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Web Appendix A: More details about LTMLE and

solving the efficient influence function estimating equa-

tion

The efficient influence function for ψ in the nonparametric model space is given as

D(ψ,Q, g)(O) =
I(A1 = a)

g1(L1)g0(L0)
{Y −Q2(L1)}+

I(A0 = a0)

g0(L0)
{Q2(L1)−Q1(L0)}+Q1(L0)− ψ

(1)

at a given Q = {Q2(L1), Q1(L0)} and g = {g1(L1), g0(L0)}.

The direct result of the Longitudinal TMLE (LTMLE) procedure is that the updated
estimates of the conditional expectations of the outcome now solve the empirical efficient
influence function equation. Specifically, the empirical average (taken over all subjects)
of the values of

I(A1 = a)

g1,n(l1)g0,n(l0)
{y −Q∗

2,n(l1)}+
I(A0 = a0)

g0,n(l0)
{Q∗

2,n(l1)−Q∗
1,n(l0)}+Q∗

1,n(l0)− ψn

is equal to zero (y is the value of Y for a sampled subject) where ψn is the LTMLE
estimate. This is ensured by the procedure because the logistic regression update steps
produce estimates of εt, t = 1, 0, that solve the logistic regression score equations. The
consequence of solving this influence function estimating equation is that, under some
regularity conditions, ψn is a locally efficient and double robust estimator of ψ with a
large-sample variance that can be approximated by V arn{D(ψn, Qn, gn)(O)}/n (van der
Laan and Robins, 2003).

Consider data-generating distribution P belonging to the model space M. We use
the empirical process notation Pf =

∫
f(z)dP (z) for the expectation that averages over
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the randomness in Z but not the P -integrable function f . The L2(P ) norm is given as
‖f‖2 = Pf 2. With respect to the required convergence rates of the so-called “nuisance”
models, the single time-point setting requires that the product of the errors (i.e. the
root-L2(P ) norm of the difference between the estimate and the true function) for the
probability of treatment and the conditional expectation of the outcome must converge
at a rate of Op(n

−1/2) to ensure n−1/2 convergence of the doubly robust estimator for the
expectation of the counterfactual outcome under a given treatment (Kennedy, 2016).
This implies that if one error term converges to zero at a parametric rate or if both
terms converge at n−1/4 rates then this condition is satisfied. For the two treatment
time setting, we evaluate

P [D(ψ,Qn, gn)−D(ψ,Q, g)] =

P

[
g0

g1,ng0,n
{g1 − g1,n}{Q2,n −Q2}

]
+ (2)

P

[
g0 − g0,n
g0,n

{Q1,n −Q1}
]
. (3)

By the Cauchy-Schwartz inequality and the positivity assumptions, the absolute value
of expectation (3) is bounded above by

‖g0 − g0,n‖ ‖Q1,n −Q1‖ .

The absolute value of the expectation (2) is bounded above by∥∥∥∥ g0
g1,ng0,n

∥∥∥∥ ‖g1 − g1,n‖ ‖Q2,n −Q2‖

Assuming that the first term is greater than one (likely for reasonable estimation of g1
and g0), the convergence of expectation (2) is similarly bounded by the product of the
estimation errors of the treatment probability and outcome expectation at the second
time point. If both terms (2) and (3) converge to zero at n−1/2 rates, the LTMLE will
also converge to the true value of ψ at a n−1/2 rate. Therefore if both models (for
treatment and outcome) at both time points converge at rates of n−1/4, this condition
is satisfied. If only one of the models at each time point converges to the truth, then
this rate must be n−1/2. These rates of convergence are also required for the C-LTMLE
estimator for the asymptotically selected g̃(k) and Q̃∗,(k).

Web Appendix B: C-LTMLE algorithm for arbitrary

treatment and censoring times

In the more general case (van der Laan and Gruber, 2012; Schnitzer et al., 2014), we
observe longitudinal data O = (L0, A0, L1, A1, ...LT−1, AT−1, Y ) where Lt are a set of
covariates measured at time t = 0, ..., T − 1 and At is a possibly multivariate treatment
and censoring node at time t = 0, ..., T − 1. Let Y be the outcome of interest, measured
at the end of the study after a fixed follow-up. Let Y a denote the counterfactual out-
come (Rubin, 1974) under the fixed treatment regime a and under no censoring, and
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similarly let L
at−1

t represent an intermediate outcome under past treatment regime at−1

and no censoring. Our goal is to estimate ψ = E(Y a), the marginal mean outcome
under some fixed treatment regime a. Throughout, a subscript n will be used to denote
an estimate of a quantity.

Firstly, estimate each probability of treatment, i.e. gt(lt) = Pr(At = at | At−1 =
at−1, Lt = lt). This may correspond to fitting one model for each time point’s treatment
and censoring nodes and using these models to predict each subject’s probability of
being uncensored and following the regimen at that time point conditional on being
uncensored and following the regimen up to time t− 1. We define the estimates of the
predicted probability at time t as gt,n(lt).

Algorithm 1 LTMLE algorithm for the general case

1: Initialize Q∗
T+1 = Y .

2: for t=T,...,1 do
3: Estimate Qt = E(Qt+1 | At−1 = at−1, Lt−1 = lt−1), the conditional expectation

of the outcome under treatment regime at−1 for observed data history lt−1. This
is done by by regressing Q∗

t+1,n on At−1 and Lt−1 and making a prediction for each
subject setting A0 = a0 . Denote this estimate as Qt,n.

4: Run intercept-free logistic regression Q∗
t+1,n ∼ ε̂t/{

∏t−1
l=0 gl,n} +

offset[logit{Qt,n}] using subjects with At−1 = at−1. Let ε̂t be the coefficient
estimate.

5: Set Q∗
t,n = expit

[
εt/{

∏t−1
l=0 gl,n}+ logit{Qt,n}

]
for all subjects.

6: end for
7: Set ψn = mean(Q∗

1,n) to be the targeted estimate.

The C-LTMLE procedure as written in the main document applies immediately for
the multiple time and multivariate treatment and censoring nodes setting. The first step
is now again to estimate the initial g

(0)
t (lt) = Pr(At = at | At−1 = at−1, Lt = lt) for all

time points. The corresponding models may include some “forced-in” covariates or may
be unconditional on covariates. The next step is to create initial estimates – that may be
targeted – of each Qt, t = T, ..., 1. Generally, one would start by running a regression to
estimate QT = E(Y | At−1 = at−1, Lt−1 = lt−1). The next step could involve performing

the TMLE update step with respect to the estimates of g
(0)
t (lt), t = 0, ..., T − 1. From

these updated values, we run another regression to estimate QT−1 = E{QT (lt−1) |
At−2 = at−2, Lt−2 = lt−2}, and so on. Thus we obtain our T n-vectors of initial estimates
QB

n = Qinit
n .

The “allowable moves” now include any covariate (or nonlinear term) addition to any
of the models that were used to make the predictions at any time point. For example,
in the application of Section 5 in the main document, there were both treatment and
censoring models at times 1 and 0. A move corresponded to the addition of a covariate
to any of these four models. One must restrict the covariate additions to only allow
treatment or censoring to be conditional on past covariates. Additional restrictions can
be made by the user.
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An important note is that when we update the Q
∗,(k)
n , we do so at each time point

separately. For example, in the simple two time point case, if we add a variable to the
model for g0, we obtain a new estimate of g0, and so we must update the values of Q

∗,(k)
1

and Q
∗,(k)
2 in order to check the mean error corresponding to the move. We do so by

directly applying lines 4 and 5 of Algorithm 1 to Q
∗,(k)
1,n and Q

∗,(k)
2,n . We do not regress the

new estimate of Q2 on the covariate history to get a new estimate of Q1. Instead, we

directly apply the update steps to the given Q
∗,(k)
1,n and Q

∗,(k)
2,n separately. This allows us

to guarantee that the error in Q
∗,(k)
n and g

(k)
n is consistently improving over k = 1, ..., K.

As pointed out by a reviewer, a concern arises when there are not many subjects
following each regime of interest, which is increasingly likely for larger numbers of time
points at which treatment may change or censoring may occur. This may result in poor
estimation of the initial Qt (step 3) and/or an ineffective update (step 4).

Web Appendix C: An intuitive understanding of how

C-TMLE prioritizes covariates

C-TMLE has been shown to reduce bias and variance and appropriately select con-
founders (Gruber and van der Laan, 2011; Porter et al., 2011; Schnitzer et al., 2016).
Intuitively, if a variable added to g is not associated with the treatment (beyond the
other variables already included in the model), the gn estimate will not improve, the

TMLE update step will not change the previously estimated Q
∗,(k)
n , and thus the cross-

validated loss-function-based error will not improve. Alternatively, if a variable added
to g is associated with the treatment but not the outcome, then while the gn estimate
will change, the new gn will not be better at explaining the residual bias in Qn. Such an
addition may also increase the variability of the TMLE (Brookhart et al., 2006; Schnitzer
et al., 2016) and thus will worsen the cross-validated penalized error. However, if an
added variable is associated with both treatment and outcome beyond the variables al-
ready included, its addition will modify the prediction of g, this new information will
be associated with the residual bias in Q

∗,(k)
n (i.e. ε will be non-zero in the TMLE up-

date), and in performing the TMLE update step, the cross-validated error will likely be

reduced for the new updated Q
∗,(k)
n (depending on the increase in the variance penalty).

The selection will therefore be more likely to select variables that are predictive of both
the treatment and outcome unless they greatly inflate the variance, and be less likely
to select variables that act conditionally like instruments. Note that by selecting co-
variates into the model for g that explain the residual error in Qn, we are fulfilling the
collaborative double robustness criterion.
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Web Appendix D: Data-generation and additional re-

sults for the simulation studies

Web Appendix D.1: Simple setting

We independently sampled data O = (L0, A0, L1, A1, Y ) in sequence as follows:

IV0 ∼ N(0, 1); R0 ∼ N(0, 1); W0 ∼ N(0, 1)

A0 ∼ Bern(p = expit(IV0 +W0))

IV1 ∼ N(0, 1); R1 ∼ N(1/2R0, 1); W1 ∼ N(1/2W0 + 1/2A0, 1)

A1 ∼ Bern(p = expit(A0 + IV0 + IV1 +W1))

Y ∼ Bern(p = expit(−2 + 1/2A0 + 1/2A1 −W0 −W1 + 1/2R0 + 1/2R1)).

Table 1 gives the frequency of selection of each covariate into the models for g0 and
g1. C-LTMLE successfully selected the variables W0 and W1 into the models for g0 and
g1 respectively, with high frequencies at n = 250 increasing to 100% by n = 1, 000. The
variable W0 was only selected into the model for g1 with a frequency of 20% because W0 is
not a confounder of the relationship between A1 and Y . Similarly, the instruments were
only selected between 10− 30% of the time (consistent with previous results (Schnitzer
et al., 2016)) and the pure risk factors were selected slightly more often.

Web Table 1: Frequency of selection, Qn only adjusting for treatment.

n = 250 n = 500 n = 1, 000
g1 g0 g1 g0 g1 g0

W0 0.2 0.7 0.2 0.9 0.2 1.0
IV0 0.3 0.3 0.2 0.3 0.1 0.3
R0 0.2 0.3 0.3 0.4 0.3 0.4

W1 0.6 - 0.9 - 1.0 -
IV1 0.3 - 0.3 - 0.3 -
R1 0.3 - 0.3 - 0.3 -

The data-generating function in R code is below.

datagen_xx<-function(n,seed=sample(1:100000,size=1)){

set.seed(seed)

In0=rnorm(n, 0, 1)

L0=rnorm(n, 0, 1)

R0=rnorm(n, 0, 1)

In1=rnorm(n, 0, 1)

#A0

p_A0=plogis(In0+L0)

A0=rbinom(n, 1, p_A0)
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#R1

R1=rnorm(n,0.5*R0,1)

#L1

m_L1=0.5*L0+0.5*A0

L1=rnorm(n,mean=m_L1,sd=1)

#A1

p_A1=plogis(A0+In1+In0+L1)

A1=rbinom(n,1,p_A1)

#Y

p_Y=plogis(-2+0.5*A0+0.5*A1-L0-L1+0.5*R0+0.5*R1)

Y=rbinom(n, 1, p_Y)

truth<- 0.2858638

#

X=data.frame(In0, L0, In1, R0, A0, R1, L1 ,A1,Y)

return(X)

}

Web Appendix D.2: Correlated covariates

We independently sampled data O = (L0, A0, L1, A1, Y ) in sequence as follows:

We generated a 40-dimensional multivariate normal random variable

L0 ∼MVN(0,Σ)

where Σ is a 40 × 40 variance-covariance matrix with diagonal entries equal to 1 and
off-diagonal entries equal to 0.2 and L0 will be considered a random row vector.

We then generated treatment at the first time point as

A0 ∼ Bern(p = expit(L0βA0))

with column vector

βA0 = (0.1, 0.1, 0.1, 0.1, 0.1,−0.1,−0.1,−0.1,−0.1,−0.1,

0.1, 0.1, 0.1, 0.1, 0.1,−0.1,−0.1,−0.1,−0.1,−0.1,

0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0, 0, 0, 0, 0, 0, 0, 0, 0, 0)t.

We then generated L1 = (W1, IV1, R1) as ten independent normal random variables.
Two true confounders W1 were each generated independently according to N(L0βW1 +
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0.5A0, 0.5
2) with column vector

βW1 = (0.2, 0.2, 0.2, 0.2, 0.2, 0.2, 0.2, 0.2, 0.2, 0.2,

0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05,

0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0, 0, 0, 0, 0, 0, 0, 0, 0, 0)t

and then bounded between -4 and 4. Two near-instruments IV1 were generated inde-
pendently according to N(L0βIV 1, 0.5

2) where

βIV 1 = (0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0.2, 0.2, 0.2, 0.2, 0.2, 0.2, 0.2, 0.2, 0.2, 0.2,

0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0, 0, 0, 0, 0, 0, 0, 0, 0, 0)t

and then bounded between -4 and 4. Three pure risk factors R1 were generated inde-
pendently according to N(L0βR1, 0.5

2) where

βR1 = (0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05,

0.2, 0.2, 0.2, 0.2, 0.2, 0.2, 0.2, 0.2, 0.2, 0.2,

0, 0, 0, 0, 0, 0, 0, 0, 0, 0)t

and then bounded between -5 and 5.

We generated treatment at the second time point as

A1 ∼ Bern(p = expit(LβA1))

where L = (L0, L1) and

βA1 = (0.1, 0.1, 0.1, 0.1, 0.1,−0.1,−0.1,−0.1,−0.1,−0.1,

0.1, 0.1, 0.1, 0.1, 0.1,−0.1,−0.1,−0.1,−0.1,−0.1,

0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0, 0, 0)t.

Finally, we generated the outcome

Y ∼ Bern(p = expit(LβY + 0.5A0 + 0.5A1 + 0.1A0L
(1)
0 − 0.05A1L

(2)
1 ))

where

βY = (0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1,

0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02,

0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1,

0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0.1, 0.1, 0.1, 0.1, 0.1, 0.02, 0.02, 0.1, 0.1, 0.1)t,
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L
(1)
0 represents the first element of L0, and L

(2)
1 represents the second element of L1.

The code is below. An intuitive explanation can be found in the main manuscript.

library(MASS)

logit<-function(x){

return(log(x/(1-x)))

}

expit<-function(x){

z<-1/(1+exp(-x))

return(z)

}

bound.ms<-function(x,min,max){

x[x>max]<-max

x[x<min]<-min

return(x)

}

datagen_corr<-function(n,seed=sample(1:100000,size=1)){

set.seed(seed)

#40 covariates

#covariance matrix

vcvmat0<-matrix(c(rep(c(1,rep(0.2,40)),39),1),nrow=40)

L0<-mvrnorm(n=n,mu=rep(0,40), Sigma=vcvmat0)

L0<-as.data.frame(bound.ms(L0,min=-3,max=3)) #bounding has no real impact

names(L0)<-paste("L0",1:40,sep="")

#10 confounders, 10 almost instruments, 10 pure risk factors,

#10 no effect on either

#A0

truecoefsA0<-c(rep(0.1,5),rep(-0.1,5),rep(0.1,5),rep(-0.1,5),

rep(0.00,20))

pA0<-expit( as.matrix(L0)%*%truecoefsA0)

A0<-rbinom(n=n,size=1,p=pA0)

truecoefsL1<- rbind(c(rep(0.2,10),rep(0.05,10),rep(0,20)),

c(rep(0,10),rep(0.2,10),rep(0,20)),

c(rep(0,10),rep(0.05,10),rep(0.2,10),rep(0,10))

) #the three categories have different means, but same 3 means for

#each subject

#5 confounders
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muW1<-as.matrix(L0)%*%truecoefsL1[1,]+0.5*A0

W1<-cbind(rnorm(n=n,mean=muW1,sd=0.5),rnorm(n=n,mean=muW1,sd=0.5),

rnorm(n=n,mean=muW1,sd=0.5),rnorm(n=n,mean=muW1,sd=0.5),

rnorm(n=n,mean=muW1,sd=0.5))

W1<-bound.ms(W1,min=-4,max=4)

#2 near-instruments

muIn1<-as.matrix(L0)%*%truecoefsL1[2,]

In1<-cbind(rnorm(n=n,mean=muIn1,sd=0.5),rnorm(n=n,mean=muIn1,sd=0.5))

In1<-bound.ms(In1,min=-4,max=4)

#3 pure risk factors

muR1<-as.matrix(L0)%*%truecoefsL1[3,]

R1<-cbind(rnorm(n=n,mean=muR1,sd=0.5),rnorm(n=n,mean=muR1,sd=0.5),

rnorm(n=n,mean=muR1,sd=0.5))

R1<-bound.ms(R1,min=-5,max=5)

L1<-as.data.frame(cbind(W1,In1,R1))

names(L1)<-paste("L1",1:10,sep="")

#A1

truecoefsA1<-c(rep(0.1,5),rep(-0.1,5),rep(0.1,5),rep(-0.1,5),rep(0.00,20),

rep(0.1,5),rep(0.1,2),rep(0,3))

pA1<-expit( as.matrix(cbind(L0,L1))%*%truecoefsA2)

A1<-rbinom(n=n,size=1,p=pA1)

#outcome 2 binary

truecoefsY<- c(rep(0.1,10),rep(0.02,10),rep(0.1,10),rep(0,10),rep(0.1,5),

rep(0.02,2),rep(0.1,3))

pY<-expit((as.matrix(cbind(L0,L1))%*%truecoefsY+0.5*A0+0.5*A1+

0.1*A0*L0[,1]-0.1*A1*L1[,2])/2)

Y<-rbinom(n=n,size=1,p=pY)

truth<-0.6220712

return(as.data.frame(cbind(L0,A0=A0,L1,A1=A1,Y=Y)))

}

Web Appendix D.3: Continuous outcome with potential practi-
cal positivity violations

We independently sampled data O = (L0, A0, L1, A1, Y ) in sequence as follows:

We generated five baseline covariates L0 = (W0, IV0, R0), including two confounders
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W0, two instruments IV0, and one pure risk factor R0 according to

W0 ∼MVN

{(
0.5
1

)
,

(
2 1
1 1

)}
,

IV0 ∼MVN

{(
1
1

)
,

(
2 0
0 1.9

)}
,

R0 ∼ N(1, 1.52).

The first treatment A0 was generated according to

A0 ∼ Bern

[
p = expit

{
0.2 +W

(1)
0 + 0.3IV

(1)
0 +W

(1)
0 IV

(1)
0

− 0.02(W
(2)
0 + IV

(2)
0 )2

}]
where a vector with a bracketed superscript refers to the corresponding element in the
vector, e.g. W0 = (W

(1)
0 ,W

(2)
0 ).

At the next time point, the bivariate covariate L1 was generated as

L1 ∼MVN

{(
(W

(1)
0 −W

(2)
0 )2 − cos(R0)− 0.5A0

0.5(cos(W
(2)
0 ) +W

(1)
0 R0) + 0.5A0

)
,

(
2 1
1 1

)}
.

The next treatment A1 was generated as

A1 ∼ Bern

[
p = expit

{
0.2 + 0.5A0 +W

(1)
1 + 0.3IV

(1)
0 +W

(1)
1 IV

(1)
0

− 0.02(W
(2)
1 + IV

(2)
0 )2

}]
.

Finally, the outcome is generated as

Y ∼ N(1 + A0 + A1 + 0.5L
(1)
0 + L

(2)
0 + 0.25L

(1)
1 + 0.5L

(2)
1 + 0.5(L

(1)
0 +R0)

2+

0.2(L
(1)
1 +R0)

2, 1).

datagen_cts <- function(n,seed=sample(1:100000,size=1)){

sigma <- matrix(c(2, 1, 1, 1), ncol=2)

W <- matrix(rnorm(n*2), ncol = nrow(sigma)) %*% chol(sigma)

W <- W + matrix(rep(c(.5, 1),each=n), byrow=FALSE, ncol=2)

I1 <- rnorm(n,mean=1, sd=2)

I2 <- rnorm(n,mean=1, sd=1.9)

P1 <- rnorm(n,mean=1, sd=1.5)
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L0 <- data.frame(W[,1],W[,2],I1,I2,P1,W[,1]^2,W[,2]^2,I1^2,I2^2,P1^2,

W[,1]*W[,2],W[,1]*I1,W[,1]*I2,W[,1]*P1,W[,2]*I1,W[,2]*I2,W[,2]*P1,I1*I2,

I1*P1,I2*P1)

colnames(L0) <- c("W11", "W12", "I11", "I12", "P11", "W11sq","W12sq",

"I11sq","I12sq","P11sq","W11W12","W11I11","W11I12","W11P11","W12I11",

"W12I12","W12P11","I11I12","I11P11","I12P11")

pA0<-plogis(0.2 + L0[,"W11"] + 0.3*L0[,"I11"] + L0[,"W11"]*L0[,"I11"]

-0.02*(L0[,"W12"] + L0[,"I12"])^2 )

A0 <- rbinom(n,size=1,p=pA0 )

W2 <- matrix(rnorm(n*2), ncol = nrow(sigma)) %*% chol(sigma)

meanW21<-((L0[,"W11"] - L0[,"W12"])^2 - cos(L0[,"P11"])) - 0.5*A0

meanW22<-(cos(L0[,"W12"]) + L0[,"W11"]*L0[,"P11"])/2 + 0.5*A0

W2 <- W2 + matrix(c(meanW21, meanW22), byrow=FALSE, ncol=2)

L1<-data.frame(W2[,1],W2[,2],W2[,1]^2,W2[,2]^2,W2[,1]*W2[,2],

W2[,1]*W[,1],W2[,1]*W[,2],W2[,1]*I1,W2[,1]*I2,W2[,1]*P1,

W2[,2]*W[,1],W2[,2]*W[,2],W2[,2]*I1,W2[,2]*I2,W2[,2]*P1)

colnames(L1)<-c("W21","W22","W21sq","W22sq","W21W22",

"W21W11","W21W12","W21I11","W21I12","W21P11",

"W22W11","W22W12","W22I11","W22I12","W22P11")

pA1<-plogis(0.2 + A0/2 + L1[,"W21"] + 0.3*L0[,"I11"] + L1[,"W21"]*L0[,"I11"]

-0.02*(L1[,"W22"] + L0[,"I12"])^2 )

A1 <- rbinom(n,size=1,p=pA1 )

Y <- 1 + A0 + A1 + 0.5*L0[,"W11"] + L0[,"W12"] + 0.25*L1[,"W21"] +

0.5*L1[,"W22"] + 0.5*(L0[,"W11"] + L0[,"P11"])^2 + 0.2*(L1[,"W21"] +

L0[,"P11"])^2 + rnorm(n)

return(data.frame(L0, A0, L1, A1,Y))

}

Web Appendix D.4: Box plots of simulation study with contin-
uous outcome with potential practical positivity violations
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Web Figure 1: Box plots of the estimates in the simulation study for each method,
corresponding to the results in Table 3 of the main document.
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Web Appendix E: Limitations of the Application

As in most observational studies, the credibility of the results presented here depends
on the validity of the sequential ignorability (no unmeasured baseline or time-dependent
confounders) assumption. As noted previously (Cossette et al., 2013), this dataset lacks
information on smoking. Over 10% of Canadian women smoke during pregnancy (Al-
Sahab et al., 2010), with possibly greater rates in Quebec (Takser et al., 2004), and as
smoking may increase the usage of asthma medications and the risk of poor pregnancy
outcomes, the exclusion of this variable may bias the analysis. Another concern involves
the veracity of the consistency assumption. While we have divided up the study timeline
into three time intervals (with endpoints corresponding with one year pre-pregnancy, the
beginning of first trimester, the beginning of second trimester, and the time of delivery),
subjects grouped under the same exposure categories may have, in reality, had different
true exposure to ICS that do not correspond with a coherent intervention strategy.
This may be due to different frequencies of usage, different doses of the medication, or
breaks in usage that were not recorded in the electronic health data. If these differences
in exposure (within exposure categories) were to have an effect on the outcome, the
counterfactuals would no longer be well-defined. In addition, changes in exposure within
the time-intervals caused by time-varying confounders at a finer scale than our chosen
discretization can also bias the analysis.
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