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RÉSUMÉ

Cette recherche a pour objet l’étude de la détection de changements temporels

entre deux (ou plusieurs) images satellitaires multimodales, i.e., avec deux modalités

d’imagerie différentes acquises par deux capteurs hétérogènes donnant pour la même

scène deux images encodées différemment suivant la nature du capteur utilisé pour

chacune des prises de vues. Les deux (ou multiples) images satellitaires multimodales

sont prises et co-enregistrées à deux dates différentes, avant et après un évènement.

Dans le cadre de cette étude, nous proposons des nouveaux modèles de détection

de changement en imagerie satellitaire multimodale semi ou non supervisés. Comme

première contribution, nous présentons un nouveau scénario de contraintes exprimé

sur chaque paire de pixels existant dans l’image avant et après changement. Une

deuxième contribution de notre travail consiste à proposer un opérateur de gradi-

ent textural spatio-temporel exprimé avec des normes complémentaires ainsi qu’une

nouvelle stratégie de dé-bruitage de la carte de différence issue de cet opérateur.

Une autre contribution consiste à construire un champ d’observation à partir d’une

modélisation par paires de pixels et proposer une solution au sens du maximum

a posteriori. Une quatrième contribution est proposée et consiste à construire un

espace commun de caractéristiques pour les deux images hétérogènes. Notre cin-

quième contribution réside dans la modélisation des zones de changement comme

étant des anomalies et sur l’analyse des erreurs de reconstruction dont nous proposons

d’apprendre un modèle non-supervisé à partir d’une base d’apprentissage constituée

seulement de zones de non-changement afin que le modèle reconstruit les motifs de

non-changement avec une faible erreur. Dans la dernière contribution, nous proposons

une architecture d’apprentissage par paires de pixels basée sur un réseau CNN pseudo-



siamois qui prend en entrée une paire de données au lieu d’une seule donnée et est

constituée de deux flux de réseau (descripteur) CNN parallèles et partiellement non-

couplés suivis d’un réseau de décision qui comprend de couche de fusion et une couche

de classification au sens du critère d’entropie. Les modèles proposés s’avèrent assez

flexibles pour être utilisés efficacement dans le cas des données-images monomodales.

Mots clés: Images satellitaires multimodales ou hétérogènes, optique,

radar, Fastmap, deep learning, auto-encodeur, sparse, détection de change-

ment, paires de pixels, réseau de neurones convolutionnel, opérateur in-

variant, détection d’anomalies.



ABSTRACT

The purpose of this research is to study the detection of temporal changes be-

tween two (or more) multimodal images satellites, i.e., between two different imaging

modalities acquired by two heterogeneous sensors, giving for the same scene two im-

ages encoded differently and depending on the nature of the sensor used for each

acquisition. The two (or multiple) multimodal satellite images are acquired and co-

registered at two different dates, usually before and after an event.

In this study, we propose new models belonging to different categories of multimodal

change detection in remote sensing imagery. As a first contribution, we present a new

constraint scenario expressed on every pair of pixels existing in the before and after

image change. A second contribution of our work is to propose a spatio-temporal tex-

tural gradient operator expressed with complementary norms and also a new filtering

strategy of the difference map resulting from this operator. Another contribution

consists in constructing an observation field from a pair of pixels and to infer a solu-

tion maximum a posteriori sense. A fourth contribution is proposed which consists

to build a common feature space for the two heterogeneous images. Our fifth contri-

bution lies in the modeling of patterns of change by anomalies and on the analysis

of reconstruction errors which we propose to learn a non-supervised model from a

training base consisting only of patterns of no-change in order that the built model

reconstruct the normal patterns (non-changes) with a small reconstruction error. In

the sixth contribution, we propose a pairwise learning architecture based on a pseudo-

siamese CNN network that takes as input a pair of data instead of a single data and

constitutes two partly uncoupled CNN parallel network streams (descriptors) followed

by a decision network that includes fusion layers and a loss layer in the sense of the



entropy criterion.

The proposed models are enough flexible to be used effectively in the monomodal

change detection case.

Index terms: Multimodal satellite images, heterogeneous images, optical, radar,

Fastmap, deep learning, autoencoder, sparse, change detection, pairwise pixels, con-

volutional neural networks, invariant operator, anomaly detection.
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d’avoir soutenu ce projet de recherche, particulièrement, mon superviseur Mohamed

Dahmane, chercheur dans l’équipe d’imagerie et vision du (CRIM), pour sa bienveil-

lance au sein de l’équipe de vision, pour tout le temps consacré et son investissement
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Chapitre 1

INTRODUCTION GÉNÉRALE

1.1 Introduction

En télédétection spatiale, la détection de changement est un traitement numérique

dont le but est d’analyser deux ou plusieurs images (acquises par des capteurs em-

barqués sur des plates-formes satellites) de la même zone géographique mais à différentes

dates, afin de localiser et quantifier (automatiquement) les changements existant entre

ces images [65] [88].

Ce traitement est très utile et a été particulièrement étudié pour différentes appli-

cations en télédétection ou en science géographique, notamment ces dernières années

pour des problèmes liés au réchauffement climatique, à la déforestation, à l’évaluation

des catastrophes naturelles (inondation, tsunamis, tremblement de terre, feux de

forêts, etc.), pour la gestion des ressources naturelles, l’analyse du développement ur-

bain, le suivi agricole ou pour des applications militaires, pour ne citer que quelques

unes des applications potentielles.

En fait, la télédétection (spatiale) est l’ensemble des techniques qui permettent,

par l’acquisition d’images, d’obtenir de l’information sur la surface de la Terre (y

compris l’atmosphère et les océans), sans contact direct avec celle-ci. Actuellement,

ces images de télédétection peuvent être produites par deux types de capteurs ou de

satellite différents [87]. Le premier type de capteur est le capteur passif qui permet

d’acquérir des images optiques ou infrarouge thermique. Leur principe général est de

déceler la lumière du jour (soleil) réfléchie par les objets de la scène dans le cas des

images optiques ou l’énergie dégagée naturellement, i.e., l’infrarouge thermique, par
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ces objets (ce type d’image peut donc être enregistrée le jour ou la nuit). Un autre

type de capteur, dit actif, est celui qui incorpore un émetteur qui irradie la scène

(i.e., envoie lui-même des ondes électromagnétiques grâce à une antenne dans le cas

d’un instrument actif radar qui permet de générer des images SAR) puis capture

les ondes réfléchies sur la surface au sol pour générer des images [87]. Les capteurs

actifs sont utilisés pour examiner les longueurs d’onde qui ne sont pas produites par

le soleil, par exemple les hyperfréquences. Le fluoromètre laser et radar à synthèse

d’ouverture (SAR) sont des exemples de capteurs actifs. Les images satellitaires

sont souvent dégradées par deux différents types de bruits; bruit additif Gaussien ou

multiplicatif pour les images optiques et un bruit multiplicatif de speckle pour les

images SAR ou les images données par d’autres capteurs actifs.

Dans le domaine de la détection de changement, deux images de la même zone

géographique prises à deux dates différentes peuvent être capturées dans un premier

cas par le même satellite sous les mêmes conditions, on parle alors d’images mono-

modales et de détection de changement mono-modal [48] [32].

Dans l’autre cas, les images sont dites multi-modales et peuvent être classées

généralement en trois catégories [65] [88] [15] [14]: les images multi-sources pro-

duites par la combinaison d’une image SAR avec une image optique ou plus généralement

une image acquise par un capteur passif et l’autre actif (ou vice-versa). Les images

multi-senseurs résultant de la combinaison de deux images optiques ou deux im-

ages SAR acquises par deux capteurs différents ou avec le même capteur mais avec

différentes spécifications, et enfin les images SAR multi-looking produites par

la combinaison de deux images SAR dont l’image avant est une image SAR brute

et l’image après est une image SAR pré-traitée ou filtrée et exhibant ainsi différents

niveaux de bruit.

On peut noter que les algorithmes de détection de changement que l’on applique

le plus souvent en télédétection, en science géographique ou en géomatique sont aussi
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presque directement applicables en imagerie médicale pour détecter automatique-

ment (ou semi-automatiquement) les changements intervenant entre deux radiogra-

phies successives (par exemple) d’un même patient et pour l’éventuelle détection et

quantification (puis le suivi et le traitement) d’une anomalie entre ces deux images

médicales multidates. De même, on peut penser que les algorithmes de détection

de changement utilisés en télédétection seront aussi directement utilisables pour les

caméras de nouvelle génération fusionnant l’infrarouge et l’optique traditionnelle.

De nombreux travaux ont été proposés ces dernières années pour essayer de

résoudre ce problème de détection de changement mais presque uniquement dans

le cas mono-modal où les images, avant et après changement, résultaient en fait d’une

même modalité d’imagerie (par exemple deux images SAR représentant la scène avant

et après le changement dû, par exemple, par un tremblement de terre) [48] [32] [31]

[119]. Très peu de travaux ont été proposés dans le cas le plus difficile, où les deux

capteurs provenaient d’une modalité d’imagerie différente comme la combinaison en

télédétection d’une image, avant changement, optique et d’une image, après change-

ment, SAR (ou encore la combinaison d’une image radio-graphique et d’une image

écho-graphique en imagerie médicale) [65] [88].

La plupart des méthodes proposées pour résoudre ce problème de détection de

changement mono-modal (même modalité d’imagerie) se basent sur les trois étapes

classiques suivantes [48] [32]:

• Le recalage géométrique et en intensité (incluant toutes les corrections possibles)

de l’image acquise avant changement et l’image obtenue après changement.

• La comparaison (pixel par pixel) entre ces deux images recalées et corrigées.

• Enfin la classification ou segmentation de cette image de différence en deux

classes pour chaque pixel; “aucun changement” ou “changement”.
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L’étape de comparaison entre les deux images recalées dans ces méthodes repose

sur un opérateur de différence pour les méthodes utilisant des images optiques et

sur un opérateur de log-ratio (afin d’avoir une carte de différence moins bruitée, i.e

moins sensible au bruit multiplicatif) dans le cas de détection de changement entre

des images SAR, et ne s’intéresse qu’a une seule modalité d’images produite par un

capteur bien précis.

Ces approches basées sur une analyse et une classification de l’image de différence,

obtenue pixel par pixel, entre ces deux images d’entrée sont simples et inefficaces pour

des données-images issues de modalités d’imagerie différentes [88]. En effet, les im-

ages satellitaires multi-modales présentent fondamentalement des caractéristiques et

statistiques différentes et concrètement, peuvent présenter des luminances ou des tex-

tures (et donc des statistiques) très différentes pour deux identiques régions terrestres

représentées par deux modalités d’imagerie différentes.

Détecter les changements entre des images satellitaires hétérogènes a récemment

généré un intérêt croissant pour la communauté de recherche en télédétection [51,126,

127]. Cet engouement est principalement dû au fait que cette stratégie ne nous impose

aucune condition et restriction sur l’origine et les caractéristiques des données satelli-

taires acquises (avant et après un évènement). Elle nous permet donc d’exploiter, sans

restriction, l’énorme quantité de données hétérogènes que nous pouvons maintenant

obtenir à partir des différentes archives existantes incluant les nombreux types de

satellites d’observation gravitant autour de la terre ainsi que les systèmes équipés des

dernières et nouvelles technologies de détection qui seront inventés demain. Finale-

ment, ajoutons que ce domaine de recherche qui peut être aussi considéré comme la

généralisation du problème classique de détection de changement mono-modal [88],

et qui fusionne ou combine différents types de modalité d’imagerie, possiblement

complémentaire, pourrait être bénéfique pour détecter, analyser et quantifier plus

précisément le changement des surfaces terrestres ayant des propriétés complexes



5

soumises à des conditions extrêmes (par exemple, humidité, température, feu, glace,

etc.).

La détection de changement dans les images satellitaires multi-modales est un

problème de traitement d’images non trivial car cette technique a pour but de com-

biner des images possédant des statistiques très différentes, issues de capteurs physiques

possiblement très différents. Jusqu’à présent, relativement peu de travaux ont été pro-

posés dans la littérature. Néanmoins, bien que peu nombreux, ces travaux peuvent

être regroupés en cinq grandes catégories: 1- les méthodes paramétriques [14,65,88],

2- les méthodes non paramétriques [29], 3- les techniques utilisant des mesures de

similarité invariantes par modalité d’imagerie [2], 4- les techniques de projection ou

simulation permettant de transformer la paire d’images originale dans un nouvel es-

pace commun ou une nouvelle représentation (ou modalité) commune [117] et enfin

5- celles utilisant l’apprentissage machine [51].

Dans les techniques paramétriques, un ensemble (ou un mélange) de distribu-

tions multivariées ou métagaussiennes est généralement utilisé pour modéliser les

statistiques communes ou les dépendances entre les deux modalités d’imagerie et/ou

les différents types de données multi-capteurs. Dans cette catégorie, on peut citer

l’approche à base de copulas proposée dans [65]. Dans cette méthode, la dépendance

entre les deux images satellitaires dans des zones inchangées est modélisée par une

régression quantile. La régression est appliquée selon la théorie des copules et les

comparaisons fondées sur les mesures statistiques du type Kullback-Leibler pour

générer une carte de similarité qui est ensuite analysée par seuillage pour détecter

les zones de changement et de non-changement. Une approche statistique multi-

variées intéressante en deux étapes a été également proposée dans [88] [90] [89] dont

la première étape vise à estimer un modèle physique, basé sur un mélange de dis-

tributions multidimensionnelles (prenant en compte le modèle de bruit, les relations

entre les réponses des capteurs aux objets de la scène et leurs propriétés physiques),
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dont les paramètres sont estimés par l’algorithme d’espérance-maximisation (EM)

[18]. Un test statistique basé sur ce modèle permet alors d’estimer les changements.

Dans le même esprit, les auteurs de [14] proposent également d’une estimation d’un

mélange de distribution multidimensionnelle basée sur une nouvelle famille de dis-

tributions multivariées avec différents paramètres de forme et particulièrement bien

adaptée à la détection des modifications ou changements des images SAR acquises par

différents capteurs ayant différents niveaux de bruit. Le problème de ces techniques

paramétriques réside dans le fait qu’elles ont été généralement spécialement conçues

(par des types de distribution spécifiques) pour un type de paire de capteurs multi-

modal (optique/SAR dans [65] [88] [90] ou SAR avec différents niveaux de bruit [14]).

Par conséquent, ces méthodes ne sont pas toujours facilement généralisables pour une

autre paire de capteurs différents. En outre, les méthodes qui ont été proposées sont

quelquefois semi-supervisées car elles nécessitent généralement la disponibilité de deux

images associées à une zone inchangée [65] [88] [90]. Enfin, ces méthodes nécessitent

également une étape d’estimation des paramètres des lois de distribution considérées

aux sens du maximum de vraisemblance (MV) laquelle peut être complexe et coûteuse

en calcul.

Dans la catégorie des méthodes non paramétriques, on peut citer [29] qui combine

les résultats de la segmentation pré et post-événement de l’image satellitaire avec

une extension du Fuzzy C-means (FCM) exprimée dans le cadre théorique formel

des incertitudes et des fonctions de croyance. Une stratégie similaire est également

proposée dans [15]. Dans le même ordre d’idées, dans [120], les auteurs décrivent

une stratégie de pré-segmentation basée sur l’indice spectral de différence normalisée.

Les méthodes non paramétriques ont la capacité de s’adapter à une grande variété de

modalités d’imagerie différentes mais sont aussi généralement moins précises qu’un

modèle paramétrique traitant un type spécifique de multi-modalité et représenté par

une distribution particulière dont la forme est spécifiquement adaptée à ce type de
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multimodalité.

Dans la troisième famille de méthodes, utilisant des mesures de similarité invari-

antes par modalité d’imagerie, Alberga et al. [2] propose d’utiliser une technique

proche de celle utilisée pour le recalage multimodal entre différentes images. Leur

méthode est basée sur l’utilisation d’une combinaison de différentes mesures de sim-

ilarité invariantes (telles que le rapport de corrélation, l’information mutuelle, etc.)

afin d’estimer dans un premier temps, la correspondance entre les mêmes points ex-

istant dans les deux images et ensuite identifier et détecter, dans un deuxième temps

les zones de changements existants entre les deux images hétérogènes.

L’intérêt principal de cette famille de méthodes repose sur le fait qu’elle n’est

pas étroitement liée à un cadre mathématique particulier (analyse Bayésienne ou

multivariée ou réduction de dimensionnalité pour la première ou deuxième catégorie

ou analyse de régression pour la quatrième ou la cinquième catégorie). Elle est plus

flexible, mais sa simplicité et l’absence de cadre mathématique formel rend difficile

l’étude des propriétés de cette famille de méthodes et ses possibles améliorations.

La quatrième catégorie regroupe les techniques de projection ou simulation per-

mettant de transformer la paire d’images originales dans une nouvelle représentation

commune ou encore de projeter l’une des deux images dans la modalité d’imagerie as-

sociée à l’autre image, [117] propose de transformer la paire d’images originales dans

un nouvel espace commun ou une nouvelle représentation, conçue particulièrement

pour être invariant à la modalité d’imagerie et visant à mettre en évidence les change-

ments. Dans le même esprit, Volpi et al. [113] tentent de trouver des projections

jointes des images d’entrée en maximisant la corrélation entre les données projetées.

Dans [8], les auteurs proposent une méthode de détection de changement multimodal

optique/SAR pour quantifier les dommages causés, par un tremblement de terre, à

chaque maison ou bâtiment individuel. À cette fin, les paramètres de chaque bâtiment

sont tout d’abord estimés à partir de l’image optique et combinés avec les paramètres
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d’acquisition de l’image SAR post-événement pour prédire (à l’aide de simulation) la

représentation SAR du bâtiment intact. Cette image SAR simulée est ensuite com-

parée, en utilisant une mesure de similarité, à l’image SAR réelle afin de quantifier

les dommages causés à chaque bâtiment.

Finalement, dans la catégorie des méthodes d’apprentissage automatique (ma-

chine learning) les auteurs dans [66] emploient un algorithme d’apprentissage non

supervisé, appelé réseau adverse génératif (generative adversarial network) constitué

de deux réseaux dont le premier génère une carte binaire et le deuxième essaie de

discriminer entre le résultat du générateur et le résultat d’un algorithme de binarisa-

tion. Dans [51], les auteurs proposent d’entrâıner un couple de réseaux de neurones

à convolution afin de transformer l’image avant et après changement dans un espace

de caractéristiques permettant de calculer une carte de différence, ensuite d’appliquer

un algorithme de seuillage sur cette carte pour générer la carte de détection finale.

Dans la même optique que [51], les auteurs dans [127], proposent de construire un

réseau de neurones symétrique constitué d’une machine de Boltzmann restreinte [127],

dont les paramètres sont ensuite mis à jour en se basant sur le résultat de cluster-

ing. Une autre méthode basée sur un réseau autoencodeur débruiteur utilise des

caractéristiques sélectionnées de l’image de différence pour entrainer le réseau [126].

L’objectif de cette thèse est de proposer des algorithmes automatiques de détection

de changement qui pourront aussi être possiblement semi-supervisés permettant de

localiser et quantifier les changements existants entre deux images de la même zone

géographique mais acquises par des capteurs hétérogènes possiblement très différents.

De plus, on s’intéressera aux modèles de détection de changement temporels assez

flexibles pour être aussi utilisés efficacement dans le cas général (et plus simple)

des données-images mono-modales. Finalement, on s’intéressera aussi aux modèles

de détection multimodale de changements temporels qui pourront possiblement et

efficacement utiliser plus que deux images multimodales, multidates (avant et après
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changement) et qui seront consistants, au sens statistique du terme (i.e., qui devront

générer des cartes de détection de changements temporels autant plus précises et

fiables que le nombre de données-images multidates augmentera).

Plus précisément, nous proposons, dans le cadre de cette thèse, différents modèles

non supervisés ou semi-supervisés pour la détection de changement dans une série

d’images temporelles issues de différentes modalités qui s’inscrivent parmi les cinq

catégories précédentes.

• Un modèle non paramétrique de détection de changement multimodale reposant

sur une toute nouvelle modélisation utilisant toutes les paires de pixels de

l’image est présenté dans le chapitre 2. Il permet d’exprimer pour chacune

de ces paires de pixels une contrainte adaptée permettant dans un premier

temps d’estimer une image de différence qui sera robuste aux différents type de

modalité d’imagerie des deux images satellitaires avant et après changement. La

complexité quadratique de l’estimation de cette image de différence sera réduite

à une complexité linéaire grâce à une méthode d’estimation au sens des moin-

dres carrés (de la prise en compte de toutes ces contraintes) par une technique

d’optimisation qui sera adaptée de celle proposée par la technique du FastMap

de Faloutsos [26]. À cette fin, une technique originale de vote majoritaire per-

mettant de fusionner (ou combiner) plusieurs cartes de segmentations binaires

résultantes de différentes stratégies de binarisation automatique afin d’obtenir

une carte de segmentation fiable et sans supervision constitue la deuxième orig-

inalité de ce travail. Le modèle proposé est à la fois simple et efficace aussi dans

le cas de détection de changement entre des images mono-modales.

• Un nouveau modèle reposant sur un opérateur de gradient textural spatio-

temporel, invariant aux modalités d’imagerie, exprimé par des normes duales

(complémentaires) et détectant à différentes échelles, les différences (en termes

de hautes fréquences) de chaque région structurelle existant dans les deux im-
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ages satellites hétérogènes est proposé dans le chapitre 3. Cette détection de

différence donne une carte de similarité qui est ensuite dé-bruitée par un fil-

tre spatial adaptatif utilisant les régions homogènes communes préalablement

segmentées des deux images satellitaires d’entrée. Finalement, la segmentation

non supervisée en deux classes de cette carte de similarité filtrée nous permet

d’obtenir une carte de segmentation fiable contenant les zones de changement.

Le modèle proposé s’avère aussi assez flexible pour être utilisé efficacement dans

le cas de modalités d’imagerie très différentes acquises sous différentes condi-

tions, i.e., optique/radar, optique/optique, et radar/radar.

• Le chapitre 4 présente un modèle paramétrique et plus précisément une ap-

proche statistique Bayésienne Markovienne au problème de la détection de

changement multimodal. La principale nouveauté de ce modèle Markovien

réside dans l’utilisation d’un champ d’observations constituées d’une modélisation

spatiale par paires de pixels. Une telle modélisation nous permet d’estimer

comme donnée d’observation, un indice visuel robuste et quasi invariant par rap-

port à la (multi-) modalité d’imagerie. Pour utiliser cette donnée d’observation

dans le cadre d’un modèle stochastique de vraisemblance, nous avons utilisé

un algorithme d’estimation itératif qui tient compte de la variété des lois dans

le mélange de lois de vraisemblance et estime les paramètres de ce mélange

de distributions au sens du maximum de vraisemblance. Une fois cette étape

d’estimation terminée, la solution au sens du maximum a posteriori (MAP)

de la carte de détection des changements, basée sur les paramètres estimés

précédemment, est ensuite calculée par un processus d’optimisation stochas-

tique.

• Le chapitre 5 présente une nouvelle méthode basée sur la projection des deux

images satellitaires dans un espace de caractéristiques commun, dans lequel les

deux images hétérogènes partageront les mêmes propriétés statistiques et sur
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lesquelles les méthodes classiques de détection de changement mono-modal peu-

vent être appliquées. Cette transformation des images avant et après est prin-

cipalement basée sur une représentation de positionnement multidimensionnel

(MDS) des données.

• Le chapitre 6 nous décrit une méthode de détection de changement multimodal

modélisés comme étant des anomalies entre les deux images satellitaires. Le

modèle proposé est basé sur l’apprentissage non supervisé des motifs hétérogènes

de la classe normale, (i.e,, non-changée) dans un espace résiduel. Pour classer les

pixels d’une nouvelle paire d’images, le modèle élaboré encode la représentation

de l’entrée dans l’espace latent, i.e., l’espace compact normal, ensuite recon-

struit la représentation encodée à partir d’une représentation latente. L’analyse

des erreurs de reconstruction permet d’identifier les zones qui ont une grande

erreur de reconstruction comme des anomalies, i.e., comme des zones de change-

ment.

• Finalement, le chapitre 7 repose sur une approche d’apprentissage par paires

d’entrées et un réseau pseudo siamois dont l’architecture est basée sur deux flux

de réseau parallèles et partiellement non couplés. Chaque flux de réseau est lui-

même un réseau de neurones convolutionnel (CNN) qui extrait un descripteur de

chaque patch d’entrée. Le modèle de détection de changement comprend une

étape de fusion qui concatène ses deux descripteurs de sortie dans une seule

représentation multimodale, qui est ensuite réduite dans une faible dimension

en utilisant conjointement des couches entièrement connectées et une fonction

de perte binaire basée sur l’entropie croisée utilisée dans la couche finale. Le

modèle est capable de capturer les dépendances spatiales et temporelles entre

les paires d’images en entrées grâce à cette architecture d’apprentissage par

paires qui prend en entrée une paire de patchs au lieu d’un seul patch. Le

modèle proposé n’exige aucune sélection préalable de mélange de distributions
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spécifique pour telle, ou telle modalité.

Le plan de la thèse est structuré comme suit: après notre introduction (chapitre

1), les chapitres 2 à 7 proposent six modèles de détection de changement multimodal

dont le premier (chapitre 2) appartient à la famille des méthodes non paramétriques,

le deuxième (chapitre 3) appartient à la classe des méthodes utilisant des mesures

de similarité invariantes par modalité d’imagerie, le troisième (chapitre 4) s’inscrit

dans les modèles paramétriques, le quatrième (chapitre 5) fait partie des techniques

de projection ou simulation permettant de transformer la paire d’images originales

dans un nouvel espace commun ou une nouvelle représentation (ou modalité) com-

mune, et enfin les deux derniers (chapitre 6 et 7) proposent des méthodes utilisant

l’apprentissage machine.
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Chapitre 2

AN ENERGY-BASED MODEL ENCODING NON-LOCAL

PAIRWISE PIXEL INTERACTIONS

FOR MULTI-SENSOR CHANGE DETECTION

Dans ce chapitre, nous présentons notre article publié dans la revue IEEE Trans-

actions on Geoscience and Remote Sensing, intitulé: An Energy-Based Model

Encoding Non-Local Pairwise Pixel Interactions For Multi-Sensor Change

Detection . Nous exposons ce dernier dans sa langue originale de publication.

Abstract

Image change detection is a challenging problem, particularly when images come

from different sensors. In this paper, we present a novel and reliable change detec-

tion model which is first based on the estimation of a robust similarity-feature map

generated from a pair of bi-temporal heterogeneous remote sensing images. This

similarity-feature map, which is supposed to represent the difference between the

multi-temporal multi-sensor images, is herein defined, by specifying a set of linear

equality constraints, expressed for each pair of pixels existing in the before-and-after

satellite images acquired through different modalities. An estimation of this over-

constrained problem, also formulated as a non-local pairwise energy-based model,

is then carried out, in the least square sense, by a fast linear-complexity algorithm

based on a multidimensional scaling (MDS) mapping technique. Finally, the fusion

of different binary segmentation results, obtained from this similarity-feature map

by different automatic thresholding algorithms, allows us to precisely and automat-

ically classify the changed and unchanged regions. The proposed method is tested
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on satellite data sets acquired by real heterogeneous sensor and the results obtained

demonstrate the robustness of the proposed model compared to the best existing

state-of-the-art multi-modal change detection methods recently proposed in the lit-

erature.

2.1 Introduction

Nowadays, change detection (CD) is a major application and also an active research

topic in remote sensing image processing since it plays an important role in vari-

ous application domains, including environmental monitoring, deforestation, urban

planning, land or natural disaster/damage monitoring and management to name a

few. Until now, many change detection approaches have been proposed for address-

ing the classical mono-modal change detection issue [9, 10, 32, 33, 50] which occurs

when the pairs of images are obtained from the same sensor or, more generally, the

same imaging modality. In this mono-modal case, the two images, recorded at two

different times but under similar imaging conditions, are generally first coregistred

and corrected (preprocessing) and then, most often, used to generate a difference im-

age by differencing or (log-)rationing. Finally the resulting difference image is then

segmented into two classes to distinguish changes of interest of the land cover/land

use.

A less explored and more challenging problem is the so-called multi-modal change

detection problem which is based on pairs of images obtained from different imag-

ing modalities. In this case, the two input (before and after change) images present

1 By changes of interest of the land cover, it must be understood that we do not seek to detect, in

this work, changes such as atmospheric effects, including haze, persistent cloud cover, phenological

changes, thin snow or ice cover, soil moisture, shadow, etc. In this work, we are just referring to

land cover changes such as major construction or excavations, flooding, earthquake, deforestation,

etc.
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radically different image statistics (along with possibly different spatial & spectral res-

olutions) which cannot be compared with traditional methods borrowed from mono-

modal change detection approaches relying on a simple pixelwise difference model.

Multi-modal change detection is especially appealing for several reasons. In facts,

in furthermore to generalize the mono-modal case, this processing treatment has ob-

viously less restrictive considerations about the formation of the input data pair

since it must adapt itself to the characteristics of data with different natures. As a

consequence, it should be more robust to natural variations in environmental vari-

ables such as soil moisture or phenological state (such as flowering, maturing, drying,

senescence, harvesting, etc.) that cannot be avoided and well taken into account

and corrected in the preprocessing step of a classical mono-modal change detection

approach. Another interest is its inherent practicality that it could bring in several

emergency situations. For example, it is useful in the case when an optical image of a

given area is provided by an available remote sensing image archive data, and only a

new Synthetic Aperture Radar (SAR) image can be acquired (for technical reasons,

lack of time, availability or atmospheric conditions) in an emergency situation for

the same area. In addition to providing a wide variety of information and properties

about the study area, let us stress out that the additional information provided by

two different sensors, could also be used to our advantage, to improve the accuracy

of the final change detection map. This can be efficiently achieved if one succeeds

in modeling the complementary and supplementary information provided by the two

different imaging modalities, with modelling techniques borrowed, for example, from

data fusion-based classification theory. Finally, let us also mention that this multi-

modal approach may be useful and sometimes indispensable in some specific cases,

such as forest monitoring in tropical or boreal areas for which SAR, thanks to its

ability to penetrate heavy clouds and fog, is often used as a complement to optical

data. Another example where SAR and optical sensors are complementary, is the

case of frequently snow-covered regions of high altitudes since SAR is also able to
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penetrate a thin snow layer.

Up to now, relatively few research works have been developed in change detection

using heterogeneous remote sensing images. Among the few existing models proposed

in the literature, we can however, mention the theoretical approach proposed in [65].

In this study, the model is based on the assumption that some dependence indeed

exists between the two images in unchanged areas and more precisely rely on the

estimation of the local statistics of the first image through the point of view (in a

statistical sense) of the second one (and vice versa). This dependence is modeled

by quantile regression applied according to the copula theory and Kullkack-Leibler-

based comparisons of these above-mentioned local statistics are applied to define a

change measure, which is then finally analyzed by thresholding, in order to detect

between change and no change areas. However, this method remains supervised

since it requires to learn the cumulative distribution function of the pixel intensity

in the after image, conditioned to “no-change” hypothesis (i.e. the so-called copula)

by using a manually selected (carefully chosen) training set of samples in the after

image. Let us note that the model is also not easily generalizable in the case when

more than one image, before and after a given event, is available and also not well

suited (in terms of modeling, speed and efficiency) to be used for images acquired

with homogeneous sensors. Another recent study was proposed by Prendes et al.

[88] to overcome multi-sensor variability problems in change detection. The authors

propose an interesting multivariate statistical approach aiming to estimate a physical

model, based on a mixture of multi-dimensional distributions which both takes into

account the relationships between the sensor responses to the objects contained in the

observed scene, the physical properties of these objects and the statistical properties

of the noise corrupting the images. The parameters of this multidimensional mixture

model are estimated by the expectation-maximization (EM) algorithm [18] which

are then subsequently used to infer the relationships between the sensor physical
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properties involved through manifold learning. A statistical test based on this model

allows to estimate the changes. An extension of this model, taking advantage of the

correlations between adjacent pixels via a Markov Random Field model, has also been

proposed by the same authors [90]. However, this method also assumes a training set

and more precisely that two training images associated with an unchanged area are

available. Also the method has been designed for heterogeneous multi-sensor in the

case of optical/SAR data and is not easily generalizable for another pair of different

sensors. Besides, it requires a lot of EM estimations (nearly one for each pixel), each

one relying on a good unsupervised estimation of the optimal number of existing

components. Another CD approach for heterogeneous multi-sensor SAR data based

on multi-dimensional distribution mixture estimation has also been proposed in [14].

In particular, the authors have studied a new family of multivariate distributions

whose margins are univariate gamma distributions with different shape parameters

referred to as multi-sensor multivariate gamma distributions (MuMGDs) which are

well suited for detecting changes in SAR images acquired by different sensors having

different numbers of looks. The parameters of this multidimensional mixture model

are estimated by the Maximum Likelihood (ML) or Inference Function for Margins

(IFM) algorithm. Also the method, and more precisely the family of MuMGDs

has been especially designed for heterogeneous SAR sensors and can not be easily

generalized for other or different sensors. Finally [2] proposes to use a methodology

borrowed from co-registration (used in the field of medical imagery), based on the

use of similarity measures (such as correlation ratio, mutual information, etc.) and to

use the correspondence between the same points in the two images to detect eventual

changes existing between the two data acquisitions. A comparison between the results

of the performance of tested similarity measures is reported which indicates that

the mutual information and the Cluster Reward Algorithm (CRA) seems the best

indicator for multi-modal (optical/SAR ) change detection. The CRA measure is

built from the joint and the marginal probabilities, as the mutual information, and
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has a large value when the joint histogram has little dispersion (thus indicating a good

correlation score). Nevertheless, these two measures are sensitive to the dimension

of the estimation windows used for the pixel statistics and the similarity measure

calculation.

Contrary to change detection techniques based on a classical pixelwise modeling

approach, we propose, as first and main contribution of this work, a new change de-

tector relying on the set of all pairs of (possibly non-local) pixels existing in the before

and after remote sensing images. This allows us to build a robust similarity feature

map, especially well suited to estimate the difference between heterogeneous sensors

exhibiting radically different image statistics. In our model, a set of linear equality

constraints is expressed for each pair of pixels (in terms of grey levels or local statistics

difference) and this over-constrained problem is then embedded or formulated into

a final energy-based model encoding all the local pairwise pixel interactions. The

quadratic complexity in the number of pixels of this resulting energy-based model, is

reduced to a linear complexity procedure, thanks to the FastMap-based optimization

procedure proposed by Falutsos and Lin [26]. This technique acts as an efficient and

fast global minimizer of the cost function, integrating all the pairwise constraints,

of our model by performing geometric linear projections (using the cosine law) in

a n-dimensional space over an axis defined by a pair of pixels from the image (or

in our application, from a pair of images) called pivots. Conceptually, the FastMap

treats each distance or constraints between a pair of pixels (in terms of grey level

difference) as a spring between the pixels, and tries to rearrange the grey level values

of each pixel to minimize the stress of the springs (also called the stress function) or

equivalently to satisfy all the constraints in the least square (LSQ) sense. Moreover,

as second contribution, changed and unchanged areas are then finally identified, from

this latter similarity feature map, by fusing the results of different automatic thresh-

olding algorithms. In this way, we efficiently combine the intrinsic properties and
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criteria related to the different automatic thresholding algorithms in order to further

increase the robustness and reliability of our multi-modal change detection strategy.

Let us note that, within the FastMap-based optimization and energy-based model

framework encoding the non-local pairwise pixel interactions, we can mention the re-

cent gait analysis model proposed in [75], which allows us to convert a video sequence

of depth images of a human gait (on a treadmill) into an informative color map pro-

viding a quick overview of asymmetry existing in a given gait cycle for a rapid clinical

diagnosis. In this model, using a gait video datacube, the pairwise interactions are

defined to encode the degree of similarity existing between two gait movements (rep-

resented by two temporal depth signals) taken on two different locations on a human’s

body surface walking on a treadmill and such that the (pairwise) distance is defined

as zero if the two motions are either pointwise similar or in perfect phase opposition

(i.e., with a phase difference of half a gait cycle as it is normally the case for legs and

arms during the gait cycle of a healthy subject). The set of distances between each

pair of pixels is then used by the FastMap algorithm to generate a final mapping in

which these distances should then code (as constraint) the L2-norm of color difference

existing between this pair of pixels. By this means, two pixels (or two points located

on the human’s body surface) that shares the same color on this mapping have to be

considered as symmetric (and conversely, all the more anti-symmetric as their color

difference is high).

The remainder of this paper is organized as follows: Section 7.2 and 2.3 describe

respectively the proposed change detection technique and the optimization procedure

related to this model which allows us to estimate the similarity-feature map, from

which changed and unchanged areas are then identified in Section 2.4 by combining

the results of different automatic thresholding algorithms. Section 7.3 presents a set

of experimental results and comparisons with existing multi-modal and mono-modal

change detection algorithms. Finally, Section 7.4 concludes the paper.
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2.2 Proposed Change Detection Model

Let us consider two (co-registered) bi-temporal remote sensing (N pixel size) im-

ages, yt1 and yt2 acquired at two times (before and after a given event), in the same

geographical area, from different sensors or from the same sensor but without the

correction step, in terms of radiometric, atmospheric and distortion consistencies and

characteristics.

In order to estimate yD, the similarity feature map, which is supposed to represent

the difference between the multi-temporal (multi-sensor) images, we rely on an im-

proved version of the model introduced in [108] for the mono-modal change detection

problem. In this model, first, we have to specify an over-determined set of constraints

to be satisfied (for yD) and expressed for each pair of pixels <s, t> existing in each

of the two multi-temporal images yt1 and yt2. The similarity map yD is then seen as

a solution to this set of constraints via the following non-local pairwise cost function

to be optimized:

ŷD = argmin
yD

∑
<s,t>s�=t

(
βs,t −

∥∥yDs − yDt
∥∥
2

)2

(2.1)

where the summation is done over all the pairs of pixels existing in the similarity

feature image yD to be estimated and ‖.‖2 is the Euclidean distance. In Eq. (2.1),

the set of βs,t, represents the set of N(N − 1)/2 equality constraints expressed for

each pair of pixels <s, t>, in terms of difference of grey levels (or local statistics), in

order to obtain a reliable similarity feature image yD in which unchanged pixels will

be associated to small gray-level values whereas changed pixels will present rather
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large values 2 . These constraints are the following:

First, let us assume that two distinct pixels at locations s and t belong to the

class urban at time t1 and still belong to the same class (urban), at time t2. In this

case, these two pixels should both belong to the (same) class label unchanged area

in the binary segmentation of yD. Let us consider another scenario: let us assume

that two distinct pixels at locations s and t belong to the class urban at time t1 and

both belong to the class river, at time t2 (due to a flooding event). In this case, these

two pixels should both belong to the (same) class label changed area in the binary

segmentation of yD. This two scenario can be summarized, as first constraint, as

follows:

constraint #1: Two distinct pixels <s, t> should both belong to the class

label unchanged pixels or both belong to the class label changed pixels, in the binary

segmentation of yD, if yt1s and yt1t have similar grey level (or similar local statistics),

and if yt2s and yt2t have also similar grey level (or similar local statistics). To satisfied

this constraint, yDs and yDt should both be assigned to a small grey-level value in yD

or should both be assigned to a high grey-level value in yD (since s& t should finally

share the same label in the binary segmentation of yD) or equivalently, this constraint

requires that the grey level difference between yDs and yDt is small.

Conversely, if the two pixels at locations s and t belong to a same class at time t1

(for example urban) and a different class at t2 (for example urban for pixel s and river

for pixel t) or conversely. In this case, these two pixels should belong to a different

2 Let us note that our model can handle separately the individual channels or bands of a multi- or

hyper spectral sensor system since, in our energy-based model, the difference between each pair

of pixels can be formulated as a Euclidean distance between two d-dimensional spectral vectors

with d being the number of spectral bands. By handling the bands separately, the similarity-

feature map ŷD is estimated according to a similar (but opposite) criterion (i.e., difference of

“preservation of spectral distance”) as the one often used as a criterion in the compression of

hyperspectral images [69].
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class label in the binary segmentation of yD; i.e., unchanged pixels for one of the two

pixels and changed pixels for the other. This belonging to different class labels, in

the binary segmentation of yD, requires that two different (grey-level) values to be

assigned to these two pixels in yD (so that the binary segmentation of yD correctly

assigns two different classes to these two pixels). This leads us to the constraint

#2.

The third and last case which leads us to the constraint #3, involves a situation

in which two pixels <s, t> belong to a pair of different classes at time t1 (for example

urban for s and vegetation for t) and also belong to a pair of different classes, different

from the first pair, at time t2 (for example urban for s and river for t) or conversely. In

this case, <s, t> should also belong to a different class label in the binary segmentation

of yD and this requires that the grey level difference between yDs and yDt is high (see

Fig. 2.1).

In summary, the three above-specified constraints, in terms of pairwise grey level

difference in yD, for each pair of locations <s, t>, can be quite well satisfied by using

(in Eq. (2.1)) the following pairwise distance between pixels <s, t> at time t1 and

t2 (which was empirically found and inspired from the max-Symmetric χ2 distance

combined with the city block distance [12]):

βs,t =

∣∣∣∣∣max

( |yt1s −y
t1
t |

yt1s
,
|yt1s −y

t1
t |

yt1t

)

− max

( |yt2s −y
t2
t |

yt2s
,
|yt2s −y

t2
t |

yt2t

)∣∣∣∣∣ (2.2)

where we recall that yt1s and yt2s is respectively the grey level (or a local statistics

vector) at pixel s in, respectively, the before and after image (i.e., at time t1& t2). In

our model, Eq. (2.1) thus become a composite cost function encoding our N(N−1)/2

constraints given by the observed data composed of all the pairwise pixels existing

in yt1 and yt2. Optimization of Eq. (2.1) will ensure a robust similarity feature
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image t1 image t2 similarity map

Figure 2.1. Illustration of the four constraints (#1a, #1b, #2, #3) corre-

sponding to the scenario described in Section 7.2. From left to right; image

at time t1 before a flooding event, (with the urban region at the center, the

vegetation region all around the image and the river region represented by

a narrow, elongated region at bottom right of the image), image at time t2
after a flooding event, and (ideal binarized) similarity map yD (with the white

region corresponding to the changed area) with the link (between each pair

of pixels considered) drawn in such a way that its thickness is proportional to

the associated distance defined by Eq. (2.2) between the grey levels (or local

statistics vector) of each considered pair of pixels.
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map ŷD with land cover changes presenting significantly different values from those

associated to the pixels belonging to unchanged areas. Nevertheless, it is important

to note that the estimation of ŷD, according to Eq. (2.1), does not necessarily ensure

that low grey-level value is assigned for the pixel belonging to the unchanged area

and conversely that high grey-level values are assigned for the changed area. It could

be the opposite. Nevertheless, let us mention that this latter case can be easily and

automatically detected with a correlation metric or more simply by assuming that the

land cover change is often much smaller than the unchanged area and once detected,

we can easily remedy it by simply inverting the grey level values of the estimated

image ŷD before its (binary) segmentation (see Section 2.4).

Let us note that the major advantage of the proposed model lies in its flexibility

given by its LSQR criterion. Indeed, contrary to Maximum a posteriori (MAP) and

ML approaches [14,88] the proposed model does not require an explicit knowledge of

the data distribution and also a (ML) parameter estimation step of these distribution

laws, which can be complex and/or of very different natures, in the multi-modal CD

case, since the images (before and after the change) are from different modalities.

Besides, contrary to machine learning-based approaches, the proposed scheme does

not also require a large and representative and supervised training set. In addition,

contrary to recent methods that seek to transform the original pair of temporal images

into a new feature space or representation that significantly highlights the changes

and which may be somewhat regarded as a CD method which could be invariant to

imaging modality [117], the proposed method has also the advantage of not requiring

the same number of spectral bands for the two (temporal) satellite images (as it is

most often the case in practice for multi-modal CD since the two imaging modalities

are assumed to be different).
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Table 2.1. Accuracy rate of change detection on the four heterogeneous datasets

obtained by the proposed method and the state-of-the-art multi-modal change
detectors (first upper part of each table) and mono-modal change detectors

(second lower part of each table).

TSX / Pleiades Accuracy

Proposed method 0.867

Prendes et al. [89] 0.844

Correlation [89] 0.670

Mutual Inf. [89] 0.580

QB02 / TSX Accuracy

Proposed method 0.949

Prendes et al. [87, 90] 0.918

Prendes et al. [88] 0.854

Copulas [65, 88] 0.760

Correlation [65, 88] 0.688

Mutual Inf. [65, 88] 0.768

Pixel Dif. [88, 104] 0.782

Pixel Ratio [88, 104] 0.813

Pleiades / WorldView2 Accuracy

Proposed method 0.853

Prendes et al. [87, 89] 0.844

Correlation [87, 89] 0.679

Mutual Inf. [87, 89] 0.759

Pixel Dif. [87, 104] 0.708

Pixel Ratio [87, 104] 0.661

SAR 1-look / SAR 5-looks Accuracy

Proposed method 0.781

Chatelain et al. [14] 0.732

Correlation [14] 0.521

Ratio edge [14] 0.382

2.3 FastMap-Based Model Optimization

Let us note that the function to be minimized (Eq. (2.1)) is also the so-called stress

function used as a criterion in the mapping based on multidimensional scaling (MDS)

technique [106] [16]. MDS has already been successfully used in a number of prac-

tical applications, such as color image segmentation [68, 71], hyperspectral compres-

sion [69], asymmetry detection [75], human action recognition [107], and database
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browsing and visualization [42] to name a few.

In our case, MDS is able to estimate a mapping, i.e. a grey-level similarity

image yD, such that the distances between each pair of grey-level values associated

to pixels s and t are close of βs,t as faithfully as possible (in the least square sense).

Nevertheless, the originally proposed MDS algorithm (called metric MDS [106] [16]) is

not appropriate in our application (and more generally for all large scale applications)

because it requires an entire N × N distance matrix to be stored in memory with a

O(N2) complexity (N being the number of pixels). Instead, we have herein used a

fast alternative, called FastMap [26] whose main advantage is its linear complexity

(thanks to a Nyström [78] approximation of the estimation of the eigenvectors and

eigenvalues of the distance matrix) compared to the other MDS procedures.

In the proposed application, the FastMap allows us to find a mapping yD with

a linear complexity such that the distances between each pair of grey-level values

associated to pixels s and t are close of βs,t as much as possible. To this end, we

recall that the first step, and an essential element of the FastMap algorithm, is to

select two objects (pixels in our case) to form the projection line. These two pixels,

also called pair of anchor nodes or pivots (or pivot line) are selected such that the

distance (βs,t in our application) is maximal. To accomplish such a task Falutsos and

Lin proposed a linear heuristic algorithm, based on a deterministic procedure called

“choose-distant-objects”. The second step is to project any other object (pixels) onto

this orthogonal axis (pivot line) by employing the cosine rule.

However, the price paid for the low linear complexity of the FastMap is its sensi-

tivity to outliers and non-linearities. In our case, this characteristic may give a poor

or noisy estimation of the similarity image yD. In order to get a more reliable estima-

tion, an interesting solution is obtained by averaging the estimations from different

pivot lines. To this end the linear heuristic and deterministic procedure proposed by

Falutsos and Lin can be easily modified in order to propose more than one pivot line.
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2.4 Fusion-based Segmentation Step

Finally, in order to achieve more robustness, changes are then identified, from the

(previously estimated) similarity image yD, by combining the results of T = 5 different

automatic thresholding algorithms3 (namely [41, 91, 97, 121, 124]). In this way, this

strategy (already been used in [62]) allows us to synergistically integrate multiple

different criteria, for which these binary segmentation algorithms have been designed

to be optimal in order to further increase the robustness and reliability of our proposed

segmentation scheme. In our application, this binary fusion process is simply achieved

by using a majority vote filter using a three dimensional windowW×W×T whose the

first two dimensions are spatial and the third dimension indexes the different binary

thresholded maps to be fused. In our application, this majority vote is achieved with

a 3D window which is spatially centered on the pixel to be classified, and that collects

the binary class labels of the different binary thresholded maps and finally by assigning

to that central pixel, the class label that has the majority vote. This strategy ensures

both the spatial regularization of the final fused (detection) map result and also a

reliable decision fusion between results obtained by different thresholding strategies.

2.5 Experimental Results

2.5.1 Results on Multi-Modal Datasets

To evaluate the efficiency of our proposed model, we validate our approach on three

real pairs of heterogeneous remote sensing images (see Fig. 2.2), provided by the

3 Let us note that the concept of combining classifiers for the improvement of the performance

of individual classifiers is known, in machine learning field, as a committee machine, ensemble

classifiers, ensemble methods or mixture of experts [21, 99]. In this context, Dietterich [21] have

provided an accessible and informal reasoning, from statistical, computational and representa-

tional viewpoints, of why ensembles can improve results.
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Toulouse, Fr [TSX / Pleiades]

Gloucester, UK [VHR satellite: QB02 / TSX]

Toulouse, Fr [Pleiades / other VHR satellite: WorldView2]

Gloucester, UK [SAR 1-look / SAR 5-looks]

image t1 image t2 ground truth similarity map final estimate confusion map

Figure 2.2. From left to right; image t1 (before event), image t2 (after event),

ground truth, estimated similarity feature map ŷD, final binary map result and

confusion map (white: TN, red: TP, blue: FP, Cyan: FN). From top to bottom;

multi-modal image pair: SAR/Optical (image from TerraSAR-X / Pleiades

satellite of Toulouse, France), optical/SAR (image from QB02 / TerraSAR-X

satellite of Gloucester, UK), heterogeneous optical/optical (image from Pleiades

/ WorldView2 of Toulouse, France), heterogeneous SAR/SAR (image from SAR

1-look / SAR 5-looks of Gloucester, UK).

CNES center (French National Centre for Space Studies), and already used in [88,89]

and for which the different change mask constructions were provided by a photo

interpreter. Besides, we have at our disposal one pair of heterogeneous SAR images

given by [14]. This allows us to compare the performance of our model with the

four existing state-of-the-art multi-modal change detection algorithms in this field,
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namely the one introduced in [88,89] (and its improved version proposed in [90]), the

multidimensional EM-based model proposed in [65] and the method proposed in [14]

for heterogeneous multi-sensor SAR data. Besides, we have also compared our result

with change detector traditionally used in mono-modal approaches provided by the

ORFEO Toolbox [104].

• The first multi-modal dataset is a pair of SAR/optical satellite images (Toulouse,

France), with size 4404 × 2604 pixels, before and after a construction. The SAR

image was taken by the TerraSAR-X satellite (Feb. 2009) and the optical image

by the Pleiades (High-Resolution Optical Imaging Constellation of CNES) satellite

(July 2013). The TSX image was co-registered and re-sampled by [87] with a pixel

resolution of 2 meter to match the optical image.

• The second one is a pair of optical/SAR satellite images (Gloucestershire region,

in southwest England, near Gloucester), with size 2325×4135 pixels, before and after

a flooding (on a mixture of urban and rural area). The optical image is a screenshot

from Google Earth and comes from the Quick Bird 02 (QB02) VHR satellite (15 July

2006) and the SAR image was acquired by the TerraSAR-X satellite (July 2007). The

TSX image presents a resolution of 7.3 meters and the QB02 image (with resolution

of 0.65 meter and 0% cloud cover) was co-registered and re-sampled by [87] to match

this resolution.

• The third dataset is a pair of different optical images, with different sensor

specifications (i.e. spectral bands), with size 2000 × 2000 pixels (with the same

resolution of 0.52 meter and 0% cloud cover), before and after the construction of a

building (in the urban area of Toulouse, France). The first optical image is captured

by the Pleiades sensor (May 2012) and the second optical image is a screenshot from

Google Earth and is acquired by WorldView2 satellite from three (Red, Green and

Blue) spectral bands (11 July 2013). The WorldView2 VHR-image was co-registered

by [87] to match the Pleiades image.

• The fourth multi-modal dataset [14] is a pair of SAR/SAR satellite images
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Table 2.2. Confusion matrix for the four multi-modal datasets i.e.,

[TSX/Pleiades] (4404× 2604 pixels), [QB02/TSX] (2325× 4135 pixels),

[Pleiades/WorldView2] (2000× 2000 pixels), [SAR 1-look / SAR 5-looks]

(762×292 pixels).

Multi-modal pair TP TN FP FN

TSX / Pleiades 4.83% 81.96% 10.08% 3.13%

QB02 / TSX 4.36% 90.58% 3.00% 2.06%

Pleiades / WorldView2 9.08% 76.30% 8.54% 6.08%

SAR 1-look / SAR 5-looks 9.88% 68.22% 14.24% 7.66%

(Gloucester, U.K.) before and during a flood, with size 762 × 292 pixels, acquired

by RADARSAT satellite. The numbers of looks for the before SAR image is 1-look

image (Sept. 2000) and the numbers of looks for the after image is 5-looks (Oct.

2000). These two SAR images have a resolution of about 40 meters.

Figure 2.3. Histogram of the four similarity-feature maps of the four multi-
modal image pairs generated by the FastMap (see Fig. 2.2).

We have considered the pairwise distance formula given by Eq. (2.2) where yt1s

corresponds to the simple grey level of the image (and not a local statistics vector

around a neighbourhood of s). In the case of an optical image, this also requires the

conversion of the possible color image to a grayscale image. We have finally considered

the final majority vote with a squared window spatial size set to W = 3×3.

We have summarized respectively in Tables 2.1 and 2.2 the accuracy rates and the
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confusion matrix obtained by our approach, compared with the four existing multi-

modal change detection methods (see also Fig. 2.2) and some classical change detec-

tion methods borrowed from mono-modal techniques. We can notice that the pro-

posed model outperforms quantitatively the four existing state-of-the-art approaches

recently published in this field.

Fig. 2.4 shows the binary maps obtained by the Prewitt [91], Kapur [41], Zack

[124], Yen [121] and Shanbhag [97] binarizers on the feature similarity map generated

by the FastMap in the case of the second and fourth multi-modal dataset and the

fusion results obtained by the proposed fusion strategy based on a three dimensional

(3×3×5) majority vote filter. We can notice that the different binarizers estimate a

different optimal threshold leading to a different binary map since different criteria are

used. Nevertheless, the proposed fusion strategy ensures both an efficient spatial and

consensus regularization, even if the statistical distribution of the feature similarity

map is not clearly bi-modal (see Fig. 2.3).

We can notice that some histograms of the similarity map are not bi-modal. In our

case, this is not a problem since four of the five binarizers, used in our procedure, does

not necessarily assume that the histogram is bi-modal. For example, the so-called

triangle method presented in [124] proposes to construct a line between the histogram

peak and the farthest end of the histogram and the threshold is the point of maximum

distance between the line and the histogram. Another binarization method which is

applicable, even if the histogram is not bi-modal, is the binarizer proposed in [41]

which uses the entropy concept. In this case, the threshold is estimated such that

the entropies of distributions above and below are maximized. In the same spirit,

[121] uses the maximum correlation criterion as a more computationally efficient

alternative to entropy measures. Finally [97] proposes an extension of the method

proposed in [41]. Only the binarizer proposed in [91] seeks two modes in the histogram

and thus relies on the presence of a bi-modal shape of the histogram. The method
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consists in iteratively smoothing the histogram (using a running average of size 3)

until two peaks remain; the threshold is then the minimum or midpoint between

the two peaks. Nevertheless, algorithmically, if a bi-modality in the histogram is

not detected after a maximum number of iterations, the threshold is generally the

grey value corresponding to the highest peak. All these different binarizers generally

ensure the diversity which is then needed for a reliable subsequent fusion process.

Let us stress out that the proposed model can also be easily generalized in the

case where more than one image, before and after a given event, is available. Indeed,

this can be easily done by considering the following averaged pairwise distance:

βs,t =
1

Np

∑
<b,a>

βs,t(y
b, ya) (2.3)

with βs,t(y
a, yb) the distance expressed in Eq. (2.2) for an image respectively belonging

to the before (and after) event set yb (ya) and where the averaging is done over all

possible pairs of images available before and after a given event (< b, a >) (and Np

is the number of averaging pairs). Let us note, however, that this technique can

be applied only if the date of change event is known beforehand. This averaging

procedure could even improve the estimation of βs,t since the averaging procedure

is a reliable strategy to reduce the noise of any estimation procedure. In addition

it would be interesting to study, in this multiple before and after image case, the

effect of a median, harmonic or geometric mean operator instead of this arithmetic

mean-based operator.

Fig. 2.5 shows a comparison of the similarity-feature maps obtained by Prendes et

al.’s method [87] and the proposed method on the three first multi-modal dataset. By

comparison with Prendes’s method, the proposed CD method seems to visually pro-

duce more distinctly two clustering structures (modeling the unchanged and changed

areas) a bit more separated and more compacted (with lower internal variance within

a cluster) and with less overlap. Besides, our method yields to a more spatially and

properly regularized (or less noisy) similarity-feature maps. It is interesting to note
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Toulouse, Fr [QB02 / TSX]

Gloucester, UK [SAR 1-look / SAR 5-looks]

Prewitt Kapur Zack Yen Shanbhag Fusion

Figure 2.4. Individual binary CD maps given by respectively, the Prewitt [91],

Kapur [41], Zack [124], Yen [121], Shanbhag [97] binarizers on the similarity-

feature map generated by the FastMap (see Fig. 2.2) and fusion results using

a majority vote filter using a three dimensional (3× 3× 5) window.

that our multi-modal CD strategy is able to detect very thin structure in the changed

area class, such as the thin S-shaped region in the middle bottom of the middle image

(contrary to the Prendes et al.’s method). We can also notice that some false positives

are detected in the same locations in the two methods (see the rectangular shape at

the upper-right of the bottom-left quadrant of the third image). Let us note that, in

our case, the similarity-feature maps closely depends on the pairwise distance used

(see Eq. (2.2)). A clever and more discriminative pairwise distance metric would al-

low us to obtain a better similarity-feature map. In addition, it is worth mentioning

that the proposed method still remains perfectible if a better binarization strategy is

found.

2.5.2 Results on Mono-Modal Datasets

In order to demonstrate that our approach is flexible enough to also be efficiently

used in mono-modal change detection (i.e. with homogeneous sensor), we present a
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[TSX / Pleiades]

[QB02 / TSX]

[Pleiades / WorldView2]

Figure 2.5. Comparison of the similarity-feature maps obtained by Prendes et
al.’s method [87] and the proposed method on the three first multi-modal
dataset. From lexicographic order, ground truths, similarity-feature map ob-

tained by Prendes et al.’s method in false colors (red areas represent high simi-

larity between the two images, while blue areas correspond to low similarity) and

similarity-feature maps obtained by the FastMap-based proposed method for,

from top to bottom, the TSX/Pleiades, QB02/TSX and Pleiades/WorldView2

datasets.

set of experimental results obtained on different real, publicly available, mono-modal

optical, multi-temporal, multispectral, airborne SAR or radar data sets with available

ground truth. In this case, we use the following and simple pairwise distance βs,t:

βs,t =
∣∣∣|yt1s − yt1t | − |yt2s − yt2t |

∣∣∣ (2.4)

which turned out a bit more efficient that the distance used in multi-modal case. In

addition, for the mono-modal case, we have considered the final majority vote filter



36

Table 2.3. Accuracy rate of change detection obtained by different state of the

art methods, on Bern (ERS-2), Ottawa (RADARSAT), and Beijing (Airborne

SAR) datasets.
�
�
�
�
�
�
�
��

Dataset

Method
Proposed method [32] [56] [48] [59] [31] [119]

Bern (ERS-2) .993 .996 .997 .996 .996 - -

Ottawa (RADARSAT) .943 .972 .965 .974 - .988 -

Beijing (SAR Airborne) .986 - - - - - .997

Nb. of images tested 17 3 2 3 2 5 2

Ottawa, CA [SAR]

Bern, CH [SAR]

Beijing, CN [airborne SAR]

image t1 image t2 ground truth similarity map final estimate confusion map

Figure 2.6. Experimental results on mono-modal SAR (second, third) and air-

borne SAR (fourth) dataset: Ottawa, Bern, Beijing. From left to right;

image acquired at time t1 and t2, ground truth, similarity feature map, final

(changed/unchanged) binary segmentation result and confusion map (white:

TN, red: TP, blue: FP, Cyan: FN) obtained by our approach.

with a squared window size set to W = 3× 3.
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Burn [Landsat]

Cuts [Landsat]

Dray Lake [Landsat]

Surface Disturbance [Landsat]

image t1 image t2 ground truth similarity map final estimate confusion map

Figure 2.7. Experimental results on mono-modal optical Eros center (first)

dataset: Burn, Cuts, Dray Lake, Surface Disturbance; From

left to right; image acquired at time t1 and t2, ground truth, similarity feature

map, final (changed/unchanged) segmentation result and confusion map (white:

TN, red: TP, blue: FP, Cyan: FN) obtained by our approach.

• The first dataset4 (see Fig. 2.7) is a pair of optical satellite images produced by

the EROS data center in southwest U.S., corresponding to a part of Reno-Lake Tahoe

4 • The first mono-modal dataset: Burn, Cuts and Dray Lake images and their ground truths

have been downloaded from:

http://geochange.er.usgs.gov/sw/changes/natural/reno-tahoe/

Surface disturbance and its ground truth has been downloaded from:

https://geochange.er.usgs.gov/sw/changes/anthropogenic/vegas/const.html
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[Landsat]

image t1 image t2 ground truth similarity map final estimate confusion map

Figure 2.8. Experimental results on mono-modal UMD-NASA (fifth) dataset;

From left to right; image acquired at time t1 and t2, ground truth, similarity fea-

ture map, final (changed/unchanged) binary segmentation result and confusion

map (white: TN, red: TP, blue: FP, Cyan: FN) obtained by our approach.

area of Nevada (acquired on Aug. 5, 1986, and Aug. 5, 1992), with size 200 × 200

pixels, captured by the Landsat Multi-spectral Scanner. The Burn images show a

change that results from forest fire phenomena. The Cuts images show a change

• Images of the second, third and fourth mono-modal dataset and their ground truths have

been provided by Dr. Y. Li [49] and Dr. B. Xiong [119].

• Images of the fifth dataset have been provided by UMD-NASA and downloaded from:

http://glcf.umd.edu/data/landsatTreecover/

and their ground truths from: http://www.landcover.org/
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described by a decrease in the surface area of the lake that results from drought

effects. The Dray Lake images show a change that corresponds to the beginning

and culmination of drought conditions in the western U.S. The Surface disturbance

images show increased surface disturbance due to construction or excavations for

construction including road resurfacing or paving.

• The second dataset [32] [56] [48] [31] (see Fig. 2.6) is provided by the Defence

Research and Development Canada (DRDC), Ottawa (Canada), and are two multi-

temporal SAR images relating to Ottawa, with size 290× 350 pixels, acquired by the

RADARSAT SAR sensor respectively, in July 1997 during the summer flooding, and

Aug. 1997 after the summer flooding.

• The third dataset [32] [56] [48] [59] (see Fig. 2.6) is a pair of two multi-temporal

SAR images with a size 301 × 301 pixels (pixel resolution is 12.5 meters), acquired

by ERS-2 satellite (the European Remote Sensing satellite). It presents a natural

phenomenon, generally occurring during the rainy season in the Switzerland area,

near the city of Bern, in April 1999 before the flooding and in May 1999 after the

flooding.

• The fourth dataset [119] (see Fig. 2.6) shows a pair of X-band airborne SAR

(intensity) images with size 900× 900 pixels (pixel resolution is 0.5 meter), acquired

over a field in Beijing, China, on Apr. 4 and 6, 2004. It shows the number and posi-

tions of the vehicle on the field which were different during the two data acquisition

dates.

• The fifth dataset (see Fig. 2.8) is a collection of images with size 7660 ×
7402 pixels (pixel resolution is 30 meters), provided by the NASA/USGS Global

Land Survey (GLS) [96], captured by the multispectral scanner Landsat-5 (TM) and

Landsat-7 Enhanced Thematic Mapper Plus (ETM+) and showing various change

phenomena in landscape, in different areas, between 2000 and 2005. For each pair of

images of the same area, this dataset proposes a ground truth image containing the

different evolutions undergone by the area for five years (thrust drills, loss of trees,
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etc.).

Table 2.3 summarizes the different change detection accuracy rates obtained by

our approach with a comparison with other mono-modal “state of the art” approaches

[32] [56] [48] [59] [31] [119] for different datasets with different imaging modalities

(with the total number of images tested in each case). We can see that the different

changed-unchanged detection binary map results match fairly the different regions

present in the ground truth, and that the most changed regions for the different

imagery modalities are well recognized by our strategy (see Figs. 2.6, 2.7 and 2.8).

2.5.3 Shadow Effects

In this work (see footnote1), our goal is to detect changes of interest in the land

cover or land use. Until now, we have respectively considered, in our multi-modal

experiments, a major or a localized minor construction and two types of flooding

(Fig. 2.2) and in the mono-modal case; a deforestation (due to a forest fire), two

examples of decrease of a given lake’s surface area (resulting from drought effects),

a surface disturbance (i.e., an excavations/construction for road paving) (Fig. 2.7),

two different floodings, the detection of vehicles in an agricultural field (Fig. 2.6)

and various change phenomena in the landscape such as thrust drills, loss of trees,

changes in tree cover over time, etc. (Fig. 2.8).

As an additional experiment, it would be also interesting to see how the proposed

CD model behaves when one of the two images has glow and shadow effects. To this

end, for the homogeneous CD detection case, we have considered a stereo panchro-

matic data set provided by [105], with size 900×900 pixels (pixel resolution is 5 meter)

and captured by Cartosat-1 satellite sensor. This pair of panchromatic images is ac-

quired over Arges region (Romania near Piatra Craiului national park), on Oct. 2008

and Nov. 2009 and shows a forest changes caused by storms, and containing many

shadow areas caused by steep terrain due to the mountainous forest area [105]. We

have applied our CD model with and without any preprocessing step on the image
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pair. As pre-processing, we use a simple (double) histogram matching method [98].

More precisely, the before image is histogram matched to the after image to give the

pre-processed before image and the after image is then histogram matched to the

latter (pre-processed before) image. We show in Fig. 4.5 the obtained results with

a comparison in Table 2.4 with other state-of-the-art mono-modal change detectors

studied in [105]. The result shows that our method is also robust in this mono-modal

case. Nevertheless, it would also have been interesting to evaluate how our model

behaves in the multi-modal case involving shadow effects, especially between SAR

and optical images since the shadow is a quite different phenomenon between these

two imagery modalities that cannot be corrected with a simple preprocessing scheme

as a simple histogram matching method. This special case still remains to be studied.

2.5.4 Discussion

We can also notice that the rate accuracy of our method remains comparable, al-

though slightly lower than the other mono-modal “state of the art” approaches but

above all that the strength of the proposed model is its ability to process a wide

variety of satellite imaging modalities (i.e., multi-temporal, multispectral, airborne

SAR or radar data) potentially degraded by different noise types and different noise

levels (see, for example, the Fig. 2.6 where the SAR images are corrupted by different

speckle noise levels). This peculiarity certainly comes from the fact that our model

is, before all, designed to be used for the multi-modal change detection case. The

average accuracy rate obtained by our change detection approach over 17 image pairs

stemming from this five different mono-modal datasets with the distance expressed by

Eq. (2.4) is ρ = 0.94 (94%). With the distance expressed by Eq. (2.2), especially well

suited for the multi-modal change detection case, the average accuracy rate obtained

on this five different mono-modal datasets is ρ = 0.92 (92%).

Consequently, we can say that the proposed method has also the defect of its main

quality. Its ability to process a wide variety of imaging modalities (with different noise
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types and levels) explains why it will be also less accurate than a specific mono-modal

CD model only dealing with a specific type of noise and for which the similarity map,

obtained by some local operations follows a particular mixture of distributions whose

each distribution’s shape may be theoretically estimated and for which the parameters

of the finite distribution mixture can then be efficiently estimated with an EM like

algorithm to finally obtain a reliable binary CD map.

We can also notice that the proposed model has, comparatively, more difficulties

to separate the changed and unchanged areas when the SAR imaging modality is

involved (see Fig. 2.2). This behavior can be probably explained by the inherent

multiplicative speckle noise degrading the quality of any SAR images and creating,

for each land cover class, a kind of macro-texture with grainy patterns (and referring

to variations in radar brightness that are larger than many resolution cells). More

precisely, this can be explained by the fact that the pairwise distances, used in our

energy-based model (see Eqs. (2.1) and (2.2)), with ytv corresponding to the simple

grey level at site v, can not fully model a coarse texture. In a multi-modality case

involving SAR imaging, a more appropriate model would have been to consider local

statistics around the pixel and therefore a distance computed between two feature

vectors instead of two scalars. Nevertheless, experimentally, it would seem that a

complex distance (i.e., a more complex, realistic model) also leads to a harder op-

timization problem and finally a more approximated solution given by the Fastmap

optimization procedure. In our case, a good solution of a simpler, approximate model

seems preferable than an approximate solution of a complex (and maybe more real-

istic) model.

2.6 Conclusion

In this paper, we have proposed a new model for change detection in heterogeneous

remote sensing images. Our method is mainly based on the estimation of a robust
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Arges, ROM [Panchromatic]

image t1 image t2 ground truth similarity map final estimate confusion map

Figure 2.9. Panchromatic data set: image t1, t2, ground truth; similarity feature

map; final (changed/unchanged) segmentation result and confusion map (white:

TN, red: TP, blue: FP, Cyan: FN) obtained by the proposed approach. First row

presents results obtained without any preprocessing step. Second row presents

results obtained with a double histogram matching method based-preprocessing

step.

Table 2.4. Kappa statistic of change detection on the Panchromatic shadow

dataset obtained by the proposed method and other unsupervised (first upper

part of the table) and supervised (second part of the table) state-of-the-art

mono-modal change detectors [105].

Method Kappa

Proposed method (with preprocessing) 0.513

Proposed method (without preprocessing) 0.281

kMNF OPTI‡ [105] 0.487 - 0.509 - 0.506 - 0.501 - 0.487 - 0.475

Height Difference‡ [105] 0.127 - 0.316 - 0.469 - 0.526 - 0.0 - 0.0

CVA‡ [105] 0.07 - 0.242 - 0.403 - 0.457 - 0.0 - 0.0

k-Means [105] 0.472

ICDA [105] 0.495

OSVM [105] 0.478

Random Forests [105] 0.432

‡based on different threshold levels given in increasing order

similarity feature map, containing the difference caused by the event between the bi-

temporal multi-sensor images involved, and which is formulated as the solution of a

set of constraints expressed for each pixel pair via a global cost function. A Fastmap
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based optimization and then a simple fusion step, used to combine a set of binary

segmentation maps generated by several automatic thresholding algorithms on this

similarity feature map, then allows us to identify between the changed and unchanged

areas. The proposed method is unsupervised and does not require a training data

set or the estimation of an important parameter and can be used for any pairs of

heterogeneous sensors. Besides, the proposed method is flexible since it can also be

efficiently used in mono-modal change detection (i.e. with homogeneous sensor). It

can be easily generalized in the case where more than one image, before and after

a given event, is available or be used to handle separately the individual bands of

a multi- or hyperspectral image (with d spectral bands), by simply formulating the

constraint or difference between each pair of pixels, as the distance existing between

two d-dimensional spectral vectors. Finally the model is perfectible by identifying a

better pairwise distance or a better binarization strategy and its time complexity is

linear with the total pixel number.

Acknowledgement

The authors are very grateful to acknowledge Dr. J. Prendes and CNES (French

National Centre for Space) for sharing the multi-modal dataset in order to validate

our model. The authors would also like to thank Dr. Y. Li [49], Dr. B. Xiong

[119] and UMD-NASA for having provided us, respectively, the second and third,

the fourth, and the fifth mono-modal dataset [96]. The authors would also like to

express their gratitude to Dr. Jiaojiao Tian who put at our disposal the change

detection Panchromatic shadow data set [105] and also for the time spent in providing

the comparison results. We also thank all the other researchers who kindly made

their databases available for our study and the comparisons made in this paper.

The authors are finally grateful to the four anonymous reviewers for their numerous

comments and suggestions that helped improve both the scientific content and the



45

presentation of this paper.



Chapitre 3

A RELIABLE MIXED-NORM BASED

MULTIRESOLUTION CHANGE DETECTOR IN

HETEROGENEOUS REMOTE SENSING IMAGES

Dans ce chapitre, nous présentons notre article accepté dans la revue IEEE Jour-

nal of Selected Topics in Applied Earth Observations and Remote Sensing, intitulé:

A Reliable Mixed-Norm based Multiresolution Change Detector in Het-

erogeneous Remote Sensing Images . Nous exposons ce dernier dans sa langue

originale de soumission.

Abstract

Analysis of heterogeneous remote sensing image is a challenging and complex problem

due to the fact that the local statistics of the data to be processed can be radically

different. In this paper, we present a novel and reliable unsupervised change detection

method to analyze heterogeneous remotely sensed image pairs. The proposed method

is based on an imaging modality-invariant operator that detects at different scale

levels, the differences in terms of high-frequency pattern of each structural region

existing in the two heterogeneous satellite images. First, this new detector is based

upon a dual norm formulation that makes our underlying change detection estimation

particularly robust in terms of sensitivity/specificity trade-off. Second, the detection

process, embedded in a multi-resolution framework, allows us to estimate a robust

similarity or difference map that is then filtered out by a superpixel-based spatially

adaptive filter to further increase its reliability against noise.
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3.1 Introduction

IN, remote sensing imagery, heterogeneous images generally refer to a combination of

two or several satellite images that can be used to represent an area of interest over the

time, and which are acquired by different satellite sensors, either with the same sensor

type but with two different optical, SAR or other systems (multisensor images) or with

different sensor types such as SAR/optical images (multisource images) or possibly

with the same satellite sensor but with different looks or specification (mutilooking

images). Thereby, pixels in heterogeneous images are represented in two distinct

feature spaces that do not share the same statistical properties.

Heterogeneous (or multimodal) change detection (CD) [55] is a recent (intro-

duced less than a decade ago) procedure seeking to identify any land cover changes

(or land cover uses) that may have occurred between two heterogeneous satellite im-

ages acquired on the same geographical area at different times. It is a non-trivial

and challenging task which can be considered as the generalization of the traditional

monomodal CD problem as it must take into account multiple origins and character-

istics of the acquired data. On the other hand, such a procedure must be adaptive

and flexible enough to adapt itself to any existing heterogeneous data types in order

to solve the same problems which are now basically well resolved by the classical

monomodal CD techniques [23, 36, 77, 122] [33], namely; environmental monitoring,

deforestation, urban planning, land or natural disaster/damage monitoring and man-

agement, to name a few.

Heterogeneous (or multimodal) CD has recently generated a growing interest, in

the remote sensing community, and the huge amount of heterogeneous data we can

now get from existing Earth observing satellites or extracted from various archives can

partly explain this [55,88–90]. In fact, the practical and technical advantages of such

multimodal analysis procedure are obvious both technically and practically [65, 88].

First, let’s emphasize that a heterogeneous CD approach may be useful and sometimes
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indispensable in some emergency cases. Since SAR sensors can operate regardless of

weather conditions, even at night, i.e. with less restrictive conditions compared to

optical imaging [88–90]. We can give the representative case of an optical image of a

given area which is provided by an available remote sensing image archive data and

only a new SAR image can be acquired for technical reasons, lack of time, availability

or atmospheric conditions in an emergency situation for the same area [88–90]. A

similar example can be given in case of specific situations in which the area to monitor

is located in a tropical or boreal forest and for which SAR imaging offer the great

advantage, over its optical counterparts, of not being affected by heavy clouds, fog,

haze and also rain or else in snow-covered regions of high altitudes for which SAR

is also able to penetrate a thin snow layer or finally to monitor the progress of a

fire since SAR imaging, operating at microwave frequencies, can see (i.e., penetrate)

through smoke and dust [14, 88–90, 109]. Let us also stress that, since multimodal

CD must be adaptable to heterogeneous data with different statistics, this procedure

may turn out also more robust to natural variations in environmental variables such

as soil moisture or phenological states (e.g., flowering, maturing, drying, senescence,

harvesting, etc.) or shading effects which should not be detected as land cover changes

and which is sometimes taken into account and corrected in the preprocessing step of

a classical mono-modal CD approach. Finally, let us add that two different imaging

modalities may be complementary (as it is especially the case of SAR and optical

or multispectral sensors) and this complementarity could be exploited (not only in

geoscience imaging [45]) for further improving the change detection and analysis of

complex land cover types or for sensors operating in extreme conditions.

Up to now, relatively few research works have been developed in heterogeneous

CD [65] [88] [14] [51] but generally we can divide them into three main categories:

parametric, non-parametric or invariant similarity measure or operator-based models.

In parametric techniques, a mixture or a set of parametric multivariate distri-
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butions are generally used to directly or indirectly model the joint statistics or the

dependencies between the two imaging modalities. In this category, we can mention

the copula-based approach proposed in [65] in which the dependence between the

two satellite images, in unchanged areas, is modeled by a quantile regression applied

according to the copula theory (a powerful tool for tackling the problem of how to de-

scribe a joint distribution) and Kullkack-Leibler-based comparisons on local statistical

measures to generate a similarity map which is then finally analyzed by thresholding

to detect between change and no change areas. An interesting two-step multivariate

statistical approach has also been proposed in [88–90] whose the first step aims at

estimating a physical model, based on a mixture of multi-dimensional distributions

(both taking into the noise model, the relationships between the sensor responses to

the objects and their physical properties), with the expectation-maximization (EM)

algorithm [18]. A statistical test based on this model then allows to estimate the

changes. In the same spirit, the authors in [14] also propose to first estimate a mul-

tidimensional distribution mixture estimation based on a new family of multivariate

distributions with different shape parameters and especially well suited for detect-

ing changes in SAR images acquired by different sensors having different numbers

of looks. The problem with these parametric techniques is that they have been es-

pecially designed (via specific distribution types) for a type of multimodal sensors

(optical/SAR in [65, 88, 90] or SAR with different numbers of looks [14]) and conse-

quently, they are not easily generalizable for another pair of different sensors. Besides,

these method are in fact semi-supervised since they generally require (as training set)

that two training images (sometimes manually selected and carefully chosen) associ-

ated with an unchanged area are available [65, 88, 90]. Let us finally add that these

methods also require a Maximum Likelihood (ML) parameter estimation step of the

distribution laws considered, which can be complex and computationally expensive.

Among nonparametric methods, an energy minimization model has been specifi-
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cally designed in [109] for satisfying an overdetermined set of constraints, expressed for

each pair of pixels existing in the before-and-after satellite images acquired through

different modalities. An estimation of this overconstrained problem, formulated as

a pairwise energy-based model, is then carried out in the least square sense, by a

fast linear-complexity algorithm based on a multidimensional scaling (MDS) map-

ping technique leading to a similarity feature map which is then binarized into two

classes to distinguish changes of interest of the land cover. In [117], a method is pre-

sented in which the original pair of temporal images is transformed into a new feature

space or representation, especially designed to be invariant to imaging modality and

aiming at highlighting the changes. In the same spirit, Volpi et al. in [113] find joint

projections of the paired input images by maximizing the correlation between the

projected data with a canonical correlation analysis. Another representation which

turns out to be invariant to imaging modality can be given by a segmentation of the

before and after images. In this optic, Liu et al. in [29] propose a general multi-

dimensional evidential reasoning (MDER) approach using the segmentation results

of the pre and post-event satellite images with an extension of the Fuzzy C-means

(FCM) clustering under belief function framework and whose result is directly used as

basic belief assignment in their MDER approach. A similar strategy is also proposed

in [15]. In the same vein, a pre-segmentation strategy based on the Normalized Dif-

ference Spectral Index is described in [120]. Let us note that machine learning-based

methods are also non parametric (in the sense that they do not assume a specific

parametric distribution for the data) and deep learning methods through conditional

adversarial networks [66], convolutional coupling networks [51], or method based on

deep feature representation [126], binary support vector classifier [11], multi-classifier

systems [24] or based on simple K-nearest neighbors technique [53] have also been re-

cently proposed and turn out to be valuable for the multimodal CD problem. In fact,

these non-parametric methods, have also the defect of its main quality. Their ability

to process a wide variety of imaging modalities (with different noise types and levels)
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explains why they are possibly less accurate than a specific heterogeneous CD model

dealing with a specific type of multimodality which is modeled by a particular joint

(or mixture of) distribution(s) whose shape has a clear physical and statistical justi-

fication. For the machine learning-based heterogeneous CD models, the efficiency of

these algorithms heavily depend on the availability of an adequate massive amounts

of representative training data.

Finally, in the third family of method, Alberga et al. [2] propose to use a tech-

nique closed to the co-registration and based on the use of a combination of different

invariant similarity measures (such as correlation ratio, mutual information, etc.) in

order to estimate the correspondence between the same points in the two images and

finally to detect eventual changes existing between two heterogeneous data acquisi-

tions. Also, in [8] is presented a CD method to quantify the damages caused by an

earthquake to each individual building, using pre-event optical image and post-event

SAR images. To this end, the parameters of each building, estimated from the op-

tical scene and combined with the acquisition parameters of the actual post-event

SAR scene are both used to predict (via simulation) the expected SAR signature of

the building which is then subsequently compared, with a similarity measure, to the

actual SAR scene in order to quantify the damages caused to each building. The

main interest of this family of methods relies on the fact that they do not have the

disadvantages of the two first above-mentioned categories of models (parametric and

non-parametric) and are also more flexible in the sense that they are not closely re-

lated to a specific mathematical framework (Bayesian or multivariate analysis in the

first and regression analysis for the second category).

In this work, we propose a new imaging modality invariant change detector

which belongs to the third family of above cited methods. Compared to our pre-

liminary model [110], this operator is defined at three resolution scales and made

scale-invariant. In addition this operator is estimated according to two different and
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complementary norms, for complementarity reasons and better detection results in

term of self-balancing the precision and recall of the considered changed/unchanged

detection problem. Finally, the information provided by these dual operators at dif-

ferent scales are combined, thanks to the Multidimensional Scaling (MDS) mapping

method, to generate a similarity feature map, which turns out especially well suited

to estimate the differences existing in the land cover change between heterogeneous

images coming from different imaging modalities or sensors involved in remote sensing

imagery. Once a similarity feature map is estimated by this change detector, changed

and unchanged areas are then finally identified by a final unsupervised binary clus-

tering approach based on the K-means procedure.

The major advantage of the proposed model lies in its flexibility to process a wide

variety of heterogeneous images without requiring the main drawbacks of parametric

models that require an explicit knowledge of the data distribution (and also a complex

parameter estimation step of these distribution laws) or again the drawbacks of non-

parametric models that require a large and representative training set (and heavy

supervised training procedure).

The validation of the proposed approach is done by a series of tests conducted on

different real heterogeneous datasets chosen to reflect the different change detection

problems in multimodal case; Namely, multisensor image pairs with i) heterogeneous

optical images, multisource image pairs with ii) SAR+optical or optical+SAR images

and finally, iii) multilooking SAR images.

The remainder of this paper is organized as follows: Section 7.2 describes the pro-

posed multiscale change detector which allows us to estimate the similarity-feature

map, from which changed and unchanged areas are then identified. Section 7.3

presents a set of experimental results and comparisons with existing multimodal

change detection algorithms. Finally, Section 7.4 concludes the paper.
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3.2 Proposed Change Detection Model

The proposed model takes as input two bi-temporal heterogeneous remote sensing

images (in our case; either heterogeneous optical or multisource SAR/optical or mul-

tilooking SAR images). The proposed CD model is based on a four-step procedure:

• We first estimate a set of multiscale features aiming at detecting the structural

difference in terms of high-frequency components of each local region (2D signal)

existing in the before and after satellite images. This detector is based on a multires-

olution framework that makes it somewhat scale invariant, and also exploits a dual

norm relationship that makes it robust to the eventual context of unbalanced data

(which is typically our case since the majority of pixels belongs to the unchanged class

and that, consequently, our estimation model could estimate a degenerate overfit so-

lution to this problem by classifying all pixels to be unchanged (see Sect. 3.2.1 and

3.2.2).

• In order to both reduce the noise and to remove redundant information, pro-

vided by the previous estimation step, the multiscale feature vector is reduced to one

dimension, to get of a similarity (change/no-change) map, by using a fast (linear-

complexity) version of the Multidimensional Scaling (MDS) mapping technique (see

Sect. 3.2.3).

• To further reduce the noise of this similarity map, we then apply a spatially

adaptive filters based on the super-pixel representation of the before and after satellite

images (3.2.4).

• Finally, to increase the class (change/no-change) separability of each pixel of

this similarity map, we transform the local region, in the neighborhood of each pixel,

into a point in a discriminant textural feature space, where an unsupervised binary

(K=2) clustering algorithm (K-means) is applied (see Sect. 3.2.5). More precisely,

the different steps of our approach are:
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3.2.1 Imaging Modality Invariant Change Feature

Let us consider two (previously co-registered) bi-temporal remote sensing (N pixel

size) images, yt1 and yt2 acquired from different sensors or sources at two times (before

and after a given event), in the same geographical area. In the classical monomodal (or

homogeneous) CD case, the two coregistred temporal image at two different times are

usually first compared pixel by pixel in order to generate a difference image by differ-

encing (with a simple subtraction or a temporal gradient operator) or (log-)rationing

(i.e., with a log temporal gradient) [23, 36, 77, 122] [33]. This latter difference image

is such that the pixels associated with land cover changes present gray-level values

significantly larger from those of pixels associated with unchanged areas. A binary

segmentation is then finally achieved on this temporal gradient image to distinguish

between the changed and no changed areas. In the heterogeneous or multimodal

case, this temporal gradient is not effective [110] particularly when the input images

are acquired by different sensor types. Indeed, the gray or color value of each pixel

is not a useful information since the gray levels of the same region, in the before

and after a given event, may be radically different according to the characteristics of

the two input (possibly highly) heterogeneous imaging modalities. Conversely, two

distinct regions, at two different times, may be locally coded with the same (gray

or color) value since two different textures may have the same mean or similar local

intensity/color value. Consequently, the classical temporal (or log temporal) gradi-

ent operator is thus irrelevant in the heterogeneous case for estimating an accurate

difference image which will be subsequently used for identifying land cover change.

Nevertheless, for the same region, represented by two different imaging modali-

ties, there is a feature, which remains relatively invariant between different types of

imaging and thus that can be herein efficiently exploited and captured by an opera-

tor. This feature is the magnitude and orientation distribution of the spatial edges

and/or contours existing in the considered region. Indeed, each specific homogeneous
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region generally exhibits an unique geometric high-frequency pattern. For example

an urban region exhibits a specific directional edge or gradient magnitude distribu-

tion (due to the presence of rectangular regions defined by the roads/streets, building

roofs, parking lots, electric field lines, residential houses, etc.) which is, more or less,

well preserved in the two imaging modalities in the high spatial frequencies of the

texture pattern1. It is also the case of an agricultural region where the intrinsic regu-

lar location of crops produces edges and contours which are also fairly well conserved

in the two kinds of imagery, This remains true for the other homogeneous regions in

satellite image, even for the water region where the absence or the presence of waves

(or wavelets at a finer spatial scale) can be detected and localized (and analyzed

as proposed in [17] for SAR and Radar images) in the two different heterogeneous

modalities by a high-frequency filter or a simple edge detection algorithm for texture.

Let us note that physical features such as NDVI (normalized difference vegetation in-

dex) [102] in multispectral imagery or the polarization ratio of SAR data [60] in SAR

imagery can also describe the physical properties (size, shape, orientation, etc.) of

agricultural areas (in addition to estimating the dielectric properties of the plants for

the polarization ratio and the photosynthetic capacity and hence energy absorption of

plant canopies for the NDVI). These features have already been used in (monomodal)

remote sensing and have been proved to be reliable for segmentation and classifica-

tion tasks and more precisely for retrieving live green plant canopies or for estimating

the different agricultural crop growth stages and some vegetation phenology metrics.

Nevertheless, these physical features can not be straightforward used and exploited

in a multimodal change detection system except in the specific multispectral/optical

1 In fact, more precisely, the local texture pattern created by a given imaging modality is (a mixture

of) characteristic(s) of both the region that is being imaged and the imaging system (at medium

or high frequency levels). This explains why, thanks to its natural band-pass capabilities, the

human visual system (HVS) can recognize, even in a complex SAR image with strong correlated

speckle, the specific high-frequency spatial textural pattern created by an urban area.
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case introduced in [53] in which a NDVI image, combined with an optical (SPOT)

image, are both projected in a common feature space for the convenience of change

detection.

Consequently, since the edge at different spatial scales or more precisely, the spe-

cific high-frequency pattern of each textural region is fairly well preserved, in spite

of the difference in the imaging modality between the two heterogeneous temporal

images, we propose to base the estimation of our difference image zD on a tempo-

ral gradient applied on a local spatial gradient. In our case, this spatial temporal

gradient is approximated using a first-order temporal and spatial finite difference ap-

proximation (in the L1 norm). More precisely, the similarity map zD1 is computed

by estimating at each pixel site s by:

zD1
s =

∑
<s,s′>∈Wn

∣∣∣|yt1
s − yt1

s′ |1 − |yt2
s − yt2

s′ |1
∣∣∣ (3.1)

where the summation is done over all pairs of pixels at location < s, s′ > contained

in a Nn×Nn squared window Wn including the central pixel located at site s. This

summation allows us both to render this temporal-spatial gradient operator invariant

to rotation and also less sensitive to noise (due to the averaging process). Hence,

we compute a spatial gradient for a (possible) texture region, where the difference

yt1
s − yt1

s′ is achieved by considering ys and ys′ as being two vectors (respectively at

location < s, s′ >∈Wn, s �=s′) obtained by gathering together all the gray (or color)

values contained in a Ns′×Ns′ squared window Ws′ centered on pixel s (for ys) and

centered on pixel s′ (for ys′). (let us note that, instead of gathering the pixel values

in the vector ys, we could also compute local statistics estimated from the values

contained around s). Finally this temporal-spatial local finite differences between

these two (feature) vectors are computed in the L1 norm sense (|.|1).
A simple way to improve our CD result accuracy consists in considering and

estimating the dual and complementary version of the above expressed (in Eq. 3.1)

similarity map by considering the same local spatio-temporal gradient operator but
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expressed in terms of the infinity norm (which is the dual norm of the L1 norm [93]

[123]). In this regard, a second similarity map zD2 is estimated, at every pixel s of

the image, by the following operator:

zD2
s =

∑
<s,s′>∈Wn

max
1≤i≤Ns′×Ns′

∣∣∣|yt1i (s)− y
t1
i (s′)| − |yt2i (s)− y

t2
i (s′)|

∣∣∣ (3.2)

with yt1i (s) is the i-th component of the pixel vector yt1
s or the i-th pixel value taken

within the Ns′×Ns′ squared window Ws′ (i.e., considering that yt1
s = (yt11 (s), . . . , y

t1
i (s),

. . . , yt1Ns′×Ns′
(s)). In our application, we take Nn=7 and Ns′ =3 for zD1

s and zD2
s .

Let us mention that the strategy of combining or mixing different norms, for com-

plementarity reasons and better results, has been already investigated and observed

recently in machine learning theory for improving feature selection techniques or for

finding a support vector machine based classification rule with minimal generaliza-

tion error [37] but also in image processing where the quality of the estimation has

been found to be improved in the framework of optimization based regularization,

in image restoration [28], denoising [6], image deconvolution [82], or in Fluorescence

diffuse optical tomographic (FDOT) reconstruction [5], etc., to name a few. More

generally and in summary, it is established, in these works, that estimations based

on the Lp=1 norm generally encourages sparsity contrary to Lp>2 (and especially L∞

norm) that favours diversity [44]. This is what we have observed in our multimodal

change detection or two-class segmentation problem; the spatio-temporal gradient

operator based on the L1 norm favours sparse segmentation result contrary to the

one based on the L∞ norm which rather encourages diversity.

We can also understand this complementarity in the context of estimation from

noisy image data. Linf norm is more sensitive to noise than L1 and thus less efficient

when the image is noisy. Conversely Linf norm is more discriminant than L1 if there

is not much noise in the image. For different levels of noise (thus, regardless of

the imaging modality), Linf norm produces a complementary version of L1 and the
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take into account of these two norms thus gives a compromise CD estimation whose

distribution (given by the confusion matrix) is well balanced with no bias in favour

of one class.

3.2.2 Scale Invariant Change Detector

An appealing hierarchical framework for our CD problem is to consider a multires-

olution representation of the input bitemporal satellite images. This multiresolution

representation (which can be simply achieved by Gaussian low-pass filtering each pre-

vious scale of the input image, and decimation by a factor of two in the horizontal and

vertical directions), has the intrinsic capability to represent and re-organize image in-

formation into a set of details (i.e., high-frequency patterns) appearing at different

spatial resolution levels. Conceptually, this strategy will allow us to detect and in-

tegrate relevant information at different frequencies (which are only represented at a

specific resolution scale or pyramid level) and it also both makes our change detector

robust against to noise and somewhat scale-invariant.

To this end, we construct two 3-level pyramidal representations, resulting from

the application (at each resolution level) of respectively the first (zD1
s ) and second

(zD2
s ) CD operators (see Eqs (3.1)-(3.2)) on the two temporal heterogeneous satellite

images. For each pixel of the coordinate s=(i, j)=(row, column), a multiscale feature

vector vs is then based on the concatenation of (zD1
s , zD2

s ) obtained at first or finer

resolution level, with the two estimations obtained at second resolution scale, i.e.;

(zD1

s[2]
, zD2

s[2]
) at pixel coordinate s[2]=(�i/2�, �j/2�) and finally those obtained at third

resolution scale, i.e.; (zD1

s[3]
, zD2

s[3]
), at pixel coordinate s[3]=(�i/22�, �j/22�) (with �i�

being the ceiling function and with Nn = 7 and Ns′ = 3 for each operator applied

and each scale)
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3.2.3 Similarity Feature Map Estimation

Finally in order to further reduce both the noise of the estimation and also the

redundant information provided by our two operators at different resolution scales,

while reducing the dimensionality of the data to be analyzed (and thus also the

complexity of the subsequent clustering process described in Section 3.2.5), we reduce

the dimensionality of each Nf -size (Nf = 3(levels)× 2(operators)) multiscale feature

vector (zD1
s , zD2

s , zD1

s[2]
, zD2

s[2]
, zD1

s[3]
, zD2

s[3]
), to one dimension (1D) with the linear-complexity

version of the Multidimensional Scaling (MDS) mapping method, called the FastMap

technique2 [26]. This allows us to obtain a robust similarity feature map yD with two

classes of gray level values corresponding to change and no change areas
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Input:

k: Dimensionality of target space

Np: Number of objects (vectors) in database

Output:

XNp×k: Number of objects in target space

Initialization:

d←0

FASTMAP ALGORITHM (k,D(),O)

———————————————

• if k ≤ 0 then return X

• d←d+ 1

• Choose pivot objects Oa and Ob such that the distance

D(Oa, Ob) is maximized

foreach object i from O do

• Project Oi on the line (Oa, Ob)

Compute : X[i, d] = xi

xi =
D2(Oa,Oi)+D2(Oa,Ob)−D2(Ob,Oi)

2D2(Oa,Ob)

end

foreach object i from O do

• Project Oi on an hyper-plane perpendicular to the

line (Oa, Ob)

(D′)2(O′
i, O

′
j) = D2(Oi.Oj)− (xi − xj)

2

end

call FASTMAP(k − 1, D′(),O)

Algorithme 1: FastMap

2 The first step of the FastMap algorithm, is to select two objects (or feature vector) the most

dissimilar to form the projection line. These two objects are selected by using a deterministic

procedure called choose-distant-objects [26]. The second step is to project any other object onto

this orthogonal axis (called a pivot line) by employing the cosine rule (see algorithm 1). The
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3.2.4 Superpixel Based Filtering Step

Once the feature similarity map yD is estimated thanks to our above-presented scale

and rotation-invariant temporal-spatial gradient operator for texture, we decide to

filter yD with an original superpixel-based filtering strategy in order to make yD less

noisy and thus to make its subsequent classification into change and no change areas

(see Section 3.2.5) more robust.

A superpixel is a perceptually meaningful collection of pixels, obtained from some

low-level grouping process. Fundamentally, it is the result of an oversegmentation in

which the pixels inside each superpixel form a consistent, perceptually meaningful,

unit or atomic region e.g., in terms of color, texture, intensity and so on. In addition

to estimate a set of homogeneous regions (of nearly similar size) allowing to preserve

the important structures in the image, this low-level process is also representationally

and computationally efficient. By replacing the rigid structure of the pixel grid, it

reduces the complexity of images from hundreds of thousands of pixels to only a

few hundred superpixels. Recently, an interesting superpixel algorithm called simple

linear iterative clustering (SLIC) [1] has been proposed, which, compared to the

state-of-the-art superpixel methods, turns out to be superior for both efficiency and

boundary preservation. SLIC is a two step procedure which first estimates superpixels

by grouping pixels with a local k-means clustering method and second, exploit a

connected components algorithm to remove the generated small isolated regions by

merging them into the nearest large superpixels.
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Input:

Image with N pixels

K: Desired number of Superpixels

Output:

Image segmented

Initialization:

• S =
√
N/K

• Choose K Cluster (superpixel) centers

Ck = [lk, ak, bk, xk, yk]
T in LAB space color (or gray level

L; Ck = [lk, 0, 0, xk, yk]
T , where the lk component is

calculated directly from the grayscale value) with

position (x, k) by sampling pixels at regular grid steps S

• Perturb cluster centers in an n× n neighborhood, to

the lowest gradient position

while E � threshold do

foreach each cluster center Ck do

• Assign the best matching pixels from a 2S× 2S

square neighborhood around the cluster center

end

• Compute new cluster centers and residual error E

(L1 distance between previous centers and

recomputed centers)

end

• Enforce connectivity

Algorithme 2: SLIC segmentation
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In our application, SLIC is applied on yt1 and yt2 in order to detect the different

consistent structural regions (land uses) existing in these images. The intersection

between these two SLIC segmented images3 allows us to define a third over-segmented

map yS (with thus smaller superpixels) in which the set of pixels inside each new

superpixel has the appealing property to both exhibit homogeneous structural regions

(in terms of land uses) in the before and after images. At this stage, a possible

strategy is to exploit the collection of superpixel belonging to yS (and {yt1, yt2} or

yD) to individually classified each superpixel into changed or no-changed class. This

approach is algorithmically complex and, in practice, does not perform as well as

the second strategy used in this work that consists in averaging each pixel value of

yD, inside each superpixel of yS, between them. Conceptually, this later strategy

can be interpreted as a segmentation-based spatially adaptive filter which averages

the values given by our CD operator within each individual homogeneous changed or

no-changed small region previously estimated (see Fig. 3.1 and Algorithm 3 which

simply averages out each yD values of each segment).
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Input:

yD: Similarity map (to be filtered)

{yt1, yt2}: Image before and after

K: Desired number of superpixels

Output:

yD: Filtered similarity map

Initialization:

• xt1 ← SLIC Segmentation (yt1;K)

• xt2 ← SLIC Segmentation (yt2;K)

• yS← Intersection (xt1, xt2)

foreach superpixel bi ∈ yS do

val←0

nb←0

foreach pixel ps (at location s) ∈ bi do

val←val + yDs

nb←nb+ 1

end

foreach pixel ps (at location s) ∈ bi do

yDs ← (val/nb)

end
end

Algorithme 3: Superpixel-based filter

3 if xt1 denotes the segmentation or the subdivision of the image yt1 into a set of superpixels or re-

gions: xt1 = {Rt1
1
, Rt1

2
, . . . , Rt1

N1
} and xt2 is the subdivision of yt2, i.e., xt2 = {Rt2

1
, Rt2

2
, . . . , Rt2

N2
}.

Every pixel of the image pair (yt1, yt2) is thus associated to an unique region in the set xt1 and

an unique region in the set xt2. Each unique pair of regions defines a new individual region in

the segmentation map yS which is defined as the intersection of xt1 and xt2. Conceptually, each

generated superpixel in yS corresponds to a group of connected pixels belonging to the same

region in xt1 and the same region in xt2.
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Input:

zD: Filtered similarity map (to be segmented)

Output:

xCD: binary CD map (with N pixels)

foreach pixel pi (at location i) ∈ zD do

• Compute the mi =mean, vi =variance and mxi =

maximum gray level contained within the 7× 7

window centered on pi.

xi← (mi, vi, mxi)

end

• xCD←K(=2)-means Algo

(
x1, ...,xN

)
Algorithme 4: Two-class clustering

3.2.5 Two-class Clustering

Finally, in order to automatically separate the change and no change areas from the

previously filtered feature similarity map yD, we use the following unsupervised clus-

tering approach which aim is to increase the separability of the two classes or clusters;

we apply a small overlapping sliding window over the image of size 7 × 7 in which

we compute three features, namely; the empirical mean and variance of luminance,

as well as the maximum gray level, for each location of the window. Each win-

dow location thus provides a three-component “sample” xm. The collected samples

{x1, . . . ,xN} are then clustered into two classes {e0, e1} using the k-means cluster-

ing procedure [54] [4]. In fact, this strategy allows us to increase the separability of

the two clusters by taking into account the spatial contextual information (or the

neighborhood) around each pixel in the binary clustering process (see Fig. 3.2 and

Algorithm 4).
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Figure 3.1. Superpixel based filtering step on SAR 3-looks/SAR 5-looks dataset

(sixth dataset, cf. 7.3.1). (a-b) superpixel contour superimposed on yt1 (before)

and yt2 (after) satellite image, (c-d) segmentation into superpixel regions (on

images yt1 and yt2), (e) segmentation intersection yS (between segmentation

maps (c) and (d)), (f) filtered similarity feature map zD (by spatial averaging

all the values of the similarity feature map over each superpixel estimated in

(e)).
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Figure 3.2. 3D feature space for the local textural features (mean, variance,

maximum gray level) of the filtered feature similarity map yD related to different

heterogeneous datasets (a-f); red and blue colors represent, respectively, the

unchanged and changed clusters or classes found by the K-means algorithm.

3.3 Experimental Results

To validate our approach, we present in this section a series of tests conducted on

different real heterogeneous datasets, chosen to reflect the three possible change detec-

tion conditions in multimodal case; Namely, two heterogeneous optical images, het-

erogeneous SAR images, one optical and one SAR images. This allows us to compare

the performance of the proposed method with different state-of-the-art multimodal

change detection algorithms recently proposed in this field [65] [88] [90] [14] [89] [64]

in different multimodal CD conditions. In this benchmark, all the ground-truth im-

ages (or change detection mask) was provided by an expert photo interpreter. We

also compare the obtained results with other change detector traditionally proposed

in mono or multimodal cases and provided by the ORFEO Toolbox [104] [63]. In our

implementation, we have used the FastMap and SLIC C++ codes kindly provided

by their authors and freely available on the web.
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Figure 3.3. Heterogeneous (multisource) Optical/SAR and SAR/Optical

datasets: (a-c) image t1, t2, ground truth; (d-f) filtered similarity map; fi-

nal (changed-unchanged) segmentation result and confusion map (white: TN,

red: TP, blue: FP, Cyan: FN) obtained by the proposed approach.

3.3.1 Heterogeneous Dataset Description

• The first heterogeneous dataset is a pair of SAR/optical satellite images (Toulouse,

France), with size 4404 × 2604 pixels, before and after a construction. The SAR

image was taken by the TerraSAR-X satellite (Feb. 2009) and the optical image

by the Pleiades (High-Resolution Optical Imaging Constellation of CNES, Centre

National d’Etudes Spatiales) satellite (July 2013). The TSX image was co-registered

and re-sampled by [87] with a pixel resolution of 2 meter to match the optical image.
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• The second one is a pair of optical/SAR satellite images (Gloucestershire region,

in southwest England, near Gloucester), with size 2325×4135 pixels, before and after

a flooding taking place in an urban and rural area. The optical image comes from the

Quick Bird 02 (QB02) VHR satellite (15 July 2006) and the SAR image was acquired

by the TerraSAR-X satellite (July 2007). The TSX image presents a resolution of 7.3

meters and the QB02 image (with resolution of 0.65 meter and 0% cloud cover) was

co-registered and re-sampled by [87] to match this resolution.

• The third dataset shows two Heterogeneous optical images acquired in Toulouse

(Fr) area by different sensor specifications (size 2000×2000 pixels with a resolution of

0.5 meter). The before image is acquired by the Pleiades sensor in May 2012 before the

beginning of the construction work, and the after image is acquired by WorldView2

satellite from three (Red, Green and Blue) spectral bands (11 July 2013) after the

construction of a building. The WorldView2 VHR-image was co-registered by [87] to

match the Pleiades image.

• The fourth dataset [14] is a pair of SAR/SAR satellite images (Gloucester, U.K.)

before and during a flood event caused by intense and prolonged rainfall, overwhelm-

ing the drainage capacity, on a urban and agricultural/rural areas, with size 762×292

pixels, acquired by RADARSAT satellite with different number of looks. The num-

bers of looks for the before SAR image is 1-look image (Sept. 2000) and the numbers

of looks for the after image is 5-looks (Oct. 2000). These two SAR images have a

resolution of about 40 meters.

• The fifth dataset [63, 64] consists of one multispectral image and one SAR

image showing the area of Gloucester (U.K.), with a size of 1318× 2359 pixels. The

multispectral image is taken by the Spot VHR satellite on Sept. 1999 before a flooding

event. The SAR image is captured by the European Remote Sensing (ERS) satellite

(around Nov. 2000) during the flooding event. The resolution of these two images

are about 10 meters [63].

• The sixth dataset [14] shows a pair of heterogeneous satellite images (size 400×
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800 pixels and resolution of 10 meters) acquired over the Democratic Republic of

the Congo (country located in central Africa) before and after the eruption of the

Nyiragongo volcano (January 2002). It consists of two SAR images captured by the

RADARSAT satellite with different numbers of looks. The number of looks for the

SAR image before and after change is respectively 3-looks and 5-looks.

• The seventh dataset is composed of two heterogeneous optical images. It shows

the changes of the Mediterranean in Sardinia area (Italy). This dataset is acquired

by different sensor specifications, and consists of one TM image (optical) and one

optical image. The before image is the fifth band of a TM image (near-infrared

band) acquired by the Landsat-5 (Sept. 1995) with spatial resolution of 30 meters.

The second optical image comes from Google Earth (Jul. 1996), and is an RGB

image with spatial resolution of 4 meters. After co-registration, these two images are

re-sampled at the same pixel-resolution 412× 300 pixels.

• The eighth data set consists of one SAR image and one RGB optical image.

It shows a piece of the Dongying City in China, before and after a new building

construction. The SAR image is acquired by RADARSAT-2 (Jun. 2008) with spatial

resolution of 8 meters. The optical image comes from Google Earth image (Sept.

2012) and its a combination of aerial photography imaging with a satellite imaging

(produced respectively by QuickBird and Landsat-7) with a spatial resolution of 4

meters. After co-registration, these two images are re-sampled at the same pixel-

resolution 921× 593 pixels.

Table 3.1 summarizes a brief description of the eight heterogeneous remote sensing

image datasets used in our research which cover the possible cases that may arise in

the heterogeneous CD problem.
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Figure 3.4. Heterogeneous (multisensor) Optical/Optical dataset: (a-c) image

t1, t2, ground truth; (d-f) filtered similarity map; final (changed/unchanged)

segmentation result and confusion map (white: TN, red: TP, blue: FP, Cyan:

FN) obtained by the proposed approach.

Table 3.1. Description of the eight heterogeneous datasets

Dataset Date Location Size (pixels) Common spatial resolution Sensor

1 Feb. 2009 - July 2013 Toulouse, Fr 4404×2604 2 m. TerraSAR-X / Pleiades

2 July 2006 - July 2007 Gloucester, UK 2325×4135 0.65 m. TerraSAR-X / QuickBird 02

3 May 2012 - July 2013 Toulouse, Fr 2000×2000 0.52 m. Pleiades / WorldView 2

4 Sept. 2000 - Oct. 2000 Gloucester, UK 762×292 40 m. RADARSAT

5 Sept. 1999 - Nov. 2000 Gloucester, UK 1318×2359 10 m. VHR Spot / ERS

6 Jan. 2002 - Jan. 2002 Central Africa, CF 400×800 10 m. RADARSAT

7 Sept. 1995 - Jul. 1996 Sardinia, IT 412×300 30 m. Landsat-5 (NIR band) / Landsat-5

8 Jun. 2008 - Sept. 2012 Dongying, CH 921×593 8 m. RADARSAT-2 / QuickBird and Landsat-7

3.3.2 Results & Evaluation

In all the experimental results, we have considered the simple gray level of the image

(and not a local statistics vector around a neighbourhood of s) (see Eqs (3.1) and (3.2)

). In the case of an optical image, this also requires the conversion of the possible color

image to a grayscale image. Each operator results zD (at each resolution level) is re-

scaled for all sites s of the image between [0−255]. We have considered Np = 3 levels

of the multiresolution pyramidal structure and Nn = 7, Ns′ = 3 for each operator

applied at each scale of this pyramid (see Section 3.2.2). Finally, for the superpixel-



72

Figure 3.5. Heterogeneous (multilooking) SAR/SAR datasets: (a-c) image t1,
t2, ground truth; (d-f) filtered similarity map; final (changed/unchanged) seg-

mentation result and confusion map (white: TN, red: TP, blue: FP, Cyan: FN)

obtained by the proposed approach.

based filtering step (see Section 3.2.4), the parameters of the SLIC algorithm are

Ns = 300.

In order to discuss and compare obtained results, a quantitative study is realized

by computing the classification rate accuracy that measure the percentage of the

correct changed and unchanged pixels:

PCC =
TP+TN

TP+TN+FN+FP
(3.3)

Where TP is the true positive value that corresponds to the number of pixels that

are detected as the changed area in both the ground truth image and the obtained

results. TN is the true negative value that corresponds to the pixel number belong-
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Table 3.2. Accuracy rate of change detection on the eight (in lexicographic

order) heterogeneous datasets obtained by the proposed method and the state-

of-the-art multimodal change detectors (first upper part of each Table) and

mono-modal change detectors (second lower part of each Table).

SAR/Optical dataset (1) Accuracy

Proposed method 0.881

Prendes et al. [89] 0.844

Correlation [89] 0.670

Mutual Inf. [89] 0.580

Optical/SAR dataset (2) Accuracy

Proposed method 0.943

Prendes et al. [87, 90] 0.918

Prendes et al. [88] 0.854

Copulas [65, 88] 0.760

Correlation [65, 88] 0.688

Mutual Inf. [65, 88] 0.768

Pixel Dif. [88, 104] 0.782

Pixel Ratio [88, 104] 0.813

Optical/Optical dataset (3) Accuracy

Proposed method 0.877

Prendes et al. [87, 89] 0.844

Correlation [87, 89] 0.679

Mutual Inf. [87, 89] 0.759

Pixel Dif. [87, 104] 0.708

Pixel Ratio [87, 104] 0.661

SAR 1-look / SAR 5-looks dataset (4) Accuracy

Proposed method 0.821

Chatelain et al. [14] 0.732

Correlation [14] 0.521

Ratio edge [14] 0.382

VHR Optical/SAR dataset (5) Accuracy

Proposed method 0.743

Gregoire et al. [64] 0.70

SAR 3-looks/SAR 5-looks dataset (6) Accuracy

Proposed method 0.840

Chatelain et al. [14] 0.749

Correlation [14] 0.713

Ratio edge [14] 0.737

Optical(NIR band)/Optical dataset (7) Accuracy

Proposed method 0.847

Zhang et al. [126] 0.975

PCC [126] 0.882

SAR/Optical dataset (8) Accuracy

Proposed method 0.884

Liu et al. [51] 0.976

PCC [51] 0.821

ing to the intersection of the unchanged area in both the reference image and the

obtained results. FN represents the false negative value done by the number of the

missed changed pixels in the obtained results and FP represents the false positive

corresponding to the unchanged pixels wrongly classified as changed.

A comparison with different state of the art approaches [65] [88] [90] [14] [89] [64] is

summarized in Table 7.2. We have also summarized in Table 7.3 the confusion matrix

obtained by the proposed change detector. From Table 7.2, we can see that the rate
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Table 3.3. Confusion matrix for the eight multimodal datasets i.e.,

[TSX/Pleiades] (4404× 2604 pixels), [QB02/TSX] (2325× 4135 pixels),

[Pleiades/WorldView 2] (2000× 2000 pixels), [SAR 1-look / SAR 5-looks]

(762×292 pixels), [Spot VHR / ERS] (1318×2359 pixels), [SAR 3-looks

/ SAR 5-looks] (400×800 pixels), [Optical (NIR band) / Optical ] (412×300
pixels), [SAR/Optical ] (921×593 pixels).

Multimodal pair TP TN FP FN

TSX/Pleiades 661075 9448661 1106363 251917

QB02/TSX 521245 8549723 447337 95570

Pleiades/WorldView 2 342991 3166707 226958 263344

SAR 1-look/SAR 5-looks 25082 157607 25953 13862

VHR Spot/ERS 404390 1905919 520681 278172

SAR 3-looks/SAR 5-looks 38934 230128 27525 23413

Optical(NIR band)/Optical 7024 97744 18147 685

SAR/Optical 18550 464568 59353 3682
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accuracy of our method outperforms the most other state-of-the-art approaches and

shows the strength and the flexibility of our method to process both the three different

heterogeneous image pairs possibly used in remote sensing (see Figures 6.4, 6.6, and

3.5) but also multitemporal image pairs with different spatial resolutions (see Tables

7.2 and 3.1). Nevertheless, we assert with high confidence that better accuracy results

are obtained on satellite image pairs with high spatial resolution (datasets 1-2 & 3

versus datasets 4-5-6). In fact, this peculiar feature can be easily explained if we

remember that our change detector is based on a temporal gradient operator applied

to a local spatial gradient (see Section 3.2.1), that tries to detect the presence or not

of a common and specific high frequency pattern (e.g., edges, contours, micro-texture,

etc.) between two local regions, located at the same place, but (at different times)

on different satellite images. In fact, the detection of a common and specific high

frequency pattern between the two multitemporal satellite images is necessarily all

the more robust as the image is in high resolution.

The proposed CD model is evaluated using different imaging modalities with dif-

ferent noise types and levels and under different spatial resolutions along with a wide

variety of change events. The evaluation shows that our CD model is flexible, but

also less performing, for some cases, than some other multimodal CD models pro-

posed in the literature dealing with a specific type of noise, imaging modalities, or

type of change events (see figures 6.4, 6.6, and 3.5 illustrating the applicability and

the efficiency of our detector for a wide variety of cases). Nevertheless, our average

classification accuracy rate is comparable or outperforms some state-of-the-art ap-

proaches. We think that the flexibility of our CD model is also the result of the fact

that our method does not depend, as for all learning machine based methods, on the

content of a training base that could be biased in favour of an imaging modality type,

resolution, degree of noise or type of occurring change event and also does not depend

on a specific a priori (generally too rigid) distribution mixtures on which parametric

statistical methods heavily relies.
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Technically speaking, the first (zD1
s ) CD operator favours sparse segmentation in

term of candidate CD regions and used alone would increase the false negative rate

(see Fig.3.6 (a)) contrary to the second (zD2
s ) CD operator which, used alone, en-

courages diversity for detecting changes while reducing the false negative rate but

increasing the false positive rate (see Fig.3.6 (b)). The mixture of these two com-

plementary CD operators has the merit to get well-balanced class accuracies instead

of the use of only one of the two CD operator that would favour one of the two

classes. The evolution of the average classification accuracy according to the number

of (pyramid) levels shows that 3 levels are in fact a good compromise between the

integration of relevant information at different resolution levels or frequencies and the

loss of information due to irrelevant information or noise detected at higher scales

and the loss of information due to the FastMap-based dimensionality reduction tech-

nique (see Fig.3.7 (b)). Finally, the number of superpixels affects slightly the average

classification accuracy because the fact that small segmentations errors can be accu-

mulated from the SLIC segmentation algorithm applied on the before and the after

images (see Fig.3.7 (a)).

By knowing this, a further improvement of our method would be to include a

reliable high frequency noise reduction step of the two input images, as very first

pre-processing. However, let us note that finding a reliable (multimodal) denoising

method in our case is not trivial, since the statistics of the noise are radically dif-

ferent in the case of passive optical sensors (additive and Gaussian noise) and active

SAR sensors (multiplicative and speckle noise). Thus, in the case of multisource

SAR+optical images, this denoising technique should be different and adaptive. It

is also the case for multilooking images in which, the spatial averaging and different

filtering (generally used to reduce the speckle noise) transforms the noise degradation

into a mixture of independent additive and multiplicative correlated noise process

which becomes very difficult to reduce.

Fig.3.8 presents a visual comparison between the CD similarity map obtained by
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our method and the one obtained by the SoA methods. By comparison with SoA

methods [65] [14] [89] [64], the proposed CD method seems to visually produce more

distinctive binary cluster-like structure (modeling the unchanged and changed areas)

a bit more separated and more compacted (with lower internal variance within a

cluster) and with less overlap. Besides, our method yields to a more spatially and

properly regularized (or less noisy) similarity-feature maps.

The average accuracy rate obtained on the eight multimodal dataset based on the

dual CD operators is 85.38%. With the CD operators expressed in the formula 1 and

2 the average accuracy rate obtained on this eight multimodal datasets is respectively

73.81% and 64.35%. Fig. 3.6 presents a visual comparison between two binary maps

resulting from the application of (only) the first (zD1
s ) and second (zD2

s ) CD operators

and visually showing how the two different binary maps complement each other (see

also Fig.6.4 at second row.)

3.3.3 Parameter Sensitivity

In this section we study the impact of the four internal parameters of our CD model

(see Section 6.3.2) on the final detection result. These parameters include the follow-

ing: 1-] the two sizes Nn, Ns′ of the squared window used in our detection features (see

Section 3.2.1) 2-] Np the number of levels used in the pyramid representation (see Sec-

tion 3.2.2) and finally, 3-]Ns the number of superpixels used in the SLIC segmentation

algorithm (see Section 3.2.4). To that end, we have shown, in Fig. 3.7, the evolution

of the average accuracy obtained (on the eight considered heterogeneous image pairs)

when the Np and Ns parameters evolve around their set value (the other parameters

being constant and set to their set value, i.e., Ns′ =3, Nn=7, Np=3, Ns=300). Con-

cerning, the parameters Ns′ and Nn, since Nn is necessarily greater than Ns′ (the local

Ns′ × Ns′ window describing the texture features around the pixel is necessarily in-

cluded into a larger Nn×Nn search window), we obtain the following accuracy results;
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Figure 3.6. The two complementary binary maps resulting from the application

of only the first (a) (zD1
s ) and second (b) (zD2

s ) CD operators on the second

(optical/SAR) pair of satellite images.

0.8538, 0.8463, 0.8452, 0.8335 for respectively (Ns′ , Nn) = {(3, 7)(5, 9)(7, 11)(9, 13)}.
All these experiments show that the proposed model is not too much sensitive or

dependent of one or its four internal parameters.

3.4 Conclusion

In this paper, we have proposed a novel and simple change detection method in het-

erogeneous remote sensing images. The proposed method is based on an imaging

modality-invariant operator that detects at different resolution levels, the common

specific high-frequency pattern of each structural region existing in the two hetero-
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Figure 3.7. Evolution of the average accuracy using different parameters (the

other parameters being constant and set to their set value): (a) number of

superpixels, (b) number of pyramid levels.
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geneous satellite images. The dual norm formulation of this new detector was found

to give a reliable CD estimation whose distribution (given by the confusion matrix)

is well balanced with no bias in favour of a particular class. Qualitative and quanti-

tative results show that the proposed method is effective and performs particularly

well, without requiring any preprocessing, on different types of input satellite images

(multisensor optical images, multisource SAR+optical or multilooking SAR images),

degraded with possibly different types of noise or different level of noise, and showing

different kind of changes due to a major urban construction and/or changes due to

different types of natural phenomenon.
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Figure 3.8. Comparison of the similarity map obtained by: (a) the SoA method

presented by Prendes et al. (row 1, 2 & 4) [88] by Gregoire et al. [64] (row

3) and Chatelain et al. [14] (row 5 & 6) and (b) the proposed method in the

case of, from top to bottom: multisource Optical/SAR and SAR/Optical images

(datasets #1, #2 & #5), multisensor Optical/Optical images (dataset #3) and

SAR/SAR (datasets #4 & #6) (c) ground truth.



Chapitre 4

MULTIMODAL CHANGE DETECTION IN REMOTE

SENSING IMAGES USING AN UNSUPERVISED PIXEL

PAIRWISE

BASED MARKOV RANDOM FIELD MODEL

Dans ce chapitre, nous présentons notre article accepté dans la revue IEEE Trans-

actions on Image Processing, intitulé: Multimodal Change Detection in Remote

Sensing Images Using an Unsupervised Pixel Pairwise Based Markov Ran-

dom Field Model . Nous exposons ce dernier dans sa langue originale de soumission.

Abstract

This work presents a Bayesian statistical approach to the multimodal change de-

tection (CD) problem in remote sensing imagery. More precisely, we formulate the

multimodal CD problem in the unsupervised Markovian framework. The main nov-

elty of the proposed Markovian model lies in the use of an observation field built up

from a pixel pairwise modeling and on the bitemporal heterogeneous satellite image

pair. Such modeling allows us to rely instead on a robust visual cue, with the ap-

pealing property of being quasi-invariant to the imaging (multi-) modality. To use

this observation cue as part of a stochastic likelihood model, we first rely on a pre-

liminary iterative estimation technique that takes into account the variety of the laws

in the distribution mixture and estimates the parameters of the Markovian mixture

model. Once this estimation step is completed, the Maximum a posteriori (MAP)

solution of the change detection map, based on the previously estimated parameters,

is then computed with a stochastic optimization process. Experimental results and
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comparisons involving a mixture of different types of imaging modalities confirm the

robustness of the proposed approach.

4.1 Introduction

Multimodal Change Detection (CD) [55] is a procedure used to identify any land

cover changes that occurred between two satellite images acquired at different times,

in the same geographical area but by different kinds of sensors. Multimodal CD is

a growing interest task which can be considered as a generalization of the basic and

classic monomodal CD problem as it requires less stringent requirements about the

characteristics and origin of the acquired data. It is also a challenging task since, such

a procedure must be powerful and flexible enough to model any existing heterogeneous

data types (thus sharing different statistics) in remote sensing imagery and to handle

the same problems that have been already solved by monomodal CD techniques

[25, 95, 128] [33] such as anomaly and target detection (eventually in the presence of

diurnal and seasonal variations), natural, land or environmental monitoring, damage

monitoring (earthquake, flooding, landslides, etc.) or urban planning, to name a few.

Multimodal CD has recently aroused a growing interest, in the remote sensing

community since this technique allows to relax the assumption of homogeneous and

co-calibrated measurements and consequently to exploit the huge amount of hetero-

geneous data, we can now get from various archives or from different types of existing

Earth observing satellites. In addition, the practical and technical advantages of such

multimodal analysis procedure are obvious and are widely described in the literature,

for instance [109]. Finally, let us add that the different imaging modalities may

be complementary and this sensor fusion technique could potentially be exploited

(not only in Geoscience imaging [45]) for further improving the change detection and

analysis of land surfaces with complex properties subject to extreme conditions (e.g.

temperature, fire, ice, etc.).
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Despite its undeniable potential, there are relatively few research works that have

been devoted to heterogeneous or multimodal CD using machine learning or image

processing. Nevertheless, we can identify four main categories. First non-parametric

based techniques such as learning machine algorithms (since these techniques do not

assume explicitly a specific parametric distribution for the data) [11,24,51,53,66,126]

or unsupervised non-parametric based procedures, that do not require supervised

training step, such as the energy based model, in the least-squares, sense proposed

in [109] and satisfying an overdetermined set of constraints, expressed for each pair of

pixels existing in the before-and-after images. Secondly, algorithms relying on similar-

ity measures with invariance properties according to the imaging modality [2,8,110].

Thirdly procedures mainly based on a transformation or projection of the two mul-

timodal images to a common feature space, in which the two heterogeneous images

share the same statistical properties and on which classical monomodal CD methods

can then be applied [15, 29, 58, 111, 113, 117, 120]. Finally parametric models that we

now describe in more details since the proposed model fits into this category. In para-

metric techniques, a set (or mixture) of multivariate distributions are generally used

to model the joint statistics or the dependencies between the two imaging modalities.

More precisely, local models of dependence between unchanged areas are modeled

according to the copula theory in [65] and based on these models, Kullkack-Leibler-

based comparisons on local statistical measures are then used to generate a similarity

map which is subsequently binarized. An appealing two-step multivariate statistical

approach has also been proposed in [87–89] where the first step aims to estimate a

physical model, based on a mixture of multi-dimensional distributions (both taking

into the noise model, the relationships between the sensor responses to the objects

and their physical properties). A statistical test based on this model then allows to

estimate the changes. In the same spirit, the authors in [14] also propose to first es-

timate a multidimensional distribution mixture estimation based on a new family of

multivariate distributions with different shape parameters and especially well suited
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for detecting changes in SAR images with different numbers of looks.

Herein, we propose a different statistical approach, relying on an observation field

built up from a pixel pairwise modeling on the bitemporal heterogeneous satellite

image pair. This allows us to indirectly model the joint statistics or the dependencies

between the two imaging modalities and to finally base our CD (or binary segmen-

tation) model on a relevant imaging modality-invariant visual cue whose likelihood

model parameters can be fully estimated within the standard ICE (Iterative condi-

tional estimation) framework [86, 94] with ML (Maximum Likelihood) estimator in

the Least Square (LS) sense. Once the estimation step is completed, the MAP (Max-

imum a posteriori) solution of the change detection map, based on the previously

estimated parameters, is then computed with a stochastic optimization strategy.

The remainder of this paper is organized as follows: Section 4.2 describes proposed

unsupervised Markovian CD model by first defining the ingredients of the proposed

MRF model (likelihoods and priors), and the proposed strategy based on a two-step

procedure; namely a parameter estimation step and a segmentation step. Section

7.3 presents a set of experimental results and comparisons with existing multimodal

change detection algorithms. In this section, we describe the robustness assessment

for our proposed technique. Finally, Section 7.4 concludes the paper.

4.2 Unsupervised Markovian CD Model

Herein, we formulate the multimodal CD problem in the unsupervised Bayesian

framework. To this end, a possible and interesting approach is a two-step process.

First, a parameter estimation step is conducted to infer the likelihood model param-

eters (in the ML sense). Then a second step is devoted to the binary segmentation

or change detection itself based on the value of estimated parameters. [73].

Let yt1 and yt2, a pair (co-registered) bi-temporal remote sensing (N pixel size)
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image t1 image t2 CD map

Figure 4.1. In lexicographic order; (synthetic) image before a flooding event,

with an urban region at the center, a vegetation region all around the image

and a river crossing the image from right to left (bottom); image of the same

area (and obtained by another imaging modality, thus with different colored

textures) after a flooding event, and ground truth CD map (with the white

region corresponding to the changed area). Illustration of the four pixel pair

locations <s, t> leading to the four possible cases (#1a & #1b : low value

for y<s,t> implying that < s, t > must share the same class label in the CD

map x, #2 & #3 : high value for y<s,t> implying that <s, t> must share a

different class label between s and t in the final CD map x to be estimated.

The link (between each pair of pixels considered) is drawn from such way that

its thickness is proportional to the value that Eq. (4.1) could give.

images acquired at two different times (before and after a given event), in the same

geographical area, and from different sensors. We first consider X = {Xs, s ∈ S} the

random label field located on the same rectangular lattice S of N sites s associated

to the two input images, with each Xs taking its value in the discrete set Λlabel =

{e0 = no-change, e1 = change}.

4.2.1 Observation Field

In the classic monomodal (or homogeneous) CD case, the two coregistred images yt1

and yt2 are first compared pixel by pixel in order to generate a difference image by

differencing or (log-)rationing (i.e., by using a temporal gradient or a log temporal
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gradient operator). This latter difference image is such that the pixels associated

with land cover changes present gray-level values significantly larger, compared to

those associated with unchanged areas and this visual cue based on the norm of the

temporal luminance gradient |yt1 − yt2 | is a robust cue on which the observation field

and the likelihood distributions of a MRF model can be built up. In the multimodal

(or heterogeneous) case, this temporal gradient is not a robust and reliable cue.

Indeed, the color or grey value of each pixel is not a useful information since the gray

levels of the same region, in yt1 and yt2 may be radically different according to the

characteristics of the two different imaging modalities. Conversely, yt1s and yt2s may

be locally coded with the same (grey or color) value in the two imaging modalities

but representing two completely different textures or regions.

In our application, in order to rely on a robust visual cue with the specific property

to be (nearly) invariant to the imaging modality, we have considered a pixel pairwise

modeling, estimated from (yt1 , yt2) and for each pixel pairs <s, t> existing in S, with

the following symmetric relation:

y<s,t> =
∣∣∣|yt1

s − yt1
t |1 − |yt2

s − yt2
t |1

∣∣∣ (4.1)

where |.|1 is the L1 norm and yt1
s and yt2

s represents a local statistics vector at pixel

s (that will be made explicit in the following) in the before and after image.

This visual cue y<s,t> already proposed, in a simplified version without texture

in [109]1, is defined as a function of the pixel pair < s, t > and (yt1, yt2). This is

discriminant in our application since, whatever the imaging modality, y<s,t> will give

a high value for two pixels at sites s and t that must belong to two different class

labels (no-change/change in our case) in the CD binary map (to be estimated) and

conversely, will give a low value, for two pixels at sites s and t that must share the

1 in which the authors define a set of constraints which will be satisfied, in the least squares (LS)

sense, by a multidimensional scaling-based constraint model aiming to generate a soft CD map

that is then binarized.
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Figure 4.2. We consider, for each pixel s, a sub-sample Gs of 8 pairs of pixels

<s, t> in which the pixel t is regularly distributed around a squared window of

size Nw×Nw (with Nw = 41 in our application). Besides ys and yt (see Eq.

(4.1)) is in fact a radially-integrated (DCT) spectral feature vector encoding the

textural and structural information existing around each local squared region of

size NT ×NT (NT = 16) centered at the considered pixel.

same class label (see Fig. 4.1 and its caption).

To use this cue in our Bayesian framework, we first consider that the set of y<s,t>

values are a realization of a random variable vectorY<s,t> = {Y<s,t>, Y<s,u>, ..., Y<u,v>, ...}
gathering the N(N − 1) random variables associated to each site pair, that we herein

call the random (pixel pairwise) observation field and secondly that X<s,t> is its cor-

responding random (pairwise) label field taking its value in Λlabel<s,t>= {id, di}. The

pixel-pairwise label id means that the pixel at location s an t must share the same

(identical) class label in the final CD map x̂ to be estimated (leading to the con-

figuration <xs = change, xt = change> or <xs = no− change, xt = no− change>).

Conversely, x<s,t> = di means that we have a different configuration, i.e., either the

configuration <xs=change, xt=no− change> or <xs=no− change, xt=change>.
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In our application, in order to decrease the computational load of our algorithm

and to keep a quasi-linear complexity with respect to the number of image pixels,

we consider for each pixel, a sub-sample Gs of 8 pairs of pixels regularly distributed

around a squared window of size Nw ×Nw centered around the pixel s (see Fig. 4.2).

Besides, we consider at site s or t (image before t1 or after t2) a feature vector y (see

Eq. (4.1)) encoding the textural and structural information existing around each local

squared region of size NT = 16 ×NT = 16 centered at the considered pixel (see Fig.

4.2). To this end, in our application, we first estimate the Discrete Cosine Transform

(DCT) of each local squared window, compute its module (i.e., its absolute value

since DCT is real) and then apply a half circular or Radial Integration Transform

(RIT) (using a bi-linear interpolation) to estimate a spectral descriptor vector of size

NT/2. Since this texture descriptor is obtained from the compressed domain, this has

the ability to be both, robust to noise (several denoisers are built from a filtering in

this DCT domain [67,74]), be strongly reduced in size, while combining the properties

to encode a texture with rotation and translation invariance. In addition, compared

to a Discrete Fourier Transform (DFT), the DCT has a higher compression efficiency

and above all, its spectrum is less biased than the DFT spectrum (especially when this

one is computed on small images) due to the even-symmetric extension properties of

DCT that avoids the generation of artifacts or spurious spectral components created

by edge effects caused by the inherent periodic nature of the DFT. Also, DCT uses

real computations, unlike the complex computations used in DFT. This makes the

computation of DCT extremely fast2.

2 For the implementation of this step, we have used the very fast 16 × 16 (fft2d) DCT package

implemented in C code by Takuya Euro (functions ddct16x16s tested in program shrtdct.c)

and available online at http address given in [81].
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4.2.2 Likelihood Distributions

To use the observation measure y<s,t> (see Eq. (4.1)) in a Bayesian settings, we must,

before all, estimate the (marginal / conditional) likelihood distributions of Y<s,t> in

the two possible cases; identical pixel-pairwise label x<s,t>= id or not x<s,t>=di.

Identical Pixel-Pairwise Label Distribution

In our experiments, we have noticed that, if x<s,t> = id, PY<s,t>|X<s,t>
is well approx-

imated, for a given s, by an exponential distribution pid = E(.;λ) with shape (or

inverse rate) parameter λ, i.e.:

pid(y<s,t>)= PY<s,t>|X<s,t>
(y<s,t>|x<s,t>=id)

=
exp

(−y<s,t>/λ
)

λ
·H(y<s,t>) (4.2)

with the right-continuous Heaviside step function, H(x) where H(0) = 1 and λ> 0

(which makes the distribution supported on the interval [0 ∞]).

This approximation can be justified and understood if we notice that, for a pixel

pair <s, t> located in a spatially and temporally homogeneous region (e.g., cases

#1a&#1b illustrated in Fig. 4.1), i.e. for x<s,t> = id, y<s,t> is in fact related

to the norm of a first order temporal gradient over a n-order (n is the distance

in pixel between s and t) spatial gradient and the gradient norm of the intensity

image is known to be well approximated by a simple exponential distribution [85]

or its numerous variant (such as its truncated [19] [20], generalized [115] or long-tail

version with a shape and scale factor [70, 72]).
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Different Pixel-Pairwise Label Distribution

In the case of x<s,t>=di (different pixel-pairwise labels), we have empirically noticed

that the Gaussian law pdi = N (.;μ, σ2) is well adapted to describe the measure y<s,t>:

Pdi(y<s,t>) = PY<s,t>|X<s,t>
(y<s,t>|x<s,t>=di)

=
1√
2πσ2

exp

(
−(y<s,t> − μ)2

2σ2

)
(4.3)

Let us note that, in the case of a heterogeneous pair of images and two heterogeneous

temporal regions (x<s,t>= di), this distribution is consistent with the central limit

theorem and the fact that this results from the addition of lots of different phenomena

(i.e., lot of numerical differences achieved between many possible different textural

feature vectors, coded by different imaging modality with possibly different scales,

etc.).

Data Likelihood and Posterior Distribution

Now, if we assume that the pairwise data Y<s,t> are independent conditionally on the

pairwise labeling process X<s,t>, and take into consideration the sub-sample Gs of

pairs of pixels defined in Section 4.2.1 (and shown in Fig. 4.2), one gets:

PY<s,t>|X<s,t>
(.) =

∏
s∈S

∏
<s,t>

t∈Gs

PY<s,t>|X<s,t>
(y<s,t>|x<s,t>

) (4.4)

In addition, if we consider that the distribution of X is stationary and Markovian and

choose a standard prior for the distribution of the labeling process X and that the

CD map x defines x<s,t> without ambiguity, one gets for the posterior distribution:

PX|Y<s,t>
(.) ∝

∏
s∈S

∏
<s,t>

t∈Gs

PY<s,t>|X<s,t>
(.) · PX(x) (4.5)

If we consider a standard isotropic Pott-type prior model relative to the second-order

neighborhood system ηs, with identical potential value β for the different (horizontal
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Figure 4.3. From top to bottom; Distribution mixture: Histogram of y<s,t> asso-

ciated to the heterogeneous image pair Dataset-3 and the two weighted (90%
of identical pairwise labels and 10% of different pairwise label) mixture compo-

nents that are estimated by the ICE procedure (see Section 4.2.3). Likelihood

mixture: the two preceding likelihood distributions (without proportion priors)

that are estimated by the ICE procedure.
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vertical, right diagonal or left diagonal) cliques 〈s, t〉 of ηs, thus a model favouring

for x̂, homogeneous regions of the same class no-change or change; i.e., PX(x) ∝
−β exp{∑〈s,t〉∈ηs

[1− δ(xs, xt)]} [7], (where δ is the delta Kronecker function) x̂, the

CD map to be estimated becomes the global maxima of the following corresponding

posterior probability:

x̂ ∝ argmax
x

∏
s∈S

PXs|Y<s,t>
(.)

∝ argmax
x

∏
s∈S

{∏
<s,t>

t∈Gs

PY<s,t>|X<s,t>
(.)

· exp−
{
β
∑

〈s,t〉∈ηs

[1− δ(xs, xt)]
}

︸ ︷︷ ︸
PXs(xs)

}
(4.6)

In this context, the corresponding posterior energy to be minimized is:

U(x, y) =
∑
s∈S

∑
<s,t>

t∈Gs

− lnPY<s,t>|X<s,t>
(y<s,t>|x<s,t>

)

+
∑

〈s,t〉∈ηs

β[1− δ(xs, xt)] (4.7)

and x̂MAP = argminx{U(x, y)}.

4.2.3 Iterative Conditional Estimation

Principle

In our unsupervised Markovian segmentation case, we have to estimate in a first

step (estimation step), the parameter vector Φy<s,t> which defines respectively the

likelihood distributions pid(y<s,t>) and Pdi(y<s,t>) (or PY<s,t>|X<s,t>
(y<s,t>|x<s,t>

) for each

two classes x<s,t> of y<s,t>. (see Equations (4.2)-(4.3)), i.e., the parameter vector

Φy<s,t>(λ, μ, σ) gathering the scale parameter of the exponential law pid(y<s,t>) and

the mean μ and σ parameters of the Gaussian distribution pdi(y<s,t>).
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In our case, this estimation step is particularly challenging for three reasons; first,

one has to deal with a mixture of different distributions (exponential and Gaussian)

which are also strongly mixed (see Fig. 4.3) and which also exhibits different mixing

proportions (generally the class di is under weighted (<15%) because this class is

related to the fewer pixel-pairwise labels, or transitions, existing between the class

change and the class no-change (see Fig. 4.1).

To this end, we resort to the ICE [86,94] iterative procedure which is able to cope

with different distributions and which experimentally turned out to be more efficient

than the classical Expectation Maximization (EM) [18] algorithm or its stochastic

version; the Stochastic EM (SEM) [61]. This efficiency can be explained by the fact

that the ICE [86, 94] procedure can also be viewed as the stochastic and Markovian

version of the EM procedure and thus is also constrained by the distribution of X

defined as stationary and Markovian.

The ICE procedure first requires to find an estimator Φ̂y<s,t> = Φ(x<s,t>, y<s,t>) pro-

viding an estimate of Φy<s,t> based on the complete data configuration (x<s,t>, y<s,t>).

Random field X<s,t> being un-observable, the iterative ICE procedure thus defines

the parameter Φ
[k+1]
y<s,t>, at step [k +1], as the conditional expectations of Φ̂y<s,t> given

Y<s,t>= y<s,t> and the current parameter Φ
[k]
y<s,t>. The fixed point of this iteration

corresponds to the best approximations of Φy<s,t> in terms of the mean squared er-

ror [94]. By denoting Ek the conditional expectation based on Φ
[k]
y<s,t> , this iterative

procedure is defined as follows:

• One takes an initial value Φ
[0]
y<s,t>

• Φ
[k+1]
y<s,t> is computed from Φ

[k]
y<s,t> and from y<s,t> using:

Φ[k+1]
y<s,t> = Ek

[
Φ̂y<s,t>(x, y) |Y<s,t>=y<s,t>

]

The computation of this expectation is impossible in practice, but we can approach
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it thanks to the law of large numbers [94]:

Φ[k+1]
y<s,t>=

1

n

[
Φ̂y<s,t>(x

(1)
<s,t>, y<s,t>) + · · ·+ Φ̂y<s,t>(x

(n)
<s,t>, y)

]
where x

(i)
<s,t>, i = 1, . . . , n are realizations drawn from the posterior distribution:

PX<s,t>|Y<s,t>,Φ(x<s,t>|y<s,t>,Φ[k]
y<s,t>).

In our application, since x completely defines x<s,t> without ambiguity3, these

realizations can be drawn from the posterior distribution PX|Y<s,t>,Φ(x|y<s,t>,Φ[k]
y<s,t>)

(see Section 4.2.2 and Eq. (4.5)). As it turns out, n = 1 is sometimes found suffi-

cient (or even better) to get good estimates [94]. It is the case in our unsupervised

Markovian CD model, and we actually chose n = 1 in our experiments.

ICE-Based ML estimator

For the Gaussian law, a ML estimate of (μ, σ2), based on the complete data con-

figuration, can be easily given by the empirical mean and empirical variance. If

Ndi
�
= #{x<s,t>= di}, one gets:

μ̂(x<s,t>, y<s,t>) = μ̂(x, y<s,t>) =

∑
x<s,t>=di

y<s,t>

Ndi
(4.8)

σ̂2(x, y<s,t>) =

∑
x<s,t>=di

(y<s,t> − μ̂)2

(Ndi − 1)
(4.9)

For the exponential law, if Nid
�
= #{x<s,t> = id}, a ML estimate of the shape

parameter is:

λ̂(x, y<s,t>) =

∑
x<s,t>=id

y<s,t>

Nid

(4.10)

In our Bayesian CD framework, we do not need to estimate the proportion of

each class. Nevertheless, the mixing proportion can be easily estimated within this

procedure with the empirical frequency estimator; πid = Nid/(Nid + Ndi) and πdi =

Ndi/(Nid +Ndi).

3 but the inverse is not true.
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ICE Algorithm

Φy<s,t>(λ, μ, σ
2) are thus estimated with the ICE procedure in the following way:

• Parameter Initialization: we start from a CD map x randomly sampled from

two classes (change / no-change) and start from Φ
[0]
y<s,t> = (λ[0], μ[0], σ2 [0]).

• ICE procedure: Φ
[k+1]
y<s,t> is then computed from Φ

[k]
y<s,t> as follows:

1. Stochastic Step: using the Gibbs sampler, one realization x of the CD map is

simulated according to the posterior distribution PX/Y<s,t>
(x/y<s,t>), with pa-

rameter vector Φ
[k]
y<s,t> . More precisely, for each site s (lexicographically), we

sample xs with the local version of Eq. (4.5), i.e.,

PXs|Y<s,t>
(.) ∝

∏
<s,t>

t∈Gs

PY<s,t>|X<s,t>
(.) · PXs

(xs) (4.11)

(a) with PY<s,t>|X<s,t>
an Exponential law for x<s,t>= id (see Section 4.2.2).

(b) with PY<s,t>|X<s,t>
a Gaussian law for x<s,t>=di (see Section 4.2.2).

2. Estimation Step: the parameter vector Φ
[k+1]
y<s,t> is estimated with the ML esti-

mator of the “complete data” (see Eqs (4.8), (4.9), (4.10)).

3. Repeat until convergence is achieved; i.e., if Φ
[k+1]
y<s,t> �≈ Φ

[k]
y<s,t>, we return to

Stochastic Step.

In our application, one has to deal with a mixture of different distributions which

are strongly mixed with unbalanced mixing proportions (see Fig. 4.1). This makes

the convergence of the ICE procedure still difficult in some cases. Thus, it is necessary

to add an additional hard constraint. In our application, we can capture the fact that

the shape parameter λ of the exponential distribution pid(y<s,t>) is in fact not too far

from its shape parameter computed from the set of y<s,t> regardless of its label x<s,t>
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(id or di) since there are generally fewer labels di (let λ� this parameter value). In

fact, since the true shape parameter λ of the exponential distribution pid(y<s,t>) is

computed from y<s,t> given x<s,t> = id, λ is thus computed from a subset of smaller

values of {y<s,t>}, or equivalently, we can surely assert that a reliable estimation for

λ is necessarily a value inferior to λ�. We model this by imposing the hard constraint

λ = λ�/α for the different iteration of the ICE procedure.

In order to further help the iterative ICE procedure, we start, at iteration [0]

with Φ
[0]
<s,t> = (λ[0], μ[0], σ[0]), with μ[0] = 2 λ[0] (with λ[0]=λ�) and (σ2)[0] = 1000 to

model the fact that the mean of the Gaussian is generally greater to the λ parameter

and that the variance of the Gaussian is generally around 1000. We finally use the

Stochastic Step with a Gibbs sampler with a temperature equals to 0.25 in order to

allow a fast convergence and to reduce the number of explored solutions around the

initialization values.

Table 4.1. Description of the four heterogeneous datasets

Dataset Date Location Size (pixels) Event (& Spatial resolution) Sensor

1 Sept. 1995 - Jul. 1996 Sardinia, It 412×300 Lake overflow (30 m.) Landsat-5 Thermic (NIR band) / Optical

2 July 2006 - July 2007 Gloucester, UK 2325×4135 Flooding (0.65 m.) TerraSAR-X / QuickBird 02

3 Feb. 2009 - July 2013 Toulouse, Fr 4404×2604 Construction (2 m.) TerraSAR-X / Pleiades

4 May 2012 - July 2013 Toulouse, Fr 2000×2000 Construction (0.52 m.) Pleiades / WorldView 2

4.2.4 Segmentation Step

Once the estimation step is completed, the MAP (Maximum a posteriori) solution of

the CD map x, based on the previously estimated parameters, is then computed. In

our application, the energy function (see Eq. (4.7)) is complex and the MAP solution

is difficult to estimate (essentially due to the strongly mixed likelihood mixture model

which is possibly of slightly different shapes according to the type of multimodality).

In order to avoid local minima we must resort to a simulated annealing (SA) procedure
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Dataset-1

Dataset-2

Dataset-3

Dataset-4

(a) (b) (c) (d) (e)

Figure 4.4. Heterogeneous datasets (see Table 4.1). (a-c) image t1, t2, ground
truth; (d) final (changed-unchanged) segmentation result and (e) confusion map

(white: TN, red: TP, blue: FP, Cyan: FN) obtained by the proposed approach.

[7] with a sufficient number of iterations about 200000 iterations in our application),

or equivalently by varying the temperature of a Gibbs sampler (see Eq. (4.11)) from

the initial temperature To = 1.25 to Tfinal = 0.01 with a slow geometric decreasing
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Table 4.2. Confusion matrix in terms of number of pixels and percentage for

the four heterogeneous datasets i.e., [TM/TM], [TSX/QB02], [TerraSAR-

X/Pleiades], [Pleiades/WorldView 2] (see Table 4.1).

Multimodal pair TP TN FP FN

Thermic/Optical (Landsat-5) 5189 (67.3%) 114007 (98.4%) 1884 (1.6%) 2520 (32.7%)

QB02/TerraSAR-X 5272 (69.3%) 10782 (78.3%) 2990 (21.7%) 2337 (30.7%)

TerraSAR-X/Pleiades 4025 (35.8%) 124468 (95.7%) 5611 (4.3%) 7217 (64.2%)

Pleiades/WorldView2 15904 (41.8%) 199794 (94.3%) 12164 (5.7%) 22138 (58.2%)

schedule such as T = To × (0.999975)k.

Once x̂MAP is estimated, it is important to note that, due to the pixel (label)

pairwise modelling, there are two global minima to the optimization problem defined

in Eq. (4.7). One for the solution (“1” for change class and “0” for no-change class)

and the second one corresponding to its binary inverse (i.e., its binary complement,

with “0” for change class and “1” for no-change class). In our case, this ambiguity

can be easily resolved with a correlation metric or more simply by assuming that the

land cover change is generally smaller than the unchanged area.

It takes between 30 and 70 minutes to perform a SA (depending on the image

size) with so many iterations for a non-optimized C++ code running on Linux on

a i7 − 930 Intel CPU, 2.8 GHz. Nevertheless, by considering a Jacobi-type version

of the Gauss-Seidel based SA procedure [40], the final energy-based minimization

procedure can be efficiently implemented by using the parallel abilities of a graphics

processor unit (GPU) with a speed gain up to (about) 200 [40].

4.3 Experimental Results

4.3.1 Heterogeneous Dataset Description

To validate our approach, we present in this section a series of tests conducted on

four real heterogeneous (multimodal) datasets, reflecting different change detection
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Table 4.3. Accuracy rate of change detection on the four heterogeneous datasets

obtained by the proposed method and the state-of-the-art multimodal change

detectors (first upper part of each Table) and mono-modal change detectors

(second lower part of each Table).

Optical(NIR band)/Optical [#1] Accuracy

Proposed method 0.964

Touati et al. [111] 0.942

Zhang et al. [126] 0.975

PCC [126] 0.882

SAR/Optical [#2] Accuracy

Proposed method 0.955

Touati et al. [109] 0.949

Touati et al. [110] 0.932

Prendes et al. [89] 0.844

Correlation [89] 0.670

Mutual Inf. [89] 0.580

Optical/SAR [#3] Accuracy

Proposed method 0.909

Touati et al. [109] 0.867

Touati et al. [111] 0.878

Prendes et al. [87, 90] 0.918

Prendes et al. [88] 0.854

Copulas [65, 88] 0.760

Correlation [65, 88] 0.688

Mutual Inf. [65, 88] 0.768

Pixel Dif. [88, 104] 0.782

Pixel Ratio [88, 104] 0.813

Optical/Optical [#4] Accuracy

Proposed method 0.862

Touati et al. [109] 0.853

Touati et al. [110] 0.870

Prendes et al. [87, 89] 0.844

Correlation [87, 89] 0.679

Mutual Inf. [87, 89] 0.759

Pixel Dif. [87, 104] 0.708

Pixel Ratio [87, 104] 0.661

conditions in multimodal case (see Table 4.1); Namely, (#1 and #4) two multisensor

optical datasets (i.e., same sensor type but with two different optical sensors or same

satellite sensor but with different specifications), (#2-#3) two multisource datasets

(i.e., different sensor types), respectively optical/SAR and SAR /optical. This allows

us to compare the performance of the proposed method with different state-of-the-art

multimodal change detection algorithms recently proposed in this field [65, 88, 109–

111] in different multimodal CD conditions, and also for a wide variety of changed

event when the resolution varies from 0.52 to 30 meters. In this benchmark, all

the ground-truth images (change detection mask) was provided by an expert photo

interpreter.
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4.3.2 Results & Evaluation

In all the experimental results, we have considered the simple grey level of the image

(and thus converted, when necessary, the optical color image to grayscale), reduce

the size of the image such that its maximal size (length or width) is around 500 pixels

and use a double histogram matching.

The internal parameter of our Markovian model are for, from decreasing order

of importance, the parameter α of the data likelihood (see Subsection 4.2.3), the

parameter β of the prior model (see Subsection 4.2.2) and the length Nw of the graph

Gs (see Subsection 4.2.1 and Fig. 4.2) for which the sensitivity is not important. We

do not consider the parameter NT as an important internal parameter; in fact, we

have taken NT = 16 in order to use the very fast (since 16 is a power of 2) DCT

package implemented in C code by [81]4. In our application, the DCT is thus applied

on the grey-scale band of the image or the gray-level band resulting from the grayscale

conversion of the three color bands (for a color image). For all the experimental

results, we use α = 1.5, β = 0.1, Nw = 41.

In order to discuss and compare obtained results, a quantitative study is realized

by computing the classification rate accuracy that measures the percentage of the

correct changed and unchanged pixels: PCC = (TP+TN)/(TP+TN+FN+FP) where

TP, TN, FN, FP designate classically the true positives, negatives, and false negatives

and positives.

A comparison with different state of the art approaches [65, 88, 109–111] is sum-

marized in Table 7.2. We have also summarized in Table 7.3 the confusion matrix

obtained by our proposed Markovian CD model. From Table 7.2, we can see that

the rate accuracy of our method performs very well and outperforms in average the

other state-of-the-art approaches.

4 We have also tested NT = 8 and noticed that the classification results was slightly altered in our

application.
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The average accuracy rate obtained on the four multimodal dataset based on our

Markovian CD approach is 92.3% with well balanced confusion matrices (see Table

7.3).

4.3.3 Results on Homogeneous Dataset with Shadow Effects

As an additional experiment, it is also interesting to see how the proposed unsu-

pervised Markovian CD model behaves and adapts in the presence of homogeneous

images (see Fig. 4.5) when one of the two images has glow and shadow effects. To

this end, for this (non-trivial) homogeneous CD detection case, we have considered

a stereo panchromatic data set provided by [105], with size 900 × 900 pixels (pixel

resolution is 5 meters) and captured by the Cartosat-1 satellite sensor. This pair

of panchromatic images is acquired over the Arges region (Roumania near Piatra

Craiului national park), on Oct. 2008 and Nov. 2009 and shows a forest changes

caused by storms, and containing many shadow areas caused by steep terrain due

to the mountainous forest area [105]. From Table 4.4, we can see that the kappa

coefficient of our method is correct and quite comparable to others state-of-the-art

homogeneous CD approaches, though slightly less good (than the methods purely

dedicated and optimized for the monomodal case). In fact, our model remains ideally

and best suited for the multimodal CD case with a mixture of distributions specifi-

cally chosen to take into account a (quite large) number of pairs of rather different

imaging modalities usually observed in remote sensing.

4.3.4 Discussion

Concerning the technical specifications of the proposed model, we have noticed that

the L1 norm, for the pixel pairwise spatio-temporal difference (used as visual cue) in

Eq. (4.1), is slightly more robust than the L2 norm for which we obtain an average

accuracy rate (obtained on the four multimodal datasets) of 89.3% (versus 92.3% for
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Panchromatic shadow dataset

(a) (b) (c) (d) (e)

Figure 4.5. Panchromatic data set: (a-c) image t1, t2, ground truth; (d) final

(changed-unchanged) segmentation result and (e) confusion map (white: TN,

red: TP, blue: FP, Cyan: FN) obtained by the proposed approach.

Table 4.4. Kappa statistic [105] (po − pe)/(1 − pe) (with po = observed

accuracy = (TP + TN) / (TP + FP + FN + TN) and pe = expected accuracy

= [(TP + FP)(TP + FN) + (FN + TN)(FP + TN)] / [(TP + FP + FN +

TN)2]) of change detection on the Panchromatic shadow dataset obtained by

the proposed method and comparisons other unsupervised (first upper part of

the table) and supervised (second part of the table) state-of-the-art monomodal

change detectors [105].

Method Kappa

Proposed method 0.403

Touati et al. [109] (with preprocessing) 0.513

Touati et al. [109] (without preprocessing) 0.281

kMNF OPTI∗ [105] 0.487 - 0.509 - 0.506 - 0.501 - 0.487 - 0.475

Height Difference∗ [105] 0.127 - 0.316 - 0.469 - 0.526 - 0.0 - 0.0

CVA∗ [105] 0.07 - 0.242 - 0.403 - 0.457 - 0.0 - 0.0

k-Means [105] 0.472

ICDA [105] 0.495

OSVM [105] 0.478

Random Forests [105] 0.432

∗based on different threshold levels given in increasing order

the L1 norm). Besides, it is important to mention that our choice concerning the

likelihood distributions was made after a pre-study where we empirically tried differ-

ent mixtures of statistical laws. More precisely, we have successively tried different
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law combinations including, for identical pixel-pairwise labels (in addition to the ex-

ponential law that was finally used), an half Gaussian, Rayleigh and Gaussian laws

along with for different pixel-pairwise labels, (in addition to the Gaussian law that

was finally used); a Rayleigh, an exponential and finally an uniform distribution. The

best combination was the mixture of Exponential/Gaussian likelihood distributions

used in our model and presented in Section 4.2.2.

From the experiment, we can notice that the CD result in multisensor optical

Dataset 4 is the least accurate of the four examples given. We think that this can

be explained by several reasons. The first one is due to the macro texture generated

by the (high-resolution) satellite view of the (Toulouse) urban area. DCT features

have more difficulties to model such macro textural patterns and is in fact better

suited to model micro-textural features usually present in a lower resolution satellite

image (as datasets #1-3). The second reason is due to the nature of change. In this

image, the change (i.e., an area under construction) can be subtle and light and thus

difficult to distinguish even with a trained eye. Thirdly, the different colors between

the two optical images give, after grey-level conversion, different grey levels which

may further complicate the CD result.

It is interesting to notice that, in a way, the proposed herein model can be viewed

as the Markovian version, thus in the ML sense of the LS model, based on the Multi-

dimensional scaling (MDS) mapping proposed in [109] (however, we herein consider

a slightly different observation field including texture information).

Let us also note that, in the ML criterion sense, we try to maximize the posterior

probability of a given (pair of observation(s) and consequently this one is thus closely

related both to the choice of the observation field (in our case y<s,t> and also, above

all, the choice of the mixture of distributions (in our case Exponential/Gaussian).

We think that more flexible (or generalized) distribution laws would be perhaps more

suited to the heterogeneous remote sensing imagery (i.e., thus leading to a better
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model) but this flexibility would be at the cost of a more complicated (already very

complex and computational demanding) final optimization procedure.

The overall unsupervised Markovian CD proposed model is outlined in pseudo-

code in Algorithm 5.

The C++ code running on Linux, data, and all that is necessary for reproduction

of the results shown in this paper is freely accessible at http address5 .

4.4 Conclusion

In this paper, we have addressed the problem of change detection in heterogeneous

remote sensing. Although this issue has become important, due to the huge amount

of heterogeneous data, we can now get from various archives or from existing (and

different types of) Earth observing satellites, it has only received little attention in

the literature. In addition, this issue has really been very little discussed in the

statistical field and, to our knowledge, no Bayesian or Markovian-based multimodal

CD method has been proposed until now. This paper fills the gap by proposing a

complete unsupervised Markovian approach which has been validated on a number

of real multimodal bitemporal satellite image pairs and whose the main novelty,

and not only in Geoscience imaging, lies in the use of an observation field built up

from a pixel pairwise modeling. In fact, in our application, in order to decrease the

computational load of our algorithm, we consider for each pixel, a sub-sample of pairs

of pixels. Nevertheless, the proposed MRF model turns out to iteratively propagate

information via this sub-sample of pairs of pixels very efficiently during the estimation

or segmentation step, while keeping a quasi-linear complexity with respect to the

number of image pixels. We also think that the concept of pixel pairwise modeling

5 http://www.iro.umontreal.ca/∼mignotte/ResearchMaterial
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M3CD Algorithm

Input: Pair of bi-temporal satellite images: (yt1,yt2)

Output: A binary CD segmentation map: x

α Hard constraint param. of the likelihood model

β Regularization term of the Markov. prior model

Nw Length of the graph Gs

r Cooling rate of the simulated annealing (SA)

To,f Initial and final Temp. of the SA

Φ
[k]
y<s,t>Parameter vector (λ[k], μ[k], σ[k]) gathering the scale, mean and

variance of the likelihood mixture at iteration k

x[k] CD (binary) map at iteration k

1. Initialization Step

◦ Co-Registration of the image pair (yt1,yt2)

◦ Conversion of (yt1,yt2) into grayscale (if necessary)

◦ Image size reduction of (yt1,yt2) until the maximum (length or width) side

is ≈ 500 pixels

◦ Double histogram matching on (yt1,yt2)

2. Parameter Estimation Step

� Initialization:

. x[0]←Rand. sampling from 2 classes (change / no)

. λ�←∑
y<s,t>/(Nid +Ndi) (shape param. of {y<s,t>})

. Φ
[0]
y<s,t> ← (λ[0], μ[0], σ[0])

with μ[0]=2λ[0], λ[0]=λ� and (σ2)[0]=1000

. k ← 0

� ICE Procedure:

while Φ
[k+1]
y<s,t> �≈ Φ

[k]
y<s,t> do

for each pixel at site s (lexicographically) do

Sample x
[k]
s with Posterior dist. PXs|Y<s,t>

(.) based on graph Gs, tem-

perature T = 0.25 and Φ
[k]
y<s,t> [see Eq. (11)]

◦ Φ
[k+1]
y<s,t> is estimated with the ML estimator of the “complete data”

(y<s,t>, x
[k]) [see Eqs (8-10)]

◦ Hard constraint: λ[k+1] = λ�/α

. k ← k + 1

Φy<s,t> ← Φ
[k+1]
y<s,t>

3. CD Segmentation Step

� Initialization: k ← 0 and T ← To

� Simulated Annealing Procedure:

while T > Tf do

for each pixel at site s (lexicographically) do

Sample x
[k]
s according to the Gibbs Posterior distribution PXs|Y<s,t>

(.)

based on graph Gs, temperature T and Φy<s,t> [see Eq. (11)]

. k ← k + 1 and T ← T0 · rk

Algorithme 5: M3CD (Markov Model for Multimodal Change Detection) algorithm
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can be interesting for other issues in traditional digital image processing, not only in

Geoscience imaging, since the underlying framework based on pixel-pairwise affinity

can really model complex statistical phenomena with possibly important invariance

properties.
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Chapitre 5

CHANGE DETECTION IN HETEROGENEOUS REMOTE

SENSING IMAGES BASED ON AN IMAGING

MODALITY-INVARIANT MDS REPRESENTATION

Dans ce chapitre, nous présentons notre article présenté dans la conférence IEEE

International Conference on Image Processing, intitulé: Change Detection in

Heterogeneous Remote Sensing Images Based On an Imaging Modality-

Invariant MDS Representation. Nous exposons ce dernier dans sa langue origi-

nale de publication.

Abstract

In this paper, we propose a new multimodal change detection in remote sensing. The

proposed method is based on a projection of the two multisensor satellite images

to a common feature space, in which the two heterogeneous images share the same

statistical properties and on which any classical monomodal change detection methods

can be applied. This transformation of the before and after images is mainly based

on a Multidimensional Scaling(MDS) representation which can be also viewed as a

de-texturing approach of the two multisource images. Experimental results involving

different types of imaging techniques confirm the reliability of the proposed approach.

5.1 Introduction

Multimodal Change Detection (CD) consists in identifying any land cover changes/uses

that may have occurred between two satellite images acquired on the same geographi-
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cal area, at different times, by two different kinds of imaging techniques. It is a recent

and challenging task in the area of remote sensing, also called multi-sensor data fu-

sion, that actually generalizes the classical monomodal CD issue [10,33,108] already

used for solving the environmental monitoring, geological resources surveys and dis-

aster detection/localization and quantification to name a few. The combination of

images acquired by different sensor types (e.g. active and passive) or the finding of

reliable imaging modality-invariant features, coming from different data sources is a

difficult task. However, this difficulty is widely compensated by the numerous prac-

tical and technical advantages of such multimodal analysis procedure. Indeed, with

the development of satellite and remote sensing imaging technology, a huge amount

of heterogeneous data are acquired every day and stored in data archives for later

use. By this fact, it can happen that, for example, an optical image of an area, pro-

vided by an archive, have to be necessarily combined with a new SAR image (of the

same area) for technical reasons, lack of time, availability or atmospheric conditions

in an emergency situation (SAR sensors can operate regardless of weather or thermal

conditions, even at night, i.e. with less restrictive conditions compared to optical

imaging). It is also worth mentioning that, since a multimodal CD analysis processes

heterogeneous data with different statistics, this new technique may be more robust

to natural variations in environmental variables such as soil moisture or phenological

states or shading effects which should not be detected as major land cover changes.

Until now, among the few research works that have been devoted to heterogeneous

CD problem, we can identify four main categories. Namely; parametric models, non-

parametric or learning machine based methods, algorithms based on operators using

spatial and temporal similarity measures with invariance according to the imaging

modality or finally, procedures mainly based on a transformation or projection of the

two multimodal images to a common feature space, in which the two heterogeneous

images share the same statistical properties and on which classical monomodal CD

methods can then be applied. In parametric models, a mixture or a set of parametric
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multidimensional distributions are generally used to model the joint statistics or the

dependencies between the two imaging modalities [14, 65]. Sometimes, these models

take also into account the noise characteristics and the relationships between the sen-

sor responses to the objects and their physical properties [88,90]. The main problems

related with these parametric models are that they have been especially designed with

specific distribution laws related to a type of multimodal sensors and are not easily

generalizable for another pair of different sensors. In addition, these methods require a

Maximum Likelihood (ML) parameter estimation step of the considered distribution,

which can be complex and computationally expensive. Sometimes, these models are

also semi-supervised and rely on a training set to fit the parametric model. Among

nonparametric methods, an energy minimization model has been specifically designed

and solved in the least-squares sense in [109] for satisfying an overdetermined set of

constraints, expressed for each pair of pixels existing in the before-and-after satellite

images acquired through different modalities. Deep learning methods through condi-

tional adversarial networks [66] or convolutional coupling networks [51] have also been

proposed and turn out to be valuable for the multimodal CD problem. In fact, these

nonparametric methods have the ability to adapt to a wide variety of different imag-

ing modalities (with possibly different noise types and levels) but are also generally

less accurate than a parametric model dealing with a specific type of multimodality

represented by a particular distribution whose shape is clearly theoretically deter-

mined. In the third family of methods relying on similarity measures with invariance

according to the imaging modality, Alberga et al. [2] propose to use a technique closed

to the co-registration and based on the use of a combination of different invariant sim-

ilarity measures (such as correlation ratio, mutual information, etc.). Also, authors

in [8] presented a CD method to quantify the damages caused by an earthquake to

each individual building from a pre-event optical and post-event SAR images. In this

work, simulation is used to predict the expected SAR signature of each building from

the optical image which is then compared to the actual SAR scene to quantify the
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damages caused to each building. In [110], an imaging modality-invariant operator

that detects the common specific high-frequency pattern of each structural region

existing in the two heterogeneous satellite images is proposed. Finally, in the last

category in which the bitemporal image data is projected to a common feature space

for comparison convenience, [117] proposes also a representation, especially designed

to highlight the changes. Another representation which turn out to be invariant to

imaging modality is given by a classical segmentation. In this way, Liu et al. in [29]

propose a general multidimensional evidential reasoning approach for estimating the

segmentation map of the two satellite images which are then easily and subsequently

compared. In this work, we propose a new multimodal CD method belonging to the

last category and based on a common feature space thus making possible the direct

comparison between the two input images. This transformation of the before and

after images can be viewed as a de-texturing approach [68] of each satellite image.

5.2 Proposed Change Detection Model

Imaging Modality Invariant Projection: This step aims at finding a common

feature space in which the pixels of the two satellite image should ideally have the

same statistical properties. This task is not trivial, especially when the SAR imaging

modality has to be combined with the optical imaging technique because the textural

properties of the two images are radically different; For the SAR image, the inherent

multiplicative speckle noise creates for each land cover class, a kind of macro-texture

with grainy patterns (related to the back-scattered intensity of the different object

surfaces ). For the optical image, the noise is additive and degrades either piece-

wise uniform areas or micro-textured and structured regions (representing in fact the

reflection intensity of objects). A solution consists in de-texturing the two satellite

images, i.e., to create a new (grey level) mapping in which two textured areas (around

pixels at distant locations) gives, in the transformed image, two pixels whose grey-
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level intensity difference is proportional to a distance measure between these two

textures. Otherwise said, in this new mapping, two non-adjacent or distant pixels

with the same local texture (around the pixel) should have the same (grey-level)

intensity.

To this end, a de-texturing approach, close to the one proposed in [68], is applied

respectively on the first and second input satellite images. To this end, each pixel

of an image is characterized by a feature vector gathering the values of the coarsely

quantized grey level histogram followed by the values of the coarsely quantized gra-

dient magnitude histograms in the four directions (respectively vertical, horizontal,

right diagonal and left diagonal). These two histograms are computed over the set

of pixels existing in an overlapping squared fixed-size (Nw) neighborhood centered

around the pixel to be characterized. In our application, this local histogram is re-

spectively quantized with ql and qg equidistant binnings for the grey level space and

for each of the four gradient magnitude histograms. This simple texture feature ex-

traction step thus yields to a D = ql + 4 qg-dimensional feature vector for each pixel.

This local feature descriptor turn out to be both discriminant to characterize the

different grainy patterns of a SAR image or the different textural patterns specific of

another imaging modality. Once this set of feature vector are extracted for each pixel,

we reduce the dimensionality of this set of feature vectors to one dimension with a

Multidimensional Scaling (MDS) technique [16, 106]. This allows us to project each

textured image on a one-dimensional representation or concretely as a new grey-level

transformed image. The interest of the MDS over other dimensionality reduction

methods lies in the fact that this technique has the particularity of being able to

estimate (optimally, in the least-squares sense) an embedding from the set of feature

vectors in the high dimensional space (dim=D) such that the distances are faithfully

preserved in the low dimensional (dim=1) target space and thus to ensure that two

distant pixels (in the transformed image) will necessarily have a grey-level intensity

difference proportional to a L2 (in our application, contrary to MDS, PCA gives bad
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results) distance between the two corresponding texture descriptors extracted on the

input satellite image. Nevertheless, for computationally reasons, the originally pro-

posed MDS algorithm (called metric MDS is not appropriate in our application and

more generally for all large scale applications) because this algorithm requires a com-

plexity of O(N2) (N being the number of pixels). Instead, we have herein used a fast

alternative, called FastMap [26] whose main advantage is its linear complexity (at

the price of a slightly less good approximation in the least- squares sense).

At this level, it lacks one very important aspect of the common feature space

we search to build. Indeed, as already said, the L2 distance between each textural

feature vectors (D<s,t>), at locations s and t, in the high dimensional space (dim=D)

and the distances between the grey level (ds,t) at these same locations in the low

dimensional (dim=1) target space is preserved as faithfully as possible and thus the

relation Dt1
<s,t> ≡ dt1<s,t> is true for the pre-event satellite image (at time t1) and

for the post-event image satellite (at time t2) Dt2
<s,t> ≡ dt2<s,t> (for any < s, t >).

Nevertheless, for two distant pixels s and t belonging to the class label unchanged

area in satellite image t1 and t2, currently, nothing ensures that the grey level at

location s in the first (pre-event) projected image and second (post-event) projected

image are similar. The MDS technique respects the monotonicity of the grey level

order (linear correlation) existing in an image, nevertheless, a nonlinear monotonic

scale factor between the two transformed images could however exist. In order to

correct this, we resort to a double histogram matching method [98]. More precisely,

let us consider the two bi-temporal remote sensing images, yt1 and yt2 acquired before

and after a given event and ŷt1 and ŷt2 their MDS projection. ŷt1 is histogram matched

to the after image ŷt2 to give ŷt1
�
and ŷt2 is then histogram matched to ŷt1

�
in order to

finally obtain ŷt2� (see Fig. 5.1).

Temporal Differentiation and Binarization: At this level, we can apply any

monomodal CD method. In our case, we simply generate a difference image by
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Figure 5.1. First row: SAR/Optical dataset; before and after images; Second row

shows the before and after images after MDS projection; Third row represents

the result of the double Histogram matching on the images of the second row.

Fourth row: difference map; final segmentation result; Fifth row: ground truth.

subtracting ŷt1� to ŷt2� and taking the absolute value to obtain the difference image

yD. Finally yD is then segmented into two classes to distinguish changes of interest

of the land cover. To this end, in order to achieve more robustness, changes are

then identified, from the difference image yD, by combining the results of T = 3
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Table 5.1. Accuracy rate of change detection on the fourth heterogeneous

datasets obtained by the proposed method and the state-of-the-art multimodal
change detectors (supervised and unsupervised) and monomodal change de-

tectors.

SAR/Optical Dataset (1) Accuracy

Proposed method 0.967

Liu et al. [51] 0.976

PCC [51] 0.821

Optical(NIR band)/Optical Dataset (2) Accuracy

Proposed method 0.942

Zhang et al. [126] 0.975

PCC [126] 0.882

SAR/Optical Dataset (3) Accuracy

Proposed method 0.878

Jorge et al. [89] 0.844

Correlation [89] 0.670

Mutual Inf. [89] 0.580

1-look SAR/5-look SAR Dataset (4) Accuracy

Proposed method 0.827

Chatelain et al. [14] 0.732

Correlation [14] 0.521

Ratio edge [14] 0.382

different automatic thresholding algorithms ( [41,121,124]). In this way, this strategy

allows us to synergistically integrate multiple different criteria, for which these binary

segmentation algorithms have been designed to be optimal in order to further increase

the efficiency of our binarization scheme. In our application, this binary fusion process

is simply achieved by using a median filter using a three dimensional window W ×
W × T whose the first two dimensions are spatial and the third dimension indexes

the different binary thresholded maps to be fused.
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Figure 5.2. Optical(NIR)/Optical dataset. From lex. order; image t1, t2; differ-
ence map; final segmentation result; ground truth.

5.3 Experimental Results

In order to assess the efficiency of the proposed method to detect different types

of land cover changes and to show the strength and the ability of the proposed

multimodal CD method to process different remote sensing modalities, we conduct a

series of tests on different real multi-source remote sensing imagery data sets. These

data sets reflect the three possible change detection conditions in multimodal case.

We compare the performance of our method with different state-of-the-art multimodal

change detection algorithms recently proposed [14, 51, 89, 126]. The different change

masks were provided by a photo interpreter.

The first data set consists of one SAR image and one RGB optical image. It shows

a piece of the Dongying City in China, before and after a new building construction.
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Figure 5.3. TSX/Optical dataset. From lex. order; image t1, t2, difference map;

final segmentation result; ground truth.

Figure 5.4. SAR 1-look/SAR 5-looks dataset. From lex. order; image t1, t2;
difference map; final segmentation result; ground truth.

The SAR image is acquired by RADARSAT-2 (Jun. 2008) with spatial resolution of

8m. The optical image comes from Google Earth image (Sept. 2012) and its a combi-

nation of aerial photography imaging with a satellite imaging (produced respectively

by QuickBird and Landsat-7) with a spatial resolution of 4m. After co-registration,

they are of the same pixel-resolution 921× 593 pixels.
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The second dataset is composed of two heterogeneous optical images. It shows

the changes of the Mediterranean in Sardinia area (Italy). This dataset is acquired by

different sensor specifications, and consists of one TM (thematic mapper) image and

one optical image. The TM image is the near-infrared band of the Landsat-5 (Sept.

1995 with spatial resolution of 30m.). The optical image come from Google Earth

(RGB, Jul. 1996, Landsat-5) with the spatial resolution 4m. After co-registration

they are of same pixel-resolution 412× 300 pixels.

The third heterogeneous data set consists of one optical image and one SAR

image. It shows the area of Toulouse (FR), with a size of 4404 × 2604 pixels. The

SAR image is taken by the TerraSAR-X satellite on Feb. 2009 before a building

construction. The optical image is captured by the Pleiades satellite on Jul. 2013

after the construction of a building. The optical image have a resolution of 2m.

The TSX image was co-registered and re-sampled by [90] to match the optical image

resolution.

The fourth multimodal dataset is composed of two heterogeneous SAR images. It

shows the area of Gloucester (UK) before and after a flooding event, with a size of

762× 292 pixels and with a pixel resolution of 40m. The before and after images are

captured by the RADARSAT satellite with different number of looks. The numbers

of looks for the before and after SAR image is one-look image (Sept. and Oct. 2000)

and five-looks.

In all the experimental results, we have considered Nw = 7, qg = 10, ql = 40

and W = 7 (see Section 7.2). Table 5.1 summarizes the different change detection

accuracy rates obtained by our approach with a comparison with other state of the

art approaches. We can see that the different changed-unchanged detection binary

map results match fairly the different regions present in the ground truth, and that

the most changed regions for the different imagery modalities are well recognized by

our strategy (see Figs. 5.1-5.4).
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5.4 Conclusion

In this work, the applicability of a new multimodal change detection strategy, in

remote sensing, is presented. This one is based on an imaging modality-invariant

transformation that projects the two multisensor satellite images to a common fea-

ture space in which the bi-temporal images share the same statistical properties and

thus on which any simple monomodal change detection methods can be applied.

Qualitative and quantitative results show that the proposed method offers a good

compromise between simplicity of the implementation and reliability. Indeed, this

method consistently performs well on different types of input satellite images and

showing different kind of changes.
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Chapitre 6

ANOMALY FEATURE LEARNING FOR

UNSUPERVISED CHANGE DETECTION IN

HETEROGENEOUS IMAGES: A DEEP SPARSE

RESIDUAL MODEL

Dans ce chapitre, nous présentons notre article révisé dans la revue IEEE Jour-

nal of Selected Topics in Applied Earth Observations and Remote Sensing, intitulé:

Anomaly Feature Learning For Unsupervised Change Detection in Het-

erogeneous Images: A Deep Sparse Residual Model. Nous exposons ce dernier

dans sa langue originale de soumission.

Abstract

In this paper, we propose a novel and simple automatic model based on multimodal

anomaly feature learning in a residual space, aiming at solving the binary classifi-

cation problem of temporal change detection (CD) between pairs of heterogeneous

remote sensing images. The model starts by learning from image pairs the normal

existing patterns in the before and after images to come up with a suitable repre-

sentation of the normal (non-change) class. To achieve this, we employ a stacked

sparse autoencoder trained on a large number of temporal image features (training

data) in an unsupervised manner. To classify pixels of new unseen image-pairs, the

built anomaly detection model reconstructs the input from its representation in the

latent space. First, the probe image (i.e. the bi-temporal heterogeneous image pair

as the input request) is encoded in this compact normal space from a stacked hidden

representation. The reconstruction error is assessed using the L2 norm in what we
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call the residual normal space. In which, the non-change patterns are characterized

by small reconstruction errors as normal class while the change patterns are quanti-

fied by high reconstruction errors categorizing the abnormal class. The dichotomic

(changed/unchanged) classification map is generated in the residual space by cluster-

ing the reconstructed errors using a Gaussian mixture model. Experimental results on

different real heterogeneous images, reflecting a mixture of imaging and land surface

CD conditions, confirm the robustness of the proposed anomaly detection model.

6.1 Introduction

Nowadays, detecting changes between images of the same geographical area over time

is still an active topic in remote sensing image processing. A less explored problem is

the multimodal change detection (CD) which is a challenging task that can be viewed

as the generalization of the classical monomodal CD problem [23,33,36,77,122]. This

research area became active with the launch of new satellite generations with different

sensor characteristics. Definitely, the exploitation of heterogeneous multimodal data

is important to increase the accuracy of any change detection system. The existing

mono-modal systems are not usable as-is and need to be adapted to solve the CD

problems for environmental monitoring, deforestation, geological resources survey,

disaster localization and quantification, and urban planning to name a few.

Multimodal CD [55] is a data analysis procedure seeking directly to locate area of

change that may have occurred between two heterogeneous satellite images acquired

in the same region of interest at different times. Practical and technical advantages

of this recent CD procedure have generated a growing interest, in the remote sensing

research community since it should be more robust to natural changes due to environ-

mental variables such as humidity or phenological state, that can be avoided when

comparing images coming from different sources (i.e multimodal images). Change

detection based on multimodal images (Heterogeneous) generally refers to differences
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in two imaging modes in which acquired images are represented in two distinct feature

spaces that do not share the same statistical properties. It is a non-trivial problem

since it is subject to less stringent requirements about the source and characteristics

of the acquired data. Hence, leading to radically different image statistics that cannot

be compared directly from traditional change detection techniques.

To date, the multimodal CD issue has been addressed by few works, that can be

grouped into five categories in which we can find parametric models [14, 65, 88, 90]

that use a set of parametric multidimensional distributions (mixture), non-parametric

methods [109] which aim to minimize an energy model to satisfy an overdetermined

set of constraints, algorithms based on operators using spatial and temporal similar-

ity measures as in [2, 8, 110], projection-based techniques that try to map the two

heterogeneous images to a common feature space where traditional monomodal CD

can be applied [29,53,111,117], and finally machine learning methods [51,66,126,127].

As the most advanced form of machine learning, deep learning was used for

feature-based learning. For instance, a deep autoencoder neural network has been

proposed to realize unsupervised feature learning in order to learn discriminative and

effective features from a large amount of unlabeled data. The sparse autoencoders

have been widely studied for feature-based deep learning methods [3] [116], as it is

highly effective for finding high level representations of complex data. In our case, the

multimodal change detection problem can be viewed as a binary classification task in

which the change class or region refers to a set of pixel pairs (or instances), extracted

from heterogeneous image pairs, that stand out as being different from all others.

Such instances can be seen as anomalies that are indicative of a particular underlying

process under the assumption that there are no errors generated from the sensor.

Hence, the change class refers, practically, to different semantic regions from the

same geographical area that is seen through two different imaging modalities. This

anomaly detection problem can be efficiently solved using sparse autoencoder since
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it has the appealing ability to uncover potential anomalies in unlabeled data [13].

In this work, we propose a new unsupervised CD model which belongs to the last

family of above cited methods. Compared to the state-of-the-art methods, the pro-

posed CD model is defined to be more robust to model the class changes as anomalies,

thanks to its flexible learning architecture which is also well adapted to process new

un-seen pair of heterogeneous image inputs (as anomalies) in the absence of annotated

data. Our proposal is to modelize in a residual space the changes as anomalies. More

precisely, we propose an unsupervised anomaly-based heterogeneous CD modelling

based on learning image features from deep sparse autoencoder neural network as a

multimodal feature extractor to gather useful image features from the usual image

patterns (non-change or normal class) existing in the before and after multimodal

images in the absence of labels. The built anomaly detection model utilizes a recon-

struction error vector to perform anomaly detection. To analyze a new unseen image-

pairs, the model projects the input into a new latent space from which it attempts

to map the projected representation back to reconstructs the input. The residual

difference between the original input and the reconstructed one defines our residual

space. A Gaussian mixture model is then used to model the extracted features in

this space to separate normal from anomalous patterns corresponding, respectively,

to non-change and change class labels. The advantage of the proposed CD model lies

in its flexibility to process a non-specific source type such multisensor, multisource, or

multilooking SAR image pairs, avoiding the drawbacks of parametric models which

require knowledge of the conditional distributions; and the disadvantages of super-

vised machine-learning models that require often labeled and well-balanced training

data. The main advantage of our model lies on its ability to learn the underlying

latent space.

The rest of this paper is organized as follows: Section 7.2 presents the proposed

residual change detection model and its architecture, which allows us to learn and to



124

reconstruct a suitable representation (feature anomaly space), from which changed

and unchanged areas are then identified as normal/abnormal classes. Section 7.3

describes the experimental framework used to evaluate the performance of the pro-

posed CD model, and a set of experimental results compared to the state-of-the-art

multimodal change detectors. Section 7.4 concludes the paper.

6.2 Proposed Change Detection Model

Let us assume two multimodal remote sensing images acquired before and after a

given event in the same geographical area and also let us consider that the acquired

images are co-registered. In order to estimate a binary change detction map which is

supposed to represent the difference between the two temporal heterogeneous images,

we rely on unsupervised reconstruction machine learning model designed especially

to model the change class as anomalies in our change detection problem in order to

detect different possible change events as floods, urban growing, etc. . . .

The proposed anomaly-based CD model takes as input a combination of a vari-

ety of multimodal remote sensing images, as a combination of two optical images,

SAR/optical or optical/SAR images, or SAR images with different number of looks.

The pixels in those images cannot be directly compared. The model is composed

of two major parts; An unsupervised learning sparse based modelling step, where a

training phase is performed to learn a robust deep sparse change detector, and a bi-

nary clustering step, where a maximum a posteriori criteria is used for data clustering

(see Fig. 6.1). More precisely, in the training phase, the architecture of our CD model

is based on stacked sparse autoencoder with a depth of two sparse layers where each

single sparse layer has an encoder layer with a corresponding decoder layer. Based on

the proposed architecture, our CD model takes as input a temporal normal feature

space and try to learn an encoder-decoder layers using a layer-wise training technique

in which each sparse layer is trained independently in an unsupervised manner. The
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internal and optimal values of the deep CD model parameters (prior) are predeter-

mined using a grid search method (see subsection III.C). The temporal normal feature

space is fed to the first single layer sparse autoencoder which was trained to extract

low level feature representations from its hidden layer. The lower level features are

then used to train the second sparse autoencoder where high level features are given

by its hidden layer (the second layer) of the stacked sparse autoencoder. The encoder

layer encodes the input in a compact representation while the decoder layer ensures

to predict the encodings in order to reconstruct an estimate of the original input.

Once the training phase is accomplished, the built encoder-decoder layers ensures

respectively the mapping of new input feature space in a compressed space and then

the reconstruction of the original space from this compact representation. The recon-

struction error between the input features and their reconstructed versions is then

computed using the L2 norm. A clustering step is achieved in the residual space to

generate, as output, two clusters of data (change versus non-change) related to our

bi-temporal change detection problem.

6.2.1 Unsupervised Learning Sparse Model

The anomaly-based CD problem aims at identifying the (usually rare) differences

of ground features existing locally between two bi-temporal heterogeneous images,

acquired over the same geographical area, with two different imaging modalities (let

us assume that the two remote sensing images are co-registered). It may be considered

as a binary classification task in which the (small) local spatial changes, over the

time, are potential indicatives of somethings that have truly changed in the area

of interest and which can thus be identified as anomalies (i.e., different data seen

through two different imaging modalities). More precisely, anomalous patterns are

referred as patterns in the data that do not conform to a well-defined notion of

normal behaviour [46]. A common strategy to extract anomalies is to reduce the high
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Figure 6.1. Main steps of the proposed residual space-based change detection

model

dimensional input space in lower dimensional space and then apply a set of distance

metrics within the reduced space in order to identify the anomalies [83].

To this end, supervised classification approaches require labeled and often well-

balanced training data or more generally a pre-processing stage such as data augmen-

tation to train a classifier model. In heterogeneous CD problem, especially in remote

sensing imagery, training data are generally less available, unlabeled and often highly

unbalanced. Besides, data augmentation may be harder since the binary class change

and non-change are highly imbalanced over the whole acquired data.

In our CD problem, it is important to recall that the changed regions are smaller

than the unchanged regions since a significant event (such as a flooding, earthquake,

etc.) occurs rarely and are thus very localized in time and space. Consequently,

we have to rely on machine learning based binary classification method in which

the training phase is only performed on patterns belonging to the predominant class
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(the non-change majority class label in our case) while keeping robust to detect the

minority class i.e., the rare events belonging to the change class as anomalies during

the test phase.

Among the existing machine learning-based strategies, the reconstruction-based

methods, using sparse autoencoders, seems particularly well adapted to our heteroge-

neous CD problem. Its main ability is to learn, in the least square sense, a compressed

representation minimizing the reconstruction error of the two imaging modalities in

the residual space and to estimate within this space the reconstruction error of each bi-

temporal input patterns from local gray level distribution as a reliable anomaly score.

This score can then be exploited to identify the abnormal (rare) patterns caused by a

given event (defining the change label) and the normal unchanged patterns belonging

to the non-change class label.

To build our abnormal pattern-based model, we propose to learn a stacked con-

strained neural network model which can be trained with a layer-wise training proce-

dure [30] in order to find a good representation for the input space [100] [92] and also

to better reconstruct the normal patterns based on the learned multimodal imaging

representation [22] (see Fig.6.2 and 6.3). More precisely, we propose to use a stacked

sparse auto-encoder, which offers an unsupervised reconstruction framework consist-

ing of multiple layers of sparse autoencoders, and which turns out to be robust to

discover interesting structures from input image data. This allows us to build a ro-

bust anomaly change detection model to identify with a high error the unusual and

abnormal features (see Fig.6.3). Let us note that deep learning methods including

deep autoencoder have been applied to learn cross-modality and multimodal features.

In particular, AECs are able to fuse highly heterogeneous pairs of data types, such

as text mixed with images, or audio linked with video, and even combining facial ex-

pressions with sound to name a few [83] [27,34,35,38,39,43,47,52,57,84,92,112,114].

Hence, this work defines a novel application of deep networks to learn from het-
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erogeneous normal patterns, a common space representation and also an appealing

strategy to reconstruct or fuse different imaging modalities within an unsupervised

feature-based learning strategy [83] [39] [47].

Figure 6.2. Stacked autoencoder neural network composed of two layers of

sparse auto-encoders

(a) (b)

(c) (d)

Figure 6.3. Original SAR/optical images (a) and (b); Reconstructed images (c)

and (d).
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It is important to remember that the intrinsic problems of the standard autoen-

coder model make it inefficient [79] [101]. Sparse auto-encoder is a constrained model

that can learn relatively sparse features by introducing a sparse penalty term inspired

by the sparse coding [79] into the autoencoder. Putting constraints on the autoen-

coder neural network aims to encourage the sparsity of the model [80] [79], and can

improve the performance relative to the traditional autoencoders [79] [101]. This can

be simply achieved by adding a sparse penalty term to the cost function of the hidden

layer to control the number of active neurons. Hence, the cost function we used in

our case for training the anomaly-based deep sparse model is composed from [101]:

Sparsity Regularization Term

Sparsity regularization tends to create specialized neurons that focus on particular

subset from the training data by increasing the number of inactive neurons. The

average activation of each hidden neuron ρ̂i is expected to be close to a small value,

and each hidden neuron activation is expected to be close to zero, thus the neurons of

the hidden layer become inactive. To achieve this, the sparsity term is added to the

objective function that penalizes ρ̂i if it deviates significantly from a predefined small

number ρ. The sparsity penalty term Ωsparsity is employed as in [118], and attempts to

enforce a constraint on the sparsity of the output from the hidden layer. It is defined

by:

Ωsparsity =
D∑
i=1

ρ log

(
ρ

ρ̂i

)
+ (1− ρ) log

(
1− ρ

1− ρ̂i

)
(6.1)

where ρ̂i is the average activation value for the ith hidden layer unit and D represents

the number of neurons in the hidden layer. The sparsity penalty term constrains the

value of ρ̂i to be close to ρ according to the Kullback-Leibler divergence. This penalty

function possesses the property that Kullback-Leibler divergence KL(ρ‖ρ̂i) = 0 if

ρ̂i=ρ. Otherwise, it increases monotonically as ρ̂i diverges from ρ.
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L2 Regularization Term

The L2 regularization term Ωweights is added to keep the weight magnitudes small

during the feature learning stage in order to prevent over-fitting. It is defined as

follows:

Ωweights =
1

2

L∑
l

N∑
j

k∑
i

(
ω
(l)
ji

)2

(6.2)

where ω
(l)
ji represents a weight, L is the number of hidden layers, N is the number of

observations and k is the number of variables in the training data.

Cost Function

The anomaly change detection model is based on training an unsupervised sparse

neural network whose the cost function is an adjusted mean squared error func-

tion defined by equation (6.3) [101]. In our work, we propose to use a more robust

encoding-decoding neural transfer functions (eq.6.4 and eq.6.5) that better mitigates

the convergence problem, and improves the performance of our CD model.

E=
1

N

N∑
n=1

k∑
k=1

(xkn − x̂kn)
2 + λ·Ωweights + β ·Ωsparsity (6.3)

where xkn is the input vector and x̂kn is an estimate of the input vector xkn. The

coefficients λ and β control, respectively, the importance of the regularization and

the sparsity terms.

Transfer Functions

To make our change detector more effective for anomaly detection, we make use of

the positive saturating linear transfer function for the encoding stage, and the linear

transfer function for the decoding stage. Each encoder layer has a corresponding

decoder layer:
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fEnc (z) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

0, if z ≤ 0

z, if 0 < z < 1

1, if z ≥ 1

(6.4)

fDec (z) = z (6.5)

The encoder maps the input representation x to another encoded representation

as follows:

zenc = f
(l)
Enc(W

(l)x+ b(l)) (6.6)

where W (l) is a weight matrix, and b(l) is a bias vector of the encoding layer.

The decoder maps the encoded representation zenc to reconstruct an estimate of

the original input representation by:

x̂ = f
(l)
Dec(W

(l)zenc + b(l)) (6.7)

where W (l) is a weight matrix, and b(l) is a bias vector of the decoding layer.

6.2.2 Binary Clustering

In this approach, we have formulated the heterogeneous CD problem into a learning-

based reconstruction problem in which the learned constrained stacked sparse model

uses its stacked hidden representation to map or reconstruct each new input image

pattern. Given a new heterogeneous remote sensing image pair, we have thus to first

compute the reconstruction error for each pixel (or for each feature vector centered

on this pixel) occurring at the same position in the before and after image pair. The

reconstruction error, between the feature vector expressed in the input feature space

and the reconstructed space is then measured in the L2 norm sense and the pixels
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belonging to the change class label are then simply identified by their high abnormal

reconstruction error.

Based on the reconstruction error, the automatic clustering of the residual space,

can be performed by a thresholding technique or a k-means based classification strat-

egy (k = 2). Another strategy, less sensitive to false alarms or the a priori assumption

of two spherical class label datasets with the same radius (in the case of the k-means

procedure) consists in estimating the parameters of a mixture of two Gaussians in

the residual space with the EM algorithm. The MAP rule based on these mixture

parameters is used as final binary decision to assign a normal class label to the non-

change class and the abnormal class label to the change class. Algorithm 6 shows the

predictions of the CD model on the new unseen data.

Step 1:

• x̂ ← reconstruct a new input feature space (test) x using the built

deep sparse model with the optimal parameter

foreach x̂i ∈ reconstructed space x̂ do

• ei ← compute the reconstruction error between xi and x̂i using

the L2 norm
end

Step 2:

• Perform a clustering stage on ei

Algorithme 6: Prediction steps of the CD model.

6.3 Experimental Results

In order to validate and to show the strength of the proposed model to process both

different imaging modality cases and change detection conditions along with differ-
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Figure 6.4. Heterogeneous (multisource) Optical/SAR and SAR/Optical

datasets: (a-c) image t1, t2, ground truth; (d-e) final (changed-unchanged)

clustering result and confusion map (white: TN, red: TP, blue: FP, Cyan: FN)

obtained by the proposed approach.



134

ent spatial resolutions, we have conducted our study on 11 real heterogeneous image

pairs with different kinds of modalities; namely multi-sensor (heterogeneous optical

images), multi-source (optical and SAR images) and multi-looking (heterogeneous

SAR images) in which the change mask (ground-truth) is provided, for each hetero-

geneous dataset by a photo-interpreter.

In our application, we use the leave-one-out test scenario to evaluate the perfor-

mance of the proposed CD model. In this well known procedure, we remove one

entire dataset from the eleven heterogeneous datasets and we train the model on the

remaining heterogeneous datasets. The output of the trained model is then used to

classify the removed dataset. We repeated this process 11 times and at each time we

resort to the two heterogeneous images to be our test example.

6.3.1 Heterogeneous Dataset Description

• The first multimodal dataset is a pair of SAR/optical satellite images (Toulouse,

France), with size 4404× 2604 pixels, before and after construction. The SAR image

was taken by the TerraSAR-X satellite (Feb. 2009) and the optical image by the

Pleiades (High-Resolution Optical Imaging Constellation of CNES, Centre National

d’Etudes Spatiales) satellite (July 2013). The TSX image was co-registered and re-

sampled by [87] with a pixel resolution of 2 meters to match the optical image.

• The second one is a pair of optical/SAR satellite images (Gloucestershire region,

in southwest England, near Gloucester), with size 2325×4135 pixels, before and after

a flooding taking place in an urban and rural area. The optical image comes from the

Quick Bird 02 (QB02) VHR satellite (15 July 2006) and the SAR image was acquired

by the TerraSAR-X satellite (July 2007). The TSX image presents a resolution of 7.3

meters and the QB02 image (with resolution of 0.65 meter and 0% cloud cover) was

co-registered and re-sampled by [87] to match this resolution.

• The third dataset shows two Heterogeneous optical images acquired in Toulouse

(Fr) area by different sensor specifications (size 2000×2000 pixels with a resolution of
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Table 6.1. Accuracy rate of change detection on the eleven heterogeneous

datasets obtained by the proposed method and the state-of-the-art multimodal

change detectors (first upper part of each Table) and monomodal change de-

tectors (second lower part of each Table).

SAR/Optical Dataset Accuracy (%)

Proposed method 0.892

Prendes et al. [89] 0.844

Correlation [89] 0.670

Mutual Inf. [89] 0.580

Optical/SAR Dataset Accuracy (%)

Proposed method 0.961

Prendes et al. [87, 90] 0.918

Prendes et al. [88] 0.854

Copulas [65, 88] 0.760

Correlation [65, 88] 0.688

Mutual Inf. [65, 88] 0.768

Pixel Dif. [88, 104] 0.782

Pixel Ratio [88, 104] 0.813

Optical/Optical Dataset Accuracy (%)

Proposed method 0.880

Prendes et al. [87, 89] 0.844

Correlation [87, 89] 0.679

Mutual Inf. [87, 89] 0.759

Pixel Dif. [87, 104] 0.708

Pixel Ratio [87, 104] 0.661

SAR 1-look / SAR 5-looks Dataset Accuracy (%)

Proposed method 0.814

Chatelain et al. [14] 0.732

Correlation [14] 0.521

Ratio edge [14] 0.382

VHR Optical/SAR Dataset Accuracy (%)

Proposed method 0.780

Gregoire et al. [64] 0.70

ERS/Spot Dataset Accuracy (%)

Proposed method 0.836

Liu et al. [29] 0.818

Liu et al. [29] 0.655

SAR/Optical Dataset Accuracy (%)

Proposed method 0.767

PCC [51] 0.961

SCNN without pre-training [51] 0.958

SCNN with 1 coupling layer [51] 0.964

SCNN with 2 coupling layer [51] 0.969

SCNN with 3 coupling layer [51] 0.977

Zhao et al. [127] 0.974

SAR/Optical Dataset Accuracy (%)

Proposed method 0.980

Zhao et al. [127] 0.979

Liu et al. [51] 0.976

SCNN [127] 0.952

PCC [51] 0.821

Optical(NIR band)/Optical Dataset Accuracy (%)

Proposed method 0.929

Zhang et al. [126] 0.975

PCC [126] 0.882

Quickbird/IKONOS Dataset Accuracy (%)

Proposed method 0.847

Yuqi et al. [103] 0.986

Multiscale [103] 0.991

Quickbird/IKONOS Dataset Accuracy (%)

Proposed method 0.817

Yuqi et al. [103] 0.959

Multiscale [103] 0.966

0.5 meter). The before image is acquired by the Pleiades sensor in May 2012 before the

beginning of the construction work, and the after image is acquired by WorldView2

satellite from three (Red, Green and Blue) spectral bands (11 July 2013) after the

construction of a building. The WorldView2 VHR-image was co-registered by [87] to
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Table 6.2. Confusion matrix in terms of number of pixels and percentage for

the eleven multimodal datasets i.e., [TSX/Pleiades] (4404× 2604 pixels),

[QB02/TSX] (2325×4135 pixels), [Pleiades/WorldView 2] (2000×2000 pixels),

[SAR 1-look / SAR 5-looks] (762×292 pixels), [Spot VHR/ ERS] (1318×2359
pixels), [ERS/Spot ] (330×590 pixels), [MS (NIR) / MS] (412×300 pixels),

[QB02 /IKONOS] (240×240 pixels), [SAR/Optical] (291×343 pixels), [QB02

/IKONOS] (400×400 pixels), [SAR/Optical] (921×593 pixels).

Multimodal image pairs TP TN FP FN

TSX/Pleiades 440211 (48.2%) 9791031 (92.8%) 764001 (7.2%) 472773 (51.8%)

QB02/TSX 419342 (68.0%) 8819894 (98.0%) 177191 (2.0%) 197448 (32.0%)

Pleiades/WorldView 2 339464 (56.0%) 3183160 (93.8%) 210542 (6.2%) 266834 (44.0%)

SAR 1-look/SAR 5-looks 26544 (68.1%) 154679 (84.3%) 28871 (15.7%) 12410 (31.9%)

VHR Spot/ERS 480846 (70.4%) 1946913 (80.2%) 479675 (19.8%) 201728 (29.6%)

ERS/spot 13703 (57.2%) 149187 (87.4%) 21555 (12.6%) 10255 (42.8%)

MS (NIR band) /MS 6353 (83.9%) 108577 (93.6%) 7451 (6.4%) 1219 (16.1%)

Quickbird/IKONOS 4689 (54.3%) 44096 (90.1%) 4863 (9.9%) 3952 (45.7%)

SAR/Optical 2317 (73.4%) 74217 (76.8%) 22440 (23.2%) 839 (26.6%)

QuickBird /IKONOS 13450 (52.2%) 117384 (87.4%) 16876 (12.6%) 12290 (47.8%)

SAR/Optical 14746 (66.3%) 520632 (99.4%) 3286 (0.6%) 7489 (33.7%)

match the Pleiades image.

• The fourth dataset [14] is a pair of SAR/SAR satellite images (Gloucester, U.K.)

before and during a flood event caused by intense and prolonged rainfall, overwhelm-

ing the drainage capacity, on a urban and agricultural/rural areas, with size 762×292

pixels, acquired by RADARSAT satellite with different number of looks. The num-

ber of looks for the before SAR image is 1-look image (Sept. 2000) and the number

of looks for the after image is 5-looks (Oct. 2000). These two SAR images have a

resolution of about 40 meters.

• The fifth dataset [63, 64] consists of one multispectral image and one SAR

image showing the area of Gloucester (U.K.), with a size of 1318× 2359 pixels. The

multispectral image is taken by the Spot VHR satellite on Sept. 1999 before a flooding

event. The SAR image is captured by the European Remote Sensing (ERS) satellite

(around Nov. 2000) during the flooding event. The resolution of these two images

are about 10 meters [63].
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• The sixth dataset consists of one SAR image and one SPOT image with the

same size of 330 × 590 pixels. The ERS image is acquired on November 16, 1999

before the flood in Gloucester U.K, and the optical image combined with 3 bands is

acquired on October 21, 2000 during the flood in Gloucester U.K.

•The seventh dataset is composed of two heterogeneous optical images. It shows

the changes of the Mediterranean in Sardinia area (Italy). This dataset is acquired by

different sensor specifications, and consists of one TM image and one optical image.

The TM image is the near-infrared band of the Landsat-5 (Sept. 1995 with spatial

resolution of 30 meters). The optical image comes from Google Earth (RGB, Jul.

1996, Landsat-5) with a spatial resolution of 4 meters. After co-registration they are

of same pixel-resolution 412× 300 pixels.

• The eighth dataset shows two Heterogeneous optical images from another area

in the south campus of Hubei province of China, were respectively acquired by the

QuickBird satellite in May 2002 and the IKONOS satellite in July 2009, with a size

of 240× 240 pixels. The images after preprocessing have the same spatial resolution

of 3.28 meters.

• The ninth dataset is a pair of SAR/Optical satellite images with a size of 291×
343 pixels. The before image is acquired by RADARSAT-2 in June 2008 over the

River of China. The optical image comes from Google Earth (September 2010),

acquired after a flooding event, and which integrates imagery from both Quickbird

US VHR satellite and SPOT5 satellite. After, co-registration, they are of the same

spatial resolution of 8 meters.

• The tenth dataset shows two heterogeneous optical images covering the campus

of Wuhan University in Hubei province of China. They were respectively acquired

by the QuickBird satellite in April 2005 and the IKONOS satellite in July 2009, and

correspond to 4-bands (red, green, blue, and NIR band) with a size of 400 × 400

pixels. The resolution of these images is of 2.44 and 3.28 meters. After re-sampling

the after image have the same spatial resolution as the before image 2.44 meters.
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Figure 6.5. Heterogeneous (multisensor) Optical/Optical dataset: (a-c) image

t1, t2, ground truth; (d-e) final (changed/unchanged) clustering result and

confusion map (white: TN, red: TP, blue: FP, Cyan: FN) obtained by the

proposed approach.

• The eleventh data set consists of one SAR image and one RGB optical image.

It shows a piece of the Dongying City in China, before and after a new building

construction. The SAR image is acquired by RADARSAT-2 (June 2008) with a

spatial resolution of 8 meters. The optical image comes from Google Earth image

(Sept. 2012) with a spatial resolution of 4 meters [51]. After co-registration, they are

of the same pixel-resolution to give a size of 921× 593 pixels.
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Figure 6.6. Heterogeneous (multilooking) SAR/SAR datasets: (a-c) image t1,
t2, ground truth; (d-e) final (changed/unchanged) clustering result and confu-

sion map (white: TN, red: TP, blue: FP, Cyan: FN) obtained by the proposed

approach.

6.3.2 Results & Evaluation

In our anomaly-based CD problem, we first convert the multi-bands image to a

grayscale image, the temporal feature image space is simply done by collecting the

local gray level intensities using a squared window of size Sw (Sw = 9 in our case).

We have used a learning architecture composed of a stacked sparse auto-encoder

and consisting of two layers of sparse auto-encoders, where each encoder layer has

a corresponding decoder layer, a deep sparse auto-encoder with a number of hidden

layers Lh = 2, that takes a bi-temporal feature vector input of dimension Dinp =

162(= 2 × 9 × 9). The learned encoder layers compress the input space into a low-

dimensional representation, first into a number of dimensions dhl1 = 80 and then into

a number of dimensions dhl2 = 40.

The reconstruction of this compact representation of dimension dhl2 = 40 is done

by using the two previously learned decoder layers, respectively from dhl2 = 40 to

dhl1 = 80 and from 80 to the original input dimension D̂inp = 162. We recall that in
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this learning architecture, we use the satlin function for the encoding stage and the

purelin function for the decoding stage.

Our anomaly-based CD model can be optimized via a layer-wise training technique

[30], using a scaled conjugate gradient descent algorithm [76], by starting to train the

first layer to learn to encode the normal representation D(N) to d(hl1) and to decode

D(N) from d(hl1), and then to train the second layer to learn to encode d(hl1) to d(hl2)

and to decode d(hl2) from d(hl1).

In our application, the coefficients λ and β for the L2 regularization and the

sparsity regularization terms, were fixed, respectively, to 0.01 and 4.0. The value of

the sparsity proportion ρ was set to 0.10 and the maximum number of training epochs

for each of the sparse autoencoder architecture was set to 1000 and 400 epochs.

In order to discuss the obtained results, from the conducted experiments, we

compare our results to the state-of-the-art methods in terms of classification rate,

i.e., the accuracy that measure the percentage of the correct changed and unchanged

pixels.

ACC =
TP+TN

TP+TN+FN+FP
(6.8)

Where TP and TN denote to the number of pixels that are correctly classified,

FN and FP denote to the number of misclassified pixels

Table 7.2 summarizes the different change detection accuracy rates obtained by

our approach and draws a comparison with both supervised and unsupervised state

of the art approaches.

Based on the leave-one-out evaluation strategy, we can notice that the accuracy

rate of the proposed method outperforms the most state of the art approaches and

remains comparable to the other supervised and unsupervised state of the art meth-

ods. The strength of our model is its ability to process a wide variety of satellite

imaging modalities, i.e., multi-sources, multi-sensor, and multi-looking SAR images,
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Table 6.3. Parameters of the stacked sparse autoencoder.

Parameter name Min Step Factor Max

Hidden layer 1 80 10 - 120

Hidden layer 2 30 10 - 50

Hidden layer 3 10 5 - 20

Hidden layer 4 3 2 - 7

ρ 0.00625 - 2 0.8

λ 0.0001 - 10 0.1

β 0.5 - 2 8

Table 6.4. The Stacked Sparse Autoencoder Hyper parameters obtained on the

subset multimodal dataset with the mean squared reconstruction error (MSE).

Number of layers ρ λ β Size of first layer Size of second layer Size of third layer Size of fourth layer MSE

2 0.1 0.01 4 80 40 - - 0.0640

3 0.05 0.01 2 110 50 10 - 0.1385

4 0.05 0.01 4 100 40 10 3 0.1409

under different resolutions. The method can effectively process images corrupted by

different noise types and different degradation levels (see Fig. 6.6 where SAR images

are corrupted by different speckle noise levels).

From Table 7.3, we can see also that the changed and un-changed area are well

detected and that the different resulting binary maps match fairly the different regions

shown in the ground truth for the different satellite imagery sources (see Figs. 6.4-

7.2-6.6).

The global accuracy rate obtained by our unsupervised anomaly detection model,

over the 11 heterogeneous image pairs, using the leave-one-out evaluation scenario,

is 0.863%.
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Table 6.5. Average classification accuracy and the Stacked Sparse Autoencoder

Hyperparameters used with the first and second hidden layers.

ρ λ β Average accuracy (%)

0.00625 0.01 4 0.579

0.05 0.01 4 0.822

0.4 0.01 4 0.764

0.8 0.01 4 0.715

0.1 0.0001 4 0.801

0.1 0.001 4 0.808

0.1 0.1 4 0.823

0.1 0.01 0.5 0.830

0.1 0.01 1 0.837

0.1 0.01 2 0.829

0.1 0.01 8 0.832

Table 6.6. Impact of the Square Window size on the Average classification

accuracy.

Sw Average accuracy (%)

9 0.863

11 0.849

13 0.838

15 0.844
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Step 1:

• Set of hyperparameters from a defined space

• Normal training and validation subsets

Step 2:

foreach combination of the model parameters ∈ defined space do

• Train the first and second layers of the sparse AEC model

using (Eq.3)

• Compute the MSE on the validation subset.

end

• Optimal hyper-parameters outputs with the least squares.

Algorithme 7: Grid search based hyper-parameter optimization of the

proposed CD model.

6.3.3 Architecture configuration and Experimental Settings

In all our experiments, we choose the best architecture as the one having the least

mean reconstruction error (MSE) on the validation set containing only normal pat-

terns. For parameters settings, we note that our training/validation dataset is a

subset of each multimodal pair image and having dimension ds = 162. The dataset

is randomly subdivided into two subsets: (2/3) for the training set and (1/3) for the

testing set. We inject in our normal training dataset a proportion of 3.0% anomalous

(change) patterns to form the final training dataset. We present empirical results

produced by our anomaly CD model on this data subset. We use a simple stacked

sparse neural network model with normal class. The network parameter settings are

described in Table 6.3. In order to fix the neural network architecture and to find

optimal hyper-parameters, we rely on a grid search method performed in a defined

space with a fixed step/factor and using the following hyper-parameters space: num-
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ber of hidden units per layer for the first, second, third and fourth hidden layers, the

coefficient of the sparsity term β, the coefficient of the regularization term λ, and the

sparsity proportion ρ. Once a layer-wise training strategy was adopted, each layer was

trained independently from the others and the parameter values (ρ, λ, β) were varied

by exploring different combinations of optimization parameters for each of the four

layers with the corresponding number of hidden units. Indeed, we gradually increase

the hidden layer number starting by two layers and choose the architecture, giving the

best parameter values that minimized the MSE. Algorithm 7 shows the estimation

step (with a grid search based optimization technique) of the internal parameters of

the stacked sparse neural network reconstruction model.

When the number of hidden-layers was set to 3 and 4, the mean squared error is,

respectively, 0.1385% and 0.1409%, which are greater than the MSE value of 0.0640%

obtained only with two hidden layers. Therefore, the number of the hidden layers in

our anomaly based CD model was set to 2 in our application. Table 6.4 shows the

optimal parameters and the MSE obtained by the grid search method for different

architectures depth.

6.3.4 Discussion

Before all, it is important to recall that this type of deep autoencoder will nec-

essarily be well adapted to our multimodal CD detection task, since this one has

already proven its efficiency to learn and fuse highly heterogeneous pairs of data

types in a common space representation [39] [100] [52] [34] [84] and also has proven to

be effective in modeling/fusing highly heterogeneous data/sources supported in the

multimedia domain (such as words/images [27] [114], speech/images [57] [47] [35],

audio/video [39], facial expressions/sound [52] [43], or multimodal DCE/MRI medi-

cal images [100], two MRI medical images modalities [112]). In this study (the first

study to our knowledge), we confirm the relevance of this type of deep autoencoder

in dealing/fusing heterogeneous data (or heterogeneous imaging modalities) used in
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remote sensing.

We now discuss the influence of the different parameter settings for our anomaly

CD model on 11 benchmark multimodal datasets using the leave-one-out evaluation

strategy. To this end, we vary the parameter to be evaluated and fix the others to

their optimal values (see Tab. 6.4), and quantify the average accuracy. In our appli-

cation, the parameter ρ plays a crucial role because it conditions the level of sparsity

which may affect considerably our analysis. More precisely, ρ is used to optimize

false alarm rates in our unsupervised anomaly CD detection problem and its tuning

is based only on normal class images. Indeed, a small ρ induces an over classifica-

tion of many normal class patterns as anomalous/outliers. In the opposite case, a

large ρ discourages normal data patterns from being classified as anomalous/outliers.

Thereby, a bad choice of the value of ρ classifies many normal patterns as anomalous

and increases the false positive rate or classify many abnormal patterns as normal

and increases the false negative rate, which decreases the performance of the anomaly

CD model (see Tab. 6.5). Accordingly, the optimal ρ (in our case ρ = 0.1) balances

both false-positive and false-negative rates (see Tab. 7.3). We can notice that the

weight decay λ and the regularization parameter β affect less the behavior of the

autoencoder compared to the sparsity parameter ρ (see Tab. 6.5). Also, experiments

conducted on different numbers of hidden layers show that augmenting the number

of layers does not effectively increase the average classification accuracy. The average

classification rate obtained using 3 and 4 hidden layers with a number of nodes set

to 10 and to 3 are respectively equal to 0.847%, 0.845% which are lower than our

average classification rate 0.863% that corresponds to the optimal number (= 2) of

layers. Varying the number of nodes of the hidden layers also does not enhance nec-

essarily the average accuracy. Different combinations were tested giving very close

values to the optimal average accuracy which is obtained by 80 nodes for the first

and 40 nodes in the second hidden layer. In the same way, the impact of the squared
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window size (Sw) is assessed by a comparison study done on the average classifica-

tion accuracy of the anomaly CD model using different sizes. Table 6.6 demonstrates

that the average classification accuracy is not much significantly influenced by the

size (Sw). To conclude, the results obtained from different experiments have shown

that the choice of the optimization hyper-parameters are a crucial task in the fea-

tures network setting, particularly the ρ parameter which is the key parameter of the

network contrary to the other parameters such as the depth of the network that does

not significantly influence the anomaly CD model performances. The main quality

of our model is that it achieves a better classification rate accuracy under different

change detection conditions reflecting a variety of imaging modalities with different

noise types and levels, where the sensitivity of different parameters is analyzed (see

Tab. 6.5). This justifies the fact that it can also be less accurate than some specific

supervised/unsupervised multimodal CD models, dealing only with a specific type of

noise and a specific imaging modalities such as PCC and SCNN methods [51] which

also use denoising algorithms to reduce the speckle noise of the SAR images and/or

the Gaussian noise of the optical images (particularly when the SAR images are too

much corrupted by the multiplicative speckle noise degrading their quality and creat-

ing for each texture class, a kind of macro texture with grainy patterns (see dataset-9

Fig.6.4)).

6.4 Conclusion

In this paper, we have proposed a new anomaly-based CD model for heterogeneous

remote sensing image pairs. This model exhibits quite interesting properties. First,

the proposed model is based on unsupervised training stage in which a stacked mul-

timodal sparse auto-encoder model employing a satlin and purlin neural transfer

functions is trained to learn and infer a suitable latent representation of the normal

image patterns existing in the before and after multimodal images. This is done in
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order to identify and to disentangle from the normal image patterns (belonging to the

non-change class label) the change class as unusual from abnormal feature patterns

in the residual space; the trained anomaly-based CD model tries to reconstruct the

feature space for each new un-seen image pair by encoding and decoding the image

pair inputs using its stacked hidden representation. The reconstruction error between

the original input feature and its reconstruction is quantified to generate (for each

pixel) an anomaly-based error score that highlights the usual and unusual (rare) pat-

terns that belongs to the abnormal class (change class label) or to the normal class

(non-change class label). Finally, a Gaussian mixture model (GMM) assigns a class

label to each pixel (change vs non-change) in the MAP sense. The different experi-

mentation conducted on the proposed CD model, in the leave-one-out test scenario,

demonstrates its effectiveness in processing new-unseen input heterogeneous image

pairs. Besides, the model seems to be flexible enough to process heterogeneous image

pairs with both different spatial resolution, covering different heterogeneous CD con-

ditions (as multi-source, multi-sensor, and multi-looking image pairs). It accurately

determines different kinds of natural and/or man-made changes (e.g. major urban

construction and changes resulting from different types of natural phenomenon).
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Chapitre 7

PAIRWISE DESCRIPTORS LEARNING FOR

MULTIMODAL CHANGE DETECTION USING

PSEUDO-SIAMESE CNN NETWORK MODEL

Dans ce chapitre, nous présentons notre article soumis dans la revue IEEE Geo-

science and Remote Sensing Letters (GRSL), intitulé: Pairwise Descriptors Learn-

ing For Multimodal Change Detection using Pseudo-Siamese CNN Net-

work Model. Nous exposons ce dernier dans sa langue originale de soumission.

Abstract

This paper addresses the problematic of detecting changes in bi-temporal heteroge-

neous remote sensing image pairs. In different disciplines, multimodality is the key

solution for performance enhancement in a collaborative sensing context. Particularly,

in remote sensing imagery there is still a research gap to fill with the multiplication

of sensors, data sharing capabilities, and multi-temporal data availability. This study

was aimed to explore to some extent the multimodality in a multi-temporal set-up for

a better understanding of the collaborative sensor-wide information completion and

error elimination. In this context, we propose a pairwise learning approach consisting

on a pseudo-siamese network architecture based on two uncoupled parallel network

streams. Each stream represents itself a convolutional neural network (CNN) that

encodes each input patch. The overall change detector (CD) model includes a fusion

stage that concatenates the two encodings in a single multimodal feature represen-

tation which is then reduced to a lower dimension using fully connected layers and

finally a loss function based on the binary cross entropy is used as the final layer.
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Thanks to the pseudo-siamese pairwise learning architecture the CD model is able to

capture the spatial and the temporal dependencies between multimodal input image

pairs. The model processes the two multimodal input patches at one-time under dif-

ferent spatial resolutions. The evaluation performances on different real multimodal

datasets reflecting a mixture of CD conditions with different spatial resolutions, con-

firm the effectiveness of the proposed CD architecture.

7.1 Introduction

In remote sensing imagery, change detection is the process of computing differences in

a geographical area by analyzing it at different times. Change detection problems can

be divided into two main types: the monomodal CD problem assumes that the change

area occurred between two/multiple images over time under the assumption that the

two/multiple images share the same characteristics i.e. acquired by the same satellite

sensor with the same specifications. The multimodal CD problem assumes that the

bi-temporal images are acquired by different sensors or with the same sensor but with

different specifications. Detecting changes between heterogeneous images is a non-

trivial problem as it must take into account multiple sources and characteristics of the

acquired data. This problem is still less explored, although it has recently generated

a growing interest in the remote sensing research community. The technical and

practical advantages enable to increase the system performances, and especially to

avoid detecting natural changes due to environmental variables such as humidity or

phenological state. This challenging task can be viewed as the generalization of the

classical monomodal CD problem [109] which is less used as-is for solving the same

CD problems.

Nowadays, few research works have been addressed in the multimodal CD issue.

Nevertheless, these can be divided into five categories in which we can find parametric

models [14, 65, 88, 90], non-parametric methods [109], algorithms based on operators
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using spatial and temporal similarity measures as in [2,8,110], projection-based tech-

niques [29, 53, 111], and machine learning methods [51, 126, 127].

Deep learning has become a methodology of choice as the most advanced form of

machine learning for image classification, object detection, segmentation and other

applications. In particular, convolutional neural network (CNN) is a descriptor learn-

ing framework with a deep architecture that transforms the input data through many

layers to extract high level representations from the inputs. Invariant feature rep-

resentation learning is a type of descriptor learning framework, which can be build

on CNN e.g. siamese-CNN network [125]. The siamese CNN architecture is used for

patch comparison and refers to two coupled network streams with the same CNN ar-

chitecture and the same parameters applied to a pair of input data at the same time.

In our case, the multimodal CD problem can be viewed as a binary classification task

in which the siamese-CNN architecture takes as inputs the two heterogeneous images.

In this work, we are concerned with a heterogeneity problem. We propose a CD

model principally designed to deal with different imaging sources with different spa-

tial resolutions and which is well adapted for representing and detecting temporal

changes between two heterogeneous remote sensing images. Our CD model learns

directly a binary classification function from various types of pair patches coming

from different sources, which are processed through two network CNN streams that

share the same architecture configuration but with uncoupled weights between them,

in order to extract descriptors independently, for each input patch. The final stage of

the proposed model consists to combine the two output descriptors from each stream

in a single multimodal representation, which is then used to learn the binary classifi-

cation cost function. The built model ensures the classification of new temporal input

images by processing the input patch pairs in parallel using the learned duplicated

convolutional streams and the decision network for binary classification.

The rest of this paper is organized as follows: section 7.2 describes the designed
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CD model and its architecture to identify change or non-change input pairs as simi-

lar/dissimilar classes. Section 7.3 presents the evaluation strategy used to assess the

performance of our CD model and the obtained results compared to the state-of-the-

art multimodal techniques. Finally, section 7.4 concludes the paper.

7.2 Proposed Change Detection Model

The two/multiple remote sensing input images that correspond to the same geo-

graphic area are acquired and co-registered at different time by two/multiple different

sensors. Dealing with the characteristics of the different sources of image represents

the main challenging issue.

One interesting solution is to design a multimodal CD model with two branches

that take as input a pair of images instead of one input, in which the image before and

after are fed to two branches allowing us to capture both the spatial and the temporal

inter-dependencies. Formally, the task of multimodal change detection can be viewed

as a pairwise identification problem, where a pair of non-change/non-change images

(samples) are called similar pair, and a pair of non-change/change are called dissimilar

or different pair which represents the difference (in the land use) caused by the event

and not by the different source of data.

In this case, the pairwise learning approach is more appropriate to verify whether

a pair of temporal images corresponds to the similar pair or to the dissimilar pair,

i.e. corresponds to the non-change class in the case of similar pair and to the change

class in the other case. This can be achieved by training a network based on the

similarity of images in order to learn the similarity between pair of images. Among

metric learning approaches, siamese network has already been successfully used in

several applications [125] such as signature verification, one-shot image recognition,

face verification, learning image descriptors, and image ranking to name a few. The

siamese architecture consists of two identical subsystems sharing the same set of
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parameters and a cost function module to quantify the pairwise relationship. The

cost function can be defined via a distance metric or a similarity measure. The goal

consists to increase the similarity score or to decrease the distance between similar

pairs, and dually, to reduce the similarity score or to increase the distance between

two dissimilar image patches.

In our case, siamese network architecture is able to support as input a pair of

images. Since the image pair is multimodal, i.e., composed of two different imaging

modalities (acquired from different sources), the siamese network architecture is less

effective when the weights are shared between the parallel network streams (parallel

subsystems) [129]. Ultimately, using a cost function based on a distance metric or

a similarity measure to distinguish between similar and dissimilar pair images is less

suitable for evaluating similar pair images coming from two different sources due to

the fact that there was not a strong enough correlation between heterogeneous similar

pair images.

Inspired by the siamese network, we propose an adapted pseudo siamese network

model that handles multimodal pair of images.

Pseudo-siamese architecture is a variant closely linked to the basic siamese archi-

tecture [125], well adapted to our multimodal CD problem since it is a less restricted

network in terms of weights which are not shared between the two network branches

(Fig. 7.1). This leads to increase the number of parameters to be adjusted during the

training phase, giving a more flexible network than the original siamese network [125].

We recall that training pseudo-siamese network is accomplished using a pairwise

learning approach that involves a loss function depending on pairs of input examples.

In our application, the pairwise learning task is formalized as classification of tempo-

ral multimodal image pairs into two categories change/non-change. More precisely,

our pseudo-siamese network based CD model that takes as input a pair of heteroge-

neous patches, performs both a supervised multimodal dimensionality reduction and

a binary classification tasks.
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Figure 7.1. Network architecture of the pseudo-siamese based change detector

model.

Our multimodal CD model architecture is mainly based on pseudo-siamese net-

work architecture, having two branches that share exactly the same configuration ar-

chitecture, but with less restrictions on the set of weights, i.e. with uncoupled weights

between the two branches. Each branch acts as a feature extractor/descriptor that

takes as input one of the two multimodal patches, which can be also a multichannel

patches with respect to the number of bands in the input patches.

Our overall CD model includes a decision network, a top network that forms a

descriptor within a lower dimensional space and a loss function to learn a decision

function from the compact feature space.

The input to the CD model is considered to be a pair of image patches, from

which descriptors are first computed independently using two parallel streams and

then concatenated with a top network module that decide if the two multimodal input

patches present a similar or dissimilar pair corresponding to change vs. non-change

class.

Inspired also by the recent advances in neural architectures and deep learning,

the structure of our descriptor is represented in terms of a deep convolutional neural

network. Indeed, we explore and propose a CNN network architecture that addresses

the issue of our multimodal CD problem. Our CNN architecture network is composed

of a set of convolutional, ReLU, max-pooling, and fully connected layers, that takes
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patches as input and apply on them a three convolutional, max-pooling, ReLU op-

erations and one concatenation operation in the last layer which is a fully connected

layer. Our proposed CNN architecture is inspired by the MatchNet network architec-

ture, but with a few layers. The main difference comes from the layers setting. This

means that our architecture favors sparse-dense features and does not favor sparse-

sparse features produced by the ReLU. Note also that performing a mean-pooling

operation instead of max-polling, does not significantly increase the performance of

the CD model. The structure of the CNN architecture uses small filters of 5× 5 for

all convolutional layers, that effectively increases the model performance and reduces

the number of filter parameters to be learned. ReLU function is used after the three

convolutional layers, which helps to generate sparse features. The last layer is a fully

connected layer that acts as a linear dimension reduction layer, and project convolu-

tional features in lower dimensions. The ReLU function is removed after this layer to

favorize dense representation. The output of the fully connected layer is the feature

representation of the input patch. The spatial padding of convolutional layer input

is 2 pixels for the three convolutional layers with 5 × 5 filter size. The convolution

stride is set to 1 pixel. Three max-pooling are performed using 3× 3 spatial pooling

kernel with a stride of 2. Table 7.1 summarizes the details of our CNN architecture

settings.

In the fusing stage, the two output descriptors of each CNN stream are con-

catenated using a fusion layer that merges the two input features in one single 128-

dimensional feature representation, which is then reduced using 2 fully connected

(FC) layers but without ReLU function. The first FC layer contains 16 features and

the second has 2 outputs corresponding to the change/non-change binary mapping.

In the proposed approach, the CD model takes a single input which is a pair of

patches stacked along the depth dimension that requires to be splitted to feed each

patch into the corresponding CNN stream. This is ensured using a slice layer that

splits the single input into two patches which are in fact the original patches. Fig.7.1
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Table 7.1. DETAILS OF THE MODEL ARCHITECTURE FOR CNN.

Name Type Input size Filter number Filter Size conv Filter Size pool Stride Pad Stride ReLU

Conv1/Pool1 conv/max pool 32× 32 32 5× 5 3× 3 1 2 2 Yes

Conv2/Pool2 conv/max pool 32× 16× 16 32 5× 5 3× 3 1 2 2 Yes

Conv3/Pool3 conv/max pool 32× 8× 8 64 5× 5 3× 3 1 2 2 Yes

FC1 fully-conn 64× 4× 4 64 N/A N/A N/A N/A N/A No

shows the overall pseudo-siamese CD model.

Loss Function

As mentioned earlier, the input of the CD model is considered to be a pair of patches.

Learning similarity function between the pair of descriptor outputs is possible, but

remains less effective than combining them. Thus, we propose to use the binary

cross-entropy loss for training our multimodal pseudo-siamese network.

7.3 Experimental Results

In order to validate and to show the strength of the proposed model, we conduct

the experimentations on five realistic multimodal datasets, reflecting different imag-

ing modalities cases under different change detection conditions with different spatial

resolutions, namely multi-sensor (heterogeneous optical images) and multi-source (op-

tical and SAR images), showing construction and destruction of buildings in different

area. For each multimodal dataset, the change mask (ground-truth) is provided by a

photo-interpreter.

In our application, the classification performance of the proposed CD model is

assessed using the leave-one-out test procedure. In this well known evaluation strat-

egy, one entire multimodal dataset is removed from the whole training multimodal

images, whereas the training phase is performed on the remaining heterogeneous
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Dataset-1

Dataset-2

Dataset-3

Dataset-4

Dataset-5

(a) (b) (c) (d) (e)

Figure 7.2. Heterogeneous dataset: (a-c) image t1, t2, ground truth; (d-e) final

(changed/unchanged) binary classification and confusion map (white: TN, red:

TP, blue: FP, Cyan: FN) obtained by the proposed approach.
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datasets. The built CD model is then evaluated on the removed dataset to generate

the binary map. This process is repeated 5 times and at each time two multimodal

images were retained as validation data.

7.3.1 Heterogeneous Dataset Description

Table 7.2. Accuracy rate of change detection on the five heterogeneous datasets

obtained by the proposed method and the state-of-the-art multimodal change

detectors (first upper part of each Table) and monomodal change detectors

(second lower part of each Table).

SAR/Optical Dataset Accuracy (%)

Proposed method 0.870

Prendes et al. [89] 0.844

Correlation [89] 0.670

Mutual Inf. [89] 0.580

Optical/Optical Dataset Accuracy (%)

Proposed method 0.865

Prendes et al. [87, 89] 0.844

Correlation [87, 89] 0.679

Mutual Inf. [87, 89] 0.759

Pixel Dif. [87] 0.708

Pixel Ratio [87] 0.661

SAR/Optical Dataset Accuracy (%)

Proposed method 0.987

Liu et al. [51] 0.976

PCC [51] 0.821

Quickbird/IKONOS Dataset Accuracy (%)

Proposed method 0.877

Yuqi et al. [103] 0.986

Multiscale [103] 0.991

Quickbird/IkONOS Dataset Accuracy (%)

Proposed method 0.837

Yuqi et al. [103] 0.959

Multiscale [103] 0.966

• The first multimodal dataset is a pair of SAR/optical satellite images (Toulouse,

France), with size 4404× 2604 pixels, before and after construction. The SAR image

was taken by the TerraSAR-X satellite (Feb. 2009) and the optical image by the

Pleiades (High-Resolution Optical Imaging Constellation of CNES, Centre National

d’Etudes Spatiales) satellite (July 2013). The TSX image was co-registered and re-

sampled by [87] with a pixel resolution of 2 meters to match the optical image.

• The second dataset shows two heterogeneous optical images acquired in Toulouse

(Fr) area by different sensor specifications (size 2000×2000 pixels with a resolution of

0.5 meter). The before image is acquired by the Pleiades sensor in May 2012 before the

beginning of the construction work, and the after image is acquired by WorldView2
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Table 7.3. Confusion matrix for each of the five multimodal datasets i.e.,
[TSX/Pleiades] (4404×2604 pixels), [Pleiades/WorldView 2] (2000×2000
pixels), [QB02 /IKONOS] (240×240 pixels), [QB02 /IKONOS] (400×400
pixels).

Multimodal image pairs TP TN FP FN

TSX/Pleiades 0.50% 0.90 % 0.10% 0.50%

Pleiades/WorldView 2 0.47% 0.94 % 0.06 % 0.53%

SAR/Optical 0.81% 0.99% 0.01% 0.19%

Quickbird/IKONOS 0.52% 0.94% 0.06% 0.48%

QuickBird /IKONOS 0.49% 0.90% 0.10% 0.51%

satellite from three (Red, Green and Blue) spectral bands (11 July 2013) after the

construction of a building. The WorldView2 VHR-image was co-registered by [87] to

match the Pleiades image.

• The third multimodal data set consists of one SAR image and one RGB optical

image. It shows a piece of the Dongying City in China, before and after a new

building construction. The SAR image is acquired by RADARSAT-2 (June 2008)

with a spatial resolution of 8 meters. The optical image comes from Google Earth

image (Sept. 2012) with a spatial resolution of 4 meters. After co-registration, they

are of the same pixel-resolution to give a size of 921× 593 pixels.

• The fourth dataset shows two heterogeneous optical images from another area

in the south campus of Hubei province of China, were respectively acquired by the

QuickBird satellite in May 2002 and the IKONOS satellite in July 2009, with a size

of 240× 240 pixels. The images after preprocessing have the same spatial resolution

of 3.28 meters.

• The fifth dataset shows two heterogeneous optical images covering the campus

of Wuhan University in Hubei province of China. They were respectively acquired
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by the QuickBird satellite in April 2005 and the IKONOS satellite in July 2009, and

correspond to 4-bands (red, green, blue, and NIR band) with a size of 400 × 400

pixels. The resolution of these images is of 2.44 and 3.28 meters. After re-sampling

the after image have the same spatial resolution as the before image 2.44 meters.

7.3.2 Training details

In this work, the CD model was trained using the scaled conjugate gradient descent

algorithm [76], with a fixed learning rate of 0.001. The momentum and the weight

decay were set to 0.9 and 0.004 respectively. The Training was conducted on GPU

clusters with batches of 64 pairs of 32×32 patches using balanced classes with leave-

one-out evaluation strategy, i.e. the training takes around five rounds. Each time a

completely different datasets is used for evaluation.

7.3.3 Evaluation Results and Discussion

We summarize respectively in Table 7.2 and 7.3 the accuracy rate and the confu-

sion matrix obtained using the leave-one-out evaluation strategy. Table 7.2 and 7.3

demonstrates that the proposed CD model outperforms some state-of-the-art meth-

ods, it is able to process new probe image pairs under different change detection

conditions and without favouring (overfitting) neither of the two classes. The mul-

timodal CD described in this paper turns out to be interesting for multiresolution

change detection. Indeed, the CD model learned to fuse features of the two multi-

modal patches which help to factorize the differences (e.g. land cover changes) and

the imaging modalities, but also makes use of standard max-pooling layers to deal

with the multi-resolution nature of the data. The model can be also less accurate

than some specific CD models that are dedicated to a restricted number of specific

imaging modalities.
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7.4 Conclusion

In this paper, we presented a CD model based on an uncoupled parallel learning

architecture for change detection from bi-temporal multimodal remote sensing im-

ages. The model that combines a pseudo-siamese CNN encoder, a fusion layer and

a cost classification module, is able to properly capture the spatial and the temporal

dependencies between the multimodal input image pairs thanks to its ability to pro-

cess input data pairs in parallel. Experiments using the leave-one-out test strategy

demonstrate that the proposed CD model presents an effective way to process new-

unseen heterogeneous input image pairs with different spatial resolutions and under

different heterogeneous CD conditions such as multi-source and multi-sensor image

pairs.
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Chapitre 8

CONCLUSION GÉNÉRALE ET PERSPECTIVES

Dans cette thèse, nous avons présenté notre contribution pour résoudre le problème

de la détection de changement dans une série d’images satellitaires multimodales.

Notre principal objectif est de développer des modèles de détection semi-supervisés

ou non supervisés, en utilisant non seulement les techniques de traitement d’images

mais aussi en les combinant avec des techniques d’apprentissage automatique.

Nous avons tout d’abord présenté l’état de l’art des différentes méthodes de

détection de changement multimodal existantes, que nous avons classées en cinq caté-

gories principales; à savoir les méthodes paramétriques, non paramétriques, celles util-

isant des mesures de similarité invariantes, les méthodes utilisant les techniques de

projection dans un espace commun et enfin celles exploitant l’apprentissage machine.

Nous avons proposé pour chacune de ces cinq catégories, un modèle original, ro-

buste et largement non supervisé et le plus souvent en complexité linéaire (premier,

deuxième, troisième, et quatrième modèle). Plus précisément, nous avons proposé

en premier une nouvelle modélisation par paires de pixels intégrée dans une fonction

d’énergie dont la solution peut être trouvée en temps linéaire. Ensuite, nous avons

développé un nouvel opérateur de détection de changement invariant aux modalités

d’imagerie, exprimé par des normes duales, qui détectent, à différentes échelles, les

différences en termes de hautes fréquences de chaque région structurelle. Nous avons

aussi proposé un modèle paramétrique basé sur un modèle Markovien dont la nou-

veauté réside dans l’utilisation d’un champ d’observation construit à partir d’une

modélisation par paires de pixels. Nous avons développé une méthode basée sur une

représentation à l’échelle multidimensionnelle (MDS) qui transforme les images avant
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et après dans un espace de caractéristiques commun. Nous avons proposé également

un modèle de détection basé sur la détection des changements comme des anoma-

lies en apprenant un modèle qui reconstruit avec erreur des motifs hétérogènes de la

classe rare (changée). Dans la même optique, nous avons développé un modèle super-

visé qui repose sur une approche d’apprentissage par paires (spatial) de pixels et qui

utilise comme architecture deux flux de réseaux convolutifs parallèles et partiellement

non-couplés suivis par un réseau de décision.

Dans cette étude, nous avons validé notre modèle sur une base de données con-

stituée de plusieurs paires d’images multimodales et mono-modales de modalité d’ima-

gerie différente (multi-senseur, multi-source, et multi-looking SAR images) représe-

ntant des images de zones terrestres de nature variables en relief, en urbanisation, et

obtenues sous différentes conditions d’acquisition avec des résolutions et des tailles

différentes afin de considérer un maximum de cas et ainsi tester au mieux la flexibilité

et précision des différents modèles de détection proposés.

Comparaisons des différents modèles :

Les six modèles de détection de changement présentés dans cette thèse sont de

nature assez différentes et possèdent donc des caractéristiques différentes en terme

d’adaptabilité ou de flexibilité (aux différents types de modalités d’imagerie possi-

bles associées aux paires d’images satellitaires utilisées), d’efficacité, de robustesse,

de généralisation (des résultats sur les images monomodales), de complexité calcu-

latoire et d’améliorations possibles. Le premier et troisième modèle utilisent une

modélisation par paires de pixels et sont tous deux des modèles à base d’énergie (dont

le but est d’estimer une solution qui correspond au minimum d’une fonction d’énergie

ou de coût généralement associé à un critère statistique). Le premier modèle est non

paramétrique et au sens des moindres carrés (MC) et le troisième est paramétrique

(Markovien) et est presque son équivalent, en terme de modélisation, mais au sens du

maximum de vraisemblance (MV). Le critère du MC du premier modèle rend celui-ci
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assez robuste au bruit et donne des résultats assez stables pour différents types de

modalité d’imageries différentes. Le critère du MV du troisième modèle est peut-être

moins stable que le premier modèle (plus sensible au bruit) et donne de meilleurs

résultats lorsque les distributions (posées à priori) s’adaptent bien aux données et/ou

ne sont pas trop bruitées ou mélangées et inversement donne de résultats moins

meilleurs lorsque les lois de distribution sont très mélangées et/ou les données sont

fortement bruitées. Le troisième modèle qui fait appel à un optimiseur stochastique

est le plus lent des six modèles mais aussi celui qui, grâce à son cadre mathématique

très étudié (inférence Bayésienne), à la plus grande faculté d’amélioration possible. Le

premier modèle de complexité rendue linéaire, est l’une des techniques les plus rapi-

des des six modèles proposés. Le deuxième modèle (opérateur de gradient textural

spatio-temporel invariant par modalité d’imagerie) et le quatrième modèle (projec-

tion des deux images satellitaires dans un espace de caractéristiques commun) sont

les plus simples, mathématiquement parlant, et aussi les plus locales, en terme de

modélisation (modélisation associée à un voisinage). Ce sont les moins complexes,

algorithmiquement parlant mais ils ont l’avantage d’offrir un bon compromis en terme

de simplicité et coût calculatoire versus efficacité et robustesse obtenue. Du fait de

leurs modélisation, ils ont peut-être le désavantage de rendre plus difficile de con-

cevoir des améliorations possibles et de comprendre comment ces modifications per-

mettraient de les améliorer. Les deux derniers modèles reposent sur une modélisation

utilisant l’apprentissage machine. Dans ces deux cas, les inconvénients de ces modèles

sont connus. Ils résident essentiellement dans la base d’apprentissage de départ que

l’on espère être représentatif des différents types de modalités d’imagerie que l’on

sera à même de rencontrer. L’inclusion de paires d’images supplémentaires dans cette

base d’apprentissage de départ pourrait changer assez sensiblement les résultats et il

est malheureusement très difficile de prévoir quelles modifications dans les résultats

obtenus seraient influencés par un changement donné dans la base d’apprentissage

(i.e., l’inclusion d’une nouvelle paire d’image satellitaire dans la base d’apprentissage).
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Perspectives :

Pour la suite de travaux de recherche, nous comptons étudier d’autres contraintes

par paires de pixels utilisant des distances basées sur des caractéristiques locales textu-

rales par paires de pixels. Nous envisageons aussi d’autres techniques d’apprentissage

profond, de débruitage spatial ou fréquentiel sur la carte de similarité afin d’améliorer

le taux de détection tout en essayant de constituer une base de données mono et mul-

timodale, plus importante, que nous espérons rendre publique pour le développement

de la recherche dans ce domaine.

De plus, comme nous l’avons déjà dit, les algorithmes de détection de changement

multimodal, appliqué dans cette thèse en télédétection, pourraient être aussi presque

directement applicables en imagerie médicale pour détecter automatiquement (ou

semi-automatiquement) les changements intervenant entre deux radiographies suc-

cessives issues de deux modalités d’imagerie différentes (par exemple) d’un même

patient et pour l’éventuelle détection et quantification (puis le suivi et le traitement)

d’une anomalie entre ces deux images médicales multidatés. Nous aimerions explorer

ce domaine de recherche médicale et adapter nos algorithmes à cette fin.

De même, il serait intéressant d’étudier nos algorithmes de détection de change-

ment multimodale utilisés dans cette thèse dans le cadre de la détection de change-

ment ou comme cadre mathématique de départ pour la fusion de données issues de

caméras de nouvelle génération fusionnant l’infrarouge et l’optique traditionnelle ou

encore les caméras du futur combinant l’optique avec les rayons T (utilisés dans les

téléphones portables et capables de voir à travers la peau, les vêtements, la fumée et

même les murs).
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Bretagne - Ecole Nationale d’ingénieurs de Brest), CNES - Centre national

d’études spatiales (.), 2008.

[64] G. Mercier, G. Moser, et S. Serpico. Conditional copula for change detection on

heterogeneous sar data. Dans 2007 IEEE International Geoscience and Remote

Sensing Symposium, pages 2394–2397, July 2007.

[65] G. Mercier, G. Moser, et S. Serpico. Conditional copulas for change detection

in heterogeneous remote sensing images. IEEE Transactions on Geoscience and

Remote Sensing, 46(5):1428–1441, May 2008.

[66] N. Merkle, P. Fischer S. Auer, et R. Muller. On the possibility of conditional

adversarial networks for multi-sensor image matching. Dans Proceedings of

IGARSS 2017, IGARSS 2017, pages 1–4, Fort Worth, Texas, USA, July 2017.

[67] M. Mignotte. Fusion of regularization terms for image restoration. Journal of

Electronic Imaging, 19(3):333004–, July-September 2010.

[68] M. Mignotte. Mds-based multiresolution nonlinear dimensionality reduction



174

model for color image segmentation. IEEE Trans. on on Neural Networks,

22(3):447–460, March 2011.

[69] M. Mignotte. A bi-criteria optimization approach based dimensionality re-

duction model for the color display of hyperspectral images. IEEE Trans. on

Geoscience and Remote Sensing, 50(2):501–513, January 2012.

[70] M. Mignotte. An energy based model for the image edge histogram specification

problem. IEEE Trans. on on Image Processing, 21(1):379–386, January 2012.

[71] M. Mignotte. Mds-based segmentation model for the fusion of contour and

texture cues in natural images. Computer Vision and Image Understanding,

116(9):981–990, 2012.

[72] M. Mignotte. Non-local pairwise energy based model for the hdr image com-

pression problem. Journal of Electronic Imaging, 21(1), January-March 2012.
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