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Resumé

Le sujet de cette thèse porte sur les algorithmes d’apprentissage qui extraient les caractéristiques

importantes des visages. Les caractéristiques d’intérêt principal sont des points clés; La localisation

en deux dimensions (2D) ou en trois dimensions (3D) de traits importants du visage telles que le

centre des yeux, le bout du nez et les coins de la bouche. Les points clés sont utilisés pour résoudre

des tâches complexes qui ne peuvent pas être résolues directement ou qui requièrent du guidage

pour l’obtention de performances améliorées, telles que la reconnaissance de poses ou de gestes, le

suivi ou la vérification du visage. L’application des modèles présentés dans cette thèse concerne les

images du visage; cependant, les algorithmes proposés sont plus généraux et peuvent être appliqués

aux points clés de d’autres objets, tels que les mains, le corps ou des objets fabriqués par l’homme.

Cette thèse est écrite par article et explore différentes techniques pour résoudre plusieurs aspects de

la localisation de points clés.

Dans le premier article, nous démêlons l’identité et l’expression d’un visage donné pour

apprendre une distribution à priori sur l’ensemble des points clés. Cette distribution à priori est

ensuite combinée avec un classifieur discriminant qui apprend une distribution de probabilité

indépendante par point clé. Le modèle combiné est capable d’expliquer les différences dans les

expressions pour une même représentation d’identité.

Dans le deuxième article, nous proposons une architecture qui vise à conserver les caractéris-

tiques d’images pour effectuer des tâches qui nécessitent une haute précision au niveau des pixels,

telles que la localisation de points clés ou la segmentation d’images. L’architecture proposée extrait

progressivement les caractéristiques les plus grossières dans les étapes d’encodage pour obtenir des

informations plus globales sur l’image. Ensuite, il étend les caractéristiques grossières pour revenir

à la résolution de l’image originale en recombinant les caractéristiques du chemin d’encodage. Le

modèle, appelé Réseaux de Recombinaison, a obtenu l’état de l’art sur plusieurs jeux de données,

tout en accélérant le temps d’apprentissage.
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Dans le troisième article, nous visons à améliorer la localisation des points clés lorsque peu

d’images comportent des étiquettes sur des points clés. En particulier, nous exploitons une forme

plus faible d’étiquettes qui sont plus faciles à acquérir ou plus abondantes tel que l’émotion ou

la pose de la tête. Pour ce faire, nous proposons une architecture permettant la rétropropagation

du gradient des étiquettes les plus faibles à travers des points clés, ainsi entraînant le réseau de

localisation des points clés. Nous proposons également une composante de coût non supervisée

qui permet des prédictions de points clés équivariantes en fonction des transformations appliquées

à l’image, sans avoir les vraies étiquettes des points clés. Ces techniques ont considérablement

amélioré les performances tout en réduisant le pourcentage d’images étiquetées par points clés.

Finalement, dans le dernier article, nous proposons un algorithme d’apprentissage permettant

d’estimer la profondeur des points clés sans aucune supervision de la profondeur. Nous y parvenons

en faisant correspondre les points clés de deux visages en les transformant l’un vers l’autre. Cette

transformation nécessite une estimation de la profondeur sur un visage, ainsi que une transformation

affine qui transforme le premier visage au deuxième. Nous démontrons que notre formulation ne

nécessite que la profondeur et que les paramètres affines peuvent être estimés avec un solution

analytique impliquant les points clés augmentés par profondeur. Même en l’absence de supervision

directe de la profondeur, la technique proposée extrait des valeurs de profondeur raisonnables qui

diffèrent des vraies valeurs de profondeur par un facteur d’échelle et de décalage. Nous démontrons

des applications d’estimation de profondeur pour la tâche de rotation de visage, ainsi que celle

d’échange de visage.

Mots-clés: réseaux neuronaux, apprentissage profond, réseaux neuronaux de convolution,

apprentissage supervisé, apprentissage non-supervisé, apprentissage semi-supervisé, architectures

grossières à fines, localisation de points clés, estimation de la profondeur, rotation de visage, échange

de visage.

iii



Abstract

This thesis focuses on learning algorithms that extract important features from faces. The features

of main interest are landmarks; the two dimensional (2D) or three dimensional (3D) locations of

important facial features such as eye centers, nose tip, and mouth corners. Landmarks are used to

solve complex tasks that cannot be solved directly or require guidance for enhanced performance,

such as pose or gesture recognition, tracking, or face verification. The application of the models

presented in this thesis is on facial images; however, the algorithms proposed are more general and

can be applied to the landmarks of other forms of objects, such as hands, full body or man-made

objects. This thesis is written by article and explores different techniques to solve various aspects of

landmark localization.

In the first article, we disentangle identity and expression of a given face to learn a prior

distribution over the joint set of landmarks. This prior is then merged with a discriminative classifier

that learns an independent probability distribution per landmark. The merged model is capable of

explaining differences in expressions for the same identity representation.

In the second article, we propose an architecture that aims at uncovering image features to do

tasks that require high pixel-level accuracy, such as landmark localization or image segmentation.

The proposed architecture gradually extracts coarser features in its encoding steps to get more global

information over the image and then it expands the coarse features back to the image resolution

by recombining the features of the encoding path. The model, termed Recombinator Networks,

obtained state-of-the-art on several datasets, while also speeding up training.

In the third article, we aim at improving landmark localization when only a few images with

labelled landmarks are available. In particular, we leverage a weaker form of data labels that are

easier to acquire or more abundantly available such as emotion or head pose. To do so, we propose

an architecture to backpropagate gradients of the weaker labels through landmarks, effectively

training the landmark localization network. We also propose an unsupervised loss component
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which makes equivariant landmark predictions with respect to transformations applied to the image

without having ground truth landmark labels. These techniques improved performance considerably

when we have a low percentage of labelled images with landmarks.

Finally, in the last article, we propose a learning algorithm to estimate the depth of the landmarks

without any depth supervision. We do so by matching landmarks of two faces through transforming

one to another. This transformation requires estimation of depth on one face and an affine trans-

formation that maps the first face to the second one. Our formulation, which only requires depth

estimation and affine parameters, can be estimated as a closed form solution of the 2D landmarks

and the estimated depth. Even without direct depth supervision, the proposed technique extracts

reasonable depth values that differ from the ground truth depth values by a scale and a shift. We

demonstrate applications of the estimated depth in face rotation and face replacement tasks.

Keywords: neural networks, deep learning, convolutional networks, supervised learning, un-

supervised learning, semi-supervised learning, coarse-to-fine architectures, landmark localization,

depth estimation, face rotation, face replacement.
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Chapter 1

Background

Faces convey a lot of information about others. People are identified by their faces and we understand

how others feel through facial expressions. Extracting features on faces can help better address face

related tasks. The features of interest that are extracted in this thesis are landmarks or keypoints; the

two dimensional (2D) or three dimensional (3D) features that explain important facial locations

such as eye centers, nose tip, mouth corners or even face contour. Finding landmarks on images,

which corresponds to finding their 2D or 3D locations is often termed landmark localization or

keypoint detection.

Landmark localization is used to solve other tasks of interest that cannot be solved directly or

when the results on them are of inferior quality without usage of landmarks. In the case of faces,

many tasks including identity recognition, head pose estimation, face rotation, face replacement,

and eye gaze estimation can benefit from landmarks. In the case of hands, gesture recognition and

tracking in videos are applications that are currently solved mainly by using landmarks. In the

case of entire bodies, human pose estimation, activity recognition in videos, and virtual clothes

replacement of a person (e.g. for the fashion and clothing industry) are applications of full body

landmark localization. While landmark localization can be also applied to other objects, we pursue

only applications of landmark localization on faces in this thesis.

Machine learning algorithms and more recently deep learning algorithms are used to solve

landmark localization problems, with the latter currently achieving state-of-the-art results. When I

started my PhD, deep learning algorithms were not yet the de facto standard techniques for landmark

localization. My first work, presented in Chapter 4, in this thesis uses more general machine learning

algorithms. However, my later works, presented in Chapters 6, 8, and 10, leverage deep learning

methods to propose new learning techniques. Due to usage of learning algorithms in this thesis, I
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provide an introduction to machine and deep learning algorithms in this chapter, focusing more on

the algorithms that are used in later chapters.

This thesis is written by article, and whenever the narrator is referred to as "we" it refers to the

collective opinion of the authors on that article. Any other writing outside the articles is my own

and reflects my personal opinion. Throughout this thesis the terms ‘landmark’ and ‘keypoint’ are

used interchangeably.
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1.1. Machine Learning

Learning is the process of obtaining new knowledge, skills, capabilities or improving them

over time (Gross, 2015). Artificial Intelligence or machine intelligence is the process of bringing

intelligence to machines to make them capable of tasks that are usually associated with intelligence

beings, mainly humans, such as reasoning, decision making or rational behaviours in new situations

(Copeland, 2018). By bringing learning into machines, one can minimize the degree of human

intervention and solve problems where rule-based methods fail.

Machine Learning (ML) is the study of algorithms that are capable of improving their perfor-

mance over time on specific sets of tasks (which require some level of intelligence to be performed)

by learning from examples (their training data) such that they can generalize to new and unseen data.

These algorithms mostly learn by optimizing a given objective function in the course of training. ML

methods are used to learn meaningful latent patterns in data, to predict or forecast a phenomenon on

new and unseen data, to learn a distribution of the data (e.g. to generate new examples from the data

distribution or to detect outliers in the data), to act autonomously in a complex environment (such

as navigation, autonomous driving, or gaming), and also to interact autonomously and rationally

with other entities in an environment such as in dialogue systems.

Depending on whether the data is labeled or not, the ML techniques are broadly divided into

supervised, unsupervised, and semi-supervised learning methods. In supervised learning, a set

of labeled examples is provided in the form of (x,y) pairs, where the goal is to learn a function

f : X→ Y, such that it can predict accurately the output y′ ∈ Y on an unseen example x′ ∈ X.

On the other hand, in unsupervised learning, the data is not labeled and the goal is to find some

pattern in the data (e.g. cluster), to reduce the dimensionality of the data (e.g. for visualization or

compression tasks), to obtain the main directions of variations in data, or to model its distribution in

some way.

In semi-supervised learning methods the task to learn is the same as in supervised learning, but

only part of the data is labeled and the rest of the data is unlabeled. The unlabeled data can be used

to find some intermediate representations or to first train a model in an unsupervised style in order

to put its parameters in a space where the subsequent supervised optimization is simplified, as a

way to regularize the network in the case of a limited amount of labels.
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There are also reinforcement learning (RL) techniques, where the “labels” (usually in form of

rewards) come sparsely in the course of training. In RL the learner is dealing interactively with

an environment and the data arrives sequentially in time, as a function of the learner’s exploration

policy in the environment. The learner has to find a way to assign the reward to the actions leading

to that reward. This is known as the credit assignment problem in RL methods. The learner’s goal

is to enhance its performance as more data arrives in order to maximize its overall reward. In RL

methods the policy pursued by the agent in the environment directly affects the data it collects.

Thereupon, the learning process also involves finding a trade-off in between exploitation, where the

learner uses its knowledge greedily to get higher rewards, and exploration, where the learner risks

taking new actions or examining new states with the hope of finding more optimal solutions that

will lead to higher rewards in the future.

1.1.1. Components of a Learning Algorithm

The most important elements of a learning algorithm are data, the hypothesis function or the

model, the objective function, and the optimization algorithm. Below I describe each one of these

elements.

Data:

Any learning algorithm leverages a set of data (or dataset) that is gathered from the underlying,

commonly unknown, distribution of data pdata. The data is often assumed to be gathered with i.i.d

assumption, which stands for independently and identically distributed. It implies that each example

(or data point) in the dataset is gathered independently from other examples in the dataset and also

sampled from the same underlying data distribution pdata. The identically distributed assumption is

important in having the training algorithm generalize to unseen data at test time. Otherwise, if the

underlying distribution of train and test data are different, the model can generally not be expected

to perform well (or generalize) to test data.

In unsupervised learning, the dataset is in the form of xn, n ∈ {1, . . . , N}, with N data points,

each with dimensionality M . In case of images, for example, M is 3 × row × column with xn

containing the intensity of each pixel. The dataset can be presented as a matrix X of size N ×M ,
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with each row representing a different data point with M features. Formally, the i.i.d assumption on

such data can be expressed as:

pdata(X) =
N∏
n=1

pdata(xn) (1.1.1)

In supervised learning, for each data point, there is also a label or a set of labels y, e.g. indicating

the class of the data. The dataset is in form of (xn,yn), n ∈ {1, . . . , N} where (xn,yn) is the nth

paired labeled data. The set of labels can be shown as a vector Y of size N , with each row providing

the label for a different data point. Similarly, the i.i.d assumption on such data can be shown as:

pdata(X,Y) =
N∏
n=1

pdata(xn,yn) (1.1.2)

A common practice in training is to split a dataset into three subsets, a training, a validation, and

a test set, with no intersection. The training set is the only subset on which the learning algorithm

is trained. The validation set, represents a subset of data that comes from the same underlying

distribution pdata to indicate how the learning algorithm will perform on an unseen subset at test

time. The validation set is not used directly to train a model, however, it is used to select the

parameters of the training algorithm that impact the model’s performance but cannot be optimized by

the learning algorithm itself. These sets of variables are known as hyper-parameters. For example,

the learning rate and the number of iterations used to train an algorithm are hyper-parameters.

The validation set, is therefore used to pick the best hyper-parameters, by informing us on the

performance of the model on an unseen subset of data from the same distribution. Finally once the

model is trained and the hyper-parameters are selected, the model’s performance is reported on

the test set. The test set is not touched during training or hyper-parameter selection such that the

reported performance on the test set represents to best approximation the performance of the model

on an unseen subset of data.

Model:

A model or hypothesis is a function or a set of functions that are potential solutions for the task

of interest. It is the central component of a learning algorithms. In supervised learning, one can
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think of a hypothesis as learning a function fθ∈Θ : X→ Y that for each data point xn estimates the

corresponding label yn. A large variety of hypothesis functions are introduced including linear

regression, logistic regression, kernel methods, support vector machines, multi-layer perceptron,

convolutional neural networks, and recurrent neural networks, where all estimate the labels y, but

differ in their model representation and the characteristics of their training algorithm.

In unsupervised learning there are also a large body of models, associated with various unsuper-

vised learning tasks such as:

• Clustering: the training data are grouped into subsets based on their similarity.

• Anomaly Detection: examples outside of the data distribution are detected, such as for

detecting spams in e-mails.

• Dimensionality Reduction: data is projected from a higher dimensional space to a lower

orthogonal dimensional space for data compression, or finding the main components in

data that can explain the observed variations. Examples of such methods are Principal

Component Analysis (PCA) and auto-encoders.

• Learning Explicit Distribution of Data: a probability distribution is fit to the training data.

One can maximize the probability of data under some probability distribution function, e.g.

a Gaussian mixture model:

arg max
θ∈Θ

pmodel(X;θ) (1.1.3)

Once we have the distribution of data, we can easily generate new samples from it, however

it is not trivial to have a probability distribution that explains all the variations in data.

Objective Function:

The objective function indicates which criteria to minimize or maximize during the course

of training. If the objective is minimized, it is referred to as the loss or cost function L. If it is

maximized, it is referred to as utility or fitness function.

In supervised learning, the goal is to learn a function f : X → Y which predicts the output

y ∈ Y for a given input x ∈ X. The loss function L measures the average difference between the
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function’s output fθ(x) = ỹ and the ground truth (gt) label y. The parameters θ in f are optimized

in order to minimize the loss function defined as

L(θ;Dtrain) =
1

|Dtrain|
∑

y∈Dtrain

L(y,ỹ;θ). (1.1.4)

Depending on the nature of data in Y and the model being used different loss functions can be

defined. If y is discrete the following loss functions are commonly defined:

• If y ∈ {0, 1} and fθ(x) measures the probability of each data point x, a binary cross-entropy

loss can be defined as

L(θ;Dtrain) =
1

|Dtrain|
∑

x,y∈Dtrain

y log fθ(x) + (1− y) log(1− fθ(x)). (1.1.5)

• If y ∈ {−1, 1} and fθ(x) is a real valued output, a hinge loss can be defined as

L(θ;Dtrain) =
1

|Dtrain|
∑

x,y∈Dtrain

max(0, 1− y · fθ(x)). (1.1.6)

here if y and fθ(x) have the same sign and |fθ(x)| > 1, the loss is zero. Otherwise, the

greater the distance between y and fθ(x), the higher the loss.

• If y can take a categorical label over K classes, a multi-class cross-entropy loss can be

defined as

L(θ;Dtrain) =
1

|Dtrain|
∑

x,y∈Dtrain

K∑
k=1

1(y = k) [− log(fθ(x)k)], (1.1.7)

with 1(y = k) being an indicator function that equals to one if y has class label k, and

otherwise it is zero. fθ(x)k indicates the probability output by the model for class k.

If y is a continuous value, the following loss functions are commonly used:

• LP distance function: for a label y of dimensionality J , LP distance is defined as

LP (y, fθ(x)) =
(∑
j∈J

|yj − fθ(x)j|p
)1/p

. (1.1.8)
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If p = 1, the loss over the training data measures L1 distance between y and ỹ and is

defined as

L(θ;Dtrain) =
1

|Dtrain|
∑

x,y∈Dtrain

∑
j∈J

|yj − fθ(x)j|. (1.1.9)

If p = 2, the loss over the training data measures Euclidean distance between y and ỹ and

is defined as

L(θ;Dtrain) =
1

|Dtrain|
∑

x,y∈Dtrain

(∑
j∈J

[yj − fθ(x)j]
2
) 1

2 . (1.1.10)

Usually the square-root in the above equation is not taken, in which case the loss is termed

as mean squared error (MSE).

• Cosine similarity: It measures the cosine between two vectors y and ỹ = fθ(x). This

metric measures how much the orientation of the two vectors are similar regardless of

their magnitude. If the angle between the two vectors is zero, it gets a similarity value

of 1, indicating the highest similarity, and if the angle is π, it gets a similarity value of 0,

indicating no orthogonality or decorrelation. If the angle is 2π, it gets a similarity value of

-1, indicating opposite similarity. The similarity changes monotonically between zero to 2π

angles. The objective based on minimizing the cosine distance is defined as:

L(θ;Dtrain) =
1

|Dtrain|
∑

y∈Dtrain

y · fθ(x)

‖y‖‖fθ(x)‖

=
1

|Dtrain|
∑

y∈Dtrain

∑
j∈J yjfθ(x)j

[
∑

j∈J yj2]
1
2 [
∑

j∈J fθ(x)j
2]

1
2

. (1.1.11)

Optimization:

Once the data is available and the model and the objective function are defined, the model is

fit to the training data using an optimization algorithm that maximizes the objective function or

minimizes the loss. This means finding the parameters of the model that minimizes or maximizes

8



the function of interest. In the remaining part of this section, I assume the loss function is minimized.

The arguments can be extended to the objective functions that should be maximized.

To train the parameters of the model, first the loss is measured over training data, which indicates

the degree of error of the model. Then, the gradient of the loss with respect to (w.r.t) the parameters

is estimated. If the optimization solution for the parameters can be written as a closed form solution

of the training data, the parameters can be directly estimated. However, for most of the models

the optimal solution cannot be expressed in closed form, or there exist also unknown variables,

such as the latent variables in the EM algorithm (explained in Section 1.1.2 in Factor Analysis

sub-section). In such cases the parameters are updated in multiples steps until the error cannot be

further minimized.

If L is the loss and ∂L
∂ θti

indicates the partial derivative of the loss w.r.t. to parameter θi after t

updates, then θi at time step t+ 1 is updated by

θt+1
i = θti − η

∂L
∂θti

, (1.1.12)

with η indicating the learning rate. In batch gradient descent the loss over the entire training

data is measured first and then parameters are updated. By using the batch gradient descent the

parameters are updated in the direction that minimizes the loss over the entire dataset. However, the

computation can be slow, since it requires a full sweep over the entire training data. Stochastic or

online gradient descent, on the other hand, updates the parameters after seeing only one training

example. While it updates the parameters faster, it is more noisy since the gradient update direction

for each data point is not the same as the direction over the entire training data. However, it is an

unbiased estimator of the gradient direction and also the noise helps bypassing plateaus and local

minimas. In practice, people commonly use a mini-batch, e.g. of size 32.

Gradient descent methods finally converge when they reach a local minima, however, they are

not guaranteed to reach the global minima if the loss function is not convex w.r.t its parameters.

A common remedy is to use gradient descent by initializing parameters randomly with different

values and let each model converge and finally choose the best performing model.

Generalization:
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The goal of many machine learning algorithms is to generalize to unseen data from the same

distribution as the training set pdata, that have not been seen during training. However, if the training

algorithm is able to fit too perfectly the model to the training data, it can memorize the data, or it

can fit to the noise of the training data rather than learning the general patterns in the data. In such

cases, the trained model will not generalize well to unseen data. This phenomenon is known as

over-fitting.

The validation set is used to measure over-fitting. Formally, the model h1 is said to be over-

fitting compared to h2 if on the training set Lh1(Dtrain) < Lh2(Dtrain) but on the validation set

Lh1(Dvalid) > Lh2(Dvalid). In such cases a regularization method is applied to avoid overfitting.

The following methods are commonly applied as regularization techniques:

• Reducing the training time (early stopping): models that are optimized using iterative

optimization procedures fit more to the training data as the training goes on. If they have

too much capacity they can overfit to the training data. One regularization trick is to do

early stopping, which is stopping the training procedure when the error on the validation set

keeps increasing significantly. The model that gives the lowest error on the validation set is

selected and retained as the trained model.

• Increasing the training data (data augmentation): The more training examples we have

relative to the number of learnable parameters of the model, the less likely the model will

overfit. If more training data cannot be gathered, data augmentation techniques can be

used, where some transformations are applied to the input given that it does not invalidate

the input data (such as adding too much noise) or change the class label. An example of

valid data augmentation is applying an affine transformation such as scaling, rotation, and

translation to the training images in image classification tasks. Such transformations will

increase the variation of the data observed by the model which helps reducing overfitting.

• Restricting Model’s parameters: The more a model’s parameters are free to change, the

more it can adapt to smaller details of the data and the more easily it can overfit to the data.

The following regularizations are applied to the model’s parameters to restrict their freedom

to change. From a Bayesian point of view, these regularizations act as a prior that shapes

the posterior distribution of the hypothesis learned by the learning algorithm.
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– L1 regularization: It applies a L1 loss to the model’s parameters. The total loss for

training the model is then written as

Ltotal = L(θ;Dtrain) + γ
P∑
p=1

|θp|, (1.1.13)

where P is the number of parameters of the model and γ is the regularization coeffi-

cient. L1 loss encourages the parameters that do not impact the model’s prediction to

be as close to zero as possible.

– L2 regularization: It applies a L2 loss to the model’s parameters. The total loss for

training the model is then written as

Ltotal = L(θ;Dtrain) + γ
P∑
p=1

θp
2. (1.1.14)

L2 penalizes mostly the big parameters, therefore constraining them to be small, but

not necessarily zero.

• Dropout (Srivastava et al., 2014): This regularization, which is mostly used in feed-

forward neural networks, applies multiplicative binary noise to intermediate representations

of the model in each training iteration. This is equivalent to sparsifying the parameters of

the network (applied randomly in each training iteration), which encourages the model to

rely on different parameters for learning the same feature from data, eventually limiting the

model’s free parameters. Since the model is trained on a different subset of parameters in

each training iteration, the model implicitly contains an ensemble of sub-networks (Baldi

and Sadowski, 2014), which in turn reduces variance and improves the accuracy.

• Pre-training: Pre-training a model on a different task or dataset can help put the parameters

of the model in a space such that in addition to easing optimization of the model on the

second task, may also reduce overfitting on the second task in a low data regime. Pre-training

can boost performance when the model learns on the distribution of data P (X1) of the

first task that shares the same statistics with the data P (X2) of the second task, or when

optimizing on P (Y1|X1) helps better learning P (Y2|X2).
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• Multitask learning: Multitasking is learning multiple tasks using the same model that

share parameters across tasks. It reduces overfitting by leveraging extra tasks that put

more load on the parameters of the model, eventually stopping it from memorizing features

overly specialized for a specific task and allowing it to generalize to solve several tasks.

Multitasking can improve performance of the model on a specific task i only if learning

P (Yj|X), j 6= i can help improving P (Yi|X), or if the model can learn useful statistic on

P (X) when few paired labeled data P (X,Yi) exist. Otherwise, if irrelevant tasks are used,

multitasking can deteriorate the performance compared to training only on an individual

task. Applying multiple loss functions has a similar impact as multitasking.

In this section, I discussed important elements of a learning algorithm, namely the data, the

model, the objective function, and the optimization procedure. In the following sections of this

chapter I talk about unsupervised and supervised learning techniques and focus on the models that

are used in this thesis.

1.1.2. Unsupervised Learning

Unsupervised learning methods are used on data that doesn’t have any labels. The data is

represented as xn, n ∈ {1, . . . , N}, with N data points and each data point having a dimensionality

n. Unsupervised learning methods are used to find some statistical structure in the data, or to reduce

the dimensionality of the data by considering the main directions of variation, e.g. finding a lower

dimensional latent space that generates the data, or to train a network in an unsupervised way either

to initialize the parameters of the network or to regularize it in semi-supervised methods. In the

following part of this section I review the unsupervised learning methods that are used in this thesis.

Principal Component Analysis:

The goal of principal component analysis (PCA) is to project data from its original space of

dimensionality Rm to a lower dimensional space of dimensionality Rd (d is usually much smaller

than m, d� m), where we find the d most important directions of variation in the data and project

it to d orthogonal axes, yielding uncorrelated features. PCA can be seen as fitting a d-dimensional

ellipsoid to the data, where each axis of the ellipsoid represents a princinpal component.

12



Let the data come from a training set withN instances, where each instance x has dimensionality

Rm. If we compute the mean and the convariance matrix of the mean subtracted data using

µ =
1

N

N∑
n=1

xn (1.1.15)

Σ =
1

N − 1

N∑
n=1

(xn − µ)T (xn − µ), (1.1.16)

then by computing the largest eigenvalues λj, j ∈ {1, . . . , d} and the corresponding eigenvectors

vj, j ∈ {1, . . . , d} of Σ, we can write each element xn as a function of the mean plus a residual

(mean subtracted xn) that is projected from the latent space zn using the eigenvectors:

xn = µ+ Wzn (1.1.17)

(1.1.18)

where W is a d×m matrix containing the d eigenvectors that explain the most variations in the

data. Each column of W is an eigenvector. Equivalently zn can be written as

zn = WT (xn − µ). (1.1.19)

zn is the projection of xn onto the d principal components found by the PCA model.

The complete process of computing PCA is the following:

(1) Obtain the mean of the data µ = 1
N

∑N
x=1 x.

(2) Subtract the mean from each instance x, this yields s = x− µ.

(3) Get the empirical covariance matrix, which is equal to

Σ =
1

N − 1
BTB (1.1.20)

where B is a matrix of dimensionality N ×m with each row containing a mean subtracted

instance s.
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(4) Find the eigenvalue and eigenvector of the covariance matrix i.e. its eigendecomposition,

which amount to solving for

V−1ΣV = E (1.1.21)

where V is the orthogonal matrix of eigenvectors and E is a diagonal matrix whose elements

are eigenvalues of Σ corresponding in the same order to the columns (eigenvectors) of V.

(5) Rearrange the items in V and E in the decreasing order of the eigenvalues.

(6) Get the first d eigenvectors of V and label them as W

(7) Normalize the mean subtracted data s by dividing it to the standard deviation which yields

u = s/d where d = {σ1, σ2, . . . , σm} and σj =
√
Cjj for j ∈ m.

(8) Project the data to the new space z = u×W.

Probabilistic PCA:

PCA projects data from the original space to a lower dimensional space representing the d

most important directions of variation in data. However, it does not give a proper probabilistic

representation of data in the original space. Using maximum likelihood estimation, one can fit a

Gaussian distribution to the data inDtrain by training a full covariance matrix with the dimensionality

of the input space. However, if the dimensionality of the input space is high this requires keeping

O(n2) parameters. This approach is also not feasible when the data is scarce which leads to

overfitting. Probabilistic principal component analysis (PPCA) assumes that the data is generated

at a lower dimensional latent space z and then is projected to the observed space x ∈ Rn using

x = Wz + µ + ε, where W is the loading matrix projecting data from the latent space to

the observable space, µ is the mean of the observed data and ε is the noise generated from

N (0, σ2I). The data in the latent space is distributed with a zero mean and a diagonal covariance

matrix z ∼ N (0, I). Given the latent variable z, the conditional is Gaussian with distribution

x|z ∼ N (Wz + µ, σ2I). Since both the prior and conditional distributions are Gaussian, the joint

distribution is also Gaussian. By integrating out the latent variable, the observable x is represented

by a normal distribution N (µ,WWT + σ2I). Using the maximum likelihood estimation, the
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X

z

W

Fig. 1.1. The graphical model of the probabilistic PCA with N observations of x as the visible and
z as the latent variables. The parameters of the model are θ = {σ2, µ, W}.

parameters µ, W and σ2 are estimated by

µML =
1

|Dtrain|
∑

x∈Dtrain

x (1.1.22)

WML =Ud(Λd − σ2I)1/2Ω (1.1.23)

σ2
ML =

1

m− d

m∑
i=d+1

λi, (1.1.24)

where Ud is a matrix of dimensionality m × d with its columns containing the d principal

eigenvectors and Λd is a d × d diagonal matrix with eigenvalues λi, i ∈ {1, . . . , d} along its

diagonal which correspond respectively to the columns of Ud. The term Ω is an arbitrary orthogonal

matrix. Note that σ2
ML is the maximum likelihood estimate of σ2 and takes the average of the

remaining eigenvalues that correspond to the least significant directions of variation in data. Using

the PPCA formulation, one can sample data from the distribution. Also, the number of parameters

required by PPCA is O(m× d), which is smaller compared to learning a full covariance matrix in

the original representation of x, which requires O(m2) parameters. PPCA is used in the building

block of probabilistic PCA constrained local models (PPCA-CLMs) in Section 4.4.2 to construct an

energy function for landmark localization.

Factor Analysis:

Similar to PPCA, factor analysis (FA) is a Gaussian model constructed linearly by
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x = Wz + µ + ε. The latent variable comes from the same distribution as in PPCA. However,

the conditional distribution p(x|z) is constructed by N (Wz + µ,Ψ) with a diagonal covariance

matrix Ψ instead of an isotropic one, namely σ2I, used in PPCA. The columns in W are called

factor loadings and the elements in the diagonal of Ψ are referred to as uniquenesses. Since the

elements outside the diagonal of the covariance matrix are all zero, only the variance along each

dimension is captured in Ψ and the correlation in-between different dimensions of the input space

is captured by the loading matrix W. The marginal distribution of the observed variable is given by

N (µ,WWT + Ψ). The parameters µ, W, and Ψ can be computed using maximum likelihood.

As in PPCA, the maximum likelihood of the mean is given by the average of the data

µML =
1

|Dtrain|
∑

x∈Dtrain

x. (1.1.25)

The parameters W and Ψ can be computed by using the expectation maximization (EM)

algorithm. EM algorithm is an iterative method, where the model depends on some latent variables

(z) and the optimization of both latent variables and the parameters cannot be solved directly.

Therefore, an iterative approach is used, where in the E-step the parameters W and Ψ of the model

are kept fixed and the latent variables z and zzT are estimated:

E
[
z
]

=FWTΨ−1(x− µ) (1.1.26)

E
[
zzT
]

=F + E
[
z
]
E
[
z
]T (1.1.27)

with F being defined as

F = (I + WTΨ−1W)−1 (1.1.28)

In the M-step the latent variables z and zzT are kept fixed and the parameters W and Ψ are

updated:

W =

[ ∑
x∈Dtrain

(x− µ)E
[
z
]T][ ∑

x∈Dtrain

E
[
zzT
]]−1

(1.1.29)

Ψ =diag

[
S−W

1

m

∑
x∈Dtrain

E
[
z
]
(x− µ)T

]
(1.1.30)
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where S = UdΛdUd. The terms Ud and Λd were described in Probabilistic PCA Section. The

E and M steps are repeated until the latent variables and the parameters converge, meaning they

do not change anymore up to some tolerance, at which point the parameters of the FA model are

considered as trained. Similar to PPCA, FA also gives a probabilistic representation over the data

distribution such that we can generate new samples from the data. However, FA is more expressive

than PPCA since the covariance matrix in the conditional distribution p(x|z) has a different variance

per dimension. This allows FA to explain more variations in the data distribution p(x). FA is used

in the building block of the identity-expression factorized constrained local models (IE-CLMs)

in Section 4.4.3, which builds an energy function for landmark localization. The identity and

expression model uses a FA formulation in the energy function.

1.1.3. Supervised Learning

In supervised learning, data is given in the form Dtrain = {xn,yn}, n ∈ {1, . . . , N} where

{xn,yn} is the nth paired labeled data. The goal is to learn a function f : X→ Y which predicts a

output or a set of outputs y ∈ Y for a given input x ∈ X.

In regression problems each label yn ∈ yn is a real number yn ∈ R, while in classification

problems yn is discrete; yn ∈ {1, . . . , K}, with K being the total number of classes. There are a

large body of supervised learning techniques such as regression models, kernel methods, support

vector machines, naive Bayes and decision trees. Since these classical models are out of the scope

of this thesis, I do not review them. We will instead focus on supervised learning approaches that

use (deep) artificial neural networks, a.k.a deep learning, which is the subject of the next section.
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1.2. Deep Learning

Deep learning (DL) methods are a family of machine learning algorithms that learn a hierarchy

of representations usually learned through different layers of features, where the layers closer to the

input data learn lower level features (e.g. detecting edges on images) and layers further away from

the input data learn more abstract concepts (e.g. general shape representation or whether an object

is present or not).

Prior to the deep learning era, a lot of effort was put into extracting pre-processed or hand-crafted

features from data to get high performance on specific tasks, as extracting these features was key

to improving the performance of those models. The arrival of graphical processing units (GPUs) –

which allowed processing data in parallel using thousands of cores – and also the abundance of data

on the internet, allowed deep learning models to flourish. This breakthrough was most prominent in

the ImageNet 2012 Challenge, where AlexNet (Krizhevsky et al., 2012) reduced error by more than

10.8% compared to the second model on top-5 classification error, which brought a lot of attention

to deep learning approaches. Krizhevsky trained his neural network on 1.2 million labelled images

using a highly optimized GPU implementation of 2D convolutional neural networks, showing the

neural networks capability by leveraging both GPUs and a big dataset.

Another important reason for the success of DL algorithms is their ability to automatically

learn a hierarchy of representations. Depth allows these models to reuse features and learn more

abstract representations in higher levels of the network (Bengio et al., 2013a). This allows DL

algorithms to produce their outputs based on multiple non-linear transformation of the input, usually

by extracting lower level features first and reusing them to compute more global features higher

in the representations until producing the final result. DL algorithms are also more efficient in

learning a distributed representation (Bengio et al., 2012) meaning a smaller number of parameters

can explain the variations in many data, as opposed to local representation algorithms where O(N)

parameters are needed to explain the variations in O(N) data, which is the case e.g. for Gaussian

mixture models, nearest neighbor methods, and Gaussian SVM.

Since the birth of DL algorithms, a lot of effort has been invested into designing DL architectures,

losses, or training techniques to improve the performance of learning algorithms.
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1.2.1. Artificial Neural Networks

Artificial neural networks are the building blocks of deep learning algorithms which are broadly

inspired by biological neural networks. Biological neurons signal other neurons through synapses.

If the excitation received by a neuron through synapses over a short period of time is large enough,

the neuron generates a pulse called action potential which is then passed through synapses to other

neurons. While artificial neural networks are inspired by biological neurons, they have diverged

separately through proposal of different components of the artificial neural networks that yielded

better performance in practice such as sharing parameters in the convolutional neural networks that

does not happen in biological neural systems.

Deep Learning methods are deeper variants of artificial neural networks when multiple layers

are used between inputs and outputs, potentially learning a hierarchy of features and more abstract

concepts in the deeper layers. The simplest form of an artificial neural network is a multi-layer

perceptron (MLP), where the network is composed of multiple fully connected (FC) layers. Each

FC layer is parameterized by a weight matrix W and a bias vector b and computes its output o as:

h = Wx + b (1.2.1)

o = f(h) (1.2.2)

where x is the input of the layer, W is a weight matrix of shape m × n, where n and m are

input and output layer dimensions and b is the bias vector. This yields a pre-activation vector

h. A non-linearity function f is applied to h to yield the layer’s output. The commonly used

non-linearities are sigmoid, tanh, ReLU, leaky-ReLU (Maas et al., 2013), and exponential linear

units (ELU) (Clevert et al., 2015):

sigmoid(hi) =
1

1 + exp(−hi)
(1.2.3)

tanh(hi) =
exp(2hi)− 1

exp(2hi) + 1
(1.2.4)
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ReLU(hi) =

0, if hi < 0

hi, if hI >= 0
(1.2.5)

leaky-ReLU(hi) =

0.01, if hi < 0

hi, if hi >= 0
(1.2.6)

ELU(hi) =

α(exp(hi)− 1), if hi < 0

hi, if hi >= 0
(1.2.7)

hi indicates the i’th element in the vector h. Several such layers can be chained, i.e. the output

of one layer serving as input to the next layer. Let us call the first layer’s input x and the last layer’s

output ỹ = Net(x).

Objective Functions:

Once the output of a neural network is computed, a loss or utility function is defined to indicate

which criteria the model should minimize (in the case of a loss function, also known as cost) or

maximized (e.g. in the case of a utility function such as log likelihood or reward). This is usually

done by taking the output of a neural network and defining a loss, or utility function with it. In

the rest of this chapter, I assume a loss function is used. However, the argument can be similarly

extended to a utility function. In the supervised learning case, the loss is defined by comparing

the network’s output with the ground truth labels which act as a teacher to indicate how much the

network’s output is off the ground truth value.

Neural networks are utilized for supervised tasks such as regression or classification. In

regression, the model is trained to bring the estimated output ỹ close to the ground truth output y by

training the network with the following loss function:

arg min
θ

1

|Dtrain|
∑

x,y∈Dtrain

L(y,ỹ;θ) (1.2.8)

ỹ = Net(x) (1.2.9)
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If L is a L2 loss, ỹ predicts the mean of a Gaussian distribution. The loss can then be written as:

L(y, ỹ) = ‖y − ỹ‖2 (1.2.10)

If L is a L1 loss, ỹ predicts the mean of a Laplacian distribution. The loss can then be written as:

L(y, ỹ) =
∑
j∈J

|yj − ỹj|. (1.2.11)

Other loss functions are also used.

In classification, we want the final output layer to generate the probabilities for K different

classes. To ensure this, usually a softmax layer is used as the output of a classification network.

Let ỹ be the vector of pre-activations of the last layer before the non-linearity, i.e. it is an affine

transform of the previous layer’s output. Let its size K correspond to the number of classes, so

that ỹi is the score for class number i. To convert these scores into proper probabilities we use the

softmax non-linearity defined as:

f(ỹ)i =
exp (ỹi)∑K
k=1 exp (ỹk)

(1.2.12)

f(ỹ)i is the probability assigned to the ith class. Note that similar to any other probability distribution

we have
∑K

i=1 f(ỹ)i = 1. The model is then trained with the cross-entropy loss:

L(p,q) = −
K∑
k=1

pk log(qk) = −
K∑
k=1

pk log(f(ỹ)k) (1.2.13)

where pk is the ground truth probability and qk is the network’s estimated probability for kth class.

Since pk is equal to one for only one class and zero for other classes meaning pk ∈ {0, 1} with∑
k∈K pk = 1, the objective over the entire training set can be written as

L(x, y) = − 1

|Dtrain|
∑

x,y∈Dtrain

K∑
k=1

1(y = k) log(f(ỹ)k) (1.2.14)

where 1 is the indicator function, y is the ground truth label, and θ indicates the model parameters

containing the set of weights and biases of the neural network.
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Gradient Backpropagation:

After measuring the loss, the gradient of the loss L with respect to (w.r.t) each parameter in the

network is measured. The chain rule is used to obtain the gradients of the loss L w.r.t the parameters,

which is computed from the output of the network all the way back to the first parameterized

layer that needs to be updated, effectively updating all learnable parameters. This is known as

backpropagation. Let us consider ∂ L
∂ ol+1

j

as the gradient of the loss L with respect to (w.r.t) unit j in

layer l + 1 and
∂ ol+1

j

∂ ol
i

as the gradient of unit j in layer l + 1 w.r.t unit i in layer l. The gradient of

loss L with respect to unit i in layer l is then measured by:

∂ L
∂ oli

=
∑

j∈outputi

∂ L
∂ ol+1

j

×
∂ ol+1

j

∂ oli
(1.2.15)

where ol+1
j is j’th unit in layer l + 1 that takes input from unit oli in layer l.

If ol+1
j is measured by applying weights and a bias and then non-linearity f as in

ol+1
j = f(zj) (1.2.16)

zj = Wl+1 × ol + bl+1 (1.2.17)

then we can apply the chain rule to the internal components of z as well:

∂ L
∂Wl+1

=
∂ L
∂ ol+1

j

×
∂ ol+1

j

∂Wl+1
(1.2.18)

∂ ol+1
j

∂Wl+1
=
∂ ol+1

j

∂ zj
× ∂ zj
∂Wl+1

(1.2.19)

∂ L
bl+1

=
∂ L
∂ ol+1

j

×
∂ ol+1

j

∂ bl+1
(1.2.20)

∂ ol+1
j

∂ bl+1
=
∂ ol+1

j

∂ zj
× ∂ zj
∂ bl+1

(1.2.21)
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The expanded version of 1.2.15 then becomes

∂ L
∂ oli

=
∑

j∈outputi

∂ L
∂ ol+1

j

×
∂ ol+1

j

∂ oli
(1.2.22)

∂ ol+1
j

∂ oli
=
∂ ol+1

j

∂ zj
× ∂ zj
∂ oli

(1.2.23)

Optimization Algorithms:

The final step in training is updating the parameters of the neural networks. Optimization algorithms

are used the to update the value of the parameters such that they produce lower error on similar data.

The simplest optimization algorithm is stochastic gradient decent (SGD). This is stochastic because

the parameters are updated using one example instead of the entire batch, which allows the network

to converge faster, since otherwise the entire training data should be passed through the network

before updating the parameters. SGD is an unbiased estimator of the direction of the gradient. In

practice a mini-batch containing more than one example is used instead of one example which is

known as mini-batch stochastic gradient decent. The following definitions are the same regardless

of which of the two variants are used. For simplicity we use the term SGD. The general updating

rule of SGD for a parameters Wi is

Wt+1
i = Wt

i − η
∂ L
∂Wt

i

(1.2.24)

with Wt
i and Wt+1

i being the values of parameter Wi before and after the SGD update, η being the

learning rate and ∂ L
∂Wt

i
being the gradient of loss w.r.t Wt

i.

Commonly with SGD, momentum is used which takes the average direction of the previous

updates and enforces the next update in that direction. This has the advantage of letting the model

converge faster, but also allowing the model to continue moving the parameters in plateaus (regions

of very low or almost no direction of gradient for optimization). The negative aspect of momentum

is that it can continue updating the parameters even after reaching the optima. In practice, it has
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been mostly advantageous when used jointly with SGD. The updating rule is as follows:

mt+1
i = αmt

i − η
∂ L
∂Wt

i

(1.2.25)

Wt+1
i = Wt

i + mt+1
i (1.2.26)

with mt
i and mt+1

i being the values of momentum before and after the SGD update, η being the

learning rate, α being the momentum coefficient, and ∂ L
∂Wt

i
being the gradient of loss w.r.t Wt

i. A

value of α = 0.9 enforces a strong usage of the past gradients, while a value of α = 0.1 enforces an

update more based on the recent values of the gradients. α and η are hyper-parameters, meaning

they should be tuned manually by using the validation set.

Recently many other optimization algorithms have been proposed, such as Adam (Kingma and

Ba, 2014), Adagrad (Duchi et al., 2011), Adadelta (Zeiler, 2012), RMSProp (Tieleman and Hinton,

2012), which track gradient updates in the network and update parameters accordingly. While

the default version of these algorithms perform well most of the time, they also introduce some

hyper-parameters which should be tuned to enhance the performance on a specific task.

Training Steps:

The whole training process of a neural network can be described as the following: first a mini-batch,

which is a subset of the training data, is taken and passed through the network in a forward pass.

Once the output of the network is calculated, the loss of the output is measured and then gradient of

the loss w.r.t every parameters of the network is computed, which includes weights and biases of the

network. Finally, the parameters are updated by an optimization algorithm. The goal is to reduce the

estimated loss by measuring how much each parameter had contributed to the loss and redistribute

it between parameters based on their contribution to the loss. These training steps are repeated

multiple times until the model finally converges, meaning the error on the validation set cannot be

further improved. At that point, training is stopped and the parameters of the neural network are

taken as the model’s parameters. Several such models are trained using different hyper-parameters,

such as the learning rate, the number of parameters in the network, and the architecture of the

network. The hyper-parameters that yield the best performance on the validation set are selected
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and the model trained with those hyper-parameters becomes the final trained model. The error on

the test-set is reported using the trained parameters of this network.

In this section I introduced artificial neural networks and their most basic model, namely multi-

layer perceptron. I also described general training steps of artificial neural networks. In the next

sections I describe some other commonly used deep learning algorithms.

1.2.2. Convolutional Neural Networks

Convolutional neural networks (CNN) (LeCun et al., 1989) are feed-forward neural networks

where neurons are connected only to a local sub-set of neurons in the previous layer which is

known as the neuron’s receptive field. CNNs aim at exploiting strong local correlations at each

layer, while capturing high level correlations in the CNN’s input space through deeper layers of the

network. Inspired by animal cortex systems (Hubel and Wiesel, 1959, 1967, 1968, 1960), CNNs

have demonstrated outstanding performance on vision tasks including classification (He et al., 2016;

Krizhevsky et al., 2012), face verification (Taigman et al., 2014), object detection and segmentation

(Girshick et al., 2014; He et al., 2016, 2017) and also pose estimation (Toshev and Szegedy, 2014)

among other tasks.

Each layer in CNNs is usually composed of multiple feature maps, where each feature map is

a 2D arrangement of units. In two dimensional (2D) convolutions, which are usually applied to

images, this forms a three dimensional (3D) tensor in each layer expanding across rows, columns

and feature maps. When having time-series data (as in videos), 3D convolutions are used, where

each layer has a four dimensional (4D) tensor expanding across rows, columns, time, and feature

maps. Figure 1.2 shows an example of a CNN. CNNs are commonly composed of convolution and

subsampling (pooling) layers, as shown in Figure 1.2.

Convolutional Layer: In a 2D convolutional or conv layer, each neuron is connected to a local

region of neurons in the previous layer, usually including a local set of neurons across rows and

columns but including all feature maps of the previous layer. Each neuron is connected to neurons

in the previous layer through parameters (or filters, also known as kernels) that are shared with all

other neurons in the same layer. This enforces capturing a feature regardless of its position in the

input space. For example a tree can be detected in an image regardless of its location.
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Fig. 1.2. Example of a convolutional neural network composed of two convolutional layers followed
by pooling (sub-sampling) layers and two fully connected layers. In this example the output layer
has one unit. Image is taken from (DeepLearning.net).

Due to applying the same convolutional parameters to different spacial locations of a layer, the

output of the convolutional layer contains activation responses of the convolutional parameters as

applied to different input locations. If the location of a feature changes in the input layer, in the

output of the convolutional layer it changes to the same extent, meaning the features extracted by a

convolutional layer in its output change equivariantly with respect to the position of features in its

input. Therefore, the convolutional layers aim at finding equivariant features.

Sharing parameters also acts as a strong regularizer that enforces learning meaningful features

instead of extracting unimportant details or overfitting to the training data.

In a convolutional layer, weights are multiplied into the neurons (or units) of the previous layer

as

xl+1
k,i = Wl+1

k
• xli + bk (1.2.27)

where xl+1
k,i is the ith unit in the kth feature map of layer l + 1. Wl+1

k is a 3D weight tensor used to

compute all units in the kth feature map of layer l + 1, which are computed by multiplying Wl+1
k

into different 3D sub-tensor of xl. The symbol • indicates a dot product between two vectors after

flattening its two operands and xli, which has the same shape as Wl+1
k , indicates a 3D tensor which

is in the receptive field of xl+1
k,i unit. bk is the bias of the feature map k.

The units in the feature map k are computed by multiplying the weights Wl+1
k into different 3D

sub-tensors of xl, which is commonly done by shifting across rows and columns of xl. The amount

by which Wl+1
k is shifted across rows or columns of layer l to compute the adjacent units in layer

l + 1, is known as the stride size of the conv layer. See an illustration of a conv layer in Figure 1.3.
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Fig. 1.3. An example a convolution operation from layer l to layer l + 1. Here a 2 × 2 kernel is
used for convolution across each feature map and considering F l feature maps in layer l this yields
a 3D weight tensor of shape F l × 2× 2 for the conv operation. The receptive field of the unit in
blue in layer l + 1 is shown in blue in layer l. In this example the stride size is one, and only one
feature map in layer l + 1 is generated. Using zero padding in layer l, this yields an output of 3× 3
for an input of size 4× 4× F l.

Since each layer usually has multiple feature maps, we have Wl+1
k , with f ∈ {1, . . . , F l+1} and

F l+1 being the number of feature maps of layer l + 1. A nonlinear function such as ReLU (1.2.5),

hyperbolic tangent (1.2.4), or sigmoid (1.2.3) is then applied to each output xl+1
k,i .

Pooling Layer: After a convolutional layer, some networks apply a pooling or subsampling

layer, e.g. in classification tasks. Different pooling layers can be used such as average or max

pooling layers. A stride of more than one unit in the convolutional layer also acts as subsampling.

In a max pooling layer the maximum of a local subset of units is taken, usually across both row and

column indices:

p = max
i,j

xi,j (1.2.28)

where p is the max-pooled output and xi,j indicates the unit in the receptive field of p with row

index i and column index j, with i and j usually including a small number of indices (e.g. in a

max-pooling over a 2× 2 region, i and j each take two different values).

In an average pooling layer we have:

p = meani,j xi,j (1.2.29)

The receptive field of unit p is from a sub-region of a feature map, or in the case of cross channel

pooling, a sub-region across multiple feature maps. Similar to conv layers, pooling layers have a
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stride size, which indicates the elements xl+1
i,j and xl+1

i+1,j (or xl+1
i,j and xl+1

i,j+1) of pooling operation

output in layer l + 1 are computed by which amount of shift in row i (or column j) index locations

of the pooling operation input in layer l. For example, a stride of 2 indicates after applying pooling

operation on a sub-tensor in layer l, the i index is shifted by 2 to compute the next pooling operation

output in layer l + 1 in the same row and the j index is shifted by 2 to compute the next pooling

operation output in layer l + 1 in the same column. Usually, the stride size is more than 1, resulting

in an output being smaller than the pooling layer’s input, e.g. in the case of 2× 2 pooling with stride

of 2, the output is 2× smaller than the pooling layer’s input, across both row or column.

The pooling layers aims at finding features regardless of their position in the input space, since

the max or average functions only take the resulting output and ignore the location where the feature

came from. Therefore the pooling layer aims at finding invariant features. Note that the exact

location of a feature is lost in the pooling operation due to maximization or averaging. However,

the discarded information is considered of insignificant importance for the task under study, e.g.

classification.

We use convolutional neural networks in the building block of the Recombinator Networks,

presented in Chapter 6, and also in our proposed semi-supervised model architecture, presented in

Chapter 8, for the landmark localization task. We also leverage convolutional neural networks in the

DepthNet architecture, presented in Chapter 10, to estimate the depth of landmarks.

1.2.3. Autoencoders

Autoencoders (Ackley et al., 1985; Elman and Zipser, 1988; Hinton and Salakhutdinov, 2006),

which was initially introduced as auto-association techniques (Ackley et al., 1985; Elman and

Zipser, 1988), are a family of neural network algorithms where the networks are trained in an

unsupervised style by reconstructing their input. Autoencoders can extract useful features from

data without requiring any labels. They are also used as an unsupervised pre-training technique

(Erhan et al., 2010; LeCun et al., 2015). Such pre-training acts as a strong regularizer that puts the

parameters of the network in an space that eases the optimization for other tasks of interest. For

example, when a model extracts useful features from images, those features can be also used for

classification tasks and the model can be easily fine-tuned to do classification. It can also be used in
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semi-supervised techniques where few labeled data are available and where without unsupervised

learning techniques the network could easily overfit on the labelled data.

An autoencoder contains an encoder and a decoder. The encoder reduces the input feature

dimension in multiple steps until reaching the bottleneck of the network (also known as the code).

The features are then expanded back to the original input dimension by the decoder. The goal of

using autoencoders is to extract codes that reduce the dimensionality of the input data but contain

information that explain the most salient features in the data. This is done by getting rid of the noise

(or unimportant features) in the data, while maintaining only the important features, to reconstruct

the original input. If learned properly, the code can be used for a low dimensional data representation,

classification, visualization, communication or storage of high dimensional data. Unlike PCA that

learns a linear extraction of the most important directions of variations in the data, autoencoders

learn a non-linear generalization of PCA (Hinton and Salakhutdinov, 2006). Figure 1.4 represents

an example of an autoencoder.

Fig. 1.4. Example of an autoencoder that reduces the input dimension in four layers by using W1 to
W4 and then reconstruct the input using V4 to V1. The contractive part of the network is known as
encoder and the reconstructing part of the network is known as decoder. Encoder output is referred
to as the code. In this example the code has 50 units.

An autoencoder with one hidden layer can be formulated by minimizing the loss between x and

its reconstruction x̃ by the network:

L(x,x̃) = L(x, f2(W
′f1(W x))) (1.2.30)

L(x,x̃) represents the loss between input x and autoencoder’s reconstruction x̃. Commonly a MSE

loss (Eq. 1.2.10) or a L1 loss (Eq. 1.2.11) is used for L. f represents a non-linear function such as
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ReLU (Eq. 1.2.5), tanh (Eq. 1.2.4) or sigmoid (Eq. 1.2.3) or an identity function (commonly used

for output layers when output can take any range of values). Depending on the design W′ can be

the transpose of W, in which case the encoder and the decoder parameters are tied, or they can be

separate (untied) parameters. The formulation in Eq. (1.2.30) can include more than one hidden

layer to contains further set of non-linearities and a deeper architecture.

The code of an autoencoder has a smaller dimension than the input, known as an undercomplete

representation. This bottleneck acts as a regularizer. When the code of the autoencoder has

equal or higher dimension than the input (known as the overcomplete case), if no regularization

is used, the model could copy the input to output without learning any useful latent features. The

bottleneck in the network enforces the model to learn meaningful features to reconstruct the input.

Other regularization techniques have also been proposed such as sparse autoencoders (Ng, 2011),

denoising autoencoders (Vincent et al., 2008, 2010), and contractive autoencorders (Rifai et al.,

2011).

Sparse Autoencoders: In sparse autoencoders (Ng et al., 2011) the average activation of each

unit in the network is pushed to be close to a small probability. In the following notation, if ai

indicates the activation of unit i, then the average activation of unit ai on N training data can be

represented as

p̃ =
1

N

N∑
n=1

ai(xn) (1.2.31)

where p̃ is set to be close to a probability target, e.g. 0.05, to enforce sparsity of the units in the

network. While each unit is responsible for explaining a different feature in the data, sparsity

encourages activation of only the units that explain the most salient features in the data.

Denoising Autoencoders: In denoising autoencoders (Vincent et al., 2008, 2010), the data

samples x are corrupted yielding x̄. The autoencoder is then trained to reconstruct x from x̃. The

denoising autoencoder can be represented as

L(x,x̃) = L(x, f2(W
′f1(W x̄))). (1.2.32)
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The difference between Eq. (1.2.32) and Eq. (1.2.30) is in passing x̄ instead of x to the

input of the network. The denoising autoencoder can be seen as learning a manifold where the

model learns to maximize P (x|x̄). In doing so, the model learns to map lower probability data x̄

to higher probability data x. Since in denoising autoencoders usually a small percentage of the

input components are corrupted (e.g. 10% of pixels in an image), by reconstructing x from x̄, the

model learns to infer the components in the corrupted locations given the information that is not

corrupted. This means the model internally learns to reconstruct the corrupted components given

the clean components without knowing which components are clean or corrupted, indicating the

model implicitly learns P (xj = clean|x¬j). In simple terms this means the model learns the internal

correlation in between the data elements.

Generative variants of autoencoders, such as variational autoencoder (Kingma and Welling,

2013) and generalized denoising autoencoders (Bengio et al., 2013b) also have been proposed.

We use a convolutional variant of denoising auto-encoders in the building block of the denoising

keypoint model, presented in Section 6.4, to learn a joint distribution over landmarks and hence

reduce the noise that can appear in the predicted landmarks of the Recombinator Networks. By

leveraging the denoising keypoint model, the predicted landmarks have a higher probability under

the joint distribution of the landmarks and consequently they are better aligned (less noisy) with

respect to each other.

1.2.4. Generative Adversarial Networks

Generative Adversarial Networks (GANs) (Goodfellow et al., 2014) are a family of generative

deep neural networks that are composed of two sub-networks: a generator and a discriminator. The

discriminator is trained to distinguish between the ground truth (GT) data distribution samples and

the generated (fake) samples. The discriminator loss can be written as

max
θ

Ex∈GT[log(Dθ(x))] + Ex̃∈fake[log(1−Dθ(x̃))] (1.2.33)

with D being the discriminator. The discriminator loss can be also written as

max
θ

Ex∈GT[log(Dθ(x))] + Ez∈Pz [log(1−Dθ(Gφ(z)))] (1.2.34)
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where G is the generator and z, which is the input to the generator, is a sampled noise from a

prior distribution, usually a Gaussian or a uniform distribution. The discriminator maximizes the

probability of the GT samples and minimizes the probability of the fake samples.

The generator is trained to generate samples that can fool the discriminator in the sense that

the discriminator cannot distinguish between GT and generated samples. To do so the generator

is trained by maximizing the discriminator’s probability on the generated samples such that the

discriminator believes they are real. The generator then gets the gradient of this loss from the

discriminator and updates its parameters without updating the discriminator parameters. In simple

terms, generator gets discriminator’s estimated probability on its generated samples and tries to

update its generated samples slightly to make the discriminator believe that they are real samples.

The generator objective is

min
φ

Ez∈Pz [log(1−Dθ(Gφ(z)))] (1.2.35)

The above loss is known for being unstable. The following version has been used in practice, which

is more stable

min
φ

Ez∈Pz [− log(Dθ(Gφ(z)))]. (1.2.36)

Training GANs was initially a very difficult task since the generator and the discriminator have

contradictory objectives and it is difficult to balance the training of these two networks. If the

balance is lost one gets stronger than the other and it diverges the training process. Usually the

discriminator has an easier task compared to the generator since it only needs to distinguish real

from fake samples while the generator has to generate realistic looking samples. So, usually the

discriminator gets too certain on real versus fake samples and the training diverges. In the original

formulation of GANs (Goodfellow et al., 2014), when the discriminator gets too certain about fake

samples, the generator gets almost no gradients. Therefore, the gradient for the generator diminishes

and it does not converge. DCGAN (Radford et al., 2015) was one of the first models that proposed a

stable training of GANs. Especially using batch norm (Ioffe and Szegedy, 2015) was important

in making their training stable. Recent methods have focused on regularizing the discriminator to

stabalize the training.
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Wasserstein GAN (WGAN) (Arjovsky et al., 2017) minimizes an earth-mover distance between

the distribution of real and fake data and enforces the discriminator to be within 1-Lipschitz

functions. It uses weight clipping in the discriminator (a strong regularizer) to enforce the Lipschitz

constraint. Improved training of Wasserstein GANs (Gulrajani et al., 2017) proposes a different

way to enforce the Lipschitz constraint. They enforce having gradient of one almost everywhere to

enforce having differentiable 1-Lipschitz functions. To do so, they regularize the discriminator by

pushing the gradients of the data points in between real and fake values to be one. Spectral Norm

(Miyato et al., 2018) is another strong regularization used in the discriminators to stabilize training,

which gets very decent results. In general these regularization techniques in discriminators, such

as weight clipping, gradient penalty, batch normalization, layer normalization (Ba et al., 2016),

weight normalization (Salimans and Kingma, 2016), or spectral normalization have been crucial in

stabilizing the training of GANs.

We leverage a conditional variant of GANs in the building block of the DepthNet+GAN model

presented in Section 10.4.2 to train a model that generates depth of the landmarks conditioned on

the 2D landmark locations.

Cycle Consistent Generative Adversarial Networks: Cycle Consistent Generative Adver-

sarial Networks (CycleGAN) (Zhu et al., 2017) are generative adversarial networks proposed for

unpaired image-to-image translation. Unpaired means that the images in the two domains, such

as camera images and segmentation images, are not paired in the sense that for each image in the

one domain the training data does not identify (nor usually has) a corresponding image in the other

domain. This is useful since in many applications it is difficult to get paired data, e.g. in semantic

segmentation where labeling data is laborious, or in day-night, winter-summer image pairs, where

it is almost impossible to get paired data. CycleGAN was one of the first proposed models to

do unpaired image to image translation. DualGAN (Yi et al., 2017) was a concurrent work that

proposes a similar solution.

CycleGAN is composed of two generators; the first generator translates images from the first

domain (A) to the second domain (B) and the second generator translates images from domain B to

A. The two GANs are trained to generate realistic looking images when translating images from
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one domain to another. However, using only GAN losses are not sufficient to get equivalent images

in the other domain. To enforce semantically meaningful translation, a cycle consistency loss has

been added to the generator’s objective. The cycle consistency loss is

Lcycle = min
φ

Ea∈Pa [ |GB,A
φ (GA,B

φ (a))− a| ] + Eb∈Pb
[ |GA,B

φ (GB,A
φ (b))− b| ] (1.2.37)

with GB,A and GA,B being generators translating images from domain B to A and A to B, respec-

tively. By using the above loss, sample a ∈ A is translated to b̃ using GA,B and then translated back

to ã using GB,A. The model enforces consistency by generating ã to be close to a.

The total generator’s objective can be then formulated as

Ltotal = LGAN + λLcycle (1.2.38)

with LGAN being

min
φ

Ea∈Pa,b∈Pb
− [ log (DB

θ (GA,B
φ (a))) + log (DA

θ (GB,A
φ (b))) ] (1.2.39)

The two discriminators DA
θ and DB

θ are trained using Eq. (1.2.34).

CycleGAN has worked well in practice when the changes between domains A and B are mostly

in textures and the data in domains A and B almost cover the same distribution on the underlying

semantic diversity, without requiring to learn to transform the geometry or the structure in the data.

For example, the model can do a reasonable job when transforming apples to oranges, or horses to

zebras. There are issues with CycleGAN, however, most notably when the underlying distribution

of data in domains A and B do not have the same semantics, in which case CycleGAN translates

images from A to B without maintaining critical information in A. For example, as shown in (Cohen

et al., 2018), when translating T1 to Flair images (two types of MRI images), CycleGAN can

remove cancer indicators if the data distribution in the target domain only contains healthy images or

CycleGAN can add tumors if the target domain only contains cancer images. This is due to having

the generator match the distribution of the target data, which is learned by the discriminator in the

target domain, without maintaining vital information from the source domain. So, if the two sets of

data distributions do not have the same underlying semantics, the model generates uncorresponding

images when translating images from one domain to another. This phenomenon can also happen
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when one domain is more expressive that another. For example, if data in domain A contains

rotation across ‘yaw’ and ‘pitch’ axes and data in domain B contains rotation only across ‘yaw’

axis, then when translating from A to B, the generated samples cannot transform well the rotation

across ‘pitch’ axis. One question would be how CycleGAN can reconstruct the original image

using cycle consistency loss, when the translated image in the second domain does not correspond

to the original image in the first domain. CycleGAN can hide the source image in the generated

target image, which is known as steganography (Chu et al., 2017), and uses the hidden image in the

backward reconstruction. CycleGAN should be used while considering its limitations and taking

into account the underlying data distribution of the two domains.

We leverage CycleGANs in Section 10.4.3 to illustrate how to use the DepthNet model for the

full-head face frontalization task (by synthesizing the background in addition to the central part of

the face) and also for the face replacement task.
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Chapter 2

Machine Learning Models for Faces

In this chapter I discuss some of the face related applications that are relevant to this thesis and

review some of the well known and also recently emerging machine learning and deep learning

approaches used to address them. Due to relevance to this thesis I review face detection, landmark

localization, depth estimation, and face rotation. There are other face related tasks such as emotion

recognition, face tracking, and face identification that I either do not review or do not delve too

much into details since they are out of the scope of this thesis.

2.1. Face Detection

Face Detection is the process of finding human faces, usually in form of a bounding box detected

around a face. A common application of face detection algorithms is in digital cameras, where

human faces are detected to better focus on them. Its applications, however, do not stop there.

Most of the computer vision tasks on faces require face detection, as the first step of their pipeline,

in order to only process the face region. These tasks include face recognition and verification,

face tracking, face rotation, face swap, face morphing and reconstruction, landmark detection, and

emotion recognition, among other tasks. Although the first models proposed on face detection

date back to 1960s (Chan and Bledsoe, 1965), it wasn’t until (Viola and Jones, 2004) that the face

detection algorithms were capable of handling in-the-wild images and became applicable to cameras.

The Viola and Jones method has three steps:

(1) Extract features from an image.

(2) Learn an Adaboost classifier on the features. The Adaboost algorithm uses a weak classifier.

In this task the classifier decides whether there is a face in an extracted feature or not.

Adaboost starts by giving a weight to each example in the data, weighting positive and
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negative examples to have them equally represented in the data. In each iteration Adaboost

reassigns the weights by giving a higher weight to the wrongly labeled examples and training

another classifier on the re-weighted data and continuing this process until it reaches a high

accuracy on the difficult examples. The Adaboost aggregated model then takes a weighted

average of all classifiers leading to a model that performs well on both easy and difficult

examples.

(3) Learn a cascade model that rejects false positive faces. The cascade model is composed

of K classifiers, with the j-th classifier being trained to reject false positive samples that

have passed the previous j − 1 classifiers. Therefore starting from the 1-st to K-th classifier,

each subsequent classifier is trained on more difficult false positive examples, by using the

Adaboost algorithm described in part (2). The final region proposal is the output of the

K − th model in the cascade architecture.

Viola and Jones model is capable of reaching a face detection accuracy with the minimum

detection rate and the maximum false positive rate specified by the user.

There have been some neural network models proposed for the face detection task, such as

(Féraud et al., 2001; Garcia and Delakis, 2004; Rowley et al., 1998; Vaillant et al., 1994). The

model in (Rowley et al., 1998), shown in Figure 2.1, takes as input a pyramid of image patches of a

fixed resolution size but taken from subsampled image resolutions at different subsampling rates.

The model classifies for each patch whether it contains a face or not. It uses then a batch of such

networks, each trained with different initial parameters. Each network generates an independent set

of proposal regions. The output of all these networks are passed to another network to reduce false

positive proposals.

Deep learning variants for object detection have also been proposed. The most famous work is

Regions with Convolutional Neural Networks features (Girshick et al., 2014), known as R-CNN,

and its later variants Fast R-CNN (Girshick, 2015) and Faster R-CNN (Ren et al., 2015).

R-CNN first uses selective search (Uijlings et al., 2013) to get region proposals, an algorithm

that merges nearby image patches based on their similarity in color, texture, size and region of

intersection in a hierarchical style. R-CNN then takes the proposed regions by selective search and

passes them through a CNN network, which is trained on positive and negative object proposal
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Fig. 2.1. Neural network based face detection framework. Image taken from (Rowley et al., 1998).

regions. The final classification layer (FC_out) is then dropped and the features right at the input of

(FC_out) are then passed to class specific linear Support Vector Machines (SVM)s. They obtained

better results by using SVMs compared to directly taking the output of the final CNN classification

layer. Each SVM is trained on an object class with positive and negative examples of that specific

class and indicates whether the passed features belongs to that class or not. Figure 2.2 shows the

components of the R-CNN framework. R-CNN was also the first model to pre-train its network in a

supervised style on a large auxiliary dataset (ILSVRC), showing a model pre-trained on ImageNet

can be later fine-tuned on a specific task. This approach was further used in many other vision tasks

to boost their performance, indicating training parameters of a neural network on images, even on

different classes of objects, can extract useful features that can be transferred to other visual tasks.

While R-CNN and its follow-up works are applied to the general object detection task, they can

be used also on faces. Some recent methods have adapted R-CNN variants to the face detection task,

as in (Farfade et al., 2015) that replaces the CNN network in R-CNN with a fine-tuned model of

AlexNet (Krizhevsky and Hinton, 2009), or the model in (Jiang and Learned-Miller, 2017) that gets

state-of-the-art on WiderFace dataset (Yang et al., 2016) using Faster R-CNN framework. Hyperface

(Ranjan et al., 2017) also adapts R-CNN by replacing its CNN component with Fully Convolutional
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Fig. 2.2. R-CNN framework. The model extracts region proposals from an input image and passes
the extracted regions to a Convolutional Neural Network (CNN). The output of CNN classifies
for each category (e.g. aeroplane, person) whether the extracted region contains an object of that
category or not. Image taken from (Girshick et al., 2014).

Networks (FCN) (Long et al., 2015) and detects faces in a multi-tasking framework while doing

other tasks such as landmark localization and pose estimation.

2.2. Landmark Localization

Fiducial Landmark localization is the problem of localizing important features on faces such as

eye centers, mouth corners, and the nose tip. Landmark localization is used to improve the perfor-

mance on other tasks, such as face rotation and verification (Taigman et al., 2014), identification

(Sun et al., 2014), pose estimation (Zhu and Ramanan, 2012), gaze estimation (Gou et al., 2017;

Wang and Ji, 2017), and emotion recognition (Kahou et al., 2016).

While landmarks indicate fiducial features, such as eyes, nose, eyebrows, mouth, and face-

contour, there is not a common consensus on the number and locations of the landmarks. Each

dataset defines its own sets of landmarks. While some introduce very few landmarks, as 5 landmarks

in MTFL dataset (Zhang et al., 2016) pinpointing eye centers, nose-tip and mouth corners, some

others datasets localize a very comprehensive set of landmarks, e.g. 194 landmarks in Helen (Le

et al., 2012), where it is hard to assign each landmark to a specific feature on the face. Popular
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datasets are AFLW (Köstinger et al., 2011) with 25 and 300W (Sagonas et al., 2013) with 68

landmarks.

There are many old models on landmark localization such as (Yuille et al., 1992) and Active

Shape Models (Cootes et al., 1995). One of the best known models is the active appearance model

(Cootes et al., 2001).

Active Appearance Model (AAM) (Cootes et al., 2001):

AAM is proposed to match a template model to a new image using both shape (geometry represented

by landmarks) and appearance (the image texture represented by pixel values). AAM assumes

during training a set of images with labelled landmarks are provided and the model uses principal

component analysis (PCA) to learn over all training examples an average representation and an

orthogonal basis for both shape and appearance that maps the latent representation of each training

example to the observed variables of shape and appearance. It also learns a linear transformation

between the difference between the input image and the AAM estimated appearance and the residual

that should be added to the latent representation to fix this appearance difference. At test time when

a new query image is given, the model uses this learned linear transformation to update the latent

representation in order to map the template model to the query image and minimize the appearance

error.

Formally, the following steps are taken in AAM:

First a PCA model is learned over the template shape model by applying PCA to the provided

landmarks in the training set, where each set of landmarks y belonging to a face can be represented

as

y = ȳ + Psbs, (2.2.1)

with y representing the set of landmarks per training example, ȳ being a vector of mean landmark

locations over the entire training set, Ps being the PCA orthogonal basis for shapes, and bs being the

latent representation corresponding to the training example y that when used in the above equation

reconstructs back y.
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To learn a statistical model over appearance, which is over pixel values, each face image is

warped such that the set of landmarks of each face maps to the mean shape ȳ. A PCA model is then

learned on images such that each appearance example g is represented as

g = ḡ + Pgbg, (2.2.2)

where ḡ is a vector of mean appearance of the pixel intensities, Pg is the PCA orthogonal basis

for appearance, and bg is the latent representation for example g that can reconstruct back g when

used in the above equation. Given the above PCA models, the shape and appearance of each

example can be represented using bs and bg. However, there might be still correlation between

latent representations bs and bg. To decorrelate these features another PCA is learned to map bg

and bs to an uncorrelated latent representation. To do so, first for each example a latent vector b is

measured by

b =

Wsbs

bg

 =

WsP
T
s (y − ȳ)

PT
g (g − ḡ)

 (2.2.3)

where Ws is a diagonal matrix allowing to adapt for differences in units between shape and

appearance. A PCA model on latent representation b is then learned to map b to an uncorrelated

latent representation c

b = Qc, (2.2.4)

where Q is the orthogonal PCA basis for both shape and appearance. If we represent

Q =

Qs

Qg

 , (2.2.5)

then using a shared latent representation c, we can reconstruct both shape and appearance by

y =ȳ + PsWsQsc (2.2.6)

g =ḡ + PgQgc. (2.2.7)
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The Equations (2.2.6) and (2.2.7) provide a generative model for shape and appearance by sampling

different values from the latent representation c. Note that the highest eigenvalues corresponding

to the eigenvectors in Q indicate the most important directions of variations in c. These salient

directions of variations can be changed to observe a variety of shapes and appearances.

The provided model so far can learn a shape and appearance model on the training data which

allows generating new samples, however we also need a procedure to map the AAM model to a new

image. To reduce test time adaptation of AAM to new examples, the model learns how to adapt the

latent representation c to a new query example by learning a linear model on the training data. To

do so, it first defines a difference vector δg between a query image appearance gn and the model

estimation of the appearance model g

δg = gn − g. (2.2.8)

Then, matrix A is learned that maps δg to δc by using

δc = A δg (2.2.9)

where δc is the residual between target and current value of c, meaning if we change the current

latent representation c0 by δc, we get new latent representation c1 = c0 − δc that eliminates the

appearance error δg.

The latent representation c is augmented to contain also scale, translation and rotation. To train

A, displacement of known training latent representations c and the corresponding image residual

gn is used. Once A is trained, Algorithm 1 is used to fit AAM onto a new query image.

The procedure in Algorithm 1 maps both shape and appearance of AAM to a query image. Once

the algorithm has converged, the final c is taken and passed to Equation (2.2.6) to measure AAM

shape for the query image. The estimated shape corresponds to the landmark prediction of AAM

that is fit to the query image.
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Algorithm 1 AAM Fitting Algorithm
1: Start with an initial latent representation c0

2: Using Equations (2.2.6) and (2.2.7) measure shape and appearance of model y, g
3: Obtain normalized apprearance for the query image gn
4: Measure error vector δg0 = gn − g
5: Set current error as E0 = |δg0|2
6: Using matrix A compute the latent representation displacement δc = A δg0

7: set h = 1 and measure c1 = c0 − h δc
8: Using c1 sample image to get gn and also estimate g using Equation (2.2.7)
9: measure g1 = gn − g

10: If |δg1|2 < E0 then accept c1, otherwise try h = 1.5, h = .5 h = .25
11: If |δg1|2 has reduced goto step 2, otherwise stop

Constrained Local Model (CLM) (Cristinacce and Cootes, 2008, 2006):

Another well-known model for landmark localization is CLM. Similar to AAM, CLM uses a shape

and appearance representation as in Equations (2.2.1) and (2.2.2). By applying a unified latent

representation, they can be further represented as:

y = ȳ + PsWsQsc (2.2.10)

g = ḡ + PgQgc. (2.2.11)

However, unlike AAM, CLM uses a prior distribution over the joint distribution of landmarks.

If p(y|θ) represents shape given the parameters θ and p(x|y,θ) represents the probability of image

x given the shape and parameters, then using the Bayes rule, one can represent shape distribution

using

p(y|x,θ) ∝ p(x|y,θ) p(y|θ) (2.2.12)

In the CLM, p(x|y,θ) is modeled by using a matching score between the image x and the

appearance estimated by the model using

p(x|y,θ) ∝
K∏
k=1

e−αqk , (2.2.13)
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where K is the number of landmarks and qk is the matching quality between the input image and

the CLM appearance representation. Assuming shape latent representations in bs are independent

and Gaussian distributed, p(y|θ) can be represented by

p(y|θ) ∝
Z∏
j=1

e−b
2
j/λj , (2.2.14)

where Z is the number of shape parameters, bj is the j-th element of bs, and λj are the corresponding

eigenvalues of the shape model. By putting Equation (2.2.14) and Equation (2.2.13) back into

Equation (2.2.12) we get

p(y|x,θ) =
K∑
k=1

−αqk −
Z∑
j=1

b2j
λj
. (2.2.15)

Let’s use qk = −Rk(wk, hk) as the normalized correlation response for the k’th feature template

(with wk and hk as the width and height coordinates of the k-th landmark), then Equation (2.2.15)

can be written as

f(bs) = α
K∑
k=1

Rk(wk, hk)−
Z∑
j=1

b2j
λj
. (2.2.16)

The first term acts as an independent classifier per landmark and the second term puts a joint

distribution over landmarks. CLM model is then optimized using Algorithm 2.

Algorithm 2 CLM Fitting Algorithm
1: Start with an initial set of landmarks.
2: Using Equations (2.2.6) and (2.2.7) get the current appearance representation g.
3: Measure the normalized response Rk per landmark k, which indicates how far is the current

appearance representation from the image.
4: Use Equation (2.2.16) to find the new latent representations bs that gives more accurate shape

representation, by considering both the current appearance response maps in the first term and
the shape prior in the second term.

5: Go to step 2 until convergence.
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The Nelder–Mead simplex algorithm is used to Optimize Equation (2.2.16) in Algorithm 2.

It starts from an initial set of landmarks and stops when changes to shape are less than a small

constant. One difference between CLM and AAM is that in AAM the appearance is a representation

over the entire face, while in CLM the appearance is represented by extracting a patch around each

landmark and concatenating them.

Mixture of Trees (Zhu and Ramanan, 2012):

Another famous landmark localization approach before the era of deep learning is the joint model

of face detection, pose estimation, and landmark localization in (Zhu and Ramanan, 2012). They

use a mixture of trees, where each element in the mixture corresponds to a viewpoint and for

each viewpoint m they construct a tree of Tm = (Vm,Em) with Vm representing the Vertices

(landmarks) and Em representing the edges connecting the landmarks to build a tree. This mixture

is shown in Figure 2.3.

Fig. 2.3. Mixture of trees over landmarks. For each viewpoint a different tree is constructed. Each
tree, which connects the landmarks of a face, corresponds to a viewpoint in the mixture. Image is
taken from (Zhu and Ramanan, 2012).

Given an input image x and a set of landmarks y = {yk, k ∈ Vm}, the model over keypoints

for view m is represented as

S(x,y,m) = Appm(x,y) + Shapem(y) +αm (2.2.17)

where Appm(x,y) is the appearance model, Shapem(y) is the shape model, and αm is a scalar bias

or prior for viewpoint m. The appearance model learns for each view m a per landmark set of
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weights wm
k , k ∈ Vm by

Appm(x,y) =
∑
k∈Vm

wm
k .φ(x,yk) (2.2.18)

where yk = (wk, hk) is the k-th landmark and φ(x,yk) corresponds to the HOG features extracted

from image x at location yk.

The Shape model is presented by:

Shapem(y) =
∑
i,j∈Em

amijdw
2 + bmijdw + cmijdh

2 + dmijdh (2.2.19)

with dw and dh representing changes across width w and height h dimensions between landmarks i

and j that are connected by an edge

dw = wi − wj (2.2.20)

dh = hi − hj (2.2.21)

The parameters a, b, c, and d in Equation (2.2.19) can be considered as springs in between land-

marks i and j that put constraints between the neighbouring landmarks to restrict their movements.

Using re-parameterizations of a,b, c,d, Equation (2.2.19) can be written as

Shapem(y) = −(y − µm)TΛ(y − µm) + constant (2.2.22)

Λ is a sparse precision matrix with nonzero entries for elements i,j in the set Em. The above

shape formulation corresponds to a model that penalizes configurations away from µm.

The model in Equation (2.2.17) is optimized by running a dynamic programming (DM) algorithm

that maximizes the following objective

S∗(x) = max
m

[max
y

S(x,y,m)]. (2.2.23)

The DM algorithm searches across allm viewpoints and in each mixture it searches across landmarks

y to find the best configuration that maximizes the above objective.

Deep Learning approaches on landmark localization:
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One of the first deep learning approaches on facial landmark localization after the renaissance of

deep learning is the model proposed in (Sun et al., 2013). The diagram of this model is shown in

Figure 2.4. The model uses three levels of landmark localization with the first level predicting the

initial location of the landmarks. The subsequent two levels crop patches from the input face image

around the landmarks predicted by the previous level and process that region further to improve the

landmark prediction accuracy.

Fig. 2.4. The cascade architecture for landmark localization. The first level has three streams for
landmark localization, where some landmarks are predicted in multiple streams. The second and
third levels crop image patches (shown in yellow) from the input image by using the location of
landmarks predicted in the previous level. Again each landmark is predicted in multiple streams.
Image is taken from (Sun et al., 2013).

In each level there are multiple streams, each using a convolutional neural network (CNN),

which takes an image patch as input and predicts the landmark locations using a regression loss. For

example, the CNN for stream F1 in 2.4 is shown in Figure 2.5.

The final location of each landmark is predicted using the following equation

y =
y
(1)
1 + y

(1)
2 + · · ·+ y

(1)
l1

l1
+

s∑
i=2

∆y
(i)
1 + ∆y

(i)
2 + · · ·+ ∆y

(i)
li

li
, (2.2.24)

where li indicates the number of streams in level i that predicts the same landmark and s indicates

the total number of levels. The outputs of the first level is taken as initial prediction and the outputs
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Fig. 2.5. The convolutional neural network (CNN) used in stream F1 of the architecture shown in
Figure 2.4. F1 is composed of convolution, max-pooling, and fully connected layers. The feature
map resolution in each layer and the kernel/filter size of convolution and max-pooling layers are
shown in the image. Image is taken from (Sun et al., 2013).

of the following levels are used as residual modifications to the initial prediction. Since each level

predicts a given landmark in multiple streams, the prediction of all streams are averaged.

There has been many follow-up works on landmark localization using deep learning including

the multi-tasking approach in (Zhang et al., 2016) and the stacked hourglass network in (Newell

et al., 2016) that uses a recursive model to improve its prediction in multiple iterations. Other recent

works are reviewed and contrasted within the following chapters when our proposed models on

landmark localization are presented.

2.3. Depth Estimation

Depth estimation on faces has been used to build 3D face models from 2D images, which

facilitate image manipulation such as face rotation and animation. There has been many models

that estimate a 3D face models, such as (Jiang et al., 2005; Kemelmacher-Shlizerman and Basri,

2011; Paysan et al., 2009). One of the most known works is the 3D morphable model (3DMM)

(Blanz and Vetter, 1999). 3DMM constructs a 3D face mesh, where each vertex contains a 3D

location and a texture. It then renders the 3D face using computer graphics rendering techniques

to a two dimensional (2D) image. By comparing the rendered face to a given image of a face, it

optimizes the 3D face model and brings it as close as possible to the face in the given 2D input
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image in terms of both 3D geometry and also texture.

3D Morphable Model (3DMM) (Blanz and Vetter, 1999):

Formally, 3DMM is composed of a set of K vertices, each containing a location (w, h, d), and a

texture (R,G,B). The vertices’ locations form the face shape and the vertices’ textures form the

face appearance. Let’s represent the average of shape and texture, measured over all samples in the

training set, by S̄ and T̄. Then covariance matrices for shape and texture differences from the mean,

namely ∆Si = Si − S̄ and ∆Ti = Ti − T̄, are measured. Finally, a PCA is learned on each of

these covariance matrices to find the m most salient directions of variations for shape and texture.

Having done so, the shape and appearance of each sample can be represented by

Smodel = S̄ +
m∑
i=1

αisi, (2.3.1)

Tmodel = T̄ +
m∑
i=1

βiti (2.3.2)

where si and ti are the eigenvectors of the covariance matrices found by PCA. αi and βi are the

coefficients assigned to eigenvector i. Apart from ~α and ~β parameters, 3DMM also uses a set of

rendering parameters ~ρ such as camera position, object scale, image plane rotation and translation,

intensity of ambient light, intensity of directed light, and the color contrast among others. The total

set of parameters of 3DMM is therefore represented by (~α, ~β, ~ρ).

The 3D face model is rendered using Phong illumination and the parameters are optimized

to minimize the difference between the input image xinput and the rendered image xmodel using

perspective projection. The objective function is therefore

L =
∑
w,h

‖xinput(w,h)− xmodel(w,h)‖2 (2.3.3)

which is optimized over w and h locations in the image. Without any regularization, the above

optimization is an ill-posed problem since the 3DMM has multiple free parameters to minimize the

above loss. To start optimizing this loss from a good initial configuration, the template 3D face is

manually aligned with the input image regarding pose, position, size, orientation and illumination.
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This is due to the fact that 3DMM has many free parameters and without some constraints it can

end up with 3D face models away from the face in the input image. After the manual initialization,

the model is optimized using the following procedure. For each triangle k in the 3D face mesh, the

average of the values at the corners (regarding both position and texture) are measured to form an

estimate in the center of the triangle and by applying perspective projection the triangle center is

rendered to the image location (p̄w,k, p̄h,k), yielding xmodel,k. Considering all K vertices in the 3D

model, the total loss can be written as

L =
K∑
k=1

‖xinput(p̄w,k, p̄h,k)− xmodel,k‖2 (2.3.4)

where using Phong illumination, each color component of RGB values, namely

xr,model,xg,model,xb,model, is measured by

xr,model,k = (ir,amb + ir,dir · (nkI))Rk + ir,dirs · (rkvk)γ (2.3.5)

where ir,amb is intensity of ambient light, ir,dir is intensity of directed light for the red channel, nk

is the surface normal at vertex k, I is the direction of illumination, Rk is the red channel texture

value at vertex k, s is the face shininess, rk is the direction of the reflected ray at vertex k, vk is the

normalized difference of camera position and the position of the triangle’s center at vertex k, and γ

controls the angular distribution of the specular reflection. The loss in Equation (2.3.4) is optimized

until convergence, which optimizes both on location and appearance of the 3DMM model. The final

output is taken as the 3D face representation of the provided 2D face in the input image.

Jiang et al. (2005) automate some of the manual initialization procedures of 3DMM such as

head position and orientation, focal length of the camera, and illumination direction. Since 3DMM

extracts latent parameters of shape and texture, which are separated from camera parameters, it has

also been used for face recognition (Jiang et al., 2005; Paysan et al., 2009) and identification (Blanz

et al., 2002).

There have been variants of 3DMM using deep neural networks. Tran and Liu (2018) build a

3DMM model using neural networks where instead of using PCA to to learn shape and texture basis
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linearly, they use deep neural networks to measure the latent representation of shape and texture

non-linearly.

MOFA (Tewari et al., 2017) also applies a deep learning approach to 3DMM. Similar to 3DMM,

it measures the shape and texture basis using PCA, however the model parameters such as shape and

texture coefficients and camera rendering parameters are measured using an encoder that encodes an

image into a latent representation that estimates the model parameters (shape, texture, and camera

parameters). Then, it uses a rendering decoder (without any learnable parameters) that applies

computer graphics techniques to render the image. To allow backpropagation, they implement

a backward path to measure the gradients. Similar to 3DMM, this model also has many free

parameters. To constrain the model, it applies some regularization on the shape, texture and camera

parameters. Also it uses optional 2D landmarks to bring the 3D face model close to the pose of the

face in the input image. Figure 2.6 shows the MOFA pipeline.

Fig. 2.6. The architecture of MOFA (Tewari et al., 2017). A deep convolutional encoder takes an
input image and estimates the parameters of 3DMM such as shape, texture coefficients, and camera
parameters. The estimated parameters are then used to render a 2D image via a non-parametric
decoder. The model reconstructs the input image and can optionally use landmarks to guide the
reconstruction. Image is taken from (Tewari et al., 2017).

Adversarial Inverse Graphics Networks (AIGN) (Tung et al., 2017b) uses a similar approach to

3DMM, however instead of constructing both 3D shape and texture, it only aims at estimating a

3D shape model given an input image. Similar to 3DMM, it uses a PCA to learn the most salient

directions of variation in the 3D shape. However, unlike vanilla 3DMM, it uses a convolutional

neural network to estimate the coefficients of the shape PCA as well as the camera parameters
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that are used to render the 3D shape model to a 2D projection of the landmarks. The projected

landmarks are then compared with the ground truth 2D landmarks of the input image. So, AIGN

does not try to match the input image in its appearance (pixel intensity), it only matches to the 2D

pose of the landmarks, that are provided as ground truth labels. AIGN minimizes the following loss

min
G

max
D
‖P (G(x))− y2D‖ + β [

K∑
i=1

log Di(y3D) + log (1−Di(Gi(x)y3D
))] (2.3.6)

where G is a generator that given an input image x estimates the parameters of the 3D model, such

as PCA shape coefficients and camera parameters, P is the projection function of the 3D model

to 2D, and y2D is the ground truth 2D landmark locations in image x. The first component in the

loss is therefore mapping the ground truth 2D landmarks to the 2D projection of the 3D model.

The second component is an adversarial loss, where discriminator D is trained to maximize the

probability of the ground truth 3D shape parameters y3D and minimize the probability of the 3D

shape parameters generated by G, namely Gi(x)y3D
. Note that G generates both the 3D shape

parameters (corresponding to the geometry) as well as the camera parameters. The discriminator is

trained to only distinguish the shape parameters of real and generated ones (not camera parameters).

The ground truth data used to train the discriminator can be taken from a prior distribution, that is

different from the training dataset. As shown in Equation (2.3.6), the discriminator maximizes the

loss, while the generator minimizes the loss. The second term acts as a regularization to constrain

the freedom of parameters in the 3D model and make the estimated shape more realistic.

Jackson et al. (2017) propose a direct estimation of a 3D face, via depth supervision, from a

2D input image. It does not apply any computer graphics rendering techniques or uses any camera

parameters. This approach also has a variant where the 3D face estimation is guided by landmark

heatmaps that are estimated at an intermediate point through the network.

2.4. Face Rotation

Face rotation is the task of providing other views of a face given a single 2D view of a face in an

image. It has been mainly used in the face recognition and verification tasks, where the goal is to

identify the person in the image. Face rotation has been leveraged either to provide frontal views of
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the person in the image for easier recognition, as in (Gross, 2015; Huang et al., 2017; Taigman et al.,

2014; Yin et al., 2017), or rotate frontal faces in the dataset towards more profile views to balance

the dataset and enhance recognition on non-frontal faces, as in (Masi et al., 2016; Zhao et al., 2017).

Some methods first frontalize faces and then extract features for identity verification, as in (Hassner

et al., 2015; Huang et al., 2017; Shen et al., 2018; Taigman et al., 2014; Yin et al., 2017; Zhao et al.,

2017, 2018), some other methods rotate faces but use the encoded latent features instead of the

rotated face images for identity verification, as in (Shen et al., 2018; Tran et al., 2017).

3D morphable models (Blanz and Vetter, 1999; Blanz et al., 2004) have been used for face

rotation, since they construct a 3D face model and the face can be easily rotated to render different

views of the face. However, due to mapping the texture of the 3D face to the 2D images, they lack

texture on the occluded side of the face. Hence, these methods are not capable of handing occlusion,

e.g. when a profile face is frontalized.

One of the known models in face verification is Deepface (Taigman et al., 2014), which applies

face frontalization as part of its pipeline. To frontalize faces, it uses a 3D frontal face template and

maps the 2D image to the 3D face template to frontalize the face in the image. Specifically, it first

does a 2D alignment of the image by applying scale, rotation, and translation to the image such

that the 2D landmarks in the image are mapped to the 2D landmarks of the template face. Then it

uses an affine camera to map the 2D aligned face image to the 3D face template by minimizing the

following loss

L = (y2D − y3D
~P)TΣ−1(y2D − y3D

~P) (2.4.1)

where Σ is a known covariance matrix, ~P is an affine 3D-to-2D camera whose parameters are

learned. y2D are the 2D landmarks on the aligned image, and y3D are the 3D landmarks on the

face template. Once the camera parameters ~P are learned, the frontal 3D face is constructed by a

piece-wise affine transformation guided by the Delaunay triangulation (Okabe et al., 2009). The

model then uses the frontalized face for identity verification in a deep convolutional neural network.

Hassner et al. (2015) make the observation that even if a single 3D face template is used for

all faces in the dataset, the difference in the shape and geometry between the 3D template and the

input query image has little impact on facial appearance features and the person remains easily
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identifiable in the frontalized projection of the 3D template model. They exploit this observation

and put their effort on frontalizing the face in the query image rather than mapping the 3D face

template to the geometry and shape of the face in the query image. They argue that the latter takes

more effort than the former. To frontalize the face in a query image they use a template 3D face

(used for all query images), and learn a projection matrix between the 3D face template and the

landmarks detected on the query image. They then learn another projection matrix between the 3D

face template and a reference frontal view, which is the projection of the 3D face template to a 2D

frontal face image. By learning these two projection matrices they can map pixels from the query

image to the 3D template face and then onto the frontal reference image. They also observe that the

pixels in the more occluded region of the query image get copied to more regions of the reference

frontal face and use this observation to replace the occluded regions of the frontalized face with the

unoccluded symmetric regions of the reference face. While the frontalized faces have some artifacts

they boost the face verification results.

Masi et al. (2016) make the observation that on many face recognition datasets, the majority

of faces are frontal. Hence, they synthesize different poses, shapes, and expressions for a given

input image to augment the dataset, especially for non-frontal views, and boost the recognition

performance. In particular, they map the 3D landmark face template y3D to 2D landmarks y2D

detected in the query image and apply a PnP model (Hartley and Zisserman, 2003) that yields

perspective projection parameters M by using y3D = M y2D. They then change the rotation

parameters in M to synthesize new faces using a rendering engine. Using this approach they rotate

frontal faces to profile views.

Recently there have been adversarial approaches for face rotation. TP-GAN (Huang et al., 2017)

uses a two-path network for face frontalization, where one path frontalizes the whole face and

another path frontalizes different face components such as eye, mouth, and nose before putting

them back together onto the image. The two paths are finally merged together to generate the final

frontalized image. The model is trained using paired data, meaning ground truth frontal images are

provided for a per-pixel loss. In addition, other losses are introduced such as a symmetric loss (to

generate a symmetric face), adversarial loss (to generate realistic images), identity preserving loss
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(to maintain the identity in the image), and a variation regularization loss (to maintain a smooth

transition in pixel intensities of the image).

PIM (Zhao et al., 2018) also uses a similar two-path approach for face frontalization. Similar

to TP-GAN it also leverages paired data and applies a per-pixel loss, adversarial loss, symmetric

loss, and variation regularization loss. However, it introduces a domain adaptation loss (to adapt the

latent features of the encoded training image to the encoded representation of test images), and an

identity preserving loss (by using gradients from an identity discriminator). Both TP-GAN (Huang

et al., 2017) and PIM (Zhao et al., 2018) only do face-frontalization with the goal of enhancing face

verification.

DR-GAN (Tran et al., 2017) is one of the first adversarial models that does complete face

rotation, yielding visually appealing results. The model architecture is shown in Figure 2.7. Given

an input image x and its labels L = {ld, lp} for identity ld and pose lp, the discriminator D is trained

to distinguish between Nd real identities in the training set and a fake identity. The discriminator is

also trained on the target pose class lp. Considering G(x, c, z) as a generated image using the input

image x, a one-hot pose vector c, and noise z, the discriminator is trained by

max
D

(Ex,L∈p(x,L)[log(Dd
ld(x)) + log(Dp

lp(x))]+

Ex∈p(x), c∈p(c), z∈p(z)[log(Dd
Nd+1(G(x, c, z)))]) (2.4.2)

where Dd is the discriminator output for identity classification with Nd + 1 elements (Nd real

identities and one fake identity). Dp is the discriminator output for pose classification. Dd
i and Dp

i

are the i-th elements in Dd and Dp. The discriminator is therefore trained to distinguish real from

fake identities while also to classify the pose in real images.

Given an input image x the generator first gets the encoded latent representation for identity f(x)

and then by adding noise z and a one-hot pose vector c, it generates the decoded image G(x, c, z).

The generator is trained to generate the image x̂ with pose lt encoded in c, and identity ld in image

x. The generator is therefore trained by

minG Ex,ld∈p(x,ld), c∈p(c), z∈p(z)[log(Dd
ld(G(x, c, z))) + log(Dp

lt(G(x, c, z)))]. (2.4.3)
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DR-GAN learns an identity representation f(x), which is used for face verification. It can

leverage a target pose vector c to rotate the input face x to this target pose.

Fig. 2.7. The architecture of DR-GAN (Tran et al., 2017). It takes an input image x and uses an
encoder Genc to get latent features f(x). The encoded features together with noise z and a one-hot
pose vector c are decoded into x̂. A discriminator D is trained to distinguish Nd real from a fake
identity class and also to estimate the pose of the image. Image is taken from (Tran et al., 2017).

There have been recently GAN-based face rotation approaches (Shen et al., 2018; Yin et al.,

2017; Zhao et al., 2017) that leverage a 3D morphable model (3DMM). FF-GAN (Yin et al., 2017)

does face frontalization by estimating parameters of a 3DMM. The model is shown in Figure 2.8. It

takes an input image and first estimates the parameters of the 3DMM. Then it merges the upsampled

3DMM features with the features extracted from the image to frontalize the input face. To train

this model, an adversarial loss on the generated image, a symmetry loss, a pixel-wise frontalization

loss (due to using paired data), a variation regularization loss, and an identity preserving loss is

applied. To enforce learning meaningful latent parameters such as identity, expression, and texture

by 3DMM, they first pre-train it with a dataset that provides such labels. FF-GAN only does

face-frontalization. The frontalized images are used for face recognition, 3D reconstruction, and

landmark localization.

DA-GAN (Zhao et al., 2017) rotates frontal faces to profile poses in order to increase the

percentage of data in the profile poses and leverages that for face verification and recognition tasks.

To do so, DA-GAN first detects the face and the landmarks and estimates the parameters of a

transformation matrix that maps the estimated 2D landmarks to the landmarks of a 3DMM. Once the

56



Fig. 2.8. The architecture of FF-GAN (Yin et al., 2017). It takes an input image x and uses a
network R to get 3DMM parameter coefficients, such as identity, expression, and texture. It then
merges the upsampled 3DMM features with the image features to frontalize the face. A discriminator
D and an identity classifier C are used to guide this process. The discriminator D is trained to
distinguish between the ground truth frontal image xg and the frontalized image xf . The identity
classifier produces identity features h for an image passed to it. The generator network is trained to
bring the feature representation h of the frontalized image xf close to the feature representation
of the original non-frontalized image x to maintain the identity in the frontalized image. Image is
taken from (Yin et al., 2017).

parameters of 3DMM are estimated and the 2D image is mapped to the template, the face is rotated

to more profile views. This yields a synthetic face. In the second phase an adversarial network is

trained to make these faces realistic. This approach boosts the performance on face verification due

to synthesizing more extreme pose faces. However, it maps every face to a generic face template,

which can change the input face geometry.

FaceID-GAN (Shen et al., 2018) is another adversarial approach that does complete face rotation.

Similar to FF-GAN and DA-GAN it uses a 3DMM to estimate face parameters given an input

image. 3DMM yields parameters for identity, expression and pose, which is pre-trained to extract

meaningful parameters. Then, they leverage two discriminators, one trained to distinguish real from

fake images, and another as an identity discriminator trained to distinguish N real from N fake

identities. The generator takes identity, noise, and 3DMM parameters and generates images at the

pose specified by the 3DMM parameters that belongs to the same identity. The generator is trained

by fooling the two discriminators such that the images are realistic and belong the specified identity.
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It also minimizes a mean squared error between the 3DMM parameters passed to the generator and

the ones extracted from the generated image. This model is shown in Figure 2.9. Both DR-GAN

and FaceID-GAN can rotate faces to different poses.

Fig. 2.9. The architecture of FaceID-GAN (Shen et al., 2018). The left part is the generator. The
identity features f rid (extracted by network C) together with the 3DMM parameters (extracted by
network P ) and the noise z are passed to the generator to generate a new image XS with the same
identity as Xr but with a pose specified by f ′p (after changing the pose parameters of 3DMM in f rp ).
The generated image XS is passed to three networks: C to extract the identity features f sid, P to
extract the 3DMM parameters f sp , and a discriminator D to verify if the image is realistic or not.
The generator is trained by taking gradients from these three networks. In particular, dcos(f ridf

s
id)

compares the extracted id features f sid of the new image with the id features f rid passed to the generator
and dl2(f ′p, f

s
p ) compares 3DMM parameters f sp of the new image with the 3DMM parameters f ′p

passed to the generator. Finally, R(Xs) increases the probability of the generated image XS being
realistic. Image is taken from (Shen et al., 2018).

In this chapter I reviewed some of the known and also recently emerging models on faces for the

tasks of face detection, landmark localization, depth estimation, and face rotation. In the following

chapters I present the models I worked on during the course of my PhD.
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Chapter 3

Prologue to First Article

3.1. Article Details

Improving Facial Analysis and Performance Driven Animation through Disentangling

Identity and Expression. Sina Honari*, David Rim*, Md Kamrul Hasan, and Christopher Pal

(2016). Image and Vision Computing Journal, 52, 125-140.

Christopher Pal asked me to take over this project, that he had started with David Rim, at the

point where it required major modifications, additions, and new results to be accepted by the Image

and Vision Computing Journal. I first recomputed the math formulations and fixed some of the

notations. Then, I implemented the identity and expression models. Kamrul also helped on the

constrained local model (CLM). I carried out the experiments regarding landmark localization and

the analysis of the results. I also re-wrote the sections of the paper regarding the identity-expression

model and wrote the section regarding landmark localization. I jointly first authored this work with

David Rim, who had started the project but did not pursue it afterwards. While the complete journal

paper contains sections on animation control and emotion recognition, I dropped these sections in

the thesis to focus only the sections on which I worked, namely the identity-expression formulations

and the section on landmark localization, which is the central part of this thesis. This being said,

some parts in the contributions and introduction briefly mention also these other tasks. The variable

notations in this chapter have been changed compared to the journal version to unify the notations

of the repeating concepts in the thesis.
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3.2. Context

The goal of this work is to explain variations that are observed on faces through usage of

disentangled latent representations of identity and expression. Our model builds on top of (Prince

et al., 2011) which uses identity to explain the variations observed over the images. In their work,

however, they are interested in extracting variations only across identity. In our work, we explain

variations in images through both identity and expression and exploit the expression information

through tasks that provide this information and can benefit from it, such as facial expression analysis,

animation control and landmark localization.

3.3. Contributions

We present techniques for improving performance driven facial animation, emotion recognition,

and facial key-point or landmark prediction using learned identity invariant representations. Estab-

lished approaches to these problems can work well if sufficient examples and labels for a particular

identity are available and factors of variation are highly controlled. However, labeled examples of

facial expressions, emotions and key-points for new individuals are difficult and costly to obtain.

In this work we improve the ability of techniques to generalize to new and unseen individuals by

explicitly modeling previously seen variations related to identity and expression. We show how to

extend the widely used techniques of constrained local models through replacing the underlying

point distribution models, which are typically constructed using principal component analysis, with

identity-expression factorized representations.

3.4. Recent Developments

Non deep learning approaches have fallen out of favor for landmark localization methods and

currently the state-of-the-art performing models use deep learning approaches in their formulations.

Known examples of deep learning approaches include (Toshev and Szegedy, 2014), which is one

of the first models that uses deep learning for landmark localization, (Ranjan et al., 2017; Zhang

et al., 2014c), which use multi-tasking approaches for landmark localization in addition to solving

other tasks on faces, and (Newell et al., 2016; Xiao et al., 2016), which use a recursive refinement

framework for improving landmark localization in multiple steps.
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Chapter 4

Improving Facial Analysis and Performance Driven Animation

through Disentangling Identity and Expression

4.1. Introduction

One of the primary sources of variation in facial images is identity. Although this is an obvious

statement, many approaches to vision tasks other than facial recognition do not directly account for

the interaction between identity-related variation and other sources. However, many facial image

datasets are subdivided by subject identity and this provides additional information that is often

unused. This paper deals with the natural question of how to effectively use identity information in

order to improve tasks other than identity recognition. In this work we show how it can be used

together with emotion information to improve landmark localization models.

In (Prince et al., 2011) identity is separated from other sources of variation in 2D image data

in a fully probabilistic way with the goal of improving face recognition tasks. In their model, the

latent features of face (such as identity) are assumed to be additive and independent. This procedure

can be interpreted as a probabilistic version of Canonical Correlation Analysis (CCA) presented in

(Bach and Jordan, 2005), or as a standard factor analysis with a particular structure in the factors.

In this paper, we investigate and extend the use of this probabilistic approach to separate sources

of variation, but unlike prior work which focuses on inferences on identity, we focus on inference on

facial expressions. Our goal is to use learned representations so as to create automated techniques

for expression analysis that better generalize across identities. We show here how disentangling

factors of variation related to identity and expression can be passed to discriminative classification

methods to enhance results.
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In our experiments, we apply this learning technique to improve the facial keypoint prediction

performance of constrained local models (CLMs) through our identity-expression factorization

extensions to these widely used techniques.

The rest of this manuscript is structured as follows: In Section 4.2, we review the relevant works.

The various methods we present here build in particular on the work of (Prince et al., 2011) in which

a linear Gaussian probabilistic model was proposed to explicitly separate factors of variation due to

identity. In Section 4.3, we extend this model as a way to disentangle factors of variation arising

from identity and expression variations. While (Prince et al., 2011) used an identity-based analysis

to make inferences about identity, our work here focuses on how disentangling such factors can be

used to make inferences about facial expression. In Section 4.4, we go on to extend the underlying

identity and expression analysis technique to show that constrained local models (CLMs) can also

be reformulated, extended and improved through using an underlying identity-expression analysis

model. Our reformulation also provides a novel energy function and minimization formulation for

CLMs in general.

4.2. Relevant Prior Work

Active Appearance Models (AAMs) (Cootes et al., 1995; Edwards et al., 1998) and Constrained

Local Models (CLMs) (Saragih et al., 2010) are widely used techinques for keypoint tracking. Both

of these methods rely on so called point distribution models (PDMs) (Cootes et al., 1995) which are

constructed using principal component analysis (PCA).

AAMs and CLMs usually suffer from a degree of identity-dependence. That is, a model trained

on a sample of subjects does not necessarily perform well on an unseen subject. AAMs in particular

suffer greatly from this effect, performing much better when samples of an individual are used for

both training and testing. View-based approaches (Pentland et al., 1994), and multi-stage solutions

(Liao et al., 2004; Tistarelli and Nixon, 2009) address this issue by using multiple subspaces for each

identity. Gaussian mixture models, (Frey and Jojic, 1999) indirectly deal with identity variation by

learning clusters of training data. (Gross et al., 2005) described reduced fitting robustness of AAMs

on unseen subjects, suggesting simultaneous appearance and shape fitting improve generalization.

Our method approaches identity variation directly and probabilistically, learning both factors of
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variation simultaneously. Some other notable recent work (Jeni et al., 2012) has extended CLMs

to account for 3D shape. Another work has used a structured max-margin approach to keypoint

placement (Zhu and Ramanan, 2012) yielding state of the art results for facial keypoint placement.

We compare with this approach in Section 4.4.

Deep learning has recently emerged as a method capable of yielding state of the art results for

keypoint placement (Sun et al., 2013). Deep networks are however known to overfit when data set

sizes are small, which is the case for many of the problems that we are addressing in our work here

(e.g. markerless facial performance capture imagery from helmet mounted cameras).

Multi-linear and bilinear analysis of facial images (Freeman and Tenenbaum, 1997; Vasilescu

and Terzopoulos, 2002; Vlasic et al., 2005) can model the interaction of different kinds of variation.

However, with these models, a full image tensor is often needed, which can be difficult to obtain.

Some approaches overcome this restriction by treating the required tensor labels as missing (Del

Bue et al., 2012). However, this leads to discarding data.

The problem we address in this paper is that of learning an expression representation which

leverages identity information, then using the technique to improve a wide variety of expression and

emotion related tasks. This is similar in spirit to the expression synthesis approaches used by (Du

and Lin, 2003) and (Zhou and Lin, 2005), which generate identity-independent expression factors.

Our approach generalizes this work as a framework for unsupervised learning of expression factors,

building in particular on the identity-expression factorization technique of (Prince et al., 2011). In

the next section we present their probabilistic approach, adapted in this work for expression related

tasks. Subsequently, in Section 4.4 we go on to extend the widely used formulation of CLMs so as to

use identity-expression factorized representations. We show how keypoint localization performance

can be improved over the traditional techniques which use principal component analysis as their

underlying point distribution models.

4.3. A Model for Disentangling Identity and Expression

Face image datasets have a rich diversity due to many contributing factors of variation such as

age, illumination, identity, pose, facial expression and emotion. In this literature, we consider two
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main sources of variation. The primary variation is due to the identity factors and the second source

of variation is due to the facial expressions as well as some degree of pose deviation.

A graphical model of this approach is shown in Figure 4.1, where for each face image a set

of keypoints yij ∈ Y is generated by ui, representing the identity i, and vij , representing the j th

expression of identity i. yij represents the set of keypoints of an identity i for a given expression j

observed in an image. The set of observed data is Y = {yij}i=1,...,N id ; j=1,...,Nexp
i

which contains all

keypoint configurations of N id identities, where for each each identity i, a total of N exp
i expressions

exist.

Fig. 4.1. Graphical model of facial landmark generation. yij is generated from p(yij | vij,ui), after
sampling ui from an identity and vij from an expression-related distribution respectively.

Each yij is generated by sampling ui and vij from Gaussian distributions corresponding to

identity i and its j th expression distributions p(ui) and p(vij), and then combining these by sampling

keypoints yij according to p(yij | ui,vij). We use zero-mean independent Gaussian distributions

for p(ui) and p(vij).

p(ui) = N (ui; 0, λI), (4.3.1)

p(vij) = N (vij; 0, ρI). (4.3.2)
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The observation yij is then sampled from a multivariate Gaussian conditional distribution parame-

terized by the mean µ, matrices S, G and diagonal covariance Σ, such that

p(yij | ui,vij) = N (yij; µ+ Sui + Gvij, Σ). (4.3.3)

This corresponds to a conditional distribution given the variable ui, which is identical for all images

of a unique identity, and the variable vij , which varies across different expressions of a particular

identity. The loading matrices S and G correspond respectively to identity and expression and are

shared across all observations. The joint probability can be written as

p(Y,U,V | S,G, λ, ρ,µ) =
N id∏
i

N (ui; 0, λI) (4.3.4)

Nexp
i∏
j

N (yij; µ+ Sui + Gvij, Σ)N (vij; 0, ρI).

where Y is the entire set of keypoints and U = {u1,u2, . . . ,uN id} is the set of all latent identity

representations and V = {vij}i=1,...,N id ; j=1,...,Nexp
i

is the set of all latent expression representations

for all identities.

Learning

Since model parameters θ depend on the latent variables {V,U} and the latent variables depend

on the model parameters, expectation maximization (EM) approach is used to learn the parameters

of the model θ = {S,G,Σ,µ, λ, ρ}. The goal is to maximize the joint distribution

maxE[log p(Y,U,V | θ)], (4.3.5)

where in the E-step the parameters θ are kept fixed and the expectation is taken with respect to the

posterior distribution to update U and V

p(U,V |Y,θold) (4.3.6)
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and then in the M-step the latent variables U,V are kept fixed and the parameters in θ are updated

by maximizing the log of the joint distribution

max
θ

E[log p(Y,U,V | θ)]. (4.3.7)

Since the priors in Eqs. (4.3.1) and (4.3.2) and the likelihood distribution in Equation (4.3.3) are

all Gaussian, the resulting joint distribution is also Gaussian.

In this part we explain how to do E and M steps in detail. For a given identity i, the set of

observed variables {yij}j=1,...,Nexp
i

with N exp
i expressions can be written as a single feature vector

yi = (yTi1,y
T
i2, . . . ,y

T
iNexp

i
)T . Similarly the factors can be combined into a single loading matrix

Ai =


S G 0 ... 0

S 0 G ... 0

. . . . . . . . . . . . . . .

S 0 0 ... G

 , (4.3.8)

where the number of rows and columns in Ai areN exp
i andN exp

i +1. The latent space representation

corresponding to identity i becomes

bi = (uTi ,v
T
i1,v

T
i2, . . . ,v

T
iNexp

i
)T . (4.3.9)

bi is a vector of dimensionality dimui
+ dimvij

× N exp
i , where dimui

is the dimensionality

of ui and dimvij
is the dimensionality of vij . Since bi is composed of two sets of vectors with

zero-mean Gaussian distributions, it is also distributed as a zero mean Gaussian:

p(bi) = N (bi; 0, Φi), (4.3.10)

Φi = diag
(
λ1, . . . , λdimui

, ρ1, . . . , ρNexpi×dimvij

)
, (4.3.11)

where the term Φi is a diagonal covariance matrix, in which the first dimui
elements of the

diagonal are extracted from the diagonal elements of the covariance matrix λI. The diagonal

of Φi is then composed of N exp
i blocks of size dimvij

that are extracted from the diagonal of

covariance matrix ρI repeated N exp
i times. Intuitively the first set of dimui

elements represent

identity variations, while each of the N exp
i blocks of size dimvij

represents an expression variation
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of an identity. Given this construction, the probability for identity i can be rewritten as a Gaussian

p(yi | bi) = N (yi; mi+Aibi, Ψi), where Ψi is constructed as a diagonal matrix by concatenating

N exp
i times the diagonal of Σ. The termmi is N exp

i blocks of µ being concatenated.

The posterior probability of bi is also Gaussian with moments

E[bi] = (Φ−1i + AT
i Ψi

−1Ai)
−1AT

i Ψi
−1(yi −mi), (4.3.12)

E[bib
T
i ] = (Φ−1i + AT

i Ψi
−1Ai)

−1 − E[bi]E[bTi ]. (4.3.13)

In the E-step, the mean and covariance matrices of the posterior distribution p(bi | yi) are taken,

which are measured over all of the expressions corresponding to the same identity. This representa-

tion style assures that all of the expressions of the same person have the same representation for

identity. Note that the expectations in Eqs. (4.3.12) and (4.3.13) should be taken separately for all

of the identities in the training set. In the M-step, however, we can disentangle the bi into a set of

bij , in which each bij contains one sample of identity and one sample of expression. This is due

to the fact that the parameters of the model should be updated with respect to all of the data in the

training set and having done the E-step, we have already obtained the same identity representation

for all expression observations of the same person. Therefore, disentangling bi into a set of bij

can preserve that information while at the same time it encodes a simpler latent representation for

updating the parameters of the joint distribution.

We define bij =

 ui

vij

 and C = [ S G ], such that bij is distributed as

p(bij) = N (bij; 0,Φ), (4.3.14)

Φ = diag
(
λ1, . . . ,λdimui

,ρ1, . . . ,ρdimvij

)
. (4.3.15)

Given this notation, the conditional distribution can now be written as

p(yij|bij) = N (yij;µ+ Cbij,Σ). (4.3.16)
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We can further simplify this notation by setting b̃ij =

 bij

1

 and C̃ = [ C µ ], which in

turn gives the following conditional and prior distributions

p(yij|b̃ij) = N (yij; C̃b̃ij,Σ), (4.3.17)

p(b̃ij) = N (b̃ij; 0, Φ̃) (4.3.18)

with Φ̃ being equal to

Φ̃ =

 Φ 0dimui+dimvij ,1

01,dimui+dimvij
01,1

 , (4.3.19)

where two zero vectors with row or column size of dimui
+ dimvij

are concatenated with Φ and

another zero element to build a square matrix of size dimui
+ dimvij

+ 1. The joint distribution is

then

p(Y,B|Σ, C̃, Φ̃) =
∏
ij

N (yij; C̃b̃ij,Σ)N (b̃ij; 0, Φ̃). (4.3.20)

with Y representing the whole set of observed keypoints and B representing the entire set of

latent variables b̃ij . This simplification is preferred since the variables S,G,µ are mutually

dependent. Updating each one requires the other two. In the new notation, all of them can be

updated simultaneously by updating C̃. Maximizing with respect to C̃,Σ, Φ̃, yields the following

updates in the M-step

Φ̃ =
1

N

∑
ij

diag
{
E
[
b̃ijb̃

T
ij

]}
, (4.3.21)

Σ =
1

N

∑
ij

diag
{

C̃
(
E
[
b̃ijb̃

T
ij

] )
C̃T + yijy

T
ij − 2yij

(
E
[
b̃Tij

] )
C̃T
}
, (4.3.22)

C̃ =
∑
ij

{
yij
(
E
[
b̃Tij

] )}{∑
ij

E
[
b̃ijb̃

T
ij

]}−1
. (4.3.23)

Note that the parameters are updated with respect to all expressions of all identities. As for inference

at test time, the procedure for determining the optimal bij vector is straight-forward, using the
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following posterior distribution:

p(bij|yij) = N (bij; (Φ−1 + CTΣ−1C)−1CTΣ−1(yij − µ), (Φ−1 + CTΣ−1C)−1). (4.3.24)

4.4. Identity-Expression Constrained Local Models (IE-CLMs)

The term Constrained Local Models (CLMs) has evolved from the original work of (Cristinacce

and Cootes, 2006), which can be viewed as a particular instance of a CLM (Saragih et al., 2010).

Nowadays the term CLM has come to refer to a number of methods which involve finding the

landmarks of an image x through assigning a cost L to candidate landmark positions {y1, ...,yK} ∈

y on the image and the parameters of the model p. The corresponding objective function can be

written as:

L(y,p) =
K∑
k=1

Dk(yk; x) +Reg(y,p), (4.4.1)

where Dk encodes the image dependent suitability measure for the kth landmark being located at

position yk in the image and K indicates the number of landmarks of a face. The Reg term can be

interpreted as a regularization term that encodes preferences for certain spatial configurations of

landmark positions1. This set-up leads to what some refer to as a deformable model fitting problem.

Further, it is common to use a linear approximation for how the shape of non-rigid objects deform

and a common variant of such a modeling technique is known as a point distribution model or PDM

(Cootes et al., 1995). The PDM of (Cootes et al., 1995) models non-rigid shape variations linearly

and composes them with a global rigid transformation such that the 2D location of the PDM’s kth

landmark is given by:

yk = sR(µk + Φkq) + t, (4.4.2)

where the PDM parameters are defined by p = {s,R,t,µ,Φ}. These parameters consist of a

global scale s, rotation R, and translation t (forming a similarity transformation), as well as global

non-rigid deformations though a sub-matrix Φk, which is part of a larger matrix Φ. µ is the

1We have reversed the order of terms compared to the notation in (Saragih et al., 2010) and indicated an explicit
dependence on yi for the underlying objective and Reg.
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concatenation of all µk values for k ∈ {1, . . . , K}, with µk indicating the average location of

landmark k. Using a probabilistic notation, the probability over the landmark position yk can be

represented as a normal distribution with mean sR(µk + Φkq) + t and a covariance of σ2, such that

p(yk) = N (sR(µk + Φkq) + t, σ2). (4.4.3)

Consequently, the distribution over the whole set of landmarks y takes the form of a normal

distribution which corresponds to

p(y) = N (sR(µ+ Φq) + t, σ2I), (4.4.4)

where µ and Φ represent respectively a concatenation of the terms µk and Φk for k ∈ {1, . . . , K}.

The covariance σ2I is a diagonal matrix having the values in its diagonal being repeated K times.

Equation (4.4.4) gives a principled probabilistic representation for the regularization term Reg

in Equation (4.4.1). It is common to use a joint distribution over landmarks as a prior for the

regularization term Reg.

4.4.1. A Deeper Probabilistic View of PDMs

When viewed through the lens of modern graphical modeling techniques and probabilistic

principal component analysis, the classical formulation of PDMs can be re-written more formally

as a probabilistic generative model over all K landmarks in y, where

p(y) = P (y|z)P(z|q)P(q)

=

∫
q

∫
z

N (y; sRz + t, αI)N (z; µ+ Φq, σ2I)N (q; 0, I) dq dz. (4.4.5)

Variable q acts as the prior of the p(y) distribution with mean zero and unit covariance matrix. Given

q, the conditional P (z|q) gets its mean by applying the non-rigid deformation Φ and adding the µ

term. The mean of the conditional P (z|q) sets the intermediate value in the mean of Equation (4.4.4)

before applying the rigid transformations. Finally, the mean of the conditional P (y|z) is measured

by applying affine transformations of rotation R, scaling s, and translation t on the variable z.
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Having integrated out the variable q, the distribution over all landmarks y can be simplified to

p(y) =

∫
z

N (y; sRz + t, αI)N (z; µ, ΦΦT + σ2I) dz. (4.4.6)

Note that in this formulation the variable z represents the set of all landmarks in a transformed

space where they are represented in a standardized coordinate space. That is different from their

representation in y where each landmark is undergone an affine transformation and therefore can be

observed in more volatile regions of the image. This difference guides us to a better representation

in the z space to formulate the distribution of the keypoints. Therefore, we transform the landmarks

in each image from the y space to z space through a set of affine transformation, whose parameters

are trained to be robust against translation, rotation, and scaling transformations. Note that Eq.

(4.4.6) provides a probabilistic PCA (PPCA) representation for the regularization term Reg in

Equation (4.4.1). We use this PPCA notation in Section 4.4.2 for a PPCA-CLM formulation over

the keypoints, however, as discussed above we operate in the z space instead of y space. From

this point forward, we discuss our model over the landmarks in the z space, both when using the

Probabilistic PCA model in Section 4.4.2 and identity-expression model in Section 4.4.3.

4.4.2. Probabilistic PCA based CLMs

Previous work (Hasan et al., 2013) has formulated a CLM in the following way: for a given

image x, we wish to combine the outputs of the local classifiers for the keypoints with a spatial

model of global keypoint configuration. The local classifiers acts as discriminative predictors for

the keypoints, while the spatial model provides a prior on how the keypoints are distributed. The

local classifier is the term Dk for keypoint k in Equation (4.4.1) and the global model, as the joint

distribution over keypoints, is the term Reg in the same equation.

To obtain a local classifier, for each keypoint k a local SVM classifier is trained. At test

time, the local classifier for keypoint k, generates a response image map fk, which is a 2D array

with a probability prediction for each pixel position in the image being the keypoint k. The set

f = {f1,f2 · · · , fK} represents the set of all generated response images for a given image, where K

is the number of keypoints. Figure 4.2 provides a visualization of the response image probability

values. Note that the probabilities are scaled by a factor of 255 (8 bit gray-scale images).
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Fig. 4.2. Sample SVM response maps for an image generated by trained SVMs. Each response
map is generated by one local classifier trained for a particular keypoint.

Let z̃k ∈ fk indicate the coordinates of a gridpoint location on the 2D response image for

keypoint k, then log of the score for the positive prediction of the local classifier at this location

can be defined as sc(z̃k). We use a probabilistic PCA over the keypoints to model the global

keypoint configurations (the Reg term) and use the log of its Gaussian distribution with a factorized

covariance matrix as its energy term and couple it with the log score of the local classifier predictions

in a spatial interaction energy function as follows:

E(zij) =
K∑
k=1

Dk(zkij; x) +Reg(zij,p)

=−
K∑
k=1

∑
z̃kij∈fkij

sc(z̃kij)δ(z
k
ij − z̃kij)

+
1

2
(zij − µ)T (ΦΦT + σ2I)−1 (zij − µ) , (4.4.7)

where zij = [z1
ij, z

2
ij, · · · zKij ]T gives the coordinates of the K candidate locations for the keypoints

of the j-th expression of the i-th identity, whose energy is measured. The energy function E is

composed of two terms: The first term consists of the local response maps contribution where the

first sum is over the K keypoints and the second sum gets the log score sc(z̃kij) for each point z̃kij in

the set of all grid locations of the response image map fkij . The term δ is the Dirac delta function

whose output is one only if the grid location z̃kij equals the queried location zkij . The second term
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in Equation (4.4.7) is log of the probabilistic PCA (PPCA) where µ is simply the mean of the

keypoints after RANSAC similarity registration. The terms Φ and σ2 in the covariance matrix of

PPCA equal to:

Φ = Up(Λp − σ2I)1/2Ω, (4.4.8)

σ2 =
1

K − p

K∑
k=p+1

λk, (4.4.9)

where Up is a matrix of the p principle eigenvectors of the keypoints in z space, Λp is a diagonal

matrix whose diagonal is composed of eigenvalues λ1, . . . , λp, knowing that eigenvalue λk corre-

sponds to the eigenvector in column k of the matrix Up, and Ω is an arbitrary orthogonal matrix.

The term σ2 is the average of the remaining eigenvalues which explain the least significant direction

of variation in data. Note that the z term used in Eq. (4.4.7) is the same as the z term presented in

Eq. (4.4.6). The keypoints are transformed from the y space to the z space through a set of learned

affine transformation parameters, namely s, R, and t, where face keypoints are mapped from the

original more dynamic y space to a more unified representation in the z space.

To minimize E we perform a search over the candidate keypoint locations z. This is done

by iterating over the keypoints, where in each iteration all keypoints are fixed except one. The

optimum value for that keypoint is found through a comprehensive search over the energy of the

local response map grid locations. The iterations continue until the maximum keypoint location

change over all keypoints is less than a small threshold. Note that the term E(zij) in Eq. (4.4.7) is

minimized for each expression j of identity i separately in this formulation. We refer to the model

described in this section as probabilistic PCA constrained local model (PPCA-CLM).

4.4.3. Identity-Expression Factorized CLMs

Once the parameters of the identity expression model are learned using the EM procedure, as

explained in Section 4.3, this model is used in conjunction with the local response classifiers derived

from the previously trained SVMs. Combining the energy of the local classifier with the energy term

of the Identity Expression Factorized model, we minimize the energy of the following function:
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E(wi) = −
∑

zij∈wi

K∑
k=1

∑
z̃kij∈fkij

sc(z̃kij)δ(z
k
ij − z̃kij) (4.4.10)

+ (wi −m)T
(
ψ + AΦAT

)−1
(wi −m) ,

where wi represents a set of candidate keypoints zij for all expressions j belonging to the same

identity i whose energy is measured. Note that as in the previous section zij represents the set of

all candidate keypoint locations on a single query image of identity i and expression j. Assuming

there are a total of N exp
i images in wi representing different expressions of a given identity, the

termm is simply N exp
i times concatenation of µ. Compared to the first term in Equation (4.4.7),

there is an added summation which iterates over all images belonging to the same identity. The

second term in Equation (4.4.10), is equivalent to the log of the marginal distribution P (wi) of the

identity expression factorized model, explained in Section 4.3, which gets the probability of the

joint set of keypoints wi in all images of the same identity being valid keypoint locations under the

joint distribution. The term Ψ is constructed as a diagonal matrix by concatenating N exp
i times the

diagonal of Σ and the matrix definitions of A and Φ are given respectively in Equation (4.3.8) and

Equation (4.3.11).

The optimization procedure is done as follows: for each keypoint k ∈ K in each expression

j ∈ N exp
i of the identity i a SVM response map fkij is generated. In each response map the position

with the highest probability is chosen as the keypoint location. These set of selected locations give

the initial value ofwi. Then, using Iterated Conditional Modes (ICM) (Besag, 1986), the energy of

(4.4.10) is minimized by updating the position of each keypoint to its minimum energy position

while having all other keypoints fixed, iterating over all keypoints multiple times until the maximum

change in the keypoint locations are smaller than a threshold. We refer to the model described in

this section as identity expression constrained local model (IE-CLM).

4.4.4. Keypoint Localization Experiments with the MultiPIE Dataset and IE-CLMs

The CMU MultiPIE face dataset (Gross et al., 2010) captures a subset of expressions, such as

surprise, smile, neutral, squint, disgust, and scream, of 337 identities. The images are taken in four
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Fig. 4.3. Top row: the 1st (left) and 2nd (right) directions of variation for identity. Second row: 1st
(left) and 2nd (right) directions of variation for expression.

sessions and in each session a subset of expressions is captured. Therefore, not all expressions

are registered per identity. The availability of multiple expressions per identity provides the right

dataset to evaluate our identity expression model. We perform the same experiment as in (Zhu

and Ramanan, 2012) and compare our model with other models on the frontal face images with

68 keypoints. Following the same split of the dataset as in (Zhu and Ramanan, 2012), the first 300

images are used for training and the next 300 images are used for testing.

Figure 4.3 shows the main directions of variation for the identity and expression features

captured by our model on the MultiPIE training set. The directions of variation for expression

captures how faces change in between different emotions. On the other hand, the directions of

variation for identity mainly deals with different face sizes as well as some 2D in-plane rotations

which is due to the fact that the faces are not completely frontal in some of the expressions of an

identity.

Using the training set of MultiPIE, we train a binary SVM classifier on HOG feature representa-

tions for each keypoint. Indeed, for training the SVM classifier of each keypoint, positive patches

are generated from the training set centered at the keypoint and negative patches are generated

within a bounding box around the keypoint. We compare our model on the MultiPIE test-set with

the independent model of (Zhu and Ramanan, 2012) and other models reported in that paper as well
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Tab. 4.1. Percentage of faces with an average localization error less than the given fraction of face
size on MultiPIE dataset. This metric is used in (Zhu and Ramanan, 2012) and we leveraged it in
order to compare our model with other models in the literature.

Fraction of face size 0.03 0.04 0.05 0.06
(Zhu and Ramanan, 2012) 0.86 0.97 1.00 1.00
(Hasan et al., 2013) 0.78 0.94 1.00 1.00
Oxford (Everingham et al., 2006) 0.28 0.77 0.94 0.98
Star Model (Felzenszwalb et al., 2010) 0.29 0.80 0.92 0.92
Multi-AAM (Kroon, 2012) 0.64 0.87 0.91 0.92
CLM of (Saragih et al., 2010) 0.68 0.85 0.90 0.93
Face.com (fac) 0.31 0.61 0.79 0.87
Our PPCA-CLM 0.13 0.54 0.79 0.92
Our IE-CLM 0.52 0.89 0.98 1.00

as the more recent model of (Hasan et al., 2013). The error is the average difference in Euclidean

space between the true pixel locations and the predicted ones normalized by the face size, which

is the average of height and width. The results are reported in Table 4.1. Our model catches up

with Zhu’s model at 0.06 of face fraction size, though at a face fraction size of 0.05 the difference

is marginal at 0.016. The values of the CLM model of (Saragih et al., 2010) are reported from

(Zhu and Ramanan, 2012) where the latter source evaluates the previously trained CLM model on

the MultiPIE test-set. However, it is not clear on which data the CLM model was trained on and

which feature representation was used for training them. In order to provide a CLM model trained

on precisely the same training set and using precisely the same features and local classifiers, we

use the PPCA-CLMs described in Section 4.4.2, which are trained on HOG features. This allows

us to establish a more highly controlled baseline for the PCA versus IE-CLM comparison. The

performance of our PPCA-CLM is different from the PCA-CLM of (Saragih et al., 2010). These

differences could be due to the difference in the training set used, or due to the difference in the

feature representation. Other variations could arise from our slightly different underlying CLM

formulation or our use of ICM as the inference procedure. We see that for small face fraction size

accuracy the difference is significant; however, at the 0.06 face fraction threshold, the performance

of the two PCA based CLM methods are comparable.
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Fig. 4.4. Sample of keypoint localization for multiple expressions of different identities by the
IE-CLM model.

Turning to the IE-CLM we see that it lags behind Saragih’s CLM only at the very small face

fraction accuracy level. We speculate that the lower performance of IE-CLM in this range is due to

the difference in the training data for the local classifiers. The IE-CLM model catches up rapidly to

both Saragih’s CLM and the Multi-AAM (Kroon, 2012) models from the 0.04 face fraction level

forward, and yields predictions for 100% of the points with an error of less than 0.06 of the face

size. This level of performance is on par with the state of the art methods of (Zhu and Ramanan,

2012) and (Hasan et al., 2013).

Figures 4.5 and 4.6 illustrate our model’s performance on different expressions of two sample

identities in the test-set. Our model exploits the fact that all these images have the same identity

and therefore, the same identity representation is used when the model searches for the optimal

keypoints. Figure 4.4 shows some sample keypoint localization by our model on different identities

in the test set, which includes data of different expression, ethnicity, age, gender, illumination, and

face masks such as trimming style and eye-glasses.
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Fig. 4.5. Images labeled by Identity Expression Factorized CLM model for different expressions of
identity sample 1.

Fig. 4.6. Images labeled by Identity Expression Factorized CLM model for different expressions of
identity sample 2.

In terms of running time, the PPCA-CLM model takes 32 seconds for the local response image

generation and 6 seconds for the optimization procedure. However, we have used none of the

obvious acceleration techniques that could be applied to speed the local response map generation

procedure, such as GPU acceleration or optimizing operations that are convolutional in nature.

The IE-CLM model’s time changes linearly based on the number of images of the identity being

78



evaluated. If intended for an interactive or real-time procedure where the images are to be processed

sequentially, the timing could be made much more comparable to a PCA-CLM for which various

real-time implementations are available. To accelerate the IE-CLM computations one could adapt

the joint inference procedure over all images in a batch so as to incrementally use estimated factors

from images in previous time steps. This could be formulated as a form of incremental inference or

probability propagation, an approach which is fairly well understood in the literature.

4.5. Conclusions

We have shown how the identity-expression factorization approach can be integrated into a CLM

for keypoint localization. We believe there are a number of possible directions that could lead to

further improvements. Firstly, we believe that replacing the binary SVM classifier with a multi-class

SVM might yield increased performance with minimal changes required to the underlying model

formulation. However, once formulated in this way, it would also be more straight-forward to

train the model to make structured predictions using a fully discriminative training procedure, for

example, along the lines of (Zhu and Ramanan, 2012). Another direction is to replace the Iterated

Conditional Modes (ICM) energy minimization step with a temperature based annealing procedure.

The ICM algorithm is known to be quite fast at finding local minima, but it may be the case that

better solutions could be found with a stochastic annealing procedure.

The use of multi-scale intensity response information in conjunction with alternative optimiza-

tion techniques could be a promising direction for future research. It is also likely possible to speed

up response image generation and energy minimization when multiple images are processed per

identity through various means. Finally, the local SVM classifiers and hand engineered features

that we have used here could be replaced with a convolutional neural network (CNN), such as

the architecture proposed in (Honari et al., 2016). At the time this work was performed, a CNN

approach was not feasible in the context of our primary goal of animation control (one of the tasks

aimed for by our model). The reason is that CNNs typically require a considerable amount of

training data to avoid overfitting and our face camera dataset was quite small compared to the

data sets that have been used to train CNNs. However, for other application settings and datasets
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research combining identity-expression disentanglement techniques with CNNs may be a promising

direction of future research.
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Chapter 5

Prologue to Second Article

5.1. Article Details

Recombinator Networks: Learning Coarse-to-Fine Feature Aggregation. Sina Honari,

Jason Yosinski, Pascal Vincent, and Christopher Pal. Proceedings of the IEEE Conference on

Computer Vision and Pattern Recognition (CVPR 2016).

I started this project by first implementing the TCDCN model (Zhang et al., 2014c). Jason

and I then evaluated the results and tried to improve them, given the shortcomings of the TCDCN

model. The idea of passing the encoded features in the decoding path emerged in one of these

meetings when we wanted to find a solution to the information lost due to max pooling layers. This

is how the ReCombinator Networks (RCN) idea emerged. We came up with the idea of this model

independently and parallel to the U-Net model (Ronneberger et al., 2015), a model with a very

similar architecture which was published in Medical Image Computing and Computer-Assisted

Intervention (MICCAI 2015). Our model got published a bit later in CVPR 2016 since it was initially

rejected from Neural Information Processing Systems (NIPS 2015) and to maintain anonymity we

did not put it on arXiv earlier. NIPS and MICCAI had almost the same submission deadline time in

2015. Using our RCN architecture idea, we were able to significantly improve the results over then

the state-of-the-art baseline. Later, we observed noise in the keypoint prediction of the RCN model

and wanted to find a solution for the noisy keypoint predictions of the model, where some of the

keypoints appeared completely unaligned, i.e. inconsistent with respect to the predicted positions

of the other keypoints. I discussed the issue at length with Pascal and together we came up with

the convolutional denoising model that we use for post-processing, as a framework to learn and

leverage the joint distribution over the keypoints. This helped further improve the results. The
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implementation and experimental runs was done completely by myself. Jason helped on discussing

the problems that emerged in this project to curb many obstacles that hindered our progress, both on

the implementational details and the ideas aspects. The variable notations in this chapter have been

changed compared to the published article version to unify the notations of the repeating concepts

in the thesis.

5.2. Context

At the time this article was written, the state-of-the-art models for landmark localization either

used fully connected output layers for landmark localization, such as in (Zhang et al., 2014c), and

lost precision due to usage of earlier max pooling layers or used a coarse feature extractor on the

entire image and made a hard decision on where to crop the image and passed the cropped patch to

a localization model that processed features at full resolution, as in (Sun et al., 2013; Tompson et al.,

2015). Some other approaches, such as Fully Convolutional Networks (FCN) (Long et al., 2015)

or Hypercolumns (Hariharan et al., 2015) used features from the entire image without requiring

a hard crop, however, they merged features of different resolutions by upsampling them back to

the image resolution and merging them right before predicting the outputs. Our proposed model

instead uses an encoder-decoder approach, where the extracted coarse features are re-introduced

in the decoding path using skip connections to progressively recover the information lost due to

pooling layers. In this process instead of upsampling all encoded resolutions back to the image

resolution at once, as in FCN or Hypercolumns, we only upsample features to one resolution higher

at each step, allowing the finer features to be computed using the coarser features. This gradual

resolution increase in reconstruction acts as a conditional computation, where the features of higher

resolution are computed using the lower resolution features. This, in turn, allows the low resolution

coarse features, which have a big receptive field over the input image, to inform higher resolution

fine features of global information, such as occlusion in part of the image, when higher resolution

features are constructed in the decoding path. Our proposed approach yielded more accurate results

and also faster convergence.
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5.3. Contributions

Deep neural networks with alternating convolutional, max-pooling and decimation layers are

widely used in state of the art architectures for computer vision. Max-pooling purposefully discards

precise spatial information in order to create features that are more robust, and typically organized

as lower resolution spatial feature maps. On some tasks, such as whole-image classification, max-

pooling derived features are well suited; however, for tasks requiring precise localization, such as

pixel level prediction and segmentation, max-pooling destroys exactly the information required to

perform well. Precise localization may be preserved by shallow convnets without pooling but at

the expense of robustness. Can we have our max-pooled multi-layered cake and eat it too? Several

papers have proposed summation and concatenation based methods for combining upsampled coarse,

abstract features with finer features to produce robust pixel level predictions. Here we introduce

another model — dubbed Recombinator Networks — where coarse features inform finer features

early in their formation such that finer features can make use of several layers of computation in

deciding how to use coarse features. The model is trained once, end-to-end and performs better

than summation-based architectures, reducing the error from the previous state of the art on two

facial keypoint datasets, AFW and AFLW, by 30% and beating the current state-of-the-art on 300W

without using extra data. We improve performance even further by adding a denoising prediction

model based on a novel convnet formulation.

5.4. Recent Developments

The proposed approach here has been highly used in many models that require pixel level

accuracy, as in landmark localization (Newell et al., 2016), or image segmentation (Çiçek et al.,

2016; Milletari et al., 2016). Also, it has been used for models that require full image reconstruction

that changes the modality of the input. Examples of such models include image to image translation

models, as in (Isola et al., 2017; Yi et al., 2017). Although the credit is generally attributed to U-Net

(Ronneberger et al., 2015) due to its earlier date of publication, it is the same fundamental idea, and

has since been successfully leveraged in many models. As of time of writing this thesis the idea has

been cited more than 3500 times.
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Regarding landmark localization, some recent successful models used recursive processing of

the outputs in order to better capture the joint distribution over keypoints. Examples include stacked

hourglass network (Newell et al., 2016) and also (Xiao et al., 2016). We had also tried the idea

of multiple refinement steps by using the convnet refinement network multiple times, however, it

yielded only a tiny improvement on our datasets, so we did not further explore that direction.
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Chapter 6

Recombinator Networks: Learning Coarse-to-Fine Feature

Aggregation

6.1. Introduction

Recent progress in computer vision has been driven by the use of large convolutional neural

networks. Such networks benefit from alternating convolution and pooling layers (Krizhevsky et al.,

2012; Sermanet and LeCun, 2011; Sermanet et al., 2013; Simonyan and Zisserman, 2014; Sun

et al., 2014; Szegedy et al., 2015; Zhang et al., 2016) where the pooling layers serve to summarize

small regions of the layer below. The operations of convolution, followed by max-pooling, then

decimation cause features in subsequent layers of the network to be increasingly translation invariant,

more robust, and to more coarsely summarize progressively larger regions of the input image. As

a result, features in the fourth or fifth convolutional layer serve as more robust detectors of more

global, but spatially imprecise high level patterns like text or human faces (Yosinski et al., 2015). In

practice these properties are critical for many visual tasks, and they have been particularly successful

at enabling whole image classification (Krizhevsky et al., 2012; Simonyan and Zisserman, 2014;

Szegedy et al., 2015). However, for other types of vision tasks these architectural elements are

not as well suited. For example on tasks requiring pixel-precise localization or labeling, features

arising from max-pooling and decimation operations can only provide approximate localization,

as in the process of creating them, the network has already thrown out precise spatial information

by design. If we wish to generate features that preserve accurate localization, we may do so using

shallow networks without max-pooling, but shallow networks without pooling cannot learn robust,

invariant features. What we would like is to have our cake and eat it too: to combine the best of
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both worlds, merging finely-localized information from shallow, non-pooled networks with robust,

coarsely-localized features computed by deep, pooled networks.

Several recently proposed approaches (Hariharan et al., 2015; Long et al., 2015; Tompson et al.,

2015) address this by adding or concatenating the features obtained across multiple levels. We

use this approach in our baseline model termed SumNet for our task of interest: facial keypoint

localization. To the best of our knowledge this is the first time this general approach has been

applied to the problem of facial keypoint localization and even our baseline is capable of yielding

state of the art results. A possible weakness of these approaches however is that all detection paths,

from coarsely to finely localized features, only become aggregated at the very end of the feature

processing pipeline. As a thought experiment to illustrate this approach’s weakness, imagine that we

have a photo of a boat floating in the ocean and would like to train a convnet to predict with single

pixel accuracy a keypoint corresponding to the tip of the boat’s bow. Coarsely localized features1

could highlight the rough region of the bow of the boat, and finely localized features could be tuned

to find generic boat edges, but the fine features must remain generic, being forced to learn boat

edge detectors for all possible ocean and boat color combinations. This would be difficult, because

boat and ocean pixels could take similar colors and textures. Instead, we would like a way for the

coarse features which contain information about the global scene structure (perhaps that the water is

dark blue and the boat is bright blue) to provide information to the fine feature detectors earlier in

their processing pipeline. Without such information, the fine feature detectors would be unable to

tell which half of a light blue/dark blue edge was ocean and which was boat. In the Recombinator

Networks proposed in this paper, the finely localized features are conditioned on higher level more

coarsely localized information. It results in a model which is deeper but – interestingly – trains

faster than the summation baseline and yields more precise localization predictions. In summary,

this work makes the following contributions:

(1) We propose a novel architecture — the Recombinator Networks — for combining informa-

tion over different spatial localization resolutions (Section 6.3).

(2) We show how a simple denoising model may be used to enhance model predictions (Sec-

tion 6.4).

1From now on we use the shorthand fine/coarse features to mean finely/coarsely localized features.
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(3) We provide an in-depth empirical evaluation of a wide variety of relevant architectural

variants (Section 6.5.1).

(4) We show state of the art performance on two widely used and competitive evaluations for

facial keypoint localization (Section 6.5.2).

6.2. Related work

Keypoint localization methods: Our task of interest is the well studied problem of facial

keypoint localization (Asthana et al., 2013; Cao et al., 2014; Ren et al., 2014; Tzimiropoulos

and Pantic, 2014; Xiong and De la Torre, 2013; Yu et al., 2013; Zhang et al., 2014a, 2016; Zhu

et al., 2015; Zhu and Ramanan, 2012) illustrated in Figure 6.1. Precise facial keypoint localization

is often an essential preprocessing step for face recognition (Gross, 2015) and detection (Zhu

and Ramanan, 2012). Recent face verification models like DeepFace (Taigman et al., 2014) and

DeepID2 (Sun et al., 2014) also include keypoint localization as the first step. There have been

many other approaches to general keypoint localization, including active appearance models (Cootes

et al., 2001; Zhao et al., 2012), constrained local models (Asthana et al., 2013; Cristinacce and

Cootes, 2008, 2006; Saragih et al., 2009), active shape models (Cristinacce and Cootes, 2007),

point distribution models (Cootes et al., 1995), structured model prediction (Baltrušaitis et al., 2014;

Tompson et al., 2015), tree structured face models (Zhu and Ramanan, 2012), group sparse learning

based methods (Yu et al., 2013), shape regularization models that combine multiple datasets (Smith

and Zhang, 2014), feature voting based landmark localization (Smith et al., 2014; Yang and Patras,

2013) and convolutional neural network based models (Sun et al., 2013; Zhang et al., 2014c, 2016).

Two closely related models to our approach are (Tompson et al., 2015), where a multi-resolution

model is proposed with dual coarse/fine paths and tied filters, and (Sun et al., 2013), which uses a

cascaded architecture to refine predictions over several stages. Both of these latter models make

hard decisions using coarse information halfway through the model.

Approaches that combine features across multiple levels: Several recent models — including

the fully convolutional networks (FCNs) in (Long et al., 2015), the Hypercolumn model (Hariharan

et al., 2015), and the localization model of Tompson et al. (Tompson et al., 2015) — generate

features or predictions at multiple resolutions, upsample the coarse features to the fine resolution,
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and then add or concatenate the features or predictions together. This approach has generally worked

well, improving on previous state of the art results in detection, segmentation, and human-body

pose estimation (Hariharan et al., 2015; Long et al., 2015; Tompson et al., 2015). In this paper we

create a baseline model similar to these approaches that we refer to as SumNet in which we use

a network that aggregates information from features across different levels in the hierarchy of a

conv-pool-decimate network using concatenation followed by a weighted sum over feature maps

prior to final layer softmax predictions. Our goal in this paper is to improve upon this architecture.

Differences between the Recombinator Networks and related architectures are summarized in

Table 6.5. U-Net (Ronneberger et al., 2015) is another model that merges features across multiple

levels and has a very similar architecture to Recombinator Networks. The two models have been

developed independently and were designed for different problems2. Note that none of these models

use a learned denoising post-processing as we do (see section 6.4).

6.3. Summation versus Recombinator Networks

In this section we describe our baseline SumNet model based on a common architectural design

where information from different levels of granularity are merged just prior to predictions being

made. We contrast this with the Recombinator Networks architecture.

6.3.1. Summation based Networks

The SumNet architecture, shown in Figure 6.1(top), adds to the usual bottom to top convolution

and spatial pooling, or “trunk”, a horizontal left-to-right “branch” at each resolution level. While

spatial pooling progressively reduces the resolution as we move “up” the network along the trunk,

the horizontal branches only contains full convolutions and element-wise non-linearities, with no

spatial pooling, so that they can preserve the spatial resolution at that level while doing further

processing. The output of the finest resolution branch only goes through convolutional layers. The

finest resolution layers keep positional information and use it to guide the coarser layers within the

patch that they cannot have any preference, while the coarser resolution layers help finer layers to

get rid of false positives. The architecture then combines the rightmost low resolution output of
2For keypoint localization, we apply the softmax spatially i.e. across possible spatial locations, whereas for segmentation
(Hariharan et al., 2015; Long et al., 2015; Ronneberger et al., 2015) it is applied across all possible classes for each
pixel.
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Fig. 6.1. (top) Architecture of summation based coarse-fine network (SumNet). C is a convolutional
layer. P,C represents a pooling layer followed by a convolutional layer. All convolutions are 3× 3
and all poolings are 2× 2. All convolutional layers are followed by ReLU non-linearity except the
last convolutional layer in each branch. U represents an upsampling layer. Each branch’s output is 5
feature maps of size 80×80. FCN/Hypercolumn models use this architecture. (bottom) Architecture
of the Recombinator Networks (RCN). All convolutions are 3× 3 and all poolings are 2× 2. All
upsamplings are by a factor of 2. K represents concatenation of two sets of feature maps along
the feature map dimension. All convolutional layers are followed by ReLU non-linearity except
the one right before the softmax. In the Recombinator Networks model with skip connections
(not shown), each branch takes upsampled features not only from one coarser branch, but from all
coarser branches. Please note that the notations C and K used in this figure are independent from
the similar notation used in this Chapter.
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all horizontal branches, into a single high resolution prediction, by first up-sampling3 them all to

the model’s input image resolution (80× 80 for our experiments) and then taking a weighted sum

to yield the pre-softmax values. Finally, a softmax function is applied to yield the final location

probability map for each keypoint. Formally, given an input image x, we define the trunk of the

network as a sequence of blocks of traditional groups of convolution, pooling and decimation

operations. Starting from the layer yielding the coarsest scale feature maps we call the outputs of

Br such blocks T(1), . . . ,T(Br). At each level br of the trunk we have a horizontal branch that

takes T(br) as its input and consists of a sequence of convolutional layers with no subsampling. The

output of such a branch is a stack of K feature maps, one for each of the K target keypoints, at the

same resolution as its input T(br), and we denote this output as branch(T(br)). It is then upsampled

up[×F ] by some factor F which returns the feature map to the original resolution of the input image.

Let these upsampled maps be M
(1)
1 , . . . ,M

(Br)
K where M

(br)
k is the score map given by the brth

branch to the kth keypoint (left eye, right eye, . . .). Each such map M
(br)
k is a matrix of the same

resolution as the image fed as input (i.e. 80× 80). The score ascribed by branch br for keypoint k

being at coordinate r,c is given by M
(br)
k,r,c. The final probability map for the location Yk of keypoint

k is given by a softmax over all possible locations. We can therefore write the model as

M(1) = up[×2Br−1](branch(T
(1)))

M(2) = up[×2Br−2](branch(T
(2)))

. . .

M(Br) = branch(T(Br))

P (Yk|X = x) = softmax
( Br∑
br=1

α
(br)
k M

(br)
k

)
, (6.3.1)

where α(br)
k is a 2D matrix that gives a weight to every pixel location r,c of keypoint k in branch

br. The weighted sum of features over all branches taken here is equivalent to concatenating the

features of all branches and multiplying them in a set of weights, which results in one feature map

per keypoint. This architecture is trained globally using gradient backpropagation to minimize the

sum of negated conditional log probabilities of all N training (input-image, keypoint-locations)

3Upsampling can be performed either by tiling values or by using bilinear interpolation. We found bilinear interpolation
degraded performance in some cases, so we instead used the simpler tiling approach. By tiling we mean the value of
each pixel is repeated in a local region of u× u, where u is the upsampling ratio.
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pairs, for all K keypoints (xn,ynk ), with an additional regularization term for the weights ; i.e. we

search for network parameters θ that minimize 4

L(θ) = 1

N

N∑
n=1

K∑
k=1

− logP (Yk = ynk |X = xn) + λ‖θ‖2. (6.3.2)

6.3.2. The Recombinator Networks

In the SumNet model, different branches can only communicate through the updates received

from the output layer and the features are merged linearly through summation. In the Recombinator

Networks (RCN) architecture, as shown in Figure 6.1(bottom), instead of taking a weighted sum

of the upsampled feature maps in each branch and then passing them to a softmax, the output of

each branch is upsampled, then concatenated with the next level branch with one degree of finer

resolution. In contrast to the SumNet model, each branch does not end in K feature maps. The

information stays in the form of a keypoint independent feature map. It is only at the end of the Brth

branch that feature maps are converted into a per-keypoint scoring representation that has the same

resolution as the input image, on which a softmax is then applied. As a result of RCN’s different

architecture, branches pass more information to each other during training, such that convolutional

layers in the finer branches get inputs from both coarse and fine layers, letting the network learn

how to combine them non-linearly to maximize the log likelihood of the keypoints given the input

images. The whole network is trained end-to-end by backprop. Following the previous conventions

and by defining the concatenation operator on feature maps A, B as concat(A,B), we can write

the model as

M′(1) = up[×2](branch(T
(1)))

M′(2) = up[×2](branch(concat(T
(2),M′(1))))

. . .

M′(Br) = branch(concat(T(Br),M′(Br−1)))

P (Yk|X = x) = softmax(M
′(Br)
k ). (6.3.3)

4 We also tried L2 distance cost between true and estimated keypoints (as a regression problem) and got worse results.
This may be due to the fact that a softmax probability map can be multimodal , while L2 distance implicitly corresponds
to likelihood of a unimodal isotropic Gaussian.
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We also explore RCN with skip connections, where the features of each branch are concatenated

with upsampled features of not only one-level coarser branch, but all previous coarser branches and,

therefore, the last branch computes M′(Br) = branch(concat(T(Br),M′(Br−1),M′(Br−2), . . . ,M′(1)).

In practice, the information flow between different branches makes RCN converge faster and also

perform better compared to the SumNet model.

6.4. Denoising keypoint model

Convolutional networks are excellent edge detectors. If there are few samples with occlusion in

the training sets, convnets have problem detecting occluded keypoints and instead select nearby

edges (see some samples in Figures 6.5, 6.8). Moreover, the convnet predictions, especially on

datasets with many keypoints, do not always correspond to a plausible keypoint distribution and

some keypoints jump off the curve (e.g. on the face contour or eye-brows) irrespective of other

keypoints’ position (see some samples in Figure 6.10). This type of error can be addressed by using

a structured output predictor on top of the convnet, that takes into account how likely the location of

a keypoint is relative to other keypoints. Our approach is to train another convolutional network

that captures useful aspects of the prior keypoint distribution (not conditioned on the image). We

train it to predict the position of a random subsets of keypoints, given the position of the other

keypoints. More specifically, we train the convolutional network as a denoising model, similar to the

denoising auto-encoder (Vincent et al., 2008) by completely corrupting the location of a randomly

chosen subset of the keypoints and learning to accurately predict their correct location given that

of the other keypoints. This network receives as input, not the image, but only keypoint locations

represented as one-hot 2D maps (one 2D map per keypoint, with a 1 at the position of the keypoint

and zeros elsewhere). It is composed of convolutional layers with large receptive fields (to get to see

nearby keypoints), ReLU nonlinearities and no subsampling (see Figure 6.4). The network outputs

probability maps for the location of all keypoints, however, its training criterion uses only prediction

errors of the corrupted ones. The cost being optimized is similar to Eq.(6.3.2) but includes only the

corrupted keypoints.

Once, this denoising model is trained, the output of RCN (the predicted most likely location

in one-hot binary location 2D map format) is fed to the denoising model. We then simply sum
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the pre-softmax values of both RCN and denoising models and pass them through a softmax to

generate the final output probability maps. The joint model is depicted in Figure 6.4. The joint

model combines the RCN’s predicted conditional distribution for keypoint k given the image

P (Yk|X = x) with the denoising model’s distribution of the location of that keypoint given other

keypoints P (Yk|Y¬k), to yield an estimation of keypoint k’s location given both image and other

keypoint locations P (Yk|Y¬k,X = x). The choice of convolutional networks for the denoising

model allows it to be easily combined with RCN in a unified deep convolutional architecture.

6.5. Experimental setup and results

We evaluate our model5 on the following datasets with evaluation protocols defined by the

previous literature:

AFLW and AFW datasets: Similar to TCDCN (Zhang et al., 2014c), we trained our models

on the MTFL dataset,6 which we split into 9,000 images for training and 1,000 for validation. We

evaluate our models on the same subsets of AFLW (Köstinger et al., 2011) and AFW (Zhu and

Ramanan, 2012) used by (Zhang et al., 2014c), consisting of 2995 and 377 images, respectively,

each labeled with 5 facial keypoints.

300W dataset: 300W (Sagonas et al., 2013) standardizes multiple datasets into one common

dataset with 68 keypoints. The training set is composed of 3148 images (337 AFW, 2000 Helen,

and 811 LFPW). The test set is composed of 689 images (135 IBUG, 224 LFPW, and 330 Helen).

The IBUG is referred to as the challenging subset, and the union of LFPW and Helen test sets is

referred to as the common subset. We shuffle the training set and split it into 90% train-set (2834

images) and 10% valid-set (314 images).

One challenging issue in these datasets is that the test set examples are significantly different

and more difficult compared to the training sets. In other words the train and test set images are not

from the same distribution. In particular, the AFLW and AFW test sets contain many samples with

occlusion and more extreme rotation and expression cases than the training set. The IBUG subset of

300W contains more extreme pose and expressions than other subsets.

5Our models and code are publicly available at https://github.com/SinaHonari/RCN
6MTFL consists of 10,000 training images: 4151 images from LFW (Huang et al., 2007) and 5849 images from the
web.
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Error Metric: The Euclidean distance between the true and estimated landmark positions

normalized by the distance between the eyes (interocular distance) is used:

error =
1

KN

N∑
n=1

K∑
k=1

√
(wn

k − w̃n
k )

2 + (hnk − h̃nk )2

Dn
, (6.5.1)

whereK is the number of keypoints,N is the total number of images,Dn is the inter-ocular distance

in image n. (wnk , h
n
k) and (w̃nk , h̃

n
k) represent the true and estimated coordinates for keypoint k in

image n, respectively.

6.5.1. Evaluation on SumNet and RCN

We evaluate RCN on the 5-keypoint test sets. To avoid overfitting and improve performance,

we applied online data augmentation to the 9,000 MTFL training set using random scale, rotation,

and translation jittering7. We preprocessed images by making them gray-scale and applying local

contrast normalization 8. In Figure 6.2, we show a visualization of the contribution of each branch of

the SumNet to the final predictions: the coarsest layer provides robust but blurry keypoint locations,

while the finest layer gives detailed face information but suffers from many false positives. However,

the sum of branches in SumNet and the finest branch in RCN make precise predictions.

7We jittered data separately in each epoch, whose parameters were uniformly sampled in the following ranges (selected
based on the validation set performance): Translation and Scaling: [-10%, +10%] of face bounding box size; Rotation:
[-40, +40] degrees.
8RGB images performed worse in our experiments.
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a)

b)

c)

d)

e)

f)

Fig. 6.2. Sub-figures a), b), c), d) show pre-sum (left) and softmax (right) of the coarsest to finest
branches in a 4-branch SumNet model. The softmax used in these branches are only for illustration
purposes and is not part of the trained model. Sub-figure e) (left) shows the sum of branches in the
SumNet model and Sub-figure f) (left) depicts the pre-softmax values in RCN. The true keypoint
locations are shown by green cross in all figures to show their relative correspondence with the
branch activations. SumNet and RCN’s predictions are shown by red plus on the post-softmax
maps in Sub-figures e) (right) and f) (right), respectively. In each row the images correspond to the
keypoints in this order from left to right: left-eye, right-eye, nose, left-mouth, right-mouth. Best
viewed electronically with zoom.

Since the test sets contain more extreme occlusion and lighting conditions compared to the

training set, we applied preprocessing to the training set to bring it closer to the test set distribution.

In addition to jittering, we found it helpful to occlude images in the training set with randomly
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placed black rectangles9 at each training iteration. This trick forced the convnet models to use more

global facial components to localize the keypoints and not rely as much on the features around

the keypoints, which in turn, made it more robust against occlusion and lighting contrast in the

test set. Figure 6.5 shows the effects of this occlusion when used to train the SumNet and RCN

models on randomly drawn samples. The samples show for most of the test set examples the models

predict well. Figure 6.6 shows the performance of the four models in Figure 6.5 as the difficulty of

the examples increase. This plot shows that on difficult examples, RCN performs better that the

SumNet model and on those examples the occlusion preprocessing improves further the results in

the RCN model compared to the SumNet model. Figure 6.7 shows some hand-picked examples

from the test sets, to show extreme expression, occlusion and contrast that are not captured in the

random samples of Figure 6.5. Figure 6.8 similarly uses some manually selected examples to show

the benefits of using occlusion.

To evaluate how much each branch contributes to the overall performance of the model, we

trained models excluding some branches and report the results in Table 6.1. The finest layer on

its own does a poor job due to many false positives, while the coarsest layer on its own does a

reasonable job, but still lacks high accuracy. One notable result is that using only the coarsest

and finest branches together produces reasonable performance. However, the best performance is

achieved by using all branches, merging four resolutions of coarse, medium, and fine information.

We also experimented with adding extra branches, getting to a coarser resolution of 5 × 5 in

the 5 branch model, 2 × 2 in the 6 branch model and 1 × 1 in the 7 branch model. In each branch,

the same number of convolutional layers with the same kernel size is applied,10 and all new layers

have 48 channels. The best performing model, as shown in Table 6.2, is RCN with 6 branches.

Comparing RCN and SumNet training, RCN converges faster. Using early stopping and without

occlusion pre-processing, RCN requires on average 200 epochs to converge (about 4 hours on a

NVidia Tesla K20 GPU), while SumNet needs on average more than 800 epochs (almost 14 hours).

RCN’s error on both test sets drops below 7% on average after only 15 epochs (about 20 minutes),

9Each image was occluded with one black (zeros) rectangle, whose size was drawn uniformly in the range [20, 50]
pixels. Its location was drawn uniformly over the entire image.
10A single exception is that when the 5 × 5 resolution map is reduced to 2 × 2, we apply 3 × 3 pooling with stride 2
instead of the usual 2 × 2 pooling, to keep the resulting map left-right symmetric.
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SumNet RCN
Mask AFLW AFW AFLW AFW

1, 0, 0, 0 10.54 10.63 10.61 10.89
0, 1, 0, 0 11.28 11.43 11.56 11.87
1, 1, 0, 0 9.47 9.65 9.31 9.44
0, 0, 1, 0 16.14 16.35 15.78 15.91
0, 0, 0, 1 45.39 47.97 46.87 48.61
0, 0, 1, 1 13.90 14.14 12.67 13.53
0, 1, 1, 1 7.91 8.22 7.62 7.95
1, 0, 0, 1 6.91 7.51 6.79 7.27
1, 1, 1, 1 6.44 6.78 6.37 6.43

Tab. 6.1. The performance of SumNet and RCN trained with masks applied to different branches.
A mask value of 1 indicates the branch is included in the model and 0 indicates it is omitted (as a
percent; lower is better). In SumNet model mask 0 indicates no contribution from that branch to
the summation of all branches, while in RCN, if a branch is omitted, the previous coarse branch is
upsampled to the following fine branch. The mask numbers are ordered from the coarsest branch to
the finest branch. See Figure 6.3 for visualizing how branches are masked.

while SumNet needs on average 110 epochs (almost 2 hours) to get to this error. Using occlusion

preprocessing increases these times slightly but results in lower test error. At test time, a feedforward

pass on a K20 GPU takes 2.2ms for SumNet and 2.5ms for RCN per image in Theano (Al-Rfou

et al., 2016). Table 6.2 shows occlusion pre-processing significantly helps boost the accuracy of

RCN, while slightly helping SumNet. We believe this is due to global information flow from coarser

to finer branches in RCN. In the RCN model with skip connections, each branch takes upsampled

features not only from one coarser branch, but from all coarser branches. This model variant is

shown in the last row of Table 6.2. However, it did not improve the performance compared to

the same model without skip connections (row in bold). We believe the concatenation in between

successive branches, which is done in the RCN model, is already passing global information from

coarser branches to finer branches of the network and leveraging extra flow of information was not

necessary in our case.

6.5.2. Comparison with other models

AFLW and AFW datasets: We first re-implemented the TCDCN model (Zhang et al., 2014c),

which is the current state of the art model on 5 keypoint AFLW (Köstinger et al., 2011) and AFW

10SumNet and RCN models are trained using occlusion preprocessing.
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Fig. 6.3. Each series of convolution and upsampling layers in a row (which are covered with a
colored rectangle) form a branch. The branch on the top (in yellow) is the coarsest and the branch on
the bottom (in blue) is the finest branch. In the case of masking (used in Table 6.1), the 4 numbers
indicate the presence or absence of the 4 branches. The numbers are ordered from the coarsest to
the finest branch. For example, ‘1,1,0,0’ uses the top two branches and then upsamples the output
of the second (finer) branch to the input image resolution to be passed to the output softmax layer.
In the case of ‘0,0,1,1’ only the bottom two branches are used. In this case, the two convolutional
layers to the left of the two coarsest branches are not needed and hence not used in the model. In
the case of ‘1,0,0,1’ only the coarsest and the finest branches are used and the output of the coarsest
branch is upsampled to the finest branch resolution to be passed to that branch.

Model AFLW AFW
SumNet (4 branch) 6.44 6.78
SumNet (5 branch) 6.42 6.53
SumNet (6 branch) 6.34 6.48
SumNet (5 branch - occlusion) 6.29 6.34
SumNet (6 branch - occlusion) 6.27 6.33
RCN (4 branch) 6.37 6.43
RCN (5 branch) 6.11 6.05
RCN (6 branch) 6.00 5.98
RCN (7 branch) 6.17 6.12
RCN (5 branch - occlusion) 5.65 5.44
RCN (6 branch - occlusion) 5.60 5.36
RCN (7 branch - occlusion) 5.76 5.55
RCN (6 branch - occlusion - skip) 5.63 5.56

Tab. 6.2. SumNet and RCN performance with different number of branches, occlusion preprocess-
ing and skip connections.
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Model AFLW AFW
TSPM (Zhu and Ramanan, 2012) 15.9 14.3

CDM (Yu et al., 2013) 13.1 11.1
ESR (Cao et al., 2014) 12.4 10.4

RCPR (Burgos-Artizzu et al., 2013) 11.6 9.3
SDM (Xiong and De la Torre, 2013) 8.5 8.8

TCDCN (Zhang et al., 2014c) 8.0 8.2
TCDCN baseline (our implementation) 7.60 7.87

SumNet (FCN/HC) baseline (this) 6.27 6.33
RCN (this) 5.60 5.36

Tab. 6.3. Facial landmark mean error normalized by interocular distance on AFW and AFLW sets
(as a percent; lower is better).10

(Zhu and Ramanan, 2012) sets, and applied the same pre-processing as our other experiments.

Through hyper-parameter search, we even improved upon the AFLW and AFW results reported

in (Zhang et al., 2014c). Table 6.3 compares RCN with other models. Especially, it improves the

SumNet baseline, which is equivalent to FCN and Hypercolumn models, and it also converges faster.

The SumNet baseline is also provided by this paper and to the best of our knowledge this is the

first application of any such coarse-to-fine convolutional architecture to the facial keypoint problem.

Figure 6.9 compares TCDCN with SumNet and RCN models, on some difficult samples reported in

(Zhang et al., 2014c).

300W dataset (Sagonas et al., 2013): The RCN model that achieved the best result on the

validation set, contains 5 branches with 64 channels for all layers (higher capacity is needed to

extract features for more keypoints) and 2 extra convolutional layers with 1 × 1 kernel size in

the finest branch right before applying the softmax. Table 6.4 compares different models on all

keypoints (68) and a subset of keypoints (49) reported in (Tzimiropoulos, 2015). The denoising

model is trained by randomly choosing 35 keypoints in each image and jittering them (changing their

location uniformly to any place in the 2D map). It improves the RCN’s prediction by considering

how locations of different keypoints are inter-dependent. Figure 6.10 compares the output of RCN,

the denoising model and the joint model, showing how the keypoint distribution modeling can

reduce the error. We only trained RCN on the 2834 images in the train-set. No extra data is taken
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Model #keypoints Common IBUG Fullset
PO-CR (Tzimiropoulos, 2015) 4.00 6.82 4.56

RCN (this) 49 2.64 5.10 3.88
RCN + denoising

keypoint model (this) 2.59 4.81 3.76
CDM (Yu et al., 2013) 10.10 19.54 11.94

DRMF (Asthana et al., 2013) 6.65 19.79 9.22
RCPR (Burgos-Artizzu et al., 2013) 6.18 17.26 8.35

GN-DPM (Tzimiropoulos and Pantic, 2014) 5.78 - -
CFAN (Zhang et al., 2014a) 5.50 16.78 7.69

ESR (Cao et al., 2014) 5.28 17.00 7.58
SDM (Xiong and De la Torre, 2013) 68 5.57 15.40 7.50

ERT (Cao et al., 2014) - - 6.40
LBF (Ren et al., 2014) 4.95 11.98 6.32
CFSS(Zhu et al., 2015) 4.73 9.98 5.76

TCDCN † (Zhang et al., 2016) 4.80 8.60 5.54
RCN (this) 4.70 9.00 5.54

RCN + denoising keypoint model (this) 4.67 8.44 5.41
Tab. 6.4. Facial landmark mean error normalized by interocular distance on 300W test sets (as a
percent; lower is better). 10

to pre-train or fine-tune the model 11. The current state-of-the-art model without any extra data† is

CFSS(Zhu et al., 2015). We reduce the error by 15% on the IBUG subset compared to CFSS.

XXXXXXXXXXXXFeatures
Models Efficient Localization

(Tompson et al., 2015)
Deep Cascade

(Sun et al., 2013)
Hyper-columns

(Hariharan et al., 2015)
FCN

(Long et al., 2015)
RCN
(this)

Coarse features:
hard crop or soft combination? Hard Hard Soft Soft Soft

Learned coarse features
fed into finer branches? No No No No Yes

Tab. 6.5. Comparison of multi-resolution architectures. The Efficient Localization and Deep
Cascade models use coarse features to crop images (or fine layer features), which are then fed into
fine models. This process saves computation when dealing with high-resolution images but at the
expense of making a greedy decision halfway through the model. Soft models merge local and
global features of the entire image and do not require a greedy decision. The Hypercolumn and
FCN models propagate all coarse information to the final layer but merge information via addition
instead of conditioning fine features on coarse features. The Recombinator Networks (RCN), in
contrast, inject coarse features directly into finer branches, allowing the fine computation to be
tuned by (conditioned on) the coarse information. The model is trained end-to-end and results in
learned coarse features which are tuned directly to support the eventual fine predictions.

11We only jittered the train-set images by random scaling, translation and rotation similar to the 5 keypoint dataset.
† TCDCN (Zhang et al., 2016) uses 20,000 extra dataset for pre-training.
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6.6. Conclusion

In this chapter we have introduced the Recombinator Networks architecture for combining

coarse maps of pooled features with fine non-pooled features in convolutional neural networks.

The model improves upon previous summation-based approaches by feeding coarser branches

into finer branches, allowing the finer resolutions to learn upon the features extracted by coarser

branches. We find that this new architecture leads to both reduced training time and increased

facial keypoint prediction accuracy. We have also proposed a denoising model for keypoints which

involves explicit modeling of valid spatial configurations of keypoints. This allows our complete

approach to deal with more complex cases such as those with occlusions.
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Fig. 6.4. Denoising / joint keypoint model. The Recombinator Networks (RCN) and the keypoint
location denoising models are trained separately. At test time, the keypoint hard prediction of RCN
is first injected into the denoising model as one-hot maps. Then the pre-softmax values computed by
the RCN and the denoising models are summed and pass through a final softmax to predict keypoint
locations.
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Fig. 6.5. Keypoint predictions on random test set images from easy (left) to hard (right). Each
column shows predictions of following models from top to bottom: SumNet, SumNet with occlusion,
RCN, RCN with occlusion (all models have 5 branches). We note for each test set image (including
both AFLW and AFW) the average error over the four models and use this as a notion of that image’s
difficulty. We then sort all images by difficulty and draw a random image from percentile bins,
using the bin boundaries noted above the images. To showcase the models’ differing performance,
we show only a few easier images on the left side and focus more on the hardest couple percent of
images toward the right side. The value on the left is the average error of these samples per model
(much higher than the results reported in Table 6.3 because of the skew toward difficult images).
The yellow line connects the true keypoint location (green) to the model’s prediction (red). Dots
are small to avoid covering large regions of the image. Best viewed with zoom in color. Figure 6.6
shows the performance of these four models as the difficulty of the examples increase.
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Fig. 6.6. The performance of SumNet and RCN models with and without occlusion pre-processing
on the merged AFW and AFLW test sets as the difficulty of the examples increase (lower is better).
To get this plot, we note for each test set image (including both AFLW and AFW) the average error
over the four models and use this as a notion of that image’s difficulty. We then sort all images by
difficulty and get each model’s log error (using Eq. 6.5.1) on each test example. Finally, we plot
each model’s performance on the sorted test set examples from the easiest (0% difficulty) to the
most difficult (100% difficulty) percentage of the test set examples. The plot shows RCN performs
better than SumNet, especially on the harder examples. The occlusion pre-processing helps RCN
on the most difficult examples (difficulty > 65%), while it slightly helps SumNet.

Fig. 6.7. Samples with different expressions (green border), contrast and illuminations (red border)
and occlusions (blue border) from AFLW and AFW sets. In each box, top row depicts samples from
SumNet and bottom row shows samples from RCN, both with occlusion pre-processing.
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Fig. 6.8. Samples from AFLW and AFW test sets showing keypoint detection accuracy without
(top row) and with (bottom row) occlusion pre-processing using RCN.

Fig. 6.9. Samples from TCDCN (Zhang et al., 2014c) (yellow border with green predicted points)
versus SumNet (orange border) and RCN (blue border). In the latter two models, red and green dots
show predicted and true keypoints. TCDCN samples are taken directly from (Zhang et al., 2014c).

Fig. 6.10. Samples from 300W test sets. Each column shows samples in this order (top to bottom):
RCN, keypoint denoising model and the joint model. The first two columns show extreme expression
and occlusion samples where RCN’s prediction is highly accurate. The next 5 columns show samples
where the denoising model improves the RCN’s predictions. In the 8th column the structured model
find a reasonable keypoint distribution but deteriorates the RCN’s predictions. Finally, the last two
columns show cases where the denoising model generates plausible keypoint distributions but far
from the true keypoints.
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Chapter 7

Prologue to Third Article

7.1. Article Details

Improving Landmark Localization with Semi-Supervised Learning. Sina Honari, Pavlo

Molchanov, Stephen Tyree, Pascal Vincent, Christopher Pal, and Jan Kautz. Proceedings of the

IEEE Conference on Computer Vision and Pattern Recognition (CVPR 2018).

This project started during my internship at Nvidia. Our goal in this work was to leverage

weaker labelled data, such as class labels to improve landmark locations and also use unsupervised

techniques over images to enhance landmark localization. Pavlo and I discussed many possible ways

to do it and tried many different ideas. The idea of the two proposed approaches in this work, which

are leveraging class labels and also the equivariant landmark transformation emerged throughout

this process. We also tried many other ideas that did not work. Most of the implementation and

experimental runs were done by myself. Pavlo also helped on some part of the implementations and

running the models. The writing of the manuscript was mostly done by myself. Please note that the

variable notations in this chapter have been changed compared to the published article version to

unify the notations of the repeating concepts in the thesis.

7.2. Context

At the time of writing this article landmark localization approaches leveraged fully labelled

datasets on faces and hands for accurate localization. However, this is quite demanding in terms

of the manual effort required for labelling, since landmark localization requires pinpointing many

landmarks on a given image, such as 68 landmarks in 300W dataset (Sagonas et al., 2013) or 21

landmarks in AFLW dataset (Köstinger et al., 2011). Most of the labelled datasets are limited
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in terms of the variations they present. If a model is likely to be used at test time on data with

new variations, it might not work well. Addressing this may require labelling a new dataset under

these additional variations and then training a model on it. The goal of this paper is to build robust

landmark localization models when few labelled landmarks are available. In particular, we aim

at leveraging weaker labelled data, such as class labels, that are more abundant or more easily

obtainable as only a single categorical label is needed per image, or using unsupervised approaches

to enhance landmark localization networks in the few labelled landmarks data-settings.

7.3. Contributions

We present two techniques to improve landmark localization in images from partially annotated

datasets. Our primary goal is to leverage the common situation where precise landmark locations

are only provided for a small data subset, but where class labels for classification or regression

tasks related to the landmarks are more abundantly available. First, we propose the framework

of sequential multitasking and explore it here through an architecture for landmark localization

where training with class labels acts as an auxiliary signal to guide the landmark localization on

unlabeled data. A key aspect of our approach is that errors can be backpropagated through a

complete landmark localization model. Second, we propose and explore an unsupervised learning

technique for landmark localization based on having a model predict equivariant landmarks with

respect to transformations applied to the image. We show that these techniques, improve landmark

prediction considerably and can learn effective detectors even when only a small fraction of the

dataset has landmark labels. We present results on two toy datasets and four real datasets, with

hands and faces, and report new state-of-the-art on two datasets in the wild, e.g. with only 5% of

labeled images we outperform previous state-of-the-art trained on the AFLW dataset.

7.4. Recent Developments

Recently Thewlis et al. (2017) also explored unsupervised learning of landmarks by matching

corresponding landmarks under different transformations. Another unsupervised learning approach

for landmarks has been proposed in (Jakab et al., 2018), where consecutive frames of a video clip

with someone doing an action is taken and the model extracts only landmarks from frame a and
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adds them to visual features of frame b to reconstruct back frame a. The idea is that if landmark

information is taken from a frame and passed to the visual features of another frame, assuming the

two frames are visually similar such as someone doing an action, the model should use be able to

reconstruct the person with locations specified by the landmarks. This idea is also applied to still

images that are manually warped. DeTone et al. (2018) applied our proposed equivariant landmark

transformations to match landmarks across different homographies and show they can get improved

performance compared to features built by Scale Invariant Feature Transform (SIFT) (Lowe, 1999)

and Learned Invariant Feature Transform (LIFT) (Yi et al., 2016). Our sequential multi-tasking

pipeline has been used in (Park et al., 2018) for gaze landmark localization. Laine and Aila (2017)

also explored invariant feature extraction over time. Due to the recent publication of our work more

time is needed to evaluate its impact and observe how this problem is addressed in the future.
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Chapter 8

Improving Landmark Localization with Semi-Supervised

Learning

8.1. Introduction

Landmark localization – finding the precise location of specific parts in an image – is a central

step in many complex vision problems. Examples include hand tracking (Datcu and Lukosch, 2013;

Hu et al., 2010), gesture recognition (Dardas et al., 2010), facial expression recognition (Kahou

et al., 2013), face identity verification (Sun et al., 2014; Taigman et al., 2014), and eye gaze tracking

(Mora and Odobez, 2012; Zhang et al., 2015). Reliable landmark estimation is often part of the

pipeline for sophisticated, robust vision tools. Neural networks have yielded state-of-the art results

on numerous landmark estimation problems (Honari et al., 2016; Tompson et al., 2015; Wang et al.,

2016; Xiao et al., 2016; Yu et al., 2016). However, neural networks generally need to be trained

on a large set of labeled data to be robust to the variations in natural images. Landmark labeling is

a tedious manual work where precision is important; as a result, few landmark datasets are large

enough to train reliable deep neural networks. On the other hand it is much easier to label an image

with a single class label rather than the entire set of precise landmarks, and datasets with labels

related to—but distinct from—landmark detection are far more abundant.

The key elements of our approach are illustrated in Figure 8.1. The top diagram illustrates a

traditional convolutional neural network (CNN) based landmark localization network. The first key

element of our work – illustrated in the second diagram of Figure 8.1, is that we use the indirect

supervision of class labels to guide classifiers trained to localize landmarks. The class label can

be considered a weak label that sends indirect signals about landmarks. For example, a photo of

a hand gesture with the label “waving” likely indicates that the hand is posed with an open palm
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and spread fingers, signaling a set of reasonable locations for landmarks on the hand. We leverage

class labels that are more abundant or more easily obtainable than landmark labels, putting our

proposed method in the category of multi-task learning. A common approach (Devries et al., 2014;

Zhang and Zhang, 2014; Zhang et al., 2014c, 2016) to multi-task learning uses a traditional CNN,

in which a final common fully-connected (FC) layer feeds into separate branches, each dedicated to

the output for a different task. This approach learns shared low-level features across the set of tasks

and acts as a regularizer, particularly when the individual tasks have few labeled samples.

There is a fundamental caveat to applying such an approach directly to simultaneous classifica-

tion and landmark localization tasks, because the two have opposing requirements: classification

output needs to be insensitive (invariant) to small deformations such as translations, whereas land-

mark localization needs to be equivariant to them, i.e., follow them precisely with high sensitivity.

To build in invariance, traditional convolutional neural networks for classification problems rely

on pooling layers to integrate signals across the input image. However, tasks such as landmark

localization or image segmentation require both the global integration of information as well as

an ability to retain local, pixel-level details for precise localization. The goal of producing precise

landmark localization has thus led to the development of new layers and network architectures

such as dilated convolutions (Yu and Koltun, 2016), stacked what-where auto-encoders (Zhao et al.,

2016), recombinator-networks (Honari et al., 2016), fully-convolutional networks (Long et al.,

2015), and hyper-columns (Hariharan et al., 2015), each preserving pixel-level information. These

models have however not been developed with multi-tasking in mind.

Current multi-task architectures (Devries et al., 2014; Ranjan et al., 2017; Zhang and Zhang,

2014; Zhang et al., 2014c, 2016) predict landmark locations and auxiliary tasks as separate branches,

i.e., in parallel. In this scenario the auxiliary task is used for partial supervision of landmark

localization model. We propose a novel class of neural architectures which force classification

predictions to flow through the intermediate step of landmark localization to provide complete

supervision during backpropagation.

One of the contributions of our model is to leverage auxiliary classification tasks and

data, enhancing landmark localization by backpropagating classification errors through the

landmark localization layers of the model. Specifically, we propose a sequential architecture
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in which the first part of the network predicts landmarks via pixel-level heatmaps, maintaining

high-resolution feature maps by omitting pooling layers and strided convolutions. The second

part of the network computes class labels using predicted landmark locations. To make the whole

network differentiable, we use soft-argmax for extracting landmark locations from pixel-level

predictions. Under this model, learning the landmark localizer is more directly influenced by the

task of predicting class labels, allowing the classification task to enhance landmark localization

learning.

Semi-supervised learning techniques (Rasmus et al., 2015; Salimans et al., 2016; Wan et al.,

2017; Weston et al., 2012) have been used in deep learning to improve classification accuracy with

a limited amount of labeled training data. A recently proposed method (Laine and Aila, 2017)

enforces invariance in class predictions over time and across a variety of data augmentations applied

to unlabeled training data. Our second contribution is to propose and explore an unsupervised

learning technique for landmark localization where the model is asked to produce landmark

localizations equivariant with respect to a set of transformations applied to the image. In

other words, we transform an image during training and ask the model to produce landmarks that are

similarly transformed. Importantly, this technique does not require the true landmark locations, and

thus can be applied during semi-supervised training to leverage images with unlabeled landmarks.

This element of our work is illustrated in the third diagram of Figure 8.1. Independently from our

work, (Thewlis et al., 2017) proposed an unsupervised technique for landmark localization, however,

the question if it can be used to improve supervised training remains open.

To summarize, in this chapter we make the following contributions: 1) We propose a novel

multi-tasking neural architecture, which a) predicts landmarks as an intermediate step before

classification in order to use the class labels to improve landmark localization, b) uses soft-argmax

for a fully-differentiable model in which end-to-end training can be performed, even from examples

that do not provide labeled landmarks. 2) We propose an unsupervised learning technique to learn

features that are equivariant with respect to transformations applied to the input image. Combining

contributions 1) and 2), we propose a robust landmark estimation technique which learns effective

landmark predictors while requiring fewer labeled landmarks compared to current approaches.
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Fig. 8.1. In our approach three sources of gradients are used for learning a landmark localization network,
from top to bottom: 1) The gradient from P labeled image-landmark pairs. 2) The gradient from Q attribute
examples, obtained through sequential multitasking. The first part of the network (a CNN) predicts landmarks
with a soft-argmax output layer to make the entire network fully differentiable. The predicted landmarks (as
w, h pairs) are then fed into a multi-layer perceptron (MLP) for attribute regression/classification. 3) The
gradient received from an unsupervised component of the composite loss which we refer to as an equivariant
landmark transformation (ELT) (applied to N images). This loss encourages the model to output landmarks
that are equivariant to transformations applied to the image. Importantly, MLP regression and the ELT
are applied to the model’s predictions and not the ground truth (GT) landmarks, so they can be applied on
images that are not labelled with landmarks. Our proposed approach allows efficient training even when
P � Q ≤ N .

3) We report state-of-the-art on 300W (Sagonas et al., 2013) and AFLW (Köstinger et al., 2011)

without leveraging any external data.
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8.2. Sequential Multi-Tasking

We refer to the new architecture that we propose for leveraging the attributes to guide the

learning of landmark locations as sequential multi-tasking. This architecture first predicts the

landmark locations and then uses the predicted landmarks as the input to the second part of the

network, which performs classification (see Fig. 8.1-middle). In doing so, we create a bottleneck in

the network, forcing it to solve the classification task only through the landmarks. If the goal were to

enhance classification, this architecture would have been harmful since such bottlenecks (He et al.,

2016) would hurt the flow of information for classification. However, since our goal is landmark

localization, this architecture enforces receiving signal from class labels through back-propagation

to enhance landmark locations. This architecture benefits from auxiliary tasks that can be efficiently

solved relying only on extracted landmark locations without observing the input image.

In order to make the whole pipeline trainable end-to-end, even on examples that do not provide

any landmarks, we apply soft-argmax (Chapelle and Wu, 2010) on the output of the last convolutional

layer in the landmark prediction model. Specifically, let M(x) be the stack of K two-dimensional

output maps produced by the last convolutional layer for a given network input image x. The map

associated to the kth landmark will be denoted Mk(x). To obtain a single 2d location yk = (w,h)

for the landmark from Mk(x), we use the following soft-argmax operation:

yk(x) = soft-argmax(βMk(x))

=
∑
r,c

softmax(βMk(x))r,c(r,c) (8.2.1)

where softmax denotes a spatial softmax of the map, i.e.

softmax(A)r,c = exp(Ar,c)/
∑
r′,c′

exp(Ar′,c′), (8.2.2)

β controls the temperature of the resulting probability map, and (r,c) iterate over pixel coordinates.

In short, soft-argmax computes landmark coordinates yk = (w, h) as a weighted average of all pixel

coordinate pairs (r,c) where the weights are given by a softmax of landmark map Mk(x).
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Predicted landmark coordinates are then fed into the second part of the network for attribute

estimation. Having either classification or regression task, the model optimizes

Cost_attr(x, ã) =

 − logP (A = ã|X = x) , if classification

|ã− atr(x)| , if regression

P (A = ã|X = x) denotes the probability ascribed by the model to the class ã given input image x,

as computed by the final classification softmax layer. ã denotes the ground truth (GT) and atr(x)

the predicted attributes in the regression task. Using soft-argmax, as opposed to a simple softmax,

the model is fully differentiable through its landmark locations and is trainable end-to-end.

8.3. Equivariant Landmark Transformation

We propose the following unsupervised learning technique to make the model’s prediction

consistent with respect to different transformations that are applied to the image. Consider an input

image x and the corresponding landmarks y(x) predicted by the network given an input image

x. Now consider a small affine coordinate transformation T . We will use T � . . . to denote the

application of such a transformation in coordinate space, whether it is applied to deform a bitmap

image or to transform actual coordinates. If we apply this transformation to produce a deformed

image x′ = T � x and compute the resulting landmark coordinates y(x′) predicted by the network,

they should be very close to the result of applying the transformation on landmark coordinates y(x),

i.e., we expect to have y(T � x) ≈ T � y(x). The architecture for this technique, which we call

equivariant landmark transformation (ELT), is illustrated in Fig. 8.1-bottom. Multiple instances of

CT can thus be added to the overall training cost, each corresponding to a different transformation

T .

Our entire model is trained end-to-end to minimize the following cost

L = 1
N

∑
(x,ã)∈D{Cost_attr(x,ã) +

τ
K

∑K
k=1 ‖T � yk(x)︸ ︷︷ ︸

y′k

−yk(T � x︸ ︷︷ ︸
y′′k

)‖22}+

ω
PK

∑
x,ỹk

∑K
k=1 ||ỹk − yk(x)||22 + γ||θ||22, (8.3.1)

114



where D is the training set containing N pairs (x, ã) of input image and GT attribute. K is the

number of landmarks per image. ỹk, yk(x) and P respectively correspond to the GT, predicted

landmarks and the number of images in the train set with labelled landmarks. θ represents the

parameters of the model. τ , ω, and γ are weights for losses. The first part of the cost is attribute

classification or regression and affects the entire network. The second part is the ELT cost and can

be applied to any training image, regardless of whether or not it is labeled with landmarks. This

cost only affects the first part of the network (Landmark Localization). The third part is the squared

Euclidean distance between GT and estimated landmark locations and is used only when landmark

labels are provided. This cost only affects the first part of the network. The last cost is `2-norm on

the model’s parameters.

8.4. Experiments

To validate our proposed model, we begin with two toy datasets in Sections 8.4.1 and 8.4.2,

in order to verify to what extent the class labels can be used to guide the landmark localization

regardless of the complexity of the dataset. Later, we evaluate the proposed network on four real

datasets: Polish sign-language dataset (Kawulok et al., 2014) in Section 8.4.3, Multi-PIE (Gross

et al., 2010) in Section 8.4.4, and two datasets in the wild; 300W (Sagonas et al., 2013) and

AFLW (Köstinger et al., 2011) in Sections 8.4.5 and 8.4.6. All the models are implemented in

Theano (Al-Rfou et al., 2016).

8.4.1. Shapes dataset

To begin, we use a simple dataset to demonstrate our method’s ability to learn consistent

landmarks without direct supervision. Images in our Shapes dataset (see Fig. 8.3 top row for

examples) consist of a white triangle and a white square on black background, with randomly

sampled size, location, and orientation. The classification task is to identify which shape (triangle or

square) is positioned closer to the upper-left corner of the image. We trained a model (as illustrated

in Fig. 8.2) with six convolutional layers using 7× 7 kernels, followed by two convolutional layers

with 1× 1 kernels, then the soft-argmax layer for landmark localization. Predicted landmarks input
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Fig. 8.2. Our basic implementation of the sequential multi-tasking architecture. The landmark localization
model is composed of a series of conv (C) layers (with no pooling) and a soft-argmax output layer to detect
landmarks. ×n indicates repeating conv layer n times without parameter sharing. The detected landmarks
are then fed to FC layers for attribute classification.

to two fully connected (FC) layers of size 40 and 2, respectively. The model is trained with only the

cross-entropy cost on the class label without labeled landmarks or the unsupervised ELT cost.

Figure 8.3 shows the predictions of the trained model on a few samples from the dataset. In the

second row, the green shape corresponds to the shape predicted to be the nearest to the upper-left

corner, which was learned with 99% accuracy. The red and blue crosses correspond to the first

soft-argmax and second soft-argmax landmark localizations, respectively. We observe that the red

cross is consistently placed adjacent to the triangle, while the blue cross is near the square. This

experiment shows the sequential architecture proposed here properly guides the first part of the

network to find meaningful landmarks on this dataset, based solely on the supervision of the related

classification task.

8.4.2. Blocks dataset

Our second toy dataset, Blocks, presents additional difficulty: each image depicts a figure

composed of a sequence of five white squares with one white triangle at the head. See Fig. 8.4-top

for all fifteen classes of Block dataset. We split the dataset into train, validation, and test sets, each

having 3200 images.

Initially we trained the model with only cross-entropy on the class labels and evaluated the

quality of the resulting landmark assignments. Ideally, the model would consistently assign each

landmark to a particular block in the sequence from head (the triangle) to tail (the final square).

However, in this more complex setting, the model did not predict landmarks consistently across
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Fig. 8.3. Top row: Sample images from the Shapes dataset. Each 60× 60 image contains one square and
one triangle with randomly sampled location, size, and orientation. Second row: The two predicted landmarks
and the object (in green) closest to the top-left corner classified by network. The third and fourth show the
first and second landmark feature maps, corresponding closely with the location of triangle and square. (Best
viewed in color with zoom.)

Tab. 8.1. Error of different architectures on Blocks dataset. The error is reported in pixel space. An error
of 1 indicates 1 pixel distance to the target landmark location. The first 4 rows show the results of Seq-MT
architecture, as shown in Fig. 8.2. The 5th and 6th rows show results of Comm-MT, depicted in Fig. 8.5. The
last two rows show the results of Heatmap-MT, depicted in Fig. 8.6. The results are averaged over five seeds.

Percentage of Images with Labeled Landmarks

Model 1% 5% 10% 20% 50% 100%

Seq-MT (L) 8.33 3.95 3.35 1.98 1.19 0.44
Seq-MT (L+A) 8.02 3.45 3.20 1.67 1.05 0.38

Seq-MT (L+ELT) 6.42 1.94 1.37 1.16 0.85
Seq-MT (L+ELT+A) 6.25 1.70 1.26 1.07 0.74

Comm-MT (L) 12.89 11.56 10.72 9.39 5.04 3.41
Comm-MT (L+A) 12.28 11.19 10.36 9.01 4.21 2.97

Heatmap-MT (L) 10.09 6.59 5.27 3.82 2.78 2.01
Heatmap-MT (L+A) 9.27 6.35 5.62 3.75 3.14 2.23

examples. With the addition of the ELT cost, the model learns relatively consistent landmarks

between examples from the same class, but this consistency does not extend between different classes.

Unlike the Shapes dataset—where there was a consistent, if indirect, mapping between landmarks

and the classification task—the correspondence among the classification task and landmark identities

is more tenuous in the Blocks dataset. Hence, we introduce a labeled set of ground truth (GT)
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Fig. 8.4. (top) The fifteen classes of the Blocks dataset. Each class is composed of five squares and one
triangle. To create each 60 × 60 image in the dataset, a random scale, translation, and rotation (up to 360
degrees) is applied to one of the base classes. (bottom) Sample landmark prediction on Blocks dataset using
sequential multi-tasking models when only 5% of data is labeled with landmarks. Green and red cross show
in order GT and predicted landmarks. (Best viewed in color with zoom.)

landmark locations and evaluate the landmark localization accuracy by having different percentages

of the training set being labelled with landmarks.

Table 8.1 compares the results using the sequential multi-tasking model in the following

scenarios: 1) using only the landmarks (Seq-MT (L)), which is equivalent to training only the first

part of the network, 2) using landmarks and attribute labels (Seq-MT (L+A)), which trains the

whole network on class labels and the first part of the network on landmarks, 3) using landmarks

and the ELT cost (Seq-MT (L+ELT)), which trains only the first part of the network, and 4) using
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three costs together (Seq-MT (L+ELT+A)).1 When using the ELT cost (scenarios 3 & 4), we only

apply it to images that do not provide GT landmarks to simulate semi-supervised learning 2.

As shown in Table 8.1, the Seq-MT (L+A) improves upon Seq-MT (L), indicating that class

labels can be used to guide the landmark locations. By adding the ELT cost, we can improve the

results considerably. With Seq-MT (L+ELT) better performance is obtained compared to Seq-MT

(L+A) showing that the unsupervised learning technique can substantially enhance performance.

However, the best results are obtained with all costs when using class labels, the ELT and landmark

costs. See Fig. 8.4-bottom for prediction samples when only 5% of the data are labeled with

landmarks.

Since our model can be considered as a multi-tasking network, we contrast it with other multi-

tasking architectures in the literature. We compare with two architectures: 1) The “common”

multi-tasking architecture (Comm-MT) (Devries et al., 2014; Zhang and Zhang, 2014; Zhang et al.,

2014c, 2016) where sub-networks for each task share a common set of initial layers ending in a

common fully-connected layer (see Fig. 8.5).3 We train two variants of this model, one with only

landmarks (Comm-MT (L)) and another with landmarks and class labels (Comm-MT (L+A)) to see

whether the class labels improve landmark localization. 2) Heat-map multi-tasking (Heatmap-MT),

where – to avoid pooling layers – we follow the recent trend of maintaining the resolution of feature

maps (Hariharan et al., 2015; Honari et al., 2016; Long et al., 2015; Tompson et al., 2015) and

features detected for landmark localization do not pass through a FC layer. See Fig. 8.6 for an

illustration of this architecture. The heatmaps right before the softmax layer are taken as input to

the classification model. Note that this model doesn’t have a landmark bottle-neck such as Seq-MT

(L+A).

As shown in Table 8.1, the Comm-MT approach is performing much worse than our Seq-

MT architecture for landmark estimation. A drawback of this architecture is its use of pooling

1The set of examples with labeled landmarks is class-balanced.
2This is done to avoid unfair advantage of our model compared to other models on examples that provide landmarks.
However, the ELT technique can be applied to any image, both with and without labeled landmarks.
3We tried other variants such as 1) a model that goes directly from the feature maps that have the same size as input
image to the FC layer without any pooling layers and 2) a model that has more pooling layers and goes to a lower
resolution before feeding the features to FC layers. Both models achieved worse results. Model 1 suffers from
over-parameterization when going to FC layer. Model 2 suffers from loosing track of pooled features’ locations since
more pooling layers are used.
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Fig. 8.5. Our implementation of the common multi-tasking (Comm-MT) architecture used in the literature
(Devries et al., 2014; Zhang and Zhang, 2014; Zhang et al., 2014c, 2016). The model takes an image and
applies a series of conv (C) and pooling (P) layers which are then passed to few common (shared) FC layers.
The last common FC layer is then connected to two branches (each for a task), one for the classification task
and another for the landmark localization.
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sequence from head (the triangle) to tail (the final square).
However, in this more complex setting, the model did not
predict landmarks consistently across examples. With the
addition of the ELT cost, the model learns relatively consis-
tent landmarks between examples from the same class, but
this consistency does not extend between different classes.
Unlike the Shapes dataset—where there was a consistent,
if indirect, mapping between landmarks and the classifi-
cation task—the correspondence among the classification
task, and landmark identities is more tenuous in the Blocks
dataset. Hence, we introduce a labeled set of ground truth
(GT) landmark locations and evaluate the landmark lo-
calization accuracy by having different percentages of the
training set being labelled with landmarks.

Table 1 compares the results using the sequential multi-
tasking model in the following scenarios: 1) using only the
landmarks (Seq-MT (L)), which is equivalent to training
only the first part of the network, 2) using landmarks and
attribute labels (Seq-MT (L+A)), which trains the whole
network on class labels and the first part of the network on
landmarks, 3) using landmarks and the ELT cost (Seq-MT
(L+ELT)), which trains only the first part of the network,
and 4) using three costs together (Seq-MT (L+ELT+A)).1

When using the ELT cost (scenarios 3 & 4), we only apply
it to images that do not provide GT landmarks to simulate
semi-supervised learning 2.

As shown in Table 1 , the Seq-MT (L+A) improves upon
Seq-MT (L), indicating that class labels can be used to guide
the landmark locations. By adding the ELT cost, we can
improve the results considerably. With Seq-MT (L+ELT)
better performance is obtained compared to Seq-MT (L+A)
indicating the unsupervised learning technique can substan-
tially enhance performance. However, the best results are
obtained with both class labels and the ELT and landmark
costs. See Fig. 4-bottom for prediction samples when only
5% of the data are labeled with landmarks.

Since our model can be considered to be a multi-tasking
network, we contrast it with other multi-tasking architec-
tures that are commonly used in the literature. We compare
with two architectures: 1) The “common” multi-tasking ar-
chitecture (Comm-MT) [48, 50, 45, 9] where sub-networks
for each task share a common set of initial layers ending in
a common fully-connected layer (see Fig. 5).3 We train two
variants of this model, one with only landmarks (Comm-MT

1The set of examples with labeled landmarks is class-balanced.
2This is done to avoid unfair advantage of our model compared to other

models on examples that provide landmarks. However, this approach can
be applied to any image, both with and without labeled landmarks.

3We tried other variants such as 1) a model that goes directly from the
feature maps that have the same size as input image to the FC layer without
any pooling layers and 2) a model that has more pooling layers and goes to
a lower resolution before feeding the features to FC layers. Both models
achieved worse results. Model 1 suffers from over-parameterization when
going to FC layer. Model 2 suffers from loosing track of pooled features’
locations since more pooling layers are used.

Figure 5: Our implementation of the multi-tasking architecture
that is commonly used in the literature [48, 50, 45, 9] (Comm-
MT). The model takes an image and applies a series of conv (C)
and pooling (P) layers which are then passed to few FC layers.
The last FC layer is then connected to two branches, one for the
classification task and another for the landmark localization.

Figure 6: Our implementation of Multi-tasking architecture using
heatmaps (Heatmap-MT). Landmarks are detected using conv (C)
layers without sub-sampling or pooling layers. A softmax layer
is used for landmark prediction in the output layer. Landmark
heatmaps right before softmax layer are fed to a series of pool
(P) and conv (C) layers which is then passed to FC layers. The last
FC layer is fed to softmax for attribute classification.
(L)) and another with landmarks and class labels (Comm-
MT (L+A)) to see whether the class labels improve land-
mark localization. 2) Heat-map multi-tasking (Heatmap-
MT), where – to avoid pooling layers – we follow the re-
cent trend of maintaining the resolution of feature maps
[36, 11, 20, 13] and features detected for landmark local-
ization do not pass through a FC layer. See Fig. 6 for an il-
lustration of this architecture. The heatmaps right before the
softmax layer are taken as input to the classification model.
Note that this model doesn’t have a bottle-neck such as Seq-
MT (L+A).

As shown in Table 1, the Comm-MT approach is per-
forming much worse than our Seq-MT architecture for land-
mark estimation. The drawback of this architecture is the
usage of pooling layers which leads to sub-optimal results
for landmark estimation. The model trained with extra class
information performs better than the model trained only on
landmarks. Heatmap-MT also performs worse than Seq-
MT, which is due to using softmax instead of soft-argmax.

5

Fig. 8.6. Our implementation of multi-tasking architecture using heatmaps (Heatmap-MT). Landmarks are
detected using conv (C) layers without sub-sampling, pooling, or FC layers. A softmax layer is used for
landmark prediction in the output layer. Landmark heatmaps right before softmax layer are fed to a series
of pool (P) and conv (C) layers which are then passed to FC layers. The last FC layer is fed to softmax for
attribute classification.

layers which leads to sub-optimal results for landmark estimation. The model trained with extra

class information performs better than the model trained only on landmarks. Heatmap-MT also

performs worse than Seq-MT. This is likely due in part to Heatmap-MT using softmax log-likelihood
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Fig. 8.7. Examples of our model predictions on the test set of the HGR1 dataset (Kawulok et al., 2014;
Nalepa and Kawulok, 2014). GT represents ground-trust annotations, while numbers 100, 50, and 20 indicate
which percentage of the training set with labeled landmarks used for training. Results are computed with
Seq-MT (L+ELT+A) model (denoted *) and Seq-MT (L). Best viewed in color with zoom.

training (which cannot be more accurate than the discretization grid), while Seq-MT uses soft-

argmax training based on real number coordinates. Moreover, in Heatmap-MT the class label is

mostly helping when using a low percentage of labeled data, but in Seq-MT it is helping for all

percentages of labeled data. We believe this is due to creating a bottle-neck of landmarks before

class label prediction, which causes the class labels to impact landmarks more directly through

back-propagation.

8.4.3. Hand pose estimation

Our first experiment on real data is on images of hands captured with color sensors. Most

common image datasets with landmarks on hands such as NYU (Tompson et al., 2014) and ICVL

(Tang et al., 2014) do not provide class labels. Also, most of the prior works in landmark estimation

for hands are based on depth data (Sinha et al., 2016; Sridhar et al., 2013; Sun et al., 2015; Tang

et al., 2014; Tompson et al., 2014; Yuan et al., 2018) whereas estimating from color data is more

challenging. We use the Polish hand dataset (HGR1) (Kawulok et al., 2014; Nalepa and Kawulok,
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Fig. 8.8. Extra examples of our model predictions on the HGR1 (Kawulok et al., 2014; Nalepa
and Kawulok, 2014) test set. GT represents ground-trust annotations, while numbers 100, 50, and
20 indicate the percentage of the training set with labeled landmarks. Results are computed with
Seq-MT (L+ELT+A) model (denoted *) and Seq-MT (L). Examples illustrate improvement of the
landmark prediction by using the class label and the ELT cost in addition to the labeled landmarks.
The last three examples on the bottom row show examples with high errors. Best viewed in color
with zoom.

2014), which provides 898 RGB images with 25 landmarks and 27 gestures from Polish sign

language captured with uncontrolled lightning and uncontrolled background from 12 subjects. We

divide images by id (with no overlap in subjects between sets) into training set (ids 1 to 8), validation

(ids 11 and 12), and test (ids 9 and 10). We end up with 573, 163, and 162 images for training,

validation and test sets, respectively. Accuracy of landmark detection on the HGR1 dataset is

measured by computing the average RMSE metric in the image domain for every landmark and
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Tab. 8.2. Performance of architectures on the HGR1 hands dataset. The error is Euclidean distance
normalized by wrist width. Results are shown as percent; lower is better.

Percentage of Images with Labeled Landmarks

Model 5% 10% 20% 50% 100%

Seq-MT (L) 57.6 41.1 32.0 21.4 15.8
Seq-MT (L+A) 50.0 38.1 28.1 19.8 16.9

Seq-MT (L+ELT) 43.7 31.5 25.1 17.7
Seq-MT (L+ELT+A) 38.5 30.3 24.0 19.1

Comm-MT (L) 77.1 62.8 52.7 41.8 35.7
Comm-MT (L+A) 53.4 39.3 35.5 26.9 24.1

Heatmap-MT (L) 66.5 51.9 42.4 30.9 25.5
Heatmap-MT (L+A) 64.8 54.9 43.2 30.5 26.7

normalizing it by wrist width (the Euclidean distance between landmarks #1 and #25). We apply the

ELT cost only on the images that do not have GT landmarks. Table 8.2 shows results for landmark

localization on the HGR1 test set. All results are averaged over 5 seeds. We observe: 1) sequential

multitasking improves results for most experiments compared to using only landmarks (Seq-MT(L))

or other multi-tasking approaches, 2) the ELT cost significantly improves results for all experiments,

and 3) Seq-MT (L+ELT+A) compared to Seq-MT (L) can achieve the same performance with only

half provided landmark labels (see 5%, 10%, 20%). We show examples of landmark prediction

with different models in Figures 8.7 and 8.8. ELT and attribute classification (A) losses significantly

improve results with a smaller fraction of annotated landmarks.

8.4.4. Multi-PIE dataset

We next evaluate our model on facial landmark datasets. Similar to Hands, most common face

datasets including Helen (Le et al., 2012), LFPW (Belhumeur et al., 2013), AFW (Zhu and Ramanan,

2012), and 300W (Sagonas et al., 2013), only provide landmark locations and no classes. We start

with Multi-PIE (Gross et al., 2010) since it provides, in addition to 68 landmarks, 6 emotions and

15 camera locations. We use these as class labels to guide landmark prediction.4 We use images

from 5 cameras (1 frontal, 2 with ±15 degrees, and 2 with ±30 degrees) and in each case a random

4Our research does not involve face recognition, and emotion classes are used only to improve the precision of landmark
localization.
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Fig. 8.9. Examples of our model predictions on Multi-PIE (Gross et al., 2010). On left is the percentage
of labelled data. We observe close predictions between the top two rows indicating the effectiveness of the
proposed ELT cost. Comparison between the last two rows shows the effectiveness of our method with only a
small amount of labeled landmarks. Best viewed in color with zoom.

illumination is selected. The images are then divided into subsets by id5, with ids 1-150 in the

training set, ids 151-200 in the valid set, and ids 201-337 in the test set. We end up with 1875, 579,

and 1054 images in training, validation, and test sets.

Due to using camera and emotion classes, our classification network has two branches, one

for emotion and one for camera, with each branch receiving landmarks as inputs (see Supp. for

architecture details). We compare our model with Comm-MT, Heatmap-MT architectures with

and without class labels in Table 8.3. Comparing models, we make the same observation as in

Section 8.4.3 and the best performance is obtained when ELT and classification costs are used

jointly, indicating both techniques are affective to get the least error. See some sample predictions

in Fig. 8.9.
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Tab. 8.3. Performance of different architectures on Multi-PIE dataset. The error is Euclidean distance
normalized by eye-centers (as a percent; lower is better). We do not apply ELT cost on the examples that
provide GT landmarks.

Percentage of Images with Labeled Landmarks

Model 5% 10% 20% 50% 100%

Seq-MT (L) 7.98 7.02 6.28 5.50 5.09
Seq-MT (L+A) 7.71 6.91 6.20 5.49 5.12

Seq-MT (L+ELT) 6.69 6.24 5.78 5.27
Seq-MT (L+ELT+A) 6.57 6.16 5.73 5.23

Comm-MT (L) 9.22 7.93 7.02 6.27 5.71
Comm-MT (L+A) 9.11 8.00 6.92 6.20 5.68

Heatmap-MT (L) 10.83 9.18 8.13 7.00 6.63
Heatmap-MT (L+A) 11.03 9.03 8.15 7.11 6.65

Tab. 8.4. Comparison of recent models on their training conditions. RAR and (Lv et al., 2017) initialize
their models by pre-trained parameters. TCDCN uses 20,000 extra labelled data. Finally, RAR adds manual
samples by occluding images with sunglasses, medical masks, phones, etc to make them robust to occlusion.
Similar to RCN, Seq-MT and RCN+ both have an explicit validation set for HP selection and therefore use a
smaller training set. Neither use any extra data, either through pre-trained models or explicit external data.

Model

Feature RAR (Lv et al., 2017) TCDCN CFSS RCN
RCN+ /
Seq-MT

RCN+ (L+ELT)
(all-train)

Hyper-parameter
selection dataset Test-set Test-set Test-set Test-set Valid-set Valid-set Test-set

Training on entire
training set? Yes Yes Yes Yes No No Yes

Uses extra dataset? Yes Yes Yes No No No No
Manually augmenting

the training set? Yes No No No No No No
FPS (GPU) 4 83 667 - 545 487 / 545 545

8.4.5. 300W dataset

In order to evaluate our architecture on natural images in the wild we use 300W (Sagonas et al.,

2013) dataset. This dataset provides 68 landmarks and is composed of 3,148 (337 AFW, 2,000

Helen, and 811 LFPW) and 689 (135 IBUG, 224 LFPW, and 330 Helen) images in the training

and test sets, respectively. Similar to RCN (Honari et al., 2016), we split the training set into 90%

5These ids are not personally identifiable information.
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Fig. 8.10. Landmark localization samples on 300W (Sagonas et al., 2013) test-set. The green and red dots
show GT and model predictions, respectively. The yellow lines show the error. These examples illustrate
the improved accuracy obtained by using the ELT cost. The rectangles show the regions that landmarks are
mostly improved.

(2,834 images) train-set and 10% (314 images) valid-set. Since this dataset does not provide any

class label, we can evaluate our model in L and L+ELT cases.

In Table 8.5-left we compare Seq-MT with other models in the literature. Seq-MT model

outperforms many models including CDM, DRMF, RCPR, CFAN, ESR, SDM, ERT, LBF and

CFSS, and is only doing worse than few recent models with complicated architectures, e.g., RCN

(Honari et al., 2016) with multiple branches, RAR (Xiao et al., 2016) with multiple refinement

procedure and Lv et. al. (Lv et al., 2017) with multiple steps. Note that the originality of Seq-MT

is not in the specific architecture used for the first part of the network that localizes landmarks,

but rather in its multi-tasking architecture (specifically in its usage of the class labels to enhance

landmark localization) and also leveraging ELT cost. The landmark localization part of Seq-MT can

be replaced with more complex models. To verify this, we use the RCN model (Honari et al., 2016),

with publicly available code, and replace the original softmax layer with a soft-argmax layer in order

to apply the ELT cost. We refer to this model as RCN+ and it is trained with these hyperparameters:
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Fig. 8.11. Extra examples of our model predictions on 300W (Sagonas et al., 2013) test-set. The
first two columns depict examples where all models get accurate predictions, The next 5 columns
illustrate the improved accuracy obtained by using ELT loss in two different architectures (Seq-MT
and RCN). The last two columns show difficult examples where error is high. The rectangles
indicate the regions that landmarks are mostly affected. The green and red dots show ground truth
(GT) and model predictions (MP), respectively. The yellow lines show the error by connecting GT
and MP. Note that the ELT loss improves predictions in both architectures. Best viewed in color
with zoom.

β = 1.0, τ = 0.5, γ = 0, ω = 1.0. In Figure 8.12 we show the architecture of RCN +. The result

is shown as RCN+(L) when using only landmark cost and RCN+(L+ELT) when using landmark

plus ELT cost. On the 300W dataset we apply the ELT cost to samples with or without labelled

landmarks to observer how much improvement can be obtained when used on all data. We can

further reduce RCN error from 5.54 to 5.1 by applying the ELT cost and soft-argmax. This is a

new state of the art without any data-augmentation. Also we evaluate accuracy of RCN+(L+ELT)

trained without validation set and with early stopping on test set and achieve error of 4.9 - the overall

state-of-the-art on this dataset.

In Table 8.6 we compare Seq-MT with Heatmap-MT and Common-MT on different percentage

of labelled landmarks. We also demonstrate the improvement that can be obtained by using RCN+.

Note that the ELT cost improves the results when applied to two different landmark localization

architectures (Seq-MT, RCN). Moreover, it considerably improves the results on IBUG test-set that
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Fig. 8.12. The ReCombinator Networks (RCN) (Honari et al., 2016) architecture used for ex-
periments on 300W dataset. P indicates a pooling layer. All pooling layers have stride of 2. C
indicates a convolutional layer. The number written below C indicates the convolution kernel
size. All convolutions have stride of 1. U indicates an upsampling layer, where each feature map
is upsampled to the next (bigger) feature map resolution. K indicates concatenation, where the
upsampled features are concatenated with features of the same resolution before a pooling is applied
to them. The dashed arrows indicate the feature maps are carried forward for concatenation. The
solid arrows following each other, e.g. P, C, indicate the order of independent operations that are
applied. The number written above feature maps in num@width× height format indicate number
of feature maps and the width and height of the feature maps. On AFLW, we use 70 feature maps
per layer (instead of 64) and we get two levels coarser to get to 1× 1 resolution (instead of 5× 5).
On both datasets we shoud β = 100 for soft-argmax layer. Please note that the notations C and K
used in this figure are independent from the similar notation used in this Chapter.

contains more difficult examples than the training set. Figures 8.10 and 8.11 shows the improvement

obtained by using ELT cost on some test set samples.

8.4.6. AFLW dataset

AFLW (Köstinger et al., 2011) contains images of 24,386 faces with 19 fiducial landmarks and

3D real-valued head pose information. We use pose as auxiliary task. We split dataset into training,

testing sets, with 20,000 and 4,386 images, respectively. Furthermore, we allocate 2,000 images

from training set for validation set. We use the same splits as in previous work (Ren et al., 2014),

(Lv et al., 2017) for direct comparison. We normalize RMSE by face size as in (Lv et al., 2017).

We evaluate our method on RCN+ trained with ELT cost and head pose regression cost and obtain

a new state of the art of 1.59 with 27% relative improvement. See comparison with other models

in Table 8.5-righ-bottom. We also evaluate our method with only 180 (1%) or 900 (5%) images
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Tab. 8.5. Comparison with other SOTA models (as a percent; lower is better). (left) Performance of different
architectures on 300W test-set using 100% labeled landmarks. The error is Euclidean distance normalized
by ocular distance. (right-top) Comparison with four other multi-tasking approaches and RCN. For these
comparisons, we have implemented the specific architectures proposed in those papers. Error is as in Sections
8.4.3 and 8.4.4. (right-bottom) Comparison of different architectures on AFLW test set. The error is Euclidean
distance normalized by face size.

300W Dataset
Model Common IBUG Fullset

CDM (Yu et al., 2013) 10.10 19.54 11.94
DRMF (Asthana et al., 2013) 6.65 19.79 9.22

RCPR (Burgos-Artizzu et al., 2013) 6.18 17.26 8.35
CFAN (Zhang et al., 2014a) 5.50 16.78 7.69

ESR (Cao et al., 2014) 5.28 17.00 7.58
SDM (Xiong and De la Torre, 2013) 5.57 15.40 7.50

ERT (Cao et al., 2014) 6.40
LBF (Ren et al., 2014) 4.95 11.98 6.32

CFSS (Zhu et al., 2015) 4.73 9.98 5.76
TCDCN* (Zhang et al., 2016) 4.80 8.60 5.54

RCN (Honari et al., 2016) 4.70 9.00 5.54
RCN +\

denoising (Honari et al., 2016) 4.67 8.44 5.41
RAR (Xiao et al., 2016) 4.12 8.35 4.94

(Lv et al., 2017) 4.36 7.56 4.99

Heatmap-MT (L) 6.18 13.56 7.62
Comm-MT (L) 5.68 11.04 6.73

Seq-MT (L) 4.93 10.24 5.95
Seq-MT (L+ELT) 4.84 9.53 5.74

RCN+ (L) 4.47 8.47 5.26
RCN+ (L+ELT) 4.34 8.20 5.10
RCN+ (L+ELT)

(all-train) 4.20 7.78 4.90

Model Multi-PIE HGR1
Percent Labelled 5% 100% 100%

MT-DCNN (Zhang and Zhang, 2014)(L+A) 11.13 7.60 20.87
TCDCN (Zhang et al., 2014c)(L+A) 18.46 10.59 25.85
TCDCN-2 (Zhang et al., 2016)(L+A) 10.75 5.83 18.81
MT-Conv (Devries et al., 2014)(L+A) 9.99 8.08 19.20

RCN (Honari et al., 2016) (L) 7.53 5.78 13.65
RCN+ (L) 6.89 5.04 11.02

RCN+ (L+A) 6.82 4.97 10.88

AFLW Dataset
Model Labeled Images

1% 5% 100%

CDM (Yu et al., 2013) _ _ 5.43
ERT (Cao et al., 2014) _ _ 4.35
LBF (Ren et al., 2014) _ _ 4.25

SDM (Xiong and De la Torre, 2013) _ _ 4.05
CFSS (Zhu et al., 2015) _ _ 3.92

RCPR (Burgos-Artizzu et al., 2013) _ _ 3.73
CCL (Zhu et al., 2016) _ _ 2.72

(Lv et al., 2017) _ _ 2.17

RCN+ (L) 2.88 2.17 1.61
RCN+ (L+A) 2.52 2.08 1.60

RCN+
(L+ELT+A) 2.46 2.03 1.59

Tab. 8.6. Performance of different architectures on 300W test-set. The error is Euclidean distance normal-
ized by ocular distance (eye-centers). Error is shown as a percent; lower is better.

Percentage of Images with Labeled Landmarks

Model 5% 10% 20% 50% 100%

Fullset

Heatmap-MT (L) 13.47 11.68 9.85 8.18 7.62
Comm-MT (L) 16.73 9.66 8.61 7.39 6.73

Seq-MT (L) 9.82 8.30 7.26 6.28 5.95
Seq-MT (L+ELT) 8.23 7.28 6.62 6.10 5.74

RCN+ (L) 7.26 6.48 5.91 5.52 5.26
RCN+ (L+ELT) 7.22 6.32 5.88 5.45 5.10

IBUG

Heatmap-MT (L) 26.36 22.77 18.46 14.94 13.56
Comm-MT (L) 28.64 16.17 14.56 12.16 11.04

Seq-MT (L) 18.74 16.21 13.41 11.20 10.24
Seq-MT (L+ELT) 14.68 12.73 11.39 10.37 9.53

RCN+ (L) 15.36 12.74 11.82 10.12 8.47
RCN+ (L+ELT) 12.54 10.35 9.56 8.67 8.20

of labeled landmarks. Under these settings we get significant improvement with semi-supervised
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learning. With only 5% of labeled data our method outperforms the previous state of the art methods.

Figure 8.13 shows some samples on AFLW test set.
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Fig. 8.13. Examples of our model predictions on the AFLW test set. Comparing the first and second
rows shows the improvement obtained by using ELT+A with only 1% of labelled landmarks. Note
the model trained using ELT+A preserves better the distribution over the landmarks. The last two
columns in the bottom row show samples with high error on small percentage of labelled landmaks,
which is due to extreme rotation. The bottom row shows the prediction using L+ELT+A on the
entire set of labelled landmarks, which gets the best results. The green and red dots show ground
truth (GT) and model predictions (MP), respectively. The yellow lines show the error by connecting
GT and MP. Best viewed in color with zoom.

8.4.7. MTFL dataset

In table 8.7 we compare with other models on MTFL (Zhang et al., 2014c) dataset which

provides 5 landmarks on facial images: eye-centers, nose tip, mouth corners. We follow the same
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protocol as (Honari et al., 2016) for comparison, where we use train and valid sets of 9,000 and

1,000 images, respectively. We test our model on AFLW and AFW subsets, with 29,995 and

337 images, that were re-annotated with 5 landmarks. For the L + A case we use the head-pose

which is categorized into one of the five cases: right profile, right, frontal, left, left profile. Other

attribute labels, e.g. gender and wearing glasses, cannot be determined from such few landmarks

and therefore are not useful in our proposed semi-supervised learning of landmarks.
Tab. 8.7. Results on MTFL test sets for 100% labelled data

Model Our
ESR RCPR SDM TCDCN RCN RCN+(L) RCN+(L+A)

AFLW 12.4 11.6 8.5 8.0 5.6 5.22 5.02
AFW 10.4 9.3 8.8 8.2 5.36 5.13 5.08

8.4.8. Comparison with other techniques

In Table 8.5 we compare with recent models proposed for landmark localization and in Table 8.4

we evaluate their training conditions. RAR, TCDCN, Lv et. al., and CFSS do not use an explicit

validation set. This makes comparison with these models more difficult for two reasons: 1) These

models do hyper-parameter (HP) selection on the test set, which makes them overfit on the test

set; and 2) Their effective training size is bigger. When we use the entire training set (row RCN+

(L+ELT) (all-train) in Table 8.5-left we report new SOTA on the 300W dataset. The first three

models use extra datasets, either through pre-trained models (RAR, Lv et. al.) or additional labeled

data (TCDCN), while we do not leverage any extra data. Finally, our method is 136 and 6.5 times

faster than RAR and Lv et. al methods.

8.5. Analysis

In this section, we provide some analysis such as which auxiliary labels can be leveraged in the

proposed semi-supervised setting with landmarks, or how soft-argmax compares with the soft-max

layer for landmark localization. We also report classification performance for different multi-tasking

models studied in this chapter.
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8.5.1. Selecting auxiliary labels for semi-supervised learning

The impact of an attribute on the landmark in sequential training depends on the amount

of informational overlap between the attribute and the landmarks. We suggest to measure the

normalized mutual information adjusted to randomness (Adjusted Mutual Information (AMI)), as a

selection heuristic, prior to applying our method. AMI ranges from 0 to 1 and indicates the fraction

of statistical overlap. We compute for each attribute its AMI with all landmark coordinates.

On Multi-PIE we got AMI(w;h) = 0.045, indicating a low mutual information between the

width w and the height h landmark coordinates. We therefore compute AMI for attribute (A)

and every landmark (as w,h pair) by discretizing every variable uniformly under assumption of

coordinate independence: AMI(A;w,h) = AMI(A;w)+AMI(A;h). Every variable is uniformly

discretized to have 20 levels at most. Finally we measure averaged mutual information between an

attribute and the set of landmarks as

1

N ×K

N∑
n=1

K∑
k=1

AMI(An;wkn) + AMI(An;hkn)

where N and K indicate the number of samples and landmarks. The second sum is over the width

wk
n and height hkn for each landmark k ∈ K in sample n. In Table 8.8 we observe that hand gesture

labels and head pose regression are among the most effective attributes for our method. There is

little mutual information between wearing glasses and landmarks, indicating lack of usefulness of

this attribute for our semi-supervised setting.
Tab. 8.8. Mutual Information between all landmarks and each attribute

Dataset MultiPIE HGR1
Attribute Random Emotion Camera Identity Gesture Label

AMI, mean .000 .098 .229 .049 .559
AMI, max .006 .229 .493 .088 .669

Dataset AFLW MTFL
Attribute Random Pose Regression Glasses Pose Classification

AMI, mean .000 .536 .002 .069
AMI, max .006 .576 .003 .222

The attributes that are mostly useful yield a high accuracy, or low error, if we just train a neural

network that takes only ground truth landmarks as input and predicts the attribute. This indicates

that by relying only on landmarks we can get high accuracy for those attributes. In Table 8.9 we
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compare the attribute prediction accuracy from the proposed Seq-MT model with a case when we

do such prediction from GT landmarks. Prediction from GT landmarks always outperforms the

one of Seq-MT. This indicates that in our semi-supervised setting, where we have few labelled

landmarks, by improving the predicted locations of landmarks, both attribute and landmarks error

would reduce.
Tab. 8.9. Attribute classification accuracy (MultiPIE, HGR1)—higher is better—or prediction error
(AFLW)—lower is better—from GT & estimated landmarks.

MultiPIE HGR1 AFLW
Attribute Camera Emotion Label Pose Error

From GT Landmarks 99.54 ↑ 88.21 ↑ 91.7 ↑ 4.98 ↓
Best Seq-MT Attr. Predict. 98.96 86.48 79.1 5.10

8.5.2. Comparison of softmax and soft-argmax

Heatmap-MT(L) and Seq-MT(L) have the same architectures but use different loss functions

(softmax vs. soft-argmax). RCN(L) and RCN+(L) also only differ in their loss function. When

comparing these models in Tables 8.1, 8.2, 8.3, 8.5, and 8.6 soft-argmax outperforms soft-max. To

further examine these two losses we replace soft-max with soft-argmax in Heatmap-MT and show

the results in Table 8.10. Comparing the results in Table 8.10 with Tables 8.2 and 8.3, we observe

improved performance of landmark localization using soft-armgax. In soft-max the model cannot

be more accurate than the number of elements in the grid, since soft-max does a classification over

the pixels. However, in soft-argmax the model can regress to any real number and hence can get

more accurate results. We believe this is the reason behind its better performance.
Tab. 8.10. Results on Heatmap-MT (L+A) comparing soft-max with soft-argmax.

Dataset 5% 10% 20% 50% 100%

Multi-PIE softmax 11.03 9.03 8.15 7.11 6.65
soft-argmax 8.00 7.06 6.29 5.49 5.14

HGR1 softmax 64.8 54.9 43.2 30.5 26.7
soft-argmax 56.88 42.79 33.07 22.5 18.8

8.5.3. Attribute classification accuracy

Although the focus of this paper is on improving landmark localization, in order to observe

the impact of each multi-tasking approach on the attribute classification accuracy, we report the
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classification results for MultiPIE dataset on emotion in Table 8.11 and on camera in Table 8.12.

Results show that the classification accuracy improves by providing more labeled landmarks, despite

having the number of (image, class label) pairs unchanged. It indicates that improving landmark

localization can directly impact the classification accuracy. Landmarks are especially more helpful

in emotion classification. On camera classification, the improvement is small and all models are

getting high accuracy. Another observation is that Heatmap-MT performs better on classification

tasks compared to the other two multi-tasking approaches. We believe this is due to passing more

high-level features from the image to the attribute classification network compared to Seq-MT.

However, this model is performing worse than Seq-MT on landmark localization. The Seq-MT

model benefits from the landmark bottleneck to improve its landmark localization accuracy. In

Tables 8.11 and 8.12 by adding the ELT cost the classification accuracy improves (in addition to

landmarks) indicating the improved performance in landmark localization can enhance classification

performance.

In Table 8.13 we show classification accuracy obtained using different multi-tasking techniques

for the HGR1 hands dataset. Similar to the Multi-PIE dataset, we observe increased accuracy by

providing more labeled landmarks, showing the classification would benefit directly from landmarks.

Also similar to Multi-PIE, we observe better classification accuracy with Heatmap-MT. Comparing

Seq-MT models, we observe improved classification accuracy by using the ELT cost. It demonstrates

the impact of this component on both landmark localization and classification accuracy.

In Table 8.14 we show pose estimation error on AFLW dataset using different percentage of

labelled data for RCN+ (L+ELT+A) model and compare the results to a model trained to estimate

pose from GT landmarks. All models get close results compared to GT model indicating RCN+

(L+ELT+A) can do a reliable pose estimation using a small set of labelled landmarks.

8.6. Architectural details

The architectural details of Seq-MT model on different datasets can be seen in Tables 8.17, 8.18

and 8.19. Architectural details of Comm-MT and Heatmap-MT for Blocks dataset are shown in

Tables 8.15 and 8.16. For other dataset, the kernel size and the number of feature maps for conv

layers and the number of units for FC layers change similar to Seq-MT model on those datasets.
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Tab. 8.11. Emotion classification accuracy on Multi-PIE test set. In percent; higher is better.

Percentage of Images with Labeled Landmarks

Model 5% 10% 20% 50% 100%

Comm-MT (L+A) 74.67 79.90 83.76 86.37 86.83
Heatmap-MT (L+A) 85.14 87.50 86.93 88.16 87.29

Seq-MT (L+A) 78.78 82.62 84.69 84.03 84.86
Seq-MT (L+A+ELT) 82.90 84.57 84.85 86.48

Tab. 8.12. Camera classification accuracy on Multi-PIE test set. In percent; higher is better.

Percentage of Images with Labeled Landmarks

Model 5% 10% 20% 50% 100%

Comm-MT (L+A) 96.98 97.53 98.30 98.63 98.80
Heatmap-MT (L+A) 98.46 98.99 98.99 98.98 98.98

Seq-MT (L+A) 97.97 98.31 98.50 98.96 98.92
eq-MT (L+A+ELT) 98.41 98.53 98.47 98.43

Tab. 8.13. Classification accuracy on hands test set. In percent; higher is better.

Percentage of Images with Labeled Landmarks

Model 5% 10% 20% 50% 100%

Comm-MT (L+A) 60.86 69.64 69.20 76.03 73.42
Heatmap-MT (L+A) 83.74 87.86 87.55 90.29 89.27

Seq-MT (L+A) 69.08 70.14 72.26 77.07 75.92
Seq-MT (L+A+ELT) 74.64 75.01 73.90 79.10

Tab. 8.14. Pose degree estimation error on AFLW test set, as average of yaw, pitch, roll values.
lower is better.

Percentage of Images with Labeled Landmarks

Model 1% 5% 100%

RCN+(L+ELT+A) 5.05 5.01 5.12

GT 4.98

8.7. Conclusion

We presented a new architecture and training procedure for semi-supervised landmark localiza-

tion. Our contributions are twofold; We first proposed an unsupervised technique that leverages

equivariant landmark transformation without requiring labeled landmarks. In addition we developed
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Tab. 8.15. Architectural details for Comm-MT Model on Blocks dataset.

Input = 60× 60× 1

Conv 9× 9× 8, ReLU, stride 1, SAME
Conv 9× 9× 8, ReLU, stride 1, SAME
Conv 9× 9× 8, ReLU, stride 1, SAME
Conv 9× 9× 8, ReLU, stride 1, SAME
Conv 9× 9× 8, ReLU, stride 1, SAME

Pool 2× 2, stride 2
Conv 9× 9× 8, ReLU, stride 1, SAME

Pool 2× 2, stride 2
Conv 1× 1× 8, ReLU, stride 1, SAME
Conv 1× 1× 8, ReLU, stride 1, SAME

FC #units = 256, ReLU, dropout-prob=.25
FC #units = 256, ReLU, dropout-prob=.25

Classification branch Landmark localization branch

FC #units = 15, Linear FC #units = 10, Linear
softmax(dim=15)

an architecture to improve landmark estimation using auxiliary attributes such as class labels by

backpropagating errors through the landmark localization components of the model. Experiments

show that these achieve high accuracy with far fewer labeled landmark training data in tasks of

landmark location for hands and faces. We achieve new state of the art performance on public

benchmark datasets for fiducial points in the wild, 300W and AFLW.
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Tab. 8.16. Architectural details for Heatmap-MT Model on Blocks datasets.

Input = 60× 60× 1

Conv 9× 9× 8, ReLU, stride 1, SAME
Conv 9× 9× 8, ReLU, stride 1, SAME
Conv 9× 9× 8, ReLU, stride 1, SAME
Conv 9× 9× 8, ReLU, stride 1, SAME
Conv 9× 9× 8, ReLU, stride 1, SAME
Conv 9× 9× 8, ReLU, stride 1, SAME
Conv 1× 1× 8, ReLU, stride 1, SAME
Conv 1× 1× 5, ReLU, stride 1, SAME

classification branch landmark localization branch

Pool 2× 2, stride 2 —
Conv 9× 9× 8, ReLU, stride 1, SAME —

Pool 2× 2, stride 2 —
Conv 9× 9× 8, ReLU, stride 1, SAME —

Pool 2× 2, stride 2 —
Conv 9× 9× 8, ReLU, stride 1, SAME —

Pool 2× 2, stride 2 —
Conv 9× 9× 8, ReLU, stride 1, SAME —

FC #units = 256, ReLU, dropout-prob=.25 —
FC #units = 256, ReLU, dropout-prob=.25 —

FC #units = 15, Linear —
softmax(dim=15) softmax(dim=60× 60)

Tab. 8.17. Architectural details of Seq-MT model used for Shapes and Blocks datasets. Each conv
layer has three values as width× height× num indicating width, height of kernel and the number
of feature maps of the convolutional layer. SAME indicates the input map is padded with zeros such
that input and output maps have the same resolution.

Shapes Dataset Blocks Dataset

Model HP: ω = 0, τ = 0, γ = 0, β = 1, ADAM Model HP: ω = 1, τ = 1, β = 1, ADAM

Landmark Localization Network Landmark Localization Network

Input = 60× 60× 1 Input = 60× 60× 1
Conv 7× 7× 16, ReLU, stride 1, SAME Conv 9× 9× 8, ReLU, stride 1, SAME
Conv 7× 7× 16, ReLU, stride 1, SAME Conv 9× 9× 8, ReLU, stride 1, SAME
Conv 7× 7× 16, ReLU, stride 1, SAME Conv 9× 9× 8, ReLU, stride 1, SAME
Conv 7× 7× 16, ReLU, stride 1, SAME Conv 9× 9× 8, ReLU, stride 1, SAME
Conv 7× 7× 16, ReLU, stride 1, SAME Conv 9× 9× 8, ReLU, stride 1, SAME
Conv 7× 7× 16, ReLU, stride 1, SAME Conv 9× 9× 8, ReLU, stride 1, SAME
Conv 1× 1× 16, ReLU, stride 1, SAME Conv 1× 1× 8, ReLU, stride 1, SAME
Conv 1× 1× 2, ReLU, stride 1, SAME Conv 1× 1× 5, ReLU, stride 1, SAME

soft-argmax(num_channels=2) soft-argmax(num_channels=5)

Classification Network Classification Network

FC #units = 40, ReLU FC #units = 256, ReLU, dropout-prob=.25
FC #units = 2, Linear FC #units = 256, ReLU, dropout-prob=.25

FC #units = 15, Linear
softmax(dim=2) softmax(dim=15)
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Tab. 8.18. Architectural details of Seq-MT model used for Hands and Multi-PIE datasets.

Hands Dataset Multi-PIE Dataset

Model HP: ω = 0.5, τ = 0.3, γ = 10−5, β = 0.001, ADAM Model HP: ω = 2, τ = 0.3, γ = 10−5, β = 0.001, ADAM

Preprocessing: scale and translation [-10%, 10%] of face bounding box, rotation [-20, 20] applied randomly to every epoch.

Landmark Localization Network Landmark Localization Network

Input = 64× 64× 1 Input = 64× 64× 1
Conv 9× 9× 64, ReLU, stride 1, SAME Conv 9× 9× 64, ReLU, stride 1, SAME
Conv 9× 9× 64, ReLU, stride 1, SAME Conv 9× 9× 64, ReLU, stride 1, SAME
Conv 9× 9× 64, ReLU, stride 1, SAME Conv 9× 9× 64, ReLU, stride 1, SAME
Conv 9× 9× 64, ReLU, stride 1, SAME Conv 9× 9× 64, ReLU, stride 1, SAME
Conv 9× 9× 64, ReLU, stride 1, SAME Conv 9× 9× 64, ReLU, stride 1, SAME
Conv 9× 9× 25, ReLU, stride 1, SAME Conv 9× 9× 68, ReLU, stride 1, SAME

soft-argmax(num_channels=25) soft-argmax(num_channels=68)

Classification Network Emotion Classification Branch Camera Classification Branch

FC #units = 256, ReLU, dropout-prob=.5 FC #units = 256, ReLU, dropout-prob=.25 FC #units = 256, ReLU, dropout-prob=.25
FC #units = 256, ReLU, dropout-prob=.5 FC #units = 256, ReLU, dropout-prob=.25 FC #units = 256, ReLU, dropout-prob=.25

FC #units = 27, Linear FC #units = 6, Linear FC #units = 5, Linear
softmax(dim=27) softmax(dim=6) softmax(dim=5)

Tab. 8.19. Architectural details of Seq-MT model used for 300W datasets.

300W Dataset

Model HP: ω = 2.0, τ = 2.0, γ = 10−5, β = 0.01, ADAM

Preprocessing: scale and translation [-10%, 10%] of face bounding box,
rotation [-30, 30] applied randomly to every epoch.

Landmark Localization Network

Input = 64× 64× 1
Conv 9× 9× 32, ReLU, stride 1, SAME
Conv 9× 9× 32, ReLU, stride 1, SAME
Conv 9× 9× 32, ReLU, stride 1, SAME
Conv 9× 9× 32, ReLU, stride 1, SAME
Conv 9× 9× 32, ReLU, stride 1, SAME
Conv 9× 9× 32, ReLU, stride 1, SAME
Conv 9× 9× 32, ReLU, stride 1, SAME
Conv 9× 9× 68, ReLU, stride 1, SAME

soft-argmax(num_channels=68)
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Chapter 9

Prologue to Fourth Article

9.1. Article Details

Unsupervised Depth Estimation, 3D Face Rotation and Replacement. Joel Ruben Antony

Moniz, Christopher Beckham, Simon Rajotte, Sina Honari, Christopher Pal. Proceedings of the

32nd Conference on Neural Information Processing Systems (NeurIPS 2018).

The idea of estimating depth without supervision by matching source and target keypoints

was initially proposed by Christopher Pal and Joel Moniz. Initially I helped Joel by providing

my ReCombinator Networks model to extract two dimensional (2D) keypoints. The keypoints

were used to train the DepthNet model. While my initial help was limited to this technical help,

I then, at Chris Pal’s request, took on a more senior leading role in this project. The work lacked

comparison with the models in the literature due to its different approach compared to existing

models, which made comparisons difficult. I did a literature review on depth estimation papers

and proposed a comparison platform with the current models, which provided a baseline for model

comparison. I also helped on the design and experimental setup of the applications of DepthNet

such as face rotation, background synthesis and face replacement. Most of the coding and running

of the experiments was done by Christopher Beckham, Joel Moniz and Simon Rajotte. I had mostly

a mentorship role helping Christopher Beckham, Joel Moniz and Simon Rajotte on experiment

setup, evaluations, debugging and analysis of the results. I also did most of the writing of the

manuscript which got accepted at NeurIPS. Please note that the variable notations in this chapter

have been changed compared to the published article version to unify the notations of the repeating

concepts in the thesis.
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9.2. Context

At the time of working on this research, most of the models on depth estimation required ground

truth depth values in their formulations, as in (Eigen et al., 2014; Jackson et al., 2017; Liu et al.,

2015). Some other models estimated depth in an unsupervised style, by either requiring left-right

images from a stereo camera, as in (Garg et al., 2016; Godard et al., 2017) or using nearby frames of

monocular video (Zhou et al., 2017). Since these model require pixel level reconstruction from one

image to another, they need very similar frames for this reconstruction, either taken from a stereo

camera with images captured at the same time from the same scene with a small disparity, or nearby

frames of a video containing small changes from one frame to another. Our proposed approach, on

the other hand, maps keypoints on pairs of images and since it does not require pixel reconstruction

from one image to another, it can take two faces from different identities or pixel intensities (e.g.

different skin colors). Some other frameworks, as in (Atapour-Abarghouei and Breckon, 2018;

Tung et al., 2017a), used synthetic data to pre-train their model on ground truth 3D values, and

then on real data they use projection of their estimated 3D model onto a 2D representation or

leverage domain adaptation for further tuning the model. Adversarial Inverse Graphics Network

(Tung et al., 2017b) takes 2D keypoint heatmaps to estimate 3D poses and uses a reconstruction

loss from projecting 3D back to 2D. To estimate the depth properly, they pass the 3D data to a

discriminator which is trained to distinguish real 3D from generated 3D data. Although they do

not use the ground truth depth value corresponding to each training example, they have a set of

ground truth depth values that they use to train the discriminator. Therefore all methods in (Atapour-

Abarghouei and Breckon, 2018; Tung et al., 2017a,b) use depth values either through synthetic data

or a set of ground truth values. MOFA (Tewari et al., 2017) uses an unsupervised encoder-decoder

architecture on RGB face images, where the encoder estimates underlying face parameters such as

3D shape, expression, skin reflectance, and camera parameters, and the decoder is a differentiable

face renderer that reconstructs the input image from the estimated latent parameters. This model

is unsupervised and the parameters estimated by the encoder are not trained using ground truth

data. However, due to lack of supervision on the latent parameters and having many free parameters

such as skin reflectance, pose, illumination and expression, their parameters are not constrained

and, as we also show in our experiments, their model is not capable of adapting well to different
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poses. Our approach estimates depth of keypoints without depth supervision by mapping source face

keypoints onto a target face keypoints using an affine transformation matrix. We show that the affine

parameters can be formulated as a function of keypoints and estimated depth, and unlike MOFA

which has many unknown free parameters – and therefore their setting is not well constrained – in

our formulation the only unknown parameter is depth. This provides a more constrained setting and

therefore the estimated depth is more robust. Another advantage of our model is mapping source to

target keypoints instead of pixel intensities. Therefore, the pair passed to the model does not need

to belong to the same person.

9.3. Contributions

We present an unsupervised approach for learning to estimate three dimensional (3D) facial

structure from a single image while also predicting 3D viewpoint transformations that match

a desired pose and facial geometry. We achieve this by inferring the depth of facial keypoints

of an input image in an unsupervised manner, without using any form of ground-truth depth

information. We show how it is possible to use these depths as intermediate computations within

a new backpropable loss to predict the parameters of a 3D affine transformation matrix that maps

inferred 3D keypoints of an input face to the corresponding 2D keypoints on a desired target facial

geometry or pose. Our resulting approach, called DepthNets, can therefore be used to infer plausible

3D transformations from one face pose to another, allowing faces to be frontalized, transformed

into 3D models or even warped to another pose and facial geometry. Lastly, we identify certain

shortcomings with our formulation, and explore adversarial image translation techniques as a

post-processing step to re-synthesize complete head shots for faces re-targeted to different poses or

identities.

9.4. Recent Developments

Due to our work just being published in NeurIPs 2018, further time is required to observe how

this line of research evolves from here. An interesting recent work is (Srinivasan et al., 2018), which

takes one all-in-focus RGB image and by changing aperture size of the image they estimate depth of

the pixels. Another recent work is (Mahjourian et al., 2018), which estimates depth by aligning the
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3D geometry using point clouds of adjacent frames. In their approach they consider both geometry

of the scene and also pixel consistency between adjacent frames. A depth estimation using images

from the Internet is done in (Li and Snavely, 2018), which takes picture of known landmarks

(e.g. Colosseum, Big Ben) uploaded by random people all over the web and extracts depth by

using overlapping viewpoints through applying structure-from-motion (SfM) and multi-view stereo

(MVS) methods. Although their approach takes pairs of corresponding patches during training, they

show it can predict reliable depth using random images from the Internet and when applied to other

datasets it can estimate decent depth values.
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Chapter 10

Unsupervised Depth Estimation, 3D Face Rotation and

Replacement

10.1. Introduction

Face rotation is an important task in computer vision. It has been used to frontalize faces for

verification (Hassner et al., 2015; Taigman et al., 2014; Yin et al., 2017; Zhao et al., 2018) or to

generate faces of arbitrary poses (Shen et al., 2018; Tran et al., 2017). In this paper we present

a novel unsupervised learning technique for face rotation and warping from a 2D source image –

whose facial appearance will be used in the rotation – to a target face – to which the facial pose

and geometry inferred from the source image is mapped. A use case is when we have an image of

someone in a particular target pose and we want to put a given source face into that pose, without

knowing the exact target face pose. This can be leveraged, for example, in the advertisement

industry, when putting someone in a particular location can be costly or unfeasible, or in the movie

industry when the main actor’s limited time or high cost can enforce using another actor whose

face can be later replaced by the main actor’s. This is achieved through estimating the source face

depth and the 3D affine parameters that warp the source to the target face using neural networks.

These neural networks use a novel loss formulation for the structured prediction of keypoint depths.

Once the 3D affine transformation matrix is estimated, it can be used to warp the source image

onto the target face geometry using a textured triangular mesh. The use of a 3D affine transform

means that we can capture both a 3D rotation of the face to a new viewpoint as well as a global

non-Euclidean warping of the geometry to match a target face. We call these neural networks Depth

Estimation-Pose Transformation Hybrid Networks, or DepthNets in short.
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Our first contribution is to propose a neural architecture that predicts both the depth of source

keypoints as well as the parameters of a 3D geometric affine transformation which constitute the

explicit outputs of the DepthNet model. The predicted depth and affine transformation could be then

used to map a source face to a target face for object orientation, distortion and viewpoint changes.

Our second contribution consists of making the observation that given 3D source and 2D target

keypoints, closed form least squares solutions exist for estimating geometric affine transformation

models between these sets of keypoint correspondences, and we can therefore develop a model that

captures the dependency between depth and the affine transformation parameters. More specifically,

we express the affine transformation as a function of the pseudoinverse transformation of 2D

keypoints in a source image – augmented by inferred depths – and the target keypoints. Thus, the

second and major contribution in this work is capturing the relationship between an estimated affine

transformation and the inferred depth as a deterministic relationship. In this formulation, DepthNet

only predicts depth values explicitly and the affine parameters are inferred through a pseudoinverse

transformation of source and target keypoints. Here, one can directly optimize through the solutions

of what might otherwise be formulated as a secondary minimization step.

Our proposed DepthNet can map the central region of the source face to the target geometry.

This leads to background mismatch when warping one face to another. Finally, our third contribution

is to use an adversarial unpaired image-to-image transformation approach to repair the appearance

of 3D models inferred from DepthNet. Together these contributions allow 3D models of faces that

construct realistic images in the target pose. Our proposed method can be used for pose normalization

or face swaps with no manually specified 3D face model. To the best of our knowledge, this is

the first such neural network based model that estimates a 3D affine transformation model for face

rotation which neither requires ground-truth 3D images nor any ground truth 3D face information

such as depth.

10.2. Related Work

In this section, we review the related works on 3D face models, generative adversarial models

on face rotation, and depth estimation models.
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10.2.1. 3D Transformation on Faces

While there is a large body of literature on 3D facial analysis, many standard techniques are

not applicable to our setting here. As an example, morphable models (Blanz and Vetter, 1999)

cover a wide variety of approaches which are capable of high quality 3D reconstructions, but such

methods usually require 3D face scans or reconstructions from multi-view stereo to be assembled

so as to learn complex parametric distributions over face shapes. A close approach to our own

is that of (Hassner, 2013) on viewing real world faces in 3D. Similar to our work, this approach

does not require aligned 3D face scans, highly engineered models or manual interventions. They

make the observation that if 2D keypoints can be obtained from a single input image of a face and

these keypoints are matched to an arbitrary 3D target geometry, then standard camera calibration

techniques can be used to estimate plausible intrinsics and extrinsics of the camera. This allows

the estimated camera matrix, 3D rotation matrix and 3D translation vector to be used to transform

the target 3D model to the pose of the query image from which an approximate depth can be

obtained. Hassner et. al (Hassner et al., 2015) explore the use of a single unmodified 3D surface

as an approximation to the shape of all input faces. In contrast, our approach only requires 2D

keypoints from the source and target faces as input. It then estimates the depth of the source face

keypoints, thereby inferring an image specific 3D model of the face.

DeepFace (Taigman et al., 2014) uses face frontalization to improve the performance of a face

verification system. It uses a 3D mask composed of facial keypoints, detects the corresponding

locations of these keypoints in the image, and maps the 2D keypoints onto a 3D face model to

frontalize it. DeepFace, however, maps to a template 3D face, therefore always mapping to a specific

pose and geometry. DepthNet, on the other hand, can map to any pose and geometry, giving it more

expressive flexibility.

10.2.2. Generative Adversarial Networks on Face Rotation

Recently, adversarial models in (Huang et al., 2017; Shen et al., 2018; Tran et al., 2017; Yin

et al., 2017; Zhao et al., 2017, 2018) have explored face rotation. TP-GAN (Huang et al., 2017)

performs face frontalization through introducing several losses to preserve identity and symmetry
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of the frontalized faces. PIM (Zhao et al., 2018) frontalizes faces in a composed adversarial loss

and then extracts pose invariant features for face recognition. These models are mainly aimed for

face verification, where they can only do face-frontalization. Another limitation of these models is

in requiring ground truth frontal images of the same identity during training. DR-GAN (Tran et al.,

2017) rotates faces to any target pose by using a discriminator that also does identity classification

in addition to pose prediction, to preserve id and pose. While these models do pure face rotation of

a 2D face, our model can warp the input face to any other target face, allowing warping the input

face to any other identity, with a different geometry and pose. Moreover, our model also estimates

the 3D geometric affine transformation parameters explicitly, allowing these parameters to be used

later, e.g., for face texture swap.

FF-GAN (Yin et al., 2017), DA-GAN (Zhao et al., 2017), and FaceID-GAN (Shen et al., 2018)

estimate parameters of either a 3D Morphable Model (3DMM), as in (Shen et al., 2018; Yin et al.,

2017), or source to target pose transformation, as in (Zhao et al., 2017). FF-GAN uses 3DMM

parameters to frontalize faces in an adversarial approach, while FaceID-GAN uses the 3DMM

parameters to generate any target pose. These models, however, train 3DMM on ground truth labels

such as identity, expression and pose. DepthNet, on the other hand, estimates depth and affine

transformation parameters without requiring ground truth affine or depth labels or pre-training.

Similar to DepthNet, DA-GAN (Zhao et al., 2017) estimates parameters of an affine transformation

model that maps a 2D face to a 3D face. Unlike DepthNet that estimates depth on the source

face, DA-GAN uses depth in a template target face. While their approach eliminates the need

for depth estimation, it only allows the source face to be mapped to the target template geometry,

while DepthNet can map the source face to any target geometry, provided by a target image, or its

keypoints. We demonstrate the application of this flexibility for the face replacement task.

The aforementioned adversarial models use an identity preserving loss to maintain identity. The

core DepthNet model does not need identity labels and preserves well the identity (as shown in

Figure 10.1 (right)). However, the identity information can be used by the proposed adversarial

components, as in background synthesis, to further improve the results. Unlike some of these

models that take target pose as input, DepthNet uses the target keypoints to estimate the target

geometry and does not require the target pose. This has several advantages; 1) DepthNet can map to
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the geometry of the target face in addition to the pose, and 2) in the face replacement task, DepthNet

can replace the target face with the warped source face directly onto the target face location. Its

application is shown in the face swap experiment in Section 10.4.3.

10.2.3. Depth Estimation

Thewlis et. al (Thewlis et al., 2017) propose a mapping technique to learn a proxy of 2D

landmarks in an unsupervised way. A semi-supervised technique has been also proposed in (Honari

et al., 2018) that improves landmark localization by using weaker class labels (e.g. emotion

or pose) and also by making the model predict equivariant variations of landmarks when such

transformations are applied to the image. Similar to these approaches, DepthNet also maps a source

to a target to learn its parameters. However, unlike these two approaches that estimate 2D landmarks,

DepthNet estimates the depth of the landmarks using 2D matching of keypoints, by formulating

affine parameters as a function of depth augmentated keypoints in a closed form solution.

While several models (Eigen et al., 2014; Jackson et al., 2017; Liu et al., 2015) estimate depth

with direct supervision, there have been recent models (Garg et al., 2016; Godard et al., 2017; Zhou

et al., 2017) that estimate depth in an unsupervised training procedure. These models rely on pixel

reconstruction by using frames that are captured from very similar scenes, e.g. nearby frames of a

video (Zhou et al., 2017) or left-right frames captures by stereo cameras (Garg et al., 2016; Godard

et al., 2017). These models estimate depth on one frame and then by using the disparity map,

measure how pixel values of nearby frames compare to each other. To do this, they also require

camera intrinsic parameters, e.g. focal length or distance between cameras. Unlike these models,

our approach does not require source to target pixel mapping. This allows mapping faces from

different people with completely different skin colors, without knowing camera parameters or how

they are positioned with respect to each other. Therefore, DepthNet is not susceptible to variations

in illuminations or lighting between source and target faces.

(Tung et al., 2017a) estimates 3D human pose in videos, where it uses synthetic data to pre-train

internal parameters of the model and fine-tunes them by keypoint, segmentation and motion loss.

Adversarial Inverse Graphics Networks (AIGN) (Tung et al., 2017b) estimates 3D human pose from

2D keypoint heatmaps in a semi-supervised manner with a similar formulation to that of CycleGAN.
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It applies an adversarial loss on the 3D pose to make them look realistic. These models leverage the

depth values either through synthetic data (Tung et al., 2017a), or by adversarial usage of ground

truth depth values (Tung et al., 2017b). Unlike these models, DepthNet does not rely on any depth

signal, either directly or indirectly. MOFA (Tewari et al., 2017) builds a 3D face mesh using a single

image, where the 3D face parameters such as 3D shape and skin reflectance are estimated by an

encoder and then using a differentiable model they are rendered back to the image by the decoder.

This model requires manual initialization to map the input image to the 3D mesh, since otherwise it

is doing an unconstrained optimization by adapting both the face pose and the skin reflectance. Our

model, however, does not require any manual initialization.

10.3. Our Approach

As we have outlined above, our approach uses neural networks for inferring depth and geometric

transformation – referred to as DepthNets; and, an adversarial image-to-image transformation

network which improves the quality of the appearance of a 3D model inferred from a DepthNet.

DepthNets

We propose three DepthNet formulations, described in Sections 10.3.1, 10.3.2, and 10.3.3. For

each of the three models we explore two architectural scenarios: (A) a Siamese-like architecture

that uses the source and target images themselves as well as keypoints extracted from these images,

and (B) a fully-connected neural network variant which uses only facial keypoints in the source and

target images. See Figure 10.1 (left) for details.

It is interesting to note that if DepthNets are used to register a set of images of objects to the

same common viewpoint, the same image and geometry can be used as the target. This is the case

for the frontalization of faces, for example. While the DepthNet framework is sufficiently general to

be applied to any object type where 2D keypoint detections have been made, our experiments here

focus on faces. We describe the three variants of DepthNets below.
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Fig. 10.1. (Left) DepthNet architecture. The blue region is only used in case (A) and the red
part is used in both cases (A) and (B), described in Section 10.3. The orange output (the 8 affine
transformation parameters) is predicted only by model variations described in Sections 10.3.1 and
10.3.2, and not the model described in section 10.3.3. All three models predict the K depth values
of the source keypoints. C, P, and FC correspond to valid conv, pool and fully-connected layers. The
two paths of Siamese network share parameters and the black dots indicate concatenating keypoint
values to FC units. (Right) Visualizing face rotation by re-projecting a frontal face (far left) to a
range of other poses defined by the faces in the row above (in each pair of rows). In this experiment,
we only use keypoints from the top-row in the DepthNet model (Model 7 in Table 10.1).

10.3.1. Predicting Depth and Viewpoint Separately

In this variant of DepthNets, the model predicts both depths and viewpoint geometry, but as

separate explicit outputs of a neural network. The input is comprised of only the geometry and pose

of the source and target faces (encoded in the form of a 2D keypoint template), in case (B), or both

keypoints and images of the source and target faces, in case (A). The key phases of this stage are

described by the sequence of steps given below:

(1) Keypoint extraction: Raw width w and height h values for each keypoint in each image,

are extracted using a Recombinator Network (RCN) (Honari et al., 2016) architecture, and then

concatenated before being passed into the keypoint processing step.

(2) (Optional) Image Feature Extraction: DepthNets can be conditioned on only keypoints, case

(B), or on keypoints and the original images, case (A). We can therefore optionally subject the

source and target images to alternating conv-maxpool layers. If this component of the architecture

is used, the last spatial feature maps in the Siamese architecture are concatenated before being given

to a set of densely connected hidden layers.

(3) Keypoint processing: In this step keypoints are passed through a set of hidden layers. If the

Image Feature Extraction stage is used, the keypoints are concatenated to image features, the output
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of which is in turn fed to densely connected layers. The output layer of this phase will be of size

K + 8, where K is the number of keypoints. The first K points represent the depth proxy, and the

last 8 points form a 4× 2 matrix representing the learned parameters of the affine transform. See

Figure 10.1.

(4) Geometric Affine Transformation Normalizer: This phase applies the predicted affine transform

on each (depth augmented) source keypoint to estimate its target location. Let (wks , h
k
s) represent

the kth source keypoint, (wke , h
k
e) the corresponding estimated keypoint by applying the affine

transformation matrix, (wkt , h
k
t ) the kth target keypoint (as ground truth (GT)), and xs and xt

represent the source and target images respectively. Depending on which underlying architectural

variant we use, two cases arise: one that utilizes only the keypoints (B), and another utilizing

both the keypoints and the images (A). Since the keypoints are generated using RCNs, they are

technically functions of the input images: [ws,hs] = L(xs), and [wt,ht] = L(xt). Depending on

the (A) or (B) variant, the kth source keypoint’s estimated depth proxy dks is inferred as a function

of the input keypoints, or both input keypoints and input images. In both cases the keypoints

are derived from the images, so dks = dks(xs,xt). Similarly, the 3D-2D affine transform F is a

function of the images, such that F = F (xs,xt), where the 8 predicted parameters are: F =

{m1,m2,m3, trw,m4,m5,m6, trh}. These constitute the 3D-2D affine transform which is used by

all keypoints. In other words, each of the k points is transformed using yke = F (xs,xt) yks , or:

 wke

hke

 =

m1 m2 m3 trw

m4 m5 m6 trh




wks

hks

dks(xs,xt)

1


The loss function of a DepthNet is obtained by transforming the source face to match the

target face using the simple squared error of the corresponding target object’s keypoint vector

yt = [wt,ht]
T , as GT values, and the estimated keypoint vector ye = [we,he]

T . The loss for one

example where we predict depth and affine viewpoint geometry can therefore be expressed as:

L =
K∑
k=1

∥∥ykt − F (xs,xt) [wks h
k
s d

k
s(xs,xt)]

T
∥∥2 (10.3.1)
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(5) Image Warper: This phase consists of using the depth proxy and affine transform matrix

generated to actually warp the face from its source pose to be matched to the target object geometry.

The final projection to 2D is achieved by simply dropping the transformed d coordinate (which

corresponds to an orthographic projection model). In the case of DepthNets, this orthographic

projection is effectively embedded in the Geometric Affine Transformation Normalizer step, since

the affine corresponding to the d coordinate is not predicted, essentially dropping it.

As we operate on keypoints, the actual warping of pixels can be performed with a high quality

OpenGL pipeline that performs the warp separately from the rest of the architecture. Source image,

keypoints augmented with depth, and the affine matrix are passed to OpenGL pipeline to warp

the source image towards the target pose. This OpenGL warping is not needed during DepthNet

training, which means we do not have to do feedforward or backprop through OpenGL. In Summary,

for step 1 the RCN model (Honari et al., 2016) is used, for steps 2 to 4 the DepthNet model, shown

in Figure 10.1 (left), is trained, and for step 5 an OpenGL pipeline is used. No data or parameters

are needed to train the OpenGL pipeline. It warps images by directly using the provided data.

10.3.2. Estimating Viewpoint Geometry as a Second Step

In this model variant, training is similar to Section 10.3.1 and the model outputs depth and

3D affine transformation parameters. However, at test time, rather than using the predicted 3D

affine transformation for pairs of faces, we use only the predicted depths and estimate the affine

geometry parameters as a second estimation step. More precisely, given 3D points for a scene and

the corresponding 2D points for a target geometry it is possible to formulate the estimation of a 3D

affine transformation as a linear least squares estimation problem. An overdetermined system of the
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form AF = yt for this problem can be constructed as shown in (10.3.2).



w1
s h1s d1s 0 0 0 1 0

0 0 0 w1
s h1s d1s 0 1

w2
s h2s d2s 0 0 0 1 0

0 0 0 w2
s h2s d2s 0 1

...

wKs hKs dKs 0 0 0 1 0

0 0 0 wKs hKs dKs 0 1





m1

m2

m3

m4

m5

m6

trw

trh



=



w1
t

h1t

w2
t

h2t
...

wKt

hKt


(10.3.2)

This corresponds to an affine camera model followed by an orthographic projection to 2D

keypoints. This setup also leads to the following closed form solution for the affine transformation

parameters:

F = [ATA]−1ATyt, (10.3.3)

where this pseudoinverse based transformation is parameterized by the reference points and their

predicted depths.

10.3.3. Joint Viewpoint and Depth Prediction

Our key observation is that one can alternatively use the closed form analytical solution, mea-

sured in Eq. (10.3.3), for the least squares estimation problem as the underlying affine transformation

matrix within the loss function. This leads to a special form of structured prediction problem for

geometrically consistent depths and affine transformation matrix. For each image we have L =

K∑
k=1

∥∥∥∥∥
 wkt

hkt


︸ ︷︷ ︸

yk
t

−

m1 m2 m3 trw

m4 m5 m6 trh


︸ ︷︷ ︸

F


wks

hks

dks(xs,xt)

1


︸ ︷︷ ︸

yk
s

∥∥∥∥∥
2

=
K∑
k=1

∥∥ykt − reshape
[
[ATA]−1ATyt

]
yks
∥∥2

where the matrixA is parameterized as a function of ys as shown in Eq. (10.3.2). In this variant, the

model explicitly outputs only depth values during training and test time. The affine transformation

matrix in the equation above is replaced by Eq. (10.3.3), which measures the affine transformation
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as a pure function of source and target keypoints plus the inferred depth. The big difference of

this formulation compared to Sections 10.3.1 and 10.3.2 is that geometric affine transformation

parameters are no longer predicted by DepthNet during training and at both training and test

time – it solves the least square loss through the pseudoinverse based transformation. Since

dks = dks({wjs, hjs, w
j
t , h

j
t}j=1...K) is predicted within the analytical formulation of the solution to the

least squares minimization problem, we can backpropagate through the solution of a minimization

problem that depends on the predicted depths. While we leverage keypoints for depth estimation,

the proposed approach is novel in how the depth is estimated. Note that it is unsupervised with

respect to depth labels. No depth supervision either by using depth targets (as in (Eigen et al., 2014;

Jackson et al., 2017; Liu et al., 2015)), or by using depth in an adversarial setting (as in (Tung et al.,

2017b)), is used to estimate depth values for the base DepthNet models described in Sections 10.3.1,

10.3.2, and 10.3.3.

The depths learned for keypoints by these approaches are not necessarily true depths, but are

likely to strongly correlate with the actual depth of each keypoint. This is because even though

the method succeeds (as we shall see below) in aligning poses, the inferred depth and the affine

transform may each be scaled by factors so as to cancel each other out (i.e., by factors which are

multiplicative inverses of each other). Real world viewpoint geometry also involves perspective

projection.

10.3.4. Adversarial Image-to-Image Transformation

DepthNet transforms the central region of the source face to the target pose. Inevitably, the

face background will be missing, which might make the proposed method unsuitable for many

application where the full face is required. To address this issue, we utilize CycleGAN (Zhu et al.,

2017), an adversarial image-to-image translation technique. This serves to repair the background of

faces that have undergone frontalization or face swap through the DepthNet pipeline. Importantly,

the adversarial nature of CycleGAN allows one to perform image transformation between two

domains without the requirement of paired data. In our work, we perform experiments translating

between various domains of interest but one example is translating between the domain of images

in the dataset (i.e. the ground truth) and the domain of images where the DepthNet output is pasted
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onto the face region (in the case of face-swap). By doing so we clean the face background in an

unsupervised manner. In the following sub-section we review the CycleGAN model and how it is

leveraged for our tasks.

10.3.4.1. CycleGAN

Suppose we have some images belonging to one of two sets v ∈ V and z ∈ Z, where v

denotes a DepthNet-resulting face and z a ground truth face which is frontal. We wish to learn

two functions GZ : V → Z and GV : Z → V which are able to map an image from one set to

the corresponding image in the other. Correspondingly, we have two discriminators DV and DZ

which try to detect whether the image in that particular set is real or generated. While we are only

interested in the function GZ : V → Z (since this is mapping to the distribution of ground truth

faces) the formulation of CycleGAN requires that we learn mappings in both directions during

training. We optimize the following objectives for the two generators GZ and GV :

min
GV ,GZ

Ev,z

[
`(DV (GV (z)), 1)+`(DZ(GZ(v)), 1)+ψ||z−GZ(GV (z))||1+ψ||v−GV (GZ(v))||1

]
(10.3.4)

And the following for the two discriminators DV and DZ :

min
DV ,DZ

Ev,z

[
`(DV (v), 1) + `(DV (GV (z)), 0) + `(DZ(z), 1) + `(DZ(GZ(v)), 0)

]
, (10.3.5)

where 0/1 denote fake/real, `() is the squared error loss andψ is a coefficient for the cycle-consistency

(reconstruction) loss.

In the case where we do adversarial background synthesis, v is a channel-wise concatenation

of the DepthNet-frontalized face and the background of the original (pre-frontalized) image. For

face-swap cleanup, v is simply a source face which has been warped to a target face and pasted on

top. Once the network has been trained, we can disregard all other functions and use GZ to clean up

faces which are low quality due to artifacts from warping.

In terms of architectural details the generators and discriminators used were those described in

the appendix of the CycleGAN paper (Zhu et al., 2017). In short, the generator consists of three
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conv-BN-relu blocks which downsample the input, followed by nine ResNet blocks (which

can be interpreted as iteratively performing transformations over the downsampled representation),

followed by deconv-BN-relu blocks to upsample the representation back into the original input

size. For training, we use the same hyperparameters as most CycleGAN implementations which is

using the Adam optimizer with learning rate α = 2×10−4, β1 = 0.5, β2 = 0.999. However, instead

of using a batch size of 1 we use the largest possible batch size, which was 16 for a 12GB GPU.

Note that in order to produce better translations, the dataset we used for all CycleGAN experi-

ments contain both the VGG and the CelebA datasets, which has significantly more images.

10.4. Experiments

In this section we evaluate the DepthNet model on both paired images, in Section 10.4.1, and

unpaired images, in Section 10.4.2. Later, in Section 10.4.3, we present applications of the DepthNet

in face rotation and face replacement tasks.

The RCN, the DepthNets and the CycleGAN modules are trained separately. Each model is

trained using standard techniques for the model class and has a separate objective to be optimized.

DepthNet does not use the OpenGL pipeline during training and only uses it to render faces at test

time, allowing DepthNet to train faster.

10.4.1. DepthNet Evaluation on Paired Faces

For the experiments in this section, we use a subset of the VGG dataset (Parkhi et al., 2015),

with training and validating on all possible pairs of images belonging to the same identity for 2401

identities. This yields 322,227 training and 43,940 validation pairs.

We explore the three variants of DepthNets described in Sections 10.3.1, 10.3.2, and 10.3.3,

each with two architectural cases (A) and (B), depending on whether image features are used in

addition to keypoints or not. We also compare with a number of baselines. We measure the mean

square error (MSE) between the estimated keypoints on the target face (source face normalized

keypoints) and ground truth target keypoints. Results for the following models are shown in Table

10.1:

1) A baseline model registrations using a simple 2D affine transformation.
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Model Color MSE MSE_norm

1) A simple 2D affine registration grey 1.562 9.547
2) A 3D affine registration model using an average 3D face template purple 0.724 7.486
3) A DepthNet that separately estimates depth and geometry brown 0.568 6.292
4) The model above, but with a Siamese CNN image model violet 0.539 6.115
5) Secondary least squares estimation for visual geometry using the depths from 3) red 0.400 5.184
6) Secondary least squares estimation for visual geometry using the depths from 4) green 0.399 5.175
7) Backpropagation through the pseudoinverse based solution for visual geometry orange 0.357 4.932
8) The model above, but with a Siamese CNN image model blue 0.349 4.891

Tab. 10.1. (top) Comparing the Mean Squared Error (MSE) and MSE normalized by inter-ocular
distance (MSE_norm) of different models. (bottom) Histogram of Mean Squared Errors. The
second column in the Table (on top) corresponds to the color of the model in the figure (on bottom).

2) We generate a 3D average face template from the 3DFAW dataset (Gross et al., 2010; Jeni

et al., 2015; Zhang et al., 2014b) by aligning the 3D keypoints of all faces in the dataset to a

front-facing face using Procrustes superimposition. We report error by mapping the template face

to each source face via Procrustes superimposition (to get a 3D face f ) and then use an affine

transformation from the 3D face f to the target face.

3, 4) We use our proposed approach to predict both depth and geometry (described in Sections

10.3.1).

5, 6) These models described in Section 10.3.2. Note that during training, these two cases are

similar to models 3 and 4 in Table 10.1.

7, 8) The pseudo-inverse formulation model described in Section 10.3.3.

As observed in Table 10.1, a simple 2D affine transform (model 1) without estimating depth

and a template 3D face (model 2) get high errors on mapping to the target faces. DepthNet models
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get lower errors and the pseudo-inverse formulation (models 7 and 8) further reduces the error by

10%. The CNN models slightly reduce errors compared to their equivalent models that rely only on

keypoints.

Our DepthNet architectures require keypoints of both source and target images to be extracted.

For this, the image is first passed through the VGG-Face (Parkhi et al., 2015) face detector. The

face crops are then scaled down to 80× 80 and converted to greyscale, following which they are

passed through RCN to obtain K = 68 keypoints on each image. The RCN is trained exactly as

described in (Honari et al., 2016), using the 300W dataset (Sagonas et al., 2013).

The keypoint only variant of our model involves concatenating all detected keypoints and

passing them through a two-layer deep fully connected network, with 256 hidden units and o output

units. The size of o depends on whether we are predicting only the depth, in which case o = K, or

both depth and affine transformation parameters, in which case o = K + 8.

As discussed above, it is possible to augment these models with a Siamese CNN module

(case A). In the model variants that also use the image, we pass both the source and the target

images through three conv-maxpool layers with shared weights of size (32, 4, 2), (48, 3, 2), (64,

2, 2), respectively for the representation (num_filters, filter_size, pool_size). The

network’s outputs for the source and target faces are then concatenated before passing them into

a 4-layered fully connected network with respective output sizes of 2048, 512, 256, and o. The

keypoints are concatenated to the 512-unit layer before being passed to the last two layers. See

Figure 10.1 (left) for an illustration of the model. We explore these Siamese CNN augmented

variants in models 4, 6 and 8 in Table 10.1.

We set the initial learning rate to 0.001 and use a Nesterov momentum optimizer (with a

momentum of 0.9) in all our experiments. With the exception of the last layer, we initialize all

weights with a Glorot initialization scheme (Glorot and Bengio, 2010), with the weights sampled

from a uniform distribution. We use a ReLU gain (He et al., 2015), set all biases to 0, and apply a

ReLU non-linearity after every layer. In the final output layer, we do not apply any non-linearity

and initialize the weights to 0. The biases of units that represent depths are initialized to a random

Normal distribution with µ = 0 and σ = 0.5, while those that form the predicted affine transform
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are initialized with the equivalent of a "flattened" identity transform. All models have been trained

for 500 epochs.

We point out that except for a comparison between learning rates in the set {0.01, 0.001, 0.0001}

over few (less than 10) epochs, to find a learning rate that the model seems to train well with, we

have not performed a hyperparameter search, and anticipate that the performance of the model

can be made even better by searching the hyperparameter space on a per model basis and by using

deeper (or modified) architectures.

10.4.2. DepthNet Evaluation on Unpaired Faces and Comparison to other Models

In this section we train DepthNet on unpaired faces belonging to different identities and compare

with other models that estimate depth. We use the 3DFAW dataset (Gross et al., 2010; Jeni et al.,

2015; Zhang et al., 2014b) that contains 66 3D keypoints to facilitate comparing with ground truth

(GT) depth. It provides 13,671 training and 4,500 valid images. We extract from the valid set, 75

frontal, left and right looking faces yielding a total of 225 test images, which provides a total of

50,400 source and target pairs. We train the psuedoinverse DepthNet model that relies on only

keypoints (model 7 in Table 10.1). We also train a variant of DepthNet that applies an adversarial

loss on the depth values (DepthNet+GAN). This model uses a conditional discriminator that is

conditioned on 2D keypoints and discriminates GT from estimated depth values. The model is

trained with both keypoint and adversarial losses.

PPPPPPPPPSource
Target DepthNet DepthNet + GAN

Left Front Right Avg Left Front Right Avg
Left 24.67 27.71 29.70 27.36 59.78 59.67 59.63 59.69
Front 25.54 27.22 26.19 26.32 58.77 58.67 58.61 58.68
Right 21.66 21.48 23.87 22.34 59.97 59.70 59.60 59.76

Tab. 10.2. Comparing DepthCorr for different DepthNet models when mapping variant source to target
poses. The Avg column measures the average over the three preceding columns.

We measure the correlation matrix between GT and estimated depths, where the element k in

the diagonal indicates the correlation between estimated and ground truth depth values for keypoint

k, yielding a value between -1 and 1. We report the sum of absolute values of the diagonal of this
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matrix, indicated by DepthCorr. We compare DepthNet models on DepthCorr in Table 10.2. For

this experiment we take every possible pair of source to target faces, where source and target are

one of {left, front, right} looking faces. This yields a total of 5,550 pairs when the source and the

target are from the same subset, and 5,625 pairs otherwise. This experiment measures the accuracy

of depth estimation of the DepthNet models on different orientations of source-target faces. The

baseline DepthNet model that does not leverage the depth labels performs well in different cases.

DepthCorr improves more than twice for the DepthNet+GAN model, indicating a direct supervision

loss using depth labels can enhance the depth estimation.

Model Need Depth Manual Init. MSE (×10−5) Depth Correlation Matrix Trace (DepthCorr)
Left pose Front pose Right pose

GT Depth Yes - 8.86 ± 6.55 66 66 66
AIGN (Tung et al., 2017b) Yes No 9.06 ± 6.61 44.08 50.81 49.04
MOFA (Tewari et al., 2017) No Yes 8.75 ± 6.33 11.14 15.97 17.54
DepthNet (Ours) No No 7.65 ± 6.97 27.36 26.32 22.34
DepthNet + GAN (Ours) Yes No 8.74 ± 6.24 59.69 58.68 59.76

Tab. 10.3. Comparing MSE and DepthCorr for different models. A lower MSE indicates the model
maps better to the target faces. A higher DepthCorr indicates more correlation between estimated
and GT depths. Note that in the last three columns (related to DepthCorr), the left pose column
corresponds to the case when the source face has a left pose (the same for the front and right pose
columns), so the numbers for DepthNet and DepthNet+GAN correspond to the avg column in Table
10.2.

We compare our two DepthNet models with three baselines: 1) AIGN (Tung et al., 2017b), 2)

MOFA (Tewari et al., 2017) and 3) GT Depth (no model trained). AIGN estimates 3D keypoints

conditioned on 2D heatmaps of the keypoints. MOFA estimates a 3D mesh using only an image.

We implemented the AIGN model and asked the authors of MOFA to run their model on our test-set.

They provided MOFA’s results for 134 images in the test set. In Table 10.3 we compare these

three models with our DepthNet models on DepthCorr. We also compare them on MSE, which

is measured between GT and estimated target keypoints. Since the three baselines estimate depth

on a single image due to their different model formulation, we first measure F using closed form

solution in Eq. 10.3.3 and then apply F to the estimated source keypoints to get the target keypoint

estimations. We contrast the estimated values with the GT target keypoints. As shown in Table

10.3, GT depth has the highest DepthCorr (the maximum possible value). The depths estimated

by DepthNet+GAN and AIGN have stronger correlation to GT depth compared to the baseline
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DepthNet and MOFA, while baseline DepthNet performs better than MOFA. On MSE the baseline

DepthNet model gets smaller MSE when mapping to target faces, indicating it is better suited for

this task.

In Figure 10.2 we plot heatmaps of the estimated depth of different models (on vertical axis)

and the GT depth (on horizontal axis) aggregated over all 66 keypoints on all test data. As can be

seen, the depth estimated by DepthNet+GAN and AIGN models form a 45 degree rotated ellipses

showing a stronger linear correspondence with respect to the GT depth compared to the the baseline

DepthNet and MOFA.

Fig. 10.2. Predicted (vertical axis) versus Ground Truth (horizontal axis) depth heatmaps for
different models.

In Figure 10.3 we show some estimated depth samples for different models. AIGN and

DepthNet+GAN generate more realistic results. MOFA generates very similar face templates for

different poses. We believe this is due to the unconstrained reconstruction that is done by this model,

since it reconstructs the input image by mapping both face pose and the texture color values to the

input image. The depth estimated by a model relates to how the face is visualized. For example, for

a frontal face, nose keypoints have the smallest depth (closest to the viewer) and the face contour

keypoints close to the eye have the greatest depth (furthest from the viewer). Now, for a profile face

looking towards left, the keypoints on the right side of the face contour have the smallest depth and

the keypoints on the left side of the face contour have the furthest depth. So, the depth of keypoints

affects the way the face is visualized. This explains why the depth estimated by the MOFA model

makes the faces look frontal. Baseline DepthNet estimates reliable depth values in most cases,

however it has some failure modes as shown in the last row.
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Fig. 10.3. Depth visualization for different models (color coded by depth). From left to right: RGB
image, Ground Truth, DepthNet, DepthNet+GAN, AIGN and MOFA estimated depth values.

We show further estimated depth values in Figure 10.4. The baseline DepthNet model estimates

reliable depth values for most cases, however it has some degree of inaccuracy, as shown in the last

two rows. In DepthNet, the estimated depth indicates the position of each keypoint relative to other

keypoints rather than with respect to a source and importantly it is done without any supervision.

By comparing different models in Table 10.3, MOFA requires proper initialization to map face

meshes to each image. AIGN requires depth labels to train the model. Our baseline DepthNet model

neither require any depth labels nor any manual tuning. The results also show DepthNet can work

well on unpaired data. We would also like to emphasize that MOFA and AIGN are designed to

estimate a 3D model, while DepthNet is designed to estimate the parameters that facilitate warping

a face pose to another without having depth values, so these models are designed to solve different

problems.

An interesting observation is that GT depth gets a higher MSE compared to DepthNet. This

can be due to not having a perspective projection between source and target faces. However, since

DepthNet is trained to map to the target faces, it learns the affine parameters in a way to minimize

this loss.
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Fig. 10.4. Depth visualization for different models (color coded by depth). The Depth axis is the one
pointing into the page. From left to right: RGB image, Ground Truth, DepthNet, DepthNet+GAN,
AIGN and MOFA estimated depth values.
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10.4.3. Face Rotation, Replacement and Adversarial Repair

In this section we show how DepthNet can be used for different applications.

10.4.3.1. Face Rotation

In Figure 10.1 (right) we visualize the face rotation by re-projecting a frontal face, from Multi-

PIE (Gross et al., 2010), (far left) to a range of other poses defined by the faces in the row above.

Since DepthNet (case B) computes transformation on keypoints rather than pixels it is robust to

illumination changes between source and target faces. Note that DepthNet preserves well the

identity. However, it carries forward the emotion from source to target since using a global affine

transformation imparts a degree of robustness to dramatic expression changes. The views in these

figures are rendered from a 3D model in OpenGL. Note the model can align well to the target face

poses.

We show further camera sweeps for frontal source faces in Figures 10.5 and 10.6 and non-frontal

source faces in Figure 10.7. In Figure 10.8 we use the same target identity as the source face,

showing how much the generated face differs from the ground truth target. For all samples in Figures

10.5, 10.6, 10.7, and 10.8 we use the DepthNet model that relies on only key-points (model 7 in

Table 10.1). Frontal faces selected from the Multi-PIE dataset (Gross et al., 2010) are re-projected

to match several other poses corresponding to a person with a different identity. The DepthNets

predicts reliable proxy depths, which when coupled with the analytically obtained affine transform

(obtained from the least-squares pseudo-inverse-based solution described in Section 10.3.3) yields

faces close to the desired target face geometry when passed through the OpenGL pipeline.

Note that for non-frontal source faces in Figures 10.7 and 10.8, the quality of images is reduced

specially for frontal target faces. This is due to lack of adequate texture on the occluded side of the

face to be transferred to the target pose by OpenGL pipeline, rather than inaccuracies in the affine

transformation parameters. In order to reduce the side-affects, we use either of the source face or its

flipped version, that is closer to the target face pose, and then warp the face to the target keypoints.
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Fig. 10.5. Projecting a frontal face (far left) to a range of other poses defined by faces in the row
above.

Fig. 10.6. Projecting a frontal face (far left) to a range of other poses defined by faces in the row
above.

Fig. 10.7. Re-projecting a non-frontal face (far left) to a range of other poses defined by faces in
the row above.
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Fig. 10.8. Rotating a face (far left) to a range of other poses defined by faces of the same identity
in the row above. On the top row frontal and on the bottom row non-frontal source faces are shown.

10.4.3.2. Background Synthesis

In another experiment, we do face frontalization with synthesized background. Here we use

CycleGAN to add background detail to a face that has been frontalized with DepthNet. Referring to

Figure 10.9, we perform this by conditioning the CycleGAN on the DepthNet image (column 3) and

the background of column 2 (masking interior face region determined by the convex hull spanned

by the keypoints). The second domain contains ground truth frontal faces. This experiment shows

how to leverage DepthNet for full face generation. Note that we do not use identity information in

this experiment. However, it can be used to better preserve the identity.

10.4.3.3. Face Replacement

Finally, we do face swaps, where we warp the face of one identity onto the geometry and

background of another identity using DepthNet. To do so, we paste the rotated face by DepthNet

onto the background of the target image and train a CycleGAN to map from the domain of ‘swapped

in faces’ to the ground truth faces in our dataset, effectively learning to clean up face swaps so that

the face region matches the hair and background. The examples of this procedure are shown in

Figure 10.10.

10.4.3.4. Extreme Pose Face Clean-up

If the source image has an extreme pose, the texture will be missing on the occluded side of the

face and the OpenGL pipeline cannot rotate the face without artifacts. Note that this shortcoming is
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Fig. 10.9. Background synthesis with CycleGAN. Left to right: source face; keypoints overlaid;
DepthNet (DN); DN + background→ frontal

Fig. 10.10. Face swap experiment with CycleGAN. Left to right: source face; target face; warp to
target with DepthNet; repaired result with CycleGAN. The source face is taken and warped onto the
target face. The background and hairstyle is then adapted to the target face.
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due to lack of texture on the occluded side of the face rather than a deficiency of the transformation

parameters measured by DepthNet.

We performed an experiment using CycleGAN to fix such artifacts. For this experiment we take

source images from CelebA and first frontalize it by using DepthNet. Since the frontalized faces

have artifacts due to stretch of texture on the occluded side of the face by the OpenGL pipeline,

we train a CycleGAN that takes DepthNet frontalizaed faces plus the background of the original

non-frontal image (as two images) in one domain and the ground truth frontal faces in the other

domain. The CycleGAN learns to clean-up these artifacts. Finally, we take the GAN-repaired

frontalized faces and project it to different target poses using DepthNet. In Figure 10.11 we visualize

camera sweep for source faces in the wild that have extreme poses. The cycleGAN reasonably

cleans the face artifacts and then DepthNet projects it to different poses. This is just one approach

to address the extreme pose occlusion artifacts. We see alternative methods for addressing this issue

as promising directions for future research.

Fig. 10.11. Re-projecting a non-frontal face (far left) from CelebA to a range of other poses defined
by faces in the row above. Top row (in each pair) depicts the target faces from Multi-PIE (Gross
et al., 2010). The bottom row shows from left to right: source face, souce face frontalized by
DepthNet, adversarial-repaired face, the repaired source face projected to the target poses (4th to
10th columns).

10.5. Conclusion

We have proposed a novel approach to 3D face model creation which enables pose normalization

without using any ground truth depth data. We achieve our best quantitative keypoint registration
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results using our novel formulation for predicting depth and 3D visual geometry simultaneously,

learned by backpropagating through the analytic solution for the visual geometry estimation problem

expressed as a function of predicted depths. We have illustrated the quality and utility of the depths

and 3D transformations obtained using our method by transforming source faces to a wide variety

of target poses and geometries. Our technique can be used for face rotation and replacement and

when combined with adversarial repair it can blend warped faces to also synthesize the background.

The proposed model, however, carries forward emotion from source to target due to learning a

shared affine parameters for all keypoints. Moreover, for extreme non-frontal faces, while DepthNet

can extract the transformation params (since it only relies on keypoints), OpenGL cannot extract

texture due to occlusion. We show an example of how to address this problem in Section 10.4.3.4.

An interesting extension to this paper can be replacing the OpenGL pipeline with a generative

adversarial framework that synthesizes a face using the parameters estimated by DepthNet.
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Chapter 11

Conclusion

The works presented in this thesis showed progress on different aspects of landmark localization.

They also demonstrate an evolution from more traditional methods to deep learning approaches and

also from more supervised to less supervised techniques.

The first project adopted a more traditional approach and applied a factor analysis model to

disentangle features about identity and expression (IE), effectively learning a prior over landmarks.

The IE model is later merged with a discriminative per-landmark classifier in a joint identity

expression constrained local model (IE-CLM). Due to the emergence of deep learning models, my

later works shifted towards leveraging deep neural network architectures.

In the second work, we introduced ReCombinator Networks (RCN) by proposing an architecture

that preserves pixel-level feature information, effectively avoiding information loss due to pooling

layers. While this approach is proposed for landmark localization, it is currently used for a wide

range of models that reconstruct back the input image in a different modality, such as in image-to-

image translation, or require pixel-level accuracy, such as in semantic segmentation. This work

also proposed a framework for learning a joint distribution over landmarks and merged its output

(as a joint distribution over landmarks) with the RCN output (as a per-landmark distribution). The

similarity between this work and the first work is in merging a probabilistic model that learns a joint

distribution over landmarks with another model that learns a per-landmark discriminator.

In the first two works a fully supervised setting was assumed. In the third work a semi-supervised

setting was considered and the goal was to leverage weaker labelled data and unlabelled data. This

line of research focuses on one of the main current limitations of deep learning approaches, namely

their requiring a large set of labelled data to perform well. Meta-learning approaches and approaches

that learn from very few labelled data, such as few-shot learning, are amongs the hot topics at the
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time of writing of this thesis. They share a similar goal as semi-supervised techniques namely the

ability to obtain high accuracy on new data while leveraging few labelled data.

Finally our last work proposed an unsupervised technique to estimate the depth of landmarks.

This approach matches pairs of landmarks and creates a bottleneck that only requires estimating

depth values. The novelty of this approach is in leveraging correspondences of two entities to

estimate values of interest (depth in our case) and further using the estimated depth for other tasks of

interest such as face rotation and replacement. Using unsupervised techniques to enhance learning

algorithms is currently one of the hot topics in deep learning and computer vision communities.

The general direction of this thesis has evolved from a fully supervised setting to weakly, semi-

supervised and finally unsupervised settings. Learning algorithms which have a lower dependency

on abundant labels would enable further application of deep learning models to new data and

facilitate learning faster on new tasks.
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