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Abstract 

Muscle mass loss and hepatic encephalopathy (complex neuropsychiatric disorder) are serious complications of 

chronic liver disease (cirrhosis) which impact negatively on clinical outcome and quality of life and increase 

mortality. Liver disease leads to hyperammonemia and ammonia toxicity is believed to play a major role in the 

pathogenesis of hepatic encephalopathy. However, the effects of ammonia are not brain-specific and therefore may 

also affect other organs and tissues including muscle. The precise pathophysiological mechanisms underlying muscle 

wasting in chronic liver disease remains to be elucidated. In the present study, we characterized body composition as 

well as muscle protein synthesis in cirrhotic rats with hepatic encephalopathy using the 6-week bile duct ligation 

(BDL) model which recapitulates the main features of cirrhosis. Compared to sham-operated control animals, BDL 

rats display significant decreased gain in body weight, altered body composition, decreased gastrocnemius muscle 

mass and circumference as well as altered muscle morphology. Muscle protein synthesis was also significantly 

reduced in BDL rats compared to control animals. These findings demonstrate that the 6-week BDL experimental rat 

is a relevant model to study liver disease-induced muscle mass loss.  

 

Keywords: experimental cirrhosis, muscle mass loss, protein synthesis, ammonia, hepatic encephalopathy 
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Introduction 

Loss of muscle mass is the most common and clinically significant complication of chronic liver disease 

(cirrhosis). It is a major contributor to adverse clinical outcomes (both pre and post liver transplantation), including 

morbidity and mortality (Merli et al. 2002). In addition, muscle wasting leads to poor quality of life and increased 

susceptibility to infection (Metter et al. 2002; Pichard et al. 2004; Cosquéric et al. 2006; Millwala et al. 2007; 

2¶%ULHQ�DQG�:LOOLDPV�������0RQWDQR-Loza et al. 2012; Tandon et al. 2012). It has been suggested that liver disease-

induced muscle mass loss results from varying contributions including reduced protein synthesis, increased protein 

catabolism, and an impaired proliferation and differentiation of skeletal muscle progenitor satellite cells (Dasarathy 

et al. 2002). However, the precise pathophysiological mechanisms underlying the loss of muscle mass in cirrhosis 

remains to be elucidated.  

 

+HSDWLF�HQFHSKDORSDWK\��DQRWKHU�FRPSOLFDWLRQ�RI�OLYHU�GLVHDVH�ZKLFK�JUHDWO\�LPSDFWV�RQ�SDWLHQWV¶�TXDOLW\�RI�OLIH��

is characterized by a constellation of symptoms, including cognitive, psychiatric and motor disturbances (Cash et al. 

2010). Although the pathogenesis of hepatic encephalopathy is multifactorial including oxidative stress (Görg et al. 

2010; Bosoi et al. 2012), inflammation (Shawcross and Jalan 2005; Shawcross et al. 2011; Montoliu et al. 2009), lactate 

(Bosoi et al. 2014) and gut microbiota (Bajaj et al. 2008), ammonia is a key player as blood-derived ammonia rises to 

toxic levels in the brain (Butterworth 2002; Bosoi and Rose 2009). The toxicity of ammonia is a result of its direct 

effect on pH, membrane potential and metabolism which independently or collectively cause cell dysfunction (Lai and 

Cooper 1991; Bosoi and Rose 2009). As the effects of ammonia are not brain-specific (Lai and Cooper 1991; 

Norenberg 2003), it has been shown that elevated concentrations of ammonia can also affect other organs and tissues 

(Kubota et al. 2004; Jia et al. 2014; Rose 2014).  

The 6-week bile duct ligation (BDL) rat, a surgical model involving obstruction of the common bile duct, is a 

well-established experimental model which recapitulates the main features of cirrhosis including, liver failure, 

hyperammonemia, secondary biliary cirrhosis, ascites, jaundice, brain edema and hepatic encephalopathy 

(Butterworth et al. 2009; Bosoi et al. 2011; Bosoi et al. 2012). It has been previously suggested that impaired skeletal 

muscle protein synthesis is the primary reason for loss of muscle mass in rats with portacaval-systemic shunting 

(Dasarathy et al. 2011). However, muscle mass in the BDL rat has not been extensively evaluated. The present study 

aims to characterize body composition as well as muscle protein synthesis in the BDL rats with hepatic 

encephalopathy.  

 

Material and Methods 

Animal model 

Cirrhosis was induced in male Sprague-Dawley rats (200-225 g) (Charles River, St-Constant, QC) by BDL. The 

latter is created by obstruction of the common bile duct which reproduces the main features of human cirrhosis. 

Briefly and as previously described, rats were anaesthetized with isoflurane, and the common bile duct ligated and 

resected under a dissecting microscope. Sham-operated control rats, matched for weight, were similarly 

anaesthetized; a laparotomy was performed and the bile duct was isolated (Rose et al. 1999; Bosoi et al. 2011; Bosoi 
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et al. 2012). Rats were maintained under controlled conditions (22qC, 12 h: 12 h dark-light cycle) with free access to 

their food and water. Two experimental groups were tested; 1) BDL (n=5) and 2) Sham-operated control rats 

(SHAM) (n=6). Experiments were conducted following the guidelines of the Canadian Council on Animal Care and 

ZHUH�DSSURYHG�E\�WKH�$QLPDO�3URWHFWLRQ�&RPPLWWHH�RI�WKH�&HQWUH�GH�UHFKHUFKH�GX�&HQWUH�KRVSLWDOLHU�GH�O¶8QLYHUVLWp�

de Montréal (CRCHUM). 

 

Body weight and food intake 

Body weight was measured every day of the 6 week experimental protocol using an electronic scale. Food 

consumption was also monitored every day by the weight of the food.  

 

Body mass composition 

Body composition in terms of lean and fat mass was assessed in conscious rats (full body) by in vivo scanning 

and magnetic resonance imaging (EchoMRI 100® Body Composition Analyzer) 6 weeks after the surgeries, 

DFFRUGLQJ�WR�WKH�PDQXIDFWXUHU¶V�SURWRFRO��7KH�LQVWUXPHQW�IRU�FRPSRVLWLRQ�DQDO\VLV�FUHDWHV�FRQWUDVW�EHWZHHn soft 

tissues by taking advantage of the differences in relaxation times of the hydrogen proton spins in different 

environments. Radio pulses cause protons to spin and emit radio signals which are then received and analysed. The 

amplitude, duration, and spatial distribution of these signals are related to properties of the material scanned. The 

high contrast between fat, muscle tissue, and free water is further enhanced by application of define composed radio 

pulses sequences (Nixon et al. 2010). 

 

Gastrocnemius muscle mass, circumference and morphology 

At the end of the 6 weeks experimental protocol, rats were sacrificed and the gastrocnemius muscle was 

dissected and weighed. Muscle (gastrocnemius) mass and circumference were measured using an electronic scale 

and a scaled thread, respectively. Muscle samples were then fixed in 4% paraformaldehyde buffered with phosphate-

buffered saline, decalcified with 10% formic acid, and embedded in paraffin. Longitudinal histology sections were 

cut with a microtome, and stained with hematoxylin-eosin. Tissue sections were then visualized using microscope. 

 

Protein synthesis 

Protein synthesis was quantified as the fractional and absolute protein synthesis rates in the dissected and 

homogenized muscle and other organs including the brain (frontal cortex), heart, intestine, kidney and liver, using the 

modified phenylalanine tracer pulse method (Zhang et al. 2002; Dasarathy et al. 2011). In brief, rats were given a small 

dose (0.5 mg/100 gram body weight) of L-[ring-2H5]phenylalanine ip at t=0min, L-[1-13C]Phenylalanine ip at t=30 

min and L-[15N]Phenylalanine ip at t=60 min. At t=65min, the rats were killed and blood and tissue collected. The 

calculation of the fractional protein synthesis was done by using the enrichment in tissue protein samples of L-[ring-

2H5]phenylalanine, divided by the average enrichment in plasma (from area under the curve calculation of the curve, 

constructed from the three different phenylalanine isotopes). The enrichment of phenylalanine in plasma and tissue 

hydrolysates was measured by LC-MS/MS (Engelen et al. 2013; Luiking et al. 2015). 
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Ammonia 

Ammonia levels were measured in arterial plasma using a commercial kit (Sigma, MO, USA). Ammonia levels 

were assessed based on the reaction with D-ketoglutarate and reduced nicotinamide adenine dinucleotide phosphate in 

the presence of L-glutamate dehydrogenase. Oxidation rate of reduced nicotinamide adenine dinucleotide phosphate 

was recorded by the absorbance decrease at 340 nm. Ammonia concentration was calculated according to 

PDQXIDFWXUHU¶V�SURWRFRO� 

 

Statistical analysis 

Data are expressed as mean r standard error of the mean (SEM). Significance of difference was tested with 

unpaired t test or ANOVA followed by Bonferroni post-test using GraphPad Prism4 (La Jolla, CA, USA). 

Probability values of p<0.05 were considered statistically significant.  

 

Results 

Bile duct ligation-induced cirrhosis leads to decreased gain in body weight 

Body weight was significantly lower in BDL animals compared to SHAM from week 2 to the end of the 

experimental protocol (week 6) (Figure 1). At  6 weeks, BDL rats weighed 422.4 r 6.15 g compared to 509.7 r 

15.6 g for sham-operated animals (p<0.001). Over the 6 weeks, daily food intake was similar (non-significant) 

between the two groups (area under the curve 1018 g r 34 g and 1078r 21 g in BDL and SHAM animals, 

respectively). However, there was a significant difference at week 1 between the two groups (13.4 r 2.3 g vs 

17.6 r 0.5 g in BDL and SHAM animals, respectively; p< 0.01) (Figure 2) 

 

Bile duct ligation-induced cirrhosis provokes altered body composition 

Six weeks after surgery, BDL rats displayed a significant decrease in lean (311.2 r 12.1 g vs 376.5 r 11.9 g; 

t(9)=3.82, p<0.001) and fat (33.9 r 8.1 g vs 89.3 r 9.7 g; t(9)=10.15, p<0.001) mass compared with SHAM animals 

(Figure 3A and 3B), as measured by magnetic resonance.  

 

Bile duct ligation-induced cirrhosis leads to decreased gastrocnemius muscle mass and circumference as well as 

altered muscle morphology 

Compared with control rats, BDL animals had decreased gastrocnemius mass (1.92 r 0.05 g vs 2.85 r 0.10 g; 

t(9)=7.60, p<0.001) and smaller gastrocnemius circumference (4.7 r 0.2 cm vs 5.9 r 0.1 cm; t(9)=5.80, p<0.001) 

(Figure 4A and 4B). A strong correlation was observed between lean and muscle mass in both BDL and SHAM rats 

(r=0.8889; p=0.0003) (Figure 4C). Gastrocnemius muscle morphology was analyzed by histological analysis of 

muscular tissues in SHAM and BDL animals at the end of the 6 week experimental protocol. Hematoxylin-eosin 

staining revealed disorganized fibres in BDL muscles (Figure 4D).  

 

Bile duct ligation-induced cirrhosis reduces muscle protein synthesis 
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Muscle protein synthesis, 6 weeks after surgery, was significantly reduced in BDL rats compared to SHAM 

animals (0.32 r 0.02 %/h and 0.17 r 0.07 %/h, respectively; t(10)=1.81, p<0.05), as evidenced by decreased 

fractional synthesis rate, whereas protein synthesis in other organs including the brain, heart, intestine, kidney, liver 

and lung was unaltered (Table 1). 

 

 

Bile duct ligation-induced cirrhosis increases ammonia levels 

Arterial ammonia significantly increased in BDL rats (129.0 ± 14.8 µM vs 42.1 ± 8.2 µM respectively; 

t(9)=5.38, p<0.001) (Figure 5).  

 

Discussion 

Results of the present study demonstrate that BDL (6 week model) is associated with significant alteration in 

body composition as evidenced by decreased lean and fat mass, reduced gastrocnemius muscle mass and 

circumference as well as altered muscle morphology. The strong correlation observed between gastrocnemius mass 

(weight) and overall lean mass (assessed by MRI) indicates that gastrocnemius is representative of muscle body 

composition. Interestingly, our results also indicate a significant decrease in fat mass in BDL compared to SHAM 

rats. This reduction could be a result of fat mass been used as an energy source in order to maintain muscle mass 

during liver disease. The mechanisms responsible for fat mass decrease in experimental cirrhosis remain to be 

elucidated.  

 

We found altered muscle morphology in BDL compared to SHAM rats which is most likely due to collapse of a 

smaller muscle. The mechanisms responsible for this alteration remain elusive. In addition to significant changes in 

muscle morphology, our results also revealed muscle protein synthesis is significantly decreased in BDL animals 

compared to SHAM. Impaired muscle protein synthesis may represent a major cause for muscle mass loss in 

experimental cirrhosis. Interestingly, alteration in protein synthesis was specific to the muscle as the protein 

synthesis rate was unchanged in the brain, heart, intestine, kidney, liver and lung between the two experimental 

groups. We speculate that ammonia may exert a deleterious effect on the muscle and contribute to its dysfunction by 

altering protein synthesis. This is supported with studies demonstrating hyperammonemia induced by portacaval-

systemic shunting is associated with reduced muscle mass synthesis (Dasarathy et al. 2011; Davuluri et al. 2016).  

 

Our study also indicate that BDL-induced cirrhosis leads to decreased gain in body weight  compared to sham-

operated animals, whereas food intake remains similar from week 2 to week 6. The statistical difference in food 

intake observed at week 1 (a consistent observation found with our extensive experience with this model) (Rose et al. 

1999; Bosoi et al. 2011; Bosoi et al. 2012) may be explained by the invasive nature of the BDL surgery along with 

the recovery phase required for such a surgical procedure. This suggests that nutritional problems occur during the 

setting of cirrhosis which may include, among other mechanisms, metabolic alterations, malabsorption of nutrients, 

increased intestinal protein losses, disturbance of substrate utilization and increased energy expenditure (Bémeur et 
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al. 2010). Specifically, hypermetabolic state and increased energy-protein expenditure and requirements may occur 

in chronic liver disease. Indeed, the hyperdynamic circulation in cirrhosis leads to systemic vasodilation and an 

expanded intravascular blood volume which consequently leads to a greater use of macro- and micro-nutrients; hence 

causing a high energy expenditure and demand. Also, the inflammatory state associated with the inability of the liver 

to adequately clear activated proinflammatory mediators may result in hypermetabolism (Tilg et al. 1992; von Baehr 

et al. 2000). Regarding malabsorption, the cirrhotic liver may inadequately synthesize proteins and has diminished 

storage capacity and an impaired enterohepatic cycle. In addition, portal hypertensive enteropathy may lead to 

impaired absorption of essential nutrients. Moreover, pancreatic insufficiency, cholestasis, and drug-related diarrhea 

may all contribute to malabsorption in liver disease. Loss of proteins may result from complications of cirrhosis or 

from iatrogenic interventions including the use of diuretics for the treatment of ascites and fluid retention as well as 

the use of lactulose for the treatment of hepatic encephalopathy. Blood loss from oesophageal and gastric varices and 

from the intestinal lumen due to ulcers or portal enteropathy may also lead to increased protein loss in cirrhosis.  

 

Several factors have been implicated in the pathogenesis of hepatic encephalopathy, including ammonia (Cooper 

and Plum 1987; Felipo and Butterworth 2002), oxidative stress (Görg et al. 2010; Bosoi et al. 2012), inflammation 

(Shawcross and Jalan 2005; Montoliu et al. 2009), lactate (Bosoi et al. 2014) and gut microbiota (Bajaj et al. 2008). 

Ammonia is considered the major factor in the pathogenesis of hepatic encephalopathy as hyperammonemia leads to 

toxic levels of ammonia in the brain (Cooper and Plum 1987; Felipo and Butterworth 2002). During liver disease, 

extra-hepatic ammonia metabolism is altered and, with muscle expressing an ammonia-lowering enzyme, glutamine 

synthetase, muscle plays a critical compensatory role in attenuating hyperammonemia. However muscle wasting can 

exasperate the degree of hyperammonemia and may play a pivotal role in the risk of developing hepatic 

encephalopathy (Qiu et al. 2012; Montano-Loza et al. 2014; Rombouts et al., 2016). The underlying causes of 

muscle wasting in liver disease remain undetermined. However, paradoxically, it has been demonstrated that high 

ammonia concentrations leads to muscle dysfunction and reduction in protein synthesis (Qiu et al. 2012; Qiu et al. 

2013). An understanding of ammonia and its removing vs pathophysiological pathways is totally unclear and 

remains to be thoroughly investigated.  

 

We conclude that the 6-week BDL experimental model is an excellent model to study liver disease-induced 

muscle mass loss. Demonstration of similar alterations in human cirrhosis will potentially enhance our understanding 

of the mechanisms of muscle mass loss in liver disease. Importantly, understanding these mechanisms will allow the 

identification of therapeutic targets to prevent muscle mass loss and ameliorate the quality of life and the prognostic 

of patient suffering from liver disease. 
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Figures Legends 

Table 1 Protein synthesis of organs in rats with bile-duct ligation (BDL) compared to 

sham-operated controls. 

*p<0.05, significantly different from SHAM. 

 

Fig 1 Growth curve of rats with bile-duct ligation (BDL) compared to sham-operated 

controls. 

Mean of daily weights were averaged and expressed as weekly weight. The two way ANOVA 

indicated an effect of time/week (F5, 54 =231.94, p<0.001), an effect of surgery (F1, 54=85.93, 

p<0.001) and interaction (F1, 54=2.47, p=0.04). **p<0.01, *** p<0.001, significantly different 

from SHAM. 

 

Fig 2 Food intake of rats with bile-duct ligation (BDL) compared to sham-operated 

controls. 

Mean of daily food intake were averaged and expressed as weekly intake.  The two way 

ANOVA indicated an effect of time/week (F5, 54=98.21, p<0.001) and an effect of surgery (F1, 

54=11.22, p<0.001), with no interaction (F1, 54=1.47, p=0.21).** p<0.01, significantly different 

from SHAM. 

 

Fig 3 Lean mass (A) and fat mass (B) in rats with bile-duct ligation (BDL) compared to 

sham-operated controls. 

*** p<0.001, significantly different from SHAM. 

 

Fig 4 Gastrocnemius muscle mass (A), muscle circumference (B), correlation between lean 

mass and gastrocnemius mass (C) and muscle histology of rats with bile-duct ligation (BDL) 

compared to sham-operated controls. 

*** p<0.001, significantly different from SHAM. Bar= 10 µm 

 

Fig 5 Serum ammonia in rats with bile-duct ligation (BDL) compared to sham-operated 

controls. 

* p<0.05, significantly different from SHAM. 
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