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Résumé 

Les lysyl-oxydases (LOX) et LOX-like (LOXL-1, 2, 3 et 4) influencent le remodelage de 

la matrice extracellulaire (MEC) lors d’anomalies cardiaques comme l’insuffisance cardiaque 

(IC) ou la fibrose. L’objectif principal était d’étudier les fonctions matrice-dépendantes et -

indépendantes des LOX et LOXL dans la transduction des signaux favorisant la fibrose et la 

fibrillation atriales (FA). Dans l’oreillette gauche (OG) de chiens IC, nous avons observé une 

augmentation de la régulation de : LOX et LOXL-1 dans le tissue atrial, LOX et LOXL-2 dans 

les fibroblastes ainsi que LOX, LOXL-1, LOXL-3 et LOXL-4 dans les myocytes. Nous avons 

évalué le rôle des isoformes des LOX dans la signalisation de la fibrose et de la FA dans l’OG 

de rats avec infarctus du myocarde (IM). Chez le chien et les cellules cardiaques de rats 

néonataux, nous avons exploré le rôle des LOX et LOXL sur la fonction matrice-dépendante et 

-indépendante des fibroblastes et myocytes cardiaques, en utilisant un traitement à 

l’angiotensine-II (Ang II) et un knockdown par si-ARN des isoformes de LOX. 

L’augmentation de l’expression des ARNm de LOX et LOXL était associée à une 

augmentation de l’expression des ARNm de COL 1A1, FN 1, TGF-β1, CTGF, periostin, α-

SMA et MMP-2 dans la zone infarcie du ventricule gauche (VG). L’expression des ARNm de 

LOXL-1, LOXL-3, COL 1A1, TGF-β1 et periostin était significativement augmentée dans 

l’OG. L’administration de β-aminopropionitrile (BAPN) post-IM a diminué significativement 

l’expression des ARNm de LOXL-1,2,3. Le BAPN a aussi diminué l’expression d’ARNm de 

marqueurs pro-fibrotiques dans l’OG. Ces changements n’étaient pas significatifs dans le VG. 

Le BAPN a diminué la fibrose dans l’OG ainsi que le ratio de cross-linking du collagène, mais 

pas significativement dans le VG. Le BAPN a réduit les remodelages structuraux et fonctionnels 
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de l’OG sans influencer significativement ceux-ci dans le VG. L’IM était associé à une 

augmentation de la durée de l’onde P ainsi que la durée et l’inductibilité des FA que le BAPN a 

significativement réduit. Chez des rats néonataux, des fibroblastes et des myocytes de ventricule 

ont été mis en culture et traités à l’Ang II. 

Les LOX et LOXL-2 sécrétées et le ratio de cross-linking du collagène ont été 

augmentés; et contribueraient au remodelage de la MEC. Chez le chien, la contractilité des 

myocytes de l’OG a été augmentée suivant le knockdown de LOX et LOXL-1 associé à des 

changements de concentrations calciques. Dans les fibroblastes, le knockdown de LOXL-3 a 

réduit l’expression des ARNm de LOXL-2,3,4, associé à une réduction de la prolifération 

cellulaire et de l’expression des ARNm de COL 1A1, COL 3A1 et CCNE 2. Ces résultats 

suggèrent que LOXL-2,3,4 influenceraient la prolifération des fibroblastes et la synthèse du 

collagène. Le knockdown de LOXL-4 a augmenté ratio de l’expression en ARNm de 

BAX/BLC-2, ainsi LOXL-4 pourrait avoir un effet protecteur contre l’apoptose. 

En conclusion, les LOX et LOXL sont des médiateurs potentiels de la fibrose et la FA 

dans l’OG chez le rat infarci. Les LOX et LOXL seraient alors impliqués dans la régulation des 

fonctions des fibroblastes et myocytes cardiaques. 

Mot-clefs: Insuffisance cardiaque, Fibrillation atriale, fibrose, Lysyl-oxydase (LOX), LOX-like 

(LOXL), cross-linking du collagène, Fibroblaste, Myocyte.  
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Abstract 

Lysyl oxidase (LOX) and LOX-like (LOXL-1, 2, 3 and 4) proteins have a crucial role in 

extracellular matrix (ECM) remodeling in several types of heart disease, such as heart failure 

(HF) and fibrosis. The main objective of this thesis was to address the matrix-dependent and 

matrix-independent functions of LOX and LOXL proteins in signal transduction, leading to 

atrial fibrosis and atrial fibrillation (AF). We noted upregulation of LOX and LOXL-1 in tissues, 

LOX and LOXL-2 in fibroblasts and LOX, LOXL-1, LOXL-3 and LOXL-4 in myocytes of the 

canine left atrium (LA) in congestive heart failure (CHF). Based on these findings, we studied 

the roles of LOX isoforms as upstream targets in the signaling pathways of LA fibrosis and AF 

in a rat model following myocardial infarction (MI). Additionally, we explored the 

physiological roles of LOX and LOXL proteins in matrix-dependent and matrix-independent 

functions of cardiac fibroblasts and myocytes through angiotensin II (Ang II) treatment and 

siRNA-mediated knockdown of LOX isoforms in canine and neonatal rat cells. 

Upregulation of the mRNA expression of LOX and LOXL was accompanied by an 

increase in mRNA expression of COL 1A1, FN 1, TGF-β1, CTGF, periostin, α-SMA and MMP-

2 in the infarcted area of the left ventricle (LV). mRNA expression of LOXL-1, LOXL-3, COL 

1A1, TGF-β1 and periostin were significantly increased in the LA post-MI. Administration of 

β-aminopropionitrile (BAPN) post-MI significantly reduced the mRNA expression of LOXL-

1, LOXL-2 and LOXL-3 along with a decrease in the mRNA expression of several profibrotic 

markers in the LA without significant changes to those in the LV. Moreover, the administration 

of BAPN post-MI reduced LA fibrosis and the collagen cross-linking ratio without significantly 

changing those in the LV. BAPN administration post-MI reduced the adverse structural and 
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functional remodeling of LA without significantly changing those in the LV. Furthermore, MI 

caused an increase in the P-wave duration, AF duration and AF inducibility, while the values of 

those parameters were significantly reduced upon BAPN administration post-MI. 

The protein expression of secreted LOX and LOXL-2 were increased in cultured neonatal 

rat ventricular fibroblasts and myocytes along with an increase in the collagen cross-linking 

ratio in fibroblasts upon treatment with Ang II. The secretion of LOX and LOXL-2 from cardiac 

fibroblasts and myocytes may contribute to ECM remodeling. Moreover, the contractility of 

canine LA myocytes was enhanced upon knockdown of LOX or LOXL-1 along with slight 

changes in Ca2+ transients. Upon knockdown of LOXL-3 in fibroblasts, LOXL-2, LOXL-3 and 

LOXL-4 mRNA expression levels were reduced along with reduced proliferation and mRNA 

expression of COL 1A1, COL 3A1 and CCNE 2. The results showed that LOXL-2, LOXL-3 

and LOXL-4 may promote fibroblast proliferation and collagen synthesis. LOXL-4 knockdown 

increased the mRNA expression of the BAX/BCL-2 ratio, suggesting that LOXL-4 may protect 

against apoptosis in cardiac fibroblasts and myocytes.  

In conclusion, LOX and LOXL proteins are prominent mediators of LA fibrosis and AF 

post-MI. Additionally, these findings suggested that LOX and LOXL proteins are implicated in 

the regulation of various aspects of cardiac fibroblast and myocyte functions.  

Keywords: Heart failure, Atrial fibrillation, Fibrosis, Lysyl oxidase (LOX), LOX-like (LOXL) 

proteins, Collagen cross-linking, Fibroblast, Myocyte. 
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Part I– Cardiac pathophysiology and management 

1. Overview 

Chronic fibrosis, a common pathological disorder, is characterized by deposition of 

extracellular matrix (ECM) proteins, which affects many organ systems, such as the skin, lungs, 

kidneys, heart and liver 1. Furthermore, fibrosis leads to severe stiffness and impaired organ 

function 2. Worldwide, 45 % of the total deaths per year are caused by fibrotic diseases 3. The 

biological key point of fibrosis is the deposition of cross-linked collagen and elastin within the 

ECM, which is initiated by enzymatic (lysyl oxidase (LOX) and LOX-like (LOXL) proteins) and 

non-enzymatic (advanced glycation end-products; AGEs) pathways 4-6. Cardiac fibrosis causes a 

substantial proportion of deaths among other types of fibrosis 3. Cardiac fibrosis has been involved 

in various forms of cardiovascular disease (CVD). CVD is the main cause of death in the world, 

representing 31 % of total deaths annually 7. Cardiac fibrosis is initially an adaptive and protective 

mechanism. Nevertheless, prolonged fibrosis leads to adverse remodeling and distinct impairment 

of organ function 1, 8. The incidence of and death from cardiac fibrosis have increased in aged 

individuals 8. In the heart, increased ECM protein deposition is caused by several pathological 

conditions, such as pressure overload, myocardial infarction (MI), diabetes and cardiomyopathy 9. 

Chen and Frangogiannis 10 reported that activated inflammatory and fibrogenic signaling pathways 

induce heart failure (HF). HF is associated with significant structural remodeling (fibrosis) of the 

atria that can lead to an increase in atrial fibrillation (AF) susceptibility 11. Recently, the AF 

incidence has reached 13 % among the world population 12. AF is the most common type of 

sustained cardiac arrhythmia and is associated with high mortality and morbidity rates 13. AF is 

common among HF and MI patients 14-16.  
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To date, the role of LOX and LOXL proteins in cardiac fibrosis underlying the development 

of AF are not well understood. The main objective of this thesis was to address the roles of LOX 

and LOXL proteins in the signal transduction, leading to atrial fibrosis, AF and atrial remodeling. 

The literature review in this thesis is divided into two parts: part I provides information and 

discusses topics related to the pathophysiology of AF, cardiac fibrosis and MI. Following this part 

is a review paper that covers a substantial number of studies related to the role of the LOX family 

in cardiac function and diseases, which was accepted in Cardiovascular Research Journal (Chapter 

1- Part II).  

2. Cardiac anatomy and physiology 

2.1 Cardiac structure and function 

The heart, a muscular pump, directs oxygenated blood throughout the body through the 

circulatory system 17-19. The normal human heart beats 100,000 times/day and pumps more than 

16,000 liters of blood to all organs 17, 19. The heart consists of four chambers, including two inferior 

chambers (right and left ventricles; RV and LV, respectively) and two superior chambers (right 

and left atria; RA and LA, respectively) 17, 18. The RV and LV are separated by the interventricular 

septum, whereas the RA and LA are separated by the interatrial septum 17-19. The heart is encircled 

by coronary arteries that carry all of the blood supply to the heart 17, 18. The main coronary arteries 

are the left anterior descending, left coronary, right coronary and circumflex coronary 17, 18. 

Furthermore, the heart is enclosed by a fibroelastic sac called the pericardium, which is important 

for cardiac protection from surrounding infection and prevention of heart overfilling 17, 18. The LV 

and LA are responsible for maintaining the systemic circulation, while the RV and RA are essential 

for sustaining the pulmonary circulation 17, 19. The systemic circulation passes the oxygenated 
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blood to all body parts and returns the deoxygenated blood to the lungs 19-21. The ventricles have 

thicker and stronger muscular walls compared with those of the atria, enabling the ventricles to 

pump the blood to distant areas of the body. Usually, the atria and ventricles exist in either 

relaxation (diastole) or contraction (systole) status 20, 22. Cardiac output is the volume of ejected 

blood by the heart in one minute, with a value of 5-5.5 liters/min during rest 17, 18, 22. Figure 1 

illustrates the anatomy of the heart.  

The sinoatrial node (SA node) is considered as the pacemaker of the heart and is located in 

the superior wall of the RA 18. Normally, the SA node spontaneously fires to start stimulating the 

atria, followed by the atrioventricular node (AV node) 18. Following AV node stimulation, signals 

slowly move to the ventricles to initiate filling of the ventricles 18. Finally, the stimulation proceeds 

to the His Purkinje system, leading to a more robust and coordinated contraction of the ventricles 

18. Normal cardiac rhythm, sinus rhythm, mediates the accurate stimulation of the whole heart in 

the proper sequence 18. However, an arrhythmia is defined as any deviation from sinus rhythm 23. 

An electrocardiogram (ECG) records the electrical activity of the heart and serves as an important 

indicator of several heart diseases 23, 24. A normal ECG shows a single synchronized electrical 

wave during beating of the heart 24. In an ECG, a P-wave is produced by atrial depolarization, a 

QRS wave is generated by ventricular depolarization and a T wave is produced by ventricular 

repolarization 24. Differences in the shape of the waves and the distance between the ECG peaks 

are indicators of cardiac diseases, such as congenital heart conditions, arrhythmias and MI 22.  
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Figure 1. Anterior view of the human heart. This figure shows the cardiac chambers, valves and 

major vessels. The black arrows indicate the normal blood flow direction due to the contraction of 

the heart chambers. 
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2.2 Cellular components 

The cardiac wall is composed of three layers, including the endocardium, myocardium and 

epicardium 25, 26. The heart interstitium consists of different cell types, such as cardiomyocytes, 

fibroblasts, endothelial cells, smooth muscle cells, macrophages, pericytes and mast cells 27, 28. 

Cardiac fibroblasts and myocytes account for 27 % and 56 % of the total cell number in the adult 

murine heart, respectively 29. Cardiac cells communicate with each other in several ways, including 

through direct cell-cell interactions as well as through the paracrine and autocrine effects of 

released factors 25. 

2.2.1 Cardiomyocytes 

Cardiomyocytes, the most important cardiac cells, constitute approximately 75 % of the heart 

tissue volume and are essential for maintaining the automaticity and contractility of the heart 30. 

During the fetal life, cardiomyocytes proliferate at a rapid rate and become unable to proliferate 

immediately after birth 31. Thus, upon neurohormonal stimulation or mechanical stress, 

cardiomyocytes are elongated and hypertrophied to maintain the stroke volume 31. Cardiomyocytes 

are firmly bound and linked by gap junctions to pass the ions 32. Derived action potentials from 

the pacemaker cells stimulate the cardiomyocytes and then proceed to neighboring cardiomyocytes 

to produce an organized contraction of the ventricles and atria 32. Several factors are implicated in 

the hypertrophy of cardiomyocytes during cardiac remodeling, such as transforming growth factor 

β (TGF-β), angiotensin II (Ang II) and tumor necrosis factor α (TNF-α) 33, 34. 



 

7 

2.2.2 Fibroblasts 

Fibroblasts are flat spindle-shaped cells in perivascular and interstitial matrices that originate 

from circulating fibrocytes, cardiac resident fibroblasts, perivascular cells, epithelial cells via 

epithelial-mesenchymal transition (EMT), bone marrow-derived progenitor cells or endothelial 

cells via endothelial-mesenchymal transition (EndMT) 35-39. Fibroblasts are well known as the 

most predominant cells in the adult heart 29. Recently, endothelial cells and cardiomyocytes have 

been recognized as the most predominant cells among all cardiac cell types 40. Fibroblasts are 

found between cardiomyocytes as sheets and strands and have a crucial role in preserving cardiac 

structure and function 40. During the heart development, fibroblasts activate the proliferation of 

cardiomyocytes through the secretion of fibroblast growth factor (FGF) and periostin 1, 28, 41, 42. 

Fibroblasts are characterized by a high membrane resistance that makes them an excellent passive 

follower for electrical signals 1, 39, 43. Cardiomyocyte generates action potential that drives 

fibroblast membrane polarization due their limited capacity and high resistance 39, 43. Fibroblasts 

don’t generate an action potential in response to electrical stimuli, but they respond to mechanical 

stimuli with changes in their membrane potential 44-46. Upon exposure of fibroblasts to mechanical 

stretch, Ca2+, K+ and Na+ channels are stimulated and depolarize the fibroblast membrane 1, 44-46.  

Fibroblasts play numerous roles in the heart, including tissue repair, synthesis and 

degradation of ECM proteins, inflammation, proliferation, angiogenesis, scar formation and 

fibrosis 39, 47, 48. Fibroblasts produce ECM components, such as structural proteins (elastin and 

collagen), adhesive (fibronectin (FN) and laminin) proteins, glycosaminoglycans (GAGs) and 

proteoglycans (PGs) 47. Furthermore, fibroblasts regulate ECM degradation through the production 

of matrix metalloproteinases (MMPs) and tissue inhibitors of metalloproteinases (TIMPs) 47. 

Fibroblasts secrete many growth factors and cytokines that affect surrounding cells through 



 

8 

paracrine and autocrine signaling pathways 1, 49, 50. Moreover, fibroblasts activate the synthesis of 

vascular endothelial growth factor (VEGF), FGF, connective tissue growth factor (CTGF) and 

platelet-derived growth factor (PDGF), which have important roles in maintaining proper 

vascularization of the heart 1, 51. Different stimuli can alter fibroblast functions, such as mechanical, 

electrical and biochemical stimuli 52, 53. There are several stimulators of fibroblast proliferation, 

differentiation and collagen secretion, such as TGF-β1, vasopressin, PDGF, cardiotrophin-1 (CT-

1), FGF 2, endothelin (ET), mast cell-specific proteases (chymase and tryptase), MMPs, TIMPs 

and Ang II 48, 54-56.  

2.2.3 Other cardiac cell types 

The coronary artery consists of endothelial cells that participate in tissue healing via 

stimulation of myofibroblasts and new blood vessel formation 35, 57. Communication of endothelial 

cells with fibroblasts modulates the formation of new blood vessels via released VEGF and FGF 

from fibroblasts during wound healing 39, 58. Travers et al. 59 reported that fibroblasts derived from 

circulating progenitor and endothelial cells have a vital role in the fibrotic response. During an 

injury, macrophages spread and secrete MMPs and cytokines within the myocardium to induce 

cardiac remodeling 60. Pericytes are located in the perivascular area and are important for 

preserving cardiac vessel integrity 61. Additionally, pericytes release several cytokines that can 

modify fibroblast status 62. 

2.3 Cardiomyocyte‒fibroblast communication 

Cardiac fibroblasts are imbedded in the matrix and distributed around the myocytes 39. 

Cardiac fibroblasts communicate with neighboring myocytes, and thus contribute to ventricular 
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contraction and transduction of mechanical and electrical signals 63. Cardiac myocytes and 

fibroblasts communicate either directly through gap junctions or indirectly through paracrine 

factors 63. Moreover, Ongstad and Kohl 43 reported that cardiac fibroblasts have direct 

communication with cardiomyocytes via gap junctional proteins called connexins, such as Cx 45, 

Cx 40 and Cx 43. Cardiac fibroblasts cannot be excited, but they have the ability to transfer 

currents between myocytes via connexins 64. Cardiac myocytes release several factors that can 

alter the functions of fibroblasts and other heart cell types, leading to cardiac fibrosis and 

hypertrophy 65. Furthermore, cardiac fibroblasts stimulate myocyte proliferation via the ECM, 

heparin-binding epidermal growth factor (EGF), FGF and the FN-integrin β1 pathway 28, 42. Ang 

II stimulates cardiomyocyte hypertrophy through the secretion of ET and TGF-β1 from fibroblasts 

66. However, cardiomyocytes secrete several molecules, such as TGF-β, Ang II and ET that 

activate fibroblast differentiation, proliferation and secretion of ECM proteins 66, 67. 

Cardiomyocyte-specific Ang II type I receptor (AT1R) knockout leads to decreased fibroblast 

proliferation around myocytes 67. 

2.4 Cardiac ECM components 

The ECM is a highly organized acellular network that surrounds fibroblasts, myocytes, and 

vascular and immune cells 68. It is primarily composed of matricellular proteins, PGs, structural 

fibrous proteins, GAGs and adhesive glycoproteins 68. The ECM has various functions in the heart, 

such as cell proliferation and motility, structural framework formation, mechanical signal 

distribution and blood flow modulation 1, 68-70. Additionally, the ECM contains cytokines, MMPs, 

TIMPs and growth factors that affect ECM homeostasis by regulating the synthesis and 

degradation of ECM components 68. In response to cardiac injury, MMPs, TGF-β, VEGF and FGF 
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are activated and released into the ECM to participate in cardiac remodeling 71. Disruption of ECM 

homeostasis following a cardiac injury is the main cause of cardiac fibrosis and dysfunction 72. 

2.4.1 Collagen 

Collagens, major fibrous ECM proteins, are classified into four groups, namely membrane-

associated collagens with interrupted triple helices, fibril-associated collagens with interrupted 

triple helices, multiple triple-helix domains and fibrillar collagens (such as types I, II, III, V, and 

XI) 73. Collagen types I and III are the most predominant structural fibrous ECM proteins and are 

synthesized by fibroblasts and myofibroblasts 68. Collagen type I represents approximately 85 % 

of the total collagen and is characterized by thick fibers with high tensile strength, while collagen 

type III constitutes approximately 11 % of the total collagen and is described as thin fibers with 

elastic properties 74, 75. Collagen type I, a triple helix, is composed of three polypeptide α chains, 

including the two α1 chains and one α2 chain 76. The triple helix of collagen type III consists of 

three identical α1 chains, and each α chain contains three repeating amino acids (glycine, proline 

and hydroxyproline) 76.  

Collagens are produced by fibroblasts and myofibroblasts as large inactive molecules called 

preprocollagens and then secreted into the ECM for processing, assembly and cross-linking 77. 

Preprocollagens are subjected to cleavage of their signal peptides in the endoplasmic reticulum to 

form procollagens, followed by packing of these procollagens into vesicles to be released in the 

extracellular area for further modifications, including the elimination of C- and N- terminal 

propeptides by procollagen C-proteinase (PCPase) and procollagen N-proteinase (PNPase), 

respectively 78. The resulting mature collagen self-assembles to form collagen microfibrils and is 

then cross-linked by enzymatic (LOX) and non-enzymatic (AGEs) pathways 79. The cross-linking 
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step during collagen processing is essential for increasing the tensile strength and stability of 

collagen fibers 40, 80-83. The mature collagen fibers are very stable, with a half-life of 80 to 120 days 

84. Excessive deposition of collagen in the interstitial space leads to an increase in ventricular 

stiffness and impairs diastolic function 84. Kong et al. 85 reported that the changes in ECM 

composition stimulate fibroblast migration and proliferation. In the healthy heart, there is a tight 

balance between the formation of new collagen and degradation of old collagen 84, 86, 87, while the 

disruption of this balance leads to great changes in cardiac structure and function 84. 

2.4.2 Other ECM proteins 

The cardiac ECM also contains less abundant proteins, such as laminin, fibrillin, elastin, 

other collagen types (IV, V, and VI) and FN 88. Laminin, a glycoprotein, consists of different 

binding domains for ECM components, such as cell membrane receptors and collagens 89. Laminin 

is primarily produced by cardiomyocytes, endothelial cells and vascular smooth muscle cells 

(VSMCs) 89, 90. Elastin proteins are important as they provide tissues with elastic properties, 

allowing them to be stretched without breakage 47. FN, a glycoprotein, is found as cellular 

(insoluble) and plasma (soluble) forms in tissues and controls cell migration and adhesion 91. FN 

is composed of homologous domains that are spliced into a longer protein with two extra domains: 

A and B (EDA and EDB, respectively) 91. Various cardiac cells, such as endothelial cells, 

fibroblasts and macrophages, secrete FN 92, 93, which is involved in different cardiac functions, 

including ECM stability, mechanotransduction, cell adhesion, collagen deposition and cell 

migration 94, 95. Moreover, FN plays a crucial role in fibrillin-1 assembly into structural networks 

96. Arslan et al. 97 demonstrated that EDA domain deletion attenuates the adverse cardiac 

remodeling following MI in mice.  
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Matricellular proteins, non-structural ECM proteins, have an essential role in tissue healing 

and repair 98. The matricellular protein family consists of tenascin-C, secreted protein acidic and 

rich in cysteine (SPARC), osteopontin (OPN), CCN family members, thrombospondins (TSPs) 

and periostin 99. Matricellular proteins act as bridges between cells and matrix proteins to regulate 

the activity of various growth factors and cytokines 99. The most important cellular targets of 

matricellular proteins are vascular cells, fibroblasts and macrophages 99. Tenascin-C is not found 

in healthy rat hearts and is highly expressed in fibroblasts following MI 100. The TSP family is 

composed of five secreted glycoproteins that participate in the cardiac remodeling process 98. Kong 

et al. 85 reported that the abundance of periostin in the ECM and myofibroblasts is increased during 

cardiac fibrosis. The CCN family consists of six proteins that have matricellular and non-

matricellular roles such as CCN2/CTGF 99.  

3. Cardiac remodeling 

Cardiac remodeling is defined as the modification of cardiac structure (such as shape, size, 

dimension and mass) and function in response to cardiac injury and/or hemodynamic load 101. 

Cardiac remodeling can be categorized into adaptive (physiological) or maladaptive (pathological) 

remodeling 102. Physiological remodeling represents the compensatory dimensional and functional 

changes that occur when the heart is exposed to physiological stimuli, such as pregnancy and 

intensive exercise. The heart responds to these stimuli by increasing the stroke volume or heart 

rate to preserve the cardiac output and LV function 103. Physiological remodeling, a reversible 

adaptation, is associated with normal or increased heart function, while pathological remodeling, 

an irreversible process, is associated with declined cardiac function, excessive deposition of 

collagen and higher mortality rates 103. There are several causes of pathological remodeling, 
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including volume overload, cardiac injury and pressure overload 104-106. At the cellular level, 

cardiac remodeling involves proliferation and differentiation of fibroblasts as well as hypertrophy 

and apoptosis of myocytes 104-106. These changes deteriorate cardiac functions and increase the risk 

of arrhythmia development 101. The adverse remodeling impairs heart function and leads to HF 101. 

During pathological conditions, ventricular remodeling is classified into three main patterns, 

namely eccentric, concentric and post-infarction remodeling 107. Eccentric remodeling is 

characterized by increasing the length of myocytes to compensate for the increase in volume load 

107, while concentric remodeling is characterized by deposition of ECM proteins and thickening of 

myocytes due to pressure overload 107. Post-infarction remodeling involves a series of adverse 

events, such as dilatation of infarcted tissues as well as combined pressure and volume loads in 

the non-infarcted areas 107. Figure 2 illustrates the roles of fibroblast-cardiomyocyte 

communications in cardiac remodeling. 

4. Atrial fibrillation (AF) 

AF, a common clinical dysrhythmia, is often initiated by fast firing from the pulmonary 

veins, with the atria beating in a chaotic manner (350‒600 bpm) 14, 108 (Figure 3). Rapid and 

disorganized atrial impulses move to the ventricles and mediate irregular and rapid contraction of 

the ventricles 14, 108. Sinus rhythm can be spontaneously re-established in the early stage of AF that 

develops to a permanent or persistent pattern over time 108. On surface ECG, AF is characterized 

by unequal R-R intervals, missing P waves and a rapid heart rhythm for at least 30 sec 16 (Figure 

3). 
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Figure 2. Fibroblast-cardiomyocyte interactions. Fibroblasts and cardiomyocytes respond to 

mechanical stress and communicate via electrical and chemical coupling. Several cytokines and 

growth factors act in the paracrine and/or autocrine manner and induce fibrosis, arrhythmias and 

cardiomyocyte hypertrophy. Ang II: angiotensin II, CT-1: Cardiotrophin-1; ECM: Extracellular 

matrix; TGF-β: Transforming growth factor-β; FGF2: Fibroblast growth factor 2; IGF-1: Insulin-

like growth factor-1; LIF: Leukemia inhibitory factor; PDGF: Platelet-derived growth factor; α-

SMA: α-smooth muscle actin. 
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Figure 3. Illustration of heart with normal sinus rhythm and atrial fibrillation (AF). Cardiac rhythm is initiated by the sinoatrial 

(SA) node causing atrial contraction, followed by atrioventricular conduction through the atrioventricular (AV) node and His-Purkinje 

system, leading to ventricular contraction. AF causes highly irregular and rapid atrial contraction. The black arrows show the spread of 

the electrical impulses through the atria and ventricles. Electrocardiogram (ECG) recordings for normal sinus rhythm and AF. 
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The prevalence of AF is approximately 1 to 2 % of the population, with a predicted increase 

in the future 109. AF frequently occurs among older patients with other cardiac diseases and is 

accompanied by various pathological changes 12, 110. Rates of AF incidence increase to 0.5, 5-15 

and 20 % among people of 40-50, 80 and 85 years old, respectively 56, 109, 111. Aged myocardium 

is characterized by fibroblast overproliferation, myofiber alignment modification, collagen 

accumulation and cardiomyocyte hypertrophy 56, 112. 

4.1 Risk factors 

AF is prevalent among patients with diastolic and systolic HF, diabetes mellitus, valvular 

and coronary artery diseases, hypertension and MI 15, 16. High-risk AF patients are characterized 

by LV diastolic and systolic dysfunction, LV hypertrophy and LA dilatation 16. Lone AF occurs in 

the absence of systemic or cardiac diseases. However, it is strongly associated with structural heart 

diseases 16. AF is considered as a cause and result of HF with complicated interactions that result 

in systolic and diastolic dysfunction 113. HF, a common health problem, occurs in more than 23 

million people worldwide 97, 114. HF is associated with increased mortality rates (40 to 60 %) within 

five years after diagnosis 114. The AF incidence is 10-50 % in chronic HF patients and is associated 

with poor prognosis 115, 116. MI is associated with LV remodeling that may predispose patients to 

AF development 117. AF can occur as a result of non-cardiac conditions, including systemic 

inflammation, metabolic syndrome, thyrotoxicosis and obstructive sleep apnea 118. Patients with 

inflammatory conditions, such as inflammatory bowel disease, pericarditis, myocarditis and 

pneumonia, have a high risk for AF 119. Atrial fibrosis has been accompanied by inflammatory 

infiltrates and upregulation of inflammatory chemokines and cytokines, such as monocyte 

chemoattractant protein 1, TNF-α and interleukins (IL-1 and IL-6) in AF patients 120-122. Several 



 

17 

changes occur during inflammation, such as infiltration of macrophages and release of reactive 

oxygen species (ROS) within the myocardium 56. The inflammation is additionally aggravated by 

stimulation of the renin-angiotensin-aldosterone system (RAAS) and nicotinamide adenine 

dinucleotide phosphate (NADPH) oxidase, which lead to TGF-β1-induced electrical and structural 

remodeling 122. Oxidative stress induces inflammatory signaling pathways and cell death that 

ultimately cause fibrosis and AF 123. Obesity is associated with atrial dilatation, LV diastolic 

dysfunction, myocardial lipidosis, atrial inflammatory cell infiltration, interstitial fibrosis and 

abnormal atrial conduction, which all lead to AF 124. Many signaling pathways are involved in 

obesity-induced AF, such as oxidative stress, TGF-β1, ET and PDGF 125. Furthermore, deposition 

of fat in the pericardial envelope impairs cardiac relaxation 125. Obstructive sleep apnea causes AF 

through delaying atrial conduction, a decreased atrial refractory period, fibrosis and myocyte 

apoptosis 126. Figure 4 demonstrates the pathophysiology of AF, including clinical risk factors, 

mechanisms and complications. 

4.2 Mechanisms 

Ectopic firing (triggered activity) and re-entry are the main AF determinants 127. Ectopic 

firing can result from delayed afterdepolarizations (DADs), early afterdepolarizations (EADs) or 

increased atrial automaticity 13. Ectopic firing initiates AF by providing triggers to induce re-entry 

13. Re-entry needs an initiating trigger and susceptible substrate 127. Re-entry development depends 

on the tissue properties, including conduction and refractoriness 127. The probability of the re-entry 

formation increases in tissues with abnormal conduction and short refractoriness 127. In the 

literature, four main mechanisms are shown to create re-entrant circuits or triggers for AF, 

including Ca2+ handling abnormalities, electrical remodeling, autonomic nervous system changes 
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and structural remodeling 13, 128. The predominant hypothesis regarding AF development is the 

initiation of a fast trigger that mediates the spread of re-entrant waves in susceptible atrial 

substrates 117, 129. Atrial remodeling modulates re-entry and ectopic firing mechanisms of 

arrhythmia, thus leading to AF maintenance 13, 130 (Figure 4). 

4.2.1 Ca2+ handling abnormalities 

Ca2+ handling abnormalities are important candidates for AF initiation and perturbation 

(Figure 4) 13, 128. During systole, Ca2+ mainly enters cells via L-type Ca2+ channels, and this entry 

stimulates the Ca2+ release from sarcoplasmic reticulum (SR) via ryanodine receptors (RyRs) 13. 

During diastole, Ca2+ is removed from the cytoplasm by two main pathways, including extrusion 

of Ca2+ across the cell membrane via a Na+-Ca2+ exchanger (NCX) or active entry of Ca2+ into SR 

via SR Ca2+ ATPase (SERCA) 13. Normally, atrial myocytes inhibit the Ca2+ overload by 

decreasing the entry of Ca2+ by L-type Ca2+ channels 128. SERCA is controlled by phospholamban, 

which decreases the inhibitory function of SERCA and increases the uptake of SR Ca2+ upon its 

phosphorylation 13. In AF, there are changes in the phosphorylation status of several Ca2+ handling 

proteins, such as hyperphosphorylation of phospholamban and RyR by Ca2+/calmodulin-

dependent protein kinase II (CaMKII) and protein kinase A 131. Hyperphosphorylation of 

phospholamban causes Ca2+ overload and DAD activity in congestive heart failure (CHF) 132. RyR 

binds to an accessory protein (FKBP12.6) that stabilizes and inhibits the opening of RyR during 

diastole 13. Furthermore, adrenergic stimulation increases the SR Ca2+ load, L-type Ca2+ current 

(IcaL) and RyR2 opening probability 128. During diastole, Ca2+ leak occurs in several conditions, 

such as malfunction of RyRs, increased diastolic Ca2+, calsequestrin deficiency and increased 

NCX activity, which leads to DAD-related arrhythmias 13. Narayan et al. 133 reported that Ca2+ 
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mishandling in HF patients causes Ca2+ overload and arrhythmia development. Additionally, 

increased intracellular Ca2+ levels activate small conductance Ca2+-activated K+ channels that 

promote AF 128. 

4.2.2 Electrical remodeling 

Electrical remodeling, ion channel remodeling, includes changes in the atrial expression of 

ion channels or in the current density 129 (Figure 4). Electrical remodeling results from the 

following changes: abnormal expression of the gap junctional proteins, an increase in inward-

rectifier K+ currents (e.g., constitutive acetylcholine-regulated K+ currents (IKACh) and background 

K+ currents (IK1)) or a decrease in Na+ currents (INa), ICaL and transient outward K+ currents (Ito) 

134-139. The ionic changes are associated with Ca2+ overload, along with prolongation of the atrial 

action potential duration (APD), eventually increases the risk for DADs 117. Furthermore, ICaL 

reduction causes a decrease in the influx of Ca2+ into the cell, resulting in APD shortening and AF 

maintenance 128. Tyrosine kinases, oxidative stress and zinc homeostasis can alter ICaL currents 140-

142. van der Velden et al. 143 reported that their AF model demonstrated several changes in the 

expression and distribution of Cx 40. IK1 is formed by inwardly rectifying K+ channel (Kir2) family 

subunits and determines the cardiomyocyte resting action potential 13, 144. mRNA and protein 

expression of Kir2.1 have been upregulated along with APD shortening in AF 137, 145. IKACh is 

activated by acetylcholine release from the vagal nerve after parasympathetic stimulation 13. The 

continuous activation of IKACh causes hyperpolarization of the cell membrane and APD shortening, 

thus favoring atrial re-entry and AF maintenance 13. In AF, upregulation of IKACh results from the 

increase in protein kinase C-induced phosphorylation 138, 146. Furthermore, decreased Ito may 

promote wave propagation via an indirect increase of action potential amplitude rather than a 
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decrease in APD 128. Yue et al. 147 noted that voltage-dependent K+ channel 4.3 (Kv4.3), a pore-

forming subunit of Ito, is decreased in the AF dog model. 

4.2.3 Autonomic nerve remodeling 

The autonomic nervous system, particularly the cardiac nerve supply, consists of 

sympathetic and parasympathetic components that are implicated in arrhythmia development 148. 

Stimulation of the autonomic nervous system strongly affects the electrophysiology of the atria 

and AF development 149 (Figure 4). Atrial sympathetic activation has been heterogeneously 

increased in AF or MI models 150. Both parasympathetic and sympathetic nervous systems have 

crucial roles in the initiation process of AF 151, 152. Stimulation of the sympathetic nervous system 

by β-adrenoceptors modifies RyR2 opening probability, ICaL and phospholamban phosphorylation, 

thus augmenting spontaneous Ca2+ release and inducing arrhythmogenesis 153. Parasympathetic 

activation increases IKACh and shortens APD through cholinergic stimulation 149. 

4.2.4 Structural remodeling 

The principal characteristics of atrial structural remodeling are dilatation and fibrosis of the 

atria, which contribute to AF development 154 (Figure 4). Atrial fibrosis strongly contributes to AF 

through disturbing the electrical coupling, thus acting as a substrate for re-entry and AF 

maintenance 16, 155. Severe atrial fibrosis is accompanied by recurrent AF that is resistant to 

antiarrhythmic drugs 156. AF patients are characterized by greater atrial volume, size and fibrosis 

than sinus rhythm patients 157.  
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4.3 Complications 

AF is associated with high morbidity and mortality due to several complications, including 

LV dysfunction, HF, stroke, thromboembolism, hospitalization and poor quality of life 12, 13 

(Figure 4). Systemic embolism and stroke are the most common AF complications and result from 

impaired atrial contraction, atrial blood stagnation and clot formation 158. 

5. Cardiac fibrosis 

5.1 Pathogenesis 

Cardiac fibrosis is one of the main myocardial remodeling components 56 that occurs due to 

the imbalance between ECM production and degradation 159. Cardiac fibrosis is an essential 

constituent of several cardiac diseases and is characterized by an increase in collagen type I and 

type III deposition in the cardiac interstitium 74, 85, 160. Collagen is an important ECM protein that 

preserves the structural integrity of tissues without compensating cellular functions. The heart 

adapts to chemical, mechanical and electrical stimuli through the formation and rearrangement of 

connective tissue fibers 56. This adaptation occurs in both cellular and extracellular components 56.  

Fibroblasts and myofibroblasts are the main cells that are implicated in cardiac fibrosis 161. 

The cardiac fibroblast number is increased in pathological conditions through differentiation from 

several cell lines, such as pericytes, endothelial cells and monocytes 64. Collagen is subjected to 

qualitative and quantitative changes during the progression of many cardiac diseases, such as MI 

and dilated cardiomyopathy 162. The augmentation of cardiac fibrosis results in the impairment of 

diastolic and systolic functions, cardiac structure alteration, HF and arrhythmia 161, 162. Borer et al. 

163 reported that volume overload caused by valvular dysfunction leads to cardiac fibrosis.  
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Figure 4. Schematic diagram for the pathophysiology of atrial fibrillation, including clinical risk factors, mechanisms (Ca2+ 

handling abnormalities, structural, autonomic nerve (sympathetic activation) and electrical remodeling) and complications. 

Focal ectopic firing usually results from DADs that produce a spontaneous action potential. The susceptible re-entry substrate needs 

shortening of refractoriness and disturbances in conduction. ERP: Effective refractory period, ICaL: L-type Ca2+ current, IK1: Background 

K+ current; Ito: Transient outward K+ current, NCX: Na+-Ca2+ exchanger, SR: Sarcoplasmic reticulum, SERCA: SR Ca2+ ATPase, APD: 

Action potential duration, DADs: Delayed afterdepolarizations, IP3R: Inositol trisphosphate receptor, RyRs: Ryanodine receptors. 
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Furthermore, pressure overload that is induced by aortic stenosis (AS) or high blood pressure 

mediates cardiac fibrosis, diastolic dysfunction and HF 164. Additionally, metabolic disorders (e.g., 

obesity and diabetes) and toxic compounds are accompanied by severe cardiac fibrosis 165. 

5.2 Differentiation of fibroblasts into myofibroblasts 

Cardiac fibroblasts have a critical function in ECM formation and remodeling after injury 39. 

Under stressful conditions, fibroblasts differentiate into myofibroblasts, migrate to an area of cell 

loss (infarcted area) and then spread to areas without cell loss (non-infarcted areas) to produce 

collagen 161. Protomyofibroblasts, immature forms of myofibroblasts, express mature focal 

adhesive and stress fibers but not α-smooth muscle actin (α-SMA) 40. Myofibroblasts manufacture 

higher amounts of collagen than fibroblasts 56. Collagens are mainly synthesized by myofibroblasts 

during the progression of cardiac fibrosis 77. Myofibroblasts are not found in the healthy heart, but 

they share similar features to those of both smooth muscle cells and fibroblasts 40. Myofibroblasts 

have several features, including production of a large ECM, resistance to apoptosis and a 

contractile phenotype 47, 166. In response to profibrotic and proinflammatory stimuli, 

myofibroblasts secrete several chemokines and cytokines 166.  

Differentiation of cardiac fibroblasts into myofibroblasts is a complicated process that is 

induced by several molecular mechanisms 167. TGF-β, the main fibrotic regulator, stimulates 

fibroblasts to express α-SMA through nuclear shuttling of myocardin-related transcription factor 

(MRTF) and mothers against decapentaplegic homolog transcription factor 3 (SMAD3) signaling 

pathways 168, 169. MRTF stimulates serum-response transcription factor (SRF), which triggers the 

transcription of α-SMA 168, 169. Additionally, TGF-β induces SRF expression through p38 mitogen-

activated protein kinase (MAPK), which activates the differentiation of fibroblasts into 
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myofibroblasts 170, 171. Collagen type IV stimulates fibroblast differentiation, whereas collagen 

type I and type III enhance the proliferation of fibroblasts 172.  

There are several selective and non-specific biomarkers for fibroblasts and myofibroblasts, 

including α-SMA, collagen 1A1 (COL 1A1), discoidin domain receptor 2 (DDR2), periostin, 

transcription factor 21 (TCF21), thymus cell antigen 1 (Thy-1)/CD90, fibroblast-specific protein 

1 (FSP1), vimentin, PDGF and PDGF receptor-α 173. α-SMA is a non-specific biomarker for 

myofibroblasts because it is found in pericytes and smooth muscle cells 174. COL 1A1 has been 

expressed in the adventitia of large blood vessels, cardiac fibroblasts and epicardium 175. DDR2, 

tyrosine kinase receptor for collagen, has been recognized in fibroblasts, smooth muscle cells, 

epicardium, myocytes and endothelium 176, 177. Periostin is highly expressed in cardiac fibroblasts 

and myofibroblasts following pressure overload and MI 61, 178, 179, and it is also expressed in 

VSMCs and epicardium 180. TCF21 is found in embryonic cardiac epicardium and controls the 

development of cardiac fibroblasts 181. Furthermore, TCF21 is often used for fibroblast 

identification because it is not expressed in immune cells. Thy-1/CD90, a membrane glycoprotein, 

plays a role in cell adhesion 182 and is detected in pericytes, immune cells and endothelial cells 183. 

Therefore, it is not a useful fibroblast marker 183. FSP1, S100 Ca2+ binding protein A4, exists in 

fibroblasts as well as immune, smooth muscle and endothelial cells 173. Binding of FSP1 depends 

on the Ca2+ level to mediate cell mobilization 173. Vimentin, a filamentous protein, has been 

detected in fibroblasts and endothelial cells 184. The PDGF receptor is composed of two forms, 

including PDGFR-α and PDGFR-β 179. Cardiac fibroblasts show greater PDGFR-α expression than 

smooth muscle cells 179, while PDGFR-β is found in several cell types, such as neurons, pericytes 

and smooth muscle cells 179. These markers are not specific for fibroblasts and myofibroblasts; 

therefore, most studies use a combination of these biomarkers 174. 
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5.3 Molecular pathways 

Cardiac fibrosis is controlled through matricellular proteins and direct communication 

between cardiac fibroblasts and the ECM via integrins 185. Various factors promote myocardial 

fibrosis, including TGF-β, Ang II, ET-1, PDGF, microRNAs (miRNAs), ROS, CTGF and FGF 13, 

186. Figure 5 demonstrates schematic signaling pathways for cardiac fibrosis. 

5.3.1 TGF-β 

TGF-β is described as a multifunctional growth factor and cytokine, which activates the 

immune response, differentiation of fibroblasts into myofibroblasts and secretion of ECM proteins 

187-189. The TGF-β family is composed of three isoforms, namely TGF-β 1, 2 and 3, which are 

encoded by three different genes 190. TGF-β isoforms have different expression patterns, but they 

bind to similar receptors on the cell surface 190. TGF-β1 is the most predominant isoform in the 

heart 190. In a healthy heart, TGF-β1 exists as a latent form that cannot bind to its receptors 190. 

Upon cardiac injury, latent TGF-β1 is converted to active TGF-β1 to mediate cellular effects 191. 

TGF-β binds with two heterodimeric receptors in the plasma membrane, namely TGF-β type I and 

TGF-β type II receptors, to initiate canonical (SMAD2/3-dependent) and non-canonical 

(SMAD2/3-independent) signaling pathways 192. The canonical signaling pathway involves 

phosphorylation of transcription factors (SMAD2 and SMAD3), which later interact with SMAD4 

in the cytoplasm and translocate to the nucleus to increase gene transcription of α-SMA, FN, 

CTGF, periostin, collagen type III alpha 1 chain (COL 3A1) and COL 1A1 192-196. However, the 

non-canonical pathway involves MAPK activation and ultimately results in extracellular signal-

regulated kinases 1 and 2 (ERK1/2), c-Jun NH-terminal kinases (JNK1/2) and p38 signaling 194, 

197. TGF-β is the most common mediator of the differentiation of fibroblasts, pericytes, endothelial 
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cells and epithelial cells into myofibroblasts. TGF-β can be stimulated by several factors, such as 

MMP-2, MMP-9, TSP-1, ROS and plasmin, that maintain ECM stability 191, 198, 199.  

5.3.2 Ang II 

Ang II regulates various cardiac fibroblast functions (e.g., migration, proliferation, 

differentiation and secretion of collagen, growth factors and cytokines) and stimulates 

cardiomyocyte hypertrophy via activation of both canonical and non-canonical signaling pathways 

161, 200-203. Ang II exerts its effect through binding to distinct receptors; AT1R and Ang II type II 

receptor (AT2R) 156. AT1R induces fibrotic effects via activation of cardiomyocyte apoptosis and 

hypertrophy as well as fibroblast proliferation 156. Moreover, AT1R stimulates several molecular 

pathways, such as signal transducers and activators of transcription (STAT), MAPKs, protein 

kinase C (PKC), tyrosine kinases, phospholipase D and phospholipase Cβ, in cardiac fibroblasts 

54. Additionally, AT1R activates the small GTPase Ras protein, which triggers phosphorylation of 

MAPK-induced remodeling 156. Activation of AT1R leads to upregulation of TGF-β expression, 

thus induction of cardiac fibrosis and hypertrophy 161, while AT2R has antiproliferative effects 

through inhibition of MAPK 204. Both cardiomyocytes and fibroblasts secrete TGF-β1, which is a 

downstream mediator of Ang II actions 205. Ang II induces cardiac fibrosis in several cardiac 

diseases, such as MI, CHF, cardiomyopathy and hypertension 13. The atria of AF patients are 

characterized by elevated AT1R and angiotensin-converting enzyme (ACE) expression along with 

fibrosis 206. AT1R plays a significant role in the electrical and structural remodeling of atria 206. 

Furthermore, Ang II along with aldosterone induces inflammation and oxidative stress via 

stimulation of NADPH oxidase 207.  
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5.3.3 ET-1 

The ET family is composed of three isoforms, namely ET-1, ET-2 and ET-3 208. ET-1, the 

most important isoform in humans, is mainly synthesized from endothelial cells and plays a crucial 

role in the pathogenesis of several cardiac diseases, such as HF and fibrosis 188. ET-1, a strong 

fibrotic mediator, acts downstream of the Ang II and TGF-β signaling pathways in numerous cell 

types 209. Moreover, ET-1 promotes fibroblast proliferation and differentiation as well as ECM 

protein production 85, 210, 211. Various animal models of hypertension and cardiac fibrosis show an 

increase in ET-1 212. Cardiac-specific overexpression of ET-1 augments cardiac fibrosis along with 

systolic and diastolic dysfunction, while the ET-1 antagonist attenuates cardiac fibrosis in 

hypertensive and MI models 210, 211.  

5.3.4 PDGF 

PDGF, a VEGF family member, is composed of four chains (A, B, C and D) that are 

synthesized and assembled inside cells 159. PDGF mediates migration, proliferation and 

differentiation through the binding of two different class III receptor tyrosine kinases, namely 

PDGFR-α and PDGFR-β 213. Binding of PDGF with its receptor causes dimerization of the 

receptor and activation of tyrosine kinase Janus kinases (JAKs), which initiates the phospholipase 

C (PLC)/PKC, JAK/STAT, phosphoinositide 3-kinase (PI3K)/AKT and RAAS/ERK1 signaling 

pathways 13, 214. Furthermore, PDGF increases the transcription of mitogenic genes (Fos and c-

Myc) 13, 214. PDGF-A, PDGF-B, and PDGF-C have an affinity to bind to PDGFR-α, while PDGF-

B and PDGF–D have an affinity to bind to PDGFR-β 215. Transgenic mice with cardiac-specific 

PDGF-A, PDGF-C or PDGF-D overexpression are more prone to cardiac fibrosis and HF 216, 217. 

PDGF has an important function in the proliferation and maturation stages post-MI 186.  
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5.3.5 miRNAs 

miRNAs, short single-stranded non-coding RNAs, degrade and prevent translation of their 

target mRNAs, and thus control gene expression 218. miRNAs induce fibrosis (e.g., miRNA-208, 

miRNA-21, miRNA-199b and miRNA-34) or protect against fibrosis (e.g., miRNA-26a, miRNA-

133/miRNA-30, miRNA-1, miRNA-29, miRNA-214 and miRNA-133a) 219. miRNA-133 inhibits 

CTGF expression and decreases cardiac fibrosis 218. miRNA-133 and miRNA-1 reduce LV fibrosis 

in pressure overload animal models 220-222. Knockout mice of miRNA-133 have severe cardiac 

fibrosis and HF 223, while overexpression of miRNA-133 causes a reduction in apoptosis and 

cardiac fibrosis 221. miRNA-29 upregulates collagen (type I and type III), and miRNA-21 regulates 

antiapoptotic genes, MMP-2 and the ERK pathway 224-226.  

5.3.6 CTGF 

Cardiac fibroblasts produce CTGF, which plays a significant role in ECM synthesis, cell 

adhesion, proliferation and migration through binding to heparin and integrins 227. CTGF, a 

cysteine-rich protein, is concurrently expressed with TGF-β1 because the promoter of CTGF 

contains TGF-β1 responsive elements 228, 229. Expression of CTGF is regulated by many factors, 

including VEGF, TGF-β1, ROS, TNF-α and Ang II, as well as cell stretch and shear stress 149, 230. 

CTGF stimulates TGF-β, which enhances ECM synthesis 98. Additionally, CTGF can bind to FN 

and act as a bridge, which helps in intracellular and extracellular signaling interactions 149, 230. 

Overexpression of CTGF in pressure overload mice causes substantial cardiac fibrosis 231, while 

administration of an antibody against CTGF in pressure overload mice has a protective effect on 

ventricular function 231. 
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5.3.7 MMPs and TIMPs 

MMPs, an endopeptidase family, consist of twenty-six members of zinc-dependent enzymes 

that are responsible for degradation of ECM proteins 83, 232, 233. The activity of MMPs is suppressed 

by TIMPs via binding with the catalytic domain of MMPs 232, 234-236. The TIMP family is composed 

of four members, including TIMP-1, TIMP-2, TIMP-3 and TIMP-4 237. MMPs and TIMPs are 

produced and secreted from different cardiac cells (e.g., neutrophils, fibroblasts, macrophages, 

cardiomyocytes and endothelial cells) to maintain ECM homeostasis 232, 234, 236, 238, 239. The 

expression of MMPs and TIMPs is modulated by ROS, Ang II, inflammatory cytokines, 

neurohormonal peptides and growth factors 240-242. MMPs induce connective tissue synthesis 

through acting as ligands for leukocyte integrins and stimulating fibroblast differentiation 243. The 

activity of MMPs is increased during cardiac fibrosis progression 243. After 10 min of coronary 

ligation, MMPs are stimulated to degrade ECM proteins 244. Overexpression of MMPs is 

associated with hypertrophy and elevated collagen levels in the heart 243. 

5.3.8 Oxidative stress 

Several inflammatory mediators, IL-6, IL-1β and TNF-α, can modify fibroblast behavior by 

stimulating transcription factors (activator protein 1 (AP-1) and nuclear factor-kappa β (NF-κB)) 

through ROS, ERKs, p38 or JNK pathways 245, 246. ROS are produced from activation of NADPH 

oxidase 245, 247. ROS have numerous roles in cardiac fibrosis, including preservation of the balance 

between MMP and TIMP, augmentation of fibroblast proliferation and deposition of collagen 245, 

247.  
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5.4 Types of cardiac fibrosis 

Cardiac fibrosis is classified into two types as follows: (1) reactive or interstitial fibrosis, in 

which collagen fibers expand without loss of cardiomyocytes; and (2) replacement or reparative 

fibrosis, in which collagen deposition replaces dead cardiomyocytes 156, 248. 

5.4.1 Replacement fibrosis 

Replacement fibrosis, or reparative fibrosis, is characterized by replacement of dead 

myocytes by a collagenous scar 160. The cardiomyocytes are more sensitive to ischemia during MI 

than fibroblasts, endothelial cells or mast cells 249. The death of cardiomyocytes is caused by the 

diminished oxygen supply during MI, and thus triggers a series of events to prevent ventricular 

wall rupture 250, 251. Replacement fibrosis is crucial for maintaining LV structural integrity via 

collagen deposition in the infarcted area 159, 252, 253. Ischemic injury results in secretion of MMPs 

from fibroblasts to initiate the migration of cells to injured areas 254. Cleavage of collagen type I 

by MMPs is crucial for fibroblast migration and tissue repair post-MI 255. Moreover, ischemic 

injury stimulates secretion of many chemokines that recruit inflammatory cells to eliminate dead 

cells from infarcted areas 254. A few days post-MI, several proinflammatory cytokines are 

significantly increased, such as IL-6, TNF-α and IL-1β 254. In the infarcted areas of myocardium, 

TGF-β is also produced and released by leukocytes, fibroblasts and platelets 189. 

5.4.2 Ventricular interstitial fibrosis 

Interstitial fibrosis, or reactive fibrosis, develops in the absence of cardiomyocyte death 160. 

The released profibrotic factors from myofibroblasts in the infarcted area may cross into the non-

infarcted area and augment collagen accumulation in the adventitia of coronary blood vessels and 

interstitial areas, eventually leading to perivascular and interstitial fibrosis, respectively 201. 
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Perivascular fibrosis causes narrowing in the lumen of blood vessels and decreases blood flow 

causing cardiomyocyte hypoxia 159, 256. Interstitial fibrosis increases myocardial stiffness and 

impairs systolic and diastolic function due to collagen deposition between muscular spaces and 

around coronary arterioles and arteries 159, 252, 256. Furthermore, interstitial fibrosis acts as an 

insulator between cardiomyocytes, and thus disturbs cardiac electrical conduction 159, 257 (Figure 

6). During MI, remodeling of the non-infarcted area involves cardiomyocyte hypertrophy to reduce 

overload and LV wall tension 258. The remodeling in the non-infarcted area of myocardium 

significantly contributes to HF development 258. In the non-infarcted area of the LV, stress 

stimulates latent TGF-β 201. Moreover, upregulation of TGF-β and Ang II expression in the non-

infarcted area of myocardium indicates their important roles in reactive fibrosis 259, 260. 

5.4.3 Atrial interstitial fibrosis 

Atrial fibrosis occurs in several pathological conditions, such as HF 261, mitral valve diseases 

262, dilated cardiomyopathy 263, hypertension 261, AF 120 and age 264. There are quantitative and 

qualitative variations between atrial and ventricular remodeling in HF models 265. In HF, greater 

structural remodeling is found in the atria compared with the ventricles because the atria are 

smaller, thinner and contain more fibroblasts, ECM proteins and fibrosis than the ventricles 11, 154, 

266. Cardiac fibroblasts have a role in the electrical remodeling via shortening the action potential 

during AF 56. Atrial fibrosis adversely affects normal conduction without significantly changing 

the effective refractory period (ERP) in animal HF models 154, 267. Atrial remodeling occurs as a 

result of LV diastolic dysfunction 268. HF is associated with significant structural remodeling of 

atria that ultimately increases AF susceptibility 11. Several studies have reported that AF is strongly 

correlated with atrial fibrosis in the HF model induced by ventricular tachypacing (VTP) 269. 
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The exact mechanisms of atrial dilatation and fibrosis in AF are complicated and not well 

understood 156. Atrial dilatation and fibrosis are usually accompanied by an increase in the atrial 

ERP and AF cycle length, which subsequently decrease AF frequency 11. Atrial fibrosis is 

substantially more prevalent than ventricular fibrosis in AF patients 270. In AF, ventricular and 

atrial fibrosis have common signaling pathways but differ in the extent of these pathways 271. 

Furthermore, atrial fibroblasts are more sensitive to profibrotic stimuli (e.g., ET, Ang II and PDGF) 

than ventricular fibroblasts 156. Profibrotic gene expression levels of the atria are distinctly higher 

than those of ventricles in mice with TGF-β1 overexpression 271. In volume and pressure overload 

models, structural remodeling of the atria is markedly greater than that in ventricles due to the 

limited capacity of the atria to sustain rapid stimulation 135. Numerous mechanisms control the 

severity of atrial fibrosis, such as mechanical stretch, hemodynamic changes and variations in 

proinflammatory cytokines, hormones and growth factors 56. Rapid atrial pacing elevates collagen 

levels in the atria due to upregulation of TGF-β1 and Ang II 272. Cardiac overexpression of active 

TGF-β1 is associated with atrial fibrosis and AF development 273. PDGF promotes atrial fibrosis 

and contributes to electrical remodeling via decreasing ICaL and shortening APD in cardiomyocytes 

156, 274, 275. Activation of the RAAS and neurohormonal imbalance induce LA fibrosis and AF 

maintenance 276. Transgenic mice with cardiac ACE overexpression are more susceptible to atrial 

fibrosis and AF along with atrial dilatation 277. Expression of Ang II and TGF-β1 is increased in 

the atria in VTP-induced CHF 269, 278. The atrial CTGF expression is upregulated along with an 

increase in LA fibrosis in a variety of AF models 279-282. Moreover, atrial tissues of AF patients 

show a decrease in TIMP-1, TIMP-2, and TIMP-4 expression, as well as an increase in MMP-9 

and MMP-2 expression 155, 266, 283-285. Figure 6 illustrates the complication of interstitial fibrosis, 

leading to AF.  
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Figure 5. Schematic showing the proposed signaling pathways of cardiac fibrosis. R: Receptor; TKs: Tyrosine kinases; αβ: Integrin 

receptor α and β subunits; AT1: Angiotensin type I; Ang I: Angiotensin I; Ang II: Angiotensin II; Anget: Angiotensinogen; ACE: 

Angiotensin-converting enzyme; CTGF: Connective tissue growth factor; PDGF: Platelet-derived growth factor; NADPH oxidase: 

Nicotinamide adenine dinucleotide phosphate oxidase; TGF-β: Transforming growth factor β; SMAD: Mothers against decapentaplegic 

homolog transcription factor; HIF-1α: Hypoxia-inducible factor 1-α; S6K1: Ribosomal protein S6 kinase β-1; LOX: Lysyl oxidase; PKC: 

Protein kinase C; P: Phosphorus group; COL 1: Collagen 1; α-SMA: α-smooth muscle actin; FN: Fibronectin; MMPs: Matrix 

metalloproteinases; TIMPs: Tissue inhibitors of metalloproteinases; LOXL-2: Lysyl oxidase like protein 2; JNK: c-Jun N-terminal kinase; 

ERK1/2: Extracellular signal-related kinase ½; NF-κβ: Nuclear factor-kappa β; STAT: Signal transducers and activators of transcription; 

PI3K: Phosphoinositide 3-kinase; Grb2: Growth-factor receptor-binding protein 2; Shc: Src homologous and collagen protein; ROS: 

Reactive oxygen species; PLC: Phospholipase C; JAK: Janus kinase; MAPK: Mitogen-activated protein kinase; SOS: Son of sevenless 

protein; Src: Sarcoma proto-oncogene tyrosine kinase; mTORC: Mammalian target of rapamycin complex 1. 
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Figure 6. Overview of cardiac interstitial fibrosis complications contributing to heart failure 

and atrial fibrillation. 
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6. Myocardial infarction (MI) 

The incidence of MI increases with age, and men are more susceptible than women 286. 

MI causes more than one-third of CVD-associated deaths 8. Numerous risk factors contribute to 

CVD, such as diabetes, hypertension, hyperlipidemia, obesity, smoking and physical inactivity 

286. MI is induced by several conditions, such as coronary artery atherosclerosis, arteritis, 

congenital coronary artery anomalies, coronary embolism and elevated myocardial oxygen 

demand 50, 287. MI occurs due to incomplete or complete occlusion of the coronary artery that 

leads to cardiomyocyte death in the myocardial area 49, 288. Coronary artery occlusion decreases 

oxygen tension and induces cardiomyocyte ischemia 288. Cardiomyocyte ischemia suppresses 

oxidative phosphorylation and adenosine triphosphate (ATP) generation, which is essential for 

Na+/K+-ATPase function 288. Na+/K+-ATPase dysfunction leads to increased intracellular Na+ 

levels, decreased intracellular K+ levels, water accumulation and cardiomyocyte swelling 288, 

resulting in cardiomyocyte repolarization failure and excitation loss 50, 289. Upregulation of the 

cytosolic Ca2+ level during ischemia may increase the risk for arrhythmia development 50.  

During the first minute following ischemia, the cardiac contractility progressively 

decreases 288. Irreversible cellular changes may occur after 20 to 30 min of ischemia without 

reperfusion 50, 288. Fibroblasts are the main cells that mediate cardiac repair following MI 40. MI, 

pressure and volume overload models have been associated with an increase in the number of 

myofibroblasts in the interstitial matrix 85, 290. Following MI, a significant loss of 

cardiomyocytes induces an inflammatory response that stimulates fibroblasts to produce a 

collagen scar 160, 288. CT-1, an IL-6 family member, controls fibroblast proliferation and ECM 

synthesis by activating the AKT, JAK and p42/44 MAPK pathways following MI in rats 291, 292. 
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6.1 Stages of post-MI healing 

Following injury, fibroblasts are stimulated and undergo several changes in their 

phenotypes to repair the damaged tissue by secretion of ECM proteins 249. Macrophages, 

endothelial cells and myofibroblasts play a crucial role in the repair and healing of the injured 

area post-MI 293. Cardiac fibroblasts have an essential function in all stages of the cardiac repair 

process 294. Cardiac healing following MI comprises three stages, which partially overlap, 

including early inflammatory, mid-proliferative and late maturation stages 40.  

6.1.1 Early inflammatory stage 

During the early stage (0 to 2 days post-MI), the acute innate reaction is initiated and 

causes significant cardiomyocyte death in rodents 48, 98. The death of myocytes triggers 

neutrophil migration from blood circulation to the injured area to eliminate the cellular debris 

98. Following debris clearance, inflammation is resolved, and neutrophils are engulfed by 

macrophages 98. The macrophages secrete several cytokines and growth factors, such as TGF-

β, TNF, PDGF and IL-10, to terminate the inflammatory reaction and initiate healing 98, 295. 

Appropriate termination of the inflammatory phase is important for the repair process to be 

effective. However, inappropriate termination of inflammation may mediate LV dilatation 296. 

The major changes that occur during the early stage of MI are replacement of the dead cells with 

a collagen scar, thinning of the infarcted area and lengthening of the cardiomyocytes 8.  

6.1.2 Mid-proliferative stage 

In the proliferative stage (2 to 5 days post-MI), fibroblasts migrate to the injured area and 

differentiate into myofibroblasts in rodents 48, 98. Myofibroblasts synthesize a large amount of 
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ECM proteins, mainly collagen type I and type III 249. Deposition of collagen is important to 

enhance the tensile strength and inhibit rupture of the ventricular wall 249. When the 

inflammatory phase is terminated, fibrosis starts to develop at 3 to 5 days post-MI due to 

upregulation of IL-10, TGF-β and anti-inflammatory cytokines, as well as programmed death 

of inflammatory cells 161. Myofibroblasts release matricellular proteins and FN, which further 

encourage myofibroblast migration to continue tissue healing 98. 

6.1.3 Late maturation stage 

The maturation stage starts one-week post-MI and involves a series of events that create 

a mature scar, including inhibition of cell migration and proliferation, cross-linking of collagen 

and apoptosis of the remaining cells in rodents and rabbits 48, 297, 298. Moreover, collagen type III 

is replaced with collagen type I, which is cross-linked by LOX 249. Collagen cross-linking 

enhances the tensile strength of the scar and alters the ventricular chamber geometry 252. 

Numerous studies reported that osteopontin and syndecan 4 stimulate FGF2, which later initiates 

the collagen cross-linking process via LOX activation 299, 300. However, the deletion of FGF2 

decreases fibroblast proliferation, ECM synthesis and infarct expansion 55. Several changes 

occur during the maturation stage, including enlargement of the ventricular chamber, increase 

of the ventricular wall mass and hypertrophy of cardiomyocytes in the non-infarcted areas 301. 

Several autocrine, hormonal and paracrine factors contribute to fibrosis post-MI 85, 189. After 

collagenous scar formation in the infarcted area, myofibroblasts are cleared from the scarred 

area by apoptosis 249.  
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6.2 MI-associated complications 

MI is associated with several complications, such as pericardial diseases, cardiogenic 

shock, LV free wall rupture, ventricular aneurysm, infarct expansion and ventricular 

arrhythmias 50, 302-304. Pericardial effusion and pericarditis represent approximately 43 % and 7-

41 % of deaths following MI, respectively 50, 305, 306. Cardiogenic shock occurs due to pump 

failure and is accompanied by a high mortality rate post-MI 50. LV rupture is a fatal MI 

complication that occurs because of the decline in the strength of infarcted myocardium 307. 

Multiple factors contribute to cardiac rupture, such as prolonged reparative wound healing, an 

excessive inflammatory response, a large transmural scar and increased MMP activity 50, 302, 308, 

309. Ventricular arrhythmia is the main cause of death during the early and late stages following 

MI 50. Electrical and structural remodeling mediate ventricular arrhythmia post-MI 50. 

Ventricular remodeling post-MI involves ventricular dilatation, myocyte hypertrophy, 

arrhythmia, HF and death 310. Dysregulation of the healing process leads to excessive collagen 

deposition and LV diastolic dysfunction 293. The degree of ventricular remodeling is largely 

affected by the infarct size and excessive ECM accumulation 294. There are currently no drugs 

that can reverse the pathological remodeling post-MI 114. However, inhibition of TGF-β can 

convert activated myofibroblasts to non-activated fibroblasts during scar formation 311. 

7. Pharmacological therapies targeting cardiac fibrosis and AF 

AF therapy aims to prevent AF occurrence and adverse consequences 203, 312. AF 

management involves the prevention of thromboembolic events using direct thrombin inhibitors 

and vitamin K antagonists 313. Two strategies are used for AF management, including rhythm 



 

39 

and rate control 314. The rhythm control strategy restores normal sinus rhythm, while the rate 

control strategy targets the ventricular rate and reduces AF symptoms 314. The rhythm 

controllers, which are anti-arrhythmic drugs, are Na+ and K+ channel blockers that prevent AF 

via prolongation of atrial refractoriness 315. The rate controllers include Ca2+ channel blockers, 

β-blockers and digoxin. There are several limitations to pharmacological AF therapy, such as 

substantial adverse effects and incomplete efficacy 13. 

Clinically, AF treatment depends on the AF duration, other medical conditions and 

symptom severity 315. When AF is present for a long time, the treatment becomes less efficient 

in terminating AF 129. Non-pharmacological AF therapies, which are only effective in particular 

cases that are resistant to pharmacological options, include implantation of pacemakers, AV 

node ablation and LA ablation 128. There is a need for the development of new safe and efficient 

drugs for AF management. 

Upstream therapy of AF targets atrial structural changes, such as oxidative stress, fibrosis, 

inflammation and hypertrophy, which directly or indirectly modulate the atrial 

electrophysiology 203, 312. Several therapies are used to delay atrial structural remodeling in AF, 

such as 3-hydroxy-3-methyl-glutaryl-CoA reductase inhibitors, PDGF inhibitors, TGF-β1 

inhibitors, mineralocorticoid/aldosterone receptor antagonists and RAAS inhibitors 16, 316, 317. 

Atrial structural remodeling and AF occurrence can be decreased upon treatment with 

antioxidant and anti-inflammatory agents 318-320. RAAS inhibitors consist of angiotensin 

receptor blockers (ARBs) and ACE inhibitors. Trandolapril, an ACE inhibitor, decreases AF 

incidence in acute MI patients 321. Valsartan, an ARB, reduces AF risk in HF patients 322. 

However, the effect of RAAS inhibition is not completely proven in preventing AF associated 
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with coronary artery diseases, diabetes mellitus and hypertension 317. ARBs and ACE inhibitors 

may be more effective in preventing AF occurrence rather than decreasing AF recurrences 312. 

Shimada et al. 323 stated that blockers of AT1R prevent the production of collagen. Moreover, 

ACE inhibitors decrease cardiac fibrosis in HF models 323. Statins, which are 3-hydroxy-3-

methyl-glutaryl-CoA reductase inhibitors, can decrease AF incidence by improving lipid 

metabolism or reducing inflammatory mediators and MMP expression 317. In the guidelines of 

the European Society of Cardiology, statins are recommended to be used for the treatment of 

AF with CHF or postoperative AF 324. Polyunsaturated fatty acids (PUFAs) have anti-fibrillatory 

effects through modulating MAPK activity, membrane fluidity and several ion channels 317. 

Administration of omega-3 PUFAs decreases atrial structural remodeling and AF incidence 325-

327. Corticosteroids, which are anti-inflammatory agents, are less efficient in preventing 

postoperative AF 328, 329. However, a high dose of corticosteroids may induce AF 330. There is 

no strong evidence for the use of corticosteroids or PUFAs in AF management 312. As a TGF-

β1 inhibitor, pirfenidone attenuates atrial remodeling and AF susceptibility 269, 331. Activin 

receptor-like kinase 5 (ALK5), a blocker of TGF-β type I receptors, decreases cardiac fibrosis 

in MI and pressure overload models 332. Moreover, blocking PDGF receptors post-MI attenuates 

fibrosis progression in the non-infarcted area of the myocardium in rats 333. PDGFR-α-specific 

antibodies suppress atrial fibrosis and AF development in a pressure overload model 275. 
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Part II– Role of the lysyl oxidase enzyme family in cardiac function 

and disease 
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Abstract 

Heart diseases are a major cause of morbidity and mortality world-wide. Lysyl oxidase (LOX) 

and related LOX-like (LOXL) isoforms play a vital role in remodeling the extracellular matrix 

(ECM). The LOX family controls ECM formation by cross-linking collagen and elastin chains. 

LOX/LOXL proteins are copper-dependent amine oxidases that catalyze the oxidation of lysine, 

causing cross-linking between the lysine moieties of lysine-rich proteins. Dynamic changes in 

LOX and LOXL protein-expression occur in a variety of cardiac pathologies; these changes are 

believed to be central to the associated tissue-fibrosis. An awareness of the potential 

pathophysiological importance of LOX has led to the evaluation of interventions that target 

LOX/LOXL proteins for heart-disease therapy. The purposes of this review article are: 1) To 

summarize the basic biochemistry and enzyme function of LOX and LOXL proteins; 2) To 

consider their tissue and species distribution; and 3) To review the results of experimental 

studies of the roles of LOX and LOXL proteins in heart disease, addressing involvement in the 

mechanisms, pathophysiology and therapeutic responses based on observations in patient 

samples and relevant animal models. Therapeutic targeting of LOX family enzymes has shown 

promising results in animal models, but small-molecule approaches have been limited by non-

specificity and off-target effects. Biological approaches show potential promise but are in their 

infancy. While there is strong evidence for LOX-family protein participation in heart failure, 

myocardial infarction, cardiac hypertrophy, dilated cardiomyopathy, atrial fibrillation and 

hypertension, as well as potential interest as therapeutic targets, the precise involvement of 

LOX-family proteins in heart disease requires further investigation.  
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1. Introduction 

The extracellular matrix (ECM) plays a key role in cardiac function. It establishes a 

skeleton into which the cellular components of the heart, notably cardiomyocytes and the 

vascular elements that form blood vessels, are structurally integrated to ensure proper function. 

Fibrotic expansion of the ECM is a characteristic part of the cardiac response to many stressors 

and pathologies, including pressure overload, myocardial infarction (MI) and cardiomyopathy 

1, 2. Fibrosis is a complex process, characterized by excessive secretion by fibroblasts of ECM-

related proteins, including procollagen and fibronectin, insoluble collagen and enzymes that 

modify structural ECM proteins (like matrix metalloproteinases (MMPs) and tissue inhibitors 

of MMPs (TIMPs)) 3. While fibrosis is crucial for wound healing as occurs in MI 4. maladaptive 

fibrosis leads to stiffening of the ventricles and progression of heart failure (HF) 4-6. Under 

normal conditions, there is a balance between synthesis and degradation of fibrillar collagen; 7 

when the heart is injured, or exposed to a range of pathological stressors, collagen accumulation 

exceeds degradation, producing fibrosis 1, 8. 

Fibrosis impairs myocardial relaxation and causes diastolic dysfunction, 9 increasing the 

probability of HF development 10. HF is associated with substantial morbidity and mortality 11. 

Cardiac fibrosis also impedes propagation of the cardiac impulse, leading to arrhythmias such 

as atrial fibrillation (AF) 12. AF is the most common sustained arrhythmia and is associated with 

adverse outcomes like stroke, HF and death 13. 

Collagen, the most abundant protein of the ECM, is composed of three polypeptide α-

chains, 3, 14 which form a triple helix of tropocollagen molecules wrapped around each other in 

a rope-like manner 3, 14, 15. As shown in Figure 1, collagens are synthesized as large precursor 
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procollagen molecules 3, 14-17. Procollagen is post-translationally modified within the 

endoplasmic reticulum (ER) through glycosylation of the triple helices and hydroxylation of 

proline and lysine residues to enhance helix stability, 14, 16, 17 and then translocated from the ER 

to the Golgi apparatus to be exported from the cell via exocytosis 14, 17. In the extracellular space, 

procollagen is subjected to enzymatic cleavage of the amino and carboxy termini by procollagen 

N-proteinase (PNPase) and procollagen C-proteinase (PCPase), respectively, following which 

collagen assembles into fibrils 18. Collagen fibrils are converted to mature collagens through 

intermolecular and intramolecular cross-linking, which increases fiber strength and stability 19. 

Collagen cross-linking occurs via two mechanisms: an enzymatic (catalyzed via members of the 

transglutaminase or lysyl oxidase (LOX) family) and a non-enzymatic (promoted by advanced 

glycation end-products; AGEs) process 20-23. 

AGEs are products of the condensation of carbohydrates (like glucose or fructose) or 

lipids with proteins through spontaneous non-enzymatic reactions 24. AGEs modify the 

mechanical properties of collagen through cross-linking processes that increase myocardial 

stiffness 24. AGEs can also upregulate LOX mRNA in some pathological conditions 25. In one 

study, alagebrium (ALT-711), which blocks AGE-mediated cross-linking, improved cardiac 

function through reduction of collagen cross-linking in hypertensive rats 26. Transglutaminases, 

a group of multifunctional enzymes, cross-link lysine and glutamine residues to produce 

proteolysis resistant products (ε-(γ-glutamyl)-lysine isopeptide bonds, resulting in stability and 

rigidity of ECM 22, 23. LOX is a copper-dependent amine oxidase that oxidizes lysine to form 

cross-links in elastin and collagen 27. While elastin cross-links are irreversible, collagen cross-

linking may be reversible 15. Recent studies suggest that LOX-family inhibition can improve 

cardiac function in various experimental models, suggesting that LOX might provide a novel 



 

47 

therapeutic target. The purpose of this paper is to address the roles of LOX isoforms in heart 

disease, specifically focusing on: 1) The biochemical properties of LOX-family proteins; 2) 

Evidence for their role in a variety of cardiac conditions including HF, MI, hypertrophy, 

cardiomyopathies, hypertension and AF; and 3) The opportunities and challenges associated 

with targeting the LOX-family as a therapeutic intervention.  

2. Historical overview  

LOX was first identified by Pinnell and Martin 28 as the enzyme involved in elastin and 

collagen cross-linking in connective tissue derived from bone 29. Subsequent studies 

characterized its chemical properties and classified LOX and related enzymes as amine oxidases 

known collectively as the LOX family 27. Two subfamilies of LOX have been identified during 

metazoan evolution, including specifically: (1) LOX, LOX-like protein 1 (LOXL-1) and LOXL-

5, (2) LOXL-2, LOXL-3 and LOXL-4, based on overall domain structure and the similarity of 

sequence in the catalytic domain 30. LOXL-5 is exclusively found in fish 30. Tsuda et al. 31 

reported that LOX is markedly upregulated in the mouse heart during early embryonic heart 

development (days 11 and 13), pointing to a role in tissue differentiation. The highest expression 

of LOX-family isoforms is found in vertebrates, 30 with five recognized in mammals: LOX, 

LOXL-1, LOXL-2, LOXL-3, LOXL-4 32. LOX acts on lysine within peptides; free lysine is not 

a substrate 28. Each of the LOX subfamilies has distinct molecular and functional features, as 

detailed below. 
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3. LOX-family structure and biochemical function 

3.1 Chemical structure of LOX-family 

LOX proteins (Figure 2) comprise three domains: The N-terminal domain, the N-terminal 

signal peptide sequence and the C-terminal domain required for catalytic activity 33. LOX and 

LOXL proteins (Figure 2) share amine oxidase function mediated by a common catalytic 

domain, including a copper-binding motif, cytokine receptor-like (CRL) domain, lysine 

tyrosylquinone (LTQ) cofactor-moiety and twelve cysteine residues 34-36. Ten of the cysteine 

residues are located in the catalytic site, while two are within the propeptide domain 37. The 

C-terminal motifs are highly conserved across species, including Drosophila, mouse, rat, 

chicken, fish and human 37, 38. LOX/LOXL proteins contain four unique histidine residues within 

the copper binding domain 39. LTQ, a unique carbonyl cofactor essential for the catalytic 

function of LOX/LOXL, is formed by autocatalytic hydroxylation and oxidation of Tyr349 with 

the assistance of a copper ion cofactor at the active site 40. The CRL domain is located within 

the C-terminus, similar to the N-terminal domain of the cytokine receptor and growth-factor 

family 34, 35. LOX and LOXL-1 have distinctive propeptide areas. LOXL-2, LOXL-3 and 

LOXL-4 contain four conserved scavenger receptor cysteine-rich (SRCR) domains in their N-

terminal 41. Martinez et al. 42 noted that SRCR domains may mediate protein-protein interactions 

in the ECM. 

LOX is encoded in humans by a gene containing seven exons located at chromosome 

5q23.3-31.2 27, 43. The 417 amino-acid LOX protein is the most abundant isoform in skeletal 

muscle, heart, kidneys and lungs. The LOXL-1 gene located on chromosome 15 encodes a 574-



 

49 

amino acid protein predominant in the pancreas, skeletal muscle, spleen, heart and lungs. 

LOXL-2, encoded on chromosome 8, includes 774 amino acids and is principally expressed in 

testis, ovary, thymus, skin and lung cells. LOXL-3 and LOXL-4 are composed of 753 and 756 

amino acids, respectively (encoded on chromosomes 2 and 10, respectively), and are 

predominant in ovary, uterus, testis, heart, pancreas and skeletal muscle 20, 44. The catalytic 

domains of LOX and LOXL-1 show the greatest similarity, with 88% homology; LOXL-2, 

LOXL-3 and LOXL-4 show approximately 67% catalytic-domain homology with LOX and 

about 88% homology with each other 34. LOXL-4 contains an 13 amino acid insert that is not 

found within LOXL-2 or LOXL-3 44. Copper is critical to LOX enzyme activity: 39, 45, 46 The 

first step in LOX-induced catalysis, involving aldehyde formation, requires the presence of 

copper ions 46. Additionally, copper is needed to stabilize enzyme-structure 46. Copper-

deficiency in rodents is associated with decreased collagen cross-linking as a result of decreased 

LOX activity, 47 producing a syndrome with multiple arterial aneurysms similar to the 

consequences of genetic LOX-dysfunction 48. Tinker et al. 49 reported that a copper-deficient 

diet decreases collagen cross-linking and increases elastin degradation in chick aorta, whereas 

copper supplements restore cross-linking. LOX activity and collagen cross-linking in cardiac 

tissues were affected by gender and dietary carbohydrate types in copper-deficient rats 50.  

3.2 LOX-dependent enzymatic reactions in heart  

Collagen is subjected to a range of post-translational modifications, including 

hydroxylation of lysine and proline, glycosylation of hydroxylysine and oxidative deamination 

of lysine residues 51. LOX/LOXL enzymes are secreted into the extracellular space, where they 

act on the ECM 20, 52. The LOX family may also have intracellular functions, such as regulating 
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the motility and migration of fibroblasts, monocytes and smooth muscle cells and altering gene-

transcription 53. 

Figure 3 shows the reaction sequence for collagen-processing by LOX-family enzymes, 

including conversion of the ε-amino group in peptidyl lysine to peptidyl aldehyde in the 

presence of oxygen and water with the formation of hydrogen peroxide. LOX-family catalysis 

is highly specific for lysine and hydroxylysine residues 54. The primary step in elastin and 

collagen cross-linking is the formation of an α-aminoadipic-δ-semialdehyde from peptidyl 

lysine or hydroxylysine, 55 producing hydroxyallysyl or allysyl residues 27, 36, 52. These 

semialdehydes can spontaneously react and condense with neighboring amino groups or 

peptidyl aldehydes to form dehydrolysinonorleucine and aldol condensation byproducts, 

respectively 27, 36, 52. The dehydrolysinonorleucine and aldol condensation byproducts are 

rearranged through non-enzymatic reactions to form the final products deoxypyridoline and 

pyridoline, which are responsible for collagen cross-linking 27, 56. The reduced enzyme is then 

re-oxidized in the presence of oxygen and the LTQ group is hydrolyzed, releasing ammonia and 

hydrogen peroxide 28. The resulting intramolecular cross-links connect chains within 

tropocollagen molecules, while intermolecular cross-links occur between tropocollagens 15. 

3.3 Biosynthesis, secretion and activation of LOX 

Figure 4 illustrates the biosynthesis, secretion and activation of LOX in heart tissues. LOX 

is regulated at three stages: first, through its precursor synthesis by fibroblasts; second, at the 

transformation of precursor to an active form; and third, by stimulation of enzyme activity 57. 

Post-translational processing of the immature LOX proenzyme involves removal of the signal 

peptide by cleavage at Cys21-Ala22 and N-terminal glycosylation in the ER and Golgi apparatus 
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20, 33. The 50-kDa LOX proenzyme is secreted from the Golgi apparatus into the extracellular 

space, where it is cleaved between Gly168 and Asp169 by PCPase, and to a lesser extent by 

aminopeptidase-B or mammalian Tolloid-like-1 protein, to yield the active 30-kDa LOX and 

18-kDa LOX-derived peptide 20, 40, 58-61. PCPase, a member of the astacin family of 

metalloproteinases, is strongly expressed in the myocardium 62, 63. In addition, fibronectin 

facilitates cleavage of the LOX proenzyme by PCPase, possibly by serving as a scaffold for the 

proteinase-substrate complex 64. Mitochondrial-derived reactive oxygen species (ROS) initiate 

collagen cross-linking through activation of LOX enzymes in cultured fibroblasts 65. The 

specific biochemical features of the LOX family provide insights into function, along with 

potential therapeutic targets for intervention.  

4. Overview of LOX expression and function in different systems 

Members of the LOX family can oxidize a variety of basic proteins 66. In addition to 

collagen and elastin cross-linking, LOX has been implicated in other cellular functions, 

including control of epithelial-mesenchymal transition; cell migration, adhesion, growth and 

transformation; monocyte chemotaxis; gene regulation; Ras oncogene inhibition; and collagen 

promotor activation 36, 67-71. The LOX family plays a significant role in the genesis and repair of 

respiratory, skeletal and cardiovascular systems 20, 27, 36, 72. The upregulation of LOX isoforms 

is associated with the imbalance between ECM degradation and synthesis involved in fibrotic 

disorders including liver fibrosis, glaucoma, cardiac fibrosis, diabetic nephropathy, 

atherosclerosis and pulmonary fibrosis 35, 40, 73-76. Changes in ECM composition and associated 

fibrosis contribute to functional and structural alterations in the cardiovascular system caused 

by obesity and metabolic syndrome 77, 78. Thus, in addition to a well-known role in the ECM, 
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LOX-family members might participate in other functions in the heart and elsewhere. These 

might mediate therapeutic effects but also adverse actions, and need to be better understood. 

5. Role of LOX-family enzymes in heart disease  

Limited information is available concerning the role of LOX-family proteins in normal 

cardiac function. Fibrotic ECM remodeling is a major contributor to cardiac dysfunction in a 

wide range of cardiac pathologies 79-84. Figure 5 illustrates the principal role of the LOX-family 

in heart disease. 

5.1 Role of LOX-family enzymes in ventricular dysfunction 

Hypertension, pressure overload, ischemia and metabolic alterations upregulate hypoxia 

inducible factor-1α (HIF-1α), AGEs, transforming growth factor β (TGF-β), PCPase and ROS, 

leading to increased expression and activity of LOX/LOXL proteins 85. Cardiac hypertrophy 

initially occurs as an adaptive process, but can progress to maladaptive pathological hypertrophy 

via multiple signaling pathways that ultimately lead to reduced contractility and diastolic 

dysfunction 86, 87. The shift from cardiac hypertrophy to HF is correlated with cardiomyocyte 

death and alterations in the ECM 88. Hypertrophied rat and human hearts show increases in total 

collagen, collagen-I and collagen-III 89. LOX-family isoform expression correlates with fibrosis 

90, 91. LOX mRNA is upregulated in a wide variety of animal heart-disease models 

(hypertrophied hearts of spontaneously hypertensive rats, diet-induced metabolic syndrome) 

and patient (DCM and HF) models 20, 57, 92. Collagen tensile strength is closely related to cross-

linking, 41 which is a critical step that determines myocardial stiffness in HF 93-95. Excessive 

myocardial collagen cross-linking is associated with higher risk for hospitalization in 
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hypertensive patients with HF 96. In chronic volume-overloaded rats, an increase in LOX 

expression and activity, total collagen and collagen cross-linking are associated with the 

development of HF; these are attenuated by LOX inhibition 97-99. LOXL-2 expression is 

increased in the cardiac interstitium and correlates with collagen cross-linking and cardiac 

dysfunction in failing human hearts 84. LOXL-2 is also increased in the serum of HF-patients, 

correlating with biomarkers of HF, collagen cross-linking and cardiac dysfunction 84.  

During MI, there is substantial remodeling of ECM to form a scar, and cardiac dysfunction 

associated with MI leads to interstitial fibrosis in the non-infarcted tissue 95. Upregulation of 

LOX isoforms contributes to cardiac ECM remodeling and myocardial dysfunction after MI 95, 

100. Left and right ventricular fibrosis were associated with an upregulation of LOX expression 

in the infarcted rats with HF 101. Rhesus monkeys with MI induced by ligation of the left anterior 

descending artery show increased LOX activity/expression in the scar region 102. Table 1 

summarizes the results of selected studies of LOX-family isoforms in HF pathophysiology. 

Table 2 summarizes selected studies of LOX-family involvement in cardiac remodeling 

associated with hypertension, metabolic syndrome, and pressure overload and other conditions 

producing cardiac hypertrophy. Hypertensive patients show increases in LV-stiffness, collagen 

content, collagen cross-linking and LOX expression 57, 103. The progression from hypertensive 

heart disease to HF involves prominent fibrosis associated with LOX-induced collagen cross-

linking 57, 104, 105. The induction of collagen cross-linking by LOX is strongly correlated with 

fibrosis and LV-rigidity, but does not correlate directly with blood pressure 106. LOX expression, 

collagen cross-linking and LV-rigidity are correlated with active PCPase in the myocardium of 

HF and hypertensive patients 107. 
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LOXL-1 mRNA is upregulated in response to a range of hypertrophic stimuli, and 

cardiomyocyte-specific transgenic overexpression of LOXL-1 induces cardiac hypertrophy and 

interstitial fibrosis in mice 108. Transgenic LOX overexpression enhanced LOX-levels in 

cardiomyocytes and cardiac fibroblasts, producing mild left ventricular (LV) hypertrophy and 

diastolic dysfunction even in the absence of stressors 109. In the presence of a cardiac stressor 

(angiotensin-II (Ang II) infusion), LOX overexpression increased cardiac fibrosis and 

hypertrophy and reduced LV-function 109. Yang et al. 84 reported that a monoclonal antibody to 

LOXL-2 is capable of preventing diastolic dysfunction, tissue fibrosis and chamber dilation in 

mice subjected to transverse aortic constriction (TAC). 

5.2 LOX-family enzymes in atrial disorders 

Atrial fibrosis disturbs conduction properties and promotes re-entrant AF 12. Left atrial 

(LA) fibrosis in AF-patients is accompanied with increases in microRNA-21, Ang II, Rho-

GTPase Rac1, connective tissue growth factor (CTGF) and LOX 20, 57, 91, 110-112. Adam et al. 91 

demonstrated that AF-patients showed higher levels of total collagen, cross-linked collagen, 

fibronectin, CTGF, Rac1 activity and LOX compared to sinus-rhythm patients. Furthermore, 

mineralocorticoid receptor signaling stimulates atrial fibrosis and is associated with activation 

of fibrotic mediators like miRNA-21, LOX, CTGF, collagen and RhoA activity 113. Transgenic 

mice with cardiac Rac1 (RacET) overexpression are susceptible to AF and show increased levels 

of LOX, fibronectin and CTGF, as well as collagen cross-linking 91. Zhong et al. 114 showed that 

LOXL-2 is significantly upregulated in the right atria (RA) of patients with long-standing AF, 

but not with paroxysmal AF. LOXL-2 upregulation is accompanied by increases in collagen 

(type I and type III), fibronectin, TGF-β2 and CTGF 114. LOXL-2 plasma concentrations are 
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increased in AF patients and correlate with LA fibrosis 115. Table 3 summarizes the principal 

published reports regarding the role of LOX/LOXL proteins in AF. There is thus extensive 

evidence for a role of LOX-family members in a variety of forms of heart disease, raising the 

interesting possibility of therapeutic targeting. 

6. Therapeutic modulation of LOX-family protein function in cardiac 

diseases 

A number of studies have begun to address the potential value of inhibiting LOX-family 

proteins and thereby decreasing the amount of insoluble cross-linked collagen as a therapeutic 

approach for heart disease. The majority of presently-available small-molecule LOX inhibitors 

are reactive, toxic and non-specific 116-118. LOX inhibitors are classified into two groups: 

primary amines (benzylamines, taurine, allylamines and β-aminopropionitrile (BAPN)), and 

hydrazines (thiosemicarbazide, semicarbazide and isoniazide derivatives)  119-124. Homocysteine 

thiolactone, a metabolic byproduct of S-adenosylhomocysteine, inhibits LOX activity through 

conjugation with the LTQ cofactor 123. Hydroxamate derivatives of diaminoacid-containing 

compounds, including glutamic, diamino and succinic acids, have been shown to inhibit 

extracellular LOX activity by binding to zinc in the active site of PCPase 125-127. Vicinal 

diamines such as aminoalkylaziridines, hydralazines and halogenated allyl amines also inhibit 

LOX 122, 124, 128. Furthermore, in vitro and in vivo studies have reported that heparin, niacine, 2-

mercaptopyridine-N-oxide, taurine, thiram and disulfiram inhibit LOX-activity 69, 129-131. Hajdu 

et al. 131 used a 2-dimensional ligand-based chemoinformatic method and identified ten 

synthesized ligands (TGX-L series) with significant inhibitory activity for LOX isoforms. 
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BAPN, the most commonly used LOX inhibitor, was first employed to block LOX action 

in the early 1970s 132. BAPN inhibits LOX directly by forming an irreversible covalent bond in 

the catalytic site of LOX, possibly involving the primary amine of BAPN and carbonyl group 

in the LOX catalytic site, blocking the conversion of lysyl to allysyl residues in substrate 

proteins 15, 133. BAPN, which has no effect on other amine oxidases, 134 decreases collagen cross-

linking and LV-stiffness in adult pigs 135 and cardiac fibrosis in aging mouse and hypertrophic 

rat hearts 136, 137. The toxic vascular manifestations of lathyrism/odoratism, classically caused 

by overconsumption of Lathyrus odoratus (sweet pea) seeds, result from effects of the nitrile 

and unsubstituted amino groups in the β-aminopropionitrile structure 138, 139. BAPN or LOX 

knockdown reduces the ability of leptin to enhance collagen-I synthesis, ROS production and 

the expression of profibrotic mediators in vascular and cardiac cells 77. BAPN also attenuates 

cardiac hypertrophy induced by Ang II infusion in vivo 108. BAPN prevents the increase in 

MMPs, collagen-I/III and collagen cross-linking, while improving cardiac function, in volume-

overloaded rats 98, 99. AB0023, a LOXL-2-inhibitory monoclonal antibody, prevents fibroblast 

activation, reduces tumor formation, prevents pathological fibrosis across several disease 

models, and reverses bleomycin-induced lung fibrosis 140. AB0023 was more effective than 

BAPN in reducing MDA-MB-435 cell tumor volume 140. Both AB0023 administration and the 

conditional, global knockout of LOXL-2 reduce TAC-induced cardiac fibrosis and chamber 

dilatation, while improving systolic and diastolic function, in mice 84. 

TGF-β upregulates LOX mRNA and protein expression in fibroblasts 141, 142. P144, a TGF-

β inhibitor peptide, reduces LOX expression and decreases cross-linked collagen deposits 

without toxic effects in spontaneously-hypertensive rats 103. Similarly, TGF-β blockade by an 
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orally-available ALK5-inhibitor improves cardiac function in aortic-banded rats through 

reduction of collagen cross-linking and deposition 143.  

The beneficial actions of a variety of drugs may be mediated, at least in part, by reduced 

LOX/LOXL-action. LOX is overexpressed in human HF, and torasemide-treated patients show 

lower LOX-expression and greater normalization of LV-stiffness than patients treated with 

furosemide 57. Torasemide inhibits aldosterone synthase in human lung fibroblasts, while 

reducing CTGF and LOX expression in cardiac fibroblasts and preventing atrial fibrosis and AF 

in a transgenic mouse model 144. Gonzalez et al. 145 reported that the N-acetyl-seryl-aspartyl-

lysyl-proline (Ac-SDKP), a tetrapeptide produced from thymosin-β4, prevents Ang II-induced 

increases in total and cross-linked collagen, LOX mRNA expression, LOXL-1 protein 

expression, nuclear translocation of nuclear factor-kappa β (NF-κB), CD4+/CD8+ lymphocyte 

infiltration and CD68+ macrophage infiltration. A losartan metabolite, EXP3179, decreases LV 

stiffness, cardiac fibrosis, collagen cross-linking, CTGF and LOX expression in hypertensive 

patients 146. 

Slow but steady progress is being made in the development of more specific LOX-family 

inhibitors, including agents that target selected isoforms 116. In addition, biological therapies 

such as antibodies and RNA-interfering agents may allow for more specific and clinically-

applicable LOX targeting in the future 77, 84, 95. These and other forms of more specific LOX 

targeting will be essential for LOX-based therapeutics to move forward into the clinically useful 

arena. 

 

 



 

58 

7. Conclusions  

Emerging evidence points to an important role of LOX and LOXL proteins in a variety of 

cardiac disease conditions, mediated principally by cross-linking structural ECM-proteins. 

Other potentially-important effects may exist but are under-studied. Recently-emerging data 

point to a potentially promising therapeutic role for LOX-family targets in treating heart disease, 

but lack of specificity and potential adverse consequences of LOX/LOXL-inhibition remain 

significant limitations of the available agents. More specific small molecule inhibitors and 

biological therapies hold promise for the future. 

Acknowledgements 

The authors thank Lucie Lefebvre for expert secretarial assistance with the manuscript. 

Conflict of interest 

None. 

Funding 

This study was supported by the Canadian Institutes of Health Research (Foundation Grant 

148401) and the Heart and Stroke Foundation of Canada (18-0022032). 

References 

1. Eckhouse SR, Spinale FG. Changes in the myocardial interstitium and contribution to 

the progression of heart failure. Heart Fail Clin 2012;8:7-20. 

2. Cieslik KA, Trial J, Crawford JR, Taffet GE, Entman ML. Adverse fibrosis in the aging 

heart depends on signaling between myeloid and mesenchymal cells; role of 

inflammatory fibroblasts. J Mol Cell Cardiol 2014;70:56-63. 

3. Nattel S. Molecular and cellular mechanisms of atrial fibrosis in atrial fibrillation. JACC 

Clini Electrophysiol 2017;3:425-435. 



 

59 

4. Kania G, Blyszczuk P, Eriksson U. Mechanisms of cardiac fibrosis in inflammatory heart 

disease. Trends Cardiovasc Med 2009;19:247-252. 

5. Krenning G, Zeisberg EM, Kalluri R. The origin of fibroblasts and mechanism of cardiac 

fibrosis. J Cell Physiol 2010;225:631-637. 

6. Murtha LA, Schuliga MJ, Mabotuwana NS, Hardy SA, Waters DW, Burgess JK, Knight 

DA, Boyle AJ. The processes and mechanisms of cardiac and pulmonary fibrosis. Front 

Physiol 2017;8:777. 

7. Barasch E, Gottdiener JS, Aurigemma G, Kitzman DW, Han J, Kop WJ, Tracy RP. 

Association between elevated fibrosis markers and heart failure in the elderly: The 

cardiovascular health study. Circ Heart Fail 2009;2:303-310. 

8. Pauschinger M, Knopf D, Petschauer S, Doerner A, Poller W, Schwimmbeck PL, Kuhl 

U, Schultheiss HP. Dilated cardiomyopathy is associated with significant changes in 

collagen type I/III ratio. Circulation 1999;99:2750-2756. 

9. Burlew BS, Weber KT. Cardiac fibrosis as a cause of diastolic dysfunction. Herz 

2002;27:92-98. 

10. Brower GL, Gardner JD, Forman MF, Murray DB, Voloshenyuk T, Levick SP, Janicki 

JS. The relationship between myocardial extracellular matrix remodeling and ventricular 

function. Eur J Cardiothorac Surg 2006;30:604-610. 

11. Metra M, Teerlink JR. Heart failure. Lancet 2017;390:1981-1995. 

12. Burstein B, Nattel S. Atrial fibrosis: Mechanisms and clinical relevance in atrial 

fibrillation. J Am Coll Cardiol 2008;51:802-809. 

13. Andrade J, Khairy P, Dobrev D, Nattel S. The clinical profile and pathophysiology of 

atrial fibrillation: Relationships among clinical features, epidemiology, and mechanisms. 

Circ Res 2014;114:1453-1468. 

14. Mouw JK, Ou G, Weaver VM. Extracellular matrix assembly: A multiscale 

deconstruction. Nat Rev Mol Cell Biol 2014;15:771-785. 

15. Martin GR, Pinnell SR, Smgal RC, Goldstein ER. Lysyl oxidase: The enzymatic step in 

collagen and elastin cross-linking. In: Chemistry and molecular biology of the inter- 

cellular matrix. (E A Balazs, Ed), Vol I, London and New York: Academic Press 

1970:405-410. 

16. Myllyharju J. Intracellular post-translational modifications of collagens. In: Brinckmann 

J, Notbohm H, Müller PK, eds. Collagen: Primer in structure, processing and assembly. 

Berlin, Heidelberg: Springer Berlin Heidelberg, 2005:115-147. 



 

60 

17. Takawale A, Sakamuri SS, Kassiri Z. Extracellular matrix communication and turnover 

in cardiac physiology and pathology. Compr Physiol. 2015;5:687-719. 

18. Hulmes DJ. Building collagen molecules, fibrils, and suprafibrillar structures. J Struc 

Biol 2002;137:2-10. 

19. Eyre DR, Weis MA, Wu JJ. Advances in collagen cross-link analysis. Methods 

2008;45:65-74. 

20. Lopez B, Gonzalez A, Hermida N, Valencia F, de Teresa E, Diez J. Role of lysyl oxidase 

in myocardial fibrosis: From basic science to clinical aspects. Am J Physiol Heart Circ 

Physiol 2010;299:H1-9. 

21. Heymans S, González A, Pizard A, Papageorgiou AP, López-Andrés N, Jaisser F, Thum 

T, Zannad F, Díez J. Searching for new mechanisms of myocardial fibrosis with 

diagnostic and/or therapeutic potential. Eur J Heart Fail 2015;17:764-771. 

22. Lorand L, Graham RM. Transglutaminases: Crosslinking enzymes with pleiotropic 

functions. Nat Rev Mol Cell Biol 2003;4:140-156. 

23. Eckert RL, Kaartinen MT, Nurminskaya M, Belkin AM, Colak G, Johnson GV, Mehta 

K. Transglutaminase regulation of cell function. Physiol Rev 2014;94:383-417. 

24. Avendano GF, Agarwal RK, Bashey RI, Lyons MM, Soni BJ, Jyothirmayi GN, Regan 

TJ. Effects of glucose intolerance on myocardial function and collagen-linked glycation. 

Diabetes 1999;48:1443-1447. 

25. Papachroni KK, Piperi C, Levidou G, Korkolopoulou P, Pawelczyk L, Diamanti-

Kandarakis E, Papavassiliou AG. Lysyl oxidase interacts with AGE signalling to 

modulate collagen synthesis in polycystic ovarian tissue. J Cell Mol Med 2010;14:2460-

2469. 

26. Susic D, Varagic J, Ahn J, Frohlich ED. Cardiovascular and renal effects of a collagen 

cross-link breaker (ALT 711) in adult and aged spontaneously hypertensive rats. Am J 

Hypertens 2004;17:328-333. 

27. Smith-Mungo LI, Kagan HM. Lysyl oxidase: Properties, regulation and multiple 

functions in biology. Matrix Biol 1998;16:387-398. 

28. Pinnell SR, Martin GR. The cross-linking of collagen and elastin: Enzymatic conversion 

of lysine in peptide linkage to alpha-aminoadipic-delta-semialdehyde (allysine) by an 

extract from bone. Proc Natl Acad Sci U S A 1968;61:708-716. 

29. Siegel RC, Pinnell SR, Martin GR. Cross-linking of collagen and elastin. Properties of 

lysyl oxidase. Biochemistry 1970;9:4486-4492. 



 

61 

30. Grau-Bove X, Ruiz-Trillo I, Rodriguez-Pascual F. Origin and evolution of lysyl 

oxidases. Sci Rep 2015;5:10568. 

31. Tsuda T, Pan TC, Evangelisti L, Chu ML. Prominent expression of lysyl oxidase during 

mouse embryonic cardiovascular development. Anat Rec A Discov Mol Cell Evol Biol 

2003;270:93-96. 

32. Miana M, Galan M, Martinez-Martinez E, Varona S, Jurado-Lopez R, Bausa-Miranda 

B, Antequera A, Luaces M, Martinez-Gonzalez J, Rodriguez C, Cachofeiro V. The lysyl 

oxidase inhibitor beta-aminopropionitrile reduces body weight gain and improves the 

metabolic profile in diet-induced obesity in rats. Dis Models Mech 2015;8:543-551. 

33. Sethi A, Wordinger RJ, Clark AF. Focus on molecules: Lysyl oxidase. Exp Eye Res 

2012;104:97-98. 

34. Finney J, Moon H-J, Ronnebaum T, Lantz M, Mure M. Human copper-dependent amine 

oxidases. Arch Biochem Biophys 2014;546:19-32. 

35. Csiszar K. Lysyl oxidases: A novel multifunctional amine oxidase family. Prog Nucleic 

Acid Res Mol Biol 2001;70:1-32. 

36. Lucero HA, Kagan HM. Lysyl oxidase: An oxidative enzyme and effector of cell 

function. Cell Mol Life Sci 2006;63:2304-2316. 

37. Kagan HM, Reddy VB, Narasimhan N, Csiszar K. Catalytic properties and structural 

components of lysyl oxidase. Ciba Found Symp 1995;192:100-115. 

38. Langenau DM, Goetz FW, Roberts SB. The upregulation of messenger ribonucleic acids 

during 17alpha, 20beta-dihydroxy-4-pregnen-3-one-induced ovulation in the perch 

ovary. J Mol Endocrinol 1999;23:137-152. 

39. Kosonen T, Uriu-Hare JY, Clegg MS, Keen CL, Rucker RB. Incorporation of copper 

into lysyl oxidase. Biochem J 1997;327 (Pt 1):283-289. 

40. Kagan HM, Li W. Lysyl oxidase: Properties, specificity, and biological roles inside and 

outside of the cell. J Cell Biochem 2003;88:660-672. 

41. Trackman PC. Diverse biological functions of extracellular collagen processing 

enzymes. J Cell Biochem 2005;96:927-937. 

42. Martinez VG, Moestrup SK, Holmskov U, Mollenhauer J, Lozano F. The conserved 

scavenger receptor cysteine-rich superfamily in therapy and diagnosis. Pharmacol Rev 

2011;63:967-1000. 



 

62 

43. Hamalainen ER, Jones TA, Sheer D, Taskinen K, Pihlajaniemi T, Kivirikko KI. 

Molecular cloning of human lysyl oxidase and assignment of the gene to chromosome 

5q23.3-31.2. Genomics 1991;11:508-516. 

44. Asuncion L, Fogelgren B, Fong KS, Fong SF, Kim Y, Csiszar K. A novel human lysyl 

oxidase-like gene (LOXL4) on chromosome 10q24 has an altered scavenger receptor 

cysteine rich domain. Matrix Biol 2001;20:487-491. 

45. Iguchi H, Sano S. Cadmium- or zinc-binding to bone lysyl oxidase and copper 

replacement. Connect Tissue Res 1985;14:129-139. 

46. Gacheru SN, Trackman PC, Shah MA, O'Gara CY, Spacciapoli P, Greenaway FT, 

Kagan HM. Structural and catalytic properties of copper in lysyl oxidase. J Biol Chem 

1990;265:19022-19027. 

47. Farquharson C, Duncan A, Robins SP. The effects of copper deficiency on the 

pyridinium crosslinks of mature collagen in the rat skeleton and cardiovascular system. 

Proc Soc Exp Biol Med 1989;192:166-171. 

48. Rowe DW, McGoodwin EB, Martin GR, Sussman MD, Grahn D, Faris B, Franzblau C. 

A sex-linked defect in the cross-linking of collagen and elastin associated with the 

mottled locus in mice. J Exp Med 1974;139:180-192. 

49. Tinker D, Romero-Chapman N, Reiser K, Hyde D, Rucker R. Elastin metabolism during 

recovery from impaired crosslink formation. Arch Biochem Biophys 1990;278:326-332. 

50. Werman MJ, Barat E, Bhathena SJ. Gender, dietary copper and carbohydrate source 

influence cardiac collagen and lysyl oxidase in weanling rats. J Nutr 1995;125:857-863. 

51. Kagan HM, Trackman PC. Properties and function of lysyl oxidase. Am J Respir Cell 

Mol Biol 1991;5:206-210. 

52. Rodriguez C, Martinez-Gonzalez J, Raposo B, Alcudia JF, Guadall A, Badimon L. 

Regulation of lysyl oxidase in vascular cells: Lysyl oxidase as a new player in 

cardiovascular diseases. Cardiovasc Res 2008;79:7-13. 

53. Payne SL, Hendrix MJ, Kirschmann DA. Paradoxical roles for lysyl oxidases in cancer-

-a prospect. J Cell Biochem 2007;101:1338-1354. 

54. Rojkind M, Hhamabata A, Gonzm E, Rendon G. Intermolecular cross-links in rat skin 

and rat tail collagen. In: Chemistry and molecular biology of the intercellular matrix, 

Balazs, E. A., Ed. London and New York: Academic Press 1970;I:293-303. 

55. Bornstein P, Kang AH, Piez KA. The nature and location of intramolecular cross-links 

in collagen. Proc Natl Acad Sci U S A 1966;55:417-424. 



 

63 

56. Robins SP. Biochemistry and functional significance of collagen cross-linking. Biochem 

Soc Trans 2007;35:849-852. 

57. Lopez B, Querejeta R, Gonzalez A, Beaumont J, Larman M, Diez J. Impact of treatment 

on myocardial lysyl oxidase expression and collagen cross-linking in patients with heart 

failure. Hypertension 2009;53:236-242. 

58. Pischon N, Babakhanlou-Chase H, Darbois L, Ho WB, Brenner MC, Kessler E, 

Palamakumbura AH, Trackman PC. A procollagen C-proteinase inhibitor diminishes 

collagen and lysyl oxidase processing but not collagen cross-linking in osteoblastic 

cultures. J Cell Physiol 2005;203:111-117. 

59. Uzel MI, Shih SD, Gross H, Kessler E, Gerstenfeld LC, Trackman PC. Molecular events 

that contribute to lysyl oxidase enzyme activity and insoluble collagen accumulation in 

osteosarcoma cell clones. J Bone Miner Res 2000;15:1189-1197. 

60. Uzel MI, Scott IC, Babakhanlou-Chase H, Palamakumbura AH, Pappano WN, Hong 

HH, Greenspan DS, Trackman PC. Multiple bone morphogenetic protein 1-related 

mammalian metalloproteinases process pro-lysyl oxidase at the correct physiological 

site and control lysyl oxidase activation in mouse embryo fibroblast cultures. J Biol 

Chem 2001;276:22537-22543. 

61. Lijnen PJ, Petrov VV, Turner M, Fagard RH. Collagen production in cardiac fibroblasts 

during inhibition of aminopeptidase B. J Renin Angiotensin-Aldosterone Syst 2005;6:69-

77. 

62. Kessler E, Takahara K, Biniaminov L, Brusel M, Greenspan DS. Bone morphogenetic 

protein-1: The type I procollagen C-proteinase. Science 1996;271:360-362. 

63. Hopkins DR, Keles S, Greenspan DS. The bone morphogenetic protein 1/Tolloid-like 

metalloproteinases. Matrix Biol 2007;26:508-523. 

64. Fogelgren B, Polgar N, Szauter KM, Ujfaludi Z, Laczko R, Fong KS, Csiszar K. Cellular 

fibronectin binds to lysyl oxidase with high affinity and is critical for its proteolytic 

activation. J Biol Chem 2005;280:24690-24697. 

65. Majora M, Wittkampf T, Schuermann B, Schneider M, Franke S, Grether-Beck S, 

Wilichowski E, Bernerd F, Schroeder P, Krutmann J. Functional consequences of 

mitochondrial DNA deletions in human skin fibroblasts: Increased contractile strength 

in collagen lattices is due to oxidative stress-induced lysyl oxidase activity. Am J Pathol 

2009;175:1019-1029. 

66. Kagan HM, Williams MA, Williamson PR, Anderson JM. Influence of sequence and 

charge on the specificity of lysyl oxidase toward protein and synthetic peptide substrates. 

J Biol Chem 1984;259:11203-11207. 



 

64 

67. Higgins DF, Kimura K, Bernhardt WM, Shrimanker N, Akai Y, Hohenstein B, Saito Y, 

Johnson RS, Kretzler M, Cohen CD, Eckardt KU, Iwano M, Haase VH. Hypoxia 

promotes fibrogenesis in vivo via HIF-1 stimulation of epithelial-to-mesenchymal 

transition. J Clin Invest 2007;117:3810-3820. 

68. Lazarus HM, Cruikshank WW, Narasimhan N, Kagan HM, Center DM. Induction of 

human monocyte motility by lysyl oxidase. Matrix Biol 1995;14:727-731. 

69. Giampuzzi M, Botti G, Di Duca M, Arata L, Ghiggeri G, Gusmano R, Ravazzolo R, Di 

Donato A. Lysyl oxidase activates the transcription activity of human collagene III 

promoter. Possible involvement of Ku antigen. J Biol Chem 2000;275:36341-36349. 

70. Nellaiappan K, Risitano A, Liu G, Nicklas G, Kagan HM. Fully processed lysyl oxidase 

catalyst translocates from the extracellular space into nuclei of aortic smooth-muscle 

cells. J Cell Biochem 2000;79:576-582. 

71. Kobayashi H, Ishii M, Chanoki M, Yashiro N, Fushida H, Fukai K, Kono T, Hamada T, 

Wakasaki H, Ooshima A. Immunohistochemical localization of lysyl oxidase in normal 

human skin. Br J Dermatol 1994;131:325-330. 

72. Li, Liu G, Chou IN, Kagan HM. Hydrogen peroxide-mediated, lysyl oxidase-dependent 

chemotaxis of vascular smooth muscle cells. J Cell Biochem 2000;78:550-557. 

73. Wordinger RJ, Clark AF. Lysyl oxidases in the trabecular meshwork. J Glaucoma 

2014;23:S55-58. 

74. Genovese F, Manresa AA, Leeming DJ, Karsdal MA, Boor P. The extracellular matrix 

in the kidney: A source of novel non-invasive biomarkers of kidney fibrosis? 

Fibrogenesis Tissue Repair 2014;7:4. 

75. Schuppan D. Liver fibrosis: Common mechanisms and antifibrotic therapies. Clin Res 

Hepatol Gastroenterol 2015;39 Suppl 1:S51-59. 

76. Ho YY, Lagares D, Tager AM, Kapoor M. Fibrosis--a lethal component of systemic 

sclerosis. Nat Rev Rheumatol 2014;10:390-402. 

77. Martinez-Martinez E, Rodriguez C, Galan M, Miana M, Jurado-Lopez R, Bartolome 

MV, Luaces M, Islas F, Martinez-Gonzalez J, Lopez-Andres N, Cachofeiro V. The lysyl 

oxidase inhibitor (beta-aminopropionitrile) reduces leptin profibrotic effects and 

ameliorates cardiovascular remodeling in diet-induced obesity in rats. J Mol Cell Cardiol 

2016;92:96-104. 

78. Zibadi S, Vazquez R, Moore D, Larson DF, Watson RR. Myocardial lysyl oxidase 

regulation of cardiac remodeling in a murine model of diet-induced metabolic syndrome. 

Am J Physiol Heart Circ Physiol 2009;297:H976-982. 



 

65 

79. Schelbert EB, Fonarow GC, Bonow RO, Butler J, Gheorghiade M. Therapeutic targets 

in heart failure: Refocusing on the myocardial interstitium. J Am Coll Cardiol 

2014;63:2188-2198. 

80. Butler J, Fonarow GC, Zile MR, Lam CS, Roessig L, Schelbert EB, Shah SJ, Ahmed A, 

Bonow RO, Cleland JG, Cody RJ, Chioncel O, Collins SP, Dunnmon P, Filippatos G, 

Lefkowitz MP, Marti CN, McMurray JJ, Misselwitz F, Nodari S, O'Connor C, Pfeffer 

MA, Pieske B, Pitt B, Rosano G, Sabbah HN, Senni M, Solomon SD, Stockbridge N, 

Teerlink JR, Georgiopoulou VV, Gheorghiade M. Developing therapies for heart failure 

with preserved ejection fraction: Current state and future directions. JACC Heart Fail 

2014;2:97-112. 

81. Davis J, Molkentin JD. Myofibroblasts: Trust your heart and let fate decide. J Mol Cell 

Cardiol 2014;70:9-18. 

82. Kong P, Christia P, Frangogiannis NG. The pathogenesis of cardiac fibrosis. Cell Mol 

Life Sci 2014;71:549-574. 

83. Schelbert EB, Piehler KM, Zareba KM, Moon JC, Ugander M, Messroghli DR, Valeti 

US, Chang CC, Shroff SG, Diez J, Miller CA, Schmitt M, Kellman P, Butler J, 

Gheorghiade M, Wong TC. Myocardial fibrosis quantified by extracellular volume is 

associated with subsequent hospitalization for heart failure, death, or both across the 

spectrum of ejection fraction and heart failure stage. J Am Heart Assoc 2015;4:e002613. 

84. Yang, Savvatis K, Kang JS, Fan P, Zhong H, Schwartz K, Barry V, Mikels-Vigdal A, 

Karpinski S, Kornyeyev D, Adamkewicz J, Feng X, Zhou Q, Shang C, Kumar P, Phan 

D, Kasner M, Lopez B, Diez J, Wright KC, Kovacs RL, Chen PS, Quertermous T, Smith 

V, Yao L, Tschope C, Chang CP. Targeting LOXL2 for cardiac interstitial fibrosis and 

heart failure treatment. Nat Commun 2016;7:13710. 

85. Maki JM. Lysyl oxidases in mammalian development and certain pathological 

conditions. Histol Histopathol 2009;24:651-660. 

86. Manabe I, Shindo T, Nagai R. Gene expression in fibroblasts and fibrosis: Involvement 

in cardiac hypertrophy. Circ Res 2002;91:1103-1113. 

87. Frey N, Olson EN. Cardiac hypertrophy: The good, the bad, and the ugly. Ann Rev 

Physiol 2003;65:45-79. 

88. Colucci WS. Molecular and cellular mechanisms of myocardial failure. Am J Cardiol 

1997;80:15l-25l. 

89. Yang CM, Kandaswamy V, Young D, Sen S. Changes in collagen phenotypes during 

progression and regression of cardiac hypertrophy. Cardiovasc Res 1997;36:236-245. 



 

66 

90. Yu Q, Vazquez R, Zabadi S, Watson RR, Larson DF. T-lymphocytes mediate left 

ventricular fibrillar collagen cross-linking and diastolic dysfunction in mice. Matrix Biol 

2010;29:511-518. 

91. Adam O, Theobald K, Lavall D, Grube M, Kroemer HK, Ameling S, Schafers HJ, Bohm 

M, Laufs U. Increased lysyl oxidase expression and collagen cross-linking during atrial 

fibrillation. J Mol Cell Cardiol 2011;50:678-685. 

92. Sivakumar P, Gupta S, Sarkar S, Sen S. Upregulation of lysyl oxidase and MMPs during 

cardiac remodeling in human dilated cardiomyopathy. Mol Cell Biochem 2008;307:159-

167. 

93. Norton GR, Tsotetsi J, Trifunovic B, Hartford C, Candy GP, Woodiwiss AJ. Myocardial 

stiffness is attributed to alterations in cross-linked collagen rather than total collagen or 

phenotypes in spontaneously hypertensive rats. Circulation 1997;96:1991-1998. 

94. Badenhorst D, Maseko M, Tsotetsi OJ, Naidoo A, Brooksbank R, Norton GR, 

Woodiwiss AJ. Cross-linking influences the impact of quantitative changes in 

myocardial collagen on cardiac stiffness and remodelling in hypertension in rats. 

Cardiovasc Res 2003;57:632-641. 

95. Gonzalez-Santamaria J, Villalba M, Busnadiego O, Lopez-Olaneta MM, Sandoval P, 

Snabel J, Lopez-Cabrera M, Erler JT, Hanemaaijer R, Lara-Pezzi E, Rodriguez-Pascual 

F. Matrix cross-linking lysyl oxidases are induced in response to myocardial infarction 

and promote cardiac dysfunction. Cardiovasc Res 2016;109:67-78. 

96. Lopez B, Ravassa S, Gonzalez A, Zubillaga E, Bonavila C, Berges M, Echegaray K, 

Beaumont J, Moreno MU, San Jose G, Larman M, Querejeta R, Diez J. Myocardial 

collagen cross-linking is associated with heart failure hospitalization in patients with 

hypertensive heart failure. J Am Coll Cardiol 2016;67:251-260. 

97. El Hajj EC, El Hajj MC, Ninh VK, Gardner JD. Cardioprotective effects of lysyl oxidase 

inhibition against volume overload-induced extracellular matrix remodeling. Exp Biol 

Med 2016;241:539-549. 

98. El Hajj EC, El Hajj MC, Ninh VK, Bradley JM, Claudino MA, Gardner JD. Detrimental 

role of lysyl oxidase in cardiac remodeling. J Mol Cell Cardiol 2017;109:17-26. 

99. El Hajj EC, El Hajj MC, Ninh VK, Gardner JD. Inhibitor of lysyl oxidase improves 

cardiac function and the collagen/MMP profile in response to volume overload. Am J 

Physiol Heart Circ Physiol 2018;315:H463-h473. 

100. Ovet H, Oztay F. The copper chelator tetrathiomolybdate regressed bleomycin-induced 

pulmonary fibrosis in mice, by reducing lysyl oxidase expressions. Biol Trace Elem Res 

2014;162:189-199. 



 

67 

101. Stefanon I, Valero-Munoz M, Fernandes AA, Ribeiro RF, Jr., Rodriguez C, Miana M, 

Martinez-Gonzalez J, Spalenza JS, Lahera V, Vassallo PF, Cachofeiro V. Left and right 

ventricle late remodeling following myocardial infarction in rats. PloS One 

2013;8:e64986. 

102. Xie Y, Chen J, Han P, Yang P, Hou J, Kang YJ. Immunohistochemical detection of 

differentially localized up-regulation of lysyl oxidase and down-regulation of matrix 

metalloproteinase-1 in rhesus monkey model of chronic myocardial infarction. Exp Biol 

Med 2012;237:853-859. 

103. Hermida N, Lopez B, Gonzalez A, Dotor J, Lasarte JJ, Sarobe P, Borras-Cuesta F, Diez 

J. A synthetic peptide from transforming growth factor-beta1 type III receptor prevents 

myocardial fibrosis in spontaneously hypertensive rats. Cardiovasc Res 2009;81:601-

609. 

104. Weber KT. Fibrosis and hypertensive heart disease. Curr Opin Cardiol 2000;15:264-

272. 

105. Levy D, Larson MG, Vasan RS, Kannel WB, Ho KK. The progression from 

hypertension to congestive heart failure. Jama 1996;275:1557-1562. 

106. Yu Q, Horak K, Larson DF. Role of T lymphocytes in hypertension-induced cardiac 

extracellular matrix remodeling. Hypertension 2006;48:98-104. 

107. Lopez B, Gonzalez A, Beaumont J, Querejeta R, Larman M, Diez J. Identification of a 

potential cardiac antifibrotic mechanism of torasemide in patients with chronic heart 

failure. J Am Coll Cardiol 2007;50:859-867. 

108. Ohmura H, Yasukawa H, Minami T, Sugi Y, Oba T, Nagata T, Kyogoku S, Ohshima H, 

Aoki H, Imaizumi T. Cardiomyocyte-specific transgenic expression of lysyl oxidase-

like protein-1 induces cardiac hypertrophy in mice. Hypertens Res 2012;35:1063-1068. 

109. Galan M, Varona S, Guadall A, Orriols M, Navas M, Aguilo S, de Diego A, Navarro 

MA, Garcia-Dorado D, Rodriguez-Sinovas A, Martinez-Gonzalez J, Rodriguez C. Lysyl 

oxidase overexpression accelerates cardiac remodeling and aggravates angiotensin II-

induced hypertrophy. FASEB J 2017;31:3787-3799. 

110. Adam O, Frost G, Custodis F, Sussman MA, Schafers HJ, Bohm M, Laufs U. Role of 

Rac1 GTPase activation in atrial fibrillation. J Am Coll Cardiol 2007;50:359-367. 

111. Adam O, Lavall D, Theobald K, Hohl M, Grube M, Ameling S, Sussman MA, 

Rosenkranz S, Kroemer HK, Schafers HJ, Bohm M, Laufs U. Rac1-induced connective 

tissue growth factor regulates connexin 43 and N-cadherin expression in atrial 

fibrillation. J Am Coll Cardiol 2010;55:469-480. 



 

68 

112. Adam O, Lohfelm B, Thum T, Gupta SK, Puhl SL, Schafers HJ, Bohm M, Laufs U. Role 

of miR-21 in the pathogenesis of atrial fibrosis. Basic Res Cardiol 2012;107:278. 

113. Lavall D, Selzer C, Schuster P, Lenski M, Adam O, Schafers HJ, Bohm M, Laufs U. The 

mineralocorticoid receptor promotes fibrotic remodeling in atrial fibrillation. J Biol 

Chem 2014;289:6656-6668. 

114. Zhong H, Liang X-H, Neef S, Popov A, Maier LS, Yao L, Belardinelli L. Expression of 

lysyl oxidase-like 2 (LOXL2) correlates with left atrial size and fibrotic gene expression 

in human atrial fibrillation. J Am Coll Cardiol 2014;63:A285. 

115. Zhao Y, Tang K, Tianbao X, Wang J, Yang J, Li D. Increased serum lysyl oxidase-like 

2 levels correlate with the degree of left atrial fibrosis in patients with atrial fibrillation. 

Biosci Rep 2017;37. pii: BSR20171332. doi: 10.1042/BSR20171332.  

116. Trackman PC. Lysyl oxidase isoforms and potential therapeutic opportunities for 

fibrosis and cancer. Expert Opin Ther Targets 2016;20:935-945.  

117. Wunberg T, Hendrix M, Hillisch A, Lobell M, Meier H, Schmeck C, Wild H, Hinzen B. 

Improving the hit-to-lead process: Data-driven assessment of drug-like and lead-like 

screening hits. Drug Discov Today 2006;11:175-180. 

118. Brenk R, Schipani A, James D, Krasowski A, Gilbert IH, Frearson J, Wyatt PG. Lessons 

learnt from assembling screening libraries for drug discovery for neglected diseases. 

ChemMedChem 2008;3:435-444. 

119. Tang SS, Simpson DE, Kagan HM. Beta-substituted ethylamine derivatives as suicide 

inhibitors of lysyl oxidase. J Biol Chem 1984;259:975-979. 

120. Williamson PR, Kagan HM. Electronegativity of aromatic amines as a basis for the 

development of ground state inhibitors of lysyl oxidase. J Biol Chem 1987;262:14520-

14524. 

121. Levene CI, Sharman DF, Callingham BA. Inhibition of chick embryo lysyl oxidase by 

various lathyrogens and the antagonistic effect of pyridoxal. Int J Exp Pathol 

1992;73:613-624. 

122. Gacheru SN, Trackman PC, Calaman SD, Greenaway FT, Kagan HM. Vicinal diamines 

as pyrroloquinoline quinone-directed irreversible inhibitors of lysyl oxidase. J Biol 

Chem 1989;264:12963-12969. 

123. Liu G, Nellaiappan K, Kagan HM. Irreversible inhibition of lysyl oxidase by 

homocysteine thiolactone and its selenium and oxygen analogues. Implications for 

homocystinuria. J Biol Chem 1997;272:32370-32377. 



 

69 

124. Nagan N, Callery PS, Kagan HM. Aminoalkylaziridines as substrates and inhibitors of 

lysyl oxidase: Specific inactivation of the enzyme by N-(5-aminopentyl)aziridine. Front 

Biosci 1998;3:A23-26. 

125. Robinson, Wilson DM, Delaet NG, Bradley EK, Dankwardt SM, Campbell JA, Martin 

RL, Van Wart HE, Walker KA, Sullivan RW. Novel inhibitors of procollagen C-

proteinase. Part 2: Glutamic acid hydroxamates. Bioorg Med Chem Lett 2003;13:2381-

2384. 

126. Delaet NG, Robinson LA, Wilson DM, Sullivan RW, Bradley EK, Dankwardt SM, 

Martin RL, Van Wart HE, Walker KA. Novel inhibitors of procollagen C-terminal 

proteinase. Part 1: Diamino Acid hydroxamates. Bioorg Med Chem Lett 2003;13:2101-

2104. 

127. Bailey S, Fish PV, Billotte S, Bordner J, Greiling D, James K, McElroy A, Mills JE, 

Reed C, Webster R. Succinyl hydroxamates as potent and selective non-peptidic 

inhibitors of procollagen C-proteinase: Design, synthesis, and evaluation as topically 

applied, dermal anti-scarring agents. Bioorg Med Chem Lett 2008;18:6562-6567. 

128. Mure M. Tyrosine-derived quinone cofactors. Acc Chem Res 2004;37:131-139. 

129. Blaisdell RJ, Giri SN. Mechanism of antifibrotic effect of taurine and niacin in the 

multidose bleomycin-hamster model of lung fibrosis: Inhibition of lysyl oxidase and 

collagenase. J Biochem Toxicol 1995;10:203-210. 

130. Anderson C, Bartlett SJ, Gansner JM, Wilson D, He L, Gitlin JD, Kelsh RN, Dowden J. 

Chemical genetics suggests a critical role for lysyl oxidase in zebrafish notochord 

morphogenesis. Mol BioSyst 2007;3:51-59. 

131. Hajdu I, Kardos J, Major B, Fabo G, Lorincz Z, Cseh S, Dorman G. Inhibition of the 

LOX enzyme family members with old and new ligands. Selectivity analysis revisited. 

Bioorg Med Chem Lett 2018;28:3113-3118. 

132. Narayanan AS, Siegel RC, Martin GR. On the inhibition of lysyl oxidase by β-

aminopropionitrile. Biochem Biophys Res Commun 1972;46:745-751. 

133. Tang SS, Trackman PC, Kagan HM. Reaction of aortic lysyl oxidase with beta-

aminopropionitrile. J Biol Chem 1983;258:4331-4338. 

134. Page RC, Benditt EP. Interaction of the lathyrogen beta-aminopropionitrile (BAPN) with 

a copper-containing amine oxidase. Proc Soc Exp Biol Med 1967;124:454-459. 

135. Kato S, Spinale FG, Tanaka R, Johnson W, Cooper Gt, Zile MR. Inhibition of collagen 

cross-linking: Effects on fibrillar collagen and ventricular diastolic function. Am J 

Physiol 1995;269:H863-868. 



 

70 

136. Bing OH, Fanburg BL, Brooks WW, Matsushita S. The effect of lathyrogen beta-amino 

proprionitrile (BAPN) on the mechanical properties of experimentally hypertrophied rat 

cardiac muscle. Circ Res 1978;43:632-637. 

137. Rosin NL, Sopel MJ, Falkenham A, Lee TD, Legare JF. Disruption of collagen 

homeostasis can reverse established age-related myocardial fibrosis. Am J Pathol 

2015;185:631-642. 

138. Bachhuber TE, Lalich JJ, Angevine DM, Schilling ED, Strong FM. Lathyrus factor 

activity of beta-aminopropionitrile and related compounds. Proc Soc Exp Biol Med 

1955;89:294-297. 

139. Granchi C, Funaioli T, Erler JT, Giaccia AJ, Macchia M, Minutolo F. Bioreductively 

activated lysyl oxidase inhibitors against hypoxic tumours. ChemMedChem 

2009;4:1590-1594. 

140. Barry-Hamilton V, Spangler R, Marshall D, McCauley S, Rodriguez HM, Oyasu M, 

Mikels A, Vaysberg M, Ghermazien H, Wai C, Garcia CA, Velayo AC, Jorgensen B, 

Biermann D, Tsai D, Green J, Zaffryar-Eilot S, Holzer A, Ogg S, Thai D, Neufeld G, 

Van Vlasselaer P, Smith V. Allosteric inhibition of lysyl oxidase-like-2 impedes the 

development of a pathologic microenvironment. Nat Med 2010;16:1009-1017. 

141. Boak AM, Roy R, Berk J, Taylor L, Polgar P, Goldstein RH, Kagan HM. Regulation of 

lysyl oxidase expression in lung fibroblasts by transforming growth factor-beta 1 and 

prostaglandin E2. Am J Respir Cell Mol Biol 1994;11:751-755. 

142. Roy R, Polgar P, Wang Y, Goldstein RH, Taylor L, Kagan HM. Regulation of lysyl 

oxidase and cyclooxygenase expression in human lung fibroblasts: Interactions among 

TGF-beta, IL-1 beta, and prostaglandin E. J Cell Biochem 1996;62:411-417. 

143. Engebretsen KV, Skardal K, Bjornstad S, Marstein HS, Skrbic B, Sjaastad I, Christensen 

G, Bjornstad JL, Tonnessen T. Attenuated development of cardiac fibrosis in left 

ventricular pressure overload by SM16, an orally active inhibitor of ALK5. J Mol Cell 

Cardiol 2014;76:148-157. 

144. Adam O, Zimmer C, Hanke N, Hartmann RW, Klemmer B, Bohm M, Laufs U. 

Inhibition of aldosterone synthase (CYP11B2) by torasemide prevents atrial fibrosis and 

atrial fibrillation in mice. J Mol Cell Cardiol 2015;85:140-150. 

145. Gonzalez GE, Rhaleb NE, Nakagawa P, Liao TD, Liu Y, Leung P, Dai X, Yang XP, 

Carretero OA. N-acetyl-seryl-aspartyl-lysyl-proline reduces cardiac collagen cross-

linking and inflammation in angiotensin II-induced hypertensive rats. Clin Sci 

2014;126:85-94. 



 

71 

146. Miguel-Carrasco JL, Beaumont J, San Jose G, Moreno MU, Lopez B, Gonzalez A, Zalba 

G, Diez J, Fortuno A, Ravassa S. Mechanisms underlying the cardiac antifibrotic effects 

of losartan metabolites. Sci Rep 2017;7:41865. 

147. Lopez B, Querejeta R, Gonzalez A, Larman M, Diez J. Collagen cross-linking but not 

collagen amount associates with elevated filling pressures in hypertensive patients with 

stage C heart failure: Potential role of lysyl oxidase. Hypertension 2012;60:677-683. 

148. Lopez B, Gonzalez A, Lindner D, Westermann D, Ravassa S, Beaumont J, Gallego I, 

Zudaire A, Brugnolaro C, Querejeta R, Larman M, Tschope C, Diez J. Osteopontin-

mediated myocardial fibrosis in heart failure: A role for lysyl oxidase?. Cardiovasc Res 

2013;99:111-120. 

149. Herum KM, Lunde IG, Skrbic B, Louch WE, Hasic A, Boye S, Unger A, Brorson SH, 

Sjaastad I, Tonnessen T, Linke WA, Gomez MF, Christensen G. Syndecan-4 is a key 

determinant of collagen cross-linking and passive myocardial stiffness in the pressure-

overloaded heart. Cardiovasc Res 2015;106:217-226. 

150. Gao AE, Sullivan KE, Black LD, 3rd. Lysyl oxidase expression in cardiac fibroblasts is 

regulated by alpha2beta1 integrin interactions with the cellular microenvironment. 

Biochem Biophys Res Commun 2016;475:70-75. 

151. Xiao Y, Nie X, Han P, Fu H, James Kang Y. Decreased copper concentrations but 

increased lysyl oxidase activity in ischemic hearts of rhesus monkeys. Metallomics 

2016;8:973-980. 

152. Beaumont J, Lopez B, Ravassa S, Hermida N, Jose GS, Gallego I, Valencia F, Gomez-

Doblas JJ, de Teresa E, Diez J, Gonzalez A. MicroRNA-19b is a potential biomarker of 

increased myocardial collagen cross-linking in patients with aortic stenosis and heart 

failure. Sci Rep 2017;7:40696. 

153. Schreckenberg R, Horn AM, da Costa Rebelo RM, Simsekyilmaz S, Niemann B, Li L, 

Rohrbach S, Schluter KD. Effects of 6-months' exercise on cardiac function, structure 

and metabolism in female hypertensive rats-the decisive role of lysyl oxidase and 

collagen III. Front Physiol 2017;8:556.  



 

72 

Figure Legends 

Figure 1. Schematic representation of collagen biosynthesis and cross-linking. Following 

translation, procollagen α-chains are imported into the endoplasmic reticulum (ER) and Golgi 

apparatus to form triple-helical procollagen (two α1-chains and one α2-chain). These immature 

collagen helices are secreted into the extracellular space and then converted to mature collagen 

through cleavage by procollagen N-proteinase (PNPase) and C-proteinase (PCPase). Mature 

collagen fibrils are self-assembled and then cross-linking is initiated by enzymatic (lysyl oxidase 

(LOX) family) and non-enzymatic (advanced glycation end products (AGEs)) processes. 

Figure 2. Structures of lysyl oxidase (LOX) and LOX-like proteins (LOXL-1, LOXL-2, 

LOXL-3 and LOXL-4). 

Figure 3. Mechanism of collagen cross-linking as catalyzed by lysyl oxidase (LOX) 

enzymes. (A) Sequences of peptidyl lysine and hydroxylysine in collagen. (B) Oxidation of 

peptidyl lysine and hydroxylysine to peptidyl aldehyde (allysyl and hydroxyallysyl) in collagen. 

(C) Condensation of peptidyl aldehyde (allysyl and hydroxyallysyl) and lysine to 

dehydrolysinonorleucine and aldol. (D) Maturation of dehydrolysinonorleucine and aldol 

condensation products to pyridinoline and pyrrole. 

Figure 4. Schematic representation of biosynthesis, secretion and activation of lysyl 

oxidase (LOX) enzyme in heart tissues. LOX gene is transcribed in the nucleus, LOX mRNA 

is translated, pre-protein (pre-pro-LOX) enters the endoplasmic reticulum (ER), and is 

transported as a prolysyl oxidase (pro-enzyme) from the ER to the Golgi apparatus. In the Golgi 

apparatus, glycosylation occurs, followed by association with cellular copper and formation of 

a lysine tyrosylquinone (LTQ) cofactor. Prolysyl oxidase is cleaved between Gly168 and 

Asp169 at the surface of cardiac cells by procollagen C-proteinase (PCPase; bone 

morphogenetic protein 1 (BMP-1)) to form the active (mature) LOX (30 kDa) and LOX 

propeptide (18 kDa), which are then secreted into the extracellular matrix (ECM). Transforming 

growth factor beta (TGF-β) and prostaglandin E2 modulate LOX mRNA transcription. 

Figure 5. Schematic overview of the principal role of LOX-family enzymes in heart disease.  
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Table 1: Summary of investigations of LOX-family isoforms in heart failure (HF). 

Reference Model Species Effects of LOX Inhibition Cardiac 

Condition 

LOX Inhibitor Observations and Conclusions 

Sivakumar et 

al. 92 

-DCM patients 
with HF 

-Human -Not studied -HF due to 
DCM 

-None used -Increased collagen concentration and contents of MMP-2 and MMP-9 in LV 
tissues of DCM patients with HF 

-Upregulation of transcript levels for LOX, cytokines (IFN, IL-6, TNF-α, and 

TGF-β), TIMP-1 and TIMP-2 in LV tissues of DCM patients with HF 
-A significant role of LOX in cardiac dysfunction via modification the 

collagen structure 

 

Lopez et al. 57 -HF patients -Human -Declined LOX expression and collagen cross-
linking in treated HF patients with torasemide 

-Normalization of LV stiffness in treated HF 
patients with torasemide 

-HF -None used -Increased LOX expression and collagen cross-linking in LV tissues of HF 
patients 

-A strong correlation of collagen cross-linking with LOX expression and LV 
stiffness in HF patients 

-LOX is a potential target for reduction the degree of collagen stiffness and 

improvement of LV mechanical properties in HF patients 
 

Lopez et al. 147 -Hypertensive 

patients with HF 

-Human -Not studied -HF due to 

hypertension 

-None used -Increased LV stiffness, total collagen, collagen type I fibers, insoluble 

collagen, collagen cross-linking and LOX expression in LV tissues of 

hypertensive patients with HF 
-LOX excessively induced collagen cross-linking, leading to increase LV 

stiffness and filling pressure in hypertensive patients with HF 

 

Lopez et al. 148 Hypertensive 
patients with HF 

-Human -Silencing of CTGF prevented osteopontin-induced 
upregulation of LOX activity and expression in 

cardiac fibroblasts 

-HF due to 
hypertension 

-None used -Increased myocardial osteopontin expression is associated with upregulation 
of LOX, insoluble collagen, collagen type I and LV stiffness in HF patients 

with hypertension 

-Increased LOX activity and expression in cardiac fibroblasts upon treatment 
with osteopontin 

-Inhibition of osteopontin–LOX pathway may be a therapeutic target for 

myocardial fibrosis in HF patients with hypertension 

 
Gonzalez-

Santamaria et 

al. 95 

-HF induced by 
MI 

-Mice -BAPN decreased collagen content, collagen cross-
linking, LV dilatation and improved cardiac 

function post-MI 

-BAPN didn’t change the expression of LOX 
isoforms in the LV infarcted area 

-Anti-LOX antibody reduced collagen 

accumulation, scar area and LV dilatation  
 

-HF -BAPN 
-Anti-LOX 

antibody 

-Upregulation of mature collagen bundles, collagen cross-linking and LOX 
isoforms mRNA expressions in the LV infarcted area 

-TGF-β and hypoxia induced an increase of LOX isoforms mRNA 

expressions except LOXL-1 in cultured fibroblasts 
-LOX isoforms had a crucial role in cardiac remodeling post-MI 

Yang et al. 84 -Pressure overload 

induced by TAC 

-HF patients with 
preserved ejection 

fraction, ischemia 

and idiopathic 
DCM 

 

-Mice 

-Human 

-Anti-LOXL-2 antibody or genetic LOXL-2 

disruption decreased cardiac fibrosis, chamber 

dilatation and improved systolic and diastolic 
functions 

-HF -Anti-LOXL-2 

antibody 

-Genetic 
LOXL-2 

disruption by 

CRISPR/Cas9 

-Elevated LOXL-2 levels in the LV tissues of TAC mice and human with HF, 

ischemia and idiopathic DCM 

-LOXL-2 promoted TGF-β2 production, differentiation of fibroblasts into 
myofibroblasts and cross-linking and deposition of collagen during stress 

-LOXL-2 had an important role in the interstitial fibrosis and cardiac 

dysfunction during HF development 

El Hajj et al. 
97 

-HF induced 

by VO 

-Rats -BAPN attenuated VO-induced cardiac wall stress 

and dysfunction 

-HF -BAPN -VO induced an increase of ventricular wall stress, chamber dilatation, 

collagen (type I and III) expressions and collagen cross-linking 
-BAPN had cardioprotective effects and prevented HF progression in VO rats 
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-BAPN attenuated the increase in collagen (type I 
and III) expressions and collagen cross-linking in 

VO rats 

 

El Hajj et al. 
98 

-HF induced 
by VO 

-Rats -BAPN attenuated cardiac dysfunction, collagen 
deposition and cross-linking in chronic VO rats 

-HF -BAPN -Chronic VO induced an upregulation of LOX expression, LOX activity and 
collagen cross-linking during the shift from compensated to decompensated 

stage of HF (4 to 21 weeks post-surgery) 

-Upregulation of LOX levels had a detrimental role in HF progression 
 

El Hajj et al. 
99 

-HF induced  

by VO 

-Rats -BAPN suppressed the LV wall stress and stiffness 

as well as improved the cardiac contractility in 

chronic VO rats 

-BAPN decreased collagen (I and III), MMP-2, 

MMP-8, MMP-14, TIMP-1 and TIMP-2 protein 
expressions along with decrease in collagen cross-

linking and interstitial fibrosis 

 

-HF -BAPN -Chronic VO rats demonstrated an increase of cardiac wall stress, collagen 

cross-linking and interstitial fibrosis along with increase in collagen and 

MMPs expressions 

-BAPN had a cardioprotective effects in chronic VO model 

LV, Left ventricle; DCM, Dilated cardiomyopathy; MMPs, Matrix metalloproteinases; BAPN, β-aminopropionitrile; LOX, Lysyl oxidase; LOXL, Lysyl oxidase like protein; CTGF, Connective tissue growth factor; ECM, 
Extracellular matrix; TAC, Transverse aortic constriction; MI, Myocardial infarction; HF, Heart failure; IFN, Interferon; IL-6, Interleukin 6; TNF-α, Tumor necrosis factor-α; TGF-β, Transforming growth factor β,TIMP, Tissue 

inhibitor of metalloproteinase; VO, Volume overload.
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Table 2: Summary of investigations of LOX-family isoforms in hypertrophic cardiac conditions. 
 

Reference Model Species Effects of LOX Inhibition Cardiac 

Condition 

LOX 

Inhibitor 

Observations and Conclusions 

Ohmura et al. 
108 

-Neonatal rats 

-Hypertrophy 

induced by 
abdominal 

aortic 

constriction 
-Transgenic 

mice with 

LOXL-1 
overexpression 

 

-Rats 

-Mice 

-BAPN inhibited cardiac hypertrophy that was 

induced by Ang II in vivo 

-BAPN inhibited leucine incorporation in 
cardiomyocyte that was induced by 

hypertrophic agonists 

-Pressure overload 

-Cardiomyocyte-

specific 
overexpression of 

LOXL-1 

-BAPN -Increased LOXL-1 expression and LOX activity in neonatal rat 

cardiomyocytes upon stimulation with hypertrophic agonists 

-Elevated mRNA expression of LOXL-1 in rats after abdominal aortic 
constriction  

-Transgenic mice expressing LOXL-1 showed an increase of brain natriuretic 

peptide expression, myocyte diameter, LV to body weight ratio and wall 
thickness 

-A vital role of LOXL-1 in cardiac hypertrophy 

Gonzalez et al. 
145 

-Hypertension 

by Ang II 
infusion 

-Rats -Ac-SDKP prevented the increase of total and 

cross-linked collagen, LOX and LOXL-1 
expressions 

-Hypertension -None used -Ac-SDKP decreased LOX expression, leading to decrease the nuclear 

translocation of NF-κB, CD4+/CD8+ lymphocyte infiltration and CD68+ 
macrophage infiltration induced by Ang II 

-Ac-SDKP decreased inflammation and fibrosis but failed to lower blood 

pressure or LV hypertrophy 
 

Herum et al. 149 -Hypertrophy 

induced by 

aortic banding 
in syndecan-4 

knockout 

(syndecan-4-/-) 
mice 

-Mice -Knockout of syndecan-4 decreased LOX and 

osteopontin expressions in cardiac fibroblasts 

-Pressure overload -None used -Decreased LOX activity and expression, collagen cross-linking and 

osteopontin expression in LV from syndecan-4-/- mice 

-Increased osteopontin expression in mechanically stretched fibroblasts as 
well as in fibroblasts overexpressing calcineurin, NFAT or syndecan-4 

-Syndecan-4 induced collagen, LOX and osteopontin in cardiac fibroblasts 

via its cytosolic domain and NFAT signaling pathway 

Gao et al. 150 -Myocardial 

infarction (MI) 

-Rats -BTT3033 (α2β1 integrin inhibitor) decreased 

the expression of collagen 1A1 and LOX as well 
as cellular adhesion to collagen in cardiac 

fibroblasts 

-Myocardial 

ischemia 

-None used -Increased expression of LOX, collagen 1A1, α-SMA and integrin β1 in 

cardiac fibroblasts from one-week post-MI LV tissue 
-Upregulation of LOX and collagen I in cultured infarct cardiac fibroblasts 

on collagen I coated plates with or without TGF-β1; α2β1 integrin blocker 

reduced LOX, pro-LOX and collagen-1 expression 
-Interactions of the α2β1 integrin to collagen I regulated LOX expression 

 

Xiao et al. 151 -Ischemia 

(occlusion-
reperfusion) 

-Monkeys -Not studied -Myocardial 

ischemia 

-None used -Reduced copper contents in tissues leads to increase the collagen deposition 

by LOX in the infarcted area 
-Upregulation of mRNA expression of LOX and collagen (type I and III), 

protein expression of collagen (type I and III), LOX activity and collagen 

cross-linking in the infarcted area 
 

Martinez-

Martinez et al. 
77 

-Rat fed with 

HFD 

-Rats -BAPN prevented the increase in circulating 

levels of leptin and body weight in HFD rats 

-BAPN decreased cardiac hypertrophy without 
effect on blood pressure in HFD rats 

-LOX knockdown reduced the effect of leptin-

induced collagen I synthesis and inhibited 
leptin-induced ROS production and profibrotic 

mediators in cardiac fibroblasts and aortic 

VSMCs 
 

-Metabolic 

syndrome 

-BAPN 

-LOX 

knockdown 
(siRNA) 

-Interactions between leptin and LOX regulated downstream events that 

mediated cardiovascular fibrosis in obesity 
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LV, Left ventricle; BAPN, β-aminopropionitrile; LOX, Lysyl oxidase; LOXL, Lysyl oxidase like protein; CTGF, Connective tissue growth factor; TgLOX, Transgenic mice with LOX overexpression; Ang II, Angiotensin II; 

HW, Heart weight; SM22α, Smooth muscle protein 22α; p38 MAPK, p38 mitogen-activated protein kinase; HFD, High-fat diet; VSMCs, Vascular smooth muscle cells; ROS, Reactive oxygen species; siRNA, Small interfering 

RNA; Ac-SDKP, N-acetyl-seryl-aspartyl-lysyl-proline; NF-κB, Nuclear factor-kappa β; TGF-β1, Transforming growth factor β1; NFAT, Nuclear factor of activated T-cells; MI, Myocardial infarction; α-SMA, α-smooth muscle 
actin; AS, Aortic stenosis; miRNA: MicroRNA; FGF2, Fibroblast growth factor-2.

Beaumont et al. 
152 

-AS patients 
with HF 

-Human -Anti miRNA-19b increased CTGF and LOX 
protein in human fibroblasts 

-HF due to AS -None used -Increased total collagen, cross-linked collagen and LOX expression along 
with a decrease in expression of miRNA-19b and miRNA-133a in 

myocardial samples of AS patients with HF 

-Inverse correlation of myocardial and serum miRNA-19b expression with 
myocardial collagen cross-linking, LV stiffness and LOX expression in AS 

patients with HF 

-miR-19b inhibition increased CTGF and LOX expression in fibroblasts 
 

Schreckenberg 

et al. 153 

-Exercise in 

spontaneous 

hypertension 

-Rats -Knocking down osteopontin decreased LOX 

expression in cardiac fibroblasts 

-Hypertension -None used -Decreased heart rate with no effect on the systolic or diastolic blood pressure 

along with development of LV hypertrophy in exercised hypertensive rats 

-Reduced expression of TGF-β1, CTGF, and FGF2 and increased expression 
of collagen III and LOX in exercised hypertensive rats 

 

Galan et al. 109 -TgLOX -Mice -Not studied -LOX 
overexpression 

-None used -TgLOX mice showed higher collagen cross-linking and deposition along 
with increase of fibrotic markers (like α-actin, SM22α and collagen type I) 

-Infusion of TgLOX mice with Ang II stimulated p38 MAPK, leading to 

concentric hypertrophy (increase of LV mass, HW/body weight ratio and 
cross-sectional area of myocytes) 

-LOX induced age-dependent impairment of diastolic function and 

exacerbated Ang II-induced cardiac hypertrophy 
 

Miguel-

Carrasco et al. 
146 

-Hypertension 

by L-NAME 

infusion 

-Rats -Losartan metabolite (EXP3179) inhibited the 

increase of LOX and CTGF expressions, 

collagen cross-linking and cardiac fibrosis 
 

-Hypertension -None used -EXP3179 had anti-fibrotic effects through inhibition of CTGF and LOX 

levels without any change in blood pressure 
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Table 3: Summary of investigations of LOX-family isoforms in atrial disease and atrial fibrillation (AF). 

Reference Model Species Effects of LOX Inhibition Cardiac 

Condition 

LOX 

Inhibitor 

Observations and Conclusions 

Adam et al. 
91 

-Permanent AF 

patients 

-RacET transgenic 
mice  

-Neonatal rats 

-Human 

-Mice 

-Rats 

-Specific Rac1 inhibitor (NSC23766) prevented 

the increase of LOX expression by Ang II in 

cardiac fibroblasts 
-Knockdown of CTGF completely inhibited the 

effect of Ang II on upregulation of LOX 

expression in cardiac fibroblasts 
-Inhibition of Rac1 GTPase by statin decreased 

level of fibronectin, LOX, collagen cross-linking 

and AF prevalence in vivo 
 

-AF 

-RacET 

-BAPN -Increased fibronectin expression, collagen cross-linking and LOX 

expression in LA tissues of AF patients 

-Ang II induced an increase of LOX and fibronectin expressions through 
stimulation of Rac1 GTPase and CTGF 

-Inhibition of Rac1 signaling pathway could be a potential therapeutic target 

for prevention of atrial fibrosis and remodeling 

Adam et al. 
112 

-RacET transgenic 

mice  
-Neonatal rats 

-AF patients 

-Mice  -BAPN inhibited the increase of miRNA-21 that 

is induced by CTGF or Ang II in cardiac 
fibroblasts 

-RacET -BAPN -Elevation of miRNA-21 expression was associated with a decline of 

Sprouty1 protein expression and increase levels of Rac1 GTPase, CTGF and 
LOX expressions in LA tissues of AF patients 

-Ang II increased miRNA-21 expression by stimulation of CTGF, Rac1 

GTPase and LOX in cardiac fibroblasts 
-Regulation of miRNA-21 may be a further potential target for atrial fibrosis 

 

Zhong et 

al. 114 

-Persistent or 

permanent AF 
patients. 

-Human -Not studied -AF -None used -Increased LOXL-2 expression in the RA of permanent AF patients 

-Significant correlation between LOXL-2 expression and LA size in all AF 
patients 

-Significant correlations of LOXL-2 expression with TGF-β1, collagen III, 

fibronectin or CTGF expression in all AF patients 
-LOXL-2 may contribute to atrial fibrosis which is the main substrate for AF 

maintenance 

 

Lavall et 

al. 113 

-Permanent AF 
patients 

-Neonatal rats 

-RacET transgenic 
mice  

-Human 
-Mice 

-Rats 

-Mineralocorticoid receptor antagonist 
(spironolactone) decreased hydroxyproline 

concentration, CTGF and LOX expressions in 

cardiac fibroblasts 

-RacET -None used -Elevated hydroxyproline concentration, CTGF and LOX expressions in 
cardiac fibroblasts upon treatment with aldosterone 

-Increased LOX, CTGF and miRNA-21 expressions, total collagen content 

and atrial fibrosis in AF patients 
-Mineralocorticoid receptor signaling induced atrial fibrosis and remodeling 

 

Adam et al. 
144 

-RacET transgenic 

mice  
-Neonatal rats 

-Mice 

-Rats 

-SL242 (selective inhibitor of CYP11B2) 

decreased CTGF, LOX, and miRNA-21 
expressions along with collagen content in cardiac 

fibroblasts 

-Torasemide inhibited CYP11B2 activity and 
decreased atrial fibrosis, AF prevalence and 

CTGF, LOX and miRNA-21 expressions 

 

-RacET -None used -Decreased CTGF, miRNA-21 and LOX expressions in cardiac fibroblast 

treated with torasemide 
-Ang II treatment increased the collagen content and the expression of CTGF, 

LOX and miRNA-21 in cardiac fibroblasts 

-Increased atrial fibrosis and protein expressions of CTGF, LOX and 
miRNA-21 in LA tissues of RacET mice 

Zhao et al. 
115 

-AF patients -Human -Not studied -AF -None used -Upregulation of serum LOXL-2 levels in AF patients 
-Significant correlations of serum LOXL-2 levels with LA size and atrial 

fibrosis in AF patients 

 

LV, Left ventricle; LA, Left atrium; RA, Right atrium; BAPN, β-aminopropionitrile; LOX, Lysyl oxidase; LOXL, Lysyl oxidase like protein; AF, Atrial fibrillation; CTGF, Connective tissue growth factor; Ang 
II, Angiotensin II; Rac 1 GTPase, Rac family small GTPase 1; TGF-β, Transforming growth factor β, miRNA, MicroRNA, RacET, Transgenic mice with Rac1 overexpression.
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Part III– Hypothesis and objectives 

1. Thesis rationale 

LOX and LOXL proteins have several intra- and extra-cellular functions in the body 334. The 

extracellular function of LOX and LOXL proteins is mainly elastin and collagen cross-linking within 

the ECM. A variety of models in which animals are subjected to pressure or volume overload show 

cardiac fibrosis along with an increase in LOX activity, LOX expression and collagen cross-linking 

335-339. Apart from the extracellular role of LOX and LOXL proteins in the cross-linking of cardiac 

ECM proteins, the intracellular roles of LOX and LOXL proteins in regulating normal cardiac 

fibroblast and myocyte functions have not been studied yet. In other body organs, novel intracellular 

roles of LOX and LOXL proteins have been reported, such as cell apoptosis, cell proliferation and 

gene transcription 334. Total and cross-linked collagens were increased in the LA tissues of AF 

patients 280. The mechanism and role of LOX and LOXL proteins in atrial remodeling and AF are not 

fully elucidated and understood. No studies have been reported on the secretion of LOXL proteins 

from cardiomyocytes and fibroblasts or their roles in atrial remodeling. In the literature, the CHF 

model shows Ca2+ handling abnormalities along with a decline in cardiomyocyte contractility 133. No 

studies have been reported on the roles of LOX and LOXL proteins in cardiomyocyte contractility 

and Ca2+ signaling. It is important to conduct further studies on the other intracellular roles of LOX 

and LOXL proteins in cardiac fibroblast and myocyte functions. 

Recent studies showed that LOX inhibition can be a therapeutic approach in several cardiac 

diseases 340-342. The inhibition of LOX by β-aminopropionitrile (BAPN) attenuated cardiac 

dysfunction and ventricular fibrosis in a volume overload model 340, 341. No studies have been reported 



 

84 

on the effect of LOX and LOXL protein inhibition via BAPN on atrial fibrotic signaling pathways 

and AF.  

2. Thesis hypotheses 

The hypotheses of the current study were: 

(1) LOX and LOXL proteins have roles in AF-related atrial fibrosis and AF. 

(2) Distinct LOX family isoforms have distinct functions and roles. 

(3) In addition to their well-recognized cross-linking function, LOX family proteins have 

intracellular functions and can modify important cellular properties. 

3. Objectives 

The above hypotheses were addressed by pursuing the following specific objectives:  

(1) To investigate the potential of LOX family proteins as an upstream therapeutic target for 

atrial fibrosis and AF in well-established models of fibrosis-related AF (Chapter 2; Article 

2). 

(2) To address the expression levels of LOX and LOXL proteins in LA fibroblasts and 

cardiomyocytes and their changes with CHF (Chapter 3; Article 3). 

(3) To evaluate the physiological roles of LOX and LOXL proteins in cardiac cells (isolated 

fibroblasts and cardiomyocytes), including matrix-dependent (collagen cross-linking) and 

matrix-independent (proliferation, Ca2+ signaling and contractility) functions (Chapter 3; 

Article 3). 
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Chapter 2: Targeting the lysyl oxidase protein signaling 

pathway in atrial fibrosis and fibrillation 
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Article 2 

Title: Targeting the lysyl oxidase protein signaling pathway in atrial fibrosis and 

fibrillation  

This article is in preparation for submission to Cardiovascular Research. 

Contributions of authors 

Doa’a Ghazi Al-u’datt conceived, designed and carried out the experiments for MI rat model. 

Collected tissue samples from CHF dogs and MI rats, prepared pumps for BAPN administration in 

MI study, performed ECG, collagen, fibrous tissue, qPCR and Western blot analysis, analyzed and 

interpreted the data, performed statistical analysis, generated table and figures and wrote the whole 

draft of the manuscript. 

Roddy Hiram performed the electrophysiology study, and animal handling and sacrifice. 

Natacha Daquette performed the MI surgery for rats. 

Yanfen Shi and Jean-Claude Tardif performed all echocardiographic measurements and analysis. 

Martin Sirois supervised the histology part of this study. 

Bruce Allen co-supervised the project, interpreted the biochemical analysis, participated in data 

analysis, provided intellectual input and edited the final draft of the manuscript. 

Stanley Nattel supervised the whole project, conceived, designed and provided intellectual ideas for 

the experiments, interpreted the data and edited the final draft of the manuscript. 
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Abstract 

Aims: The lysyl oxidase (LOX) enzyme has a vital role in the stability of the extracellular matrix 

(ECM) during remodeling in several heart diseases, such as heart failure (HF), fibrosis and atrial 

fibrillation (AF). Atrial fibrosis is a hallmark of atrial dysfunction and structural remodeling that 

affects the propagation and conduction of cardiac impulses promoting AF. This study was performed 

to address the roles of LOX and LOX-like (LOXL) proteins in signal transduction, leading to left 

atrial (LA) fibrosis and AF as a potential therapeutic target. 

Methods and results: Congestive heart failure (CHF) was induced in adult mongrel dogs by 

ventricular tachypacing (VTP) for two weeks, followed by measuring the mRNA and protein 

expressions of LOX and LOXL proteins in the LA tissues. Our results revealed that the protein 

expression of LOX and LOXL-1 were significantly increased in the LA tissues of CHF dogs. 

Myocardial infarction (MI) was induced by ligation of the left anterior descending coronary artery in 

male Wistar rats, followed by the administration of a LOX inhibitor (β-aminopropionitrile; BAPN) 

via an osmotic pump. There was an upregulation in the mRNA abundance of LOX, LOXL-1, LOXL-

2 and LOXL-3 along with an increase in the mRNA expression of COL 1A1, TGF-β1 and periostin 

in the LA tissues post-MI. AF inducibility, fibrosis and dilatation were increased in the LA post-MI. 

However, administration of BAPN post-MI decreased LOXL-1, LOXL-2, LOXL-3, COL 1A1, COL 

3A1, TGF-β1, periostin and α-SMA mRNA expression, as well as fibrosis, AF inducibility and 

adverse remodeling in the LA. Nevertheless, there were no significant changes in LOX family mRNA 

expression, collagen cross-linking, fibrosis and adverse remodeling in the LV upon administration of 

BAPN post-MI. Furthermore, administration of BAPN post-MI decreased the correlations of wall 

motion score index (WMSI) with LA area, LA dimensions and fractional area change and had a 

modest effect on the correlations of WMSI with LV structural and functional parameters. 
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Conclusions: The major finding of this study was that the upregulation of LOX and LOXL protein 

expression in LA tissues plays an essential role in LA remodeling and AF maintenance post-MI. 

Inhibition of the LOX signaling pathway using BAPN has a potential therapeutic role in LA fibrosis 

and AF post-MI. 

 

Keywords Myocardial infarction • Atrial fibrillation • Atrial fibrosis • Lysyl oxidase (LOX) • LOX-

like (LOXL) protein • Left atrial remodeling • Correlations. 

 

1. Introduction 

Atrial fibrillation (AF), a common disorder, is accompanied by several complications that lead 

to high morbidity and mortality 1. The incidence of AF increases from 0.5 % to 5-20 % of patients as 

age increased from 40-50 to 85 years old, respectively 2, 3. The prevalence of AF ranges from 1 to 2 

% of the population, and this percentage is predicted to increase in the future 3. In the past two 

decades, the AF incidence increased to 13 % of the population 4. AF is a common clinical dysrhythmia 

in which the atria beat in a rapid chaotic manner (350-600 bpm) and is prevalently among patients 

with diabetes mellitus, hypertension, sleep apnea, obesity, diastolic and systolic heart failure (HF), 

coronary artery diseases, myocardial infarction (MI) and valvular heart diseases 5-7. Furthermore, 10 

to 50 % of chronic HF cases develop AF with a poor prognosis 8, 9. HF is associated with significant 

structural remodeling of the atria that can lead to increased AF susceptibility 10. AF patients are 

characterized by increased atrial volume, atrial size and fibrosis than sinus rhythm patients 11, 12. The 

key hallmarks of atrial structural remodeling are dilatation and fibrosis of the atrium, which later lead 
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to AF 11. Atrial fibrosis disturbs the electrophysiological properties of the heart and stimulates the 

micro-reentry circles, leading to AF 7. Cardiac fibrosis is a common pathological disorder 

characterized by deposition of extracellular matrix (ECM) proteins 13. Excessive production of ECM 

proteins increases myocardial stiffness and changes cardiac mechanics, which contributes to the 

pathophysiology of HF. Myocardial stiffness has several beneficial roles at the early stages of 

collagen deposition, such as wound healing and prevention of myocardial infarct expansion before 

the development of a chronic pathological state (cardiac fibrosis) 14. A total of 45 % of the total deaths 

per year worldwide are caused by fibrotic diseases 15. Cardiac fibrosis causes a substantial proportion 

of deaths among all types of fibrosis. Cardiac fibrosis is initially an adaptive and protective 

mechanism. Nevertheless, prolonged cardiac fibrosis leads to adverse remodeling and distinct 

impairment of ventricular function 13, 15. In the heart, increased deposition of ECM proteins is caused 

by several pathological conditions, such as pressure overload, MI, diabetes and cardiomyopathy 16. 

The lysyl oxidase (LOX) family, a copper-dependent amine oxidase, has a dynamic function in the 

genesis of connective tissue matrices by catalyzing the oxidation of lysine in elastin and collagen to 

form cross-linked molecules 17. The LOX family consists of five members, namely LOX and LOX-

like proteins (LOXL-1, LOXL-2, LOXL-3 and LOXL-4) 18. The LOX family oxidizes the ε-amino 

group of peptidyl lysine to peptidyl aldehyde in elastin and collagen to produce peptidyl α-

aminoadipic γ-semialdehydes, followed by continuous condensation of semialdehydes with 

neighboring amino acids or peptidyl aldehydes to form cross-linked (insoluble) collagen and elastin 

fibers 17, 19, 20. The LOX family has an important function in the stability of ECM proteins during 

various cardiac diseases 21-23. A variety of models in which animals are subjected to pressure or 

volume overload show cardiac fibrosis, which is associated with an increase in LOX 

activity/expression and collagen cross-linking 22, 24. The mechanisms of cardiac fibrosis underlying 

the development of AF are not well understood. To date, there are no effective drugs to reverse 
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cardiac fibrosis. Understanding the common signaling mechanisms in the progression of cardiac 

fibrosis is necessary for the development of more effective means of prevention and treatment. The 

main objective of this study was to address the roles of LOX and LOXL proteins in signal 

transduction, leading to atrial fibrosis, atrial remodeling and AF in a MI rat model. 

 

2. Methods 

2.1 Animal Models 

2.1.1 Dog model 

Adult mongrel dogs (20-30 kg) were divided into two groups, namely non-paced controls and 

dogs with congestive heart failure (CHF) induced by ventricular tachypacing (VTP) according to the 

method described by Dawson et al. 25. Dogs were sedated with 0.25 mg/kg of diazepam, 5.0 mg/kg 

of ketamine and 1.0-2.0 % of halothane for pacemaker implantation. Following sedation of the dogs, 

tachypacemakers (model 8084, Medtronic) were subcutaneously implanted in the neck and connected 

to ventricular pacing leads in the right ventricular (RV) apex via left jugular vein under fluoroscopy. 

After 24 hrs post-operative recovery, the pacemakers were programmed to stimulate the RV for two 

weeks at 240 bpm inducing CHF. Clinical signs (edema, dyspnea and lethargy) and in vivo 

hemodynamic measurements were assessed to confirm CHF. Two weeks later, the dogs were sedated 

with 2.0 mg/kg of morphine and 120 mg/kg of α-chloralose, and the hearts were then excised. Left 

atrial (LA) tissues were kept at -80°C for further experiments. The Ethics Committee of the Animals 

Research in the Montreal Heart Institute approved the animal care and handling procedures according 

to the Animal Care guidelines of the Canadian Council (NIH Publication 65-23, revised 1996). 
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2.1.2 Rat model 

Male Wistar rats (150-175 g) were obtained from Charles River Inc. (Saint-Constant, 

Quebec, Canada). A standard laboratory diet was used to feed the rats (normal rat chow diet; 2018 

Harlan). Rats were housed in the animal care unit of the Montreal Heart Institute (University of 

Montreal, Montreal, Quebec, Canada) with a 12 hr light/dark cycle under controlled environmental 

conditions, with a temperature of 21±2°C and 50 % humidity level. All rats had free access to 

drinking water and food. All aspects of animal experiments were carried out and approved by the 

Animal Ethical Committee of the Montreal Heart Institute (University of Montreal, Montreal, 

Quebec, Canada) according to the procedures and guidelines of the Canadian Council of Animal 

Care. The rats were randomly classified into four groups, namely Sham (control+saline vehicle), 

MI (MI+saline vehicle), Sham+BAPN and MI+BAPN. BAPN infusion was initiated week after 

the MI surgery and continued for 3 consecutive weeks at 100 mg/kg/day (Santa Cruz 

Biotechnology, Dallas, TX, USA) using a subcutaneously implanted osmotic mini-pump (Alzet, 

Cupertino, CA). Buprenorphine (0.03 mg/kg) was subcutaneously administered in two doses; 

before implantation of the pump and 24 hr after implantation of the pump. Figure 1 illustrates the 

experimental timeline for echocardiography and electrophysiological assessment. 

2.2 MI surgery 

The MI protocol was performed according to the method described by Cardin et al. 26. Rats 

were sedated using 3 % isoflurane under ventilation. A dose of 0.03 mg/kg buprenorphine was 

injected subcutaneously before MI surgery. The thoracic hair of the rat was shaved, followed by 

sterilization with 2 % chlorhexidine gluconate and 70 % isopropyl alcohol. The left thoracotomy 

and pericardial incision were performed under an artificial respirator. The left anterior descending 

coronary artery was ligated with a 5-0 silk suture. The heart was returned to the normal position, 

https://www.sciencedirect.com/science/article/pii/S0306453005001253#fig1
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and the chest was then closed with a 4-0 silk suture, followed by skin closure with autoclips. The 

rat was placed on a thermal plate during the surgery to maintain a steady body temperature. The 

artificial respirator was disconnected post-surgery after rat recovery. Buprenorphine (0.03 mg/kg) 

was subcutaneously administered in two doses at 6 and 12 hr post-surgery. 

2.3 Assessment of transthoracic echocardiography  

Transthoracic echocardiographic measurements (cardiac dimensions and functions) were 

performed according to the method described by Cardin et al. 26 and Reffelmann and Kloner 27 

before MI surgery and at day 7 and 27 post-MI by using a Vivid 7 Dimension system (GE 

Healthcare Ultrasound, Horten, Norway) and a phased-array 10S probe (4.5-11.5 Megahertz). Rats 

were anesthetized with 3 % isoflurane, and two-dimensional echocardiography was then used to 

visualize the left ventricular (LV) myocardial infarct. LV myocardial infarct areas were assessed 

by viewing the short-axis of the LV at the papillary muscle level. The wall motion of the LV was 

scored as follows: 1 (normal), 2 (hypokinesis), 3 (akinesis), 4 (dyskinesis) or 5 (aneurysmal). 

Sections of the LV were used to evaluate the wall motion score index (WMSI). The WMSI was 

measured by calculating the average wall motion score for multiple LV segments. The M-mode 

spectrum of the LV was analyzed in the short-axis view at the papillary muscle level. Dimensions 

(D) of the LV were evaluated at the end of cardiac systole (s) and diastole (d) and described as 

LVDs and LVDd, respectively. The thickness of the LV was measured at the posterior (P) and 

anterior (A) walls (W) and described as LVPW and LVAW, respectively. Fractional shortening 

(FS) of the LV was measured according to equation 1: 

FSLV= (
LVDd−LVDs

LVDd
) ∗ 100 %       (1) 

Doppler imaging of tissues was used to measure lateral (L) and septal (S) mitral annulus movement 
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velocities in systole (SL and SS, respectively). The ejection fraction (EF) of the LV was calculated 

by the manipulated formula in the Vivid 7-dimensional system. LV mass was calculated using the 

formula suggested by Reffelmann and Kloner 27. Furthermore, LV structural remodeling was 

evaluated by calculating the ratios of LV mass to body weight (BW), LVDd to BW, and LV mass 

to LVDd. An M-mode spectrum of LA and right atrium (RA) in the view of the parasternal long 

axis view at the aortic valve level was obtained. Atrial dimensions were measured at the end of 

cardiac diastole (LADd) and systole (LADs and RADs, respectively). FS of the LA was calculated 

based on equation 2. 

FSLA= (
LADd−LADs

LADd
) ∗ 100 %       (2) 

Heart rate and R-R interval were measured at the time of electrocardiogram (ECG) recording. The 

4-chamber apical view was obtained, and areas (A) of the LA were then measured at the end of 

cardiac diastole (LAAd) and systole (LAAs). Fractional area changing (FAC) of the LA and RA 

was estimated according to equations 3 and 4: 

FACLA= (
LAAs−LAAd

LAAs
) ∗ 100 %       (3) 

FACRA= (
RAAs−RAAd

RAAs
) ∗ 100 %       (4) 

Pulsed wave (PW) Doppler was also performed to estimate the transmitral flow (TMF) in the 

apical four-chamber view. Early peak velocity filling (E wave), E wave deceleration time (EDT), 

peak velocity during atrial filling (A wave) and E/A ratio were measured in the TMF. The mitral 

annulus moving velocity during early (e') filling and atrial (a') filling as well as the e'/ a' ratio were 

measured in both lateral and septal views. The PW in the apical five-chamber view was used to 

obtain the transaortic flow. The time interval from mitral valve (MV) closing to opening (MVco) 



 

95 

and the LV ejection time (LVET) were measured. The myocardial performance index (MPI) of 

the LV was calculated according to equation 5: 

MPIGlobal=(
MVco−LVET

LVET
) ∗ 100 %       (5) 

MPILateral and MPISeptal were calculated according to equation 6: 

MPISeptal or MPILateral=(
B−A

A
) ∗ 100 %      (6) 

B: Time interval from the end of a' to the beginning of e' based on the lateral and septal views. 

A: Time interval from the beginning to the end of SL/SS. 

The averages of 3 to 6 consecutive cardiac cycles were used to obtain the structural and functional 

parameters. Great attention was taken in order to obtain similar images for measurements of 

echocardiographic parameters. All of the echocardiographic measurements were performed by the 

same echocardiographer who was blinded to the experimental design. 

2.4 In vivo electrophysiological study via trans-jugular stimulation 

The electrophysiological study was performed according to the method described by Iwasaki 

et al. 28. Rats were anesthetized by inhalation of 3 % isoflurane. Once under anesthesia, rats were 

intubated and mechanically ventilated with 100 % O2. A quadripolar catheter (i.d. 1 mm; Sonde 

4F Supreme, St-Judr Medical 401993) was inserted into the RA through the jugular vein to induce 

programmed atrial stimulation. The coincidence of the catheter position in the RA and the P wave 

on the surface ECG were monitored to assure the exact position of the catheter in the RA. 

Automated RA stimulation was induced with a 150 ms cycle length (2-ms pulse width, 2x 



 

96 

threshold current) to determine the effective refractory periods (ERPs). Atrial ERPs were well-

defined as the longest S1-S2 coupling interval failing to generate a propagated beat. Burst pacing 

(25-Hz, 4x threshold current, pulse width 2 ms) was applied for 3 sec, with 3 sec of six burst cycles 

(disconnected by 1-sec intervals) to estimate the atrial arrhythmia inducibility. A rapid irregular 

atrial rhythm with varying electrogram morphology (missing P-waves) for more than 1 sec after 

the 6 burst cycle protocol was classified as AF. Burst pacing was deferred to avoid interfering with 

the progress of AF in case AF was initiated after less than 6 burst pacing cycles. The duration of 

AF was measured for each rat as the average duration in seconds for all AF occurrences. Stimulus 

artifacts, intracardiac electrograms and surface ECG were monitored and analyzed by IOX2 

software (Version 2.8.0.13; EMKA technologies, Paris, France). 

2.5 Fibrosis quantification by Masson’s trichrome staining 

Fibrosis in cardiac tissues was quantified as described by Cardin et al. 26 and Yang et al. 29. 

Hearts from 28-day post-MI rats were fixed in 10 % formalin for structural preservation. Hearts 

were dehydrated with xylene and then embedded in paraffin. Several transverse cross-sections of 

6 μm thickness from LA and LV tissues were obtained every 500 μm. LA and LV tissues were 

rehydrated with xylene (4 X 5 min), followed by a sequential series of ethanol dilutions: 100 % (2 

X 3 min), 95 % (1 X 3 min), 70 % (1 X 3 min) and 0 % (2 X 2 min). Tissue sections were stained 

with Masson’s trichrome for fibrosis quantification. The slides were incubated with Bouin’s 

solution overnight at room temperature. The slides were washed with running tap water to 

eliminate the yellow color from slide sections. Slide sections were immersed in Weigert’s Iron 

Haematoxylin solution for 10 min, followed by multiple washings with running tap water. The 

slides were immersed in Biebrich Scarlet-acid Fucshin for 15 min and then rinsed with distilled 

water. The slides were immersed in Phosphotungstic/Phosphomolybdic acid solution for 8 min 
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and Aniline Blue solution for 7 min, followed by washing with distilled water and 1 % acetic acid 

for 3 min. Finally, the slides were dehydrated with 95 % (2 X 30 sec) ethanol, 100 % (2 X 30 sec) 

ethanol and 100 % xylene (2 X 2 min). Stained LA and LV sections were analyzed with software 

(Image-Pro 9.3) at 10x magnification. Collagen around the blood vessels was excluded during the 

fibrosis quantification. Whole LVs were stained with Masson’s trichrome and used for 

measurement of total areas of LV and infarct (scar area; blue stained) at 1.25x magnification using 

Image-Pro 9.3 software. Scar area was calculated as the percentage of LV infarct area to total LV 

area. Fibrous tissue contents of atrial and ventricular tissues were represented as the percentage of 

collagen in each region and the average of all five regions for each rat in the four groups, as 

described in equation 7. 

Fibrous tissue content = (
𝐴𝑟𝑒𝑎 𝑐𝑜𝑣𝑒𝑟𝑒𝑑 𝑏𝑦 𝑐𝑜𝑙𝑙𝑎𝑔𝑒𝑛 

𝑇𝑜𝑡𝑎𝑙 𝑎𝑟𝑒𝑎 𝑜𝑓 𝑡ℎ𝑒 𝑓𝑖𝑒𝑙𝑑
) ∗ 100 %   (7) 

2.6 RNA extraction, reverse transcription (RT) and quantitative real-time polymerase chain 

reaction (qPCR) 

RNA extraction was performed according to the method previously described by Duong et 

al. 30. Frozen tissues from the LA and LV were mixed with Trizol reagent (Invitrogen, Carlsbad, 

CA, US) and homogenized with polytron. RNA was extracted from homogenized samples with 

the miRNeasy Mini Kit (Qiagen, MD, Germany). Quantification and qualification of RNA were 

estimated using a Nanodrop spectrophotometer. cDNA was synthesized from 250 ng of total RNA 

with a High Capacity cDNA Reverse Transcription Kit (SuperArray, Applied Biosystems, Foster 

City, CA, US). Real-time qPCR was performed with TaqMan Universal Master Mix (Applied 

Biosystems, Foster City, CA, US) and SuperArray SYBR Green PCR kits (Applied Biosystems, 

Foster City, CA, US), custom-made SYBR Green primers (glucose 6-phosphate dehydrogenase 
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(G6PD), β2 microglobulin (B2m), matrix metalloproteinase 2 (MMP-2), MMP-9, α-smooth 

muscle actin (α-SMA), periostin, connexin 43 (Cx 43), transforming growth factor β1 (TGF-β1), 

connective tissue growth factor (CTGF), LOX, LOXL-1, LOXL-2, LOXL-3 and LOXL-4; 

Applied Biosystems, Foster City, CA, US; Supplementary Table S1) and rat TaqMan probes (LOX 

(Assay ID: Rn01491829), glyceraldehyde 3-phosphate dehydrogenase (GAPDH; Assay ID: 

Rn01775763_g1), collagen 1A1 (Col 1A1; Assay ID: Rn01463848_m1), collagen 3A1 (Col 3A1; 

Assay ID: Rn01437681_m1) and Fibronectin 1 (FN 1; Assay ID: Rn00569575_m1); Applied 

Biosystems, Foster City, CA). A rat SYBR primer for LOXL-4 (Assay ID: qRnoCID0018064) 

was purchased from Bio-Rad (CA, US). The relative quantifications of all samples were calculated 

with the comparative threshold cycle (2-ΔΔCt) method 31 . B2m and G6PD were used as internal 

standards for rats and dogs, respectively. 

2.7 Protein quantification using immunoblot analysis 

Protein expression was quantified by Western blot analysis according to the method 

described by Surinkaew et al. 32. Snap-frozen LA and LV tissues were immersed in lysis sample 

buffer and then homogenized by polytron. The lysis sample buffer was prepared by mixing 0.3 ml 

of 5.0 M NaCl, 0.5 ml of 1.0 M Tris HCl (pH 7.5), 0.05 ml of 20 % sodium dodecyl sulfate (SDS), 

0.01 ml of 10 % Triton, 1.0 ml of 100 % glycerol, 20.0 μl of 0.5 M phenylmethanesulfonyl fluoride 

(PMSF) and one tablet of protease and phosphatase inhibitor cocktail with 8.14 ml of distilled 

water. The homogenized samples were kept for 30 min in an ice bath and then centrifuged at 8,000 

rpm for 10 min at 4°C. Supernatants of the samples were subjected to protein quantification by 

the Bradford assay to adjust the amount of proteins in the samples. Twenty micrograms of proteins 

from lysed samples were mixed with loading buffer and then denatured for 5 min at 95°C. Loading 

buffer was prepared by mixing 4.5 ml of 0.5 M Tris HCl (pH 6.8), 1.0 ml of 20 % SDS, 5.0 ml of 

http://www.bloodjournal.org/content/95/10/3102.short
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100 % glycerol, 0.5 g of dithiothreitol (DTT), and 1.0 ml of 0.3 % bromophenol blue. Protein 

samples were separated by SDS polyacrylamide gel electrophoresis (SDS-PAGE; 4-20 % gradient 

gels) and then transferred onto 0.45 µm polyvinylidene difluoride membranes (PVDF, EMD 

Millipore, Billerica, MA, US). The membranes were immersed in blocking solution (0.1 ml of 

Tween 20 and 5.0 g of non-fat dry milk (NFDM) in 100 ml of Tris-buffered saline (TBS)) for 1.5 

hr and then incubated with primary antibody, with continuous mixing overnight at 4°C. The 

membranes were washed with 0.1 % Tween 20 in TBS (v/v; 3 X 15 min) and then incubated with 

secondary antibodies conjugated to horseradish peroxidase (HRP) with continuous mixing for 1 

hr at room temperature. The membranes were washed with 0.1 % Tween 20 in TBS (v/v; 3 X 15 

min), and immunoreactive protein bands were then visualized using Western Lightning Plus ECL 

reagent (PerkinElmer, Waltham, MA, US) and Kodak film. Protein bands were quantified with 

ImageJ software and normalized to glyceraldehyde 3-phosphate dehydrogenase (GAPDH) and 

Tubulin densities from the same samples and membranes. The blots were reacted with antibodies 

of anti-LOX (1:5000, ab174316, Abcam), anti-LOXL-1 (1:2000, PA5-44213, Thermo Fisher), 

anti-LOXL-2 (1:2000, ab96233; Abcam), anti-LOXL-3 (1:2000, PA5-45074, Thermo Fisher), 

anti-LOXL-4 (1:1000, ab88186, Abcam), anti-GAPDH (1:10,000, 10R-G109A, Fitzgerald) and 

anti-alpha Tubulin (1:10,000, ab7291, Abcam). HRP-conjugated secondary antibodies (goat anti-

rabbit, donkey anti-rabbit and donkey anti-mouse) were used at a dilution of 1:10,000 (Jackson 

ImmunoResearch Laboratories, West Grove, PA, US).  

2.8 Soluble, insoluble and cross-linking collagen analysis  

The soluble and insoluble collagens were determined by a colorimetric method using a total 

collagen assay kit (QuickZyme BioSciences, Leiden, Netherlands) 33. Frozen LV and LA tissues 

were immersed in 0.5 M acetic acid (10 % w/v) and then extensively minced with scissors and 

https://int.search.tb.ask.com/search/GGmain.jhtml?enableSearch=true&rdrct=no&st=sb&p2=%5EBSB%5Expt949%5ETTAB02%5Eca&ptb=7A405F0E-67C6-4792-A8FF-69868D45C7B3&n=78499e70&si=july15&tpr=sc&searchfor=polyvinylidene+difluoride
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homogenized by polytron in an ice bath. Homogenized tissues were kept at 4°C/48 hr with 

continuous shaking to liberate soluble collagen, followed by centrifugation at 37,000 g for 60 min 

at 4°C. The supernatants and pellets were recovered as soluble and insoluble collagens, 

respectively. Soluble and insoluble collagens were determined as hydroxyproline contents in 

supernatants and pellets, respectively. The supernatants and pellets were hydrolyzed with diluted 

HCI (12.0 M and 6.0 M, respectively) for 21 hr at 95°C. Hydroxyproline contents were quantified 

from hydrolyzed supernatants and pellets by using the QuickZyme assay kit. The absorbance of 

samples was monitored at a wavelength of 570 nm. The soluble and insoluble collagens are 

expressed as µg/mg wet tissue according to the standard curve of hydroxyproline contents of the 

collagen stock solution (QuickZyme assay kit). The degree of collagen cross-linking was 

calculated as the ratio of insoluble collagen to total collagen. 

2.9 Statistical analysis  

Results are presented as the means ± standard error of the mean (SEM). Statistical analysis 

was carried out using GraphPad Prism 7 (GraphPad Software, La Jolla, CA). Unpaired Student’s 

t-tests were performed to compare two groups. One-way analysis of variance (ANOVA) followed 

by Bonferroni’s multiple comparisons test was performed between more than two groups. Fisher’s 

exact tests were performed to compare AF inducibility. One-way ANOVA followed by the 

Kruskal-Wallis’s multiple comparisons test was performed for AF duration. Two-way ANOVA 

followed by Bonferroni’s multiple comparisons test was applied for two independent variables. 

Linear regression analysis was carried out to assess the relationship between the WMSI and 

echocardiographic parameters, including structural and functional parameters of the LA and LV 

in the MI and MI+BAPN groups; *P < 0.05; **P < 0.01; ***P < 0.001.  
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3. Results 

3.1 Increased LOX family expression in LA tissues of CHF dogs 

Several changes occur in CHF, including an increase in atrial fibrosis and AF susceptibility 1. 

This part of the study examined the mRNA and protein levels of the LOX family (LOX and LOXL-

1, 2, 3 and 4) in the LA tissues from control and CHF dogs by qPCR and Western blot analysis, 

respectively (Figure 2; Supplementary Figure S1). The mRNA and protein levels of the LOX family 

were increased at different levels in the LA tissues of CHF dogs compared with control (Figure 2; 

Supplementary Figure S1). mRNA and protein expression levels of LOXL-1 were significantly 

increased in the LA tissues of CHF dogs (P = 0.001 and P = 0.02, respectively) compared with 

controls (Supplementary Figure S1B; Figure 2A and C). LOX protein expression was significantly 

increased in the LA tissues of CHF dogs compared with controls (P = 0.01; Figure 2A and B); 

however, the abundance of LOX mRNA did not change significantly (P = 0.05; Supplementary 

Figure S1A). The upregulation of LOX and LOXL-1 in the LA tissues of the CHF dog model 

suggested that these isoforms may have roles in the LA fibrotic response and atrial remodeling during 

CHF development.  

3.2 Administration of BAPN post-MI in rats decreased the P-wave duration, AF duration and 

AF inducibility 

MI is commonly accompanied by AF and a higher risk for death 34, 35. We used an MI rat model 

to further investigate the role of the LOX family in LA remodeling post-MI. The MI group exhibited 

a significant increase in AF inducibility compared with the Sham group, with values of 77.8 and 11.1 

%, respectively (Figure 3A). Additionally, AF inducibility was significantly decreased in the 

MI+BAPN group (40.0 %) compared with the MI group (77.8 %; Figure 3A). The AF duration in the 
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MI group was significantly higher than that in the Sham or MI+BAPN group, with values of 2.4±0.8, 

0.21±0.11 and 0.61±0.20 sec, respectively (Figure 3B). The AF duration in the MI+BAPN group 

(0.61±0.20 sec) was significantly longer than that in the Sham+BAPN group (0.16±0.07 sec) (Figure 

3B). Regarding ERP values, there were no significant differences between the four groups (Figure 

3C). The P-wave duration in the MI group (28.7±0.7 ms) was significantly longer than those in the 

Sham group (23.7±0.5 ms) or the MI+BAPN group (25.2±0.8 ms; Figure 3D). The values of the P-P 

interval, P-R interval, QRS and QT were significantly longer in the MI group (186.1±4.7, 61.7±1.4, 

34.9±1.2 and 88.3±2.6 ms, respectively; Figure 3E-H) than the Sham group (162.9±4.6, 56.2±1.3, 

29.4±1.1 and 75.5±2.6 ms respectively; Figure 3E-H). There were no significant differences in the 

P-P interval, P-R interval, QRS and QT between the MI+BAPN and MI groups. Supplementary 

Figure S2 illustrates examples of surface ECG and recording of burst pacing-induced AF in four rat 

groups (Sham, Sham+BAPN, MI and MI+BAPN) at day 28 post-MI. The results revealed that MI 

increased the P-wave duration, AF duration and AF inducibility, whereas administration of BAPN 

post-MI reduced these values significantly. 

3.3 Administration of BAPN post-MI in rats attenuated LA fibrosis without changing LV 

fibrosis 

The fibrous contents of the LA and LV (remote (Rem) and infarct (Inf) areas) in the four groups 

(Sham, MI, Sham+BAPN and MI+BAPN) were evaluated with Masson’s trichrome staining. The 

percentage of LA fibrous tissue in the MI group was significantly higher than that in the Sham group, 

with values of 14.6±1.8 % and 5.5±1.1 %, respectively (Figure 4A-B). However, administration of 

BAPN post-MI significantly decreased the percentage of LA fibrous tissues from 14.6±1.8 % to 

9.46±0.68 % (Figure 4A-B). However, there were no significant changes in LA fibrous tissue content 

between the Sham (5.5±1.1 %; Figure 4A-B) and Sham+BAPN (5.9±0.7 %; Figure 4A-B) groups. 
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The infarcted area of the LV in the MI group demonstrated a significant increase in fibrous tissue 

percentage compared with that in the remote area of the LV in the MI and Sham groups, with values 

of 55.1±5.2, 2.9±0.5 and 2.3±0.5 %, respectively (Figure 4A and C). The infarcted area of the LV in 

the MI+BAPN group exhibited a significant increase in fibrous tissue percentage compared with 

those in the remote area of the LV in the MI+BAPN or Sham+BAPN groups, with values of 55.2±6.3, 

1.7±0.4 and 2.1±0.3 %, respectively (Figure 4A and C). However, there were no significant 

differences in the LV fibrous tissue contents in the MI-Inf vs MI+BAPN-Inf, MI-Rem vs MI+BAPN-

Rem or Sham vs Sham+BAPN groups (Figure 4A and C). Additionally, no significant differences 

were found in the percentage of scarred areas between the MI and MI+BAPN groups (Figure 4D).  

3.4 BAPN administration decreased MI-induced LA remodeling in rats  

The values of LADs and LADd in the MI group (6.5±0.2 and 5.4±0.2 mm, respectively) were 

significantly higher than those in the Sham (5.7±0.2 and 4.2±0.2 mm, respectively) or MI+BAPN 

(5.7±0.2 and 4.5±0.2 mm, respectively) groups (Figure 5A-B and Table 1). The values of LADs and 

LADd in the MI+BAPN group (5.7±0.2 and 4.5±0.2 mm, respectively) were significantly higher than 

those in the Sham+BAPN group (5.0±0.1 and 3.6±0.1 mm, respectively; Figure 5A-B and Table 1). 

Additionally, the MI group had a significant decrease in FS of the LA compared with the Sham or 

MI+BAPN group, with values of 17.7±1.3, 27.4±1.0 and 22.6±1.4 %, respectively (Figure 5C and 

Table 1). For FS of the LA, the MI+BAPN group (22.6±1.4 %) had a significant decrease compared 

with that of the Sham+BAPN group (28.7±1.3 %; Figure 5C and Table 1). The values of LAAs and 

LAAd were significantly decreased in the MI+BAPN group compared with the MI group 

(Supplementary Figure S3A-B and Table 1), while there were no significant changes in FACLA 

between the MI and MI+BAPN groups (Supplementary Figure S3C and Table 1). In the MI group, 

WMSI was positively and significantly correlated with LADs (R
2 = 0.503; P < 0.001; Figure 5D), 
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LADd (R
2 = 0.563; P < 0.001; Figure 5E), LAAs (R

2 = 0.396; P = 0.001; Supplementary Figure S3D) 

and LAAd (R
2 = 0.464; P < 0.001; Supplementary Figure S3E), while the administration of BAPN 

post-MI decreased the significance of the correlation between WMSI and LADs (R
2 = 0.150; P = 

0.08; Figure 5D), LADd (R2 = 0.219; P = 0.03; Figure 5E), LAAs (R2 = 0.099; P = 0.15; 

Supplementary Figure S3D) or LAAd (R2 = 0.225; P = 0.03; Supplementary Figure S3E). The 

administration of BAPN had no effect on the correlation between the WMSI and FS of the LA post-

MI (Figure 5F). However, the MI+BAPN group exhibited a significant decrease in the correlation 

between WMSI and FACLA (R2 = 0.262; P = 0.01; Supplementary Figure S3F) compared with that 

in the MI group (R2 = 0.357; P = 0.003; Supplementary Figure S3F). Regarding the correlation of 

LA echocardiographic parameters, there were no significant differences between the slopes of MI 

and MI+BAPN groups (Table S2). Moreover, the value of Y-intercepts for LADd, LADs, LAAd, 

LAAs and FS were significantly varied between the MI and MI+BAPN were significantly differed 

(Table S2). The results demonstrated that MI induced dilatation and impaired LA functions; however, 

the administration of BAPN post-MI attenuated the adverse LA remodeling. 

3.5 BAPN administration had no effect on MI-induced LV remodeling in rats 

The LVDs, LVDd, LV mass and WMSI values were significantly increased in the MI group 

(7.2±0.3 mm, 9.8±0.2 mm, 1259.0±36.7 mg and 1.7±0.1, respectively) vs Sham group (3.6±0.1 mm, 

7.9±0.1 mm, 897.6±20.1 mg and 1.0±0.0 mm, respectively) or MI+BAPN group (6.6±0.4 mm, 

9.3±0.2 mm, 1124.0±43.3 mg and 1.6±0.1, respectively) vs Sham+BAPN group (3.64±0.1 mm, 

7.6±0.1 mm, 787.0±29.5 mg and 1.0±0.0 mm, respectively; Table 1 and Figure 6A-C and I). 

However, there were no significant changes in LVDs, LVDd and WMSI values in the MI group 

compared with those in the MI+BAPN group. Furthermore, the MI+BAPN group showed a 

significant decrease in EF and FS of the LV (60.1±3.6 and 30.8±2.1 %, respectively) compared with 
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those in the Sham+BAPN group (87.0 ±1.0 % and 52.0±1.2, respectively; Table 1, Figure 6H and 

Supplementary Figure S4P). MI rats had significantly lower values of EF, FS, Ss and SL in the LV 

(57.1±2.9 %, 27.4±1.8 %, 4.4±0.2 cm/s and 4.7±0.2 cm/s, respectively) compared with the Sham 

group (88.9±0.8 %, 54.7±1.2 %, 5.2±0.2 cm/s and 5.6±0.2 cm/s, respectively; Table 1, Figure 6H and 

Supplementary Figure S4P-R). The LVmass/LVDd, E/e'Septal, E/e'Lateral, LVVd, LVVs and MPIGlobal 

values were significantly increased in the MI vs Sham group or MI+BAPN vs Sham+BAPN group 

(Table 1 and Supplementary Figure S4C-E, N-O and S). The WMSI of the MI group showed positive 

significant correlations with LVDs (R
2 = 0.897; P < 0.001; Figure 6D), LVDd (R

2 = 0.657; P<0.001; 

Figure 6E), LVVs (R
2 = 0.869; P < 0.001; Supplementary Figure S4U), LVVd (R

2= 0.675; P<0.001; 

Supplementary Figure S4T), E/e'Septal (R
2 = 0.584; P < 0.001; Supplementary Figure S4K), E/e'Lateral 

(R2 = 0.446; P < 0.001; Supplementary Figure S4L) and MPIGlobal (R2 = 0.475; P<0.001; 

Supplementary Figure S4Y), whereas the regression analysis in the MI group revealed negative 

significant correlations of WMSI with EF (R2 = 0.891; P < 0.001; Figure 6K) and FS (R2 = 0.871; P 

< 0.001; Supplementary Figure S4V). However, the correlations of WMSI with LVAW, LVPW, LV 

mass/LVDd and EDT were weak and non-significant in the MI group (Supplementary Figure S4G-I 

and M). The correlation of LV echocardiographic parameters, there were no significant differences 

between the slopes of MI and MI+BAPN groups (Table S2) except for E/A and E/e' Septal which had 

significant differences between the slopes of MI and MI+BAPN groups (P = 0.02 and P = 0.04, 

respectively; Table S2). The values of Y-intercept for LVPWd, LV mass, SL and MPIGlobal were 

significantly differed between the MI and MI+BAPN groups (Table S2). The administration of 

BAPN post-MI had little effect on the strength and significance of WMSI correlations with LV 

structural and functional parameters. The results demonstrated that MI impaired LV structure and 

function; however, the administration of BAPN post-MI did not significantly affect the adverse LV 

remodeling. 



 

106 

3.6 Administration of BAPN post-MI in rats attenuated LA collagen cross-linking without a 

change in LV collagen cross-linking 

The soluble collagen content in the LA tissues of the Sham+BAPN (2.34±0.33 µg/mg) and 

MI+BAPN (2.75±0.49 µg/mg) groups was significantly increased compared with that in the Sham 

(0.36±0.05 µg/mg) and MI (0.48±0.07 µg/mg) groups, respectively (Figure 7A). However, there were 

no significant changes in the content of insoluble collagen in the LA tissues between the groups 

(Figure 7B). The ratios of collagen cross-linking in the LA tissues of the Sham+BAPN (0.69±0.03) 

and MI+BAPN (0.65±0.02) groups were significantly lower than those in the Sham (0.92±0.01) and 

MI (0.92±0.01) groups, respectively (Figure 7C). The content of soluble collagen in the LV tissues 

of the MI+BAPN-Inf group (5.35±1.30 µg/mg) was significantly higher than that in the MI-Inf group 

(2.42±0.13 µg/mg) (Figure 7D). Furthermore, the insoluble collagen contents in the LV tissues of the 

MI-Inf (14.02±3.84 µg/mg) and MI+BAPN-Inf (13.87±2.91 µg/mg) groups were significantly 

increased compared with those in the Sham (1.59±0.35 µg/mg) and Sham+BAPN (2.68±0.65 µg/mg) 

groups, respectively (Figure 7E). No significant changes were found in the soluble and insoluble 

collagen contents in the LV tissues of the MI-Rem vs MI+BAPN-Rem or Sham vs Sham+BAPN 

groups (Figure 7D-E). Nevertheless, collagen cross-linking ratios in the LV tissues were not 

significantly different between the groups (Figure 7F). The results revealed that the administration of 

BAPN post-MI decreased the collagen cross-linking ratios in the LA tissues without changing the 

values in the LV tissues. 

3.7 Administration of BAPN post-MI in rats decreased the mRNA expression of some 

profibrotic markers in the LA tissues 

The mRNA expression levels of LOXL-1, LOXL-3, COL 1A1, TGF-β1 and periostin were 

significantly increased in the LA tissues of the MI group (1.6±0.1, 1.4±0.1, 2.0±0.2, 1.4±0.1 and 
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4.6±1.6-fold change, respectively) compared with those in the Sham group (1.0±0.1, 1.0±0.1, 

1.0±0.1, 1.00±0.1 and 1.0±0.3-fold change, respectively; Figure 8B, D, F, H and J). mRNA 

expression levels of LOXL-1, LOXL-2, LOXL-3, COL 1A1, COL 3A1, TGF-β1, periostin and α-

SMA were significantly lower in the LA tissues of the MI+BAPN group (0.5±0.0, 0.7±0.0, 0.8±0.0, 

0.6±0.1, 0.4±0.3, 1.0±0.1, 0.9±0.2 and 0.7±0.1-fold change, respectively) than those in the MI group 

(1.6±0.1, 1.6±0.3, 1.4±0.1, 2.0±0.2, 3.2±0.6, 1.4±0.1, 4.6±1.6 and 1.9±0.3-fold change, respectively; 

Figure 8B-D, F-H and J-K). However, the mRNA expression of LOX, LOXL-4, CTGF, FN 1, Cx 

43, MMP-2 and MMP-9 in the LA tissues was not significantly different between the groups (Figure 

8A, E and I, and Supplementary Figure S5A-D). 

3.8 Administration of BAPN post-MI in rats had no effect on the mRNA expression of 

profibrotic markers in LV tissues 

The abundance of LOX, LOXL-1, LOXL-2, LOXL-3, LOXL-4, COL 1A1, FN 1, TGF-β1, 

CTGF, periostin, α-SMA and MMP-2 mRNA was significantly higher in the LV tissues of the MI-

Inf group than those in the MI-Rem or Sham (Supplementary Figure S6A-F, H-K and M-N) groups. 

Moreover, the mRNA expression levels of LOX, LOXL-1, LOXL-2, LOXL-3, FN 1, TGF-β1, CTGF, 

α-SMA and MMP-2 were significantly higher in the LV tissues of MI+BAPN-Inf than those in the 

MI+BAPN-Rem or Sham+BAPN (Supplementary Figure S6A-D, H-J and M-N) groups. The mRNA 

expression of Cx 43 was significantly reduced in the LV tissues of the MI-Inf group (0.2±0.1-fold 

change) compared with those in the MI-Rem (0.6±0.1-fold change) or Sham (1.0±0.1-fold change; 

Supplementary Figure S6L) groups. Additionally, Cx 43 mRNA expression was significantly 

decreased in the LV tissues of the MI+BAPN-Inf group (0.2±0.0-fold change) compared with the 

Sham+BAPN group (0.8±0.1-fold change; Supplementary Figure S6L). Administration of BAPN 

post-MI showed no significant changes in the mRNA expressions of profibrotic markers.  
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3.9 Administration of BAPN post-MI in rats had no effect on the protein expression of LOX 

and LOXL proteins in LA and LV tissues 

Protein expression of all LOX isoforms in the LA tissues was not significantly different 

between the four groups (Supplementary Figure S7A-F). The protein expression levels of active 

LOX, LOXL-3 and LOXL-4 in the LV tissues of the MI-Inf group (12.2±1.5, 3.0±0.5 and 4.3±1.3-

fold change) were significantly increased compared with those in the MI-Rem (1.7±0.9, 1.1±0.2 and 

1.3±0.2-fold change) or Sham (1.0±0.5, 1.0±0.1 and 1.0±0.2-fold change; Supplementary Figure S8A 

and D-F) groups. Furthermore, the protein expression level of active LOX (32 kDa) was significantly 

higher in the LV tissue of the MI+BAPN-Inf group (12.6±2.1-fold change) than in the MI+BAPN-

Rem (4.5±1.8-fold change) or Sham+BAPN (0.9±0.1-fold change; Supplementary Figure S8A and 

F) groups. Administration of BAPN post-MI yielded no significant changes in the protein expression 

of LOX isoforms. 

4. Discussion 

MI induces cardiomyocyte death and ECM remodeling 36. Following MI, there is progressive 

LV remodeling, including replacement of dead cells by scars, thickening of non-infarcted areas, 

dilatation of the LV and thinning of the infarct wall 36. The enlargement of the LV chamber occurs 

during the early phase of MI due to the infarct expansion 37. Cardiac fibrosis is initiated after 3 to 5 

days post-MI 38. Weber et al. 39 reported that the upregulated profibrotic molecules in the infarcted 

area induced upregulation of their levels in the non-infarcted area, leading to interstitial fibrosis 

through the increased collagen deposition. LOX isoforms play an essential function in the structural 

stability of cardiac ECM 17. Several animal models were used to study the roles of LOX in collagen 

cross-linking and cardiac fibrosis following pressure or volume overload 23, 40-44. This is the first study 
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that focused on the role of LOX isoforms in mediating the LA fibrotic response, leading to AF in the 

MI rat model. Furthermore, the novel contribution of this study was to evaluate the alterations in the 

properties of atrial tissues and arrhythmia susceptibility following inhibition of LOX isoforms by 

BAPN post-MI as a key mechanism for collagen remodeling. The main findings of this study were 

the following: (a) LOX and LOXL-1 expression in the LA tissues was upregulated in the CHF model, 

(b) administration of BAPN post-MI reduced the MI-mediated LA electrical remodeling, (c) 

administration of BAPN post-MI decreased LA fibrosis and improved LA remodeling without any 

change in LV fibrosis and remodeling, (d) administration of BAPN in MI rats attenuated the collagen 

cross-linking in LA tissues without changing of that in the LV tissues and (e) administration of BAPN 

post-MI decreased the mRNA expression of some profibrotic markers in LA tissues without changing 

of those in the LV tissues. 

Recent studies reported that LOX has a vital role in LV fibrosis in several HF models 40-44. The 

mRNA and protein expression of LOX isoforms in LV tissues is upregulated in HF animal models 

induced by volume overload, pressure overload and MI 21-23. Adam et al. 45 reported that LOX protein 

expression was significantly increased in the LA tissues of AF patients compared with that in sinus 

rhythm patients. Our results from LA tissues of a CHF dog model showed an increase in the mRNA 

expression of all LOX isoforms and a significant increase in the protein expression of LOX and 

LOXL-1. These results indicated that LOX and LOXL-1 may substantially contribute to LA 

remodeling and AF in CHF. P-wave duration, AF duration and AF inducibility increased in MI rats, 

and administration of BAPN post-MI effectively decreased this electrical remodeling. However, the 

underlying mechanisms of AF in MI patients have not been well studied. Electrical and structural 

remodeling are important mediators of AF 46. Our results were consistent with the results of Tse and 

Yeo 47, who found that LA interstitial fibrosis and LV replacement fibrosis are important signs for 

structural remodeling that disturb the normal electrical conduction, leading to AF. Increases in the P-
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P interval and P-wave duration post-MI may reflect a delay in the atrial conduction due to the 

progression of LA fibrosis. Our QRS results were consistent with previous findings that showed a 

strong association between prolonged QRS duration post-MI and LV dysfunction, such as reduced 

systolic function and increased ventricular volume 48. Furthermore, the QRS and QT prolongation 

resulted from slowed conduction of the ventricles due to the increase in myocardial fibrosis post-MI. 

The prolonged P-R interval post-MI in our study indicated a disturbance in atrial and atrioventricular 

nodal conduction, which is associated with a high risk for AF as reported by Cheng et al. 49. 

Our results indicated that the administration of BAPN post-MI decreased LA fibrosis without 

changing LV fibrosis. LA fibrosis and AF duration were increased in rats at 2, 4 and 8 weeks post-

MI 26. Previous studies showed that administration of BAPN in volume overloaded rats decreased 

LV fibrosis 42. Gonzalez-Santamaria et al. 21 reported that administration of BAPN post-MI in mice 

decreased the LV fibrosis and scar area. Following MI, there is progressive cardiac remodeling in the 

remote and infarcted myocardium, leading to LV and LA dysfunction and dilatation 26, 32, 50, 51. 

Yamada et al. 52 reported that the ventricular remodeling mediated remodeling of the LA due to 

movement of the blood from the LA to LV. We found that the administration of BAPN post-MI may 

be intensely effective in attenuating the progression of LA remodeling and AF. Dayeh et al. 53 noted 

that the increase in WMSI after MI reflects cardiac damage and can be an indicator of adverse cardiac 

consequences. The correlations of infarct size were positive and significant with LV volume and 

mass, whereas the correlation of infarct size was inverse and significant with EF in MI mice 37. 

Numerous studies demonstrated weak correlations of infarct size with LV volume and FS, and there 

were no correlations of infarct size with LV mass and dimension at the end of diastole in MI mice 54, 

55. No studies have been reported on the effect of BAPN administration post-MI on cardiac 

remodeling through evaluating the relationship of infarct size with LA and LV structural and 

functional parameters. The study results illustrated that administration of BAPN disturbed the 
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correlations between the WMSI and the degree of LA remodeling at four weeks post-MI. Herein, we 

found that the administration of BAPN post-MI reduced the impact of the relationships of WMSI 

with LA dimensions, areas and FAC, while BAPN administration post-MI had little effect on the 

correlations of WMSI with LV structural and functional parameters. 

Following MI, the number of myofibroblasts in the infarcted area was found to be higher than 

that in the non-infarcted area and was associated with the production of more collagen 56. The 

stabilization of ECM through collagen cross-linking induces the deposition of insoluble collagen 

during cardiac injury. Cleutjens et al. 56 demonstrated that the mechanisms of collagen synthesis in 

the infarcted and non-infarcted areas were different in MI rats. Our results indicated that the 

administration of BAPN after the early stage of MI had beneficial effects on LA interstitial fibrosis 

and remodeling without affecting LV replacement fibrosis and remodeling due to the following 

reasons: (1) the progression ratio of LV replacement fibrosis was higher than that of LA and LV 

interstitial fibrosis, and (2) LV replacement fibrosis occurs before LA and LV interstitial fibrosis. In 

our study, BAPN was administered to rats after the early phase of MI. During this phase, BAPN 

started to decrease the LV and LA interstitial fibrosis, which was already present to a decreased 

degree and not as developed as LV replacement fibrosis. BAPN affected collagen synthesis via 

inhibition of the cross-linking process 23. Bing et al. 57 reported that BAPN increased the content of 

soluble collagen in Sham and aortic constricted rats. The increase in the contents of soluble collagen 

was due to the inhibition of collagen cross-linking to compensate for the loss of insoluble collagen 

content 57. We found that the administration of BAPN post-MI yielded no significant changes in the 

ratio of collagen cross-linking in LV tissues because BAPN had no significant changes in the soluble 

and insoluble collagen content compared with that in MI. However, the administration of BAPN post-

MI yielded a significant decrease in the collagen cross-linking ratio as a result of a significant increase 

in the soluble collagen content without a significant decrease in the content of insoluble collagen in 
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LA tissues compared with that in MI. Our results were not consistent with the results of Gonzalez-

Santamaria et al. 21, who reported that the administration of BAPN post-MI in mice decreased the 

degree of collagen cross-linking and fibrosis in the infarcted area of the LV. The variations in collagen 

cross-linking and fibrosis after administration of BAPN between our study and that by Gonzalez-

Santamaria et al. 21 could be related to differences in the animal model, the method of BAPN 

administration and the dose of BAPN. Liu et al. 58 reported that the administration of BAPN 

decreased the ratio of collagen cross-linking in fibrotic hepatic mice. Additionally, there were no 

significant changes in the soluble and insoluble collagen contents and collagen cross-linking in the 

MI-Rem group compared with the Sham group. Our results were consistent with the results of Xiao 

et al. 43, who found no changes in the contents of soluble and insoluble collagen as well as the collagen 

cross-linking ratio between the MI-Rem and Sham groups in a monkey model. The effect of BAPN 

administration post-MI on LA fibrosis in the rat model was first investigated by this study. The results 

provide further evidence that AF is associated with LA interstitial fibrosis and electrical remodeling 

post-MI. The extension of LA fibrosis and structural remodeling in the MI rats was significantly 

suppressed upon administration of BAPN. Cardiac fibroblasts are the main cells that mediate cardiac 

fibrosis upon stressful conditions, such as MI or pressure overload. Cardiac fibroblasts play a 

significant role in ECM homeostasis, which is important for the structural stability of the heart 59. 

Cardiac fibroblasts differentiate into myofibroblasts, which play an essential role in cardiac fibrosis 

in parallel with other heart cells 60. There are several profibrotic signaling molecules that are 

synthesized by myofibroblasts after MI, including COL 1, COL 3, TGF-β, LOX isoforms, MMP, 

CTGF, FN, α-SMA, and periostin 1, 15, 59, 61, 62. LOX isoforms are cross-linkers of intramolecular and 

intermolecular ECM collagens in the heart 20, 63. We demonstrated that upregulation of LOX family 

mRNA expression occurred along with upregulation of the mRNA expression of COL 1A1, FN 1, 

TGF-β1, CTGF, periostin, α-SMA and MMP-2 and with reduction of Cx 43 mRNA expression in 
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the infarcted area of the LV in MI rats. Our results were consistent with those of previous studies that 

showed an increase in mRNA expression of LOX isoforms in parallel with an increase in mRNA 

expression of COLA 1A, COL 3A and α-SMA in the LV of transverse aortic constriction mice 22 and 

of MMP-2 in the infarcted area of LV in MI mice 21. Treatment of cultured cardiac fibroblasts with 

TGF-β1 increased the mRNA expression of LOX isoforms 21, 64. We found upregulation of mRNA 

expression of LOXL-1, LOXL-3, COL 1A1, TGF-β1 and periostin in LA tissues of the MI group 

compared with those of the Sham group. For infarcted and remote areas of the LV, BAPN 

administration had no effects on the mRNA expression of all studied profibrotic markers, while 

administration of BAPN post-MI showed suppression in mRNA expression of LOXL-1, LOXL-2, 

LOXL-3, COL 1A1, COL 3A1, TGF-β1, periostin and α-SMA without any effects on the mRNA 

expression of LOX, LOXL-4, CTGF, FN 1, Cx 43, MMP-2 and MMP-9 in LA tissues. Gonzalez-

Santamaria et al. 21 reported that BAPN administration had no effect on the mRNA expression of 

LOX isoforms, MMP-2 and MMP-9 in infarcted area of the LV. The mRNA expression of TGF-β1 

and COL 1A1 was suppressed upon BAPN administration in fibrotic hepatic mice. We found an 

upregulation in the protein expression of active LOX, LOXL-3 and LOXL-4 in the infarcted area of 

the LV. However, administration of BAPN post-MI had no effects on the protein expression of LOX 

isoforms in LA and LV tissues. Our results revealed that mRNA expression of LOXL-1, LOXL-2 

and LOXL-3 in LA tissues was significantly decreased without a significant decrease in the protein 

expression of each LOX isoform upon administration of BAPN post-MI. The accumulation of non-

significant decreases in the protein expressions of all LOX isoforms may result in a significant 

attenuation of cardiac fibrosis. In this study, we revealed that administration of BAPN post-MI 

decreased the synthesis of mRNA LOX isoforms, collagen cross-linking and fibrosis in LA; 

However, there were no significant changes in mRNA expression of LOX isoforms, collagen cross-

linking or fibrosis in the remote area of the LV. Yue et al. 65 found that the atrial fibroblasts had a 
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higher proliferative response compared with the ventricular fibroblasts upon exposure to stimuli. 

Many studies reported that atria are more prone to fibrosis than ventricles 66, 67. We noted that BAPN 

was not specific to one LOX isoform and was more likely to attenuate LA fibrosis compared with 

that affinity in the remote area of the LV, which may be due to the higher sensitivity of LA fibroblasts. 

The current study provides novel insight into the activation and suppression of the LOX pathway in 

LA fibrosis and AF. In this study, the positive effects of BAPN administration on LA electrical and 

structural remodeling in the MI rat model provide further evidence that the LOX signaling pathway 

may contribute to LA fibrosis and later AF development. 

5. Conclusions 

The current study investigated the role of LOX isoforms in the pathogenesis of LA fibrosis and 

AF and provided new information on the progress of potential therapeutic treatments of LA fibrosis 

and AF through inhibition of the LOX signaling pathway. The ischemic model could mediate 

electrical and structural atrial remodeling, which increases AF inducibility. BAPN attenuated LA 

fibrosis and arrhythmogenesis through inhibiting the signaling pathway of LOX isoforms in the MI 

rat model. The inhibition of the LOX signaling pathway may lead to suppression of LA fibrosis and 

AF development. 
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Figure Legends 

Figure 1. In vivo experimental timeline. β-aminopropionitrile (BAPN) was administered to rats 

on day 8 post-MI. Echocardiographic measurements were recorded at baseline, day 7 and day 27 

post-MI. All animals were subjected to electrophysiological study prior to sacrifice. 

Figure 2. Increased protein expressions of lysyl oxidase (LOX) and LOX-like protein 1 

(LOXL-1) in the left atrial (LA) tissues of congestive heart failure (CHF) dogs. Basal relative 

protein expressions of LOX isoforms in the LA tissues (n = 5) of a CHF (2 weeks of ventricular 

tachypacing (VTP)) model were quantified by Western blot analysis, including (A) band 

intensities of Western blot images were normalized to glyceraldehyde 3-phosphate dehydrogenase 

(GAPDH), (B) LOX, (C) LOXL-1, (D) LOXL-2, (E) LOXL-3 and (F) LOX-4. The results are the 

means ± SEM; unpaired Student’s t-tests were performed. *P < 0.05; **P < 0.01; ***P < 0.001. 

Figure 3. Administration of β-aminopropionitrile (BAPN) post-myocardial infarction (MI) 

in rats decreased P-wave duration, atrial fibrillation (AF) duration and AF inducibility. 

Electrophysiological (A-C) and electrocardiogram (ECG; D-H) measurements for four rat groups 

(Sham; n = 16-18, Sham+BAPN; n  =  16-18, MI; n  = 16-22; MI+BAPN; n  = 16-18) were 

assessed at day 28 post-surgery, including (A) AF inducibility, (B) AF duration, (C) effective 

refractory period (ERP), (D) P-wave duration, (E) P-P interval, (F) P-R interval, (G) QRS duration 

and (H) QT duration. The results are the means ± SEM; one-way ANOVA followed by the 

Bonferroni’s multiple comparisons test (C-H) was performed. Fisher’s exact test for AF 

inducibility was performed. One-way ANOVA followed by the Kruskal-Wallis’s multiple 

comparisons test for AF duration was performed. *P < 0.05; **P < 0.01; ***P < 0.001.  

Figure 4. Administration of β-aminopropionitrile (BAPN) post-myocardial infarction (MI) 

in rats attenuated left atrial (LA) fibrosis without changing the left ventricular (LV) fibrosis. 

LA and LV fibrosis in four rat groups (Sham; n = 6, Sham+BAPN; n = 6, MI from remote (Rem) 

and infarct (Inf) areas (MI, MI-Rem and MI-Inf; n  =  5) and MI+BAPN (MI+BAPN, MI+BAPN-

Rem and MI+BAPN-Inf; n  =  6)) was evaluated on day 28 post-surgery, including (A) 

representative Masson’s trichrome staining images of LA and LV tissue sections for fibrosis 

quantification, (B) LA fibrous tissue quantification, (C) LV fibrous tissue quantification and (D) 

LV scar area. The results are the means ± SEM; unpaired Student’s t-tests for scar area were 
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performed; one-way ANOVA followed by the Bonferroni’s multiple comparisons test was 

performed. *P < 0.05; **P < 0.01; ***P < 0.001. 

Figure 5. β-aminopropionitrile (BAPN) administration decreased myocardial infarction 

(MI)-induced left atrial (LA) remodeling in rats. LA structural and functional remodeling in 

four rat groups was assessed by echocardiography, including Sham (n = 21), Sham+BAPN (n  = 

 18-20), MI (n  =  23-24) and MI+BAPN (n  =  22), on day 27 post-MI. (A) LA diameter at end 

systole (LADs), (B) LA diameter at end diastole (LADd), and (C) fractional shortening (FS). 

Comparison between echocardiographic assessment of the wall motion score index (WMSI) and 

LA structural and functional parameters in MI rats treated with vehicle or BAPN on day 27 post-

surgery. Linear correlations of WMSI with (D) LADs, (E) LADd, and (F) FS. The results are the 

means ± SEM; one-way ANOVA followed by the Bonferroni’s multiple comparisons test (A-C) 

was performed. *P < 0.05; **P < 0.01; ***P < 0.001; R2: correlation coefficient; in the equation, 

(x) represents the WMSI and (Y) represents structural and functional parameters.  

Figure 6. β-aminopropionitrile (BAPN) administration had no effect on myocardial infarction 

(MI)-induced left ventricular (LV) remodeling in rats. LV structural and functional remodeling 

in four rat groups was assessed by echocardiography, including Sham (n = 17-21), Sham+BAPN (n  

=  18-20), MI (n  = 18-24) and MI+BAPN (n  = 14-22), on day 27 post-surgery. (A) LV diameter at 

end systole (LVDs), (B) LV diameter at end diastole (LVDd), (C) LV mass, (G) ratio of early diastolic 

transmitral filling velocity (E) to atrial transmitral filling velocity (A), (H) ejection fraction (EF) and 

(I) wall motion score index (WMSI). Comparison between echocardiographic assessment of the 

WMSI and LV structural and functional parameters in MI rats treated with vehicle or BAPN on day 

27 post-MI. Linear correlations of WMSI with (D) LVDs, (E) LVDd, (F) LV mass, (J) ratio of E/A 

and (K) EF. The results are the means ± SEM; one-way ANOVA followed by the Bonferroni’s 

multiple comparisons test (A-C and G-I) was performed. *P < 0.05; **P < 0.01; ***P < 0.001; R2: 

correlation coefficient; in the equation, (x) represents the WMSI and (Y) represents structural and 

functional parameters. 

Figure 7. Administration of β-aminopropionitrile (BAPN) post-myocardial infarction (MI) in 

rats attenuated collagen cross-linking in the left atrium (LA) without changing that in the left 

ventricle (LV). Collagen content in the LA and LV from four rat groups (Sham; n = 6, Sham+BAPN; 

n = 6, MI from remote (Rem) and infarct (Inf) areas (MI, MI-Rem and MI-Inf; n  =  6) and MI+BAPN 
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(MI+BAPN, MI+BAPN-Rem and MI+BAPN-Inf; n  =  6)) was measured by the QuickZyme assay 

on day 28 post-surgery, including (A) soluble collagen in LA tissues, (B) insoluble collagen in LA 

tissues, (C) collagen cross-linking ratio in LA tissues, (D) soluble collagen in LV tissues, (E) 

insoluble collagen in LV tissues and (F) collagen cross-linking ratio in LV tissues. The results are the 

means ± SEM; one-way ANOVA followed by the Bonferroni’s multiple comparisons test was 

performed. *P < 0.05; **P < 0.01; ***P < 0.001.  

Figure 8. Administration of β-aminopropionitrile (BAPN) post-myocardial infarction (MI) in 

rats decreased the mRNA expression of several profibrotic markers in left atrial (LA) tissues. 

mRNA expression levels of profibrotic markers in the LA tissues from four rat groups (Sham; n = 6, 

Sham+BAPN; n = 6, MI; n  = 6 and MI+BAPN; n  = 6) were quantified by qPCR on day 28 post-

surgery, including (A) lysyl oxidase (LOX), (B) LOX-like protein-1 (LOXL-1), (C) LOXL-2, (D) 

LOXL-3, (E) LOXL-4, (F) collagen 1A1 (COL 1A1), (G) collagen 3A1 (COL 3A1), (H) transforming 

growth factor β1 (TGF-β1), (I) connective tissue growth factor (CTGF), (J) periostin, and (K) α-

smooth muscle actin (α-SMA). The results are the means ± SEM; one-way ANOVA followed by the 

Bonferroni’s multiple comparisons test was performed. *P < 0.05; **P < 0.01; ***P < 0.001. 
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Table 1: Effect of BAPN administration on echocardiographic parameters (ventricular and atrial structural and functional remodeling) post-MI in rats. 

 Sham  MI Sham+BAPN MI+BAPN 

Baseline 7 days 

post-MI 

27 days 

post-MI 

Baseline 7 days 

post-MI 

27 days 

post-MI 

Baseline 7 days 

post-MI 

27 days 

post-MI 

Baseline 7 days 

post-MI 

27 days 

post-MI 

LV structural function 
LVAWd (mm) 1.4±0.0 1.6±0.0 1.7±0.0 1.4±0.0 1.6±0.1 1.6±0.1 1.4±0.0 1.6±0.0 1.6±0.0 1.4±0.0 1.7±0.1* 1.6±0.1 

LVPWd (mm) 1.4±0.0 1.5±0.0 1.6±0.0* 1.4±0.0 1.6±0.1* 1.8±0.1* 1.4±0.0 1.5±0.0 1.5±0.0 1.4±0.0 1.6±0.0 1.7±0.1* 
LVDd (mm) 7.1±0.1 7.4±0.1 7.9±0.1* 7.2±0.1 8.5±0.2*$ 9.8±0.2* 7.3±0.1 7.7±0.1 7.6±0.1 7.0±0.1 8.3±0.1*# 9.3±0.2*# 

LVDs (mm) 3.6±0.1 3.7±0.1 3.6±0.1 3.6±0.1 6.1±0.2*$ 7.2±0.3*$ 3.5±0.1 3.6±0.1 3.6±0.1 3.5±0.1 5.6±0.2*# 6.6±0.4*# 

LV mass (mg) 638 ±16 766±13 898±20* 662±11 935±30*$ 1259±37*$§ 683±15 799±22 787±30 655±16 975±35*# 1124±43*# 
LV mass/LVDd (mg/mm) 89.9±1.7 103.1±1.7* 113.2±2.0* 92.3±1.3 110.8±3.4* 129.3±3.8*$ 94.1±1.7 104.4±1.9 103.8±2.6 93.0±1.6 117.0±3.7* 120.7±2.8*# 

LV mass/BW (mg/g) 2.7±0.1 2.7±0.0 2.2±0.0* 2.8±0.0 3.4±0.1*$ 3.1±0.1$ 2.8±0.1 2.8±0.1 2.7±0.1† 2.7±0.1 3.5±0.1*# 3.8±0.2§# 

LV systolic function 
LVVd (ml) 0.8±0.0 0.9±0.0 1.1±0.03 0.8±0.0 1.3±0.1*$ 2.0±0.1*$ 0.9±0.0 1.0±0.0 1.0±0.05 0.8±0.0 1.27±0.1* 1.73±0.12*# 

LVVs (ml) 0.1±0.0 0.1±0.0 0.1±0.0 0.1±0.0 0.6±0.1*$ 0.9±0.1*$ 0.1±0.0 0.1±0.0 0.1±0.02 0.1±0.0 0.5±0.1*# 0.75±0.12*# 
FS (%) 49.5±1.3 50.2±1.3$ 54.7±1.2$ 49.1±0.9 29.0±1.7* 27.4±1.8* 52.4±1.3 53.4±1.3# 52.0±1.2# 50.6±1.4 33.3±2.0* 29.8±2.3* 

EF (%) 84.9±1.2 85.5±1.1$ 88.9±0.8$ 84.9±0.8 60.0±2.7* 57.1±2.9* 83.3±4.3 87.9±0.9# 87.0±1.0# 85.8±1.2 66.0±2.9* 60.1±3.6* 

WMSI 1.0±0.0 1.0±0.0 1.0±0.0 1.0±0.0 1.7±0.1*$ 1.7±0.1*$ 1.0±0.0 1.0±0.0 1.0±0.0 1.0±0.0 1.6±0.1*# 1.6±0.1*# 

SL (cm/s) 5.0±0.2 4.9±0.2$ 5.6±0.2 5.3±0.2 3.7±0.2* 4.7±0.2 4.9±0.2 5.1±0.2# 4.7±0.2 5.5±0.2 3.8±0.1* 3.9±0.3* 
SS (cm/s) 4.7±1.7 4.8±0.2$ 5.2±0.2$ 4.8±0.1 3.7±0.2* 4.4±0.2 4.7±0.1 5.0±0.2# 4.7±0.2 4.8±0.1 4.0±0.1* 4.1±0.2 

LV diastolic function 
E Velocity (cm/s) 107.6±3.2 102.8±2.9 107.0±3.3† 110.7±2.6 105±2.9 118.2±3.3§ 106.3±1.7 104.2±1.9 85.0±2.9* 108.3±3.6 107.4±2.7 101.7±3.4# 

A (cm/s) 84.2±4.3 76.7±4.0 80.1±3.8 89.6±2.7 78.8±4.8 92.3±5.6 89.4±3.2 87.0±3.8 75.6±3.7 89.2±2.8 68.4±6.7 86.4±3.7 

E/A 1.2±0.1 1.3±0.1 1.3±0.1 1.2±0.0 1.4±0.1 1.4±0.2 1.2±0.1 1.2±0.0 1.2±0.1 1.2±0.1 1.6±0.2 1.2±0.0 

E/e' Lateral 16.8±0.8 16.3±0.6 17.6±0.8 16.8±0.7 20.7±1.3 25.9±2.1*$ 17.2±0.8 16.2±1.1 15.6±0.9 15.5±0.9 27.0±1.6*# 24.6±2.4*# 

E/e' Septal 16.8±1.0 18.0±1.3 15.5±0.7 18.6±1.3 19.4±1.5 25.3±2.0*$ 17.3±0.8 18.4±1.1 14.7±1.0 16.8±1.0 27.7±2.5*# 21.4±1.4 

Heart rate 375±6.5 361±6.6 362±9.5 371±6.0 358±8.0 357±9.2 369±4.6 362±8.8 339±10.9 380±5.5* 347±7.7 329±8.8 

Myocardial performance index (%) 
MPISeptal 52.3±2.0 53.8±2.3 51.0±1.9 54.8±1.9 66.2±2.1*$ 61.6±2.8 53.4±1.9 53.4±2.1 57.3±2.3 52.8±1.4 59.7±2.2 67.6±3.1* 
MPILateral 50.3±2.4 52.9±1.8 50.7±1.8 53.3±2.1 64.0±2.1*$ 63.7±2.4*$ 50.4±2.0 53.3±2.2 58.3±2.3 49.7±1.6 59.9±2.1 66.3±2.9* 

MPIGlobal 39.3±1.8 41.1±1.5 38.4±1.8 44.9±1.6 53.8±2.1$ 52.1±2.9$ 39.0±2.1 40.2±1.7 43.5±2.2 42.3±1.5 49.1±1.4 59.0±3.1*# 

Atrial remodeling (LA and RA) 
LADd (mm) 3.8±0.1 3.9±0.1 4.2±0.2 3.8±0.2 4.9±0.2*$ 5.4±0.2*$§ 3.8±0.1 3.9±0.2 3.6±0.1 3.9±0.1 4.9±0.2*# 4.5±0.2# 

LADs (mm) 5.1±0.1 5.2±0.1 5.7±0.2 5.1±0.1 6.1±0.1*$ 6.5±0.2*$§ 5.1±0.1 5.3±0.1 5.0±0.1 5.1±0.1 6.0±0.2*# 5.7±0.2 

LAAd (mm2) 14.0±0.5 14.4±0.6* 16.3±1.0* 14.3±0.6 21.7±1.4*$ 22.4±1.6*$§ 12.8±0.5 12.9±0.7 11.7±1.0 14.0±0.5 21.3±1.3*# 16.8±1.4 
LAAs (mm2) 25.9±0.7 26.5±0.8 30.9±1.3*† 26.1±0.7 31.5±1.7*$ 34.9±1.3*§ 24.8±0.7 25.4±0.9 23.2±1.0 26.0±0.9 31.6±1.0*# 28.5±1.1# 

FS (%) 26.2±1.1 25.6±1.0$ 27.4±1.0$ 26.0±1.6 19.7±1.2* 17.7±1.3* 26.4±1.3 26.2±1.1# 28.7±1.3# 24.8±1.0 18.5±1.0* 22.6±1.4 

FACLA (%) 45.9±1.2 45.9±1.3$ 47.8±1.3$ 45.5±1.4 32.1±2.3* 37.0±2.5 48.5±1.3 49.6±1.7# 50.8±2.3 46.0±1.0 33.8±2.5* 42.5±2.6 
RADs (mm) 4.3±0.1 4.5±0.1 4.7±0.1 4.3±0.1 4.8±0.1 5.1±0.2* 4.2±0.1 4.3±0.1 4.2±0.1 4.4±0.1 4.8±0.1 4.7±0.1 

RAAd (mm2) 10.5±0.4 11.1±0.5 12.8±0.7† 10.8±0.4 13.6±0.5* 15.2±0.9*§ 9.8±0.4 10.8±0.6 9.1±0.7 10.7±0.5 14.5±0.7*# 11.1±0.6 

RAAs (mm2) 18.5±0.5 21.5±0.8 22.7±1.0*† 19.6±0.6 21.8±0.7 25.4±0.8*§ 18.4±0.4 20.5±0.8 17.0±0.9 19.7±0.7 22.8±0.9 20.0±0.6 
FACRA (%) 43.2±1.7 48.6±1.2$ 43.6±1.3 44.7±1.4 37.7±1.6 40.8±2.1 46.9±1.5 47.1±1.8# 47.2±2.3 45.7±1.5* 36.5±1.7 44.6±1.8 

Results are expressed as means ± SEM; Myocardial infarction (MI); β-aminopropionitrile (BAPN); Left ventricle (LV); Left atrium (LA); Right atrium (RA); LV anterior wall thickness at end diastole (LVAWd); LV posterior wall thickness at end diastole 

(LVPWd); LV and LA diameter at end diastole (LVDd and LADd); Body weight (BW); LV, LA and RA diameter at end systole (LVDs, LADs and RADs); LV volume at end diastole (LVVd); LV volume at end systole (LVVs); Fractional shortening (FS); 

Ejection fraction (EF); Wall motion score index (WMSI); Lateral wall systolic contractility (SL); Septal systolic contractility (Ss); Early diastolic transmitral filling velocity (E); Atrial transmitral filling velocity (A); Mitral annulus moving velocity during 

early filling (e'); Myocardial performance index (MPI); LA and RA area at the end diastole (LAAd and RAAd); LA and RA area at end systole (LAAs and RAAs); Fractional area changing of LA and RA (FACLA and FACRA). For statistical analysis, Two-

way ANOVA followed by Bonferroni’s multiple-comparison test was applied. *P < 0.05 vs. baseline; $P < 0.05 for Sham vs. MI; #P < 0.05 for Sham+BAPN vs. MI+BAPN; §P < 0.05 for MI vs. MI+BAPN; †P < 0.05 for Sham vs. Sham+BAPN.  
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Figure 2. 
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Figure 3. 
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Figure 4.  
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Figure 5. 
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Figure 6.  
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Figure 7. 
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Figure 8. 
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Supplementary Figure Legends 

Figure S1. Increased mRNA expressions of lysyl oxidase (LOX) isoforms in the left atrial (LA) 

tissues of congestive heart failure (CHF) dogs. Basal relative mRNA (A-E) expressions of LOX 

isoforms in the LA tissues (n = 5) of CHF (2 weeks of ventricular tachypacing (VTP)) model were 

quantified by qPCR, including (A) LOX, (B) LOX-like protein 1 (LOXL-1), (C) LOXL-2, (D) 

LOXL-3 and (E) LOX-4. mRNA expression was normalized to glucose 6‐phosphate dehydrogenase 

(G6PD). The results are the means ± SEM; unpaired Student’s t-tests were performed. *P < 0.05; 

**P < 0.01; ***P < 0.001. 

Figure S2. Effect of β-aminopropionitrile (BAPN) administration post-myocardial infarction 

(MI) on the surface electrocardiogram (ECG) and atrial fibrillation (AF) induction. (A) 

representative surface ECG recording and (B) representative recording of burst pacing-induced AF 

in four rat groups (Sham, Sham+BAPN, MI and MI+BAPN) at day 28 post-surgery. 

Figure S3. β-aminopropionitrile (BAPN) administration decreased myocardial infarction (MI)-

induced left atrial (LA) remodeling in rats. LA structural and functional remodeling in four rat 

groups was assessed by echocardiography, including Sham (n = 21), Sham+BAPN (n  =  18-20), MI 

(n  =  23-24) and MI+BAPN (n  =  22) on day 27 post-surgery. (A) LA area at end systole (LAAs), 

(B) LA area at end diastole (LAAd) and (C) fractional area changing of LA (FACLA). Comparison 

between echocardiographic assessment of the wall motion score index (WMSI) and LA structural 

and functional parameters in MI rats treated with vehicle or BAPN on day 27 post-MI. Linear 

correlations of WMSI with (D) LAAs, (E) LAAd, and (F) FACLA. The results are the means ± SEM; 

one-way ANOVA followed by the Bonferroni’s multiple comparisons test (A-C) was performed. *P 

< 0.05; **P < 0.01; ***P < 0.001; R2: correlation coefficient; in the equation, (x) represents the 

WMSI and (Y) represents structural and functional parameters.  

Figure S4. β-aminopropionitrile (BAPN) had no effect on myocardial infarction (MI)-induced 

left ventricular (LV) remodeling in rats. LV structural and functional remodeling in four rat groups 

was assessed by echocardiography, including Sham (n = 17-21), Sham+BAPN (n  =  18-20), MI (n  

= 18-24) and MI+BAPN (n  = 14-22) on day 27 post-surgery. (A) LV anterior wall thickness at end 

diastole (LVAWd), (B) LV posterior wall thickness at end diastole (LVPWd), (C) ratio of LV mass 
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to LV diameter at end diastole (LVDd), (D) ratio of early diastolic transmitral filling velocity (E) to 

mitral annulus moving velocity during early filling at septal wall (e'Septal,), (E) ratio of E to mitral 

annulus moving velocity during early filling at lateral wall (e'Lateral), (F) E wave deceleration time 

(EDT), (N) LV volume at end diastole (LVVd), (O) LV volume at end systole (LVVs), (P) fractional 

shortening (FS), (Q) septal systolic contractility (SS), (R) lateral wall systolic contractility (SL) and 

(S) myocardial performance index (MPIGlobal). Comparison between echocardiographic assessment 

of the wall motion score index (WMSI) and LV structural and functional parameters in MI rats treated 

with vehicle or BAPN on day 27 post-MI. Linear correlations of WMSI with (G) LVAWd, (H) 

LVPWd, (I) ratio of LV mass to LVDd, (K) ratio of E to e'Septal (L) ratio of E to e'Lateral, (M) EDT, (T) 

LVVd, (U) LVVs, (V) FS, (W) SS, (X) SL and (Y) MPIGlobal. The results are the means ± SEM; one-

way ANOVA followed by the Bonferroni’s multiple comparisons test (A-F and N-S) was performed. 

*P < 0.05; **P < 0.01; ***P < 0.001; R2: correlation coefficient; in the equation, (x) represents the 

WMSI and (Y) represents structural and functional parameters. 

Figure S5. Administration of β-aminopropionitrile (BAPN) post-myocardial infarction (MI) in 

rats decreased the mRNA expression profibrotic markers in the left atrial (LA) tissues. 

Transcript levels of profibrotic markers in the LA tissues from four rat groups, including Sham (n = 

6), Sham+BAPN (n = 6), MI (n  = 6) and MI+BAPN (n  = 6) were quantified by qPCR on day 28 

post-surgery. (A) fibronectin 1 (FN 1), (B) connexin 43 (Cx 43), (C) matrix metalloproteinase 2 

(MMP-2) and (D) MMP-9. The results are the means ± SEM; one-way ANOVA followed by the 

Bonferroni’s multiple comparisons test was performed. *P < 0.05; **P < 0.01; ***P < 0.001.  

Figure S6. Administration of β-aminopropionitrile (BAPN) post-myocardial infarction (MI) in 

rats had no effect on the abundance of transcripts for profibrotic markers in left ventricular 

(LV) tissues. mRNA levels of profibrotic markers in the LV tissues from four rat groups (Sham; n = 

6, Sham+BAPN; n = 6, MI from remote (Rem) and infarct (Inf) areas (MI-Rem and MI-Inf; n  =  6) 

and MI+BAPN (MI+BAPN-Rem and MI+BAPN-Inf; n  =  6)) were quantified by qPCR on day 28 

post-surgery, including (A) lysyl oxidase (LOX), (B) LOX-like protein-1 (LOXL-1), (C) LOXL-2, 

(D) LOXL-3, (E) LOXL-4, (F) collagen 1A1 (COL 1A1), (G) collagen 3A1 (COL 3A1), (H) 

fibronectin 1 (FN 1), (I) transforming growth factor β1 (TGF-β1), (J) connective tissue growth factor 

(CTGF), (K) periostin, (L) connexin 43 (Cx 43), (M) α-smooth muscle actin (α-SMA), (N) matrix 

metalloproteinase-2 (MMP-2) and (O) MMP-9. The results are the means ± SEM; one-way ANOVA 
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followed by the Bonferroni’s multiple comparisons test was performed. *P < 0.05; **P < 0.01; ***P 

< 0.001.  

Figure S7. Administration of β-aminopropionitrile (BAPN) post-myocardial infarction (MI) in 

rats had no effect on the protein expression of lysyl oxidase (LOX) isoforms in left atrial (LA) 

tissues. Western blot analysis was used to evaluate the protein expression of LOX isoforms in the 

LA tissues from four rat groups, including Sham (n = 6), Sham+BAPN (n  =  6), MI (n  =  6) and 

MI+BAPN (n  =  6) on day 28 after surgery. (A) LOX, (B) LOX-like protein-1 (LOXL-1), (C) LOXL-

2, (D) LOXL-3, (E) LOXL-4 and (F) representative immunoblot images of protein quantification. 

Band intensities of Western blot images were normalized to glyceraldehyde 3-phosphate 

dehydrogenase (GAPDH). Active and inactive LOX represent the bands at the molecular weight of 

32 and 50 kDa, respectively. The results are the means ± SEM; one-way ANOVA followed by the 

Bonferroni’s multiple comparisons test was performed. *P < 0.05; **P < 0.01; ***P < 0.001. 

Figure S8. Administration of β-aminopropionitrile (BAPN) post-myocardial infarction (MI) in 

rats had no effect on the amount of lysyl oxidase (LOX) isoform immunoreactivity in left 

ventricular (LV) tissues. Western blot analysis was used to evaluate the LOX isoform 

immunoreactivity in the LV tissues from four rat groups, including Sham (n = 4), Sham+BAPN (n  

=  4), MI from remote (Rem) and infarct (Inf) areas (MI-Rem and MI-Inf; n  =  4) and MI+BAPN 

(MI+BAPN-Rem and MI+BAPN-Inf; n  =  4) on day 28 after surgery. (A) LOX, (B) LOX-like 

protein-1 (LOXL-1), (C) LOXL-2, (D) LOXL-3, (E) LOXL-4 and (F) representative immunoblot 

images of protein quantification. Band intensities of Western blot images were normalized to 

Tubulin. Active and inactive LOX represent the bands at the molecular weight of 32 and 50 kDa, 

respectively. The results are the means ± SEM; one-way ANOVA followed by the Bonferroni’s 

multiple comparisons test was performed. *P < 0.05; **P < 0.01; ***P < 0.001.  
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Table S1: Sequences of custom-made SYBR Green primers used in this study. 

Gene Name Species Abbreviation  Primer sequence (5´ to 3´) 

Lysyl oxidase like-1 Rat LOXL-1 F: AGGGCCGTCTCAGCGTGGGTAGT 

R: ATGCCTGCACGTAGTTGGGATCTGG 

Lysyl oxidase like-2 Rat LOXL-2 F: GGCCAGCTTCTGCTTGGAGGACAC 

R: GCCTTGTTCTCCGAAGTTGGCACAC 

Lysyl oxidase like-3 Rat LOXL-3 F: ACCCACAGTGCCAAATACGG 

R: TTGCAGATGACCCCAGCATC 

Transforming growth factor-β1 Rat TGF-β1 F: CCATGACATGAACCGACCCT 

R: TGCCGTACACAGCAGTTCTT 

Matrix metalloproteinase-2 Rat MMP-2 F: AAGAGGCCTGGTTACCCTGT 

R: AAGTAGCACCTGGGAGGGAT 

Matrix metalloproteinase-9 Rat MMP-9 F: TCCAGTAGACAATCCTTGCAATGTG 

R: CTCCGTGATTCGAGAACTTCCAATA 

Gap junction protein connexin 43 Rat GJA1 Cx 43 F: AGGCGTGAGGAAAGTACCAA 

R: GCACTCCAGTCACCCATGTC 

Periostin Rat Periostin F: CTGCCCCGGCTATATGAGAA 

R: TGTTGAGTGGTCGTGGCTC 

β2 microglobulin Rat B2m F: CCGTGATCTTTCTGGTGCTT 

R: GTGGAACTGAGACACGTAGC 

Connective tissue growth factor Rat CTGF F: CAAGGGTCTCTTCTGCGACT 

R: GTACACGGACCCACCGAAG 

α-smooth muscle actin Rat α-SMA F: AGCCAGTCGCCATCAGGAAC 

R: CCGGAGCCATTGTCACACAC 

Lysyl oxidase Dog LOX F: CGTACTACATCCAGGCGTCC 

R: GGGAATCTTAGCAGCACCCT 

Lysyl oxidase like-1 Dog LOXL-1 F: AGCCCGGGAACTACATCCT 

R: GTAGTGGATGTTGCAACGCA 

Lysyl oxidase like-2 Dog LOXL-2 F: GGAGAAGACGTACAACGCCA 

R: GAGATATGAGCCTCCGTGCC 

Lysyl oxidase like-3 Dog LOXL-3 F: CAGGATGCTGGAGTCCGATG 

R: CCCCAGTCATCCCCACAAAT 

Lysyl oxidase like-4 Dog LOXL-4 F: AGAGAACTGCCTCTCCCAGT 

R: GAAGACCTCGATGCTGTGGT 

Glucose 6‐phosphate dehydrogenase Dog G6PD F: GGCGGTCACCAAGAACATCC 

R: GCTTCTCCACGATGACACGG 
F: Forward, R: Reverse. 
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Table S2: Statistical linear regression comparison (slopes and Y-intercepts) between WMSI and 

echocardiographic parameters in MI and MI+BAPN rats. 

Myocardial infarction (MI); β-aminopropionitrile (BAPN); Left ventricle (LV); Left atrium (LA); LV anterior wall thickness at end 

diastole (LVAWd); LV posterior wall thickness at end diastole (LVPWd); LV and LA diameter at end diastole (LVDd and LADd); 

LV and LA diameter at end systole (LVDs and LADs); LV volume at end diastole (LVVd); LV volume at end systole (LVVs); 

Fractional shortening (FS); Ejection fraction (EF); Wall motion score index (WMSI); Lateral wall systolic contractility (SL); Septal 

systolic contractility (Ss); Early diastolic transmitral filling velocity (E); Atrial transmitral filling velocity (A); Mitral annulus moving 

velocity during early filling (e'); E wave deceleration time (EDT); Myocardial performance index (MPI); LA area at the end diastole 

(LAAd); LA area at end systole (LAAs); Fractional area changing of LA (FACLA). Linear regression analysis was carried out to assess 

the relationship between the WMSI and echocardiographic parameters. Bold values indicated statistical significance; ND: non 

determined (the slopes differ so much).  

Echocardiographic 

Parameters 

Slope Y-intercept 

MI MI+BAPN P-value  MI MI+BAPN P-value 

LV structural function 

LVAWd -0.5823 -0.2998 0.43  2.571 2.100 0.96 

LVPWd -0.173 -0.114 0.80  2.087 1.832 0.03 

LVDd 2.42 2.46 0.95  5.724 5.288 0.07 

LVDs 4.592 4.836 0.66  -0.547 -1.252 0.07 

LV mass 126.2 262.0 0.47  1048.0 699.5 0.03 

LV mass/LVDd -18.10 -2.93 0.36  159.6 125.4 0.06 

LV systolic function 

LVVd 1.323 1.330 0.98  -0.2465 -0.4254 0.10 

LVVs 1.574 1.563 0.96  -1.744 -1.783 0.37 

FS -28.37 -31.97 0.28  75.00 81.58 0.52 

EF -46.21 -51.55 0.29  134.6 143.6 0.87 

SL -1.703 -0.846 0.43  7.571 5.276 0.009 

SS -1.927 -0.367 0.07  7.643 4.710 0.19 

LV diastolic function 

E/A 1.558 -1.099 0.02  -1.088 1.333 ND 

E/e' Lateral 23.46 18.56 0.59  -12.960 -5.906 0.69 

E/e' Septal 24.540 9.979 0.04  -15.330 5.584 ND 

EDT 0.158 -4.028 0.48  27.88 34.04 0.67 

MPI 

MPIGlobal 36.81 31.09 0.62  -8.584 8.641 0.02 

LA remodeling 

LADd 2.193 1.407 0.28  1.704 2.194 <0.001 

LADs 1.826 1.040 0.25  3.458 4.052 0.001 

LAAd 17.907 10.024 0.19  -7.4898 0.5734 0.009 

LAAs 13.225 5.231 0.12  12.787 20.055 <0.001 

FS -9.926 -9.821 0.986  34.343 38.468 0.0147 

FACLA -24.11 -20.20 0.71  77.28 75.18 0.17 
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Figure S1. 
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Figure S2. 
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Figure S3. 
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Figure S4.  
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Figure S5. 
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Figure S6. 
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Figure S7.  
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Figure S8. 
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Abstract 

Aims: Lysyl oxidase (LOX) isoforms have numerous intra- and extra-cellular functions, including 

collagen and elastin cross-linking, motility and migration of fibroblasts, monocytes and smooth 

muscle cells, transcriptional regulation, apoptosis and proliferation. LOX secreted by cardiac 

fibroblasts has a vital role in the stability of the extracellular matrix (ECM) through elastin and 

collagen cross-linking. Excessive accumulation of cross-linked collagen leads to increase 

myocardial stiffness and fibrosis. This study was to investigate the matrix-dependent and matrix-

independent roles of LOX and LOX-like (LOXL) proteins in regulating cardiac fibroblast and 

myocyte functions. 

Methods and results: The expression of LOX and LOXL-2 in fibroblasts and LOX, LOXL-1, 

LOXL-3 and LOXL-4 in myocytes of left atria (LA) was upregulated in dogs with ventricular 

tachypacing (VTP)-induced congestive heart failure (CHF). Extracellular secretion of LOX and 

LOXL-2 from cultured neonatal rat ventricular fibroblasts and myocytes was increased upon 

stimulation with angiotensin II (Ang II) in a dose-dependent manner. Ang II induced collagen 

cross-linking in cultured neonatal rat ventricular fibroblasts. Upon knockdown of LOX isoforms 

by the siRNA approach in cultured neonatal rat ventricular fibroblasts and myocytes, LOXL-2, 

LOXL-3 and LOXL-4 had possible roles in fibroblast proliferation and collagen synthesis, while 

LOXL-4 might have a protective function against apoptosis through decreasing the ratio of 

BAX/BCL-2 mRNA expression in cardiac fibroblasts and myocytes. siRNA-mediated knockdown 

of LOX isoforms in cultured canine LA myocytes revealed that LOX and LOXL-1 impaired 

cardiomyocyte contractility with slight changes in Ca2+ transients. 
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Conclusions: We conclude that LOX and LOXL proteins in cardiac fibroblasts and myocytes have 

novel roles through mediating matrix-dependent and matrix-independent cardiac functions. 

Upregulation of LOX isoforms in LA fibroblasts and myocytes of a CHF model may have further 

potential in elucidating their mechanisms in cardiac remodeling. 

 

Keywords Heart failure (HF) • Lysyl oxidase (LOX) • LOX-like (LOXL) • Collagen cross-

linking • Fibroblasts • Cardiomyocytes • Ca2+ transient. 

 

1. Introduction 

Heart failure (HF) is a common disorder that is associated with a high mortality rate 1. HF 

commonly occurs secondary to chronic hypertension or myocardial infarction (MI), which 

clinically presents with cardiac fibrosis 2. Excessive production of extracellular matrix (ECM) 

proteins increases myocardial stiffness and changes the heart mechanics, which contribute to the 

pathophysiology of HF 3, 4. Fibroblasts are critical for the maintenance of cardiac structural 

integrity, contributing to normal cardiac properties and playing a major role in remodeling during 

pathological conditions 5. In early studies, fibroblasts were classified as the most predominant cell 

population in the heart, corresponding to 50 % and 27 % of the total cell number in the ventricles 

of rats and mice, respectively 6-8. Recently, Pinto et al. 9 reported that fibroblasts are a less plentiful 

cell population in the mouse heart, corresponding to 10 % of the total cell number. Cardiac 

fibroblasts present as sheets and strands between the cardiomyocytes 10. Myocardial stiffness has 
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several beneficial roles at early stages of collagen deposition, such as wound healing and 

prevention of myocardial infarct expansion before the development of cardiac fibrosis 11. Cross-

linking is initiated by enzymatic (lysyl oxidase; LOX) and non-enzymatic (glycated lysine) 

pathways 12. The LOX family proteins, including LOX and LOX-like proteins (LOXL), are 

copper-dependent amine oxidases that have a vital function in the genesis of connective tissue 

matrices by catalyzing lysine-derived cross-links in elastin and collagen 12-15. To date, five 

isoenzymes have been recognized, including LOX, LOXL-1, LOXL-2, LOXL-3 and LOXL-4 16, 

17. It has been reported that increased LOX levels cause an excessive deposition and stiffness of 

collagen fibrils, leading to cardiac fibrosis 12. Several studies reported that angiotensin II (Ang II) 

has a significant role in cardiac fibrosis 18. Ang II stimulates TGF-β1 production, which mediates 

proliferation of fibroblasts and differentiation into myofibroblasts and collagen secretion 19. Adam 

et al. 20 revealed that LOX expression and collagen abundance were increased in cardiac fibroblasts 

treated with Ang II. Roles of Ang II in the synthesis and secretion of LOXL proteins from cardiac 

fibroblasts and myocytes were not studied previously. LOX isoforms have been implicated in 

several biological processes, including control of epithelial-mesenchymal transition, cell 

migration, adhesion, transformation and gene regulation 21. It is important to study further the 

intracellular roles of LOX isoforms in cardiac fibroblasts and myocytes. Narayan et al. 22 reported 

that HF patients showed Ca2+ handling abnormalities along with a decline in cardiomyocyte 

contractility compared with controls. This study was to evaluate the physiological roles of LOX 

and LOXL proteins in cardiac cells (isolated fibroblasts and myocytes), both matrix-dependent 

(collagen cross-linking) and matrix-independent (apoptosis, proliferation, Ca2+ signaling and cell 

contractility). 
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2. Methods 

2.1 Animal Model 

The Ethics Committee of the Animals Research at the Montreal Heart Institute approved the 

animal care and handling procedures according to the Animal Care guidelines of the Canadian 

Council (NIH Publication 65-23, revised 1996). Adult male mongrel dogs (20-30 kg) were divided 

into three groups: control, non-paced control and congestive heart failure (CHF) induced by two 

weeks of ventricular tachypacing (VTP, 240 bpm). Following sedation with 0.25 mg/kg of 

diazepam, 5.0 mg/kg of ketamine and 1.0-2.0 % halothane, pacemakers were implanted, and the 

hearts were paced at 240 bpm for two weeks to induce heart failure as previously described by 

Tadevosyan et al. 23. At the end of the study, the dogs were anesthetized with α-chloralose (120 

mg/kg intravenously) and morphine (2 mg/kg subcutaneously) under mechanical ventilation. After 

an intra-atrial heparin injection of 10,000 U, the hearts were removed and immersed in ice-cold 

Tyrode’s solution (0.33 mmol/L NaH2PO4.H2O, 5 mmol/L HEPES, 5.4 mmol/L KCl, 136 mmol/L 

NaCl, 10 mmol/L glucose and 1 mmol/L MgCl2.6H2O; pH 7.4) containing Ca2+ (2 mmol/L CaCl2) 

for left atrial (LA) myocyte and fibroblast isolation. Neonatal Wistar rats (2 to 3 days old) were 

obtained from Charles River (Wilmington, MA). Pups were decapitated, followed by heart 

removal. The hearts were washed with free Hank’s balanced salt solution (Ca2+ and Mg2+ support) 

for myocyte and fibroblast isolation.  

2.2 Cardiac fibroblast and myocyte isolation 

Fibroblasts and myocytes were isolated from canine LA according to the method described 

by Tadevosyan et al. 23. Canine atria were perfused with Ca2+-free Tyrode’s solution in aerated 
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oxygen (100 %; 37°C) via the left circumflex coronary artery for 10 min. The atria were digested 

by perfusion of Ca2+-free Tyrode’s solution containing bovine serum albumin (0.1 % BSA, Sigma) 

and 100 U/ml of collagenase type II (CLSII, Worthington) for 1 hr to isolate myocytes and 

fibroblasts. Digested LA tissues were minced into pieces with scissors in Kraftbruhe solution (20 

mM taurine, 10 mM KH2PO4, 0.1 % albumin, 10 mM EGTA, 20 mM KCl, 40 mM mannitol, 70 

mM L-glutamic acid, 10 mM glucose and 10 mM β-hydroxybutyric acid; pH 7.5), followed by 

filtration with 500 μm nylon mesh. The cells were centrifuged at 500 rpm for 5 min to pellet the 

myocytes. The supernatants were centrifuged in sequential order two times at 850 rpm for 5 min 

and 1750 rpm for 6 min to pellet the fibroblasts. Freshly isolated myocytes and fibroblasts were 

immersed in liquid nitrogen and immediately stored in a deep freezer at -80°C for mRNA and 

protein quantification. For contractility and Ca2+ analysis, isolated myocytes were cultured 

immediately in PCELL-100 1X medium (Wisent, Inc., QC, Canada). 

The ventricular myocytes and fibroblasts from neonatal rats were isolated according to the 

method described by Duong et al. 24. Ventricles were isolated and minced after removal of the 

atria. The isolated ventricles were partially digested with trypsin (50 μg/ml) at 4°C for 16 hr, 

followed by the addition of soybean trypsin inhibitor (2 mg/ml). The partially digested ventricles 

were further digested with collagenase (1500 U in 5 ml of Leibovitz L-15 medium) at 37°C for 30 

min with continuous agitation, followed by centrifugation for 5 min at 60 x g. Myocyte pellets 

were suspended in growth medium 199 (supplemented with 1 % penicillin/streptomycin (P/S), 10 

% fetal bovine serum (FBS), 0.2 % insulin/transferrin/selenium (I/T/S)). The supernatants were 

further centrifuged for 5 min at 60 x g, followed by 300 x g for 5 min to pellet the fibroblasts. 

Myocytes were further purified from non-myocytes by using low (40 %) and high density (60 %) 

Percoll gradient (GE Healthcare, Life Science, Broendby, Denmark) according to the procedure 
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described by Golden et al. 25. Isolated fibroblasts and myocytes were cultured for further studies. 

All chemicals and enzymes used for neonatal rat isolation were purchased from Worthington 

Biochemical (Lakewood, NJ, US). 

2.3 Cell culture and treatments 

Canine LA myocytes were cultured on laminin-coated 6-well plates in PCELL-100 1X 

(Wisent, Inc., QC, Canada; supplied with 1 % P/S, 5 % FBS and 1 % I/T/S) and then incubated at 

37°C for 24 hr in a humidified atmosphere (5 % CO2). Neonatal rat ventricular myocytes and 

fibroblasts were cultured in 6-well plates (Corning Inc., Corning, NY, US) with medium 199 

(supplemented with 1 % P/S, 10 % FBS, 0.2 % I/T/S) and then incubated in a humidified 

atmosphere (5 % CO2) at 37°C.  

Cultured neonatal rat ventricular myocytes and fibroblasts were maintained in culture for 3 

days and then rendered quiescent in medium without serum for 24 hr. Cells were treated with 

different concentrations of Ang II (0.1, 1.0 and 10.0 µM; Sigma-Aldrich, St. Louis, MO, US) or 

β-aminopropionitrile (BAPN; 0.1, 1.0, 10.0 and 100.0 µM; Santa Cruz Biotechnology, Dallas, TX, 

USA) for 24 hr for quantitative real-time polymerase chain reaction (qPCR) analysis, 48 hr for 

Western blot analysis and 72 hr for collagen assay.  

2.4 Cell transfection 

Canine LA myocytes, neonatal rat ventricular fibroblasts, and neonatal rat ventricular 

myocytes were transfected 2, 24, and 24 hr after plating, respectively. Cultured cells were 

transfected with 100 nM small interfering RNA (siRNA; Invitrogen, Carlsbad, CA, USA) or 

scrambled control (ScRNA; Invitrogen, Carlsbad, CA, USA) using lipofectamine RNAiMAX 
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(LifeTechnologies, Carlsbad, CA, US) in Opti-MEM medium (LifeTechnologies, Carlsbad, CA, 

US). Supernatants and cells from cultured neonatal rat ventricular fibroblasts and myocytes were 

collected at 24 and 48 hr after transfection for RNA and protein isolation, respectively. Cultured 

canine LA myocytes were collected 24 hr after transfection for measurement of cell shortening 

and Ca2+ transients. Recombinant adenoviral vectors for LOX (Aden-LOX) and negative control 

green fluorescent protein (Aden-GFP) were prepared using the AdEasy system as described by He 

et al. 26 and Luo et al. 27. Canine LA myocytes were infected with Aden-LOX or Aden-GFP at the 

indicated multiplicity of infection for 24 hr. Supplementary Table S1 demonstrates the sequences 

of siRNA for LOX, LOXL-1, LOXL-2, LOXL-3 and LOXL-4 used in this study. 

2.5 Colorimetric cell proliferation assay 

Cell proliferation was measured using a colorimetric Cell Counting Kit-8 (water soluble 

tetrazolium salt (WST-8), Dojindo, Japan) according to the method previously described by Li et 

al. 28. Dehydrogenases in viable cells reduced WST-8 and produced formazan dye (orange color). 

Neonatal rat ventricular fibroblasts were plated in 96-well plates at a density of 2000 cells/100 µl 

in each well with complete medium (M199 with 10 % FBS). After 24 hr, the media was replaced 

with serum-free media (M199 with 0 % FBS). Twenty-four hours later, the cells were transfected 

with scrambled control, siLOX, siLOXL-1, siLOXL-2, siLOXL-3 and siLOXL-4. Ten microliters 

of WST-8 solutions added to each well of the 96-well plate after 24 hr, followed by incubation for 

an additional 2 hr at 37°C. The number of viable cells was determined by monitoring the 

absorbance at 450 nm using a microplate reader. The absorbance represented the amount of 

liberated formazan dye, which is proportional to the number of viable cells. 
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2.6 Protein quantification by immunoblotting 

Protein quantification was carried out by Western blot analysis according to the protocol 

described by Surinkaew et al. 29. Cultured cardiac fibroblasts and myocytes were collected in a 

cold lysis buffer (5 M NaCl, 1 M Tris HCl (pH 7.5), 20 % sodium dodecyl sulfate (SDS), 10 % 

Triton, 100 % glycerol, 0.5 M phenylmethanesulfonyl fluoride (PMSF), protease and 

phosphatase inhibitor cocktail). Lysed samples and media of cultured fibroblasts and myocytes 

were mixed with loading buffer (0.5 M Tris HCl (pH 6.8), 20 % SDS, 100 % glycerol, 

dithiothreitol (DTT) and 0.3 % bromophenol blue) and then incubated at 95°C for 5 min. Protein 

samples were separated by SDS-polyacrylamide gel electrophoresis (SDS-PAGE; gradient gel 

4-20 %) and then transferred onto polyvinylidene difluoride membranes (PVDF; EMD 

Millipore, Billerica, MA, US) for 80 min at 90 volts. The membranes were immersed in 

blocking solution (0.1 ml of Tween 20 and 5.0 g of non-fat dry milk (NFDM) in 100 ml of Tris-

buffered saline (TBS)) for 1.5 hr and then incubated with primary antibodies with continuous 

mixing at 4°C for 16 hr. The membranes were washed with 0.1 % Tween 20 in TBS (v/v; 3 X 

15 min) and then incubated with secondary antibodies with continuous mixing at 24°C for 1 hr. 

Immunoreactive protein bands were visualized with Western Lightning Plus ECL reagent 

(PerkinElmer, Waltham, MA, US) and Kodak film. Protein expression was calculated using 

ImageJ software and normalized to glyceraldehyde 3-phosphate dehydrogenase (GAPDH) 

density from the same samples and membranes. The blots were probed with antibodies of anti-

LOX (1:5000, ab174316, Abcam), anti-LOXL-1 (1:2000, PA5-44213, Thermo Fisher), anti-

LOXL-2 (1:2000, ab96233; Abcam), anti-LOXL-3 (1:2000, PA5-45074, Thermo Fisher), anti-

LOXL-4 (1:1000, ab88186, Abcam) and anti-GAPDH (1:10,000, 10R-G109A, Fitzgerald). 

Horseradish peroxidase (HRP)-conjugated secondary antibodies were used in 1:10,000 dilution 

https://int.search.tb.ask.com/search/GGmain.jhtml?enableSearch=true&rdrct=no&st=sb&p2=%5EBSB%5Expt949%5ETTAB02%5Eca&ptb=7A405F0E-67C6-4792-A8FF-69868D45C7B3&n=78499e70&si=july15&tpr=sc&searchfor=polyvinylidene+difluoride
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(goat anti-rabbit, donkey anti-rabbit and donkey anti-mouse; Jackson ImmunoResearch 

Laboratories, West Grove, PA, US). 

2.7 Determination of mRNA by qPCR 

Determination of mRNA was carried out according to the method described by Duong et 

al. 24. Cultured cardiac fibroblasts and myocytes were suspended in Trizol reagent (Invitrogen, 

Carlsbad, CA, US). RNA was extracted with the miRNeasy Mini Kit (Qiagen, MD, Germany). 

RNA quantification and qualification were estimated using a Nanodrop spectrophotometer. 

cDNA was synthesized from 250 ng of total RNA with the High Capacity cDNA Reverse 

Transcription Kit (SuperArray, Applied Biosystems, Foster City, CA, US). qPCR was 

performed with SuperArray SYBR Green PCR kits (Applied Biosystems, Foster City, CA, US), 

TaqMan Universal Master Mix (Applied Biosystems, Foster City, CA, US), custom-made 

SYBR Green primers (glucose 6-phosphate dehydrogenase (G6PD), α-smooth muscle actin (α-

SMA), B-cell lymphoma 2 (BCL-2), BCL-2-associated X protein (BAX), cyclin D1 (CCND 

1), cyclin E2 (CCNE 2), matrix metalloproteinase 2 (MMP-2), MMP-9, periostin, transforming 

growth factor β (TGF-β1), connective tissue growth factor (CTGF), LOX, LOXL-1, LOXL-2, 

LOXL-3 and LOXL-4; Applied Biosystems, Foster City, CA, US; Supplementary Table S2), 

TaqMan probes (LOX (Assay ID: Rn01491829_m1), GAPDH (Assay ID: Rn01775763_g1), 

collagen 1A1 (Col 1A1; Assay ID: Rn01463848_m1), collagen 3A1 (Col 3A1; Assay ID: 

Rn01437681_m1) and fibronectin 1 (FN 1; Assay ID: Rn00569575_m1); Applied Biosystems, 

Foster City, CA) and SYBR primer (LOXL-4 (Assay ID: qRnoCID0018064; Bio-Rad, 

California, US). The relative quantifications for all samples were calculated with the 



 

158 

comparative threshold cycle (2-ΔΔCt) method 30. GAPDH and G6PD were used as internal 

standards for rats and dogs, respectively. 

2.8 Soluble and insoluble collagen analysis  

Cultured fibroblasts treated with BAPN or Ang II were subjected to soluble and insoluble 

collagen determination according to the colorimetric method that was described by Chang et al. 

31 using a total collagen assay kit (QuickZyme BioSciences, Leiden, Netherlands). The 

hydroxyproline contents in supernatants and cells were used to measure soluble and insoluble 

collagen, respectively. The supernatants and cells were hydrolyzed in 6.0 M HCl by heating at 

95°C/21 hr. The hydroxyproline content in the hydrolyzed supernatants and cells was measured 

using the QuickZyme assay kit. Thirty-five microliters from each hydrolyzed sample was mixed 

with QuickZyme reagents in 96-well plates according to the manufacturer protocol. The 

absorbance of each sample was measured at 570 nm using a microplate reader. The soluble and 

insoluble collagen content of each sample was expressed as µg/well (6-well plate, cell density 

500,000 cells/well for Ang II treatments and 300,000 cells/well for BAPN treatments) 

according to the standard curve of hydroxyproline content in collagen stock solution 

(QuickZyme assay kit). The degree of collagen cross-linking was calculated as the ratio of 

insoluble to total collagen. 

2.9 Measurement of Ca2+ fluorescence and cell shortening 

Canine LA myocytes were cultured with PCELL-100 1X (Wisent, Inc., QC, Canada) on 

borosilicate glass coverslips and then incubated with 5 μM Indo-1 AM (Invitrogen, Carlsbad, CA, 

USA) for 15 min, followed by intracellular de-esterification while superfused with medium 199 
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(without phenol red) at 37°C along with stimulation (1 Hz, 40 V) for 15 min. Ultraviolet light (340 

nm) was used to excite the Indo-1, and the ratio of fluorescence emissions (R400/500) was calculated 

after subtraction of background as an indicator of intracellular Ca2+ concentration. Cell shortening 

was monitored from field-stimulated cardiomyocytes with a video edge detector attached to a 

charge-coupled device camera as previously described by Yeh et al. 32. Cell shortening was 

measured from an average of 10 consecutive contractions. 

2.10 Statistical analysis  

The results are presented as the means ± standard error mean (SEM). Statistical analysis 

was performed using GraphPad Prism 7 for Windows (GraphPad Software, La Jolla, CA). 

Unpaired Student’s t-tests were performed to compare two groups. One-way analysis of 

variance (ANOVA) followed by the Bonferroni’s multiple comparisons test was performed 

between more than two groups; *P < 0.05; **P < 0.01; ***P < 0.001. 

 

3. Results 

3.1 Increased LOX and LOXL protein expression in LA fibroblasts and myocytes of CHF 

dogs 

Numerous changes occur in CHF, including upregulation of atrial interstitial fibrosis and 

development of progressive AF 33. We analyzed the mRNA and protein levels of LOX isoforms 

(LOX, LOXL-1, 2, 3 and 4) in LA fibroblasts and myocytes of control and CHF dogs. The mRNA 

and protein levels of LOX isoforms increased to different degrees in LA myocytes and fibroblasts 
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of CHF dogs compared with controls. The protein and mRNA expression levels of LOX and 

LOXL-1, 3 and 4 were significantly upregulated in the LA myocytes of CHF dogs (P < 0.001 and 

P < 0.001, P = 0.02 and P < 0.001, P = 0.02 and P < 0.001, and P = 0.007 and P = 0.002, 

respectively) compared with controls (Figure 1F-G, I-J and L and Figure 2F-G and I-J). However, 

the protein and mRNA expression levels of LOX and LOXL-2 were significantly increased in the 

LA fibroblasts of CHF dogs (P = 0.03 and P = 0.01, P = 0.03 and P < 0.001, respectively) 

compared with controls (Figure 1A, C and K and Figure 2A and C). The mRNA of LOXL-2 in 

LA myocytes and LOXL-4 in LA fibroblasts was significantly increased in CHF dogs compared 

with controls (P < 0.001 and P = 0.02, respectively; Figure 2H and E), whereas their 

immunoreactivity was unaffected. The upregulation of all LOX isoforms in LA myocytes and 

LOX, LOXL-2 and LOXL-4 in LA fibroblasts of the CHF model suggested that these isoforms 

may have significant roles in cardiac myocyte and fibroblast function during CHF progression. 

3.2 Ang II increased LOX and LOXL-2 secretion from neonatal rat ventricular fibroblasts 

and myocytes  

The effect of treatment with different concentrations of Ang II (0.1, 1.0 and 10.0 µM) in 

cultured cardiac fibroblasts and myocytes on the intra- and extra-cellular protein and mRNA 

expression of LOX isoforms was determined by Western blot and qPCR. Conditioned culture 

media was reserved to assess extracellular LOX isoform immunoreactivity. Ang II failed to 

produce any significant changes in the abundance of LOX isoform mRNA in either fibroblasts or 

myocytes (Supplementary Figures S1A-E and 2A-E). Regarding the intracellular protein levels in 

cultured cardiac fibroblasts and myocytes, LOX, LOXL-2, LOXL-3 and LOXL-4 did not change 

significantly upon treatment with Ang II (Supplementary Figure S1F and H-K and Supplementary 
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Figure S2F and H-K). However, intracellular LOXL-1 immunoreactivity was significantly 

increased upon treatment of cardiomyocytes with 1.0 or 10.0 µM Ang II (1.21±0.03 and 

1.24±0.04-fold change, respectively) compared with controls (0.0 µM Ang II; 1.0±0.05-fold 

change; Supplementary Figure S2G and K). Furthermore, LOX and LOXL-2 proteins were 

secreted from cultured cardiac fibroblasts and myocytes, while LOXL1, LOXL-3 and LOXL-4, 

were not detected in the conditioned media from either fibroblasts or myocytes. Extracellular LOX 

immunoreactivity was increased in cultured fibroblasts (1.47±0.16-fold change; Figure 3A and C) 

whereas that of LOXL-2 increased in media from cardiomyocytes (1.42±0.11-fold change; Figure 

3F and H) upon treatment with 10.0 µM Ang II compared with controls (0.0 µM Ang II; 1.00±0.06 

and 1.00±0.06-fold change, respectively). 

3.3 Ang II stimulated collagen cross-linking and BAPN attenuated collagen cross-linking in 

neonatal rat ventricular fibroblasts 

There were non-significant changes in soluble and insoluble collagen upon treatment of 

cultured fibroblasts with Ang II (Figure 4A-B). The collagen cross-linking ratio was significantly 

increased upon treatment of cultured fibroblasts with 10.0 µM Ang II (0.30±0.04; Figure 4C) 

compared with controls (0.0 µM Ang II; 0.19.0±0.02). Our data revealed that Ang II increased the 

collagen cross-linking ratio in cultured cardiac fibroblasts by increasing the amount of insoluble 

collagen and decreasing the soluble collagen content. Treatment of cultured fibroblasts with 100.0 

µM BAPN increased the amount of soluble collagen (45.28±7.69 µg/well) and decreased the cross-

linking ratio (0.12±0.03) compared the controls (0.0 µM BAPN; 21.82±1.92 µg/well and 

0.32±0.03, respectively; Figure 4D and F). However, the content of insoluble collagen was not 

significantly decreased upon treatment of fibroblasts with BAPN (Figure 4E). Furthermore, there 
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were no significant changes in the mRNA abundance for any of the LOX isoforms upon treatment 

with BAPN in cultured cardiac fibroblasts (Supplementary Figure S3A-E). These results showed 

that BAPN decreased the collagen cross-linking ratio in cultured cardiac fibroblasts by increasing 

soluble collagen and decreasing insoluble collagen. 

3.4 LOX and LOXL immunoreactivity was reduced by specific siRNA approaches in 

neonatal rat ventricular fibroblasts and myocytes 

The expression of individual LOX isoforms in cultured cardiac fibroblasts and myocytes 

were efficiently suppressed using siRNA (Figure 5 and Supplementary Figure S4). Multiple 

specific siRNAs were used in combination to achieve a suitable knockdown efficiency. The 

knockdown of LOXL-1 resulted in the decrease both LOX and LOXL-1 mRNAs in cardiac 

fibroblasts (Figure 5A-B) and myocytes (Supplementary Figure S4A-B). In response to the 

knockdown of LOXL-2, the mRNA of both LOXL-2 and LOXL-3 was reduced in cardiac 

fibroblasts (Figure 5C-D) and myocytes (Supplementary Figure S4C-D), while knockdown of 

LOXL-3 yielded a significant reduction in the mRNA of LOXL-2, LOXL-3 and LOXL-4 in 

cardiac fibroblasts (Figure 5C-E) and myocytes (Supplementary Figure S4C-E). The secretion of 

LOX or LOXL-2 immunoreactivity by fibroblasts and myocytes decreased after knockdown of 

LOX or LOXL-2, respectively (Figure 5F and Supplementary Figure S4F). The siRNA pools of 

LOX and LOXL-4 were specific in cultured cardiac fibroblasts and myocytes. However, siRNA 

pools for LOXL-1, LOXL-2 and LOXL-3 were not specific in cultured cardiac fibroblasts and 

myocytes.  
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3.5 Knockdown of individual LOX isoforms altered the expression of profibrotic markers in 

neonatal rat ventricular fibroblasts 

Knockdown of LOXL-3 in cultured fibroblasts significantly decreased COL 1A1 mRNA 

(0.58±0.05-fold change; Figure 6A) compared with ScRNA (1.00±0.10-fold change; Figure 6A), 

while the COL 1A1 mRNA did not significantly change upon knockdown of other isoforms 

(Figure 6A). CTGF mRNA was significantly decreased upon knockdown of LOX (0.44±0.10-fold 

change; Figure 6E) or LOXL-4 (0.26±0.05-fold change; Figure 6E) in cultured cardiac fibroblasts 

compared with ScRNA (1.00±0.16-fold change; Figure 6E). α-SMA mRNA increased upon 

knockdown of LOXL-2 (1.45±0.14-fold change; Figure 6G) in cultured cardiac fibroblasts 

compared with ScRNA (1.00±0.04-fold change; Figure 6G). The abundance of COL 3A1, FN 1, 

TGF-β1, periostin, MMP-2 and MMP-9 transcripts was not significantly altered upon knockdown 

of any of the LOX isoforms in cultured cardiac fibroblasts (Figure 6B-D, F and H-I). These results 

revealed that knockdown of LOXL-3 decreased the collagen synthesis, whereas knockdown of 

LOX or LOXL-4 reduced the abundance of CTGF mRNA. However, knockdown of LOXL-2 

increased α-SMA mRNA. 

3.6 Knockdown of individual LOX isoforms altered proliferation and the expression of 

proliferation and apoptotic markers in neonatal rat ventricular cells 

Fibroblast proliferation was significantly decreased upon knockdown of LOXL-2, LOXL-3 

or LOXL-4 (0.69±0.04, 0.73±0.06 or 0.59±0.05-fold change, respectively; Figure 7A) compared 

with ScRNA (1.00±0.08-fold change; Figure 7A). The abundance of CCNE 2 mRNA was 

decreased upon knockdown of LOXL-2 (0.35±0.06-fold change; Figure 7B) or LOXL-3 

(0.55±0.07-fold change; Figure 7B) in cultured neonatal rat fibroblasts compared with ScRNA 
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(1.00±0.19-fold change; Figure 7B). CCND 1 mRNA was not significantly different upon 

knockdown of individual LOX isoforms in cultured cardiac fibroblasts (Figure 7C). Our data 

revealed that LOXL-2, LOXL-3 and LOXL-4 have a role in regulating fibroblast proliferation. 

BAX mRNA was less abundant upon knockdown of LOXL-3 (0.50±0.02-fold change; Figure 7D) 

in cultured cardiac fibroblasts compared with ScRNA (1.00±0.07-fold change Figure 7D), while 

BCL-2 mRNA was significantly decreased upon knockdown of LOXL-1 (0.62±0.09-fold change; 

Figure 7E) or LOXL-4 (0.40±0.06-fold change; Figure 7E) compared with ScRNA (1.00±0.07-

fold change; Figure 7E). BAX mRNA was not affected by knockdown of individual LOX isoforms 

in cultured cardiac myocytes (Figure 8A). However, the BCL-2 mRNA was decreased upon 

knockdown of LOXL-4 (0.58±0.09-fold change; Figure 8B) in cultured cardiac myocytes 

compared with ScRNA (1.00±0.10-fold change; Figure 8B). The BAX/BCL-2 mRNA ratio was 

significantly increased upon knockdown of LOXL-4 in both fibroblasts and myocytes (2.26±0.21 

and 2.60±0.48-fold change, respectively; Figure 7F and Figure 8C) compared with ScRNA 

(1.00±0.07 and 1.00±0.16-fold change, respectively; Figure 7F and Figure 8C).  

3.7 Knockdown or overexpression of individual LOX isoforms altered cell shortening with 

little change in Ca2+ transients in canine LA myocytes 

The knockdown of individual LOX isoforms and overexpression of LOX in canine LA 

myocytes were specific and efficient (Supplementary Figure S5 and Figure S6). Cell shortening 

was significantly increased upon knockdown of LOXL-1 (siRNA: 6.2±0.9 %, ScRNA: 3.8±0.4 %, 

P = 0.02, Figure 9A), while cell shortening was not significantly increased upon knockdown of 

LOX (P = 0.06; 5.8±0.5 %; Figure 9A). However, knockdown of LOXL-2, LOXL-3 or LOXL-4 

had no effect on cardiomyocyte shortening. Analysis of Ca2+ transients revealed non-significant 
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increases in the diastolic baseline, amplitude and decay time constant upon knockdown of LOX or 

LOXL-1 (Figure 9B-D). Our results indicated that LOX and LOXL-1 had a role in the modulation 

of cardiomyocyte contractility with little effect on Ca2+ transients. Cell shortening was 

significantly decreased upon overexpression of LOX by adenovirus (P = 0.007; 4.0±0.7 %; 

Supplementary Figure S7A) in cultured canine LA myocytes compared with Aden-GFP (7.1±0.8 

%; Supplementary Figure S7A). Whereas diastolic Ca2+ level, Ca2+ amplitude, and decay time 

constant were unaffected (Supplementary Figure S7B-D). 

 

4. Discussion 

Many studies showed that the LOX secreted from fibroblast has a vital role in cardiac fibrosis 

through collagen cross-linking and excessive deposition of collagen. However, no information is 

currently available on the roles of other LOX isoforms (LOXL-1, LOXL-2, LOXL-3 and LOXL-

4) in cardiac cell function. In the current study, the main findings were the following: (a) 

upregulation of LOX, LOXL-1, LOXL-3 and LOXL-4 in LA myocytes and LOX and LOXL-2 in 

LA fibroblasts isolated from a canine model of CHF, (b) secretion of LOX and LOXL-2 proteins 

from cardiac myocytes and fibroblasts, (c) Ang II induced a dose-dependent increase in LOX and 

LOXL-2 secretion from cardiac myocytes and fibroblasts, (d) Ang II increased collagen cross-

linking ratio in cultured cardiac fibroblasts by increasing insoluble collagen and decreasing soluble 

collagen, (e) LOXL-2, LOXL-3 and LOXL-4 had distinct effects on fibroblast proliferation and 

collagen synthesis relative to the other LOX isoforms, (f) LOXL-4 might have an anti-apoptotic 

effect through decreasing the ratio of BAX/BCL-2 mRNA in cardiac fibroblasts and myocytes and 

(g) LOX and LOXL-1 impaired cardiac myocyte contractility with little change in Ca2+ transients. 
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At the protein level, LOX, LOXL-1, LOXL-3 and LOXL-4 were significantly upregulated 

in LA myocytes of CHF dogs, whereas LOX and LOXL-2 were significantly upregulated in LA 

fibroblasts isolated from CHF dogs. There is currently no literature on the regulation of LOX 

isoforms in atrial myocytes and fibroblasts isolated from models of HF. The results of this study 

provide new insight into the role of LOX isoforms in LA myocytes and fibroblasts in the atrial 

fibrotic pathway during CHF progression. LOX isoforms have numerous intra- (matrix-

independent) and extra-cellular (matrix-dependent) functions, including elastin and collagen cross-

linking 21, 34. Cardiac fibroblasts have a critical function in the genesis and remodeling of the ECM 

34-36. Collagens, type I and III, are the major cardiac structural ECM proteins 37. LOX is secreted 

from cardiac fibroblasts 38 and has a role in cross-linking collagen, which is essential for increasing 

the stability and strength of collagen fibers 34. Upregulation of LOX leads to excessive 

accumulation of cross-linked collagen, which increases myocardial stiffness and fibrosis 12. 

Communication between cardiac fibroblasts and myocytes under normal conditions is important 

for maintaining heart function 39. Takeda and Manabe 40 reported that cardiomyocytes affect 

fibroblast function, such as differentiation, proliferation and secretion of ECM proteins, leading to 

interstitial fibrosis through secretion of TGF-β, Ang II and other profibrotic molecules 40, 41. Adam 

et al. 42 found that Ang II increases LOX immunoreactivity in cardiac fibroblasts. Our study 

showed that LOX isoforms were upregulated in LA myocytes and fibroblasts from CHF dogs. This 

is the first study to report the synthesis of LOX isoforms and the secretion of active LOX and 

LOXL-2 from cardiomyocytes and LOXL-2 from cardiac fibroblasts. Our results suggest LOX 

and LOXL-2 secreted from cardiomyocytes may act synergistically with LOX and LOXL-2 from 

fibroblasts in cardiac fibrosis. However, LOXL-1, LOXL-3 and LOXL-4 were not detected in 

conditioned media from cardiac fibroblasts and myocytes. The results indicated that Ang II 
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stimulated the secretion of LOX and LOXL-2 from cardiac fibroblasts and myocytes with little 

change in their intracellular levels. LOX and LOXL-2 in cardiac myocytes and fibroblasts may be 

downstream targets of Ang II in mediating cardiac fibrosis. We noted that the intracellular protein 

expression of LOXL-1 was increased in cultured cardiomyocytes upon stimulation with Ang II. 

Our results are consistent with the finding of Ohmura et al. 43, who reported the upregulation of 

LOXL-1 expression in cultured cardiomyocytes treated with hypertrophic agonists, such as Ang 

II. This result indicated that LOXL-1 may have an intracellular function in cardiac myocytes. 

To date, no studies have addressed the intracellular (matrix-independent) roles of individual 

LOX isoforms in cardiac fibroblasts and myocytes. We used individual siRNA for LOX isoforms 

to investigate the involvement of each LOX isoform in apoptosis and proliferation of fibroblasts 

as well as the synthesis of profibrotic markers. Our results revealed that knockdown of LOX or 

LOXL-4 in cardiac fibroblasts and myocytes was specific, whereas the knockdown of LOXL-1, 

LOXL-2 or LOXL-3 was not. Mizikova et al. 44 reported that knockdown of individual LOX, 

LOXL-1 or LOXL-2 in cultured mouse lung fibroblasts had an impact on the expression of each 

other through compensatory or direct effects. However, Aumiller et al. 45 found that knockdown 

of individual LOX isoforms in cultured human lung fibroblasts was efficient and selective. 

Upregulation of LOX family members is associated with an imbalance in degradation and 

synthesis of ECM proteins, leading to cardiac fibrosis 46, 47. Upon knockdown of LOXL-3, the 

abundance of LOXL-2, LOXL-3 and LOXL-4 mRNA was decreased. Knocking down LOXL-3 

in cardiac fibroblasts also reduced the abundance of COL 1A1 and COL 3A1 transcripts. These 

findings suggested a synergistic effect of LOXL-2, LOXL-3 and LOXL-4 in promoting collagen 

synthesis from cardiac fibroblasts. Our results demonstrated that knockdown of LOX or LOXL-4 
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decreased CTGF mRNA in cardiac fibroblasts. CTGF is an important mediator of ECM protein 

synthesis during the progression of fibrosis, including collagen type I 48, 49. Adam et al. 42 showed 

that treatment of cultured cardiac fibroblasts with CTGF increased LOX protein expression and 

the knockdown of CTGF attenuated the Ang II-induced increase in LOX immunoreactivity. 

Upregulation of α-SMA expression is a hallmark of the differentiation of fibroblasts into 

myofibroblasts 36. In the current study, we found that the abundance of LOXL-2 and LOXL-3 

mRNA was decreased upon knockdown of LOXL-2 in cardiac fibroblasts along with an increase 

in α-SMA mRNA. These results suggested that a harmonic effect of LOXL-2 and LOXL-3 

suppression may increase the differentiation of fibroblasts into myofibroblasts.  

There is currently no literature available on the intracellular roles of LOX isoforms in 

regulating normal cardiac cell function. Apart from the extracellular role of LOX isoforms in the 

cross-linking of ECM proteins, several studies have reported the intracellular roles of LOX 

isoforms in other organs, such as apoptosis, proliferation as well as the regulation of the 

transcription of ECM proteins 28, 50-53. Cyclin-dependent kinases, such as CCNE 2 and CCND 1, 

are essential for controlling the cell cycle and proliferation 54. Our findings demonstrated that 

intracellular LOXL-2, LOXL-3 and LOXL-4 have a unique role in promoting cardiac fibroblast 

proliferation. This finding is important due to the greater structural similarity between LOXL-2, 

LOXL-3 and LOXL-4 compared with LOX and LOXL-1. LOX and LOXL-1 are more similar in 

chemical structure, and they have distinctive pro-peptide areas, while LOXL-2, LOXL-3 and 

LOXL-4 are more similar in chemical structure and contain four conserved scavenger receptor 

cysteine rich (SRCR) domains in their N-terminal 55. The present study suggests that LOXL-4 may 

have a protective effect against apoptosis in cardiac fibroblasts and myocytes. LOX has a role in 

promoting apoptosis via compromising the AKT signaling pathway in breast and lung cancer cells 
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56-58. A recent study noted that knockdown of LOX or inhibition of LOX by BAPN leads to 

decreased BAX expression, thus protecting against apoptosis in diabetic retinopathy 52. Raisova et 

al. 59 stated that an increase in the BAX/BCL-2 expression ratio is an indicator of cellular 

susceptibility to apoptosis.  

This study demonstrated an increase in LOX isoform expression in LA myocytes in a canine 

model of CHF. Previous studies revealed a progressive decrease in cardiac function along with 

intracellular Ca2+ abnormalities in CHF models 32, 60. Our data revealed that knockdown of LOX 

and LOXL-1 in canine LA myocytes improved contractility, while overexpression of LOX 

decreased cardiomyocyte contractility. While having little effect on Ca2+ transients. The decline in 

cardiomyocyte contractility in CHF can be due to several mechanisms, including alterations in 

myofilament function, the cytoskeleton and Ca2+ handling 61. de Tombe 61 reported that the 

contractile dysfunction during CHF is due to the decline in force generation by the contractile 

proteins at any level of intracellular Ca2+. Our findings provide the first evidence that LOX and 

LOXL-1 may participate in cardiomyocyte contractile dysfunction.  

5. Conclusions 

Our study demonstrated that the expression of LOX isoforms in LA myocytes and fibroblasts 

were increased in a CHF dog model. LOX and LOXL-2 were secreted from cultured neonatal rat 

ventricular myocytes and fibroblasts. Ang II stimulated the secretion of LOX and LOXL-2 from 

cultured neonatal rat ventricular fibroblasts and myocytes along with an increase in collagen cross-

linking in cultured neonatal rat ventricular fibroblasts. Furthermore, LOXL-4 might have an anti-

apoptotic effect by decreasing the ratio of BAX/BCL-2 mRNA in cardiac fibroblasts and 

myocytes. LOXL-2, LOXL-3 and LOXL-4 appear to be involved in cardiac fibroblast proliferation 
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and collagen synthesis, whereas LOX and LOXL-1 altered cardiac myocyte contractility. Hence, 

in cardiac fibroblasts and myocytes, intracellular LOXL-2, LOXL-3 and LOXL-4 and extracellular 

LOX and LOXL-2 may have roles in the fibrotic response. 
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Figure Legends 

Figure 1. Lysyl oxidase (LOX) and LOX-like (LOXL) immunoreactivity was increased in the 

left atrial (LA) fibroblasts and myocytes from congestive heart failure (CHF) dogs. Basal 

immunoreactivity of LOX isoforms in cardiac fibroblasts (Fbs; n = 7; A-E); (A) LOX, (B) LOXL-

1, (C) LOXL-2, (D) LOXL-3 and (E) LOXL-4 and myocytes (CM; n = 7; F-J); (F) LOX, (G) 

LOXL-1, (H) LOXL-2, (I) LOXL-3 and (J) LOXL-4. (K) Representative Western blots of LOX 

isoforms from Fbs. (L) Representative Western blots of LOX isoforms from CM. Band intensities 

were normalized to that of glyceraldehyde 3-phosphate dehydrogenase (GAPDH). The results are 

the means ± SEM; unpaired Student’s t-tests were performed. *P < 0.05; **P < 0.01; ***P < 

0.001. 

Figure 2. The abundance of lysyl oxidase (LOX) isoform mRNA expressions were increased 

in the left atrial (LA) fibroblasts and myocytes from congestive heart failure (CHF) dogs. 

Basal abundance of LOX isoform transcripts in cardiac fibroblasts (Fbs; n = 8; A-E); (A) LOX, 

(B) LOX-like protein 1 (LOXL-1), (C) LOXL-2, (D) LOXL-3 and (E) LOXL-4 and myocytes 

(CM; n = 9; F-J); (F) LOX, (G) LOXL-1, (H) LOXL-2, (I) LOXL-3 and (J) LOXL-4. The 

abundance of LOX isoform mRNA was normalized to that of glucose 6‐phosphate dehydrogenase 

(G6PD). The results are the means ± SEM; unpaired Student’s t-tests were performed. *P < 0.05; 

**P < 0.01; ***P < 0.001. 

Figure 3. Angiotensin II (Ang II) increased lysyl oxidase (LOX) and LOX-like protein 2 

(LOXL-2) secretion from neonatal rat ventricular fibroblasts and myocytes. Effect of 

treatment with different concentrations of Ang II (0.1, 1.0 and 10.0 µM) on the abundance of LOX 

and LOXL-2 immunoreactivity in conditioned media from cardiac fibroblast cultures (Fbs; n = 4; 

(A) LOX, (B) LOXL-2, (C) representative Western blots of LOX and (D) representative Western 

blots of LOXL-2) and myocytes (CM; n = 4; (E) LOX, (F) LOXL-2, (G) representative Western 

blots of LOX and (H) representative Western blots of LOXL-2). Band intensities were normalized 

to cell number. The results are the means ± SEM; one-way ANOVA followed by the Bonferroni’s 

multiple comparisons test was performed. *P < 0.05 vs. control; **P < 0.01 vs. control; ***P < 

0.001 vs. control. 
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Figure 4. Angiotensin II (Ang II) stimulated collagen cross-linking and β-aminopropionitrile 

(BAPN) attenuated collagen cross-linking in neonatal rat ventricular fibroblasts. Effect of 

treatment with different concentrations of Ang II (0.1, 1.0 and 10.0 µM; A-C) and BAPN (0.1, 1.0, 

10.0 and 100.0 µM; D-F) in fibroblasts on the collagen content, including (A) Ang II doses vs. 

soluble collagen, (B) Ang II doses vs. insoluble collagen, (C) Ang II doses vs. collagen cross-

linking ratio, (D) BAPN doses vs. soluble collagen, (E) BAPN doses vs. insoluble collagen and 

(F) BAPN doses vs. collagen cross-linking ratio. The results are the means ± SEM; one-way 

ANOVA followed by the Bonferroni’s multiple comparisons test was performed, n = 6, *P < 0.05 

vs. control; **P < 0.01 vs. control; ***P < 0.001 vs. control. 

Figure 5. Lysyl oxidase (LOX) isoform expression was efficiently suppressed in neonatal rat 

ventricular fibroblasts using siRNA. The efficiency and specificity of LOX isoform knockdown 

was estimated by qPCR (A-E) and validated by Western blot (F). Effect of knocking down 

individual LOX isoforms in fibroblasts (n = 5) using siRNA on the mRNA of (A) LOX, (B) LOX-

like protein 1 (LOXL-1), (C) LOXL-2, (D) LOXL-3, (E) LOXL-4 and (F) representative Western 

blots of LOX isoforms. The abundance of LOX isoform mRNA was normalized to that of 

glyceraldehyde 3-phosphate dehydrogenase (GAPDH). The results are the means ± SEM; one-

way ANOVA followed by the Bonferroni’s multiple comparisons test was performed. *P < 0.05 

vs. scrambled control (ScRNA); **P < 0.01 vs. ScRNA; ***P < 0.001 vs. ScRNA. 

Figure 6. Knockdown of individual lysyl oxidase (LOX) isoforms altered the expression of 

profibrotic markers in neonatal rat ventricular fibroblasts. Effect of siRNA-mediated 

knockdown of individual LOX isoforms in fibroblasts (n = 5) on the abundance of (A) collagen 

1A1 (COL 1A1), (B) COL 3A1, (C) fibronectin 1 (FN 1), (D) transforming growth factor β 1 

(TGF-β1), (E) connective tissue growth factor (CTGF), (F) periostin, (G) α-smooth muscle actin 

(α-SMA), (H) matrix metalloproteinase-2 (MMP-2) and (I) MMP-9 mRNA. mRNA abundance 

was normalized to that of glyceraldehyde 3-phosphate dehydrogenase (GAPDH). The results are 

the means ± SEM; one-way ANOVA followed by the Bonferroni’s multiple comparisons test was 

performed. *P < 0.05 vs. scrambled control (ScRNA); **P < 0.01 vs. ScRNA; ***P < 0.001 vs. 

ScRNA. 
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Figure 7. Knockdown of individual lysyl oxidase (LOX) isoforms in neonatal rat ventricular 

fibroblasts altered proliferation and the expression of proliferation and apoptotic markers. 

Effect of siRNA-mediated knockdown of individual LOX isoforms in fibroblasts (n = 5) on (A) 

cell proliferation and (B) cyclin E2 (CCNE 2), (C) cyclin D1 (CCND 1), (D) B-cell lymphoma 2 

(BCL-2)-associate X protein (BAX), and (E) BCL-2 mRNA and (F) the ratio of BAX/BCL-2 

mRNA. mRNA abundance was normalized to that of glyceraldehyde 3-phosphate dehydrogenase 

(GAPDH). The results are the means ± SEM; one-way ANOVA followed by the Bonferroni’s 

multiple comparisons test was performed. *P < 0.05 vs. scrambled control (ScRNA); **P < 0.01 

vs. ScRNA; ***P < 0.001 vs. ScRNA. 

Figure 8. Knockdown of individual lysyl oxidase (LOX) isoforms in neonatal rat ventricular 

myocytes altered the expression of apoptosis markers. Effect of siRNA-mediated knockdown 

of individual LOX isoforms in cardiomyocytes (n = 4) on the abundance of (A) B-cell lymphoma 

2 (BCL-2)-associate X protein (BAX), and (B) BCL-2 mRNA and (C) the ratio of BAX/BCL-2 

mRNA. mRNA abundance was normalized to that of glyceraldehyde 3-phosphate dehydrogenase 

(GAPDH). The results are the means ± SEM; one-way ANOVA followed by the Bonferroni’s 

multiple comparisons test was performed. *P < 0.05 vs. scrambled control (ScRNA); **P < 0.01 

vs. ScRNA; ***P < 0.001 vs. ScRNA. 

Figure 9. Knocking down lysyl oxidase-like protein 1 (LOXL-1) in canine left atrial (LA) 

myocytes increased cell shortening without altering Ca2+ transients. Effect of siRNA-mediated 

knockdown of individual LOX isoforms in cardiomyocytes (n = 5-15 cells) on (A) cell shortening, 

(B) diastolic Ca2+ level, (C) Ca2+ amplitude and (D) decay time constant. The results are the means 

± SEM; one-way ANOVA followed by the Bonferroni’s multiple comparisons test was performed. 

*P < 0.05 vs. Scrambled control (ScRNA); **P < 0.01 vs. ScRNA, ***P < 0.001 vs. ScRNA. 
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Supplementary Figure Legends 

Figure S1. Angiotensin II (Ang II) failed to change the abundance of lysyl oxidase (LOX) 

isoform mRNA or immunoreactivity in neonatal rat ventricular fibroblasts (Fbs). Effect of 

treatment with different concentrations of Ang II (0.1, 1.0 and 10.0 µM) in Fbs on the relative 

quantity of (A) LOX, (B) LOX-like protein 1 (LOXL-1), (C) LOXL-2, (D) LOXL-3 and (E) LOX-

4 mRNA and the intracellular (cell lysate) of (F) LOX, (G) LOXL-1, (H) LOXL-2, (I) LOXL-3 

and (J) LOXL-4 immunoreactivity. (K) Representative Western blots of LOX family proteins. 

mRNA and immunoreactive bands were normalized to that of glyceraldehyde 3-phosphate 

dehydrogenase (GAPDH). Bands at a molecular weight of 32 and 50 kDa represent active and 

inactive LOX, respectively. The results are the means ± SEM; one-way ANOVA followed by the 

Bonferroni’s multiple comparisons test was performed. n = 4. *P < 0.05 vs. control; **P < 0.01 

vs. control; ***P < 0.001 vs. control. 

Figure S2. Angiotensin II (Ang II) increased lysyl oxidase like protein-1 (LOXL-1) 

immunoreactivity in neonatal rat ventricular myocytes (CM). Effect of treatment with 

different concentrations of Ang II (0.1, 1.0 and 10.0 µM) in CM on (A) LOX, (B) LOXL-1, (C) 

LOXL-2, (D) LOXL-3 and (E) LOXL-4 mRNA and the intracellular (cell lysate) of (F) LOX, (G) 

LOXL-1, (H) LOXL-2, (I) LOXL-3 and (J) LOXL-4 immunoreactivity. (K) Representative 

Western blots of LOX family proteins. mRNA and immunoreactive bands were normalized to that 

of glyceraldehyde 3-phosphate dehydrogenase (GAPDH). Bands at a molecular weight of 32 and 

50 kDa represent active and inactive LOX, respectively. The results are the means ± SEM; one-

way ANOVA followed by the Bonferroni’s multiple comparisons test was performed. n= 3. *P < 

0.05 vs. control; **P < 0.01 vs. control; ***P < 0.001 vs. control. 

Figure S3. β-aminopropionitrile (BAPN) doesn’t change the abundance of lysyl oxidase 

(LOX) isoform mRNA in neonatal rat ventricular fibroblasts (Fbs). Effect of treatment with 

different concentrations of BAPN (0.1, 1.0, 10.0 and 100.0 µM) in Fbs on the abundance of (A) 

LOX, (B) LOX-like protein 1 (LOXL-1), (C) LOXL-2, (D) LOXL-3 and (E) LOXL-4 mRNA. 

mRNA was normalized to that of glyceraldehyde 3-phosphate dehydrogenase (GAPDH). The 

results are the means ± SEM; one-way ANOVA followed by the Bonferroni’s multiple 
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comparisons test was performed. n = 3. *P < 0.05 vs. control; **P < 0.01 vs. control; ***P < 0.001 

vs control. 

Figure S4. Lysyl oxidase (LOX) isoform expression was efficiently suppressed using siRNA 

in neonatal rat ventricular myocytes. The efficiency and specificity of siRNA-mediated 

knockdown of individual LOX isoforms were estimated by qPCR (A-E) and validated by Western 

blot (F). Effect of siRNA knockdown of LOX isoforms in cardiomyocytes on the abundance of 

(A) LOX, (B) LOX-like protein 1 (LOXL-1), (C) LOXL-2, (D) LOXL-3 and (E) LOXL-4 mRNA. 

(F) Representative Western blots of LOX isoforms. mRNA was normalized to that of 

glyceraldehyde 3-phosphate dehydrogenase (GAPDH). The results are the means ± SEM; one-

way ANOVA followed by the Bonferroni’s multiple comparisons test was performed. n = 4. *P < 

0.05 vs. scrambled control (ScRNA); **P < 0.01 vs. ScRNA; ***P < 0.001 vs. ScRNA. 

Figure S5. The expression of lysyl oxidase (LOX) isoforms was efficiently suppressed by 

specific siRNAs in canine left atrial (LA) myocytes. The knockdown efficiency and specificity 

of LOX isoforms were estimated by qPCR. The effect of siRNA-mediated knockdown of 

individual LOX isoforms in cardiomyocytes (n = 4) on the abundance of (A) LOX, (B) LOX-like 

protein 1 (LOXL-1), (C) LOXL-2, (D) LOXL-3 and (E) LOXL-4 mRNA. mRNA was normalized 

to that of glucose 6‐phosphate dehydrogenase (G6PD). The results are the means ± SEM; one-way 

ANOVA followed by the Bonferroni’s multiple comparisons test was performed. *P < 0.05 vs. 

scrambled control (ScRNA); **P < 0.01 vs. ScRNA; ***P < 0.001 vs. ScRNA. 

Figure S6. Adenovirally-mediated lysyl oxidase (LOX) overexpression increased LOX 

mRNA in canine left atrial (LA) myocytes. Effect of overexpression of LOX in cardiomyocytes 

(n = 4) using adenovirus (Aden-LOX) on the abundance of (A) LOX, (B) LOX-like protein 1 

(LOXL-1), (C) LOXL-2, (D) LOXL-3 and (E) LOXL-4 mRNA. mRNA was normalized to that of 

glucose 6‐phosphate dehydrogenase (G6PD). The results are the means ± SEM; unpaired Student’s 

t-tests were performed. *P < 0.05 vs. adenovirus encoding green fluorescent protein (Aden-GFP); 

**P < 0.01 vs. Aden-GFP, ***P < 0.001 vs. Aden-GFP. 

Figure S7. Overexpression of lysyl oxidase (LOX) in canine left atrial (LA) myocytes reduced 

cell shortening without altering Ca2+ transients. Effect of LOX overexpression (n = 5-15 cells) 
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using adenovirus (Aden-LOX) in cardiomyocytes on (A) cell shortening, (B) diastolic Ca2+ level, 

(C) Ca2+ amplitude and (D) decay time constant. The results are the means ± SEM; unpaired 

Student’s t-tests were performed. *P < 0.05 vs. adenovirus encoding green fluorescent protein 

(Aden-GFP); **P < 0.01 vs. Aden-GFP, ***P < 0.001 vs. Aden-GFP. 
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Table S1: Sequences of siRNA for LOX isoforms used in this study. 

siRNA Species Abbreviation  Sequence (5´ to 3´) 

Lysyl oxidase Rat LOX F: CAAGGGACGUCUGACUUCUUACCAA 

R: UUGGUAAGAAGUCAGACGUCCCUUG 

Lysyl oxidase like-1 Rat LOXL-1 F: AGUGGCAUAGCUGUCACCAACAUUA 

R: UAAUGUUGGUGACAGCUAUGCCACU 

Lysyl oxidase like-2 Rat LOXL-2 F: UCGAACACUUCAGUGGACUCCUAAA 

R: UUUAGGAGUCCACUGAAGUGUUCGA 

Lysyl oxidase like-3  Rat LOXL-3 F: CCACUUGAGUGAAGUUCGGUGCUCU 

R: AGAGCACCGAACUUCACUCAAGUGG 

Lysyl oxidase like-4 Rat LOXL-4 F: CCCAGAAUGGUUGUCAACAUGCAAA 

R UUUGCAUGUUGACAACCAUUCUGGG 

Lysyl oxidase Dog LOX F: CGCCUUGCACGUUUCCAAUCGCAUU 

R: AAUGCGAUUGGAAACGUGCAAGGCG 

Lysyl oxidase like-1 Dog LOXL-1 F: CACAGAAGUGCUCGUGGGCAGGUCU 

R: AGACCUGCCCACGAGCACUUCUGUG 

Lysyl oxidase like-2 Dog LOXL-2 F: AAGGACCCAUCUGGUUGGACAAUAU 

R: AUAUUGUCCAACCAGAUGGGUCCUU 

Lysyl oxidase like-3 Dog LOXL-3 F: CCACUUAAGUGAAGUUCAAUGCUCU 

R: AGAGCAUUGAACUUCACUUAAGUGG 

Lysyl oxidase like-4 Dog LOXL-4 F: GCGUGGCUAUCUUUCUGAGAGGGUU 

R: AACCCUCUCAGAAAGAUAGCCACGC 
F: Forward, R: Reverse. 
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Table S2: Sequences of custom-made SYBR Green primers used in this study. 

Gene Name Species Abbreviation  Primer sequence (5´ to 3´) 

Lysyl oxidase like-1  Rat LOXL-1 F: AGGGCCGTCTCAGCGTGGGTAGT 

R: ATGCCTGCACGTAGTTGGGATCTGG 

Lysyl oxidase like-2 Rat LOXL-2 F: GGCCAGCTTCTGCTTGGAGGACAC 

R: GCCTTGTTCTCCGAAGTTGGCACAC 

Lysyl oxidase like-3 Rat LOXL-3 F: ACCCACAGTGCCAAATACGG 

R: TTGCAGATGACCCCAGCATC 

Transforming growth factor-β1 Rat TGF-β1 F: CCATGACATGAACCGACCCT 

R: TGCCGTACACAGCAGTTCTT 

Matrix metalloproteinase-2 Rat MMP-2 F: AAGAGGCCTGGTTACCCTGT 

R: AAGTAGCACCTGGGAGGGAT 

Matrix metalloproteinase-9 Rat MMP-9 F: TCCAGTAGACAATCCTTGCAATGTG 

R: CTCCGTGATTCGAGAACTTCCAATA 

Periostin Rat Periostin F: CTGCCCCGGCTATATGAGAA 

R: TGTTGAGTGGTCGTGGCTC 

Connective tissue growth factor Rat CTGF F: CAAGGGTCTCTTCTGCGACT 

R: GTACACGGACCCACCGAAG 

α-smooth muscle actin Rat α-SMA F: AGCCAGTCGCCATCAGGAAC 

R: CCGGAGCCATTGTCACACAC 

B-cell lymphoma 2 Rat BCL-2 F: GGATCCAGGATAACGGAGGC 

R: ATGCACCCAGAGTGATGCAG 

BCL-2- associated X protein Rat BAX F: CTCCCCGTGAGGTCTTCTTC 

R: TCCAGTGTCCAGCCCATGAT 

Cyclin D1 Rat CCND 1 F: AGGGAGATTGTGCCATCCAT 

R: AAGACCTCCTCTTCGCACTTC 

Cyclin E2 Rat CCNE 2 F: TCTGCATTCTGACCTGGAACC 

R: GGTAATCCCAATGAGTTGAAGCA 

Lysyl oxidase  Dog LOX F: CGTACTACATCCAGGCGTCC 

R: GGGAATCTTAGCAGCACCCT 

Lysyl oxidase like-1 Dog LOXL-1 F: AGCCCGGGAACTACATCCT 

R: GTAGTGGATGTTGCAACGCA 

Lysyl oxidase like-2 Dog LOXL-2 F: GGAGAAGACGTACAACGCCA 

R: GAGATATGAGCCTCCGTGCC 

Lysyl oxidase like-3 Dog LOXL-3 F: CAGGATGCTGGAGTCCGATG 

R: CCCCAGTCATCCCCACAAAT 

Lysyl oxidase like-4 Dog LOXL-4 F: AGAGAACTGCCTCTCCCAGT 

R: GAAGACCTCGATGCTGTGGT 

Glucose 6‐phosphate dehydrogenase Dog G6PD F: GGCGGTCACCAAGAACATCC 

R: GCTTCTCCACGATGACACGG 
F: Forward, R: Reverse. 
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Figure S1. 
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Figure S2.  
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Figure S3. 
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Figure S4. 
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Figure S5. 
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Figure S6. 
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Figure S7.   
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1. Major findings and original contribution to the literature  

Our in vivo and in vitro studies revealed a composite representation of lysyl oxidase 

(LOX) and LOX-like (LOXL) protein roles in the AF pathophysiology, including the 

following: (a) an upregulation of LOX and LOXL-1 in tissues, LOX and LOXL-2 in 

fibroblasts and LOX, LOXL-1, LOXL-3 and LOXL-4 in myocytes from the left atrium 

(LA) of congestive heart failure (CHF) dogs, (b) a significant improvement of LA electrical 

remodeling and reduction of atrial fibrillation (AF) inducibility upon β-aminopropionitrile 

(BAPN) administration following myocardial infarction (MI), (c) a substantial reduction 

in LA fibrosis and amelioration of LA structural remodeling without any significant 

alterations in LV fibrosis and remodeling upon BAPN administration following MI, (d) a 

significant reduction in transcript levels of LOXL-1, LOXL-2 and LOXL-3 along with 

some profibrotic markers in LA tissues without variations of those in LV tissues upon 

administration of BAPN post-MI, (e) secretion of LOX and LOXL-2 from cardiac 

fibroblasts and myocytes, (f) a significant increase in the extracellular LOX 

immunoreactivity in cardiac fibroblasts and LOXL-2 immunoreactivity in cardiac 

myocytes upon Ang II stimulation, (g) a possible role of LOXL-2, LOXL-3 and LOXL-4 

in collagen synthesis and fibroblast proliferation, (h) evidence for a possible protective 

function of LOXL-4 against apoptosis in cardiac fibroblasts and myocytes through 

decreasing the ratio of BAX/BCL-2 mRNA and (i) evidence for a role of LOX or LOXL-

1 in cardiac myocyte contractile dysfunction. These findings have not been previously 

reported in the literature; thus, our major findings are considered as original contributions 

to the literature. 



 

201 

 

2. Discussion and relationship to prior work area 

We used an in vivo MI rat model to study the functions of LOX isoforms in LA 

fibrosis and AF, followed by an in vitro study to characterize the roles of each LOX isoform 

in cardiac fibroblast and myocyte functions. LOX isoforms are involved in many functions 

apart from elastin and collagen cross-linking, such as control of cell migration, ras 

oncogene inhibition, epithelial-mesenchymal transition, cell adhesion, chemotaxis, gene 

regulation, transformation, collagen promotor activation and cell growth 343-347. In cardiac 

tissues, LOX and LOXL-2 have an extracellular function through collagen cross-linking 

337, 348. However, the intracellular functions of LOX isoforms in the heart have not been 

addressed. To date, limited information has been reported on the synthesis and upregulation 

of LOX and LOXL proteins in cardiomyocytes during cardiac diseases. Atrial interstitial 

fibrosis and AF susceptibility were increased in a CHF dog model 349. Nevertheless, the 

underlying mechanism is not clearly understood. We found a significant upregulation of 

LOX and LOXL-1 in tissues, LOX and LOXL-2 in fibroblasts and LOX, LOXL-1, LOXL-

3 and LOXL-4 in myocytes from the LA of CHF dogs. These results, for the first time, 

revealed that LOX isoforms in cardiac myocytes and fibroblasts may contribute to LA 

structural remodeling during CHF progression. This observation revealed a new important 

regulatory mechanism in controlling ECM deposition, LA fibrosis and AF during CHF 

development. In our in vitro study, LOX and LOXL-2 proteins were secreted from neonatal 

rat ventricular fibroblasts and myocytes. LOX is secreted from cardiac fibroblast 342 and is 

crucial for stability and strength of collagen by catalyzing the cross-linking process 350. 

Under normal conditions, cardiac fibroblasts communicate with myocytes to maintain 

cardiac functions 63. Cardiomyocytes secrete TGF-β, Ang II and other profibrotic 
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molecules, which induce ECM protein synthesis, differentiation and proliferation of 

fibroblasts, resulting in interstitial fibrosis 67, 85. Ang II induces cardiac fibrosis in a wide 

range of heart diseases, such as MI, CHF, cardiomyopathy and hypertension 13. 

Upregulation of LOX mediates myocardial stiffness and fibrosis through increasing the 

cross-linking and deposition of collagen 6. Adam et al. 280 reported that the intracellular 

protein expression of LOX in cardiac fibroblasts was increased upon treatment with Ang 

II. We found that secretion of LOX and LOXL-2 was increased in the cultured neonatal rat 

ventricular fibroblasts and myocytes along with an increase in the collagen cross-linking 

ratio in cultured cardiac fibroblasts upon treatment with Ang II. These results suggested 

that the secreted LOX and LOXL-2 from cardiac myocytes and fibroblasts may contribute 

to ECM remodeling. 

Recently, LOX isoforms have been shown to play a prominent role in left ventricular 

(LV) fibrosis in a variety of animal models 335-337, 339, 342, 351. BAPN improved cardiac 

function and decreased LV fibrosis without changing the expression of LOX isoforms 342. 

Adam et al. 280 reported that LA fibrosis and LOX expression were increased in AF 

patients. LOXL-2 may contribute to atrial fibrosis, which is the main substrate for AF 

maintenance 352. However, none of the studies to date have examined the direct roles of 

LOX isoforms in atrial fibrosis and AF. MI is commonly associated with LA fibrosis, AF 

and high mortality rate 353-355. In the current study, a rat MI model was used to study the 

roles of LOX isoforms in LA fibrosis and AF. We selected an inhibitor of LOX isoforms 

(BAPN) to target the signaling pathway of LA fibrosis and AF. Progressive cardiac 

remodeling occurs following MI, including replacement of dead cells in the infarcted area 

of the LV by a collagen scar, thickening of non-infarcted areas of the LA and LV and 
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thinning of the infarcted LV wall 310, 355-358. MI mice showed an increase in LV reparative 

fibrosis along with an increase in LOX isoform expression 342.  

During stressful conditions such as MI or chronic pressure overload, cardiac 

fibroblasts and myofibroblasts are the major cells that are responsible for promoting 

cardiac fibrosis 40, 359. Activated fibroblasts and myofibroblasts secrete numerous 

profibrogenic molecules, such as COL1, COL3, TGF-β, LOX isoforms, MMP, CTGF, FN, 

α-SMA and periostin 8, 13, 40, 98, 360. The LOX family catalyze intra- and inter-molecular 

collagen cross-linking within the cardiac ECM 6, 361. In our study, the upregulation of LOX 

isoform mRNA was accompanied by an increase in COL 1A1, FN 1, TGF-β1, CTGF, 

periostin, α-SMA and MMP-2 mRNA expression and a decrease in Cx 43 mRNA in the 

infarcted area of the LV. Furthermore, we noted an increase in LOXL-1, LOXL-3, COL 

1A1, TGF-β1 and periostin mRNA in LA tissues post-MI. Moreover, BAPN administration 

post-MI reduced the mRNA of LOX isoforms along with a decrease in the mRNA of some 

profibrotic markers in LA tissues. However, BAPN administration post-MI had no 

significant effects on the mRNA of LOX isoforms and profibrotic markers in the infarcted 

and non-infarcted areas of the LV. Our result was consistent with the result of Gonzalez-

Santamaria et al. 342, who reported no changes in the mRNA expression of LOX isoforms, 

MMP-2 and MMP-9 in the infarcted area of the LV upon BAPN administration.  

Recent studies showed that atrial fibroblasts had a higher response to proliferation 

than ventricular fibroblasts during pathological conditions 362. The fibrotic susceptibility 

was higher in the atria than the ventricles 277, 363. We found that BAPN had a greater ability 

to decrease LA fibrosis than LV interstitial fibrosis post-MI. These results may indicate 
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that LA fibroblasts are more sensitive to BAPN than LV fibroblasts. Furthermore, LV 

replacement fibrosis was greater than LA and LV interstitial fibrosis post-MI. 

Administration of BAPN post-MI decreased LA fibrosis and the collagen cross-linking 

ratio without significantly changing those in the LV tissues. These results suggested that 

LV replacement fibrosis started earlier than LA and LV interstitial fibrosis. Therefore, the 

effect of BAPN was greater in LA fibrosis than LV fibrosis. Cleutjens et al. 364 found that 

myofibroblast number and collagen synthesis were higher in the infarcted area of the LV 

compared with the non-infarcted area of the LV post-MI. BAPN decreased collagen 

deposition via inhibition of LOX-induced cross-linking 341. Our findings were not in 

agreement with the results of Gonzalez-Santamaria et al. 342, who reported that fibrosis and 

collagen cross-linking in the infarcted area of the LV were decreased upon administration 

of BAPN in mice post-MI. The discrepancy in the results may be related to the differences 

in the administration method and dose of BAPN as well as animal species. To date, this is 

the first study to explore the effect of LOX and LOXL protein inhibition on LA fibrosis 

and AF.  

The LV remodeling induced LA remodeling as a result of blood movement from the 

LA to the LV 365. Hereafter, MI impaired the structure and function of the LA and the LV, 

and the administration of BAPN post-MI attenuated the adverse LA remodeling without 

significantly changing those in the LV. The relationships of WMSI with LA dimensions, 

areas and FAC were reduced along with little effect on the correlations of WMSI with LV 

structural and functional parameters upon administration of BAPN post-MI. Moreover, LA 

interstitial and LV replacement fibrosis, hallmarks for structural remodeling, interrupted 

the propagation and conduction of cardiac impulses, resulting in AF 366. Our in vivo data 
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demonstrated that MI increased AF inducibility and prolonged P-wave and AF durations, 

whereas the values of those parameters were significantly decreased upon administration 

of BAPN post-MI. Prolongation of the P-P interval and P-wave duration post-MI reflected 

a delay in the atrial conduction due to the development of LA fibrosis.  

We used the siRNA approach to investigate the intracellular role of individual LOX 

isoforms in cardiac fibroblast and myocyte functions. Knockdown of individual LOX, 

LOXL-1 or LOXL-2 in cultured mouse lung fibroblasts had an impact on the expression 

of each other through compensatory or direct effects 367. The cell cycle and proliferation 

were regulated by cyclin-dependent kinases, such as CCNE 2 and CCND 1 368. Knockdown 

of LOXL-3 in fibroblasts decreased LOXL-2, LOXL-3 and LOXL-4 mRNA expressions 

along with a decrease in proliferation and mRNA expression of COL 1A1, COL 3A1 and 

CCNE 2. The results suggested that LOXL-2, LOXL-3 and LOXL-4 play a role in 

fibroblast proliferation and collagen synthesis. CTGF enhances ECM protein synthesis 

during fibrosis progression 98, 369. We found that knockdown of LOX or LOXL-4 decreased 

the amount of CTGF mRNA. Our result is consistent with the finding of Adam et al. 280, 

who reported that CTGF induces an increase in LOX protein in cultured cardiac fibroblasts. 

Cardiac fibrosis is associated with an upregulation of LOX isoforms that causes an 

imbalance between ECM synthesis and degradation 370, 371. Kendall and Feghali-Bostwick 

47 reported that the upregulation of α-SMA expression is a marker of differentiation of 

fibroblasts into myofibroblasts. Knocking down of LOXL-2 in cardiac fibroblasts 

decreased the abundance of LOXL-2 and LOXl-3 mRNA along with an increase in α-SMA 

mRNA. These results indicated a synergistic effect of LOXL-2 and LOXL-3 in preventing 

the differentiation of fibroblasts into myofibroblasts. An increase in the BAX/BCL-2 
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expression ratio is a sign of cellular susceptibility to apoptosis 372. Upon knockdown of 

LOXL-4, the mRNA expression of the BAX/BCL-2 ratio was significantly increased in 

cardiac myocytes and fibroblasts. These results suggested that LOXL-4 may protect against 

apoptosis of cardiac fibroblasts and myocytes.  

HF is characterized by impaired excitation-contraction coupling along with 

abnormalities in Ca2+ handling 132, 373. We noted that contractility of canine LA myocytes 

was improved upon knockdown of LOX or LOXL-1 and impaired upon overexpression of 

LOX, while there was no significant change in the Ca2+ transient. The contractile 

dysfunction of CHF myocytes occurs due to alterations in myofilament function or Ca2+ 

handling 374. Our data provided the first evidence that LOX or LOXL-1 may have a 

significant role in myocyte contractility via alterations in contractile protein function. 

3. Potential limitations 

There were limitations to the current study that should be addressed. First, we used a 

LOX inhibitor (BAPN) that had non-specific effects on LOX isoforms. In this study, the 

cardioprotective effects of BAPN post-MI in the LA tissues resulted from the inhibition of 

all LOX isoforms. Second, the present study revealed significant changes in the transcript 

levels of LOX isoforms without significant changes at the protein level for LOX isoforms 

in the LA tissues. It is possible that the significant changes observed at the mRNA level 

may result in the small changes at the protein level of each LOX isoform. The sum of these 

small changes in protein levels of all LOX isoforms may result in a significant effect on 

cardiac fibrosis. Third, we used non-specific siRNA for LOXL-1, LOXL-2 and LOXL-3 

in neonatal rat ventricular fibroblasts and myocytes. Finally, there is a need for further 
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investigations to understand the role of individual LOX isoforms in signal transduction 

pathways of LA fibrosis and AF. 

4. Future research directions 

A limited number of synthesized molecules have been used as inhibitors targeting 

LOX isoforms in the treatment of fibrous diseases due to their specificity, efficiency and 

safety issues. In our study, BAPN had beneficial effects in attenuating atrial fibrosis and 

decreasing AF inducibility in rats post-MI. Furthermore, we did not observe any toxic 

effect of BAPN administration for three consecutive weeks in either the sham or MI rats. 

Patients treated with large doses of BAPN for long periods showed toxic and undesirable 

effects that had not been observed in animals 375. Long-term treatment of scleroderma 

patients with BAPN is extremely dangerous 376, 377. Keiser and Sjoerdsma 376 reported that 

BAPN administration up to 3.5 g per single dose or 2.0 g per day for five consecutive days 

had no toxic effect in scleroderma patients. Peacock and Madden 378 stated that BAPN 

treatment up to 5, 4, 3, 2 and 2 g for 12, 15, 20, 21 and 14 days, respectively, yielded 

unexpected signs and symptoms (e.g., fever, elevated serum glutamic oxaloacetic 

transaminase, gastrointestinal irritability, dermatitis and eosinophilia) in patients with 

lacerated flexor tendons, whereas BAPN treatment up to 67 days caused lathyrism in 

scleroderma patients. Moreover, Peacock and Madden 375 revealed that treatment of 

posterior urethral strictures with 1 g/day of BAPN for 21 days had no toxic effects or 

unwanted symptoms in humans. Thus, the future use of BAPN as a drug for AF patients 

should be limited to clinical circumstances in which short-term therapy would be 

recommended. Further studies will be required to define the pharmacological properties of 
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BAPN to control lathyrism and unwanted symptoms in AF patients. Overall, there is still 

a need for future clinical studies to assess the therapeutic implications, safety and feasibility 

of BAPN in AF patients. 

In addition to the potential therapeutic role of the LOX family in AF, serum levels of 

LOXL-2 were significantly increased and correlated with the atrial fibrous tissue content 

in AF patients 379. Yang et al. 348 reported that serum levels of LOXL-2 were elevated and 

correlated with HF biomarkers in HF patients. Furthermore, LOX expression and collagen 

cross-linking were increased in the atrial tissues of AF patients compared with those in 

sinus rhythm patients 280. Currently, the optimal AF biomarker is still unknown. Therefore, 

there is a growing need for the identification of new serum or tissue biomarkers for AF that 

are capable of categorizing patients at substantial risk for AF and estimating the prognosis 

and severity of AF. Further clinical investigation is required to correlate the levels of 

individual LOX isoforms in the blood with prognosis and severity of AF. It is expected that 

additional investigation of LOX family isoforms as potential biomarkers may substantially 

contribute to the development of early diagnosis and treatment for AF and pathological 

cardiac remodeling. 

Further in vivo investigations are needed to confirm our in vitro results through 

genetic inhibition of individual LOX isoforms in cardiac myocytes or fibroblasts to 

understand the exact underlying mechanisms of each LOX or LOXL protein in AF 

pathophysiology. We could use LOX or LOXL protein knockout mice that are crossed with 

cell-specific promoters, including transcription factor 21 for fibroblasts and alpha-myosin 

heavy chain for cardiomyocytes. Deletion of each LOX isoform in cardiac fibroblasts or 
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myocytes may help to interpret the roles of each LOX isoform in the signaling pathways 

of atrial fibrosis and AF. 

In our study, we found that the administration of BAPN post-MI significantly 

decreased the mRNA expression of TGF-β in LA tissues. It is necessary to further study 

the effect of BAPN on TGF-β signaling, including canonical and non-canonical pathways, 

that are important in atrial fibrosis and AF development. In our in vitro study, we used 

siRNA-mediated knockdown of LOX isoforms to assess the precise intracellular role of 

LOX isoforms in regulating cardiac myocyte and fibroblast functions. There is a need to 

confirm the protective function of LOXL-4 against apoptosis in cardiac fibroblasts and 

myocytes using other techniques, such as annexin v staining. It would be interesting to 

conduct microarray analyses for several genes that are involved in AF, such as Ca2+ 

handling genes, ion channels, contractile proteins and profibrotic factors, following 

knockdown of each LOX isoform or use of catalytically incompetent LOX variants in 

cardiac myocytes and fibroblasts. Furthermore, the effect of LOX or LOXL-1 on 

contractility of cardiomyocytes without any concomitant change in Ca2+ transients needs 

further investigation to clarify whether LOX or LOXL-1 can have a direct impact on the 

contractile proteins or an indirect effect through other signaling pathways. 

5. Conclusions 

In conclusion, BAPN reversed structural remodeling and decreased AF inducibility 

along with suppression of LOX isoform and profibrotic marker expression, collagen cross-

linking and fibrosis in the LA post-MI. Our findings provide a new strategy targeting the 

LOX family signaling pathway in atrial fibrosis-induced AF. The results from the present 



 

210 

 

study provide novel evidence regarding the beneficial effects of BAPN administration on 

the electrical and structural remodeling of LA post-MI. The expressions of LOX and 

LOXL-1 in tissues, LOX and LOXL-2 in fibroblasts and LOX, LOXL-1, LOXL-3 and 

LOXL-4 in myocytes from the LA of CHF model were increased compared with those in 

the control. Moreover, LOX and LOXL-2 were secreted from cultured neonatal rat 

ventricular myocytes and fibroblasts. The secreted LOX and LOXL-2 from cultured 

neonatal rat ventricular fibroblasts and myocytes were increased along with an increase in 

collagen cross-linking in cultured fibroblasts upon treatment with Ang II. LOXL-2, LOXL-

3 and LOXL-4 may have a role in fibroblast proliferation and collagen synthesis. LOXL-4 

may exhibit a protective function against apoptosis by decreasing the ratio of mRNA 

BAX/BCL-2 in fibroblasts and myocytes. LOX and LOXL-1 reduced the contractility of 

cardiomyocytes along with slight changes in Ca2+ transients. We conclude that the 

intracellular LOXL-2, LOXL-3 and LOXL-4 as well as extracellular LOX and LOXL-2 in 

cardiac fibroblasts and myocytes may have roles in regulating the cardiac fibrotic response. 

In vivo and in vitro findings illustrated new innovative and important regulatory functions 

of each LOX isoform at the intra- and extra-cellular levels in structural remodeling, ECM 

protein deposition, myocardial fibrosis and AF. The role of each LOX isoform in the signal 

transduction pathways of LA fibrosis and AF requires further investigation. 
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