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1 Web Appendix
A Intuition about the counterfactual notation

We use an example to further illustrate the counterfactual outcomes and treatments: Suppose
that we have only three treatments, and study 1 investigates only treatments 1 and 2 (at
least one patient in study 1 used treatment 1 and the same for treatment 2, but none took
treatment 3). Subject 1 took treatment 1, and the observed outcome of this subject is 1.
Then the counterfactual outcome of subject 1 under the availability of treatment 1 is equal to
the outcome that we observed. Similarly, the counterfactual outcome under the availability
of treatment 2 is equal to the observed outcome. We thus write y,{d") = 1} = y;1{d?® =
1} = y11 = 1 because both treatment 1 and 2 are available in study 1, which is expressed as
dgl) = d§2) = 1. However, we do not know the value of the counterfactual outcome under the
availability of treatment 3, Y{d(3) = 1}, because treatment 3 is not available in this study
(i.e. dg?’) = 0). Additionally, the counterfactual treatment of subject 1 under the availability
of treatment 1 is identical to their observed treatment, denoted agll){d(l) =1} = aﬁ) = 1;
similarly, for treatment 2, a{?{d® =1} = a!2’ = 0. But we do not know A®{d® =1}, the
value of the counterfactual treatment of subject 1 had treatment 3 been available in study

1.

B Non-parametric structural equation model and proof of identifiability of 1™*)

Following the main manuscript, we define the observed data structure for an arbitrary
individual study as

O=[Y(1-0C),V,W,C,{A® R® DW®. L =1, ... 15}]. For convenience, we define A =
{A® k= 1,..,15}, and similarly for R and D. We also define A*) = {AD;V | ¢
(1,...,15) s.t. [ # k} and similarly for R and D. We use lower case letters with indices ij or

j to refer to observed realizations of individual patient variables and study-level variables,
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respectively. For ease of notation, we define the adjustment set for the estimation of the
variable importance of treatment k as X* = {V, W, A*")},

In order to define the model for the observed and counterfactual data, we follow an
approach related to Schnitzer et al. (2018), section 1.3. Define the jth’s study’s observed
data as Of = (O; ;1 € §;); we suppose these are identically and independently drawn
O°¢ ~ Py where the probability distribution F§ is a member of some model space M°. We
write the non-parametric structural equation model (NPSEM) as a conditional mixture with
distribution F, belonging to model space M.

In the NPSEM, we explicitly include two independent (possibly multivariate) study-level
components U = (U, Us,) (that may be thought of as unmeasured study-level variables
leading to random or study-specific effects and clustering) that allow for clustering of the
data within studies beyond the measured V. We write the data {O, U} probability density

function (pdf) as

J
I fon () o (usg) o (v | wy) fo(dy | vi,us) T {fW,R(Wij>rij | uj,v;) %
i=1 i€S;

fA(aij | uj7Vj7dj7Wijarij)fC<Cij | u2j,Vj7Wz'j,az’j)fY(yij | U1j,Vj,Wz'j7I'ij7aij,0ij)(1_c”)},

(1)

where J is the total number of studies and S; is the set of indices of subjects in study 7,
and Y has a degenerate value when C' = 1. In particular, we thought it reasonable that a
patient’s censoring status and outcome do not conditionally depend on treatment availability
beyond the exposure received (though this could be relaxed). We assumed that censoring
does not depend on resistance. Next, using standard definitions of conditional probability,

we divide the relevant parts of the density into the components specific to the medication k
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and other medications, denoted k*.
J
ke k k*
T T fus (i) fu Cuny) fr (v | wg) foon (S | uag, v} foo {dS” | uay, v, )

k* k*
11 [fW(Wij |y, v) fr(tiy | Wy, v, wig) face {als ) | wy, vy, d

iESj

,Wij,rg?*)} X
(2)
k k k k*
fA(k){agj) | ujvvwdg )7W1]’Tz(])’ Eg )}fC(CU | usj, v, Wij, &) X

Iy (yij | U1j7vjawij7rijaaijacij>1_cij

Here we have made the additional (again, possibly reasonable) assumption that the exposure
A®) is not affected by resistance nor to the availability of non-k medications beyond the
actual exposure to non-k£ medications.

We now write the counterfactual pdf under the imposition of treatment availability D*) =
1 and observed outcomes C' = 0. We define counterfactual variables A®{d*) = 1} and
Y{d® = 1} and their corresponding conditional pdfs, ff(ﬁi) and fl(,k), respectively. Under

this intervention, the counterfactual pdf is

J
T fon () s () fvr (v, | W) fpen {dV) | uay, v} 1T (fW(Wij | uy,v;) X
J=1

iGSj
k¥ k* k*
fr(ri; | ujavjuwij)fA(k*){az(‘j ) | uj,vj,d§ )’Wij’rz(j )}X (3)
k k k) (k*
P [l Hd® =1} [y, vy, wig, )2l ]

k k)
fﬁ(/)[yij{d(k) =1} | Uljvvj>wijarma§g )’ Z(] {d(k = 1}])

Under the counterfactual pdf for Y{d* = 1}, the counterfactual parameter of interest is
Y® =F <E [V{d® =1} | X®, RK =0, AB{q®) =1} = 1]
— E{Y | X® AW R® =0} | RW 0),

recalling that X®*) = {V, W, A*)} Under the assumptions defined in section 2.2 of the

main manuscript and the above pdfs, we rewrite our parameter of interest as:

YW =E(B[Y{d® =1} | X® R® =0, AW{d® =1} = 1]
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— B{Y | X® R® =0, A} | R® = )
=E(B[Y{d® =1} | X® R® =0, AW {q® =1} = 1,DP = 1]

— B{Y | X® R® =0,AM} | R®) =) by A3(a)
=E[E{Y | X" R® =0,A® =1, D" =1}

— B{Y | X® R® =0,4M} | R®) = 0] by Al
=E[E{Y | X® R® =0,4" =1} — {Y | X® R® =0,AW} | R® = 0]

(since A® =1 implies D® = 1)
=E[E{Y | X® R® =0,A® =1,C =0}

— B{Y | X® R® =0,4" C =0} | R® = 0] by A3(b)

Estimation of ¥*) by outcome modeling additionally requires that
E{Y|X® R® =0, A% C = 0} can be modeled by merging the data across studies where
treatment k is available. While we assumed that the form of the pdf for Y conditional on
U, is common across studies, it is not given that the pdf conditional on only observed data
is common. This sheds light on the potential difficulty of correctly modeling the outcome
probabilities Q%) and Q®**) in addition to the propensity score components that require

models to be fit where treatment £ is available and extrapolated to where k is not observed.

C' Proof of Equation (2)

QY = Priy{d® =1} =1 | X® RK =0 AW {g® =1} = 1]
=Prly{d® =1} =1|X® R® =0, D® =1,C=0,AW{d® =1} =1] by A3(a)
=Pr{y =1|X® R® =0 D® =1,C=0,4" =1} by Al
=Pr{Y =1|X® R® =0 C=0,4A% =1}

(since A® =1 implies D® = 1).
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D Decomposition of ggk)

g™ =pr{A®) = 1,0 =0 | X® R® =0}
=Pr{A® =1 D® =1 C=0|X® R® =0}
=Pr{A® = 1| D® =1, X® R® = 0}Pr{D® =1 | X® R® =0}x
PriC=0]A® =1, D® =1 X® RK =}
=Pr{A® =1|D® = 1, X® R® = 0} Pr{D® = 1|v;}Pr{C = 0|A® = 1,X® R®™ =0}
=g x g5 x g5™.
E  Proof of IPTW consistency for (%)
First note that without any independence assumptions between variables A (binary) and Y,
we have that
E{YI(A=1)}=EY |A=1)PA=1).

By the law of large numbers, under consistent estimation of the propensity score, the IPTW

estimator converges to the expectation

1{A® =1,C =0}
Pr{A® =1,C =0 |X® R® =0}

W —1.C—
. (E Y1{A® =1,C =0}

X (
Pr{A® =1,C =0 | X®, RK =0} |
(by the law of iterated expectations),

E|Y R® —

B R —

R = o) ,

P{A®W =1,C =0|X® R® =0}
Pr{A® =1,C =0 | X®, R® =0}

=B |EB{Y |A® =1,C =0, X%, R® =0}

R® = 0] :

(by the above identity and because the denominator term is a function of X*) and R(k)),
=E[E{Y ‘ AW =10 =0,X® RK = 0} ‘ R — 0],

()

with the last step shown in Section B.
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F  Details of TMLE Algorithms and Variance Estimation

F.1 TMLE Algorithms
Define Q% = Prly{d® = 1} =1 | X® R® = 0, A®{d® = 1} = 1] and g™
Pr{iA® = 1,0 =0 | X® R® = 0}. After estimating these components as discussed in

Section 3 in the main manuscript, we update Q by allowing it to vary according to a

ij,n

parametric submodel with respect to the inverse propensity score. This submodel, which is

parametrized by €™ is

logit [Q(Tk)*{em}] = logit{Q" (4)

The “size” of the update step (6(7—)) is selected such that the update minimizes the empirical

expectation of a logistic regression loss function

i Z @g)(%‘ 1) (ymlOg {an {" }} (1 —yi;)log {1 — Qg'; {e (T)}D .

j=1 iESjZTE;-C):O
This is accomplished by fitting an intercept-free logistic regression of Y on the covariate

AW /g7 with offset logit{Q™)} in the subset of subjects whose infections were not known

to be resistant to medication k, and with observed outcomes. We denote 61(17) as the estimate

of €™ where € is the estimated coefficient of the covariate in the regression. The estimate

Oka) 1STTMLEn—1/nk)Z Z ngn :

1€S;: 7’” )70

For the estimation of u®), the conditional probability of the outcome that we need to
model is QW¥) = Pr{y =1 | X® A® RF = 0, C = 0}. Since we only need to correct
for censoring, the propensity score is g#* = Pr{C =0 | X®) A®) R® = 0}, Following a
similar approach, first we conduct an intercept-free logistic regression of Y on the covariate
1/g"*) with offset logit{Q"*)} in the subset of subjects with an observed outcome. The coef-

ficient is denoted ™ and its estimate e{”. We then update Qw ., using logit [ i {en }] =

x
logzt{Q”n }—i—en“)/gZ . Then the estimate of p*) is ,ug”%“En =1/n® Z] Y QE;? :

i€S;: T,EJ)—O
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Finally, we get the estimate of the parameter of interest: w%&LE’n = T}I})“Em - MgEJ%/ILE,m

where 1/}%3/1LE ., is the substitution estimate of 1.

F.2  Variance Estimation for TMLE
Clustering by study is taken into consideration in the estimation of the variance. We assume
independence between studies but allow for the existence of clustering within studies, which
may include clustering of baseline covariates, treatment assignment mechanisms, and study-
specific effects by study. Ignoring clustering would cause bias in the estimation of the variance
of the TMLE, especially when the cluster sizes (i.e. sample sizes in each study) are large and
correlation between patients of the same study is high.

We estimate the variance of our estimator of ©/*) using the efficient influence curve method
(van der Laan and Rose, 2011). The influence curve IC® of the estimator is a function of

IC) and IC™R) | the influence curves of 7% and ) respectively. The influence curves are,

1HR® —o Ak —1 C =
g T
H{R® =0,0® =0
JOWk) — { P }{y _ Q(uk)} + QR — (k). (6)

By the Delta method (Oehlert, 1992), we have that IC*) = [C(F) — [CWF),
Let I C’i(f) denote the value of the influence curve of ¢)*) evaluated at random vector Xz(f)

for subjects j =1, ..., 31 with ¢ € §;. The estimator’s asymptotically linear form is given by

Vnk) {¢TMLEn - w(k Z Z ]Ci(f) + 0p(1).

zGS r(k)—O

where 0,,(1) is a term that converges in probability to zero as the number of studies increases.
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Since E{I CZKJI?)} = 0, the variance of the estimator is (Schnitzer et al., 2018)

J

k 1 k

{O-”EFX/[LE}2%VCLT WZ Z ICi(j)
j=1

. k
zESj:rgj ) =0

J
1 k k . k .
= GEp | 2 BUCY-ICNG #m)+ E{ICTY( = m)

J=1 i,mESj:rl(;):O
*)_g

and Tonj

where J is the total number of studies.
The influence curve estimating equation in this case is:
J
(k) _

> 2 G =0 (7)

J=1 iESj:T,E]]-C):O
where [ C’Z(Jk?)1 is the difference 1 C’Z(]T S) —1 C’Z(j“ s) of the empirical influence curves in equations (5)
and (6), evaluated at the estimated values of the g and () components at the realizations

(k)
1] °
The two TMLE update steps discussed above solve the efficient influence curve estimating

equation (7). This occurs because the logistic regression update step solves the logistic regres-

sion score equations. This is done separately for the two components Z}]=1 oI C’gk) =
iESj:r(@:O

ij
0, and ijl > I C’l(]“ ") =0, resulting in the solution to equation (7).

) k
ZESjZT',Ej ) =0

G Simulation Study

This simulation study aims to: 1) demonstrate the consistency and double robustness of
the estimator under increasingly complex settings, 2) investigate the appropriateness of the
variance estimation and the coverage of the Wald-type confidence intervals based on the
empirical influence curves, and 3) illustrate the potential importance of considering treatment

availability (transportability) in our setting.
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G.1 Methods

G.1.1 Data generation

We simulated data with structure and size similar to our real-life data. The sample size of
each generated dataset is 9000, comprising 30 studies (clusters) with 300 individuals in each
study. A total of three antimicrobial agents occur in the dataset but each study may only
have access to one, two, or all three. All R code for the simulation studies are available on
https://doi.org/10.5281/zenodo.1405199.

We generated three scenarios where Table 1 gives the full data generating mechanisms
for each. For each study j, we generated two continuous study-level covariates V' and U
the latter considered to be unobserved. Note that all subjects in a study (cluster) are
considered to have the same study-level variable value. The treatment availability D®)
for each treatment £ = 1,2,3 was generated by study, completely at random in the first
scenario and conditional on the realization of V' in the second and third scenarios. Note that
patients in the same study share the same access to treatments. For each patient ¢ in study
J, we then generated one individual level continuous covariate W conditional on the study-
level covariate V and an indicator of resistance to antimicrobial agents k = 1,2,3, R®
(generated completely at random). For each individual we independently generated three
binary indicators of antimicrobial agent use A% k = 1,2,3 conditional on the values of V,
W, and the corresponding R¥). Finally, we generated the binary outcomes, Y, conditional
on both study-level covariates V, the individual-level covariate W, and treatment A®)
in such a way that if resistance is present, the treatment is less effective. In the third
scenario, we included random effects, meaning that there were interactions between U and
each A® in the outcome data generating model so that the treatment effects varied by

study. Thus, the simulated data structure taking the individual as the unit of analysis is
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O = [V,UW,Y,{A® RK D®Y k = 1..3]. We denote D = {DM D@ DG} to be the

vector indicating treatment availability, and do similarly for A and R.

[Table 1 about here.]

G.1.2  Analysis

Our parameter of interest in the simulation study is:
W = BE{Y|X®, R =0, AV = 1}]RM = 0],

where XM = {V, W, A®) A®)Y This corresponds to the first component of the treatment
importance parameter of treatment 1, which is our focus for the purpose of the simulation
study. In order to find the true value of 7! we generated data as above, but with sample sizes
greater than 107, and forced all A equal to 1. Then we took the average of the generated
y;; within the subset of individuals whose infections were not resistant to medication 1.

To create the simulated observed data, 1000 random seeds were drawn and stored. Using
these seeds, 1000 datasets were generated from these seeds and the analyses conducted on the
datasets. For the analysis, we used logistic regressions to estimate ggﬂ) in the first scenario.
We took the proportion of D) =1 to be the estimate of géﬂ), since in this scenario, DM is
independently generated. In the second and third scenario, we modeled géﬂ) = PT{D(1)|V}
using a logistic regression. Since there was no censoring outcome involved in this simulation
study, we had géﬂ) = 1. Then the TMLE algorithm was applied to update the predicted
values of QY.

In order to verify the double robustness property of our proposed estimator, we varied
the model specifications used to estimate ¢(™) = gyl) . géﬂ) and Q. In the first scenario,
Qand ¢™ were misspecified as null models (the outcome regressed on the intercept

(1)

only). In the second and third scenario, the misspecification of g™ implied that gy ' was

also assigned a null model. In order to explore the performance of the proposed methods
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with smaller sample sizes, we also applied the methods to data with 10 studies with 300
subjects each and 30 studies with 150 subjects each, respectively.

The standard error of the TMLE was estimated using the influence curve as discussed in
Section F.2. For comparison, we also estimated the standard error using an influence curve
sandwich estimator that ignores clustering, given by the sample mean of the square of the
efficient influence curve. These two sandwich estimators were used to construct Wald-type
95% confidence intervals. The coverage rates (the percentage of times that the confidence
intervals contained the true value) for both approaches were computed. We varied the sample
sizes in order to observe changes in coverage rates under correct model specification.

Finally, we investigated the importance of considering transportability in the model fit-
ting and prediction. We fit a standard TMLE ignoring treatment availability by study.
We estimated Pr{y = 1 | X = XS), RM = 0,AM = 1} and the propensity score
Pr{A®) =1 | X = XZ(;),R(l) = 0} directly (without decomposition, meaning that we
did not model Pr{D™}). We made predictions on the set where 7(*) = 0. When treatment

availability is conditional on V' (second and third scenarios), we expect that this approach

will be biased.

G.2 Results
We found that the true value of our parameter of interest was 0.74 for the first two scenarios
and 0.72 for the third. In Table 2 we present the average estimate, Monte-Carlo standard
error (SE) and the SE estimated by the clustered and the non-clustered sandwich estimators
for each of the three scenarios under various specifications of the @) and g models. The first
scenario has only four specification combinations because the propensity score only has one
component gyl). The notation Qu is used to indicate a correctly specified outcome model

and gv denotes a correctly specified g model. Qx and gx respectively denote the incorrectly

specified versions. In the second and third scenarios, where treatment availability D®*) was

11
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dependent on study-level covariate V, we must also model géﬂ). Therefore, we have 8 different
model specifications. We denote the correct specifications of the g components as glv and g2v
respectively and the incorrect versions as glx and g2x. By the double robustness property,
the estimator should only be consistent when the model for Q™" is correctly specified or

when models for both ng) and géﬂ) are correctly specified.
[Table 2 about here.|

The results in Table 2 confirm that there was no estimation bias when either model for
QY or g™ = gyl) . ggl) was correctly specified, which verified the double robustness
property of our proposed estimator. In the last two scenarios, when the model for Q) was
misspecified, the bias caused by the misspecification of géﬂ) was less than that caused by the
misspecification of grl). Unsurprisingly, the mean estimate when all models were misspecified
diverged from the true value. At this sample size, the clustered sandwich estimator very
slightly underestimated the standard error (compared to the Monte Carlo standard error)
while the sandwich estimator that does not incorporate clustering greatly underestimated it.

Table 3 gives the results with 10 studies and 300 subjects in each study, while Table 4
gives the results with 30 studies and 150 subjects in each study. We again observe the double

robustness of the estimator. The small sample sizes resulted in higher standard errors.
[Table 3 about here.]
[Table 4 about here.]

Table 5 gives the coverage rates of the 95% Wald-type confidence intervals calculated
using the clustered and non-clustered sandwich estimators of the standard error for various
study and within-study sample sizes. The coverage of the confidence intervals based on the
non-clustered sandwich estimator was very low (14.6%-55.4%) in all scenarios and for all

sample sizes. In contrast, the clustered sandwich estimator performed much better for all
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sample sizes, with coverage increasing with the number of studies. With 10 studies, the
clustered sandwich estimator produced coverage between 85.7%-92.4%. With 30 studies,
we still see slight undercoverage for all within-study sample sizes (90.1%-92.7%)). With 60
studies, coverage was optimal in the first two simpler scenarios (94.5%-95.2%), though it still
remained slightly below the optimal rate in scenario 3 (92.1%-93.4%). In contrast, the non-
clustered sandwich estimator’s coverage decreased as the number of subjects within studiess
increased. Given that the clustered sandwich estimator is only valid for larger numbers of
studies, an investigator may prefer to use the clustered bootstrap (resampling studies) in

such a setting.
[Table 5 about here.]

Finally, we compare the estimates resulting from the TMLE with and without considering
treatment availability in Table 6. When treatment availability is not considered, the results
are biased in the last two scenarios where the treatment availability is dependent on study-

level covariates.

[Table 6 about here.]

2 Web Figure
1 Details of the data inclusion and exclusion process

[Figure 1 about here.|

3 Web Tables
1 Descriptive statistics of covariates and outcome for the pooled individual patient data.

[Table 7 about here.]

13
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2 Treatment importance, associated standard error and confidence interval for the 15
treatments without considering treatment availability.

[Table 8 about here.|

3 Comparison of main results (variable importance on the odds ratio scale) with
conditional odds ratios from a logistic regression, adjusted for confounders and including

all treatments as main terms in the same model.

[Table 9 about here.]
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3 Systematic reviews
(Akeakir, Oren-
stein and Johnston)

93 studies were
identifiable

Excluded:
26 studies contained the

{ 67 cohorts were
identifiable

same or overlapping
cohorts

-

Excluded: 36 cohorts with:

14 — No author response

8 — No longer have access to data
5 — Inadequate outcome data

2 — Refusals

2 — No response following initial contact

2 — No data on drug sensitivity testing

2 — Agreed to forward data-but data never sent

31 cohorts included
in this analysis

9290 MDR-TB pa-
tients analyzed

1 — Cohort with less than 25 patients

Excluded: patients with
XDR-TB;
Extra-pulmonary TB;
No treatment info

Figure 1: Data Collection.
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Table 1: The data generating mechanism of the three scenarios.

Variable Generating Mechanism (i.i.d)
1% V ~ N(mean = 0.3,sd = 0.3,n = 30)
U U ~ N(mean = 0.2V + 0.1, sd = 0.5,n = 30)
D) Scenario 1
Within the same study, generate a random number r=1,2, or 3.
Randomly select r treatments and set D*) = 1 for these treatments.
Scenario 2 & 3
DW ~ Bin{logit(p) = 1+ 2V,n = 30}
D@ ~ Bin{logit(p) = 0.5 + 1.5V, n = 30}
D) ~ Bin{logit(p) = 1.5 + 0.3V, n = 30}
Within the same study impose restriction, DM + D® 4+ D®) > .
For j=1,...,30
W W ~ N(mean = 0.1v;, sd = 0.1,n = 300)
R®) RY ~ Ber(p = 0.25,n = 300)
R® ~ Ber(p = 0.30,n = 300)
R®) ~ Ber(p = 0.25,n = 300)
AK) AW ~ Bin{logit(p) = —0.75 + 2.4v; + 1.8W — 0.1RW n = 300}
AP ~ Bin{logit(p) = —1 +v; + L.TW — 0.15R® n = 300}
A® ~ Bin{logit(p) = —1.5+ 1.7v; + W — 0.16R®)  n = 300}
Y Scenario 1 & 2

Y ~ Bin[logit(p) = —2 + 3.5v; + 0.3W — 0.1u; + 2.2AMW{1 — RW} +
0.12A{1 — R®} +0.056A®{1 — R®)} n = 300]

Scenario 3

Y ~ Binl[logit(p) = —2 + 3.5v; + 0.3W — 0.1u; + 2.2AMW{1 — RM} +
0.12AP{1 — R®} + 0.0540{1 — R®} 4+ 4.5AWy; + 4.1APy; +
4154y, n = 300]
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Table 2: Simulated estimation with different model specifications in each scenario (30 studies,
300 subjects in each study). In Model Specification, v indicates the corresponding model is
correctly specified and x indicates the model is misspecified.

Model Average Monte Carlo Average Average Non-
Specification Estimate SE Clustered SE Clustered SE
Scenario 1 True value: 0.74

Qu gu 0.74 0.035 0.033 0.010
Qu gx 0.74 0.035 0.033 0.008
Qr gv 0.74 0.040 0.038 0.011
Qx gx 0.80 0.033 0.031 0.009
Scenario 2 True value: 0.74

Qu glv g2v 0.74 0.035 0.035 0.010
Qu glx g2v 0.74 0.035 0.033 0.007
Qu glv g2x 0.74 0.034 0.033 0.008
Qv glx g2z 0.74 0.034 0.032 0.007
Qz glv g2v 0.74 0.035 0.036 0.010
Rz glv g2z 0.76 0.035 0.033 0.009
Qr glx g2v 0.80 0.027 0.028 0.007
Qr glx g2x 0.81 0.028 0.026 0.007
Scenario 3 True value: 0.72

Qu glv g2v 0.72 0.070 0.064 0.009
Qu glz g2v 0.72 0.070 0.059 0.007
Qu glv g2x 0.72 0.070 0.063 0.009
Qu glx g2z 0.72 0.070 0.061 0.007
Qr glv g2v 0.72 0.070 0.065 0.010
Qz glv g2z 0.73 0.067 0.063 0.009
Rz glx g2v 0.76 0.064 0.060 0.008

Qr gl g2v  0.77 0.064 0.060 0.008
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Table 3: Simulated estimation with different model specifications in each scenario (10 studies,
300 subjects in each study). In Model Specification, v indicates the corresponding model is
correctly specified and x indicates the model is misspecified.

Model Average Monte Carlo Average Average Non-
Specification Estimate SE Clustered SE Clustered SE
Scenario 1 True value: 0.74

Qu gu 0.74 0.061 0.053 0.017
Qu gx 0.74 0.061 0.053 0.015
Qr gv 0.74 0.070 0.058 0.018
Qx gx 0.80 0.059 0.050 0.015
Scenario 2 True value: 0.74

Qu glv g2v 0.74 0.061 0.055 0.016
Qu glx g2v 0.74 0.063 0.054 0.013
Qu glv g2x 0.74 0.059 0.053 0.015
Qv glx g2z 0.74 0.059 0.052 0.013
Qz glv g2v 0.74 0.064 0.063 0.017
Rz glv g2z 0.76 0.061 0.052 0.016
Qr glx g2v 0.79 0.054 0.050 0.013
Qr glx g2x 0.81 0.050 0.043 0.013
Scenario 3 True value: 0.72

Qu glv g2v 0.71 0.124 0.103 0.016
Qu glz g2v 0.71 0.123 0.098 0.013
Qu glv g2x 0.71 0.122 0.102 0.015
Qu glx g2z 0.71 0.122 0.100 0.013
Qx glv g2v 0.71 0.123 0.106 0.016
Qz glv g2z 0.73 0.119 0.102 0.015
Rz glx g2v 0.75 0.117 0.096 0.013

Qx glx g2x 0.76 0.115 0.096 0.013
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Table 4: Simulated estimation with different model specifications in each scenario (30 studies,
150 subjects in each study). In Model Specification, v indicates the corresponding model is
correctly specified and x indicates the model is misspecified.

Model Average Monte Carlo Average Average Non-
Specification Estimate SE Clustered SE Clustered SE
Scenario 1 True value: 0.74

Qu gu 0.74 0.036 0.034 0.014
Qu gx 0.74 0.036 0.034 0.012
Qr gv 0.74 0.041 0.039 0.015
Qx gx 0.79 0.034 0.032 0.012
Scenario 2 True value: 0.74

Qu glv g2v 0.74 0.049 0.045 0.014
Qu glx g2v 0.74 0.036 0.033 0.010
Qu glv g2x 0.74 0.036 0.034 0.012
Qv glx g2z 0.74 0.035 0.033 0.010
Qz glv g2v 0.74 0.036 0.037 0.014
Rz glv g2z 0.75 0.036 0.034 0.013
Qr glx g2v 0.79 0.029 0.029 0.011
Qr glx g2x 0.81 0.028 0.027 0.010
Scenario 3 True value: 0.72

Qu glv g2v 0.72 0.066 0.065 0.014
Qu glz g2v 0.72 0.066 0.060 0.011
Qu glv g2x 0.72 0.066 0.063 0.013
Qu glx g2z 0.72 0.067 0.061 0.011
Qr glv g2v 0.72 0.066 0.066 0.014
Qz glv g2z 0.73 0.064 0.064 0.013
Rz glx g2v 0.76 0.061 0.059 0.011

Qx glx g2x 0.77 0.060 0.060 0.011
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Table 5: Coverage rates with different sample sizes. “Cluster Coverage” denotes the coverage
given by the clustered sandwich estimator and “Non-Clustered Coverage” is the coverage
given by the sandwich estimator that ignores clustering. All of the models are correctly
specified in each scenario.

Cluster No. of Subjects Clustered Non-Clustered
Size in Each Cluster Coverage (%) Coverage (%)
Scenario 1

10 300 87.5 42.4
30 150 92.7 55.4
30 300 92.2 42.8
30 600 92.4 31.6
60 300 94.6 42.9
60 600 95.2 30.8
Scenario 2

10 300 92.4 41.4
30 150 92.3 53.6
30 300 92.1 39.0
30 600 92.1 27.8
60 300 95.0 39.7
60 600 94.5 28.8
Scenario 3

10 300 85.7 19.1
30 150 91.8 31.4
30 300 91.4 17.3
30 600 90.1 14.6
60 300 92.1 22.8

60 600 93.4 16.2
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Table 6: Simulation study results with & without considering treatment availability in @
and g models (30 clusters, 300 subjects in each cluster). “With TA” indicates the proposed
estimator that considers treatment availability and “Without TA” indicates the standard
TMLE applied to the subset of available studies. All of the models are correctly specified in

each scenario.

Model Average Monte Carlo Average Average Non-
Specification Estimate SE Clustered SE Clustered SE
Scenario 1 True value: 0.74

With TA 0.74 0.035 0.033 0.010

Without TA 0.74 0.042 0.041 0.016
Scenario 2 True value: 0.74

With TA 0.74 0.035 0.035 0.010

Without TA 0.76 0.036 0.035 0.012
Scenario 3 True value: 0.72

With TA 0.72 0.070 0.064 0.009

Without TA 0.73 0.068 0.078 0.012
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Table 7: Descriptive statistics of covariates and outcome for the pooled individual patient
data in the MDR-~TB application. “IQR: inter-quartile range.

Covariates Summary Missing N (%)
Year of Study Median 2004 NA

IQR® (2002,2004)
Age Median 38 28 (0.3)

QR (29,48)

Income Group® N (%) Lower middle 404(4.4) NA
Upper middle 3106 (33.4) NA

High 5780 (62.2) NA
Sex N(%) Male 2979 (32.1) 6 (0.06)
Female 6305 (67.9)
Positive HIV N (%) 1193 (12.8) 1369 (14.7)
Positive smear N (%) 5836 (62.8) 1439 (15.5)
Positive past TB N (%) 6489 (69.8) 524 (5.6)
Positive cavitation N (%) 6489 (69.8) 2521 (27.1)
Treatment success N (%) 4847 (52.2) 260 (2.8)
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Table 8: Treatment importance, associated standard error and confidence intervals for the
15 treatments without considering treatment availability in the MDR-TB application.

Treatment Estimate Standard Error 95% Confidence Interval
High-generation quinolones 0.073 0.099 (-0.121, 0.267)
Cycloserine 0.057 0.029 (0.000, 0.115)
Streptomycin 0.050 0.021 (0.009, 0.092)
Para-aminosalicylic acid 0.035 0.019 (-0.001, 0.072)
Ciprofloxacin 0.032 0.017 (-0.001, 0.066)
Ethionamide 0.029 0.013 (0.004, 0.055)
Amikacin 0.026 0.016 (-0.005, 0.057)
Ethambutol 0.023 0.021 (-0.018, 0.064)
Kanamycin 0.023 0.026 (-0.028, 0.074)
Ofloxacin 0.021 0.033 (-0.04, 0.085)
Prothionamide 0.004 0.194 (-0.376, 0.384)
Capreomycin 0.004 0.017 (-0.029, 0.036)
Group 5 level drugs -0.004 0.017 (-0.037, 0.029)
Pyrazinamide -0.004 0.016 (-0.037, 0.028)
Rifabutin -0.061 0.015 (-0.090, -0.033)
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Table 9: Comparison of main results (variable importance on the odds ratio scale) with
conditional odds ratios from a logistic regression, adjusted for confounders and including all
treatments as main terms in the same model. While parameters are not directly comparable,
we can compare scientific conclusions from both analyses. *: significant hypothesis test.

Treatment Main results 95% CI Regression 95%CI
Ethambutol 1.086 (0.985, 1.197) 0.361 (0.062, 2.091)
Amikacin 1.367 (0.943, 1.984) 1.552 (0.858, 2.807 )
Capreomycin 0.915 (0.673, 1.243) 0.644 (0.342, 1.211)
Ciprofloxacin 1.721% (1.092, 2.713) 2.087* (1.192, 3.652)
Cycloserine 1.251 (0.975, 1.605) 1.499 (0.230, 9.761)
Ethionamide 1.325%* (1.018, 1.726) 0.607 (0.250, 1.478)
Ofloxacin 1.111 (0.920, 1.342) 0.087* (0.014, 0.553)
Para-aminosalicylic  1.030 (0.901, 1.177) 2.737 (0.433, 17.297)
acid

Prothionamide 1.040 (0.353, 3.068) 0.406* (0.166, 0.991)
Rifabutin 1.103 (0.605, 2.001) 0.576 (0.281, 1.182)
Streptomycin 1.303* (1.043, 1.627) 0.664 (0.276, 1.602)
Pyrazinamide 0.978 (0.889, 1.074) 0.597 (0.032, 11.020)
Kanamycin 1.129 (0.998, 1.279) 17.781* (1.458, 216.876)
High-generation 1.351 (0.636, 2.883) 0.645 (0.359, 1.159)
quinolones

Group 5 level drugs 0.974 (0.724, 1.309) 1.156 (0.562, 2.381)




