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Abstract 

Preterm birth (PTB; birth before 37 weeks' gestation) is the leading cause of neonatal 

mortality and morbidity worldwide, and surviving infants are at risk of long-lasting functional 

impairments. The pathophysiology of spontaneous preterm labor has been largely attributed to 

intrauterine inflammatory processes independent of aetiology, gestation age at delivery, and 

presence of infection. Importantly, intrauterine inflammation can propagate to the fetus 

whereupon the initial trigger is amplified to cause fetal organ injury, thereby compromising 

neonatal outcome. Of all pro-inflammatory mediators, interleukin-1 (IL-1) stands out as a major 

player in PTB and fetal inflammation. Therefore, modulating its action antenatally may be key 

to achieve better gestational and neonatal outcomes. Herein, we show that antenatal regulation 

of IL-1 by lactate (or 3,5-dihydroxybenzoic acid [3,5-DHBA]) via activation of anti-

inflammatory GPR81 in myometrium, or by an heptapeptide noncompetitive antagonist of IL-1 

receptor developed in our laboratory and termed 101.10, prevents PTB and improves neonatal 

survival in intrauterine-inflammatory and systemic-infectious murine models of PTB. 

Specifically, we show that antenatal maternal administration of 101.10 prevents premature 

triggering of uterine, choriodecidual, placental, amniotic, and fetal inflammation, thereby 

decreasing organ injury and functional impairment in progeny. In this setting, 101.10 has shown 

superior efficacy as compared to anakinra (Kineret), a competitive IL-1 receptor antagonist, 

especially to prevent PTB and neonatal mortality. Further, we demonstrate that 101.10 exhibits 

functional selectivity by inhibiting IL-1-induced signals transducers p38, c-Jun N-terminal 

kinase (JNK), c-jun, and Rho GTPase/ Rho-associated coiled-coil-containing protein kinase 

(ROCK), while desirably preserving IL-1-induced activation of IκBα and nuclear factor-kappa 
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B (NF-κB). In a second set of experiments, we uncover a novel uterine negative feedback 

mechanism whereby the anaerobic metabolism solicitated during active labor produces large 

levels of lactate, which in turn activates GPR81 in myometrium to decrease IL-1-induced acute 

inflammatory cascade. Correspondingly, GPR81-/- mice display increased uterine inflammation 

during labor and increased rates of labor dystocia, whereas inversely administration of the 

GPR81 agonist 3,5-DHBA decreases the uterine inflammatory response to IL-1 and prevents 

lipopolysaccharide (LPS, gram(-) bacteria endotoxin)-induced PTB. Altogether, this data points 

to a major role of antenatal IL-1 in eliciting PTB and long-lasting fetal organ injury, and 

describes a novel therapeutic approach to inhibit IL-1 receptor antenatally while preserving 

important physiological inflammatory signaling pathways.  

Keywords: Preterm birth, preterm labor, interleukin-1, anti-IL-1, inflammation, neonatal 

morbidity, functional selectivity, lactate, GPR81. 
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Résumé  

La naissance prématurée (NP; naissance avant 37 semaines de gestation) est la cause 

principale de mortalité et de morbidité néonatale à travers le monde, et les nourrissons survivants 

sont à risque de déficits fonctionnels à long-terme. La physiopathologie du travail préterme 

spontané est largement attribuable aux processus inflammatoires intra-utérins indépendamment 

de l’étiologie, de l’âge gestationnel à l’accouchement, et de la présence d’infection. De façon 

importante, l’inflammation intra-utérine se propage au fœtus, après quoi le déclencheur initial 

est amplifié pour causer des dommages aux organes fœtaux, compromettant ainsi l’issue 

néonatal. De tous les médiateurs pro-inflammatoires, l’interleukine-1 (IL-1) se démarque 

comme étant un joueur majeur dans la NP et l’inflammation fœtale. Ainsi, de moduler son action 

durant la gestation pourrait être essentiel afin d’atteindre une meilleure issue néonatale. Dans la 

présente, nous démontrons que la régulation anténatale de l’IL-1 par le lactate (ou l’acide 3,5-

dihydroxybenzoïque [3,5-DHBA]) via le récepteur myométrial anti-inflammatoire GPR81, ainsi 

qu’un heptapeptide antagoniste non-compétitif du récepteur de l’IL-1 développé dans notre 

laboratoire et nommé 101.10, préviennent la NP et améliorent la survie néonatale dans des 

modèles murins de NP induite par l’inflammation intra-utérine ou l’infection systémique. 

Spécifiquement, nous montrons que l’administration maternelle anténatale de 101.10 prévient 

le déclenchement prématuré de l’inflammation utérine, choriodéciduale, placentaire, 

amniotique et fœtale, diminuant ainsi les dommages aux organes fœtaux et les déficits 

fonctionnels chez la progéniture. Dans ce contexte, 101.10 a démontré une efficacité supérieure 

à anakinra (Kineret), un antagoniste compétitif du récepteur de l’IL-1, surtout pour prévenir la 

NP et la mortalité néonatale. De plus, nous démontrons que le 101.10 agit par sélectivité 
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fonctionnelle en inhibant les signaux de transduction activés par l’IL-1, spécifiquement p38, c-

Jun N-terminal kinase (JNK), c-jun, et Rho GTPase/ Rho-associated coiled-coil-containing 

protein kinase (ROCK), tout en préservant désirablement l’activation de IκBα et de nuclear 

factor-kappa B (NF-κB) induite par l’IL-1. Dans un second ensemble d’expériences, nous 

découvrons un mécanisme inédit de rétroaction négative intra-utérine par lequel le métabolisme 

anaérobique sollicité durant la phase de travail utérin actif produit des niveaux élevés de lactate, 

ce qui en retour active GPR81 dans le myomètre pour diminuer la cascade inflammatoire aigüe 

induite par IL-1. De façon correspondante, les souris GPR81-/- présentent plus d’inflammation 

utérine durant le travail et des taux plus élevés de dystocie utérine, alors qu’à l’inverse 

l’administration de l’agoniste de GPR81 3,5-DHBA diminue la réponse inflammatoire utérine 

à l’IL-1 et prévient la NP induite par le lipopolysaccharide (LPS, une endotoxine provenant des 

bactéries gram(-)). En somme, nos données démontrent un rôle majeur de l’IL-1 anténatale à 

éliciter la NP et les dommages à long-terme aux organes fœtaux, en plus de décrire une approche 

thérapeutique inédite pour inhiber le récepteur de l’IL-1 avant la naissance tout en préservant 

les voies de signalisation inflammatoires physiologiquement importantes. 

Mots-clés: Naissance prématurée, travail préterme, interleukine-1, anti-IL-1, inflammation, 

morbidité néonatale, sélectivité fonctionnelle, lactate, GPR81. 
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Part A: Introduction1 

1. Preterm birth : 

1.1. Epidemiology and definitions 

Preterm birth (PTB; delivery before 37 weeks of gestation) affects 1 out of 10 newborn, 

which corresponds to approximately 15 million babies worldwide each year, and in many 

countries this rate increases unabatedly each year (1).  PTB is a leading cause of infant mortality 

and morbidity worldwide and surviving infants are at risk of lifelong complications, which 

constitutes a major social and economic burden (2). Although major advances have been made 

in the past decades, to this date no pharmacological compound has been successful in arresting 

uterine labor after its onset, or to prolong gestation by more than a week in symptomatic (i.e. in 

labor) women. Accordingly, the rate of PTB in the United States has increased since 1990 (from 

10.62 % in 1990 to 11.72% in 2011) suggesting that PTB remains an important clinical 

challenge despite advances made (3). Importantly, annual cost of PTB was estimated to $26.2 

                                                 
1 The introduction contains figures, tables, and text sections originally published in: 
a) Cytokine & Growth Factor Reviews. Nadeau-Vallée M, Obari D, Quiniou C, Lubell WD, Olson DM, Girard S, 
Chemtob S. A critical role of interleukin-1 in preterm labor. Cytokine Growth Factor Rev. 2016 Apr;28:37-51. 
Copyright © [2015] Elsevier Ltd. 
b) Reproduction. Nadeau-Vallée M, Obari D, Palacios J, Brien MÈ, Duval C, Chemtob S, Girard S. Sterile 
inflammation and pregnancy complications: a review. Reproduction. 2016 Dec;152(6):R277-R292. Copyright © 
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billion (USD) in 2005, and this estimation does not include further health problems that 

premature infants might suffer (2). Thus, the global burden of PTB on maternal and child health 

calls for an urgent need to develop effective treatments to reduce the incidence of PTB. 

Not all PTBs are equivalent in terms of medical risks. The risk of neonatal morbidity 

and long-term complications is inversely proportional to gestational age1 at birth, with severe 

preterm infants (<28 weeks, accounting for <5%) being the most at risk, followed by very 

preterm infants (28-316/7 weeks, 20%) and late preterm infants (32-366/7 weeks, 70-80%) (4).  

About one-quarter of PTBs are iatrogenic deliveries usually due to life-threatening fetal or 

maternal pregnancy-associated health condition, whereas the remainder are due to spontaneous 

preterm labor. Risk factors for PTB include low parity, cigarette smoking, use of alcohol and 

street drugs (especially cocaine), environmental stress, multiple gestation, and poor nutrition. 

Additionally, women who were born preterm have increased risk to deliver preterm (5). 

Therefore, undergoing spontaneous preterm labor or developing a pregnancy-associated 

condition severe enough to force iatrogenic delivery seems to be multifactorial, with aetiologies 

spanning genetic, social/environmental, epigenetic, and fetal reprogramming factors. 

Interestingly, the highest reported rates of PTB independent of gestation age at birth are found 

in the USA, sub-Saharan Africa, and Southeast Asia (4), whereas the highest rate of severe PTB 

is found in sub-Saharan Africa and Southeast Asia (1).  

 

                                                 
1 Gestational age refers to the length of pregnancy from the first day of last menstrual period, whereas conceptional 
age refers to the length of pregnancy from the date of conception.  
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1.2. Spontaneous preterm birth 

As mentioned, spontaneous PTB (as opposed to iatrogenic PTB) represents 

approximately 75% of PTBs and is the result of spontaneous preterm labor. The onset of labor 

is a gradual process that begins several days before delivery with changes in gestational tissues, 

culminating in powerful contractions to expulse the conceptus. Term and preterm labor (i.e. 

labor before 37 weeks' gestation) share a common (patho)physiological process, including 

activation of the membranes/decidua (detachment of the chorioamniotic membranes from the 

decidua and rupture of the membrane), uterine contractility (shift from irregular contractions to 

functional contractions) and cervical ripening (dilatation and effacement of the cervix due to 

changes in cervical composition and increasing myometrial contractility) (6). It has been 

suggested that while term labor is a result of a physiological activation of this pathway, preterm 

labor is on the other hand the result of a pathological activation of the same process (7-9).   

 

1.2.1. Etiology 

Many causes of spontaneous PTB have been identified and include infection, fetal 

growth disorders, ischemia, uterine over-distension, cervical incompetence, fetal and maternal 

stress, hemorrhage, placental abruptio, and several others (10).  For this reason, PTB is not seen 

as a single disease entity, but is referred to as a syndrome (7, 11). A definitive cause is rarely 

identified, but based on the predominant health condition, the most prevalent causes are 

(independent of gestational age): multiple gestation (10.4%), extrauterine infection (7.7%), 

chorioamnionitis (intrauterine infection; 7.6%), mid/late-pregnancy bleeding (6.2%), and 

suspected fetal growth restriction (5.8%), with almost the third of PTBs having no predominant 
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condition identified (12). The most prevalent cause in extreme and very preterm infants is 

chorioamnionitis, which is found (in placental pathology) in 35.4% at 29-32 weeks, and in as 

much as 94% at 21-24 weeks (13). 

 

1.2.2. Pathophysiology 

It is hypothesized that all the different aetiologies share a common final pathway leading 

to preterm labor, which involves inflammatory processes and uterine activation. Different 

mechanisms upstream of this common pathway have been proposed for each etiology. For 

instance: a) maternal and fetal stress is thought to trigger preterm labor via the excessive release 

of cortisol which induces the release of placental corticotrophin-releasing hormone (CRH) (in 

contrast to its inhibitory feedback effect on hypothalamic CRH) in turn acting as an uterotrophin 

(uterine activator) (14, 15); b) placental abruptio and decidual hemorrhage is thought to induce 

preterm labor in part via intrauterine thrombin activation, which is a potent uterotonin (uterine 

contractant) via protease-activated receptors (PAR) independent of its effect on hemostasis (16-

19); and more importantly c) the local release of alarmins in response to sterile stressors and 

cell injury, and subsequent invasion of the uterus by leukocytes, is probably implicated in most, 

if not all PTB aetiologies as as been suggested for ischemia and hemorrhage (20-25). However, 

of all aetiologies identified, only intraamniotic infection has been causally linked to spontaneous 

PTB, whereas others are mostly based on associations reported by epidemiologic, placental 

pathologic, or experimental studies (26). During infection, microbial endotoxins activate 

pattern-recognition receptors (PRRs), a class of phylogenetically conserved receptors 

ubiquitously expressed by mammalian immune and non-immune cells, leading to nuclear 
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translocation of nuclear factor-kappa B (NF-κB), amplification and maintenance of uterine 

inflammation, activation of the common parturition pathway, and onset of spontaneous preterm 

labor. Further elaboration on the common parturition pathway and on the role of inflammation 

is presented in Chapter 2. 

 

1.2.3. Treatment 

Most of the clinically-available therapeutic drugs used for PTB target the myometrium 

to arrest or delay labor in symptomatic women and are referred to as tocolytics (from the Greek 

tokos, childbirth; and lytic, dissolving). Tocolytics are used to gain sufficient time for 

administration of corticosteroids (to accelerate lung maturation and surfactant production) or 

transport to a tertiary care unit. Because tocolytics have not been shown to improve neonatal 

outcome, and because they convey limited efficacy to prolong gestation and exhibit numerous 

side effects, routine use of tocolytics is controversial (27, 28). Only progesterone (and cervical 

cerclage, a minor surgical procedure wherein the internal cervical os is sewn closed) has been 

used in asymptomatic (non-laboring) women at risk of PTB to prevent or delay PTB. 

 

1.2.3.1. Therapeutic approach for asymptomatic women 

To date, only two treatment regimens are recommended for the prevention of PTB: 1) 

progesterone administered daily via vaginal suppository (e.g., Endometrin®; Ferring 

Pharmaceuticals) from the 24th to the 34th week of gestation in women with a short cervix 

(trans-vaginal sonographic cervical length of <25 mm) and no history of PTB, and 2) 17α-
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hydroxyprogesterone caproate (Makena®; AMAG Pharmaceuticals, Inc) administered weekly 

via intramuscular injection from the 16th to the 36th week of gestation in women with a history 

of PTB. These recommendations are based on the results of numerous clinical studies, which 

have shown a reduction in the risk of both PTB and neonatal mortality and morbidity (29-31). 

In contrast, the more recent and elaborated OPPTIMUM study suggests that the use of 

progesterone in women at risk of PTB is not associated with a reduction in PTB, or improvement 

in a composite neonatal outcome (including death, brain injury, or bronchopulmonary 

dysplasia), or any long-term positive effects on cognitive score at 2 years of age. However, 

single components of the composite neonatal score, namely neonatal death and neonatal brain 

injuries, were both significantly (statistically) reduced (32), which would be expected to 

translate into long-term beneficial effects contrary to what has been observed in the study (33). 

Correspondingly, the PROLONG study, a multicenter, multinational, placebo-controlled 

randomized clinical trial of >1700 pregnant women, failed to show efficacy of antenatal 

progestins to prevent PTB and improve neonatal outcome (34). Further studies are warranted to 

design effective diagnostics to expand the identifiable population at risk of PTB (current clinical 

and sonographic criteria only identify approximately 12% of the women at risk (35)). Effective 

diagnostics could help clarify the role of antenatal progestins or other antenatal therapeutics that 

are in development. The physiological role of progesterone will be discussed in Chapter 2.  

In women with cervical insufficiency, cervical cerclage has been consistently shown to 

decrease the rate of PTB (36). However this subset of women represents less than 1% of the 

obstetrical population (37).  
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1.2.3.2. Therapeutic approach for symptomatic women (tocolytics) 

Numerous tocolytic agents are used to prolong the gestation of women in spontaneous 

preterm labor. The most vastly used are ritodrine, nifedipine, atosiban, magnesium sulphate, and 

indomethacin. 

Ritodrine: Numerous β-mimetics have been used as tocolytics (e.g. terbutaline, 

ritodrine, salbutamol), but the most used is ritodrine (28). β-mimetics bind and activate β-

adrenergic receptors on myometrial cells. β-adrenergic receptors are Gs protein-coupled 

receptors and therefore activate adenylyl cyclase-induced production of cAMP, in turn reducing 

intracellular Ca++ levels and promoting the inactivation of myosin light-chain kinase (MLCK; a 

group of enzymes important for contraction) in myometrial smooth muscle cells (28).  

Several randomized control trials and meta-analyses concur to the efficacy of ritodrine 

to prolong gestation by at least 48h (38, 39). However, there is no evidence for improvement of 

neonatal outcomes (38). The current rationale for using ritodrine (and other tocolytics) is to gain 

enough time for corticosteroid action and transfer to a tertiary care facility.  

However, because β-adrenergic receptors are widely expressed throughout the human 

body, ritodrine (and other β-mimetics) have numerous maternal and fetal adverse effects (see 

Table I). Since other similarly effective tocolytics have been shown to cause less significant side 

effects, ritodrine is no longer marketed in the USA (28). 

Nifedipine: Calcium is an essential signal transducer of pro-contractile intracellular 

targets by binding to and activating calmodulin. The resulting complex activates MLCK, in turn 

promoting actomyosin interaction and contraction. Nifedipine blocks calcium channels, thereby 

reducing intracellular calcium levels and reducing actomyosin activity in smooth muscle cells. 

A meta-analysis published in 2002 showed that if calcium channel blockers are administered 
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before 34 weeks of gestation, they can prolong gestation by at least 7 days (40). This is a much 

longer period as compared to β-mimetics. Calcium channel blockers, specifically nifedipine, 

have also been shown to have fewer side effects and a lower neonatal morbidity rate (41). 

However, nifedipine is associated with higher rates of adverse effects in women with 

cardiovascular disease, congenital cardiac malformations or pulmonary hypertension (41). 

Atosiban: Atosiban was the first drug developed specifically for preterm labor (as 

opposed to already existing drugs used off-label) and is largely used in Europe. It is the first 

member of a new class of tocolytics, the oxytocin receptor antagonists. When oxytocin binds to 

its receptor in the myometrium, it activates the phospholipase C/ inositol 1,4,5-trisphosphate 

pathway, leading to the release of intracellular calcium which causes contractions. Atosiban 

inhibits this pathway, thereby preventing myometrial contractions (42). 

In a large multi-centre randomized clinical trial, atosiban was found to be as effective as 

β-mimetics in prolonging gestation, with fewer side effects than β-mimetics (43). However, in 

a large placebo-controlled randomized clinical trial conducted in the USA, numerous hurdles 

were encountered. Most significantly, there was biased distribution of pregnant women in the 

two treatment groups, leading to a markedly higher number of women at low gestational age (< 

26 weeks) in the atosiban group. In this subgroup, the mortality was significantly higher than in 

those treated with β-mimetics. However, in the subgroup that delivered >28 weeks, atosiban 

was more effective than placebo to prolong gestation (44). Because the data of women that 

delivered <26 weeks were inconclusive and other reasons, the FDA has not yet approved the 

use of atosiban. Atosiban is currently the most used tocolytics drug in Europe (28). Numerous 

new oxytocin receptor antagonists are being considered for acute tocolysis (e.g. barusiban). 
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Magnesium sulfate: Magnesium is a divalent cation that competes with Ca++ for: 1) 

entry into the cell via calcium channels, and 2) binding to calmodulin (which precedes MLCK 

activation). Based on this rationale, magnesium sulphate is used as a tocolytic agent, but it lost  

in popularity after numerous randomized clinical trials and meta-analyses revealed its inefficacy 

to prolong gestation, in addition to an increased risk of fetal and neonatal mortality (45). Because 

of the withdrawal of β-mimetics from the American market and the failure of atosiban to obtain 

FDA approval, magnesium sulfate has been used extensively in the USA as a first-line tocolytic 

(28). Magnesium sulfate is still used antenatally for its fetal neuroprotective effect (46); 

however, this topic is controversial and possibly population-dependent (47). 

Indomethacin: Indomethacin is a non-steroidal, anti-inflammatory drug that reversibly 

inhibits cyclo-oxygenase (COX)-2, thereby inhibiting the production of uterotonic 

prostaglandins. Indomethacin is widely used in Canada for acute tocolysis. Although it has been 

shown to prolong gestation (48), its prolonged use (>48h) has been associated with severe 

neonatal complications, including premature closure of ductus arteriosus, renal toxicity, 

necrotizing enterocolitis, intraventricular hemorrhage, and periventricular leukomalacia (49) . It 

therefore must be used with utmost caution. There is currently no evidence that indomethacin 

has any advantage as a first-line tocolytic over calcium channel blockers or oxytocin antagonists, 

each of which have better side effect profile (50). Treatments for symptomatic and 

asymptomatic women are detailed in Table I. 

Table I. Most used therapeutic molecules for the treatment and prevention of PTB 

Therapeutic 
agents 

Mechanism of 
action 

Efficacy Adverse effect 
profile 

RCTsa 
and 
M-Asb 

Ritodrine β2-adrenergic 
agonist:  

- Prolong gestation 
for 48h vs placebo 

High frequency of 
potentially life-

(38) 
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↑cAMP (Gs);  
↓ intracellular 
Ca++ 
↓ MLCK 
activation in 
myocytes 

- Elicits no 
improvement of 
perinatal outcome 

threatening maternal 
and fetal side effects 
including: 
palpitations, tremor, 
nausea, headaches, 
and chest pain (51). 

Nifedipine Calcium channel 
blocker 

- More effective than 
Ritodrine to prolong 
gestation  

- Decreases rates of 
severe neonatal 
morbidity 

Fewer maternal side 
effects than ritodrine. 
Includes: flushing, 
headache, dizziness, 
nausea, and transient 
hypotension. Possible 
neonatal side effects 
include: tachycardia, 
hypoglycemia, and 
hypocalcemia. 

(40), 
(41) 

Atosiban Oxytocin 
receptor 
antagonist 

As effective as 
Ritodrine to prolong 
gestation 

Lower side-effect 
profile than ritodrine 
and most tocolytics. 

(45) 

Magnesium 
sulphate 

-Competes with 
Ca ++ for entry 
into the cell; 
-Blocks 
calmodulin-
induced 
activation of 
MLCK  

Not more effective 
than placebo 

Lower side-effect 
profile than most other 
tocolytic agents.  

(43) 

Indomethacin COX-2 
inhibitor: 
↓ PGF2α 
↓PGE2 

Insufficient level of 
evidence for firm 
conclusions 

Major side effects on 
fetal kidney 
development and 
cardiovascular system 

(50) 

Vaginal 
progesterone 
prophylaxis 

Promotes 
uterine 
quiescence 

Insufficient level of 
evidence for firm 
conclusions 

Lower side-effect 
profile than most 
tocolytic agents. 

(52), 
(53) 

17α-
hydroxyprog
esterone 
caproate 
prophylaxis 
(synthetic 
progestin) 

Promotes 
uterine 
quiescence 

Insufficient level of 
evidence for firm 
conclusions 

Lower side-effect 
profile than most 
tocolytic agents. Its 
use has been 
associated with 
increased incidence of 
gestational diabetes  

(54) 

aRCTs: randomized control trials 
bM-As: meta-analyzes 
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1.3. Iatrogenic preterm birth 

Iatrogenic PTB refers to medically indicated PTB. In this context, the risks of continuing 

a pregnancy must be carefully weighed against the risks of prematurity. Indications for 

iatrogenic delivery include maternal conditions such as preeclampsia, diabetes and heart disease, 

and fetoplacental conditions such as prolonged (post-term) pregnancy, intrauterine growth 

restriction, rhesus type incompatibility, preterm premature rupture of membranes (pPROM; 

rupture of membranes before term) and chorioamnionitis (55). Delivery can be provoked 

medically with a combination of intravaginal prostaglandins (for cervical ripening) and i.v. 

oxytocin (for uterine contractility), or surgically by caesarean section. The global incidence of 

iatrogenic PTB is increasing (56). 

Elective delivery refers to the induction of delivery prompted by a request from the 

patient. Elective delivery accounts for approximately 10-15% of births under 39 weeks of 

gestation (57), and has been performed as early as 35-37 weeks of gestation (58), despite 

longstanding recommendations by the American College of Obstetricians and Gynecologists 

against this practice (59). Therefore, elective delivery accounts for a small part of late PTBs. 

 

1.4. Prognosis 

Major advances in perinatal care over the last few decades have drastically improved 

neonatal mortality at the cost of a rise in neonatal morbidity and long-term disabilities related 

to prematurity, largely attributable to the increased survival of extremely preterm infants. 

Premature infants are born with immature homeostatic and defense mechanisms and are 

additionally exposed to relative supraphysiological concentrations of stressors and to numerous 
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invasive procedures. This includes oxidative stress from oxygen supplementation (or even room 

air oxygen which is hyperoxic relative to the intrauterine environment); barostress from 

mechanical ventilation; hypoxia-ischemia from neonatal asphyxia and vascular 

fragility/immaturity; inflammatory stress; and commonly, infectious stress including sepsis. 

This storm of stressors likely induces permanent cellular adaptation and reprogramming, as 

suggested by increased risks of chronic disorders in adulthood following PTB, including of 

hypertension, diabetes, and obesity (60); chronic lung malfunction (61); and interestingly, 

increased risk of delivering prematurely (5).  

The fetal (and neonatal) brain (especially the white matter) is particularly vulnerable to 

injury between 20 and 32 weeks after conception. The incidence of cerebral palsy and other 

adverse neurodevelopmental outcomes increases with decreasing gestational age at birth (62). 

Correspondingly, of all infants born before 26 weeks of gestation, half of them will suffer from 

neurological disabilities after 30 months, and a quarter will have severe neurological 

impairments (63, 64). Hypoxia-ischemia (65) and antenatal inflammation (66-68) both 

contribute to neonatal brain injury. 

The advent of antenatal corticosteroid therapy and exogenous surfactant therapy, and the 

improvement of neonatal intensive cares, has improved management of neonatal respiratory 

distress syndrome, which had been the leading cause of infant mortality in preterm infants (69). 

However, the rate of chronic lung disease, defined as the need for ventilation or oxygen 

supplementation after 36 weeks of post-conceptional age, has continued to increase.  

Correspondingly, approximately 1 in 3 infants born prematurely are later hospitalized for a 

respiratory condition before their first 2 years of life (70), and a similar amount will have 

evidence of respiratory symptoms, lung function impairments, or radiological abnormalities that 
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persist until early adulthood (61, 71, 72). Other neonatal conditions associated with prematurity 

include necrotizing enterocolitis, sepsis, hyperbilirubinemia, and hypoglycemia.  

Overall, this corollary suggests that treating premature infants postnatally has its 

limitations, in part because of the extreme immaturity (and vulnerability) of their organs, and in 

part because of the abrasive nature of the treatment required to maintain them alive. Neonatal 

injuries most frequently begin antenatally and therefore the most desirable therapeutic approach 

is antenatal treatment (73-75). Currently, antenatal treatment of PTB is limited to tocolysis and 

progesterone. The former targets the myometrium to minimally prolong gestation in a 

suboptimal intrauterine environment which results in no demonstrable favorable outcome, 

whereas the latter shows promise to improve neonatal outcome in a specific subset of 

identifiable women at risk of PTB (which only represents a small percentage of women at risk), 

although long-term benefits have not yet been clearly demonstrated. None of these treatments 

address uterine inflammation despite its clear contribution to fetal/neonatal injury.  

The next Chapters will elaborate on the role of inflammation in PTB, and on how an 

antenatal anti-inflammatory therapeutic approach could safely improve the fetal environment, 

in turn preventing PTB, fetal organ injury, and improving long-term functional outcome.  
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2. The role of inflammation in preterm birth: 

2.1. Physiopathological and clinical manifestations of 
inflammation during pregnancy 

As mentioned previously, clinical data accumulated to date concur in the inefficacy of 

tocolytic agents to prolong gestation by > 7 days or to improve neonatal outcome (28). This 

corollary first suggests that tackling uterine contractions without addressing the underlying 

physiological cascade resulting in increased myometrial contractility is insufficient to 

definitively shut down labor; and second, that simply delaying preterm labor does not confer 

significant protection to the fetus. The latter inferences are supported by: 1) compelling clinical 

evidence pointing to inflammation as a strong risk factor of neonatal injuries independent of 

gestational age (76, 77); 2) murine studies showing that neonatal injuries observed with 

inflammation-triggered PTB are not observed when PTB is induced by non-inflammatory 

progesterone inhibition (78), and 3) animal studies revealing that inflammatory stimulation 

initiated at term results in poor neonatal outcomes akin to when inflammation is triggered earlier 

in gestation eliciting PTB (79, 80). This suggests that it is less the inherent immaturity of organs 

than rather the burden of stressors to which the fetus/neonate is exposed that really explains 

neonatal outcome. Additionally and importantly, converging lines of evidences suggest that 

inflammation plays a significant role in all labors, regardless of the presence of infection, other 

etiology, or timing of delivery (25, 77). Consequently, an emergent area of research focuses on 

the development of effective anti-inflammatory therapeutics to prevent and treat PTB and its 

consequences (81).  
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Inflammation is an essential physiological process by which tissues respond to insults in 

order to return to a state of homeostasis. The clinical signs of inflammation are calor (heat), 

dolor (pain), rubor (redness), tumor (swelling), and as later introduced, function laesa (impaired 

function) (82), which reflect the effects of cytokines, chemokines, and other mediators on 

adjacent blood vessels and tissues.  

Every birth, whether term or preterm, is associated with inflammatory mediators that 

promote a feed-forward amplification cascade leading to delivery. In a healthy term birth, 

inflammatory factors are part of the normal physiological process and are not harmful to mothers 

or babies. In most spontaneous PTBs, microorganisms or sterile insults including ischemia, 

tissue injury and necrotic cell death, prematurely trigger a common parturition pathway, in 

addition to eliciting fetal inflammation and injury.  

Some PTBs are associated with the presence of neutrophils in the human fetal 

membranes (amnion and chorion), a condition termed “acute histological chorioamnionitis.” 

Acute histological chorioamnionitis (AHCA) is generally not accompanied by an infectious 

process. Hence, AHCA can only be diagnosed after delivery and is therefore not treated. AHCA 

is associated with 94% of preterm births at 21-24 weeks of gestation, 10.7% of births at 33-36 

weeks, and only 4% of births at term (13).  

In contrast to AHCA, clinical chorioamnionitis (CCA), which includes the conditions of 

preterm premature rupture of membranes and funisitis (13, 83-85) is caused by the invasion of 

the gravid uterus and amniotic fluids (AF) by bacteria, viruses or parasites that cause an 

inflammatory response with stimuli termed Pathogen Associated Molecular Patterns (PAMPs) 

(86). CCA is characterized clinically by maternal fever (temperature >37.8°C) plus two of the 
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following symptoms: maternal leukocytosis >18,000 cells/cm3, maternal or fetal tachycardia, 

uterine sensitivity, purulent discharge, or serum C-reactive protein (CRP) >0.8 U/mL. Clinical 

management of CCA includes administration of antibiotics and delivery of the fetus, because 

the infectious process can lead to fetal inflammatory response syndrome (FIRS) which causes 

outright sepsis and risk of fetal and newborn brain white matter damage, chronic lung disease, 

necrotizing enterocolitis and in the long-term, neurodevelopmental (including cerebral palsy), 

bronchopulmonary, cardiovascular and growth disorders (83). No fetal organs escape risk from 

CCA and FIRS. Careful studies have shown however that CCA occurs relatively rarely, in only 

2% of term delivery and 5-10% of preterm delivery; reports suggest that CCA is over diagnosed.  

 

2.2. The inflammatory cascade leading to preterm labor 

Birth reflects transition from a pro-pregnancy state and immunological tolerance towards 

the fetus allograft, to a pro-labor/pro-inflammatory state. Notwithstanding the role of hormones, 

pro-inflammatory cytokines are thought to orchestrate the on-time synchronization of 

myometrial contractility, cervical ripening and membrane weakening through the induction of 

uterine activation proteins (UAPs, described in the next section) and matrix metalloproteinases 

(MMPs) (87-89). This converging inflammatory pathway precedes the onset of both term and 

preterm labor (90, 91).  

All aetiologies of PTB converge to a common pathway which inevitably begins with the 

local or systemic release of Damage (or Danger)-associated molecular patterns (DAMPs, also 

known as alarmins; e.g. uric acid) or PAMPs (e.g. endotoxins). Whereas DAMPs are produced 

endogenously and mediate sterile inflammation, PAMPs are produced by pathogens. Both 
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DAMPs and PAMPs are biomolecules that bind to PRRs, notably Toll-like receptors (TLRs). 

TLRs are expressed abundantly in the decidua, placenta, and membranes throughout pregnancy, 

in immune and non-immune cells (92). Their activation leads to a local release of 

proinflammatory cytokines, chemokines, and products of arachidonic acid, resulting in 

increased vascular permeability, leukocyte activation and transmigration from peripheral blood 

to gestational tissues, and amplification of the initial inflammatory response (93). Leukocyte 

extravasation has been observed in the decidua, the cervix, the placenta, the fetal membranes, 

and the AF in human and in animal models, and is principally mediated by cytokines and 

chemokines, including IL-1, IL-6, IL-8 and TNFα (94-101). As more and more leukocytes 

invade the uterus, the ensuing uterine exudate is enriched in inflammatory proteins (interleukins 

[IL], complement effectors, kinins) whose concentration increases markedly during the acute 

inflammatory phase, particularly in the immediate vicinity of myometrial smooth muscle cells, 

trophoblasts and decidual cells (97-99) (Fig. 1). Of importance, factors such as IL-1, IL-6 and 

TNFα induce phenotypic changes in myometrial smooth muscle cells to promote contractility 

and intercellular connectivity. Specifically, the plasma membrane of myometrial smooth muscle 

cells becomes saturated in uterotonin (pro-contractile) receptors (e.g. oxytocin receptor [OXR], 

prostaglandin F2α receptor [FP]) and gap junctions (89), concomitant with cytoskeleton changes 

in cytoplasm (102, 103), which altogether results in a pro-contractile phenotype. 

Simultaneously, the decidual cells, uterine fibroblasts, resident macrophages and chorion laeve 

trophoblasts increase their production of MMPs and other extracellular matrix (ECM) proteases 

(104-106) and decrease their production of tissue inhibitor of metalloproteinases (TIMPs) (107), 

which favors structural weakening of fetal membranes, while trophoblasts secrete high 

concentrations of uterotonins to promote contractions and cervical ripening (108). These 
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inflammation-driven modifications underlie the three hallmarks of uterine preparedness to 

labor: 1) increased myometrial contractility; 2) cervical ripening; and 3) weakening of fetal 

membranes (Fig. 2). Correspondingly, several studies have correlated the increase in pro-

inflammatory cytokines with the risk of PTB (109-111) and inversely, antenatal inhibition of 

key mediators of inflammation prevents uterine activation and preterm labor (112-114). 
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Figure 1. Proposed common upstream mechanism leading to uterine preparedness and 
labor. TLR, toll-like receptor; OXR, oxytocin receptor; FP, prostaglandin F2α receptor; 
COX-2, cyclooxygenase-2; CX-43, connexin-43; MMP, matrix metalloproteinase; iNOS, 
inducible nitric oxide synthase; CCL2, chemokine ligand 2. 

 

 

Figure 2. Inflammatory pathway to preterm labor. All possible causes of preterm labor 
(such as infections, genetics, cervical insufficiency…) are thought to invariably lead to an 
inflammatory cascade wherein cytokines (primarily IL-1) trigger uterine activation and 
preterm labor. The initial insult may arise from the environment (infection) or can be 
maternally-produced by stressed cells (alarmins), the former being a source of PAMPs and 
the latter a source of DAMPs. PAMPs and DAMPs can stimulate the innate immune response 
by activating Toll-like receptors, which subsequently leads to the production of pro-
inflammatory cytokines and chemokines from immune cells (neutrophils, macrophages, T-
cells). If this cascade is triggered in (or reaches) the uterus, cytokines (primarily IL-1) can 
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act via their receptors to activate gestational tissue in preparation for labor. This activation is 
driven by a class of proteins referred to as uterine activation proteins (UAPS; such as OXR, 
COX-2, MMPs, CX-43…). The induction of UAPs by inflammatory processes increases 
myometrial contractility and drives cervical ripening and the rupture of membranes, which 
promotes unscheduled labor onset. CRH, corticotrophin-releasing hormone; ET-1, 
endothelin-1. 

 

2.3. Uterotrophins, uterine activation proteins, and uterotonins 

In humans, mice and other viviparous mammals, parturition can be separated into four 

different phases: 1) uterine quiescence, mediated mainly via progesterone and relaxin; 2) uterine 

activation, mediated by uterine activation proteins (which are upregulated by uterotrophins); 3) 

active labor, triggered and maintained through uterotonins action; and 4) involution of the uterus 

(Fig.3).  

 

Figure 3. Depiction of the four stages of the uterus during pregnancy. 

 
Uterotrophins induce UAPs in gestational tissues. Estrogen, pro-inflammatory cytokines (e.g. 

IL-1β, IL-6 and TNFα), and (hypothalamic but mostly placental) CRH and are the most 

important uterotrophins. The action of estrogen is inhibited by progesterone, and therefore 

progesterone withdrawal amplifies its action. Further, as mentioned before placental CRH is 

produced in response to increased levels of maternal or fetal cortisol, whereas cytokines are 

produced in response to DAMPs/PAMPs. Of all uterotrophins, IL-1 exerts a predominant role, 
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as it governs the induction of the other uterotrophins by promoting progesterone withdrawal and 

placental CRH release  (115-119). 

UAPs include enzymes (e.g. COX-2, MMPs), cytokines (e.g. chemokine ligand 2 

[CCL2]), uterotonin receptors (e.g. OXR), gap junction proteins (e.g. connexin 43 [CX-43]) and 

other contraction-associated proteins. As a general principle, the induction of UAPs increases 

the biological activity of uterotonins, and therefore prepares the uterus for labor. The cardinal 

features of UAPs are: a) exhibiting increased expression at the onset of (normal and pathological 

[i.e. preterm]) labor; b) eliciting gestational age-dependent pro-labor effects (i.e. increase in 

efficacy and potency with gestation age); c) contributing to or being necessary for inflammation-

induced PTB; and d) being inducible by uterotrophins (87, 89, 120-124). Although numerous 

molecules may correspond to this definition, the best described UAPs are CCL2, COX-2, CX-

43, FP, and oxytocin receptor.  Other candidates include (PAR)-1 (18, 125), neuromedin B 

receptor (126), neuromedin U receptor 2 (NmU-R2) (127), melatonin receptor type II (128, 

129), and iNOS (130).  

Uterotonins are a wide family of molecules that initiate and sustain myometrial 

contractions during labor. Uterotonins include the eicosanoids PGF2α and PGE2, the 

(neuro)peptides oxytocin, neuromedin S and endothelin-1 (ET-1), the enzyme thrombin, and 

many other emerging molecules (89, 121). The redundancy in endogenous molecular pathways 

to initiate labor may explain the inefficacy of current tocolytics, especially atosiban. 

Inflammation (131, 132) and intrauterine bleeding (133, 134) may lead to the premature release 

of uterotonins and to spontaneous preterm labor especially in a pre-activated uterus.  
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To summarize, uterotrophins are molecules that activate the uterus by upregulating 

UAPs. Once the uterus is activated, uterotonins are much more effective to initiate labor. As one 

could expect from a physiological mechanism governed by numerous redundant pathways, not 

all uterotrophins, UAPs and uterotonins are essential for effective (and on-time) delivery. 

Accordingly, gene knockout murine studies reveal that: a) normal delivery is seen in CRH- 

(135), IL-1R1- (136), tumor necrosing factor (TNF)-α- (137), COX-1-(138), and oxytocin- 

(139) devoid mice; b) parturition disturbances (dystocia or delayed [i.e. post-term] delivery) are 

seen in steroid 5α-reductase- (140), phospholipase A2- (141), IL-6 (142),  TLR4- (143), and 

PGF2α receptor- (144) devoid mice; and c) infertility is observed in estrogen receptor- (145), 

progesterone receptor (PR)- (146), CYP450 aromatase (CYP19A1)- (147) and COX-2- (148) 

devoid mice. However, this only relates to physiological term parturition and may not apply to 

pathological spontaneous preterm labor, inasmuch as blocking one redundant pathway may be 

sufficient to avoid reaching a key threshold level of pathological preterm uterine stimulation. 

This is suggested for instance by the efficacy of blocking (non-essential) TNF-α to prevent 

lipopolysaccharide (LPS; a TLR4 ligand)-induced PTB in mice (165). 

 

2.4. Progesterone and inflammation (briefly) 

Progesterone maintains human pregnancy (progestation) and its withdrawal induces 

labor (149). Unlike numerous other species, there is no significant decrease in plasma 

progesterone preceding the onset of human labor . Rather, human pregnancy culminates with a 

functional progesterone withdrawal wherein the ratio between PR-A and PR-B increases in the 

nucleus of myometrial cells, resulting in a progesterone-insensitive uterus (150, 151). New 
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evidence strongly suggests that myometrial intranuclear stabilisation of PR-A is governed by 

inflammatory pathways (118). Therefore, human functional progesterone withdrawal represents 

a relatively downstream (late) event in the common inflammatory cascade leading to PTB. As 

mentioned previously, antenatal exogenous progestin administration has not been shown to 

improve neonatal or long-term health outcome (32, 34), likely because progesterone only exerts 

modest anti-inflammatory effects in the uterus (152). 

 

2.5. Important mediators of inflammation implicated in preterm 
birth 

2.5.1. TNF-α 

TNF-α is an endotoxin-inducible acute-phase cytokine that causes necrosis of tumors in 

vitro (153). TNF-α is pyrogenic, pro-apoptotic, pro-inflammatory, anti-tumorigenic, and pro-

cachexia. It is expressed mostly by monocytes/macrophages, T cells and neutrophils, but also 

by NK cells and mast cells. It has been implicated in the pathogenesis of a wide spectrum of 

diseases, including sepsis, diabetes, cancer, rheumatoid arthritis, and inflammatory bowel 

diseases. 

TNF-α is a homotrimer that is biologically active under two forms: a transmembrane 

protein form (154) and a soluble homotrimeric form available through ADAM17-mediated 

cleavage of the transmembrane protein (155). TNF-α elicits its action via two receptors: TNFR-

1 (CD120a) and TNFR-2 (CD120b). TNFR1 is ubiquitously expressed whereas TNFR2 is 

mostly found in cells of the immune system. Activation of TNFRs trigger nuclear translocation 
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of NF-κB, phosphorylation of JNK, p38, ERK, and recruitment of death signaling molecules 

such as FADD and caspase-8 (156).  

The role of TNF-α in preterm labor is equivocal, in part because of a lack of fundamental 

animal studies and preclinical studies of anti-TNF agents, and in part because of conflicting 

evidence. In summary, studies show that: 1) an association between TNF-α (-308G/A) 

polymorphism and PTB has been found in some studies (157, 158), whereas others could not 

detect such association (159-161); 2) elevated maternal serum levels of TNF-α have been 

observed in women undergoing spontaneous preterm labor in some studies (162), whereas 

baseline levels have been reported in others (163); 3) detectable AF levels of TNF-α are found 

in >90% women with a positive AF culture, and in <25% of women undergoing preterm labor 

with a negative AF culture or undergoing labor at term (164); 4) Etanercept, a decoy receptor 

binding to and ensnaring TNF-α, shows modest efficacy (30% decrease) to prevent shiga toxin 

type 2-induced PTB (165) and no efficacy to prevent LPS-induced PTB (166), in contrast to the 

moderate efficacy (50% decrease) of an experimental mouse-specific monoclonal antibody 

against TNF-α in a murine model of LPS-induced PTB (167); 5) Il1r1/Tnfrsf1a double-knockout 

mice are protected against heat-killed E.coli-induced PTB (168); 6) TNF-α induces MMPs and 

suppresses TIMPs in human chorionic cells, in addition to promoting the production of 

uterotonic PGE2 (169) and amplifying uterine inflammation (167); and 7) intra-amniotic 

infusion of TNF-α induces preterm labor and delivery in nonhuman primates (170). In the light 

of this information, one may conclude that TNF-α is sufficient to trigger PTB, but not (by itself) 

necessary. Accordingly, although the difference in efficacy of the different antagonists may be 

due to pharmacological properties inherent to each compound, none achieves high efficacy. 

Additionally, TNF-α is not a consistent marker to predict spontaneous preterm labor, suggesting 
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that it may only be implicated in a subset of PTBs (e.g. infection). Hence, its role in PTB remains 

ill-defined. Interestingly, post-natal administration of Etanercept improves outcome in 

experimental necrotizing enterocolitis (a neonatal condition associated with prematurity) by 

decreasing intestinal inflammation and oxidative stress (171), suggesting a potential post-natal 

therapeutic role. 

 

2.5.2. Interleukin-6 

IL-6 is an endotoxin-inducible acute-phase cytokine, but in contrast to TNF-α and IL-1, 

IL-6 can display context-dependent pro- and anti-inflammatory properties. IL-6 is produced by 

almost all immune and non-immune cells, including adipocytes and myocytes (172), and plays 

numerous role in immune-surveillance, lipid metabolism, insulin resistance, mitochondrial 

activity, hematopoiesis, and bone homeostasis (172). IL-6 deficiency leads to impaired innate 

and adaptive immunity to viral, parasitic, and bacterial infection (173-175).  

IL-6 cis-signaling refers to the binding of IL-6 to the membrane-bound cytokine α-

receptor subunit IL-6R (CD126), which triggers the recruitment of the universally expressed 

signal-transducing β-receptor subunit gp130 (CD130). This IL-6-IL-6R-gp130 complex signals 

via janus kinases (Jak)/STAT, Akt and Erk (176). In contrasts, IL-6 trans-signaling refers to the 

binding of IL-6 to a soluble IL-6R (sIL-6R), followed by activation of a membrane-bound gp130 

subunit. Because gp130 is ubiquitously expressed, IL-6 trans-signaling widens the range of 

action of IL-6 particularly as it applies to prolonging T cell-mediated response, supporting 

recruitment (and apoptosis) of leukocytes, and activating stromal tissues (177). 
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IL6 is associated with PTB and fetal inflammation: a) increased concentrations of IL-6 

in vaginal secretions and AF have reproducibly been reported in women that deliver before term 

(178, 179); b) Il6 null mutation delays delivery and expression of UAPs by 24h and is restored 

to normal upon IL-6 administration (142); c) anti-IL-6R neutralizing antibodies block LPS-

induced PTB in mice (114), curb IL-6-stimulated amnion cell PGE2 output (180), and neutralize 

LPS-induced permeability of fetal blood-brain barrier (181); d) the single nucleotide 

polymorphism rs1800795 located within the IL6 promoter results in reduced production of IL-

6 and decreased rate of PTB (182); and e) preliminary data from our laboratory show that a 

single systemic infusion of IL-6 consistently induces labor in mice (Marin Sierra E and Chemtob 

S, unpublished data). Because its levels drastically increase prior to and during preterm labor, 

IL-6 has received a marked interest as a possible biomarker to predict PTB (183, 184).  

Different therapeutic modalities exist to counteract IL-6 action (177). However, most of 

them (i.e. the two drugs that are FDA-approved [for rheumatoid arthritis] and most of those in 

development) consist of monoclonal antibodies which albeit promising in term of efficacy (114), 

convey unfavorable pharmacokinetic and pharmacodynamic properties for the treatment of 

acute/subacute PTB, including long-action immunosuppressive undesirable side effects. These 

issues will be addressed in Chapter 3 and 4. 

 

2.5.3. Chemokine ligand 2 

Chemokine (C-C motif) ligand-2 (CCL2, also known as monocyte chemoattractant 

protein 1) is a small (13 kDa) monomeric polypeptide secreted by endothelial cells, fibroblasts, 

smooth muscle cells, astrocytes, monocytes, macrophages, and dendritic cells (DCs) upon 
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activation by oxidative stress, growth factors or cytokines such as IL-1 and TNF-α (185-187). 

It activates C-C chemokine receptor (CCR) 2 and 4 on monocytes primarily, but also on memory 

T cells and NK cells, to recruit them to the site of inflammation (188, 189). CCR-2-null mice 

develop normally but are severely immuno-compromised (190, 191). CCL2 plays a role in 

innumerable diseases including cancer, atherosclerosis, multiple sclerosis, infection including 

by human immunodeficiency virus (HIV) and mycobacterium tuberculosis, recurrent 

miscarriage, and many others (192).  

Macrophages are major producers of cytokines in preparation to labor (99, 101). 

Correspondingly, premature infiltration of gestational tissues by macrophages heralds the onset 

of preterm labor (101, 193). Therefore, CCL2 is a major player in parturition. CCL2 is 

upregulated in human AF and choriodecidua during preterm labor independent of infection (194, 

195), and in rat myometrium during labor (196), in mouse decidua in term labor, as well as in 

RU486- (mifepristone; a progesterone receptor antagonist) and LPS-induced preterm labor 

(197). Upregulation of CCL2 is rapidly followed by infiltration of gestational tissues by myeloid 

cells (197). The release of CCL2 seems to be controlled by both progesterone withdrawal and 

uterine stretch, independently of each other (196). Blocking CCL2 with specific inhibitors has 

been shown to improve outcome in murine models of steatohepatitis (198) and lupus nephritis 

(199), suggesting an important anti-inflammatory therapeutic potential. To our knowledge, 

specific CCL2 antagonists have not been tested for the prevention of PTB. However, a recent 

murine study showed that administration of a broad spectrum of chemokine inhibitors 

significantly decreased neutrophil infiltration in the myometrium, and in turn reduced PTB 

induced by LPS (200). Further studies are needed to establish the potential therapeutic benefit 

of anti-CCL2 therapies. 
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2.5.4. Interleukin-1 

Interleukin-1 (also known as leukocytic pyrogen and lymphocyte activating factor) 

exists under two distinct forms, IL-1α and IL-1β, which bind the same receptors. Once formed, 

the IL-1-IL-1R complex recruits membrane-bound IL-1 Receptor accessory protein (IL-1RacP) 

which in turn leads to the nuclear translocation of NF-κB and AP-1, two major pro-inflammatory 

transcription factors (201-205). These pathways will be further elaborated in Chapter 3. 

Because IL-1R is ubiquitously expressed, IL-1 has a broad range of action. Once 

reaching inflammatory concentrations, IL-1 acts on immune cells to induce activation, 

proliferation, differentiation, chemotaxis, phagocytosis, and cytokine production (including 

itself, and TNF-α and IL-6); it promotes hematopoiesis particularly neutrophilia and 

thrombocytosis; production of acute-phase proteins and cortisol; cartilage degradation and bone 

resorption; fever; fatigue (and decreased REM sleep); and anorexia (206, 207). It is therefore a 

major player in mounting and orchestrating an acute inflammatory response in response to both 

infectious and sterile stressors. Correspondingly, mutations eliciting IL-1 hypersecretion or IL-

1 receptor antagonist (IL-1Ra) deficiency lead to autoinflammatory diseases (208). 

Of all cytokine candidates, IL-1 stands out as a major player in PTB and fetal 

inflammation. This applies to both sterile (mostly via IL-1α) and microbial inflammation 

independently of the aetiology and timing of birth (209-211). Due to the ubiquitous expression 

of its cognate receptor IL-1R1, IL-1 exerts a wide range of effects during gestation, ranging 

from premature uterine activation to marked fetal brain cytotoxicity. Although some beneficial 

effects have been described, studies concur to a detrimental role of IL-1 in both PTB and 
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neonatal morbidity (209, 210, 212-214), which is also supported by the higher levels of IL-1 in 

human cervicovaginal fluids (215) and AF (211) of patients delivering preterm. 

Since the discovery that IL-1 expression rises in term deliveries without infection (216) 

as well as in preterm deliveries (209), it is thought that IL-1 overproduction heralds term and 

preterm labor. Not only does IL-1 induce labor in various animal species (170, 217), but also 

fetal and maternal carriers of polymorphisms in genes of the IL-1 system are associated with 

PTB in humans (218-220). Furthermore, elevated IL-1β blood concentrations in human neonates 

are associated with PTB and adverse neonatal outcome (221, 222) and post-natal anti-IL-1 

therapy protects against antenatal LPS-induced neonatal brain injury (68) and experimental 

bronchopulmonary dysplasia (214). Taken together, this body of evidence suggests that uterine 

and fetal/neonatal inflammation are both governed by IL-1. For these reasons and others 

(addressed in Chapter 3), IL-1 is now considered a key inducer of inflammation in PTB.  

 

2.6. Infections associated with preterm birth 

2.6.1. Bacterial infections 

Bacterial infection within the uterus is termed chorioamnionitis when it occurs between 

the decidua and the fetal membranes or within the fetal membranes; villitis when it occurs within 

the placental villi (rare, mostly found in cases of malaria); amnionitis when infection reaches 

AF, and funisitis when bacteria are found within the umbilical cord. Bacteria can also be found 

within the fetus and cause neonatal brain injury independent of the timing of delivery (223). 
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Bacteria gain access to the uterine cavity through: a) migration from the abdominal 

cavity into the salpinges; b) needle contamination during chorionic-villus sampling or 

amniocentesis; c) hematogenous spread into the placenta via spiral arteries; or d) vaginal 

ascending pathway (224). Because organisms isolated from the amniotic cavity are similar from 

those found in the lower genital tract, the latter is considered the most frequent route of infection 

(11). In this case, bacteria can either ascend through the choriodecidual space or directly cross 

intact membranes (224, 225).  

The bacteria that are most commonly isolated in women in spontaneous preterm labor 

with intact membranes are Ureaplasma urealyticum and Mycoplasma hominis (both from the 

family mycoplasmataceae [small-sized, cell wall-free]), Gardnerella vaginalis (Gram-variable, 

facultative anaerobic coccobacillus), peptostreptococcus species (Gram-positive anaerobic 

bacteria), and bacteroides species (Gram-negative anaerobic bacteria). On the other hand, group 

B streptococci and Escherichia coli are the most commonly found bacteria in women with 

pPROM (226-228). On rare occasions, Neisseria gonorrhoeae, Chlamydia trachomatis, 

Treponema pallidum (syphilis), and bacteria from the oral microflora are isolated. The presence 

of bacterial vaginosis, defined as a decrease in lactobacillus species concomitant to an increase 

in other organisms, doubles the risk of PTB (229, 230). Interestingly, recent studies suggest that 

the human placenta is not sterile, but rather harbors a unique microbiota with similar flora to the 

oral community, and that chorioamnionitis and funisitis alters the placental microbiota and 

predispose to PTB independently of antibiotic treatment (231, 232).  

Antibiotics have long been considered as potential treatment for PTB. For women with 

intact membranes and with symptoms of preterm labor, antibiotics do not delay preterm 

delivery, do not reduce the risk of preterm delivery, and do not elicit any improvement of 
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neonatal outcome (233). As alluded earlier, the failure of antibiotics to prolong gestation is likely 

due to their administration too late in the infectious process, when bacteria have already reached 

the uterine cavity wherein their demise only contributes to the massive release of pro-labor 

PAMPs upon which antibiotics have no effects. Of all PAMPs released during colonization, 

endotoxins (constituents of bacterial walls) are the major stimuli in infection-associated PTB 

(234, 235). Correspondingly, most models of intrauterine infection employ exogenous 

endotoxins (e.g. LPS, lipoteichoic acid [LTA; a TLR2 agonist]) or heat-killed bacteria, because 

they are as effective as live bacteria to induce PTB (236). There are two exceptional clinical 

settings in which antibiotics are effective to prevent PTB. First, in a subset of women with a 

history of PTB and with bacterial vaginosis diagnosed in the second trimester, treatment for at 

least 7 days with metronidazole, and perhaps with erythromycin, results in a marked reduction 

of PTB (237), again possibly because this intervention precedes and prevents significant 

choriodecidual colonization. Nevertheless, there is little to no benefit to screening pregnant 

women for bacterial vaginosis especially in low-risk populations, and therefore only 

symptomatic women (i.e. women with persistent and bothersome vaginal discharge and odor) 

may benefit from this treatment, whereas others (>75%) are unlikely to be identified (238). 

There is currently no consensus regarding screening and treatment of bacterial vaginosis during 

pregnancy. Second, antibiotics treatment for syphilis results in positive outcomes for both the 

mother and her baby (i.e. prevention of vertical transmission, stillbirth, and PTB); therefore, 

screening for syphilis is offered to all pregnant woman and confirmed cases are treated (239). 

Syphilis infection during pregnancy is rare (less than 1 case per 100 000 live births per year). 

Animal studies suggest that cytokines are essential mediators of intrauterine bacterial 

endotoxins (114, 167, 240) and may therefore represent more effective targets than bacteria per 
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se. TLR4 antagonists have also been used effectively to prevent LPS-induced PTB in mice 

(112), but given the phylogenetically-demonstrated importance of TLRs in innate immune 

defense in addition to established susceptibility of TLR4-/- mice to gram(-) sepsis, anti-TLR 

agents may not be safe to administer during pregnancy.  

 

2.6.2. Viral infections 

Maternal viral infection during pregnancy may have two outstanding consequences to 

fetal health: 1) mother-to-child transmission; and 2) adverse perinatal outcomes. HIV is of 

particular importance especially in developing countries where access to anti-retroviral drugs is 

limited. HIV-positive women are approximately 4 times more likely to deliver prematurely and 

to give birth to low birth weight newborns (241, 242), and this risk grows with elevation of 

plasma markers of inflammation (243, 244). Data from longitudinal studies show that the 

prevalence of PTB and low birth weight in HIV-exposed infants drastically decreased in the era 

of maternal anti-retroviral drugs (245). Rubella infection during pregnancy, especially during 

the 1st trimester, causes spontaneous abortion or PTB, and serious congenital anomalies in 

almost all surviving infants (246). There is no effective treatment. Although mass 

immunizations campaigns have largely decreased the susceptible population in developed 

countries, Rubella infection remains endemic in the developing world (247). Further, Ebola 

virus, a major cause of maternal and neonatal mortality, was until recently (2017) almost 

universally lethal to infected newborns (248, 249). Chronic hepatitis B virus (HBV) infection 

also increases the risk of PTB (250, 251). 
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Other viruses have been implicated more sparsely in PTB. Although viral DNA from 

adenovirus, cytomegalovirus (CMV), Epstein-Barr virus (EBV), enterovirus and respiratory 

syncytial virus (RSV) is commonly found in AF samples of anatomically normal fetuses from 

asymptomatic women, particularly during summer and late winter (252), there is a body of 

evidence pointing to an association between AHCA/PTB and placental infection by adenovirus 

(253), CMV (254, 255), herpes simplex virus (HSV) (256), and EBV (257-259). Severe 

pandemic influenza A (H1N1) has also been associated with PTB and low birth weight (260). 

Recently, an association between PTB and higher vaginal viral diversity (i.e. richer DNA 

virome) independent of the strain was discovered, with the highest rate of PTB in women with 

high levels of vaginal diversity in both viruses and bacteria (261). Hence, viruses are 

increasingly recognized as contributors to PTB worldwide. 

The pathogenesis of virus-induced inflammation and PTB is intricate. Two theories co-

exist to date. First, viruses can activate PRRs (including TLR-2,3,9) in placenta and mount an 

inflammatory response resulting in PTB (262). Concordantly, intrauterine (263) and 

intraperitoneal (264) administration of polyinosinic:cytidylic acid [poly(I:C)], a synthetic 

analog of double-stranded RNA (which is a replication intermediate in the life cycle of most 

viruses), induces intrauterine cytokine production and PTB in mice via TLR3. Second, viral 

infection during pregnancy may predispose to other infections by altering immune-tolerance 

(265). This is suggested by increased rate of LPS-induced PTB and neonatal adverse outcomes 

in mice exposed to gammaherpesvirus 68, independent of transplacental virus passage (266, 

267). Noteworthy, both pathways involve cytokine production. 

The placenta exerts a crucial role in protecting the fetus from viral infection (268) and 

accordingly, transplacental viral passage is a rare event (269). The reason why viruses reach the 
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AF in some pregnancies and do not in others is still unclear, but this may be associated to viral 

load, timing of infection and virulence of the strain implicated, as some viruses have been shown 

to induce trophoblast death (via apoptosis) suggesting placental dysfunction and transplacental 

passage susceptibility (270). The link between exposure to virulent viruses (e.g. CMV, EBV, 

HSV) during pregnancy and adverse neonatal outcome, especially brain injury, is clearly 

established (271-273). Interestingly, exposure to viruses during pregnancy is highly investigated 

as a possible initiator of fetal reprogramming sequences underlying the onset of numerous 

children- and adult-onset diseases including schizophrenia (274), depression (275), childhood 

leukemia (276), and Parkinson’s disease (277). Despite the increasingly recognized burden of 

viral infections in pregnancy, there is no consensus regarding antenatal routine screening and 

treatment of most of these viruses (e.g. CMV, HSV). Recommendations exist regarding the 

routine screening of rubella (to identify women at risk and instigate preventive measures 

including post-natal maternal vaccination), HBV (to prevent vertical transmission by 

administering post-natal vaccination and immunoglobulins to the newborn) and HIV (to prevent 

vertical transmission by administering antenatal antiretroviral therapy). Antenatal treatment of 

HIV reduces PTB (245), which encourages the development of other antiviral agents to treat 

this subset of PTBs. 

 

2.6.3. Parasitic infections 

Because of the relative state of immunosuppression conveyed by pregnancy, parasitic 

infections are more common in pregnant women (278). Living in or travelling to an endemic 

area prior to or during pregnancy increases the risk of contracting a parasitic infection during 

pregnancy.  
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Infection with malaria parasites (279), amoeba (279), flagellated protozoan parasites 

including Trichomonas vaginalis (280) and leishmania (281), toxoplasma gondii (282), and 

fish-borne intestinal nematodes (283) all increase the risk of PTB and adverse neonatal outcome. 

Malaria is of particular importance because the malaria parasites exhibit affinity for red blood 

cells and placental tissue, and therefore are a major cause of anemia, intrauterine growth 

restriction, low birth weight, and long-term adverse pediatric outcomes in endemic areas (284, 

285), with a prevalence in pregnant women ranging from 10 to as much as 65% (286). 

Erythrocytes infected with Plasmodium falciparum – the species responsible for millions of 

deaths annually – can sequester in the microvasculature of organs such as the placenta, 

potentially leading to vascular obstruction, tissue hypoxia, and placental dysfunction (287, 288). 

Interestingly, maternal helminth infection has been associated with lower cognitive scores 

during infancy (289), suggesting that being the host of intestinal parasites during pregnancy may 

also cause long-term complications for children.  

Parasitic infections typically induce a type 2 immune response characterized by the 

production of IL-4, 5, 9, 10 and 13 by T helper 2 lymphocytes (290), but other pathways may 

also be involved, such as TLRs 2, 3 and 9, especially as it applies to malaria parasites (288). 

Accordingly, increased production of IL-1β, TNF-α and a panel of other cytokines associated 

with a type 1 immune response have been observed in children and adults infected with malaria 

parasites (291). Nevertheless, how parasites induce PTB remains unresolved. 
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2.7. Sterile inflammation: alarmins implicated in preterm birth 

Many of the components of the inflammatory cascade leading to premature uterine 

activation, if not all, can be triggered in absence of microbial stimulation. Along these lines, 

although infection constitutes a defined aetiology of PTB, most women in preterm labor do not 

meet the clinical/pathological criteria for the diagnosis of AHCA or CCA. Accordingly, sterile 

intra-amniotic inflammation is observed significantly more often than microbial-associated 

intra-amniotic inflammation in patients with preterm labor and intact membranes (25), and as 

mentioned above antibiotics are vastly ineffective to prevent preterm labor (28), suggesting a 

predominant pro-labor effect of inflammation (self) over infection (non-self). Additionally, 

DAMPs are elevated in placentas (292, 293) and blood (209, 294-297) of women with high risk 

pregnancy, and sterile administration of such DAMPs has been shown to induce intrauterine 

inflammation, PTB, and fetal demise (23, 217, 298, 299); of relevance, the effects of DAMPs 

are mediated to a significant extent via pro-inflammatory cytokines. For these reasons and 

others, sterile inflammation has been considered as a potential initiating or early event in the 

cascade to PTB and neonatal injuries. 

Alarmins are released as a result of sterile tissue stress (including tissue injury, 

hypoxia/ischemia, and cellular senescence) and trigger an inflammatory cascade via PRRs and 

other receptors including RAGE and IL-1R. PRRs include TLRs 1-11, scavenger receptors, C-

type lectins, and NOD-like receptors (NLRs), and are expressed abundantly in decidua, 

placenta, membranes and myometrium throughout pregnancy, in immune and non-immune cells 

(92, 300, 301). Therefore, the uteroplacental compartment is a sensor of ʺdangerʺ and ʺstrangerʺ 

inflammatory stressors.  
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Because DAMPs are endogenous intracellular molecules primarily released as a result 

of non-programmed cell death to convey danger cues in the first few hours of an injury, they are 

also referred to as alarmins (302). Of all candidate alarmins studied in the context of spontaneous 

PTB, high mobility group box 1 (HMGB1), uric acid, IL-1α and cell-free fetal DNA (cffDNA) 

are predominant (Fig. 4). Their mechanism of action and respective role in PTB will be 

presented sequentially. 

 

 

Figure 4. Mechanism of action of HMGB1, uric acid, IL-1α and cell-free DNA at the 
maternal-fetal interface. The general mechanism of action of alarmins at the maternal–fetal 
interface is shown, with alarmins (uric acid/MSU, HMGB1, cffDNA and IL-1α) being 
released from cells of the maternal–fetal interface (i.e., placenta and fetal membranes) 
following a stimulus or necrosis. They act on placental cells (primarily trophoblasts) and 
maternal myeloid cells to induce an inflammatory response. The inflammatory cascade leads 
to the secretion/release of cytokines/chemokines, which stimulate the recruitment of immune 
cells from the maternal circulation. 

 

2.7.1. HMGB1 

HMGB1 is a highly conserved non-histone protein (25 kDa) with cytokine-like activity 

in the extracellular space. HMGB1 is abundantly and ubiquitously expressed in nucleus where 
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it plays a role in DNA replication, transcription and repair, and nucleosome stabilization (303-

305). HMGB1 is structured into two DNA-binding domains, HMG box A and B and an aspartic 

and glutamic acids-rich C-terminal tail. Although originally discovered in nucleus, HMGB1 is 

also found in cytosol, mitochondria and on membrane surface, and can be released to the 

extracellular milieu through active (secretion) and passive pathways (306): (i) active pathways 

are triggered by pathogenic products (e.g. bacteria, viruses) or other stressors (e.g. oxidative 

stress, cytokines), which has been shown in immune cells and non-immune cells (307-309); 

whereas (ii) passive release is observed following tissue injury and cell death, especially 

necrosis (310) and in specific cases of apoptosis (311) – including when triggered by sterile 

injury events (e.g. hypoxia, senescence, autoimmune disease). The latter happens immediately 

(310), whereas the former is a slower mechanism mediated by cellular signal transduction (312). 

Once HMGB1 accumulates in the extracellular milieu, it conveys danger signals by triggering 

inflammatory pathways, including NF-κB, ERK and p38, in neighboring cells via numerous 

cell-surface receptors such as TLRs 2, 4 and 9, RAGE, CD24 and others (313). This leads to the 

activation of innate and adaptive immunity, cytokine, chemokine, and metalloproteases release 

and ensued pro-migration, pro-inflammatory outcomes (310, 314-316). Of interest, HMGB1 has 

also been shown to form complexes with many pro-inflammatory mediators and enhance their 

respective actions in a synergistic manner (317). Furthermore, HMGB1 levels are elevated in 

multiple animal models of sterile injurious events (312), and in humans with acute organ injury, 

autoimmune diseases or cancer (318, 319). In vitro and in vivo, HMGB1 administration induces 

inflammation (320) and inversely, HMGB1 antagonism protects against sepsis (321). This 

evidence highlights a critical alarmin role of HMGB1 as an endogenous sterile driver of 

inflammation.  



 

56 

 

2.7.2. cell-free DNA 

Circulating cell-free DNA refers to double-stranded, cell-unbound DNA fragments in 

the blood of humans. Cell-free DNA originates from genomic or mitochondrial DNA released 

subsequently to cell death. Cell-free DNA is present in small amount in the blood of healthy 

individuals, but its concentration is increased in patients suffering from chronic diseases. In this 

context, studies suggest that it acts as a contributor to chronic diseases by inducing inflammation 

via TLR9, a PRR classically activated by unmethylated CpG motifs-containing bacterial and 

viral DNA fragments (322-324). Mitochondrial DNA also triggers TLR9 to induce 

inflammation (325). 

Circulating blood of pregnant women contains an additional type of cell-free DNA, 

referred to as cell-free fetal DNA (cffDNA) which originates from the placenta. Evidence for 

the placental origin of cffDNA include: 1) it is detected in anembryonic gestation (326); 2) it is 

still detected after therapeutic abortion in which placenta is incompletely removed, albeit 

undetectable after normal delivery (327, 328); 3) it is detected in cases of invasive placenta, a 

postpartum pregnancy complication wherein trophoblasts invade myometrium (329); and 4) it 

carries the placental genotype in patients with confined placental mosaicism (330).  In contrast 

with maternal cell-free DNA, of which 32% of the fragments are ˃356 bp, cffDNA are short 

hypomethylated fragments (˂313 bp) and potent inducer of sterile inflammation (23, 331, 332). 

The release of cffDNA is a physiological process present in all mammals, but its possible roles 

and implications in normal pregnancy (and more importantly parturition) remain poorly 

understood. Placental growth involves proliferation, differentiation, and syncytial fusion of 
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cytotrophoblasts which is associated with significant release (grams per day) of microvesicles-

encapsulated, cffDNA-containing apoptotic trophoblasts content into maternal circulation (333-

337). These microparticles, also referred to as syncytiotrophoblast microvesicles (SCTMs), 

were first described more than 100 years ago in lung capillaries of women who died from 

preeclampsia (338), and were later described as a feature of normal pregnancy, though increased 

in preeclampsia (339). SCTMs as well as cffDNA alone are pro-inflammatory (340-342). 

Interestingly, once pregnancy is past 20 weeks, the levels of cffDNA in maternal circulation 

consistently increase of 1% per additional week of gestation to abruptly rise (up to 13 folds) 

when gestation nears the end (343-345). This evidence, along with the established pro-

inflammatory effects of cffDNA, underpins the theory that cffDNA may represent a common 

trigger to parturition in mammals (346). Furthermore, elevated cffDNA in the maternal 

circulation has been observed in pathological pregnancies (292, 347, 348) in association with 

placental dysfunction and inflammation. For these reasons and others, cffDNA is increasingly 

used for diagnostic purposes to decrease the use of invasive amniocentesis.  

Mechanistically, cffDNA can bind to TLR9 to induce a conformational change in the 

homodimers of the receptor resulting in the close apposition of the Toll/Interleukin-1R (TIR) 

signaling domains and downstream activation of NF-κB and transcription of inflammatory 

cytokines genes (349). Importantly, this TLR9-, NF-κB-dependent pro-inflammatory effect of 

cffDNA was shown in pregnant mice and is characterized by IL-6 production in human 

peripheral blood mononuclear cells (23). Classically, TLR9 is localized intracellular in 

endoplasmic reticulum (ER), endosomes, and lysosomes (350). Therefore, cffDNA must be 

transported by endocytosis inside immune cells in order to convey inflammatory effects via 

TLR9; this is likely occurring through phagocytosis of cffDNA-containing SCTMs by placental 
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or circulating granulocytes. Given the half-life of cffDNA (16.3 minutes in humans) (327), this 

inflammatory stimulation is short-lived, but likely sustained by unabated trophoblast turnover. 

 

2.7.3. Uric acid 

Uric acid (160 Da) is a product of the metabolic breakdown of purine nucleotides by 

xanthine oxidase, with normal blood concentration range between 40-60 µg/ml. Upon achieving 

concentrations ˃70 µg/ml, uric acid forms needle-like, immunostimulatory monosodium urate 

(MSU) crystals, which cause the acute inflammation of gout. In the last few years, uric acid has 

been vastly regarded as an alarmin of sterile inflammation because of the high cytosolic 

concentration (≈ 4 mg/ml) released upon cell death, which reacts with extracellular sodium to 

form MSU in the immediate vicinity of cellular injury (351). Transport of MSU inside antigen-

presenting cells through phagocytosis promotes its interaction with NLRP3 inflammasome and 

induces IL-1β maturation and release thereby triggering an inflammatory response (352, 353). 

This is an important step in sterile inflammation that enables immune cells to sense injuries. 

Concordantly, administration of MSU causes acute inflammation (354) and in mice, blocking 

uric acid is sufficient to inhibit the immunological and inflammatory response associated with 

cellular death or injury in numerous cell types and tissues (351, 355).  

 

2.7.4. Interleukin-1 alpha 

The interleukin-1 family comprises 11 cytokines which regulate inflammatory response 

to injuries and stressors. Two major members of the family are IL-1α and IL-1β. They bind to 
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ubiquitous IL-1R1 to activate the translocation of transcription factors NF-κB and AP-1, thereby 

triggering the expression of numerous cytokines including itself and initiating or sustaining an 

inflammatory response (356, 357). Although IL-1α and IL-1β bind to the same receptor and 

convey similar biological effect, the two cytokines are encoded by different genes and have 

distinct mode of action. Unlike IL-1β, IL-1α is not actively secreted but instead translocates to 

the nucleus to participate in the regulation of gene transcription (358). Furthermore, while IL-

1β precursor requires exogenous (or endogenous in rare cases) signals to trigger its transcription 

and to initiate its inflammasome-dependent cleavage into a functional cytokine, IL-1α precursor 

is on the other hand ubiquitously expressed in cytoplasm of healthy cells, in the form of a 

biologically active precursor (but can also be induced by inflammatory stimuli). Consequently, 

only IL-1α is released in a functional form upon necrosis (207, 359); therefore, IL-1α is regarded 

as an alarmin whereas IL-1β is not (360, 361). Accordingly, sterile cell death-induced neutrophil 

inflammatory response in mice requires both IL-1α and IL-1R, but not IL-1β (362), suggesting 

that IL-1β is not essential for the mounting of a functional sterile inflammatory response to cell 

death. However, evidence shows that both IL-1α and IL-1β are implicated in sterile 

inflammation, but have distinct timing of effect and roles (363), suggesting that IL-1β 

contributes to sterile inflammation, not as an initiator but as a redundant mechanism to amplify 

the initial trigger. Accordingly, it is documented that IL-1β can be produced to contribute to 

sterile inflammation in response to non-cytotoxic sterile stressors as those released upon 

necrosis (361). This was also recently reported for IL-1α (364). Interestingly, the release of IL-

1α is tightly regulated during programmed cell death via chromatin sequestration, which 

significantly reduces its pro-inflammatory effect during apoptosis; this is not observed during 

necrosis (365). These data suggest a critical role of IL-1α in sterile inflammation, and a 
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contributive, albeit non-essential role of IL-1β. The major role of IL-1α in sterile inflammation 

has been reviewed elsewhere (361). 

Notably, IL-1α is also detected in activated monocytes as a membrane-bound form. This 

form does not require cell lysis to become available for receptor binding. Binding of either the 

membrane form (through cell-cell contact) or the released form to the IL-1 receptor, will result 

in the initiation of an inflammatory cascade (366-368).  

 

2.7.5. Other potential alarmins 

Different levels of evidence have been accumulated suggesting that many other 

intracellular factors can induce acute inflammation once released in their environment and 

therefore may represent potential alarmins. These include S100 proteins (369, 370), 

nucleosomes (371), purines (372), sIL-6R (172), heat-shock proteins (373), saturated fatty acids 

(374) and antimicrobial peptides (375-377). Interestingly, possible alarmin activity has been 

reported for molecules of mitochondrial provenance such as mitochondrial DNA (325), N-

formylated mitochondrial peptides (378) and others (379), which could arise from their probable 

prokaryote origin. Noteworthy, the role and mode of action of the aforementioned candidates in 

vivo are mostly unknown. Along these lines, the possible alarmin activity of heat-shock proteins 

is still debated. Early studies have shown that purified HSPs activate DCs ex vivo (373) and in 

vivo (380) to trigger an inflammatory response. This pro-inflammatory effect has latter been 

attributed to bacterial contaminant (381, 382) and the enthusiasm of a possible alarmin role of 

HSPs was consequently severely dampened. 
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By definition, any pro-inflammatory endogenous molecule physiologically expressed in 

low concentrations in the extracellular milieu, that is upregulated and released during 

pathological events could be considered as an alarmin candidate, and therefore many other 

mediators could potentially be included in this category, such as glucose (383).  

 

2.7.6. Role of alarmins in the onset of spontaneous preterm labor 

Although most of data linking a rise in alarmin levels and the onset of preterm labor are 

correlational, causal, and mechanistic data have also been documented, especially for cffDNA 

and HMGB1. First, administration of cffDNA was found to induce placental inflammation and 

fetal resorption via TLR9 when injected i.p. in pregnant mice, contrastingly with the lack of 

effects of adult DNA (23). This suggests that high levels of circulating cffDNA, as achieved in 

women with preterm or term labor (referenced above), can trigger pathological inflammation in 

gestational tissue via TLR9. Accordingly, hypomethylated CpG fragments, the TLR9-

responsive element in cffDNA, have been found to induce prompt (24-48h) leukocyte migration 

to uterus, TNFα production, and preterm labor/birth in IL-10-deficient mice (384). Second, 

recent evidence shows that stimulation with HMGB1 induces the expression of uterine 

activation genes including Tnfa, Il6 and Pghs2 in human myocytes (24), and labor in mice when 

administered intra-amnion (298); and correspondingly, an association between high HMGB1 

amniotic levels and earlier deliveries in patients with intra-amniotic sterile inflammation has 

been reported (25, 385). Furthermore, HMGB1 administration ex vivo in human fetal 

membranes induces p38-mediated IL-6 and IL-8 production (386). In this setting, a potential 

role in labor for the HMGB1 pathway was reported using transcriptomics and bioinformatics 
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analysis (24, 387). Additionally, HMGB1 and its receptors RAGE, TLR2 and TLR4 are found 

in cervix, and extranuclear fraction of HMGB1 increases with labor onset at term and preterm 

(21), suggesting that HMGB1 may play a role in cervical ripening. Interestingly, stimulation 

with endotoxins triggers HMGB1 expression and release in vitro in human fetal membranes 

(386) and in vivo in murine fetuses when endotoxins are administered in dams (i.p.) (20); 

concordant, women with intra-amniotic infection/inflammation and women with 

chorioamnionitis have higher AF levels of HMGB1 (22, 388). The latter suggests that HMGB1 

may also have an implication in the infectious etiology of preterm birth.  

 IL-1α was the first alarmin to be associated with preterm labor and labor at term (209). 

However, because IL-1β is released in response to infection by immune and non-immune cells 

in the uteroplacental compartment, its role has been primarily investigated rather than IL-1α. As 

previously mentioned, IL-1β and IL-1α bind to the same receptor and have similar effects. 

Evidence linking IL-1α to preterm labor are: 1) stimulation of IL-1R induces the transcription 

of numerous pro-labor genes via MAPK p38, JNK, c-jun, small GTPase Rho in myometrial 

smooth muscle cells which results in increased myometrial contractility (102, 389); and preterm 

labor in mice and non-human primates (170, 217); 2) antagonism of IL-1R prevents all of these 

events (390); 3) IL-1α AF levels are elevated in women that deliver preterm (391); 4) preterm 

labor is associated with increased IL-1α activity in AF (209); 5) maternal polymorphisms and 

haplotypes in the IL-1α gene (392), as well as fetal polymorphism in the endogenous IL-1R 

antagonist (219), have been associated with increased risk of preterm birth.  

Interestingly, sterile inflammation has been suggested to induce a common inflammatory 

pathway leading to labor at term in normal pregnancies (346, 393). Accordingly, transcriptomic 

analysis of choriodecidual tissue collected at term predicted HMGB1 as a potential upstream 
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regulator of parturition (387). As previously mentioned, cffDNA is another alarmin candidate 

initiator of labor at term (346). 

 

2.7.7. Role of alarmins in the onset of fetal inflammatory response syndrome 

Recently Romero et al. indicated that FIRS can occur by the non-infectious DAMPs 

pathway by which no evidence of a microbial invasion of the amniotic cavity is observed (394). 

DAMPS are released in response to cellular stress or death as seen in vascular disorders, 

autoimmune disorders, inflammation, and exposure to environmental stressors (395), and can 

stimulate an insidious, silent, non-infectious inflammatory response in the maternal uterine 

tissues and in the fetal membranes and placenta. A plausible mechanism could be that cytokines 

generated from DAMP stimulation create a cytokine chain reaction that causes progressive self-

amplification leading to their transfer into fetal fluid compartments (396). Once cytokine levels 

in the fetus are aberrantly elevated, fetal cells become susceptible to cytokine signals and suffer 

inappropriate terminal differentiation that ultimately retards normal organogenesis. Babies are 

thus in danger when the maternal immune response becomes great enough to increase 

inflammatory cytokines within the fetus. 

 

2.7.8. Alarmins as potential targets for diagnosis and treatment of preterm 

birth 

Efforts are underway to identify the most early or upstream event in this cascade to 

develop effective preventive treatments. The release of alarmins represents an initiating step in 
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sterile inflammation following an injury, and therefore alarmins may represent interesting 

candidate factors initiating the onset of preterm labor in women without infection (i.e. 

presumably the majority of women undergoing preterm labor). Accordingly, recent advances 

have found increased expressions of alarmins in maternal serum or gestational tissue of women 

at risk of preterm labor or having delivered preterm, specifically of cffDNA (294-296), HMGB1 

(386), interleukin-1 (209, 211), uric acid (297, 397) and S100B (398). This consistent increase 

in alarmins could represent the missing link between numerous aetiologies of preterm labor 

wherein tissue injury and cell death are implicated, and the initiation of labor per se. This is 

plausible for numerous aetiologies such as: placental and uterine senescence, breakdown of 

maternal/fetal tolerance, uterine and cervical structural insufficiency, hemorrhage, multiple 

pregnancy, vascular disorders, and hypoxia/ischemia (Fig.5). The establishment of such a link 

could convey major implications for the development of effective therapeutics and diagnostic 

tests. Along these lines, cell-free DNA fraction ≥95th percentile as screened between 14-20 

weeks’ gestation has been suggested as an effective biomarker to assess risk of preterm birth 

(399).   
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Figure 5. Principal sites of release and actions of alarmins in pathological pregnancy. 
Multiple causes of cellular stress will affect cell viability and lead to the release of DAMPs 
(alarmins) by the fetal membranes and the placenta. These DAMPs will then act not only on 
the placenta itself but also on the uterus, cervix and fetal membranes inducing inflammation 
and contributing to many complications of pregnancy. 

 
Data accumulated to date converge toward a deleterious contribution of alarmins to the 

pathophysiology of PTB. Hence, effectively blocking alarmins could potentially result in 

favorable outcomes. This strategy has yielded positive outcomes in other inflammatory diseases, 

as it applies to HMGB1 (400), uric acid (401), IL-1 (402) and cffDNA (23). Therapies effective 

to block HMGB1, uric acid, IL-1α and cffDNA are summarized in Table II. Further efforts are 

also needed to develop specific and potent antagonists of uric acid and cffDNA to gain better 

knowledge in their role during physiological and pathological labor. 

 

Table II. Therapeutic molecules targeting the alarmin activity of HMGB1, uric acid, IL-1α 
and cell-free DNA 
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Target Therapeutic molecule Description Mode of action Reference

s 
HMGB1 
/RAGE 

Recombinant box A Truncated N-terminal 
domain of HMGB1 (~10 
kDa) 

Competitive antagonist 
of the receptor RAGE  

(403, 404) 

S100P-derived RAGE 
antagonistic peptides  

Small peptides inhibitors 
derived from S100P, a 
RAGE ligand (~1 kDa) 

Binds with RAGE and 
inhibits HMGB1-
mediated NF-κB 
activation 

(405) 

Ethyl pyruvate Derivative of pyruvate 
(~116 Da) 

Downregulates the 
HMGB1-RAGE axis in 
vitro and in vivo 

(406, 407) 

Methotrexate Antimetabolite and 
antifolate drug used in 
treatment of cancer and 
autoimmune diseases 
(~454 Da) 

Binds to HMGB1 and 
prevents its interaction 
with RAGE 

(408) 

Neutralizing HMGB1 
antibody 

Polyclonal antibody 
against the B box domain 
of HMGB1 

Binds to HMGB1 and 
prevents its interaction 
with RAGE 

(404) 

Anti-HMGB1 mAB Monoclonal antibody 
against HMGB1 (IgG2b 
2G7) 

Binds to HMGB1 and 
prevents its interaction 
with RAGE 

(409) 

Glycyrrhizin Natural anti-inflammatory 
and antiviral triterpene in 
clinical use (~822 Da) 

Binds to HMGB1 and 
reduces its activity.  

(410) 

Quercetin  Plant-derived flavonoid 
(302 Da) 

Inhibits the cytokine 
activity of HMGB1 

(411) 

Lycopene Natural carotenoid (~536 
Da) 

Inhibits the cytokine 
activity of HMGB1 

(412) 

Vasoactive intestinal 
peptide (VIP) and 
urocortin 

Endogenous neuropeptides 
(~2,8 kDa and 4,7 kDa, 
respectively) 

Inhibits HMGB1 
secretion 

(413) 

Pituitary adenylate 
cyclase-activating 
polypeptide (PACAP) 

Endogenous neuropeptide 
(~4,5 kDa)  

Inhibits HMGB1-
induced cytokine release 
in vitro and in vivo 

(414) 

chim 2A Kinked oligonucleotide 
duplexes (18bp) 

Interacts with HMGB1; 
potently blocks a 
number of HMGB1 
extracellular effects 

(415) 

Others   (316, 416) 
Uric acid Allopurinol Uric acid analogue (~136 

Da) 
Reduces uric 
acid production by 
xanthine oxidase 

(351, 355) 
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Uricase, also known as 
urate oxidase 

Homotetrameric enzyme 
specific to uric acid (~33 
kDa) 

Breaks down 
uric acid to allantoin 

(351, 355) 

Sodium bicarbonate Salt composed of sodium 
ions and bicarbonate ions 
(~84 Da) 

Increases urine pH, thus 
increasing the 
dissolution and 
excretion of uric acid 
and decreasing its 
plasma concentrations 

(401) 

Benzbromarone Small organic molecule 
(~424 Da) 

Uricosuric agent and 
non-competitive 
inhibitor of xanthine 
oxidase 

(417) 

IL-1α /IL-
1R 

Anakinra Recombinant version of the 
interleukin 1 receptor 
antagonist (IL-1Ra) (~17 
kDa) 

IL-1R competitive 
antagonist  

(359) 

Rilonacept also known 
as IL-1 Trap 

Dimeric fusion protein 
(~251 kDa) 

Soluble decoy IL-1R; 
competitive antagonist 

(359) 

101.10, also known as 
rytvela 

Small peptide (all-d) (~850 
Da) 

Noncompetitive IL-1R 
antagonist, negative 
allosteric modulator of 
IL-1R 

(418, 419) 

Cell-free 
DNA 
including 
cffDNA 
and 
mtDNA / 
TLR9 

ODN TTAGGG 
(A151) 

Synthetic oligonucleotide Interacts with TLR9; 
neutralizes the 
stimulatory effect of 
CpG-containing 
oligonucleotides 

(420) 

chloroquine Small organic molecule 
(~320 Da), diprotic weak 
base  

Reduces NF-κB and AP-
1 activation induced by 
CpG oligonucleotides; 
also exerts other anti-
inflammatory effects 

(421) 

AT791 and E6446 Small organic molecules  Inhibit DNA-TLR9 
interaction and TLR9 
signaling in vitro; in vivo 
efficacy also reported 

(422) 

  

 

2.8. Fetal injury associated with exposure to inflammation in 

utero 

Chorioamnionitis has been firmly associated with the development of FIRS (defined as 

fetal plasma concentrations of IL-6 >11pg/mL)(423). The most plausible pathophysiological 
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mechanism of neonatal injuries is the paracrine propagation of the initial labor-inducing 

inflammatory response from the uterus to the placenta, and in more severe cases to the AF and 

fetus, mostly because direct transplacental passage of cytokines is highly unlikely (424, 425). A 

body of evidence suggests that the fetus can mount its own inflammatory response, 

characterized by neutrophil and monocyte activation (426); rises in plasma IL-6 and CRP (427); 

production of immunoglobulin M in response to congenital viral infections (428); and activation 

of a subset of type 1 helper T cells in response to perinatal intrauterine infection (429) and 

pPROM (430). This response amplifies the initial stimulus, in turn leading to systemic fetal 

dissemination of inflammation, diffuse fetal tissue injury, and multiorgan failure (425, 431, 

432). The organs most severely affected are the hematopoietic system, the adrenals, heart, brain, 

lungs, and skin (433).  

FIRS is particularly damageable to the fetal brain. Inflammation alters the permeability 

of the blood-brain barrier facilitating access of microorganisms and cytokines inside the brain 

(434). Accordingly, fever in pregnant woman confers a 7-to-9-fold increased risk of cerebral 

palsy (435, 436), as does a diagnosis of CCA or AHCA (433, 437). A recent study found that 

differences in the levels of inflammatory markers are associated with alterations in functional 

connectivity between numerous neonatal brain networks, and later to working memory scores 

at age 2 (73). FIRS  has also been associated with neonatal sepsis, pneumonia, 

bronchopulmonary dysplasia, intraventricular hemorrhage, periventricular leukomalacia, 

necrotizing enterocolitis, neonatal respiratory distress syndrome, multiorgan failure, and death 

(438, 439), independent of infection (11, 25, 433). Neither antenatal tocolytics nor progesterone 

are likely to play a significant role once FIRS is already established. On the other hand, the co-

administration of antibiotics and dexamethasone + indomethacin has shown promise to decrease 
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intraamniotic inflammation in a nonhuman primate model of intraamniotic infection-induced 

preterm labor (440). Noteworthy, single use of ampicillin was not effective to decrease uterine 

activity, premature delivery, and amniotic fluid cytokines, prostaglandins, and MMP-9 (440). 

However, corticosteroids have numerous undesirable effects that preclude their prolonged use 

during pregnancy. In another study, intraamniotic infusion of rhIL-1Ra protected against intra-

amniotic LPS-induced amnion inflammation (441). Overall, this suggests a key role for anti-

inflammatory molecules for the antenatal protection of the fetus against overt inflammation. If 

administered early enough, anti-inflammatory molecules may prevent the propagation of 

inflammation from the uterus to the fetal environment. 

 

2.9. The resolution of inflammation - an unavoidable postpartum 

salvaging process 

There are two major possible outcomes to acute inflammation: 1) the transition to 

chronic inflammation, wherein the site of inflammation is slowly invaded by long-lived 

leukocytes (e.g. T cells, macrophages) and undergo simultaneous destruction and repair; and 2) 

the resolution of inflammation. The resolution of inflammation is not a passive process, but 

rather involves anti-inflammatory (more accurately described as pro-resolution) cells and 

molecules, including regulatory T cells (442), resolvins/protectins (443), lipoxins (444), 15d-

PGJ2 (445), IL-10 (446), gases (e.g. nitric oxide, hydrogen sulfide and carbon monoxide) (447), 

adenosine (448), PAR-2 (449) and other candidates such as lactate. Pro-resolution mediators 

have numerous effects: 1) they exert an opposing effect to cytokines and chemokines, limiting 

leukocyte extravasation and activation (450, 451); 2) they reduce pain (452); 3) they switch off 
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important signaling pathways implicated in leukocytes survival (453); 4) they skew macrophage 

polarization toward an anti-inflammatory phenotype (454); 5) they promote the clearance of 

tissue debris by macrophages (455); and 6) they promote healing without fibrosis (453). 

Unresolved inflammation may result in significant tissue damage, in turn transitioning to self-

perpetuating chronic inflammation and organ failure (456, 457); this has been demonstrated for 

numerous chronic diseases and processes including atherosclerosis (458), myocardial infarction 

and stroke (459), chronic pulmonary inflammation (460), cancer (461), and Alzheimer’s disease 

(462). Accordingly, pro-resolution molecules analogs have shown great promise as therapeutic 

agents in numerous chronic inflammatory diseases (463). 

As alluded earlier, pro-resolution is different than anti-inflammation. Anti-inflammation 

essentially involves inhibitory effects (e.g. blocking the nuclear translocation of NF-κB thereby 

decreasing the production of inflammatory mediators), whereas resolution involves the 

activation of specific processes (e.g. apoptosis, efferocytosis, etc.) regulated at multiple levels 

(464). The resolution process begins during the first few hours of an acute injury (465) with a  

lipid mediator class switching (via enzyme regulation) from PGs/leukotrienes to lipoxins, 

resolvins and protectins (466). Lipoxins are metabolites of arachidonic acid, whereas resolvins 

and protectins are metabolites of omega-3 fatty acids. Consequently, the resolution process 

involves a polarized metabolism of fatty acid precursors present in exudates in a temporally 

orchestrated way. Once produced, pro-resolution lipids act via specific G protein-coupled 

receptors, leading to alternative activation of NF-κB and other pathways (467, 468). In line, 

whereas the proinflammatory p65/p50 heterodimer is the predominant form of activated NF-κB 

during acute inflammation, a switch toward activated anti-inflammatory p50/cRel, p65/cRel, 
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and p50/p50 occurs at the onset of resolution (467-470). Interestingly, the p50/p50 homodimer 

has been shown to compete with p65/50 heterodimer for DNA binding.  

Very few is known on the resolution of inflammation during and after labor (i.e. 

postpartum). Postpartum refers to the final stage of parturition wherein the uterus rapidly 

involutes to return to its pre-pregnant state. Because the laboring uterus undergoes mechanical 

stress and physical injuries, and bathes in an overabundance of labor-inducing inflammatory 

mediators, one could expect that termination of inflammation during the postpartum period is 

critical to salvage uterine tissue in preparation for subsequent pregnancies. However, the 

literature on postpartum resolution of inflammation is essentially inexistent. One study found 

an upregulation of lipoxin receptor FRP2/ALX in neutrophils and myometrial cells, and of 

maternal serum lipoxin A4 in pregnant women near term as compared to non-pregnant women 

(471). Other studies suggested an overall decrease in pro-resolution pathways at the onset of 

labor (472, 473). None of these studies have studied the postpartum period. 

One candidate mediator of resolution during labor and during the postpartum period is 

lactate. More than just an inert end-product of the anaerobic metabolism, lactate exerts anti-

inflammatory actions via GPR81 (474), but only at significantly elevated concentrations (the 

EC50 of GPR81 is 4,8 mM (475)). These high concentrations are likely to only be reached during 

extensive anaerobic activity, such as observed in moderate-to-severe exertion (476), ischemia 

(477), cancer (478), and uterine labor (479). Because anaerobic metabolism is the predominant 

source of energy of the myometrium, serum and AF lactate levels increase markedly and 

proportionally to myometrial effort during labor (479, 480). A study conducted in foals and 

mares suggests that these increased levels of lactate may persist for up to 12h postpartum 

especially following dystocic parturition (481). Therefore, one could expect that the lactate 
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produced during labor acts on anti-inflammatory GPR81 to dampen inflammation and restore 

tissue homeostasis. Interestingly, M1-polarized macrophages, which are highly active during 

acute inflammation, obtain energy via glycolysis, and therefore produce high amounts of lactate 

early in inflammation when the resolution program begins, potentially contributing to its onset. 

On the other hand, M2-polarized macrophages, which are active relatively late, obtain energy 

via oxidative phosphorylation and produce minimal amount of lactate (482).  
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3. The role of interleukin-1 in uterine inflammation, 

preterm birth, and neonatal outcome: 

3.1. Overview and mechanism of action of the interleukin-1 system 

The IL-1 family of cytokines comprises 11 proteins (IL-1F1 to IL-1F11) encoded by 11 

distinct genes which are important mediators of the innate immune response. IL-1α (IL-1F1) 

and IL-1β (1L-1F2) constitute the major inducer of this pathway and are thus tightly regulated 

by other members of the family, of which IL-1Ra (IL-1F3) is the prototype endogenous 

antagonist. IL-1α and IL-1β have similar biological effects and bind to the same receptors but 

are encoded by different genes (483).  

 

3.1.1. Interleukin-1α 

IL-1α has been introduced in Chapter 2. 

 

3.1.2. Interleukin-1β 

IL-1β expression is inducible and not constitutive, unlike IL-1α. IL-1β is mostly 

produced by hematopoietic cells such as DCs, blood monocytes and tissue macrophages. The 

induction of its transcription is triggered by PAMPs, DAMPs or pro-inflammatory cytokines, 

including itself. The IL-1β precursor protein (31 kDa) is cleaved by caspase-1, a cytosolic 

cysteine protease part of the NLRP3 inflammasome, into its functional mature form (17.5 KDa). 

Inflammatory stimuli such as PAMPs and DAMPs generate two signals on cells of the innate 
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immune response to promote IL-1β expression and maturation that are mediated by: 1) TLRs to 

promote transcriptional induction of pro-IL-1β and; 2) NOD-like receptors which upon 

activation oligomerize and complex with caspase-1 to form the inflammasome which promotes 

IL-1β maturation. The active form of IL-1β is then released in the extracellular space, where it 

can bind to its receptor and subsequently initiate or sustain an inflammatory response (359, 367, 

368). The maturation process of IL-1β via the inflammasome is depicted in Fig. 6.   

 

 

Figure 6. IL-1β synthesis and maturation via the inflammasome in response to DAMPs 
and PAMPs. The inflammasome is an active component of the innate immune response to 
infection and allows the maturation of IL-1β into its functional form. Signal 1, TLR agonists 
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(e.g. PAMPs and DAMPs) promote pro-IL-1β transcriptional induction via transcription 
factors AP-1 and NF-κB; signal 2, NLR agonists (also include PAMPs and DAMPs) induce 
inflammasome activation and IL-1β maturation. NLRP3; NOD-like receptor family, pyrin 
domain containing 3. 

3.1.3. Interleukin-1 receptor antagonist 

IL-1 is a potent cytokine active at low concentrations; 1% of IL-1R1 occupancy is 

sufficient to induce maximum biological response (484). For this reason, IL-1 signaling is 

tightly regulated through an endogenous inhibitor feedback system. IL-1Ra is an endogenous 

inhibitor of IL-1α and IL-1β which acts by competitively binding to IL-1RI without activating 

it (485). Two structural variants have been identified: a secreted glycosylated form (sIL-1Ra) 

and an intracellular form (icIL-1Ra) (483, 486). IL-1Ra is secreted by most cell types including 

myeloid and lymphoid cells (487-491). A 100 fold or greater excess in IL-1Ra over IL-1 is 

required to prevent IL-1R1 activation (492). Interestingly, data from displacement binding 

assays reveal that IL-1β has similar affinity than IL-1Ra, and both have slightly better affinity 

than IL-1α. The potency of the IL-1α precursor and of its mature form have been shown to be 

equivalent in inducing IL-6 in vitro (493). Altogether, IL-1Ra, the soluble form of IL-1RAcP 

(sIL-1RAcP), the membrane-bound and secreted IL-1 receptor II (sIL-1RII), and the soluble 

naturally occurring "shed" domains of each of the extracellular IL-1R chains, help to dampen 

IL-1 effects and therefore represent endogenous inducible anti-inflammatory mechanisms (494, 

495).  

 

3.1.4. Interleukin-1 receptors 

The IL-1 receptor family comprises 11 receptors composed of extracellular 

immunoglobulin-like domains and intracellular TIR domains, and two have been identified to 
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bind IL-1: IL-1 receptor type 1 (IL-1RI) and IL-1 receptor type II (IL-1RII). IL-1RI is 

ubiquitously expressed and binds to IL-1 to produce an inflammatory response, whereas IL-

1RII is found primarily in B lymphocytes, neutrophils and monocytes and is unable to transduce 

the signal due to its lack of a signaling-competent cytoplasmic tail (496-499). For this reason, 

IL-1RII has been identified as a decoy receptor for IL-1, limiting its action (500). Binding of 

IL-1 to IL-1RI induces a conformational change in the first extracellular loop of the receptor 

and further facilitates the interaction of IL-1RI with IL-1RAcP, a transmembrane protein 

required for signal transduction (501, 502). IL-1RAcP and IL-1RII also exist in soluble form, 

and act mostly as decoys. Another isoform of IL-1RAcP was recently discovered and referred 

to as IL-1RAcPb (503). Although IL-1RAcPb expression has been described to be restricted to 

neurons, our group was able to amplify its mRNA from rat gestational tissues (mostly uterus, 

but also cervix, ovaries and placenta) (504) and human uterus (Olson DM, unpublished). 

 

3.1.5. Interleukin-1 receptor canonical pathway 

IL-1R1/IL-1RAcP complex possesses conserved intracellular regions, the TIR domains 

(505), which mediate the protein-protein interaction of two signaling proteins, myeloid 

differentiation primary response gene 88 (MYD88) and interleukin-1 receptor–activated protein 

kinase (IRAK) 4 (506, 507). Knock-out mice for either MYD88 or IRAK4 have dysfunctional 

IL-1 signaling (508). IRAK4 can phosphorylate itself, which allows it to phosphorylate IRAK1 

and IRAK2. Subsequently, tumor necrosis factor receptor–associated factor (TRAF) 6 is 

recruited (509, 510). Downstream cascades activated by TRAF6 eventually lead to the nuclear 

translocation of the transcription factor nuclear factor-kappa B (NF-κB) (201, 511) and to the 



 

77 

phosphorylation of mitogen-activated protein kinase (MAPK) p38 and stress-activated protein 

kinase (SAPK) JNK, which in turn leads to the activation of proteins that form transcription 

factor activator protein-1 (AP-1) (512). NF-κB and AP-1 are jointly involved in the expression 

of numerous pro-inflammatory genes including: PGHS2 (513), IL6 (204), IL8 (205) and CCL2 

(514). NF-kB (515, 516) and more recently AP-1 (517, 518) have been associated with PTB, 

and inhibition of either NF-kB (Nadeau-Vallée M and Chemtob S, unpublished) or AP-1 (419, 

519) with selective inhibitors is sufficient to reduce IL-1- and LPS-induced PTB in mice. Hence, 

the role of IL-1 in the onset of parturition is mainly mediated by NF-kB and AP-1 through 

specific transcription of target genes implicated in inflammation. 

 

3.2. Role of interleukin-1 in normal term labor 

As previously mentioned, term and preterm labor share similarities, and most of the 

major players in preterm labor are also implicated in term labor. The onset of labor is a complex 

process independently of the timing of delivery and is less likely to be caused by a single trigger; 

rather labor is the result of an interaction of various contributors. In this context, IL-1 has been 

suggested to exert an important contribution towards the onset of labor at term mainly because 

of its role in the induction of prostaglandin production by intrauterine tissues (209). Term 

delivery without infection is associated with a rise of IL-1β mRNA expression in decidua and 

placenta (483) in addition to an increase in the levels of IL-1β in the amniotic (216) and 

cervicovaginal (215) fluids. IL-1α (and IL-1β) concentrations also increase in cervicovaginal 

fluid within 2 weeks prior to term labor, and is associated with a decrease in IL-1Ra, which are 

significantly correlated with labor onset (520). 
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Interestingly, studies in mice uncovered a signal of parturition arising from fetal lungs, 

which in turn induces the production of IL-1 at term. Surfactant protein A concentration in AF 

rises near term and is associated with increased IL-1β and NF-κB expression in AF-resident 

macrophages, increased macrophage migration to the maternal uterus, and increased levels of 

IL-1 in uterine tissues, which is thought to herald labor (521). SP-A-deficient and steroid 

receptor coactivator-1 and -2 (acting upstream by regulating SP-A transcription)-deficient mice 

fail to produce IL-1 at term, and their parturition is delayed by 12 hours and 38 hours, 

respectively. However, as mentioned previously, germline knockout mice with a disrupted IL-

1 system (IL-1β null mice (522), IL-1β converting enzyme null mice (523), and IL-1 receptor 

type 1 null mice (524)) are fully fertile and deliver at term (136), suggesting complex interplays 

between redundant mechanisms conceivably preserved throughout mammalian evolution to 

guarantee birth at term, thereby circumventing placental senescence and associated adverse 

outcomes.   

 

3.3. Role of interleukin-1 in preterm labor 

IL-1 was the first cytokine to be implicated in the mechanism of PTB associated with 

infection or acute inflammation as well as spontaneous delivery at term in humans (209, 216). 

Evidence that IL-1 plays a role in physiological and pathological labor of humans comprise the 

following: 1) human parturition has been associated with increased levels of IL-1β in the cervix, 

the myometrium and in fetal membranes (99), regardless of the presence of infection (210); 2) 

IL-1β concentration and bioactivity increases in AF of women with preterm labor and infection 

(209), and seems to be associated with PTB (211); 3) elevated maternal plasma levels of IL-1β 
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are associated with spontaneous preterm labor (115); 4) IL-1β is produced in response to 

bacterial endotoxins in ex vivo gestational tissues (525, 526); and 5) IL-1β stimulation of human 

uterine-derived cells induces UAP genes including COX-2 (and upstream uterotonic PGE2 and 

PGF2α) (527-531), thereby promoting cervical ripening (532, 533) and myometrial contractions 

(534, 535). Evidence linking IL-1α and PTB have been presented in Chapter 2. 

Animal studies support human data and further provide more insight into the mechanism 

of action of IL-1 in gestational tissues during labor. The main findings obtained with animals 

include: 1) systemic, intrauterine, and intraamniotic IL-1β dose-dependently induces PTB in 

multiple animal models including in mouse (217, 390, 536), rabbit (537) and nonhuman primate 

(170, 538), and this effect is reversible with IL-1Ra co-treatment (390); 2) preterm delivery after 

LPS administration is preceded by the appearance of dramatic increases in maternal serum and 

AF concentrations of IL-1 (235); 3) intraamniotic infusion of IL-1β in nonhuman primate 

prematurely activates the uterus in mice and increases myometrial contractility more effectively 

than TNF-α, IL-6 and IL-8 (170). IL-1 also plays key roles in eliciting fetal injury (539-542). 

Collectively, the evidence presented underscores the importance of IL-1 in (human and animal) 

labor. 

As mentioned earlier, IL-1β is activated following stimulation of cells of the innate 

immune response by DAMPs or PAMPs. Although IL-1 crosses negligibly the placenta (424, 

543), it can trigger an inflammatory chain reaction on the maternal side of the placenta, which 

progresses through the placental villi by activating Hofbauer cells to secrete more IL-1 and 

amplify the initial response (544), thus eventually reaching the fetus. This mode of action is 

supported by the sequential onset of placental inflammation and fetal inflammatory response 

resulting from intrauterine administration of IL-1β (396). However, inflammation may also 
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spread because of changes in placental factors that affect perfusion and cellular transporters, 

thereby limiting the flow of nutrients to the fetus and causing stress; alternatively, during 

infection inflammation can spread through microbial infiltration of the amniotic cavity. 

Regardless of the mode of dissemination, chorioamnionitis is firmly linked to the onset of FIRS 

(433), which is dependent of IL-1 (545). Hence, the effects of IL-1 will be presented sequentially 

as inflammation spreads, i.e. from maternal to fetal tissues, although other modes of 

dissemination have been described as well (546). 

 

3.3.1. Effects of interleukin-1 on pre-placental tissues 

 Effects of IL-1 on pre-placental tissues (i.e. excluding placenta and fetus) include 

myometrial activation, cervical ripening, weakening of fetal membranes, leukocyte 

extravasation inside the uterine walls, and eventually production of prostaglandins and labor. 

As a general principle, these effects predominantly affect maternal tissues and normally exert 

minimal impact on the fetus per se other than to hasten birth and to constitute a locus for the 

spread of inflammation to the fetus. 

Low concentrations of IL-1 activates the myometrium in preparation of labor and 

therefore IL-1 is considered a potent uterotrophin. Studies show that stimulation of human 

myometrial smooth muscle cells (102) or decidual cells (547) with 1 ng/ml of IL-1β for short 

periods of time leads to substantial alterations in the transcription of genes implicated in labor, 

such as CXCL2, IL6, PTGS2, NFKB1, TNF, PLAU, TNC and many others. Essentially, these 

genes encode for enzymes catalyzing the conversion of arachidonic acids to prostaglandins, 

membrane-bound receptors coupled to calcium signaling, proteins implicated in cytoskeleton 
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remodeling and actomyosin-dependent contraction, signal transducers, chemokines, and many 

other relevant proteins (102, 547).  

Myometrial contractility is amplified by induction of Gαq protein-coupled receptors in 

the membrane of myometrial smooth muscle cells; these receptors include FP (548), OXR (42), 

and PAR-1 (activated by proteases such as thrombin and MMP-1) (549); whereas the 

coordination of laboring myocytes is attributable to the presence of gap junctions, which are 

specialized intercellular connexions that allow the transmission of Ca++ between cells and 

intercellular coordination (550). In myometrium, IL-1 upregulates CX-43 (protein component 

of gap junctions) (419), COX-2 (enzyme catalyzing the formation of prostaglandins from 

arachidonic acid) (551), and FP (552), thereby inducing the transition from uterine quiescence 

to uterine activation. Additionally, IL-1 has been shown to upregulate the expression of the 

putative calcium entry channel TRP-3 (553), and to increase reticular calcium storage (389) in 

myometrial smooth muscle cells. However, the effect of IL-1 on OXR expression is 

controversial; while OXR reaches its maximal expression in term pregnancies when IL-1 levels 

are highest, in vitro evidence shows that stimulation of myocytes with IL-1 decreases mRNA 

levels of Oxtr (554). Regardless, the demonstrated consequence of IL-1 on myometrial 

contractility is increased potency and efficacy of uterotonic molecules (419, 555). 

Myometrial contractions of labor, which are potentiated by IL-1 (170), convey 

mechanical stress that promotes cervical ripening (556). In addition to this effect, IL-1 directly 

affects cervical ripening and integrity of fetal membranes by inducing the production of ECM 

proteases from endometrial fibroblasts (106, 107). The activity of these enzymes results in the 

reorganization of collagen fibril structure with a gradual loss of tensile strength in cervix, and 

in the degradation of the ECM connecting the amniochorion layers together. Further, IL-1 
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indirectly contributes to cervical ripening by upregulating COX-2 and promoting prostaglandin 

production (108, 527, 531). Correspondingly, preterm labor is associated with higher 

concentrations of Il1b mRNA in human cervix (557); and contrary to the requirement of 

administering both an agent to ripe the cervix (i.e. prostaglandins) and an agent to promote 

uterine contractility (i.e. oxytocin) in women who require induction, IL-1 is sufficient on its own 

to induce labor in numerous animal models including non-human primate (170, 217). 

Interestingly, the rat uterus at term expresses increased levels of IL-1R1 relative to the reduced 

expression of the decoy receptor IL-1R2 (another endogenous inhibitor of IL-1 activity), 

suggesting that the uterine sensitivity to IL-1 rises near the end of gestation (558). Interestingly, 

the uterine quiescence hormone progesterone can suppress IL-1R1 upregulation and prolong 

gestation; conversely, administration of the progesterone receptor inhibitor RU-486 in late 

pregnant rats facilitates a precocious rise in uterine IL-1R1 predisposing to preterm labor (558). 

Another important UAP induced by IL-1 is CCL2, a potent monocyte chemoattractant. 

Macrophages infiltrate the decidua in human and rodent prior to term and preterm labor (101), 

and perform key roles by releasing cytokines, prostaglandins and proteases in cervix and uterus 

when gestation nears the end (559). Our group has shown in mice that the administration of IL-

1β induces a >10-fold increase in Ccl2 expression in placenta and fetal membranes, and >5-fold 

increase in circulating leukocytes (396, 419); this upregulation in Ccl2 is also observed in human 

myometrial cultures (560). 
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3.3.2. Effects of interleukin-1 on placenta 

 The placenta is a unique organ of fetal origin that infiltrates the decidua early in gestation 

to form a feto-maternal interface, thereby providing the fetus with nutrients and O2 while 

maintaining a physical and immunological barrier for the fetus. Hemochorial placentation is 

present in multiple species (e.g. human, non-human primates, rodents). Numerous studies 

suggest that the placenta can coordinate the onset of labor at term or preterm in response to 

stressors (15, 87, 561). Although the placenta usually generates very low levels of IL-1 in normal 

conditions, the release of IL-1 (α and β) is markedly induced in inflammatory conditions 

generated by endotoxins or sterile cellular death (293, 562); this has been shown to amplify the 

initial inflammatory response (563). As discussed earlier, the placental inflammatory response, 

if unresolved, may spread to the fetus through paracrine effects of cytokines; this pathway 

remains to be explored. Further, endotoxins have been shown to drastically reduce placental 

perfusion in rats in an IL-1-dependent manner (240); such detrimental hemodynamic effect 

bears important implications for fetal growth (564).  

  

3.3.3. Interleukin-1 in spontaneous preterm labor associated with infection 

Infection is implicated in approximatively 40% of PTB and is often subclinical. Studies 

in mice found that TLRs are essential mediators of bacterial stimuli leading to PTB (263, 565, 

566). Specifically, endotoxins from Gram-negative bacteria bind to TLR4, whereas exotoxins 

from Gram-positive bacteria bind to TLR2 (567). In humans, TLR2 and TLR4 are found in the 

cervix, endometrium and fallopian tubes (568), in the placenta (569) and in other cells at the 
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fetal-maternal interface (92), and are up-regulated in cases of chorioamnionitis and during 

parturition (570).  

The pathophysiology of preterm labor in presence of infection has been attributed to the 

release of pro-inflammatory cytokines, principally IL-1 (571). The activation of TLRs leads to 

induction of downstream inflammatory cascade (including NF-κB activation), which promotes 

cytokine production. Accordingly, LPS has been shown to induce IL-1 production from human 

gestational tissues ex vivo (525, 526). In human pregnancies, decidual IL-1 levels increase in 

presence of microorganisms and bacterial products (235, 572). Also, in pregnant women with 

infection, increased concentration and bioactivity of IL-1 is observed in AF (209, 573). Further, 

a disproportionate increase in the IL-1β/IL-1Ra ratio in response to Gram-negative infection has 

been found to correlate with PTB (574).  

Germinal cell knockout mice deficient in IL-1 receptor or IL-1β are not protected against 

endotoxin-induced PTB, likely because of compensatory mechanisms; however, these animals 

do exhibit lower inflammatory responses to endotoxins (575, 576). Moreover, mice lacking both 

IL-1 receptor and TNF receptor are protected against endotoxin-induced PTB (168), suggesting 

a complementary role of those cytokines that would be altogether essential. On the other hand, 

one study reported that treatment with both IL-1Ra and a TNF receptor antagonist did not 

prevent endotoxin-induced PTB (577); this discrepancy between genetic and pharmacological 

approaches may be due to the nature of antagonists used, route of administration, and doses 

utilized. In an extensive study conducted by Girard et al., a central role of IL-1 in placental 

defects induced by bacterial endotoxins was demonstrated (240). More recently, rhIL-1Ra was 

found to protect against LPS-induced uterine inflammation in nonhuman primates (441). 

Together, these data suggest a key role for IL-1 in infection-induced PTB. 



 

85 

 

3.3.4. Polymorphisms in interleukin-1-related genes associated to preterm 

birth 

The genes coding for IL-1β (IL1B) and IL-1Ra (IL1RN) are both located adjacent to each 

other on chromosome 2. Different alleles in intron 2 of IL1RN are associated with varying levels 

of IL-1β and IL-1Ra (578, 579). Expression by the fetus of the IL1RN*2 allele was associated 

with enhanced mid-trimester intra-amniotic IL-1β production and high IL-1β/IL-1Ra ratio, and 

was associated with increased risk for PTB (p˂0.0001) (219). Also, fetal carriage of 

IL1B+3953*1 and IL1RN*2 alleles was associated with risk for PTB in African and Hispanic 

populations (218). Previous data suggest that some polymorphisms in the fetal IL-1 system are 

likely to predispose to PTB in case of an intra-amniotic pro-inflammatory immune response 

(580). 

Maternal carriage of at least one copy of IL1RN*2 is also associated with increased risk 

to PTB (581, 582). Whereas IL1B+3953C>T, a common IL1B polymorphism which has been 

shown to elevate the capacity to produce IL1B in vitro (583), has yielded controversial 

observations on the risk reduction for PTB (584). While the rare allele for the IL1B promoter 

region (IL1B-31T˃C) was found to be associated with PTB (220).  
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3.3.5. Prediction of preterm birth with levels of interleukin-1 and interleukin-

1 receptor antagonist in gestational tissues and fluids 

It has been abundantly suggested that IL-1 can be a promising potential predictor of PTB 

for two main reasons: 1) its levels in AF are elevated in mid-trimester and positively associated 

with preterm birth (211) and microbial penetration of the amnion (573); 2) mRNA levels of IL-

1β are elevated in the human cervix during PTL (557). Several studies have correlated PTB with 

levels of IL-1β in human cervicovaginal fluids (215), in AF (211) and in premature neonate 

blood (221). Moreover, measurements of IL-1Ra levels in maternal blood (585) and in 

cervicovaginal fluids (111) of women in mid-term gestation was able to accurately predict PTB 

and was associated with increased rate of spontaneous preterm labor (586). Since IL-1Ra 

counterbalances the pro-inflammatory action of IL-1β, the IL-1β/IL-1Ra ratio is important in 

the initiation of the inflammatory cascade that leads to the onset of labor. Interestingly, in 

cervicovaginal fluid, IL-1Ra levels decrease as labor approaches, while IL-1β rises, indicating 

a pro-inflammatory shift in the IL-1β/IL-1Ra balance (520). Accordingly, the IL-1β/IL-1Ra 

ratio was significantly higher in decidual samples of women with spontaneous labor compared 

to women without labor, as the increase of IL-1β in the decidua turned out to be the major cause 

of the ratio change (483). Also, IL-1α and IL-1β concentration are also significantly higher in 

placenta from pregnancies at high risk of PTB in association with placental dysfunction (292), 

which may be of interest for the identification of biomarkers of placental dysfunction and PTB. 
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3.3.6. Implication of interleukin-1 in hormonal regulation related to 

parturition 

As mentioned above, progesterone is implicated in human pregnancy maintenance by 

promoting uterine quiescence and in human, a functional progesterone withdrawal occurs when 

pregnancy nears its term. IL-1β has been shown to facilitate the conversion of progesterone to 

the inactive metabolite 20α-hydroxyprogesterone in human cervical fibroblasts (116). 

Interestingly, IL-1β was also shown to inhibit progesterone production by primate luteal cells 

in vitro (117). More recently, IL-1β has been shown to stabilize PR-A in myometrial smooth 

muscle cells via post-translational mechanisms, thereby decreasing the response to progesterone 

(118). Altogether, these studies suggest that IL-1 decreases progesterone bioactivity at the end 

of gestation, and therefore acts upstream of the functional progesterone withdrawal described in 

human. 

CRH is a peptide hormone part of the HPA axis which leads to cortisol production from 

the adrenal cortex in response to stress. CRH plays an important role in coordinating and 

regulating parturition (15, 587, 588), and appears to be an important player in PTB associated 

to stress (14, 589). Since IL-1 is central to many pro-labor pathways, its possible role in 

modulating CRH has been explored. IL-1β was found to induce CRH expression in human 

placenta (590) and its receptor CRH-R1 in human myometrium (591). Along these lines, it has 

been hypothesized that IL-1β could act as a trigger to placental CRH release in humans thereby 

eliciting labor (115). Moreover, IL-1β has been shown to inhibit placental 11 beta-

hydroxysteroid dehydrogenase type 2, an enzyme responsible for the inactivation of cortisol, a 

recognized trigger to placental CRH release, in human placental villi explants (592). These 
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studies suggest that IL-1β triggers the release of placental CRH, decreases the catabolism of 

CRH-inducing cortisol, and upregulates CRH receptor in intrauterine tissues. 

A role for IL-1 in the regulation of other hormones implicated in labor have also been 

suggested as it applies to oxytocin (593), ET-1 (102, 594) and estrogen (which antagonizes the 

effects of progesterone) (595). 

 

3.3.7. Modulation of other factors implicated with labor 

In a genome-wide expression profiling study using human myometrial cells in response 

to IL-1β, Chevillard et al. identified enhanced expression of many genes implicated in labor 

including cell adhesion factors (such as VCAM1 and ICAM1), angiogenesis modulators and 

several ECM remodeling enzymes (including TNC and PLAU) (102). Another study from a 

different group found that IL-1β up-regulated ECM remodelling enzymes, precisely MMPs in 

human uterine cells (106), while it down-regulated the expression of TIMP-2 in the human 

cervix (107), which further promotes MMPs accumulation. MMPs contribute to cervical 

ripening during labor (596). In a recent study monitoring the global inflammatory transcriptional 

profile in human term decidual cells, treatment with IL-1β elicited a regulation of 428 transcripts 

of mRNA (including cytokines, chemokines and other inflammatory mediators genes) and 

micro RNA (547), highlighting the vast scope of its effect in gestational tissue. 

Vascular-endothelial growth factor (VEGF) is important for growth and maintenance of 

the decidua. The expression of VEGF mRNA is significantly increased in the chorio-decidua 

from women undergoing spontaneous PTL compared to those going into spontaneous term labor 
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(597). Interestingly, the expression of VEGF is increased in vitro in human decidual stromal 

cells stimulated with IL-1β (598).  

  

 

3.4. Effects of interleukin-1 on the fetus and its environment - post-

placental effects 

 Inflammatory concentrations of IL-1 exert a wide range of deleterious effects on fetal 

and neonatal tissue. This has been demonstrated in animals using postnatal administration of 

IL-1 (599), and using antenatal administration of IL-1 through the fetal compartments (600). 

Consistently, severe perinatal complications are associated with higher levels of IL-1β in cord 

blood of human neonates, and not of other major cytokines such as TNFα and IL-6 (222). 

The premature fetus/newborn is exquisitely sensitive to inflammatory stimuli. If 

inflammation is not rapidly resolved, fetal/neonatal cells can undergo persistent phenotypical 

changes which often has life-long implications; this applies particularly to the brain (601, 602). 

Correspondingly, IL-1β has been shown to elicit neuro-microvascular decay (603), inhibit 

hippocampal neuron differentiation (604), and in turn lead to seizures (605), in addition to 

inducing hypomyelination (606) and learning deficits (212). Conversely, blockade of IL-1 using 

pharmacological or genetic approaches is neuroprotective (68, 212, 607), as it improves long-

term learning ability (212). In addition, animal studies on neonatal injuries to other organs such 

as the lungs, eyes and intestines, also concur to a preponderant role of IL-1 in neonatal tissue 

injury (214, 608-613). Concordantly, studies in human newborns affected by injury to these 
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organs point to a robust association with the levels of IL-1β (539-542, 614), which  correlates 

with severity of the disease (615). Other than evidence through correlation, these neonatal 

injuries can be reproduced in rodent and ovine models by overexpressing or administering IL-1 

(599, 608, 609). A recent study by Kallapur et al. revealed that intraamniotic infusion of IL-1β 

in late-pregnant rhesus monkeys caused histological chorioamnionitis and lung inflammation 

characterized by neutrophil infiltration of fetal airways and proinflammatory gene induction 

(600). Similarly, a recent study has shown that intraamniotic infusion of rhIL-1Ra prevents 

intraamniotic LPS-induced amnion inflammation in nonhuman primate, thereby preventing 

choriodecidual infiltration by neutrophils (441). Overall, this body of pre-clinical and clinical 

data points to detrimental and long-lasting outcomes of antenatal exposure to IL-1.  

Although evidence indicates detrimental effects of high inflammatory levels of IL-1, this 

cytokine may also exert some beneficial effects in the context of PTB. Accordingly, a recent 

study suggests that IL-1 accelerates fetal lung maturation by inducing surfactant protein 

synthesis prior to PTB (616). Interestingly, as mentioned previously, surfactant protein A has 

been shown to initiate parturition in mice (521). Along these lines, post-placental effects of IL-

1 may be linked to the onset of PTB (inside out pathway). Accordingly, levels of IL-1 in AF are 

associated with preterm labor (211), which also manifests when the fetus expresses the IL1RN*2 

allele associated with increased intra-amniotic production of IL-1β (219). Antenatal exposure 

to IL-1 may also convey other physiological effects, such as on immune response (600) and 

skeletal growth (617). In light of the overall detrimental effects of IL-1 in the second half of 

pregnancy, IL-1-targeting therapeutic interventions are warranted to protect the fetus.  
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3.5. Therapies available to oppose the effects of interleukin-1  

Available pharmacological strategies to antagonize the action of IL-1 include IL-1 

receptor competitive antagonists, non-specific NF-κB inhibitors, and cytokine suppressive anti-

inflammatory drugs (CSAIDs) (see Fig.7). 
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Figure 7. Signaling pathways of the IL-1 system and available antagonists of the IL-1 
receptor. The IL-1 system is composed of IL-1RI and IL-1RAcP, which form a functional 
complex with IL-1 (α or β). This ligand-receptor complex signals via two canonical 
pathways: the kinase pathway leading to the activation of transcription factor AP-1, and the 
NF-κB pathway. The nuclear translocation of these transcription factors promotes the 
transcription of key pro-inflammatory, pro-labor genes including PGHS2, IL6, IL8 and 
CCL2. This system is tightly regulated by the endogenously-produced IL-1 inhibitors IL-
1Ra, sIL-1RAcP, IL-1RII (soluble and membrane-bound), and others (not shown). Three IL-
1 receptor antagonists are currently available to counter IL-1 action: Anakinra, Canakinumab 
and Rilonacept.  Other available strategies to counter IL-1 action include CSAIDs and NF-
κB inhibitors. MEKs, mitogen-activated protein kinase kinases 

 

3.5.1. Interleukin-1 competitive antagonists 

Three IL-1 targeting agents are approved for clinical use to this day: the IL-1 antagonist 

anakinra (Kineret), the soluble decoy receptor rilonacept (Arcalyst), and the neutralizing 

monoclonal anti-IL-1β antibody canakinumab (Ilaris). These pharmacological agents are FDA-

approved for Cryopyrin-Associated Periodic Syndromes (CAPS) and rheumatoid arthritis (only 

Kineret) but are also being considered for other inflammatory diseases such as gout and type-2 

diabetes (359, 618). None of these IL-1 blocking therapies are approved to treat disorders of 

pregnancy. All three agents antagonize IL-1 action in a competitive manner by preventing the 

binding of IL-1 to its receptor and therefore blocking all downstream signal transduction, 

including NF-κB activation.  Anakinra is efficacious in numerous animal models of acute 

inflammation (367) and its potential has been explored in pre-clinical studies of PTB (607), 

intraamniotic infection/inflammation (441), neurobehavioral impairments following oxidative 

or inflammatory stressor (68, 240), and neonatal injuries of the lung (214, 545), brain (68, 240, 

607), and eye (603, 619).  These studies revealed that antenatal delivery of Anakinra to dams 

treated with LPS elicits limited improvement of PTB outcomes and inflammatory status in pre-

placental gestational tissues (607), while it protects against placental injuries in response to 
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endotoxins (240), pulmonary insults (545), and long-term neurological and motor behavioral 

impairments (240, 607), and choriodecidual activation in response to intraamniotic endotoxins 

(inside-out signals) (441). Postnatal administration of Anakinra improves antenatal 

inflammatory- and/or post-natal hypoxia/ischemia-driven neurological and behavioral 

impairments (68), and retinal injury to hyperoxic exposure (603). Since Anakinra seems to 

protect the fetus without significant effect on prematurity, the aforementioned data supports a 

clear contribution of inflammation to neonatal injuries independent of gestation age at birth. The 

inefficacy of Anakinra in protecting pre-placental tissue and preventing PTB may in part be 

dose-related. To our knowledge, rilonacept and canakinumab have not been used in preclinical 

studies of PTB. 

Reluctance to using competitive IL-1-targeting therapies in PTB include: 1) large size 

and immunogenicity; 2) high costs; 3) limited efficacy to prevent infection-induced PTB in pre-

clinical studies (536, 577, 607); 4) undesirable (long) half-life of Rilonacept and Canakinumab 

(˃3 weeks) for acute/sub-acute treatment of women in labor; 5) inevitable inhibition of NF-κB-

mediated cytoprotection, antioxidant response, and contribution to the resolution of 

inflammation; 6) minimal (at best) desirable passage through the amniotic epithelial barrier and 

placental barrier (441); and 7) hindrance in immune-surveillance. The latter can subject the fetus 

and the mother at risk of infections (620, 621), and could compound on the relative state of 

immunosuppression established during pregnancy (622-624). In addition, since IL-1 has a role 

in the physiological process of labor, complete inhibition of IL-1 signals per se could influence 

the normal parturition process. For these reasons, optimization of the pharmacological and 

biochemical properties of available IL-1 receptor antagonists is desirable for the treatment of 

PTB. 
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3.5.2. Non-specific NF-κB inhibitors 

Because IL-1 signals in part via NF-kB, NF-kB inhibitors can partly counter IL-1 action. 

FDA-unapproved selective NF-κB inhibitors (e.g. TPCA-1, parthenolide, and SC-514 [selective 

IKK complex inhibitors]) may seem promising to prevent PTB but interfere with desirable 

properties of NF-κB activation; FDA-approved NF-κB inhibitors (e.g. Sunitinib, Lestaurtinib) 

lack selectivity to the pathway (625) and thus undesirably increase off-target effects. Despite 

the clear contribution of NF-kB to the pathophysiology of PTB (515), NF-kB is a crucial 

signaling effector of pro-resolution mediators and its inhibition impedes resolution, in turn 

leading to detrimental protraction and amplification of the initial response (626). Some studies 

show efficacy of NF-kB inhibitors to prevent inflammation, but also describe major adverse 

effects. Along these lines, a recent study using sulfasalazine to inhibit NF-κB pointed out pro-

apoptotic effects on human fetal membranes, despite marked efficacy in decreasing 

inflammation (627). This study prompted reactions from the scientific community, and overall 

a complete blockade of NF-κB activity is seen as undesirable in pregnancy (516). In a placebo-

controlled randomized clinical trial of pregnant women treated for bacterial vaginosis, NAC was 

shown to significantly decrease PTB rates and neonatal mortality/morbidity (628). However, 

NAC is a non-specific NF-kB inhibitor; its other known effects include inhibition of JNK, p38 

and AP-1; NAC acts mostly as an anti-oxidant (629). Nonetheless, NAC may appear to exhibit 

potential promise for the prevention of PTB.  
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3.5.3. Cytokine suppressive anti-inflammatory drugs 

 CSAIDs constitute a new class of drugs which inhibits cytokine-mediated events, and 

are elegantly reviewed in (113). These drugs include MAPK/SAPK and NF-κB inhibitors 

(addressed in the section above) and are FDA-approved for cancer. MAPK inhibitors (e.g. 

Trametinib, Dabrafenib) and JNK inhibitors (e.g. Sorafenib) partly inhibit IL-1 signaling 

without affecting NF-kB. However, they also inhibit IL-1-independent MAPK and JNK 

pathway, thereby largely increasing off-targets and potential adverse effects. Because the targets 

of CSAIDs are involved in placental growth and differentiation (630, 631), and in fetal growth, 

these agents are teratogenic and could not be safely used to treat PTB (632). 

 

3.6. Summary  

Of all inflammatory mediators, IL-1 is central to the pathophysiology of PTB and 

neonatal injuries. Due to the ubiquitous expression of its receptor, inflammatory concentrations 

of IL-1 act on virtually all types of cells and tissues: in myometrium, it promotes contractility; 

in cervix and fetal membranes, it promotes loosening of ECM; in placenta, it promotes an acute 

inflammatory response and vasoconstriction; and in fetal organs, it promotes injury and long-

term adverse consequences. The development of therapeutic modalities for the treatment and 

prevention of PTB and its complications is needed as there is at present no effective agent 

available. Although IL-1 is a major player partaking in the pathological induction of PTB, 

currently approved IL-1-targeting therapies have failed to show expected efficacy in pre-clinical 

studies. In addition, their competitive mechanism of action inhibits all IL-1 receptor-associated 

signals which promotes immunosuppression and other undesired effects. Alternative IL-1- and 
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IL-1R-targeting therapies include CSAIDs and NF-κB inhibitors, but these agents are not safe 

to use during gestation. Allosteric modulators of IL-1 receptor, which will be discussed in 

Chapter 4, may represent a safe and effective alternative to modulate IL-1.  
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4. Biased antagonism to treat preterm birth:  

4.1. Inhibition of specific transduction pathways using functional 

selectivity 

The use of peptides and peptidomimetics as drugs is increasingly attracting attention 

(reviewed by (633)). This is not only true for natural ligands (e.g. octreotide, glucagon, GLP-1, 

Egrifta, etc) but also for modified peptides that exert inhibitory actions (e.g. atosiban, PDC31, 

etc). Over 60 peptide drugs have reached the market, and approximately 140 are currently 

evaluated in clinical trials (634).  

Small peptidomimetics (˂12 amino acids) can be derived from the sequence of specific 

regions of a receptor (or enzyme) thereby interfering with its activity, as amply documented 

(635-637). Because these molecules interact with regions remote from the natural orthosteric 

binding site, they exhibit allosteric properties, such as a noncompetitive mode of action, and 

therefore are likely to exert functional selectivity (638). Functional selectivity is the selective 

modulation of specific signaling pathways triggered by a ligand-receptor interaction, resulting 

in inhibition of some signals and/or enhancement of others. Functional selectivity provides 

concrete solutions to the different issues that competitive IL-1-targeting therapies bear and 

therefore represents a promising option for the development of IL-1 targeting therapies for the 

prevention of PTB. For example, it provides a solution to avoid NF-κB inhibition while 

inhibiting other IL-1-related pathways implicated in the labor-associated inflammatory 

response, such as MAPK p38 and SAPK JNK. Circumventing NF-κB inhibition may be safer 

considering the concerns mentioned above, including the crucial role of NF-κB for efficient 
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resolution of inflammation (626). An allosteric modulator, PDC31, blocks myometrial 

contractions by acting as a biased agonist (i.e. an agonist displaying functional selectivity) of 

FP, thereby selectivity modulating PGF2α-mediated signaling pathways. Administration of 

PDC31 to pregnant mice prolongs normal gestation and prevents PTB induced by PGF2α and 

LPS (639). PDC31 has now successfully completed Phase 1b human clinical trial, which 

confirmed its efficacy and safety to decrease myometrial contractions in women with primary 

dysmenorrhea (640). Hence, PDC31 represents an example of how biased agonism could be 

used safely and effectively. 

4.1.1. Noncompetitive interleukin-1 receptor antagonists 

 Based on the implication of IL-1 in a broad range of diseases, and urgent need to develop 

an effective and safe IL-1-targeting molecule for the treatment of PTB and fetal inflammation, 

our team designed a series of small peptide derived from the extracellular regions of IL-1RacP 

known to interact with IL-1R1 and to share interspecies homology with human, rat, and mouse. 

Based on their differential efficacy and potency to decrease IL-1-induced PGE2 formation and 

p38 phosphorylation in vitro, the all-d peptide 101.10 (sequence: rytvela) was selected (418). 

All d-peptides are protease-resistant and thus more stable (641).  

101.10 binds specifically to IL-1R1 (as suggested by failure of 101.10 to bind on cells 

collected from IL-1R1-/- mice), without blocking the binding (i.e. orthosteric) site of IL-1, 

thereby altering intracellular coupling toward specific signaling pathways (418). These 

properties offer numerous advantages over available competitive anti-cytokine receptor drugs 

and signal-specific CSAIDs for the treatment of inflammatory conditions (including increased 

selectivity as illustrated in Fig. 8). Accordingly, 101.10 has been shown to be at least as effective 
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to IL-Ra in a murine model of retinopathy of prematurity (603), and superior to anti-

inflammatory corticosteroids and IL-1Ra in animal models of hyperthermia, inflammatory 

bowel disease as well as topically in contact dermatitis (418), as well as effective in a rodent 

model of osteoarthritis (642). Small noncompetitive peptides offer numerous advantages over 

large competitive drugs especially for the treatment of PTB (see section below). 
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Figure 8. Three distinct pharmacological strategies to inhibit IL-1 signals and their 
possible effects on other important systems. Simplified representation of the interaction 
of different IL-1 modulators with three major components of the human immune response: 
the IL-1, TNFα and TLR systems. A therapy that would provide minimal hindrance of 
these systems is more likely to benefit from less adverse effects, notably in immuno-
surveillance. IL-1-specific inhibitors (depicted in red) affect all signaling pathways that 
are downstream of IL-1 receptor activation (e.g. IL-1-induced AP-1 and NF-κB). Signal-
specific inhibitors (depicted in green) affect a single signal without specificity for the 
receptor triggering it (depicted are tumor necrosis factor receptor 1 [TNFR1] activated by 
TNFα and TLRs activated by endotoxins). Whereas agents that exhibit functional 
selectivity (depicted in blue) affect specific IL-1 signals (e.g. IL-1-induced AP-1 or NF-
κB), providing an unparalleled advantage in specificity. 

 

4.2. Advantages of small noncompetitive peptides over large 
competitive molecules 

Functional selectivity results in numerous benefits for small allosteric modulators over 

large competitive molecules, which include: a) negligible immunogenicity; b) high 

bioavailability and potential to be converted into orally bioavailable peptide mimics or small 

molecules; c) anticipated high therapeutic index (due to pathway specificity); d) not metabolized 

by (polymorphic) cytochrome P450; e) high potency; and f) economical costs (particularly 

relative to biologics) and ease of synthesis especially compared to costly antibodies and other 

biologics (such as anakinra, rilonacept and canakinumab). The latter is of particular interest 

considering the epidemiologic disparity between countries regarding PTB. In high income 

countries, almost 95% of babies born between 28 to 32 weeks of gestation survive, with more 

than 90% surviving without impairment. In contrast, in many low-middle income countries, 

only 30% of those born between 28 to 32 weeks of gestation survive, with almost all those born 

at less than 28 weeks dying in the first few days of life (1). Hence, based on the tremendous 

specificity to target recognition of peptidomimetic allosteric modulators, and the versatility of 
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their mechanisms by which they can interfere with protein functions, the development of 

peptides such as 101.10 into drugs offers desirable benefits and promise.   

4.3. Hypotheses 

Thus, based on the body of evidence presented above, we surmise that the 

noncompetitive IL-1R biased agonist 101.10 is effective in decreasing acute inflammation 

generated by IL-1, which constitutes a key event in both sterile and infectious PTB, thereby 

preventing the dissemination of inflammation to the fetus, and in turn preventing long-lasting 

fetal organ injury and functional impairment. We also hypothesize that lactate/GPR81 alleviates 

the response to IL-1 in utero during labor in a novel endogenous negative feedback mechanism 

to prevent detrimental excessive uterine inflammation. 
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Part B: Articles 

Article 1: Novel Non-competitive Interleukin-1 Receptor 
Biased Ligand Prevents Infection- and Inflammation-
induced Preterm Birth1

Mathieu Nadeau-Vallée1,2, Christiane Quiniou1, Julia Palacios1, Xin Hou1, Atefeh Erfani1, 

Ankush Madaan1,3, Mélanie Sanchez1,3, Kelycia Leimert4, Amarilys Boudreault1, François 

Duhamel1,2, José Carlos Rivera1,5, Tang Zhu1, Baraa Noueihed1, Sarah A. Robertson6, Xin Ni7, 

David M. Olson4, William Lubell8, Sylvie Girard9 and Sylvain Chemtob1,5 
1Departments of Pediatrics, Ophthalmology and Pharmacology, CHU Sainte-Justine Research 

Center, Montréal, Canada, H3T 1C5; 2Department of Pharmacology, Université de Montréal, 

Montréal, Canada H3C 3J7; 3Department of Pharmacology and Therapeutics, McGill 

University, Montréal, Canada, H3G 1Y6; 4Departments of Obstetrics and Gynecology, 

Pediatrics and Physiology, University of Alberta, Edmonton, AB, Canada; 5Maisonneuve-

Rosemont Hospital, Research Center, Montreal, Canada, H1T 2M4; 6Department of Obstetrics 

and Gynecology, University of Adelaide, Adelaide, Australia; 7Department of Obstetrics and 

Gynecology, Second Military Medical University, Shanghai, China; 8Department of Chemistry, 

Université de Montréal, Montréal, Québec, Canada; 9Departments of Obstetrics and 

Gynecology, Physiology & Pediatrics, CHU Sainte-Justine Research Centre, Montréal, Canada, 

H3T 1C5. 

Running head: Non-competitive IL-1 receptor inhibitor delays preterm birth 

Abbreviations: G, gestational day; IKK, inhibitor of NF-kB kinase; LTA, lipoteichoic acid; 

PTB, preterm birth; ROCK, Rho GTPase/Rho-associated coiled-coil–containing protein kinase; 

                                                 
1 Originally published in The Journal of Immunology. Nadeau-Vallée M, Quiniou C, Palacios J, Hou X, Erfani A, 
Madaan A, Sanchez M, Leimert K, Boudreault A, Duhamel F, Rivera JC, Zhu T, Noueihed B, Robertson SA, Ni 
X, Olson DM, Lubell W, Girard S, Chemtob S. Novel Noncompetitive IL-1 Receptor-Biased Ligand Prevents 
Infection- and Inflammation-Induced Preterm Birth. J Immunol. 2015 Oct 1;195(7):3402-15. Copyright © [2015] 
The American Association of Immunologists, Inc. 
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SAPK, stress-associated protein kinase; SMC, smooth muscle cell; UAP, uterine activation 

protein. 
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Abstract 

 

Preterm birth (PTB) is firmly linked to inflammation independent of infection. Pro-

inflammatory cytokines including interleukin (IL)-1β are produced in gestational tissues and 

can locally upregulate uterine activation proteins. Premature activation of the uterus by 

inflammation may lead to PTB, and IL-1 has been identified as a key inducer of this condition. 

However, all currently available IL-1 inhibitors are large molecules which exhibit competitive 

antagonism properties by inhibiting all IL-1 receptor signaling, including transcription factor 

NF-κB which conveys important physiological roles. We hereby demonstrate the efficacy of a 

small non-competitive (all-d peptide) IL-1 receptor biased ligand, termed rytvela (labelled 

101.10) in delaying IL-1β-, Toll-Like Receptor (TLR) 2- and TLR4- induced PTB in mice. 

101.10 acts without significant inhibition of NF-κB, and instead selectively inhibits IL-1 

receptor downstream stress-associated protein kinases (SAPK) / transcription factor c-jun and 

Rho GTPase/ Rho-associated coiled-coil-containing protein kinase (ROCK) signaling 

pathways. 101.10 is effective at decreasing pro-inflammatory and/or pro-labor genes in 

myometrium tissue and circulating leukocytes in all PTB models independently of NF-κB, 

undermining NF-κB role in preterm labor. Herein, biased signaling modulation of IL-1 receptor 

by 101.10 uncovers a novel strategy to prevent PTB without inhibiting NF-κB.  

Keywords: Preterm birth, Interleukin-1, Inflammation, LPS 
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Introduction 

Preterm birth (PTB; delivery before 37 weeks of gestation, also referred to as 

prematurity) affects more than 1 out of 10 infants worldwide, and is the leading cause of infant 

death in the United States and globally (1, 2). The onset of labor is a gradual process that begins 

several weeks before delivery and is characterized by changes in myometrium contractility and 

in cervical composition. Many causes have been suggested to explain preterm labor; in this 

context inflammation has been firmly linked to PTB (3-6).  

Of various inflammatory cytokines implicated in PTB, IL-1 in particular has been 

identified as a key inducer of inflammation in PTB by binding to its ubiquitously expressed 

receptor IL-1RI, thus promoting activation and amplification of the inflammatory cascade. The 

major role of IL-1 in the onset of preterm labor is substantiated by the following evidence: 1) 

IL-1 alone is sufficient to induce labor in several animal models, and inhibition of its receptor 

prevents labor induction (7-9); 2) elevated IL-1β blood concentrations in humans is associated 

with PTB (10); 3) Polymorphisms in human IL-1β gene (IL1B) and endogenous IL-1 receptor 

antagonist (IL-1Ra) gene (IL1RN) are associated with spontaneous preterm deliveries (11); and 

4) IL-1β stimulates uterine activation proteins (UAP) expression (12), and this effect is 

markedly amplified in the presence of PGF2α in human myometrial cells (13). 

Currently available tocolytics are at best only modestly effective compared to placebo; 

additionally, some of them present undesired maternal and/or fetal side effects (14, 15). Despite 

scientific evidence pointing to a major role for IL-1 in labor, pre-clinical studies using IL-1 

targeting agents reveal modest efficacy (16-18). At present there are three large molecule anti-

IL-1 drugs approved for clinical use: the IL-1 receptor antagonist Anakinra (Kineret), the soluble 
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decoy receptor Rilonacept (Arcalyst) and the neutralizing monoclonal anti-IL-1β antibody 

Canakinumab (Ilaris). As anticipated these IL-1 targeting therapies inhibit all IL-1 signaling 

pathways including NF-κB (19, 20). However, NF-κB a major transcription factor for pro-

inflammatory cytokines including IL-1, conveys important physiological roles such as 

cytoprotection and immune-surveillance, particularly relevant in the vulnerable fetus. A recent 

study has reported deleterious (pro-apoptotic) effects of inhibiting NF-κB in pregnancy (21); 

accordingly, it has been suggested that complete blockade of NF-κB action would be 

undesirable (22).  

Over the past few years, a new class of pharmacological agents termed allosteric 

modulators have been described. Allosteric compounds show functional selectivity by 

differently modulating signaling pathways induced by the binding of a natural ligand on a 

receptor, inhibiting some signals and/or preserving or enhancing others. Functional selectivity 

is a desirable approach in developing IL-1-targeting therapies in pregnancy since it does not 

inhibit all receptor-coupled response, contrary to that seen with orthosteric antagonists (23). 

Hence, functional selectivity could potentially minimize NF-κB inhibition and still inhibit other 

relevant IL-1 signaling.  The host laboratory recently developed a small stable (all-d peptide) 

biased ligand modulator of IL-1 receptor, specifically rytvela (labelled 101.10), which 

selectively binds to IL-1 receptor and displays non-competitive properties and functional 

selectivity toward specific pathways (24). The peptide rytvela has also been shown to be 

effective in numerous models of inflammation-linked diseases, including inflammatory bowel 

disease, contact dermatitis, hypoxic-ischemic newborn brain injuries, and ischemic 

retinopathies (24, 25). We hereby propose a hitherto unexplored strategy of delaying infection- 

and inflammation-induced PTB using 101.10 which selectively inhibits IL-1 receptor 
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downstream SAPK/c-jun and Rho/ROCK pathways without significantly affecting NF-κB 

activation. 
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Materials and methods 

Animals 

Timed-pregnant CD-1 mice were obtained from Charles River Inc at gestational day (G) 

12 and were allowed to acclimatize for 4 days prior to experiments. Animals were used 

according to a protocol of the Animal Care Committee of Hôpital Sainte-Justine along the 

principles of the Guide for the Care and Use of Experimental Animals of the Canadian Council 

on Animal Care. The animals were maintained on standard laboratory chow under a 12:12 

light:dark cycle and allowed free access to chow and water.  

 

Chemicals 

Chemicals were purchased from the following manufacturers: rhIL-1β (#200-01B; 

PeproTech), lipoteichoic acid (LTA)(#L3265; Sigma), LPS (#L2630; Sigma), murine M-CSF 

(#315-02; PeproTech), 101.10 (Elim Biopharmaceuticals, Hayward, California), Kineret (Sobi, 

Biovitrum Stockholm, Sweden), SC-514 (#10010267; Cayman Chemical), SR-11302 (#2476; 

Tocris Bioscience), Y27632 (#Y0503; Sigma), β-estradiol (#2758; Sigma), rhIL-1α (#200-01A; 

PeproTech). 

 

Cell Culture 

The myometrial smooth muscle cell (SMC) line (hTERT-C3) was kindly provided by 

Dr. Stéphane Laporte (University of McGill, Montréal, Canada). The RAW-Blue mouse 

macrophage reporter cell line and the HEK-blue IL-33/IL-1β cells were purchased from 
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InvivoGen and used at passages under 15. RAW-Blue mouse macrophages and HEK-Blue cells 

were cultured in DMEM growth medium supplemented with 10% serum, 50 U/ml penicillin, 50 

mg/ml streptomycin and 200µg/ml zeocin. Myometrial cells were cultured in DMEM/F12 

growth medium supplemented with 10% fetal bovine serum (FBS), 50 U/ml penicillin, 50 

mg/ml streptomycin and 0.1 mg/ml gentamicin. Cells were propagated in regular conditions 

(37°C, 5% CO2). For in vitro experiments, cells were serum-starved overnight and treated with 

1 µg/ml IL-1β, LPS or LTA for 15 mins. 101.10, Kineret (1.5 mg/mL), SC-514 (10µM) or 

Y27632 (1µM) were allowed to reach equilibrium for 30 mins prior to the experiments. Cells 

lysis was performed in ice-cold RIPA buffer containing protease and phosphatase inhibitors. 

Samples were stored in Laemmli buffer at -20°C or used fresh for western blotting. 

 

Intrauterine IL-1β-induced PTB model and intraperitoneal LPS- and LTA-induced PTB models 

Timed-pregnant CD-1 mice at 16.5 days of gestation were anesthetized with isoflurane 

and received an intraperitoneal injection of either LTA (3x 3-hours interval injections of 12.5 

mg/kg in 100µL saline), LPS (a single dose of 0.5µg in 100µL saline), or a single intrauterine 

injection of IL-1β (1µg). Doses of IL-1β, LPS, and LTA and frequencies of administration used 

were selected on the basis of reported documentation (8, 16, 26, 27) and on in vivo dose-response 

experiments we performed that would induce PTB in a reproducible manner. For the IL-1β-

induced PTB model, animals were steadily anesthetized with an isoflurane mask. After body 

hair removal from the peritoneal area, a 1.5 cm-tall median incision was performed with 

chirurgical scissors in the lower abdominal wall. The lower segment of the right uterine horn 

was then exposed and 1 µg of IL-1β was injected between two fetal membranes with care of not 
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entering the amniotic cavity. The abdominal muscle layer was sutured and the skin closed with 

clips. One hundred µL of 101.10 (1mg/Kg/12h), Kineret (4mg/Kg/12h), SR-11302 

(1mg/Kg/12h), Y27632 (0.5mg/Kg/12h) or vehicle was injected subcutaneously in the neck 30 

mins before stimulation with IL-1β, LPS or LTA (to allow distribution of drugs to target tissues, 

in line with a first efficacy pre-clinical study); all doses utilized were based on reported efficacy 

(17, 24, 25, 28, 29). Mice delivery were assessed every hour until term (G19-G19.5). 

Immediately after delivery (˂30 mins postpartum), female adults were anesthetized and an intra-

cardiac puncture was performed to collect systemic blood in heparin to prevent blood clotting. 

Blood plasma was isolated by centrifugation and immediately snap-frozen in liquid nitrogen. 

The remaining blood cell pellet was treated with red blood cell lysis buffer (Norgen Biotek 

Corporation) and EDTA according to the manufacturer protocol and then centrifuged to isolate 

white blood cells. Resulting white blood cell pellet in addition of myometrium fragments cut 

from the lower part of the right uterine horn were snap-frozen in liquid nitrogen and kept at -

80°C for subsequent RNA purification or protein extraction.  

 

RNA extraction and Real-Time quantitative Polymerase Chain Reaction (RT-qPCR) 

Myometrium fragments were thawed and rapidly preserved in RIBOzol (AMRESCO, 

Solon OH, United States), whereas cells from in vitro experiments were treated for 6 hours with 

IL-1β with or without 101.10 or Kineret and collected directly into RIBOzol. RNA was 

extracted according to manufacturer’s protocol and RNA concentration and integrity was 

measured with a NanoDrop 1000 spectrophotometer. Five hundred ng of RNA was used to 

synthetize cDNA using iScript Reverse Transcription SuperMix (Bio-Rad, Hercules CA, United 
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States). Primers were designed using NCBI Primer Blast (Table I). Quantitative gene expression 

analysis was performed on Stratagene MXPro3000 (Stratagene) with SYBR Green Master Mix 

(BioRad). Gene expression levels were normalized to 18S universal primer (Ambion Life 

Technology, Burlington ON, Canada). Dissociation curves were also acquired to test primer 

specificity and amplicon length was verified by electrophoresis of product on a 2% agarose gel 

(data not shown). Genes analyzed include: IL1B, IL4, IL6, IL8, IL10, TNFA, CCL2 (chemokine 

ligand 2), CRP (C-reactive protein), MMP1A, MMP3, MMP9, PTGHS2 (Prostaglandin H 

synthetase 2 or COX-2), PTGFR (prostaglandin F receptor), OXTR (oxytocin receptor), IL1R1 

(IL-1 receptor 1), GJA1 (connexin 43), IL1RA (IL-1 receptor endogenous antagonist) and IFNB1 

(interferon β1). Detailed primer sequences are shown in Table I. 

 

Semiquantitative PCR 

Cells were pre-treated with 10-6 M of 101.10 or vehicle for 30min, then stimulated with 

50 ng/mL IL-1α for 24h. Total RNA was isolated with RNase TM mini kit (Qiagen, 

Germantown MD, United States). RT-PCR was performed as described previously (30). 

QuantumRNA universal 18S standard primers (Ambion) were used as internal standard 

references. 

 

Western blotting 

Proteins from homogenized myometrium fragments and cell samples lysed in RIPA 

buffer (containing protease and phosphatase inhibitors) were quantified using Bradford’s 

method (Bio-Rad). Fifty μg of protein sample were loaded onto SDS-PAGE gel and 
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electrotransfered onto PVDF membranes. After blocking, membranes were incubated with 

either an antibody against IL-1R1 (#sc-689; Santa Cruz Biotechnology, Dallas TX, United 

States), OxtR (#ab101617; abcam, Toronto ON, Canada), α-actin (#ab5694; abcam), F4/80 

(#ab6640; abcam), Lamin B1 (#ab16048; abcam), NF-κB p65 (#sc-372, Santa Cruz 

Biotechnology), IL-1RacP (#ab8110; abcam) or β-actin (#sc-47778; Santa Cruz 

Biotechnology). After washing, membranes were incubated for 1 hour with their respective 

secondary antibodies conjugated to HRP (Sigma). For kinases, membranes were incubated with 

an antibody against either phospho-JNK (#9251; Cell Signaling Technology, Whitby ON, 

Canada), phospho-c-jun (#9261; Cell Signaling Technology), phospho-p38 (#4511; Cell 

Signaling Technology), phospho-ROCK2 (#PA5-34895; Thermo Fisher Scientific), phospho-

IκBα (#2859; Cell Signaling Technology), JNK (#9252; Cell Signaling Technology), c-jun 

(#9165; Cell Signaling Technology), p38 (#9212; Cell Signaling Technology) or ROCK2 

(#PA5-21131; Thermo Fisher Scientific, Waltham MA, United States). Enhanced 

chemiluminescence (GE Healthcare) was used for detection using the ImageQuant LAS-500 

(GE Healthcare, Little Chalfont, United Kingdom) and densitometric analysis was performed 

using ImageJ. Resulting values were normalized first with total proteins and then with the 

control sample. 

 

Rhotekin-Rho Binding Domain (RBD) bead pull-down assay 

Rho activation was assessed using a Rho Activation Assay Biochem Kit (Cytoskeleton). 

hTERT-C3 cells were plated in 150 mm petri dishes and serum-starved at approximatively 50% 

confluence for 16 hours prior to the experiment. 101.10 or Kineret were administered 30 mins 
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before the IL-1β stimulation to allow the system to equilibrate. After 15 mins of IL-1β 

stimulation, cells were rapidly lysed with ice-cold lysis buffer and cell debris were removed by 

centrifugation at 4°C. A small amount of every sample was collected on ice for protein 

quantitation using Bradford’s method and the remaining cell lysate was snap-frozen in liquid 

nitrogen and conserved at -80°C for approximatively 1 hour during protein quantitation. After 

thawing, 800 µg of each samples were incubated on a rocking platform with 50µg of rhotekin-

RBD beads (high affinity for GTP-bound RhoA) for one hour at 4°C. As a positive control, 800 

µg of cell lysate was incubated for 15 mins with 200µM GTPγS (a non-hydrolysable GTP 

analog) prior to the bead pull-down. After washing steps, samples were centrifuged and bead 

lysates were loaded on SDS-PAGE gel in 2X Laemmli buffer. Samples were electrotransfered 

on PVDF membranes, blocked and incubated with an anti-RhoA monoclonal antibody 

(#ARH03; Cytoskeleton) overnight at 4°C. The membrane was then incubated with an HRP-

conjugated anti-mouse secondary antibody (Sigma) and revealed using an enhanced ECL 

chemiluminescence solution (GE Healthcare). Total RhoA expression and β-actin were assessed 

using 50 µg of the samples that was set aside on ice before pull-down. Densitometric analysis 

was performed using ImageJ. 

 

Circulating leukocyte RNA purification 

As described before, white blood cells were isolated from systemic blood of female mice 

(˂30 mins postpartum) and total leukocyte RNA was extracted using a Leukocyte RNA 

purification kit (Norgen Biotek Corporation, Thorold ON, Canada). Briefly, the white blood cell 

pellet was lysed and passed through an RNA-binding column. After several washing procedures, 
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the RNA was eluted from the column and equal amount of RNA was used to synthetize cDNA 

using iScript Reverse Transcription SuperMix (Bio-Rad). RT-qPCR was then performed on the 

samples as previously described. 

 

NF-κB Quanti-Blue assay 

Hek-Blue cells (InvivoGen) were pre-treated with different concentrations of 101.10 (10-

9 M to 10-5 M) and Kineret (1.5 mg/ml) for 30 mins followed by treatment with constant 

concentration of IL-1β (1 µg/ml), then incubated at 37°C for 4 hours. Levels of secreted alkaline 

phosphatase (AP) in cell culture supernatant were determined by the use of QUANTI-Blue 

according to manufacturer instruction (InvivoGen, San Diego CA, United States). AP activity 

was assessed by reading the OD at 620-655 nm with a micro plate reader (EnVision Multilabel 

reader, PerkinElmer, Waltham MA, United States). Data are representative of 5 experiments 

(each with n=6). 

 

Ex-vivo uterine contraction experiment 

Timed-pregnant CD-1 mice at G18.5 were given a single dose of either saline or 101.10 

(1mg/kg in 100µL saline). Within 30 mins, mice were injected intraperitoneally with IL-1β 

(1µg/mouse). Seventeen hours after, uterine tissues were collected under anesthesia (2.5% 

isoflurane). Briefly, a midline abdominal incision was made, and the uterine horns were rapidly 

excised and carefully cleansed of surrounding connective tissues. Longitudinal myometrial 

strips (2 to 3mm wide and 10mm long) were dissected free from uterus, mounted isometrically 

in organ tissue baths and initial tension was set at 2 g. The tissue baths contain 20 ml of Krebs 
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buffer of the following composition (in mM): 118 NaCl, 4.7 KCl, 2.5 CaCl2, 0.9 MgSO4, 1 

KH2PO4, 11.1 glucose, and 23 NaHCO3 (pH 7.4). The buffer was equilibrated with 95% 

oxygen/5% carbon dioxide at 37°C. Isometric tension was measured by a force transducer and 

recorded by BIOPAC data acquisition system (BIOPAC MP150).  Experiments began after 1 

hour equilibration. Mean tension of spontaneous contractions were measured using a BIOPAC 

digital polygraph system (AcqKnowledge); the same parameters were also determined after 

addition of PGF2α. At the start of each experiments, mean tension of spontaneous myometrial 

contractions were considered as a reference response. Increase in mean tension (%) was 

expressed as percentages of (X/Y)-100, where X is changes in mean tension (g) induced by 

PGF2α and Y is the initial reference response (g). 

 

Primary myometrial SMC isolation and culture 

Primary myometrial SMC were isolated using modifications of a method previously 

described (31). Briefly, a single subcutaneous injection of 50µg 17β-estradiol was administered 

to mice 24h prior to the experiment. The day after, mice were sacrificed by cervical dislocation 

and sprayed with 70% ethanol. The whole uterus was excised under sterile hood and placed in 

buffer A (Hank’s balanced salt solution, pH 7.4, 0.098 g/L magnesium sulfate, 0.185 g/L 

calcium chloride, 2.25 mmol/L I-HEPES [N-2-hydroxyethylpiperazine-N-2-ethanesulfonic 

acid], 100 U/mL penicillin-streptomycin [Gibco, Grand Island, NY], and 2.5 μg/mL 

amphotericin B [Sigma]). The uterine horns were cleansed of fat and vessels and then transferred 

into buffer B (buffer A without magnesium sulfate or calcium chloride) for several washes by 

gentle flushing. Afterward, the uterine horns were cut into 1mm wide fragments and transferred 
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into a volume of 10 mL/g of tissue of digestion buffer (1 mg/mL collagenase type II [Sigma], 

0.15 mg/mL deoxyribonuclease I [Roche Diagnostics, GmbH, Mannheim, Germany], 0.1 

mg/mL soybean trypsin inhibitor [sigma], 10% FBS, and 1 mg/mL bovine serum albumin [BSA, 

Sigma] in buffer B). Enzymatic digestion was performed at 37°C with agitation (100 rev/min) 

for 30 mins. The homogenate (still containing undigested myometrium fragments) was then 

poured through a 100 µm cell strainer. The resulting filtered solution was centrifugated at 200g 

for 10 mins, the pellet was resuspended in complete DMEM medium and plated in a T-25 dish. 

The remaining myometrium fragments were re-used in an enzymatic digestion and the whole 

digestion-centrifugation process was repeated for a total of 5 times. First two digestion results 

were discarded because they contained mostly fibroblasts. The three other SMC-containing 

dishes were subjected to a differential adhesion technique to selectively enrich for uterine 

myocytes. Briefly, 30-45 mins after the cells were first plated, the medium was removed and 

dispensed in another T-25 culture dish to separate quickly adhering fibroblast from slowly 

adhering myocytes. Cells were further analysed in immunohistochemistry to assess culture 

purity with the SMC marker α-actin. 

 

Primary Bone Marrow-derived Macrophages (BMM) isolation and culture 

CD-1 mice were sacrificed with cervical dislocation then sprayed with 70 % ethanol. 

Both femurs and tibias were prelevated under sterile hood by gently removing the muscles and 

then cutting the epyphyses. Bone marrow was extruded by flushing it with a 25-gauge syringe 

containing sterile RPMI1640 culture medium supplemented with 10% FBS, 50 U/ml penicillin 

and 50 mg/ml streptomycin. Resulting medium containing the bone marrow-derived progenitor 
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cells was then homogenized, filtered through a 70 µm nylon web and seeded in T-25 plates. 20 

ng/ml of rM-CSF was added prior to incubation, and cells were allowed to differentiate for 6 

days. Cells were further analysed in immunohistochemistry to assess culture purity with the 

macrophage marker F4/80. 

 

Murine IL-1β ELISA assay 

The ELISA assay was performed using a mouse IL-1β Quantikine ELISA kit (R&D 

systems) according to the manufacturer’s protocol. Briefly, 50 µL of either plasma samples, 

recombinant mouse IL-1β positive control or decreasing concentrations of a recombinant mouse 

IL-1β standard were loaded into a 96-well plate pre-coated with a monoclonal anti-mouse IL-

1β antibody and incubated for 2 hours at ambient temperature. Wells were washed 5 times and 

incubated with an enzyme-linked mouse polyclonal antibody specific to murine IL-1β for 2 

hours. After another washing step, a substrate solution was added. The enzymatic reaction was 

stopped after 30 mins and the plate was red at 450 nm, with wavelength correction set to 570 

nm. 

 

Immunohistochemistry 

Cells were plated on cover slips pre-coated with poly-D-lysine and fixed in 4% 

paraformaldehyde. After blocking, cells were incubated overnight with 101.10-FITC or FITC 

alone (Sigma) and a primary antibody of rabbit anti-IL-1RI, rabbit anti-α-actin or rat anti-F4/80 

and then for 1 hour at ambient temperature with a secondary antibody conjugated with Alexa 

Fluor 594 (red) or 647 (white)(Sigma). For tissue immunohistochemistry, mice were treated 
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with a single subcutaneous 1mg/Kg 101.10-FITC injection and animals were euthanized after 1 

hour of incubation. Uterine tissues were cleansed of fat and vessels. Myometrium fragments and 

placentas were fixed in 4% paraformaldehyde for 1 day and transferred in 30% sucrose for 

another day. Localization of 101.10 was determined on 14 µm uterine sagittal cryosections or 

longitudinal placenta cryosections.  Sections blocked with 1% bovine serum albumin, 1% goat 

serum and 0.1% TritonX-100 (T-8787; Sigma) in PBS were subsequently incubated overnight 

with the primary antibodies. Secondary antibodies conjugated with Alexa Fluor (Molecular 

Probes) directed against rabbit or rat were incubated for 2 hours at ambient temperature. Nuclei 

were stained with Dapi (Invitrogen; 1/5000). Images were captured using 10X (for myometrium 

tissues) or 30x (for cells and magnified placenta images) objective with Eclipse E800 (Nikon) 

fluorescence microscope. Whole placenta images were captured at 10X using a Zeiss 

AxioObserver.Z1 (Zeiss, San Diego, CA). Images were merged into a single file using the 

MosiaX option in the AxioVision software version 4.6.5 (Zeiss). 

 

Statistical analysis 

Groups were compared using one-way analysis of variance (ANOVA). Dunnett’s 

multiple comparison method was employed when treatments were compared to a single control. 

Tukey’s multiple comparison test was used in figure 1G. A value of p˂0.05 was considered 

statistically significant. Data are presented as means +/- S.D. 
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Results 

101.10 prevents IL-1β-induced preterm birth and associated inflammatory-triggered uterine 

activation 

We first determined if 101.10 was effective at delaying PTB induced specifically by 

intra-uterine IL-1β. One µg of IL-1β was injected in the right uterine horn of pregnant mice at 

G16.5 to induce PTB; births between G16.5 and G18.5 were considered premature since normal 

term for CD-1 mice is G19.2 based on data of our group (32) (Fig.1A). Twenty-four hours after 

the intrauterine injection, mice uterine horns were inspected to confirm the presence of 

macroscopic inflammation (edema, hemorrhage). Notably, IL-1β-treated mice exhibited frankly 

observable inflammation of uteri (Fig.1B middle panel) in comparison to sham animals (Fig.1B 

left panel); this inflammation was alleviated by 101.10 ([1mg/Kg/12h subcutaneous injections], 

Fig.1B right panel). Accordingly, IL-1β-treated mice receiving vehicle (n=16) rapidly went into 

premature labor, with 56% delivering within 24h after IL-1β administration. Whereas in IL-1β-

treated mice that received 101.10 (n=17), only 12% delivered before G19 (Fig.1C bottom panel). 

In contrast, systemic (subcutaneous) administration of the competitive IL-1 inhibitor Kineret 

(n=11) was ineffective at reducing prematurity (Fig.1C top panel) and increasing gestational 

duration (Suppl. Fig.1A). A group simply treated with 101.10 (without IL-1) served for gross 

toxicity evaluation; there was no gross teratogenic changes detected in all major organs 

examined.  

Analysis of myometrium samples collected within 30 mins of pup delivery revealed that 

101.10 diminished IL-1β-triggered induction of mRNA of numerous pro-inflammatory and/or 

pro-labor genes, including many uterine activation protein (UAP) genes (such as CCL2, OXTR, 
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PTGFR, MMP9, GJA1 and PTGS2; see Fig.1D); 101.10 also decreased IL-1β-induced (protein) 

expression of IL-1 receptor (Suppl. Fig. 2A) and oxytocin receptor (Suppl. Fig. 2B), but not of 

the IL-1 receptor accessory protein (IL-1RacP) (Suppl. Fig. 2C). Two genes of relevance to 

myometrial activation drew our attention, OXTR (Fig. 1F left panel) and PTGFR (Fig. 1F right 

panel), which respectively encode for oxytocin receptor and prostaglandin F2α receptor; both 

were significantly suppressed by 101.10 in the myometrium of IL-1β-treated mice. 

Concordantly, 101.10 (n=4) attenuated contractile tension in response to oxytocin (Fig.1G left 

panel) and PGF2α (Fig.1G right panel) in myometrium of IL-1β-treated mice compared to 

controls (n=6).  

Consistent with its functional inefficacy, Kineret was ineffective in altering IL-1β-

induced myometrial gene expression (Fig. 1D,F); similar results were observed on gene 

expression in placenta (Suppl. Fig.3A). On the other hand, gene expression profile of circulating 

leukocytes collected ˂ 30 mins postpartum revealed comparable inhibition of intrauterine IL-1β-

induced genes with 101.10 and Kineret (Fig. 1E). These observations support the concept that 

activated leukocytes responding to an inflammatory locus (utero-placental unit in this case) are 

a significant source of IL-1 which in turn amplifies the inflammatory response (25, 33); 

accordingly the systemically administered large molecule Kineret (17.5 kDa) is effective on 

blood leukocytes but contrary to 101.10 seems to have limited access to intrauterine/placental 

IL-1R wherein inflammation is triggered (by IL-1), consistent with documentation on IL-1 

(~17.5 kDa) (34, 35).  

 

101.10 distributes to myometrial SMC, macrophages, and placenta 
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We next determined if 101.10 localized in blood leukocytes, myometrium and more 

importantly in placenta. 101.10 labelled with fluorescein isothiocyanate (FITC) was injected 

subcutaneously; no loss of function was ensued by the labelling as 101.10-FITC was still 

efficient at delaying LTA-induced PTB (data not shown). 101.10-FITC localized on SMC (co-

localization with SMC marker α-actin) (Suppl. Fig.4A), on macrophage (marker F4/80) (Suppl. 

Fig.4C), as well as in placenta (Suppl. Fig.3D); FITC alone fluorescence was not detected on 

these cells and tissues, suggesting binding specificity (Suppl. Figs. 4B,D and 3C); of note, 

fluorescence in placentas from FITC-treated mice did not differ from the autofluorescence of 

unlabelled placentas (Suppl. Fig.3B). 

We previously showed that actions of 101.10 required presence of the ubiquitous IL-1RI 

(25). Accordingly, here again 101.10-FITC co-localized by immunohistochemistry with IL-1RI 

on the myometrial cell line hTERT-C3 and the macrophage cell line RAW-Blue mouse 

macrophages (Suppl. Fig.4E-H); FITC alone did not co-localize with IL-1R1. 

 

101.10 delays Toll-Like Receptor (TLR) 2- and TLR4-induced preterm birth (by acting 

downstream of TLR signaling) 

The efficacy of 101.10 was also tested in PTB models that mimic relevant gram+ and 

gram– infections, by stimulating corresponding TLR2 and TLR4 respectively with LTA and 

LPS. 101.10 was particularly effective in (intraperitoneal) LTA-induced PTB (Fig.2A), as it 

prolonged gestation (Suppl. Fig. 1B). 101.10 also nearly normalized LTA-induced expression 

of all genes screened in myometrium (Fig.2B) and blood leukocytes (Fig.2C), with the exception 
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of IL-1RI and the anti-inflammatory IL-4 which was increased; plasma levels of IL-1β were 

also decreased by 101.10 (Fig.2D).  

101.10 also reduced prematurity rate and prolonged gestation shortened by TLR4 

stimulation with (intraperitoneal) LPS (Fig.3A; Suppl. Fig.1C), and reduced LPS-induced gene 

induction on myometrium and blood leukocytes (Fig.3B,C), as well as albeit modestly, plasma 

levels of IL-1β (Fig.3D).  

 

101.10 acts independently of IL-1β-induced NF-κB activation 

To better understand how 101.10 regulates IL-1 activity, we determined the effects of 

101.10 on IL-1R-coupled intracellular signaling in myometrial and macrophage cell lines 

hTERT-C3 and RAW-Blue macrophages. NF-κB is often been regarded as a key pathway for 

IL-1 signaling; the translocation of NF-κB to the nucleus is constitutively inhibited by IκB 

proteins in the cytosol, which when phosphorylated by IKK kinases results in its ubiquitination 

and subsequent degradation hence promoting NF-κB activation (36). 101.10 (dose-dependently) 

did not affect IL-1β-induced IκBα phosphorylation in myometrial cells, whereas Kineret 

completely inhibited its activation (Fig.4A and 4B). Likewise, in HEK-Blue cells engineered 

with a NF-κB-dependent promoter for secretory alkaline phosphatase, 101.10, contrary to 

Kineret, was again ineffective in altering IL-1β-induced secretion of alkaline phosphatase, and 

thus was NF-κB independent (Fig.4C). Moreover, the critically important nuclear translocation 

of NF-κB upon IL-1 stimulation in myometrial cells was unaffected by 101.10 but was markedly 

inhibited by Kineret and the IKKβ inhibitor SC-514 (positive control) (Fig.4D and 4E). 

Collectively, these data indicate that effects of 101.10 are independent of NF-κB.   
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101.10 inhibits stress-associated protein kinase (SAPK) p38 and JNK, transcription factor c-

jun and Rho/ROCK pathways in myometrial cells and in macrophages 

The effect of 101.10 on other IL-1-triggered signaling pathways was investigated. Given 

their reported involvement in labor (37, 38), we examined SAPK/c-jun and small GTPase 

Rho/ROCK pathways which both lead to the activation of the transcriptional factor AP-1 

(Fig.5A), respectively using myometrial and macrophage cell lines described above. 101.10 

dose-dependently decreased IL-1β-induced phosphorylation of p38, JNK and of the 

transcription factor c-jun in both cell types (Fig.5B-E); Kineret was also effective. 101.10 (like 

Kineret) also decreased IL-1β-triggered induction of several pro-inflammatory and/or pro-labor 

genes in vitro (Fig.5F,G), as previously observed in vivo (Fig. 1-3); IL-1β-triggered induction 

of PGHS2 was dose-dependently inhibited by 101.10 (IC50 = 15.1 nM; see Fig.5H). 

Additionally, in myometrial cells where RhoA is important in cell function, 101.10 inhibited 

RhoA activation and decreased downstream ROCK2 phosphorylation (Fig.5I,J).  

Based on data obtained in cell lines (Fig. 5), we proceeded to study the effects of 101.10 

on IL-1 signaling in primary myometrial SMC. Primary myometrial SMC were obtained by 

digesting CD-1 mice uterine horns and cultured; immunohistochemical staining with α-actin 

assessed purity at more than 95% of cells (Suppl. Fig.4I,J). 101.10 dose-dependently inhibited 

the activation of p38, JNK and c-jun (Fig.6A,B), and decreased the induction of several pro-

inflammatory and/or pro-labor genes in primary myometrial SMC (Fig.6C); effects of Kineret 

were comparable. Moreover, 101.10 inhibited IL-1β-induced p38, JNK and c-jun activation in 

myometrial tissue freshly isolated from pregnant mice (Fig.6D,E). 
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We performed similar experiments on primary bone marrow-derived macrophages 

(BMM); more than 95% of the cells positively stained for the macrophage marker F4/80 (Suppl. 

Fig.4L,M). Once again, 101.10 inhibited the activation of p38, JNK and c-jun in primary BMM 

(Fig.6F,G), and decreased the induction of several pro-inflammatory genes triggered by IL-1β 

(Fig.6H). Finally, 101.10 (and Kineret) were selective to these signaling pathways induced by 

IL-1 but not by LTA and LPS, whereupon 101.10 (and Kineret) were ineffective (Suppl Fig. 

1E,F).   

 

Inhibiting AP-1 delays inflammation-induced preterm birth 

Since our in vitro and ex-vivo studies suggest that 101.10 acts by inhibiting IL-1 receptor 

SAPK/c-jun and Rho/ROCK pathways leading to AP-1 assembly without modulating NF-κB 

activity, we wanted to validate this mechanism of action in vivo. Therefore, we subjected 

pregnant mice to intrauterine IL-1β-induced PTB model with a group of mice receiving a 

selective AP-1 inhibitor, SR-11302 (n=9) and another group receiving SR-11302 in combination 

with the ROCK inhibitor Y27632 (n=7), to mimic the proposed signaling mechanism of action 

of 101.10. SR-11302 alone or in combination with Y27632, were comparably effective to 

101.10 in reducing preterm delivery (Fig.7A,B) and increasing gestational length (Suppl. 

Fig.1D).  
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Discussion  

Inflammation plays a critical role in labor (39). Various major pro-inflammatory 

cytokines including IL-1 upregulate uterine activation proteins (UAP) in gestational tissues and 

are associated with the onset of labor in animal models and in humans. However, available IL-

1-targeting agents all cause a non-selective inhibition of the entire IL-1R-coupled signaling 

pathways, including NF-κB which has an important role in cytoprotection and immune-

surveillance (40-42). Herein, we describe the efficacy of a non-competitive stable (all-d peptide) 

modulator of IL-1 receptor at delaying murine PTB models induced by IL-1β, LTA (TLR2 

ligand) and LPS (TLR4 ligand). 101.10 exhibited biased ligand properties by inhibiting IL-1-

triggered SAPK/c-jun and Rho/ROCK pathways, without affecting NF-κB activity.  

Inflammation is now considered a converging pathway towards labor (43, 44). It is 

believed that the initial inflammatory stimulus, such as PAMP or DAMPs activates innate 

immunity by binding on Toll-like receptors. This signal promotes cytokine production from 

cells of the innate immune response which in turn activates adaptive immunity. Resulting 

inflammatory cascade leads to the induction of UAP and promote the onset of labor. 

Accordingly, data from our lab and others show that acute inflammatory events increase UAP 

expression in the myometrium and other uterine tissue (12, 15, 45). This notion is supported by 

data obtained in the present study; IL-1β and TLR ligands induced various UAP including 

OXTR, PTGFR, PGHS2, CCL2 and GJA1 in myometrium. Products of these pro-inflammatory 

genes amplify the initial insult. Hence, targeting pro-inflammatory cytokines and their receptors 

accountable for expansion of the initial inflammatory trigger is a justifiable approach to 

prevent/arrest premature induction of UAP and ensued onset of PTB. 
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The present study focused on the role of IL-1β, a major mediator of inflammation, which 

can sustain the inflammatory cascade that results in preterm labor (46-49). Effects of IL-1β were 

antagonized by 101.10 (in an NF-κB-independent manner). Another IL-1 receptor agonist ligand 

is IL-1α, which remains mostly intracellular and is released in the extracellular milieu upon cell 

lysis; IL-1α has been linked to sterile intra-amniotic inflammation (50). Of note, as observed for 

IL-1β, 101.10 is also capable of inhibiting actions of IL-1α (Suppl. Fig. 2E). 

In this study we report for the first time the efficacy of a small non-competitive inhibitor 

of IL-1 receptor termed 101.10, in PTB. The peptide showed better efficacy than the competitive 

IL-1 receptor antagonist Kineret in delaying IL-1β-induced PTB (Fig.1C). Accordingly, 

intrauterine IL-1β triggered an inflammatory response locally, in the placenta/myometrial unit 

and systemically (increase in leukocyte cytokines), implicating mediators other than IL-1 

partaking in amplified myometrial induction of various inflammatory factors; the dose of IL-1β 

used is consistent with that reported (8, 16), and although higher than that used to stimulate 

human tissue, the exact concentration in human is not known but likely several fold higher in 

the immediate vicinity of cytokine-releasing cells. Contrary to 101.10, Kineret did not interfere 

with myometrial gene induction. Since Kineret did reduce blood leukocyte induction of 

inflammatory genes, the selective IL-1 receptor antagonist Kineret is pharmacologically 

effective, but as a molecule as large as IL-1 per se (≈17.5 kDa) which does not cross the placental 

barrier (34, 35) (and with whom it competes for the ligand binding site on IL-1RI) Kineret has 

limited bioavailability to the placenta – the trigger locus of inflammation which in turn affects 

myometrium and systemic inflammation. In counterpart, the small molecule 101.10 (≈0.85 kDa) 

does distribute to placenta and myometrium as seen with 101.10-FITC, and is able to diminish 

amplified inflammation in those tissues and in turn delay birth induced by IL-1β. The findings 
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also infer that the local utero/placental inflammation surpasses in importance systemic 

inflammation in stimulating PTB.  

NF-κB is a prominent downstream signal of inflammatory mediators. NF-κB has been 

implicated in the normal process of labor (22, 44), but its inhibition may be deleterious. Hence, 

reluctance to develop a NF-κB-targeted therapy to prevent PTB include: 1) NF-κB plays an 

important role in cytoprotection and its inhibition can increase rates of apoptosis (51); 

accordingly, the antibiotic sulfasalazine which also inhibits NF-κB has been associated with an 

increase in pro-apoptotic cells in human chorionic membranes (21) and an increased risk of 

adverse pregnancy outcomes (52); 2) hypoxia-induced NF-κB activation might be implicated in 

preventing sequelæ from myometrial contraction-induced ischemia (22); and 3) NF-κB 

inhibition can hamper immune-surveillance and potentially increase the risk of infection 

including during pregnancy (51, 53). In this regard, 101.10 offers a unique alternative to 

currently available IL-1 inhibitors by avoiding NF-κB inhibition while still interfering with 

other IL-1 receptor-coupled pathways involved in the assembly of the transcription factor AP-

1. 

The notion that AP-1 partakes in labor is relatively new. Recent data demonstrate that 

labor is associated with changes in the AP-1 family members in the uterus and fetal membranes 

(54-56). Moreover, a causal role of JNK/AP-1 was recently described wherein AP-1 activation 

alone was sufficient to induce labor and that inhibition of JNK was sufficient to delay LPS-

induced PTB (37). Correspondingly, SAPK and their target c-jun/c-fos (AP-1) have been shown 

to be activated in human uterine cervix at term and after delivery, suggesting a concomitant 

function for AP-1 in cervical ripening (57). Our study markedly bolsters the evidence toward a 

crucial role of AP-1 in labor: we showed that 101.10 prevented PTB without significantly 
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affecting NF-κB, but rather by inhibiting pathways upstream of AP-1, including c-jun. We 

further confirmed that inhibiting AP-1 alone was sufficient to delay IL-1β-induced PTB in mice. 

Notwithstanding that NF-κB controls expression of numerous genes implicated in 

inflammation, many pro-inflammatory and/or pro labor genes have both AP-1 and NF-κB 

binding sites, including PGHS2 (58), IL6 (58), IL8 (59) and CCL2 (60); in addition, the 

regulatory region of human OXTR displays binding sites for AP-1 (61), and AP-1 is a key 

regulator of MMP (62) and CX43 (63-65).  Hence, inhibition of either AP-1 or NF-kB appears 

to be sufficient to interfere with expression of these genes implicated in labor; this claim is 

supported by the comparable efficacy of 101.10 and AP-1 inhibitor SR-11302. 

This study has some limitations, particularly as it relates to translation of all findings in 

rodents to humans. We focused on IL-1 and upstream TLR4 and TLR2 (66) pathways proposed 

by an abundance of literature to be implicated in triggering human PTB (67-70); also, efficacy 

of 101.10 was shown in a relevant human cell line. Concordantly in the present study, several 

mediators of inflammation were induced in our rodent models (e.g. IL-6, IL-8 and COX-2); yet 

specific inhibition of IL-1 receptor by 101.10 reduced PTB induced by every stimulus (IL-1, 

LPS, LTA) tested, highlighting its critical role. Extrapolation of these findings to human does 

not exclude a role for other pathways. This inference has been proposed for IL-6 (71), IL-8 (72), 

FOX01 (73) and other mediators implicated in labor of humans. Although biologic effects of 

(heat-inactivated) gram-positive bacteria are not fully reproduced by LTA (74), the latter do 

elicit many features of the bacteria (75); a similar argument can be made for (heat-inactivated) 

gram-negative bacteria and LPS (76), including as it applies to placental/fetal biology (66).  

Ideally, anti-inflammatory drugs should be administered at an earlier time point than currently 

applied; accordingly, appropriate diagnostic markers are also needed for effective prevention of 
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PTB in humans. Overall, our findings on the role of IL-1 concur with those previously reported 

by authors of this paper (17, 77). 

Small biased ligands offer therapeutic advantages, which cannot be mimicked by 

currently available orthosteric inhibitors. Small peptide or peptidomimetics are likely to exhibit 

better bioavailability and a therapeutic index due to selective and partial modulation of specific 

(and not all) receptor-coupled signaling pathways. Advantages of 101.10 over available IL-1-

targeting therapies in PTB comprise: 1) 101.10 avoids the inhibition of IL-1-induced NF-κB 

activation and therefore offers a novel way to prevent premature uterine activation, by acting as 

a negative allosteric biased ligand, in line with its reported actions on other cells (24); 2) Due to 

enhanced pharmacological selectivity, 101.10 could be deprived of major adverse effects; 3) 

101.10 is more likely to have increased bioavailability and less invasive route of administration 

(101.10 has been reported to exhibit enteral bioavailability (24)); and 4) cost of goods for 101.10 

is likely less compared to recombinant proteins and antibodies; the latter provides a more 

suitable therapeutic option for developing countries, where prematurity is a main cause of 

mortality (78).  

In summary, we hereby describe the first non-competitive biased modulator of a cytokine 

receptor showing efficacy in delaying the onset of preterm birth. 101.10 acts desirably without 

inhibiting IL-1β-induced NF-κB activation, albeit by dose-dependently inhibiting relevant IL-

1β-induced phosphorylation of SAPK p38 and JNK, transcription factor c-jun, as well as 

Rho/ROCK pathway. Hence, 101.10 acts independently of NF-κB in delaying IL-1β-, TLR2- 

and TLR4-induced PTB in mice, thus undermining the role of NF-κB activation in labor.  
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Figure legends 

Figure 1. 101.10 prevents IL-1β-induced preterm birth and curbs inflammation-induced 
uterine activation. A, The labor-inducing agent is injected at gestational day (G) 16.5 and 

spontaneous deliveries happening between G16.5 and G18.5 are considered as premature. 

Subcutaneous injections of 101.10 (1mg/Kg/12h), Kineret (4mg/Kg/12h) or vehicle are given 

twice a day until delivery. B, Representative picture of uteri 24 hours after the intrauterine IL-

1β injection. Left panel: sham; central panel: IL-1β-induced uterine inflammation; right panel: 

101.10 decreases clinical signs of IL-1β-induced uterine inflammation C, 101.10 prevents IL-

1β-induced preterm birth in mice. Top panel: percentage of prematurity (≤G18.5) following 1 

µg intrauterine IL-1β injection; bottom panel: percentage of animals having delivered plotted 

against gestational age. Control mice did not receive any treatment, whereas sham animals 

received an intrauterine dose of vehicle at G16.5. D, quantitative PCR from myometrium tissue 

of mice treated in C, collected postpartum (˂30 mins following parturition). Results are 

normalized with 18S and are relative to control. E, quantitative PCR from leukocytes isolated 

from systemic blood of mice treated in C and collected postpartum (˂30 mins). Results are 

normalized with 18S and are relative to control. F, 101.10 decreases the expression of oxytocin 

receptor (left panel) and FP (right panel) in the myometrium of mice treated in C. G, Ex-vivo 

myometrium contraction in pharmacological baths performed with uterine tissues from mice 

treated as indicated. Uterotonic agents oxytocin (left panel) and PGF2α (right panel) were used 

to induce dose-dependent contractions of the myometrium. Values are presented as mean ± S.D. 

Data are representative of 3-17 animals per group. *, p˂0,05; **, p˂0,005; ***, p˂0,001 by one-

way ANOVA with Tukey’s multiple comparison test compared to IL-1β + vehicle group. 

Figure 2. 101.10 decreases Toll-Like Receptor (TLR) 2-induced preterm birth. A, 101.10 

decreases preterm birth induced by the TLR2 agonist LTA in mice. Left panel: percentage of 

animals having delivered following three 3-hours interval intraperitoneal LTA injection (12.5 

mg/Kg); right panel:  percentage of premature deliveries. Control mice did not receive any 

treatment, whereas sham animals received three intraperitoneal doses of vehicle over a period 

of 9 hours at G16.5. 101.10 (1mg/Kg/12h) or vehicle were injected subcutaneously twice a day 

until delivery. B, quantitative PCR from myometrium tissue of mice treated in A and collected 

postpartum (˂30 mins). Results are normalized with 18S and are relative to control. C, 
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quantitative PCR from leukocytes isolated from systemic blood of mice treated in A and 

collected postpartum (˂30 mins). Results are normalized with 18S and are relative to control. 

D, murine IL-1β ELISA performed on plasma from mice treated in A and collected postpartum 

(˂30 mins). Values are presented as mean ± S.D. Data are representative of 3-11 animals per 

group. *, p˂0,05; **, p˂0,005; ***, p˂0,001 by one-way ANOVA with Tukey’s multiple 

comparison test compared to LTA + vehicle group. 

Figure 3. 101.10 decreases Toll-Like Receptor (TLR) 4-induced preterm birth. A, 101.10 

decreases preterm birth induced by the TLR4 agonist LPS in mice. Left panel: percentage of 

animals having delivered following a single intraperitoneal LPS injection (0.5 µg per mice); 

right panel: percentage of premature deliveries. Control mice did not receive any treatment, 

whereas sham animals received a single intraperitoneal dose of vehicle at G16.5. 101.10 

(1mg/Kg/12h) or vehicle were administered subcutaneously twice a day until delivery. B, 

quantitative PCR from myometrium tissue of mice treated in A and collected postpartum (˂30 

mins). Results are normalized with 18S and are relative to control. C, quantitative PCR from 

circulating leukocytes isolated from systemic blood of mice treated in A and collected 

postpartum (˂30 mins). Results are normalized with 18S and are relative to control. D, murine 

IL-1β ELISA performed on plasma from mice treated in A and collected postpartum (˂30 mins). 

Values are presented as mean ± S.D. Data are representative of 3-14 animals per group and of 

4 in vitro experiments (F). *, p˂0,05; **, p˂0,005; ***, p˂0,001 by one-way ANOVA with 

Tukey’s multiple comparison test compared to LPS + vehicle group. 

Figure 4. 101.10 has no significant effect on IL-1β-induced NF-κB activation. A, Myometrial 

SMC (hTERT-C3 cell line) were treated with IL-1β (1 µg/ml) in presence or absence of 

increasing doses of 101.10 for 1 hour and lysates were run on SDS-PAGE and blotted against 

pS-IκBα or β-actin. Kineret (1.5 mg/ml) and SC-514 (10 µM) were used as negative controls 

and fetal bovine serum (10%) was used as a metabolic positive control. B, Densitometric 

analysis of protein bands showing no significant effect of 101.10 on IL-1β-induced NF-κB 

activity. C, HEK-Blue cells were treated with IL-1β in presence or absence of increasing doses 

of 101.10 for 4 hour and levels of secreted alkaline phosphatase in cell culture supernatant was 

assessed by reading the absorbance (OD values) at 620-655 nm. Kineret was used as a negative 

control. D, hTERT-C3 cells were treated with IL-1β (1 µg/ml) with or without 101.10 (10-6 M) 
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and western blot was performed on extracted nuclei or cytoplasmic lysate and blotted against 

NF-κB p65 or the nuclear maker lamin B1. Presence of NF-κB p65 in the nucleus was used as 

a measurement of NF-κB activation. E, p65/β-actin quantification values from nuclear extracts 

were normalized with those for cytoplasmic extract. Kineret (1.5 mg/ml) and SC-514 (10 µM) 

were used as negative controls and β-actin was used as a loading control. Values are presented 

as mean ± S.D. Data are representative of 3-5 experiments. ***, p˂0,001 by one-way ANOVA 

with Tukey’s multiple comparison test compared to IL-1β + vehicle group. 

Figure 5. 101.10 inhibits SAPK/c-jun and RhoA/ROCK signaling pathways in both 
myometrial and macrophage cell lines. A, Simplified IL-1 receptor intracellular signaling 

pathways. The activation of p38, JNK or Rho/ROCK leads to the phosphorylation and 

translocation of the transcriptional factor c-jun to the nucleus and further assembling of the 

heterodimeric transcriptional factor AP-1. B-C, Myometrial SMC (hTERT-C3 cell line) were 

treated with IL-1β or vehicle with or without increasing concentrations of 101.10 and western 

blot was performed on lysates and blotted against indicated antibodies (B). Densitometric 

analysis was used to quantify protein bands and results were normalized with total proteins and 

plotted as fold over control (C). Kineret was used as a negative control. D-E, RAW-Blue 

macrophages were treated with IL-1β (1 µg/ml) or vehicle with or without increasing 

concentrations of 101.10 and western blot was performed on lysates and blotted against 

indicated antibodies (D). Densitometric analysis was used to quantify protein bands and results 

were normalized with total proteins and plotted as fold over control (E). Kineret (1.5 mg/ml) 

was used as a negative control. F, quantitative PCR of hTERT-C3 cells treated with IL-1β (1 

µg/ml) or vehicle with or without 101.10 (10-6 M) or Kineret (1.5 mg/ml) for 6 hours. Results 

are normalized with 18S and are relative to control. G, quantitative PCR of RAW-Blue 

macrophages treated with IL-1β (1 µg/ml) or vehicle with or without 101.10 (10-6 M) or Kineret 

(1.5 mg/ml) for 6 hours. H, quantitative PCR of PGHS2 induction in hTERT-C3 cells treated 

with IL-1β (●;1 µg/ml) or vehicle (■) with increasing concentrations of 101.10 or with Kineret 

(▲;1.5 mg/ml) for 2 hours. Results are normalized with 18S and are relative to control. ***, 

p˂0,001 relative to higher plateau.  I, hTERT-C3 cells were treated with IL-1β or vehicle with 

or without 101.10 (10-6 M) and lysates were incubated with affinity beads specific to GTP-

bound RhoA. Beads and total proteins were then loaded on SDS-PAGE and blotted against 
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RhoA or β-actin. Kineret (1.5 mg/ml) was used as a negative control and fetal bovine serum 

(10%) and GPTγS (200 µM) were used as positive controls. Quantification of protein bands was 

normalized with total RhoA and plotted as fold over control. J, Western blot of hTERT-C3 cells 

treated with IL-1β (1 µg/ml) or vehicle with or without 101.10 (10-6 M) and blotted against pS-

ROCK2 or ROCK2. Kineret (1.5 mg/ml) and Y27632 (10-6 M) were used as a negative control 

and fetal bovine serum (10%) as a positive control. Quantification of protein bands was 

normalized with ROCK2 and plotted as fold over control. Values are presented as mean ± S.D. 

Data are representative of 3-4 experiments. *, p˂0,05; **, p˂0,005; ***, p˂0,001 by one-way 

ANOVA with Tukey’s multiple comparison test compared to IL-1β + vehicle group. 

Figure 6. 101.10 inhibits SAPK/c-jun signaling pathway in CD-1 mice primary myometrial 
SMC, in ex-vivo myometrium fragments and in bone marrow-derived macrophages. A-B, 

Primary myometrial SMC were treated with IL-1β or vehicle with or without increasing 

concentrations of 101.10 and western blot was performed on lysates and blotted against 

indicated antibodies (A). Densitometric analysis was used to quantify protein bands and results 

were normalized with total proteins and plotted as fold over control (B). Kineret was used as a 

negative control. C, quantitative PCR of primary myometrial SMC treated with IL-1β (1 µg/ml) 

or vehicle with or without 101.10 (10-6 M) or Kineret (1.5 mg/ml) for 6 hours. Results are 

normalized with 18S and are relative to control. D-E, Myometrium fragments were collected 

from CD-1 mice and incubated in serum-free medium for 1 hour prior to stimulation with IL-

1β (1 µg/ml) or vehicle with or without increasing concentrations of 101.10. Western blot was 

performed on lysates and blotted against indicated antibodies (D). Densitometric analysis was 

used to quantify protein bands and results were normalized with total proteins and plotted as 

fold over control (E). Kineret (1.5 mg/ml) was used as a negative control. F-G, primary bone 

marrow-derived macrophages (BMM) were treated with IL-1β or vehicle with or without 

increasing concentrations of 101.10 and western blot was performed on lysates and blotted 

against indicated antibodies (F). Densitometric analysis was used to quantify protein bands and 

results were normalized with total proteins and plotted as fold over control (G). Kineret was 

used as a negative control. H, quantitative PCR of primary BMM treated with IL-1β (1 µg/ml) 

or vehicle with or without 101.10 (10-6 M) or Kineret (1.5 mg/ml) for 6 hours. Results are 

normalized with 18S and are relative to control. Values are presented as mean ± S.D. Data are 
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representative of 3-4 experiments. *, p˂0,05; **, p˂0,005; ***, p˂0,001 by one-way ANOVA 

with Tukey’s multiple comparison test compared to IL-1β + vehicle group. 

Figure 7. Inhibiting AP-1 protects against inflammation-induced preterm birth. A, 

percentage of animals having delivered following 1 µg intrauterine IL-1β injection and B, 

percentage of prematurity. Control mice did not receive any treatment, whereas sham animals 

received an intrauterine dose of vehicle at G16.5. 101.10 (1mg/Kg/12h), SR11302 

(1mg/Kg/12h), Y27632 (1mg/Kg/12h) or vehicle were administered subcutaneously twice a day 

until delivery. C, proposed mechanism of action of 101.10. Effector cells comprise a wide range 

of possible cells, though the focus has been made on myometrial SMC and macrophages in this 

study. Values are presented as mean ± S.D. Data are representative of 3-10 animals per group. 

*, p˂0,05; **, p˂0,005; ***, p˂0,001. NAM, negative allosteric modulator by one-way 

ANOVA with Tukey’s multiple comparison test compared to IL-1β + vehicle group. 
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Supplementary figure legends 

Figure S1. Gestational length of mice from 3 different PTB models treated as indicated. A 

and D, intrauterine IL-1β-induced PTB; B, intraperitoneal LTA-induced PTB; C, intraperitoneal 

LPS-induced PTB. E-F, immunoblot (E) and relative quantification (F) of protein bands of 

RAW-Blue macrophages treated with LTA or LPS for 5 mins in presence or in absence of 

101.10 or Kineret and blotted against pTpY-p38 or p38 showing that 101.10 does not affect 

direct toll-like receptor signaling. G, simplified inflammatory cascade leading to premature 

labor. Values are presented as mean ± S.D. Data are representative of 3-4 experiments. One-

way-ANOVA analysis was used: *, p˂0,05; **, p˂0,005; ***, p˂0,001 by one-way ANOVA 

with Tukey’s multiple comparison test. Values are presented as mean ± S.D. Data are 

representative of 3-14 animals per group. ROM, rupture of membrane. 

Figure S2. 101.10-FITC administered subcutaneously reaches placental tissue. Immunoblot 

of myometrium tissue from mice treated as indicated displaying the expression of IL-1R1 (A), 

OxtR (B) and IL-1RAcP (C) and relative quantification of protein bands (bottom panels).  β-

actin was used as a loading control.  D, Murine IL-1β ELISA performed on plasma from mice 

treated as indicated and collected postpartum (˂30 mins). IL-1β was used as a negative control 

since the test is highly specific to murine IL-1β and 150 pg/mL of murine IL-1β was used to 

assess precision. E, Representative semi-quantitative PCR of cells treated with IL-1α for 24 

hours with and without 101.10. Values are presented as mean ± S.D. Data are representative of 

3-12 experiments. One-way-ANOVA analysis was used: ***, p˂0,001 by one-way ANOVA 

with Tukey’s multiple comparison test compared to IL-1β + vehicle group. 

Figure S3. 101.10 reaches the placenta and curbs IL-1-induced placental inflammation. A, 

quantitative PCR performed on placentas collected 24h after a single IL-1β intrauterine injection 

from mice treated with 3 subcutaneous injections of either 101.10 (1 mg/Kg/12h), Kineret 

(4mg/Kg/12h) or vehicle. Results are normalized with 18S and are relative to sham. Values are 

presented as mean ± S.D and data are representative of 6 placentas from 6 different animals per 

group. The placenta selected for each animal was perfusing the first fetus in the proximal right 

uterine horn. B-D, representative images of longitudinal cryosections of placentas from non-

treated mice (B), mice treated with FITC alone (C) or 101.10-FITC (D) 1h prior to sacrifice. 

101.10-FITC was found in all parts of the placenta, but its localization was more pronounced in 
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the junctional zone (F and H), in the fetal membranes (E) and near fetal vessels (G). One-way-

ANOVA analysis was used: *, p˂0,05; **, p˂0,005; ***, p˂0,001 by ANOVA. Scale for A and 

B, 1000µM; scale for C-F, 100 µM. jcz, junctional zone; lb, labyrinth; bv, blood vessel; dc, 

decidua; fm, fetal membranes. 

Figure S4. 101.10 binds to myometrial smooth muscle cells (SMC) and macrophages. A, 

representative confocal image of myometrium sagittal cryosections immunohistochemically 

stained with 101.10-FITC (green) and the smooth muscle cell marker α-actin (white) and B, 

negative control showing no binding of FITC (green) alone. DAPI was used to stain nuclei. 

Scale bar, 100µM. C, representative confocal image of myometrium sagittal cryosections 

immunohistochemically stained with 101.10-FITC (green) and the macrophage marker F4/80 

(red) and D, negative control showing no binding of FITC (green) alone. DAPI was used to stain 

nuclei. Scale bar, 100µM. E, 101.10-FITC (green) co-localizes with IL-1R1 (white) in 

myometrial cells culture (hTERT-C3 cell line) and F, negative control showing no co-

localization with FITC (green) alone. DAPI was used to stain nuclei. Scale bar, 100µM. G, 

101.10-FITC (green) co-localizes with IL-1R1 (white) in macrophages culture (RAW-Blue cell 

line) and H, negative control showing no co-localization with FITC (green) alone. I, 

approximately 95% of freshly isolated primary myometrial smooth muscle cells (SMC) culture 

was immunoreactive to α-actin (green). J, negative control showing no binding of the Alexa 

Fluor secondary antibody alone. DAPI was used to stain nuclei. Scale bar, 100µM. K, α-actin 

(M.W.:42 kDa) primary antibody used for immunohistochemistry binds to a 42 kDa protein in 

a primary myometrial SMC immunoblot. L, approximately 95% of freshly isolated primary 

bone marrow-derived macrophages (BMM) culture was immunoreactive to F4/80 (red). M, 

negative control showing no binding of the Alexa Fluor secondary antibody alone. DAPI was 

used to stain nuclei. Scale bar, 100µM. N, F4/80 (predicted M.W.:102 kDa) primary antibody 

used for immunohistochemistry show 3 different bands in a primary BMM immunoblot, most 

likely because F4/80 is heavily glycosylated. DAPI was used to stain nuclei. Scale bar, 100µM. 

Data are representative of at least 3 experiments. 
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Figure 2 
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Figure 3 
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Figure 4 
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Figure 5 
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Figure 6 

 
  



 

152 

Figure 7 
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Supplementary Figures 
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Figure S2 
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Figure S3 
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Figure S4 
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Tables 

Table I: Primers used for Real-Time qPCR  

Mouse primers 
IL1B-F: AGATGAAGGGCTGCTTCCAAA IL1B-R: GGAAGGTCCACGGGAAAGAC 
IL4-F: AACGAAGAACACCACAGAGAG IL4-R: GTGATGTGGACTTGGACTCA 
IL6-F: CAACGATGATGCACTTGCAGA IL6-R: TCTCTCTGAAGGACTCTGGCT 
IL8-F: TGCTTTTGGCTTTGCGTTGA IL8-R: GTCAGAACGTGGCGGTATCT 
IL10-F: TAACTGCACCCACTTCCCAG IL10-R: AGGCTTGGCAACCCAAGTAA 
TNFA-F: GCCTCTTCTCATTCCTGCTTG TNFA-R: CTGATGAGAGGGAGGCCATT 
CRP-F: TCTGCACAAGGGCTACACTG CRP-R: ATCTCCGATGTCTCCCACCA 
IFNB1-F: AGCACTGGGTGGAATGAGAC IFNB1-R: GAGTCCGCCTCTGATGCTTA 
MMP1A-F: CAGGACTTATATGGACCTTCCC MMP1A-R: TAAATTGAGCTCAGGTTCTGGC 
MMP3-F: GTGACCCCACTCACTTTCTC MMP3-R: TTGGTACCAGTGACATCCTCT 
MMP9-F: TCAAGGACGGTTGGTACTGG MMP9-R: CTGACGTGGGTTACCTCTGG 
OXTR-F: TGTGTCTCCTTTTGGGACAA OXTR-R: GGCATTTCAGAATTGGCTGT 
PGHS2-F: ACCTCTCCACCAATGACCTGA PGHS2-R: CTGACCCCCAAGGCTCAAAT 
PTGFR-F: AGCTGGACTCATCGCAAACA PTGFR-R: GTGGGCACAAGCCAGAAAAG 
GJA1-F: GCACTTTTCTTTCATTGGGGG GJA1-R: GGGCACCTCTCTTTCACTTA 
IL1R1-F: CTTGAGGAGGCAGTTTTCGT IL1R1-R: ACATACGTCAATCTCCAGCG 
IL1RA-F: TGGGAAGGTCTGTGCCATA IL1RA-R: CCAGATTCTGAAGGCTTGCAT 
CCL2-F: GCTCAGCCAGATGCAGTTA CCL2-R: TGTCTGGACCCATTCCTTCT 

Human primers 
IL1B-F: AGCTGGAGAGTGTAGATCCCAA IL1B-R: ACGGGCATGTTTTCTGCTTG 
IL6-F: TTCAATGAGGAGACTTGCCTGG IL6-R: CTGGCATTTGTGGTTGGGTC 
IL8-F: CTCTGTGTGAAGGTGCAGTTTT IL8-R: TGCACCCAGTTTTCCTTGGG 
MMP1-F: AGAATGATGGGAGGCAAGTTGA MMP1-R: TGGCGTGTAATTTTCAATCCTGT 
MMP3-F: TGCTGTTTTTGAAGAATTTGGGTT MMP3-R: AGTTCCCTTGAGTGTGACTCG 
CCL2-F: CAGCCAGATGCAATCAATGCC CCL2-R: TTTGCTTGTCCAGGTGGTCC 
PGHS2-F: ATATTGGTGACCCGTGGAGC PGHS2-R: GTTCTCCGTACCTTCACCCC 
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Abstract 

Preterm birth (PTB) is commonly accompanied by in utero fetal inflammation, and 

existing tocolytic drugs do not target fetal inflammatory injury. Of the candidate 

proinflammatory mediators, interleukin-1 (IL-1) appears central and is sufficient to trigger fetal 

loss. Therefore, we elucidated the effects of antenatal IL-1 exposure on post-natal development, 

and investigated two IL-1 receptor antagonists, the competitive inhibitor Kineret (anakinra) and 

a potent noncompetitive inhibitor 101.10, for efficacy in blocking IL-1 actions. Antenatal 

exposure to IL-1β induced Tnfa, Il6, Ccl2, Pghs2 and Mpges1 expression in placenta and fetal 

membranes, and elevated AF IL-1β, IL-6, IL-8 and PGF2α, resulting in PTB and marked 

neonatal mortality. Surviving neonates had increased Il1b, Il6, Il8, Il10, Pghs2, Tnfa and Crp 

expression in white blood cells with elevated plasma IL-1β, IL-6 and IL-8, increased IL-1β, IL-

6 and IL-8 in fetal lung, intestine and brain, and morphological abnormalities including 

disrupted lung alveolarization, atrophy of intestinal villus and colon-resident lymphoid follicle, 

and brain microvascular degeneration and atrophy with visual evoked potential anomalies. Late 

gestation treatment with 101.10 abolished these adverse outcomes, whereas Kineret exerted only 

modest effects and no benefit for gestation length, neonatal mortality or placental inflammation. 

In a LPS-induced model of infection-associated PTB, 101.10 prevented PTB, neonatal mortality 

and fetal brain inflammation. There was no substantive deviation in postnatal growth trajectory 

or adult body morphometry after antenatal 101.10 treatment. The results implicate IL-1 as an 

important driver of neonatal morbidity in PTB and identify 101.10 as a safe and effective 

candidate therapeutic. 

 Keywords: Interleukin-1, neonatal morbidity, inflammation, preterm birth, antenatal 
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Introduction 

Preterm birth (PTB; birth <37 weeks of gestation) is a leading cause of infant mortality 

and morbidity worldwide and often results in lifelong complications for surviving children (1). 

Inflammation is implicated in a significant proportion of PTB regardless of the presence of 

infection (2) and is associated with the onset of fetal inflammatory response syndrome (FIRS) 

(3), and further represents an independent risk factor for neonatal morbidities (4-6). Increases 

in proinflammatory cytokines are readily detected in AF and umbilical cord blood in such cases, 

and herald the onset of neonatal morbidities (4, 7). Physiologically, cytokines in the fetal 

circulation rapidly spread and affect organs that are particularly vulnerable to inflammatory 

stressors at an early stage of development, especially in the premature newborn, by triggering 

intracellular signaling cascades resulting in organ injuries and neonatal morbidity (8, 9) with 

vulnerability primarily observed in lung, intestine and brain (10-13). Correspondingly, key 

features of tissue (lung, intestine, and brain) injury of common neonatal diseases can be 

reproduced in animals following administration of inflammatory stressors (14-16); conversely, 

tissue integrity can be preserved by anti-inflammatory agents (17-19). Despite this compelling 

evidence and unequivocal need to tackle inflammation for preterm birth and neonatal injury 

(20), tocolytics are the only treatments available for preterm labor, but these tackle myometrial 

contractions and have no impact on the inflammatory mediators implicated in fetal 

inflammatory injury. 

To date, there is no therapeutic molecule available to prevent/alleviate pathological 

inflammatory processes in pregnant women at risk of PTB. Of all mediators implicated in 

gestational inflammation and the onset of neonatal morbidities, interleukin (IL)-1  exerts a major 

detrimental role, as suggested by a broad body of evidence including: 1) increased levels of IL-
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1β and IL-1Ra are early markers of neonatal injuries of the lung, intestine and brain (21-24) and 

such injuries can be recreated in rodent and ovine models via overexpression or administration 

of IL-1 (25-27); 2) antagonism of IL-1 receptor, IL-1β, or inhibition of the cleavage and release 

of IL-1β by targeting caspase-1 activity provides improvement in outcomes of perinatal injuries 

to the aforementioned organs including when triggered by upstream proinflammatory stressors 

(17, 19, 28-32); and 3) inflammatory concentrations of IL-1β elicit neuro-microvascular decay 

(33), curtail hippocampal neuron differentiation (34) and consequently leads to seizures wherein 

IL-1β further contributes to brain injury (35). Therefore, IL-1 represents a target of high interest 

and potential to improve health outcomes in premature infants. However, data accumulated to 

date mainly describe a harmful role of IL-1 in the postnatal period whereas its antenatal 

contribution to neonatal diseases is not well described, which hinders the development of a 

therapeutic administered preferably during pregnancy at the onset of chorioamnionitis. This is 

particularly relevant considering that IL-1β levels are elevated in women with chorioamniotis 

(36) which constitutes an early event in the onset of perinatal complications in human and 

animal (37-39) and that administration of IL-1β in pregnant rodent and non-human primate 

induces PTB (40-43). 

Therefore, we sought to investigate the effects exerted by antenatal exposure to IL-1β on 

the development of offspring. We focused on changes induced by intrauterine exposure to IL-

1β, particularly in the placenta, fetal membranes and AF and its association with the onset of a 

fetal inflammatory response and gestation outcome. Furthermore, we studied litters postnatally 

to assess growth and development of surviving offspring, with specific consideration of the 

morphology of lung parenchyma and intestine villi, and microvascular development in brain 

and normal cortex function, which are cardinal features of common neonatal morbidities. To 
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evaluate the utility of suppressing IL-1 signaling to protect the fetus from inflammatory injury, 

we used a commercially-available IL-1R competitive antagonist Kineret (anakinra), in addition 

to a small peptide noncompetitive IL-1R antagonist (termed 101.10) (44) that is proven effective 

at decreasing IL-1-induced uterine inflammation in pregnant mice via inhibition of IL-1-induced 

MAPK p38 and JNK, c-jun and Rho GTPase (42) upstream of transcription factor AP-1 

implicated in cytokine induction (45-47) and labor (48). Our data in IL-1β- and LPS-induced 

models of PTB uncover a major detrimental role of antenatal IL-1 on the development of adverse 

perinatal, neonatal and developmental outcomes in progeny, and suggest that 101.10 represents 

an effective therapeutic candidate for administration preferably during pregnancy to decrease 

neonatal morbidities including in cases of infection. 
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Methods 

Animals 

IL-1β model: Timed-pregnant CD-1 mice were obtained from Charles River Inc at 

different gestation ages and were allowed to acclimatize for 4 days prior to experiments. Animal 

studies were approved by the Animal Care Committee of Hôpital Sainte-Justine along the 

principles of the Guide for the Care and Use of Experimental Animals of the Canadian Council 

on Animal Care. The animals were maintained on standard laboratory chow under a 12:12 

light:dark cycle and allowed free access to chow and water.  

LPS model: C57Bl/6 (B6) mice were bred and housed in the specific pathogen-free 

University of Adelaide Laboratory Animal Services facility under a 12:12 h light-dark cycle. 

Food and water were provided ad libitum. Animals were utilised in accordance with the 

NHMRC Australian Code of Practice for the care and use of animals for scientific purposes, and 

all experiments were approved by the University of Adelaide Animal Ethics Committee. One to 

three virgin female mice of 8-12 weeks of age were housed with a proven fertile B6 male and 

checked daily between 0800-1000 h for vaginal plugs, as evidence of mating. The morning of 

vaginal plug detection was designated gestational day (GD) 0.5. Females were then removed 

from the male and housed individually. Data presented herein using B6 mice are concordant 

with those previously reported with CD-1 mice (42). 

 

Chemicals 

Chemicals were purchased from the following manufacturers: recombinant human IL-

1β (#200-01B; PeproTech), LPS from Salmonella typhimurium (Sigma-Aldrich, St. Louis, MO, 
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USA), 101.10 (Elim Biopharmaceuticals, Hayward, California; and synthetized as previously 

reported (49, 50)) and Kineret (Anakinra: Sobi, Biovitrum Stockholm, Sweden). 

 

IL-1β-induced PTB model 

Timed-pregnant CD-1 mice were steadily anesthetized with an isoflurane mask for the 

complete procedure. After body hair removal from the peritoneal area, a 1.5 cm medial incision 

was performed with surgical scissors in the lower abdominal wall. The lower segment of the 

right uterine horn was exposed and 1 µg of IL-1β was injected between two fetal membranes 

with care to not enter the amniotic cavity. The abdominal muscle layer was sutured and the skin 

closed with clips. One hundred µL of 101.10 (1 mg/Kg/12h), Kineret (4 mg/Kg/12h) or vehicle 

was injected subcutaneously in the neck 30 mins before stimulation with IL-1β. Time of 

parturition and newborn outcome was assessed every 2 h until term (GD19 - GD19.5). A subset 

of pregnant mice was sacrificed 24 h after the IL-1β injection to collect fluid and tissue samples 

of AF, fetal membranes and placenta for biochemical analysis, and fetuses for gross fetal growth 

assessment. Another subset was killed immediately after delivery (± 2 h postpartum) and 

samples of brain, lung, intestine and white blood cells (as described below) were collected and 

stored at -80 ˚C for biochemical analysis. Pups (up to 8 per litter) were kept with dams and 

weighed every 2-3 days, then killed on post-term day (PT)15 (representing adolescent pups in 

term of brain development) and PT30 (at the stage of young adulthood in term of brain 

development) for further histological and electrophysiological analysis, respectively. 

 

Circulating leukocyte RNA isolation 
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Newborn blood was collected by decapitation, pooled together for each litter and 

immediately transferred into heparin-containing tubes to prevent clotting. White blood cells 

were isolated by centrifugation after a treatment with red blood cell lysis buffer (Norgen Biotek 

Corporation, Thorold ON, Canada) and EDTA according to the manufacturer’s protocol, and 

the resulting pellets were stored at -80˚C. For RNA isolation, pellets were thawed, lysed and 

passed through a RNA-binding column using a leukocyte RNA isolation kit according to the 

manufacturer’s protocol (Norgen Biotek Corporation). Briefly, after washing, RNA was eluted 

from the columns and quantified with using a NanoDrop 1000 spectrophotometer. Equal 

amounts of RNA were used to synthetize cDNA using iScript Reverse Transcription SuperMix 

(Bio-Rad). RT-qPCR was then performed on the samples as described below. 

 

RNA extraction and Real-Time quantitative Polymerase Chain Reaction (RT-qPCR) 

Tissues were thawed and rapidly preserved in Ribozol (AMRESCO, Solon OH, United 

States). RNA was extracted according to manufacturer’s protocol and sample were DNAse-

treated using Ambion DNA-free™ Kit according to the manufacturer’s instructions. RNA 

concentration and integrity were measured with a NanoDrop 1000 spectrophotometer, and 

samples with a A260:A280 ratio of 1.6-1.8 were used in PCR analysis after RNA integrity was 

verified by denaturing agarose electrophoresis. Five hundred ng of RNA was used to synthetize 

cDNA using iScript Reverse Transcription SuperMix (Bio-Rad, Hercules CA, United States). 

Primers were designed using NCBI Primer Blast (see Table I). Quantitative gene expression 

analysis was performed on Stratagene MXPro3000 (Stratagene) with SYBR Green Master Mix 

(BioRad). PCR products were subjected to High Resolution Melt (HRM) analysis to assess 
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primer specificity. Gene expression levels were normalized to 18S universal primer (Ambion 

Life Technology, Burlington ON, Canada) or β-actin. 

 

Murine ELISA assays 

The ELISA assays were performed using the following ELISA kits according to the 

manufacturers’ protocol: mouse IL-1β/IL-1F2 Quantikine (#MLB00C; R&D systems), mouse 

IL-6 Quantikine (#M6000B; R&D systems), mouse IL-8 (#MBS261967; Mybiosource; 

recognizes the IL-8 homologue CXCL2) and mouse PGF2α (#MBS264160; Mybiosource). 

Briefly, tissues were lysed in RIPA buffer (containing proteases inhibitors) and equal amounts 

of proteins (assessed using Bradford method) or 50 µL of fetal plasma or amniotic fluids were 

loaded into a 96-wells plate pre-coated with specific primary antibodies and incubated for 2 

hours at ambient temperature. Wells were then washed 5 times and incubated with enzyme-

linked polyclonal secondary antibodies for 2 hours. After another washing step, a substrate 

solution was added. The enzymatic reaction was stopped after 30 mins and plates were read at 

450 nm, with wavelength correction set to 570 nm. 

 

Western blotting 

Proteins from homogenized placenta lysed in RIPA buffer (containing proteases 

inhibitors) were quantified using Bradford’s method (Bio-Rad). Fifty µg of protein sample were 

loaded onto SDS-PAGE gel and electrotransfered onto PVDF membranes. After blocking, 

membranes were incubated with either an antibody against phospho-JNK (#9251; Cell Signaling 

Technology, Whitby ON, Canada), IL-6 (#sc-1264; Santa Cruz Biotechnology) or β-actin (#sc-
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47778; Santa Cruz Biotechnology). Membranes were then washed with PBS containing 0.1% 

Tween 20 (Sigma-Aldrich, St. Louis, MO) and incubated for 1 hour with their respective 

secondary antibodies conjugated to HRP (Sigma). Enhanced chemiluminescence (GE 

Healthcare) was used for detection using the ImageQuant LAS-500 (GE Healthcare, Little 

Chalfont, United Kingdom) and densitometric analysis was performed using ImageJ (ImageJ, 

NIH, http://rsb.info.nih.gov/ij/). Resulting values were normalized first with β-actin, and then 

as a ratio of the control samples. 

 

Tissue collection and fixation  

 Pups were sacrificed at PT15, intubated via the trachea and perfused with 10% formalin 

(Fisher Scientific) at a pressure of 20 cm. After 10 mins, lung, intestine and brain were collected. 

Briefly, the cranium was opened with surgical scissors (following the sagittal suture from sigma 

to bregma) and the brain was carefully extracted. Then, the lower intestine (1 cm above the 

caecum to the rectum) and lungs were excised and all tissues were fixed in 10% formalin for at 

least 24 h and subsequently transferred to PBS at 4˚C. 

 

Lung, intestine and brain histology 

 Five μm-thick sections were performed on paraffin-embedded lungs (at three levels 

from the apex to base), intestines (ileum to colon) and brains and stained with H&E (lungs and 

brains) or hematoxylin-phloxin-safran (intestine). Images were acquired using 20X objective 

with a high-resolution slide scanner (Axioscan, Zeiss, ON, Canada). 
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Histological analysis 

Analysis were performed with Zen 2 software or ImageJ by evaluators blinded to group 

identification. Tissues were obtained from 2 pups/dam from 6-8 dams per group (total of 28 

dams and 56 pups). A post-analysis was performed to determine if the morphological 

differences observed were dependent on the sex of pups; no significant differences were noted 

(data not shown). 

Lung. Alveolar count was obtained from the mean of two 1 mm2 sections in each tissue section 

analyzed. Alveolar size and parenchymal thickness were obtained from the mean of 10 alveoli 

per tissue section from 2 different areas. The number of intercepts between a 1 mm straight line 

(generated with Zen 2 software) and lung structure was used as an index of alveolar counts (51). 

The results are presented as an absolute number per mm of the mean from 4 distinct 1 mm2 

sections that were free of blood vessels.  

Intestine. Villus height was measured from the basal layer of the submucosa to the ending of the 

villus in the jejunum-ileum; atrophied villi were arbitrarily defined as villi measuring ˂400 µM, 

which corresponds to a 2-fold decrease in mean villus height of controls at same age. In colon, 

lymphoid follicle count was divided by the length of the tissue analyzed and plotted as 

count/mm. The surface of lymphoid follicles was measured on all follicles encountered.  

Brain. Immunohistochemistry was performed as previously described (52). Immunostaining for 

lectin (vasculature, shown in brown) was separated from the purple hematoxylin using the color 

deconvolution function in Image J, and staining density was determined using ImageJ analysis 

software as previously described (53). Staining threshold was then set to detect only specific 
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lectin staining and then applied to all samples, allowing semi-quantitative comparisons of the 

vascular density.  

 

Immunocytochemistry 

Pregnant mice (GD17) injected subcutaneously with 1 mg/Kg 101.10-FITC, FITC alone 

(Sigma) or vehicle were euthanized after 1 h to analyze tissue distribution of the fluorescent-

tagged compounds. Placentas and fetuses were collected and fixed in 4% paraformaldehyde for 

1 day and transferred in 30% sucrose for another day. Localization of 101.10 was determined 

on 14 µm longitudinal placenta and fetus cryosections.  Nuclei were stained with DAPI 

(Invitrogen; 1:5000). Images of the complete sections were captured using a 10X objective with 

Zeiss AxioObserver.Z1 (Zeiss, San Diego, CA) and merged into a single file using the MosiaX 

option in the AxioVision software version 4.6.5 (Zeiss). 

 

Flow cytometry 

Samples were lysed and filtered obtain a single cell suspension, then analysed on a BD 

FACSAria flow cytometer (BD Bioscience, USA) equipped with 488 nm, 405 nm and 633 nm 

lasers and routinely calibrated with CS&T beads (BD Biosciences). Data were processed using 

BD FACS Diva (BD Biosciences) and detection of FITC emission was collected through a 

530/30 band pass filter. A minimum of 10 000 total events were acquired for each sample. Data 

analysis was performed with FlowJo solfware (tree star Inc, Ashland, OR) and results were 

reported as a percentage of positive cells in the tested sample.   
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Visual Evoked Potential 

Visual evoked potential (VEP) is a reliable and sensitive parameter to evaluate 

neurologic functional alterations. VEPs were recorded at P30. Mice were anesthetized using a 

mixture of 80 mg/kg ketamine and 20 mg/kg xylazine. A subcutaneous needle electrode 

(Diagnosys, LLC, US) was inserted under the scalp at the lambda suture and served as the active 

electrode, whereas reference and ground electrodes (Diagnosys, LLC, US) were placed in cheek 

and tail, respectively. Impedance were maintained below 5 kΩ. Visual stimuli were generated 

by a mini-Ganzfield stimulator (3 cd.s/m²). Flash VEP were elicited by a brief flash (≤5 ms) in 

the visual field presented in a dark room (red light) without pre-stimulus. Analogue high pass 

and low pass filters were set at ≤ 1 Hz and at ≥ 100 Hz, respectively. Photic stimulation was 

delivered 100 times at a frequency of 1 Hz. The robust components of flash VEP are N2 and P2 

peaks. Measurement of P2 amplitude was made from positive P2 peak and preceding N2 

negative peak. Each response represents an average of 100 sweeps (performed with Espion E3 

systems).  

 

LPS-induced PTB model, progeny growth trajectory and body composition 

C57Bl/6 (B6) pregnant mice at GD16.5 were injected with 101.10 (1 mg/kg) or vehicle 

intraperitoneally (ip) 30 mins prior to injection of 0.5 μg LPS in 200 μl PBS. Mice were then 

administered additional doses of 101.10 or vehicle on GD 17.0, 17.5 and 18.0. A subset of 

pregnant females was killed by cervical location 4 h post-treatment and the uterus, decidua, 

placenta and fetal brain were dissected from two fetuses (one from each horn), snap-frozen in 

liquid nitrogen and stored at -80ºC for mRNA isolation. Another cohort of female mice was 
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monitored until the time of parturition. Gestation length and the number of pups were recorded. 

Viable pups were weighted within the first 24 h of life. Pups were then sexed at weaning (3 

weeks of age) when they were weighted again. All offspring were weighed at 4 weeks of age 

and then every 2 weeks until 20 weeks of age. At 20 weeks, progeny was anaesthetised (Avertin; 

Sigma-Aldrich) and approximately 1 ml of blood was collected by cardiac puncture before mice 

were weighed and killed by cervical dislocation for full body composition analysis. The 

following tissues were excised and weighed individually; brain, heart, lungs (left and right), 

kidneys (left and right), liver, adrenal glands (left and right), thymus, spleen, testes (males, left 

and right), seminal vesicle (males), epididymis (males), ovaries (females, left and right), uterus 

(females), quadriceps (left and right), triceps (left and right), biceps (left and right), 

gastrocnemius muscle (left and right), retroperitoneal fat, peri-renal fat, epididymal fat (males, 

left and right) and parametrial fat (females). Weights of tissues and organs present on both the 

left and right sides were summed. Total muscle weight was calculated by adding the combined 

weights of the quadriceps, triceps, and biceps and gastrocnemius muscles. Total fat weight was 

calculated by adding the combined weights of the retroperitoneal fat, peri-renal fat and 

epididymal fat (for males) or parametrial fat (for females). Total muscle and total fat weights 

were used to calculate the muscle:fat ratio. Total fat weight was subtracted from total body 

weight to calculate the total lean weight.  

 

Serum Preparation 

Immediately following collection, serum was prepared by first allowing blood to clot at 

room temperature for 30 mins, then serum was separated by centrifugation at 4000 rpm for 5 
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mins, removed and divided into small individual aliquots to avoid multiple freeze-thaw cycles. 

Serum aliquots were immediately stored at -80ºC until assay. 

 

Mouse Luminex Assays 

Adiponectin and Leptin were quantified by Luminex multiplex microbead assay 

(Millipore, Australia), according to the manufacturer's instructions. For adiponectin, serum 

samples were diluted 1 in 5000 in assay buffer, as recommended by the manufacturer, whereas 

for leptin, samples were tested neat. The minimum detectable threshold was 3.0 pg/ml and 4.2 

pg/ml for adiponectin and leptin, respectively. 

 

Statistical analysis 

All data was analysed using SPSS Version 20.0 software (SPSS Inc, Chicago, IL) or 

Graphpad Prism version 6.0 software (Graphpad Software, San Diego, CA). Groups were tested 

for normality using a Shapiro–Wilk test. One-way analysis of variance (ANOVA) or two-tailed 

Student’s t-test was employed when data were normally distributed. Dunnett’s multiple 

comparison method was utilized when data were compared to a single control. A Kruskal-Wallis 

test followed by a Mann-Whitney U-test was used when the data were not normally distributed. 

Body composition data is expressed as estimated marginal mean ± S.E.M. and analysed as a 

Mixed Model Linear Repeated Measures ANOVA and post-hoc Sidak test, with litter size as a 

covariant. A value of p˂0.05 was considered statistically significant. Data are presented as 

means ± S.E.M for large sample size and individual values + median for small sample sizes. 
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Results 

Administration of IL-1β in utero induces adverse perinatal outcomes  

 To study the implications of antenatal exposure to IL-1β, we administered IL-1β 

intrauterine in late gestation (GD16; normal gestation length =19.5 days) (Fig.1A) to induce 

uterine inflammation and preterm delivery (42, 54).  IL-1R competitive antagonist Kineret and 

noncompetitive IL-1R antagonist (small all-d peptide) 101.10 (44) were administered 

subcutaneously to additional groups of IL-1β-treated dams twice daily from GD16 to GD18. IL-

1β shortened gestation length (Fig.1B) and induced substantial neonatal mortality (Fig.1C,D), 

whereas co-administration of 101.10, but not Kineret, significantly improved these outcomes. 

The majority of pups alive after birth survived the first week of life in all treatment groups 

(Fig.1E).  

Given the high neonatal mortality rate, we examined the fetal response to IL-1β by 

conducting gross and histological examination of fetuses after 24 h of exposure to IL-1β in 

utero. We found that a majority of fetuses from IL-1β-treated dams displayed an 

underdeveloped anatomy in addition to noticeable autolysis (Fig. 1F, arrows). In contrast, none 

of these features were observed in fetuses from IL-1β-treated dams receiving 101.10, in line 

with improved neonatal survival as previously described (see Fig. 1C). In fetuses that developed 

normally, no significant difference in morphological parameters between groups was found after 

24h exposure to IL-1β in utero, as measured by histological analysis (Fig.1G; Table 2). 

Correspondingly, the weight of viable newborns was not significantly different between groups 

(Fig.1H), suggesting that short-term exposure to (non-lethal) inflammation is insufficient to 

affect late prenatal growth, although a slight tendency is observed for weight. 
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Uterine IL-1β induces an inflammatory response in placenta, fetal membranes and amniotic 

fluids which propagates to newborn 

 To characterize the maternal and fetal inflammatory response triggered by IL-1β in 

pregnant uterus and to further explore the link between maternal-onset inflammation and the 

adverse perinatal outcomes observed herein, we performed biochemical analysis on feto-

maternal tissues (placenta, fetal membranes and amniotic fluids collected 24 h after IL-1β 

injection) of normally developed fetuses (see Fig.1F-H and Table 2). Placental expression of 

genes encoding key proinflammatory factors, including TNFα, IL-6, CCL2 and COX-2, was 

upregulated in IL-1β-treated dams (Fig. 2A). This upregulation was blocked by 101.10, which 

is readily able to access the placenta (Fig. S1A-D), and to a lesser extent Kineret as previously 

reported for other inflammatory genes including Il1b and Il8 (42); anti-inflammatory IL-10 and 

IL-4 were unaffected by IL-1β in absence or presence of 101.10 or Kineret (Fig. 2A). The strong 

induction of placental Il6 by IL-1β (and its downregulation by 101.10) was reflected in protein 

abundance (Fig.2B) and was associated with activation (by phosphorylation) of the IL-1R-

induced stress kinase JNK (Fig. S2A). A similar proinflammatory profile was observed in fetal 

membranes (Fig. S2B). Furthermore, proinflammatory mediators associated with parturition 

(IL-1β, IL-6, IL-8 and PGF2α) in amniotic fluids were concurrently elevated in IL-1β-treated 

dams (Fig.2C-F), suggesting propagation of the initial inflammatory response into the fetal 

compartment as expected (3, 55). Again, 101.10 blocked this effect with more efficacy than 

Kineret (at recommended doses, effective on maternal inflammation (42)). The inefficacy of 

Kineret on fetal-placental inflammation was dose-related as higher doses reduced inflammation 

and preterm birth (Fig. S2C-E). 



 

176 

To confirm dissemination of maternal inflammation to the fetus, we quantified 

proinflammatory mRNAs and proteins in white blood cells and plasma of neonates (collected 

within an hour of birth). A significant increase in Il1b, Il6, Il8, Il10, Pghs2, Tnfa and Crp was 

observed in circulating white blood cells (Fig.2G), associated with elevated levels of IL-1β, IL-

6 and IL-8 in plasma (Fig.2H-J). Again, 101.10 abrogated this increase with higher efficacy than 

Kineret. Notably, FITC-coupled 101.10 was not detectable in fetal tissues when administered 

s.c. to dams (Fig. S1E-H), suggesting that its protective effects on the fetus may be mediated 

via suppression of gene expression in placenta and gestational tissue, as opposed to direct 

suppression of IL-1β signaling within the fetus (see Fig. 2A,B, Fig. S2A,B and Fig. S1A-D). 

 Given the strong elevation in plasma cytokines IL-1β, IL-6 and IL-8 in newborns 

exposed to IL-1β in utero, we assessed if the lung, intestine and brain, which are well-perfused 

organs particularly vulnerable to inflammatory insults (10-13), were affected by the systemic 

inflammatory response. We found significant elevation in IL-1β, IL-6 and IL-8 in lung (Fig.3A-

C), of IL-1β and IL-8, but not IL-6 in intestine (Fig.3D-F) and of IL-1β, IL-6 and IL-8 in brain 

(Fig.3G-I). Newborns from IL-1β-treated dams administered 101.10 were protected, whereas 

Kineret had only a modest effect on some factors. 

 

In utero exposure to IL-1β induces marked morphological alterations and malformations in 

lung, intestine and brain of developing offspring 

 To determine if the systemic inflammatory response triggered in newborns from IL-1β-

treated dams was associated with abnormalities in organ development, as is observed in human 

(3, 56), we studied litters from birth to PT15. Concordant with the unaffected neonatal weight 
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observed between groups in viable pups (see Fig. 1H), growth from PT1 to PT13 was unaffected 

by treatments (Fig. S2F). However, histological analysis of the lung, intestine and brain revealed 

marked morphological alterations. Lungs of pups exposed to IL-1β displayed a grossly atypical 

lung parenchyma histology featuring disrupted alveolarization (Fig.4A). Semi-quantitative 

analysis of lung morphology revealed a 2-fold decrease in alveolar count induced by antenatal 

exposure to IL-1β associated with a 2-fold increase in alveolar size, a significant decrease in 

septation count (Fig.4D) and a 2-fold increase in parenchymal thickness (Fig.2E). This 

phenotype was not observed in pups born from dams administered 101.10, whereas Kineret 

conveyed only partial improvement.  

The intestine of pups from IL-1β-treated dams exhibited an abnormal shortening in villi 

(Fig.5A,B) associated with an increased incidence of villous atrophy (Fig.5C) in the jejunum-

ileum. In the upstream intestine, this abnormality was associated with a marked loss in the 

quantity of colon-resident lymphoid follicles (Fig.5D,E). The remaining follicles exhibited a 

significantly smaller size (Fig.5F), suggesting compromised colon immunity. Treatment with 

101.10 and Kineret both protected against jejunum-ileum and colon injury; however, Kineret 

was ineffective in normalizing the quantity of lymphoid follicles (see Fig.5E). 

In the brain, systemic perinatal inflammation impairs angiogenesis (57) to elicit major 

lifelong pathophysiological implications (58, 59). Perinatal brain injury is generally widespread 

throughout the brain inferring an abnormality in vascularization (60). In pups exposed to IL-1β 

in utero, we found a significant microvascular degeneration in the cortex, cingulum, 

hypothalamus (CA3 and dentate gyrus), but not in the striatum (Fig. 6A-F). This was associated 

with decreased brain weight that persisted to adulthood (Fig. 6G-H). 101.10 and Kineret both 
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prevented these injuries, with the exception that Kineret did not improve microvascular 

degeneration in the CA3 region of the hypothalamus. 

Given the vascular impairment in the developing cortex of pups exposed in utero to IL-

1β, and the loss in total brain mass which is indicative of decay in cortical structure and function 

in human (60), we conducted electrophysiological measurements of visual evoked potential 

(VEP) to objectively assess cortical function in young adults. We found that young adults 

(PT30) exposed to IL-1β in the antenatal phase presented severe abnormalities in VEP 

performance, with a decreased amplitude and delayed latency of key N2 and P2 components 

(Fig. 7A-C). These and other VEP anomalies were noted in 100% (6/6) of young adults exposed 

to IL-1β analyzed. Among the anomalies, absent VEP (characterized by unrecognizable P or N 

component) was observed in 50% of animals exposed to IL-1β (Fig.7D; Fig. S3A), suggesting 

a compromised cortical function that is concordant with observations in human infants with 

neurological disorders (61). Antagonism of IL-1R by either 101.10 or Kineret prevented these 

outcomes.   

  

101.10 prevents adverse obstetrical and perinatal outcomes triggered by LPS  

Our previous data suggest that IL-1 is sufficient to trigger major adverse obstetrical, 

perinatal, and developmental outcomes and identify 101.10 as an effective tool to prevent its 

action, whereas Kineret exhibits sporadic and attenuated efficacy (42, 62). We proceeded in 

investigating if 101.10 exhibits effective therapeutic potential in a clinically-relevant model 

triggered by bacterial products, an important upstream cause of uterine inflammation associated 

with poor neonatal outcomes (63); 0.5 µg of LPS, a dose shown previously to trigger robust IL-
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1 release (64), was administered (ip) at GD16.5 (Fig.8A) and induced PTB (Fig.8B), as amply 

documented by our group and others (42, 65). Accordingly, 101.10 decreased PTB induced by 

LPS with comparable efficacy as previously reported (42).  

We found that 101.10 significantly improved LPS-induced survival at birth and at 1 

week of age (Fig.8C-E). Viable pups did not display significant differences in weight at birth 

(Fig.8F). Biochemical analysis of feto-maternal tissue collected 4 h after LPS exposure revealed 

marked and consistent activation of major proinflammatory mRNA transcripts in the uterus 

(Fig.9A), decidua (Fig.9B), placenta (Fig.9C) and fetal brain (Fig.9D). The 101.10 significantly 

decreased activation of these genes, with the exception of uterine and placental Il12b (p=0.10). 

In a comprehensive analysis of offspring phenotype, growth trajectory from week 3 to 

week 20 (Fig. S3B-C), as well as body morphometry of ˃20 tissues (Table S1A-B) and serum 

adipocytokines assessed at week 20 of life to assess metabolic function (Fig. S3D-E), were 

unaltered by treatment with 101.10 regardless of sex. Although 101.10 treatment caused a small 

reduction in body weight in male and female pups at 4 weeks of age after treatment, this was 

not seen when 101.10 was administered in combination with LPS. The only difference in adult 

offspring exposed to 101.10 plus LPS in utero was a 12% reduction in epididymis weight in 

males. 
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Discussion 

 Inflammation is an essential physiological mechanism employed by complex organisms 

to respond to infection and non–infectious insults including oxidative stress, hypoxia-ischemia 

and senescence. Inflammatory processes can become pathological depending on their location, 

timing, intensity, and chronicity. Overt inflammation, triggered by several stressors encountered 

by preterm infants, is a common upstream pathway observed in major perinatal diseases in the 

presence and absence of infection (10, 12, 13, 66, 67), including when excessive inflammation 

is triggered before birth (68). Accordingly, a causal relationship between inflammation and 

various neonatal diseases is firmly established (3, 14, 17-19).  

Systemic inflammation of the fetus and newborn is referred to as fetal inflammatory 

response syndrome (FIRS) and is clinically defined by elevated levels of IL-6 and other pro-

inflammatory cytokines in fetal blood. FIRS is an independent risk factor of neonatal morbidity 

that affects multiple organs particularly the lung, intestine and brain (3, 56, 66). In our study, 

we have shown that the inflammatory response to IL-1β in utero spreads from the uterine cavity 

to placenta and fetal membranes to induce a systemic fetal response characterized by ˃4-fold 

increase in fetal plasma levels of IL-1β, IL-6 and IL-8 paralleled by leukocyte-mediated 

transcriptional induction of Il1b, Il6, IL8 and other proinflammatory genes. This fetal 

inflammatory response is known to result in morphological anomalies and injuries to lung, 

intestine and brain (10-13). 

 

Major organ injuries of the newborn associated with inflammation  
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Several tissues in the neonate are particularly prone to inflammatory damage which may 

begin before birth and be exacerbated by treatments and conditions to which the neonate is 

exposed. The immature lung of the premature infant is vulnerable to proinflammatory insults 

such as infection, hyperoxia and mechanical stress and can therefore easily be injured by oxygen 

therapy, ventilation or other insults in the first hours after birth. Pathological inflammation 

induces severe lung injuries in newborns, particularly those born preterm, characterized by loss 

in alveolar septation, reduced maturation of epithelial cells, parenchymal thickening, and 

diminished capillary density (27, 69, 70). During gestation, amniotic fluid is inhaled by the fetus 

and acts as an additional carrier of cytokines and other proinflammatory mediators to the fetal 

alveoli. Thus, antenatal exposure to intra-amniotic inflammation represents a strong and 

independent risk factor for the development of bronchopulmonary dysplasia (BPD) (4), an 

alveolar and vascular damage which results in pronounced disruption in alveolarization.  

Inflammation is well-recognized as a final common pathway to BPD wherein IL-1 is a 

critical contributor (17). Consistent with this, elevated cytokines (IL-1β, IL-6 and TNFα) in the 

airway of premature newborns is associated with the onset of BPD (24, 71) and postnatal 

administration of IL-1 induces a BPD-like phenotype in mice (27). Pathological inflammation 

can begin before birth in the form of chorioamnionitis or related conditions and stemming 

antenatal inflammation may improve of the prospect for BPD (17). Herein, we observed that 

lungs of pups born from IL-1β-treated dams displayed an increase in concentrations of various 

cytokines leading to severe morphological changes, consistent with features of BPD (70).  

The gastrointestinal tract harbours the largest lymphoid tissue in the body consisting of 

resident lymphocytes grouped in follicles, but also of cells of the innate immune response such 
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as macrophages and DCs localized in the intestinal mucosa; these phagocytes present antigens 

to follicle-resident lymphocytes, coordinating immunologic defense mechanisms (72).  

Inflammation is a primary cause of necrotizing enterocolitis (NEC) (73). NEC is 

characterized by increased circulating and intestinal cytokines levels, including IL-1β, in 

neonates (21, 74) and a decreased expression of endogenous IL-1Ra 2-3 is seen weeks prior to 

the onset of NEC (75). Correspondingly, targeting the inflammatory response in mice protects 

against experimental NEC (18).  

We found that exposure to IL-1β during gestation induced an increase in intestinal levels 

of IL-1β and IL-8 in newborns leading to intestinal anomalies later in life. Specifically, villus 

integrity in the jejunum-ileum was severely compromised in young adolescent progeny exposed 

to IL-1, as reported in other models of neonatal intestinal injury (76, 77). Furthermore, a 

significant decrease in the size and number of lymphoid follicles was observed, possibly 

predisposing to inadequate immune-surveillance. Transcription factor NF-κB exerts a crucial 

role in maintaining intestinal immune-surveillance (78) and interestingly, NF-κB activity is 

preserved by 101.10, but abolished by Kineret (42), which may explain the inconsistent 

protective efficacy of Kineret in the colon. 

Chorioamnionitis and antenatal exposure to inflammation causes major detriment to 

cerebral development (79). Numerous meta-analyses have linked chorioamnionitis to 

impairments of the newborn brain, including periventricular leukomalacia and cerebral palsy 

(80). Correspondingly, antenatal exposure of the fetus to inflammation is a strong and 

independent risk factor of cerebral palsy (5). Of all the cytokines implicated IL-1 stands out, as 

pre-clinical and clinical evidence suggests it directly induces neurotoxicity (81), whereas its 
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blockade using pharmacological or genetic approaches exerts neuroprotective effects in animal 

models (19, 62). A systematic review of 47 studies with a positive correlation between cytokine 

and neonatal infection or neurological insults concurs that levels of IL-1β in cord or neonatal 

blood are augmented in 100% of patients with neurological insults (82).   

Fetal and neonatal inflammation is widespread throughout the neural vascular network 

(33, 83) resulting in generalized microvascular degeneration which in turn causes diffuse injury 

to the brain resulting in globally reduced brain mass, volume, and function, as observed in 

similar rodent studies (33, 84) as well as in extreme premature infants (60).  

VEP provides an objective assessment of brain function and is regularly utilized in 

infants to identify brain pathology (85). In this context, a study by Kato et al. reported VEP 

anomalies (including absent VEP) in all infants suffering from periventricular leukomalacia 

(61). In line with this, pups exposed to IL-1β presented VEP anomalies and absent VEP was 

observed in 50% of cases. In utero antagonism of IL-1R abrogated IL-1-induced cerebral 

inflammation at birth and its consequences for the vascular network, brain weight and VEP, 

demonstrating an efficacy comparable to that of neuroprotective therapies delivered to the 

neonate (62, 86). A similar efficacy of 101.10 was observed in relevant LPS-treated animals 

(see Fig.9). 

 

Pathophysiological contribution to neonatal diseases: inflammation versus prematurity 

It is not clear whether the consequences of intrauterine inflammation in infants eventuate 

due to shorter gestation and immaturity at birth, or directly due to detrimental effects of 

inflammation on tissues (3, 86). Compelling clinical evidence points to antenatal inflammation 
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in tissue injury independent of gestation length (3-6, 56, 66, 87). This body of evidence is 

complemented with pre-clinical data clearly demonstrating that: 1) induction of preterm birth in 

mice using intrauterine infusion of proinflammatory LPS at GD15 induces an elevation in 

cerebral cytokine levels and neurological injury to the fetus, whereas none of these features are 

observed when preterm birth is induced using a non-inflammatory model of progesterone 

inhibition (88); 2) administration of LPS to pregnant mice at GD15 and GD18 induces 

comparable acute injury to fetal brain, despite that pregnant mice treated at GD15 deliver 

prematurely whereas those treated at GD18 deliver at term (89); 3) intrauterine administration 

of LPS in pregnant mice at term induces inflammation in the fetal brain and causes neurotoxicity 

(90) consistent with clinical evidence that chorioamnionitis at term can impair neurobehavioral 

outcome in infants (91-94); and 4) administration of Kineret to pregnant mice treated with LPS 

improves neurological outcomes without preventing preterm birth (62), as reaffirmed in the 

present study. Overall, this suggests that both preterm labor and inflammation need to be tackled 

by effective and targeted therapeutics to improve gestation outcome. This study uncovers a 

pivotal contribution of IL-1 in this process, and shows that targeting IL-1 is effective in 

preventing fetal inflammatory injury in an infection model. 

 

Contrast in efficacy between 101.10 and Kineret 

 Although both 101.10 and Kineret elicit improved outcomes for tissue integrity of 

progeny after IL-1 exposure, 101.10 is more consistently effective than Kineret in other aspects 

particularly in inhibiting in utero inflammation, preventing PTB and improving neonatal 

mortality. The inefficacy of Kineret to block in utero inflammation and PTB is related to dose, 
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suggesting that the uterine inflammation responsible for preterm labor is more pronounced and 

difficult to tackle than the placental response leading to neonatal inflammatory injury. This is 

supported by the fact that Kineret (standard dose of 4 mg/Kg/12h) elicits a modest (albeit not 

statistically significant) inhibition of essentially all inflammatory mediators which leads to 

lower levels of cytokines in the fetal amniotic fluid as well as in fetal tissues per se. 

Correspondingly, these observations on Kineret in fetal-placental inflammation also apply to 

LPS-induced PTB (62). Accordingly, lower (standard) doses of Kineret are able to reduce 

placental inflammation sufficiently to convey protection to the fetus (62, 86); on the other hand, 

prevention of preterm birth needs much higher doses of Kineret to inhibit inflammatory factors 

to a greater degree in the utero-placental compartment. This disparity in potency may be due to 

pharmacological considerations, including: a) competitive antagonists rely on high 

concentrations at the site of action to establish a favorable antagonist/agonist ratio, whereas non-

competitive antagonists bind to a site remote from the natural ligand binding site and their 

effects are for the most part independent of agonist concentrations (95); and 2) small molecules 

such as 101.10 (0.85 kDa) have increased access and distribution to tissue. Yet, neither 101.10 

(as shown herein) nor Kineret (96) crosses the placenta in significant amounts even under 

inflammatory conditions, suggesting that their therapeutic effects on pups are mediated 

indirectly through actions in the maternal gestational tissues which spread inflammation into the 

fetal placental and tissue compartments. 
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Conclusion 

In summary, we herewith report harmful effects of antenatal exposure to IL-1 on the 

development of progeny from intrauterine life to adulthood, and demonstrate that suppression 

of IL-1 signaling using a novel peptide inhibitor of the IL-1 receptor is efficacious in rescuing 

pups from injury in an LPS-induced model of fetal inflammatory insult. This work has 

implications for the development of therapeutic molecules for pregnancy disorders wherein IL-

1 plays a pathophysiological role such as chorioamnionitis, which affects a significant 

proportion of PTB and is associated with adverse neonatal outcomes independently of the 

duration of gestation. Our work substantiates the increasing evidence suggesting that it is 

insufficient simply to tackle uterine contractions in preterm labor to ultimately improve neonatal 

outcome. Suppressing the harmful effects of an excessive antenatal exposure to IL-1 using 

101.10 during pregnancy appears to be a safe, potent, and effective therapeutic modality to 

protect the fetus exposed to intrauterine inflammation. As a small molecule able to access the 

placental tissue, 101.10 may have therapeutic advantages over the currently available drug 

Kineret.    
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Figure legends 

Figure 1. Adverse gestational and perinatal outcomes are induced by antenatal exposure 
to IL-1β, and corrected by 101.10. A, 101.10 (1mg/Kg/12h), Kineret (4 mg/Kg/12h) or vehicle 

are administered subcutaneously for 2 consecutive days and IL-1β (1µg) is administered 

intrauterine at GD16.5. B-D, gestation length (B), viable pup count (C) and pup survival rate as 

determined by counting breathing and non-breathing pups at birth (D). E, pup survival rate at 

one week (denominator is viable pups at birth). F, representative images of late gestation fetuses 

recovered from dams administered IL-1β with or without 101.10, analyzed after autopsy at 

GD17.5 (24 h after intrauterine IL-1β injection). Pups displaying gross morphological or 

developmental anomalies are indicated with arrows. G, representative micrograph of the 

morphology measurements (shown in Table 2) in a normally developed pup at GD17.5. H, pup 

weight at 24 h post-birth.  n=18-50 dams/grp for gestational and neonatal outcome data, and 8-

15 dams/grp for post-birth data. Values are presented as mean ± S.E.M. ***p˂0.001 by one-

way ANOVA with Dunnett’s post-analysis. 

Figure 2. Inflammatory cytokines induced in the placenta, amniotic fluid and neonatal 
blood are induced by antenatal exposure to IL-1β, and corrected by 101.10. A-B, placentas 

were collected 24 h after uterine exposure to IL-1β to perform quantitative PCR (A) and 

immunoblots against IL-6 (B). PCR results are relative to 18S and plotted as fold change vs. the 

control groups. Immunoblot quantification was normalized with β-actin and plotted as fold 

change vs. sham. n=3-4 dams/grp. C-F, cytokine (IL-1, IL-6 and IL-8) and PGF2α levels in 

amniotic fluids collected 24h after IL-1β intrauterine exposure. n=4 sacs/grp. G, quantitative 

PCR performed on isolated white blood cells from newborn pups. The blood of 4-8 newborns 

per litter was pooled together to achieve sufficient mRNA levels, n= 5-7 dams/grp. H-J, levels 

of IL-1, IL-6 and IL-8 in plasma samples from newborn pups. The blood of 4-8 newborns per 

litter was pooled together to achieve sufficient mRNA levels, n= 7-9 dams/grp. Individual values 

are presented with median. *p˂0.05, **p˂0.01, ***p˂0.001 by one-way ANOVA with 

Dunnett’s post-analysis. 

Figure 3. Inflammatory cytokine gene expression in the newborn lung, intestine and brain 
is induced by antenatal exposure to IL-1β, and corrected by 101.10. A-P, cytokines levels 

in lung (A-C), intestine (D-F) and brain (G-I) of newborns. n=4 newborns/grp. Individual values 
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are presented with median. *p˂0.05, **p˂0.01, ***p˂0.001 by one-way ANOVA with 

Dunnett’s post-analysis. 

Figure 4. Lung injury in adolescent offspring is induced by antenatal exposure to IL-1β, 
and corrected by 101.10. A, representative image of the lung parenchyma stained with H&E. 

Lungs were collected following in vivo formalin perfusion. Scale, 250µM.   B-E, measurement 

of alveolar count (A), alveolar size (B), alveolar septation count (C) and parenchymal thickness 

(D) performed on full tissue slides using Zen2 software. Data were collected on adolescent pups 

(PT15) from 6-8 dams/grp. Values are presented as mean ± S.E.M. ***p˂0.001 by one-way 

ANOVA with Dunnett’s post-analysis. 

Figure 5. Morphological anomalies in intestine of adolescent offspring is induced by 
antenatal exposure to IL-1β, and corrected by 101.10. A, representative images of intestinal 

villi integrity as assessed in HPS-stained jejunum-ileum. Scale, 1000µM. B-C, villi height was 

quantified using Zen2 software (B); atrophied villi were defined as villi measuring ˂ 400µM 

and plotted as a percentage (C). D, representative images of colon-resident lymphoid follicles. 

Scale, 250µM. E-F, quantification of the number of lymphoid follicles (E) and their surface (F) 

was performed using Zen2 software. Data were collected on adolescent pups (PT15) from 6-8 

dams/grp. Values are presented as mean ± S.E.M. *p˂0.05, **p˂0.01, ***p˂0.001 by one-way 

ANOVA with Dunnett’s post-analysis. 

Figure 6. Microvascular degeneration in brain of adolescent offspring associated with 

cortical malfunction in adulthood is induced by antenatal exposure to IL-1β, and corrected 
by 101.10. A-E, representative images and quantification of vessel density in cortex (A), 

cingulum (B), hypothalamus (C,D) and striatum (E) of adolescent pups. F, negative control 

showing nonspecific staining. G, the areas quantified are represented on the full cerebral right 

hemisphere micrograph. H-I, brain weight of adolescent pups (H) and young adults (I). Data 

were collected on adolescent pups (PT15) from 6-8 dams/grp and from young adults (PT30) 

from 3-4 dams/grp (total of 6-8 young adults/grp). Values are presented as mean ± S.E.M. 

*p˂0.05, **p˂0.01, ***p˂0.001 by one-way ANOVA with Dunnett’s post-analysis. 

Figure 7. Cerebral functional impairment in adulthood is induced by antenatal exposure 
to IL-1β, and corrected by 101.10. A, representative VEP measured on young adults (PT30) 
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that were exposed during gestation to IL-1β with or without treatment with 101.10 or Kineret. 

B-C, amplitude (B) and latency (C) or the N2 and P2 components of the VEP. D, % of VEP 

anomalies and absent VEP in each group. VEP anomalies include significantly delayed latency 

or decreased amplitude of the P2 component, or absent VEP (See Figure S2D). Data were 

collected from 6 mice/grp. Values are presented as mean ± S.E.M. **p˂0.01, ***p˂0.001 by 

one-way ANOVA with Dunnett’s post-analysis. 

Figure 8. Therapeutic effect of 101.10 on gestational and perinatal outcomes following LPS 
treatment. A, pregnant females were given either LPS or vehicle i.p. on GD16.5, then 101.10 

or vehicle at 12 h intervals on G 16.5, 17.0, 17.5 and 18.0. B-D, gestation length (B), viable pup 

count (C) and pup survival rate as determined by counting breathing and non-breathing pups at 

birth (D). E, pup weight at 12-24 h post-birth. F, pup survival rate at one week (denominator 

represents viable pups at birth). n=10 dams/grp. Values are presented as mean ± S.E.M. *p˂0.05, 

***p˂0.001 by one-way ANOVA with Dunnett’s post-analysis. 

Figure 9. 101.10 protects against LPS-mediated induction of proinflammatory cytokines in 
gestational and fetal tissues. A-D, Uterus (A), decidua (B), placenta (C) and fetal brain (D) 

were recovered from dams treated with LPS. Relative expression of Il1a, Il1b, Il6, Tnf, Il10 and 

Il12b mRNA transcripts were determined in each tissue by quantitative PCR normalized to Actb. 

Two implantation sites were collected per dam, n = 12 (6 dams/group). Values are presented as 

mean ± S.E.M. *p˂0.05, **p˂0.01, ***p˂0.001 by one-way ANOVA with Dunnett’s post-

analysis. 
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Supplementary figure legends 

Figure S1. Biodistribution of 101.10 to placenta and fetus. A-D, placentas were collected 1 h 

after subcutaneous injection of 101.10-FITC, FITC alone or vehicle and FITC expression was 

assessed using fluorescence microscopy (A-C) or flow cytometry (D). Scale, 1000µM. E-H, 

fetuses were collected 1 h after subcutaneous injection of 101.10-FITC, FITC alone or vehicle 

and FITC expression was assessed using fluorescence microscopy (A-C) or flow cytometry (D). 

Scale, 2500µM. Values are presented as mean ± S.E.M. **p˂0.01, ***p˂0.001 by one-way 

ANOVA with Dunnett’s post-analysis. 

Figure S2. Proinflammatory effects of IL-1β on placenta and fetal membranes, and growth 
trajectory of developing pups. A, immunoblot was performed on placentas collected 24 h after 

IL-1β intrauterine exposure. Membranes were incubated with antibodies against phospho-JNK 

or β-actin as a loading control. Densitometric analysis of protein band density was normalized 

with β-actin and plotted as fold change vs. sham.  n=3 dams/grp. B, fetal membranes were 

collected 24 h after IL-1β intrauterine injection to perform quantitative PCR. Results are relative 

to 18S and plotted as fold change vs. the control groups. Individual data are presented with 

median. C-D, uteri were collected 24 h after IL-1β intrauterine injection to perform quantitative 

PCR. Results are relative to 18S and plotted as fold change vs. the control groups. Individual 

data are presented with median. E, gestation length after an i.u. injection of IL-1β and s.c. 

treatment with 101.10, Kineret or vehicle at the indicated doses. F, Growth trajectory of pups 

until adolescent age. n=6-10 pups/grp. Values are presented as mean ± S.E.M. *p˂0.05, 

**p˂0.01, ***p˂0.001 by one-way ANOVA with Dunnett’s post-analysis compared to IL-1β+ 

Veh. 

Figure S3. Cerebral function impairment in adult mice exposed to IL-1 in utero and growth 
trajectory and metabolism in male and female offspring from LPS-treated dams. A, 

cerebral functional impairment in adulthood is induced by antenatal exposure to IL-1β, and 

corrected by 101.10. Representative VEP measured on young adults (PT30) showing absent 

VEP in young adults exposed to IL-1β in utero. B-C, growth trajectories of male (A) and female 

(B) progeny of LPS-treated dams receiving 101.10 or vehicle. Values are presented as mean ± 

S.E.M. of n=10-22 male and n=11-22 female offspring in each group. Data was analysed by a 

Mixed Model Linear Repeated Measures ANOVA and post-hoc Sidak test, *p˂0.05. D-E, leptin 
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and adiponectin levels in serum samples of male (C) and female (D) progeny at 20 weeks of 

age.  Data were analysed by one-way ANOVA with Dunnett’s post-analysis. Values are 

presented as mean ± S.E.M. of n = 10 male and 10 female progeny per treatment group. A p 

value ˂0.05 was considered significant. 
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Figure 3 
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Figure 9 
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Supplementary Figures 

Figure S1 
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Figure S2 
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Figure S3 
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Tables 

Table I. Primers for mRNA expression analysis  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
  

Gene Forward and Reverse Prime Sequence GeneBank 
accession # 

Il1a F-5’ CCGACCTCATTTTCTTCTGG 3’,  
R-5’ GTGCACCCGACTTTGTTCTT 3’ 

NM_010554.4 

Il1b F-5’ CCAAAGCAATACCCAAAGAAA 3’ 
R-5’ GCTTGTGCTCTGCTTGTGAG  3’ 

NM 008361.3 

Il1b (second pair) F-5’ AGATGAAGGGCTGCTTCCAAA 3’ 
R-5’ GGAAGGTCCACGGGAAAGAC 3’ 

NM 008361.3 

Il4 F-5’ CCATATCCACGGATGCGACA 3’ 
R-5’ CTGTGGTGTTCTTCGTTGCTG 3’ 

NM 021283 

Il6 F-5’ ACAACCACGGCCTTCCCTAC 3’,  
R-5’ TCCACGATTTCCCAGAGAACA 3’ 

NM 031168.1 

Il6 (second pair) F-5’ CAACGATGATGCACTTGCAGA 3’,  
R-5’ TCTCTCTGAAGGACTCTGGCT 3’ 

NM 031168.1 

Il10  F-5’ AGGCGCTGTCATCGATTTCT 3’ 
R-5’ TGGCCTTGTAGACACCTTGGT 3’ 

NM 010548.2 

Il10 (second pair) F-5’ TAACTGCACCCACTTCCCAG 3’ 
R-5’ AGGCTTGGCAACCCAAGTAA 3’ 

NM 010548.2 

Il12b F-5’ TGACACGCCTGAAGAAGA 3’ 
R-5’ AGAGACGCCATTCCACAT 3’ 

NM 008352.2 

Il12b (second pair) F-5’ TGGGAGTACCCTGACTCCTG 3’ 
R-5’ AGGAACGCACCTTTCTGGTT 3’ 

NM 008352.2 

Tnf  F-5’ GTAGCCCACGTCGTA 3’ 
R-5’ TCCACGATTTCCCAG 3’ 

NM 013693.3 

Tnf (second pair) F-5’ GCCTCTTCTCATTCCTGCTTG 3’ 
R-5’ CTGATGAGAGGGAGGCCATT 3’ 

NM 013693.3 

Actb  
 

F-5’ CGTGGGCCGCCCTAGGCACCA 3’  
R-5’ ACACGCAGCTCATTGTA 3’ 

NM 007393.3 

Crp F-5’ TCTGCACAAGGGCTACACTG 3’  
R-5’ ATCTCCGATGTCTCCCACCA 3’ 

NM 007768 

Pghs2 F-5’ ACCTCTCCACCAATGACCTGA 3’  
R-5’ CTGACCCCCAAGGCTCAAAT 3’ 

NM_011198.4 

Ccl2 F-5’ GCTCAGCCAGATGCAGTTA 3’  
R-5’ TGTCTGGACCCATTCCTTCT 3’ 

NM_011333 

Ccl3 F-5’ CCCAGCCAGGTGTCATTTTC 3’  
R-5’ GTGGCTACTTGGCAGCAAAC 3’ 

NM_011337.2 

Mpges1 F-5’ GCTGCGGAAGAAGGCTTTTG 3’  
R-5’ GGTTGGGTCCCAGGAATGAG 3’ 

NM_022415   
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Table II. Body morphometry in fetuses 24 h after exposure to IL-1β and vehicle, 101.10 or 

Kineret 

 
Sham 

N = 4 

IL-1β + veh 

N = 4  

IL-1β + 101.10 

N = 4 

IL-1β + Kin 

N = 4 

Head length (mm) 7078 ± 148 7405 ± 293 7498 ± 115 7176 ± 293 

Body length (mm) 20535 ± 194 20587 ± 764 20658 ± 438 20217 ± 694 

Thorax length (m 5623 ± 334 5889 ± 436 5824 ± 238 5677 ± 238 

All data are presented as estimated marginal means ± SEM and analysed using One-way ANOVA with Dunnett’s multiple 

comparison test. Differences between treatment and control groups are considered significant when of p < 0.05. 
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Supplementary Tables 
Table S1A. Body morphometry in 20 week old adult male progeny after exposure to LPS and/or 

101.10  

Absolute weight PBS 
N = 20 

LPS 
N = 10 

PBS + 101.10 
N = 16 

LPS + 101.10 
N = 22 

Lean body weight (g) 22.67 ± 0.46 22.73 ± 0.37 23.59 ± 0.51 23.04 ± 0.42 

Muscle:fat ratio 1.30 ± 0.16 1.53 ± 0.14 1.28 ± 0.18 1.39 ± 0.16 

Total Central Fat (mg) 662 ± 42 633 ± 33 669 ± 46 625 ± 37 

Epididymal Fat (mg) 243 ± 19 240 ± 15 244 ± 20 224 ± 16 

Retroperitoneal Fat 
(mg) 

347 ± 27 318 ± 23 353 ± 30 334 ± 26 

Peri-renal Fat (mg) 70 ± 7 68 ± 5 72 ± 7 65 ± 6 

Combined Muscle (mg) 833 ± 21 828 ± 17 840 ± 23 848 ± 18 

Gastrocnemius (mg) 249 ± 8 249 ± 6 241 ± 9 260 ± 7 

Quadriceps (mg) 309 ± 9 302 ± 7 318 ± 10 313 ± 8 

Biceps (mg) 58 ± 3 63 ± 3 67 ± 4 58 ± 3 

Triceps (mg) 217 ± 7 214 ± 6 215 ± 8 217 ± 6 

Brain (mg) 414 ± 6 409 ± 5 404 ± 7 413 ± 5 

Heart (mg) 128 ± 3 122 ± 3 131 ± 4 128 ± 3 

Lungs (mg) 170 ± 5 167 ± 4 181 ± 5 173 ± 4 

Thymus (mg) 60 ± 3 ab 51 ± 3 a 53 ± 4 ab 63 ± 3 b 

Kidneys R (mg) 172 ± 5 158 ± 4 162 ± 6 159 ± 5 

Kidneys L (mg) 157 ± 5 147 ± 4 156 ± 6 149 ± 5 

Adrenals R (mg) 4 ± 2 4 ± 1 6 ± 2 3 ± 1 

Adrenals L (mg) 4 ± 0 4 ± 0 5 ± 0 4 ± 0 

Liver (mg) 1098 ± 41 1051 ± 35 1141 ± 47 1097 ± 40 

Spleen (mg) 67 ± 5 a 72 ± 4 ab 87 ± 5 b 82 ± 4 ab 

Seminal Vesicle (mg) 255 ± 11 217 ± 9 233 ± 12 218 ± 9 

Testes R (mg) 87 ± 3 85 ± 3 87 ± 3 85 ± 3 
Testes L (mg) 86 ± 3 84 ± 2 85 ± 3 84 ± 3 
Epididymis (L + R) (mg) 116 ± 3 a 108 ± 2 ab 112 ± 4 ab 102 ± 3 b 

All data are presented as estimated marginal means ± SEM and analysed as a Mixed Model Linear Repeated Measures 
ANOVA and post-hoc Sidak test, with litter size as a covariate. Differences between treatment and control groups are 
considered significant when of p < 0.05.  
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Table S1B. Body morphometry in 20 week old adult female progeny after exposure to LPS 

and/or 101.10  

Absolute weight 
PBS 

N = 22 
LPS 

N = 11  
PBS + 101.10 

N = 14 
LPS + 101.10 

N = 11 
Lean body weight (g) 19.73 ± 0.44 19.91 ± 0.47 19.85 ± 0.54 19.44 ± 0.53 

Muscle:fat ratio 1.19 ± 0.05 1.12 ± 0.06 1.18 ± 0.06 1.23 ± 0.06 

Total Central Fat (mg) 623 ± 33 629 ± 36 589 ± 40 562 ± 41 

Parametrial Fat (mg) 202 ± 16 210 ± 18 192 ± 20 180 ± 20 

Retroperitoneal Fat 
(mg) 

345 ± 15 342 ± 16 326 ± 18 317 ± 18 

Peri-renal Fat (mg) 78 ± 6 76 ± 7 71 ± 7 66 ± 7 

Combined Muscle (mg) 731 ± 19 692 ± 22 690 ± 24 673 ± 25 

Gastrocnemius (mg) 226 ± 6 219 ± 7 215 ± 8 207 ± 8 

Quadriceps (mg) 274 ± 9 255 ± 11 254 ± 12 254 ± 13 

Biceps (mg) 52 ± 3 54 ± 3 51 ± 3 48 ±3 

Triceps (mg) 180 ± 5 164 ± 6 170 ± 7 165 ± 7 

Brain (mg) 415 ± 7 417 ± 8 406 ± 9 408 ±9 

Heart (mg) 109 ± 3 111 ± 3 109 ± 3 105 ± 4 

Lungs (mg) 173 ± 9 173 ± 9 174 ± 11 165 ± 10 

Thymus (mg) 64 ± 4 60 ± 4 64 ± 5 70 ± 5 

Kidneys R (mg) 132 ± 5 129 ± 5 122 ± 6 127 ± 6 

Kidneys L (mg) 124 ± 4 119 ± 5 112 ± 5 120 ± 5 

Adrenals R (mg) 4 ± 0 4 ± 0 4 ± 0 4 ± 0 

Adrenals L (mg) 5 ± 0 4 ± 0 4 ± 0 4 ± 0 

Liver (mg) 975 ± 30 975 ± 33 945 ± 37 955 ± 38 

Spleen (mg) 90 ± 6 92 ± 6 93 ± 7 86 ± 7 

Uterus (mg) 64 ± 6 72 ± 7 63 ± 7 66 ± 8 

Ovary R (mg) 16 ± 1  14 ± 1 16 ± 1 13 ± 1 

Ovary L (mg) 17 ± 2  16 ± 2 16 ± 2 13 ± 2 

All data are presented as estimated marginal means ± SEM and analysed as a Mixed Model Linear Repeated Measures 
ANOVA and post-hoc Sidak test, with litter size as a covariate. Differences between treatment and control groups are 
considered significant when of p < 0.05. 
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Abstract 

Background: Uterine inflammatory processes trigger pro-labor pathways and 

orchestrate on-time labor onset. Although essential for successful labor, inflammation needs to 

be regulated to avoid uncontrolled amplification and resolve postpartum. During labor, 

myometrial smooth muscle cells generate ATP mainly via anaerobic glycolysis, resulting in 

accumulation of lactate. Aside from its metabolic function, lactate has been shown to activate a 

G protein-coupled receptor, GPR81, reported to regulate inflammation. We therefore 

hypothesize that lactate produced during labor may act via GPR81 in uterus to exert in a 

feedback manner anti-inflammatory effects, to resolve or mitigate inflammation. Objective: To 

investigate the role of lactate produced during labor and its receptor, GPR81 in regulating 

inflammation in uterus. Study design: We investigated the expression of GPR81 in uterus and 

the pharmacological role of lactate acting via GPR81 during labor, using shRNA-GPR81 and 

GPR81-/- mice. Results: 1) Uterine lactate levels increased substantially from 2 mM to 9 mM 

during labor. 2) Immuno-histological analysis revealed expression of GPR81 in uterus with high 

expression in myometrium. 3) GPR81 expression increased during gestation, and peaks near 

labor. 4) In primary mSMC and ex vivo uteri from wild type mice, lactate decreased interleukin 

(IL)-1β-induced transcription of key pro-inflammatory Il1b, Il6, Ccl2 and Pghs2; suppressive 

effects of lactate were not observed in cells and tissues from GPR81-/- mice. 5) Conversely, pro-

inflammatory gene expression was augmented in uterus at term in GPR81-/- mice and wild type 

mice treated intrauterine with lentiviral-encoded shRNA-GPR81; GPR81 silencing also induced 

pro-inflammatory gene transcription in uterus when labor was induced by endotoxin 

(lipopolysaccharide). 6) Importantly, administration to pregnant mice of a metabolically stable 

specific GPR81 agonist, 3,5-dihydroxybenzoic acid, decreased endotoxin-induced uterine 
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inflammation, preterm birth and associated neonatal mortality. Conclusions: Collectively, our 

data uncover a novel link between the anaerobic glycolysis and the control of uterine 

inflammation wherein the high levels of lactate produced during labor act on uterine GPR81 to 

down-regulate key pro-inflammatory genes. This discovery may represent a novel feedback 

mechanism to regulate inflammation during labor, and conveys a potential rationale for the use 

of GPR81 agonists to attenuate inflammation and ensued preterm birth.  

Keywords. GPR81; Inflammation; Labor; Spontaneous Labor; Myometrium; Parturition; 

Preterm labor; Lactate; Lactic Acid; Pyruvate; Mouse; Lipopolysaccharide; Chorioamnionitis; 

Endotoxin; Chemokine; Cytokine; Interleukin; IL-1; IL-6; CCL2; PGHS2 
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Introduction 

The onset of uterine labor is the culmination of a gradual uterine activation wherein 

physiological inflammation induces a common pro-labor pathway characterized by increased 

myometrial contractility, weakening of fetal membrane integrity and cervical ripening. 

Pathological pro-inflammatory stimuli, as observed in numerous aetiologies of preterm birth 

(PTB), can induce one or more of the components of this common pathway resulting in preterm 

labor and is sufficiently pronounced to induce fetal/neonatal damage as has often been reported 

(1,2); PTB is a leading cause of neonatal mortality and morbidity worldwide (3-5). 

During labor metabolic demand increases beyond tissue oxygenation capacity (6). To 

sustain the vigorous contractions of the myometrium, glycogen and glucose are utilized by 

myometrial smooth muscle cells (mSMC) to produce ATP under relative anaerobic conditions, 

leading to the accumulation of intermediates of carbohydrate metabolites, including lactate (7). 

This anaerobic glycolytic metabolic pathway is extremely active (high lactate/pyruvate ratio) in 

myometrium during labor (8). Accordingly, blood lactate levels of laboring women increase 

considerably as a function of the duration of labor (9). 

Lately, lactate has been demonstrated to activate a G protein-coupled receptor, GPR81 

(also labelled HCA1) (10). This suggests that lactate has unexpected signaling functions beyond 

its traditional metabolic role. Along these lines, a role for lactate in the regulation of 

inflammation has been reported wherein lactate-induced stimulation of GPR81 in leukocytes 

specifically inhibited the inflammasome (11), an important pro-inflammatory system active 

during labor (12); correspondingly, a tocolytic function for lactate has been postulated (13). We 

thus proceeded to study the role of lactate and GPR81 in uterus during labor. Herein, we describe 
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a novel role for lactate in regulating inflammation during labor via activation of GPR81 in 

uterus.    
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Materials and methods 

Experimental design 

This study was designed to address the pharmacological role of lactate via its cognate 

receptor GPR81 in uterus during labor, with a particular focus on its potential contribution to 

the intrauterine inflammatory environment of labor. Loss-of-function experiments were 

designed to acquire direct evidence of the effect of GPR81 in uterus using GPR81-/- and GPR81 

knocked-down mice. Specifically, we investigated the expression of GPR81 in uterus during 

pregnancy using antibody-based methods, namely immunohistochemistry and immunoblotting. 

The transcriptional induction of genes of key inflammatory mediators (e.g. Il6, Ccl2, Pghs2) in 

response to GPR81 stimulation (with lactate or the specific GPR81 agonist 3,5-DHBA), and 

with the addition of the major pro-inflammatory stimulant IL-1β, was measured ex vivo in uterus 

explants, in vitro in isolated mSMC and in vivo in pregnant mice in labor. This set of 

experiments was designed to assess the potential anti-inflammatory effect of uterine GPR81 

when stimulated with exogenous lactate and 3,5-DHBA, or endogenous lactate during labor. A 

widely used lipopolysaccharide (LPS)-induced PTB model was utilized to investigate the 

therapeutic potential of GPR81 stimulation as a mean to decrease uterine inflammation and 

consequently prevent preterm labor and neonatal mortality.  

 

Animals 

Timed-pregnant CD-1 mice were obtained from Charles River Inc. (Montreal, PQ) at 

G11 and were allowed to acclimatize for 2 days prior to experiments. Animals were used 

according to a protocol of the Animal Care Committee of Hospital Sainte-Justine along the 
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principles of the Guide for the Care and Use of Experimental Animals of the Canadian Council 

on Animal Care. The animals were maintained on standard laboratory chow under a 12:12 

light:dark cycle and allowed free access to chow and water. GPR81-/- mice were obtained from 

Lexicon Pharmaceuticals (Texas, USA). The gestational time of GPR81-/- and WT mice was 

monitored every 2 h. 

 

Chemicals 

Chemicals were purchased from the following manufacturers: rhIL-1β (#200-01B; 

PeproTech), lactate (#L1750; Sigma), β-estradiol (#2758; Sigma), 3,5-dihydroxybenzoic acid 

(3,5-DHBA) (#54965; Sigma), lipopolysaccharide E. coli strain 0111:B4 (#L2360; Sigma) 

 

Lentivirus production and intrauterine injection 

We produced infectious lentivirus (LV) by transiently transfecting lentivector and 

packaging vectors into 293FT cells (Invitrogen) as previously described (14). We used five 

different small hairpin RNA sequences against Gpr81 (RMM4534-EG243270; Dharmacon) 

(see Table II for sequences) and selected the most effective (see Suppl. Fig. 4A). In vivo 

infections were performed in pregnant mice at G13 with a single intrauterine injection. Briefly, 

pregnant mice were steadily anesthetized with an isoflurane mask. After body hair removal from 

the peritoneal area, a 1.5 cm-long median incision was performed with surgical scissors in the 

lower abdominal wall. Fifty µL of vehicle, LV.shGFP or LV.shGPR81 was injected in the lower 

segment of both uterine horns (100 µL total) between two fetal membranes with care of not 
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entering the amniotic cavity. The abdominal muscle layer was then sutured and the skin closed 

with clips. Lentivirus were allowed to infect the uterus for 72 h. 

 

LPS-induced preterm birth model 

 Timed-pregnant CD-1 mice were carefully randomized using simple randomization by 

generating computer aided randomized numbers for total animals which were subsequently 

assigned to the indicated treatment groups as explained before (15). Mice were pre-treated at 

G13 with an intrauterine injection of vehicle (n=16), LV.shGFP (n=12) or LV.shGPR81 (n=15) 

(described in the section above). At G16, these animals were anesthetized with isoflurane and 

received an intraperitoneal injection of Escherichia-Coli-derived lipopolysaccharide (LPS, 

single dose of 10 µg in 100 µL saline); space limitations precluded performing these 

experiments in GPR81-knock out mice, as these studies require large number of colonies. In 

other experiments, mice received only the LPS injection without a prior lentivirus intrauterine 

injection. One hundred µL of pH-balanced 3,5-dihydrobenzoic acid (3,5-DHBA; 25 mg/Kg/8h) 

(n=20) or vehicle (n=36) was injected to these animals subcutaneously (in the neck skin) 30 min 

before LPS or vehicle stimulation (to allow distribution of the drug to target tissues in a pre-

clinical efficacy study). The LPS-induced PTB model used was selected on the basis of reported 

documentation (16). For both experiments, deliveries were monitored hourly until term (˃G19). 

During labor (as confirmed with vaginal bleeding and newborns in the nest), female adults were 

anesthetized and uterine fragments from their lower uterus (cervical side) were collected, snap-

frozen in liquid nitrogen and kept at -80°C for subsequent RNA purification. In some cases (e.g. 
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Fig. 5), randomized mice (selected on the same basis described above) were allowed to fully 

deliver to assess neonatal mortality.  

 

Intrauterine IL-1β-induced PTB model  

Timed-pregnant CD-1 mice at G16 were steadily anesthetized with an isoflurane mask. 

After body hair removal from the peritoneal area, a 1.5 cm-long median incision was performed 

with surgical scissors in the lower abdominal wall. The lower segment of the right uterine horn 

was then exposed and 1 µg of IL-1β was injected between two fetal membranes with care of not 

entering the amniotic cavity. The abdominal muscle layer was sutured and the skin closed with 

clips.  

 

Primary myometrial smooth muscle cell and uterine explant isolation and culture 

Primary myometrial smooth muscle cells (mSMC) and uterine explants were isolated 

from WT and GPR81-/- animals using modifications of a method previously described (17). 

Briefly, a single subcutaneous injection of 50 µg 17β-estradiol was administered to mice 24h 

prior to the experiment. The day after, mice were sacrificed by cervical dislocation and sprayed 

with 70% ethanol. The whole uterus was excised under a sterile hood and placed in Hank’s 

balanced salt solution (HBSS), 100 U/mL penicillin-streptomycin (Gibco, Grand Island, NY), 

and 2.5 μg/mL amphotericin B (Sigma). The uterine horns were cleansed of fat and vessels and 

washed by gentle flushing. For explant culture, the uterine horns (including endometrium) were 

cut into 5mm long fragments and immediately incubated in DMEM medium supplemented with 

10% serum for 1 h at 37°C and 5% CO2 (with sufficient volume to completely cover the tissue). 
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Explants were then serum-starved for an additional h and stimulated with 5 ng/ml IL-1β and/or 

10 mM lactate (pH-balanced) or 100 µM 3,5-DHBA for 8 h and frozen at -80ºC for subsequent 

mRNA isolation. Lactate and 3,5-DHBA were added 30 min prior to IL-1β stimulation. For 

primary myometrial smooth muscle cell culture, the uterine horns were cut into 1mm wide 

fragments and transferred into a volume of 10 mL/g of tissue of digestion buffer (1 mg/mL 

collagenase type II [Sigma], 0.15 mg/mL deoxyribonuclease I [Roche Diagnostics, GmbH, 

Mannheim, Germany], 0.1 mg/mL soybean trypsin inhibitor [sigma], 10% FBS, and 1 mg/mL 

bovine serum albumin [Sigma] in HBSS). Enzymatic digestion was performed at 37°C with 

agitation (100 rev/min) for 30 min. The homogenate (still containing undigested myometrium 

fragments) was then poured through a 100 µm cell strainer. The resulting filtered solution was 

centrifuged at 200g for 10 min, the pellet was resuspended in complete DMEM medium and 

plated in a T-25 dish. The remaining myometrium fragments were re-used in an enzymatic 

digestion and the whole digestion-centrifugation process was repeated for a total of 5 times. The 

first two digestion results were discarded because they contained mostly fibroblasts. The three 

other SMC-containing dishes were subjected to a differential adhesion technique to selectively 

enrich for uterine myocytes. Briefly, 30-45 min after the cells were first plated, the medium was 

removed and dispensed in another T-25 culture dish to separate quickly adhering fibroblast from 

slowly adhering myocytes. Cells were further analysed in immunohistochemistry to assess 

culture purity with the smooth muscle cell marker α-actin (see Suppl. Fig. 2). 

 

Cell Culture 
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Primary murine mSMC or human myometrial smooth muscle cells (hTERT cell line) 

were cultured in DMEM growth medium supplemented with 10% serum, 50 U/ml penicillin 

and 50 mg/ml streptomycin. Cells were propagated in regular conditions (37°C, 5% CO2). For 

in vitro experiments, cells (serum-starved overnight) or freshly-isolated uterine fragments from 

WT or GPR81-/- mice were treated with 5 ng/ml IL-1β and/or 10 mM lactate (pH-balanced) or 

100 µM 3,5-DHBA for 8 h. Lactate and 3,5-DHBA were added 30 min prior to IL-1β 

stimulation. Cells and tissues were then collected in Ribozol (AMRESCO, Solon OH, United 

States) and stored at -80ºC for mRNA extraction. 

 

RNA extraction and Real-Time quantitative Polymerase Chain Reaction (RT-qPCR) 

RNA from tissues (from ex vivo stimulation [described above] or collected during 

pregnancy) or cells was extracted according to manufacturer’s protocol. The RNA concentration 

and integrity were measured with a NanoDrop 1000 spectrophotometer. Five hundred ng of 

RNA was used to synthesize cDNA using iScript Reverse Transcription SuperMix (Bio-Rad, 

Hercules CA, United States). Primers were designed using NCBI Primer Blast (see Table I). 

Quantitative gene expression analysis was performed on Stratagene MXPro3000 (Stratagene) 

with SYBR Green Master Mix (BioRad). Gene expression levels were normalized to 18S 

universal primer (Ambion Life Technology, Burlington ON, Canada). Dissociation curves were 

also acquired to test primer specificity. Gene analyzed include: Il1b, Il4, Il6, Il8, Ccl2 

(chemokine ligand 2), Ptghs2 (Prostaglandin H synthetase 2 or COX-2), Oxtr (oxytocin 

receptor), Mmp9 (metalloproteinase 9), Crp (C-reactive protein), Gja1 (connexin 43) and 

Gpr81. 
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Semiquantitative PCR 

hTERT myometrial cells were pre-treated with LV.shGFP or three different forms of 

shRNA encoded in lentivirus (LV.shGPR81A,B,C) for 72h to verify efficacy of the latter in 

knocking down GPR81. Total RNA was isolated with RNase TM mini kit (Qiagen, Germantown 

MD, United States). RT-PCR (only used to verify efficacy of shRNA) was performed as 

described previously (18). QuantumRNA universal 18S standard primers (Ambion) were used 

as internal standard references. LV.shGPR81B was used in vivo to effectively knock down 

GPR81. Note that all other measurements of mRNA were performed by qPCR.  

 

Western blotting 

Proteins from homogenized myometrium fragments collected during pregnancy lysed in 

RIPA buffer were quantified using Bradford’s method (Bio-Rad). Fifty μg of protein sample 

were loaded onto SDS-PAGE gel and electrotransferred onto PVDF membranes. After blocking, 

membranes were incubated with an antibody against GPR81 (#sc-689; Santa Cruz 

Biotechnology, Dallas TX, United States). After washing, membranes were incubated for 1 h 

with their respective secondary antibodies conjugated to HRP (Sigma). Enhanced 

chemiluminescence (GE Healthcare) was used for detection using the ImageQuant LAS-500 

(GE Healthcare, Little Chalfont, United Kingdom). 

 

Lactate quantification assay 
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Age-matched laboring pregnant mice at term (TL) or non-laboring pregnant mice at term 

(TNL) were sacrificed and their uteri were snap-frozen in liquid nitrogen and stored at -80ºC for 

less than a month. A fragment of 400 mg of each uterus was homogenized and used to quantify 

tissue lactate concentration using a colorimetric assay following manufacturer’s protocol (K627; 

BioVision). Readings were made on a microplate reader (EnVision Multilabel reader, 

PerkinElmer, Waltham MA, United States) adjusted for 450 nm. A standard curve of nmol/well 

vs. OD450nm was plotted and sample readings were applied to it and calculated using C = La/Sv 

(nmol/μl or mM); La = lactic acid amount (nmol) of sample from standard curve, Sv = sample 

volume (μl) added into the well. Results were then converted into a concentration unit (mM) 

using the above standard curve. Inter-assay variation (for standards) is 0.5 mM (based on 

laboratory and manufacturer). 

 

Immunohistochemistry 

Myometrial smooth muscle cells were plated on coverslips pre-coated with poly-D-

lysine and fixed in 4% paraformaldehyde. After blocking, cells were incubated overnight with 

rabbit anti-α-actin (#ab5694; abcam) and then for 1 h at ambient temperature with a secondary 

antibody conjugated with Alexa Fluor 488 (green) (Sigma). For tissue immunohistochemistry, 

uteri from pregnant mice in labor and non-pregnant mice were cleansed of fat and vessels and 

fixed in 4% paraformaldehyde for 1 day and transferred in 30% sucrose for another day. 

Localization of GPR81 was determined on 14 µm uterine sagittal cryosections.  Sections 

blocked with 1% bovine serum albumin, 1% goat serum and 0.1% TritonX-100 (T-8787; Sigma) 

in PBS were subsequently incubated overnight with the primary antibodies. Secondary 
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antibodies conjugated with Alexa Fluor (Molecular Probes) directed against rabbit were 

incubated for 2h at ambient temperature. Nuclei were stained with Dapi (Invitrogen; 1/5000). 

Images were captured using 10X (for whole uterus imaging) or 30x (for cells and magnified 

uterus images) objective with Eclipse E800 (Nikon) fluorescence microscope. Whole uterus 

images were captured using a Zeiss AxioObserver.Z1 (Zeiss, San Diego, CA). Images were 

merged into a single file using the MosiaX option in the AxioVision software version 4.6.5 

(Zeiss). 

 

Statistical analysis 

Groups were compared by one-way analysis of variance (ANOVA). Dunnett’s multiple 

comparison method was employed when treatments were compared to a single control. A value 

of p˂0.05 was considered statistically significant. Data are presented as means +/- S.E.M. 
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Results 

The lactate receptor GPR81 is expressed in uterus and its expression increases during 

pregnancy; lactate levels are highest during labor 

GPR81 was found in uterus of pregnant mice in labor (G19) and non-pregnant mice 

within the myometrium layer (Fig. 1A,B); no immunoreactivity to GPR81 was found in uteri 

from GPR81-/- mice (Suppl. Fig. 1), demonstrating specificity;  GPR81 was also localized 

intracellularly, as reported for many other GPCRs (19,20).  

mRNA expression of Gpr81 in uterus increased at G14 (approx. 75% of normal murine 

gestation length) and remained high (compared to non-pregnant mice) until labor (albeit 

borderline significantly increased in term labor), after which it decreased at postpartum (Fig. 

2A). Concordantly, translated protein expression of GPR81 in uterus was highest towards the 

end of gestation at G16 and remained so till parturition (Fig. 2B). Consistently, uterine lactate 

concentration markedly increased during labor from 2 mM to 9 mM (Fig. 2C).  

 

Lactate exerts anti-inflammatory effects on uterine tissue and myometrial cells via GPR81 

 We investigated if lactate/GPR81 modulated inflammation in uterus. Uterine explants 

(from non-pregnant mice) were stimulated with interleukin-1β (IL-1β), a major pro-

inflammatory cytokine implicated in labor (21,22), with and without (pH-buffered) lactate (10 

mM; comparable to concentrations achieved during labor [see Fig. 2C] and consistent with EC50 

of lactate [5 mM] 10). IL-1β caused comparable induction of pro-inflammatory and pro-labor 

genes in non-pregnant mouse uterus from wildtype (WT) and GPR81-null mice (Fig. 3A,B). As 

expected, lactate significantly attenuated expression of the numerous IL-1β-induced pro-
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inflammatory and pro-labor genes in uterus from WT animals, but was ineffective on uterus 

from GPR81-null mice (Fig. 3A,B). Effects of lactate on pro-inflammatory genes were 

corroborated on primary mSMC (see Suppl. Fig. 2 for purity of cells) from WT and GPR81-null 

mice (Suppl. Fig. 3A). Hence, lactate acting via GPR81 conveys anti-inflammatory effects on 

myometrial cells. 

 

GPR81 suppresses inflammation in the uterus in labor 

We further explored the role of GPR81 on uterine inflammation of animals in labor (at 

start of pup expulsion). Increased expression of pro-inflammatory Il1b, Il6, Pghs2, Ccl2, Mmp9 

and Crp, but not of anti-inflammatory Il4 was detected in GPR81-null compared to WT mice 

(Fig. 4A). To rule out possible attenuating compensatory mechanisms that can occur in germ-

line gene knockout mice, we performed similar studies after knocking down GPR81 in the uterus 

using a lentiviral-encoded shRNA targeting Gpr81 (found to be effective in hTERT cells [used 

to select efficacious shRNA, Suppl Fig. 4A], and confirmed in vivo [Suppl Fig. 4B]), which was 

injected intra-uterine to WT mice in intact and in LPS-treated animals (Fig. 4B,C). An increase 

in pro-inflammatory gene transcripts in uterus during labor analogous to that observed in 

GPR81-null mice was detected in GPR81-knocked down mice (Fig. 4B); lentiviral-encoded 

GFP exerted no effect. Since the increased uterine inflammation in GPR81-silenced mice occurs 

during labor process, gestation length was not affected (Suppl. Fig. 4C,E).  

In addition to term labor, we studied the role of GPR81 in preterm labor triggered by 

pro-inflammatory Escherichia Coli-derived LPS (to mimic infectious/inflammatory stimulus of 

preterm labor) administered intraperitoneally (23,24). LPS-induced inflammatory profile in 
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uterus (collected in labor) was further augmented in Gpr81 knocked-down mice (Fig. 4C; 

LV.shGPR81 was effective in reducing GPR81 expression [Suppl. Fig. 4D]); again Gpr81 

silencing did not affect gestation length (Suppl. Fig. 4E). Concordant with increased uterine 

GPR81 expression at term gestation (Fig. 2A,B), GPR81 expression was also increased during 

preterm labor induced by LPS (Suppl. Fig. 4D and Fig. 5A) and IL-1β (Suppl. Fig. 3B). 

Altogether, data suggest that lactate/GPR81 suppresses inflammation during labor (term and 

preterm). 

 

Selective stimulation of GPR81 attenuates inflammation and prevents LPS-induced preterm 

birth 

Based on anti-inflammatory properties of GPR81 in uterus we proceeded to establish 

whether stimulation of GPR81 prevents PTB. For this purpose, we utilized a metabolically 

stable and selective agonist of GPR81, 3,5-DHBA, which is also more potent (EC50 ≈ 150 µM) 

than metabolizable lactate (EC50 ≈ 5 mM) (25). We first confirmed the anti-inflammatory 

properties of (pH-buffered) 3,5-DHBA on IL-1β-induced transcripts of Il6, Pghs2 and Ccl2 on 

ex vivo uteri (Suppl. Fig. 4F); 3,5-DHBA had no effects on GPR81-null uteri. Likewise, uterine 

inflammation in mice treated with LPS (at G16) was abrogated by (sc) 3,5-DHBA (Fig. 5A), 

which was also effective in prolonging gestation shortened by LPS (Fig. 5B) as well as 

normalizing neonatal survival (Fig. 5C). Of interest, anti-inflammatory properties of 3,5-DHBA 

were also observed in human mSMC (Suppl. Fig. 4F inset).  
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Comment 

Principal findings of the study 

 Herein, we describe the glycolytic product lactate as a novel endogenous anti-

inflammatory signaling molecule in the uterus acting via GPR81, thus providing an 

unprecedented mechanistic link between metabolism and inflammation in reproductive tissue; 

a schematic diagram of this concept is presented in Fig. 6. In line with high concentrations of 

lactate generated during labor (̴ 10 mM), corresponding concentrations are shown to exert anti-

inflammatory effects via GPR81 in myometrium, and conversely in vivo silencing of GPR81 

amplifies uterine inflammation during labor. Concordantly, selective stimulation of GPR81 

attenuates inflammation induced by pro-inflammatory agents and in turn normalizes gestational 

length and neonatal survival.   

 

Meaning of the findings 

 Uterine contractions that occur during labor are intense and associated with recurrent 

periods of hypoxia, leading to the accumulation of lactate from pyruvate during glycolysis (26). 

Glucose is the main energy substrate of the human myometrium during pregnancy (8,27), and 

expression of lactate dehydrogenases responsible for the conversion of lactate from pyruvate is 

found to increase near term in myometrium, inducing a shift toward an anaerobic profile (28-

30). Of interest, anaerobic metabolism of glucose is significantly more active in myometrium 

than in striated muscles (8) known to generate lactate during exercise. Accordingly, lactate 

production is expected to rise abruptly during labor especially with sustained uterine 

contractions (9,31), causing maternal (blood) and fetal (blood, amniotic fluids) lactate levels to 
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increase in parturient women and animals and their progeny (9,32,33), consistent with the 

murine data presented herein.  

Once lactate is produced, its transport (into or out of the cellular compartment) is 

facilitated by monocarboxylate transporters (MCTs). During anaerobic conditions outward flow 

of lactate dominates over intracellular transport in mSMC (34). Hence during labor lactate flows 

out of the mSMC to bind to membrane-bound GPR81, at concentrations consistent with the 

affinity of GPR81 for lactate (~5 mM) (10); the inherently low affinity of GPR81 for its ligand 

is consistent with other GPCRs of the same family, notably GPR109A and GPR109B (35). High 

uterine lactate concentrations as observed during parturition are not likely to be achieved under 

other physiological circumstances, which may restrict the role of GPR81 to labor only. This 

claim is consistent with the amplified uterine inflammation observed in GPR81-/- mice during 

labor, as well as in Gpr81 knocked-down mice in labor at term or at preterm (induced by 

inflammatory stimuli); whereas uterus from non-pregnant animals responds similarly to an 

inflammatory stimulus in WT and GPR81-null mice. Our data further suggest that GPR81 has 

a limited role during pregnancy before the onset of labor, as evidenced by unaffected gestational 

length in GPR81-/- mice and in GPR81 knocked-down mice treated with LPS. Again, this is 

most likely due to insufficient local lactate concentrations during gestation in the quiescent 

uterus as well as during the inflammatory preparatory phase of the yet inactive uterus. Whereas 

exogenous stimulation of GPR81 with a pharmacologic agonist can reduce inflammation and 

prevent PTB as observed with 3,5-DHBA. The deletion of a gene coding for an important 

endogenously-produced anti-inflammatory mediator favoring uterine quiescence during 

pregnancy would be expected to predispose to PTB when induced by inflammation, as observed 

with Il10-null mice (36); yet this does not apply to Gpr81, which is consistent with our 
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hypothesis that GPR81 is specifically active during labor when lactate levels are increased. 

Altogether, our data suggest that lactate accumulates in uterus during labor to act via GPR81 

thereby regulating inflammation and restore tissue function (postpartum). The anti-

inflammatory action of lactate via GPR81 described herein is concordant with the recent finding 

that lactate/GPR81 inhibits TLR4-induced activation of NF-κB and the inflammasome, and the 

downstream transcription of pro-IL-1β and pro-IL-18 (and their maturation) in macrophages, 

monocytes, other types of cells, and with a similar effect in vivo (11); GPR81 may thus represent 

a novel target for prevention of PTB and ensuing neonatal complications. 

 

Clinical Implications 

This work may convey clinical implication as it suggests that lactate is 

pharmacologically active in uterus and that high concentrations of lactate regulate inflammation 

during labor to restore normal tissue function thereafter. This is consistent with an early study 

by Quenby et al. suggesting that women with dysfunctional labor have lower hemoglobin 

saturation with O2 and higher lactate levels in capillaries from the lower segment of the uterus 

(37). Accordingly, more recent studies have demonstrated that high (≥ 5.0 mmol/L) amniotic 

fluid lactate levels accurately predict labor disorders (38,39). Although sustained reduction in 

oxygenation of the uterus during labor directly leads to impaired fetal oxygenation and lactate 

accumulation in amniotic fluids, whether amniotic fluid and myometrial levels of lactate 

correlate is not yet known. Nonetheless it is interesting to point out that these high lactate 

concentrations correspond to ˃EC50 of GPR81 implying plausible activation of GPR81. In this 

context, lactate was suggested to exert tocolytics effects (13), in addition to its desirable anti-



 

241 

inflammatory effect reported herein. Pharmacological stimulation of GPR81 may provide 

benefits by directly attenuating excessive detrimental inflammation for the fetus/newborn.  

 

Research implications  

The onset of labor is an intricate phenomenon orchestrated by an acute/sub-acute uterine 

inflammatory response (40,41), particularly relevant in a high proportion of PTB, especially at 

21-24 weeks where the rates are higher than 94% (42). In preparation for labor, the uterus is 

invaded by myeloid cells (e.g. neutrophils, macrophages) which actively produce pro-

inflammatory mediators (such as cytokines, chemokines, prostaglandins) in the vicinity of 

decidual, chorionic and myometrial cells (43-45). Combined with specific hormonal changes 

(e.g. progesterone withdrawal), these factors directly lead to induction of uterotonic proteins in 

gestational tissue, which is a prerequisite to the on-time onset of labor (3). Although 

inflammation conveys critical functions before and during labor, inflammation needs to be 

controlled and tissue function must be restored postpartum.  

Lactate/GPR81 plausibly partakes in the resolution of inflammation that occurs 

postpartum. Inflammation needs to be terminated to avoid negative maternal outcomes, such as 

postpartum endometritis (46). The resolution of inflammation is an active process that involves 

the action of anti-inflammatory and pro-resolution modulators such as lipoxins, resolvins, 

protectins, IL-10 and 15d-PDJ2 (47). The involvement and importance of this process in 

gestational tissues is still ill-defined. Recently, Maldonado-Perez et al. described lipoxin A4 as 

a potential pro-resolution factor active after labor in both physiological and pathological human 

labor (48). This study revealed the anti-inflammatory effects of lipoxin A4 on ex vivo uterine 
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biopsies, in addition to an increased expression of the lipoxin A4 receptor FRP2 in laboring 

myometrium. Interestingly, our observations presented herein on lactate/GPR81 in myometrium 

complement those related to other mediators.  

 

Strengths and Limitations 

Strengths. This study provides converging in vitro, ex vivo and in vivo evidence that 

lactate exhibits GPR81-mediated anti-inflammatory effects in uterus during labor. To our 

knowledge, this is the first study addressing the pharmacological role of an intermediate of 

carbohydrate metabolites in pregnant uterus and therefore opens new areas of investigation 

which possibly expand beyond labor. Intermediates of carbohydrate metabolites accumulate 

under hypoxic conditions in the body (49); such condition is observed in uterus during 

physiological labor, as well as in pathological conditions (e.g. preterm labor, cancer, primary 

dysmenorrhea, preeclampsia) (50,51). Other than lactate, succinate and α-ketoglutarate are two 

citric acid cycle intermediates that accumulate during hypoxia and which exhibit 

pharmacological activity via GPR91 and GPR99, respectively (52); notably angiogenic 

properties of GPR91 have been documented (53). Therefore, intermediates of carbohydrate 

metabolites may represent a new mechanistic link between hypoxia and the pathophysiology of 

certain diseases of the female reproductive tract.  

Limitations. Although mice and humans share similarities in some physiological and 

mechanistic aspects of their gestation and parturition, differences exist particularly as it applies 

to endocrinology and immunology (54;55). Notwithstanding dissimilarities, GPR81 mRNA is 
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found in human uterus (56) and our data suggest that GPR81 stimulation of human mSMC exerts 

similar anti-inflammatory effects than those observed in mice. 
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Conclusion 

 In summary, we report an anti-inflammatory role of lactate via its receptor GPR81 in the 

uterus in labor. GPR81 expression increases as gestation nears the end, whereas lactate 

concentration considerably increases during labor. Lactate acts as an anti-inflammatory 

signaling molecule on myometrium. These findings suggest a novel link between the anaerobic 

glycolysis - the main source of ATP during labor - and the control of uterine inflammation, 

whereby lactate augmented by vigorous uterine contractions muscle activates GPR81 to down-

regulate transcription of key pro-inflammatory genes in uterus, in what seems to be a feedback 

regulatory mechanism.  
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Figure legends 

Figure 1. GPR81 is expressed in the uterus on myometrial smooth muscle cells. A-B, 

representative images of cryosections of uterus from non-pregnant mice (A) and pregnant mice 

in labor (B) revealing immunoreactivity to GPR81 and α-actin. The secondary antibodies alone 

were used as a negative control (Suppl. Fig. 1A). Images are representative of 3 experiments. 

DAPI (blue) was used to stain the nuclei.  Scale, 20 μm. 

Figure 2. GPR81 mRNA and protein expression increases near labor; lactate levels in the 
uterus increase during labor. A-B, mRNA (measured by quantitative PCR) (A) and 

immunoblot (B) of uterine samples collected on non-pregnant (NP) female mice, throughout 

gestation (G10-G16), at term without labor (TNL), at term during labor (TL), and 24 h 

postpartum (PP). qPCR (mRNA) results are normalized with 18S and are relative to control. 

Lower panel in B shows densitometric analysis of protein bands normalized with β-actin and 

plotted as fold change vs. the control group (NP). C, lactate levels were measured in uterus from 

pregnant mice at term before labor (TNL) and during labor (TL). Values are presented as mean 

± S.E.M. n=3-4. *, p˂0.05; ***, p˂0.001 by one-way ANOVA with Tukey’s multiple 

comparison test compared to NP or TNL. 

Figure 3. Lactate acts via GPR81 to inhibit IL-1β-induced transcription of numerous pro-
inflammatory genes. A-B, quantitative PCR of pro-inflammatory (A) and pro-labor (B) mRNA 

transcripts performed on ex vivo uteri from non-pregnant mice treated with IL-1β (5 ng/ml) or 

vehicle with or without lactate (10 mM) for 8 h. Results are normalized with 18S and are relative 

to control. Values are presented as mean ± S.E.M. n=3. *, p˂0.05; **, p˂0.01; ***, p˂0.001 by 

one-way ANOVA with Tukey’s multiple comparison test compared to IL-1β.  

Figure 4. GPR81 is an important regulator of inflammation during labor. A, mRNA (qPCR) 

of pro- and anti-inflammatory genes in uterus collected during term labor from WT and GPR81-

/- mice. Results are normalized with 18S and are relative to control. Values are presented as 

mean ± S.E.M. of n=4 per group. B-C, pregnant mice were pre-treated with intrauterine 

injections of vehicle (sham), LV.shGFP or LV.shGPR81 at G13 (1 injection in each uterine 

horn) and then treated with a single intraperitoneal injection of 10 µg LPS or an equivalent 

volume of saline at G16 to induce preterm labor. At time of labor, uteri were collected to 
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measure mRNA (by qPCR). The LV.shGFP was used as a (negative) control. Results are 

normalized with 18S and are relative to control (sham [not LPS]-treated). Values are presented 

as mean ± S.E.M. Data are representative of 3-5 animals per group. *, p˂0.05; **, p˂0.01; ***, 

p˂0.001 with Tukey’s multiple comparison test compared to LV.shGFP, sham or WT, as 

indicated. 

Figure 5. GPR81 specific agonist 3,5-DHBA decreases inflammation and prevents PTB 
induced by LPS. A, mRNA expression (qPCR) of Il6, Pghs2, Ccl2 and Gpr81 from uterine 

samples of mice in labor induced by LPS (from experiments described in B); results are 

normalized with 18S and are relative to control. Values are presented as mean ± S.E.M. Data 

are representative of 3-7 animals per group. B, pregnant mice were pre-treated with a single 

intraperitoneal injection of 10 µg LPS or an equivalent volume of saline at G16. Mice were 

randomly selected to receive 3,5-DHBA (25 mg/Kg/8h) or vehicle 30 min before LPS, injected 

subcutaneously three times a day until delivery; timing of birth was closely monitored. Values 

are presented as mean ± S.E.M of n=4-22 mice per group. C, neonatal survival at birth assessed 

by counting breathing pups per litter. Values are presented as mean ± S.E.M of n=4-16 litters 

per group. *, p˂0.05; **, p˂0.01; ***, p˂0.001 by one-way ANOVA with Tukey’s multiple 

comparison test compared to IL-1β + Veh or LPS + Veh. 

Figure 6. Schematic representation of anti-inflammatory action of lactate acting via GPR81 
in uterus during labor. A-B, schematic representation (A) and representative image (B) of a 

murine pregnant uterus. C, schematic representation of the proposed mechanism of action of 

uterine lactate/GPR81 wherein anaerobic glycolysis, the main generator of ATP in myometrium 

during labor, produces lactate that diffuses out of the mSMC to activate its cognate receptor 

GPR81, thereby decreasing the transcription of pro-inflammatory genes. D, expression of 

GPR81, levels of lactate and inflammatory profile in the murine pregnant uterus during gestation 

and labor. 
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Supplementary figure legends 

Figure S1. GPR81 is expressed in the uterus on myometrial smooth muscle cells. A, 

representative images of circular cryosections of uterus from pregnant mice revealing 

immunoreactivity to GPR81; the secondary antibodies alone were used as a negative control. 

DAPI was used to stain the nuclei. Scale for main images, 1000 µm; scale for insets, 40 µm. B, 

absence of selective immunoreactivity to GPR81 antibody on uterus from GPR81-/- pregnant 

mice. DAPI was used to stain nuclei. Images are representative of 4 experiments. Scale for 4X 

images, 300 µm; scale for 10X images, 150 µm. 

Figure S2. Primary mSMC culture purity assessment. A, >95% of freshly isolated primary 

mSMC culture was immunoreactive to α-actin (green). B, absence of binding of the Alexa Fluor 

secondary antibody alone. DAPI was used to stain nuclei. Scale bar, 100 µm. Images are 

representative of 4 experiments. 

Figure S3. Lactate acts via GPR81 to inhibit IL-1β-induced transcription of numerous pro-
inflammatory genes in primary murine mSMC. A, mRNA (measured by qPCR) of indicated 

genes in primary mSMC treated with IL-1β (5 ng/ml) or vehicle with or without lactate (10 mM) 

for 8 h. Results are normalized with 18S and are relative to control. Values are presented as 

mean ± S.E.M. n=4. *, p˂0.05; **, p˂0.01; ***, p˂0.001 by one-way ANOVA with Tukey’s 

multiple comparison test compared to IL-1β. B, uterine expression of Gpr81 mRNA increases 

during preterm labor induced by intrauterine injection of IL-1β at G16. mRNA (qPCR) results 

are normalized with 18S and are relative to control. Values are presented as mean ± S.E.M. Data 

are representative of 4-7 animals per group. *, p˂0.05 by one-way ANOVA with Tukey’s 

multiple comparison test compared to vehicle (Veh). 

Figure S4. Duration of gestation of GPR81-/- mice and GPR81 knocked-down (shRNA-
GPR81) mice. A, shRNA-GPR81 encoded lentivirus efficacy in knocking down GPR81 mRNA 

(RT-PCR) and protein (immunoblot) expression in hTERT cells. β-actin was used as a loading 

control. B, shRNA-GPR81(B) encoded lentivirus injected in vivo was effectively used to knock 

down Gpr81 mRNA expression (qPCR) in murine uterine tissue. C, timing of birth monitored 

in WT and GPR81-/- mice. D, uterine expression of Gpr81 mRNA increases during preterm labor 

induced by intraperitoneal injected LPS at G16; LV.shGPR81 (at G13) suppresses this increase. 
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mRNA (qPCR) results are normalized with 18S and are relative to control. Values are presented 

as mean ± S.E.M. Data are representative of 3-5 animals per group. *, p˂0.05 by one-way 

ANOVA with Tukey’s multiple comparison test compared to vehicle (Veh). E, pregnant mice 

were pre-treated with intrauterine injections of vehicle (sham), LV.shGFP or LV.shGPR81 at 

G13 (1 injection in each uterine horn) and then treated with a single intraperitoneal injection of 

10µg LPS or an equivalent volume of saline at G16; timing of birth was closely monitored; the 

LV.shGFP was used as a control. Values are presented as mean ± S.E.M. n=4-11 animals per 

group. F, mRNA expression (by qPCR) of pro-inflammatory genes performed on ex vivo WT 

of KO murine uteri or human mSMC (hTERT cell line) (inset) treated with IL-1β (5 ng/ml) or 

vehicle with or without 3,5-DHBA (100 µM) for 8 h. Results are normalized with 18S and are 

relative to control. Values are presented as mean ± S.E.M. n=3-6. ***, p˂0.001 with Tukey’s 

multiple comparison test compared to WT, sham, LV.shGFP or LV.shGPR81 as indicated.  
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Tables 

Table I: Primers used for Real-Time qPCR  

Mouse primers 
IL1B-F: AGATGAAGGGCTGCTTCCAAA IL1B-R: GGAAGGTCCACGGGAAAGAC 
IL4-F: AACGAAGAACACCACAGAGAG IL4-R: GTGATGTGGACTTGGACTCA 
IL6-F: CAACGATGATGCACTTGCAGA IL6-R: TCTCTCTGAAGGACTCTGGCT 
IL8-F: TGCTTTTGGCTTTGCGTTGA IL8-R: GTCAGAACGTGGCGGTATCT 
IL10-F: TAACTGCACCCACTTCCCAG IL10-R: AGGCTTGGCAACCCAAGTAA 
TNFA-F: GCCTCTTCTCATTCCTGCTTG TNFA-R: CTGATGAGAGGGAGGCCATT 
MMP1A-F: CAGGACTTATATGGACCTTCCC MMP1A-R: TAAATTGAGCTCAGGTTCTGGC 
MMP3-F: GTGACCCCACTCACTTTCTC MMP3-R: TTGGTACCAGTGACATCCTCT 
MMP9-F: TCAAGGACGGTTGGTACTGG MMP9-R: CTGACGTGGGTTACCTCTGG 
OXTR-F: TGTGTCTCCTTTTGGGACAA OXTR-R: GGCATTTCAGAATTGGCTGT 
PGHS2-F: ACCTCTCCACCAATGACCTGA PGHS2-R: CTGACCCCCAAGGCTCAAAT 
PTGFR-F: AGCTGGACTCATCGCAAACA PTGFR-R: GTGGGCACAAGCCAGAAAAG 
GJA1-F: GCACTTTTCTTTCATTGGGGG GJA1-R: GGGCACCTCTCTTTCACTTA 
CCL2-F: GCTCAGCCAGATGCAGTTA CCL2-R: TGTCTGGACCCATTCCTTCT 
GPR81-F: CCGGTTCATCATGGTGGTGGCT GPR81-R: CTCTTCTGACCTCCGCGTCTTC 

 

Table II: shRNA sequences used for Gpr81 knockdown 

A forward : TTGACCGAGCAGAACAAGATG  A reverse : CATCTTGTTCTGCTCGGTCAA 

B forward : AAGATGACCAAAGTCCAGAGG  B reverse : CCTCTGGACTTTGGTCATCTT 

C forward : AAATAGTGCTTGACTTCCAGG  C reverse : CCTGGAAGTCAAGCACTATTT 

 

 



 

 

Part C: Discussion 

 

Spontaneous preterm labor (11), fetal inflammation/injury (433), and long-term 

impairments associated with prematurity (643), are all governed by inflammatory processes 

independent of infection (388, 644) and gestation age (80, 607, 645). Correspondingly, in our 

murine model of PTB, a single intrauterine (maternal) injection of IL-1β during gestation was 

sufficient to trigger a full-blown inflammatory cascade in gestational tissue and fetus, thereby 

inducing preterm labor and delivery; activating monocytes circulating in the blood of neonates; 

and causing long-lasting organ injury in pups and in turn functional impairment. This data, as 

well as converging evidence in human (209, 216, 218-221, 646) and rodents and larger animals 

(102, 170, 209, 216, 240, 441), points to a critical role of IL-1 in the inflammatory process 

leading to PTB.  

Here, we have described the therapeutic potential of antagonizing IL-1 (via agonism of 

anti-inflammatory GPR81 [with lactate and 3,5-DHBA] and antagonism of IL-1R [with Kineret 

and 101.10]) to achieve better obstetrical, neonatal, and developmental outcomes, thereby 

confirming its essential role in PTB and fetal injury. Specifically, antenatal maternal delivery of 

101.10 resulted in: 1) prevention of preterm labor induced by IL-1β (i.u.), lipoteichoic acid 

(TLR2 ligand, i.p.) and LPS (TLR4 ligand, i.p.); 2) inhibition of numerous proinflammatory and 

uterotrophic mRNA transcripts from circulating leukocytes, fetal membranes, decidua, placenta, 

and myometrium, in vivo as well as in vitro in response to IL-1β and IL-1α; 3) reduction of 

oxytocin-induced and PGF2α-induced myometrial contractile response in IL-1β-treated dams; 

and 4) reduced levels of endogenous IL-1β in maternal blood. Furthermore, 101.10 reached the 
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placenta and protected the fetus via: 5) inhibition pro-inflammatory mRNA transcripts in 

placenta and fetal brain; 6) down-regulation of pro-inflammatory mRNA transcripts in 

circulating leukocytes of newborns, resulting in decreased plasma levels of IL-1β, IL-6 and IL-

8; and 7) inhibition of the inflammatory response in neonatal lung, intestine and brain, in turn 

leading to the recovery of normal tissue architecture integrity, and recovery of normal brain 

mass at adulthood accompanied by improved cortical function assessed by visual evoked 

potentials. These results were confirmed and further extended in a recent study that revealed the 

efficacy of antenally-administered 101.10 to protect the retina and sub-retina of progeny 

exposed to IL-1β (647). As for GPR81 agonism, it resulted in a significant reduction in: 1) IL-

1-induced myometrial production of major proinflammatory mRNA transcripts; 2) PTB rates; 

and 3) neonatal mortality. However, because of the inherent elevated EC50 of GPR81 agonists, 

which translates into the necessity to administer very high doses to attain therapeutic goals, 

GPR81 agonists are not likely to represent interesting drug candidates. Lactate (90 Da, 3 

carbons) and 3,5-DHBA (154 Da, 7 carbons) are small non-protein molecules and are therefore 

non-specific. Altogether, this compelling evidence points to 101.10 as an effective therapeutic 

candidate and corroborates the physiological anti-inflammatory role of lactate during labor. 

Our studies have revealed the mechanism of action of 101.10, which has been confirmed 

using different in vitro and ex vivo models. 101.10 inhibits IL-1-induced phosphorylation of 

MAPK p38, SAPK p54 (JNK), transcription factor c-jun, and inhibits the small GTPase Rho 

(by reducing the GTP-bound form). This has been demonstrated in human cell lines and primary 

murine cultures of myometrial smooth muscle cells and macrophages, and further confirmed 

using murine uterine explants. Interestingly, the signal transducers inhibited by 101.10 all act 

upstream of transcription factor AP-1, whose major role in labor has recently been uncovered 
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(517, 518, 648), and whose signal-specific inhibition leads to the prevention of IL-1-induced 

PTB, as demonstrated herein. Additionally, Rho plays a critical role in actomyosin cytoskeleton 

contractility (649). Remarkably, 101.10 does not exert significant effects on IL-1-induced NF-

kB nuclear translocation. Although inhibition of NF-kB in gestational tissue is effective to 

reduce inflammation, this pharmacological strategy has revealed deleterious (pro-apoptosis) 

effects (627), consistent with the role of NF-kB in transcription of genes important for 

cytoprotection. Further, NF-kB is crucial for immune-surveillance (516, 650) and resolution of 

inflammation (626). Therefore, 101.10 may convey advantages over competitive antagonists of 

IL-1 such as Anakinra by sparing the IL-1-induced NF-kB pathway. Although postnatal (68) 

and antenatal intraamniotic (441) use of Kineret has resulted in favorable outcome, this is only 

partly true when Kineret is administered systemically during gestation (607), the most desirable 

route and timing of administration for treatment of PTB and its complications. On the other 

hand, 101.10 displays increased efficacy as compared to Kineret, especially to prevent PTB and 

uterine inflammation. It is also noteworthy that 101.10 is comparably effective to Kineret in a 

murine model of retinopathy of prematurity (603), but is superior to anti-inflammatory 

corticosteroids and Kineret in animal models of hyperthermia, inflammatory bowel disease, as 

well as topically in contact dermatitis (418). Further, reported side effects of Kineret in patients 

with rheumatoid arthritis include neutropenia and increased risks of infection (651). Hence, a 

possible side effect resulting from acute/subacute inhibition of IL-1 in the setting of pregnancy 

is transient compromise in immunocompetence. A combination of various anti-inflammatory 

strategies, although potentially more effective altogether, may further predispose to 

immunosuppression. Small peptide antagonists such as 101.10 provide increased specificity of 

action and may reduce the risk of such adverse effect, a claim that remains to be explored, 



 

270 

although normal growth trajectory and no major adverse effects have been observed in 20-week-

old mice exposed antenatally to 101.10. Yet, further research in larger animals is required to 

evaluate the safety of 101.10. Clearly, the pharmacological properties of 101.10 makes it a 

unique drug candidate for the treatment of PTB.  

Our data also describe for the first time a link between anaerobic metabolism and uterine 

inflammation. Intrauterine lactate reaches very high levels during labor to activate anti-

inflammatory GPR81, resulting in decreased production of numerous cytokines including IL-

1β. It may plausibly represent a feedback mechanism specific to labor wherein inflammation 

leads to increased contractility which in turn leads to anti-inflammation. This may serve two 

purposes: 1) it may be a first step in the resolution of inflammation necessary to heal uterine 

tissue in the postpartum period; and 2) it may serve to prevent excessive inflammation which 

could lead to uterine dystocia and ensued fetal demise (especially as it could have occurred 

before the advent of modern medicine and safe caesarian section procedures, which hints 

evolutionary pressure), and to dissemination of the excessive inflammation to the fetus 

independent of dystocia. Concordant, although inflammation is a key pathway to delivery, 

excessive inflammation prolongs the active phase of labor and increases the rate of caesarean 

sections (652), suggesting overall decreased efficacy of uterine contractions. Comparably to its 

effect on myometrial smooth muscle cells, excessive inflammation paralyses intestinal smooth 

muscle cells and lead to paralytic ileus (653). Along these lines, labor dystocia (i.e. prolonged 

or difficult labor) was found in 22 of 235 litters (approximately 10%) of GPR81-/- mice as 

compared to less than 1% in control mice (Madaan, Nadeau-Vallée, Chemtob, unpublished 

data). Further research is needed to corroborate these claims. 
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Other pressing issues related to PTB 

Developing an effective anti-inflammatory agent is necessary to decrease the incidence 

of PTB and improve neonatal outcome, but insufficient by itself, in part because: a) there is an 

imperative need for the development of a diagnostic test to largely identify the population at 

risk; b) there is a lack of investment into the commercial development of therapeutics and 

diagnostics for PTB; and less importantly c) there is also a need for an effective and safe 

tocolytic agent which could provide sufficient time (perhaps > 7day) for the anti-inflammatory 

agent to elicit its pro-quiescence effect in the already activated and inflammatory uterus of 

symptomatic women who could not be identified early. 

A. Diagnostic test: PTB is difficult to predict because no clinical criteria exist for its 

early diagnosis, which is inconvenient for the design of a randomized clinical trial (since there 

is no discriminator for enrolling women) or for the determination of the timing of the treatment. 

Current medical evaluation of preterm labor means overt display of preterm birth symptoms of 

women in labor. This is too late for effective intervention. Hence, combining an effective 

diagnostic that predicts risk before symptoms appear would achieve several benefits. First, it 

will identify those at risk who may not have been characterized using other assessment tools 

thereby targeting more women earlier in their pregnancies. Second, it will reduce the number of 

women treated unnecessarily. This will lead to starting treatments earlier, before symptoms and 

labor begins, with better effectiveness and possibly with more courses of treatment. From a 

global perspective, more women in more populations may be diagnosed and treated; and from 

a health standpoint, better pregnancy outcomes will ensue.  
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As of now, only the cervicovaginal fetal fibronectin test (fFN) and the clinical 

(sonographic) assessment of cervical length (CL) are used for diagnostic purposes. The negative 

predictive value of fFN ranges from 90% to 99,5%, and its positive predictive value ranges from 

17% to 29%, depending on the clinical setting and study population (654). The negative 

predictive value and positive predictive value of CL is highly dependent of the study population 

and on the cut-off value used, but rarely exceeds 98% and 66%, respectively (655, 656). 

Therefore, the fFN is only used to determine which symptomatic women will not deliver and 

can be sent at home, whereas CL is inaccurate and could lead to the unnecessary treatment of at 

best 33% of women tested positive. Additionally, ultrasound is not always affordable in low-

income countries. For these reasons, numerous diagnostic tests are being developed with the 

goal of improving positive predictive value (657, 658). Hundreds of biomarkers have been 

investigated as potential predictors of PTB, but none were found reliable (659, 660). However, 

in a recent study by Ngo et al. published in the journal Science, non-invasive measurement of a 

combination of nine placental cell-free RNA transcripts in maternal blood predicted PTB at 

lower cost than ultrasounds, with a positive predictive value of 75-80%, in a study population 

in which the fFN and CL yielded a positive predictive value of 21% and 17%, respectively (657). 

Hence, there are encouraging advances in the development of a valid diagnostic test for 

asymptomatic PTB. 

B. Investment into clinical trials: A major problem in pregnancy health is that even 

though new, safe, and effective diagnostics and therapeutics are being developed to assess 

earlier in pregnancy those women at risk of a preterm delivery, there is practically no industry 

to support their commercial development. This derives, in part, from a lack of awareness of the 

size of the international market for diagnostics and therapeutics, fear of an adverse outcome for 
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treating two patients with potential consequent litigation or negative effect upon sales or 

reputation of other company products, the perceived high cost of clinical trials and knowing 

who to treat (because some trials will be in asymptomatic women), and the lack of investors 

willing to support Phase 1 and 2 testing. New diagnostic tests with high positive predictive 

values could ‘de-risk’ (and incentivise) the investment into clinical trials (35) by identifying the 

women who should be enrolled and possibly monitoring the effectiveness of the therapeutic. 

Using a diagnostic test and a new effective therapeutic (such as 101.10) in tandem could hasten 

their arrival for clinical use, vastly identifying the target population, improving treatment 

efficacy (originally geared to target population), decreasing global perinatal health care costs, 

increasing global market size, and thus providing an incentive for needed 

pharmaceutical/biotech partners for this unmet medical need.  

C. Effective tocolysis: As detailed in the Introduction, tocolytics are only modestly 

effective at prolonging gestation and, aside from Atosiban which is not approved in the USA, 

they have numerous undesirable effects. Hence, the development of more effective and safer 

tocolytics could improve the management of preterm labor by allowing more time to administer 

an anti-inflammatory agent to protect the fetus and restore uterine quiescence. 

Neuromedin U and S are two neuropeptides implicated in appetite, CRH release, 

adrenocortical axis regulation, puberty onset, energy metabolism, and intestinal and uterine 

smooth muscle cells contractility (661). We have identified a novel UAP, neuromedin U 

receptor 2 (NmU-R2), which could represent an interesting target for tocolysis. This study, 

presented in Appendix A, reveals that the placenta and decidua produce neuromedin S (NmS) 

at term or in response to labor-inducing doses of proinflammatory stimuli including IL-1 and 

LPS, which activates its (G protein-coupled) receptor NmU-R2 on myometrial cells resulting in 
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immediate intracellular calcium release, uterine contraction, and labor. In humans and in mice, 

the myometrial expression of NmU-R2 increases at term in preparation of incoming labor, and 

in response to IL-1 in vitro. Importantly, the neuromedin system is also activated in women in 

preterm labor with chorioamnionitis. In mice, NmU-R2 activation results in preterm labor and 

inversely, intrauterine shRNA-containing lentivirus-mediated gene knockdown of NmU-R2 

prolongs gestation and reduces prematurity and neonatal mortality in mice treated with LPS. 

Overall, our study, presented in Appendix A, suggests a major implication of the intrauterine 

neuromedin system in the onset of term and preterm labor in both rodents and humans. Along 

these lines, in a set of peptide scrambled-controlled preliminary experiments from our lab, we 

have shown that a new peptide drug, temporarily called Peptide 5, dose-dependently decreases 

Ca++ influx in myometrial smooth muscle cells (IC50=23nm), and blocks uterine contactions in 

uterine explants, with more efficacy than a neutralizing anti-NmU-R2 antibody (662). 

Therefore, NmU-R2 represents an interesting novel target for tocolysis. 
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Conclusion 

In summary, PTB is a common syndrome that afflicts millions of families over the world. 

It is the leading cause of neonatal mortality and morbidity worldwide, and one of the most 

important unmet medical needs as identified by the WHO. In line with numerous evidence 

accumulated for over 30 years, our results point to a critical role for IL-1 in triggering maternal 

and fetal inflammation, leading to PTB and long-lasting fetal organ injury regardless of 

gestation age and infection. Correspondingly, modulating key IL-1 signaling pathways with 

101.10 uncovers a novel therapeutic approach wherein PTB is prevented without unnecessary 

inhibition of important NF-κB, with the added benefit of preserving its desirable effects on 

immunosurveillance and resolution of inflammation. With the concomitant development of a 

valid and precise diagnostic test, this novel therapeutic approach could directly translate into 

better cares to pregnant women and better health outcome for babies worldwide. 
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Study significance 

In this article, we uncover a novel pro-uterocontractile, pro-labor human and murine 

system tightly regulated by gestation age, infection, and inflammation. Placental neuromedin 

(Nm) S, and its cognate receptor Neuromedin U Receptor 2 (NmU-R2) in myometrium, are 

upregulated by IL-1 and lipopolysaccharide (LPS) in mice, by chorioamnionitis in human 

pregnancy, and physiologically at term in both mice and humans to initiate and maintain uterine 

contractions at term and preterm. Preterm birth remains a challenge for clinicians as there are 

no available therapeutic agent sufficiently effective to prolong preterm gestation by more than 

48 h and improve newborn outcomes. The NmU system that we hereby uncover in human and 

murine uterus appears causal, necessary, and sufficient for preterm labor associated with 

inflammation/infection, and therefore represents an interesting new target for tocolysis.   

  



 

 

Abstract 

Uterine labor requires the conversion of a quiescent (pro-pregnancy) uterus into an 

activated (pro-labor) uterus, with increased sensitivity to endogenous uterotonic molecules. This 

activation is induced by stressors, particularly inflammation in term and preterm labor. 

Neuromedin U (NmU) is a neuropeptide known for its utero-contractile effects in rodents. The 

objective of the study was to assess the expression and function of neuromedin U receptor 2 

(NmU-R2) and its ligands NmU and the more potent neuromedin S (NmS) in gestational tissues 

and the possible implication of inflammatory stressors in triggering this system. Our data show 

that NmU and NmS are uterotonic ex vivo in murine tissue, and dose-dependently trigger labor 

by acting specifically via NmU-R2. Expression of NmU-R2, NmU and NmS is detected in 

murine and human gestational tissues by immunoblot and the expression of NmS in placenta 

and of NmU-R2 in uterus increases considerably with gestation age and labor, which is 

associated with amplified NmU-induced utero-contractile response in mice. NmU- and NmS-

induced contraction is associated with increased NmU-R2-coupled Ca++ transients, and Akt and 

Erk activation in murine primary myometrial smooth muscle cells (mSMC), which are 

potentiated with gestational age. NmU-R2 is upregulated in vitro in mSMC and in vivo in uterus 

in response to pro-inflammatory IL-1β, which is associated with increased NmU-induced utero-

contractile response and Ca++ transients in murine and human mSMC; additionally, placental 

NmS is markedly upregulated in vivo in response to IL-1β. In human placenta at term, 

immunohistological analysis revealed NmS expression primarily in cytotrophoblasts; 

furthermore, stimulation with LPS (gram– endotoxin) markedly upregulates NmS expression in 

primary human cytotrophoblasts isolated from term placentas. Correspondingly, decidua of 

women with clinical signs of infection that delivered preterm display significantly higher 



 

 

expression of NmS compared to those without infection. Importantly, in vivo knock-down of 

NmU-R2 prevents LPS-triggered PTB in mice and the associated neonatal mortality. Altogether, 

our data suggest a critical role for NmU-R2 and its ligands NmU and NmS in preterm labor 

triggered by infection. We hereby identify NmU-R2 as a relevant target for preterm birth. 

Keywords: Preterm birth; Inflammation; Neuromedin U; Neuromedin S; NmU-R2; Preterm 

labor; Uterine labor; Infection; Contraction; Calcium.  



 

 

Introduction 

Uterine labor is characterized by vigorous uterine contractions required to expulse the 

fetus from the uterus. A number of genes and their translated proteins referred to as uterine 

activation proteins (UAPs) stimulate and coordinate uterine contractions during labor. The 

expression of UAPs is induced by uterotrophins (uterine activators) [1]. As pregnancy nears the 

end, uterotrophins (such as estrogen, CRH and pro-inflammatory cytokines [e.g. IL-1β, IL-6 

and TNFα]) induce the expression of many UAPs in the uterus including: oxytocin receptor 

(OXR), prostaglandin F2α receptor (FP), connexin-43, prostaglandin-endoperoxide synthase 2 

(COX-2) [1-5], and many others [6]. The uterus then becomes increasingly sensitive to 

uterotonins, which are proteins responsible in inducing uterine contractions including oxytocin 

(OT) and prostaglandin F2α (PGF2α). Preterm labor results from the unscheduled induction of 

UAPs by stressors, including inflammation with or without infection. Hence, UAPs are 

interesting targets to arrest preterm labor. 

Neuromedin U (NmU; U for uterus) was named for its ability to induce contractions on 

ex vivo uterine strips; yet, there is a growing list of functions associated with NmU which 

includes regulation of appetite, diminution of insulin secretion, release of different hormones 

and smooth muscle contraction (of various organs: blood vessels, gut and uterus) [7, 8]. NmU 

exerts its actions by binding to two G protein-coupled receptors: NmU-R1 (FM-3 or GPR66) 

and NmU-R2 (FM-4) [8-12]. Both NmU receptors are coupled to Gi and Gq/11 – phospholipase 

Cβ [13]. The activation of the latter leads to the intracellular release of calcium and induces 

contractions of smooth muscle cells. Another ligand of NmU receptors, neuromedin S (NmS), 

is expressed in the hypothalamus, spleen and testis, and has been described to be more specific 

and exhibit higher affinity to NmU-R2 [14]. NmU has been extensively shown to exert 



 

 

pleiotropic effects in the brain. Notwithstanding its known pro-contractile effects on rodent 

uterus [15] that has been suggested to be mediated by NmU-R2 [16], little is known regarding 

its mechanism of action in uterus and potential role in labor, but may be relevant in the context 

that neuromedin B, a neuropeptide of the same family, was recently shown to induce labor in 

mice via its receptor NmBR [17]. 

We therefore studied the effects and mode of action of NmU and NmS, and their cognate 

receptor NmU-R2 in uterus, and their implication in term and preterm labor. Our findings reveal 

expression of NmU and NmS in human and murine placenta, and of their receptor NmU-R2 in 

human and murine myometrium, with a significant increase in the expression of NmU-R2 and 

NmS near the end of gestation and during labor. Studies in mice suggest that NmU-R2, once 

activated by its ligand NmU or NmS, shares all major characteristics that are common to UAPs, 

by a) exhibiting increased expression with onset of labor, b) exerting gestational age-dependent 

utero-contractile effects, c) contributing endogenously to inflammation-triggered PTB, and d) 

being induced by uterotrophins [1, 4, 5, 18-20]; the latter was again corroborated on decidual 

biopsies of women with clinical evidence of infection. More importantly, NmU and NmS 

administration in pregnant mice was found to shorten gestation, and Nmur2 knocked-down mice 

had significantly lower PTB induced by LPS. Hence, NmU-R2 is a potential new UAP that 

appears important for PTB associated with infection. 

  

  



 

 

Material and Methods 

Ethical approval  

Approval was obtained from North West Research Ethics Committee in Manchester, UK 

(Ref: 08/H1010/55) for decidual samples, provided by Dr. Rebecca L. Jones, and the Sainte-

Justine Hospital Ethic Board (Ref: 4058 and 3988) for placental samples and placenta from 

uncomplicated (normal) term pregnancies for cytotrophoblast isolation (see below). 

Myometrium tissue biopsies were collected in part from women undergoing caesarean section 

at the Royal Alexandra Hospital in Edmonton, Alberta, with ethics approval received from the 

University of Alberta Research Ethics board, and in part collected from women undergoing 

caesarean section at the MacDonald Women’s Hospital, University Hospitals, Cleveland with 

IRB approval (#11-04-06), provided by Dr. Sam Mesiano.  All participants provided written 

informed consent.   

 

Animals 

Timed-pregnant CD-1 mice were obtained from Charles River Inc at different gestational 

ages and were allowed to acclimatize for 4 days prior to experiments. Animal studies were 

approved by the Animal Care Committee of Hôpital Sainte-Justine along the principles of the 

Guide for the Care and Use of Experimental Animals of the Canadian Council on Animal Care. 

The animals were maintained on standard laboratory chow under a 12:12 light:dark cycle and 

allowed free access to chow and water.  

 

Chemicals 



 

 

Chemicals were purchased from the following manufacturers: rhIL-1β (#200-01B; 

PeproTech), Neuromedin U-23 (#NMU72-P; Alpha Diagnostic International), Neuromedin S 

(#045-88; Phoenix Pharmaceuticals), Neuromedin U-25 (#17617; Cayman Chemical), 

Prostaglandin F2α (#16010; Cayman Chemical), Oxytocin (#66-0-52; American peptide), W-7 

(#A3281; Sigma), U73122 (#U6756; Sigma) and LPS from Escherichia coli 0111:B4 (L2630; 

Sigma). 

 

Protein extraction from human myometrial biopsies 

Myometrial biopsies were flash frozen in liquid nitrogen and stored at -80°C. Frozen 

myometrial tissues wrapped in aluminium foil were later crushed using a mortar and pestle in 

liquid nitrogen, and 0.1-0.2 g of myometrial tissue was placed in a round-bottomed tube with a 

7mm bead and 0.5 mL of lysis buffer containing 0.05% Tris, 0.01% EDTA, 0.001% Triton X-

100, 0.005% PMSF and 0.1% protease inhibitor. Tissues were then lysed by shaking the tubes 

at a high speed (frequency 25/sec) using the TissueLyser II (Qiagen, Germantown, MD). Tissue 

lysates were centrifuged at 12000g for 10 minutes at 4°C, and the supernatants were collected 

for Western blot. 

 

Primary murine myometrial smooth muscle cell isolation and culture 

Primary murine myometrial smooth muscle cells (mSMC) were isolated as previously 

described [21] and used at less than 3 passages. Briefly, pregnant mice (at gestational day [G] 

10 or 19) were sacrificed by cervical dislocation and sprayed with 70% ethanol. The whole 

uterus was excised under sterile hood and placed in buffer A (Hanks’ balanced salt solution, pH 



 

 

7.4, 0.098 g/L magnesium sulfate, 0.185 g/L calcium chloride, 2.25 mmol/L I-HEPES [N-2-

hydroxyethylpiperazine-N-2-ethanesulfonic acid], 100 U/mL penicillin-streptomycin [Gibco, 

Grand Island, NY], and 2.5 μg/mL amphotericin B [Sigma]). Placentas, fetal membranes and 

products of conception were discarded and the uterine horns were cleansed of fat and vessels 

and then transfered into buffer B (buffer A without magnesium sulfate or calcium chloride) for 

several washes by gentle flushing. Afterwards, the uterine horns were cut into 1mm wide 

fragments and transfered into a volume of 10 mL/g of tissue of digestion buffer (1 mg/mL 

collagenase type II [Sigma], 0.15 mg/mL deoxyribonuclease I [Roche Diagnostics, GmbH, 

Mannheim, Germany], 0.1 mg/mL soybean trypsin inhibitor [sigma], 10% FBS, and 1 mg/mL 

bovine serum albumin [BSA, Sigma] in buffer B). Enzymatic digestion was performed at 37°C 

with agitation (100 rev/min) for 30 min. The homogenate (still containing undigested 

myometrium fragments) was then poured through a 100 µm cell strainer. The resulting filtered 

solution was centrifugated at 200g for 10 min, the pellet was resuspended in complete DMEM 

medium and plated in a T-75 dish. The remaining myometrium fragments were re-used in an 

enzymatic digestion and the whole digestion-centrifugation process was repeated for a total of 

5 times. First two digestion results were discarded because they mostly contained fibroblasts. 

The other three SMC-containing dishes were subjected to a differential adhesion technique to 

selectively enrich for uterine myocytes. Briefly, 30-45 min after the cells were first plated, the 

medium was removed and dispensed in another T-75 culture dish to separate quickly adhering 

fibroblasts from slowly adhering myocytes. Purity of the cells was assessed by 

immunohistochemistry using the smooth muscle cell marker α-actin and was always maintained 

above 95%. 

 



 

 

Cell Culture 

Primary murine mSMC or human mSMC (hTERT cell line) were cultured in DMEM 

growth medium supplemented with 10% serum, 50 U/ml penicillin and 50 mg/ml streptomycin. 

Cells were propagated in regular conditions (37°C, 5% CO2). For immunoblotting and PCR 

experiments, cells were serum-starved overnight and treated with various concentrations of 

NmU or 5 ng/ml of IL-1β for 10 min. Cells were collected in ice-cold RIPA buffer containing a 

cocktail of protease/phosphatase inhibitors and cleared from debris by centrifugation. Samples 

were stored in Laemmli buffer at -20°C or used fresh for Western blotting. 

 

Induction of birth 

 Timed-pregnant mice were injected intraperitoneally (i.p.) with NmU, NmS, PGF2α or 

oxytocin twice a day for 2 consecutive days. Injections were made at G13-G14, G15-16 or G17-

G18 twice a day for a total of 4 injections. Doses used for NmU and NmS correspond to those 

previously used to induce labor in mice with neuromedin B [17]. Mice were checked every 2h 

for any signs of labor/delivery such as vaginal bleeding or delivery of at least one pup.  

 

Intrauterine IL-1β and LPS injection 

Timed-pregnant mice at 9 days of gestation (G9) were steadily anesthetized with 

isoflurane. Body hair was removed and peritoneal skin was sterilized with 70% ethanol and then 

covered with povidone-iodine 7.5% (Atlas Laboratory). A 1.5 cm tall median incision was made 

in the abdominal wall of the lower abdomen. The lower segment of the right uterine horn was 

then exposed and 1 µg of IL-1β, LPS or an equivalent volume of saline (for sham animals) was 



 

 

injected between two gestational sacs without entering the amniotic cavity. The abdominal 

muscle layer was sutured and the skin closed with clips. Twenty-four h after the intrauterine 

injection (at G10), mice were sacrificed with CO2 and placenta and lower (cervical end) uterus 

samples were collected and preserved at -80°C for subsequent RNA purification and Western 

blotting. For contraction experiments ex vivo, fresh uterine fragments were used immediately 

after sacrifice. 

 

Lentivirus production 

 We produced infectious lentivirus by transiently transfecting lentivector and packaging 

vectors into 293FT cells (Invitrogen) as previously described [22]. We used five different small 

hairpin RNA sequences against Nmur2 (see Table I for sequences) and selected the most 

effective sequence for further experiments (see Suppl. Fig.1A,B for efficacy and variability of 

NmU-R2 knockdown using LV.shNmU-R2). In vivo infections were performed on G13 or G15 

mice via a single intrauterine injection under the same protocol as described above. Lentivirus 

were allowed to infect cells/tissues for at least 72 h. Lentiviral syringes were coded; hence the 

person injecting was blinded to treatment attribution.  

 

Lipopolysaccharide (LPS)-induced preterm birth model  

Timed-pregnant mice pre-treated for 72h with an intrauterine injection of lentivirus or 

saline received 10 µg of intraperitoneal LPS or an equivalent volume of saline at 16 days of 

gestation (G16). Signs of delivery were assessed every 2 h (as described above). Survival of 

pups was assessed at the moment of birth (± 2 h after completion of delivery).  



 

 

 

RNA extraction and Real-Time quantitative Polymerase Chain Reaction (RT-qPCR) 

Myometrium fragments were thawed and rapidly preserved in Ribozol (AMRESCO, 

Solon OH, United States), whereas cells from in vitro experiments were treated for 6 h with 

5ng/mL of IL-1β and collected directly into Ribozol. RNA was extracted according to 

manufacturer’s protocol and RNA concentration and integrity was measured with a NanoDrop 

1000 spectrophotometer. Five hundred ng of RNA was used to synthetize cDNA using iScript 

Reverse Transcription SuperMix (Bio-Rad, Hercules CA, United States). Primers were designed 

using NCBI Primer Blast (see Suppl. Table I). Quantitative gene expression analysis was 

performed on Stratagene MXPro3000 (Stratagene) with SYBR Green Master Mix (BioRad). 

Gene expression levels were normalized to 18S universal primer (Ambion Life Technology, 

Burlington ON, Canada). Dissociation curves were also acquired to test primer specificity. 

Genes analyzed include: Nmu, Nms, Nmur1, Nmur2, Ptgfr (prostaglandin F receptor), Oxtr 

(oxytocin receptor). Detailed primer sequences are shown in Table II. 

 

Western blotting 

Proteins from homogenized myometrium fragments and cell samples lysed in RIPA 

buffer were quantified using Bradford’s method (Bio-Rad). Fifty µg of protein sample were 

loaded onto SDS-PAGE gel and electrotransfered onto PVDF membranes. After blocking, 

membranes were incubated with either an antibody against NmU (#sc-368069; Santa Cruz 

Biotechnology, Dallas TX, United States), NmS (#PAA828Mu01; Cloud-Clone Corp., Houston 

TX, United States), NmU-R1 (#sc-47241; Santa Cruz Biotechnology), NmU-R2 (#sc-47250; 



 

 

Santa Cruz Biotechnology), cyclophilin B (#ab16045; abcam), anti-GAPDH (PA1-987, Pierce 

Protein Biology, Thermo Scientific, Rockford, IL) or β-actin (#sc-47778; Santa Cruz 

Biotechnology); (although NmU and NmS antibodies detect the corresponding pro-peptides [7], 

expression patterns were corroborated throughout the study by nearly identical mRNA profiles). 

Membranes were then washed with PBS containing 0.1% Tween 20 (Sigma-Aldrich, St. Louis, 

MO) and incubated for 1 hour with their respective secondary antibodies conjugated to HRP 

(Sigma). For kinases, membranes were incubated with an antibody against either phospho-JNK 

(#9251; Cell Signaling Technology, Whitby ON, Canada), phospho-c-jun (#9261; Cell 

Signaling Technology), phospho-p38 (#4511; Cell Signaling Technology), phospho-Akt 

(#9271; Cell Signaling Technology), phospho-Erk (#9101; Cell Signaling Technology), JNK 

(#9252; Cell Signaling Technology), c-jun (#9165; Cell Signaling Technology), p38 (#9212; 

Cell Signaling Technology), Akt (#9272; Cell Signaling Technology), or Erk (#4695; Cell 

Signaling Technology). Enhanced chemiluminescence (GE Healthcare) was used for detection 

using the ImageQuant LAS-500 (GE Healthcare, Little Chalfont, United Kingdom) and 

densitometric analysis was performed using ImageJ. Resulting values were normalized first with 

the loading controls (β-actin, GAPDH or cyclophilin B) and then as a ratio of the control 

samples. 

 

Calcium Assay 

40 000 mSMC/well were cultured overnight in 96-wells clear-bottomed black plates 

(#3603; Corning, New York NY, United States) prior to the calcium assay performed according 

to manufacturer’s protocol (F36206; Life Technologies). In brief, medium was changed for a 



 

 

probenecid-containing assay buffer and plates were read using a microplate reader (EnVision 

Multilabel reader, PerkinElmer, Waltham MA, United States), in response to on-time 

stimulations with NmU, NmS, PGF2α or OT (using apparatus injectors). Five readings were 

taken before the injection (basal readings), and 2s-interval post-injection readings were 

automatically stopped after 30 s. Assay buffer was used as a negative control. Value are 

presented as a ratio between means of readings and means of basal readings.  

 

Ex-vivo uterine contraction experiment 

Timed-pregnant mice at different gestational age were sacrificed with CO2 and uterine 

tissue fragments were collected. Briefly, a midline abdominal incision was made, and the uterine 

horns were rapidly excised and carefully cleansed of surrounding connective tissues. 

Longitudinal myometrial strips (2 to 3mm wide and 10mm long) were dissected free from 

uterus, mounted isometrically in organ tissue baths and initial tension was set at 2 g. The tissue 

baths contain 20 ml of Krebs buffer of the following composition (in mM): 118 NaCl, 4.7 KCl, 

2.5 CaCl2, 0.9 MgSO4, 1 KH2PO4, 11.1 glucose, and 23 NaHCO3 (pH 7.4). The buffer was 

equilibrated with 95% oxygen/5% carbon dioxide at 37°C. Isometric tension is measured by a 

force transducer and recorded by BIOPAC data acquisition system (BIOPAC MP150).  

Experiments began after 1 hour of equilibration. The mean tension of spontaneous contractions 

was measured using a BIOPAC digital polygraph system (AcqKnowledge); the same parameters 

were also determined after addition of NmU, NmS, PGF2α or oxytocin. At the start of each 

experiment, mean tension of spontaneous myometrial contractions was used as the reference 

response. Increases in mean tension (%) were expressed as percentages of (X/Y)-100, where X 



 

 

is change in mean tension (g) induced by NmU, NmS, oxytocin or PGF2α and Y is the initial 

reference response (g). 

 

Histological analysis of placental villous tissue 

Villous tissue biopsies were fixed in 10% neutral buffered formalin and paraffin 

embedded. For immunohistochemistry, five micrometers thick sections were obtained using a 

microtome and processed as previously described [23]. The following antibodies were used: 

NmU (1:50; Santa Cruz Biotechnology, Dallas, TX, USA), NmS (1:10; Cloud Corporation, 

Cedarlane, ON, Canada) with matched HRP-conjugated secondary antibodies (goat anti-rabbit-

HRP, BioRad, ON, Canada). Staining was revealed using 3, 3-diaminobenzidine (DAB; 

Amresco, VWR, ON, Canada) and slides were counterstained with hematoxylin and mounted. 

Primary antibodies were omitted for negative controls. Images were obtained with a slide 

scanner (Axioscan, Zeiss, ON, Canada) using Zen2 program.  

 

Primary cytotrophoblast isolation and culture 

Primary cytotrophoblasts were isolated from term placentas from uncomplicated 

pregnancies obtained after caesarean section using a well-established method developed by 

Kliman et al. [24]. Briefly, villous tissue was dissected, minced and rinsed in phosphate-buffered 

saline (PBS) prior to 3 enzymatic digestions in Hanks’ balanced salt solution (HBSS) with 

trypsin and DNase. Cytotrophoblasts were obtained from these digestions after separation by 

centrifugation on a discontinuous Percoll gradient. Cytotrophoblasts were plated at 2x106 

cells/ml in DMEM-F12 supplemented with 10% FBS and penicillin/streptomycin and washed 



 

 

with PBS to removed non-adherent cells after 12h. Cells were treated with lipopolysaccharide 

(LPS; 1µg/ml, Sigma-Aldrich, ON, Canada) for 24h or 48h in Opti-MEM (Life Technologies, 

ON, Canada). Cells were collected in lysis buffer (PBS with 1% Triton X-100 and protease 

inhibitors cocktail), centrifuged at 13000rpm for 10min at 4ºC and supernatant collected and 

kept at -20ºC until used for analysis.  

 

Immunocytochemistry 

Cells were plated on cover slips pre-coated with poly-D-lysine and fixed in 4% 

paraformaldehyde. After blocking, cells were incubated overnight with a primary antibody for 

rabbit anti-α-actin and for 1h at ambient temperature with a secondary antibody conjugated with 

Alexa Fluor 488 (Sigma). Nuclei were stained with Dapi (Invitrogen; 1/5000). Images were 

captured using 30x objective with Eclipse E800 (Nikon) fluorescence microscope.  

 

Statistical analysis 

Groups were compared by two-tailed Student’s t -test or one-way analysis of variance 

(ANOVA). Dunnett’s multiple comparison method was employed when treatments were 

compared to a single control. Tukey’s multiple comparison test was used for ex vivo contraction 

assays. A value of p˂0.05 was considered statistically significant. Data are presented as means 

+/- S.E.M. 

  

  



 

 

Results  

 

NmU-R2 is expressed in murine uterus and induces uterine contractions and labor upon 

stimulation with NmU and NmS 

 We confirmed the expression of NmU-R2 in murine pregnant uterus at term gestation 

(G19) (Fig. 1A) and the utero-contractile effects of NmU (EC50=15 nM) (Fig. 1B). Effects of 

NmU were NmU-R2-dependent, as uterine contraction was markedly diminished after Nmur2 

knockdown (Fig. 1C; Suppl Fig. 1A-C) performed with an intrauterine injection of lentiviral-

encoded shRNA-Nmur2. In contrast to Nmur2 knockdown, that of Nmur1 did not alter critical 

contraction-associated uterine smooth muscle NmU-triggered Ca++ mobilization (Suppl. Fig. 

1D,E), consistently with the documented NmU-R1-independent uterotonic effects of NmU [16]. 

Additionally, NmU-R2 specific ligand NmS [14] also increased uterine contractility, 

comparably to NmU (at ~EC50 value) (Fig. 1D). Hence, NmU exerts its effects on the uterus 

specifically via NmU-R2. 

 NmU injected in vivo intraperitoneally (ip) twice daily on G17 and G18 to pregnant mice 

dose-dependently accelerated delivery, equivalent to that observed with established uterine 

contractile agonist PGF2α, but less effectively than oxytocin (Fig. 1E); shortened gestation 

induced by NmU was again NmU-R2-dependent, as it was abrogated in mice with uterine 

knockdown of Nmur2 (Fig. 1F); shRNA-Nmur2 did not significantly affect length of intact 

gestation. The NmU-R2 specific ligand NmS [14] exerted a modest shortening of gestation of 

12 h comparable to that by NmU (Fig. 1G).  



 

 

Expression of NmS (but not NmU) in human and murine placenta and of NmU-R2 in 

uterus markedly increases near term and during labor, and is associated with increased utero-

contractile response 

Given the labor-inducing action of NmU and NmS, we studied the endogenous 

expression of these NmU-R2 ligands in placenta, which is considered a key organ in the 

regulation of on-time labor [25]. We found placental protein and mRNA expression of NmU 

(Fig. 2A, Suppl. Fig. 2A) and NmS (Fig. 2B, Suppl. Fig. 2B); NmU expression was consistent 

throughout pregnancy, whereas NmS was exclusively and consistently expressed during 

spontaneous labor in mice. Study of human placental biopsies collected from women at term 

not in labor (TNL) or in established labor (TL) paralleled murine data, revealing expression of 

both NmU and NmS (Fig. 2C-D), with a marked increase of NmS during labor.  

We also studied the expression of pro-contractile NmU-R2 in murine and human uterus. 

In murine uterus, NmU-R2 protein and mRNA expression rose near term, peaked during labor 

and rapidly declined 24 h postpartum (PP) (Fig. 2E, Suppl. Fig. 2D). Study of human myometrial 

biopsies was again rigorously consistent with murine data, revealing a marked (>7 fold) and 

gradual increase of NmU-R2 protein expression in pregnant women at term and preterm (TL, 

n=5; TNL, n=9; PTNL, n=4) as compared to non-pregnant women (NP; n=4) (Fig. 2F; Suppl. 

Fig. 2G). In contrast, NmU-R1 protein and gene expression in murine uterus did not increase 

during gestation or labor (Suppl. Fig. 1F,2C-F). Concordant with the gestational age-dependent 

rise in NmU-R2 expression, ex vivo uterine contractile response to NmU also significantly rose 

(dose-dependently) with advancing gestation (Fig. 2G); NmU potency was comparable to that 

of PGF2α at any gestational age. Correspondingly, NmU, as seen with PGF2α, accelerated 



 

 

delivery when administered (ip) in late but not early gestation (Table III), confirming the 

gestational age-dependent effect of NmU.  

 

NmU-R2-coupled contraction-associated intracellular signaling in response to NmU is 

gestational age-dependent 

Primary murine myometrial smooth muscle cells isolated at G10 (G10 mSMC) and G19 

(G19 mSMC) were used to study NmU- and NmS-induced signaling responses. One first notes 

the purity of our cell isolate cultures (>95% of cells immunoreactive to α-actin), and 

significantly greater mRNA and protein expression of NmU-R2, but not NmU-R1, in cells 

isolated at G19 compared to G10 (Suppl. Fig. 3), as seen directly on uterine samples (see Fig. 

2E). NmU induced greater calcium transients on G19 mSMC than G10 mSMC (Fig. 3A); a 

similar profile was observed upon stimulation with known uterotonins PGF2α and oxytocin. As 

expected, NmU-induced calcium transients were NmU-R2-dependent (Fig. 3B, Suppl. Fig. 1E); 

the extent and duration of calcium transients is consistent with that observed for other G protein-

coupled receptors [26, 27]. Exploration of NmU-R2 downstream mechanisms in G19 mSMC 

revealed that NmU does not activate (by phosphorylation) p38, JNK and c-jun (Suppl Fig. 4A), 

but does activate Akt and Erk (Fig. 3C,D; Suppl Fig. 4B,C); no effect was seen in G10 mSMC. 

NmU-triggered Akt activation, but not that of Erk, was inhibited by calmodulin inhibition (W-

7) and by phospholipase Cβ inhibition (U73122) (Suppl Fig. 4D,E). Nmur2 knockdown 

abrogated NmU-induced Akt and Erk activation in G19 mSMC (Fig. 3E,F). A schematic 

diagram of NmU-R2 signaling pathway is presented in Suppl. Fig. 4F. NmS, which acts 



 

 

specifically on NmU-R2 [14], also elicited calcium transients, as well as Akt and Erk activation, 

comparable to those seen with NmU (Fig. 3G-I).  

 

IL-1β induces uterine expression of NmU-R2 and potentiates its uterotonic effects; pro-

inflammatory infectious stimuli trigger NmS expression in human decidua and placenta 

Chorioamnionitis is a major factor in triggering PTB [4-6]. We determined if NmU-R2 

is regulated by inflammatory factors. In line with the important role for IL-1β in eliciting uterine 

inflammation and PTB [28-31], we stimulated G10 mSMC with IL-1β and measured the mRNA 

expression of Nmur1, Nmur2, as well as Ptgfr and Oxtr; expression of the latter 3 genes (but not 

Nmur1) was upregulated within 6 h by IL-1β (Fig. 4A); of relevance herein, progesterone (when 

anti-inflammatory PR-B is dominant [32]) had no effect on expression of these genes (not 

shown). We then proceeded to explore if inflammation (IL-1β-induced) could reproduce these 

effects in vivo. Consistent with changes observed in mSMC, IL-1β (1 µg intrauterine, at G9 

[Fig.4B]), shown to amplify utero-placental inflammation [30], induced protein and mRNA 

uterine expression of NmU-R2 (Fig. 4C; Suppl. Fig.2I), but not NmU-R1 in mice (Suppl. 

Fig.1G; Suppl. Fig. 2H). Correspondingly, uteri isolated from pregnant mice (G10) treated with 

IL-1β displayed increased utero-contractile response to NmU ex vivo (Fig. 4D). Concordantly, 

calcium transients triggered by NmU were significantly increased in murine mSMC isolated at 

G10 and pre-treated with IL-1β (Fig. 4E); this effect was also observed in human mSMC (Fig. 

4F). 

Given the strong and consistent effect of IL-1β in triggering NmU-R2 expression and 

actions in uterus, we determined if IL-1β triggered expression of NmU-R2 ligands in placenta. 



 

 

IL-1β was found to increase placental expression of the NmU-R2-specific agonist NmS, but not 

NmU, in mice (Fig. 4G-H). A similar induction of placental NmS was observed when mice were 

stimulated intrauterine with known inflammasome-activating TLR4 ligand LPS (arising from 

G(-) bacteria) to mimic an infectious stimulus (Fig. 4I). Consistent with murine data, NmS 

expression was found to be markedly augmented (>8 fold) in decidual biopsies from women 

that delivered preterm with clinical evidence of infection (PTLi, n=3) compared to those without 

(PTL, n=3) (Manchester UK, tissue bank) (Fig. 4J). In human placenta, NmS was primarily 

expressed by cytotrophoblasts and Hofbauer (placental macrophage) cells (within placental 

villi), while NmU was specifically expressed by syncytiotrophoblasts (external layer of 

placental villi) (Fig. 4K). Therefore, we stimulated primary human cytotrophoblasts isolated 

from term placenta with LPS for 24 h and 48 h; LPS induced NmS expression from 

cytotrophoblasts (Fig. 4L), validating human and murine data (presented in Fig. 4H-J).  

 

NmU-R2 plays a key role in infection-induced PTB  

Previous results strongly suggest that NmS in placenta and NmU-R2 in uterus are 

regulated by inflammatory stimuli with or without infection. We proceeded to study the role of 

NmU-R2 in PTB associated with infection. For this purpose, G16 mice were injected with LPS 

(to mimic infection), in animals previously treated or not intrauterine with lentivirus encoded 

with shRNA against pro-contractile Nmur2 (or scrambled shRNA). Gestation was significantly 

prolonged in LPS-treated Nmur2 knocked down animals, by an average of ~28 h (Fig. 5A); this 

effect was associated with improved neonatal survival rate (Fig. 5B).   

  



 

 

Discussion 

Inflammation with or without infection, is considered to be implicated in more than 50% 

of PTB, and its onset is often subclinical. Administration of bacteria or bacterial endotoxins in 

pregnancy triggers uterine activation pathways which can induce labor in rodents and non-

human primates [30, 33-36]. Our findings indicate that NmU-R2 and its specific ligand NmS 

are regulated by inflammation in human and animal, and play a critical role in infection-

associated PTB. First, we found in murine gestational tissues that the expression of NmU-R2 

and NmS was markedly increased upon intrauterine treatment with the major pro-inflammatory 

labor-inducing cytokine IL-1β. Correspondingly, treatment with IL-1β significantly increased 

the uterotonic effect and associated calcium transients coupled to NmU-R2 in murine and human 

mSMC. Second, the inflammation-driven NmU-R2 upregulation observed in animals was also 

observed in human gestational tissues, as NmS was upregulated in women with clinical signs of 

infection; correspondingly, NmS was induced by LPS stimulation of primary human 

cytotrophoblasts isolated from term placenta. This suggests that the bacterial trigger needs to 

penetrate placental villi to induce NmS production from placenta and in turn promote labor. 

Interestingly, NmU-R2 is another labor-associated protein present in the central nervous system, 

as is the case for OXTR and IL-1RAcPb [37]. Third, knock-down of NmU-R2 in uterus 

significantly delayed preterm labor induced by Gram(-) bacterial product LPS. For these 

reasons, we suggest that infectious and non-infectious pro-inflammatory stimuli in pregnant 

gestational tissues, as well as advanced gestation age (in case of physiological term labor), 

trigger: 1) NmU-R2 upregulation in myometrium thereby increasing the utero-contractile 

sensitivity to NmS; and 2) NmS production in placenta (specifically in cytotrophoblasts). This 

uterotonic system may contribute to the establishment of functional labor at term and preterm 



 

 

in case of a pathological activation of an intrauterine inflammatory cascade (Fig. 6). Hence, 

NmU-R2 constitutes an interesting target for the prevention of inflammation-associated PTB. 

Preterm birth remains a challenge for clinicians as there are no available 

pharmacological agent sufficiently effective to prolong preterm gestation by more than 48 h and 

improve newborn outcomes. The development of preventive therapies is limited because 

diagnostic tools with successful positive predictive values are also lacking, which hinders the 

identification of women at risk of preterm labor. Current therapies administered to women in 

labor (tocolytics) are largely ineffective and in many cases (e.g. indomethacin, nifedipine) are 

used off-label [38]. Only one tocolytic drug specifically designed to target uterine contraction 

has been approved in the last 30 years, the oxytocin receptor antagonist Atosiban. Although 

Atosiban was demonstrated to be as efficacious as β-mimetics (which remains limited) and 

much better tolerated by women [39], its usage is limited to Europe, as it failed FDA-approval. 

Hydroxy-progesterone is effective for women with either short cervical length or prior history 

of preterm labor [40]. Yet there is still an unmet medical need for an effective tocolytic. UAPs 

are interesting targets for the prevention of preterm birth as their induction directly precedes 

labor, and their functions are critical for successful labor.  

Herein, we characterized a potential UAP, NmU-R2 (and its ligands NmU and NmS) in 

labor. NmU-R2 is upregulated in human and animal gestational tissue at term and during labor; 

NmS is concomitantly upregulated during parturition. The properties of NmU-R2 correspond to 

those of known UAPs: 1) its expression increases near labor and decreases in the immediate 

postpartum period; 2) it exhibits gestation age-dependent utero-contractile effects; 3) it is 

induced by pro-inflammatory uterotrophins, and its expression correspondingly increases during 

preterm labor with clinical evidence of infection; and 4) it contributes to the process of labor. In 



 

 

this study, NmU-R2 was found to be important for the onset of preterm labor associated with 

infection, but not necessary for labor at term, as seen with our NmU-R2 knocked-down model 

displaying normal parturition at term. This may be due to redundant mechanisms that are present 

in term uterus to ensure successful delivery, as seen with the unaltered gestation length in germ-

line gene knockout mice for other critically important proteins including IL-1R1, TNFα, OT, 

COX-1 and others [19].  

NmU-induced ex vivo uterine contractions have already been reported to be unaltered by 

NmU-R1 deficiency (using gene knockout mice), thus independent of NmU-R1 [16]. The 

present study is concordant and clarifies actions of NmU, by showing that its contractile-

associated effects (calcium transients) in uterus are specifically mediated by NmU-R2 (but not 

NmU-R1). In addition, uterine NmU-R2 knock-down considerably attenuated receptor-coupled 

signaling (calcium, Erk and Akt), utero-contractile and pro-labor effects induced by NmU, as 

well as preterm labor induced by inflammatory/infectious stimuli. In our murine experiments, 

NmU and NmS had similar efficacy to induce calcium, Erk and Akt signaling in mSMC, as well 

as uterine contraction and labor. Interestingly, only the NmU-R2-specific ligand NmS was 

endogenously induced by inflammation and upregulated during physiological labor, suggesting 

that NmU is not as important as NmS in initiating or sustaining labor contractions. 

  



 

 

Conclusions 

In summary, we hereby describe a pro-contractile, pro-labor human and murine system 

wherein neuromedins U and (more importantly) S induce calcium (and other downstream) 

signals in mSMC to promote potent uterine contractions and labor via NmU-R2 at term and 

particularly before term. NmU-R2, NmU and NmS are expressed in human and murine 

gestational tissues, and NmU-R2 and NmS are upregulated (and potentiated) by gestation age, 

infection, and inflammation. Correspondingly, this system is important for the onset of 

inflammation-induced preterm labor in mice, which may plausibly apply to human labor as NmS 

is markedly upregulated in gestation with clinical evidence of infection. Overall, the present 

study expands our understanding of the physiological mechanisms underlying labor, and 

uncovers new targets for potential therapeutic intervention to delay preterm delivery, and more 

opportunities to identify biomarkers to predict women at risk of preterm birth. Specifically, 

NmU-R2 antagonists may provide benefits to prolong gestation in threatened pregnancies. 
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Figure legends 

Figure 1. NmU and NmS induce uterine contractions and labor via NmU-R2. A, NmU-R2 
immunoblot from term uterus. Spleen and kidney samples were used as negative and positive 

controls, respectively. B, representative ex vivo contraction assay performed on a myometrium 

fragment from a pregnant mouse at term in response to increasing NmU concentrations (top 

panel) and dose-response curve (bottom panel). C, pregnant mice were pre-treated with 

LV.shNmU-R2 or LV.shScrambled at G15 and their uteri were collected at term for a 

contraction assay in response to NmU and OT. For each uterine strip, the contractile response 

to NmU was normalized to its response to OT (to control for inter-individual variability). 

*p˂0.05. D, ex-vivo contraction assay on G19 uteri in response to 10-8 M NmU or NmS. E, 

pregnant mice were injected intraperitoneally with increasing NmU doses twice a day from G17 

to G18. Control animals were given an equivalent volume of saline. PGF2α and OT were used 

as positive controls at a dose of 160 µg/Kg. *p˂0.05, ***p˂0.001 compared to vehicle only. F, 

pregnant mice were pre-treated with LV.shNmU-R2 or LV.shScrambled at G15 and then treated 

with 160 µg/Kg of NmU twice a day from G17 to G18. *p˂0.05, **p˂0.01, ***p˂0.001 

compared to NmU or NmU + LV.shScrambled. G, pregnant mice were injected intraperitoneally 

with 160 µg/Kg of NmS or NmU twice a day from G17 to G18. ***p˂0.001 compared to vehicle 

only. Data for A-D are representative of 4-5 mice per group. The number of mice used in E-G 

is displayed above each groups and mice treated with vehicle (control mice) were pooled 

together and repeatedly shown in each graph. Values are presented as mean ± S.E.M. Data were 

statistically analysed using one-way ANOVA with comparison to control groups using 

Dunnett’s multiple comparison test. 

Figure 2. The expression of NmS in placenta and of NmU-R2 in uterus increases near term 
and during labor in mice and humans, which is associated with increased NmU-induced 
myometrial contractility at term. A-B, NmU (A) and NmS (B) representative immunoblots 

of murine placentas collected at different gestation age (G) and during spontaneous term labor 

(TL). Lower panels show densitometric analysis of protein bands normalized with β-actin and 

plotted as fold change vs. the control group (G12). C-D, NmU (C) and NmS (D) immunoblots 

of human placenta biopsies from women at term not in labor (TNL) or in established labor (TL). 

Lower panels show densitometric analysis of protein bands normalized with β-actin and plotted 



 

 

as fold change vs. the control group (TNL) of all patients screened (TNL, n=6; TL, n=6). E, 

NmU-R2 representative immunoblot of murine uteri collected at different gestation age (G), 

during spontaneous term labor (TL) and 24h postpartum (PP). The lower panel shows 

densitometric analysis of protein bands normalized with β-actin and plotted as fold change vs. 

the control group (NP). F, representative immunoblot of NmU-R2 from human myometrial 

tissue biopsies from 4 non-pregnant (NP) women (hysterectomy), 1 pregnant women at preterm 

without any clinical sign of labor (PTNL), and 4 pregnant women at term without any clinical 

sign of labor (TNL). The lower panel shows densitometric analysis of protein bands normalized 

with β-actin and plotted as fold change vs. the control group (NP) of all patients screened (NP, 

n=4; PTNL, n=4; TNL, n=9; TL, n=5) as presented in Fig. 2F and Suppl. Fig. 2G. G, ex vivo 

contraction assay in response to increasing doses of NmU performed on myometrium fragments 

from pregnant mice at G10, G14 or G19. Uteri collected at G19 were only considered if the 

mice were still undelivered. PGF2α and OT were used as positive controls at a dose of 10-8 M. 

Data are representative of 4-5 mice per group and at least 3 independent experiments. Values 

are presented as mean ± S.E.M. *p˂0.05, **p˂0.01, ***p˂0.001 by one-way ANOVA with 

comparison to control groups using Dunnett’s multiple comparison test. 

Figure 3. NmU-R2-associated signaling in mSMC is potentiated by gestation age. A, 

calcium assay performed on primary mSMC from either pregnant mice at G10 or G19. PGF2α 

and OT were used as positive controls at a concentration of 10-6 M. n=12-45 in each group. B, 

G19 myometrial cells were pre-treated with LV.shNmU-R2 or LV.shScrambled for 72 h and 

then used in a calcium assay in response to 10-8 M NmU or OT. The calcium mobilization 

response to NmU is also presented when normalized with the response to OT (inset). n=6-12 in 

each group. C-D, Akt (C) and Erk (D) phosphorylation immunoreactivity on primary mSMC 

from pregnant mice at G10 or G19 stimulated with increasing concentrations of NmU for 10 

min. Data are representative of 4-5 independent experiments. E-F, Akt (E) and Erk (F) 

immunoreactivity on G19 myometrial cells pre-treated with LV.shNmU-R2 or LV.shSrambled 

for 72 h and then stimulated with 10-6 M of NmU for 10 min. Data are representative of 4-5 

independent experiments. G, calcium assay of G19 myometrial cells treated with 10-6 M NmU 

or NmS. n=6-45 in each group. H-I, Akt (H) and Erk (I) phosphorylation immunoblot of G19 

myometrial cells treated with 10-6 M of NmU or NmS for 10 min. Data are representative of 4-



 

 

5 independent experiments. *p˂0.05, **p˂0.01, ***p˂0.001 by one-way ANOVA with 

comparison to control groups using Dunnett’s multiple comparison test. 

Figure 4. NmU-R2 in uterus and NmS in placenta are under control of inflammation in 
mice and humans. A, Quantitative PCR performed on primary myometrial smooth muscle cells 

collected from pregnant mice at G10 and stimulated with 5 ng/mL of interleukin-1β for 6h. 

Results are relative to 18S and plotted as fold over the control group (vehicle). B, schematic 

representation of the in vivo model used. C, representative NmU-R2 immunoblot (top panel) 

and densitometric analysis (lower panel) of uteri of pregnant mice collected 24h after an 

intrauterine injection of saline (sham) or IL-1β. D, ex vivo contraction assay performed on uteri 

from pregnant mice exposed for 24h to saline (sham) or IL-1β. Data are representative of 3-4 

mice per group. E-F, mSMC from pregnant mice (G10) or human mSMC (hTERT-C3 cell line) 

were treated for 24h with IL-1β or vehicle and were used in a calcium assay. n=6-12 in each 

group. G-H, immunoblots (top panels) and relative densitometric analysis of protein bands 

(lower panels) showing NmU (G) and NmS (H) expression in placenta of pregnant mice 24h 

after an intrauterine injection of either saline (sham) or IL-1β. I, immunoblot (top panel) and 

relative densitometric analysis of protein bands (lower panel) showing NmS expression in 

placenta of pregnant mice 24h after an intrauterine injection of either saline (sham) or LPS. J, 

NmS immunoblot from human decidual biopsies from women in preterm labor with (PTLi, n=3) 

and without (PTL, n=3) clinical evidence of infection. The lower panel shows densitometric 

analysis of protein bands normalized with β-actin and plotted as fold over the control group 

(PTL). K, immunohistochemistry analysis performed on term human placentas blotted against 

NmU and NmS. For the NmU panel, black arrows represent syncytiotrophoblasts; for the NmS 

panel, black arrows represent cytotrophoblasts and white arrows Hofbauer cells. Scale bar, 

40µM.  L, primary human cytotrophoblasts were stimulated with LPS for 24h (top panel) or 48h 

(lower panel) and cell lysates were blotted against NmS. β-actin and cyclophilin B were used as 

loading controls. Values are presented as mean ± S.E.M. Data are representative of at least 3 

independent experiments. *p˂0.05, **p˂0.01, ***p˂0.001 by one-way ANOVA with 

comparison to control groups using Dunnett’s multiple comparison test. 

Figure 5. NmU-R2 is important for infection-induced adverse gestation outcomes. A-B, 

pregnant mice were pre-treated with intrauterine injections of vehicle (sham), LV.shScrambled 



 

 

or LV.shNmU-R2 at G13 (1 injection in each uterine horn) and then treated with a single 

intraperitoneal injection of 10 µg LPS or an equivalent volume of saline at G16. The timing of 

birth (A) and the survival of pups at birth per litter (B) was rigorously assessed. Values are 

presented as mean ± S.E.M. *p˂0.05 by one-way ANOVA with comparison to control groups 

using Dunnett’s multiple comparison test. 

Figure 6. Proposed role of NmU-R2 and its ligand NmS in physiological term labor and in 
pathological PTB. The schema provides a current view of inflammation-associated preterm 

birth whereby pathogen-associated molecular patterns (PAMPs) and damage-associated 

molecular patterns (DAMPs) activate pattern recognition receptors in uterus, predominantly 

Toll-like receptors (TLRs) to trigger an inflammatory cascade characterized by the local 

maturation and release of pro-inflammatory, pro-labor cytokines leading to uterine activation 

and PTB. Our study reveals that uterotonic NmS and its cognate receptor NmU-R2 are 

endogenously produced in human placenta and myometrium respectively, and are upregulated 

by the PAMP LPS and by its downstream mediator IL-1. We propose that this neuromedin 

system is implicated in sustaining or initiating uterine contractions in both physiological labor 

and pathological preterm labor associated with inflammation. This figure was made exclusively 

for this manuscript by the authors.  

  



 

 

Supplementary figure legends 

Figure S1. NmU-R1 is not implicated in the utero-contractile effects of NmU. A, 5 different 

shRNA designed to target Nmur2 were tested in primary mSMC to test their efficacy to 

knockdown NmU-R2. The arrow points at the shRNA that was selected for all experiments. B, 

pregnant mice were treated with a single intrauterine injection of either LV.shScrambled or 

LV.shNmU-R2 for 72h, and their uteri were collected for analysis of protein expression of 

NmU-R2. C, representative image of a contraction assay in uteri from mice treated with 

lentivirus or with vehicle (sham). D, siRNA-mediated NmU-R1 knock-down was confirmed 

using qPCR and immunoblot. E, G19 myometrial cells were pre-treated with siNmU-R1 or 

siControl for 72h and then used for a calcium assay in response to 10-8 M of NmU or OT. The 

calcium mobilization response to NmU is also presented when normalized with the response to 

OT (inset). n=6-12 in each group. F, representative NmU-R1 immunoblot of murine uteri 

collected at different gestation age. The lower panel shows densitometric analysis of protein 

bands normalized with β-actin and plotted as fold change vs. the control group (NP). G, 

representative NmU-R1 immunoblot (top panel) and densitometric analysis (lower panel) of 

uteri of pregnant mice collected 24h after an intrauterine injection of saline (sham) or IL-1β. 

Values are presented as mean ± S.E.M. Data are representative of 3 independent experiments. 

*p˂0.05, **p˂0.01 by one-way ANOVA with comparison to control groups using Dunnett’s 

multiple comparison test. 

Figure S2. Quantitative PCR analysis of gestational tissue samples. A-B, quantitative PCR 

of Nmu (A) and Nms (B) performed on placentas collected at different gestation age (G) and 

during spontaneous term labor (TL). C-F, quantitative PCR of Nmur1 (C) and Nmur2 (D) 

performed on uteri collected at different gestation age (G), during spontaneous term labor (TL) 

and 24h postpartum (PP). Ptgfr (E) and Oxtr (F) were used as positive controls of UAP genes 

known to be upregulated near term. G, representative immunoblot of NmU-R2 from human 

myometrial tissue biopsies from 5 pregnant women at term without any clinical sign of labor 

(TNL; samples from women different than those presented in immunoblot of Fig. 2F) and 5 

pregnant women at term in labor (TL). Densitometric analysis of all patients screened is 

presented in Fig.2F. H-K, quantitative PCR of Nmur1 (H) and Nmur2 (I) performed on uteri of 

mice treated for 24 h with an intrauterine injection of saline (sham) or IL-1β. Ptgfr (J) and Oxtr 



 

 

(K) were used as positive controls. Results are relative to 18S and plotted as fold change vs. the 

control groups. Murine data are representative of 4-5 mice in each group. Values are presented 

as mean ± S.E.M. *p˂0.05, **p˂0.01, ***p˂0.001 by one-way ANOVA with comparison to 

control groups using Dunnett’s multiple comparison test. 

Figure S3. Purity assessment of primary isolated myometrial smooth muscle cells. A, 

approximately 95% of freshly isolated and cultured primary myometrial smooth muscle cells 

were immunoreactive to α-actin (green). B, negative control showing no binding of the Alexa 

Fluor secondary antibody alone. DAPI was used to stain nuclei. Scale bar, 100µM. C-D, 

quantitative PCR of NMUR1 (C) and NMUR2 (D) performed on myometrial smooth muscle 

cells collected from either pregnant mice at G10 or at G19. Results are relative to 18S and plotted 

as fold over the G10 cells. E-F, NmU-R1 (E) or NmU-R2 (F) immunoblots performed on the 

same cells. Data are representative of at least 3 independent experiments. Values are presented 

as mean ± S.E.M. ***p˂0.001 by one-way ANOVA with comparison to control group (G10 

mSMC) using Dunnett’s multiple comparison test. 

Figure S4. Mechanism of action of NmU in primary myometrial smooth muscle cells. A-D, 

MAPK p38, SAPK JNK and downstream transcription factor c-jun (A, quantified in right 

panel), Akt (B) and Erk (C) immunoblots performed on cells treated or not with 10-6 M of NmU 

for different periods of time. IL-1β (5ng/mL) was used as a positive control for stress associated 

protein kinases. D-E, Akt (D) or Erk (E) immunoblots on cells pre-treated for 30 min with either 

the phospholipase Cβ inhibitor U73122, the calmodulin inhibitor w-7 or vehicle and then treated 

for 10 min with or without 10-6 M of NmU. Right panel shows densitometric analysis of protein 

bands normalized with β-actin and plotted as fold over the control group. The non-treated and 

the treated groups were first normalized with β-actin, and then divided by the non-treated group 

value. F, proposed signaling pathway of NmU in myometrial smooth muscle cells adapted from 

FP mechanism of action [26]; * indicates signaling steps uncovered herein. PLC, phospholipase; 

IP3, inositol triphosphate; MLCK, myosin light chain kinase. Data are representative of at least 

3 independent experiments. Values are presented as mean ± S.E.M. *p˂0.05, **p˂0.01, 

***p˂0.001 by one-way ANOVA with comparison to control groups using Dunnett’s multiple 

comparison test. 
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Tables 

Table I: Sequences used for the design of shRNA against Nmur2 

shRNA against Nmur2 sequences 
Clone ID Sequences 
TRCN0000026236 TAAGTTGGGTGTTGTGGATGG 
TRCN0000026273 TATACACCCATATGGGTTTGG 
TRCN0000026279 AACAGGAAGGGATAATTGTGC 
TRCN0000026293 TTTAGCCCTGATTTAGAGAGC 
TRCN0000026323 ATTCACAGTCACTTTGTCTGC 

 
 

 

Table II: Primers used for Real-Time qPCR  

Mouse primers 
Nmu-F: CACGCTGAGGGACAGCTAAA Nmu-R: TATTGGCACACCTTTGCAAGC 
Nms: CCAACCTAAGGAAAACCAGGATG Nms-R: GATGGACCGGAGCAAACTCA 
Nmur1-F: TGACTACCGCACTGCTCTTC Nmur1-R: ACAACCAGTGCAAACAGCATC 
Nmur2-F: TACATCCTCCCGATGACCCT Nmur2-R: CACGAGGACCAAGACAAACAG 
Ptgfr-F: AGCTGGACTCATCGCAAACA Ptgfr-R: GTGGGCACAAGCCAGAAAAG 
Oxtr-F: TGTGTCTCCTTTTGGGACAA Oxtr-R: GGCATTTCAGAATTGGCTGT 

 

 

Table III. NmU and PGF2α efficacy to induce labor is dependent on gestational age 

Substance injected  
(doses per injection) 

Gestational days of injections 
(number of mice) 

Gestational age at delivery ± S.D. 
(Term delivery = 19.2) 

NmU (160µg/Kg) G13-14 (n=4) 19.3 ± 0.34 
G15-16 (n=4) 19.4 ± 0.19 
G17-18 (n=9)   18.5 ± 0.10 * 

PGF2α (160µg/Kg) G13-14 (n=3) 19.4 ± 0.20 
G15-16 (n=3) 19.3 ± 0.12 
G17-18 (n=3)    18.7 ± 0.12 * 

  

 

 


