P

tcard, (ii) &P
tincl is transitive but not complete,

and (iii) &P
tcard is complete and transitive. Hence, Corollary 4 implies Corollary 3.

5.3 Blocking Students

The blocking students inclusion comparison (sincl) is defined as follows. Let BS(µ) = {i ∈
N : Bi(µ) 6= ∅}. For each problem P ∈ P and µ, ν ∈ A(P ),

µ &P
sincl ν ⇔ BS(µ) ⊆ BS(ν).

Corollary 5 TTC is sincl-minimally unstable among efficient and strategyproof mechanisms

when each school has unit capacity.

The blocking students cardinality comparison (scard) is defined as follows. For each

P ∈ P and µ, ν ∈ A(P ),

µ &P
scard ν ⇔ |BS(µ)| ≤ |BS(ν)|.

Corollary 6 TTC is scard-minimally unstable among efficient and strategyproof mechanisms

when each school has unit capacity.

Obviously, (i) &P
sincl⊆&P

scard, (ii) &P
sincl is transitive but not complete and (iii) &P

scard is

complete and transitive.15

6 Appendix

The examples below show that the three properties, stability preferred, separability, and

consistency, are independent for stability comparison methods.

15Doğan and Ehlers (2020) also study the stability comparison methods based on blocking students.
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Example 1 (Only stability preferred violated) Consider the following stability com-

parison &= ∅, that is, for any problem P and any µ, ν ∈ A(P ), µ and ν are incomparable in

terms of &P , i.e &P= ∅. Note that separability and consistency are vacuously satisfied, while

stability preferred is clearly violated.

Example 2 (Only separability violated) Consider the following stability comparison &.

For any P ∈ P and µ, ν ∈ A(P ), let µ &P
f ν if and only if B(ν) is not a proper subset of

B(µ), i.e., B(ν) 6( B(µ). Note that µ �P
f ν if and only if B(µ) ( B(ν).

Clearly, stability preferred is satisfied. To see that consistency is satisfied, take any µ and ν

such that ν &P µ and for some ∅ 6= N ′ ⊆ N , ν(i) = µ(i) for all i ∈ N ′, Bi(µ) = Bi(ν) ⊆ µ(N ′)

for all i ∈ N ′, and Bc(µ) = Bc(ν) ⊆ N ′ for all c ∈ µ(N ′) = ν(N ′) = C ′ and N ′ is isolated

under both µ and ν. But then, B(µ|N\N ′) 6( B(ν|N\N ′) and therefore ν|N\N ′ &
PN\N′

f µ|N\N ′.

To see that separability is violated, consider the following problem P where N = {1, 2, 3, 4}
and C = {c1, c2, c3, c4}. Only the relevant top parts of the preference and priority profiles are

depicted.

R1 R2 R3 R4 �c1 �c2 �c3 �c4

c2 c3 c3 c4 1 3 2 3

c1 c2 c4 1 3 4

c2 2

Consider

µ =

(
1 2 3 4

c1 c3 c2 c4

)

ν =

(
1 2 3 4

c1 c2 c3 c4

)
where B(µ) = {(3, c4)} and B(ν) = {(1, c2), (2, c3)}. Let N ′ = {1}. Note that ν &P

f µ, µN ′

is N ′-stable, µ(N ′) = ν(N ′), and B1(ν) 6= ∅ where 1 ∈ N ′. Moreover, µ|N\N ′ &
PN\N′

f ν|N\N ′,
implying that separability is violated.

Example 3 (Only consistency violated) Consider the following stability comparison &.

For any problem P ∈ P and µ, ν ∈ A(P ), let µ &P
f ν if and only if B(µ) = ∅ or (|B(ν)| ≥ 2

and |B(µ)| ≤ |B(ν)|). Note that µ �P
f ν if and only if B(µ) = ∅ 6= B(ν) or (|B(ν)| ≥ 2 and

B(µ) < |B(ν)|). Also note that when |B(µ)| = |B(ν)| = 1, µ and ν are incomparable in

terms of &P .

By definition, stability preferred is satisfied. To see that separability is satisfied, take

any µ and ν such that ν &P
f µ, and take any ∅ 6= N ′ ⊆ N such that µ is N ′-stable,
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µ(N ′) = ν(N ′) = C ′ and Bi(ν) 6= ∅ for some i ∈ N ′. Note that |B(µ|N\N ′)| ≥ 2 and

|B(ν|N\N ′)| < |B(µ|N\N ′)|. Hence, ν|N\N ′ �
PN\N′

f µ|N\N ′.

To see that consistency is violated, consider the following problem P where N = {1, 2, 3, 4, 5}
and C = {c1, c2, c3, c4, c5}. Only the relevant top parts of the preference and priority profiles

are depicted.

R1 R2 R3 R4 R5 �c1 �c2 �c3 �c4 �c5

c2 c2 c4 c4 c5 1 1 3 3 4

c1 c3 c5 2 4 5

c3

Consider

µ =

(
1 2 3 4 5

c1 c2 c3 c4 c5

)

ν =

(
1 2 3 4 5

c1 c2 c4 c3 c5

)
where B(µ) = {(1, c2), (3, c1)} and B(ν) = {(1, c2), (4, c5)}. Let N ′ = {1, 2}.

Note that ν &P
f µ, ν(i) = µ(i) for all i ∈ N ′, Bi(µ) = Bi(ν) ⊆ µ(N ′) for all i ∈ N ′,

and Bc(µ) = Bc(ν) ⊆ N ′ for all c ∈ µ(N ′) = ν(N ′) = C ′. Yet, ν|N\N ′ and µ|N\N ′ are

incomparable, implying that consistency is violated.
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