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Abstract

This paper investigates different approaches for causal estimation under multiple

concurrent medications. Our parameter of interest is the marginal mean counterfactual

outcome under different combinations of medications. We explore parametric and non-

parametric methods to estimate the generalized propensity score. We then apply three

causal estimation approaches (inverse probability of treatment weighting, propensity

score adjustment, and targeted maximum likelihood estimation) to estimate the causal

parameter of interest. Focusing on the estimation of the expected outcome under

the most prevalent regimens, we compare the results obtained using these methods

in a simulation study with four potentially concurrent medications. We perform

a second simulation study in which some combinations of medications may occur

rarely or not occur at all in the dataset. Finally, we apply the methods explored to

contrast the probability of patient treatment success for the most prevalent regimens

of antimicrobial agents for patients with multidrug-resistant pulmonary tuberculosis.
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1 Introduction

Polypharmacy is the intake of multiple medications, potentially more than

medically necessary, at the same time. Apart from the increased costs for multiple

medications, the degradation of quality of life, the possibility of interactions

between those medications, and adverse drug reactions1, make polypharmacy an

important area of research.

The concurrent usage of multiple medications is necessary for some diseases.

Multidrug-resistant tuberculosis (MDR-TB), with almost 500 000 new cases in

20162 and a 45% mortality rate worldwide3, is defined as a disease caused by

strains of Mycobacterium tuberculosis that are resistant to at least the two most

effective drugs, isoniazid and rifampin, used to treat tuberculosis. Patients with

MDR-TB are treated with multiple alternative antimicrobial agents in order to

cure the infection and prevent further drug resistance (or to prevent the selection

of drug resistant strains of M. tuberculosis). Current guidelines recommend

the simultaneous usage of five or more antimicrobial agents depending on the

therapeutic phase and drug resistance pattern4. A systematic review published

in 2012 identified international studies that investigated associations between
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different treatments and treatment outcomes of MDR-TB5. The combination of

individual patient data from these studies is currently the greatest resource for

evaluating medication effectiveness in MDR-TB. However, with patients taking as

many as 7 antimicrobial agents concurrently5, and the data containing 15 different

antimicrobial agents overall, the analysis presents a challenge for the application

of causal inference methods.

Many causal estimation techniques for binary treatments use the propensity

score, defined as the probability of receiving one of the two treatment options.

In the case where multiple treatments are available, Imbens6 extended this

framework by defining the generalized propensity score (GPS) as the probability

of receiving a specific treatment. Imbens6, Imai and Van Dyk7, and Lopez and

Gutman8 developed various techniques reliant on the GPS for the estimation of

causal effects. Further, McCaffrey and others 9 proposed using generalized boosted

models for the estimation of the GPS for multiple treatments.

In this paper, we explore methods to estimate the relative effects of taking

multiple medications. The previous methods cited above primarily estimated the

effects of continuous (such as medication dose) or low-dimensional categorical

treatment options. In contrast, we are interested in the setting where patients may

take more than one medication of interest concurrently, resulting in a potentially

large number of possible drug combinations, many of which may not be observed

in the data.

In order to approach this problem, we take the exposure to be a categorical

variable of regimens, where regimen refers to a specific combination of medications

(perhaps taken over a pre-specified period). We then employ various machine

learning algorithms for the estimation of the GPS. We provide short introductions

for these machine learning algorithms along with several causal estimation

procedures in Section 2. We present a simulation study in Section 3 in order

to compare the appropriateness of each method. In Section 4, we present an

application of these methods for the MDR-TB data in which we provide estimates

of the expected rates of treatment success (with outcome defined by the World

Health Organization4) for the 10 most prevalent regimens in the combined dataset

of Ahuja and others 5.
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2 Methods

In order to estimate the causal effects of multiple medications, we propose

to estimate the GPS, defined as the probability of taking a specific regimen

conditional on covariates. To this end, we investigate the usage of different

machine learning algorithms for the GPS. Further, in order to estimate the causal

contrasts, we employ Inverse Probability of Treatment Weighting10, Propensity

Score Adjustment11 and Targeted Maximum Likelihood Estimation12,13, all of

which use the GPS. We also investigate G-Computation14, which exclusively uses

a model for the outcome conditional on medications taken and covariates in order

to estimate an effect of interest.

2.1 General Notation

The observed data Oi include a vector of covariates, Xi = {Xij ; j = 1, ..., J},
and a univariate outcome, Yi where i = 1, ..., n indexes the set of subjects.

We consider a fixed set of K potential medications that all patients in the

study are hypothetically eligible for. For any patient i, the binary variable Ak
i

indicates exposure to medication k ∈ {1, ...,K}. We define Ci = (A1
i , ..., A

K
i ) as

the set of treatments being taken by patient i. We denote Ri as a categorical

variable corresponding to the observed regimen for patient i, represented by the

combination of treatments Ci. For each individual, Ri corresponds to one of the

2K different possible regimens. We denote a specific fixed regimen as r and the

corresponding vector of binary elements as cr. We also define Br
i as an indicator

for the regimen r, i.e. if patient i took regimen r, then Br
i = 1. Clearly, Ci, Ri,

and Br
i contain the same information, but we require these definitions in order

to describe the proposed models. We drop the i subscript when referring to a

random draw of a variable from the population.

The goal of the analysis is to estimate E(Y r), which is also equivalent to E(Y cr ),

where Y r
i or Y cr

i represents the potential outcome of subject i had they received

an intervention corresponding with a treatment regimen r. We may then contrast

different regimens by comparing their respective estimated values of E(Y r). In

MDR-TB example, the binary outcome is defined as treatment success (the

treatment was completed and cured the infection) versus failure (patient still

tested culture positive for MDR-TB, died, or defaulted on treatment/were lost to

follow-up). The goal of the application was therefore taken to be the estimation
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of the probability of treatment success under a given regimen of antimicrobial

agents. The regimens with the higher probabilities of treatment success may then

be interpreted as having greater effectiveness than those with a lower probability.

2.2 Estimation of the Generalized Propensity Score

The propensity score15 is defined as the probability of receiving a treatment

conditional on covariates. When dealing with a binary treatment where C ∈
{

0,1
}

,

the propensity score can be mathematically expressed as

g(X) = Pr(C = 1|X).

With multiple treatments, the propensity score was extended to the GPS6 defined

as

g(r,X) = Pr(R = r|X) = Pr(C = cr|X),

the probability of receiving a given regimen r. We use multi-class classification,

with classes corresponding to regimens, in order to estimate the GPS. Multi-class

classification is the fitting of models for different classes in the dataset where the

classes are mutually exclusive. In this subsection we provide basic descriptions

of support vector machines, softmax regression (i.e. multinomial regression), and

generalized boosted models, which we later use to estimate the GPS.

2.2.1 Support Vector Machines Support Vector Machines (SVMs) (Hastie

and others 16, Chapter 12), a supervised learning approach, have been proposed

as a method for multi-class classification and have been identified as one the most

important research topics in the field of machine learning17. Computationally

efficient, SVMs use hyperplanes to delineate a particular class by identifying the

most influential observations in the determination of the boundaries between the

classes. These observations are also known as the support vectors. The main aim

of SVMs is to find a maximum margin hyperplane, where margin corresponds to

the distance between the hyperplane and closest elements on either side of the

hyperplane.

For the pairwise classification of two different regimens, say r1 and r2,

Soft-Margin SVMs18 construct a hyperplane {X; f(X) = wTX + b = 0}, with

the constraint {I(Ri = r1)− I(Ri = r2)}(wTXi + b) ≥ 1− ζi, for all i = 1, ..., n

where the ζi ≥ 0 are called “slack variables” and I(·) is the indicator function. If
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ζi = 0 for all i = 1, ..., n, this would imply that the hyperplane would be able to

perfectly separate and classify the data. The slack variables therefore allow for

misclassification.

The parameters w, b and ζi are estimated by minimizing a loss function

F (w, b, ζ) over w and b subject to the above constraints. This loss function is

given by:

F (w, b, ζ) =
||w||2

2
+ C

n∑
i=1

ζi,

where C is a constant which maintains the trade-off between the training error

and the margins (a smaller C allows for a smoother boundary f(X)). The

function F (w, b, ζ) is minimized using optimization methods with Lagrangian

multipliers16.

We apply the default settings of the function svm in the e1071 R package19

for the implementation of SVMs. In particular, this function uses One-Vs-One

classification20 (i.e. constructs boundaries for each pair of classes separately, and

the final classification for each observation is determined by which class is most

frequently selected), sets C = 1, and applies a non-linear basis expansion with

a radial kernel (Hastie and others 16, Section 12.3). Finally, the probability of

class membership (following a given regimen r) is estimated by fitting a logistic

regression of R = r on the boundary values f(X) computed for each pairwise

comparison21,22.

2.2.2 Softmax Regression Softmax regression23, a common classification method,

is equivalent to multinomial logistic regression. We restrict the probability for a

patient to be treated with regimen r as

Pr(Ri = r|Xi,Φ) =
exp(φTr Xi)∑2K

l=1 exp(φTl Xi)

The model parameters φr ∈ RJ+1, r ∈ {1,...,2K}, with J corresponding to the

number of covariates present in the model, are stacked together to form Φ, a

matrix of dimension 2K × (J + 1) with entries Φr,j . The parameter matrix Φ is

then estimated by minimizing the loss function L(Φ) (corresponding with the
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negative quasi log-likelihood), which is given by:

L(Φ) =

n∑
i=1

2K∑
r=1

I(Ri = r) log
exp(φTr Xi)∑2K

l=1 exp(φTl Xi)

For implementation, we use the softmaxreg package24 in R.

2.2.3 Generalized Boosting Generalized Boosted Models (GBMs) (Hastie

and others 16, Chapter 10) are machine learning algorithms that build up an

additive model using multiple classification trees. Classification trees (Hastie

and others 16, Chapter 9) create a piecewise model for a treatment by learning

which sequential splits in the covariates most improve prediction of the treatment.

Boosting generates a sequence of trees while upweighting the observations

that were misclassified by the previous trees. Finally, the predictions from the

individual trees are combined using an error-weighted majority vote.

Implementations of GBMs have been proposed to estimate the GPS for multiple

treatments. To prevent overfitting, one needs to identify the total number of trees

to use. McCaffrey and others 9 propose to select the number of trees by comparing

the values of the covariates in the GPS-weighted treatment group versus the entire

sample. A good “balance” means that covariate distributions are similar between

these groups. The number of trees can be chosen by satisfying a criterion such as

the Absolute Standard Bias (ASB), which compares the standardized difference

in covariate means between groups, or the Kolmogovov-Smirnov (KS) Statistic,

which compares the empirical distributions. In addition to the number of trees,

the tuning parameters include a shrinkage term (learning rate) for the GBM, the

minimum number of observations in the trees’ terminal nodes, and the depth of

interactions (indicating the maximum number of splits the algorithm performs

on a tree after the initial split) included in the model, all of which are important

in order to properly smooth the model. We estimate the GPS for each regimen

separately using the twang package25 in R.

2.3 Causal Estimation Methods

After obtaining the GPS, we aim to estimate E(Y r), where Y r is the potential

outcome of an arbitrary patient under regimen r. In order to obtain an estimate

of E(Y r), one may choose from various causal estimation methods, several of

which we describe in this subsection. Causal estimation methods adjust for
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the confounders (roughly, those pre-treatment variables X that are related to

both treatment regimen and Y ) in order to produce estimates of the marginal

parameter E(Y r). These causal estimation methods rely on several assumptions6,

including 1) positivity: the probability of receiving any regimen r conditional on

the confounders, X, should be a non-zero quantity for all subjects; 2) consistency:

for any patient i taking regimen Ri = r, the counterfactual outcome for patient i

under r is the observed outcome of the patient; and 3) conditional exchangeability:

the observed covariates should be sufficient to satisfy conditional independence

between the regimens and the potential outcomes. Since we have 2K different

regimens, some of which may not at all be observed in the data, the assumption

of positivity is very likely to fail (either empirically or theoretically) for some

regimens. This would imply that without additional extrapolation, we would not

be able to estimate E(Y r) for those regimens. In the following, we only estimate

the parameter of interest for prevalent regimens.

2.3.1 G-Computation G-computation is a causal estimation method proposed by

Robins14 that can be used for the estimation of E(Y r). The algorithm for G-

Computation26 is as follows:

Algorithm 1 G-Computation for E(Y r)

1: Fit an outcome model for E(Y |R,X) using the available data, defined as

Q(R,X). We then compute predictions of the conditional expectations under

the regimen r for every subject. In our context, one may use a model

Q(a)(R,X) that is conditional on the regimens directly (i.e. subsetting on

Br = 1 or taking the indicators Br as covariates) or an alternative Q(b)(C,X)

that is conditional on the medications (taking the Ak as covariates).

2: For each observation, predict the value of Qn(r,Xi) = En(Y |R = r,Xi) using

the above obtained model where a subscript n denotes an estimate of the

quantity.

3: The G-computation estimate of E(Y r) is thus given by:

ψr
n,G−comp =

1

n

n∑
i=1

Qn(r,Xi).
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The unbiasedness of G-computation relies on the correct specification of the

outcome model.

2.3.2 Inverse Probability of Treatment Weighting Inverse Probability of Treatment

Weighting (IPTW)10 is an approach for the estimation of E(Y r) using the

propensity score. The algorithm for performing IPTW is as follows:

Algorithm 2 Inverse Probability of Treatment Weighting for E(Y r)

1: Estimate the GPS for each regimen, gn(r,Xi) = Prn(R = r|Xi).

2: Obtain the weight wn(r,Xi) = I(Ri = r)/gn(r,Xi) for each observation, which

is only non-zero for subjects who took the regimen of interest, r.

3: Run a linear regression model of Y on an intercept, with weights wn(r,X).

The resulting estimate of the intercept is our IPTW estimate, ψr
n,IPTW . The

consistency of IPTW relies on the correct specification of the propensity score

model. In order to calculate the variance of the resulting estimate we use the

sandwich package27 in R, which is used for calculating robust variance estimates

(that take into account the uncertainty in the propensity score). One could

alternatively use the non-parametric bootstrap to estimate the variance, but this

may be excessively time-consuming when the GPS is estimated with a machine

learning method.

2.3.3 Propensity Score Adjustment Propensity Score Adjustment (PSA) is a

causal estimation method that relies on the specification of the propensity score

model in addition to a model for the outcome, conditional on the propensity

score and treatment. The propensity score is a balancing statistic, that is, given

the propensity score, the potential outcome is conditionally independent of the

treatment11. For a single binary treatment C ∈ {0, 1}, one might use the following

model:

E(Y |C, g(X)) = θ0 + θ1C + θ2g(X),

where θ1 can also be written as θ1 = E(Y |C = 1, g(X))− E(Y |C = 0, g(X)). The

estimate θ̂1 is obtained using least squares and is an unbiased estimate of

E(Y |C = 1, g(X))− E(Y |C = 0, g(X)) = E(Y 1 − Y 0) if the propensity score and

the outcome regression model are correctly specified and if the causal assumptions

hold. However, if the expected outcome is not linearly dependent on the propensity

score or if the propensity score model is incorrectly specified, then the ordinary
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least squares estimate of θ1 is a biased estimator of E(Y 1 − Y 0)11. If a non-linear

model is used, the above result may not be applicable, since θ1 for this case

might correspond with a conditional parameter (and estimation would therefore

be biased for the marginal contrast between the potential outcomes).

This method of estimation can also be extended to the case with multiple

treatments6. For our setting, we propose the following algorithm.

Algorithm 3 Propensity Score Adjustment for E(Y r)

1: Fit a model Q(1)(R, g(r,X)) (conditional on the regimen indicators, Br) or

Q(2)(C,X) (conditional on the treatment indicators, Ak) for E(Y |R, g(r,X)).

2: Using the model fit, obtain predictions:

Q(1)
n (r, gn(r,X)) = En(Y |Br = 1, gn(r,X)) or

Q(2)
n (cr, gn(r,X)) = En(Y |C = cr, gn(r,X))

3: The estimates of E(Y r) are then given as

ψr
n,PSA(I) =

1

n

n∑
i=1

Q(1)
n (r, gn(r,Xi)), and

ψr
n,PSA(II) =

1

n

n∑
i=1

Q(2)
n (cr, gn(r,Xi)).

2.3.4 Targeted Maximum Likelihood Estimation Targeted Maximum Likelihood

Estimation13 (TMLE) is a semi-parametric estimation technique that produces

doubly robust and locally efficient plug-in estimators. In our situation, TMLE

invokes a two-step process that first produces estimates of the conditional

expectation of the outcome under a fixed regimen (as in the first step in G-

Computation) and then updates these initial estimates28. The update procedure

uses the propensity score and is designed to reduce the bias in the estimate of the

causal parameter of interest. An algorithm for the computation of TMLE for the

multiple medication case with target parameter E(Y r) is described below.
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Algorithm 4 Targeted Minimum Loss-Based Estimation for E(Y r)

1: First, fit an outcome model and generate estimates of the conditional

expectation under the fixed regimen r, denoted Qn(r,X). We may use

Q
(a)
n (r,X) or Q

(b)
n (cr, X) as described in Section 2.3.1.

2: Define weights wn(r,X) = I(R = r)/gn(r,X).

3: Regress Y on 1 with offset logit{Qn(r,X)} and weights wn(r,X). Denote the

estimate of the intercept term by ε̂.

4: Compute the updated estimate, Q∗
n(r,X), which is given by:

logit(Q∗
n(r,X)) = logit(Qn(r,X)) + ε̂.

5: The TMLE estimate for E(Y r) is then given by:

ψr
n,TMLE =

1

n

n∑
i=1

Q∗
n(r,Xi).

The double robustness property of this TMLE means that, unlike the propensity

score adjustment method, the TMLE is a consistent estimator if either E(Y |
R = r,X) or g(r,X) is consistently estimated. For the approximation of the

estimation standard error, one may use the efficient influence function (EIF)29,

corresponding to the first order expansion of the estimator:

EIF r(Q, g)(O) = (Y −Q(r,X))
I(R = r)

g(r,X)
+Q(r,X)− ψr

TMLE .

In large samples, the variance of the estimator will correspond to the sample

variance of the estimated EIF. Therefore, the 95% confidence interval for ψr
n,TMLE

can be estimated by ψr
n,TMLE ± 1.96

√
(σr

n,TMLE)2/n, where (σr
n,TMLE)2 denotes

the sample variance of EIF r(Qn, gn)(Oi).

3 Simulation Study

In order to evaluate the appropriateness of the above causal estimators paired

with each GPS method, we contrast their performance in a Monte Carlo

simulation study. We first describe the data generating mechanisms. We estimate

the expected counterfactual outcomes under the most prominent regimens. We
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compare the performance of several implementations of G-computation and then

of each causal estimator that uses the GPS. In the Supplementary Materials, we

perform a second simulation study with a larger number of medications, often

leading to more regimens than subjects in the sample. For this second scenario,

we evaluate a data subsetting method that can greatly reduce computational time.

3.1 Data Generation

Full details of the data generation are given in Section 1 of the Supplementary

Materials.

We independently generate 12 baseline variables Xij , j = 1, ..., 12 from a

standard uniform distribution i.e. Xij ∼ U(0, 1). We also generate 4 dichotomous

treatment indicators, Ak
i , k = 1, 2, 3, 4, conditional on a subset of the baseline

variables. In addition, A1 and A2 are generated as positively correlated as are

A3 and A4, and all other treatments pairs are independent. Specifically, a patient

is more likely to take medication 1 if they are also taking medication 2 (and

vice versa), and similarly for medications 3 and 4. A binary outcome Yi is

generated using a logistic model conditional on the Xijs and Ak
i s with first-order

interactions (including treatment-treatment, covariate-covariate, and covariate-

treatment interactions). As subjects can take up to 4 medications, there are

24 = 16 possible regimens. The two most likely regimens (on average) are regimen

1 (1,1,0,0) and regimen 2 (1,1,1,1) and are defined as the regimens of interest. The

true propensity score Pr(A1 = a1, A
2 = a2, A

3 = a3, A
4 = a4 | X) in this case can

be factorized as:

Pr(A1 = a1, A
2 = a2, A

3 = a3, A
4 = a4 | X) = Pr(A1 = a1, A

2 = a2 | X)·

Pr(A3 = a3, A
4 = a4 | X)

The true values of E(Y r) are 0.61 and 0.57 for regimens 1 and 2 respectively.

3.2 Comparison of Outcome Regression Models

Since propensity score adjustment and TMLE both use a model for the outcome,

we first evaluate the performance of six implementations of G-Computation to see

whether each outcome model produces biased effects of E(Y r). We fit the following

outcome models with logistic regressions: 1) by regimen, subsetting on Br = 1 for

each r of interest, and 2) by treatment, adjusting for the treatment indicators
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Ak, k = 1, 2, 3, 4 in the regression. For the latter case, we fit the outcome models

without interactions (taking the main terms of Ak only) and then with first-order

interactions between the Ak. We apply these three approaches to G-Computation

both with and without adjustment for the baseline covariates as main terms.

We generated 1 000 datasets of sample size n = 500 and 1 000, respectively.

Table 1 gives the mean estimates and Monte Carlo standard errors for each

implementation. For regimen 1, the G-computation estimate had little bias when

adjusting by regimen or by treatment with first order interactions, regardless

of the adjustment for Xij as main terms. However, it was substantially biased

when fit with treatment main terms only, regardless of adjustment for Xij . For

regimen 2, the G-computation estimate was unbiased when adjusting by regimen

or by treatment with first order interactions but only when also adjusting for

confounding by Xij . It was biased when not adjusting for confounding and when

the treatment interactions were not included. The standard error was lower for

the larger sample size but the bias remained steady.

Table 1. Monte Carlo mean estimates and standard errors for different implementations of
G-Computation. The true value for regimen 1 is E(Y 1) = 0.61 and the true value for
regimen 2 is E(Y 2) = 0.57. Qn corr indicates whether the outcome model includes the
true treatment-treatment interactions.

n = 500 n=1 000

Qn corr Reg 1 Reg 2 Reg 1 Reg 2

Unadjusted

By Regimen Y 0.63(0.05) 0.62(0.07) 0.63(0.03) 0.62(0.04)

By treatment (main terms) N 0.48(0.05) 0.83(0.03) 0.48(0.03) 0.83(0.03)

By treatment (first order Y 0.63(0.05) 0.62(0.07) 0.63(0.03) 0.62(0.04)

interactions)

Adjusted for Xij

By Regimen Y 0.64(0.04) 0.57(0.07) 0.64(0.03) 0.57(0.05)

By treatment (main terms) N 0.47(0.04) 0.81(0.03) 0.47(0.03) 0.82(0.03)

By treatment (first order Y 0.62(0.05) 0.58(0.06) 0.62(0.03) 0.58(0.04)

interactions)

3.3 Comparison of methods

The implementations of causal estimators that are evaluated in this section are:

• IPTW, using a weighted linear regression model (Section 2.3.2);
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• PSA(I), propensity score adjustment with a logistic regression to estimate

Q(1) conditional on regimen (Section 2.3.3);

• PSA(II), propensity score adjustment with a logistic regression to estimate

Q(2) conditional on treatments as main terms (Section 2.3.3);

• TMLE(I), using a logistic regression to model the outcome conditional on

regimen and baseline covariates, i.e. Q(a) (Section 2.3.4);

• TMLE(II), using a logistic regression to model the outcome conditional on

treatments and baseline covariates, i.e. Q(b) (Section 2.3.4).

The GPS for each regimen of interest was estimated using the three approaches

in Section 2.2. When fitting GBMs for each regimen Ri, we chose values of

the tuning parameters that optimized the balance between the pre-treatment

covariates in Ri and the pooled sample of all the other regimens for 5 simulated

datasets using the plots function in twang. The maximum number of iterations

in the Softmax regression was set to 100 with the default learning rate of 0.05

and the tuning parameters for SVMs were similarly assigned the default values.

We drew 1 000 samples of sizes n = 500 and 1 000, respectively. Table 2 gives the

mean estimates and Monte Carlo standard errors for the top 2 occurring regimens

in our simulated data. The numbers of subjects exposed to each of these regimens

varied by sample and are given in Section 3 of the Supplementary Materials.

TMLE performed well when implemented with SVMs, Softmax regression, and

GBMs. IPTW and PSA(I) performed well with Softmax regression but were biased

with SVMs and GBMs for the second regimen, likely due to the suboptimal

convergence rate of these nonparametric GPS methods30. The estimates of

PSA(I) and IPTW with SVMs and GBMs appeared to slowly approach the

true values with larger sample sizes (results not shown) though some bias still

existed at n =10 000. PSA(II) performed poorly throughout, due to the incorrect

specification of the outcome model when conditional on the treatments only as

main terms, and did not converge with larger sample sizes. Note that PSA(II)

performed similarly to the closely related adjusted G-Computation with treatment

main terms. For the second regimen, TMLE(I) was essentially unbiased but often

had more variance than IPTW and TMLE(II).
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Table 2. Monte Carlo means and standard errors over 1 000 draws for different causal
estimators that utilize the generalized propensity score. The true value for regimen 1 is
E(Y 1) = 0.61 and the true value for regimen 2 is E(Y 2) = 0.57. SVM: Support Vector
Machine; GBM: Generalized Boosted Model; IPTW: Inverse Probability of Treatment
Weighting; PSA: Propensity Score Adjustment; TMLE: Targeted Maximum Likelihood
Estimation. Outcome regression models were fit by (I) regimen and (II) treatments as main
terms covariates. Qn corr indicates whether the outcome model includes the true
treatment-treatment interactions.

n = 500 n =1 000

Qn corr Reg 1 Reg 2 Reg 1 Reg 2

SVM

IPTW N/A 0.63(0.05) 0.61(0.07) 0.63(0.04) 0.61(0.05)

PSA(I) Y 0.64(0.06) 0.51(0.08) 0.64(0.04) 0.52(0.05)

PSA(II) N 0.44(0.05) 0.83(0.04) 0.44(0.03) 0.83(0.03)

TMLE(I) Y 0.62(0.05) 0.58(0.09) 0.62(0.04) 0.58(0.06)

TMLE(II) N 0.62(0.05) 0.60(0.07) 0.62(0.04) 0.59(0.05)

Softmax Regression

IPTW N/A 0.62(0.06) 0.58(0.11) 0.62(0.04) 0.58(0.07)

PSA(I) Y 0.64(0.05) 0.57(0.07) 0.63(0.04) 0.57(0.05)

PSA(II) N 0.47(0.04) 0.83(0.04) 0.47(0.03) 0.83(0.03)

TMLE(I) Y 0.62(0.06) 0.58(0.10) 0.62(0.04) 0.58(0.07)

TMLE(II) N 0.62(0.06) 0.58(0.10) 0.62(0.04) 0.58(0.07)

GBM

IPTW N/A 0.62(0.05) 0.60(0.08) 0.62(0.04) 0.59(0.06)

PSA(I) Y 0.63(0.06) 0.51(0.10) 0.63(0.04) 0.52(0.06)

PSA(II) N 0.42(0.04) 0.85(0.04) 0.43(0.03) 0.84(0.03)

TMLE(I) Y 0.62(0.06) 0.58(0.10) 0.62(0.04) 0.58(0.07)

TMLE(II) N 0.62(0.05) 0.59(0.08) 0.62(0.05) 0.59(0.06)

We conducted a second simulation study with eight dichotomous treatment

variables and a sample size of n = 500. In our simulated data, out of the

256 possible regimens, roughly 150 different regimens occurred in each dataset.

Some of these regimens were only followed by several subjects, making the

corresponding GPSs difficult to estimate. We tested whether removing the

observations corresponding to the 20 and 30% least supported regimens affected

the causal estimation. Specifically, we did not use these observations in the GPS

model fitting but kept them in for the other causal estimation steps. We found

that, out of a total of 500 observations, this resulted on average in the removal of
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only 30 and 45 observations, respectively, reduced the computational time, and

did not change the quality of the estimation. We present the full description and

the results of this simulation study in the Supplementary Materials Section 2.

4 Application of the above methods to the MDR-TB Data

The Collaborative Group for Meta-Analysis of Individual Patient Data in

Multidrug-Resistant Tuberculosis (IPD-MDRTB)5 assembled individual patient

data on treatment outcomes from 31 observational studies comprising 9 290

individual pulmonary MDR-TB patients. This dataset contains information on

the antimicrobial agents used, the baseline covariates (summarized in Table 3),

and clinical outcomes. Patients were observed to take 15 different antimicrobial

agents in various combinations. We refer to these different sets of medications

as regimens and present the ten most prevalent regimens used in the first row

of Table 3. Notably, the most common regimens included 5 or more different

antimicrobial agents, while 207 subjects did not take any antimicrobial agent.

The antimicrobial agents in the ten most observed regimens are ethambutol

(EMB), ethionamide (ETH), ofloxacin (OFX), pyrazinamide (Z), kanamycin

(KM), cycloserine (CS), capreomycin (CM), para-aminosalicylic acid (PAS),

prothionamide (PTO), streptomycin (SM), and rifabutin (RBT).

A binary outcome was defined as either treatment success (the treatment

was completed and cured the infection) or failure (patient still tested culture

positive for MDR-TB, died, or defaulted on treatment/were lost to follow-up).

After removing the 2.77% of subjects with a missing outcome and the 0.34%

with missing baseline information, we were left with a sample size of n =9 001

observations taking 1 626 different regimens. The covariate age was divided into

six categories (0-24, 25-33, 34-42, 43-52, 53-63, 64-) approximately corresponding

to age sextiles and the year of study (defined as the final year of patient treatment)

was treated as categorical with 14 values. As observed in Table 3, there are

differences across the regimen groups in terms of all covariates. This is evidence

of indication bias as medication regimens may be differentially assigned across

countries, time periods, and patient disease characteristics.

The objective of this data analysis is to compare the results of the different

methodological approaches for the estimation of E(Y r). We do this for the ten

most prevalent regimens in the dataset, corresponding to the first ten regimens in
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Table 3. The parameter E(Y r) can be interpreted as the proportion of the study

population that would have had a successful recovery had all the patients been

treated with regimen r. Therefore, larger values of this parameter indicate which

regimens may be more beneficially applied on a large scale. Ethics approval was

obtained for the reanalysis of this data through the Ethics in Health Research

Committee at Université de Montréal (certificate number 17-111-CERES-D).

In order to estimate the GPS with SVMs and Softmax Regression, we removed

all of the subjects with regimens only supported by one or two subjects (1 420

subjects). The models were fit using the 7 581 remaining observations. The GPS

was then predicted for the entire population of n =9 001 patients conditional

on the covariates in Table 3 and indicators for missing values. GBMs were run

using the twang package and we selected the combinations of interaction depth,

n.minobsinnode (minimum observations in each node), and shrinkage parameters

that produced the best balance using the KS statistic as explained in McCaffrey

and others 9. After obtaining the GPS with these methods, we proceeded with

the causal estimation procedures described in Section 3.3 for the estimation of

E(Y r).

Tables 4 and 5 present the estimates of E(Y r) obtained for the ten most frequent

regimens. No closed-form approximation of the standard error is available for the

multi-treatment version of PSA, and given that the machine learning methods

were very computationally intensive, numerical methods like bootstrapping

weren’t feasible for our implementation. Therefore, the confidence intervals for this

method were omitted. The logistic regression outcome model used in TMLE(I)

overfit the data (causing the update step to fail) and therefore a LASSO penalty

was added to the outcome model with penalty parameter chosen using cross

validation with the R package glmnet31. We used empirical summaries of the

weights and GPS (Supplementary Materials Sections 5 and 6) to evaluate whether

the positivity assumption may be nearly violated for some subjects. No truncation

of the GPS32 was used for the results presented, though we conducted a sensitivity

analysis where 20% truncation was used to remove the smallest values of the GPS.

Numerical results of the sensitivity analyses are presented in the Supplementary

Materials Section 6 and discussed below.
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Table 4. Estimates of the probability of treatment success along with the confidence
intervals under regimens 1-5 for the MDR-TB application in Section 4. SVM: Support
Vector Machine; GBM: Generalized Boosted Model; IPTW: Inverse Probability of
Treatment Weighting; PSA: Propensity Score Adjustment; TMLE: Targeted Maximum
Likelihood Estimation. Outcome regression models were fit (I) by regimen and (II) with
treatments as main terms covariates.

Regimen 1 2 3 4 5

OFX-KM- OFX-KM- OFX-KM- OFX-SM-

Z-EMB- Z- PTO- Z-EMB- PTO-

ETH ETH-CS CS-PAS RBT CS-PAS

SVM

IPTW 0.46 0.71 0.59 0.27 0.32

(0.44,0.49) (0.62,0.80) (0.47,0.70) (0.09,0.45) (0.17,0.46)

PSA(I) 0.44 0.67 0.63 0.32 0.55

PSA(II) 0.66 0.69 0.64 0.42 0.68

TMLE(I) 0.61 0.78 0.63 0.54 0.31

(0.60,0.61) (0.76,0.80) (0.60,0.65) (0.52,0.57) (0.28,0.34)

TMLE(II) 0.49 0.69 0.60 0.34 0.37

(0.48,0.50) (0.68,0.70) (0.58,0.63) (0.31,0.36) (0.35,0.38)

Softmax

Regression

IPTW 0.46 0.65 0.56 0.27 0.37

(0.43,0.49) (0.59,0.70) (0.49,0.64) (0.18,0.36) (0.29,0.44)

PSA(I) 0.38 0.63 0.55 0.22 0.45

PSA(II) 0.56 0.64 0.59 0.36 0.62

TMLE(I) 0.60 0.65 0.61 0.57 0.37

(0.59,0.62) (0.62,0.67) (0.59,0.64) (0.54,0.60) (0.35,0.39)

TMLE(II) 0.48 0.64 0.59 0.26 0.45

(0.47,0.50) (0.62,0.67) (0.57,0.62) (0.22,0.30) (0.43,0.48)

GBM

IPTW 0.55 0.81 0.59 0.25 0.27

(0.39,0.72) (0.64,0.98) (0.47,0.70) (0.11,0.39) (0.01,0.52)

PSA(I) 0.43 0.68 0.63 0.35 0.55

PSA(II) 0.65 0.68 0.64 0.37 0.66

TMLE(I) 0.63 0.83 0.60 0.54 0.27

(0.58,0.68) (0.79,0.87) (0.54,0.67) (0.51,0.56) (0.22,0.32)

TMLE(II) 0.55 0.77 0.57 0.34 0.30

(0.50,0.60) (0.76,0.79) (0.50,0.64) (0.30,0.37) (0.28,0.32)
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Table 5. Estimates of the probability of treatment success along with the confidence
intervals under regimens 6-10 for the MDR-TB application in Section 4. SVM: Support
Vector Machine; GBM: Generalized Boosted Model; IPTW: Inverse Probability of
Treatment Weighting; PSA: Propensity Score Adjustment; TMLE: Targeted Maximum
Likelihood Estimation. Outcome regression models were fit (I) by regimen and (II) with
treatments as main terms covariates.

Regimen 6 7 8 9 10

None OFX-KM- OFX-CM- OFX- OFX-KM-

Z- Z- PTO- Z-EMB-

ETH ETH-CS-PAS CS-PAS ETH-CS

SVM

IPTW 0.20 0.56 0.67 0.57 0.56

(0.08,0.31) (0.48,0.64) (0.55,0.0.80) (0.37,0.77) (0.47,0.64)

PSA(I) 0.29 0.59 0.61 0.56 0.57

PSA(II) 0.38 0.63 0.61 0.58 0.66

TMLE(I) 0.21 0.58 0.67 0.62 0.61

(0.18,0.23) (0.56,0.60) (0.65,0.69) (0.58,0.66) (0.58,0.63)

TMLE(II) 0.24 0.58 0.60 0.58 0.57

(0.21,0.27) (0.56,0.60) (0.58,0.62) (0.55,0.61) (0.54,0.60)

Softmax

Regression

IPTW 0.31 0.56 0.69 0.45 0.56

(0.24,0.38) (0.48,0.64) (0.61,0.78) (0.35,0.54) (0.48,0.65)

PSA(I) 0.37 0.55 0.56 0.46 0.54

PSA(II) 0.38 0.56 0.59 0.50 0.65

TMLE(I) 0.25 0.58 0.68 0.55 0.60

(0.22,0.28) (0.55,0.61) (0.66,0.70) (0.52,0.58) (0.57,0.64)

TMLE(II) 0.35 0.56 0.62 0.49 0.56

(0.29,0.41) (0.53,0.60) (0.60,0.64) (0.47,0.52) (0.52,0.61)

GBM

IPTW 0.24 0.70 0.75 0.56 0.55

(0.17,0.32) (0.41,0.98) (0.65,0.83) (0.25,0.86) (0.45,0.65)

PSA(I) 0.38 0.60 0.60 0.54 0.57

PSA(II) 0.40 0.62 0.60 0.52 0.65

TMLE(I) 0.25 0.67 0.73 0.62 0.59

(0.21,0.28) (0.62,0.73) (0.70,0.77) (0.56,0.67) (0.57,0.62)

TMLE(II) 0.26 0.67 0.67 0.58 0.54

(0.22,0.31) (0.65,0.68) (0.63,0.71) (0.54,0.61) (0.52,0.58)
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The point estimates of E(Y r) and the confidence intervals in Tables 4 and 5

often varied depending on which method was used to estimate the GPS. The

point estimates also sometimes disagreed between causal inference methods using

the same GPS vector (e.g. regimens 1 (OFX-KM-Z-EMB-ETH) and 5 (OFX-

SM-PTO-CS-PAS)) and to a lesser extent between GPS methods using the same

causal inference method. None of the GPS methods consistently produced narrow

confidence intervals for TMLE or IPTW. However, TMLE was often found to

have narrower confidence intervals than IPTW. GPS truncation resulted in at

most small changes in the point estimates though very small values of the GPS

were observed, suggesting possible near-positivity violations.

Table 6 presents the top 5 most beneficial regimens based on the estimates

of E(Y r). Regimens 2 (OFX-KM-Z-ETH-CS) and 8 (OFX-CM-Z-ETH-CS-PAS)

were often classified in the top 2 and were in the top 5 of all methods except

for PSA(II) with SVMs and GBMs. Regimens 3 (OFX-KM-PTO-CS-PAS), 7

(OFX-KM-Z-ETH), and 10 (OFX-KM-Z-EMB-ETH-CS) were also often ranked

in the top 5. This would suggest the superior effectiveness of these treatment

combinations among the regimens investigated.

World Health Organization (WHO) guidelines4,33 suggest that MDR-TB

regimens include a fluoroquinolone (such as OFX) and an injectable agent (such

as KM, SM or CM). No treatment (included as a benchmark despite questionable

clinical interest) and regimen 4 (Z-EMB-RBT) performed the worst overall and

follow neither of these guidelines. Regimen 9 (OFX-PTO-CS-PAS), which also

performed poorly, also lacked an injectable agent.

WHO guidelines also point to the importance of the number of drugs in the

regimen, suggesting five or more that have certain or almost certain effectiveness4.

Previous studies have suggested that a majority of MDR-TB patients are resistant

to EMB and Z in many settings34,35. When excluding EMB and Z, of the regimens

evaluated here, regimens 3, 5, and 8 had five remaining drugs, though only

regimens 3 and 8 were found to be among the most effective. Regimen 5 was

identical to regimen 3 except that it replaced KM by SM, for which resistance

is also commonly seen among MDR-TB isolates. Regimens 2, 9, and 10 had four

remaining drugs. Regimens 2 and 10 both included an injectable (KM) and were

identical except that regimen 10 also included EMB. Interestingly, regimen 2 was

found to perform the best among the regimens evaluated while 10 was found to

be less effective. These results point to the potential importance of the inclusion
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of KM in a regimen. While we estimated the expected mean of the potential

outcome under ten regimens, future applications may use marginal structural

models (modeling of the expected potential outcomes conditional on treatments)

and a broader range of regimens to estimate the contributions of each individual

treatment and treatment interaction on the outcome. In the discussion, we point

out some limitations of the simplified analysis in the current paper, which limits

the interpretability of the results.

Table 6. Ranking of the top 5 medication regimens estimated by each method in terms of
the estimated population recovery rate of MDR-TB treatment success. Reg 1:
OFX-KM-Z-EMB-ETH; Reg 2: OFX-KM-Z-ETH-CS; Reg 3: OFX-KM-PTO-CS-PAS; Reg
4: Z-EMB-RBT; Reg 5: OFX-SM-PTO-CS-PAS; Reg 6: None; Reg 7: OFX-KM-Z-ETH;
Reg 8: OFX-CM-Z-ETH-CS-PAS; Reg 9: OFX-PTO-CS-PAS; Reg 10:
OFX-KM-Z-EMB-ETH-CS; SVM: Support Vector Machine; GBM: Generalized Boosted
Model; IPTW: Inverse Probability of Treatment Weighting; PSA: Propensity Score
Adjustment; TMLE: Targeted Maximum Likelihood Estimation. Outcome regression
models were fit (I) by regimen and (II) with treatments as main terms covariates.

Causal Estimation IPTW TMLE(I) TMLE(II) PSA(I) PSA(II)

Methods

Reg 2 Reg 2 Reg 2 Reg 2 Reg 2

Reg 8 Reg 8 Reg 8 Reg 3 Reg 5

SVM Reg 3 Reg 3 Reg 3 Reg 8 Reg 10

Reg 9 Reg 9 Reg 7 Reg 7 Reg 1

Reg 10 Reg 10 Reg 9 Reg 10 Reg 3

Reg 8 Reg 8 Reg 2 Reg 2 Reg 10

Reg 2 Reg 2 Reg 8 Reg 8 Reg 2

Softmax Regression Reg 10 Reg 3 Reg 3 Reg 3 Reg 5

Reg 7 Reg 10 Reg 10 Reg 7 Reg 8

Reg 3 Reg 1 Reg 7 Reg 10 Reg 3

Reg 2 Reg 2 Reg 2 Reg 2 Reg 2

Reg 8 Reg 8 Reg 8 Reg 3 Reg 5

GBM Reg 7 Reg 7 Reg 7 Reg 7 Reg 10

Reg 3 Reg 1 Reg 9 Reg 8 Reg 1

Reg 9 Reg 9 Reg 3 Reg 10 Reg 3
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5 Discussion

In this paper, we investigated the causal estimation of multiple concurrent

medications as motivated by the clinical question of how best to treat patients

with MDR-TB. The topic of polypharmacy (resulting in potential overmedication

and dangerous medication interactions) is gaining in importance in the medical

literature. In particular, polypharmacy is highly prevalent in the elderly (ages

≥ 65), an important and growing population36 leading to potential adverse drug

reactions37. For example, multiple cardiovascular medications, taken by more than

50% of elderly people, have been shown to be associated with an increased risk of

acute kidney disorders38. Given the toxicity of second-line anti-tuberculosis drugs,

the analysis of polypharmacy is particularly relevant for treating MDR-TB cases.

In order to address estimation in this challenging scenario, we defined a

treatment “regimen” as each unique combination of medications and used three

methods to estimate the GPS, or the probability of receiving a specific regimen.

One weakness of this GPS approach is that it does not directly allow for

information to be shared between different regimens that contain one or more of

the same medications. In a Monte Carlo simulation study, we showed that missing

treatment interactions in the outcome model can lead to bias in the estimation of

both PSA and G-Computation. In real world applications, it might therefore be

difficult to correctly specify these models. However, due to its double robustness

property, TMLE was found to produce unbiased point estimates even when the

outcome model was incorrectly specified. Further investigations could involve the

implementation of TMLE with a non-parametric method used for the outcome

model as well, which might add additional robustness to the estimation39.

In the application, we estimated the probability of treatment success for the

10 most prevalent medication combinations in the MDR-TB dataset. We chose

to estimate the most prevalent medications because they may be of greatest

clinical interest and also have the greatest amount of data support (i.e. number

of patients following the regimens) which allowed for better estimation. An

interesting question for future research would involve empirically identifying which

regimens have sufficient data support. One may also integrate existing methods

to data-adaptively select covariates in the GPS for a given regimen40.

The different methods often agreed on the preferred MDR-TB regimens but

produced sometimes differing estimates of probabilities of treatment success.

Closed-form confidence intervals are not available for PSA with multiple regimens
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and we were unable to use a numerical approach to approximate them given

the computational complexity of the GPS estimation. Previous investigations

of this data source5 used regression analyses to estimate the associations

between each treatment and outcome separately, ignoring other treatments.

Associations between the number of treatments and duration of treatment were

also investigated. In contrast to the previous approach, our general approach

considers the joint effect of treatments. TMLE also has the advantage of being

doubly robust and therefore consistent when either the GPS or the outcome

model is correctly specified. Since the dataset consists of the fusion of multiple

observational studies, a more appropriate application of these methods would

formally consider the heterogeneity between studies in the point estimation (e.g.

using a random effects outcome model by study) and standard error estimation41

and account for selection bias as different populations were observed to take

different regimens of antimicrobial agents. Our analysis also did not consider

known drug resistance in the analysis, which may affect treatment decisions and

outcomes, nor did we address the extrapolation required to synthesize evidence

when certain regimens are only observed in select time periods. Ongoing analyses

more appropriately address these issues and strong clinical conclusions about

medication or regimen effectiveness are beyond the scope of this article.

Because of the large number of regimens, the GPS model may sometimes predict

very small probabilities for some regimens. This creates well-known stability

problems for methods that weight by the inverse of the GPS. We addressed this

problem by using formulations of IPTW and TMLE that use the inverse GPS as a

weight in a regression. Alternative approaches (results not shown) were sometimes

highly biased in the simulation study. The robustness of the regression approach

is likely due to the dampening of the residuals in the weighted regression step.

TMLE and IPTW often benefit from GPS truncation as a bias-variance trade-

off and data-adaptive approaches have been recently proposed42. However, small

values of the GPS may also indicate true positivity violations and the nonexistence

of the parameter of interest. Very small values of the GPS could be investigated

to identify patients who were truly ineligible for a given treatment due to clinical

or demographic features. Related to the simplifications mentioned above, we did

not consider this possibility.

An alternative approach that we considered but did not take in this paper

(that addresses the mentioned limitation) involves treating the regimens not
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as categorical, but as a multivariate binary variable, with each component

indicating whether a subject was on that specific medication. One could then

attempt to use multivariate regression modeling43 for the GPS that allows for

some correlation between the treatments. Optimal Classifier Chains44, or simpler

regression approaches that otherwise allow for dependencies between the usage of

different treatments are potential approaches.

It is clear from the medical literature that the estimation of the effects of

multiple concurrent medications is an important topic but standard methods are

limited. Given the complexity of the problem, we hope that this paper encourages

additional focus on these methodological issues.

Code and Supplementary Materials

The code for the simulation study data generation and

analysis is available at https://github.com/arman817/

Simulation-Codes-for-Causal-Inference-for-polypharmacy. The extended

simulation and application results are included in a Supplementary Materials

file, available online.
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