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Summary

In this thesis, we study the extreme values of certain log-correlated random fields that
are Gaussian (the scale-inhomogeneous Gaussian free field and the time-inhomogeneous
branching random walk) or approximatively Gaussian (the log-modulus of the Riemann
zeta function on the critical line and a randomized toy model of it), as well as asymptotic
properties of various estimators in statistics. Apart from the introduction and conclusion,
the thesis is divided in three parts, each containing three articles.

The first part contains three articles on log-correlated Gaussian fields. The first article
shows the first order convergence of the maximum and the number of high points for
the scale-inhomogeneous Gaussian free field on its full domain. The second article uses
the results from the first article to show that the limiting law of the Gibbs measure is
a Ruelle probability cascade with a certain number of effective scales (a tree of Poisson-
Dirichlet processes). The third article shows the tightness of the recentered maximum for
the time-inhomogeneous branching random walk.

The second part contains three articles on the Riemann zeta function. The first article
shows that, at low temperature, the limiting law of the Gibbs measure for a randomized
toy model of the log-modulus of zeta on the critical line is a Poisson-Dirichlet process. The
second article deals with the open problem of the tightness of the recentered maximum for
this toy model on an interval of length O(1). We simplify the problem by showing that
the continuous maximum is at the order of constant away from a discrete maximum over
O(log T

√
log log T ) points. The third article shows the first order of convergence of the

maximum and the free energy for the log-modulus of the Riemann zeta function on short
intervals of length O(logθ T ), θ > −1, on the critical line.
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The third part contains three articles treating various topics in asymptotic statistics.
The first article shows the complete monotonicity of multinomial probabilities and opens
the door to the study of the asymptotic properties of Bernstein estimators on the simplex.
The second article shows a uniform law of large numbers for sums containing terms that
“blow up”. The third article finds the limiting law of a modified score statistic when we
test a given member of the exponential power distribution family against the family of
asymmetric power distributions.

The thesis contains nine articles of which seven are already published in peer-reviewed
journals. All the information is gathered on my personal website :

https://sites.google.com/site/fouimet26/research.

Keywords : probability, statistics, extreme value theory, log-correlated fields, Gaussian
fields, Gaussian free field, branching random walk, inhomogeneous environment, Riemann
zeta function, Gibbs measure, Ghirlanda-Guerra identities, ultrametricity, large devia-
tions, asymptotic statistics, complete monotonicity, multinomial probabilities, Bernstein
estimators, uniform law of large numbers, Laplace distribution, goodness-of-fit tests.
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Sommaire

Dans cette thèse, nous étudions les valeurs extrêmes de certains champs aléatoires
log-corrélés qui sont gaussiens (le champ libre gaussien inhomogène et la marche aléatoire
branchante inhomogène) ou approximativement gaussiens (le log-module de la fonction
zêta de Riemann sur la ligne critique et un modèle-jouet randomisé de celui-ci), ainsi que
les propriétés asymptotiques de divers estimateurs en statistique. Outre l’introduction et
la conclusion, la thèse est divisée en trois parties, chacune contenant trois articles.

La première partie contient trois articles sur les champs gaussiens log-corrélés. Le
premier article montre le premier ordre de convergence du maximum et du nombre de
hauts points pour le champ libre gaussien inhomogène sur tout son domaine. Le deuxième
article utilise les résultats du premier article pour montrer que la loi limite de la mesure
de Gibbs est une cascade de Ruelle avec un certain nombre d’échelles effectives (un arbre
de processus de Poisson-Dirichlet). Le troisième article montre la tension du maximum
recentré pour la marche aléatoire branchante inhomogène.

La deuxième partie contient trois articles sur la fonction zêta de Riemann. Le pre-
mier article montre que, à basse température, la loi limite de la mesure de Gibbs d’un
modèle-jouet randomisé du log-module de zêta sur la ligne critique est un processus de
Poisson-Dirichlet. Le deuxième article concerne le problème ouvert de la tension du maxi-
mum recentré pour ce modèle-jouet sur un intervalle de longueur O(1). Nous simplifions le
problème en montrant que le maximum continue se situe à une constante près d’un maxi-
mum discret sur O(log T

√
log log T ) points. Le troisième article montre le premier ordre

de convergence du maximum et de l’énergie libre pour le log-module de la fonction zêta de
Riemann sur des intervalles courts de longueur O(logθ T ), θ > −1, de la ligne critique.
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La troisième partie contient trois articles traitant de sujets divers en statistique asymp-
totique. Le premier article montre la monotonicité complète des probabilités multinomiales
et ouvre la porte sur l’étude des propriétés asymptotiques des estimateurs de Bernstein
sur le simplexe. Le deuxième article prouve une loi uniforme des grands nombres pour les
sommes contenant des termes qui « explosent ». Le troisième article trouve la loi limite
d’une statistique de score modifiée lorsqu’on teste un membre donné de la famille des lois
exponentielles de puissances contre la famille des lois de puissances asymétriques.

La thèse contient neuf articles dont sept sont déjà publiés dans des journaux évalués
par les pairs. Toute l’information se trouve sur mon site web personnel :

https://sites.google.com/site/fouimet26/research.

Mots clés : probabilité, statistique, théorie des valeurs extrêmes, champs log-corrélés,
champs gaussiens, champ libre gaussien, marche aléatoire branchante, environnements in-
homogènes, fonction zêta de Riemann, mesure de Gibbs, identités de Ghirlanda-Guerra,
ultramétricité, grandes déviations, statistique asymptotique, monotonicité complète, pro-
babilités multinomiales, estimateurs de Bernstein, loi uniforme des grands nombres, loi de
Laplace, tests d’ajustements.
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0.1. Introduction

Over the past three decades (over the last 15 years in particular), there has been a
push by physicists and mathematicians to extend certain universality results from classi-
cal extreme value theory to correlated random fields. On the physics side, the motivation
stems mainly, on the one hand, from statistical mechanics where physicists/mathemati-
cians are interested in understanding the behavior of spin glasses (see e.g. Mézard et al.
(1987); Bovier (2006); Talagrand (2011a,b); Panchenko (2013b); Bovier (2017) and ref-
erences therein), and on the other hand, from theoretical physics where they want to
understand the behavior of subatomic particles in the framework of quantum field theory.
In the latter case, the Gaussian free field (GFF) has been an important toy model to
describe the properties of Liouville quantum gravity (LQG) measures and more gener-
ally Gaussian multiplicative chaos (GMC) measures (see e.g. Robert and Vargas (2010);
Duplantier and Sheffield (2011); Rhodes and Vargas (2011); Barral et al. (2013); Garban
(2013); Chen and Jakobson (2014); Duplantier et al. (2014a,b); Rhodes and Vargas (2014);
Shamov (2016); Berestycki (2016); Garban et al. (2016); David et al. (2016); Berestycki
(2017); Rhodes and Vargas (2017); Junnila and Saksman (2017), and references therein),
the study of which goes back to Kahane’s seminal work : Kahane (1985, 1986).

The appeal for mathematicians is often one of beauty, where they aim to generalize
and extend as much as possible the properties and phenomena they observe for very simple
models to models with more complex correlation structures. The subclass of log-correlated
random fields (and log-correlated Gaussian fields especially) has emerged as particularly
appropriate in the pursuit of this goal. As we will see in this thesis, the properties that
are characteristic of this class of models appear far beyond the obvious examples. For
instance, in Part 2, we will see that extreme values of the log-modulus of the Riemann
zeta function on the critical line (and random toy models of it) behave approximately,
quite surprisingly, as the extreme values of log-correlated Gaussian fields.

Before going further, here is how the thesis is organized.
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0.2. Organization

The thesis is divided into five parts : the Introduction, the three main parts (Part 1,
Part 2 and Part 3), and the Conclusion. Each of the main parts contains three articles
(seven are published). Part 1 and Part 2 prove certain asymptotic results for the ex-
treme values of models in the class of log-correlated random fields, whereas Part 3 collects
miscellaneous results of interest in the theory of asymptotic statistics. More specifically,

— Part 1 (called Log-correlated Gaussian fields) deals with the extreme values of the
scale-inhomogeneous Gaussian free field (Article 1 and Article 2) and the time-
inhomogeneous branching random walk (Article 3);

— Part 2 (called The Riemann zeta function) deals with the extreme values of a
random toy model of the log-modulus of the Riemann zeta function on the critical
line (Article 4 and Article 5) and the Riemann zeta function itself (Article 6).

— Part 3 (called Asymptotic statistics) starts by proving the complete monotonicity
of multinomial probabilities (Article 7) and shows how it can be used to study the
asymptotic properties of Bernstein estimators on the simplex. In Article 8, a new
uniform law of large numbers for summands that blow up is proved, which is then
used to prove the convergence in law of a modified score statistic in Article 9, when
testing a given exponential power distribution against asymmetric alternatives.

For the remainder of the introduction,
— We motivate Part 1 and Part 2 in Section 0.3 by :
• recalling the classical version of extreme value theory (Section 0.3.1),
• listing various questions of interest for log-correlated random fields in the modern
extreme value theory (Section 0.3.2),
• reviewing the literature to answer the questions of Section 0.3.2 for a selection
of 12 log-correlated models (Section 0.3.3);

— We summarize the new results and ideas of the thesis in Section 0.4.

In the Conclusion, the reader can find a list of conjectures (Section 10.1), a list of open
problems (Section 10.2), and a small errata for the published articles (Section 10.3). In
the Appendix, there are two useful lemmas (Section 11.1), simulation codes (Section 11.2),
and permissions from the coauthors and the journal editors (Section 11.3).
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0.3. Motivation for Part 1 and Part 2

0.3.1. Classical extreme value theory

Let {Xi}i∈N be a sequence of i.i.d. random variables. We are interested in the cumu-
lative distribution function (c.d.f.) of the maximum

MN $ max
1≤i≤N

Xi, (0.3.1)

as N →∞. Since

lim
N→∞

P(MN ≤ x) = lim
N→∞

(P(X1 ≤ x))N ∈ {0, 1} (0.3.2)

for all x ∈ R, a more suitable question (analogous to the central limit theorem) is to ask
if there exist sequences {aN}N∈N and {bN}N∈N (with bN > 0) such that

MN − aN
bN

has a non-trivial limiting c.d.f., denoted by F . (0.3.3)

The existence of such sequences is not guaranteed, but if they exist, then only three types
of limiting distributions are possible.

Theorem 0.3.1 (Fisher-Tippett-Gnedenko theorem, Proposition 0.3 in Resnick (2008)).
If (0.3.3) is satisfied, then F belongs to one and only one of the following classes of

distributions (for some α > 0) :

— Gumbel distribution : F (x) = Λ(x) $ exp(−e−x), where x ∈ R.

— Fréchet distribution : F (x) = Φα(x) $
 0, if x < 0,

exp(−x−α), if x ≥ 0.

— Weibull distribution : F (x) = Ψα(x) $
 exp(−(−x)α), if x < 0,

1, if x ≥ 0.

If F ∈ {Λ,Φα,Ψα} for a certain α > 0 and (0.3.3) is satisfied, we say that P(X1 ≤ · )
belongs to the domain of attraction of F . The parameter α will be determined by the tail
behavior of P(X1 ≤ · ). We refer the interested reader to Chapter 1 of Resnick (2008) for
characterizations of the sequences {aN}N∈N and {bN}N∈N when P(X1 ≤ · ) belongs to each
domain of attraction.
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0.3.2. Questions of interest

When we introduce correlations between the variables Xi, the problem of the conver-
gence in law becomes much less obvious to solve. Still, in some cases where the correlation
structure is not too complicated, we can often answer simpler questions. In Part 1 and
Part 2 of this thesis, we are particularly interested in log-correlated random fields, mean-
ing that the correlations between the variables of the model decrease logarithmically with
respect to a given notion of distance between the indices of the variables. Below, we list
some of the questions that are of interest for log-correlated random fields.

Remark 0.3.1. Since this thesis is concerned with log-correlated Gaussian fields (Part 1)

and log-correlated random fields that are approximately Gaussian (Part 2), the Xi’s that

we consider below are at least close to be (centered) Gaussian random variables and their

variance is proportional to logN (the log-number of points in the model), so that bN ∼ 1
and the search described in Section 0.3.1 is only about {aN}N∈N.

Here are the questions of interest :
(Q1): Does there exists a sequence {vN}N∈N such that

MN

vN

P−→ γ?, as N →∞, (0.3.4)

for some constant γ? ? This is called the first order of the maximum.

(Q2): If (Q1) is answered in the affirmative, then for every γ ∈ (0, γ?), does

log |{i ∈ {1, . . . , N} : Xi ≥ γvN}|
logN

P−→ E(γ), as N →∞, (0.3.5)

for some constant E(γ) ? This is called the first order of the log-number of γ-high

points.

(Q3): If (Q1) is answered in the affirmative, is there a sequence {wN}N∈N such that

MN − γ?vN
wN

P−→ λ?, as N →∞, (0.3.6)

for some constant λ? ? This is called the second order of the maximum.
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(Q4): If (Q3) is answered in the affirmative,

is the sequence
{
MN − (γ?vN + λ?wN)

}
N∈N

tight ? (0.3.7)

(Q5): If (Q4) is answered in the affirmative, then we can ask the question about the
convergence in law. Does

P
(
MN − (γ?vN + λ?wN) ≤ ·

) law−→ F ( · ), as N →∞, (0.3.8)

for some non-trivial c.d.f. F ?

Around the same level of analysis, another related question of importance can be
formulated in terms of the extremal process :

ΞN(A) $
N∑
i=1

δXi−(γ?vN+λ?wN )(A), A ∈ B(R), (0.3.9)

where δ denotes the Dirac measure and B(R) denotes the Borel σ-algebra on R. The
question is : Does the sequence of random measures {ΞN}N∈N converges weakly to
a non-trivial point process (random counting measure) on R ?

(Q6): A dual question to (Q1) and (Q2) is the following. Can we determine the limit (in
probability) of the free energy (also called the log-partition function)

fN(β) $ 1
logN log

∑
1≤i≤N

eβXi ? (0.3.10)

If we bound every term in the summation by the maximal term for the upper bound
and we only keep the maximal term for the lower bound, we clearly have

β
max1≤i≤N Xi

logN ≤ fN(β) ≤ 1 + β
max1≤i≤N Xi

logN , (0.3.11)

so the reader can see an explicit link between (Q1) and (Q6). For certain models,
the limiting free energy can be expressed as the Fenchel-Legendre transform of
−E(γ), so it is also linked to (Q2). This is because, for N large and vN = logN ,

fN(β) ≈ 1
logN log

(∫ ∞
−∞

eβγvNdπ(γ)
)
≈ max

γ∈[0,γ?]
{βγ + E(γ)}, (0.3.12)

7



where π(γ) $ #{i ∈ {1, . . . , N} : Xi ≤ γvN}. The last approximation follows from
(0.3.5) and the fact that only the highest values in the integral in (0.3.12) have
non-negligible weight under dγ. This is referred to as Laplace’s method.

One of the goals in studying the limit of fN(β), and perturbed versions of it (where
variance perturbations are added to the model), is finding the limiting law of the
overlaps (also called correlation coefficients)

ρ(i, j) $ Corr(Xi, Xj) $
Cov(Xi, Xj)√

Var(Xi)
√
Var(Xj)

(0.3.13)

under the product of random Gibbs measures

Gβ,N({i}) $ eβXi∑
1≤i≤N eβXi

, (0.3.14)

which sample the large values of the field {Xi}Ni=1 when β > 0. For instance, one
quantity of interest is the so-called limiting two-overlap distribution

q 7→ lim
N→∞

EG×2
β,N

[
1{ρ(i,j)≤q}

]
, (0.3.15)

which is a measure of relative distance between the extremes of the model. Let
h : [−1, 1]s(s−1)/2 → R be a continuous function of the overlaps of s points, then
the more general question is to describe

lim
N→∞

EG×sβ,N
[
h
(
(ρ(i`, i`′))1≤`,`′≤s

)]
(0.3.16)

as a function of β > 0. For log-correlated Gaussian fields (and other close models),
the (mean) weak limit of {G×∞β,N }N∈N has a tendency to satisfy certain universal
identities known as the Ghirlanda-Guerra identities, introduced in Ghirlanda and
Guerra (1998). One very important result, due to Panchenko (2013a), proves that
a random measure on the unit ball of a separable Hilbert space that satisfies the
extended Ghirlanda-Guerra identities must be ultrametric (i.e. have a hierarchical
structure of the overlaps (scalar products) under the mean measure). One con-
sequence of this theorem is that, if the extended Ghirlanda-Guerra identities are
satisfied in the limit for a given model, then it can be shown that the general joint
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distribution of the overlaps in (0.3.16) is completely determined by the limiting two-
overlap distribution (see e.g. Theorem 2.13 in Panchenko (2013b)). The fact that
the Ghirlanda-Guerra identities together with the limiting two-overlap distribution
characterize the law of the overlaps under the limiting mean Gibbs measure was
known to be true for specific models well before Panchenko’s proof. For instance,
it was pointed out for the REM in (Talagrand, 2003, Chapter 1).

Apart from the motivations of statistical mechanics (see e.g. Bovier (2006)), the inter-
est of the questions (Q1)−(Q6) comes from the conjectured universality of the answers for
the class of models that are log-correlated or close to it. Under certain regularity assump-
tions, it is for example expected that the sequence of recentered maxima for most branching
models converges to a Gumbel distribution or the mean of randomly shifted Gumbel dis-
tributions. Similarly, it is expected that the Gibbs measures converge weakly towards a
mixture of random measures called Ruelle probability cascades (see Ruelle (1987)) or, per-
haps more generally, towards sampling measures of stochastically stable overlap structures
(see Arguin and Aizenman (2009) and Arguin and Chatterjee (2013)).

0.3.3. Examples of log-correlated random fields : Old and new results

In this section, we present a list of 12 log-correlated random fields that are Gaussian
or approximately Gaussian, some of which we will revisit in the articles of this thesis. We
answer the questions of interest posed in the previous section by pointing to the relevant
literature. All 12 fields are believed to belong to the REM class (resp. the GREM class,
when the variances are macroscopically dependent on time or scale), meaning that the
answers to the questions of interest (Q1), (Q2) and (Q6) should all be the same as for
the REM (see Section 0.3.3.1) (resp. the GREM, see Section 0.3.3.2) with the possible
exception that some constants and critical levels could be model-specific (depending on
the number of particles or the variances).

To give a sense of (some of) the techniques we will use in Part 1 and Part 2, we will
answer the six questions directly (with proofs !) for the REM and state the answers for
the GREM. For the other models, we will point directly to the literature.
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0.3.3.1. The random energy model (REM)

(a) REM tree structure
(b) REM simulation (N = 26)

Figure 0.3.1. The random energy model

In the physics literature, the REM was first presented by Derrida (1980, 1981) as a toy
model to study the properties of disordered systems (such as magnetic alloys at different
temperatures). For an introduction, we refer the reader to Chapter 9 in Bovier (2006).

Definition 0.3.2 (REM). The REM consists of N = 2n i.i.d. r.v.s Xi ∼ N (0, σ2 logN).

Remark 0.3.2. To see the analogy with the binary branching random walk, it can also

be seen as the leaves of a tree of 2n independent random walks on the time interval [0, n],
where each branch of length 1 is a standard Gaussian r.v., as shown in Figure 0.3.1b.

The following proposition answers to (Q1) and (Q3).

Proposition 0.3.3 (First and second order of the maximum for the REM). Let MN $
max1≤i≤N Xi where the random field {Xi}Ni=1 follows Definition 0.3.2, then

lim
N→∞

MN

logN = gσ, in probability, (0.3.17)

for the first order, where g $
√

2, and

lim
N→∞

MN − gσ logN
log logN = −1

2 ·
σ

g
, in probability, (0.3.18)

for the second order.

10



Proof. Fix any ε > 0, and note that (0.3.17) follows from (0.3.18). To obtain the upper
bound, use a union bound and a Gaussian tail estimate (Lemma 11.1.1) :

P
(
MN ≥ gσ logN − (1− ε) σ2g log logN

)
≤ N · σ

√
logN · e−

1
2

(gσ logN−(1−ε) σ2g log logN)2

σ2 logN

(gσ logN − (1− ε) σ2g log logN)

� N · 1√
logN ·N

−1(logN)(1−ε)/2

� (logN)−ε/2, (0.3.19)

which tends to 0 as N →∞. For the lower bound, define

NN $
N∑
i=1

1Ai , where Ai $
{
Xi ≥ gσ logN − (1 + ε) σ2g log logN

}
.

To conclude, we need to show that P(NN > 0) → 1 as N → ∞. By applying the Paley-
Zygmund inequality from Lemma 11.1.2 (with θ = 0), we have

P(NN > 0) ≥ E[NN ]2

E[N 2
N ] . (0.3.20)

It suffices to show that E[N 2
N ] = (1 + o(1))E[NN ]2. Since the variables Xi and Xj are

identically distributed and independent whenever i 6= j, we have the decomposition

E
[
N 2
N

]
=

N∑
i,j=1
i 6=j

P(Ai)2 +
N∑
i=1

P(Ai) = (1−N−1)E[NN ]2 + E[NN ] , (0.3.21)

because there are N2 − N terms in the first sum. By another Gaussian tail estimate
(Lemma 11.1.1), note that

E[NN ] � N · 1√
logN ·N

−1(logN)(1+ε)/2 � (logN)ε/2. (0.3.22)

Together with (0.3.21), this proves E[N 2
N ] = (1 + o(1))E[NN ]2. �

The following proposition answers to (Q2).

Proposition 0.3.4 (Log-number of γ-high points for the REM). Let γ ∈ (0, σ) and define

the set of points above the γ-level : HN(γ) $ {1 ≤ i ≤ N : Xi ≥ γg logN}. Then,

lim
N→∞

log |HN(γ)|
logN = 1− (γ/σ)2, in probability. (0.3.23)
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Proof. By Markov’s inequality and a Gaussian tail estimate (Lemma 11.1.1),

P
(
|HN(γ)| ≥ N1−(γ/σ)2) ≤ N−1+(γ/σ)2 E

[
|HN(γ)|

]

≤ N−1+(γ/σ)2 ·N · σ
√

logN · e−
1
2

(γg logN)2

σ2 logN

γg logN

� (logN)−1/2, (0.3.24)

which goes to 0 as N →∞.

For the lower bound, we want to apply (again) the Paley-Zygmund inequality :

P
(
|HN(γ)| ≥ N1−(γ/σ)2−ε

)
≥
1− N1−(γ/σ)2−ε

E
[
|HN(γ)|

]
2 E

[
|HN(γ)|

]2
E
[
|HN(γ)|2

] . (0.3.25)

Using Gaussian tail estimates (Lemma 11.1.1), it is easy to see that

E[|HN(γ)|] � (logN)−1/2N1−(γ/σ)2
, (0.3.26)

so it suffices to prove E
[
|HN(γ)|2

]
= (1 + o(1))E

[
|HN(γ)|

]2
to conclude the proof. Since

the variables Xi and Xj are identically distributed and independent whenever i 6= j, we
have the decomposition

E
[
|HN(γ)|2

]
=

N∑
i,j=1
i 6=j

(
P
(
Xi ≥ γg logN

))2
+

N∑
i=1

P
(
Xi ≥ γg logN

)

= (1−N−1)E
[
|HN(γ)|

]2
+ E

[
|HN(γ)|

]

= (1 + o(1))E
[
|HN(γ)|

]2
, (0.3.27)

where the last equality follows from (0.3.26) and γ ∈ (0, σ). This ends the proof. �

The following proposition answers the first part of (Q6) about the free energy of the
REM. It is consequence of Proposition 0.3.4 and the first part of Proposition 0.3.3.

Proposition 0.3.5 (Limiting free energy of the REM). For β > 0,

lim
N→∞

fN(β) = lim
N→∞

1
logN log

N∑
i=1

eβXi = f(β;σ2), (0.3.28)
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where the limit holds in probability and in L1, and where g $
√

2 and

f(β;σ2) $

 1 +
(
β
βc

)2
, if β ≤ βc $ g

σ
,

2 β
βc
, if β > βc.

(0.3.29)

Proof. We prove the upper bound first. For M ∈ N and a fixed ε > 0, consider ε̃ $
ε/(2 + βg), γj $ j

M
σ + ε̃ for 0 ≤ j ≤M , and the good event

U $
M⋂
j=1

{∣∣∣{1 ≤ i ≤ N : Xi > γj−1g logN
}∣∣∣ ≤ N1−(γj−1/σ)2+ε̃

}
⋂{

max
1≤i≤N

Xi ≤ (σ + ε̃)g logN
}
.

(0.3.30)

By (0.3.17) and (0.3.23), we know that P(U c)→ 0 as N →∞. On the event U , we have

N∑
i=1

eβXi =
M∑
j=1

N∑
i=1

eβXi1{γj−1g logN<Xi≤γjg logN} +
N∑
i=1

eβXi1{Xi≤γ0g logN}

≤
M∑
j=1

Nβγjg+1−(γj−1/σ)2+ε̃ +Nβγ0g+1, (0.3.31)

which implies that, for M large enough with respect to ε and β,

fN(β) $ log∑N
i=1 e

βXi

logN ≤ max
γ∈[0,σ+ε̃]

{
βγg + 1− (γ/σ)2

}
+ 2ε̃. (0.3.32)

In the case β ≤ βc $ g
σ
, the maximum is attained at γ = βσ/βc. Hence, the right-hand

side of (0.3.32) is at most 1 + (β/βc)2 + ε. In the other case β > βc, we can choose ε > 0
small enough that β > (σ+ ε̃)βc/σ. The maximum is attained at γ = σ+ ε̃, in which case
the right-hand side of (0.3.32) is smaller than 2(β/βc) + ε. This proves the upper bound
in probability.

For the lower bound, consider the levels γj $ j
M
σ + ε for 0 ≤ j ≤ M , and the good

event
L $

M⋂
j=1

{∣∣∣{1 ≤ i ≤ N : Xi > γj−1g logN
}∣∣∣ ≥ N1−(γj−1/σ)2−ε/2

}
⋂{

max
1≤i≤N

Xi ≤ (σ + ε)g logN
}
.

(0.3.33)
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By (0.3.17) and (0.3.23), we know that P(Lc)→ 0 as N →∞. On the event L, we have

N∑
i=1

eβXi =
M∑
j=1

N∑
i=1

eβXi1{γj−1g logN<Xi≤γjg logN} +
N∑
i=1

eβXi1{Xi≤γ0g logN}

≥ max
1≤j≤M

Nβγj−1g+1−(γj−1/σ)2−ε/2, (0.3.34)

which implies that, for M large enough with respect to ε and β,

fN(β) $ log∑N
i=1 e

βXi

logN ≥ max
γ∈[ε,σ]

{
βγg + 1− (γ/σ)2

}
− ε. (0.3.35)

In the case 0 < β ≤ βc $ g
σ
, take ε > 0 small enough that β > εβc/σ. The maximum

is attained at γ = βσ/βc, in which case the right-hand side of (0.3.35) is equal to 1 +
(β/βc)2 − ε. In the other case β > βc, the maximum is attained at γ = σ, in which case
the right-hand side of (0.3.35) is equal to 2(β/βc) − ε. This proves the lower bound in
probability.

It remains to show the convergence of the free energy in L1. It is a consequence of the
uniform integrability of the sequence {fN(β)}N∈N, namely

lim
α→∞ sup

N∈N
E
[
|fN(β)|1{|fN (β)|>α}

]
= 0. (0.3.36)

To prove (0.3.36), let ξN $MN/ logN . Then, from (0.3.11),

βξN ≤ fN(β) ≤ βξN + 1. (0.3.37)

Assume that α > 1. By splitting the event {|fN(β)| > α} in two parts : {fN(β) > α} and
{−fN(β) > α}, and then using (0.3.37), we deduce

E
[
|fN(β)|1{|fN (β)|>α}

]
≤ E

[
(βξN + 1)1{βξN+1>α}

]
+ E

[
(−βξN)1{−βξN>α}

]

=
∞∑
`=1

E
[
(βξN + 1)1{(`+1)α≥βξN+1>`α}

]
+
∞∑
`=1

E
[
(−βξN)1{(`+1)α≥−βξN>`α}

]

≤
∞∑
`=1

(`+ 1)αP
(
|ξN | >

1
β

(`α− 1)
)
. (0.3.38)
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Using a union bound and a Gaussian tail estimate (Lemma 11.1.1), we have

P
(
|ξN | >

1
β

(`α− 1)
)
≤ N · max

1≤i≤N
2P
(
Xi >

1
β

(`α− 1) logN
)

≤ N · 2N−
(`α−1)2

2β2σ2 .

(0.3.39)

For α large enough with respect to β and σ, applying (0.3.39) in (0.3.38) implies (0.3.36).
This ends the proof. �

The following theorem answers to (Q4) and (Q5).

Theorem 0.3.6 (Convergence in law of the recentered maximum for the REM). Define

aN $ gσ logN − σ

2g log logN − σ log(g
√

2π)
g

. (0.3.40)

Then, for βc $ g
σ
and any x ∈ R,

lim
N→∞

P
(
MN − aN ≤ x

)
= exp(−e−βcx). (0.3.41)

In other words, the limiting law of the recentered maximum is a Gumbel distribution.

Proof. Fix any x ∈ R. Since the Xi’s are i.i.d. Gaussian r.v.s with variance σ2 logN ,

P
(
MN − aN ≤ x

)
= (1−Ψ(z?))N , (0.3.42)

where Ψ denotes the survival function of the standard Gaussian distribution and

z? $ aN + x

σ
√

logN = g
√

logN − log logN
2g
√

logN −
log(g

√
2π)

g
√

logN + x

σ
√

logN . (0.3.43)

The Gaussian tail estimates from Lemma 11.1.1 tell us that, for z > 0,

1
z

(
1− 1

z2

)
· 1√

2π
e−

1
2 z

2 ≤ Ψ(z) ≤ 1
z
· 1√

2π
e−

1
2 z

2
. (0.3.44)

Thus, from (0.3.42), (0.3.43) and (0.3.44), the reader can easily verify that

1−
(
1 +O

( (log logN)2

logN
))
e−

g
σ
x

N

N≤ P
(
MN − aN ≤ x

) ≤
1−

(
1 +O

( (log logN)2

logN
))
e−

g
σ
x

N

N

from which (0.3.41) directly follows. �
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To answer (Q6), one way to proceed would be to show that the extremal process
converges weakly to a specific Poisson point process (PPP), and then deduce the limiting
law of the Gibbs measure. This is done in Section 8.3 of Bolthausen and Sznitman (2002).
Specifically, they show in Proposition 8.6, using Laplace functionals, that the extremal
process ∑N

i=1 δXi−aN converges weakly to a PPP with intensity t 7→ βce
−βct, and using

the nice transformation properties of PPPs under continuous mappings (Proposition 8.5),
they deduce that, for β > βc (at low temperature), the point process ∑N

i=1 δexp(β(Xi−aN ))

converges weakly to a PPP with intensity t 7→ (βc/β)t−(βc/β)−1. Now, note that the limiting
Gibbs measure is defined by the normalized points of the last limiting point process; it
can be shown that the normalized weights, when arranged in a decreasing order, form a
Poisson-Dirichlet process of parameter βc/β (see e.g. Proposition 2 in Tao (2013)).

In general, it is very very hard to find the limit of the extremal process for most models
(like the (σ,λ)-IGFF and the RLM-RZF, for which we have new results on the limiting
Gibbs measure in this thesis), so we will instead present a much longer (but more robust)
alternative route to illustrate some of the methods used in Ouimet (2017) (Article 2) and
Ouimet (2018b) (Article 4).

Here is our plan :

(a) Find the limiting free energy of a perturbed version of the REM;

(b) Use (a) to find the limiting two-overlap distribution for the REM;

(c) Prove the extended Ghirlanda-Guerra identities for the REM;

(d) Deduce from (b) and (c) the joint distribution of the overlaps under the limiting
mean Gibbs measure in terms of Poisson-Dirichlet variables.

For α ∈ [0, 1], u ∈ (−1, 1) and 1 ≤ i ≤ N , define the perturbed REM by

X̃i,α,u $ Xi + uX
(1)
i = (1 + u)X(1)

i +X
(2)
i , (0.3.45)

where X(1)
i ∼ N (0, ασ2 logN), X(2)

i ∼ N (0, (1−α)σ2 logN), Xi $ X
(1)
i +X

(2)
i , and where

all the X(1)
i ’s and X(2)

i ’s are independent. By convention, X ∼ N (0, 0) means X = 0.
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Proposition 0.3.7 (Limiting free energy of the perturbed REM). Define the free energy

of the perturbed REM by

f̃N,α,u(β) $ 1
logN log

∑
1≤i≤N

eβX̃i,α,u , β > 0. (0.3.46)

Then, for any α ∈ [0, 1] and β > 0,

lim
N→∞

f̃N,α,u(β) $ f̃α,u(β) = max
γ∈[0,γ?]

{
βγ + Eα,u(γ)

}
(0.3.47)

=

 f(β;Vα,u), if u < 0,
αf(β;σ2(1 + u)2) + (1− α)f(β;σ2), if u ≥ 0,

=



1 + β2Vα,u
g2 , if u < 0 and β ≤ g√

Vα,u
,

βg
√
Vα,u, if u < 0 and β > g√

Vα,u
,

1 + β2Vα,u
g2 , if u ≥ 0 and β ≤ g

σ(1+u) ,

α
(
βgσ(1 + u)

)
+ (1− α)

(
1 + β2σ2

g2

)
, if u ≥ 0 and g

σ(1+u) < β ≤ g
σ
,

βgσ
[
α(1 + u) + (1− α)

]
, if u ≥ 0 and β > g

σ
,

where Vα,u $ α(σ(1 + u))2 + (1 − α)σ2, f(β;σ2) is defined in (0.3.29), γ? is defined in

(0.3.49), and where the limit in (0.3.47) holds in probability and in L1.

Proof. This proof is easy but somewhat long and tedious, so we will only sketch it. For
the details, see e.g. Ouimet (2017) (Article 2) for a more general statement and proof in
the context of the scale-inhomogeneous Gaussian free field or Section 4 in Arguin and Tai
(2018) for a proof in the context of the randomized Riemann zeta function. The reader can
also check Section 9 of Bolthausen and Sznitman (2002) for the proof of the limiting free
energy in the context of the GREM with two levels. The idea is to apply second-moment
methods as in the proof of Proposition 0.3.3 and Proposition 0.3.4 to find the first order
of the maximum and the first order of the log-number of γ-high points for the perturbed
REM. We would find

lim
N→∞

max1≤i≤N X̃i,α,u

logN = gγ?, in probability, (0.3.48)
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where

γ? $


√
Vα,u, if u ≤ 0,

α(σ(1 + u)) + (1− α)σ, if u > 0,
(0.3.49)

and, for γ ∈ (0, γ?), we would find

lim
N→∞

log
∣∣∣{1 ≤ i ≤ N : X̃i,α,u ≥ γg logN

}∣∣∣
logN = Eα,u(γ), in probability, (0.3.50)

where

Eα,u(γ) $

 1− γ2

Vα,u
, if u < 0, or if u ≥ 0 and γ < γc,

(1− α)− (γ−ασ(1+u))2

(1−α)σ2 , if u ≥ 0 and γ ≥ γc,
(0.3.51)

and where γc $ Vα,u/(σ(1+u)). Using (0.3.48) and (0.3.50), we could then apply Laplace’s
method like we did in the proof of Proposition 0.3.5 and solve the related optimization
problem to conclude. �

The next proposition finds the limiting two-overlap distribution of the REM. The
strategy of the proof is to link the derivative (with respect to u) of the limiting free
energy of the perturbed REM to the limiting two-overlap distribution through Gaussian
integration by parts. We refer to this strategy as the Bovier-Kurkova technique as it was
successfully applied to find the limiting two-overlap distribution of the general GREM in
Bovier and Kurkova (2004a,b).

The following proposition answers the second part of (Q6).

Proposition 0.3.8 (Limiting two-overlap distribution of the REM). Recall the definition

of the overlaps ρ(i, j) from (0.3.13). Then, for βc $ g
σ
, and any β > 0,

β ≤ βc : lim
N→∞

EG×2
β,N

[
1{ρ(i,j)≤q}

]
=
 0, if q < 0,

1, if q ≥ 0,

β > βc : lim
N→∞

EG×2
β,N

[
1{ρ(i,j)≤q}

]
=


0, if q < 0,
βc
β
, if 0 ≤ q < 1,

1, if q ≥ 1,

(0.3.52)
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Here is an intuitive explanation of the meaning of this proposition. When β > βc, the
Gibbs measure gives a lot of weight to the particles i that are near the maximum’s height
in the tree structure. The result simply says that if you sample two particles under the
Gibbs measure, then, in the limit and on average, either the particles branched off “at the
last moment” in the tree structure or they branched off in the beginning. They cannot
branch at intermediate scales. Since the particles are independent by definition in the
case of the REM, this means that βc/β is the probability, in the limit N → ∞, that the
particles sampled under EG×2

β,N differ.

When β < βc, the weights in the Gibbs measure are more spread out so that most
contributions to the free energy actually come from particles reaching heights that are
well below the level of the maximum in the tree structure. Hence, when two particles are
selected from this larger pool of contributors that are not clustering, it can be shown that,
in the limit and on average, the particles necessarily branched off in the beginning of the
tree. In other words, in the limit N →∞, the particles sampled under EG×2

β,N are different
with probability 1.

Proof of Proposition 0.3.8. From (0.3.47), we can verify that, for any 0 < α < 1
and β > 0, there exists δ = δ(α, β) > 0 small enough that f̃α,u(β) is differentiable with
respect to u ∈ (−δ, δ) and

β2
c

2β2
∂

∂u
f̃α,u(β)

∣∣∣∣∣
u=0

=
α, if β ≤ βc,

βc
β
α, if β > βc.

(0.3.53)

By Holder’s inequality, note that u 7→ f̃N,α,u(β) is convex (and thus u 7→ E
[
f̃N,α,u(β)

]
is

also convex). Since pointwise limits preserve convexity and we have the mean convergence
limN→∞ E

[
f̃N,α,u(β)

]
= f̃α,u(β) from Proposition 0.3.7, then u 7→ f̃α,u(β) is convex. The

fact that u 7→ f̃α,u(β) is differentiable on (−δ, δ) together with Theorem 25.7 in Rockafellar
(1970) then implies

∂

∂u
f̃α,u(β)

∣∣∣∣∣
u=0

= lim
N→∞

∂

∂u
E
[
f̃N,α,u(β)

]∣∣∣
u=0

. (0.3.54)

Also, using Gaussian integration by parts (see e.g. Lemma 1.1 in Panchenko (2013b)), we
have the relation
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β2
c

2β2
∂

∂u
E
[
f̃N,α,u(β)

]∣∣∣
u=0

= 1
βσ2 logN EGβ,N

[
X

(1)
i

]

= 1
βσ2 logN E

∑1≤i≤N X
(1)
i exp(β(X(1)

i +X
(2)
i ))∑

1≤j≤N exp(β(X(1)
j +X

(2)
j ))


GIP= 1

σ2 logN
{
EGβ,N

[
E[X(1)

i Xi]
]
− EG×2

β,N

[
E[X(1)

i Xj]
]}

= α− EG×2
β,N

[
E[X(1)

i Xj]
σ2 logN

]
, (0.3.55)

where

E[X(1)
i Xj]

σ2 logN = ρ(i, j)1{ρ(i,j)≤α} + α1{ρ(i,j)>α} =
∫ α

0
1{ρ(i,j)>y}dy. (0.3.56)

We deduce from (0.3.55) and (0.3.56) that

β2
c

2β2
∂

∂u
E
[
f̃N,α,u(β)

]∣∣∣
u=0

=
∫ α

0
EG×2

β,N

[
1{ρ(i,j)≤y}

]
dy. (0.3.57)

Since [0, 1] ⊆ R is compact, the space M1([0, 1]) of probability measures on [0, 1] is
compact under the weak topology. Thus, any subsequence of the cumulative distribution
function on the left-hand side of (0.3.52) has a subsequence converging to a cumulative
distribution function. Pick any such sub-subsequence and denote its limit by q 7→ xβ(q).
From (0.3.53), (0.3.54) and (0.3.57), we have, for any α ∈ (0, 1),

∫ α

0
xβ(y)dy =

α, if β ≤ βc,

βc
β
α, if β > βc.

(0.3.58)

By Lebesgue’s differentiation theorem and the fact that the c.d.f. xβ is right-continuous
and concentrated on [0, 1] (since ρ(i, j) ∈ [0, 1] for all i, j), the conclusion follows. �

By the representation theorem of Dovbysh and Sudakov (1982) for symmetric positive
definite weakly exchangeable infinite random arrays (for a proof, see Panchenko (2010b)),
we can show (since [0, 1]N×N being compact implies that the space of probability measures
M1([0, 1]N×N) is weakly compact) that there exists a subsequence {Nm}m∈N converging to
+∞ such that for any s ∈ N and any continuous function h : [0, 1]s(s−1)/2 → R, we have
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lim
m→∞EG×∞β,Nm

[
h((ρ(i`, i`′))1≤`,`′≤s)

]
= Eµ×∞β

[
h((R`,`′)1≤`,`′≤s)

]
, (0.3.59)

where R is a random element of some probability space with measure P (and expectation
E), generated by the random matrix of scalar products

(R`,`′)`,`′∈N =
(
(ρ`, ρ`′)H

)
`,`′∈N

, (0.3.60)

where (ρ`)`∈N is an i.i.d. sample from some random measure µβ concentrated a.s. on the
unit sphere of a separable Hilbert space H. In particular, from Proposition 0.3.8, we have,
for all A ∈ B(R),

Eµ×2
β

[
1{R1,2∈A}

]
=

 1A(0), if β ≤ βc,

βc
β

1A(0) +
(
1− βc

β

)
1A(1), if β > βc.

(0.3.61)

The meaning behind (0.3.61) is the same as we explained below (0.3.52), where µβ is
simply a subsequential limit of {Gβ,N}N∈N in the specific sense of (0.3.59).

Proposition 0.3.9 (Extended Ghirlanda-Guerra identities in the limit). Let β > 0, and
let µβ be a subsequential limit of {Gβ,N}N∈N in the sense of (0.3.59). For any s ∈ N, any

k ∈ {1, . . . , s}, and any functions g : {0, 1} → R and h : {0, 1}s(s−1)/2 → R, we have

Eµ
×(s+1)
β

[
g(Rk,s+1)h((Ri,i′)1≤i,i′≤s)

]
= 1
s
Eµ×2

β

[
g(R1,2)

]
Eµ×sβ

[
h((Ri,i′)1≤i,i′≤s)

]
+ 1
s

s∑
`6=k

Eµ×sβ
[
g(Rk,`)h((Ri,i′)1≤i,i′≤s)

]
.

(0.3.62)

The meaning behind this proposition is a bit more difficult to explain. In the special
case h ≡ 1 and g(x) = x, the formula (0.3.62) becomes

Eµ
×(s+1)
β

[
Rk,s+1

]
= 1
s
Eµ×2

β

[
R1,2

]
+ 1
s

s∑
`6=k

Eµ×sβ
[
Rk,`

]
. (0.3.63)

It says that, on average, given the particles 1, 2, . . . , s sampled under µβ, the overlap
between the next particle to be sampled (called s + 1) and the k-th particle is a generic
overlap between two particles (1 possibility) or it is the overlap between another particle
that we already sampled and the k-th particle (s− 1 possibilities), where each possibility
has probability 1/s. Now, the formula (0.3.62) describes more generally the joint behavior
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of the matrix of overlaps for the first s particles that are sampled and the overlap between
the next particle to be sampled and the k-th one. As already mentioned below (0.3.16),
it can be shown, in general, that (0.3.62) implies the ultrametricity of the overlaps (a
tree-like hierarchical structure) and completely characterizes the joint law of the overlaps
under Eµ×∞β up to the knowledge of all Eµ×2

β [g(R1,2)] ’s, which themselves are determined
by the limiting two-overlap distribution (0.3.61) (see Chapter 2 in Panchenko (2013b)).

Proof of Proposition 0.3.9. Let φN : {1, 2, . . . , N}s → R be any set of functions
that satisfies supN ‖φN‖∞ < ∞. By Gaussian integration by parts (see e.g. Exercise 1.1
in Panchenko (2013b)), note that, for i $ (i1, i2, . . . , is) ∈ {1, 2, . . . , N}s,

EG×sβ,N
[
X

(1)
ik
φN(i)

]
βσ2 logN

GIP=
s∑
`=1

EG×sβ,N

E[X(1)
ik
Xi` ]

σ2 logN φN(i)
− sEG×(s+1)

β,N

E[X(1)
ik
Xis+1 ]

σ2 logN φN(i)


(0.3.56)=
s∑
`=1

EG×sβ,N
[ ∫ α

0
1{ρ(ik,i`)>y}dy φN(i)

]

− sEG×(s+1)
β,N

[ ∫ α

0
1{ρ(ik,is+1)>y}dy φN(i)

]
.

On the other end, from (0.3.55), we have

EGβ,N
[
X

(1)
ik

]
βσ2 logN = EGβ,N

[ ∫ α

0
1{ρ(ik,ik)>y}dy

]
− EG×2

β,N

[ ∫ α

0
1{ρ(i,j)>y}dy

]
, (0.3.64)

and a concentration argument (see e.g. Theorem 3.8 in Panchenko (2013b) or Proposition
5.6 in Ouimet (2018b) (Article 4)) shows that, as N →∞,

∣∣∣∣∣∣
EG×sβ,N

[
X

(1)
ik
φN(i)]

βσ2 logN −
EGβ,N

[
X

(1)
ik

]
βσ2 logN EG×sβ,N

[
φN(i)

]∣∣∣∣∣∣ = o(1). (0.3.65)

Putting the last three equations together, we find that, as N →∞,
∣∣∣∣EG×(s+1)

β,N

[ ∫ α

0
1{ρ(ik,is+1)>y}dy φN(i)

]

−


1
s
EG×2

β,N

[∫ α
0 1{ρ(i,j)>y}dy

]
EG×sβ,N

[
φN(i)

]
+1
s

∑s
6̀=k EG×sβ,N

[∫ α
0 1{ρ(ik,i`)>y}dy φN(i)

]

∣∣∣∣∣∣∣ = o(1).

(0.3.66)

If we take the limit (0.3.59) in the last equation with φN(i) $ h?((ρ(i`, i`′))1≤`,`′≤s) where
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h? : [0, 1]s(s−1)/2 → R is a continuous extension of h, we find that, for all α ∈ (0, 1),

Eµ
×(s+1)
β

[ ∫ α

0
1{Rk,s+1>y}dy h((Ri,i′)1≤i,i′≤s)

]
= 1
s
Eµ×2

β

[ ∫ α

0
1{R1,2>y}dy

]
Eµ×sβ

[
h((Ri,i′)1≤i,i′≤s)

]
+ 1
s

s∑
` 6=k

Eµ×sβ

[ ∫ α

0
1{Rk,`>y}dy h((Ri,i′)1≤i,i′≤s)

]
.

(0.3.67)

From (0.3.61), we know that 1{Ri,i′>y} is Eµ×2
β -a.s. constant in y on [−1, 0) and [0, 1),

respectively. Therefore, for any x ∈ {−1, 0},

Eµ
×(s+1)
β

[
1{Rk,s+1>x} h((Ri,i′)1≤i,i′≤s)

]
= 1
s
Eµ×2

β

[
1{R1,2>x}

]
Eµ×sβ

[
h((Ri,i′)1≤i,i′≤s)

]
+ 1
s

s∑
6̀=k
Eµ×sβ

[
1{Rk,`>x} h((Ri,i′)1≤i,i′≤s)

]
.

(0.3.68)

But, any function g : {0, 1} → R can be written as a linear combination of the indicator
functions 1{ ·>−1} and 1{ ·> 0}, so we get the conclusion by the linearity of (0.3.68). �

Finally, we can answer the last part of (Q6).

Theorem 0.3.10. Let β > 0. Let ξ $ {ξk}k∈N be a Poisson-Dirichlet variable of parameter

βc/β, namely a random variable on the space of decreasing weights which has the same

law as the decreasing rearrangement(
ηk∑∞
j=1 ηj

, k ∈ N
)
↓
, (0.3.69)

where {ηk}k∈N denotes the atoms of a PPP on (0,∞) with intensity t 7→ (βc/β)t(βc/β)−1.

Then, for any s ∈ N and any continuous function h : [0, 1]s(s−1)/2 → R of the overlaps of

s points,

lim
N→∞

EG×sβ,N
[
h
(
(ρ(i`, i`′))1≤`,`′≤s

)]

=


h(Ids), if β ≤ βc,

E
[∑

k1,...,ks∈N ξk1 . . . ξks h
((

1{k`=k`′}
)

1≤`,`′≤s

)]
, if β > βc,

(0.3.70)

where Ids denotes the s× s identity matrix.
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0.3.3.2. The generalized random energy model (GREM)

(a) GREM tree structure with 2 levels
(b) GREM simulation (N = 26)
with 2 levels (λ1 = 1/2, σ1 < σ2)

Figure 0.3.2. The generalized random energy model

In the physics literature, the GREM first appeared in Derrida (1985). For an intro-
duction, the reader is referred to Chapter 10 in Bovier (2006).

Definition 0.3.11 ((σ,λ)-GREM). Let N be the number of random variables in the field

(the number of leaves in the tree) and let M ∈ N denote the number of levels in the tree.

Also, define the following sets of parameters :

σ $ (σ1, σ2, . . . , σM) ∈ (0,∞)M , (variance parameters),
λ $ (λ1, λ2, . . . , λM) ∈ (0, 1]M , (scale parameters),

(0.3.71)

where 0 $ λ0 < λ1 < λ2 < · · · < λM $ 1. Define recursively a M-levels tree where, for

every i ≤ M , Nλi−λi−1 branches starting at the i-th level are attached to every vertices at

the (i− 1)-th level (see Figure 0.3.2a). The set of vertices at the M-th level is denoted by

VN . For all v ∈ VN , denote by vk the vertex at the k-th level on the shortest path from the

origin of the tree to v. We assign i.i.d. Gaussian r.v.s Zvk ∼ N (0, (λk − λk−1)σ2
k logN) to

the k-th level branches of the tree (Zvk for the branch joining vk−1 and vk). The field of

interest is :
Xv $

M∑
k=1

Zvk , v ∈ VN . (0.3.72)

The REM corresponds to the special case M = 1.
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The parameters (σ,λ) can be encoded simultaneously in the left-continuous step func-
tion

σ(s) $ σ11{0}(s) +
M∑
i=1

σi1(λi−1,λi](s), s ∈ [0, 1]. (0.3.73)

In the case of the GREM, it can be shown (see Section 1.2 of Arguin and Ouimet (2016)
(Article 1) for an heuristic) that the answers to the questions of interest do not always take
into account every single parameter in (σ,λ) but only depend on the effective parameters

that are encoded in the concave hull Ĵσ2 of the speed function Jσ2(s) $ ∫ s0 σ2(r)dr. More
precisely, let σ̄ : [0, 1] → R be the unique left-continuous step function that satisfies
Jσ̄2(s) = Ĵσ2(s) for all s ∈ (0, 1]. If the scales in [0, 1] where σ̄ jumps are denoted by
0 $ λ0 < λ1 < · · · < λm $ 1, then we have the representation :

σ̄(s) $ σ̄11{0}(s) +
m∑
j=1

σ̄j1(λj−1,λj ](s), s ∈ [0, 1]. (0.3.74)

where σ̄j $ σ̄(λj) and {λj}mj=0 ⊆ {λi}Mi=0. See Figure 0.3.3 for an example of Jσ2 and Ĵσ2 .

0 1 s
λ0

λ1 λ2 λ3 λ4 λ5 λ6
λ7

λ0 λ1 λ2 λ3
λ4

slope = σ̄2
1

σ̄2
2

σ̄2
3

σ̄2
4

Jσ2(λ1)

Jσ2(λ2)
Jσ2(λ3)
Jσ2(λ4)

Figure 0.3.3. Example of Jσ2 (closed line) and Ĵσ2

(dotted line) with 7 values for σ2.

Below, we go through the same results that we proved for the REM (with the exception
of (Q4) and (Q5)) and show how the effective parameters influence the answers to the
questions of interest. By using a second moment method and conditioning on the height
of the maximal particle at every effective scale λj, we can answer (Q1), (Q2) and (Q3).
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Proposition 0.3.12 (First and second order of the maximum for the GREM). Let g $
√

2, then
lim
N→∞

maxv∈VN Xv

logN = g
∫ 1

0
σ̄(s)ds $ g γ?, in probability, (0.3.75)

for the first order, and

lim
N→∞

maxv∈VN Xv − gγ? logN
log logN = −

m∑
j=1

1
2 ·

σ̄j
g
, in probability, (0.3.76)

for the second order.

The number of γ-high points depends on critical levels defined by

γl $
∫ 1

0

σ̄2(s)
σ̄(s ∧ λl)ds, 1 ≤ l ≤ m, γ0 $ 0. (0.3.77)

For γ ∈ (γl−1, γl], define

E(γ) $ (1− λl−1)− (γ − ∫ λl−1

0 σ̄(s)ds)2∫ 1
λl−1 σ̄2(s)ds

and E(0) $ 1. (0.3.78)

Proposition 0.3.13 (First order of the log-number of γ-high points for the GREM). Let
g $
√

2 and γ ∈ (0, γ?), then

lim
N→∞

log |{v ∈ VN : Xv ≥ γ g logN}|
logN = E(γ), in probability. (0.3.79)

By applying Laplace’s method using (0.3.75) and (0.3.79), we can find the limiting free
energy and answer the first part of (Q6).

Proposition 0.3.14 (Limiting free energy of the GREM). For β > 0, we have

lim
N→∞

fN(β) = lim
N→∞

1
logN log

∑
v∈VN

eβXv

= max
γ∈[0,γ?]

{
βγ + E(γ)

}
=

m∑
j=1

f(β; σ̄2
j ) (λj − λj−1),

(0.3.80)

where the limit holds in probability and in L1, and where f(β;σ2) denotes the limiting free

energy of the σ-REM from (0.3.29).
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By perturbing the free energy between the scales α < α′, where λi−1 ≤ α < α′ ≤ λi

for some i, and by linking the derivative of the perturbed free energy with the two-overlap
distribution using Gaussian integration by parts (as we did in the proof of Proposition
0.3.8), we can prove the following proposition, which answers the second part of (Q6).

Proposition 0.3.15 (Limiting two-overlap distribution of the GREM). Let g $
√

2 and

lβ $

min{l ∈ {1, . . . ,m} : β ≤ βc(σ̄l) $ g
σ̄l
}, if β ≤ g

σ̄m
,

m+ 1, otherwise,
(0.3.81)

and recall that ρ(v, v′) $ Corr(Xv , Xv′). Then, for β > 0,

lim
N→∞

EG×2
β,N

[
1{ρ(v,v′)≤q}

]
=


0, if q < 0,
βc(σ̄j)
β

, if q ∈ [xj−1, xj), j ≤ lβ − 1,
1, if q ≥ xlβ−1,

(0.3.82)

where xj $ Jσ̄2(λj)/Jσ̄2(1).

For s ∈ N, let (RN
`,`′)1≤`,`′≤s $ (ρ(v`, v`′))1≤`,`′≤s. (The variable N is there to remind

us that the definition of the field {Xv}v∈VN is N -dependent through the number of points
and the variances/covariances.) By the representation theorem of Dovbysh and Sudakov
(1982) for Gram-de Finetti matrices (for an accessible proof, see Panchenko (2010b)), we
can show (since [0, 1]N×N being compact implies that the space of probability measures
M1([0, 1]N×N) is weakly compact) that there exists a subsequence {Nm}m∈N converging to
+∞ such that for any s ∈ N and any continuous function h : [0, 1]s(s−1)/2 → R, we have

lim
m→∞EG×∞β,Nm

[
h((RNm

`,`′ )1≤`,`′≤s)
]

= Eµ×∞β
[
h((R`,`′)1≤`,`′≤s)

]
, (0.3.83)

where R is a random element of some probability space with measure P (and expectation
E), generated by the random matrix of scalar products

(R`,`′)`,`′∈N =
(
(ρ`, ρ`′)H + (1− xlβ−1)1{`= `′}

)
`,`′∈N

, (0.3.84)

where (ρ`)`∈N is an i.i.d. sample from some random measure µβ concentrated a.s. on the
sphere of radius

√
xlβ−1 of a separable Hilbert space H.
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Here is the answer to the final part of (Q6).

Proposition 0.3.16 (Extended Ghirlanda-Guerra identities in the limit for the GREM).
Let β > 0 and let µβ be a subsequential limit of {Gβ,N}N∈N in the sense of (0.3.83). Then,
for any s ∈ N, any k ∈ {1, . . . , s}, and any functions h : {x0, x1, . . . , xlβ−1}s(s−1)/2 → R

and g : {x0, x1, . . . , xlβ−1} → R, we have

Eµ
×(s+1)
β

[
g(Rk,s+1)h((Ri,i′)1≤i,i′≤s)

]
= 1
s
Eµ×2

β

[
g(R1,2)

]
Eµ×sβ

[
h((Ri,i′)1≤i,i′≤s)

]
+ 1
s

s∑
`6=k

Eµ×sβ
[
g(Rk,`)h((Ri,i′)1≤i,i′≤s)

]
.

(0.3.85)

For a description of µβ as a (lβ − 1)-levels tree of Poisson-Dirichlet processes (also called

Ruelle probability cascade), see e.g. Corollary 7.2 in Ouimet (2017) (Article 2).

Here is the relevant literature for each question :
(Q1), (Q3), (Q4) and (Q5): See Theorem 1.1 in Bovier and Kurkova (2004a) for the con-

vergence of the extremal process. The reader can also find a very good heuristic
presentation in Section 2 of Kistler (2015).

(Q2): I don’t know any reference specific to the GREM, but it can easily be deduced from
(Q1) and the limiting free energy in (Q6), since the problems are dual. Otherwise,
see Arguin and Ouimet (2016) (Article 1) in the context of the IGFF and the
solution of the related optimization problem in Appendix A of Ouimet (2014).

(Q6): For the limiting free energy, see Theorem 2.1 in Capocaccia et al. (1987). The rest
(and more) is proved in Bovier and Kurkova (2004a) :
• Proposition 1.11 shows the limiting two-overlap distribution;
• Proposition 1.12 proves the Ghirlanda-Guerra identities in the limit;
• The joint distribution of the overlaps under the limiting mean Gibbs measure
can be deduced from Theorem 1.9 and Theorem 1.13.

Remark 0.3.3. Answers to (Q1), (Q2) and the limiting free energy (first part of (Q6))
for the 2-levels GREM with a random magnetic field (RMF) are provided in Persechino

(2018). Deeper results can be found in Bovier and Klimovsky (2008) when the magnetic

field is deterministic. For the REM with a RMF, the convergence of the extremal process

and the convergence of the Gibbs weights are proved in Arguin and Kistler (2014).

28



0.3.3.3. The branching random walk (BRW)

time

0

1

2

3

4

5

6

(a) BRW tree structure
(b) BRW simulation (N = 26)

Figure 0.3.4. The branching random walk

For an introduction to branching random walks, we refer the reader to Shi (2015a)
and Zeitouni (2012). See also Athreya and Ney (1972) for a classic reference on branching
processes. The branching random walk (BRW) is a limiting case of the GREM where the
number of levels is proportional to the log-number of points in the field.

Definition 0.3.17 (BRW). The tree underlying the branching process can be described

as follows. At time k = 0, there exists only one vertex o, called the origin, and we set

D0 $ {o}. At time k = 1, there are 2 vertices and each of them is linked to o by an edge.

Denote by D1 the set of vertices at time 1. At time k = 2, there are four vertices, two of

which are linked to the first vertex in D1 and the other two are linked to the second vertex

in D1. The set of vertices at time 2 is denoted by D2. The tree is defined iteratively in this

manner up to time k = n, where Dk denotes the set of all vertices at time k and |Dk| = 2k.
Figure 0.3.4a illustrates the tree structure. For all v ∈ Dn, denote by vk the ancestor of v

at time k, namely the unique vertex in Dk that intersects the shortest path from o to v.

Independent Gaussian random variables Zvk ∼ N (0, σ2) are assigned to each branch of

the tree structure and the field of interest is {Sv(n)}v∈Dn, where Sv(n) is the sum of the

Gaussian r.v.s along the shortest path from o to v, namely

Sv(n) $
n∑
k=1

Zvk , v ∈ Dn. (0.3.86)
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Remark 0.3.4. There are N = 2n r.v.s in the field and they are log-correlated in the

following sense. The branching time ρ(u, v) is the latest time such that u, v ∈ Dn have the

same ancestor. Formally,

ρ(u, v) $ max{k ∈ {0, 1, . . . , n} : uk = vk}, (0.3.87)

so that d(u, v) $ n − ρ(u, v) measures the proximity in time of u and v’ latest common

ancestor. The covariances of the field are then given by

Cov(Su(n), Sv(n)) = σ2ρ(u, v) = σ2

log 2 ·
n− d(u, v)

n
logN. (0.3.88)

As we proved in Section 0.3.3.1, by using a second-moment method, the second order
correction for the maximum of the REM (N i.i.d. random variables with variance σ2 logN)
is

− 1
2 ·

σ

g
log logN (0.3.89)

for some model-specific constants σ and g (here : g =
√

2). When logarithmic correlations
are introduced as in (0.3.88), then the second order correction becomes

− 3
2 ·

σ̃

g
log logN (0.3.90)

for some other model-specific constants σ̃ and g. In the case of the BRW, we have

N = 2n, g =
√

2, σ̃ = σ√
log 2 , (0.3.91)

and the variances are
σ2n = σ̃2 logN. (0.3.92)

The additional log logN factor between (0.3.89) and (0.3.90) comes from the fact that
the naive version of the second-moment method (see the proof of Proposition 0.3.3) no
longer works because of the correlations. Specifically, the second moment of the number
of particles reaching above the level of the maximum is too large and thus the lower bound
on the maximum is no longer “tight” when applying the Paley-Zygmund inequality.

When trying to guess the level of the maximum for a branching process at a given time,
we have two factors to look at : the number of particles and how each particle fluctuates.
It is a constant competition between the two. It seems at least intuitive that the level of
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the maximum should be achieved for a well chosen height h(N) that satisfies

E[N ] = O(1), with N $ #{v ∈ Dn : Sv(n) ≥ h(N)}, (0.3.93)

meaning that the number of particles reaching the level of the maximum at time n should
be of the order of a constant (on average). If there was exponentially more particles than
that, then there would be enough particles fluctuating near the maximal particle just
before time n that we would be bound to find a particle that goes significantly higher
than the anticipated level of the maximum. Now, in the case of the BRW, look at what
happens if we naively evaluate E[N ] with h(N) $ σ̃g logN − 3

2 · σ̃g log logN . We get

E[N ] � N︸︷︷︸
# of particles

×
√
σ̃2 logN
h(N) exp

(
− h(N)2

2σ̃2 logN

)
︸ ︷︷ ︸

Gaussian tail estimate on each particle
(Lemma 11.1.1)

� N × (logN)−1/2N−1(logN)3/2

� logN, (0.3.94)

which is not exactly what we want. However, if we modify N to

N ? $ #

v ∈ Dn :
Sv(n) ≥ h(N) and t 7→ Sv(t) stays below the barrier
t 7→ t

n
· h(N)︸ ︷︷ ︸

linear path
leading to h(N)

+ 100 σ̃
g
·
{

1 + log(1 + (t ∧ (n− t)))
}

︸ ︷︷ ︸
logarithmic barrier



then, since the maximal particle behaves (approximately) as a discrete Brownian bridge
around the linear path leading to the level of the maximum h(N), we now have

E[N ?] � N︸︷︷︸
# of particles

×
√
σ̃2 logN
h(N) exp

(
− h(N)2

2σ̃2 logN

)
︸ ︷︷ ︸

Gaussian tail estimate on each particle
(Lemma 11.1.1)

× P


the particle
achieving the max
at time n stays
below the barrier



� logN × P

 a discrete Brownian bridge stays
below a logarithmic barrier on
the time interval [0, n]


� 1. (0.3.95)
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The argument is illustrated in Figure 0.3.5. The estimate on the probability that a discrete
Brownian bridge stays below a logarithmic barrier is part of a class of estimates known as
ballot theorems, see the continuous analogue in Propositions 1 and 1’ in Bramson (1978).
In Lemmas 2.5 and 2.4 in Ouimet (2018c) (Article 3), Bramson’s propositions are adapted
to the discrete case using gambler’s ruin estimates from Mogul’skĭı (2009). For more info
on ballot theorems, see e.g. Addario-Berry and Reed (2008) and Ford (2009).

0 n

σ̃g logN − 3
2 · σ̃g log logN

σ̃g logN − 1
2 · σ̃g log logN

Given the end point,
the probability that
the particle achieving
the max at time n

stays below the barrier
is O((logN)−1)

Figure 0.3.5. The maximal particle (blue) behaves as a Brownian
bridge around the linear path t 7→ t

n
h(N). If we impose that it stays

below the red barrier, then there is a repulsion effect (orange).

The above heuristic is for the expectation of the number of particles reaching above the
level of the maximum. When actually trying to bound the probability that the maximum
of the field deviates from h(N) = σ̃g logN − 3

2 · σ̃g log logN by a factor ε log logN , then
the idea is similar. Define

hε(N) = σ̃g logN − (3
2 − ε) ·

σ̃

g
log logN,

b(t) = 100 σ̃
g
·
{

1 + log(1 + (t ∧ (n− t)))
}
.

(0.3.96)
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If S $ {S(t)}nt=0 denotes a generic branch in the BRW, then a union bound yields

P

maxv∈Dn Sv(n)
≥ hε(N)

 ≤ n∑
k=1

2k︸︷︷︸
# of particles

at time k

× P


S crosses the barrier
t 7→ t

n
· h(N) + ε

2 · σ̃g log logN + b(t)
for the first time at time k


︸ ︷︷ ︸

(?)

.

Using a Gaussian tail estimate (GTE) and the fact that x 7→ log x
x

is decreasing for x ≥ e,
we have

(?)� P
(
S(k) ≥ k

n
· h(N) + ε

2 ·
σ̃

g
log logN + b(k)

)
× P


a Brownian bridge
on the time interval
[0, k] stays below
t 7→ b(t)− t

k
b(k)


� 1√

k︸︷︷︸
term in front of
the exponential

in the GTE

· 2−k︸︷︷︸
1st order

term squared
in the GTE

· k3/2︸︷︷︸
cross between

1st order term and
2nd order term

in the GTE

· n−ε/2︸ ︷︷ ︸
cross between
1st order term

and ε
2 ·

σ̃
g

log logN
in the GTE

·
{

1 + (k ∧ (n− k))
}−100

︸ ︷︷ ︸
cross between

1st order term and
barrier term b(k)

in the GTE

× 1
k
.

We deduce
n∑
k=1

2k × (?)� n−ε/2
∞∑
k=1

{
1 + (k ∧ (n− k))

}−100 � n−ε/2.

The argument is illustrated in Figure 0.3.6.

0 n

σ̃g logN −
(
3
2 − ε

2

)
· σ̃g log logN

Given the height of
the process at time k,
the probability that the
particle stays below
the barrier up to
time k is O(k−1)

k

Figure 0.3.6. If there is a first time k at which the maximal parti-
cle crosses the red barrier, then given its height at time k, it behaves
as a Brownian bridge around the green dashed line conditioned to
stay below the red line.
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For the lower bound, apply the Paley-Zygmund inequality (Lemma 11.1.2) by lowering
the level to reach by ε log logN and by adding barrier conditions in N (we need a lower
barrier for the repulsion effect in Figure 0.3.5). The barriers will decrease the second
moment enough that E[(Nnew)2] = (1+oε(1))E[Nnew]2 as N →∞, which will be sufficient
to conclude. For the mathematical details of this heuristic, we refer to Kistler (2015).

Here are the answers to the questions of interest :
(Q1): See Theorem 4 in Biggins (1976). See also Hammersley (1974) and Kingman (1975)

for earlier partial results.
(Q2): See Theorem 2 in Biggins (1977).
(Q3): See Theorem 1.2 in Hu and Shi (2009) for the second order of the maximum and

almost-sure fluctuations (in the context of Galton-Watson trees). See also Theorem
2 in Roberts (2013) for a simple proof in the context of the BBM.

(Q4): See Theorem 3 in Addario-Berry and Reed (2009) for a proof under broader condi-
tions (in the context of Galton-Watson trees). See also Mallein (2016) for a proof
under near-optimal (even more general) integrability conditions.

(Q5): For the convergence in law, see Aïdékon (2013), and Bramson et al. (2016b) for a
simpler proof (under stronger assumptions). For the convergence of the extremal
process, see Madaule (2017). The interpolation of the second order constant in the
asymptotic expansion of the maximum between the REM and the BRW is explained
in Kistler and Schmidt (2015).

(Q6): The proof for the limiting free energy originates from Theorem 1 in Chauvin and
Rouault (1997). The proofs for the other results can easily be adapted from Arguin
and Zindy (2014), which uses the Bovier-Kurkova technique : See Proposition 2.1
for the limiting free energy of the perturbed field, Theorem 1.4 for the limiting
two-overlap distribution, and Theorem 1.5 for the joint distribution of the overlaps
in the limit (Section 2.3 for the Ghirlanda-Guerra identities). A different proof is
presented in Jagannath (2016), but it requires a much stronger control on the path
of the maximal particle. A third approach is presented in Mallein (2018), where the
weak limit of the (supercritical) Gibbs measure can be described as a consequence
of the joint convergence of the extremal process with its genealogical information.
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0.3.3.4. The time-inhomogeneous branching random walk (IBRW)

time
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5

6

(a) IBRW tree structure (b) IBRW simulation (N = 26)
with 2 levels (λ1 = 1/2 and σ1 < σ2)

Figure 0.3.7. The time-inhomogeneous branching random walk

The 2-levels version of this model was first introduced in Fang and Zeitouni (2012a).

Definition 0.3.18 ((σ,λ)-IBRW). The tree structure of the (σ,λ)-IBRW is exactly the

same as the one for the BRW. The only difference is that the variance of the branches in

the tree changes macroscopically as time progresses. More precisely, let M ∈ N and define

the sets of parameters :

σ $ (σ1, σ2, . . . , σM) ∈ (0,∞)M , (variance parameters),
λ $ (λ1, λ2, . . . , λM) ∈ (0, 1]M , (scale parameters),

(0.3.97)

where 0 $ λ0 < λ1 < λ2 < · · · < λM $ 1. Again, for all v ∈ Dn, we denote by vk the

ancestor of v at time k, namely the unique vertex in Dk that intersects the shortest path

from o to v. For k ∈ (λi−1n, λin], independent Gaussian r.v.s Zvk ∼ N (0, σ2
i ) are assigned

to each branch of the tree, and the field of interest is {Sv(n)}v∈Dn, where Sv(n) is the sum

of the Gaussian variables along the shortest path from o to v, namely

Sv(n) $
M∑
i=1

λin∑
k=λi−1n+1

Zvk . (0.3.98)

(For simplicity, we assume that λin ∈ N for all i.)
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Remark 0.3.5. As for the GREM, the parameters (σ,λ) can be encoded simultaneously

in the left-continuous step function

σ(s) $ σ11{0}(s) +
M∑
i=1

σi1(λi−1,λi](s), s ∈ (0, 1]. (0.3.99)

The covariances of the field are given by

Cov(Su(n), Sv(n)) = Jσ2

(
ρ(u, v)
n

)
n = 1

log 2 · Jσ2

(
n− d(u, v)

n

)
logN, (0.3.100)

where ρ(u, v) denotes the branching time as in (0.3.87), and d(u, v) $ n− ρ(u, v).

Here are the answers to the questions of interest :
(Q1), (Q3) and (Q4): The first proof appeared in Fang and Zeitouni (2012a) for the field

with two levels (using the tightness of the maximum shifted by its median, from
Theorem 1 in Fang (2012)). A result with much broader conditions was stated in
Theorem 1.4 of Mallein (2015a), where the law of the increments isn’t necessarily
Gaussian. The proof uses a time-inhomogeneous version of the spinal decomposi-
tion for the BRW and thus rests crucially on the branching structure being exact.
An alternate proof of the general case (but with Gaussian increments) was given
independently in Ouimet (2014) and published later in Ouimet (2018c) (Article 3).
The proof instead generalizes the argument of Fang and Zeitouni (2012a) and can
be adapted to handle models with approximate branching structures.

Answers are also provided for more general variance functions in Mallein (2015b)
up to the second order of the maximum (and in some cases the tightness), under
very general conditions on the increments. For similar results in the context of
the variable speed BBM with (strictly) decreasing variances, see Fang and Zeitouni
(2012b), Nolen et al. (2015) and Maillard and Zeitouni (2016).

(Q2): The statement and proof can be easily adapted from Theorem 1.3 in Arguin and
Ouimet (2016) (Article 1).

(Q5): The closest work on this question is done by Bovier and Hartung (2014, 2015, 2019)
in the context of the BBM.

(Q6): The statements and proofs can be easily adapted from Ouimet (2017) (Article 2).
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0.3.3.5. The branching Brownian motion (BBM)

Exp(1)

{

Exp(2)
{

Exp(3)
{

time

0

T

(a) BBM tree structure
(b) BBM simulation (n(T ) = 26)

Figure 0.3.8. The branching Brownian motion

For an introduction to the BBM, the reader is referred to Berestycki (2014), Bovier
(2017) and Shi (2015b).

Definition 0.3.19 (BBM). The process is described as follows on the time interval [0, T ].
At time t = 0, there is one particle, and it performs a Brownian motion until an exponen-

tial clock of mean 1 rings. When the clock rings, the particle splits into two particles, both

of which have independent Brownian paths and both of which have independent exponential

clocks with mean 1. After an exponential time of mean 1/2, one of the two clocks rings and

the corresponding particle splits into two. The now three particles have independent Brow-

nian paths and independent exponential clocks of mean 1 (by the memoryless property),

etc . . . The particles continue to split and move in this manner up to time T .

Let n(t) be the number of particles in the underlying tree structure at time t ∈ [0, T ].
It can be shown that

E[n(t)] = et. (0.3.101)

If we label the leaves of the tree at time t by i1(t), i2(t), . . . , in(t)(t), then the collection

of correlated Brownian paths is {{XT
k (t)}n(t)

k=1}t∈[0,T ] and the field of interest corresponds to

the heights of the leaves at time t = T :

XT
k (T ), k ∈ {1, 2, . . . , n(T )}. (0.3.102)

37



Remark 0.3.6. The most recent common ancestor of ik(T ) and i`(T ) is given by the

branching time :
ρ(ik(T ), i`(T )) $ sup{t ≤ T : ik(t) = i`(t)}. (0.3.103)

Thus, the covariances of the field are

Cov(XT
k , X

T
` ) = ρ(ik(T ), i`(T )). (0.3.104)

Here are the answers to the questions of interest :
(Q1): See Kolmogorov et al. (1937).
(Q2): See Theorem 1.1 in Aïdékon et al. (2017).
(Q3) and (Q4): The asymptotics of the median of the maximum are given up to an O(1)

error in Theorem 1 of Bramson (1978) (see Theorem 1 in Roberts (2013) for a
simpler proof). The O(1) term was improved to “Const.+ o(1)” in Bramson (1983)
using the Feynman-Kac formula.

(Q5): For the convergence in law, see Theorem 1 in Lalley and Sellke (1987). For the
convergence of the extremal process, see Theorem 2.1 in Arguin et al. (2013) (see
also Arguin et al. (2011, 2012) for earlier relevant work). Around the same time,
the convergence of the extremal process was also shown independently by Aïdékon
et al. (2013), building on earlier results from Aïdékon (2013).

(Q6): The proofs can be adapted from Arguin and Zindy (2014). The proofs can also be
adapted from Jagannath (2016), since we have a strong control on the path of the
maximal particle in the case of the BBM (as in the case of the BRW).

Remark 0.3.7. In the case of the complex BBM (where we allow for arbitrary correlations

between the real and imaginary parts of the energies), the fluctuations of the partition

function and the phase diagram of the limiting free energy are described in Hartung and

Klimovsky (2015, 2018). The phase diagram coincides with the one for the complex REM,

previously studied in Kabluchko and Klimovsky (2014a). For analogous results in the

context of the complex GREM, see Kabluchko and Klimovsky (2014b).

Remark 0.3.8. Answers to (Q1), (Q3) and (Q4) in the context of the d-dimensional BBM

are provided in Theorem 1.1 of Mallein (2015c).
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0.3.3.6. The variable speed branching Brownian motion (VSBBM)

Exp(1)

{

Exp(2)
{

Exp(3)
{

time

0

T

(a) VSBBM tree structure
(b) VSBBM simulation (n(T ) = 26)

with 2 levels (σ1 < σ2)

Figure 0.3.9. The variable speed branching Brownian motion

A similar model was originally considered in Derrida and Spohn (1988). For an intro-
duction to the VSBBM, the reader is referred to Bovier and Hartung (2014, 2015, 2019)
and Chapter 9 in Bovier (2017).

Definition 0.3.20 (VSBBM). The tree structure is the same as the one described in

Definition 0.3.19 for the BBM. The only difference is that the variance coefficient of the

Brownian paths’ increments are inhomogeneous in time. More specifically, take a “regular

enough” variance function σ : [0, 1]→ (0,∞), and consider the collection of time-changed

Brownian paths {{XT
k (t)}n(t)

k=1}t∈[0,T ] such that

Var(XT
k (t)) =

∫ t/T

0
σ2(s)ds · T $ Jσ2

(
t

T

)
T, k ≤ n(t), t ∈ [0, T ]. (0.3.105)

Remark 0.3.9. With the above definition, the covariances of the field are given by

Cov(XT
k , X

T
` ) = Jσ2

(
ρ(ik(T ), i`(T ))

T

)
T, (0.3.106)

where ρ(ik(T ), i`(T )) denotes the branching time as in (0.3.103).
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Here are the answers to the questions of interest :
(Q1), (Q3), (Q4) and (Q5): For the limiting law of the recentered maximum and the con-

vergence of the extremal process when the VSBBM has two macroscopic levels,
see Theorem 1.2 and Theorem 1.3 in Bovier and Hartung (2014). For the limiting
law of the recentered maximum and the convergence of the extremal process when
the VSBBM has one effective level and the speed function Jσ2 stays below the
straight line x 7→ x (with only mild technical assumptions on the speed function),
see Theorem 1.2 in Bovier and Hartung (2015). For the same result under stronger
assumptions on the speed function, see Theorem 9.20 in Bovier (2017).

The interpolation of the second order constant in the asymptotic expansion of the
maximum is explained in Bovier and Hartung (2019). (This is similar to the results
of Kistler and Schmidt (2015) in the context of the REM.)

In the case of (strictly) decreasing variance functions, see Fang and Zeitouni (2012b)
and Nolen et al. (2015) (the latter uses PDE techniques) for the second order of
the maximum, and see Maillard and Zeitouni (2016) for the tightness and the
convergence in law of the recentered maximum.

(Q2): For the (σ,λ)-VSBBM (meaning for the VSBBM where the variance function σ

is the step function from (0.3.99)), the statement and proof can be adapted from
Theorem 1.3 in Arguin and Ouimet (2016) (Article 1).

(Q6): For the (σ,λ)-VSBBM, the statements and proofs can be adapted from Ouimet
(2017) (Article 2). For more general variance functions σ, see Bovier and Kurkova
(2004b) in the context of the GREM model with a continuum of hierarchies.
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0.3.3.7. The Gaussian free field (GFF)

(a) GFF tree structure
(b) GFF simulation (N = 25)

Figure 0.3.10. The Gaussian free field

For an introduction to the Gaussian free field, the reader is referred to Biskup (2018),
Sheffield (2007), Berestycki (2016), Zeitouni (2017), and Section 10 in Chatterjee (2008).

Definition 0.3.21 (GFF). Let (Wk)k≥0 be a simple random walk (SRW) starting at u ∈ Z2

with law Pu. For any finite box B ⊆ Z2, the (discrete) GFF on B is a centered Gaussian

field φ $ {φv}v∈B with covariance matrix

GB(u, v) $ π

2 · Eu
τ∂B−1∑

k=0
1{Wk=v}

 , u, v ∈ B, (0.3.107)

where τ∂B is the first hitting time of (Wk)k≥0 on the boundary of B, ∂B $ {v ∈ B | ∃z 6∈
B such that ‖v − z‖2 ≤ 1}, and ‖ · ‖2 denotes the Euclidean distance in Z2. With this

definition, B contains its boundary. Also, note that φ is identically zero on ∂B; this is the

Dirichlet boundary condition. The GFF of interest to us is

φv, v ∈ VN $ {0, 1, . . . , N}2. (0.3.108)

Remark 0.3.10. The covariance function (0.3.107) is simply the (renormalized) Green

function of the discrete Laplacian restricted to functions that are 0 outside B\∂B; it

satisfies the following boundary value problem on B : for x ∈ B\∂B,

∆GB(x, y) = π
2 · 1{x=y}, y ∈ B\∂B,

GB(x, y) = 0, y ∈ ∂B.
(0.3.109)
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Remark 0.3.11. For λ ∈ (0, 1) and v = (v1, v2) ∈ VN , consider the closed neighborhood

[v]λ in VN consisting of the square box of width N1−λ centered at v that has been cut off

by ∂VN :
[v]λ $

(
(v1, v2) +

[
− 1

2N
1−λ,

1
2N

1−λ
]2)⋂

VN .

By convention, we define [v]0 $ VN and [v]1 $ {v}. Let F∂[v]λ be the σ-algebra generated

by the r.v.s on the boundary of the box [v]λ. It can be shown that the r.v.s E[φv | F∂[v]λ ],
where the v’s are the nodes at scale λ in Figure 0.3.10a (which we call the representatives

at scale λ), play the same role as the leaves of the BRW at time λn.

To see the tree structure, define the branching scale between v and v′ by

ρ(v, v′) $ max{λ ∈ [0, 1] : [v]λ ∩ [v′]λ 6= ∅}. (0.3.110)

This is the largest λ for which the two neighborhoods [v]λ and [v′]λ intersect. We always

have by definition that ‖v− v′‖2 is of order N1−ρ(v,v′). The branching scale plays the same

role as the branching time (normalized to lie in [0, 1]) in the BRW context. In fact, it can

be shown that, for v, v′ ∈ V δ
N $ {v ∈ VN : minz∈∂VN ‖v − z‖2 ≥ δN} with δ ∈ (0, 1

2),

Cov(φv, φv′) = GVN (v, v′) = logN1−ρ(v,v′) +O(1), (0.3.111)

by using estimates on the potential kernel of the SRW.

An important property of the GFF is the Markov property (as a random field), which

means that the value of the field inside a neighborhood is independent of the field outside

given the boundary, see e.g. Dynkin (1980). It is a consequence of the strong Markov pro-

perty of the SRW. In particular, for the neighborhood [v]λ,

φv(λ) $ E
[
φv | F∂[v]λ∪[v]c

λ

]
= E

[
φv | F∂[v]λ

]
. (0.3.112)

Let v, v′ ∈ VN , λ < λ′ and µ < µ′. Another direct consequence is the independence of the

disjoint increments, meaning that for λ, µ > ρ(v, v′) or λ > ρ(v, v′) > µ′,

φv(λ′)− φv(λ) is independent of φv′(µ′)− φv′(µ). (0.3.113)

This is because the shell [v]λ ∩ [v]cλ′ does not intersect the shell [v′]µ ∩ [v′]cµ′ in both cases.

Thus, as in the BRW setting, the increments past the branching scale are independent.

42



The difference happens before the branching scale, where the increments are nearly perfectly

correlated, and around the branching scale, where the decorrelation happens more smoothly.

Here are the answers to the questions of interest :
(Q1): See Theorem 2 in Bolthausen et al. (2001).
(Q2): See Theorem 1.3 in Daviaud (2006). For much stronger results, see Biskup and

Louidor (2016b). In the continuous setting, see Theorem 1.1 and Theorem 1.2 in
Hu et al. (2010) for results related to thick points.

(Q3) and (Q4): A preliminary condition for the tightness was developed in Bolthausen
et al. (2011) and proved in Bramson and Zeitouni (2012). Precise estimates for the
tail probabilities of the recentered maximum were then found in Ding (2013) by
bootstrapping estimates in smaller boxes using the FKG inequality (the sprinkling
method). The estimates were later improved in Ding and Zeitouni (2014).

(Q5): See Theorem 1.1 and Theorem 2.5 in Bramson et al. (2016a); their strategy builds
in part on earlier work from Ding and Zeitouni (2014). For a generalization of these
two theorems to a large class of log-correlated Gaussian fiels, see Theorem 1.3 and
Theorem 1.4 in Ding et al. (2017). For the convergence of the extremal process,
see Theorem 1.1 in Biskup and Louidor (2016a) (local extrema) and Section 2 in
Biskup and Louidor (2018).

(Q6): In Arguin and Zindy (2015), see Theorem 2.1 for the limiting free energy of the
perturbed field, Theorem 1.1 for the limiting two-overlap distribution, and Theorem
1.2 for the joint distribution of the overlaps in the limit. For the convergence in law
of the Gibbs measure to a Poisson-Dirichlet process at low temperature, see also
Corollary 2.7 in Biskup and Louidor (2018).

Remark 0.3.12. The definition of the GFF extends naturally to other dimensions. Note

however that d = 2 is the most interesting case (the critical dimension) from the point

of view of extreme value theory (this is linked to the fact that the SRW is transient for

d ≥ 3). Results of interest for the GFF in dimensions d ≥ 3 can be found for example

in Cipriani and Hazra (2015, 2017), Chiarini et al. (2016, 2015), and Chen (2018a). See

also the results on the closely related log-REM model in Carpentier and Le Doussal (2001),

Fyodorov and Bouchaud (2008a,b), Fyodorov et al. (2009), and Cao et al. (2016).
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0.3.3.8. The scale-inhomogeneous Gaussian free field (IGFF)

(a) IGFF tree structure
(b) IGFF simulation (N = 25)

with 2 levels (λ1 = 2/5 and σ1 > σ2)

Figure 0.3.11. The scale-inhomogeneous Gaussian free field

The 2-levels IGFF first appeared in Arguin and Zindy (2015) and the general IGFF
was introduced in Ouimet (2014) and Arguin and Ouimet (2016) (Article 1).

Definition 0.3.22 ((σ,λ)-IGFF). Let φ $ {φv}v∈VN be the GFF on VN . Take M ∈ N

and (σ,λ) as in (0.3.97). The (σ,λ)-IGFF on VN is a Gaussian field ψ $ {ψv}v∈VN
defined by

ψv $
M∑
i=1

σi
(
φv(λi)− φv(λi−1)

)
. (0.3.114)

Remark 0.3.13. The field ψ can be seen as a martingale-transform of (φv(λ))λ∈[0,1] applied

simultaneously for every v ∈ VN .

Here are the answers to the questions of interest :
(Q1) and (Q2): See Theorems 1.2 and 1.3 in Arguin and Ouimet (2016) (Article 1). In

the continuous setting, see Theorem 7 in Chen (2018b) for a result related to the
Hausdorff dimension of f -steep points under a sphere averaging regularization.

(Q3), (Q4) and (Q5): This is still open. Proving (Q3) on V δ
N should be feasible, but the

difficulty of proving (Q3) on VN stems from the decay of the variances near ∂VN .
This is difficult to handle in the inhomogeneous case as each end of the increments
of the field pulls the variances in opposite directions (see below (0.4.11)).

(Q6): In Ouimet (2017) (Article 2), see Theorem 6.1 for the limiting free energy, Theorem
6.3 for the limiting two-overlap distribution, and Corollary 7.2 for the identification
of the limiting Gibbs measure as a cascade of Poisson-Dirichlet processes.
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0.3.3.9. The membrane model (MM)

(a) MM tree structure (d = 2) (b) MM simulation (d = 2)
without the boundary condition

Figure 0.3.12. The membrane model

This model was first studied probabilistically by Sakagawa (2003). For an introduction,
we refer the reader to Kurt (2009).

Definition 0.3.23 (MM). For any finite box B ⊆ Zd, the MM on B is a centered Gaussian

field φ $ {φv}v∈B with covariance matrix given by the Green function of the discrete bi-

Laplacian restricted to functions that are 0 outside B\∂2B, where ∂2B $ {v ∈ B | ∃z 6∈
B such that ‖v−z‖2 ≤ 2}. It satisfies the boundary value problem on B : for x ∈ B\∂2B,

∆2GB(x, y) = 1{x=y}, y ∈ B\∂2B,

GB(x, y) = 0, y ∈ ∂2B.
(0.3.115)

The dimension of interest to us (the critical dimension) is d = 4. The covariance has
no random walk representation, but it can be shown that, for v, v′ ∈ V δ

N with δ ∈ (0, 1
2),

Cov(φv, φv′) = 8
π2 logN1−ρ(v,v′) +O(1), similarly to the GFF in (0.3.111).

Here are the answers to the questions of interest :
(Q1) and (Q2): See Theorem 1.2 in Kurt (2009), and Theorem 1.4 in Cipriani (2013).
(Q3) and (Q4): See Theorem 1.2 in Ding et al. (2017).
(Q5): See Theorem 1.1 in Schweiger (2019), which uses results from Ding et al. (2017).
(Q6): This is open, although see Sakagawa (2012, 2018) for results related to the free

energy, and Cipriani et al. (2019) for the scaling limit of the membrane.
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0.3.3.10. The randomized log-modulus of the Riemann zeta function (RLM-RZF)

scales for
log p

(log T )0

(log T )1

0 2π h

(log T )
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(log T )
j−1
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(a) RLM-RZF tree structure
(K = 1
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(b) RLM-RZF simulation
(T = 100 000-th prime)

Figure 0.3.13. The randomized log-modulus of the Riemann zeta function

This model was first defined by Harper (2013). For an introduction, we refer the reader
to Arguin et al. (2017b) and Arguin (2017).

Definition 0.3.24 (RLM-RZF on the critical line). Let (Up, p primes) be an i.i.d. sequence

of uniform random variables on the unit circle in C. The random field of interest is

Xh $
∑
p≤T

Re(Up p−ih)
p1/2 , h ∈ [0, 2π]. (0.3.116)

(A sum over the variable p always denotes a sum over primes.)

Remark 0.3.14. If τ ∼ Uniform(T, 2T ), the field {Xh}h∈[0,2π] is a good model to study

the large values of (log |ζ(1
2 + iτ + ih)|, h ∈ [0, 2π]) for the following reason. Proposition 1

in Harper (2013) proves that, assuming the Riemann hypothesis, and for T large enough,

there exists a set B ⊆ [T, T + 2π], of Lebesgue measure at least 1.99π, such that

log |ζ(1
2 + it)| = Re

∑
p≤T

1
p1/2+it

log(T/p)
log T

+O(1), t ∈ B. (0.3.117)

If we ignore the smoothing term log(T/p)/ log T and note that the process (p−iτ, p primes)
converges, as T →∞ (in the sense of convergence of its finite-dimensional distributions),

to a sequence of independent random variables distributed uniformly on the unit circle (by
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computing the moments), then the model (0.3.116) follows. For more information, see

Section 1.1 in Arguin et al. (2017b).

As for the BRW, we can show the logarithmic decay of the correlations for this model.
Since Re(z) = (z + z)/2, E[U2

p ] = E[(Up)2] = 0 and E[UpUp] = 1, it is easily shown from
(0.3.116) that

E[XhXh′ ] =
∑
p≤T

1
2p cos(|h− h′| log p), h, h′ ∈ [0, 1]. (0.3.118)

Using the prime number theorem (Montgomery and Vaughan, 2007, Theorem 6.9) which
states that

#{p prime : p ≤ x} =
∫ x

2

1
log udu+R(x), (0.3.119)

where R(x) = O(xe−c
√

log x), uniformly for x ≥ 2, we can show (see, for example, page 20
of Appendix A in Harper (2013)) that

Corr(Xh, Xh′) =
1
2 log

(
(log T ) ∧ |h− h′|−1

)
1
2 log log T +O

(
(log log T )−1

)
. (0.3.120)

The analogy with BRWs is thus recovered when we break the sum (0.3.116) between the
scales exp((log T ) j

K ), j ∈ {0, 1, . . . , K}, with K = 1
log 2 log log T levels. This is illustrated

in Figure 0.3.13a.

Here are the answers to the questions of interest :
(Q1): See Proposition 2 in Harper (2013).
(Q2): See Lemma 12 in Arguin and Tai (2018) (u = 0), and see Arguin et al. (2019b) for

the almost-sure convergence of the normalized Lebesgue measure of high points.
(Q3): See Theorem 1.2 in Arguin et al. (2017b).
(Q4) and (Q5): This is still open, although see Conjecture 10.1.4. A preliminary step for

(Q4) has been made in Arguin and Ouimet (2019) (Article 5), where we show large
deviations and continuity estimates for the derivative of the field.

(Q6): See Proposition 4 and Theorem 1 in Arguin and Tai (2018) for the limiting free
energy of the perturbed field and the limiting two-overlap distribution, respectively.
See Theorem 3.3 in Ouimet (2018b) (Article 4) for the joint distribution of the over-
laps in the limit (Theorem 5.8 for the extended Ghirlanda-Guerra identities).
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0.3.3.11. The log-modulus of the Riemann zeta function (LM-RZF)

scales for
log p

(log T )0
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(a) LM-RZF tree structure
(K = 1
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(b) LM-RZF simulation (T = 100 000)

Figure 0.3.14. The log-modulus of the Riemann zeta function

For good books on the properties of the Riemann zeta function, the reader is referred
to Titchmarsh (1986), Laurinčikas (1996) and Ivić (2003).

Definition 0.3.25 (LM-RZF on the critical line). Let s ∈ C. The Riemann zeta function

is defined on Re(s) > 1 by the following absolutely convergent series and the related Euler

product :
ζ(s) $

∞∑
n=1

1
ns

=
∏

p primes

(
1− 1

ps

)−1

. (0.3.121)

It admits an analytic continuation to C\{1}, where s = 1 is a simple pole. For instance,

the following representation is valid on the critical strip Re(s) ∈ (0, 1) (see e.g. Theorem

3.2 in De Koninck and Luca (2012)) :

ζ(s) = s

s− 1 − s
∫ ∞

1

x− bxc
xs+1 dx. (0.3.122)

If τ ∼ Uniform(T, 2T ), then the field of interest to us is

h 7→ log |ζ(1
2 + iτ + ih)|, h ∈ [0, 2π]. (0.3.123)

Remark 0.3.15. There are no obvious reasons for the tails of log |ζ(1
2 + iτ)| to be Gauss-

ian, but an influential theorem of Selberg (see Selberg (1946, 1992), see Radziwiłł and

Soundararajan (2017) for a simpler proof, and see Bourgade (2010) for a multidimensional

extension) shows, quite surprisingly, that the tails are approximately Gaussian when T is
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large. More precisely, for V ∈ R fixed and as T →∞,

P
(

log |ζ(1
2 + iτ)| ≥ V

√
(1/2) log log T

)

= (1 + o(1))
∫ ∞
V

1√
2π
e−u

2/2du.

(0.3.124)

To push the analogy with the RLM-RZF and the Gaussian BRW, note that if we formally

take the logarithm of the Euler product in (0.3.121) when Re(s) = 1/2, then, for an

appropriate cutoff X < T , we have

log |ζ(1
2 + iτ + ih)| = −Re

∑
p

log(1− p−( 1
2 +iτ+ih))

≈
∑
p≤X

Re(p−iτp−ih)
p1/2 , (0.3.125)

where the p−iτ ’s play the same role as the Up’s in Definition 0.3.24. This approxima-

tion can be made rigorous by the main proposition upper bound in Soundararajan (2009)

(conditional on RH) and the mollification argument (near the critical line) used to prove

Selberg’s theorem in Radziwiłł and Soundararajan (2017) and used to prove the lower

bound of the maximum in Arguin et al. (2019a). Therefore, the tree structure in Figure

0.3.14a and the logarithmic decay of the correlations hold (approximately) as it does for

the RLM-RZF.

Let θ > −1 and let I $ [− logθ T, logθ T ]. We present below a rigorous comparison
between the correlations of {log |ζ(1

2 + iτ + ih)|}h∈I and the correlations of the real-part
of the Dirichlet polynomial

P (s) $
∑
p≤T ε

p−s, ε ∈ (0, 1), (0.3.126)

on the critical line when s = 1
2 + iτ + ih. The argument is due to Maksym Radziwiłł (in a

private email exchange). For h, h′ ∈ I, define the overlaps of {log |ζ(1
2 + iτ + ih)|}h∈I by

ρ(h, h′) $
E
[

log |ζ(1
2 + iτ + ih)| log |ζ(1

2 + iτ + ih′)|
]

√
E
[
(log |ζ(1

2 + iτ + ih)|)2
]√

E
[
(log |ζ(1

2 + iτ + ih′)|)2
] . (0.3.127)

Then, we have the following result.
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Proposition 0.3.26 (Comparison between the overlaps of log |ζ| and ReP ). Let θ > −1.
For all h, h′ ∈ I, we have

ρ(h, h′) =
1
2 log((log T ) ∧ |h− h′|−1)

1
2 log log T +O

(
(log log T )−1/2

)
. (0.3.128)

Proof. For a lighter notation, set

f(h) $ log |ζ(1
2 + iτ + ih)| and g(h) $ Re

∑
p≤T ε

p−( 1
2 +iτ+ih), (0.3.129)

where 0 < ε < 1
200 is fixed arbitrarily. We have

E
[
f(h)f(h′)] = E

[
g(h)g(h′)

]
+O

(
E
[
|f(h)− g(h)||f(h′)|

])

+O
(
E
[
|g(h)||f(h′)− g(h′)|

])
.

(0.3.130)

We need to control the two error terms.
Based on the work of Selberg (1946), Theorem 5.1 in Tsang (1984) shows that, for any

given 0 < ε < 1
200 ,

max
h∈I

E
[
|f(h)− g(h)|2

]
� 1. (0.3.131)

By a standard second moment estimate on g, this implies

max
h∈I

E
[
|f(h)|2]� max

h∈I
E
[
|g(h)|2

]
+ max

h∈I
E
[
|f(h)− g(h)|2

]
� log log T. (0.3.132)

By applying the Cauchy-Schwarz inequality for both error terms in (0.3.130), and then
using (0.3.131) and (0.3.132), we find that, for all h, h′ ∈ I,

E
[
f(h)f(h′)] = E

[
g(h)g(h′)

]
+O

(
(log log T )1/2

)
. (0.3.133)

In particular, for all h ∈ I,

E
[
f(h)2] = E

[
g(h)2

]
+O

(
(log log T )1/2

)
. (0.3.134)

Since E
[
g(h)g(h′)

]
= 1

2 log((log T )∧|h−h′|−1)+O(1) for all h, h′ ∈ I by an argument very
similar to page 20 in Harper (2013), we get the conclusion from (0.3.133) and (0.3.134).
This ends the proof. �
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Here are the answers to the questions of interest :
(Q1): When the length of the interval is O(1) (i.e. θ = 0), see Theorem 1.1 in Arguin

et al. (2019a). For a generalization to intervals of length O(logθ T ), θ > −1, see
Theorem 1.2 in Arguin et al. (2019c) (Article 6).

(Q2) and (Q6): For the asymptotics of the log-number of high points and the free energy
on intervals of length O(logθ T ), θ > −1, see Theorem 1.1 in Arguin et al. (2019c)
(Article 6) and its proof. For moments and high points conjectures when θ = 0, see
Keating and Snaith (2000) and Fyodorov and Keating (2014). For the limiting two-
overlap distribution and the extended Ghirlanda-Guerra identities, see Conjectures
10.1.1 and 10.1.2.

(Q3), (Q4) and (Q5): This is open, although see Conjecture 10.1.3 (due to L.-P. Arguin)
for the second order of the maximum on intervals of length O(logθ T ), θ > −1.
When θ = 0, see Theorem 2 in Harper (2019) for an upper bound on the second
order of the maximum. Also, see Fyodorov and Keating (2014) for a conjecture on
the convergence in law of the recentered maximum. In Saksman and Webb (2018),
it is proved that the field converges to a non-trivial random generalized function
with a Gaussian multiplicative chaos factor.

Remark 0.3.16. The general question of understanding the moments of zeta (Q6) is tied

to the Lindelöf hypothesis, which conjectures that

ζ(1
2 + it)� tε, ∀ε > 0, as t→∞. (0.3.135)

It is equivalent to

1
T

∫ T

1
(ζ(1

2 + it))2kdt� T ε, ∀k ∈ N, ∀ε > 0, (0.3.136)

see e.g. Theorem 13.2 in Titchmarsh (1986). It is a weak form of the Riemann hypothesis

as it can be restated in terms of the concentration of non-trivial zeros around the critical

line : for every ε > 0,

#
{
z ∈ C : ζ(z) = 0, 1

2 + ε≤ Re z < 1, T ≤ Im z ≤ T + 1
}

= o(log T ), (0.3.137)

see Backlund (1918–1919).
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0.3.3.12. The log-characteristic polynomials of the CUE field (LCP-CUE)

scales for the
powers k

20

2n

0 2π h

2`

2`−1

(a) LCP-CUE tree structure
(n = 1

log 2 logN levels)

0 1 2 3 4 5 6

-4

-2

0

2

4

0 1 2 3 4 5 6

-4

-2

0

2

4

(b) LCP-CUE simulation (N = 24 ; N = 28)

Figure 0.3.15. The log-characteristic polynomials of the CUE field

For an introduction to random matrix theory, the reader is referred to Anderson et al.
(2010) and Tao (2012).

Definition 0.3.27 (LCP-CUE). For N ∈ N, let UN be a random matrix sampled from

the group of N ×N unitary matrices under the Haar measure. The field of interest is the

real-part of the log-characteristic polynomial of UN , namely

Xh $ log | det(eihIN − UN)| =
N∑
j=1

log |1− ei(λj−h)|, h ∈ [0, 2π], (0.3.138)

where IN denotes the identity matrix of order N and eiλj is the j-th eigenvalue of UN . By

expanding the logarithm, we have

Xh =
N∑
j=1

∞∑
k=1

−Re(eik(λj−h))
k

≈
N∑
k=1

−Re(e−ikhTrUk
N)

k
. (0.3.139)

Remark 0.3.17. Traces of powers of UN play a role analogous to the Up’s in the RLM-

RZF model of Definition 0.3.24. If N = 2n, then we can recover the BRW analogy by

breaking the sum (0.3.139) into ∑n
`=1

∑
2`−1<k≤2`

−Re(e−ikhTrUkN )
k

; see Figure 0.3.15a for an

illustration of the branching structure.
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Remark 0.3.18. To compute the correlations, note that E
[
TrUk

NTrUk′
N

]
= 0 by rotation

invariance of the Haar measure, and also that E
[
TrUk

NTrUk′
N

]
= 1{k=k′}min{k′, N} from

Theorem 2.1 in Diaconis and Evans (2001) (see also Diaconis and Shahshahani (1994)).

It follows from Re(z) = (z + z)/2 and (0.3.139) that

Cov(Xh, Xh′) ≈
N∑
k=1

eik(h−h′) + e−ik(h−h′)

4k = 1
2

N∑
k=1

cos(k |h− h′|)
k

, (0.3.140)

so that

Corr(Xh, Xh′) ≈
1
2 log(N ∧ |h− h′|−1)

1
2 logN +O((logN)−1), (0.3.141)

showing again the logarithmic decay of the correlations with the distance.

Here are the answers to the questions of interest :
(Q1) and (Q2): See Theorem 1.2 and Theorem 1.3 in Arguin et al. (2017a).
(Q3): See Theorem 1.2 in Paquette and Zeitouni (2018).
(Q4): See Theorem 1.2 in Chhaibi et al. (2018). In fact, their article proves the tightness

of the recentered maximum for the log-characteristic polynomials of the CβE field
for all β > 0 (the CUE field corresponds to the special case β = 2).

(Q5): This is open, although see Fyodorov and Keating (2014) and Fyodorov et al. (2018)
for some conjectures. In Chhaibi et al. (2017), the field {det(eihIN − UN)}h∈[0,2π]

is shown to converge, after proper scaling at the microscopic level, to a random
analytic function whose zeros form a determinantal point process with sine kernel.

(Q6): This is open in principle, but it should be possible to write it down. The limiting
free energy is shown in Corollary 1.4 of Arguin et al. (2017a). For the rest, one
can take inspiration from Arguin and Tai (2018) to find the limiting two-overlap
distribution, and from Ouimet (2018b) (Article 4) to prove the Ghirlanda-Guerra
identities. The reader can find conjectures on moments and high points in Keating
and Snaith (2000), Fyodorov and Keating (2014) and Fyodorov et al. (2018).

Remark 0.3.19. In Fyodorov and Keating (2014), it was conjectured that, as N → ∞,

the Radon measure eγXh

E[eγXh ] dh converges to a GMC measure. This result was proved for the

L2-phase in Webb (2015), and for the L1-phase in Nikula et al. (2018).
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0.4. A summary of the new results and ideas

The thesis contains 9 articles of which 7 are already published in peer-reviewed journals.
The reader can find the articles listed on my personal website :

https://sites.google.com/site/fouimet26/research.

I present a brief summary of the new results and ideas in the three subsections below. In
order to not repeat too much material, it is not a comprehensive review. If the reader
wants to know more, I invite him/her to read the beginning sections of each article.

0.4.1. In Part 1

Part 1 of the thesis contains three articles on log-correlated Gaussian fields :

Article 1

Arguin and Ouimet (2016) (Article 1) shows the first order of the maximum (Q1) and
the first order of the log-number of γ-high points (Q2) for the (σ,λ)-IGFF on its full
domain. Specifically, we have the following theorem.

Theorem 0.4.1. Let {ψv}v∈VN be the (σ,λ)-IGFF of Definition 0.3.22. Then,

lim
N→∞

maxv∈VN ψv
logN2 =

∫ 1

0
σ̄(s)ds $ γ?, in probability. (0.4.1)

The log-number of γ-high points depends on critical levels defined by

γl $
∫ 1

0

σ̄2(s)
σ̄(s ∧ λl)ds, 1 ≤ l ≤ m, γ0 $ 0. (0.4.2)

For γ ∈ (γl−1, γl], define

E(γ) $ (1− λl−1)− (γ − ∫ λl−1

0 σ̄(s)ds)2∫ 1
λl−1 σ̄2(s)ds

and E(0) $ 1. (0.4.3)

Let γ ∈ [0, γ?), then

lim
N→∞

log |{v ∈ VN : ψv ≥ γ logN2}|
logN2 = E(γ), in probability. (0.4.4)
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Here is an heuristic. Let ∇if $ f(i)− f(i− 1) be the difference operator (we omit the
subscript when the variable is obvious from the context). Consider the set of v’s that are
representatives at scale λk (recall Remark 0.3.11 and Figure 0.3.10a) and for which the
increments of the field ψ reach level ∇γi in the scale interval [λi−1, λi], for every i ≤ k :

ΛN,k $ {v ∈ Rλk : ∇ψv(λi) ≥ ∇γi logN2 for all i ∈ {1, 2, . . . , k}}. (0.4.5)

By identifying each point of the field ψv(λi) at each scale λi with his closest representative
ψvλi (λi), then Gaussian tail estimates (Lemma 11.1.1) and the independence between the
increments ∇ψv(λi) (coming from the Markov property of the GFF) yield

E[|ΛN,k|] � N2λk
k∏
i=1

P(∇ψv(λi) ≥ 2∇γi logN) � N2λkN
−2
∑k

i=1
(∇γi)

2

σ2
i
∇λi

(logN)k/2 , (0.4.6)

since there are � N2λk representatives at scale λk and the variance of the increments is
V(∇ψv(λi)) = σ2

i∇λi logN +O(1) if we ignore the boundary effect. In other words,

lim
N→∞

log(E[|ΛN,k|])
logN2 =

k∑
i=1

(
∇λi −

(∇γi)2

σ2
i∇λi

)
. (0.4.7)

Since there should be representatives at each scale λk that ultimately yield a high value
at scale λM , it is intuitive that the level of the maximum should be found by maximizing

γM =
M∑
i=1
∇γi under the constraints

k∑
i=1

(
∇λi −

(∇γi)2

σ2
i∇λi

)
≥ 0, 1 ≤ k ≤M.

If the end level is fixed to γM = γ, then the same argument suggests that the log-number
of γ-high points (for 0 < γ < γ?) should be found by maximizing

lim
N→∞

log(E[|ΛN,M |])
logN2 =

M−1∑
i=1

(
∇λi −

(∇γi)2

σ2
i∇λi

)
+
(
∇λM −

(γ − γM−1)2

σ2
M∇λM

)
(0.4.8)

under the constraints
k∑
i=1

(
∇λi −

(∇γi)2

σ2
i∇λi

)
≥ 0, 1 ≤ k ≤M − 1. (0.4.9)

The unique solution to both optimization problems can be found explicitly by using the
Karush-Kuhn-Tucker conditions, see Appendix A in Ouimet (2014).
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An analysis of the solutions tells us where the maximal particle (respectively, most
particles reaching above γ logN2) should be at every effective scale λj, with high proba-
bility. Therefore, if the difference of contribution between each point of the field and its
closest representative can be shown to be negligible at every scale, then we can work on
the underlying branching structure of the field (recall Figure 0.3.11a) and adapt a second
method (by being careful around the branching point in the lower bound) to prove The-
orem 0.4.1. Away from the boundary, i.e. on V δ

N = {v ∈ VN : minz∈∂VN ‖z − v‖2 ≥ δN}
with δ ∈ (0, 1

2), this is not so difficult because V(∇ψv(λi)) = σ2
i∇λi logN + O(1) holds

true. It was proved (with some mistakes and different notation) in Ouimet (2014).

The main innovation of the article is in proving that Theorem 0.4.1 not only holds
on V δ

N , but also on VN , even though the variance of the increments decreases to zero as
we approach ∂VN . The two ingredients necessary to extend the proof from V δ

N to VN are
essentially (see the appendix in Arguin and Ouimet (2016) (Article 1)) :

(a) For any i ∈ {1, 2, . . . ,M}, we have

max
v∈VN

Var(ψv(λi)− ψv(λi−1)) ≤ σ2
i∇λi logN + Const.(σi), (0.4.10)

meaning that the variance of the increments of the field is uniformly bounded every-
where by the variance of the increments in the center of VN , up to a constant.

(b) For any i ∈ {1, 2, . . . ,M}, then

max
v∈VN

Var(ψv(λi)− ψvλi (λi)) ≤ Const.(σ1, . . . , σi), (0.4.11)

meaning that the difference of contributions between each point of the field and its
closest representative is in fact negligible at any given scale, uniformly on VN .

Both results are consequences of careful estimates on Green functions using the potential
kernel of the simple random walk underlying the definition of the variances of the field.
In the case of the GFF (one scale), only an upper bound on maxv∈VNVar(ψv) is needed.
Such a bound is trivial since the Green function (0.3.107) maximizes in the center of any
box. What makes (a) and (b) particularly non-trivial in the scale-inhomogeneous case is
that we have to estimate differences of Green functions at different scales, where both
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estimates pull in opposite directions. These computations also have to be done near the
boundary ∂VN , where a shell [v]λi−1∩[v]cλi might be cut off in various ways. Because of this,
(a) is no longer obvious. To obtain (b), we can compare successively ψv(λi), E[ψv | F∂B],
E[ψvλi | F∂B] and ψvλi (λi), for a large enough box B ⊇ [v]λi ∪ [vλi ]λi of width O(N1−λi),
where the boundary effects are again an issue.

Article 2

Ouimet (2017) (Article 2) uses the results from Arguin and Ouimet (2016) (Article 1)
to show that the limiting law of the Gibbs measure for the (σ,λ)-IGFF is a tree of
Poisson-Dirichlet processes with a number of levels that depends on the inverse tempera-
ture parameter β. It is a consequence of the following theorem, which answers (Q6).

Theorem 0.4.2. Let {ψv}v∈VN be the (σ,λ)-IGFF on VN of Definition 0.3.22, let

qN(v, v′) $ E[ψvψv′ ]
maxv∈VNVar(ψv)

, v, v′ ∈ VN , (0.4.12)

denote the overlaps of the field, and let

lβ $
min{l ∈ {1, . . . ,m} : β ≤ βc(σ̄l) $ 2/σ̄l}, if β ≤ 2/σ̄m,
m+ 1, otherwise.

(0.4.13)

Then, for any β > 0, the limiting two-overlap distribution of the field ψ is

lim
N→∞

EG×2
β,N

[
1{qN (v,v′)≤r}

]
=


0, if r < 0,
βc(σ̄j)/β, if r ∈ [xj−1, xj), j ≤ lβ − 1,
1, if r ≥ xlβ−1,

(0.4.14)

where xj $ Jσ̄2(λj)/Jσ̄2(1) and Gβ,N({v}) $ eβψv/
∑
v′∈VN e

βψv′ , v ∈ VN .
Also, let β > 0 and let µβ be a subsequential limit of {Gβ,N}N∈N as in (0.3.83). Then,

for any s ∈ N, any k ∈ {1, . . . , s}, and any functions h : {x0, x1, . . . , xlβ−1}s(s−1)/2 → R

and g : {x0, x1, . . . , xlβ−1} → R, we have the extended Ghirlanda-Guerra identities :

Eµ
×(s+1)
β

[
g(Rk,s+1)h((Ri,i′)1≤i,i′≤s)

]
= 1
s
Eµ×2

β

[
g(R1,2)

]
Eµ×sβ

[
h((Ri,i′)1≤i,i′≤s)

]
+ 1
s

s∑
`6=k

Eµ×sβ
[
g(Rk,`)h((Ri,i′)1≤i,i′≤s)

]
.

(0.4.15)
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The first part of the theorem says that, in the limit N →∞, the particles are sampled
under the Gibbs measure in such a way that their overlaps can only take finitely many
values (on average) : x0 < x1 < · · · < xlβ−1, where xj has probability ∇j(1∧ (βc(σ̄j+1)/β))
with the convention σ̄0 $∞ and σ̄m+1 $ 0. As β gets larger (i.e. as temperature decreases)
and passes certain critical thresholds

βc(σ̄1) < βc(σ̄2) < · · · < βc(σ̄m), (0.4.16)

the number of possible values xj for the overlaps, namely lβ, also increases. There are m
critical thresholds in general because there are m effective scales (in the case of the GFF,
there is only one threshold because there is only one effective scale). As we already know
from Panchenko’s work, the extended Ghirlanda-Guerra identities in (0.4.15) together with
the limiting two-overlap distribution in (0.4.14) imply that the joint distribution of the
overlaps in the limit is completely determined under Eµ×∞β and the underlying limiting
Gibbs measure µβ can be identified (see Section 7 in Ouimet (2017) (Article 2)) as a
(lβ − 1)-levels tree of Poisson-Dirichlet processes (also called Ruelle probability cascade).
These results coincide with the ones for the GREM in Bovier and Kurkova (2004a). The
surprising part is that our results coincide despite the branching structure of the IGFF
being only approximate when N is finite and despite the decay of the variances near the
boundary of the domain VN . This is one additional piece of evidence (among many) for the
universality of the extended Ghirlanda-Guerra identities, the extent of which is discussed
and quantified in Jagannath (2017).

The proof of Theorem 0.4.2 follows the same steps (essentially) as in the proof of the
extended Ghirlanda-Guerra identities for the REM in Section 0.3.3.1. The two major dif-
ferences are that we have to apply the arguments (the Bovier-Kurkova technique, Gaussian
integration by parts, Panchenko’s concentration argument, etc.) on the increments at ev-
ery scales and we also have to be careful about the boundary effect of the variances on
the Gibbs measure.

The article generalizes Arguin and Zindy (2015) where the same techniques were used
in the simpler case of the GFF (one effective scale). By applying Laplace’s method with
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the knowledge of the first order of the maximum and log-number of γ-high points from
Arguin and Ouimet (2016) (Article 1), we can easily derive the limit (in probability and
in Lp, p ≥ 1) of the free energy on VN . The same expression also holds for the limiting
free energy away from the boundary, i.e. on the set

AN,ρ $
{
v ∈ VN : min

z∈Z2\VN
‖v − z‖2 ≥ N1−ρ

}
, with ρ ∈ (0, 1). (0.4.17)

In Arguin and Zindy (2015), they apply Slepian’s lemma to compare the GFF with the
REM (which has no correlations) in order to show that the Gibbs measure of the set AcN,ρ
is negligible in the limit (in probability), meaning that the contribution of the boundary
doesn’t impact the expression of the limiting two-overlap distribution. It also means that
the Ghirlanda-Guerra identities need only to hold on AN,ρ as N → ∞. In my article,
such a comparison is far from obvious as we would have to compare the increments of the
field at every effective scale with the increments of a GREM and somehow put everything
together to make a global comparison. The fact that the set of representatives changes
with each scale make us lose the independence property of the increments ∇ψv(λi) that we
have when v is fixed, so it is not clear how to connect the comparisons to make it global.

The approach that I use is completely different and instead compares the related
optimization problems on VN and AcN,ρ respectively. A monotony argument shows that
the log-number of γ-high points on AcN,ρ and the limiting free energy on AcN,ρ are both
strictly smaller than their counterparts on VN , from which it follows that, for ρ small
enough but fixed, we have Gβ,N(AcN,ρ)→ 0 as N →∞, in probability.

Once the problem is reduced to AN,ρ, the structure of the argument is the same as in
Section 0.3.3.1; each argument is just more laborious as we have to prove everything on the
increments ψv(α′)−ψv(α), λi−1 ≤ α < α′ ≤ λi. The Bovier-Kurkova technique for instance
is the idea that relates the limiting two-overlap distribution and the derivative of the
limiting free energy with respect to a perturbation parameter u, via Gaussian integration
by parts and estimates on the increments of overlaps. In the scale-inhomogeneous case,
the details needed to find the expression of the derivative at u = 0 are much more involved
and probably the most technical part of the article.
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Article 3

Ouimet (2018c) (Article 3) shows the tightness of the recentered maximum (Q4) for
the (σ,λ)-IBRW of Definition 0.3.18.

Theorem 0.4.3. For all ε > 0, there exists Kε > 0 large enough that for all n ∈ N,

P
(∣∣∣∣max

v∈Dn
Sv(n)−

m∑
j=1

[√
2 log 2 σ̄j∇λjn−

(1 + δleft
j + δright

j )σ̄j
2
√

2 log 2 log n
]∣∣∣∣ ≥ Kε

)
< ε,

where δleft
j $ 1 when Jσ2 and Jσ̄2 coincide on [λj−1, a] for some a > λj−1, and δleft

j $ 0
otherwise. Similarly, δright

j $ 1 when Jσ2 and Jσ̄2 coincide on [b, λj] for some b < λj, and

δright
j $ 0 otherwise.

The proof uses discrete Brownian bridge estimates adapted from Bramson (1978) and a
refined second moment method between each effective scale λj, 1 ≤ j ≤ m, that generalizes
the one used in Fang and Zeitouni (2012a) (slightly more precise than the heuristic below
(0.3.96)). The article describes how the variance and scale parameters influence the first
and second order of the maximum. In particular, everytime the speed function Jσ2 and
its concave hull Jσ̄2 coincide to the immediate left or right of an effective scale λj (in
the homogeneous case of the BRW, note that they coincide on both sides), then halves of
Brownian bridge estimates need to be added for the second moment method to work, as
we already explained with an heuristic in Section 0.3.3.3.

In the homogeneous case of the BRW, both halves of the Brownian bridge estimate
are needed, so that δleft

1 = δright
1 = 1 and we recover the −3

2 · σ̄1√
2 log 2 log n correction from

(0.3.90). By applying the heuristic argument between each effective scale λj, the result of
Theorem 0.4.3 follows from the exponential decay of the upper bound probability together
with a second order lower bound and the tightness of the maximum around its median
(from Theorem 1 in Fang (2012)).

A stronger result was independently obtained by Mallein (2015a) when the law of the
increments is not necessarily Gaussian. However, our proof (which doesn’t use the spinal
decomposition) is more robust in the presence of an approximate branching structure.
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0.4.2. In Part 2

Part 2 of the thesis contains three articles on the Riemann zeta function :

Article 4

Ouimet (2018b) (Article 4) finds the joint distribution of the overlaps in the limit for
the RLM-RZF model of Definition 0.3.24 on the critical line. As for the REM, we identify
the weak limit of the Gibbs measure

Gβ,T (A) =
∫
A

eβXh∫
[0,1] e

βXh′dh′
dh, A ∈ B([0, 1]), (0.4.18)

as a Poisson-Dirichlet process (at low temperature) in the following sense.

Theorem 0.4.4 (Answer to (Q6)). Let β > βc $ 2 and let ξ = (ξk)k∈N be a Poisson-

Dirichlet variable of parameter βc/β. Denote by E the expectation with respect to ξ. For

any continuous function φ : [0, 1]s(s−1)/2 → R of the overlaps of s points,

lim
T→∞

EG×sβ,T
[
φ
((
ρ(h`, h`′)

)
1≤`,`′≤s

)]

= E

 ∑
k1,...,ks∈N

ξk1 · · · ξksφ
((

1{k`=k`′}
)

1≤`,`′≤s

) . (0.4.19)

The limiting free energy of the perturbed field and the limiting two-overlap distribution
were previously found in Arguin and Tai (2018). To obtain the limiting free energy of
the perturbed field, Laplace’s method was applied. The estimates on the log-number
of high points for the increments of the field come from estimates on the joint Laplace
transform using an asymptotic formula for the modified Bessel function of the first kind
and prime number theorem estimates. The limiting two-overlap distribution was found by
adapting the Bovier-Kurkova technique for each prime separately and by approximating
the integration by parts (recall Lemma 1.1 in Panchenko (2013b)) to the case of non-
Gaussian fields that still have some specific properties on their first three moments. The
field in question there is (Up, p primes) and they use the fact that E[Up] = E[U2

p ] = 0,
E[UpUp] = 1 and E[|Up|3] <∞ to obtain E[ξpF (ξp, ξp)] = E[ξpξp]E[∂zF (ξp, ξp)] +O(p−3/2)
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for an appropriate r.v. ξp depending on Up and a function F which is related to the prime
p summand of expectations under the Gibbs measure. Hence, the analogue of (0.3.55) can
be proved for each prime p separately; we get the full relation simply by summing over
the primes. The estimates on the increments of overlaps needed to complete the Bovier-
Kurkova technique are straightforward consequences of prime number theorem estimates.

Our article generalizes Arguin and Tai’ arguments to the multidimensional case h $
(h1, h2, . . . , hs) (including the approximate integration by parts and the Bovier-Kurkova
technique) and adapts a concentration result from Panchenko (2010a) for the mixed p-spin
model to show the extended Ghirlanda-Guerra identities in the limit. The following figure
summarizes the proof structure better than words.

Prime number
theorem

Lemma 5.2
Approximate
integration
by parts

Lemma 5.3
Bovier-Kurkova
technique (preliminary)

Lemma 5.1
Overlaps of the
truncated field Prop. 5.4

Bovier-Kurkova
technique

Arguin-Tai

Prop. 4.1
Prop. 4.2

Prop. 5.6
Concentration

Lemma 5.5
f ′
α,β(0) = . . .

Thm. 5.7
Approximate
extended
GG identities

Dovbysh-Sudakov
representation theorem

Thm. 5.8
Extended
GG identities
in the limit

Since the sequence (p−iτ , p primes), for τ ∼ Uniform(T, 2T ) and T large, behaves very
closely to the sequence of uniform random variables (Up, p primes) on the unit circle in C,
we can actually extend the arguments above and prove the extended Ghirlanda-Guerra
identities for the real-part of the Dirichlet polynomials

∑
p≤T ε

p−( 1
2 +iτ+ih), h ∈ [0, 1], (0.4.20)

for which we already compared the correlations with the ones for the log-modulus of the
Riemann zeta function on the critical line in Section 0.3.3.11. This leads us to believe that
Theorem 0.4.4 could be true for log |ζ| itself, see Conjectures 10.1.1 and 10.1.2.
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Article 5

Arguin and Ouimet (2019) (Article 5) deals with the open problem of the tightness of
the recentered maximum (Q4) for the RLM-RZF of Definition 0.3.24 on the critical line.
We simplify the problem by showing the following.

Theorem 0.4.5. With arbitrarily high probability, we have

max
h∈[0,1]

Xh = max
h∈S

Xh +O(1), as T →∞, (0.4.21)

for some set S ⊆ [0, 1] that contains O(log T
√

log log T ) equidistant points.

The main idea is to apply, for every ω ∈ Ω, a mean-value theorem for the maximum
eXh?(ω)(ω) = emaxh∈[0,1]Xh(ω) around its closest neighbor h(ω) ∈ S (assuming that S is chosen
such that we always have |h(ω)− h?(ω)| ≤ (C · log T

√
log log T )−1 for some C > 0) :

eXh?(ω)(ω) − eXh(ω) = d

dh
Xh(ω)

∣∣∣∣∣
h=ξ(ω)

eXξ(ω)(ω)(h?(ω)− h(ω)), (0.4.22)

where ξ(ω) is lying between h(ω) and h?(ω). By obtaining Laplace transform estimates for
the derivative of the field (using an asymptotic formula for the modified Bessel function of
the first kind and prime number theorem estimates), we can obtain continuity estimates
on h 7→ d

dh
Xh by adapting a chaining argument from Arguin et al. (2017b) and deduce

large deviation estimates on h 7→ d
dh
Xh, which show that, uniformly on any fixed interval

J ⊆ [0, 1] of length� (log T )−3, we have P(maxh∈J d
dh
Xh ≥ x)� exp(−2 · (x/ log T )2). A

union bound then yields
max
h∈[0,1]

d

dh
Xh � log T

√
log log T , (0.4.23)

with high probability. Using this fact in (0.4.22) together with the fact that

eXξ(ω)(ω) ≤ eXh?(ω)(ω), (0.4.24)

the theorem follows if we choose C > 0 large enough.

Theorem 0.4.5 improves on the application of a Bernstein type inequality for trigono-
metric polynomials, which would show that (0.4.21) holds true with O(log T · log log T )
points instead.
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Article 6

Arguin et al. (2019c) (Article 6) shows the limiting free energy (asymptotics of the
moments) and the first order of the maximum for the LM-RZF of Definition 0.3.25 on
short intervals of length O(logθ T ), θ > −1, on the critical line.

Theorem 0.4.6 (Moments; answers the first part of (Q6)). Let θ > −1, β > 0 and ε > 0
be given. Let τ be a random variable uniformly distributed on [T, 2T ] under the probability

measure P. Then, for some explicit exponent fθ(β), as T →∞, we have

P
( ∫ logθ T

− logθ T
|ζ(1

2 + iτ + ih)|βdh < (log T )fθ(β)−ε
)

= o(1). (0.4.25)

Moreover, if θ ≤ 3 or if the Riemann hypothesis holds, then as T →∞,

P
( ∫ logθ T

− logθ T
|ζ(1

2 + iτ + ih)|βdh > (log T )fθ(β)+ε
)

= o(1). (0.4.26)

This proves an extended version of a conjecture of Fyodorov and Keating (2014). The form
of the exponent fθ differs between mesoscopic intervals (−1 < θ < 0) and macroscopic
intervals (θ > 0), a phenomenon that stems from an approximate tree structure for the
correlations of log |ζ| (recall Section 0.3.3.11). We also have the following.

Theorem 0.4.7 (Local maximum; answers (Q1)). Let θ > −1 and ε > 0 be given. Let

τ be a random variable uniformly distributed on [T, 2T ] under the probability measure P.

Then, for some explicit m(θ), as T →∞, we have

P
(

max
|h|≤logθ T

|ζ(1
2 + iτ + ih)| < (log T )m(θ)−ε

)
= o(1). (0.4.27)

Moreover, if θ ≤ 3 or if the Riemann hypothesis holds, then as T →∞,

P
(

max
|h|≤logθ T

|ζ(1
2 + iτ + ih)| > (log T )m(θ)+ε

)
= o(1). (0.4.28)

This generalizes earlier results of Najnudel (2018) and Arguin et al. (2019a) for θ = 0.
The proofs of both theorems are unconditional, except for the upper bounds when θ > 3,
where the Riemann hypothesis is assumed.
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For θ > 0, the upper bound part of Theorem 0.4.6 and Theorem 0.4.7 follows from the
moment estimates

E
[
|ζ(1

2 + iτ)|β
]
� (log T )β2/4+ε, (0.4.29)

(see Heap et al. (2019) when β ≤ 4, and see Soundararajan (2009) for all β > 0 when
assuming the Riemann hypothesis) and from a discretization result which shows that the
process (ζ(1

2 + iτ + ih), |h| ≤ logθ T ) varies on a (log T )−1 scale, so that the maximum
and moments on an interval of length O(logθ T ) behave (approximately) as those of

O(log1+θ T ) i.i.d. Gaussian r.v.s of variance 1
2 log log T .

The limitation to θ ≤ 3 comes from the fact that the upper bounds (0.4.29) are not known
unconditionally for β > 4.

When θ < 0, the upper bounds in Theorem 0.4.6 and Theorem 0.4.7 follow the same
strategy, but with the function

(ζ · e−P|θ|)(1
2 + iτ), where Pα(s) =

∑
log p≤logα T

1
ps
, (0.4.30)

instead of ζ(1
2 +iτ). This is because, when θ < 0, there is only one branch in the underlying

tree structure up to scale |θ|. Indeed, by a mean value formula (see e.g. (Tenenbaum, 2015,
Theorem 2.10)), we have, for all h, h′ ∈ [− log|θ| T, log|θ| T ],

E
[∣∣∣P|θ|(1

2 + iτ + ih)− P|θ|(1
2 + iτ + ih′)

∣∣∣2]

�
∑

log p≤log|θ| T

2− 2 cos(|h− h′| log p)
p

= O(1).
(0.4.31)

For a specific event A(T ) on which the process ((ζ · e−P|θ|)(1
2 + iτ + ih), |h| ≤ logθ T ) can

be discretized, and such that P(A(T )) = 1− o(1), we can show that, for β ≤ 2,

E
[∣∣∣(ζ · e−P|θ|)(1

2 + iτ)
∣∣∣β1A(T )

]
� (log T )(β2/4)·(1+θ)+ε. (0.4.32)

In this case, the maximum and moments will behave (approximately) as

O(log1+θ T ) i.i.d. Gaussian r.v.s of variance 1+θ
2 log log T .
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Now, for the lower bounds, note that fθ(β) = βm(θ)− 1 when β > βc(θ), so the lower
bound in Theorem 0.4.6 implies that for β large enough with respect to ε and θ, we have,
with probability 1− o(1),

max
|h|≤logθ T

|ζ(1
2 + iτ + ih)| ≥

(
1

2 logθ T

∫ logθ T

− logθ T
|ζ(1

2 + iτ + ih)|βdh
)1/β

� (log T )m(θ)− (1+ε+θ)
β ≥ (log T )m(θ)−ε, (0.4.33)

which is the lower bound in Theorem 0.4.7.

It remains to consider the lower bound in Theorem 0.4.6. The problem is first reduced
to obtaining lower bounds for moments off the critical line using a localization on the
scale of [− logθ T, logθ T ]. It is shown, uniformly in 1

2 ≤ σ ≤ 1
2 + (log T )θ−3ε and for D a

Dirichlet polynomial that approximates zeta, that with probability 1− o(1),

∫ logθ T

− logθ T
|D(σ + iτ + iu)|βdu�

∫
R
|D(σ + iτ + iu)|β · |Φ(σ + iu)|βdu

�
∫
R
|D(1

2 + iτ + iu)|β · |Φ(1
2 + iu)|βdu

�
∫ 2 logθ T

−2 logθ T
|D(1

2 + iτ + iu)|βdu+ 1
(log T )7 .

(0.4.34)

The decentering follows from a result of Gabriel (1927) for subharmonic functions and the
construction of an explicit entire function Φ(σ+ iu) which is a good approximation to the
indicator function of the rectangle R = {σ + iu : |u| ≤ (log T )θ, 1

2 ≤ σ ≤ 1
2 + (log T )θ−3ε}

in the whole strip 1
2 ≤ Re s. The problem is reduced to obtaining a lower bound for

∫ logθ T

− logθ T
|ζ(σ0 + iτ + ih)|βdh, with σ0 = 1

2 + 1
(log T )1−δ , (0.4.35)

for an appropriate δ > 0. We adapt mollification results from Arguin et al. (2019a) to show
that, outside of an event of probability o(1), the problem can be reduced to understanding

∫ logθ T

− logθ T
exp

(
β ReP1−δ(σ0 + iτ + ih)

)
dh. (0.4.36)

Since the process
(
ReP1−δ(σ0 + iτ + ih), |h| ≤ logθ T

)
behaves approximatively like a
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log-correlated Gaussian field (recall the correlations in Proposition 0.3.26, and see Lemma
6.4.3 in Arguin et al. (2019c) (Article 6) for the approximate Gaussian moments), so the
remaining part of the argument follows from a second moment method.

0.4.3. In Part 3

Part 3 of the thesis contains three articles on asymptotic statistics :

Article 7

Ouimet (2018a) (Article 7) proves the complete monotonicity of multinomial proba-
bilities by generalizing the computations first made in Alzer (2018) for the binomial dis-
tribution. Denote the d-dimensional simplex by S $

{
x ∈ [0, 1]d : ‖x‖1 $

∑d
i=1 |xi| ≤ 1

}
.

We have the following theorem.

Theorem 0.4.8. For any d ∈ N, M ∈ (0,∞), x ∈ Int(S), xd+1 $ 1− ‖x‖1 > 0, and any

γ ∈ [0,∞)d such that ‖γ‖1 ≤M and γd+1 $M − ‖γ‖1 ≥ 0, the function

g(a) $ Γ(aM + 1)∏d+1
i=1 Γ(aγi + 1)

d+1∏
i=1

xaγii (0.4.37)

is completely monotonic on (0,∞), meaning that g has derivatives of all orders and satis-

fies

(−1)ng(n)(a) ≥ 0, for all n ∈ N0, a ∈ (0,∞). (0.4.38)

In fact, we prove a stronger result by showing that (− log g)′ is completely monotonic.
The proof follows from an integral representation for the trigamma function, the convexity
of the function c 7→ 1/(y1/c − 1) + 1/(y1/(1−c) − 1) on (0, 1), some identity and asymp-
totic formula for the digamma function, and finally, the fact that the Kullback-Leibler
divergence is non-negative, which is a consequence of Jensen’s inequality.

The most interesting part is not the theorem itself, but the consequences. Non-constant
completely monotonic functions are strictly convex, (strictly) decreasing and positive.
Since the proof shows that (− log g)′ is completely monotonic, it means that g is strictly log-
convex, which automatically implies the following Holder-type inequality for multinomial
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coefficients : For all λj ∈ (0, 1), j ∈ {1, 2, . . . , k}, such that ∑k
j=1 λj = 1, we have

Γ((∑k
j=1 ajλj)M + 1)∏d+1

i=1 Γ((∑k
j=1 ajλj)γi + 1)

≤
k∏
j=1

(
Γ(ajM + 1)∏d+1
i=1 Γ(ajγi + 1)

)λj
(0.4.39)

where equality holds if and only if all the aj’s are the same. Other inequalities are listed
in Corollary 7.3.1 of Ouimet (2018a) (Article 7).

By generalizing arguments from Leblanc and Johnson (2007) and Leblanc (2010), the
article also shows how the monotonicity result from Theorem 0.4.8 can be used to study
the asymptotic properties of Bernstein estimators on the simplex. More specifically, in
Leblanc (2010), the following family of polynomials,

Sr,s,m(x) $
∑

k∈Nd0:‖k‖1≤m
Prk,rm(x)Psk,sm(x), r, s,m ∈ N, (0.4.40)

where
Pk,m(x) $ m!∏d+1

i=1 ki!

d+1∏
i=1

xkii , x ∈ S, (0.4.41)

was studied, when d = 1, in order to construct a density estimator on [0, 1], using Bernstein
polynomials, with a lower bias and a higher rate of convergence than the base Bernstein
density estimator. Our article proves certain convergence results for the above family of
polynomials (for all d ∈ N), namely :

Proposition 0.4.9. Let r, s,m ∈ N and let h : S → R be any bounded measurable

function. As m→∞,

(a) md/2 ∫
S Sr,s,m(x)dx = 2−d

√
π

Γ(d/2+1/2) +O(m−1) =
∫
S φr,s(x)dx+O(m−1),

(b)
∫
S h(x)(md/2Sr,s,m(x)− φr,s(x))dx = o(1),

where

φr,s(x) $ (gcd(r, s))d
(2π)d/2(det(rs(r + s)(diag(x)− xxT )))1/2 . (0.4.42)

The first step to prove this proposition is to show that, for any fixed x ∈ Int(S),

md/2Sr,s,m(x) = φr,s(x) + ox(1), as m→∞, (0.4.43)
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by expressing Sr,s,m(x) as the probability that a difference of linear combinations of in-
dependent multinomial r.v.s equals 0 (this generalizes a trick from Theorem 3 of Section
XV.5 in Feller (1971)) and then using a local central limit theorem for random vectors
with lattice distributions. The second step is to prove the convergence in (a) in the special
case r = s = 1 using the Chu-Vandermonde convolution formula, Legendre’s duplication
formula, the Cholesky decomposition of covariance matrices for the multinomial distribu-
tion, etc. Combining (0.4.43) and (a) yields that {S1,1,m(·)}m∈N is uniformly integrable.
By Theorem 0.4.8, a 7→ Pak,am is decreasing on (0,∞), so

Sr,s,m(x) ≤
∑

‖k‖1≤m
(Pk,m(x))2 = S1,1,m(x), (0.4.44)

which implies that {Sr,s,m(·)}m∈N is also uniformly integrable. Hence, by (0.4.43), we must
have (a) in the general case r, s ∈ N. Finally, the almost-everywhere convergence and the
uniform integrability imply the L1 convergence, so (b) follows immediately from Jensen’s
inequality and the fact that h is bounded.

Following Leblanc (2010) (d = 1), Proposition 0.4.9 opens to the door to a similar
application of bias-reduction for the Bernstein density estimator on the d-dimensional
simplex. To the best of my knowledge, bias reduction in this context is a completely
untouched subject and there is only one article (Tenbusch (1994)) that even discusses
(some) asymptotic properties of the base estimator, and only in the special case d = 2.
For more details, see (3) from the list of open problems in Section 10.2.

This subject is worth investigating because there are instances in practice where the
distribution that we would like to estimate lives naturally on the d-dimensional simplex.
One such example is the Dirichlet distribution, which is the conjugate prior of the multi-
nomial distribution in Bayesian estimation, see e.g. Lange (1995) for an application in
the context of allele frequency estimation in genetics. In those instances, we would expect
that Bernstein estimators defined on the simplex perform better than Bernstein estimators
defined on the unit hypercube, especially near the boundary ‖x‖1 = 1.
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Article 8

Lafaye de Micheaux and Ouimet (2018) (Article 8) proves a new uniform law of large
numbers for summands that “blow up”. The article was motivated by an open question
originally raised by Pierre Lafaye de Micheaux about the convergence in probability of
1
n

∑n
i=1 1{Xi 6= µ̂n} log |Xi − µ̂n|, where Xi are i.i.d. with Laplace(µ) distribution and µ̂n is a

consistent estimator (such as the median, which is the maximum likelihood estimator in
this case). Under technical conditions (roughly, good integrability properties for Xi − µ
andXi−µn around the blow-up point and a good control on the tail distribution of theXi’s
and µn, uniformly for µn between µ and µ̂n), the article shows that, for h : R\{0} −→ R a
function that blows up at 0 but otherwise is integrable and has “good” properties elsewhere,
we have

lim
n→∞ sup

v∈[0,1]
E
∣∣∣∣∣ 1n

n∑
i=1

1{Xi 6=µ+v(µ̂n−µ)}h(Xi − (µ+ v(µ̂n − µ)))− E
[
h(X1 − µ)

]∣∣∣∣∣ = 0,

so that 1
n

∑n
i=1 1{Xi 6= µ̂n} log |Xi − µ̂n| indeed converges.

The appeal of such results is that entropy conditions for uniform laws of large numbers
(see e.g. van der Vaart and Wellner (1996) and van de Geer (2000)) cannot be applied
here because the envelope function of the class of functions {1{Xi 6= t} log | · − t |}t:|t−µ|<δ
is infinite in any small neighborhood of µ.

Article 9

Desgagné et al. (2018) (Article 9) finds the limiting law of a modified score statistic
(under H0 and under local alternatives) when we test a given exponential power distri-
bution (H0) against the family of asymmetric power distributions (H1). The asymmetric
power distribution, introduced in Komunjer (2007), is a reparametrization of the skew-
ness exponential power distribution from Fernández et al. (1995). The score is modified
in the sense that we assume the location and scale parameters of the exponential power
distribution to be unknown and we replace them by their maximum likelihood estimators.
Using a first order Taylor expansion, we expand the modified score and prove the conver-
gence of the derivative component using a standard uniform law of large numbers from
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Lucien LeCam (see e.g. Chapter 16 in Ferguson (1996)). This is possible except in the
case where the Xi’s are Laplace distributed under H0, which was the ultimate motivation
for the question raised in the previous paragraph and answered in Lafaye de Micheaux
and Ouimet (2018) (Article 8).
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Abstract. In this paper, we study a random field constructed from the two-dimensional

Gaussian free field (GFF) by modifying the variance along the scales in the neighborhood

of each point. The construction can be seen as a local martingale transform and is akin

to the time-inhomogeneous branching random walk. In the case where the variance takes

finitely many values, we compute the first order of the maximum and the log-number of

high points. These quantities were obtained by Bolthausen et al. (2001) and Daviaud

(2006) when the variance is constant on all scales. The proof relies on a truncated second

moment method proposed by Kistler (2015), which streamlines the proof of the previous

results. We also discuss possible extensions of the construction to the continuous GFF.

Keywords: extreme value theory, Gaussian free field, branching random walk

1.1. Introduction

1.1.1. The model

Let (Wk)k≥0 be a simple random walk starting at u ∈ Z2 with law Pu. For every finite
box B ⊆ Z2, the Gaussian free field (GFF) on B is a centered Gaussian field φ $ {φv}v∈B
with covariance matrix

GB(u, v) $ π

2 · Eu
τ∂B−1∑

k=0
1{Wk=v}

 , u, v ∈ B, (1.1.1)

where τ∂B is the first hitting time of (Wk)k≥0 on the boundary of B,

∂B $ {v ∈ B | ∃z 6∈ B such that ‖v − z‖2 = 1},

and ‖ · ‖2 denotes the Euclidean distance in Z2. With this definition, B contains its
boundary. We let Bo $ B\∂B. By convention, summations are zero when there are no
indices, so φ is identically zero on ∂B. This is the Dirichlet boundary condition. The
constant π/2 in (1.1.1) is a convenient normalization for the variance.

In this paper, we consider a family of Gaussian fields constructed from the GFF
{φv}v∈VN on the square box VN $ {0, 1, ..., N}2. These Gaussian fields are the analogues,
in the context of the GFF, of the time-inhomogeneous branching random walks studied
in Bovier and Kurkova (2004); Fang and Zeitouni (2012a); Bovier and Hartung (2014);
Ouimet (2018). We study the maxima and the number of high points of this family of
Gaussian fields as N →∞.
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The construction is very natural for any Gaussian field on a metric space and bears
strong similarities with martingale transforms. It is based on the modification of the
variance in neighborhoods around every point along different mesoscopic scales. More
precisely, for λ ∈ (0, 1) and v = (v1, v2) ∈ VN , consider the closed neighborhood [v]λ in
VN consisting of the square box of width N1−λ centered at v that has been cut off by the
boundary of VN :

[v]λ $
([
v1 −

1
2N

1−λ, v1 + 1
2N

1−λ
]
×
[
v2 −

1
2N

1−λ, v2 + 1
2N

1−λ
])⋂

VN .

By convention, we define [v]0 $ VN and [v]1 $ {v}. We stress that square boxes are not
essential to the construction; any neighborhood centered at v containing points at distance
roughly N1−λ would do. Let F∂[v]λ∪[v]c

λ
$ σ({φv, v /∈ [v]oλ}) be the σ-algebra generated

by the variables on the boundary of the box [v]λ and those outside of it. Since the
neighborhoods are shrinking with λ, for any v ∈ VN , the collection Fv $ {F∂[v]λ∪[v]c

λ
}λ∈[0,1]

is a filtration. In particular, if we let

φv(λ) $ E
[
φv | F∂[v]λ∪[v]c

λ

]
,

then
for every v ∈ VN , (φv(λ))λ∈[0,1] is a Fv-martingale.

It is also a Gaussian field, therefore disjoint increments of the form φv(λ′)−φv(λ) are inde-
pendent. These observations motivate the definition of scale-inhomogeneous Gaussian free

field, which can be seen as a martingale-transform of (φv(λ))λ∈[0,1] applied simultaneously
for every v ∈ VN .

Fix M ∈ N and consider the parameters

σ $ (σ1, σ2, ..., σM) ∈ (0,∞)M , (variance parameters)

λ $ (λ1, λ2, ..., λM) ∈ (0, 1]M , (scale parameters)

where 0 $ λ0 < λ1 < ... < λM $ 1. The parameters (σ,λ) can be encoded simultaneously
in the left-continuous step function

σ(s) $ σ11{0}(s) +
M∑
i=1

σi1(λi−1,λi](s), s ∈ [0, 1].

We write ∇i for the difference operator with respect to the index i. When the index
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variable is obvious, we omit the subscript. For example,

∇φv(λi) $ φv(λi)− φv(λi−1).

Definition 1.1.1 (Scale-inhomogeneous Gaussian free field). Let φ $ {φv}v∈VN be the

GFF on VN . The (σ,λ)-GFF on VN is a Gaussian field ψ $ {ψv}v∈VN defined by

ψv $
M∑
i=1

σi∇φv(λi) =
M∑
i=1

σi
(
φv(λi)− φv(λi−1)

)
. (1.1.2)

Similarly to the GFF, we define

ψv(λ) $ E
[
ψv | F∂[v]λ∪[v]c

λ

]
.

The field with two variances (M = 2) was presented in Arguin and Zindy (2015), where
it was used to prove Poisson-Dirichlet statistics of the Gibbs measure in the homogeneous
case (M = 1).

1.1.2. Main results

The main results of this paper are the derivation of the first order of the maximum and
the log-number of high points for the scale-inhomogeneous Gaussian free field of Definition
1.1.1. The methods of proof are general and directly applicable to time-inhomogeneous
branching random walks and to other log-correlated Gaussian fields.

First, we need to introduce some notations. For any positive measurable function
f : [0, 1]→ R, define the integral operators

Jf (s) $
∫ s

0
f(r)dr and Jf (s1, s2) $

∫ s2

s1
f(r)dr.

It turns out that the first order of the maximum and the log-number of high points are
controlled by the concavification of Jσ2(·). Let Ĵσ2 be the function whose graph is the
concave hull of Jσ2 . Its graph is an increasing and concave polygonal line, see Figure
1.1.1 for an example. There exists a unique non-increasing left-continuous step function
s 7→ σ̄(s) such that

Ĵσ2(s) = Jσ̄2(s) =
∫ s

0
σ̄2(r)dr for all s ∈ (0, 1].
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The points on [0, 1] where σ̄ jumps will be denoted by

0 $ λ0 < λ1 < ... < λm $ 1, (1.1.3)

where m ≤M . To be consistent with previous notations, we set σ̄l $ σ̄(λl).

0 1 s
λ0

λ1 λ2 λ3 λ4 λ5 λ6
λ7

λ0 λ1 λ2 λ3
λ4

slope = σ̄2
1

σ̄2
2

σ̄2
3

σ̄2
4

Jσ2(λ1)

Jσ2(λ2)
Jσ2(λ3)
Jσ2(λ4)

Figure 1.1.1. Example of Jσ2 (closed line) and Ĵσ2 (dot-
ted line) with 7 values for σ2.

Theorem 1.1.2 (First order of the maximum). Let {ψv}v∈VN be the (σ,λ)-GFF on VN

of Definition 1.1.1, then

lim
N→∞

maxv∈VN ψv
logN2 = Jσ2/σ̄(1) $ γ? in probability.

In the homogeneous case where M = 1 and σ1 = 1, the result reduces to γ? = 1, as
proved in Bolthausen et al. (2001), which corresponds to the first order of the maximum
of N2 i.i.d. Gaussian variables of mean 0 and variance logN . Note that the result of
Theorem 1.1.2 can be written as follows :

γ? = Jσ2/σ̄(1) =
m∑
l=1

∫ λl

λl−1

σ2(s)
σ̄(s) ds =

∫ 1

0
σ̄(s)ds. (1.1.4)

This is simply a weighted average of homogeneous cases on the intervals [λl−1, λl] with
variance parameter σ̄l. We say that s 7→ σ̄2(s) act as the effective variance of the field.
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We stress that γ? is strictly smaller than σ̄1 in cases where the concave hull is not a straight
line. In particular, the upper bound on the level of the maximum cannot be proved by a
simple union bound as in the homogeneous case.

The set of γ-high points of the field ψ is defined as

Hγ
N $ {v ∈ VN |ψv ≥ γ logN2}, for all 0 ≤ γ < γ?.

The number of high points will depend on critical levels defined by

γl $
∫ 1

0

σ2(s)
σ̄(s ∧ λl)ds = Jσ2/σ̄(λl) + Jσ2(λl, 1)

σ̄l
, 1 ≤ l ≤ m, γ0 $ 0. (1.1.5)

Theorem 1.1.3 (Log-number of high points or Entropy). Let {ψv}v∈VN be the (σ,λ)-GFF

on VN of Definition 1.1.1 and let γl−1 ≤ γ < γl for some l ∈ {1, ...,m}, then

lim
N→∞

log |Hγ
N |

logN2 = (1− λl−1)− (γ − Jσ2/σ̄(λl−1))2

Jσ2(λl−1, 1) $ Eγ in probability.

The homogeneous case where M = 1 and σ1 = 1 was proved in Daviaud (2006). In
that case, we have Eγ = 1− γ2 as for N2 i.i.d. Gaussian variables of mean 0 and variance
logN . The proofs of Theorems 1.1.2 and 1.1.3 are deferred to Section 1.3. The method of
proof is explained in Section 1.2. It is a refinement of the second moment method based
on the control of the increments of high points at every scale. The method was used in
Kistler (2015) to obtain a new proof of the first order of the maximum in the homogeneous
case. Here we extend this method to the log-number of high points in all settings and
to the first order of the maximum in the inhomogeneous setting. In the scale-dependent
case, as opposed to the homogeneous case, it is necessary to truncate the first moment
using the information at every scale λl to get the correct upper bound.

1.1.3. Related works and conjectures

The scale-inhomogeneous GFF is the equivalent of the time-inhomogeneous branching
random walk (IBRW) where the variance of the random walk is a function of time. In
particular, Theorems 1.1.2 and 1.1.3 can be proved for branching random walks using the
same technique, see Section 2 of Ouimet (2014). In fact, much more precise information
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is known about the maxima of these models. In Bovier and Kurkova (2004), the authors
introduce a continuous version of Derrida’s Generalized Random Energy Model (GREM)
Derrida (1985), which is akin to a time-inhomogeneous branching random walk, for which
they obtain the first order of the maximum and the free energy. In particular, they
noticed the concavification phenomenon for the first order. This observation also appears
in Capocaccia et al. (1987) for the GREM. A model interpolating between the GREM and
the branching random walk was introduced in Kistler and Schmidt (2015) where Poisson
statistics of the extremes are proved. For Gaussian IBRWs with two values of the variance
(M = 2), the lower order corrections for the maximum and tightness of the law were
proved in Fang and Zeitouni (2012a). In this case, convergence of the extremal processes
and of the law of the recentered maximum have been shown in Bovier and Hartung (2014).
This is also proved in the case where the integral of the variance remains strictly below
its concave hull (for example, in the case of increasing variances), see Bovier and Hartung
(2015). For strictly decreasing variances, the lower order corrections for IBBMs exhibit a
slowdown of the order t1/3 as proved in Fang and Zeitouni (2012b); Maillard and Zeitouni
(2016). Similar results for non-Gaussian IBRWs and more general variances are proved in
Mallein (2015), though not at the level of convergence of the law. In Ouimet (2018), the
second order of the maximum for the Gaussian IBRW with a finite number of variances
is shown by generalizing the approach of Fang and Zeitouni (2012a) and the tightness
follows from Fang (2012).

In general, we expect that the scale-inhomogeneous GFF with a finite number of vari-
ances behave as the time-inhomogeneous branching random walk with the same parameters
for the lower order correction term of the maximum and for its law. For the homogeneous
GFF, the convergence of the law of the recentered maximum was proved in Bramson et al.
(2016). In Arguin and Zindy (2015), the scale-inhomogeneous GFF with two values of
the variance was introduced to prove Poisson-Dirichlet statistics for the extremes of the
homogeneous GFF. Actual Poisson statistics for local extremes was proved later in Biskup
and Louidor (2016).

One interest of Definition 1.1.1 for the scale-inhomogeneous GFF is that it can be
extended to a piecewise smooth variance function σ : [0, 1]→ [a, b] where a > 0. Consider
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the two-dimensional continuous Gaussian free field φ = {φv}v∈[0,1]2 on the unit square
[0, 1]2, see e.g. Sheffield (2007) for a definition. The field φ cannot be defined as a random
function. However, averages over sets make sense as random variables. In particular, for
every v ∈ [0, 1]2 and λ ∈ [0, 1], one can define φrv(λ) as the average of the field over a circle
of radius rλ :

φrv(λ) $ 1
2πrλ

∫ 2π

0
φv+rλeiθ dθ. (1.1.6)

The parameter r plays the role of N−1 in the discrete setting. The continuous scale-
inhomogeneous GFF for the variance function λ 7→ σ(λ) can then be defined in terms of
these averages :

ψrv(1) $
∫ 1

0
σ(λ) dφrv(λ), v ∈ [0, 1]2.

The stochastic integral makes sense because (φrv(λ))λ∈[0,1] is a Gaussian martingale. Fol-
lowing the definition in Duplantier and Sheffield (2011) (up to a factor 2), a point v ∈ [0, 1]2

is called γ-thick if
lim
r→0

ψrv(1)
log(r−2) ≥ γ

where it is assumed that the continuous Green function on [0, 1]2 associated to φ has been
normalized as in (1.1.1). This is the notion analogous to γ-high points. It was shown in
Hu et al. (2010) that the Hausdorff dimension of the set of γ-thick points is 2(1 − γ2)
when σ ≡ 1. In view of Theorem 1.1.3, it is reasonable to conjecture that the Hausdorff
dimension of the set of γ-thick points of ψ is

2
(

(1− λ?)−
(γ − Jσ2/σ̄(λ?))2

Jσ2(λ?, 1)

)
, (1.1.7)

where λ? $ inf{λ ∈ [0, 1] : γ ≤ ∫ 1
0

σ2(s)
σ̄(s∧λ)ds}.

1.2. Outline of Proof

As stated before, the results of this paper are applicable to time-inhomogeneous branch-
ing random walks and, more generally, to any scale-dependent log-correlated Gaussian
field. The proof relies on two main ingredients: an underlying approximate tree structure
present in log-correlated models and an adaptation of the multiscale refinement of the
second moment method introduced in Kistler (2015). In particular, the method requires
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understanding the increments of high points along every scale to prove tight upper
and lower bounds. In Kistler (2015), this method was used to streamline the proof of
Bolthausen et al. (2001) for the first order of the maximum of the homogeneous GFF.
Here, we adapt the method to deal with scale-inhomogeneous fields and log-number of
high points.

To see the tree structure, define the branching scale between v and v′ in VN :

ρ(v, v′) $ max{λ ∈ [0, 1] : [v]λ ∩ [v′]λ 6= ∅}. (1.2.1)

This is the largest λ for which the two neighborhoods [v]λ and [v′]λ intersect. We always
have by definition that ‖v− v′‖2 is of order N1−ρ(v,v′). The branching scale plays the same
role as the branching time (normalized to lie in [0, 1]) in branching random walk. More
precisely, let {φv}v∈VN be a homogeneous GFF and consider the increments φv(λ′)−φv(λ)
and φv′(µ′) − φv′(µ) for some choice of λ < λ′ and µ < µ′. The Markov property of the
Gaussian free field (see Section 1.4.1) implies that for λ, µ > ρ(v, v′),

φv(λ′)− φv(λ) is independent of φv′(µ′)− φv′(µ),

because the neighborhoods [v]λ and [v′]µ are disjoint, see Figure 1.2.2. This means that
the increments after the branching scale are independent.

On the other hand, if λ < ρ, it can be shown using Green function estimates (see e.g.
Lemma 12 in Bolthausen et al. (2001)) that

V(φv(λ)− φv′(λ)) = O(1).

In other words, the values of φv(λ) and φv′(λ) must be close. This suggests that the
increments before the branching scale are almost identical. In particular, without losing
much information, we can restrict the field {φv(λ)}v∈VN to a set Rλ ⊆ VN containing bNλc2

v’s with neighborhoods [v]λ that can only touch at their boundary and are not cut off by
∂VN . To remove any ambiguity, define Rλ in such a way that maxv∈VN minz∈Rλ ‖v − z‖2

is minimum. We call Rλ the set of representatives at scale λ and define R1 $ VN . For
instance, if N = 2n, λ ∈ [0, 1) and λn ∈ N, then divide VN into a grid with N2λ squares
of side length N1−λ, the center point of each square is a representative at scale λ.

97



scales

1

0

v v′
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ρν ν′ λ λ′

µ µ′

s = distance of N1−sρ(v, v′)

ν

ν ′

λ

λ′ = µ′
µ

0
scales

Figure 1.2.2. The branching structure of the GFF.

Of course, the branching structure here is not exact as in branching random walk. In
particular, nothing precise can be said on the increments φv(λ′)−φv(λ) and φv′(λ′)−φv′(λ)
in the case where λ < ρ < λ′. However, the contribution of such increments can be made
negligible by considering a large number of increments, as we shall do. This branching
structure holds also for the (σ,λ)-GFF, since it is defined in terms of the increments of
φ, see (1.1.2) and Lemma 1.4.1.

For 0 < γ < γ?, the γ-high points are such that ψv ≥ γ logN2. It is reasonable to
expect that for these points, there exists a unique optimal path λ 7→ LγN(λ) such that
ψv(λ) ≥ LγN(λ) at each scale λ. We write L?N for the corresponding optimal path in the
case of the maximum level γ?. It is the information on these paths along the scales that
is crucial for the method to yield tight upper and lower bounds. We explain heuristically
how to determine these optimal paths using first moments.

Consider the set of v’s for which the increments of the field ψ reach level ∇γi between
each scale λi :

ΛN,M $ {v ∈ VN | ∇ψv(λi) ≥ ∇γi logN2 for all i ∈ {1, 2, . . . ,M}},

where γ0 $ 0. By construction, |ΛN,M | is a lower bound on the number of points in VN
reaching a height of γM logN2. We also consider the corresponding quantity at interme-
diate scales λk < λM . In this case, because of correlations, we can restrict ourselves to
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representatives at scale λk :

ΛN,k $ {v ∈ Rλk | ∇ψv(λi) ≥ ∇γi logN2 for all i ∈ {1, 2, . . . , k}}.

There are O(N2λk) representatives at scale λk and the variance of the increments is
V(∇ψv(λi)) = σ2

i∇λi logN + O(1) if we ignore the boundary effect. Therefore, using the
independence between the increments and standard Gaussian estimates (see Lemma 1.4.7,
it will be used repeatedly) :

E[|ΛN,k|] � N2λk
k∏
i=1

P(∇ψv(λi) ≥ 2∇γi logN) � N2λkN
−2
∑k

i=1
(∇γi)

2

σ2
i
∇λi

(logN)k/2 ,

where � means that the ratio of the two sides lies in a compact interval bounded away
from 0, for N large enough. In other words,

lim
N→∞

log(E[|ΛN,k|])
logN2 =

k∑
i=1

(
∇λi −

(∇γi)2

σ2
i∇λi

)
.

Since there should be representatives at each scale λk that ultimately yield a high value
at scale λM , it is intuitive that the level of the maximum can be found by maximizing

γM =
M∑
i=1
∇γi under the constraints

k∑
i=1

(
∇λi −

(∇γi)2

σ2
i∇λi

)
≥ 0, 1 ≤ k ≤M.

This optimization problem can be solved using the Karush-Kuhn-Tucker theorem (see
Lemma 1.4.10). We write (γ?1 , γ?2 , ..., γ?M) for the unique solution. We will make extensive
use of the polygonal line L?N(·) linking the points (0, 0), (λ1, γ

?
1 logN2), (λ2, γ

?
2 logN2),

. . . , (λM , γ?M logN2) to prove Theorem 1.1.2 and 1.1.3 :

L?N(s) $
∫ s

0

σ2(r)
σ̄(r) dr logN2 = Jσ2/σ̄(s) logN2, s ∈ [0, 1]. (1.2.2)

This is the optimal path for the maximum. Figure 1.2.3 shows an example of such a path.
In particular, it is important to note that the optimal path coincides with its concave hull
at each scale λl, namely

L?N(λl) = L̂?N(λl) = Ĵσ2/σ̄(λl) logN2 = Jσ̄(λl) logN2, 1 ≤ l ≤ m. (1.2.3)

The same heuristic can be used to determine the optimal path LγN(·) for γ-high points,
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λ0
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N(λ1)
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L?
N(λ4) γ4 = γ?

γ3
γ2

γ1
γ

Figure 1.2.3. Example of LγN (bold line), L?N (thin line) and
its concavified version L̂?N (dotted line), with 7 values for σ2

and γ1 < γ < γ2.

0 < γ < γ?. Setting now γM = γ, we get

lim
N→∞

log(E[|ΛN,M |])
logN2 =

M−1∑
i=1

(
∇λi −

(∇γi)2

σ2
i∇λi

)
+
(
∇λM −

(γ − γM−1)2

σ2
M∇λM

)
. (1.2.4)

A lower bound for the log-number of γ-high points can be found by maximizing (1.2.4)
with respect to γ1, γ2, . . . , γM−1 and under the constraints

k∑
i=1

(
∇λi −

(∇γi)2

σ2
i∇λi

)
≥ 0, 1 ≤ k ≤M − 1. (1.2.5)

The unique solution to this problem is found in Lemma 1.4.11 using again the Karush-
Kuhn-Tucker theorem. The form of the path will always depend on the critical levels
defined in (1.1.5). Whenever γl−1 ≤ γ < γl, the optimal path for γ-high points is :

LγN(s) $


Jσ2/σ̄(s) logN2, 0 ≤ s ≤ λl−1,(
Jσ2/σ̄(λl−1) + Jσ2 (λl−1,s)

Jσ2 (λl−1,1)(γ − Jσ2/σ̄(λl−1))
)

logN2, λl−1 ≤ s ≤ 1.
(1.2.6)

The path coincide on [0, λl−1] with the optimal path for the maximum. Also, note that
LγN is continuous and converges uniformly to L?N as γ → γ? (which yields that L?N is
continuous as well).
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1.3. Proofs of the main results

1.3.1. Preliminaries

For all λ ∈ [0, 1], recall that ψv(λ) $ E[ψv | F∂[v]λ∪[v]c
λ
]. By the Markov property of the

GFF (see Lemma 1.4.1), it is not hard to show that for any partition 0 $ s0 < s1 < ... <

sK $ 1 of [0, 1] such that {λi}Mi=0 ⊆ {sj}Kj=0, we have for all 1 ≤ k ≤ l ≤ K :

ψv(sl)− ψv(sk−1) =
l∑

j=k
σ(sj)∇φv(sj).

In particular, the independence of the increments of ψ follows directly from the one for φ.
Moreover, using standard estimates on Green functions, Lemma 1.4.2 shows that

− C1(δ) ≤ V(ψv(sl)− ψv(sk−1))− Jσ2(sk−1, sl) logN ≤ C2 (1.3.1)

for all v ∈ V δ
N and N large enough (depending on δ), where

V δ
N $ {v ∈ VN | min

z∈∂VN
‖v − z‖2 ≥ δN}, δ ∈ (0, 1/2].

The set V δ
N contains the points that are at a distance at least δN from the boundary of

VN . Lemma 1.4.3 proves that the upper bound in (1.3.1) holds on VN , that is

max
v∈VN

V(ψv(sl)− ψv(sk−1)) ≤ Jσ2(sk−1, sl) logN + C (1.3.2)

for N large enough.

Remark 1.3.1. Throughout the proofs, c and C will denote positive constants whose

value can change at different occurrences and might depend on the parameters (σ,λ). For
simplicity, equations in the proofs are implicitly stated to hold for N large enough where

it is needed.

1.3.2. First order of the maximum

Theorem 1.1.2 is a direct consequence of Lemma 1.3.1, which proves that γ? logN2 is
an upper bound on the first order of the maximum, and Lemma 1.3.3 which shows the
corresponding lower bound.
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Lemma 1.3.1 (Upper bound on the first order of the maximum). Let {ψv}v∈VN be the

(σ,λ)-GFF on VN of Definition 1.1.1 and γ? as in Theorem 1.1.2. For all ε > 0, there
exists a constant c = c(ε,σ,λ) > 0 such that

P
(

max
v∈VN

ψv ≥ (γ? +mε) logN2
)
≤ N−c (1.3.3)

for N large enough.

Proof. Recall the definition of the optimal path L?N from (1.2.2) and define

L?,zN (s) $ L?N(s) + z logN2, s ∈ [0, 1].

Recall the definition of λj in (1.1.3) and the notation Rλj for the set of representatives
at scale λj. Consider the set of representatives whose value reached just over the optimal
level at λj :

H?,ε
N,j $

{
v ∈ Rλj |ψv(λj) ≥ L?,jεN (λj)

}
, 1 ≤ j ≤ m.

The idea of the proof is to split the probability that at least one point in VN reaches just
over the optimal height by looking at the first scale λj, 1 ≤ j ≤ m, where the set H?,ε

N,j is
not empty. This provides the appropriate constraints along the scales to get the correct
upper bound. For 0 < ηε < ε/m, define

Aε $
{
|ψv(λj)− ψv

λj
(λj)| ≤ ηε logN2 for all j ∈ {1, ...,m} and all v ∈ VN

}
where vλ denotes any representative in Rλ that is closest to v. Here we introduced the
event Aε to approximate the branching structure of the field ψ. Since Rλm = VN by
definition and L?,mεN (λm) = (γ? + mε) logN2, a union bound gives the following upper
bound on the probability in (1.3.3) :

P
(
|H?,ε

N,m| ≥ 1
)
≤ P(Acε) +

m∑
l=1

P
({
|H?,ε

N,1| = ... = |H?,ε
N,l−1| = 0, |H?,ε

N,l| ≥ 1
}
∩Aε

)

≤ P(Acε) +
m∑
l=1

P


 ∃v ∈ Rλl ∩ V o

N s.t. ψv(λl) ≥ L?,lεN (λl) and
ψv

λj
(λj) < L?,jεN (λj) for all 1 ≤ j ≤ l − 1

 ∩ Aε


≤ Ce−c(ηε)(logN)2 +
m∑
l=1

N2λl max
v∈R

λl
∩V oN

P



ψv(λl) ≥ L?,lε−ηεN (λl) and
ψv(λj) < L

?,j(ε+ηε)
N (λj)

for all 1 ≤ j ≤ l − 1



 (1.3.4)
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The bound on P(Acε) follows easily from a union bound (with m ·(N+1)2 terms), Gaussian
estimates (Lemma 1.4.7) and the variance estimates of Lemma 1.4.6.

It remains to consider the terms in the sum in (1.3.4). We look at the case l = 1. Since
maxv∈VN V(ψv(λ1)) ≤ λ1σ̄2

1 logN + C from (1.3.2) and L?N(λ1) = λ1σ̄1 logN2, a Gaussian
estimate shows that

P
(
ψv(λ1) ≥ L?,ε−ηεN (λ1)

)
≤
√
V(ψv(λ1))
L?,ε−ηεN (λ1)

exp
(
−(L?,ε−ηεN (λ1))2

2V(ψv(λ1))

)

≤ C√
logNN−2λ1

N
−4 (ε−ηε)

σ̄1 .

After multiplying by N2λ1 , we conclude that the l = 1 term in (1.3.4) goes to 0 like N−c(ε).
We now show a similar estimate for a fixed l ∈ {2, ...,m}. To simplify the notation,
denote (X1

v , ..., X
l
v) $ (ψv(λ1), ..., ψv(λl)). By conditioning on the value of the vector

X $ (X1
v , ..., X

l−1
v ), the probability in (1.3.4) is equal to

∫ L
?,1(ε+ηε)
N (λ1)

−∞
...
∫ L

?,(l−1)(ε+ηε)
N (λl−1)

−∞
P
(
X l
v ≥ L?,lε−ηεN (λl) |X = x

)
fv(x) dx

where fv is the density function ofX. By independence of the increments, the last integral
is equal to

∫ L
?,1(ε+ηε)
N (λ1)

−∞
...
∫ L

?,(l−1)(ε+ηε)
N (λl−1)

−∞
P
(
∇X l

v ≥ L?,lε−ηεN (λl)− xl−1
)
fv(x) dx. (1.3.5)

Since lε − ηε = (ε − lηε) + (l − 1)(ε + ηε), a Gaussian estimate and the bound
maxv∈VN V

(
∇X l

v

)
≤ σ̄2

l∇λl logN + C from (1.3.2) give

P
(
∇X l

v ≥ L?,lε−ηεN (λl)− xl−1
)

≤
√
V(∇X l

v)
L?,lε−ηεN (λl)− xl−1

exp
(
−(∇L?N(λl) + L?,lε−ηεN (λl−1)− xl−1)2

2V(∇X l
v)

)

≤ C√
logNN−2∇λl exp

(
−2(L?,lε−ηεN (λl−1)− xl−1)

σ̄l

)

= C√
logNN−2∇λlN

−4 ε−lηε
σ̄l exp

−2(L?,(l−1)(ε+ηε)
N (λl−1)− xl−1)

σ̄l

 . (1.3.6)
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To get the second inequality, we bounded the ratio using

L?,lε−ηεN (λl)− xl−1 ≥ ∇L?N(λl) = σ̄l∇λl logN2

from the integration limits of xl−1 in (1.3.5). It is convenient to do the change of variables
Yv,j $ (ε+ ηε) logN2 +∇L?N(λj)−∇Xj

v for all j ∈ {1, ..., l− 1}. Equation (1.3.5) is then
bounded, using (1.3.6), by

CN
−4 ε−lηε

σ̄l

N2λl√logN N2λl−1
∫ ∞

0

∫ ∞
−y1
...
∫ ∞
−
∑l−2

j=1 yj

l−1∏
j=1

e
−2

yj
σ̄l
e
−((yj−(ε+ηε) logN2)−∇L?

N
(λj))2

2V(Yv,j)√
2πV(Yv,j)

dy. (1.3.7)

After multiplying byN2λl, the l-th term of the sum in (1.3.4) has the right decay if we show
that the integral in (1.3.7) is bounded by C̃N−2λl−1. From (1.3.2), we have

0 < V(Yv,j) ≤ σ̄2
j∇λj logN + C

for all v ∈ V o
N . If the variances were all equal to σ̄2

j∇λj logN +C, the argument would be
simpler. Extra work is needed to take care of the boundary effect of the GFF. We gather
the result into a lemma for later use in the proof of Lemma 1.3.4. �

Lemma 1.3.2. Let 2≤ l ≤ m and z$ (zj)l−1
j=1 be such that 0< zj ≤ σ̄2

j∇λj logN +C. For

all ε̃ > 0, consider the integral

Iε̃(z) $
∫ ∞

0
g1(y1)...

∫ ∞
−
∑l−3

j=1 yj
gl−2(yl−2)

∫ ∞
−
∑l−2

j=1 yj
e−2al

∑l−1
j=1 yjgl−1(yl−1) dy

where al > 1/σ̄l−1 and

gj(y) $ 1√2πzj
exp

(
− 1

2zj

(
(y − ε̃ logN2)−∇L?N(λj)

)2
)
, 1 ≤ j ≤ l − 1.

Then Iε̃(z) ≤ C̃N−2λl−1.

Proof. Let βj $ ∇L?N (λj)
2zj , 1 ≤ j ≤ l − 1. When al − βl−1 ≥ 1/√zl−1, the first integral

with respect to yl−1 in Iε̃(z) is equal to

e−2al
∑l−2

j=1 yj
∫ ∞
−
∑l−2

j=1 yj
e−2alyl−1

1√
2πzl−1

e
− 1

2zl−1
((yl−1−ε̃ logN2)−∇L?N (λl−1))2

dyl−1
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≤ e−2al
∑l−2

j=1 yj
1√
zl−1

e
− 1

2zl−1
(∇L?N (λl−1))2 ∫ ∞

−
∑l−2

j=1 yj
e−2(al−βl−1)yl−1dyl−1

= e−2al
∑l−2

j=1 yj
1√
zl−1

e
− 1

2zl−1
(∇L?N (λl−1))2 1

2(al − βl−1)e
2(al−βl−1)

∑l−2
j=1 yj .

Since zl−1 ≤ σ̄2
l−1∇λl−1 logN+C and ∇L?N(λl−1) = σ̄l−1∇λl−1 logN2, the above is smaller

than
Ce−2βl−1

∑l−2
j=1 yjN−2∇λl−1

. (1.3.8)

When al − βl−1 < 1/√zl−1, we have by completing the square :

e−2al
∑l−2

j=1 yj
∫ ∞
−
∑l−2

j=1 yj

e−2alyl−1

√
2πzl−1

e
−((yl−1−ε̃ logN2)−∇L?

N
(λl−1))2

2zl−1 dyl−1

≤ e−2al
∑l−2

j=1 yj
∫ ∞
−
∑l−2

j=1 yj

e−2al(yl−1−ε̃ logN2)
√

2πzl−1
e
−((yl−1−ε̃ logN2)−∇L?

N
(λl−1))2

2zl−1 dyl−1

= e−2al
∑l−2

j=1 yje−2al∇L?N (λl−1)e2a2
l zl−1

·
∫ ∞
−
∑l−2

j=1 yj

1√
2πzl−1

e
−((yl−1−ε̃ logN2)−(∇L?N (λl−1)−2alzl−1))2

2zl−1 dyl−1

≤ exp
(
− 2al

l−2∑
j=1

yj − 2al∇L?N(λl−1) + 2a2
l zl−1

)
.

In the regime al − βl−1 < 1/√zl−1, note that 2a2
l zl−1 < al∇L?N(λl−1) + 2al

√
zl−1. Since

zl−1 ≤ σ̄2
l−1∇λl−1 logN + C, the above is smaller than

exp
(
− 2al

l−2∑
j=1

yj − al∇L?N(λl−1) + C
√

logN
)
.

By assumption, al > 1/σ̄l−1. Therefore, the above is smaller than

e−2al
∑l−2

j=1 yjN−2∇λl−1
. (1.3.9)

The second integral with respect to yl−2 in Iε̃(z) is evaluated similarly using (1.3.8) and
(1.3.9) by taking al−1 $ min{al, βl−1} and considering whether al−1 − βl−2 ≥ 1/√zl−2 or
not. Note that al−1 > 1/σ̄l−2 holds since al > 1/σ̄l−1 > 1/σ̄l−2 (because the steps of σ̄ are
decreasing in height) and βl−1 ≥ 1/σ̄l−1−O((logN)−1) > 1/σ̄l−2 from the bounds on zl−1.
This recursive reasoning shows that Iε̃(z) is smaller than C̃N−2λl−1 . �
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Lemma 1.3.3 (Lower bound on the first order of the maximum). Let {ψv}v∈VN be the

(σ,λ)-GFF on VN of Definition 1.1.1 and γ? as in Theorem 1.1.2. For all 0 < ε < 1,
there exists a constant c = c(ε,σ,λ) > 0 such that

P
(

max
v∈VN

ψv ≤ (1− ε)γ? logN2
)
≤ N−c (1.3.10)

for N large enough.

Without loss of generality, we can assume that λi ∈ Q for all i ∈ {0, ...,M}. To see this,
define λ̃i $ λi+ηi where 0 < ηi < mini∇λi and such that λ̃i ∈ Q for all i ∈ {1, ...,M−1}.
Now, define a new scale-inhomogeneous Gaussian free field :

ψ̃v $
M∑
i=1

σi∇φv(λ̃i) = ψv +
M−1∑
i=1

(σi − σi+1)(φv(λ̃i)− φv(λi)).

As a particular case of Lemma 1.4.3, note that

max
v∈VN

V
(
φv(λ̃i)− φv(λi)

)
≤ (λ̃i − λi) logN + C = ηi logN + C.

If we can show Lemma 1.3.3 when the λi’s are rational numbers, then a union bound and
a Gaussian estimate yield

P
(

max
v∈VN

ψv ≤ (1− 2ε)γ? logN2
)

≤ P
(

max
v∈VN

ψ̃v ≤ (1− ε)γ? logN2
)

+
∑
v∈V oN

M−1∑
i=1

P
(
|σi − σi+1|

∣∣∣φv(λ̃i)− φv(λi)∣∣∣ ≥ (ε/(M − 1))γ? logN2
)

≤ N−c(ε,σ,λ) +N2(M − 1) exp
(
−

(
(ε/(M − 1))γ? logN2

)2

2 maxi |σi − σi+1|2(ηi logN + C)

)
.

The second term can be made O(N−c̃(ε,σ,λ)) where c̃ > 0 is arbitrarily large, by choosing
the ηi’s small enough with respect to ε.

The proof of Lemma 1.3.3 is based on a coarse-graining of the scales introduced in
Kistler (2015). Consider αk $ k

K
, 0 ≤ k ≤ K. The parameter K ∈ N will be chosen large

enough depending on ε during the proof. By the argument above, we can assume that
λiK ∈ N0 for all i ∈ {0, ...,M}, so that the αk’s form a finer partition of [0, 1] than the
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λi’s. The bounds in (1.3.1) imply that for all k ∈ {1, ..., K} and for all v ∈ V δ
N :

|V(∇ψv(αk))− σ2(αk)∇αk logN | ≤ C(δ). (1.3.11)

The parameter δ ∈ (0, 1/2) remains fixed to an arbitrary value in the rest of this section.
For all 0 < ε < 1, denote by L?N,ε the following sub-optimal path :

L?N,ε(s) = (1− ε)L?N(s) = (1− ε)Jσ2/σ̄(s) logN2, s ∈ [0, 1].

The proof relies on the Paley-Zygmund inequality (see Lemma 1.4.8) applied to a
modified number of exceedances. In fact, we consider only points in V δ

N whose increments
are almost optimal. Moreover, and crucially, we drop the first r increments. We will
choose r during the proof. This allows more independence between the variables of the
field, which is needed to find a tight lower bound using the Paley-Zygmund inequality.
More precisely, define

N ?
ε $

∑
v∈V δN

1Av where Av $ {∇ψv(αj) ≥ ∇L?N,ε(αj) ∀j ∈ {r + 1, ..., K}}.

For a fixed ε > 0, there is the following inequality for c = c(ε) > 0 :

P
(

max
v∈VN

ψv ≥ (1− 3ε)γ? logN2
)
≥ P(N ?

ε ≥ 1)−O(N−c). (1.3.12)

Indeed, on the event {N ?
ε ≥ 1}, we have

max
v∈V δN

ψv − ψv(αr) ≥ (1− ε)Jσ2/σ̄(αr, 1) logN2

= (1− ε)γ? logN2 − (1− ε)Jσ2/σ̄(αr) logN2

≥ (1− 2ε)γ? logN2

where we take K large enough that (1− ε)Jσ2/σ̄(αr) < εγ?. Furthermore, the probability
P(maxv∈V δN ψv − ψv(αr) ≥ (1− 2ε)γ? logN2) is equal to

P
(

max
v∈V δN

ψv − ψv(αr) ≥ (1− 2ε)γ? logN2, min
v∈V δN

ψv(αr) > −εγ? logN2
)

+ P
(

max
v∈V δN

ψv − ψv(αr) ≥ (1− 2ε)γ? logN2, min
v∈V δN

ψv(αr) ≤ −εγ? logN2
)
.
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The distribution of ψv(αr) is symmetric, so the second term is smaller than

P
(

max
v∈V δN

ψv(αr) ≥ εγ? logN2
)
≤ N2 exp

(
−(εγ?)2 logN2

maxi σ2
i αr

)
(1.3.13)

where we used a union bound, a Gaussian estimate and (1.3.2) to get the inequality. This
is O(N−c) by choosing K large enough for a fixed ε and r. On the other hand, the first
term is smaller than P(maxv∈V δN ψv ≥ (1 − 3ε)γ? logN2). Since VN ⊇ V δ

N , this implies
(1.3.12) as claimed.

Proof of Lemma 1.3.3. In view of (1.3.12), it suffices to show P(N ?
ε ≥ 1) = 1 −

O(N−c). The Paley-Zygmund inequality implies

P(N ?
ε ≥ 1) ≥ (E[N ?

ε ])2

E[(N ?
ε )2] .

We show
E
[
(N ?

ε )2
]
≤ (1 +O(N− 1

2K (1−(1−ε)2)) (E[N ?
ε ])2, (1.3.14)

which proves the claim.
The first moment is easily evaluated by the independence of the increments :

E[N ?
ε ] =

∑
v∈V δN

P(Av) =
∑
v∈V δN

K∏
j=r+1

P
(
∇ψv(αj) ≥ ∇L?N,ε(αj)

)
.

Using Gaussian estimates and the variance estimates in (1.3.11), the probabilities are for
every j and v ∈ V δ

N :

pv,j $ P
(
∇ψv(αj) ≥ ∇L?N,ε(αj)

)
� 1√

logN exp
(
−(1− ε)2σ

2(αj)
σ̄2(αj)

∇αj logN2
)
. (1.3.15)

Write ej for the exponential term on the right-hand side of (1.3.15). The first moment
satisfies

E[N ?
ε ] =

∑
v∈V δN

P(Av) ≥
c(ε, δ)

(logN) 1
2 (K−r) × |V

δ
N | ×

K∏
j=r+1

ej. (1.3.16)

Now, we compare this with the second moment :

E
[
(N ?

ε )2
]

=
∑

v,v′∈V δN

P(Av ∩ Av′).
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We divide the sum depending on the correlations between ψv and ψv′ . More precisely,
recall the definition of the branching scale in (1.2.1) :

ρ(v, v′) $ max{λ ∈ [0, 1] : [v]λ ∩ [v′]λ 6= ∅}, v, v′ ∈ VN .

Write the second moment as

∑
v,v′∈V δN
ρ(v,v′)<αr

P(Av ∩ Av′) +
K−1∑
k=r+1

∑
v,v′∈V δN

αk−1≤ρ(v,v′)<αk

P(Av ∩ Av′) +
∑

v,v′∈V δN
ρ(v,v′)≥αK−1

P(Av ∩ Av′) . (1.3.17)

In particular, the first term in (1.3.17) is equal to

∑
v,v′∈V δN
ρ(v,v′)<αr

P(Av)P(Av′) ≤
∑

v,v′∈V δN

P(Av)P(Av′) = (E[N ?
ε ])2. (1.3.18)

It remains to show that the second and third term in (1.3.17) are negligible compared
to (E[N ?

ε ])2. We write the details for the second term since the last term is done similarly
and is easier. By Lemma 1.4.1 (following the Markov property of the GFF), note that if
αk−1 ≤ ρ(v, v′) < αk for some k ≥ r + 1, then ∇ψv′(αj′), j′ ≥ k + 1, is independent of
∇ψv(αj) for j ≤ k− 2 and j ≥ k+ 1. Therefore, for v, v′ ∈ V δ

N such that αk−1 ≤ ρ(v, v′) <
αk, we have

P(Av ∩ Av′) ≤
k−2∏
j=r+1

pv,j
K∏

j=k+1
pv,jpv′,j ≤

 K∏
j=r+1

e2
j

(∏r
j=1 ej

ek−1e2
k

)k−1∏
j=1

ej

−1

where we dropped the conditions on j ∈ {k−1, k} for v as well as the conditions on j ≤ k

for v′ in the first inequality. We simply rearranged the probabilities and eliminated the
log terms to get the last inequality. The number of pairs v, v′ ∈ V δ

N such that αk−1 ≤
ρ(v, v′) < αk is at most |V δ

N | ×N2(1−αk−1). Therefore, by (1.3.16),

∑
v,v′∈V δN

αk−1≤ρ(v,v′)<αk

P(Av ∩Av′) ≤
(E[N ?

ε ])2

(logN)−K ×N
−2αk−1(1−(1−ε)2)

(∏r
j=1 ej

ek−1e2
k

)
× N−2αk−1(1−ε)2∏k−1

j=1 ej

(1.3.19)

The right-hand side of (1.3.19) is separated in three factors by ×. The third factor is
bounded by 1 because ∫ t

0

σ2(s)
σ̄2(s)ds ≤ t, t ∈ (0, 1],
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by definition of σ̄. To bound the second factor, set r ≥ 3 independently of any other
variable. Note that if r depended on K, the bound in (1.3.13) would not necessar-
ily tend to 0. There are two cases to consider : αk ≤ λ1 and αk > λ1. When
αk ≤ λ1, the ratio of exponentials is bounded by 1 because e1e2e3 = ek−1e

2
k and we

have N−2αk−1(1−(1−ε)2) ≤ N−
1
K

(1−(1−ε)2) since αk−1 ≥ αr ≥ 1/(2K). When αk > λ1, the
ratio of exponentials is bounded by Nλ1(1−(1−ε)2) by choosing K large enough for a fixed ε
and we have N−2αk−1(1−(1−ε)2) ≤ N−2λ1(1−(1−ε)2) because αk−1 ≥ λ1. Since λ1 ≥ 1/K, the
right-hand side of (1.3.19) is always bounded by

(E[N ?
ε ])2 (logN)K ×N− 1

K
(1−(1−ε)2).

With (1.3.18), this shows (1.3.14) and concludes the proof of the lemma. �

1.3.3. Log-number of high points

The proof of the upper bound for the log-number of high-points uses an argument based
on the path at every scale λl similar to the one in Lemma 1.3.1. Recall the definition of
the critical levels γl and the entropy Eγ in Theorem 1.1.3.

Lemma 1.3.4 (Upper bound on the log-number of high points). Let {ψv}v∈VN be the

(σ,λ)-GFF on VN of Definition 1.1.1 and γ? as defined in Theorem 1.1.2. Also, let

γl−1 < γ ≤ γl for some l ∈ {1, ...,m}. For all 0 < ε < (γ − γl−1)/m, there exists a

constant c = c(γ, ε,σ,λ) > 0 such that

P
(
|Hγ

N | ≥ N2Eγ+ε
)
≤ N−c (1.3.20)

for N large enough.

Proof. Recall the definition of the optimal path LγN from (1.2.6) and the notation Rλj

for the set of representatives at scale λj. Consider

Hγ,ε
N,j $

{
v ∈ Rλj |ψv(λj) ≥ Lγ+jε

N (λj)
}
, 1 ≤ j ≤ m.

Since Rλm = VN , note that
Hγ
N = Hγ,0

N,m = Hγ−mε,ε
N,m .

This is useful because the hypothesis ε < (γ − γl−1)/m implies γl−1 < γ − jε ≤ γl, which
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means (in particular) that for all j ∈ {1, ..., l − 1},

the paths L?N and Lγ−jεN coincide on the interval [0, λj]. (1.3.21)

The idea is to split the probability that at least N2Eγ+ε points in VN reach the optimal
height by looking at the first scale λj, 1 ≤ j ≤ l − 1, where the set Hγ−jε,ε

N,j is not empty.
As for the maximum, this yields the appropriate constraints along the scales to get the
correct upper bound. A union bound in (1.3.20) gives

P
(
|Hγ

N | ≥ N2Eγ+ε
)

= P
(
|Hγ−mε,ε

N,m | ≥ N2Eγ+ε
)

≤ P

 |Hγ−1ε,ε
N,1 | = ... = |Hγ−(l−1)ε,ε

N,l−1 | = 0
and |Hγ−mε,ε

N,m | ≥ N2Eγ+ε

+
l−1∑
j=1

P
(
|Hγ−jε,ε

N,j | ≥ 1
)
. (1.3.22)

Because of (1.3.21), the probabilities in the sum are bounded by N−c(ε) in exactly the same
manner as P(|H?,ε

N,m| ≥ 1) in Lemma 1.3.1. The first probability in (1.3.22) is bounded by

P


∣∣∣∣∣∣∣
v ∈ VN | ψv ≥ LγN(1) and ψv

λj
(λj) < LγN(λj)

for all 1 ≤ j ≤ l − 1


∣∣∣∣∣∣∣ ≥ N2Eγ+ε



≤ Ce−c(ηε)(logN)2 +N−εN−2EγN2 max
v∈V oN

P


ψv ≥ Lγ−ηεN (1) and
ψv(λj) < Lγ+jηε

N (λj)
for all 1 ≤ j ≤ l − 1

 (1.3.23)

using Markov’s inequality and using the event Aε as in (1.3.4), where we impose

0 < ηε < min{γ,Jσ2(1)ε/(4γ), σ̄l−1ε/(4lcγ), ε/m}

this time around. See (1.3.26) for the definition of cγ. See just below and also (1.3.27) for
the justification of the constraints on ηε. When l = 1, a Gaussian estimate and the bound
maxv∈VNV(ψv)≤ Jσ2(1) logN + C from (1.3.2) yield

P
(
ψv ≥ Lγ−ηεN (1)

)
≤
√
V(ψv)

Lγ−ηεN (1)
exp

(
−(Lγ−ηεN (1))2

2V(ψv)

)

≤ C(γ)N−2+2Eγ
√

logN N
4γ

J
σ2 (1)ηε
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because Lγ−ηεN (1) = 2(γ − ηε) logN and Eγ = 1− γ2/Jσ2(1) in this case. This proves that
the second term in (1.3.23) decays like N−c(γ,ε), as needed.

It remains to show a similar estimate for a fixed l ∈ {2, ...,m}. To simplify the notation,
denote (X1

v , ..., X
l−1
v , Xm

v ) $ (ψv(λ1), ..., ψv(λl−1), ψv). By conditioning on the value of the
vector X $ (X1

v , ..., X
l−1
v ), the probability in (1.3.23) is equal to

∫ Lγ+1ηε
N (λ1)

−∞
...
∫ L

γ+(l−1)ηε
N (λl−1)

−∞
P
(
Xm
v ≥ Lγ−ηεN (1) |X = x

)
fv(x) dx

where fv is the density function ofX. By independence of the increments, the last integral
is equal to

∫ Lγ+1ηε
N (λ1)

−∞
...
∫ L

γ+(l−1)ηε
N (λl−1)

−∞
P
(
Xm
v −X l−1

v ≥ Lγ−ηεN (1)− xl−1
)
fv(x) dx. (1.3.24)

The bound maxv∈VN V
(
Xm
v −X l−1

v

)
≤ Jσ2(λl−1, 1) logN +C from (1.3.2) and a Gaussian

estimate show that

P
(
Xm
v −X l−1

v ≥ Lγ−ηεN (1)− xl−1
)

= P
(
Xm
v −X l−1

v ≥ LγN(1)− LγN(λl−1) + Lγ−ηεN (λl−1)− xl−1
)

≤ C(γ)√
logNN

−2
(γ−J

σ2/σ̄(λl−1))2

J
σ2 (λl−1,1) exp

(
−2(γ − Jσ2/σ̄(λl−1))

Jσ2(λl−1, 1) (Lγ−ηεN (λl−1)− xl−1)
)

where we introduced LγN(λl−1) and used (1.2.6). By definition of Eγ and the definition of
γl−1 in (1.1.5), this is equal to

C(γ)N−2+2Eγ
√

logN N2λl−1 exp
(
−2

[
(γ − γl−1)
Jσ2(λl−1, 1) + 1

σ̄l−1

]
(Lγ−ηεN (λl−1)− xl−1)

)

= C(γ)N−2+2Eγ
√

logN N2λl−1
N

4lcγ
σ̄l−1

ηε exp
(
−2 cγ

σ̄l−1
(Lγ+(l−1)ηε

N (λl−1)− xl−1)
)

(1.3.25)

where
cγ $

(γ − γl−1)σ̄l−1

Jσ2(λl−1, 1) + 1 > 1. (1.3.26)

Putting the bound (1.3.25) in (1.3.24) and in (1.3.23), we get that the first term in (1.3.22)
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decays like

N
−
(
ε− 4lcγ

σ̄l−1
ηε

)
(1.3.27)

provided that

∫ ∞
0

∫ ∞
−y1

...
∫ ∞
−
∑l−2

j=1 yj

l−1∏
j=1

e
−2 cγ

σ̄l−1
yj e

−((yj−ηε logN2)−∇Lγ
N

(λj))2

2V(Yv,j)√
2πV(Yv,j)

dy ≤ C̃N−2λl−1
,

where Yv,j $ ηε logN2 +∇LγN(λj)−∇Xj
v . Similarly to (1.3.7), the integral has the right

decay as a consequence of Lemma 1.3.2, with al $ cγ/σ̄l−1 > 1/σ̄l−1, because L?N and LγN
coincide on the interval [0, λl−1]. �

Lemma 1.3.5 (Lower bound on the log-number of high points). Let {ψv}v∈VN be the

(σ,λ)-GFF on VN of Definition 1.1.1 and γ? as in Theorem 1.1.2. Let γ > 0 be such that

γl−1 ≤ γ < γl for some l ∈ {1, ...,m}. For all 0 < ε < min{1/4, (γl − γ)/(4γ)}, there
exists a constant c = c(γ, ε,σ,λ) > 0 such that

P
(
|Hγ

N | < N2Eγ−ε̃
)
≤ N−c

for N large enough, where ε̃ $ 24(γ?)2

σ̄2
m∇λm ε.

We use the same notations as in the proof of Lemma 1.3.3. As before, we can assume,
without loss of generality, that λiK ∈ N0 for all {0, ...,M} so that the αk’s form a finer
partition of [0, 1] than the λi’s. The parameter K ∈ N will be chosen large enough
depending on γ and ε during the proof. Again, we restrict ourselves to V δ

N to ensure that
for all k ∈ {1, ..., K} and for all v ∈ V δ

N :

|V(∇ψv(αk))− σ2(αk)∇αk logN | ≤ C(δ). (1.3.28)

The parameter δ ∈ (0, 1/2) remains fixed to an arbitrary value in the remainder of this
section. Next, define the path :

LγN,ε(s) $ (1− ε)Lγ(1+4ε)
N (s), s ∈ [0, 1].

Since ε < (γl− γ)/(4γ) by hypothesis, we have γl−1 ≤ γ < γ(1 + 4ε) < γl. This condition
implies that the increments of the path LγN,ε are always bounded by the increments of the
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sub-optimal path L?N,ε (see Figure 1.2.3), namely

LγN,ε(s2)− LγN,ε(s1) ≤ L?N,ε(s2)− L?N,ε(s1), 0 ≤ s1 ≤ s2 ≤ 1. (1.3.29)

Indeed, the paths Lγ(1+4ε)
N and L?N coincide on the interval [0, λl−1]. Moreover, when

s ∈ (λl−1, 1], we have, by the definition of the critic levels γl in (1.1.5) and the optimal
path Lγ(1+4ε)

N in (1.2.6),

d

ds

(Lγ(1+4ε)
N (s)− L?N(s))

logN2 = d

ds

∫ s

λl−1

σ2(u)

(
γ(1 + 4ε)− Jσ2/σ̄(λl−1)

)
Jσ2(λl−1, 1) − σ2(u)

σ̄(u)

du
≤ σ2(s)

σ̄l
− σ2(s)

σ̄(s) since γ(1 + 4ε) < γl

≤ 0 since σ̄ is non-increasing.

This proves inequality (1.3.29). By hypothesis, we also have ε < 1/4, which yields

LγN,ε(1) = (1− ε)(1 + 4ε)γ logN2 > (1 + 2ε)γ logN2. (1.3.30)

The proof again relies on the Paley-Zygmund inequality applied to a modified number

of exceedances where we consider only points in V δ
N whose increments are almost optimal.

We drop the first r increments to allow more independence which is needed for the second-
moment method to work. We can choose r ≥ 3 independently of any other variable as in
the proof of Lemma 1.3.3. The case l = 1 is easier to deal with, so we omit the details.
Assume l ∈ {2, ...,m} and define

N γ
ε $

∑
v∈V δN

1Av where Av $ {∇ψv(αj) ≥ ∇LγN,ε(αj) ∀j ∈ {r + 1, ..., K}}.

Note that for a fixed ε > 0, there is the following inequality for c = c(γ, ε) > 0 :

P
(
|Hγ

N | ≥ N2Eγ−ε̃
)
≥ P

(
N γ
ε ≥ N2Eγ−ε̃

)
−O(N−c). (1.3.31)

Indeed, the probability P
(
N γ
ε ≥ N2Eγ−ε̃

)
is equal to

P
(
N γ
ε ≥ N2Eγ−ε̃, min

v∈V δN
ψv(αr) > −εγ logN2

)

+ P
(
N γ
ε ≥ N2Eγ−ε̃, min

v∈V δN
ψv(αr) ≤ −εγ logN2

) (1.3.32)
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To simplify the argument, assume from now on that K is large enough to ensure αr ≤ λl−1.
The first probability in (1.3.32) is smaller than P

(
|Hγ

N | ≥ N2Eγ−ε̃
)
because the points

v ∈ V δ
N that are contributing to the sum N γ

ε , on the event {minv∈V δN ψv(αr) > −εγ logN2},
are also in Hγ

N . Indeed, when 1Av = 1,

ψv − ψv(αr) ≥ (1− ε)Lγ(1+4ε)
N (1)− (1− ε)L?N(αr)

= (1− ε)(1 + 4ε)γ logN2 − (1− ε)Jσ2/σ̄(αr) logN2

≥ (1 + ε)γ logN2 (1.3.33)

where we take K large enough that (1 − ε)Jσ2/σ̄(αr) < εγ and use (1.3.30) to obtain
the last inequality in (1.3.33). The distribution of ψv(αr) is symmetric, so the second
probability in (1.3.32) is smaller than

P
(

max
v∈V δN

ψv(αr) ≥ εγ logN2
)
≤ N2 exp

(
−(εγ)2 logN2

maxi σ2
i αr

)

where we used a union bound, a Gaussian estimate and (1.3.2) to get the inequality. This
is O(N−c) by choosing K large enough for a fixed ε and r. Therefore, we have (1.3.31) as
claimed.

Proof of Lemma 1.3.5. In view of (1.3.31), it suffices to show that P
(
N γ
ε ≥ N2Eγ−ε̃

)
=

1−O(N−c). The Paley-Zygmund inequality (Lemma 1.4.8) implies

P
(
N γ
ε ≥ N2Eγ−ε̃

)
≥
(

1− N2Eγ−ε̃

E[N γ
ε ]

)2 (E[N γ
ε ])2

E[(N γ
ε )2] . (1.3.34)

First, we make sure that N2Eγ−ε̃/E[N γ
ε ] → 0 as N → ∞. By independence of the in-

crements and the variance estimate (1.3.28), Gaussian estimates yield, for some constant
c = c(γ, ε, δ) > 0,

E[N γ
ε ] =

∑
v∈V δN

P(Av) =
∑
v∈V δN

K∏
j=r+1

P
(
∇ψv(αj) ≥ ∇LγN,ε(αj)

)

≥ c · (logN)− 1
2 (K−r)N

2(1−(1−ε)2)+2(1−ε)2Eγ(1+4ε)+2(1−ε)2
∫ αr

0
σ2(s)
σ̄2(s)

ds

≥ N2(1−(1−ε)2)+2(1−ε)2Eγ(1+4ε) . (1.3.35)
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By the definition of Eγ in Theorem 1.1.3, and because γl−1 ≤ γ < γ(1 + 4ε) < γl,

∣∣∣Eγ(1+4ε) − Eγ
∣∣∣ = (γ(1 + 4ε)− Jσ2/σ̄(λl−1))2 − (γ − Jσ2/σ̄(λl−1))2

Jσ2(λl−1, 1)

= 16ε2γ2 + 8εγ(γ − Jσ2/σ̄(λl−1))
Jσ2(λl−1, 1) ≤ 12(γ?)2

σ̄2
m∇λm

ε $ ε̃/2 (1.3.36)

where we used ε < 1/4, γ < γ? and Jσ2(λl−1, 1) ≥ Jσ2(λm−1, 1) = σ̄2
m∇λm to obtain the

inequality. By inserting the bound (1.3.36) in (1.3.35), we get

E[N γ
ε ] ≥ N2(1−(1−ε)2)+2(1−ε)2(Eγ−ε̃/2) = N2Eγ−ε̃N2(1−(1−ε)2)(1−Eγ+ε̃/2).

Since (1 − ε)2 < 1 and Eγ ≤ 1, it proves the assertion that N2Eγ−ε̃/E[N γ
ε ] → 0 and also

justify the use of the Paley-Zygmund inequality. In view of (1.3.34), it suffices to show,
like in Lemma 1.3.3, that

E
[
(N γ

ε )2
]
≤ (1 +O(N− 1

2K (1−(1−ε)2)) (E[N γ
ε ])2

to prove the lemma. The proof is almost identical to the proof of Lemma 1.3.3. Indeed,
by Gaussian estimates and the variance estimates in (1.3.28), the probabilities on the
increments in Av are for every j and v ∈ V δ

N :

p̃v,j $ P
(
∇ψv(αj) ≥ ∇LγN,ε(αj)

)
� ẽj√

logN

where the ẽj’s are the corresponding exponential factors. The proof is exactly the same
up to (1.3.19) with ẽj’s instead of ej’s. From there, the third factor in the decomposition
is still bounded by 1 because of property (1.3.29), and the rest of the argument follows if
we choose K large enough for a fixed ε and γ. This ends the proof of the lemma. �

1.4. Appendix

1.4.1. Technical lemmas

The Markov property of the GFF, which is a consequence of the strong Markov property
of the simple random walk (in the covariance function in (1.1.1)), implies that the value
of the field inside a neighborhood is independent of the field outside given the boundary,
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see e.g. Dynkin (1980). In particular, for the neighborhood [v]λ, where λ ∈ [0, 1], this
implies

φv(λ) $ E
[
φv | F∂[v]λ∪[v]c

λ

]
= E

[
φv | F∂[v]λ

]
. (1.4.1)

Let v, v′ ∈ VN , λ < λ′ and µ < µ′. Another direct consequence is the fact that for
λ, µ > ρ(v, v′) or λ > ρ(v, v′) > µ′,

φv(λ′)− φv(λ) is independent of φv′(µ′)− φv′(µ). (1.4.2)

This is because the shell [v]λ ∩ [v]cλ′ does not intersect the shell [v′]µ ∩ [v′]cµ′ in both cases,
see Figure 1.2.2. We stress that, in general, the field ψ does not have the Markov property.
However, by working with increments of the field ψ, the property analogous to (1.4.2) can
be proved.

Lemma 1.4.1. Let v, v′ ∈ VN , λ < λ′ and µ < µ′. If we have λ, µ > ρ(v, v′) or λ >

ρ(v, v′) > µ′, then

ψv(λ′)− ψv(λ) is independent of ψv′(µ′)− ψv′(µ).

Proof. Let v ∈ VN and λ < λ′. By Definition 1.1.1 of the field ψ and its conditional
expectation, we have

ψv(λ) =
∑

1≤i≤M
σiE

[
∇φv(λi) | F∂[v]λ∪[v]c

λ

]
=
∑

1≤i≤M :
λi−1<λ

σi (φv(λ ∧ λi)− φv(λi−1)). (1.4.3)

For the last equality, note that, when λi−1 < λ, the increments φv(λ ∧ λi) − φv(λi−1) are
linear combinations of variables inside the set ∂[v]λ ∪ [v]cλ and, when λi > λ, we have
E[φv(λi)− φv(λ∨ λi−1) | F∂[v]λ∪[v]c

λ
] = 0 by the tower property of conditional expectations.

By applying the same argument to ψv(λ′), we get

ψv(λ′)− ψv(λ) =
∑

1≤i≤M :
λ≤λi−1<λ′ or λ<λi≤λ′

or λi−1≤λ<λ′≤λi

σi (φv(λ′ ∧ λi)− φv(λ ∨ λi−1)). (1.4.4)

The conclusion of the lemma follows from (1.4.2). �

In the remainder of this section, we always assume, without loss of generality, that
N = 2n for some n ∈ N and λn, λ′n, λin ∈ N0 for all i ∈ {0, ...,M}.
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Lemma 1.4.2. Let δ ∈ (0, 1/2] and λi−1 ≤ λ < λ′ ≤ λi for some i ∈ {1, ...,M}, then

− C1(δ, σi) ≤ V(ψv(λ′)− ψv(λ))− (λ′ − λ)σ2
i logN ≤ C2(σi) (1.4.5)

for all v ∈ V δ
N and N large enough depending on δ. The constant C1 only depends on δ

when λ = 0.

Proof. The Markov property (1.4.1) yields E
[
φv − φv(λ) | F∂[v]λ′

]
= φv(λ′)−φv(λ). Using

the conditional variance formula and V(X | F) $ E[(X − E[X | F ])2 | F ], we can compute
the variance of (1.4.4) in the special case λi−1 ≤ λ < λ′ ≤ λi :

V(ψv(λ′)− ψv(λ)) = σ2
i V

(
E
[
φv − φv(λ) | F∂[v]λ′

])
= σ2

i

(
V(φv − φv(λ))− E

[
V
(
φv − φv(λ) | F∂[v]λ′

)])
= σ2

i (V(φv − φv(λ))− V(φv − φv(λ′))) . (1.4.6)

But, it is well known that {φu−E[φu | F∂B]}u∈B is a GFF when B ⊆ Z2 is a finite box, see
e.g. Zeitouni (2017). Simply choose B = [v]s, s = λ, λ′, in (1.4.6), then by the variance
definition in (1.1.1),

V(ψv(λ′)− ψv(λ)) = σ2
i (G[v]λ(v, v)−G[v]λ′ (v, v)). (1.4.7)

Using standard estimates for the discrete Green function, we can now evaluate the last
expression. For every finite box B ⊆ Z2, Proposition 1.6.3 of Lawler (1991) shows that
(keeping in mind our choice of normalization by π/2 in (1.1.1)) :

GB(x, y) =
 ∑
z∈∂B

Px(Wτ∂B = z) a(z − y)
− a(y − x), x, y ∈ B, (1.4.8)

where

a(w) =
 log(‖w‖2) + const. +O(‖w‖−2

2 ), if w ∈ Z2\{0},
0, if w = 0,

(1.4.9)

and Px is the law of the simple random walk starting at x ∈ Z2. Using (1.4.8), we can
rewrite the difference of Green functions in (1.4.7) as

∑
z∈∂[v]λ

Pv

(
Wτ∂[v]λ

= z
)
a(z − v) −

∑
z∈∂[v]λ′

Pv

(
Wτ∂[v]λ′

= z
)
a(z − v). (1.4.10)
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When λ′ = 1, we have ‖z − v‖2 = 0 for z ∈ ∂[v]λ′ . Otherwise, we assumed v ∈ V δ
N ,

so take N large enough (depending on δ) that [v]λ′ is not cut off by ∂VN . We have
‖z − v‖2 ≤

√
2N1−λ for z ∈ ∂[v]λ in general and ‖z − v‖2 ≥ 1

2N
1−λ′ for z ∈ ∂[v]λ′ when

λ′ 6= 1. We deduce the following bound on the variance in (1.4.7) :

max
v∈V δN

V(ψv(λ′)− ψv(λ)) ≤ σ2
i ((1− λ)− (1− λ′)) logN + σ2

iC

= (λ′ − λ)σ2
i logN + C2(σi).

Similarly, we have ‖z−v‖2 ≥ δN for z ∈ ∂[v]λ when λ = 0. Otherwise, takeN large enough
(depending on δ) that [v]λ is not cut off by the boundary of VN . We have ‖z−v‖2 ≥ 1

2N
1−λ

for z ∈ ∂[v]λ when λ 6= 0 and ‖z − v‖2 ≤ 1√
2N

1−λ′ for z ∈ ∂[v]λ′ in general. We deduce
the following bound on the variance in (1.4.7) :

min
v∈V δN

V(ψv(λ′)− ψv(λ)) ≥ σ2
i ((1− λ)− (1− λ′)) logN − σ2

iC(δ)

= (λ′ − λ)σ2
i logN − C1(δ, σi).

This ends the proof of the lemma. �

Since the upper bound in Lemma 1.4.2 is only valid for N large enough depending on
δ, we cannot immediately conclude that it holds for all v ∈ VN . We show in the next
lemma how to extend the bound.

Lemma 1.4.3. Let λi−1 ≤ λ < λ′ ≤ λi for a certain i ∈ {1, ...,M}, then

max
v∈VN

V(ψv(λ′)− ψv(λ)) ≤ (λ′ − λ)σ2
i logN + C(σi) (1.4.11)

for N large enough.

Proof. When v ∈ ∂VN , the bound is trivial because ψv = 0. Therefore, let v ∈ V o
N . To

obtain the upper bound on the difference of Green functions in (1.4.7), we only used the
fact that [v]λ′ was not cut off by ∂VN for N large enough depending on δ. Hence, we only
need to show that when [v]λ′ is cut off, there exists u ∈ V o

N such that [u]λ′ is not cut off
and for which

G[v]λ(v, v)−G[v]λ′ (v, v) ≤ G[u]λ(u, u)−G[u]λ′ (u, u) + C̃(σi). (1.4.12)

Assume that [v]λ′ is cut off by ∂VN and choose u to be the center of VN . Clearly, the
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neighborhood [u]λ′ is not cut off by the boundary of VN . When λ′ = 1, inequality (1.4.12)
is trivial because G[v]λ′ (v, v) = G[u]λ′ (u, u) = 0 and G[v]λ(v, v) ≤ G[u]λ(u, u) since [v]λ is
cut off and [u]λ is not. Now, assume λ′ < 1. Denote θ(x) $ x + u − v the translation
function that moves v to u, see Figure 1.4.4.

VN

[v]λ′

[v]λ

v

[u]λ′

[u]λ

u

Figure 1.4.4. The grey area θ([v]λ) is the translation of [v]λ.

For the rest of the proof, redefine [v]0 as the square box of side length N centered at
v that has been cut off by ∂VN . Since θ([v]λ) ⊆ [u]λ, we have

G[v]λ(v, v)−G[v]λ′ (v, v) = π

2 · Ev

 τ∂[v]λ−1∑
k=τ∂[v]λ′

1{Wk=v}1{τ∂[v]λ′
<τ∂[v]λ′∩∂VN

}



= π

2 · Eu

τ∂θ([v]λ)−1∑
k=τ∂[u]λ′

1{Wk=u}1{τ∂[u]λ′
<τθ(∂[v]λ′∩∂VN )}



≤ π

2 · Eu

 τ∂[u]λ−1∑
k=τ∂[u]λ′

1{Wk=u}

 = G[u]λ(u, u)−G[u]λ′ (u, u).

This proves (1.4.12) when λ 6= 0. Since [v]0 $ VN throughout the article and we defined
[v]0 differently in this proof, it remains to show that

max
v∈VN

GVN (v, v)−G[v]0(v, v) ≤ C̃(σi) (1.4.13)
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for (1.4.12) to be true when λ = 0. By the strong Markov property and (1.4.8) :

GVN (v, v)−G[v]0(v, v)

=
∑

z∈∂[v]0∩V oN

Pv

(
Wτ∂[v]0

= z
)
GVN (z, v)

=
∑

z∈∂[v]0∩V oN

Pv

(
Wτ∂[v]0

= z
) ∑
w∈∂VN

Pz

(
Wτ∂VN

= w
)

(a(w − v)− a(v − z)).

But ‖w − v‖2 ≤
√

2N for all w ∈ ∂VN and ‖v − z‖2 ≥ 1
2N for all z ∈ ∂[v]0 ∩ V o

N . We get
the desired conclusion using (1.4.9). �

In order to approximate the branching structure of the (σ,λ)-GFF in Lemma 1.3.1
and Lemma 1.3.4, we need to show that the variance of ψv(λ) − ψvλ(λ) is bounded by a
constant, where vλ denotes any representative in Rλ that is closest to v. Our final goal
here is to show Lemma 1.4.6. We start by proving a more general version of Lemma 12
found in Bolthausen et al. (2001). We define

φv(A) $ E
[
φv | F∂(A∩VN )

]
and d(z, A) $ minw∈A ‖z − w‖2 for any non-empty set A ⊆ Z2.

Lemma 1.4.4. Let B ⊆ Z2 be a square box of width smaller or equal to N/2 such that

B ∩ VN 6= ∅. Moreover, let 0 ≤ η < 1 and L ∈ {1, 2, ..., N/4}, then there exists a constant

C = C(η) > 0 such that
max

u,v∈B∩VN
d(u,∂B)=L
‖u−v‖2≤ηL

V(φu(B)− φv(B)) ≤ C. (1.4.14)

Proof. Let u, v ∈ B ∩ VN be such that d(u, ∂B) = L and ‖u − v‖2 ≤ ηL. Denote
B $ B ∩ VN . Using the conditional variance formula as in (1.4.6), we have

V(φu(B)− φv(B)) = V(E[φu − φv | F∂B])

= V(φu − φv)− E[V(φu − φv | F∂B)]

= (GVN (u, u)−GVN (u, v) +GVN (v, v)−GVN (v, u))

− (GB(u, u)−GB(u, v) +GB(v, v)−GB(v, u)). (1.4.15)
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For this proof, redefine [u]0 as the square box of side length N centered at u that has been
cut off by ∂VN . From (1.4.13), we know maxu∈VN GVN (u, u)− G[u]0(u, u) ≤ C. Using the
exact same method, we can also easily show that

max
v∈VN

‖u−v‖2≤ηN/2

GVN (v, v)−G[u]0(v, v) ≤ C(η)

because we would have ‖v − z‖2 ≥ (1 − η)N/2 for all z ∈ ∂[u]0 ∩ V o
N in the reasoning

below (1.4.13), where η < 1 by hypothesis. Finally, −GVN (u, v) ≤ −G[u]0(u, v), so proving
(1.4.14) boils down to the proof of the following inequality :

(♣) $

 (G[u]0(u, u)−G[u]0(u, v))− (GB(u, u)−GB(u, v))
+(G[u]0(v, v)−G[u]0(v, u))− (GB(v, v)−GB(v, u))

 ≤ C̃(η) . (1.4.16)

To show (1.4.16), we consider two cases : d(u, ∂VN) ≤ L and d(u, ∂VN) > L.

Case 1 : d(u, ∂VN) ≤ L

Since B ⊆ [u]0 (recall that B is a square box of width smaller or equal to N/2 and
contains u), then we always have

(♣) ≤ (G[u]0(u, u)−GB(u, u)) + (G[u]0(v, v)−GB(v, v)). (1.4.17)

Note that the box B is cut off by ∂VN in Case 1. By translating u, v, B together in such a
way that u doesn’t get closer to ∂VN with respect to both axes, each difference of Green
functions in (1.4.17) can only increase (see the argument below Figure 1.4.4). Therefore,
it is sufficient to bound (1.4.17) when d(u, ∂VN) = L. Assume d(u, ∂VN) = L for the
rest of Case 1. Since d(u, ∂B) = L by hypothesis, we have d(u, ∂B) = L and we get
d(v, ∂B) ≥ d(1− η)Le ≥ 1 by the triangle inequality. Consequently,

(♣) ≤ G[u]0(u, u) +G[u]0(v, v)− 2 logL+ C(η) (1.4.18)

using (1.4.8) and (1.4.9).

By the symmetries of the square, we can assume, without loss of generality, that the
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minimum in d(u, ∂VN) = L is achieved on the bottom edge of VN (which lies on the x-
axis). Define the half-space H $ {z = (z1, z2) ∈ Z2 | z2 ≥ 0}. Since we have [u]0 ⊆ H and
d(v, ∂H) ≤ (1 + η)L, by the triangle inequality, then

(♣) ≤ 2 max
z∈H

d(1−η)Le≤d(z,∂H)≤(1+η)L

GH(z, z)− 2 logL+ C(η). (1.4.19)

From Proposition 8.1.1 of Lawler and Limic (2010),

GH(z, z) = a(z − z̄) (1.4.9)= log(‖z − z̄‖2) + const. +O(‖z − z̄‖−2
2 ) (1.4.20)

where z = (z1, z2) and z̄ $ (z1,−z2). The conclusion for Case 1 follows from (1.4.19)
because 2 ≤ 2d(1− η)Le ≤ ‖z − z̄‖2 ≤ 2(1 + η)L in (1.4.20).

Case 2 : d(u, ∂VN) > L

For Case 2, we follow the argument from Bolthausen et al. (2001). We give the details
for convenience. For all k ∈ N0, define [u]k0 ⊆ Z2 the square box of side length 2kN
centered at u (not cut off by anything). For instance, [u]0 = [u]00 ∩ VN in this proof. Note
that [u]0 ⊆ [u]10 ⊆ [u]20 ⊆ ... and [u]0 ∪

⋃∞
k=1[u]k0 = Z2, so

(♣) ≤

 (G[u]0(u, u)−G[u]0(u, v))− (GB(u, u)−GB(u, v))
+(G[u]0(v, v)−G[u]0(v, u))− (GB(v, v)−GB(v, u))


+
∞∑
k=1

 (G[u]k0 (u, u)−G[u]k0 (u, v))− (G[u]k−1
0

(u, u)−G[u]k−1
0

(u, v))
+(G[u]k0 (v, v)−G[u]k0 (v, u))− (G[u]k−1

0
(v, v)−G[u]k−1

0
(v, u))


= π

2 · Eu
 ∞∑
k=τ

∂B

(1{Wk=u} − 1{Wk=v})
+ π

2 · Ev
 ∞∑
k=τ

∂B

(1{Wk=v} − 1{Wk=u})
.

The inequality comes from the fact that each pair of braces in the infinite sum is equal to
V[u]k0 (E[φu−φv | F∂[u]k−1

0
]) ≥ 0 by steps analogous to (1.4.15). The equality follows because

the infinite sum is telescopic.

By conditioning on the point z ∈ ∂B where the simple random walk starting at u or v
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will be when hitting the boundary of B, and using the strong Markov property, we deduce

(♣) ≤
∑
z∈∂B

(
Pu(Wτ

∂B
= z)−Pv(Wτ

∂B
= z)

)
· π2 · Ez

[ ∞∑
k=0

(1{Wk=u} − 1{Wk=v})
]

=
∑
z∈∂B

(
Pu(Wτ

∂B
= z)−Pv(Wτ

∂B
= z)

)
· (a(v − z)− a(u− z)) (1.4.21)

where “ a ”, the potential kernel (see p.37 in Lawler (1991)), is defined by

a(w) $ π

2 · E0

[ ∞∑
k=0

(1{Wk=0} − 1{Wk=w})
]
.

Theorem 1.6.2 in Lawler (1991) shows that this is the same function as in (1.4.9). There-
fore, we can evaluate (1.4.21) :

a(v − z)− a(u− z) = log
(
‖v − z‖2

‖u− z‖2

)
+O(‖v − z‖−2

2 )−O(‖u− z‖−2
2 ). (1.4.22)

By the triangle inequality, we have

log
(

1− ‖u− v‖2

‖u− z‖2

)
≤ log

(
‖v − z‖2

‖u− z‖2

)
≤ log

(
1 + ‖u− v‖2

‖u− z‖2

)
. (1.4.23)

Now, notice that
• ‖u− v‖2 ≤ ηL by hypothesis ;
• ‖u− z‖2 ≥ L for all z ∈ ∂B by the assumption of Case 2 ;
• ‖v − z‖2 ≥ ‖u − z‖2 − ‖u − v‖2 ≥ d(1 − η)Le for all z ∈ ∂B, from the first two
bullets and the triangle inequality.

Using the three bullets in (1.4.22) and (1.4.23), we have

log(1− η)− C1

d(1− η)Le2 ≤ (1.4.22) ≤ log(1 + η) + C2

d(1− η)Le2 (1.4.24)

for appropriate constants C1, C2 > 0. Since L ≥ 1 and d(1− η)Le ≥ 1, inequality (1.4.16)
follows by regrouping (1.4.21), (1.4.22) and (1.4.24). �

Lemma 1.4.5. Let 0 ≤ λ′ < 1 and d ≥ 1/
√

2. For all v ∈ VN , define Sv,d to be the set of

finite boxes B ⊆ Z2 such that [v]λ′ ⊆ B ∩ VN and maxz∈∂B ‖v − z‖2 ≤ dN1−λ′, then there

exists a constant C = C(d) > 0 such that, for N large enough,

max
v∈VN

max
B∈Sv,d

V(φv(λ′)− φv(B)) ≤ C.
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Proof. This follows directly from the calculations in Lemma 1.4.2 and Lemma 1.4.3
where B ∩ VN plays the same role as [v]λ. �

The next lemma is used in equation (1.3.4) of Lemma 1.3.1 and equation (1.3.23) of
Lemma 1.3.4 to show that the error coming from the approximation of the branching struc-
ture of ψ is small enough that the problem of finding the upper bound for the maximum
and the log-number of γ-high points is the same (modulo the additional hurdle caused by
the decay of variance near the edges of VN) as in the context of branching random walks.

Lemma 1.4.6. Let λj−1 < λ ≤ λj for a certain j ∈ {1, ...,M}, then there exists a constant

C = C(σ1, ..., σj) > 0 such that

max
v∈VN

V(ψv(λ)− ψvλ(λ)) ≤ C

for N large enough.

Proof. The lemma is trivial when λ = 1 since v = v1. Therefore, assume 0 < λ < 1.
Choose vλ ∈Rλ any representative that is closest to v (there may be more than one). For
all µ ∈ (0, λ], the square box Bµ ⊆ Z2 of width 2dN1−µe centered at vλ contains both [v]µ
and [vλ]µ because ‖v − vλ‖∞ ≤ 1

2N
1−λ. Then, by Jensen’s inequality :

V(φv(µ)− φvλ(µ)) ≤ 3 ·


V(φv(µ)− φv(Bµ))

+ V(φv(Bµ)− φvλ(Bµ))
+ V(φvλ(Bµ)− φvλ(µ))

 ≤ C̃. (1.4.25)

To see the last inequality, bound the first and third variance term inside the braces using
Lemma 1.4.5 with d = 3/

√
2 and bound the second variance term inside the braces using

Lemma 1.4.4 with η = 1/
√

2 (since ‖v − vλ‖2 ≤ N1−λ/
√

2 ≤ N1−µ/
√

2), u = vλ and
L = dN1−µe. Now, from (1.4.3) and Jensen’s inequality, we get

V(ψv(λ)− ψvλ(λ)) = V

 σj(φv(λ)− φvλ(λ))
+∑j−1

i=1 (σi − σi+1)(φv(λi)− φvλ(λi))



≤ j ·
 σ2

j V(φv(λ)− φvλ(λ))
+∑j−1

i=1 (σi − σi+1)2 V(φv(λi)− φvλ(λi))

.
Simply use (1.4.25) to bound each variance term inside the braces by a constant. This
ends the proof of the lemma. �
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Lemma 1.4.7 (Gaussian estimates, see e.g. Adler and Taylor (2007)). Suppose that

Z ∼ N (0, σ2) where σ > 0, then for all z > 0,(
1− σ2

z2

)
σ√
2πz

exp
(
− z2

2σ2

)
≤ P(Z ≥ z) ≤ σ√

2πz
exp

(
− z2

2σ2

)
.

Lemma 1.4.8 (Paley and Zygmund (1932) inequality). Let 0 ≤ X ∈ L2(P) be such that

P(X > 0) > 0, then for all 0 ≤ θ ≤ 1,

P(X ≥ θE[X]) ≥ (1− θ)2 (E[X])2

E[X2] .

1.4.2. Karush-Kuhn-Tucker theorem and applications

In this section, we state the Karush-Kuhn-Tucker theorem and the solutions to the
two optimization problems posed in Section 1.2. The optimal path for the maximum,
λ 7→ L?N(λ), comes from the solution to the problem stated in Lemma 1.4.10 while the
optimal path for γ-high points, λ 7→ LγN(λ), comes from the solution to the problem stated
in Lemma 1.4.11. The Karush-Kuhn-Tucker theorem only gives, a priori, necessary condi-
tions for local optimality. However, the conditions are also sufficient for global optimality
here because the objective function fγ below and the constraint functions gk are continu-
ously differentiable and concave (fγ? is linear), see Hanson (1981). The proof of the two
lemmas can be found in Appendix A of Ouimet (2014) and are direct applications of the
theorem.

Theorem 1.4.9 (Karush-Kuhn-Tucker, see e.g. Delfour (2012)). Let f : Rn1 → R be an

objective function and let

U≥ $ {x ∈ Rn1 | gk(x) ≥ 0 ∀k ∈ {1, ..., n2}}

be a set of constraints specified by the constraint functions gk : Rn1 → R, 1 ≤ k ≤ n2.

Furthermore, assume that

(a) f attains a local maximum at x? ∈ U≥ with respect to U≥;
(b) f is Fréchet differentiable at x?;

(c) the gk’s are Fréchet differentiable at x?.

When the constraints qualify (they do in Lemma 1.4.10 and Lemma 1.4.11 because the

gk’s are concave and 0 ∈ U>, see Slater’s condition in Delfour (2012)), then there exists
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(µ1, ..., µn2) ∈ Rn2 such that the following points hold for all k ∈ {1, ..., n2} (∇ is the

gradient here) :

(1) ∇f(x?) +∑n2
k=1 µk∇gk(x?) = 0;

(2) gk(x?) ≥ 0;
(3) µk ≥ 0;
(4) µkgk(x?) = 0.

Lemma 1.4.10. (Optimal path for the maximum) Let

fγ?(x1, ..., xM) $
M∑
i=1

xi

be the objective function to maximize under the constraints

gk(x1, ..., xM) $
k∑
i=1

(
∇λi −

x2
i

σ2
i∇λi

)
≥ 0, 1 ≤ k ≤M,

then there exists a unique global maximum. The solution is given by

x?i = ∇Jσ2/σ̄(λi), 1 ≤ i ≤M,

and the maximum is given by

fγ?(x?1, ..., x?M) = Jσ2/σ̄(1) $ γ?.

Lemma 1.4.11. (Optimal path for γ-high points) Let γl−1 ≤ γ < γl for a certain l ∈
{1, ...,m}, where the critical levels γl are defined in (1.1.5). Furthermore, let

fγ(x1, ..., xM−1) $
M−1∑
i=1

(
∇λi −

x2
i

σ2
i∇λi

)
+
(
∇λM −

(γ −∑M−1
i′=1 xi′)2

σ2
M∇λM

)

be the objective function to maximize under the constraints

gk(x1, ..., xM−1) $
k∑
i=1

(
∇λi −

x2
i

σ2
i∇λi

)
≥ 0, 1 ≤ k ≤M − 1,

then there exists a unique global maximum. The solution is given by

x?i =


∇Jσ2/σ̄(λi), when λi ≤ λl−1,

∇Jσ2 (λi)
Jσ2 (λl−1,1)(γ − Jσ2/σ̄(λl−1)), when λi > λl−1,
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for all i ∈ {1, ...,M − 1} and the maximum is given by

fγ(x?1, ..., x?M−1) = (1− λl−1)−
(
γ − Jσ2/σ̄(λl−1)

)2

Jσ2(λl−1, 1) $ Eγ.
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Abstract. We continue our study of the scale-inhomogeneous Gaussian free field in-

troduced in Arguin and Ouimet (2016). Firstly, we compute the limiting free energy

on VN and adapt a technique of Bovier and Kurkova (2004b) to determine the limiting

two-overlap distribution. The adaptation was already successfully applied in the sim-

pler case of Arguin and Zindy (2015), where the limiting free energy was computed for

the field with two levels (in the center of VN ) and the limiting two-overlap distribution

was determined in the homogeneous case. Our results agree with the analogous quanti-

ties for the Generalized Random Energy Model (GREM); see Capocaccia et al. (1987)

and Bovier and Kurkova (2004a), respectively. Secondly, we show that the extended

Ghirlanda-Guerra identities hold exactly in the limit. As a corollary, the limiting array

of overlaps is ultrametric and the limiting Gibbs measure has the same law as a Ruelle

probability cascade.

Keywords: Gaussian free field, Gibbs measure, inhomogeneous environment, Ghirlanda-

Guerra identities, ultrametricity, spin glasses, Ruelle probability cascades

2.1. The model

Let (Wk)k≥0 be a simple random walk starting at u ∈ Z2 with law Pu. For every finite
box B ⊆ Z2, the Gaussian free field (GFF) on B is a centered Gaussian field φ $ {φv}v∈B
with covariance matrix

GB(v, v′) $ π

2 · Ev
τ∂B−1∑

k=0
1{Wk=v′}

 , v, v′ ∈ B, (2.1.1)

where τ∂B is the first hitting time of (Wk)k≥0 on the boundary of B,

∂B $ {v ∈ B : ∃z ∈ Z2\B such that ‖v − z‖2 = 1}, (2.1.2)

and ‖ · ‖2 denotes the Euclidean distance in Z2. With this definition, B contains its
boundary. We let Bo $ B\∂B. By convention, summations are zero when there are no
indices, so φ is identically zero on ∂B. This is the Dirichlet boundary condition. The
constant π/2 in (2.1.1) is a convenient normalization for the variance.

We build a family of Gaussian fields constructed from the GFF {φNv }v∈VN on the
square box VN $ {0, 1, ..., N}2. For λ ∈ (0, 1) and v = (v1, v2) ∈ VN , consider the closed
neighborhood [v]λ in VN consisting of the square box of width N1−λ centered at v that
has been cut off by the boundary of VN :

[v]λ $
(

(v1, v2) +
[
− 1

2N
1−λ,

1
2N

1−λ
]2
)⋂

VN . (2.1.3)
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By convention, define [v]0 $ VN and [v]1 $ {v}. Let F∂[v]λ∪[v]c
λ
$ σ({φNv , v /∈ [v]oλ}) be the

σ-algebra generated by the variables on the boundary of the box [v]λ and those outside of
it. Since the neighborhoods are shrinking when λ increases, for any v ∈ VN , the collection
Fv $ {F∂[v]λ∪[v]c

λ
}λ∈[0,1] is a filtration. In particular, if we let

φNv (λ) $ E
[
φNv | F∂[v]λ∪[v]c

λ

]
, (2.1.4)

then
for every v ∈ VN , the process (φNv (λ))λ∈[0,1] is a Fv-martingale.

It is also a Gaussian field, therefore disjoint increments of the form φNv (λ′)−φNv (λ) are inde-
pendent. These observations motivate the definition of scale-inhomogeneous Gaussian free

field, which can be seen as a martingale-transform of (φNv (λ))λ∈[0,1] applied simultaneously
for every v ∈ VN .

Fix M ∈ N and consider the parameters

σ $ (σ1, σ2, ..., σM) ∈ (0,∞)M , (variance parameters) (2.1.5)
λ $ (λ1, λ2, ..., λM) ∈ (0, 1]M , (scale parameters) (2.1.6)

where
0 $ λ0 < λ1 < ... < λM $ 1. (2.1.7)

We write ∇i for the difference operator with respect to the index i. When the index
variable is obvious, we omit the subscript. For example,

∇φNv (λi) $ φNv (λi)− φNv (λi−1). (2.1.8)

Definition 2.1.1 (Scale-inhomogeneous Gaussian free field). Let {φNv }v∈VN be the GFF

on VN . The (σ,λ)-GFF on VN is a Gaussian field {ψNv }v∈VN defined by

ψNv $
M∑
i=1

σi∇φNv (λi) =
M∑
i=1

σi
(
φNv (λi)− φNv (λi−1)

)
. (2.1.9)

Similarly to the GFF, we define

ψNv (λ) $ E
[
ψNv | F∂[v]λ∪[v]c

λ

]
and ψNv (λ, λ′) $ ψNv (λ′)− ψNv (λ). (2.1.10)

From hereon, we make the dependence on N implicit everywhere for φ and ψ.
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The (σ,λ)-GFF is the analogue of various types of inhomogeneous branching processes :

— The GREM, see e.g. Bovier and Kurkova (2004a,b); Capocaccia et al. (1987);
Derrida (1985); Ruelle (1987);

— The non-hierarchical GREM, see Bolthausen and Kistler (2006, 2009);
— The perceptron GREM, see Bolthausen and Kistler (2012);
— The multi-scale logarithmic potential (also called multi-scale log-REM), see e.g.

Fyodorov and Bouchaud (2008a); Cao et al. (2016);
— The branching random walk in time-inhomogeneous environment, see e.g. Fang

and Zeitouni (2012a); Mallein (2015b,a); Ouimet (2018);
— The variable speed branching Brownian motion, see e.g. Bovier and Hartung (2014,

2015); Fang and Zeitouni (2012b); Maillard and Zeitouni (2016).

Remark 2.1.1. Our model is most closely related to the multi-scale log-REM of Fyodorov
and Bouchaud (2008a). In both cases :

(1) There is a boundary effect, meaning that the variance of the variables of the field
decays to 0 as we approach the boundary;

(2) There is no exact hierarchical structure;

(3) The covariance between two random variables of the field is directly tied to the
distance between their index in a finite-dimensional Euclidean space;

(4) The number of possible covariance values grows with the size of the system.

Amongst the other models, not one has property 1 or 3, only the non-hierarchical

GREM has property 2, and only the time-inhomogeneous branching random walk and the

variable speed branching Brownian motion have property 4.

The only significant difference between the single-scale log-REM and the critical GFF

is the fact that the field is indexed in a N ′-dimensional space (instead of 2-dimensional)

and the covariance is defined to be logarithmic directly instead of it being a consequence

of estimates on the Green function in two dimensions. Fyodorov and Bouchaud (2008a)

calculate the limiting free energy and the limiting two-overlap distribution in the limit

N ′ → ∞ (for a finite system size) by using the replica trick and Parisi’s hierarchical

ansatz. In the thermodynamic limit, they recover the same structure as in the GREM case

and argue that the results should also hold if N ′ is fixed instead and the system size grows
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to infinity. In this article, we put their argument on rigorous ground via the (σ,λ)-GFF.

We go even further by showing that the limiting Gibbs measure has the same law as the

one found in Bovier and Kurkova (2004a) for the GREM. For an introduction to log-REM

models and physical motivations, see e.g. Carpentier and Le Doussal (2001); Fyodorov and

Bouchaud (2008b,a); Fyodorov et al. (2009); Cao et al. (2016).

2.2. Motivation for the scale-inhomogeneous GFF

In contrast with branching random walks (BRWs) :
— The branching structure is approximate in the sense that φv(λ) and φv′(λ) are not

perfectly correlated when λ is smaller than the branching scale, namely the largest
scale at which [v]λ and [v′]λ intersect. The branching scale itself is arbitrarily defined
since it is conceptually more of a transition interval : between the scale where v′ is
“well-inside” [v]λ and the smallest scale for which [v]λ ∩ [v′]λ = ∅.

— At a given scale, the covariance of the increments of the field decays near the
boundary of the domain. In the context of BRWs, this means that at a given
time, the law of each point process would depend on the position of the associated
ancestors in the tree.

Several covariance estimates can be found in Appendix 2.9.1.

We are interested in the (σ,λ)-GFF to see how the results on the extremes (and the
methods of proof) are robust to perturbations in the correlation structure. This interest is
amplified by the fact that many models in recent applications have underlying approximate
branching structures. For example :

• Cover times, see e.g. Abe (2014); Belius (2013); Belius and Kistler (2017); Comets
et al. (2013); Dembo et al. (2003, 2004, 2006); Ding (2012, 2014); Ding et al. (2012);
Ding and Zeitouni (2012);
• The randomized Riemann zeta function on the critical line, see e.g. Arguin et al.
(2017b); Arguin and Tai (2018); Harper (2013); Saksman and Webb (2018);
• The Riemann zeta function on random intervals of the critical line, see e.g. Arguin
et al. (2019); Najnudel (2018);
• The characteristic polynomials of random unitary matrices, see e.g. Arguin et al.
(2017a); Chhaibi et al. (2018); Paquette and Zeitouni (2018).
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In particular, note that all these models are heavily correlated in the critical regime, that
is when the correlation starts to affect the extremal statistics.

Generally, there are two ways to study the distribution of the extremes : via the
extremal process and via the Gibbs measure. Since one of our goal here is to show the
tree structure of the extremes in the limit N → ∞ (this interest comes partly from the
physicists and the Parisi ultrametricity conjecture for mean field spin glass models (see
e.g. Bovier (2006); Mézard et al. (1987); Panchenko (2013b); Talagrand (2011a,b))), the
mathematics in the latter approach is much simpler (at least in our case). A very important
advancement was made recently in Panchenko (2013a) where it is shown that a random
measure supported on the unit ball of a separable Hilbert space that satisfies the extended
Ghirlanda-Guerra identities must have an ultrametric support with probability one. The
summary in Section 2.3 gives a detailed description of the steps we will make to prove the
extended Ghirlanda-Guerra identities and the consequences we can deduce from the work
of Panchenko.

Remarkably, despite the imperfect branching structure of the (σ,λ)-GFF and the
growing number of scales as N → ∞, the results of this paper show that the limiting

Gibbs measure has the same tree structure as in the context of the GREM. More precisely,
we show that the limiting Gibbs measure has the same law as a Ruelle probability cascade

(see Ruelle (1987)) with functional order parameter ζ defined by the limiting two-overlap

distribution. This is the content of Corollary 2.7.2. In the limit, this means, in particular,
that the extremes of the model are clustered in a hierarchical way and in fact satisfy the
ultrametric inequality, see Corollary 2.7.1.

Another reason why the study of the extremes via the Gibbs measure might be more
desirable to prove ultrametricity results is its robustness, i.e. the applicability of the
methods to other models. For instance, Jagannath (2017) defines the notion of approximate

ultrametricity for finite system sizes by imposing conditions on the sequence of Gibbs
measures. It is proved that if the sequence of two-overlap distributions converge weakly
and the approximate extended Ghirlanda-Guerra identities are satisfied (in his sense, see
Definition 1.4 in Jagannath (2017)), then the sequence of Gibbs measures (assuming they
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are supported on the unit ball of a separable Hilbert space) is regularly approximately

ultrametric. His paper tie in very nicely with our approach since we prove the weak
convergence of the two-overlap distribution in Theorem 2.6.3, we prove a slightly different
version of the approximate extended Ghirlanda-Guerra identities in Theorem 2.6.4, and
then we show that the identities must hold exactly in the limit (Theorem 2.6.5). Of
course, this doesn’t prove that our model is regularly approximately ultrametric, but it
seems at least plausible that the notion of approximate ultrametricity could hold for a
large class of non-hierarchical models and could be (part of) the grand explanation behind
the phenomenon of ultrametricity of the extremes in the system size limit.

2.3. Structure of the paper

In order to make the logical structure of this article as clear as possible, the new
results and their proof are stated and written in a linear fashion. Some technical lemmas
are relegated to appendices. However, we emphasize that these lemmas are not at all
necessary to understand the main structure and are sparsely used. Below, we summarize
the main results of the paper, give the main ingredients of the proofs and indicate exactly
where the lemmas in the appendices are needed.

Section 2.5 : We recall the main results of Arguin and Ouimet (2016) :
• Theorem 2.5.1 : maxv∈VN ψv/ logN2 P−→ γ?.
• Theorem 2.5.2 : log(|{v ∈ VN : ψv ≥ γ logN2}|)/ logN2 P−→ E(γ).

Section 2.6 : The new main results are stated :
• Theorem 2.6.1 : Limit of the free energy on VN :

1
logN2 log∑v∈VN e

βψv P and Lp−−−−−−→ maxγ∈[0,γ?] βγ + E(γ) = fψ(β).
The proof uses the results of Section 2.5 for the P-convergence and we show that
the powers of the free energy are uniformly integrable. We find the explicit form of
the maximum on the right-hand side using
— Lemma 2.9.7 : Differentiability of E ,
— Lemma 2.9.8 : Solution of the maximization problem.
• Theorem 2.6.2 : Same as Theorem 2.6.1, but on a set far enough from the boundary
of VN , denoted AN,ρ.
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• Theorem 2.6.3 : If Gβ,N denotes the Gibbs measure of ψ and qN(v, v′) denotes the
normalized covariance (overlap) between ψv and ψv′ , then we compute the limit of
the two-overlap distribution, namely r 7→ EG×2

β,N

[
1{qN (v,v′)≤r}

]
. The main ingredients

of the proof are :
— The Gibbs measure doesn’t hold any weight outside AN,ρ in the limit,
— The overlap estimates of Corollary 2.9.6,
— Gaussian integration by parts,
— The mean convergence of the derivative at u = 0 of a perturbed version of the

free energy to fψu(β). This is proved using
∗ Theorem 2.6.2,
∗ Lemma 2.9.9 : Convexity of the free energy with respect to u,
∗ Lemma 2.9.10 : Differentiability of u 7→ fψ

u(β) for all |u| < δ.
• Theorem 2.6.4 : As N → ∞, the extended Ghirlanda-Guerra identities hold ap-
proximately. The main ingredients are the same as in the proof of Theorem 2.6.3,
but we also need Theorem 2.6.2 and the main ingredients to get a concentration
result (Lemma 2.8.9).
• Theorem 2.6.5 : In the limit, the extended Ghirlanda-Guerra identities hold exactly.
The main ingredients of the proof are :
— Theorem 2.6.3 and Theorem 2.6.4,
— The representation theorem of Dovbysh and Sudakov (1982).

Section 2.7 : The consequences of Theorem 2.6.3 and Theorem 2.6.5 :
• Corollary 2.7.1 : The limiting array of overlaps is almost-surely ultrametric under
the mean of the limiting Gibbs measure.
• Corollary 2.7.2 : The limiting Gibbs measure has the same law as a Ruelle probabil-
ity cascade Ruelle (1987) with functional order parameter ζ defined by the limiting
two-overlap distribution, which means that it samples extreme values from an exact

tree structure, where the number of branching scales is finite and controlled by the
inverse temperature β.

Section 2.8 : Proof of the main results.
Appendix 2.9.1 : The sole purpose of this appendix is to prove Corollary 2.9.6.
Appendix 2.9.2 : We indicated above where each of its four lemmas are needed.
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2.4. Some notations

Now, we introduce some notations. The parameters (σ,λ) can be encoded simultane-
ously in the left-continuous step function

σ(s) $ σ11{0}(s) +
M∑
i=1

σi1(λi−1,λi](s), s ∈ [0, 1]. (2.4.1)

For any positive measurable function f : [0, 1]→ R, define the integral operators

Jf (s) $
∫ s

0
f(r)dr and Jf (s1, s2) $

∫ s2

s1
f(r)dr. (2.4.2)

We refer to Jσ2(·) as the speed function. The concavification of Jσ2 , denoted Ĵσ2 , is the
function whose graph is the concave hull of Jσ2 . From Arguin and Ouimet (2016), we
know that the asymptotics of the maximum and the log-number of high points of ψ are
controlled by this function. Its graph is an increasing and concave polygonal line, see
Figure 2.4.1 for an example.

0 1 s
λ0

λ1 λ2 λ3 λ4 λ5 λ6
λ7

λ0 λ1 λ2 λ3
λ4

slope = σ̄2
1

σ̄2
2

σ̄2
3

σ̄2
4

Jσ2(λ1)

Jσ2(λ2)
Jσ2(λ3)
Jσ2(λ4)

Figure 2.4.1. Example of Jσ2 (closed line) and Ĵσ2 (dotted line)
with 7 values for σ2.
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Clearly, there exists a unique non-increasing left-continuous step function s 7→ σ̄(s)
such that

Ĵσ2(s) = Jσ̄2(s) =
∫ s

0
σ̄2(r) dr for all s ∈ (0, 1]. (2.4.3)

The scales in [0, 1] where σ̄ jumps are denoted by

0 $ λ0 < λ1 < ... < λm $ 1, (2.4.4)

where m ≤M . To be consistent with previous notations, we set σ̄l $ σ̄(λl). In particular,
note that

σ̄1 > σ̄2 > ... > σ̄m. (2.4.5)

We define σ̄m+1 $ 0 and interpret βc(σ̄m+1) $ 2/σ̄m+1 as +∞ whenever it is encountered.

2.5. Previous results

In this section, we recall the main results from Arguin and Ouimet (2016) on the first
order asymptotics of the maximum and the log-number of γ-high points of the (σ,λ)-GFF.
These results are needed to compute the limiting free energy.

Theorem 2.5.1. Let {ψv}v∈VN be the (σ,λ)-GFF on VN of Definition 2.1.1, then

lim
N→∞

maxv∈VN ψv
logN2 = Jσ2/σ̄(1) $ γ? in probability. (2.5.1)

In fact, from Lemma 3.1 and Lemma 3.3 in Arguin and Ouimet (2016), for any ε > 0,
there exists a constant c = c(ε,σ,λ) > 0 such that for N large enough,

P
(

max
v∈VN

ψv ≥ (1 + ε)γ? logN2
)
≤ N−c (2.5.2)

and

P
(

max
v∈VN

ψv ≤ (1− ε)γ? logN2
)
≤ N−c. (2.5.3)

The set of γ-high points of the field ψ is defined as

HN(γ) $ {v ∈ VN : ψv ≥ γ logN2}, for all γ ∈ [0, γ?]. (2.5.4)

The number of γ-high points depends on critical levels defined by

γl $
∫ 1

0

σ2(s)
σ̄(s ∧ λl)ds, 1 ≤ l ≤ m, γ0 $ 0. (2.5.5)
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For γ ∈ (γl−1, γl], define

E(γ) $ (1− λl−1)− (γ − Jσ2/σ̄(λl−1))2

Jσ2(λl−1, 1) and E(0) $ 1. (2.5.6)

Theorem 2.5.2. Let {ψv}v∈VN be the (σ,λ)-GFF on VN of Definition 2.1.1 and let γ ∈
[0, γ?), then

lim
N→∞

log |HN(γ)|
logN2 = E(γ) in probability. (2.5.7)

In fact, from Lemma 3.4 and Lemma 3.5 in Arguin and Ouimet (2016), for any γ ∈ [0, γ?]
and for any ε > 0, there exists a constant c = c(γ, ε,σ,λ) > 0 such that for N large

enough,
P
(
|HN(γ)| ≥ N2E(γ)+ε

)
≤ N−c, (2.5.8)

and, when γ ∈ [0, γ?),

P
(
|HN(γ)| < N2E(γ)−ε

)
≤ N−c. (2.5.9)

Remark 2.5.1. The case γ = 0 is not explicitly covered in Arguin and Ouimet (2016).

In that case, (2.5.8) is trivial (the probability is 0) and (2.5.9) is a simple and direct

application of the Paley-Zygmund inequality.

2.6. New results

The first main result of this article concerns the free energy of the (σ,λ)-GFF, which
is defined by

fψN(β) $ 1
logN2 logZψ

N(β), β > 0, (2.6.1)

where Zψ
N(β) $ ∑

v∈VN e
βψv . The L1-limit of the free energy will be central to obtain the

limiting two-overlap distribution of the (σ,λ)-GFF and the extended Ghirlanda-Guerra
identities. This limit is better expressed in terms of the limiting free energy of the REM(σ)
model consisting of N2 i.i.d. Gaussian variables of variance σ2 logN . From Theorem 8.1
in Bolthausen and Sznitman (2002),

fREM(σ)(β) $ lim
N→∞

logZREM(σ)
N (β)

logN2
a.s.=

 2(β/βc(σ)), if β > βc(σ),
1 + (β/βc(σ))2, if β ≤ βc(σ),

(2.6.2)

for all β > 0, where βc(σ) $ 2/σ.
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Theorem 2.6.1 (Limit of the free energy on VN). Let {ψv}v∈VN be the (σ,λ)-GFF on VN
of Definition 2.1.1, then

lim
N→∞

fψN(β) = max
γ∈[0,γ?]

(βγ + E(γ)) =
m∑
j=1

fREM(σ̄j)(β)∇λj $ fψ(β), (2.6.3)

where the limit holds in probability and in Lp, 1 ≤ p <∞.

Remark 2.6.1. This result was first proved for the GREM by Capocaccia et al. (1987), al-

though with vastly different notations. The expression for the GREM can also be recovered

from Theorem 1.6 in Bovier and Kurkova (2004a).

In Arguin and Zindy (2015), the convergence in probability (and in L1) of the free
energy of the scale-inhomogeneous GFF with two variance parameters was only proved on
a subset of VN that excludes the points that are too close to the boundary ∂VN . This was
done because the decay of variance near ∂VN makes the asymptotics of the log-number of
points in sets of the form

HAN (γ) $ {v ∈ AN : ψv ≥ γ logN2} (2.6.4)

harder to determine when AN includes points close to ∂VN . In contrast, let

AN,ρ $
{
v ∈ VN : min

z∈Z2\VN
‖v − z‖2 ≥ N1−ρ

}
, ρ ∈ (0, 1]. (2.6.5)

Then, it turns out that for ρ > 0 small enough, the variance of the increments of ψ on
AN,ρ is within a uniform bound from the analogue quantity in the context of the GREM
(except when the scale 0 is involved), see Lemma 2.9.2.

Theorem 2.6.1 not only generalizes Theorem 2.1 in Arguin and Zindy (2015), but is
also stronger because it tells us that including points arbitrarily close to ∂VN in the free
energy has no impact on its limit, as long as we include the center of VN . We are able
to prove Theorem 2.6.1 here because the asymptotics of |HN(γ)| were proved on VN in
Arguin and Ouimet (2016).

Even though Theorem 2.6.1 is interesting on its own, we will instead use the version
on AN,ρ later in this article.
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Theorem 2.6.2 (Limit of the free energy on AN,ρ). Let {ψv}v∈VN be the (σ,λ)-GFF on

VN of Definition 2.1.1 and define

fψN,ρ(β) $ 1
logN2 logZψ

N,ρ(β), β > 0, (2.6.6)

where Zψ
N,ρ(β) $ ∑v∈AN,ρ e

βψv . Then, for all ρ ∈ (0, 1],

lim
N→∞

fψN,ρ(β) = fψ(β), (2.6.7)

where the limit holds in probability and in Lp, 1 ≤ p <∞.

For the second main result of this article, consider the normalized covariances or over-
laps of the (σ,λ)-GFF :

qN(v, v′) $ E[ψvψv′ ]
Jσ2(1) logN + C0

, v, v′ ∈ VN , (2.6.8)

where C0 is the constant introduced in Lemma 2.9.3. The overlap is the covariance divided
by the uniform upper bound on the variance. From the Cauchy-Schwarz inequality, it is
clear that |qN(v, v′)| ≤ 1, for any v, v′ ∈ VN .

We are concerned with the limiting distribution of the overlaps, when the variables are
sampled from the Gibbs measure

Gβ,N({v}) $ eβψv

Zψ
N(β)

, v ∈ VN . (2.6.9)

Since the Gibbs measure samples extreme values of the field ψ, the overlaps under the
Gibbs measure can be interpreted as measures of relative distance between the extremes.
In spin-glass theory, the relevant object to classify the extreme value statistics of strongly
correlated variables is the two-overlap distribution

EG×2
β,N

[
1{qN (v,v′)≤r}

]
, r ∈ [0, 1]. (2.6.10)

Since the overlaps are normalized, their asymptotics will also be normalized to lie in [0, 1].
Define

J̄σ2(·) $ Jσ2(·)
Jσ2(1) . (2.6.11)

This is motivated by the fact that if

bN(v, v′) $ max{λ ∈ [0, 1] : [v]λ ∩ [v′]λ 6= ∅} (2.6.12)
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denotes the branching scale between v and v′ (the analogue of the normalized branching
time for BRWs), then Corollary 2.9.6 in Appendix 2.9.1 shows (in particular) that for all
ρ ∈ (0, 1] and N large enough,

max
v,v′∈AN,ρ

∣∣∣qN(v, v′)− J̄σ2(bN(v, v′))
∣∣∣ ≤ C7√

logN + C8 ρ. (2.6.13)

For any inverse temperature β > 0, denote

lβ $

min{l ∈ {1, ...,m} : β ≤ βc(σ̄l) $ 2/σ̄l}, if β ≤ 2/σ̄m,
m+ 1, otherwise.

(2.6.14)

This is the smallest index l for which a critical inverse temperature βc(σ̄l) is at least β.

Remark 2.6.2. In Bovier and Kurkova (2004a), l(β) is defined such that l(β) = lβ − 1.
Our choice is more natural with the notation we used in (2.5.5) and (2.5.6), see the proof

of Lemma 2.9.8.

We are now ready to state the second main result of this article.

Theorem 2.6.3 (Limiting two-overlap distribution). Let {ψv}v∈VN be the (σ,λ)-GFF on

VN of Definition 2.1.1. Then, for β > 0,

lim
N→∞

EG×2
β,N

[
1{qN (v,v′)≤r}

]
=


0, if r < 0,
βc(σ̄j)/β, if r ∈ [xj−1, xj), j ≤ lβ − 1,
1, if r ≥ xlβ−1,

(2.6.15)

where βc(σ̄j) $ 2/σ̄j and xj $ J̄σ2(λj).

Remark 2.6.3. This is the same expression as in the context of the GREM. Compare

this to Proposition 1.11 in Bovier and Kurkova (2004a). In the homogeneous case, the

theorem was proved by Arguin and Zindy (2014) for a certain class of non-hierarchical

log-correlated Gaussian fields with no boundary effect, by Arguin and Zindy (2015) for

the GFF (trivial adjustments of their proof show the same result for the BRW), and by

Jagannath (2016) for the BRW (using an alternative method).

Remark 2.6.4. In the context of the GFF, we have to show that the Gibbs measure doesn’t

carry any weight outside AN,ρ in the limit. In Arguin and Zindy (2015), a crucial step was
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to use self-averaging and Slepian’s lemma in order to compare the free energy outside AN,ρ
with that of a REM. Here, we find an upper bound on the free energy outside AN,ρ through

the optimization problems for the maximum and γ-high points, see the proof of Lemma 2.8.3.

This approach is much more efficient when there are several effective scales λj.

Remark 2.6.5. Theorem 2.6.3 tells us that even though the overlap between the ex-

tremes can be (almost) anything between 0 and 1 for finite system sizes, this variabil-

ity disappears in the limit. The extremes can only branch asymptotically at the effec-

tive distances N1−d, d ∈ {0, λ1, λ2, ..., λlβ−1}, where λj is defined in (2.4.4). We see

that the number of branching scales λj for the extremes is finite in the limit and in-

creases as the inverse temperature β becomes larger than some of the critical thresholds

0 < βc(σ̄1) < βc(σ̄2) < ... < βc(σ̄lβ−1) <∞. In comparison, for homogeneous models (like

the GFF and the BRW), there is only one critical inverse temperature

• above which the extremes only branch at scale 0 or 1 in the limit, and

• under which the extremes only branch at scale 0 in the limit (meaning that the

extremes are all asymptotically uncorrelated).

The third and final main result of this article concerns the Ghirlanda-Guerra identities.
These identities were introduced in Ghirlanda and Guerra (1998) and an extended version
of the identities was proved for a general class of models, called the mixed p-spin, in
Panchenko (2010b). Before taking the limit, we have the following approximate version.

Theorem 2.6.4 (Approximate extended Ghirlanda-Guerra identities). Let β > 0, and let

α < α′ be any pair of scales such that

λj−1 < α < α′ < λ
j+(m−j)1{j=lβ} (2.6.16)

for some j ∈ {1, 2, ..., lβ}. Denote v $ (v1, v2, ..., vs) and Sα,α′ $ (J̄σ2(α), J̄σ2(α′)]. Then,
for any s ∈ N, any k ∈ {1, ..., s}, and any functions h : V s

N → R such that supN ‖h‖∞ <∞,

lim
N→∞

∣∣∣∣∣∣∣∣∣∣∣∣

EG×(s+1)
β,N

[ ∫
Sα,α′

1{r<qN (vk,vs+1)}dr h(v)
]

−


1
s
EG×2

β,N

[ ∫
Sα,α′

1{r<qN (v1,v2)}dr
]
EG×sβ,N

[
h(v)

]
+1
s

∑s
l 6=k EG×sβ,N

[ ∫
Sα,α′

1{r<qN (vk,vl)}dr h(v)
]


∣∣∣∣∣∣∣∣∣∣∣∣
= 0. (2.6.17)
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Remark 2.6.6. The word “approximate” here is NOT to be understood in exactly the

same sense as in Definition 1.4 of Jagannath (2017). It is approximate in the sense that

the limit N → ∞ is taken, but also because linear combinations of functions of the form

q 7→ ∫
Sα,α′

1{r<q}dr do not describe all the bounded mesurable functions defined on [0, 1].

We now show that the extended form of the Ghirlanda-Guerra identities hold exactly
in the limit. Along with Theorem 2.6.3, these identities completely determine the law of
the limiting array of overlaps when the variables are sampled by the Gibbs measure, see
Section 2.7.

We follow closely the reasoning from page 101 in Panchenko (2013b) and page 1459
in Arguin and Zindy (2014). Let (vl)l∈N be an i.i.d. sequence sampled from the Gibbs
measure Gβ,N and let

RN $ (RN
l,l′)l,l′∈N $ (qN(vl, vl′))l,l′∈N (2.6.18)

be the array of overlaps of this sample. Note that the array RN is symmetric and non-
negative definite because the entries are normalized covariances of the Gaussian field ψ.
Since each point is sampled independently, it is also weakly exchangeable, namely, for any
permutation π of a finite number of indices,(

RN
π(l),π(l′)

) law=
(
RN
l,l′

)
. (2.6.19)

The push-forward of the probability measure EG×∞β,N under the mapping

(vl)l∈N 7→ RN (2.6.20)

defines a probability measure on the space C of N × N arrays with entries in [−1, 1],
endowed with the product topology. Since C is a compact metric space (by Tychonoff’s
theorem), the space M1(C) of probability measures on C is compact under the weak
topology. Therefore, there exists a subsequence {Nm}m∈N under which the above push-
forward measures converge weakly to the distribution of some infinite array R $ (Rl,l′)l,l′∈N
in the sense of convergence of all their finite dimensional marginals. In particular, the
three properties of RN mentioned above are preserved by the limit, meaning that R is also
symmetric, non-negative definite and weakly exchangeable.
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By the representation theorem of Dovbysh and Sudakov (1982) (see also the proof
in Panchenko (2010c)) and the atoms in Theorem 2.6.3, we can assume that the limiting
array R is a random element of some probability space with measure P (and corresponding
expectation E), generated by

(
Rl,l′

)
l,l′∈N

=
(
(ρl, ρl′)H + (1− xlβ−1)1{l=l′}

)
l,l′∈N

, (2.6.21)

where (ρl)l∈N is an i.i.d. sample of replicas from some random measure µβ concentrated
a.s. on the sphere of radius

√
xlβ−1 of a separable Hilbert space H.

By construction, there exists a subsequence {Nm}m∈N such that for any s ∈ N and any
continuous function h : [−1, 1]s(s−1)/2 → R,

lim
m→∞EG×∞β,Nm

[
h((RNm

l,l′ )1≤l,l′≤s)
]

= Eµ×∞β
[
h((Rl,l′)1≤l,l′≤s)

]
. (2.6.22)

In particular, from Theorem 2.6.3, we have

Eµ×2
β

[
1{R1,2≤r}

]
=


0, if r < 0,
βc(σ̄j)/β, if r ∈ [xj−1, xj), 1 ≤ j ≤ lβ − 1,
1, if r ≥ xlβ−1,

(2.6.23)

where βc(σ̄j) $ 2/σ̄j and xj $ J̄σ2(λj).

Next, we show the consequence of taking the limit (2.6.22) in the statement of Theorem
2.6.4. Note that a bounded function h : {x0, x1, ..., xlβ−1}s(s−1)/2 → R can always be
embedded in a continuous function defined on [−1, 1]s(s−1)/2.

Theorem 2.6.5 (Extended Ghirlanda-Guerra identities in the limit). Let β > 0 and

let µβ be a subsequential limit of {Gβ,N}N∈N in the sense of (2.6.22). Then, for any

s ∈ N, any k ∈ {1, ..., s}, and any functions h : {x0, x1, ..., xlβ−1}s(s−1)/2 → R and g :
{x0, x1, ..., xlβ−1} → R, we have

Eµ
×(s+1)
β

[
g(Rk,s+1)h((Ri,i′)1≤i,i′≤s)

]
= 1
s
Eµ×2

β

[
g(R1,2)

]
Eµ×sβ

[
h((Ri,i′)1≤i,i′≤s)

]
+ 1
s

s∑
l 6=k

Eµ×sβ
[
g(Rk,l)h((Ri,i′)1≤i,i′≤s)

]
.

(2.6.24)
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Proof of Theorem 2.6.5. Let α < α′ be a pair of scales such that

λj−1 < α < α′ < λ
j+(m−j)1{j=lβ} (2.6.25)

for some j ∈ {1, 2, ..., lβ}. From (2.6.22) and from Theorem 2.6.4 (in the particular case
where h is a function of the overlaps), we deduce

Eµ
×(s+1)
β

[ ∫
(J̄σ2 (α),J̄σ2 (α′)]1{r<Rk,s+1}dr h((Ri,i′)1≤i,i′≤s)

]
= 1

s
Eµ×2

β

[ ∫
(J̄σ2 (α),J̄σ2 (α′)]1{r<R1,2}dr

]
Eµ×sβ

[
h((Ri,i′)1≤i,i′≤s)

]
+1
s

∑s
l 6=k Eµ

×s
β

[ ∫
(J̄σ2 (α),J̄σ2 (α′)]1{r<Rk,l}dr h((Ri,i′)1≤i,i′≤s)

]
.

(2.6.26)

From (2.6.23), we know that 1{r<Ri,i′} is Eµ×2
β -a.s. constant in r on the interval

[xj−1, x
j+(m−j)1{j=lβ}). Therefore, from (2.6.25) and (2.6.26), we get

Eµ
×(s+1)
β

[
1{xj−1<Rk,s+1} h((Ri,i′)1≤i,i′≤s)

]
= 1

s
Eµ×2

β

[
1{xj−1<R1,2}

]
Eµ×sβ

[
h((Ri,i′)1≤i,i′≤s)

]
+1
s

∑s
l 6=k Eµ

×s
β

[
1{xj−1<Rk,l} h((Ri,i′)1≤i,i′≤s)

]
.

(2.6.27)

Since Ri,i′ ≥ 0 Eµ×2
β -a.s. by (2.6.23), the last equation is also trivially satisfied with

say x−1 $ −1. But, any function g : {x0, x1, ..., xlβ−1} → R can be written as a linear
combination of the indicator functions 1{xj−1<·}, j ∈ {0} ∪ {1, 2, ..., lβ}, so we get the
conclusion (by the linearity of (2.6.27)). �

Remark 2.6.7. The extended Ghirlanda-Guerra identities are still the subject of ongoing

research in spin glass theory and the study of log-correlated random fields, so it is still

not clear why these identities seem to be a property shared in the limit by such a vast

collection of models. Perhaps even more universal could be the stochastic stability property

of random overlap structures (ROSt’s), which are defined and treated (for example) in

Aizenman and Contucci (1998); Contucci and Giardinà (2005); Arguin and Aizenman

(2009); Talagrand (2010); Arguin and Chatterjee (2013). For instance, it is conjectured in

Arguin and Chatterjee (2013) that the laws of the ROSt’s satisfying the Ghirlanda-Guerra

identities correspond to the extremes of the convex set of laws of the stochastically stable

ROSt’s. It is also conjectured that the stochastic stability of a ROSt for a subsequence

of p-th power cavity fields implies ultrametricity. In this sense, it is expected that the
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stochastic stability property is more universal then the Ghirlanda-Guerra identities but

still implies ultrametricity under technical conditions. In Panchenko (2012), it is shown

how the Aizenman-Contucci stochastic stability property can be combined with a specific

form of the Ghirlanda-Guerra identities into a unified stability property analogous to the

Bolthausen-Sznitman invariance property in the setting of Ruelle probability cascades (see

Bolthausen and Sznitman (1998)).

Remark 2.6.8. It is expected that the results of Arguin and Ouimet (2016) on the first

order asymptotics of the maximum and γ-high points can be extended to the more general

case where the variance function σ in (2.4.1) is piecewise C1. Therefore, it is also expected

that the results in the present article could be generalised just like Bovier and Kurkova

(2004b) did when they generalized the results of the GREM to the CREM (the GREM with

a continuum of hierarchies).

We could take this further by imposing σ to be piecewise C1 and by working directly

with the continuous version of the two-dimensional GFF instead of the discrete version.

A formal definition of such a field is given in Section 1.3 of Arguin and Ouimet (2016) as

well as a conjecture on the Hausdorff dimension of the γ-thick points (the analogue of the

γ-high points). The field is a random distribution (i.e. generalized function), so it cannot

be defined pointwise, but we can make sense of the collection of circle averages around a

point v ∈ [0, 1]2 as a stochastic process. In fact, we would expect such a process, after a

time-change, to be equal in law to
∫ ·
0 σ(s)dBv(s), where Bv is a Brownian motion adapted

to a certain filtration Fv. We could then ask if it is possible to characterize the limiting

(with respect to the approximation procedure) law of the Liouville measure (the analogue

of the Gibbs measure) of this new field. For an introduction to these concepts, see e.g.

Berestycki (2016); Rhodes and Vargas (2014); Sheffield (2007).

Finally, another natural question is to ask if there is a way to introduce randomness in

the function s 7→ σ(s) and still make sense of the questions above, although this is not clear

since the process (σ(s))s∈[0,1] cannot be adapted (let alone predictable) simultaneously to all

the filtrations Fv, v ∈ [0, 1]2. Maybe there is a way around this problem if the filtrations

share “information” in a very structured way.
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2.7. Consequences of Theorem 2.6.3 and Theorem 2.6.5

The first consequence concerns the geometry of the overlaps in the limit. It was shown
in Panchenko (2010a) (see also Panchenko (2011) for a simplified proof) that any limiting
array of overlaps that takes finitely many values and satisfy (2.6.24) must be ultrametric
under Eµ×∞β .

Corollary 2.7.1 (Ultrametricity in the limit). Let β > 0 and let µβ be a subsequential

limit of {Gβ,N}N∈N in the sense of (2.6.22). We must have

Eµ×3
β

(
R1,2 ≥ R1,3 ∧R2,3

)
= 1. (2.7.1)

Since the replicas ρl all have norm
√
xlβ−1 almost-surely in H, then (2.7.1) is equivalent

to the ultrametric inequality

Eµ×3
β

(
‖ρ1 − ρ2‖ ≤ ‖ρ1 − ρ3‖ ∨ ‖ρ2 − ρ3‖

)
= 1. (2.7.2)

Remark 2.7.1. The random measure µβ gives more weight to extreme values, so we can

interpret this corollary as saying that the extremes are clustered in a hierarchical way.

From (2.6.23), the number of hierarchies increases as the inverse temperature β becomes

larger than some of the critical thresholds βc(σ̄j).

The second consequence makes the description of the structure of µβ even more pre-
cise. Probability cascades were introduced in Ruelle (1987) to describe the limiting Gibbs
measure of the GREM. Since the (σ,λ)-GFF satisfies the extended Ghirlanda-Guerra
identities and the limiting two-overlap distribution takes finitely many values, we can
show that the limiting Gibbs measure µβ is a Ruelle probability cascade. First, we define
probability cascades by following Panchenko (2013b).

For a given r ≥ 1, let
T $ {∅} ∪ N ∪ N2 ∪ ... ∪ Nr (2.7.3)

be the vertex set of a tree rooted at ∅. Each vertex v = (n1, ..., np) ∈ Np, for p ≤ r − 1,
has children

vn $ (n1, ..., np, n) ∈ Np+1, n ∈ N. (2.7.4)

Each vertex v ∈ Np is connected to the root by a path. Denote by p(v) the set of vertices
(excluding the root) on the shortest path from v to the root. Additionally, fix two sequences

150



of parameters :
0 $ ζ−1 < ζ0 < ζ1 < ... < ζr−1 < ζr $ 1,
0 $ q0 < q1 < ... < qr−1 < qr ≤ 1.

(2.7.5)

For all v ∈ T , denote by |v| its distance in the tree, namely |v| $ #p(v). Then, for
all v ∈ T \Nr, generate independent Poisson point processes, denoted by Πv, with mean
measure ζ|v|x−1−ζ|v|dx on (0,∞). We arrange the points in Πv in decreasing order :

zv1 > zv2 > ... > zvn > ... (2.7.6)

For each vertex v ∈ T \Nr, the relative weight of each point in Πv is defined by

wvn $
zvn∑
i∈N zvi

, n ∈ N. (2.7.7)

Say we are on a separable Hilbert space H with orthonormal basis {ev}v∈T \{∅}. Consider
the vectors in H

hv $
∑

u∈p(v)
eu (q|u| − q|u|−1)1/2, v ∈ T \{∅}, (2.7.8)

and define a random measure on them by

G(hv) $
∏

u∈p(v)
wu, v ∈ Nr. (2.7.9)

The random measure G is called a Ruelle probability cascade (RPC) associated with the
parameters in (2.7.5). It is defined up to an orthonormal change of basis.

We can think of Nr as the leaves in the tree structure. From (2.7.8), each element in
{hv}v∈Nr has norm √qr and the scalar product between two such elements can only take
values in the finite set

{0, q1, q2, ..., qr}. (2.7.10)

The weights (2.7.7), associated with each branch in the tree, are random. Hence, (2.7.9)
defines a random probability measure and each instance of G samples elements in {hv}v∈Nr
by choosing a branch independently at each step, between the root and a leaf, with prob-
ability given by the associated weight in (2.7.7). The tree structure is illustrated in Figure
2.7.2. Since the weights are ordered in decreasing order at each scale, the branches on the
left are more likely to be selected at each step.
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{∅}

N1

N2

... ...(1) (2) (n1)

w(1) w(2) w(n1)

... ...
(1,1)(1,2) (1,n2)

w(1,1) w(1,2) w(1,n2)

... ...
(2,1)(2,2) (2,n2)

w(2,1) w(2,2) w(2,n2)

... ...
(n1,1)(n1,2) (n1,n2)

w(n1,1) w(n1,2)w(n1,n2)... ...
Figure 2.7.2. Exact tree structure of a Ruelle probability cascade
with r = 2 levels. Given an instance ω ∈ Ω of the random weights,
the measure G samples elements in {hv}v∈Nr with probability equal
to the product of the probabilities associated with the branches on
the shortest path from the root to the leaf v. For example, we have
(G(ω))(h(1,2)) = w(1)(ω)w(1,2)(ω). For the scalar products, we have, for
example, (h(1,1), h(2,2))H = 0 and (h(2,1), h(2,2))H = q1.

The corollary below shows that the limiting Gibbs measure of the (σ,λ)-GFF is a
RPC, despite its underlying tree structure being only approximate for finite N .

Corollary 2.7.2. Let β > 0 and let µβ be a subsequential limit of {Gβ,N}N∈N in the sense

of (2.6.22). Then, µβ has the same law as a RPC with parameters

• r = lβ − 1,
• ζj = Eµ×2

β

[
1{R1,2≤xj}

]
= (2/σ̄j+1)/β, for all j ∈ {0, 1, ..., r − 1},

• qj = xj $ J̄σ2(λj), for all j ∈ {0, 1, ..., r}.

Proof. The proof follows directly from Theorem 2.13 in Panchenko (2013b) or from the
proof of Theorem 1.13 in Bovier and Kurkova (2004a) (once we have the ultrametricity).
We simply need to match the parameters so that {qj}rj=0 are the atoms of Eµ×2

β (R1,2 ∈ · )
and {∇ζj}rj=0 are the corresponding probabilities. �
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2.8. Proofs of the main results

Throughout the proofs, c, C, C̃, etc., will denote positive constants whose value can
change from line to line and can only depend on the parameters (σ,λ), unless additional
variables are specified. Equations are always implicitly stated to hold for N large enough
when needed.

2.8.1. Computation of the limiting free energy

Theorem 2.6.1 is a direct consequence of Lemma 2.8.1, which shows fψN(β) → fψ(β)
in probability, and Lemma 2.8.2, which shows the uniform integrability of the sequence
{|fψN(β)|p}N∈N for all p ∈ [1,∞).

Lemma 2.8.1 (Convergence in probability of the free energy). Let η > 0 and β > 0.
There exists c = c(η, β,σ,λ) > 0 such that for N large enough,

P
(
|fψN(β)− fψ(β)| > η

)
≤ N−c. (2.8.1)

Proof. Fix η > 0 and β > 0. For all i ∈ {0, 1, ..., K + 1}, define γi $ iγ?/K. We will
choose K ∈ N large enough later. We prove the upper bound first. Define

Habs
N (γ) $ {v ∈ VN : |ψv| ≥ γ logN2}. (2.8.2)

From (2.5.2), (2.5.8), and the symmetry of Gaussian densities, the event

UN,K,η $
K⋂
i=0

{
|Habs

N (γi)| < N2E(γi)+η
}⋂{

max
v∈VN

|ψv| <
K + 1
K

γ? logN2
}

(2.8.3)

satisfies P
(
U c
N,K,η

)
≤ N−c(K,η,σ,λ) for any given K. On the event UN,K,η,

Zψ
N(β) $

∑
v∈VN

eβψv ≤
K+1∑
i=1

(|Habs
N (γi−1)| − |Habs

N (γi)|)N2βγi

=
K∑
i=1

(N2βγi+1 −N2βγi)|Habs
N (γi)|+N2βγ1|Habs

N (γ0)|

≤ N2βγ?/K
K∑
i=0

N2βγi |Habs
N (γi)|. (2.8.4)

We used the fact that |Habs
N (γK+1)| = 0 to obtain the second equality. Therefore, on the
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event UN,K,η,

fψN(β)
(2.8.4)
≤ βγ?

K
+ log(K + 1)

logN2 + max
0≤i≤K

(βγi + E(γi)) + η

2

≤ max
0≤i≤K

(βγi + E(γi)) + η
for K large enough with respect
to η and β, and N large enough
with respect to K and η,

≤ max
γ∈[0,γ?]

(βγ + E(γ)) + η

= fψ(β) + η by Lemma 2.9.8. (2.8.5)

Thus, for K large enough (fixed, depending on η and β), we have

P
(
fψN(β) > fψ(β) + η

)
≤ P

(
U c
N,K,η

)
≤ N−c(K,η,σ,λ). (2.8.6)

We now prove the lower bound. Recall that

HN(γ) $ {v ∈ VN : ψv ≥ γ logN2}. (2.8.7)

From (2.5.2) and (2.5.9), the event

BN,K,η $
K−1⋂
i=1

{
|HN(γi)| ≥ N2E(γi)−η

}⋂{
max
v∈VN

ψv <
K + 1
K

γ? logN2
}

(2.8.8)

satisfies P
(
Bc
N,K,η

)
≤ N−c(K,η,σ,λ) for any given K. On the event BN,K,η,

Zψ
N(β) $

∑
v∈VN

eβψv ≥
K+1∑
i=1

(|HN(γi−1)| − |HN(γi)|)N2βγi−1

=
K∑
i=1

(N2βγi −N2βγi−1)|HN(γi)|+N2βγ0|HN(γ0)|

≥ 1
2

K−1∑
i=1

N2βγi |HN(γi)|. (2.8.9)

We used the fact that |HN(γK+1)| = 0 to obtain the second equality. We dropped the
0-th and K-th summands to obtain the last inequality and took N large enough that
1−N−2βγ?/K ≥ 1/2.
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Therefore, on BN,K,η,

fψN(β)
(2.8.9)
≥ max

1≤i≤K−1
(βγi + E(γi))−

η

2 −
log 2

logN2

≥ max
1≤i≤K−1

(βγi + E(γi))−
3η
4

for N large enough
with respect to η,

≥ max
γ∈[0,γ?]

(βγ + E(γ))− η
for K large enough with respect
to η and β since γ 7→ (βγ + E(γ))
is continuous by Lemma 2.9.7,

= fψ(β)− η by Lemma 2.9.8. (2.8.10)

Thus, for K large enough (fixed, depending on η and β), we have

P
(
fψN(β) < fψ(β)− η

)
≤ P

(
Bc
N,K,η

)
≤ N−c(K,η,σ,λ). (2.8.11)

Equations (2.8.6) and (2.8.11) together prove the lemma. �

For the uniform integrability, we follow the proof of Capocaccia et al. (1987), originally
given in the context of the GREM.

Lemma 2.8.2 (Uniform integrability of {|fψN(β)|p}N∈N). Let β > 0 and 1 ≤ p < ∞.

Then,
lim
α→∞ sup

N∈N
E
[
|fψN(β)|p 1{|fψN (β)|p>α}

]
= 0. (2.8.12)

Proof. By definition, fψN(β) $ 1
logN2 log∑v∈VN e

βψv . Bound from above every summand
by the maximum summand and bound from below by keeping only the maximum sum-
mand. If ξN $ maxv∈VN ψv/(logN2), it is easily seen that for N ≥ 2,

βξN ≤ fψN(β) ≤ βξN + log(N + 1)2

logN2 ≤ βξN + 2. (2.8.13)

Assume that α1/p−2 > 0. By splitting the event {|fψN(β)| > α1/p} in two parts : {fψN(β) >
α1/p} and {−fψN(β) > α1/p}, and then using (2.8.13), we deduce

E
[
|fψN(β)|p 1{|fψN (β)|>α1/p}

]
≤ E

[
(βξN + 2)p 1{βξN+2>α1/p}

]
+ E

[
(−βξN)p 1{−βξN>α1/p}

]
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=
∞∑
l=1

E
[
(βξN + 2)p 1{(l+1)α1/p≥βξN+2>lα1/p}

]

+
∞∑
l=1

E
[
(−βξN)p 1{(l+1)α1/p≥−βξN>lα1/p}

]

≤ 2
∞∑
l=1

(l + 1)p α P
(
|ξN | >

1
β

(lα1/p − 2)
)
. (2.8.14)

Note that |ξN | ≤ maxv∈VN |ψv|/(logN2), and maxv∈VN V(ψv) ≤ Jσ2(1) logN + C0 by
Lemma 2.9.3. Therefore, for all l ∈ N, a union bound and a standard Gaussian tail
estimate yield (when N is large enough, say N ≥ N0 ≥ 2)

P
(
|ξN | >

1
β

(lα1/p − 2)
)
≤ (N + 1)2 max

v∈VN
2P
(
ψv >

1
β

(lα1/p − 2) logN2
)

≤ (N + 1)2N
−2 (lα1/p−2)2

β2J
σ2 (1)

≤ (N + 1)2N
−2 (α1/p−2)2

β2J
σ2 (1) N

−2 (l−1)2α2/p

β2J
σ2 (1) . (2.8.15)

To obtain the last inequality, we wrote (lα1/p − 2)2 = (α1/p − 2 + (l − 1)α1/p)2 and used
(a+ b)2 ≥ a2 + b2, a, b ≥ 0. If we further assume that (α1/p − 2)2 > β2Jσ2(1), the sum in
(2.8.14) tends to 0 as α→∞, uniformly for N ≥ N0. �

Proof of Theorem 2.6.2. Since x 7→ log x is an increasing function and AN,ρ ⊆ VN ,
we have the upper bound on the limit in probability :

fψN,ρ(β) ≤ 1
logN2 log

∑
v∈VN

eβψv $ fψN(β) N→∞−→ fψ(β). (2.8.16)

On the other hand, from Lemma A.2 in Arguin and Ouimet (2016) and the independence
of the increments, we know that for any δ ∈ (0, 1/2] and j ∈ {1, 2, ...,m}, then for N large
enough and all v ∈ V δ

N $
{
v ∈ VN : minz∈∂VN ‖v − z‖2 ≥ δN

}
, we have

− C1(δ,σ) ≤ V
(
∇ψv(λj)

)
− σ̄2

j∇λj logN ≤ C2(σ). (2.8.17)

Hence, from the remark at the end of Lemma 3.1 in Arguin and Ouimet (2016), we know
that Theorem 2.5.1 and Theorem 2.5.2 (in this paper) hold on V δ

N ; the proof is in fact

156



easier. Since AN,ρ ⊇ V δ
N for N large enough, we have

fψN,ρ(β) $ 1
logN2 log

∑
v∈AN,ρ

eβψv ≥ 1
logN2 log

∑
v∈V δN

eβψv . (2.8.18)

A rerun of the proof of the lower bound in Lemma 2.8.1, with HN(γ) restricted to V δ
N ,

yields the conclusion. �

2.8.2. The Gibbs measure near the boundary

The first step in the proof of Theorem 2.6.3 is to show that the Gibbs measure does
not carry any weight near the boundary of VN in the limit N → ∞. For this purpose,
recall

AN,ρ $
{
v ∈ VN : min

z∈Z2\VN
‖v − z‖2 ≥ N1−ρ

}
, ρ ∈ (0, 1]. (2.8.19)

This box contains the points in VN that are at least at a distance of N1−ρ from the exterior.
The Gibbs measure of the (σ,λ)-GFF restricted to AN,ρ is

Gβ,N,ρ({v}) $
eβψv

Zψ
N,ρ(β)

, v ∈ AN,ρ, (2.8.20)

where Zψ
N,ρ(β) $ ∑

v∈AN,ρ e
βψv . We start by proving an upper bound on the following

quantity :
f̃ψN,ρ(β) $ 1

logN2 log
∑

v∈AcN,ρ
eβψv . (2.8.21)

Lemma 2.8.3. Let η > 0, β > 0 and ρ ∈ (0, λ1). There exists c = c(η, β, ρ,σ,λ) > 0
such that

P
(
f̃ψN,ρ(β) > (fψ(β)− ρ/2) + η

)
≤ N−c (2.8.22)

for N large enough.

Proof. In Arguin and Ouimet (2016), Theorem 1.2 and Theorem 1.3 prove that

lim
N→∞

maxv∈VN ψv
logN2 = γ?, in probability, (2.8.23)

where
γ? = maxγ1,γ2,...,γM

∑M
i=1∇γi,

under the constraints ∑k
i=1

(
∇λi − (∇γi)2

σ2
i∇λi

)
≥ 0, 1 ≤ k ≤M,
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and, for all 0 ≤ γ < γ?,

lim
N→∞

log(|HN(γ)|)
logN2 = E(γ), in probability, (2.8.24)

where

E(γ) = maxγ1,γ2,...,γM−1

∑M−1
i=1

(
∇λi − (∇γi)2

σ2
i∇λi

)
+
(
∇λM − (γ−γM−1)2

σ2
M∇λM

)
,

under the constraints ∑k
i=1

(
∇λi − (∇γi)2

σ2
i∇λi

)
≥ 0, 1 ≤ k ≤M − 1.

The unique solution of each optimization problem is rigorously found in Appendix A of
Ouimet (2014) by using the Karush-Kuhn-Tucker theorem, and the solutions are shown
to coincide with (2.8.23) and (2.8.24) in Arguin and Ouimet (2016).

Now, to bound f̃ψN,ρ(β) from above, we need to find the analogues of (2.8.23) and
(2.8.24) on AcN,ρ instead of VN . To this end, we recall the set of representatives at scale λ

from Arguin and Ouimet (2016), denoted by Rλ. Loosely speaking, at a given scale λ, the
points in Rλ ⊆ VN represent the O(N2λ) nods of the underlying branching quaternary tree
structure of the GFF, see Figure 2.8.3. This branching structure is motivated by the fact
that if vλ denotes the representative at scale λ > 0 that is closest to v, then, from Lemma
A.6 in Arguin and Ouimet (2016), we know that maxv∈VN V(ψv(λ)− ψvλ(λ)) ≤ C, for N
large enough.

Figure 2.8.3. The representatives at scale 0, 1/4, 1/2 and 3/4.
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More precisely, let R1 $ VN , and for λ ∈ [0, 1), the set Rλ contains bNλc2 v’s with
neighborhoods [v]λ that can only touch at their boundary (if they do touch) and are not
cut off by ∂VN . To remove any ambiguity, define Rλ in such a way that

max
v∈VN

min
z∈Rλ
‖v − z‖2 is minimized.

For instance, if N = 2n, λ ∈ [0, 1) and λn ∈ N0, then divide VN into a grid with N2λ

squares of side length N1−λ; the center point of each square is a representative at scale λ.

Since we assumed ρ ∈ (0, λ1), the only difference is that there are O(N2(λi−ρ/2)) repre-
sentatives at each scale λi on AcN,ρ (ψ is still defined on VN) instead of O(N2λi). Therefore,
a rerun of the proof of Lemma 3.1 and 3.4 in Arguin and Ouimet (2016) (note that only
the upper bounds work) shows that for all ε > 0,

P
(

max
v∈AcN,ρ

ψv ≥ (1 + ε)γ?ρ logN2
)
≤ N−c(ε,σ,λ), (2.8.25)

for N large enough, where

γ?ρ $ maxγ1,γ2,...,γM

∑M
i=1∇γi,

under the constraints ∑k
i=1

(
∇λi − (∇γi)2

σ2
i∇λi

)
≥ ρ/2, 1 ≤ k ≤M,

and, for all 0 ≤ γ ≤ γ?ρ ,

P
(
|{v ∈ AcN,ρ : ψv ≥ γ logN2}| ≥ N2Eρ(γ)+ε

)
≤ N−c(γ,ε,σ,λ), (2.8.26)

for N large enough, where

Eρ(γ) $ maxγ1,γ2,...,γM−1

∑M−1
i=1

(
∇λi − (∇γi)2

σ2
i∇λi

)
+
(
∇λM − (γ−γM−1)2

σ2
M∇λM

)
− ρ/2,

under the constraints ∑k
i=1

(
∇λi − (∇γi)2

σ2
i∇λi

)
≥ ρ/2, 1 ≤ k ≤M − 1.

A rerun of the upper bound in the proof of Lemma 2.8.1 shows that for all η > 0, there
exists a constant c = c(η, β, ρ,σ,λ) > 0 such that for N large enough,

P
(
f̃ψN,ρ(β) > max

γ∈[0,γ?ρ ]
(βγ + Eρ(γ)) + η

)
≤ N−c. (2.8.27)

The constraints associated with γ?ρ and Eρ(γ) are respectively more restrictive than the
constraints associated with γ? and E(γ), so we obviously have

γ?ρ ≤ γ? and Eρ(γ) ≤ E(γ)− ρ/2, 0 ≤ γ ≤ γ?ρ . (2.8.28)
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Therefore,

max
γ∈[0,γ?ρ ]

(βγ + Eρ(γ)) ≤ max
γ∈[0,γ?]

(βγ + E(γ)− ρ/2) (2.6.3)= fψ(β)− ρ/2. (2.8.29)

The conclusion of the lemma follows directly from (2.8.27) and (2.8.29). �

Lemma 2.8.4. Let β > 0 and ρ ∈ (0, λ1). Then,

lim
N→∞

Gβ,N(AcN,ρ) = 0, (2.8.30)

where the limit holds in P-probability and in Lp, 1 ≤ p <∞.

Remark 2.8.1. The result in Lemma 2.8.4 would not hold if we considered instead the

complement of V δ
N , which is much larger than the complement of AN,ρ.

Proof of Lemma 2.8.4. Fix ρ ∈ (0, λ1) and ε ∈ (0, 1), and let η̃ > 0 depend on ρ. We
have

P
(
Gβ,N(AcN,ρ) > ε

)
≤ P

(
Gβ,N(AcN,ρ) > ε,

1
logN2 logZψ

N(β) ≥ fψ(β)− η̃
)

+ P
(

1
logN2 logZψ

N(β) < fψ(β)− η̃
)

$ (1) + (2). (2.8.31)

For any η̃ > 0, we have (2)→ 0 by (2.8.11). Furthermore, since
{
Gβ,N(AcN,ρ) > ε

}
⊆
{

log
∑

v∈AcN,ρ
eβψv > logZψ

N(β) + log ε
}
, (2.8.32)

then

(1) ≤ P

 1
logN2 log

∑
v∈AcN,ρ

eβψv > fψ(β)− ρ/2 + η

, (2.8.33)

where
η $ ρ/2− η̃ + log ε

logN2 . (2.8.34)

Choose η̃ > 0 small enough, with respect to ρ, and N large enough, with respect to ρ and
ε, that η > 0. The right-hand side of (2.8.33) converges to 0 by Lemma 2.8.3. This proves
limN→∞ Gβ,N(AcN,ρ) = 0 in P-probability. Since

sup
N∈N
|Gβ,N(AcN,ρ)|p ≤ 1, (2.8.35)

the Lp convergence follows trivially. �
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The fact that the Gibbs measure does not carry any weight on AcN,ρ in the limit
generalizes to expectations of bounded functions of s vertices in VN sampled from the
product of Gibbs measures. In Section 2.8.5, this will be used to obtain the approximate
extended Ghirlanda-Guerra identities on VN from the ones on AN,ρ.

Proposition 2.8.5. Let β > 0 and ρ ∈ (0, λ1). Denote v $ (v1, v2, ..., vs). Then, for any

s ∈ N and any functions h :V s
N → R such that supN ‖h‖∞ <∞,

lim
N→∞

∣∣∣∣EG×sβ,N[h(v)
]
− EG×sβ,N,ρ

[
h(v)

]∣∣∣∣ = 0. (2.8.36)

Proof. Introducing an auxiliary term,∣∣∣∣EG×sβ,N[h(v)
]
− EG×sβ,N,ρ

[
h(v)

]∣∣∣∣ ≤ ∣∣∣∣EG×sβ,N[h(v)
]
− EG×sβ,N

[
h(v) 1{v∈A×sN,ρ}

]∣∣∣∣
+
∣∣∣∣EG×sβ,N[h(v) 1{v∈A×sN,ρ}

]
− EG×sβ,N,ρ

[
h(v)

]∣∣∣∣
$ (1) + (2). (2.8.37)

Now, by monotonicity and sub-additivity,

(1) = EG×sβ,N
[
h(v)1{∃i∈{1,...,s} s.t. vi∈AcN,ρ}

]
≤ s EGβ,N(AcN,ρ) · sup

N
‖h‖∞. (2.8.38)

Similarly, for the second term,

(2) = EG×sβ,N,ρ
[
h(v)

]
− EG×sβ,N

[
h(v) 1{v∈A×sN,ρ}

]

= E

G×sβ,N
[
h(v) 1{v∈A×sN,ρ}

]
G×sβ,N(v ∈ A×sN,ρ)

(
1− G×sβ,N(v ∈ A×sN,ρ)

) 
≤ E

[
1− G×sβ,N(v ∈ A×sN,ρ)

]
· sup
N
‖h‖∞ ≤ s EGβ,N(AcN,ρ) · sup

N
‖h‖∞. (2.8.39)

By Lemma 2.8.4, (1) + (2)→ 0 as N →∞. This ends the proof. �

When s = 2 and h(v, v′) $ 1{qN (v,v′)≤r}, Proposition 2.8.5 tells us that we can compute
the limiting two-overlap distribution of Theorem 2.6.3 by only considering a restricted ver-
sion, where the points are sampled from A2

N,ρ instead of V 2
N . This property will be crucial

to control the covariance of the increments in the next section, where we adapt the Bovier-
Kurkova technique. The proof of Theorem 2.6.3 will be given right after, in Section 2.8.4.
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Corollary 2.8.6. Let β > 0 and ρ ∈ (0, λ1). Then, for any r ∈ R,

lim
N→∞

∣∣∣∣EG×2
β,N

[
1{qN (v,v′)≤r}

]
− EG×2

β,N,ρ

[
1{qN (v,v′)≤r}

]∣∣∣∣ = 0. (2.8.40)

Note that (2.8.40) is valid even if r depends on ρ.

2.8.3. An adaptation of the Bovier-Kurkova technique

The Bovier-Kurkova technique is a way to compute the two-overlap distribution of a
model in terms of the free energy of a perturbed version of that model. In the context of
this paper, this connection is established by Proposition 2.8.8 below in the case (s = 1, k =
1, h ≡ 1). One difficulty in the present case is the fact that the covariance between the
increments of the field depends on their position relative to the boundary. The restriction
to the set AN,ρ is a way to control this, cf. Lemma 2.8.7.

To simplify the notation, recall

J̄σ2(·) $ Jσ2(·)
Jσ2(1) , (2.8.41)

and denote the increments of overlaps by

qNα,α′(v, v′) $
E[ψv(α, α′)ψv′ ]
Jσ2(1) logN + C0

, v, v′ ∈ VN , (2.8.42)

where C0 is the constant introduced in Lemma 2.9.3. Estimates on (2.8.42) are given in
terms of (2.8.41) in Corollary 2.9.6 of Appendix 2.9.1. The following lemma uses these
estimates in order to compare qN(v, v′) and qNα,α′(v, v′).

Lemma 2.8.7. Let 0≤α<α′≤ 1 and ρ ∈ (0, 1]. Then, for all v, v′ ∈ AN,ρ, for all

ε ≥ C7√
logN + C8 ρ, (C7, C8 are from (2.9.44)) (2.8.43)

and for N large enough (dependent on α and α′, but independent from v, v′, and indepen-

dent from ρ (except when α = 0)) :
(1) If qN(v, v′) ≤ J̄σ2(α)− ε, then

qNα,α′(v, v′) = O
(
(logN)−1/2

)
+O(ρ).

(2) If J̄σ2(α) + ε ≤ qN(v, v′) ≤ J̄σ2(α′)− ε, then

qNα,α′(v, v′) = qN(v, v′)− J̄σ2(α) +O
(
(logN)−1/2

)
+O(ρ).
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(3) If J̄σ2(α′) + ε ≤ qN(v, v′), then

qNα,α′(v, v′) = J̄σ2(α, α′) +O
(
(logN)−1/2

)
+O(ρ).

In all three cases, O(ρ) is uniform in N .

Proof. From (2.9.44), we know that |qN(v, v′)− J̄σ2(bN(v, v′))| ≤ ε. Thus, in each case
respectively, we deduce (1) : bN ≤ α, (2) : α ≤ bN ≤ α′, and (3) : α′ ≤ bN . Use (2.9.44)
again to get the appropriate bounds on qNα,α′(v, v′). �

Here is the main result of this section.

Proposition 2.8.8. Let 0 ≤ α < α′ ≤ 1, ρ ∈ (0, 1] and Sα,α′ $ (J̄σ2(α), J̄σ2(α′)]. Let

β > 0, s ∈ N, k ∈ {1, ..., s}, and let h : V s
N → R be such that supN ‖h‖∞ <∞. Then, for

all
ε ≥ C7√

logN + C8 ρ, (C7, C8 are from (2.9.44)) (2.8.44)

and for N large enough (dependent on α and α′, but independent from v, v′, and indepen-

dent from ρ (except when α = 0)), we have∣∣∣∣∣∣∣
EG×sβ,N,ρ[ψvk(α, α′)h(v)]

β (Jσ2(1) logN + C0)
−


∑s
l=1 EG×sβ,N,ρ

[ ∫
Sα,α′

1{r<qN (vk,vl)}dr h(v)
]

−sEG×(s+1)
β,N,ρ

[ ∫
Sα,α′

1{r<qN (vk,vs+1)}dr h(v)
]

∣∣∣∣∣∣∣

≤ C · s · sup
N
‖h‖∞ ·


EG×2

β,N,ρ

[
1{J̄σ2 (α)−ε≤qN (v,v′)≤J̄σ2 (α)+ε}

]
EG×2

β,N,ρ

[
1{J̄σ2 (α′)−ε≤qN (v,v′)≤J̄σ2 (α′)+ε}

]
+O

(
(logN)−1/2

)
+O(ρ)


, (2.8.45)

where O(ρ) is uniform in N and C > 0 is a universal constant.

Proof. For any l ∈ {1, ..., s+ 1},

EG×(s+1)
β,N,ρ

[ ∫
Sα,α′

1{r<qN (vk,vl)}dr h(v)
]

(2.8.46)

= EG×(s+1)
β,N,ρ

[
(qN(vk, vl)− J̄σ2(α))1{J̄σ2 (α)<qN (vk,vl)≤J̄σ2 (α′)} h(v)

]
+ EG×(s+1)

β,N,ρ

[
J̄σ2(α, α′)1{J̄σ2 (α′)<qN (vk,vl)} h(v)

]
.

On the other hand,

EG×sβ,N,ρ
[
ψvk(α, α′)h(v)

]
=

∑
v∈A×sN,ρ

E

ψvk(α, α′)h(v)∏s
l=1exp(βψvl)∏s

l′=1
∑
vl′∈AN,ρ exp(βψvl′ )

 . (2.8.47)
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For a centered Gaussian vector X $ (X1, ..., Xn) and a twice-continuously differentiable
function F on Rn, of moderate growth at infinity, we have the formula E[XiF (X)] =∑n
j=1 E[XiXj]E

[
∂XjF (X)

]
. Here, for any v ∈ A×sN,ρ, the relevant Gaussian vector is

(
ψvk(α, α′) ; ψvl , l ∈ {1, ..., s} ; ψvl′ , vl

′∈ AN,ρ, l′ ∈ {1, ..., s}
)
, (2.8.48)

where Xi $ ψvk(α, α′) and F $ h(v)∏s
l=1exp(βψvl)/

∏s
l′=1

∑
vl′∈AN,ρ exp(βψvl′ ). Applying

the formula to the right-hand side of (2.8.47) yields

(2.8.47) =
s∑
l=1

β EG×sβ,N,ρ
[
E
[
ψvk(α, α′)ψvl

]
h(v)

]

− s β EG×(s+1)
β,N,ρ

[
E
[
ψvk(α, α′)ψvs+1

]
h(v)

]
.

(2.8.49)

If we divide (2.8.49) on both sides by β (Jσ2(1) logN + C0), we deduce

EG×sβ,N,ρ
[
ψvk(α, α′)h(v)

]
β (Jσ2(1) logN + C0) =


∑s
l=1 EG×sβ,N,ρ

[
qNα,α′(vk, vl)h(v)

]
−sEG×(s+1)

β,N,ρ

[
qNα,α′(vk, vs+1)h(v)

]
 . (2.8.50)

Now, one by one, take the difference in absolute value between each of the s+1 expectations
inside the braces in (2.8.50) and the corresponding expectation on the left-hand side of
(2.8.46). We obtain the bound (2.8.45) by using Lemma 2.8.7. �

2.8.4. Computation of the limiting two-overlap distribution

Let α, α′ ∈ [0, 1] be such that

λj
?−1 ≤ λi?−1 ≤ α < α′ ≤ λi? ≤ λj

? (2.8.51)

for some i? and j?. Define ψu, the perturbed scale-inhomogeneous GFF, mentioned in the
previous section, by

ψuv $ uφv(α, α′) + ψv, where u > −σi? . (2.8.52)

The dependence on α and α′ is made implicit to lighten the notation. In the proof of
Theorem 2.6.3, Proposition 2.8.8 will be used to link the limiting two-overlap distribution
of ψ to the derivative of the limiting free energy of ψu with respect to the perturbation
parameter u.
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Proof of Theorem 2.6.3. By Corollary 2.8.6, it suffices to prove that

lim
ρ→0

lim
N→∞

EG×2
β,N,ρ

[
1{qN (v,v′)≤r}

]

=


0, if r < 0,
(2/σ̄j)/β, if r ∈ [J̄σ2(λj−1), J̄σ2(λj)), j ≤ lβ − 1,
1, if r ≥ J̄σ2(λlβ−1).

(2.8.53)

Since [0, 1] ⊆ R is compact, the space M1([0, 1]) of probability measures on [0, 1] is
compact under the weak topology. Thus, any subsequence of the cumulative distribution
functions on the left-hand side of (2.8.53) has a subsequence converging to a cumulative
distribution function. Pick any converging sub-subsequence and denote its limit by r 7→
Qβ(r). SinceM1([0, 1]) is a metric space, the proof is reduced to showing that Qβ is given
by the right-hand side of (2.8.53).

We already know that Qβ(r) = 0 for all r < 0 since Corollary 2.9.6 implies

lim inf
ρ→0

lim inf
N→∞

min
v,v′∈AN,ρ

qN(v, v′) ≥ 0. (2.8.54)

We also have Qβ(r) = 1 for all r ≥ 1 since maxv,v′∈VN qN(v, v′) ≤ 1 by Lemma 2.9.3 and
the Cauchy-Schwarz inequality.

To determine Qβ on [0, 1), let α, α′ ∈ [0, 1] be such that J̄σ2(α), J̄σ2(α′) are continuity
points of Qβ and (2.8.51) is satisfied. Direct differentiation gives

2σi?
β2Jσ2(1)

∂

∂u
E
[
fψ

u

N,ρ(β)
]∣∣∣∣∣
u=0

=
EGβ,N,ρ

[
ψv(α, α′)

]
βJσ2(1) logN . (2.8.55)

Combine this result with Proposition 2.8.8 in the special case (s = 1, k = 1, h ≡ 1). After
taking the limits N → ∞ (use Corollary 2.8.6 on the right-hand side of (2.8.45)), ρ → 0
and then ε→ 0, we find∫

(J̄σ2 (α),J̄σ2 (α′)]
Qβ(r)dr = lim

ρ→0
lim
N→∞

2σi?
β2Jσ2(1)

∂

∂u
E
[
fψ

u

N,ρ(β)
]∣∣∣∣∣
u=0

. (2.8.56)

For all ρ ∈ (0, 1], the function u 7→ E
[
fψ

u

N,ρ(β)
]
is convex by Lemma 2.9.9, and by Theorem

2.6.2,
lim
N→∞

E
[
fψ

u

N,ρ(β)
]

= fψ
u(β). (2.8.57)
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Pointwise limits preserve convexity, so u 7→ fψ
u(β) is convex. From Lemma 2.9.10, ,

we also know that u 7→ fψ
u(β) is differentiable on an open interval (−δ, δ), for δ =

δ(β, α, α′,σ,λ) small enough. In particular, by another standard result of convexity (see
e.g. Theorem 25.7 in Rockafellar (1970)),

lim
N→∞

∂

∂u
E
[
fψ

u

N,ρ(β)
]

= ∂

∂u
fψ

u(β), (2.8.58)

for all u ∈ (−δ, δ) (and all ρ ∈ (0, 1]). The derivative of u 7→ fψ
u(β) at u = 0 is given by

(2.9.76). Thus, from (2.8.56), we get

∫
(J̄σ2 (α),J̄σ2 (α′)]

Qβ(r)dr =


J̄σ2(α, α′) (2/σ̄j? )

β
, if j? ≤ lβ − 1,

J̄σ2(α, α′), if j? ≥ lβ.
(2.8.59)

But Qβ is right-continuous (it’s a cumulative distribution function) and (2.8.59) holds for
all pairs J̄σ2(α), J̄σ2(α′) of continuity points satisfying (2.8.51), so Qβ must be equal to
the right-hand side of (2.8.53). This ends the proof. �

2.8.5. Proof of the approximate extended Ghirlanda-Guerra identities

We start by proving a concentration result. Denote v $ (v1, ..., vs) in this section.

Lemma 2.8.9. Let λi?−1 ≤ α < α′ ≤ λi? for some i?, and let β > 0 and ρ ∈ (0, 1]. Then,

for any s ∈ N, any k ∈ {1, ..., s} and any functions h : V s
N → R such that supN ‖h‖∞ <∞,

lim
N→∞

∣∣∣∣EG×sβ,N,ρ[ψvk(α, α′)h(v)
]
− EGβ,N,ρ

[
ψvk(α, α′)

]
EG×sβ,N,ρ

[
h(v)

]∣∣∣∣
β (Jσ2(1) logN + C0) = 0. (2.8.60)

Proof. If we apply Jensen’s inequality to the expectation EG×sβ,N,ρ[·], followed by the
triangle inequality, we have∣∣∣∣EG×sβ,N,ρ[ψvk(α, α′)h(v)

]
− EGβ,N,ρ

[
ψvk(α, α′)

]
EG×sβ,N,ρ

[
h(v)

]∣∣∣∣
≤ EGβ,N,ρ

∣∣∣∣ψvk(α, α′)− EGβ,N,ρ
[
ψvk(α, α′)

]∣∣∣∣ · sup
N
‖h‖∞

≤ ((a) + (b)) · sup
N
‖h‖∞, (2.8.61)

where
(a) + (b) $ EGβ,N,ρ

∣∣∣∣ψvk(α, α′)− Gβ,N,ρ[ψvk(α, α′)]∣∣∣∣
+ E

∣∣∣∣Gβ,N,ρ[ψvk(α, α′)]− EGβ,N,ρ
[
ψvk(α, α′)

]∣∣∣∣. (2.8.62)
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In the remainder, we follow the strategy developed in the proof of Theorem 3.8 in
Panchenko (2013b), where the same concentration result was proved for the mixed p-spin
model. We show that, for all ρ ∈ (0, 1],

lim
N→∞

(a)
logN = 0 and lim

N→∞
(b)

logN = 0. (2.8.63)

Step 1 : For all ρ ∈ (0, 1], limN→∞
(a)

logN = 0.

Note that

(a) = EGβ,N,ρ
∣∣∣∣∣∣
∑

v2∈AN,ρ
(ψv1(α, α′)− ψv2(α, α′)) exp(βψv2)∑

z2∈AN,ρ exp(βψz2)

∣∣∣∣∣∣
≤ EG×2

β,N,ρ

∣∣∣ψv1(α, α′)− ψv2(α, α′)
∣∣∣. (2.8.64)

For u ≥ 0, we define a perturbed version of the last quantity (where the Gibbs measure
Gβ,N,ρ,u is now defined with respect to ψu) :

D(u) $ EG×2
β,N,ρ,u

∣∣∣ψv1(α, α′)− ψv2(α, α′)
∣∣∣ (2.8.65)

We can easily verify that

uD(0) =
∫ u

0
D(y)dy −

∫ u

0

∫ x

0

∂

∂y
D(y)dydx, (2.8.66)

and also that

∂

∂y
D(y) = β

σi?
EG×3

β,N,ρ,y


∣∣∣ψv1(α, α′)− ψv2(α, α′)

∣∣∣
·
(
ψv1(α, α′) + ψv2(α, α′)− 2ψv3(α, α′)

)
 . (2.8.67)

If we separate the last expectation in two parts and apply the Cauchy-Schwarz inequality
to each one of them, we find (for y ≥ 0) :

∣∣∣∣∣ ∂∂yD(y)
∣∣∣∣∣ ≤ β

σi?


EG×3

β,N,ρ,y

∣∣∣ψv1(α, α′)− ψv2(α, α′)
∣∣∣∣∣∣ψv1(α, α′)− ψv3(α, α′)

∣∣∣
+EG×3

β,N,ρ,y

∣∣∣ψv1(α, α′)− ψv2(α, α′)
∣∣∣∣∣∣ψv2(α, α′)− ψv3(α, α′)

∣∣∣


≤ β

σi?
· 2EG×2

β,N,ρ,y

[(
ψv1(α, α′)− ψv2(α, α′)

)2
]
. (2.8.68)
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From the elementary inequality (c+ d)2 ≤ 2c2 + 2d2, we also have

2EG×2
β,N,ρ,y

[(
ψv1(α, α′)− ψv2(α, α′)

)2
]

≤ 8EGβ,N,ρ,y
[(
ψv(α, α′)− Gβ,N,ρ,y

[
ψv(α, α′)

])2]
. (2.8.69)

By putting (2.8.68) and (2.8.69) together in (2.8.66), we obtain (for u > 0) :

D(0) ≤ 1
u

∫ u

0
D(y)dy +

∫ u

0

∣∣∣∣∣ ∂∂yD(y)
∣∣∣∣∣ dy

≤ 2
1
u

∫ u

0
EGβ,N,ρ,y

[(
ψv(α, α′)− Gβ,N,ρ,y

[
ψv(α, α′)

])2]
dy

1/2

+ 8β
σi?

∫ u

0
EGβ,N,ρ,y

[(
ψv(α, α′)− Gβ,N,ρ,y

[
ψv(α, α′)

])2]
dy. (2.8.70)

In order to bound 1
u

∫ u
0 D(y)dy, we separated D(y) in two parts (with the triangle in-

equality) and we applied the Cauchy-Schwarz inequality to the two resulting expectations
1
u

∫ u
0 EGβ,N,ρ,y[ · ] dy. Denote

εN,ρ(u) $ 1
logN

∫ u

0
EGβ,N,ρ,y

[(
ψv(α, α′)− Gβ,N,ρ,y

[
ψv(α, α′)

])2]
dy. (2.8.71)

So far, we have shown that
(a)

logN ≤
D(0)
logN ≤ 2

√
εN,ρ(u)
u logN + 8β

σi?
εN,ρ(u). (2.8.72)

Let
F (u) $ fψ

u

N,ρ(β) = 1
logN2 log

∑
v∈AN,ρ

eβ(uφv(α,α′)+ψv), (2.8.73)

and note that

E[F ′′(y)] = β2

σ2
i? logN2 E

[
Gβ,N,ρ,y

[(
ψv(α, α′)

)2]− (Gβ,N,ρ,y[ψv(α, α′)])2]

= β2

2σ2
i?
· 1

logN EGβ,N,ρ,y
[(
ψv(α, α′)− Gβ,N,ρ,y

[
ψv(α, α′)

])2]
. (2.8.74)

From (2.8.71) and the convexity of F (see Lemma 2.9.9), we have, for all y ∈ (0, σi?),

εN,ρ(u) = 2σ2
i?

β2

∫ u

0
E[F ′′(y)] dy = 2σ2

i?

β2 E[F ′(u)− F ′(0)]

≤ 2σ2
i?

β2 E
[
F (u+ y)− F (u)

y
− F (0)− F (−y)

y

]
. (2.8.75)

168



By putting (2.8.75) in (2.8.72) and by using the mean convergence in Theorem 2.6.2, we
get, for all ρ ∈ (0, 1] and all u > 0 and y ∈ (0, σi?),

lim sup
N→∞

(a)
logN ≤

8β
σi?
· 2σ2

i?

β2

(
f(u+ y)− f(u)

y
− f(0)− f(−y)

y

)
, (2.8.76)

where f(u) $ fψ
u(β). From Lemma 2.9.10, there exists δ = δ(β, α, α′,σ,λ) such that

f is differentiable on (−δ, δ). Therefore, take u → 0+ and then y → 0+ in the above
equation, the right-hand side goes to 0. The left-hand side does not depend on u or y, so
we conclude that for all ρ ∈ (0, 1], limN→∞(a)/ logN = 0.

Step 2 : For all ρ ∈ (0, 1], limN→∞
(b)

logN = 0.

Let F (u) $ fψ
u

N,ρ(β) as in (2.8.73) and, for u ∈ (0, σi?), let

η(u) $
∣∣∣F (−u)− E[F (−u)]

∣∣∣+ ∣∣∣F (0)− E[F (0)]
∣∣∣+ ∣∣∣F (u)− E[F (u)]

∣∣∣. (2.8.77)

Differentiation of the free energy gives

(b) = σi? logN2

β
E
∣∣∣∣F ′(0)− E[F ′(0)]

∣∣∣∣. (2.8.78)

From the convexity of F (see Lemma 2.9.9),

F ′(0)− E[F ′(0)] ≤ F (u)− F (0)
u

− E[F ′(0)]

≤
∣∣∣∣∣E[F (u)]− E[F (0)]

u
− E[F ′(0)]

∣∣∣∣∣+ η(u)
u

, (2.8.79)

F ′(0)− E[F ′(0)] ≥ F (0)− F (−u)
u

− E[F ′(0)]

≥ −
∣∣∣∣∣E[F (0)]− E[F (−u)]

u
− E[F ′(0)]

∣∣∣∣∣− η(u)
u

. (2.8.80)

By taking the absolute value and the expectation, we get

β

2σi?
· (b)

logN ≤
∣∣∣∣∣E[F (u)]− E[F (0)]

u
− E[F ′(0)]

∣∣∣∣∣
+
∣∣∣∣∣E[F (0)]− E[F (−u)]

u
− E[F ′(0)]

∣∣∣∣∣+ E[η(u)]
u

. (2.8.81)
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Recall that F and η are functions of N and ρ by definition. From Theorem 2.6.2, we know
that for all ρ ∈ (0, 1] and all u ∈ (0, σi?),

lim
N→∞

E[η(u)] = 0. (2.8.82)

Using (2.8.57) and (2.8.58) in (2.8.81), we get, for all ρ ∈ (0, 1] and all u ∈ (0, σi?),

lim sup
N→∞

{
β

2σi?
· (b)

logN

}
≤
∣∣∣∣∣f(u)− f(0)

u
− f ′(0)

∣∣∣∣∣+
∣∣∣∣∣f(0)− f(−u)

u
− f ′(0)

∣∣∣∣∣ , (2.8.83)

where f(u) $ fψ
u(β). Finally, take u→ 0+ in the last equation, the differentiability of f

at 0 (from Lemma 2.9.10) implies that for all ρ ∈ (0, 1], limN→∞(b)/ logN = 0. This ends
the proof of Lemma 2.8.9. �

Finally, we can prove the approximate extended Ghirlanda-Guerra identities.

Proof of Theorem 2.6.4. In addition to (2.6.16), assume that λi?−1 ≤ α < α′ ≤ λi?

for some i?. Also, let ρ ∈ (0, λ1). If we combine Lemma 2.8.9 and Proposition 2.8.8 with
the triangle inequality, we get∣∣∣∣∣∣∣∣∣∣∣∣

EGβ,N,ρ[ψ
vk

(α,α′)]
β (Jσ2 (1) logN+C0) EG×sβ,N,ρ

[
h(v)

]

−


∑s
l=1 EG×sβ,N,ρ

[ ∫
Sα,α′

1{r<qN (vk,vl)}dr h(v)
]

−sEG×(s+1)
β,N,ρ

[ ∫
Sα,α′

1{r<qN (vk,vs+1)}dr h(v)
]


∣∣∣∣∣∣∣∣∣∣∣∣
≤ RHS(2.8.45) + oN(1), (2.8.84)

where RHS means “right-hand side of”. Furthermore, from Proposition 2.8.8 in the special
case (s = 1, k = 1, h ≡ 1),∣∣∣∣∣∣∣∣∣∣∣∣

EGβ,N,ρ[ψ
vk

(α,α′)]
β (Jσ2 (1) logN+C0)

−


EGβ,N,ρ

[ ∫
Sα,α′

1{r<qN (vk,vk)}dr
]

−EG×2
β,N,ρ

[ ∫
Sα,α′

1{r<qN (v1,v2)}dr
]


∣∣∣∣∣∣∣∣∣∣∣∣
≤ RHS(s=1,h≡1)(2.8.45). (2.8.85)

By combining the last two bounds with the triangle inequality, we find

lim sup
N→∞

∣∣∣∣∣∣∣∣∣∣∣∣

EG×(s+1)
β,N,ρ

[ ∫
Sα,α′

1{r<qN (vk,vs+1)}dr h(v)
]

−


1
s
EG×2

β,N,ρ

[ ∫
Sα,α′

1{r<qN (v1,v2)}dr
]
EG×sβ,N,ρ

[
h(v)

]
+1
s

∑s
l 6=k EG×sβ,N,ρ

[ ∫
Sα,α′

1{r<qN (vk,vl)}dr h(v)
]


∣∣∣∣∣∣∣∣∣∣∣∣
(2.8.86)
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≤ C̃ · sup
N
‖h‖∞ ·



lim supN→∞ EG×2
β,N,ρ

[
1{J̄σ2 (α)−ε≤qN (v,v′)≤J̄σ2 (α)+ε}

]
lim supN→∞ EG×2

β,N,ρ

[
1{J̄σ2 (α′)−ε≤qN (v,v′)≤J̄σ2 (α′)+ε}

]
+O(ρ)


.

Using the triangle inequality, Proposition 2.8.5 and Corollary 2.8.6 in (2.8.86), it is easy
to show that inequality (2.8.86) is also true if Gβ,N,ρ is replaced everywhere by Gβ,N . From
Theorem 2.6.3, condition (2.6.16) guarantees that J̄σ2(α) and J̄σ2(α′) are continuity points
of the limiting two-overlap distribution. Thus, after the replacement of the Gibbs measures
in (2.8.86), take ρ→ 0 and then ε→ 0 to deduce (2.6.17).

If we only assume (2.6.16), note that λi−1 ≤ α < λi and λi′−1 < α′ ≤ λi′ for some i, i′.
By the above argument, we have (2.6.17) for each pair of scales

α < λi ; λi < λi+1 ; . . . ; λi′−2 < λi′−1 ; λi′−1 < α′. (2.8.87)

Add all the limits together and use the triangle inequality to conclude. �

2.9. Appendix

2.9.1. Covariance estimates

The Markov property of the GFF, which is a consequence of the strong Markov prop-
erty of the simple random walk (in the covariance function in (2.1.1)), implies that the
value of the field inside a neighborhood is independent of the field outside given the bound-
ary, see e.g. Dynkin (1980). In particular, for the neighborhood [v]λ, this implies

φv(λ) $ E
[
φv | F∂[v]λ∪[v]c

λ

]
= E

[
φv | F∂[v]λ

]
. (2.9.1)

Define the branching scale between v and v′ in VN :

bN(v, v′) $ max
{
λ ∈ [0, 1] : [v]λ ∩ [v′]λ 6= ∅

}
. (2.9.2)

This is the largest λ for which the two neighborhoods [v]λ and [v′]λ intersect. We always
have by definition that ‖v − v′‖2 is of order N1−bN (v,v′). The branching scale plays the
same role as the branching time (normalized to lie in [0, 1]) in branching random walk.
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Define
εN $

log 4
logN .

For all v, v′ ∈ VN (v 6= v′), this definition guarantees that for all N ∈ N,

[v]1∧(bN+εN ) ∩ [v′]1∧(bN+εN ) = ∅
and

[v]bN ∪ [v′]bN ⊆ [v]0∨(bN−εN ) ∩ [v′]0∨(bN−εN ).

(2.9.3)

To convince the reader, see Figure 2.9.4 below and note that N εN = 4.

[v]bN

[v′]bN

N1−(bN +εN )

N1−bN

CN1−bN

∼
CN1−bN

[v]bN

[v′]bN

N1−bN

N1−(bN−εN )

CN1−bN

∼
CN1−bN

Figure 2.9.4. Illustration of Equation (2.9.3).

If λ < λ′ and µ < µ′, a direct consequence of (2.9.3) and the Markov property of the
GFF is the fact that when

v 6= v′ and


(1) : λ, µ ≥ bN(v, v′) + εN ,

or (2) : λ ≥ bN(v, v′) + εN > bN(v, v′)− εN ≥ µ′,

or (3) : bN(v, v′)− εN ≥ λ ≥ µ′ + εN ,

or
v = v′ and λ ≥ µ′,

then
φv(λ, λ′) is independent of φv′(µ, µ′). (2.9.4)

This is because the shell [v]λ∩ [v]cλ′ does not intersect the shell [v′]µ∩ [v′]cµ′ in all cases, see
Figure 2.2 in Arguin and Ouimet (2016). The “spacing” εN is not optimal but sufficient
for our purpose. We stress that, in general, the field ψ does not have the Markov property.
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However, by working with increments of the field ψ, the property analogous to (2.9.4) can
be proved. The following lemma is a refinement of Lemma A.1 in Arguin and Ouimet
(2016), where the error term εN is introduced to make the statement hold for all N , not
only N large enough.

Lemma 2.9.1. Let v, v′ ∈ VN , λ < λ′, µ < µ′ and εN $ (log 4)/(logN). If

v 6= v′ and


(1) : λ, µ ≥ bN(v, v′) + εN ,

or (2) : λ ≥ bN(v, v′) + εN > bN(v, v′)− εN ≥ µ′,

or (3) : bN(v, v′)− εN ≥ λ ≥ µ′ + εN ,

or
v = v′ and λ ≥ µ′,

then
ψv(λ, λ′) is independent of ψv′(µ, µ′). (2.9.5)

Proof. Using the tower property of conditional expectations, we have the following de-
composition (see (A.4) in Arguin and Ouimet (2016)) :

ψv(λ, λ′) =
∑

1≤i≤M :
λ≤λi−1<λ′ or λ<λi≤λ′

or λi−1≤λ<λ′≤λi

σiφv(λ ∨ λi−1, λ
′ ∧ λi). (2.9.6)

The conclusion follows directly from (2.9.4) above. �

The next lemma gives upper and lower bounds on the variance of the increments of
the field ψ in AN,ρ. Recall from (2.8.19) that

AN,ρ $
{
v ∈ VN : min

z∈Z2\VN
‖v − z‖2 ≥ N1−ρ

}
, ρ ∈ (0, 1]. (2.9.7)

Lemma 2.9.2. Let λi−1 ≤ α < α′ ≤ λi for some i ∈ {1, ...,M}, α 6= 0 and ρ ∈ (0, α].
Then, for N large enough (dependent on α, but independent from ρ),

max
v∈AN,ρ

∣∣∣E[ψv(α, α′)2
]
− (α′ − α)σ2

i logN
∣∣∣ ≤ Cσ2

i . (2.9.8)

Proof. This is Lemma A.2 in Arguin and Ouimet (2016) with v ∈ AN,ρ instead of v ∈ V δ
N .

The proof is exactly the same and the constant C is independent of α because ρ ∈ (0, α]
implies that the boxes [v]α are not cut off by ∂VN . �
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The next lemma shows that the upper bound on the variance of the increments in
(2.9.8) is in fact uniform on VN . We extend the statement to include all combinations of
scales α < α′.

Lemma 2.9.3. There exists a constant C0 = C0(σ) > 0 such that for all scales 0 ≤ α <

α′ ≤ 1 and N large enough (independent from α and α′),

max
v∈VN

E
[
ψv(α, α′)2

]
≤ Jσ2(α, α′) logN + C0. (2.9.9)

Proof. This follows immediately from Lemma A.3 in Arguin and Ouimet (2016) and the
independence of the increments. �

In Section 2.8.3, estimates on the covariance of the increments are needed to bound
certain overlaps and adapt the Bovier-Kurkova technique. The next two lemmas take care
of this problem. To simplify the notation, define

φv(A) $ E
[
φv | F∂(A∩VN )

]
, (2.9.10)

φv(A1, A2) $ φv(A2)− φv(A1), (2.9.11)

for any sets A,A1, A2 ⊆ Z2. With this notation, we can also mix sets and scales with the
obvious meaning. For example,

φv(A, λ) $ φv(λ)− φv(A). (2.9.12)

For simplicity, we write bN instead of bN(v, v′) in the remaining of this section.

Lemma 2.9.4. Let λi−1 ≤ α < α′ ≤ λi for some i ∈ {1, ...,M}, α 6= 0, ρ ∈ (0, α/2], and
εN $ (log 4)/(logN). All four equations below hold for N large enough (dependent on α

and α′, but independent from ρ and v, v′). All the constants Ci, 1 ≤ i ≤ 4, depend only

on (σ,λ). For all v, v′ ∈ AN,ρ such that 1 ∧ (α′ + 2εN) ≤ bN ≤ 1,
∣∣∣E[ψv(α, α′)ψv′]− (α′ − α)σ2

i logN
∣∣∣ ≤ C1

√
logN. (2.9.13)

For all v, v′ ∈ AN,ρ such that α′ − 2εN ≤ bN ≤ 1 ∧ (α′ + 2εN),
∣∣∣E[ψv(α, α′)ψv′]− (α′ − α)σ2

i logN
∣∣∣ ≤ C2

√
logN. (2.9.14)
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For all v, v′ ∈ AN,ρ such that α + 2εN ≤ bN ≤ α′ − 2εN ,∣∣∣E[ψv(α, α′)ψv′]− (bN − α)σ2
i logN

∣∣∣ ≤ C3

√
logN. (2.9.15)

For all v, v′ ∈ VN such that bN ≤ α + 2εN ,∣∣∣E[ψv(α, α′)ψv′]∣∣∣ ≤ C4

√
logN. (2.9.16)

Proof of Equation (2.9.13). Let v, v′ ∈ AN,ρ be such that 1 ∧ (α′ + 2εN) ≤ bN ≤ 1.
The case bN = 1 (i.e. v = v′) is covered by Lemma 2.9.2. Therefore, assume

α′ + 2εN ≤ bN < 1.

From (1)− (3) in Lemma 2.9.1 :

(2) : E
[
ψv(α, α′)ψv′(1 ∧ (bN + εN), 1)

]
= 0,

(3) : E
[
ψv(α, α′)ψv′(α′ + εN , bN − εN)

]
= 0,

(3) : E
[
ψv(α, α′)ψv′(α− εN)

]
= 0.

(2.9.17)

Moreover, by the Cauchy-Schwarz inequality and Lemma 2.9.3,∣∣∣E[ψv(α, α′)ψv′(bN − εN , 1 ∧ (bN + εN))
]∣∣∣∣∣∣E[ψv(α, α′)ψv′(α′, α′ + εN)

]∣∣∣∣∣∣E[ψv(α, α′)ψv′(α− εN , α)
]∣∣∣

 ≤ C
√
εN logN. (2.9.18)

From the last six equations, it thus suffices to prove
∣∣∣E[ψv(α, α′)ψv′(α, α′)]− (α′ − α)σ2

i logN
∣∣∣ ≤ C

√
logN. (2.9.19)

But, from Definition 2.1.1 and the tower property of conditional expectations, it is easily
shown (see (2.9.6)) that when λi−1≤ α< α′≤ λi,

ψu(α, α′) = σiφu(α, α′), u ∈ VN . (2.9.20)

Therefore, to show (2.9.19), it suffices to prove
∣∣∣E[φv(α, α′)φv′(α, α′)]− (α′ − α) logN

∣∣∣ ≤ C
√

logN. (2.9.21)
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Since bN ≥ α′ + 2εN by hypothesis, we have

[v]α ∪ [v′]α ⊆ [v]α−εN and [v]α′ ∪ [v′]α′ ⊆ [v]α′−εN . (2.9.22)

From (2.9.22) and Lemma A.5 in Arguin and Ouimet (2016), we deduce

E
[
φu(λ, [v]λ−εN )2

]
≤ C, for all u ∈ {v, v′}, λ ∈ {α, α′}. (2.9.23)

By combining these four inequalities in (2.9.21) with the Cauchy-Schwarz inequality and
Lemma 2.9.3, it suffices to prove

∣∣∣E[φv([v]α−εN , [v]α′−εN )φv′([v]α−εN , [v]α′−εN )
]
− (α′ − α) logN

∣∣∣ ≤ C. (2.9.24)

For u ∈ {v, v′}, the Markov property (2.9.1) yields

E
[
φu([v]α−εN , 1) | F∂[v]α′−εN

]
= φu([v]α−εN , [v]α′−εN ). (2.9.25)

Using (♣) : E[E[X | F ]E[Y | F ]] = E[XY ] − E[(X − E[X | F ])(Y − E[Y | F ])] together
with (2.9.25), we can compute the covariance in (2.9.24) :

E
[
φv([v]α−εN , [v]α′−εN )φv′([v]α−εN , [v]α′−εN )

]
(2.9.25)= E

[
E
[
φv([v]α−εN , 1) | F∂[v]α′−εN

]
E
[
φv′([v]α−εN , 1) | F∂[v]α′−εN

]]
(♣)= E

[
φv([v]α−εN , 1)φv′([v]α−εN , 1)

]
− E

[
φv([v]α′−εN , 1)φv′([v]α′−εN , 1)

]
. (2.9.26)

But, it is well known that {φu(B, 1)}u∈B is a GFF on B when B ⊆ Z2 is a finite box,
see e.g. Zeitouni (2017). Simply choose B = [v]λ−εN , λ = α, α′, in (2.9.26), then by the
covariance definition in (2.1.1),

(2.9.26) = G[v]α−εN (v, v′)−G[v]α′−εN
(v, v′). (2.9.27)

Using standard estimates for the discrete Green function, we can now evaluate the last
expression. For every finite box B ⊆ Z2, Proposition 1.6.3 of Lawler (1991) shows that
(keeping in mind our normalization by π/2 in (2.1.1)) :

GB(x, y) =
 ∑
z∈∂B

Px(Wτ∂B = z) a(z − y)
− a(y − x), x, y ∈ B, (2.9.28)
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where

a(w) =

 log(‖w‖2) + const. +O(‖w‖−2
2 ), if w ∈ Z2\{0},

0, if w = 0,
(2.9.29)

and Px is the law of the simple random walk starting at x ∈ Z2. Using (2.9.28), we can
rewrite the difference of Green functions in (2.9.27) as

∑
z∈∂[v]α−εN

Pv

(
Wτ∂[v]α−εN

= z
)
a(z − v′) −

∑
z∈∂[v]α′−εN

Pv

(
Wτ∂[v]α′−εN

= z
)
a(z − v′). (2.9.30)

Since ρ ≤ α/2 < α − εN < α′ − εN by hypothesis, the boxes [v]α−εN and [v]α′−εN are not
cut off by ∂VN for N large enough. Furthermore, α′ ≤ bN implies that ‖v−v′‖∞ ≤ N1−α′ ,
so it is easily seen that N1−λ ≤ ‖z− v′‖2 ≤ 4

√
2N1−λ for all z ∈ ∂[v]λ−εN and λ ∈ {α, α′}.

Then, (2.9.24) follows immediately by using (2.9.29) in (2.9.30). This proves (2.9.13). �

Proof of Equation (2.9.14). Let v, v′ ∈ AN,ρ be such that

α′ − 2εN ≤ bN ≤ 1 ∧ (α′ + 2εN). (2.9.31)

Define α̃′ $ α′ − 4εN . For N large enough (independent from v, v′ and ρ), we have
λi−1 ≤ α < α̃′ < α′ ≤ λi and 1 ∧ (α̃′ + 2εN) ≤ bN ≤ 1. From Equation (2.9.13),

∣∣∣E[ψv(α, α̃′)ψv′]− (α′ − α− 4εN)σ2
i logN

∣∣∣ ≤ C1

√
logN, (2.9.32)

and from the Cauchy-Schwarz inequality and Lemma 2.9.3,∣∣∣E[ψv(α̃′, α′)ψv′]∣∣∣ ≤ C
√
εN logN. (2.9.33)

This proves Equation (2.9.14). �

Proof of Equation (2.9.15). Let v, v′ ∈ AN,ρ be such that α + 2εN ≤ bN ≤ α′ − 2εN .
From (1)− (3) in Lemma 2.9.1 :

(1) : E
[
ψv(bN + εN , α

′)ψv′(bN + εN , 1)
]

= 0,
(2) : E

[
ψv(α, bN − εN)ψv′(bN + εN , 1)

]
= 0,

(2) : E
[
ψv(bN + εN , α

′)ψv′(α, bN − εN)
]

= 0,
(2) : E

[
ψv(bN + εN , α

′)ψv′(α− εN)
]

= 0,
(3) : E

[
ψv(α, bN − εN)ψv′(α− εN)

]
= 0.

(2.9.34)
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Moreover, by the Cauchy-Schwarz inequality and Lemma 2.9.3,∣∣∣E[ψv(bN − εN , bN + εN)ψv′(bN + εN , 1)
]∣∣∣∣∣∣E[ψv(α, α′)ψv′(bN , bN + εN)

]∣∣∣∣∣∣E[ψv(bN , α′)ψv′(bN − εN , bN)
]∣∣∣∣∣∣E[ψv(bN , bN + εN)ψv′(α, bN − εN)

]∣∣∣∣∣∣E[ψv(α, α′)ψv′(α− εN , α)
]∣∣∣∣∣∣E[ψv(bN − εN , bN + εN)ψv′(α− εN)

]∣∣∣



≤ C
√
εN logN. (2.9.35)

From the last eleven equations, it thus suffices to prove∣∣∣E[ψv(α, bN)ψv′(α, bN)
]
− (bN − α)σ2

i logN
∣∣∣ ≤ C

√
logN. (2.9.36)

The conclusion follows from the exact same argument used after (2.9.19) in the proof of
Equation (2.9.13), with bN replacing α′ everywhere. �

Proof of Equation (2.9.16). Let v, v′ ∈ VN be such that bN ≤ α + 2εN ≤ α′ − 2εN .
From (1)− (3) in Lemma 2.9.1 :

(1) : E
[
ψv(α + 3εN , α′)ψv′(α + 3εN , 1)

]
= 0,

(1) : E
[
ψv(α + 3εN , α′)ψv′(α ∧ (bN + εN), α)

]
= 0,

(2) : E
[
ψv(α + 3εN , α′)ψv′(α ∧ (0 ∨ (bN − εN)))

]
= 0.

(2.9.37)

Moreover, by the Cauchy-Schwarz inequality and Lemma 2.9.3,∣∣∣E[ψv(α + 3εN , α′)ψv′(α, α + 3εN)
]∣∣∣∣∣∣E[ψv(α + 3εN , α′)ψv′(α ∧ (0 ∨ (bN − εN)), α ∧ (bN + εN))

]∣∣∣∣∣∣E[ψv(α, α + 3εN)ψv′
]∣∣∣

 ≤ C
√
εN logN.

The last six equations together yield Equation (2.9.16). �

We summarize the results of the previous lemma and extend the statement to include
all combinations of scales α < α′ and all ρ ∈ (0, 1].

Lemma 2.9.5. Let 0≤α<α′≤ 1 and let ρ ∈ (0, 1]. Then, for N large enough (dependent

on α and α′, but independent from ρ (except when α = 0)),

max
v,v′∈AN,ρ

∣∣∣E[ψv(α, α′)ψv′]− Jσ2(α ∧ bN , α′ ∧ bN) logN
∣∣∣

≤ C5(σ,λ)
√

logN + C6(α, α′,σ,λ) ρ logN. (2.9.38)
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Proof. If α 6= 0 and ρ ≤ α/2, then write the decomposition from (2.9.6),

ψv(α, α′) =
∑

1≤i≤M :
α≤λi−1<α′ or α<λi≤α′

or λi−1≤α<α′≤λi

ψv(α ∨ λi−1, α
′ ∧ λi), (2.9.39)

and apply Lemma 2.9.4 to each increment (C6 = 0). If α 6= 0 and ρ > α/2, or if α = 0
and ρ ≥ α′/2, then simply choose C6 big enough (depending on α or α′) that (2.9.38) is
satisfied. This is always possible since Jσ2(·, ·) is bounded and since

max
v,v′∈VN

∣∣∣E[ψv(α, α′)ψv′]∣∣∣
logN ≤ C, (2.9.40)

by Lemma 2.9.3. Finally, if α = 0 and ρ < α′/2, then define α̃ $ 2ρ and apply (2.9.38) in
the first case (0 6= α̃ < α′ and ρ ≤ α̃/2), we have

max
v,v′∈AN,ρ

∣∣∣E[ψv(α̃, α′)ψv′]− Jσ2(α̃ ∧ bN , α′ ∧ bN) logN
∣∣∣ ≤ C5(σ,λ)

√
logN. (2.9.41)

On the other hand, if we “cut” the increments with small covariance contributions like we
did multiple times in the proof of the previous lemma (using Lemma 2.9.1, Lemma 2.9.3
and the Cauchy-Schwarz inequality), then

max
v,v′∈VN

∣∣∣E[ψv(α̃)ψv′
]∣∣∣ ≤ max

v,v′∈VN

∣∣∣E[ψv(α̃ ∧ bN)ψv′(α̃ ∧ bN)
]∣∣∣+ C

√
εN logN

≤ C̃ (α̃ ∧ bN) logN + C0 + C
√
εN logN

≤ C̃ ρ logN + C
√

logN. (2.9.42)

Combining (2.9.41) and (2.9.42) proves (2.9.38) in the last case. �

The following corollary gives estimates on the increments of overlaps. For convenience,
we recall their definition from (2.8.42) :

qNα,α′(v, v′) $
E
[
ψv(α, α′)ψv′

]
Jσ2(1) logN + C0

, v, v′ ∈ VN , (2.9.43)

where C0 is the constant introduced in Lemma 2.9.3. The estimates are crucial in Section
2.8.3 to adapt the Bovier-Kurkova technique and prove Proposition 2.8.8.
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Corollary 2.9.6. Let 0 ≤ α < α′ ≤ 1 and let ρ ∈ (0, 1]. Then, for N large enough

(dependent on α and α′, but independent from ρ (except when α = 0)),

max
v,v′∈AN,ρ

∣∣∣qNα,α′(v, v′)− J̄σ2(α ∧ bN , α′ ∧ bN)
∣∣∣ ≤ C7(σ,λ)√

logN + C8(α, α′,σ,λ) ρ. (2.9.44)

2.9.2. Technical lemmas

Lemma 2.9.7. The function E : [0, γ?]→ R defined in (2.5.6) is in C1([0, γ?]).

Proof. The function E is clearly continuously differentiable at γ ∈ [0, γ?]\{γl}ml=0. Fur-
thermore, for 0 < h < γ1,

lim
h→0+

E(h)− E(0)
h

= lim
h→0+

−h
Jσ2(1) = 0 = lim

h→0+

−2h
Jσ2(1) = lim

h→0+
E ′(h). (2.9.45)

Therefore, E is continuously differentiable at γ = 0 $ γ0 (from the right).
For γ = γ?, we can write

γ? = γm = Jσ2/σ̄(λm−1) + Jσ2(λm−1, 1)
σ̄m

, (2.9.46)

where Jσ2(λm−1, 1) = σ̄2
m∇λm. Thus, for 0 < h < ∇γm,

lim
h→0+

E(γ? − h)− E(γ?)
−h = lim

h→0+

−1
h

[
∇λm − (σ̄m∇λm − h)2

σ̄2
m∇λm

]
= −2
σ̄m

, (2.9.47)

and
lim
h→0+

E ′(γ? − h) = lim
h→0+

−2(σ̄m∇λm − h)
σ̄2
m∇λm

= −2
σ̄m

. (2.9.48)

Therefore, E is continuously differentiable at γ = γ? (from the left).
For the remaining points γ = γl, fix l ∈ {1, ...,m−1}. The critical level γl from (2.5.5)

can be expressed in two ways :

γl = Jσ2/σ̄(λl−1) + Jσ2(λl−1, 1)
σ̄l

(2.9.49)

= Jσ2/σ̄(λl) + Jσ2(λl, 1)
σ̄l

. (2.9.50)

Also, note that
E(γl) (2.9.49)= (1− λl−1)− Jσ2(λl−1, 1)

σ̄2
l

(2.9.51)

= (1− λl)− Jσ2(λl, 1)
σ̄2
l

, (2.9.52)
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where the last equality follows from Jσ2(λl−1, λl) = σ̄2
l∇λl. For 0 < h < minj∇γj,

lim
h→0+

E((2.9.49)− h)− E((2.9.49))
−h

(2.9.51)= lim
h→0+

+h
Jσ2(λl−1, 1) + −2

σ̄l
= −2

σ̄l
, (2.9.53)

lim
h→0+

E((2.9.50) + h)− E((2.9.50))
h

(2.9.52)= lim
h→0+

−h
Jσ2(λl, 1) + −2

σ̄l
= −2

σ̄l
. (2.9.54)

and

lim
h→0+

E ′(γl − h) (2.9.49)= lim
h→0+

−2(Jσ2 (λl−1,1)
σ̄l

− h)
Jσ2(λl−1, 1) = −2

σ̄l
(2.9.55)

lim
h→0+

E ′(γl + h) (2.9.50)= lim
h→0+

−2(Jσ2 (λl,1)
σ̄l

+ h)
Jσ2(λl, 1) = −2

σ̄l
. (2.9.56)

Hence, E is continuously differentiable at γ = γl, for all l ∈ {1, ...,m− 1}. �

Lemma 2.9.8. Let β > 0. Define Pβ(γ) $ βγ + E(γ), and recall

lβ $

min{l ∈ {1, ...,m} : β ≤ βc(σ̄l) $ 2/σ̄l}, if β ≤ 2/σ̄m,
m+ 1, otherwise,

(2.9.57)

from (2.6.14). Then,

max
γ∈[0,γ?]

Pβ(γ) =
lβ−1∑
j=1

{
2 β

(2/σ̄j)

}
∇λj +

m∑
j=lβ

{
1 + β2

(2/σ̄j)2

}
∇λj $ fψ(β). (2.9.58)

Proof. We consider three cases :

(1) lβ = m+ 1; (2) lβ = 1; (3) lβ ∈ {2, ...,m}.

Since σ̄1 > σ̄2 > ... > σ̄m, these three cases imply (respectively) :
(i) β > 2/σ̄j for all j ∈ {1, ...,m};
(ii) β ≤ 2/σ̄j for all j ∈ {1, ...,m};
(iii) β ∈ (2/σ̄lβ−1, 2/σ̄lβ ].

Case (1) : For any γ ∈ (γl−1, γl]\{γ?}, we have

P ′β(γ) = β − 2(γ − Jσ2/σ̄(λl−1))
Jσ2(λl−1, 1) . (2.9.59)

Any solution to P ′β(γ) = 0 must satisfy

γ = Jσ2/σ̄(λl−1) + β

2Jσ2(λl−1, 1)
(i)
> Jσ2/σ̄(λl−1) + Jσ2(λl−1, 1)

σ̄l

(2.9.49)= γl, (2.9.60)
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which is impossible. Therefore, the maximum maxγ∈[0,γ?] Pβ(γ) must be achieved at the
boundary of [0, γ?]. We have

Pβ(γ?) $ βγ? + 0 =
m∑
j=1

{
2 β

(2/σ̄j)

}
∇λj

(i)
> 2 > β · 0 + 1 $ Pβ(0), (2.9.61)

which proves (2.9.58) when lβ = m+ 1.

Case (2) : From (2.9.59), any solution γ ∈ (γl−1, γl]\{γ?} to P ′β(γ) = 0 must satisfy

γ = Jσ2/σ̄(λl−1) + β

2Jσ2(λl−1, 1) and l = 1, (2.9.62)

because l ≥ 2 and the restriction (ii) would otherwise imply γ ≤ γl−1, from (2.9.50). In
other words, the maximum maxγ∈[0,γ?] Pβ(γ) must be achieved at the boundary of [0, γ?]
or at γ̄ $ β

2Jσ2(1) ∈ (0, γ1]. Since β > 0, we have

Pβ(γ̄) = β2

2 Jσ2(1) + 1− β2

4 Jσ2(1) = 1 + β2

4 Jσ2(1) > 1 = Pβ(0), (2.9.63)

and the identity 1 + x2 ≥ 2x yields

Pβ(γ̄) =
m∑
j=1

{
1 + β2

(2/σ̄j)2

}
∇λj ≥

m∑
j=1

{
2 β

(2/σ̄j)

}
∇λj = Pβ(γ?). (2.9.64)

This proves (2.9.58) when lβ = 1.

Case (3) : From (2.9.59), any solution γ ∈ (γl−1, γl]\{γ?} to P ′β(γ) = 0 must satisfy

γ = Jσ2/σ̄(λl−1) + β

2Jσ2(λl−1, 1) and l = lβ. (2.9.65)

We must have the restriction l = lβ since γ ∈ (γl−1, γl] and β ∈ (2/σ̄lβ−1, 2/σ̄lβ ] from (iii)
imply 

Jσ2/σ̄(λl−1) + Jσ2 (λl−1,1)
σ̄l−1

(2.9.50)= γl−1 < γ
(iii)
≤ Jσ2/σ̄(λl−1) + Jσ2 (λl−1,1)

σ̄lβ

Jσ2/σ̄(λl−1) + Jσ2 (λl−1,1)
σ̄lβ−1

(iii)
< γ ≤ γl

(2.9.49)= Jσ2/σ̄(λl−1) + Jσ2 (λl−1,1)
σ̄l


=⇒

 σ̄lβ < σ̄l−1

σ̄l < σ̄lβ−1


=⇒ { l = lβ }, (2.9.66)

where the last implication holds because σ̄1 > σ̄2 > ... > σ̄m.
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When we evaluate Pβ at γ̄ $ Jσ2/σ̄(λlβ−1) + β
2Jσ2(λlβ−1, 1), we get

Pβ(γ̄) = βJσ2/σ̄(λlβ−1) + β2

2 Jσ2(λlβ−1, 1) + (1− λlβ−1)− β2

4 Jσ2(λlβ−1, 1)

= βJσ2/σ̄(λlβ−1) +
{

(1− λlβ−1) + β2

4 Jσ2(λlβ−1, 1)
}

=
lβ−1∑
j=1

{
2 β

(2/σ̄j)

}[∇Jσ2/σ̄(λj)
σ̄j∇λj

]
∇λj +

m∑
j=lβ

{
1 + β2

(2/σ̄j)2

[
∇Jσ2(λj)
σ̄2
j∇λj

]}
∇λj

=
lβ−1∑
j=1

{
2 β

(2/σ̄j)

}
∇λj +

m∑
j=lβ

{
1 + β2

(2/σ̄j)2

}
∇λj. (2.9.67)

The last equality holds because the pairs of brackets [ · ] on the second and third to last
line are equal to 1. Since β > 2/σ̄lβ−1 > 0 by (iii), we have

Pβ(γ̄)
(2.9.67)
>

lβ−1∑
j=1
{2}∇λj +

m∑
j=lβ
{1}∇λj > 1 = Pβ(0), (2.9.68)

and the identity 1 + x2 ≥ 2x yields

Pβ(γ̄)
(2.9.67)
≥

m∑
j=1

{
2 β

(2/σ̄j)

}
∇λj = Pβ(γ?). (2.9.69)

This proves (2.9.58) when lβ ∈ {2, ...,m}, and end the proof of Lemma 2.9.8. �

We recall the definition of the perturbed field ψu. Let λi?−1 ≤ α < α′ ≤ λi? for a given
i? ∈ {1, ...,M}, and let u > −σi? . Then,

ψuv $ uφv(α, α′) + ψv, v ∈ VN . (2.9.70)

Lemma 2.9.9. Let β > 0, ρ ∈ (0, 1] and let λi?−1 ≤ α < α′ ≤ λi? for some i?. Then,

u 7→ fψ
u

N,ρ(β) is almost-surely convex and u 7→ E
[
fψ

u

N,ρ(β)
]
is convex.

Proof. By definition, we have

F (u) $ fψ
u

N,ρ(β) = 1
logN2 log

(∫
AN,ρ

(g(v))udµ(v)
)
, (2.9.71)

where g(v) $ exp(βφv(α, α′)) and µ(A) $ ∑
v∈A exp(βψv) for any A ⊆ VN . By standard

properties of logarithms, we see that u 7→ F (u) is convex almost-surely since, for all
λ ∈ [0, 1] and all u, u′ > −σi? , we have
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F (λu+ (1− λ)u′) ≤ λF (u) + (1− λ)F (u′)

⇐⇒
∫
AN,ρ

(g(v))λu(g(v))(1−λ)u′dµ(v)

≤
(∫

AN,ρ
(g(v))udµ(v)

)λ (∫
AN,ρ

(g(v))u′dµ(v)
)1−λ
, (2.9.72)

and the last inequality is true by Holder’s inequality (p $ 1/λ, q $ 1/(1 − λ) and 1/p +
1/q = 1). The fact that u 7→ E[F (u)] is also convex follows immediately from the linearity
and monotonicity of expectations. �

The parameters of ψu can be encoded simultaneously in the left-continuous step func-
tion

σu(r) $

 σ(r), for all r ∈ [0, 1]\(α, α′],
σi? + u, for all r ∈ (α, α′].

(2.9.73)

Since Jσ2
u
(·) is an increasing polygonal line, there exists a unique non-increasing left-

continuous step function r 7→ σ̄u(r) such that the concavification of Jσ2
u
can be expressed

as the integral of r 7→ σ̄2
u(r) :

Ĵσ2
u
(s) = Jσ̄2

u
(s) =

∫ s

0
σ̄2
u(r) dr for all s ∈ (0, 1]. (2.9.74)

As for the field ψ,
• σ̄u,j, 1 ≤ j ≤ mu, denote the heights of the steps of r 7→ σ̄u(r),
• mu denotes the number of steps,
• λju denote the scales at which r 7→ σ̄u(r) jumps.

Recall lβ from (2.9.57) and define the analogue for ψu :

lβ,u $

min{l ∈ {1, ...,mu} : β ≤ βc(σ̄u,l) $ 2/σ̄u,l}, if β ≤ 2/σ̄u,mu ,
mu + 1, otherwise.

(2.9.75)

The following lemma studies the differentiability of the limiting free energy of ψu with
respect to the perturbation parameter u.
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Lemma 2.9.10. Let β > 0 and let λj?−1 ≤ λi?−1 ≤ α < α′ ≤ λi? ≤ λj
? for some i?, j?.

There exists δ = δ(β, α, α′,σ,λ) > 0 such that u 7→ fψ
u(β) is differentiable on (−δ, δ).

The derivative at u = 0 is given by

∂

∂u
fψ

0(β) =


βσi? (α′−α)

σ̄j?
, if j? ≤ lβ − 1,

β2σi? (α′−α)
2 , if j? ≥ lβ.

(2.9.76)

Proof. We separate the proof in two cases :
Case (i) : Jσ2(r) < Jσ̄2(r) for all r ∈ (λj?−1, λj

?);
Case (ii) : ∃r ∈ (λj?−1, λj

?) such that Jσ2(r) = Jσ̄2(r).

Case (i) : The function u 7→ σ̄u(r) is continuous, uniformly in r ∈ [0, 1]. Hence, we can
choose δ = δ(α, α′,σ,λ) > 0 small enough that for all u ∈ (−δ, δ) :
• σ̄u,j = σ̄j for all j 6= j?;
• λju = λj for all j ∈ {1, ...,mu};
• mu = m.

Figure 2.9.5 below illustrates this point more clearly.

λj?−1 λi?−1 α α′ λi? λj?= λj?

u

σ2
i?

(σi?+u)2

σ2
i?

σ̄2
j?

slope = σ̄2
u,j?

σ̄2
j?−1

σ̄2
j?+1When u ∈ (−δ, 0) :

σ̄j?−1 > σ̄j? > σ̄u,j? > σ̄j?+1

λj?−1 λi?−1 α α′ λi? λj?= λj?

u

σ2
i?

(σi?+u)2

σ2
i?

slope = σ̄2
u,j?

σ̄2
j?

σ̄2
j?−1

σ̄2
j?+1When u ∈ (0, δ) :

σ̄j?−1 > σ̄u,j? > σ̄j? > σ̄j?+1

λj?−1 λi?−1 α α′ λi? λj?= λj?

u

σ2
i?

(σi?+u)2

σ2
i?

σ̄2
j?

slope = σ̄2
u,j?

σ̄2
j?−1

σ̄2
j?+1When u ∈ (−δ, 0) :

σ̄j?−1 > σ̄j? > σ̄u,j? > σ̄j?+1

λj?−1 λi?−1 α α′ λi? λj?= λj?

u

σ2
i?

(σi?+u)2

σ2
i?

slope = σ̄2
u,j?

σ̄2
j?

σ̄2
j?−1

σ̄2
j?+1When u ∈ (0, δ) :

σ̄j?−1 > σ̄u,j? > σ̄j? > σ̄j?+1

Figure 2.9.5. The dotted paths represent Jσ̄2 and Jσ̄2
u
. The closed paths represent

Jσ2 and Jσ2
u
. The paths containing a red part are the ones for the perturbed field ψu.
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Note that lβ,0 = lβ and also 2/σ̄lβ−1 < β ≤ 2/σ̄lβ (β > 2/σ̄m when lβ = m + 1). We
can choose δ = δ(β, α, α′,σ,λ) > 0 small enough that

when β 6= 2/σ̄j?(=⇒ 1 ≤ j?≤ m), then lβ,u = lβ for all u ∈ (−δ, δ), (2.9.77)

when β = 2/σ̄j?(=⇒ j? = lβ), then lβ,u =

 lβ, if u ∈ (−δ, 0],
lβ + 1, if u ∈ (0, δ).

(2.9.78)

From (2.9.58),

fψ
u(β)− fψ(β) =



β(σ̄u,j? − σ̄j?)∇λj?, if j?≤ lβ − 1 and lβ,u = lβ,[
βσ̄u,j? −

(
1 + β2σ̄2

j?

4

)]
∇λj?, if j? = lβ and lβ,u = lβ + 1,

β2

4 (σ̄2
u,j? − σ̄2

j?)∇λj
?
, if j?≥ lβ and lβ,u = lβ,

=



β
(√

σ̄2
u,j?∇λj? −

√
σ̄2
j?∇λj?

)√
∇λj? , if j?≤ lβ − 1 and lβ,u = lβ,

β(σ̄u,j? − σ̄j?)∇λj? − (1− β
2 σ̄j?)

2∇λj?, if j? = lβ and lβ,u = lβ + 1,

β2

4 (σ̄2
u,j? − σ̄2

j?)∇λj
?
, if j?≥ lβ and lβ,u = lβ,

=



(1∗) : β
{

(2uσi?+u2)(α′−α)
2σ̄j?

+O(u2)
}
, if j?≤ lβ − 1 and lβ,u = lβ,

(2∗) : β
{

(2uσi?+u2)(α′−α)
2σ̄j?

+O(u2)
}

−(1− β
2 σ̄j?)

2∇λj?, if j? = lβ and lβ,u = lβ + 1,

(3∗) : β2

4 (2uσi? + u2)(α′ − α), if j?≥ lβ and lβ,u = lβ.

(2.9.79)

To get the last equality, we used

(σ̄2
u,j? − σ̄2

j?)∇λj
? = ((σi? + u)2 − σ2

i?)(α′ − α). (2.9.80)

The function u 7→ fψ
u(β) is always differentiable on (−δ, δ)\{0}. Furthermore,

when β > 2/σ̄j? ,
∂

∂u−
fψ

0(β) (1∗)= βσi?(α′ − α)
σ̄j?

(1∗)= ∂

∂u+f
ψ0(β), (2.9.81)

when β = 2/σ̄j? ,
∂

∂u−
fψ

0(β) (3∗)= β2σi?(α′ − α)
2

(2∗)= ∂

∂u+f
ψ0(β), (2.9.82)

when β < 2/σ̄j? ,
∂

∂u−
fψ

0(β) (3∗)= β2σi?(α′ − α)
2

(3∗)= ∂

∂u+f
ψ0(β). (2.9.83)

Thus, u 7→ fψ
u(β) is also differentiable at u = 0.
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Case (ii) : Here are all the possible subcases of Case (ii) :

(ii.1) • Jσ2(r) < Jσ̄2(r) for all r ∈ [α′, λj?);
• ∃s ∈ (λj?−1, α] such that Jσ2(s) = Jσ̄2(s);

(ii.2) • Jσ2(r) < Jσ̄2(r) for all r ∈ (λj?−1, α];
• ∃t ∈ [α′, λj?) such that Jσ2(t) = Jσ̄2(t);

(ii.3) • ∃s ∈ (λj?−1, α] such that Jσ2(s) = Jσ̄2(s);
• ∃t ∈ [α′, λj?) such that Jσ2(t) = Jσ̄2(t).

Denote
s? $ max

{
r ∈ [λj?−1, α] : Jσ2(r) = Jσ̄2(r)

}
, (2.9.84)

t? $ min
{
r ∈ [α′, λj? ] : Jσ2(r) = Jσ̄2(r)

}
. (2.9.85)

Again, the function u 7→ σ̄u(r) is continuous, uniformly in r ∈ [0, 1]. Hence, we can
choose δ = δ(α, α′,σ,λ) > 0 small enough that for all u ∈ (−δ, δ) :

Case u < 0 u > 0

(ii.1) • σ̄u,j =

{
σ̄j for j ≤ j?

σ̄j−1 for j ≥ j? + 2
• σ̄u,j = σ̄j for j 6= j?

• λju =




λj for j ≤ j? − 1
s? for j = j?

λj−1 for j ≥ j? + 1
• λju = λj for all j

• mu = m+ 1 • mu = m

(ii.2) • σ̄u,j = σ̄j for j 6= j? • σ̄u,j =

{
σ̄j for j ≤ j? − 1
σ̄j−1 for j ≥ j? + 1

• λju = λj for all j • λju =




λj for j ≤ j? − 1
t? for j = j?

λj−1 for j ≥ j? + 1

• mu = m • mu = m+ 1

(ii.3) • σ̄u,j =

{
σ̄j for j ≤ j?

σ̄j−1 for j ≥ j? + 2
• σ̄u,j =

{
σ̄j for j ≤ j? − 1
σ̄j−1 for j ≥ j? + 1

• λju =




λj for j ≤ j? − 1
s? for j = j?

λj−1 for j ≥ j? + 1
• λju =




λj for j ≤ j? − 1
t? for j = j?

λj−1 for j ≥ j? + 1

• mu = m+ 1 • mu = m+ 1

1
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In other words, the parameter δ is chosen small enough that, on (λj?−1, λj
? ], the field

ψu has either one or two effective variance parameters (depending on the subcase) and
they remain strictly between σ̄j?−1 and σ̄j?+1. If there is only one effective slope, then
λj

?

u = λj
? . If there are two effective slopes, the segments meet at λj?u ∈ {s?, t?}. Figure

2.9.6 on the next page (analogous to Figure 2.9.5) illustrates this point more clearly.

Case

(ii.3)

(ii.2)

(ii.1)

u < 0 u > 0

σ̄2
j?

σ̄2
u,j?

λj?

λj?

u
α α′λj?−1

σ̄2
j?=σ̄u,j?

σ̄2
u,j?+1

s?

λj?

u

α α′ λj?

λj?+1
u

λj?−1

σ̄2
j?=σ̄u,j?

σ̄2
u,j?+1

s?

λj?

u

α α′ λj?

λj?+1
u

λj?−1

σ̄2
j?=σ̄u,j?+1

σ̄2
j?σ̄2

u,j?

t?

λj?

u

α α′ λj?

λj?+1
u

λj?−1

σ̄2
u,j?

σ̄2
j?

λj?

λj?

u
α α′λj?−1

σ̄2
j?=σ̄u,j?+1

σ̄2
j?σ̄2

u,j?

t?

λj?

u

α α′ λj?

λj?+1
u

λj?−1

Figure 2.9.6. General form of Jσ̄2 and Jσ̄2
u
on (λj?−1, λj

? ]. The effective slopes of
ψ and ψu are the quantities σ̄2

j and σ̄2
u,j, respectively. The dotted paths containing a

red part are the ones for the perturbed field ψu.

Case (ii.1) : In this case, s? ∈ (λj?−1, α]. We can choose δ = δ(β, α, α′,σ,λ) > 0 small
enough that

when β > 2/σ̄j?(=⇒ j?≤ lβ − 1), then lβ,u =

 lβ + 1, if u ∈ (−δ, 0),
lβ, if u ∈ [0, δ),

(2.9.86)

when β = 2/σ̄j?(=⇒ j? = lβ), then lβ,u =

 lβ, if u ∈ (−δ, 0],
lβ + 1, if u ∈ (0, δ),

(2.9.87)

when β < 2/σ̄j?(=⇒ j?≥ lβ), then lβ,u = lβ for all u ∈ (−δ, δ). (2.9.88)
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When u < 0,

fψ
u(β)− fψ(β)

=


β(σ̄u,j?+1 − σ̄j?)(λj? − s?), if j?≤ lβ − 1 and lβ,u = lβ + 1,

β2

4 (σ̄2
u,j?+1 − σ̄2

j?)(λj
? − s?), if j?≥ lβ and lβ,u = lβ,

=



β
(√

σ̄2
u,j?+1(λj? − s?)−

√
σ̄2
j?(λj

? − s?)
)√

λj? − s?,

if j?≤ lβ − 1 and lβ,u = lβ + 1,

β2

4 (σ̄2
u,j?+1 − σ̄2

j?)(λj
? − s?), if j?≥ lβ and lβ,u = lβ,

=


(1−) : β

{
(2uσi?+u2)(α′−α)

2σ̄j?
+O(u2)

}
, if j?≤ lβ − 1 and lβ,u = lβ + 1,

(2−) : β2

4 (2uσi? + u2)(α′ − α), if j?≥ lβ and lβ,u = lβ.
(2.9.89)

To get the last equality, we used

(σ̄2
u,j?+1 − σ̄2

j?)(λj
? − s?) = ((σi? + u)2 − σ2

i?)(α′ − α). (2.9.90)

When u > 0, it is the same as in (2.9.79) :

fψ
u(β)− fψ(β)

=



(1+) : β
{

(2uσi?+u2)(α′−α)
2σ̄j?

+O(u2)
}
, if j?≤ lβ − 1 and lβ,u = lβ,

(2+) : β
{

(2uσi?+u2)(α′−α)
2σ̄j?

+O(u2)
}

−(1− β
2 σ̄j?)

2∇λj?, if j? = lβ and lβ,u = lβ + 1,

(3+) : β2

4 (2uσi? + u2)(α′ − α), if j?≥ lβ and lβ,u = lβ.

(2.9.91)

The function u 7→ fψ
u(β) is always differentiable on (−δ, δ)\{0}. Furthermore,

when β > 2/σ̄j? ,
∂

∂u−
fψ

0(β) (1−)= βσi?(α′ − α)
σ̄j?

(1+)= ∂

∂u+f
ψ0(β), (2.9.92)

when β = 2/σ̄j? ,
∂

∂u−
fψ

0(β) (2−)= β2σi?(α′ − α)
2

(2+)= ∂

∂u+f
ψ0(β), (2.9.93)

when β < 2/σ̄j? ,
∂

∂u−
fψ

0(β) (2−)= β2σi?(α′ − α)
2

(3+)= ∂

∂u+f
ψ0(β). (2.9.94)

Thus, u 7→ fψ
u(β) is also differentiable at u = 0.
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Case (ii.2) : In this case, t? ∈ [α′, λj?). We can choose δ = δ(β, α, α′,σ,λ) > 0 small
enough that

when β > 2/σ̄j?(=⇒ j?≤ lβ − 1), then lβ,u =

 lβ, if u ∈ (−δ, 0],
lβ + 1, if u ∈ (0, δ),

(2.9.95)

when β = 2/σ̄j?(=⇒ j? = lβ), then lβ,u =

 lβ, if u ∈ (−δ, 0],
lβ + 1, if u ∈ (0, δ),

(2.9.96)

when β < 2/σ̄j?(=⇒ j?≥ lβ), then lβ,u = lβ for all u ∈ (−δ, δ). (2.9.97)

When u < 0, it is the same as in (2.9.79) (without (2∗)) :

fψ
u(β)− fψ(β)

=


(1−) : β

{
(2uσi?+u2)(α′−α)

2σ̄j?
+O(u2)

}
, if j?≤ lβ − 1 and lβ,u = lβ,

(2−) : β2

4 (2uσi? + u2)(α′ − α), if j?≥ lβ and lβ,u = lβ.
(2.9.98)

When u > 0,

fψ
u(β)− fψ(β)

=



β(σ̄u,j? − σ̄j?)(t? − λj?−1), if j?≤ lβ − 1 and lβ,u = lβ + 1,[
βσ̄u,j? −

(
1 + β2σ̄2

j?

4

)]
(t? − λj?−1), if j? = lβ and lβ,u = lβ + 1,

β2

4 (σ̄2
u,j?+1 − σ̄2

j?)(t? − λj
?−1), if j?≥ lβ and lβ,u = lβ,

=



β
(√

σ̄2
u,j?(t? − λj?−1)−

√
σ̄2
j?(t? − λj?−1)

)√
t? − λj?−1,

if j?≤ lβ − 1 and lβ,u = lβ + 1,

β(σ̄u,j? − σ̄j?)(t? − λj?−1)

−(1− β
2 σ̄j?)

2 (t? − λj?−1), if j? = lβ and lβ,u = lβ + 1,

β2

4 (σ̄2
u,j?+1 − σ̄2

j?)(t? − λj
?−1), if j?≥ lβ and lβ,u = lβ,
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=



(1+) : β
{

(2uσi?+u2)(α′−α)
2σ̄j?

+O(u2)
}
, if j?≤ lβ − 1 and lβ,u = lβ + 1,

(2+) : β
{

(2uσi?+u2)(α′−α)
2σ̄j?

+O(u2)
}

−(1− β
2 σ̄j?)

2 (t? − λj?−1), if j? = lβ and lβ,u = lβ + 1,

(3+) : β2

4 (2uσi? + u2)(α′ − α), if j?≥ lβ and lβ,u = lβ.

(2.9.99)

To get the last equality, we used

(σ̄2
u,j? − σ̄2

j?)(t? − λj
?−1) = ((σi? + u)2 − σ2

i?)(α′ − α). (2.9.100)

The function u 7→ fψ
u(β) is always differentiable on (−δ, δ)\{0}. Furthermore,

when β > 2/σ̄j? ,
∂

∂u−
fψ

0(β) (1−)= βσi?(α′ − α)
σ̄j?

(1+)= ∂

∂u+f
ψ0(β), (2.9.101)

when β = 2/σ̄j? ,
∂

∂u−
fψ

0(β) (2−)= β2σi?(α′ − α)
2

(2+)= ∂

∂u+f
ψ0(β), (2.9.102)

when β < 2/σ̄j? ,
∂

∂u−
fψ

0(β) (2−)= β2σi?(α′ − α)
2

(3+)= ∂

∂u+f
ψ0(β). (2.9.103)

Thus, u 7→ fψ
u(β) is also differentiable at u = 0.

Case (ii.3) : In this case, s? ∈ (λj?−1, α] and t? ∈ [α′, λj?). We can choose δ =
δ(β, α, α′,σ,λ) > 0 small enough that

when β > 2/σ̄j?(=⇒ j?≤ lβ − 1), then lβ,u =

 lβ + 1, if u ∈ (−δ, 0],
lβ + 1, if u ∈ (0, δ),

(2.9.104)

when β = 2/σ̄j?(=⇒ j? = lβ), then lβ,u =

 lβ, if u ∈ (−δ, 0],
lβ + 1, if u ∈ (0, δ),

(2.9.105)

when β < 2/σ̄j?(=⇒ j?≥ lβ), then lβ,u = lβ for all u ∈ (−δ, δ). (2.9.106)

When u < 0, it is the same as in (2.9.89) :

fψ
u(β)− fψ(β)

=


(1−) : β

{
(2uσi?+u2)(α′−α)

2σ̄j?
+O(u2)

}
, if j?≤ lβ − 1 and lβ,u = lβ + 1,

(2−) : β2

4 (2uσi? + u2)(α′ − α), if j?≥ lβ and lβ,u = lβ.
(2.9.107)
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When u > 0, it is the same as in (2.9.99) :

fψ
u(β)− fψ(β)

=



(1+) : β
{

(2uσi?+u2)(α′−α)
2σ̄j?

+O(u2)
}
, if j?≤ lβ − 1 and lβ,u = lβ + 1,

(2+) : β
{

(2uσi?+u2)(α′−α)
2σ̄j?

+O(u2)
}

−(1− β
2 σ̄j?)

2 (t? − λj?−1), if j? = lβ and lβ,u = lβ + 1,

(3+) : β2

4 (2uσi? + u2)(α′ − α), if j?≥ lβ and lβ,u = lβ.

(2.9.108)

The function u 7→ fψ
u(β) is always differentiable on (−δ, δ)\{0}. Furthermore,

when β > 2/σ̄j? ,
∂

∂u−
fψ

0(β) (1−)= βσi?(α′ − α)
σ̄j?

(1+)= ∂

∂u+f
ψ0(β), (2.9.109)

when β = 2/σ̄j? ,
∂

∂u−
fψ

0(β) (2−)= β2σi?(α′ − α)
2

(2+)= ∂

∂u+f
ψ0(β), (2.9.110)

when β < 2/σ̄j? ,
∂

∂u−
fψ

0(β) (2−)= β2σi?(α′ − α)
2

(3+)= ∂

∂u+f
ψ0(β). (2.9.111)

Thus, u 7→ fψ
u(β) is also differentiable at u = 0. This ends the proof of Lemma 2.9.10. �
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Abstract. This article extends the results of Fang and Zeitouni (2012a) on branching

random walks (BRWs) with Gaussian increments in time inhomogeneous environments.

We treat the case where the variance of the increments changes a finite number of times at

different scales in [0, 1] under a slight restriction. We find the asymptotics of the maximum

up to an OP(1) error and show how the profile of the variance influences the leading order

and the logarithmic correction term. A more general result was independently obtained

by Mallein (2015a) when the law of the increments is not necessarily Gaussian. However,

the proof we present here generalizes the approach of Fang and Zeitouni (2012a) instead

of using the spinal decomposition of the BRW. As such, the proof is easier to understand

and more robust in the presence of an approximate branching structure.

Keywords: extreme value theory, branching random walks, time inhomogeneous envi-

ronments

3.1. Introduction

3.1.1. The model

The tree underlying the branching process we are interested in can be described as
follows. At time k = 0, there exists only one particle o, called the origin, and we set
D0 $ {o}. At time k = 1, there are b = 2 particles and each of them is linked to o by an
edge. Denote by D1 the set of particles at time 1. At time k = 2, there are four particles,
two of which are linked to the first particle in D1 and the other two are linked to the
second particle in D1. The set of particles at time 2 is denoted by D2. The tree is defined
iteratively in this manner up to time k = n, where Dk denotes the set of all particles at
time k and |Dk| = 2k. Figure 3.1.1 illustrates the tree structure.
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ρ(u,v)=3

Figure 3.1.1. The tree structure with a branching factor b = 2.
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For all v ∈ Dn, we denote by vk the ancestor of v at time k, namely the unique particle
in Dk that intersects the shortest path from o to v. The branching time ρ(u, v) is the latest
time at which u, v ∈ Dn have the same ancestor. Formally,

ρ(u, v) $ max{k ∈ {0, 1, . . . , n} : uk = vk}.

In the standard branching random walk (BRW) setting, i.i.d. Gaussian random vari-
ables N (0, σ2) are assigned to each branch of the tree structure and the field of interest
is {Sv}v∈Dn , where Sv is the sum of the Gaussian variables along the shortest path from o

to v. In the time-inhomogeneous context, the variance of the Gaussian variables depends
on time. Fix M ∈ N and consider the parameters

σ $ (σ1, σ2, . . . , σM) ∈ (0,∞)M (variance parameters)

λ $ (λ1, λ2, . . . , λM) ∈ (0, 1]M (scale parameters)

where 0 $ λ0 < λ1 < . . . < λM $ 1. The parameters (σ,λ) can be encoded simultaneously
in the left-continuous step function

σ(s) $ σ11{0}(s) +
M∑
i=1

σi1(λi−1,λi](s), s ∈ [0, 1].

The following definition and the results of this paper are easily extended to BRWs with
other branching factors b ∈ N.

Definition 3.1.1. The (σ,λ)-BRW of length n is a collection of positively correlated

random walks {{Sv(t)}nt=0}v∈Dn defined by

Sv(t) $
M∑
i=1

bλinc∧t∑
k=bλi−1nc+1

σiZvk , t ∈ {0, 1, . . . , n}, v ∈ Dn, (3.1.1)

where {Zvk}k∈{1,...,n};v∈Dn are i.i.d. N (0, 1) random variables and b = 2.

Remark 3.1.1. By convention, summations are zero when there are no indices. To avoid

writing trivial corrections in the proofs, always assume, without loss of generality, that

ti $ λin ∈ N0 for all i ∈ {0, 1, . . . ,M}. Therefore, the floor functions can be dropped in

(3.1.1). For simplicity, we set Sv $ Sv(n).
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3.1.2. Main result

First, we introduce some notations. For any positive measurable function f : [0, 1]→
R, define the integral operators

Jf (s) $
∫ s

0
f(r)dr and Jf (s1, s2) $

∫ s2

s1
f(r)dr.

The first order of the maximum for the (σ,λ)-BRW is merely the solution to an optimiza-
tion problem involving the concave hull of Jσ2(·), which we denote by Ĵσ2 . We refer the
reader to Ouimet (2014) for a detailed heuristic and a rigorous proof, and to Arguin and
Ouimet (2016) for the same results in the context of the scale-inhomogeneous Gaussian
free field. By definition, the graph of Ĵσ2 is an increasing and concave polygonal line, see
Figure 3.1.2 below for some examples.
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Figure 3.1.2. Examples of Jσ2 (closed lines) and Ĵσ2 (dotted lines).
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It is easy to see that there exists a unique non-increasing left-continuous step function
s 7→ σ̄(s) such that

Ĵσ2(s) = Jσ̄2(s) =
∫ s

0
σ̄2(r)dr for all s ∈ (0, 1].

The scales in [0, 1] where σ̄ jumps are denoted by

0 $ λ0 < λ1 < . . . < λm $ 1, (3.1.2)

where m ≤M . As we will see in Theorem 3.1.3, the effective scale parameters λj and the
effective variance parameters σ̄(λj) are the only parameters needed to fully determine the
first and second order of the maximum for inhomogeneous branching random walks.

To be consistent with previous notations, we set σ̄j $ σ̄(λj) and tj $ λjn. We write
∇j for the difference operator with respect to the index j. When the index variable is
obvious, we omit the subscript. For example, ∇tj = tj − tj−1.

To simplify the presentation of the proof of the main theorem, we impose a restriction
on the variance parameters.

Restriction 3.1.2. If Jσ2 and Jσ̄2 coincide on a subinterval of [λj−1, λj] for some j, then

they must coincide everywhere on [λj−1, λj].

Remark 3.1.2. Note that Jσ2 and Jσ̄2 can still coincide at isolated points in (λj−1, λj)
when they do not coincide everywhere in that interval. The union of all the scales λj and

all the isolated points where Jσ2 and Jσ̄2 coincide form a subset of the scale parameters,

say {λid}0≤d≤p, where m ≤ p ≤M .

For example, in Figure 3.1.2, the two models at the top satisfy Restriction 3.1.2, but
the two models at the bottom do not. For the top models, the sets of scales described in
Remark 3.1.2 are respectively {λ0, λ3, λ5, λ6, λ7} and {λ0, λ3, λ5, λ7}.

The main result of this paper is the derivation of the second order of the maximum (up
to an OP(1) error) for the (σ,λ)-BRW of Definition 3.1.1, under Restriction 3.1.2. This
was an open problem in Fang and Zeitouni (2012a).
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Theorem 3.1.3. Let {Sv}v∈Dn be as in Definition 3.1.1, under Restriction 3.1.2. Let

g $
√

2 log 2. For all ε > 0, there exists Kε > 0 such that for all n ∈ N,

P
(∣∣∣∣max

v∈Dn
Sv −

m∑
j=1

[
gσ̄j∇tj −

(1 + 2 · δj)σ̄j
2g log(∇tj)

]∣∣∣∣ ≥ Kε

)
< ε,

where δj $ 1 when Jσ2 and Jσ̄2 coincide on [λj−1, λj], and δj $ 0 otherwise.

This theorem was proved in Fang and Zeitouni (2012a) for the caseM = 2 and λ1 = 1/2.
Note that Restriction 3.1.2 is always satisfied when M = 2.

3.1.3. Related works

The first order of the maximum (without restriction),

lim
n→∞P

(∣∣∣∣max
v∈Dn

Sv −
m∑
j=1

gσ̄j∇tj
∣∣∣∣ > εn

)
= 0, ∀ε > 0,

was proved in Section 2 of Ouimet (2014) for the (σ,λ)-BRW and in Arguin and Ouimet
(2016) for the analogous model of scale-inhomogeneous Gaussian free field (GFF). The
proofs rely on an analysis of so-called “optimal paths” showing where the maximal particle
must be at all times with high probability. These paths were found by a first moment
heuristic and the resolution of a related optimisation problem (using the Karush-Kuhn-
Tucker theorem).

The more involved question of finding the second order of the maximum was first
solved by Fang and Zeitouni (2012a) for the case M = 2 and λ1 = 1/2, and later by
Mallein (2015a), when the law of the increments changes a finite number of times but is
not necessarily Gaussian. In his proof, Mallein develops a time-inhomogeneous version of
the spinal decomposition for the BRW. The argument presented in this paper was first
developed, without the knowledge of Mallein’s results, in Section 2.4 of Ouimet (2014)
and instead generalizes the approach of Fang and Zeitouni (2012a). The proof rely on the
control of the increments of high points at every effective scale λj.

One shortfall of the spinal decomposition is that it completely relies on the presence
of an exact branching structure. Specifically, a crucial step in Mallein (2015a) is the proof
of a time-inhomogeneous version of the classical many-to-one lemma, which is a direct
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consequence of his comparison between the size-biased law of the BRW (the usual change
of measure) and a certain projection of a law on the set of planar rooted marked trees
with spine.

In contrast, our method can be adapted to a number of cases where the branching
structure is only approximate. For instance, although no explicit proof is written down,
it can be applied to prove the second order of the maximum for the scale-inhomogeneous
GFF of Arguin and Ouimet (2016). The model differs from the time-inhomogeneous BRW
in two ways :

(1) The branching structure is approximate in the sense that increments of the field
that are below the branching scale are not perfectly correlated and they decorrelate
smoothly near the branching scale.

(2) At a given scale, the covariance of the increments of the field decays near the
boundary of the domain. In the context of BRWs, this means that at a given
time, the law of each point process would depend on the position of the associated
ancestors in the tree.

The recent developments in the study of
• cover times (see e.g. Abe (2014, 2018); Belius (2013); Belius and Kistler (2017);
Comets et al. (2013); Dembo et al. (2003, 2004, 2006); Ding (2012, 2014); Ding
et al. (2012); Ding and Zeitouni (2012));
• the extremes of the randomized Riemann zeta function on the critical line (see e.g.
Arguin et al. (2017b); Arguin and Ouimet (2019); Arguin and Tai (2018); Harper
(2013); Ouimet (2018); Saksman and Webb (2018));
• the maxima of the Riemann zeta function on random intervals of the critical line
(see e.g. Arguin et al. (2019); Najnudel (2018));
• the maxima of the characteristic polynomials of random unitary matrices (see e.g.
Arguin et al. (2017a); Chhaibi et al. (2018); Paquette and Zeitouni (2018));
• etc.

show that approximate branching structures are present in a huge variety of models.
Hence, the approach of this paper might become relevant in applications beyond the
study of “pure” BRW.

For other recent and relevant results on branching processes in time-inhomogeneous
environments, the reader is referred to Bovier and Hartung (2014, 2015); Bovier and

205



Kurkova (2004a,b); Chen (2018); Fang and Zeitouni (2012b); Maillard and Zeitouni (2016);
Mallein (2015b); Mallein and Piotr (2018); Ouimet (2017).

3.2. Proof of the main result

3.2.1. Preliminaries

For all v ∈ Dn and k, l ∈ {1, . . . ,M}, we can compute from Definition 3.1.1 :

V(Sv(tl)− Sv(tk−1)) =
l∑

i=k
σ2
i∇ti = Jσ2(λk−1, λl)n. (3.2.1)

The variance of the increments in (3.2.1) will be used repeatedly during the proofs in
conjunction with the following lemma.

Lemma 3.2.1 (Gaussian estimates, see e.g. Adler and Taylor (2007)). Suppose that

Z ∼ N (0, σ2) where σ > 0, then for all z > 0,(
1− σ2

z2

)
σ√
2πz

e−
z2

2σ2 ≤ P(Z ≥ z) ≤ σ√
2πz

e−
z2

2σ2 .

The particle achieving the maximum of the BRW at time n act like a Brownian bridge
around the maximum level on all the intervals [tj−1, tj] where Jσ2(·/n) and Jσ̄2(·/n) co-
incide. The extra log terms in Theorem 3.1.3 (when δj = 1) compensate for the “cost”
of the Brownian bridge to stay below a certain logarithmic barrier. The sets Al below
identify the indices j of these intervals up to scale λl. The sets Tl consist of the effective

times tj, 1 ≤ j ≤ l, and the integer times in [tj−1, tj], j ∈ Al, where a Brownian bridge
estimate will be needed. More precisely, for all l ∈ {1, . . . ,m},

Al $ {j ∈ {1, . . . , l} : δj = 1} =
{
j ∈ {1, . . . , l} : Jσ2 |[λj−1,λj ] ≡ Jσ̄2|[λj−1,λj ]

}
,

Tl $ {t1, t2, . . . , tl} ∪
⋃
j∈Al
{tj−1, tj−1 + 1, . . . , tj}.

Let ϑk ∈ {1, . . . ,m} be the index such that tϑk−1< k ≤ tϑk. For all k ∈ {0, . . . , n}, the
concave hull of the optimal path for the maximum is

M?
n(k) $

ϑk∑
j=1

(k ∧ tj − tj−1)
∇tj

[
gσ̄j∇tj −

(1 + 2 · δj)σ̄j
2g log(∇tj)

]
(3.2.2)
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where g $
√

2 log 2, as in Theorem 3.1.3. We refer the reader to Ouimet (2014) or Arguin
and Ouimet (2016) for a first moment heuristic. Note that M?

n and the optimal path
coincide on Tm, see Figure 3.2.3 for an example of M?

n under Restriction 3.1.2.

0 n t
t0

t1 t2 t3 t4 t5 t6
t7

t0 t1 t2 t3
t4

M ?
n(t1)

M ?
n(t2)

M ?
n(t3)

M ?
n(t4)

Figure 3.2.3. Example of the path M?
n,x on the set Tm (in bold),

the optimal path (thin line) and its concave hull M?
n (dotted line).

For all k ∈ Tm, define the logarithmic barrier as

bn(k) $


0, if k ∈ {t0, t1, . . . , tm},
5
2
σ̄ϑk
g

log(k − tϑk−1), if ϑk ∈ Am, tϑk−1 < k ≤ tϑk−1+tϑk
2 ,

5
2
σ̄ϑk
g

log(tϑk − k), if ϑk ∈ Am, tϑk−1+tϑk
2 < k < tϑk .

(3.2.3)

For all x > 0, denote

bn,x(k) $ bn(k) + x and M?
n,x(k) $M?

n(k) + bn,x(k).

Let us now define precisely what is meant by a Brownian bridge.

Definition 3.2.2 (Discrete Brownian bridge). Let 0 ≤ λ < λ′ ≤ 1 be such that λn, λ′n ∈
N0 and σ > 0. The discrete σ-Brownian bridge on the interval [λn, λ′n] is a centered

Gaussian vector (Bk)λ
′n
k=λn such that

(a) Bλn = Bλ′n = 0,

(b) Cov(Bk, Bk′) = (k∧k′−λn)(λ′n−k∨k′)
(λ′−λ)n σ2, k, k′∈ {λn, λn+ 1, . . . , λ′n}.
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Here are relevant examples of discrete Brownian bridges constructed from a discrete
random walk.

Lemma 3.2.3. Let v ∈ Dn and j ∈ Am. Then, the centered Gaussian vector

Bj
v,i $ Sv(i)− Sv(tj−1)− i− tj−1

∇tj ∇Sv(t
j), tj−1 ≤ i ≤ tj, (3.2.4)

is independent of {Sv(i′)}i′ 6∈(tj−1,tj) and defines a discrete σ̄j-Brownian bridge under Defi-

nition 3.2.2. Similarly, when l ∈ Am and tl−1< k ≤ tl, the centered Gaussian vector

Bv,i $ Sv(i)− Sv(tl−1)− i− tl−1

k − tl−1 (Sv(k)− Sv(tl−1)), tl−1 ≤ i ≤ k, (3.2.5)

is independent of {Sv(i′)}i′ 6∈(tl−1,k) and defines a discrete σ̄l-Brownian bridge.

Proof. We only prove (3.2.4) since the proof of (3.2.5) is totally analogous. Assume
j ∈ Am, meaning that σ(s) = σ̄j for all s ∈ (λj−1, λj]. Then, for all i′ ∈ {0, 1, . . . , tj−1} ∪
{tj, tj + 1, . . . , n}, Cov

(
Bj
v,i, Sv(i′)

)
is equal to

V(Sv(i ∧ i′))− V
(
Sv(tj−1 ∧ i′)

)
− i− tj−1

∇tj ∇jV
(
Sv(tj ∧ i′)

)

=


V(Sv(i))− V(Sv(tj−1))− i−tj−1

∇tj ∇jV(Sv(tj)) if tj ≤ i′ ≤ n

0− i−tj−1

∇tj 0 if 0 ≤ i′ ≤ tj−1


(3.2.1)=


σ̄2
j (i− tj−1)− i−tj−1

∇tj σ̄2
j∇tj if tj ≤ i′ ≤ n

0 if 0 ≤ i′ ≤ tj−1

 = 0.

The first claim follows since {Bj
v,i}i∈{tj−1,...,tj} and {Sv(i′)}i′ 6∈(tj−1,tj) form a Gaussian

vector together. For the second claim, we need to verify (a) and (b) in Definition 3.2.2 :
(a) We obviously have Bj

v,tj−1 = Bj
v,tj = 0 ;

(b) For all i, i′ ∈ {tj−1, tj−1 + 1, . . . , tj},
Cov

(
Bj
v,i, B

j
v,i′

)
= Cov

(
Sv(i)− Sv(tj−1), Sv(i′)− Sv(tj−1)

)
− i− tj−1

∇tj Cov
(
∇Sv(tj), Sv(i′)− Sv(tj−1)

)
− i′ − tj−1

∇tj Cov
(
Sv(i)− Sv(tj−1),∇Sv(tj)

)
+ (i− tj−1)(i′ − tj−1)

(∇tj)2 V
(
∇Sv(tj)

)
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(3.2.1)= (i ∧ i′ − tj−1)σ̄2
j − 2(i− tj−1)(i′ − tj−1)

∇tj σ̄2
j

+ (i− tj−1)(i′ − tj−1)
(∇tj)2 σ̄2

j∇tj

= (i ∧ i′ − tj−1)(tj − i ∨ i′)
∇tj σ̄2

j .

This ends the proof of the lemma. �

Finally, to estimate the probability that a discrete Brownian bridge stays below a
logarithmic barrier such as the one defined in (3.2.3), we adapt Proposition 1’ of Bramson
(1978).

Lemma 3.2.4 (Discrete Brownian bridge estimates). Let 0 ≤ λ < λ′ ≤ 1 be such that

λn, λ′n ∈ N0 and σ > 0. Let (Bk)λ
′n
k=λn be a discrete σ-Brownian bridge on the interval

[λn, λ′n]. For any constant D = D(λ, λ′, σ) > 0 and the logarithmic barrier

b(k) =


0, if k ∈ {λn, λ′n},
D log(k − λn), if λn < k ≤ λn+λ′n

2 ,

D log(λ′n− k), if λn+λ′n
2 < k < λ′n,

there exists a constant C = C(D, σ)> 0 such that for all z > 0 and all n ∈N,

P(Bk < b(k) + z, λn ≤ k ≤ λ′n) ≤ C
(1 + z)2

(λ′ − λ)n.

In order to prove Lemma 3.2.4, we first need to prove that a random walk with Gauss-
ian increments stays below the first part of the logarithmic barrier b(·)+z with probability
O(n−1/2). This is achieved through the following lemma, which is the analogue of Propo-
sition 1 in Bramson (1978).

Lemma 3.2.5. Let σ > 0 and let (Sk)tk=0 be a discrete random walk with N (0, σ2) incre-

ments and S0 $ 0. For any constant D = D(λ, λ′, σ) > 0 and the logarithmic barrier

b̃(k) =

 0, if k = 0,
D log k, if 0 < k ≤ t,
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there exists a constant C = C(D, σ)> 0 such that for all z > 0 and all t ∈N,

P
(
Sk < b̃(k) + z, 0 ≤ k ≤ t

)
≤ C

(1 + z)
t1/2

.

Remark 3.2.1. Throughout the proofs of this article, c, C, C̃, etc., will denote positive

constants whose value can change from line to line and can depend on the parameters

(σ,λ). For simplicity, equations are always implicitly stated to hold for n large enough

when needed.

Proof. Let z > 0 and t ∈ N. When t = 1, the statement is trivially satisfied with C ≥ 1.
Therefore, assume C ≥ 1 and t ≥ 2 for the rest of the proof. Let qt = bD log tc and for all
x > 0, let τx $ inf{k ≥ 1 : Sk ≥ x}. Then,

P
(
Sk < b̃(k) + z, 0 ≤ k ≤ t

)

≤ P
(

max
0≤k≤t

Sk < z
)

+
qt∑
i=0

P


bei/Dc ≤ τz+i ≤ t and
Sτz+i < z + i+ 1 and
maxτz+i≤k≤t(Sk − Sτz+i) < 1

 . (3.2.6)

We bound the first probability in (3.2.6) using a standard gambler’s ruin estimate. Indeed,
from Theorem 5.1.7 in Lawler and Limic (2010), there exists a constant C ′ = C ′(σ) > 0
such that for all z > 0 and all t ∈ N,

P
(

max
0≤k≤t

Sk < z
)
≤ C ′

z + 1
t1/2

. (3.2.7)

We proceed to the individual summands in (3.2.6). The strong Markov property for the
random walk implies

P


bei/Dc ≤ τz+i ≤ t and
Sτz+i < z + i+ 1 and
maxτz+i≤k≤t(Sk − Sτz+i) < 1


=

t∑
j=bei/Dc

P
(
τz+i = j, Sτz+i < z + i+ 1

)
· P
(

max
0≤k≤t−j

Sk < 1
)

=
bt/2c∑

j=bei/Dc∧(1+bt/2c)
+

t∑
j=bei/Dc∨(1+bt/2c)

. (3.2.8)
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Now, for the first summation in (3.2.8), we have

bt/2c∑
j=bei/Dc∧(1+bt/2c)

P
(
τz+i = j, Sτz+i < z + i+ 1

)
· P
(

max
0≤k≤t−j

Sk < 1
)

P
(

max
0≤k≤bei/Dc

Sk < z + i+ 1
)
· P
(

max
0≤k≤t−bt/2c

Sk < 1
)
≤ C

z + i+ 1
t1/2

e−i/(2D). (3.2.9)

We applied the estimate (3.2.7) to both terms on the second line and we used the fact
that (z + i+ 2)/(z + i+ 1) ≤ 2 for all (z, i) ∈ (0,∞)× N to obtain the last inequality.

For the second summation in (3.2.8), we can use an estimate closely related to the
first hitting time distribution in the gambler’s ruin problem. Indeed, from Lemma 3 in
Mogul’skĭı (2009), there exists a constant C ′′ = C ′′(σ) > 0 such that for all x > 0 and all
j ∈ N,

P(τx = j, Sτx < x+ 1) ≤ P

Sj ∈ [x, x+ 1] and
Sj = max0≤k≤j Sk

 ≤ C ′′
x+ 1
j3/2 . (3.2.10)

Using successively (3.2.10), the gambler’s ruin estimate (3.2.7), the change of variable
j′ = t− j and the fact that s 7→ s−1/2 is decreasing, we have

t∑
j=bei/Dc∨(1+bt/2c)

P
(
τz+i = j, Sτz+i < z + i+ 1

)
· P
(

max
0≤k≤t−j

Sk < 1
)

≤
t∑

j=bei/Dc∨(1+bt/2c)
C ′′

z + i+ 1
j3/2 · P

(
max

0≤k≤t−j
Sk < 1

)

≤ 23/2C ′′
z + i+ 1
t3/2

·
1 +

bt/2c∑
j′=1

C ′
2

(j′)1/2


≤ 23/2C ′′

z + i+ 1
t3/2

·
{

4(1 + C ′)
∫ t

0

1
2s1/2ds

}
= C

z + i+ 1
t

. (3.2.11)

From (3.2.8), (3.2.9) and (3.2.11), we deduce

P


bei/Dc ≤ τz+i ≤ t and
Sτz+i < z + i+ 1 and
maxτz+i≤k≤t(Sk − Sτz+i) < 1

 ≤ C? z + i+ 1
t1/2

e−i/(2D) (3.2.12)

for a certain constant C? = C?(σ) > 0, since t−1/2 ≤ e−i/(2D) for all i ≤ qt.
Note that (z+ i+ 1) ≤ (z+ 1)(i+ 1) for all i ≥ 0. Therefore, by applying (3.2.12) and
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(3.2.7) in (3.2.6), we get

P
(
Sk < b̃(k) + z, 0 ≤ k ≤ t

)
≤ C ′

z + 1
t1/2

+ C? z + 1
t1/2

qt∑
i=0

(i+ 1)e−i/(2D).

The conclusion holds since ∑∞i=0(i+ 1)e−i/(2D) <∞. �

Now, the proof of Lemma 3.2.4 is exactly the same (except in discrete time) as the
proof of Proposition 1’ in Bramson (1978) for the case s0 = t. We give the details for
completeness.

Proof of Lemma 3.2.4. Without loss of generality, assume that λ = 0, λ′ = 1 and
n/3 ∈ N. Let (Bk)nk=0 be a discrete σ-Brownian bridge and let (Sk)nk=0 be a discrete
random walk with N (0, σ2) increments and S0 $ 0. Denote by Pb1 , Pb2 and Pb3 , the sets
of discrete paths in {0, 1, . . . , n} lying below the barrier b(·) + z on the sets {0, . . . , n/3},
{n/3, . . . , 2n/3} and {2n/3, . . . , n} respectively. Using the Markov property of B and S,

(?) $ P(Bk < b(k) + z, 0 ≤ k ≤ n)

=
∫ b(n/3)+z

−∞

∫ b(2n/3)+z

−∞
P
(
B ∈ Pb1|Bn/3 = x1

)
fBn/3(x1)

× P
(
B ∈ Pb2 |B2n/3 = x2, Bn/3 = x1

)
fB2n/3|Bn/3(x2 |x1)

× P
(
B ∈ Pb3 |B2n/3 = x2

)
dx1dx2

= 1
fSn(0)



∫ b(n/3)+z
−∞

∫ b(2n/3)+z
−∞ P

(
S ∈ Pb1|Sn/3 = x1

)
fSn/3(x1)

×P
(
S ∈ Pb2 |S2n/3 = x2, Sn/3 = x1

)
fS2n/3|Sn/3(x2 |x1)

×P
(
S ∈ Pb3 |Sn = 0, S2n/3 = x2

)
fSn|S2n/3(0|x2) dx1dx2


.

But, we have P
(
S ∈ Pb2|S2n/3 = x2, Sn/3 = x1

)
≤ 1, and fS2n/3|Sn/3(x2 |x1) ≤ fSn/3(0), and

fSn/3(0)/fSn(0) =
√

3, so

(?) ≤
√

3



∫ b(n/3)+z
−∞ P

(
S ∈ Pb1|Sn/3 = x1

)
fSn/3(x1)dx1

× ∫ b(2n/3)+z
−∞ P

S ∈ Pb3
∣∣∣∣∣∣∣
Sn = 0,
S2n/3 = x2

 fSn|S2n/3(0|x2)dx2


.

By the symmetry of b(·) around n/2, both integrals are exactly the same. Thus, the
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right-hand side is equal to

√
3
(
P
(
Sk < b̃(k) + z, 0 ≤ k ≤ n/3

))2
.

The conclusion follows directly from Lemma 3.2.5. �

3.2.2. Why Restriction 3.1.2 ?

Let πj ∈ {0, 1, . . . ,M} denote the indice such that λπj = λj. When the continuous and
piecewise linear functions Jσ2 and Jσ̄2 coincide on a subinterval of [λj−1, λj], they either
coincide

(1) everywhere on [λj−1, λj];
(2) everywhere on the left and right end, meaning on [λj−1, λπj−1+1] and [λπj−1, λ

j]
respectively, but not somewhere in (λπj−1+1, λπj−1);

(3) everywhere on the left end, but not on the right end;
(4) everywhere on the right end, but not on the left end.

Imposing Restriction 3.1.2 means that we only deal with the first case. The only reason we
do this is to avoid overburdening the notation in the proof of Theorem 3.1.3 by dividing
each interval [tj−1, tj], j ∈ Am, in three parts like we did in the proof of Lemma 3.2.4.

From Lemma 3.2.5, the probability that the left (resp. right) end of a Brownian bridge
stays below the left (resp. right) end of the logarithmic barrier b(·) + z is O(n−1/2). The
probability that the middle part of the Brownian bridge stays below the middle part of the
logarithmic barrier is O(1). Thus, it should now be obvious how to modify the statement
of Theorem 3.1.3 when there is no restriction. Simply replace 2 · δj by δleft

j + δright
j , where

δleft
j $

 1, when Jσ2 and Jσ̄2 coincide on [λj−1, λπj−1+1],
0, otherwise,

δright
j $

 1, when Jσ2 and Jσ̄2 coincide on [λπj−1, λ
j],

0, otherwise.

For confirmation, the reader is referred to Theorem 1.4 in Mallein (2015a), where a more
general statement is given.
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3.2.3. Second order of the maximum and tension

Theorem 3.1.3 is a direct consequence of Lemma 3.2.6, which proves the exponential
decay of the probability that the recentered maximum is above a certain level, and Lemma
3.2.8, which shows the corresponding lower bound.

Lemma 3.2.6 (Upper bound). Let {Sv}v∈Dn be the (σ,λ)-BRW at time n of Definition

3.1.1, under Restriction 3.1.2. Recall the definition of M?
n from (3.2.2). There exists a

constant C = C(σ,λ) > 0 such that for all x > 0,

P
(

max
v∈Dn

Sv ≥M?
n(n) + x

)
≤ C (1 +x)2

∑m

j=1 δje
−x g

σ̄1

for n large enough, where δj $ 1{j∈Am}.

The proof of Lemma 3.2.6 is separated in two parts with a technical lemma in between
them (Lemma 3.2.7).

Proof of Lemma 3.2.6 (first part). Define the set of particles that are above the
path M?

n,x at time k :

Hk,n,x $ {v ∈ Dk : Sv(k) ≥M?
n,x(k)}, k ∈ Tm.

The idea of the proof is to split the probability that at least one particle at time n exceeds
M?

n,x(n) by looking at the first time k ∈ Tm when the set Hk,n,x is non-empty. Using
sub-additivity, we have the following upper bound on the probability of the lemma :

P(|Hn,n,x| ≥ 1) ≤
∑
k∈Tm

P

 |Hk,n,x| ≥ 1 and |Hi,n,x| = 0
∀i ∈ Tm such that i < k



≤
∑
k∈Tm

2k max
v∈Dk

P


Sv(k) ≥M?

n,x(k)
and Sv(i) < M?

n,x(i)
∀i ∈ Tm such that i < k

 . (3.2.13)

We only discuss the case k > t1 from hereon. The case k ≤ t1 is easier (there is no
conditioning in (3.2.14)), so we omit the details. Fix l ∈ {2, . . . ,m} and tl−1< k ≤ tl for
the remaining of the proof. By conditioning on the event

Ev $ {(Sv(t1), . . . , Sv(tl−1)) = (x1, . . . , xl−1) $ x},
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the probability in the maximum in (3.2.13) is equal to

∫ M?
n,x(t1)

−∞
. . .
∫ M?

n,x(tl−1)

−∞
P


Sv(k) ≥M?

n,x(k)
and Sv(i) < M?

n,x(i)
∀i ∈ Tm such that i < k

∣∣∣∣∣∣∣∣∣Ev


︸ ︷︷ ︸
$ (♣)

fv(x) dx, (3.2.14)

where fv is the density function of (Sv(t1), . . . , Sv(tl−1)).

Now, make the convenient change of variables

Yv,j $ ∇Sv(tj)−∇M?
n(tj), j ∈ {1, . . . , l − 1}.

By the independence of the increments, the density of the vector (Sv(tj))l−1
j=1 is the product

of the densities of the Yv,j’s, namely

fv(x) $ fv(x1, . . . , xl−1) = fYv,1(y1) · . . . · fYv,l−1(yl−1) .

Since V(Yv,j) = V(∇Sv(tj)) = σ̄2
j∇tj, we can bound each density :

fYv,j(yj) = e
−(yj+∇M?

n(tj))2

2σ̄2
j
∇tj

√
2π
√
σ̄2
j∇tj

≤ C2−∇tj e
(1+2·δj)

2 log(∇tj)
√
∇tj

e
−yj gσ̄j = C2−∇tj(∇tj)δj e−yj

g
σ̄j .

We deduce that the integral in (3.2.14) is smaller than

C2−tl−1
∫ x

−∞

∫ x−y1

−∞
. . .
∫ x−

∑l−2
j=1 yj

−∞
(♣) ·

l−1∏
j=1

(∇tj)δj e−yj
g
σ̄j dy. (3.2.15)

From Lemma 3.2.3, we know that for all j ∈ Al−1, the process

Bj
v,i $ Sv(i)− Sv(tj−1)− i− tj−1

∇tj ∇Sv(t
j), tj−1 ≤ i ≤ tj, (3.2.16)

is independent of {Sv(i′)}i′ 6∈(tj−1,tj) and defines a discrete σ̄j-Brownian bridge. Similarly,
when l ∈ Am, the process

Bv,i $ Sv(i)− Sv(tl−1)− i− tl−1

k − tl−1 (Sv(k)− Sv(tl−1)), tl−1 ≤ i ≤ k, (3.2.17)

is independent of {Sv(i′)}i′ 6∈(tl−1,k) and defines a discrete σ̄l-Brownian bridge.
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Using the independence of Sv(k)−Sv(tl−1) with respect to (Sv(tj))l−1
j=1 and the processes

in (3.2.16) and (3.2.17), we get

(♣) ≤ P
(
Sv(k)− Sv(tl−1) ≥M?

n,x(k)− xl−1
)

×
∏

j∈Al−1

P

Bj
v,i<M

?
n,x(i)− xj−1 − i−tj−1

∇tj ∇xj
for all i such that tj−1<i< tj



× P

Bv,i< (M?
n,x(i)− xl−1)− i−tl−1

k−tl−1 (M?
n,x(k)− xl−1)

for all i such that tl−1<i<k


1{l∈Am}

$ (1)×
∏

j∈Al−1

(2)j × (3). (3.2.18)

We bound (1) using a Gaussian estimate, and (2)j and (3) using the Brownian bridge
estimates of Lemma 3.2.4. We pause the proof of Lemma 3.2.6 to state and prove these
bounds in Lemma 3.2.7. �

Lemma 3.2.7. Let l ∈ {2, . . . ,m} and tl−1 < k ≤ tl. As in (3.2.14), we make the change

of variables
Yv,j $ ∇Sv(tj)−∇M?

n(tj), j ∈ {1, . . . , l − 1}. (3.2.19)

In (3.2.18), there exist constants C,D > 0, only depending on (σ,λ), such that for n large

enough,

(1) ≤ C2−(k−tl−1)hl(k)(k − tl−1)1{l∈Am and (tl−1+tl)/2<k≤tl}e
−
x−
∑l−1

j=1 yj
g−1σ̄l (3.2.20)

where

hl(k) $


(k − tl−1)−3/2, when l ∈ Am and tl−1 < k ≤ tl−1+tl

2 ,

(tl − k)−5/2, when l ∈ Am and tl−1+tl
2 < k < tl,

1, when k = tl,

and

(2)j ≤ C
(1 +D + 2x− 2∑j−1

j′=1 yj′ − yj)2

∇tj , j ∈ Al−1 , (3.2.21)

and

(3) ≤

C
(1+D+2x−2

∑l−2
j′=1 yj′−yl−1)2

k−tl−1 , if l ∈ Am and tl−1+tl
2 < k ≤ tl,

1, otherwise.
(3.2.22)
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Proof of inequality (3.2.20). Since V
(
Sv(k)− Sv(tl−1)

)
= (k − tl−1)σ̄2

l when k ∈ Tm,
a Gaussian estimate yields

(1) $ P
(
Sv(k)− Sv(tl−1) ≥M?

n,x(k)− xl−1
)

≤
√

(k − tl−1)σ̄2
l√

2π(M?
n,x(k)− xl−1)

e
− (M?

n,x(k)−M?
n,x(tl−1)+M?

n,x(tl−1)−xl−1)2

2(k−tl−1)σ̄2
l . (3.2.23)

Use successively xl−1 ≤ M?
n,x(tl−1) from (3.2.14), the definition of M?

n in (3.2.2), the fact
that bn,x(k) ≥ x and x 7→ (log x)/x is decreasing for x ≥ e, to show

M?
n,x(k)− xl−1 ≥M?

n,x(k)−M?
n,x(tl−1)

= g(k − tl−1)σ̄l −
(1 + 2 · δl)σ̄l

2g
(k − tl−1)
∇tl log(∇tl) + bn,x(k)− x

≥ g(k − tl−1)σ̄l −
(1 + 2 · δl)σ̄l

2g log(e ∨ (k − tl−1)). (3.2.24)

Plugging inequality (3.2.24) in (3.2.23) and using the definition of bn,x from (3.2.3) and the
fact thatM?

n,x(tl−1)− xl−1 = x−∑l−1
j=1 yj, we have

(1) ≤ C2−(k−tl−1) e
(1+2·δl)

2 log(e∨(k−tl−1))− bn,x(k)−x
g−1σ̄l√

k − tl−1
e
−M

?
n,x(tl−1)−xl−1

g−1σ̄l

≤ C̃2−(k−tl−1)hl(k)(k − tl−1)1{l∈Am and (tl−1+tl)/2<k≤tl}e
−
x−
∑l−1

j=1 yj
g−1σ̄l

where

hl(k) $


(k − tl−1)−3/2, when l ∈ Am and tl−1 < k ≤ tl−1+tl

2 ,

(tl − k)−5/2, when l ∈ Am and tl−1+tl
2 < k < tl,

1, when k = tl.

Note that the last inequality is an equality with C̃ = C whenever k − tl−1 ≥ e. When
k − tl−1 ∈ {1, 2}, taking C̃ = e3/2 · C is sufficient to “absorb” the terms that do not cancel
out exactly. �

Proof of inequality (3.2.21). Let j ∈ Al−1 and define

zi,j $M?
n,x(i)− xj−1 −

i− tj−1

∇tj ∇xj, tj−1 < i < tj.
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We have

zi,j = bn,x(i) +M?
n(i) +

{
i− tj−1

∇tj xj−1 + tj − i
∇tj xj

}
− xj−1 − xj

= bn,x(i) +
[
M?

n(i)− tj − i
∇tj M

?
n(tj−1)− i− tj−1

∇tj M?
n(tj)

]
− (xj−1 −M?

n(tj−1))

+
{
i− tj−1

∇tj (xj−1 −M?
n(tj−1)) + tj − i

∇tj (xj −M?
n(tj))

}
− (xj −M?

n(tj)).

Now, bound the braces using (xj−1 −M?
n(tj−1)) ∨ (xj −M?

n(tj)) ≤ x from the integration
limits of xj−1 and xj in (3.2.14). The quantity between the brackets is zero because M?

n is
affine on [tj−1, tj]. Consequently,

zi,j ≤ bn,x(i) + x− (xj−1 −M?
n(tj−1))− (xj −M?

n(tj))

(3.2.19)= bn(i) + 2x−
j−1∑
j′=1

yj′ −
j∑

j′=1
yj′ . (3.2.25)

Since (2)j $ P(Bj
v,i < zi,j, t

j−1 < i < tj), where Bj
v is a discrete σ̄j-Brownian bridge on

[tj−1, tj], the conclusion follows from Lemma 3.2.4 and (3.2.25). �

Proof of inequality (3.2.22). Assume l ∈ Am and (tl−1 + tl)/2 < k ≤ tl. The other
cases are trivial because (3) is a probability. Now, define

zi $ (M?
n,x(i)− xl−1)− i− tl−1

k − tl−1 (M?
n,x(k)− xl−1), tl−1 < i < k.

Similarly to the proof of (3.2.21), the path M?
n is affine on [tl−1, tl] ⊇ [tl−1, k] and xl−1 −

M?
n(tl−1) ≤ x from the integration limits of xl−1 in (3.2.14), so

zi = bn,x(i)−
i− tl−1

k − tl−1 bn,x(k)− k − i
k − tl−1 (xl−1 −M?

n(tl−1))

+
[
M?

n(i)− k − i
k − tl−1M

?
n(tl−1)− i− tl−1

k − tl−1M
?
n(k)

]

= bn(i)− i− tl−1

k − tl−1 bn(k) +
(

1− i− tl−1

k − tl−1

)
x

+ i− tl−1

k − tl−1 (xl−1 −M?
n(tl−1))− (xl−1 −M?

n(tl−1))

≤ bn(i)− i− tl−1

k − tl−1 bn(k) + x−
l−1∑
j′=1

yj′ . (3.2.26)
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In order to use Lemma 3.2.4, it remains to show that the first two terms in (3.2.26) are
bounded by an appropriate logarithmic barrier. Assume for now that k 6= tl. There are
three cases to consider.

Case 1 : All i such that tl−1 < i ≤ (tl−1 + k)/2 < (tl−1 + tl)/2 < k < tl

Clearly,

bn(i)− i− tl−1

k − tl−1 bn(k) ≤ bn(i) (3.2.3)= 5
2
σ̄l
g

log(i− tl−1). (3.2.27)

Case 2 : All i such that tl−1 < (tl−1 + k)/2 < i ≤ (tl−1 + tl)/2 < k < tl

Observe that i − tl−1 ≤ tl − i and tl − k ≤ k − tl−1 and x 7→ (log x)/x is decreasing for
x ≥ e. Also, we have (tl − i) = (tl − k) + (k − i) ≤ 2(tl − k)(k − i) because a+ b ≤ 2ab for
a, b ≥ 1. Using all this (in that order), we get

bn(i)− i− tl−1

k − tl−1 bn(k) (3.2.3)= 5
2
σ̄l
g

{
log

(
i− tl−1

tl − k

)
+ k − i
k − tl−1 log(tl − k)

}

≤ 5
2
σ̄l
g

{
log

(
tl − i
tl − k

)
+ log(e ∨ (k − i))

}

≤ 5
2
σ̄l
g
{log 2 + 2 log(e ∨ (k − i))} . (3.2.28)

Case 3 : All i such that tl−1 < (tl−1 + tl)/2 < i < k < tl

By the same reasoning as in Case 2 (without i− tl−1 ≤ tl − i), we get

bn(i)− i− tl−1

k − tl−1 bn(k) (3.2.3)= 5
2
σ̄l
g

{
log

(
tl − i
tl − k

)
+ k − i
k − tl−1 log(tl − k)

}

≤ 5
2
σ̄l
g
{log 2 + 2 log(e ∨ (k − i))} . (3.2.29)

Finally, when k = tl, the inequalities (3.2.27), (3.2.28) and (3.2.29) are trivial because
bn(k) = 0. Therefore, applying all three inequalities in (3.2.26), there exist appropriate
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constants D, D̃ > 0, depending only on (σ,λ), for which

zi ≤


D̃ log(i− tl−1) +D + x−∑l−1

j′=1 yj′ , if tl−1 < i ≤ tl−1+k
2 ,

D̃ log(k − i) +D + x−∑l−1
j′=1 yj′ , if tl−1+k

2 < i < k,

≤


D̃ log(i− tl−1) +D + 2x− 2∑l−2

j′=1 yj′ − yl−1, if tl−1 < i ≤ tl−1+k
2 ,

D̃ log(k − i) +D + 2x− 2∑l−2
j′=1 yj′ − yl−1, if tl−1+k

2 < i < k.

We used∑l−2
j′=1 yj′ ≤ x from the integration limits of yl−2 in (3.2.15) to get the last inequality.

When l ∈ Am, recall that (3) $ P(Bv,i < zi, t
l−1<i<k), whereBv is a discrete σ̄l-Brownian

bridge on [tl−1, k]. Applying Lemma 3.2.4 yields the conclusion. �

Proof of Lemma 3.2.6 (last part). By applying Lemma 3.2.7 in (3.2.18), the integral
in (3.2.15) is smaller than

C 2−k hl(k)e−x
g
σ̄l

∫ x

−∞

∫ x−y1

−∞
. . .
∫ x−

∑l−2
j=1 yj

−∞
(1 +D + 2x− 2

l−2∑
j′=1

yj′ − yl−1)2·δl

×
 ∏
j∈Al−1

(1 +D + 2x− 2
j−1∑
j′=1

yj′ − yj)2

 · l−1∏
j=1

e
yj

[
g
σ̄l
− g
σ̄j

]
dy (3.2.30)

for an appropriate constant D = D(σ,λ) > 0. To obtain (3.2.30), the terms (∇tj) in
(3.2.15) canceled with the factors 1/(∇tj) in (3.2.21), for all j ∈ Al−1. Similarly, the term
(k − tl−1) in (3.2.20) canceled with the factor 1/(k − tl−1) in (3.2.22), when l ∈ Am and
(tl−1 + tl)/2 < k ≤ tl.

To bound the integral in (3.2.30), it is crucial to observe that the brackets in the expo-
nentials are always strictly positive because σ̄1 > σ̄2 > . . . > σ̄m by definition. Denote these
brackets by βj,l, 1 ≤ j ≤ l− 1. We evaluate the integral iteratively. Note that∑l−2

j=1 yj ≤ x

and ∑l−3
j=1 yj ≤ x from the integration limits of yl−2 and yl−3 in (3.2.30). By integrating by

parts, it is easy to show that the first integral (from the interior) have the property
∫ x−

∑l−2
j=1 yj

−∞
(1 +D + 2x− 2

l−2∑
j′=1

yj′ − yl−1)a eyl−1βl−1,l dyl−1

≤ (a+ 1)!
(1 ∧ βl−1,l)a+1 (1 +D + 2x− 2

l−3∑
j′=1

yj′ − yl−2)a e(x−
∑l−2

j=1 yj)βl−1,l
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for any exponent a ∈ N0. Therefore, iterating this reasoning in (3.2.30) gives

(3.2.30) ≤ C̃ 2−k hl(k)e−x
g
σ̄l ·(1 +D + x)2

∑l

j=1 δjex
∑l−1

j=1 βj,j+1

= C̃ 2−k hl(k)e−x
g
σ̄1 ·(1 +D + x)2

∑l

j=1 δj .

Applying this bound in (3.2.13) yields the conclusion since
m∑
l=1

∑
k∈Tm

tl−1<k≤tl

hl(k) <∞.

This ends the proof of Lemma 3.2.6. �

Lemma 3.2.8 (Lower bound). Let {Sv}v∈Dn be the (σ,λ)-BRW at time n of Definition

3.1.1, under Restriction 3.1.2. Recall the definition of M?
n from (3.2.2). For all ε > 0,

there exists Kε > 0 such that for all n ∈ N,

P
(

max
v∈Dn

Sv ≤M?
n(n)−Kε

)
< ε.

Proof. Let S?n $ maxv∈Dn Sv. From Theorem 1 of Fang (2012), we know that the family
{S?n−Med(S?n)}n∈N is tight, that is for all ε > 0, there exists K̃ε > 0 such that for all n ∈ N,

P
(
|S?n −Med(S?n)| ≥ K̃ε

)
< ε. (3.2.31)

We claim that there exist c, C > 0 and n0, ñ0 ∈ N such thatP(S?n ≥M?
n(n)− C) ≥ c

for all n ≥ n0

 =⇒

Med(S?n) ≥M?
n(n)− C − K̃c

for all n ≥ ñ0

 . (3.2.32)

Otherwise, by (3.2.31), for each choice of c, C > 0, there would exist a subsequence {ni}i∈N
such that

c ≤ P
(
S?ni ≥M?

ni
(ni)− C

)
≤ P

(
S?ni ≥ Med(S?ni) + K̃c

)
< c,

which is impossible. If the left side of (3.2.32) was satisfied for some constants c, C > 0, we
could define Kε $ K̃ε + C + K̃c, and (3.2.31) would give

P(S?n ≤M?
n(n)−Kε) ≤ P

(
S?n ≤ Med(S?n)− K̃ε

)
< ε, n ≥ ñ0,

and the proof of the lemma would be over.
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To conclude, it remains to show the left side of (3.2.32). We now use Restriction 3.1.2.
Recall from Remark 3.1.2 that {λid}0≤d≤p is the union of all the scales λj and all the isolated
points where Jσ2 and Jσ̄2 coincide. By independence of the increments, the left side of
(3.2.32) is satisfied if there exist constants c, C > 0 such that

P
(

max
v∈D∇dtid

Sidv ≥ ∇dM?
n(tid)− (C/p)

)
≥ c1/p, 1 ≤ d ≤ p, (3.2.33)

where each field {Sidv }v consists of the end points of an inhomogeneous BRW on the time in-
terval [0,∇d tid ] with variance parameters given by the step function s 7→ σ(s) on (λid−1 , λid ].

It suffices to show (3.2.33) for the subinterval(s) [tid−1 , tid ] ⊆ [0, t1] since we did not
assume anything on the other intervals [tj−1, tj]. When 1 ∈ Am, that is when there is
only one variance parameter σ1 = σ̄1 on (0, λ1], then (3.2.33) follows from Theorem 3 of
Addario-Berry and Reed (2009) by choosing C > 0 large enough and c > 0 small enough.
SinceM?

n(·) is linear on [0, t1] and the argument presented below could be applied for each
subinterval of the partition (independently of d), we can assume, without loss of generality,
that ti1 = t1, namely that

Jσ2 lies strictly below its concave hull Jσ̄2

everywhere on (0, t1).
(3.2.34)

The usual trick to prove a lower bound in the BRW setting is the Paley-Zygmund
inequality. If we naively try to apply the Paley-Zygmund inequality to the number of
particles that stay above the optimal path, themethodwill not work because the correlations
of the BRW inflate the second moment too much, see (3.2.36). Instead, we need to add a
barrier condition that eliminates the overly large number of particles that are too far off the
optimal path during their lifetime. For simplicity, we omit the superscript i1 for Si1v in the
remaining of the proof. Define Sv $ Sv(t1) and let

In $ [M?
n(t1),M?

n(t1) + 1],

Ik,n(x) $ [sk,n(x)− fk,n, sk,n(x) + fk,n],

Nn $ #{v ∈ Dt1 : Sv ∈ In, Sv(k) ∈ Ik,n(Sv) ∀0 < k < t1},

where sk,n(x) is a path leading to x ∈ R and fk,n is a concave barrier. The definition we
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give to sk,n could seem strange at first, but is actually quite natural. It is argued in Arguin
and Ouimet (2016) and proved in Appendix A of Ouimet (2014) that the log-number of
particles that are above the path

sk,n(x) $ Jσ2(k/n)
Jσ2(λ1) x, 0 ≤ k ≤ t1,

during their lifetime is asymptotically the same as the log-number of particles above x at
time t1. In particular, for particles reaching x = M?

n(t1) at time t1, this path is optimal (for
the first order). The barrier is

fk,n $

Cf (Jσ2(k/n)n)2/3, if 0 ≤ k ≤ t1,

Cf (Jσ2(k/n, λ1)n)2/3, if t1 < k ≤ t1,
(3.2.35)

where the constant Cf > 0 will be chosen large enough later in the proof. The exponent 2/3
is not essential here (any exponent in (1/2, 1) works), but this definition is useful for the
Gaussian estimates.

Under assumption (3.2.34), the Paley-Zygmund inequality yields that the probability
in (3.2.33) (when d = 1) is bounded from below by

P
(

max
v∈Dt1

Sv ≥M?
n(t1)

)
≥ P(Nn ≥ 1)

P-Z
≥ (E[Nn])2

E[(Nn)2] . (3.2.36)

To conclude, we show E[Nn] ≥ c? and E[(Nn)2] ≤ (E[Nn])2 + (1 + C?)E[Nn] for some
constants c?, C? > 0.

Lower bound on the first moment

By the linearity of expectation, we have the lower bound

E[Nn] = 2t1P
(
Sv ∈ In, Sv(k) ∈ Ik,n(Sv) ∀0 < k < t1

)
= 2t1P(Sv ∈ In)P

(
Sv(k) ∈ Ik,n(Sv) ∀0 < k < t1

)
≥ c?, (3.2.37)

provided that there exist constants c1, c2 > 0 such that

(1) Sv is independent of {Sv(k)− sk,n(Sv)}t1k=0,
(2) 2t1P(Sv ∈ In) ≥ c1,
(3) P(Sv(k) ∈ Ik,n(Sv) ∀0 < k < t1) ≥ c2.
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To show (1), observe that V(Sv(k)) = Jσ2(k/n)n and V(Sv) = Jσ2(λ1)n from (3.2.1),
so the independence between Sv(k) and Sv − Sv(k) gives

Cov(Sv, Sv(k)− sk,n(Sv)) = V(Sv(k))− Jσ2(k/n)
Jσ2(λ1) V(Sv) = 0.

To show (2), note thatM?
n(t1) = gσ̄1t

1− 1
2
σ̄1
g

log(t1), under assumption (3.2.34), andV(Sv) =
σ̄2

1t
1. Therefore,

P(Sv ∈ In) =
∫ M?

n(t1)+1

M?
n(t1)

e
− z2

2σ̄2
1t

1√
2πσ̄2

1t
1
dz ≥ 1 · c√

t1
e
− (M?

n(t1)+1)2

2σ̄2
1t

1 ≥ c1 2−t1 .

To show (3), note that Cov(sk,n(Sv), Sv(k)− sk,n(Sv)) = 0, by the independence in (1), and
thus

V(Sv(k)− sk,n(Sv)) = Cov(Sv(k), Sv(k)− sk,n(Sv))

= Jσ2(k/n)n
[
1− Jσ2(k/n)

Jσ2(λ1)

]
.

Then, sub-additivity followed by Gaussian estimates yield

P

Sv(k) ∈ Ik,n(Sv)
∀0 < k < t1

 ≥ 1− 2
t1−1∑
k=1

P(Sv(k)− sk,n(Sv) > fk,n)

≥ 1− 2
t1−1∑
k=1

C exp

−1
2

(fk,n)2

Jσ2(k/n)n
[
1− Jσ2 (k/n)

Jσ2 (λ1)

]
 .

By considering the cases 0 < k ≤ t1 and t1 < k < t1 separately, the last sum is bounded
from above by

t1∑
k=1

Ce−
1
2C

2
f σ

2/3
1 k1/3 +

t1−1∑
k=t1+1

Ce−
1
2C

2
f mini∈{2,3,...,π1} σ

2/3
i (t1−k)1/3

.

For Cf large enough, this is strictly smaller than 1/2, independently of n, which proves (3).

Upper bound on the second moment

To estimate the second moment, we split E[(Nn)2] according to the branching time
ρ(u, v) $ max{r ∈ {0, 1, . . . , t1} : ur = vr} of each pair of particles :

E
[
(Nn)2

]
=

t1∑
r=0

∑
u,v∈Dt1
ρ(u,v)=r

P

Su, Sv ∈ In and Su(k) ∈ Ik,n(Su),
Sv(k) ∈ Ik,n(Sv) for all 0 < k < t1

 .

224



When ρ(u, v) = 0, the processes {Su(k)}k and {Sv(k)}k are independent. Therefore, in the
case r = 0, the second sum above is bounded by (E[Nn])2 by adding the missing terms. In
the case r = t1, the second sum is equal to E[Nn] because u and v coincide. In the remaining
cases 0 < r < t1, the increment Sv − Sv(r) is independent of {Su(k)}k, and Su(k) = Sv(k)
for all k ≤ r. Therefore, E[(Nn)2] is bounded from above by

(E[Nn])2 + E[Nn] +
t1−1∑
r=1

∑
u,v∈Dt1
ρ(u,v)=r

P

Su ∈ In and Su(k) ∈ Ik,n(Su)
for all 0 < k < t1

 (3.2.38)

·max
x∈In

P
(
Sv − Sv(r) ∈ x− Ir,n(x)

)
.

There are at most 2t1· 2t1−r pairs (u, v)∈D2
t1 with branching time equal to r, so the double

sum in (3.2.38) is bounded from above by

E[Nn]×
t1−1∑
r=1

2t1−r max
x∈In
v∈Dt1

P
(
Sv − Sv(r) ∈ x− Ir,n(x)

)
︸ ︷︷ ︸

(♠)r

. (3.2.39)

It remains to estimate the probabilities (♠)r in (3.2.39). From (3.2.1), we know that
V(Sv − Sv(r)) = Jσ2(r/n, λ1)n for all v ∈ Dt1 .

In the case 0 < r ≤ t1, we have fr,n = Cf (σ2
1r)2/3. Thus, for x ∈ In,

(♠)r =
∫
x−Ir,n(x)

e
− 1

2
z2

J
σ2 (r/n,λ1)n√

2πJσ2(r/n, λ1)n
dz ≤ 2fr,n

e
− 1

2
(M?

n(t1)−sr,n(M?
n(t1))−fr,n)2

J
σ2 (r/n,λ1)n√

Jσ2(r/n, λ1)n

≤ C r2/3 2
−Jσ2 (r/n,λ1)t1

J
σ2 (λ1) e

1
2
J
σ2 (r/n,λ1)
J
σ2 (λ1)

log(t1)√
Jσ2(r/n, λ1)n

e
Cf (σ2

1r)
2/3

g−1σ̄1 (3.2.40)

≤ C r2/3 2−(t1−η1r) eC̃ r
2/3
. (3.2.41)

To obtain the last bound, we use two crucial observations. Since the function x 7→ (log x)/x
is decreasing for x ≥ e, the ratio of the exponential over the square root in (3.2.40) is
bounded by a constant independent of r and n. Also, under assumption (3.2.34) and for
0 < r ≤ t1,

Jσ2(r/n, λ1)t1
Jσ2(λ1) = t1 −

1
r/n
Jσ2(r/n)

1
λ1Jσ2(λ1) r = t1 −

1
λ1
Jσ2(λ1)

1
λ1Jσ2(λ1)r $ t1 − η1r

where η1 < 1 independently of r and n. See Figure 3.2.4 below for an example.

225



0 1 s
λ0

λ1 λ2 λ3 λ4 λ5
λ6

λ0 λ1

Jσ2(λ1)

Jσ2(λ1)

S $ slope of segment

S S ′′

S ′

η1 $ S ′/S < 1
η2 $ S ′′/S > 1

Figure 3.2.4. Example of η1 and η2 under assumption (3.2.34).
The thin line represents Jσ2 .

Similarly, in the case t1 < r < t1, we have fr,n = Cf (Jσ2(r/n, λ1)n)2/3. Thus, for x ∈ In,

(♠)r =
∫
x−Ir,n(x)

e
− 1

2
z2

J
σ2 (r/n,λ1)n√

2πJσ2(r/n, λ1)n
dz ≤ 2fr,n

e
− 1

2
(M?

n(t1)−sr,n(M?
n(t1))−fr,n)2

J
σ2 (r/n,λ1)n√

Jσ2(r/n, λ1)n

≤ C 2
−Jσ2 (r/n,λ1)t1

J
σ2 (λ1) e

1
2
J
σ2 (r/n,λ1)
J
σ2 (λ1)

log(t1)

(Jσ2(r/n, λ1)n)−1/6 e
Cf (J

σ2 (r/n,λ1)n)2/3

g−1σ̄1 (3.2.42)

≤ C 2−η2(t1−r) (Jσ2(r/n, λ1)n)2/3 eC̃ (t1−r)2/3
. (3.2.43)

Again, to obtain the last bound, we use two crucial observations. The first exponential in
(3.2.42) is bounded by C(Jσ2(r/n, λ1)n)1/2, where C is independent of r and n, using the
fact that x 7→ (log x)/x is decreasing for x ≥ e. Also, under assumption (3.2.34) and for
t1 < r < t1,

Jσ2(r/n, λ1)t1
Jσ2(λ1) =

1
λ1−r/nJσ2(r/n, λ1)

1
λ1Jσ2(λ1) (t1 − r) ≥ η2(t1 − r)

where η2 is the minimum of the last ratio with respect to r ∈ {t1, . . . , t1 − 1}. Note that
η2 > 1 independently of r and n, see Figure 3.2.4 above.
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By combining the bounds on (♠)r in (3.2.41) and (3.2.43), the sum in (3.2.39) is bounded
from above by

C

 t1∑
r=1

2−(1−η1)r+o(r) +
t1−1∑
r=t1+1

2(1−η2)(t1−r)+o(t1−r)

 ≤ C?

where η1 < 1 and η2 > 1 independently of r and n. By applying this bound in (3.2.39) and
back in (3.2.38), we have

E[(Nn)2]
(E[Nn])2 ≤ 1 + 1 + C?

E[Nn]
(3.2.37)
≤ 1 + 1 + C?

c?
. (3.2.44)

Using (3.2.44) in (3.2.36) yields (3.2.33) when d = 1, under assumption (3.2.34). This ends
the proof of Lemma 3.2.8. �
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Abstract. In Arguin and Tai (2018), the authors prove the convergence of the two-

overlap distribution at low temperature for a randomized Riemann zeta function on the

critical line. We extend their results to prove the Ghirlanda-Guerra identities. As a

consequence, we find the joint law of the overlaps under the limiting mean Gibbs measure

in terms of Poisson-Dirichlet variables. It is expected that we can adapt the approach to

prove the same result for the Riemann zeta function itself.

Keywords: extreme value theory, Riemann zeta function, Ghirlanda-Guerra identities,

Gibbs measure, Poisson-Dirichlet variable, ultrametricity, spin glasses

4.1. Introduction

Following recent conjectures of Fyodorov et al. (2012) and Fyodorov and Keating (2014)
about the limiting law of the Gibbs measure and the limiting law of the maximum for the
Riemann zeta function on bounded random intervals of the critical line, progress have been
made in the mathematics literature. If τ is sampled uniformly in [T, 2T ] for some large T ,
then it is expected that the limiting law of theGibbsmeasure (see (4.2.6)) at low temperature
for the field (log |ζ(1

2 + i(τ+h))|, h ∈ [0, 1]) is a one-level Ruelle probability cascade (see e.g.
Ruelle (1987)) and the law of the maximum is asymptotic to log log T − 3

4 log log log T +MT

where (MT , T ≥ 2) is a sequence of random variables converging in distribution. For
a randomized version of the Riemann zeta function (see (4.2.1)), the first order of the
maximum was proved in Harper (2013), the second order of the maximum was proved in
Arguin et al. (2017), and the limiting two-overlap distribution was found in Arguin and Tai
(2018) (see Theorem 4.3.1 below). The tightness of the recentered maximum is still open
(see Arguin and Ouimet (2019)). In this short paper, we complete the analysis of Arguin
and Tai (2018) by proving the Ghirlanda-Guerra (GG) identities in the limit T → ∞
(see Theorem 4.5.8). As is well known in the spin glass literature (see e.g. Chapter 2 in
Panchenko (2013b)), the limiting law of the two-overlap distribution, with a finite support,
together with the GG identities allow a complete description of the limiting law of the Gibbs
measure as a Ruelle probability cascade with finitely many levels (a random measure with
a tree structure and Poisson-Dirichlet weights at each level). Our main result (Theorem
4.3.2) describes the joint law of the overlaps under the limiting mean Gibbs measure in
terms of Poisson-Dirichlet weights. It is expected that the approach presented here, which
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mostly stems from the work of Arguin and Zindy (2014), Bovier and Kurkova (2004a) and
Panchenko (2013b) on other models, can be adapted to prove the same result for the (true)
Riemann zeta function on bounded random intervals of the critical line. At present, for the
(true) Riemann zeta function, the first order of the maximum is proved conditionally on the
Riemann hypothesis in Najnudel (2018) and unconditionally in Arguin et al. (2019).

The paper is organised as follows. In Section 4.2, we give a few definitions. In Section
4.3, the main result is stated and shown to be a consequence of the GG identities and the
main result from Arguin and Tai (2018) about the limiting two-overlap distribution. In
Section 4.4, we state known results from Arguin and Tai (2018) that we will use to prove
the GG identities. The GG identities are proven in Section 4.5 along with other preliminary
results, see the structure of the proof in Figure 4.5.1. For an explanation of the consequences
of the GG identities and their conjectured universality for mean field spin glass models, we
refer the reader to Jagannath (2017), Panchenko (2013b) and Talagrand (2011).

4.2. Some definitions

Let (Up, p primes) be an i.i.d. sequence of uniform random variables on the unit circle
in C. The random field of interest is

Xh $
∑
p≤T

Wp(h) $
∑
p≤T

Re(Up p−ih)
p1/2 , h ∈ [0, 1]. (4.2.1)

This is a good model for the large values of (log |ζ(1
2 + i(τ +h))|, h ∈ [0, 1]) for the following

reason. Proposition 1 in Harper (2013) proves that, assuming the Riemann hypothesis, and
for T large enough, there exists a set B ⊆ [T, T +1], of Lebesgue measure at least 0.99, such
that

log |ζ(1
2 + it)| = Re

∑
p≤T

1
p1/2+it

log(T/p)
log T

+O(1), t ∈ B. (4.2.2)

If we ignore the smoothing term log(T/p)/ log T and note that the process (p−iτ, p primes),
where τ is sampled uniformly in [T, 2T ], converges (in the sense of convergence of its finite-
dimensional distributions), as T → ∞, to a sequence of independent random variables
distributed uniformly on the unit circle (by computing the moments), then the model (4.2.1)
follows. For more information, see Section 1.1 in Arguin et al. (2017).
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For simplicity, the dependence in T will be implicit everywhere forX. Summations over
p’s and q’s always mean that we sum over primes. For α ∈ [0, 1], we denote truncated sums
of X as follows :

Xh(α) $
∑

p≤exp((log T )α)
Wp(h), h ∈ [0, 1], (4.2.3)

where ∑∅ $ 0. Define the overlap between two points of the field by

ρ(h, h′) $ E[XhXh′ ]√
E[X2

h]E[X2
h′ ]
, h, h′ ∈ [0, 1]. (4.2.4)

For any α ∈ [0, 1] and any β > 0, define the (normalized) free energy of the perturbed model

by
fα,β,T (u) $ 1

log log T log
∫ 1

0
eβ(uXh(α)+Xh)dh, u > −1. (4.2.5)

The parameter u is there to allow perturbations in the correlation structure of the model.
When u = 0, we recover the free energy. Finally, for any Borel set A ∈ B([0, 1]), define the
Gibbs measure by

Gβ,T (A) =
∫
A

eβXh∫
[0,1] e

βXh′dh′
dh. (4.2.6)

The parameter β is called the inverse temperature in statistical mechanics.

4.3. Main result

The main result of this article is to present a complete description of the joint law of the
overlaps for the model (4.2.1), under the limiting mean Gibbs measure

lim
T→∞

EG×∞β,T . (4.3.1)

We will show that, when β > βc $ 2, this measure is the expectationE of a randommeasure
µβ sampling orthonormal vectors in an infinite-dimensional separable Hilbert space, where
the probability weights follow a

Poisson-Dirichlet distribution of parameter βc/β.

This is done through what is called the Ghirlanda-Guerra identities. These identities
first appeared in Ghirlanda and Guerra (1998) and, 15 years later, it was proved in a
celebrated work of Panchenko Panchenko (2013a) (a simple proof is given in Panchenko
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(2011)whenEµβ has a finite support) that if a randommeasure on the unit ball of a separable
Hilbert space satisfies an extended version of the Ghirlanda-Guerra identities, then we must
have ultrametricity (a tree-like structure) of the overlaps under the mean of this random
measure. This was an important step because it was well-known following the publication
of Ghirlanda and Guerra (1998) that the Ghirlanda-Guerra identities and ultrametricity
together completely determine the joint law of the overlaps, up to the distribution of one
overlap. See e.g., Theorem 6.1 in Baffioni and Rosati (2000), Section 1.2 in Talagrand (2003)
(in the context of the REM model from Derrida (1980)) and Theorem 1.13 in Bovier and
Kurkova (2004a) (in the context of the GREM model from Derrida (1985)).

Thus, from the work of Panchenko, proving the (extended) Ghirlanda-Guerra identi-
ties under (4.3.1) implies ultrametricity and, consequently, determines the joint law of the
overlaps, up to the limiting two-overlap distribution

lim
T→∞

EG×2
β,T [1{ρ(h,h′)∈ · }], (4.3.2)

which Arguin and Tai (2018) already determined for the model (4.2.1).

Theorem 4.3.1 (Theorem 1 in Arguin and Tai (2018)). For any β > βc $ 2 and any

Borel set A ∈ B([0, 1]),

lim
T→∞

EG×2
β,T

[
1{ρ(h,h′)∈A}

]
= 2
β

1A(0) +
(

1− 2
β

)
1A(1). (4.3.3)

Remark 4.3.1. The limiting two-overlap distribution in (4.3.3) can be interpreted as a

measure of relative distance between the extremes of the model.

To state our main result, recall the definition of a Poisson-Dirichlet variable. For 0 <
θ < 1, let η = (ηi)i∈N∗ be the atoms of a Poisson random measure on (0,∞) with intensity
measure θx−θ−1dx. A Poisson-Dirichlet variable ξ of parameter θ is a random variable on
the space of decreasing weights{

(x1, x2, . . .) ∈ [0, 1]N∗ :
1 ≥ x1 ≥ x2 ≥ . . . ≥ 0
and ∑∞

i=1 xi = 1

}
(4.3.4)

which has the same law as
ξ

law=
(

ηi∑∞
j=1 ηj

, i ∈ N∗
)
↓
, (4.3.5)

where ↓ stands for the decreasing rearrangement.
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Here is the main result.

Theorem 4.3.2 (Main result). Let β > βc $ 2 and let ξ = (ξk)k∈N∗ be a Poisson-

Dirichlet variable of parameter βc/β. Denote by E the expectation with respect to ξ. For

any continuous function φ : [0, 1]s(s−1)/2 → R of the overlaps of s points,

lim
T→∞

EG×sβ,T
[
φ
((
ρ(hl, hl′)

)
1≤l,l′≤s

)]

= E

 ∑
k1,...,ks∈N

ξk1 · · · ξksφ
((

1{kl=kl′}
)

1≤l,l′≤s

) . (4.3.6)

Remark 4.3.2. The domain of φ is [0, 1]s(s−1)/2 here because the matrix (ρ(hl, hl′))1≤l,l′≤s

is symmetric and has 1’s on the diagonal.

Remark 4.3.3. The proof of Theorem 4.3.2 is given in Section 4.6. As mentioned earlier,

it is a consequence of Theorem 4.3.1, Theorem 4.5.8 and the ultrametric structure of

the overlaps under the limiting mean Gibbs measure. To prove the extended Ghirlanda-

Guerra identities in Section 4.5, we will use the strategy developed in Bovier and Kurkova

(2004a,b) and used in Arguin and Zindy (2014) and Arguin and Tai (2018) (see Remark

4.3.4). For an alternative strategy (which requires a stronger control on the path of the

maximal particle in the tree structure), see Jagannath (2016).

Remark 4.3.4. In this paper, we state most of our results above the critical inverse

temperature (i.e. at low temperature), namely when β > βc $ 2, because that’s the only

interesting case. The description of the joint law of the overlaps under the limiting mean

Gibbs measure turns out to be trivial when β < βc. Here’s why.

When β > βc, the Gibbs measure gives a lot of weight to the “particles” h that are

near the maximum’s height in the tree structure underlying the model (4.2.1). The result

of Theorem 4.3.1 simply says that if you sample two particles under the Gibbs measure,

then, in the limit and on average, either the particles branched off “at the last moment”

in the tree structure (there are clusters of points reaching near the level of the maximum)

or they branched off in the beginning. They cannot branch at intermediate scales.

When β < βc, the weights in the Gibbs measure are more spread out so that most
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contributions to the free energy actually come from particles reaching heights that are well

below the level of the maximum in the tree structure. Hence, when two particles are selected

from this larger pool of contributors that are not clustering, it can be shown that, in the

limit and on average, the particles necessarily branched off in the beginning of the tree.

The proof would follow the exact same strategy used in Arguin and Tai (2018) :

— find the free energy of the perturbed model as a function of the perturbation param-

eter u,

— link the expectation of the derivative of the perturbed free energy at u = 0 with the

two-overlap distribution by using an approximate integration by parts argument and

the convexity of the free energy.

(We refer to this strategy as the Bovier-Kurkova technique since it is adapted from the

strategy introduced in Bovier and Kurkova (2004a,b) for the GREM model.) The compu-

tations would actually be easier in this case. One would find that

lim
T→∞

EG×2
β,T

[
1{ρ(h,h′)∈A}

]
= 1A(0). (4.3.7)

In other words, when β < βc, the limiting mean Gibbs measure only samples points that are

uncorrelated (and thus far from each other) in the limiting tree structure. More generally,

our main result (Theorem 4.3.2), which describes the joint law of the overlaps under the

limiting mean Gibbs measure, would say that for any continuous function φ : [0, 1]s2 → R

of the overlaps of s points,

lim
T→∞

EG×sβ,T
[
φ
((
ρ(hl, hl′)

)
1≤l,l′≤s

)]
= φ(Is), (4.3.8)

where Is denotes the identity matrix of order s. In the critical case β = βc, we obtain

(4.3.7) and (4.3.8) with the same techniques.

4.4. Known results

In this section, we gather the results from Arguin and Tai (2018) that we will use in
Section 4.5 to prove the extended Ghirlanda-Guerra identities. The two propositions below
are known convergence results for fα,β,T and its derivative (with respect to u). We slightly
reformulate them for later use.
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Proposition 4.4.1 (Proposition 3 in Arguin and Tai (2018)). Let β > βc $ 2 and 0 <

α < 1. Then,
2
β2 · E

[
f ′α,β,T (0)

]
=
∫ α

0
EG×2

β,T [1{ρ(h,h′)≤y}]dy + oT (1). (4.4.1)

Since f ′α,β,T (0) = β(log log T )−1Gβ,T [Xh(α)], we can also write (4.4.1) as

1
β
· EGβ,T [Xh(α)]

1
2 log log T = α− EG×2

β,T [
∫ α

0
1{y<ρ(h,h′)}dy] + oT (1). (4.4.2)

Proposition 4.4.2 (Equation 13, Proposition 4 and Lemma 14 in Arguin and Tai (2018)).
Let β > βc $ 2, 0 ≤ α ≤ 1 and u > −1. Then,

lim
T→∞

fα,β,T (u) = fα,β(u) $



β2

4 Vα,u, if u < 0, 2 < β ≤ 2/
√
Vα,u,

β
√
Vα,u − 1, if u < 0, β > 2/

√
Vα,u,

β(αu+ 1)− 1, if u ≥ 0, β > 2,

(4.4.3)

where the limit holds in L1, and where Vα,u $ (1 + u)2α + (1− α).

4.5. Proof of the extended Ghirlanda-Guerra identities

This section is dedicated to the proof of the extended Ghirlanda-Guerra identities (The-
orem 4.5.8). We adopt a “bottom-up” style of presentation, where Theorem 4.5.8 is the end
goal. Here is the structure of the proof :

Prime number
theorem

Lemma 5.2
Approximate
integration
by parts

Lemma 5.3
Bovier-Kurkova
technique (preliminary)

Lemma 5.1
Overlaps of the
truncated field Prop. 5.4

Bovier-Kurkova
technique

Arguin-Tai

Prop. 4.1
Prop. 4.2

Prop. 5.6
Concentration

Lemma 5.5
f ′
α,β(0) = . . .

Thm. 5.7
Approximate
extended
GG identities

Dovbysh-Sudakov
representation theorem

Thm. 5.8
Extended
GG identities
in the limit

Figure 4.5.1. Structure of the proof
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We start by relating the overlaps of the field X to the overlaps of the truncated field
X(α).

Lemma 4.5.1 (Overlaps of the truncated field). Let 0 ≤ α ≤ 1. Then, for all h, h′ ∈ [0, 1],

E[Xh(α)Xh′(α)]
1
2 log log T =


ρ(h, h′) +O((log log T )−1) , if ρ(h, h′) ≤ α,

α +O((log log T )−1) , if ρ(h, h′) > α.
(4.5.1)

In both cases, the O((log log T )−1) term is uniform in α.

Proof. Since Re(z) = (z+ z)/2, E[U2
p ] = E[(Up)2] = 0 and E[UpUp] = 1, it is easily shown

from (4.2.1) that, for any prime p,

E[Wp(h)Wp(h′)] = 1
2p cos(|h− h′| log p), h, h′ ∈ [0, 1]. (4.5.2)

Thus, from the independence of the Up’s and (4.2.3),

E[Xh(α)Xh′(α)] =
∑

p≤exp((log T )α)

1
2p cos(|h− h′| log p), h, h′ ∈ [0, 1]. (4.5.3)

Sums like the one on the right-hand side of (4.5.3) were estimated on page 20 of Appendix
A in Harper (2013) by using the prime number theorem. In particular,

ρ(h, h′) =
1
2 log

(
(log T ) ∧ |h− h′|−1

)
1
2 log log T +O

(
(log log T )−1

)
, (4.5.4)

and

E[Xh(α)Xh′(α)]
1
2 log log T =


log |h−h′|−1

log log T +O((log log T )−1) , if 1 ≤ |h− h′|−1 < (log T )α,

α +O((log log T )−1) , if |h− h′|−1 ≥ (log T )α,
(4.5.5)

where the O((log log T )−1) terms are all uniform in α. By comparing (4.5.4) and (4.5.5),
we get

E[Xh(α)Xh′(α)]
1
2 log log T =


ρ(h, h′) +O((log log T )−1) , if ρ(h, h′)−O((log log T )−1) < α,

α +O((log log T )−1) , if ρ(h, h′)−O((log log T )−1) ≥ α,

=


ρ(h, h′) +O((log log T )−1) , if ρ(h, h′) ≤ α,

α +O((log log T )−1) , if ρ(h, h′) > α.
(4.5.6)

This ends the proof. �
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The next lemma is an approximate integration by parts result. It is a straightforward
generalization of Lemma 9 in Arguin and Tai (2018).

Lemma 4.5.2 (Approximate integration by parts). Let s ∈ N∗ and let ξ $ (ξ1, ξ2, . . . , ξs)
be a random vector taking values in Cs, such that E[|ξj|3] < ∞ and E[ξj] = 0 for all

j ∈ {1, . . . , s}, and such that E[ξlξj] = 0 for all l, j ∈ {1, . . . , s}. Let F : Cs → C be a

twice continuously differentiable function such that, for some M > 0,

max
1≤j≤s

{
‖∂2

zj
F‖∞ ∨ ‖∂2

zj
F‖∞ ∨ ‖∂zj∂zjF‖∞ ∨ ‖∂zj∂zjF‖∞

}
≤M,

where ‖f‖∞ $ supz∈Cs |f(z, z)|. Then, for any k ∈ {1, . . . , s},∣∣∣∣E[ξkF (ξ, ξ)]−
s∑
j=1

E[ξkξj] E[∂zjF (ξ, ξ)]
∣∣∣∣� s2M max

1≤j≤s
E[|ξj|3], (4.5.7)

∣∣∣∣E[ξkF (ξ, ξ)]−
s∑
j=1

E[ξkξj] E[∂zjF (ξ, ξ)]
∣∣∣∣� s2M max

1≤j≤s
E[|ξj|3], (4.5.8)

where f(·) � g(·) means that |f(·)| ≤ Cg(·) for some universal constant C > 0 (the

Vinogradov notation).

Proof. Fix k ∈ {1, . . . , s}. We only prove (4.5.7) because the proof of (4.5.8) is almost
identical. Since E[ξk] = 0 and E[ξkξj] = 0 for all j ∈ {1, . . . , s}, the left-hand side of (4.5.7)
can be written as

E
[
ξk

(
F (ξ, ξ)− F (0,0)−

s∑
j=1

ξj∂zjF (0,0)−
s∑
j=1

ξj∂zjF (0,0)
)]

−
s∑
j=1

E
[
ξkξj

]
E
[
∂zjF (ξ, ξ)− ∂zjF (0,0)

]
.

(4.5.9)

By Taylor’s theorem in several variables and the assumptions, the following estimates hold∣∣∣∣F (ξ, ξ)− F (0,0)−
s∑
j=1

ξj∂zjF (0,0)−
s∑
j=1

ξj∂zjF (0,0)
∣∣∣∣

�M
( s∑
l=1
|ξl|
)2
≤M s

s∑
l=1
|ξl|2, (4.5.10)

∣∣∣∣∂zjF (ξ, ξ)− ∂zjF (0,0)
∣∣∣∣�M

s∑
l=1
|ξl| for all j ∈ {1, . . . , s}. (4.5.11)

Therefore,
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|(4.5.9)| �M
s∑
l=1

(
sE
[
|ξk| · |ξl|2

]
+

s∑
j=1

E
[
|ξk| · |ξj|

]
E
[
|ξl|
])

≤M
s∑
l=1

(
sE
[
|ξk|3

]1/3
E
[
(|ξl|2)3/2

]2/3
+

s∑
j=1

E
[
|ξk|3

]1/3
E
[
|ξj|3

]1/3
E
[
|ξl|3

]1/3)

≤ 2s2M max
1≤j≤s

E[|ξj|3], (4.5.12)

where we used Holder’s inequality to obtain the second inequality. �

Here is a generalization of Proposition 10 in Arguin and Tai (2018). It could be seen as
a generalization of (4.4.2) if (4.4.2) was applied to (Wp(h), h ∈ [0, 1]) instead of (Xh(α), h ∈
[0, 1]).

Lemma 4.5.3 (Bovier-Kurkova technique - preliminary version). Let β > 0 and p ≤ T .

For any s ∈ N∗, any k ∈ {1, . . . , s}, and any bounded mesurable function φ : [0, 1]s → R,

we have ∣∣∣EG×sβ,T [Wp(hk)φ(h)]

− β ·


∑s
l=1 EG×sβ,T

[
E[Wp(hk)Wp(hl)]φ(h)

]
−sEG×(s+1)

β,T

[
E[Wp(hk)Wp(hs+1)]φ(h)

]

∣∣∣∣∣∣∣ ≤ Kp−3/2,

(4.5.13)

where h $ (h1, h2, . . . , hs), K $ s2Cβ2‖φ‖∞, and C > 0 is a universal constant.

Proof. Write for short

ωp(h) $ 1
2p
−ih−1/2 and Yp(h) $ β

∑
q≤T
q 6=p

Wq(h). (4.5.14)

Define

Fp(z, z) $
∫

[0,1]s ωp(hk)φ(h)∏s
l=1 exp

(
β(zlωp(hl) + zlωp(hl)) + Yp(hl)

)
dh∫

[0,1]s
∏s
l=1 exp

(
β(zlωp(hl) + zlωp(hl)) + Yp(hl)

)
dh

. (4.5.15)

Then,

EG×sβ,T [Wp(hk)φ(h)] = E[Up · Fp(U p,U p)] + E[Up · Fp(U p,U p)], (4.5.16)

where U p $ (Up, Up, . . . , Up). Since the Up’s are i.i.d. uniform random variables on the unit
circle in C, we have E[|Up|3] <∞, E[UpUp] = 1 and E[U2

p ] = E[Up] = 0. If we apply (4.5.7)
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with F = Fp and ξ = U p, and (4.5.8) with F = Fp and ξ = U p, we get, as T →∞,

EG×sβ,T [Wp(hk)φ(h)] =
s∑
j=1

{
E
[
∂zjFp(U p,U p)

]
+ E

[
∂zjFp(U p,U p)

]}

+ s2O
(

max
1≤j≤s

{
‖∂2

zj
Fp‖∞ ∨ ‖∂2

zj
Fp‖∞

})
.

(4.5.17)

For any bounded mesurable function H : [0, 1]→ C, define

〈H〉(z,z) $ 〈H(h)〉(z,z) $
∫
[0,1]H(h) exp

(
β(zωp(h) + zωp(h)) + Yp(h)

)
dh∫

[0,1] exp
(
β(zωp(h) + zωp(h)) + Yp(h)

)
dh

, (4.5.18)

and for any bounded mesurable function H : [0, 1]s → C, define

〈H〉φ(z,z) $ 〈H(h)〉φ(z,z) $
∫

[0,1]s H(h)φ(h)∏s
l=1 exp

(
β(zlωp(hl) + zlωp(hl)) + Yp(hl)

)
dh∫

[0,1]s
∏s
l=1 exp

(
β(zlωp(hl) + zlωp(hl)) + Yp(hl)

)
dh

.

(4.5.19)
Differentiation of the above yields

∂zj〈H〉φ(z,z) = β
{
〈Hωp(hj)〉φ(z,z) − 〈H〉φ(z,z)〈ωp(hs+1)〉(zj ,zj)

}
,

∂zj〈H〉φ(z,z) = β
{
〈Hωp(hj)〉φ(z,z) − 〈H〉φ(z,z)〈ωp(hs+1)〉(zj ,zj)

}
.

(4.5.20)

The partial derivatives in (4.5.20) can be used to expand the summands on the right-hand
side of (4.5.17). Indeed, by using the relation Fp(z, z) = 〈ωp(hk)〉φ(z,z) with z = U p,

E
[
∂zjFp(U p,U p)

]
+ E

[
∂zjFp(U p,U p)

]
= E

[
∂zj〈ωp(hk)〉φ(Up,Up)

]
+ E

[
∂zj
〈
ωp(hk)

〉φ
(Up,Up)

]
(4.5.20)= β E

[〈
ωp(hk)ωp(hj)

〉φ
(Up,Up)

− 〈ωp(hk)〉φ(Up,Up)〈ωp(hs+1)〉(Up,Up)

]

+ β E
[〈
ωp(hk)ωp(hj)

〉φ
(Up,Up)

− 〈ωp(hk)〉φ(Up,Up)〈ωp(hs+1)〉(Up,Up)

]

= β ·


E
[〈

2Re
(
ωp(hk)ωp(hj)

)〉φ
(Up,Up)

]
−E

[
2Re

(
〈ωp(hk)〉φ(Up,Up)〈ωp(hs+1)〉(Up,Up)

)]
 . (4.5.21)
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Since, by definition,
〈 · 〉φ(Up,Up) = G×sβ,T [ · φ(h)], (4.5.22)

and

2Re
(
〈ωp(hk)〉φ(Up,Up)〈ωp(hs+1)〉(Up,Up)

)

= 2Re


∫
[0,1]

∫
[0,1]s ωp(hk)ωp(hs+1)φ(h)∏s+1

l=1 exp
(
β
∑
p≤T Wp(hl)

)
dh dhs+1∫

[0,1]
∫

[0,1]s
∏s+1
l=1 exp

(
β
∑
p≤T Wp(hl)

)
dh dhs+1


= G

×(s+1)
β,T

[
2Re

(
ωp(hk)ωp(hs+1)

)
φ(h)

]
, (4.5.23)

and
2Re(ωp(h)ωp(h′)) = 1

2p cos(|h− h′| log p) (4.5.2)= E[Wp(h)Wp(h′)], (4.5.24)

we can rewrite (4.5.21) as

E
[
∂zjFp(U p,U p)

]
+ E

[
∂zjFp(U p,U p)

]

= β ·


EG×sβ,T

[
E[Wp(hk)Wp(hj)]φ(h)

]
−EG×(s+1)

β,T

[
E[Wp(hk)Wp(hs+1)]φ(h)

]
 .

(4.5.25)

From (4.5.17) and (4.5.25), we conclude (4.5.13), as long as, for all j ∈ {1, . . . , s},

‖∂2
zj
F‖∞ ∨ ‖∂2

zj
F‖∞ ≤ C̃β2‖φ‖∞p−3/2, (4.5.26)

where C̃ > 0 is a universal constant. To verify this last point, note that, by differentiating
in (4.5.20),

∂2
zj
〈H〉φ(z,z) = β


∂zj〈Hωp(hj)〉φ(z,z) − (∂zj〈H〉φ(z,z))〈ωp(hs+1)〉(zj ,zj)
−〈H〉φ(z,z)(∂zj〈ωp(hs+1)〉(zj ,zj))



= β2



〈Hω2
p(hj)〉φ(z,z) − 〈Hωp(hj)〉φ(z,z)〈ωp(hs+1)〉(zj ,zj)

−
(
〈Hωp(hj)〉φ(z,z) − 〈H〉φ(z,z)〈ωp(hs+1)〉(zj ,zj)

)
〈ωp(hs+1)〉(zj ,zj)

−〈H〉φ(z,z)

(
〈ω2

p(hs+1)〉(zj ,zj) − 〈ωp(hs+1)〉2(zj ,zj)
)


.

(4.5.27)
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Using the relation Fp(z, z) = 〈ωp(hk)〉φ(z,z), (4.5.27), and the triangle inequality, we obtain

|∂2
zj
Fp(z, z)| = β2

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

〈ωp(hk)ω2
p(hj)〉φ(z,z)

−2〈ωp(hk)ωp(hj)〉φ(z,z)〈ωp(hs+1)〉(zj ,zj)

+2〈ωp(hk)〉φ(z,z)〈ωp(hs+1)〉2(zj ,zj)

−〈ωp(hk)〉φ(z,z)〈ω2
p(hs+1)〉(zj ,zj)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

≤ β2



〈|ωp(hk)| · |ωp(hj)|2〉|φ|(z,z)

+2〈|ωp(hk)| · |ωp(hj)|〉|φ|(z,z)〈|ωp(hs+1)|〉(zj ,zj)

+2〈|ωp(hk)|〉|φ|(z,z)〈|ωp(hs+1)|〉2(zj ,zj)

+〈|ωp(hk)|〉|φ|(z,z)〈|ωp(hs+1)|2〉(zj ,zj)


. (4.5.28)

Since |ωp(h)| = 1
2p
−1/2, 〈1〉(zj ,zj) = 1 and 〈1〉|φ|(z,z) ≤ ‖φ‖∞, we deduce from (4.5.28) that

|∂2
zj
Fp(z, z)| ≤ 6

8β
2‖φ‖∞p−3/2. (4.5.29)

We obtain the bound on ‖∂2
zj
Fp‖∞ in the same manner. �

The next proposition is a consequence of the two previous lemmas. It generalizes (4.4.2),
which corresponds to the special case (k = 1, s = 1, φ ≡ 1). The idea for the statement
originates from Bovier and Kurkova (2004a), and the idea behind the proof generalizes the
special-case application in Arguin and Zindy (2014). See Arguin and Zindy (2015); Ouimet
(2017) for an application in the context of the Gaussian free field.

Proposition 4.5.4 (Bovier-Kurkova technique). Let β > 0 and 0 ≤ α ≤ 1. For any

s ∈ N∗, any k ∈ {1, . . . , s}, and any bounded mesurable function φ : [0, 1]s → R, we have
∣∣∣∣∣∣ 1β ·

EG×sβ,T
[
Xhk(α)φ(h)

]
1
2 log log T

−


∑s
l=1 EG×sβ,T

[ ∫ α
0 1{y<ρ(hk,hl)}dy φ(h)

]
−sEG×(s+1)

β,T

[ ∫ α
0 1{y<ρ(hk,hs+1)}dy φ(h)

]

∣∣∣∣∣∣∣ = O

(
(log log T )−1

)
,

(4.5.30)

where h $ (h1, h2, . . . , hs).
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Proof. For any l ∈ {1, . . . , s+ 1},

EG×(s+1)
β,T

[ ∫ α

0
1{y<ρ(hk,hl)}dy φ(h)

]
= EG×(s+1)

β,T

[
ρ(hk, hl) 1{ρ(hk,hl)≤α} φ(h)

]
+ EG×(s+1)

β,T

[
α 1{ρ(hk,hl)>α} φ(h)

]
.

(4.5.31)

On the other hand, if we sum (4.5.13) over the set {p prime : p ≤ exp((log T )α)} and divide
by β

2 log log T , we obtain∣∣∣∣∣ 1β · EG
×s
β,T [Xhk(α)φ(h)]

1
2 log log T

−


∑s
l=1 EG×sβ,T

[
E[Xhk (α)Xhl (α)]

1
2 log log T φ(h)

]
−sEG×(s+1)

β,T

[
E[Xhk (α)Xhs+1 (α)]

1
2 log log T φ(h)

]

∣∣∣∣∣∣∣∣ = O

(
(log log T )−1

)
.

(4.5.32)

Now, one by one, take the difference in absolute value between each of the s+1 expectations
inside the braces in (4.5.32) and the corresponding expectation on the left-hand side of
(4.5.31). We obtain the bound (4.5.30) by using Lemma 4.5.1. �

Our goal now is to combine Proposition 4.5.4 with a concentration result (Proposition
4.5.6) in order to prove an approximate version of theGG identities (Theorem 4.5.7). Wewill
then show that the identities must hold exactly in the limit T →∞ (Theorem 4.5.8). Before
stating and proving the concentration result, we show that fα,β(·), the limiting perturbed
free energy, is differentiable in an open interval around 0.

Lemma 4.5.5. Let β > βc $ 2 and 0 ≤ α ≤ 1. There exists δ = δ(α, β) > 0 small enough

that fα,β(·) from Proposition 4.4.2 is differentiable on (−δ, δ). Also, we have f ′α,β(0) = βα.

Proof. Since β > 2 and limu→0 Vα,u = 1, there exists δ = δ(α, β) > 0 small enough that,
for all u ∈ (−δ, δ),

fα,β(u) =

 β
√
Vα,u − 1, if u < 0,

β(αu+ 1)− 1, if u ≥ 0.
(4.5.33)

The differentiability of fα,β(·) on (−δ, δ)\{0} is obvious. Also,

fα,β(u)− fα,β(0)
u

=

 β
√
Vα,u−1
u

, if u < 0,
βα, if u ≥ 0.

(4.5.34)

Take both the left and right limits at 0 to conclude. �
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Here is the concentration result. It is analogous to Theorem 3.8 in Panchenko (2013b),
which was proved for the mixed p-spin model. We give the proof for completeness.

Proposition 4.5.6 (Concentration). Let β > βc $ 2 and 0 < α < 1. For any s ∈ N∗,

any k ∈ {1, . . . , s}, and any bounded mesurable function φ : [0, 1]s → R, we have
∣∣∣∣∣EG

×s
β,T [Xhk(α)φ(h)]

log log T − EGβ,T [Xhk(α)]
log log T EG×sβ,T [φ(h)]

∣∣∣∣∣ = oT (1), (4.5.35)

where h $ (h1, h2, . . . , hs).

Proof. By applying Jensen’s inequality to the expectation EG×sβ,T [ · ], followed by the tri-
angle inequality, ∣∣∣EG×sβ,T [Xhk(α)φ(h)]− EGβ,T [Xhk(α)]EG×sβ,T [φ(h)]

∣∣∣
≤ EGβ,T

∣∣∣Xhk(α)− EGβ,T [Xhk(α)]
∣∣∣ · ‖φ‖∞

≤


EGβ,T

∣∣∣Xhk(α)−Gβ,T [Xhk(α)]
∣∣∣

+E
∣∣∣Gβ,T [Xhk(α)]− EGβ,T [Xhk(α)]

∣∣∣
 · ‖φ‖∞

$
{

(a) + (b)
}
· ‖φ‖∞.

Below, we show that (a) and (b) are o(log log T ) in Step 1 and Step 2, respectively.

Step 1. Note that

(a) = EGβ,T

∣∣∣∣ ∫ 1

0
(Xh1(α)−Xh2(α)) eβXh2∫ 1

0 e
βXz2dz2

dh2

∣∣∣∣
≤ EG×2

β,T

∣∣∣Xh1(α)−Xh2(α)
∣∣∣. (4.5.36)

For u ≥ 0, we define a perturbed version of the last quantity, where the Gibbs measure
Gβ,T,u is now defined with respect to the field (uXh(α) +Xh, h ∈ [0, 1]) :

Dα,β,T (u) $ EG×2
β,T,u

∣∣∣Xh1(α)−Xh2(α)
∣∣∣. (4.5.37)

We can easily verify that

D′α,β,T (y) = β EG×3
β,T,y

[∣∣∣Xh1(α)−Xh2(α)
∣∣∣ · (Xh1(α) +Xh2(α)− 2Xh3(α)

)]
. (4.5.38)

If we separate the expectation in (4.5.38) in two parts and apply the Cauchy-Schwarz
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inequality to each one of them, followed by an application of the elementary inequality
(c+ d)2 ≤ 2c2 + 2d2, we find, for y ≥ 0,

∣∣∣D′α,β,T (y)
∣∣∣ ≤ β ·


EG×3

β,T,y

∣∣∣Xh1(α)−Xh2(α)
∣∣∣∣∣∣Xh1(α)−Xh3(α)

∣∣∣
+EG×3

β,T,y

∣∣∣Xh1(α)−Xh2(α)
∣∣∣∣∣∣Xh2(α)−Xh3(α)

∣∣∣


≤ β · 2EG×2
β,T,y[(Xh1(α)−Xh2(α))2]

≤ β · 8EGβ,T,y[
(
Xh(α)−Gβ,T,y[Xh(α)]

)2
]. (4.5.39)

Note that β−2(log log T )f ′′α,β,T (y) = Gβ,T,y[
(
Xh(α)−Gβ,T,y[Xh(α)]

)2
] and apply inequality

(4.5.39) in the identity uDα,β,T (0) =
∫ u

0 Dα,β,T (y)dy − ∫ u0 ∫ x0 D′α,β,T (y)dydx. We obtain, for
u > 0,

Dα,β,T (0) ≤ 1
u

∫ u

0
Dα,β,T (y)dy +

∫ u

0

∣∣∣D′α,β,T (y)
∣∣∣ dy

≤ 2
(1
u

∫ u

0
β−2(log log T )E[f ′′α,β,T (y)]dy

)1/2

+ 8β
∫ u

0
β−2(log log T )E[f ′′α,β,T (y)]dy. (4.5.40)

In order to bound 1
u

∫ u
0 Dα,β,T (y)dy, we separated Dα,β,T (y) in two parts (with the triangle

inequality) and we applied the Cauchy-Schwarz inequality to the two resulting expectations
1
u

∫ u
0 EGβ,T,y[ · ] dy. Now, on the right-hand side of (4.5.40), use the convexity of fα,β,T (·)

and the mean convergence of fα,β,T (z), z > −1, from Proposition 4.4.2. We get, for all
u > 0 and all y ∈ (0, 1),

lim sup
T→∞

(a)
log log T

(4.5.36)
≤ lim sup

T→∞

Dα,β,T (0)
log log T

(4.5.40)
≤ 8

β
·
(
fα,β(u+ y)− fα,β(u)

y
− fα,β(0)− fα,β(−y)

y

)
. (4.5.41)

From Lemma 4.5.5, there exists δ = δ(α, β) > 0 such that fα,β(·) is differentiable on (−δ, δ).
Therefore, take u→ 0+ and then y → 0+ in the above equation to conclude Step 1.

249



Step 2. For all u ∈ (0, 1), let

ηα,β,T (u) $
∣∣∣fα,β,T (−u)− E[fα,β,T (−u)]

∣∣∣+ ∣∣∣fα,β,T (0)− E[fα,β,T (0)]
∣∣∣

+
∣∣∣fα,β,T (u)− E[fα,β,T (u)]

∣∣∣. (4.5.42)

Differentiation of the free energy gives f ′α,β,T (0) = β(log log T )−1Gβ,T [Xhk(α)]. Then, from
the convexity of fα,β,T (·),

β · (b)
log log T = E

∣∣∣f ′α,β,T (0)− E[f ′α,β,T (0)]
∣∣∣

≤
∣∣∣∣∣E[fα,β,T (u)]− E[fα,β,T (0)]

u
− E[f ′α,β,T (0)]

∣∣∣∣∣
+
∣∣∣∣∣E[fα,β,T (0)]− E[fα,β,T (−u)]

u
− E[f ′α,β,T (0)]

∣∣∣∣∣+ E[ηα,β,T (u)]
u

. (4.5.43)

Using the L1 convergence of fα,β,T (z), z > −1, from Proposition 4.4.2, and the mean
convergence of f ′α,β,T (0) from Proposition 4.4.1 (the limit is f ′α,β(0) by Lemma 4.5.5, the
convexity of E[fα,β,T (·)] and fα,β(·), and by Theorem 25.7 in Rockafellar (1970)), we deduce
that for all u ∈ (0, 1),

lim sup
T→∞

(b)
log log T ≤

1
β
·


∣∣∣fα,β(u)−fα,β(0)

u
− f ′α,β(0)

∣∣∣
+
∣∣∣fα,β(0)−fα,β(−u)

u
− f ′α,β(0)

∣∣∣
 ,

Take u → 0+ in the last equation, the differentiability of fα,β(·) at 0 (from Lemma 4.5.5)
concludes Step 2. �

Theorem 4.5.7 (Approximate extended Ghirlanda-Guerra identities). Let β > βc $ 2
and 0 < α < 1. For any s ∈ N∗, any k ∈ {1, . . . , s}, and any bounded mesurable function

φ : [0, 1]s → R, we have∣∣∣∣EG(s+1)
β,T

[ ∫ α

0
1{y<ρ(hk,hs+1)}dy φ(h)

]

−


1
s
EG×2

β,T

[ ∫ α
0 1{y<ρ(h1,h2)}dy

]
EG×sβ,T [φ(h)]

+1
s

∑s
l 6=k EG×sβ,T

[ ∫ α
0 1{y<ρ(hk,hl)}dy φ(h)

]

∣∣∣∣∣∣∣∣ = oT (1),

(4.5.44)

where h $ (h1, h2, . . . , hs).
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Proof. From Proposition 4.5.4, Proposition 4.5.6 and the triangle inequality, we get∣∣∣∣∣ 1β · EGβ,T [Xhk(α)]
1
2 log log T EG×sβ,T [φ(h)]

−


∑s
l=1 EG×sβ,T

[ ∫ α
0 1{y<ρ(hk,hl)}dy φ(h)

]
−sEG×(s+1)

β,T

[ ∫ α
0 1{y<ρ(hk,hs+1)}dy φ(h)

]

∣∣∣∣∣∣∣ = oT (1).

(4.5.45)

Furthermore, from Proposition 4.5.4 in the special case (s = 1, k = 1, φ ≡ 1),∣∣∣∣∣ 1β · EGβ,T [Xhk(α)]
1
2 log log T

−


EG×sβ,T

[ ∫ α
0 1{y<ρ(hk,hk)}dy

]
−EG×(s+1)

β,T

[ ∫ α
0 1{y<ρ(h1,h2)}dy

]

∣∣∣∣∣∣∣ = O

(
(log log T )−1

)
.

(4.5.46)

By combining (4.5.45) and (4.5.46), we get the conclusion. �

By the representation theorem of Dovbysh and Sudakov Dovbysh and Sudakov (1982)
(for an accessible proof, see Panchenko (2010)), we can show (see e.g. the reasoning on
page 1459 of Arguin and Zindy (2014) or page 101 of Panchenko (2013b)) that there exists
a subsequence {Tm}m∈N∗ converging to +∞ such that for any s ∈ N∗ and any continuous
function φ : [0, 1]s(s−1)/2 → R, we have

lim
m→∞EG×∞β,Tm

[
φ((ρ(hl, hl′))1≤l,l′≤s)

]
= Eµ×∞β

[
φ((Rl,l′)1≤l,l′≤s)

]
, (4.5.47)

where R is a random element of some probability space with measure P (and expectation
E), generated by the random matrix of scalar products

(Rl,l′)l,l′∈N∗ =
(
(ρl, ρl′)H

)
l,l′∈N∗

, (4.5.48)

where (ρl)l∈N∗ is an i.i.d. sample from some random measure µβ concentrated a.s. on the
unit sphere of a separable Hilbert space H. In particular, from Theorem 4.3.1, we have

Eµ×2
β

[
1{R1,2∈A}

]
= 2
β

1A(0) +
(

1− 2
β

)
1A(1), A ∈ B([0, 1]). (4.5.49)

Next, we show the consequence of taking the limit (4.5.47) in the statement of Theorem
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4.5.7. Note that a function φ : {0, 1}s(s−1)/2 → R can always be embedded in a continuous
function defined on [0, 1]s(s−1)/2. Here is the main result of this section.

Theorem 4.5.8 (Extended Ghirlanda-Guerra identities in the limit). Let β > βc $ 2.
Also, let µβ be a subsequential limit of {Gβ,T}T≥2 in the sense of (4.5.47). For any s ∈ N∗,

any k ∈ {1, . . . , s}, and any functions ψ : {0, 1} → R and φ : {0, 1}s(s−1)/2 → R, we have

Eµ
(s+1)
β

[
ψ(Rk,s+1)φ((Ri,i′)1≤i,i′≤s)

]
= 1
s
Eµ×2

β

[
ψ(R1,2)

]
Eµ×sβ

[
φ((Ri,i′)1≤i,i′≤s)

]
+ 1
s

s∑
l 6=k

Eµ×sβ
[
ψ(Rk,l)φ((Ri,i′)1≤i,i′≤s)

]
.

(4.5.50)

Remark 4.5.1. The functions ψ and φ have {0, 1} and {0, 1}s(s−1)/2 as their domain, re-

spectively, because Rl,l′ ∈ {0, 1} Eµ×2
β -almost-surely by (4.5.49) and the matrix (Rl,l′)1≤l,l′≤s

is symmetric and its diagonal elements are equal to 1 Eµ×sβ -almost-surely by (4.5.48).

Proof of Theorem 4.5.8. From (4.5.47) and Theorem 4.5.7 (in the particular case
where φ is a function of the overlaps), we deduce

Eµ
(s+1)
β

[ ∫ α

0
1{y<Rk,s+1}dy φ((Ri,i′)1≤i,i′≤s)

]
= 1
s
Eµ×2

β

[ ∫ α

0
1{y<R1,2}dy

]
Eµ×sβ

[
φ((Ri,i′)1≤i,i′≤s)

]
+ 1
s

s∑
l 6=k

Eµ×sβ
[ ∫ α

0
1{y<Rk,l}dy φ((Ri,i′)1≤i,i′≤s)

]
.

(4.5.51)

From (4.5.49), we know that 1{y<Ri,i′} is Eµ×2
β -a.s. constant in y on [−1, 0) and [0, 1)

respectively. Therefore, for any x ∈ {−1, 0},

Eµ
(s+1)
β

[
1{x<Rk,s+1}φ((Ri,i′)1≤i,i′≤s)

]
= 1
s
Eµ×2

β

[
1{x<R1,2}

]
Eµ×sβ

[
φ((Ri,i′)1≤i,i′≤s)

]
+ 1
s

s∑
l 6=k

Eµ×sβ
[
1{x<Rk,l}φ((Ri,i′)1≤i,i′≤s)

]
.

(4.5.52)

But, any function ψ : {0, 1} → R can be written as a linear combination of the indicator
functions 1{0< · } and 1{−1< · }, so we get the conclusion by the linearity of (4.5.52). �
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4.6. Proof of Theorem 4.3.2

Once we have Theorem 4.3.1 and the Ghirlanda-Guerra identities from Theorem 4.5.8,
the proof follows exactly the same steps as in the proof of Theorem 1.5 in Arguin and Zindy
(2014). We can show that any subsequential limit µβ of {Gβ,T}T≥2 in the sense of (4.5.47)
must satisfy

µβ =
∑
k∈N∗

ξkδek , P − a.s., (4.6.1)

where δ is the Dirac measure, (ek)k∈N∗ is a sequence of orthonormal vectors in H and ξ is
a Poisson-Dirichlet variable of parameter βc/β. Since the space of probability measures on
[0, 1]N∗×N∗ (the space of overlap matrices) is a metric space under the weak topology, the
limit in (4.5.47) must hold for the original sequence. Then, (4.3.6) is a direct consequence
of (4.6.1).
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Abstract. In this paper, we study the random field

X(h) $
∑
p≤T

Re(Up p−ih)
p1/2 , h ∈ [0, 1],

where (Up, p primes) is an i.i.d. sequence of uniform random variables on the unit circle

in C. Harper (2013) showed that (X(h), h ∈ (0, 1)) is a good model for the large values

of (log |ζ( 1
2 + i(T +h))|, h ∈ [0, 1]) when T is large, if we assume the Riemann hypothesis.

The asymptotics of the maximum were found in Arguin et al. (2017) up to the second

order, but the tightness of the recentered maximum is still an open problem. As a

first step, we provide large deviation estimates and continuity estimates for the field’s

derivative X ′(h). The main result shows that, with probability arbitrarily close to 1,

max
h∈[0,1]

X(h)−max
h∈S

X(h) = O(1),

where S a discrete set containing O(log T
√

log log T ) points.

Keywords: extreme value theory, large deviations, Riemann zeta function, estimates

5.1. Introduction

In Fyodorov et al. (2012) and Fyodorov and Keating (2014), it was conjectured that
if τ is sampled uniformly in [T, 2T ] for some large T , then the law of the maximum of
(log |ζ(1

2 + i(τ + h))|, h ∈ [0, 1]), where ζ denotes the Riemann zeta function, should be
asymptotic to log log T − 3

4 log log log T +MT where (MT , T ≥ 2) is a sequence of random
variables converging in distribution. At present, the first order of the maximum is proved
conditionally on the Riemann hypothesis in Najnudel (2018) and unconditionally in Arguin
et al. (2019).

In order to study this hard problem originally, a randomized version of the Riemann
zeta function was introduced in Harper (2013), see (5.2.1). The first order of the maximum
was proved in Harper (2013), the second order of the maximum was proved in Arguin et al.
(2017), and a related study of the Gibbs measure can be found in Arguin and Tai (2018)
and Ouimet (2018). The tightness of the recentered maximum is still open.

As a first step, our main result (Theorem 5.3.3) shows that the tightness of the “con-
tinuous” maximum maxh∈[0,1]X(h) (once recentered) can be reduced to the tightness of a
“discrete” maximum maxh∈S X(h) (once recentered) where S is a discrete set containing
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O(log T
√

log log T ) points. In order to prove Theorem 5.3.3, we will need continuity esti-
mates and large deviation estimates for the field’s derivative X ′(h), which can be found in
Proposition 5.3.1 and Proposition 5.3.2, respectively.

The paper is organised as follows. In Section 5.2, we introduce the model X(h). In
Section 5.3, the main result is stated and proven. Proposition 5.3.1 and Proposition 5.3.2
are stated in Section 5.3 and proven in Section 5.4.

5.2. The model

Let (Up, p primes) be an i.i.d. sequence of uniform random variables on the unit circle
in C. The random field of interest is

X(h) $
∑
p≤T

Wp(h) $
∑
p≤T

Re(Up p−ih)
p1/2 , h ∈ [0, 1]. (5.2.1)

(A sum over the variable p always denotes a sum over primes.) This is a good model for
the large values of (log |ζ(1

2 + i(τ + h))|, h ∈ [0, 1]) for the following reason. Proposition 1
in Harper (2013) proves that, assuming the Riemann hypothesis, and for T large enough,
there exists a set B ⊆ [T, T + 1], of Lebesgue measure at least 0.99, such that

log |ζ(1
2 + it)| = Re

∑
p≤T

1
p1/2+it

log(T/p)
log T

+O(1), t ∈ B. (5.2.2)

If we ignore the smoothing term log(T/p)/ log T and note that the process (p−iτ, p primes),
where τ is sampled uniformly in [T, 2T ], converges, as T →∞ (in the sense of convergence
of its finite-dimensional distributions), to a sequence of independent random variables dis-
tributed uniformly on the unit circle (by computing the moments), then the model (5.2.1)
follows. For more information, see Section 1.1 in Arguin et al. (2017).

More generally, for −1 ≤ r ≤ k, denote the increments of the field by

Xr,k(h) $
∑

2r<log p≤2k

Re(Up p−ih)
p1/2 , h ∈ [0, 1]. (5.2.3)

Differentiation of (5.2.3) yields

X ′r,k(h) =
∑

2r<log p≤2k
W ′
p(h) =

∑
2r<log p≤2k

Im(Up p−ih) log p
p1/2 . (5.2.4)
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5.3. Main result

Throughout the paper, we will write c, c̃, c′, and c′′, for generic positive constants whose
value may change at different occurrences. Here are the main side results of this paper.

Proposition 5.3.1 (Continuity estimates). Let C > 0. For any −1 ≤ r ≤ k, 0 ≤ x ≤
C(22k − 22r), 2 ≤ a ≤ 26k − x and h ∈ R,

P
(

max
h′:|h′−h|≤2−3k−1

X ′r,k(h′) ≥ x+ a,X ′r,k(h) ≤ x

)
≤ c exp

(
−2 x2

22k − 22r − c̃ a
3/2
)
, (5.3.1)

where the constants c and c̃ only depend on C.

Proposition 5.3.2 (Large deviation estimates). Let C > 0. For any −1 ≤ r ≤ k,

0 ≤ x ≤ C(22k − 22r) and h ∈ R,

P
(

max
h′:|h′−h|≤2−3k−1

X ′r,k(h′) ≥ x

)
≤ c exp

(
−2 x2

22k − 22r

)
, (5.3.2)

where the constant c only depends on C.

From the last proposition, we obtain the following theorem.

Theorem 5.3.3 (Main result). Let −1 ≤ r ≤ k. For all L > 0, let Sr,k,L be a set

of equidistant points in [0, 1] such that |Sr,k,L| = dL
√

22k − 22r√k log 2e and |h′ − h| ≥
|Sr,k,L|−1 for different h, h′ ∈ Sr,k,L. Then, for any K > 0, there exists L $ L(K) > 0
large enough that

P
(∣∣∣∣ max

h∈[0,1]
Xr,k(h)− max

h∈Sr,k,L
Xr,k(h)

∣∣∣∣ > K

)
< e−

k
4 (1−e−K)2L2

. (5.3.3)

Remark 5.3.1. When r = −1 and 2k = log T , Xr,k(h) is just the original model X(h).
In that case, (5.3.3) shows that, with probability as close to 1 as we want, there exists a

discrete set S ⊆ [0, 1] such that

max
h∈[0,1]

X(h)−max
h∈S

X(h) = O(1), (5.3.4)

where |S| = O(log T
√

log log T ).

We prove Theorem 5.3.3 right away and we will prove Proposition 5.3.1 and Proposition
5.3.2 in Section 5.4.

260



Proof of Theorem 5.3.3. ForM > 0, define the event

E =
{

max
h∈[0,1]

|X ′r,k(h)| ≥M
√

22k − 22r
√
k log 2

}
. (5.3.5)

Let Hk $ 2−3kZ and note that |Hk ∩ [0, 1]| = 23k + 1. By a union bound, the symmetry of
X ′r,k(h)’s distribution, and Proposition 5.3.2, we obtain

P(E) ≤
∑

h∈Hk∩[0,1]
2 · P

(
max

h′:|h′−h|≤2−3k−1
X ′r,k(h′) ≥M

√
22k − 22r

√
k log 2

)

≤ (23k + 1) · c 2−2kM2
.

(5.3.6)

For every realisation ω of the field {Xr,k(h)}h∈[0,1], let h?(ω) be a point where the maxi-
mum is attained. When ω ∈ Ec, the mean value theorem yields that, for any h(ω) ∈ Sr,k,L
such that |h?(ω)− h(ω)| ≤ 2/|Sr,k,L|, we have

eXr,k(h?(ω)) − eXr,k(h(ω)) = X ′r,k(ξ(ω))eXr,k(ξ(ω))(h?(ω)− h(ω)) ≤ 2M
L
eXr,k(h?(ω)), (5.3.7)

for some ξ(ω) lying between h(ω) and h?(ω). By taking L $ L(K) $ 2M/(1 − e−K), we
deduce eXr,k(h(ω)) ≥ e−KeXr,k(h?(ω)). This reasoning shows that, on the event Ec,

max
h∈Sr,k,L

Xr,k(h) ≥ max
h∈[0,1]

Xr,k(h)−K. (5.3.8)

The conclusion follows from (5.3.8) and (5.3.6) withM = 1
2(1− e−K)L. �

5.4. Proof of Proposition 5.3.1 and Proposition 5.3.2

We start by controlling the tail probabilities for a single point of the field’s derivative.

Lemma 5.4.1. Let C > 0. For any −1 ≤ r ≤ k, 0 ≤ x ≤ C(22k − 22r) and h ∈ R,

P
(
X ′r,k(h) ≥ x

)
≤ c exp

(
−2 x2

22k − 22r

)
, (5.4.1)

where the constant c only depends on C.

Proof. Using Chernoff’s inequality, the independence of the Up’s and translation invari-
ance, we have that, for all λ ≥ 0,

P
(
X ′r,k(h) ≥ x

)
≤ e−λx E

[
eλX

′
r,k(h)

]
= e−λx

∏
2r<log p≤2k

E
[
eλW

′
p(0)
]
. (5.4.2)
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Note that

E
[
eλW

′
p(0)
]

= 1
2π

∫ 2π

0
exp

(
λ log p
p1/2 sin(θ)

)
dθ = I0

(
λ log p
p1/2

)
, (5.4.3)

(Abramowitz and Stegun, 1964, 9.6.16, p.376), where I0 denotes themodified Bessel function

of the first kind. The function I0 has the following series representation : I0(u) = 1 + u2

4 +
u4

64 +O(u6), u ∈ R. In turn,

log(I0(u)) = u2

4 −
u4

64 +O(u6), u ∈ (−1, 1), (5.4.4)

because log(1 + y) = y − y2

2 + O(y3) for y ∈ (−1, 1), and |I0(u) − 1| < 1 for u ∈ (−1, 1).
Choose λ = 4x/(22k − 22r). By applying (5.4.4) in (5.4.3), the right-hand side of (5.4.2) is
bounded from above by

c e−λx exp
 ∑

2r<log p≤2k

λ2(log p)2

4p + c̃
∑

2r<log p≤2k

λ6(log p)6

p3

 . (5.4.5)

For the finite number of primes p for which we cannot apply (5.4.4) in (5.4.3) (note that
λ log p < p1/2 holds for p large enough since λ ≤ 4C by the assumption on x), the correction
terms needed for (5.4.5) to hold are absorbed in the constant c in front of the first exponential
in (5.4.5). The second sum in the big exponential is bounded by a constant independent
from r and k since λ ≤ 4C and∑p(log p)6p−3 <∞. By applying Lemma 5.5.1 with m = 2,
logP = 2r and logQ = 2k, the first sum in the big exponential is bounded by 2x2/(22k−22r)
up to an additive constant that only depends onC. The conclusion of the lemma follows. �

In the next lemma, we complement Lemma 5.4.1 by proving a large deviation estimate
for X ′r,k(0) and the difference X ′r,k(h2)−X ′r,k(h1) jointly, where |h2 − h1| ≤ 2−3k.

Lemma 5.4.2. Let C > 0. For any −1 ≤ r ≤ k, 0 ≤ x ≤ C(22k − 22r), 0 ≤ y ≤ 26k, and

any distinct h1, h2 ∈ R such that −2−3k−1 ≤ h1, h2 ≤ 2−3k−1,

P
(
X ′r,k(0) ≥ x,X ′r,k(h2)−X ′r,k(h1) ≥ y

)
≤ c exp

(
−2 x2

22k − 22r −
c̃ y3/2

|h2 − h1| 23k

)
,

(5.4.6)

where the constants c and c̃ only depend on C.

262



Proof. Assume that y ≥ C̃|h2 − h1|23k for a large constant C̃ ≥ 1 because otherwise
(5.4.6) follows from (5.4.1). Since |h2 − h1|23k ≤ 1, note that this assumption also implies
y1/2 ≥ C̃1/2|h2 − h1|23k. For all λ1, λ2 ≥ 0, the left-hand side of (5.4.6) is bounded from
above (using Chernoff’s inequality) by

E
[
exp(λ1X

′
r,k(0) + λ2(X ′r,k(h2)−X ′r,k(h1)))

]
exp(−λ1x− λ2y). (5.4.7)

We will show that if 0 ≤ λ1 ≤ 4C and 0 ≤ λ2 ≤ |h2 − h1|−1, then

E
[
exp(λ1X

′
r,k(0) + λ2(X ′r,k(h2)−X ′r,k(h1)))

]
≤ c exp

(
λ2

1
8 (22k − 22r) + c λ2|h2 − h1| 23k + c2λ2

2|h2 − h1|2 24k
)
.

(5.4.8)

The result (5.4.6) follows by choosing λ1 = 4x/(22k − 22r), λ2 = y1/2|h2 − h1|−1 2−3k and
C̃ large enough (with respect to c) in (5.4.7) and (5.4.8). The assumptions on x, y, h1

and h2 ensure that 0 ≤ λ1 ≤ 4C and 0 ≤ λ2 ≤ |h2 − h1|−1. We now prove (5.4.8). For
2r < log p ≤ 2k, the quantity

E
[
exp(λ1W

′
p(0) + λ2(W ′

p(h2)−W ′
p(h1)))

]
(5.4.9)

(recallW ′
p(h) from (5.2.4)) can be written as

1
2π

∫ 2π

0
exp

(
log p
p1/2

{
λ1 sin θ + λ2(sin(θ − h2 log p)− sin(θ − h1 log p))

})
dθ. (5.4.10)

Since sin(θ − η) = sin(θ) cos(η)− cos(θ) sin(η) and

1
2π

∫ 2π

0
exp(a cos θ + b sin θ)dθ = I0(

√
a2 + b2), (5.4.11)

(Abramowitz and Stegun, 1964, 9.6.16, p.376), then (5.4.9) is equal to

I0


√√√√√√(log p)2

p


(
λ1 + λ2(cos(h2 log p)− cos(h1 log p))

)2

+
(
λ2(sin(h1 log p)− sin(h2 log p))

)2


 . (5.4.12)

From (5.4.4), note that

log(I0(
√
u)) = u

4 −
u2

64 +O(u3), u ∈ (−1, 1). (5.4.13)
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Also, note that

sin(h1 log p)− sin(h2 log p) = O(|h2 − h1| log p),

cos(h2 log p)− cos(h1 log p) = O(|h2 − h1| log p).
(5.4.14)

If we put (5.4.9), (5.4.12), (5.4.13) and (5.4.14) together, we get, for p large enough,

log (5.4.9) ≤ (log p)2

4p

{(
λ1 + c λ2|h2 − h1| log p

)2
+
(
c λ2|h2 − h1| log p)

)2
}

+ c̃

p2

≤ λ2
1

4
(log p)2

p
+ c λ2|h2 − h1|

(log p)3

p
+ c2λ2

2|h2 − h1|2
(log p)4

p
+ c̃

p2 . (5.4.15)

To obtain the last inequality, we used the fact that λ1 ≤ 4C. After summing (5.4.15) over
2r < log p ≤ 2k and using Lemma 5.5.1, we deduce

logE
[
exp(λ1X

′
r,k(0) + λ2(X ′r,k(h2)−X ′r,k(h1)))

]
≤ c̃+ λ2

1
8 (22k − 22r) + c λ2|h2 − h1| 23k + c2λ2

2|h2 − h1|2 24k,

(5.4.16)

where the constants c and c̃ only depend on C. This is exactly (5.4.8). �

We are now ready to prove Proposition 5.3.1. For k ∈ N0, recall that Hk $ 2−3kZ, so
that H0 ⊆ H1 ⊆ . . . ⊆ Hk ⊆ . . . ⊆ R is a nested sequence of sets of equidistant points and
|Hk ∩ [0, 1)| = 23k.

Proof of Proposition 5.3.1. Without loss of generality, we may assume h = 0. We
can also round x up to the nearest larger integer and decrease a so that we may assume that
x ∈ N0 and a ≥ 1. To see why this is possible, define the new values of x and a by x̃ $ dxe
and ã $ a− x̃+ x, respectively. Since x+ a = x̃+ ã and x ≤ x̃, and assuming that we can
show (5.3.1) with x̃ and ã, we would have

P
(

max
h′:|h′−h|≤2−3k−1

X ′r,k(h′) ≥ x+ a,X ′r,k(h) ≤ x

)

≤ P
(

max
h′:|h′−h|≤2−3k−1

X ′r,k(h′) ≥ x̃+ ã, X ′r,k(h) ≤ x̃

)

≤ c exp
(
−2 x̃2

22k − 22r − c̃ ã
3/2
)
≤ c′ exp

(
−2 x2

22k − 22r − c
′′a3/2

)
,

(5.4.17)

where the constants c′ and c′′ only depend on C.
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It remains to show (5.3.1) when x ∈ N0 and a ≥ 1. We choose to adapt the chaining
argument found in (Arguin et al., 2017, Proposition 2.5). Define the events

Bx $ {X ′r,k(0) ≤ 0}
and

Bq $ {X ′r,k(0) ∈ [x− q − 1, x− q]}, q ∈ {0, 1, . . . , x− 1}. (5.4.18)

Note that the left-hand side of (5.3.1) is at most
x∑
q=0

P
(
Bq ∩

{
max
h′∈A
{X ′r,k(h′)−X ′r,k(0)} ≥ a+ q

})
, (5.4.19)

where A = [−2−3k−1, 2−3k−1]. Let (hi, i ∈ N0) be a sequence such that h0 = 0, hi ∈
Hk+i ∩ A, limi→∞ hi = h′ and |hi+1 − hi| ∈ {0, 1

82−3(k+i), 2
82−3(k+i), 3

82−3(k+i), 4
82−3(k+i)} for

all i. Because the map h 7→ X ′r,k(h) is almost-surely continuous,

X ′r,k(h′)−X ′r,k(0) =
∞∑
i=0

(X ′r,k(hi+1)−X ′r,k(hi)). (5.4.20)

Since ∑∞i=0
1

2(i+1)2 ≤ 1, we have the inclusion of events,

{
X ′r,k(h′)−X ′r,k(0) ≥ a+ q

}
⊆
∞⋃
i=0

{
X ′r,k(hi+1)−X ′r,k(hi) ≥

a+ q

2(i+ 1)2

}
. (5.4.21)

This implies that {maxh′∈AX ′r,k(h′)−X ′r,k(0) ≥ a+ q} is included in

∞⋃
i=0

⋃
h1∈Hk+i∩A

|h2−h1|= j
8 2−3(k+i)

for some j∈{1,2,3,4}

{
X ′r,k(h2)−X ′r,k(h1) ≥ a+ q

2(i+ 1)2

}
, (5.4.22)

where we have ignored the case h1 = h2 since the event{
X ′r,k(h2)−X ′r,k(h1) ≥ a+ q

2(i+ 1)2

}

is the empty set. Because |Hk+i ∩ A| ≤ c 23i, the q-th summand in (5.4.19) is at most

∞∑
i=0

c 23i sup
h1∈Hk+i∩A

|h2−h1|= j
8 2−3(k+i)

for some j∈{1,2,3,4}

P
(
Bq ∩

{
X ′r,k(h2)−X ′r,k(h1) ≥ a+ q

2(i+ 1)2

})
. (5.4.23)

Note that a+ q ≤ a+ x ≤ 26k by assumption. Lemma 5.4.2 can thus be applied to get that
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(5.4.23) is at most

c
∞∑
i=0

23i exp
(
−2(x− q − 1)2

22k − 22r − c̃ 23i (a+ q)3/2

(i+ 1)3

)
≤ c′e

−2 (x−q−1)2

22k−22r −c̃(a+q)3/2
. (5.4.24)

Since e−c̃(a+q)3/2 ≤ e−c̃a
3/2−c̃q3/2 , (5.4.19) is at most

c′ e−c̃a
3/2

x∑
q=0

e
−2 (x−q−1)2

22k−22r −c̃q3/2
≤ c′ e

− 2x2
22k−22r−c̃a3/2 x∑

q=0
e4C(q+1)−c̃q3/2

≤ c′′e
− 2x2

22k−22r−c̃a3/2
,

(5.4.25)

where we used the assumption x ≤ C(22k − 22r) to obtain the first inequality in (5.4.25).
This proves (5.3.1). �

Proof of Proposition 5.3.2. The left-hand side of (5.3.2) is at most

P
(
X ′r,k(h) ≥ x− 2

)

+ P

maxh′:|h′−h|≤2−3k−1 X ′r,k(h′) ≥ (x− 2) + 2,

X ′r,k(h) ≤ x− 2

 (5.4.26)

The conclusion follows from Lemma 5.4.1 and Proposition 5.3.1 with x−2 in place of x and
a = 2. �

5.5. Appendix : Technical lemma

Lemma 5.5.1. Let m ≥ 1 and 1 ≤ P < Q, then∣∣∣∣∣ ∑
P<p≤Q

(log p)m
p

−
(

(logQ)m
m

− (logP )m
m

) ∣∣∣∣∣ ≤ D, (5.5.1)

where D > 0 is a constant that only depends on m.

Proof. Without loss of generality, assume that P ≥ 2. We use a standard form of the
prime number theorem (Montgomery and Vaughan, 2007, Theorem 6.9) which states that

#{p prime : p ≤ x} =
∫ x

2

1
log udu+R(x), (5.5.2)

where R(x) = O(xe−c
√

log x), uniformly for x ≥ 2. Using (5.5.2) and integration by parts,
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we have

∑
P<p≤Q

(log p)m
p

=
∫ Q

P

(log u)m−1

u
du+

∫ Q

P

(log u)m
u

dR(u)

= (logQ)m
m

− (logP )m
m

+ (logQ)m
Q

R(Q)− (logP )m
P

R(P )

−
∫ Q

P

(m− log u)(log u)m−1

u2 R(u)du.

(5.5.3)

By making the change of variable z = c
√

log u on the right-hand side of (5.5.3), note that

∣∣∣∣∣
∫ Q

P

(m− log u)(log u)m−1

u2 R(u)du
∣∣∣∣∣ ≤ D̃

∫ ∞
0

z2m+1e−zdz = D̃ Γ(2m+ 2), (5.5.4)

where D̃ > 0 is a constant that only depends on m. This ends the proof. �
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Abstract. We show that as T → ∞, for all t ∈ [T, 2T ] outside of a set of measure

o(T ), ∫ logθ T

− logθ T
|ζ( 1

2 + it+ ih)|βdh = (log T )fθ(β)+o(1),

for some explicit exponent fθ(β), where θ > −1 and β > 0. This proves an extended

version of a conjecture of Fyodorov and Keating (2014). In particular, it shows that, for

all θ > −1, the moments exhibit a phase transition at a critical exponent βc(θ), below

which fθ(β) is quadratic and above which fθ(β) is linear. The form of the exponent fθ
also differs between mesoscopic intervals (−1 < θ < 0) and macroscopic intervals (θ > 0),

a phenomenon that stems from an approximate tree structure for the correlations of zeta.

We also prove that, for all t ∈ [T, 2T ] outside a set of measure o(T ),

max
|h|≤logθ T

|ζ( 1
2 + it+ ih)| = (log T )m(θ)+o(1),

for some explicit m(θ). This generalizes earlier results of Najnudel (2018) and Arguin

et al. (2019) for θ = 0. The proofs are unconditional, except for the upper bounds when

θ > 3, where the Riemann hypothesis is assumed.

Keywords: Extreme value theory, Riemann zeta function, maximum, moments

6.1. Introduction

6.1.1. Maxima and moments over large intervals

Understanding the growth of the Riemann zeta function ζ(s) on the critical line Re s = 1
2

is a central problem in number theory due, among other things, to its relationship with the
distribution of the zeros of ζ(s), see e.g. Theorem 9.3 in Titchmarsh (1986), and the more
general subconvexity problem, see e.g. Michel and Venkatesh (2010); Venkatesh (2010), and
see Iwaniec and Sarnak (2000) for a general discussion.

The Lindelöf hypothesis predicts that, for any ε > 0 and all t ∈ R, we have |ζ(1
2 + it)| =

O((1 + |t|)ε), whereas it follows from the Riemann hypothesis that

|ζ(1
2 + it)| = O

(
exp

(( log 2
2 + o(1)

) log t
log log t

))
, (6.1.1)

as t→∞; see Chandee and Soundararajan (2011).
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Unfortunately, there is a large gap between these conditional results and the best
unconditional upper bounds, such as Bourgain (2017), which shows that |ζ(1

2 + it)| =
O
(
(1 + |t|)13/84+ε

)
for any given ε > 0 and all t ∈ R. Currently, the best unconditional

lower bound,

max
t∈[0,T ]

|ζ(1
2 + it)| ≥ exp

(
(
√

2 + o(1))
√

log T log log log T
log log T

)
, (6.1.2)

as T → ∞, is established in de la Bretèche and Tenenbaum (2019) building on a method
from Bondarenko and Seip (2018).

The true order of the maximum of |ζ(1
2 + it)| remains a subject of dispute to this day.

A conjecture that we find plausible is stated in Farmer et al. (2007), where it is conjectured
based on probabilistic models that

max
t∈[0,T ]

|ζ(1
2 + it)| = exp

(( 1√
2

+ o(1)
)√

log T · log log T
)
, as T →∞. (6.1.3)

Another set of central objects in the theory of theRiemann zeta function are themoments

1
T

∫ 2T

T
|ζ(1

2 + it)|βdt, β > 0. (6.1.4)

Their importance comes from their relationship to the size and zero-distribution of ζ(s).
However, unlike the problem of understanding the size of the global maximum of |ζ(1

2 + it)|,
we are in possession of widely believed conjectures as to the behavior of moments. Following
the work Keating and Snaith (2000), it is expected that, for all β > 0,

1
T

∫ 2T

T
|ζ(1

2 + it)|βdt ∼ Cβ(log T )β2/4, (6.1.5)

as T → ∞, and that the constant Cβ > 0 factors into a product of two constants: one is
computed from the moments of the characteristic polynomial of random unitary matrices,
and the other is an arithmetic factor coming from the small primes.

There are a few results supporting (6.1.5). First, the conjecture (6.1.5) is known for β = 2
and β = 4 following the classical work of Hardy-Littlewood and Ingham. Upper bounds
of the correct order of magnitude are established in Heap et al. (2019) for 0 < β ≤ 4.
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Meanwhile, lower bounds of the correct order of magnitude have been established for all
β ≥ 2 in Radziwiłł and Soundararajan (2013). Conditionally on the Riemann hypothesis,
the correct order of magnitude of (6.1.5) is known for all β > 0 (see Soundararajan (2009);
Harper (2013b) for the upper bounds and Heath-Brown (1981) for the lower bounds).

6.1.2. Maxima and moments over short intervals

Motivated by the problem of understanding the global maximum, Fyodorov et al. (2012);
Fyodorov and Keating (2014) initiated the question of understanding the true size of the
local maximum of ζ(1

2 + it) by establishing a connection with log-correlated processes. If
τ is sampled uniformly on [T, 2T ] under P, they conjectured that for any 0 < δ < 1, there
exists C = C(δ) > 0 large enough and independent of T , such that with P-probability 1−δ,

max
h∈[−1,1]

log |ζ(1
2 + iτ + ih)| −

(
log log T − 3

4 log log log T
)
∈ [−C,C]. (6.1.6)

They also conjectured the type of fluctuations around the recentering term.

The leading order log log T was proved in Najnudel (2018) (conditionally on the Rie-
mann hypothesis for the lower bound) and in Arguin et al. (2019) unconditionally. Around
Equation (14) in Fyodorov et al. (2012), it is also argued that the moments in a short interval
undergo a freezing phase transition, that is, as T →∞, the event,

∫
[−1,1]

|ζ(1
2 + iτ + ih)|βdh =


(log T )β2/4+o(1), if β ≤ 2,

(log T )β−1+o(1), if β > 2,
(6.1.7)

has probability 1 − o(1) as T → ∞. Fyodorov and Keating (2014) state corresponding
conjectures for mesoscopic intervals of length logθ T when θ ∈ (−1, 0), as well as finer
asymptotics for the moments.

In view of Equations (6.1.5) and (6.1.7), an obvious question is to determine up to which
interval size the freezing phase transition persists. In this paper, we establish that freezing
transitions occur exactly for interval sizes of order logθ T with θ > −1, including large
intervals with θ > 0. We also obtain the corresponding results for local maxima over such
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intervals. The following functions will be crucial to our analysis :

θ ≤ 0: m(θ) := 1 + θ, fθ(β) :=


β2

4 (1 + θ) + θ, if β ≤ βc(θ) = 2,

βm(θ)− 1, if β > βc(θ),

θ > 0: m(θ) :=
√

1 + θ, fθ(β) :=


β2

4 + θ, if β ≤ βc(θ) = 2
√

1 + θ,

βm(θ)− 1, if β > βc(θ).

(6.1.8)

Theorem 6.1.1 (Moments). Let θ > −1, β > 0 and ε > 0 be given. Let τ be a random

variable uniformly distributed on [T, 2T ] under the probability measure P. Then, as T →
∞, we have

P
( ∫ logθ T

− logθ T
|ζ(1

2 + iτ + ih)|βdh < (log T )fθ(β)−ε
)

= o(1). (6.1.9)

Moreover, if θ ≤ 3 or if the Riemann hypothesis holds, then as T →∞,

P
( ∫ logθ T

− logθ T
|ζ(1

2 + iτ + ih)|βdh > (log T )fθ(β)+ε
)

= o(1). (6.1.10)

Proof. For the upper bound, see Section 6.2.3, and for the lower bound, see Proposition
6.3.2. �

When β > βc(θ), the moments exhibit freezing, i.e. they are dominated by just one large
value corresponding to the local maximum of |ζ(1

2 + iτ + ih)|, |h| ≤ logθ T . Theorem 6.1.1
also suggests that freezing does not occur for intervals larger than any fixed power of log T ,
since βc(θ)→∞ as θ →∞.

Theorem 6.1.2 (Local maximum). Let θ > −1 and ε > 0 be given. Let τ be a random

variable uniformly distributed on [T, 2T ] under the probability measure P. Then, as T →
∞, we have

P
(

max
|h|≤logθ T

|ζ(1
2 + iτ + ih)| < (log T )m(θ)−ε

)
= o(1). (6.1.11)

Moreover, if θ ≤ 3 or if the Riemann hypothesis holds, then as T →∞,

P
(

max
|h|≤logθ T

|ζ(1
2 + iτ + ih)| > (log T )m(θ)+ε

)
= o(1). (6.1.12)
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Proof. For the upper bound, see Section 6.2.3, and for the lower bound, see Proposition
6.3.1. �

It is instructive to put these results in the context of two well-known facts on ζ. First,
Selberg’s central limit theorem, see for example Radziwiłł and Soundararajan (2017), states
that, for any given a < b,

P

 log |ζ(1
2 + iτ)|√

1
2 log log T

∈ (a, b)
 T→∞−−−→

∫ b

a

e−u
2/2

√
2π

du. (6.1.13)

In other words, a typical value of log |ζ(1
2 + iτ)| is a Gaussian random variable of variance

1
2 log log T . This is consistent with the moment conjecture (6.1.5) which gives a precise
expression for the Laplace transform of log |ζ(1

2 + iτ)|. Second, since ζ(1
2 + it) with T ≤ t ≤

2T varies on the scale of (log T )−1, the statistics of extreme values of log |ζ(1
2 +iτ+ih)|, |h| ≤

logθ T , should be similar to the ones of (log T )1+θ Gaussian random variables of variance
1
2 log log T . If the random variables were independent, this is the so-called Random Energy

Model (REM) in statistical mechanics introduced in Derrida (1981). For θ ≥ 0, it is not
hard to check, using basic Gaussian tail estimates, that the expression (6.1.8) corresponds
to the free energy of the model, and the results of Theorem 6.1.2, to the maximum of the
REM. For more on this, we refer to Kistler (2015), where many techniques from REM were
introduced to analyze log-correlated processes.

The REM heuristic is of course limited as the values of log |ζ(1
2 + iτ + ih)|, |h| ≤ logθ T ,

are correlated. In fact, they are log-correlated as first noticed Bourgade (2010). This is
explained in Section 6.1.4. For θ < 0, the correct model is a branching random walk which
accurately predicts the changes in m(θ) and fθ(β). For θ > 0, our results show that the
correlations do not affect large values at leading order (though the proofs must take them
into account). As argued in Section 6.1.4, we believe that the correct probabilistic model
for large values in this case is logθ T independent branching random walks. One implication
is that, unlike the case θ ≤ 0, the REM heuristic should persist to subleading order (but
fail at the level of fluctuations). In view of this, we believe that conjecture (6.1.6) needs to
be expanded as follows to include large intervals:
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Conjecture 6.1.3. Let θ > −1 be given and let m(θ) be as in (6.1.8). Let τ be sampled

uniformly on [T, 2T ] under P. For any 0 < δ < 1, there exists C = C(δ) > 0 large enough

and independent of T , such that with probability 1− δ,

max
|h|≤logθ T

log |ζ(1
2 + iτ + ih)| −

(
m(θ) log log T − r(θ) log log log T

)
∈ [−C,C], (6.1.14)

where

r(θ) = 3
4 if θ ≤ 0 and r(θ) = 1

4
√

1 + θ
if θ > 0.

6.1.3. Relations to other models

When −1 < θ ≤ 0, Conjecture 6.1.3 is based on modelling ζ by the characteristic
polynomial of a random unitary matrix (CUE). More precisely, if MN is a random matrix
sampled from the Haar measure on the unitary group U(N), one can consider the moments

E
[( 1

2π

∫ 2π

0
| det(I− e−ihMN)|2βdh

)k]
, k > 0, β > 0. (6.1.15)

These can be computed in the limit N → ∞, at least heuristically, using Selberg integrals
and the Fisher-Hartwig formula, cf. Fyodorov and Keating (2014). Exact expressions were
recently obtained in Bailey and Keating (2019) in the regime k, β ∈ N. The statistics of
log

∫ 2π
0 | det(I − e−ihMN)|2βdh and of maxh∈[0,2π] | det(I − e−ihMN)| in the limit N → ∞

can be inferred from the asymptotics of the moments by comparison with log-correlated
processes, cf. Fyodorov et al. (2018) for a numerical study. In the CUE setting, the freezing
analogue of (6.1.7) and the leading order as in (6.1.6) were proved in Arguin et al. (2017a).
The subleading order of the maximum was proved in Paquette and Zeitouni (2018), and up
to constant C in Chhaibi et al. (2018).

In the subcritical regime β < 1
2 , it is expected from the analysis of log-correlated pro-

cesses, cf. Fyodorov and Bouchaud (2008), that the fluctuations of the maximum can be
captured by a sum of two Gumbel variables. This was proved in Rémy (2018) for a specific
log-correlated model by computing the moments in the range k < 1

4β2 of a random measure
related to the theory of Gaussian multiplicative chaos, cf. Rhodes and Vargas (2014). In
the CUE setting, this measure is the limit of
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| det(I− e−ihMN)|2β
E[| det(I− e−ihMN)|2β]

dh

2π . (6.1.16)

The limit of the above was shown to be non-degenerate for β < 1 in Webb (2015); Nikula
et al. (2018). Such a random measure can also be considered in the context of the Riemann
zeta function for mesoscopic intervals of length logθ T , −1 < θ ≤ 0, with |ζ(1

2 + iτ + ih)|
in place of | det(I − e−ihMN)|. (There does not seem to be any obvious equivalent for
macroscopic intervals, θ > 0, in the CUE model.) A step in this direction was made in
Saksman and Webb (2018) where ζ(1

2 + iτ + ih), h ∈ R, was shown to converge as T →∞
when considered as a random variable on the space of tempered distributions.

Another model for the large values of log |ζ(1
2 + iτ + ih)|, h ∈ [−1, 1], is to consider

a random Dirichlet polynomial Xh = Re ∑p≤T p−1/2−ihUp, where (Up, p primes) are i.i.d.
uniform random variables on the unit circle, cf. Harper (2013a); Arguin et al. (2017b);
Arguin and Ouimet (2019). The analogue of conjecture (6.1.6) for this model was proved
up to second-order corrections in Arguin et al. (2017b), and large deviations and continuity
estimates for the derivative were found in Arguin and Ouimet (2019). The limit of the
corresponding multiplicative chaos measure was obtained in Saksman and Webb (2018). A
proof of the freezing phase transition was given in Arguin and Tai (2018). In the latter, the
limit of the Gibbs measure exp(βXh)dh is also studied in the supercritical regime β > 2,
showing that it is supported on h’s that are at a relative distance of order one or order
(log T )−1 of each other. This result was used in Ouimet (2018) to prove that the normalized
Gibbs weights converge to a Poisson-Dirichlet distribution.

Notation. Throughout the article, the notation τ will denote a random variable uniformly
distributed on [T, 2T ] under P. Expectations under P are denoted by E. We write f(T ) =
o(g(T )) if |f(T )/g(T )| tends to 0 as T → ∞ when the parameters θ, β and ε are fixed.
Similarly, wewrite f(T ) = O(g(T )) if lim sup |f(T )/g(T )| is bounded for θ, β and ε fixed. We
will sometimes write for conciseness f(T )� g(T ) if f(T ) = O(g(T )), and also f(T ) � g(T )
if both f(T ) � g(T ) and g(T ) � f(T ) hold. Finally, in some of the proofs, we use the
common convention in analytic number theory that ε denotes an arbitrarily small positive
quantity that may vary from line to line.
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6.1.4. Outline of the proof

For θ > 0, the upper bound part of Theorem 6.1.1 and Theorem 6.1.2 follows from the
moment estimates

E
[
|ζ(1

2 + iτ)|β
]
� (log T )β2/4+ε, (6.1.17)

and from a discretization result which roughly shows that for a Dirichlet polynomialD that
approximates zeta, and for β ≥ 1, we have

max
|h|≤logθ T

|D(1
2 + iτ + ih)|β �

∑
|k|≤log1+θ T

∣∣∣D(1
2 + iτ + 2πik

log T

)∣∣∣β. (6.1.18)

Equation (6.1.18) tells us that the process (ζ(1
2 +iτ+ih), |h| ≤ logθ T ) varies on a (log T )−1

scale, so that the maximum and moments on an interval of lengthO(logθ T ) behave as those
of O(log1+θ T ) i.i.d. Gaussian random variables of variance 1

2 log log T . The limitation to
θ ≤ 3 comes from the fact that the upper bounds (6.1.17) are not known unconditionally
for β > 4.

When θ < 0, the upper bounds in Theorem 6.1.1 and Theorem 6.1.2 are a bit more
delicate. We follow essentially the same strategy, but we apply it to the function

(ζ · e−P|θ|)(1
2 + iτ), where Pα(s) =

∑
log p≤logα T

1
ps
, (6.1.19)

instead of ζ(1
2 + iτ). As discussed in more detail below, the reason for this is that when

θ < 0, the contribution of the primes up to scale |θ| is negligible with high probability,
namely, with probability 1− o(1),

max
|h|≤logθ T

∣∣∣P|θ|(1
2 + iτ + ih)

∣∣∣ = o(log log T ). (6.1.20)

When τ is restricted to a specific event A(T ) on which (6.1.19) can be discretized as in
(6.1.18), we can show that

E
[∣∣∣(ζ · e−P|θ|)(1

2 + iτ)
∣∣∣β]� (log T )(β2/4)·(1+θ)+ε, (6.1.21)

for β ≤ 2. This explains the additional factor (β2/4)θ in fθ(β) when−1 < θ < 0 and β ≤ 2.

We then turn to the lower bound part of Theorem 6.1.1 and Theorem 6.1.2. The lower
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bounds in Theorem 6.1.2 follow directly from Theorem 6.1.1 (see (6.3.74)), so it is enough
to discuss Theorem 6.1.1.

The problem is first reduced to obtaining lower bounds for moments off the critical line.
In particular, it is shown, uniformly in 1

2 ≤ σ ≤ 1
2 + (log T )θ−3ε and for any given ε > 0,

that with probability 1− o(1),
∫ logθ T

− logθ T
|ζ(σ + iτ + ih)|βdh�

∫ 2 logθ T

−2 logθ T
|ζ(1

2 + iτ + ih)|βdh+ 1
(log T )7 . (6.1.22)

This is accomplished by using a result of Gabriel (1927) for subharmonic functions, and the
construction of an explicit entire function which is a good approximation to the indicator
function of the rectangle R = {σ + iu : |u| ≤ (log T )θ, 1

2 ≤ σ ≤ 1
2 + (log T )θ−3ε} in the

whole strip 1
2 ≤ Re s. The fact that the interval can be very small when θ < 0 makes this

part rather technical. We believe that this result might be useful in other applications as
well.

The problem is therefore reduced to obtaining a good lower bound for

∫ logθ T

− logθ T
|ζ(σ0 + iτ + ih)|βdh, with σ0 = 1

2 + 1
(log T )1−δ , (6.1.23)

for some sufficiently small δ > 0. We adapt mollification results from Arguin et al. (2019)
to show that, outside of an event of probability o(1), the problem can be reduced to under-
standing ∫ logθ T

− logθ T
exp

(
β ReP1−δ(σ0 + iτ + ih)

)
dh. (6.1.24)

The proof of the lower bound is now restricted to the problem of understanding the
correlation structure of the process

(
ReP1−δ(σ0 + iτ + ih), |h| ≤ logθ T

)
. (6.1.25)

The remaining part of the argument is done in Section 6.3.4 by a multiscale second moment
method introduced inKistler (2015). The covariance of the process (6.1.25) can be computed
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using Lemma 6.4.3 with a(p) = p−σ0(p−ih + p−ih
′):

E
[
ReP1−δ(σ0 + iτ + ih) · ReP1−δ(σ0 + iτ + ih′)

]

= 1
2

∑
log p≤(log T )1−δ

cos(|h− h′| log p)
p2σ0

+O(1).
(6.1.26)

The cosine factor implies that primes smaller than exp(|h − h′|−1) are almost perfectly
correlated, whereas primes greater than exp(|h − h′|−1) decorrelate quickly. In fact, the
covariance can be evaluated precisely using the prime number theorem and equals 1

2 log |h−
h′|−1 + O(1). This shows that the process is approximatively a log-correlated Gaussian
process. (This is also true for ζ in the sense of finite-dimensional distributions as shown in
Bourgade (2010).)

The identification with a log-correlated process is useful as it suggests that the Dirichlet
polynomials have an underlying tree structure. To see this, consider the increments

Pk(h) =
∑

ek−1<log p≤ek
Re 1

pσ0+iτ+ih , 1 ≤ k ≤ log log T. (6.1.27)

The range of primes is chosen so that each Pk has variance 1
2 + o(1). In this framework, the

Dirichlet polynomial at h can be seen as a random walk with independent and identically
distributed increments. However, the random walks for different h’s are not independent by
(6.1.26). In fact, the walks are almost perfectly correlated until they branch out around the
prime p ≈ exp(|h − h′|−1), corresponding to the increment k(h, h′) = log |h − h′|−1. Since
k goes to essentially log log T , the analysis can be restricted to h’s at a distance (log T )−1

of each other. Furthermore, the h’s in an interval of size (log T )−α for 0 < α < 1 will share
the same increments up to k ≈ α log log T .

The above observations have important consequences for the probabilistic analysis. For
θ = 0, thismeans that the process (6.1.25) on an interval of order one is well approximated by
a Gaussian process indexed by a tree of average degree e = 2.718 . . . , where the independent
increments Pk(h) are identified with the edges of the tree. Note that the number of leaves on
the interval [−1, 1] is then≈ elog log T = log T . Equivalently, the walks∑k Pk(h), h ∈ [−1, 1],
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can be seen as a branching random walk on a Galton-Watson tree with an average number
of offspring e, cf. Figure 6.1.1.

0

log log T
h h′ 1−1

k = k(h, h′)

Pk−1(h) ≈ Pk−1(h′)

Pk+1(h) Pk+1(h
′)

I of width 2(log T )θ

k = 0

log log T

(log T )θ−(log T )θ
Interval of width 1 Interval of width 1 Interval of width 1

Figure 6.1.1. (Top) An illustration of the branching random walk ∑k Pk
for the interval I with θ = 0. The one for a subinterval with θ < 0 is depicted in
blue. (Bottom) An illustration of the independent branching random walks∑
k Pk for disjoint intervals of width 1 inside I of length 2 logθ T with θ > 0.

For θ < 0, the tree structure suggests that the primes up to exp(log|θ| T ) do not contribute
to large values, since they should be essentially the same for all h’s in the interval . Therefore
these primes can be cutoff at a low cost, cf. Corollary 6.2.11. This is equivalent to restricting
to a subtree of the one on [−1, 1] with (1+θ) log log T increments and log1+θ T leaves, yielding
a maximum at leading order of (1 + θ) log log T by the REM heuristic.

The case θ > 0 stands out as the analogy with branching random walks fails. This
is because the random walks for h and h′ are essentially independent for |h − h′| > 1.
Therefore the right probabilistic model seems to consist of logθ T independent branching
random walks corresponding to different intervals of order one, see Figure 6.1.1. A large
class of similar models (called CREM’s for Continuous Random Energy Models) have been
studied in Bovier and Kurkova (2004), see Bovier (2006, 2017) for a review. It turns out that
the large values at leading order correspond to the ones of a REM with log1+θ T variables
with variance 1

2 log log T . This yields a maximum of
√

1 + θ log log T at leading order. In
fact, in view of the extreme value statistics of CREM’s, we expect that the REM heuristic
holds for subleading corrections. This is the motivation for Conjecture 6.1.3.
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6.2. Upper bounds

6.2.1. Moment estimates

We will need a number of moment estimates which we state below.

Proposition 6.2.1. Assume the Riemann hypothesis. Let β > 0 and ε > 0 be given.

Then,
E
[
|ζ(1

2 + iτ)|β
]
� (log T )β2/4+ε. (6.2.1)

Proof. See Corollary A in Soundararajan (2009). �

Proposition 6.2.2. Let 0 < β ≤ 4 be given. Then,

E
[
|ζ(1

2 + iτ)|β
]
� (log T )β2/4. (6.2.2)

Proof. See Theorem 1 in Heap et al. (2019). �

The proof of Proposition 6.2.1 is based on the following deterministic upper bound for
ζ: Suppose that T is large. Let T ≤ t ≤ 2T , and let 2 ≤ x ≤ T 2. Then, as T →∞, we have

log |ζ(1
2 + it)| ≤ Re

∑
p≤x

1
p

1
2 + 1

log x+it
log(x/p)

log x + log T
log x +O(log log log T ), (6.2.3)

see Proposition and Lemma 2 in Soundararajan (2009). On the Riemann hypothesis, the
upper bounds to Theorems 6.1.1 and 6.1.2 could be proved in a simpler way by using this
deterministic bound, and by proving the corresponding results for the Dirichlet polynomials.
For unconditional results, such a deterministic upper bound is not available. We need to
work on average to discard the contribution of large primes. This is the purpose of Lemmas
6.2.3, 6.2.4, 6.2.5 and Proposition 6.2.6 below.

Everywhere in Section 6.2, we will denote, for α > 0 and s ∈ C,

Pα(s) =
∑

log p≤logα T
p−s. (6.2.4)

To compute the moments of ζ · e−P|θ| , we will need to express e−P|θ| as a finite Dirichlet
polynomial. To this aim, notice that if |z| ≤ ν/10 for some ν, we have

∣∣∣ez−∑ν
j=0 z

j/j!
∣∣∣ ≤ e−ν .
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Consider more generally eλP(s) with λ ∈ C and P(s) = ∑
p≤X a(p)p−s for some bounded

multiplicative function a. We have by the above, assuming |λP(s)| ≤ ν/10, and by the
multinomial formula, that∣∣∣∣∣eλP(s) −

ν∑
k=0

λk

k!

( ∑
p≤X

a(p)
ps

)k∣∣∣∣∣ =
∣∣∣∣∣eλP(s) −

∑
Ω(n)≤ν

p|n=⇒p≤X

λΩ(n)a(n)g(n)
ns

∣∣∣∣∣ ≤ e−ν , (6.2.5)

where Ω(n) is the number of prime factors of nwithmultiplicity. Here, g is the multiplicative
function defined by g(pk) = 1/k! for all integers k and primes p.

The relevant multiplicative function a for e−P|θ| will be of the following form: Given
α, β ∈ R and θ > −1, let Fα,β,θ(n) denote a completely multiplicative function such that

Fα,β,θ(p) :=
α, if log p ≤ log|θ| T,
β, if log|θ| T ≤ log p.

(6.2.6)

In the next three lemmas, we control various terms with the aim of proving the moment
estimate in Proposition 6.2.6, which we will need in the case of short intervals.

Lemma 6.2.3. Let −1 < θ < 0, β > 0 and ε > 0 be given. Then,

E
[∣∣∣∣ ∑

Ω(n)≤100blog log T c
p|n =⇒ log p≤log1−ε T

F0,β/2,θ(n)g(n)
n1/2+iτ

∣∣∣∣2
]
� (log T )β2(1+θ)/4. (6.2.7)

Proof. Notice that the Dirichlet polynomial in (6.2.7) has length� T δ for any fixed δ > 0.
In particular, by the mean-value formula (Lemma 6.4.2),

E
[∣∣∣∣ ∑

Ω(n)≤100blog log T c
p|n =⇒ log p≤log1−ε T

F0,β/2,θ(n)g(n)
n1/2+iτ

∣∣∣∣2
]
�

∑
Ω(n)≤100blog log T c
p|n =⇒ log p≤log1−ε T

F0,β/2,θ(n)2g(n)2

n
.

Dropping the restriction over Ω(n) and expressing the sum as an Euler product yield

∑
p|n =⇒ log p≤log1−ε T

F0,β/2,θ(n)2g(n)2

n
=

∏
log p≤log1−ε T

(
1 + F0,β/2,θ(p)2

p
+O(p−2)

)
. (6.2.8)

The logarithm of the right-hand side is easily evaluated using the prime number theorem
(see Lemma 6.4.1) and is (β2(1+θ)/4) log log T +O(1). This proves the claimed bound. �
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Lemma 6.2.4. Let −1 < θ < 0, 0 < β ≤ 2 and ε > 0 be given. Then,

E
[
|ζ(1

2 + iτ)|2 ·
∣∣∣∣ ∑

Ω(n)≤100blog log T c
p|n =⇒ log p≤log1−ε T

F−1,β/2−1,θ(n)g(n)
n1/2+iτ

∣∣∣∣2
]
� (log T )β2(1+θ)/4+ε. (6.2.9)

Proof. By Theorem 1 in Bettin et al. (2017), the left-hand side of (6.2.9) is

≤
∑

Ω(n)≤100blog log T c
Ω(m)≤100blog log T c
p|n =⇒ log p≤log1−ε T
p|m =⇒ log p≤log1−ε T

F−1,β/2−1,θ(nm)g(n)g(m)
[n,m]

· 1
T

∫
R

(
log

( t(n,m)2

2πnm
)

+ 2γ
)
Φ
( t
T

)
dt+O(T−ε), (6.2.10)

where Φ is a smooth non-negative function such that Φ(x) ≥ 1 for 1 ≤ x ≤ 2, and (n,m) and
[n,m] stand for the greatest common divisor and the least common multiple, respectively.

We first note that if n,m are square-free then [n,m] is the product over the distinct
prime factors of n andm. This means that if a(n) and b(m) are two bounded multiplicative
functions, we have

∑
p|n =⇒ p≤X
p|m =⇒ p≤X

a(n)b(m)
[n,m] =

∏
p≤X

(
1 + a(p)

p
+ b(p)

p
+ a(p) · b(p)

p
+O(p−2)

)
. (6.2.11)

This holds simply by enumerating the ordered pairs of integers in terms of the prime factors
considering the four possibilities: p does not divide n nor m, p divides n, p divides m and p
divides both n and m.

Using Chernoff’s bound, we can get rid of the restriction Ω(n) ≤ 100blog log T c in
(6.2.10). It suffices to notice that the contribution of the sum over n with Ω(n) >

100blog log T c is

� log T
∑

p|n =⇒ p≤T
p|m =⇒ p≤T

|F−1,β/2−1,θ(nm)|
[n,m] eΩ(n)−100 log log T

� (log T )−99 ∏
p≤T

(
1 + (1 + e)|F−1,β/2−1,θ(p)|

p
+ e · |F−1,β/2−1,θ(p)|2

p

)

� (log T )−99 · (log T )1+2e = o(1), (6.2.12)
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where we used (6.2.11) and the fact that |F−1,β/2−1,θ(p)| ≤ 1 for 0 < β ≤ 2. The contribution
of the sum over m with Ω(m) > 100blog log T c can be removed in the same manner.

Considering the sums in (6.2.10) without the restriction on Ω(n) and Ω(m), we get by
(6.2.11) and Lemma 6.4.1,

∑
p|n =⇒ log p≤log1−ε T
p|m =⇒ log p≤log1−ε T

F−1,β/2−1,θ(nm)g(n)g(m)
[n,m] �

∏
log p≤log1−ε T

(
1 +

2F−1,β/2−1,θ(p) + F−1,β/2−1,θ(p)2

p

)

� (log T )−|θ| · (log T )(β2/4−1)·(1+θ−ε)

� (log T )β2(1+θ)/4−1+ε. (6.2.13)

To evaluate the remaining part of the sum, write

log
((m,n)2

mn

)
= 1

2πi

∮
|z|=1/ log T

((m,n)2

mn

)z
· dz
z2 . (6.2.14)

Then, we end up having to evaluate

1
2πi

∮
|z|=1/ log T

∑
p|n =⇒ log p≤log1−ε T
p|m =⇒ log p≤log1−ε T

F−1,β/2−1,θ(mn)g(m)g(n)
[m,n] ·

((m,n)2

mn

)z
· dz
z2 . (6.2.15)

As above, the sum over m and n factors into an Euler product which is

�
∏

log p≤log1−ε T

(
1 + 2F−1,β/2−1,θ(p)

p1+z + F−1,β/2−1,θ(p)2

p
+O(p−2+2|z|)

)
. (6.2.16)

For |z| = 1/ log T , note that a Taylor expansion yields

∑
log p≤log1−ε T

F−1,β/2−1,θ(p)
p1+z =

∑
log p≤log1−ε T

F−1,β/2−1,θ(p)
p

+ O

(
1

log T
∑

log p≤log1−ε T

log p
p

)
,

and since the above error term is o(1) by Lemma 6.4.1, the Euler product in (6.2.16) is

�
∏

log p≤log1−ε T

(
1 + 2F−1,β/2−1,θ(p) + F−1,β/2−1,θ(p)2

p

)
� (log T )β2(1+θ)/4−1+ε. (6.2.17)

Therefore, by putting this back in the contour integral and using a trivial bound on z2,
(6.2.15) is� (log T )β2(1+θ)/4+ε as required. �
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Lemma 6.2.5. Let ε > 0 be given. For ` = 50blog log T c, we have

E
[
|ζ(1

2 + iτ)|2 ·
∣∣∣∣P1−ε(1

2 + iτ)
100 log log T

∣∣∣∣2`
]
� (log T )−21, (6.2.18)

and

E
[∣∣∣∣P1−ε(1

2 + iτ)
100 log log T

∣∣∣∣2`
]
� (log T )−21. (6.2.19)

Proof. For (6.2.18), we apply the Cauchy-Schwarz inequality, a fourth moment bound on
zeta, and a moment estimate (Lemma 6.4.4) followed by a prime number theorem estimate
(Lemma 6.4.1) on the remaining term to conclude that the expectation is

� (log T )2 · E
[∣∣∣∣P1−ε(1

2 + iτ)
100 log log T

∣∣∣∣4`
]1/2

� (log T )2 · (log T )−50. (6.2.20)

The proof of (6.2.19) is even more straightforward. �

The last three lemmas show a moment bound of the right order for ζ · e−P|θ| .

Proposition 6.2.6. Let −1 < θ < 0, 0 < β ≤ 2 and ε > 0 be given. Then, as T →∞,

E
[∣∣∣(ζ · e−P|θ|)(1

2 + iτ)
∣∣∣β1A(T )

]
� (log T )β2(1+θ)/4+ε, (6.2.21)

with the event
A(T ) =

{
|P|θ|(1

2 + iτ)| ≤ 2 log log T
}
. (6.2.22)

Proof. Let 0 < β < 2. By Young’s inequality with p = 2/β and q = 2/(2− β),

∣∣∣ζ(1
2 + iτ)

∣∣∣β ≤ 1
p
· |ζ(1

2 + iτ)|2 · e− 2
q

ReP1−ε(
1
2 +iτ) + 1

q
· e 2

p
ReP1−ε(

1
2 +iτ)

= β
2 · |ζ(1

2 + iτ)|2 · e−(2−β)ReP1−ε(
1
2 +iτ) + 2−β

2 · e
βReP1−ε(

1
2 +iτ).

(6.2.23)

Note that (6.2.23) holds trivially for β = 2. Hence, for 0 < β ≤ 2,

∣∣∣(ζ · e−P|θ|)(1
2 + iτ)

∣∣∣β ≤ β
2 |ζ(1

2 + iτ)|2 · e−(2−β)ReP1−ε(
1
2 +iτ)−βReP|θ|(

1
2 +iτ)

+ 2−β
2 eβReP1−ε(

1
2 +iτ)−βReP|θ|(

1
2 +iτ).

(6.2.24)
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On the event A(T ) ∩ {|P1−ε(1
2 + iτ)| ≤ 100 log log T}, we get by (6.2.5) that

e−(2−β)ReP1−ε(
1
2 +iτ)−βReP|θ|(

1
2 +iτ) �

∣∣∣∣∣ ∑
Ω(n)≤100blog log T c
p|n =⇒ log p≤log1−ε T

F−1,β/2−1,θ(n)g(n)
n1/2+iτ

∣∣∣∣∣
2

(6.2.25)

where Fα,β,θ(n) is the completely multiplicative function defined in (6.2.6). Likewise, on the
same event, we have

eβReP1−ε(
1
2 +iτ)−βReP|θ|(

1
2 +iτ) �

∣∣∣∣∣ ∑
Ω(n)≤100blog log T c
p|n =⇒ log p≤log1−ε T

F0,β/2,θ(n)g(n)
n1/2+iτ

∣∣∣∣∣
2

(6.2.26)

Finally, on the event A(T ) ∩ {|P1−ε(1
2 + iτ)| > 100 log log T}, we get, for any ` ≥ 1,

∣∣∣(ζ · e−P|θ|)(1
2 + iτ)

∣∣∣β ≤ (log T )4 · (1 + |ζ(1
2 + iτ)|2) ·

∣∣∣∣P1−ε(1
2 + iτ)

100 log log T

∣∣∣∣2`, (6.2.27)

since for β ≤ 2, |ζ|β is bounded by (1 + |ζ|2) and e−βReP|θ| is bounded by (log T )4 on
A(T ). We choose ` = 50blog log T c. Now, take the expectation with τ restricted toA(T ) in
(6.2.24), then split the terms on the right-hand side over the associated events in (6.2.25),
(6.2.26) and (6.2.27). We use Lemmas 6.2.3, 6.2.4 and 6.2.5 to bound the expectations. �

6.2.2. Discretization

The analysis of the maximum of zeta on an interval can often be reduced to the analysis
on a discrete set of points at a distance of roughly (log T )−1 of each other. This can be
proved for the maximum using the functional equation for zeta, see for example Lemma
2.2 in Farmer et al. (2007). We will need a more elaborate variant for general Dirichlet
polynomials.

Proposition 6.2.7. Let θ > −1, β ≥ 1, and ε > 0 be given. Let D be a Dirichlet

polynomial of length T 1+ε. Then, for all A > 0, T ≤ t ≤ 2T , and σ ≥ 1/2,

sup
|h|≤logθ T

|D(σ + it+ ih)|β �A

∑
|k|≤2 log1+θ T

∣∣∣D(σ + it+ 2πik
(2+3ε) log T

)∣∣∣β

+
∑

|k|>2 log1+θ T

∣∣∣D(σ + it+ 2πik
(2+3ε) log T

)∣∣∣β · 1
1 + |k|A .

(6.2.28)
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Proof. Let V be a smooth compactly supported function with V (x) = 1 for 0 ≤ x ≤ 1 + ε

and compactly supported in [−ε, 1 + 2ε]. We show

|D(σ + it+ ih)|β �
∑
k∈Z

∣∣∣D(σ + it+ 2πik
(2+3ε) log T

)∣∣∣β · ∣∣∣V̂ ( k
2+3ε − h log T

2π

)∣∣∣. (6.2.29)

Taking a supremum over |h| ≤ logθ T , and using the rapid decay of V̂ , we get (6.2.28).

Let G(x) = V (2πx/ log T ), so that G
(

1
2π log n

)
= 1 for 1 ≤ n ≤ T 1+ε. We have

Ĝ(x) = log T
2π · V̂

(
x log T

2π

)
. By the Paley-Wiener theorem (see for example Theorem IX.11 in

Reed and Simon (1972)), uniformly in T ≤ t ≤ 2T and |h| ≤ logθ T , we have

|D(σ + it+ ih+ ix)Ĝ(x)| � exp((2 + 3ε) log T · |x|), x ∈ C. (6.2.30)

Now, consider ∑
k∈Z

D
(
σ + it+ 2πik

(2+3ε) log T

)
Ĝ
(

2πk
(2+3ε) log T − h

)
. (6.2.31)

By the Poisson summation formula, the above is equal to

∑
`∈Z

∫
R
D
(
σ + it+ 2πix

(2+3ε) log T

)
Ĝ
(

2πx
(2+3ε) log T − h

)
e−2πi`xdx. (6.2.32)

By a change of variable, this is equal to

(2 + 3ε) · log T
2π

∑
`∈Z

∫
R
D
(
σ + it+ ix

)
Ĝ(x− h)e−i`x(2+3ε) log Tdx. (6.2.33)

Using (6.2.30), all the terms with ` 6= 0 in (6.2.33) are equal to zero. The term ` = 0 is
equal to D(σ + it+ ih) since G( 1

2π log n) = 1 for 1 ≤ n ≤ T 1+ε. It follows that

D(σ + it+ ih) = 1
2 + 3ε

∑
k∈Z

D
(
σ + it+ 2πik

(2+3ε) log T

)
V̂
(

k
2+3ε − h log T

2π

)
. (6.2.34)

Taking absolute values and applying Hölder’s inequality with β ≥ 1, we obtain

|D(σ + it+ ih)| ≤
( 1

2 + 3ε
∑
k∈Z

∣∣∣D(σ + it+ 2πik
(2+3ε) log T

)∣∣∣β · ∣∣∣V̂ ( k
2+3ε − h log T

2π

)∣∣∣)1/β

×
( 1

2 + 3ε
∑
k∈Z

∣∣∣V̂ ( k
2+3ε − h log T

2π

)∣∣∣)1−1/β
. (6.2.35)
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This proves (6.2.29) using the rapid decay of V̂ . �

Proposition 6.2.7 implies five important corollaries to tackle the maximum of ζ and of
Dirichlet polynomials. We first observe that the discretization applies to ζ.

Corollary 6.2.8. Let θ > −1, β ≥ 1 and ε > 0 be given. Then, for any A,B > 0 and all

T ≤ t ≤ 2T ,

max
|h|≤logθ T

|ζ(1
2 + it+ ih)|β

�A,B

∑
|k|≤2 log1+θ T

∣∣∣ζ(1
2 + it+ 2πik

(2+3ε) log T

)∣∣∣β

+
∑

|k|>2 log1+θ T

∣∣∣ζ(1
2 + it+ 2πik

(2+3ε) log T

)∣∣∣β · 1
1 + |k|A + T−B.

(6.2.36)

Proof. From Proposition 2 in Bombieri and Friedlander (1995), we have, for any A > 0,

∑
n≤T

1
n1/2+it ·

(
1− n

T

)A
= ζ(1

2 + it) +OA(T−A/2). (6.2.37)

We apply Proposition 6.2.7 to conclude. �

As a consequence, we get a suboptimal upper bound using the second moment.

Corollary 6.2.9. For any A ≥ 0,

P
(

max
|h|≤logA T

|ζ(1
2 + iτ + ih)| > 2A(log T )2+A

)
� 1

log T · 2
−A. (6.2.38)

Proof. Using the integral representation for ζ on the critical strip, we certainly know that
ζ(1

2 + it) = O(1 + |t|) for all t (see for example (2.12.2) in Titchmarsh (1986)), which means
that (6.2.38) is trivially satisfied when A > log T/ log log T . Therefore, assume

A ≤ log T/ log log T.

By applying Chebyshev’s inequality and Corollary 6.2.8, the probability in (6.2.38) is
bounded above by
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2−2A(log T )−4−2A E
[

max
|h|≤logA T

|ζ(1
2 + iτ + ih)|2

]

� 2−2A(log T )−4−2A ∑
|k|≤2 log1+A T

E
[∣∣∣ζ(1

2 + iτ + 2πik
(2+3ε) log T

)∣∣∣2] (6.2.39)

+ 2−2A(log T )−4−2A ∑
|k|>2 log1+A T

E
[∣∣∣ζ(1

2 + iτ + 2πik
(2+3ε) log T

)∣∣∣2] · 1
1 + |k|100 + T−101,

for any fixed ε > 0. The first expectation is � log T by using a standard second moment
bound. We bound the second expectation by enlarging the integration to |t| ≤ T |k| and
then applying the second moment bound, i.e.

E
[∣∣∣ζ(1

2 + iτ + 2πik
(2+3ε) log T

)∣∣∣2] ≤ |k| · 1
T |k|

∫
|t|≤T |k|

∣∣∣ζ(1
2 + it)

∣∣∣2dt� |k| · log(T |k|). (6.2.40)

We conclude that the right-hand side of (6.2.39) is, by the assumption on A,

� 2−2A(log T )−2−A � 1
log T · 2

−A. (6.2.41)

�
A similar reasoning using Markov’s inequality can be applied to get a suboptimal upper

bound for the maximum of Pα, 0 < α < 1.

Corollary 6.2.10. For any θ > −1, ε > 0 and σ ≥ 1/2,

P
(

max
|h|≤logθ T

|Pα(σ + iτ + ih)| > (
√
α(1 + θ) + ε) log log T

)
= o(1). (6.2.42)

Proof. Apply Markov’s inequality with exponent 2k, discretize as in (6.2.39) using Propo-
sition 6.2.7, and then use Lemma 6.4.4 with k = b(1 + θ) log log T c to bound the expecta-
tions. �

The same bound holds trivially for the maximum of RePα since |RePα| ≤ |Pα|. This is
sharp for θ > 0. For θ < 0 and α > |θ|, this bound (and the bound for ζ) needs to be refined
by discarding the contribution of small primes. The result below directly implies that for
θ < 0 and α > |θ|, the sharp upper bound for RePα is

√
(α + θ)(1 + θ) log log T since the

effective variance is (α+θ)
2 log log T .
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Corollary 6.2.11. Let −1 < θ < 0 and σ ≥ 1/2. For any 0 < ε < C and V = V (T ) that

satisfies ε log log T ≤ V ≤ C log log T , we have

P
(

max
|h|≤logθ T

∣∣∣P|θ|(σ + iτ + ih)
∣∣∣ > V

)
� e−cV , (6.2.43)

for some constant c = c(ε, C) > 0.

Proof. For a lighter notation, write S(h) = P|θ|(σ + iτ + ih). (We keep the dependence
on τ implicit, consistent with the probabilistic notation for random variables.) We have

P
(

max
|h|≤logθ T

|S(h)| > V
)
≤ P

(
max
|h|≤logθ T

|S(h)− S(0)| > V/2
)

+ P
(
|S(0)| > V/2

)
.

(6.2.44)

Let ` denote a generic natural integer. By Chebyshev’s inequality, a moment estimate
(Lemma 6.4.4) and a prime number theorem estimate (Lemma 6.4.1), we have

P
(
|S(0)| > V/2

)
≤

E
[
|S(0)|2`

]
(V/2)2` � `!

(∑
p≤T p

−2σ

(V/2)2

)`
�
(

4` log log T
ε2(log log T )2

)`
. (6.2.45)

With the choice ` = b ε28 log log T c, this probability is � exp(−aV ) for some constant
a = a(ε, C) > 0.

It remains to control the first probability on the right-hand side of (6.2.44). Let ` denote
another natural integer to be chosen later. By applying Proposition 6.2.7, we get

E
[

max
|h|≤logθ T

|S(h)− S(0)|2`
]
� log1+θ T · E

[
|S(h)− S(0)|2`

]
(6.2.46)

A short calculation, using moment estimates (Lemma 6.4.4) followed by prime number
theorem estimates (Lemma 6.4.1), gives, for all |h| ≤ logθ T ,

E
[
|S(h)− S(0)|2`

]
� `!

( ∑
log p≤log|θ| T

2− 2 cos(|h| log p)
p

)`
� (` c)`, (6.2.47)

for some constant c > 0 (to obtain the last inequality, note that |h| · log|θ| T ≤ 1).
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Then, by Chebyshev’s inequality and the choice ` = b ε28c log log T c, we deduce

P
(

max
|h|≤logθ T

|S(h)− S(0)| > V/2
)
�
(

4 ` c
V 2

)`
� e−bV , (6.2.48)

for some constant b = b(ε, C) > 0. �

As before the maximum of ζ · e−P|θ| can be discretized by truncating the exponential.

Corollary 6.2.12. Let 0 ≥ θ > −1 and ε > 0 be given. Then, the event

max
|h|≤logθ T

∣∣∣∣(ζ · e−P|θ|)(1
2 + iτ + ih)

∣∣∣∣2

�
∑

|k|≤2 log1+θ T

∣∣∣∣(ζ · e−P|θ|)(1
2 + iτ + 2πik

(2+3ε) log T

)∣∣∣∣2 + o(1)
(6.2.49)

has probability 1− o(1).

Proof. Define the event

Ã(T ) =
{

max
|h|≤logθ T

∣∣∣P|θ|(1
2 + iτ + ih)

∣∣∣ ≤ 2 log log T
}
. (6.2.50)

By Corollary 6.2.11, we have P(Ã(T )) = 1− o(1). By (6.2.5), for all τ ∈ Ã(T ),

∣∣∣∣ ∑
Ω(n)≤20blog log T c
p|n =⇒ log p≤log|θ| T

(−1)Ω(n)g(n)
n1/2+iτ+ih

∣∣∣∣ =
∣∣∣∣e−P|θ|( 1

2 +iτ+ih)
∣∣∣∣+O

(
(log T )−20

)

�
∣∣∣∣e−P|θ|( 1

2 +iτ+ih)
∣∣∣∣. (6.2.51)

Combining this with (6.2.37), we conclude that, for all τ ∈ Ã(T ),
∣∣∣(ζ · e−P|θ|)(1

2 + iτ + ih)
∣∣∣ � |D(1

2 + iτ + ih)|+ o(1), (6.2.52)

with D a Dirichlet polynomial of length � T 1+ε for every fixed ε > 0. Proposition 6.2.7
implies

max
|h|≤logθ T

|D(1
2 + iτ + ih)|2 �

∑
|k|≤2 log1+θ T

∣∣∣D(1
2 + iτ + 2πik

(2+3ε) log T

)∣∣∣2 + o(1). (6.2.53)

Together with (6.2.52), this concludes the proof. �
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6.2.3. Proofs of the upper bounds

6.2.3.1. The case of θ ≥ 0

Proof of Theorem 6.1.2 for θ ≥ 0. By Markov’s inequality, for any β > 0, we have

P
(

max
|h|≤logθ T

|ζ(1
2 + iτ + ih)| > (log T )m(θ)+ε

)

� (log T )−βm(θ)−βε · E
[

max
|h|≤logθ T

|ζ(1
2 + iτ + ih)|β

]
.

(6.2.54)

For β > 1, we get, by picking A large enough in Corollary 6.2.8, that the right-hand side of
the above equation is

� (log T )−βm(θ)−βε+1+θ · E
[
|ζ(1

2 + iτ)|β
]
. (6.2.55)

(The sum on large k’s is handled as in (6.2.40).) By applying Proposition 6.2.2 if θ ≤ 3
and Proposition 6.2.1 if θ > 3, the expectation is bounded by (log T )β2/4+βε/2. The optimal
bound is at β = 2m(θ) > 1. Therefore, the claim follows. �

Proof of Theorem 6.1.1 for θ ≥ 0. For all β > 0, Markov’s inequality yields the
bound

P
( ∫
|h|≤logθ T

|ζ(1
2 + iτ + ih)|βdt ≥ (log T )fθ(β)+ε

)

� (log T )−fθ(β)−ε logθ T · E
[
|ζ(1

2 + iτ)|β
]
.

(6.2.56)

When β ≤ 2
√

1 + θ, we have fθ(β) = β2/4 + θ, so the right-hand side of (6.2.56) is
� (log T )−ε/2 by Proposition 6.2.2 for θ ≤ 3 and by Proposition 6.2.1 for θ > 3.

It remains to sharpen the bound in the case β > 2
√

1 + θ. We use the Lebesgue measure
of high points. Let a, b > 0. Two successive applications of Markov’s inequality yield

P
(
Leb

{
|h| ≤ logθ T : |ζ(1

2 + iτ + ih)| > (log T )a
}
≥ (log T )−a2+θ+ε

)

� (log T )a2−ε · (log T )−ba · E
[
|ζ(1

2 + iτ)|b
]
.

(6.2.57)

Again, the optimal bound is at b = 2a. Using Proposition 6.2.2 for θ ≤ 3 and Proposition
6.2.1 for θ > 3 and choosing b = 2a, we conclude that this is� (log T )−ε/2 for 0 < a ≤ m(θ).
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We now partition the integral according to the value of the integrand. LetM ≥ 1 be an
integer and 0 ≤ j ≤M . Theorem 6.1.2 and the above imply that, with probability 1−o(1),

∫
|h|≤logθ T

|ζ(1
2 +iτ+ih)|βdh�

∑
0≤j≤M

(log T )β((j+1)/M)m(θ)·(log T )−(j/M)2m(θ)2+θ+ε. (6.2.58)

For β > 2
√

1 + θ ≥ 2m(θ), the last term j = M dominates and, in particular, the above is
bounded by

� (log T )βm(θ)−m(θ)2+θ+2ε = (log T )βm(θ)−1+2ε, (6.2.59)

provided thatM is chosen sufficiently large. �

6.2.3.2. The case of θ < 0

Proof of Theorem 6.1.2 for θ < 0. We notice that

P
(

max
|h|≤logθ T

|ζ(1
2 + iτ + ih)| > (log T )m(θ)+ε

)

≤ P
(

max
|h|≤logθ T

∣∣∣(ζ · e−P|θ|)(1
2 + iτ + ih)

∣∣∣ > (log T )m(θ)+ε/2
)

+ P
(

max
|h|≤logθ T

∣∣∣eP|θ|( 1
2 +iτ+ih)

∣∣∣ > (log T )ε/2
)
.

(6.2.60)

By Corollary 6.2.11, the last term is o(1) as T →∞. As in (6.2.50), let

Ã(T ) =
{

max
|h|≤logθ T

∣∣∣P|θ|(1
2 + iτ + ih)

∣∣∣ ≤ 2 log log T
}
. (6.2.61)

By Corollary 6.2.11 again, the probability of Ã(T ) is 1 − o(1). We let A0(T ) denote the
subset of Ã(T ) for which the conclusion of Corollary 6.2.12 holds. The probability ofA0(T )
is 1− o(1). Then, by Chebyshev’s inequality, we have

P
({

max
|h|≤logθ T

∣∣∣(ζ · e−P|θ|)(1
2 + iτ + ih)

∣∣∣ > (log T )m(θ)+ε/2
}
∩ A0(T )

)

≤ (log T )−2m(θ)−ε · E
[

max
|h|≤logθ T

∣∣∣(ζ · e−P|θ|)(1
2 + iτ + ih)

∣∣∣2 1A0(T )

]
.

(6.2.62)

By Corollary 6.2.12, and since m(θ) = 1 + θ, this is

� (log T )−(1+θ)−ε · E
[∣∣∣(ζ · e−P|θ|)(1

2 + iτ)
∣∣∣2 1Ã(T )

]
. (6.2.63)
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By Proposition 6.2.6, this is

� (log T )−(1+θ)−ε · (log T )(1+θ)+ε/2 � (log T )−ε/2, (6.2.64)

as needed. �

Proof of Theorem 6.1.1 for θ < 0. Similarly to (6.2.60), we can restrict to ζ · e−P|θ|

as follows

P
( ∫
|h|≤logθ T

|ζ(1
2 + iτ + ih)|βdh > (log T )fθ(β)+ε

)

≤ P
( ∫
|h|≤logθ T

∣∣∣(ζ · e−P|θ|)(1
2 + iτ + ih)

∣∣∣βdh > (log T )fθ(β)+ε/2
)

+ o(1).
(6.2.65)

As in (6.2.61), P(Ã(T )) = 1− o(1), and by Markov’s inequality, we have

P
({ ∫

|h|≤logθ T

∣∣∣(ζ · e−P|θ|)(1
2 + iτ + ih)

∣∣∣βdh > (log T )fθ(β)+ε/2
}
∩ Ã(T )

)

� (log T )−fθ(β)−ε/2 · logθ T · E
[∣∣∣(ζ · e−P|θ|)(1

2 + iτ)
∣∣∣β 1Ã(T )

]
.

(6.2.66)

By Proposition 6.2.6, the above is

� (log T )−(β2/4)(1+θ)−ε/2 · (log T )(β2/4)·(1+θ)+ε/4 � (log T )−ε/4. (6.2.67)

This bound proves the claim for β ≤ 2.

It remains to refine the bound for the case β > 2. This proceeds in the same way as in
the proof of Theorem 6.1.1 in the case of θ ≥ 0, with ζ replaced by ζ · e−P|θ| restricted on
the event Ã(T ). Namely, we have, for 0 < a ≤ m(θ),

P
({

Leb
{
|h| ≤ logθ T : |(ζ · e−P|θ|)(1

2 + iτ + ih)| > (log T )a
}
≥ (log T )−a2+θ+ε

}
∩ Ã(T )

)

� (log T )a2−ε · (log T )−ba · E
[
|(ζ · e−P|θ|)(1

2 + iτ)|b 1Ã(T )

]
. (6.2.68)

This is o(1) by Proposition 6.2.6 with the optimal choice b = 2a/(1+θ) ≤ 2. The remainder
is done exactly as in the proof of Theorem 6.1.1 in the case of θ ≥ 0, by partitioning the
integral over values of the integrand on the range [0,m(θ) + ε]. �
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6.3. Lower bounds

In this section, we prove:

Proposition 6.3.1. Let θ > −1 and ε > 0 be given. Then,

P
(

max
|h|≤logθ T

|ζ(1/2 + iτ + ih)| > (log T )m(θ)−ε
)

= 1− o(1). (6.3.1)

Proposition 6.3.2. Let θ > −1, β > 0 and ε > 0 be given. Then,

P
( ∫ logθ T

− logθ T
|ζ(1/2 + iτ + ih)|βdh > (log T )fθ(β)−ε

)
= 1− o(1). (6.3.2)

The lower bound for the maximum will be an easy consequence of the lower bound for
the moments. The idea is to approximate zeta by an appropriate Dirichlet polynomial. This
can be done with good precision off-axis, cf. Section 6.3.1. The approximation to a Dirichlet
polynomial is then shown in Section 6.3.2. The lower bound for the moments of the Dirichlet
polynomials is proved in Section 6.3.3 using Kistler’s multiscale second moment method.
Finally, the two propositions above are proved in Section 6.3.4.

6.3.1. Reduction off-axis

In Arguin et al. (2019), the maximum on a short interval of the critical line was compared
to the one on a short interval away from the critical line by exploiting the analyticity of ζ
away from its pole. More precisely, a value off-axis can be seen as an average of zeta over
the critical line weighed by the corresponding Poisson kernel. This approach could also be
used in the case of the moments by using the subharmonicity of the function z 7→ |z|β. We
choose to apply a different method based on the following convexity theorem of Gabriel,
which handles error terms more efficiently.

Proposition 6.3.3 (Theorem 2 of Gabriel (1927) in the special case a = b = 1). Let F be

a complex valued function which is regular in the strip α ≤ Re z ≤ β. Suppose that |F (z)|
tends to zero as |Im z| → ∞, uniformly for α ≤ Re z ≤ β. Then, for any γ ∈ [α, β] and
any fixed k > 0,

I(γ) ≤ I(α)(β−γ)/(β−α) · I(β)(γ−α)/(β−α) (6.3.3)
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where

I(σ) =
∫
R
|F (σ + it)|kdt. (6.3.4)

This theorem has the following useful consequence.

Corollary 6.3.4. Let F be a complex valued function which is regular in the strip 1
2 ≤ Re z.

Suppose that |F (z)| tends to zero uniformly as |Im z| → ∞. Suppose that I(σ) → 0 as

σ →∞. Then, for any σ > 1
2 and any fixed k > 0,

I(σ) ≤ I(1
2). (6.3.5)

Proof. Let σ? be such that
I(σ?) = sup

σ≥1/2
I(σ). (6.3.6)

Note that because of the assumption that I(σ) → 0 as σ → ∞, the above σ? has a finite
value. Let ε > 0 be given. If σ? = 1

2 , then we are done. If σ? 6= 1
2 , then by Proposition 6.3.3

applied with γ = σ?, α = 1
2 and β = σ? + ε, we get

I(σ?) ≤ I(1
2)λ · I(σ? + ε)µ, (6.3.7)

for some appropriate λ, µ > 0 that satisfy λ+ µ = 1.

Therefore, by definition of σ? in (6.3.6),

I(σ?) ≤ I(1
2)λ · I(σ?)µ, (6.3.8)

and hence I(σ?)λ ≤ I(1
2)λ. Since λ > 0, we get I(σ?) ≤ I(1

2). By (6.3.6), the claim
follows. �

We now construct a special analytic approximation for the indicator function of a rec-
tangle.

Lemma 6.3.5. Let 0 ≤ ∆ ≤ L and ε > 0 be given. There exists an entire function

Φ∆,L(z) such that, for z = σ + iv with σ ≥ 1
2 and v ∈ R,

(1) For K > 1 + ε and |v| > KL, uniformly in σ ≥ 1
2 , Φ∆,L(z)�A ((K − 1)∆)−A.

(2) For any |v| ≤ (1− ε)L, |Φ∆,L(z)| = 1 +OA(∆−A) +O((σ − 1
2)∆2/L).
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(3) For any (1− ε)L ≤ |v| ≤ (1 + ε)L, |Φ∆,L(z)| � 1 + (σ − 1
2)∆2/L.

(4) Φ∆,L(z)→ 0 uniformly in v as σ →∞.

Proof. LetV be a smooth function, compactly supported in [0,∞) and such thatV (1) = 1.
Given a parameter η > 0 and given z ∈ C with Re z ≥ 1

2 and u ∈ R, consider the following
function :

δη(z) = η
∫ ∞

0
e−2π(z− 1

2 )x · V
(
ηx
)
dx. (6.3.9)

Then δη(z) defines an entire function of exponential type. By integration by parts, we see
that

δη(z)�A (1 + |z − 1
2 |η−1)−A, (6.3.10)

for any A > 0 and uniformly in Re z ≥ 1
2 . Therefore, we may think of δη(z) as localizing to

z = 1
2 +O(η). Furthermore, notice that if z = 1

2 + iv and u ∈ R, then

δη(z − iu) = V̂ (η−1(v − u)), (6.3.11)

and for z = σ + iv, we have by a Taylor expansion of the exponential,

δη(z − iu) = η
∫ ∞

0
e−2π(σ− 1

2 +i(v−u))x · V
(
ηx
)
dx

= η
∫ ∞

0
e−2πi(v−u)x ·

(
1 +O

(
(σ − 1

2)η−1
))
· V
(
ηx
)
dx

= V̂ (η−1(v − u)) +O
(
(σ − 1

2)η−1
)
. (6.3.12)

Finally, for z = σ + iv with σ ≥ 1
2 , we have from (6.3.10) that

|δη(z − iu)| �A
1

1 + (η−1|u− v|)A . (6.3.13)

The candidate function is

Φ∆,L(z) = ∆
L

∫ L

−L
e−2πiu(∆/L) · δL/∆(z − iu)du. (6.3.14)

We will now describe some of the features of this function. Write z = σ + iv with σ ≥ 1
2 .

Using the bound (6.3.13), we see that, if |v| > KL with K > 1 + ε and σ ≥ 1
2 , then
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Φ∆,L(z)�A
∆
L

∫ L

−L

1
1 + (∆

L
· |u− v|)A du�A (K − 1)−A∆1−A. (6.3.15)

This gives the first claim.

If |v| ≤ (1 + ε)L, then by (6.3.14) and (6.3.12), we have

Φ∆,L(z) = ∆
L

∫ L

−L
e−2πiu(∆/L) · V̂

(
∆
L
· (v − u)

)
du+O

(
(σ − 1

2)∆2/L
)
. (6.3.16)

In particular, it follows that if 1
2 ≤ σ and |v| ≤ (1− ε)L, then due to the rapid decay of V̂ ,

Φ∆,L(z) = e−2πiv(∆/L)
∫ v∆/L+∆

v∆/L−∆
e2πiu · V̂ (u)du+O

(
(σ − 1

2)∆2/L
)

= e−2πiv(∆/L) +OA(∆−A) +O
(
(σ − 1

2)∆2/L
)
, (6.3.17)

by Fourier inversion and the assumption that V (1) = 1. This proves the second claim. If
1
2 ≤ σ � 1 and |v| ≤ (1 + ε)L, then we have the bound

|Φ∆,L(z)| �
∫
R
|V̂ (u)|du+O

(
(σ − 1

2)∆2/L
)
, (6.3.18)

which proves the third claim. Finally, notice that δL/∆(z− iu)→ 0 uniformly as σ →∞ by
(6.3.10), which implies the last claim that Φ∆,L(z)→ 0 uniformly in v ∈ R as σ →∞. �

The following proposition relates the moments off and on axis.

Proposition 6.3.6. Let θ > −1, β > 0, ε > 0, T ≥ 109. Then, for all 1
2 ≤ σ ≤

1
2 + (log T )θ−3ε, the event

∫ logθ T

− logθ T
|ζ(σ + iτ + iu)|βdu�θ,β,ε

∫ 2 logθ T

−2 logθ T
|ζ(1

2 + iτ + iu)|βdu+ 1
(log T )7 (6.3.19)

has probability 1− o(1).

Proof. Let

D(σ + iτ) =
∑
n≤T

1
nσ+iτ ·

(
1− n

T

)A
, (6.3.20)

with A > 100 fixed. From Proposition 2 in Bombieri and Friedlander (1995), we have, for
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T ≤ τ ≤ 2T and 1
2 ≤ σ ≤ 1

2 + (log T )θ−3ε,

ζ(σ + iτ) = D(σ + iτ) +OA(T−A/2). (6.3.21)

Consider

I(σ) =
∫
R
|D(σ + iτ + iu)|β · |Φ∆,L(σ + iu)|βdu, (6.3.22)

with ∆ = logε T and L = 2 logθ T . Then, by Lemma 6.3.5 and Corollary 6.3.4, we have∫
R
|D(σ + iτ + iu)|β · |Φ∆,L(σ + iu)|βdu

�
∫
R
|D(1

2 + iτ + iu)|β · |Φ∆,L(1
2 + iu)|βdu.

(6.3.23)

Now, it remains to unsmooth the expression. By Lemma 6.3.5, provided that σ − 1
2 ≤

(log T )θ−3ε, we have

∫ logθ T

− logθ T
|D(σ + iτ + iu)|βdu�

∫
R
|D(σ + iτ + iu)|β · |Φ∆,L(σ + iu)|βdu. (6.3.24)

On the other hand, by Lemma 6.3.5, we have∫
R
|D(1

2 + iτ + iu)|β · |Φ∆,L(1
2 + iu)|βdu

�
∫ 2 logθ T

−2 logθ T
|D(1

2 + iτ + iu)|βdu

+
∞∑
A=0

∫
UA
|D(1

2 + iτ + iu)|β · |Φ∆,L(1
2 + iu)|βdu,

(6.3.25)

where UA = {2(log T )θ+A ≤ |u| ≤ 2(log T )θ+A+1}. By Corollary 6.2.9, the approximation
in (6.3.21), and a union bound, the event

S(T ) =
{

max
A∈N∪{0}

max
|u|≤logA T

|D(1
2 + iτ + iu)| ≤ 2A(log T )2+A

}
(6.3.26)

has probability 1− o(1). Moreover, by Lemma 6.3.5, for all 2(log T )θ+A ≤ |u|, we have

|Φ∆,L(1
2 + iu)| �θ,β,ε (log T )−4A(1+1/β) · (log T )−(10dθe+10)·(1+1/β). (6.3.27)
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Therefore, on the event S(T ), and for each A ≥ 0,∫
UA
|D(1

2 + iτ + iu)|β · |Φ∆,L(1
2 + iu)|βdu

�θ,β,ε (log T )(β+1)(dθe+A+3) · 2Aβ · (log T )−(β+1)·(10dθe+4A+10)

�θ,β,ε (log T )−(β+1)·(A+7). (6.3.28)

Thus, on S(T ), the contribution of the sum on the right-hand side of (6.3.25) is negligible.
By combining (6.3.23), (6.3.24) and (6.3.25), the claim follows. �

6.3.2. Mollification

This step is an adaptation of Section 4.2 of Arguin et al. (2019), which is itself based
on the work of Radziwiłł and Soundararajan (2017). The treatment is slightly different
as the width of the interval needs to be taken into account. Also, we choose to use the
discretization in Proposition 6.2.7 to obtain a uniform control on the interval as opposed to
a Sobolev inequality.

The main idea is to define a mollifier for the zeta function

M(s) =
∑
n

µ(n)a(n)
ns

. (6.3.29)

Here µ denotes the Möbius function µ(n) = (−1)ω(n) if n is square-free, where ω(n) is the
number of distinct prime factors, and µ(n) = 0 if n is non-square free. The term a(n) equals
1 if all prime factors of n are smaller than

X = exp((log T )1−K−1), K ≥ 2, (6.3.30)

and if
Ω(n) ≤ 100Keθ∨0 log log T =: νθ, (6.3.31)

with a(n) = 0 otherwise. The estimate will be done slightly off-axis:

σ0 = 1
2 + (log T )3/(2K)

log T . (6.3.32)

The parameter K will eventually be assumed to be large enough depending on θ, β and ε.
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The goal of this section is to prove thatM is an approximate inverse of ζ:

Lemma 6.3.7. Let θ > −1 and ε > 0 be given. Then,

P
(

max
|h|≤logθ T

|(ζ ·M)(σ0 + i(τ + h))− 1| > ε

)
= o(1). (6.3.33)

This was proved in the case θ = 0 in Lemma 4.2 of Arguin et al. (2019). In particular,
it also holds verbatim for −1 < θ < 0 since the interval is just smaller. The proof of Lemma
6.3.7 also holds in the case θ > 0 with slight modifications that we highlight. The key idea
is the following L2-control:

Lemma 6.3.8. Let θ > −1 be given. Then,

E
[∣∣∣(ζ ·M)(σ0 + iτ)− 1

∣∣∣2]� (log T )−100 eθ . (6.3.34)

Proof. We only have to prove the case θ > 0. The proof is exactly as in Arguin et al.
(2019) with a new error term due to the choice of νθ. (The manipulations are very similar to
the ones in Lemma 6.2.4.) The error appears after Equation (4.10) in Arguin et al. (2019)
and is given by

(log T ) e−νθ
∏
p≤X

(1 + 7p−1). (6.3.35)

The Euler product is bounded by � (log T )7 using Lemma 6.4.1. Using this and the
definition of νθ in (6.3.31) yields

(log T ) e−νθ
∏
p≤X

(1 + 7p−1)� (log T )8 · (log T )−100Keθ . (6.3.36)

SinceK ≥ 2, this gives the correct estimate. Note that the expression∑p>X log(1−p−2σ0)−1

entering in the remainder of the proof of Lemma 4.2 is

�
∑
p>X

p−2σ0 � X−(σ0−1/2) = exp(−(log T ) 1
2K )� (log T )−100 eθ . (6.3.37)

This ends the proof. �

Proof of Lemma 6.3.7. By (6.2.37), ζ is well approximated by a Dirichlet polynomial
of length T . Moreover, M is a Dirichlet polynomial of length less than T δ for any fixed
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δ > 0. Therefore, an application of Chebyshev’s inequality and Proposition 6.2.7 yield that
the probability is

� log1+θ T · E
[∣∣∣(ζ ·M)(σ0 + iτ)− 1

∣∣∣2]. (6.3.38)

The conclusion follows from Lemma 6.3.8. �

6.3.3. Bounds for Dirichlet polynomials

We now approximate the mollifierM by the exponential of a Dirichlet polynomial. We
first note that, on the region of absolute convergence, we have the following exact identity
by expanding the log

∑
n

µ(n)n−s = exp
(

log
∏
p

(1− p−s)
)

= exp
(
−
∑
p

p−s −
∑
k≥2

∑
p

p−ks

k

)
. (6.3.39)

Write
P̃1−K−1(s) :=

∑
pk≤X

1
kpks

. (6.3.40)

Note that exp(−P̃1−K−1(s)) corresponds to a Dirichlet polynomial with coefficients µ(n)
supported on integers n such that all the prime factors of n are ≤ X.

Lemma 6.3.9. Let θ > −1 be given. Then, for any K > 2, we have

P
(

max
|h|≤logθ T

∣∣∣∣M(σ0 + iτ + ih)− e−P̃1−K−1 (σ0 + iτ + ih)
)∣∣∣∣ > (log T )−10

)
= o(1). (6.3.41)

Proof. Proceeding as in (6.2.42), it follows that for any ε > 0,

P
(

max
|h|≤logθ T

|P̃1−K−1(σ0 + iτ + ih)| > νθ
10

)
= o(1). (6.3.42)

This is done by noticing that the sum for k > 2 is of order one, and that the sum for k = 2
is of negligible order:

P
(

max
|h|≤logθ T

∣∣∣∣ ∑
p2≤X

p−2(σ0+iτ+ih)/2
∣∣∣∣ > A

)
� A−2`(log1+θ T ) · `! , (6.3.43)

where we use Lemma 6.4.4. This is o(1) for the choice A = √νθ and ` = b(1 + θ) log log T c.
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Equations (6.3.42), (6.2.5) and (6.3.39) imply that, on a set of probability 1−o(1), theDirich-
let polynomial exp(−P̃1−K−1(s)) is well approximated (with an error e−νθ � (log T )−100)
by a Dirichlet polynomial with the same coefficients as M on the set of integers with at
most νθ prime factors. Denote this truncation byM. In particular, Proposition 6.2.7 and
Lemma 6.4.2 yield

E
[

max
|h|≤logθ T

|M −M|2(σ0 + iτ + ih)
]
� log1+θ T ·

∑
p|n =⇒ p≤X

Ω(n)>νθ

n−1. (6.3.44)

The right-hand side is� (log T )−100 since

log1+θ T ·
∑

p|n =⇒ p≤X
Ω(n)>νθ

n−1 � log1+θ T · e−νθ
∑

p|n =⇒ p≤X
eΩ(n)n−1 � (log T )−100. (6.3.45)

The result follows by Chebyshev’s inequality. �

6.3.4. Proofs of the lower bounds

Consider, for 0 ≤ j ≤ K − 2, the Dirichlet polynomials

Pj(h) = Re
∑
p∈Jj

1
pσ0+iτ+ih , Jj = (exp((log T )

j
K , exp((log T )

j+1
K )]. (6.3.46)

We choose a probabilistic notation for the increments Pj’s seen as random variable, omitting
the dependence on the random τ . We first prove a lower bound for the moments of Dirichlet
polynomials.

Proposition 6.3.10. Let θ > −1 and ε > 0 be given. Then,

P
( ∫ logθ T

− logθ T
exp

(
β
K−3∑
j=1

Pj(h)
)
dh > (log T )fθ(β)−ε

)
= 1− o(1). (6.3.47)

The polynomial PK−2 is not included in the sum to ensure that the variances of the Pj’s
are almost equal. Indeed, for all |h| ≤ logθ T and j ≤ K−3, an application of (6.4.6) yields

s2
j = E[Pj(h)2] = 1

2K log log T +O((log T )− 1
2K ), (6.3.48)
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since σ0− 1
2 = (log T )−1+3/(2K). The polynomial P0 is ignored to ensure that the polynomials∑K−3

j=1 Pj(h) are almost independent for h’s that are far apart, which will be crucial for the
second-moment method to go through; see below (6.3.65) in the proof of Proposition 6.3.10.

Proof of Proposition 6.3.10. This is similar to the upper bound proof of Theorem
6.1.1. We first relate the moments to the measure of high points. Let ε > 0 and M ∈ N,
and set

Eθ(γ) :=


θ − γ2

1+θ , if θ ≤ 0,

θ − γ2, if θ > 0.
(6.3.49)

Consider γj = j
M
m(θ) + ε for 1 ≤ j ≤M , and the good event

E =
M⋂
j=1

{
Leb

{
|h| ≤ logθ T : exp

(K−3∑
j=1

Pj(h)
)
> (log T )γj−1

}
≥ (log T )Eθ(γj−1)−ε/2

}

⋂{
max
|h|≤logθ T

exp
(K−3∑
j=1

Pj(h)
)
≤ (log T )m(θ)+ε

}
. (6.3.50)

We will show below that P(E) is 1− o(1). First, we prove the lower bound on the moments
on the event E. We have

log
∫ logθ T
− logθ T exp

(
β
∑K−3
j=1 Pj(h)

)
dh

log log T ≥ max
1≤j≤M

{βγj−1 + Eθ(γj−1)} − ε/2. (6.3.51)

By the continuity of the function γ 7→ βγ + Eθ(γ), Equation (6.3.51) implies that, on the
event E and forM large enough with respect to ε and β,

log
∫ logθ T
− logθ T exp

(
β
∑K−3
j=1 Pj(h)

)
dh

log log T > max
γ∈[ε,m(θ)]

{
βγ + Eθ(γ)

}
− ε. (6.3.52)

When 0 < β ≤ 2m(θ)/(1 + (θ ∧ 0)), take ε > 0 small enough so that β > 2ε/(1 + (θ ∧ 0)).
The maximum is attained at γ = β

2 (1+(θ∧0)), in which case the right-hand side of (6.3.52)
is equal to β2

4 (1 + (θ∧ 0)) + θ− ε. When β > 2m(θ)/(1 + (θ∧ 0)), the maximum is attained
at γ = m(θ), in which case the right-hand side of (6.3.52) is equal to (βm(θ)−1)−ε. Thus,
on the event E and forM large enough, the lower bound in (6.3.47) is satisfied.
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To conclude the proof of the proposition, it remains to show that P(E)→ 1 as T →∞.
By the upper bound on the maximum of ∑K−3

j=1 Pj(h) in (6.2.42) (and the remark below it
for θ < 0), it is sufficient to prove that, for all η > 0 and all 0 < γ < m(θ), the event{

Leb
{
|h| ≤ logθ T :

K−3∑
j=1

Pj(h) > γ log log T
}
≥ (log T )Eθ(γ)−η

}
(6.3.53)

has probability 1− o(1).

Consider

J (θ) =
 1, if θ ≥ 0,
bK|θ|c+ 1, if θ < 0.

(6.3.54)

For θ < 0, Corollary 6.2.11 ensures that the primes up to exp(log|θ| T ) only make a very
small contribution, namely the event{ ∣∣∣∣∑J (θ)−1

j=1 Pj(h)
∣∣∣∣ ≤ γ

(1+(θ∧0))K log log T
}

(6.3.55)

has probability 1− o(1). We consider the random variable

N = Leb
{
|h| ≤ logθ T : Pj(h) > xj, for J (θ) ≤ j ≤ K − 3

}
, (6.3.56)

where
xj =

(
1 + 100

(1 + (θ ∧ 0))K

)
· γ

(1 + (θ ∧ 0))K log log T. (6.3.57)

By summing the xj’s, it is not hard to check that the intersection of the events {N ≥
(log T )Eθ(γ)−η} and the one in (6.3.55) is included in the event in (6.3.53). Therefore, the
proof of the proposition is reduced to show

P
(
N ≥ (log T )Eθ(γ)−η

)
= 1− o(1). (6.3.58)

This is established by the Paley-Zygmund inequality.

To this aim, we shall need one-point and two-point large deviation estimates for the
event

A(h) =
{
Pj(h) > xj, for J (θ) ≤ j ≤ K − 3

}
. (6.3.59)

The next two propositions are stated as Propositions 5.4 and 5.5 in Arguin et al. (2019).
They are consequences of the Gaussian moments in Lemma 6.4.3.
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Proposition 6.3.11 (One-point large deviation estimates). Let θ > −1 be given, and let

h ∈ [− logθ T, logθ T ]. For any choices of 0 < xj ≤ log log T , where 1 ≤ j ≤ K − 3, we
have

P(A(h)) = (1 + o(1))
K−3∏
j=J (θ)

∫ ∞
xj/sj

e−y
2/2

√
2π

dy �
K−3∏
j=J (θ)

sj
xj
· e−x2

j/(2s2j ). (6.3.60)

In the case of two points h, h′, the primes are essentially correlated up to exp(|h−h′|−1)
and quickly decorrelate afterwards. For θ ≥ 0, this means that the Pj’s are essentially
independent whenever |h − h′| > (log T )− 1

2K , since j = 0 is excluded. For θ < 0, we must
exclude the j’s up to J (θ) − 1. Therefore, the Pj’s are essentially independent whenever
|h− h′| > (log T )θ− 1

2K . We get:

Proposition 6.3.12 (Two-point large deviation estimates). Let θ > −1 be given, and let

h, h′ ∈ [− logθ T, logθ T ] be such that |h− h′| > (log T )−
J (θ)
K

+ 1
2K . Then,

P(A(h) ∩ A(h′)) = (1 + o(1))P(A(h))P(A(h′)). (6.3.61)

If |h − h′| ≤ 1, let 0 ≤ ` ≤ K − 3 denote the largest integer in this range with |h − h′| ≤
(log T )−`/K. Then, for any choices of

√
log log T � xj ≤ log log T , we have

P(A(h) ∩ A(h′))� exp
(
−

∑̀
j=J (θ)

x2
j

2s2
j

−
K−3∑

j=(`+1)∨J (θ)

x2
j

s2
j

)
. (6.3.62)

Now, in order to prove (6.3.58), we start by finding a lower bound on E[N ]. By (6.3.60),
the xj’s in (6.3.57) and the sj’s in (6.3.48), we have

E[N ] =
∫ logθ T

− logθ T
P(A(h))dh� logθ T

K−3∏
j=J (θ)

sj
xj
· e−x2

j/(2s2j ) � (log T )Eθ(γ)−η/3, (6.3.63)

assuming that K is large enough with respect to θ, γ and η. By the Paley-Zygmund
inequality, this implies

P
(
N ≥ (log T )Eθ(γ)−η

)
≥ P

(
N ≥ (log T )−η/3E[N ]

)
≥
(
1− (log T )−η/3

)
(E[N ])2/E[N 2]. (6.3.64)
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It remains to show E[N 2] = (1 + o(1))(E[N ])2. With I = [− logθ T, logθ T ], linearity yields

E[N 2] =
∫
I×I

P(A(h) ∩ A(h′)) dhdh′. (6.3.65)

The integral can be divided into (K − J (θ) + 1) parts:

B = {(h, h′) : |h− h′| > (log T )−
J (θ)
K

+ 1
2K };

B0 = {(h, h′) : (log T )−
J (θ)
K < |h− h′| ≤ (log T )−

J (θ)
K

+ 1
2K };

B` = {(h, h′) : (log T )−(`+1)/K < |h− h′| ≤ (log T )−`/K}, for ` = J (θ), . . . , K − 3;

BK−2 = {(h, h′) : |h− h′| ≤ (log T )−(K−2)/K}.
(6.3.66)

The dominant term will be the one on B. Note that Leb(B) = Leb(I)2(1 + o(1)). Hence,
by (6.3.61), we have ∫

B
P(A(h) ∩ A(h′))dhdh′ = (1 + o(1))(E[N ])2. (6.3.67)

By (6.3.62) and the estimate (6.3.63), the integral on B0 is

� (log T )θ−
J (θ)
K

+ 1
2K exp

(
K−3∑
j=J (θ)

−x
2
j

s2
j

)

� (log T )−(θ∨0)− 1
3K (E[N ])2, (6.3.68)

assuming that K is large enough with respect to θ and γ. For ` = J (θ), . . . , K − 3, the
integral on B` is, by (6.3.62) and the estimate (6.3.63),

� (log T )θ−`/K exp
(
−

∑̀
j=J (θ)

x2
j

2s2
j

−
K−3∑
j=`+1

x2
j

s2
j

)

= (log T )−θ−`/K exp
( ∑̀
j=J (θ)

x2
j

2s2
j

)
· (log T )2θ exp

(
−

K−3∑
j=J (θ)

x2
j

s2
j

)

� (log T )−θ−`/K+(`/K+(θ∧0)) γ2

(1+(θ∧0))2
+η (E[N ])2, (6.3.69)

assuming again that K is large enough with respect to θ, γ and η. Since γ2 < m(θ)2 =
(1+θ)(1+(θ∧0)), the right-hand side of (6.3.69) is o

(
(E[N ])2

)
if we fix η > 0 small enough
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with respect to θ. Similarly, by (6.3.60) and the estimate (6.3.63), the integral on BK−2 is

≤
∫
BK−2

P(A(h))dhdh′ � (log T )−θ−1+2/K+η/3 · E[N ] = o
(
(E[N ])2

)
. (6.3.70)

This concludes the proof of Proposition 6.3.10. �

Putting all the work of Section 3 together, we can prove the lower bound in Theorem
6.1.1.

Proof of Proposition 6.3.2. By Proposition 6.3.6, the probability in (6.3.2) is

≥ P
( ∫ 1

2 logθ T

− 1
2 logθ T

|ζ(σ0 + iτ + ih)|βdh > (log T )fθ(β)−ε
)
− o(1). (6.3.71)

By Lemma 6.3.7 and Lemma 6.3.9, the above is

≥ P
( ∫ 1

2 logθ T

− 1
2 logθ T

exp
(
βRe P̃1−K−1(h)

)
dh > (log T )fθ(β)−ε

)
− o(1). (6.3.72)

By Equation (6.3.43), P̃1−K−1 can be replaced by P1−K−1 with an error less than logε T . By
(6.2.42), we may discard the terms with j = 0 and j = K − 2 with a similar error. For K
large enough with respect to ε, β and θ, the probability in (6.3.72) is therefore

≥ P
( ∫ 1

2 logθ T

− 1
2 logθ T

exp
(
β
K−3∑
j=1

Pj(h)
)
dh > (log T )fθ(β)−ε

)
− o(1). (6.3.73)

Finally, the probability in (6.3.73) tends to 1 as T →∞ by Proposition 6.3.10. �

We now prove the lower bound in Theorem 6.1.2.

Proof of Proposition 6.3.1. From (6.1.8), we have that fθ(β) = βm(θ) − 1 when
β > βc(θ) = 2

√
1 + (θ ∧ 0). Thus, on the event in the statement of Proposition 6.3.2

(which has probability 1− o(1)), and for β large enough with respect to ε and θ, we have

max
|h|≤logθ T

|ζ(1
2 + iτ + ih)| ≥

(
1

2 logθ T

∫ logθ T

− logθ T
|ζ(1

2 + iτ + ih)|βdh
)1/β

� (log T )m(θ)− (1+ε+θ)
β ≥ (log T )m(θ)−ε. (6.3.74)

This ends the proof. �
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6.4. Useful estimates

The prime number theorem yields estimates on the sum of primes with a good error.

Lemma 6.4.1. Let 1 ≤ P ≤ Q, then

∑
P<p≤Q

(log p)m
p

=


(logQ)m

m
− (logP )m

m
+Om(1), if m ≥ 1,

log logQ− log logP +O(e−c
√

logP ), if m = 0.
(6.4.1)

Also, for |η logQ| ≤ 1,

∑
P<p≤Q

cos(η log p)
p

= log logQ− log logP +O(1). (6.4.2)

Proof. For (6.4.1), see Lemma A.1 of Arguin and Ouimet (2019) and Lemma 2.1 of Arguin
et al. (2017b). For (6.4.2), see p.20 in Harper (2013a). �

The next three results yield moment estimates for Dirichlet polynomials. The first one
is an elementary bound. The second ensures that moments of Dirichlet polynomials that
are not too high are Gaussian.

Lemma 6.4.2 (Lemma 3.3 in Arguin et al. (2019)). For any complex numbers a(n) and

b(n), and for N ≤ T , we have

E
[( ∑

m≤N
a(m)m−iτ

)( ∑
n≤N

b(n)niτ
)]

=
∑
n≤N

a(n)b(n) +O

(
N logN

T

∑
n≤N

(|a(n)|2 + |b(n)|2)
)
.

(6.4.3)

Lemma 6.4.3 (Lemma 3.4 in Arguin et al. (2019)). Let x ∈ [2,∞), and suppose that for

primes p ≤ x, a(p) ∈ C such that |a(p)| ≤ 1. Then, for any k ∈ N,

E
[(1

2
∑
p≤x

(a(p)p−iτ + a?(p)piτ )
)k]

= ∂k

∂zk

( ∏
p≤x

I0(
√
a(p)a?(p)z)

)∣∣∣∣
z=0

+O
(
x2k

T

)
, (6.4.4)

where I0(z) = ∑
n≥0 z

2n/(22n(n!)2) denotes the modified Bessel function of the first kind.

In particular, the expression is O
(
x2k/T

)
for odd k.
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The relations with Gaussian moments in the case where a(p) = p−σ−ih is obtained by
expanding the product to get

∏
p≤x

I0(|a(p)|z) = F (z) · exp
(
z2

2 ·
1
2
∑
p≤x

p−2σ
)

(6.4.5)

where F (z) is analytic in a neighborhood of 0 with F (0) = 1 and its derivatives uniformly
bounded by ∑p≤x p

−4σ. In particular, this implies that, for σ ≥ 1/2 and k small enough so
that x2k/T = o(1),

E
[(∑

p≤x
Re p−σ−iτ−ih

)2k
]

= (1 + o(1)) (2k)!
2k · k!

(
1
2
∑
p≤x

p−2σ
)k
. (6.4.6)

The above also holds if a(p) = 0 for p ≤ y (say) with the sum over primes restricted to
y < p ≤ x. In particular, the error ∑y<p≤x p

−4σ can be made o(1) by taking y large. We
note that the moments yield a Gaussian tail

P
(∑
p≤x

Re p−σ−iτ−ih > V
)
� exp(−V 2/(2σ2)), (6.4.7)

by picking the moment k = bV 2/2σ2c with σ2 = 1
2
∑
p≤x p

−2σ, for V not too large.

Finally the third estimate is a cruder version of the Gaussian moment estimates that
yields quick upper bounds on moments.

Lemma 6.4.4 (Lemma 3 in Soundararajan (2009)). Let T be large, and let 2 ≤ x ≤ T .

Let k be a natural number such that xk � T/ log T . For any complex numbers a(p), we
have

E
[∣∣∣∣∑

p≤x

a(p)
p1/2+iτ

∣∣∣∣2k
]
� k!

(∑
p≤x

|a(p)|2
p

)k
. (6.4.8)
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Abstract. Let d ∈ N and let γi ∈ [0,∞), xi ∈ (0, 1) be such that
∑d+1
i=1 γi = M ∈ (0,∞)

and
∑d+1
i=1 xi = 1. We prove that

a 7→ Γ(aM + 1)∏d+1
i=1 Γ(aγi + 1)

d+1∏
i=1

xaγii

is completely monotonic on (0,∞). This result generalizes the one found by Alzer (2018)

for binomial probabilities (d = 1). As a consequence of the log-convexity, we obtain

some combinatorial inequalities for multinomial coefficients. We also show how the main

result can be used to derive asymptotic formulas for quantities of interest in the context

of statistical density estimation based on Bernstein polynomials on the d-dimensional

simplex.

Keywords: multinomial probability, complete monotonicity, Gamma function, combi-

natorial inequalities, Bernstein polynomials, simplex

7.1. Introduction

For any d ∈ N, let [d] $ {1, 2, . . . , d}. For any v $ (v1, v2, . . . , vd) ∈ Rd, write ‖v‖ $∑d
i=1 |vi|. Denote the d-dimensional simplex and its interior by

S $
{
x ∈ [0, 1]d : ‖x‖ ≤ 1

}
and Int(S) $

{
x ∈ (0, 1)d : ‖x‖ < 1

}
.

Given a random sample y1,y2, . . . ,yn on S from some unknown distribution F , define the
Bernstein estimator on the simplex

F̂m,n(x) $
∑

k∈Nd0:‖k‖≤m
Fn(k/m)Pk,m(x), x ∈ S, (7.1.1)

where m,n ∈ N, Fn(y) $ 1
n

∑n
j=1 1{y≤yj} is the empirical cumulative distribution function,

xd+1 $ 1− ‖x‖, kd+1 $ m− ‖k‖, and

Pk,m(x) $ m!∏d+1
i=1 ki!

d+1∏
i=1

xkii . (7.1.2)

Our first goal is to prove that a 7→ Pak,am(x) is completely monotonic on (0,∞), see
Definition 7.1.1 below. In fact, we prove a slightly more general statement in Theorem
7.2.1. From the log-convexity, we deduce some combinatorial inequalities for multinomial
coefficients in Section 7.3. The proof of the theorem and the combinatorial inequalities
follow very closely, and generalize, the work of Alzer (2018). In Section 7.4, we show how
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Theorem 7.2.1 can be used to prove asymptotic formulas for quantities of interest related
to (7.1.1). To our knowledge, the statistical properties (bias, variance, mean integrated
squared error, etc.) of the estimator in (7.1.1) (and the associated density estimator, see
e.g. Babu and Chaubey (2006); Leblanc (2010)) have never been studied when d > 1,
except for the pointwise mean squared error of the density estimator in Tenbusch (1994)
when d = 2. This was our motivation for this article.

Definition 7.1.1 (Complete monotonicity). A non-constant function a 7→ g(a) is said to

be completely monotonic on (0,∞), if g has derivatives of all orders and satisfies

(−1)ng(n)(a) > 0, for all n ∈ N0, a ∈ (0,∞). (7.1.3)

Remark 7.1.1. Inequality (7.1.3) is usually not strict when defining complete mono-

tonicity, but non-constant functions that satisfy the non-strict version of (7.1.3) automat-

ically satisfy the strict version, see (Dubourdieu, 1939, p.98) for the original proof or (van

Haeringen, 1996, p.395) for a simpler proof.

We will need the two following lemmas during the proof of Theorem 7.2.1.

Lemma 7.1.2. Let g : (0,∞) → (0, 1). If (− log g)′ is completely monotonic on (0,∞),
then g is completely monotonic on (0,∞).

Proof. Take f : (0,∞) → (0, 1) : y 7→ e−y and h : (0,∞) → (0,∞) : x 7→ − log g(x).
Since h is positive and h′ = (− log g)′ is completely monotonic by hypothesis, then g = f ◦h
is completely monotonic by Theorem 2 in Miller and Samko (2001). �

Lemma 7.1.3. If u $ (u1, u2, . . . , ud) ∈ Int(S), ud+1 $ 1− ‖u‖ > 0 and y > 1, then

Ju(y) $ 1
y − 1 −

d+1∑
i=1

1
y1/ui − 1 > 0. (7.1.4)

Proof. Lemma 1 in Alzer (2018) proves (7.1.4) in the case d = 1. Fix d ≥ 2 and assume
that (7.1.4) is true for any smaller integer. Let y > 1. By Lemma 1 in Alzer (2018),

1
y − 1 −

1
y1/‖u‖ − 1 −

1
y1/(1−‖u‖) − 1 > 0. (7.1.5)
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Therefore, (7.1.4) will follow if we can show that

1
y1/‖u‖ − 1 −

d∑
i=1

1
y1/ui − 1 > 0. (7.1.6)

Simply define z $ y1/‖u‖ and vi $ ui/‖u‖, then (7.1.6) is equivalent to

1
z − 1 −

d∑
i=1

1
z1/vi − 1 > 0, (7.1.7)

which is true by the induction hypothesis. �

7.2. Main result

Below is a generalization of the theorem in Alzer (2018).

Theorem 7.2.1. For any d ∈ N, M ∈ (0,∞), x ∈ Int(S), xd+1 $ 1− ‖x‖ > 0, and any

γ ∈ [0,∞)d such that ‖γ‖ ≤M and γd+1 $M − ‖γ‖ ≥ 0, the function

g(a) $ Γ(aM + 1)∏d+1
i=1 Γ(aγi + 1)

d+1∏
i=1

xaγii (7.2.1)

is completely monotonic on (0,∞).

Remark 7.2.1. In the proof of Theorem 7.2.1, we will show that (− log g)′ is completely

monotonic on (0,∞), which is a stronger statement by Lemma 7.1.2.

Remark 7.2.2. Soon after the first version of the present paper was posted on arXiv.org,

Qi et al. (2018) gave an alternative proof of the complete monotonicity of (− log g)′ and
rewrote the combinatorial inequalities of Section 7.3 in terms of multivariate beta functions.

Proof. Let M ∈ (0,∞), x ∈ Int(S) and a > 0. The theorem in Alzer (2018) proves our
statement in the case d = 1 (when the components of γ are integers, but the adjustment is
trivial). Therefore, fix d ≥ 2 and assume that the theorem is true for any smaller integer.
If there exists i ∈ [d + 1] such that γi = 0, the theorem reduces to proving that (7.2.1) is
completely monotonic for a d that is smaller then the one that we previously fixed, which is
true by the induction hypothesis. Thus, assume for the remainder of the proof that

γi > 0, for all i ∈ [d+ 1]. (7.2.2)
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Define

h(a) $ − log g(a) = − log Γ(aM + 1) +
d+1∑
i=1

log Γ(aγi + 1)− a
d+1∑
i=1

γi log xi. (7.2.3)

Then,

h′(a) = −Mψ(aM + 1) +
d+1∑
i=1

γiψ(aγi + 1)−
d+1∑
i=1

γi log xi, (7.2.4)

where ψ $ (log Γ)′ = Γ′/Γ. Using the integral representation

ψ′(z) =
∫ ∞

0

te−(z−1)t

et − 1 dt, z > 0, (7.2.5)

see (Abramowitz and Stegun, 1964, p.260), we obtain (take t = s/M and t = s/γi)

h′′(a) = −M2ψ′(aM + 1) +
d+1∑
i=1

γ2
i ψ
′(aγi + 1)

= −M2
∫ ∞

0

te−aMt

et − 1 dt+
d+1∑
i=1

γ2
i

∫ ∞
0

te−aγit

et − 1 dt

= −
∫ ∞

0
se−asJγ/M(es/M)ds, (7.2.6)

where Ju(y) is defined in (7.1.4). Applying Lemma 7.1.3 gives

(−1)nh(n+1)(a) =
∫ ∞

0
sne−asJγ/M(es/M)ds > 0, n ∈ N, a > 0. (7.2.7)

If we show that h′(a) > 0 for a > 0, then h′ will be completely monotonic under Definition
7.1.1 and we will be able to conclude that g is completely monotonic by Lemma 7.1.2. Since
h′ is decreasing (see (7.2.7) when n = 1), we show that lima→∞ h′(a) ≥ 0 to conclude the
proof.

If we apply the recurrence formula

ψ(z + 1) = ψ(z) + 1
z
, z > 0, (7.2.8)

see (Abramowitz and Stegun, 1964, p.258), we obtain from (7.2.4) the representation

h′(a) = d

a
−MR(aM) +

d+1∑
i=1

γiR(aγi) +
d+1∑
i=1

γi log
(
γi/M

xi

)
, (7.2.9)

where R(z) $ ψ(z)− log z.
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Using the asymptotic formula

ψ(z) ∼ log z − 1
2z − . . . (as z →∞) (7.2.10)

see (Abramowitz and Stegun, 1964, p.259), we conclude from (7.2.9) and Jensen’s inequality
(for the convex function − log(·) and the probability weights Pi $ γi/M and Qi $ xi) that

lim
a→∞h

′(a) = M
d+1∑
i=1

γi
M

log
(
γi/M

xi

)
≥ −M log

(
d+1∑
i=1

xi

)
= 0. (7.2.11)

This ends the proof. �

Remark 7.2.3. Interestingly, the sum on the left-end side of the inequality in (7.2.11) is
the Kullback-Leibler divergence DKL(P‖Q). It is well defined because of (7.2.2) and the

fact that x ∈ Int(S) by hypothesis (which implies 0 < xi < 1 for all i ∈ [d+ 1]).

7.3. Some combinatorial inequalities

In the context of Theorem 7.2.1, define

C(a) $ Γ(aM + 1)∏d+1
i=1 Γ(aγi + 1)

, a ∈ (0,∞). (7.3.1)

Below are three simple combinatorial inequalities for the multinomial coefficients in (7.3.1).
They generalize the ones proved in Alzer (2018) for binomial coefficients.

Corollary 7.3.1. Let k ∈ N and let aj ∈ (0,∞), λj ∈ (0, 1), j ∈ {1, 2, . . . , k}, be such

that ∑k
j=1 λj = 1. The following inequalities hold :

(a) C(∑k
j=1 λjaj) ≤

∏k
j=1C(aj)λj , where equality holds if and only if all the aj’s are the

same.

(b) ∏k
j=1C(aj) < C(∑k

j=1 aj).

(c) If a1 ≤ a3, then C(a1 + a2)C(a3) ≤ C(a1)C(a2 + a3), where equality holds if and only

if a1 = a3.

Proof. By (7.2.7) in the case n = 1, we know that g in the statement of Theorem 7.2.1 is
strictly log-convex, which implies (a) by definition. Point (b) follows from Lemma 3 in Alzer
(2018) because g is differentiable on [0,∞), g(0) = 1 and g is (strictly) positive, (strictly)

322



decreasing and strictly log-convex on (0,∞). Point (c) follows from a trivial adaptation of
the proof of Corollary 3 in Alzer (2018) using (7.2.7). �

7.4. Application to Bernstein estimators on the simplex

In recent years, there has been a sustained interest in the study of statistical proper-
ties of Bernstein estimators on the unit hypercube, whether we talk about the cumulative
distribution function (cdf) estimators

F̂m,n(x) =
∑

k∈Nd0∩[0,m]d
Fn(k/m)

d∏
i=1

(
m

ki

)
xkii (1− xi)ki , x ∈ [0, 1]d, (7.4.1)

where Fn denotes the empirical cdf (given a random sample y1,y2, . . . ,yn from an unknown
cdf F ), or the density estimators

f̂m,n(x) = md
∑

k∈Nd0∩[0,m−1]d
Pn
((
k

m
,
k + 1
m

]) d∏
i=1

(
m− 1
ki

)
xkii (1−xi)ki , x ∈ [0, 1]d, (7.4.2)

where Pn denotes the empirical measure. For more information, the reader is referred to
Babu et al. (2002), Babu and Chaubey (2006), Belalia (2016), Belalia et al. (2017), Ghosal
(2001), Igarashi and Kakizawa (2014), Kakizawa (2011), Janssen et al. (2012, 2014, 2017),
Leblanc and Johnson (2007), Leblanc (2009, 2010, 2012b,a), Lu (2015), Petrone (1999),
Prakasa Rao (2005), Tenbusch (1994) and Vitale (1975).

One clear advantage of Bernstein estimators over kernel estimators (for example) is
that they generally perform better near the boundary, see e.g. Leblanc (2012a). To our
knowledge, the statistical properties of Bernstein estimators on the simplex (see (7.1.1)),
and the associated density estimators, have never been studied in the literature, except
in the univariate case where they coincide with (7.4.1) and (7.4.2) above, and except for
the pointwise mean squared error of the density estimator in Tenbusch (1994) when d =
2. This subject is worth investigating because there are instances in practice where the
distribution that wewould like to estimate lives naturally on the d-dimensional simplex. One
such example is the Dirichlet distribution, which is the conjugate prior of the multinomial
distribution in Bayesian estimation, see e.g. Lange (1995) for an application in the context
of allele frequency estimation in genetics. In those instances, we would expect that the esti-
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mators defined on the simplex perform better than the ones defined on the unit hypercube,
especially near the boundary ‖x‖ = 1.

Following Leblanc and Johnson (2007) and Leblanc (2010), define

Sr,s,m(x) $
∑

k∈Nd0:‖k‖≤m
Prk,rm(x)Psk,sm(x), x ∈ S,

for r, s,m ∈ N. This family of polynomials would arise in the context of statistical density
estimation based on the Bernstein estimators in (7.1.1) (see e.g. the appendix in Leblanc
(2010)). Theorem 7.2.1 will be used to prove Proposition 7.4.2 below.

The following lemma generalizes Theorem 1.1 (iii) in Leblanc and Johnson (2007), and
Lemma 3 (ii) and (iv) in Leblanc (2010) when j = 0.

Lemma 7.4.1. Let d, r, s,m ∈ N, x ∈ Int(S), and define the covariance matrix

Σ $ rs(r + s)(diag(x)− xxT ). (7.4.3)

We have

md/2Sr,s,m(x) = φr,s(x) + ox(1), as m→∞,
where

φr,s(x) $ (gcd(r, s))d
(2π)d/2(det(Σ))1/2 . (7.4.4)

Proof. Let U 1, . . . ,Um and V 1, . . . ,V m be two (independent) sequences of independent
random vectors such that U i ∼ Multinomial(r,x) and V i ∼ Multinomial(s,x) for each
i ∈ [d]. Now, let H $ gcd(r, s)Id where Id is the d × d identity matrix, and define
W i $ sU i − rV i so that the j-th component of W i has a lattice distribution with span
Hjj = gcd(r, s). Note that W ?

i $ H−1W i has span 1 in all d directions. The covariance
matrix ofW i is given by Σ in (7.4.3). We can write Sr,s,m(x) in terms of theW ?

i ’s as

Sr,s,m(x) = P
(

m∑
i=1

sU i =
m∑
i=1

rV i

)
= P

(
m∑
i=1
W ?

i = 0
)
.

Therefore, using Theorem 3.1 of Athreya and Janicki (2016) (a local central limit theorem
for random vectors with lattice distributions), det(H) = (gcd(r, s))d and the fact that the
covariance matrix ofW ?

i is equal toH−1ΣH−1, we obtain the conclusion. �
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The following proposition generalizes Lemma 4 in Leblanc (2010) when j = 0.

Proposition 7.4.2. Let r, s,m ∈ N and let h : S → R be any bounded measurable

function. As m→∞,

(a) md/2 ∫
S Sr,s,m(x)dx = 2−d

√
π

Γ(d/2+1/2) +O(m−1) =
∫
S φr,s(x)dx+O(m−1),

(b)
∫
S h(x)(md/2Sr,s,m(x)− φr,s(x))dx = o(1).

Proof. Assume for now that r = s = 1. We have∫
S
S1,1,m(x)dx =

∑
‖k‖≤m

∫
S
(Pk,m(x))2dx =

∑
‖k‖≤m

(
Γ(m+ 1)∏d+1
i=1 Γ(ki + 1)

)2 ∫
S

d+1∏
i=1

x2ki
i dx

=
∑
‖k‖≤m

(
Γ(m+ 1)∏d+1
i=1 Γ(ki + 1)

)2 ∏d+1
i=1 Γ(2ki + 1)

Γ(2m+ d+ 1)

= (Γ(m+ 1))2

Γ(2m+ d+ 1)
∑
‖k‖≤m

d+1∏
i=1

(
2ki
ki

)
. (7.4.5)

To obtain the third equality, we used the normalization constant for the Dirichlet distribu-
tion. Note that

∑
‖k‖≤m

d+1∏
i=1

(
2ki
ki

)
= (−4)m

∑
‖k‖≤m

d+1∏
i=1

1
(−4)m

(
2ki
ki

)
= (−4)m

∑
‖k‖≤m

d+1∏
i=1

(
−1/2
ki

)

= (−4)m
(
−(d+ 1)/2

m

)

=
(
m+ d−1

2
m

)
4m, (7.4.6)

where the last three equalities follow, respectively, from (5.37), the Chu-Vandermonde con-
volution (p.248), and (5.14) inGraham et al. (1994). By applying (7.4.6) and the duplication
formula

4y = 2
√
π Γ(2y)

Γ(y)Γ(y + 1/2) , y ∈ (0,∞), (7.4.7)

see (Abramowitz and Stegun, 1964, p.256), in (7.4.5), we get

∫
S
S1,1,m(x)dx = (Γ(m+ 1))2

Γ(2m+ d+ 1) ·
Γ(m+ d/2 + 1/2)

Γ(m+ 1)Γ(d/2 + 1/2) · 4
m

= 2
√
π Γ(m+ 1)

Γ(d/2 + 1/2)Γ(m+ d/2 + 1) ·
Γ(m+ d/2 + 1/2)Γ(m+ d/2 + 1)

2
√
π Γ(2m+ d+ 1) · 4m
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= 2
√
π Γ(m+ 1)

Γ(d/2 + 1/2)Γ(m+ d/2 + 1) ·
4m

4m+d/2+1/2

= 2−d
√
π Γ(m+ 1)

Γ(d/2 + 1/2)Γ(m+ d/2 + 1)

=


2−d
√
π

Γ(d/2+1/2)
∏d/2
i=1(m+ i)−1, if d is even,

2−d
√
π

Γ(d/2+1/2)
∏d/2+1/2
i=1 (m+ d/2 + 1− i)−1 · Γ(m+1)

Γ(m+1/2) , if d is odd.

Using the fact that
Γ(m+ 1)

m1/2Γ(m+ 1/2) = 1 + 1
8m +O(m−2), (7.4.8)

see (Abramowitz and Stegun, 1964, p.257), we obtain

md/2
∫
S
S1,1,m(x)dx = 2−d

√
π

Γ(d/2 + 1/2) +O(m−1). (7.4.9)

In the case r = s = 1, the expression for Σ in (7.4.3) is equal to 2(diag(x) − xxT ).
Using the square-root-free symbolic Cholesky decomposition for covariance matrices of
multinomial distributions (see Theorem 1 in Tanabe and Sagae (1992)), we deduce that
det(Σ) = 2d det(diag(x)− xxT ) = 2d∏d+1

i=1 xi. Therefore,∫
S

1
(2π)d/2(det(Σ))1/2dx = 1

2dπd/2
∫
S

d+1∏
i=1

x
1/2−1
i dx = 1

2dπd/2 ·
(Γ(1/2))d+1

Γ(d/2 + 1/2)

= 2−d
√
π

Γ(d/2 + 1/2) . (7.4.10)

Together with (7.4.9) and (7.4.4), this proves (a) for r = s = 1.
Now, the almost-everywhere convergence from Lemma 7.4.1 and the mean convergence

from (a) imply that {S1,1,m(·)}m∈N is uniformly integrable, see (Shiryaev, 1996, p.189). By
Theorem 7.2.1, a 7→ Pak,am is decreasing on (0,∞), so

Sr,s,m(x) ≤
∑
‖k‖≤m

(Pk,m(x))2 = S1,1,m(x), (7.4.11)

which implies that {Sr,s,m(·)}m∈N is also uniformly integrable. Hence, by Lemma 7.4.1, we
must have (a) in the general case r, s ∈ N. Finally, the almost-everywhere convergence
and the uniform integrability imply the L1 convergence, so (b) follows immediately from
Jensen’s inequality and the fact that h is bounded. �
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when theXi’s are i.i.d. random variables with Laplace(µ) distribution. It was themotivation
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Abstract. We develop a new L1 law of large numbers where the i-th summand is given

by a function h(·) evaluated atXi−θn, and where θn $ θn(X1, X2, . . . , Xn) is an estimator

converging in probability to some parameter θ ∈ R. Under broad technical conditions,

the convergence is shown to hold uniformly in the set of estimators interpolating between

θ and another consistent estimator θ?n. Our main contribution is the treatment of the

case where |h| blows up at 0, which is not covered by standard uniform laws of large

numbers.

Keywords: uniform law of large numbers, Taylor expansion, M-estimators, score func-

tion

8.1. Introduction

Let X1, X2, X3, . . . be a sequence of i.i.d. random variables and consider the statistic
Tn(θ?n) where the random variable Tn(θ) $ Tn(X1, X2, . . . , Xn; θ) : Ω → R depends on an
unknown parameter θ ∈ R for which we have a consistent sequence of estimators θ?n $
θ?n(X1, X2, . . . , Xn). Assume further that the following first-order Taylor expansion is valid

Tn(θ?n) = Tn(θ) + (θ?n − θ)
∫ 1

0
T ′n(θ + v(θ?n − θ))dv, (8.1.1)

where
T ′n(t) = 1

n

n∑
i=1

1{Xi 6=t}h(Xi − t), (8.1.2)

and where h : R\{0} → R is a measurable function (possibly nonlinear). In statistics,
one is often interested in knowing if estimating a parameter (θ here) has an impact on the
asymptotic law of a given statistic. See for example the interesting results of de Wet and
Randles (1987) in the context of limiting χ2 U and V statistics. Equations (8.1.1) and (8.1.2)
provide a natural setting for studying the question of whether or not Tn(θ?n) − Tn(θ) → 0
whenever θ?n → θ, as n→∞.

Given some regularity conditions on the behavior of h(·) around the origin and in its
tails, proving the convergence to E[h(X1−θ)], in probability say, of the integral on the right-
hand side of (8.1.1) is often possible under weak assumptions by adapting standard uniform
laws of large numbers. For instance, one can use (Ferguson, 1996, Theorem 16 (a)), which
was introduced by LeCam (1953) and Rubin (1956). One can also use entropy conditions:
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see, e.g., (van de Geer, 2000, Chapter 3) and (van der Vaart and Wellner, 1996, Section
2.4). Some of these theorems go back to or evolved from the works of Blum (1955), Dehardt
(1971), Vapnik and Červonenkis (1971); Vapnik and Chervonenkis (1981), Giné and Zinn
(1984), Pollard (1984) and Talagrand (1987). For extensive notes on the origins of the
entropy conditions, we refer the interested reader to (van de Geer, 2000, Section 3.8) and
(Pollard, 1984, pp. 36–38).

However, when |h| blows up at 0, namely when lim supx→0 |h(x)| = ∞, these results
are not applicable because the enveloppe function hsup(x) $ supt:|t−θ|<δ 1{x 6=t}|h(x − t)| is
infinite in any small enough neighborhood of θ and, in particular, hsup(X1) is not integrable
for the outer measure.

We faced such a problem when analysing the convergence of score functions in the
context of testing the goodness-of-fit of the Laplace distribution with unknown location and
scale parameters (µ, σ). If the family of alternatives is taken to be the asymmetric power
distribution (Komunjer, 2007) or the skewness exponential power distribution (Fernández
et al., 1995), a score function evaluated at the maximum likelihood estimator (µ?n, σ?n) can
be used, in the spirit of (Desgagné et al., 2013; Desgagné and Lafaye de Micheaux, 2018).
If the score function is expanded around (µ, σ), then a multivariate version of (8.1.1) is
obtained. One of the integrals in the expansion will have an integrand (8.1.2) where h(·)
contains a logarithmic term. Standard uniform laws of large numbers cannot be applied
to show the convergence of such integrals because the enveloppe function of the class of
functions {log( · − t)}t:|t−µ|<δ is infinite in any small enough neighborhood of µ. In section
8.3, we show how the main result of this paper (Theorem 8.2.4) can be used to prove a
crucial part of the problem described above.

More generally, the main result is that, under broad conditions, one obtains

lim
n→∞ sup

v∈[0,1]
E
∣∣∣∣∣ 1n

n∑
i=1

1{Xi 6=θ+v(θ?n−θ)}h(Xi − θ − v(θ?n − θ))− E
[
h(X1 − θ)

]∣∣∣∣∣ = 0. (8.1.3)

From (8.1.3) and the setting above, one can conclude that Tn(θ?n)−Tn(θ)→ 0 in probability
as n→∞.
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8.2. A new uniform L1 law of large numbers

Throughout the paper, the labels (X.k), (H.k) and (E.k) denote, respectively, assump-
tions that we will make on X1, h(·) and θn. Figure 8.2.1 at the end of the current section
illustrates the logical structure of these assumptions and their implications. We start by
proving a non-uniform version of Theorem 8.2.4.

Proposition 8.2.1. Let θ ∈ R and let X1, X2, X3, . . . be a sequence of i.i.d. random

variables such that

(X.1): P(X1 = θ) = 0.

Let h : R\{0} → R be a mesurable function that satisfies

(H.1): P(X1 − θ ∈ Dh) = 0, where Dh is the set of discontinuity points of h(·),

(H.2): E |h(X1 − θ)| <∞.

Let θn $ θn(X1, X2, . . . , Xn) be an estimator that satisfies

(E.1): θn P−→ θ,

(E.2): For all n ∈ N and all i ∈ {1, 2, . . . , n}, (Xi− θn, Xi− θ) law= (X1− θn, X1− θ),

(E.3): There exists N0 ∈ N such that
{
1{X1 6=θn}h(X1 − θn)

}
n≥N0

is uniformly inte-

grable.

Then,
E
∣∣∣∣∣ 1n

n∑
i=1

1{Xi 6=θn}h(Xi − θn)− E
[
h(X1 − θ)

]∣∣∣∣∣ −→ 0. (8.2.1)

Remark 8.2.1. Condition (E.2) is satisfied for any estimator that is symmetric with re-

spect to its n variables. For example, this is the case for any maximum likelihood estimator

that is based on i.i.d. observations.

Proof of Proposition 8.2.1. From (X.1) and (E.1), we know that 1{X1=θn}
P−→ 0.

Indeed, for any ε > 0,
• take δ $ δε > 0 such that P(|X1 − θ| < δ) < ε/2, and
• take N $ Nδ,ε such that for all n ≥ N , we have P(|θn − θ| ≥ δ) < ε/2.

We get, for all n ≥ N ,

P(X1 = θn) ≤ P(X1 = θn, |θn − θ| < δ) + P(|θn − θ| ≥ δ) < ε.
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In particular, this shows 1{X1=θn}|h(X1 − θ)| P−→ 0. Since this sequence is uniformly
integrable by (H.2), we also have the L1 convergence. By using Jensen’s inequality and
(E.2), we deduce

E
∣∣∣∣∣ 1n

n∑
i=1

1{Xi=θn}h(Xi − θ)
∣∣∣∣∣ ≤ E

[
1{X1=θn}|h(X1 − θ)|

]
−→ 0. (8.2.2)

By (H.2) and the law of large numbers in L1 (see, e.g., Theorem 1.2.6 in Stroock (2011)),
we also know that

E
∣∣∣∣∣ 1n

n∑
i=1

h(Xi − θ)− E
[
h(X1 − θ)

]∣∣∣∣∣ −→ 0. (8.2.3)

By combining (8.2.2) and (8.2.3), we have shown

E
∣∣∣∣∣ 1n

n∑
i=1

1{Xi 6=θn}h(Xi − θ)− E
[
h(X1 − θ)

]∣∣∣∣∣ −→ 0. (8.2.4)

To conclude the proof, we show that

Yn $
1
n

n∑
i=1

1{Xi 6=θn}h(Xi − θn)− 1
n

n∑
i=1

1{Xi 6=θn}h(Xi − θ) L1−→ 0.

From Jensen’s inequality and (E.2), we have

E|Yn| ≤ E
[
1{X1 6=θn}

∣∣∣h(X1 − θn)− h(X1 − θ)
∣∣∣]. (8.2.5)

The sequence {1{X1 6=θn}|h(X1 − θn) − h(X1 − θ)|}n∈N converges to 0 in probability by
(H.1), (E.1) and the continuous mapping theorem (van der Vaart, 1998, Theorem 2.3).
Furthermore, the sequence is uniformly integrable for n ≥ N0 by (H.2), (E.3) and the
fact that the sums of random variables coming (respectively) from two uniformly integrable
sequences form a uniformly integrable sequence. Hence, Yn → 0 in L1. �

Since the distribution of X1 − θn is rarely known, condition (E.3) in Proposition 8.2.1
is impractical to verify. The next lemma fix this problem.

Lemma 8.2.2. Let θ ∈ R. Let X1, X2, X3, . . . be a sequence of i.i.d. random variables.

Let h : R\{0} → R be a mesurable function. Let θn $ θn(X1, X2, . . . , Xn) be an estimator

that satisfies

(E.4): If lim supx→0 |h(x)| < ∞, we impose no condition. Otherwise, assume that

there exist N1 ∈ N, α0 > 0 and a constant Cα0 > 0 such that
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sup
n≥N1

sup
A∈B>0([−α0,α0])

P(X1 − θn ∈ A)
Lebesgue(A) ≤ Cα0 <∞,

where B>0([−α0, α0]) denotes the Borel sets of positive Lebesgue measure on the

interval [−α0, α0].

(E.5): There exist N2 ≥ 2, C, γ, p > 0 and β0 > γ such that, for P(X1 − θ ∈ · )-
almost-all x ∈ R, we have

— For all u ≥ (x+ γ) ∨ β0 and for all n ≥ N2,

P(θn − θ ≤ x− u |X1 − θ = x) ≤ Ce−|x−u|
p

.

— For all u ≤ (x− γ) ∧ (−β0) and for all n ≥ N2,

P(θn − θ ≥ x− u |X1 − θ = x) ≤ Ce−|x−u|
p

.

(E.6): There exists N3 ∈ N such that for all n ≥ N3, there exists An ∈ B(R)
such that P(X1 − θ ∈ An) = 1 and, for all x ∈ An, the conditional measure

P(x− (θn− θ) ∈ · |X1− θ = x), when restricted to {u ∈ R : |u| ≥ β0, |x−u| > γ},
is absolutely continuous with respect to the Lebesgue measure.

Assume that h(·) satisfies

(H.3): For all x0 ∈ R\{0}, lim supx→x0 |h(x)| <∞,

(H.4): ∫|u|≤α0
|h(u)|du <∞,

(H.5): (1): h(·) is absolutely continuous on bounded sub-intervals of (−∞,−β0)∪
(β0,+∞);

(2): There exists an integrable random variable M such that

sup|t|≤γ |h(X1 − θ − t)|1{|X1−θ−t|≥β0} ≤M P-almost-surely;

(3): lim|β|→∞ |h(β)|e−|x−β|p = 0 for P(X1 − θ ∈ · )-almost-all x ∈ R, and

{|h(β)|e−|X1−θ−β|p}|β|≥β0 is uniformly integrable;

(4): ∫|u|≥β0
E
[
|h′(u)| e−|X1−θ−u|p

]
du <∞;

(5): For almost-all |u| ≥ β0, we have −sign(u)sign(h(u))h′(u) ≤ 0.

Then, (E.3) from Proposition 8.2.1 is satisfied, namely
{
1{X1 6=θn}h(X1 − θn)

}
n≥N0

is uni-

formly integrable, where N0 $ N1 ∨N2 ∨N3.
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Remark 8.2.2. If X1 − θn has a density for n large enough and, in a neighborhood of

0, those densities are uniformly bounded from above by the same positive constant, then

(E.4) is satisfied. In general, when θn is even only slightly non-trivial, we rarely know the

distribution of X1 − θn. However, if θn concentrates more and more around θ as n→∞
(like most maximum likelihood estimators for instance), then we expect the weight of the

distribution of X1 around θ to dominate the weight of the distribution of X1−θn around 0.
In that case, we can expect (E.4) to be satisfied when X1 has a regular enough distribution

around θ. Condition (E.5) is a way to control the tail behavior of θn’s distribution for the

above heuristic to work. Since the lemma is intended to be used when |h| blows up at 0,
condition (E.4) is there to control the distribution of X1 − θn around 0.

Proof. We want to prove that for N0 $ N1 ∨N2 ∨N3, we have

lim
K→∞

sup
n≥N0

E
[∣∣∣h(X1 − θn)

∣∣∣1{X1 6=θn}∩{|h(X1−θn)|≥K}

]
= 0.

By (H.3), h(·) is uniformly bounded on compact subsets of R\{0}. It is therefore sufficient
to show both

lim
α→0

sup
n≥N0

E
[∣∣∣h(X1 − θn)

∣∣∣1{X1 6=θn}∩{|X1−θn|≤α}

]
= 0, (8.2.6)

lim
β→∞

sup
n≥N0

E
[∣∣∣h(X1 − θn)

∣∣∣1{|X1−θn|≥β}

]
= 0. (8.2.7)

When lim supx→0 |h(x)| < ∞, then (8.2.6) is trivially satisfied because h(·) is uniformly
bounded on compact subsets of R by (H.3). When lim supx→0 |h(x)| = ∞, then (8.2.6)
follows directly from (E.4), (H.4) and the dominated convergence theorem (DCT).

Assume for the remaining of the proof that

n ≥ N0 and β > β0 > γ,

where γ and β0 are fixed in (E.5). Separate the expectation in (8.2.7) in two parts :

(a) + (b) $ E
[∣∣∣h(X1 − θn)

∣∣∣1{|X1−θn|≥β}∩{|θn−θ|≤γ}

]
+ E

[∣∣∣h(X1 − θn)
∣∣∣1{|X1−θn|≥β}∩{|θn−θ|>γ}

]
.

By (H.5).2 and the DCT, we have (a) → 0 as β → ∞, uniformly in n. For the term (b),
condition on the value of X1 − θ, integrate by parts (see (E.6) and (H.5).1) and then use
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(E.5) and (H.5).5. We obtain

(b) =
∫
{(u,x) : |u|≥β, |x−u|>γ}

|h(u)|P((X1 − θn, X1 − θ) ∈ d(u, x))

=
∫ ∞
−∞

(∫
{u : |u|≥β, |x−u|>γ}

|h(u)|P(x− (θn − θ) ∈ du |X1 − θ = x)
)
P(X1 − θ ∈ dx)

=
∫ −(β+γ)

−∞


[
− |h(u)|P(θn − θ ≤ x− u |X1 − θ = x)

]∣∣∣−β
u=x+γ

+
∫ −β
x+γ sign(h(u))h′(u)P(θn − θ ≤ x− u |X1 − θ = x) du

P(X1 − θ ∈ dx)

+
∫ ∞
−∞

lim
t→∞



[
− |h(u)|P(θn − θ ≤ x− u |X1 − θ = x)

]∣∣∣t
u=(x+γ)∨β

+
∫ t

(x+γ)∨β sign(h(u))h′(u)P(θn − θ ≤ x− u |X1 − θ = x) du

+
[
|h(u)|P(θn − θ ≥ x− u |X1 − θ = x)

]∣∣∣(x−γ)∧(−β)

u=−t

−
∫ (x−γ)∧(−β)
−t sign(h(u))h′(u)P(θn − θ ≥ x− u |X1 − θ = x) du


P(X1 − θ ∈ dx)

+
∫ ∞
β+γ


[
|h(u)|P(θn − θ ≥ x− u |X1 − θ = x)

]∣∣∣x−γ
u=β

−
∫ x−γ
β

sign(h(u))h′(u)P(θn − θ ≥ x− u |X1 − θ = x) du

P(X1 − θ ∈ dx)

≤
∫ −(β+γ)

−∞

{
|h(x+ γ)|+ 0

}
P(X1 − θ ∈ dx)

+ C

∫ ∞
−∞

 |h((x+ γ) ∨ β)| e−|x−((x+γ)∨β)|p +
∫∞
β
|h′(u)| e−|x−u|pdu

|h((x− γ) ∧ (−β))| e−|x−((x−γ)∧(−β))|p +
∫ −β
−∞ |h′(u)| e−|x−u|pdu

P(X1 − θ ∈ dx)

+
∫ ∞
β+γ

{
|h(x− γ)|+ 0

}
P(X1 − θ ∈ dx)

. E
[
|h(X1 − θ + γ)|1{|X1−θ+γ|≥β}

]
+ E

[
|h(β)| e−|X1−θ−β|p

]
+
∫ ∞
β

E
[
|h′(u)| e−|X1−θ−u|p

]
du

+ E
[
|h(X1 − θ − γ)|1{|X1−θ−γ|≥β}

]
+ E

[
|h(−β)| e−|X1−θ+β|p

]
+
∫ −β
−∞

E
[
|h′(u)| e−|X1−θ−u|p

]
du,

where y . z means y ≤ (1 ∨ C)z. As β →∞, the first and fourth terms go to 0 by (H.5).2
and the DCT, the second and fifth terms go to 0 by (H.5).3 and the DCT, the third and
sixth terms go to 0 by (H.5).4 and the DCT. None of the terms depended on n, so the
convergence is uniform in n ≥ N0. �

338



If {θ?n}n∈N is a sequence ofM -estimators, then the next lemma proposes an easy-to-verify
condition on the tail probabilities of θ?n for (E.5) in Lemma 8.2.2 to hold uniformly in the
set of estimators

En,θ $ {θ + v(θ?n − θ)}v∈[0,1], for some θ ∈ R. (8.2.8)

Lemma 8.2.3. Let θ ∈ R and let X1, X2, X3, . . . be a sequence of i.i.d. random variables.

Let {θ?n}n∈N be a sequence of estimators satisfying
n∑
i=1

ψ(Xi − θ?n) = 0, (8.2.9)

where ψ : R → R is measurable, non-decreasing and ψ(0) = 0. Assume that there exist

N ≥ 1 and C, γ, p > 0 such that

sup
n≥N

P
(
|θ?n − θ| ≥ |t|

)
≤ Ce−|t|

p

, for all |t| ≥ γ. (8.2.10)

Then, condition (E.5) from Lemma 8.2.2 is satisfied uniformly on En,θ, namely :

(E.5.unif): There exist N2 ≥ 2, C, γ, p > 0 and β0 > γ such that, for P(X1−θ ∈ · )-
almost-all x ∈ R, we have

• For all u ≥ (x+ γ) ∨ β0 and for all n ≥ N2,

sup
θn∈En,θ

P(θn − θ ≤ x− u |X1 − θ = x) ≤ Ce−|x−u|
p

.

• For all u ≤ (x− γ) ∧ (−β0) and for all n ≥ N2,

sup
θn∈En,θ

P(θn − θ ≥ x− u |X1 − θ = x) ≤ Ce−|x−u|
p

.

Proof. For all n ≥ 2, let θ?2:n $ θ?2:n(X2, X3, . . . , Xn) be an estimator that satisfies
n∑
i=2

ψ(Xi − θ?2:n) = 0 and θ?2:n
law= θ?n−1. (8.2.11)

Since ψ is non-decreasing and ψ(0) = 0,

• θ?n ≤ X1 =⇒ ψ(X1 − θ?n) ≥ 0

(8.2.9)=⇒
n∑
i=2

ψ(Xi − θ?n) ≤ 0 (8.2.11)=⇒ θ?2:n ≤ θ?n ≤ X1, (8.2.12)
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• θ?n ≥ X1 =⇒ ψ(X1 − θ?n) ≤ 0

(8.2.9)=⇒
n∑
i=2

ψ(Xi − θ?n) ≥ 0 (8.2.11)=⇒ θ?2:n ≥ θ?n ≥ X1. (8.2.13)

Let θn ∈ En,θ for all n ∈ N. In order to prove (8.2.14) (respectively (8.2.15)) below, we
use the following facts in succession : θn − θ ≤ 0 =⇒ θ?n − θ ≤ θn − θ (respectively
θn−θ ≥ 0 =⇒ θ?n−θ ≥ θn−θ), (8.2.12) (respectively (8.2.13)), the independence between
X1 and θ?2:n, (8.2.11), and (8.2.10).

• For all u ≥ (x+ γ) ∨ β0 > 0 (note that x− u ≤ −γ < 0) and for all n ≥ N + 1,

P(θn − θ ≤ x− u |X1 − θ = x) ≤ P(θ?n − θ ≤ x− u |X1 − θ = x)

≤ P(θ?2:n − θ ≤ x− u)

= P(θ?n−1 − θ ≤ x− u)

≤ Ce−|x−u|
p

. (8.2.14)

• For all u ≤ (x− γ) ∧ (−β0) < 0 (note that x− u ≥ γ > 0) and for all n ≥ N + 1,

P(θn − θ ≥ x− u |X1 − θ = x) ≤ P(θ?n − θ ≥ x− u |X1 − θ = x)

≤ P(θ?2:n − θ ≥ x− u)

= P(θ?n−1 − θ ≥ x− u)

≤ Ce−|x−u|
p

. (8.2.15)

Simply choose N2 $ N + 1 in (E.5.unif). This ends the proof. �

We can now state the main result. The structure of the assumptions is illustrated in
Figure 8.2.1.

Theorem 8.2.4. Let θ ∈ R and let X1, X2, X3, . . . be a sequence of i.i.d. random variables

satisfying

(X.1): P(X1 = θ) = 0.

Let {θ?n}n∈N be a sequence of estimators satisfying (E.5.unif) directly or the conditions in

Lemma 8.2.3. Denote En,θ $ {θ + v(θ?n − θ)}v∈[0,1], and assume that
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(E.1.unif): θ?n
P−→ θ;

(E.2.unif): For all n ∈ N, all i ∈ {1, 2, . . . , n} and all θn ∈ En,θ, (Xi− θn, Xi− θ) law=
(X1 − θn, X1 − θ);

(E.4.unif): If lim supx→0 |h(x)| < ∞, we impose no condition. Otherwise, assume

that there exist N1 ∈ N, α0 > 0 and a constant Cα0 > 0 such that

sup
n≥N1

sup
θn∈En,θ

sup
A∈B>0([−α0,α0])

P(X1 − θn ∈ A)
Lebesgue(A) ≤ Cα0 <∞.

(E.6.unif): There exists N3 ∈ N such that for all n ≥ N3 and for all θn ∈ En,θ,
there exists An,θn ∈ B(R) such that P(X1 − θ ∈ An,θn) = 1 and, for all x ∈ An,θn,
the measure P(x − (θn − θ) ∈ · |X1 − θ = x), when restricted to {u ∈ R : |u| ≥
β0, |x− u| > γ}, is absolutely continuous with respect to the Lebesgue measure.

Finally, assume

(H.1), (H.2): from Proposition 8.2.1,

(H.3), (H.4), (H.5): from Lemma 8.2.2.

Then, the conclusion in Proposition 8.2.1 holds uniformly for θn ∈ En,θ, namely

lim
n→∞ sup

θn∈En,θ
E
∣∣∣∣∣ 1n

n∑
i=1

1{Xi 6=θn}h(Xi − θn)− E
[
h(X1 − θ)

]∣∣∣∣∣ = 0. (8.2.16)

Proof. We know that (E.5.unif) holds, either directly or via the conditions in Lemma
8.2.3. By combining (E.4.unif) to (E.6.unif) and (H.3) to (H.5), a proof along the lines of
Lemma 8.2.2 shows

(E.3.unif):

lim
K→∞

sup
n≥N0

sup
θn∈En,θ

E
[∣∣∣h(X1 − θn)

∣∣∣1{X1 6=θn}∩{|h(X1−θn)|≥K}

]
= 0.

By (E.3.unif), the identity |Un + Vn|1{|Un+Vn|≥2K} ≤ 2|Un|1{|Un|≥K} + 2|Vn|1{|Vn|≥K}, and
(H.2), we deduce

lim
K→∞

sup
n≥N0

sup
θn∈En,θ

E
[
|h(X1 − θn)− h(X1 − θ)|1{X1 6=θn}∩{|h(X1−θn)−h(X1−θ)|≥K}

]
= 0.

(8.2.17)
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To conclude, we rerun the proof of Proposition 8.2.1 with our new assumptions. By
(X.1), (H.2), (E.1.unif) and (E.2.unif), the convergence in (8.2.2) is valid for supθn∈En,θ of
the expectation. This implies that the convergence in (8.2.4) is also valid for supθn∈En,θ of
the expectation. Furthermore, by (H.1), (E.1.unif) and the continuous mapping theorem,
we have, for all ε > 0,

lim
n→∞ sup

θn∈En,θ
P
(
1{X1 6=θn}

∣∣∣h(X1 − θn)− h(X1 − θ)
∣∣∣ > ε

)
= 0. (8.2.18)

By combining (8.2.17) and (8.2.18), the supθn∈En,θ of the expectation on the right-hand side
of (8.2.5) converges to 0. In summary, we have shown that supθn∈En,θ of the expectations
in (8.2.2), (8.2.4) and (8.2.5) all converge (respectively) to 0. Hence, the conclusion of
Proposition 8.2.1 holds for supθn∈En,θ of the expectation, which is exactly the claim made in
(8.2.16). �

Remark 8.2.3. By following the proof of Theorem 8.2.4, we see that (X.1), (H.1), (H.2),
(E.1.unif), (E.2.unif) and (E.3.unif) alone imply the conclusion in (8.2.16). The other

assumptions in the statement of the theorem are simply there to give a more practical way

to verify (E.3.unif).
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Proposition 2.1
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(X.1)
(H.1)
(H.2)
(E.1)
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(E.6)
(H.3)
(H.4)
(H.5) Lemma 2.3

(E.3.unif)

(X.1)
(H.1)
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(E.1.unif)
(E.2.unif)

(E.4.unif)
(E.5.unif)
(E.6.unif)

(H.3)
(H.4)
(H.5)
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Lemma 2.5

Lemma 2.5
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(2.16)

Theorem 2.6

Figure 8.2.1. Logical structure of the assumptions and their implications.
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8.3. Example

We now give an application of the previous theorem. The context of the problem is
described at the end of Section 8.1.

Lemma 8.3.1. Let X1, X2, X3, . . . be a sequence of i.i.d. random variables with density

function
fX1(x) $ 1

4σe
− 1

2 |x−µσ |, x ∈ R,

where µ ∈ R and σ > 0. Define h : R\{0} → R by

h(y) $ sign(y) log |y|.

Let

µ?n $ median(X1, X2, . . . , Xn) $


X((n+1)/2), if n is odd,
1
2(X(n/2) +X(n/2+1)), if n is even.

(8.3.1)

For v ∈ [0, 1], define µ?n,v $ µ+ v(µ?n − µ), and let En,µ $ {µ?n,v}v∈[0,1]. Then,

lim
n→∞ sup

v∈[0,1]
E
∣∣∣∣∣ 1n

n∑
i=1

1{Xi 6=µ?n,v}h(Xi − µ?n,v)− E [h(X1 − µ)]
∣∣∣∣∣ = 0. (8.3.2)

Proof. Without loss of generality, assume that µ = 0. Below, we verify the conditions of
Theorem 8.2.4.

(X.1): P(X1 = 0) = 0. This is obvious.

(Conditions in Lemma 8.2.3): We show that the conditions are satisfied with
ψ(y) $ sign(y) and ψ(0) $ 0. Indeed, by (8.3.1), we know that∑n

i=1 ψ(Xi−µ?n) = 0.
Furthermore, for N ∈ N and γ > 0 both large enough (depending on σ), we have,
for all n ≥ N and all t ≥ γ,

P(µ?n ≥ t) ≤
n∑

k=dn/2e

(
n

k

)
P(X1 ≥ t)k P(X1 ≤ t)n−k

≤ (n− dn/2e) ·
(

n

dn/2e

)
· P(X1 ≥ t)dn/2e

≤ bn/2c · 2 2n√
n
·
(1

2e
− t

2σ

)dn/2e
≤
√
n

2 2ne− nt8σ · e− nt8σ ≤ 1
2e
−t. (8.3.3)
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To obtain the third inequality, we use Stirling’s formula and assume that N is large
enough. To obtain the last inequality, assume thatN ≥ 8σ and γ ≥ 8σ. This proves
(8.2.10) with C = 1 and p = 1.

(E.1.unif): µ?n
P−→ 0. This is explained in Example 5.11 of van der Vaart (1998).

(E.2.unif): For any v ∈ [0, 1], the estimator µ?n,v = vµ?n is symmetric with respect to
its n variables because the median, µ?n, is symmetric with respect to its n variables.
Since the Xi’s are i.i.d., the condition is satisfied.

(E.4.unif): We have lim supx→0 |h(x)| = ∞, so we need to verify the condition. For
any n ≥ 2 and any v ∈ [0, 1], note that X1 − vµ?n has a density function. It suffices
to show that the densities are bounded, uniformly in n and v, by a positive constant.
Since the density u 7→ fX1−vµ?n(u) is symmetric around 0, we will assume, without
loss of generality, that u > 0. For v ∈ (0, 1], denote z $ (x − u)/v and notice that
z < x.

When v ∈ (0, 1] and n ≥ 3 is odd, we have

fX1−vµ?n(u) =
∫ ∞
−∞

fX1−vµ?n|X1(u |x)fX1(x)dx =
∫ ∞
−∞

1
v
fµ?n|X1(z |x)fX1(x)dx

=
∫ ∞
−∞

1
v

(
n

bn/2c

)
(FX1(z))bn/2cfX1(z)(1− FX1(z))bn/2−1cfX1(x)dx

≤ C ‖fX1‖∞
∫ ∞
−∞

1
v
fµ?n−2

(z)dx︸ ︷︷ ︸
= 1

= C ‖fX1‖∞ <∞.

In the inequality above, we took C $ supn≥3

(
n
bn/2c

)
/
(

n−2
b(n−2)/2c

)
, which is finite by

Stirling’s formula. When v ∈ (0, 1] and n ≥ 4 is even, we can apply a similar
argument and also obtain a uniform bound. Finally, when v = 0 and n ∈ N,
fX1−vµ?n(u) = fX1(u) ≤ 1/(4σ).

In summary, fX1−vµ?n(u) is uniformly bounded in u ∈ R, n ≥ 3 and v ∈ [0, 1], which
proves (E.4.unif) with any α0 > 0 and any N1 ≥ 3.

(E.6.unif): In our case, this is trivial because the conditional density fX1−vµ?n|X1(· |x)
exists for all x ∈ R, all n ≥ 2 and all v ∈ (0, 1].
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(H.1): The function h is continuous on R\{0}, so Dh = ∅ and thus P(X1 ∈ Dh) = 0.

(H.2): E
∣∣∣h(X1)

∣∣∣ ≤ ∫|x|≤1 | log |x|| 1
4σdx+

∫
|x|≥1 |x|fX1(x)dx ≤ 2

4σ + 2σ <∞.

(H.3): For all x0 ∈ R\{0}, lim supx→x0 |h(x)| <∞. This is obvious.

(H.4): ∫|u|≤α0
| log |u||du <∞ is true for any α0 > 0 since

∫
|u|≤1 | log |u||du = 2.

(H.5): (1) This is obviously true for any β0 > 0 (use the fundamental theorem of
calculus).

(2) For any γ > 0 and any β0 > γ, the supremum sup|t|≤γ |h(X1− t)|1{|X1−t|≥β0} is
attained at the boundary with probability 1 (not necessarily the same end of
the boundary for different ω’s). Therefore, takeM = |h(X1−γ)|1{|X1−γ|≥β0}+
|h(X1 + γ)|1{|X1+γ|≥β0}. It is easy to show that E[M ] <∞ because | log |x|| ≤
|x| for |x| ≥ 1 and

∫
|x|≥(1∨β0) |x|fX1±γ(x)dx <∞.

(3) We need to verify this condition for p = 1 since this is the p that we used above
to verify the conditions of Lemma 8.2.3. First, lim|β|→∞ |h(β)|e−|x−β|p = 0 is
true for all x ∈ R and all p > 0 (true in particular for p = 1). For the second
part, assume that β ≥ 1. We have

E[e−|X1−β|] =
∫

(−∞,0)∪(0,β)∪(β,∞)
e−|x−β| · 1

4σe
− 1

2σ |x|dx

≤ 1
2e
−|β|

∫ 0

−∞

1
2σe

− 1
2σ |x|dx︸ ︷︷ ︸

= 1

+ |β|4σ e
−(1∧ 1

2σ )|β| + 1
4σe

− 1
2σ |β|

∫ ∞
β

e−|x−β|dx︸ ︷︷ ︸
= 1

≤ |β|2
(

1 ∨ 1
2σ

)
e−(1∧ 1

2σ )|β|. (8.3.4)

By the symmetry of fX1 , we also have (8.3.4) for β ≤ −1. Hence, for any
β0 ≥ 1,

sup
|β|≥β0

E
[(
|h(β)|e−|X1−β|

)2
]
<∞,

which is a well-known sufficient condition for the uniform integrability of

{|h(β)|e−|X1−β|}|β|≥β0 ,

see e.g. (Klenke, 2014, Corollary 6.21).
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(4) Take any β0 ≥ 1, then (8.3.4) implies∫
|u|≥β0

E
[
|h′(u)|e−|X1−u|

]
du ≤ 1

β0

∫
|u|≥β0

E
[
e−|X1−u|

]
du <∞.

(5) Take any β0 ≥ 1, then, for all |u| ≥ β0,

−sign(u) · sign(h(u)) · h′(u) = −sign(u) · sign(u) · 1
|u| ≤ 0.

This ends the proof. �
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Abstract. For an i.i.d. sample of observations, we study a modified score statistic that

tests the goodness-of-fit of a given exponential power distribution against a family of

alternatives, called the asymmetric power distribution. The family of alternatives was

introduced in Komunjer (2007) and is a reparametrization of the skewed exponential

power distribution from Fernández et al. (1995) and Kotz et al. (2001). The score is

modified in the sense that the location and scale parameters (assumed to be unknown)

are replaced by their maximum likelihood estimators. We find the asymptotic law of the

modified score statistic under the null hypothesis (H0) and under local alternatives, using

the notion of contiguity. Our work generalizes and extends the findings of Desgagné and

Lafaye de Micheaux (2018), where the data points were normally distributed under H0.

The special case where each data point has a Laplace distribution under H0 is the hardest

to treat and requires a recent result from Lafaye de Micheaux and Ouimet (2018) on a

uniform law of large numbers for summands that blow up.

Keywords: asymptotic statistics, exponential power distribution, asymmetric power

distribution, skewed exponential power distribution, Lagrange multiplier test, score test,

uniform law of large numbers

9.1. The asymmetric power distribution (APD)

The asymmetric power distribution (APD), proposed byKomunjer (2007), can be viewed
as a generalization of the exponential power distribution (EPD) – also known as the gen-
eralized error distribution or the generalized normal distribution (Nadarajah (2005)) – to
a broader family that includes asymmetric densities. The APD family combines the large
range of exponential tail behaviors provided by the EPD family with various levels of asym-
metry. The probability density function f(u) of the standard APD is defined in Section
2 of Komunjer (2007). In order to relate it more easily to the skewed exponential power
distribution of Fernández et al. (1995) and Kotz et al. (2001) (see Remark 9.1.1 below), we
modify its scaling with the change of variable u = 2−1/θ2y and we obtain

f(y |θ) $ δ
1/θ2
θ

21/θ2Γ(1 + 1/θ2) exp
(
−1

2
δθ

Aθ(y) |y|
θ2

)
, y ∈ R, (9.1.1)

where θ $ (θ1, θ2)>, θ1 ∈ (0, 1), θ2 ∈ (0,∞),

δθ $
2θθ21 (1− θ1)θ2
θθ21 + (1− θ1)θ2

and Aθ(y) $
[
1/2 + sign(y)(1/2− θ1)

]θ2
. (9.1.2)
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More generally, we can add location and scale parameters (µ, σ) ∈ R× (0,∞). We define

g(x |θ,κ) $ 1
σ
f
(
x− µ
σ

∣∣∣∣θ) , x ∈ R, (9.1.3)

where
κ $ (µ, σ)>. (9.1.4)

When X has density (9.1.3), we denote X ∼ APD(θ,κ).

Remark 9.1.1. In Equation (8) of Fernández et al. (1995) and page 271 of Kotz et al.

(2001), the skewed exponential power distribution (where the location and scale parameters

m and s are added as µ and σ were added in (9.1.3)) is defined by the density function

g̃(x | γ, q,m, s) $


cγ,q

1
s

exp
(
−1

2

∣∣∣γ(x−m)
s

∣∣∣q) , if x ≤ m,

cγ,q
1
s

exp
(
−1

2

∣∣∣ (x−m)
γs

∣∣∣q) , if x ≥ m,
(9.1.5)

where γ, q ∈ (0,∞) and c−1
γ,q $ 21/qΓ(1 + 1/q)(γ + 1/γ). The reader can verify that (9.1.3)

is a reparametrization of (9.1.5) where

θ1 $ 1/(1 + γ2), θ2 $ q, µ $ m and σ $ δ
1/θ2
θ (γ + 1/γ)s. (9.1.6)

Remark 9.1.2. One interesting property of the parametrization (9.1.3) is that θ1 repre-

sents the proportion of the density that is left of the mode µ. It can be useful for modelling

purposes.

9.2. Preliminaries

Throughout this paper, we assume that κ = (µ, σ)> is unknown. Additionally, fix a
constant λ ≥ 1 and let θ0 $ (1/2, λ)>. For an i.i.d. sample X1, X2, . . . , Xn, we want to test
the hypotheses

H0 : Xi ∼ APD(θ0,κ);
H1 : Xi ∼ APD(θ,κ), θ 6= θ0.

(9.2.1)

If κ were known, this could be achieved with the score statistic

rn(κ) $ 1
n

n∑
i=1

∂

∂θ
log g(Xi |θ0,κ). (9.2.2)
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Indeed, we can show (see Proposition 9.3.1 below) that, under H0, rn(κ)>J−1
θθ rn(κ) χ2

2,
where Jθθ denotes the asymptotic covariance matrix of rn(κ). Since we assumed that κ is
unknown, we propose to test (9.2.1) by replacing κ in (9.2.2) by its maximum likelihood
estimator

κ̂n $ (µ̂n, σ̂n)>. (9.2.3)

We are thus interested in determining the asymptotic law of the modified score statistic

rn(κ̂n) $ 1
n

n∑
i=1

∂

∂θ
log g(Xi |θ0, κ̂n). (9.2.4)

Remark 9.2.1. Our first main result (Theorem 9.3.4) gives the asymptotic law of rn(κ̂n)
under H0, and our second main result (Theorem 9.3.8) gives it under local alternatives

(which are defined in (9.3.13)). Falk et al. (2008) did a similar study in the context of

Pareto distributions.

Remark 9.2.2. Two special cases are of particular interest in (9.2.1). When λ = 1,
the Xi’s have a Laplace distribution under H0, and when λ = 2, the Xi’s are normally

distributed under H0. The case λ = 2 was previously treated in Desgagné and Lafaye de

Micheaux (2018), but not under local alternatives. In this paper, we treat all the cases

λ ≥ 1 under H0 and under local alternatives. The case λ = 1 is the hardest to handle and

will require a recent result from Lafaye de Micheaux and Ouimet (2018) on a uniform law

of large numbers for summands that blow up (see the proof of Proposition 9.3.2).

Below, we introduce some notations (see also the Notation section at the end of the
paper). Define

dθ(y) $ ∂

∂θ
log g(x |θ0,κ)

∣∣∣∣
x=µ+σy

= ∂

∂θ
log f(y |θ0), (9.2.5)

dκ(y) $ σ
∂

∂κ
log g(x |θ0,κ)

∣∣∣∣
x=µ+σy

=

 − ∂
∂y log f(y |θ0)

−1− y ∂
∂y log f(y |θ0)

 . (9.2.6)

We can easily verify (using Wolfram Mathematica) that

dθ(y) =

 −λ|y|λsign(y)

−1
2

{
|y|λ log |y| − 2

λ2
[
log 2 + ψ(1 + 1/λ)

]}
 , dκ(y) =

 λ
2 |y|λ−1sign(y),

λ
2 |y|λ − 1

 ,
(9.2.7)
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where ψ(z) $ d
dz

log Γ(z) is the digamma function and Γ(z) $ ∫∞
0 tz−1e−tdt is the gamma

function. Using the notation in (9.2.5), we can write the score statistic (9.2.2) as

rn(κ) = 1
n

n∑
i=1
dθ(Yi), where Yi $ σ−1(Xi − µ). (9.2.8)

Under the null hypothesis, Xi ∼ APD(θ0,κ), we find the maximum likelihood estimator
κ̂n = (µ̂n, σ̂n)> by solving

(µ̂n, σ̂n) ∈ argmaxκ∈R×(0,∞)

n∑
i=1

{
1
2

∣∣∣∣Xi − κ1

κ2

∣∣∣∣λ − log κ2

}
, (9.2.9)

or equivalently, by finding the values who jointly satisfy the equations
n∑
i=1

dµ

(
Xi − µ̂n
σ̂n

)
= 0 and

n∑
i=1

dσ

(
Xi − µ̂n
σ̂n

)
= 0. (9.2.10)

We obtain the estimators

µ̂n =



median(X1, X2, . . . , Xn), if λ = 1,

1
n

∑n
i=1Xi, if λ = 2,

the unique solution to ∑n
i=1 |Xi − µ̂n|λ−1sign(Xi − µ̂n) = 0, if λ > 1,

σ̂n =
(

1
n

n∑
i=1

λ

2 |Xi − µ̂n|λ
)1/λ

.

(9.2.11)

Remark 9.2.3. When λ 6∈ {1, 2}, µ̂n doesn’t have an explicit expression.

Remark 9.2.4. The median is not well-defined when n is even. If the values in the

sample are all different, then any real number inside the interval (X(n/2), X(n/2+1)), where
X(k) denotes the k-th smallest value of the sample, satisfies the definition of a median with

respect to the empirical distribution. To avoid ambiguity, assume for the remainder of this

article that the median is uniquely defined by

median(X1, X2, . . . , Xn) $


X((n+1)/2), if n is odd,
1
2(X(n/2) +X(n/2+1)), if n is even.

(9.2.12)

Below, we state a small adaptation of a well-known uniform law of large numbers due
to Lucien Le Cam. We will use it several times in this article. The proof, which is deferred
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to Section 9.4.1, follows the strategy described in Section 16 of Ferguson (1996). A small
adaptation is needed to treat the case where the parameter space is not compact.

Lemma 9.2.1. Let X1, X2, X3, . . . be a sequence of i.i.d. random variables, and let ξ̂n $
ξ̂n(X1, X2, . . . , Xn) be an estimator such that ξ̂n

a.s.−→ ξ ∈ Rd. For δ ≥ 0, let Bδ[ξ] $ {t ∈
Rd : ‖t−ξ‖2 ≤ δ}. Assume that U : R×Rd → R is a measurable function and there exists

δ > 0 such that

(A.1): For all x ∈ R, t 7→ U(x, t) is continuous on Bδ[ξ];

(A.2): There exists K : R→ R such that |U(x, t)| ≤ K(x) for all (x, t) ∈ R×Bδ[ξ]
and E

[
|K(X1)|

]
<∞.

If ρn $ ‖ξ̂n − ξ‖2 and U(t) $ E[U(X1, t)], then

P
(

lim sup
n→∞

sup
t∈Bρn [ξ]

∣∣∣∣ 1n
n∑
i=1

U(Xi, t)− U(ξ)
∣∣∣∣ > 0

)
= 0. (9.2.13)

By combining Lemma 9.2.1 and a result of from Rubin and Rukhin (1983) on the conver-
gence rates ofM -estimators, we can show (see Section 9.4.1) that the maximum likelihood
estimators in (9.2.11) are strongly consistent.

Lemma 9.2.2. Under H0 and under H1,

κ̂n $
(
µ̂n

σ̂n

)
a.s.−→

(
µ

σ

)
$ κ, as n→∞. (9.2.14)

9.3. Asymptotic law of the modified score statistic

Using the notation in (9.2.5), we can write the modified score statistic (9.2.4) as

rn(κ̂n) = 1
n

n∑
i=1
dθ(Zi), where Zi $ σ̂−1

n (Xi − µ̂n). (9.3.1)

Below, we establish the asymptotic law of rn(κ̂n) under the null hypothesis (Section 9.3.1)
and under local alternatives (Section 9.3.2). The proofs are deferred to Section 9.4.2 and
Section 9.4.3, respectively.
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9.3.1. Under the null hypothesis (H0)

The strategy consists first in determining the asymptotic law of the vector

1√
n

n∑
i=1

dθ(Yi)
dκ(Yi)

 (9.3.2)

under H0. The second step consists in writing n1/2rn(κ̂n) as a linear combination of the
components of this vector plus a negligible term (via a first-order Taylor expansion). We
will then be able to deduce the asymptotic distribution of n1/2rn(κ̂n) underH0. Recall that
H0 means that for all i ∈ N, Xi ∼ APD(θ0,κ), or equivalently,

Yi $ σ−1(Xi − µ) ∼ APD(θ0, (0, 1)>). (9.3.3)

The following proposition is a direct application of the central limit theorem. The com-
putations for the entries of the asymptotic covariance matrix J are given in Section 9.4.2.

Proposition 9.3.1. We have

1√
n

n∑
i=1

dθ(Yi)
dκ(Yi)

 PH0 N4

0 ; J $

Jθθ Jθκ

Jθκ Jκκ


 , (9.3.4)

where dθ and dκ are given in (9.2.7), and

J =



4(1 + λ) 0 −21−1/λλ
Γ(β) 0

0 λ−3[φ2 + βψ′(β)− 1
]

0 −φ
λ

−21−1/λλ
Γ(β) 0 λΓ(3−β)

22/λΓ(β) 0

0 −φ
λ 0 λ


, (9.3.5)

where φ $ 1 + log 2 + ψ(β), β $ 1 + 1/λ and ψ denotes the digamma function.

In the next proposition, we use a first-order Taylor expansion with the aim of writing
n1/2rn(κ̂n) as a linear combination of the components of the vector on the left-hand side of
(9.3.4), plus a negligible term.

Proposition 9.3.2. Let 12 $ (1, 1)>. We have

n1/2rn(κ̂n) = n1/2rn(κ) + r′n(κ)n1/2(κ̂n − κ) + oPH0
(1)12. (9.3.6)
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Now, we study the term r′n(κ)n1/2(κ̂n − κ) and rewrite (9.3.6).

Proposition 9.3.3. Recall Jθκ and Jκκ from Proposition 9.3.1. Then,

r′n(κ) = −σ−1Jθκ + oPH0
(1)I2, (9.3.7)

n1/2(κ̂n − κ) = σJ−1
κκ

1√
n

n∑
i=1
dκ(Yi) + oPH0

(1)12, (9.3.8)

where I2 is the identity matrix of size 2. Furthermore,

n1/2rn(κ̂n) =
(
I2 ; −JθκJ−1

κκ

) 1√
n

n∑
i=1

dθ(Yi)
dκ(Yi)

+ oPH0
(1)12. (9.3.9)

By combining Proposition 9.3.1 and Proposition 9.3.3, we obtain the asymptotic distri-
bution of n1/2rn(κ̂n) under the null hypothesis H0.

Theorem 9.3.4 (First main result). We have

n1/2rn(κ̂n)
PH0 N2(0,Σ), as n→∞, (9.3.10)

where

Σ = Jθθ − J−1
κκJ

2
θκ =

 4(1 + λ)− 4λ
Γ(3−β)Γ(β) 0

0 βψ′(β)−1
λ3

 . (9.3.11)

In particular,

n rn(κ̂n)>Σ−1 rn(κ̂n)
PH0 χ2

2, as n→∞. (9.3.12)

Remark 9.3.1. In Desgagné and Lafaye de Micheaux (2018), the case λ = 2 was treated.

9.3.2. Under local alternatives (H1,n)

The local alternatives are defined by

H1,n : Xi ∼ APD(θn,κ), θn = θ0 + δ√
n

(1 + o(1)), (9.3.13)

where δ ∈ R2\{0} is fixed. The vector δ indicates the direction of the alternative.

The following proposition will be a crucial tool to prove the weak convergence of our
modified score statistic under local alternatives. It is a consequence of the concept of
contiguity, see e.g. Section 6.2 in van der Vaart (1998).
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Proposition 9.3.5. For any statistics T n $ T n(X1, X2, . . . , Xn;κ) taking values in Rd,

T n

PH0−→ 0 if and only if T n

PH1,n−→ 0, (9.3.14)

as n→∞.

As an immediate consequence, we obtain the same decomposition under H1,n that we
found for the modified score statistic under H0 in Proposition 9.3.3.

Corollary 9.3.6. Let δ ∈ R2\{0}. Then, as n→∞,

n1/2rn(κ̂n) =
(
I2 ; −JθκJ−1

κκ

) 1√
n

n∑
i=1

dθ(Yi)
dκ(Yi)

+ oPH1,n
(1)12. (9.3.15)

We now use Le Cam’s third lemma to prove the analogue of Proposition 9.3.1 under
H1,n. Our aim is to obtain the asymptotic distribution of the right-hand side of (9.3.15).

Proposition 9.3.7. Let δ ∈ R2\{0}. Then, as n→∞,

1√
n

n∑
i=1

 dθ(Yi)
dκ(Yi)

 PH1,n N4


Jθθδ
Jθκδ

 ; J $

Jθθ Jθκ

Jθκ Jκκ


 , (9.3.16)

where J is given in (9.3.5).

Finally, by combining Corollary 9.3.6 and Proposition 9.3.7, we obtain the asymptotic
distribution of n1/2rn(κ̂n) under the local alternatives H1,n.

Theorem 9.3.8 (Second main result). Let δ ∈ R2\{0}. Then,

n1/2rn(κ̂n)
PH1,n N2(Σδ ; Σ), as n→∞, (9.3.17)

where Σ is given in (9.3.11). In particular,

n rn(κ̂n)>Σ−1 rn(κ̂n)
PH1,n χ2

2(δ>Σδ), as n→∞, (9.3.18)

where δ>Σδ represents the noncentrality parameter of the χ2
2 distribution.
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9.4. Proofs

9.4.1. Proof of the results stated in Section 9.2

Proof of Lemma 9.2.1. Fix δ > 0 to a value for which (A.1) and (A.2) hold. By the
triangle inequality, and since ρn a.s.−→ 0 by hypothesis, we have

P
(

lim sup
n→∞

sup
t∈Bρn [ξ]

∣∣∣∣ 1n
n∑
i=1

U(Xi, t)− U(ξ)
∣∣∣∣ > 0

)

≤ P
(

lim sup
n→∞

sup
t∈Bρn [ξ]

∣∣∣∣ 1n
n∑
i=1

U(Xi, t)− U(t)
∣∣∣∣ > 0

)

+ P
(

lim sup
n→∞

sup
t∈Bρn [ξ]

∣∣∣U(t)− U(ξ)
∣∣∣ > 0

)

≤ P
(

lim sup
n→∞

sup
t∈Bδ[ξ]

∣∣∣∣ 1n
n∑
i=1

U(Xi, t)− U(t)
∣∣∣∣ > 0

)

+ P
(

lim sup
n→∞

sup
t∈Bρn [ξ]

∣∣∣U(t)− U(ξ)
∣∣∣ > 0

)
.

(9.4.1)

By applying a uniform law of large numbers on the compact set Bδ[ξ] (Theorem 16 (a) in
Ferguson (1996) with our assumptions (A.1) and (A.2)), the first probability on the right-
hand side of (9.4.1) is zero. By (A.1), (A.2) and the dominated convergence theorem, we
know that U(t) $ E[U(X1, t)] is continuous on Bδ[ξ]. Since ρn a.s.−→ 0 by hypothesis, the
second probability on the right-hand side of (9.4.1) is also zero. �

Proof of Lemma 9.2.2. By (9.2.10), the estimator µ̂n is determined by the equation
n∑
i=1

w(Xi, µ̂n) = 0, where w(x, µ) $ |x− µ|λ−1sign(x− µ). (9.4.2)

For any x ∈ R, w(x, ·) is non-increasing when λ ≥ 1. From Theorem 2 and Remark 1 in
Rubin and Rukhin (1983) (the proof is a simple application of Chernoff’s theorem), we get
that, for any ε > 0, the probabilities P(|µ̂n − µ| > ε) decay exponentially fast in n (using
the fact that E[w(X1, µ + ε)] < 0 and E[w(X1, µ − ε)] > 0 both hold under H0 and under
H1). In particular, for any ε > 0, the probabilities are summable in n. Hence, by the
Borel-Cantelli lemma, we have µ̂n → µ a.s.

358



Also, from (9.2.11), we have
2
λ
σ̂λn = 1

n

n∑
i=1
|Xi − µ̂n|λ. (9.4.3)

If we denote U(x, t) $ |x − t|λ and U(t) $ E
[
U(X1, t)

]
, then it is easily verified that

U(µ) = (2/λ)σλ. From Lemma 9.2.1, we deduce

P
(

lim
n→∞

∣∣∣∣ 1n
n∑
i=1

U(Xi, µ̂n)− U(µ)
∣∣∣∣ = 0

)
= 1. (9.4.4)

This implies σ̂n → σ a.s. �

9.4.2. Proof of the results stated in Section 9.3.1

Proof of Proposition 9.3.1. The proposition is a direct application of the central limit
theorem. Let X ∼ APD(θ0,κ) and Y $ σ−1(X − µ). Below, we show the computations
for the covariances between dθ1(Y ), dθ2(Y ), dµ(Y ) and dσ(Y ). Before that, we gather some
facts. The density of Y is

f(y | 1/2, λ) = e−
1
2 |y|λ

21+1/λΓ(1 + 1/λ) . (9.4.5)

Recall the definition of the gamma and digamma functions (where x > 0):

Γ(x) $
∫ ∞

0
tx−1e−tdt, and ψ(x) $ d

dx
log Γ(x) = Γ′(x)

Γ(x) , (9.4.6)

and some well-known properties they satisfy (see, e.g., (Abramowitz and Stegun, 1964,
Chapter 6)):

Γ(1 + x) = xΓ(x), (9.4.7)

ψ(1 + x) = ψ(x) + 1
x
, (9.4.8)

ψ′(1 + x) = ψ′(x)− 1
x2 , (9.4.9)∫ ∞

0
tx−1(log t)e−tdt = Γ(x)ψ(x), (9.4.10)∫ ∞

0
tx−1(log t)2e−tdt = Γ(x)(ψ′(x) + ψ2(x)). (9.4.11)

The computations below are valid for all λ > 0, except for Jµµ, which only exists when
λ > 1/2. Since we assume λ ≥ 1 in this article, there are no limitations.
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By the symmetry of the density f and the anti-symmetry of the integrands, we have

Jθ1θ2 = Jθ1σ = Jθ2µ = Jµσ = 0 . (9.4.12)

Here are the other cases:

Jθ1θ1 = E[dθ1(Y )dθ1(Y )] (9.2.7)= λ2E[|Y |2λ]
(9.4.5)= 2λ2

21+1/λΓ(1 + 1/λ) · 2
2
∫ ∞

0

(1
2y

λ
)2
e−

1
2y
λ

dy

= 4λ2

21/λΓ(1 + 1/λ)

∫ ∞
0

t2e−t
[2
λ

(2t)1/λ−1
]
dt (with t = 1

2y
λ)

(9.4.6)= 4λ
Γ(1 + 1/λ)Γ(2 + 1/λ)

(9.4.7)= 4(λ+ 1) , (9.4.13)

Jθ1µ = E[dθ1(Y )dµ(Y )] (9.2.7)= −λ2

2 E[|Y |2λ−1]

(9.4.5)= −λ2

21+1/λΓ(1 + 1/λ) · 2
2−1/λ

∫ ∞
0

(1
2y

λ
)2−1/λ

e−
1
2y
λ

dy

= −21−2/λλ2

Γ(1 + 1/λ)

∫ ∞
0

t2−1/λe−t
[2
λ

(2t)1/λ−1
]
dt (with t = 1

2y
λ)

(9.4.6)= −21−1/λλ

Γ(1 + 1/λ) , (9.4.14)

Jµµ = E[dµ(Y )dµ(Y )] (9.2.7)= λ2

4 E
[
|Y |2λ−2

]
(9.4.5)= λ2

22+1/λΓ(1 + 1/λ) · 2
2−2/λ

∫ ∞
0

(1
2y

λ
)2−2/λ

e−
1
2y
λ

dy

= λ2

23/λΓ(1 + 1/λ)

∫ ∞
0

t2−2/λe−t
[2
λ

(2t)1/λ−1
]
dt (with t = 1

2y
λ)

(9.4.6)= λΓ(2− 1/λ)
22/λΓ(1 + 1/λ) . (9.4.15)

Denote ν $ log 2 + ψ(1 + 1/λ). We have

Jθ2θ2 = E[dθ2(Y )dθ2(Y )] (9.2.7)= 2−2 E
[{
|Y |λ log |Y | − 2

λ2ν
}2
]
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(9.4.5)= 2−1

21+1/λΓ(1 + 1/λ) ·
22

λ2

∫ ∞
0

(1
2y

λ
)2

(log yλ)2e−
1
2y
λ

dy

−
2
λ2ν

21+1/λΓ(1 + 1/λ) ·
2
λ

∫ ∞
0

(1
2y

λ
)

(log yλ)e− 1
2y
λ

dy + 1
λ4ν

2

= 1
21/λλ2Γ(1 + 1/λ)

∫ ∞
0

t2 (log 2 + log t)2e−t
[2
λ

(2t)1/λ−1
]
dt (with t = 1

2y
λ)

− 2ν
21/λλ3Γ(1 + 1/λ)

∫ ∞
0

t (log 2 + log t)e−t
[2
λ

(2t)1/λ−1
]
dt+ 1

λ4ν
2

= 1
λ3Γ(1 + 1/λ)

 (log 2)2Γ(2 + 1/λ) + (2 log 2)Γ(2 + 1/λ)ψ(2 + 1/λ)
+Γ(2 + 1/λ)(ψ′(2 + 1/λ) + ψ2(2 + 1/λ))


− 2ν
λ4Γ(1 + 1/λ)

 (log 2)Γ(1 + 1/λ)
+Γ(1 + 1/λ)ψ(1 + 1/λ)

+ 1
λ4ν

2

by (9.4.6), (9.4.10) and (9.4.11),

(9.4.7)= 1
λ4

(λ+ 1)

 (log 2)2 + (2 log 2)ψ(2 + 1/λ)
+ψ′(2 + 1/λ) + ψ2(2 + 1/λ)

− ν2


(9.4.8)= 1

λ4

(λ+ 1)

 (2 log 2) λ
λ+1 + ψ′(2 + 1/λ)

+
(

λ
λ+1

)2
+ 2λ

λ+1ψ(1 + 1/λ)

+ λν2


(9.4.9)= 1

λ4

[
2λν + (λ+ 1)ψ′(1 + 1/λ) + λν2

]
= 1

λ3 [ν(2 + ν) + (1 + 1/λ)ψ′(1 + 1/λ)] , (9.4.16)

Jθ2σ = E[dθ2(Y )dσ(Y )]

(9.2.7)= −λ
4 E

[
|Y |2λ log |Y |

]
+ ν

2λE
[
|Y |λ

]
− ν

λ2 + 1
2E
[
|Y |λ log |Y |

]
(9.4.5)= −λ

22+1/λΓ(1 + 1/λ) ·
22

λ

∫ ∞
0

(1
2y

λ
)2

(log yλ)e− 1
2y
λ

dy

+ ν

21+1/λλΓ(1 + 1/λ) · 2
∫ ∞

0

(1
2y

λ
)
e−

1
2y
λ

dy − ν

λ2

+ 1
21+1/λΓ(1 + 1/λ) ·

2
λ

∫ ∞
0

(1
2y

λ
)

(log yλ)e− 1
2y
λ

dy

= −1
21/λΓ(1 + 1/λ)

∫ ∞
0

t2 (log 2 + log t)e−t
[2
λ

(2t)1/λ−1
]
dt
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+ ν

21/λλΓ(1 + 1/λ)

∫ ∞
0

t e−t
[2
λ

(2t)1/λ−1
]
dt− ν

λ2

+ 1
21/λλΓ(1 + 1/λ)

∫ ∞
0

t (log 2 + log t)e−t
[2
λ

(2t)1/λ−1
]
dt (with t = 1

2y
λ)

= −1
λΓ(1 + 1/λ)

{
(log 2)Γ(2 + 1/λ) + Γ(2 + 1/λ)ψ(2 + 1/λ)

}

+ 1
λ2Γ(1 + 1/λ)

{
(log 2)Γ(1 + 1/λ) + Γ(1 + 1/λ)ψ(1 + 1/λ)

}
by (9.4.6) and (9.4.10),

(9.4.7)= −(λ+ 1)(log 2 + ψ(2 + 1/λ))
λ2 + ν

λ2
(9.4.8)= −λ− (λ+ 1)ν + ν

λ2

= −(1 + ν)/λ , (9.4.17)

Jσσ = E[dσ(Y )dσ(Y )]

(9.2.7)= λ2

4 E
[
|Y |2λ

]
− λE

[
|Y |λ

]
+ 1

(9.4.13)= (λ+ 2)− λE
[
|Y |λ

]
(9.4.5)= (λ+ 2)− λ

21/λΓ(1 + 1/λ) · 2
∫ ∞

0

(1
2y

λ
)
e−

1
2y
λ

dy

= (λ+ 2)− 2λ
21/λΓ(1 + 1/λ)

∫ ∞
0

te−t
[2
λ

(2t)1/λ−1
]
dy (with t = 1

2y
λ)

(9.4.6)= λ . (9.4.18)

This ends the proof. �

Proof of Proposition 9.3.2. Assume H0 throughout this proof. Use the fundamental
theorem of calculus to expand rn(κ̂n) around κ:

rn(κ̂n) = rn(κ) +
∫ 1

0
r′n(κ?n,v)dv (κ̂n − κ), (9.4.19)

where κ?n,v $ κ+ v(κ̂n − κ).
From (9.2.8) and (9.2.7), we know that for all t ∈ R× (0,∞),

r′n(t) =


1
n

∑n
i=1 U1(Xi, t) 1

n

∑n
i=1 U2(Xi, t)

1
n

∑n
i=1 U3(Xi, t) 1

n

∑n
i=1 U4(Xi, t)

 (9.4.20)
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where y $ (x− t1)/t2 and

U1(x, t) $ λ2

σ
|y|λ−1; U2(x, t) $ λ2

σ
y|y|λ−1;

U3(x, t) $ 1
2σ |y|

λ−1sign (y) {λ log |y|+ 1} ; U4(x, t) $ 1
2σ |y|

λ {λ log |y|+ 1} .

By the triangle inequality and Lemma 9.2.1, we can verify that for all (k, λ) ∈ {1, 2, 3, 4}×
[1,∞)\{(3, 1)},

P
(

lim sup
n→∞

sup
v∈[0,1]

∣∣∣∣ 1n
n∑
i=1

Uk(Xi,κ
?
n,v)− Uk(Xi,κ)

∣∣∣∣ > 0
)

= 0. (9.4.21)

Since we already know from Proposition 9.3.3 that

κ̂n − κ = OP(n−1/2)12, (9.4.22)

we deduce from (9.4.19), (9.4.20), (9.4.21) and (9.4.22) that, for all (k, λ) ∈ {1, 2, 3, 4} ×
[1,∞)\{(3, 1)},

rn(κ̂n) = rn(κ) + r′n(κ)(κ̂n − κ) + oP(n−1/2)12, (9.4.23)

which is the statement we wanted to prove.

When (k, λ) = (3, 1), we have to be a bit more careful. Indeed, Lemma 9.2.1 can-
not be applied to U3 in this case because the log term implies that, for any δ > 0,
supt∈Bδ[κ] |U3(x, t)| = ∞ for all x ∈ Bδ[µ], and thus (A.2) cannot be satisfied. Instead,
we use the result from 9.5, which is a consequence of a uniform law of large numbers de-
veloped in Lafaye de Micheaux and Ouimet (2018) for summands that blow up. By using
successively Jensen’s inequality, Fubini’s theorem, the triangle inequality and Lemma 9.5.1,
we have

E
∣∣∣∣∣
∫ 1

0

1
n

n∑
i=1

U3(Xi,κ
?
n,v)dv −

∫ 1

0

1
n

n∑
i=1

U3(Xi,κ)dv
∣∣∣∣∣

≤
∫ 1

0
E
∣∣∣∣∣ 1n

n∑
i=1

U3(Xi,κ
?
n,v)−

1
n

n∑
i=1

U3(Xi,κ)
∣∣∣∣∣dv

≤ 2 sup
v∈[0,1]

E
∣∣∣∣∣ 1n

n∑
i=1

U3(Xi,κ
?
n,v)− E

[
U3(X1,κ)

]∣∣∣∣∣ n→∞−→ 0.

(9.4.24)
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By Markov’s inequality, this yields, for λ = 1,∣∣∣∣∣
∫ 1

0

1
n

n∑
i=1

U3(Xi,κ
?
n,v)dv −

∫ 1

0

1
n

n∑
i=1

U3(Xi,κ)dv
∣∣∣∣∣ P−→ 0. (9.4.25)

Combining (9.4.22) and (9.4.25) into (9.4.19) proves the statement of the proposition when
(k, λ) = (3, 1). �

Proof of Proposition 9.3.3. Let X ∼ APD(θ0,κ) and Y $ (X − µ)/σ. By the weak
law of large numbers, the chain rule and integration by parts,

r′n(κ) = E
[
∂

∂κ>
dθ(Y )

]
+ oP(1)12

= E
[
d′θ(Y ) ∂Y

∂κ>

]
+ oP(1)12

=
[
dθ(y) ∂y

∂κ>
f(y |θ0)

]∣∣∣∣∞
−∞

−
∫ ∞
−∞
dθ(y) ∂

∂y

[
∂y

∂κ>
f(y |θ0)

]
dy + oP(1)12

(9.2.6)= [0]− E
[
dθ(Y )σ−1dκ(Y )>

]
+ oP(1)12

(9.3.4)= −σ−1Jθκ + oP(1)I2.

(9.4.26)

This proves (9.3.7). Now, we show the asymptotics of n1/2(κ̂n−κ). From (9.2.6), note that

∂

∂κ
log g(X |θ0,κ) = σ−1dκ(Y ). (9.4.27)

A direct application of Theorem 5.23 in van der Vaart (1998) withmκ(x) $ |(x−κ1)/κ2|λ−
log κ2 (by definition, κ̂n ∈ argmaxκ∈R×(0,∞)

∑n
i=1mκ(Xi), recall (9.2.9)), combined with the

almost-sure convergence κ̂n → κ from Lemma 9.2.2, yields

n1/2(κ̂n − κ) = E
[
σ−1dκ(Y )σ−1dκ(Y )>

]−1 1√
n

n∑
i=1

σ−1dκ(Yi) + oP(1)12

(9.3.4)= σJ−1
κκ

1√
n

n∑
i=1
dκ(Yi) + oP(1)12.

(9.4.28)

This proves (9.3.8). Finally, since 1√
n

∑n
i=1 dκ(Yi) is OP(1) by Proposition 9.3.1, Equation

(9.3.9) follows directly from Proposition 9.3.2, (9.3.7) and (9.3.8). �
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Proof of Theorem 9.3.4. The asymptotic normality of n1/2rn(κ̂n) follows directly from
Proposition 9.3.3 and Proposition 9.3.1. The asymptotic covariance matrix Σ is given by
(note that Jθκ and Jκκ are diagonal):

Σ =
(
I2 ; −JθκJ−1

κκ

)Jθθ Jθκ

Jθκ Jκκ


 I2

−J−1
κκJθκ

 = Jθθ − J−1
κκJ

2
θκ

(9.3.4)=

4(1 + λ) 0
0 φ2+βψ′(β)−1

λ3

−
 22/λΓ(β)
λΓ(3−β) 0

0 1
λ


 22−2/λλ2

(Γ(β))2 0
0 φ2

λ2



=

4(1 + λ)− 4λ
Γ(3−β)Γ(β) 0

0 βψ′(β)−1
λ3

 .

(9.4.29)

This ends the proof. �

9.4.3. Proof of the results stated in Section 9.3.2

In order to establish our results under the local alternatives H1,n, we use Le Cam’s first
and third lemma (see Lemma 6.4 and Example 6.7 in van der Vaart (1998)). The proof
structure in this section is inspired by the one presented in Falk et al. (2008).

Lemma 9.4.1 (Le Cam’s first lemma). Let (Pn, n ∈ N) and (Qn, n ∈ N) be sequences of

probability measures on the measurable spaces (Ωn,An). Then, the following statements

are equivalent:

(i) Qn C Pn, i.e. (Qn, n ∈ N) is contiguous with respect to (Pn, n ∈ N).
(ii) If dPn

dQn

Qn U along a subsequence, then P(U > 0) = 1.
(iii) If dQn

dPn

Pn V along a subsequence, then E[V ] = 1.
(iv) For any statistics T n : Ωn → Rk: If T n

Pn−→ 0, then T n
Qn−→ 0.

Lemma 9.4.2 (Le Cam’s third lemma). Let (Pn, n ∈ N) and (Qn, n ∈ N) be sequences

of probability measures on the measurable spaces (Ωn,An), and let Wn : Ωn → Rk be a

sequence of random vectors. Suppose that Qn C Pn and Wn

log dQn
dPn

 Pn Nk+1


 m

−1
2s

2

 ,
M τ

τ> s2


 , (9.4.30)

then Wn
Qn Nk(m+ τ,M).
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Proof of Proposition 9.3.5. To prove this result, we use Le Cam’s first lemma. Assume
that our vector of observations is the identity function

X $ (X1, X2, . . . , Xn) $ Id : (Ωn $ Rn,An $ L(Rn), λ) −→ (Rn,B(Rn), λ), (9.4.31)

where L(Rn) denotes the completion of the Borel σ-algebra B(Rn), and where λ denotes the
Lebesgue measure. On (Ωn,An), define the probability measures

PH0,n(A) $
∫
A

n∏
i=1

g(Xi(ω) |θ0,κ) dλ(ω), A ∈ An,

PH1,n(A) $
∫
A

n∏
i=1

g(Xi(ω) |θn,κ) dλ(ω), A ∈ An,
(9.4.32)

where θn $ θ0 + (1 + o(1))n−1/2δ. By construction, the law ofX under PH0,n corresponds
to the null hypothesisH0 and the lawX under PH1,n corresponds the alternative hypothesis
H1,n. Since g is positive on R, the measures PH0,n , PH1,n and λ are equivalent on (Ωn,An).
From (9.4.32), we deduce that

dPH1,n

dPH0,n

=
dPH1,n/dλ

dPH0,n/dλ
=
∏n
i=1 g(Xi |θn,κ)∏n
i=1 g(Xi |θ0,κ) =

∏n
i=1 f(Yi |θn)∏n
i=1 f(Yi |θ0) , (9.4.33)

where Yi $ (Xi − µ)/σ.

Using a second-order Taylor expansion around θ0, we have, under H0 : Xi ∼
APD(θ0,κ),

log
(
dPH1,n

dPH0,n

)
=

n∑
i=1

(log f(Yi |θn)− log f(Yi |θ0))

= (1 + o(1)) δ> 1√
n

n∑
i=1
dθ(Yi)

+ (1 + o(1))2 δ>
∫ 1

0

∫ 1

0
v

1
n

n∑
i=1

∂2

∂θ2 log f(Yi | tn,u,v)dudv δ,

(9.4.34)

where tn,u,v $ θ0 + uv(θn − θ0). From the convergence of the first two components in
(9.3.4), we know that, as n→∞,

(1 + o(1)) δ> 1√
n

n∑
i=1
dθ(Yi)

PH0,n N (0, δ>Jθθ δ). (9.4.35)
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For the second term on the right-hand side of (9.4.34), we want to apply a standard uniform
law of large numbers (Lemma 9.2.1). From the expression of f(y | t) in (9.1.1), we see that
for each (j, k) ∈ {1, 2}2, the function Uj,k(y, t) $ ∂2

∂θj∂θk
log f(y | t) satisfies:

(A.1): For all y ∈ R, t 7→ Uj,k(y, t) is continuous on the compact C $ [1
4 ,

3
4 ]× [λ2 ,

3λ
2 ];

(A.2): There exists a finite polynomial K : R→ R such that |Uj,k(y, t)| ≤ K(|y|) for
all (y, t) ∈ R× C (which implies that K(|y|) is integrable under f(y |θ0)dy).

Take N ∈ N large enough that θn ∈ C for all n ≥ N . By Jensen’s inequality and Lemma
9.2.1 (under H0), we deduce that∣∣∣∣∣

∫ 1

0

∫ 1

0
v

1
n

n∑
i=1

Uj,k(Yi, tn,u,v)dudv −
∫ 1

0

∫ 1

0
v

1
n

n∑
i=1

U j,k(θ0)dudv
∣∣∣∣∣

≤
∫ 1

0

∫ 1

0
v

1
n

n∑
i=1

∣∣∣Uj,k(Yi, tn,u,v)− U j,k(θ0)
∣∣∣ dudv

≤ 1
2 sup
t∈B‖θn−θ0‖2 [θ0]

1
n

n∑
i=1

∣∣∣Uj,k(Yi, t)− U j,k(θ0)
∣∣∣ PH0,n−→ 0.

(9.4.36)

By definition of the matrix J in (9.3.4), note that U j,k(θ0) = −Jθjθk (this can be seen by
integrating by parts). Hence, (9.4.36) shows that the second term on the right-hand side of
(9.4.34) is equal to −1

2δ
>Jθθ δ + oPH0,n

(1). We deduce that

log
(
dPH1,n

dPH0,n

)
PH0,n N (−1

2δ
>Jθθ δ, δ

>Jθθ δ). (9.4.37)

Define a random variable V > 0 such that log(V )
PH0,n∼ N (−1

2δ
>Jθθ δ, δ

>Jθθ δ). The con-
tinuous mapping theorem implies that

dPH1,n

dPH0,n

PH0,n V. (9.4.38)

By the definition of V , we have EH0,n [V ] = 1. This shows (iii) in Lemma 9.4.1 with
Pn = PH0,n and Qn = PH1,n , which implies PH1,nC PH0,n by (i). Define U $ V and note that
PH0,n(U > 0) = 1 by definition of V . This shows (ii) in Lemma 9.4.1 where the roles of Pn
and Qn have been interchanged, which implies PH0,nC PH1,n by (i). We conclude that the
sequences (PH0,n , n ∈ N) and (PH1,n , n ∈ N) are mutually contiguous, which we denote by
PH0,nCBPH1,n . The conclusion follows from (iv). �
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Proof of Proposition 9.3.7. From the expressions that we found for the two terms on
the right-hand side of (9.4.34) in the proof of Proposition 9.3.5, we have

1√
n

∑n
i=1 dθ(Yi)

1√
n

∑n
i=1 dκ(Yi)

log
(
dPH1,n
dPH0,n

)

 =


02

02

−1
2δ
>Jθθ δ + oPH0,n

(1)

+


1√
n

∑n
i=1 dθ(Yi)

1√
n

∑n
i=1 dκ(Yi)

(1 + o(1)) δ> 1√
n

∑n
i=1 dθ(Yi)

 ,

where 02 $ (0, 0)>. By the central limit theorem (see the definition of J in Proposition
9.3.1), we obtain that, under H0,

1√
n

∑n
i=1 dθ(Yi)

1√
n

∑n
i=1 dκ(Yi)

log
(
dPH1,n
dPH0,n

)


PH0 N5




02

02

−1
2δ
>Jθθ δ

 ;


Jθθ Jθκ Jθθδ

Jθκ Jκκ Jθκδ

δ>Jθθ δ>Jθκ δ>Jθθδ



 .

Then, by Le Cam’s third lemma,
1√
n

∑n
i=1 dθ(Yi)

1√
n

∑n
i=1 dκ(Yi)

 PH1,n N4


Jθθδ
Jθκδ

 ;

Jθθ Jθκ

Jθκ Jκκ


 .

This ends the proof. �

9.5. Appendix

Lemma 9.5.1. Let X1, X2, X3, . . . be a sequence of i.i.d. random variables such that X1 ∼
APD(θ0,κ), where λ = 1, µ ∈ R and σ > 0, i.e. the density of X1 is given by

fX1(x) $ 1
4σe

− 1
2 |x−µσ |, x ∈ R. (9.5.1)

Define H : R\{0} → R by

H(y) $ sign(y)(log |y|+ 1). (9.5.2)

Let {µ̂n}n∈N and {σ̂n}n∈N be the sequences of maximum likelihood estimators found in

(9.2.11) for λ = 1:

µ̂n $ median(X1, X2, . . . , Xn) and σ̂n = 1
n

n∑
i=1

1
2 |Xi − µ̂n|. (9.5.3)
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The median is defined in (9.2.12). For v ∈ [0, 1], let µ?n,v $ µ + v(µ̂n − µ) and σ?n,v $
σ + v(σ̂n − σ). Then,

lim
n→∞ sup

v∈[0,1]
E
∣∣∣∣∣ 1n

n∑
i=1

1{Xi 6=µ?n,v}H
(Xi − µ?n,v

σ?n,v

)
− E

[
H
(
X1 − µ
σ

)]∣∣∣∣∣ = 0. (9.5.4)

Proof. Without loss of generality, assume that µ = 0. Since σ > 0 and σ̂n > 0 a.s., we
have σ?n,v > 0 a.s. for any v ∈ [0, 1], which implies that the factors σ?n,v and σ in the sign
function of H are irrelevant. Also, fX1 is symmetric, so E[sign(X1)] = 0. Combining these
facts together, the supremum in (9.5.4) is bounded from above by

(c) + (d) $ sup
v∈[0,1]

E
∣∣∣∣∣ 1n

n∑
i=1

1{Xi 6=µ?n,v}h(Xi − µ?n,v)− E
[
h(X1)

]∣∣∣∣∣
+ sup

v∈[0,1]
E
∣∣∣∣∣(1− log σ?n,v

)
· 1
n

n∑
i=1

1{Xi 6=µ?n,v}sign(Xi − µ?n,v)
∣∣∣∣∣,

(9.5.5)

where h(y) $ sign(y) log |y|. By Lemma 3.1 in Lafaye de Micheaux and Ouimet (2018), we
have (c)→ 0.

It remains to prove that (d)→ 0 in (9.5.5). By the Cauchy-Schwarz inequality,

(d)2 ≤ E
[

sup
v∈[0,1]

(
1− log σ?n,v

)2
]
· E
[

sup
v∈[0,1]

( 1
n

n∑
i=1

1{Xi 6=µ?n,v}sign(Xi − µ?n,v)
)2
]

$ (d.1) · (d.2).
(9.5.6)

We show that (d.1) is bounded and (d.2) tends to zero as n→∞. We start with (d.2). For
every ω ∈ Ω, the function

v 7→ 1
n

n∑
i=1

1{Xi(ω) 6=µ?n,v(ω)}sign(Xi(ω)− µ?n,v(ω)) (9.5.7)

is monotone and equal to 0 at v = 1 (by definition of µ̂n, recall (9.2.10)). Therefore, for each
ω ∈ Ω, the supremum of the square in (d.2) is always attained at v = 0. We deduce that

(d.2) = E
[( 1
n

n∑
i=1

1{Xi 6=0}sign(Xi)
)2
]
−→ 0, n→∞, (9.5.8)

by law of large numbers in L2 (E[1{X1 6=0}sign(X1)] = 0 and the sequence of averages is
uniformly bounded).
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Now we show that (d.1) is bounded. By successively using the inequality (α − β)2 ≤
2α2 + 2β2, the fact that z 7→ (log z)2 always maximizes at one of the two end points on any
closed sub-interval of (0,∞), and the inequality max{a, b} ≤ a+ b for a, b ≥ 0, we have

(d.1) ≤ E
[

sup
v∈[0,1]

2 + 2 (log σ?n,v)2
]
≤ 2 + 2 (log σ)2 + 2E

[
(log σ̂n)2

]
. (9.5.9)

It remains to show that E[(log σ̂n)2] < ∞. Since σ̂n is a mean of integrable terms (see
(9.5.3)), we expect, at least heuristically (because of large deviations), that, as n→∞, its
density concentrates more and more around σ and decays exponentially faster and faster in
the right tail. The specific form of the density of σ̂n is given in Equation (32) of Karst and
Polowy (1963) and confirms the intuition. For N ∈ N large enough (depending on σ), there
exists λσ > 0 small enough that, for all n ≥ N ,

E
[
(log σ̂n)2

]
=
∫

(0,σ/2)∪(σ/2,(3σ/2)∨1)∪((3σ/2)∨1,∞)
(log s)2 · fσ̂n(s)ds

≤
∫ σ/2

0
(log(s))2 · 1 ds︸ ︷︷ ︸

< ∞

+Mσ

∫ (3σ/2)∨1

σ/2
fσ̂n(s)ds︸ ︷︷ ︸

≤ 1

+
∫ ∞

(3σ/2)∨1
s · e−λσsds︸ ︷︷ ︸
< ∞

<∞, (9.5.10)

where a∨b $ max{a, b} andMσ $ maxs∈[σ/2,(3σ/2)∨1](log s)2 <∞. This ends the proof. �

Notation

$ A definition or an equality that holds by definition

1d The d-dimensional vector (1, 1, . . . , 1)>

Id The identity matrix of order d

Nd( · , · ) A d-dimensional normal distribution
P Convergence in law under the measure P
P−→ Convergence in probability under the measure P
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PH0 Measure P conditional on the hypothesis H0

PH1 Measure P conditional on the hypothesis H1

χ2
2 Chi-square distribution with 2 degrees of freedom

χ2
2(γ) χ2

2 distribution with noncentrality parameter γ ∈ R
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Conclusion





10.1. Conjectures

Here is a partial list of conjectures that could be reachable with some effort. It should be
possible to prove (or disprove) them by following/extending some of the strategies presented
in this thesis and/or the references on which it is based.

Conjecture 10.1.1 (Limiting two-overlap distribution for the Riemann zeta function).
Let θ > −1 be given. For h, h′ ∈ I $ [− logθ T, logθ T ], define the overlaps by

ρ(h, h′) $
E
[

log |ζ(1
2 + iτ + ih)| log |ζ(1

2 + iτ + ih′)|
]

√
E
[
(log |ζ(1

2 + iτ + ih)|)2
]√

E
[
(log |ζ(1

2 + iτ + ih′)|)2
] , (10.1.1)

where τ ∼ Uniform(T, 2T ) under P. For β > 0, define the Gibbs measure by

Gβ,T (A) $
∫
A

|ζ(1
2 + iτ + ih)|β∫

I |ζ(1
2 + iτ + ih′)|βdh′dh, A ∈ B(I), (10.1.2)

where B(I) denotes the Borel σ-algebra on I. For

βc(θ) $
 2, if θ ≤ 0,

2
√

1 + θ, if θ > 0,
(10.1.3)

and any Borel set A ∈ B(R), we have

lim
T→∞

EG×2
β,T

[
1{ρ(h,h′)∈A}

]
=


δ|0∧θ|(A), if β ≤ βc(θ),
βc(θ)
β
δ|0∧θ|(A) +

(
1− βc(θ)

β

)
δ1(A), if β > βc(θ).

(10.1.4)

To state the second conjecture, recall the definition of a Poisson-Dirichlet variable. For
any λ ∈ (0, 1), let η $ (ηk)k∈N denote the atoms of a Poisson point process on (0,∞) with
intensity t 7→ λt−λ−1. A Poisson-Dirichlet variable ξ $ (ξk)k∈N of parameter λ is a random
variable on the space of decreasing weights,{

(x1, x2, . . . ) ∈ [0, 1]N : 1 ≥ x1 ≥ x2 ≥ · · · ≥ 0 and
∞∑
k=1

xk = 1
}
, (10.1.5)

which has the same law as (
ηk∑∞
j=1 ηj

, k ∈ N
)
↓
, (10.1.6)

where ↓ stands for the decreasing rearrangement.
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Conjecture 10.1.2 (Limiting joint distribution of the overlaps for the Riemann zeta func-
tion). Let θ > −1 and β > 0 be given, and let ξ = (ξk)k∈N be a Poisson-Dirichlet variable

of parameter βc(θ)/β. Denote by E the expectation with respect to ξ. Then, for any n ∈ N

and any continuous function ψ : [|θ ∧ 0|, 1]n(n−1)/2 → R of the overlaps of n points,

lim
T→∞

EG×nβ,N
[
ψ
(
(ρ(h`, h`′))1≤`,`′≤n

)]

=


ψ
(
|0 ∧ θ|Jn + (1− |0 ∧ θ|)Idn

)
, if β ≤ βc(θ),

E
[∑

k1,...,kn∈N ξk1 . . . ξkn ψ
((
|0 ∧ θ|+ (1− |0 ∧ θ|)1{k`=k`′}

)
1≤`,`′≤n

)]
, if β > βc(θ),

where Jn denotes the n× n matrix of 1’s and Idn denotes the n× n identity matrix.

When θ ≤ 0, the field (log |ζ(1
2 + iτ + ih)|, |h| ≤ logθ T ) behaves approximately like

a BRW with log1+θ T Gaussian r.v.s of variance 1+θ
2 log log T , attached to each branch.

When θ > 0, the field behaves approximately like a collection of logθ T nearly independent
Gaussian BRWs where each r.v. has variance 1

2 log log T , or equivalently, as an appropriately
scaled 2-levels IBRW where σ1 = 0. The following conjecture should hold.

Conjecture 10.1.3 (Second order of the maximum for the Riemann zeta function). Using
the notation from Article 6 and the definition of βc(θ) from (10.1.3),

lim
T→∞

max|h|≤logθ T log |ζ(1
2 + iτ + ih)| −m(θ) log log T

log log log T =
−

3
2βc(θ) , if θ ≤ 0,
− 1

2βc(θ) , if θ > 0,

where τ ∼ Uniform(T, 2T ) under P and the convergence holds in P-probability.

The following is analogous to the tightness of the recentered maximum that Chhaibi
et al. (2018) proved in the context of log-characteristic polynomials of the CUE field.

Conjecture 10.1.4 (Tightness of the recentered maximum for the randomized Riemann
zeta function). Using the notation from Article 5, for any ε > 0, there exists K = K(ε) > 0
large enough that

P
(∣∣∣∣ max

h∈[0,1]
X(h)− (log log T − 3

4 log log T )
∣∣∣∣ > K

)
< ε, (10.1.7)

for all T ≥ 2.
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10.2. List of open problems

In this section, I give a partial list of (reasonable) open problems of interest for which I
do not have a precise mathematical statement.

(1) Can we find a good model for the large values of t 7→ d
dt

log |ζ(1
2 + it)| in the sense of

Proposition 1 in Harper (2013) ? If so, can the results from Arguin et al. (2017b),
Arguin and Tai (2018) and Articles 4 - 6 be extended to this random model ? What
about the logarithmic derivatives of higher order ?

(2) Are the large values of log |ζ(1
2 + iτ)| and d

dt
log |ζ(1

2 + it)|
∣∣∣
t=τ

approximately inde-
pendent in some sense under P ? Can we split the joint characteristic function ?

(3) Find the asymptotic properties (bias, variance, mean squared error, integratedmean
squared error, asymptotic normality) of the Bernstein estimator of the density func-
tion and the c.d.f. (respectively) on the d-dimensional simplex.
Hint : Partial answers can be found in Tenbusch (1994) for the two-dimensional
simplex. Also, reading Belalia (2016) may be useful since the Bernstein estimator
of the c.d.f. on the general hypercube is treated. An idea that might be fruitful is
to generalize the continuity correction result of Cressie (1978) to multinomial dis-
tributions (this alone is worth investigating) and generalize some of the calculations
in the appendix of Leblanc (2012) to the d-dimensional simplex.

(4) If we look at the product of Gibbs measures sampling at different temperatures as
in Kurkova (2003) and Pain and Zindy (2018), how does the mean overlap of the
GREM compares with the mean overlap of the variable speed BBM of Bovier and
Hartung (2014, 2015, 2019) or the mean overlap of the IGFF from Articles 1 - 2 ?
Can we find an explicit expression for the mean overlap of the REM or the GREM ?

(5) What can we say about the complex moments of the Riemann zeta function ? Can
we prove the analogue of Theorem 1.2 in Hartung and Klimovsky (2018) ?

(6) Can the results of Arguin et al. (2019c) (Article 6) be used in any way to make
progress towards Karatsuba’s conjectures listed in Feng (2004) ?
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10.3. Errata for the published articles

• Ouimet, F. (2017). Geometry of the Gibbs measure for the discrete 2D Gaussian free
field with scale-dependent variance. ALEA, Lat. Am. J. Probab. Math. Stat. 14,
no. 2, 851-902.

The corrections are (they all stem from the first point) :
— On the second line of (B.35) and the second line of (B.55), replace

β(σ̄u,j? − β
4 σ̄

2
j?) by βσ̄u,j? −

(
1 + β2σ̄2

j?

4

)
.

— The previous correction implies that on the second and third line of (B.35), the
second line of (B.47), the third and fourth line of (B.55), and the second line of
(B.64), we should replace βσ̄j?(1− β

4 σ̄j?) by −(1− β
2 σ̄j?)

2.
— The previous correction then implies that the left and right derivatives coincide

in (B.38), (B.49), (B.58) and (B.66), since the right derivatives are equal to

βσi? (α′−α)
σ̄j?

instead of +∞.

— Lemma B.4 : As a consequence of the corrections above, the left and right
derivatives coincide for all β > 0 and thus Lemma B.4 is valid for all β > 0.

— Remark 6.3 : As a consequence of Lemma B.4 being valid for all β > 0, all the
results of the article are valid for all β > 0. Remark 6.3 can thus be removed.

• Ouimet, F. (2018). Poisson-Dirichlet statistics for the extremes of a randomized
Riemann zeta function. Electron. Commun. Probab. 23, no. 46, 1-15.

The corrections are :
— (3.1) : G×∞β,T instead of Gβ,T ;
— (3.2) : G×2

β,T instead of Gβ,T ;
— Lemma 5.2 : The condition should be

max1≤j≤s
{
‖∂2

zj
F‖∞ ∨ ‖∂2

zj
F‖∞ ∨ ‖∂zj∂zjF‖∞ ∨ ‖∂zj∂zjF‖∞

}
≤M ;

— (5.20), (5.27) and (5.28) : ωp(hj) instead of ω(hj) in some places;
— (5.29) : (z, z) instead of (z, z).
— p.13 line -8: The condition 0 < α < 1 should be removed.
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Appendix





11.1. Two useful lemmas

We present here two well-known lemmas that we use in the Introduction (Part 0) and
in some of the articles in Part 1 and Part 2.

The first lemma bounds the probability that a Gaussian r.v. is larger than a fixed t > 0.
The estimates are precise when t is large.

Lemma 11.1.1 (Gaussian tail estimates, see e.g. page 9 in Adler and Taylor (2007)). Let
ξ ∼ N (0, σ2) where σ > 0. Then, for all t > 0,

σ

t

(
1− σ2

t2

)
ϕ
(
t

σ

)
≤ P(ξ ≥ t) ≤ σ

t
ϕ
(
t

σ

)
, (11.1.1)

where ϕ denotes the standard Gaussian density function.

Proof. After making the change of variable z = t
σ
, it suffices to prove that, for all z > 0,

1
z

(
1− 1

z2

)
ϕ(z) ≤ Ψ(z) ≤ 1

z
ϕ(z), (11.1.2)

where Z $ ξ
σ
∼ N (0, 1) and Ψ(z) $ P(Z ≥ z). By integrating by parts,

0 ≤
∫ ∞
z

1
y2ϕ(y)dy = 1

z
ϕ(z) +

∫ ∞
z

1
y
ϕ′(y)dy

= 1
z
ϕ(z)−Ψ(z),

(11.1.3)

since 1
y
ϕ′(y) = −ϕ(y). This shows the upper bound in (11.1.2). Similarly,

0 ≤
∫ ∞
z

3
y4ϕ(y)dy = 1

z3ϕ(z) +
∫ ∞
z

1
y3ϕ

′(y)dy

= 1
z3ϕ(z)− 1

z
ϕ(z) + Ψ(z),

(11.1.4)

from (11.1.3) and the fact that 1
y3ϕ

′(y) = − 1
y2ϕ(y). This shows the lower bound in (11.1.2).

This ends the proof. �

The second lemma is derived from the Cauchy-Schwarz inequality. Its purpose is to find
lower bounds on the probability that a non-negative r.v. is larger than its expectation by a
multiplicative factor θ between 0 and 1. The inequality is recurrent in the applications of
second-moment methods, and also complements nicely Chebyshev’s inequality.
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Lemma 11.1.2 (Paley-Zygmund inequality, see Paley and Zygmund (1932)). Let X be a

non-negative r.v. that satisfies P(X > 0) > 0 and E[X2] <∞. Then, for all θ ∈ [0, 1],

P(X ≥ θE[X]) ≥ (1− θ)2 (E[X])2

E[X2] . (11.1.5)

Proof. Since E
[
X1{X<θ E[X]}

]
≤ θE[X], then

(1− θ)E[X] ≤ E[X]− E
[
X1{X<θ E[X]}

]
= E

[
X1{X≥θ E[X]}

]
. (11.1.6)

By taking the square on each side of the inequality and by applying the Cauchy-Schwarz
inequality on the right-hand side, we find

(1− θ)2(E[X])2 ≤
(
E
[
X1{X≥θ E[X]}

])2 ≤ E
[
X2
]
P(X ≥ θE[X]) . (11.1.7)

This ends the proof. �

11.2. Codes for the simulations

In this section, the reader can find the codes that I wrote to simulate the log-correlated
random fields presented in Section 0.3.3 of the Introduction.

11.2.1. Matlab

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% REM simulation %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

n = 6; N = 2^n;
M = vertcat(zeros(1,N),cumsum(normrnd(0,1,n,N)));
h = figure;
plot((0:n)’,M);
saveas(h,’REM’,’jpg’);

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% GREM simulation %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

n1 = 3; N1 = 2^n1;
n = 6; N = 2^n;
sigma1 = 1; sigma2 = 10;
M1 = cumsum(normrnd(0,sigma1,n1,N));
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M = vertcat(zeros(1,N),M1,M1+cumsum(normrnd(0,sigma2,n-n1,N)));
for k = 1:N1

M(2:(n1+1),(1+((k-1)*N/N1)):(k*N/N1)) = ...
repmat(M(2:(n1+1),k*N/N1),1,N/N1);

end
h = figure;
plot((0:n)’,M);
saveas(h,’GREM’,’jpg’);

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% BRW simulation %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

n = 6; N = 2^n;
M = zeros(n+1,N);

for i=1:n
Ni = 2^i;
g = normrnd(0,1,1,Ni);
for k=1:Ni

M(i+1,(1+(k-1)*N/Ni):(k*N/Ni)) = ...
M(i,(1+(k-1)*N/Ni):(k*N/Ni)) + repmat(g(k),1,N/Ni);

end
end
h = figure;
plot((0:n)’,M);
saveas(h,’BRW’,’jpg’);

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% IBRW simulation %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

n = 6; N = 2^n;
M = zeros(n+1,N);
sigma1 = 1; sigma2 = 10;

for i=1:n
sigma = sigma1*(i <= n/2) + sigma2*(i > n/2);
Ni = 2^i;
g = normrnd(0,sigma,1,Ni);
for k=1:Ni

M(i+1,(1+(k-1)*N/Ni):(k*N/Ni)) = ...
M(i,(1+(k-1)*N/Ni):(k*N/Ni)) + repmat(g(k),1,N/Ni);

end
end
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h = figure;
plot((0:n)’,M);
saveas(h,’IBRW’,’jpg’);

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% BBM simulation (conditioned on having 64 leaves) %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

verif = 0;

while(verif == 0)
T = 6;
n = T*1000;
pas = T/n;
num = 1;
time = 0;
B = zeros(n+1,64);
count = 1;

while(count < n + 1)
E = exprnd(1/(log(2)*num),1,1);
time_old = time;
while((time < time_old + E) && (count < n + 1))

for j = 1:num
B(count + 1,j) = B(count,j) + normrnd(0,sqrt(pas),1,1);

end
count = count + 1;
time = time + pas;

end
r = randi([1,num],1,1);
num = num + 1;
if(num > 64)

break;
end
B(:,num) = B(:,r);

end
if(num == 64)

verif = 1;
end

end

h = figure;
plot((0:pas:T)’,B(:,1:num));
saveas(h,’BBM’,’jpg’);
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%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% VSBBM simulation (conditioned on having 64 leaves) %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

verif = 0;

while(verif == 0)
T = 6;
n = T*1000;
pas = T/n;
num = 1;
time = 0;
B = zeros(n+1,64);
count = 1;
sigma1 = 1; sigma2 = 10;

while(count < n + 1)
E = exprnd(1/(log(2)*num),1,1);
time_old = time;
while((time < time_old + E) && (count < n + 1))

sigma = sigma1*(count <= n/2) + sigma2*(count > n/2);
for j = 1:num

B(count + 1,j) = ...
B(count,j) + normrnd(0,sigma*sqrt(pas),1,1);

end
count = count + 1;
time = time + pas;

end
r = randi([1,num],1,1);
num = num + 1;
if(num > 64)

break;
end
B(:,num) = B(:,r);

end
if(num == 64)

verif = 1;
end

end

h = figure;
plot((0:pas:T)’,B(:,1:num));
saveas(h,’VSBBM’,’jpg’);
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11.2.2. Mathematica

(*GFF and IGFF simulation*)

sim = 1000; n = 32;
sigma1 = 40; sigma2 = 1;
F = Re[Fourier[Table[(InverseErf[2 Random[] - 1]

+ I InverseErf[2 Random[] - 1])*
If[j + k == 2, 0, 1/Sqrt[(Sin[(j - 1)*Pi/n]^2

+ Sin[(k - 1)*Pi/n]^2)]], {j, n}, {k, n}]]];
G = ConstantArray[0, {n, n}];
For[k = 1, k <= n, k++,

For[l = 1, l <= n, l++,
val = ConstantArray[0, sim];
For[m = 1, m <= sim, m++,
pos = {k, l};
While[(pos[[1]] != 1) && (pos[[1]] != n)

&& (pos[[2]] != 1) && (pos[[2]] != n),
pos = pos + Flatten[

RandomSample[{{1,0}, {-1,0}, {0,1}, {0,-1}}, 1]];
];

val[[m]] = F[[pos[[1]], pos[[2]]]];
];

G[[k, l]] = Mean[val];
];

];
GFF = F - G; ListPlot3D[GFF]

dist = 4;
GFF1 = ConstantArray[0, {n, n}];
For[k = 1, k <= n, k++,

For[l = 1, l <= n, l++,
val = ConstantArray[0, sim];
For[m = 1, m <= sim, m++,
pos = {k, l};
While[(pos[[1]] != Max[1,k-dist]) && (pos[[1]] != Min[n,k+dist])

&& (pos[[2]] != Max[1,l-dist]) && (pos[[2]] != Min[n,l+dist]),
pos = pos + Flatten[

RandomSample[{{1,0}, {-1,0}, {0,1}, {0,-1}}, 1]];
];

val[[m]] = GFF[[pos[[1]], pos[[2]]]];
];

GFF1[[k, l]] = Mean[val];
];

];
IGFF = sigma2*(GFF - GFF1) + sigma1*GFF1; ListPlot3D[IGFF]
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(*MM simulation*)
n = 128;
F = Re[Fourier[Table[(InverseErf[2 Random[] - 1]

+ I InverseErf[2 Random[] - 1])*
If[j + k == 2, 0, 1/(Sin[(j - 1)*Pi/n]^2

+ Sin[(k - 1)*Pi/n]^2)], {j, n}, {k, n}]]];
ListPlot3D[F]

(*RLM-RZF simulation*)
PT = 100000;
list = Prime[Range[PT]];
unif = RandomReal[{0, 2*Pi}, PT];
Plot[Sum[Re[E^(I*(unif[[k]] - h*Log[list[[k]]]))/Sqrt[list[[k]]]],

{k,1,PT}], {h,0,2*Pi}, PlotRange -> {-6,6}, AxesOrigin -> {0,-6}]

(*LM-RZF simulation*)
T = 100000;
Plot[Re[Log[Zeta[1/2 + I*(RandomReal[{T,2T}] + h)]]], {h,0,2*Pi},

PlotRange -> {-6,6}, AxesOrigin -> {0,-6}]

(*LCP-CUE simulation*)
n = 2^10;
CUE = RandomVariate[CircularUnitaryMatrixDistribution[n]];
II = IdentityMatrix[n];
Plot[Re[Log[Det[E^(I*h)*II - CUE]]], {h,0,2*Pi},

PlotRange -> {-6,6}, AxesOrigin -> {0,-6}]
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