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RÉSUMÉ 

 

Cette étude a été réalisée afin d'étudier les effets de BMP4 et de TGFβ1 sur l'expression de gènes 

et de protéine des cellules endothéliales de la thèque chez l'ovin. Les ovaires ovins ont été 

obtenus à partir de brebis adultes, quel que soit le stade du cycle œstral, et les cellules 

endothéliales de la thèque ont été isolées à l'aide de la technologie pluriSelect et cultivées. Après 

exposition à BMP4 et à TGFβ1 pendant 24 heures, les acides ribonucléiques totaux (ARN) ont 

été isolés pour une analyse quantitative de la réaction en chaîne de la polymérase en temps réel 

(qRT-PCR) de gènes de rôles bien connus dans la prolifération des cellules endothéliales, la 

formation et/ou la perméabilité vasculaire. Une analyse protéomique a également été réalisée à 

l'aide de la spectrométrie de masse après exposition de cellules endothéliales de la thèque à 

BMP4 pendant 48h. Les résultats montrent que BMP4 et TGFβ1 régulent les gènes liés à la 

fonction endothéliale, incluant le facteur de croissance des fibroblastes 18 et l’endothéline-1. 

L'analyse par spectrométrie de masse a identifié 1488 protéines totales dont 28 protéines sont 

significativement régulées positivement (> 2 fois) et 29 protéines régulées négativement (<0,5 

fois). L’analyse de l’interactome, réalisée à partir de deux bases de données biochimiques et 

biologiques distinctes, a mis en évidence un degré élevé d’interactions génétiques et physiques 

entre les voies de signalisation TIMP1, JUN, STAT3 et CD63. Ces observations ont été validées 

par une analyse par STRING. En conclusion, ces résultats montrent que l'administration exogène 

de BMP4 ou de TGFβ1 induit des modifications du protéome de la cellule endothéliale de la 

thèque chez l'ovin. Cependant, la présente étude ne portait que sur des changements d'expression 

des gènes liés à la fonction endothéliale. Des travaux additionnels seront nécessaires afin 

d’évaluer le transcriptome, grâce au séquençage d’ARN des cellules endothéliales primaires de 
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la thèque ovine pour identifier d'autres gènes susceptibles d'être régulés par la signalisation du 

TGF. 

Mots-clés: facteur de croissance transformant β, ovaire ovin, cellules endothéliales, facteur de 

croissance fibroblastique de type 18, protéine osseuse morphogénétique.
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ABSTRACT 

This study was performed to investigate the effects of BMP4 and TGFβ1 on ovine thecal endothelial 

cell gene and protein expression. Ovine ovaries were obtained from adult ewes irrespective of stage of 

estrous cycle, and thecal endothelial cells were isolated using pluriSelect technology, and cultured. 

Following exposition to BMP4 and TGFβ1 for 24h, total ribonucleic acid (RNA) was isolated for 

quantitative real-time polymerase chain reaction (qRT-PCR) analysis of genes with well-validated 

roles in endothelial cell proliferation, vascular formation and/or permeability. Proteomic analysis was 

also undertaken using mass spectrometry following exposure of ovine thecal endothelial cells to 

BMP4 for 48h. The results show that BMP4 and TGFβ1 regulated genes related to endothelial 

function, including fibroblast growth factor 18 and endothelin-1. Mass spectrometry analysis 

identified 1488 proteins in total, with significant up-regulation (>2- fold) of 28 proteins and down-

regulation (<0.5-fold) of 29 proteins. Interactome analysis, by two distinct biochemical and biological 

databases, identified a high degree of genetic and physical interactions between TIMP1 and JUN, 

STAT3, CD63 signaling pathways. These observations were validated by a STRING analysis. In 

conclusion, the results presented herein show that exogenous administration of BMP4 or TGFβ1 

induces changes in the ovine thecal endothelial cell proteome. However, the current study only 

involved investigation of expression changes in genes related to endothelial function. Future work 

assessing the transcriptome using RNA sequencing in primary ovine theca ECs is required to identify 

other genes that may be regulated by TGF signaling. 

 

Key words: Transforming growth factor β, ovine ovary, endothelial cells, fibroblast growth factor 18, 

bone morphogenetic protein.  
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INTRODUCTION 

 

The development of the ovarian follicle is a highly complex process that involves 

physiological actions of multiple endocrine and paracrine signaling pathways (Price 2016). 

The role of the pituitary gonadotrophins, the main endocrine drivers, in various stages of 

follicular development is well-established (Price 2016). Indeed, the current methods available 

to regulate ovarian function in order to suppress or enhance fertility ultimately influence the 

hypothalamic–pituitary–ovarian axis (Apter 1997). In recent years, considerable attention has 

been focused on the paracrine signaling pathways between the oocyte and its adjacent somatic 

cells, namely the cumulus, granulosa and thecal cells. In specific, it has become increasingly 

evident that intraovarian growth factors, such as the members of transforming growth factor 

(TGF)-β super family, have potential roles as local regulators of ovarian function and fertility 

(Juengel and McNatty 2005).  

 

The TGF-β superfamily is a structurally conserved, but functionally diverse, group of proteins 

with at least 35 members in vertebrates, and regulates a variety of biological processes in 

mammals by influencing cell proliferation, growth, differentiation, and apoptosis (Pangas 

2007). The members of this TGF-β superfamily have been further classified into several 

subfamilies, including the TGF-β, bone morphogenetic protein (BMP), the growth and 

differentiation factor (GDF), the activin/inhibin, the glial cell-derived neurotrophic factor 

(GDNF), as well as the anti-Mullerian hormone (AMH) and nodal (Knight and Glister 2006). 

Research over the past two decades has revealed extremely important oocyte-derived 

paracrine (and possibly autocrine) roles for GDF9, BMP15 and BMP6 in the regulation of 
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oocyte maturation and cumulus and granulosa cell function (Knight and Glister 2006).  

Previous work in our laboratory has shown a pro-apoptotic role for fibroblast growth factor 

(FGF)-18 in bovine granulosa cells (Portela et al. 2010, Portela et al. 2015). Furthermore, 

recent immunohistochemical studies have identified FGF18 protein in the small blood vessels 

of theca layer and the medulla of sheep ovary, and FGF18 messenger RNA (mRNA) and 

protein in ovine thecal endothelial cells following bone morphogenetic protein (BMP)-4 

treatment in vitro (unpublished data). These data suggest a plausible crosstalk signaling 

between the endothelial cells and the theca and/or granulosa cells. This study was performed 

to investigate the effects of BMP4 and TGFβ1 on ovine thecal endothelial cell gene and 

protein expression. Recognition of the central role of intraovarian growth factors in controlling 

the follicular development and ovulation rate may lead to a paradigm shift in our 

understanding of the ovarian function. In addition, this information may form the basis for the 

development of new therapeutics for regulating fertility in mammals. 
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                    CHAPTER 1: LITERATURE REVIEW 
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1. Literature Review 

1.1. Sheep Ovary 

 The ovaries are the female gonads that are located in the pelvic area of the ewe’s 

reproductive system (Bartlewski et al. 2011). The ovarian development begins with the 

differentiation of gonadal ridge epithelial-like (GREL) cells from mesonephric epithelial cells 

(Smith et al. 2014). The primordial germ cells (PGCs) migrate from the endoderm of the yolk sac, 

through the developing hindgut and dorsal mesentery, to the developing gonads. This migration of 

the PGCs has been established to occur between embryonic day (ED) 17 to 21 in the ewe (Ledda et 

al. 2010). The ovary is apparent as a thickening of the coelomic epithelium on the medial aspect of 

the mesonephros around ED 22 in sheep (Smith et al. 2014). The gonadal primordia form a paired 

thickening of the coelomic epithelium and arise within the intermediate mesoderm between the 

pronephros (initial kidney) and metanephros (the definitive kidney) between ED 34– 38 in sheep 

(Oktem and Oktay 2008a, Smith et al. 2014). 

 

 Follicles are the functional units of the ovary and each follicle consists of an oocyte (germ 

cells) surrounded by one or more layers of somatic cells, viz. granulosa, theca and stromal cells. 

The complex cascade of interactions between these cells regulate the formation of follicles and 

development of oocytes/somatic cells (Richards and Pangas 2010). The two primary reproductive 

functions of the ovary include gametogenesis and endocrine function (Barnett et al. 2006). 

Gametogenesis is the process responsible for the differentiation and release of a mature oocyte for 

fertilization (Barnett et al. 2006). The endocrine role involves ovarian hormonal and growth factors 

production which is essential for follicle development, and maintenance of estrous cycle and the 

normal function of the reproductive tract (Barnett et al. 2006). 
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1.2 Oocyte 

 The oocyte is the female germ cell that is produced in the ovary by the process of female 

gametogenesis (Sigel and Minier 2005). Prior to fertilization, the number of oocytes in the 

mammalian ovary is fixed early in life. The development of an oocyte begins with the 

transformation of the PGCs to oogonia (Voronina and Wessel 2003). The oogonia subsequently 

differentiate into primary oocytes, through meiosis by replicating their deoxyribonucleic acid 

(DNA), and arrests at the diplotene stage of the first prophase with homologous chromosomes 

(Matova and Cooley 2001). Thus, at birth all oocytes are arrested in the stage of prophase I. The 

prophase oocyte then may spend various periods of time in the arrested state until puberty and the 

onset of follicle development (Voronina and Wessel 2003). In this protracted period, the oocyte 

accumulates an extensive collection of ribonucleic acid (RNAs), proteins, and organelles such as 

cortical granules, ribosomes, and mitochondria (Liu 2011, Conner et al. 1997). 

 

 Meiosis resumes in preovulatory follicles in response to a surge of luteinizing hormone (LH) 

from the pituitary gland, which ultimately induces rupture of the follicle, release of the oocyte and 

oocyte maturation (Mehlmann 2005). Oocyte maturation is a dynamic and highly coordinated 

process, in which the oocytes finish the first meiotic division, undergoes cytoplasmic alteration and 

progress to metaphase II (Mehlmann 2005). The first meiotic division ends with the emergence of 

two haploid cells, the oocyte and the first polar body (Mehlmann 2005). Subsequently, the oocytes 

become arrested at metaphase II and await the process of fertilization. The development and 

maturation of oocytes are tightly regulated by actions of several growth hormones (reviewed in 

detail elsewhere (Voronina and Wessel 2003, Smith et al. 2014, Webb et al. 2016)). 
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1.3 Granulosa cells 

 The granulosa cells (GCs) are vital for oocyte maturation as they provide nutrients that 

support further development (Albertini et al. 2001). During folliculogenesis, the GC layer separates 

into two anatomically and phenotypically different subtypes, the cumulus granulosa cells (CGCs) 

and the mural granulosa cells (MGCs) (Mcnatty et al. 1979). The CGCs are in direct contact with 

the oocyte, have a high rate of proliferation, low steroidogenic capacity, low or absent luteinizing 

hormone (LH) receptor (LHCGR) expression and express high levels of insulin-like growth factor I 

(IGF-1) (Makabe et al. 2006, Gilchrist et al. 2004). In contrast, the MGCs have a primary 

endocrine function and support follicular growth, and undergo terminal differentiation to luteal 

cells following ovulation (Makabe et al. 2006, Gilchrist et al. 2004). 

 

 The interaction between oocytes and CGCs, via gap junctions containing connexins 32, 43 

and 45 (Gilchrist et al. 2004), is essential for normal growth and development of both the oocyte 

and the follicles, and plays a key role in disseminating local and endocrine signals (Gilchrist et al. 

2004). Small molecules, such as ions, metabolites, and amino acids, are transported via the gap 

junctions, whereas larger molecules are transported by receptor-mediated endocytosis (Gilchrist et 

al. 2004, Senbon et al. 2003). Specifically, connexin 43 has been demonstrated to be essential for 

continued follicular growth and GC proliferation (Ackert et al. 2001). Indeed, mutations in the gene 

encoding connexin 43 leads to retarded oocyte growth and poor development of the zona pellucida 

(Ackert et al. 2001). The GCs produce sex steroids and numerous growth factors that interact with 

the oocyte during its development. The sex steroid production consists of the conversion of 

androgens produced by theca cells to estradiol by the aromatase enzyme (CYP19A1) under the 
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control of follicle- stimulating hormone (FSH) (Gilchrist et al. 2004). However, after ovulation the 

GCs differentiate into luteinized cells that produce progesterone (Erickson et al. 1985). 

1.4 Theca cells 

 The theca consists of two layers–the outer layer called the theca externa and the inner layer 

known as the theca interna–both of which originate from mesenchymal cells (Gougeon 1996). 

Theca cells (TCs) are highly differentiated with structural features characteristic of steroid- 

secreting cells, with abundant mitochondria, agranular endoplasmic reticulum and lipid vesicles 

(Magoffin 2005). 

 

 The TCs are endocrine cells that play essential roles within the ovary by producing androgens 

under the control of LH (Adams et al. 2008). The hyperactivity of theca cells causes infertility due 

to hyperandrogenism and lack of estrogen (Magoffin 2005). Androgens are required for ovarian 

estrogen biosynthesis, and provide structural support for the growing follicle as it progresses 

through various developmental stages (Hillier et al. 1994). Unlike the GC layers, the TC layers are 

highly vascularized and this vascularization provides the rest of the follicle with essential nutrients 

and endocrine hormones from the pituitary axis (Young and McNeilly 2010). 

 

 The TCs are not associated with the primordial follicle, but only appear in the early 

secondary stage of follicular development (Magoffin 2005). Hence, it was hypothesized that the 

differentiation of TCs was stimulated by chemogenic signals originating from the growing follicles. 

Early work proposed the involvement of small-molecular-weight proteins secreted by the GCs to 

stimulate the differentiation of the TCs (Magoffin and Magarelli 1995). It is now believed that 

intraovarian growth factors such as insulin-like growth factor (IGF)-I and/or -II, growth 
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differentiation factor-9 (GDF-9), stem cell factor (SCF), and follistatin may contribute to thecal 

recruitment and differentiation (Magoffin 2005, Webb et al. 2016, Smith et al. 2014). 

 

1.5   Stromal Cells 

 

 Ovarian stroma is primarily composed of peculiar spindle-shaped stromal cells which are 

similar to fibroblasts and are arranged into a characteristic whorled texture or storiform pattern 

(Furuya, 2012). The ovarian stroma is divided into cortex and medulla. In addition to the spindle 

shaped cells, they also contain other cell types including the polygonal-shaped luteinized stromal 

cells, decidualized cells in pregnant women, endometrial stromal-type cells, smooth muscle cells, 

fat cells, and stromal Leydig cells (Weidner et al., 2009). The ovarian stroma surrounding the 

follicle differentiates into theca interna and theca externa cells. Unlike any other connective tissue, 

ovarian stroma is highly cellular and vascular, while the supporting fibers (both reticular fibers and 

ordinary collagen) are inconspicuous (Furuya, 2012). The interstitial cells of the ovarian stroma 

possess steroidogenic enzymes, and secrete androgens and progesterone (Weidner et al., 2009). 

Therefore, stromal cells of adult ovary actively contribute to the synthesis and remodeling of 

extracellular matrix and blood vessels (Weidner et al., 2009). In adults, the ovarian stroma 

demonstrates active tissue remodeling during and after ovulation. 

 

1.6   The ovarian follicle: classification, structure and folliculogenesis 

 

 The ovarian follicles are the basic structural and functional unit of the ovary which ensures 

proper oocyte development and maturation (Webb et al. 2016). Folliculogenesis, the growth and 

development of ovarian follicles from primordial to pre-ovulatory, is a complex cascade of events 

dependent on interactions between the oocyte and the somatic cells (Barnett et al. 2006). The 

structure of mammalian ovarian follicles changes during development and is classified as primary, 
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secondary, pre-antral, antral and pre-ovulatory follicles (Figure 1) according to their size and 

structure (Webb et al. 2016).  

 

 

 

Figure 1. Stages of ovine ovarian follicular development. Adapted and redrawn from Bartlewski 

et al (2011). Primordial follicle is an oocyte surrounded by partial or complete layer of squamous 

follicular cells. In intermediate/transitory state, the follicles contain both squamous and cuboidal 

follicular cells. Primary follicle has a single layer of cuboidal granulosa cells. Secondary follicle 

has two or more layers of cuboidal granulosa cells and a small number of theca cells. In pre-antral 

phase, the follicles have antral cavity, filled with follicular fluid, and distinctive layers of theca 

cells separated from granulosa cells. Antral or Graafian follicle is the last stage of follicle 

development. Antral follicles are larger, have more antral fluid and may contain a secondary 

oocyte. 
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 The process of folliculogenesis is systematically controlled not only by the actions of the 

pituitary gonadotropins, FSH and LH, but also by other hormones and growth factors (Barnett et al. 

2006). Thus, the stages of follicular development are also classified depending upon their response 

to gonadotropins. These include, early gonadotropin- independent (primordial to early pre-antral), 

gonadotropin-responsive (pre-antral to small antral) and gonadotropin-dependent (antral to large 

antral) stages (Webb et al. 2016). 

 

 The process of folliculogenesis begins with the recruitment of the dormant primordial 

follicles. However, the mechanism underlying the activation of the resting primordial follicles 

remains to be elucidated (Oktem and Oktay 2008b). The resting primordial follicles are formed 

during fetal development in ruminants, with the first set of follicles formed around 70 days of 

gestation in sheep (Evans 2003). It has been estimated that the lamb ovary contains ~100,000 – 

200,000 follicles at birth, with 50 antral follicles present in the ovaries of an adult sheep (Land 

1970, Driancourt 1991). Hence, the proportion of primordial follicles that undergo folliculogenesis 

and reach the antral stage is very low as most of the follicles undergo regression and atresia (Webb 

et al. 2016). 

  

The transition of the quiescent primordial follicles into primary and secondary follicles 

involves orchestrated communication between the oocytes and the somatic cells, as well as a 

multitude of extra-cellular components and growth factors (Oktem and Urman 2010). These include 

anti-Müllerian hormone, bone morphogenetic proteins (BMPs), growth differentiation factors 
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(GDF), leukemia inhibitory factor (LIF), nerve growth factors (NGF), fibroblast growth factors 

(FGF) and keratinocyte-growth factor (KGF) among others (Oktem and Urman 2010, Oktem and 

Oktay 2008b). The primary follicles are characterized by a single layer of cuboidal granulosa cells 

(GCs) surrounding the oocyte, whereas secondary follicles have two or three layers of cuboidal GCs 

(Bartlewski et al. 2011). Importantly, it is established that FSH is not required for transition of the 

primordial follicles, since they do not express FSH receptors (Oktay et al. 1997, Rannikki et al. 

1995). 

 

 The progression of the primary follicle to the pre-antral stage is a continuous process. The 

pre- antral phase is characterized by zona pellucida formation, GC proliferation, recruitment of 

thecal cells to the follicular basal lamina and a dramatic increase in oocyte volume (Duranthon and 

Renard 2001). Like the primordial follicle transition phase, the pre-antral phase is also believed to 

be a gonadotropin‐ independent process (Oktay et al. 1998). Further progression of the developing 

pre-antral follicle to antral phase is characterized by the formation of the antrum (central liquid-

filled cavity) as well as increased vascularization, oocyte growth, and the formation of a fibrous 

layer around the theca interna (Duranthon and Renard 2001). In contrast to during the pre-antral 

phase, FSH becomes a critical determinant during antral follicle growth whereas subsequent 

follicular development is independent of FSH concentrations (Duggavathi et al. 2005). Finally, the 

pre-ovulatory follicle (Figure 2) consists of an oocyte surrounded by the zona pellucida, several 

layers of cumulus cells, an antrum, and a basal lamina that separates mural GCs from the theca 

cells (Smith et al. 2014). 
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Figure 2: Schematic representation of a pre-ovulatory mammalian follicle. Shown in the 

diagram are the various cell types of a pre-ovulatory follicle (Kase 2013). 
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 The growth of ovarian follicles exhibits a distinct wave-like pattern at all stages of the 

breeding season and throughout seasonal anoestrus in ewes (Bartlewski et al. 2011) as well as in 

non- seasonal breeders including cattle and humans. There are typically 3 or 4 waves of follicle 

emergence per inter-ovulatory interval (Evans 2003). This characteristic pattern of follicular 

development has been associated with temporal fluctuations in the levels of FSH and oestradiol 

(Cahill and Mauleon 1980a, Webb et al. 2016). It has been estimated that the period of follicular 

growth from the primordial to the pre-ovulatory stage in ewes exceeds 6 months (Cahill and 

Mauleon 1980a). Specifically, the growth from the primordial to the early preantral stage takes 

about 130 days, and it takes a further 35 – 55 days to reach the pre-ovulatory stage (Cahill and 

Mauleon 1980b). Thus, the ovine primordial follicles undergo sequential growth and development, 

under the control of endocrine and paracrine factors, forming pre-ovulatory follicle containing a 

mature oocyte. 

 

1.7. Follicular selection, dominance and atresia 

 The selection process during a follicular wave is characterized by the continued growth of a 

developing 'dominant' follicle and reduced growth of the subordinate follicles (Aerts and Bols 

2010b, a). Although the exact mechanisms of the dominant follicular selection remain to be 

elucidated, it has been suggested that the selected dominant follicle exhibits increased expression of 

FSH receptors, luteinizing hormone/choriogonadotropin receptor (LHCGR) and 3β- hydroxysteroid 

dehydrogenase (HSD3B) in the GCs (Scaramuzzi et al. 2011). This in turn has been proposed to 

facilitate the follicle’s responsiveness to LH and survival in the face of lower FSH concentrations 

(Scaramuzzi et al. 2011). 
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 A functionally dominant follicle has the ability to inhibit the development of other competing 

follicles within both ovaries while continuing to thrive itself (Fortune 1994). The dominant follicles 

express high oestradiol, low progesterone, and LH and FSH receptors on the GCs (Driancourt 

1991). Thus, there is a marked hierarchy between the cohort of activated follicles in terms of 

diameter and steroid production, resulting in dominance (Driancourt 1991). Furthermore, the 

emergence of a follicular wave occurs only after the dominant follicle diminishes its inhibitory 

effect on other follicles, subsequent to an increase in FSH concentrations (Adams et al. 1992). 

Removal of the dominant follicle has been shown to delay the regression of the largest subordinate 

follicle and/or induce early emergence of the next follicle wave (Ko et al. 1991, Adams et al. 1993). 

 

 More recent work has also attributed a role for insulin growth factor (IGF) signalling system 

as a ‘switch’ for follicular dominance (Webb and Campbell 2007, Scaramuzzi et al. 2011). It has 

been hypothesized that follicular dominance arises because one follicle first acquires proteolytic 

activity against the IGF binding proteins-4 and -5 before its subordinate follicles, resulting an 

increase in free IGF and oestradiol (Scaramuzzi et al. 2011). The resultant free IGF may then 

amplify the effects of FSH, facilitating an increased oestradiol production and decreased 

circulatory FSH (Webb and Campbell 2007, Scaramuzzi et al. 2011). 

 

 The above description describes best follicle dynamics in mono-ovulatory species such as 

cattle and humans. In the di- and tri-ovulatory sheep, there is broad agreement that the ovulatory 

follicles exerts dominance over other follicles during the follicular phase (Evans et al. 2000), 

however, contradictory reports exists for this phenomena during the luteal phase (Evans et al. 
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2000). In sheep, follicles in a subsequent wave has been demonstrated to emerge after the largest 

follicle in the previous wave had stopped growing (Bartlewski et al. 1999, Evans et al. 2000). 

 The process of folliculogenesis is also tightly regulated by crosstalk between cell death and 

survival signals (Webb et al. 2016). Throughout life, there is continous depletion of the ovarian 

follicular reserve and only a small proportion of the primordial follicles reach the ovulatory stage, 

whilst the rest undergo a degenerative process called atresia (Smith et al. 2014). Generally, atresia 

can occur at any stage of follicular development and is accompanied by a series of changes in 

steroidogenesis and morphology (Smith et al. 2014). It is believed that the process of atresia is 

initiated by loss of growth factors such as tumour growth factor (TGF)-α or FSH, and/or expression 

of death factors such as Fas ligand (Barnett et al. 2006). 

 

1.8 Bone Morphogenetic Proteins 

 The bone morphogenetic proteins (BMPs) are part of the transforming growth factor-β (TGF-

β) superfamily of proteins, which includes TGF-βs, activins, inhibins, GDFs, glial derived 

neurotrophic factors (GDNFs) and anti-Müllerian hormone (Wang et al. 2014). The TGF-β 

superfamily members have a wide array of functions in the body including regulation of cell 

proliferation/apoptosis, differentiation, migration, invasion and extracellular matrix production 

(Wang et al. 2014). 

 

 The physiological relevance of the BMPs was first identified in the 1960s when its role in the 

induction of ectopic bone formation was discovered (Urist 1965). Since then, BMP-dependent 

signalling has been shown to play a significant role in cell growth, apoptosis and differentiation, 

adult tissue homeostasis (i.e., fracture repair, vascular remodeling etc.), and bone and cartilage 

formation (Bragdon et al. 2011). To date, over 20 members of phylogenetically conserved BMPs 
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have been identified (Lochab and Extavour 2017a). These include BMP 2/4, BMP 5/6/7/8a/8b, 

BMP 9/10, and BMP 12/13/14 subgroups based on phylogenetic analysis (Ali and Brazil 2014). 

1.8.1 Biological functions of BMP in reproductive system 

 

 The expression of BMP system in the ruminant ovary is well-documented. The mRNA for 

BMP2, BMP4, BMP6, BMP7, BMP15 have been detected in the ovaries of sheep and cattle (Souza 

et al. 2003, Pierre et al. 2004, Glister et al. 2005). The expression of BMP receptors, BMPR-1A and 

BMPR-1B, and that of downstream signaling proteins, Smad1/2, has been reported in ovine 

oocytes, GCs and TCs (Souza et al. 2002, Pierre et al. 2004). The importance of BMPs in the 

reproductive physiology of sheep is further attested by the phenotypes of mutant ewes (FecX, FecG 

and FecB) which involve mutations in BMPR genes (Souza et al. 2002, Pierre et al. 2004). 

 

 The physiological functions in the reproductive system are exerted by tissue-specific 

expression of members of the BMP family (Shimasaki et al. 2004). A significant role for BMP 

signaling in the establishment of the germ line has been well-established (McLaren 1999). 

Specifically, the role of BMP4 in PGC specification has been demonstrated in mice, axolotl and 

crickets (Donoughe et al. 2014, Johnson et al. 2003, Ying and Zhao 2001). BMP4, but not BMP7/8, 

has been shown to induce germ cell differentiation from human embryonic stem cells (hESCs), and 

promote in vitro differentiation of cultured pluripotent stem cells into PGC-like cells from human 

and ruminant induced pluripotent stem cells (iPSCs) (Malaver-Ortega et al. 2016, Shah et al. 2015, 

Kee et al. 2006).  

 

 BMP signaling pathways have been shown to promote PGC proliferation and/or migration in 

chickens (Whyte et al. 2015), mice (Dudley et al. 2010, Dudley et al. 2007, Ross et al. 2007, Ying 
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et al. 2001, Lawson et al. 1999, Ying et al. 2000, Lopes et al. 2004, Tremblay et al. 2001, Chang 

and Matzuk 2001) and fruit flies (Sato et al. 2010, Gilboa and Lehmann 2004, Deshpande et al. 

2014). Several studies have shown the vital role for BMP ligands in regulation of gametogenesis 

and folliculogenesis in chordates, nematodes and arthropods (Lochab and Extavour 2017a). These 

include BMP2, BMP4, BMP6, BMP7, BMP8, and BMP15, with specialized sex-specific 

reproductive roles for BMP6, BMP8 and BMP15 (Sugiura et al. 2010, Ying et al. 2000, Ying et al. 

2001, Yan et al. 2001). Taken together, research over the last three decades have elucidated the 

evolutionarily conserved role for BMPs in PGC specification, PGC proliferation, PGC migration, 

and gametogenesis across protostome and deuterostome lineages (reviewed in detail elsewhere 

(Lochab and Extavour 2017b)), indicating the vital role of BMPs in the physiology of reproductive 

system. 

 

1.8.2 Structure 

 TGF-β superfamily members are synthesized as precursor proteins comprising an N-terminal 

signal peptide, a prodomain for folding and secretion, and a C-terminal mature domain (Ali and 

Brazil 2014). The precursors are formed in the cytoplasm as dimeric pro-protein complexes and are 

then cleaved by pro-protein convertases to generate the N- and C-terminal fragments (Bragdon et 

al. 2011, Wang et al. 2014). The proprotein convertase family is composed of nine members called 

proprotein convertase subtilisin/kexin (PCSK1-PCSK9). A mature BMP protein contains seven 

cysteine residues, six of which form intramolecular disulfide bonds, also known as cysteine knots. 

A seventh cysteine amino acid facilitates dimerization with another BMP monomer via a disulfide 

bond (Ali and Brazil 2014). 
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1.8.3 Signaling pathways of BMPs 

1.8.3.1 SMAD-dependent pathways 

 The physiological effects of BMPs are mediated via both canonical and non-canonical 

pathways. In the canonical signaling pathway, the BMPs initiate the signal transduction cascade by 

binding to cell surface receptors and forming a heterotetrameric complex (Heldin et al. 1997). The 

BMPs bind to two cell-surface serine/threonine kinase receptors, TGF-β type I and type II 

receptors. Amongst the 7 type-I and 5 type II TGF-β receptors, the BMPs are known to bind to type 

1A activin receptor (ActR-1A), type 1A BMP receptor (BMPR-1A or ALK3), type 1B BMP 

receptor (BMPR-1B or ALK6), type 2 activin receptor (ActR2), type 2B activin receptor (ActR2B) 

and type 2 BMP receptor (BMPR2) (Heldin et al. 1997, Heldin 1997). 

 

 Upon formation of heterotetrameric complex, the constitutively active type-II receptor 

transphosphorylates the type-I receptor at glycine-serine rich motif (Heldin 1997). This in turn 

allows phosphorylation of downstream substrate proteins known as the receptor- regulated SMADs 

(R-SMADs) at a C-terminal Ser-Ser-X-Ser (SSXS) motif (Horbelt et al. 2012). The R-SMAD 

family includes SMAD-1/-5/-8, the co-mediator SMAD (SMAD-4) and the inhibitory SMADs 

(SMAD-6 and -7) (de Caestecker 2004). The BMP type-I receptors activate the canonical SMAD-

1/-5/-8 group, which then associates with SMAD4. This complex translocates into the nucleus to 

exert functions that regulate gene expression. The inhibitory SMAD-6 and -7 regulate the 

feedback inhibition of the BMP signaling pathway (Heldin 1997, Heldin et al. 1997, Wang et al. 

2014) (Figure 3). 
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Figure 3. BMP signalling pathways. ATF, activating transcription factor; CBP, CREB-binding 

protein; E1A, early region 1A; Hoxc, homeobox gene c; MSG, melanocyte-specific gene or mad- 

supporting gene; OAZ, Olf1/EBF associated zinc finger; PEBP, polyomavirus-enhancer-binding 

protein; SIP, Smad-interacting protein; SNIP, Smad nuclear interacting protein; TFE, transcription 

factor μ E3 (Shimasaki et al. 2004). 
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1.8.3.2 SMAD-independent signaling 

 The activation of the type-I BMP receptors may also activate SMAD-independent pathways 

such as extracellular signal-regulated kinase (ERK), mitogen activated protein kinase (MAPK), C-

jun N-terminal kinase (JNK) and nuclear factor kappa beta (NF-κB) (Lochab and Extavour 2017a, 

Wang et al. 2014). The activation of SMAD-independent pathways is believed to be achieved 

though protein–protein interactions of bone morphogenetic protein receptor associated molecule 1 

(BRAM1), X-linked inhibitor of apoptosis protein (XIAP), TGF-β activated kinase 1 (TAK1) or 

TAK1 binding protein (TAB1) with the BMP type-I receptors (Oktay et al. 1997, Ornitz and Itoh 

2001). BRAM1 directly associates with the cytoplasmic tail of type-I BMP receptors to link it to 

TAB1 (Chung et al. 2002). On the other hand, XIAP is recruited by type-I BMP receptors to link it 

with TAB1–TAK1 complex (Lu et al. 2007). It has been suggested that the activation of TAK-1 

leads to downstream activation of the p38 MAPK, JNK and NF-κB pathways (Lu et al. 2007). 

 

1.9 Fibroblast Growth Factors 

 

 The FGF family consists of structurally related polypeptides involved in several physiologic 

processes. These include embryonic development, organogenesis, tissue maintenance, repair, 

regeneration and metabolism (Ornitz and Itoh 2015). At the cellular level, FGF regulates cell 

proliferation, survival, migration, differentiation and metabolism (Ornitz and Itoh 2015). Genetic 

studies in mice have shown that mutations leading to disruption of FGF signaling cause a variety of 

developmental disorders including dominant skeletal diseases, infertility, and cancer (Turner and 

Grose 2010). 
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 The FGFs exert their physiological roles through binding to one of four FGF receptors 

(FGFRs; FGFR 1 – 4), which are highly conserved transmembrane tyrosine kinase receptors 

(Teven et al. 2014). Although a fifth FGF receptor (FGF receptor-like 1; FGFRL1) lacking 

intracellular tyrosine kinase domain was discovered, its function remains controversial and poorly 

understood (Steinberg et al. 2010). The FGFRs contain 3 domains–an extracellular ligand-binding 

domain, a transmembrane domain and an intracellular tyrosine kinase domain (Turner and Grose 

2010). The extracellular region contains two or three immunoglobulin (Ig)-like domains, and a 

heparin- binding domain (Yan et al. 2001). Activation of the FGFRs induces dimerization and 

phosphorylation of specific cytoplasmic residues, resulting in activation of cytoplasmic signal 

transduction pathways (Teven et al. 2014). 

 

 According to current consensus, the FGF family comprises 22 genes encoding 18 secreted 

FGF ligands (i.e., FGF1-10 and FGF16-23) (Yun et al. 2010). Four FGF family members, FGF11, 

FGF12, FGF13, and FGF14, are intracellular proteins that do not bind to FGFR, and are referred to 

as FGF homologous factors (Yun et al. 2010). Based on phylogenetic analysis and sequence 

homology, the FGF family can be divided into seven subfamilies, viz. FGF1, FGF4, FGF7, FGF8, 

FGF9, FGF11, and FGF19, with each containing two to four members (Itoh 2007). 

 

1.9.1 Biological role of FGF Signaling Pathways in Reproduction 

 

 The fundamental physiological roles of FGF in mitogenesis, cellular migration and 

differentiation, angiogenesis and wound healing have been long been recognized (Itoh et al. 2015, 

Krejci et al. 2016). The expression of specific members of the FGF family within the reproductive 

system of humans and ruminants is documented (Chaves et al. 2012). These, taken together with the 
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critical role of FGF family ligands in the formation of gonadotropin-releasing hormone system in 

humans, rodents and ruminants, have suggested a plausible role for FGF in reproductive physiology 

(Chaves et al. 2012, Miraoui et al. 2011). In further support of this notion, humans with loss-of-

function mutations in FGF receptor 1 (FGFR1) and FGF8 genes develop hypogonadotropic 

hypogonadism, delayed puberty and hypothalamic amenorrhea (Falardeau et al. 2008). 

 

 The expression of some FGF family members in the ovary is tissue specific and others are 

widely expressed. In the ovary, FGFs are predominantly expressed in theca cells, and granulosa 

cells mostly express FGF receptors (Chaves et al. 2012). Specifically, theca cells of rodents, 

ruminants and humans are known to express a number FGFs, including FGF1, FGF2, FGF7, FGF10 

and FGF18 (Hawkins and Matzuk 2010, Price 2016). Within the female reproductive tract, the 

effects of FGFs have been focused on the ovary, and the most studied one is FGF2. Functional 

theca-to-granulosa signaling has been suggested by the ability of FGF2 to inhibit steroidogenesis, 

promote GC proliferation and prevent apoptosis in GCs (Buratini and Price 2011). More recently, 

several studies have implicated a role for FGF8 and FGF18 in folliculogenesis, oocyte and follicle 

survival, steroidogenesis and corpus luteum formation (discussed in detail in (Chaves et al. 2012, 

Price 2016)). FGF8 at first was detected and expressed in oocytes of small and large antral follicles 

of adult mice ovaries (Falardeau et al. 2008). In cattle FGF8 is detected in the oocyte, TCs and GCs, 

and both FGF8 receptors, FGFR3c and FGFR4, are expressed within the follicle (Buratini, Teixeira, 

et al. 2005, Buratini, Glapinski, et al. 2005). Likewise, FGF18 has been detected in oocytes in mice, 

and in GCs and TCs of cattle (Buratini, Teixeira, et al. 2005, Buratini, Glapinski, et al. 2005). Both 

FGF8 and FGF18 have emerged as key players of mesenchymal-epithelial signaling in a variety of 
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tissues, especially during organogenesis, and in modulation of ovarian function (Falardeau et al. 

2008). 

 Not all FGFs appear to be mitotic, as previous work in our laboratory has shown that FGF18 

increases the rate of granulosa cell death by apoptosis in cattle, through a caspase-3 mediated 

mechanism (Portela et al. 2010, Portela et al. 2015). Further, abundance of FGF18 in the theca of 

atretic follicles is higher than that in healthy follicles in cattle (Portela et al. 2010, Portela et al. 

2015). More recently, immunohistochemical studies localized FGF18 protein to the small blood 

vessels in the theca layer and in the medulla of the sheep ovary, which suggest a plausible crosstalk 

signaling between the endothelial cells and the TCs and/or GCs. 

 

 

1.9.2 FGF Signaling Pathways 

 The activation of FGFR results in recruitment of specific molecules that bind to 

phosphorylated tyrosines of the intracellular receptor domain (Ornitz and Itoh 2001). These 

subsequently serve as docking sites for the recruitment of Src homology-2 (SH2) or 

phosphotyrosine binding (PTB) domains of adaptor or docking proteins (Yun et al. 2010). 

Currently, the well-understood signaling pathways of FGF include the RAS/MAPK, PI3 

kinase/AKT and PLCγ pathways (Figure 4; (Yun et al. 2010)). 

 

The RAS/MAPK pathway is a common mechanism of signal transduction in eukaryotic 

cells. It is composed of multiple serine/threonine kinases that react to extracellular stimuli and 

regulate developmental changes in organisms (Teven et al. 2014, Ornitz and Itoh 2015). As already 

noted, a key event in the FGF signaling pathway is phosphorylation of the tyrosine residues. This 

leads to recruitment of FGFR substrate 2α (FRS2α), guanine nucleotide exchange factor 2 (GRB2), 
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the son of sevenless (SOS), the tyrosine phosphatase (SHP2) and the GRB2-associated binding 

protein 1 (GAB1), resulting in activation of the RAS/MAPK and the PI3 kinase/AKT pathways 

(Ornitz and Itoh 2015). On the other hand, FGF-FGFR mediated signaling that induces a MAPK- 

mediated negative feedback loop, causing threonine phosphorylation of FRS2α and reduction of 

tyrosine phosphorylation and recruitment of GRB2, has also been documented (Lax et al. 2002). 

 

 Similar to the RAS/MAPK pathway, the phosphoinositide 3 (PI3) kinase/AKT pathway is 

initiated by forming an FRS2α complex and activation of FGFR by linked GAB1 protein, resulting 

in a complex between the p110 catalytic unit of PI3 kinase and p85 adapter protein (Lamothe et al. 

2004). The phospholipase C gamma (PLCγ) binds to the phosphorylated Tyr-766 of the FGFR and 

results in activation of the PLCγ pathway. The activated PLCγ hydrolyzes phosphatidylinositol, 

generating inositol triphosphate (IP3) and diacylglycerol (DAG) (Mohammadi et al. 1991). 
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Figure 4. The fibroblast growth factor (FGF) signaling pathway (Yun et al. 2010). FGFs stimulate 

tyrosine phosphorylation of the docking protein FRS. This then forms the GRB2- SHP2-GAB-1 

complex, resulting in activation of RAS-MAP kinase pathway and PI3 kinase/AKT pathway. In 

PLCγ pathway, activated PLCγ hydrolyzes phosphatidylinositol, generating IP3 and DAG. This in 

turn activates PKC. FRS2: fibroblast growth factor receptor substrate 2, GRB: guanine nucleotide 

exchange factor, SOS: son of sevenless, RAS: monomeric G-protein, RAF: kinase, MEK: kinase, 

MKP1: MAP kinase phosphatase, PIP2: phosphatidylinositol (4,5)-bisphosphate, IP3: inositol 

triphosphate, DAG: diacylglycerol, PKC: protein kinase C. 
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2.     HYPOTHESIS AND OBJECTIVES 

 

2.1 Hypothesis 

As this laboratory has preliminary data to suggest that FGF18 is expressed in follicular endothelial 

cells, and that  TGFβ family members regulate endothelial cell migration and proliferation, we 

hypothesize that TGFβ family members alter function of endothelial cells derived from the theca 

of the sheep. 

 

2.2 Objectives 

The specific objectives of this work were: 

1. To determine the effect of BMP4 and TGFβ1 on ovine endothelial cell gene expression. 

2. To determine the effect of BMP4 on the ovine endothelial cell proteome. 
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        CHAPTER 2: MATERIALS AND METHODS 
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2.    MATERIALS AND METHODS 

 

2.1 Cell Culture 

 Ovine ovaries were obtained from adult ewes, irrespective of their estrous cycle phase, from 

an abattoir. The ovaries were the transported to the laboratory at 30˚C in phosphate-buffered saline 

(PBS) solution containing penicillin (100 μg/mL) and streptomycin (100 μg/mL). Endothelial cells 

were isolated from the theca layer using S-pluriBead® Maxi Reagent Kit (pluriSelect Life Science, 

Germany). Briefly, the surface of the follicle was cut with a scalpel blade. The theca layer was 

removed using forceps and collected into 10 ml of DMEM/F12 (Thermo Fisher Scientific, 

Burlington, Canada). The theca layer was then incubated in a solution containing collagenase (1 

mg/ml; 500µl;), trypsin inhibitor (100 µl/ml; 500µl) and 4 ml of DMEM/F12 at 37°C for 45min. 

Subsequently, the cell suspension was centrifuged at 800g for 10 min and the resultant cell pellet 

was resuspended in 1 ml of DPBS. Following osmotic lysis of the red blood cells using milliQ 

water, the cell suspension was filtered through a 30 µm pluristrainer. The cell viability was 

assessed using trypan blue dye and the cells were then seeded onto 24-well tissue culture plates 

(Sarstedt Inc., Montreal, Canada) at a density of 0.5 million in 1 mL DMEM/F12 containing 

bovine serum albumin (BSA) (0.1%; Sigma-Aldrich, St. Louis, Missouri, United States). The cells 

were grown to ~70 – 90% confluency prior to treatments. The cell cultures were maintained at 

37°C in 5% CO 2, 95% O2 for 5 days, with medium changes on days 2 and 4. 

 

2.1.1 Experimental treatments 

 To determine the effects of TGFβ1 and BMP4 on endothelial cells gene expression, and the 

effect of BMP4 on endothelial cells gene expression and secretory activity, cells were serum-

starved for 8 h and treated from day 5 with different doses of human recombinant BMP4 
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(PeproTech, Rocky Hill, US) and different doses of human recombinant TGFβ1 acquaired from the 

same company . While some cells were recovered 24 h post- TGFβ1 and BMP4 treatment for RNA 

extraction, other cells and respective media were recovered after 48 h post-BMP4 treatment for 

total protein extraction using RIPA buffer for mass spectrometry analysis. All experiments were 

performed with three different pools of cells each collected on a different occasion. 

 

2.2 Mass spectrometry 

 

 Proteins were extracted from cell samples and bottom-up proteomic analysis was performed. 

The total amount of protein in each sample was determined using Bradford assay (Thermofisher, 

Rockford US). Briefly, a volume corresponding to 50 μg of proteins was used for each sample. 

Proteins were isolated using a precipitation procedure with a ratio 1:3 (v:v) of acetone. The samples 

were centrifuged at 9,000 g for 10 min and the acetone was discarded. The resultant protein pellet 

was dried for 20 min in a vacuum centrifuge set at 60˚C. The protein pellet was then dissolved in 

100 μL of 50 mM ammonium bicarbonate (pH 8.0) and the solution was sonicated for 60 min at 

maximum intensity to improve protein dissolution. Reduction and alkylation were performed as 

previously described [Ruiz et al. 2015], and then 2 μg of proteomic-grade trypsin was added. The 

reaction was performed at 40˚C for 24 h. The protein digestion was quenched by adding 10 μL of a 

2% trifluoroacetic acid (TFA) solution. Samples were centrifuged at 12 000 g for 10 min and the 

supernatants were transferred into injection vials for analysis. 

 

 The HPLC system was a Thermo ScientificTM UltiMateTM 3000 Rapid Separation UHPLC 

system (San Jose, CA, USA). The chromatography was achieved using a gradient mobile phase in 

a microbore C8 column (Thermo Biobasic) with a particle size of 5μm. The initial mobile 

phase consisted of acetonitrile and water (both fortified with 0.1% of formic acid) at a ratio of 5:95. 



                                                                               45 

 

From 0 to 1 min, the ratio was maintained at 5:95. From 1 to 61 min, a linear gradient was applied 

up to a ratio of 50:50 and maintained for 2 min. The mobile phase composition ratio was reverted 

to the initial conditions and the column was allowed to re-equilibrate for 14 min for a total run time 

of 77 min. The flow rate was fixed at 75 μL/min and 2 μL of sample was injected. 

 

 The Q ExactiveTM OrbitrapTM Mass Spectrometer (San Jose, CA, USA) was interfaced with 

the UHPLC system using a pneumatic assisted heated electrospray ion source. MS detection was 

performed in positive ion mode and operating in scan mode at high-resolution, and accurate- mass 

(HRAM). Nitrogen was used for sheath and auxiliary gases set at 10 and 5 arbitrary units. The 

Electrospray ionization (ESI) voltage was set at 4000V and the ion transfer tube temperature was 

set at 300°C. The default scan range was set at m/z 400 -1500. Data was acquired at a resolving 

power of 140,000 (full width at half maximum; FWHM) using automatic gain control targets of 3.0 

x 106 and maximum ion injection time of 200 ms. Additionally, MS data was acquired using a data-

dependent top-10 method to dynamically choose the most abundant precursor ions from the survey 

scans (400–1500 Da) and generate MS/MS spectra. Instrument calibration was performed prior to 

all analysis and mass accuracy was notably below 1 ppm using Thermo Pierce calibration solution 

and automated instrument protocol. 

 

 Database surveys were performed using Proteome Discoverer software (v2.1) with Uniprot 

ovine protein database (extracted FASTA file). Mass tolerance of precursor and fragment (i.e. 

typically b and y) were set at 5 ppm and 10 ppm, respectively. Phosphorylation at Y and T amino 

acids was set as a variable post translational modification. Quantification was based on MS1 

ion intensity and peptide identification was based on precursor ion (MS1) and at least three 

characteristic (MS2). Label-free MS1 quantification of peptide/protein via peak intensity was 
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performed using SIEVE (v2.1), a label-free differential expression software that aligns the MS 

spectra over time from different data sets and then determines structures in the data (m/z and 

retention time pairs) that differ. These differences were examined using Uniprot ovine protein 

database and then sorted based on biological function obtained from the data of each biological 

replicate. STRING interfaces were used to perform the interactomic analysis. In addition to 

STRING, GeneMANIA (http://genemania.org) was used to evidence putative interactive functional 

association network illustrating the relationships among genes. 

 

2.3     Total RNA extraction and RT-PCR 

 Total RNA was isolated from theca cells using RNA Mini Kit (Invitrogen) according to the 

manufacturer's instructions. Real-time PCR was performed in a 15μl reaction volume with 2× 

Power SYBR Green PCR Master Mix on CFX-96 Real-Time PCR Detection System (Bio-Rad 

Laboratories Ltd. CA, USA). The ovine-specific primer sequences were designed as shown in 

Table 1. The thermal cycling conditions were 3 min at 95 °C, followed by 40 cycles of 15 s at 

95 °C, 30 s at 60 °C, and 30 s at 72 °C. Melting curve analyses were performed to verify product 

identity. Samples were run in duplicate and the results are expressed relative to the geometric mean 

of three housekeeping genes (RPL19, YWHAZ and SDHA). Data were normalized to a calibrator 

sample using the ΔΔCt method with correction for amplification efficiency. 

 

2.4     Statistical Analysis 

 

 Data were tested for homogeneity of variance with Bartlett test, and log transformations were 

performed as appropriate. One-way ANOVA were performed with Tukey’s multiple comparisons 

tests, or Dunnett's compare with control, as appropriate. Culture data included culture replicate as a 

random variable. Data are presented as means  SEM with p < 0.05 considered significant. 

http://genemania.org/
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Table 1. Primer sequences used for real-time PCR 

Gene 

symbol 

Forward primer Reverse primer 

Target genes 

VEGFB AACACAGCCAGTGCGAATGC GTCACCTTCGCAGCTTCCG 

VEGFC GTTTACAGACAAGTCCATTCAAT TGCAGACGTGGTTATTCC 

VEGFD GAAGAAGATCGCTGCTCCCA ATGTGCTGACCACAGAGAGC 

COX2 GATGACTGCCCAACACCCAT AAAGGCGACGGTTATGCTGT 

MMP9 GCTTCTGGAGGTTCGACGTG ACGCCAGAAGAAGTGATCCTG 

BMP4 TGGCTGTCAAGAATCATGGACT ACGACCATCAGCATTCGGTT 

IGFBP3 CTACACGCGTTGTTGGACG GCTGTGGTCTTCTTCCGACT 

ET1 AGGAAAAGAGCTCAAGGACCA TTGATGCTGTTGCTGATGGC 

Housekeeping genes 

RPL19 TATGGGTATAGGTAAGCGAAAG TGGCGGTCAATCTTAG 

YWHAZ ACCAACACATCCTATCAGAC CTCTCAGTAACTGCATTAGC 

SDHA GAATGGTCTGGAACACTGA AGTAATCGTACTCGTCAACC 
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3 RESULTS 

3.1 Effect of BMP4 and TGFβ1 on ovine endothelial cell gene expression 

 Treatment of ovine theca endothelial cells (ECs) in culture with BMP4 or TGFβ1 altered the 

abundance of some but not all of the candidate target genes. Specifically, treatment of theca ECs 

with BMP4 caused a dose-dependent increase in the relative mRNA expressions of ET1 (Figure 

5A), VEGFa (Figure 5B) and FGF18 (Figure 5C). However, treatment of the ECs with BMP4 did 

not significantly affect the relative mRNA expressions of VEGFb (Figure 5D), VEGFc (Figure 5E), 

VEGFd (Figure 5F), MMP9 (Figure 5G), IGFBP3 (Figure 5H) or BMP4 (Figure 5I). In contrast, 

treatment of theca ECs with TGFβ1 only dose-dependently increased the mRNA expression of ET1 

(Figure 6A) but did not significantly affect the relative mRNA expressions of VEGFa (Figure 6B), 

FGF18 (Figure 6C), VEGFb (Figure 6D), VEGFc (Figure 6E), VEGFd (Figure 6F), MMP9 (Figure 

6G), IGFBP3 (Figure 6H) or BMP4 (Figure 6I). 

 

3.2    Effect of BMP4 on ovine endothelial cell proteome 

 

 Overall, 1488 proteins were identified by mass spectrometry in ovine theca ECs in both 

treated and non-treated group. Treatment of ECs with BMP4 resulted in an increased expression 

(>2-fold) of 28 proteins (Appendix A; Table 1) and decreased expression (<0.5-fold) of 29 proteins 

(Appendix A; Table 2). There were also 31 proteins that were slightly up-regulated (1.5 – 2-fold; 

Appendix A; Table 3) and 52 proteins that were slightly down-regulated (0.5 – 0.67-fold; 

Appendix A; Table 4). The three most significantly up-regulated and down-regulated proteins are 

given in Table 2 and Table 3, respectively. These proteins have well-characterized roles in 

endothelial cell proliferation and development (Marcelo et al. 2013).
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Figure 5. Dose-dependent effects of BMP4 on (A) ET1, (B) VEGFa, (C) FGF18, (D) VEGFb (E) VEGFc, (F) VEGFd, (G) 

MMP9, (H) IGFBP3 and (I) BMP4 mRNA levels in ovine theca endothelial cells. *p<0.05 (One-way ANOVA; posthoc: 

Dunnett); *n.d. – not determined. 
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Figure 6. Dose-dependent effects of TGFβ1 on (A) ET1, (B) VEGFa, (C) FGF18, (D) VEGFb (E) VEGFc, (F) VEGFd, (G) 

MMP9, (H) IGFBP3 and (I) BMP4 mRNA levels in ovine theca endothelial cells. *p<0.05 (One-way ANOVA; posthoc: 

Dunnett); *n.d. – not determined. 

52 
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Table 2. List of the top three up-regulated proteins in ovine theca endothelial cells following BMP4 

treatment. 

 

Protein 

 

Accession 

Abundance 

Ratio 

Aldehyde dehydrogenase 6 family member A1 

[OS=Ovis aries] W5NS43 100 

Bone morphogenetic protein 4 [OS=Ovis aries] A8VTF8 100 

NADH dehydrogenase [ubiquinone] 1 beta 

subcomplex subunit 8, mitochondrial [OS=Ovis aries] D5M8S1 100 

 

Table 3. List of the top three down-regulated proteins in ovine theca endothelial cells following 

BMP4 treatment. 

 

 

Protein 

 

Accession 

Abundance 

Ratio 

Core histone macro-H2A [OS=Ovis aries] W5P731 0.496 

Gastrin [OS=Ovis aries] W5Q7J9 0.484 

amine oxidase [OS=Ovis aries] W5NQS5 0.477 
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The proteins that showed significant fold changes were also classified according to their biological 

processes (Figure 7). 

 

 

Figure 7. Biological function of proteins identified by mass spectrometry. 

 

 

Although TIMP1 was not upregulated by more than 1.5-fold, interactome analysis of the 

differentially expressed proteins identified a high degree of genetic and physical interactions 

between TIMP1 and JUN, STAT3, CD63 signaling pathways following the exposition of 

endothelial cell to BMP4 for 48h (Figure 8A). This observation was also validated with a STRING 

analysis (i.e. predicted protein–protein interactions) in Figure 8B. 
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Figure 8. Interactome analysis network. (A) Complete mapping of the Interactome Networks. (B) 

protein-protein interaction network maps using a distinct database (STRING). 
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4 DISCUSSION 

 The present study investigated the effects of TGFβ1 on ovine endothelial cell (EC) gene 

expression, and BMP4 on EC gene expression and protein secretion. The findings of the present 

study demonstrate that exogenous administration of TGFβ1 and BMP4 induced expression of 

endothelin-1 (ET-1) in ovine theca ECs. BMP4, but not TGFβ1, also significantly increased the 

expression of VEGF and FGF18. Proteomic analysis performed following 48h incubation of 

ovine theca ECs with BMP4 identified significant up-regulation (>2-fold) of 28 proteins and 

significant down-regulation (<0.5-fold) of 29 proteins. To the best of our knowledge, this is the 

first study that elucidates the effect of BMP4 and/or TGF-β1 on gene expression and proteome in 

primary ruminant theca ECs. 

 In this study, TGFβ1 stimulated the abundance of ET1 mRNA, as has been previously 

demonstrated in human pulmonary artery endothelial cells (Park et al. 2012, Star et al. 2009), 

and we also demonstrate that BMP4 also stimulated ET1 mRNA levels, which has not been 

previously reported. Other genes important for endothelial cell proliferation, vascular formation 

and/or permeability include VEGFa/b/c/d, MMP9, FGF18 and IGFBP3 (Datta et al. 2004, Rizov 

et al. 2017; Rossi et al. 2016), and these genes are regulated by TGFβ1 in human cancer cells and 

endothelial cells (Laulan and St-Pierre 2015, Genersch et al. 2000, Rossi et al. 2016), however in 

the present study only VEGFa and FGF18 mRNA levels were altered by BMP4. This growth 

factor has been shown to increase VEGFa mRNA levels in ruminant theca/granulosa cells and 

neuroblastoma cells (Nichols et al. 2019, HaDuong et al. 2015). The inability of TGFβ1/BMP4 

to upregulate angiogenic genes in this study may be owing to the use of primary EC from the 

follicle, which likely exhibit different properties compared with cell lines. 
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 Exposition of ovine theca ECs to BMP4 for 48h resulted in significant changes in the 

proteome. Specifically, mass spectrometry analysis identified 1488 proteins in total, with 

significant up-regulation (>2-fold) of 28 proteins and down-regulation (<0.5-fold) of 29 proteins. 

Consistent with the well-documented role of BMP4 in apoptosis and cell proliferation in ECs 

(Kiyono and Shibuya 2006, 2003, Tian et al. 2012, David et al. 2009), the proteome analyses 

revealed significant up-regulation of proteins regulating these biological pathways. Interactome 

analysis, using two distinct biochemical and biological databases, identified a high degree of 

genetic and physical interactions between TIMP1 and JUN, STAT3, CD63 signaling pathways.

 Of interest was the significant up-regulation of neutralizing tissue inhibitor of 

metalloproteinase 1 (TIMP1), which has been previously associated with apoptosis, cell growth, 

and angiogenesis (Chirco et al. 2006). Curiously, this protein was downregulated by TGFβ1 in 

mouse brain microcapillary endothelial cells (Siqueira et al. 2017), which may reflect a 

difference between species (mouse vs sheep) or cell origin (brain vs ovary). Interactomic 

analysis also identified a high degree of genetic and physical interactions between TIMP1 and 

signal transducers and activators of transcription 3 (STAT3). STAT3, a member of the STAT 

family identified as a DNA-binding factor, has been implicated in accelerating cell growth, 

inhibiting apoptosis and promoting tumorigenesis (Niu et al. 2002, Bromberg and Darnell 2000). 

STAT3 has also been known to be an upstream regulator of BMP signaling pathway (Fukuda et 

al. 2007). Furthermore, STAT3 has been widely described as an oncogene correlated with tumor 

progression and up-regulated in a wide variety of tumors, including hematological malignancies 

and solid tumors such as breast, lung, gastric, colorectal, ovarian and prostate cancers (Yu 

et al. 2009). 
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 A role for TIMP1 is also documented in the regulation of ovarian extracellular matrix 

remodeling during follicular growth, ovulation, corpus luteum formation, and regression (Smith 

et al. 1999, Li and Curry 2009). It has been suggested that the induction of TIMP1 by TGFβ 

family members occurs through the activation of the protein kinase A pathway and downstream 

mediators such as extracellular-signal-regulated kinase (ERK) and mitogen activated protein 

kinases (MAPK) (Salvador et al. 2002). However, mass spectrometry analysis failed to identify 

up-regulation of these downstream proteins. Previous works by others have also observed similar 

discordance (Castagnino et al. 1998, Su et al. 1998, Nareyeck et al. 2005, Zhou et al. 2004), and 

have proposed differences in ubiquitination or posttranscriptional changes as a reason. 

 One puzzling feature of the present study was the lack of changes detected in protein levels 

of FGF18, VEGFa or ET1. This may be because (a) these factors are secreted and therefore 

differences were not detected in terms of intracellular levels, (b) the sheep protein database is 

insufficiently annotated to correctly detect and identify these proteins, and/or (c) concentrations 

of these proteins were too low to be accurately detected by mass spectrometry. It is also possible 

that culture conditions may have amplified changes in RNA and/or reduced protein production. 

Further studies with alternative techniques such as Western blotting or ELISA are required to 

resolve this issue. 

 Development and loss of the thecal capillary bed is critical for follicle development, and 

reduced vascularity of the theca has been associated with follicle atresia (Geva and Jaffe 2000 

Wulff et al. 2001). Collectively, the present data suggest a role for TGFβ and BMP4 in 

regulating these cells. These ligands stimulate FGF18, ET1 and VEGFa expression, which are 

involved in promoting endothelial cell migration and proliferation (Antoine), which suggests that 

TGFβ signaling stimulates folliculogenesis at least in part through enhancing thecal vascularity.  
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4 CONCLUSION 

 

In summary, our results demonstrate that exogenous administration of BMP4 or TGFβ1 

induces differential changes in the expression of EC function-related genes and proteins in ovine 

thecal endothelial cells. A major limitation of this work was the use of a targeted gene approach 

(i.e. only genes involved in endothelial function), and future work assessing the genome-wide 

transcriptome changes using RNA sequencing in ovine theca ECs is required to further gain 

insights of the downstream signaling mediators of TGFβ family members. As already noted, this 

is the first study that has used ovine primary theca ECs to elucidate proteomic changes. Given 

the possibility of tissue- or species-specific role of BMPs, future work assessing proteomic 

changes in human umbilical vein endothelial cells (HUVEC) following BMP4 treatment and/or 

assessing BMP4-associated downstream signaling protein changes using molecular biology 

techniques is required to better understand the crosstalk between the endothelial cells and the 

TCs and/or GCs.  
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Table 1. List of proteins significantly up-regulated greater than 2-fold change by BMP4 treatment 

in ovine endothelial cells. 

Accession Protein 
Abundance 

Ratio 

W5NS43 aldehyde dehydrogenase 6 family member A1 [OS=Ovis aries] 100 

A8VTF8 Bone morphogenetic protein 4 [OS=Ovis aries] 100 

D5M8S1 

NADH dehydrogenase [ubiquinone] 1 beta subcomplex subunit 8, 

mitochondrial [OS=Ovis aries] 100 

W5PNV2 Serine/threonine-protein phosphatase [OS=Ovis aries] 7.656 

W5QIL2 Proteasome subunit beta [OS=Ovis aries] 7.475 

W5Q0F3 transforming growth factor beta induced [OS=Ovis aries] 5.327 

W5PXE7 copine 7 [OS=Ovis aries] 5.135 

W5PWU4 Uncharacterized protein [OS=Ovis aries] 4.723 

W5Q5R2 Neural cell adhesion molecule 1 [OS=Ovis aries] 4.379 

W5P604 elongator acetyltransferase complex subunit 2 [OS=Ovis aries] 4.038 

W5PQI9 microtubule associated protein 1 light chain 3 beta [OS=Ovis aries] 3.582 

W5QHP5 G protein subunit beta 4 [OS=Ovis aries] 3.068 

W5NSJ5 oxidative stress responsive 1 [OS=Ovis aries] 2.942 

W5QHI4 cyclin dependent kinase like 1 [OS=Ovis aries] 2.814 

W5NR86 transcription factor BTF3 [OS=Ovis aries] 2.709 

W5PWZ3 MORC family CW-type zinc finger 3 [OS=Ovis aries] 2.633 

W5P3W5 Hydroxysteroid 17-beta dehydrogenase 11 [OS=Ovis aries] 2.52 

W5QDP8 Fibulin-1 [OS=Ovis aries] 2.458 

W5QEQ3 DNA-(apurinic or apyrimidinic site) lyase [OS=Ovis aries] 2.392 

W5QCX7 MYB binding protein 1a [OS=Ovis aries] 2.276 

W5PTL7 ssemaphorin 4F [OS=Ovis aries] 2.23 

W5P8E9 CD109 molecule [OS=Ovis aries] 2.214 

W5P668 Glutathione peroxidase [OS=Ovis aries] 2.131 

W5PLJ6 neudesin neurotrophic factor [OS=Ovis aries] 2.105 

W5PVE5 peptidyl-prolyl cis-trans isomerase [OS=Ovis aries] 2.043 

W5NPI6 Polyadenylate-binding protein [OS=Ovis aries] 2.025 

W5QG21 Uncharacterized protein [OS=Ovis aries] 2.021 

W5Q6J7 Tubulin-specific chaperone A [OS=Ovis aries] 2.001 
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Table 2. List of proteins that were significantly down-regulated (<0.5-fold) by BMP4 treatment in ovine 

endothelial cells. 

Accession Protein 
Abundance 

Ratio 

W5P731 Core histone macro-H2A [OS=Ovis aries] 0.496 

W5Q7J9 Gastrin [OS=Ovis aries] 0.484 

W5NQS5 amine oxidase [OS=Ovis aries] 0.477 

W5PRA1 Uncharacterized protein [OS=Ovis aries] 0.466 

W5PU70 Uncharacterized protein [OS=Ovis aries] 0.44 

W5PZT1 Uncharacterized protein [OS=Ovis aries] 0.436 

A0A0B4UE86 growth hormone [OS=Ovis aries] 0.413 

B0FZM4 myosin light chain 6 [OS=Ovis aries] 0.41 

W5PX18 BRO1 domain and CAAX motif containing [OS=Ovis aries] 0.405 

W5PTM9 Uncharacterized protein [OS=Ovis aries] 0.387 

W5QFH1 actin, alpha, cardiac muscle 1 [OS=Ovis aries] 0.383 

W5PA52 Uncharacterized protein [OS=Ovis aries] 0.378 

W5P5F6 Tubulin folding cofactor B [OS=Ovis aries] 0.378 

W5NTP6 Uncharacterized protein [OS=Ovis aries] 0.376 

W5Q3J3 collagen beta(1-O)galactosyltransferase 1 [OS=Ovis aries] 0.372 

W5PZI0 Clusterin [OS=Ovis aries] 0.361 

W5QB02 Transglutaminase 2 [OS=Ovis aries] 0.357 

Q1A2D1 Beta-K globin chain [OS=Ovis aries] 0.346 

W5PII6 A-kinase anchoring protein 3 [OS=Ovis aries] 0.322 

W5Q5M3 Uncharacterized protein [OS=Ovis aries] 0.318 

W5PGT5 Myosin heavy chain 11 [OS=Ovis aries] 0.297 

W5Q009 X-prolyl aminopeptidase 2 [OS=Ovis aries] 0.266 

W5PJI3 zinc finger CCHC-type containing 24 [OS=Ovis aries] 0.23 

W5Q337 glutaredoxin 5 [OS=Ovis aries] 0.174 

W5NU63 myosin heavy chain 10 [OS=Ovis aries] 0.163 

W5QIH2 Tropomodulin 3 [OS=Ovis aries] 0.16 

W5QBQ9 myosin heavy chain 9 [OS=Ovis aries] 0.157 

W5NW47 Uncharacterized protein [OS=Ovis aries] 0.154 

W5NWY3 Uncharacterized protein [OS=Ovis aries] 0.091 

W5NWF1 syntaxin binding protein 5 [OS=Ovis aries] 0.082 
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Table 3. List of proteins that were slightly up-regulated (1.5 – 2-fold) by BMP4 treatment in ovine endothelial 

cells. 

 

Accession Protein 
Abundance 

Ratio 

W5Q6L8 Keratin 14 [OS=Ovis aries] 1.948 

W5PE86 peptidylprolyl isomerase [OS=Ovis aries] 1.929 

W5P4M1 Prohibitin 2 [OS=Ovis aries] 1.907 

W5PER3 Transmembrane 9 superfamily member [OS=Ovis aries] 1.876 

W5NRL8 
Eukaryotic translation initiation factor 3 subunit A [OS=Ovis 

aries] 
1.866 

W5NQJ2 COP9 signalosome subunit 5 [OS=Ovis aries] 1.863 

W5P1C2 nucleobindin 2 [OS=Ovis aries] 1.841 

W5QFP1 Polyadenylate-binding protein [OS=Ovis aries] 1.829 

W5Q2P6 Early endosome antigen 1 [OS=Ovis aries] 1.814 

W5NPC7 acyl-CoA binding domain containing 3 [OS=Ovis aries] 1.807 

W5PXC5 TRIO and F-actin binding protein [OS=Ovis aries] 1.761 

W5QGI9 E3 ubiquitin-protein ligase RNF168 [OS=Ovis aries] 1.75 

W5Q1Z8 Bromodomain PHD finger transcription factor [OS=Ovis aries] 1.716 

W5Q952 Aly/REF export factor [OS=Ovis aries] 1.699 

Q28552 fetal globin [OS=Ovis aries] 1.691 

W5PVJ1 BCL2 like 13 [OS=Ovis aries] 1.69 

W5P8C1 KIAA0319 [OS=Ovis aries] 1.682 

W5PQR0 family with sequence similarity 129 member B [OS=Ovis aries] 1.679 

W5NR48 Importin subunit alpha [OS=Ovis aries] 1.656 

W5NXE7 peptidylprolyl isomerase like 4 [OS=Ovis aries] 1.641 

W5PE07 NADH:ubiquinone oxidoreductase subunit S4 [OS=Ovis aries] 1.618 

W5PUY7 PKHD1, fibrocystin/polyductin [OS=Ovis aries] 1.613 

W5Q5T7 V-type proton ATPase subunit C [OS=Ovis aries] 1.566 

W5PM07 solute carrier family 18 member A1 [OS=Ovis aries] 1.559 

W5QFP0 Thrombospondin 1 [OS=Ovis aries] 1.559 

W5P8B3 translocase of inner mitochondrial membrane 50 [OS=Ovis aries] 1.555 

W5PBU7 Transmembrane protease, serine 13 [OS=Ovis aries] 1.542 

W5PUX0 
NADH dehydrogenase [ubiquinone] flavoprotein 1, mitochondrial 

[OS=Ovis aries] 
1.539 

W5P7W2 Stromal cell derived factor 4 [OS=Ovis aries] 1.538 

W5QHP9 
Guanine nucleotide-binding protein subunit gamma [OS=Ovis 

aries] 
1.528 

W5QBZ7 Uncharacterized protein [OS=Ovis aries] 1.516 

B2MVW1 tetraspanin [OS=Ovis aries] 1.511 
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Table 4. List of proteins that were slightly down-regulated (0.5 – 0.67 fold) by BMP4 treatment in ovine 

endothelial cells. 

 

Accession Protein 
Abundance 

Ratio 

W5NS65 histone cluster 1 H1 family member e [OS=Ovis aries] 0.666 

W5PIV7 Fragile X mental retardation 1 [OS=Ovis aries] 0.663 

W5NTN0 
Glutamine-fructose-6-phosphate transaminase 2 [OS=Ovis 

aries] 
0.659 

W5QIH4 MARCKS like 1 [OS=Ovis aries] 0.658 

C8BKD6 superoxide dismutase [OS=Ovis aries] 0.654 

A0A075B6D9 Caveolin [OS=Ovis aries] 0.653 

W5Q1M0 Beta-galactosidase [OS=Ovis aries] 0.653 

W5Q3E0 Thy-1 cell surface antigen [OS=Ovis aries] 0.652 

W5PRP1 
Na(+)/H(+) exchange regulatory cofactor NHE-RF [OS=Ovis 

aries] 
0.651 

W5NWK5 S100 calcium binding protein A13 [OS=Ovis aries] 0.649 

W5Q039 tubulin beta chain [OS=Ovis aries] 0.648 

W5NZQ2 leucine aminopeptidase 3 [OS=Ovis aries] 0.647 

W5Q5W2 Uncharacterized protein [OS=Ovis aries] 0.646 

W5PT12 40S ribosomal protein S30 [OS=Ovis aries] 0.643 

W5PW39 Lamin B2 [OS=Ovis aries] 0.643 

W5Q940 shootin 1 [OS=Ovis aries] 0.639 

C6ZP47 I alpha globin [OS=Ovis aries musimon] 0.634 

W5NUT0 Caveolae associated protein 1 [OS=Ovis aries] 0.629 

W5P2E1 taste 1 receptor member 3 [OS=Ovis aries] 0.629 

W5PHS7 
solute carrier family 29 member 1 (Augustine blood group) 

[OS=Ovis aries] 
0.628 

W5PLK7 high mobility group AT-hook 1 [OS=Ovis aries] 0.626 

W5PYU4 laminin subunit beta 2 [OS=Ovis aries] 0.622 

W5Q687 Keratin 5 [OS=Ovis aries] 0.619 

W5PHG0 Histone H3 [OS=Ovis aries] 0.614 

W5P9M2 Prostaglandin reductase 1 [OS=Ovis aries] 0.613 

W5PFT0 CDV3 homolog [OS=Ovis aries] 0.612 

W5PIN0 
Aldehyde dehydrogenase 1 family member A3 [OS=Ovis 

aries] 
0.611 

W5P6D1 Uncharacterized protein [OS=Ovis aries] 0.606 

W5Q9T3 lamin B1 [OS=Ovis aries] 0.6 

W5NZT7 NmrA like redox sensor 1 [OS=Ovis aries] 0.589 

W5QBF8 Caveolae associated protein 3 [OS=Ovis aries] 0.587 

W5NT34 barrier to autointegration factor 1 [OS=Ovis aries] 0.584 
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W5QAA1 14-3-3 protein sigma [OS=Ovis aries] 0.584 

W5QGU0 OPA1, mitochondrial dynamin like GTPase [OS=Ovis aries] 0.583 

W5Q160 Keratin 10 [OS=Ovis aries] 0.582 

W5NZY8 Tubulin folding cofactor E [OS=Ovis aries] 0.571 

W5PZW9 keratin 24 [OS=Ovis aries] 0.571 

W5Q611 keratin 1 [OS=Ovis aries] 0.565 

W5QIK8 Selenium binding protein 1 [OS=Ovis aries] 0.561 

W5PNQ1 tropomodulin 1 [OS=Ovis aries] 0.561 

W5NZJ5 Sulfotransferase [OS=Ovis aries] 0.553 

W5PIF9 
transforming growth factor beta 1 induced transcript 1 

[OS=Ovis aries] 
0.552 

W5PKZ0 
chromodomain helicase DNA binding protein 2 [OS=Ovis 

aries] 
0.55 

W5P3K9 SH3 and PX domains 2A [OS=Ovis aries] 0.547 

D6QZ20 NADH dehydrogenase (ubiquinone) 1 beta [OS=Ovis aries] 0.545 

W5P5J0 drebrin 1 [OS=Ovis aries] 0.543 

W5Q5N9 Keratin 8 [OS=Ovis aries] 0.543 

W5PIV2 diacylglycerol kinase [OS=Ovis aries] 0.541 

W5QAX3 actin gamma 1 [OS=Ovis aries] 0.533 

W5QGE5 serine peptidase inhibitor, Kunitz type 1 [OS=Ovis aries] 0.531 

W5P2H4 Uncharacterized protein [OS=Ovis aries] 0.53 

W5P374 ribosomal protein L15 [OS=Ovis aries] 0.521 

W5NY08 atlastin GTPase 3 [OS=Ovis aries] 0.517 
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